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R E S U M É

Le sujet principal de cette thèse est la dynamique périodique en temps des
jonctions supraconductrices. En particulier, on se concentre sur l’étude des
propriétés spectrales, ainsi que de transport, de boîtes quantiques (QD) cou-
plées à de multiples réservoirs supraconducteurs (S). De tels systèmes supra-
conducteurs hybrides ont pour caractéristique que la périodicité temporelle
peut être simplement réalisée par l’application de tensions constantes (et com-
mensurables) sur les réservoirs. En conséquence de cette périodicité, les états
liés d’Andreev, localisés sur la boîte à l’équilibre (en l’absence de tension ap-
pliquée), se transforment en des résonances de Floquet-Andreev. Ces résonances
ont une largeur en énergie finie, à cause de la présence de réflexions d’Andreev
multiples et forment des échelles de Wannier-Stark.
À partir des équations de Bogoliubov-de Gennes, périodiques en temps, on
utilise la théorie de Floquet pour obtenir un modèle de liaisons fortes dans
l’espace de Fourier. Une méthode de fraction continue est ensuite utilisée pour
obtenir la résolvante du système, à partir de laquelle les observables dans l’état
stationnaire peuvent être calculées. Nous calculons numériquement les spectres
de Floquet, ainsi que la composante continue du courant de la jonction S-QD-S
et de la bijonction S-QD-S-QD-S, également connue sous le nom de "molécule
d’Andreev". Nous montrons que la fonction spectrale peut être mesurée par
spectroscopie à effet tunnel.
Nous examinons ensuite la bijonction en dehors du régime moléculaire. Nous
constatons que le pilotage périodique induit un couplage à longue portée entre
les boîtes quantiques, entraînant un comportement interférométrique.
Enfin, nous présentons une méthode de dérivation des équations maîtresses
markoviennes pour des systèmes fermioniques sans interactions, reposant sur
une approximation de résonances étroites. Nous appliquons la méthode à une
boîte quantique à niveaux multiples couplée à des réservoirs métalliques, ainsi
qu’à une boîte quantique soumise à un pilotage périodique. Pour une boîte
quantique supraconductrice, nous dérivons une expression pour les popula-
tions des états de Floquet-Andreev.





A B S T R A C T

This thesis explores the time-periodic dynamics of superconducting junctions.
In particular, we study the spectral and transport properties of quantum dot
(QD) systems connected to multiple superconducting (S) reservoirs. The unique
feature of such systems is that time-periodicity can be realized by the applica-
tion of constant and commensurate voltage bias. As a result of the periodic
driving, the equilibrium Andreev bound states, localized on the dot, turn into
nonequilibrium Floquet-Andreev resonances. Using Floquet theory, we map
the time-periodic Bogoliubov-de Gennes equations to a tight-binding chain in
Fourier space. A continued fraction method is then used to obtain the resol-
vent of the system, from which observables in the steady state can be calcu-
lated. We consider two observables: the dc component of the current and the
time-averaged spectral function, which we show can be probed by tunneling
spectroscopy. We numerically calculate the Floquet spectra, as well as the dc
component of the current, of the S-QD-S junction and the S-QD-S-QD-S bijunc-
tion, also known as the “Andreev molecule". We then consider the bijunction
away from the molecular regime. We find that periodic driving induces a long-
range coupling between the dots, resulting in interferometric behavior. Finally,
we present a method for the derivation of Markovian master equations for non-
interacting fermionic systems, relying on a narrow resonance approximation.
We apply the method to a multilevel QD coupled to metallic reservoirs, as
well as to a periodically driven QD. For a superconducting QD, we derive an
expression for the populations of the Floquet-Andreev states.
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1
I N T R O D U C T I O N

1.1 floquet systems

Floquet theory is concerned with systems which are periodic in time. It was
introduced towards the end of the 19th century by G. Floquet for the study of
linear systems of differential equations with time-periodic coefficients [1]. At
that time, the main motivation was the study of classical systems, particularly
in the context of celestial mechanics and the problem of the stability of periodic
orbits [2, 3]. In a quantum mechanical context, the time-dependent Schrödinger
equation is always linear, and a natural application of Floquet theory arises
whenever the Hamiltonian of the system is time periodic

ih̄
d
dt

|ψ(t)⟩ = H(t) |ψ(t)⟩ , with H(t + T) = H(t), (1.1)

where T = 2π
ω0

is the period.

floquet engineering is currently one of the principal motivations for
studying Floquet systems. The term refers to the fact that it is possible to use
periodic driving, such as irradiation by a laser, to control a quantum system and
fabricate its properties on demand [4–6]. Essentially, the driving enlarges the
parameter space of the system, providing an additional “experimental knob"
which can be used to realize states that are not accessible in equilibrium. A
paradigmatic example that demonstrates the principle of Floquet engineering
in the classical world is Kapitza’s pendulum [7]: a rigid pendulum whose sus-
pension point oscillates vertically. At a high enough vibration frequency, the
upright position of the pendulum is dynamically stabilized, illustrating that the
states of a driven system can become very different from those in equilibrium.

There is renewed interest in the study of periodically driven quantum sys-
tems, owing both to theoretical progress and to developments in experimental
techniques [8]. For example, periodic driving has been used to open band gaps
in graphene [9, 10], to induce topological properties in non-topological mate-
rials [11, 12], or to realize discrete-time crystals [13, 14]. Moreover, advances
in ultrafast spectroscopy have allowed the spectacular imaging of the Floquet
bandstructure of a topological insulator in real time [15, 16].
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1.1.1 Basics of the Floquet method

The Floquet theorem guarantees that the solutions of Eq. (1.1) have the follow-
ing form ∣∣ψj(t)

〉
= e−iε jt/h̄ ∣∣uj(t)

〉
, with

∣∣uj(t + T)
〉
=
∣∣uj(t)

〉
(1.2)

i.e., they can be written as a product of a phase factor and a time-periodic func-
tion with the same period as the Hamiltonian. Therefore, the Floquet theorem
is the temporal analog of the Bloch theorem for systems with spatial periodicity.
Inserting the solution (1.2) into the time-dependent Schrödinger equation,[

H(t)− ih̄
d
dt

] ∣∣uj(t)
〉
= ε j

∣∣uj(t)
〉

, (1.3)

one finds that the Floquet states
∣∣uj(t)

〉
are eigenstates of the operator(

H(t)− ih̄ d
dt

)
with eigenvalue ε j. However, it is straightforward to verify that

one can equivalently write[
H(t)− ih̄

d
dt

]
eimω0t ∣∣uj(t)

〉
= (ε j + mh̄ω0)eimω0t ∣∣uj(t)

〉
, (1.4)

with ω0 = 2π/T being the driving frequency. As a result, the quasienergies ε j
are only defined up to integer multiples of the frequency ω0 [17]. The Shirley
approach to the time-dependent problem [18] is to expand the time-periodic
quantities in Fourier series

H(t) = ∑
m

e−imω0tHm

and
∣∣uj(t)

〉
= ∑

m
e−imω0t

∣∣∣um
j

〉
.

(1.5)

Using the Fourier transform, the time-dependent Schrödinger equation is
mapped to an eigenvalue problem

∑
n

Hn

∣∣∣um−n
j

〉
− mh̄ω0

∣∣∣um
j

〉
= ε j

∣∣∣um
j

〉
(1.6)

in an extended Hilbert space H⊗T, consisting of a tensor product of the Hilbert
space of the system H with the vector space T of time-periodic functions with
period T [19]. Written in a matrix representation, the effective Floquet Hamilto-
nian is a matrix of infinite dimensions

. . .
H0 − h̄ω0 H1 H2

H−1 H0 H1
H−2 H−1 H0 + h̄ω0

. . .





...
u1

j
u0

j
u−1

j
...


= ε j



...
u1

j
u0

j
u−1

j
...


(1.7)
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where each element of the matrix is a block with a dimension equal to the di-
mension of H. Equation (1.6) means that the initial time-dependent problem
has been mapped to a static tight-binding model where time has been traded
for a fictional dimension. In this picture, the Fourier modes m, n can be inter-
preted as positions on the tight-binding lattice, with off-diagonal terms Hn ̸=0
describing the hopping between different sites by absorption or emission of
n "photons", and H0 describing an on-site energy. Moreover, the term mh̄ω0
is analogous to the existence of a fictitious electric field [8]. The presence of
this term implies that a high frequency produces energetically separated states.
This permits a simplification of the problem, since the infinite matrix can be
drastically truncated.

1.1.2 Open and closed Floquet systems

Floquet systems are a special class of non-equilibrium systems and, as such,
not described by the usual equilibrium thermodynamic rules [20, 21]. For exam-
ple, the notion of a Floquet ground-state is ill-defined, since the quasienergies
play the role of phases and, consequently, cannot be uniquely ordered. Another
point that is not trivial and has recently attracted attention is how to determine
the populations of Floquet states [22–25].
At this point, one should make the distinction between open and closed Flo-
quet systems: In a generic closed system, periodic driving supplies energy that
is absorbed until the system thermalizes (heats to an infinite temperature) [26].
That is not to say that closed Floquet systems are without interest. Indeed, heat-
ing can be exponentially slow, particularly in high-frequency regimes, resulting
in long-lived transient states [27]. Moreover, the presence of disorder can result
in many-body localization which can also lead to an absence of thermalization
[28, 29].
A completely different situation arises if the system is open, meaning that it is in
contact with a reservoir. Then, the presence of dissipation to the environment
acts as a cooling mechanism. It can therefore provide a balance to the peri-
odic drive and, in many cases, the system reaches a non-equilibrium steady
state [22–25, 30–32]. Open systems naturally arise in platforms for the study
of quantum transport, where a small system is connected to two or more elec-
tronic reservoirs. Non-equilibrium states then occur by, for example, keeping
the reservoirs at different chemical potentials. In this thesis, we will focus on
the case where the reservoirs are superconducting. Due to the Josephson rela-
tion (to be defined shortly), periodic driving can then be realized by application
of a dc voltage bias.
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(a) (b)

Figure 1.1: (a) A conventional Josephson junction. (b) A multiterminal Joseph-
son junction.

1.2 superconducting devices

In recent years there has been a surge of interest in superconducting devices
and circuits. Interest is both theoretical and practical, since, for example, such
devices are potentially useful for creating superconducting qubits [33–35]. Their
elementary building block is the Josephson junction, made by two superconduc-
tors separated by an insulating material (Fig. 1.1a), and their operation is based
on the Josephson effect.
In the words of Anderson [36], it was understanding of the importance of bro-
ken symmetry in superconductivity that led to Josephson’s discovery. A su-
perconductor spontaneously breaks a global U(1) symmetry in the sense that
its wavefunction has a preferred macroscopic phase. A consequence of this
symmetry breaking is that charge is not well-defined and one needs to make
a superposition of electron and hole states to build an excitation. Then, spa-
tial variations of the pair potential lead to a new scattering process, where an
electron-like excitation is scattered into a hole-like excitation. This process was
independently identified by Saint-James and de Gennes [37, 38] and by An-
dreev [39, 40], and goes by the name of Andreev reflection. This process is
of particular importance in superconducting junctions, where it is used for the
microscopic description of the Josephson effect. Most notably, it leads to the for-
mation of bound states in the weak-link region of the junction, with energies
below the superconducting gap. These are called Andreev bound states.

1.2.1 Josephson effect

In 1962, Josephson predicted the existence of a supercurrent due to the coherent
tunneling of Cooper pairs between two superconductors separated by a thin
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insulating layer [41]. The phenomenon can be summarized by the following
two equations:

I(t) = Ic sin(ϕ(t)) (1.8a)
dϕ

dt
=

2e
h̄

V(t) (1.8b)

where ϕ is the phase difference between the two superconductors. In the ab-
sence of any applied voltage, the phase difference does not change with time
and there is a constant dissipationless current (a supercurrent) flowing through
the junction whose amplitude depends on the phase difference

I = Ic sin(ϕ), (1.9)

where Ic is the critical current. This is the dc Josephson effect. The effect depends
on the fact that the macroscopic wavefunctions of the superconductors overlap
in the middle region [42].
If a dc voltage bias V is applied through the junction, then the phase difference
evolves with time ϕ(t) = ϕ0 +

2e
h̄ Vt. The result is that the supercurrent becomes

alternating with a frequency ωJ =
2eV

h̄ :

I(t) = Ic sin(ϕ0 + ωJt). (1.10)

This is the ac Josephson effect.

The dc and ac Josephson effect are not specific to the case of the tunnel junction
originally considered by Josephson. Different hybrid superconducting systems
made of superconductors coupled through some sort of weak link can exhibit
the effects. We denote such Josephson junctions as S-X-S where S are the super-
conductors and X is the non-superconducting material. X can be an insulating
barrier, in which case one talks of a "tunnel junction", but it can also be a point
contact, a short constriction, a normal metal, or another type of material in the
place of the insulating layer. Equation (1.8b) is a general quantum-mechanical
relation that always holds, while the current-phase relation does not always
have the sinusoidal form of Eq. (1.8a). For a review of different types of Joseph-
son junctions and the corresponding current-phase relation, see [43].
In this thesis, we will focus on the case where X is a quantum dot (QD) [44–
46]. Quantum dots are artificial atoms [47, 48] where electrons are trapped in a
small region, resulting in a discrete spectrum. They are usually made of a metal,
a semiconductor, a carbon nanotube or small molecules. Crucially, the number
of trapped carriers can be controlled with a gate voltage, and this results in a
variety of possible regimes for transport through the dot; for example, see [49].
We will in particular consider the weakly-interacting regime where the dot can
be modeled as a single discrete level [50].
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1.2.2 Andreev reflection

The size of a Cooper pair ξ0
1 can be estimated from Heisenberg’s uncertainty

relation. A typical value is a few hundred nanometers, which is much larger
than the average distance between electrons in matter ξ0 ∼ 103λF, where λF is
the Fermi wavelength. This means that in a superconductor electrons are cor-
related at mesoscopic distances that are of the order of ξ0, which is therefore
called the superconducting coherence length. Another direct result is the prox-
imity effect: superconducting correlations are induced in non-superconducting
materials that are brought into contact with a superconductor. The proximity
effect is intimately related to the Andreev reflection mechanism [51].
As an example, consider a normal-superconducting interface (N-S). Naively, an
electron coming from the normal metal with energy around the Fermi energy
cannot tunnel through to the superconductor since there are no available states
at energies inside the superconducting gap |E| < ∆. However, since the proxim-
ity effect creates non-zero superconducting correlations in the normal region,
this means that there is a finite probability that the electron in the state k↑ will
pair up with another electron with opposite momentum and spin −k ↓, form-
ing a Cooper pair. The Cooper pair can then tunnel to the S region. The result
is that a charge of 2e is transferred from the N region to the S region [52]. An
alternative way to view this process is to think of the ingoing electron as being
reflected on the N-S interface as an outgoing hole of opposite spin. This reflec-
tion of an electron into a hole (and vice versa) is called the Andreev reflection
and plays an important role in describing the microscopic physics of Josephson
junctions.

1.2.3 Andreev bound states

Consider now the possibility of an S-N-S structure. If a right-moving electron
in the N region is Andreev reflected as a left-moving hole on the right interface,
the hole can then be reflected as a right-moving electron on the left interface.
The electron will then be Andreev reflected into a hole on the right interface,
and so on. Such multiple Andreev reflection processes between the two su-
perconducting reservoirs will result in the formation of bound states, like a
standing wave made of a superposition of electrons and holes. These are the
Andreev bound states (ABS) [53]. The ABS have energies which come in pairs
around zero inside the superconducting gap. In the limit where the length of
the N region is short compared to the superconducting coherence length, the
ABS energies are given by [45]

EA = ±∆
√

1 − τ sin2(ϕ/2)

1 In BCS theory ξ0 = h̄vF
∆ , where vF is the Fermi velocity and ∆ is the size of the superconducting

gap.
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Figure 1.2: Andreev bound state formation. (a) Transfer of a Cooper pair
through an S-N-S junction due to successive Andreev reflections.
(b) The density of states in the normal region contains a pair of An-
dreev bound states within the superconducting gap.

where τ is the transmission probability. As illustrated in Fig. 1.2, two consec-
utive Andreev reflections are equivalent to the transfer of a Cooper pair from
the left superconductor to the right superconductor. This process corresponds
to the negative energy bound state. The opposite process transfers Cooper pairs
from the right superconductor to the left and corresponds to a positive energy.
Therefore, each Andreev bound state results in a supercurrent of opposite di-
rection

I(ϕ) =
2e
h̄

∂EA

∂ϕ

and contributes to the dc Josephson effect.
In recent years, enormous progress has been made in the fabrication and exper-
imental manipulation of superconducting devices. Andreev bound states have
been measured with the help of tunneling [54] and microwave spectroscopy
[55–58]. Progress towards the realization of an Andreev qubit [59–61] has also
been achieved with the coherent manipulation of the Andreev states [62].

1.2.4 Voltage-biased Josephson junctions

When a voltage difference V is applied across a junction, the current oscillates
as a sine function of the Josephson frequency. Taking its time-average would
then result in an average of zero Cooper pairs being transmitted through the
junction. Therefore, one naively expects that the average current is zero if the
voltage difference is smaller than the gap eV < ∆ (if eV exceeds the value of the
gap, then quasiparticles can directly tunnel through the junction, producing a
dissipative current). In reality, however, one observes a non-zero current even
in the subgap region eV < ∆. This is possible because of higher-order Andreev
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Figure 1.3: (a) Sketch of a multiple Andreev reflection of order n = 3. In this
MAR ladder picture, the leads are placed at the same chemical po-
tential and quasiparticles "climb" the ladder with each Andreev re-
flection. (b) Current-voltage characteristics in the S-QD-S case.

reflection processes. The literature on this topic goes back to the classic paper
by Klapwijk, Blonder, and Tinkham [63].
By traversing a normal region with a potential difference of V, quasiparticles

can change their energy by an amount equal to eV. The quasiparticles can then
undergo a number n of successive multiple Andreev reflections (MARs), thus
changing their energy by neV. Then, whenever eV = 2∆/n, the quasiparticle
has gained enough energy to overcome the superconducting gap. As an ex-
ample, a third-order MAR process, occurring when eV > 2∆/3, is shown in
Fig. 1.3a. MAR processes lead to a dc dissipative current, which exhibits jumps
when the voltage is an integer subdivision of the gap. This is called the subhar-
monic gap structure or subgap structure of the current-voltage characteristics
[64–67]. It follows that at small voltage values one needs to take into account an
increasing number of higher-order processes in order to calculate the current.
This makes the inclusion of MAR processes a theoretical challenge.
In the limit of resonant tunneling through the junction, the subgap structure
is greatly modified [45, 68, 69]: features corresponding to an odd number of
MAR are enhanced, while even trajectories are suppressed. Moreover, the sub-
gap current is sensitive to the energy position of the resonant level [70]. An
example, calculated with the method presented in Chapter 3, is shown in Fig.
1.3b.

1.2.5 The Andreev molecule

Josephson junctions are nowadays routinely used in experiments as parts of
superconducting circuits, and various setups have been developed in which
Josephson junctions are used to realize superconducting qubits [35, 71, 72]. One



1.3 outline 9

Figure 1.4: Sketch of the Andreev molecule.

of the proposed configurations is the Andreev level qubit, which uses the ABS
of a Josephson junction as a two-level system [59–62]. At the same time, as
experimental control and techniques become more refined, there is increasing
interest in the properties of more complex setups, such as transport proper-
ties of multiterminal Josephson junctions, where the normal region is coupled to
more than two superconducting leads (Fig. 1.1b). In particular, a multitermi-
nal Josephson junction can be used to engineer topological states, even when
the junction is made from topologically trivial materials [73]. Moreover, multi-
terminal configurations are being used to study nonlocal transport effects. For
example, there is the possibility to create correlations between Cooper pairs,
the so-called quartets [74–77].
It is therefore of interest to understand how two Josephson junctions might
interact when they are closely spaced. In an analogy to the formation of a
molecule, bringing two ABS carrying junctions close enough should result in a
hybridization of the ABS wave-functions, thus creating an "Andreev molecule".
The hybridization results in non-local effects in the Josephson current, whereby
changing the phase at one junction would change the current of Cooper pairs
flowing through the other [78]. This could be useful for realizing qubits whose
coupling, for example, can be tuned by changing their phase difference, but
one should have a distance of the junctions which remains comparable to the
superconducting coherence length ξ0. In a typical superconductor, such as alu-
minum, ξ0 ∼ 100 nm.
The Andreev molecule and its signatures have been the recent subject of both
theoretical [78–83], as well as experimental studies [84–88]. The nonlocal Joseph-
son effect was recently demonstrated [89]. Recent works have also focused on
the occurrence of the Josephson diode effect– an asymmetry of the critical value
of the supercurrent depending on its direction– in Andreev molecules [82, 90–
92].

1.3 outline

In Chapter 2, a brief description of BCS theory is given, followed by a study of
the S-QD-S system, as well as of the Andreev molecule in equilibrium (in the
absence of voltage bias).
In Chapter 3, we present a formalism that can be used to study the Floquet spec-
trum of multiterminal Josephson junctions biased with commensurate voltages.
In particular, we first study a quantum dot coupled to two superconducting
leads (S-QD-S system) before turning our attention to the Andreev molecule
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geometry (S-QD-S-QD-S system). The focus is on two observables in the steady
state: the spectral function, which can be probed with tunneling spectroscopy,
and the dc component of the current. The main results are the spectra of the
driven Andreev molecule, as well as the corresponding subgap current. Most
of the results of this chapter have been published in [93].
In Chapter 4, we study the long-range coupling that develops between the
quantum dots of the S-QD-S-QD-S system when the middle superconductor is
longer than the superconducting coherence length. We focus on the influence
of this Floquet-Tomasch effect on the subgap region of the spectrum. The re-
sults of this chapter have been published in [94].
Finally, in Chapter 5, we present preliminary work on the derivation of a Flo-
quet master equation for the S-QD-S system. A general method is presented for
the derivation of master equations for non-interacting fermionic systems. The
method relies on a "quasiparticle approximation" and gives the populations of
the Floquet states at the limit of weak coupling to the reservoirs, when the
Floquet-Andreev resonances are sharply peaked.



Part I

T H E O R E T I C A L B A C K G R O U N D





2
E L E M E N T S O F B C S T H E O RY

2.1 introduction : historical

At the start of the 20th century, a debate was ongoing: what happens to the
electrical resistance of a metal wire when its temperature is lowered to abso-
lute zero? On one side there was Lord Kelvin’s argument that electrons would
freeze around the atoms, therefore causing the resistance to rise infinitely, while
Drude’s theory of the free electron gas suggested that the resistance would
smoothly disappear, making the metal a perfect conductor at zero tempera-
ture [95, 96]. In 1911, the coldest place on earth was in Kamerlingh Onnes’
lab in Leiden. Having managed to liquefy helium three years prior,1 Onnes
was attempting to give a definite answer to the resistance riddle by cooling
down pure metals and measuring their electrical conductivity. However, what
he found was yet another puzzle, one that would remain unsolved for almost
50 years. In Onnes’ own words [97]:

“As has been said, the experiment left no doubt that, as far as accu-
racy of measurement went, the resistance disappeared. At the same
time, however, something unexpected occurred. The disappearance
did not take place gradually but abruptly. [...] Thus the mercury at
4.2K has entered a new state, which, owing to its particular electrical
properties, can be called the state of superconductivity."

A superconductor has many amazing properties (the most notable being zero
electrical resistance and consequently possibility to transport current without
dissipation–as discovered by Onnes–and perfect diamagnetism and expulsion
of magnetic fields–as discovered by Meissner in 1933), but, most importantly,
it is a many-body quantum phenomenon expressed macroscopically. An im-
portant step towards theoretical understanding was F. London’s idea that the
superconducting state possess a rigidity under perturbations. Bardeen later pro-
posed that the rigidity of the wavefunction could be explained by the existence
of an energy gap that separates the superconducting ground state from the
lowest excitation energy.

1 Helium has a boiling point of 4.2K and Onnes managed to get to a record temperature of about
1.5K
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The complete microscopic theory of superconductivity was finally proposed
in 1957 by Bardeen, Cooper and Schrieffer [98]. The BCS theory explained the
superconducting state as a condensate of Cooper pairs, pairs of electrons in-
teracting through the exchange of phonons. Shortly after, in 1962, Josephson
understood that a supercurrent ought to flow between two superconductors
separated by a thin insulating layer (tunnel junction). If, moreover, the super-
conductors are at different voltages, the supercurrent is alternating, and the
voltage to frequency conversion is so accurate, that it provides the standard
for the definition of the volt. These two phenomena, now called the dc and ac
Josephson effects, are routinely exploited by superconducting devices.

In this chapter I try to give a brief description of BCS theory, mostly following
the development used in the excellent book by Schrieffer [99]. The Bogoliubov-
de Gennes equation [100] which is useful for inhomogeneous superconductors
is presented, and care is taken in discussing the dynamics of Bogoliubov-de
Gennes states. The chapter concludes with an application to the S-QD-S junc-
tion and the three-terminal S-QD-S-QD-S junction, otherwise known as the
Andreev molecule. Throughout this thesis superconductivity always refers to
conventional superconductivity, as described by BCS theory.

2.2 description of the condensed state

Cooper studied the problem of a pair of electrons which interact above a nonin-
teracting Fermi sea [101]. He showed that if there is a net attractive interaction,
no matter how weak, there exist bound states of electron pairs with opposite
momenta and spins. Since the bound states have an energy below the Fermi
energy, it is energetically favorable for electrons to pair up, resulting in the for-
mation of a macroscopic number of these Cooper pairs, and an opening of a
gap at the Fermi level. The Cooper pairs have some resemblance to bosons, but
they are still subject to the Pauli exclusion principle. One can check that the
pairs do not truly obey the Bose-Einstein statistics since[

c−k↓ck↑, c†
k↑c†

−k↓
]
= 1 − (n̂−k↓ + n̂k↑)[

c−k↓ck↑, c†
k′↑c†

−k′↓
]
= 0, k ̸= k′[

c−k↓ck↑, c−k′↓ck′↑
]
=
[
c†

k↑c†
−k↓, c†

k′↑c†
−k′↓

]
= 0.

(2.1)

The starting point for BCS theory is really Landau’s Fermi liquid theory which
describes the normal state of a metal. This is a reasonable starting point
since the normal and the superconducting state have a small energy differ-
ence (around 10−8eV per electron). The wavefunction of the superconducting
state is therefore constructed by considering pairing correlations between oth-
erwise noninteracting quasiparticles [99]. Throughout the thesis we sometimes
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abusively speak of electrons and holes, although in reality one should call them
"quasi-electrons" and "quasi-holes".

We will use the language of second quantization and denote the creation and
annihilation operators for quasiparticles of momentum k and spin σ (↑ or ↓) as
c†

kσ and ckσ, respectively. These operators obey the usual fermionic anticommu-
tation rules, {c†

kσ, ck′σ′} = δkk′δσσ′ , and {c†
kσ, c†

k′σ′} = {ckσ, ck′σ′} = 0.
The many-body wavefunction should describe a coherent state created by
adding pairs of electrons with opposite momenta and spins. A Cooper pair
is therefore created by the pair operator c†

−k↓c†
k↑, where the "bare" operators

c†
kσ create an electron with momentum k and spin σ (σ can be either spin-up
↑ or spin-down ↓), and their hermitian conjugates ckσ annihilate the vaccum
state ckσ |0⟩ = 0. A fitting wavefunction for the superconducting ground state
is then2

|ψ0⟩ = ∏
k
(uk + vkc†

−k↓c†
k↑) |0⟩ . (2.2)

The ground state is made of a superposition of occupied and unoccupied pair
states, with vk being the probability amplitude to find the pair (k↑,−k↓) occu-
pied, while uk is the probability amplitude to find the pair unoccupied. Since
the ground state mixes states with different particle numbers, one can have
nonzero expectation values of the type

∆ ∝
〈
c−k↓ck↑

〉
̸= 0.

Since this quantity is zero in the normal state, it can serve as an order parameter
for the superconducting phase transition. The order parameter is a complex
quantity ∆ = |∆|eiϕ, and it is not gauge-invariant, meaning that it is not an
observable. What is observable is the magnitude |∆|, which represents the size
of the superconducting gap that opens due to the creation of Cooper pairs. Its
existence was first verified in 1960 by I. Giaever [102].

