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RESUME EN FRANCAIS

Située a l'interface entre les capteurs portables et les problématiques de ’analyse du
mouvement, cette these s’intéresse a la reconnaissance de I'activité humaine a travers une

approche systémique.

L’analyse du mouvement comprend de nombreux champs d’applications comme la
santé, le sport ou ’ergonomie. Les enjeux se situent dans le domaine de I'instrumentation,
du matériau au systéme notamment dans la conception de systemes embarqués autonomes.
Parmi les capteurs les plus utilisés, on retrouve les centrales inertielles généralement com-
posées d'un accélérometre, d’'un gyroscope et/ou d’un magnétometre. Leur faible coiit,
leur légereté et leur compacité offrent de grands avantages quant a leur intégration dans
les systemes embarqués. On trouve l'utilisation de centrales inertielles et de goniometres
pour I’évaluation des postures de l'utilisateur [1] ou encore pour la quantification de la
charge de travail des sportifs [2]. Ainsi, la taille du marché des centrales inertielles se voit
grandir avec une augmentation estimée a 13.08 % (taux de croissance cumulée 2022-2027)
[3]. Les applications se fondant sur 1'utilisation de ces centrales inertielles sont de plus en
plus nombreuses. Partie intégrante de ’analyse du mouvement, on trouve la reconnais-
sance d’activité humaine. Cela consiste généralement a classifier de facon automatique
des actions effectuées par l'utilisateur. En s’appuyant sur différentes configurations de
centrales inertielles et de méthodes de classification, plusieurs applications de reconnais-
sance d’activité sont présentées dans la littérature [4, 5] et constituent un premier verrou.
Cependant, le placement des centrales inertielles sur le corps humain n’est pas trivial. En
effet, la précision de la reconnaissance dépend non seulement des parametres des méthodes
employées mais aussi intrinsinquement du positionnement de ces capteurs. Ainsi, il est
nécessaire de s’assurer du placement optimal de ces capteurs pour prétendre a I'obtention
d’une précision optimale de la reconnaissance d’activité. D’apres nos recherches, il n’existe
pas de méthode générale permettant d’obtenir ces optimums de positions. C’est une prob-

lématique commune a toutes les applications.

Un autre verrou des systémes embarqués pour la reconnaissance du mouvement con-
siste a s’interroger sur les aspects énergétiques. L’autonomie d’un systeme de reconnais-

sance de l'activité humaine est un pilier important ajoutant flexibilité et confort dans
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I’analyse des mouvements humain. L’alimentation des divers capteurs et organes présents
se fait habituellement par l'utilisation de piles ou batteries. Néanmoins, dans un ob-
jectif de développement durable, il est nécessaire de reconsidérer cette question. Il ex-
iste de nos jours d’autres moyens d’alimenter les systemes électriques comme par ex-
emple I'utilisation de récupérateurs d’énergies [6]. Parmi les plus répandus, on retrouve
les récupérateurs d’énergie cinétique comme les générateurs piezoélectriques [7]. Offrant
une bonne versatilité et adaptabilité, ils peuvent étre utilisés dans de nombreuses con-
figurations différentes sur le corps humain. Plus particulierement, 'utilisation de poutres
piezoélectriques présente un réel intérét pour la récupération d’énergie [8, 9]. Cependant,
la conception de ces systemes vibrants pour des signaux non stationnaires comme les
accélérations est complexe, en particulier pour les signaux avec des grandes dynamiques
comme les activités sportives. De plus, ’energie récupérée est dépendante de la position
et de l'orientation du générateur sur le corps humain. Réaliser des mesures expérimen-
tales n’est pas simple car cela nécessite une instrumentation lourde (appareils a tres haute

impédance) limitant les mouvements de 1'utilisateur.

Ainsi, les contributions apportées par cette these concerne de maniere globale la déter-
mination des positions optimales de centrales inertielles sur le corps humain pour la recon-
naissance d’activité, mais aussi la détermination du placement et de 'orientaion optimal
de générateurs piezoélectriques sur le corps humain. Cette these est en 4 parties : la
premiere partie concerne la mise en place des outils nécessaires pour déterminer le place-
ment optimal des centrales inertielles ; la deuxieme partie concerne 1'étude de 1’énergie
récupérable sur le corps humain par des poutres piezoélectriques ; la troisieme partie traite
de l'optimisation de la reconnaissance d’activité et de la consommation énergétique ; et
enfin la derniere partie s’intéresse a un aspect plus pratique, plus précisément 1’évaluation

d’un systéme de capteurs intégrés dans un vétement.

— Partie 1 : Cette premiere partie concerne la mise en place des outils nécessaires
a ’évaluation des positions optimales de centrales inertielles sur le corps humain.
L’évaluation expérimentale de toutes les positions du corps humain n’est pas fais-
able : cela implique dans un premier temps d’instrumenter entierement le corps de
I'utilisateur ce qui engendrerait un inconfort et un potentiel risque de blessures;
dans un deuxieme temps cela nécessite trop de ressources matériels et temporelles.
Pour palier a ce probleme, notre approche se base sur la synthése de données issues
d’un modele biomécanique. Ainsi, il est possible d’obtenir en chaque point de ce

modele biomécanique les grandeurs physiques d’accélérations et de vitesses.Tout
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d’abord, il est nécessaire de vérifier la fiabilité des données synthétisées pour mener
des investigations quant a la reconnaissance d’activité. Les résultats ont montré que
I'utilisation des données synthétisées permet de tester de nombreuses positions de
capteurs réels sans faire d’expérimentations pour trouver les positions optimales
des centrales inertielles. Cette étude a fait émerger de nouveaux verrous, orientant
ainsi les perspectives. Ces résultats sont établis sous certaines hypotheses, nota-
ment ’absence de I'influence des corps mous; hypotheése abordée dans la partie
4.

Partie 2 : Cette seconde partie s’intéresse a l'autoalimentaiton d’un systeme porté
et plus particulierement a la récupération d’énergie piezoélectrique sur le corps
humain. Ici encore, les installations expérimentales nécessitent des contraintes lim-
itant les actions effectuées par l'utilisateur. De plus, le temps nécessaire pour
tester exhaustivement toutes les configurations possibles serait trop important.
On propose donc une méthode permettant d’évaluer ces configurations mais aussi
d’évaluer les caractéristiques pertinentes quant a la génération d’énergie par les
poutres piezoélectriques. A partir des accélérations réelles mesurées, un modeéle a
parametres distribués de poutre piezoélectrique est simulé pour prédire 1'énergie
récupérable sur le corps humain. Ainsi, les emplacements et orientations optimales
sont évaluées numériquement sur 17 positions du corps humain a partir de mesures
d’accélérations réelles. Les résultats ont montré que dans notre application, la main
droite était la meilleure position. Il est & noter que les expériences ont été conduites
sur un seul sujet sur un ensemble de mouvements sportifs limités. Un autre résultat
est que les chocs dus aux actions effectuées ont été identifiés comme caractéristiques
pertinentes pour générer de 1’énergie. La limitation principale de cette étude est
la fréquence d’échantillonnage des capteurs ne permettant pas de caractériser en-

tierement les chocs mesurés.

Partie 3 : Cette troisieme partie traite de maniere générale d’optimisation pour
concevoir un systeme portable de capteurs. Elle est séparée en 2 parties. L'une
concerne 1’évaluation des positions optimales de centrales inertielles tout en con-
sidérant un aspect énergétique; et 'autre analyse I'influence de la géométrie des
poutres piézoélectriques sur la récupération d’énergie sur le corps humain.

L’évaluation des positions optimales de centrales inertielles est réalisée a travers

une optimisation multi-criteres visant a maximiser la précision de la reconnaissance
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et a minimiser la puissance consommeée. La formulation du probleme nous oriente
vers 'utilisation d’un algorithme génétique. Les compromis entre reconnaissance
optimale et consommation minimale sont illustrés a travers un front de Pareto.
Ainsi, les meilleurs compromis énergie/information apparaissent comme des com-
binaisons de positions et configurations pour les centrales inertielles.

L’étude de I'influence de la geométrie des poutres est conduite en optimisant les ori-
entations des générateurs. Les résultats montrent que pour une quantité de matiere
définie la position optimale varie en fonction de la géométrie. Les limitations sont
les mémes que celles définies précédemment. De plus, I’étude s’est limitée a quelques
parametres afin de ne pas augmenter d’autant plus la complexité du probléme. Des

études futures pourront se pencher plus en détail sur ces parametres.

— Partie 4 : Cette derniere partie s’intéresse aux erreurs de mesures induites par
I'intégration de centrales inertielles dans un vétement. Cette partie se base sur des
mesures expérimentales pour des applications dans le domaine de ’ergonomie. Les
mouvements relatifs existants entre la peau et un vétement peuvent induire des
erreurs dans les mesures des centrales inertielles. On s’est intéressé ici a 'influence
de ces artefacts sur la mesure des postures du haut du corps. Le systeme util-
isé est composé de 3 centrales inertielles situées sur les épaules et le bas de la
nuque. Grace a des algorithmes de fusion de données, plus particulierement le fil-
tre de Kalman, on peut remonter aux orientations des capteurs puis des membres
supérieurs. Comparées a un ensemble de capteurs placés directement sur la peau,
les erreurs sont évaluées a travers une campagne de mesure (12 sujets, expérimen-
tations réalisées en Suede). Les résultats ont montré que les erreurs induites par
le mouvement relatif du vétement étaient d’autant plus importantes si les mouve-
ments effectués étaient de grandes amplitudes. Cette premiere étude a permis de
mettre en évidence les erreurs existantes et de les quantifier. Les études futures

visent 'utilisation d’algorithmes de compensation de ces erreurs.

Une étude de conception et d’intégration de centrales inertielles dans un vétement
a également débuté et la conception d'un premier prototype de systeme autonome de

reconnaissance de l'activité a été réalisé (Figure 1).

Composé de centrales inertielles, d’'un micro-controleur et d’une batterie, ce systéme
récupere les données d’accélération et de vitesse angulaire et les sauvegarde localement sur

une carte SD pour un traitement a posteriori. Cette premiére version a permis de mettre

24



Résumé en frangais

Figure 1 — Prototype de vétement autonome pour la reconnaissance d’activité.
g yp p

en évidence les difficultés d’intégration des capteurs dans un vétement. Des perspectives
sont envisagées, plus particulierement sur 'utilisation de fils de couture conducteurs pour
améliorer la robustesse des connexions.

Les contributions apportées lors de cette these ont permis de mettre en évidence
les verrous existants quant a la conception d’un systeme autonome de reconnaissance
d’activité humaine. Les difficultés de la reconnaissance d’activité mais aussi énergétiques
sont abordées. Les limitations expérimentales sont les premiers obstacles vis-a-vis de la
détermination des positions optimales. L’évaluation exhaustive des divers parametres n’est
pas faisable. La complexité numérique, ergonomique et temporelle réduit fortement les
possibilité de manoeuvre. Cette thése apporte également des outils pour apporter des
réponses a ces verrous. L’utilisation d’'un modele biomécanique pour l'augmentation de
données 'virtuelles’ de centrales inertielles couplées aux algorithmes d’optimisations sem-
blent étre des candidats prometteurs pour répondre aux problématiques. La caractéri-
sation des signaux d’accélérations peut servir a la conception des générateurs piezoélec-
triques afin d’optimiser 1’énergie récupérable. Les méthodes présentées ont pour but de
fournir aux lecteurs des lignes directrices illustrant d’autres types d’approches. Les cas
d’études présentés pourront étre investis plus en détail afin de proposer une application
réelle. La conception d’un prototype plus avancé permettrait de tester les résultats obtenus
numériquement mais également de mettre en évidence les contraintes réelles. Cette these

est d’ores et déja suivie d'une these sur la conception de capteurs flexibles portés.
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INTRODUCTION

Watching the running time on a course with a stopwatch gives a good reference to
improve next time, but what if one could now monitor the heart rate? the blood oxygen
level? Information provided by sensors give objective measurements and allow the assess-
ment of multiple parameters for improving human lives. Recent advances on sensors more
specifically on wearable sensors offer possibilities of monitoring human parameters and
their environment. Miniaturization and the development of new technologies allow the

efficient integration of sensor networks in the most common things or in daily lives.

Among the most used wearable sensors, there are inertial measurement units (IMU)
generally composed of accelerometers, gyroscopes and magnetometers. Using adapted
signal processing, theses sensors can give kinematic and dynamic informations, useful to
conduct motion analysis studies. The scope of application is wide: IMUs can be found
in sport, health or ergonomic field. Sensor networks built from IMUs can give accurate
measurement as their data fusion reduces the inherent measurements errors. Nevertheless,
the information quality is dependent of the localization of the sensor on the human body.
External factors such as parasitic movements (e.g., of the skin or flesh) and cloth artifact

can also impact the measurements.

In human related application, collected data from IMU are mainly used in motion
capture (MoCap) and human activity recognition (HAR). The Mocap application gener-
ally consists in using the data from the sensor network to calculate the joint angles and
analyze the evolution of the human segments in space. HAR consists in using an adapted
machine or deep learning algorithm (classical supervised method) to classify the different
performed actions. The accuracy of the classification depends on various parameters and
directly on the quality of the information coming from the sensor network and thus on
their localization. In addition, learning algorithms require a large number of data to be
efficient and show good results. However, to the best of our knowledge, there is no general
method providing the best localization of IMUs on the human body to obtain the optimal

accuracy for the designed application. Testing all combinations and locations of sensor
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networks are time consuming and are experimentally cumbersome.

The power consumption of sensors networks is also a field of interest. Multiplication
of devices increases electrical energy needs, while recent low power sensors developments
improve the energy efficiency. However, batteries are widely used in many applications
and their design can be controversial. Another alternative investigates the harvesting en-
ergy capability from the human body. This solution can be more sustainable and limits
the use of batteries. Kinetic energy harvesting is a promising candidate in motion analysis
studies. Piezoeletric based harvester are commonly used as they provide good scalability
and versatility. Notwithstanding, their positions and orientations impact the energy har-

vested. A detailed method does not exist for their optimal placement.

This thesis focuses on the analysis of human body information and energy sources for
HAR using IMUs. The aim is to develop a general method to determine the optimal IMUs
placement including classification hyperparameters aspects. In addition, described as an

embedded system, available energy sources for wearable sensors powering are investigated.

The different parts are divided as follows:

— Chapter 1: This first chapter presents a general context on motion analysis appli-
cations, systems and methods. A more important focus is made on motion recog-
nition. Moreover, energy aspects allowing the powering of portable systems are
discussed, in particular the recovery of energy from the human body and its envi-
ronment. Notions related to complex systems are introduced, especially optimiza-
tion methods. The scientific positioning of this thesis closes this chapter, a more
specific state of the art is associated with each beginning of chapter.

— Chapter 2: This chapter deals with the use of so-called synthesized data for the
numerical evaluation of the positioning of inertial units in HAR applications. The
use of this type of data allows to artificially increase the number of positions to be
tested and thus limits the need for experiments.

— Chapter 3: This chapter addresses the energy aspects related to piezoelectric en-
ergy harvesters. An electromechanical model of a piezoelectric beam is simulated on
human body accelerations. The optimal orientations as well as the characterization
of the accelerations are performed.

— Chapter 4: This chapter is the prolongation of chapter 2 and 3, it deals with
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the optimization of IMU and harvester configurations on the human body. Opti-
mization algorithms like genetic algorithm or particular swarm optimization are
implemented.

Chapter 5: This chapter is based on more pratical aspects. Thanks to a collabo-
ration with a research team based in Sweden, experiments have been carried out in
order to evaluate the artifacts existing in a posture evaluation system integrating
IMUs. The goal here is to evaluate the influence of the integration of IMUs in a
garment. Moreover, a design aspect is introduced, the prototyping of an activity
evaluation system is presented.

Chapter 6: This chapter summarizes the results obtained in the various chapters
and synthesizes them in the form of a conclusion. The scientific perspectives and

challenges are discussed.
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CHAPTER 1

STATE OF THE ART: ANALYSIS AND
MONITORING SYSTEMS FOR HUMAN
MOTION

This state of the art presents the contributions related to human activity recognition
from an intelligent and autonomous system. First, the application fields and the tools
used in motion analysis are introduced. The contributions in this field are more and more
numerous and let appear new opportunities but also new problematics. We will mainly
deal with motion analysis by activity recognition, which is a more and more fashionable
method. Indeed, the use of artificial intelligence (AI) algorithms allows to classify or
to recognize in an automatic way the actions performed by the human body by using
various supports like IMU. In a second time, we will approach the energetic aspects, which
is necessary to the realization of autonomous system. Then, by the use of engineering
tools, optimization approaches are investigated. Based on the existing contributions, the

objectives of this thesis will be introduced by our scientific positioning.

1.1 General context

The monitoring and analysis of human motion is becoming more and more efficient
thanks to the emergence of new methods and technologies. It consists in the analysis of
human biomechanics, translated by the analysis of the mechanical properties of living
beings. Extraction of data of interest allow competent experts, such as physical trainers,
clinicians or future users to have feedback for professional interpretation. The main ap-
plications can be found in health, ergonomic and sport related field. In addition, with the
development of the wearable sensor market, application deployment is diversifying and
providing new opportunities. The Figure 1.1 presents the wearable technology market size
from 2021 to 2030.
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Figure 1.1 — World wearable technology market size, forecast 2022-2030 [10].

The market size was estimated at 121.7 billion USD in 2021 and is expected to reach
around 392.4 billion USD by 2030. This highlights the interest in the wearable technology.
In addition, the integration of these sensors adds flexibility and feasibility in the measure-
ments. Homayoufar et al. [11] present some challenges related to motion analysis based
on wearable sensors. Embedding sensors in garments could provide users with comfort
and long-term applications. We find among these sensors the IMU, which are increasingly
used. They are generally composed of accelerometers, gyroscopes and magnetometers.
Figure 1.2 presents the IMU market size and the expected growth over 2027. From 2017
to 2023 a growth of 13.08 % is observed (Year-over-Year growth rate). In addition, IMUs
represents the most part of the global sensors market. Figure 1.3 presents the evolution
of the IMUs market size comparing to other technologies. Accelerometers and gyroscopes
are also increasingly used, they are part of IMUs. Main applications are presented next,

highlighting the challenges on different research field.

1.1.1 Ergonomics applications

Improved work environments reduce the risk of injury. Among the most common re-
lated diseases are musculoskeletal disorders. These disorders can be due to bad postures
but also to bad working conditions, for example without adapted equipment, or the repe-
tition of stressful tasks. Surveys such as [13] show a slight decrease of these disorders but

they remain widely present, as presented on Figure 1.4.
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Market Size Outlook (usp Million)
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Figure 1.2 — Inertial measurement unit market size, forecast 2017-2027 [3]. A compound annual growth
rate (CAGR) of 14.59 % is estimated, additional 7761.28 USD Million is expected over 2027.
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Figure 1.3 — Sensors market distribution [12].
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Figure 1.4 — Percentage of workers reporting different musculoskeletal disorders in the European Union
[13]. Number of participant N = 33173 (2010); N = 31612 (2015).

Musculoskeletal disorders are up to 58 % (in 2015) highlighting the necessities to im-
prove the working conditions. The analysis of movements and postures allows to evaluate
the risks and thus to adapt these environments or working conditions [14]. The preven-
tion of these risks can be carried out in real time and therefore limits the musculoskeletal

disorders (Figure 1.5).

Figure 1.5 — Real-time visual ergonomic feedback system based on goniometers and IMUs [1].
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1.1.2 Health applications

Other different disorders aspects are related to body movement. Some example of

movement-related medical conditions are presented in Figure 1.6.
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Figure 1.6 — Movement-related medical conditions (taxonomy of selected works extracted from [15]).

Human motion monitoring and analysis allow detection, evaluation and characteriza-
tion of pathologies levels in patients. Thus, this improves the professional diagnostics to
adapt the treatment or therapy. Figure 1.7 presents a sensing network system for health
application based on wearable devices which can monitor environmental and physiologi-
cal parameters. Movement analysis based on activity recognition implies less involvement
of patients and can be very helpful for rehabilitation purposes [16]. Parkinson’s disease

severity level can be quantified by IMU based on classification algorithm [17].

35



Chapter 1 — State of the art: Analysis and monitoring systems for human motion
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Figure 1.7 — Wearable sensor network system [18].

1.1.3 Sport applications

Continuous performance improvement is a real challenge in the sport field. The level
of athletes is constantly increasing. New technologies bring new methods and approaches
to continuously improve techniques and optimize training. Sports performance is at the
heart of 4 major components as presented in Figure 1.8. The physical performance axis

is directly related to the analysis of human movements.

1) Physical
Performance

Maximizing the

4) Mental Performance and 2)
Acuity Safety of the jiabaia
Athlete
3)
Biochemical
Composition

Figure 1.8 — Components of performance maximization and athlete safety [19].

Quantifying physical performance allows to adapt training, reduce the risk of injury
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or evaluate fatigue. This can be done in various ways and in different forms depending
on the sport studied. In rugby, for example, it is interesting to study the acceleration and
deceleration of players, which provides information on their energy expenditure. [20]. The
tracking of the physical workload of the players is also an important aspect in order to
adapt their training [21]. The recognition of actions allows to quantify the external load

induced by the strikes in tennis players for example (Figure 1.9).

Figure 1.9 — Placement of an inertial measurement unit on the wrist for external load quantification

2].

In addition, localization and evaluation of the distance covered by team sport players

allows the evaluation of movement patterns [22, 23].

1.2 DMonitoring systems

There are many systems available to carry out motion analysis. The first step is to
select the system to perform the desired measurement. Then, several physical quantities
can be obtained as forces or speeds. In addition, there may be trade-offs between economic
cost, accuracy, integrability and ergonomics of the systems. This section presents the most

used systems for performing human motion analysis and monitoring.

1.2.1 Video cameras

Image frames acquired by video cameras give a lot of information. Motion capture
can be performed using image processing. Vision-based algorithms are developed for HAR
application. Cameras are mainly characterized by their resolution and sampling frequency.
Systems such as Kinect cameras are widely used in research field. They are composed of

RGB cameras and depth sensors (Figure 1.10).
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2D Pose Estimation Correspondence Matching Depth Computation

Camera 1

Camera 2

Figure 1.10 — Motion capture based on video camera [24].

These systems are markerless and therefore do not interfere with the actions performed
by the monitored participants. Nevertheless, some drawbacks can not be overlooked:
— To obtain better results from video-based motion capture, it is necessary to increase
the number of cameras and thus the cost [25].
— The performed activities should be in the field of view of the cameras. Brightness
and ambient light can impact the measurements quality.
— The level of accuracy can not be sufficient for some applications [26],[27]. Taking

joint angle estimation applications, errors can reach several dozen of degrees.

1.2.2 GPS/LPS

Based on the use of satellites, the global positioning system (GPS) allows to follow the
position of a point on the surface of the earth in a very large area. Thus, we can study the
movements of people in a defined environment. However, this requires a good coverage
of the area by the satellites. Interference due to the environment or the atmosphere can
reduce the accuracy. Thus, indoor applications are not feasible. Another method is the use
of radio frequency transmitters to define a local position tracking perimeter,i.e., the local
positioning system (LPS). Figure 1.11 presents the LPS Catapult! used in a football.
The positioning system is located on the back of the individual and ultra-wideband radio
frequency is used. This method offers more robustness and accuracy but is limited to a
certain area, has a high cost (> 30 000 Euros for the whole system) and requires much

installation.

1. www.catapultsports.com
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Figure 1.11 — Catapult system for local positioning. The device is located on the back of the players
[28].

1.2.3 Optoelectronic Systems
1.2.3.1 Acquisition system

Motion capture of human body can be performed with optoelectronic systems like
Vicon ? or Qualisys®. Reflective markers are placed on the human body and are captured

by infrared cameras (Figure 1.12).

