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Résumé en français / French summary
Cette thèse s’intéresse à la motilité de micronageurs bactériens (E. coli) dans deux condi-

tions physiologiquement importantes : premièrement dans le cas d’une géométrie confinée entre
deux surfaces parallèles, puis dans du mucus intestinal d’origine animale.

Le premier chapitre présente le contexte biophysique de la thèse, dans lequel les problé-
matiques physiques de la matière active dans les environnements complexes sont reliées aux
problématiques biologiques et médicales d’infections bactériennes à travers le mucus intestinal.

L’omniprésence des microorganismes, que ce soit dans les océans, dans les sols ou dans le
système digestif d’autres êtres vivants est présenté ainsi que les différents mécanismes qu’ils
utilisent pour se propager et coloniser de nouveaux territoires. Le lien historique entre les mi-
croorganismes et les avancées médicales sont retracées au travers des plus grandes découvertes.

Les différentes problématiques de la matière active en interaction avec des environnements
d’une certaine complexité, au sens large, ainsi que la complémentarité entre physique et biologie
dans ce domaine, sont discutées succinctement, avant d’ouvrir la problématique principale de la
thèse : "les propriétés géométriques et mécaniques de la barrière de mucus, qui tapisse les parois
de l’intestin, sont-elles des éléments-clés dans la compréhension des infections bactériennes qui
peuvent y avoir lieu, dont l’importance de la motilité bactérienne est de plus en plus attestée
dans de récentes études". D’éventuelles brèches dans la barrière de mucus ainsi que les proprié-
tés structurelles du mucus (un réseau enchevêtré de protéines) sont rapportées, qui sont à la
base des deux études expérimentales développées dans cette étude.

Dans le second chapitre, les propriétés de nage des microorganismes, ainsi que leurs pro-
cessus d’exploration sont introduits. Un intérêt spécifique est dédié à Escherichia coli, cette
bactérie largement étudiée par les microbiologistes, qui est le microorganisme modèle que nous
utiliserons.

Celle-ci se compose principalement d’un corps ellipsoidal d’environ 2 micromètres de long
pour 1 micromètre de large sur lequel est implanté typiquement entre 2 et 6 flagelles d’une
dizaine de micromètres, disposés de façon aléatoire. Ces flagelles ont une forme hélicoïdale et
leur rotation, qui conduit à une propulsion d’environ 20 à 30 microns par seconde, est assurée
par un moteur flagellaire qui fait le lien entre le corps et le flagelle. Ce moteur peut alterner
des phases de rotation dans le sens horaire et antihoraire, ce qui conduit à des différences dans
la cinématique de la bactérie.

La nage des microorganismes est ensuite introduite sous le spectre de l’hydrodynamique. De
manière importante, le nombre de Reynolds qui régit la mécanique des fluides est très petit pour
les micronageurs. Dans ce régime, les effets inertiels n’existent pas contrairement au monde dans
lequel nous sommes habitués à évoluer. L’hydrodynamique de la propulsion des micronageurs
est bien comprise et classifiés en deux catégories : les "pushers" tels qu’Escherichia coli dont le
faisceau hélicoïdal de flagelles pousse le fluide derrière lui, et les "pullers" tels que la microalgue
modèle Chlamydomonas reinhardtii qui tirent le fluide qui leur fait face. Un modèle simple
composé d’un corps sphérique et d’une hélice, une version simplifiée d’E. coli, permet ensuite
de mettre en équation les concepts de l’hydrodynamique à bas Reynolds. Le micronageur est
un système sur lequel les résultantes des forces et des couples sont nulles et le couplage entre
la cinématique et les forces mises en jeu se font au travers d’une matrice de résistance. Un
modèle reliant le couple du moteur à sa vitesse de rotation permet de fermer les équations. Des
questions plus actuelles de nage dans les fluides complexes sont ensuite traitées dans une revue
de littérature internationale. Elle traite de différentes récentes avancées, principalement d’ordre
expérimental et principalement avec E. coli, qui ont eu lieu dans des fluides viscoelastiques
de différentes natures : dans les fluides à seuil, un couple est nécessaire pour enclencher un



mouvement. Dans les fluides rhéofluidifiants, la rotation rapide du flagelle entraîne localement
une diminution de la viscosité. Dans les billes d’hydrogels, la bactérie peut se retrouver bloquée
dans un "cul-de-sac" et doit prendre le temps de se réorienter pour reprendre sa nage... La partie
hydrodynamique se termine sur les interactions avec une surface : il résulte un alignement de
la bactérie avec la surface, qui l’empêche de s’échapper, ainsi qu’un mouvement qui n’est plus
en ligne droite, mais circulaire.

Le processus stochastique de "run & tumble" est ensuite décrit : une séquence de lignes
droites interrompues par des réorientations. Le déplacement quadratique moyen (MSD) qui en
résulte est alors balistique aux temps courts puis diffusif aux temps longs. Lorsque tous les
flagelles tournent dans le sens antihoraire, les flagelles s’assemblent hydrodynamiquement, for-
mant un faisceau appelé "bundle", et la bactérie se déplace en ligne droite, ce qu’on appelle un
"run". Le processus de réorientation, appelé "tumble", résulte d’un changement de sens de rota-
tion d’un flagelle (du sens antihoraire à horaire). Lorsque le flagelle reprend son sens de rotation
initial (antihoraire), un nouveau "run" prend place. Un formalisme mathématique, analogue à
l’étalement spatial d’une chaîne à articulations libres, est ensuite introduit pour calculer les
quantités statistiques d’un tel processus, spécialement le coefficient de diffusion, qui dépend
notamment des deux premiers moments de la distribution des longueurs de "run". Le modèle
de variabilité comportementale ("BV model"), qui sera la base de la modélisation du chapitre
suivant, est ensuite présenté. Dans ce modèle, la large distribution des temps de run observée
dans des expériences passées est imputée, non pas à une variabilité phénotypique, mais aux
fluctuations d’une variable interne qui contrôle "l’humeur" de la bactérie : selon son "humeur",
la bactérie enclenche des réorientations plus ou moins fréquemment. Ce modèle a par exemple
permis d’expliquer la distribution log-normale des temps de résidence à la surface lors d’une
précédente étude.

Le troisième chapitre est la première étude expérimentale de cette thèse : l’exploration
bactérienne dans un fluide sous confinement.

Une suspension bactérienne est prise en sandwich entre deux lames de verre séparées par
une distance choisie, qu’on fera varier entre 50 et 220 microns pour évaluer son impact sur
les propriétés de transport des bactéries. Les bactéries sont suivies par un système de tracking
Lagrangian conçu au laboratoire : la lame de microscope est déposée sous microscope, sur une
plate-forme motorisée dans les trois directions de l’espace. Il est alors possible de sélectionner
une bactérie et le dispositif se met alors à la suivre en focus automatiquement. Il est ainsi pos-
sible d’obtenir des trajectoires individuelles 3D de bactéries de plusieurs centaines de secondes,
ainsi que la visualisation de son corps et de ses flagelles pendant le suivi. Un inconvénient du
tracking Lagrangian, en comparaison à un tracking Eulérien (vue fixe), est de ne pouvoir suivre
qu’une bactérie à la fois, rendant fastidieux l’obtention de statistiques.

Nous étudions dans un premier temps des bactéries à la surface de lame de verre. Nous
utilisons pour ce cas des bactéries mutantes, dont le gène responsable pour les "tumbles" a été
supprimé. Ces bactéries, dites "smooth-swimmer", restent ainsi très longtemps à la surface. Les
trajectoires observées à la surface sont circulaires et le centre de leur orbite se déplace progres-
sivement dans le temps, décrivant un processus diffusif. Une théorie simple permet, à partir
de la mesure des propriétés cinématiques de la nage (la vitesse de nage, le rayon de gyration
et le coefficient de diffusion rotationnel) de prédire le coefficient de diffusion translationnel,
mesurable directement à partir du déplacement quadratique moyen.

Les paramètres cinématiques d’un individu sont constants au cours du temps, mais il existe
une grande variabilité au sein d’une population. Nous tirons alors profit de notre dispositif de
"tracking", qui permet aussi de visualiser l’objet suivi, pour caractériser l’anatomie de chaque
bactérie et la mettre en lien avec ses propriétés de nage. En plus de la longueur du corps et de
la longueur du faisceau de flagelles, une méthode est élaborée pour déterminer le nombre de



flagelles. Les résultats sont les suivants : Le coefficient de diffusion rotationnel est expliqué par
la taille du corps et des flagelles dans une simple théorie brownienne. La vitesse de nage est
indépendante du nombre de flagelles. Finalement, un scénario basé sur le nombre de flagelles
et leur disposition est proposé pour expliquer les rayons de gyration. Dans ce scénario les
flagelles repoussent le corps de la surface par encombrement stérique, réduisant l’interaction
hydrodynamique avec la surface. Ceci expliquerait la tendance du rayon de gyration à croitre
avec le nombre de flagelles, tandis que la disposition aléatoire sur le corps explique la variabilité
observée à nombre de flagelles fixé.

Nous passons alors au coeur de l’étude. Des bactéries, qui cette fois peuvent déclencher
des "tumbles", sont suivies entre deux plaques parallèles, alternant des phases de nage dans le
"bulk" avec des phases de nage à la surface. La distance entre les plaques est variée de quelques
dizaines à plusieurs centaines de microns, et une centaine de trajectoires bactériennes de plu-
sieurs centaines de secondes sont mesurées. Nous mesurons les paramètres cinématiques ainsi
que le coefficient de diffusion latérale qui traduit l’exploration de la bactérie. Nous montrons
que l’exploration latérale diminue avec la hauteur de confinement et augmente avec le rayon
de gyration. Les temps de résidence, à la fois aux surfaces et dans le bulk, sont aussi mesurés
et décrits. Un modèle numérique basé sur le "BV model", calibré dans une précédente étude,
et complété par des règles simplistes à la surface, reproduit quantitativement l’ensemble des
résultats expérimentaux, sans paramètre ajustable.

Nous identifions deux effets du confinement sur les propriétés de transport. D’abord, le
confinement contrôle la fraction du temps que la bactérie passe aux surfaces. Comme la dif-
fusion globale est principalement une moyenne pondérée de la diffusion dans le bulk et à la
surface, alors plus l’environnement est confiné, plus la diffusion à la surface est prépondérante.
Dans la limite des faibles rayons de gyration, le confinement diminue la diffusion. Dans la limite
des grands rayons de gyration, à l’inverse, le confinement augmente la diffusion. Le second effet
provient du fait que les "runs" venant du bulk peuvent être interrompus par les surfaces. Le
confinement induit alors des "runs" plus petits dans le bulk en moyenne, ce qui entraine une
diminution de la diffusion dans le bulk, qui diminue finalement la diffusion globale.

Le quatrième chapitre est la seconde étude expérimentale de cette thèse : la pénétration
bactérienne dans une barrière de mucus.

Le microbiote intestinal, composé d’environ 1014 bactéries, soit plus que le nombre de nos
cellules, est introduit au sein du système digestif. Ces bactéries peuvent être bénéfiques en favo-
risant la digestion de certains aliments, mais d’autres sont des pathogènes qui peuvent envahir
nos cellules. Nos intestins sont munis d’une barrière biologique pour prévenir les infections bac-
tériennes : c’est le rôle de la barrière de mucus, sécrétée par les cellules calciformes ("goblet
cells") de notre paroi intestinale. Le mucus est principalement constitué d’un réseau de macro-
molécules appelées "mucin" qui forment un réseau enchevêtré dynamique, dont la structure est
complexe. Cette barrière de mucus peut être détériorée en conditions pathologiques comme les
pathologies inflammatoires de l’intestin, favorisées par des régimes alimentaires basés sur des
émulsifiants très présents dans l’industrie alimentaire.

En collaboration avec une équipe de biologistes du laboratoire Nutriomics, nous avons récolté
du mucus sur des intestins de cochons. Ces cochons provenaient d’une cohorte séparée en deux
groupes basés sur leur alimentation. Nous avons purifié ce mucus pour éliminer au mieux les
impuretés et résidus chimiques, et ainsi se concentrer sur les propriétés mécaniques du réseau
de "mucin".

Le coeur de ce travail est la mise en place d’une expérience basée sur une cellule microflui-
dique dans laquelle une suspension bactérienne est mise en contact avec du mucus, délimité
par une interface nette. Deux heures après la mise en contact, la position des bactéries est
relevée : la plupart des bactéries ont migré dans le mucus et sont immobiles, pointant vers un



état stationnaire. Le profil de concentration bactérienne à travers la barrière de mucus est le
suivant : un maximum est observé peu après l’interface suivi d’une décroissance exponentielle.
On peut alors extraire une "longueur de pénétration" qui caractérise une "qualité du mucus".
Cette mesure est complétée par des mesures optiques, caractérisée par deux tailles de struc-
ture, ainsi que par des mesures rhéologiques de courbe d’écoulement. La reproductibilité des
expériences est attestée par des mesures répétées sur un cochon donné.

Six extraits de mucus purifié, provenant de cochons équitablement répartis entre les deux
groupes, ont été caractérisés de cette manière. Les longueurs de pénétration sont très variables,
de 200 à plus de 800 microns, indépendantes des mesures rhéologiques qui quant à elles sont
toutes du même ordre de grandeur. Les mesures rhéologiques présentent des différences quali-
tatives : certains mucus montrent une dépendance à leur historique de cisaillement tandis que
les autres en sont indépendants. Il est à noter que quatre des six échantillons testés présentent
la même "longueur de pénétration" ainsi que les mêmes tailles de structure. Ces observations
pointent vers une importance majeure des tailles de structure, plus que des mesures de macro-
rhéologie.

Un modèle heuristique est ensuite proposé pour expliquer le profil de concentration des
bactéries obtenu dans le mucus dans un régime stationnaire. Dans ce modèle, les bactéries
motiles diffusent dans la suspension bactérienne et dans le mucus. Cependant dans le mucus,
celles-ci peuvent se retrouver piégées avec une certaine probabilité, conduisant à la décroissance
exponentielle observée à travers le mucus. Le maximum observé peu après l’interface peu quant
à lui provenir d’une hydratation du mucus à l’interface, diminuant localement la probabilité de
piégeage, mais peut aussi être expliqué par un effet de la chimiotaxie. Une vision temporelle du
processus de pénétration est nécessaire pour affiner le modèle.

Ce chapitre se termine sur une discussion dans laquelle les limitations de cette étude ainsi
que des solutions sont énoncées, tel qu’un rapprochement vers des situations in vivo, l’utilisa-
tion de techniques optiques plus adaptées comme la microscopie OCT, la caractérisation des
tailles du réseau de mucin par diffusion de neutrons, ou encore des mesures de microrhéologie
à l’échelle des flagelles.

Le cinquième et dernier chapitre de cette thèse est dédié à l’extension des possibilités d’uti-
lisation du tracking Lagrangien, notamment pour son utilisation dans des environnements opti-
quement complexes tels que nos extraits de mucus. Une nouvelle méthode est développée basée
sur l’intelligence artificielle, en collaboration avec des chercheurs de l’université de Göteborg
spécialiste de l’intelligence artificielle appliquée à microscopie pour la matière active. Le prin-
cipe de cette méthode est d’entrainer un réseau de neurones dans le but d’associer une image
à sa distance au plan focal. Une collection d’images labellisées est produite expérimentalement
dans les conditions similaires aux conditions de "tracking" désirées. Une fois le réseau entrainé,
il est porté sur l’ordinateur de tracking pour l’utiliser dans le cadre du suivi en temps réel.
Cette méthode a été implémentée avec succès, offrant de nouvelles possibilités comme le suivi
de bactéries non fluorescentes ou encore un suivi à plus haute fréquence.

Remarquablement, cette méthode a aussi porté ses fruits pour suivre des bactéries fluores-
centes dans un extrait de mucus, menant à la première trajectoire Lagrangienne 3D de bactéries
dans du mucus. Les propriétés de la nage dans le mucus sont différentes de celles observées dans
l’eau : la vitesse est sensiblement identique mais des phases d’arrêt et des réorientations plus
fréquentes apparaissent, en cohérence avec des expériences rapportées dans des fluides modèles.
La bactérie s’arrête définitivement au bout de quelques dizaines de secondes, en cohérence avec
une probabilité de piégeage.

Une conclusion générale est finalement proposée, rappelant les différents résultats obtenus
et les principales perspectives. Les résultats principaux de cette thèse consistent en de nouvelles



mesures de la nage bactérienne en géométrie confinée et une nouvelle méthodologie pour étu-
dier leur accumulation dans le mucus. Les résultats et les nouveaux protocoles expérimentaux
enrichissent l’état de l’art dans le sujet de l’exploration bactérienne et de leur pénétration dans
des fluides viscoélastiques. Ce travail ouvre de nombreuses perspectives et pourrait constituer
la base de futures études.





Abstract
Microorganisms are ubiquitous on Earth. They developed self-propulsion to explore their

environment and colonize new ecological niche. Some of them are pathogens and trigger in-
flammation when in contact with epithelial cells. While the hydrodynamical nature of their
motion is rather well understood in Newtonian fluids, there is still much to understand when
they interact mechanically with their environment either through the presence of geometric
obstacles or stemming from the non-Newtonian nature of their swimming environments.

We perform experiments with E. coli using an in-house tracking device allowing to get
bacteria trajectories while visualizing their body and flagella for long time. In relation with
the medical problem of bacterial infection in the gut, we use it to understand the impact of
surfaces when they explore a confined environment. Confinement slows E. coli spreading, that
we rationalize with a stochastic model accounting for the complex internal dynamics from
which result E. coli active reorientations. Motion at surfaces is specifically studied, and the
interindividual variability observed in the swimming properties are questioned under the prism
of their morphologies, especially their number of flagella.

We then turn into understanding the motion of E. coli in intestinal mucus, that is extracted
from two distinct groups of piglets that are compared. After a purification process, the different
samples are characterized by an original in-vitro experiment in which bacteria have penetrated
a mucus barrier, from which emerges a "penetration length", and complemented by rheological
and optical measurements. Different rheological signatures are observed, not linked with inter-
individual variability in the bacterial penetration.

To get a temporal picture of the penetration process, machine learning is used to extend the
use of the Lagrangian tracking device to optically complex fluids, successfully implemented for
mucus. Bacteria are shown to explore mucus ten times slower than water, and to get blocked
after a few minutes.

The results and experimental protocols developed in this thesis extend the state-of-the-art
on the subject of microswimmers in methodological terms, while also providing some new data
on swimming patterns and penetration into viscoelastic fluids.
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Chapter I

Bacteria in interaction with mucus :
biological and physical problems

I.1 Microorganisms : invisible but ubiquitous
Microorganisms, also known as microbes, are unicellular organisms that can only be seen

individually by using a microscope. Despite their small size, they account for about 20% of the
total biomass [1]. The first traces of micro-organisms, found in stromatolites, date back to more
than three billion years ago. These primitive life forms have colonized many territories in which
they play an essential role, for instance :

• in the oceans, phytoplankton fix carbon and produce oxygen.
• in soils, soil bacteria recycle organic compounds and in symbiosis with fungi increase

water and nutrient absorption of roots [2].
• in other living organisms, intestinal bacteria known as the microbiota participate in the

digestive system.
Microorganisms spread passively on a macroscopic scale through water currents, winds but

also through the movement of other living organisms where they settle. At the microscopic
scale (their own scale) they can explore the environment passively through Brownian motion

Figure I.1 – Life cycle of a bacterium. Bacteria explore their environment in the planktonic
state until they attach to a surface where they form a protective biofilm made by replication
and aggregation of other bacteria by the production of extracellular matrix. At maturation,
some bacteria escape the biofilm aiming at colonizing a new place. Adapted from [3].
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but some species have developed a more efficient way to discover their ecological niche : an active
propulsion mechanism [4]. They can use this active propulsion to explore their environment in
the "planktonic" state while they can also form dense static aggregates called "biofilms" to
colonize it (see figure I.1).

A brief historic is depicted in figure I.2 : humans have suspected the existence of microor-
ganisms only since the second half of the 17th century and the observations of Antoni van
Leeuwenhoek in a microscope that he personally designed. Louis Pasteur published his seminal
work on spontaneous generation in 1861. In 1885 he developed the rabies vaccine [5], while
its German rival Robert Koch isolated the bacterium responsible for tuberculosis in 1882 [6].
Together, they definitively brought the field of microbiology into the realm of modern medicine.
At the same time, the pediatrician Theodor Escherich noted the appearance of rod-shaped mi-
croorganisms ("bacilli") in the stools of diarrheic newborns. This is the discovery of Escherichia
coli, bacteria that will become a reference model for fundamental research in microbiology.

Figure I.2 – Key discoveries in the early age of microbiology. (left) First drawings of micro-
organisms by A. Van Leeuwenhoek (1676) collected from pond water [7]. (right) Sample from
a diarrheic 2-month old child feces observed by T. Escherich with a large amount of rod-
shaped bacteria (1885) [8]. (bottom) Sketch of L. Pasteur’s experiment proving the absence
of spontaneous life generation (1861) [9]. A nutritive fluid containing cells is heated, killing
the organisms and filling the "U" by condensation. Invaders can contaminate the "U" but can
never reach the flask which stay sterile. No organism grow in the sterile nutritive fluid (no
spontaneous generation).
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The study of microorganisms has led to great medical advances but their understanding
is still very incomplete, as reflected by the numerous recent studies on the microbiome (more
information in [10]). Bringing physicists in the field, with their experimental tools and mecha-
nical concepts far from traditional microbiology, open new perspectives to understand unsolved
medical problems.

I.2 A physicist view : active matter in complex environ-
ments

Active matter is matter that consumes energy in order to exert mechanical forces, especially
to move. This is the case of motile microorganisms. Systems composed of active matter are
intrinsically out-of-equilibrium and emerging counter-intuitive phenomena (i.e. compared to
passive systems) can occur, mainly inherent to the persistent direction of the motion (see fig.I.3
for the example of MIPS).

Figure I.3 – Motility-induced phase separation (MIPS). Numerical simulations : snapshots
of the density of particles ρ at large time for : passive Brownian particles (left) and active
Brownian particles (right). Density field is homogeneous for passive particles whereas active
particles eventually form a dense cluster. Adapted from [11].

Active matter in complex environments is a broad field of research in physics, close to
biological problems. It is a very active domain whether in experiments, but also in numerics
and theory, as shown by the following large number of recent reviews [12, 13, 14, 15, 16, 17, 18].
I had the chance to attend several international high-level workshops on this topic :

1. July 2021/2022/2023 - the transdisciplinary "PSL Soft and Living Matter days" organized
in ESPCI, Paris.

2. October 2021 - "UCA fall program - Mobility, self-organization and swimming strategies"
in the beautiful Campus Valrose, Nice, Côte d’Azur.

3. October 2022 - "Active matter and complex media" in the wonderful Institut d’Etudes
Scientifiques of Cargèse, Corsica.

4. November 2022 - "ETN - PHYMOT - Physics of microbial motility" in the modern
Institut Pierre-Gilles de Gennes, ESPCI, Paris.

5. June 2023 - "Active Matter at Surfaces and in Complex Environments" in the presti-
gious Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden,
Germany.

Nature brings a large choice of diverse models of active matter : the motile microorganisms
(algae [19], worms [20], sperms [21], cilia [22] or bacteria [23]), complementary to artificial
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systems (diffusiophoresis [24], Janus particles [25], swimming droplets [26, 27], magnetic micro-
rotors [28]), to question the physics underneath active matter. For instance many progress are
being led to control the motion of bacteria (with or without genetic modifications) throughout
the external environment (magnetic field [29], chemical gradients [30, 31], light [32]) that would
be very hard to mimick synthetically. It makes them a very nice support in the study of
fundamental statistical physics of active matter.