2.2.1 Excitations

Once the ground state is constructed, excited states can be produced by adding
an electron in the state p ↑, and leaving its pair −p ↓ empty. Due to the Pauli
principle, the pair state (p↑,−p↓) is blocked from participating in the pairing
interaction, and therefore the energy of the system is increased. The single-
particle excitation spectrum in the superconducting phase is drastically differ-
ent from the normal phase in the vicinity of the Fermi surface. This is due to the

2 There is freedom in the definition since one can first add the k↑ electron and then its pair −k↓,
or vice versa. Indeed, in the original BCS paper the pair creation operator is defined using the
ordering c†

k↑c†
−k↓, while we have used the opposite order c†

−k↓c†
k↑. One simply has to substitute

vk → −vk in order to retrieve the wavefunction in [98].
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existence of a gap which needs to be overcome in order to create an excitation
from the ground state. Adding an electron of momentum p and spin ↑

c†
p↑ |ψ0⟩ = c†

p↑ ∏
k
(uk + vkc†

−k↓c†
k↑) |0⟩

= upc†
p↑ ∏

k ̸=p
(uk + vkc†

−k↓c†
k↑) |0⟩

≡ up
∣∣ψp↑

〉 (2.3)

or removing an electron of momentum −p and spin ↓

c−p↓ |ψ0⟩ = c−p↓ ∏
k
(uk + vkc†

−k↓c†
k↑) |0⟩

= vpc†
p↑ ∏

k ̸=p
(uk + vkc†

−k↓c†
k↑) |0⟩

≡ vp
∣∣ψp↑

〉
.

(2.4)

creates the same state
∣∣ψp↑

〉
(aside from a normalization factor). In a similar

manner we find that removing an electron from the state p ↑ or adding an
electron to the state −p↓ produces the same state, since

cp↑ |ψ0⟩ = −vp
∣∣ψ−p↓

〉
,

c†
−p↓ |ψ0⟩ = up

∣∣ψ−p↓
〉

.
(2.5)

It is therefore reasonable to define composite quasiparticle creation operators
γ†

kσ which are a linear combination of bare creation and annihilation operators,

γ†
kσ = ukc†

kσ + σvkc−k−σ,

where σ = +1 for spin ↑ and σ = −1 for spin ↓ . The fact that the amplitudes
uk, vk coincide with the amplitudes in Eq. (2.2) is a consequence of imposing
two conditions on the operators γ† and their adjoints γ :

1. the quasiparticle operators γ† and γ obey the usual anticommutation
rules of Fermi-Dirac statistics

2. the ground state is destroyed by application of the annihilation operators
γkσ |ψ0⟩ = 0, ∀k, σ.

The last condition means that the ground state is the vacuum for the γ quasi-
particles. From the above, it follows that the γ†

kσ operator can be identified as
the creation operator of a quasiparticle in the kσ state

γ†
k↑ |ψ0⟩ =

∣∣ψk↑
〉

γ†
−k↓ |ψ0⟩ =

∣∣ψ−k↓
〉

,
(2.6)

while its hermitian conjugate can be identified as the annihilation operator of
that state.
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2.2.2 Bogoliubov canonical transformation and diagonalization

The mean-field Hamiltonian for the BCS theory can be written as

HBCS = ∑
kσ

ϵkc†
kσckσ + ∑

k

(
∆c†

k↑c†
−k↓ + ∆∗c−k↓ck↑

)
, (2.7)

where ϵk is the kinetic energy measured from the Fermi level. Electron number
is not conserved in HBCS due to the unusual terms c†

k↑c†
−k↓ and c−k↓ck↑. Since

the electron number is not well defined one expects that the eigenstates of
HBCS will be a mixture of electrons and holes. One therefore introduces new
operators

γ†
kσ = ukc†

kσ + σvkc−k−σ. (2.8)

This is the Bogoliubov transformation, or Bogoliubov-Valatin transformation
[103, 104]. More than a mathematical trick to diagonalize the BCS Hamiltonian,
the quasiparticle operators γ†

kσ produce the excited states, as we saw previously.
Demanding that the operators satisfy the Fermi-Dirac statistics {γ†

kσ, γk′σ′} =

δkk′δσσ′ , one gets the condition |uk|2 + |vk|2 = 1 for the BCS coherence factors.
With this constraint, the inverse transformation is

c†
kσ = u∗

k γ†
kσ − σvkγ−k−σ (2.9a)

ckσ = ukγkσ − σv∗k γ†
−k−σ (2.9b)

This can be compactly expressed using Nambu spinors(
γ†

k↑
γ−k↓

)
=

(
uk vk
−v∗k u∗

k

)(
c†

k↑
c−k↓

)
⇔
(

c†
k↑

c−k↓

)
=

(
u∗

k −vk
v∗k uk

)(
γ†

k↑
γ−k↓

)
. (2.10)

By using the Bogoliubov transformation on HBCS we obtain

HBCS =∑
k

[(
ϵk|uk|2 − ϵk|vk|2 + ∆u∗

k vk + ∆∗ukv∗k
)

γ†
k↑γk↑

+
(
−ϵk|uk|2 + ϵk|vk|2 − ∆u∗

k vk − ∆∗ukv∗k
)

γ−k↓γ†
−k↓

+
(
−2ϵku∗

k v∗k + ∆(u∗
k)

2 − ∆∗(v∗k)
2
)

γ†
k↑γ†

−k↓

+
(
−2ϵkukvk + ∆∗u2

k − ∆v2
k

)
γ−k↓γ†

k↑
]
.

(2.11)

The BCS coherence factors are complex numbers which we can write as

uk = xkeiϕ/2 (2.12a)

vk = yke−iϕ/2, (2.12b)

with the magnitudes xk, yk real. We can choose the coherence factors such that
the Hamiltonian is diagonalized, i.e. the last two lines of Eq. (2.11) are zero.
This requires that

−2ϵkxkyk + |∆|(x2
k − y2

k) = 0. (2.13)
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Together with the constraint x2
k + y2

k = 1, we find that

x2
k =

1
2

1 +
ϵk√

ϵ2
k + |∆|2

 ≡ 1
2

(
1 +

ϵk
Ek

)
(2.14a)

y2
k =

1
2

1 − ϵk√
ϵ2

k + |∆|2

 ≡ 1
2

(
1 − ϵk

Ek

)
. (2.14b)

We have introduced the quantity Ek =
√

ϵ2
k + |∆|2. We will immediately see

that it will acquire the meaning of a quasiparticle excitation energy. Indeed, the
BCS Hamiltonian is now diagonalized

HBCS = ∑
k

[(
ϵk(x2

k − y2
k) + 2|∆|xkyk

)
γ†

k↑γk↑

−
(

ϵk(x2
k − y2

k) + 2|∆|xkyk

)
γ−k↓γ†

−k↓

]
= ∑

kσ

Ekγ†
kσγkσ − ∑

k
(Ek − ϵk),

(2.15)

and the excitations are gapped since a minimum energy equal to |∆| is required
for their creation. The last term in (2.15) is a constant and represents the ground
state energy Eg. It is indeed easy to check that the ground state |ψ0⟩ defined
in (2.2) is an eigenstate of (2.15) with energy Eg, while an excited state with
a quasiparticle in the pσ state

∣∣ψpσ

〉
= γ†

pσ |ψ0⟩ will have energy Ep above the
ground state energy

HBCS |ψ0⟩ = Eg |ψ0⟩
HBCS

∣∣ψpσ

〉
= (Eg + Ep)

∣∣ψpσ

〉
.

(2.16)

2.3 the bogoliubov-de gennes equations

The Bogoliubov-de Gennes (BdG) equations [100] are an alternative formula-
tion of Eq. (2.15), leading to an eigenvalue equation for the coherence factors.
This formalism is often used for describing inhomogeneous superconductors.
Equation (2.15) can be rewritten as[

HBCS, γ†
kσ

]
= Ekγ†

kσ[
HBCS, γkσ

]
= −Ekγkσ

(2.17)
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At the same time, using the definition of HBCS in Eq. (2.7), one can calculate
the commutators3 [

HBCS, c†
k↑
]
= ϵkc†

k↑ + ∆∗c−k↓[
HBCS, c−k↓

]
= −ϵkc−k↓ + ∆c†

k↑
(2.18)

Using the Bogoliubov transformation, the γ can be expressed in terms of cre-
ation and annihilation operators. Then, comparing coefficients on either side of
Eq. (2.17), one arrives at an eigenvalue equation for the amplitudes u, v(

ϵk ∆
∆∗ −ϵk

)(
uk
vk

)
= Ek

(
uk
vk

)
. (2.19)

The excitation energies are now the eigenvalues of the above equation. In the
absence of an energy gap, the BdG equations would simply reduce to two de-
coupled Schrödinger equations: one for electrons, and a time-reversed one for
holes. In the superconducting state, though, the two are mixed. It is easy to
verify that Eq. (2.19) has a second eigenstate

(
v∗k −u∗

k
)T with eigenvalue −Ek.

This redundancy is also apparent in the fact that taking E → −E switches the
role of the creation and annihilation operators γ†, γ, since creating a quasipar-
ticle with energy E is identical to destroying a quasiparticle with energy −E.
This redundancy was introduced by the doubling of the degrees of freedom
which was used to bring the BCS Hamiltonian into a quadratic form.

2.3.1 Dynamics of Bogoliubov-de Gennes states

So far we have not involved any time dependence in our problem. We will
need to be a bit careful with the time-evolution of the γ quasiparticles. As a
reminder, if we are working in the Heisenberg picture, with U(t) = e−iHt being
the time evolution operator of the system described by a Hamiltonian H(t),
then operators transform as

AH(t) = U†(t)A(t)U(t). (2.20)

It follows that in the most general case their time evolution is given by

i
d
dt

AH(t) = U†(t)
([

A(t), H(t)
]
+ i

d
dt

A(t)
)

U(t). (2.21)

3 Useful commutator relations:[
c†

kσckσ, c†
kσ

]
= c†

kσ

[
c†

kσckσ, ckσ

]
= −ckσ[

c−k↓ck↑, c†
k↑
]
= c−k↓

[
c†

k↑c†
−k↓, c−k↓

]
= c†

k↑[
c†

k↑c†
−k↓, ck↑

]
= −c†

−k↓
[
c−k↓ck↑, c†

−k↓
]
= −ck↑
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This relation reduces to the usual Heisenberg equation of motion when the
Hamiltonian H and the operator A are time-independent

i
d
dt

AH(t) =
[

AH, H
]
. (2.22)

We now want to consider the time-evolution of states which evolve under a
time-dependent Hamiltonian of BCS type

H(t) = ∑
kσ

ϵk(t)c†
kσckσ + ∑

k

(
∆(t)c†

k↑c†
−k↓ + ∆∗(t)c−k↓ck↑

)
. (2.23)

We make the ansatz that the time-evolved BCS ground state is always the vac-
uum for the quasiparticle operators

γ(t) |ψ(t)⟩ = 0, ∀t. (2.24)

In other words, the assumption is that |ψ(t)⟩ remains a BCS state at all times.
Taking the time-derivative, the immediate result is that

i
d
dt

(
γ(t) |ψ(t)⟩

)
= 0(

i
d
dt

γ(t)
)
|ψ(t)⟩+ γ(t)H(t) |ψ(t)⟩ = 0(

i
d
dt

γ(t)
)
|ψ(t)⟩+ (γ(t)H(t)− H(t)γ(t)) |ψ(t)⟩ = 0.

(2.25)

This means that the time evolution of the γ operators has a minus sign with
respect to the usual Heisenberg picture since

i
d
dt

γ(t) =
[

H(t), γ(t)
]
. (2.26)

This is formally equivalent to4

γ(t) = U(t)γ(0)U†(t). (2.27)

In the case of a time-independent Hamiltonian and, due to Eq. (2.17), the evo-
lution of the quasiparticle operators follows directly

γkσ(t) = eiEktγkσ(0) (2.28a)

γ†
kσ(t) = e−iEktγ†

kσ(0). (2.28b)

4 Another way to derive Eq. (2.27) is to start from the condition that the quasiparticle annihilation
operator destroys the ground state

γ(0) |ψ(0)⟩ = 0 ⇒ U(t)γ(0) |ψ(0)⟩ = 0 ⇒ U(t)γ(0)U†(t) |ψ(t)⟩ = 0 ⇒ γ(t) = U(t)γ(0)U†(t).
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Another direct consequence of Eq. (2.26) is that the quasiparticle operators are
time-independent in the Heisenberg representation because

i
d
dt

γH(t) = U†(t)
([

γ(t), H(t)
]
+ i

d
dt

γ(t)
)

U(t) = 0. (2.29)

We can therefore write γH(t) = γ(0) = γ.
It will often be useful to switch between the γ†, γ quasiparticle operators and

the ‘bare’ c†, c fermionic operators expressed in the Heisenberg picture. Starting
from Eq. (2.9), the bare operators c† and c can be expressed in the Heisenberg
picture as

c†
σH(t) = u∗(t)γ†

σ − σv(t)γ−σ (2.30a)

c−σH(t) = u(t)γ−σ + σv∗(t)γ†
σ. (2.30b)

The Heisenberg equation of motion for the c† operator is

i
d
dt

c†
σH(t) = U†

[
c†

σ, H(t)
]
U(t)

= −ϵ(t)c†
σH(t)− ∆∗(t)c−σ(t)

i
d
dt

(
u∗(t)γ†

σ − σv(t)γ−σ

)
= −ϵ(t)

[
u∗(t)γ†

σ − σv(t)γ−σ

]
− ∆∗(t)

[
u(t)γ−σ + σv∗(t)γ†

σ

]
.

(2.31)

Matching coefficients on the two sides gives us the time-dependent version of
the BdG equation:

i
d
dt

u(t) = ϵ(t)u(t) + ∆(t)v(t) (2.32a)

i
d
dt

v(t) = ∆∗(t)u(t)− ϵ(t)v(t), (2.32b)

which is a natural generalisation of Eq. (2.19). In the time-independent case the
evolution of the BdG states reduces to(

u(t)
v(t)

)
= e−iEt

(
u
v

)
(2.33)

and Eq. (2.30) gives us

c†
σH(t) = eiEtu∗γ†

σ − σe−iEtvγ−σ (2.34a)

cσH(t) = e−iEtuγσ − σeiEtv∗γ†
−σ. (2.34b)

The utility of the above equations will be more evident in the next chapters,
where we will deal with states that are time-dependent.
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2.4 applications

2.4.1 The S-QD-S system in equilibrium

We will now use the BdG formalism in order to derive some basic results about
Josephson junctions. Throughout this thesis, we will model the Josephson junc-
tion as two superconducting reservoirs coupled to a single-level quantum dot.
By solving the Bogoliubov-de Gennes equations, we can derive the subgap spec-
trum (the Andreev bound states). The superconducting reservoirs are labeled
as j = L, R and are described by the BCS Hamiltonian

Hr = ∑
jkσ

ϵkc†
jkσcjkσ + ∑

jk

(
∆jc†

jk↑c†
j−k↓ + ∆∗

j cj−k↓cjk↑
)

. (2.35)

Without any coupling to the dot, the eigenstates of the leads are the operators

γ†
jkσ = ujkc†

jkσ + σvjkcj−k−σ (2.36)

which are solutions of the BdG equations with eigenvalues E. The leads are
then coupled to the single-level quantum dot through a tunneling term

V = ∑
jkσ

Jj

(
d†

σcjkσ + c†
jkσdσ

)
, (2.37)

where d†
σ is the creation operator on the dot. We will use the Lippmann–

Schwinger (LS) method in order to derive the spectrum on the dot. The LS equa-
tion is a rewriting of the Schrödinger equation, taking into account boundary
conditions of the scattering problem. More specifically, consider an incoming
beam of particles which are scattered off some potential V. Then, if in the ab-
sence of the potential, the state |ψ0⟩ is an eigenstate of the unperturbed Hamil-
tonian H0 with energy E, a solution for the scattered wave |ψ⟩ is [105]:

|ψ⟩ = |ψ0⟩+
1

E − H0 + iη
V |ψ⟩ . (2.38)

In the same spirit, turning on the couplings Jj in the tunneling term V will have
as a result that the bare operators γ† will evolve into dressed operators Γ†. We
therefore make the following ansatz for the dressed operators

Γ†
lkσ = γ†

lkσ + ud†
σ + σvd−σ + ∑

jk′

(
U(jk′; lk)c†

jk′σ + σV(jk′; lk)cj−k′−σ

)
. (2.39)

The dressed operator Γ†
lkσ describes a quasiparticle being injected from the

reservoir l with a momentum k and spin σ. The assumption is that it is still
a BdG eigenstate of the total Hamiltonian H = Hr + V , so that[

H, Γ†
lkσ

]
= E Γ†

lkσ. (2.40)
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Calculating the commutators involved and matching the terms on the left- and
on the right-hand side, one obtains a set of coupled equations for the ampli-
tudes on the dot and on the reservoirs. Using[

H, c†
jkσ

]
= ϵkc†

jkσ + ∆∗
j cj−k−σ + Jjd†

σ[
H, cj−k−σ

]
= −ϵkcj−k−σ + ∆jc†

jkσ − Jjd−σ[
V , d†

σ

]
= ∑

jk
Jjc†

jkσ

[V , d−σ] = −∑
jk

Jjcj−k−σ

(2.41)

one obtains:

E
(

u
σv

)
= Jl

(
ulk

−σvlk

)
+ ∑

jk′
Jj

(
U(jk′; lk)

−σV(jk′; lk)

)
(2.42)

and (
U(jk′; lk)

−σV(jk′; lk)

)
=

Jj

E2 − ϵ2
k′ −

∣∣∆j
∣∣2
(

E + ϵk′ −∆j
−∆∗

j E − ϵk′

)(
u

σv

)
. (2.43)

Then, the inhomogeneous LS equation for the amplitudes on the dot is:

E
(

u
v

)
− ∑

j
J2
j σz g̃j(E)σz

(
u
v

)
= Jlσ

z
(

ulk
vlk

)
(2.44)

where g̃j(ω) is the retarded Green’s function of the superconducting reservoir
j, obtained by integrating out the reservoirs, and σz =

( 1 0
0 −1

)
is the third Pauli

matrix. Using

∑
k′

1
ω2 − ϵ2

k′ − ∆2 + iη
→

+∞∫
−∞

dϵ
ρ0

ω2 − ϵ2
k′ − ∆2 + iη

(2.45)

where ρ0 is the density of states in the normal state of the superconductors one
obtains

g̃j(ω) =


−πρ0√
∆2−ω2

(
ω ∆j

∆∗
j ω

)
|ω| < ∆

−iπρ0sign(ω)√
ω2−∆2

(
ω ∆j

∆∗
j ω

)
|ω| > ∆

(2.46)

Defining Γj = πρ0 J2
j , and gj ≡ σz g̃jσ

z we can write compactly,

J2
j gj(ω) =

Γj

ivFq(ω)

(
ω −∆j

−∆∗
j ω

)
, (2.47)
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where we have defined the quantity

vFq(ω) ≡ i
√

∆2 − ω2 θ(∆ − |ω|) + sign(ω)
√

ω2 − ∆2 θ(|ω| − ∆). (2.48)

∆ is the magnitude of the gap which we take to be of equal value on both
reservoirs ∆ = |∆L| = |∆R|. The amplitudes on the dot are then given by[

E − ∑
j

Γj

ivFq(E)

(
E −∆j

−∆∗
j E

)](
u
v

)
= Jlσ

z
(

ulk
vlk

)
. (2.49)

The right-hand side can be seen as a source term. The amplitudes on the dot
can then be simply obtained by calculating the inverse of the operator on the
left-hand side. This inverse operator can be identified as a Green’s function of
the dot or as the resolvent operator R(ω) = (ω −Hs − σ(ω) + iη)−1. Here the
Hamiltonian of the dot is Hs = ∑σ ϵdd†

σdσ and the self energy σ(ω) is obtained
when integrating out the contribution from the reservoirs

σ(ω) ≡ ∑
j

J2
j σz g̃j(ω)σz. (2.50)

So far we have considered that the energy of the dot is ϵd = 0, but the term can
be easily restored if needed, in which case one finds

R(E) =

[
E −

(
εd 0
0 −εd

)
− ∑

j

Γj

ivFq(E)

(
E −∆j

−∆∗
j E

)]−1

. (2.51)

We see that the resolvent has anomalous (off-diagonal) terms which mix the
electron and hole amplitudes. This is a result of the proximity effect which
induces superconducting correlations on the dot. Moreover, there are solutions
for energies inside the superconducting gap |E| < ∆ : these are the Andreev
bound states.

2.4.1.1 Andreev bound states

The poles of the resolvent give us the spectrum. For energies inside the gap
|E| < ∆, they are the solutions of the equation

E2

(
1 + ∑

j

Γj√
∆2 − E2

)2

− ε2
d −

∆2

∆2 − E2

(
Γ2

L + Γ2
R + 2ΓLΓR cos(ϕR − ϕL)

)
= 0

(2.52)
We can assume symmetric couplings ΓL = ΓR = Γ/2. In fact, we can do this
without any loss of generality, as has been shown in [106]. Denoting the phase
difference ϕR − ϕL = 2ϕ simplifies the above expression to

E2
(

1 +
Γ√

∆2 − E2

)2

− ε2
d −

Γ2∆2 cos2 ϕ

∆2 − E2 = 0. (2.53)
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Figure 2.1: Andreev bound states as a function of the phase difference between
the reservoirs, for Γ = ∆ and ϵd = 0, ϵd = ∆, ϵd = 2 ∆ (black to light
grey lines). Due to the symmetry of the BdG equation, states come
in pairs mirrored around zero. Unlike other setups, the ABS of the
S-QD-S system remain detached from the continua for all phases,
even for large tunnel couplings. This will be important when we
consider their dynamics.

The solutions can easily be found numerically. The ABS spectrum is plotted in
Fig. 2.1 as a function of the phase difference ϕ, for different positions of the dot
level. For εd = 0, the above equation is simplified to

E ± ∆ cos ϕ +
E
√

∆2 − E2

Γ
= 0. (2.54)

Therefore, the solutions tend to the energies of a perfectly transmitting junc-
tion E ≃ ±∆ cos ϕ in the limit that Γ ≫ ∆. As Γ is reduced, the ABS become
detached from the superconducting continua for all phase differences. In the
opposite limit of ∆ ≫ Γ, the energies are of the order of the tunnel couplings
E ≃ ±Γ cos ϕ. The effect of a finite energy εd is to open a gap between the pos-
itive and negative ABS, since it breaks the symmetric role of the electron-like
and hole-like components in Eq. (2.51).

Since for small tunnel couplings the solutions are detached from the gap
with E ≪ ∆, we can approximate the square root by

√
∆2 − E2 ≈ ∆ − E2

2 ∆ .
Renormalizing all quantities of Eq. (2.53) by ∆ one finds(

1 +
Γ
∆

)
E4 −

[
ϵ2

d + (Γ + ∆)2
]

E2 +
[
∆2ϵ2

d + Γ2∆2 cos2(ϕ)
]
= 0. (2.55)

Two of the four solutions obey the condition E2 < ∆2,(
EABS

∆

)2

=
ϵ2

d + (Γ + ∆)2

2∆(Γ + ∆)
−

√√√√[ϵ2
d + (Γ + ∆)2

2∆(Γ + ∆)

]2

−
[

ϵ2
d + Γ2 cos2(ϕ)

∆(Γ + ∆)

]
, (2.56)
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Figure 2.2: Sketch of the Andreev molecule.

which gives us an analytic solution that works in the limit where ∆ is the largest
energy in the system.

2.4.2 The Andreev molecule

We now consider the three terminal S-QD-S-QD-S junction, which we could
also call a bijunction, consisting of two quantum dots connected to three su-
perconducting reservoirs, as shown in Fig. 2.2. We assume that the middle
superconductor is large on the mesoscopic scale, so that it can be considered
a reservoir, but that the distance between the dots remains finite. We set the
phase in the middle reservoir to zero ϕc = 0, which means that the phase dif-
ference through the first (second) junction is controlled by the phase of the left
(right) superconductor ϕa(b). In the limit where the middle reservoir is short
compared to the superconducting coherence length R ≲ ξ0 the system is a real-
ization of the Andreev molecule. To the best of my knowledge, the spectrum of
this setup has not been presented anywhere in the literature before. Previous
works have focused on the current-phase relation [82, 83], and on the effect of
the Coulomb energy on the dots (which we do not consider here). Nevertheless,
the results are similar with the spectra of Andreev molecules based on weak
links [78, 83, 90], with the key difference being that, as we shall see, for the
S-QD-S-QD-S system there are no leaky Andreev states.
For the bijunction we can repeat the procedure used for the single junction case
presented in the previous section. By writing the Lippmann–Schwinger equa-
tions and integrating out the reservoirs, we derive an eigenvalue equation for
the amplitudes on the two dots. We consider a setup as depicted in Fig. 2.2 with
three superconducting reservoirs j = {a, b, c} connected to two dots i = {1, 2}.
The total Hamiltonian in the case of the bijunction is

H = Hr + V
Hr = ∑

jkσ

ϵkc†
jkσcjkσ + ∑

jk

(
∆jc†

jk↑c†
j−k↓ + ∆∗

j cj−k↓cjk↑
)

V = ∑
i∈dots

∑
jkσ

(
Jjid†

iσ(xi)cjkσ + Jjic†
jkσdiσ(xi)

) (2.57)

with real tunnel couplings Jji = Jij. The creation operator on dot i can be written
as d†

iσ(xi) = eikxi d†
iσ, where xi is the position of the dot. We note the distance

between the two dots as x2 − x1 = R. For convenience we choose the positions
of the dots to be x1 = 0 and x2 = R.
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(a) R = 5ξ0 (b) R = ξ0/2

Figure 2.3: (a) Single junction regime (R > ξ0). The second junction (red lines)
is uncoupled and thus not affected by the phase difference of the
first junction. (b) Andreev molecule regime (R ≲ ξ0). The states on
the first dot (black lines) and the states on the second dot (red lines)
are hybridized. All couplings are set to Γ = ∆. ϕb = 3π/5 and
kFR = π/4.

As in the S-QD-S case, we define a dressed operator which must now include
operators for the two dots,

Γ†
lkσ = γ†

lkσ + ∑
i∈dots

(
u(i)d†

iσ + σv(i)di−σ

)
+∑

jk′

(
U(jk′; lk)c†

jk′σ + σV(jk′; lk)cj−k′−σ

)
.

(2.58)
Calculating the commutator [

H, Γ†
lkσ

]
= E γ†

lkσ (2.59)

is slightly more tedious, but gives

E
(

u(i)
v(i)

)
= Jlieikxi

(
ulk
−vlk

)
+ ∑

jk
Jjieikxi

(
Ujk
−Vjk

)
(2.60)

and (
Ujk
−Vjk

)
= ∑

i′
Jji′e−ikxi′ σz g̃j(E, k)σz

(
u(i′)
v(i′)

)
(2.61)

where g̃j(ω, k) = 1
ω2−ϵ2

k−∆2+iη

(
ω + ϵk ∆j

∆∗
j ω − ϵk

)
is the retarded Green’s func-

tion of the j-th superconducting reservoir before integration over all the mo-
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(a) ϕb = 0 (b) ϕb = π/2 (c) ϕb = π

Figure 2.4: Andreev molecule spectra. Hybridization of the ABS of each junc-
tion produces avoided crossings in the spectrum. Parameters used
for the calculation: R = ξ0/2, Γ = ∆, kFR = π/4.

menta k. We end up with a set of coupled inhomogeneous equations for the
amplitudes on the two dots

E
(

u(1)
v(1)

)
=∑

jk

[
J2
j1σz g̃j(E, k)σz

(
u(1)
v(1)

)
+ Jj1 Jj2e−ikRσz g̃j(E, k)σz

(
u(2)
v(2)

)]
+ Jl1σz

(
ulk
vlk

)
E
(

u(2)
v(2)

)
=∑

jk

[
Jj2 Jj1eikRσz g̃j(E, k)σz

(
u(1)
v(1)

)
+ J2

j2σz g̃j(E, k)σz
(

u(2)
v(2)

)]
+ Jl2eikRσz

(
ulk
vlk

)
(2.62)

Summing over the momenta gives local Green’s functions, as well as non-local
Green’s functions that depend on the distance R between the dots. Written in
the basis of (u(1), v(1), u(2), v(2)), the resolvent of the system is5

R(E) =
[

E14 −
 σ1(E) Γcgc(E, R)

Γcgc(E, R) σ2(E)

]−1

=

[
E14 −

∑j=a,c Γj1gj(E) Γcgc(E, R)
Γcgc(E, R) ∑j=b,c Γj2gj(E)


]−1

.