Figure 1.12 — Vicon motion capture system [29].

The localization of each reflective marker are recorded in 3D space using triangula-

tion at a fixed time rate. Experimental data are then processed to build a numerical

2. https://www.vicon.com/
3. https://www.qualisys.com/

39



Chapter 1 — State of the art: Analysis and monitoring systems for human motion

biomechanical model of the human body. Optoelectronic systems are considered as gold
standard for motion capture measurement as they provide very good accuracy (< 1 mm)
[30]. Nevertheless, this system is sensitive to brightness and requires a dedicated space for
its installation. Moreover, the cost of these systems are not negligible, it can reach a few

thousand euros to equip a room.

1.2.3.2 Biomechanical model

Based on motion capture systems, a multibody mechanical model of the human body is
constructed. Rigid segments are connected together with various joint combinations. This
is called an osteoarticular model. Using a joint coordinate system, anatomical positions
and orientations of the segments in space are estimated. As illustrated in figure 1.13, the

anatomical points and the coordinate systems are extracted from the bone structures.

mid PS15s

Hip joint center
of rotation

FE

Figure 1.13 — Right hip joint coordinate system based on pelvis and femoral coordinate systems [31,
32].

The model generation consists in minimizing the difference between a motion capture
system marker set and the osteoarticular model virtual marker set. Lu et al. [33] present

a bone position estimation based on global optimization with joint constraints.

40



1.2. Monitoring systems

It consists in minimizing the function presented in eq. 1.1:

f&) =[P = P(OI'W[P - P'(¢)] (1.1)

where P is the measured marker set coordinates, W a positive-definite weighting ma-
trix, £ a set of generalized coordinates and P’(£) the marker set coordinates calculated
(i.e., of the biomechanical model). Figure 1.14 shows a possible distribution of the motion

capture system markers.

Figure 1.14 — Example of marker locations used for motion capture [34].

Therefore, segments positions and orientations in space can be monitored and data
processing can be achieved. Additionnal features can be added to the model such as

dynamic or muscular forces aspects.

1.2.4 Inertial measurement unit systems

The IMUs offer interesting characteristics, such as their small size and low cost. They
can provide the position in the 3D space by the use of the adapted fusion algorithm
[35]. IMUs are increasingly integrated into systems. They offer good accuracy with less
constraints [36]. Accelerometers are micro-electromechanical systems (MEMS) that are

typically in the form of a system-on-chip (SoC).
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Micro-electromechanical systems are made from mechanical ele-

ments using micro-manufacturing processes and powered by elec-
trical sources. They are generally composed of semiconductor ma-
terials. They are most often used as sensors or actuators, they can
be found everywhere, from the automotive industry to our smart-

phone.

1.2.4.1 IMU characteristics
Accelerometer

Accelerometers measure the global linear acceleration, composed of the sum of gravity
and kinematic accelerations. The first one is oriented downwards, while the second ones
is dynamic and depends on the motion. They are mainly characterized by their range,
sampling frequencies, sensibilities and their measurement errors. Depending on the tech-
nologies and manufacturers these parameters differ. Nevertheless, they can be modeled
by eq. 1.2a and eq. 1.2b [37]:

a(D) = a(t) + ba(t) + na(t) (1.2a)
Ba = nba(t) (]‘Qb)

with a(t) the current measured acceleration, b, (t) the accelerometers bias, ny,(t) and n,(t)

the accelerometer noises.

The noise n,(t) can be modeled as an Additive White Gaussian Noise (AWGN) and
the bias b,(t) as the integration of AWGNs. AWGN is characterized by a uniform distri-
bution of the power spectral density across the frequency band and a zero-mean normal
distribution in the temporal domain. Thus, obtaining the global position by integrating
the accelerations is difficult as the noise and the gravity components impact the measure-

ments.
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The additive white Gaussian noise follow the centered normal dis-

tribution. The probability density function is presented in eq 1.3:

@) = 322 (1.3)

NG

with ¢ the standard deviation (or the noise power spectrum).

Gyroscope

Gyroscopes measure angular velocities and are also characterized by their range, sam-
pling frequencies, sensibilities and their measurement errors. They can be modeled by eq.
1.4a and eq. 1.4b:

g(t) = g(t) + by(t) + ny(t) (1.4a)
by = Ny (t) (1.4b)

with g(t) the current measured angular velocity, by(t) the gyroscope bias, ny,(t) and n,(t)

the gyroscope noises (AWGN).

Magnetometer

The magnetometer measure the magnetic field in T (Tesla). Generally in navigation
system, the magnetometer is used as a compass to detect the magnetic field. This com-

ponent is very sensitive. It can be heavily impacted by electromagnetic environment.

Motion capture based on IMUs

One can also found commercialized systems like Xsens?. As an example, the Xsens
MVN suit products are based on IMUs and allows motion capture with good accuracy
(Figure 1.15). Nervertheless, this kind of system may be constrained by the on-board
mass of batteries and autonomy for long measurement sessions. The ergonomic aspect

may be restrictive for several applications. The space requirements of such a system could

4. https://www.xsens.com/
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restrict or limit the user’s movements. In addition, for the full system (i.e., hardware and

software) the cost can reach few thousand euros.

Figure 1.15 — Xsens MVN Link suit with Xsens MVN Animate software [38].

1.2.5 Complementary systems : Electromyography sensors, force

platform and pressure sensors

Other systems allow the analysis of human movements. We find force platforms or
pressure sensors [39], which allow to investigate the effort interactions between the human
and his environment. The electromyography sensors (EMG) allow to detect the activity
of the muscles by measuring small electrical signals generated during muscle contractions.
These systems can be used in a complementary way to add reliable information on motion

analysis.

1.3 Human activity recognition

Classification or recognition consists in qualifying by labels an individual from a set
of given characteristics called features. For example, a car have different features such
as its color, maximum speed, tire sizes etc. Using these different information allows us
to discriminate the different individuals called classes of a group. In motion analysis,
classification can be used to qualify the different performed activities. For example one
can evaluate the number of passes or jumps in volleyball. To go further, after performing
classification, additionnal processing can be used to quantify the performed activity. HAR

based algorithms can classify the different performed activities using various methods. The
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algorithms take as input structured or unstrutured data and determine as outputs bound-
aries containing each activities or classes. The general existing methods are presented in

this section.

Supervised learning

Generally, supervised learning is employed to train the classifier models. This require to
label the input data according to its class. The most adapted classification method depends
on the application, data type, format, and size. Among the widely used classification meth-
ods we found the supervised learning. It consists in predicting the output Y from the ob-
servation input X. Let denote the observation list as follows {(x1,y1), (22, ¥2), ..., (N, yn)}
with N the number of training sample, x; the feature vector of the i-th observation and
y; the corresponding class or label. For example, the feature vector can correspond to
the characteristics of an acceleration signal (i.e., maximum, minimum, average, standard
deviation...) during a given time period. An activity or event is associated with this ob-
servation that will be used to train the classifier. We defined the function h : X — Y as
an element of the hypothesis space H with X the input space (i.e., the feature space) and
Y the output space (i.e., the label space). Supervised algorithm try to minimize the risk
function R defined by R(g) = + >; L(yi, g(;)) with the loss function L : Y x ¥ — R>".

Among the different supervised classification algorithm we mainly found the deci-
sion tree, the Naives Bayes, the k-Nearest Neighboor (k-NN), the Hidden Markov Model
(HMM), the Support Vector Machine (SVM) and neural network based algorithms [40]
(Figure 1.16). Each algorithm offers different properties adapted or not to the desired
application. As support vector machines and neural networks are the most prominent, we

decided to add more details on their working principle.

Support vector machine

Decision parameters such as learning speed or tolerance to parity problems influence
the choice of classification models. Nevertheless, the accuracy of the models is the most
important. SVM models are generally more efficient than other models such as k-NN or
HMM. Sen et al.[41] present the comparison between different classification algorithms.
SVM shows the best result in term of overall accuracy. Abdullah et al.[42] show that SVM
mainly outperformed other models in term of overall accuracy in some selected field of

research.
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2
O
ST ST & $ F &S s
\? & 0@ & & 4}“» R Qg N Q\eb > < A ‘ §1’§
‘}q o A
& &
N oF
Algorithms

Figure 1.16 — Repartition of HAR algorithm used in literature. 95 articles were selected from Jan
2018 to May 2022 [40]. CNN: Convolutional neural network; LSTM: Long short-term memory; RNN:
Recurrent neural network; VGG: Visual geometry group; RF: Random forest; GRU: Gated recurrent unit;
DT: Decision Tree; DBN: Deep belief network; HOG: Histogram of oriented gradients; PCA: Principal
component analysis; I3D: Inflated-3D; LR: Logistic regression.

SVM consists in minimizing a function f(w,b) = [% Zf\il maz(0,1 — yi(w'z; — b))] +
Alw|?, with z; the feature vector of the i-th observation, y; the corresponding class or
label, N the number of sample, A\, w and b the SVM model hyperparameters. The principle
is based on the construction of an hyperplane maximizing the margin between the classes
(Figure 1.17). In addition, SVM models allow nonlinear classification using the kernel
trick. Tt consists in mapping the data in a higher dimensional space. Bhavsar et al. [43]
present some basic kernel function such as linear kernel, polynomial kernel and radial basis
function (RBF) kernel. Properties of kernels are discussed and highlight the limitations

such as the need of developing methods for determining the optimal design.

Artificial neural network

Neural networks are very popular and can also be used for classification purposes.
The principle is based on the use of a structure composed of artificial neurons linked by
connections called synapse. Weights and biases are associated to each element (Figure
1.18).
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Figure 1.17 — Tlustration of the SVM hyperplane for classes separation [44].
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Figure 1.18 — Structure of feed forward ANN [45].
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Each connected neuron k can be described by the following function ny = f (le\il W T+
bx) with N the number of input connections, z; the inputs, b a bias and w; the connection
(synapse) weights. The function f is called activation function and represent how the
neuron is activated. Sharma et al. [46] present various activation function used in deep

learning field.

Deep learning

A recent work presents the definition of deep learning [47]. Thus,
deep learning can be described as the process that establishes the
relationship between two or more variables with the knowledge that

governs and gives meaning to that relationship.

One of the most typical functions are the linear activation function, the sigmoid ac-
tivation function, the hyperbolic tangent and the ReLU (rectified linear unit) activation
function. The choice of the activation function is not trivial, it depends on the context.
For example, in binary classification problems, the sigmoid activation function is widely
used [48]. In addition, the number of neuron and the number of hidden layer must be
determined. Various neural network structure exist in the literature. The most popular
for classification problems are the convolutional neural network (CNN) and the long-short
term memory (LSTM). The multilayer perceptron (MLP) can also be found for classifi-

cation purposes.

1.4 Energy aspects

Wearable sensors offer new solutions for monitoring human parameters. Sensors inte-
grated into accessories are becoming more common. Nevertheless, these embedded systems
are facing some challenges: they need power supply to operate. The next sections present

the common approaches to power supplied systems and the harvesting techniques.

1.4.1 Energy saving strategies

The development of new technologies has led to the design of less energy consuming
systems. This limits the amount of energy storage to be embedded in autonomous sys-

tems. In order to have more integrated and ergonomic systems, operating strategies are
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investigated. Casamassima et al. [49] have investigated a power management layer that
improves battery life by up to a factor of 5. Based on an activity recognition application,
their approach consists in adapting the operating point of the sensors based on the user’s
activity. Gao et al. [50] proposed a power management system without batteries based on
mechanical, thermoelectric and photovoltaic harvesters. Their power management circuit

operates at ultra-low current and voltage (< 60 mV).

1.4.2 Batteries

Electrochemical batteries are the primary choice for meeting electrical energy needs.
They provide good performance. Indeed, innovational materials and technologies like the
most used lithium-ion batteries provide good characteristics such as the energy density
(120-750 Wh.L~! ) [51]. Depending on the use, the battery life can reach a few hours.
Despite the attractiveness of this type of energy storage, some drawbacks cannot be
overlooked. The charging time can reach few hours and impact the application feasibility
as it is necessary to extract and recharge the battery for the most integrated system.
Moreover, batteries lifespan is not endless. The number of charging cycle of lithium-ion
and zinc bromine batteries can reach respectively 5000 and 2000 cycles [51] but can be
sufficient for the system lifespan. The life cycle analysis of these components highlights

the environmental impacts and the need for a recycling process [52].

Life cycle analysis

The life cycle analysis (LCA) deals with the evaluation of the envi-

ronmental impacts related to all phases of the life cycle of a product.
The analysis is carried out from the extraction of the necessary ma-
terials through the manufacturing and use phases to the end of life.
The 14000 series of the international organization for standardiza-

tion (ISO) give the procedures to perform the LCA.

In addition, the use of single-use or replaceable batteries is widespread. Movesense ®

(Suunto, Helsinki, Finland) offers compact wearable sensors for medical and sports appli-
cations powered by a CR 2025 battery (Figure 1.19). This solution provides good compac-

ity and energy density but requires periodic replacement (depending on the application)

5. Www.movesense.com
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and can generate a large amount of waste. The presence of toxic heavy metals highlights
the need to assess the polluting potential to reduce possible negative impacts. Moreno-
Merino et al. [53] present a comparison assessment of button cells according to an energy-
normalized polluting potential index. The results show in part that there is a margin for
improvement in the reduction of environmental impacts by acting on the compositions of

the materials.

Figure 1.19 — Movesense Medical sensor [54].

1.4.3 Energy harvesting

Studies present the different types of energy sources in the human environment for
multi-source harvesting systems [6]. Among the different energy sources, there mainly are
thermal energy, chemical energy, radio frequency energy, solar energy, and mechanical
energy (Figure 1.20). Mechanical energy sources are dominant on the human body, the
available power can be higher than 60 W due to body motions. Thermal energy harvesting
depends on many parameters such as the ambient temperature or natural convection,
available body heat power is less than 5 W. Thus, energy harvesting can also be a relevant

solution to power wearable sensors.
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Figure 1.20 — Available energy sources on human body [55].

1.4.3.1 Piezoelectric generator
1.4.3.2 Working principle

The piezoelectric generators are based on the property of a material to generate elec-
tricity upon mechanical deformation. Linear piezoelectricity is modeled as an augmen-
tation of elasticity and dielectric behavior according to two governing equations linking
stress T, strain S, electric field E, charge density D, elastic flexibility s, permittivity e,

and piezoelectric coefficient d:

{sh = [s"{T} + [d']{E} (1.5)
{D} = [d{T} + ["] {£} (1.6)

1.4.3.3 Human application

This technology is widely used and many application exist. Among the different op-
erating mode, we found the transverse mode (ds3), the longitudinal mode (d3;) and the
piezotronic mode. Figure 1.21 presents two operating mode. Piezoelectric material can
reach a peak power of 120 mW for a 2.2 ¢m? transducer volume [56]. Brenes et al. [57]
developed piezoelectric and electrostatic mechanical systems. They proposed an elec-
tromechanical modeling of piezoelectric transducers and developed an electrical circuit
to optimize the transducer output power flow. Piezotronic modes are becoming more and

more common, Poulin-Vittrant G. et al. [58] developed on ZnO nanowire-based piezoelec-
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tric nanogenerator (Figure 1.22). The nanowire growth is obtained using a galvanic cell
between aluminum and a conductive cathode surface. This solution is interesting as it is
not based on heavy metals such as lead. Another example is presented in Figure 1.23. A

cantilevered piezoelectric energy harvester operating in longitudinal mode is located on
the hand.

+4+++++44

F

++++++++

[7]-

Figure 1.22 — ZnO nanowire-polymer composite [58]. a) Structure schematic b) scanning electron
microscope images
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Figure 1.23 — Piezoelectric energy harvester for the hand motion [8].

1.4.4 Triboelectric generator
1.4.4.1 Working principle

The triboelectric generator is based on two major phenomena: electrification by contact
and charge transfer by induction. During the contact of two different materials with
dissimilar polarities, a creation of opposite charges on each side of the surfaces takes place
due to the triboelectric effect. Connecting both surfaces through electrodes and repeating
movement between both material produce a charge flow. The Figure 1.24 presents basics
operational modes of triboelectric generators. We mainly found sliding and compressing

structures.

Figure 1.24 — Different basic operational modes of textile-based triboelectric generator [59)].
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In the general case, the produced voltage can be expressed by eq. 1.7.

V= —% + Voc (17)

with V the voltage between the two electrodes, Q the amount of transferred charged
between the two electrodes, C the total capacitance and Vpo the open-circuit voltage
between the two electrodes. The expression of Q depends on the operating mode, one can

found the various expression in [59)].

1.4.4.2 Human application

Khalid et al. [7] present a comparison between various energy harvesting systems, the
triboelectric generator can produce up to 4.67 mW and 392 V in open circuit with skin
attached generator for exploiting human motion. The Figure 1.25 present a triboelec-
tric generator integrated in a textile and operated by friction between the fabrics of the

underneath arm and sleeve.

Figure 1.25 — Triboelectric generator integrated in textile [7].

1.4.5 Thermoelectric generator
1.4.5.1 Working principle

The thermoelectric generator is based on the Seebeck effect.
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The Seebeck effect

The Seebeck effect is a thermoelectric effect. It is defined by the
electric potential difference at the junction between two materials

when they are subjected to a thermal potential difference.

It consists in using two connected dissimilar thermoelectric materials, the first material
is an n-type (negative charges) and the second a p-type (positive charge) semiconductor.

A classical model is the following equation (eq. 1.8):
J =—-oSVT (1.8)

with J the current magnitude, o the electrical conductivity, S the Seebeck coefficient

and VT the temperature gradient.

1.4.5.2 Human application

Hyland et al. [60] developed a thermoelectric generator that can produce up to 20

2

uW.em™ on the upper arm at walking speed. The Figure 1.26 presents the developed

thermoelectric generator taped directly to the skin.

Figure 1.26 — Thermoelectric generator placed on the chest area [60].

Nevertheless, drawbacks like toxicity of the materials, mass of the system or ergonomic

comfort limit its use [61].
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1.4.6 Solar and radio frequency energy harvester
1.4.6.1 Working principle

Harvesting energy from solar radiation can be done by the use of photovoltaic (PV)

cell. The Figure 1.27 illustrates the basic of working principle of PV.
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Figure 1.27 — Global overview of photovoltaic cell working principle [62].

The PV cell is based on semiconducting materials built into a p-n junction. The solar
radiations are absorbed by the PV cell and the materials electrons are excited producing
an electrical field and a charge flow [62].

The radio frequency harvesting technique consists in adapting an electronic circuit to
collect power from some frequency bands. The Figure 1.28 illustrates the general opera-

tion.

Transmission
Antenna

@

- Antenna

RF

Generator Impedance Rectifier/

Matching Voltage
Network Multiplier

> - 4

Power

e Applications

Figure 1.28 — Radio frequency energy harvesting principle [63].
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In the far field, the obtained power P, can be written as presented in eq. 1.9:

A

P, = PthGr(m)z
rt

(1.9)
where P, is the power of the transmitted radio frequency signal, G; is the linear
transmitter gain, G, is the sequential receiver gain and A the wavelength.
Nevertheless, solar and radio frequency energy generators are highly dependent on the

environment in which the activities are performed. Their production is not always certain.

1.4.6.2 Human application

Jokic et al. [64] developed a flexible solar energy harvester for long term monitoring,.
Preliminary results show an harvesting power of 16 mW in outdoor condition and 0.21
mW in indoor condition. The Figure 1.29 presents the developed system worn on a human

wrist.

Energy Harvester
Circuij

Communication (NFC)

Figure 1.29 — Flexible solar energy harvester [64].

Radio frequency harvesting can be performed form different sources. We found smart
monitoring or smart health application [63]. Vital et al. [65] developed a textile based
RF-power harvester. They were able to harvest a DC-power of 600 pW at 10 cm from a
boosted-Wi-Fi radio. Figure 1.30 presents the system integrated into a jacket.

1.5 Complex system: Optimization aspects

The optimal design of an autonomous HAR system depends on many parameters that

can be difficult to tune. Indeed, the intrinsic characteristics of the HAR algorithms or
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Figure 1.30 — Textile integrated patch antennas for RF harvesting [65].

the configuration of the sensors associated with their energy consumption lead to a dozen

customizable parameters. The table 1.1 presents some of the customizable parameters.

Table 1.1 — HAR system customizable parameters.
Customizable parameters

HAR
Training dataset

Data segmentation
Algorithm /Method

Sensors configuration
Sampling frequencies
On-body locations
Sensor type (accelerometer, gyro-
scope, magnetometer)
Number of axes

Thus, the design of a wearable activity recognition system can be categorized as a

complex system.

Complex system

Complex system can be defined in different ways [66]. In general, it

is characterized by a large number of elements that exchange and
interact with each other. The individual behavior of each element
is not enough to characterize the properties of the system. Thus, it
is necessary to consider the various degree of organization of these

elements.
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1.5.1 Concept of numerical optimization

Because of the different levels of interaction and the heterogeneous behaviors of the
different entities, the best solution is not easily obtained. Nevertheless, engineering tools
coming from applied mathematics can help us approach more easily the best or the so-

called optimal solution: the numerical optimization methods.

The Figure 1.31 presents the general structure of an optimization process.
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Change initial design or No Yes Final desien
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Figure 1.31 — Structure of optimization process [67].

The main features are the formulation of the problem and the specifications. First,
the variables are initialized with starting points, and then, through an iterative process,

the objectives are evaluated to obtain the best solutions.

For example, the Figure 1.32 illustrates the determination of an objective function
optimum by the use of a gradient algorithm. The aim is to determine the minimum of

the function f(z). The problem can be expressed as argmin f(z). To reach the optimum
r=(z1,22)
point x* from the starting point xy four iterations were used. However, the exact solution

is not always precisely obtained and it can take a lot of iterations to reach it. Thus, a
stopping criterion has been introduced. It is defined for example by a maximum number
of iterations or a minimum tolerance in the value difference of the last two solutions. In
addition, the determination of the minimum number of iteration can be tedious if the

objective function evaluations are numerically cumbersome.
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Figure 1.32 — Optimization method based on gradient [67]. g is the starting point and z* the optimum
of the objective function.

1.5.2 Optimization algorithm choice

In order to perform optimization, it is first necessary to determine the optimiza-
tion problem class according to the problem characteristics. Figure 1.33 presents an
overview of the two main optimization aspects: problem-based and objective and con-
straint characteristics-based formulations. Depending on the attributes, the adapted op-
timization method varies. As illustrated in previous Figure 1.32, gradient-based methods
rely on directional derivatives. Considering the example of a convex function, common
gradient-based method, such as gradient descent, can solve unconstrained optimization
problems with continuous design variables. This method assumes objective functions to
be C!. The gradient of a function f is obtained by:
of of of ]

1.1
ox, Oxy " Oxy, (1.10)

Vi) - |

with x = [x1, Z9, ..., 2, ] the vector of design variables.
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To determine the optimum (minimum), the following iterative process is computed:

Thyl = T + QP (1.11)
V fi

pp = ——2k_ 1.12

A (12

where x;, are the design variables, « is a positive constant which represents how far
each iteration step goes in the direction py, py is the search direction method (here, the

gradient descent).
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Figure 1.33 — Optimization problem classification attributes [67].

Other optimization methods based on gradient-free algorithms exist. They are useful
when the objective functions can not be characterized, such as ’black box’ systems. In

addition, they do not assume function continuity. Figure 1.34 presents some of gradient-
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free optimization methods.
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Figure 1.34 — Classification of gradient-free optimization methods [67]. GPS: generalized pattern search;
MADS: mesh-adaptative direct search; DIRECT: divide a hyperrectangle; MCS: multilevel coordinate
search; EGO: efficient global optimization.