At the same time, the study of their fundamental interactions with complex environments
paves the way to new understanding of ecological and medical problems. The complexity of
the environment, often modeling the natural environments of microorganisms, can range from
the presence of geometric obstacles (confined geometries [33], surface texture [34], maze [35],
pillars [36], colloids [37], porous media [38, 39]) to non-Newtonian fluids [40] (liquid crystals
[41], viscoelastic fluids [42], hydrogels [43], yield stress fluids [44], biological fluids like mucus
[45], polymers [46] shown in figure I.4).

Figure I.4 – Simulations of a model monoflagellated bacterium E.coli-like swimming in a
dense macromolecular polymer solution. Typical simulation snapshots of the bacterial dyna-
mics in fluids consisting of a Newtonian background fluid and including semiflexible polymers.
The starting position of the cell body is indicated by the black dashed line, showing that the
bacterium can swim faster in the more concentrated suspension. The colours of individual po-
lymers are to aid visualization. From [46].

There is thus a mutual relationship between physics and biology : physics can help to
understand biology and biology can provide model systems and inspiration for physical studies.
In this thesis, we study the problem of bacterial infection taking place in the gut where the
"mucus barrier quality" [47, 48, 49] and bacterial motility [50, 49] have been shown to be
important factors.

I.3 Geometrical and mechanical properties of the mucus
barrier : key factors for motility-induced infection ?

Bacteria are omnipresent in the gastrointestinal tract and form the so-called "gut micro-
biota". Symbiotic bacteria take part in the digestive process but pathogens can cause inflamma-
tion by infecting intestinal cells. In normal conditions, intestinal cells secrete a mucus barrier
that covers intestinal walls preventing pathogens to invade host cells. However in pathological
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conditions, for instance induced by diet (food emulsifiers [47] in figure I.5a, western-style [48]),
the mucus barrier can lose its protective function. Studies suggest that it can be due to (see
figure I.5b) :

1. holes in the mucus barrier offering a narrow (i.e. geometrically confined) path that
bacteria can exploit to access intestinal cells [49].

2. an alteration of the mechanical properties of the mucus mesh [48].

Figure I.5 – Mucus barrier properties and mechanisms of bacterial infection. (a) In the lumen
(inside of the intestine), the mucus barrier (green) prevents bacteria (red) from invading our
intestinal cells (blue). Sketch of the situation (left) and experiments (right) on mice fed with
different diets. In normal (water) conditions, the mucus barrier keeps the bacteria away from
intestinal cells. Under specific diets, bacteria can penetrate the mucus barrier (CMC) or the
mucus barrier is drastically reduced (P80). Scale bar = 20 µm. Extracted from [47]. (b) Motile
bacteria Salmonella Typhimurium can swim in the lumen and on the surface of the inner mucus
layer where their motion is circular, allowing them to find holes in the mucus barrier, possibly
leading to infection. They can also penetrate the inner mucus layer until getting trapped.
Adapted from [49]. Inset : Ex-vivo confocal imagery of mucus stained with WGA (red) and
UEA1 (green) revealing a granulous mesh pointing mechanical heterogeneities at micron scale.
Scale bar is 50 µm. From [48].
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In this thesis, we aim at shedding light on the fundamental mechanisms linking geometrical
and mechanical heterogeneities of the mucus barrier to infection by motile bacteria. After an
introduction to microswimmers in simple and complex environments, we first track E. coli bac-
teria during their motion in a simple fluid geometrically confined between two parallel plates :
we clarify their exploration on solid surfaces, taking the opportunity to challenge the impact
of morphology on the observed kinematic variability between individuals, and demonstrate the
importance of confinement on their transport properties. Then, mucus from two groups of pi-
glets fed under different diet are extracted and systematically characterized not only with optic
and rheology but also with an original experiment probing the bacterial penetration. Finally,
the tracking apparatus is improved with a method of machine learning to extend its use in
optically complex fluid leading to the first 3D trajectory of a bacterium in mucus.
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Chapter II

Microswimmers in simple and complex
fluids : a focus on E. coli

II.1 E. coli : a model bacterium

II.1.1 Cell structure
E. coli, a reference model for fundamental research in microbiology, is composed of an

ellipsoidal body of typical length 2 µm and width 1 µm on which are attached external structures
(see figure II.1) :

• the pili (length : 1 µm, diameter : 7 nm) are known to play a role both in the exchange
of plasmids between individuals and in the adhesion process (to form aggregated colony
called biofilms or to attach to a surface).

• the flagella (length : 4-10 µm, diameter : 20 nm) used for locomotion (when they are in
the planktonic state).

The body is composed of three membranes : an outer membrane (capsule) full of lipopo-
lysaccharides protecting the bacteria, a rigid cell wall with peptidoglycans maintaining the
cell shape and an inner membrane (plasma membrane) made of phospholipids controlling the
molecular exchange between the inside and the outside of the cell [52].

The cytoplasm is composed of ribosomes that synthesize proteins and two kinds of genetic
material : the nucleoid containing most of the DNA, but also some other small circular pieces
called plasmids. Genetic modifications performed by either inserting a new plasmid or changing

Figure II.1 – Sketch of the bacterial structure (after [51]).
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the genome directly, allow to control the protein production by bacteria, thus monitoring specific
functions [53].

II.1.2 Propulsion machinery
The motion of bacteria emerges from the active rotation of helicoidal flagella. This rotation

is induced by a motor (figure II.2) converting a flux of proton into mechanical energy, known
as proton motive force. The balance of protons is regulated by proton pumps that can act
either aerobically (i.e, only in presence of oxygen) but also anaerobically (i.e, no oxygen) via a
metabolic pathway called "glycolysis" extracting energy from glucose [54].

The motor is composed of stator units that drive the rotor (C-ring). Stator units can adapt
their number depending on the required torque, that can be interpreted as "mechanosensing"
[55] recently modeled via mechano-chemical concepts in [56]. The flagellum can rotate clockwise
(CW) or counterclockwise (CCW) depending on the rotor conformation [57, 58] led by the
presence of CheY-P proteins, controlled by a complex sensory and signaling chemotactic (i.e,
motion influenced by the chemical environment) machinery.

The flagellum is made of a concatenation of proteins called flagellin that are constrained to a
limited number of configurations (known as "polymorphism" [59]) leading to either left-handed
or right-handed helicity. Multiple flagella can interact together hydrodynamically to form a
unique helix called the "bundle". The link between the outer flagellum and its inner motor is
ensured by a flexible hook. The hook must be compliant to enable bundle formation yet rigid
to withstand large hydrodynamical forces [60].

Figure II.2 – Sketch of the flagellar motor machinery. (left) Main mechanical units (from [61]).
Motors are located at the inner membrane. Proton pumps maintain a proton flux, from the
periplasm to the cytoplasm, which makes the stators rotate. This mechanism is called proton
motive force (PMF). It leads to the rotation of the C-ring rotor via a gear-like mechanism. The
C-ring is linked to the flagellum by an elastic hook. (right) Chemotactic machinery. Chemicals
of the surrounding fluid bind to the chemoreceptors that can activate or disable a kinase.
When activated, the kinase triggers a complex chemical cascade that ultimately catalyzes the
production of the CheY-P protein controlling the motor rotation direction. Adapted from [62].
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The helical flagella rotation and conformations control the motion of motile micro-swimmers
such as E. coli, exerting forces on the surrounding fluids allowing self-propulsion and active reo-
rientations. The compound of fluid mechanics and also stochastic dynamics are thus necessary
to understand the inherent complexity of the motion of motile micro-swimmers.

II.2 Hydrodynamics of microswimming
This section is suited to give an elementary but reasonable understanding of the locomotion

of flagellated microorganisms, especially E. coli.

II.2.1 The low Reynolds world
The dynamics of a mass m is ruled by Newton’s second law :

m
dv
dt

=
∑

F (II.1)

which yields for the fluid mechanics of a viscous fluid the Navier-Stokes equation :

ρ

(
∂u
∂t

+ (u.∇)u
)

= −∇p + η∆u + ρf (II.2)

This equation links the flow field u to the force field (caused by internal pressure p, external
massic force f and viscosity η). By comparing, with dimensional analysis, the inertial term
ρ(u.∇)u ∝ ρU2/L and the viscous term η∆u ∝ ηU/L2, inertia is dominated by viscous force
if ρLU/η = Re ≪ 1 with Re the Reynolds number. The Reynolds number is thus the ratio of
inertial forces upon viscous forces. Typically, for E. coli swimming in water : ρ = 1×103 kg m−3,
L = 1 × 10−6 m, U = 30 × 10−6 m s−1 and η = 1 × 10−3 Pa s resulting in the very low Reynolds
number Re ∼ 10−5 ≪ 1. Microswimmers thus experience the Stokes regime which yields in the
absence of external force :

η∆u − ∇p = 0 (II.3)

Figure II.3 – (left) Minimalist swimmer designed by Purcell : the sequence of motion is not
reciprocal allowing the object to have a net motion after a cycle. Drawing from [63]. (middle) E.
coli as desgined in hydrodynamics simulation [64]. Rotation of the helix induces a force pushing
the fluid behind it. Consequently the bacterium moves forward. (right) Anisotropy of the drag
force makes the slender rod moves not only down but also to the right whereas the only force
is the vertical gravity (full video [65]).

9



The time-independence of this equation implies that :
• the system can be considered in the quasi-static limit. Fluid displacement is instanta-

neous : dynamics stops instantaneously when kinematics stops. To fix the idea let’s do
a simple computation in the idea of Purcell [63] : What is the coasting distance ∆x
that a sphere of radius R = 1µm moving initially at U0 = 30µm/s will run before stop-
ping ? The drag force is given by Stokes’ law : F = −6πηRU . Solving F = ma with
m = (4/3)πR3ρ results in the coasting distance ∆x = U0/τ ≈ 0.01nm with a typical
coasting time τ = (4/18)ρL2/η ≈ 0.2µs. All timescales greater than this will thus reach
the quasi-static limit.

• the system is time-reversible (perfectly illustrated in the video [66]). A net displacement
cannot be obtained by a mere reciprocal motion, meaning that a symmetry must be
broken during a motion cycle. This is known as the "scallop theorem" [63] and implies
that one degree of freedom is not sufficient to get a net motion in a Newtonian fluid. A
minimal swimmer with two degrees of freedom is shown on figure II.3a.

Thus micro-organisms have developed locomotion strategies adapted to the low Reynolds
regime, that can be quite surprising (a common picture is to compare microswimming to a
human swimming in very viscous fluid, like honey, where the Reynolds number would be com-
parable). For instance, E. coli are propelled by a rotating helix (figure II.3b) taking advantage
of a viscous drag effect called "anisotropy of the drag force" (figure II.3c).

II.2.2 Pusher / Puller
Most microswimmers can be classified into two categories depending on the way they swim

(figure II.4) :
• the pushers push the fluid behind and in front of them (and as a consequence fluid arrives

by the side to achieve mass conservation). E. coli is the archetypal pusher.
• the pullers pull the fluid behind and in front of them (and as a consequence fluid is

ejected by the side). The archetypal puller is Chlamydomonas reinhardtii. Its swimming
cycle is similar to a breaststroke.

Pushers (resp. Pullers) can be modeled by a simple repulsive (resp. attractive) force dipole.

Figure II.4 – Theory : Sketch of pusher/puller force-dipole (left) and associated theoretical
flow field (right). Point forces are the red arrows. Color code represents flow intensity. Figures
from [67, 15]. Experiments : Real imaging with flagella (left) and measured experimental flow
field (right) of E. coli / C. reinhardtii. Figures from [68, 69] / [70].
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The resulting flow field can be computed (figure II.4-left) since the response to a point force is
known in the Stokes regime :

u(r) = F.J(r) with J(r) = 1
8πη

(
I

|r|
+ rr

|r|3

)
(II.4)

where J(r) is known as the "Stokeslet" and F a point force applied at the origin. Considering a
force dipole of strength p centered in r = 0 aligned with the elongated direction of the cell (as
sketched in figure II.4-left), which is also the swimming direction, results in :

u(r) = p

8πηr3 (3 cos2 θ − 1)r (II.5)

The velocity field thus generically decays as 1/r2 in the far-field of an individual microswimmer.
For pushers p > 0 whereas for pullers p < 0. |p| = 2d|F | where d is the distance between the
two point forces constituting the force dipole.

Experimentalists were able to visualize directly the flow field around micro-swimmers using
micro-PIV techniques [69, 70] (figure II.4-right), in good agreement with this simple dipole of
force model, especially for E. coli.

II.2.3 A simple model for swimming E. coli
A flagellated bacterium can be modelled as the combination of a spherical body of radius

RB and an effective helix of length L, pitch λ, radius r and thickness r0 linked by a motor of
rotation speed ΩM . All the parameters of the problem are sketched in figure II.5. The idea is
now to derive an expression for the speed V .

Figure II.5 – Sketch of a bacterium and its geometrical properties.

First, kinematics imply that the rotation speed of the body ΩB and the helix ω are linked
via the motor ΩM : ΩB = ω − ΩM .

Then, an active micro-swimmer is force-free and torque-free (in the absence of inertia).
Considering no coupling between the body and the helix, one can compute the resistance
matrix which links force and torque to translational and rotation speed at low Re :(

F
T

)
=
(

0
0

)
= η

[(
A11 0
0 A22

)(
V
ΩB

)
+
(

B11 B12
B12 B22

)(
V
ω

)]
(II.6)

where η is the viscosity of the fluid, A11V (resp. B11V ) is the drag of the translating sphere
(resp. helix), A22ΩB (resp. B22ω) is the torque of the rotating sphere (resp. helix), B12ω is
the thrust produced by the rotating helix and B21V is the torque produced by the translating
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helix. The reciprocal relationship between the force on a rotating element and the torque on
this translating element [71] imposes B12 = B21.

One can now apply resistive force theory (RFT) to compute all the coefficients. It has been
solved theoretically for both a sphere (Stokes-Einstein) and a helix [72]. The idea of such a
theory is to compute the resulting parallel and perpendicular drag coefficients of the helix by
an infinite sum of small segments along its shape. While experiments show some limits to this
theory for a helix [73], numerical improvements can be made by taking into account the coupling
between the flow field induced by each small segment (known as "slender body theory" [74]).
We can get an expression for the speeds :

V = − A22B21

(A22 + B22)(A11 + B11) − B2
12

ΩM (II.7)

ω = − (A11 + B11)A22

(A22 + B22)(A11 + B11) − B2
12

ΩM (II.8)

Finally, the motor has been shown to adapt to the external torque by recruiting stator units
(see figure II.2.left) [75]. Then the bacterial description requires a model for the motor, linking
the internal torque to the rotation speed. This has been studied extensively experimentally
[76, 77, 55]. One can use the empirical expression :

Tint(x) = TM (1 − xn) / (1 + xn) (II.9)

with x = ΩM/Ω∗. TM denotes the maximal torque that can be delivered by the motor, Ω∗ is a
characteristic rotation speed and n = 2.5 an empirical power (see figure II.6).

Figure II.6 – Motor torque-speed relationship. (top) Experimental measurements from [76].
(bottom) Empirical numerical profile from equation II.9. Internal torque (blue) balances the
external torque (orange) to determine the working speed of the motor ΩM−work.
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The power dissipated in the fluid must be equal to the power delivered by the motor :

Pdiss = TextΩM (II.10)
= η

[
A11V

2 + (B11V + B12ω)V + A22Ω2
B + (B21V + B22ω)ω

]
(II.11)

= Pmot = TintΩM (II.12)

that can be solved numerically provided a model for the internal torque (equation II.9).
The model is now complete. One can choose parameters from the literature [78, 79]. For

the body : VB = 1.4 µm3 => RB = 0.7 µm, for the helix : L = 6 µm, λ = 2.1 µm, r = 0.2 µm,
r0 = 10 nm and for the motor : TM = 3000 pN nm, Ω∗ = 150 Hz.

This model predicts that speed is maximal for a given length of the helix (figure II.7a) and
describes experimental data done in viscous fluids (figure II.7b).

Despite its apparent simplicity, this model already captures most of the important features
of bacterial locomotion in viscous fluids while providing good insights.

Figure II.7 – Results of the model. (left) Bacterial speed as a function of the fluidity (defined
as the inverse of the viscosity). The external torque is proportional to viscosity, the motor
adapts its speed consequently. Experiments from [80]. (right) Bacterial speed as a function of
flagella length. Speed increases with flagella length until reaching a quasi-plateau. Error bars are
errors of the mean. Data from private communication with a former PhD in the group, Gaspard
Junot. Note : From (left) is calibrated V0 = 22.03 µm/s, Ω∗ = 1050 rad/s, TM = 2600 pN nm.
Then results (right).

However, microswimmers generally live in polymeric fluids, such as mucus, whose properties
are more complex (viscoelasticity, shear-thinning, yield stress...) and in confined environments
characterized by the presence of surfaces. The state-of-the-art of the hydrodynamic interactions
with such elements are discussed below.

II.2.4 Swimming in complex fluids
We saw that, as the fluid viscosity increases, the speed of E. coli decreases. However most

of the biological fluids in which bacteria settle cannot be simply described by a Newtonian
viscosity. Indeed, for example they can be composed of polymers that can crosslink and create
elasticity in the fluid or internal structures such as soft gel inclusions. This elasticity can lead to
different rheological behaviors such as viscoelastic response or yield stress. Due to the inherent
microscale of polymers, the resulting rheology can be different if it is measured on macrosco-
pic scale (with a rheometer) or on microscope scale (through beads diffusion). Dimensionless
numbers are usually used to characterize the different regimes :
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• Oldroyd-B fluids are characterized by a relaxation time λ and the dimensionless number
to describe the resulting properties is related with the Deborah number De which mea-
sures the degree of elasticity of a viscoelastic fluid. Surprising properties emerge : some
swimming strategies that would not lead to any motion in a Newtonian fluid can conver-
sely generate motion in viscoelastic fluids, like the swimmer presented in figure II.8a
from [81]. These fluids are shown in figure II.8f to reduce the rotational diffusion and
the wobbling (i.e the helical motion of the body due to asymmetry in flagellar location
[64]) while viscosity is suspected to reduce the tumbling rate [82].

• Shear thinning fluids are materials whose local viscosity η(γ̇) decrease with the shear
rate γ̇ : the more it is stressed, the easier it will flow. They are commonly described with
a shear-thinning index n describing the decay of the viscosity with shear rate. In such
fluids, since the effective shear rate of the flagellum γ̇f = ωf/(R/r0) ≈ 104 s−1 with ωf

the rotation rate, R the helix radius and r0 the filament radius is far higher than the
effective shear rate produced by the counter-rotating body γ̇b ≈ 102 s−1, both elements
don’t feel the same viscosity and this can lead to speed enhancement while the measured
macroscopic shear viscosity increases [80, 83] (figure II.8c).

• Yield-stress fluids need a sufficient stress to start flowing, the yield-stress σ0. A model
combining shear-thinning and yield stress is the Herschel–Bulkley fluid and the Bingham
number Bi = σ0/ηγ̇ with η the fluid viscosity is mainly used. In these fluids, microswim-
mers are shown to experience three phases with increasing torque (see figure II.8d) : 1)
Blocked. 2) In-place rotation. 3) Net motion. [44].

• In jammed hydrogels particles, described by a typical pore size, E. coli is shown to be
confined (trapped) in a close area until it can escape (hop) to a new one as shown in
figure II.8e. The statistics of trapping/hopping with pore size is studied in [43] : the
larger the pore size, the longer the hops.

• In colloidal suspensions, characterized by a colloid radius R and a volume fraction ϕ,
E. coli is shown to increase its speed when passing near a colloid of size R ∼ 1 µm.
Indeed its wobbling is reduced due to hydrodynamic interactions leading to a straighter
trajectory of the body and then a speed enhancement [37].

Interaction of living organisms with complex fluids (see [12] for a more general review) can
be contradictory because rheological effects are combined with biochemical effects. For instance,
a shear-thinning fluid without elasticity (and conversely) bio-compatible has not been found
yet, to be able to decipher their impact separately [12, 83]. It is also now clear that polymer
solutions must be dialyzed to make reliable comparisons, as small polymer fragments can serve
as extra fuel for bacteria thus changing the metabolism [83]. Finally, recent experiments by [84]
have shown that bacterial accumulation at surfaces, that are omnipresent in the living habitats
of micro-organisms, are reduced in viscoelastic media.

II.2.5 Swimming at solid surfaces

"Pushers", like most of flagellated bacteria, are known to accumulate at surfaces [85]. This
property is related to the no-slip boundary condition at surface : the pusher swims with its
virtual image on the opposite side of the surface [86], tending to keep it aligned with the surface
(figure II.9a). The strength of this hydrodynamic force depends on the distance between the
object and the wall [87] that has been measured experimentally by internal reflection aqueous
fluorescence microscopy [88] (h < 100 nm) as well as the surface properties via the slip length
[89]. Numerical studies [86] (h > 300 nm) fail to capture the order of magnitude of experimental
measurements yet. This distance is probably mediated by an interplay between hydrodynamic
attraction and electrostatic repulsion that can be screened by adding ions in the solution. Escape
can thus come from passive rotational diffusion [90, 91] or mainly by active reorientations [92]
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Figure II.8 – Interaction of microswimmers with complex fluids. (a) A two-sphere model by
[81]. Two spheres of different sizes are maintained at a certain distance one of each other and
rotate in an opposite way. In a viscoelastic fluid (Oldroyd-B model), unlike in a Newtonian fluid,
it generates a net motion in the direction of the large sphere. (b) E. coli enhances its speed
when passing near a colloid. It is due to wobbling suppression. Adapted from [37]. (c) Shear-
thinning fluid (Methocel) enhances bacterial speed [83], in contradiction with the measured
viscosity, explained theoretically by a reduced viscosity experienced by the flagellum due to its
local shear rate. (d) Combination of a cylinder (with permanent magnet) and a helix under
magnetic field in a yield stress fluid. Three phases are defined with increasing rotating speed.
I) Below a critical magnetic torque, the swimmer is fully blocked. 2) Magnetic torque becomes
sufficient for in-place rotation but no net motion occurs. 3) Magnetic force rotates the swimmer
sufficiently fast : net motion occurs. Adapted from [44]. (e) In hydrogels particles, E. coli can
be trapped some time in a pore space, possibly escaping from it [43]. Pore size affects the
dynamics. (f) In CMC, a polymeric viscoelatic fluid, E. coli rotational diffusion and tumbles
are hindered [82].
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Figure II.9 – Interactions of E. coli (and more generally "pushers") with surfaces. (a) Hydro-
dynamic interaction tends to align the bacteria to the surface (from [67]). (b) Principle of the
circular motion (from [85]). (c) Circular trajectories of bacteria on surface (from [85]).

if the attraction is too strong to be overcome passively.
In addition to the accumulation, E. coli is also known to swim at surface in clockwise

(CW) circular motion [93]. Examples of trajectories are shown on figure II.9c. The circular
motion can be understood with simple arguments : flagella rotate CCW and, because the
bacterium is torque-free and force-free, the body counter-rotates (i.e. CW). The interaction of
these rotations with the surface results in two forces of opposite direction located on the body
and on the flagella leading to a global torque perpendicular to the surface as sketched on figure
II.9b. From an elementary hydrodynamic model, the gyration radius is shown to depend on the
gap between the surface and the bacterium and the strength of the force dipole [94], as well as
the body shape [93]. Experimentally, the near-field emerging from a swimming bacterium close
to a surface is not shown to differ from bulk with micro-PIV techniques [69]. An asymmetry in
the flow field close to surface, related to the circular motion of the bacterium, could remain to
be demonstrated. Besides the flow field emerging in the vertical direction is also studied [95].

