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Résumé

C ette thèse se situe à l’intersection de deux domaines de recherche : la statistique des
valeurs extrêmes et la statistique bayésienne. L’objectif principal est d’utiliser des

méthodes bayésiennes pour l’estimation de quantiles extrêmes de données environnemen-
tales. L’utilisation du point de vue bayésien est motivée par différentes problématiques
liées à l’estimation des quantiles extrêmes. Tout d’abord, cela permet de directement
prendre en compte différentes sources d’incertitudes dans un estimateur ponctuel, par
exemple en utilisant des lois dites prédictives. Ensuite, cela permet d’accéder à des in-
tervalles de crédibilité pour quantifier la marge d’erreur autour de l’estimation. Enfin,
un dernier objectif est de fournir des éléments de réponse quant à la quantification des
limites de crédibilité d’extrapolation, c’est-à-dire de déterminer jusqu’où il est raisonnable
d’extrapoler la queue de distribution pour l’estimation de quantiles par exemple.

La première contribution de cette thèse porte sur l’amélioration de méthodes bayésien-
nes computationnelles par la reparamétrisation de modèles d’extrêmes. En particulier,
l’étude met en évidence deux avantages à l’utilisation d’une paramétrisation dite orthog-
onale. D’abord, elle améliore significativement la convergence d’algorithmes MCMC. En-
suite, elle facilite le calcul de la loi a priori de Jeffreys pour le modèle d’extrêmes caractérisé
par un processus de Poisson, et permet de démontrer la propreté de la loi a posteriori as-
sociée. Cette analyse est complétée par l’utilisation d’un a priori semi-informatif appelé
PC prior, qui est également calculé à partir de la vraisemblance du processus de Poisson.

La deuxième contribution concerne l’amélioration du diagnostic de Gelman–Rubin noté
R̂ pour la convergence des algorithmes MCMC. Une nouvelle version est proposée, basée
sur une version localisée qui permet d’identifier un problème de convergence sur un quantile
donné de la loi cible. Sa construction repose sur une étude théorique qui permet, entre
autre, d’associer un seuil à partir duquel on estime que les châınes MCMC n’ont pas
convergé à un niveau de confiance fixé. Le cas multivarié est également traité, et des
simulations sur des modèles bayésiens viennent compléter la proposition.

La troisième contribution de la thèse consiste en des résultats préliminaires sur le
comportement de différents estimateurs bayésiens à taille d’échantillon fini. L’objectif
est de comprendre comment les estimateurs se comportent dans la queue, en prenant
en compte l’incertitude associée à l’estimation des paramètres. Les résultats portent sur
le domaine d’attraction des lois prédictives (a priori et a posteriori), ainsi que sur un
équivalent asymptotique de deux méthodes pour estimer un niveau de retour extrême,
dans le cas d’une loi a priori uniforme sur le paramètre de forme.

Enfin, la dernière contribution de cette thèse est l’application du modèle et de tout
les résultats précédents à des séries de données environnementales. Cela permet une
estimation de niveaux de retour centennaux, millénaux et décamillénaux de débits de
rivières et de vitesses de vents, ainsi que d’apporter des éléments de réponse sur les limites
d’extrapolation dans la queue de distribution.





Abstract

T his thesis lies at the intersection of two research domains: extreme value statistics
and Bayesian statistics. The main objective here is to use Bayesian methods for

the estimation of extreme quantiles, and in particular the return levels of environmen-
tal datasets. The adoption of a Bayesian paradigm is motivated by various challenges
associated with the estimation of extreme quantiles. Firstly, it allows for the direct con-
sideration of different sources of uncertainty in a point estimator, for example by using
the so-called predictive distributions. Secondly, it enables access to credible intervals to
quantify the estimation error. Lastly, one aim is to provide insights into quantifying the
limits of extrapolation, in other words, determining how far it is reasonable to extrapolate
the tail of the distribution with a reasonable error for quantile estimation.

The first contribution of this thesis focuses on enhancing computational Bayesian meth-
ods through the reparameterization of extreme value models. In particular, the study
highlights two advantages of employing an orthogonal parametrization. This first leads
to a significant improvement in the convergence of MCMC algorithms. Second, it fa-
cilitates the derivation of the Jeffreys prior for the Poisson process characterization of
extremes, thereby demonstrating posterior propriety. This investigation of the prior is
further complemented by the use of a semi-informative prior called the PC prior, which is
also calculated for this Poisson process likelihood.

The second contribution concerns the improvement of a convergence diagnostic for
MCMC algorithms known as Gelman–Rubin diagnostic and denoted by R̂. A new ver-
sion denoted R̂(x) is proposed, based on a localized approach that diagnoses convergence
issues on a specific quantile of the target distribution. Its construction relies on a theoret-
ical study that enables, among other things, the association of a confidence level with a
threshold indicating the lack of convergence of the MCMC chains. The multivariate case
is addressed, and simulations on Bayesian models are conducted and support the proposal.

The third contribution of the thesis consists of preliminary results regarding the tail
behavior of different Bayesian estimators for finite sample sizes. The aim is to understand
how these estimators behave in the tail, when taking into account the uncertainty associ-
ated with parameter estimation. The results cover the domain of attraction of predictive
distributions (prior and posterior) and provide an asymptotic equivalence for two estima-
tion methods of extreme return levels, under a uniform prior on the shape parameter.

Lastly, the final contribution of this thesis entails the application of the model and all
the previous results to a series of environmental datasets. This allows for the estimation of
centennial, millennial, and decamillennial return levels for different datasets of river flows
and wind speeds, while also providing insights into the extrapolation limits in the tail of
the distribution.
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Résumé

C e chapitre présente les fondements théoriques et les concepts qui vont ensuite être
employés dans le reste du manuscrit. Nous commençons par introduire la théorie

des valeurs extrêmes univariées en Section 1.1 et discutons de trois méthodes statistiques
couramment utilisées pour estimer les événements extrêmes : l’estimation par dépassement
de seuil, par maxima de blocs et la caractérisation par un processus de Poisson non ho-
mogène, qui généralise les deux premiers modèles. Ensuite, nous nous intéressons au
paradigme bayésien en Section 1.2, en mettant l’accent sur les aspects computationnels
qui seront explorés dans les chapitres suivants. Après l’introduction à ces deux branches
de la statistique, nous passons en revue la littérature existante à leur intersection en Sec-
tion 1.3 et présentons différents domaines de recherche concernant les modèles bayésiens
de valeurs extrêmes. Enfin, nous concluons dans la Section 1.4 en résumant les motiva-
tions d’Électricité de France (EDF) qui co-finance la thèse, et en donnant un aperçu des
contributions apportées.
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Abstract

T his chapter presents the theoretical foundations and concepts that form the basis of
this thesis. We begin by introducing univariate extreme value theory in Section 1.1

and discuss three statistical models commonly used for estimating extreme events: peaks-
over-threshold, block maxima, and point process characterization, which integrates the
first two methods. Next, we delve into the Bayesian paradigm in Section 1.2, focusing on
the computational aspects that will be explored in the subsequent chapters. By introducing
these two fields, we review the existing literature at their intersection in Section 1.3, and
outline various research areas concerning Bayesian extreme value modelling. Finally, we
conclude in Section 1.4 by summarizing the motivations of Électricité de France (EDF,
co-funding this thesis) and providing an overview of the contributions made here.
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1.1 Introduction to univariate extreme value theory

While traditional statistical methods often focus on characterizing the central tendencies
and variability of data, extreme value theory (EVT) is specifically concerned with the tail
behavior of probability distributions. It is rooted in a theory developed by Fisher and
Tippett (1928) and Gnedenko (1943) on the convergence in law of the maximum value
of a sequence of independent and identically distributed random variables, and has then
been extended with the results of Pickands (1975), Balkema and De Haan (1974) on the
convergence in law of excesses above a threshold. This theory provides valuable insights
into the probabilities of events that fall outside the range of typical occurrences, allowing
us to better understand and quantify the risks associated with extreme phenomena. We
refer to Coles (2001), Beirlant et al. (2006) for great introductions to the field, and to Haan
and Ferreira (2006), Resnick (2008) for a more theoretical in-depth analysis. In this study,
we focus exclusively on the univariate case, considering scalar random variables that are
independent and identically distributed (i.i.d.). Usually, one of two following problems is
addressed:

1. Small probability estimation: this problem involves determining the probability
associated with a given extreme quantile, which is typically larger than the largest
observed value.

2. Extreme quantile estimation: here, the goal is to determine the quantile as-
sociated with a low probability, which tends to approach zero as the number of
observations increases.

In the following, our primary objective is to address the problem of estimating an extreme
quantile which is called return level in environmental studies (see Definition 3). We start
by introducing in Section 1.1.1 and Section 1.1.2 the two fundamental theorems on which
all extreme models rely on and their subsequent applications. Then, in Section 1.1.3, we
introduce a unified perspective that combines both approaches. Finally, in Section 1.1.4,
we review the application to environmental data.

1.1.1 Analyzing extremes through maxima modelling

1.1.1.1 Asymptotic behavior of the maxima

Let (X1, . . . , Xn) be n ∈ N i.i.d. random variables with cumulative distribution function
(cdf) F and survival function F̄ := 1 − F . The first result relates to the distribution of
the maxima Mn := max{X1, . . . , Xn}. In the i.i.d. case, the cdf of Mn can be denoted
as F n. Similarly to how a sample mean needs to be standardized to converge to a non-
degenerate distribution (which is the standard normal distribution according to the central
limit theorem), we are interested in the limit behavior of the standardized sample maxima.
We introduce the concept of maximum domain of attraction:

Definition 1. A cdf F is said to belong to a maximum domain of attraction if and only
if there exist two sequences an > 0, bn and a non degenerate cdf G such that for all x ∈ R

F n(anx + bn)→ G(x) as n→∞.
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In the following, this property is denoted F ∈ MDA(G). Equivalently, one could
write that F ∈ MDA(G) if and only if (Mn − bn)/an

d−→ Y , where Y ∼ G. Here, the
normalizing sequence bn plays the role of a location parameter, shifting the distribution,
while the sequence an acts as a scale parameter, controlling the spread of the distribution.
A question arises: what is the limiting distribution that replaces the Gaussian distribution
in the convergence of the empirical mean? The answer is provided by the extreme value
theorem, also known as the Fisher-Tippett-Gnedenko theorem:
Theorem 1 (Fisher–Tippett–Gnedenko). If F ∈ MDA(G), then there exist ξ ∈ R and
normalizing sequences such that G can be written

Gξ(x) :=

exp
(
−{1 + ξx}

− 1
ξ

+

)
if ξ ̸= 0 ,

exp(− exp(−x)) if ξ = 0,
(1.1)

where {x}+ = max{0, x}.

This distribution is known as the Generalized Extreme Value (GEV) distribution.
Unlike regular distributions, its support depends on the parameters involved:

supp(Gξ) = {x ∈ R s.t. 1 + ξx > 0} . (1.2)

When ξ ̸= 0, the use of {.}+ in Equation (1.1) can be omitted by considering Equation (1.2)
as the support of the distribution. Note also that the case ξ = 0 is a continuous extension
of ξ ̸= 0.

Theorem 1 introduces a parameter ξ, known as the extreme-value index or tail index,
which acts as a shape parameter. In the estimation process, the normalizing sequences
an and bn are two other parameters that will be estimated, hereafter referred to as σ and
µ respectively. As the name suggests, the GEV distribution encompasses three distinct
behaviors determined by the sign of ξ, resulting in three different domains of attraction:

• If ξ = 0: F is said to belong to the Gumbel maximum domain of attraction (Gumbel,
1958). This domain includes distributions such as normal, exponential, gamma, and
lognormal, among others. It exhibits a light tail behavior, meaning that its survival
function decreases as an exponential function.

• If ξ > 0: F is said to belong to the Fréchet maximum domain of attraction (Fréchet,
1927). This domain includes heavy-tailed distributions, where the survival function
decreases as a power function. Typically, these distributions have finite moments of
order smaller than 1/ξ only, indicating that larger values of ξ correspond to heavier
tails. Examples of heavy-tailed distributions include Cauchy, Pareto, and Student
distributions.

• If ξ < 0: F is said to belong to the Weibull domain of attraction (Weibull, 1951). By
examining Equation (1.2), it is clear that ξ < 0 imposes an upper bound condition
on the support of Gξ. Therefore, this domain comprises short-tailed distributions
with a finite endpoint, such as uniform or beta distributions.

It is worth noting that the condition of belonging to a maximum domain of attraction
in Theorem 1 is satisfied by a vast majority of known cdf F (see p.145 of Embrechts
et al., 2013, for additional examples). Figure 1.1 shows examples of survival functions
Ḡξ = 1−Gξ and the corresponding probability density functions (pdf) for different values
of ξ.
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Figure 1.1: Probability density functions (left plot) and survival functions (right plot) of GEV
distributions with ξ ∈ {−1,−1/2, 0, 1/2}.

1.1.1.2 Block maxima approach

How to use this result in practice? Let us first note that one can derive an approximation
in the tail of the survival function and its inverse from Theorem 1: as F ∈ MDA(Gξ), one
has

log(1− F̄ (x)) ≃ 1
n

log(Gξ((x− µ)/σ)). (1.3)

So for large x, a Taylor expansion yields

F̄ (x) ≃ − 1
n

log(Gξ((x− µ)/σ) =


1
n

(
1 + ξ

(
x−µ

σ

))− 1
ξ if ξ ̸= 0 ,

1
n exp

(
−x−µ

σ

)
if ξ = 0.

(1.4)

Similarly, inverting Equation (1.4) gives an approximation of the quantile associated with
a small probability p:

F̄ −1(p) ≃ µ + σG−1
ξ (exp(−np)) =

µ + σ (np)−ξ−1
ξ if ξ ̸= 0 ,

µ− σ log(np) if ξ = 0.
(1.5)

Then, given a finite number of observations n, a common approach to estimating ex-
treme quantiles is to assume that the maximum Mn follows a GEV distribution, and
substitute the values of the parameters (µ, σ, ξ) with their estimators (µ̂, σ̂, ξ̂) in Equa-
tion (1.5). However, obtaining reliable parameter estimates requires having a sample of
maxima observations, which is not directly available. To overcome this challenge, one
approach proposed by Gumbel (1958) involves dividing the dataset into non-overlapping
blocks and extracting the maximum value from each of them. These block maxima are
then used to estimate the parameters (µ, σ, ξ). Estimators commonly employed include
maximum likelihood estimation (Prescott and Walden, 1983) and probability weighted
moments (Hosking et al., 1985).

The block maxima approach offers a straightforward and intuitive way to estimate
extreme events by focusing on the maximum values within each block. However, it should
be noted that this method may discard a significant amount of data. Furthermore, the
choice of the block size is challenging and can be seen as a bias-variance tradeoff (see
Figure 1.2):
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Figure 1.2: Examples of three block size selections for a dataset of river flow at Tours (see
Chapter 5).

• A small block size provides more extreme events for estimation, which reduces the
variability of parameter estimates but introduces bias. This bias arises because the
maxima of a small number of samples may deviate from the GEV distribution which
is only asymptotic.

• On the other hand, a larg block size reduces bias but increases variance due to the
limited number of samples available for parameter estimation.

Thus, selecting an appropriate block size requires careful consideration, and involves find-
ing a balance that minimizes the overall error.

1.1.2 Analyzing extremes through excesses modelling

1.1.2.1 Asymptotic behavior of excesses over a threshold

An alternative approach to estimating extreme quantiles involves considering the excesses
above a threshold instead of the maximum values of the distribution. Let X be a random
variable with the same cdf F as X1, . . . , Xn, and let xF denote its endpoint (which can be
finite or infinite). The distribution function of the excesses of X over a threshold u < xF

can be expressed as follows for y ≥ 0:

P(X < y + u | X > u) = F (u + y)− F (u)
1− F (u) , (1.6)

or equivalently, the survival function is

P(X > y + u | X > u) = F̄ (u + y)
F̄ (u)

. (1.7)

The second extreme-value theorem, known as the Pickands theorem (Pickands, 1975),
provides an approximation when the threshold u is asymptotically high.

Theorem 2 (Pickands, 1975). F ∈ MDA(Gξ) if and only if there exist σu > 0 and
ξ ∈ R such that the law of excesses can be uniformly approximated by a Generalized
Pareto Distribution (GPD):

sup
y∈(0,xF −u)

∣∣∣∣∣ F̄ (u + y)
F̄ (u)

− H̄σu,ξ(y)
∣∣∣∣∣ −−−−→u→xF

0, (1.8)
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with

H̄σu,ξ(y) =


{

1 + ξ y
σu

}− 1
ξ

+
if ξ ̸= 0 ,

exp
(
− y

σu

)
if ξ = 0.

(1.9)

This theorem establishes that the law of excesses converges uniformly to a GPD with
two parameters: σu, which may depend on u, and ξ. In particular, F ∈ MDA(Gξ) implies
the convergence for all y ∈ supp(Gξ) of

P(X > y + u | X > u) −−−−→
u→xF

H̄σu,ξ(y), (1.10)

Equation (1.4) provides an outline of the proof. Assuming ξ ̸= 0 1, we obtain:

P(X > y + u | X > u) = F̄ (u + y)
F̄ (u)

≃

(
1 + ξ

(
y+u−µ

σ

))− 1
ξ

(
1 + ξ

(
u−µ

σ

))− 1
ξ

=
(

1 + ξ
y

σu

)− 1
ξ

= H̄σu,ξ(y),

where σu = σ + ξ(u − µ). This demonstrates the intrinsic connection between the GPD
parameters and the GEV ones, for the approximation of the maxima. The shape parameter
ξ is shared by both models and plays the same role, while the scale parameter σu can be
expressed as a function of (µ, σ, ξ) and linearly depends on u. Note that for the GPD, the
case where ξ = 0 corresponds to an exponential distribution, and ξ = −1 corresponds to
a uniform distribution on [0, σu].

1.1.2.2 Peaks-over-threshold approach

Similarly to the result obtained for the GEV distribution, one can derive an approximation
of the survival function by considering the change of variable x = y + u:

F̄ (x) ≃ F̄ (u)H̄σu,ξ(x− u) =

F̄ (u)
(
1 + ξ

(
x−u
σu

))− 1
ξ if ξ ̸= 0 ,

F̄ (u) exp
(
−x−u

σu

)
if ξ = 0.

(1.11)

By inverting the expression, one can approximate the quantile function for a small prob-
ability p as

F̄ −1(p) ≃ u + σuH−1
σu,ξ

(
1− p

F̄ (u)

)
≃

u + σu

(
p

F̄ (u)

)−ξ

−1

ξ if ξ ̸= 0 ,

u− σu log
(

p
F̄ (u)

)
if ξ = 0.

(1.12)

Expressions (1.11) and (1.12) are analogous to expressions (1.4) and (1.5) in the GEV case.
Maximum likelihood estimators (Davison and Smith, 1990, Zhou, 2010) and probability

1All computations can be extended to the case where ξ = 0.
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Figure 1.3: Examples of three threshold selections for a dataset of river flow at Tours (see
Chapter 5).

weighted moments (Hosking and Wallis, 1987) are commonly used estimation methods in
this context. In practice, a value is chosen for F̄ (u), and the associated u is a location
parameter that needs to be estimated, similarly to µ in the GEV case. However, just as
samples of maxima are not directly available for parameter estimation in the GEV case,
the excesses are not observed initially in the peaks-over-threshold method. The common
practice, known as the peaks-over-threshold method, involves selecting a number nu of
excesses, and so choosing F̄ (u) = nu

n . If the order statistics are denoted by x(1) ≤ . . . ≤
x(n), the associated threshold u is then estimated as x(n−nu), and the exceedances are
defined as yi := x(n−nu+i) − x(n−nu), for i = 1, . . . , nu.

The discussion on the choice of u is similar to the one regarding the block size: selecting
a small value of nu leads to a large variance in the estimations due to the limited number
of observations, while choosing a large value of nu introduces a significant bias because
the asymptotic tail approximation is no longer accurate (see Figure 1.3). One method of
threshold elicitation, described in Coles (2001, Chapter 4), involves choosing the lowest
threshold that provides a reasonable asymptotic approximation, based on a graphical
method. Typically, if X follows a GPD and ξ < 1, then

E[X − u | X > u] = σu

1− ξ
,

and for all v > u,
E[X − v | X > v] = σv

1− ξ
= σu + ξv

1− ξ
.

Thus, the mean of the excesses is a linear function of u when the observations are GPD.
Consequently, the threshold can be selected by plotting a mean residual life plot (i.e., the
sample mean excesses) and identifying the smallest threshold that exhibits linearity in u.
However, it is important to note that this method, as discussed in Coles (2001, Chapter 4)
and other works, does not always lead to a clear conclusion, see Section 5.2 for a further
discussion. The question of choosing an appropriate threshold in the peaks-over-threshold
method, as well as the selection of the block size in the block maxima approach, remains
therefore an open area of research.

1.1.3 A unifying model: the Poisson process characterization

A third way to characterize the extreme value behavior comes from the theory of point
processes, and has the main advantage of unifying the GEV and GPD models presented
before. We present here an intuitive way for obtaining this model similarly to Coles (2001,
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Chapter 7), and refer to Leadbetter et al. (1983, Chapter 5) for more theoretical details
on the construction.

1.1.3.1 Statistical perspective of Poisson process

The starting point here shifts from considering the distribution of single observations to
focusing on the underlying point process associated with these observations. Let us briefly
review the definition of a point process.

Definition 2. A point process N on a measurable space A is a counting measure used to
describe the random occurrence of events in a given subset A ⊂ A.

In other words, for any measurable subset A ⊂ A, N(A) represents the number of
observations within A. The characteristics of the point process are determined by consis-
tently specifying the probability distribution of the random variable N(A) for all measur-
able subsets A of the underlying space. For the sake of clarity, we consider the case where
A is one-dimensional, but the concept can be generalized to multidimensional spaces. For
any A ⊂ A, we call intensity measure Λ(A) the expected number of points in A, so that
Λ(A) = E(N(A)), and λ(t) the associated intensity function, such that:

Λ(A) =
∫

A
λ(t)dt.

The simplest example of a point process is a homogeneous Poisson process, defined on
A = R+ by two properties:

• For all intervals [t1, t2] with 0 ≤ t1 ≤ t2, N([0, t2])−N([0, t1]) ∼ P(λ(t2 − t1)) with
λ > 0.

• For two non-overlapping intervals [t1, t2] and [t3, t4] with t1 < t2 < t3 < t4, N([0, t2])−
N([0, t1]) and N([0, t4])−N([0, t3]) are independent random variables.

Here, the intensity function is constant (λ(t) = λ), and the intensity measure (which
is the mean of the Poisson distribution) is proportional to the interval size: Λ([t1, t2]) =
λ(t2−t1). To generalize this process while maintaining the independence property for non-
overlapping intervals, a varying intensity measure based on the location can be introduced:

N([0, t2])−N([0, t1]) ∼ P(Λ([t1, t2])), with Λ([t1, t2]) =
∫ t2

t1
λ(t)dt.

From a statistical perspective, when estimating the point process, we consider the non-
homogeneous Poisson case and assume that the intensity function can be parameterized
by θ, so that λ(t) = λ(t; θ). The aim is to estimate the parameters of the intensity based
on a set of observed points t1 < . . . < tn. The information contained in the observed
points includes the occurrence of events as well as the fact that there are n points in the
observation period [0, t]. Thus, the likelihood can be expressed as

L(n, t1, . . . , tn; θ) = L(t1, . . . , tn | N([0, t]) = n; θ)P(N([0, t]) = n; θ).

The following result can be found in Chapter 2 of Ross (1996):
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Proposition 1. Let (T1, . . . , Tn) be the arrival time of N observations. The joint density
f of (T1, . . . , Tn) given that N([0, t]) = n can be written

f(t1, . . . , tn | N(t) = n) = n!
∏n

i=1 λ(ti)
Λ([0, t])n

I{0 < t1 < . . . < tn < t}.

Therefore, since N([0, t]) ∼ P(Λ([0, t]), we obtain that the likelihood associated with
a non-homogeneous Poisson process is

L(n, t1, . . . , tn; θ) = exp (−Λ([0, t]; θ))
n∏

i=1
λ(ti; θ). (1.13)

1.1.3.2 Poisson process for extremes

Recall from Equation (1.4) that for each variables X1, . . . , Xn and u ∈ supp(Gξ), we have

P (Xi > u) ≈

 1
n

(
1 + ξ

(
u−µ

σ

))− 1
ξ if ξ ̸= 0 ,

1
n exp(−u−µ

σ ) if ξ = 0.
(1.14)

This value can be interpreted as the probability of each point belonging to the interval
Iu = [u, +∞). Given the i.i.d observations assumption, we can deduce that the point
process Nn associated with the point sequence {Xi , i = 1, . . . , n} is such that

Nn(Iu) ∼ B(n, p) , with p =

 1
n

(
1 + ξ

(
u−µ

σ

))− 1
ξ if ξ ̸= 0 ,

1
n exp(−u−µ

σ ) if ξ = 0.
(1.15)

As n→ +∞, the binomial distribution converges to a Poisson P(Λ(Iu)), with

Λ(Iu) =


(
1 + ξ

(
u−µ

σ

))− 1
ξ if ξ ̸= 0 ,

exp(−u−µ
σ ) if ξ = 0.

(1.16)

The property holds for all Iu, and the independence property for the distributions of Nn

on non-overlapping sets is sufficient to conclude that Nn converges to a non-homogeneous
Poisson process (NHPP) N with an intensity measure for a given u given by Equa-
tion (1.16):

Nn
d−→ N, with N(Iu) ∼ P(Λ(Iu)).

By combining this result with Equation (1.13) and denoting θ := (µ, σ, ξ), we finally obtain

L(nu, x1, . . . , xnu ; θ) = exp (−Λ(Iu; θ))
nu∏
i=1

λ(xi; θ),

= exp
(
−
(

1 + ξ

(
u− µ

σ

))− 1
ξ

)
σ−nu

nu∏
i=1

(
1 + ξ

(
x− µ

σ

))− 1+ξ
ξ

.
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1.1.3.3 Connection with GEV and GPD case

By construction, we directly have for x > 0

P(Mn < x) = P(Nn(Ix) = 0) −−−−−→
n→+∞

P(N(Ix) = 0) = exp(−Λ(Ix)) = Gξ((x− µ)/σ),

so the distribution of Mn effectively converges to a GEV with the Poisson process model.
However, estimating (µ, σ, ξ) with this model is typically related to the overall maxi-

mum of the dataset. In many cases, it is more common to study the maxima of smaller
blocks, such as annual maxima. To account for this, the intensity measure Λ(Iu; θ) needs
to be multiplied by m. One interpretation of this rescaling is by introducing a time di-
mension in the point process. If the sequence of points is now represented as

(
i

n+1 , Xi

)
,

then the intensity measure for a given A = [t1, t2]× [u, +∞) becomes

Λ(Iu; θ) =

(t2 − t1)
(
1 + ξ

(
u−µ

σ

))− 1
ξ if ξ ̸= 0,

(t2 − t1) exp(−u−µ
σ ) if ξ = 0.

(1.17)

Therefore, within each period equal to one block (e.g., one year for annual maxima),
the maximum follows a GEV distribution. The distribution of the global maximum can
now be seen as the maximum of m smaller blocks, and its distribution is now denoted by
Gm

ξ . It is worth noting that raising a GEV distribution to a power m results in another
GEV distribution, but with different parameters (max-stability property). According to
Wadsworth et al. (2010), if (µni , σni , ξ) (i ∈ {1, 2}) are parameters for ni GEV observa-
tions, then the following relationship holds

µn2 = µn1 −
σn1

ξ

(
1−

(
n2
n1

)−ξ
)

, σn2 = σn1

(
n2
n1

)−ξ

. (1.18)

Note that ξ is invariant to the choice of m.
The GPD case can also be derived from the point process representation. Indeed, it

can be shown that

P(Xi > y + u | Xi > u) = Λ(Iu+y; θ)
Λ(Iu; θ) =

(
1 + ξ

y

σu

)− 1
ξ

, (1.19)

with the same definition of σu = σ + ξ(u − µ) as in the GPD case. Thus, the Poisson
process point of view allows for estimating the shape parameter associated with the GEV
distribution, which is threshold-invariant. The advantages of this approach have been
discussed by Smith (1989) and Coles (2001), Chapter 7, in handling non-i.i.d or non-
stationary cases.

1.1.4 Application to environmental studies

1.1.4.1 Review of applications

Extreme value theory has broad applications in various domains. For instance, it is used
in finance to determine worst-case scenarios for market crashes or extreme fluctuations
(e.g., Finkenstadt and Rootzén, 2003, Embrechts et al., 2013). In engineering, it as-
sists in evaluating the structural integrity of bridges, dams, or platforms against extreme
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loads (e.g., Castillo, 1988). In insurance, extreme value theory enables insurers to assess
potential losses arising from catastrophic events (e.g., Smith, 2003). For environmental
studies, which is the focus of this thesis, it allows researchers and practitioners to better
understand, predict, and manage the risks associated with natural hazards. In particular,
various applications exist:

• Extreme weather events, such as hurricanes (e.g. Casson and Coles, 2000), heavy
rainfall (e.g. Coles and Tawn, 1996), or droughts (e.g. Engeland et al., 2004). It
helps in understanding the distribution and occurrence of these events, and assessing
their impacts on ecosystems and human populations.

• Hydrology, for example to estimate the probability of extreme floods (see Pan et al.
(2022) for a recent overview on extreme value for flood frequency analysis), storm
surges (Butler et al., 2007), or wave height (Wadsworth et al., 2010).

• Extreme air pollution, which focuses on concentrations of pollutants, for example
CO concentration (Sharma et al., 1999) or NO2 levels (Castro-Camilo et al., 2021).

See also the book of Bousquet and Bernardara (2021) for various environmental examples,
and Chapter 5 for different case studies on river flow and wind speed time series.

1.1.4.2 Return level estimation

All environmental quantities mentioned above correspond in practice to times series, i.e.
measurements taken at regular intervals. Consequently, practitioners often use concepts
like annual exceedance probability, which correspond to a probability that a given value
is exceeded in a one-year period. This concept can be extended to the notions of return
periods and return values.

Definition 3. A return level ℓT associated with a return period T is defined as the quantile
of order 1− 1

T of the maximum values observed over a given period. For instance, if there
are ny observations per year, a T -year return level ℓT satisfies the equation

P(Mny < ℓT ) = 1− 1
T

, (1.20)

with Mny = max{X1, . . . , Xny}.

The return level ℓT can be interpreted as the value that is expected to be exceeded once
every T years on average. Similarly to the duality of probability and quantile estimation,
one can be interested in estimating the T -year return level associated with a given return
period of T years, or conversely, estimating the return period T associated with a given
return level ℓT . For return level estimation, Theorem 1 provides an approximation of
Equation (1.20) in the case of sufficiently large ny. This approximation can be inverted
to obtain an estimate of the return level ℓT :

ℓT ≃ µ + σG−1
ξ (1− 1

T
) =

µ + σ
ξ

(
(− log(1− 1/T ))−ξ − 1

)
if ξ ̸= 0 ,

µ− σ log(− log(1− 1/T )) if ξ = 0.
(1.21)

Note also that
P(Mny < ℓT ) = (1− F̄ (ℓT ))ny ≃ 1− nyF̄ (ℓT ),
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so another approach which uses the peaks-over-threshold method involves considering the
quantile of order 1/(nyT ) and using the approximation in Equation (1.11) to obtain

ℓT ≃ u + H−1
σu,ξ

(
1− 1

nyT F̄ (u)

)
≃

u + σu
(nyT F̄ (u))ξ−1

ξ if ξ ̸= 0 ,

u− σu log
(

1
nyT F̄ (u)

)
if ξ = 0.

(1.22)

It is important to note that all these results are derived under the assumption of i.i.d.
data, which is often unrealistic for environmental time series due to factors such as non-
zero dependencies between consecutive observations, seasonality, time trends, etc. Some
commonly used preprocessing steps of the data are described in Chapter 5.

1.2 Introduction to Bayesian statistics

The Bayesian viewpoint of statistics, named after Thomas Bayes who proposed Bayes’ rule
in 1763, was further developed by Laplace in the 18th century. Laplace contributed to the
theoretical but also computational aspects of Bayesian statistics, introducing the Laplace
approximation (Tierney and Kadane, 1986). In the 20th century, significant advancements
were made in Bayesian computation, driven by the computational power of machines to
simulate random draws (Metropolis et al., 1953, Hastings, 1970), see Martin et al. (2020)
for historical insights. Foundational work in Bayesian statistics was also established during
this time (Jeffreys, 1939, Savage, 1954, Berger, 1988). Comprehensive introductions of the
Bayesian viewpoint include the books of Robert (2007) and Gelman et al. (2013).

1.2.1 The Bayesian paradigm

The fundamental idea of Bayesian statistics is to provide a full probability model for
both observable quantities, which are the data, and unobservable quantities, which are
the parameters of the model. This allows the available information about any quantity of
interest to be summarized using a probability distribution. We consider the general case of
n i.i.d. realisations x(n) = (x1, . . . , xn) of X1, . . . , Xn, that are distributed according to a
likelihood p(x(n) | θ) = ∏n

i=1 p(xi | θ), given a vector of parameters θ ∈ Θ. It is important
to make the distinction between the observables, which are quantities that can be directly
measured (such as a dataset x(n) or a future observation x), and the parameters, which
are unobservable and must be inferred using the observable quantities.

Given a model p(x(n) | θ), frequentist statisticians treat the unobservable θ as de-
terministic and aim to find estimators that are functions of the random observations. In
contrast, Bayesian statisticians consider the unknown parameters as random variables and
assign them a prior distribution p(θ). This prior combined with p(x(n) | θ) yield the joint
distribution of θ and x(n), denoted as p(θ, x(n)). By applying Bayes’ rule, we obtain the
posterior distribution of θ given the observed data x(n).

Definition 4. The posterior distribution of θ is a conditional density that updates the
prior information on the parameters p(θ) based on the observed data x(n) using Bayes’
rule:

p(θ | x(n)) = p(x(n) | θ)p(θ)
p(x(n))

= p(x(n) | θ)p(θ)∫
Θ p(x(n) | θ)p(θ)dθ

. (1.23)
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The denominator p(x(n)), known as the evidence or the marginal distribution of x(n),
can be seen as a normalizing constant. Usually, its explicit expression is not known, except
for certain special cases called conjugate distributions:

Definition 5. A family of prior distributions is said to be conjugate for a given likelihood
if it leads to a posterior distribution that belongs to the same family of distributions.

Examples of likelihoods with a known conjugate prior include simple cases such as
Gaussian (with Gaussian conjugate prior for the mean), binomial (with a beta conjugate
prior), or Pareto distributions (with a gamma conjugate prior). In most cases, the cal-
culation of the integral for the evidence is not tractable, and we only have access to the
unnormalized posterior density:

p(θ | x(n)) ∝ p(θ)
n∏

i=1
p(xi | θ). (1.24)

Despite the challenges in computing the exact distribution, this posterior represents all
the available information about the parameters after observing x(n). From this posterior
distribution, point estimation problems can be reformulated as scalar summaries of the
posterior. This includes obtaining point estimates of the parameters, making predictions,
quantifying the uncertainty around estimates, etc. A global formulation is the derivation
of the posterior mean of a given function f(θ) of the parameters:

Ep(·|x(n))[f(θ)] =
∫

Θ
f(θ)p(θ | x(n))dθ. (1.25)

Different choices of the function f can cover posterior quantities such as posterior mo-
mentsn as well as other observable quantities such as the posterior predictive distribution:

Definition 6. A predictive distribution is the probability distribution of a new observation
x where all the unobservable are marginalized and all the observable are conditioned. If
there is no observations, we obtain the prior predictive distribution:

p(x) =
∫

p(x | θ)p(θ)dθ. (1.26)

Otherwise, the probability can be conditioned by the observation of x(n) to obtain the
posterior predictive:

p(x | x(n)) =
∫

p(x | θ)p(θ | x(n))dθ. (1.27)

Note that choosing f(θ) = p(x | θ) allows to include the posterior predictive distribu-
tion into the formalism of Equation (1.25).

1.2.2 Modelling prior information

In order to carry out a Bayesian analysis, it is necessary to have a prior distribution p(θ) in
addition to the likelihood p(x(n) | θ). Although the assumption that data follows a given
distribution is widely accepted by anyone practicing parametric statistics, the assumption
that parameters themselves are random is often cited as a drawback of Bayesian statistics,
which are perceived as subjective. Historically, in the debates between frequentists and
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Bayesians, this subjectivist view has not only been an argument to be countered for
Bayesian statisticians, but has also served as the foundation for a new epistemological
interpretation of probabilities (De Finetti, 1937). However, it should be noted that nothing
in the theory indicates a systematic choice of a prior distribution, and so the choice of prior
is a question that Bayesians have been trying to address since the inception of Bayesian
statistics.

We provide a brief overview of different approaches to selecting a prior distribution,
which can be categorized into two main groups. The first group consists of informative and
weakly-informative priors. These priors are chosen with the intention of influencing the
posterior distribution based on external knowledge or beliefs. It can incorporate additional
information obtained from experts or impose constraints or regularization on the model.
The second group includes uninformative priors, also known as objective priors. These
priors are employed when no external information is available or when the goal is to
maintain objectivity in the inference process. Uninformative priors aim to provide a prior
distribution that is as non-informative as possible, allowing the data to have a stronger
influence on the resulting posterior distribution.

1.2.2.1 Informative priors

Even when additional expert knowledge is available, expressing it in terms of a prior
distribution for the parameters can be challenging: there may be multiple compatible
prior choices, the information may not directly relate to the parameters, and quantifying
the significance of the information in posterior inference is difficult (see an attempt in
Jones et al., 2022). We briefly review several strategies for choosing informative priors
and refer to O’Hagan (2019), Mikkola et al. (2023) for complete and recent overviews.

• Conjugate priors: When available, conjugate priors (see Definition 5) are often
the most natural choice for modelling. They are informative in the sense that they
require specifying the parameters of the prior distribution, but their explicit for-
mulation simplifies subsequent analysis. However, even when conjugate priors are
available, the choice among them can be a topic of discussion (see Robert, 2007,
Chapter 3).

• Hierarchical priors: In cases where a prior is elicited, it usually comes with pa-
rameters λ ∈ Λ to fix. To formalize the uncertainty around the parameters of the
prior, usually called hyperparameters, one can choose to consider them as random
too with distribution p(λ), giving:

p(θ) =
∫

Λ
p(θ | λ)p(λ)dΛ.

This kind of models with an additional layer are called hierarchical, see Chapter 10
in Robert (2007) and Chapter 5 in Gelman et al. (2013) for discussions. Hierar-
chical models offer several advantages: they are flexible and allow for more realistic
modelling of real-world phenomena, for example by explicitly accounting for the het-
erogeneity that exists between different groups or clusters. However, they may also
come with computational challenges and identifiability issues.

• Predictive priors: Applied statisticians often have insights at the observable level
rather than directly on the parameters. In some cases, prior information in terms of
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a prior predictive distribution p(x) can be elicited. However, deducing the prior p(θ)
from the prior predictive distribution involves solving the integral Equation (1.26)
which requires additional assumptions, such as Tikhonov regularization (Gribok
et al., 2004). Alternatively, the likelihood can be reparameterized as a function
of observable quantities of interest, such as probabilities or quantiles, and a prior
can be specified for them based on expert information (Coles and Tawn, 1996). Re-
cent developments suggest using an expert’s information on the probabilities of a
partition of the observable space, modeled by a Dirichlet distribution (Hartmann
et al., 2020). See also Perepolkin et al. (2021) for an extension on quantiles instead
of probabilities elicitation.

• Empirical Bayes priors: Another approach for incorporating information into the
prior is to estimate the prior distribution using the data. This approach, known as
empirical Bayes, typically uses frequentist estimations like maximum likelihood to
estimate the hyperparameters in the prior. It is important to note that empirical
Bayes violates the strict principles of Bayesian inference, since it uses the data to
inform the prior, which is supposed to represent prior beliefs. While it can provide
efficient data-driven estimates, it can also lead to issues such as overfitting the prior
to the data. However, empirical Bayes has shown interesting asymptotic properties,
see for instance Chapter 4 in Berger (1988) or Rousseau and Szabo (2017).