(2.63)

where

gj(ω) =
1

ivFq(ω)

(
ω −∆j

−∆∗
j ω

)
,

and gj(ω, R) = eiq(ω)R[cos(kFR)gj(ω) + sin(kFR)σz] (2.64)

5 Γji ≡ πρ0 J2
ji, Γc ≡

√
Γc1Γc2 = πρ0 Jc1 Jc2
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The spectrum of the Andreev molecule is therefore given by the solutions of
the equation

detR(E) = 0

⇒det(E12 − σ1)× det
(

E12 − σ2 − Γ2
c gc(E, R)

1
E − σ1

gc(E, R)
)
= 0

(2.65)

where each determinant on the second line involves 2 × 2 matrices, each one
associated with one of the two dots. In practice, it is much easier to numerically
calculate the spectral functions A1 = − 2

π ImR11(E) and A2 = − 2
π ImR33(E)

of the first and second dot, respectively. A justification for these formulas will
be given in the next chapter, see Eq. (3.47). The maxima of the spectral functions
correspond to the solutions of Eq. (2.65).

We are now in a position to comment on the coupling between the dots: the
term responsible for the coupling is the non-diagonal block of the resolvent.
This term is the non-local Green’s function of the reservoir Sc and represents
propagation of the quasiparticles in 1d. For propagation inside the gap |E| < ∆
its magnitude is controlled by a factor

eiq(E)R = e−
√

∆2−E2R/vF = e−
√

1−( E
∆ )

2R/ξ0 . (2.66)

The coupling therefore decreases exponentially as the interdot distance R be-
comes larger than the superconducting coherence length ξ0. At R ≫ ξ0 one
retrieves two decoupled junctions, with ABS given by the solutions of

det(E12 − σ1)× det(E12 − σ2) = 0.

The effect on the spectrum when decreasing the distance is shown in Fig. 2.3.
When the distance is large, R ≫ ξ0, the two junctions are decoupled and the
spectrum of the second junction at x = R (red lines in Fig. 2.3a) is unaffected by
a change of the phase difference at x = 0. In the molecular regime R < ξ0, the
ABS on the two junctions are hybridized. This produces avoided crossings in
the spectrum, as shown in Fig. 2.3b. In contrast with Andreev molecules based
on short weak links [78], all states in the S-QD-S-QD-S case are within the gap.

The phase difference through the second junction, ϕb can be used to tune the
hybridization at a certain interdot distance. As shown in Fig. 2.4, at ϕb = 0 the
junctions are almost decoupled, while increasing it at ϕb = π/2 or ϕb = π pro-
duces avoided crossings. For identical junctions (with equal tunnel couplings),
the avoided crossings are always expected to be found at ϕa = ±ϕb [78].
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F L O Q U E T- A N D R E E V R E S O N A N C E S I N M U LT I T E R M I N A L
Q U A N T U M D O T S

3.1 introduction

The aim of this chapter is to present a formalism that can be used to study
the Floquet spectrum of multiterminal Josephson junctions biased with com-
mensurate voltages. In particular, we will first study a quantum dot coupled to
two superconducting leads (S-QD-S system) before turning our attention to the
Andreev molecule geometry (S-QD-S-QD-S system).

voltage-biased s-qd-s junction. As we have seen in the previous chap-
ter, the spectrum of a quantum dot coupled to two superconducting reservoirs
contains a pair of discrete subgap states, the Andreev bound states (ABS).
When a voltage difference V is applied to such a junction, the discrete states
evolve into resonances with a finite width [107–109]. The finite lifetime of the
associated quasiparticles is a result of the multiple Andreev reflection (MAR)
processes that allow quasiparticles to eventually gain the energy needed to
overcome the superconducting gap 2 ∆. Since MAR are higher-order processes,
the width of the resonances is exponentially small in ∆/eV [108]. Note that it
is important that we consider the specific case of quantum dots, because their
equilibrium ABS are detached from the superconducting continua (for exam-
ple, see Fig. 2.1 in the previous chapter). This means that the states on the
dot are less hybridized with the continua of the reservoirs, and therefore the
non-equilibrium states on the dot have a longer lifetime.

josephson junctions as floquet systems . A Josephson junction is
often simply described as a perfect voltage-to-frequency converter. Due to the
Josephson relation

dϕ

dt
=

2e
h̄

V(t),

an applied dc voltage means that the superconducting phase difference be-
tween the reservoirs evolves linearly with time. The Hamiltonian that describes
the S-QD-S junction is then time-periodic H(t) = H(t + 2π

ω0
), where ω0 is the

frequency associated with the drive. Such periodically driven systems can be
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studied using Floquet theory [1]. The immediate result of the existence of a
discrete time symmetry is that the energy is only conserved up to a multiple
of the drive frequency [18, 19]. One therefore talks of "quasi-energies" in direct
analogy to the "quasi-momenta" of Bloch theory for systems with periodicity
in space. For the spectrum of the S-QD-S system, this means that instead of
just a pair of resonances, one expects to find sidebands which are separated by
integer multiples of the drive.

the wannier-stark problem . In fact, it is instructive to draw the anal-
ogy to band theory further. Using a semiclassical picture, Zener [110] showed
that a particle in a periodic potential will oscillate under application of a static
electric field, with a frequency of oscillations

ωB = dF/h̄

that is proportional to the period of the potential d and the electric force F.
The existence of oscillations, known as Bloch oscillations, was verified many
years later [111, 112]. The difficulty arose because their period is typically much
larger than the scattering time of electrons on defects, making it difficult to
observe them1. With a full quantum-mechanical treatment, Wannier showed
[113] that the Bloch oscillations in the time-domain give rise to the Wannier-
Stark ladder in the energy domain. Namely, if the Hamiltonian of the Bloch
particle in a static external field has an eigenstate Eα, then a whole ladder of
eigenstates, separated by the Bloch frequency, exist in the spectrum

Eα,m = Eα + mh̄ωB, m ∈ Z.

In reality, one should consider that the states are coupled to an energy contin-
uum through Zener tunneling [110]. The solutions are then complex [114]

Eα,m = Eα + mh̄ωB − iΓα,

giving rise to a Wannier-Stark ladder of resonances. See reviews [115–117] and
references within.
Coming back to the problem of a voltage-biased S-QD-S junction, the dc voltage
gives rise to two sets of ladders, the Floquet-Wannier-Stark ladders (FWS) [108]
which can be seen as a dynamical version of the Wannier-Stark ladder. The fact
that they come in pairs of two is a consequence of the doubling that exists in
superconducting systems where eigenvalues come in pairs that are symmetric
around zero. We argue that the FWS ladders could be observed by probing the
spectral function of the dot. This can be done by performing local tunneling
spectroscopy on the dot.

1 It was the development in semiconducting superlattices that made the observation possible.
Not much later, it also became possible to observe the Bloch oscillations in cold atom sys-
tems. There, the crystal lattice is replaced by an optical lattice, making it possible to increase
relaxation time significantly.
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multi-terminal junctions . The existence of FWS ladders of resonances
holds more generally for multiterminal configurations [107]. However, in this
case application of commensurate voltages is required in order to obtain a
single basic frequency throughout the system. The simplest non-trivial case
involves a three-terminal junction biased in the so-called quartet configuration,
where two leads are biased at opposite voltages Va = −Vb, and the third one
is, without loss of generality, grounded, Vc = 0. A particular realization of a
three-terminal junction is the Andreev molecule. We will refer to the Andreev
molecule biased in the quartet configuration as the driven Andreev molecule.
Note that, in principle, the theory could be extended to the application of
incommensurate voltages, where each additional incommensurate frequency
will correspond to an extra dimension in the phase space of the problem. This
has been used, for example, to study Anderson localization in three (synthetic)
dimensions [118].

In this chapter we will present a method for treating multi-terminal supercon-
ducting junctions with quantum dots biased with commensurate voltages. The
method builds up on previous work [107, 108]. We will show that the prob-
lem can be mapped to a tight-binding chain in Floquet space, where the time
dimension is traded for a fictitious Floquet dimension. We take advantage of
this tight-binding structure to derive the Green’s function on the dot(s) with a
continued fraction method. We find that the equilibrium discrete states on each
dot are dressed by MAR processes and evolve into ladders of resonances. We
will focus on two observables, namely the spectral function and the current. We
show how to calculate these observables in the steady state. We will argue that
the time-averaged spectral function can be probed with tunneling spectroscopy,
which therefore can reveal the Floquet spectrum and the dynamical Wannier-
Stark ladders. The method is first applied to the single S-QD-S junction and
then to the driven Andreev molecule. The spectrum of the driven molecule
exhibits level splitting when the separation between the dots is comparable
to the superconducting coherence length, R ≲ ξ0. These Floquet-Andreev reso-
nances leave their trace in the dc current. We therefore calculate the steady state
current passing through one junction and see that the proximity of the second
junction modifies the usual MAR steps, which accordingly exhibit splitting into
substeps. Most of the results of this chapter have been published in [93].

3.2 method overview

We are interested in Josephson junctions made of two or more superconducting
reservoirs. The reservoirs are modeled as BCS superconductors, described by
the Hamiltonian:

Hr = ∑
jkσ

ϵkc†
jkσcjkσ + ∑

jk

(
∆jc†

jk↑c†
j−k↓ + ∆∗

j cj−k↓cjk↑
)

. (3.1)
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The c†
jkσ and cjkσ operators create and annihilate an electron in the j reservoir

with momentum k and spin σ, correspondingly. For simplicity, we consider that
all superconductors have a gap of equal magnitude, ∆j ≡ ∆eiϕj .

Depending on the particular configuration, the reservoirs are then coupled
to one or more small regions. We will specify the particular geometries in
later sections. The small regions form quantum dots with a Hamiltonian
Hs = εid†

iσ(xi)diσ(xi), where the operator d†
iσ creates an electron with spin σ

on the dot labeled i which is at some position xi. A gauge transformation can
be used to get rid of the space dependence in Hs so that d†(xi) = eikxi d†. For
simplicity, we will model a quantum dot as a single discrete level at zero energy,
i.e. εi = 0.

When a dc voltage Vj is applied to the superconductor j, its Hamiltonian
acquires a time-dependence according to the Josephson relation ϕj(t) = ϕj +
2eVjt, where ϕj is the superconducting phase of the j superconductor. The time-
dependence can be eliminated from Hr with the gauge transformation

c†
j → c†

j e−ieVjt

cj → cjeieVjt.
(3.2)

The total Hamiltonian can therefore be written as a time-independent part
H0 = Hr +Hs, plus a time-dependent part V(t),

H(t) = H0 + V(t). (3.3)

The time-dependent part V(t) describes the tunneling between a dot at position
xi and the j reservoir

V(t) = ∑
i∈dots

∑
jkσ

(
Jji(xi)eisjω0td†

iσcjkσ + J∗ji(xi)e−isjω0tc†
jkσdiσ

)
(3.4)

The gauge transformation (3.2) has therefore transferred the time-dependence
to the hopping amplitudes. The tunnel couplings are Jji(xi) = Jjieikxi , with real
amplitudes Jji = Jij = J∗ji. We will moreover use the notation Vj = sjV, with sj ∈
{0,±1} depending on the particular configuration. We choose commensurate
voltages because this choice leads to a single basic frequency ω0 = eV/h̄, and
to a time-periodic Hamiltonian.

Using the basic idea of the Floquet method [8, 18, 19, 119], quantities can be
expanded into Fourier modes,

H(t) = ∑
m∈Z

e−imω0tHm

where the harmonic index m can be thought of as a position on a fictional
Floquet direction. Physically, it corresponds to the number of quanta absorbed
or emitted by the system. One then obtains a time-independent tight-binding
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model in an extended Hilbert space [18, 120]. A common procedure is to
"project out" the contribution of sites n ̸= m up to some large Floquet index
n = N, and arrive to an effective Floquet Hamiltonian for the site m [8]. The
dimensions of the obtained tight-binding model depend on the number of in-
commensurate drive frequencies [121]. Here, we will have one basic frequency
across the system, so we will obtain an effective 1D tight-binding model.

3.2.1 Dressed quasiparticle basis

In the absence of tunneling V(t) = 0, an eigenstate of the superconducting
reservoir labeled l is

γ†
lkσ = e−iElkt

(
ulkc†

lkσ + σvlkcl−k−σ

)
, (3.5)

which evolves in time according to Eq. (2.28b), and where ulk = xlkeiϕl/2,
vlk = ylke−iϕl/2 and the coefficients x, y are the usual coefficients obtained by
diagonalizing the BCS Hamiltonian

x2
lk =

Elk + ϵk
2Elk

and y2
lk =

Elk − ϵk
2Elk

. (3.6)

The energy Elk =
√

ϵ2
k + ∆2 is the excitation energy needed for adding an elec-

tron or a hole to the BCS ground state of the l superconductor. The Bogoliubov-
de Gennes (BdG) equation then has the solutions,

i
d
dt

γ†
lkσ =

[
Hr, γ†

lkσ

]
= Elkγ†

lkσ. (3.7)

When the tunneling is turned on, the discrete ABS states on the dots become
resonances due to the multiple Andreev reflection processes (MAR) that con-
nect them to the superconducting continua. The main idea is that in contrast to
a closed Floquet system, an open Floquet system does not, in general, thermal-
ize, but may reach a non-equilibrium steady state [30, 31]. Moreover, subgap
ABS states of quantum dots are detached from the superconducting continua;
this protects the resonances from dissipation, resulting in long lifetimes. It is
reasonable, then, to expect well-defined quasiparticles in this type of system.
Therefore, we start by constructing dressed quasi-particle operators Γ†

lkσ describ-
ing a quasi-particle being injected from a source reservoir l with momentum k
and spin σ, to any of the reservoirs j, and quantum dot(s) i

Γ†
lkσ =γ†

lkσ + ∑
i∈dots

(
u(i; lk)d†

iσ + σv(i; lk)di−σ

)
+ ∑

jk′

(
U(jk′; lk)c†

jk′σ + σV(jk′; lk)cj−k′−σ

)
.

(3.8)
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In the absence of tunnel couplings, the Γ† operators reduce to the bare quasipar-
ticle operators γ†. The amplitudes u(i; lk), v(i; lk) have respectively the meaning
of an electron– or hole–like amplitude on the dot i, while capital letters U, V
correspond to amplitudes in the reservoirs. It is important to keep track of the
reservoir which serves as a source, and therefore we are obliged to add it as an
index to all amplitudes. The amplitudes on the dots and on the reservoirs are
time-periodic and can therefore be Fourier-expanded. As a result, the creation
operator Γ† can be written as a Fourier series

Γ†
lkσ(t) =γ†

lkσ(t) + ∑
m∈Z

∑
i∈dots

e−i(Elk+mω0)t
(

um(i; lk)d†
iσ + σvm(i; lk)di−σ

)
+ ∑

m∈Z

∑
jk′

e−i(Elk+mω0)t
(

Um(jk′; lk)c†
jk′σ + σVm(jk′; lk)cj−k′−σ

)
.

(3.9)

The dressed operators are Floquet solutions of the BdG equations:

i
d
dt

Γ†
lkσ(t) =

[
H(t), Γ†

lkσ

]
, (3.10)

and obey the Floquet theorem,

Γ†
lkσ(t + T) = e−iElktΓ†

lkσ(t). (3.11)

We make the assumption that the dressed operators form an orthonormal and
complete basis. A discussion on the completeness of scattering states can be
found in [105]. Let us add that the completeness relation expresses the assump-
tion that there are no bound states in the system, i.e. it expresses the physical
intuition that all ABSs acquire a finite lifetime when the voltage is finite. The
completeness relation allows to express all other operators (on the dot and on
the reservoirs) as linear combinations of the dressed operators. In Heisenberg
representation (see previous chapter, Eq. (2.30)), the "bare" operators can be
written as:

d†
iσ(t) = ∑

lk
∑
m

(
ei(Elk+mω0)tu∗

m(i; lk)Γ†
lkσ − σe−i(Elk+mω0)tvm(i; lk)Γlk−σ

)
diσ(t) = ∑

lk
∑
m

(
e−i(Elk+mω0)tum(i; lk)Γlkσ − σei(Elk+mω0)tv∗m(i; lk)Γ†

lk−σ

)
.

(3.12)

Similarly, for the reservoir operators

c†
jk′σ(t) = ∑

lk
∑
m

[
ei(Elk+mω0)t

(
δm0δjlδkk′u∗

jk′ + U∗
m(jk′; lk)

)
Γ†

lkσ

− σe−i(Elk+mω0)t
(

δm0δjlδkk′vjk′ + Vm(jk′; lk)
)

Γlk−σ

]
cjk′σ(t) = ∑

lk
∑
m

[
e−i(Elk+mω0)t

(
δm0δjlδkk′ujk′ + Um(jk′; lk)

)
Γlkσ

− σei(Elk+mω0)t
(

δm0δjlδkk′v∗jk′ + V∗
m(jk′; lk)

)
Γ†

lk−σ

]
(3.13)
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Finally, it is natural to assume that the steady state is the state annihilated by
any destruction operator Γlkσ, that is

Γlkσ |S⟩ = 0, (3.14)

for any set of {lkσ}.

3.2.2 Floquet-Lippmann-Schwinger equations

We insert Eq. (3.9) into the BdG equation (3.10). Calculation of the various
commutators 2 leads to two sets of coupled equations for the amplitudes on
the dots and the amplitudes on the reservoirs. Explicitly, we find:

(Elk + mω0 + iη)
(

um(i; lk)
vm(i; lk)

)
= Jlieikxi

(
δm,−sl ulk
−δm,sl vlk

)
+∑

jk′
Jjieik′xi

(
Um+sj(jk′; lk)
−Vm−sj(jk′; lk)

) (3.15)

and (
Um(jk′; lk)
−Vm(jk′; lk)

)
= ∑

i
Jjie−ik′xi σz g̃j(Elk + mω0, k′)σz

(
um−sj(i; lk)
vm+sj(i; lk)

)
. (3.16)

We can therefore integrate out the reservoirs by performing the summation
over the momenta

∑
k′

Jjieik′xi σz
(

Um(jk′; lk)
Vm(jk′; lk)

)
=

= ∑
i′

∑
k′

Jji Jji′eik′(xi−xi′ )σz g̃j(Elk + mω0, k′)σz

(
um−sj(i

′; lk)
vm+sj(i

′; lk)

)

= ∑
i′

Γj,ii′σ
z g̃j,ii′(Elk + mω0)σ

z

(
um−sj(i

′; lk)
vm+sj(i

′; lk)

) (3.17)

2 Useful commutator relations:[
V(t), c†

jkσ

]
= ∑

i
Jjieikxi eisjω0td†

iσ

[
V(t), d†

iσ

]
= ∑

jk
Jjie−ikxi e−isjω0tc†

jkσ[
V(t), cj−k−σ

]
= −∑

i
Jjieikxi e−isjω0tdi−σ [V(t), di−σ] = −∑

jk
Jjie−ikxi eisjω0tcj−k−σ

Moreover,[
Hr, c†

jkσ

]
= ϵkc†

jkσ + ∆∗
j cj−k−σ, and

[
Hr, cj−k−σ

]
= −ϵkcj−k−σ + ∆jc†

jkσ.
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where we have defined Γj,ii′ = πρ0 Jji Jji′ , with ρ0 being the density of states in
the normal state of the superconductors. After integrating out the reservoirs,
one is therefore led to a set of inhomogeneous Floquet-Lippmann-Schwinger
(FLS) equations for the amplitudes on the dots:

(Elk+mω0 + iη)um(i; lk) = δm,−sl Jli(xi)ulk

+ ∑
ji′

Γj,ii′
[

g11
j,ii′(m + sj)um(i′; lk) + g12

j,ii′(m + sj)vm+2sj(i
′; lk)

]
(Elk+mω0 + iη)vm(i; lk) = −δm,sl Jli(xi)vlk

+ ∑
ji′

Γj,ii′
[

g21
j,ii′(m − sj)um−2sj(i

′; lk) + g22
j,ii′(m − sj)vm(i′; lk)

] (3.18)

In the above equation, gj,ii′δii′ ≡ gj is the dimensionless Green’s function for
the j superconducting reservoir, defined as:

gj(ω) =
1

ivFq(ω)

(
ω −∆j

−∆∗
j ω

)
,

vFq(ω) ≡ i
√

∆2 − ω2 θ(∆ − |ω|) + sign(ω)
√

ω2 − ∆2 θ(|ω| − ∆).

(3.19)

Note the unusual notation gj = σz g̃jσ
z. Moreover, since the quasi-energy

appears in the combination ω + mω0, it is convenient to use the shorthand
f (m) instead of f (ω + mω0), for any function f . In the case of more than
one dot, there are also non-local Green functions that depend on the distance
separating the dots. We will explicitly give the expression in the case of the
driven Andreev molecule, see Section 3.5.

We can rewrite Eq. (3.18) in the basis of the Nambu spinor

Ψm ≡ (um(1), vm(1), um(2), vm(2), ...)T

which collects the amplitudes on the dot(s), by defining a linear operator L that
acts on the states Ψm :

(LΨ)m ≡ M0
mΨm − M+

m+1Ψm+2 − M−
m−1Ψm−2 = Sm. (3.20)

Equation (3.20) defines a Floquet operator L. Written in a matrix representation,
it is a tridiagonal block-matrix of dimension dot ⊗ Nambu ⊗ Floquet. In the
tight-binding analogy, the matrix M0

m describes an on-site energy at position
m of the chain, while matrices M±

m±1 describe hopping to neighboring sites
through local Andreev reflections. The term Sm is the source term appearing
on the RHS of Eq. (3.18), Sli,m ≡ Jlieikxi

(
δm,−sl ulk, −δm,sl vlk

)T. The recursive
character of Eq. (3.20) makes it possible to write the Floquet chain operator in
a continued fraction form [119, 122].
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3.2.3 Iterative construction of the resolvent operator

If the resolvent operator R is the inverse of the operator L, then knowledge of
R allows straightforward calculation of the amplitudes on the dots:

um(i; lk) = ∑
i′

[
Reiei′

m,−sl
Jli′(xi′)xlkeiϕl/2 −Reihi′

m,sl Jli′(xi′)ylke−iϕl/2

]
,

vm(i; lk) = ∑
i′

[
Rhiei′

m,−sl
Jli′(xi′)xlkeiϕl/2 −Rhihi′

m,sl Jli′(xi′)ylke−iϕl/2

]
.

(3.21)

Finding the poles of the resolvent operator corresponds to finding the spec-
trum of the operator L. The resolvent R is an operator which lives in the
extended dot ⊗ Nambu ⊗ Floquet space. Upper indices correspond to the com-
bined dot⊗Nambu space, and lower indices correspond to the infinite Floquet
space.
The in-homogeneous FLS equations for the resolvent elements are:

M0
mRmn − M+

m+1Rm+2,n − M−
m−1Rm−2,n = δmn1. (3.22)

For a tridiagonal block-matrix Hamiltonian, such as the one we are dealing
with, it follows that its resolvent can be generally written in continued fraction
form [122, 123]. The continued fraction representation is equivalent to the usual
Dyson equation [124].
Starting from Eq. (3.22) it is straightforward to construct the resolvent elements
by iteration, assuming a source at some index n and a cutoff at some large
Floquet index ±N, with |N| ≥ ∆

ω0
. The latter is equivalent to assuming that

the wavefunction on the dot decays exponentially at energies above the gap
|ω + Nω0| >> ∆. Physically, the first values of m will correspond to multi-
ple quasi-particle reflection processes, by which the quasi-particle gains energy
equal to mω0. When m is large enough so that ω + mω0 > ∆, the quasi-particle
enters the superconducting continuum, thus macroscopically resulting into a
dissipative quasi-particle flow with normal conductance values. The smaller
the voltage value, the more Floquet harmonics we need to take into account.
We have the following system consisting of 2N + 1 equations:

M0
−NR−N,n − M+

−N+1R−N+2,n −(((((((((hhhhhhhhhM−
−N−1R−N−2,n = 0

...

M0
n−2Rn−2,n − M+

n−1Rnn − M−
n−3Rn−4,n = 0

M0
nRnn − M+

n+1Rn+2,n − M−
n−1Rn−2,n = 1

M0
n+2Rn+2,n − M+

n+3Rn+4,n − M−
n+1Rnn = 0

...

M0
NRNn −��������XXXXXXXX

M+
N+1RN+2,n − M−

N−1RN−2,n = 0

(3.23)
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Figure 3.1: Diagrammatic representation of the forward scattering self-energy.
Σ+

m resums loops to the right of site m.

We solve this system of equations by iteration, and find that the diagonal ele-
ments are resummed into a geometric series

Rmm =
[

M0
m − M+

m+1Σ+
m+2M−

m+1 − M−
m−1Σ−

m−2M+
m−1

]−1
(3.24)

with forward and backward self-energy matrices, Σ±, that can be calculated
recursively once boundary conditions are imposed, that is once Σ±

±N is set to
zero at some large number ±N. We find that

Σ+
m =

1
M0

m − M+
m+1Σ+

m+2M−
m+1

,

Σ−
m =

1
M0

m − M−
m−1Σ−

m−2M+
m−1

.
(3.25)

The non-diagonal resolvent elements Rmn can be expressed using the self-
energy matrices

Rmn = Σ+
m M−

m−1 . . . Σ+
n+2M−

n+1Rnn if m > n,

Rmn = Σ−
m M+

m+1 . . . Σ−
n−2M+

n−1Rnn if m < n.
(3.26)

Note that the "Floquet self-energies" are diagonal in the Floquet index, while
the resolvent is not. This is because the self-energies are associated to the leads
whose Hamiltonian is static after gauge-transformation, while the resolvent
describes the states on the dot(s), which are time-dependent. This means
that the Green functions of the leads depend only on time differences (and
therefore their Fourier transform depends only on one Floquet index), while
the Green functions of the dot states need to be doubly Fourier transformed.

This description of the resolvent admits a simple diagrammatic representation.
For example, by expanding the forward self-energy term Σ+ into a series, we
see that it regroups all paths that start from a point m and only return to it after
having visited all sites m′ > m, up to the boundary site N.

Σ+
m =

R0
m

1 −R0
mM+

m+1Σ+
m+2M−

m+1
= R0

m +R0
mM+

m+1Σ+
m+2M−

m+1R0
m + . . .

= R0
m +R0

mM+
m+1R0

m+2M−
m+1R0

m + . . .

(3.27)
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The expansion of the forward self-energy in terms of diagrams is illustrated in
Fig. 3.1.
On the other hand, the backward self-energy term Σ− resums loops which
pass through sites m′ < m. Equation (3.26) then describes the shortest path
connecting a site n to site m. The role of the self-energy terms Σ±

m is to
renormalize the unperturbed diagonal elements of the resolvent R0

m = 1/M0
m

by introducing a finite imaginary part, corresponding to virtual excursions to
the superconducting reservoirs. This imaginary part is introduced in practice
by the reservoir’s Green’s functions, contained in the self-energy, which
become imaginary at energies larger than the gap |ω| > ∆. Physically, this
corresponds to coupling the initial discrete levels (the ABSs) on the dot(s) to
the superconducting continua through MAR. Then, Σ+ corresponds to MAR
processes which raise the energy of a quasiparticle above the gap ω > ∆,
while Σ− corresponds to MAR processes which lower the energy below the
gap ω < −∆. The truncation of the continued fractions at some cutoff index
|N| > ∆

ω0
is equivalent to considering that the self-energies become small

Σ±(±N) → 0 at large energies |ω ± Nω0| ≫ ∆ as MAR processes become
less probable. Therefore, at voltages which are a significant fraction of the
gap, one can greatly simplify the expressions of Σ±, while at small voltages
an increasingly greater number of Floquet harmonics need to be taken into
account.
This expansion is a locator-type expansion of the resolvent, commonly used
in disordered systems [125, 126], in the sense that the unperturbed part of the
resolvent R0

m locates a quasi-particle on site m, in contrast to the more usual
"propagator" which describes the propagation of a particle. The resolvent Rmn
then represents the probability that a quasi-particle is localized on site m, given
that it was originally on site n. The major difference between a propagator and
a locator expansion is the restriction on repeated indices which is necessary in
the later.

There is an alternative and equivalent formulation of the above iterative equa-
tions, depending on how one chooses to define the self-energy matrices. I will
use both formulations interchangeably, depending on which is more conve-
nient. The second way to write Eqs. (3.24-3.26) can be conveniently summarized
as follows:

Rmm =
[

M0
m − Σ+

m − Σ−
m

]−1
,

Rmn =
[

M0
m − Σ±

m

]−1
M∓

m∓1Rm∓2,n if m ≷ n,

Σ±
m = M±

m±1

[
M0

m±2 − Σ±
m±2

]−1
M∓

m±1.

(3.28)
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As we will see in the following section, the diagonal terms of the resolvent
give access to a spectral function, while non-diagonal elements are needed for
the calculation of transport properties. The fact that we can express the non-
diagonal elements in terms of diagonal elements (due to Eq. (3.26)) means that
the current will also, in the end, be closely related to the spectral function.