1.5.3 Multi-objective optimization

It is convenient to discuss the multi-objective optimization in the case an autonomous
monitoring system (objectives in power consumption and HAR accuracy for example). The
problem can be characterized as nonlinear (non convex), multimodal and with discrete
design variables. The system can be assimilated to a black box, therefore, the optimization
is based on problem formulations. Taking into account the defined attributes, the use of
heuristic methods seems relevant. Evolutionary algorithms provide good properties such
as global optimum search, direct function evaluation and they are based on heuristic

methods.

1.5.3.1 Genetic algorithm

Popular approach is based on the use of genetic algorithm (GA). The principle rely
on the evolution of a population with individuals converging to the problem optimum
solutions. Inspired by biological reproduction and evolution, the iterative process in based

on selection, crossover and mutation. Figure 1.35 presents the iterative process of the GA.
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Figure 1.35 — Overview of genetic algorithm principle [67].

63



Chapter 1 — State of the art: Analysis and monitoring systems for human motion

The starting population is first generated. Then, trough a selection process, individuals
are selected as parents to build the children for the next population generation. The char-
acteristics called chromosomes (for example the number of sensor locations, the sampling
frequencies etc) of two selected individual are crossed. In addition, some individuals are
selected for mutation. It means that a gene is mutated (corresponding to the modification
of a chromosome value translated by a design variable value modification). Among the
selection methods, one can find the widely used tournament selection process. It consists
in the selection of random pairs of individuals and selecting the best one. Other selection
methods exist such as the roulette wheel selection.

GA can perform multi-objective optimization, the problem can be written with the

following formalism:

a’r’g;m’n f(z) = T > 2 (1.13)
()

with n the number of objectives functions and f the objectives functions that depends
on the parameters x to be optimized. Trade-offs between the objectives are established as
it is difficult to satisfy independently each objective (dependence between the objectives).
Thus, it is common to use the Pareto front [68] which builds the optimal frontier high-
lighting the trade-offs between each objectives. Hence, an algorithm developed by Deb
et al. [69] called NSGA-II (Non-dominated Sorting Genetic Algorithm) coupling these 2
aspects of multi-objective optimization was born. As an example, the Figure 1.36 illus-
trates the Pareto front from computed solutions. To obtain the Pareto front, first 1) a
non-dominated sorting is performed, then 2) a crowding distance sorting is performed.
The non-dominated points correspond to the Pareto optimal. To compute non-dominated
sorting, one can use Deb et al. [69] algorithm. The crowding distance sorting is used to
evaluate the front spread to keep diversity in the solutions. Crowding distance can be

computed using the Manhatten Distance or L1 distance.

1.5.3.2 Particle swarm optimization

One can find other optimization methods based on evolutionary algorithms, for exam-

ple particle swarm optimization [70] (PSO) based on collaboration between individuals
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Figure 1.36 — Illustration of objectives functions evaluations (dots) and the Pareto front (red dots) [67].
f1 and fy are objectives functions.

or ant colony optimization [71] (ACO) based on ants behaviour. The PSO consists in
moving the individuals (particles) according to a velocity in a n-dimensional space by
an iterative process [67]. Interactions between the particles lead to the determination of
the best solution. Initially, the position of the particle are distributed randomly in the
searching space. The position of a particle i for iteration k + 1 is obtained in equation
1.14.

x,&)rl = :v,(j) + v,(f}rlAt (1.14)

Where At is a constant time step and v,(ﬁl the velocity of the particle i at iteration

k + 1. The velocity is obtained using equation 1.15.

(i _
est

0 0 l.bl (2) (4)
TN Al

xT T — X
k best k
+7

(1.15)

Vg1 = QU

Where « is the inertia parameter, § the memory parameter, v the social parameter,

(%)

xp. the best position found the particle (i) and x5 the best position found by the entire

swarm. All these parameters act on the speed of convergence and on the influence of the

best positions found by a particle and the swarm. The parameters § and « are obtained
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randomly in order to introduce stochasticity in the algorithm resolution process. Figure

1.37 present the PSO components in a two-dimensional case.

Figure 1.37 — Components of the PSO in a two-dimensional case [67]. The graph is obtained by
multiplying eq. 1.14 by At.

One can observe how the best solutions found by the swarm and particle ¢ influence

the next position .T](Jj_l

1.5.4 Optimization applications for HAR and energy harvesters

Literature provides various optimization applications in numerous disciplinary fields.
Problem can be formulated in different ways with different constraints. For example,
Khaled et al. [72] investigate the influence of the shape of a cantilevered piezoelectric
harvester using genetic algorithm optimization. They used the cantilever length, width,
the active material thickness and the base material thickness as design variables. The
optimization problem was constrained by the stress and frequency. The objective is to
maximize the output power. Zhang et al. [4] investigated optimal SVM parameters using
PSO to obtain the highest HAR accuracy. Results show better performance in accuracy

and also in operating time for decision-making when using PSO.
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1.6 Smart cloth systems for motion analysis: inherent

measurement errors

Smart cloth can be seen as the interface between textile materials and technology.
Progress in the different science fields led to the design of new multidisciplinary systems
[73]. As an example, conductive yarns [74] enhance integration capabilities of wearable
technologies in a garment, it offers more comfort and flexibility. Smart workwear systems
allowing ergonomic risk assessment are emerging and are commercialized. Wergonic AB,
Stockholm, Sweden (wergonic.se) offers a solution to monitor the ergonomic risk using
a cloth with embedded sensors. Sensors are placed into pockets at three locations, i.e.,
both upper arms and the upper back. The data collection is performed using wireless
communication with a smartphone, and real-time feedback is provided. However, it is
appropriate to address the matter of existing errors in these smart cloths measurements,
especially when motion sensors are embedded. As introduced before, IMUs are a widely
used type of sensors for motion and posture applications, providing accuracy and ease of
implementation [75]. Nevertheless, the information provided by IMUs depends on their
placement and fixation. Cloth-embedded sensors face relative motion artefacts, which can
impact the measurement quality [76, 77]. Improvements can be obtained by using tight-
fitting clothing, and good agreement between skin-mounted and cloth-embedded sensors
has been shown for temporal motion kinematics at C7 and T12 (anatomical location of
the spine) locations [78]. Moreover, other external factors may impact the measurements,
such as sensor fixation or other soft tissue artefacts like skin or muscles. Camomilla et
al. [79] highlight the soft tissue artefact issue. Despite the recent improvements in motion
capture methods, soft tissue artefact errors remain and impact the accuracy of the results.

Thus it is necessary to consider their contribution according to the applications.

1.7 Scientific positioning of the present work

As presented before, thanks to the expansion of the wearable sensor market, the use
of IMUs has been democratized and many applications have been developed. Motion
recognition is very fashionable because it allows to automatically qualify and quantify
the performed activities in an objective way. However, the accuracy of results based on
the use of IMU depends on many parameters. The first criterion is the quality of the
information measured by the IMUs which is influenced by their locations [12]. Other
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criteria related to the classification method bring out parameters and hyperparameters
(e.g., segmentation, kernel...) to be optimized. There is currently no general method to
determine the optimal positioning of these IMUs on the human body. Indeed, the literature
presents several applications with different configurations. How to ensure the optimality of
the result obtained? Power consumption aspects is also a valuable field of interest as some
applications are conditioned by power constraints. In addition, sustainable developments
and ecological stakes imply the reduction of pollutant wastes and the improvement of
energy efficiency. Cantilevered piezoelectric harvester seems to be a good candidate as they
are widely used. Several architectures and technologies on piezoelectric-based harvester
exist in the literature [80]. Thus, this thesis aims to develop methods for determining the
optimal position and configuration of IMUs and energy harvesters on the human body for
HAR system design. Based on a systemic approach, weak and strong interactions between

the various parameters are investigated.

Systemic approach

The systemic approach refers to the analysis and understanding of

a complex system in a global perspective rather than an exhaustive

study of individual elements.

In addition, it is relevant to consider optimization aspects as many parameters needs
to be tuned. Thus, optimization of HAR accuracy with respect to energies aspects are
conducted. Finally, measurement errors such as cloth artefacts induced by the embedding

of sensors in a garment are investigated trough an ergonomic application.

The Figure 1.38 presents the general structure of the thesis. The first guideline (in blue)
concerns the information sources on the human. The aim is to propose and use methods for
determining the optimal IMUs location and configuration on the human body. This first
guideline intersects with another one (in green), which focuses on the application aspect
and system design. The last guideline deals with the energy sources on the human body
to address the issues and challenges related to the autonomy of embedded systems. Each
step on these lines represents the contributions made by this thesis, it shows the coupling
between the various parts of the systemic analysis. Details on the scientific positioning

related to this general description of this thesis are given next.
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Figure 1.38 — Global presentation of the thesis.

1.7.1 Information sources on the human body: Inertial measure-

ment unit

In the activity monitoring applications, the accuracy of the results obtained also de-
pends on parameters such as classifier models, database, configuration of the sensors, data
structuring and data quality. Thus, there is a relationship between the determination of
the best positions and the choice of parameters for the HAR realization. Several studies
present the classification accuracy obtained without knowing if this result is the most
optimal. Of course, it may be sufficient to obtain a bounded and non-maximal result
(i.e., 100 % recognition). Zhang et al. [4] proposed an HAR classification algorithms par-
ticle swarm optimization-based support vector machine (PSO-SVM). Results show 99.2
% accuracy in activity classification (10 classes) with the use of 2 accelerometers and 2
gyroscopes (located on wrist and elbow) sampled at 100 Hz. Their data were first filtered
and segmented with 1 s window and 50 % overlapp and 8 common time-domain features
were extracted (including mean, standard deviation, maximum, minimum, range, kurtosis,
skewness, and quartile). Kautz et al. [5] proposed an HAR in beach volleyball using deep
convolutional neural network. The study was based on a wrist accelerometer sampled at
32 Hz, results shows 83.2 % classification accuracy (10 classes). They extracted 39 features

from event windows (based on their algorithm structure). However, the more complex the
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case is, the more difficult it is to obtain a good result (i.e., large number of classes, size
of the database). Testing exhaustively all possible combinations of location of the human
body could require an unreasonable amount of time and a too important installation. It
is therefore necessary to evaluate the information sources in order to obtain an optimal
placement and adjustment of these IMUs. We proposed to used data extracted from full
body motion capture experiments to train HAR algorithms. The method is presented
in chapter 2. Based on a biomechanical model, synthesized data are generated allowing

numeric simulation on multiple sensors combinations with more ease.

Datasets

Our data are obtained by performing experiments in the M2S Laboratoty (ENS
Rennes). Datasets composed of various human sport activities are created. Motion capture

are conducted with the Xsens suit technology. Details are given in the next chapters.

In addition, the development of HAR algorithms can be greatly facilitated, depending
on the desired application, by using the amount of data that already exists. Indeed,
experiments are generally designed to highlight specific applications but online available
dataset can be found. The chapter 4 (optimization) is based on an online availaible dataset.
The first characteristic is the size of the database: the larger it is the more efficient the
learning will be. A lack of data or a poor representation of the activities performed could

lead to overfitting by the algorithms.
The balance of the dataset is also very important to be able to recognize efficiently
each activity. Presence of dominant activities should limit the detection of other activities.

Finally, activities should be performed by various subjects to generalize the application
to the target population. Individual characteristics such as movement execution techniques

may impact the final result and must be generalized by the algorithms.

In machine learning, overfitting corresponds the poor generalization
of the data. When overfitting occurs, data can not be reliably fitted
or predicted [81].
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1.7.2 Energy sources on the human body: Cantilevered piezo-

electric harvester

The versatility and scalability of piezoelectric harvester allow them to be organized in
various configurations to harvest energy from kinetic sources, making them good solutions
to overcome the excessive use of batteries. Liu et al. [9] present a survey on the different
technologies to harvest energy from human body. They show that the piezoelectric trans-
ducer is a promising candidate. De Fazio et al. [82] present a self-powered piezo-resistive
smart insole based on the use of a Li-Po battery and a piezoeletric transducer. The har-
vesting subsystem provides the necessary energy requirement to operate the developed
device. Cha et al. [83] developed a flexible piezoelectric energy harvesting from mouse
click motions. They obtained a maximum harvested energy in the range of 1 - 10 nJ. The
beam structure is very common and have a lot of application [84], the generator opera-
tion is based on vibrations. Li et al. [85] work on a wearable energy harvesters for human
limb movement. Results show a harvested energy in the range of 0.56 - 0.69 pJ in the
frequency range of 0.5 - 5 Hz. In addition, the generated output power is inherent to its
localization and orientation on the human body. Izadgoshasb et al. [86] experimentally
investigated the optimal orientation of a cantilevered piezoelectric harvester located on
the leg of a person walking on a treadmill. Result show that the best configuration is
an orientation of 70° with reference to a coordinate system attached to the leg. Never-
theless, as highlighted, it is difficult to directly measure the performance of piezoelectric
harvester from human motion. The installation can limit the user movement and it is
difficult to perform precise measurement without adapted devices. An alternative way to
conduct the optimal orientation or position of piezoelectric harvester consists in the use of
electromechanical model. Indeed, using the various existing models in the literature [87],
one can predict the harvesting energy from measured acceleration data. Notwithstanding,
there is no global method evaluating multiple locations and all orientations on the hu-
man body. Thus, we propose a method using measured acceleration data to evaluate the
best cantilevered piezoelectric harvester configuration on the human body. The method
is presented in chapter 3. Using a distributed parameters model and measured accelera-
tion data from 17 sensors locations, the predicted energy is simulated. Characterization
of acceleration data is also performed to extract qualitative and quantitative features for

operating piezoelectic harvesters.
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1.7.3 Optimization

The determination of the best IMUs locations for HAR applications or the best energy
harvesters configurations on the human body is difficult. Indeed, as introduced before, high
number of customizable parameters makes the determination of the optimal configuration
challenging. Nevertheless, the implementation of engineering tools such as optimization
methods allows to converge toward the optimum. Based on the chapter 2 and 3 materials,
we designed two optimization problems for solving the optimal configurations. The cou-
pling between information and energy sources is highlighted by evaluating the tradeoffs
between HAR accuracy and energy consumption of an IMU sensor network. Increasing
the number of IMU on the whole human body improve the HAR accuracy but increases
the power consumption. Thus, it necessary to adapt the configuration of the IMU network
to minimize the energy consumption while maximizing the accuracy of the HAR. In addi-
tion, the influence of the geometry of the cantilevered piezoelectric harvester is evaluated.
Modification of its geometry or shape impacts its behavior and the harvested energy.
Issues related to ergonomic and feasibility aspects are discussed. Hence, we proposed in
chapter 4 a method based on NSGA-II for determining the best IMUs configuration ac-
cording to an HAR application. Cantilevered piezoelectric harvester geometry influence
on the predictable energy on the human body is evaluated, the methods used in Chapter

3 are reinvested and adapted.

1.7.4 Smart activity assessment system

In the field of ergonomics, smart workwear systems are developed and used for risk
assessment of occupational activities. However, when motion sensors like IMUs are em-
bedded, the measurement accuracy can be affected by potential cloth artefacts, which has
not been assessed previously. Therefore, it is crucial to evaluate the accuracy of sensors
placed in the workwear systems for research and practice use. Considering the balance
of accuracy, comfort, and usability, such a system can be potentially a practical tool for
ergonomic assessment for researchers and practitioners. Error compensation algorithms
are investigated in the literature, previous work presented artificial intelligence-based al-
gorithms for assessing errors between sensors in a loose garment and an optical tracking
system [88]. However, in order to compensate for these potential errors in a smart work-
wear system, they must first be examined and quantified. Supported by the systemic

approach of this thesis, it is interesting to investigate the cloth artefact issues in the de-
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sign of an autonomous motion analysis system. Thus, in collaboration with Karolinska
Institutet (Stockholm, Sweden), a study based on the impact of cloth artifact on IMU
measurements has been conducted. To the best of our knowledge, almost no studies inves-
tigated the impact of IMU sensors embedded in cloth using pockets for measuring trunk
and upper arm postures and movements. Hence, this study aimed to evaluate the per-
formance of in-cloth sensors compared to on-skin sensors for measuring trunk and upper
arm postures and movements during occupational activities. The study is presented in
chapter 5 and is contextualized by an application in the field of ergonomics. Nevertheless,
the results obtained can be generalized because they highlight the phenomena present in
the process of cloth artifacts. In addition, design of a smart activity assessment system
prototype has been conducted. The second part of the chapter 5 presents the materials

and the preliminary issues that have emerged.
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CHAPTER 2

SYNTHESIZED IMU DATA EVALUATION
FOR DATA AUGMENTATION

This chapter is based on the published work entitled Hoareau, D.; Jodin, G.; Chantal,
P-A.; Bretin, S.; Priouz, J. and Razan, F.: Synthetized inertial measurement units (IMU)
to evaluate the placement of wearable sensors on human body for motion recognition, The
Journal of Engineering, 2022 [89] and presents an evaluation of virtual IMU data on
the human body. Virtual IMU can evaluate a larger number of sensors combinations and
locations on the human body for HAR application. Indeed, testing numerically multiple
configurations becomes easier and offers more possibilities. Nevertheless, some aspects

such as the reliability of these data need to be investigated.

2.1 Introduction

It is necessary to choose the number and location of IMUs on the human body to
perform HAR. Generally, the configurations used are chosen by empirical approaches.
The positioning of the IMUs is determined in accordance with the objective of keeping
the external artifacts related to the soft bodies as low as possible [90, 91, 92]. Nevertheless,
some works investigated the locations and the number of IMUs on the human body. N.
S. Suriani et al. [93] investigated the optimal accelerometer placement for fall detection
from three different body location (hip, thigh, and foot). Multiple activities were classified
using k-NN and SVM models. Results show that the hip location was the best placement
to classify activities and detect falls. S. Chung et al. [94] evaluated the best configuration
of IMUs for HAR application. Their study was limited to four positions (left and right
wrists, waist, and ankle). They extensively tested all combinations to find the better
classification model accuracy. Based on a LSTM neural network, their results indicated
that only 2 sensors located on right wrist and right ankle with 10 Hz sampling frequency

can give reasonable performance. It is also relevant and intuitive to place the sensors on
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the parts of the body that are considered during the movements performed. Regardless,
there is no general method to determine the best configuration. Furthermore, testing
experimentally all combinations is not feasible, covering the entire human body with IMUs
is too restrictive and is currently not possible. However, the use of data augmentation

techniques offers the opportunity to reduce the cost and time constraints of data collection.

Data augmentation

Data augmentation techniques consist of artificially increasing the

amount of data by generating new data points from existing data.

Our proposed method is based on the use of full body motion capture system. Indeed,
motion capture system allow to measure human motion accurately (less than 1 mm error
for optoelectronic systems [30]) and physical quantities such as accelerations and velocities
can be extracted. The aim is to generate virtual IMU data called synthesized IMU data
(SID) which is not based on direct measure from a biomechanical model. Extracted SID
can then be used for training HAR algorithm and testing multiple configurations. The
best candidates can then be evaluated with real IMUs. Nevertheless, these data were
processed and some features may have been altered such as the frequency spectrum. Thus,
the information provided by the signals may differ from the measurements of the actual
sensor signals. In this study, soft tissues artifacts are not considered and the biomechanical
model obtained from the motion capture is composed of rigid segments.

The first part presents SID on the whole human body based on a biomechanical model.
SID are generated using the Xsens motion capture system. Then, to assess the viability
of SID, a comparison with real IMU data (RID) is conducted, based on statistical and
frequency approaches. Finally, a HAR application is implemented and performance of SID

is illustrated.

2.2 Materials and Methods

2.2.1 Experiment design: Case study

Motion capture acquisition is performed with the Xsens motion capture suit (com-
posed of 17 IMUs sampled at 240 Hz) and the Delsys IMUs set (14 IMUs sampled at

370 Hz). Data measured by the Xsens IMUs are used to generate a biomechanical model,
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synthesized data are then extracted from the model to be compare to the real data ob-
tained from the Delsys IMU measurements. During the experiment, one participant with
amateur level performed 10 repetitions of 3 types of activities:

— Countermovement vertical jump: The subject jumps on the spot trying to go as
high as possible, the movement starts with a squat.

— Left-side sprint: The subject starts from a static standing position; at the start,
he performs a sprint with great acceleration in the left lateral direction from his
initial position.

— Right-side sprint: The subject starts from a static standing position; at the start,
he performs a sprint with great acceleration in the right lateral direction of his
initial position.

The final database is therefore composed of 30 trials. Both measurement systems are

worn at the same time by the participant (Figure 2.1). The Delsys IMUs are located on

Delsys IMUs

Xsens motion
capture suit IMUs

Figure 2.1 — Participant equipped with the Xsens system (IMUs in orange cases) and Delsys IMUs
(under the white stripes).

hands, lower arms, upper arms, feet, lower legs, upper legs, pelvis and sternum. We used
double sided tape to fix the sensors on the body and add extra white stripes to ensure the

fixations. This system is used to measure real physical quantities called real IMU data
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(RID). The Xsens IMUs are fixed on the body thanks to self-gripping bands and the list

of sensor locations is presented in Figure 2.2.

Foot FOOT Middle of bridge of foot

Lower leg LLEG Flat on the shin bone (medial surface of the tibia)
Upper leg ULEG Lateral side above knee

Pelvis PELV Flat on sacrum

Sternum STERN Flat, in the middle of the chest

Shoulder SHOU Scapula (shoulder blades)

Upper arm UARM Lateral side above elbow

Fore arm FARM Lateral and flat side of the wrist

Hand HAND Backside of hand

Head HEAD Any comfortable position

Figure 2.2 — Xsens sensor location. Extracted from the Xsens user manual.

Optimal positioning advice is given by Xsens to limit the influence of soft bodies
artifacts like skin or flesh. These data are then processed by the Xsens MVN Animate
software. Proprietary fusion and reconstruction algorithms allow for generating accurate
numerical avatar motions at 240 frames per seconds. The model is composed of 23 rigid
segments and 22 kinematic joints of 6 degrees of freedom. The Figure 2.3 shows a partial

view of the global and local coordinates of the calculated joint angles.

'

| Body frame

iy

Segment

(;Z

Global frame
OY

Gy

Segment

Sensor

Figure 2.3 — Global and local coordinates of joint angles. Extracted from the Xsens user manual.

Once the biomechanical model is created, it is exported from the Xsens environment

to be analysed and processed under CusToM (Customizable Toolbox for Musculoskeletal
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simulation) [95] developed by a local research team. The data extracted from the model
is called synthesized IMU data (SID).

2.2.2 Custom library

The CusToM toolbox allows to visualize and analyze human motions from joint coor-
dinates to muscle forces. An overview of CusToM functionalities are presented in Figure
2.4.

External
forces
computation
External
. forces
Motion
capture Joint Joint — Muscle
data Inverse coordinates| Inverse torques P ——— forces
kinematics dynamics orces
estimation
Geometrical Inertial Muscular
parameters parameters parameters

Geometrical

calibration

Motion capture
calibration data

Inertial

calibration

Motion capture
and force plateforms

Muscular

calibration

calibration data
Figure 2.4 — CusToM pipeline [95]. In red the current study limitations.

Our study focuses on the inverse kinematics block. Motion analysis from joint coor-
dinates is computed but, in order to have a better evaluation of the whole human body

segment motions, the model needs to be discretized.

2.2.3 Generation of virtual sensors and synthesized data

Generated biomechanical model gives joint angles and positions in a 3D reference
space. The segment lengths are defined by the calibration step, and each segments are
connected to another by a kinematic joint (except for extremities). To evaluate the kine-
matic and dynamic parameters in new points on the segment (Figure 2.5) one can use the

moment transport rule.
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The dynamic and kinematic torsors (D(S/R) and V(S/R)) are defined by:

| As/R)
D(S/R) = { F(Bes/R) }B/R (2.1)

a(S/R

V(S/R) =1 — (5/R) (2.2)
V(Be S/R) B/R

where S is the considered solid (or segment), R the reference frame, B the application

point, V the velocity vector, Q the angular velocity vector, A the acceleration quantity

and 0 the dynamic moment. To evaluate the moments from point A to B the torsors can
be rewritten as:

N

Figure 2.5 — Tllustration of the segment and joint structure.