1.2.2.2 Uninformative priors

When no information is initially available, modelling a prior can be challenging. A first
approach is to consider a uniform prior distribution (also known as flat prior), assuming
that it does not favor any specific values. However, the choice of parameterization is
crucial, as a uniform prior may not remain uniform after a change of coordinates. A
change of variable can therefore reveal hidden information in a flat prior. To address this
issue, one can consider the parameter’s invariances. For example, if µ represents a location
parameter for the density of a random variable X such that p(x | µ) = g(x − µ), then
a random variable Y = X + a has a distribution expressed as g(x − (µ + a)). Thus, an
invariant prior for µ should treat Y and X equally, meaning that g(µ) = g(µ + a) for
all a ∈ R, and leading to a uniform prior on the real line : g(µ) ∝ 1. Unless used on a
bounded support, this prior is improper as it integrates to ∞, but can be used if it yields
a proper posterior distribution. Similarly, one can show that an invariant prior for a scale
parameter σ > 0 is proportional to 1

σ , which is equivalent to a uniform prior for log(σ).
In the general case, we briefly review different families of uninformative priors, and

refer to Chapter 3 in Robert (2007) for more details on each of them.

• Jeffreys prior: A solution to construct a distribution that is invariant under repa-
rameterization in the general case is proposed by Jeffreys (1939), and is still one of
the most popular uninformative prior.
Definition 7. Jeffreys prior for the parameters θ is defined as the square root of
the determinant of Fisher information matrix:

pJ(θ) ∝
√

det I(θ), (1.28)
with

I(θ) = E
[
− ∂2

∂θ2 log p(x | θ) | θ
]

. (1.29)



Chapter 1. Introduction 18

Under this definition, a reparameterization ϕ = h(θ) with h being a continuously
differentiable function results in pJ(ϕ) ∝

√
det I(ϕ), making the expression equiv-

alent to if we had initially considered the parameters ϕ. It is worth noting that
Jeffreys prior, besides being often improper, does not adhere to the likelihood prin-
ciple, which states that the evidence provided by the observations should only be
contained in the likelihood (Berger and Wolpert, 1988). Furthermore, there is no
uniqueness when it comes to priors invariant to reparameterization. For instance,
the product of univariate Jeffreys priors is another candidate that may possess bet-
ter optimality properties in specific cases (Kass and Wasserman, 1996). Additional
issues associated with Jeffreys’ prior are discussed in Robert (2007), Chapter 3, but
according to the author, this prior remains “the best ‘automated’ technique to derive
noninformative prior distributions”.

• Reference prior: An extension of Jeffreys prior is known as reference priors
(Bernardo, 1979, Berger et al., 2009). It corresponds to a distribution that min-
imizes its divergence from the posterior distribution, typically the Kullback–Leibler
divergence. This definition refines the concept of non-informativity by aiming to
influence the posterior as minimally as possible. The mathematical formulation of
this problem involves maximizing a mutual information, which can be analytically
intractable. In one dimension, this prior coincides with Jeffreys rule and, under cer-
tain regularity conditions, holds for higher dimensions as well (Clarke and Barron,
1994).

• Matching prior: Finally, another family of uninformative priors is matching priors
(Datta and Sweeting, 2005), which is an uninformative prior that aim at producing
a posterior probability at a given region asymptotically close to the corresponding
frequentist coverage probability. This typically results in a posterior confidence set
asymptotically close to a frequentist confidence interval, or to posterior predictive
quantiles close to the real one. More formally, if we denote Qα(x(n), π) the quantile
of order (1−α) of the Bayesian posterior predictive distribution for a given prior π,
then π is a matching prior for predictive if for a given random new random variable
Xn+1, we have

P(Xn+1 > Qα(x(n), π) | θ) = α + O(n−1). (1.30)

For all these priors presented here, the term “uninformative” can be misleading and
has faced criticism (Gelman et al., 2017, Lemoine, 2019). Although they are employed
when no prior information is available, the priors themselves always contain some form
of information, and understanding how this information influences posterior inference can
be challenging. Uninformative priors can, in fact, be strongly informative, in the sense
that they have a significant influence on posterior distributions (Lemoine, 2019). It is
sometimes suggested to use the so-called weakly informative priors instead, which are
nearly flat priors with very high variance, to mitigate computational issues associated
with uninformative priors. This is typically recommended in the Bayesian workflow of
Gelman et al. (2020).

1.2.3 Computational methods

In the general case of Equation (1.25), the expression of the posterior mean of a given
functional f(θ) cannot be derived analytically and requires the use of an approximation
method. However, its computation is usually challenging for two main reasons:
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• Non-explicit form: As mentioned before, it involves the posterior distribution,
which is known only up to a constant in most of the cases.

• High dimensionality: The dimension of the integral corresponds to the dimension
of the parameter space, which can quickly become too large for simple algorithms.
Moreover, the geometry of high dimension distributions poses challenges for many
computational methods (see Betancourt, 2019).

We introduce Markov chain Monte Carlo (MCMC) algorithms which aim at addressing
these challenges. These methods are widely employed in Bayesian statistics and offer the
advantage of being applicable to a wide range of models. In recent years, the development
of probabilistic programming languages has also facilitated MCMC implementation. No-
table examples include PyMC3 (Salvatier et al., 2016), Nimble (de Valpine et al., 2017),
or Stan (Carpenter et al., 2017). These tools have made it easier to apply MCMC tech-
niques to various statistical problems. For detailed information on MCMC methods, we
recommend books such as Gilks et al. (1995), Robert and Casella (2004), Brooks et al.
(2011).

1.2.3.1 Metropolis–Hastings algorithms

MCMC methods combine two fundamental concepts:

• Monte Carlo approximation: This involves approximating the integral in Equa-
tion (1.25) by a finite sum of random samples f(θ(1)), . . . , f(θ(N)). If θ(i) is dis-
tributed according to the posterior distribution p(θ | x(n)) for i ∈ {1, . . . , N}, then
the law of large number states that

1
N

N∑
i=1

f(θ(i)) −−−−−→
N→+∞

∫
Θ

f(θ)p(θ | x(n))dθ = Ep(·|x(n))[f(θ)]. (1.31)

In practice, this approach involves considering a finite sample size N and computing
the empirical mean to approximate the theoretical one.

• Markov chain generation: The Monte Carlo approximation requires generating
values from the posterior distribution, which is often impossible as it is only known up
to a constant. Instead, the values θ(i) are generated from a Markov chain, meaning
that they are sampled according to a Markov kernel K(·, ·) that depends on the
previous value:

θ(i+1) | θ(i) ∼ K(θ(i), ·). (1.32)
With an appropriate choice of K(·, ·), it is possible to show that the limiting dis-
tribution of θ(i) is the target distribution (in this case, the posterior distribution),
and that the result in Equation (1.31) holds true with the right choice of K(·, ·).
See Chapter 6 in Robert and Casella (2004) for more details on the convergence
properties of Markov chains and MCMC algorithms.

An ubiquitous MCMC method when θ = (θ1, . . . , θd) with d ≥ 2 is the Gibbs sampler
(Geman and Geman, 1984), where the idea is to draw values of θ conditionally on all
other components (denoted full conditional distributions) and iterate for all components
i ∈ 1, . . . , d. The general procedure for a fixed number of iterations N is outlined in
Algorithm 1.
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Algorithm 1: Gibbs sampler
Initialize θ(0) = (θ(0)

1 , . . . , θ
(0)
d );

for i← 1 to N do
Sample θ

(i)
1 ∼ p(θ1 | x(n), θ

(i−1)
2 , θ

(i−1)
3 , . . . , θ

(i−1)
d );

Sample θ
(i)
2 ∼ p(θ2 | x(n), θ

(i)
1 , θ

(i−1)
3 , . . . , θ

(i−1)
d );

...
Sample θ

(i)
d ∼ p(θd | x(n), θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
d−1);

end

By using it, we can generate samples θ(i) that depend on the previous samples solely
through θ(i−1). Remarkably, these samples possess the property of converging to the target
distribution given simple conditions (Roberts and Polson, 1994). However, in situations
where the full conditional distributions are not readily available, a more general approach
is to employ the Metropolis–Hastings algorithm (Metropolis et al., 1953, Hastings, 1970).
This technique involves sampling a value θ∗ from a known distribution called the proposal
distribution q(θ∗ | θ(i)), and accept this new value or not according to an acceptance ratio
α(θ∗ | θ(i)). Algorithm 2 outlines the steps of the Metropolis–Hastings algorithm.

Algorithm 2: Metropolis–Hastings algorithm
Initialize θ(0);
for i← 1 to N do

Sample θ∗ ∼ q(θ | θ(i−1));
Sample u ∼ U [0, 1];

Compute α(θ∗ | θ(i−1)) = min
(

1, p(θ∗|x(n))
p(θ(i−1)|x(n))

q(θ(i−1)|θ∗)
q(θ∗|θ(i−1))

)
;

if u < α(θ∗ | θ(i−1)) then
θ(i) = θ∗;

else
θ(i) = θ(i−1);

end
end

Note that the Gibbs sampler (Algorithm 1) is a special case of Metropolis–Hastings
with the proposal q(θ∗

k | θ(i)) = p(θ∗
k | θ

(i)
1 , · · · , θ

(i)
d , x(n)). Routine calculations show

that this choice of proposal results in α(θ∗ | θ(i)) = 1, which mean that every candidate
generated by the proposal is accepted. In the general case, the acceptance probability
depends on two ratios:

• The posterior ratio p(θ∗|x(n))
p(θ(i−1)|x(n)) , where the normalizing constant simplifies and favors

samples with higher posterior density.

• The proposal ratio q(θ(i−1)|θ∗)
q(θ∗|θ(i−1)) which acts as a correction term. This ratio simplifies

to 1 in the case of symmetric proposals, where q(θ(i−1) | θ∗) = q(θ∗ | θ(i−1)).

The Metropolis–Hastings algorithm allows for control over the dependence between θ(i)
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and θ(i−1) through the choice of the proposal distribution. For example, if q(θ∗ | θ(i)) =
N (θ(i), δ2I), the parameter δ can be adjusted to tune the autocorrelation. However, this
tuning is usually hard, espicially in high dimension (Betancourt, 2017): in this example of
proposal, a small value of δ leads to successive values of θ being too close to each other,
while a large value can cause the algorithm to get stuck on a value for multiple steps.
Achieving a balance between exploration of the parameter space and avoiding excessive
duplication is crucial. Typically, a good proposal distribution results in an acceptance
rate ranging from 15% to 45% (Roberts and Rosenthal, 2001).

It is also worth noting that every Metropolis–Hastings algorithm requires an initial-
ization value θ(0), which can significantly impact the algorithm’s efficiency for a finite
number of iterations N . To mitigate this influence, it is recommended to define a burn-in
period where the initial iterations are discarded for inference, reducing the impact of the
starting value. Another approach to reduce the influence of the starting value is to run
multiple chains in parallel (Gelman and Rubin, 1992). Although this approach is debated
and some prefer using all available iterations for a long chain (Geyer, 1992), advancements
in technology, particularly parallel computing, have made running multiple chains a stan-
dard practice in most probabilistic programming languages. Also, it helps for diagnosing
convergence issues as it enables the chains distribution to be compared with each other to
identify defect in some of them (see Section 1.2.4).

1.2.3.2 Gradient-based Metropolis algorithms

Several advancements in MCMC algorithms have been proposed to enhance their effi-
ciency by incorporating the gradient of the target distribution into the proposal step. One
example of such improvement is the Metropolis-adjusted Langevin algorithm (Roberts
and Tweedie, 1996) where the proposal is based on Langevin dynamics and the gradient
information is utilized to simulate a diffusion process.

Another notable development in this direction is Hamiltonian Monte Carlo (HMC,
Neal, 1996). HMC takes inspiration from the behavior of a mass in a gravitational field and
solves the Hamiltonian equations to propose new points in the state space. The key idea
is therefore to introduce an auxiliary momentum variable ξ∗ and perform a conservative
exploration of the log-posterior. In this context, the Hamiltonian H(θ, ξ) is

H(θ, ξ) = − log p(ξ, θ | x(n)) = − log p(ξ | θ, x(n))− log p(θ | x(n)), (1.33)

where the two terms can be respectively seen as kinetic and potential energies. The
corresponding equations of motion are

dθk

dt
= ∂H

∂ξk
,

dξk

dt
= ∂H

∂θk
. (1.34)

Solving them until a given time allows to obtain a candidate that will be accepted or not
depending on the acceptance ratio. A basic version of the method is shown in Algorithm 3,
with a discrete leapfrog integrator that corresponds to the three-step update of ξl and θl

at each time step l ∈ {1, . . . , L}, with L a given number of discrete steps. This time
discretization allows the integrator to avoid error propagation. See Betancourt (2017) for
more details and extensions, and Hoffman and Gelman (2014) for an improvement of HMC
named No-U-Turn sampler.
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Algorithm 3: Hamiltonian Monte Carlo
Initialize θ(0);
for i← 1 to N do

Sample ξ∗ ∼ N (0, M);
Let θ0 = θ(i−1) and ξ0 = ξ∗;
for l← 1 to L do

ξl−1/2 = ξl−1 + ϵ∇θ log p(θl−1 | x(n))/2;
θl = θl−1 + ϵξl−1/2;
ξl = ξl−1/2 + ϵ∇θ log p(θl | x(n))/2;

end
Sample u ∼ U [0, 1];
Compute α(θL,−ξL | θ0, ξ0) = min

(
1, p(θL,−ξL|x(n))

p(θ0,ξ0|x(n))

)
;

if u < α(θL,−ξL | θ0, ξ0) then
θ(i) = θL;

else
θ(i) = θ0;

end
end

1.2.3.3 Other computational methods

Although they will not be utilized in the subsequent sections of the thesis, it is worth men-
tioning that there exist alternative computational methods for Bayesian inference. Some
of these methods include other Monte Carlo techniques such as importance sampling or
sequential Monte Carlo (Chopin and Papaspiliopoulos, 2020). Another kind of method is
integrated nested Laplace algorithms (Rue et al., 2009) based on the Laplace approxima-
tion (Tierney and Kadane, 1986). In cases where the models are highly complex, such as
Bayesian neural networks, variational inference (Blei et al., 2017) offers another alterna-
tive, by approximating the posterior distribution with a simpler one and aiming to find
the parameters of this approximation by maximizing the Kullback–Leibler (KL) diver-
gence between the true posterior and the approximation. Finally, approximate Bayesian
computation (ABC, Sisson et al., 2018) is a computational framework used in Bayesian
statistics to approximate posterior distributions when direct computation of the likelihood
function is not feasible.

1.2.4 MCMC convergence diagnostics

In order to ensure that an MCMC method provides a good approximation of the target
distribution, it is crucial to assess the convergence of the Markov chain(s) within a fixed
number of iterations, since MCMC guarantees are only asymptotic. In particular, two
fundamental properties need to be verified:

• Stationarity: If the chains are still in the early stages of exploration and have
not adequately traversed the parameter space, the generated distributions will not
accurately represent the target distribution.
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• Mixing: It is possible for the chains to appear to have reached stationarity, but they
may have done so by exploring only a subspace of the parameter space. This subset
depends on the initial values, and the distribution will not have fully converged to
the target distribution.

Various diagnostic indicators have been developed to assess the convergence of MCMC al-
gorithms. We will describe univariate versions of these indicators for a specific component
θi, with i ∈ 1, . . . , d, simply denoted by θ from now on. Generalizing these diagnostics to
higher dimensions in θ is challenging, as discussed in Chapter 3.

1.2.4.1 Autocorrelation at lag-t

Unlike independent Monte Carlo samplers, the elements of Markov chains are not inde-
pendent, as each sample at time t is used to generate the next one at time t + 1. This
dependency impacts the quality of the approximation, as it reduces the effective informa-
tion contained in each element of the chain. The simplest way to estimate autocorrelation
for a given chain is to use the sample autocorrelation function at lag-t, which measures
the correlation between elements of the sequence that are distant from each other by t
steps. For a given parameter θ with corresponding MCMC samples (θ(1), . . . , θ(N)), the
autocorrelation at lag-t, denoted by acft(θ), is calculated as follows:

acft(θ) =
1

N−t

∑N−t
k=1 (θ(k) − θ̄)(θ(k+t) − θ̄)
1

N−1
∑N

k=1(θ(k) − θ̄)2
,

with θ̄ = 1
N

∑N
k=1 θ(k). Other methods for autocorrelation estimation exist and are used

in practice, see Chapter 13 in Gelman et al. (2013).

1.2.4.2 Effective Sample Size

The Effective Sample Size (ESS) represents the number of i.i.d. samples that would yield
the same variance as the correlated samples obtained from the MCMC algorithm. For a
given θ, let us assume that M chains (θ(1,l), . . . , θ(N,l)) are simulated, where l ∈ 1, . . . , M .
Denote θ̄(.,l) = 1

N

∑N
k=1 θ(k,l) and θ̄(.,.) = 1

N

∑M
l=1 θ̄(.,l). In the case of independent samples,

we have Var(θ̄(.,.)) = 1
MN Var(θ | x(n)). Otherwise, in the presence of correlation, we have

the following asymptotic result:

MN ×Var
(
θ̄(.,.)) −−−−−→

N→+∞

(
1 + 2

∞∑
t=1

acft(θ)
)

Var(θ | x(n)). (1.35)

From this result, we can define the ESS as

ESS := MN

1 + 2∑∞
t=1 acft(θ) . (1.36)

Thus, the ESS is estimated by truncating the sum in Equation (1.36) and estimating the
autocorrelations.
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1.2.4.3 Potential scale reduction factor R̂

The potential scale reduction factor, denoted by R̂, introduced by Gelman and Rubin
(1992), is another diagnostic indicator used to assess the convergence of MCMC chains
when multiple chains are employed. It compares the distributions of the chains with each
other by examining the between-chain variance B̂ and the within-chain variance Ŵ . It is
calculated as:

R̂ :=

√
Ŵ + B̂

Ŵ
, (1.37)

with

B̂ = 1
M − 1

M∑
l=1

(
θ̄(.,l) − θ̄(.,.)

)2
, and Ŵ = 1

M

M∑
l=1

s2
l , where s2

l = 1
N − 1

n∑
k=1

(
θ(k,l) − θ̄(.,l)

)2
.

(1.38)
The quantities Ŵ + B̂ and B̂ both converge to the posterior variance as n→∞, but one
by overestimating and the other by underestimating. More details are given in Chapter 3
which aims at improving this MCMC convergence diagnostic.

To sum up Gelman et al. (2013) recommends to use R̂ and ESS with the following rule
of thumb:

R̂ ≤ 1.01 =⇒ “Chains are mixing well”.
ESS ≥ 400 =⇒ “Enough data for estimation”.

1.3 Bayesian methods for univariate extreme value mod-
elling

We are interested in applying Bayesian statistics (introduced in Section 1.2) to extreme
value models (introduced in Section 1.1). Similarly to the frequentist approach, this
involves assuming that observations are exactly distributed according to a GEV, GPD, or
non homogeneous Poisson process (NHPP) distribution, and estimating the parameters
θ := (µ, σ, ξ) (or θ := (σu, ξ) for GPD) within the Bayesian framework. For extreme value
analysis, there are several advantages to using Bayesian methods. Coles and Powell (1996)
mentions the ability to incorporate prior information, the flexibility to handle any value
of the shape parameter ξ (unlike frequentist estimates), and the access to the posterior
predictive distribution (Definition 6), which allows for natural prediction models that
consider parameter uncertainty.

Several articles and book chapters have been written to introduce Bayesian methods
for extreme value analysis. A literature review can be found in Coles and Tawn (1996), and
introductions are provided in Chapter 9 of Coles (2001), Smith (2003), and Coles (2003),
which all cover similar content. Beirlant et al. (2006) adds a semi-parametric component
in Chapter 11, connecting Bayesian methods with Hill and Weissman estimators in the
frequentist case. See Ameraoui et al. (2016), Beirlant et al. (2018), Li et al. (2019) for
extensions of Bayesian extremes estimate in the semi-parametric setting. The book by Dey
and Yan (2016) includes two chapters dedicated to Bayesian methods. A first chapter of
Stephenson (2016) updates the previous chapters, while a second one of Erhardt and Sisson
(2016) focuses on methods using approximate Bayesian computation (ABC) specifically
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for multivariate extremes. Finally, Bousquet (2021) provides a comprehensive overview of
Bayesian extreme value methods, and also covers model selection and calibration compared
to previous works. For a review of Bayesian implementations in extreme value analysis,
the Bayesian section in Belzile et al. (2022) can be consulted.

We focus here on the development of Bayesian methods for univariate extreme value
analysis. However, it is worth noting that many Bayesian models for multivariate ex-
tremes can also be found in the literature (e.g. Sabourin et al., 2013, Dombry et al.,
2017, Jóhannesson et al., 2022). We organize our review into three research areas: prior
modelling, uncertainty quantification, and hyperparameter elicitation.

1.3.1 Prior modelling

Various strategies exist for modelling prior distributions, both in informative and non-
informative cases (see Section 1.2.2). In the context of prior modelling, Table 1.1 sum-
marizes the current research on univariate extremes by providing information on each
proposed prior, including whether it is informative or uninformative, the type of prior it
corresponds to, and the likelihood it is used with (GEV, GPD, or Non-Homogeneous Pois-
son Process (NHPP)). It is important to note that Table 1.1 focuses specifically on articles
that originally proposed new priors. In practice, in other Bayesian extremes papers, vague
priors are commonly used, or alternatively, since the demonstration of posterior propriety
by Northrop and Attalides (2016), uniform or Jeffreys have gained popularity and have
been employed in various studies (e.g., Sharkey and Tawn, 2017, Beranger et al., 2021).

1.3.1.1 Informative prior

All the categories of informative priors mentioned in Section 1.2.2 have been developed
in the literature on extreme value models. While no conjugate prior exists for these
likelihoods, some quasi-conjugate priors, that exhibit conjugacy for certain parameters
conditional on others, have been suggested. Examples include the works by Parent and
Bernier (2003), Bousquet and Keller (2017) which use historical data, as well as Diebolt
et al. (2005) which exploits the mixture of gamma distributions property of the GPD.

The perspective of predictive inference has also played a significant role in extreme
value modelling. Given the challenges in interpreting the three parameters (µ, σ, ξ) for
non-experts, it is more intuitive for applied statisticians to have information about the
scale of observations. Coles and Tawn (1996) propose eliciting a prior on three quantiles
(q1, q2, q3) instead of the parameters. To respect the ordering constraint q1 < q2 < q3, a
positive prior is placed on the quantile difference, chosen as a gamma prior. An expression
in terms of (µ, σ, ξ) can then be obtained with a change of variable. It should be noted
that the choice of setting independent priors on quantile differences induces a dependence
structure that can be interesting to discuss. Building on this work, Stephenson and Tawn
(2004) modifies the approach to assign a non-zero posterior probability for ξ = 0. Gaioni
et al. (2010) generalizes the framework above to handle more than three quantiles and
proposes to use normal priors.

Hierarchical priors have also been employed for extreme value problems, for modelling
extreme mixtures (Walshaw, 2000, Bottolo et al., 2003), or for a relaxed version of the
GEV likelihood (Zorzetto et al., 2020). An empirical Bayes method has been suggested
to achieve asymptotic results of the posterior distribution, in particular contraction rates
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Reference (Un)informative Category Likelihood Comments

Coles and
Tawn (1996) Informative Predictive

level GEV Gamma on the
quantile difference

Walshaw
(2000) Informative Hierarchical GEV Multivariate normal

Bottolo et al.
(2003) Informative Hierarchical GEV Mixture of GEV

de Zea Bermudez
and Turkman

(2003)
Uninformative Vague GPD Pareto if ξ > 0,

gamma otherwise

Smith (2003) Uninformative Vague GPD Normal with high
variance

Parent and
Bernier (2003) Informative Quasi-

conjugate GPD Uses historical data

Stephenson
and Tawn

(2004)
Informative Predictive

level GEV Non-zero probability
of ξ = 0

Diebolt et al.
(2005) Informative Quasi-

conjugate GPD Restriction to ξ > 0

Castellanos
and Cabras

(2007)
Uninformative Jeffreys GPD Posterior propriety

Gaioni et al.
(2010) Informative Predictive

level GEV Multivariate normal

Ho (2010) Uninformative Matching
prior GPD Posterior propriety

but ξ > 0

Cabras (2013) Uninformative Jeffreys NHPP
Approximate
conditional
likelihood

Northrop and
Attalides

(2016)
Uninformative

Uniform
Jeffreys

MDI

GPD
GEV Posterior propriety

Bousquet and
Keller (2017) Informative Quasi-

conjugate GEV Distinction of the 3
MDA

Opitz et al.
(2018) Informative PC GPD See Simpson et al.

(2017)

Zorzetto et al.
(2020) Informative Hierarchical GEV

Relaxed version of
the asymptotic

model
Castro-Camilo
et al. (2021) Informative PC GPD Bounded version of

PC prior
Padoan and

Rizzelli (2022) Informative Empirical GEV Asymptotic results

Moins et al.
(2023)

Uninformative
Informative

Jeffreys
PC NHPP Posterior propriety

Table 1.1: Original prior distribution propositions for univariate Bayesian extreme models.
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(Padoan and Rizzelli, 2022). Lastly, a principled approach called PC, proposed by Simpson
et al. (2017), has been applied to construct priors in the GPD case (Opitz et al., 2018).
Castro-Camilo et al. (2021) has further modified the PC approach, constraining the prior
to be bounded between 0 and 1/2.

1.3.1.2 Uninformative prior

Common choices for modelling uninformative priors in extreme value models include vague
priors (i.e. priors with high variance), uniform priors (which may be improper), and Jef-
freys’ prior. At first, Smith (2003) and de Zea Bermudez and Turkman (2003) employ
vague priors to ensure posterior propriety. In the GPD case, de Zea Bermudez and Turk-
man (2003) specifically chooses a Pareto distribution for ξ when ξ > 0 and a gamma
distribution otherwise. Castellanos and Cabras (2007) demonstrates the posterior propri-
ety of Jeffreys’ prior for the GPD when ξ > −1/2, while Northrop and Attalides (2016)
extends this study to uniform and maximal data information (MDI) priors for both the
GEV and GPD cases (see Chapter 2 for more details). Ho (2010) proposes a matching
prior for the case when ξ > 0, which yields a proper posterior despite the prior being
improper.

1.3.2 Uncertainty quantification using posterior predictive

In the context of extreme value modelling, a Bayesian analysis offers the advantage of
accessing to the entire posterior distribution, allowing for straightforward quantification
of uncertainty. The posterior predictive distribution is particularly useful when estimat-
ing quantities in the observable space such as extreme quantiles, as it provides a way
to quantify uncertainty. Numerous studies have examined the properties and applica-
tions of posterior predictive distributions in extreme value models. Davison (1986) and
Smith (1999) explore the properties of posterior predictive distributions and provide an
extreme value example. Engelund and Rackwitz (1992) investigates the use of predictive
distributions for the three domain of attraction with an uninformative prior, and reveal
using simulations that this approach can lead to unreasonable decisions. de Zea Bermudez
et al. (2001) advocates for the posterior predictive distribution in a Poisson-GPD model.
Fawcett and Walshaw (2016) extends the use of posterior predictive distributions to spa-
tially dependent and non-stationary extreme value models, specifically estimating poste-
rior predictive return levels. Additionally, Fawcett and Green (2018) and Jonathan et al.
(2021) examine different Bayesian estimators of extreme quantiles to gain insights into the
best approach for incorporating parameter uncertainty in the estimation process. More
detailed information on this topic can be found in Chapter 4.

1.3.3 Bayesian elicitation of hyperparameters

As mentioned in Section 1.1, the block maxima and peaks-over-threshold approaches re-
quire to specify a hyperparameter that is crucial for obtaining efficient estimators: the
block size in the GEV model, and the threshold in the GPD one. Various works have fo-
cused on threshold elicitation, considering the threshold as a parameter that delineates the
boundary between the bulk and the tail of the distribution to be modelled. These works
incorporate all observations, not just the excesses, and estimate the threshold within the
Bayesian framework along with a model for the bulk and a model for the tail. Frigessi et al.
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(2002) proposes a dynamically weighted mixture model with a GPD and a light-tailed dis-
tribution, eliminating the need for estimating a threshold explicitly. The threshold is then
explicit in Behrens et al. (2004) and Tancredi et al. (2006), where a mixture of uniform
for observations below the threshold is used in the latter. Other methods, such as Hun-
decha et al. (2009), MacDonald et al. (2011), Solari and Losada (2012), do Nascimento
et al. (2012) utilize parametric or non-parametric models for the bulk. Recently, Mart́ın
et al. (2022) fits all the observations to a stable distribution which allows the author to
deduce the GPD parameters. Some approaches do not require fitting the data below
the threshold, such as the likelihood ratio test proposed by Wadsworth and Tawn (2012)
and the use of posterior predictive checks by Lee et al. (2015) for threshold selection.
Additionally, Northrop et al. (2017) performs Bayesian model averaging by combining
estimations from multiple thresholds instead of choosing a single one. Other hyperparam-
eters in the Bayesian framework have been studied as well, including the measurement
scale (Wadsworth et al., 2010) and the scaling factor for the NHPP (Sharkey and Tawn,
2017). Further details on the latter can be found in Chapter 2.

1.4 Thesis outline

1.4.1 Context

Extreme weather events, although by definition very rare, can cause considerable human
and material damage. Fires, floods, droughts, and cold waves have multiplied as a result
of climate change, in addition to earthquakes, torrential rains, extreme winds, and so on.
The more extreme these events are, the more dramatic their consequences can be. For
the French electrical company Électricité de France (EDF), it is essential to quantify the
risk associated with such events in order to ensure the proper design of infrastructures.
EDF’s R&D has been engaged in the modeling and analysis of extreme values in both
univariate and multivariate contexts for over a decade as part of the MADONE project
(Méthodes pour les Agressions d’Origine Naturelle Externe). The specific objective is the
statistical study of meteorological variables such as temperature, flow rate, or wind speed
at different sites to justify the sizing of structures to organizations like the Nuclear Safety
Agency (ASN).

In particular, the goal is to determine return levels (Definition 3) associated with cen-
tennial, millennial, or even deca-millennial return periods. However, such estimations
require significant extrapolation, which therefore come with significant uncertainty. These
sources of uncertainty are multiple: those related to data, model, estimation, etc. Quanti-
fying them allows for verifying the reliability of the estimates given by a model, particularly
to answer the crucial question

How far is it reasonable to extrapolate the tail of the distribution?

This thesis is co-funded by EDF R&D, and follows previous works that have been done
in the same environment and with the same problematics. First, the thesis of Clément
Albert (Albert, 2018) focused on estimating the deterministic extrapolation error for the
use of an extreme model. Then an internship, done by Valentin Chevalier, focussed on
linking the extrapolation error to the mean squared error (MSE). Finally, Tony Zheng
began exploring Bayesian methods in an internship for the estimation error (in contrast
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to the deterministic error studied in Albert (2018)). This thesis is thus in continuation of
this internship and examines the Bayesian approach to estimate extreme events.

1.4.2 Contributions

We provide an overview of the following chapters of the manuscript and emphasize its key
contributions:

• In Chapter 2, we propose a reparameterization of the Poisson process characteriza-
tion of univariate extremes for Bayesian inference, which leads to two benefits: an
improvement of MCMC convergence, and the calculation of Jeffreys and PC prior for
the NHPP. The framework is then applied on an environmental dataset for return
level estimation of Garonne flow data (France).
This work was presented in 4 conferences (ISBA 2021; JDS 2021; AppliBUGS day;
EVA 2023), and led to a communication paper (Moins et al., 2021b) and a journal
article accepted at the Computational Statistics and Data Analysis (CSDA) journal
(Moins et al., 2023).

• In Chapter 3, we focus on a purely Bayesian computational problem and aim at bet-
ter understanding the behavior of R̂ diagnostic introduced in Section 1.2. This leads
us to propose a localized version that focuses on quantiles of the target distribution.
We obtain key theoretical properties of the associated population value, along with
experimental guarantees of robustness for various experiments.
This work was presented in 5 conferences (ISBA 2022; BAYSM 2022; One World
YoungStatS webinar; Energy Forecasting Innovation Conference; CMStats 2022),
2 posters (BayesComp-ISBA; Bayes@CIRM), and led to a communication paper
(Moins et al., 2022b), the discussion of Vehtari et al. (2021) Bayesian Analysis article
(Moins et al., 2021a) that has been extended as a paper accepted at the Bayesian
Analysis journal (Moins et al., 2023).

• In Chapter 4, our aim is to investigate the characteristics of different Bayesian quan-
tities in the context of a finite number of observations in the GPD case. Our primary
focus lies in examining the behavior of prior and posterior predictive distributions,
as well as Bayesian estimators of the return level. By analyzing the prior predictive,
we gain insights into how the choice of prior impacts extreme observations. Fur-
thermore, studying the posterior quantities allows us to explore the boundaries of
extrapolation when working with a limited amount of data.

• In Chapter 5, we illustrate the findings of the previous chapters on various environ-
mental datasets provided by EDF: three river flows and three wind speed datasets
jointly observed in three French cities: Tours, Reims and Orange. The aims are to
check the behavior on different real-world datasets, to provide a Bayesian estimate
of extreme return levels, to compare the results with previous internal EDF stud-
ies, and to answer to the main question on the limits of extrapolation in practical
examples.

• Finally, we conclude the manuscript with a summary of our work and discuss several
research perspectives for each contributions.

https://events.stat.uconn.edu/ISBA2021/
https://jds2021.sciencesconf.org/
https://applibugs.mathnum.inrae.fr/
https://dec.unibocconi.eu/research/extreme-value-analysis-eva-2023
https://isbawebmaster.github.io/ISBA2022/
https://events.stat.uconn.edu/BAYSM2022/
https://youngstats.github.io/post/2022/02/08/recent-advances-in-approximate-bayesian-inference/
https://youngstats.github.io/post/2022/02/08/recent-advances-in-approximate-bayesian-inference/
https://www.kcl.ac.uk/events/energy-forecasting-innovation-conference-building-capacity-from-modern-statistical-methodology
http://www.cmstatistics.org/CMStatistics2022/
https://bayescomp-isba.github.io/measuringquality.html
https://bayesatcirm.github.io/
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Résumé

N ous nous intéressons dans ce chapitre aux bénéfices d’une reparamétrisation orthogo-
nale du processus de Poisson pour les extrêmes introduit en Partie 1.1 dans un cadre

bayésien. Selon la définition de Jeffreys (1939), des paramètres sont dits orthogonaux si
la matrice d’information de Fisher associée est diagonale. Dans le cadre bayésien, nous
mettons en évidence deux avantages d’un tel changement de variable pour le processus de
Poisson pour les extrêmes.

Tout d’abord, la convergence des méthodes de Monte Carlo par châınes de Markov
(MCMC) est améliorée lorsqu’elle est appliquée à des paramètres orthogonaux. Cette
proposition repose sur des diagnostics de convergence comme l’autocorrelation des châınes
de Markov, la taille d’échantillon effective, ou une version améliorée de R̂ présentée au
Chapitre 3.

Ensuite, un second avantage de l’orthogonalisation est qu’elle simplifie le calcul de
certaines lois a priori qui dépendent de l’information de Fisher. En particulier, la loi a
priori non informative de Jeffreys ainsi que la loi a priori semi-informative nommée PC
prior (Simpson et al., 2017) sont calculées pour le processus de Poisson pour les extrêmes.
Les résultats montrent que les distributions sont impropres mais conduisent à une loi a
posteriori propre, c’est-à-dire intégrable.

Ces améliorations de l’inférence bayésienne sont ensuite appliquées à l’estimation de
niveaux de retour de données de débit de la Garonne (France). Les résultats reflètent
comment le PC prior permet d’ajouter de l’information a priori sur l’indice de queue
pour réduire l’incertitude de l’estimation du niveau de retour, en particulier la taille des
intervalles de crédibilité.

Les résultats de ce chapitre sont présentés sous la forme d’un article accepté pour
publication à CSDA (Moins et al., 2023). La Partie 2.1 rappelle le cadre bayésien des
extrêmes dans lequel nous nous plaçons, puis présente les travaux déjà existants sur la
reparamétrisation, du point de vue bayésien d’une part et sur la paramétrisation orthogo-
nale d’autre part. La Partie 2.2 présente la reparamétrisation orthogonale et les intuitions
qui permettent de supposer qu’elle va aider à la convergence des châınes MCMC, tandis
que la Partie 2.3 s’attarde sur le calcul des lois a priori de Jeffreys et PC. Les résultats sont
ensuite illustrés sur les données de débit de la Garonne en Partie 2.4, avant de conclure en
Partie 2.5. Les annexes contiennent une remarque additionnelle sur la quasi-orthogonalité
proposée par Sharkey and Tawn (2017) (Annexe 2.A), des preuves détaillées (Annexe 2.B)
ainsi que des expériences additionnelles (Annexe 2.C).
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Abstract

I n this chapter, we focus on the benefits of an orthogonal reparameterization of the
Poisson process for extremes introduced in Section 1.1 within a Bayesian framework.

According to the definition by Jeffreys (1939), parameters are said to be orthogonal if the
associated Fisher information matrix is diagonal. In the Bayesian context, we highlight
two advantages of such a variable change for the Poisson process for extremes.

Firstly, the convergence of Markov chain Monte Carlo (MCMC) methods is improved
when applied to orthogonal parameters. This proposition relies on convergence diagnostics
such as the autocorrelation of Markov chains, effective sample size, and an improved
version of R̂ presented in Chapter 3.

A second advantage of orthogonalization is that it simplifies the computation of certain
prior distributions that depend on the Fisher information. In particular, the uninformative
Jeffreys prior and the semi-informative PC (penalized complexity) prior (Simpson et al.,
2017) are calculated for the Poisson process for extremes. The results show that the
distributions are improper but lead to a proper posterior distribution.

These improvements in Bayesian inference are then applied to the estimation of return
levels of Garonne flow data (France). The results demonstrate how the PC prior allows
adding prior information on the tail index to reduce the uncertainty in the estimation of
return levels, particularly the size of credibility intervals.

The results of this chapter are presented in the form of an article accepted in CSDA
(Moins et al., 2023). Section 2.1 recalls the Bayesian extreme framework we adopt and
presents existing work on reparameterization from both a Bayesian perspective and an
orthogonal parameterization point of view. Section 2.2 introduces the orthogonal repa-
rameterization and the insights that suggest it will aid in the convergence of MCMC
chains, while Section 2.3 focuses on the computation of Jeffreys and PC prior distribu-
tions. The results are then illustrated using Garonne flow data in Section 2.4, followed
by a conclusion in Section 2.5. The appendices contain additional remarks on the quasi-
orthogonality proposed by Sharkey and Tawn (2017) (Appendix 2.A, details of all proofs
(Appendix 2.B), and additional experiments (Appendix 2.C).
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2.1 Introduction

Studying the long-term behavior of environmental variables is necessary to understand
the risks of hazardous meteorological events such as floods, storms, or droughts. To this
end, models from extreme value theory allow us to extrapolate data in the distribution
tails, in order to estimate extreme quantiles that may not have been observed (see Coles,
2001, for an introduction). In particular, a key quantity to estimate is the return level ℓT

associated with a given period of T years, the level that is exceeded on average once every
T years. Assessing the resistance of facilities to natural disasters such as dams to floods
that occur on average once every 100 years or 1 000 years is critical for companies such as
Électricité de France (EDF). Moreover, characterizing the uncertainty on the estimation of
this return level is also of interest, which encourages the choice of the Bayesian paradigm.
However, performing Bayesian inference requires multiple steps that must be managed by
the user, from the choice of the model to the evaluation and validation of computations.
This has been recently formalized by Gelman et al. (2020) in the form of a Bayesian
workflow. After introducing models stemming from extreme value theory in Section 2.1.1,
we briefly review in Section 2.1.2 one particular step of the workflow, reparameterization,
and more specifically the choice of an orthogonal parameterization.

2.1.1 Extreme-value models

Three different frameworks exist to model extreme events, leading to different likelihoods:
one by block maxima, one by peaks-over-threshold, and one that unifies both through a
Poisson process characterization.

Block maxima model Let Mn be the maximum of n i.i.d random variables with cumu-
lative distribution function (cdf) F . We assume that F belongs to the maximum domain of
attraction of a non-degenerate cdf G, meaning that there exist two sequences an > 0 and
bn such that (Mn− bn)/an converges in distribution to the cdf G. The extreme value the-
orem (e.g., Haan and Ferreira, 2006, Chapter 1) states that G is necessarily a generalized
extreme-value (GEV) distribution, with cdf:

G(x) =

exp
(
−{1 + ξx}−1/ξ

+

)
if ξ ̸= 0 ,

exp(− exp(−x)) if ξ = 0,
(2.1)

where {x}+ = max{0, x}. Consequently, for a finite value of n, one can consider the ap-
proximation P(Mn ≤ x) ≈ G((x− bn)/an) =: G(x | bn, an, ξ), and focus on the estimation
of the three parameters of the GEV distribution. Here, as the dataset is fixed, the depen-
dence in n for the location and scale parameters will be omitted. To obtain a sample of
maxima, one can divide the dataset into m blocks of size n/m and extract the maximum
from each of them.