3.3 observables

We will focus on two observables. The first one is the spectral function. We
will show that it can be probed by tunneling spectroscopy with a normal tip.
This should therefore give experimental access to the Floquet spectrum. The
second observable we will examine is the dc component of the current (the
MAR current) because it is sensitive to the structure of the Floquet ladder of
resonances. Since the system is time-periodic, all observables in the steady state
will possess the same periodicity. We therefore expect that the steady state
current can be written as a Fourier series I(t) = ∑p eipω0t Ip. The dc current will
then correspond to the zeroeth harmonic I0.

3.3.1 Probing the Floquet spectrum with tunneling spectroscopy

In order to observe the Floquet spectrum, we imagine that we approach a
normal probe to a dot which is coupled to superconducting leads. The probe
consists of a metal tip which is coupled to the dot by a tunneling term. A
voltage bias is used to tune the chemical potential of the probe, so that a
tunneling current can flow between the dot and the probe. We will show
that measuring the differential conductance gives direct access to the spectral
function of the dot. A similar discussion (as well as a discussion on other
kinds of spectroscopy) can be found in [127]. The technique has been used for
the observation of the (equilibrium) ABS [54]. A recent experiment reported
observation of Floquet-Andreev states realized by continuous microwave
irradiation of a graphene Josephson junction [32], although the validity of the
interpretation of the replicas as Floquet states has been challenged [128].
I follow a standard derivation, using linear response theory: one expects that
switching on a perturbation modifies the expectation values of operators
according to the Kubo formula [129] which connects the linear response to a
retarded Green’s function. The appearance of the retarded Green’s function
is an expression of causality. In the case of Floquet-Green’s functions, it has
been proven that a non-negative spectral function exists and that it can be
interpreted as a density of states [130]. Indeed, I will show that the spectral
function can be defined through the diagonal (in Floquet) elements of the
Green’s function of the dot.
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The total Hamiltonian of the system is given by the Hamiltonian of the S-QD-
S system, the Hamiltonian of the probe, and the tunneling term between dot
and probe: H = H(t) + Hprobe + Htun. The probe is modeled as a simple free
fermion system

Hprobe =
∫

dω ωψ†(ω)ψ(ω) (3.29)

with populations defined by the usual relations

⟨ψ†(ω)ψ(ω′)⟩ = δ(ω − ω′)n(ω)

⟨ψ(ω)ψ†(ω′)⟩ = δ(ω − ω′)(1 − n(ω))
(3.30)

where n(ω) is the Fermi-Dirac distribution. If the probe is biased with a voltage
Vtun, then n(ω) = fFD(ω − eVtun) = (1 + eβ(ω−eVtun))−1. At zero temperature,
this simply reduces to a step function n(ω) = θ(eVtun − ω).

The tunneling term between the probe and the dot can be written as

Htun =
∫

dω Jtun(ω)
(

d†ψ(ω) + ψ†(ω)d
)

, (3.31)

and the tunneling current from the tip of the probe to the quantum dot is

Itun = −ie
∫

dω Jtun(ω)
(

d†ψ(ω)− ψ†(ω)d
)

. (3.32)

Using linear response 3 we obtain the expectation value of the tunneling current

⟨Itun(t)⟩ = −e
∫ t

−∞
ds
∫

dω
∫

dω′ Jtun(ω)Jtun(ω
′)

×
〈[

d†(t)ψ(ω, t)− ψ†(ω, t)d(t), d†(s)ψ(ω′, s) + ψ†(ω′, s)d(s)
]〉

.
(3.33)

The expectation values appearing on the RHS can be calculated using Wick’s
theorem. One obtains

⟨Itun(t)⟩ = e
∫ t

−∞
ds
∫

dω J2
tun(ω)

[
n(ω)

(
⟨d(s)d†(t)⟩ e−iω(t−s) + ⟨d(t)d†(s)⟩ eiω(t−s)

)
+ (n(ω)− 1)

(
⟨d†(t)d(s)⟩ e−iω(t−s) + ⟨d†(s)d(t)⟩ eiω(t−s)

)]
.

(3.34)

3 At time t = −∞ the perturbation Hext is turned on. The system is initially in thermal equilib-
rium. In the perturbed system the expectation value of an operator A at some time t is given
by linear response theory

⟨A(t)⟩ = ⟨A⟩ − i
∫ t

−∞
ds ⟨[A(t), Hext(s)]⟩

where ⟨A⟩ is the expectation value of the operator in the absence of the perturbation.
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A much more simple formula can be obtained if we consider the differential
conductance. Since only the populations n(ω) depend on the tunneling voltage,
we get

∂ ⟨Itun(t)⟩
∂Vtun

= e
∫

ds
∫

dω J2
tun(ω)

∂n(ω)

∂Vtun
×

×
[
⟨
{

d†(t), d(s)
}
⟩ θ(t − s)e−iω(t−s) + ⟨

{
d(t), d†(s)

}
⟩ θ(t − s)eiω(t−s)

]
.

(3.35)

In the above expression, one can recognize the components of the retarded
Green’s function in Nambu space:

Gr,11(t, s) = −i ⟨
{

d(t), d†(s)
}
⟩ θ(t − s)

Gr,22(t, s) = −i ⟨
{

d†(t), d(s)
}
⟩ θ(t − s).

(3.36)

3.3.1.1 Time-independent Hamiltonian

If the Hamiltonian of the dot is static, the Green’s function depends only on
time differences. We can define its Fourier transform as

G(t − s) =
∫ dω

2π
e−iω(t−s)G(ω), with G(ω) =

∫
dt eiωtG(t) (3.37)

One then gets4

∂ ⟨Itun⟩
∂Vtun

= −2e
∫

dω J2
tun(ω)

∂n(ω)

∂Vtun
Im
[

Gr,11(ω)
]

= −e
∫

dω J2
tun(ω)

∂n(ω)

∂Vtun
Im
[

Gr,11(ω) + Gr,22(−ω)
]
.

(3.38)

The last equality in the above equation was obtained by considering that, first,
the two Nambu components of the retarded Green’s function are clearly re-
lated by complex conjugation

[
G11(t)

]∗
= −G22(t) which then implies that, by

considering their Fourier transform[
G11(ω)

]∗
=
∫

dt e−iωt
[

G11(t)
]∗

= −
∫

dt e−iωtG22(t) = −G22(−ω). (3.39)

We therefore have G11(ω) −
[
G11(ω)

]∗
= −

[
G22(−ω)

]∗
+ G22(−ω) which

gives us the identity
Im G11(ω) = Im G22(−ω). (3.40)

4 The Fourier transform of the delta function is useful here

δ(ω − ω′) =
1

2π

∫
dt e−i(ω−ω′)t
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From Eq. (3.38), one is lead to define the spectral function on the dot as

A(ω) = − 1
π

Im
[

Gr,11(ω) + Gr,22(−ω)
]
= − 2

π
Im
[

Gr,11(ω)
]
. (3.41)

At zero temperature, the derivative of the Fermi-Dirac distribution is a delta
function ∂n(ω)

∂Vtun
= −eδ(eVtun − ω) so the differential conductance becomes par-

ticularly simple:

∂ ⟨Itun⟩
∂Vtun

= 2e2 J2
tun(eVtun) Im Gr,11(eVtun), temperature T=0. (3.42)

3.3.1.2 Time-periodic Hamiltonian

In the case of a voltage-biased junction, one can use a double Fourier transform
for the Green’s function on the dot

G(t, s) = ∑
m,n

∫ dω

2π
e−i(ω+mω0)tei(ω+nω0)sGmn(ω), (3.43)

with Fourier coefficients

Gmn(ω) =
1
T

∫
ds
∫ +T/2

−T/2
dt ei(ω+mω0)te−i(ω+nω0)sG(t, s). (3.44)

Inserting the expression for G(t, s) into Eq. (3.35), one finds

∂ ⟨Itun(t)⟩
∂Vtun

= −2e Im ∑
m,n

∫
dω J2

tun(ω)
∂n(ω)

∂Vtun
Gr,11

mn (ω)δn0e−imω0t

= −2e Im ∑
m

∫
dω J2

tun(ω)
∂n(ω)

∂Vtun
Gr,11

m0 (ω)e−imω0t.
(3.45)

The dc part of the tunneling current simplifies to

∂ ⟨Idc
tun⟩

∂Vtun
= −2e

∫
dω J2

tun(ω)
∂n(ω)

∂Vtun
Im
[

Gr,11
00 (ω)

]
. (3.46)

At zero temperature, this simplifies similarly to Eq. (3.42). From the definition
(3.44) of the Fourier coefficients one can check that[

Gr,11
mn (ω)

]∗
= −Gr,22

−m,−n(−ω).

Equation (3.46) therefore leads us to define the spectral function of the Floquet
system in the following way

A(ω) = − 1
π

Im
[

Gr,11
00 (ω) + Gr,22

00 (−ω)
]
= − 2

π
Im
[

Gr,11
00 (ω)

]
(3.47)
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For the S-QD-S system, Gr can be simply identified with the resolvent operator,
while for multidot systems, the Green’s function on dot i can be identified with
the part of the resolvent corresponding to the subspace of dot i. The quantity
A(ω) = − 1

π ImR00(ω) can be seen as a time-average of the spectral function
over one period of the drive.

3.3.2 Current harmonics and MAR current

The total current passing through the dot i is related to the change of the elec-
tron number on the dot N̂i(t) = ∑σ d†

iσ(t)diσ(t). In particular,

∑
j

Ij→i(t) =
d
dt

N̂i(t), (3.48)

where Ij→i is the current flowing from the reservoir j to the dot i. Without loss
of generality, we can take the dot i to be at position xi = 0. In the steady state,
the average current is given by the commutator of the number operator and the
tunneling term,

∑
j

〈
Ij→i(t)

〉
=

d
dt

⟨∑
σ

eiHtd†
iσdiσe−iHt⟩

= i ∑
σ

⟨[H(t), d†
iσdiσ] ⟩ = i ∑

σ

⟨[V(t), d†
iσdiσ] ⟩

= −2 ∑
jk′σ

Im
〈

Jjie−isjω0tc†
jk′σdiσ

〉
.

(3.49)

We can isolate the contribution from the j reservoir, and write〈
Ij→i(t)

〉
= −2 ∑

k′σ
Im
〈

Jjie−isjω0tc†
jk′σdiσ

〉
. (3.50)

Given that the dressed quasi-particle operators Γ†, Γ form a complete basis, we
can express all other operators in this basis, see Eq. (3.12) and (3.13). The advan-
tage of such decompositions is that one can then very easily derive expressions
for expectation values in the stationary state |S⟩, which is simply defined as
the state which is annihilated by the application of the Γ operator, meaning
that Γlkσ |S⟩ = 0 for any {lkσ}. Therefore, any average taken in the steady state
will contain only contributions from ⟨S|ΓΓ†|S⟩ terms. We then find that

∑
σ

〈
e−isjω0tc†

jk′σdiσ

〉
= 2 ∑

lk
∑
mn

e−i(m−n+sj)ω0t
(

δm0δjlδk′kvjk′ + Vm(jk′; lk)
)

v∗n(i; lk)

= 2 ∑
lk

∑
mn

e−i(m−n)ω0t
(

δm,sj δjlδk′kvjk′ + Vm−sj(jk′; lk)
)

v∗n(i; lk)

(3.51)
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and therefore the current is given by〈
Ij→i(t)

〉
= −4 ∑

k′,lk
∑
mn

Im
[

Jjie−i(m−n)ω0t
(

δm,sj δjlδk′kvjk′ + Vm−sj(jk′; lk)
)

v∗n(i; lk)
]
.

(3.52)
Using the FLS equations (3.18), we can re-express the source term:

Jjiδm,sj vjk′ = −(Ejk′ + mω0)vm(i; jk′)− ∑
lk

JliVm−sl(lk; jk′). (3.53)

This gives〈
Ij→i(t)

〉
= 4 Im ∑

k′
∑
mn

e−i(m−n)ω0t(Ejk′ + mω0)vm(i; jk′)v∗n(i; jk′)

−4 Im ∑
k′,lk

∑
mn

e−i(m−n)ω0t
[

JjiVm−sj(jk′; lk)v∗n(i; lk)

− JliVm−sl(lk; jk′)v∗n(i; jk′)
]
.

(3.54)

Since 2i Im z = z − z∗, the first term on the RHS can be re-written in a more
meaningful way:

4 Im ∑
mn

e−i(m−n)ω0t(E + mω0)vmv∗n =

= −2i ∑
mn

[
e−i(m−n)ω0t(E + mω0)vmv∗n − e−i(m−n)ω0t(E + nω0)v∗nvm

]
= −2i ∑

mp
e−ipω0t pω0vmv∗m−p.

(3.55)

This means that the first term goes to zero for the dc component of the cur-
rent, i.e when the Fourier component p = 0. In fact, now the current can be
decomposed into a series of harmonics:〈

Ij→i(t)
〉
=− 2i ∑

k′
∑
mp

e−ipω0t pω0vm(i; jk′)v∗m−p(i; jk′)

− 4 Im ∑
k′,lk

∑
mp

e−ipω0t
[

JjiVm−sj(jk′; lk)v∗m−p(i; lk)

−
(
term where {jk′} ⇌ {lk}

)]
≡ ∑

p
e−ipω0t Ij→i,p.

(3.56)

The MAR current corresponds to the dc component and, therefore, to the zeroth
term

〈
Ij→i

〉
dc = Ij→i,0. The last step is to re-express the amplitudes on the RHS.

The current will then contain only quadratic terms in the resolvent.
Using Eq. (3.17) the reservoir amplitudes are integrated out, and only the

amplitudes on the dot(s) are left. The dot amplitudes can in turn be expressed
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as a function of the resolvent operator and the source terms due to Eq. (3.18).
The reservoir amplitudes give

∑
k′

JjiVm(jk′; lk) = −∑
i′

Γj,ii′
[

g21
j,ii′(m)um−sj(i

′; lk) + g22
j,ii′(m)vm+sj(i

′; lk))
]
. (3.57)

We can then write the p harmonic of the current as

Ij→i,p = −2ipω0 ∑
k

∑
m

vm(i; jk)v∗m−p(i; jk)

+4 Im ∑
k

∑
i′,l,m

⟨h|
[

Γj,ii′gj,ii′(m − sj)

(
um−2sj(i

′; lk)
vm(i′; lk)

)
v∗m−p(i; lk)

− Γl,ii′gl,ii′(m − sl)

(
um−2sl(i

′; jk)
vm(i′; jk)

)
v∗m−p(i; jk)

]
.

(3.58)

At this point we have introduced a Dirac bra-ket notation. The resolvent is an
operator acting in the combined space dot⊗Nambu⊗ Floquet. In order to have
more compact expressions, we introduce the matrix σj,ii′(ω) ≡ Γj,ii′gj,ii′(ω),
so that σj is acting in the dot ⊗ Nambu space. Finally, we use the notation

⟨i, e, m|R|i′, h, n⟩ = Reihi′
mn . The amplitudes can be directly calculated if we know

the resolvent elements:(
um(i; lk)
vm(i; lk)

)
= Rii

mn Jli(xi)

(
δn,−sl ulk
−δn,sl vlk

)
+ ∑

i′ ̸=i
Rii′

mn Jli′(xi′)

(
δn,−sl ulk
−δn,sl vlk

)
(3.59)

It is convenient to introduce a translation operator C which acts on the resolvent
by translating the Floquet indices by an integer number ±s, and is conditioned
on the Nambu indices

Cs ≡ ∑
m
|i, e, m + s⟩⟨i, e, m|+ |i, h, m − s⟩⟨i, h, m| . (3.60)

With the above notation we can re-write Eq. (3.59):(
um(i; lk)
vm(i; lk)

)
= ∑

i′
⟨i, m| RC−sl

∣∣i′, 0
〉

Sli′ , (3.61)

where the source term Sli′ ≡ Jli′(xi′)
(
ulk, −vlk

)T. We can then write the term:(
um−sj(i; lk)
vm+sj(i; lk)

)
= ∑

i′

〈
i, m
∣∣CsjRC−sl

∣∣i′, 0
〉

Sli′ . (3.62)
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With this notation, the p harmonic of the current becomes:

Ij→i,p =− 2ipω0 ∑
m

∫ ∞

0

dω

2π
⟨i, h|

(
RC−sj

)
m0

Qj(ω)
(
RC−sj

)†

m−p,0
|i, h⟩

+4 Im ∑
l,m

∫ ∞

0

dω

2π
⟨i, h|σj(m − sj)

(
CsjRC−sl

)
m−sj,0

Ql(ω)(RC−sl)
†
m−p,0|i, h⟩

−4 Im ∑
l,m

∫ ∞

0

dω

2π
⟨i, h|σl(m − sl)

(
CslRC−sj

)
m−sl ,0

Ql(ω)
(
RC−sj

)†

m−p,0
|i, h⟩ .

(3.63)

The source terms gives rise to a matrix which corresponds to the populations
of the reservoir of injection SliS†

li′ = Ql,ii′ , with

Ql,ii′(ω) = i(σr
l,ii′(ω)− σa

l,ii′) θ(ω),

so that it is zero unless the excitation energy is ω > ∆. The dc component of
the current is then given by

Idc
j→i = 4 Im ∑

l,m

∫ ∞

0

dω

2π

(〈
σj(m − sj)

(
CsjRC−sl

)
m−sj,0

Ql(RC−sl)
†
m0

〉
hi

− term where j ⇌ l
)

(3.64)

Equation (3.64) is at first sight not easy to calculate since it involves an integral
over all quasi-particle excitation energies, as well as a summation over all the
Floquet harmonics. Fortunately, the resolvent elements decay exponentially at
large energies outside the gap, so that the integration can be drastically trun-
cated. Moreover, at large enough voltages we observe a localization (analogous
to the Wannier-Stark localization) which gives a rapidly convergent summation
over the Floquet harmonics. However, Eq. (3.64) even though compact, is rather
opaque physically speaking. We will try to rectify this in the next section when
talking concretely about the MAR current in the simple case of an S-QD-S sys-
tem. We will show that, by using the locator expansion of the resolvent, we can
bring the MAR current in a form that is a function of the spectral function of
the dot and a string of anomalous Green’s functions (representing the MARs).

3.4 voltage-biased s-qd-s

We will start by applying the formalism we presented in the previous sections
to the case of a single quantum dot coupled to two superconducting leads (S-
QD-S). This is a well-known system, at least when it comes to the calculation of
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the MAR current, and for a review the interested reader can look at the relevant
section in [45].
The symmetric configuration of a resonant dot with energy ϵd = 0 coupled to
two reservoirs which are voltage biased at opposite voltages (VL = −VR) is
well-understood: the subgap structure of the current-voltage curve shows steps
at voltage differences which are integer subdivisions of the gap, 2eV = 2 ∆

m ,
with m a positive integer. These steps in the subgap current appear whenever
a new "MAR trajectory" becomes possible: a quasi-particle is Andreev reflected
m times, changing its energy by e(VR − VL) = 2eV with each reflection, until
it has enough energy (equivalent to the size of the gap 2 ∆) to reach the super-
conducting continuum of states and give a contribution to the current.
The presence of the resonant level gives a "resonant condition": only trajecto-
ries which pass through the resonant level contribute. This restricts m to being
an odd integer, and suppresses even MAR processes [45, 68–70]. Displacing
the resonant level εd ̸= 0 produces additional structure [68]. In fact, we will
argue that the structure in the vicinity of the MAR steps is connected to the
positions of the Floquet ladders. Any asymmetry in the system that produces
shifts in the Floquet spectrum then produces a modification of the MAR steps.
The asymmetry can be produced by somehow breaking the mirror symmetry
of the system. For example by moving the resonant level (or in general by hav-
ing |εd − VL| ̸= |εd − VR|), or by asymmetric couplings to the reservoirs.
We will first consider the special case of a symmetrically biased junction
VL = −VR as well as the asymmetrically biased junction VL = −V, VR = 0.
Another reason for being interested in the (−V, 0) configuration is that it will
be relevant in the study of the Andreev molecule. In the regime of a large in-
terdot distance, the two junctions will be uncoupled. For an Andreev molecule
biased in the quartet configuration (−V, 0,+V), the current through the first
dot will then correspond to the current of the junction biased at (−V, 0).

3.4.1 FLS equations

Below we write explicitly the equations needed to study the S-QD-S case. The
starting point is Eq. (3.18) which becomes

(Elk + mω0 + iη)um(lk) = +δm,−sl Jlulk

+ ∑
j

Γj

[
g11

j (m + sj)um(lk) + g12
j (m + sj)vm+2sj(lk)

]
(Elk + mω0 + iη)vm(lk) = −δm,sl Jlvlk

+ ∑
j

Γj

[
g21

j (m − sj)um−2sj(lk) + g22
j (m − sj)vm(lk)

] (3.65)
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where the choice of voltages is sj = ±1 in the symmetric case or sj = {0,−1}
in the asymmetric case. In the basis of a two-component Nambu spinor Ψm =(
um, vm

)T we write

(LΨ)m ≡ M0
mΨm − M+

m+1Ψm+2 − M−
m−1Ψm−2 = Jl

(
δm,−sl ulk
−δm,sl vlk

)
, (3.66)

where the matrices M0, M± depend on the particular configuration.

floquet chain in the asymmetric case . Taking sL = −1, sR = 0 we
get 5

M0
m = (E + mω0)12 −

(
ΓLg11

L (m−1)+ΓRg11
R (m) ΓRg12

R (m)

ΓRg21
R (m) ΓLg22

L (m+1)+ΓRg22
R (m)

)
,

M+
m =

(
0 0

ΓLg21
L (m) 0

)
, and M−

m =

(
0 ΓLg12

L (m)
0 0

)
.

(3.67)

By expressing the amplitudes on the dot as a function of the resolvent,(
um(lk)
vm(lk)

)
= Rmn Jl

(
δn,−sl ulk
−δn,sl vlk

)
, (3.68)

we can make a few remarks: As can be seen from Eq. (3.26), once we know the
source index sl, we can express all non-diagonal elements Rm,±sl as a function
of the diagonal elements R±sl ,±sl . From the same equation, we see that for
Rm,±sl to be non-zero, m has to have the same parity as the source index ±sl.
Therefore m can change by steps of 2. This doubling is related to the fact that
Ψm is coupled to Ψm±2 by second-order Andreev processes.

floquet chain in the symmetric case . Taking sL = −1, sR = +1 we
get the matrices

M0
m = (E + mω0)12 −

(
ΓLg11

L (m−1)+ΓRg11
R (m+1) 0

0 ΓLg22
L (m+1)+ΓRg22

R (m−1)

)
,

M+
m =

(
0 ΓRg12

R (m)
ΓLg21

L (m) 0

)
, and M−

m =

(
0 ΓLg12

L (m)
ΓRg21

R (m) 0

)
.

(3.69)

Here, because we have taken the voltage difference across the junction to be
2eV, we expect to have a doubling with respect to the previous case. Moreover,
due to the high symmetry of this case, we find that the resolvent has a particular
structure, both in Nambu and in Floquet space. First of all, we remark that the
self-energy matrices are diagonal in Nambu space.6 So are all elements Rmm.

5 Note that in all cases we have set the dot energy to zero, εd = 0. This can be rectified simply by
adding a (−εdσz) term to the M0

m matrices.
6 The total self-energy matrix Σ = Σ+ + Σ− is actually diagonal in the asymmetric case as well.
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The rest of the elements Rmn with m ̸= n are either diagonal in Nambu space
(if m−n

2 = 2p, with p ∈ Z) or anti-diagonal (if m−n
2 = 2p + 1). In particular,

this implies the existence of "selection rules" for the amplitudes um(l), vm(l).
Indeed, if we express these amplitudes as a function of the resolvent and the
source term, a careful analysis will give us a selection rule for the index m : As
in the previous case m must have the same parity as the source index

Ψm(l) ̸= 0 if m − sl = 2p, p ∈ Z. (3.70)

Moreover, the "contents" of the wavefunction alternate between electron-like
and hole-like:

um(l) ̸= 0 if m + sl = 4p
vm(l) ̸= 0 if m − sl = 4p

(3.71)

so that there is a doubling of the periodicity with respect to the previous case.

3.4.2 Floquet spectrum

Using the definition of the matrices M0, M± and the iterative formulas of Eq.
(3.28) we can calculate the diagonal part of the resolvent R11

00(ω) whose imag-
inary part gives us the spectral function of the dot, see Eq. (3.47). All calcu-
lations are performed in Mathematica. In practice, it is sufficient to choose a
cutoff N ∼ ∆

ω0
for the calculation of the self-energies.

3.4.2.1 Single junction biased at (-V,+V).

As we have noted, in this case the resolvent elements Rmm are always diago-
nal in Nambu space. It is also worth noting that they are independent of the
phases of the superconducting leads. In general, due to the presence of particle-
hole symmetry, we have the relation R11

00(E, ω0) = R22
00(E,−ω0). If, moreover,

the coupling strengths to the left and right leads are equal, ΓL = ΓR, there is
a mirror symmetry in the system that results in Rii

00(E, ω0) = Rii
00(E,−ω0).

The combination of the two symmetries then gives R11
00(E, ω0) = R22

00(E, ω0).
Since ImR11

00(E) = ImR22
00(−E) always holds (Eq. (3.40)), then the two rela-

tions together imply that the spectrum always has a resonance at E = 0. By
the translation property of the resolvent, it follows that the spectrum consists
of resonances at all multiples of the basic frequency 2ω0. The result is that the
Floquet spectrum consists of uncoupled Floquet-Wannier-Stark ladders which
are situated at even multiples of the frequency

E = 2pω0.

This is illustrated in Fig. 3.2a where we plot the spectral function using the
frequency ω0 as a scaling parameter [18]. The inverse voltage scaling makes
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Figure 3.2: (a) Density plot of the spectral function of the dot in the S-QD-S
system, biased with VL = −VR. The couplings to the reservoirs
are equal ΓL = ΓR = 0.3 ∆. This configuration produces uncou-
pled FWS ladders. (b) Cuts at various voltages. For equal tunnel
couplings the peaks are always at even multiples of ω0. (c) The
more generic case of unequal tunnel couplings produces avoided
crossings between ladders. (d) For ΓL ̸= ΓR, the electron-like part
of the spectral function (solid lines) and the hole-like part (dashed
lines) have peaks at different energies 2mω0 ± ϵ. The couplings are
ΓL = 0.3 ∆, ΓR = 0.4 ∆.
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apparent the periodicity of the system, T = 2π
ω0

, and gives us something akin
to a "Floquet bandstructure". We therefore plot the spectrum in reduced units
of E/ω0 as a function of the inverse voltage ∆/ω0. The density plots used
here essentially show the maxima of the spectral function, corresponding to
the resonances of the resolvent element R11

00(E). The spectral function (without
scaling) is shown at various voltages in Fig. 3.2b, illustrating its resonant struc-
ture, with peaks becoming sharper at small voltages, and increasingly smeared
as the voltage frequency approaches the value of the superconducting gap.

The degeneracy of the Floquet ladders is, however, lifted as soon as some
asymmetry is introduced in the system. For example, if the couplings are un-
equal, ΓL ̸= ΓR, the bandstructure becomes dispersive and asymmetric around
zero. This is in stark difference with the equilibrium case, where the symmet-
ric coupling case turns out to be the most general, and all properties of the
asymmetric system can be derived from the symmetric one [106]. As shown
in Fig. 3.2c, when ΓL ̸= ΓR, the Floquet ladders are no longer decoupled and
avoided crossings appear, signaling coupling between them via Landau–Zener–
Stückelberg–Majorana transitions [131, 132]. Note that the coupling is between
different ladders, and not between the electron-hole sectors (since the resolvent
remains diagonal in Nambu space). The resonances are now slightly shifted
away from even multiples of the frequency, i.e. resonances are found at

Ep,± = 2pω0 ± ϵ,

with a basic period of 4ω0. The parameter ϵ can be seen as an average of the
equilibrium ABS energy over the phase variable [107]. This becomes exact away
from avoided crossings, when the interladder coupling can be neglected. Sim-
ilar expressions were found long ago by Wannier [113]. This situation is illus-
trated in Fig. 3.2c.

Figure 3.2d shows the spectral function A(E) = − 2
π ImR11(E) at various fre-

quencies (solid lines), together with the "hole" part A(−E) = − 2
π ImR22(E)

(dashed lines). We observe (not shown here) that the distance between the
peaks increases when the difference between the couplings increases. The "elec-
tron" peak moves to the right if ΓL < ΓR and towards the left if ΓL > ΓR. The
opposite is true for the "hole" peak. Clearly, in this case there is an asymme-
try of the spectral function around zero since A(E) ̸= A(−E). This prediction
should be experimentally verifiable by measuring the differential conductance
at opposite tunneling voltages.