~—

V(S/R)={ (S/R) } ={ H5/R (2.3)
B/R

V(BeS/R) V(deS/R)+ BAn G(S/R) }B/R

DIS/R) - A(S/R) _ A(S/R) (2.4)
5 (BeS/R) o 5(AeS/R)+ BAAmpT (S/R) P

where mp is the total mass.

The constructed biomechanical model is processed and discretized and corresponding
locations of RID are kept for comparison as illustrated in Figure 2.6.
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Figure 2.6 — Discretized biomechanical model. Left: Synthesized IMU Data (SID) positions where
each green circle represents a virtual sensor location. Right: SID virtual locations corresponding to RID
location.

2.3 Data analysis: Synthesized data reliability

2.3.1 Temporal domain

After temporally synchronizing both systems, only the signal norms are studied to get

rid of the sensors orientations in space. The signal norm is obtained using eq. 2.5.

Is@)ll = Va(®)? +y(t)? + 2(t)?, (2:5)

where s(t) represents the physical quantities measured as a function of time along
the three axes ¥, ¢/, 2. SID and RID are then compared using statistical and frequency
features. We used the Bland-Altman plot to illustrates the difference between SID and
RID samples. In addition, the considered features listed in Table 2.1 are extracted from
SID and RID for extra comparison. This selection corresponds to the most widely used
features in literature and will be used next in the HAR part. Braganca et al. [96] highlight
in their study the common methodology used in HAR.
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Table 2.1 — List of features used for signal characterization (PSD for power spectral
density).

Number Feature

1 Mean

2 Standard deviation
3 Root Mean Square
4 Max

5 Min

6 Skewness of PSD

7 Kurtosis of PSD

8 First Quartile

9 Second Quartile

10 Third Quartile

11 Mean Crossing Rate
12 Mean of PSD

13 Standard deviation of PSD

Features extraction from segmented data allow a high-level representation of the sig-
nals. In addition, overlapping in the segmentation process is used to overcome loss of
information. Thus, 0.5 s window and a 50 % overlapping are selected for feature extrac-
tion. Equation 2.6 presents how the normalized relative error between SID and RID is

calculated:

\/ & S (RID — SID)?
\/ % Xy RID?

where N stands for the number of windows for all samples.

RMSE = (2.6)

2.3.2 Frequency analysis

To perform the frequency analysis, we first used the classical fast Fourier transform
(FFT) method. The FFT of a signal f can be obtained using the equation eq. 2.7.

F(f) = foo flz)e ™ dx (2.7)

82



2.3. Data analysis: Synthesized data reliability

Nevertheless, acceleration data can be considered as a non-stationary signal or non-
periodic signal, thus, we also used the continuous wavelet transform (CWT) [97]. The

CWT of a signal f can be obtained using eq. 2.8a and eq. 2.8b.

sy = [ store (2.8

1 t—1

*
- T
st \/g ( S

where s is the dyadic dilatation, 7 the dyadic position and ¥ the wavelet function. The

) (2.8b)

frequency of human motions is mainly between 4 and 26 Hz [98]. Therefore, according to

the Nyquist-Shannon theorem, the sampling frequency must be at least 52 Hz.

Nyquist-Shannon theorem

In signal processing, the Nyquist-Shannon theorem establishes con-

dition about the sample rate for the discretization of continuous-
time signals. To capture all the information contained in the fre-
quency band of the signals and avoid aliasing, the sampling fre-
quency must be twice the frequency of the observed phenomenon.

The condition can be written as:

fm < f; (2.9)

where f,, is the maximum frequency existing in the frequency band
of the continuous-time signal and % is the Nyquist frequency (sam-

pling frequency divided by 2) [99].

SID are sampled at 240 Hz and RID are sampled at 370 Hz, thus the Nyquist-Shannon
condition is satisfied. Nevertheless, the impacts produced can not be perfectly captured

by the measurement systems as they exist in a very short time.

2.3.3 HAR application

As a proof of concept, a very common and simple support vector machine (SVM)

classifier with a second-order polynomial kernel is implemented. Training and evaluation
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of SVM models are performed in different ways, the Figure 2.7 presents the proposed

RID-SVM icti RID-SVM-RID
Real IMU data SVM.m.odeI SVM prediction
training (RID) SID-SVM-RID
Synthesized IMU SVM.m.odeI SVM prediction SID-SVMLSID
data training SID-SVM (SID)

Figure 2.7 — Workflow for SVM models evaluation. 3 aspects are studied and are presented in the
format "Training - Model - Prediction’.

workflow.

Two SVM models are trained, one on the SID and the other on RID. Each model is
then evaluated on their respective data (RID-SVM-RID and SID-SVM-SID). To assess
the possibility of using SID data to train SVM models for RID predictions the SVM model
trained on SID is used to predict data from RID (SID-SVM-RID). The inputs are features
of Table 2.1. The evaluation of the motion recognition is done by a 5-fold cross-validation.
To determine the classifier accuracy, the classification score is computed, which is 1 minus
the average classification loss overall folds (eq. 2.10). The classification loss is defined by

the misclassification rate.

| KN )
score =1 — EZ Z wiI{y; # y;}, (2.10)

i=1j=1

(2.11)

where /{.} is the indicator function, w; the weight for observation j, ; the predicted
class label, y; the observed class label, N the number of observation and K the number of
fold.

The data set is composed of 10 repetitions of three movements. For each sample
consisting of a 0.5 s window of the norm of acceleration and norm of angular velocity, the
13 previously defined features are extracted, leading to a total of 26 features. So far, the
dataset is composed of 702 samples with 226 samples for the countermovement jump, 234
samples for the left-side sprint and 242 samples for the right-side sprint. The duration
of each movement differs, which is why we obtain a different number of samples after
extraction of the features via the 0.5 s windowing. The classification models are evaluated

on all locations.
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2.4 Results

Temporal and frequencies studies focus on the entire signals. Features used for com-

parison and classification are then calculated on windowed signals.

2.4.1 Frequency domain

As a result of data fusion and optimization algorithms, data from SID are filtered.

The Figure 2.8 presents the FFT of the norm of acceleration on the left hand for a jump.
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Figure 2.8 — Fast Fourier transform (FFT) of the norm of acceleration of an IMU on the left hand for
a jump for synthesized inertial data (SID) and real inertial data (RID) for the entire signal.

While signals match at low frequencies (< 5 Hz), the RID signals have a larger fre-
quency bandwidth than the SID signals (due to the higher sampling frequency - 370
Hz). In addition, in this example the magnitudes of RID signal are higher from 28 Hz
to 185 Hz. Nevertheless, the result depends on the performed activity, thus, for better
interpretation it is necessary to use another tool. To have a time-frequency representation
of the frequencies, one can observe the CWT. Figure 2.9 presents the CWT of the norm
of the acceleration for the right hand during a jump.

Under 10 Hz, both SID and RID are close but RID still has a higher amplitude.
In addition, the frequency spectrum depends on the body location. Larger differences
can be observed in whole frequency spectrum, the Figure 2.10 presents the norm of the

acceleration for the right foot during a sprint.

85



Chapter 2 — Synthesized IMU data evaluation for data augmentation

=)
o

Frequency (Hz)
_O:‘

=)
°©

102

Frequency (Hz)
_O:‘

=)
°©

1 2 3
Time (s)

Time (s)

SID
-
| —
|
1 2 3 4 5 6

20

IS

)

Figure 2.9 — CWT of the norm of acceleration of the right hand during a jump.
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2.4. Results

During performed activities, legs and foot are subject to high accelerations and im-
pacts. Thus, as the SID data are filtered and not the RID, frequencies superior to 5 Hz

can give different results.

2.4.2 Temporal domain

Figure 2.11 shows SID and RID temporal waveforms, the data correspond to the norm

of the acceleration of an IMU located on the left hand during a jump.
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Figure 2.11 — Norm of acceleration of an inertial measurement unit (IMU) on the left hand for a jump
for synthesized inertial data (SID) and real inertial data (RID).

The SID and RID acceleration match, however this is not a general result, some
exceptions exist. Figure 2.12 presents the acceleration norm for SID and RID for an IMU

located on the pelvis.
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Figure 2.12 — Norm of acceleration of an inertial measurement unit (IMU) on the pelvis for a jump for
synthesized inertial data (SID) and real inertial data (RID).
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One can observe error in RID measurements, this could be caused by connection losses
during acquisition. To compare temporally each sample of the two signals, RID and SID
are filtered using a fifth-order Butterworth IIR 10 Hz low pass filter. Figure 2.13 illustrates
the difference between temporal filtered RID and SID data with Bland—Altman plot.

Mean = 0.041526

~ = =~ Quantile 97,5% = 1.2726 409
- = = = Quantile 2.5% =-1.0796
.

108

10.7

Density

logo(RID) — log,{SID)
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15 . : . : . : s
-6 -4 -2 0 2 4 6 8
logo(RID)+logy(SID)

2

Figure 2.13 — Bland-Altman plot of the filtered RID and SID acceleration data. The observed distri-
bution is not normal, the quantiles of 2.5 % and 97.5 % were calculated from data counting.

This plot presents in log scale the instantaneous temporal difference between RID and
SID as a function of the averaged log value, for each time sample.

The average difference between RID and SID acceleration is about 0.1 g. We observe
that for 95 % of the values, the error is <17% on the average acceleration of 1.4 g. The
differences observed at each moment come not only from the oscillations linked to the
different measurements but also from the temporal synchronization between RID and
SID. To comfort these matching results, the following part focuses on the comparison

between RID and SID via the use of features.

2.4.3 Features evaluation

The signals processed here are segmented into windows of 0.5 s. Statistical features
introduced in Table 2.1 are extracted for the whole data set of RID and SID windows.
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Figure 2.14 shows the relative normalized RMS error (RMSE) between the SID and RID

data as a function of the features extracted.
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Figure 2.14 — Box plot of normalized error of the norm of acceleration (top) and angular velocity
(bottom) between synthesized inertial data (SID) and real inertial data (RID) for all sensors versus
features. The line inside of each box is the sample median. The left and right edges of each box are the
upper and lower quartiles, respectively. Outliers are values that are more than 1.5. Interquartile range
(IQR) away from the top or bottom of the box using an ‘0’ symbol. The whiskers are lines that extend
above and below each box. One whisker connects the upper quartile to the non-outlier maximum (the
maximum value that is not an outlier), and the other connects the lower quartile to the non-outlier
minimum (the minimum value that is not an outlier).

The error is calculated on all accelerations and angular velocities for each sensors.
The results are presented as boxplots. This presents the distribution of the error values
according to the features. The ‘Mean of PSD’ presents a higher error than ‘Skewness’
Focusing on these two examples, Figure 2.15a corresponds to the least relevant feature
with an RMSE that has a third quartile below 250 % and 75 % for angular velocity and
acceleration, respectively. On some outliers of the ‘Mean of PSD’ on sensor S1, the angular
velocity has errors of >1000 %. Figure 2.15b shows a more relevant feature with errors
below 20 %.
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Figure 2.15 — Box plot of normalized error of the norm of acceleration (top) and angular velocity
(bottom) between synthesized inertial data (SID) and real inertial data (RID). (a) Plot for a non-relevant
feature (Mean of PSD, on all sensors). (b) Plot for a relevant feature (Skewness, on all sensors). Sensor
numbering from Figure 2 applies.
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2.4.4 Application to motion recognition

SVM classifiers have been trained on each SID position, using the previously mentioned
features on velocity and acceleration amplitudes. Figure 2.16 presents the results of an

avatar based on the biomechanical model.
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Height (m)

Classification score

Depth (m)

Figure 2.16 — Synthesized inertial data (SID) classification score on biomechanical model for 154 sensor
locations.

The sensor locations are indicated by circles, which colors indicate the classification
scores. Therefore, a classification score color map on human body is plotted. The classifi-
cation scores of 154 synthesized IMU locations are represented, which assess a significantly
larger number of locations compared to the only 14 real sensors. In this study, the sensors
placed on the right leg are the best for motion recognition. SID and RID are also compared
(Figure 2.17), the difference in classification scores for configurations SID-SVM-SID and
RID-SVM-RID for each sensor is calculated by Equation 2.12, which stay below 16.7 %
(Figure 2.17Db).
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Chapter 2 — Synthesized IMU data evaluation for data augmentation

Equation 2.12 computes the absolute errors, it is related to Equation 2.6 through
Equation 2.13:

RMSE¢ = \/ ]1[ Y (RID — SID) (2.12)
N

RMSE¢

\/% Yy RID?

RMSE =

(2.13)
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Figure 2.17 — a) Classification accuracy obtained for each configuration, we used a number a 50 evalua-

tions to obtained the mean value. b) Difference between SID-SVM-SID and RID-SVM-RID configurations
using eq. 2.12.

Regardless of the quality of the motion recognition, the trends on SID-SVM-SID and
RID-SVM-RID are similar (Figure 2.17a). Nevertheless, the configuration SID-SVM-RID

show low accuracy, thus SVM model trained on SID can not be relevant for RID predic-

tions.
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2.5 Discussion

The alignment between the axes is assumed constant during the experiments, the norm
does not consider the possible misalignment between the SID and RID reference frames.
The differences between synthesized data and real data can be explained by elements of
biomechanics, signal processing, machine learning and measurement acquisitions. First,
recorded data may have suffered from connectivity problems and result in data loss. As
illustrated in Figure 2.12 the RID signal shows values equal to zero. Thus, the comparison
study is impacted, these particular cases can lead to localized errors. Figure 2.7b shows
higher rmse value for sensor number 14 corresponding to the pelvis location which appears

to be correlated with measurement errors.

Second, the method is based on a numeric biomechanical model relying on assump-
tions. Indeed, the model does not consider soft bodies. This may explain the differences
on the thigh as skins and flesh lead to artefacts as well as sensor misplacement. Soft
tissue can add up to 50 % additive noise on acceleration and orientation measurements
compared to actual bone motion [100]. Some joints are approximated by combinations of
kinematic joints, as it is an osteo-articular model. For instance, shoulders are described
by two rotations while their kinematics are much more complex [101]. The pelvis is the
first kinematic node, it defines the global location of the body. It is sensitive to digital
noise coming from the solver that minimizes distances between real and virtual markers
for the whole body. So, these locations require special attention if selected as targets for

real sensors.

Third, the biomechanical model computations imply errors. While signals match at
low frequencies, the RID signals have a larger frequency bandwidth than the SID signals.
This is caused by various filters stabilizing and smoothing trajectories of the biomechanical
model, which are generally low pass filters. This is responsible for differences in features
dynamic-sensitive like minimum, maximum, standard deviation as well as power spectral
density (PSD) based features like Kurtosis or Skewness. One should keep in mind that
highly dynamic-sensitive features are useful to discriminate motions, while they present a
poor suitability between SID and RID. Finally, the selected classifier used in this chapter
for motion recognition is chosen to be simple. Therefore, the results can be improved
significantly, but this is out of the scope of this chapter. SVM classifier with the second-
order polynomial kernel is selected because it is a classic and mostly used algorithm. The

modeling of the motion, that is, considering statistical features on 0.5 s window, is not

93



Chapter 2 — Synthesized IMU data evaluation for data augmentation

the best fit to describe motions that can last several seconds decomposed in multiple sub-
steps. The results may benefit from considering multiple sensors or from more advanced
classification algorithms like Markov Chains considering data history or from the latest
artificial intelligence algorithms such as deep artificial neural networks. Other limitations
that could be discussed in more detail are that only one sensor is considered at a time,
the kernel bias, or the unbalance database with the small number of data and motion
diversity.

The results of the SID classification (SID-SVM-SID) follow the same trend as those of
the RID classification (RID-SVM-RID) (Figure 2.17), validating their use for numerical
evaluation of optimal IMU locations. Most of the sensor locations show an rmse value
inferior to 5 % highlighting the relevance of SID. Nevertheless, SID can not be use to
train SVM models and predict classes from RID. Indeed, results show classification score
inferior to 40 % for the SID-SVM-RID configuration ((Figure 2.17)a). Future studies can

investigate more in detail this aspect by limiting the possible sources of errors.

2.6 Conclusion

Sensors such as IMUs are increasingly used to assess the physical activity of the human
body. Finding the optimal placement of sensors is an important issue. In this chapter,
a new method based on motion capture providing synthesized IMUs is proposed. This
numerical model is applied to a classification algorithm for HAR application. A score
classification colormap on human body has been realized for 10 times more synthesized
sensors than the real available IMUs. The HAR is also done on real data for comparison;
it validates the use of synthesized IMUs data for motion classification based on statistical
features. Most of the evaluated human body locations give a maximum rmse of 5 %
(same trend between RID and SID classification performance on 14 body locations) and
open many perspectives for the future. Higher error values can be explained by special
conditions such as data loss. This method avoids many experiments necessary to evaluate

the optimal placement of sensors for the design of wearable systems.
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CHAPTER 3

KINETIC ENERGY SOURCES ON THE
HUMAN BODY: CANTILEVERED
PIEZOELECTRIC HARVESTERS

This chapter is based on the published work entitled Hoareau, D.; Jodin, G.; Laaraibi,
A.-r.A.; Priouz, J.; Razan, F.: Available Kinetic Energy Sources on the Human Body dur-
ing Sports Activities: A Numerical Approach Based on Accelerometers for Cantilevered
Piezoelectric Harvesters, Energies, 2023 [102] and discusses the optimal placement of
cantilevered piezoelectric harvester on human body. Accelerations extracted from IMUs
located on the human body provide information capable to simulate cantilevered piezo-
electric energy harvester voltage responses. A distributed parameter model is implemented
to identify the best locations and orientations. These best locations are then used to op-

timize the energy predictions of this kind of harvester on the human body.

3.1 Introduction

Harvesting energy on the human body is a great opportunity to operate electrical wear-
able system and can limit the use of batteries. The miniaturization of these devices makes
it very challenging to design them for optimal response to the human body (maximum
energy production). Human movement operates mainly at low frequency and are essen-
tially nonperiodic [103, 98]. Indeed, the design of harmonic devices for non-stationary
signal is complex, especially for signals with high dynamic like sport actions. In addi-
tion, the harvested energy depends on the localization and orientation of the piezoelectric
generator (PEG) on the human body. Nevertheless, experimental measures for PEG op-
timal placement assessment can be tedious and the combinations of possible localization
and orientation are cumbersome. The required experimental setup is neither trivial nor

ergonomic. The actions performed by the athletes will be restricted, and accurate mea-
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surement of the PEG output voltage requires high-impedance devices. Alternatively, an
approach based on electromechanical models can be used, as this method offers more
flexibility. Various models exist in literature, one can found the lumped parameter model
[104], the Rayleigh-Ritz model [105] or the distributed parameter model [106]. Neverthe-
less, there are trade-offs between computational time and model accuracy. For example,
the distributed parameter model is accurate but computationally cumbersome, in contrast
to the lumped parameter model which is simplest but has lower accuracy.

Thus, the aim of this chapter is to give guidelines and propose a method for determin-
ing the optimal placement of cantilevered PEGs on the human body. The proposed method
is applied to the sports field and is based on real accelerometer data and simulations from
a electromechanical models. Features of interest are extracted from acceleration data to
analyze the available kinetic energy sources from cantilevered PEGs. The first part deals
with the numerical implementation of the harvester model. The second part discusses
the acceleration characteristics and features which participate the most in the system’s
operation. The last part is dedicated to the harvester power prediction with respect to

the performed human activities.

3.2 Materials and Methods

3.2.1 Experiment design: Case study

A (right-handed) subject performed a 13-minute circuit of simulated sports actions,
where classical actions related to basketball, volleyball, and handball were represented.
Raw acceleration data was recorded and then manually labeled; the acquisition was per-
formed using Xsens MVN Link. The system was composed of 17 IMUs with 9 degree-of-
freedom (3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer) located on both
hands, both forearms, both upper arms, both shoulders, both feet, both lower legs, both
upper legs, pelvis, head, and T8 (sternum). The sampling frequency was 240 Hz. The
attachments and protocol provided by Xsens were used to place the sensors on the body.
Extra sport straps were used to increase the robustness of the attachment. Soft tissue
artifacts were not considered. The sensors were placed close to the bones to limit these
undesirable effects. Consequently, the results of the studied harvesters are valid if the
attachment method is similar. The x-axis of the sensors was aligned with the length of

the segments; the y-axis was aligned with the thickness of the segments; and the z-axis
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was aligned with the outgoing normal direction.

3.2.2 Cantilevered Piezoelectric Harvester model

Newton’s second law illustrates, according to the following formula (eq. 3.1), the fun-

damental principle of dynamics:

Y F =mad (3.1)

where F; is the external force applied to a system, m is the system mass in motion,
and a is the acceleration of the system.

Piezoelectric materials are characterized by their capacity to transform mechanical
stress into electric charge. Thus, the acceleration is related to the electric charge displace-
ment into the material. We recall the equation of the linear piezoelectricity in eq. 3.2a
and eq. 3.2b.

(S} = [s"] {7} + ["]{E) (3.20)
(D} = [ {7} + ["] (B} (3.2D)

where T is the stress, S is the strain, E is the electric field, D is the charge density, s is the
elastic elastic flexibility, € is the permittivity, and d is the piezoelectric coefficient. Our
study focuses on cantilever beam-based piezoelectric harvesters. As illustrated in Figure
3.1, this kind of harvester can be represented as a beam clamped at one end and free at
the other.

Piezoelectric
x~ layer

y(‘L—'
> X Substructure

Figure 3.1 — Schematic of a clamp-free unimorph beam.

Many parameters can be adapted, such as the shape, the material, and the structure,
and tip mass can be added to modify the beam behavior. Input acceleration amplitude and

frequency are the main criteria to be evaluated. Thus, generally the generator is designed
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according to its application. However, sports movements also possess many action-induced
impacts. Running, sprinting, striking, and similar actions cause many impacts. These sig-
nals present a wide frequency spectrum and can also operate generators. The appearance
of the different actions performed during a circuit can be biased. Indeed, basic training,
competition training, and competition conditions are different. Movement frequencies and
intensities are also dependent on the observed sport [107].

We decided to conduct our study on the unimorph structure in the absence of tip
mass, as it offers greater simplification for the analysis method. Nevertheless, it still
illustrates the general method procedure. The distributed parameter model offers the
best predictions, as it is based on the analytical solution of the coupled electromechanical
system equations [106, 87]. This model considers modal analysis with Euler-Bernoulli
assumptions: the shear deformation and rotatory inertia is neglected, this assumptions is
valid under small deflections.

The resulting equations range from equation 3.3a to 3.6c. They are presented and

explained in the following:

dQZ%(t) 26w, d";ft) +winy (8) = o0 (1) = £ (8) (3.3a)
ZT+?—;%T=O (3.3b)
AP, (z)

or = —Ypds bhye

o (3.3¢)

=L

where v (t) is the voltage response to a resistive load R, 7, (¢) is the modal coordinate
for the r-th vibration mode, (. is the mechanical damping ratio of the r-th vibration
mode, w, is the undamped natural frequency of the r-th vibration mode, y, is the modal
electromechanical coupling term for the r-th vibration mode, and f, (¢) is the modal
mechanical forcing function. Equation 3.3a is the mechanical equation of motion in modal

coordinates, and equation 3.3b is the governing electrical circuit equation.
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In the absence of tip mass and by neglecting the small base rotation of the beam, the

modal mechanical forcing function can be written as:

1) = —m®e) f b, (z) do (3.4)

a2 |,

where m is the mass per unit length, g (¢) is the transverse displacement of the beam

base, and @, () is the mass-normalized eigenfunction of the r-th vibration mode:

Ar Ar A A
O, (z) = A, CoS 1 — coshfa: + o, <smLx - smth)] (3.5)

where \,., A, and o, are obtained as:

1 + cosA.cosh\, =0 (3.6a)

A, = \/E (3.6b)

sinA, — sinh\,
or = cos\, + cosh\, (3.6c)

The various necessary parameters are listed in Table 3.1.