Peaks-over-threshold model Alternatively, one can consider observations that exceed
a high threshold u. Let X be a random variable with cdf F . Pickands theorem (Pickands,
1975) states that, if F belongs to the maximum domain of attraction of G with P(Mn ≤
x) ≈ G(x | µ, σ, ξ), then the distribution of the exceedances X − u | X > u is, as u
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converges to the upper endpoint of F , a generalized Pareto distribution (GPD), with cdf

H(y | σ̃, ξ) =
{

1−
{
1 + ξ y

σ̃

}−1/ξ
+ if ξ ̸= 0 ,

1− exp
(
− y

σ̃

)
if ξ = 0,

(2.2)

where the shape parameter ξ is the same as in (2.1) and the GPD and GEV scales are
linked by σ̃ = σ + ξ(u − µ). To obtain a sample of nu excesses, the peaks-over-threshold
method focusses on the nu largest values of the dataset. It thus requires the estimation
of the quantile of order 1 − nu/n, which can be seen as the third parameter to estimate,
in addition to σ̃ and ξ. The most classical choice is to estimate this intermediate quantile
by the (n− nu)th order statistic.

Poisson process characterization of extremes Finally, these two approaches can
be generalized by a third one, using a non-homogeneous Poisson process. We present
here an intuitive way for obtaining this model similarly to Coles (2001, Chapter 7), and
refer to (Leadbetter et al., 1983, Chapter 5) for theoretical details. We start by ob-
serving that, for large n, F n(x) ≈ G(x | µ, σ, ξ), for x in the support of G denoted by
supp(G(· | µ, σ, ξ)) =

{
x ∈ R s.t. 1 + ξ

(
x−µ

σ

)
> 0

}
. Hence, considering a large thresh-

old u ∈ supp(G(· | µ, σ, ξ)), a Taylor expansion yields
n log F (u) ≃ −n(1− F (u)) ≃ log G(u | µ, σ, ξ),

or, equivalently,
P (X > u) ≃ − 1

n
log G(u | µ, σ, ξ). (2.3)

Equation (2.3) can be seen as the probability of X to belong to Iu := [u, +∞). In the case
of n i.i.d random variables, one can deduce that the associated point process Nn is such that
Nn(Iu) ∼ B(n, pn) with pn given by Equation (2.3). As n→∞, the binomial distribution
B(n, pn) converges to the Poisson distribution P(Λ(Iu)), with Λ(Iu) = − log G(u | µ, σ, ξ).
This property being valid for all Iu together with the independence property on non-
overlapping sets imply that Nn converges to a non-homogeneous Poisson process, with
intensity measure Λ(Iu): Nn

d−→ N , with N(Iu) ∼ P(Λ(Iu)). This model generalizes the
block maxima one since

P(Mn < x) = P(Nn(Ix) = 0)→ P(N(Ix) = 0) = exp(−Λ(Ix)) = G(x | µ, σ, ξ),
as n→∞. However, an estimation of the parameters (µ, σ, ξ) with this model is related to
the overall maximum Mn of the dataset, and it is frequent to study maxima of m smaller
blocks Mn/m, where m is typically the number of years in the observations and so Mn/m

corresponds to annual maxima. To do so, the intensity measure is multiplied by m, which
modifies the parameterization and in particular the value of µ and σ: Wadsworth et al.
(2010) shows that, if (µki

, σki
, ξ) (i ∈ {1, 2}), are parameters for ki GEV observations,

then
µk2 = µk1 −

σk1

ξ

(
1−

(
k2
k1

)−ξ
)

, σk2 = σk1

(
k2
k1

)−ξ

. (2.4)

The threshold excess model can also be derived from the point process representation,
since P(X > y +u | X > u) ≃ 1−H(y | σ̃, ξ), with σ̃ = σ +ξ(u−µ). Moreover, in contrast
to the peaks-over-threshold model where an intermediate quantile needs to be estimated,
the Poisson model directly includes a third location parameter µ.

In the following, we will focus mainly on this latter model, and treat the peaks-over-
threshold method as a special case in Section 2.4.1.



Chapter 2. Reparameterization of Extreme Value Framework 36

Bayesian inference Using the Bayesian paradigm in extreme value models is advanta-
geous in comparison to the frequentist approach, see Coles and Powell (1996) for a general
review, and Stephenson (2016) or Bousquet (2021) for more recent overviews. For the
Poisson process characterization of extremes, Bayesian inference consists in fixing a scal-
ing factor m and a threshold u to get a number of nu ≥ 1 observations exceeding u denoted
by x = (x1, . . . , xnu). The likelihood of these observations can be written as

L(x, nu | µ, σ, ξ) = e−m(1+ξ( u−µ
σ ))−1/ξ

σ−nu

nu∏
i=1

(
1 + ξ

(
xi − µ

σ

))−1−1/ξ

. (2.5)

A complete Bayesian model requires also the specification of a prior p(µ, σ, ξ), to obtain
the posterior p(µ, σ, ξ | x, nu) using Bayes’ theorem, p(µ, σ, ξ | x, nu) ∝ p(µ, σ, ξ)L(x, nu |
µ, σ, ξ). This posterior summarizes the information on the parameters after observations,
and can be used to extract point estimators, build credible intervals, or write the proba-
bility of a new observation x̃ given data x using the posterior predictive:

p(x̃ | x, nu) =
∫

p(x̃ | θ)p(θ | x, nu)dθ, θ = (µ, σ, ξ). (2.6)

These quantities of interest are rarely explicit, and are often derived by sampling ap-
proaches. A recent survey of extreme value softwares (Belzile et al., 2022) contains a
Bayesian section, and a comparison with frequentist methods. In the general Bayesian
case, an overview of the Bayesian workflow is given in Gelman et al. (2020), and we focus
here on the particular step of reparameterization for the likelihood L(x, nu | µ, σ, ξ) in the
case where Markov chain Monte Carlo (MCMC) methods are used to approximate the
posterior distribution.

2.1.2 Reparameterization

Although the choice of parameterization of a statistical model does not alter the model per
se, it does reshape its geometry, which in turn may impact computational aspects of sam-
pling algorithms such as efficiency or accuracy. For these methods, a crucial complication
for chain convergence is parameter correlation. This notion of correlation between param-
eters can be associated with a notion of asymptotic orthogonality, leading to independence
of posterior components.

Parameterization and Bayesian inference It has been known for several decades
that parameterization is crucial for good mixing of MCMC chains, especially when the
correlation between the coordinates is large. See Gilks et al. (1995, Chapter 6) for a
great introduction for Gibbs sampling and Metropolis–Hastings algorithm. More general
computations are conducted by Roberts and Sahu (1997) in the normal case, but this
convergence rate is less explicit in the general case, see for example Roberts and Polson
(1994). For Metropolis–Hastings, if the structure of the kernel is not similar to the one
of the target density (which is a typical case if there is a complex dependence between
parameters), then too many candidates generated by the kernel are rejected and the same
problem as for Gibbs sampling occurs. For more recent MCMC algorithms such as Hamil-
tonian Monte Carlo (HMC, Neal, 1996) and its variant NUTS (Hoffman and Gelman,
2014), Betancourt and Girolami (2015) gives an example of the benefit of reparameteriza-
tion for hierarchical models. More generally, Betancourt (2019) studies reparameterization
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from a geometric perspective, in order to show its equivalence with adapted versions of
HMC on Riemannian manifolds.

Due to the difficulty of obtaining general results on reparameterization and MCMC
convergence, a significant part of the research focuses on specific models, such as hierar-
chical models (Papaspiliopoulos et al., 2003, Browne et al., 2009), linear regression (Gilks
et al., 1995), or mixed models (Gelfand et al., 1995, 1996).

For extreme value models, Diebolt et al. (2005) uses a continuous mixture of exponen-
tial distributions in the GPD case. Opitz et al. (2018) also suggests to use the median
instead of the usual scale parameter to reduce correlation for Integrated Nested Laplace ap-
proximation (INLA). An alternative Monte Carlo algorithm, the ratio-of-uniforms method,
is also implemented for extreme value models in the revdbayes package (Northrop, 2022a).
The influence of parameterization is also considered in this framework as the acceptance
rate can be altered because of correlated parameters (see Appendix 2.C.4). Parameter
transformations are also studied in order to make likelihood-based inference suitable in
the high-dimensional case in Jóhannesson et al. (2022). Finally, Belzile et al. (2022) pro-
poses a reparameterization trick that can be used to obtain a suitable initial value for
optimization routines.

Orthogonal parameterization As seen before, reducing dependence between coordi-
nates is desirable for MCMC methods. Dependence can be characterized using asymptotic
covariance and the notion of orthogonality according to Jeffreys (1939): parameters are
said to be orthogonal when the Fisher information is diagonal. From this definition, having
orthogonal parameters leads to asymptotic posterior independence when a Bernstein–von
Mises theorem holds (e.g., Van der Vaart, 2000, Chapter 10). However, the problem of
finding an orthogonal parameterization is seldom feasible when there are more than three
parameters, since the number of equations is then greater than the number of unknown
variables. In the case of three parameters, there are as many equations as there are un-
knowns, but the non linear system does not necessarily lead to a solution (Huzurbazar,
1950).

The main use of orthogonal parameterization is to make parameters of interest inde-
pendent of nuisance parameters (Cox and Reid, 1987). Other definitions of orthogonality
are also proposed to be more adapted to the inferential context (Tibshirani and Wasser-
man, 1994) or to ensure consistency of the parameter of interest (Woutersen, 2011). For
Bayesian inference, Tibshirani and Wasserman (1994) compares different definitions and
suggests a strong assumption of normality for the posterior. In the following, we keep the
most popular definition of orthogonality due to Jeffreys (1939), as we are not interested
in properties associated with the estimation of a given parameter of interest, but rather
on the dependence structure between parameters. However, up to our knowledge, there
is no clear evidence in the literature of a direct link between parameter orthogonality
and mixing properties of the corresponding MCMC chains, such as a better convergence
rate. In Section 2.4, we bring some empirical evidence on the interest of orthogonality in
extreme value models.

2.1.3 Contributions and outline

In this paper, we study the benefits of reparameterization for the Poisson process charac-
terization of extremes in a Bayesian context. In particular, it is shown that the orthogonal
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parameterization is useful for several reasons: we argue in Section 2.2 that it improves the
performance of MCMC algorithms in terms of convergence, and we show in Section 2.3
that it also facilitates the derivation of priors such as Jeffreys and an informative variant
on the shape parameter using penalized complexity (PC) priors (Simpson et al., 2017).
These results are then illustrated by experiments in Section 2.4, first on simulations to
compare the different parameterizations, and second on a real dataset of the Garonne river
flow. Proofs as well as additional experiments are provided in the Appendix, and the code
corresponding to the experiments is available online.1

2.2 Reaching orthogonality for extreme Poisson process

An attempt to reparametrize the Poisson process for extremes in order to improve MCMC
convergence already exists in the literature (Sharkey and Tawn, 2017), but has several
limitations that are detailed here. Instead, we suggest to use the fully orthogonal param-
eterization of Chavez-Demoulin and Davison (2005).

Near-orthogonality with hyperparameter tuning Based on the relationship be-
tween parameters given in Equation (2.4), Sharkey and Tawn (2017) suggests to change
the scaling factor m before using Metropolis–Hastings algorithm in order to optimize
MCMC convergence. To this aim, they minimize the non-diagonal elements of the inverse
Fisher information matrix corresponding to asymptotic covariances and then retrieved the
parameters corresponding to the initial number of blocks from Equation (2.4). As the cal-
culations cannot be achieved explicitly, the authors found empirically that the values m1
and m2 that cancel respectively the asymptotic covariances ACov(µ, σ) and ACov(σ, ξ)
are such that any m ∈ [m1, m2] improves the MCMC convergence. Approximations of
m1 and m2 are then given as functions of ξ, and therefore a preliminary estimation of
ξ (typically obtained using maximum likelihood estimation) is required to obtain m̂1(ξ)
and m̂2(ξ), and to choose a value in this interval before running an MCMC with the right
choice of m. Despite leading to significant improvement of the convergence of Markov
Chains, this method suffers from several limitations. First, preliminary estimation of the
shape parameter ξ is required, to compute m̂1(ξ) and m̂2(ξ) and choose a value in the
corresponding interval, which adds complexity and computational burden on the overall
framework. Moreover, it also affects the accuracy of orthogonalization, as the expressions
of m1 and m2 are found empirically, then are approximated by m̂1(ξ) and m̂2(ξ), and
finally computed at ξ̂ which adds a new source of uncertainty. One way to lighten the
method would be to suggest a simpler choice of m, for example m = nu, which leads to a
satisfactory behaviour as noticed by Wadsworth et al. (2010). However, it is shown in Ap-
pendix 2.A that this choice presents some flaws and does not bring any general guarantee
of orthogonality.

Orthogonal parameterization Alternatively, there exists a parameterization of the
Poisson process that leads to orthogonality. Suggested by Chavez-Demoulin and Davison
(2005), it consists of the change of variable

(r, ν, ξ) =
(

m

(
1 + ξ

(
u− µ

σ

))−1/ξ

, (1 + ξ)(σ + ξ(u− µ)), ξ

)
, (2.7)

1https://github.com/TheoMoins/ExtremesPyMC

https://github.com/TheoMoins/ExtremesPyMC
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while the inverse transformation is

(µ, σ, ξ) =
(

u− ν

ξ(1 + ξ)

(
1−

(
r

m

)ξ
)

,
ν

(1 + ξ)

(
r

m

)ξ

, ξ

)
.

With this parameterization, the likelihood is

L(x, nu | r, ν, ξ) = e−r
(

r

m

)nu
(

ν

1 + ξ

)−nu nu∏
i=1

(
1 + ξ(1 + ξ)

ν
(xi − u)

)−1−1/ξ

. (2.8)

Under this form, we can directly see that r is orthogonal to ν and ξ, as the likelihood
factorizes with respect to r and (ν, ξ). Parameter r ≥ 0 represents the intensity of the
Poisson process, which is the expected number of exceedances, while the two other ones
can be seen as an orthogonal parameterization of the GPD with scale σ̃u = σ + ξ(u− µ)
and shape ξ. Under this parameterization and provided ξ > −1/2, the Fisher information
matrix I(r, ν, ξ) is

I(r, ν, ξ) = diag
(1

r
,

r

ν2(1 + 2ξ) ,
r

(1 + ξ)2

)
, (2.9)

where diag(u) denotes the diagonal matrix with diagonal equal to vector u. Calculations
are provided in Appendix 2.B. Therefore, the orthogonal parameterization of Chavez-
Demoulin and Davison (2005) is more adapted than the tuning of m since it directly
yields the optimal solution sought by Sharkey and Tawn (2017). Moreover, it is obtained
without recourse to any optimization procedure or approximation. Finally, by plugging
(r, ν) into Equation (2.4), one can show that the invariance property with respect to m
holds for the three parameters, and so the parameterization is independent of the choice
of m.

Generalisation to covariates The inclusion of covariates in a model holds both theo-
retical and practical significance, as it enables the incorporation of factors such as temporal
trends. A notable advantage of this approach is that if the parameters are orthogonal and
each of them depends on distinct parameters, then these parameters will also be orthogo-
nal to one another. To elaborate further, let Ci represent the set of covariates associated
with the observation xi. In the most comprehensive scenario, where all relevant covariates
are considered, the model can be expressed as follows:

ri = fr(θr, Ci),
νi = fν(θν , Ci),
ξi = fξ(θξ, Ci),

where θr, θν and θξ are three vectors of parameters. The log-likelihood can be written as
n∑

i=1
ℓi(ri, νi, ξi) =

n∑
i=1

ℓi(fr(θr, Ci), fν(θν , Ci), fξ(θξ, Ci)).

By leveraging the property that no parameters are shared, along with the chain rule, one
can derive the following expression for the Fisher information associated with the jth
coordinate θν,j of θν and the kth coordinate θξ,k of θξ:

E
(
− ∂2ℓi

∂θν,j∂θξ,k

)
= ∂fν

∂θν,j

∂fξ

∂θξ,k
E
(
− ∂2ℓi

∂νi∂ξi

)
= 0.
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As a result, every parameter in θν is orthogonal to all parameters in θξ. Similar calcula-
tions reveal that θr is orthogonal to both θν and θξ. Hence, when covariates are defined
based on orthogonal parameters, it leads to block-wise orthogonality, with the associated
Fisher information matrix comprising three blocks in this case.

2.3 Priors invariant to reparameterization

In the case where no external information is available about the parameters, the choice of
the prior distribution should be made with caution. Typically, the term “uninformative
prior” or “objective prior” can be misleading, as it refers to priors used when one does not
have preliminary information, but the prior itself does contain information. As an example,
a flat prior over the range of possible values is only flat for a given parameterization. After
a change of variable, a uniform prior does not necessarily remain uniform (e.g., Robert,
2007, Chapter 3). This problem is all the more serious as our study which deals with
reparametrization: here, we derive two priors that enjoy the property of being invariant
with respect to reparameterization.

2.3.1 Jeffreys prior

Jeffreys prior (Jeffreys, 1946) is built with the aim of invariance: if I(θ) denotes the Fisher
information matrix associated with parameters θ, it is defined as

pJ(θ) ∝
√

det I(θ). (2.10)

Under this prior, one can show that a reparameterization ϕ = h(θ) with h a continu-
ously differentiable function yields pJ(ϕ) ∝

√
det I(ϕ). This prior is computed for the

GPD by Castellanos and Cabras (2007) and for the GEV under a modified version where
pJ(µ, σ, ξ) ∝

√
det I(σ, ξ) by Kotz and Nadarajah (2000). Up to our knowledge, Jeffreys

prior has never been computed for the Poisson process characterization of extremes. The
orthogonalization done in Equation (2.7) directly provides Jeffreys prior with respect to
(r, ν, ξ):

Proposition 1. Jeffreys prior associated with a Poisson process for extremes with param-
eters (r, ν, ξ) from Equation (2.7) exists provided ξ > −1/2, and is given by

pJ(r, ν, ξ) ∝ r1/2

ν(1 + ξ)(1 + 2ξ)1/2 . (2.11)

Moreover, the invariance to reparameterization property directly provides the expres-
sion of Jeffreys prior on (µ, σ, ξ).

Corollary 1. Jeffreys prior associated with a Poisson process for extremes with original
parameters (µ, σ, ξ) exists provided ξ > −1/2, and can be written as

pJ(µ, σ, ξ) ∝

(
1 + ξ

(
u−µ

σ

))− 3
2ξ

−1

σ2(1 + ξ)(1 + 2ξ)1/2 . (2.12)

This prior cannot be defined for ξ ≤ −1/2, as it corresponds to a case where the
Fisher information matrix is infinite. However, this assumption is not too restrictive as
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the great majority of models of interest belong to a maximum domain of attraction with
ξ ∈ (−1/2, 1/2). Note that this prior, similarly to the uniform one, is improper in the sense
that the integral over the range of parameters is infinite. Consequently, it is necessary to
check whether the posterior is proper or not to be able to use it. Castellanos and Cabras
(2007) shows that the posterior is proper when using Jeffreys prior in the GPD case, while
Northrop and Attalides (2016) shows that it is never the case with GEV likelihood. For
the Poisson process, we show the following result:

Proposition 2. Jeffreys prior for a Poisson process for extremes yields a proper posterior
distribution, as long as ξ > −1/2.

A proof is provided in Appendix 2.B.

2.3.2 Penalized complexity prior for the shape parameter

The shape parameter ξ plays a crucial role in the inference, as it tunes the heaviness of
the tail distribution: it is heavy if ξ > 0, light if ξ = 0 and finite (i.e. with a finite right
end-point) if ξ < 0. The case ξ = 0 can be seen as a simpler model with an exponential
decrease of the survival function, where the GPD cdf in Equation (2.2) simplifies to an
exponential distribution. This concentration of an entire maximum domain of attraction
at a single value of ξ complicates the study, since it is for example difficult to distinguish
heavy tails with low ξ from light tails (Stephenson and Tawn, 2004). However, this change
of regime can have significant consequences when it comes to extrapolation. It should also
be noted that a vast majority of datasets have distribution with |ξ| ≤ 1/2. It is therefore
natural, even in a non-informative framework, to penalize high values of |ξ|. One way to
do this is to use penalized complexity (PC) priors (Simpson et al., 2017): the idea is to
consider a prior that penalizes exponentially the distance between a model pξ := p(· | ξ)
with a given ξ and the baseline p0 with ξ = 0. The general formula is

pPC(ξ | λ) = λ exp(−λd(ξ))
∣∣∣∣∂d(ξ)

∂ξ

∣∣∣∣ ,
with λ > 0, d(ξ) =

√
2KL (pξ||p0) and KL(pξ||p0) the Kullback–Leibler divergence be-

tween pξ and p0: KL(pξ||p0) =
∫

pξ(x) log (pξ(x)/p0(x)) dx. Parameter λ acts as a scaling
parameter and controls the range of acceptable values for ξ. This prior has the advantage
of being proper and invariant to reparameterization on ξ. The computation with GPD
has already been done by Opitz et al. (2018) for the case ξ ≥ 0: the authors prove that
d(ξ) is finite only if ξ < 1, and is d(ξ) =

√
2ξ/
√

1− ξ for 0 ≤ ξ < 1. Then, they show
that it can be approximated by an exponential distribution on ξ in the case ξ → 0, when
λ can be taken sufficiently large and to favor ξ = 0. A first observation is that routine
calculations extend this definition both to negative values of ξ, and to the Poisson process
characterization where the density of observation is also GPD.

Proposition 3. The PC prior associated with a Poisson process for extremes exists for
any ξ < 1 and is

pPC(ξ | λ) = λ

2

( 1− ξ/2
(1− ξ)3/2

)
exp

(
−λ

|ξ|√
1− ξ

)
. (2.13)

This prior is plotted for several values of λ in Figure 2.1. As observed by Opitz et al.
(2018), the PC prior is very similar to a Laplace(0, 1/λ) when λ is large enough so that
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Figure 2.1: Left panel: examples of PC priors pPC(· | λ) with λ ranging from 0.5 to 15, and
Jeffreys prior (blue curve) represented for fixed values of (µ, σ) = (0, 1). The black dashed lines
represent Laplace distributions with scale parameter equal to 1/λ, for λ ∈ {5, 10, 15}. Note that
Laplace distributions pL(· | 1/λ) approximate well pPC(· | λ) when λ ≥ 10. Right panel: credible
intervals at 95% for PC and Laplace priors, resp. IPC(0.95 | λ) and ILap(0.95 | λ).

the peaks at 0 dominates over the endpoint at 1. In the case where λ is small (typically
λ ≤ 1), an asymptote appears at the upper bound ξ = 1 which could have an undesirable
influence in the posterior distribution. Thus, for the least informative case, a value of
λ = 1 is sufficiently small as it does not favor values close to 0 nor those close to 1. In
the case when 0 is favoured with a high λ and the true value of ξ differs from 0, the
estimation may be altered compared to the uninformative case: see Appendix 2.C.5 for
an analysis on simulated data. For the two other parameters, one can consider Jeffreys’
rule on (r, ν) in order to obtain a non-informative prior for (r, ν) while keeping invariance
to reparameterization property. ξ is therefore considered a priori independent of (r, ν).
In view of the Fisher information matrix in Equation (2.9), we obtain pJ(r, ν) ∝ 1/ν.
Similarly to Jeffreys prior in Section 2.3.1, the resulting prior is improper but the following
proposition can be shown:

Proposition 4. The prior defined as p(r, ν, ξ) ∝ pPC(ξ)pJ(r, ν) ∝ pPC(ξ)/ν for the Pois-
son process for extremes yields a proper posterior distribution.

The proof, detailed in Appendix 2.B, relies on a result of Northrop and Attalides
(2016). Note that this result still holds if pPC(ξ) is replaced by its approximation through
the Laplace distribution.

2.4 Experiments

The benefits of the orthogonal reparameterization in the Poisson process model are illus-
trated here on simulations and a real environmental dataset. Appendix 2.C contains ad-
ditional experiments, notably using Hamiltonian Monte Carlo (HMC) instead of MCMC
(Appendix 2.C.1), under various maximum domains of attraction (Appendix 2.C.2), in
other models than the Poisson process model, namely the GPD and GEV ones (Ap-
pendix 2.C.3), using the ratio-of-uniforms algorithm instead of MCMC (Appendix 2.C.4)
and finally with replications and comparison with maximum likelihood (Appendix 2.C.5).
All experiments are done using PyMC3 library (Salvatier et al., 2016), and the correspond-
ing code is available online1.



43 2.4. Experiments

2.4.1 Simulations with the Poisson process model

Data generation We start by comparing the different parameterizations on exceedances
generated with the Poisson process model described in Section 2.1.1. For a given value
of (µ, σ, ξ) and hyperparameters (u, m), the data generation proceeds in two steps: first,
a number of events nu is simulated using a Poisson distribution with parameter Λ(Iu) as
defined in Section 2.1.1. Then, for each point i ∈ {1, . . . , nu}, the position xi knowing
that xi ∈ Iu is sampled from a GPD with parameters (u, σ̃, ξ), with σ̃ = σ + ξ(u− µ). An
example with (m, u, µ, σ, ξ) = (40, 30, 50, 15,−0.25) is detailed here, leading to an expected
number of observations Λ(Iu) ≈ 126.

Experimental setup For MCMC hyper-parameters such as number of chains, burn-in
period per chain or initialization, we keep the default values suggested in the PyMC3
library: four chains (which corresponds to our number of cores) with 1 000 iterations each,
and a burn-in period of 1 000 iterations. In addition to these choices, this library of-
fers the possibility to choose among different sampling methods, such as the traditional
Metropolis–Hastings algorithm, but also more modern MCMC algorithms like Hamilto-
nian Monte Carlo (HMC, Neal, 1996), or the No-U-Turn sampler (NUTS, Hoffman and
Gelman, 2014) which is the default choice in PyMC3. We choose to compare the different
reparameterizations on Metropolis–Hastings draws (after burn-in), and the behaviour on
NUTS is also investigated (Appendix 2.C.1). We show that 1 000 iterations are sufficient
for the chains to converge when the parameterization is well chosen. However, note that
the algorithm only takes a few seconds to run, so this number of iterations can easily
be increased for real data applications, as done in Section 2.4.2. Finally, Jeffreys prior
(computed in Section 2.3.1) is choosen for all configurations, but experiments have shown
similar results with the PC prior of Section 2.3.2.

Convergence diagnostic Our aim is to discriminate the different parameterizations
according to the rate of convergence of the MCMC chains to their target. Different indi-
cators exist to assess the quality of MCMC approximation. First, given a finite number of
samples, autocorrelation plots as functions of lag measure how good the posterior approxi-
mation is, as the dependence between the chain elements reduces the effective information
available for inference. To measure this, a common practice relies on the effective sam-
ple size, defined as ESS = MN(1 + 2∑∞

t=1 ρt)−1, with M the number of chains of size
N , and ρt the autocorrelation at lag t. The ESS corresponds to an equivalent number
of independent draws, and so quantifies the amount of effective data for estimation (e.g.,
Gelman et al., 2013, Section 11.5). Here, the evolution of ESS with the number of draws is
reported for each configuration. To complete the diagnostic, the potential scale reduction
factor (commonly denoted by R̂) also aims at bringing an indication about the state of
convergence by computing the ratio of two estimators of the posterior variance. Generally
R̂ ≥ 1, and if it is greater than a given threshold, a convergence issue is raised. We use
here a refinement of R̂ named R̂∞ (Moins et al., 2023), based on a local version R̂(x)
which aims at ensuring the convergence at a given quantile x of the distribution. Then,
R̂∞ is defined as the supremum of the R̂(x) values: R̂∞ := supx∈R R̂(x). This scalar
summary amounts to considering the value of R̂(x) associated with the worse quantile
approximation by the MCMC chains.



Chapter 2. Reparameterization of Extreme Value Framework 44

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

ns

0 10 20 30 40 50
Lag

0 10 20 30 40 50

Original param.
Orthogonal param.
m [m1, m2]
m = nu

0 200 400 600 800 1000
0

200

400

600

ES
S

0 200 400 600 800 1000
Number of draws

0 200 400 600 800 1000

45.0 47.5 50.0 52.5 55.0

1.00

1.01

1.02

1.03

R(
x)

12 14 16 18
x

0.5 0.4 0.3 0.2 0.1 0.0

Figure 2.2: Convergence diagnostic plots for Poisson parameters (µ, σ, ξ) with ξ < 0, after 1 000
Metropolis–Hastings draws and a burn-in of 1 000, for four different parameterizations: the original
one (in blue), the Sharkey and Tawn (2017) update with m ∈ [m̂1, m̂2] (in orange), the Wadsworth
et al. (2010) update with m = nu (in magenta), and the orthogonal parameterization (in green).
Top row: autocorrelations as functions of the lag. Second row: evolution of ESS with the number
of draws (the gray line corresponds to value of 400 recommended in Gelman et al. (2013)). Bottom
row: R̂(x) as a function of the quantile x, with the adapted threshold of 1.03 (Moins et al., 2023).
Some curves are truncated for visibility purposes, as they are taking much larger values than the
threshold.
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Results Results are reported in Figure 2.2, with four parameterizations that are com-
pared for MCMC efficiency. (i) The orthogonal parameterization (r, ν, ξ) of Equation (2.7),
and three triplets (µ, σ, ξ) associated with the following choices of m: (ii) the original m
(same as the one used for generation), (iii) m = nu which is the choice of Wadsworth et al.
(2010) and the package revdbayes (Northrop, 2022a), and (iv) m ∈ [m1, m2] as suggested
by Sharkey and Tawn (2017) (see Section 2.2).

In order to compare the same quantities, all convergence diagnostics are computed
with the original parameterization (µ, σ, ξ) and m, consequently after a transformation
of the chains for the other parameterizations. Figure 2.2 confirms that the orthogonal
parameterization behaves best in the case ξ < 0: the Markov chains have the lowest
autocorrelations, the lowest value of R̂(x) for almost all x, and this parameterization
is the only one that satisfies the recommendation of ESS lower than 400 for estimation
(Gelman et al., 2013). Conversely, the two parameterizations that suggest a change for m
seem to suffer from a lack of convergence, even more than the original parameterization.
For the cases ξ > 0 and ξ = 0 detailed in Appendix 2.C.2, the orthogonal parameterization
is still best, but the behaviour of the three other parameterizations is reversed: the one
with no change for m is the one with the largest convergence issues. Some intuitions
about the behaviour of parameterizations that rely on changing m, in particular in the
case ξ < 0, can be found in Appendix 2.A. We also refer to Appendix 2.C.3 for a study of
the GPD and GEV cases. As a conclusion, the orthogonal parameterization is effective in
the three maximum domains of attraction, for both Poisson process and GPD models.

2.4.2 Case study on river flow data

We apply our framework to 36 160 daily measurements of the Garonne river flow (France),
from 1915 to 2013.

Preprocessing Before selecting a threshold and running a MCMC algorithm, some
common preprocessing steps on daily environmental data are required: first because of
seasonality, only the rainy season from December to May is considered, which reduces
the number of observations to 18 043. The observations are also not independent; an au-
tocorrelation plot suggests a three-day correlation in measurements. Therefore, clusters
of exceedances of parameter r = 3 days are considered here, which means that two ex-
ceedances that occurred in less than three days are merged as one observation (the largest
one in the cluster). Previous EDF studies (see for instance Albert, 2018) agree with tradi-
tional threshold elicitation methods (e.g., Coles, 2001, Chapter 4) to consider a threshold
of u = 2 000 m3/s for estimation. In the end, nu = 182 clusters of exceedances are obtained
and represented in Figure 2.3. A temporal trend could be suspected there. A possible way
to model such a phenomenon would be to include covariates in the orthogonal parameters,
see the last paragraph of Section 2.2.

Return level estimation We are interested in estimating the T -year return level ℓT ,
which is exceeded on average once every T years. This is obtained by solving the equation
G(ℓT | µ, σ, ξ) = 1− 1/T , with G the GEV cdf defined in Equation (2.1):

ℓT = µ− σ

ξ

(
1− (− log(1− 1/T ))−ξ

)
. (2.14)
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Figure 2.3: Plot of nu = 182 exceedances of the Garonne river flow between 1915 and 2013 above
the threshold u = 2 000 (represented in red).

Post. Mean Post. SD 95%-CI ESS R̂∞

µ 2 560.8 84.1 [2 409.8, 2 724.1] 3 473 ≈ 1.0
σ 919.6 73.2 [787.2, 1 063.3] 2 709 ≈ 1.0
ξ 0.015 0.077 [−0.120, 0.164] 2 702 ≈ 1.0

Table 2.1: Posterior summaries (mean, standard deviation (SD), credible interval (CI) at 95%)
and convergence diagnostics (ESS and R̂∞) for (µ, σ, ξ) associated with annual maxima (m = 99).

Here, as the data span 99 years, we fix m = 99 in order to obtain parameters associated
with annual maxima. The same setup as in Section 2.4.1 is then run with 5 000 draws
from Metropolis–Hastings algorithm with the orthogonal parameterization. Convergence
diagnostic values are reported in Figure 2.4 and show no evidence of lack of convergence,
along with a very satisfactory effective sample size for estimation (final values can be
found in Table 2.1 along with R̂∞ for each parameter). Results of posterior summaries
for (µ, σ, ξ) are reported in Table 2.1: looking at the posterior for ξ, the three maximum
domains of attraction cannot be excluded, although the 95% credible interval (CI) is tight
around zero. This may suggest that ξ = 0 and an exponential decrease of the survival
function. Return levels for annual maxima are displayed in the left panel of Figure 2.5,
and show that the model seems to fit the data correctly. These curves are obtained by
computing the mean and 2.5%/97.5% quantiles on the posterior distribution of ℓT for any
given return period T . This is more accurate than the version where pointwise posterior
quantities of (µ, σ, ξ) are plugged in Equation (2.14) (see Jonathan et al., 2021, for a
comparison). The obtained posterior mean of ℓT , is 6 949 m3/s for the 100-year level and
9 266 m3/s for the 1 000-year one. These results corroborate a study conducted in Albert
et al. (2020), where the estimated value of 10 000 m3/s for the 1 000-year return level
belongs to the credible interval in Figure 2.5.

Prior influence on the return level estimation uncertainty Looking at the poste-
rior distribution for ξ, one can reasonably make the assumption that ξ = 0 and therefore
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Figure 2.4: Convergence diagnostic plots for Garonne river flow data, after 5 000 Metropolis–
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in Gelman et al. (2013)). Right: R̂(x) as a function of the quantile x, with the adapted threshold
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Figure 2.6: Comparison of return levels with different priors as functions of return period (log
scale). On the left: return levels with posterior mean parameters. On the right: return level
credible interval (CI) length relative to the point estimate (in %).

assume an exponential decrease for the survival function of the river flow. In this case,
the remaining location parameter µ and scale parameter σ can be estimated with fixed
ξ = 0. The resulting posterior summaries are very close to the ones of Table 2.1. As a
result, the return level curves with posterior mean parameters (see Figure 2.5) are very
similar in both cases. However, as the uncertainty on the shape parameter is excluded
when fixing ξ = 0, the return levels credible intervals change drastically and become very
concentrated around means, as shown in the right panel of Figure 2.5. In fact, this reflects
that most of the uncertainty on the estimated return level is due to the estimation of the
shape parameter, and so knowing its value greatly facilitates the extrapolation. PC priors
allow us to navigate between these two extreme cases thanks to the hyperparameter λ.
Looking at the left panel of Figure 2.6, it appears that the return level curves associated
with posterior means are not affected by those differences of priors. However, the larger
λ, the more information is added about the closeness of ξ to zero, and the smaller the
length of the credible interval (note however that this does not give any guarantee on the
estimation bias). This behaviour is illustrated on the right panel of Figure 2.6: denoting
by ℓ

(m)
T , ℓ

(2.5%)
T , and ℓ

(97.5%)
T respectively the posterior mean, and the posterior quantiles

at 2.5% and 97.5% of the return level, then the right plot in Figure 2.6 displays the length
of the credible interval for the return level estimation, relatively to the estimator ℓ

(m)
T :

(ℓ(97.5%)
T − ℓ

(2.5%)
T )/ℓ

(m)
T . This ratio is expected to grow with T , as the uncertainty in-

creases in the tail. When λ = 1, this growth is similar to the one associated with Jeffreys
prior, which can be seen as a noninformative case. For example, one can see that the size
of the credible interval is already greater than the posterior estimation for the 1 000-year
return level (ratio greater than one). Using λ = 10 corresponds to a confidence of 95% of
having ξ between −0.3 and 0.3 with the version approximated by a Laplace distribution
(see the table in Figure 2.1), reduces by approximately 20% the size of the credible interval
for T = 1 000. The length when ξ is fixed at zero is drastically lower than in the other
cases, even those concerning PC priors with large λ values.

2.5 Conclusion

In this paper we demonstrate the benefits of using an orthogonal parameterization in the
sense of Jeffreys (1939) for Bayesian inference of extreme value models. First, orthogonal
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parameters facilitate the convergence of MCMC algorithms such as Metropolis–Hastings
or NUTS (Section 2.2 and Appendix 2.A). This improvement is “free” in the sense that it
is obtained at no extra computational cost, except a simple change of variable if one inter-
est lies in the original parameters (µ, σ, ξ). This conclusion is confirmed by convergence
diagnostics such as autocorrelation, effective sample size, and local R̂, on simulations in
the three maximum domains of attraction (Section 2.4.1 and Appendix 2.C).

Secondly, the orthogonal parameterization also facilitates the computation of Jeffreys
prior (Section 2.3.1): we show that this uninformative prior is defined for ξ > −1/2 and
is improper, but leads to a proper posterior. Posterior propriety is a necessary condition
for using this prior in practice when no external information is available. However, this
uninformative case is actually far from the reality of most of the applications: even without
any expert information, a shape parameter in the range (−1, 1) already includes a vast
majority of the distributions arising in natural phenomena. Therefore as an alternative,
a PC prior on ξ can be used instead and allows users to control the prior knowledge they
want to include on ξ (Section 2.3.2). In particular, it penalizes the values of ξ that move
away from 0, and navigate between the uninformative case and the deterministic one where
ξ = 0. In addition to its flexibility, this prior enjoys the same advantages as Jeffreys prior:
invariance to reparameterization and posterior propriety. Additionally, it can be defined
without any restriction for ξ if one uses the approximation by a Laplace distribution
(otherwise, ξ < 1). This prior information on ξ impacts the posterior uncertainty around
the return level estimation. By applying our framework on river flow data (Section 2.4.2),
we showed that the length of the credible interval for the return level can be significantly
reduced by adding prior information of ξ. However, the uncertainty around the return level
can be quantified differently, by using the quantiles of the posterior predictive distribution
defined in (2.6), see Fawcett and Green (2018) for a comparison. In future work, it would
be interesting to also investigate the influence of the prior on the posterior predictive
return levels.
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2.A Approaching orthogonality by choosing m = nu

Sharkey and Tawn (2017) suggests to take a value of the scaling factor m that minimises
the off-diagonal terms of the asymptotic covariance matrix (that is the inverse Fisher
information matrix), denoted by ACov := I−1(µ, σ, ξ). Those terms exist only if ξ > −1/2
(see Proposition 2 and its proof in Appendix 2.B) and can be written as functions of
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x = −1
ξ log

{
1 + ξ

(
u−µ

σ

)}
+

, σ, and ξ as:

ACovµ,σ = σ2

mξ2 ex
(
ξ3 + (1 + ξ)(1 + 2ξ + ξ(1 + ξ)x2 − (1 + 3ξ)x + e−ξx(1 + 2ξ)(x− 1))

)
,

ACovµ,ξ = σ

mξ2 ex(1 + ξ)
(
ξ(1 + ξ)x− (1 + 2ξ)(1− e−ξx)

)
,

ACovσ,ξ = σ

m
ex(1 + ξ) ((1 + ξ)x− 1) .

Denote by ρ·,· the asymptotic correlation between two out of the three parameters, the
authors note that a range of values may also work for m between m1 and m2, where

m1 = argmin
m
{|ρµ,σ|+ |ρµ,ξ|} and m2 = argmin

m
{|ρµ,σ|+ |ρσ,ξ|}.