Deformable interfaces [96] and the case of air-liquid interfaces, where E. coli is shown to swim
counter-clockwise (CCW) [97], unlike at solid-liquid interfaces (except in special conditions
[98]), are also sources of interest.

Hydrodynamics is not sufficient to understand the bacterial exploration. Self-propulsion
is indeed combined with active reorientation processes triggered stochastically by a complex
biochemical machinery.
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II.3 Run & Tumble (R&T) exploration
Bacteria can explore their environment combining self-propulsion and reorientations which

can be purely passive or combined with more elaborated active processes :
• Monoflagellated bacteria, such as Myxococcus xanthus [99] (resp. Vibro alginolyticus

[100]), can perform "reversals" (resp. "flicks"), i.e reorientations of 180◦ (resp. 90◦).
• Peritrichous bacteria, such as E. coli, perform stochastic reorientations called "tumbles".

The sequence of a straight motion ("run") followed by a reorientation ("tumble") allows the
bacterium to explore its environment. Denoting τr the typical run time, the mean square dis-
placement (MSD) of such an object is ballistic (exponent 2) at short time ∆t ≪ τc and then
diffusive (exponent 1) at large time ∆t ≫ τc due to the reorientations (figure II.10) where
τc ∝ τr is the characteristic time at which the transition from ballistic to diffusive regime oc-
curs [101]. The diffusion coefficient D, which is the slope of the MSD in the diffusive regime
divided by twice the spatial dimension d of X, is then the measure of the exploration at large
time :

D =
∆t→∞

∆X2

2d∆t
(II.13)

Figure II.10 – Typical mean square displacement of a run & tumbler. During a time window
∆t, in average (mean), the square of the distance between the original position and the final
position (displacement) is ∆X2.

II.3.1 Mechanisms and statistics of the reorientations
Each flagellum is composed of a motor that can turn clockwise (CW) or counter-clockwise

(CCW). The sense of rotation of the motors is associated to two different swimming modes
(figure II.11a) :

• the run mode during which all the flagella turn CCW and assemble into a unique helix.
The flagella inside the helix rotate propelling the bacterium straight.

• the tumble mode during which at least one flagellum turns CW, getting out of the bundle
("debundling") and resulting in a reorientation of the bacterium. When the flagellum
turns CCW again, the bundle reforms ("bundling") and a new straight run start.
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The tumble process is observed experimentally [68]. When the CW rotation starts, the flagellum
switches from conformation "normal" to "semi coiled 1" and, after a certain time, to "curly 1"
(conformations 2,4 and 5 in figure II.11b). When the motor rotates CCW again, the flagellum
gets back to a "normal" conformation. The hydrodynamic origin of the reorientation is addressed
in [102] suggesting that most of the reorientation happens in the "bundling" phase. However,
the question is still open. Reorientation angles are shown to have a non-trivial distribution [103]
peaked around θt = 45◦ (figure II.11c) that can be modeled via a rotational diffusion during a
distribution of tumble time [104]. The distribution of tumble time (of order τt = 0.4 s) decays
exponentially whereas the distribution of run time (of order τr = 10 s) decays with a power-law
[105, 106] (figure II.11d).

Figure II.11 – E. coli run & tumble dynamics. (a) Sketch of the association / dissociation
of the flagella bundle occurring during the run / tumble phases induced by the change of
rotation direction of a flagellum. (b) Possible conformations of a flagellum : conformations 2,4
and 5 are the most observed and are respectively referred as "normal", "semi coiled 1" and "
curly 1". Figures (a) and (b) from [59]. (c) Distribution of reorientation angles (from [103])
(d) Distribution of tumble times (gray) and run times (black). Distribution of tumble times is
exponential whereas distribution of run times is not exponential. Adapted from [105].

II.3.2 Mathematical framework
Definition

We provide here a mathematical description of a run & tumble process (only in two dimen-
sions for the sake of clarity). In the following set of equations, the position X(t) evolves at a
constant speed v with translational noise Dt. The orientation angle θ(t) can vary through rota-
tional diffusion Dr and through tumbles modeled by shot noises at time Ti with a reorientation
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angle ∆θi :

dX(t)
dt

= V(t) = V e(t) +
√

2Dtξ(t) (II.14)

e(t) =
(

cos [θ(t)]
sin [θ(t)]

)
(II.15)

dθ(t)
dt

=
√

2Drξ(t) +
∑

i

∆θiδ(t − Ti) (II.16)

with ξ(t) a white noise. For E. coli, Dt ∼ 0.2 µm2/s [107] and Dr ∼ 0.01 rad2/s [108]. Without
the shot noise, the process describes an active brownian particle (ABP) [109] like our mu-
tant bacteria, introduced later in section III.1.1, that do not tumble (also denoted as "smooth
swimmer").

Analogy with polymer physics

In the 1970’s Lovely and Dahlquist found a strong analogy between a run & tumble trajec-
tory and a freely jointed chain : both are sequences of straight lines with reorientations, known
as a random walk process. Physicists already worked a lot on freely jointed chain to explain
the spatial extension of polymers [110, 111] and the same tools can be applied to describe the
exploration of the run & tumble trajectory of bacteria, sketched in figure II.12.

Figure II.12 – Sketch of a run and tumble trajectory, or freely jointed chain, with the run
vector l⃗i and the angles between successive runs θi,i+1.

The mean square displacement
〈
∆X2

〉
can then be computed as :

〈
∆X2

〉
=
〈(

N∑
i=1

l⃗i

)2〉
=

N∑
i=1

〈
l⃗i

2
〉

+ 2
N∑

i=1

N∑
j>i

〈
l⃗i.l⃗j

〉
(II.17)

with l⃗i are the runs.
〈

l⃗i
2
〉

≡ ⟨l2⟩ and
〈
l⃗i
〉

≡ l then
〈
l⃗i.l⃗j

〉
= l2 ⟨cos(θi,j)⟩ with θi,j the angle

between the vectors u⃗i and u⃗j. Let’s note α the mean cosine between two successive monomers :

α = ⟨cos(θi,i+1)⟩ = ⟨cos(θi+1 − θi)⟩ (II.18)

The cosine function here is multiplicative (⟨cos(a + b)⟩ = ⟨cos(a)⟩ ⟨cos(b)⟩) due to the symmetry
of the reorientation along the original vector (then ⟨sin(a)⟩ = ⟨sin(b)⟩ = 0), then :

⟨cos(θi,j)⟩ = αj−i (II.19)
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Thus : 〈
l⃗i.l⃗j

〉
= l2αj−i (II.20)

Then we just have to compute :
N∑

i=1

N∑
j>i

αj−i =
N−1∑
i=1

Nαi −
N−1∑
i=1

iαi (II.21)

where the sums have been rearranged. The resulting sums are both analytically solvable and
the result holds :

N−1∑
i=1

Nαi −
N−1∑
i=1

iαi = N(αN − α)
α − 1 − (N − 1)αN+1 − NαN + α

(α − 1)2 (II.22)

When N → ∞ it simplifies :
N−1∑
i=1

Nαi −
N−1∑
i=1

iαi −→
N→∞

Nα

1 − α
− α

(1 − α)2 = Nα

1 − α
(II.23)

Then by replacing in II.17 and simplifying it holds :

〈
∆X2

〉
= lim

N→∞
N
〈
l2
〉 1 + α

(
2 ⟨l⟩2 / ⟨l2⟩ − 1

)
1 − α

(II.24)

Then to adapt this expression for a run & tumble trajectory (following [101]), the number of
monomers N is replaced by t/(τr + τt) with τr the mean run time and τt the mean tumble time.
The monomeric length l is replaced by the run length V τr where V is the speed. Finally one
gets an expression for the diffusion coefficient D :

D =

〈
∆X2

〉
2d

= V 2S

2dτr

1 + α(2τ 2
r /S − 1)

1 − α
f (II.25)

where d is the number of dimension of the trajectory, f = τr/(τr + τt) is the running fraction
and S = ⟨τ 2

r ⟩. For an exponential distribution of run times (Poisson process) ⟨τ 2
r ⟩ = 2τ 2

r , it
holds :

Dp = V 2τr

d

f

1 − α
(II.26)

In the special case of processes ensuring random reorientations such that α = 0 and in the limit
of negligible tumbling time f = 1 :

Dp = V 2τr

d
(II.27)

The diffusion coefficient D of motile E. coli is estimated to 200 − 400 µm2/s [112, 4]. Formula
II.25 is exact for any distribution of run times as long as its first and second moments are
defined and stem from a Markovian process.

II.3.3 Behavioral Variability (BV) model for the run times
Pioneer experiments of bacterial 3D tracking from Berg in 1972 [103] have allowed to ac-

cess for the first time the distribution of bacterial run times (see figure II.13). This amazing
achievement led to consider an exponential distribution for the run times, and thus a Poisson
process to describe their dynamics. The main limitation of Berg’s apparatus was the tracking
duration : limited to a few seconds. Much later, in 2004, Korobkova et al measured the CW
and CCW rotation times by attaching a bead to a flagellum of trapped bacteria. It was then
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Figure II.13 – Fraction of run times greater than a given run time measured by H. Berg [103].
The distribution of run times is mostly exponential. The run times measurement is limited to
5 s.

possible to measure more precisely and on timescales of the order of hours the CCW (run
phase) and CW (tumble phase) distributions. They have shown that the run times distribution
is actually described by a power-law decay. We present in this section the "behavior variability"
(BV) model developed earlier in the group that aims at describing quantitatively the run times
dynamics of a generic E. coli bacterium.

Experimental considerations

First of all, bacteria can sense chemical environments through sensors linked to a chemotac-
tic machinery regulating the production of a protein called CheY-P. In the motor vicinity, this
protein responsible for the motor rotation mediates the tumble rate. Thus, if a bacterium is
sensing more and more attractants (sugars, amino-acids...), the CheY-P production decreases
such as to lengthen the run, whereas if it is sensing more and more repellents (fatty acids,
alcohol...) the production of CheY-P increases to trigger more frequent tumbles [113]. Statisti-
cally, this will lead the bacteria to follow gradients of attractants or eventually escape harmful
environments. This process is called "chemotaxis". The tumble occurs because CheY-P binds
to the rotor which induces a change of conformation of the rotor (figure II.14a) making the
flagellum rotates from CCW to CW. A video illustrating this mechanism can be watched in ref
[114].

In an homogeneous chemical environment, the distribution of CCW times (closely related
to run times) is shown to decay with a power-law with an exponent close to −2 [105] (figure
II.14c).

Finally, it has been found in the group that the run times dynamics possess a memory
time [115] as shown by the exponential decay of the log of the persistence times self-correlation
function (figure II.14c) leading to a "behavioral variability" (BV) model for the run times [115].

A model based on the internal biomachinery

Even in absence of chemical environment, the CheY-P concentration around the motor
Y (t) fluctuates and the timescale of these fluctuations is the memory time TM (figure II.14d).
Modelling the evolution of Y (t) through an Orstein-Uhlenbeck process takes into account this
memory time and leads to a normal distribution for Y :

Ẏ (t) = Y (t) − Ȳ

TM

+ η(t) (II.28)
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where Ȳ is the mean value of Y and η(t) is a white noise resulting in fluctuations of Y of
amplitude σY . Then let’s consider the two-state model (run and tumble) of figure II.14e where
an energy barrier ∆G0 has to be overcome to trigger a tumble (and a constant energy barrier
has to be exceeded to bring it back to the run mode). Let’s make ∆G0 depends linearly with
Y (expansion to the first order) :

∆G0[Y (t)]
kbT

= ∆G0[Ȳ ]
kbT

− ∆0
Y (t) − Ȳ

σY

+ ... (II.29)

where ∆0 is the sensitivity to Y fluctuations. Finally, the time needed to overcome this barrier
is given on average by an Arrhenius law :

τs(t) = τ0 exp(−∆0
Y (t) − Ȳ

σY

) (II.30)

where τs is the switching time and τ0 is the switching time for Y = Ȳ . Thus the normal
distribution of Y is transformed into a log-normal distribution for the switching times τs. The
switching times must reflect the run times τs ≈ τr.

Figure II.14 – Behavioral variability (BV) model. Experimental considerations (a,b,c) leading
to a minimal model for the run times with an internal slow variable representing fluctuations
of the CheY-P protein (d,e). (a) Sketch of the rotor of the flagellar motor. CheY-P binds to the
rotor, triggering a conformational change that makes it switch briefly to CW rotation (from
[114]). (b) Self-correlation function of the log of the persistence times, with exponential fit (red
line) of characteristic a memory time TM = 19 s (from [115]). (c) Distribution of the CCW
rotation sequence as a direct proxy for the run times (data from [105]). Solid line : power law
of exponent -2. (d) CheY-P concentration Y as a function of time fluctuates around its mean
value Ȳ with a standard deviation σY and is temporally correlated on a typical memory time
TM . (e) Switch from run to tumble state is mediated by the varying energy barrier ∆G0(Y ).
This transforms the Gaussian distribution of Y into a log-normal distribution of run times τr.
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Success of the BV model

As a consequence this model provides an internal dimensionless variable :

δX(t) = Y (t) − Ȳ

σY

(II.31)

describing an apparent "mood" of the bacterium defining its run times preferences at a given
time. When δX ≫ 1 the bacterium forages its near-environment whereas for δX ≪ 1 it explores
a larger area (figure II.15a).
The parameters of the model are calibrated in [115]. Among other things, it has successfully
described the distribution of surface residence times [92] (see figure II.15b).

Figure II.15 – Consequences of the BV model on the behavioral variations of the sequence of
run times experience by an individual. (a) A typical numerical trajectory implementing the BV
model with the "mood" in color (2D projection of a 3D track). Sometimes the same swimmer
forages (I : δX < 1), sometimes it explores (II : δX > 1). (b) Distribution of the logarithm of
surface residence times τ . BV model reproduces the log-normal distribution observed experi-
mentally for wild-type E. coli (from [92]).

We will study the fundamental implications on the large-scale transport properties of such a
large and temporal run times dynamics, specifically under confinement, in the following chapter
III.
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Chapter III

Bacteria exploring simple fluids under
confinement

In their natural environment, peritrichous bacteria such as E. coli undergo run and tumble
kinematics, alternating between three-dimensional swimming and quasi-2D exploration of sur-
faces. In the absence of boundaries and in a chemically uniform environment, the combination
of run and tumble leads to a 3D diffusive process [4]. In numerous practical situations, such as
mucus barriers, physiological ducts, natural soils, porous media, the presence of low-dimensional
substrates alters this simple picture and appears as a key to control the large-scale transport
and contamination properties [116, 117]. However, while studied in detail for passive particles
[118, 119] and despite these crucial practical consequences, the interplay between 3D and 2D
motion for microswimmers remains poorly understood both theoretically and experimentally.
Here, we address this fundamental question by combining experiment and theory using a simple
prototypical setup in which bacteria swim in an environment bounded only by the presence of
two parallel surfaces separated by a height H (see figure III.1). We show that the emerging
dispersion process along the plane differs from the boundless limit and explicitly depends on the
confinement height as well as on specific features of the surface kinematics. To describe the ex-
ploration process, we use the "behavioral variability" (BV) model [115], which has recently been
shown to be successful in describing bacterial residence time [92] and backflow contamination
[120]. This model incorporates the fluctuations of a slowly varying internal molecular variable,
called "the mood", that triggers the run-to-tumble events. In this work we have adapted it to
additionally take into account the circular kinematics at surfaces.

Figure III.1 – Sketch of the experimental cell. Bacteria swim in a pool delimited by two
parallel plates separated by a confinement height H. The other dimension of the pool Rp ∼ 1 cm
can be considered as infinite when compared to bacterial exploration distances during the time
of the experiment. Bacteria inside the pool are magnified for visualization. (Illustration by
Xavier Benoit-Gonin, PMMH)
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To understand the impact of confinement under the influence of surfaces, on the exploration
of microorganisms and after introducing the experimental setup, we first study the surface
kinematics of a "smooth-swimmer" (i.e non-tumbling) E. coli strain. We take the opportunity to
question the observed kinematic variability through the prism of morphology. Armed with this
knowledge, we finally study the exploration of "wild-type" bacteria under variable confinement
heights (see figure III.1).

III.1 3D Lagrangian tracking of fluorescent E. coli

In the PMMH laboratory, it has been developed since 2015 [121] a motorized microscope
suited to track bacteria which has led to successful achievements in the understanding of bacte-
rial exploration processes such as temporal variability in the run times [115], Bretherton-Jeffery
trajectories in Poiseuille flow [122], log-normal distribution of surface residence times [92] or
frustrated run and tumble in nematic liquid crystals [41]. In this section, I briefly summarize
the setup, provide the settings I used and highlight the problems I fixed.

III.1.1 Bacterial strains

The E. coli strains AD62 and AD63 [54] we use are derived from the strain AB1157, itself
derived from a K-12 : the first strain to be used in a lab isolated in 1922. AB1157 has been
genetically modified (fliC mutation) so that the flagella can be tagged by a fluorophore (Alexa
647 C2 malmeide) giving rise to AD62. AD63 is a genetically modified version of AD62 where the
gene responsible for the bacterial reorientation has been suppressed. These genetic modifications
can be simply written this way in the biological literature :

• AD62 = AB1157 fliC(S353C)
• AD63 = AD62 ∆(cheY)

Moreover, a plasmid has been added to the strains so that they become resistant to ampicillin
(an antibiotic) and express Green Fluorescent Protein (GFP). In simple words : AD62 and AD63
are fluorescent when cultured with ampicillin and their flagella can bind with a fluorophore (as
Alexa 647 C2 malmeide). AD62 can tumble and will be referred as "wild-type" (WT) whereas
AD63 cannot (∆cheY) and will therefore be referred as "smooth-runner" (SR).

III.1.2 Motorized microscope

The inverted optical microscope has a mounted 3D motorized stage (two mechanical motors
on the horizontal plane and a piezo motor for the vertical plane) that holds the glass slides. It
is possible to use it in bright field (transmitted light) but also in fluorescence (reflected light)
thanks to the LED source. A CCD camera can capture the images in focus and transmit them
to the computer. The computer can control the 3D platform and a TTL trigger is used to
synchronize the position of the platform with its associated image at given frequency (figure
III.2). Objective "C-Apochromat 63x/1,20 W Korr M27" (referred as 63xW) is used with both
the blue and the red source to excite respectively the GFP (on the body) and the Alexa Red
fluorophore (on the flagella). Combined with reflector 90HE, a dichroic mirror then splits the
wavelength emitted by the body and the flagella on two different areas of the camera chip (top
and bottom). These two area are adjusted and calibrated with a sight before each use to then
be able to combine them adequately in post-processing.
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Figure III.2 – Tracking system. (a) Experimental set-up : The LED source emits light beams
at chosen wavelengths. Fluorescent bacteria are excited and emit light (green for the body
and red for the flagella) that is reflected to the camera. A dichroic mirror guide the different
wavelengths at different locations on the camera chip. The image is treated by the computer
to determine the displacement of the 3D motorized stage in order to keep the bacteria in focus
and in the center of the image. The 3D motorized stage informs its current position. Every
element is synchronized through a TTL trigger. Finally, we can visualize both the body (in
green) and the flagella (in red) while getting the trajectory (color is for the tracking time, scale
is not known). Bacterial image (b) and trajectory (c) from [123].

Algorithm rules

Beyond engineering considerations, all what is needed to track an object is to know its
current displacement from the focal point at the intersection of the focal plane and the optical
axis. In the XY plane (plane of visualization), this displacement can be obtained by finding
the object closest to the center and taking its center of mass (where the mass is the pixel
intensity). It is more difficult to find the displacement in the Z plane (orthogonal to the plane
of visualization). Actually the method takes the advantage that the defocusing pattern of the
object is not symmetric along Z (due to spherical aberrations). Indeed, when looking from
above the focal plane, a ring appears around the object (airy disk) whereas when looking from
below, the object gets blurred and loses intensity. This assessment especially holds when the
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correction ring of the objective (which is here to apply an optical correction of the glass slide)
is put on 0.19 µm for a coverslip#1. In addition the profile is more robust with z variations
with this setting. We then adopt this configuration.

To keep the bacterium in focus, the algorithm aims at minimizing a robust quantity : the
peak width at half maximum PW extracted from the radial intensity profile. It is minimal when
the object is in focus ∆z = 0 (see figure III.3). Without other criteria, it is difficult to know if
the object is above or below its focus point. To keep the object in focus, the vertical position
must be constantly readjusted then leading to inherent noise in vertical direction definition.
Note that a zero-crossing method (developed in chapter V), instead of this method of minimum,
would indeed improve the accuracy of the tracking.

Figure III.3 – Peak width at half-maximum PW as a function of displacement ∆z from focal
position. In the center area, for a given PW there are two solutions for the displacement ∆z :
one cannot predict deterministically if the object is above or below its focus position, leading to
oscillations around the focus position ∆z = 0. Far above and far below the focus, some criteria
allow to know the displacement deterministically (namely the presence of an optical ring when
far above and a loss of signal when far below). Adapted from [121].

Correction of the regressions

When I arrived at the lab, impacted by the covid crisis, the tracking experiment did not
work fully and reliably and it took some time to fix the regressions (i.e, new settings or imple-
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mentations leading to malfunction). Actually, two problems were combined making it harder
to put it back in working conditions :

1. an algorithm was used to adjust the maximal value of intensity at focus during the
track, which decayed due to photobleaching. This algorithm was not robust and we first
replaced it by changing the value manually during the track.

2. the correction ring of the objective, originally used to apply an optical correction to the
glass thickness of the coverslip, had been set to 0.19 mm when developing the algorithm
whereas it was set on 0.15 µm at my arrival. This led to important differences in the
Z-pattern as shown in figure III.4, directly impacting the quality of the tracking.

After fixing those issues, ultimately more than a year after the beginning of my PhD, the
tracking experiment was enjoyably back on its feets.

Figure III.4 – Z-pattern : Radial intensity (in color) at different defocussed planes ∆z, and
at different distances z from the surface and for different values of the correction ring CR.
Z-pattern is influenced by CR and z. It depends less on z when CR = 0.19 mm. The algorithm
is optimized for CR = 0.19 mm.

III.1.3 Microfluidic cell
The experimental cell consists in a spacer drilled in its center between which a bacterial

solution is sandwiched. We use ultraclean thick slides to eliminate bending and minimize im-
purities on one side and a coverslip #1 on the other side facing the microscope objective. The
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spacer is made of a double-sided adhesive (for instance, Gudy 804 of nominal thickness 105 µm)
hollow-punched ∅ = 14 mm. This forms a "pool" in which bacteria swim in an environment
only limited by the presence of two parallel surfaces separated by a distance (height) H (see
figure III.5).

Figure III.5 – Sketch of the experimental cell. Bacteria are sandwiched between two slides
separated by a distance H = 50 − 220 µm, while freely exploring laterally their environment.