3.4.2.2 Single junction biased at (-V,0).

In this case the spectrum consists of ladders of resonances at quasi-energies
Ep,± = 2pω0 ± ϵ, with a basic period of 2ω0. This is illustrated in Fig. 3.3a which
shows the spectral function of the system, plotted with inverse scaling. The
Floquet ladders show avoided crossings which is a sign of coupling between
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(a) (b)

Figure 3.3: (a) Spectral function of the S-QD-S system biased with VL =
−V, VR = 0. (b) Particle-hole asymmetry of the spectral function
A(E) − A(−E). Red represents positive values of the difference
(electron-like) and blue represents negative values (hole-like). The
signs change at avoided crossings. The couplings are ΓL = ΓR =
0.3 ∆.

them. Even though this looks similar to the previous case, here the resolvent
elements Rmm are no longer diagonal in Nambu space. This results in coupling
between the electron and hole sectors. As a result, even though both electronic
and hole parts of the resolvent have peaks at the same energies, their weight
away from avoided crossings differs when varying the voltage. To illustrate this,
in Fig. 3.3b we plot the difference between the electron and hole parts of the
spectral function

A(E)−A(−E) = − 2
π

Im
[
R11

00(E)−R22
00(E)

]
.

Near avoided crossings, a rapid change of the Floquet states is expected to hap-
pen. Accordingly, we see that the sign of the aforementioned quantity changes
signs at avoided crossings, signaling the change in character between electron-
like and hole-like states. Our results suggest that, in order to observe this asym-
metry it would be necessary to break the mirror symmetry of the system. This
could be achieved either by having asymmetric tunnel couplings in a symmet-
ric bias situation VL = −VR, or by an asymmetric bias situation VL ̸= −VR,
with any configuration of tunnel couplings. One could then probe the asym-
metry away from avoided crossings by measuring the conductance at opposite
tunneling voltage values.

floquet engineering . The avoided crossings present in Fig. 3.2c or 3.3
could be used to find dynamical sweet spots of the system. These so-called
sweet spots are optimal working points corresponding to the extrema in quasi-
energy differences and have been proposed as a way to protect qubits from



58 floquet-andreev resonances in multiterminal quantum dots

Δ 9ω07ω0

ω0/Δ=0.16

Δ 5ω0

ω0/Δ=0.24

|R-1-1|

|R-3-1|

|R-5-1|

|R-7-1|

Δ 3ω0

ω0/Δ=0.4

Figure 3.4: Resonant structure of the non-diagonal resolvent elements Rm,−1 at
energies above the gap and for ΓL = ΓR = 0.3 ∆. Resonances appear
at odd multiples of ω0. There is a hierarchy of peaks which depends
on the voltage, and the resonance of an element Rm,−1 dominates
when m is the minimum integer that satisfies |m|ω0 > ∆.

noise. Contrary to the static case where few sweet spots are present, the extra
dimension of time in periodically driven systems allows to find a manifold
of dynamical sweet spots [133]. An added advantage is that one can tune the
system to an avoided crossing by changing the drive in situ. Realization of a
Floquet qubit has been proposed along this line [134], where a periodic driving
can be used to tune the system near one of the avoided crossings, and a second
drive can be used to control transitions between the Floquet states. Typically,
the smaller the quasi-energy dispersion, the more insensitive would the qubit
states be to fluctuations. Moreover, tuning a fluxonium qubit to a dynamical
sweet spot away from its half-flux bias static spot has been shown to increase
coherence times [135], demonstrating the relevance of Floquet engineering to
the qubit community.

3.4.2.3 Resonant structure of the resolvent

Transport properties such as the current require calculation of the non-diagonal
elements of the resolvent Rmn with m ̸= n, for energies above the gap E > ∆.
We remind that the indices m, n represent positions on the Floquet chain, and
an element Rmn represents the probability to be at a position m on the Floquet
chain, having started at some source point n, see Sec. 3.2.3. In the context of the
current calculation, the source point n takes values that depend on the voltage
biasing of the leads, n = Vj/V. For example, in the symmetric case (−V,+V)
the source is at n = ±1, and therefore the current requires calculation of the
resolvent elements which connect the "source sites" on the Floquet chain to sites
on positions m, Rm,±1. Here, we need to make several points:

1. Outside the gap the spectrum shows signs of dissipation because of strong
hybridization with the reservoirs, i.e. the resolvent elements R11,22

00 (E) de-
cay exponentially for large energies E ≫ ∆. Depending on the configura-
tion, Floquet resonances "survive" at, or around, frequencies ω0 > ∆/m,
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with m the smallest even number such that the condition holds. The peaks
are sharper at small voltages, and become smeared when increasing ω0.

2. In the previous section we have seen that the resolvent R00 has resonances
at (or around) even multiples of ω0. Then, the symmetry by translation
of the resolvent Rm,n(ω + pω0) = Rm+p,n+p(ω) means that elements
R±1,±1(ω) = R00(ω ± ω0) have resonance peaks at (or around) odd mul-
tiples of ω0.

3. Since the non-diagonal elements of the resolvent Rm,±1 are obtained from
the diagonal elements R±1,±1 through Eq. (3.26) we can conclude that
they are resonant only when the corresponding diagonal elements are
resonant, i.e. their resonances are at (or around) odd multiples of the
frequency.

4. Also as a consequence of Eq. (3.26), there is a hierarchy of peaks in m
which depends on the voltage. This means that an element Rm,±1 be-
comes dominant when mω0 is the dominant peak above the gap, i.e. when
m is the minimal odd integer for which mω0 > ∆. For example, the ele-
ment R−3,−1 is dominant when the second order MAR trajectory is domi-
nant, ∆

3 < ω0 < ∆, the element R−5,−1 is dominant when the third order
MAR trajectory is dominant, ∆

5 < ω0 < ∆
3 , and so on.

These observations are illustrated in Figure 3.4 for the non-diagonal elements
Rm,−1.

3.4.3 MAR current

We will focus on the MAR current of the S-QD-S system in the symmetric case
(−V,+V). Using Eq. (3.64) we can write explicitly the dc component of the
current, which simplifies to

Idc = 4 Im ∑
m

∫ ∞

∆

dω

2π
×

×
[

ΓL
(

g21
L (m + 1), g22

L (m + 1)
)(R11

m+2,−1 R12
m+2,1

R21
m,−1 R22

m,1

)
QR

(R21
m,−1

R22
m,1

)∗

− ΓR
(

g21
R (m − 1), g22

R (m − 1)
)(R11

m−2,1 R12
m−2,−1

R21
m,1 R22

m,−1

)
QL

( R21
m,1

R22
m,−1

)∗]
.

(3.72)

The matrix Ql can be seen as a spectral function of the reservoir of injection l

Ql(ω) =2iΓl(gr
l (ω)− ga

l (ω)) θ(ω)

=
2Γl√

ω2 − ∆2

(
ω −∆l

−∆∗
l ω

)
, ω > ∆.

(3.73)



60 floquet-andreev resonances in multiterminal quantum dots

Γ=0.2Δ

Γ=0.3Δ

Γ=0.5Δ

Δ

9

Δ

7

Δ

5

Δ

3

1

10-1

10-2

10-3

10-4

ω0

I d
c

(a)

ΓL=0.3Δ=ΓR

ΓL=0.3Δ, ΓR=0.4Δ

ΓL=0.3Δ, ΓR=0.5Δ

Δ

7

Δ

5

Δ

3

0.0

0.2

0.4

0.6

0.8

1.0

ω0

I d
c

(b)

Figure 3.5: Subgap current of a single resonant dot. (a) Subgap structure for
the highly symmetric left-right configuration Γ = ΓL = ΓR and
(VL = −V, VR = +V) with the known MAR steps at odd subdi-
visions of the gap. Logarithmic scaling has been used for better vis-
ibility of the features. (b) Comparison of subgap current for equal
(dashed black line) and unequal (red and orange lines) tunnel cou-
plings (ΓL ̸= ΓR), showing the modification of the MAR steps when
there is asymmetry in the tunnel couplings.

We integrate Eq. (3.72) numerically in order to produce the current-voltage
characteristics. The results of our calculation for different values of tunnel cou-
plings Γ = ΓL = ΓR are depicted in Fig. 3.6a, and we verify that our method
gives the expected results for the I–V curves at zero temperature, with jumps
at odd subdivisions of the gap

VR − VL = 2eV =
2 ∆

2p + 1
⇒ eV = ω0 =

∆
2p + 1

.

At each step, a new MAR trajectory becomes possible, resulting in an increase
in the current. The increase is sudden due to the BCS density of states which
diverges at the gap edges. The steps become wider with increasing coupling.

It has perhaps been less commented on in the literature that the subgap cur-
rent steps appear at exactly ω0 = ∆

2p+1 only when there is a mirror symmetry
which happens when the tunnel couplings to the reservoirs are equal, ΓL = ΓR
and the voltage-biasing is symmetric around the dot energy VL = −VR. In
this mirror-symmetric case, electron-like and hole-like MAR trajectories are
equally favorable. We have seen that the corresponding spectrum consists of
decoupled ladders situated exactly at even multiples of ω0, see Fig. 3.2a. When
this symmetry is broken, we found that the electron-like part − ImR11

00(ω) and
the hole-like part − ImR22

00(ω) of the spectrum have peaks at different energies
Ep,± = 2pω0 ± ϵ. We find that the current carries a trace of this characteristic
of the spectrum: the MAR steps break into two sub-steps, positioned around
the original ω0 = ∆±ϵ

2p+1 frequencies. The exact shape of the steps (cusps or
peaks) depends on the choice of the couplings [136], and the distance depends
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on the difference between the couplings |ΓL − ΓR|, as shown in Fig. 3.5b. We
will clarify the connection between the current and the spectral function in the
next section.

Indeed, Eq. (3.72) is hardly transparent. We will now try to find an expression
that gives some physical intuition. To do this, we will go back to an expression
of the dc current with respect to the amplitudes on the dot (essentially rewriting
Eq. (3.58)):

Idc
j→dot = 4 Im ∑

l,k
∑
m

[
Γjg22

j (m)
∣∣∣vm+sj(l, k)

∣∣∣2 − Γlg22
l (m)|vm+sl(j, k)|2

+ Γjg21
j (m)um−sj(l, k)v∗m+sj

(l, k)− Γlg21
l (m)um−sl(j, k)v∗m+sl

(j, k)
]

.

(3.74)

In the case we examine we can set sj = sL = −1, sl = sR = +1, so that

Idc
L→dot = 4 Im ∑

k
∑
m

[
ΓLg22

L (m)|vm−1(R, k)|2 − ΓRg22
R (m)|vm+1(L, k)|2

+ΓLg21
L (m)um+1(R, k)v∗m−1(R, k)− ΓRg21

R (m)um−1(L, k)v∗m+1(L, k)
]

.
(3.75)

The first two terms on the RHS containing the normal part of the Green’s func-
tion are clearly non-zero only when Im g22

L,R(m) ̸= 0. This means that the energy
must satisfy the condition |ω + mω0| > ∆. Since the energy is ω > ∆, this is
always satisfied for positive m. However, such terms will not have a significant
contribution to the current for mω0 > ∆, because at large energies the resolvent
decays exponentially. Rather, this term mostly contributes when mω0 < −2 ∆,
which implies that m is mostly negative. Moreover, recall that Eq. (3.71) says
that the amplitudes vm(l) are non-zero when m has a distance 4p from the
source voltage sl. Therefore both |vm−1(R)|2 and |vm+1(L)|2 are non-zero for
m = 4p + 2 = . . . ,−6,−2,+2, . . . . We see that the sum over m will reduce to a
sum over only a few harmonics. This term then gives the usual MAR steps at
odd subdivisions of the gap as expected, ω0 = ∆

2p+1 .
The last two terms containing the anomalous Green’s function, proportional to
um+1(R)v∗m−1(R) and um−1(L)v∗m+1(L) also follow the same rules, although it
is not as evident at first glance. As a result, the sum over m in Eq. (3.75) can
then be restricted by the condition that

m
2
= 2p + 1, p ∈ Z.

contribution of floquet harmonics . The number of harmonics one
needs to consider depends on the voltage. For strong driving, only a few har-
monics need to be taken into account, and the sum in Eq. (3.75) can be drasti-
cally truncated. We therefore have a "localization" on the Floquet chain, anal-
ogous to the Wannier-Stark localization of electrons in solids at strong electric
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Figure 3.6: Localization at strong drives. The amount of harmonics needed in-
creases with decreasing voltage. ΓL = ΓR = 0.3 ∆.

fields. This localization is illustrated in Fig. 3.6. At large voltages ω0 > ∆, the
drive is strong enough to promote quasi-particles directly above the gap with-
out any MAR processes, and we only need to sum over two harmonics m = ±2.
As we lower the voltage, we progressively need to add more harmonics, in cor-
respondence to the MAR processes which are dominant. In the region of the
first allowed MAR process, ∆

3 < ω0 < ∆, the current is well approximated by
summing over three harmonics m = ±2,−6, in the next region of ∆

5 < ω0 < ∆
3 ,

we need to add one more m = ±2,−6,−10, and so on.

In order to better understand the structure of the current, one needs to analyze
the integrand of the current Idc

L→dot =
∫ dω

2π ∑m I (m):

I (m) = 4 Im
[
ΓLg22

L (m)|vm−1(R)|2 − ΓRg22
R (m)|vm+1(L)|2

]
+ 4 Im

[
ΓLg21

L (m)um+1(R)v∗m−1(R)− ΓRg21
R (m)um−1(L)v∗m+1(L)

] (3.76)

The sum over the positive m is nonzero, and it can be verified numerically that
it gives an almost constant contribution to the current, without any structure
near the MAR steps. We can then concentrate on the sum over the negative
m. For a given m, we can approximate the amplitudes by keeping only the
dominant contributions with respect to the resolvent elements. Note that this is
not done in the numerical calculation of the current, where we kept all terms.
However, it is useful for gaining some intuition. In order to do this, we rewrite
the amplitudes appearing in Eq. (3.76) as

|vm(l)|2 =
∣∣∣R21

m,−sl

∣∣∣2Q11
l +

∣∣∣R22
m,sl

∣∣∣2Q22
l + 2 Re

[
R21

m,−sl
(R22

m,sl
)∗Q21

l

]
um(l)v∗n(l) = R11

m,−sl
Q11

l (R21
n,−sl

)∗ +R11
m,−sl

Q12
l (R22

n,sl
)∗

+R12
m,sl

Q21
l (R21

n,−sl
)∗ +R12

m,sl
Q22

l (R22
n,sl

)∗

(3.77)
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The non-diagonal elements of the resolvent represent paths which connect the
"source sites" at n = VL,R/V = ±1 on the Floquet chain to "measure sites"
at positions m. These elements therefore correspond to processes where the
system changes its energy by an amount |m − n|ω0, equivalent to absorbing or
emitting an |m − n| number of "photons". We then expect that the dominant
term in each of the above expressions is the one involving the shortest possible
path. Explicitly, for m < 0 we approximate the amplitudes by

|vm−1(R)|2 ≃
∣∣∣R21

m−1,−1

∣∣∣2Q11
R

|vm+1(L)|2 ≃
∣∣∣R22

m+1,−1

∣∣∣2Q22
L

(3.78)

as well as,
um+1(R)v∗m−1(R) ≃ R11

m+1,−1Q11
R (R21

m−1,−1)
∗

um−1(L)v∗m+1(L) ≃ R12
m−1,−1Q22

L (R22
m+1,−1)

∗.
(3.79)

Taking into account Eq. (3.28), we can write

Rm−1,−1 =
1

M0
m−1 − Σ−

m−1

(
0 ΓRg12

R (m)

ΓLg21
L (m) 0

)
Rm+1,−1.

The change in the integrand near a MAR step can therefore be approximated
by

δI (m)

ω0→ 2 ∆+
m

≃ −8ΓLΓR
ω√

ω2 − ∆2
Im g22

R (m)
∣∣∣R22

m+1,−1

∣∣∣2 θ(ω − ∆)

+ 8Γ3
LΓR

ω√
ω2 − ∆2

Im g22
L (m)

∣∣∣∣∣ g21
L (m)

(M0
m−1 − Σ−

m−1)
22

∣∣∣∣∣
2∣∣∣R11

m+1,−1

∣∣∣2 θ(ω − ∆)

− 8Γ2
LΓR

ω√
ω2 − ∆2

∣∣∣g21
L (m)

∣∣∣2 Im

[
1

M0
m−1 − Σ−

m−1

]22∣∣∣R11
m+1,−1

∣∣∣2 θ(ω − ∆)

+ 8ΓLΓ2
R

ω√
ω2 − ∆2

∣∣∣g21
R (m)

∣∣∣2 Im

[
1

M0
m−1 − Σ−

m−1

]11∣∣∣R22
m+1,−1

∣∣∣2 θ(ω − ∆).

(3.80)

It is clear that the first two terms in the above expression contribute to the
current when Im g(m) ̸= 0. As explained previously, this implies the condition
ω0 > 2 ∆

m . For the last two terms, in the vicinity of a MAR step ω0 → 2 ∆+

m we
can make the approximation

Im

[
1

M0
m−1 − Σ−

m−1

]11,22

≃ Im

[
1

M0
m−1 + iη

]11,22

≃ Im

[
1

ω − (m − 1)ω0 − ΓR,Lg11,22
R,L (m) + iη

]
.

(3.81)
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Although it was not evident from the start, the above expression means that
the last two terms of (3.80) are also nonzero when the condition Im g(m) ̸= 0
holds.
The final step is to re-express the quantity

∣∣∣R11,22
m+1,−1

∣∣∣2 appearing in (3.80)
through the locator expansion. We find:∣∣∣R22

m+1,−1

∣∣∣2 = (ΓLΓR)
|m|
2 −1

∣∣∣R22
−1,−1

∣∣∣2
×
∣∣∣∣∣ g12

R (−2)g21
L (−4) . . . g12

R (m + 2)g21
L (m)

(M0
−3 − Σ−

−3)
11 . . . (M0

m+3 − Σ−
m+3)

11(M0
m+1 − Σ−

m+1)
22

∣∣∣∣∣
2

.
(3.82)

An analogous expression can be found for the
∣∣∣R11

m+1,−1

∣∣∣2 element. The above
expression makes more explicit a diagrammatic view of the MAR current,
where the major contribution is given by the shortest path between the source
site at the left reservoir sL = −1 and the measure site at m + 1 through

|m + 2|/2 electron-hole conversions. The resonances of
∣∣∣R11,22

m+1,−1

∣∣∣2 now explain
the relationship between the Floquet ladders and the current. For a symmetric
junction and ΓL = ΓR all resonances are at some odd multiple of the frequency
ω = |2p + 1|ω0, as shown on Fig. 3.4. All the terms in (3.80) consequently cre-
ate MAR steps at odd subdivisions of the gap. For ΓL ̸= ΓR, however, the terms∣∣∣R11

m+1,−1

∣∣∣ and
∣∣∣R22

m+1,−1

∣∣∣ give peaks that are a distance 2ε apart. The MAR
steps will then be split and the distance of the steps ought to increase with an
increase in the difference |ΓL − ΓR|. Breaking of the mirror symmetry therefore
produces the modification of the MAR steps that are shown in Fig. (3.5b).

Finally, in order to make the connection between the current and the spectral
function, we can show that the absolute value of the diagonal elements appear-
ing in (3.82) is connected to the spectral function. The proof goes as follows:
The imaginary part of the resolvent can be written as the difference between
the resolvent and its hermitian conjugate, 2i Im [R(ω)] = R(ω)−R†(ω). If we
write the resolvent as R(ω) = [M − Σ]−1 then it follows that

(R)−1 − (R†)−1 = 2i Im(M − Σ). (3.83)

Multiplying the above expression with R from the left and with R† from the
right we get the general relation

R† −R = 2iR Im(M − Σ)R† ⇒ − ImR = R Im(M − Σ)R†. (3.84)

We define the matrix γ(ω) ≡ 2 Im(M0
0 − Σ+

0 − Σ−
0 ). Now we can use the fact

that the resolvent and the self-energy are diagonal in Nambu space to get the
relation between the spectral function defined in Eq. (3.47) and the absolute
value of the resolvent elements

A(ω) = − 2
π

ImR11
00(ω) =

γ11(ω)

π

∣∣∣R11
00(ω)

∣∣∣2. (3.85)
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Figure 3.7: Three terminal junction biased in the quartet configuration. When
the distance of the dots is comparable to the superconducting coher-
ence length, R ∼ ξ0, the system behaves like a molecule.

Equivalently, we can write

A(−ω) = − 2
π

ImR22
00(ω) =

γ22(ω)

π

∣∣∣R22
00(ω)

∣∣∣2. (3.86)

Moreover, the translation property of the resolvent means that∣∣∣R11
±1±1(ω)

∣∣∣2 =
π

γ11(ω ± ω0)
A(ω ± ω0),∣∣∣R22

±1±1(ω)
∣∣∣2 =

π

γ22(ω ± ω0)
A(−ω ± ω0).

(3.87)

To summarize, we can replace absolute values
∣∣∣R11,22

m+1,−1

∣∣∣2 appearing in (3.80) by
a spectral function times a function containing a string of Andreev reflections,
as expressed in (3.82). The result is similar to Eq. 29 (for an S-S contact) in [67]
or Eq. 3 (for a resonant level) in [68], with the major difference that, in order to
avoid divergences we had to use a renormalized perturbation theory instead of
a naive one. However, our derivation is not completely general, as it relied on
the simpler structure of the resolvent in the VL = −VR case.

3.5 driven andreev molecule

We will now turn our attention to the Andreev molecule, which we have stud-
ied in the absence of voltage bias in the previous chapter, see Sec. 2.4.2. We
consider a three-terminal junction setup as sketched in Fig. 3.7, where two
quantum dots are each connected to a superconducting lead Sa, Sb, and both
are coupled to the superconducting lead Sc. The leads are voltage-biased in
the quartet configuration with Va = −V, Vb = +V and the middle lead is
grounded, Vc = 0. We take the first dot position to be x1 = 0, and the second to
be at some distance x2 = R. Similar to the equilibrium case, we will show that
the system behaves like a molecule when the interdot distance is comparable
to the superconducting coherence length, R ≲ ξ0. This will cause a splitting
of the Floquet-Andreev resonances and a modification of the dc current in the
vicinity of the MAR steps.
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3.5.1 FLS equations

The homogeneous part of Eq. (3.18) is7 (suppressing the source index l):

(E + mω0)

(
um(1)
vm(1)

)
=
[
Γc1gc(m) + Γa

(
g11

a (m−1) 0
0 g22

a (m+1)

)](um(1)
vm(1)

)
+ Γa

(
0 g12

a (m−1)
g21

a (m+1) 0

)(um+2(1)
vm−2(1)

)
+ Γcgc(m, R)

(
um(2)
vm(2)

)
(E + mω0)

(
um(2)
vm(2)

)
=

[
Γc2gc(m) + Γb

(
g11

b (m+1) 0
0 g22

b (m−1)

)](
um(2)
vm(2)

)
+ Γb

(
0 g12

b (m+1)
g21

b (m−1) 0

)(
um−2(2)
vm+2(2)

)
+ Γcgc(m, R)

(
um(1)
vm(1)

)
.

(3.88)

The new element with respect to the single dot case is a non-local Green’s
function which couples the the amplitudes on different dots gj,ii′(m) ≡ gj(m, R).
It depends explicitly on the distance between the two dots:

gj(m, R) = eiq(m)R[cos(kFR)gj(m) + sin(kFR)σz
]
, (3.89)

where kF is the Fermi wave-vector. The reservoirs have been chosen as 1D
for simplicity, but this should not influence the qualitative description. In
equilibrium, a more careful analysis of the effect of dimensionality [81] and
comparison with [78] shows that if the propagation in the middle reservoir is
3D instead of 1D, then the resulting hybridization of the Andreev molecule
will be smaller at a given distance by an order of magnitude [137]. Moreover,
it is important that the middle superconductor Sc is considered large on the
mesoscopic scale, in the sense that its spectrum is continuous and its chemical
potential is well-defined, but that the distance R between the two dots remains
finite.

The non-local Green’s function mediates the coupling between the junctions
and oscillates on two very different length scales. For energies smaller than

the gap |E| < ∆, the factor eiq(E)R = e−
√

1−(E/∆)2R/ξ0 decays exponentially
over distances larger than the superconducting coherence length ξ0 ≡ vF/∆,
while for energies above the gap, eiq(E)R oscillates without decay as long as
there is no mechanism of decoherence in Sc. A finite quasiparticle lifetime
[138] will eventually produce decay of the quasiparticle propagation in Sc over
a mesoscopic coherence length that should be between two to three orders of
magnitude larger than ξ0 [139]. These non-vanishing oscillations physically

7 The couplings to the superconducting leads have been defined as follows:

πρ0 J2
a1 ≡ Γa, πρ0 J2

c1 ≡ Γc1, πρ0 J2
b2 ≡ Γb, πρ0 J2

c2 ≡ Γc2,

and πρ0 Jc1 Jc2 =
√

Γc1Γc2 ≡ Γc
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represent quasi-particle propagation in the continuum of the reservoirs, which
is therefore not bound by the superconducting coherence length. On the other
hand, the phase kFR oscillates rapidly at the scale of the Fermi wavelength
λF = 2π/kF which is typically much smaller than the superconducting co-
herence length, ξ0 ≃ 103λF. The length-scale of the quasiparticle propagation
depends on the quasi-particle energy E, while the phase kFR will produce
geometric oscillations due to the trigonometric functions of Eq. (3.89). Since
the two scales are very different, and we want to focus on new physics related
to the energy-dependence rather than to any geometric effects, we will assume
that the phase kFR is fixed. This choice should correspond to performing an
average over the angle ψ = kFR, as is done in [139].

In the basis of the Nambu spinor

Ψm = (um(1), vm(1), um(2), vm(2))T

we can rewrite Eq. (3.88) as

(LΨ)m ≡ M0
mΨm − M+

m+1Ψm+2 − M−
m−1Ψm−2. (3.90)

Explicitly, the 4 × 4 matrix

M0
m =

(
M(1)

m −Γcgc(m, R)
−Γcgc(m, R) M(2)

m

)
, (3.91)

contains the non-local coupling of the two dots in its antidiagonal blocks, as
well as local terms on each of the dots, collected in the block-diagonal in the
M(1,2)

m matrices:

M(1)
m = (E + mω0) 12 − Γc1gc(m)− Γa

(
g11

a (m − 1) 0
0 g22

a (m + 1)

)
,

M(2)
m = (E + mω0) 12 − Γc2gc(m)− Γb

(
g11

b (m + 1) 0
0 g22

b (m − 1)

)
.

(3.92)

Finally, the matrices M±
m contain only local Andreev reflection terms

M−
m =


0 Γag12

a (m) 0 0
0 0 0 0
0 0 0 0
0 0 Γbg21

b (m) 0

,

M+
m =


0 0 0 0

Γag21
a (m) 0 0 0
0 0 0 Γbg12

b (m)
0 0 0 0

.

(3.93)
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Figure 3.8: (a) Density plot of the spectral function of the first dot. The distance
between the dots is taken to be R = ξ0/2 and all couplings are
Γ = 0.3 ∆.

3.5.2 Floquet spectrum

The resolvent can be calculated using the iterative formulas of Eq. (3.28). For
the spectrum, we are interested in the diagonal elements R00. For example, if
we perform local tunneling spectroscopy on the first dot, we will probe the
imaginary part of the elements R11,22

00 of the resolvent. We therefore define the
spectral function of the first dot as

A1 = − 2
π
R11

00.

Since R00 =
[
M0

0 − Σ+
0 − Σ−

0
]−1, the influence of the second dot on the spec-

trum of the first is contained in the off-diagonal blocks both of M0
0 and of the

self-energy matrices. For the subgap part of the spectrum, |E| < ∆, the dom-
inant interdot coupling term is the off-diagonal block of the matrix M0

0, i.e. a
term which depends on the non-local Green’s function, Γcgc(0, R). When the
interdot distance is comparable to the superconducting length R ∼ ξ0, one
therefore expects that the two dots are hybridized, forming a non-equilibrium
molecular state. The hybridization produces a splitting of the quasienergies, with
four FWS ladders instead of two. This is illustrated in Fig. 3.8 which shows the
maxima of the spectral function A1 using inverse voltage scaling. The distance
is set to R = ξ0/2.

Since the coupling element gc(0, R) decays exponentially when the distance
between the two dots becomes much larger than ξ0, we expect that the level
splitting will also show an exponential decrease, and that at large distances we
will find the quasienergies corresponding to a single junction biased at (−V, 0)
(i.e. Fig. 3.3). The lift of degeneracy as a function of the distance is shown in Fig.
3.9. In equilibrium, the level splitting of the ABS at a fixed interdot distance can
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Figure 3.9: Density plots of A1(E)−A1(−E) as a function of the distance be-
tween the two dots, for different values of voltage bias. At R ≫ ξ0
the quasienergies approach those of a single junction. At R ∼ ξ0
there is a lift of degeneracy. Red represents positive values of the
difference (electron-like) and blue represents negative values (hole-
like). We set kFR = π/4 and all couplings Γ = 0.3 ∆.

be controlled by adjusting the phase difference through one of the junctions. In
the driven case, the voltage can play an analogous role.