They also find on their experiments that m1 cancels ρµ,σ, and that m2 cancels ρσ,ξ. A
numerical method is used in Appendix Sharkey and Tawn (2017) to approximate m1 and
m2 as functions of ξ. Therefore, this approach requires to study the roots x1 of ACovσ,ξ

and x2 of ACovµ,σ to respectively derive m̂1(ξ) and m̂2(ξ). Without any approximation,
we directly have x1 = 1/(1+ξ) as the unique root for ACovσ,ξ. Moreover, as ξ > −1/2, we
have x1 > 0, which motivates us to study the sign of the root x2 for ACovµ,σ. Indeed, if x2
is unique and x2 < 0, then the choice x = 0 which cancels the third asymptotic covariance
ACovµ,ξ will always be reasonable as it will stay in the targeted interval, between the
two other roots. In addition, x = 0 corresponds to the choice m = r (which in practice
translates into m = nu), and is a simple choice as it does not require any estimation of
ξ. The interest of the choice m = nu has already been mentioned in Wadsworth et al.
(2010) to improve the mixing property of the chain. Unfortunately, a study of function
x 7→ ACovµ,σ(x) shows that the properties of uniqueness and positivity of x2 are only
valid in the case where ξ > 0. In that case, the works of Wadsworth et al. (2010) and
Sharkey and Tawn (2017) corroborate the choice of m = nu. However, it is not the case
anymore when −1/2 < ξ < 0. It can be shown that x2 is not negative here, and worse,
may not be unique. This can be seen as a counter-indication for frameworks that aim at
reducing the three asymptotic covariances at the same time by tuning the scaling factor
m.

2.B Proofs

Proof of Proposition 1 The log-likelihood l using the (r, ν, ξ) parameterization of
Equation (2.7) can be written as:

l(r, ν, ξ | x, nu) = −r + nu log
(

r

m

)
− nu log(ν) + nu log(1 + ξ)

−
(

1 + 1
ξ

) nu∑
i=1

log
{

1 + ξ(1 + ξ)
ν

(xi − u)
}

+
.
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Under this form, one can directly see that r is orthogonal to ν and ξ. The second derivatives
of l are

∂2l

∂r2 = −nu

r2 ,
∂2l

∂r∂ν
= 0,

∂2l

∂r∂ξ
= 0,

∂2l

∂ν2 = nu

ν2 + ξ(1 + ξ)3

ν4

nu∑
i=1

(xi − u)2{
1 + ξ(1+ξ)

ν (xi − u)
}2

+

− 2(1 + ξ)2

ν3

nu∑
i=1

(xi − u){
1 + ξ(1+ξ)

ν (xi − u)
}

+

,

∂2l

∂ν∂ξ
= −(1 + 2ξ)(1 + ξ)2

ν3

nu∑
i=1

(xi − u)2{
1 + ξ(1+ξ)

ν (xi − u)
}2

+

+2(1 + ξ)
ν2

nu∑
i=1

(xi − u){
1 + ξ(1+ξ)

ν (xi − u)
}

+

,

∂2l

∂ξ2 = − nu

(1 + ξ)2 + (1 + 2ξ)2(1 + ξ)
ξν2

nu∑
i=1

(xi − u)2{
1 + ξ(1+ξ)

ν (xi − u)
}2

+

+ 2(1 + ξ − ξ2)
ξ2ν

nu∑
i=1

(xi − u){
1 + ξ(1+ξ)

ν (xi − u)
}

+

− 2
ξ3

nu∑
i=1

log
{

1 + ξ(1 + ξ)
ν

(xi − u)
}

+
.

Focussing on the expectations, as we observe a Poisson process, the information is con-
tained in the number nu of observed points (we write Nu the corresponding random
variable) and the position of jumping events xi (we write Xi the corresponding random
variable, with the same distribution as X). Here, Nu is distributed according to a Poisson
distribution with parameter r, and X − u is a GPD random variable with parameters
( ν

1+ξ , ξ). For example, deriving the following expectations is the cornerstone to obtain the
Fisher information matrix:

ENu,X

Nu∑
i=1

(Xi − u)2{
1 + ξ(1+ξ)

ν (Xi − u)
}2

+

 = ENu

EX|Nu

Nu∑
i=1

(Xi − u)2{
1 + ξ(1+ξ)

ν (Xi − u)
}2

+




= ENu [Nu]EX|Nu

 (X − u)2{
1 + ξ(1+ξ)

ν (X − u)
}2

+


= r

1 + ξ

ν

∫ +∞

u
(x− u)2

{
1 + ξ(1 + ξ)

ν
(x− u)

}− 1
ξ

−3

+
dx.

The above integral exists provided ξ > −1/2 and we obtain

ENu,X

Nu∑
i=1

(Xi − u)2{
1 + ξ(1+ξ)

ν (Xi − u)
}2

+

 = 2rν2

(1 + ξ)3(1 + 2ξ) .

Similarly, the remaining expected values can be written as

ENu,X

Nu∑
i=1

(Xi − u)(
1 + ξ(1+ξ)

ν (Xi − u)
)
 = rν

(1 + ξ)2 ,

ENu,X

[
Nu∑
i=1

log
(

1 + ξ(1 + ξ)
ν

(Xi − u)
)]

= rξ.

Plugging these values into the Fisher coefficients yields the result:

I(r, ν, ξ) = diag
(1

r
,

r

ν2(1 + 2ξ) ,
r

(1 + ξ)2

)
.
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Proof of Proposition 2 Let us show that the following integral exists for any nu ≥ 1:

Cnu =
∫

S

r1/2e−r

ν(1 + ξ)(1 + 2ξ)1/2

(
r(1 + ξ)

mν

)nu nu∏
i=1

(
1 + ξ(1 + ξ)

ν
(xi − u)

)−1− 1
ξ

drdνdξ,

where S is the integration domain:

S =
{

(r, ν, ξ) ∈ R3 s.t. ξ > −1
2 , r > 0, ν ≥ {−ξ(1 + ξ)((max

i
xi)− u)}+

}
.

Let us consider the case of one observation (nu = 1):

∫ +∞

− 1
2

(1 + 2ξ)− 1
2

∫ +∞

0
r

3
2 e−r

∫ +∞

{−ξ(1+ξ)(x−u)}+
ν−2

(
1 + ξ(1 + ξ)

ν
(x− u)

)− 1
ξ

−1
dνdrdξ

=
∫ 0

− 1
2

(1 + 2ξ)− 1
2

∫ +∞

0
r

3
2 e−r

∫ +∞

−ξ(1+ξ)(x−u)
ν−2

(
1 + ξ(1 + ξ)

ν
(x− u)

)− 1
ξ

−1
dνdrdξ

+
∫ +∞

0
(1 + 2ξ)− 1

2

∫ +∞

0
r

3
2 e−r

∫ +∞

0
ν−2

(
1 + ξ(1 + ξ)

ν
(x− u)

)− 1
ξ

−1
dνdrdξ

=
∫ 0

− 1
2

(1 + 2ξ)− 1
2

∫ +∞

0
r

3
2 e−r

 1
(1 + ξ)(x− u)

(
1 + ξ(1 + ξ)

ν
(x− u)

)− 1
ξ

+∞

−ξ(x−u)( r
m )ξ

drdξ

+
∫ +∞

0
(1 + 2ξ)− 1

2

∫ +∞

0
r

3
2 e−r

 1
(1 + ξ)(x− u)

(
1 + ξ(1 + ξ)

ν
(x− u)

)− 1
ξ

+∞

0

drdξ

= 1
(x− u)

∫ +∞

− 1
2

(1 + ξ)−1(1 + 2ξ)− 1
2

∫ +∞

0
r

3
2 e−rdrdξ

= 3π
3
2

4(x− u) <∞.

Therefore, the posterior is proper for nu = 1. It is well-known that it stays so for nu > 1
as can be seen by induction. For instance for nu = 2, the posterior writes

p(θ | x1, x2) ∝ p(x1, x2 | θ)p(θ) = p(x2 | θ)p(x1 | θ)p(θ) ∝ p(x2 | θ)p(θ | x1) ≤ p(θ | x1)

which is integrable.

Proof of Proposition 4 Similarly to the proof of Proposition 2, the aim is to show the
existence of the following integral for any nu:

Cnu =
∫

S

pPC(ξ | λ)
ν

e−r
(

r

m

)nu
(

ν

1 + ξ

)−nu nu∏
i=1

(
1 + ξ(1 + ξ)

ν
(xi − u)

)−1− 1
ξ

drdνdξ,

with pPC(ξ | λ) defined in Equation (2.13), and S the following integration domain:

S =
{

(r, ν, ξ) ∈ R3 s.t. ξ < 1, r > 0, ν ≥ {−ξ(1 + ξ)((max
i

xi)− u)}+
}

.



53 2.C. Additional experiments

In the general case for nu, we have

Cnu = Γ(nu + 1)
mnu

∫ 1

−∞

∫ +∞

{−ξ(1+ξ)(x−u)}+

pPC(ξ | λ)
ν

(
ν

1 + ξ

)−nu

nu∏
i=1

(
1 + ξ(1 + ξ)

ν
(xi − u)

)−1− 1
ξ

dνdξ

= Γ(nu + 1)
mnu

∫ 1

−∞

∫ +∞

{−ξ(x−u)}+

pPC(ξ | λ)
σ

σ−nu

nu∏
i=1

(
1 + ξ

(
xi − u

σ

))−1− 1
ξ

dσdξ.

The remaining integral corresponds to the normalizing constant of the posterior distribu-
tion of a GPD model with a prior of the form p(σ, ξ) ∝ p(ξ)/σ. Since p(ξ) is a proper
density, Theorem 1 in Northrop and Attalides (2016) allows us to conclude that Cnu is
finite for any nu ≥ 1. Note that this result remains true with pPC(ξ | λ) replaced by a
Laplace distribution as suggested in Section 2.3.2, since the prior on ξ remains proper.

2.C Additional experiments

2.C.1 Simulations using an Hamiltonian Monte Carlo algorithm

Hamiltonian Monte Carlo (HMC, Neal, 1996) and its variants such as NUTS (Hoffman
and Gelman, 2014) are MCMC methods with a Markov kernel based on trajectories of
particles computed using Hamiltonian dynamics. As a consequence, the performance of
these methods is also sensitive to the choice of the parameterization (see Betancourt, 2019
for a formalization of the problem). We performed the same experiments as those in
Section 2.4.1 and Appendix 2.C.2, using 500 NUTS iterations instead of 1 000 Metropolis–
Hastings draws. The results obtained here are similar, and show that the orthogonal
parameterization improves the efficiency of NUTS sampling. The case ξ > 0 is illustrated
in Figure 2.7 with the same configuration as the one described in the first paragraph of
Appendix 2.C.2. We observe similar trends as those in Figure 2.8: changing the value of
m improves convergence, and using the orthogonal parameterization is even better. More-
over, NUTS seems to be more efficient on the three cases than with Metropolis–Hastings,
as the chains seem to be less correlated compared to their equivalent in Figure 2.8, and
the ESS can even be greater than the number of draws.

2.C.2 Simulations in other maximum domains of attraction

We study the influence of parameterizations for MCMC convergence in cases where ξ > 0
and ξ = 0.

Example with ξ > 0 Here, we set (m, u, µ, σ, ξ) = (5, 10, 30, 15, 0.7), which leads to
an expected number of observations r ≈ 239. Looking at autocorrelations, ESS and
R̂(x) curves in Figure 2.8, we can first confirm the result of Sharkey and Tawn (2017)
about the inefficiency of Metropolis–Hastings with the original parameterization: high
autocorrelations, high R̂(x) (around 1.7 for the highest) and almost zero ESS even after
1 000 iterations indicate a severe convergence issue. Changing the value of m before the
MCMC algorithm as suggested by Sharkey and Tawn (2017) or by Wadsworth et al.
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Figure 2.7: Convergence diagnostic plots for Poisson parameters (µ, σ, ξ) with ξ > 0, after 500
NUTS draws and a burn-in of 1 000, for four different parameterizations: the original one (in
blue), the Sharkey and Tawn (2017) update with m ∈ [m̂1, m̂2] (in orange), the Wadsworth et al.
(2010) update with m = nu (in magenta), and the orthogonal parameterization (in green). Top
row: autocorrelations as functions of the lag. Second row: evolution of ESS with the number of
draws (the gray line corresponds to value of 400 recommended in Gelman et al. (2013)). Bottom
row: R̂(x) as a function of the quantile x, with the adapted threshold of 1.03 (see Moins et al.,
2023). The red curve is truncated for visibility purposes, as it is taking much larger values than
the threshold.

(2010) improves inference significantly. Still, our orthogonal parameterization is even
more efficient, especially for the estimation of the tail parameter ξ: the autocorrelation
reduces even more rapidly with the lag, and the ESS increases faster with the number of
draws. With the recommendations of ESS ≥ 400 for estimation (Gelman et al., 2013), our
experimental setup is satisfactory only in the orthogonal case because of ξ. In contrast,
more iterations are required to fulfill this condition for the parameterization recommended
by Sharkey and Tawn (2017).

Example with ξ = 0 Finally when ξ = 0, the GPD and therefore the intensity
Λ(Iu) of the Poisson process defined in Section 2.1.1 reduce to an exponential model
with location and scale parameters. Figure 2.9 shows an example in this case with
(m, u, µ, σ, ξ) = (20, 20, 25, 5, 0), leading to r ≈ 54 expected observations. Similarly to
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Figure 2.8: Convergence diagnostic plots for Poisson parameters (µ, σ, ξ) with ξ > 0, after 1 000
Metropolis–Hastings draws and a burn-in of 1 000, for four different parameterizations: the original
one (in blue), the Sharkey and Tawn (2017) update with m ∈ [m̂1, m̂2] (in orange), the Wadsworth
et al. (2010) update with m = nu (in magenta), and the orthogonal parameterization (in green).
Top row: autocorrelations as functions of the lag. Second row: evolution of ESS with the number
of draws (the gray line corresponds to value of 400 recommended in Gelman et al. (2013)). Bottom
row: R̂(x) as a function of the quantile x, with the adapted threshold of 1.03 (see Moins et al.,
2023). The red curve is truncated for visibility purposes, as it is taking much higher values than
the threshold.
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Figure 2.9: Convergence diagnostic plots for Poisson parameters (µ, σ, ξ) with ξ = 0, after 1 000
Metropolis–Hastings draws and a burn-in of 1 000, for four different parameterizations: the original
one (in blue), the Sharkey and Tawn (2017) update with m ∈ [m̂1, m̂2] (in orange), the Wadsworth
et al. (2010) update with m = nu (in magenta), and the orthogonal parameterization (in green).
Top row: autocorrelations as functions of the lag. Second row: evolution of ESS with the number
of draws (the gray line corresponds to value of 400 recommended in Gelman et al. (2013)). Bottom
row: R̂(x) as a function of the quantile x, with the adapted threshold of 1.03 (see Moins et al.,
2023).

the case ξ > 0 in Section 2.4.1, this example illustrates that updating m like Sharkey and
Tawn (2017) or Wadsworth et al. (2010) is beneficial for MCMC convergence, but less
than using orthogonal parameterization. In the same way as in the two other maximum
domains of attraction, this parameterization is the most efficient one for the convergence
of Metropolis–Hastings algorithm.

2.C.3 GPD and GEV case

In the particular case of GPD (defined in Equation (2.2)) that arises in the traditional
peaks over threshold model, the same observation can be made about the benefits of
an orthogonal parameterization for (σ, ξ). More precisely, the transformation (ν, ξ) =
(σ(1 + ξ), ξ) leads to an orthogonal Fisher information matrix for GPD (Chavez-Demoulin
and Davison, 2005), and improves MCMC convergence as shown in Figure 2.10. The
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Figure 2.10: Convergence diagnostic plots for GPD parameters (σ, ξ) with ξ < 0, after 1 000
Metropolis–Hastings draws and a burn-in of 1 000, for two parameterizations, the original (in blue)
and the orthogonal one (in green). Top row: autocorrelations as functions of the lag. Second row:
evolution of ESS with the number of draws (the gray line corresponds to value of 400 recommended
in Gelman et al. (2013)). Bottom row: R̂(x) as a function of the quantile x, with the adapted
threshold of 1.03 (see Moins et al., 2023).
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same experimental setup as in the Poisson process case is used here, with a choice of
(σ, ξ) = (5,−0.1) and u = 25. Again, all plots in Figure 2.10 show that the chains mixing
is satisfactory only in the case of an orthogonal parameterization, while the original pa-
rameterization requires more iterations to be effective for inference. Up to our knowledge,
there is no orthogonal parameterization for the GEV likelihood known in the literature.
However, it should be noted that the parameters of the Poisson process model (µ, σ, ξ)
correspond to those of the block maxima framework with m blocks (see Section 2.1.1).
Consequently, we should expect a similar convergence issue for parameters (µ, σ, ξ) with
GEV likelihood, and therefore an improvement in the MCMC convergence with the use
of the orthogonal parameterization (r, ν, ξ) of the Poisson model.

2.C.4 Ratio-of-uniforms

The benefits of reparameterization for Bayesian inference can be extended to other sam-
pling methods than MCMC. Typically, the efficiency of acceptance-rejection algorithms
can be altered if the geometry of the acceptance region is too complex, and this can be
due to correlation between parameters. The rust package (Northrop, 2022b) implements
such an acceptance-rejection algorithm dedicated to extreme value models, the so-called
generalized ratio-of-uniforms method. It consists in simulating uniformly values in a region
that encloses an acceptance region, where the ratio of the obtained samples is distributed
according to the target distribution (see Gilks et al. (1995, Chapter 5) for more details).
As explained in the revdbayes documentation (Northrop, 2022a) which is built upon
rust, the efficiency of this method highly depends on the probability of acceptance pa.
revdbayes already includes the possibility to use the reparameterization suggested by
Wadsworth et al. (2010) with m = nu for the Poisson process, along with a rotate option
to reduce dependence. We add the orthogonal parameterization in the comparison, and
show the results in Figure 2.11. We set (m, u, µ, σ, ξ) = (100, 0, 1, 1,−0.1), and draw 10 000
samples for three configurations. As expected, the orthogonal parameterization slightly
improves the probability of acceptance compared to the case where m = nu = 110, which
is already significantly better than the case where m is not changed (m = 100). Note that
this package operates a transformation of variable before sampling to improve normality,
which in view of the bottom row in Figure 2.11, may not be necessary for the orthogonal
parameters.

2.C.5 Replications and comparison with maximum likelihood

Despite the fact that the Bayesian paradigm comes with several benefits (briefly described
in Section 2.1.1), one can be interested in the comparison with frequentist estimator such
as maximum likelihood estimation (MLE). From a frequentist point of view, this involves
extracting a pointwise estimator from the posterior distribution, such as the posterior
mean, and replicate the experiment to estimate the mean squared error (MSE). The two
steps of the Bayesian workflow we study here are expected to impact the performance
of these estimators. A parameterization which leads to poor convergence of the MCMC
chains will affect the accuracy of estimation, and the prior can add a bias that may or
may not be advantageous to the estimation.

For different values of ξ0 between −0.5 and 1, we replicate 100 times the following
experiment (this range includes a large number of models and allows us to have both
Jeffreys and PC priors well defined): for i = 1, . . . , 100, we generate samples xi according
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Figure 2.11: Pairwise plots of parameter values simulated using the ratio of uniform method, for
three parameterizations: the original one (in blue), the Wadsworth et al. (2010) update with m =
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Figure 2.12: Mean squared error (MSE) on the estimation of ξ for a true value ξ0 ∈ [−1/2, 1]. The
computation is done on 100 replications for each value of ξ0. Left panel: different parameterizations
under Jeffreys prior. Right panel: Jeffreys and PC priors under orthogonal parameterization, along
with MLE.

to a Poisson process distribution with parameters (m, u, σ, ξ) = (1, 10, 15, ξ0) and µ in a
way such that the expected number of points is equal to r = 100:

µ = u− σ

ξ0
(100−ξ0 − 1).

Then, we run MCMC chains with the same configuration as in Section 2.4 and compute
the posterior mean ξ̂i = E[ξ | xi]. We these 100 experiments, we compute the MSE:

MSE(ξ0) = 1
100

100∑
i=1

(ξ̂i − ξ0)2.

First, we compare the different parameterizations for the Poisson process with the same
Jeffreys prior. Results are displayed in the left panel of Figure 2.12, and illustrate the
inaccuracy of the frameworks without reparameterization and with the update of Sharkey
and Tawn (2017), due to lack of convergence of MCMC. This issue is getting worse as ξ0
increases, and a bias/variance decomposition of the MSE shows that it is mostly due to
the variance term. Then, for the same orthogonal parameterization, we compare Jeffreys
prior, PC prior with a choice of λ = 10, and the MLE for the Poisson process, implemented
using the extRemes package (Gilleland and Katz, 2016). Results in the right panel of
Figure 2.12 show that the performance of the posterior mean estimation with Jeffreys
prior is approximately the same as the MLE, except when ξ0 is close to −1/2 where the
asymptote behaviour of Jeffreys favours the estimation. This shows that, despite the
uninformative construction, this prior can favour negative values of ξ0 close to −1/2. The
behaviour of PC prior is, as expected, penalizing the values of ξ far from ξ0 = 0. When ξ0
is around zero, this prior outperforms Jeffreys’ one and MLE, but assuming a value near
zero when |ξ0| is large can add a large bias.
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Résumé

D iagnostiquer la convergence de méthodes de Monte Carlo par châınes de Markov
(MCMC) est crucial et reste un problème ouvert. Parmi les méthodes les plus popu-

laires, le diagnostic de Gelman–Rubin (Gelman and Rubin, 1992), communément noté R̂,
est un indicateur qui vérifie la convergence des châınes vers la distribution cible, en com-
parant les variances inter et intra-châınes.

Plusieurs améliorations ont été suggérées depuis son introduction dans les années 90.
Dans ce travail, nous cherchons à mieux comprendre le comportement de R̂ en proposant
une version localisée R̂(x) qui se concentre sur un quantile x de la distribution cible.
Cette nouvelle version est d’abord définie à l’échelle de la population, c’est-à-dire que
l’on définit une valeur théorique R(x) qui sera estimée par R̂(x). Cela nous permet de
déduire plusieurs propriétés, et notamment d’associer le choix du seuil de décision sur la
convergence à un niveau de confiance α, qui lui est interprétable. Cette version localisée
du diagnostic conduit naturellement à proposer un nouvel indicateur R̂∞ sur l’ensemble
de la distribution, qui permet à la fois de localiser la convergence dans différents quantiles
de la distribution cible, tout en résolvant certains problèmes de convergence qui ne sont
pas détectés par les autres versions de R̂.

Une extension multivariée est ensuite proposée pour répondre à la question encore
ouverte d’un diagnostic de convergence qui prendrait en considération la structure de
dépendance. Notre analyse illustre la difficulté de la tâche par une différence de sensibilité
par rapport à la direction de dépendance, ce qui implique un coût de calcul exponentiel en
la dimension si l’on souhaite symétriser sur l’ensemble des directions. Or, par conséquent,
ceci est peu raisonnable en grande dimension. Des simulations sont ensuite effectuées
pour vérifier la sensibilité de ce diagnostic dans des cas classiques, ainsi que dans des cas
construits mettant à défaut les autres versions dans la littérature.

La suite du chapitre est présentée sous la forme d’un article accepté pour publica-
tion (Moins et al., 2023). La Partie 3.1 dresse un état des lieux des différentes versions
de R̂ et de leurs limites, puis la Partie 3.2 définit la version univariée, et la Partie 3.3
l’extension multivariée. Enfin, les expériences en Partie 3.4 ainsi qu’une discussion en
Partie 3.5 viennent achever le document principal. Plusieurs annexes viennent compléter
ces travaux : des exemples additionnels prouvant la robustesse de R̂∞ en Annexe 3.A,
le détail des preuves dans en Annexe 3.B, l’estimation du seuil associé à un niveau de
confiance donné en Annexe 3.C, et enfin des exemples de calculs explicites de la valeur
théorique en Annexe 3.D.
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Abstract

D iagnosing the convergence of Markov chain Monte Carlo (MCMC) is crucial and
remains essentially an unsolved problem. Among the most popular methods, the

Gelman–Rubin diagnostic (Gelman and Rubin, 1992), commonly referred to as R̂, is an
indicator that checks the convergence of chains to the target distribution by comparing
the between-chain and within-chain variances.

Several improvements have been suggested since its introduction in the 90s. In this
study, we aim to better understand the behavior of R̂ by proposing a localized version R̂(x)
that focuses on a quantile x of the target distribution. This new version is first defined
at the population level, meaning we define a theoretical value R(x) that will be estimated
by R̂(x). This allows us to derive several theoretical properties, including associating the
choice of threshold for the decision on convergence with a more interpretable confidence
level α. This localized version of the diagnostic naturally leads to proposing a new indi-
cator R̂∞ over the entire distribution, which allows for both localizing the convergence in
different quantiles of the target distribution and addressing some convergence issues not
detected by other versions of R̂.

A multivariate extension is then proposed to address the open question of convergence
diagnostics that consider the dependency structure. Our analysis illustrates the difficulty
of the task due to a difference in sensitivity with respect to the direction of dependence,
which implies an exponential computational cost if one wishes to symmetrize and thus is
not feasible in high dimensions. Simulations are then conducted to verify the sensitivity
of this diagnostic in classical cases, as well as in toy cases that challenge other versions in
the literature.

The rest of the chapter is presented as a manuscript accepted for publication (Moins
et al., 2023). Section 3.1 provides an overview of the different versions of R̂ and their lim-
itations, followed by Section 3.2 defining the univariate version and Section 3.3 presenting
the multivariate extension. Finally, the experiments in Section 3.4 and the discussion in
Section 3.5 conclude the main document. Several appendices complement these works:
additional examples demonstrating the robustness of R̂∞ in Appendix 3.A, the detailed
proofs in Appendix 3.B, the estimation of the threshold associated with a given confi-
dence level in Appendix 3.C, and finally, explicit calculations of the theoretical value in
Appendix 3.D.
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Figure 3.1: Traceplots illustrating convergence and two types of non-convergence of MCMC.
Left: nothing indicates a convergence issue, as the two chains seem to have the same stationary
distribution. Middle: the blue chain is still in an exploration phase and therefore is not stationary.
Right: example where having multiple chains helps detecting a mixing issue despite a stationarity
appearance of each.

3.1 Introduction

Markov chain Monte Carlo (MCMC) algorithms have strongly contributed to the pop-
ularity of Bayesian models to sample from posterior distributions, especially in high-
dimensional or high computational settings. This success results in a variety of softwares
increasingly used for a wide range of applications: Stan (Carpenter et al., 2017), PyMC3
(Salvatier et al., 2016), NIMBLE (de Valpine et al., 2017), or Pyro (Bingham et al., 2019),
to cite a few. The fundamental idea behind these algorithms is the convergence of the
sampling distribution to the target (typically the posterior) when the number of samples
goes to infinity. A major challenge is therefore to know if the behaviour for a finite number
of draws is satisfactory or not. This allows for a handle on the number of iterations to be
drawn, which is all the more crucial in complex models with costly sampling schemes. See
Roy (2020) for a recent literature review on convergence diagnostics.

3.1.1 Diagnosing MCMC convergence

Two frequently used properties to verify chains convergence are stationarity and mixing
(see Vats and Flegal, 2021, for a discussion). Stationarity is related to the invariance
property of the target distribution F for standard MCMC algorithms like Metropolis–
Hastings or Gibbs sampling (Robert and Casella, 2004): if θ(i) is the ith element of an
MCMC chain, then θ(i) ∼ F implies θ(i+1) ∼ F , so that as soon as an element of the
chain is distributed according to F , all the following ones will be too. Thus, a chain whose
distribution changes drastically during iterations is still in the exploration phase and is
therefore not stationary (see middle panel in Figure 3.1). Mixing refers in practice to the
exploration of the support of F : slow mixing chains correspond to chains that only explore
a subset of the parameter space, which can lead to strong bias in the distribution (see
Robert, 1995, for a more rigorous definition). A common way to limitate mixing issues is
to run several chains in parallel with different starting points, which also allows comparing
the chains together. Stationarity and mixing are two properties that can be treated
separately: in principle, being stationary implies convergence to the target distribution
and thus necessarily also mixing, but in practice there are examples of chains that seem
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to have reached stationarity but are not mixing (see right panel in Figure 3.1), hence the
need for comparing multiple chains.

We place ourselves in the case of several chains: consider m chains of size n, with
θ(i,j) denoting the ith draw from chain j. We focus here on the Gelman–Rubin diagnostic
(Gelman and Rubin, 1992), named potential reduction scale factor and commonly denoted
by R̂. It is by far one of the most popular methods to assess MCMC convergence, used in
particular in Stan, PyMC3, or NIMBLE. The original heuristic for R̂ construction is the
comparison between two estimators that converge to the target variance Var[θ], based on
Ŵ and B̂, respectively the estimated within- and between-variances. This diagnostic has
the advantage of being scalar even in the case of a huge number of chains and comes with
a rule of thumb that makes it very easy to use: generally R̂ ≥ 1, and if it is greater than a
given threshold (for example 1.01), then a convergence issue is raised. This was originally
constructed to diagnose mixing issues only, but Gelman et al. (2013, Section 11.4) suggest
splitting the chains in two before computing R̂ to check for stationarity at the same time.
We will also always consider this split version of R̂ throughout this paper, thus focusing
only on the problem of mixing diagnostic.

3.1.2 Different R̂ versions and their limitations

The original R̂ of Gelman and Rubin (1992) has some limitations that are listed here with
associated improvements suggested in the literature.
L1. It must be compared to an arbitrary chosen threshold. To use R̂, a threshold
must be set to determine a convergence issue. Originally set to 1.1, Vats and Knudson
(2021) note that this choice is arbitrary and usually too optimistic. Thus, the authors
propose a threshold according to a confidence level based on a relationship made with
effective sample size (ESS). This observation was then shared by Vehtari et al. (2021)
who suggest dropping the threshold to 1.01. Driven by practical arguments, this choice
remains unprincipled nor theoretically justified, which is related to the next limitation.
L2. It suffers from a lack of interpretability. How to interpret a given value of R̂? By
construction, R̂ is a ratio of two quantities that must estimate the posterior variance.
Therefore, having a value close to one can be seen as having two correct estimations of
the same quantity, which is an indication of convergence. However to our knowledge, no
study investigates the theoretical or population value R that R̂ aims at estimating, which
would shed light on what is actually diagnosed. Typically, chains such that R̂ ≈ 1 do
not necessarily correspond to mixing chains: Vehtari et al. (2021) exhibit some counter-
examples in order to motivate a more robust version called rank-R̂. Still, the different
versions of R̂ only allow to draw conclusions when they are significantly greater than 1,
and the common properties of chains producing R̂ ≈ 1 are not well known as they are
constructed at the estimator level.
L3. It is not robust to certain types of non-convergence. Traditional R̂ can be fooled,
in the sense that R̂ ≈ 1 without convergence. This motivates the construction of rank-R̂
(Vehtari et al., 2021), based on two cases where the original R̂ is not robust:

(i) When the mean of the target distribution is infinite: in that case Ŵ and B̂ are
ill-defined and R̂ ≈ 1 even though the chains follow different distributions. One
solution is to apply rank transformation on the chains before computing R̂ (this
version is named bulk-R̂ by Vehtari et al., 2021).
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(ii) When the means of the chains are equal: in that case, the variance of means B̂ is
zero, and so R̂ ≈ 1 even if the variances of chains are different. Here in addition
to the rank-transformation, transforming the chains to get the deviation from their
median allows to overcome this problem (this version is named tail-R̂ by Vehtari
et al., 2021).

Defining rank-R̂ = max{bulk-R̂, tail-R̂} overcomes the two issues at the same time. How-
ever, this robustness can be seen as very specific and can easily be fooled by simple
examples. One way is to consider chains with different distributions, but with (i) same
mean (to fool bulk-R̂), and (ii) same mean over the median (to fool tail-R̂). For example,
uniform U(µ− 2σ, µ + 2σ), normal N (µ, π

2 σ2), or Laplace L(µ, σ) distributions share the
same mean (equal to µ) and same mean over the median (equal to σ), and thus mixing
them yields rank-R̂ ≈ 1. We provide an example and a more general framework to con-
struct such cases in Appendix 3.A of the supplementary material. One illustration can also
be found in the right column of Figure 3.3. Although these counter-examples may never
appear in practice, they do show some fairly counter-intuitive results that the additional
layer of computation carried by rank-R̂ makes even more difficult to analyse.
L4. It does not target a specific quantity of interest. Another point raised by Vehtari
et al. (2021) is that the convergence diagnostic does not depend on inferential features of
interest. It might be more precise to speak of convergence for a given posterior quantity,
typically a mean, higher order moment, or quantile. Typically, practitioners apply R̂ on
quantities of interest such as the log-likelihood, the posterior density, or quantiles. On
their side, Vehtari et al. (2021) suggest a local transformation on ESS to obtain a tail-ESS
associated with 5% and 95% quantiles.
L5. It is associated with a univariate parameter. Although the vast majority of Bayesian
models have multivariate parameters, R̂ focuses on univariate convergence (i.e. conver-
gence of margins). Some multivariate extensions exist, like Brooks and Gelman (1998)
or Vats et al. (2019), but do not seem to be universally accepted: for example Stan or
PyMC3 use instead a table containing univariate R̂ with one value per parameter. How-
ever, assessing convergence on margins misses the point of dependence among parameter
components, and does not guarantee the convergence of the joint distribution. Another
version of R̂ called R∗ is suggested by Lambert and Vehtari (2022) and can deal with
multivariate parameters: the idea is to use a classification algorithm which, in the case
of converging chains, would not be able to identify to which chain a sample belongs. To
avoid a result depending on the seed of the experiment, the authors suggest to draw several
samples from the simplex obtained with the classification algorithm. In addition to the
interpretability issues mentioned previously, this method has the constraint of not being
able to study only a scalar value but a histogram, to check to what extent it contains or
not the value 1.

We take a step forward in addressing all these limitations with a localized version of
R̂ briefly introduced in Moins et al. (2021a) and developed here: we analyze R̂(x), a local
version of R̂ associated with a given quantile x, and the corresponding population value
R(x). This study leads us to propose a new indicator R̂∞. In addition to being more
interpretable, R̂∞ shows better results than R̂ in terms of MCMC convergence diagnostic,
both on simulated experiments and on Bayesian models. As with all other versions of
R̂, this one can be applied to any MCMC algorithm: Metropolis–Hastings, HMC (Neal,
1996), NUTS (Hoffman and Gelman, 2014), etc.

The rest of the paper is organized as follows: we introduce in Section 3.2 the population
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version R(x) and the corresponding sample version R̂(x), as well as their scalar counter-
parts R∞ and R̂∞. Since this proposed version depends on a quantile x and is constructed
at a population level, it is both targeting a specific quantity of interest and interpretable,
addressing respectively limitations L4 and L2. We also establish several properties on the
behaviour of R(x) function and on the convergence of the estimator R̂(x), helping in es-
tablishing a threshold and addressing limitation L1. Our proposed approach to deal with
the multivariate case of limitation L5 is described in Section 3.3. Some empirical results
are given in Section 3.4, showing that our proposed solution helps overcoming many of
convergence issues identified in limitation L3. We conclude in Section 3.5. All proofs and
details of the calculations are provided in the supplementary material, and experiments
are available online1 as well as the R package localrhat (Moins et al., 2022a) containing
our diagnostic implementation.

3.2 Local version of R̂

Since the original version of Gelman and Rubin (1992), the heuristic for the construction
of R̂ was based on an analysis of variance. It consists in comparing two estimators of the
posterior variance Var[θ]. The first one is the within-variance Ŵ , which underestimates
Var[θ] as the bias of the estimator is (most of the time) strictly negative if the elements of
the chains are not i.i.d, see Vats and Knudson (2021). The second one adds the between-
variance B̂ as a bias correction. This typically overestimates Var[θ] if the initial values
are chosen over-dispersed. As pointed out by Vats and Knudson (2021), following this
heuristic does not exclude the use of other estimators of the bias than B̂. Moreover,
defining R̂ at the sample level hinders a theoretical study of a population version to be
conducted. Another justification can start with the law of total variance: assume that a
univariate θ is sampled using m chains, and let Z ∈ {1, . . . , m} be the corresponding index
of the chain. Then,

Var[θ] = EZ [Varθ|Z [θ | Z]] + VarZ [Eθ|Z [θ | Z]]. (3.1)

The two terms in the right-hand side correspond respectively to the population versions
of the within-variance W and the between-variance B. Replacing them by their estimated
versions yields the original R̂ formula of Gelman and Rubin (1992). In the following,
we use (3.1) on a chains transformation which allows to localise convergence at a given
quantile. For the theoretical study, we suppose stationarity of the chains to focus only on
chain mixing issues. Thus, samples within a chain j ∈ {1, . . . , m} may be correlated but
are all distributed according to the same distribution Fj which may vary with j.

3.2.1 Population version

For all x ∈ R, introduce the Bernoulli random variable Ix = I{θ ≤ x}, where I{·} denotes
the indicator function. Similarly to the Raftery–Lewis diagnostic (Raftery and Lewis,
1992), the idea of our local convergence estimate is decidedly simple: we use Ix in place of
θ in the original Gelman–Rubin construction. The population within-chain and between-
chain variances at point x are then defined respectively as W (x) = E [Var[Ix | Z]] and

1https://theomoins.github.io/localrhat/Simulations.html

https://theomoins.github.io/localrhat/Simulations.html
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B(x) = Var[E[Ix | Z]]. Note that both quantities exist whatever the tail heaviness of
θ distribution thanks to introduction of the indicator function, thus relaxing moment
conditions of the original R̂. We define the associated population R(x) as

R(x) =
√

W (x) + B(x)
W (x) .

It turns out that under the assumption of stationarity for each chain, R(x) can be expressed
in closed-form with respect to the chains’ distribution.

Proposition 1. Suppose that, for any j ∈ {1, . . . , m}, P(Z = j) = 1/m and θ given Z = j
has cumulative distribution function (cdf) Fj. Then, one has for any x ∈ R:

R(x) =

√√√√1 +
∑m

j=1
∑m

k=j+1 (Fj(x)− Fk(x))2

m
∑m

j=1 Fj(x)(1− Fj(x)) . (3.2)

Thus, using Ix instead of θ defines a local convergence estimate at any point x which
quantifies a distance between the Fj ’s. This allows for diagnosing convergence relatively
to a quantile one wants to estimate (for a posterior credible interval for example). The
following proposition states straightforward properties of R(x) emanating from (3.2):

Proposition 2. The population R(x) satisfies the following properties:

(i) R(x) ≥ 1 for all x ∈ R.

(ii) R(x) = 1 for all x ∈ R if and only if F1 = · · · = Fm.

(iii) R(x)→ 1 as |x| → ∞.

(iv) R(x) inherits continuity property of F1, . . . , Fm if the support of the Fj’s are over-
lapping.

Based on these results and in order to summarize this continuous index into a scalar
one, we may also consider its supremum over R:

R∞ = sup
x∈R

R(x). (3.3)

Note that, in view of Proposition 2(iv), R∞ is finite simply as soon as the Fj ’s are contin-
uous with overlapping supports. Considering R∞ amounts to considering the local version
R(x) corresponding to the quantile x with the poorest convergence when no information
is given on the posterior interval used for inference.

3.2.2 Sample version

Population version R(x) can be estimated by replacing the Fj(x)’s in (3.2) by their empiri-
cal counterparts F̂j(x) = 1

n

∑n
i=1 I{θ(i,j) ≤ x}. This is equivalent to computing the original

version of R̂ on indicator variables I
(i,j)
x = I{θ(i,j) ≤ x} instead of θ(i,j). This connects with

the Raftery–Lewis diagnostic (Raftery and Lewis, 1992) and more recently with Vehtari
et al. (2021) who suggest this transformation for effective sample size (ESS) to construct
graphical diagnostics or “tail-versions” of this diagnostic. Moreover, a rank-normalization
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step is added in Vehtari et al. (2021)’s to prevent from infinite moments, although using
I

(i,j)
x ensures the index existence whatever the θ(i,j) distribution is. Skipping this step for

R̂ yields an explicit expression of what is estimated in the stationary case with (3.2). This
makes the diagnostic more interpretable and allows us to obtain key theoretical results for
the associated theoretical R and R∞.

Note that for a given number of chains m and chain length n, R̂(x) can only take
m(n + 1) different values, as the computation is based on nm indicator variables. Thus,
the best accuracy we can obtain for R̂∞ for a given n and m consists in evaluating R̂(x)
at all the θ(i,j)’s. This can be accelerated by subsampling, often with limited decrease in
accuracy.