III.2 Smooth-swimmer E. coli exploration of solid sur-
faces

The presence of surface is ubiquitous in natural habitats of microorganisms such as in the
gut inner mucus layer [49], cell walls in our body linked with biofilms formation [124] and
ultimately infectious diseases [125]. Hydrodynamic interactions bring and trap [85] pusher-type
microswimmers on flat surfaces where they swim circularly instead of straight [93]. The main
mechanism to escape flat surfaces has been shown to be tumbling processes [92]. Here we study
a non-tumbling mutant strain of E. coli that we refer to as a "smooth-swimmer" from which
the protein CheY whose phosphorylation to CheY-P is responsible for the tumbling process
has been genetically removed. This mutant displays very long residence times on surfaces [123]
characterized by a noisy chiral motion leading to a diffusive exploration at large times. This
surface exploration can be affected by several intrinsic and external parameters :

• passive thermal noise acting on the body and on the flagella [107].
• gyration radius, speed and speed fluctuations [126].
• presence of obstacles [36].
• intermittent motion with on-place rotation [127].

We show how the surface exploration of the E. coli smooth-swimmer mutant we study here
mostly depend on few parameters easily accessible, even for short trajectories : the speed, the
gyration radius and a passive rotational diffusion coefficient.
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III.2.1 Stochastic model of surface kinematics
Equations for noisy chiral motion in 2D can be written :

dr(t)
dt

= V(t) = V e(t) (III.1)

e(t) =
(

cos [θ(t)]
sin [θ(t)]

)
(III.2)

dθ(t)
dt

= Ω +
√

2Drξ(t) (III.3)

where V is the swimming speed, Ω is the rotation rate, Dr is the rotational diffusion coefficient
and ξ a white noise (see figure III.6).

Figure III.6 – Sketch of a 2D noisy chiral trajectory of parameters V the swimming velocity
and Ω the rotation rate. The circle is not perfect because of a rotational diffusion coefficient
Dr.

We aim at computing the diffusion coefficient :

D = lim
t→∞

⟨r2(t)⟩
4t

(III.4)

The mean square displacement ⟨r2(t)⟩ is then :〈
r2(t)

〉
=
∫ t

0

∫ t

0
⟨ṙ(t1)ṙ(t2)⟩ dt1 dt2 (III.5)

⟨ṙ(t1)ṙ(t2)⟩ = V 2 ⟨e(t1)e(t2)⟩ (III.6)

The computation of ⟨e(t1)e(t2)⟩ is provided in [126] and leads to :

⟨e(t1)e(t2)⟩ = e−Dr|t1−t2| cos (Ω|t1 − t2|) (III.7)

By symmetry of the absolute value function :∫ t

0

∫ t

0
e−Dr|t1−t2| cos (Ω|t1 − t2|) dt1 dt2 = 2

∫ t

t1=0

∫ t1

t2=0
e−Dr(t1−t2) cos [Ω (t1 − t2)] dt1 dt2 (III.8)

This integral can be derived by developing the cosine and first integrating on t2 :∫ t

0

∫ t

0
⟨e(t1)e(t2)⟩ dt1 dt2 = 2

[∫ t

0
e−Drt1 cos Ωt1

(∫ t1

t2=0
eDrt2 cos Ωt2 dt2

)
dt1

−
∫ t

0
e−Drt1 sin Ωt1

(∫ t1

t2=0
eDrt2 sin Ωt2 dt2

)
dt1

]
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from which the exact solution is :

〈
r2(t)

〉
= 2V 2

[
Drt

D2
r + Ω2 +

(D2
r − Ω2)

(
e−Drt cos Ωt − 1

)
(D2

r + Ω2)2 + 2DrΩe−Drt sin Ωt

(D2
r + Ω2)2

]
(III.9)

This expression will be used to fit the experimental trajectories.
Taking the limit finally leads to :

D = lim
t→∞

⟨r2(t)⟩
4t

= V 2Dr

2(D2
r + Ω2) (III.10)

III.2.2 A typical experimental trajectory
The tracking setup allows for very long trajectories at surface. A typical trajectory of 500 s

is shown in figure III.7.a : circles of constant radii appear and their time-local centers move
with time. The speed distribution shown in figure III.7.b can be fitted by a Gaussian curve and
its mode defines a swimming speed V . Indeed fluctuations mostly come from our experimental
measurements and strongly depend on the smoothing time we use for the analysis (0.2 s in
this study), whereas the mode determination is, as a maximum, robust. The orientation auto-
correlation function (ACF) shown in figure III.7.c displays damped oscillations fitted by an
exponentially decaying function (of characteristic time τp) in a sinusoidal envelope (of pulsation
Ω) :

fACF = e−t/τp cos Ωt (III.11)
The fit is done only on the 3 first seconds of the ACF and is shown to describe very well longer
times for most trajectories. The self-averaged MSD of figure III.7.d is defined as :

〈
∆r2(∆t)

〉
= 1

T − ∆t

∫ T −∆t

0
[r(t + ∆t) − r(t)]2 dt (III.12)

with T the duration of the track. The expression III.9 is used with the parameters V , R = V/Ω
and Dr = 1/τp extracted before (shown in solid line) very close to the best possible fit (shown
in dashed line). The theoretical curves describe very well the oscillations and the diffusion
coefficient (i.e, the slope at large time lags). Note that we restrain the study of the MSD and
the orientation ACF to ∆t < 10%Tobs due to statistical reasons of self-averaged quantities.

We have seen that the theory derived above can describe our experimental measurements
and that we can estimate the diffusion coefficient from the speed distribution and the orientation
ACF fitted on the three first seconds. Let’s notice that, sometimes, the circle center displaces
abruptly or the bacterium escapes the surface. It is rare but can be observed and such sharp
reorientations are out of the theoretical picture we present here. Let’s have a look at what could
cause those particularities.

III.2.3 Mechanisms for non-tumbling reorientations
We hypothesize different mechanisms responsible for reorientations without active tumbling :
• Hitting dust impurities stuck on the surface.
• Flagellar reorganisation due to hydrodynamic instabilities in the bundle.
• Passive rotational diffusion (thermal fluctuations) inducing off plane kinematics, that

can be coupled with wobbling.
We did not have time to study all this in detail. Tools are ready to check the role of impurities.
Indeed, impurities cannot be seen in fluorescence, but we can now "replay" a track, i.e follow
the same trajectory of a previously tracked object. In this case, by using white light instead
of fluorescence, we would indeed see if an impurity is present when the bacterium escapes or
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Figure III.7 – (a) 2D trajectory resulting from a tracking experiment with a smooth-swimmer
followed during 500 s at a solid surface. (b) Distribution of instantaneous speeds Vi (green) and
Gaussian fit of parameters V ,σV (dashed line). (c) Orientation ACF (orange) and fit on ∆t < 3 s
with formula III.11 (dashed line). (d) Self-averaged MSD (pink) and theoretical prediction (solid
black) from III.9 (with parameters fitted in previous graphs) and best fit (dashed black).
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reorient sharply at surface. We also noticed, by monitoring reconstructed movies of bacteria
with their flagella, that the bundle sometimes rearrange. For instance the body has been seen
to perform a flip : the flagella that were at the back of the body (respectively to the motion)
turn at the front and vice-versa. Passive (thermal) rotational diffusion is also a possibility for
escaping the surface [90] and the eventual role of wobbling, i.e the body precession, is unclear
[128].

We studied very long trajectories of non-tumbling E. coli at surface from which we can
extract the main kinematic parameters : the swimming speed V , the rotation rate Ω and
a rotational diffusion coefficent Dr. These parameters are sufficient to describe the diffusion
coefficient D emerging from the mean square displacement computation. We have shown that
all these quantities could be extracted for shorter tracks : V is almost instantaneously obtained
and we require a track of duration Tobs > 30 s to fit the orientation ACF on the three first
seconds to extract Ω and Dr. In the next section we present 24 tracks of about 50 s, in which
the flagella have been tagged. The quality of the bacterial visualization is optimal at surface.
We confront the kinematic variability to the morphological variability and finally provide a
range of diffusion coefficent D for these non-tumbling bacteria at surface.

III.3 Population variability : kinematics and morpho-
logy

Alex Le Guen, intern and now PhD student in the group, participated to this work.

Variability is inherent to biological systems. Variability can come from different sources :
• stochasticity of internal biochemical processes.
• gene expression that can vary from an individual to another (known as phenotypic

variability).
• bacteria observed at a given time do not all have the same age and are not at the same

step of their reproduction. The reproduction, during which a bacterium grows to finally
divide, leading to a parent and a child.

This variability can lead both to different qualitative behavior (for instance some bacteria from
the same culture will adhere to surfaces whereas some others will not) or quantitative differences
(for instance bacterial speed, as well as the body size, can vary from simple to double). One must
be aware of this and eventually take it into account to get a complete picture of the emerging
phenomena for a given population. The literature lacks of data on this topic whereas the source
of kinematic variability is often blindly attributed to the morphology. We take advantage of our
set-up allowing for both visualization and trajectories, to investigate both morphological and
kinematic properties of a collection of 24 bacteria. We provide new insights on their interplay.

III.3.1 Morphological parameters
To the best of our knowledge, this work is the first to relate directly the number of flagella

of a swimming E. coli to its motion properties. To achieve this, we send high intensity UV light
while tracking, progressively slowing down the speed of the bacterium to 0, typically in 100 s.
We do that after the 50 s of tracking sufficient for extracting kinematic parameters. Debundling
occurs making possible the counting of flagella individually (see figure III.8).

Based on progress in the visualization (by minimizing exposure time), we give a qualitative
indicator of the quality of the bundle Q (see figure III.9) observed during the swimming. If the
bundle looks like a unique helix we rate it 5/5. If flagella are not bundled at all we rate it 1/5.
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Figure III.8 – Snapshots of bacteria with different number of flagella Nf showing up after
exposition to UV light causing motion stoppage. Body is replaced by its ellipsoidal fit for
visualization. The number of flagella Nf is determined more precisely from a sequence of images.

3/5 corresponds to a case where a flagellum has shown to be hardly part to the bundle. We tried
to extract more information on the bundle helicity (radius, pitch...) but, despite improvements,
the visualization is generally not good enough and the variation between individuals not very
significant. It could be achievable with more efforts.

Figure III.9 – Snapshots of bacteria with different bundle quality. The quality increases with
Q. Q = 3 if the bundle is composed of two distinct helices, Q = 4 if the bundle assembles
far from the body, Q = 5 if the bundle really looks like a unique helix. At least two flagella
compose the bundle for each displayed bacterium.

To get the body size and the bundle length, we first visualize a sequence of images and
determine a pertinent image. We align the main axis of the bacterium with the horizontal axis
of the image and plot the intensity profile along this axis (see figure III.10). The body length
is the width at half-maximum. The bundle length is the distance between the back of the body
and the ending point of the flagella (selected by eyes, the accuracy is less than 0.25 µm). For all
measurements we obtained a constant body width wbody = 1 ± 0.1 µm. We intended to measure
also the bundle width but the measurements turned out to be unreliable.

In figure III.11, we display the histograms and correlations between the measurable mor-
phological quantities : body length Lbody = 2.5 ± 0.5 µm, bundle length Lbundle = 6 ± 2.5 µm,
number of flagella Nf = 2 − 5 and quality of the bundle Q = 3 − 5. The number of flagella
depends on the body size : the longer is the body, the higher is the number of flagella (see
figure III.11e). The bundle length does not increase with the number of flagella. Naively one
could have thought that the growth of flagella was independent, leading to higher chance to
find long flagella with higher number of flagella. Instead of that, it’s more of the opposite. It can
be interpreted as : the flagella share common resources to grow. Then, longer flagella are found
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Figure III.10 – Extraction of geometrical parameters to characterize an E. coli swimmer :
body size (green dotted line) and bundle length (red dotted line) through the intensity profile
on the main axis. Background colormap is the light intensity. Red and green lines are light
intensity profiles respectively for the flagella and the body.

with a smaller amount of them. Also, the bundle length is not correlated with the body length :
one could think that longer body length would result in longer flagella because of maturation.
It is not obvious from our data.

III.3.2 Kinematic parameters
In figure III.12 we display the histograms and correlations between the measurable motion

quantities : the swimming speed V = 28 ± 7µm s−1, the gyration radius R = 10 − 40µm and
the surface diffusion persistent time τp = 15 − 60s.

Interestingly, despite variability, there is a significant correlation between the swimming
speed and the gyration radius on surface : the faster the higher the gyration radius (see figure
III.12e). From an hydrodynamic perspective, at low Re, the surface speed at surface should not
affect the gyration radius. Indeed, at low Re, the system can be considered quasi-static, slow
and fast kinematics result in the same motion provided no velocity-induced structural changes.
Then we suggest that the speed is indirectly correlated with some morphological properties
impacting the gyration radius, for instance a change of conformation of the flagellar bundle.
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Figure III.11 – Morphological parameters : body length Lbody, bundle length Lbundle, number
of flagella Nf and quality of the bundle Q. (a) Histogram of the bundle quality. Note the grey
color code that will hold for figure III.11, III.12 and III.13. (b,c,d) Histograms. (e,f,g) Raw
cross-quantities.

Figure III.12 – Kinematic parameters : speed V , the gyration radius R and the persistent
time τp. Grey code corresponds to bundle quality Q. (a,b,c) Histograms. (d,e,f) Raw cross-
quantities.
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III.3.3 Influence of the morphology on kinematics
Let’s now question the impact of the morphology on the motion of the bacteria. Morpholo-

gical parameters are thought to be a major influence in the noticed variability in the motion of
motile bacteria, as argued in many papers related to individual bacterial motion [93, 83]. We
take the opportunity that our device allows for such a characterization to provide new insights
in this debate. For the first time, we capture directly the number of flagella of swimming bacte-
ria. We display histograms and correlations between morphological and kinematic parameters
in figure III.13.

Figure III.13 – Mixing morphological and motion parameters. Raw cross-quantities. Grey
code corresponds to bundle quality Q.

The principal component analysis (PCA) in figure III.14 has been kindly done by the sta-
tistical biologist Dr Arnaud Lheureux : Lbody and Nf are correlated, together anti-correlated
to Lbundle. V and R are correlated. However at this point we did not find any evidence for
correlations between morphological and motion properties. Their relations are analyzed in a
hydrodynamic context in the following.
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Figure III.14 – PCA analysis. Two vectors having close orientations are correlated. Two
perpendicular vectors are uncorrelated. Two opposite vectors are anti-correlated.

Swimming speed

We compare the relation between the measured swimming speeds V as a function of the
bundle length Lbundle with the ones presented in the introduction from Gaspard Junot (see
figure III.15a). We note that our speeds are higher than his, because we add L-serine in our
motility buffer. We lack of statistics to really confirm this trend, but for sure both datasets are
not in contradiction.

Number of flagella is thought to explain the variability observed in the swimming speed. On
the contrary, our data show an independence between the number of flagella and the swimming
speed (fig. III.15b). This result suggests that the evolutionary advantage of multiflagellarity is
not linked with speed.

Figure III.15 – (a) Mean and standard deviations of the swimming speed V as a function of
the bundle length Lbundle. Our data are not sufficient to confirm preliminary data from Gaspard
Junot, previous PhD in the group (private communication). (b) Mean and standard deviations
of the swimming speed V for fixed numbers of flagella Nf . Speed does not depend on the
number of flagella.
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Rotational diffusion coefficient

In a 3D passive case, the Brownian reorientation of an elongated object (of length Lbody and
width wbody) is [129] :

Dr = 1
τp

= 3kbT ln(2Lbody/wbody)
πηL3

body

(III.13)

and a more precise expression for a prolate ellipsoid can be found in [130]. This model could
apply to an unflagellated E. coli bacterium. In the active flagellated case that we study, this
theory does not describe our observations (see figure III.16-left). However, the presence of
flagella have been shown to stabilize E. coli orientation compare to unflagellated ones [107]. We
find that mixing the body length with the bundle length :

Ltot = Lbody + αLbundle (III.14)

provides a better agreement with the theory (see figure III.16-right). α = 0.8 provides the
best agreement. This suggest that the rotational diffusion coefficient Dr is mostly from Brow-
nian origin. It was not obvious since bacterial activity induce wobbling that could bring some
hydrodynamic instabilities affecting the diffusion coefficient.

Figure III.16 – Rotational diffusion coefficient. Effective theory taking into account the bundle
length as a function of the measured one using the mixing size model of equation III.13. (left)
α = 0 : the bundle is not taken into account. (right) α = 0.8 : the bundle is taken into account.

Gyration radius

Finally, we revisited the problem of gyration radius studied experimentally and theoretically
in [93] for E. coli that was cultured such as the body elongate. To compare with [93], we analysed
our data using the radius of the sphere a that has the same viscous resistance as the prolate
ellipsoid width w = 1 µm and aspect ratio ϕ = Lbody/w :

a = 4
3

w

2ϕ2−1
(ϕ2−1)3/2 ln

(
ϕ+

√
ϕ2−1

ϕ−
√

ϕ2−1

)
− 2ϕ

ϕ2−1

(III.15)

We confirm the same trend but with a shift (see figure III.17a,d) : increasing body length leads
to increasing gyration radius, in disagreement with the theory that has been developed [93]. Our
data match with a different explanation, the observed gyration radius can actually be related
to the body size in an indirect way : longer bodies have more flagella (see figure III.17b,e).
Depending on where they are located on the body, flagella could cause a steric hindrance, thus
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repelling the body from the surface, enlarging the emerging circular motion. Thus the larger
the number of flagella, the more likely the gyration radius is large (see figure III.17c,f). This
explanation is quite convincing since it explains specifically the small gyration radius of the
largest measured bacterium (blue circle in figure III.17a,b,c).

The shift observed on figure III.17 could also be explained by this argument. Anyway another
possible explanation is based on the electrostatic interaction between the glass slide and the
bacterium body. We suggest that salt concentration of the medium could be responsible of such
a difference by screening the electrostatic interaction.

We attempted to take into account the bundle length in our analysis but it does not provide
better insights.

Figure III.17 – Gyration radius R as a function of morphological parameters : a new convin-
cing explanation. (a,b,c) Raw data. (d,e,f) Bin-averages and standard deviations. (a,d) Gyration
radius R as a function of the radius of the equivalent sphere a (formula III.15) and comparison
with data from [93]. Dashed line : linear fit on bin-averages. The larger body point, far from the
other, is surrounded by a "blue" circle and is not taken into account for the fit nor bin-average.
(b,e) Radius of the equivalent sphere a as a function of the number of flagella Nf . Nf grows
with a but blue point does not follow this trend with only 3 flagella. (c,f) Gyration radius R
as a function of the number of flagella Nf . A larger amount of flagella causes a higher gyration
radius, the "blue" point in no more far from the other points.

Translational diffusion coefficient

We finally compute the histogram of the emerging rescaled diffusion coefficient for each
bacterium D̃α = D/(0.5V 2

α τr) < 0.05 with τr = 2.23 s, where the scaling with the square of the
velocity comes from equation III.10, that we will be introduced in the next section (equation
III.21) which provides a typical order of magnitude for the diffusivity of smooth-swimmers at
surface D̃ss = 0.01.
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Figure III.18 – Histogram of the rescaled diffusion coefficient D̃ = D/(0.5V 2τr) < 0.05.

III.3.4 Discussion

We collected trajectories and videos of smooth-swimmers with their flagella at surface to
understand in detail the movement of E. coli at the surface. Since they do not tumble, they
stay at the surface very long time. The exploration of smooth-swimmers at surface is mostly
explained with a simple stochastic model including their kinematic properties namely the speed,
the gyration radius and the rotational diffusion coefficient. However, we cannot measure the
speed fluctuations, which could slightly increase the ability of bacteria to explore surfaces. In
the hope of understanding the variability between individuals, we compared the kinematic pa-
rameters with the morphological parameters we could extract : the body size, the bundle length
and, most importantly, the number of flagella. Our data cannot confirm a previously measured
relationship between the speed and the bundle length but, interestingly, we observed an inde-
pendence between the speed and the number of flagella. The rotational diffusion coefficient can
be estimated from the body and bundle length via a purely Brownian theory : the effects of
activity, such as wobbling, do not seem to enhance the diffusion. Although it is known that the
gyration radius increases with the body size, no hydrodynamic theory can explain it yet. Our
data suggest an alternative mechanism, in which flagella could repel the body from the surface
via a steric hindrance, and the variability arises from the randomness of the localisation of the
flagella on the body.

For the non-tumbling mutant studied here, where the source of the reorientation is mainly
passive, we provide a typical rescaled diffusion coefficient D̃ss = 0.01. In the next section we
compare this value in the context of the exploration of wild-type bacteria that not only reorient
passively, but also actively, in a confined 3D environment.

III.4 Wild-type E. coli exploration in a confined 3D en-
vironment

This section is dedicated to the impact of confinement on transport properties. Experimental
trajectories of bacteria are taken in the cell composed of two parallel plates separated by a height
H described in introduction. For this part of my work, we collaborated with theorists Fernando
Peruani and Marta Pedrosa Garcia-Moreno from the university of Cergy-Pontoise. Theoretical
work resulting from this collaboration will not be discussed in this manuscript. Quentin Guigue
and Solène Meinier, two interns in the group, also participated in this project.
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III.4.1 From individual tracks to statistical analysis
From each experimental trajectory, we extract the kinematic characteristics from the track

of the bacterium as well as an objective measurement of the height of the pool (see figure
III.19). The speed distribution shows two Gaussian contributions coming from the runs and
the tumble processes. We get the swimming speed V as the mode of the Gaussian fit on the
values higher than the half-maximum (in dark green in figure III.19d). Since bacteria spend
long times at surfaces, we use the Z-profile to determine by a double Gaussian fit the precise top
and bottom location ztop and zbot. We can then estimate objectively H = ztop −zbottom (see figure
III.19c). The rotation rate Ω is measured via the orientation ACF taken on the aggregation
of surface trajectories, with the same methodology discussed previously (see equation III.11
and figure III.19b). Hence, we obtained the gyration radius at the surface R = V/Ω. The
exploration is measured through the lateral diffusion coefficient D emerging from the self-
averaged mean square displacement (MSD) computed like equation III.12 for the XY projection
of the trajectory. The MSD is fitted via a "Fürth" function (equation III.17) for time lags less
than one tenth of the total track duration ∆t < Tobs/10 for statistical reasons to perform
self-averaging (see figure III.19f) :

〈
X2(∆t)

〉
= 2V 2

c τ 2
c

(
∆t

τc

− 1 + e−∆t/τc

)
(III.16)

=
∆t→0

V 2
c ∆t2 (III.17)

=
∆t→∞

2V 2
c τc∆t = 2dD∆t (III.18)

This function shows two limits, describing the ballistic and the diffusive regime depicted in II.3
and we can extract the lateral diffusion coefficient D = V 2

c τc/2d. d = 2 in our study because of
the XY-projection.

This methodology is rigorously applied to every track. Each track has been controlled by
eye because, in addition to get better insights, it is important to check any problem that could
have occurred during experiments.

We collected 92 tracks restricted in the range of tracking time Tmin = 200 s < Tobs <
Tmax = 300 s. The lower bound is chosen such that the track is significant statistically. The
higher bound is chosen such that the swimming speed is almost constant. Indeed a speed decay
is observed after long tracking time due to the blue light used to excite the GFP fluorescence
[76]. Experiments have been performed under different nominal heights H ≈ {50; 105; 210} µm
(see figure III.20b). However, for every experiment, because of some variability in adhesion and
"sandwiching" process, an objective measurement of the height was performed which can vary
by 5-10 microns from one experiment to the other.