The single-mode voltage response function can be written in the Laplace domain using

equations 3.3a and 3.3b.

pRe, fr (p)
(w2 + p? + 2pGewr) (1 + pRZ) + pRXrr

Vip) = (3.7)
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Table 3.1 — Parameters of the harvester model

Parameter Description

L Beam length

b Beam width

By, Yy, Pp, €31, €55 Piezoceramic layer: thickness, elastic modulus, mass
density, piezoelectric constant, and permittivity con-
stant

hs, Ys, ps Substructure layer: thickness, elastic modulus, and
mass density

YI Bending stiffness of the composite

Ypdg b(he?~m?) 4o, (x)
Xr o 2h,, dx
r=L
i nhs(hp+hs)
pc 2(hp+nhs)

N Y,
YP

hy, he-hy

h hp2+2nhshp+nh32

c 2(hp+nhs)

Wr )\1"2\/ ,31/ LI4

M b(pshs + pshy)
e3,bL

Z —iﬁp

Laplace transform

The Laplace transform of a function f(¢) the function F'(p) which

is a unilateral transform defined by:

+00

F(p) = £{f}(p) = f e P f(t) dt (3.8)

where p is a complex number . The function f must be locally

integrable on [0, 0].

The modal mechanical forcing function can be rewritten as

L

£, (0) = —mpg <p>j @, (z)dz = ~A(p)m f 3, (z) d (3.9)

0

where A(p) is the base acceleration. Thus, the resulting transfer function can be written as

% = H (p). Mathworks Matlab software was used to simulate the model. Specifically, the
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Matlab LsiM() function was used; it discretizes the continuous transfer function (H(p)) to
a recurrence equation and converts the sampled acceleration data (a(t)) with a first-order
hold. The output was then computed using the recurrence equation applied on the samples
as a digital finite-response filter. This numerical method is fast. For simulation purposes,
the acceleration data were upsampled. This operation does not add information to the
signal and allows smaller time steps computations to be performed for better precision.
The resampling factor was evaluated using the relative error (RE) in the simulated
energy:
RE = 100M,¢ ~1.N (3.10)
En
where i is the resampling factor and E is the simulated energy obtained from the model
using the according upsampled acceleration data. Finally, passive control was assumed
with a constant resistive load R, at the harvester output, and the energy of the simulated

harvester model was calculated as

E, = f“gfdt (3.11)

where v is the harvester model voltage response.
To simulate the harvester model response, the data extracted from [106] were used,

the characteristics are reported in table 3.2.

Table 3.2 — Materials properties of the unimorph cantilever.

Parameter Piezoceramic Substructure
Material PZT Composite
L (mm) 100 100

b (mm) 20 20

h (mm) 0.4 0.5

Tip mass - -

Pp, P, (kg/m?) 7800 7165
Y,,Y . (GPa) 66 100
Damping coefficient ((;) 0.01

External load (R,) 5¢6 Ohm

ds1 (pm/V) -190 -

eS, (nF /m) 15.93 ;
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High value of load resistance (~10° Ohms) can be assimilated as open circuit behaviors:
the harvester output voltage is less sensitive to the variations in the load resistance [106].
However, it is interesting to visualize the influence of the load resistance in the voltage

prediction, thus, the variation of R, is investigated.

3.2.3 Hardware and software configurations

The computations were performed using Matlab R2022b (Math-Works, Inc., USA) on
Windows 10 (Microsoft Corporation). The hardware system was built on AMD Ryzen 5
2600 Six-Core 3.4 GHz (CPU) with 16 Go RAM memory. Computations were performed

in less than 1 second for 992290 samples of temporal data.

3.2.4 Data characteristics

Acceleration data can be mathematically categorized as finite energy signals, as they
are non-stationary and have a finite time span. L? (R, () is the space of finite energy

signals. The mathematical signal energy, Fy;gnai, is obtained using equation 3.12.

+00
Euignal = |s|° = f x(t)2dt (3.12)

—00
where s is the finite energy signal. Moreover, sport-related actions can be manifold,
and high-velocity interactions between the body and the environment are observable.
Feet come into contact with the floor during running and jumping, and there are ball
interactions during hits and passes; all of these cause high acceleration and deceleration
magnitudes, translated as abrupt changes. To perform a detailed time—frequency anal-
ysis, it is not possible to use a common tool such as the Fourier transform, because it
does not allow one to precisely locate the transients of the signal. Thus, here, the wavelet
transform was used [97]. For the precise representation of the different frequencies present
in the acceleration, the continuous wavelet transform (CWT [108]) was computed (us-
ing the cwT() function in Matlab). And for signal decomposition or reconstruction, the
maximum overlap discrete wavelet transform (MODWT [109]) was computed (using the
MODWT() function in Matlab). As discussed in the above paragraph, acceleration data
contain impacts. This is related to quick and abrupt changes in the signal transients.

Depending on the width of the impacts, the frequency spectrum can be very wide or even
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3.2. Materials and Methods

present all frequencies, as in the theoretical Dirac delta distribution. Nevertheless, the
whole dynamic is only observable if the sampling frequency is at least two times greater
than the maximum frequency of the impacts according to the Nyquist-Shannon theorem

[110]. In practice, the sampling frequency must be 5 or 10 times greater.

3.2.5 The influence of the orientation of the harvester

The harvested energy is inherently related to the location of the harvester on the
human body. Positions with periodic and highly dynamic motions are the most suitable
ones. Moreover, the orientation of the harvester impacts the potential energy harvested.
The structure of the harvester allows voltage to be generated from unidirectional stress
only in correspondence with the deflection axis (DA) of the beam. To assess the influence
of the orientation, the harvester model was simulated for multiple angular rotations from
the IMU reference frame. Nevertheless, to avoid redundancy in the results, the range of
angular variation was restricted. The Cartesian space is defined by 3 axes (@, ¥, 2'); thus,
3 rotations could be introduced, and R, (61) , R, (62) , R (03) are the rotation matrixes for
the x-axis (which rotates the y-axis to the z-axis), the y-axis (which rotates the z-axis
to the x-axis), and the z-axis (which rotates the x-axis to the y-axis), respectively. The
general orientation in space can be obtained by multiplying B = R, (63) R, (62) R, (61),
i.e., the Cardan angles. The number of possible rotations for one vector can be represented
by a sphere (Figure 3.2); however, depending on the harvester structure, this space can
be reduced:

— The harvester has a single degree of freedom. Therefore, it has rotation invariance

around the DA, which does not change its direction;

— The harvested energy is independent of the voltage sign (i.e., the acceleration sign).

Therefore, it has symmetry invariance, as shown in equation 3.13.

E, —fvgj dt—JHR(f)) (3.13)

The space of possible orientations is now contained in a semi-sphere. Assuming that
the DA is equal to the 7 axis, every possible rotation in 3D space can be obtained
with R = R, (03) R, (62) R, (1) in the general case. With space reduction we obtain
{ R, (61) = I (Rotation invariance)

! o _ ) where [ is the identity matrix.
05,05 € [=F; 2| (Symmetry invariance)
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— Arceleration reference frame

Hy

Harvester reference frame

| Global position (initial)

X-axis Rotation |

Y-axis Rotation

Z-axis Rotation

Figure 3.2 — Harvester orientation in Cartesian space. The rotation around the @', axis (deflection)
does not impact the deflection direction. The harvested energy is not impacted.

104



3.2. Materials and Methods

3.2.6 Most relevant features (MRFs)

As the input signals of the model are not stationary, it is interesting to analyze the
features offering optimal harvesting. Depending on the quality factor, the best efficiency
is obtained when the harvester operates in its bandwidth. Impulses are relevant to the
power harvester because of the large frequency spectrum. They are highly present in
sports. To determine if impulses were part of the MRFs, they were extracted from the
acceleration data and compared to both the total signal energy and the harvested energy

of the simulated model. The method is described in Figure 3.3.

| Acceleration data (17 sensors) |

l l |

Mathematical |
. Harvester model
signal energy

High-pass filtering |

| Peaks localization |

TOtal Signal Total Simulated | Peaks extraction |
energy (TSE) model energy T
(TSME) l l

Mathematical
signal energy

! l

Harvester model

Extracted Simulated model
impact energy energy of extracted
(EIE) impacts (SMEEI)

Figure 3.3 — Flowchart of impact evaluation method. The first step consists in calculating the mathe-
matical signal energy and simulating the harvester model energy using the total acceleration data. The
second step consists in extracting the impacts from the acceleration data and then calculating the new
mathematical signal energy and simulating the new harvester model energy.

To extract the impacts from the acceleration data, the first step was performing high-
pass filtering using MODWT and inverse MODWT to keep the high-frequency compo-
nents.

This method is relevant for non-stationary signals and has the advantage of being
automatic in the sense that a classical digital high-pass filter would need to set an order,
a cut-off frequency, ... Then, peak localization was performed with the Matlab FIND-
PEAKS() function, which gives the local maxima in a sliding window. Finally, using the
corresponding peak localization on the acceleration data, the impacts were extracted with

an adapted time window.
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3.2.7 Influence of human activities in energy prediction

The conducted study discusses the energy prediction for the whole performed circuit.
As the circuit is composed of various qualified activities, it is possible to evaluate their
contribution. Thus, the energy prediction is computed for each location and for each
activities. The acceleration data is first segmented according to activities execution time.
For each activity the optimal orientation for the harvester will be investigated using a
particle swarm optimization (PSO) with the Matlab function PARTICLESWARM().

The optimization problem can be written as:

znin{iggi@i(}a f(0) (3.14)
f(0) =— f U(Zcm dt (3.15)
N 0 (1)

— | =R [ay(t) (3.16)
— a,(t)
_7” <0< g (3.17)

. . d2q(t) . .
where R, is the load resistance, L9l ig the harvester base transverse acceleration

at?
corresponding to A(p) in Laplace domain, R(#) is the rotation matrix obtained with the
Cardan angles, a,(t),a,(t) and a.(t) are the accelerometer measurements in the local
frame and the product A(p)H(p) leads to V(p) (v(t) in temporal domain) obtained in
equation 3.7. We used a swarm size equal to 20, other parameters are set to Matlab
default values. For better interpretation and because the performed activities are not well

balanced, we will visualize the mean of the predicted power.

3.3 Results and Discussion

3.3.1 Simulation of harvester model

The resonant frequency of the first vibration mode of the simulated model was equal
to 48.8 Hz in open circuit condition (47.8 Hz in short circuit condition) with a phase of

-90 degrees.
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The Bode diagram is shown in Figure 3.4. Here, only the first vibration mode was

20

20 — .

40 — .

Magnitude (dB)

60 = L i Ll | | Y SN
270

180 [~

Phase (deg)

ok Ll Ll Ll .
1072 107 10° 10° 102 108
Frequency (Hz)

Figure 3.4 — Bode plot of the harvester model. Peak resonance is observed at 48.8 Hz.

considered, as the second mode ( 301.5 Hz) was far from the Nyquist frequency of the
acceleration data (120 Hz). To accurately simulate the temporal voltage responses, the
acceleration data were upsampled using a resampling factor, where the value was chosen
to obtain a relative error (RE) inferior to 1 %. Figure 3.5 presents the RE for each axis

of each sensor.

T T T T T T 7]
Relative energy error (Simulation) ‘

Relative error (%

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Resampling factor

Figure 3.5 — Relative error in energy simulations according to the resampling factor of the acceleration
data. One line is drawn for each sensor (17).

It is suitable to increase the resampling factor to reduce the simulation artifacts, but
high values impact the simulation time. Subsequently, the value of the factor was fixed to

5. The resampled acceleration data were used as inputs to the harvester model.
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Figure 3.6 presents the predicted voltage response using the acceleration data on the

y-axis of the left-foot IMU. Observing the temporal response highlighted that a brief

300 T T T T T T T T T T
200 - 4100

100 |-
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"
M\HH f

Acceleration (m/sz)
o
Voltage prediction (V)
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Figure 3.6 — Acceleration data of the left foot on the y-axis (black) and model voltage response (red).
The original data were clipped for illustration purposes.

impact of high acceleration magnitude gave higher voltage generation. Indeed, impacts
present large frequency spectra, which can operate the harvester in its bandwidth. The
observed pseudo-periods in the voltage transients were equal to the resonance frequency
of the harvester.

The value of the load resistance impacts the output voltage and thus the output power.
Figure 3.7 illustrates the voltage variation for different value of load resistance.

When the load resistance is close to 1e6 Ohms, the voltage variation decreases, the
system is close to open circuit conditions. In contrast, when the value of the load resistance
is low, the voltage variation increases, it is assimilated to short circuit conditions. In
practice, when impedance matches with the interface circuit, there is an optimal resistance

that maximizes the output power.
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Figure 3.7 — Influence of load resistance R, variation on output voltage.

3.3.2 Orientation of the harvester

Not all sensor locations experienced the same acceleration profiles nor impacts related
to the physical activity of the subject. Depending on the original fixations of the IMUs
on the body, optimal DA orientation was obtained by rotating the local reference frame
according to two axes of rotation. Assuming that the DA was aligned with the IMU x-axis,
Figure 3.8 presents the orientation influence on energy simulation for the right hand found
by investigating y- and z-axis rotations (results for all evaluated locations are presented
in appendix A3).

Taking the results for the right hand, optimal DA orientation was obtained with ro-
tations of -88° around the y-axis and 4.5° around the z-axis (Figure 3.9). In this case, it
approximately represented the direction normal to the surface of the hand. In the same
way, the optimal DA orientation was obtained for each location.

By extracting the best orientation for all locations, the optimal placement for har-
vesting energy based on the simulated actions was evaluated. Figure 3.10 presents the

normalized simulated energy at the 17 sensor locations for optimal DA orientation.
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RightHand

T

Y-axis rotation (*)
o g

Nomalized enengy

2

50 0 50
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Figure 3.8 — Influence of orientation on harvester normalized energy simulation for the right hand from
IMU local reference frame. Optimal orientation is indicated by a red cross. Xsens location labels are used.

Cantilever ——»

Base ——»

y

=

B
<y

| Optimal Orientation (6, = —88° and 63 = 4.5°) |

Figure 3.9 — Initial and optimal orientations of the harvester on the right hand. On the top, the initial
fictive placement of the harvester is presented. This position corresponds to the IMU orientation with the
DA aligned with Z. On the bottom, the optimal orientation according to Figure 3.8 is presented with
rotation around ¥ and 7.
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(=]
W
MNormalized energy

Figure 3.10 — Normalized energy simulation of the different sensor locations mapped on the biome-
chanical model constructed using Xsens. In this case, with a right-handed subject, the best location is
the right hand.

Body extremity segments were found to be suitable for energy harvesting. In this
study, the best placement was found to be located on the right hand. Hands and feet were
both mainly used and showed various impacts related to the performed sports actions.
Shoulders, sternum, head, and upper legs were less relevant. Moreover, differences between
left and right body parts were caused by the non-symmetrical nature of the performed

actions and by the fact that the subject was right-handed.

3.3.3 Impact distribution

To better understand the energy simulation results of the harvester model, a time —fre-
quency analysis of the acceleration data was conducted. Figure 3.11 shows the CWT of
the acceleration data of one IMU location using the Morse wavelet. Frequencies were
mainly between 1 Hz and 120 Hz. As mentioned above, frequency band observation was
limited by the value of the IMU sampling frequency. For the left foot, magnitudes were
higher when the frequency was superior to 10 Hz. Vertical lines corresponding to impacts
related to the subject’s jumps can be observed. One can observe that the frequency band
of the impacts was relatively large, and the maximum value reached was 52 Hz. To assess
the influence of impacts on the simulated energy, the method presented in Figure 3.3 was

used.
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Figure 3.11 — (a) CWT of acceleration data of the left foot for optimal DA orientation. The Morse
wavelet was selected for visualization. (b) Partial visualization of the CWT for illustrating the frequency
components present in jumps. (¢) Temporal frame of the frequency spectrum of an impact caused by a
jump. This figure shows the frequency spectrum repartition for a fixed time.

The acceleration data were filtered using the first four frequency bands of MODW'T
with the Sym4 wavelet, which corresponded to frequencies between 75 Hz and 1200 Hz
(due to resampling). The minimum peak value detection was set to 30 m/s? and the
minimum space between peaks was set to 50 ms. Localized peaks were extracted from
a centered window of 50 samples (about 41 ms). Figure 3.12 presents the original data
and their reconstructed signals based on impacts only. The mathematical energy of the
original acceleration data was compared to the simulated energy of the harvester model.
The table 3.3 recalls the different quantities used and their expression. Figure 3.13 shows
the different energy values for raw acceleration data (TSE) and harvester model simulation
(TSME) according to each location. To focus on qualitative comparisons, the energies have

been normalized to get maximum value of 1.
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Figure 3.12 — The graph on the top shows the original resampled acceleration data. The graph on the

bottom shows the same signal with the extracted impacts only.

Table 3.3 — Reminder of quantity definition

Quantity Definition Expression
TSE Energy of the original acceleration signal Is||”
) z
TSME | Simulated energy of the harvester model S% with s as input
from the original acceleration signal
EIE Energy of the impacts in the acceleration I fittered”
signal (s fiered)
2
SMEEI | Simulated energy of the harvester model S% With S fiiered @s input
from impacts in the acceleration signal
1 1 1
N TSE

30.8 * TSME
2
S 0.6
g
T 04
£
[e]
202

0

Figure 3.13 — Normalized energy of acceleration data (TSE) and simulated harvester model (TSME)

at different body

locations.

113



Chapter 3 — Kinetic energy sources on the human body: Cantilevered Piezoelectric harvesters

Overall, the trends of TSE and TSME were similar. A great value of simulated energy
in the harvester model can be translated as a high mathematical signal energy value. TSE
can be seen as a meta-indicator that indicates the presence of suitable locations to harvest
energy. Nevertheless, this indicator only allows qualitative observations to be conducted.
This observation was then performed for the extracted impacts. Figure 3.14 presents the

energy ratios obtained from the original acceleration data and the extracted impacts.

; [E=Ratio of signal energy (EIE/TSE) I Ratio of simulated energy (SMEEITSME)]
T T T T T T T T T T T T T
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Figure 3.14 — Ratios of energy from extracted impacts only and original data. The signal energy was
obtained using the mathematical energy (equation 12), and the simulated energy was obtained using the
harvester model simulation.

In locations such as hands and forearms, the impacts caused more than 90% of the
simulated energy. The extracted impacts caused less than 30% of the mathematical energy
of the original data. More than 70% of the simulated energy for feet and lower legs was
caused by impacts. The extracted impacts caused less than 50% of the original mathemat-
ical energy. Some locations such as upper arms, head, T8, and shoulders were not affected
by impacts, since they had very few detected peaks. Overall, a high simulated energy value
was caused by impacts, which could then be considered MRFs. Impact number, period,

and amplitude for each location are summarized in Table 3.4.
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Table 3.4 — Impact characteristics for each body location. Mean and standard deviation

(SD) are shown for period and amplitude features (mean + SD).

Right Upper Leg

35
19.7 £ 31.9
76.2 £ 31.5

Right Shoulder Right Upper Arm

Right Forearm

133
5177
139.1 £+ 65.2

Left Lower Leg

Location Right Hand Left Shoulder Left Upper Arm  Left Forearm
Number of impacts 201 8 0

Period (s) 34441 66.6 £1499 0=£0
Amplitude (m/s2) 138 + 70.2 778+146 0+£0
Location Pelvis T8 Head
Number of impacts 22 1 0

Period (s) 35.14+37.3 0+0 0+0
Amplitude (m/s2) 76.6 &+ 30.3 924 +0 0£0
Location Right Lower Leg Right Foot Left Upper Leg
Number of impacts 91 247 20

Period (s) 8.7+ 17 3.3 £5.6 35.1 +£ 78.9
Amplitude (m/s2) 96.8 &+ 49.7 93.9 + 534 70.8 £+ 41

3.3.4 Performed activities contribution

The contribution of activities in the model power prediction is evaluated for each

locations using the best orientation for the harvester (optimized by PSO). Figure 3.15

presents the mean power prediction for some body location and the according performed

activities, for clarity purposes, the other studied locations are presented in Figure A1 and

A2 located in the appendices.
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Figure 3.15 — Mean power prediction in logarithm scale for some body locations according to performed

activities.
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The logarithm scale allows a better representation of the lowest values. One must
keep in mind that some activities produce 1000 more power than others. For example, on
the right hand, the harvester model predicted 100 times more power production for the
overhead pass (volley) than for the jump. In addition, it is shown that the best power
prediction is obtained for the activity ’overhand pass (volley)’ for the right hand (value
used for normalization). Regarding the overall result, the best power prediction is obtained
for limbs extremities and for activities that induce large impacts. In addition, for each
location, one can observe the optimal orientation according to the performed activities.
Figure 3.16 presents the orientations of the harvester for the right hand according to the
performed activities. Depending on the activity, the optimal orientation of the harvester
differs. The rotation angles are expressed in the accelerometer local frame, for each location
the sensor are placed in the same way, we recall: the x-axis of the sensors was aligned with
the length of the segments; the y-axis was aligned with the thickness of the segments; and

the z-axis was aligned with the outgoing normal direction.
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60 - 10°
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40 -
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Figure 3.16 — Optimal harvester orientation for the right hand according to performed activities and
normalized mean power prediction.
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3.3.5 Limitations & Future Studies

The performed actions could have impacted the results, as the results were based on
accelerometer data and harvester parameters. However, identifying impacts as MRFs is
relevant, as they are representative of sports activity. Some aspects, such as IMU sampling
frequency, can give a better interpretation of the optimal placement. It was seen that
impacts can present many frequencies. Thus, increasing the sampling frequency could
make a better acquisition of the possible dynamics. In addition, it enables the model to
be simulated with smaller time steps and prediction precision to be improved. The method
could be used to quantify the available power using the model to design sensors for various
applications. Additionally, the number of vibration modes to simulate the model must be
considered, especially if the acceleration frequencies are close to the mode frequencies.

Acceleration data can be biased due to soft tissue artifacts. Indeed, skin or muscles can
add relative movement, depending on the robustness of the fixations. Moreover, impacts
can be slightly absorbed or dampened by these tissues. However, the experiments were
conducted with acquisition devices mounted on a real person in the way harvesters could
be. The generators can be attached in the same way as the IMUs. Indeed, they have the
same mass and a similar size. Typically, in the Xsens MVN Link combination used to
generate data, the IMUs are in plastic cases attached to the human body by self-gripping
strips. Thus soft tissue artifacts and other defects in the transmission of motion from the
human body to the sensor or the energy recovery device are similar.

Concerning the harvester, the mechanical limits of the beam were not considered. An
excessive acceleration value could induce a very large deflection in the beam, causing
damage that could lead to loss of performance and eventually to the destruction of the
device. Some applications defer the use of casings designed to mechanically limit deflection.
Thus, the maximum voltage could be deducted and used in the method as a constraint.

Ergonomics aspects were not studied in this chapter. In addition, the labelling of the
performed activities may be not accurate leading to errors in the activities contribution
results. Nevertheless, the proposed method allows to determine the optimal configuration
and to map the distribution of the energy prediction accordingly to the acceleration
measurements. Tradeoffs could be drawn to obtain the best configuration under ergonomic
and practical constraints. Future studies should be directed towards the ergonomic and
practical validity aspects trough experiments.