In reality, there is another regime when the distance is larger than the super-
conducting length but smaller than a mesoscopic coherence length ξ0 < R < lϕ.
In this regime the system behaves like an interferometer, and there are oscilla-
tions of the spectral function around the single-junction value. We discuss this
long-range interference effect in the next chapter and show that the oscillations
of the spectral functions lead to an oscillatory I–V curve.

non-resonant dots In Eq. (3.88) we have set the dot energies at reso-
nance, with ε1,2 = 0. The effect of detuning can easily be investigated by adding
an additional term to the matrix M0

m :

M0
m → M0

m −
(

ε1σz 0
0 ε2σz

)
.

In Fig. 3.10 we show the effect of detuning on the spectral function of the first
dot. The energy of the first dot is set at resonance ε1 = 0, while the energy
of the second dot varies, ε2 = δ. We observe a progressive decoupling of the
dots as the detuning δ is increased. The results suggest that the hybridization
is more robust under detuning at larger voltage values.

3.5.3 MAR current

In order to calculate the MAR current we use Eq. (3.64). There, we introduced
the matrix Ql,ii′ acting in the dot ⊗ Nambu space. In order to proceed, we keep
only the "local" part of Q, i.e. elements Ql,ii = 2iΓli

(
gr

l (ω)− ga
l (ω)

)
θ(ω). The
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(a) (b) (c)

Figure 3.10: Effect of detuning and robustness at strong driving. The distance
between the dots is taken to be R = ξ0/2 and all couplings are
Γ = 0.3 ∆.

reason that this approximation is reasonable is that the resolvent elements al-
ready contain the coupling between the dots to an arbitrary degree, since they
are calculated by resumming the contribution of different paths. The current
from the first dot to the middle superconductor is then:

Idc
1→c =4 ∑

m

∫ ∞

0

dω

2π
Im
[

Γc1
(

g21
c (m), g22

c (m)
)(R11

m,1 R12
m,−1

R21
m,1 R22

m,−1

)
Qa

( R21
m,1

R22
m,−1

)∗

− Γa
(

g21
a (m + 1), g22

a (m + 1)
)(R11

m+2,0 R12
m+2,0

R21
m,0 R22

m,0

)
Qc

(R21
m,0

R22
m,0

)∗]
.

(3.94)

The main result for the bijunction current is presented in Fig. 3.11, where we
plot the results of numerical calculations of Eq. (3.94). For simplicity, we con-
sider all tunnel couplings to be equal Γ = 0.3 ∆, and we fix kFR = π/4, in
order to avoid oscillations on the scale of the Fermi wavelength. We see that
for large distances between the dots (grey line) the I–V curve approaches that
of a single S-QD-S junction biased at (−V, 0) (dashed black line). The single
junction biased at (−V, 0) has a voltage difference which is halved compared
to the (−V,+V) configuration which we studied in 3.4.3. Its MAR steps appear
when mω0

2 > ∆ ± ϵ ⇒ ω0 > 2(∆±ϵ)
m . The behavior of the current at the regime

R ≫ ξ0 will be a subject for the next chapter.
For distances comparable to the superconducting length (red and orange

line), we are clearly in a "molecular junction" regime [140], and the MAR steps
break into four sub-steps. These sub-steps correspond to the splitting of the
energy levels in the Floquet spectrum in the Andreev molecule regime, as dis-
cussed earlier (see Fig. 3.8). The steps are visible when the resonances are not
overlapping, that is when their widths are smaller than their separation. Given
that the width of a resonance coupled to a continuum of states increases when
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Figure 3.11: Andreev molecule I–V curve calculated at various distances be-
tween the two dots. Parameters used: Γ = 0.3 ∆, kFR = π/4.
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Figure 3.12: Andreev molecule I–V curves for different values of tunnel cou-
plings Γ at fixed distance between the dots R = ξ0. Logarithmic
scaling is used. Features are softened with increasing Γ and volt-
age.

the coupling to the continuum is increased, one expects that small values of
voltage bias and tunnel couplings give sharper features. Indeed, the new fea-
tures due to the proximity of a second junction are more clear at voltages equal
to higher-order subdivisions of the gap. However, the modification should still
be visible around the 2 ∆

3 or the 2 ∆
5 MAR steps. Moreover, the influence of the

tunnel couplings on the I–V curves is shown in Fig. 3.12. As it is expected
we observe that the subgap features are softened when increasing the tunnel
coupling to the reservoirs.

contribution of floquet harmonics . As discussed in the case of the
S-QD-S junction, depending on the region of the I–V curve the sum over the
Floquet modes in Eq. (3.94) of the current can be drastically truncated at large
voltage drives. This localization is illustrated in Fig. 3.13. At large voltages ω0 >
2 ∆, the drive is strong enough to promote quasi-particles directly above the gap
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Figure 3.13: "Localization" on the Floquet chain means only a few of the har-
monics need to be taken into account when calculating the current.
The amount of harmonics required increases with decreasing volt-
age. Parameters: R = ξ0, Γ = 0.3 ∆, kFR = π/4.

without any MAR processes, and we only need to sum over two harmonics m =
±1. As we lower the voltage, we progressively need to add more harmonics, in
correspondence to the MAR processes which are dominant. In the region of the
first allowed MAR process, 2 ∆

3 < ω0 < 2 ∆, the current is well approximated by
summing over three harmonics m = ±1,−3, in the next region of 2 ∆

5 < ω0 <
2 ∆
3 , we need to add one more m = ±1,−3,−5, and so on.

3.6 conclusions

In conclusion, we have studied the S-QD-S system and the Andreev molecule
subjected to a dc voltage drive, which brings the systems out of equilibrium.
The superconductivity of the leads allows to explore Floquet physics by simple
voltage biasing. As is often done in Floquet systems [8], one can expand quanti-
ties, such as the electron/hole amplitudes on the dot(s), into Fourier modes and
map the initial time-dependent BdG equation into a tight-binding chain with
sites labeled by the Fourier harmonics. The sites are coupled to their nearest
neighbors through absorption or emission of virtual photons which here cor-
respond to Andreev reflections. The tight-binding analogy can be exploited to
get an iterative solution that corresponds to a Dyson equation for the Green’s
function on the dot(s). We find that the initial discrete levels are renormalized
by a self-energy which corresponds to the sum of two independent processes,
the Σ± of Eq. (3.25). These matrices describe processes that connect the initial
discrete levels to the superconducting continua either above the gap, ω > ∆, or
below the gap, ω < −∆, and therefore are a source of dissipation. An effective
Hamiltonian for the amplitudes on the dot(s) will therefore be non-Hermitian,
since the S-QD-S system in the presence of voltage is an open quantum system.

In the case of the Andreev molecule, the resonances on the dots are then cou-
pled through the middle reservoir by the nonlocal Green’s function of Eq. (3.89).
This coupling produces splitting of the energy levels and avoided crossings in
the spectrum at distances between the dots comparable to the superconduct-
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ing coherence length R ∼ ξ0. It also modifies the subgap structure, produc-
ing splitting of the MAR steps. This direct coupling decays exponentially with
R/ξ0. Instead, at R ≫ ξ0 the two dots are coupled through higher-order pro-
cesses contained in the self-energy which become the dominant mechanism
for coupling at long distances. This long-range mechanism involves local MAR
processes on each dot and subsequent quasiparticle propagation through the
middle superconductor at energies |ω| > ∆. The system in this regime behaves
like an interferometer, in the sense that the current becomes an oscillatory func-
tion of the voltage. We will explore this effect in the following chapter.





4
F L O Q U E T- T O M A S C H E F F E C T

4.1 introduction

In this chapter, we will study the S-QD-S-QD-S bijunction in the limit where
the middle superconductor is long, making the interdot distance R larger than
the superconducting coherence length. This means that the molecular effects we
saw in the previous chapter are no longer relevant, as at large interdot distances
there is no hybridization between the resonances on the dots. However, at a
mesoscopic regime of distances we will show that the system behaves like an
interferometer, and that a long-range coupling is induced between the dots.

In particular, we will show that the subgap current oscillates as a function
of the voltage and the interdot distance. This interference is the "Floquet ver-
sion" of the geometrical interference effect first discovered by Tomasch in thick
superconducting films [141–143]. The Tomasch effect can be explained as an in-
terference between electron-like and hole-like excitations which are degenerate
in energy, but differ in their wavenumbers [144]

k± ≃ kF ±
√

E2 − ∆2/h̄vF.

McMillan and Anderson [145] pointed out that such a situation can arise when
there is a variation of the gap parameter, such as at an N-S interface. In particu-
lar, Andreev scattering on the interface mixes incident excitations with k± and
reflected excitations with k∓ which results to a quasiparticle interference effect.
Consequently, electron tunneling measurements on some part of the supercon-
ductor at some distance d from the N-S interface and at energies larger than
the gap show that the density of states and the tunneling current are a periodic
function of

(k+ − k−)d =
2d
h̄vF

√
(eV)2 − ∆2,

where V is the applied voltage due to the tunnel probe. A typical distance
d in the Tomasch experiments was a few tens of micrometers, corresponding
to a distance two orders of magnitude larger than a typical superconducting
coherence length. The Tomasch effect is therefore a nonlocal effect where the
local density of states measured on one end of the superconductor depends on
the properties of the interface at the other end.
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In the case of the voltage-biased S-QD-S-QD-S system, there is a Floquet
analogue of the Tomasch effect due to processes that involve local MARs on
each dot, followed by quasiparticle propagation in the middle superconductor
at energies above the gap, |E| > ∆. The existence of this phenomenon was
proposed recently in [139], showing the effects on the quartet current, which
is the dissipationless current carried by pairs of Cooper pairs [146]. This chap-
ter builds up on Ref. [139]. In particular, we focus on the consequences of the
Floquet-Tomasch effect firstly on the dc current-voltage characteristics, and sec-
ondly on the spectrum of the bijunction in the subgap region, |E| < ∆. In both
cases the Floquet-Tomasch effect results in the appearance of oscillations of the
curves with respect to the single junction curves. The corresponding pole struc-
ture of the resolvent is also drastically modified with respect to the resolvent
of the single junction, and the number of poles found increases with the dot
separation.

In order to understand the physics related to coupling two dots via a con-
tinuum, we study a simplified model of two discrete levels coupled through
a normal wire with a linearized dispersion relation. We show the connection
between the analytic properties of the resolvent and the temporal dynamics, in
particular that the appearance of a great number of poles in the complex en-
ergy plane is translated into oscillations in the time domain. Finally, a relation
between the resolvent and the scattering matrix is derived, which makes the
connection between scattering and decay properties. This relation is known in
the literature as the Mahaux-Weidenmüller formula [147].

Inspired by the study of this toy model, we show that the modification of
the bijunction’s resolvent, as well as the resulting oscillations in the spectrum,
can be described by an effective non-Hermitian two-level model of resonances
coupled through a continuum.

As in the previous chapter, we study the bijunction biased on the "quar-
tet line" [74], that is we consider the voltage configuration (Va, Vc, Vb) =
(−V, 0,+V). This means that the phases on each reservoir evolve with time
as per the Josephson relation ϕa(t) = ϕa − 2eVt, and ϕb(t) = ϕb + 2eVt (having
chosen ϕc ≡ 0 as a reference phase). As a result, the quartet phase, defined as
the combination

ϕq ≡ ϕa(t) + ϕb(t)− 2ϕc = ϕa + ϕb,

is static. We find that the Floquet-Tomasch oscillations of the spectral function
depend on the quartet phase. Specifically, we find that the amplitude of oscil-
lations could be potentially controlled non-locally by changing the phase drop
on one of the dots. This chapter is mostly based on [94].

4.1.1 MAR current in the interferometer regime

We start by considering the numerical results for the MAR current. We find
that at interdot distances larger than the superconducting coherence length, the
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Figure 4.1: Long-range Floquet-Tomasch effect on the subgap structure. Zoom
near the second MAR step, around ω0 = 2∆

5 , compared to the single
junction case (blue line). At large distances oscillations of the I–V
curves appear around the single junction current. Coupling strength
Γ = ∆/2.

dc current oscillates as a function of the applied voltage. The oscillations are
more pronounced in the vicinity of the MAR steps. The effect of an increasing
distance between the dots is shown in Fig. 4.1, where we plot the current from
the first dot to the middle reservoir according to Eq. (3.94). The plot is focused
in the region of the MAR step which occurs around ω0 = 2∆

5 . At R > ξ0
the curves approach the I–V curve of a single junction (dashed line). However,
we observe that a large distance (grey lines at R = 5ξ0, 10ξ0, 25ξ0) produces
oscillations of the I–V curve itself around the single junction curve. We also see
that the frequency of oscillations increases with the distance.

4.1.2 Density of states above the gap

Figure 4.2 shows the spectral function of the first dot at energies above the
gap, calculated at a fixed voltage value ω0 = 0.45 ∆. As in the case of the
MAR current, we observe that at large distances the spectral function oscillates
around the spectral function of the single junction. We will show that the
spectral function is a periodic function of a Tomasch phase factor 2R

vF

√
E2 − ∆2.

It has been argued [139] that the Floquet-Tomasch effect could be used to
create correlations of Cooper pairs over long distances, which are orders of
magnitude larger than the superconducting coherence length (in the Tomasch
experiment the thickness was some tens of micrometers 10 − 30µm ∼ 100ξ0.).
It is a non-local effect over distances which are not achievable in the absence
of the voltage drive since it is mediated by quasi-particles which, by MAR
processes, reach the continuum of states of the middle superconductor Sc
where they can propagate over a long distance without being bound by the
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Figure 4.2: Spectral function at energies above the superconducting gap, at
ω0 = 0.45 ∆. Coupling strength Γ = ∆/2.

superconducting coherence length.

Using the formalism developed in the previous chapter, we will show that the
spectral function of the first dot A(E) = − 2

π ImRe1e1
00 (E) oscillates as a function

of the energy E and the interdot distance R at energies above the gap, as shown
in Fig. 4.2. We will slightly change notation with respect to the previous chapter:
we use indices i = 1, 2 to refer to the first and second dot, respectively. Within
the subspace of the dot i we use indices ei, hi to refer to the Nambu indices.
The resolvent can be calculated using the expression Rmm =

[
M0

m − Σm
]−1,

where M0
m is given by Eq. (3.91) and Σm = Σ+

m + Σ−
m is the total self-energy

matrix. The self-energy is a 4 × 4 matrix which can be written in block form as

Σm ≡
(

Σ(1)
m Σ12

m

Σ21
m Σ(2)

m

)
. (4.1)

The resolvent of the bijunction is also written in block form

Rmm =

(
M(1)

m − Σ(1)
m −Γcgc(m, R)− Σ12

m

−Γcgc(m, R)− Σ21
m M(2)

m − Σ(2)
m

)−1

. (4.2)

As seen in Fig. 4.2, the oscillations of ImRe1e1
00 are superimposed on the single-

junction curve. We therefore define the resolvents of the single junctions (where
there is no coupling between the dots, or one dot is considered at a distance
R → ∞ from the other) as

R(1,2)
mm =

[
M(1,2)

m − Σ(1,2)
m

]−1
(4.3)

where all matrices are now calculated in the 2 × 2 Nambu subspace of dot 1 or
dot 2. The self-energies Σ(1,2)

m represent local MAR processes which connect the
states of dot 1 or 2 above the gap to those below the gap.
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For energies above the gap E > ∆, the element which gives access to the
spectral function, R00, can be approximated by

R00 ≈
(

M(1)
0 − Σ(1)

0 −Γcgc(0, R)
−Γcgc(0, R) M(2)

0 − Σ(2)
0

)−1

. (4.4)

The self-energy block matrices Σ12, Σ21 in the off-diagonal can be neglected,
because they are of higher-order in the tunnel couplings compared to the di-
rect coupling term Γcgc(0, R). Equation (4.4) describes resonances on each dot
which are formed due to local MAR processes and which are then coupled
by propagation in the middle reservoir, represented by the non-local Green’s
function gc(0, R) in the off-diagonal. Since the resolvent is a block matrix, we
can invert it blockwise. For the resolvent of Eq. (4.4), the upper-left block (cor-
responding to the subspace of the first dot) can be approximated by1

[R00]dot 1
≃ R(1)

00 + Γ2
cR(1)

00 gc(0, R)R(2)
00 gc(0, R)R(1)

00 +O
(

Γ4
c

)
. (4.5)

This is a Fabry-Pérot-like process, with the first term in the series correspond-
ing to a single junction resonance and each successive term representing an
even number of reflections between the two dots. The first correction to the
resolvent of the two coupled dots with respect to the resolvent corresponding
to an uncoupled dot then is

[R00]dot 1
−R(1)

00 ≈ Γ2
cR(1)

00 gc(0, R)R(2)
00 gc(0, R)R(1)

00 . (4.6)

A term like the above has a clear physical interpretation: the resonances on
each dot represented by R(1,2) are coupled via propagating quasi-particles in
the continuum of states of the middle superconductor. The amplitude of the
effect will therefore depend on the specific geometry and the amount of disor-
der of the middle reservoir (here we have considered a clean, one-dimensional
superconducting wire). We see that a Tomasch phase factor will appear due
to the non-local Green’s function gc(0, R) which is proportional to the phase
ei
√

E2−∆2R/vF . A total phase e2i
√

E2−∆2R/vF is then accumulated by quasi-particles
which travel from dot 1 to dot 2 and back. As a result, at a fixed distance R, the
resolvent of the coupled system oscillates as a function of the energy around
the single-dot resolvent R(1), as shown in Fig. 4.2.

1 If M is the inverse of a block matrix

M =

A B
C D

−1

=

M11 M12
M21 M22


then its upper-left block is equal to

M11 = (A − BD−1C)−1 = A−1 + A−1B
1

D − CA−1B
CA−1.
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4.2 floquet-tomasch effect on the spectrum

In the following section we will show that the periodic driving affects the
subgap region of the spectrum, and induces a long-range interdot coupling at
distances R ≫ ξ0. The main difference with respect to the previous discussion
is that for subgap energies the approximation performed in Eq. (4.4) is not
valid. The reason is that for |E| < ∆ the non-diagonal self-energy blocks
Σ12, Σ21 cannot be ignored. In fact they are the dominant terms responsible for
the interdot coupling.
At equilibrium (in the absence of voltage bias), there are two competing
mechanisms for the coupling of the two dots in the molecular regime: a)
crossed Andreev reflection (CAR) processes, involving the Andreev reflection
of two electrons, one from each dot, which then form a Cooper pair in the
middle superconductor, and b) elastic cotunneling (EC) processes, involving
normal transmission of quasiparticles through the middle superconductor [148,
149]. In terms of the superconducting Green’s functions, CAR corresponds to
the anomalous propagators, while EC corresponds to the normal components.
An efficient way to tune the rate between these two processes has recently been
proposed and demonstrated [150, 151]. At equilibrium, separating the two dots
at distances larger than ξ0 results in trivially recovering the spectrum of two
single dots, as both CAR and EC will be exponentially suppressed. Driving
the system, however, allows for a new mechanism of interdot coupling, which
we will now analyze.

We will examine the Floquet spectrum at large interdot distances, and compare
it to the single junction spectrum. As explained in the previous chapter, once
we know the "Floquet chain operator"

Lmm = M0
m − Σ+

m − Σ−
m (4.7)

the spectral function is obtained by the imaginary part of the inverse oper-
ator R = L−1. Equivalently, the solutions of the characteristic polynomial
detL00 = 0 are the (complex) quasienergies. We can therefore plot the function
detL00 in the complex plane, and look for its zeroes. If a zero of detL00
appears at an energy E0 − iγ, then the spectral function will have a peak
around the energy E0, with a width given by the imaginary part γ.

single junction. If the two dots are decoupled, then there is a single
junction with Va = −V, Vc = 0. We denote its Floquet chain operator by

L(1)
mm = M(1)

m − Σ+,(1)
m − Σ−,(1)

m ,
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Figure 4.3: Single junction spectrum. Multiple Andreev reflections turn the
initial ABS on the dot into resonances with a finite width. The
lower panel is a contour plot of log

∣∣∣detL(1)
00

∣∣∣ showing the zeroes

of detL(1)
00 in the complex plane. The upper panel shows the cor-

responding spectral function. Drive frequency is ω0 = ∆/2 and
Γa = Γc1 = ∆/2.

and its inverse by the resolvent operator R(1) =
[
L(1)

]−1
, where

M(1)
m = E + mω0 − Γc1gc(m)− Γa

(
gee

a (m − 1) 0
0 ghh

a (m + 1)

)
, (4.8)

and the self-energy matrices are:

Σ+,(1)
m = Γ2

a

0 0

0 ghe
a (m + 1)

[
1

M(1)
m+2 − Σ+,(1)

m+2

]ee

geh
a (m + 1)

, (4.9a)

Σ−,(1)
m = Γ2

a

geh
a (m − 1)

[
1

M(1)
m−2 − Σ−,(1)

m−2

]hh

ghe
a (m − 1) 0

0 0

. (4.9b)

The self-energy adds dissipation to the diagonal elements of M(1) due to MAR
processes. To simplify things, if we consider a voltage such that ∆/2 < ω0 < ∆,
we see that if an initial ABS level is close to an energy |E| ≪ ∆, then two
Andreev reflections would be enough to connect the level to the continuum
of states above or below the gap by absorption or emission of virtual photons
of energy 2ω0. In this case the self-energies will have an imaginary part pro-
portional to geh

a (±1)ghh,ee
c (±2)ghe

a (±1) and therefore are of order O
(
Γ2

aΓc1
)

in
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Figure 4.4: Floquet-Tomasch effect on the bijunction spectrum. The interdot
distance is R = 50ξ0. Contour plot of log(|detL00|) in the com-
plex plane showing the zeroes of detL00 (lower panel) and the cor-
responding spectral function of dot 1, − 2

π ImRe1e1 (upper panel).
Floquet-Tomasch processes produce oscillations in the DOS. All
couplings are set to Γ = ∆/2 and the frequency of the drive is
ω0 = ∆/2.

the tunnel couplings. This imaginary part will push the zeroes of M(1)
0 below

the real axis. This situation is shown in Fig. 4.3. The lower panel shows the
solutions of the equation detL(1)

00 = 0 in the complex plane. The corresponding
peaks in the spectral function given by the imaginary part of the resolvent op-
erator − 2

π ImR(1),ee
00 are shown in the upper panel.

bijunction. The numerical results for the spectral function on dot 1 of
the bijunction are presented in Fig. 4.4. At large interdot distances, the real
part of the resonances is not shifted with respect to the single-junction peaks,
but oscillations appear, superimposed on the single-junction peaks due to
coupling with the second dot. In the complex plane, the resulting behavior is a
proliferation of the solutions of the characteristic polynomial detL00 = 0. The
frequency of oscillations of the resolvent and, correspondingly, the number
of zeroes in the complex plane increase with the distance. This behavior
of the zeroes of detL00 is shown in Fig. 4.5 at various distances. The same
figure compares the effect at different couplings; a smaller coupling results
in more narrow resonances, or equivalently, in smaller imaginary parts of
the quasi-energies. Moreover, the proliferation of roots is faster for stronger
couplings, meaning that the same number of solutions appears at a smaller
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Figure 4.5: Evolution of the zeroes of detL00 for different couplings to the reser-
voirs when the interdot distance is increased. The number of poles
increases with the distance. The frequency of the drive is set to
ω0 = ∆/2.

distance.

The remaining of this chapter is an effort to understand the pole structure
shown in Fig. 4.4 and Fig. 4.5. Making certain approximations, we can study
the system analytically, and derive an effective non-Hermitian Hamiltonian of
a two-level system.

4.2.1 Large voltage bias, large separation approximation

The Floquet chain operator involves continued fraction expressions of the self-
energy. This corresponds to resumming an infinite number of (certain kinds)
of diagrams. Technically, one truncates the continued fractions at some cutoff
index |N| > ∆/ω0 by considering that the self-energies become small Σ±

±N → 0
at large energies |E ± Nω0| ≫ ∆. Therefore, at voltages which are a significant
fraction of the gap, one can greatly simplify the expressions of Σ±, while at
small voltages an increasingly greater number of Floquet harmonics need to
be taken into account. We will here concentrate on the former regime, because
it facilitates the analytical calculation of the L operator, while giving some
insight on the involved mechanism of coupling. However, the Floquet-Tomasch
mechanism of coupling that will be described in the next section occurs at
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smaller voltage values as well, albeit at higher MAR order and therefore at a
higher order in the tunnel couplings.

We will therefore study the subgap spectrum of the bijunction in a regime
of voltages which are a significant fraction of the gap ∆/2 < ω0 < ∆. The
assumption is that two reflections connect any subgap state to the continua
|E ± 2ω0| > ∆, but one reflection is not necessarily sufficient if the energy is
close to zero |E ± ω0| < ∆. Moreover, we will assume that the interdot distance
is large, meaning that any molecular effects can be ignored.

The starting point for understanding the results of Fig. 4.4 and 4.5 is the Floquet
chain operator at m = 0:

L00 = M0
0 − Σ+

0 − Σ−
0 =

(
M(1)

0 −Γcgc(0, R)
−Γcgc(0, R) M(2)

0

)
− Σ+

0 − Σ−
0 . (4.10)

The operator L is written in the basis of the four-component Nambu spinor
Ψm =

(
um(1), vm(1), um(2), vm(2)

)T and is therefore a 4 × 4 matrix acting in
dot⊗Nambu space. The diagonal blocks of L correspond to intradot processes,
while the off-diagonal blocks correspond to interdot processes. Specifically, the
dots 1 and 2 are each coupled by local reflections to their closest reservoirs.
This information is contained in the block matrices:

M(1,2)
m = (E+mω0)12 −Γc,(1,2)gc(m)−Γ(a,b)

(
gee
(a,b)(m + s(a,b)) 0

0 ghh
(a,b)(m − s(a,b))

)
.

(4.11)
The off-diagonal blocks of L00 couple the two dots through processes involv-
ing nonlocal Andreev reflections. The off-diagonal coupling term in M0

0 is the
nonlocal Green’s function of the middle reservoir gc(0, R), given by Eq. 3.89.
The nonlocal Green’s function is the dominant source of coupling at small dis-
tances R ≲ ξ0, but becomes exponentially small at large distances for processes
inside the gap (i.e. for energies |E| < ∆). Therefore, in the regime of interest
R ≫ ξ0, the coupling of the two dots will be contained entirely in the self-energy
matrices Σ±

0 :

L00 ≃
(

M(1)
0 0
0 M(2)

0

)
− Σ+

0 − Σ−
0 , R ≫ ξ0 (4.12)

The self-energy elements do not go to zero as e−R/ξ0 , but are limited by a
mesoscopic coherence length instead [139]. For a large voltage bias ∆/2 <
ω0 < ∆, we can truncate the expressions for the self-energies such that only
two Floquet harmonics are kept, Σ±

|m|≥2 → 0. The self-energies can be calculated
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(a) (b)

Figure 4.6: Self-energy terms (a) Σ+,h1e2 and (b) Σ−,e1h2 couple a hole (electron)
on dot 1 to an electron (hole) on dot 2 through propagation in the
middle reservoir. An overall phase e∓iϕq eiq(±2)R is accumulated.

using the iterative definition of Eq. (3.28) together with Eq. (3.93). Explicitly, the
self-energy matrices have the form:

Σ+
0 =


0 0 0 0

0 Γ2
aghe

a (1)
[

1
M0

2

]e1e1
geh

a (1) ΓaΓbghe
a (1)

[
1

M0
2

]e1h2
ghe

b (1) 0

0 ΓaΓbgeh
b (1)

[
1

M0
2

]h2e1
geh

a (1) Γ2
bgeh

b (1)
[

1
M0

2

]h2h2
ghe

b (1) 0

0 0 0 0

, (4.13a)

Σ−
0 =


Γ2

ageh
a (−1)

[
1

M0
−2

]h1h1

ghe
a (−1) 0 0 ΓaΓbgeh

a (−1)
[

1
M0

−2

]h1e2

geh
b (−1)

0 0 0 0
0 0 0 0

ΓaΓbghe
a (−1)

[
1

M0
−2

]e2h1

ghe
b (−1) 0 0 Γ2

bghe
b (−1)

[
1

M0
−2

]e2e2

geh
b (−1)


.