Therefore, trajectories are analyzed to get from each track the objective confinement height
H, the swimming speed V , the gyration radius on surface R and the emerging lateral diffusion
coefficient D. Most of the measured gyration radius R are below 100 µm but some bacteria
are shown to go almost straight (R > 200 µm) (see figure III.20a). The swimming speed V
varies from 20 µm/s to 40 µm/s between individuals. Typically V = 29 ± 9 µm/s (see figure
III.20c). The bulk speed looks a bit higher, less than 10%, than the surface speed and is
the same at surface and in the bulk (see figure III.20e). The lateral diffusion coefficients D =
200−2000µm2/s are shown to be broadly distributed, varying on more than a decade (see figure
III.20d). When looking at these raw quantities altogether in figure III.20f, we can guess the
impact of the gyration radius and of the confinement height : the larger, the larger the diffusion
coefficient. The mere scaling D ∝ V 2 foreseen stemming from a run & tumble process in a
boundless environment (equation II.25) does not show up obviously due to the large variability
of the gyration radii and the impact of confinement.
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Figure III.19 – Example of an experimental bacterium track and extraction of the quanti-
ties of interest. (a) Bacterium trajectory. Straight run & tumble motion in the bulk are com-
plemented with circular motion at the surface, still combined with tumbles. (b) Orientation
auto-correlation function at the surface < cosθ > (orange line) fitted with the function III.11
(Ω = 1.2 s−1, τp = 5.1 s, = V/Ω = 33 µm - dashed line). (c) Z-profile (blue) fitted by a double
Gaussian (zbot = 1.3 µm, ztop = 103 µm - dashed line). (d) Distribution of the instantaneous
speed Vi (green). The run speed V = 40.1 µm/s is computed from the Gaussian fit (right light
dashed line) on the values above half-maximum (above solid line - dark green). Here is also
shown the total fit (heavy dash line) complemented by the tumble speed (left light dashed
line). (e) Self-averaged mean square "lateral" displacement MSD (pink curve) fitted by a Fürth
function providing the lateral diffusion coefficient D = 527 µm2/s.
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Figure III.20 – Experimental values (D, V, R, H) obtained from 92 tracks. Distribution of :
(a) radius of gyration R, (b) confinement height H, (c) swimming speed V and (d) lateral
diffusion coefficient D. (e) Speed measured in the bulk Vb and at surface Vs are very close. (f)
Lateral diffusion coefficent D as a function of the swimming speed V , gyration radius R (disk
color) and confinement height H (circle color). A simple scaling D ∼ V 2 (II.25) fails to explain
the data.
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III.4.2 Dimensionless quantities and numerical stochastic model
In the framework of the BV model, phenotypic variability for the run times is negligible

beyond behavioral variability and we can then rescale times by τr = 2.23 s the mean run time
previously calibrated [115] and lengths by lp = V τr the mean persistent length :

R̃ = R/lp = 1/Ω̃ (III.19)
H̃ = H/lp (III.20)
D̃ = D/Dp (III.21)

where Dp = 0.5V 2τr is the diffusion coefficient expected from equation II.25 in 2D with a Poisson
process for the run rimes and random reorientations. Thus parameters space (D, V, R, H, τr) is
transformed to (D̃, R̃, H̃).

In parallel to the experiments, we performed numerical simulations of run & tumble "beha-
vioral noiseless circle" model containing the following kinematic rules :

• Space is delimited by two infinite parallel surfaces separated by a confinement height H.
• Time is discretized : ∆t̃ = ∆t/τr = 10−3

• The bacterial internal "mood" δX fluctuates according to the BV model calibrated in
earlier work [115] (τ0 = 4.62 s, ∆n = 1.62, TM = 19 s). The model is detailed in II.3.3.

• Run mode
— Constant speed Ṽ = 1.
— Run times dynamics : the current tumble rate depends on the "mood" such that

kr(t) = exp (−∆nδX(t)) /τ0.
— At the end of the run mode, the bacterium enters the tumble mode.

• Tumble mode (from [92])
— No speed.
— Reorientation : rotational diffusive process of coefficient Dr = 9.65 s−1.
— Tumble times : Poisson process of rate kt = 1/τt = 2.5 s−1.
— When a tumble ends, the bacterium enters the run mode.

• In the bulk : straight 3D motion
• At surface (see figure III.21)

— The bacterium is considered at surface as soon as it touches it and keeps the incoming
direction projected on the plane of the surface.

— Circular motion of radius R, CW on one surface and CCW on the other.
— When a tumble occurs, the bacterium exits the surface if the new orientation points

out of the plane. Otherwise it stays in and the new swimming direction is simply
projected on the plane of the surface.

Figure III.21 – Surface kinematic rules. When a bacterium lands on the surface, it keeps its
original direction and starts moving circularly until a tumble occurs making it either stay at
surface or taking off. The gyration radius is a parameter that can be varied continuously from
the "sticking" limit R = 0 to the "run" limit R = ∞.
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This is a calibrated model without any adjustable physical parameters. The resulting nume-
rical tracks are analyzed the same way as the experimental ones. We can vary the dimensionless
gyration radius R̃ and confinement height H̃, defined in equations III.19 and III.20, to see the
impact on the dimensionless lateral diffusion coefficient D̃ defined in equations III.21. From
now on, to avoid heaviness, the quantities we discuss are implicitly dimensionless quantities,
for instance gyration radius will refer to R̃. On figure III.22, for all R̃, the diffusion coefficient
seems to converge to the no wall limit D̃no−wall = 2.14 computed numerically in the no-wall
limit (boundless environment). Interestingly, even if the BV model for the run times is not
Markovian, this value corresponds to formula II.25 outcome provided the values extracted from
the simulations τr = 2.23 s, ⟨τ 2

r ⟩ = 34.57 s2, τr = 0.4 s and α = 0.1147. In the "stick" limit
R̃ = 0, in which there is no exploration of surfaces, the diffusion coefficient increases with the
confinement height. In the "run" limit R̃ = ∞, the diffusion coefficient is maximal in the limit
of full confinement H = 0 and Drun−2D = 3/2 × Dno−wall and then decreases with the height.
Note that the factor 3/2 comes from the 2D-projection of the speed when the system is 3D.
We isolated the effect of the rotational noise in the previous section, extracting a typical value
D̃ss = 0.01. It might be non-negligible only for very confined situations H̃ << 1 and confirm
our approach that does not take into account passive diffusion at surfaces.

Figure III.22 – Lateral diffusion coefficient D̃ as a function of confinement height H̃ and
gyration radius R̃ (in red scale) from numerical simulations.

In figure III.23 are compared experimental and numerical outcomes. We separate our ex-
perimental data in different ranges of H̃ like in figure III.23a such that every range contains
the same amount of tracks. We also classify the radii in each range. We choose the radii ranges
like in figure III.23b such that the numerical simulations predict significant variations in the
lateral diffusion coefficient. We can now average in our heights-radii intervals and compare with
numerical simulations (see figure III.23c). Experiments are in very good quantitative agreement
with the numerical predictions : our results show that confinement indeed has a strong impact
on the exploration and gyration radii are a key parameter that has to be considered.

About 70% of bacteria are found to have a gyration radius R̃ < 0.89. In this regime, there
is almost no diffusion at surfaces then the lateral diffusion coefficient vanishes in the limit
H̃ → 0 while reaching the no-wall limit for H̃ → ∞. Note that the convergence is slow :
D̃(H̃ = 8) = 0.5D̃no−wall. The confinement thus impacts the lateral spreading on large scale.
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The higher is the confinement and the larger is the gyration radius, the larger is the bacterial
exploration.

We confirmed experimentally the numerical predictions of the lateral diffusion under confi-
nement, we can now have a deeper look at quantities linked to the exploration process such as
the residence times.

Figure III.23 – Impact of the confinement H̃ on the lateral diffusion coefficient D̃. (a) Dis-
tribution of the rescaled confinement height H̃ = H/(V τr) in the relevant ranges (with sub-
distribution in the binning intervals). (b) Distribution of the rescaled gyration radii R̃ in the
chosen ranges of H̃. (c) Rescaled quantities : Averaged (according to the binning intervals above)
D̃ = D/(V 2τr/2) as a function of H̃ = H/(V τr) and R̃ = R/(V τr). D̃ grows with the rescaled
confinement height H̃ and gyration radius R̃. Very good agreement between experiments and
numerics (no adjustable parameters). Error bars are standard errors for the means.
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III.4.3 Bulk and surface residence times
Residence time in the bulk (resp. at surface) is the duration in which the bacterium stays in

the bulk (resp. at surface). Numerically those quantities are easy to define : if z = 0 or z = H
then the bacterium is at surface, else it is in the bulk. Experimentally the precision of the
z-location is not perfect and Junot et al [92] proposed to use a double-threshold method (with
parameters zs = 3 µm and zs = 8 µm) to define the residence times as explained in figure III.24.
We then have two different definitions for the residence times : the first one can be used only for
the numerical simulations whereas the second one can be implemented for both experiments
and numerics. We will then use the second one when comparing numerical simulations and
experiments.

Figure III.24 – Sketch of the definition of surface and bulk with a double threshold method :
a bacterium arrives at surface when it gets closer than zs. It exits the surface at the last crossing
of zs that is follown by a crossing of zb, defining a surface residence time Ts. When the bacterium
is not at surface, then it is in the bulk.

Residence times from experiments and numerical simulations are compared on figure III.25
and III.26.

• Bulk residence times are in excellent quantitative agreement between experimental mea-
surements and numerical predictions, both in the average and in the distribution (see
figure III.25a,b). On figure III.25c, the tail of the distribution of bulk residence times is
shown to decay exponentially, scaling with its average value.

• Experimental surface residence times are shown to be about 30% higher than the predic-
tion of the numerical simulations and mostly independent on the confinement height (see
figure III.26). In our simple model, we consider the same reorientation angles at surface
and in the bulk. While it has been calibrated to reproduce experimental measurements
in the bulk, the take off angles are shown to be slightly different when escaping from a
surface [92] that could be the cause of such a difference and probably point on a limita-
tion of the simplistic model as far as tumbles at surface are concerned. Surface residence
times are log-normally distributed. In experiments, they decrease with the gyration radii
R (see figure. III.26d). We suggest that a bacterium with higher gyration radius would
increase its probability to hit an impurity, eventually leading to a take-off. In this simple
scenario, higher speed should also decrease the surface residence times but this is not
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what is observed (see figure. III.26e). We use the average of the logarithm of T̃s because
T̃s is widely distributed : using the log allows very short times to have the same weight
as very long times.

We have shown a good quantitative agreement between experimental measurements and
numerical predictions for the residence times. We will revisit more theoretically the residence
times in the next section and link it to the calculation of the diffusion coefficient.

Figure III.25 – Impact of the confinement on the bulk residence times : i. (a) Bulk residence
time T̃b as a function of the rescaled confinement height H̃. T̃b increases almost linearly with
H̃. The dotted line is the Error bars are standard errors for the means. (b) Distribution of T̃b.
Very good agreement between experiments and numerics. (c) Distribution of the normalized
value T̃b/ < T̃b > in log-normal scale. The tail of the distribution decays exponentially (black
line : slope -4.2).
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Figure III.26 – Impact of the confinement and the gyration radii on the surface residence
times. (a) Surface residence time T̃s as a function of the rescaled confinement height H̃. T̃s is
almost constant with H̃. (b) Distribution of ln(T̃s)− < ln(T̃s) >. The Gaussian fit (in black)
has a width σ = 1.22. Inset shows the corresponding < ln(T̃s) >. Good agreement between
experiments and numerics. T̃s is distributed log-normally. (c) ln(T̃s) as a function of the gyration
radius R. The residence times decrease with the gyration radius. (d) ln(T̃s) as a function of
the swimming speed V . Swimming speed does not play any role in the escape ability. For all
graphs, error bars are standard errors for the means.
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III.4.4 A "mixing" model for dispersion : the key ingredients
We now focus only on numerical simulations to get a more refined picture of bacterial

exploration under confinement. We will now use the numerical definition of surfaces (simply
z = 0 or z = H) to compute the residence times and the "free" runs.

We define as "free" runs in the bulk (resp. at surface) the runs only happening in the bulk
(resp. at surface), taking into account the interruptions (resp. the starting) occurring when
landing at surfaces. When landing at a surface, the current bulk "free" run stops and a surface
"free" run starts. Runs are obviously also interrupted by tumbles.

Free runs distribution is clearly impacted by the confinement. In the bulk, the presence of
surfaces imposes a cut-off for the bulk run times τb (see figure III.27a,c). For consideration,
the cut-off in our situation is impacted by the angle of the run orientation with the z-axis. At
surface, unexpectedly, the free surface run times τs increases with the confinement height (see
figure III.27e,g) : Surfaces catch longer runs as H̃ increases. This effect is actually due to the
memory of the internal "mood" . Following the theory described in chapter II.3 (see formula
II.25), we can use those quantities, combined with a mean reorientation of α = 0.11 which value
is actually not of great importance but obtained numerically, to calculate surface and bulk
effective diffusion coefficients. The bulk diffusion coefficient is shown to be highly impacted by
the confinement (see figure III.27d), whereas the surface diffusion coefficient shown in figure
III.27h is not but instead mostly depends on the gyration radius.

We use a simple model mixing bulk and surface behavior to calculate the emerging diffusion
coefficient D̃mix. We weight the effective bulk and surface effective diffusion coefficient D̃b and
D̃s by the average time fraction spent in these regions :

D̃mix = T̃b

T̃b + T̃s

D̃b + T̃s

T̃b + T̃s

D̃s (III.22)

The idea behind this model is that you can permute the sequential order of the runs without
changing the final quadratic displacement.

Average bulk residence times T̃b asymptotically scale linearly with H̃ (see figure III.28a) and
we thus use an empirical determination T̃b = 1.5H̃ + 2.6. This result can actually be obtained
in the analog gambler’s ruin problem (return probability) [131]. The surface residence times
T̃s = 5 is taken as constant (see figure III.28b) since it is not much affected by the confinement
and we do not have a theory yet to explain its increase with confinement. For a Poisson process,
the effective diffusion coefficient at surface D̃s is :

D̃s((̃R)) = R̃2

1 + R̃2
D̃s−m(R̃) (III.23)

where D̃s−m(R̃) is taken as the asymptotic value for large H̃. In our BV model case, it corres-
ponds an effective gyration radius Reff , rescaling the actual gyration radius : Reff = R/4.5
(see figure III.28d). This empirical effective gyration radius is not understood theoretically. For
D̃b, we use directly our computation (see figure III.28c). Indeed, there is no theory yet to obtain
the first and second moment of the bulk free run times distribution p(τ̃b), needed to compute
D̃b.

We show that the "mixing" model for dispersion, contains all the important features to
predict correctly the lateral diffusion coefficient : D̃mix=D̃mes (see figure III.28e). We only show
data for H̃ ≳ 1 for the clarity in the use of theoretical arguments, but the "raw" (without
theoretical arguments, just ad-hoc values) model of mixing works in any regime. We have no
theoretical arguments to describe Db(H̃) yet.
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Figure III.27 – "Free" run times and emerging diffusion coefficient from formula II.25 : in the
bulk (left) and at surface (right). (a-c) Bulk free runs as a function of the rescaled confinement
height H̃. Free bulk runs last longer as H̃ increases. Confinement "cuts" the bulk runs. (d)
Rescaled emerging bulk diffusion coefficient D̃b is highly impacted by the confinement. (e-g)
Surface free runs as a function of the rescaled confinement height H̃. Free surface runs increase
with H̃ until saturation. Surfaces catch longer runs as H̃ increases (effect of the memory, not
shown explicitly). (h) Rescaled emerging surface diffusion coefficient D̃s for different R̃ (color
code). It increases slightly with H̃ until saturation.
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Figure III.28 – Test of the mixing model for the lateral diffusion coefficient under confinement.
(a) Bulk residence time T̃b as a function of the rescaled confinement height H̃ (dotted line)
adjusted with an empirical linear fit y = 1.5x + 2.6 (dashed line). (b) Surface residence time T̃b

as a function of the rescaled confinement height H̃ (dotted line) with a constant limiting value
y = 5 (dashed line). (c) Bulk diffusion coefficient computed from the distribution of "free" bulk
(dotted line) runs and the no wall limit (solid line). (d) Surface diffusion coefficient computed
from the distribution of "free" surface runs at various heights (solid blue lines) fitted accordingly
to the formula III.23 with R̃eff = R̃/4.5. 2D limit for straight runs R̃ = ∞ is shown in solid
line. (e) Comparison between measured (from MSD) diffusion coefficient D̃mes and the "mixing"
one D̃mix predicted from formula III.22. Data collapse on the master curve y = x demonstrating
that the "mixing" approximation contains all the most important features to handle the effect
of confinement.
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III.4.5 Bacteria distribution at the surfaces vicinity
The Z-profiles are the distribution of the Z-position of bacteria through time. Experimen-

tally, we need to impose a threshold zthresh = 3 µm because of the precision on the acutal surface
determination. We can then rescale z into the dimensionless z̃ = z/(V τr). The Z-profiles are
symmetrized with respect to H̃/2 to improve the statistics.

To compare experiments and numerics, all the profiles start at the most constraining value
z̃start = max(zshift/(V τr) and, for a given H̃ interval, end at the most constraining value
z̃end = min(H̃/2). Also, we impose that the integrals of experimental and numerical Z-profile
must be equal for a given interval. We observe that the decay observed close to the surface is
faster in the experimental outcomes : bacteria get away far from surfaces faster in experiments
than in the numerical model. It points a limit of this simple stochastic model, probably related
to a limitation already discussed for the surface residence times : the tumbling process at
surfaces could be different than in the bulk (like hydrodynamic hindrance suggested in [132]).

Figure III.29 – Z-profile of the bacteria distribution under confinement. The PDF is rescaled
to the first value of the numerical profile so that it starts at 1. Numerics are in solid line,
experiments in dotted line. Experimental Z-profiles decay typically twice faster than in numerics
close to the surface.

III.5 Conclusion
We studied bacterial exploration in an archetypal confined environment where bacteria swim

between two parallel plates. We demonstrated the importance of confinement, which occurs in
many natural environments explored by microorganisms, in the emergent parameters such as
lateral diffusion coefficients and residence times. The more bacteria are confined, the less they
explore space laterally. We also show that gyration radii and, to some extent, swimming speeds
are highly distributed and depend on details that could not be directly identified. Consequently,
in the quantitative approach we present, we explicitly consider these parameters as a quanti-
tative measure. We find that the higher the confinement heights and gyration radii, the more
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the bacteria explore their environment laterally.
It would be interesting to observe bacteria in even more confined environments, with a height
comparable to the bacterial size (1−2 µm), to test for some hydrodynamic effects. Also, our ex-
perimental conditions limit our measurements to a rescaled height H̃ = H/(V τr) < 5. Slowing
down the bacteria would allow to reach experimentally higher rescaled heights.

Numerical simulations have been carried out with a previously calibrated BV model, which
is in good quantitative agreement with experiments. The BV model is characterized by an
internal variable that controls the tumble rate. This internal variable is therefore referred as
the "mood" and fluctuates on a characteristic memory time TM = 20 s. It would be interesting
to compare the results of this BV model with a mere Poisson model for the run times, in which
the tumble rate is constant, to assess the impact of such a memory process.
A first result of this internal memory is that surfaces tend to select bacteria in a "long run" mood,
increasing the observed average run times at surface. This effect is stronger as the confinement
height increases.

We identified two main effects induced by the confinement. First, the confinement controls
the amount of time the bacteria spend at surface compared to in the bulk. Since total diffusion
is a weighted average of bulk and surface behaviour, small environments give more weight to
surface behaviour, while large environments give more weight to bulk behaviour. Secondly,
from a bulk perspective, the runs are interrupted by the surface, which reduces the average run
length. Since smaller runs lead to less diffusion, confinement reduces the "effective" diffusion in
the bulk.

In the context of bacteria entering the epithelium through cracks in the dense mucus barrier,
we confirm that this is a plausible mechanism, although surfaces tend to trap bacteria rather
than promote their spread. Indeed, for a typical bacterium to cross a breach in the mucus
barrier, of typical length ∆X = 100 µm and of thickness as small as H = 10 µm [49], we predict
a typical order of magnitude for the invasion time Tinv = ∆X2/2D = 50 s.

This result, and this study in general, has implications that go beyond ecological and medical
aspects. Indeed, most quantitative experiments with bacteria are carried out in the presence of
confinement, an element that is often neglected. We hope that this study will provide the keys
to understanding and characterising its effects in future studies.

Confinement with different geometries, for instance with curved surfaces instead of a flat
plane, could be considered since it could impact the localization and the spreading of bacteria
in a non-trivial way, maybe depending on the details of the take-off.

We have shown successful and high quality tracking experiments in simple fluids. However,
for turbid fluids such as mucus, the tracking algorithm does not work well. Indeed the rules of
the algorithm cannot be applied in such environments since we cannot find simple rules from
the Z-pattern (see figure III.30). In the next following chapters, we will study bacteria in mucus,
first in chapter IV with a static picture where a population of bacteria have invaded a mucus
barrier and then in chapter V by developing a new algorithm allowing for Lagrangian tracking
in mucus.
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Figure III.30 – Snapshot of fluorescent bacteria in mucus. The brightness comes from the
GFP on the bacterial body. Mucus scatters this light perturbating the tracking.
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Chapter IV

Bacterial penetration of piglets gut
mucus barriers

IV.1 Introduction

IV.1.1 The gastrointestinal tract : microbiota and mucus

The human gastrointestinal tract (GI) starts with the stomach (see figure IV.1a). The
gastric environment is acidic with a pH oscillating between 1.5 and 5. This pH is good to
decompose proteins, but very deleterious for bacteria (only 10 bact/g). Then comes the so-
called "small" intestine, long of 6 meters, constituted by the duodenum, the jejunum and the
ileum. This neutral environment is full of enzymes (proteases, lipases, glycosidases) and most
of the nutrients and water are already absorbed when reaching the large intestine, also called
the colon.

The gut microbiota, i.e the bacteria, viruses and fungi living in our intestines, is denser
and denser through the tract : from only about 10 bacteria/gram in the stomach, to 1011

bacteria/gram in the large intestine. We have about 1014 of bacteria in the GI tract, in which
about 500 different species coexist [134]. The composition of the microbiota is very variable
from an individual to the other. In the digestion process, some commensals (i.e bacteria living in
our body without causing harm) are known to ferment dietary fibres otherwise non-digestible,
breaking them down to short-chain fatty acids, such as butyrate, often associated with good

Figure IV.1 – (a) Sketch of the GI tract. From wikipedia. (b) 16s rRNA gene sequencing from
a piglet along the gut. Bacterial populations (colors) vary along the track. E. coli are mostly in
the ileum. Adapted from [133].
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health condition [135]. It is possible to determine the bacterial composition of a sample by a
method called "16s rRNA sequencing". The bacterial composition varies along the intestines
[133] (see figure IV.1b). Most of E. coli are located in the small intestine and we will focus on
this part.

Among all bacteria, some of them are pathogens. They are separated from our intestinal epi-
thelial cells (IECs) by the mucus barrier. The mucus barrier of the small intestine is essentially
composed of an entangled network of mucins MUC2, highly glycosylated proteins of molecular
weight of order 1 MDa (see figure IV.2b), and antimicrobial peptides. They are secreted by
specialized IECs, respectively the "goblet" and the "paneth" cells [136] (see figure IV.2a). The
glycosylation of the mucin happens in the Golgi apparatus of the goblet cell (see figure IV.2c).
The mucus barrier is often described with two layers : the sterile inner mucus layer and the
outer mucus layer hosting bacteria. An order of magnitude of the thickness of these layers in
mice is provided in [137], varying along the gut : the dense inner mucus layer, thought to be the
protective layer [49], is 20-100 microns thick whereas the the loose outer mucus layer, thought
to be a habitat for the microbiota [48], is 100-800 microns thick.