3.2.3 Convergence properties

Let us assume that all m chains are mutually independent and have converged to a common
distribution so that F1 = · · · = Fm =: F . Assume, moreover, that a Markov chain central
limit theorem holds (see for instance Robert and Casella, 2004, Theorem 6.65), so that we
can write √

n(F̂j(x)− F (x)) d−→ N
(
0, σ2(x)

)
, (3.4)

as n→∞, for all j ∈ {1, . . . , m} and where σ2(x) is some asymptotic variance. In partic-
ular in the i.i.d. setting, σ2(x) = F (x)(1−F (x)). Letting F̂ (x) = 1

nm

∑m
j=1

∑n
i=1 I{θ(i,j) ≤

x} = 1
m

∑m
j=1 F̂j(x) and taking into account of the independence between chains yield

√
nm(F̂ (x)− F (x)) d−→ N

(
0, σ2(x)

)
, (3.5)

as n→∞, and σ(x)/
√

nm can be interpreted as the Monte Carlo standard error (MCSE)
associated with F̂ (x). Following the definition of the ESS used in Gong and Flegal (2016)
or Vats et al. (2019), we can define a local-ESS as the ratio of the target variance to the
squared MCSE:

ESS(x) = nm
F (x)(1− F (x))

σ2(x) . (3.6)

This quantity is in line with the definition of ESS for quantile of Vehtari et al. (2021),
and has already been studied by Raftery and Lewis (1992) who focus on this indicator
transformation and approximate the resulting process as a two-state Markov chain. This
yields an explicit expression of the stationary distribution F , which can be used to obtain
an expression of ESS(x) as a function of the transition probabilities. Several limitations
of this two-state Markov chain approximation are raised by Brooks and Roberts (1999),
Doss et al. (2014), for example. A more general way to estimate ESS(x) is to apply the
same idea as in the definition of the local R̂(x): use any estimator of ESS (Robert and
Casella, 2004, Gelman et al., 2013) on indicator variables I

(i,j)
x instead of θ(i,j).

Combining the asymptotic result (3.5) with expression (3.6) yields the following large
n limiting distribution result on R̂(x) (χ2

m−1 denotes the chi-square distribution with m−1
degrees of freedom).

Proposition 3. Assume that all m chains are mutually independent and have converged
to a common distribution F := F1 = · · · = Fm. Then:

(i) The distribution of R̂∞ does not depend on the underlying distribution F .
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m Rlim,α(x) ESS(x) α

4 1.01

50 0.80
100 0.57
200 0.26
400 0.04
800 < 10−3

1500 < 10−6

m Rlim,α(x) ESS(x) α

2 1.005

400 0.05

4 1.010
8 1.017
15 1.029
50 1.080
100 1.144

Table 3.1: Left: Type I error α as a function of ESS(x) when Rlim,α(x) = 1.01 and m = 4. Right:
Rlim,α(x) as a function of m when ESS(x) = 400 and α = 0.05.

(ii) For any x ∈ R, ESS(x)(R̂2(x)− 1) d−→ χ2
m−1 as n→∞.

Note that casting the problem of convergence monitoring in terms of analysing com-
ponents of variance from multiple sequences dates back to Gelman and Rubin (1992),
Section 2.2, and earlier works by Fosdick (1959), Gelfand and Smith (1990). Let us high-
light that the assumption F1(x) = · · · = Fm(x) is equivalent to the ANOVA hypothesis
E(I(·,1)

x ) = · · · = E(I(·,m)
x ) and that the statistics studied in Proposition 3(ii) can similarly

be rewritten in terms of the ANOVA test statistics: R̂2(x)− 1 = B̂(x)/Ŵ (x), where B̂(x)
and Ŵ (x) are the respective empirical counterparts of B(x) and W (x). These interpreta-
tions can then be used to derive a statistical test on the convergence of the chains. To this
end, note also that the limit in distribution of Proposition 3(ii) still holds when ESS(x) is
replaced by a consistent estimator ÊSS(x). This result allows computing the type I error
associated with the null hypothesis that R̂(x) = 1, in other terms that all the chains have
converged to a common distribution at x. Let zm−1,1−α be the quantile of level 1 − α of
the χ2

m−1 distribution, and introduce the associated threshold

Rlim,α(x) :=
√

1 + zm−1,1−α

ESS(x) . (3.7)

The type I error is then given by P(R̂(x) ≥ Rlim,α(x)) ≃ α. As an illustration, some values
of α are reported for the threshold Rlim,α(x) = 1.01, m = 4 chains and different values
of ESS(x) in the left panel of Table 3.1. For example, it appears that the probability of
having R̂(x) > 1.01 and ESS(x) = 400 when convergence is reached is 0.04, and decreases
quickly for larger values of ESS(x).

3.2.4 Threshold elicitation

Threshold for the local R̂(x). Proposition 3(ii) allows us to associate a threshold
for R̂(x) to a type I error α, using the definition of Rlim,α(x) in (3.7). Some values are
displayed in the right panel of Table 3.1 for a fixed ESS(x) = 400 and α = 0.05. It appears
that the value of 1.01, the recent recommendation of Vehtari et al. (2021), seems to be
coherent for R̂(x) and a moderate number of chains, typically the default configuration in
Stan (m = 4), JAGS (m = 3) or PyMC3 (m = max{nc, 2} with nc the number of cores).
However, the value of m must be doubled if a split version is used, and when m increases
the threshold becomes more severe and it may be appropriate to consider a higher (i.e.
less stringent) one: for example, a threshold of 1.1 can be enough provided the number
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R∞,lim

m α 0.005 0.01 0.05 0.1

2 1.018 1.016 1.012 1.010
3 1.023 1.022 1.016 1.014
4 1.027 1.025 1.020 1.018
8 1.038 1.037 1.031 1.028
10 1.043 1.041 1.036 1.033
20 1.080 1.076 1.062 1.056

Table 3.2: Empirical quantiles R∞,lim of
the R̂∞ distribution under the null hypoth-
esis that all chains follow the same distribu-
tion for a target ESS of 400, based on 2000
replications.

R
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m
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α = 0.005
α = 0.01
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α = 0.1
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Figure 3.2: Illustration of the values in Ta-
ble 3.2 and of the linearity with m for a fixed
α.

of chains m is larger than 100. The case of a large number of chains has been recently
studied by Margossian et al. (2022) who suggest a new version of R̂ for this configuration.
Note that a similar observation about the stringency of the threshold can be made with
rank-R̂, see Appendix 3.C for more details.

Therefore, we recommend to keep the threshold of 1.01 as a general rule of thumb for
R̂(x), except if the number of chains is too large or if one wants to have a more precise
threshold. In such a case it only requires to provide α, m and a target value ESS(x) to
compute Rlim,α(x) using (3.7).

Threshold for the supremum R̂∞. Proposition 3 does not induce any threshold
R∞,lim for R̂∞, since Proposition 3(ii) only establishes the pointwise convergence of the
empirical process R̂(·). However, Proposition 3(i) shows that under the null hypothesis
where all chains follow a common distribution F , the latter F is irrelevant to the R̂∞
statistic. Such an independence to the underlying distribution F makes it possible the
use of a quantile of R̂∞ as a threshold associated with a given probability α and number
of chains m. Table 3.2 provides estimations of R∞,lim using replications for several values
of α and m and a fixed number of effective samples of 400, as recommended by Vehtari
et al. (2021) (more details are provided in Appendix 3.C). Here, we can see that a fixed
rule of thumb for a range of m would be too imprecise, as the quantile values increase
rapidly with m. Nevertheless, Table 3.2 illustrates a linear relationship between m and
the appropriate threshold for a given α.

In the simulations in Section 3.2.5 and in the experiments in Section 3.4, we mostly
consider m = 4 and therefore choose a threshold of 1.02, which is a little more accurate
than 1.01 by looking at Table 3.2. Note that if m = 8 or if a split version of R̂∞ is used
with m = 4, then a threshold of 1.03 should be preferred. In the localrhat R package
(Moins et al., 2022a), the computation of R̂∞ comes with the associated threshold at 5%
based on the calculations in Table 3.2, as well as a p-value associated with the obtained
R̂∞.
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3.2.5 Illustrative examples

In this section, we consider toy distributions for the chains, where the computation of R∞
can be done explicitly. In particular, we first focus on two cases raised by Vehtari et al.
(2021) of deficient behaviour of the traditional R̂. Then, we exhibit a failure situation for
rank-R̂. All these theoretical behaviours are illustrated on a simulation study. Further
applications to Bayesian inference are provided in Section 3.4, and other examples where
R̂ and rank-R̂ fail in Appendix 3.D.

Example 1: Chains with same mean and different variances. To tackle the first
situation of poor behaviour of the traditional R̂, we consider m chains following centered
uniform distributions with different variances. More specifically, assume that the m − 1
first chains have the cdf F1 = · · · = Fm−1 of the uniform distribution U(−σ, σ) while the
last chain has the cdf Fm of the uniform distribution U(−σm, σm) with 0 < σ ≤ σm. In
such a case, the between-variance is zero and it is thus expected that R̂ ≈ 1. In contrast,
Lemma 3 in Appendix 3.D provides an explicit expression for R(x) as well as

R∞ =
√

1 + m− 1
m

(
1− 2

1 + σm/σ

)
.

It appears that R∞ is an increasing function of σm/σ starting from R∞ = 1 when σm/σ =
1, and upper-bounded by

√
2− 1/m when σm/σ →∞. Results are illustrated in the left

column of Figure 3.3. In the bottom row, the histograms of replications confirm that R̂∞
is able to spot the same convergence issue as the one Vehtari et al. (2021) suggests.

Example 2: Chains with heavy-tails and different locations. As a second example
of poor behaviour of R̂, we consider chains following Pareto(α, η) distributions, with cdf

F (x | α, η) = 1− (x/η)−α , ∀x ∈ [η, +∞),

shape parameter α > 0 and lower bound η > 0. Let us recall that such a distribution
is heavy-tailed (Embrechts et al., 2013, Table 3.4.2) and has an infinite first moment
when α ≤ 1. We focus on the case where one chain is shifted from the other ones:
F1(x) = · · · = Fm−1(x) = F (x | α, η) and Fm(x) = F (x | α, ηm) with 0 < η ≤ ηm and
α ≤ 1. Here, the within- and between-variances do not exist and it is expected in practice
that R̂ ≈ 1. In contrast, R∞ can be written as

R∞ =
√

1 + 1
m

((
ηm

η

)α

− 1
)

,

see Lemma 4 in the supplementary material. Clearly, R∞ is an increasing function of
ηm/η starting from R∞ = 1 when ηm = η and such that R∞ →∞ as ηm/η →∞. Results
are shown in the middle column of Figure 3.3. This experiment corresponds to the second
example of convergence issue raised by Vehtari et al. (2021). The same observations as for
Example 1 can be made here: R̂∞ is prone to indicating a convergence issue than rank-R̂.

Example 3: Chains with same mean and mean over the median. Finally, we
come back to the example described in Section 3.1.2 where both R̂ and rank-R̂ fail to detect
non-convergence. Following the method described in Appendix 3.A, we consider m − 1
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Example 1: Example 2: Example 3:
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Figure 3.3: Illustrations with m = 4 chains, n = 200 independent iterations each. Top row:
Simulation of F1 = · · · = Fm−1 in green distinct from Fm in blue. For the uniform example (left),
σ = 3/4 and σm = 1, for the Pareto (middle) η = 1 and ηm = 1.5, and for the uniform (right)
λ = 4 log(2). Second row: The corresponding population version R(x) and empirical version R̂(x)
as functions of x for one replication. Bottom row: Histograms of 500 replications of R̂, rank-R̂
and R̂∞. Dashed lines correspond to the threshold of 1.01 for R̂ and rank-R̂ and 1.02 for R̂∞ (see
Section 3.2.3).
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exponential chains Exp(1) and one uniform U(1−2 log 2, 1+2 log 2). This results in chains
with same mean and mean over the median. Results are illustrated in the right panel of
Figure 3.3: the histograms of replications confirm that R̂∞ is able to detect the convergence
issue that neither R̂ nor rank-R̂ are able to detect. Here, the explicit calculation of R∞ is
not feasible, but Lemma 5 in the supplementary material provides another example where
the computation can be done, with uniform and Laplace distributions.

3.3 Multivariate extension

3.3.1 Population version and algorithm for multivariate diagnosis

Our R(x) can naively be adapted to the multivariate case: assume now that the parameter
is multivariate and write θ = (θ1, . . . , θd) ∈ Rd with d ≥ 2, and denote by θ

(j)
p the

coordinate p ∈ {1, . . . , d} from chain j ∈ {1, . . . , m}. Similarly to the univariate case,
R̂ can be computed on the indicator variables I

(j)
x = I{θ(j)

1 ≤ x1, . . . , θ
(j)
d ≤ xd} for any

x = (x1, . . . , xd) ∈ Rd. Under the assumptions of Proposition 1, all calculations remain
valid in dimension d and therefore the expression of R(x) is formally the same as in (3.2):

R(x) =
√

W (x) + B(x)
W (x) =

√√√√1 +
∑m

j=1
∑m

k=j+1 (Fj(x)− Fk(x))2

m
∑m

j=1 Fj(x)(1− Fj(x)) . (3.8)

The properties listed in Proposition 2 in the univariate case remain true as well. The
associated R∞ is defined as R∞(F1, . . . , Fm) = supx∈Rd R(x), while R̂(x) is computed by
replacing the cumulative distribution functions in (3.8) by their empirical counterparts.
Note also that all values computed in Table 3.1 and Table 3.2 remain identical in this
multivariate extension. However, those results are not giving information about the sen-
sitivity to convergence issues, which in the multivariate case can come from margins but
also from the dependence structure.

It is easily seen that, if the marginal distributions of F1, . . . , Fm coincide, then R∞ is
the same as the one associated with uniform margins (see Lemma 1 in the supplemen-
tary material). In other words, we have R∞(F1, . . . , Fm) = R∞(C1, . . . , Cm) where Cj

is the copula defined in [0, 1]d associated with Fj , j ∈ {1, . . . , m}. This suggests that a
multivariate diagnosis can be conducted in two steps as follows:

1. Compute the univariate R̂∞,p separately on each of the coordinates p ∈ {1, . . . , d}.
If R̂∞,p < R

(M)
∞,lim for all p ∈ {1, . . . , d}, with R

(M)
∞,lim a choice of margins threshold,

then all of them are deemed to have converged and to be identically distributed.

2. Compute the multivariate R̂∞ to check the dependence structure convergence. If
R̂∞ < R

(C)
∞,lim, with R

(C)
∞,lim a copula threshold, then the dependence structure is also

deemed to have converged, and so has the multivariate distribution.

The test for convergence is now separated in two parts: 1. convergence of the margins,
and 2. convergence of the copula knowing that the margins have converged. It can easily
be shown that, up to a first order approximation, one way to obtain a type I error α for
the global two-step test is to consider a level α/2 for each of the two components. The first
step corresponds to d univariate tests, so for R

(M)
∞,lim one can use the univariate threshold
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R∞,lim defined in Section 3.2.4 with a level α/2d, corresponding to a Bonferroni correction
for the error level α/2. In the following subsections, we focus on the second step of the
algorithm: the theoretical properties of the multivariate R̂∞ in the case of convergence on
the margins, which will provide insights for choosing R

(C)
∞,lim. Values of R

(M)
∞,lim and R

(C)
∞,lim

are then given as functions of (α, d, m) in Table 3.3. As a general rule, one can reasonably
use for α = 0.05 the values (R(M)

∞,lim, R
(C)
∞,lim) = (1.03, 1.03) in the case of m = 4 chains,

and (R(M)
∞,lim, R

(C)
∞,lim) = (1.04, 1.05) if m = 8 or if a split version is used with m = 4, with

limited variations around these values for varying dimension d.

3.3.2 Upper bounds

Let us first consider the case of m = 2 chains with uniform margins and associated copulas
C1 and C2. For all u = (u1, . . . , ud) ∈ [0, 1]d, one has

R(u) =
√

1 + (C1(u)− C2(u))2

2 (C1(u)(1− C1(u)) + C2(u)(1− C2(u))) . (3.9)

In addition to having the usual lower bound of 1, the next lemma allows establishing an
upper bound on R∞(C1, C2).

Lemma 1. Let C1, C2, C− and C+ be copulas such that:

for all u ∈ [0, 1]d,

{
C−(u) ≤ C1(u) ≤ C+(u),
C−(u) ≤ C2(u) ≤ C+(u).

(3.10)

Then, R∞(C1, C2) ≤ R∞(C−, C+).

Let Wd and Md the lower and upper Fréchet–Hoeffding bounds in dimension d (see
Nelsen, 2006, Theorem 2.10.12):

Wd(u) := max
{

1− d +
d∑

i=1
ui, 0

}
and Md(u) := min {u1, . . . , ud} .

Any copula is bounded from below and from above by Wd and Md respectively, in the
sense of (3.10). Thus, applying Lemma 1 with (C−, C+) = (Wd, Md) yields:

Proposition 4. For any d-variate copulas C1 and C2,

R∞(C1, C2) ≤
√

d + 1
2 ,

Unlike the univariate version (see for instance Example 2 in Section 3.2.5), the value of
R∞ associated with the convergence of the dependence structure is upper-bounded, with
a bound that grows with the dimension. This difference of behaviour could be used for
example to tune the threshold for the multivariate case. However this bound, although it
is the “best possible” (Nelsen, 2006, Theorem 2.10.13), is tight only in the case d = 2 since
Wd is no more a copula when d > 2. It may also be too loose since it compares the extreme
case of one chain with comonotonic dependence and another one with anti-comonotonic
dependence. Some refinements are proposed in Section 3.3.3.

In the case of m > 2 chains, the previous bounding technique does not apply anymore,
and we propose the following result based on bounding pairwise R∞’s:
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Corollary 1. For any m ≥ 2 and d-variate copulas (C1, . . . , Cm),

R∞(C1, . . . , Cm) ≤
√

1 + m− 1
2 (d− 1).

Although this limit is not tight in the general case, it coincides with the upper bound
of Proposition 4 when m = 2. Let us also note that, for any fixed m ≥ 2, the upper bound
of R∞(C1, . . . , Cm) diverges at a fixed

√
d rate as the dimension increases.

3.3.3 Influence of the dependence direction on the sensitivity of R̂∞

When m = 2, one way to refine the upper bound established in Proposition 4 is to
assume that both copulas are modelling either positive of negative dependence. More
specifically, let us recall the notions of positive lower orthant dependence (PLOD) and
negative lower orthant dependence (NLOD) (see Nelsen, 2006, Section 5.7). The random
vector (θ1, . . . , θd) is

• PLOD if ∀x ∈ Rd, P(θ1 ≤ x1, . . . , θd ≤ xd) ≥ ∏d
i=1 P(θi ≤ xi),

• NLOD if ∀x ∈ Rd, P(θ1 ≤ x1, . . . , θd ≤ xd) ≤ ∏d
i=1 P(θi ≤ xi).

Both properties can be characterized in terms of the associated copula. The PLOD (resp.
NLOD) property holds if and only if C(u) ≥ Πd(u) (resp. C(u) ≤ Πd(u)) for all u ∈ [0, 1]d
where Πd is the independent copula defined by Πd(u) := ∏d

i=1 ui. Note that this does
not define a total order on copulas since some copulas are neither PLOD nor NLOD.
Nevertheless, it allows us to derive refined bounds for R∞ in the NLOD and PLOD cases.

For PLOD, the upper bound is in not closed-form for any dimension d, but simple
bounds can be derived in the two extreme cases d = 2 and d→∞.

Corollary 2. Let m = 2. For any two PLOD d-variate copulas C1 and C2, R∞(C1, C2) ≤
R∞(Πd, Md) withR∞(Π2, M2) =

√
1
2 + 1√

3 ≈ 1.038 if d = 2,√
d

2 log d(1 + o(1)) ≤ R∞(Πd, Md) ≤
√

d+1
2 as d→∞.

Conversely, the upper bound can be computed explicitly in the NLOD case.

Corollary 3. Let m = 2. For any two NLOD d-variate copulas C1 and C2, R∞(C1, C2) ≤
R∞(Πd, Wd) with

R∞(Πd, Wd) =
√√√√1 + 1

2
1(

1− 1
d

)−d
− 1

.

Let us stress that positive and negative dependence are handled differently by R∞.
When d = 2, the PLOD and NLOD bounds (respectively equal to 1.04 and 1.08) are
significantly lower than the value

√
3/2 ≈ 1.22 corresponding to the global bound, with

a value higher in the NLOD case than in the PLOD one. However, this observation is
quickly inverted when d increases: for NLOD, R∞(Πd, Wd) is bounded and converges to√

1 + 1
2(e−1) ≈ 1.136 as d → ∞, which strongly constrains the range of values that can
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be obtained whatever the dimension. In contrast, the upper bound R∞(Πd, Md) in the
PLOD case diverges with the dimension, at the same rate (up to a logarithmic factor) as
in the general case, see Proposition 4. Thus, the sensitivity of R∞ strongly depends on
the sign of dependence and asymptotically favours PLOD dependence when d increases.

This difference can be explained by the construction of R(x) itself (and thus R∞), which
favours a dependence direction in Rd due to the computation of I{θ(·)

1 ≤ x1, . . . , θ
(·)
d ≤

xd}. One way to overcome this issue in the bivariate case is to compute two versions of
R∞, denoted respectively by R+

∞ and R−
∞, based respectively on I{θ(·)

1 ≤ x1, θ
(·)
2 ≤ x2}

and I{θ(·)
1 ≤ x1, θ

(·)
2 ≥ x2}. Note that R+

∞ coincides with the construction proposed in
Section 3.3.1.

Corollary 4. Let m = 2. Then, R+
∞(Π2, M2) = R−

∞(W2, Π2) and R+
∞(W2, Π2) = R−

∞(Π2, M2).

It appears that PLOD and NLOD upper bounds are exchanged by computing R−
∞

instead of R+
∞, which makes R−

∞ more sensitive to negative dependence than positive de-
pendence (in the bivariate case). One way to consider symmetrically both dependencies
would be to consider R̂

(max)
∞ = max(R+

∞, R−
∞). However, in dimension d, considering all

directions would imply the computation of 2d−1 different R∞, which would be too expen-
sive for large d. Similar curse of dimensionality occurs in the multivariate extension of
the Kolmogorov–Smirnov test, see for example Lopes et al. (2007) for improvements of
the naive multidimensional version of the test. Computing R̂

(max)
∞ is still feasible for small

values of d: typically for d ≤ 6 we were able to replicate values in our experiments. There-
fore, we provide in Table 3.3 (Appendix 3.C) the estimated threshold R

(C)
∞,lim associated

with the maximum of R̂∞ in all possible directions when d ≤ 6.
One alternative in the high-dimensional case could be to apply R̂ on an indicator

function associated with a univariate function of the parameters, to return to the case
described in Section 3.2. Typically in a Bayesian model, one could use the log-likelihood
lθ = log p(y | θ) when it is available, and compute R̂∞ with I{lθ ≤ x}. Similarly, the
log posterior as implemented in Stan can also be used, as suggested in the Stan reference
manual (Carpenter et al., 2017). Ensuring convergence for all x on the log posterior may
be satisfying for multivariate diagnosis, as it is illustrated in Example 3.9.

3.3.4 Multivariate illustrative examples

Similarly to Section 3.2.5, we illustrate our theoretical study in the multivariate case with
simulations based on toy distributions for the chains. Especially, we consider multivariate
normal distributions, and focus on the case where all the margins are the same (typically
distributed according to a standard normal distribution). This leads to

θ(i,j) ∼ N (0, Σj),

i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, where Σj is the covariance matrix of the chain j, with
diagonal elements equal to one to keep standard Gaussian margins.

Example 4: Bivariate normal distributions with different correlation terms.
In the bivariate case, the dependence structure is driven by only one value, which is the
off-diagonal element ρj ∈ (−1, 1) of Σj . Similarly to other examples, we suppose that we
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Example 4: Bivariate normal Brooks–Gelman R̂, R̂∞, and R∞ wrt ρm
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Figure 3.4: Behaviour of Brooks–Gelman R̂ (in orange) and multivariate R̂∞ (in violet) in
the case of chains with bivariate normal distributions, with different off-diagonal elements in the
covariance matrix. On the left: Histograms with 100 replications with one standard normal chain
and one with ρm = 0.9. On the right: The same experiment with 10 replications for different
values of ρm, plotted as a function of ρm, and the corresponding population R∞ in blue.

have m−1 converging chains with identity covariance matrix (ρ1 = · · · = ρm−1 = 0) while
ρm ∈ (−1, 1) for the last one.

Results are shown in Figure 3.4, with a comparison of R̂∞ with the multivariate R̂
of Brooks and Gelman (1998). The histogram on the left represents the values of the
two diagnostics for 100 replications with m = 2, n = 200 and ρm = 0.9. Despite a large
difference on the covariance term between the chains, we can see that Brooks–Gelman R̂
fails to correctly diagnose this difference, as most of the values are between 1 and 1.01,
contrary to R̂∞. Due to the i.i.d nature of the example, the recent proposal of Vats
and Knudson (2021) for a multivariate R̂ does not detect any convergence issue as the
diagnostic is not based on a comparison between chains. This difference of behaviour
is confirmed on the right panel of Figure 3.4, which illustrates 10 replications of both
diagnostics as a function of ρm. For instance, if ρm = 0 then the four chains are identically
distributed and no convergence issue should be raised. Conversely, the value of R̂ should
increase when |ρm| → 1, as the difference between the last chain and the other ones
increases. For the Brooks–Gelman version, we can see that the value of R̂ is almost
constant and thus insensitive to ρm, which is not satisfactory, contrary to R̂∞ which has
a parabolic shape.

As discussed in Section 3.3.3, the behaviour of R̂∞ is not symmetric when ρm →
−1 and ρm → 1: the upper bound corresponding to positive dependence diverges with
the dimension (Corollary 2 for PLOD copulas) whereas the one for negative dependence
is bounded by approximately 1.14 (Corollary 3 for NLOD copulas). This leads to the
intuition that the convergence diagnostic is more sensitive in the PLOD case than in the
NLOD, but this observation is asymptotic and when d = 2, the two bounds are respectively
equal to 1.08 and 1.04, so the statement is reversed. This asymmetry is illustrated in
Figure 3.4 on theoretical R∞ (in blue) and estimations R̂∞ (in purple).

Example 5: Evolution of the behaviour when the dimension increases. In
the general case of dimensionality d > 2, we still compare m − 1 chains that follow a
multivariate standard normal distribution with one that has a given covariance matrix
Σm. To obtain Σm, we generate a matrix S according to Wishart distribution with d
degrees of freedom, and we transform S in order to have one on the diagonal to keep the
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Example 5: Multivariate normal with d ∈ {2, . . . , 6}
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Figure 3.5: Comparison between R̂∞ computed on one direction (in green), and R̂
(max)
∞ , the

maximum of R̂∞ computed on all possible indicator functions (in blue). For each d ∈ {2, . . . , 6},
200 replications are done where a new covariance matrix is generated for the normal distribution,
which leads to different directions of dependence among the replications.

same margins for all chains (while remaining semi definite positive):

Σm = D−1/2SD−1/2, with D = diag (s1,1, . . . , sd,d) .

To illustrate the influence of the dependence direction (Section 3.3.3), a new matrix Σm

is generated for each simulation, in order to have varying directions across replications.
Then, we compare R̂∞ with R̂

(max)
∞ , the maximum of R̂∞ over all 2d−1 possible directions

for the indicator functions.
Results are shown in Figure 3.5, where 200 replications are shown for R̂∞ and R̂

(max)
∞

for d ∈ {2, . . . , 6}. As R̂
(max)
∞ requires the computation of 2d−1 different R̂∞, obtaining

these histograms quickly becomes infeasible for larger dimensions. When d = 2, we can
see that there is no significant difference between R̂∞ and R̂

(max)
∞ , but as the dimension

increases the values of R̂∞ become more concentrated and closer to one. Indeed, as the
number of possible directions increases exponentially, it is more and more rare to obtain the
one to which R̂∞ is sensitive. On the contrary, R̂

(max)
∞ seems to stay robust with respect to

this curse of dimensionality in terms of sensitivity, as the histograms look invariant when
d increases.

3.4 Empirical results

In Section 3.2.5 and Section 3.3.4, we considered toy examples where the distribution of
the chains is known in order to control the value of the population R∞ and illustrate
the robustness when other versions of R̂ fail. Here we extend to other models in a more
practical case for Bayesian inference. We adopt a baseline similar to the one used by
Lambert and Vehtari (2022) to illustrate the behaviour of R̂∞ on Bayesian models, and add
a multivariate example studied in Vats et al. (2019). For all examples in this section, we
choose 4 chains and therefore a threshold R∞,lim = 1.02 in the univariate case (according
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Example 6: Autoregressive model
R̂
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Figure 3.6: Behaviour of R̂∞ on the autoregressive example described in Section 3.4, with m = 4
chains of size n = 500 and (σ, σm, ρ) = (1, 2, 1/2). On the left: R̂(x) as a function of x for one
replication. On the right: Histograms of 50 replications of R̂, rank-R̂ and R̂∞. The dashed lines
correspond to thresholds of 1.01 and 1.02.

to Section 3.2.3), and (R(C)
∞,lim, R

(M)
∞,lim) = (1.03, 1.03) in the multivariate one (according

to Section 3.3.1). For each univariate study, we plot an example of R̂(x) as a function
of x, and we recommend this illustration to users who want to analyse more carefully
a given value of R̂∞. Together with this figure, we also show histograms of replications
to check the behaviour of the different R̂ more rigorously. All experiments are done on
R using rstan library (Stan Development Team, 2021) and the package localrhat that
we propose with this paper (Moins et al., 2022a). Additional experiments have also been
conducted on Python using OpenTURNS (Baudin et al., 2017). All the code concerning
these experiments and the additional ones are available in the online appendix (link in the
Introduction).

Example 6: Autoregressive model with different variances. The first example is
a basic autoregressive model to study the behavior of R̂∞ in the case of Markov chains
with different variances: we consider m chains of size n such that for i ∈ {1, . . . , n − 1}
and j ∈ {1, . . . , m},

θ(i+1,j) = ρθ(i,j) + ϵi,j , with ϵi,j ∼ N (0, σ2
j ),

where ρ ∈ (0, 1) and σj > 0. In particular, assume that the first m−1 chains are generated
using the same process: σ1 = · · · = σm−1 = σ, while for the last chain σm ̸= σ.

Results are illustrated in Figure 3.6 with m = 4, σ = 1, σm = 2 and ρ = 1/2 on 50
replications, and an example of R̂(x) as a function of x on the left panel. Similarly to the
rank-R̂ replications, the R̂∞ values remain far from the threshold of 1.02 which confirms
the sensitivity to this convergence defect. This corroborates in a more practical case the
results of Example 1 in Section 3.2.5, on the sensitivity of R̂∞ on chains with same mean
and different variances. Note that the value R(0) = 1 is due to the fact that all the chains
share the same median equal to zero.

Example 7: HMC on Cauchy distribution. As an extension of Example 2 in Sec-
tion 3.2.5, we analyze the behaviour of R̂∞ in the case of heavy-tailed distributions. We
run Hamiltonian Monte Carlo (HMC) (Neal, 1996) using Stan on Cauchy distributions for
50 variables. We consider the one with the most important mixing issue diagnosed with
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Example 7.a: HMC on nominal Cauchy
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Example 7.b: HMC on alternative Cauchy
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Figure 3.7: Behaviour of R̂∞ on the Cauchy example described in Section 3.4 for the two param-
eterisations. On the left: R̂(x) as a function of x for one replication. On the right: Histograms of
50 replications of R̂, rank-R̂ and R̂∞. The dashed lines correspond to thresholds of 1.01 and 1.02.

R̂∞. Due to the tail heaviness of Cauchy distributions, the HMC iterations on a given
chain can get trapped in a tail, which causes mixing issues. One solution to avoid this is
to use an alternative parameterisation (Moins et al., 2023) that avoids sampling from a
heavy-tailed distribution:

Example 7.a: Nominal parameterisation
xj ∼ Cauchy(0, 1), j ∈ {1, . . . , 50}.

Example 7.b: Alternative parameterisation
xj = aj/

√
bj , aj ∼ N (0, 1), bj ∼ χ2

1.

One would expect convergence issues with the nominal parameterisation and not with the
alternative one. For both, the process of selecting the worst parameters among the 50
ones is iterated for the generation of replications, and results are shown in Figure 3.7.
Histograms on the top right confirm the risk of diverging chains with the nominal pa-
rameterisation, as all the values are above 1.02 for all the versions of R̂. This means
that it is very likely to have at least one chain out of the 50 with a convergence issue
in this experiment. This divergence can be really extreme, as it is shown on the top left
panel where the value of R̂∞ is over seven, due to a mixing issue in the right tail of the
distribution. The opposite occurs with the other parameterisation, as all the convergence
diagnostics indicate no mixing issues (see bottom row of Figure 3.7), which means no
counter-indications that the chains for the 50 variables have converged. Looking at R̂(x)
function on one replication in the bottom left panel, the curve seems to be very noisy and
close to 1 compared to 1.02 (even sometimes less than 1) so the difference with 1 seems
only due to Monte Carlo noise.
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Example 8.a: Centered eight schools
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Example 8.b: Non-centered eight schools
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Figure 3.8: Behaviour of R̂∞ on the hierarchical example for τ described in Section 3.4 for the
centered and non-centered version. On the left: R̂(x) as a function of x for one replication. On
the right: Histograms of 50 replications of R̂, rank-R̂ and R̂∞. The dashed lines correspond to
thresholds of 1.01 and 1.02.

Example 8: Hierarchical Bayesian model on two parameterisations. As a clas-
sical Bayesian example, we consider using HMC on a hierarchical Bayesian model and in
particular the eight-school (Gelman et al., 2013, Section 5.5), where two parameterisations
are possible to model the problem:

Example 8.a: Centered parameterisation (CP)
θj ∼ N (µ, τ), yj ∼ N (θj , σ2

j ).
Example 8.b: Non-centered parameterisation (NCP)

θ̄j ∼ N (0, 1), θj = µ + τ θ̄j , yj ∼ N (θj , σ2
j ).

In the CP parameterisation, a prior dependence is between (µ, τ) and the population
parameters θj , whereas in the other case (NCP), θ̄j is a priori independent of (µ, τ), and
θj is just a function of θ̄j and (µ, τ) (see for example Papaspiliopoulos et al., 2003). Vehtari
et al. (2021) argue in favour of the NCP for the eight-school example, by analysing the
convergence of the chains associated with the parameter τ .

We also focus on computing R̂∞ for τ : results and comparison with other versions of
R̂ are shown in Figure 3.8. In the first row, we can see that the R̂∞ diagnostic confirms
the one of rank-R̂, as the two corresponding histograms are similar in the top right panel
and conclude for a lack of convergence in most of the cases. However, for both diagnostics,
a significant number of cases are also below 1.02 (respectively 1.01 for rank-R̂), which is
represented on the top left panel. In spite of this, the bottom row of Figure 3.8 shows a
clear difference and NCP seems to help for chain convergence.
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Example 9: Bayesian logistic regression
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Figure 3.9: Behaviour of multivariate and univariate R̂∞ on the Bayesian logistic regression
example, with m = 4 chains of size n = 200. On the left: Histograms of 50 replications of R̂, rank-
R̂ and univariate R̂∞ all applied on the log-posterior. On the right: Histograms of 50 replications
of Brooks–Gelman R̂ and R̂

(max)
∞ . The dashed line corresponds to different thresholds: on the left,

1.01 in black for R̂ and rank-R̂, 1.02 in violet for R̂∞, and on the right 1.03 in blue for R̂
(max)
∞ .

Example 9: Bayesian logistic regression. This example is related to the extension
of R̂∞ in the multivariate case as proposed in Section 3.3. As a multivariate Bayesian
example, we run Stan on a basic hierarchical logistic model using the dataset logit
available in the R package mcmc:

β ∼ N (0, 0.352I4), yj ∼ Bernoulli
(

1
1 + e−x⊤

j β

)
.

Here the posterior is intractable and Vats et al. (2019) showed that the posterior coefficients
β could be significantly correlated, encouraging a multivariate diagnostic to check the
convergence of the dependence structure. We run m = 4 chains each of size n = 200 after
a burn-in of 100. In this configuration, despite a low number of iterations, all the different
univariate R̂∞ are mostly below 1.02 when replicated, and the rank-R̂ are below 1.01.

When applied to the log posterior, the diagnostic is less clear and results are shown
in the left panel of Figure 3.9: a significant part of the histogram for R̂∞ is below the
threshold, meaning that the number of iterations is almost sufficient but is not yet. Looking
at the right plot of Figure 3.9, we notice in this example that the sensitivity of R̂

(max)
∞ is

approximately the same as the univariate version on the left, as the proportion of values
over the threshold is similar (the choice of R

(C)
∞,lim = 1.03 is made according to Table 3.3).

Although the computation of R̂
(max)
∞ is possible here as the number of dimensions is small,

computing a univariate R̂∞ on the log posterior instead seems satisfactory here.

3.5 Discussion

In this paper we propose a new version of the Gelman–Rubin diagnostic called R̂∞, which
improves MCMC convergence diagnostics on several aspects. Firstly, it uses a localized
version R̂(x) which assesses convergence at a given quantile x of the target distribution.
Moreover, it is also based on a theoretical study of what R̂(x) is actually estimating: as-
suming stationarity to focus only on the mixing property, the population version can be
seen as a distance measure between the distributions of the chains. This allows us to ob-
tain convergence properties of R̂(x) and to tune the usual threshold of 1.01 (Section 3.2.3)
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based on a given confidence level and on the number of chains. We show theoretically
(Section 3.2.5) and using experiments (Section 3.4) that our version is efficient to diag-
nose convergence. Finally, we suggest a two-step algorithm for a multivariate diagnosis
(Section 3.3.1), and reinforce the second step to consider all the directions of the space,
as we show that the natural extension cannot be used directly (Section 3.3.3). Therefore,
in the high-dimensional case where this computation is likely to be too expensive, we
suggest to replace it by a univariate calculation on the log-likelihood or the log-posterior.
Diagnosing convergence in the multivariate case remains an open problem, and this is our
hope that the local approach advocated here will trigger more research in this direction
in the future.
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3.A Construction of rank-R̂ false negatives

In this section we detail different ways to construct false negative distributions on the
chains that fool rank-R̂, in the sense that they return rank-R̂ ≈ 1 with non-identical
distributions.

3.A.1 Two-parameter distributions

As mentioned in Section 3.1.2, one way to fool rank-R̂ is to fix two constraints on the
distributions, which are identical mean and mean over the median on all chains. Many two-
parameter distributions can be tuned to respect these constraints. Consider for example
a uniform chain U(−2σ, 2σ) and another one from a Laplace distribution L(0, σ), where
σ > 0. The resulting R∞ does not depend on the scale parameter σ and is given by

R∞ =
√

1 + 1
2(2e2 − 1) ≈ 1.018,

see Lemma 5. Note that computations are done in the case of m = 2 chains, and so the
traditional threshold of 1.01 holds for R̂∞ (see Table 3.2). Therefore we expect R̂∞ to
diagnose convergence, and not R̂ nor rank-R̂. Results are provided in Figure 3.10 and
confirm this hypothesis.
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Example 3.10: Laplace L(0, σ) and U(−2σ, 2σ)
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Figure 3.10: Behaviour of R̂∞ on the case of m = 2 chains, n = 500 each where F1 is a
Laplace distribution L(0, 1/4) and F2 is U(−1/2; 1/2). On the left: R̂(x) as a function of x for one
simulation. On the right: Histograms of 500 replications of R̂, rank-R̂ of and R̂∞. The dashed
line corresponds to the threshold of 1.01 which holds here for all versions of R̂.

3.A.2 General framework with Generalized Pareto Distribution

To find a general way to construct counter-examples, let us consider the Generalised Pareto
Distribution (GPD), parametrised by (µ, σ, ξ):

FGPD(x) =

1−
{

1 + ξ
(

x−µ
σ

)}− 1
ξ

+
if ξ ̸= 0 ,

1− exp
(
−x−µ

σ

)
if ξ = 0,

with {.}+ = max{0, .}. The support of this distribution depends on the parameters:
[µ; +∞) if ξ ≥ 0, [µ; µ− σ/ξ) otherwise. The expectation exists only if ξ < 1 and is equal
to µ + σ

1−ξ , and the median is given by xmed = µ + σ 2ξ−1
ξ .

An interesting property here is that conditioned on exceeding a value, the distribution
is still a GPD distribution: If X ∼ GPD(µ, σ, ξ) then X | X > u ∼ GPD(u, σ̃, ξ) with
σ̃ = σ + ξ(u− µ). Therefore, X | X > xmed ∼ GPD(u, σ̃, ξ), and

E(X | X > xmed) = xmed + σ + ξ(xmed − µ)
1− ξ

,

= µ + σ

1− ξ

(
1 + 2ξ − 1

ξ

)
,

= E(X) + σ
(2ξ − 1)
ξ(1− ξ) .

Then, by considering (m− 1) chains that follow a GPD(µ1, σ1, ξ1), and one that follows a
GPD(µ2, σ2, ξ2), we can solve the system of two equations that links the two means and
the two means over the medians, to obtain a range of possible parameters:µ1 + σ1

1−ξ1
= µ2 + σ2

1−ξ2
,

σ1
(2ξ1 −1)
ξ1(1−ξ1) = σ2

(2ξ2 −1)
ξ2(1−ξ2) .