(4.13b)

By inverting the 4 × 4 matrix M0
±2, one can express the self-energies (and

therefore the coupling between the dots) as a function of local and nonlocal
Green’s functions of the reservoirs. The inversion of the matrix M0

m can be
performed blockwise. If the matrix has the form:

M0
m =

(
M(1)

m −Γcgc(m, R)
−Γcgc(m, R) M(2)

m

)
, (4.14)

then we can decompose its inverse as (suppressing the indices m, R for brevity)

1
M0 ≈

(
1

M(1) + Γ2
c

1
M(1) gc

1
M(2) gc

1
M(1) Γc

1
M(1) gc

1
M(2)

Γc
1

M(2) gc
1

M(1)
1

M(2) + Γ2
c

1
M(2) gc

1
M(1) gc

1
M(2)

)
, (4.15)
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where we have made a perturbative expansion in the tunnel couplings and kept
only terms up to O

(
Γ2

c
)
. The coupling between the dots is contained entirely

in the non-diagonal terms of the self-energy. These can be written as

Σ−,e1h2 ≈ΓaΓbΓcgeh
a (−1)

[
1

M(1)
−2

]hh

ghe
c (−2, R)

[
1

M(2)
−2

]ee

geh
b (−1), (4.16a)

Σ+,h1e2 ≈ΓaΓbΓcghe
a (1)

[
1

M(1)
2

]ee

geh
c (2, R)

[
1

M(2)
2

]hh

ghe
b (1), (4.16b)

Σ+,e2h1 ≈ΓaΓbΓcgeh
b (1)

[
1

M(2)
2

]hh

ghe
c (2, R)

[
1

M(1)
2

]ee

geh
a (1) (4.16c)

Σ−,h2e1 ≈ΓaΓbΓcghe
b (−1)

[
1

M(2)
−2

]ee

geh
c (−2, R)

[
1

M(1)
−2

]hh

ghe
a (−1) (4.16d)

The above formulas can be interpreted as specific physical processes that couple
the two dots through local and nonlocal Andreev reflections. All processes
couple an electron (hole) at initial energy |E| ≪ ∆ on dot 1 to another hole
(electron) at same energy E on dot 2. Initially the quasiparticle on dot 2 is
Andreev reflected locally on reservoir Sb whereby its energy is changed by
E ± ω0. This is then followed by a nonlocal Andreev reflection through the
middle superconductor Sc at energies which are above the gap |E ± 2ω0| > ∆,
so that the propagation is not limited by the superconducting coherence length.
Finally, a local Andreev reflection on reservoir Sa returns the quasiparticle to
the initial energy E on dot 1. A graphical representation of Eq. (4.16) is sketched
in Fig. 4.6. The coupling due to processes like the above involves three Andreev
reflections, meaning it is of order O(ΓaΓcΓb) in the tunnel couplings. We can
also see that the three Andreev reflections will contribute a quartet phase factor
e±iϕq , where ϕq = ϕa + ϕb − 2ϕc with ϕc = 0. Finally, an energy-dependent
phase factor, which we could call the "Floquet-Tomasch phase factor",

eiq(±2)R = e±i
√

(E±2ω0)2−∆2R/vF , |E ± 2ω0| > ∆, (4.17)

is also accumulated due to the propagation in the middle superconductor.

4.3 interlude : coupling discrete levels through a continuum

The preceding analysis suggests that at the regime of interest the relevant
physics is that of two resonances coupled through a continuum. A crucial ele-
ment is that the self-energy processes (4.16) are energy-dependent. Even more
importantly, the existence of oscillations as a function of the energy means that
we cannot ignore the energy dependence of the self-energies.
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Often when considering the coupling between a discrete level and a contin-
uum, one can consider their interaction as constant. This results in a resonance
of Lorentzian form and any state initially on the discrete level will eventually
decay into the continuum as per the Fermi Golden Rule. It is useful to study
this kind of problems with the use of the resolvent operator of the Hamiltonian

R(z) ≡ 1
z − H

. From R the time evolution operator is obtained through con-

tour integration, giving access to the temporal dynamics of the system. Indeed,
for positive times t > 0, the evolution operator is given by

U(t) = − 1
2πi

∫ ∞

−∞
dω e−iωtR(ω + iη), t > 0.

The time evolution therefore depends on the analytic properties of the resolvent.
In the case of a single discrete level coupled to a continuum of states, the part
of the resolvent on the dot has the form

R(z) =
1

z − εd − Σ(z)
.

The self-energy can be written as Σ(ω) = Σ′(ω) + iΣ′′(ω). The real part Σ′

usually adds a slight shift to the energy of the unperturbed level. The most
important qualitative change comes from the imaginary part Σ′′. The assump-
tion leading to Fermi’s Golden Rule, and which amounts to replacing the self-
energy by a complex valued constant, is that Σ(ω) is a slowly varying function,
particularly in the vicinity of ϵd. This assumption leads to the approximation

R(ω + iη) ≃ 1
ω − ε̃d + iΓ

,

in which case the resolvent has a simple pole at ω = ε̃d − iΓ. Taking the appro-
priate contour as in Fig. 4.7a, the time evolution operator is U(t) = e−iε̃dte−Γt, so
that the probability to find a particle on the discrete level decays exponentially
P(t) = |U(t)|2 = e−2Γt.

However, the exponential decay is, in many cases, modified. For example, in
the previous discussion we have glossed over the fact that the continuum adds a
branch cut in the complex plane. Then if the continuum has a finite width [152],
a bandgap [153], or a singular density of states [154] (this is a non-exhaustive
list) the exponential decay can be significantly modified, or even altogether
suppressed [154]. In this section we will take the wide-band limit which means
we ignore any such effect. A more careful discussion can be found in [155] or
[105].

We will instead focus on the interference effects due to the existence of
two discrete levels, which are coupled indirectly through propagation in a
continuum of states. We will first study the spectrum of the system and the
time-evolution of the populations of the levels. We will show that in a strong-
coupling regime (whose meaning will be given later) the resolvent has a great
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Figure 4.7: Contours of integration for the evolution operator. (a) A simple pole
leads to exponential decay. (b) Interference of multiple poles can
modify the Fermi Golden Rule.

number of poles in the complex plane. In the time-domain the existence of the
poles is translated into an oscillation of the populations: a state initially pre-
pared on one level will travel through the wire and be reflected back a few
times before gradually evaporating. We will then study the out of equilibrium
situation where the wire is connected to reservoirs with different chemical po-
tentials on either end. We derive a relation between the scattering matrix and
the resolvent. In this case, the existence of multiple poles in the complex plane
is translated into Fabry-Pérot oscillations of the transmission coefficient.

4.3.1 Spectrum and time-evolution

We will study a toy model of two discrete states which are indirectly coupled
through a one-dimensional wire. In first quantization, we associate discrete
states |di⟩ with quantum dots at positions xi, separated by a distance x2 − x1 ≡
L, and continuous states |k⟩ with the reservoirs. The discrete states and the
continuous states live in different subspaces and are therefore orthogonal. The
continuous states act as channels of decay for the bound states initially on the
dots, and upon coupling dots and reservoirs, the bound states generally turn
into resonances with a finite lifetime and eventually decay into the environment.
The total Hamiltonian of this system is the Fano-Anderson Hamiltonian

H = ∑
k

ωk |k⟩⟨k|+ ∑
i∈dots

ϵi |di⟩⟨di|+ ∑
k,i

Jke−ikxi |k⟩⟨di|+ J∗k eikxi |di⟩⟨k| , (4.18)

and the wavefunction of the system can be written as a linear combination of
states on the dots and on the wire

|Ψ(t)⟩ = ∑
i∈dots

gi(t) |di⟩+ ∑
k

f (k, t) |k⟩ . (4.19)

We assume that initially, t = 0, there is only one electron in the system, localized
on the first dot, so that we have the initial conditions: g1(0) = 1, g2(0) =
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0, f (k, 0) = 0. Then, the Schrödinger equation i d
dt |Ψ(t)⟩ = H |Ψ(t)⟩ gives a

system of coupled equations for the amplitudes

i
dgi(t)

dt
= ϵigi(t) + ∑

k
J∗k eikxi f (k, t)

i
d f (k, t)

dt
= ωk f (k, t) + ∑

i
Jke−ikxi gi(t).

(4.20)

In order to resolve this system, it is convenient to use the Fourier transform

g(ω) =
∫ +∞

0
dt eiωtg(t). (4.21)

For positive times t ≥ 0, the integral is convergent if Im ω > 0. Using

i
∫ +∞

0
eiωt dg(t)

dt
dt = ωg(ω)− ig(0), (4.22)

Eq. (4.20) is transformed into

ωg1(ω)− i = ϵ1g1(ω) + ∑
k

J∗k eikx1 f (k, ω)

ωg2(ω) = ϵ2g2(ω) + ∑
k

J∗k eikx2 f (k, ω)

ω f (k, ω) = ωk f (k, ω) + Jke−ikx1 g1(ω) + Jke−ikx2 g2(ω)

(4.23)

By eliminating the amplitudes of the reservoirs, we obtain the linear system:[
ω − ϵ1 − ∑

k

|Jk|2
ω − ωk

]
g1(ω)− ∑

k

|Jk|2
ω − ωk

e−ikLg2(ω) = i[
ω − ϵ2 − ∑

k

|Jk|2
ω − ωk

]
g2(ω)− ∑

k

|Jk|2
ω − ωk

eikLg1(ω) = 0.

(4.24)

Formally, it is straightforward to compute the amplitudes by defining the resol-
vent operator as the inverse of the linear operator appearing in Eq. (4.24)(

g1(ω)
g2(ω)

)
= R(ω)

(
i
0

)
. (4.25)

The behaviour of the amplitudes as a function of time can be then calculated
using the inverse Fourier transform of the amplitudes

gi(t) =
1

2π

∫
gi(ω)e−iωt dω , (4.26)

and the survival probability to find a particle on the dot i at some time t is
given by the square of its amplitude

Pi(t) = |gi(t)|2. (4.27)
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Since t > 0, the integral of Eq. (4.26) is convergent if the contour is chosen to be
a semi-circle of infinite radius in the lower half of the complex plane, Im ω < 0.
However, the initial definition of g(ω) was for Im ω > 0. In practice this means
one has to analytically continue the functions gi(ω), initially defined on the
upper half complex plane, to the lower half complex plane. The amplitudes are
then calculated by contour integration of the resolvent elements. The presence
of multiple poles will modify the Fermi golden rule behavior of the survival
probability. At long times, the main contribution to the integral will come from
any poles near the real axis.

4.3.1.1 Linear dispersion

The solution (4.26) essentially reposes on knowledge of the analytical properties
of the self-energy:

Σ(ω) ≡ ∑
k

|Jk|2
ω − ωk

(
1 e−ikL

eikL 1

)
. (4.28)

In order to simplify things, the wire connecting the dots will be considered
one-dimensional with a linear dispersion ωk = vk. For a normal metal the
linearization (Tomonaga-Luttinger model) is justified for the description of the
low lying excitations around the Fermi surface, which in 1d consists of two
Fermi points at k = ±kF. The only complication is that there are two branches:
a right-moving branch with energy ωk = vk and a left-moving branch with
energy ωk = −vk. In the wide-band approximation, the coupling Jk = J can be
considered constant. Appropriately taking the contours then gives

Σ(ω + iη) =
∫ dk

2π

|Jk|2
ω − vk + iη

(
1 e−ikL

eikL 1

)
= −iγ

(
1 eiωL/v

eiωL/v 1

)
, (4.29)

where γ ≡ J2/v. Equation (4.26) becomes(
ω − ϵ1 + iγ iγeiωL/v

iγeiωL/v ω − ϵ2 + iγ

)(
g1(ω)
g2(ω)

)
=

(
i
0

)
. (4.30)

The resolvent has two series of poles in the lower half of the complex plane.
Assuming identical dots, ϵ1 = ϵ2 = ϵ0 ≡ vk0, these are given by the solutions
of the transcendental equation:

(ω − ϵ0 + iγ)2 + γ2e2iωL/v = 0 ⇒ ω± = ϵ0 − iγ(1 ± eiωL/v). (4.31)

One of the solutions ω+ is found numerically and plotted in Fig. 4.8 for in-
creasing interdot distances. The other solution ω− behaves in a similar way.
For small distances, Eq. (4.31) has two solutions ω± slightly shifted below the
real axis near the dot energy ϵ0. As the length of the wire is increased, the
number of solutions increases and the poles of the resolvent start approaching
the real axis. When the coupling γ is increased, the proliferation of the poles is
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Figure 4.8: Solutions ω+ of Eq. (4.31) in the complex plane. Dashed blue lines
are the solutions of the imaginary part of Eq. (4.31) and black lines
are the solutions of the real part. The red dots at their intersection
are the solutions ω+. We take ϵ0 = 0.5, γ = 0.01. As the distance
between the dots grows, poles proliferate and approach the real axis.

faster (in the sense that the same amount of poles will appear at smaller values
of the distance). We will show that the behavior of the poles depends on the
competition between the lifetime of the resonances, associated with the inverse
of the coupling strength τ = γ−1, and the time of propagation in the wire
tp = L/v. The far left plot in Fig. 4.8 will turn out to correspond to a regime
of weak-coupling γL/v ≪ 1. The next three plots, from left to right, show the
transition from the weak-coupling regime to a strong-coupling regime.

4.3.1.2 Weak-coupling limit

To a first approximation, the coupling term eiωL/v ≃ eiϵ0L/v = eik0L, and there
are two solutions to Eq. (4.31),

ω± = ϵ0 − iγ(1 ± eik0L). (4.32)

It is easy to see that when the condition k0L = nπ, with n an integer, is satisfied,
then one of the poles lies on the real axis at ω1 = ϵ0 = vk0. The mode is there-
fore "trapped" and does not decay into the continuum. It was von Neumann
and Wigner that first proposed the existence of such solutions [156], which are
now called "bound states in the continuum" (BICs) [157]. At the same time,
the second solution acquires a maximum dissipation ω2 = ϵ0 − 2iγ. This phe-
nomenon is repeated whenever the phase shift k0L is an integer multiple of π,
meaning that the round trip phase shift is a multiple of 2π (creation of a stand-
ing wave). When this standing wave is created, destructive interference causes
one of the modes to essentially become uncoupled from the environment, re-
covering its original energy ϵ0, while the second state is more strongly coupled
to the environment and becomes short-lived. Such Fabry-Pérot BICs are known
to exist in a variety of systems, both classical and quantum-mechanical, when-
ever two resonances are coupled through the same continuum, see [157], and
references within.
The appearance of a BIC is accompanied by a non-avoided crossing of the real
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parts. On the contrary, when k0L = nπ/2, with n an odd integer, the solu-
tions have equal imaginary parts and a maximum separation of the real parts,
ω1,2 = ϵ0 ± γ − iγ. This is illustrated in Fig. 4.9. To make this plot, we use Eq.
(4.31) without making an approximation on the energy, and search for the two
solutions with the smallest imaginary parts. For γL/v ≪ 1, the approxima-
tion that there are only two solutions given by Eq. (4.32) holds, but this starts
breaking down as the distance increases.

Re(ω1-ω2)

Im(ω1)

Im(ω2)

0 1 2 3 4

-0.04

-0.02

0.00

0.02

0.04

L/πk0

Figure 4.9: Plot of the solutions of Eq. (4.32) as a function of the distance L
between the two dots. At periodic intervals L = nπv

ϵ0
there are non-

avoided crossings; one of the roots becomes purely real (bound state
with no dissipation), while the second state has a maximum dissi-
pation Im ω = 2γ. Parameters γ = 0.01, ϵ0 = 0.5.

survival probability at a non-avoided crossing and at an an-
ti-crossing . At a non-avoided crossing, one root is on the real axis ω1 = ϵ0,
while the second ω2 = ϵ0 − 2iγ decays with twice the original decay rate. It is
then easy to calculate the survival probabilities Pi(t) = |gi(t)|2 using contour
integration

g1(t) =
1

2π

∫
dω

i(ω − ϵ0 + iγ)e−iωt

(ω + iη − ϵ0)(ω + iη − ϵ0 + 2iγ)
=

1
2

e−iϵ0t(1 + e−2γt),

g2(t) =
1

2π

∫
dω

±γe−iωt

(ω + iη − ϵ0)(ω + iη − ϵ0 + 2iγ)
= ∓1

2
e−iϵ0t(1 − e−2γt).

(4.33)

In the long time limit the probabilities therefore stay finite, meaning that a
"part" of the particle stays trapped on the dots

lim
t→∞

P1,2(t) =
∣∣∣∣1 ± e−2γt

2

∣∣∣∣2 =
1
4

.
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Figure 4.10: Survival probabilities P1,2 at a non-avoided crossing (black and
dashed black line), showing that a particle initially on the first
dot does not completely dissipate into the continuum. At anti-
crossings k0L = nπ

2 , with n an odd integer, the survival probabili-
ties (red and dashed red line) eventually go to zero, and P1 decays
faster than the Fermi Golden Rule (grey line). Same parameters as
Fig. 4.9.

If, however, we place ourselves at an anti-crossing (that is whenever k0L =
nπ/2, n an odd integer), then we find that the two poles are ω1,2 = ϵ0 ± γ − iγ
and the time-dependent amplitudes are

g1(t) =
1

2π

∫
dω

i(ω − ϵ0 + iγ)e−iωt

(ω − ϵ0 − γ + iγ)(ω − ϵ0 + γ + iγ)
= e−iϵ0te−γt cos γt

g2(t) =
1

2π

∫
dω

±iγe−iωt

(ω − ϵ0 − γ + iγ)(ω − ϵ0 + γ + iγ)
= ∓e−iϵ0te−γt sin γt

(4.34)

Therefore, the survival probability of both states at long times goes to zero.
Since |cos γt|2 < 1, a particle initially on the first dot dissipates faster than
Fermi’s golden rule.2 The conclusions of this paragraph are summarized on
Fig. 4.10, with black lines representing the behaviour when the levels cross and
red lines for anti-crossings.

2 If there is no coupling between the two dots, the amplitude on the first dot is simply

g1(t) =
1

2π

∫
dω

ie−iωt

ω − ϵ0 + iγ
= e−iϵ0te−γt,

and the survival probability is given by Fermi’s Golden Rule,

P1(t) = |g1(t)|2 = e−2γt.
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4.3.1.3 General solution

However, the above was only a weak-coupling approximation to the solution
of Eq. (4.31). As seen from the numerical solution, Fig. 4.8, this approximation
only captures the behavior of the solutions which are near the real axis, essen-
tially ignoring the series of poles below. Starting from Eq. (4.30), we can rewrite
the amplitudes on the dots as

g1(ω) =
i
2

[
1

ω − ϵ0 + iγ(1 − eiωL/v)
+

1
ω − ϵ0 + iγ(1 + eiωL/v)

]
g2(ω) =

i
2

[
1

ω − ϵ0 + iγ(1 − eiωL/v)
− 1

ω − ϵ0 + iγ(1 + eiωL/v)

] (4.35)

Using the series expansion

1
ω − ϵ0 + iγ(1 ± eiωL/v)

=
+∞

∑
n=0

(∓iγ)neinωL/v

(ω − ϵ0 + iγ)n+1 , (4.36)

we get

g1(ω) = i ∑
n even

(iγ)neinωL/v

(ω − ϵ0 + iγ)n+1 ,

g2(ω) = i ∑
n odd

(iγ)neinωL/v

(ω − ϵ0 + iγ)n+1 .
(4.37)

The inverse Fourier transform for the amplitude on the first dot follows by
contour integration.3

g1(t) = ∑
n even

γn

n!
(t − nL/v)ne−iϵ0(t−nL/v)e−γ(t−nL/v)θ(t − nL/v)

= ∑
n even

(γL/v)n

n!
(t/tp − n)ne−ik0L(t/tp−n)e−γL/v(t/tp−n)θ(t/tp − n).

(4.38)

The amplitude on the second dot g2(t) can be found in the same way, with the
only difference being that the sum is over odd integers.

3 For the pole of order n + 1 the inverse Fourier transform will require calculation of a term

i
2π

∫
dω

(iγ)ne−iω(t−nL/v)

(ω − ϵ0 + iγ)n+1 .

Since the pole is in the lower-half of the complex plane, the integral is zero if t < nL/v. If
t > nL/v, we get

i
2π

∫
dω

(iγ)ne−iω(t−nL/v)

(ω − ϵ0 + iγ)n+1 =
(iγ)n

n!
(−i(t − nL/v))ne−iϵ0(t−nL/v)e−γ(t−nL/v)θ(t − nL/v)
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Figure 4.11: In the strong coupling regime γL/v > 1 a particle oscillates be-
tween the two dots before dissipating.

As seen from Eq. (4.38), there are two competing time lengths in this prob-
lem: the first one is the time of propagation in the wire, tp = L/v, while the
second is the lifetime of the resonances on the dots, given as the inverse of their
width, τ = 1/γ. The coupling strength γL/v = tp/τ therefore expresses the
competition between the two timescales.

• At the limit where γL/v < 1, we are at a weak-coupling limit, and only
the first few terms of the sum in Eq. (4.38) contribute. We will then recover
the results of the previous discussion. In this case only the two poles of
the resolvent near the real axis contribute to the time evolution.

• If the lifetime of the resonances is much shorter than the time of propa-
gation, γL/v > 1, the image is that of a series of pulses: a wavepacket
starting from dot 1 at time t = 0 arrives at dot 2 at time tp and returns
on dot 1 at time 2tp. The wavepacket therefore oscillates between the two
dots, and progressively dissipates. This is shown in Fig. 4.14. We see that
the great number of poles in Fig. 4.8 results in the appearance of oscilla-
tions in the time domain.

4.3.2 Connection with transport

There is a connection between the S-matrix and the resolvent of the system
(given by what is called the Mahaux-Weidenmüller formula in the literature)
which permits to make a connection between scattering and decay problems
[147]. We imagine that the wire is connected, on either end, to a reservoir with
a well-defined chemical potential. If a voltage bias V is applied between the two
reservoirs, we can define µL = εF + eV and µR = εF. The imbalance between the
reservoirs creates scattering states which propagate in the wire. If we assume
a linearized dispersion ω = vk, there are two branches describing motion in
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the leads, a left-moving branch with ωL = −vk and a right moving one with
ωR = +vk. The corresponding parts of the wavefunction are written as ψL,R(x).
Then the Schrödinger’s equation is

(ω − ϵ1)g1 = J(ψR(x1) + ψL(x1))

(ω − ϵ2)g2 = J(ψR(x2) + ψL(x2))
(4.39)

and

ωψR = −iv
∂ψR

∂x
+ Jδ(x − x1)g1 + Jδ(x − x2)g2

ωψL = +iv
∂ψL

∂x
+ Jδ(x − x1)g1 + Jδ(x − x2)g2

(4.40)

In order to construct the scattering matrix we need to build diffusive states.
With the ansatz that ψL,R are plane waves away from the positions of the scat-
terers at x1, x2, we write

ψR(x) =


α1eikx, x < x1

α2eikx, x1 < x < x2

α3eikx, x2 < x

, ψL(x) =


β1e−ikx, x < x1

β2e−ikx, x1 < x < x2

β3e−ikx, x2 < x

(4.41)

The situation is summarized in Fig. 4.12. By regularizing the wavefunction at
the positions of the dots

Ψ(x1) =
1
2
(
Ψ(x−1 ) + Ψ(x+1 )

)
Ψ(x2) =

1
2
(
Ψ(x−2 ) + Ψ(x+2 )

) (4.42)

Eq. (4.41) and (4.39) give

(ω − ϵ1)g1 =
J
2
(α1 + α2)eikx1 +

J
2
(β1 + β2)e−ikx1

(ω − ϵ2)g2 =
J
2
(α2 + α3)eikx2 +

J
2
(β2 + β3)e−ikx2 .

(4.43)

Moreover, from Eq. (4.40) we get an expression for the discontinuities at x1, x2

α2 − α1 = −i
J
v

e−ikx1 g1

α3 − α2 = −i
J
v

e−ikx2 g2

β2 − β1 = i
J
v

eikx1 g1

β3 − β2 = i
J
v

eikx2 g2.

(4.44)
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Figure 4.12: Schema for the scattering states.

Substituting Eq. (4.44) in Eq. (4.43), we get an expression of the amplitudes on
the dots as a function on the ingoing amplitudes(

ω − ϵ1 + i J2

v i J2

v eikL

i J2

v eikL ω − ϵ2 + i J2

v

)(
g1
g2

)
= J
(

eikx1 e−ikx1

eikx2 e−ikx2

)(
α1
β3

)
(4.45)

The inverse of the matrix on the left hand side is the resolvent R(ω), so that(
g1
g2

)
= JR(ω)W(k)

(
α1
β3

)
, with W(k) ≡

(
eikx1 e−ikx1

eikx2 e−ikx2

)
. (4.46)

4.3.2.1 Scattering matrix

The scattering matrix gives an expression of the outgoing amplitudes β1, α3, as
a function of the in-going amplitudes α1, β3 :(

α3
β1

)
= S

(
α1
β3

)
. (4.47)

By inspection, the scattering matrix can be defined as

S =

(
t r′

r t′

)
(4.48)

where t and t′ are transmission amplitudes and r, r′ are reflection amplitudes.
Using Eq. (4.44) the outgoing amplitudes can be written as a function of the
amplitudes on the dots(

α3
β1

)
=

(
α1
β3

)
− i J

v

(
e−ikx1 e−ikx2

eikx1 eikx2

)(
g1
g2

)
(4.49)

which, together with Eq. (4.45), leads to(
α3
β1

)
=

(
α1
β3

)
− iγW†(k)R(ω)W(k)

(
α1
β3

)
. (4.50)

The scattering matrix is therefore connected to the resolvent by the relation

S(k) = 1− iγW†(k)R(k)W(k). (4.51)
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4.3.2.2 Transfer matrix

The transfer matrix expresses states on the right of a scatterer as a function of
the states on its left. It provides a convenient expression of the total transmis-
sion amplitude as a sum of terms involving an increasing number of reflections
in the region between the two dots. The transfer matrix at x1 can be defined as(

α2
β2

)
= M1

(
α1
β1

)
=

1
ω − ϵ1

(
ω − ϵ1 − iγ −iγe−2ikx1

iγe2ikx1 ω − ϵ1 + iγ

)(
α1
β1

)
. (4.52)

At x1 we can also define the scattering matrix S1 ≡
(

t1 r′1
r1 t′1

)
, through the

relation
(

α2
β1

)
= S1

(
α1
β2

)
. Rewriting the system in Eq. (4.52), one can get a

relationship between the elements of the transfer matrix and the scattering
matrix at x1, namely(

t1 r′1
r1 t′1

)
=

1
M22

1

(
1 M12

1
−M21

1 1

)
=

1
ω − ϵ1 + iγ

(
ω − ϵ1 −iγe−2ikx1

−iγe2ikx1 ω − ϵ1

)
.

(4.53)

Similarly, we define the transfer matrix at x2(
α3
β3

)
= M2

(
α2
β2

)
=

1
ω − ϵ2

(
ω − ϵ2 − iγ −iγe−2ikx2

iγe2ikx2 ω − ϵ2 + iγ

)(
α2
β2

)
, (4.54)

as well as the scattering matrix(
t2 r′2
r2 t′2

)
=

1
ω − ϵ2 + iγ

(
ω − ϵ2 −iγe−2ikx2

−iγe2ikx2 ω − ϵ2

)
. (4.55)

The transfer matrix construction is convenient, because it is straightforward
to combine the individual transfer matrices in order to get the total transfer

matrix: Since
(

α3
β3

)
= M2

(
α2
β2

)
= M2M1

(
α1
β1

)
, the total transfer matrix is

equal to M = M2M1. It is connected to the total scattering matrix through the
relation (

t r′

r t′

)
=

1
M22

(
1 M12

−M21 1

)
. (4.56)

4.3.2.3 Transmission coefficient

One quantity of interest is the transmission coefficient, T(ω) = |t|2. In the
Landau-Bütiker formalism, the average current under a voltage bias eV = µL −
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µR is given by integrating the transmission coefficient over the available states
[158]

I = −2e
h

∫
T(ω)[ fL(ω)− fR(ω)]dω

=
e
h

∫ εF+eV

εF

T(ω)dω , (at temperature T = 0).
(4.57)

Then, the differential conductance at zero temperature has a rather simple
form:

G(V) =
dI
dV

=
2e2

h
T(εF + eV). (4.58)

From Eq. (4.56), the transmission amplitude can be written as a geometric series

t =
1

M22 =

(
1

M2M1

)22

=
t1t2

1 − r′1r2
= t1t2

+∞

∑
n=0

(r′1r2)
n

= t1t2 + t1r′1r2t2 + t1r′1r2r′1r2t2 + · · ·

(4.59)

The physical interpretation is straightforward. The first term of the geometric
series corresponds to the amplitude for transmission through the wire with-
out any reflections. The second term corresponds to transmission after two
reflections, the third after four reflections, and so on. The system is therefore a
realization of an electronic Fabry-Pérot. We find:

t =
(ω − ϵ1)(ω − ϵ2)

(ω − ϵ1 + iγ)(ω − ϵ2 + iγ) + γ2e2iωL/v (4.60)

Assuming a detuning between the dots ϵ1,2 = ϵ0 ± δ, and setting ϵ0 = 0, the
transmission amplitude is

t =
ω2 − δ2

(ω + δ + iγ)(ω − δ + iγ)

+∞

∑
n=0

(−1)nγ2ne2inωL/v

(ω + δ + iγ)n(ω − δ + iγ)n . (4.61)

This expression can be scaled with respect to the natural energy scale related to
a wire of length L, ωL ≡ v/L. Then, the transmission amplitude can be written
in reduced energy units of ω̃ = ω/ωL :

t(ω̃) =
ω̃2 − (δL/v)2

(ω̃ + δL
v + i γL

v )(ω̃ − δL
v + i γL

v )

+∞

∑
n=0

(−1)n(γL/v)2ne2inω̃

(ω̃ + δL
v + i γL

v )n(ω̃ − δL
v + i γL

v )n
.