Epithelium is not a straight interface (IV.2a), but instead it is formed by villi and crypts
which are known to increase the area of exchange of nutrients. Thus the mucus barrier must

Figure IV.2 – The gut mucus barrier. (a) Sketch of a transverse cut of the gut. The epithelium
surface (epithelial cells) is geometrically structured in villi and crypts. On the epithelium, goblet
cells produce the mucin and paneth cells produce the antimicrobial agents. Both prevent from
bacterial invasion. (b) MUC2 mucin protein (the main constituent of mucus) and its different
domains. The dimerization is irreverisble while the polymerization and the central domains
promote reversible bonds. The mucin network is dynamic because of the reversible bonds. (c)
Formation and secretion of the mucin by a goblet cell. After transcription and translation
of the MUC2 gene forming the protein backbone, mucins are dimerized in the endoplasmic
reticulum, glycosylated and multimerized in the Golgi, packed into vesicles (granules), ready to
be secreted on-demand. Granules will expand and join the existing dynamical mucin network.
Figures adapted from [138].
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let the nanoscale nutrients diffuse while preventing from microscale pathogens invasion.

IV.1.2 Bacterial motility and mucus penetrability in IBD
Inflammatory bowel disease (IBD) is a term for two conditions : Crohn’s disease (CD) and

ulcerative colitis (UC). Both are characterized by chronic inflammation of the gastrointestinal
tract. "Inflammation" is the body’s natural reaction against injury and infection. An infection
is the invasion of tissues by pathogens, possibly causing some damages. In IBD, the mucus
barrier is found to be degraded. It is disrupted in UC and more permeable in CD, due to a
dysfunction in the glycosylation process. Mice fed with dietary emulsifiers have also expressed
similar symptoms [47] (see figure IV.3a), pointing the importance of diet in those pathologies
[48]. Omics-based studies, allowing the identification of virulence factors (flagellation [139]) and
pathogens (adherent-invasive E.coli (AIEC)), have led to great advances and still constitute a
very active field of research with the recent "mucosal microbiology" investigating specifically
the mucosa-associated microbiota [140]. In parallel, new techniques aim at mimicking the in-
testinal host/pathogen interaction in biological conditions [141], reviewed in [142]. They allow
to study bacterial invasion while monitoring at the same time the environmental conditions,
the bacterial species and the mucus production. This led to discoveries : for instance the AIEC
LF82 penetrates the mucus barrier by promoting mucin degradation with proteases [143]. Im-
portantly, the motile bacteria seem to penetrate the mucus barrier more than the non-motile
ones [139, 50] (see figure IV.3b).

Figure IV.3 – Bacterial localization close to intestinal epithelial cells. (a) Bacterial (in red)
invasion of intestinal epithelial cells (in blue) through mucus (in green) of mice fed with different
diets. CMC and P80 are dietary emulsifiers and result in a more permeable mucus (CMC) or a
disruption of the mucus barrier (P80). Scale bar 20 µm. From [47]. (b) Distance of bacteria to
the epithelium. Motile bacteria come closer to the epithelium than non-motile ones. From [50].

Most of the current approaches are based on correlations, we are interested in causality.
Few is known on the underlying swimming properties of bacteria in biological mucus : Furter
et al [49] observes circular trajectory on the surface of the dense gut mucus layer in well-
preserved mice mucus barriers, whereas Figueroa-Morales et al [45] reports bacterial alignment
in sheared cervical mucus, like observed in liquid crystals by Goral et al [41]. The state-of-the-
art is completed by the recent work of Hector Urra in the group [144] characterizing bacterial
motility in model complex fluids (carbopol and commercial mucin) linked with their macro-
rheological properties, and Bhattacharjee et al [43] pointing to intermittent motion with a new
orientation after a stop. A better understanding of the fundamental swimming mechanisms in
mucus could pave the way for new treatments and cures with impact in health and animal
farming [145].
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IV.2 Gut mucus from piglets
Bringing physicists and biologists together allow to combine the physicist view of soft matter

on the relevant biological matter of interest. Especially, we could access piglets, in two limiting
cases in term of diet, as a starting point. We aim at bringing a first physicist point-of-view on the
problem of the bacterial penetration of the mucus barrier, establishing a methodology to study
the mucus from the intestines of animals, from the extraction to the physical characterization.
This works constitutes a first exploratory attempt.

After the extraction and the preparation of the mucus, we propose a first picture of the
bacterial penetration in this biological fluid through an original model experiment, comple-
mented with rheological and optical characterization, to eventually compare the results from
both populations. I emphasize now that a key point when working with mucus is to keep it
in a frozen state as much as possible to avoid degradation, defrosting it only for experimental
purposes, and refreezing it as soon as possible.

IV.2.1 Cohort of piglets
We aim at comparing the piglets intestinal mucus properties of a cohort separated into two

groups :
• Twelve "suckling" piglets which have been fed with milk only during their 21 days of

existence.
• Twelve "weaned" piglets which started to complement their diet with solid food at their

21st day, before complete weaning at their 28th day. They have been slaughtered after
35 days.

"Suckling" and "weaned" piglets are thus different from two points : their age and, more inter-
estingly, their diet. Piglets have been raised in the INRAE Toulouse by Martin Beaumont.

Figure IV.4 – "Suckling" (yellow dot) piglets only got milk. Mucus was extracted after 21
days. "Weaned" (blue dot) piglets have been weaned completely after 28 days and then started
to eat solid food. Mucus was extracted after 35 days. They correspond to two limiting situations
in term of diet. Adapted from [146].

IV.2.2 Mucus sampling
The sampling was made in collaboration with the biologists Tiphaine Le Roy and Marta

Vazquez Gomez from the laboratory Nutriomics, Hôpital Pitié-Salepêtrière, Paris. Their ex-
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perience with biological protocols was determinant to initially collect mucus and define the
working protocols.

Extraction and purification

The method to collect the mucus is similar to the one described in [147] and recapitulated in
figure IV.5. We took some special care to keep the intestines as cold as possible using ice bath
during manipulations and to reintegrate the samples in the frozen state as soon as possible.

Figure IV.5 – Extraction of the mucus. Intestines (a) are washed by injecting water inside the
gastrointestinal tube. They are then segmented into smaller parts and opened via a longitudinal
cut (b). The inside part of the lumen is then scratched with a microscope slide. The mucus is
apparent as reddish colored highly viscous and jellified fluid (c).

The purification protocol has been made by Tiphaine Le Roy, based on the literature [148]
and adapted with available equipment. The process is recapitulated in figure IV.6. Importantly,
the dialysis is made in the fridge at 4 ◦C for seven days. Water is renewed everyday. Centrifuga-
tion is also done at 4 ◦C, 20 000 g for 30 minutes. The supernatant is again centrifugated until
no mucus can be collected.

Figure IV.6 – Purification of the mucus. Big impurities are removed by passing the mucus
through a compress. It is then dialyzed to remove small particles such as antimicrobials. A
dialyzis consists in letting particles smaller than the membrane pore size (12 − 14kDa) diffuse
in the surrounding fluid (pure water). The concentration of small particles inside the membrane
thus decreases while keeping the same concentration of big particles (mainly mucins). Finally,
mucus is centrifugated with a filter 10 kDa, removing most of the water and the ultimate small
particles.
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Purified mucus stocks

We are now in possession of purified mucus stocks, stored at −20 ◦C. A summary is provided
in figure IV.7. Total mass, pH and dry mass percentage have been measured for each piglet
before and after purification. The mass of mucus collected, unlike the pH ∼ 6.5 and the dry
mass percentage, is very different between individuals. The purified mucus is concentrated at
8.52 ± 0.94% averaged on individuals. The total dry mass has been divided by three during the
purification.

Figure IV.7 – Summary of the extracted mucus samples. Total mass, pH and dry mass
percentage have been measured for each piglet, before and after purification. In orange and
blue : resp. "suckling" and "weaned" piglets. Piglets above the dashed line have been used for
the rest of the ongoing study.

Let’s start the physical characterization of our piglet intestinal purified mucus. I will first
describe the protocols and methods developed to study optical properties, bacterial penetration
and rheology, discussing their reproducibility. I will then compare the different piglets mucus
extracts.
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IV.3 Physical characterization
The mucus extract is defrosted one hour at room temperature, in a rotating platform, before

manipulations. We use a rotating platform for two reasons : mixing and avoid rotting. Indeed,
by keeping the fluid in motion the proliferation of microorganisms is altered.

IV.3.1 Optical characterization
Optical visualization is of great interest to characterize mucus and several techniques are

proposed in the literature, with or without fluorescent markers (SEM [45, 149], lectin-based
staining [150, 49], immunostaining [151, 47]). I did not have time to push the optical study far.
However I was able to use simple brightfield microscopy on large scale as well as a more ela-
borated technique called optical coherence tomography (OCT [152]), thanks to a collaboration
with Jean-Marie Chassot (Institut Langevin, ESPCI, Paris). OCT allows for the visualization
of a well-resolved plane in brightfield. I provide here briefly my attempts.

Turbidity

Mucus is not transparent, but rather brownish as shown on figure IV.8a. We measured the
light intensity decrease with depth by optical coherence tomography microscopy. Light intensity
decreases with a depth scale le = 49 µm (see figure IV.8).

Structure scales

In simple brightfield microscopy, mucus extracts show optical heterogeneities. We image
the mucus on large scale (500 × 800µm in figure IV.9) by combining several images together
(called "stitching") after 3.5 h between parallel plates. The size of these heterogeneities can
be described through the radial autocorrelation function that can be fitted by summing two
exponential functions from which we extract two length scales λopt−1 < λopt−2. By exposing the
samples to a sufficiently intense light, we can still describe those heterogeneities at 80 µm depth
and we find that measured structure size do not depend on the depth. Interestingly, no effect
of sedimentation is observed, pointing that there is none. λopt−1 is of order 0.1 µm and λopt−2
is of order 1 µm. Note that such quantities measured for the same extract can vary by a factor
4, which is surprisingly not very reproducible (see figure IV.10). We suggest that better results
would be obtained with the OCT technique.

65



Figure IV.8 – Turbidity of the mucus extracts. (a) A tube filled with mucus. Mucus is not
transparent. (b) Mucus imagery of a plane done by optical coherence tomography (OCT) and
(c) corresponding cross-section. Mucus is turbid : light intensity decays with the depth of
visualization (d) on characteristic scale le = 49 µm.
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Figure IV.9 – Mucus (in blue) brightfield image via optical microscopy with a pixel resolution
of 100 nm of size 500µm×800µm (left) and associated radial intensity autocorrelation function
CI(r) (right) at different heights : (top) z = 0µm, (middle) z = 40µm and (right) z = 80µm.
Mucus shows microscale heterogeneities, that seem independent of the depth in the sample.
The structures are revealed by the radial autocorrelation function CI(r), which is fitted by the
sum (thick dashed line) of two exponentials (thin dashed lines) from which are extracted two
characteristic structural length scales λ1 = λopt−1 < λ2 = λopt−2.
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Figure IV.10 – Reproducibility of optical structures measurements λopt−1 (left axis) and
λopt−2 (right axis) for piglet #1 done on four different samples of the same piglet prepared at
two different days. Error bars are the standard deviations.

IV.3.2 Rheological characterization

During this thesis, many efforts have been performed to improve rheological measurements.
We upgraded the software from the commercial rheometer Anton Paar MCR501 to get raw
data directly and perform the analysis using an home-made software.

Rheometer measurement protocol

Hugo Legalois, intern in the team, participated to the elaboration of the protocols.
The measurement tool is a cone-plate CP25-2, which means a radius r = 25 mm and a cone

angle α = 2◦. We inject 160 µL of fluid. We perform a rotational test at fixed shear rates γ̇,
measuring the resulting shear stress σ. The time of measurement T (γ̇) is calculated such that
the rheometer completes one full rotation :

T (γ̇) = 2π

θ̇
= 2π

γ̇ tan(α) (IV.1)

with θ̇ the angular speed. For our cone plate of angle α = 2◦, this leads for γ̇ = 1 s−1 to
T = 180 s. We seek to probe the rheological behavior from low to high shear rates. Low shear
rates impose long experiments and as a compromise, we use the profile of figure IV.12a : from
γ̇ = 0.5 s−1 to γ̇ = 50 s−1 in six logarithmic steps. To check any changes in the materials due to
shear, the profile is made symmetric : first increasing shear values, then decreasing shear values.
As a standard procedure when studying the rheology of complex fluids, the fluid is initialized
to a given state by preshearing it (here γ̇ = 50 s−1 for 50 s). The complete test lasts a bit less
than one hour, a duration that makes possible both quality and repeatability.

The tests are performed in an environment saturated in humidity by encompassing the
"measurement cage" in wet paper (see figure IV.11) to prevent evaporation.
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Resulting flow curves

The resulting shear stresses σ are displayed as a function of time t in figure IV.12b,d.
Some samples are shown to have a symmetric response, whereas some others are impacted by
their shear history. An hypothesis for this history-dependent behavior could be an isotropic to
nematic transition as reported by [45] that we intend to check under the microscope between
cross-polarizer. We extract the median value of shear stress σ in each of the intervals to finally
get the flow curves IV.12(c,e). These flow curves point to a Herschel-Bulkley fluid, with the
relation :

σ = σ0 + η
γ̇

1 + (τ0γ̇)1/2 (IV.2)

where σ0 is the yield stress, τ0 a characteristic relaxation time of the fluid and η an effective
viscosity. This fluid combines yield stress, viscoelasticity and shear-thinning that can all affect
microswimming (see the introduction : swimming in complex fluids). Shear history and aging
can also impact the mucus’ rheology : since the phenomenology can be different from an extract
to another, the rheological reproducibility, aging, and impact of defrosting will be discussed
when comparing the mucus from different piglets.

We have developed a robust protocol to measure the flow curve of mucus. Mucus is a
Herschel-Bulkley fluid and our results suggest that its rheological properties can vary depending
on its shear history. Other tests, like oscillation tests, could bring some new insights on the
mucus rheological properties. As a suggestion for future works, one could get some inspiration
from Larobina et al [153]. They combine X-ray photon correlation spectroscopy to a stress-
controlled rheometer, observing an enhancement of the microscopic pig gastric mucus gels
dynamics upon applying a modest shear stress (i.e. in the linear viscoelastic regime).

Figure IV.11 – Photography of the rheometer. The measurement is done inside the cage
enveloped in wet paper to prevent evaporation.
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Figure IV.12 – Shear test methodology and typical result for suckling (left) and weaned
(right) pigs. (a) Shear rate profile. Values of the shear rate γ̇ come from 0.5 s−1 to 50 s−1 with
logarithmic steps. Time intervals are chosen such that the rheometer does a complete turn.
The profile is symmetric (increasing then decreasing shear rates). A preshear is done (before
dashed line). (b/c) Resulting shear stress for a typical suckling/weaned pig (colored curves)
and extracted median values for each interval (black line). The measured shear stress can differ
qualitatively : the profile for the suckling pig is symmetric, whereas it is not symmetric for the
weaned one, pointing to an effect of the shear history. (d/e) Flow curves σ = f(γ̇) associated
to the tests (colored curves) and Herschel–Bulkley fit (dashed line). Suckling pig mucus flow
curve is stable and can be fitted whereas weaned one does not superpose back and forth.
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IV.3.3 Bacterial penetration

To study the bacterial penetration of a mucus barrier, one needs to create an interface
between a bacterial suspension and the mucus extract. We tried many methods, with or without
flow. As a brief summary, due to its complex heterogeneous structure at the microscale, mucus
is hard to handle in thin microfluidic wires, excluding the possibility to achieve some stable
interface dynamically, for instance with a Y-junction. We propose an easy way to achieve the
creation of a stable interface. To enhance the statistics on the number of bacteria and take into
account the possible impact of the distance from surfaces, we developed an automated module
to obtain what we coin as "3D-cartography" on large scale. The 3D exploration is obtained by
scanning the sample from the surface to a certain height zmax by incremental step zstep. The
objective 63xW we use, with a resolution and depth of field pertinent for this study, provides
image of around 100 µm×100 µm. We aggregate adjacent images to reconstitute a wider view, a
process known as "image stitching". Combining the scans in Z with the wide images, we get our
large scale 3D-cartography. The scans are done at 80Hz, i.e a scan from z = 1 µm to z = 80 µm
with step ∆z = 1 µm only takes 1 s. To get all the images that constitute the final large view,
the stage moves sequentially to specific locations along the x and y axis.

Interface formation

The method to achieve the formation of an interface between mucus and bacteria is sketched
in figure IV.13. A 10 µL droplet is sandwiched in a pool of thickness H = 220 µm for 1.5 h.
Letting the mucus at rest between slides consolidates its interface when mixed with another
solution. Without this, fluids mix more resulting in less sharp interface (but still one can try).
We then fill the pool by capillarity with a bacterial solution concentrated at OD = 0.01, that
enters in contact with the mucus. To avoid any perturbating chemical interactions with the
mucus, the bacteria are diluted in a solution of BMB without salt and without L-serine. The
pool is then closed with silicone to prevent evaporation.

Analysis of the stationary state

After 2 h of bacterial penetration, most of the bacteria are found to be located in the mucus,
not moving any longer. We thus consider it as a stationary state and trigger a cartography of
the penetration of bacteria at this moment.

A volume delimited by 1 mm from each side of the interface, a width of 600 µm and a height
100 µm, is assessed. We take zstep = 1 µm corresponding typically to the size of a bacterium.
We image the mucus in brightfield, the bacteria in fluorescence. We also added 1 µm fluorescent
beads to check for the penetration of passive objects. Bacteria and beads can be visualized
independently. In all the figures, mucus is shown in blue, bacteria in green and beads in red.

The analysis is shown and detailed in figure IV.14 and IV.15, resulting in the 3D assessment
of the localization of the bacteria and the 3D position of the interface. We then calculated the
distances d between bacteria and the mucus interface : d < 0 when bacteria are in the motility
buffer, d > 0 when bacteria are in the mucus. The resulting distribution p(d) shows three
distinct zones (see figure IV.16) : 1) very few bacteria are found in water, 2) when entering
mucus, the concentration increases sharply with d until a maximal concentration at a transition
distance d = λT is reached. 3) Then the concentration decreases as we go deeper in mucus,
characterized by a penetration length λP obtained via an exponential fit.

The distribution of bacteria along the mucus barrier is independent on the height in the
sample (see figure ??) : the presence of a glass surface does not seem to control, perhaps
surprisingly, the bacterial transport properties in mucus. It would be interesting to measure
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the surface residence times of bacteria in this case to check for an effect of mucus, compared to
water.

The bacterial concentration fluctuates locally in the mucus (see figure IV.17), pointing to
the presence of mechanical heterogeneities. It would be interesting to characterize optically
those heterogeneities, for instance simply with a static picture with OCT microscopy, to check
for a link between optical and mechanical characteristics. Also microrheology could reveal the
local mechanical landscape of mucus.

The experiments have been replicated four times for the piglet #1 to check the reproduci-
bility. The total penetration length λP + λT = 224 ± 34µm is a more stable quantity than its
constituents λT = 92 ± 58µm and λP = 132 ± 43µm (see figure ??). A variation of only 15%
for the total penetration length is very good given the complexity of the biological mucus and
of the analysis. This quantity is also pertinent biologically and its order of magnitude is the
hundred of microns, comparable to the in-vivo thickness of the loose mucus layer.

Most (loosely 99%) of the bacteria are found to be immobile in the mucus, while flagella can
still be moving : they are blocked. How bacteria arrived at their trapped location ? Does the
interface formation possesses some crucial properties, for instance due first to the drying and
then to the wetting, or does it have the same mechanical properties as the rest of the mucus ?
That is the kind of question we want to answer in details in the future with the Lagrangian
tracking microscope.

Figure IV.13 – Pool design to create a mucus interface. (top) Sketch of the pool set-up.
Mucus (in orange) is sandwiched in a circular pool. Bacterial solution is injected by capillarity
(left arrow), entering in contact with the mucus. Silicone (in yellow) finally closes the pool.
(bottom) Final practical realization. The resulting interface between the mucus (white) and
the bacterial solution (transparent) is sharp.
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Figure IV.14 – Image analysis of a cartography plan (here the plane z = 0µm). The size
of the image is around 2000µm × 600µm. Mucus is in blue, bacteria in green, and beads in
red. (top) Combination of the raw images. The mucus barrier, the bacteria and the beads are
visible. (middle) Binarization by thresholding of the raw images. (bottom) Detection of the
different elements. Bacteria and beads are selected given a minimum area of 1µm2. Mucus is
determined via a watershed algorithm. Unlike beads, bacteria penetrate into the mucus. There
is no flow through the mucus interface. The interface is stable.
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Figure IV.15 – 3D reconstruction of the cartography after image analysis. (a) Raw positions
of the mucus interface (blue lines - every 10µm in height) and of the bacteria (green dots)
on all cartographied plans. (b) Interpolated mucus interface (now a 2D surface) and selection
of the bacteria through a tracking algorithm to make unique a bacteria present on successive
plans. (c/d/e) Distribution of the number of bacteria along x/y/z axis. (c) On the x-axis, the
mucus barrier impacts strongly the distribution. (d) On the y-axis, the distribution is constant
(consistent with what is expected). (e) On the z-axis, there is first an accumulation at the
bottom surface (range of order 15µm), then a rather constant number (range of order 50 µm)
and finally a decay, probably due to an increasing difficulty to detect the bacteria. We will
restrict our study in height between 0 and 80µm.
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Figure IV.16 – Distribution of the number of bacteria depending on their distance d to the
mucus interface d = 0 (solid blue line) for different height intervals : (a) 0 < z < 15µm, (b)
15 < z < 50µm and (c) 50 < z < 80µm. Light blue area represents mucus. Three areas are
defined : the "water" area d < 0 in light green in which there are the bacteria remaining in
water, very diluted. Then the "transition" area 0 < d < λt in light green superposed with
dotted dark green where the bacterial concentration increases in the mucus. λt is the distance
of the maximal number of bacteria. Finally the "mucus" area d > λt in dark green where the
bacterial concentration decreases as we go deep in the mucus. This part of the distribution is
fitted (dashed line) by an exponentially decaying function to characterize a penetration length
scale λp. Height does not show to have a major influence on the distribution.
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Figure IV.17 – Heatmap of the number of bacteria (in green color scale) on the XY plane
for different height intervals. The associated mucus interface is the blue line (mucus covers the
rightmost region of the line). (a) 0 < z < 15µm, (b) 15 < z < 50µm and (c) 50 < z < 80µm.
Heatmaps are similar for the different height intervals : Bacteria accumulate at the beginning
of the mucus barrier and the deeper one penetrates the mucus, the less bacteria are present.
Local heterogeneities appear, reflecting heterogeneities in the mucus.
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Figure IV.18 – Reproducibility of the bacterial penetration features for the piglet #1 done on
four different slides prepared at two different days. Transition length λT (in blue), penetration
length λP (in red) and total penetration length λT + λP (in violet) as function of the distance
from the surface z and for different experiments with the same piglet mucus. These quantities
λ do not depend on the distance from the surface z. λP and λT show some variability, either
inside an experiment at different heights, either from an experiment to another. Conversely, λP

+ λT is a very robust quantity (only 15% variability). Error bars are standard deviations.