(3.11)

In order to obtain different values of parameters, we should choose ξ1 ̸= ξ2 and σ1 ̸= σ2.
One way to characterize the set of solutions is as follows:

1. Fix ξ1 and ξ2 such that ξ1 ̸= ξ2, and define λ = f(ξ1)
f(ξ2) with f(ξ) = (2ξ−1)

ξ(1−ξ) .
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2. Fix σ1, and using the second equation of (3.11) define σ2 = λσ1.

3. Finally, choose µ1 and µ2 such that µ1 − µ2 = σ1( λ
1−ξ2

− 1
1−ξ1

).

An example of a solution is as follows:

1. Choose (µ1, σ1, ξ1) = (0, 1, 0), the standard exponential distribution Exp(1), and
ξ2 = −1, a uniform distribution.

2. Following the method described before, we obtain λ = f(ξ1)
f(ξ2) = 4 log(2), so σ2 =

λσ1 = 4 log(2).

3. Following the last point, we set µ2 = µ1 − σ1( λ
1−ξ2

− 1
1−ξ1

) = 1− 2 log(2).

To conclude, if some chains follow an Exp(1) distribution and the other ones a U(1 −
2 log(2); 1+2 log(2)) distribution, the difference between the chains should not be detected
by the rank-R̂, which is illustrated in the last column of Figure 3.3. Similarly to the other
examples in Section 3.2.5, R̂∞ manages to diagnose the convergence issue contrary to
other versions.

3.B Proofs

3.B.1 Proofs in the univariate case

Proof of Proposition 1. Letx ∈ R. The within- and between-variances are given by:

W (x) = E [Var[Ix | Z]]

= 1
m

m∑
j=1

(
E
[
I2

x | Z = j
]
− E2 [Ix | Z = j]

)
(3.12)

= 1
m

m∑
j=1

(
P (θ ≤ x | Z = j)− P2 (θ ≤ x | Z = j)

)

= 1
m

m∑
j=1

(
Fj(x)− F 2

j (x)
)

, (3.13)

B(x) = Var [E[Ix | Z]] = E
[
FZ(x)2

]
− E[FZ(x)]2

= 1
m

m∑
j=1

F 2
j (x)−

 1
m

m∑
j=1

Fj(x)

2

(3.14)

= m− 1
m2

m∑
j=1

F 2
j (x)− 2

m2

∑
j<k

Fj(x)Fk(x)

= 1
m2

∑
j<k

(F 2
j (x) + F 2

k (x)− 2Fj(x)Fk(x))

= 1
m2

∑
j<k

(Fj(x)− Fk(x))2 , (3.15)

where (3.12) and (3.14) are a consequence of P(Z = j) = 1/m for all j ∈ {1, · · · , m}. The
conclusion follows.
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Proof of Proposition 2. Proofs of (i) and (ii) are straightforward, let us focus on (iii)
and (iv).

(iii): Without loss of generality, we assume that all Fj ’s are defined on R and we denote
F̄ j = 1 − Fj the associated survival function. From Proposition 1, we can write, for any
x ∈ R:

R2(x) =

(
1
m

∑m
j=1 Fj(x)

) (
1
m

∑m
j=1 F̄ j(x)

)
1
m

∑m
j=1 F̄ j(x)Fj(x)

.

Denote by f(x) ≃ g(x) two functions f and g that are asymptotically equivalent when x→
a, a ∈ R ∪ {−∞, +∞}. Consider first the case x → −∞. Clearly, for all j ∈ {1, . . . , m},
Fj(x)→ 0 and F̄ j(x)→ 1 as x→ −∞, so that 1

m

m∑
j=1

Fj(x)

 1
m

m∑
j=1

F̄ j(x)

 ≃ 1
m

m∑
j=1

Fj(x),

and 1
m

m∑
j=1

F̄ j(x)Fj(x) ≃ 1
m

m∑
j=1

Fj(x),

leading to R(x)→ 1 as x→ −∞. Second, remarking that R(x) is symmetric with respect
to (Fj(x), F̄ j(x)), we similarly have R(x)→ 1 as x→∞.

(iv): It is clear that B(x) and W (x) are continuous since the Fj ’s are continuous, so the
only thing to prove is that the denominator W (x) never vanishes, except if extending by
continuity is possible. Remarking that for all x, we have Fj(x)(1−Fj(x)) ≥ 0, W (x) = 0 if
and only if Fj(x) = 0 or Fj(x) = 1 for j ∈ {1, . . . , m}. Almost all combinations are avoided
by the assumption that the supports must overlap, except F1(x) = · · · = Fm(x) = 0 and
F1(x) = · · · = Fm(x) = 1. In these two latter cases, an extension by continuity is possible
as R(x) = 1 from (iii).

Proof of Proposition 3. (i): Assume for the sake of simplicity that F is continuous
and strictly increasing. Let us show that the corresponding R̂∞ has the same distribution
as in the standard uniform case. In view of (3.2), R̂∞ can be written as

R̂∞ = sup
x∈R

R̂(x) = sup
x∈R

√√√√√1 +
∑m

j=1
∑m

k=j+1

(
F̂j(x)− F̂k(x)

)2

m
∑m

j=1 F̂j(x)(1− F̂j(x))
,

where for any j ∈ {1, . . . , m},

F̂j(x) = 1
n

n∑
i=1

I{θ(i,j) ≤ x} = 1
n

n∑
i=1

I{F (θ(i,j)) ≤ F (x)},

and where the random variables F (θ(i,j)) are standard uniformly distributed for any i ∈
{1, . . . , n} and j ∈ {1, . . . , m}. Finally, observing that

sup
x∈R

R̂(x) = sup
y∈[0,1]

R̂(F −1(y))

concludes the proof.
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(ii): Let x ∈ R and remark that (3.4) implies that F̂j(x) P−→ F (x) as n → ∞ for all
j ∈ {1, . . . , m}. Then it follows from (3.13) in the proof of Proposition 1 that

Ŵ (x) = 1
m

m∑
j=1

F̂j(x)(1− F̂j(x)) = F (x)(1− F (x)) + op(1). (3.16)

Besides, from (3.4) and (3.6), for j = 1, . . . , m, F̂j(x) can be expanded as

F̂j(x) = F (x) +
√

F (x)(1− F (x))
ESS(x)/m

ξj,n,

with ξj,n
d−→ N (0, 1) as n→∞. Thus (3.15) in the proof of Proposition 1 entails

B̂(x) = 1
m2

∑
j<k

(
F̂j(x)− F̂k(x)

)2
= F (x)(1− F (x))

ESS(x) × 1
m

∑
j<k

(ξj,n − ξk,n)2 . (3.17)

Introducing the random vector ξn = (ξ1,n, . . . , ξm,n)⊤ d−→ N (0, Im) where Im is the m×m
identity matrix, one has

1
m

∑
j<k

(ξj,n − ξk,n)2 = m− 1
m

m∑
j=1

ξ2
j,n −

1
m

∑
j ̸=k

ξj,nξk,n = ξ⊤
n Aξn,

with A = Im−Jm/m, and where Jm is the m×m matrix filled with ones. The symmetric
matrix A can be eigen-decomposed as A = Q⊤ΛQ with Q an orthogonal matrix and
Λ = diag(λ1, · · · , λd) = diag(1, . . . , 1, 0). Remark that Un := Qξn

d−→ N (0, Im) so that

1
m

∑
j<k

(ξj,n − ξk,n)2 = (Qξn)⊤Λ(Qξn) =
m∑

j=1
λjU2

j,n =
m−1∑
j=1

U2
j,n

d−→ χ2
m−1, (3.18)

as n→∞. Collecting (3.16), (3.17) and (3.18) yields

ESS(x)(R̂2(x)− 1) = ESS(x) B̂(x)
Ŵ (x)

d−→ χ2
m−1,

as n→∞ and the result is proved.

3.B.2 Proofs in the multivariate case

Lemma 1 (Standardization of margins). Assume the assumptions of Proposition 1 hold.
If the margins of F1, . . . , Fm coincide, then the multivariate R∞ is the same as the one
calculated on the associated copulas C1, . . . , Cm.

Proof. Denote by ϕ1, . . . , ϕd the common margins of the cdf’s F1, . . . , Fm, so that
Fj(x) = Cj(ϕ1(x1), . . . , ϕd(xd)) for any j ∈ {1, . . . , m}. Letting y = (ϕ1(x1), . . . , ϕd(xd)),
we have

sup
x∈Rd

R(x) = sup
y∈[0,1]d

R(ϕ−1
1 (y1), . . . , ϕ−1

d (yd)).
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Besides, in view of (3.8), m(R2(ϕ−1
1 (y1), . . . , ϕ−1

d (yd))− 1) can be written as

∑m
j=1

∑m
k=j+1

(
Fj(ϕ−1

1 (y1), . . . , ϕ−1
d (yd))− Fk(ϕ−1

1 (y1), . . . , ϕ−1
d (yd))

)2

∑m
j=1 Fj(ϕ−1

1 (y1), . . . , ϕ−1
d (yd))(1− Fj(ϕ−1

1 (y1), . . . , ϕ−1
d (yd)))

=
∑m

j=1
∑m

k=j+1 (Cj(y1, . . . , yd)− Ck(y1, . . . , yd))2∑m
j=1 Cj(y1, . . . , yd)(1− Cj(y1, . . . , yd)) ,

which proves the result.

Proof of Lemma 1. Let function R̃ be defined on [0, 1]2 by

R̃(c1, c2) =
√

1 + 1
2

(c1 − c2)2

c1(1− c1) + c2(1− c2) . (3.19)

For any c1 ∈ [0, 1], c2 7→ R̃(c1, c2) is decreasing on [0, c1], and increasing on [c1, 1]. Let
(c−, c+) ∈ [0, 1]2 and (c1, c2) ∈ [c−, c+]2. Without loss of generality, assume that c1 ≤ c2.
Let c ∈ [0, c2]. Since c2 ≤ c+ and R̃(c, ·) is increasing on [c, 1], we have R̃(c, c2) ≤ R̃(c, c+).
In particular, for c = c−:

R̃(c−, c2) ≤ R̃(c−, c+). (3.20)

Moreover, R̃(c2, ·) is decreasing on [0, c2] and c− ≤ c1 ≤ c2, we also have

R̃(c−, c2) = R̃(c2, c−) ≥ R̃(c2, c1). (3.21)

Combining (3.20) and (3.21), we finally obtain R̃(c2, c1) ≤ R̃(c−, c+), which concludes the
proof.

Proof of Proposition 4. By definition of lower and upper Fréchet–Hoeffding bounds
(Nelsen, 2006), Wd(u) ≤ C(u) ≤ Md(u) for any copula C and u ∈ [0, 1]d. Thus in view
of Lemma 1 it only remains to prove that R∞(Wd, Md) =

√
(d + 1)/2. To this end, let p

be the index such that up = min {u1, . . . , ud}. Two cases arise:
(i) If 1− d +∑d

i=1 ui ≤ 0, then

f(u) := 2(R2(u)− 1) =
u2

p

up(1− up) = 1
1/up − 1 . (3.22)

As a consequence, R2(u) is maximum when up is maximum under the constraints{
up ≤ ui ∀i ̸= p,

up ≤ d− 1−∑i ̸=p ui.

It is easily seen that the maximum occurs in the equality case u1 = · · · = ud = (d− 1)/d
and thus 2(R2(u)− 1) = d− 1.

(ii) Conversely, if 1− d +∑d
i=1 ui ≥ 0, then

f(u) =

(
1− d +∑

i ̸=p ui

)2

up(1− up) + (1− d +∑d
i=1 ui)(d−

∑d
i=1 ui)

.
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The problem therefore amounts to maximising f(u) under the constraints
u ∈ [0, 1]d,

up ≤ ui ∀i ̸= p,

1− d +∑d
i=1 ui ≥ 0.

(3.23)

The associated Lagrangian can be written with λ1, λ2, λ3 ∈ Rd and λ4 ∈ R as:

L(u, λ1, λ2, λ3, λ4) = f(u)+
d∑

i=1
λ1,iui+

d∑
i=1

λ2,i(1−ui)+
∑
i ̸=p

λ3,i(ui−up)+λ4

(
1− d +

d∑
i=1

ui

)
.

The first-order conditions are given by (3.23) and ∇uL(u, λ1, λ2, λ3, λ4) = 0, and the
Karush–Kuhn–Tucker conditions are

λ1,i ≥ 0 with λ1,iui = 0, ∀i ∈ {1, . . . , d},
λ2,i ≥ 0 with λ2,i(1− ui) = 0, ∀i ∈ {1, . . . , d},
λ3,i ≥ 0 with λ3,i(ui − up) = 0, ∀i ∈ {1, . . . , d} s.t. i ̸= p,

λ4 ≥ 0 with λ4
(
1− d +∑d

i=1 ui

)
= 0.

(3.24)

We distinguish different cases:

• If λ1,i0 ̸= 0 for some i0 ∈ {1, . . . , d}, then ui0 = 0 and combined with (3.23) we
obtain necessarily i0 = p and 1− d +∑d

i=1 ui = 0, leading to a non-optimal solution
for f(u).

• If λ2,i0 ̸= 0 for some i0 ∈ {1, . . . , d}, then ui0 = 1, and the problem is exactly the
same written in dimension d−1, and a recurrence proves that the maximum is equal
to
√

(d + 1)/2 in dimension d. So the maximum is increasing with the dimension
and therefore is not reached in this case.

One can thus assume λ1 = 0 and λ2 = 0. Moreover, for all (i, j) such that i ̸= p and
j ̸= p, we have ∂f

∂ui
= ∂f

∂uj
. Combined with ∇uL = 0, we obtain λ3,i = λ3,j , which leads to

considering the simplified Lagrangian:

L(u, λ3, λ4) = f(u) + λ3

(
d∑

i=1
ui − dup

)
+ λ4

(
1− d +

d∑
i=1

ui

)
.

In that form, the function f and the constraints of the Lagrangian can be written only as
a function of (1 − d + ∑d

i=1 ui, up, λ3, λ4). Let L̃(x = 1 − d + ∑d
i=1 ui, y = up, λ3, λ4) =

L(u, λ3, λ4). Since for all i

∂L

∂ui
= ∂L̃

∂x

∂x

∂ui
+ ∂L̃

∂y

∂y

∂ui
= ∂L̃

∂x
+ ∂L̃

∂y
I{i = p},

solving ∇uL = 0 is equivalent to solving ∇(x,y)L̃ = 0. The corresponding problem is
therefore

max (x− y)2

x(1− x) + y(1− y) , under the constraints
{

x ≥ max{0, 1− d + dy},
x ≤ y ≤ 1.

(3.25)
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Combining the constraints with the study of function in the proof of Lemma 1 leads to
the solution (x, y) = (0, d−1

d ). So

d∑
i=1

ui = d− 1 and min{u1, . . . , ud} = d− 1
d

,

so necessarily u1 = · · · = ud = d−1
d , which concludes the proof.

Proof of Corollary 1 For all u ∈ [0, 1]d, we have

m
(
R2(u)− 1

)
=

m∑
j=1

m∑
k=j+1

(Cj(u)− Ck(u))2∑m
ℓ=1 Cℓ(u)(1− Cℓ(u)) ,

≤
m∑

j=1

m∑
k=j+1

(Cj(u)− Ck(u))2

Cj(u)(1− Cj(u)) + Ck(u)(1− Ck(u)) ,

=
m∑

j=1

m∑
k=j+1

2
(
R2(Wd(u), Md(u))− 1

)
,

so that an upper bound on the multivariate R∞ can be expressed thanks to bivariate as
follows:

m
(
R2

∞(C1, . . . , Cm)− 1
)
≤

m∑
j=1

m∑
k=j+1

2
(
R2

∞(Cj , Ck)− 1
)

,

≤
m∑

j=1

m∑
k=j+1

2
(
R2

∞(Wd, Md)− 1
)

,

= m(m− 1)
2 (d− 1),

using Lemma 1 and Proposition 4. The result is thus proved.

Proof of Corollary 2. One can prove that the maximum of u ∈ [0, 1]d 7→ R(Πd(u), Md(u))
is reached at u1 = · · · = ud := u ∈ [0, 1], which leads to studying the maximum of

fd(u) := 2(R2(u, . . . , u)− 1) = (ud − u)2

ud(1− ud) + u(1− u) .

The first derivative of fd is proportional to

gd(u) = −2(d− 1)u2d−1 + du2d−2 − 2(d− 1)ud + 3(d− 1)ud−1 − 1.

Routine calculations show the existence of a unique root in [0, 1], but finding the explicit
value does not seem possible when d > 2 since gd is a polynomial of order 2d − 1. We
thus restrict ourselves to an asymptotic analysis when d → ∞. First, Lemma 1 and
Proposition 4 entail that

max
u∈[0,1]

fd(u) ≤ 2(R2
∞(Wd, Md)− 1) = d− 1.
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Second, a lower bound can be obtained by letting ud = 1− (log d)/d. Indeed, ud → 1 and
ud

d = exp (−(log d)(1 + o(1)))→ 0 so that the numerator of fd(u) satisfies (ud
d − ud)2 → 1

as d→∞. Moreover, the denominator satisfies

ud
d(1−ud

d)+ud(1−ud) = exp (− log(d)(1 + o(1))) (1+o(1))+log d

d
(1+o(1)) = log d

d
(1+o(1)),

as d→∞. As a consequence, fd(ud) = d
log d(1 + o(1)) and we have proved that

d

log d
(1 + o(1)) ≤ max

u∈[0,1]
fd(u) ≤ d− 1.

The result follows.

Proof of Corollary 3. From Proposition 1 and the definition of a NLOD copula, the
proof reduces to calculating R∞(Wd, Πd). Two cases are considered.

(i) First, if 1− d +∑d
i=1 ui ≤ 0, then Wd(u) = 0 and

2(R2(u)− 1) = 1
1∏d

i=1 ui

− 1
.

The maximisation of 2(R2(u)− 1) is then equivalent to solving:

max
d∏

i=1
ui, under the constraints

{
u ∈ [0, 1]d,

1− d +∑d
i=1 ui ≤ 0.

(3.26)

Since the constraints are linear and the objective function is convex, the above optimization
problem is convex. The Lagrangian associated with (3.26) can be written with λ1 ∈ R,
λ2, λ3 ∈ Rd, as:

L(u, λ1, λ2, λ3) =
d∏

i=1
ui − λ1

(
1− d +

d∑
i=1

ui

)
−

d∑
i=1

λ2,i(ui − 1) +
d∑

i=1
λ3,iui,

The first-order conditions are
∇uL(u, λ1, λ2, λ3) = 0,

0 ≤ ui ≤ 1 ∀i ∈ {1, . . . , d},
1− d +∑d

i=1 ui ≤ 0,

(3.27)

and the Karush–Kuhn–Tucker conditions are
λ1 ≥ 0 with λ1(1− d +∑d

i=1 ui) = 0,

λ2,i ≥ 0 with λ2,i(ui − 1) = 0, ∀i ∈ {1, . . . , d},
λ3,i ≥ 0 with λ3,iui = 0, ∀i ∈ {1, . . . , d}.

(3.28)

If there exists i0 such that ui0 = 0, then ∏d
i=1 ui = 0, which is clearly non-optimal.

Thus, (3.28) implies λ3,i = 0 for all i ∈ {1, . . . , d}. Moreover, for all i ∈ {1, . . . , d},

∂L
∂ui

= 0 =⇒ λ1 + λ2,i =
∏
j ̸=i

uj ,
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so that, for all (j, k) ∈ {1, . . . , d}2,

(λ1 + λ2,j)uj = (λ1 + λ2,k)uk. (3.29)

If there exists i0 such that λ2,i0 ̸= 0, then ui0 = 1 from (3.28) and consequently, for all
k ̸= i0,

uk = λ1 + λ2,i0

λ1 + λ2,k
.

Taking account of (3.27) yields uk ≤ 1 which implies in turn λ2,k ≥ λ2,i0 ̸= 0 and uk = 1
for all k ∈ {1, . . . , p} from (3.28). The resulting u does not fulfil the third constraint in
(3.27). Then, necessarily, λ2,i = 0 for all i ∈ {1, . . . , d}, and combining with (3.29), it
follows that the optimum is reached when u1 = · · · = ud = u. Replacing in (3.26) yields
the optimization problem

max ud, under the constraints
{

0 ≤ u ≤ 1,

1 + d(u− 1) ≤ 0,
(3.30)

whose solution is u = (d− 1)/d.
(ii) Second, if 1− d +∑d

i=1 ui ≥ 0, the problem to solve is

max fd(u) :=

(∏d
i=1 ui − 1 + d−

∑d
i=1 ui

)2(∏d
i=1 ui

) (
1−∏d

i=1 ui

)
+
(
1− d +∑d

i=1 ui

) (
d−

∑d
i=1 ui

) ,

under the constraints
{

u ∈ [0, 1]d,

1− d +∑d
i=1 ui ≥ 0.

The Lagrangian can be written, with λ1 ∈ R, λ2, λ3 ∈ Rd:

L(u, λ1, λ2, λ3) = fd(u) + λ1

(
1− d +

d∑
i=1

ui

)
+

d∑
i=1

λ2,i(1− ui) +
d∑

i=1
λ3,iui.

In the same way as in the proof of Proposition 4, we can focus on the solution such that
λ2 = 0 and λ3 = 0. The first order condition ∇uL = 0 leads to the solution

uj =
d∏

i=1
ui ×

2r(u)−
(∏d

i=1 ui − 1 + d−
∑d

i=1 ui

) (
1− 2∏d

i=1 ui

)
2r(u) +

(∏d
i=1 ui − 1 + d−

∑d
i=1 ui

) (
1− 2(1− d +∑d

i=1 ui)
)
− λ1

,

for j ∈ {1, . . . , d} with r(u) = ∏d
i=1 ui(1 −

∏d
i=1 ui) + (1 − d + ∑d

i=1 ui)(d −
∑d

i=1 ui).
Note that from this expression, the maximum verifies u1 = · · · = ud, and so the initial
d-dimensional optimization problem amounts to the one-dimensional problem:

max fd(u) :=

(
ud − 1 + d− du

)2

ud(1− ud) + (1− d + du)(d− du) , under the constraints
{

u ∈ [0, 1]d,

u ≥ d−1
d .

(3.31)
Iterated derivative computations allow to show that fd is a decreasing function on [d−1

d , 1],
so the maximum is reached at u = d−1

d , which concludes the proof.
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Proof of Corollary 4. Let us denote by R(I{θ(·)
1 ≤ x1, θ

(·)
2 ≤ x2}) and R(I{θ(·)

1 ≤
x1, θ

(·)
2 ≥ x2}) the two considered versions of R(x) in the bivariate case, with standard

uniform margins. We clearly have:

R−
∞ = max

(x1,x2)∈[0,1]2
R
(
I
{

θ
(·)
1 ≤ x1, θ

(·)
2 ≥ x2

})
= max

(x1,x2)∈[0,1]2
R
(
I
{

θ
(·)
1 ≤ x1, 1− θ

(·)
2 ≤ 1− x2

})
= max

(x1,x2)∈[0,1]2
R
(
I
{

θ
(·)
1 ≤ x1, 1− θ

(·)
2 ≤ x2

})
.

Then, remarking that

(θ(·)
1 , θ

(·)
2 ) ∼M2 =⇒ (θ(·)

1 , 1− θ
(·)
2 ) ∼W2,

(θ(·)
1 , θ

(·)
2 ) ∼W2 =⇒ (θ(·)

1 , 1− θ
(·)
2 ) ∼M2,

(θ(·)
1 , θ

(·)
2 ) ∼ Π2 =⇒ (θ(·)

1 , 1− θ
(·)
2 ) ∼ Π2

proves the result.

3.C Threshold estimation for R̂∞

This section details the computation of the empirical quantiles of R̂∞ that is done to
obtain Table 3.2.

3.C.1 Univariate case

Invariance on the underlying distribution under the null hypothesis (all chains
have the same distribution). A primary step to compute the quantiles of R̂∞ when all
the chain distributions are identical is to verify that such quantiles are well-defined, in the
sense that they do not depend on the choice of chain distribution. This property is expected
as using a supremum over the quantiles provides invariance to bijective transformations
(see Proposition 3(i)). The first row of Figure 3.11 illustrates the behaviour of R̂, rank-R̂∞,
and R̂∞ on two cases:

• all chains are uniform;

• all chains are Pareto distributed.

The QQ-plots seem to confirm the invariance in distribution of rank-R̂ and R̂∞ for various
choices of m (see the yellow and violet dots in the first row of Figure 3.11). This was also
expected for rank-R̂ because of the use of a rank-normalization step. For the traditional
R̂, the QQ-plots show a difference of distribution (see the red dots in the first row of
Figure 3.11), which makes the quantile estimation ill-defined if the chains distribution is
not provided. The rest of Figure 3.11 shows histograms of replications for R̂ (second row),
rank-R̂ (third row) and R̂∞ (fourth row), when the chains are distributed according to
the same uniform and Pareto distributions. Histograms for R̂ confirm the difference of
behaviour when the chain distribution is uniform or Pareto, while the histograms overlap
much more for rank-R̂ and R̂∞.
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Figure 3.11: Study of R̂, rank-R̂ and R̂∞ when all the distributions are the same, for a number of
chains m ∈ {2, 4, 8}. First row: Q-Q plot that compares 500 replications computed on m uniform
chains U(−1, 1) with m Pareto(α = 0.8, η = 1) ones. Second, third and fourth rows: Histograms
of 500 replications with n ∈ {200, 100, 50} for R̂ (second row), rank-R̂ (third row), and R̂∞(fourth
row) in the case of uniform and Pareto chains. The dashed lines represent the suggested thresholds
for rank-R̂ and R̂∞, corresponding to a confidence level of approximately 95%.
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Threshold elicitation. As a direct consequence of Proposition 3(i), the empirical quan-
tiles of R̂∞ only depend on the number of chains m and the length n. The same holds
true for rank-R̂. Therefore, we are able to estimate empirical quantiles with replications
of R̂∞ using any chain distribution (typically uniform): results are reported in Table 3.2
for a fixed value of mn = 400, which is the effective sample size as we are in the i.i.d case.
The same estimation can be done for rank-R̂, in order to associate a choice of threshold
to a confidence level 1−α. Consequently, this viewpoint implies a threshold that depends
on m for rank-R̂ too, as the empirical quantiles change with m (third row of Figure 3.11).
Although Vehtari et al. (2021) do not suggest any tuning with respect to the number of
chains, using a threshold of 1.01 can lead to large type I error: for example, a threshold
of 1.01 leads to approximately 5% when m = 2, but to 21% when m = 8 (third row of
Figure 3.11). Therefore a threshold of 1.01 seems too strong for rank-R̂ when m increases:
the empirical quantile at α = 0.05 suggests to use 1.01 when m = 2, 1.013 when m = 4
and 1.018 when m = 8. The same observation holds for R̂∞, and looking at Table 3.2 and
the fourth row of Figure 3.11 leads to a threshold of 1.01 for m = 2, 1.02 for m = 4 and
1.03 for m = 8 in order to keep a type I error of approximately 5%.

3.C.2 Multivariate case

In the multivariate extension (see Section 3.3), two thresholds have to be elicited: R
(M)
∞,lim

for the convergence of margins, and R
(C)
∞,lim for the convergence of the copula. Focusing

on R
(M)
∞,lim, the quantiles of R̂∞ for the margins are the same as in the univariate case

(given in Table 3.2), but a Bonferroni correction is necessary to take into account the
multiplicity of tests. For the copula, R̂

(max)
∞ is a maximum of multiple versions of R̂∞

computed on different directions of dependence, so its quantiles are different from R̂∞
ones. However, to reduce the calculation cost, one can compute the quantiles of R̂∞ under
the null hypothesis for the chains, with a Bonferroni correction with 2d−1 hypotheses. We
estimate the corresponding quantiles using replications to determine the two thresholds
R

(M)
∞,lim and R

(C)
∞,lim. Here, the computation is done for several values of d, with d relatively

small. Results are reported in Table 3.3. Values in bold confirm the rule of thumb given in
Section 3.3: (R(M)

∞,lim, R
(C)
∞,lim) = (1.03, 1.03) for m = 4 and (R(M)

∞,lim, R
(C)
∞,lim) = (1.04, 1.05)

for m = 8.

3.D Examples of closed-form R(x) and R∞

We start by a lemma providing useful tools to simplify the calculation of R(x) and R∞ in
the univariate case and when all chains but one have converged. We then review families
of distributions for which R(x) and R∞ can be computed in closed-form.

Lemma 2. Assume the assumptions of Proposition 1 hold with F := F1 = · · · = Fm−1 ̸=
Fm.

(i) Then (3.2) can be simplified as

R(x) =
√

1 + (m− 1)(F (x)− Fm(x))2

m ((m− 1)F (x)(1− F (x)) + Fm(x)(1− Fm(x))) . (3.32)
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R
(M)
∞,lim

α

d m 0.005 0.01 0.05 0.1

2

2 1.017 1.017 1.015 1.013
3 1.024 1.023 1.019 1.018
4 1.030 1.028 1.025 1.022
8 1.041 1.041 1.037 1.034

3

2 1.022 1.021 1.018 1.016
3 1.032 1.031 1.023 1.020
4 1.032 1.031 1.026 1.023
8 1.045 1.043 1.037 1.036

4

2 1.025 1.023 1.016 1.015
3 1.027 1.026 1.022 1.020
4 1.027 1.026 1.025 1.023
8 1.047 1.044 1.040 1.038

5

2 1.025 1.020 1.018 1.016
3 1.027 1.027 1.025 1.022
4 1.030 1.029 1.026 1.024
8 1.053 1.053 1.038 1.036

6

2 1.022 1.021 1.018 1.015
3 1.024 1.023 1.021 1.021
4 1.030 1.030 1.030 1.024
8 1.047 1.046 1.039 1.037

R
(C)
∞,lim

α

m 0.005 0.01 0.05 0.1
2 1.026 1.026 1.019 1.016
3 1.029 1.028 1.024 1.021
4 1.033 1.030 1.026 1.024
8 1.052 1.050 1.040 1.038
2 1.022 1.020 1.019 1.018
3 1.031 1.028 1.025 1.023
4 1.038 1.036 1.030 1.027
8 1.052 1.049 1.047 1.043
2 1.029 1.026 1.022 1.021
3 1.028 1.028 1.026 1.024
4 1.035 1.034 1.033 1.030
8 1.051 1.050 1.048 1.047
2 1.024 1.024 1.021 1.021
3 1.028 1.028 1.026 1.024
4 1.043 1.043 1.040 1.036
8 1.049 1.049 1.048 1.048
2 1.020 1.020 1.019 1.018
3 1.028 1.028 1.025 1.024
4 1.035 1.035 1.034 1.033
8 1.059 1.059 1.058 1.055

Table 3.3: Left: Empirical quantiles of R̂∞ for the margins with a Bonferroni correction, under
the null hypothesis that all chains have the same distribution, for a fixed value of mn = 400. Right:
Empirical quantiles of R̂

(max)
∞ for the copula, for a fixed value of mn = 400. We have used 500

replications for estimation. Values in bold justify the rule of thumb proposed in Section 3.3.1 for
m ∈ {4, 8}.
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(ii) If F and Fm are symmetrical distributions wrt 0, then R is an even function.

(iii) Let a and am ∈ R ∪ {−∞} be the starting points of F and Fm respectively, and
assume a ≤ am. Then, R(·) reaches its supremum on [am,∞):

R∞ ≥
√

1 + F (am)
m (1− F (am)) .

(iv) Let b and bm ∈ R ∪ {+∞} be the endpoints of F and Fm respectively, with b ≤ bm.
Then, R(·) reaches its supremum on (−∞, b] and

R∞ ≥
√

1 + (m− 1)(1− Fm(b))
mFm(b) .

Proof. (i) and (ii) are straightforward. For (iii) remark that, when x ≤ a, F (x) =
Fm(x) = 0 so that R(x) = 1. Besides, for all x ∈ [a, am], one has Fm(x) = 0 and thus

R2(x) = 1 + F (x)
m(1− F (x)) .

The above defined function is increasing so that the supremum of R2(·) is reached for
x ≥ am and therefore R∞ ≥ R(am). Similarly for (iv), when x ≥ bm, F (x) = Fm(x) = 1
so that R(x) = 1. Besides, for all x ∈ [b, bm], one has F (x) = 0 and thus

R2(x) = 1 + (m− 1)(1− Fm(x))
mFm(x) .

The above defined function is decreasing so that the supremum of R(·) is reached for x ≤ b
and therefore R∞ ≥ R(b).

Lemma 3 (Uniform distribution). Assume that F1 = · · · = Fm−1 are the cdf of the
uniform distribution U(−σ, σ) while Fm is the cdf of the uniform distribution U(−σm, σm)
with 0 < σ ≤ σm. Then,

R2(x) =


1 +

(
1
σ

− 1
σm

)2

m2
(m−1)x2 −m

(
1

σ2 + 1
(m−1)σ2

m

) if |x| ≤ σ ,

1 + m−1
m

(
1− 2

1+σm/|x|

)
if σ ≤ |x| ≤ σm ,

1 if |x| ≥ σm.

Moreover,

R∞ = R(±σ) =

√√√√1 + m− 1
m

(
1− 2

1 + σm
σ

)
.

Proof. Recall that

F1(x) = · · · = Fm−1(x) = x

2σ
+ 1

2 , ∀x ∈ [−σ; σ] ,

and Fm(x) = x

2σm
+ 1

2 , ∀x ∈ [−σm; σm] .
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The case |x| ≥ σm is clear, we investigate the two other ones. First, if σ ≤ x ≤ σm, then
Fj(x) = 1 for j = 1, . . . , m− 1 and Lemma 2(i) yields

R2(x) = 1 +
(m− 1)

(
1
2 −

x
2σm

)2

m
(

1
2 + x

2σm

) (
1
2 −

x
2σm

) = 1 + m− 1
m

(
1− 2

1 + σm
x

)
.

Using, Lemma 2(ii), allows concluding for σ ≤ |x| ≤ σm. Finally, if |x| ≤ σ, then:

R2(x) = 1 +
x2( 1

2σ −
1

2σm

)2
m
(

1
2 + x

2σ

) (
1
2 −

x
2σ

)
+ m

m−1

(
1
2 + x

2σm

) (
1
2 −

x
2σm

)
= 1 +

( 1
σ −

1
σm

)2
m2

(m−1)x2 −m
( 1

σ2 + 1
(m−1)σ2

m

) .
Lemma 2(iv) entails that the maximum is reached for x ∈ [−σ; σ]. The above expression
shows that the maximum is located at x = ±σ, which gives the result.

Lemma 4 (Pareto distribution). Assume that F1 = · · · = Fm−1 are the cdf of the
Pareto(α, η) distribution with α > 0 the shape parameter and η > 0 the position parameter.
Let Fm be the cdf of the Pareto(α, ηm) distribution with 0 < η ≤ ηm. Then,

R2(x) =


1 + 1

m

((
x
η

)α
− 1

)
if η ≤ x ≤ ηm ,

1 + 1
m

(ηα−ηα
m)2(

ηα+ ηα
m

m−1

)
xα−

(
η2α+ η2α

m
m−1

) if ηm ≤ x ,

1 if x ≤ η.

Moreover, R∞ = R(ηm) =
√

1 + 1
m

((
ηm

η

)α

− 1
)

.

Proof. Recall that F1(x) = · · · = Fm−1(x) = 1− (x/η)−α , ∀x ∈ [η, +∞) and Fm(x) =
1 − (x/ηm)−α , ∀x ∈ [ηm, +∞). In the case where η ≤ x ≤ ηm, Fm(x) = 0, and using
Lemma 2(iii) entails that R(·) is increasing on [η, ηm] and

R2(x) = 1 + 1
m

F (x)
1− F (x) = 1 + 1

m

((
x

η

)α

− 1
)

.

Moreover, for ηm ≤ x, replacing the Pareto cdf in (3.32) yields

R2(x) = 1 + 1
m

x−2α (ηα − ηα
m)2

x−αηα(1− x−αηα) + 1
m−1x−αηα

m(1− x−αηα
m)

= 1 + 1
m

(ηα − ηα
m)2(

ηα + ηα
m

m−1

)
xα −

(
η2α + η2α

m
m−1

) .

Clearly, R2(·) is decreasing on [ηm, +∞) and is extended by continuity at x = ηm. In
conclusion, R2(·) is maximum at x = ηm, and the result is proved.
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Lemma 5 (Uniform vs Laplace distribution). Assume that m = 2, F1 is the cdf of the uni-
form distribution U(−σ, σ) and F2 is the cdf of the centred Laplace distribution L(0, σ/2)
with σ > 0. Then for any x, R(x) = R1(x/σ) with

R2
1(x) =

1 + exp(−|x|)
2(2−exp(−|x|)) if |x| ≥ 2 ,

1 + 1
2

(|x|/2−1+exp(−|x|))2

1−x2/4+2 exp(−|x|)(2−exp(−|x|)) if |x| ≤ 2.

Moreover, R∞ = R(±σ) = R1(±1) =
√

1 + 1
2(2e2 − 1) .

Proof. In view of Lemma 2(ii,iii), it is sufficient to compare the values of R1(x) on (−2, 0]
with R1(−2). Then, the derivation of R1(x) is similar to the ones done in Lemma 3 and
Lemma 4. Routine calculations show that R1 has indeed a local maximum on (−2, 0), but
it remains lower than R1(−2) (see last column of Figure 3.3 for an illustration), which is
therefore the value of R∞.
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Résumé

C e chapitre s’intéresse à l’étude du comportement de différentes grandeurs bayésiennes
associées à une vraisemblance GPD pour un nombre fini d’observations. Nous nous

concentrons plus précisément sur le comportement en queue de distribution, c’est-à-dire
sur des quantiles associés à des probabilités qui tendent vers 1. Le comportement des
distributions prédictives a priori et a posteriori, ainsi que des estimateurs bayésiens des
niveaux de retour, sont examinés. L’analyse de la distribution prédictive a priori permet
une meilleure compréhension des implications d’un choix a priori sur les observations
extrêmes, tandis que l’étude des grandeurs a posteriori nous permet d’explorer les limites
de l’extrapolation avec une quantité fixe de données.

Les résultats de toutes les quantités étudiées aboutissent à une conclusion similaire, à
savoir que le comportement asymptotique est équivalent à celui de la queue la plus lourde
permise a priori. En d’autres termes, si l’on place une loi a priori uniforme sur [ξ1, ξ2]
pour le paramètre de forme ξ, alors l’ensemble des quantités bayésiennes étudiées va se
comporter asymptotiquement comme une loi ayant pour indice de queue ξ2.

Une vérification sur simulations permet de confirmer le comportement théorique, mais
uniquement pour une taille d’échantillon très faible. Il semblerait donc que la taille
d’échantillon n influe sur la vitesse de convergence vers le comportement asymptotique
le plus lourd, ce qui ne contredit finalement pas un résultat de consistance pour des
quantiles associés à des probabilités de l’ordre de c/n avec c > 0. Ces résultats encour-
ageants suggèrent ainsi plusieurs pistes de travaux futurs qui pourraient être explorées
pour compléter l’étude.

Après une revue de la quantification de l’incertitude bayésienne pour des observables
en Partie 4.1, nous présentons les différents résultats asymptotiques obtenus en Partie 4.2,
puis nous illustrons ces résultats par des simulations en Partie 4.3. Des pistes de travaux
futurs sont proposées en Partie 4.4, et les preuves des résultats théoriques sont présentées
en Partie 4.A.
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Abstract

T his chapter focuses on studying the behavior of various Bayesian quantities associated
with a GPD likelihood for a finite number of observations. Specifically, we focus on

tail behaviors, which refers to quantiles associated with probabilities tending to 1. The
behavior of prior and posterior predictive distributions, as well as Bayesian estimators
of return levels, are examined. Analyzing the prior predictive distribution allows for a
better understanding of the implications of a prior choice on extreme observations, while
studying posterior quantities enables us to explore the limits of extrapolation with a fixed
amount of data.

The results for all the quantities under study lead to a similar conclusion: the asymp-
totic behavior is equivalent to that of the heaviest tail allowed a priori. In other words,
if we place a uniform prior distribution on [ξ1, ξ2] for the shape parameter ξ, then all
Bayesian quantities will asymptotically behave like a distribution with a tail index equal
to ξ2.

Verification through simulations confirms the theoretically obtained behavior, but only
for a very small sample size. It appears that the sample size n influences the convergence
speed towards the heaviest asymptotic behavior, which ultimately aligns with a consistency
result for quantiles associated with probabilities of the order of c/n with c > 0. These
encouraging results suggest several avenues for future research that could be explored to
complement the study.