In addition, the output control strategy of the harvester can be modeled to be repre-

sentative of the reality. Indeed, in this study a passive control was assumed with only the
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use of a load resistance. Some literature discusses harvesting strategies using electrical
interfaces, as an example, Morel et al. [111] present in their work a comparative study on

electrical interfaces for vibrational piezoelectric harvesters.

3.4 Conclusion

This study presents a method for determining the optimal placement of cantilevered
PEGs using a numerical model and experimental acceleration data from sports move-
ments. The assumptions and materials used are listed, which could later help other similar
studies to be performed under the desired application conditions. The optimal placement
and orientation of a cantilevered PEG were assessed. The results show that in the current
application, the axis normal to the surface of the right hand was the optimal placement.
Extremity segments such as the feet, hands, and upper lower arms were identified as better
energy sources. The predicted energy for the foot locations is about 50% of the predicted
energy for the right hand location. In general, upper arm and leg locations correspond to
less than 20% of the predicted energy of the right hand location.

Impacts, among the acceleration data, were identified as relevant features for operating
the harvester. Indeed, for the most promising locations, at least 80% of the predicted
energy is due to the impacts. They can be highly representative of the available energy
sources. The MRFs can be good indicators to quickly determine the variables of interest
for qualitative energy source assessment. This method offers more flexibility and ease for
the determination of energy sources. There are many databases composed of inertial data
(i.e., acceleration), which offer the opportunity to conduct studies on various applications
in an easier way. However, when it comes to accurately quantifying simulated values, it is
necessary to consider the experimental conditions to evaluate the quality of the measured
acceleration data.

Future studies could focus on the experimental analysis of energy sources. The ex-
perimental method is challenging and cumbersome, because it requires high-precision
instruments (high-impedance analyzers) and body instrumentation. As opposed to the

use of IMUs, the range of possible actions and flexibility are reduced.
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CHAPTER 4

OPTIMIZATION: IMU POSITIONING AND
GEOMETRY OF CANTILEVERED
PIEZOELECTRIC HARVESTER

This chapter discusses the optimization of the parameters from the previous studies’
introduced in chapters 2 and 3. The first part is dedicated to the optimal positioning of
the IMUs on the human body to perform HAR. We proposed an optimization problem
formulation based on the IMUs configuration, considering the HAR accuracy and the
overall power consumption. The results are illustrated by Pareto fronts, trade-offs exist
between HAR accuracy and IMUs power consumption. The second part on this chapter
focuses on the optimization of a cantilevered piezoelectric harvester dimension. This study
emphasizes the relation between the geometry of the harvester, its positioning on the

human body and the optimal energy harvesting.

4.1 Part 1: Optimization of IMU positioning

4.1.1 Introduction

There are multiple parameters to setup and optimize to obtain the best HAR accuracy
and the minimum power consumption when using IMUs. First, we consider that an IMU
is composed of 3 different sensors (accelerometer, gyroscope and magnetometer). Each
sensor can measure their physical quantities along 3 axes (x-axis, y-axis and z-axis).
Let us define P the maximal number of equipped IMUs. Considering that the sensing
network can be composed of a set of 1 to P on-body IMU locations with different sensor
configuration (i.e., activation or not of the sensors axis with the according sensor sampling

frequency).
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The number of existing combinations is defined by eq. 4.1.

comsatins =[5 () [ 5 ()] +1] - m

n=1

where S is the number of sensor in an IMU (S = 3), A is the number of axis of one
sensor (A = 3), P the total number of locations (i.e, same as Xsens IMU set, P = 17)
and F the total number of sampling frequencies (i.e, each sensor can be set to 4 different
sampling frequencies, F = 4). Calculating this equation gives a number of combinations
approximatively equal to 3.8¢™ (larger than the estimated number of grains of sand on
earth according to Howard C. McAllister). Depending on the hardware configuration,
the evaluation of all combinations by the objective functions is time consuming (i.e, for 1
second evaluation more than 157 years is necessary to test every possibilities). In addition,
other variables such as HAR algorithm parameters can be tuned (i.e, the SVM kernel, the
data segmentation method, features characteristics etc), leading to an higher number of
possible combination.

The network power consumption depends on the IMU configuration, when all axis
and high sampling frequency value are used the power consumption increases. Thus, it is
relevant to limit the hardware energy needs before investigating energy saving and energy
storage strategies.

Hence, we proposed a multi-objective optimization using an heuristic method based
on evolutionary algorithm. Firstly, the problem formulation and the different parameters
are described leading to the choice of the heuristic method. HAR are performed using
both SVM and ANN classifiers. A power consumption model is established using a com-
mercialized IMU characteristics. Finally, using Pareto fronts, various IMU configurations

are obtained.

4.1.2 Materials and Methods

4.1.2.1 Problem formulation

The problem design variables are discrete. As the problem is based on non-linear
classifiers with training based on stochastic properties the problem can be considered
as non-linear. In addition, we do not have access to the analytical formulation (i.e. the
problem can be seen as a black box), we do not have access to derivatives, it is necessary

to adopt a gradient-free method. Thus, it is natural to adopt a problem-based formulation
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[67]. Popular approach is based on evolutionary algorithms. Thus, within the constraints
and parameters of the problem, the genetic algorithm is selected.
To reduce the problem dimensionality some of the variables will be defined as fixed

hyperparameters. The selected design variables are listed in Table 4.1.

Table 4.1 — Problem design variables.

Type Description
p Variable Number of selected IMUs in the sensor network (and
their corresponding location).
F Variable Sampling frequency of the IMUs sensors. For each se-

lected IMU, 4 sampling frequencies is defined for all
the three sensors individually (accelerometer, gyro-
scope and magnetometer)

As Variable Axis selection of the IMUs sensors. For all axis of the
three sensors of the IMUs (9 in total), The axes of
the 3 sensors of each IMU can be activated or not.

Thus, the problem can be written as:

fi(P, Fs, As)

f2(P, Fs, As)

errorSVM(P, F's, As), if SVM
errorNN(P, F's, As), if NN

miimize f(P, Fs,As) = [

fi(P, Fs, As) = {

P
J2(P) = D Pin(F's, As)
i=1
where ERRORSVM () and ERRORNN () correspond respectively to the error evaluation
function of SVM and ANN classifiers presented in the next section. pj,,() is the function
giving the power consumption of the selected IMU network according to its configuration.
In addition, it is interesting in multi-objective optimization to visualize the optimal
Pareto front distribution. The proposed resolution workflow structure is shown in Figure
4.1. It consists in evaluating IMU networks distributed over the human body. The multi-
objective optimization will evaluate IMU networks using their power consumption through
a model and their relevance for HAR through classifiers performance. For each selected
IMU network, the corresponding data are extracted from the dataset and then processed

to feed the classifiers.

121



Chapter 4 — Optimization: IMU Positioning and Geometry of Cantilevered Piezoelectric
Harvester

Data segmentation
Segmented data
corresponding

HAR algorithm
. IMU network
power
IMU network consumption
. Power. P Multi-objective
consumption H_———— L
model Optimization

Figure 4.1 — Workflow of the multi-objective optimization approach.

4.1.2.2 Database

The evaluation method is based on the online available dataset entitled "Manual Ma-
terial Handling Dataset for Biomechanical and Ergonomics Analysis" [112]. The dataset
is composed of Manual Material Handling (MMH) and isokinetic activities [113]. Data
were captured by the Xsens motion capture system (Xsens Technologies B.V) [114] and
electromyography devices. To conduct this study, only the bimanual trials and Xsens mo-
tion capture data of MMH activities for all subjects are considered (1.7 GB of data with 8
bytes precision). 14 participants were involved, the activities are carried out with handled
loads of 2, 8 and 12 kg, there are 3 trials per load. The labels of performed activities and

the total number of repetitions are presented in Table 4.2.

Table 4.2 — Activities labels and description according to the MMH dataset. The activities
consist in moving a box.

Label Activity description Total number
of repetitions
N N-pose 717
LF Lift from the floor 353
K Keep Lifted 126
PT Place on the table 353
LT Lift from the table 242
W Carry 242
PF Place on the floor 242
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Xsens motion capture system

The Xsens motion capture system is based on 17 IMUs located at the head, sternum
(T8), both shoulders, both upper-arms, both forearms, both hands, pelvis, both feet, both
upper-legs and both lower-legs. The system sampling frequency was set to 240 Hz and the
range of the accelerometers and gyroscopes were respectively + 160 m/s? and + 2000 °/s.
Data provided by the MMH dataset and the Xsens output files give the sensors free
acceleration, the sensors magnetic field and the sensors orientation quaternion. To obtain
the angular velocities (i.e., values from the gyroscopes), the quaternions are expressed in
the corresponding Euler sequences derivated from the angles. The free acceleration, the
angular velocity and the magnetic field data are used. Raw values from sensors are not
used directly but still this limitation allows to demonstrate the multi-objective approach
with high-dimensional evaluation space. Future studies will focus more on synthesized

data from skeleton model with soft tissues artifacts or rigid body segment assumptions.

4.1.2.3 HAR algorithm

To perform HAR, both classical SVM and ANN approaches are investigated [115,
116]. This illustrates the possibilities of using different types of classification methods.
First of all, the data are normalized by the sensors full range of measurement (respec-
tively + 160 m/s? and + 2000 °/s for accelerations and angular velocities) to obtain an
equal contribution for future features extraction. Using a sliding window method, data
are segmented by a 2 s window with 15 % overlapping. Then, features are extracted from
the segmented data using the hctsa Matlab software package [117]. 22 features are used
corresponding to the hctsa features set called "catch22" (CAnonical Time-series CHarac-
teristics, extracted from [118]). Temporal data are not directly used as they increase the
complexity of classifiers and their processing time will take longer as the dimensionality
is higher. The HAR algorithms’ inputs consist in arranging the axes (2 s of data window
or extracted features for each axis) of each sensor of each IMU one after the other and
respecting the following order: accelerometer, gyroscope and magnetometer. The arrange-
ment sequence remains the same independently from selected configurations (i.e., if the
axes are activated or not). The Figure 4.2 illustrates the HAR input data structure with
such arrangement. The dataset is divided into a training and validation set. Training data

is randomly selected using a ratio of 0.8. Thus, validation data represents 20 % of the
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dataset. To average the prediction errors, HAR algorithms are trained 10 times' (here
a training consists in training and evaluating the classifier on a randomly divided data
set.).

HAR Input

Observation

Figure 4.2 — Input data structure for one HAR algorithm training. Observations correspond to 2s
window of extracted features for each sensor axis. N represents the number of selected IMUs and i the
number of observation.

Suport Vector Machine (SVM)

We defined the SVM models kernel as a second order polynomial kernel. To evaluate

the classifier performance, the missclassification rate is computed using;:

errorSVM(z) = Z w; I{y;(z) # y;}, (4.3)

where w; is the weight for observation j, /{.} is the indicator function, y; is the observed
class label, y; is the predicted class label, N is the number of observation and x the design

variables.

1. Increasing the training number will limit the prediction 'noise’ but increase the computation time.
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Artificial neural network

To perform HAR using neural network, the structure presented in Figure 4.3 is used.

Class probabilities

Hidden layer

t_'_l
Input layer

Figure 4.3 — Neural network structure for data classification. The input layer size depends on the
selected IMU network configuration. The unique hidden layer contains 10 neurons and the softmax layer
7 neurons corresponding to the number of classes (K). The network is fully connected.

The artificial neural network is build on Matlab R2022b with the function PATTER-

NET() [119]. The performance of the neural network is computed using the crossentropy
defined by:

errorNN(z Z Z Toeln(Yoe(x)), (4.4)

where N is the number of observation, K is the number of classes, T, is the corre-

sponding target class value to Y, and x the design variables.

4.1.2.4 Power consumption model

To established a power consumption model of the IMUs, electrical characteristics of

commercialized devices are employed. The studied power consumption model is based on
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the LSM9DS1 2. The Table 4.3 presents the power consumption for the different operating
modes (IMU voltage supply = 3.3 V).

Table 4.3 — Power consumption of the IMU sensors for different operating modes

Power consumption (mW) | Sampling frequency (Hz)

14.9 | 59.5 | 119 | 240

Accelerometer 0.99 | 099 | 0.99 | 0.99
Gyroscope 5.28 | 6.93 | 9.24 | 13.2
Magnetometer 0.99 | 099 | 0.99 | 0.99

In addition, to adapt the operating point of the sensors, data are resampled before
the segmentation step accordingly to the choosen sampling frequency using the Matlab
function RESAMPLE().

4.1.2.5 Multi-objective optimization

Trade-offs between HAR performance and IMU network power consumption are il-
lustrated by the Pareto front using the Matlab function GAMULTIOBJ(), it is based on
the NSGA-IT algorithm [69]. This function computes a genetic algorithm multi-objective
optimization. Defaults parameters are used and the population size is set to 200. As a

reminder, genetic optimization principle is presented in chapter 1.

Population generation

Individuals are composed of multiple characteristics such as the location of the IMU
set on the human body, the activation of the sensor axes and the sampling frequencies.
Table 4.4 gives an example of a potential individual who has 5 IMUs.

Characteristics are initially chosen with an uniform distribution probability. Table 4.5

presents the number associated to the body locations.

2. iNEMO inertial module https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSMIDS1_
Datasheet.pdf
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Table 4.4 — Example of a potential individual in the population. The location number
corresponds to a body location (see table 4.5). Acc: accelerometer; Gyro: gyroscope; Mag:
Magnetometer.

Location Axis activation Sampling Frequency
Acc. zyz | Gyro. xyz | Mag. xyz | Acc | Gyro | Mag
1 111 010 100 240 59.5 119
4 001 010 101 119 59.5 119
10 101 010 010 119 119 119
16 000 010 100 240 | 59.5 14.9
17 011 111 101 14.9 | 59.5 240

Table 4.5 — IMU locations on the body with their associated number.

Number | Body location
1 Pelvis

2 T8

3 Head

4 Right Shoulder
5 Right Upper Arm
6 Right Forearm

7 Right Hand

8 Left Shoulder

9 Left Upper Arm
10 Left Forearm

11 Left Hand

12 Right Upper Leg
13 Right Lower Leg
14 Right Foot

15 Left Upper Leg
16 Left Lower Leg
17 Left Foot
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Cross-over

Cross-over creates children from parents for the next population generation. In this
framework, cross-over is computed by merging two individuals characteristics chosen ran-
domly. The next population is composed of 80 % of children from the cross-over. Thus,
some locations and their associated configurations from selected parents are merged. This
is illustrated in table 4.6.

Table 4.6 — Example of generated child. In green, the first parent characteristics and in
red the second. Parent characteristics are selected randomly.

Location Axis activation Sampling Frequency

Acc. (ryz) | Gyro. (xyz) | Mag. (zyz) | Acc | Gyro | Mag
5 111 010 100 119 | 59.5 119
4 001 010 101 119 59.5 119
10 100 010 000 119 119 240
16 010 010 111 240 99.5 119
12 001 111 101 14.9 | 59.5 14.9

Mutation

The mutation consists in altering some characteristics randomly. Following a uniform
probability distribution, one characteristic are altered with a new value. For example,
the location, a sensor sampling frequency or an axis activation. The next population is

composed of 20 % of children from the mutation.

4.1.2.6 Trivial extremum investigation

Power consumption are easy to estimate, thus, the extreme values are investigated.
The obtained results will be used as comparison references. The following configurations
are evaluated:

— (C1) Maximal power consumption: All IMUs with maximum resolution mode (240

Hz);

— (C2) Minimal power consumption: One sensor with only one axis with minimal
resolution mode (14.9 Hz). There are P.S.A (17 - 3 - 3 = 153) possibilities, they
are all exhaustively evaluated, we keep the configuration with the best HAR accu-
racy. There are 1-axis sensors that consume less power than a 3-axis sensor, so we

consider that for the C2 configuration the power consumption is less than 0.99 mW.
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4.1.3 Results

4.1.3.1 Trivial extremum configurations

Using the introduced HAR algorithms, the extremum configuration are investigated.
Figure 4.4 presents the confusion matrices obtained for one training for the configuration
C1.

Confusion matrix

In supervised learning, the confusion matrix corresponds to the per-
formance evaluation of a classification problem. The rows (output
class) correspond to the class predicted by the classifier and the
column corresponds to the true class (target class) of the classifica-

tion problem.

ANN SVM
K| 72 1 1 2 1 6 0 86.7% 75 1 0 1 0 6 0 90.4%
88% | 01% | 01% | 02% | 01% | 07% | 0.0% | 13.3% 92% | 01% | 00% | 01% | 0.0% | 07% | 0.0% | 9.6%
Fl2 85 3 6 0 5 0 84.2% 1 91 0 6 (] 3 0 90.1%
0.2% | 104% | 0.4% | 0.7% | 00% | 0.6% | 0.0% | 15.8% 0.1% | 1.1% | 00% | 0.7% | 0.0% | 04% | 0.0% | 9.9%
T 0 1 47 2 0 0 3 88.7% 0 1 47 2 ()} 0 3 88.7%
00% | 01% | 57% | 02% | 0.0% | 0.0% | 04% | 11.3% 00% | 01% | 57% | 02% | 0.0% | 00% | 04% | 11.3%
(]
N 1 2 1 305 5 2 0 96.5% 0 2 1 308 4 1 0 97.5%
o 0.1% | 02% | 01% | 37.2% | 06% | 02% | 0.0% | 3.5% 0.0% | 02% | 0.1% | 37.6% | 05% | 0.1% | 0.0% | 2.5%
5
.‘}PF 0 1 (] 3 68 2 1 90.7% 0 ()} 0 3 70 1 1 93.3%
3 00% | 01% | 0.0% | 04% | 83% | 02% | 01% | 9.3% 0.0% | 0.0% | 0.0% | 04% | 85% | 01% | 01% | 6.7%
pr| 6 3 0 7 0 92 1 84.4% 4 1 (i} 4 ()} 99 1 90.8%
0.7% | 04% | 0.0% | 0.9% | 0.0% | 11.2% | 0.1% | 15.6% 05% | 01% | 0.0% | 05% | 0.0% | 121% | 0.1% | 9.2%
wl 9 0 3 0 2 0 77 93.9% 0 0 2 0 1 0 79 96.3%
0.0% | 0.0% | 04% | 0.0% | 02% | 0.0% | 94% | 6.1% 0.0% | 0.0% | 02% | 0.0% | 01% | 00% | 96% | 3.7%
88.9% | 91.4% | 85.5% | 93.8% | 89.5% | 86.0% | 93.9% | 91.1% 93.8% | 94.8% | 94.0% | 95.1% | 93.3% | 90.0% | 94.0% | 93.9%
1.1% | 86% | 14.5% | 6.2% | 10.5% | 14.0% | 6.1% | 8.9% 62% | 52% | 6.0% | 49% | 6.7% | 10.0% | 6.0% | 6.1%
S So& ¢ s 0 So& ¢
Target Class Target Class

Figure 4.4 — Confusion matrices of NN and SVM models for configuration C1. The average value of
error using 10 training is respectively 0.0747 and 0.0494 for SVM and NN.

The IMU network power consumption is equal to 123.42 mW. ANN model shows
91.1 % accuracy and SVM model show 93.9 % accuracy.
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Figure 4.5 — Error of NN and SVM models for the configuration C2. Error values were computed using
an average of 10 training. In the red circles are the best candidates for the configuration C2: IMU located
on the right forearm and using only the x-axis of the magnetometer.
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Figure 4.6 — Confusion matrices of NN and SVM models for configuration C2. Results were obtained
using only the IMU located on the right forearm using the x-axis of the magnetometer. These confusion
matrices correspond to the lowest values obtained in Figure 4.5.
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Figure 4.5 presents the classification error for the configuration C2. The best location
to minimize the classification error when using the minimal consumption configuration
C2 (<0.99 mW) is the right forearm using the x-axis of the magnetometer. Note that the
z-axis of accelerometers located on the upper body has a small classification error. The z
axis is the axis oriented along the normal direction of the segments. The corresponding
confusion matrices is presented in Figure 4.6. ANN model show 67.3 % accuracy and SVM
model show 68.4 % accuracy. Using all the IMUs gives better performance but increases
drastically the power consumption. Thus, maximal and minimal power consumption with

their associated performance were investigated.
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4.1.3.2 Pareto fronts

The multi-objective optimization problem presented previously is computed using ge-
netic algorithm. The results are presented using Pareto fronts. Figure 4.7 shows the ob-
jectives functions evaluations and the non-dominated point corresponding to the Pareto
front using NN classifier. The Pareto front gives the optimal solutions illustrated by the
trade-offs between the network power consumption and the HAR classifier error. The ob-
tained results can then be processed to determine the preferred configuration. Figure 4.8
presents the distribution of the IMUs on the human body with the corresponding number
of activated axis for some Pareto solutions. The distribution and configuration of the IMU
network along the human body is different for each Pareto front solutions. The table 4.7
presents the detailed configuration of the solutions obtained from the Figure 4.8. In this
optimization, the algorithm limited the use of the gyroscope as it is the most greedy in
power consumption. Some IMU locations are recurrent such as the right forearm or the

left forearm. Table 4.8 presents the corresponding classification score obtained.
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Figure 4.7 — Objectives functions evaluations using genetic algorithm. The Pareto front is illustrated
by red dots. The configuration C1 is in magenta and the configuration C2 is in green.

Table 4.8 — Classification score (mean + std) obtained for NN and SVM classifiers using
300 trainings. The values correspond to the solutions presented in Figure 4.8 and config-
uration C1. The corresponding power consumption is displayed.

Solution | NN score (%) | SVM score (%) | Power consumption (mW)
a 88.74 +£ 3.3 91.80 £ 0.9 17.82
b 88.09 £ 4.5 91.62 £ 0.8 7.92
C 73.25+ 2.1 7997+ 1.3 0.99
C1 89.69 £ 4.35 92.45 4+ 0.83 123.42
C2 66.05 £ 1.82 70.86 £ 1.32 <0.99

In our application, the SVM classifier shows better results. Overall, the classification
scores tends to the results obtained in the C1 configuration and are higher than con-
figuration C2. The power consumption is lower than configuration C1 but higher than
configuration C2. As the starting points of the genetic algorithm are generated randomly,
the final result can differ from optimization computations. In addition, the classifiers
training dataset are randomly divided leading to dispersion of error values. Figure 4.9

presents Pareto fronts obtained from 2 different runs of the optimization computations.

133



Chapter 4 — Optimization: IMU Positioning and Geometry of Cantilevered Piezoelectric
Harvester

P =17.82 mW, HAR error: 0.047551 P =7.92 mW, HAR error: 0.049201 P =0.99 mW, HAR error: 0.10774
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Figure 4.8 — Example of Pareto front solutions obtained from the multi-objective optimization and NN
classifier. The resulting configurations of the IMUs a), b) and c¢) are presented in table 4.7.

Table 4.7 — Example of Pareto front solutions obtained from the multi-objective optimiza-
tion. The first group color corresponds to the solution a), the second to the solution b)
and the last to the solution c).

Location Axis activation Sampling Frequency (Hz)

Acc. (xyz) | Gyro. (xyz) | Mag. (xyz) | Acc. | Gyro. Mag.
) 100 000 000 240 14.9 240
6 110 011 110 119 59.5 14.9
7 111 000 111 240 119 119
10 111 000 111 240 119 59.5
15 111 000 111 240 119 240
4 111 000 111 240 119 240
6 111 000 111 59.5 119 14.9
10 111 000 111 240 119 59.5
4 111 000 111 240 119 240
15 111 000 111 240 119 240
6 101 000 000 240 240 59.5
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Figure 4.9 — Pareto front obtained from different optimization computations using a) NN classifier and
b) SVM classifier.

The obtained Pareto fronts are close to each other but the solutions can differ.