IV.3.4 Optimizing the throughput
These experiments are time-consuming while we need statistics. For the moment we had

time to characterize three piglets for each group. We will characterize three more for each group
in the future to enhance statistics. Standards in biology typically require five samples for each
group. To achieve that in a reasonable amount of time, we use the schedule of figure IV.19,
allowing for three samples a day. We detail here the schedule for only one sample :

1. 8 :00 : Reculture bacteria in TB.
2. 8 :45 : Mucus defrosting in eppendorf and the rheometer turned on.
3. 9 :45 : Mucus goes under the rheometer and the rotational test starts.
4. 10 :00 : Mucus is sandwiched in three preliminary prepared pools. We prepare three pools

to cope with eventual failures and always keep a back-up sample. Mucus eppendorf goes
back to the freezer.

5. 11 :00 : Bacteria are washed and transferred to their motility medium.
6. 12 :00 : Injection of the bacterial solution into the pools. The bacterial penetration starts.

Injection must be done carefully.
7. 13 :30 : Two conform slides (i.e. with a sharp interface) are selected and cartographied

at an appropriate place (far from walls, far from eventual bubbles...).
8. 14 :00 : Data are transferred to the hard drive.
9. 16 :45 : Clean everything. Run the pre-analysis overnight. It is a long process : about 8

hours.
10. 17 :15 : Prepare new bacteria and start again for the next day.
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The procedure can be parallelized for three samples, but one should be aware that the resulting
working day is intense and requires to be experienced with all the steps. The pre-analysis is in
general not sufficient yet and a step of analysis with some changes in the parameters must be
performed for a proper recognition of the interface.

Figure IV.19 – Schedule to optimize a day of experiment. Details in the text.
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IV.3.5 "Weaned" and "suckling" piglets : a comparative study
We first go back to the rheology measurements to discuss the data reproducibility and then

synthesize the results over all the piglets, enhancing the presence of two different groups :
"suckling" and "weaned" piglets. We show in figure IV.20a,b the resulting flow curves for every
piglets. All "suckling" piglets flow curves are shown to be reversible and of the same order of
magnitude, unlike "weaned" piglets flow curves which show an irreversible flow curve, pointing
an effect of the shear history, which could be the signature of a nematic transition occurring
in the mucus. An element of proof is the outcome of a yield stress, i.e a transition to a more
"solid" state, occurring during the return of the shear rate. Before this "shear-history" effect,
the first measured shear stress, at low shear rate, are of the same order of magnitude for the
two groups. Since the rotational test lasts less than one hour, we could also check the effect
of aging (see figure IV.20c,d) and the reproducibility after cycles of defrosting/refreezing (see
figure IV.20e,f). Some mucus show a slight increase in the measured shear stress after resting
some time Trest in the rheometer. However the order of magnitude of the stresses obtained
remains the same. The cycles of defrosting/refreezing does not affect much the material. We
hypothesize that what matters more is the time during which the mucus is let in a defrosting
state. In our case we defrost our samples during one hour in a rotating platform to avoid any
form of degradation, and put it back in the freezer right after manipulations, typically fifteen
minutes.

We noticed a strong difference in the rheological behavior between the two groups. What
about the optical and bacterial penetration properties ? The extracted parameters are sketched
in figure IV.21.

From the bacterial penetration experiment, we extract two characteristic length :
• the transition length λT is the distance between the mucus interface and the distance at

which the maximal concentration of bacteria is measured.
• the penetration length λP is the characteristic length describing the decay of the bacterial

concentration after its maximal.
The importance of the precise location of the maximum in those parameters, which in practice
is not always very peaked, is reduced by looking at the total penetration length λT + λP and
we thus focus on this quantity..

From optical measurements, we extract two structure sizes : λopt−1 < λopt−2 emerging from
the radial autocorrelation function.

The results are presented in figure IV.22, where the piglets are classified depending on their
group. The mucus of piglet #3 is shown to be very permeable and full of biofilms. Its resulting
bacterial concentration profile is shown to be very flat and the measurement of λT + λP is
more than the measurement limit of this technique. For this mucus, only one structure size is
pertinent, the bigger one is huge and not significant. Another mucus that looks quite different
from the others is the mucus from piglet #1. Its penetration length (also reflected in the total
penetration length) is far less than the other mucus, and it does not reflect in rheological
nor optical measurements. For the other mucus we obtain typically the following parameters :
λT ≈ 130 µm, λP ≈ 400 µm, λT +λP ≈ 550µm, λopt−1 ≈ 0.13 µm, λopt−2 ≈ 1 µm. The absence of
relationship between rheological, optical and bacterial penetration measurements is surprising.
Indeed in the previous work of Hector Urra on commercial mucin and carbopol [144] and also of
Nazari et al in yield-stress fluids [44], the rheology is thought to control the motion of bacteria.
The pH of all mucus extracts has been measured and is constantly close to 7. An hypothesis
is that the purified mucus we use contain some chemicals affecting the probability of bacteria
to adhere to the mucus. Characterizing systematically the mucus extracts optically with more
convincing techniques such that OCT or probing its structure with neutron scattering are
interesting perspectives that could lead to interesting results.
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Figure IV.20 – Comparison of the flow curves for the mucus extracted from suckling (left)
and weaned (right) piglets groups. On each curve are displayed up going (right arrows) and
down going (left arrows) flow curves. Arrows are not always indicated to simplify the reading of
the graphs. (a/b) Flow curves superpose / do not superpose. The measured shear stress are of
the same order of magnitude in both groups. (c/d) Aging of the mucus. Mucus are let during a
resting time Trest in the rheometer before measurement. The shear stress increases with resting
time (except for pig #1) in both groups. (e/f) Effect of the defrosting. The flow curves do not
change significantly after several cycles of defrosting/refreezing Ndefrost.
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Figure IV.21 – Sketch of the different quantities extracted from the different mucus analysis.
(a) Distribution of the number of bacteria as a function of their distance to the mucus interface.
d > 0 in mucus. λT is the distance at which occurs the maximal value. λP is the characteristic
length of the decay. (b) Radial autocorrelation function of the intensity from mucus imagery
in log-scale (solid line). λopt−1 < λopt−2 are the characteristic structure sizes fitted by the
sum of two exponentials (in dashed and dotted line). In this example λopt−1 = 0.5 µm and
λopt−1 = 3 µm. (c) Shear stress σ as a function of the shear rate γ̇ (flow curve). The rotational
test goes from increasing to decreasing values of shear rate (arrows). The two values obtained
in the limit of low shear rate are σ0−start and σ0−end.
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Figure IV.22 – Synthesis of the measured quantities from bacterial penetration, rheological
and optical experiments. (S) Suckling. (W) Weaned. Error bars are errors on the mean. The
broad range of bacterial penetration, from 200 to 800 µm are not directly linked with the
rheological flow curve nor the optical structure sizes λopt−1 and λopt−2.
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IV.4 An heuristic view on bacteria penetration of mucus
layers

Here, we present two simple models aiming at capturing the essential features found in the
mucus bacteria penetration experiments. The purpose of the analysis is merely heuristic. We
do not seek here for quantitative agreement or any fit with the experiments. The objective is to
built on rational grounds a critical view of the results and to highlights some possible physical
mechanisms, that will structure future investigations.
In both models, we consider the spatial exploration undertaken by motile bacteria as diffusive.
For the moment, the diffusion coefficients in the mucus and in the fluid are assumed to be
identical. In the mucus layer there is a trapping probability for the swimmers. This trapping
process could be due to remnant peptide molecules dispersed in the mucus killing the bacteria,
some geometrical blockade or chemical processes that hinder the swimming ability.

The first model PEN1, highlights the initial presence of attractant molecules in the mucus,
like sugars constituting the mucin, that spread in the fluid and deplete the mucus layer. The
attractant gradients hence created, are driving a chemotactic response of the bacteria towards
the mucus deepest layers and competes with the trapping process. The second model PEN2
assumes an alteration of the mucus barrier in contact with the fluid. The modification of the
barrier properties can be due to a dilution problem or a structural reorganization of the mucine
molecules in presence of a solvent. Note that both models are not necessary exclusive and in
reality, chemotaxis and mucus alteration could occur both at the same time.

An essential objective of the models is to be able to reproduce the maximum observed for the
particle trapping distribution as well as the final decay that defines the penetration limit. Both
models are unidimensional along a direction x perpendicular to the interface. The fluid layer
width is LF and the mucus layer LM The fluid/mucus interface is situated at x = XM . In both
models the edges display reflective boundary conditions for diffusion. The bacteria diffusion
coefficient is DB and the trapping rate κ(x). The concentrations of motile and stuck bacteria
are respectively n(x, t) and ns(x, t). The initial bacteria concentration profile is uniform in the
fluid ( n = n0 ) and no bacteria are in the mucus.

IV.4.1 Model PEN1 - chemotaxis
In model PEN1, the attractive ligand concentration is L(x, t). Starting at t = 0, from an

initial Heaviside step of concentration L0 for x > XM , at t > 0 the concentration profile is
then : L(x, t) = L0erf( x−XM√

4DLt
), where DL is the ligand diffusion coefficient. In the mucus layer

(x > XM) the trapping rate is constant : κ(x) = κ0. The dynamical equations for the motile
and stuck bacteria are then :

ṅ = DBnxx + ∇x(χLxn) − κ0n (IV.3)
ṅs = κ0n (IV.4)

χ is a chemotactic response coefficient taken here as a constant. This macroscopic chemotactic
response corresponds to the simplest form of a macroscopic Keller-Segel model. This picture
induces a natural space/time re-scaling with a penetration length scale λ =

√
DB/κ0 and a

time scale 1/κ0. Hence, in dimensionless variables the dynamical equations are :

L(x, t) = erf(β(x − XM

2
√

t
) (IV.5)

ṅ = nxx + α∇x(Lxn) − n (IV.6)
ṅs = n (IV.7)
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Here, the concentration fields are normalized (L → L/L0, n → n/n0 and ns → ns/n0) and
therefore the dimension less coefficient α (chemotactic strength) and β (diffusion ratio) are :

α = χL0

DB

(IV.8)

β =
√

DB

DL

(IV.9)

The set of equations IV.7 is solved numerically with a Matlab solver (pdepe) suited for 1-D
parabolic and elliptic PDEs. In figure IV.23, the time development of the penetration process
is monitored. One can observe the ligand spreading across the system, in association with a
penetration of motile bacteria and a progressive emergence of stuck cells. The stuck cell profile
displays a maximum followed by a final exponential decay in the depth of the mucus layer.
In figure IV.24 are displayed the terminal profiles of stuck bacteria for different chemotactic
strengths α at a constant diffusivity ratio β = 1. In figure IV.25, one can observe a weak, quasi-
logarithmic evolution of the penetration depth lp with α from a value l0 ≈ 1.34. Above α ≈ 80,
a peak shows up in the stuck cells distribution which position in the layer depth increases quasi-
logarithmically with α such that the final exponential decay remains quasi constant and of the
order l0. Therefore in this framework the measurement of the final decay is a characterization
of the trapping process and the peak position a characterisation of the chemotactic process.

Figure IV.23 – PEN1 Model - Time evolution of the ligand L(x, t), motile bacteria n(x, t)
and stuck bacteria ns(x, t) concentrations (t = 0.94, 9.4, 24.44, 50.76), for a fluid layer LF = 20
in contact with a mucus layer LM = 30. The chemotactic strength is α = 150 and diffusion
ratio β = 1.
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Figure IV.24 – PEN1 Model - Final concentration profile of stuck bacteria ns(x, ∞) as a
function of the chemotactic strength α. Fluid layer LF = 20, mucus layer LM = 30 and
diffusion ratio β = 1.

Figure IV.25 – PEN1 Model - Penetration length lp and position of the maximum lmax of
stuck bacteria as a function of the chemotactic strength α. Fluid layer LF = 20, mucus layer
LM = 30 and diffusion ratio β = 1.
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IV.4.2 Model PEN2 - mucus barrier alteration
The second PEN2 model assumes a space dependent trapping rate : κ(x) = κ0(1−exp(−x/∆)

where ∆ is a length characterizing the alteration of the mucus barrier.
Re-scaling for space and time ( x → x/λ and t → κ0t) and for densities (n → n/n0 and
ns → ns/n0 ), yields a set of dimensionless equations for n(x, t) and ns(x, t) :

ṅ = nxx − (1 − exp(−x/δ)n (IV.10)
ṅs = (1 − exp(−x/δ)n (IV.11)

where δ = ∆/λ. The PDEs are solved using the Matlab solver pdepe. On figure (IV.27) are
displayed the time evolution of the motile and stuck bacteria for a mucus alteration length
δ = 10. One can observe that the stuck bacteria profile also displays a maximum followed by a
final decay. On figure (IV.28) are displayed the terminal profiles of stuck bacteria for different
δ values. On figure (IV.28) are represented the penetration length lp and the peak position lmax

as a function of δ. Both lengths seems to follows asymptotically, for large δ, a power law as :
lp ∝ δa with an exponent a ≈ 1/3.

Figure IV.26 – PEN2 Model - Time evolution of the motile n(x, t) and stuck ns(x, t) bacteria
concentrations (t = 12, 108, 408, 1140), for a fluid layer LF = 20 in contact with a mucus layer
LM = 30. The mucus alteration length is δ = 10.
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Figure IV.27 – PEN2 Model - Final concentration profile of stuck bacteria ns(x, ∞) as a
function of the mucus alteration length δ. Fluid layer LF = 20, mucus layer LM = 30 .

Figure IV.28 – PEN2 Model - Penetration length lp and position of the maximum peak lmax

of stuck bacteria as a function of δ. Fluid layer LF = 20, mucus layer LM = 30 .
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IV.4.3 Discussion
Both models seem to reproduce qualitatively the emergence of the most salient features

observed experimentally in the bacteria penetration experiments.
A very important step would be first to find out whether in the mucus , even though it was
dialyzed quite thoroughly, would remains some chemical elements of interest in the building
of the penetration model. First, it would be possible to dilute the mucus and filter out the
supernatant fluid and test directly whether a chemo-attractant response is still present for
the bacteria. Also, in this fluid, the eventual presence of peptides, a natural bacteria killer in
intestinal mucus, could be tested. Along those lines, it would also be important to provide an
estimation of the typical molecular diffusion constant in the mucus layer, for example using
a fluid initially mixed with a fluorescent dye and measure the penetration kinematic within
the mucus layer using confocal microscopy. Another, strong hypothesis of the model is the
assumption of diffusive exploration modes for bacteria in both media (fluid ans mucus). The
first chapter of this thesis was dedicated to a deeper understanding of the emerging transport
properties in a minimal fluid and in presence of confinement. Some results obtained there can
be transferred to this problem. However, for the exploration processes in the mucus layer,
hardly anything is known. The new Lagrangian tracking tools developed in the next chapter, in
particular the AI algorithm, would be of upmost interest to be able to track bacteria individually
when crossing from the fluid to the mucus layer. From those results, a much more refine model
of the kinetic processes undertaken by bacteria in the mucus environment would be obtained.
Finally, it could be of great interest to test at a microscopic level the local mechanical status
of the mucus. To this purpose, micro-rheological tools could be developed to probe in-situ
resistance and rheology of the mucus layer.

IV.5 Conclusion and perspectives
Our mucus is obtained directly from the intestines of piglets, which are divided into two

groups according to their diet. The mucus is purified to remove most of the chemical compo-
nents, such as nutrients or peptides, to focus on the properties of the "mucin" network : the
main molecular component of this biological fluid. How the mucus extracts obtained are close
to in vivo conditions is difficult to assess. However, we provide a first methodology to physi-
cally characterize them in the laboratory. This exploratory work is reported, both successes
and failures, and many perspectives are suggested for future studies.

The core of this work is based on an experimental setup in which bacteria cross a mucus
barrier. A sharp and stable interface between a bacterial fluid and mucus is achieved. Bacteria
are found to migrate and become trapped in the mucus portion. Bacterial penetration of this
in vitro mucus barrier is quantified with a static picture after two hours of bacterial invasion,
which we refer to as the steady-state because most bacteria are found to be immobile. The
steady-state bacterial concentration profile from water to mucus has several characteristics :
1) few bacteria are found in the water, 2) bacteria accumulate in the mucus : a maximum
is observed, followed by an exponential decay. These observations can be rationalized by a
simple scenario : 1) Bacteria can diffuse both in water and in mucus. 2) Most of the bacteria
are localized in the mucus because they get stuck there with a certain probability (or rate),
which also explains the decay observed in the profile. 3) The observation of a maximum in the
profile after the measured interface can be explained by hydration of the mucus at the interface
(which locally reduces the probability of entrapment) or by an effect of chemotaxis (indeed,
mucus is highly glycosylated, i.e. full of carbohydrates). This static picture provides already
some elements of understanding on the bacterial penetration of the mucus barrier. However
a temporal picture is missing : a simple assessment of the migration process could already
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provide valuable information, but the full dynamics of individual bacteria starting from the
water tank and then penetrating the mucus barrier, while visualizing their flagella, could lead
to the detailed exploration mechanisms. Note that the time t = 0 of the penetration of a
bacterium allowed by the presence of a sharp interface is interesting to avoid biases in the
selection of a bacterium. It is necessary to develop a Lagrangian tracking technique suitable for
bacteria in mucus, which is the subject of the next chapter.

The penetration of bacteria in mucus is biologically relevant in itself. However, the structure
and rheological properties of the mucus can be helpful to understand the swimming properties.
Optically, mucus exhibits heterogeneities at the microscopic level. We have used simple bright
field microscopy to optically characterize these heterogeneities with two "structure lengths",
because this technique is easily accessible in the laboratory. However, we suggest that the results
obtained should be compared with more sophisticated techniques such as OCT microscopy
[152]. Confocal microscopy of stained mucus would also be a way to compare our purified
mucus extracts with mucus closer to the "in vivo" situation reported in the literature [49, 48].
Rheologically, we established a reproducible protocol to determine the mucus flow curve. Mucus
exhibits yield stress and shear thinning, which can be described by a Herschel-Bulkley fluid.
Surprisingly, some mucus extracts are affected by their shear history, suggesting a structural
change such as a nematic transition previously reported in mucus [45]. This could be checked
under cross polarizers after inducing a shear, using a method similar to that used to characterize
the nematic order of liquid crystals [41].

We compared mucus samples extracted from three "suckling" and three "weaned" piglets.
These two groups differ by a change in diet (milk vs. solid food), but also by age (21 days
old vs. 35 days old). From our rheological measurements, the mucus of the "suckling" group
appears more stable (with ageing and thawing) and not affected by the shear history, whereas
the mucus of the "weaned" group shows less stability and a strong effect of the shear history.
This difference needs to be verified with more samples. However, all flow curves are of the
same order of magnitude and this does not affect the bacterial penetration experiment. In fact,
the measured total penetration length can vary from 200 to more than 800 µm, typically the
thickness of the mucus barrier [137].

Four of the six characterized samples have the same total penetration length of 600 µm
as well as the same "structure lengths". Interestingly, and despite having the same rheological
behaviour and the same dry mass percentage, piglet #1 is shown to be a stronger barrier
with a total penetration length of 200 µm whereas mucus from piglet #3 shows no barrier
effect with a total penetration length greater than the measurement limit of 800 µm. For both
samples, the optical measurements show larger structure lengths with higher variability. These
two "extreme" cases could be a starting point for deeper comparisons. A simple macrorheology
experiment does not therefore explain the bacterial penetration in our extracts : this could
be due to the presence of antibacterial chemical residues (for example, this could explain the
results for piglet #1) or to different mucus structures (for example, larger meshes in the mucus
of piglet #3 could explain why the barrier function is not guaranteed).

There is a need for further characterisation. One could try to do microrheological experi-
ments with smaller PEG-coated beads [154], typically of tens of nanometers, i.e. the thickness
of flagella, or magnetic wires [155]. Neutron or X-ray [156] scattering could also be used to
quantify the mesh size.

We proposed this pioneering work to understand the swimming properties of bacteria in
biological mucus. We hope that these new experimental protocols and analysis pipeline, as well
as the suggestions, will be helpful for future investigations on the penetration of microswimmers
into complex fluids. To this end, the next chapter is dedicated to a new Lagrangian tracking
method that aims to extend the use of the Lagrangian setup to optically complex environments
such as our mucus extracts.
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Chapter V

Lagrangian tracking : a paradigmatic
change based on AI

The aim of this chapter is to extend the use of the 3D Lagrangian tracking already imple-
mented for fluorescent bacteria in simple environment to the more general case of any object
in more complex environments, specifically in mucus which is optically turbid. This work was
done in collaboration with Thierry Darnige, engineer in the PMMH. We collaborated with Pr.
Giovanni Volpe and Dr. Daniel Midtvedt (from the University of Gothenburg, Sweden) who are
experts in machine learning for active matter. They have developed the framework "DeepTrack"
[157] based on "TensorFlow" [158] that aims at simplifying the powerful use of machine learning
methods for microscopy [159].

V.1 On the different methods of tracking

Different methods to study the motility of micro-objects exist :
• Optical tweezers allow to keep the object in a localized area. Knowing the force applied

on the object, one can a posteriori determine some properties of the motion [160]. It’s
also a method that has been used to study the R&T dynamics [106].

• Digital holographic microscopy (DHM) [161] successfully implemented in [132] using the
principle of holography.

• Defocussed imaging methods [162] using a library of defocussed images to determine the
actual z-position of the tracked object.

• Lagrangian methods (unlike the previously described Eulerian methods which focus on
what happens in a fixed location), first developed by H. Berg in 1971 [163], aim at
keeping the tracked object in focus of the objective during its motion [164, 165].

The implementation of any of these methods require image or signal analysis at some point. In
addition to classical algorithms, machine learning has shown to be generally very efficient in
those topics and is getting more and more used in active matter [159].

The Lagrangian methods are the gold standard since it allows for precise high-speed, long-
time and large-scale observations while directly visualizing the object and its surrounding en-
vironment. It’s also less-dependant to optical heterogeneities that can be present in complex
environments. However, Lagrangian methods are costly and hard to implement. It is also not
high-throughput (objects can only be tracked one at a time) so it can be quite demanding to
get some statistics.
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V.2 Motivations
Beyond the need to find a new method to track bacteria in optically complex fluids, the

tracking algorithm based on rules (detailed in chapter III.1) has limitations that can be concep-
tually overcome by a method based on machine learning :

• Due to the rules (see figure V.1left) :
— The tracked object must be capture close to its focus to initialize some parameters.
— Determinism : the algorithm looks for a quantity to minimize and can thus lead to an

indetermination in the refocusing direction close to the focal plane. The next correct
move is found, after trials and errors.

— Live-tracking performances are directly impacted by the time needed to compute the
new position, limiting the frame rate. The current algorithm needs 12 ms to determine
the next position, then limiting the frame rate to 80 Hz.

• Due to the objects to be tracked
— The object must be fluorescent. In some instances it can be biologically complica-

ted to make such microorganisms fluorescent (like the magnetotactic bacteria MSR-1
studied in out laboratory). Moreover, the excitation light near blue may catalyze pho-
tochemical reaction ultimately affecting the biological integrity of the microorganism
[166, 167].

— The rules need to be parameterized depending on the object size.
— Objects with a "far-from-spherical" shape cannot be tracked easily.