After reviewing the quantification of Bayesian uncertainty for observable quantities in
Section 4.1, we present the different asymptotic results obtained in Section 4.2, followed by
illustrating these results through simulations in Section 4.3. Possible directions for future
work are proposed in Section 4.4, and the proofs of the theoretical results are presented
in Appendix 4.A.
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4.1 Introduction

4.1.1 Setting and notation

Let X be a random variable with cumulative distribution function (cdf) F , and Mn the
maximum of n i.i.d random variables with cdf F , whose cdf is consequently F n. Suppose
that F belongs to a maximum domain of attraction, which means that there exist two
sequences an > 0, bn and a cdf H such that F n(anx + bn) → G(x) as n → ∞. We
denote this property F ∈ MDA(G). The extreme value theorem (see for instance Haan
and Ferreira, 2006) states that G is necessarily of the same type as the extreme value
distribution (EVD) distribution, with cdf:

Gξ(x) =

exp
(
−{1 + ξx}−1/ξ

+

)
if ξ ̸= 0 ,

exp(− exp(−x)) if ξ = 0,
(4.1)

where {x}+ = max{0, x} and ξ is called the extreme value index. From this, Pickands
theorem (Pickands, 1975) shows that if F ∈ MDA(Gξ), then the distribution of the ex-
ceedances X − u | X > u is asymptotically, as u converges to the endpoint of F , a
generalized Pareto distribution (GPD), with cdf:

H(x | σ, ξ) =
{

1−
{
1 + ξ x

σ

}−1/ξ
+ if ξ ̸= 0 ,

1− exp
(
−x

σ

)
if ξ = 0.

(4.2)

This result yields an approximation of the survival function F̄ (x) := 1− F (x) for a given
high threshold u and x ≥ u:

F̄ (x) ≃ F̄ (u)H̄(x− u | σ, ξ), (4.3)

with H̄ := 1−H. A traditional framework called peak-over-threshold consists in choosing
u as the (n − k)th order statistic and consider only the k largest values of the dataset.
We are then interested in the T -year return level which is the value exceeded on average
once every T years. Denoting by ℓα this quantity with α := 1/(Tny) and ny the number
of observations per year, this is obtained by solving the equation F̄ (ℓα | σ, ξ) = α. Using
the approximation in Equation (4.3), we obtain

ℓα ≃ u + H−1
(

1− α

F̄ (u)
| σ, ξ

)
= u + σ

ξ

( α

F̄ (u)

)−ξ

− 1

 . (4.4)

Estimating this quantity comes with uncertainties around the inference of (F̄ (u), σ, ξ).
In the Bayesian paradigm, the information one has from (σ, ξ) is modeled by a posterior
distribution.

4.1.2 Accounting for uncertainty in the estimation

Here, the final aim here is not the estimation of parameters but rather a return level which
is an observable quantity. In the general case with parameters θ ∈ Θ, density p(x | θ)
and observations x(n) = (x1, . . . , xn), several approaches exist to deduce an estimation of
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an observable from a parameter. A first one by plug-in simply consists in inserting any
estimator θ̂ in the model:

pplug(x | x(n)) = p(x | θ̂). (4.5)

This first point of view only considers a pointwise estimator of θ, and does not take uncer-
tainty around estimation into account. Instead, predictive distributions aim at propagating
all the information inferred on parameters in the observable space.

Prior predictive distribution. In the general Bayesian case, suppose that before any
observation, the uncertainty around θ is modeled through a prior p(θ). This uncertainty
can be translated at the observation level using the prior predictive distribution, also known
as the marginal distribution of x:

ppred(x) =
∫

Θ
p(x | θ)p(θ)dθ. (4.6)

See the section corresponding to prior predictive in Mikkola et al. (2023) for a complete
review. One advantage of this change from parameters to observations is that it usually
corresponds to the space where experts have prior information. It is the case of extreme
value models, where there is not an easy way to interpret the parameters: ξ controls the
existence of moments and of an upper bound in the distribution, but its interpretation
is not direct for someone unfamiliar with extreme value theory. Coles and Tawn (1996)
suggests to re-parameterize the EVD likelihood as a function of three quantiles (q1, q2, q3),
in order to allow an expert to model prior information directly on quantiles. More pre-
cisely, to ensure q1 < q2 < q3, a positive prior is chosen on the difference of quantiles,
which induces a particular choice of dependence structure that is debatable. Gaioni et al.
(2010) provides a simple method to invert the transformation (µ, σ, ξ) 7→ (q1, q2, q3), and
generalizes to the case when more than three quantiles are provided. The author proposes
to use a Gaussian prior that is “the least possible effort in modeling and allows for imple-
mentation of user-friendly software“. These priors elicited at the observation level do not
help to deduce properties of predictive distribution, typically the theoretical implication of
a Gaussian prior for the difference of quantile is not known. In general, translating prior
information at the observable level to the parameter level is challenging. Specifically,
specifying the predictive distribution ppred(x) and the conditional distribution p(x | θ)
requires solving Equation (4.6) to obtain the corresponding distribution p(θ), see Gribok
et al. (2004) for an example. Conversely, deriving properties of the predictive distribution
ppred(x) from the conditional distribution p(x | θ) and the prior distribution p(θ) often
involves calculating the marginal distribution, which is only tractable in specific cases of
conjugate distributions.

Posterior predictive distribution. After observing x(n), the distribution of a new
observation x can be derived using the posterior predictive distribution:

ppred(x | x(n)) =
∫

Θ
p(x | θ)p(θ | x(n))dθ. (4.7)

This expression integrates out the unobserved variables (the parameters) conditionally on
the observed ones (the dataset). Therefore, as it is averaged over the posterior distribution,
the uncertainty on the estimation of the parameters is included in the prediction model.
Note that a frequentist version of the predictive distribution also exists, see Lawless and
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Fredette (2005) for a review and Shen et al. (2018) for a definition unifying frequentist,
Bayesian, and fiducial approaches. The use of posterior predictive for an extreme value
model can already be found in Davison (1986) and Smith (1999). de Zea Bermudez et al.
(2001) uses it for extreme quantile estimation with a Poisson-GPD model. An explicit
expression is given in the case when ξ = 0. More recently, the properties of posterior
predictive for extremes have been studied and compared with other approaches that we
will detail in the next section (Fawcett and Green, 2018, Jonathan et al., 2021).

Plug-in versus predictive. Many authors have suggested employing a predictive ap-
proach instead of a plug-in one. Indeed, the plug-in method fails to account for the
uncertainty associated with parameter estimation and treats the estimates as if they were
absolute truth. Note that extreme value problems have intrinsically scarce datasets, so
the quantification of uncertainty is all the more crucial for these problems. In the general
case, Cox (1975) shows that in the plug-in approach, the coverage probability of prediction
intervals should be corrected to consider the uncertainty around the estimation. Davison
(1986) also points out the weaknesses of the approach, and suggests to use a Laplace
approximation (Tierney and Kadane, 1986) on the posterior predictive instead. Aitchi-
son (1975) shows that the predictive distribution is the optimal choice in terms of KL
divergence, as it minimizes the integrated risk (see also Robert, 2007, Chapter 2). An
asymptotic comparison of predictive and plug-in estimators is proposed by Smith (1999)
for different losses. Here, the conclusion is more nuanced and the authors show that the
plug-in method can be asymptotically more accurate on certain losses.

Recently, some empirical comparison have been proposed by Fawcett and Green (2018)
and Jonathan et al. (2021) for extreme value models. Fawcett and Green (2018) shows
using simulations that the predictive return level estimates are higher than those of the
plug-in approach, but argues in favor of this solution as it provides a point summary that
considers estimation uncertainty. Jonathan et al. (2021) offers a wide-ranging comparison
of several approaches for estimating Bayesian extreme return levels. It includes the plug-
in approach, the one using posterior predictive, and a third one which consists in the
posterior mean of the return level. The latter is the one recommended by the authors.

In this chapter, we are interested in the properties in the tails of prior and poste-
rior predictive distributions, along with two Bayesian estimators of extreme return level
described in Jonathan et al. (2021). The rest of the chapter is organized as follows: in
Section 4.2, we present our asymptotic results, and in Section 4.3 we illustrate the be-
haviour on simulations with several configurations. Further expansions are suggested in
Section 4.4 and all the proofs are provided in Appendix 4.A.

4.2 Tail behaviors

In the following section, we are interested in the limits of tail extrapolation for Bayesian
quantities with a fixed number of observations. The aim is to get insights on what is
happening if one wants to use Bayesian estimators for extreme value inference. We restrict
ourselves to the case of ξ ≥ 0.
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4.2.1 Prior predictive

We are first interested in the tail behaviour of the prior predictive associated with a GPD
model. Denoting by H̄pred the associated survival function and p(σ, ξ) the prior on the
GPD parameters, Equation (4.6) can be written

H̄pred(x) :=
∫ +∞

−∞

∫ +∞

0
H̄(x | σ, ξ)p(σ, ξ)dσdξ,

=
∫ +∞

−∞

∫ +∞

0

{
1 + ξ

x

σ

}−1/ξ

+
p(σ, ξ)dσdξ.

(4.8)

Under this formula, it is not clear how the prior uncertainty around σ and ξ is affecting
the one at the observation level. In particular in the tail, the choice of p(σ, ξ) may induce
a maximum domain of attraction for H̄pred.

Equation (4.8) can be seen as a mixture of generalized Pareto survival functions, where
the weights accross dσ and dξ are governed by the prior p(σ, ξ). Similarly to a discrete
mixture, survival functions H̄(x | σ, ξ) with heavier ξ are expected to asymptotically
dominate the behaviour in the tail of H̄pred. Typically, if ξ has a prior with a finite upper
bound ξ2, one can expect a prior predictive distribution to be heavy-tailed with index ξ2.
The following proposition details this intuition in the case of a uniform prior for ξ.

Proposition 1. Suppose p(σ, ξ) = p(σ) ⊗ U(ξ1, ξ2) with 0 ≤ ξ1 < ξ2. Depending on the
prior p(σ), three cases arise:

(i) If E
[
σ1/ξ2+ϵ

]
<∞ for some ϵ > 0, then Hpred ∈ MDA(Gξ2), and as x→∞,

H̄pred(x) ∼ E
[
σ1/ξ2

] ξ
2−1/ξ2
2

ξ2 − ξ1

x−1/ξ2

log x
.

(ii) Otherwise, if p(σ) is heavy-tailed with associated cdf Fσ ∈ MDA(Gγ) and γ > ξ2,
then Hpred ∈ MDA(Gγ). Moreover, as x→∞,

H̄pred(x) ∼ cξ1,ξ2,γF̄ σ(x), with cξ1,ξ2,γ = 1
ξ2 − ξ1

∫ ξ2

ξ1
ξ−1/γB(1/ξ − 1/γ, 1/γ)dξ,

where B(·, ·) denotes the Beta function.

(iii) Finally, if p(σ) is heavy-tailed with associated cdf Fσ ∈ MDA(Gξ2), then Hpred ∈
MDA(Gξ2).

Part of the proof in Appendix 4.A is simplified thanks to Breiman’s theorem: see
Lemma 1 (Breiman, 1965) and a refinement by Embrechts and Goldie (1980) that handles
(iii). A first observation of the result given in Proposition 1 is that the behavior indeed
depends on the prior on ξ, but also on the one on σ: if σ has a prior with an extreme
index larger than ξ2, then the prior predictive acts as the one of σ in the tail. Otherwise,
assuming that σ is heavy tailed, the extreme index is ξ2. It should be noted that this
distinction does not encompass all possible scenarios, since there are cases where the
condition on moments may not be satisfied and having a distribution that does not belong
to a maximum domain of attraction. Proposition 1 means that the prior predictive behaves
like the most pessimistic case enabled a priori (i.e. the largest possible ξ). Therefore,
parameter uncertainty translates at the observable level the most dispersed case.
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4.2.2 Posterior predictive

How is the predictive distribution impacted by the observation of data x(n)? The prior
distribution p(σ, ξ) in Equation (4.8) is replaced by the posterior p(σ, ξ | x(n)) to obtain
the survival function of the posterior predictive:

H̄pred(x | x(n)) =
∫∫

H̄(x | σ, ξ)p(σ, ξ | x(n))dσdξ.

Assuming that the densities p(xi | σ, ξ) are exactly GPD for i = 1, . . . , n, the Bayes’ rule
yields

H̄pred(x | x(n)) = 1
p(x(n))

∫∫ {
1 + ξ

x

σ

}−1/ξ

+
p(σ, ξ)σ−n

n∏
i=1

(
1 + ξ

xi

σ

)−1/ξ−1
dσdξ. (4.9)

A likelihood term along with the evidence p(x(n)) is therefore added in the expression
compared to the prior predictive case. The following result can be seen as a generalization
to any number of observations n of the Proposition 1 (i) that covers the case n = 0.

Proposition 2. If the extreme value index is a priori uniform so that ξ ∼ U(ξ1, ξ2)
with 0 ≤ ξ1 < ξ2, and the prior on σ is such that E

[
σ(n+1)/ξ2I{σ ≤ 1}

]
< ∞ and

E
[
σ1/ξ2−n+ϵI{σ ≥ 1}

]
<∞, then Hpred(· | x(n)) ∈ MDA(Gξ2), and as x→∞, we have

H̄pred(x | x(n)) ∼ x−1/ξ2

log x
ξ

2−1/ξ2
2

∫ +∞

0
σ1/ξ2p(σ, ξ2 | x(n))dσ

= x−1/ξ2

log x

ξ
2−1/ξ2
2

(ξ2 − ξ1)p(x(n))

∫ +∞

0
σ1/ξ2−n

n∏
i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
p(σ)dσ.

It is important to note that the requirements on the prior moment for σ is not stringent
and is less and less as n increases. Typically, if ξ2 = 1 and a distribution with a finite
variance is chosen, a value of n = 1 is sufficient to satisfy both conditions. This proposition
demonstrates that adding observations only affects the constant term in the asymptotic
expression, but the extreme index ξ2 still serve as an upper bound for ξ. Hence, the
behavior is still primarily governed by the heaviest tail. This observation reflects the fact
that there comes a point where extrapolating in the tail becomes unreasonable, as the
associated uncertainty in the estimate becomes too substantial, resulting in predictions
that resemble the most extreme cases predicted by the model.

This could have been expected because of the decorrelation of the asymptotic of the
quantile x from n. In more conventional extreme value problems, the aim is to estimate the
probability associated with a quantile xn that depends on n, to extend beyond the available
data while maintaining a reasonable proximity to it. The consideration of asymptotics with
respect to n is not addressed here but can be seen as the next step. Such an analysis could
lead to consistency or asymptotic normality results, as discussed in Section 4.4.

4.2.3 Return levels

Recall that the final quantity of interest here is the return level ℓα defined in Equation (4.4),
which is a random variable in the Bayesian paradigm. From there, three strategies sum-
marized in Jonathan et al. (2021) are possible for obtaining a point estimation:
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1. Plug-in of parameters estimation: this consists in inserting an estimator of the
parameters in Equation (4.4), for example, the posterior mean:

ℓ(1)
α := u + H−1

(
1− α

F̄ (u)
| E
[
σ, ξ | x(n)

])
.

2. Posterior mean of return level: this consists in considering ℓα as a posterior
quantity from which a posterior mean can be computed:

ℓ(2)
α := u + E

[
H−1

(
1− α

F̄ (u)
| σ, ξ

)
| x(n)

]
.

3. Posterior predictive quantile: this consists in inverting the posterior predictive
distribution:

ℓ(3)
α := u + H−1

pred

(
1− α

F̄ (u)
| x(n)

)
, with Hpred(· | x(n)) defined in Equation (4.9).

Here, our focus is on the tail behavior of ℓ
(2)
α and ℓ

(3)
α when a fixed number of ob-

servations is considered. These two methods are selected because, contrary to ℓ
(1)
α , they

incorporate parameter uncertainty in the estimation process. However, it is important to
note that they differ in terms of when it is included: the second method incorporates it
before inverting the cdf, while the third one incorporates it after the inversion. Note that
on simulations, Jonathan et al. (2021) observes that ℓ

(2)
α ≤ ℓ

(3)
α and that the true value ℓα

verifies ℓα ≤ ℓ
(3)
α . In the subsequent results, we omit the notation of F̄ (u) by an abuse of

notation, since it is treated as a constant in this context. First, we obtain the following
result for the posterior predictive return level:
Proposition 3. If the extreme value index is a priori uniform so that ξ ∼ U(ξ1, ξ2) with
0 ≤ ξ1 < ξ2, and the prior on σ is such that E

[
σ1+n/ξ2I{σ ≤ 1}

]
<∞ and E

[
σ1−nI{σ ≥ 1}

]
<

∞, then as α→ 0, we have

ℓ(2)
α ∼ α−ξ2 (ξ2 log(1/α))−1

∫ +∞

0
σp(σ, ξ2 | x(n))dσ.

For ℓ
(3)
α , the asymptotic expression given in Proposition 2 allows us to deduce an

asymptotic expression of its inverse:
Proposition 4. Under the assumptions of Proposition 2 and as α→ 0, we have

ℓ(3)
α ∼ α−ξ2 (ξ2 log(1/α))−ξ2

(∫ +∞

0
σ1/ξ2p(σ, ξ2 | x(n))dσ

)ξ2

.

As expected, the predictive return level asymptotically behaves like the heaviest pos-
sible case, with an α−ξ2 term, but Proposition 3 shows that it is also the behaviour of the
posterior mean of return level ℓ

(2)
α . Only the constant and the power of the log change

between the two methods, and we indeed have asymptotically ℓ
(2)
α ≤ ℓ

(3)
α if ξ2 < 1, but

the order changes if ξ2 > 1. When ξ2 = 1, both estimators have the same asymptotic
equivalent. The proof methods employed in these approaches results in different assump-
tions regarding the prior moments of σ. However, it is worth noting that similarly to
Proposition 2, both assumptions are rapidly satisfied as the number of data increases.
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4.3 Simulations

We validate the results derived in Propositions 3 and 4 through simulations conducted
under various configurations. Specifically, we consider different values of ξ2 ∈ {0.5, 1, 2} as
the upper bound for the uniform distribution on ξ, and varying numbers of observations
n ∈ {2, 10, 100}. In each scenario, we generate samples x(n) from a GPD with parameters
σ0 = 15, ξ0 = 0.1 < ξ2, and a threshold u = 0. The true return level, as defined in
Equation (4.4), simplifies to:

ℓα = σ0
ξ0

(
α−ξ0 − 1

)
.

To estimate ℓ̂
(i)
α for i ∈ {1, 2, 3}, we employ the Metropolis–Hastings algorithm imple-

mented in PyMC3 (Salvatier et al., 2016). We retain 2500 iterations across 4 chains,
discarding previous 1000 samples as burn-in. Convergence diagnostics such as effective
sample size (ESS), autocorrelation, and R̂∞ (Moins et al., 2023) support the adequacy
of this sample size to approximate the posterior distribution. The estimated return lev-
els replicated five times for α ranging from 10−2 to 10−4 are depicted as dotted lines in
Figure 4.1. Plain lines represent the asymptotic formulas derived in Propositions 3 and 4
for ℓ̂

(2)
α and ℓ̂

(3)
α respectively. Estimating the two constants involves evaluating an integral

that lacks an explicit form. We approximate these constants using an MCMC method on
the univariate posterior estimation, assuming a GPD model with known ξ = ξ2. We find
that 1000 iterations and 1000 iterations of burn-in are enough here.

As expected, all the asymptotic curves (solid lines) deviate from the actual one (in
black), as the slope at the logarithmic scale is ξ2 instead of ξ0. Consequently, the discrep-
ancy in the return level asymptotes becomes more pronounced as ξ2 moves further away
from ξ0. However, we observe that incorporating additional observations in the likelihood
causes the estimator to deviate from its asymptotic curve and converge towards the true
value. This behavior suggests that the number of observations n influences the conver-
gence rate towards the degenerate asymptotic distribution. At the logarithmic scale, this
deviation manifests in both the slope and the intercept, making it challenging to discern
that the solid lines actually represent asymptotes of the dotted line, particularly in the
case of n = 100 and ξ2 = 2. The plug-in method exhibits a similar behavior, but it appears
to converge more rapidly towards the true return level compared to the other methods.

4.4 Conclusion and future work

This chapter presents some preliminary findings regarding the tail behaviour of predictive
distributions (prior and posterior) and return level estimators when a uniform prior is
assumed for the shape parameter ξ. The results demonstrate that incorporating uncer-
tainty into the estimates for a finite number of observations is asymptotically equivalent
to the most pessimistic scenario, where the shape parameter is set to the upper bound ξ2.
Therefore, if the cdf of the observation F is such that F ∈ MDA(Gξ0) with ξ0 < ξ2, then
the obtained results conflict with the observations.

These findings provide insights into the limits of extrapolation. In the tail asymptotics,
the tail index depends solely on the prior through its upper bound, which reflects the de-
generate nature of extrapolation that goes beyond the available data. Simulations indicate
that substantial tail extrapolation is necessary to observe estimations approaching their
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Figure 4.1: On each plot, five replications of return level estimators ℓ̂
(i)
α for i ∈ {1, 2, 3} (dotted

lines), and the asymptotic expressions of ℓ̂
(2)
α and ℓ̂

(3)
α (plain lines), for a dataset with n observations

following a GPD with (σ0, ξ0) = (15, 0.1) (the black lines represent the real return level). Each
row represents a choice of n ∈ {2, 10, 100}, and each column a choice of the support upper bound
of the prior on ξ: ξ2 ∈ {0.5, 1, 2}.
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asymptotes, typically quantiles associated with probabilities on the order of n−2 or even
n−3. However, it is worth noting that the influence of the prior becomes more significant
in this context, emphasizing the need for careful prior design (Moins et al., 2023). In cases
where the prior is uninformative, the choice of an upper bound for a uniform prior on ξ
can have a huge impact on posterior estimations.

These results suggest several potential directions for further exploration:

1. Generalization of the prior on ξ > 0. It is likely that any prior on ξ with finite
right endpoint ξ2 will result in a predictive distribution with an extremal index equal
to ξ2. While the specific constant may vary, it seems that it is not the uniformity of
ξ that leads to this outcome, but rather the fact that the support is upper-bounded.
In the case of an unbounded support on the prior of ξ, one can expect a super-heavy
tailed behavior, where the predictive distribution does not belong to any domain
of attraction, with a right tail that decreases extremely slowly to zero, typically
exhibiting a logarithmic decrease.

2. Generalization to the three maximum domains of attraction. The current
study focuses on the case where ξ ≥ 0, which encompasses two maximum domains of
attraction. A natural extension would be to consider the general case for ξ, leading
to discussions similar to those in the study by Richards and Tawn (2022), which
investigates the tail behavior of aggregated variables.

3. Derivation of expansions. Refining the asymptotic results could provide insights
into the convergence rate towards its equivalent, particularly the dependence with
respect to the sample size n in the posterior results. This information could help us
understand the behavior observed in Figure 4.1.

4. Including an asymptotic with n. Another important aspect is the asymptotic
study of quantiles associated with n-dependent probabilities (e.g. of order c/n with
c > 0). Increasing the quantile as the sample size grows could yield consistency
results, similar to those obtained by Padoan and Rizzelli (2022) for block maxima
models. It is worth noting that Padoan and Rizzelli (2022) employ an empirical Bayes
method, which yields stronger results by accounting for the misspecification of the
maxima distribution approximated by a generalized extreme value distribution.

These future directions hold potential for further exploration and refinement of the
presented results.

4.A Proofs

Lemma 1 (Breiman, 1965). Let X = Y Z with Y and Z two independent non-negative
random variables such that FY ∈ MDA(Gα) with α > 0, and E

[
Z1/α+ϵ

]
< ∞ for some

ϵ > 0. Then, FX ∈ MDA(Gα) and

F̄ X(x) ∼ E
[
Z1/α

]
F̄ Y (x),

as x→∞.
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Proof of Proposition 1. (i) Letting p(σ, ξ) = p(σ) ⊗ U(ξ1, ξ2), the prior predictive
distribution can be written as

H̄pred(x) = 1
ξ2 − ξ1

∫ +∞

0

∫ ξ2

ξ1

(
1 + ξ

x

σ

)−1/ξ

p(σ)dξdσ, x ≥ 0.

It appears that H̄pred can be interpreted as the survival function associated with the
product of two random variables: Xσ=1 with survival function

F̄ σ=1(x) = 1
ξ2 − ξ1

∫ ξ2

ξ1
(1 + ξx)−1/ξ dξ, x ≥ 0,

and σ with density p(σ) so that

H̄pred(x) =
∫ +∞

0
F̄ σ=1(x/σ)p(σ)dσ, x ≥ 0.

Without loss of generality, suppose that ϵ < 1
ξ1
− 1

ξ2
. Let us show that F̄ σ=1 ∈ MDA(Gξ2)

and more specifically, that

F̄ σ=1(x) ∼ ξ
2−1/ξ2
2

ξ2 − ξ1

x−1/ξ2

log x
, (4.10)

as x→∞. To this end, consider the expansion

F̄ σ=1(x) = 1
ξ2 − ξ1

(I1(x) + I2(x)) , (4.11)

with

I1(x) =
∫ (1/ξ2+ϵ)−1

ξ1
(1 + ξx)−1/ξ dξ and I2(x) =

∫ ξ2

(1/ξ2+ϵ)−1
(1 + ξx)−1/ξ dξ.

Let us first focus on I1(x). Since the function ξ 7→ (1 + ξx)−1/ξ is increasing for all x > 0,
one has

0 ≤ I1(x) ≤ ((1/ξ2 − ϵ)−1 + ξ1)(1 + (1/ξ2 + ϵ)−1x)−1/ξ2−ϵ = o

(
x−1/ξ2

log x

)
. (4.12)

Second, the change of variable s =
(

1
ξ −

1
ξ2

)
log x yields

I2(x) = 1
log x

∫ ϵ log x

0

(
1 +

(
s

log x
+ 1

ξ2

)−1
x

)− s
log x

− 1
ξ2
(

s

log x
+ 1

ξ2

)−2
ds,

= x−1/ξ2

log x

∫ ∞

0
e−s

(
1
x

+
(

s

log x
+ 1

ξ2

)−1
)− s

log x
− 1

ξ2
(

s

log x
+ 1

ξ2

)−2
I{s ≤ ϵ log x}ds.

Clearly, for all s ≥ 0, the integrand is positive and converges to e−sξ
2−1/ξ2
2 as x → ∞.

Moreover, it is uniformly bounded on x ∈ R+ as follows:

e−s

(
1
x

+
(

s

log x
+ 1

ξ2

)−1
)− s

log x
− 1

ξ2
(

s

log x
+ 1

ξ2

)−2
I{s ≤ ϵ log x} ≤ e−s (1/ξ2 + ϵ)

s
log x

+ 1
ξ2 ξ2

2 ,

≤ e−s max
{

1, (1/ξ2 + ϵ)ϵ+ 1
ξ2

}
ξ2

2 .

(4.13)
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Remarking that the upper bound in (4.13) is integrable, the dominated convergence the-
orem yields

I2(x) ∼ x−1/ξ2

log x

∫ ∞

0
e−sξ

2−1/ξ2
2 ds = ξ

2−1/ξ2
2

x−1/ξ2

log x
, (4.14)

as x→∞. Collecting (4.11), (4.12) and (4.14) proves (4.10) and Lemma 1 concludes.

(ii) In this case, we use Lemma 1 with the roles of Y and Z reversed. Here, α = 1/γ,
Y = σ and Z = Xσ=1, so that it only remains to prove that E

[
X1/γ+ϵ | σ = 1

]
< ∞ for

some ϵ > 0 and compute E
[
X1/γ | σ = 1

]
. For all α < 1/ξ2, we can compute

E [Xα | σ = 1] =
∫ ∞

0
αxα−1F̄ X|σ=1(x)dx

= 1
ξ2 − ξ1

∫ ∞

0

∫ ξ2

ξ1
αxα−1 (1 + ξx)−1/ξ dξdx

= α

ξ2 − ξ1

∫ 1

0

∫ ξ2

ξ1
ξ−α(1− y)α−1y−α+1/ξ−1dξdy (change of variable y = (1 + ξx)−1)

= α

ξ2 − ξ1

∫ ξ2

ξ1
ξ−αB(1/ξ − α, α)dξ,

which is well defined as long as α < 1/ξ2. So if ϵ = 1
2

(
1
ξ2
− 1

γ

)
> 0, we have 1

γ + ϵ =
1
2

(
1
ξ2

+ 1
γ

)
< 1

ξ2
, so E

[
X1/γ+ϵ | σ = 1

]
<∞ which concludes.

(iii) The proof combines the result proved in (i) that Xσ=1 ∈ MDA(Gξ2) with Theo-
rem 3 in Embrechts and Goldie (1980).

Proof of Proposition 2. In the same way as in the proof of Proposition 1, we suppose
that ϵ < 1

ξ1
− 1

ξ2
and we split the integral in two parts: H̄pred(x | x(n)) = 1

(ξ2−ξ1)p(x(n))(I1(x)+
I2(x)), with

I1(x) =
∫ +∞

0

∫ (1/ξ2+ϵ)−1

ξ1

(
1 + ξ

x

σ

)−1/ξ

σ−n
n∏

i=1

(
1 + ξ

xi

σ

)−1/ξ−1
p(σ)dξdσ,

and I2(x) =
∫ +∞

0

∫ ξ2

(1/ξ2+ϵ)−1

(
1 + ξ

x

σ

)−1/ξ

σ−n
n∏

i=1

(
1 + ξ

xi

σ

)−1/ξ−1
p(σ)dξdσ.

For I2(x), the change of variable s =
(

1
ξ −

1
ξ2

)
log x leads to

I2(x) = x−1/ξ2

log x

∫ +∞

0

∫ ϵ log x

0
fx(s, σ)p(σ)dsdσ,

with

fx(s, σ) := e−s

(
1
x

+
(

s

log x
+ 1

ξ2

)−1 1
σ

)− s
log x

− 1
ξ2
(

s

log x
+ 1

ξ2

)−2

σ−n
n∏

i=1

(
1 +

(
s

log x
+ 1

ξ2

)−1 xi

σ

)− s
log x

− 1
ξ2

−1

.
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As x→∞, fx(s, σ) converges to f(s, σ) := e−sξ
2−1/ξ2
2 σ1/ξ2−n∏n

i=1
(
1 + ξ2

xi
σ

)−1/ξ2−1. The
function s 7→ f(s, σ)p(σ) is clearly integrable on R+, and we have

σ1/ξ2−n
n∏

i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
≤ min

{
σ1/ξ2−n, σ(n+1)/ξ2

n∏
i=1

(ξ2xi)−1/ξ2−1
}

so σ1/ξ2−n
n∏

i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
≤
(

n∏
i=1

(ξ2xi)−1/ξ2−1
)

σ(n+1)/ξ2I{σ ≤ 1}+ σ1/ξ2−nI{σ ≥ 1},

(4.15)

and so σ 7→ f(s, σ)p(σ) is integrable on R+ as we assume that E
[
σ(n+1)/ξ2I{σ ≤ 1}

]
<∞

and E
[
σ1/ξ2−n+ϵI{σ ≥ 1}

]
<∞. To dominate the function fx(s, σ), we start by observing

that a similar bound as in Equation (4.13) can be derived to obtain

(
1
x

+
(

s

log x
+ 1

ξ2

)−1 1
σ

)− s
log x

− 1
ξ2
≤ max

{
1, (1/ξ2 + ϵ)ϵ+ 1

ξ2

}
σ

s
log x

+ 1
ξ2 ,

≤ max
{

1, (1/ξ2 + ϵ)ϵ+ 1
ξ2

}(
σ1/ξ2I{σ ≤ 1}+ σ1/ξ2+ϵI{σ ≥ 1}

)
.

Moreover, as ξ 7→ (1 + ξx)−1/ξ is increasing and
(

s
log x + 1

ξ2

)−1
≤ ξ2 ∀s ∈ [0, ϵ log x], we

have

σ−n
n∏

i=1

(
1 +

(
s

log x
+ 1

ξ2

)−1 xi

σ

)− s
log x

− 1
ξ2

−1

≤ σ−n
n∏

i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
,

≤
(

n∏
i=1

(ξ2xi)−1/ξ2−1
)

σn/ξ2I{σ ≤ 1}+ σ−nI{σ ≥ 1},

in the same way as in Equation (4.15). Combining both inequalities, we obtain

fx(s, σ)p(σ) ≤ Ce−sp(σ)
((

n∏
i=1

(ξ2xi)−1/ξ2−1
)

σ(n+1)/ξ2I{σ ≤ 1}+ σ1/ξ2−n+ϵI{σ ≥ 1}
)

,

with C = ξ2
2 max

{
1, (1/ξ2 + ϵ)ϵ+ 1

ξ2

}
. This bound is integrable since E

[
σ(n+1)/ξ2I{σ ≤ 1}

]
<

∞ and E
[
σ1/ξ2−n+ϵI{σ ≥ 1}

]
<∞. So by using the dominated convergence theorem, we

obtain

I2(x) ∼ x−1/ξ2

log x

∫ +∞

0

∫ +∞

0
f(s, σ)p(σ)dsdσ

= x−1/ξ2

log x
ξ

2−1/ξ2
2

∫ +∞

0
σ1/ξ2−n

n∏
i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
p(σ)dσ.
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To conclude the proof, let us show that I1(x) = o
(

x−1/ξ2
log x

)
:

I1(x) ≤
∫ +∞

0

∫ ξ2

(1/ξ2+ϵ)−1

(
1 + (1/ξ2 + ϵ)−1 x

σ

)−1/ξ2−ϵ

σ−np(σ)dξdσ

≤
∫ 1

0

∫ ξ2

(1/ξ2+ϵ)−1
(1/ξ2 + ϵ)1/ξ2+ϵx−1/ξ2−ϵσ1/ξ2−n+ϵp(σ)dξdσ

+
∫ +∞

1

∫ ξ2

(1/ξ2+ϵ)−1

(
1 + (1/ξ2 + ϵ)−1x

)−1/ξ2−ϵ
σ−np(σ)dξdσ

= C

(
E
[
σ(n+1)/ξ2)I{σ ≤ 1}

]
x−1/ξ2−ϵ + E

[
σ−nI{σ ≥ 1}

] (
1 + (1/ξ2 + ϵ)−1x

)−1/ξ2−ϵ
)

,

with C = (ξ2 − (1/ξ2 + ϵ)−1)(1/ξ2 + ϵ)1/ξ2+ϵ. So I1(x) = o
(

x−1/ξ2
log x

)
, which concludes.

Proof of Proposition 3 With an abuse of notation, assume that u = 0 and F̄ (u) = 1.
The posterior mean of ℓα can be written

ℓ(2)
α :=

∫ +∞

0

∫ ξ2

ξ1

σ

ξ

(
α−ξ − 1

)
σ−n

n∏
i=1

(
1 + ξ

xi

σ

)−1/ξ−1
p(σ)dξdσ

Similarly to the proof of Proposition 2, the change of variable s = −(ξ2− ξ) log α leads to

ℓ(2)
α = α−ξ2

log 1/α

∫ +∞

0

∫ +∞

0
fα(s, σ)p(σ)dsdσ,

with

fα(s, σ) := σ−n+1

ξ2 + s
log α

(
e−s − αξ2

) n∏
i=1

(
1 +

(
ξ2 + s

log α

)
xi

σ

)−
(

ξ2+ s
log α

)−1
−1

I{s ≤ −(ξ2−ξ1) log α}.

As α → 0, fα(s, σ) converges to f(s, σ) := e−s σ−n+1

ξ2

∏n
i=1

(
1 + ξ2

xi
σ

)−1/ξ2−1. Similarly to
Equation (4.15), we have

σ−n+1
n∏

i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
≤
(

n∏
i=1

(ξ2xi)−1/ξ2−1
)

σ1+n/ξ2I{σ ≤ 1}+ σ1−nI{σ ≥ 1},

(4.16)
and so (s, σ) 7→ f(s, σ)p(σ) is integrable on R+×R+ as we assume that E

[
σ1+n/ξ2I{σ ≤ 1}

]
<

∞ and E
[
σ1−nI{σ ≥ 1}

]
<∞. Moreover, we have

fα(s, σ)p(σ) ≤ σ−n+1

ξ1
e−s

n∏
i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
p(σ),

which is integrable as we can use the same bound as in Equation (4.16). So by using the
dominated convergence theorem, as α→ 0, we obtain

ℓ(2)
α ∼ α−ξ2

log 1/α

∫ +∞

0

∫ +∞

0
f(s, σ)p(σ)dsdσ,

∼ α−ξ2

log 1/α

∫ +∞

0

σ−n+1

ξ2

n∏
i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
p(σ)dσ,

which concludes.
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Proof of Proposition 4 This proof relies on the theory of regularly-varying func-
tions (see Bingham et al., 1989). As Hpred(· | x(n)) ∈ MDA(Gξ2) using Proposition 2,
1/H̄pred(x | x(n)) is regularly varying with index 1/ξ2. Using Proposition B.1.9 in (Haan
and Ferreira, 2006), it is known that if an increasing function is regularly varying with
index 1/ν > 0 then its inverse is regularly varying with index ν. As ℓ

(3)
α is defined such

that H̄pred(ℓ(3)
α | x(n)) = α, there exists a slowly-varying function L such that the posterior

predictive quantile can be written

H−1
pred(1− 1/α) = ℓ

(3)
1/α = αξ2L(α),

or equivalently,
ℓ(3)

α = α−ξ2L(1/α). (4.17)

Moreover, using the expression obtained in Proposition 2, we have

α = H̄pred(ℓ(3)
α | x(n)) = cn

ℓ
(3)−1/ξ2
α

log ℓ
(3)
α

(1 + o(1)) ,

with

cn := ξ
2−1/ξ2
2

(ξ2 − ξ1)p(x(n))

∫ +∞

0
σ1/ξ2−n

n∏
i=1

(
1 + ξ2

xi

σ

)−1/ξ2−1
p(σ)dσ.

Combining with Equation (4.17), we obtain

cn
αL(1/α)−1/ξ2

ξ2 log 1/α + log L(1/α) (1 + o(1)) = α

cnL(1/α)−1/ξ2 (1 + o(1)) = ξ2 log 1/α + log L(1/α).

Since L is slowly varying, we have log L(1/α)
log 1/α → 0 as α → 0 (see Bingham et al., 1989,

Proposition 1.3.6), and therefore

cnL(1/α)−1/ξ2 (1 + o(1)) = (ξ2 log 1/α) (1 + o(1))
⇐⇒ L(1/α)−1/ξ2 =

(
− ξ2

cn
log α

)
(1 + o(1))

⇐⇒ L(1/α) =
(
− ξ2

cn
log α

)−ξ2 (1 + o(1))−ξ2 .

So ℓ
(3)
α ∼

(
− ξ2

cn
α log α

)−ξ2 as α→ 0, which concludes.
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Résumé

D ans ce chapitre, nous illustrons les résultats des chapitres précédents (Chapitres 2, 3
et 4) sur divers ensembles de données environnementales fournis par EDF : trois

ensembles de données de débits de cours d’eau et trois ensembles de données de vitesses
du vent, à Tours, Reims et Orange.

Les objectifs sont de vérifier le comportement sur données réelles, de fournir une es-
timation bayésienne des niveaux de retour, de comparer les résultats avec les études in-
ternes précédentes d’EDF, ainsi que de répondre à la question principale sur les limites de
l’extrapolation dans des exemples pratiques.

Une limite majeure à l’application de nos modèles utilisés jusqu’ici est l’hypothèse
d’observations indépendantes et identiquement distribuées que nous avons supposée tout
au long du manuscrit. Cette hypothèse n’est pas raisonnable pour les données brutes en
raison de la dépendance temporelle journalière, ainsi que de la saisonnalité et des tendances
à plus grande échelle de temps. Par conséquent, des étapes de traitement des données sont
nécessaires avant l’application des modèles.

Après une brève introduction des motivations et un rappel des notations (Partie 5.1),
les différentes étapes de prétraitement des données sont décrites en Partie 5.2, et la config-
uration des expériences est présentée en Partie 5.3. Les résultats sont ensuite exposés en
Partie 5.4, tandis que la conclusion propose différentes pistes d’amélioration (Partie 5.5).
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Abstract

I n this chapter, we illustrate the results from the previous chapters (Chapters 2, 3 and 4)
on various environmental datasets provided by EDF: three river flow datasets and three

wind speed datasets, located in Tours, Reims, and Orange.
The objectives are to examine the behavior on different real-world datasets, provide a

Bayesian estimate of return levels, compare the results with previous internal studies con-
ducted by EDF, and address the main question regarding the limitations of extrapolation
in practical examples.