4.1.4 Discussion

This first part of chapter 4 proposed a method based on a multi-objective optimization
problem for determining the best location of IMUs on the human body for HAR. Maximum
classification accuracy and minimum power consumption are defined as objectives. Prob-
lem definition and design variables characteristics lead to the use of a genetic algorithm.
However, there is no unique solution to this engineering problem. Several configurations
could be suitable for the targeted applications. Existing trade-offs are investigated using
optimal Pareto fronts.

In the first step, the natural solutions to the problem illustrated by configuration
C1 and C2 are investigated. These configurations present the classification accuracy with
minimal and maximal power consumption configuration. Using all the IMU locations with
maximum resolution mode (maximum sampling frequency) gives the best classification
accuracy (> 90 %) but drastically increases the power consumption at maximum level.
Using the minimum power consumption (i.e. one location and one axis only with low res-
olution mode) configuration gives low classification accuracy (< 70 %). This last solution
consumes 124 times less power than C1.

In a second step, to explore the existing trade-offs between classification accuracy and

power consumption the genetic algorithm is computed. Optimal solutions are represented
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on the Pareto front, multiple configurations exist. Investigated solutions show different
IMU network distribution over the human body with their respective classification ac-
curacy and power consumption. In addition, the determination of the best configuration
also depends on the ergonomic constraints, this aspect is not investigated here. While the
classification accuracy tends to the C1 configuration, the computed power consumption is
reduced. Nevertheless, the stochastic character of the problem influences the final results
by inducing a "noise". By averaging the errors from the various classifier training this
phenomenon is reduced but is still present.

Nevertheless, the results depend not only on the power consumption model but also on
the classification parameters such as the data segmentation or even the features. Other
consideration is the computational cost, adding parameters will increase the problem
complexity. Concerning the genetic algorithm, the obtained solutions can be improved by
increasing the population size or the mutation ratio and method. The genetic algorithm
optimization tends to global maxima (or minima) solutions, in our study the Pareto fronts
converged towards it with various solutions. Indeed, as illustrated in Figure 4.9, multiple
optimizations gave multiple closed Pareto fronts. Our study was limited by computational
cost, as an example, with the current design variables and defined parameters the opti-
mization execution time was approximately 3-5 days. Increasing the number of classifiers
training reduces the 'noise’ but increases drastically the computation time.

Future studies can look at other classifiers and power consumption model or can
adapt some parameters to improve HAR accuracy. Crossover or mutation strategies can
be modified to modulate the search in the solution space. In addition, studies based on
SID for determining the optimal IMU location can be conducted, this would increase the

number of possibilities.

4.1.5 Conclusion of part 1

Multiple configurations for IMU positioning on the human body exist. Nevertheless,
extensive testing of all combinations is not feasible as it will take 1% years assuming
a one-second run time for a test. It is necessary to investigate optimization method.
Thus, the genetic algorithm is selected. We performed a multi-objective optimization for
maximizing the HAR accuracy and minimizing the IMU network power consumption. The
proposed method is promising for determining optimal solutions. Results show trade-offs
between accuracy and power consumption. Nevertheless, the problem complexity easily

increase which implies high computational cost.
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4.2 Part 2: Optimization of cantilevered piezoelectric

harvester geometry

4.2.1 Introduction

This part is based on the submitted conference abstract entitled Hoareau, D.; Jodin,
G.; Laaraibi, A.-r.A.; Prioux, J.; Razan, F.: Available Kinetic Energy Sources on the
Human Body during Sports Activities: An Optimization Investigation using Cantilevered
Piezoelectric Harvester Model, Furosensors XXXIV, Italy, 2023. Chapter 3 shows that
the impacts induced by human sport activities are one of the most relevant features to
operate cantilevered piezoelectric harvester. In addition, the optimal orientations of the
simulated harvester on different body parts were investigated. In this part, we investigate
the influence of the harvester dimensions on the simulated harvested energy.

Alameh et al. [120] investigate in their study the influence of cantilevered piezoelectric
harvester geometry on the performance. The study was based on variable beam length,
beam width and shape. The geometry impacts directly the performance, and results show
that the T-shaped cantilever has more advantages and is relevant to a wide range of
applications.

Nevertheless, the studies are generally conducted with periodic signals, when it comes
to non-stationary signals such as the acceleration of the human body, the obtained results
may differ. Following on from Chapter 3, this study evaluates the influence of the geometry
of cantilevered piezoelectric harvester on human body accelerations. In the first part, the
electromechanical model of cantilevered piezoelectric harvester and the study boundaries
are defined. Then, based on methods introduced in chapter 3, the simulated harvester

output power is investigated according to its dimensions.

4.2.2 Materials and methods

The study is limited to unimoprh rectangular beams without additional mass. Nev-
ertheless, it should be kept in mind that adding mass at the end of the beam can be a
common practice : it decreases the resonant frequency and thus adapts the resonator to
its application. In Chapter 3, we have defined the length of the beam as L, the width
as b and the thickness as h. The volume of active material is assumed constant (K), it
allows to only evaluate the geometric distribution of the active layer with respect to the

application.
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The initial design of the harvester is the same as presented in chapter 3 (table 4.9),

only L and b are defined as variables (i.e., h is constant).

Table 4.9 — Properties of the initial design of the unimorph cantilever.

Parameter Piezoceramic Substructure
Material PZT Composite
L (mm) 100 100

b (mm) 20 20

h (mm) 0.4 0.5

Tip mass - -

Pps P, (kg/m?) 7800 7165
Y,,Y (GPa) 66 100
Damping coefficient (¢;) 0.01

External load (R.) 5e6 Ohm

d31 (pm/V) -190 -

35 (nF/m) 15.93 -

The validity domain of the beam model is established when its transverse section is

very small compared to its length [121], thus we defined the constraint presented in eq.

4.5.
L > 20v/b.h (4.5)

Using the performed sport circuit presented in chapter 3, harvester output power are
evaluated on the 17 IMU locations. The Figure 4.10 presents the conducted method to

evaluate the dimension influence on power prediction on the human body.

Harvester
Orientation
1192,,,193D 62,03
Particular
L.b.h = K |Lyb; Harvester R Swarm Optimal predicted
L>vVb.h " Model Energy;;j| Optimization energy;;
(PSO)
ILocationj
Acceleration
Data

Figure 4.10 — Evaluation method of the influence of the harvester’s dimensions. The harvester orienta-
tion is optimized to maximize the predicted energy.
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According to eq. 4.5, numerous couples of length L. and width b are evaluated. Each
beam geometry is simulated to determine the predicted energy. In addition, the beam
orientation on the human body locations is optimized using PSO to maximize the energy
generation.

Besides, a brief sensitivity analysis is performed to compare the influence of the beam
length versus the beam width. This helps to introduce ergonomics aspects, indeed, it may
be better to increase for example the width than the length of the beam.

The harvester model is obtained using equation 3.7 presented in chapter 3. Because
the harvester dimension impacts the resonant frequency, it might be necessary to simulate
multiple vibrational modes. Thus, the harvester voltage response is expressed as illustrated

in eq. 4.6.

ZN *pWQLPrfr(p)

. r=1 Z(w2+p?+2plrwrw)
r=1 Z(w2+p?+2p{rwrw) RZ

Where r is the mode number and N the total number of vibrational modes to be
simulated. The expression of the variables can be found in chapter 3. In addition, the
mechanical damping coefficients are not easy to obtain, generally experimental studies
are conducted to identify their value. In the literature, we commonly find a damping ratio
value of 1 % for the first mode, thus (; = 0.01. The mechanical damping ratio of the
vibrational modes can be modeled (eq. 4.7) using strain rate damping and viscous air

damping [122].

colw, Cq

=T T 2 (4.7)

where ¢, is the viscous air damping coefficient and ¢, is the strain-rate damping co-
efficient. The strain-rate damping coefficient is proportional to structural stiffness and
the viscous air damping coefficient is proportional to mass per unit length. In practice,
it is necessary to conduct experiments to determine the value of these coefficients, it
also involves knowing the natural frequencies. Another approach could be based on ap-
proximations. Khazaee et al. [123] investigated the damping mechanisms in cantilevered
piezoelectric energy harvester. The results show that for a typical energy harvester struc-

ture (with a substrate shim and an epoxy bonding layer), structural damping dominates
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over viscous air damping, with a contribution of 75 % or more. Thus, we assumed that in
the medium (here the air) the viscous air damping is negligible compared to strain-rate
damping. The mechanical damping ration becomes (, = 02]% The value of ¢s can be

determined using the first mode damping value 0.01.

4.2.3 Results

As introduced in chapter 3, for simulation purposes, acceleration data are resampled
by a factor 5. However, the Nyquist frequency of the acceleration data is 120 Hz, it
is necessary to adapt the number of vibrational modes to be simulated in order to be
representative of the dynamics present in the signals. Thus, the first three vibrational
modes are simulated, using equation 4.5, 55 differents geometries are evaluated. Figure
4.11 presents the pair of beam length and width evaluated and the resonant frequencies of

the vibrational modes. For the first vibrational mode (open circuit condition), the resonant
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Figure 4.11 — Beam length and width used for geometry influence evaluation. In addition, the resonant
frequencies of the beam for mode 1 to 3 are displayed for each geometry.

frequency range is from 12.57 Hz to 57.28 Hz. Table 4.10 summarizes the frequency range
of the beam geometries evaluated for vibrational mode 1 to 3. It may be noted that the

resonance frequency is inversely proportional to the squared length of the beam.
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Table 4.10 — Resonant frequency range for vibrational mode 1 to 3. The lowest resonant
frequencies (respectively the highest resonant frequencies) correspond to the pair L = 195
mm and b = 10.3 mm (respectively L = 91.4 mm and b = 21.9 mm).

Vibrational Lowest resonant | Highest resonant
mode frequency (Hz) frequency (Hz)
Mode 1 12.6 D7.3

Mode 2 78.8 358.9

Mode 3 220.6 1005

Thus, the frequency band of the acceleration signal is represented in the frequency
response of the harvester model. Figure 4.12 presents the transfer function of the harvester

model for L = 195 mm and b = 10.3 mm. Using the method presented in Figure 4.10,
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Figure 4.12 — Bode diagram of the harvester model for L = 195 mm and b = 10.26 mm. The magnitude
corresponds to V.s2.m™1L.

the predicted energy of the harvester model for different geometry is computed. The best
orientations are obtained using PSO with a swarm size equal to 20, the other parameters
are set to Matlab default values.

Figure 4.13 presents the normalized simulated energy according to the body locations
and the first vibrational mode. In general, for most of the body locations, the decrease
in the first mode resonant frequency increases the simulated energy. In addition, the best

location to harvest energy depends on the first mode resonant frequency.
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Figure 4.13 — Normalized simulated energy on body locations versus the first mode resonant frequency
of the different harvester geometry. The red line represents the results obtained in chapter 3 according
to the original geometry introduced in table 4.9.

In chapter 3 (red line), the harvester first mode resonant frequency was 48.8 Hz, the
best location was the right hand. When the first mode operates at low frequency (< 15 Hz)
the best location is on the right leg and around 10 times more energy is harvested.

Figure 4.14 presents examples of the best location to harvest energy according to the
first mode resonant frequency. Each of the three results represents one of the columns
from Figure 4.13, which shows the distribution of simulated energy on the human body.
In this example, the best location for a first mode resonant frequency equal to 45.17 Hz is
the right hand. The best location can change depending on the resonance frequencies of
the harvester, for a first mode resonant frequency equal to 13.08 Hz the best location is
the right upper leg. In this study, low frequency values correspond to a beam with a long
length. Nonetheless, they are more constraining because more complex to be integrated. In
some cases, it is easier to consider an increase in width than in length. Thus, we evaluate
the sensitivity of these two parameters on the simulated energy. Table 4.11 presents a
sensitivity analysis performed on the upper right leg location. This result is identified as
a general result. From an initial geometry, the length and width were varied by 10 %. A
variation of the width does not have much influence, indeed, in the example it represents

only an increase of the energy of 0.5 %.
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Figure 4.14 — Simulated energy on body according to different harvester first mode resonant frequency.

For each geometry, the greatest value of simulated energy on the human body is used to compute the
normalization.

Table 4.11 — Sensitivity analysis of the parameters L and b. The initial values are L =
175.8 mm and b = 10.4 mm, the associated initial operating point of the model is 15.5
Hz for the first vibration mode. These simulated energies correspond to the location of
the harvester on the upper right leg.

Energy (Initial operating L initial L+ 10%
point F = 15.5 Hz)

b initial 254.8 mJ / 100 % | 408.9 mJ / 160.5 %
b + 10 % 256.1 mJ / 100.5 % -

By contrast, the variation in length represents a 60 % increase in energy. These results
can be generalized to all the operating points studied here.

4.2.4 Discussion

In this part, we presented an evaluation of the influence of the harvester geometry on
the simulated energy from human body accelerations. Using damping approximation (i.e.,
structural damping contribution only) and harvester orientation optimization (obtained

with PSO), the model performance according to the body locations is assessed. Hence,
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this study highlights the feasibility of using cantilevered energy harvester for generating
power.

The modification of the harvester geometry affects directly the mode resonant fre-
quencies. As introduced before, the volume of active material is kept constant, therefore
increasing the length only affects the geometry or the shape of the beam (the width
adapts to the length). Results show that increasing the harvester length (i.e., decreas-
ing the modes resonant frequencies) improves the simulated energy. The best location to
harvest energy is dependent on the harvester geometry. The resonant frequencies can be
adapted to meet body location preferences or constraints. Moreover, variation in length
has a greater impact than variation in width. Ergonomic constraints may not be met, in-
deed, for example long beams are more difficult to integrate on the human body. Adding
ergonomics boundaries by constraining the length and the width of the beam would pro-
vide more realistic results. In addition, maximizing or minimizing dimensions is not always
sufficient. The behavior of the beam can be modified by adding a mass at the end or by
changing the materials and the structure.

In addition, in order to simulate properly the model response to the acceleration data
it is necessary to consider multiple vibrational mode. Based on chapter 3 materials, the
acceleration data are resampled by a factor 5 for simulation purposes. This does not add
information in the signals but reduces the simulation time step. However, it should be
kept in mind that processing a high-frequency vibration modes involves a high-frequency
sampled input signal. As an example, the highest resonant frequency studied is equal to
1005.03 Hz, which implies a sampling frequency of the input signal at least twice as high.
In our case, this is not relevant because the information in the acceleration data is only
described for frequencies less than or equal to 120 Hz. The high modes are not excited
so the energy they simulate is not taken into consideration. Thus, the obtained simulated

energy is under estimated.

4.2.5 Conclusion of part 2

Design of cantilevered piezoelectric energy harvester for human body motion is chal-
lenging. Many parameters such as the location, the orientation or the dimension impact
the harvesting energy. Nevertheless, approaches based on optimization methods allow to
converge towards the best configuration.

This study evaluated the influence of the length and width of the harvester beam

with a constant active material volume and the optimized orientation on the human
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body accelerations. A comprehensive evaluation is performed under mechanical damping
assumptions. The best locations of the harvester with respect to the resonance frequencies
of its vibrational modes has been presented. Results suggest that low frequencies harvester
are preferable to maximize the simulated energy.

To go further, new parameters related to geometry or mechanical characteristics can
be introduced. Optimization methods used as in part 1 (NSGA-II) of this chapter can
then be used to determine the optimal configuration. Similarly to chapter 3, future stud-
ies can look into improving the acceleration data sampling frequency to have a better
representation of the harvester frequency response. Determining the damping coefficients
experimentally will improve the accuracy of the results obtained. In addition, evaluat-
ing other parameters of the harvester such as its shape, additional mass end or thickness
would be relevant to optimize its design according to the body constraints. The evaluation
of the harmonic modes contribution in the simulated energy would be also interesting to

adapt the resonator design.
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CHAPTER 5

CLOTH ARTIFACTS AND SMART ACTIVITY
ASSESSMENT SYSTEM DESIGN

This chapter is based on the published work entitled Hoareau, D.; Fan, X.; Abtahi,
F.; Yang, L. Fvaluation of In-Cloth versus On-Skin Sensors for Measuring Trunk and
Upper Arm Postures and Movements, Sensors, 2023 [124]. This work is the result of a
collaboration with the Karolinska Institutet laboratory based in Sweden and was carried
out within the framework of a PhD mobility. The objective is to evaluate the measurement
artefacts of an existing system used for posture assessment.

In the first part, additional state-of-the-art is provided concerning the challenges in
the ergonomics field. In addition, the performed experiment to evaluate the cloth artefacts
using a smart workwear system with embedded IMUs is presented. Results are discussed
using statistical metrics and analysis. In the second part, the design of an intelligent
activity assessment system is conducted, related challenges are highlighted and future

perspectives are suggested.

5.1 Part 1: Cloth Artefacts

5.1.1 Introduction

Work-related musculoskeletal disorders (MSDs) remain a substantial burden to indi-
viduals, organizations, and societies worldwide. In Europe, MSDs are the most prevalent
work-related health problem: about 43 % of European Union (EU) workers reported back
pain, and 41 % reported muscular pains in the shoulders, neck, and /or upper limbs in 2015
[125]. Work with tiring positions is still common in current workplaces and was reported
by 43 % of workers for being exposed to at least a quarter of their work time in the EU
[125]. In Sweden, it has been estimated that the total costs of MSDs were 102.3 billion
SEK in 2012, which equaled 2.8 % of the national gross domestic product (GDP) [126].
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In order to design effective intervention programs and prevent MSDs, a better under-
standing of the underlying mechanisms between exposures and outcomes, the development
of practical and reliable risk assessment methods, and a wider use of such high-quality risk
assessment methods, are among the key steps as suggested by researchers [127, 128, 129].
However, physical exposure has generally been assessed via questionnaires [130], which
suffer from low accuracy and bias, and lack detailed information on exposure frequency
or intensity [131, 132]. Exposure assessed with observational methods can also suffer from
being sampled for a relatively short time period of the work day and high inter-rater vari-
ability [133, 134]. A limited number of studies included physical exposure data based on
direct measurement and its association with occupational health outcomes. Two recent
studies showed that direct measured arm elevation and trunk forward bending have a
dose-response association with long-term sickness absence [135, 136]. With directly mea-
sured data of high accuracy, researchers found that ten more minutes of work time with
the arm elevated more than 60° was associated with approximately 50 % higher risk of
long-term sickness absence in four years, and five more minutes of work time with back
forward bending over 60° was associated with 8 % higher risk [135, 136]. In addition, an
action level for the median arm velocity has been proposed for the prevention of MSDs

in the neck and upper extremities [137].

The latest technical development in wearable technology has provided opportunities
to perform ergonomic risk assessments and interventions with accurate and convenient
methods. Thanks to the growing market of wearable sensors, the development of new
technologies are increasing for the risk assessment of work-related musculoskeletal dis-
orders [138]. Systems composed of body area sensor networks providing continuous and

automatic measurement have been created [139, 140].

The inertial measurement unit (IMU) is a widely used type of sensor with benefits
of high accuracy, ease of implementation, and low user burden [141, 75, 142, 143]. A
recent literature review on wearable inertial sensors for human motion analysis showed
the increasing applications of such wearable sensors in industrial settings due to their
portability, low cost, minimal invasiveness, and applicability outside of the laboratory
environment [144]. More than half of the identified systems also provide real-time data
analysis, which is an advantage for industrial applications including risk assessment, mo-
tion tracking to assist the design of collaborative robotics, and human action recognition
[144]. Although embedded IMUs seem to be very relevant for the above applications, they

measure motion but also motion errors induced by clothing artifacts. Thus, it is necessary
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to assess their contribution in order to determine the adapted compensation method.

To perform this evaluation, IMUs located in a garment are compared to IMUs lo-
cated on the skin for measuring trunk and upper arm postures and movements. In the
first part, the designed experiment is presented, simulated tasks are performed. Then,
commonly used ergonomic exposure parameters, including the upper arm and trunk in-
clination angles, two types of upper arm velocities (the inclination velocity and the gen-
eralized velocity), and trunk inclination velocities, were calculated and compared during
occupational activity. The resulting differences from the comparisons can provide knowl-
edge about the accuracy and limitations of measurements for the practical use of smart

workwear systems both in the lab and in the field.

5.1.2 Materials & Methods
5.1.2.1 Demographic data

Twelve volunteers (five males and seven females) participants were involved in this
study. Before the experience, they were informed about the study and signed informed
consent. The mean (+ standard deviation) age of the participants was 32.8 + 11.3 years,
the height 174.2 + 10.2 cm, the weight 68.7 + 10.2 kg, and the BMI was 22.6 + 2.7 kg/m?.
Eleven participants are right-handed, and one is left-handed. The study was approved by
the Regional Ethics Committee in Stockholm (Dnr: 2019-01206).

5.1.2.2 Experimental setup

For this study, two sets of Inertial Measurement Units were used (Figure 5.1), with
each set containing three sensors (Movesense, Suunto, Helsinki, Finland).

The first set of sensors was attached directly to the skin using double-sided tape, with
two on the upper arms at the insertion of deltoids, and one on the upper back, at the
level of T1-T2 vertebrae. An additional medical tape was put above the sensors on the
skin to avoid relative movement. This setup is referred to as "skin sensors" in the following
text. The second set of sensors was placed in an elastic T-shirt (Wergonic AB, Stockholm,
Sweden), with pockets placed at both upper arms and upper back for the IMU sensors.
The shape of the pocket and the extra sensor case with a matching shape feature were
designed to prevent sensor rotation and limit relative movement errors (Figure 5.1). The
second setup is referred to as "cloth sensors' in the following text. The shirt size, with a

range of small to extra-large, was chosen for each participant to be comfortable and tight.

149



Chapter 5 — Cloth artifacts and smart activity assessment system design

[E]

(k)

(c)

Figure 5.1 — To the left: the two sensor setups showing (a) the trunk sensor in the shirt, (b) the trunk
sensor on the skin, (c) the right upper arm sensor on the skin, and (d) the right upper arm sensor in the
shirt. To the right: the Wergonic T-shirt pocket and the matching sensor case.

The two sets of sensors were placed close to each other without overlapping. Both the
accelerometer and the gyroscope data from the IMU sensors were sampled at 104 Hz and
collected by the Movesense showcase iPhone application (Amer Sports Digital Services
Oy, Helsinki, Finland) using Bluetooth

5.1.2.3 Experimental protocol

The experiment consisted of calibration steps and simulated work tasks. The calibra-
tion was necessary for the data fusion presented in the next section. It consisted of three
calibration poses, and participants were instructed to hold each pose still for three seconds
(Figure 5.2):

— I-pose: Stand up straight and look straight forward with arms at each side;

— Forward: trunk bending: Bow forward at about 90 degrees;

— T-pose: Stand up straight and look straight forward, and hold the arms horizon-

tally to the sides at 90 degrees;

After the calibration, participants were introduced to the work tasks and instructed to
perform the tasks as they would naturally do. When possible, they were also instructed to
use their dominant hand to perform the tasks mainly. The duration of each task was two
minutes. The different tasks were chosen to represent work scenarios using upper arms

and back at low and high angle amplitudes and velocities. This allows the assessment of
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Figure 5.2 — Calibration poses: (a) I-pose of standing straight with arms relaxed by the body, (b)
Forward trunk bending at about 90 degrees, and (c) T-pose of standing straight with both arms lifted at
about 90 degrees.

the shirt setup in different conditions of use. The tasks performed were as follows (Figure
5.3):

— Lifting boxes: lift a light box from the floor to the table in front and put it back,
and from floor to table to the side and put it back;
Sorting mail: sort mail with marked letters into the corresponding compartments
at different heights;
Wiping floor: clean paper scraps on the floor and put them into a box using a
shovel and broom:;
— Cleaning dishwasher: empty cups and plates from the dishwasher and store them
on shelves;
Cleaning windows: clean windows with markers at different heights using a rag

and spray bottle.
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(a) (e)

Figure 5.3 — Performed simulated work tasks: (a) Lifting boxes, (b) Sorting mail, (c) Wiping floor, (d)
Cleaning dishwasher, and (e) Cleaning windows.