• Due to the presence of optical heterogeneities, that can be inherent to the medium such
as in complex fluids or external such as the presence of surfaces or suspensions, which
can locally deteriorate the quality of the tracking.

We aim at developing a unique method based on artificial intelligence (AI) in order to
track any object in any environment with the best accuracy and versatility. Especially, the
performances of machine learning in pattern recognition could lead to a "zero-crossing" method
(see figure V.1right), i.e. a fully deterministic method where the distance from the focal plane is
improving the former "optimization" method stemming from the simple rules described earlier
(see figure V.1left).

V.3 Training the neural network
The idea behind machine learning is to optimize a function such that an input will corres-

pond to the expected output. This function with its parameters is called a "neural network"
(NN). The complexity of the function is exponentially increased by using several successive
layers of parameters interacting with the previous layer (deep neural network) [168]. These
layers are equivalent to nested functions. Generic models of neural networks have been shown
to be very versatile in their application for image analysis, composing convolutional layers with
pooling layers that reduce the dimensions of data. Here we use a standard one composed of
90000 parameters. In our case, the neural network is set to recognize specific optical aberra-
tions of the microscope the same way as it would classify dogs, cats and rabbits from a random
collection of images.

The methodology we developed is sketched in figure V.2. The idea is to determine, from
the image of an object, what is its distance to the center (∆x, ∆y) and the focal plane (∆z).
It is based on experimental datasets. For the moment we have made two independent datasets
for bacteria that will be used to train the AI : one in fluorescence and the other in bright field.
To this purpose, we take a Z-sweep of our object, i.e images of our object in our experimental
conditions at different distances from the focal plane ∆z and at different positions z. To have
a good training set, we must make our object quasi immobile during the sweep process. We
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Figure V.1 – Sketch of the conceptual difference between tracking algorithm based on rules
previously developed (left side) ill-adapted for feedback and new one based on AI (right side),
well adapted for accurate feedback. (b) Close to the focus, the sign of the displacement to get
closer to the focus ∆zreal = ±∆zpref cannot be guessed by simple rules. It is a minimization
method. (a) A memory variable is used to guess the direction of the motion and can change
depending on the variations of the signal between two successive images. (c) This leads to
high-frequency oscillations in the z-position (real position is the dashed line). (d) An image
is provided to a trained neuron network (NN) predicting the defocused position of the image
∆zreal = ∆zpred. It yields a "zero-crossing" method as the position with respect to the focal plane
is detected by the AI. (e) The finding of the actual position of the object is then deterministically
predicted and results in a more accurate tracking (f).
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avoid sedimentation by diluting 1 :1 in Percoll solution and achieve a non-buoyant bacterial
suspension. To suppress swimming activity we use a small quantity of ethanol. For our bacteria
our Z-sweep starts from ∆z = −10 µm to ∆z = 10 µm by step δzstep = 100 nm and the
duration of this recording is less than 5 s, making the translational noise negligible. Since the
off-focus optical aberrations depend on the position z of the focal plane , the Z-sweep is made
at different heights z. The experimental dataset consists in about hundred Z-sweeps of bacteria
taken at random heights 0 < z < 220 µm. Moreover, the quality of the centering of the dataset
have been shown to be a crucial step. The efficient "LodeSTAR" algorithm [169] (Localization
and detection from Symmetries, Translations And Rotations), developed in Gothenburg, is
used to center the images in XY whereas the focus position ∆z = 0 is selected manually.
Details of the following steps are facilitated using the "DeepTrack" library [157] : the centered
experimental dataset is then augmented by translation, rotation and artificial noise addition
from which a training dataset and a validation dataset, respectively 80% and 20% of the total
dataset, are extracted. Parameters of the neural network are then adjusted (trained) recursively
via a stochastic gradient descent algorithm. The idea behind the stochastic gradient descent
algorithm is to progressively minimize a loss function, which is a function minimized when
the predicted output is equal to the real output. The learning rate lr, determining how much
parameters will change between two steps, is determined empirically, though its value is not very
sensitive. A criterium on the loss function determines when the neural network is sufficiently
trained (when it has converged), while it is checked in parallel with the validation dataset that
the AI is not overtrained, i.e. the parameters are trained too specifically. After convergence, we
use a validation dataset (that has not been used for the training) to check the predictions. We
show, at the end of figure V.2, the resulting predictions for both the fluorescent and brightfield
training.

The results are similar in both cases : our AI method can indeed predict deterministically
the displacement in the three directions : we have now a quite accurate "zero-crossing" method.
Parallel to the plane of visualization (XY), the algorithm is trained in the range −3 µm to 3 µm
and the accuracy is less than σX = σY < 0.3 µm, it is nearly one tenth of the size of a bacterium.
In the perpendicular plane (Z), for the first time the prediction is deterministic. The algorithm
is trained in the range −10 µm to 10 µm and the accuracy is σZ < 0.75 µm which is again less
than the size of a bacterium. In figure V.3, we get a closer look to the errors on the predictions
for both the fluorescent and the brightfield algorithms. Some systematic bias can appear : for
instance, the Z-prediction for the fluorescent algorithm is systematically higher than the real
displacement far from the focus. This could probably be improved by implementing rotations
in the training step.

The neural network is now trained and the issue is to implement it on the computer driving
the motorized stages suited to track microorganisms in real-time.
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Figure V.2 – Sketch of the training procedure in two optical cases : fluorescence (left) and
brightfield (right). The experimental dataset is a collection of ≈ 100 Z-sweep of bacteria that
are labelled with the position of the focus z relative to the bottom surface and their position
∆z relative to the focal plane. Images are coded in 8bit RGB with z encoded in the blue chan-
nel. Data are then centered and augmented with translations ∆X⃗real constituting a validation
dataset and a training dataset. The training dataset is used to improve the NN predictions
∆X⃗pred through a stochastic gradient descent algorithm , done recursively until convergence.
After convergence, the validation dataset is injected into the neural network and the predictions
∆X⃗pred are compared to the real displacements ∆X⃗real for the three directions. The predictions
are deterministic (zero-crossing method) and the errors σ are smaller than the size of a bacte-
rium even in the Z-direction.
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Figure V.3 – Error on the prediction ∆Xpred − ∆Xreal as a function of the real displacement
∆Xreal in all the directions. This is indeed a zero-crossing method. However systematic biases
can eventually appear in the prediction. This is in particular the case for fluorescent training
on the z axis. However close to the focal plane the bias is significantly less than 1 µm.

V.4 Real-time tracking in a simple fluid
The integration of the neural network into the "LabVIEW" [170] software monitoring the

tracking has been done using the "TensorFlow implementation for GPU" with a home-made
DLL to interface with LabVIEW.

Predictions with this AI method are calculated in 8 ms, an improvement compared to the
12 ms required by the algorithm based on rules, hence paving the way to increase the tracking
framerate to more than 100 Hz.

In figure V.4, we present and compare tracks obtained with the different models. The trai-
ned algorithms, shown in the previous figure, have not been used yet for tracking, this project
is still in progress. We use older versions. We have been able to track successfully bacteria for
more than 500 s in each cases. Remarkably it is the first time that Lagrangian 3D tracking
of bacteria in brightfield is achieved for such a long period. We combine white light with a
495-nm long-pass filter as proposed in [76] to suppress the speed decay of order 30 µm/s/h
observed under the blue light used for excitation. Impurities, unlike in fluorescence, are visible
in bright field. The tracked bacterium can, for the moment, be lost when passing too close to
"impurities" of the same size, such as dusts or other bacteria. We compare the Z-accuracy of
each algorithm by taking the standard deviation

√
< (z − zfit)2 > of the difference between the

resulting raw z-position z(t) to the smoothed ones zfit(t) as described in the previous chapter.
In fluorescence, more light intensity is needed for the AI-based algorithm to work. We want to
improve this aspect by adding noise to the training dataset. However, we already show a slight
improvement on the Z-accuracy.

We have successfully tracked bacteria for more than 500 s by implementing a "zero-crossing"
AI-based method for real-time tracking. The methodology that we developed is in principle
applicable to any objects. For the first time, bacteria can be tracked in bright field. The accuracy
is already comparable to the previous algorithm. Many ideas are still under development.
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Figure V.4 – Comparison of the different tracking algorithms. First column corresponds to
the algorithm based on rules, second and third are the ones based on AI. These algorithms
were trained respectively for fluorescence and brightfield imaging. 1st row : snapshots of the
tracked objects. Less fluorescence intensity is currently needed for the rules based algorithm.
In brightfield, there are some impurities in the landscape. 2nd row : trajectories of more than
500 s. 3rd row : Smoothed speed (on 1 s) as a function of time and linear fit (dashed line). The
speed of the bacterium decreases under blue light (≈ 30 µm/s/h) but not in brightfield (the
light is filtered with a 495-nm long-pass filter). 4th row : Raw z-trajectories fitted by smoothing
(dashed line) allowing to estimate the accuracy of the z-detection.
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V.5 Application to fluorescent bacteria in mucus : a first
track

At the very end of my PhD, we successfully applied this methodology to mucus from piglet
#4, leading to the first 3D tracking of a fluorescent bacterium in this optically complex fluid
(see figure V.5).

In this track, the bacterium has a "stop & go" dynamics of the same type as the one reported
in hydrogels in Hector Urra’s PhD thesis [144] and S. Datta et al [43] where the reorientations
are controlled by the fluid via "medium-assisted tumbles". The bacterium used is a tumbling
bacterium and we cannot fully judge whether these dynamics are due to the active tumbles
or the passive "medium-assisted tumbles". However the measured persistence time τp = 0.8 s,
which is lower than that expected in water, favours medium-assisted tumbles. The bacterium
speed, when swimming, is about V = 20 µm/s, comparable to the speed observed in water. The
measured emerging diffusion coefficient D = 35 µm2/s, influenced by the many reorientations,
is ten times lower than would be expected in a water-like fluid. After Ttrap = 50 s of tracking,
the bacterium has shown to stop moving, compatible with a tracking probability κ0 = 1/Ttrap =
0.02 s−1 associated with a mucus sample as discussed in the model of mucus penetration IV.4.
The whole phenomenology is quantitatively consistent with H. Urra’s measurements [144] in
mucin 7.5%, comparable to the mucus from piglet #4, concentrated at 7.4%, in which we track.

In addition to the bacterial track, we are able to visualize the mucus indirectly. In fact,
we have implemented the ability to ’replay’ the recorded trajectory of the bacterium on the
microscope, with no restrictions on the optical conditions. We then "replay" the trajectory of the
bacterium, but this time in bright field, to visualize the optical heterogeneities of the mucus (we
hypothesize that the optical landscape of the mucus does not change over a sufficiently short
period of time). It is then possible to combine the film taken during the tracking and the film
taken during the "replay" to visualize both the bacterium and the mucus. We want to check
whether the optical heterogeneities of the mucus correlate with some mechanical heterogeneities
that would affect the bacterium. However, as it requires good precision, this "replay" function
needs to be carefully checked before studying these correlations.
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Figure V.5 – First track of a fluorescent bacterium. (a) Snapshot of a tracked bacterium
(green channel) navigating through mucus (blue channel). (b) Same but in grey scale. (c) 3D
trajectory. There is no interaction with surfaces. (d) Speed of the bacterium V (smoothed
on 0.5s on XY and 1s on Z) as a function of time t. The bacterium swims at V = 20 µm/s,
comparable to the speed observed in water but displays a stop & go dynamics until getting fully
blocked after 50s of tracking. (e) Orientation ACF as a function of time lag ∆t with a fitted (red
curve) persistent time τp = 0.8 s, smaller than in water and compatible with "medium-assisted
tumbling". (f) MSD as a function of time lag ∆t with a fitted (red curve) diffusion coefficient
D = 35 µm2/s, about ten times lower than expected in water.
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Chapter VI

Conclusion

Inspired by the understanding of bacterial swimming mechanisms hypothetically involved
in the medical problem of bacterial infection in the gut, we experimentally studied the spread
of the model motile microorganism E. coli in two model experiments : first in a geometrically
confined environment, mimicking breaches in a mucus barrier, and second, in purified mucus
extracts from the gut of piglets, rendering the mechanical properties of a mucus barrier.

In the first part, we used a Lagrangian tracking system to study the spread of bacteria
between two parallel solid plates at the level of individuals. The plates are separated by a
height H that is varied from tens to hundreds of microns.

E. coli perform a well-known run & tumble process, i.e. continuous trajectories interrupted
by sudden reorientations. The hydrodynamic interactions occurring at the surface change their
trajectory, from straight to circular, and trap them so that they only take off after a tumble. As
a result, they alternate between a straight 3D motion interrupted by reorientations in the bulk
and a circular 2D motion at the surface in which a tumble can lead either to a change in orbit
or to take-off. The interplay between phases in the bulk and phases at the surface affects the
transport properties. This is the focus of this work. Following the work of Figueiroa et al, we use
the Behavioral Variability (BV) model to describe the run times dynamics of our swimmers. In
this model, the temporal fluctuations of an internal variable, called "the mood", predominate
over the phenotypic variability between individuals to explain the large distribution of run
times observed in the experiments.

Interestingly, a bacterium can be characterized by its constant kinematic parameters (the
swimming speed V and the gyration radius at the surface R) but these parameters show a
large variability within a population. We complemented the measurement of the kinematic
parameters with some anatomical parameters (the body size, the bundle size and the number
of flagella). Speed is actually independent of the anatomy. In particular, there is no relationship
between swimming speed and the number of flagella. On the other hand, our results suggest that
the gyration radius of an individual can be explained by the number of flagella. In a simple
scenario, flagella tend to repel the body from the surface by steric hindrance, reducing the
hydrodynamic forces in play and thus increasing the gyration radius on average. The observed
variability could then result from the detailed localization of the flagella on the body. Bacterial
selection based on anatomy does not eliminate the variability in kinematic properties. This led
us to explicitly include the kinematic parameters of each individual in our model as an objective
measurement.

We have shown experimentally that confinement slows down the lateral exploration of E.
coli. We also measured the residence times, both at the surface and in the bulk. The mean
surface residence time is essentially independent of confinement height and its distribution
is log-normal. The mean bulk residence time scales linearly in our confinement range and
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its distribution decays exponentially. These measurements are compared with a numerically
implemented model. In this model, the previously calibrated BV model for the run times is
combined with simple rules at the surface. In particular, the gyration radius R can be varied
from the "sticking" limit R = 0 to the "straight" limit R = ∞. In the limit of small heights, the
diffusion is zero in the "sticking" limit and it is maximized in the "straight" limit. In between
is the "no wall" limit, which is also the limit for large heights for all radii. In the range of
measurements, experimental and numerical outcomes are in quantitative agreement, with no
adjustable parameters, both for the lateral diffusion coefficient and for the residence times.

Two effects of the confinement on the lateral spreading have been identified : First, the global
diffusion coefficient resulting from the interplay between bulk and surface phases is mainly their
weighted average. The more confined the environment, the more bacteria will spend time at
the surface rather than in the bulk. Smaller heights then increase the diffusion in the "straight"
limit, but decrease it in the "sticking" limit. Secondly, the surfaces induce a time cut-off for the
runs that take place in the bulk. As shorter runs lead to a decrease in the diffusion coefficient,
this effect reduces the lateral diffusion with decreasing height. However, it is not clear to what
extent the results of the two parallel plates geometry described here, would apply to more
complex geometries.

Quantitative experiments with bacteria are often carried out in the presence of confine-
ment, an element that is often neglected. Beyond the fundamental interest, our results could
be applied to medical and ecological issues, such as infections through physiological ducts or
the search for ecological niches in natural soils. In the context of breaches in mucus, which can
be dense enough to act as a solid surface, our results suggest that even in the "sticking" limit,
a bacterium swimming as slowly as V = 20 µm/s would invade the surface of the epithelium in
a reasonable time (Tinv < 100 s for a breach as long as ∆X = 100 µm and as thin as H = 10 µm).

The second part of this thesis is dedicated to bacteria swimming in biological mucus. Mucus
was extracted from the intestines of a cohort of piglets divided into two groups : "suckling" and
"weaned", and then purified to focus on the mechanical properties of the mucin network, rather
than on the effects of chemical residues. It is not clear how the purification process affects the
mucus properties compared to "in vivo" situations. However, a methodology will be developed
to characterize and compare the mucus extracts obtained.

An experiment based on the elaboration of a microfluidic cell in which a population of
bacteria penetrates a mucus barrier is proposed. An interface is created between a bacterial
fluid and mucus, and a static picture is assessed in a stationary state (after two hours) : unlike
passive beads, motile bacteria do indeed penetrate this "mucus barrier". Most of the bacteria
have migrated from the bacterial fluid to the mucus portion, where they finally get stuck. In-
terestingly, the bacterial concentration profile across the "mucus barrier" is such that there is a
maximum followed by an exponential decay from which a "penetration length" can be quanti-
fied. The concentration profile is rationalized with a simple model based on diffusion on both
sides of the interface and a trapping probability. Interestingly, the observed maximum could
be attributed to mucus hydration at the interface but also to chemotaxis. This "penetration
length" can be interpreted as an indicator of "mucus quality". This characterization is comple-
mented by optical measurements in phase contrast microscopy leading to two structure sizes,
and rheological measurements leading to flow curves describing a Herschel-Bulkley fluid, i.e. a
yield stress and shear thinning fluid. Reproducibility is assessed by repeating these experiments
for a given piglet.

Six mucus extracts, corresponding to six different piglets balanced between the two groups,
have been characterized. A large variability in "penetration length" is observed for the different
purified mucus, ranging from 200 µm to more than 800 µm. These sizes are in the range of a
typical "in vivo" mucus barrier. Surprisingly, this variability is not reflected in the rheological
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measurements which are all in the same order of magnitude. However, the rheological behaviour
can differ qualitatively from one sample to another : the rheology of some extracts depends
on the shear history, while others do not. Nevertheless, four of the samples have the same
"penetration length" and share the same optical structure sizes. This suggests that the mesh
size, or the microscopic heterogeneities, may be more important than the macrorheological
properties in understanding the swimming properties of bacteria.

The static picture of the bacterial penetration of a "mucus barrier" provides some new in-
formation about the underlying process, but a temporal picture would provide more. We have
extended the use of the Lagrangian tracking device with an AI-based method that is appli-
cable to a wide range of objects in more complex optical environments. The principle of the
method is to train a neural network to associate out-of-focus images of an object with its actual
displacement from the focal plane. A collection of labelled out-of-focus images is generated ex-
perimentally on immobile objects in the optical conditions in which we want to track them. This
method has been successfully implemented for real-time tracking. Compared to the previous
algorithm based on empirical rules and live image analysis, it is more accurate ("zero crossing
method" vs. "minimum method"), faster (7 ms vs. 10 ms) and offers new possibilities, such as
the tracking of non-fluorescent objects. Importantly, this method was successfully applied to
fluorescent bacteria in mucus, resulting in the first 3D trajectory of a bacterium in mucus. The
tracked bacterium swims for Ttrap = 50 s before being trapped. Its persistent time is τp = 0.8 s
and its diffusion coefficient is D = 35 µm2/s, much lower than expected in water, in agreement
with previous experiments in model fluids such as hydrogels or commercial mucin. Systematic
work remains to be done.

This study, which remains preliminary, does not lead to strong conclusions. However, the
new experimental protocols and analysis pipelines pave the way for future work.
More needs to be understood about the structure of the mucin network. Neutron scattering,
microrheology experiments and OCT microscopy could provide valuable new information. For
medical applications, the biological relevance of the experimental conditions needs to be de-
monstrated, for example by replicating the mucus staining proposed in recent work close to in
vivo situations, and ultimately by reproducing these situations. Potentially, the "mucus quality"
proposed here can provide a novel diagnostic tool, especially for patients with obesity, diabetes
and IBD. The evolution of the mucus barrier with drugs or chemicals could be studied. A com-
parison between selected bacterial strain could also be considered.

In summary the main results of this thesis consist of new measurements of bacterial swim-
ming in confined geometries and a new methodology to study their accumulation and trapping
in intestinal mucus layers. The results and the new experimental protocols extend the state
of the art on the bacterial exploration and their penetration in viscoelastic fluids. This work
opens up many perspectives and could form the basis for future studies.
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Annexe A

Protocols : Bacteria from the freezer to
their trajectory

Before going into details of the preparation, I want to emphasize that from the moment
bacteria are in their final tube, one must try to imagine himself in this tube. Simple elements
must be considered : there are surfaces where some of the bacteria adhere, some impurities can
be present and there are some non-motile bacteria. Depending on the configuration, shaking or
not shaking a tube can lead to different sampling. For instance, if impurities and non-motile
bacteria sediment, then do not shake the tube and pipet far from surfaces to get more motile
bacteria. Simple but efficient tips.

• List of ingredients :
— LB : Lysogeny Broth Lennox (commercial). Preculture medium.
— TB : Tryptone Broth (10 g/L of tryptone + 5 g/L of NaCl). Filtered at 0.22 µm.

Culture medium.
— PB : Phosphate Buffer 100 mM (61 mM K2HPO4 + 39 mM KH2PO4). Keep pH = 7

constant.
— BMB : Berg’s Motility Buffer (3.9 g/L of NaCl + 0.1 mM EDTA + 25 g/L of L-Serine

+ 10 mM PB). Filtered at 0.22 µm). Motility medium.
— BMB x2 (BMB with double concentration of every solute). Filtered at 0.22 µm). To

be diluted 1 :1 with Percoll.
— Percoll (Reference P1644). Colloidal silica particles of 15-30 nm diameter (23% w/w

in water) coated with polyvinylpyrrolidone (PVP). Density 1.13 g/mL.
— Alexa solution (Reference A20347 Fischer scientific + 200 µL DMSO). Solution to

color flagella. Kept in −20 ◦C.
— Bacterial starters (30 mL preculture at OD = 2 + 6.5 mL glycerol 87%). Single-use

tube containing bacteria. Kept in −20 ◦C.
• Culture steps :

1. Preculture : 100 µL starter + 5 mL LB + 100 µg/mL Ampicillin. ≈ 14 h (overnight).
2. Culture : 100 µL preculture + 5 mL TB + 100 µg/mL Ampicillin. ≈ 4 h (OD ≈ 0.5).
3. Washing by centrifugation 4590 RCF × 5 min : Replace supernatant by 1 mL BMB

x2.
4. (Flagellar coloration : 30 min with Alexa solution 1% v/v. Then double washing by

centrifugation.)
5. Mix 1 : 1 with Percoll for isodensity (no bacterial sedimentation).

• Good practice to avoid contamination and dust :
— Manipulate under the hood.
— Use UV light to clean the hood.
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— Sterilize media by autoclaving (120 ◦C - 20 min) or filtering 0.22 µm.
— Clean surfaces with 70% ethanol.

• Settings of the setup :
— Frame rate : 80 Hz.
— Light source monocolor : Colibri blue LED. Starting from 2% and increasing it as

slowly as possible to counter photobleaching. For long trajectories.
— Light source bicolor : Colibri blue LED 20% and red LED 100%. For flagellar visua-

lization while tracking.
— Objective : 63x Water. Correction ring on 0.19 µm.
— Reflector : 90HE.

• Settings of the track : Bacteria are captured at surface. Trajectories are smoothed to
avoid mechanical noise with a polynomial of degree 2 (Savitsky-Golay algorithm). Smoo-
thing time on X and Y (parallel to surface) is 0.2 s and on Z (perpendicular to surface)
is 0.5 s. Speeds are computed as the derivative of the Savitsky-Golay fit.
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