A major limitation in the application of our models is the assumption of independent
and identically distributed data that we have made throughout the manuscript. This
assumption is not reasonable for raw data due to daily temporal dependence, as well
as seasonality and trends on larger time scales. Therefore, data preprocessing steps are
necessary before applying the models.

After a brief introduction of the motivations and a reminder of the notations (Sec-
tion 5.1), the various data preprocessing steps are described in Section 5.2, and the exper-
imental setup is presented in Section 5.3. The results are then presented in Section 5.4,
while the conclusion suggests different avenues for improvement (Section 5.5).
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5.1 Introduction

5.1.1 Motivations

After proposing improvements for Bayesian inference of extreme models in the previous
chapters, we focus here on the behavior of the Bayesian framework on different environ-
mental datasets provided by EDF. The objectives are multiple:

1. Verify the behavior on real-world datasets, and identify application-driven paths of
exploration.

2. Provide a Bayesian estimate of extreme return levels and compare the results with
previous EDF studies as well as standard frequentist methods.

3. Investigate experimentally the limits of extrapolation of extreme value modelling.

A first case study has been investigated in Chapter 2 with the estimation of extreme return
levels for the Garonne river flow data. We complete this by analysing six other datasets:
three of them correspond to river flows in other locations in France: the Loire at Tours,
the Meuse at Reims and the Rhône at Orange, and the three others correspond to wind
speed in the same places. The datasets come from Banque Hydro or has been directly
produced internally by EDF. Note that a bivariate study of the observations in Reims is
already available in Sibler and Dutfoy (2021). More generally, this analysis belongs to a
vast literature of extreme value analysis applied to natural hazard: see Pan et al. (2022)
for a recent review on flow analysis, and Walshaw (1994), Holmes and Moriarty (1999),
Larsén et al. (2015) for extreme wind estimation.

Each dataset is studied in univariate way following the same steps, described succes-
sively in the next sections. After a quick definition of the model in Section 5.1.2, we
describe all the preprocessing steps in Section 5.2, and the Bayesian setup in Section 5.3.
Results are finally presented in Section 5.4 for the six datasets, and discussed in Section 5.5.

5.1.2 Bayesian extreme value modeling

For each datasets, we use a Poisson process characterisation of extremes to model obser-
vations over a given threshold and therefore deduce estimation of extreme return levels.
Recall that the likelihood associated with this process for nu observations (x1, . . . , xnu)
above a threshold u is given by:

L(x, nu | µ, σ, ξ) = exp
(
−m

(
1 + ξ

(
u− µ

σ

))−1/ξ
)

σ−nu

nu∏
i=1

(
1 + ξ

(
xi − µ

σ

))−1−1/ξ

,

(5.1)
with (µ, σ, ξ) ∈ R × R+ × R and where m > 0 is a scaling factor corresponding to the
number of years of observation. The objective here is to estimate the return level ℓT

corresponding to a value exceeded on average once every T years. If G denotes the cdf of
the generalized extreme value (GEV) distribution, then:

ℓT = G−1(1− 1/T | µ, σ, ξ) = µ− σ

ξ

(
1− (− log(1− 1/T ))−ξ

)
. (5.2)

The estimation of ℓT through the estimation of the three parameters (µ, σ, ξ) will be done
under the Bayesian paradigm. We refer to Chapter 1 for a more detailed introduction on
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extreme value theory and Bayesian statistics, and to Chapter 2 for details on the approach
that will be used here for a Bayesian estimation of extreme return levels.

5.2 Preprocessing

Several preprocessing steps are necessary to obtain data that can be used for inference.
Each of them have already been studied in the literature of extremes applied to envi-
ronmental data. They lead to hyperparameter choices based here on graphical methods
combined with analyses already carried out in internal reports at EDF. We detail here the
steps that will be performed for each case.

5.2.1 Jittering

The datasets are obtained with instruments that have a finite precision. Therefore, the
obtained measurements are rounded to a given precision, which in our case is to the tenth
or even to the nearest unit. This is an issue as we assume that our variable are continuous,
and so observing identical data should be a zero probability event, but a lot of rounded
measure have the same value here. One way to overcome this issue is to add a continuous
noise, which is called a jittering approach (Andreewsky and Bousquet, 2021). Here, we
choose a centered uniform noise with a support length equal to the precision of roundness
(for example, a uniform U(−0.05, 0.05) for variables rounded to the nearest tenth). From
an extreme value point of view, if the tail index of the observations is higher than the
one of a uniform variable (which is ξ = −0.5), then its value is unchanged after jittering.
However, because of the independence between the noise and the measurements, this step
increases slightly the variance of the observations.

5.2.2 Seasonality

Alternating between seasons might change the behaviour of environmental variables, es-
pecially when studying extreme events. Therefore, seasonal variability prevents us from
considering that the observations are independant and identically distributed (i.i.d).

Boxplots for the different months in the year are represented in Figure 5.1 for the six
series. By looking at the flow datasets, we can distinguish two seasons where observations
appear to be stationary: one rainy season, mainly during winter, contains the most extreme
events, and a drier season in summer. However, this division depends on the location. One
can include the spring into the rainy season for the Rhône (Orange), whereas it is more
in the dry one for the Meuse (Reims). Concerning the wind speed series, the seasonal
variability is less clear. The variance of the observations during summer seems a little
lower than over the rest of the year, but in the same time the mean seems to be constant
over the months. Moreover, the observation of the maximum in July for the data at Tours
indicates that extreme events can be expected during the dry season.

In the extreme value literature, different strategies exist to handle seasonality (more
details can be found in Davison and Smith (1990), Fawcett and Walshaw (2016)).

1. The first one consists in keeping only the season concerned by extreme events, or
alternatively to fit a model to each season. The latter option assumes that the
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River flow Wind speed
Tours December to May Entire year
Reims December to February October to March
Orange October to May October to May

Table 5.1: Summary of months kept for inference for each dataset.

observations are governed by the same physical phenomena over the year, but with
different intensities depending on the season, which can typically be the case of wind
speeds as they are governed by patterns of anticyclone and depressions (Fawcett and
Walshaw, 2016).

2. The other option would be to model a time dependence for the parameters of the ex-
treme value distribution: (µ(t), σ(t), ξ(t)), that is typically written with a parameter
vector and some covariates that depend on t but can also depend on other factors,
see Chavez-Demoulin and Davison (2005) for a general additive model example.

These datasets have already been studied by EDF and have led to the choice of keeping
only the rainy season on indicated months, even on datasets where no seasonality is really
apparent (except for the wind speed in Tours where the entire year is kept). We maintain
these choices, for example for the wind speed in Reims, where only the months from
October to March are considered, as the justification comes from a physical analysis.
Thus, based on the boxplots in Figure 5.1 and on the previous studies, we keep this choice
of removing the dry season for all the datasets. Table 5.1 summarizes the season kept for
each case.

5.2.3 Temporal dependence

Even with seasonality removed, the i.i.d. assumption for excesses over a given threshold
is unrealistic here, as extreme events are due to meteorological conditions that can last
several days of observations. This is reflected by the partial autocorrelation graph for
the six series in Figure 5.2, which corresponds to the autocorrelation function at each
lag t ∈ {0, . . . , 25} after removing the contribution of smaller lags k between 1 and t.
Figure 5.2 confirms the correlation between observations separated by only a few days.
From there, two strategies exist.

1. Removing dependence by declustering (Davison and Smith, 1990). The idea
is simply to merge data close in time, as they correspond to the same extreme
event. Inference is then performed on clusters of exceedances, with a parameter
rc corresponding to the maximal interval of days between two consecutive excesses
inside one cluster. As pointed out in (Coles, 2001, Chapter 5), this method has the
limitation to reduce even more the data that will be used for inference, and more
generally can be sensitive to the choice of rc.

2. Considering dependence by estimating the extremal index. Under suitable
conditions (see Coles, 2001, Chapter 5), one can show that the distribution of the
maximum of a stationary sequence of n random variables Mn can be approximated
by F nθ if F is the distribution of the observations, with θ ∈ (0, 1] (for independent
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River flow Wind speed
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Figure 5.1: Boxplots as functions of the different months of the year (1 = January, . . . , 12 =
December) for the river flow and the wind speed at Tours, Reims, and Orange.
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series, θ = 1). The estimation of θ (known as the extremal index) can be done after
fitting an extreme value model: see Ferro and Segers (2003) for an example of an
estimator of θ. The dependence can also be modeled by assuming a Markov chain
behaviour, see for example Fawcett and Walshaw (2012).

In our case, the declustering method seems satisfactory as the partial autocorrelation
graphs in Figure 5.2 provide an easy way to identify a reasonable choice of rc. Moreover,
the excesses are sufficiently sparse so that the sensitivity to rc for the final number of
clusters is reduced. By looking at Figure 5.2, we observe a similar behaviour in the three
sites. The cluster size is set to rc = 3 for the three river flow datasets and to rc = 2 for
the three wind speed ones.

5.2.4 Threshold elicitation

The choice of threshold is crucial for models using GPD or Poisson process characterisation
of extremes. If it is too large, the asymptotic approximation by the limit law will be
accurate but the small number of observations will lead to poor estimations of parameters.
Conversely, it is too small, the parameter estimation will be improved as the sample size
increases, but the asymptotic theoretical behaviour will not be verified. With the Bayesian
point of view, the threshold governs the importance given to the prior versus observations.

In the general case, a variety of methods based on graphical methods, non parametric
estimation or probabilitic results exist and none of them seems universally accepted, which
makes this question still open. A review of threshold selection can be found in Scarrott and
MacDonald (2012) and more recently in Pan et al. (2022). In practice, the most common
methods are the graphical diagnostics described in (Coles, 2001, Chapter 4): mean residual
life plot, Hill plot, QQ plot, or return level plot. In particular, the mean residual life plot
has the benefit of being used in all domains of attraction (provided ξ < 1). It is based
on the property of GPD distributions to have a linear relationship for the mean over the
threshold u as a function of u. Therefore, u is chosen as the lowest level that leads to
linearity for sample mean excesses. Although this method has already been criticized by
Coles (2001) for its difficulty to spot linearity in practice, it is the most popular and still
seems to be the most satisfactory according to a recent comparison of Langousis et al.
(2016).

Mean residual life plots for the six datasets are shown in Figure 5.3. Some of them
allow to draw a clear hypothesis about the choice of threshold, typically the river flow in
Tours (u = 1700) or the wind speed in Reims (u = 26), but others are much less clear.
Typically, linearity is far from being verified for the data in Orange. For all datasets, we
are helped with previous studies at EDF which suggest a threshold and allow us to have a
value when the mean residual life plot is not conclusive, and to confirm the choices when
a value is suggested by the plot. A summary of the chosen threshold for each dataset is
given in Table 5.2.

A representation of the obtained datasets after these steps is shown in Figure 5.4. The
number of observations varies between nu = 57 for the smallest one (river flow in Reims)
and nu = 272 for the largest one (river flow in Orange). To assess the robustness of our
estimations with respect to the choice of u, we show in Figure 5.6 the evolution of the
posterior mean of ξ and the associated credible interval as a function of u.

Note also that looking at the different plots of Figure 5.4, a temporal trend could
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River flow Wind speed
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Figure 5.2: Partial autocorrelation graphs as functions of the lag for the river flow and the wind
speed at Tours, Reims, and Orange.

River flow Wind speed
Tours 1700 22
Reims 620 26
Orange 3000 29

Table 5.2: Summary of chosen threshold for each dataset.
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River flow Wind speed
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Figure 5.3: Mean residual life plots for the river flow and wind speed at Tours, Reims, and
Orange. The threshold choice would be the one for which the curve starts to be linear (good
approximation of the excesses by the GPD).
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be suspected for some series. A possible way to model such a phenomenon is to include
covariates in the extreme value model (See Section 2.2 and Gardes and Girard (2010)).

5.3 Experimental Setup

5.3.1 Prior

In all our cases here, no external information about the parameters is provided. Therefore,
the Jeffreys prior on (r, ν, ξ) (see Section 2.3) could be considered, as it is based on an
uninformative rule and leads to a proper posterior (see Proposition 2). However, even
without any expert information, this kind of dataset has already been studied in the
literature:

• It is common to assume that wind speed variables belong to the Gumbel’s domain
of attraction with ξ = 0 (See references in Parey et al., 2021), although there are
case studies where inference is improved if one assumes ξ < 0 (Walshaw, 1994). As
physical models do not suggest any upper bound to wind speed, this observation is
justified by a slow convergence of the maxima to a Gumbel distribution.

• Concerning river flows, as in other hydrological applications, the distributions are
usually heavy-tailed, with ξ > 0 (Langousis et al., 2016).

These two cases, like the majority of natural phenomena, can be modelled by a shape
parameter in the range (−1, 1), even without any prior information on ξ. Therefore, a PC
prior on ξ defined in Section ?? can be used to include this information. This prior allows
the user to navigate between the uninformative case and the deterministic one where ξ = 0.
In our experiments, the influence of the prior information on the posterior estimation will
be checked by comparing three priors:

1. The Jeffreys prior defined in (2.11), supposed to be uninformative.

2. A PC prior with λ = 5, which corresponds to a prior confidence level of 95% to
have ξ ∈ [−0.8, 0.4]. This can be seen as the intermediate case, where the prior
information approximately corresponds to our prior knowledge on natural hazards
behaviour.

3. A PC prior with λ = 10, which corresponds to a prior confidence level of 95% to
have ξ ∈ [−0.3, 0.3]. This prior corresponds to a case of stronger confidence to fact
that |ξ| is near 0. Although in practice it does not correspond to the information
we have, this limiting case allows us to see the uncertainty mitigation if one makes
such an assumption.

5.3.2 MCMC algorithm

The implementation of the MCMC algorithms uses the Python library PyMC3 (Salvatier
et al., 2016). Four chains of 5000 Metropolis–Hastings iterations are performed on the
(r, ν, ξ) parameterization, defined in Section 2.2. A burn-in period of 1000 iterations
is done beforehand. Different convergence diagnostics such as the effective sample size
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River flow Wind speed
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Figure 5.4: Data above the threshold (in red) obtained after preprocessing for the river flow and
wind speed at Tours, Reims, and Orange.
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(ESS), autocorrelation graphs, and the local version of the Gelman–Rubin diagnostic R̂∞
proposed in Chapter 3, indicate a convergence to the posterior distribution on each of the
datasets.

5.3.3 Return level estimation

From a Bayesian perspective, the parameters θ := (µ, σ, ξ) resulting from the transfor-
mation of (r, ν, ξ) follow a posterior distribution. Various methods can be employed to
combine these parameters and estimate the return level as defined in Equation (5.2), as
detailed in Chapter 4. In this study, we will utilize the second method outlined in Sec-
tion 4.2, where the return level is treated as a random variable (a function of θ). The
posterior mean of this variable is then determined as follows:

ℓ̂
(2)
T = Ep(·|x)(G−1(1− 1/T | θ)).

Subsequently, the quantification of uncertainty is achieved by calculating the posterior
quantiles of the return level:

CI(2) = [q2.5(G−1 (1− 1/T | θ)) , q97.5(G−1 (1− 1/T | θ))].

A comparative analysis, both theoretical and experimental, of this method along with
two others is presented in Chapter 4. However, no definitive conclusion regarding the
preferred choice can be drawn from this investigation. It is worth noting that, according
to the empirical comparison by Jonathan et al. (2021), the posterior mean of the return
level is often the preferred option.

5.4 Results

5.4.1 Parameter estimation

The results of the Bayesian estimation of (µ, σ, ξ) are reported in Table 5.3 and Figure 5.5
for the river flow and wind speed datasets. For each case study, the results with the
different priors are given with a frequentist estimation using the maximum likelihood
estimator (MLE) as implemented in the extRemes package (Gilleland and Katz, 2016).
Note that despite its asymptote in −0.5, Jeffreys prior seems to yield the closest estimation
to the MLE.

As expected, the credible intervals are tighter when information is added in the prior,
i.e. when a PC prior is used and when λ increases. The posterior mean of ξ is approaching
zero, and the posterior mean of σ compensates this constraint in ξ due to the prior (if
ξ increases with λ, σ decreases, and conversely). Except for the river flow in Tours, all
the estimations indicate a value of ξ near 0. For the river flow in Reims and Orange,
the assumption that ξ > 0 is plausible but one cannot reject the hypothesis that ξ ≤ 0.
For the wind speed series, the assumption that ξ = 0 seems to be confirmed on the three
sites. More generally, this confirms the information included in the PC prior that ξ will
be close to zero. Therefore, its influence is relatively weak as it does not contradict the
data, and also because of the sufficient number of observations: the estimations in Reims
are those that vary the most as the sample size is the smallest (nu = 57 for the river flow
and nu = 107 for the wind speed).
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River flow

Jeffreys PC(λ = 5) PC (λ = 10) MLE
Mean SD 95%-CI Mean SD 95%-CI Mean SD 95%-CI MLE SD

T
ou

rs µ 2113 108 [1904, 2324] 2072 96 [1881, 2253] 2054 94 [1871, 2239] 2275 106
σ 845 98 [652, 1032] 784 87 [620, 959] 760 83 [603, 921] 754 72
ξ −0.34 0.11 [−0.50, −0.14] −0.23 0.12 [−0.43, 10−3] −0.160 0.12 [−0.38, 0.05] −0.33 0.10

R
ei

m
s µ 612 23.2 [566, 659] 610 22.7 [565, 655] 610 24.1 [562, 657] 619 21.3

σ 169 36.1 [103, 242] 172 32.0 [111, 235] 178 30.7 [117, 236] 159 32.9
ξ 0.12 0.16 [−0.17, 0.43] 0.09 0.12 [−0.12, 0.34] 0.05 0.09 [−0.12, 0.25] 0.11 0.15

O
ra

ng
e µ 3860 79.1 [3709, 4016] 3856 77.2 [3709, 4013] 3856 76.1 [3713, 4010] 3989 0.31

σ 811 53.3 [710.1, 912.4] 808 51.8 [705, 906] 805 51.1 [704, 903] 818 0.32
ξ 0.03 0.07 [−0.09, 0.18] 0.04 0.06 [−0.10, 0.16] 0.02 0.06 [−0.08, 0.14] −1.10−9 0.06

Wind speed

Jeffreys PC(λ = 5) PC (λ = 10) MLE
Mean SD 95%-CI Mean SD 95%-CI Mean SD 95%-CI MLE SD

T
ou

rs µ 26.9 0.49 [26.0, 27.9] 26.9 0.50 [26.0, 27.9] 26.8 0.49 [25.9, 27.8] 26.6 0.48
σ 3.15 0.29 [2.66, 3.73] 3.20 0.29 [2.66, 3.79] 3.20 0.30 [2.65, 3.80] 3.10 0.26
ξ −0.08 0.09 [−0.25, 0.10] −0.05 0.08 [−0.21, 0.11] −0.03 0.07 [−0.18, 0.11] −0.10 0.09

R
ei

m
s µ 28.0 0.47 [27.1, 29.0] 28.0 0.46 [27.1, 28.9] 28.0 0.46 [27.1, 29.0] 28.7 0.52

σ 4.02 0.48 [3.15, 5.00] 4.04 0.46 [3.20, 4.98] 4.07 0.44 [3.24, 4.96] 4.02 0.44
ξ 0.09 0.11 [−0.11, 0.32] 0.07 0.09 [−0.09, 0.27] 0.05 0.08 [−0.10, 0.20] 0.08 0.11

O
ra

ng
e µ 33.5 0.35 [32.8, 34.2] 33.5 0.35 [32.9, 34.2] 33.5 0.35 [32.9, 34.2] 33.2 0.34

σ 3.13 0.24 [2.69, 3.60] 3.12 0.23 [2.69, 3.57] 3.10 0.21 [2.67, 3.51] 3.08 0.22
ξ 0.04 0.08 [−0.10, 0.19] 0.03 0.06 [−0.09, 0.17] 0.02 0.06 [−0.08, 0.15] 0.03 0.08

Table 5.3: Posterior mean and 95% credible interval (CI) for River flow and wind speed studies
with Jeffreys prior and PC prior with λ ∈ {5, 10}. An estimation by maximum likelihood (MLE)
and the associated standard deviation estimate (SD) are also given for each case.

The case of the river flow data in Tours is more questionable: it is clear that we are in
the Weibull domain of attraction (ξ < 0), and that the assumption of having ξ = 0 can be
rejected at 95% even when some prior information is added to penalize values far from 0
(for λ = 5, 0 is at the frontier of the 95% credible interval but almost all the values inside
are negative). However, ξ seems also too negative for Jeffreys prior, defined for ξ > −0.5:
this support constraint is also applied to the posterior and the 95% credible interval hits
this value of −0.5. This border effect can be seen on the top right plot in Figure 5.5: it
is clear that this behaviour is not due to the data but on a poor choice of prior and its
asymptote that favors −0.5. This confirms that our choice of a PC prior with λ = 5 is the
most reasonable for all our case studies.

5.4.2 Influence of threshold selection

To assess the robustness of our estimation with respect to the choice of threshold u,
Figure 5.6 shows the evolution of the posterior mean of ξ and the associated credibility
interval at 95% for each dataset and three priors: Jeffreys prior, PC prior with λ = 1
which is almost flat for ξ < 1, and PC prior with λ = 10 which concentrates around zero.
A first remark that can be made is that estimators using PC priors are more stable than
those using Jeffreys’ one, even PC prior with λ = 1 which can be seen as uninformative.
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Figure 5.5: Posterior distibutions of (µ, σ, ξ) for Jeffreys prior and PC prior with λ ∈ {5, 10},
applied on the three River flow and the three wind speed datasets.
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This is especially apparent for the wind speed a Orange and Reims, and the river at Reims
where the estimation of ξ decreases with the threshold. This regularization effect comes
with a bias that can be added for values near 0, which is the case for all datasets with
the PC prior with λ = 10. However, Jeffreys prior puts a significant part of its mass near
−0.5, which can also induce negative bias in particular for the estimation of a negative ξ
like the River flow at Tours. Priors have therefore an influence on posterior inference even
in the case of Jeffreys, supposed to be uninformative.

5.4.3 Return level estimation

The extrapolation of the return level curve is shown in Figure 5.7 for the three priors.
The associated centennial, millennial, and deca-millennial return levels are reported in
Table 5.4 for the river flow and the wind speed cases.

There are cases where the results differ significantly with the prior, but the plots
in Figure 5.7 show that the observed annual maxima are always included in all credible
intervals, which prevents us from excluding a potential wrong choice of prior. For the river
flow at Tours, the disagreement between the priors was expected in view of the differences
of posterior for ξ (see Figure 5.5). However, we also observe strong differences between
return level curves for the datasets at Reims. This corresponds to studies with the lowest
number of observations, and even if the posterior estimations for the parameters seemed
to agree, this difference here can be explained by the difference in variability for ξ (see
Figure 5.5). Typically, the credible intervals for ξ are wider with Jeffreys prior, and adding
high values of ξ increases the estimation of the posterior mean of the return level. This
intuition corroborates the results found in Chapter 4, where we show that the highest
values of ξ determine the tail behaviour of the posterior return level. For the river flow
and wind speed in Orange, the prior influence is less important due to a higher number of
observations.

Note that despite some differences with the three priors for some datasets, the estima-
tion of the return levels using MLE are always in the credible intervals at 95%.

5.4.4 Limits of extrapolation

An important question is that of the limit of extrapolation of return levels for these studies:
looking at the uncertainties around the estimation, is it reasonable to provide a deca-
millennial return level? To this end, several sources of uncertainty must be considered:

• Uncertainty related to data collection/preprocessing. Here we focus on a
statistical model using data that are supposed to be i.i.d. This is clearly not the case
of the environmental variables under study, where the randomness comes both from
the lack of knowledge of the underlying physical model and from the uncertainty
associated with the collection of measurements. The i.i.d. assumption requires
therefore the use of several steps that are described in Section 5.2. However, all of
these steps are questionable in their ability to really solve the problem, in particular
for these quantities that are likely to be impacted by climate change.

• Uncertainty related to model misspecification. In addition to the approxi-
mations associated with the data assumptions, there are also those associated with
the asymptotic model: the Poisson process characterization of extremes comes from
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Figure 5.6: Evolution of the posterior mean of ξ and the associated credible interval at 95% as
a function of the threshold for the River flow and wind speed at Tours, Reims, and Orange. For
each plot, the three curves correspond to different choices of prior: Jeffreys prior (in blue), PC
prior with λ = 1 (in green) and λ = 10 (in red).
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River flow return levels

Return Period Jeffreys PC (λ = 5) PC (λ = 10) MLE

T
ou

rs Centennial 4127 [3745, 4678] 4395 [3729, 5377] 4575 [3780, 5608] 4031
Millennial 4479 [3951, 5397] 5049 [3979, 7005] 5432 [3974, 7415] 4285
Deca-millennial 4670 [4023, 5913] 5529 [4021, 8503] 6116 [4024, 9197] 4400

R
ei

m
s Centennial 1696 [1224, 2473] 1594 [1213, 2107] 1529 [1236, 1915] 1573

Millennial 2886 [1394, 5768] 2416 [1409, 4100] 2131 [1500, 3150] 2271
Deca-millennial 5638 [1510, 14019] 3780 [1554, 8048] 2864 [1556, 4965] 3171

O
ra

ng
e Centennial 8001 [6543, 9681] 7943 [6707, 9507] 7841 [6737, 9177] 7659

Millennial 10653 [7513, 14955] 10506 [7627, 14251] 10211 [7891, 13397] 9546
Deca-millennial 13726 [8030, 22164] 13418 [8341, 21022] 12782 [8498, 18630] 11429

Wind speed return levels

Return Period Jeffreys PC (λ = 5) PC (λ = 10) MLE

T
ou

rs Centennial 39.31 [34.46, 46.39] 40.48 [34.68, 47.52] 40.66 [35.22, 46.65] 38.00
Millennial 44.76 [36.05, 59.25] 47.19 [36.29, 61.75] 47.48 [37.17, 59.28] 41.97
Deca-millennial 49.86 [36.67, 74.03] 53.81 [37.06, 79.19] 54.09 [37.95, 73.71] 45.10

R
ei

m
s Centennial 53.94 [42.44, 71.27] 49.97 [42.63, 59.52] 51.53 [42.21, 63.67] 51.03

Millennial 79.77 [47.44, 139.11] 70.94 [47.12, 108.24] 65.57 [48.76, 92.87] 65.72
Deca-millennial 124.98 [48.55, 279.70] 99.35 [49.91, 188.62] 85.50 [51.99, 146.06] 83.33

O
ra

ng
e Centennial 46.95 [42.75, 52.44] 47.60 [43.28, 52.69] 47.73 [43.38, 52.39] 48.52

Millennial 52.90 [44.87, 63.90] 54.27 [46.03, 64.58] 54.51 [46.38, 64.07] 57.19
Deca-millennial 58.35 [46.29, 76.89] 60.55 [47.69, 77.78] 60.89 [48.13, 76.73] 66.57

Table 5.4: Estimation of the centennial, millennial, and deca-millennial return levels for the three
river flow and the three wind speed studies. The posterior mean and 95% credible interval (CI) of
the return level are computed with Jeffreys prior and PC prior with λ ∈ {5, 10}. An estimation
using maximum likelihood (MLE) is also given for each case.
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Figure 5.7: Return levels for annual maxima for the river flow and wind speed at Tours, Reims,
and Orange. The three curves correspond to different choices of prior: Jeffreys (in blue), PC prior
with λ = 10 (in green) and λ = 5 (in orange).



Chapter 5. Case study on river flows and wind speed data 138

a result of convergence of point process, and therefore is only true in the limit. In
addition to the error associated with the estimation of the parameters of the process,
there is also an error associated with approximating the true process with its limit,
with a finite number of data and a fixed threshold. See the thesis of Albert (2018)
for a study of this extrapolation error for the same purpose. Thus, any credible
interval for return levels obtained here assumes that the model is well specified, and
do not consider this approximation error term.

• Uncertainty related to MCMC approximation. To have an access to the
posterior distribution of parameters or return level, we use an MCMC method that
generates samples that converge to the target distribution. Therefore, for a finite
number of iterations of the algorithm, all the quantities of interested derived from the
posterior are obtained by a Monte Carlo approximation, which adds another form
of uncertainty. See Krüger et al. (2021) for results of consistency in the estimation
of posterior predictive distribution using MCMC methods. Note that in view of all
the MCMC convergence diagnostic we use (autocorrelation, ESS, R̂), it seems that
convergence to the posterior has been achieved, and it is reasonable to assume that
this error is negligible compared with the others cited.

• Uncertainty in the model itself. Finally, one can look at the uncertainty mod-
elled by our Bayesian method, in particular at the credible intervals of the return
levels. In other terms, if we assume that our data are i.i.d., exactly distributed
according to a model of extremes, that the MCMC algorithm indeed returns exact
posterior samples, and that the prior effectively models our prior knowledge about
the data, etc., what information do we have about a return level associated with
a given period? What uncertainty encompass the estimation? By looking at the
results in Table 5.4, and in particular the credible intervals for deca-millenial return
levels, the size of the intervals are in the order of the estimate. If the interval is
centered (which is not the case here, the average value is closer to the right bound
than to the left one), this means an error of around 50% of the estimated value at
95%. For example, if we consider the deca-millenial estimation of the river flow at
Orange (13418m3/s), the obtained credible interval at 95% ([8341, 21022]) repre-
sents a relative error of 38% for the lower bound, and of 57% for the upper one. In
such a case that is supposed to favor the estimation error as it corresponds to the
largest dataset, and without even considering all the other sources of uncertainty,
these values seem too high to give a return level that can be exploited.

Therefore, considering all these remarks, one can discuss the relevance of estimating
deca-millenial return levels. The millenial ones, although reduced, seem to suffer from the
same issues too.

5.5 Conclusion and future work

Using the results obtained in the previous chapters, we applied a Bayesian framework for
the estimation of a Poisson process model for extremes on datasets from different locations
in France: wind speed and river flow in Tours, Reims, and Orange. Based on graphical
methods, prior knowledge from the litterature on environmental studies as well as internal
EDF reports, we discussed all the steps and choices of our model.
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In particular, prior elicitation plays a crucial role as it adds information even with
an uninformative prior. Our results show that it can strongly influence the posterior
inference and the estimation of return levels. The PC prior is interesting as it can reduce
uncertainty and add coherent information on the parameter ξ. Looking at the estimation,
Jeffreys prior seems to behave the most like a non-informative prior, in the sense that
its uncertainty associated with the estimate is the greatest in most cases, and because
its value is the closest to the frequentist MLE. However, its asymptote in −1/2 may
add bias to the estimation when ξ < 0 and may constrain the support of the posterior
distribution. Moreover, as the variability in the posterior of ξ is wider with Jeffreys prior,
the associated posterior return levels may be superior to those using PC prior, as a higher
mass on bigger ξ increases the posterior mean of return values (see Chapter 4). As a first
future exploration track, it could be interesting to quantify the prior influence by using
recent methods like the estimation of a prior effective sample size for extreme value models
(see for example Jones et al., 2022).

Some future reaserch directions have already been mentionned in the previous chapters,
and we complete here by those concerning the preprocessing steps before applying the
model:

• Dealing with seasonality: keeping only the rainy season is a simple method but
has various flaws: the reduction of the effective number of observations, the empirical
choice of months to keep, and also the non-consideration of longer time trend in the
series. Adding a time covariate may improve the model in that sense, and could be
tested on datasets in the future.

• Dealing with data dependence: the way we decorrelate the data could be im-
proved in various ways. One interesting method would be to generalize the Poisson
process model with a Hawkes process (Hawkes, 1971). This allows the model to have
an intensity with a self-exiciting part, which means that observing an occurrence may
influence the observation of another one. Several works already apply this for mod-
elling the excesses over a threshold (Chavez-Demoulin and McGill, 2012, Dissanayake
et al., 2021), and it would be intersting to study how to estimate this process in a
Bayesian way, and how to connect with the asymptotic results of Ferro and Segers
(2003).

• Threshold elicitation: although crucial, the question of choosing the number of
excesses is still open, and the graphical methods commonly used may be unsatisfac-
tory. In the Bayesian paradigm, this issue can be associated to the one of quantifying
the prior impact, since it governs the number of data for inference.

After all these steps, our method provides an estimate of the return level associated
with return periods up to deca-millennial, but one can also bring a partial answer to the
original problem: what is the reasonable limit of extrapolation? This question is, of course
partly subjective, and requires clarification of what “reasonable“ means. However, we have
shown that the uncertainties associated with a deca-millennial estimate, modeled here by
credible intervals, are very large without even including all sources of errors. Consequently,
an estimation of a level as far in the tail as a deca-millenial one seems unreasonable, at
least from experimental insights.





Conclusion & perspectives

Conclusion

This thesis has made several contributions that enhance Bayesian methods for estimating
extreme events, with a particular focus on characterizing extremes using the Poisson pro-
cess. Specifically, the research has concentrated on addressing computational challenges
and various steps involved in the so-called Bayesian workflow (Gelman et al., 2020).

In Chapter 2, two key steps of the workflow are addressed. Firstly, prior elicitation
is tackled by suggesting a Jeffreys prior for the uninformative case and a PC prior for
the informative case regarding the shape parameter ξ. The posterior propriety is demon-
strated in both cases, and the impact of incorporating additional information on posterior
uncertainty is investigated. The second step concerns the computational issues associated
with MCMC algorithms in extreme models, and are resolved by employing an orthogonal
reparameterization. The proposed change of variable facilitates the convergence of MCMC
algorithms for observations in the three domains of attraction.

A third step is then addressed in Chapter 3, which is the improvement of MCMC
convergence diagnostic, and in particular the potential scale reduction factor R̂. A local
version of the diagnostic is demonstrated, both theoretically and experimentally, to be
effective in diagnosing a variety of convergence issues, and a multivariate extension is
suggested.

Lastly, a final step concerning the evaluation of the model is done in Chapter 4, where
the aim is to investigate different posterior quantities of interest. Preliminary results high-
light the degenerate behavior in the tail for all of them for a finite number of observations.

To provide empirical validation and practical application, all these suggestions are
applied to various environmental datasets of interest for EDF in Chapter 5. This empirical
validation complements the overall study and opens up new avenues for future exploration.

Perspectives

The various research axes developed during the thesis and described in the previous chap-
ters all offer multiple perspectives. Although each chapter mentions possible future work,
the different topics are summarized here, for which it would be interesting to carry out
extensions.

Priors elicitation for extreme value models (Chapter 2). In general, when it
comes to Bayesian statistics, the choice of prior is still an open question and remains closely
related to the underlying problem. Only a few uninformative priors, such as Jeffreys, are
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constructed based on general rules for any likelihood. However, the specific case of extreme
value models does not seem to be resolved.

Firstly, other priors could be calculated. In the case of uninformative priors for extreme
models, it would be interesting to explicitly specify reference priors (Bernardo, 1979)
which, to our knowledge, is not explored in the literature, and also extend the calculations
of Ho (2010) for matching priors (Datta and Sweeting, 2005).

On the predictive scale, a more detailed study on the implications of a prior distri-
bution on quantiles, and reciprocally, studying the distribution of quantiles after a prior
assumption on (µ, σ, ξ), could extend the work of Coles and Tawn (1996) and Gaioni et al.
(2010). These works could also be complemented by a study of a multivariate distribution
on three quantiles (q1, q2, q3) instead of the three univariate priors, which would explain
the underlying dependence structure.

Finally, to discriminate between all these choices of priors, both in the informative and
uninformative cases, it would be interesting to use recent advances on quantifying prior
impact (Nott et al., 2020, Jones et al., 2022) for extreme value cases.

Improving MCMC convergence diagnostic (Chapter 3). Concerning convergence
diagnostics, multiple tracks could be explored for expanding our proposition of a local R̂.

First, a significant contribution would be to obtain a stronger convergence result on
the empirical process R̂(·) that is studied in Section 3.2. In our work, only a result of
weak convergence is proved, i.e. the convergence in distribution of R̂(x) for all x. This
approach prevents us from obtaining any results on R̂∞, which is the supremum over all
quantiles x. Therefore, a stronger convergence result on the empirical process could allow
an explicit formulation of the threshold as a function of a confidence level α for R̂∞, in
the same way it is already obtained for R̂(x).

This work could also be extended by linking the proposition made by Margossian et al.
(2022) in parallel to ours. In particular, the authors suppose to have groups of chains called
superchains where all the chains inside are initizialized in the same way. This allows the
authors to refine their estimation of W and B, and this idea could be exploited for our
local version, but also in order to link with other convergence diagnostics like ESS (Vats
and Knudson, 2021).

Finally, one can see our approach to dealing with the R(x) estimation ‘too frequentist’,
in the sense that we provide a scalar estimator R̂(x) and study the behavior asymptotically
with the number of observations. Instead, a Bayesian point of view for dealing with the
diagnostic is an idea that could be explored.

Bridging the gap between Bayesian and frequentist extremes (Chapter 4).
There exist various approaches aimed at reconciling the Bayesian and frequentist perspec-
tives, and it would be insightful to compare these methods asymptotically, following the
path set by Smith (1999).

Firstly, as mentioned in the previous paragraph on prior elicitation, deriving match-
ing priors is a way to obtain frequentist properties through prior modeling. Also, the
Bernstein–von Mises theorem (Van der Vaart, 2000) shows that under certain conditions,
frequentist and Bayesian approaches asymptotically lead to the same result. However,
these results do not apply to extreme value models as extreme value distributions like
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GEV or GPD are not regular, since the support depends on the parameter. Moreover, the
models are misspecified in the sense that the block maxima are only asymptotically GEV,
and the excesses are asymptotically GPD. The recent work by Padoan and Rizzelli (2022)
brings very promising results in the GEV case, as it manages to achieve asymptotic results
for misspecified models using an empirical Bayesian model. This work could be extended
and connected with the results in Chapter 4.

In particular, Chapter 4 delves into the behavior of Bayesian quantities in the tail, such
as posterior predictives or return levels. Examining the tail behavior with probabilities
dependent on the sample size n could potentially yield asymptotic properties of Bayesian
estimators for extreme return levels, which could then be compared with frequentist esti-
mators, such as maximum likelihood or probability weighted moments.

A more adapted extreme model for environmental application (Chapter 5).
Extreme value models are extensively employed in the analysis of environmental data,
and so there is room for improvement in considering the inherent characteristics of these
data to enhance the accuracy of inference. Several existing studies have addressed impor-
tant aspects such as data dependence, seasonality, and non-stationarity, as referenced in
Chapter 5.

While this thesis primarily focused on improving models based on i.i.d. observations,
further exploration of more general cases, especially from a Bayesian perspective, could be
pursued. Currently, the preprocessing steps preceding model application assume marginal
i.i.d. observations within the Bayesian framework. Chapter 5 highlights the potential value
of incorporating assumptions regarding the temporal nature of events, such as generalizing
to a Hawkes process (Hawkes, 1971), incorporating covariates, or performing Bayesian
estimation of the extremal index (Ferro and Segers, 2003).

Also, it is important to address scenarios in which historical data are only available
above a threshold that decreases over time. Such cases occur with seismic data, and a rel-
evant improvement would involve extending the Poisson model to incorporate a piecewise
constant threshold. This advancement would have direct practical relevance and enhance
the applicability of the model in these contexts.

Other extensions. In addition to the extensions proposed in the previous chapters,
there are several unexplored ideas that could further enhance this work.

Firstly, in this thesis, when it comes to eliciting a threshold as in Chapter 2 or Chap-
ter 5, only a simple graphical method recommended by Coles (2001) has been employed,
even when it does not yield clear conclusions. For these cases, previous investigations
conducted at EDF, along with an assessment of estimation stability with respect to the
threshold (e.g. in Figure 5.6), have been carried out. However, in the general case, this
approach is not optimal, and developing a comprehensive method for prior selection in
the univariate context remains an open challenge. Alternative methods including those
suggested in Scarrott and MacDonald (2012), Pan et al. (2022), could be explored, and in
particular on a Bayesian framework.

Secondly, in the environmental context, considering the datasets in a multivariate man-
ner could be beneficial. This can be achieved either by incorporating spatial aspects, i.e.,
simultaneously analyzing data from multiple stations for a specific variable of interest (e.g.,
wind speed or river flow), or by considering multiple related variables at the same location.
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The field of multivariate extreme value theory has witnessed significant advancements over
the years, see Chapter 8 in Beirlant et al. (2006) for an introduction and Davison et al.
(2012), Dutfoy et al. (2014) for some reviews.

Lastly, considering semi-parametric models for extreme value inference, particularly
within a Bayesian framework, could offer alternative estimators for the tail index with
appealing asymptotic properties. A first conjugate case with Pareto data has been intro-
duced in Chapter 11 of Beirlant et al. (2006), and further extensions have been proposed
recently (Beirlant et al., 2018, Li et al., 2019). These methods provide other opportunities
to enhance the estimation of extreme values in the Bayesian paradigm.
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