5.1.2.4 Data fusion and signal processing

Raw data from the IMUs were processed in Matlab (version R2022a, MathWorks, Inc.,
USA). The inclination angle, inclination velocity, and generalized velocity were computed
for the sensors on the arms. The sagittal inclination angle and sagittal inclination velocity
were computed for the trunk. The posture and movement computations of both the arms
and trunk followed the processing steps described in Fan and al. [145]. Firstly, data from
accelerometers and gyroscopes were integrated with a sensor fusion algorithm to reduce
the effects of the non-gravitational (dynamic) acceleration and to generate corrected grav-
itational acceleration. In the sensor fusion algorithm, the original data were resampled
to 128 Hz and processed by a Kalman filter with the recommended coefficients [146]:
0.005 rad/s for the gyroscope white noise, 0.1 m/s? for the accelerometer white noise, and
0.0005 rad/s? for the gyroscope bias. Then, the corresponding angles of each body part

were calculated using the reference poses:

— Inclination angles (Arms): Upper arm inclination angles were obtained by cal-
culating the relative angle to the reference I-pose [147].

— Forward/Sagittal inclination angles (Trunk): The forward inclination an-
gles (inclination angles on the sagittal plane) were obtained using Hansson for-
ward /backward projections and the according I-pose as the reference and forward
trunk bending to indicate the direction [148].
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Kalman filter

The Kalman filter was developed by Rudolf E. Kalman in 1960
[149]. It is based on random processes defined by the evolution of
random variables. It consists in estimating a real discrete process x
at time k by Zyi, (estimated state at time k) and 13k| % (the covariance
matrix of error). It is an iterative process based on 2 stages: the
prediction stage and update stage. Using observed values and the
accuracy of the estimated state, one can obtained the estimation of

the discrete process.

Finally, two types of angular velocities were calculated for comparison since both
computational methods have been used and reported in previous research, and large
differences in values have been observed between them [150, 151]. In addition, recent
studies have identified large differences in the values between these two computational
methods [145, 147, 152]. Since there are currently no standard metrics for assessing the
arm’s angular velocity, the performance of the in-cloth sensors vs. on-skin sensors using
both metrics is worth evaluating. The two types of angular velocities were described below:

— The inclination velocities (arms and trunk): were computed by using a simple

temporal derivation, i.e., dividing the difference between two samples of inclination
angles by the sampling time;

— The generalized velocities (arms): the upper arm generalized velocities were ob-

tained [148] by dividing the angular difference of the gravitation vectors between

two samples on a unit sphere with the sampling time [148, 152].

5.1.2.5 Statistical analysis

After synchronizing and extracting the upper arm and trunk angles and velocities of
each work task, a comparison between the skin sensors and cloth sensors was made on the
following parameters. For the upper arm and trunk inclination angles, the 5, 10%, 50",
90", and 95" percentiles of the angles and the percentage of time with the angles less
than 20°, as well as the time over 30°, 45°, 60°, and 90° were calculated. For the upper arm
inclination and generalized velocities, as well as the trunk inclination velocities, the 5,
10%", 50k, 90", and 95" percentiles were calculated. A paired comparison was made by

using the mean absolute error (MAE) and its standard deviation (SD) for all parameters
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for each work task. In addition, Bland-Altman plots of the median and the 90 percentile
of the upper arm and trunk angles and inclination velocities for all tasks were applied to
show the differences and the limits of agreement (calculated as mean +1.96 SD) between

the two sensor setups.

5.1.3 Results
5.1.3.1 Angular distributions

For the dominant upper arm, the cloth-sensor setup generally had small MAEs com-
pared to the skin-sensor setup, ranging from 1.2° to 4.1° for the median upper arm incli-
nation angle (Table 5.1).

Table 5.1 — The mean and the standard deviation (mean + SD) of the mean absolute
errors (MAEs) of the dominant upper arm inclination angle between cloth sensors and
skin sensors during the five simulated tasks, with the reference value of skin sensors shown
in brackets (N=12).

Dominant arm, Inclination

Simulated Work Tasks

Lifting boxes Sorting mails Wiping floor Cleaning dishwasher Cleaning windows
Percentile (o)
5th 07+05(45) 1+£18(37) 2241684 0.6+04(5.6) 1.7+ 1.2 (10.2)
10 07407 (64) 11+18(5)  24+17(114) 0.9 +03(7.9) 25 + 2.8 (15.8)
50t 14+11(171) 15419 (11.8) 27+2(236) 1.2+ 1.4 (23.6) 41+ 35 (52.7)
90th 3.5 +£21(324) 28 +£3.1(256) 25+ 1.6(36.6) 7.6+ 3.8(70.8) 7+ 4.3 (103.2)
95th 41+22(36.2) 3.6+33(34.3) 22+ 14(40.8) 83+ 3.8(83.1) 74+ 5 (112.2)
Percentage of time (%)
<20° 61444 (61.8) 4.6+58 (8L.1) 9.3 +85(39.3) 2.6+ 28 (41.8) 2.2 4 2 (18.9)
>30° 31427(139) 26+41(83) 7.1+6.1(27.2) 2.5+ 3.1(38.8) 2.4 4 1.3 (71.4)
>45° 1.6 £25(1.7) 1.34+25(34) 21+4(47) 1.5 + 2 (234) 3.7 £ 2.5 (57.8)
>60° 0.1+£0.2(0.1) 06=x1(12) 0.4+11(0.2) 33=+24(15.8) 4.4 + 3.6 (44.6)
>90° - 01+05(0.1) - 24 1.9 (3.1) 47 + 2.4 (19.9)

Larger errors were observed for the cleaning dishwasher and cleaning windows tasks
when looking at the higher percentiles, with MAEs of 7.6° and 7° for the 90" percentile
angle and MAEs of 8.3° and 7.4° for the 95" percentile angle. The differences were smaller
in the non-dominant upper arm, with the MAE ranging from 1.3° to 2° for the median
upper arm inclination (Table A1 in the appendix). The differences and limits of agreement
between the skin sensors and cloth sensors during the simulated tasks for the dominant and
non-dominant arms are also presented with Bland-Altman plots in Figure 5.4. Similarly,
larger differences were observed for the cleaning dishwasher and cleaning windows tasks.
For the dominant arm, the mean difference was —0.15° for the median inclination angle,

and the limits of agreement were —6.5° and 6.2°.
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Figure 5.4 — Bland-Altman plots of the upper arm inclination and trunk forward inclination angle
during the five simulated work tasks showing the limits of agreements between skin sensors and cloth
sensors. From top to bottom: the dominant arm, non-dominant arm, and the trunk. To the left: the
median angles, and to the right: the 90" percentile angles.
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The mean difference for the 90" percentile dominant arm inclination was 0.85° with
limits of agreement of —11° and 13°. For the non-dominant arm, the limits of agreement
were smaller than the dominant arm, with —5.4° and 4.1° for the median inclination
angle and —7.5° and 9.6° for the 90" percentile inclination angle. In addition, individual
differences were observed, and larger errors between the cloth sensors and skin sensors
were observed for few participants. Figure 5.5 and Figure 5.6 illustrate this variance in

time-series angular measurements of the cloth sensors against the skin sensors.

Dominant Arm (Inclination)

[——Skin sensors
weeees Gloth sensors

1075 1076 1077 1078 1079 1060 1081 1082 1083 1084 1085
on-Dominant Arm (Inclination)

ﬂ,__'. g ] | L
1075 1076 1077 1078 1079 1080 1081 1082

) 1083 1084 1085
Trunk (Forward Inclination)

209 1 1 L 1 1 1 1 1 1 1l
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
Time (s)

Figure 5.5 — An example of the upper arm inclination and trunk forward inclination angles measured
by skin sensors and cloth sensors for one participant during the simulated window cleaning task for 10
seconds, showing good agreement between the skin sensors and cloth sensors.

In Figure 5.5, the angular measurements by the cloth sensors were in good agreement
with the skin sensors, illustrated by the example of one participant cleaning windows. As
a comparison, in Figure 5.6, larger differences were observed, as shown by the example
of one participant cleaning the dishwasher. The differences became larger when the arms
were lifted higher for the upper arms, and a constant difference was observed for the
trunk inclination throughout the task. For the trunk, the MAEs between the cloth and

skin sensors ranged from 2.7° to 3.7° for the median forward inclination angle (Table 5.2).
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Figure 5.6 — An example of the upper arm inclination and trunk forward inclination angles measured
by skin sensors and cloth sensors for one participant during the simulated dishwasher cleaning task for
10 seconds, showing worse agreement between the skin sensors and cloth sensors.

Table 5.2 — The mean 4 standard deviation of the mean absolute errors

(MAESs) of the

trunk forward inclination angle between cloth sensors and skin sensors during the five
simulated tasks, with the reference value of skin sensors shown in brackets (N=12).

Trunk, Forward inclination

Simulated Work Tasks

Lifting boxes

Sorting mails

Wiping floor

Cleaning dishwasher

Cleaning windows

Percentile (°)
5th

10th

50th

90th

95th
Percentage of time (%)
<20°

>30°

>45°

>60°

>90°

48 + 4.2 (42.5)
4.6 + 5.3 (43.5)
4+ 4.5 (30)

7.2 + 9.3 (14.8)

10.7 + 11.4 (78.4)
14 427 (2.9)
0+0(0.1)

0+ 0.1(0.1)

2.5 £ 2 (20.5)

2.6 + 1.9 (25.2)
3.1+ 2.5 (41.9)
3.9 + 3.7 (53.6)
41 + 4.1 (56.3)

2.4 4 2.4 (6.8)
4.8 + 4.2 (78.1)
74 7.1(36.7)
6.4 + 10.9 (8.6)

33+ 4.1 (-3.8)
3.2+ 48 (-0.7)
3.7 + 3.9 (20.4)
5.6 + 6.7 (64)

5.8 + 6.4 (70.9)

45 + 6.9 (48.6)
34+ 4 (42.6)
3.3 + 4.6 (26.8)
42 + 7.3 (14)

3.6 + 3.3 (-8.4)
41+ 3.3 (-6.1)
3.7 +32(3.1)

3.9 + 3.7 (16.6)
3.9 + 3.6 (21.1)
4.4 £ 59 (93.1)
144 1.7 (2.6)

0.2 + 0.4 (0.5)

0+ 0.1 (0)

157



Chapter 5 — Cloth artifacts and smart activity assessment system design

The maximum MAEs were observed for the lifting boxes and cleaning dishwasher
tasks, with MAEs equal to 6.8° and 5.8° for the 95" percentile angle, respectively. For
the percentage of time with angles less than 20°, the largest difference was observed for
the task of sorting mail, with the MAE equal to 10.7 %. A potential reason could be that
during this specific task, the participants spent a lot of time around 20° trunk inclination
(mean time percentage of 78 %), and the error would lead to misclassification for trunk
inclination < 20°. The Bland-Altman plots show the limits of agreement between the skin
sensors and cloth sensors for the trunk inclination angle (bottom row, Figure 5.4. The
mean difference of the median trunk inclination was 0.09° with limits of agreement of —8.4°
and 8.6°. Larger differences are observed for the 90" percentile trunk inclination with a
mean difference of —1.1° and limits of agreement of —14° and 12°. In addition, individual
differences were observed, especially during the task of lifting boxes and cleaning the

dishwasher.

5.1.3.2 Angular velocity

For the dominant arm, the MAEs between the cloth and skin sensors were generally

small, ranging from 1°/s to 4.5°/s for the median inclination velocity (Table 5.3).

Table 5.3 — The mean + standard deviation of the mean absolute errors (MAEs) of the
dominant upper arm inclination velocity between cloth sensors and skin sensors during the

five simulated tasks, with the reference value of skin sensors shown in brackets (N=12).
Simulated Work Tasks

Dominant Arm, Inclination velocity

Lifting boxes Sorting mails Wiping floor Cleaning dishwasher Cleaning windows
Percentile (°/s)
5th 0.3 £0.3 (2.5) 04 +0.3(2.1) 0.2+ 0.1 (2.5) 0.3 +£0.3(2.4) 0.4+ 0.3 (4.3)
10th 0.5 £ 0.6 (6.4) 0.7 £ 0.4 (5.5) 0.4 £ 0.3 (6) 0.5+ 04 (5.8) 0.9 + 0.6 (10.4)
50th 1.8+ 1.5 (33.5) 3.3+ 1.7 (30.1) 1+ 0.7 (31.8) 1.4 + 1.2 (32.2) 4.5 £+ 3.4 (64.8)
90th 4.1 +£33(96.3) 109 +5.5(90.5) 4.1 +4(91.7) 5.1 +4.7 (108.7) 18.8 + 16.3 (191.6)
95th 5.1 £3.8(121.7) 15.3 £ 7.6 (116.5) 5.5+ 5.7 (116.2) 9.4 + 7.3 (142.3) 26.1 + 24.8 (244.1)

Maximum errors are found for the sorting mails and cleaning windows tasks with
MAEs equal to 15.3°/s and 26.1°/s for 95 percentile inclination velocity, respectively.
These larger differences might be due to the sleeves not following the upper arm move-
ments properly, especially during faster motions and at high inclination angle positions.
For the non-dominant arm, the MAEs between the two sensor setups of the median in-
clination velocity ranged from 0.5°/s to 2.1°/s (Table A2 in the appendix). The MAEs of
the median trunk forward inclination velocity had smaller values ranging from 0.4°/s to
2°/s (Table 5.4).
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Table 5.4 — The mean + standard deviation of the mean absolute errors (MAESs) of the

trunk inclination velocity between cloth sensors and skin sensors during the five simulated

tasks, with the reference value of skin sensors shown in brackets (N=12).
Simulated Work Tasks

Trunk, Forward inclination velocity

Lifting boxes Sorting mails Wiping floor Cleaning dishwasher Cleaning windows
Percentile (°/s)
5th 0.3 + 0.2 (2.6) 0.1 +0.1(1) 0.1 +0.1(14) 0.2£0.1(1.6) 0.2+ 0.2 (1.9)
10th 0.3+ 0.3 (5) 0.1+0.1(2) 0.2+0.1(29) 03=£02(32) 0.2+ 0.2 (4.2)
50th 2+ 3.1 (27.7) 04+03(9.8) 1+0.7(15.2) 0.9+ 1.2(17.6) 1.3 £ 0.7 (22.3)
90th 11 £ 10.7 (115.5) 1.6 +£1(28.7) 2942 (48.5) 3.5+ 3.1(64.5) 3.3 + 1.8 (64.2)
95th 13.2 £ 12.1 (154.5) 2.1 £ 1.3 (36.9) 3.5 + 3 (64) 5.2 + 5.2 (87.8) 3.2+ 1.8 (81.8)

The lifting boxes task had the maximum difference with MAE equal to 13.2° /s for 95"
percentile inclination velocity. The limits of agreement between the skin sensors and cloth
sensors of the upper arms and trunk inclination velocities during the simulated tasks are
also shown as Bland-Altman plots in Figure 5.7.

For the dominant arm, the mean difference value was 0.75°/s, and the limits of agree-
ment were —5°/s and 7.1°/s for the median inclination velocity. The larger dispersion of
data points was observed for the cleaning windows task. This could be partly due to the
large variance in individual work techniques. For the 90" percentile inclination velocity
of the dominant arm, the mean difference value was 2.7°/s, and the limits of agreement
were —23°/s and 28°/s. For the trunk median inclination velocity, the mean difference
was 0°/s, and the limits of agreement were —3.8°/s and 3.8°/s. For the 90" percentile
trunk inclination velocity, the mean difference value was —1.5°/s, and the limits of agree-
ment were —16°/s and 13°/s. A larger dispersion was observed for the lifting boxes task.
The generalized angular velocities showed significantly higher differences between the two
sensor setups. For the median upper arm generalized velocity, compared to the upper
arm inclination velocity, the maximum MAEs increased from 3.8°/s to 15.3°/s for the
dominant arm and from 2.3°/s to 3.9°/s for the non-dominant arm (Tables A3 & A4).
The differences became more evident when looking at the 95 percentile of angular ve-
locity. This could be explained by the definition of generalized angular velocity, where
movements in all directions are included, compared to the inclination velocity, where the

only change in the inclination is included.

5.1.4 Discussion

This study evaluated in-cloth against on-skin sensors for measuring trunk and upper

arm postures and movements for smart workwear systems during simulated work tasks.
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Figure 5.7 — Bland-Altman plots of the upper arm inclination velocity and trunk forward inclination
velocity during the five simulated work tasks showing the limits of agreements between skin sensors and
cloth sensors. From top to bottom: the dominant arm, non-dominant arm, and the trunk. To the left: the
median inclination velocity, and to the right: the 90" percentile inclination velocity.
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For most tasks, high agreements between the two sensor setups were observed for the
up-per arm and trunk angles. For the arm, slightly higher errors were observed for the
90" and 95 percentile of arm inclination angle and velocity during cleaning windows
and cleaning the dishwasher. For the trunk, slightly higher errors were observed for the
90" and 95 percentile of trunk inclination and velocity for lifting boxes and cleaning the
dishwasher. The generalized velocity had distinctively higher errors for both the upper
arms and trunk. The in-cloth sensors showed acceptable accuracy on a group level for

measuring upper arm and trunk inclinations and inclination velocities.

The simulated tasks in this study were chosen to cover a large range of work activities
that may involve arm and trunk movements, thus evaluating the in-cloth sensors in dif-
ferent settings. Activities like cleaning windows and cleaning dishwashers involved higher
movement amplitudes for the dominant arm. The errors of the in-cloth sensor compared
to on-skin sensors were higher in these cases, which is expected. As shown in Table 5.1,
the MAEs increased in general from the 5 to 95 percentile of the upper arm angle.
Still, the MAEs were less than 4.1° for all the median arm inclination values. A similar
phenomenon was observed in the arm inclination velocities (Table 5.3). The median arm
inclination velocity had MAEs smaller than 4.5° /s in all tasks. Higher errors were observed
when the generalized velocities were calculated (Table A3). The maximum MAE for the
median generalized velocity was 15.3°/s during cleaning windows (reference value being
124.2°/s), and the MAEs were significantly higher for the 95 percentile of arm general-
ized velocity. This is expected since the definition of generalized velocity includes motions
on all planes, compared to the inclination velocity, which only includes motions/changes
in the inclination. Therefore, the performance of the in-cloth sensors can be affected to a

higher degree by the cloth and motion artifacts during the tasks.

For the non-dominant arm, the in-cloth sensors had lower MAEs than the dominant
arm regarding the inclination angle and velocity (Table A1). This is also expected as the
non-dominant arm was less used. The maximum MAE was observed for the 95¢" percentile
inclination angle while cleaning the dishwasher, during which participants usually used
their non-dominant arm to a larger degree. For the median inclination angles, the MAEs
were less than 2° for all tasks. Concerning the non-dominant arm inclination velocities
(Table A2), the overall MAEs were smaller than 6.6°/s. Higher MAEs were also observed
for the non-dominant arm generalized velocities (Table A4). Regarding the trunk, lifting
boxes and cleaning dishwashers involved higher movement amplitudes. The maximum

MAE for trunk forward inclination angles was 6.8° for all tasks, which was observed
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during lifting boxes (Table 5.2). In general, the errors for trunk inclination velocity were
quite small, with maximum MAEs of 2°/s and 13.2°/s for the median and 95 percentile

values, respectively, observed during the lifting boxes task (Table 5.4).

One thing worth noticing is that the MAEs for trunk inclination remained on a similar
level from the 5" percentile to the 95" percentile throughout each task, even when the
trunk forward inclination angle was small. Whereas for the upper arms, the MAEs in
general increased for the higher percentiles of arm inclination (Table 5.1) and when the
arms were lifted higher. This type of error is further illustrated in Figure 5.6. The relatively
constant error for the trunk could be caused by the non-optimal fit of the cloths. The
looseness of the garment where the trunk sensor was located or a potential overlapping of
the cloth-sensor and skin-sensor could lead to the cloth-sensor having a slightly different
tilt compared to the skin. Regarding the errors observed for the upper arms, it could
potentially be caused by the elasticity of the sleeve fabric, leading to slightly larger cloth
artifacts when lifting the arms high.

In addition to the fit of the clothes, different individual work techniques and individual
height may also imply variances in the level of errors. For example, there was a high
variance in the individual arm inclination angles and velocities during cleaning windows
and the dishwasher and a high variance in trunk velocities while lifting boxes. Therefore,
this variance is good to include in the experiment so the results can represent different

work scenarios and individuals.

Another limitation was the placement of the two sensor setups, which should ideally
be at the same location, i.e., at the insertion of the deltoids and the level of T1-T2
vertebrae. However, since overlapping of the sensors was undesirable, they could not be
placed in the same place. Therefore, the cloth sensors were placed carefully close to the skin
sensors without overlapping each other. However, for a few participants, the overlapping
of the cloth sensors on the skin sensors of the upper arms was observed. This can lead to
overestimated errors of the cloth sensors since normal wear of the T-shirt will be tighter

on the skin and potentially a better fit on the body without another sensor in between.

Future studies can look into error-correcting algorithms for the in-cloth sensors set
up to improve their performance for smart workwear systems. This study highlights the
existing errors in such a system and can contribute to how to find the most adapted
approach in future studies. One potential method is the use of artificial intelligence-based
algorithms; for example, Lorenz et al. [76] used a probabilistic neural network based on a

supervised learning method to reduce loose cloth artifacts.
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5.1.5 Conclusion of part 1

This work evaluated the in-cloth sensors against the on-skin sensors in simulated
work tasks for upper arms and trunk posture assessment. Errors from in-cloth sensors
were quite low for all median values of inclination angles and velocities. Larger errors
were observed for the 90" and 95 percentiles of inclination angles and velocities. The
performance depended on the tasks and was affected by individual factors, such as the
fit of the clothes. Nevertheless, future work should compensate for the cloth artifacts and
thus improve measurement accuracy. In conclusion, in-cloth sensors showed acceptable
accuracy for measuring upper arm and trunk postures and movements on a group level.
Considering the compromise between accuracy, comfort, and usability, such a system is
potentially a practical tool for ergonomic assessment for researchers and practitioners.

Application aspects and IMU localization has been investigated, analysis of techno-

logical aspects related to wearable electronics are discussed then.

5.2 Part 2: Design of a smart activity assessment sys-

tem

5.2.1 Introduction

Smart activity assessment systems aim to perform HAR with respect to the triptych:
Robustness - Reliability - Precision (RRP). Its design must consider the ergonomic as-
pects. The morphology and the comfort of the users are significant factors. The study
presented below aims to highlight the technological challenges and relate them to the
sensor positioning issues discussed in the previous studies of this manuscript. The devel-
opment of a complete smart garment requires engineering tasks that are not temporally
conducted in this thesis work. Therefore, the engineering approach is conducted through
rapid prototyping. In addition, the development of such a system can be used as a peda-
gogical support.

Thus, in this last part of this chapter, an overview of the design of an smart garment
prototype is presented. Based on commercialized IMUs and a tight-fitting garment, rigid
components are integrated to perform inertial measurements. Challenges related to the
integration of electronic components are highlighted. This study was part of a student

project, realized by Clemence Alglave, the objective was to evaluate the system perfor-
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mance.

5.2.2 System design
5.2.2.1 System description

The general structure of the smart activity assessment system (SAAS) can be described
using the systems modeling language (SysML1!). Figure 5.8 presents the block definition
diagram of the SAAS. The SAAS is composed of a finite number of IMUs which are
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Figure 5.8 — Block definition diagram of the smart activity assessment system.

located on the whole garment. The measurements are acquired using a microcontroller,

data ca