(4.62)
As we saw in the previous section, the strength of the coupling is given by the
competition between the lifetime of the resonances τ and the propagation time
tp :

tp/τ = γL/v.

This parameter explicitly controls the strength of the reflection processes in Eq.
(4.62).
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Figure 4.13: In the weak coupling limit γL/v ≪ 1, the physics is that of over-
lapping Fano resonances. (a) Identical dots with no detuning (black
solid line). Transmission for a single dot (dashed line) (b) Small de-
tuning δ = 0.1 (black line) and strong detuning δ = 1 (grey line).

weak coupling limit. In the weak coupling limit where γL/v < 1, the
higher order terms in the sum can be ignored, and the transmission is simply
given by a direct transmission through the system T = |t1t2|2. The physics is
then described by the overlap between two Fano resonances. If the dots are
identical with no detuning δ = 0, then the total transmission amplitude is

t ≃ ω

ω + 2iγ
.

As we saw in the previous section, in the weak coupling regime in the absence
of detuning and for ε0 = 0, one resonance becomes a BIC with zero width while
the other becomes twice as dissipative. Comparing t with the transmission am-
plitude through a single dot t1 = ω

ω+iγ , one can conclude that the overall effect
of adding a second dot is a doubled width 2γ. This is shown in Fig. 4.13a.
As shown in Fig. 4.13b, introducing a small detuning between the dots leads to
the system becoming transparent in a very narrow region [159], while at strong
detuning δ ≫ γ, one recovers two isolated resonances at ±δ. These phenom-
ena have been experimentally observed, mostly in photonic systems, see for
example the review [160] and the references within. I note that in the literature
of the Fano resonances the limit of overlapping resonances is usually called a
"strong coupling" limit. This is because the scales that are usually involved are
the width of the resonances with respect to their detuning. Here, however, the
situation is different since we have to compare three different energy scales.

strong coupling limit. In the strong coupling limit γL/v > 1, the trans-
mission is a sum of Feynman paths involving an increasing number of reflec-
tions between the two dots. The interference caused is expressed by the phase
e2inωL/v, accumulated after an even number 2n of reflections. The interference
produces oscillations of the transmission coefficient as a function of the energy,
as shown in Fig. 4.14. This will result in steps in the current. The position of the



4.3 interlude : coupling discrete levels through a continuum 101

-10 -5 0 5 10
0.0

0.5

1.0

ω/ωL

T
(ω

/ω
L
)

(a) δ = 0

-10 -5 0 5 10
0.0

0.5

1.0

ω/ωL

T
(ω

/ω
L
)

(b) δ ̸= 0

Figure 4.14: Strong coupling limit γL/v > 1. Transmission coefficient for
γL/v = 2 (grey lines), and γL/v = 5 (black lines). (a) In the
absence of detuning. (b) Detuning δL/v = 2. As the coupling
increases, oscillations become more prominent. In both plots the
functions are calculated in reduced units of ω/ωL.

transport peaks corresponds to the position of the resolvent poles in the com-
plex plane. This is more evident in Fig. 4.15 where a "phase diagram" of the
system is presented, showing the transition from the weak to the strong cou-
pling regime. For each selection of detuning and coupling strength, we plot the
transmission coefficient together with the poles of the resolvent in the complex
plane, as well as the resulting current.

discussion. We presented a simplified model that captures the transition
from a regime of isolated resonances to an interferometer regime. This model
shares some features with the driven S-QD-S-QD-S system since both models
involve the coupling of two quantum dots through a continuum of states. In
particular, they both show a proliferation of the resolvent poles at large dis-
tances and concomitant oscillations in the observables. However, we must note
that there are important differences:

• We considered a normal wire instead of a superconducting one. Any effect
related to the superconducting gap, as well as the singularity of the BCS
density of states at the gap edges was not taken into account.

• Superconductivity mixes electrons and holes. The Floquet-Tomasch effect
involves two different processes, represented by the self-energy matrices
Σ± that couple the electrons on one dot to the holes on the other. These
processes have a more complicated dependence on the energy and on the
applied voltage. In particular, they can become resonant for a Floquet-
Andreev state if by MAR processes they connect it to the edge of the
superconducting gap.
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4.4 reduction to a two level system

With an appropriate transformation, we can show that the basic physics of the
system at large interdot distances is that of two resonances coupled through
a continuum. The resulting effective Hamiltonian is non-Hermitian, which is
a result of the fact that we have focused on the Hamiltonian of a subsystem.
The linear operator L00 can be transformed into the basis where the matrices
M(1,2)

0 of the uncoupled dots are diagonal. We will assume identical dots for

simplicity, so that the matrices M(1,2)
0 have the same pair of eigenvalues ±E0.

We will take into account that due to the particle-hole symmetry of the BdG
states the roots of the characteristic polynomial detL00 = 0 come in pairs (if
E is an eigenvalue, so is −E∗). We can then focus only on the positive sector
of energies, assuming that the coupling between positive and negative energy
states is small.

4.4.1 Effective Hamiltonian

For large voltage bias and small tunnel couplings we can approximate the ma-
trices M(1,2)

0 , assuming |E| ≪ ω0, ∆, by

M(1,2)
0 ≈

E ∓ Γ(a,b)
ω0√

∆2−ω2
0

−Γc,(1,2)

−Γc,(1,2) E ± Γ(a,b)
ω0√

∆2−ω2
0

. (4.63)

The roots of the characteristic polynomial det
(

M(1,2)
0

)
= 0 are

E±
(1,2) = ±

√√√√√Γ2
c,(1,2) +

 Γ(a,b)ω0√
∆2 − ω2

0

2

. (4.64)

For simplicity, we will assume that the dots are identical, meaning that we take
the couplings Γa = Γb and Γc1 = Γc2 = Γc. Then, the two matrices M(1,2)

0 have
the same pair of eigenvalues

±E0 ≡ ±

√√√√√Γ2
c +

 Γaω0√
∆2 − ω2

0

2

,

but different eigenvectors. Indeed, the structure of the matrices M(1,2)
0 means

that the corresponding eigenvectors satisfying M(j)
0 ψ±

j = 0 can be parametrized
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as

ψ+
1 =

(
cos θ

sin θ

)
, ψ−

1 =

(− sin θ

cos θ

)
, (4.65a)

ψ+
2 =

(
sin θ

cos θ

)
, ψ−

2 =

(− cos θ

sin θ

)
. (4.65b)

We see that the "electron" and "hole" components of the eigenvectors are, in fact,
reversed. This is because the two dots are coupled to reservoirs Sa and Sb which
are biased with opposite voltages. Moreover, we can derive a simple relation
for the angle θ involving the tunnel couplings and the voltage frequency ω0 :

θ =
1
2

arctan

Γc

Γa

√
∆2 − ω2

0

ω0

. (4.66)

Within our approximation that ∆
2 < ω0 < ∆, we can deduce from the above

relation that the principal value of the angle is θ ∈ [0, π/4[. This angle therefore
controls the electron/hole content of the eigenvectors.

Having found the eigenvectors, we can construct change of basis matrices P(θ)
and Q(θ) that diagonalize M(1,2)

0 :

M(1)
0 = P(θ)DP(θ)−1

=

(
cos θ − sin θ

sin θ cos θ

)(
E − E0 0

0 E + E0

)(
cos θ sin θ

− sin θ cos θ

)
,

M(2)
0 = Q(θ)DQ(θ)−1

=

(
sin θ − cos θ

cos θ sin θ

)(
E − E0 0

0 E + E0

)(
sin θ cos θ

− cos θ sin θ

)
.

(4.67)

Using these, we can transform the initial Floquet operator L00 in the basis of
the eigenvectors ψ+

1 , ψ−
1 , ψ+

2 , ψ−
2 :

L̃ =

(
P(θ)−1 0

0 Q(θ)−1

)
L
(

P(θ) 0
0 Q(θ)

)
=

(
P−1M(1)

0 P 0
0 Q−1M(2)

0 Q

)
−
(

P−1 0
0 Q−1

)(
Σ+

0 + Σ−
0
)(P 0

0 Q

)
.

(4.68)

By permutation of the basis vectors ψ−
1 ⇌ ψ+

2 , we can rewrite L̃ in order to
make apparent the two blocks which correspond to positive and negative eigen-
values. To lowest order of perturbation in the tunnel couplings, we can neglect
the non-diagonal blocks in L̃. This amounts to neglecting the coupling between
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positive and negative eigenvalue sectors. For the upper-left block of L̃ we then
obtain

L̃++ =

(
E − E0 0

0 E − E0

)
− cos2 θ

(
Σ−,e1e1

0 Σ−,e1h2
0

Σ−,h2e1
0 Σ−,h2h2

0

)
− sin2 θ

(
Σ+,h1h1

0 Σ+,h1e2
0

Σ+,e2h1
0 Σ+,e2e2

0

)
.

(4.69)

We see that the parameter θ (defined in Eq. 4.66) controls the relative strength
of the self-energy processes Σ±, where Σ− connects the dots through Sc at
energies below the gap E − 2ω0 < −∆, and Σ+ connects the dots through
quasiparticle propagation in the middle superconductor at energies above the
gap E + 2ω0 > ∆. The parameter θ itself can be controlled by the voltage
and the couplings which change the relative weights of the electronlike and
holelike components of the eigenvectors.

The resulting effective operator is of the form

Leff =

(
E − E0 + iγ1 iγ12

iγ21 E − E0 + iγ2

)
. (4.70)

The above relation describes the coupling of two discrete levels initially at E0,
which are coupled through a continuum of states. The overall action of the
continuum is, as expected, to add a small shift to E0 equal to the real part of
the diagonal self-energy elements and a width equal to their imaginary part.
Moreover, the two resonances are then coupled through the non-diagonal el-
ements of the self-energies. However, the particularity of this system is that
the self-energy processes that couple the dots are energy-dependent, and the
imaginary parts γ, defined below, are themselves functions of the energy E, the
voltage bias ω0 and the distance R between the resonances.

Explicitly, the diagonal components of the self-energy matrices will add a
finite lifetime to the discrete levels at E0, given by:

iγ1 = −Γ2
a cos2 θ · geh

a (−1)

[
1

M0
−2

]h1h1

ghe
a (−1)− Γ2

a sin2 θ · ghe
a (1)

[
1

M0
2

]e1e1

geh
a (1),

(4.71a)

iγ2 = −Γ2
b cos2 θ · ghe

b (−1)

[
1

M0
−2

]e2e2

geh
b (−1)− Γ2

b sin2 θ · geh
b (1)

[
1

M0
2

]h2h2

ghe
b (1),

(4.71b)

and γ1 = γ2 ≡ γ for identical dots. The non-diagonal components that couple
the two resonances can be written in a form that makes apparent the depen-
dence on the quartet phase ϕq = ϕa + ϕb − 2ϕc, and the Floquet-Tomasch phase
factors (defined in 4.17)

γ12 = αeiϕq eiq(−2)R − βe−iϕq eiq(2)R, (4.72a)

γ21 = αe−iϕq eiq(−2)R − βeiϕq eiq(2)R, (4.72b)
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Figure 4.16: Contour plots of the solutions of Eq. (4.74) in the complex plane.
The solutions are found at the intersections of Re(detLeff) = 0
(black lines) and Im(detLeff) = 0 (blue dashed lines). The roots
are marked with red dots. Choice of parameters: Γj = 0.2 ∆, ω0 =
0.5 ∆.

where

α =
ΓaΓbΓc∆3 cos(kFR) cos2 θ

[∆2 − (ω0 − E)2]
√
(2ω0 − E)2 − ∆2

[
1

M(1)
−2

]hh[
1

M(2)
−2

]ee

, (4.73a)

β =
ΓaΓbΓc∆3 cos(kFR) sin2 θ

[∆2 − (ω0 + E)2]
√
(2ω0 + E)2 − ∆2

[
1

M(1)
2

]ee[
1

M(2)
2

]hh

. (4.73b)

Finding the resulting eigenvalues due to the coupling between the two reso-
nances requires finding the zeroes of the characteristic polynomial of Leff. The
characteristic polynomial will be a transcendental equation, generally requiring
a numerical solution. For identical dots,

(E − E0 + iγ)2 + α2e2iq(−2)R + β2e2iq(2)R − 2αβ cos 2ϕqeiq(2)Reiq(−2)R = 0
(4.74)

The solutions of the above equation are found numerically and plotted on the
complex plane in Fig. 4.16. At small distances, we find two solutions around the
initial level E0, slightly shifted in the complex plane. As the distance between
the dots grows, however, there are more solutions which appear around the
two initial ones. The number of the solutions increases with the distance since
the factors eiq(±2)R become more rapidly oscillating. Figure 4.16 shows that
the effective model roughly captures the expected behavior, i.e., the number
of poles increases with increasing interdot distance, in agreement with Fig. 4.4
and Fig. 4.5 that were produced by numerically calculating the full operator
L00.
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4.4.2 Oscillations of the spectral function

From Eq. (4.70) we can calculate the corresponding effective resolvent operator
Reff = L−1

eff :

R11
eff =

E − E0 + iγ
(E − E0 + iγ)2 + γ12γ21

=
∞

∑
n=0

(−1)n(γ12γ21)
n

(E − E0 + iγ)2n+1 . (4.75)

This is reminiscent of the expressions we found for the toy model in the previ-
ous section. Here, the strength of the Floquet-Tomasch effect on the resolvent
is controlled by the product

γ12γ21 = α2e2iq(−2)R + β2e2iq(2)R − 2αβ cos 2ϕqeiq(2)Reiq(−2)R.

The system therefore resembles a Fabry-Pérot interferometer, but there are two
types of propagating waves involved, corresponding to the two self-energy pro-
cesses Σ±. We can associate the parameter α with the backward self-energy
Σ− and with propagation at E − 2ω0 < −∆. Meanwhile, the parameter β

comes from the forward self-energy Σ+ and is associated with propagation
at E + 2ω0 > ∆. The amount of interference between the two processes is con-
trolled by the quartet phase.

In the weak coupling limit the interference effects can be ignored. Keeping
only the first term of the geometric series gives a single resonance at E0. What
we call a weak-coupling limit is more evident if we scale the resolvent with
respect to the energy scale related to propagation at distance R, ωR = vF/R. In
reduced energy units

R11
eff =

1
ωR

∞

∑
n=0

(−1)n(γ12γ21R2/v2
F)

n

(Ẽ − E0R
vF

+ i γR
vF
)2n+1

. (4.76)

The coupling strength is therefore controlled by the rescaled quantities
(γ12R/vF) and (γ21R/vF). The amount of terms we need to keep in the se-
ries therefore increases with the interdot distance, resulting in the proliferation
of poles as shown in Fig. 4.16.

For illustrative purposes, we can consider a voltage value ∆ − E0 < 2ω0 <
∆ + E0, where only the forward self-energy Σ+ contributes around E0 > 0.
Then the expression for the resolvent at real energies close to E0 simplifies to:

R11
eff =

∞

∑
n=0

(−β2)ne2inq(2)R

(E − E0 + iγ)2n+1 ≈ 1
E − E0 + iγ

− β2e2iq(2)R

(E − E0 + iγ)3 + · · · (4.77)

The effect on the spectral function − 2
π ImR11

eff(E) will then be a Breit-Wigner-
like resonance around E0, coming from the first term (E − E0 + iγ)−1, and
smaller oscillations superimposed on the resonance due to the second term on
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the right-hand side. The spectral function will therefore oscillate as a periodic
function of a Floquet-Tomasch factor:

2q(2)R =
2R
vF

√
(E + 2ω0)2 − ∆2.

Since the interdot coupling term β is proportional to ΓaΓbΓc, we expect that
the Floquet-Tomasch oscillations are larger in amplitude when increasing the
couplings. At the same time, the width of the resonances given by γ is also
proportional to the tunnel couplings. Then one expects that the resonances are
smeared out with increasing Γ.

4.4.3 Quartet phase

In Eq. (4.74), the quartet phase ϕq appears in the last term as cos 2ϕq. This can be
related to "octet" processes, as discussed in [139]. A sketch of an octet process is
shown in Fig. 4.17b. Here, Eq. (4.74) gives us bounds for the appearance of the
octets. At large distances, the Floquet-Tomasch phase factors eiq(±2)R, and there-
fore the corresponding self-energy processes Σ±

0 , are non-zero at the current
order in the tunnel couplings only if the condition |E ± 2ω0| > ∆ is satisfied.
Then, around a resonance E0 > 0 the eiq(2)R term contributes when the voltage
is 2ω0 > ∆ − E0, while the eiq(−2)R term contributes when 2ω0 > ∆ + E0. As
a result, the octet term can only contribute when both processes are present,
that is, when 2ω0 > ∆ + E0. There will therefore be a regime of voltages
∆ − E0 < 2ω0 < ∆ + E0, where only the forward self-energy Σ+ contributes
around E0 > 0, while, making an analogous argument, only the backward
self-energy Σ− will contribute around −E0 < 0. When the voltage is increased
above 2ω0 > ∆+ E0 both processes contribute, but with different weights, since
the process with the larger absolute value of energy |E0 ± 2ω0| will start to ex-
ponentially decay at energies much larger than the gap.
In the regime that the octet term is relevant, the quartet phase can nonlocally
control the interdot coupling, since ϕq can be tuned by changing the phase ϕb
across the second junction, while measuring the spectrum on the first. Equa-
tion (4.74) suggests that the amplitude of oscillations is enhanced at ϕq = 0,
and minimized at ϕq = π/2. Moreover, the quartet phase does not affect the
frequency of oscillations, which is rather a function of the energy, the voltage,
and the interdot distance. These observations are verified numerically in Fig.
4.17a which shows the variation

Im[
Re1e1

00 −R(1),ee
00

R(1),ee
00

]

of the spectral function of the bijunction − ImRe1e1
00 with respect to the spec-

tral function of the single junction − ImR(1),ee
00 . The variation is calculated nu-

merically for different quartet phases. The numerical calculation is performed
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Figure 4.17: (a) Variation of the spectral function Im
[
R−R(1)

R(1)

]
. Different colors

represent a different quartet phase, ϕq ∈ [0, π
2 ], as explained in the

inset. Other parameters are set to ω0 = 0.7 ∆, Γj = 0.5 ∆, R = 25 ξ0.
(b) Sketch of an octet process Σ−,e1h2

0 ×Σ+,e2h1
0 , which couples a hole

at energy E0 on dot 1 to an electron at the same energy on dot 2
and accumulates a phase e2iϕq .

without making any approximations on the distance or the voltage, i.e., by cal-
culating the operator L00. It is worth noting that Fig. 4.17a implies that the
Floquet-Tomasch oscillations will not be smeared out if an average is taken
over the quartet phase. The oscillations should therefore be observable even if
the quartet phase should drift with time.

4.5 conclusions

We have studied two driven superconducting quantum dots connected to a
common superconductor. In the limit where the superconductor is long and
subgap transport is governed by MARs, we showed that a long-range coupling
develops between the dots. We showed that the system can be described by
an effective non-Hermitian model of two resonances coupled through higher-
order processes that involve local MARs on each dot, followed by a nonlocal
Andreev reflection through the common superconductor at energies above the
gap. The induced interdot coupling modifies the Floquet spectrum, producing
oscillations in the spectral function. The amplitude of these oscillations can be
controlled nonlocally by changing parameters like the phase drop across one
of the dots. This amounts to tuning the oscillations with the quartet phase, and
we have found bounds for which the quartet phase is involved.

It remains to be seen if control of the quartet phase is feasible experimentally
at finite voltage bias. This is the topic of recent work, which proposes an in-
terferometric setup sensitive to quartet processes [161]. It is therefore an open
question whether the quartet phase can be used to control the amplitude of the
Floquet-Tomasch oscillations. Regardless, our results suggest that the oscilla-



110 floquet-tomasch effect

tions as a function of the energy will not be smeared out, even if we consider a
quartet phase that drifts with time.

Our approach is relevant for well-defined Floquet resonances on the dots,
that is, for tunnel couplings to the reservoirs that are not very large Γ < ∆,
and for subgap voltage values. We assumed a large subgap voltage bias
∆/2 < ω0 < ∆ that allows to simplify the analytical part of this work since
at strong driving only a few Floquet harmonics need to be taken into account.
However, the mechanism that results in a long-range interdot coupling should
exist at smaller subgap voltages as well, although at higher order in the tunnel
couplings.
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5
M A S T E R E Q U AT I O N S F O R N O N - I N T E R A C T I N G
F E R M I O N I C S Y S T E M S

This chapter contains preliminary work on the derivation of a master equation in the
Floquet basis of states for the S-QD-S system.

5.1 introduction

In Chapter 3 we have seen that a finite dc voltage bias turns the equilibrium
Andreev bound states into Floquet-Andreev resonances with a finite lifetime.
In this chapter, we ask the following questions:“Is it possible to derive a master
equation in the basis of the Floquet-Andreev states? What are the populations
of these states?"

The standard derivation of a Markov master equation is done by taking a
weak tunneling limit. In our case, however, this would imply that MAR pro-
cesses are washed out. Instead we want the coupling strength to be small with
respect to the superconducting gap, i.e., Γ < ∆, but not too small (not Γ ≪ ∆).
If we followed the standard perturbative derivation of a master equation (see
for example [162] or the classic textbooks [163, 164]), this would imply that
higher-order terms in the coupling strength need to be taken into account. We
will therefore take an alternative route, which consists in calculating the re-
duced density matrix ρs, as well as correlation functions, with the help of the
resolvent. In fact, the time evolution of ρs(t) is determined by the pole struc-
ture of the resolvent. We will replace the demand of Γ ≪ ∆ by the demand that
the coupling to the reservoirs is sufficiently small so that the Floquet-Andreev
resonances are narrow and, moreover, not overlapping. In other words, we will
make a quasiparticle approximation, where the quasiparticles associated to the
Floquet-Andreev states will be supposed well-defined.We will first apply the
method to the case of a multilevel dot coupled to non-interacting fermionic
leads. We will then consider the case of a driven dot, where we will derive the
master equation and populations in a Floquet basis of states. Finally, we will
consider a dot coupled to superconducting leads which are voltage biased with
commensurate voltages, and we will derive an expression for the populations
of the Floquet-Andreev states.



114 master equations for non-interacting fermionic systems

5.1.1 Density matrix theory and master equations

When dealing with a closed system, quantum mechanics tells us that the state
of the system is fully described by a vector |ψ(t)⟩ belonging to a Hilbert space.
The dynamics of the system are then described by the Schrödinger equation.
Equivalently, we can represent this evolution by an operator that propagates
the state vector from an initial time t′ to a final time t :

|ψ(t)⟩ = U(t, t′)
∣∣ψ(t′)〉 . (5.1)

Inserting into the Schrödinger equation we get an equivalent equation for the
evolution operator

i
d
dt

U(t, t′) = H(t)U(t, t′). (5.2)

The evolution operator is unitary U(t, t′)U†(t, t′) = U†(t, t′)U(t, t′) = 1. More-
over, if the Hamiltonian is time-independent we have the well-known expres-
sion

U(t, t′) = e−iH(t−t′). (5.3)

In most situations, the system is not in a pure state, but in a mixed state, mean-
ing that there is a set of states {|ψi⟩} that the system can be in with some
associated probability pi. We can then describe the system by a density matrix
ρ ≡ ∑i pi |ψi⟩⟨ψi| .1 Once the density matrix ρ is defined, the expectation value
of any observable is given by the relation

⟨A⟩ = Tr(Aρ). (5.4)

Since the system still evolves according to the Schrödinger equation, it follows
that the equation of motion for the density matrix is given by the von Neumann
equation

ρ̇(t) = −i[H(t), ρ(t)] (5.5)

which can equivalently be written as

ρ(t) = U(t, t′)ρ(t′)U(t′, t). (5.6)

In analogy to the classical Liouville equation, we can rewrite the von Neumann
equation as

ρ̇(t) = L(t)ρ(t), (5.7)

where we have defined the Liouville superoperator (an operator that acts on
operators) as L[•] ≡ −i[H, •].

1 In order for the eigenvalues of the density matrix to be interpreted as probabilities, ρ must
fulfill the following two conditions

1. Probability conservation: a density matrix has unit trace Tr(ρ) = 1

2. Positivity: a density matrix is positive semi-definite in the sense that

ρii ≥ 0, ∀i
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5.1.2 Open quantum systems

Up until now the analysis is exact and we have done nothing but a rewriting of
the Schrödinger equation for the case of a statistical mixture of states described
by the density matrix ρ. We suppose, however, that we are studying an open
system, i.e., a system interacting with an environment. We therefore consider a
small quantum system described by some Hamiltonian Hs and density matrix
ρs, a reservoir described by some Hamiltonian Hr and density matrix ρr and
a coupling between them V . The dynamics of the total system is given by the
von Neumann equation (5.5) as before. We are interested in the dynamics of
the small quantum system, given by the reduced density matrix ρs(t) = Trr(ρ),
obtained by tracing out the degrees of freedom of the reservoir. The time evo-
lution of the reduced density matrix is no longer unitary, but is given by a
propagator V(t, t0) :

ρs(t) = V(t, t0)ρs(t0) (5.8)

with the initial condition V(t0, t0) = 1. The Markovian approximation consists
in assuming that the evolution superoperator V can be written in exponential
form V(t, t0) = eL(t−t0). This results in a Markovian master equation for the re-
duced density matrix [162–164]:

ρ̇s(t) = L(t)ρs(t) (5.9)

Note that this is not the quantum Liouville equation (5.7), since the density
matrix involved is the density matrix of the subsystem and not of the total
system. As a result, the superoperator L is not simply given by the commutator
with a Hamiltonian, but will contain additional terms that describe the fact that
an open system has dissipation. The Markovian master equation in Lindblad
form is the most general form that preserves desired properties of the density
matrix (its trace and positivity). The Lindblad equation (or Gorini-Kossakowski-
Sudarshan-Lindblad equation) [165, 166] can be written as

ρ̇s(t) = −i[Heff, ρs(t)] +D[ρs(t)]

= −i[Heff, ρs(t)] + ∑
i

γi

[
Li(t)ρs(t)L†

i (t)−
1
2

{
L†

i (t)Li(t), ρs(t)
}]

.
(5.10)

The commutator corresponds to the unitary part of the dynamics and usually
contains a contribution from the reservoirs (a Lamb shift of the energy levels).
Heff is therefore not necessarily equal to the original Hamiltonian Hs of the
reduced system. The dissipator part represents stochastic processes due to the
reservoirs, encoded in the jump operators Li.

5.2 method summary

Knowledge of the reduced density matrix suffices to calculate expectation val-
ues of system operators, for example ⟨A(t)⟩ = Tr(A(t)ρs(t)). However, in order
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to have complete knowledge of how the system behaves, we would like to be
able to compute correlation functions between observables at different times,
for example:

CAB(t, t′) =
〈

A(t)B(t′)
〉

. (5.11)

This is possible if we know the propagator V :

CAB(t, t′) = Tr
(

AV(t, t′)BV(t′, 0)ρs(0)
)
, t > t′ ≥ 0. (5.12)

The convention is that superoperators act on all operators to their right, so the
notation VBρ actually means V[Bρ].
The usual derivation of the master equation (5.10) is to assume weak-coupling
between the system and the reservoirs and to apply a perturbative treatment
(for a review, see [162]). The reason we do not wish to follow this approach
is that in the case of a voltage-biased superconducting dot, MAR processes
would require calculation of high-order terms in perturbation theory. However,
since we are dealing with non-interacting fermionic systems, Wick’s theorem
holds. This means that in principle we are able to calculate two-time correla-
tion functions of the form CAB(t, t′) = ⟨A(t)B(t′)⟩ using the time-evolution
imposed by the poles of the resolvent of the system.

We assume that we have a small subsystem which consists of a finite number
of discrete states described by a Hamiltonian Hs and coupled to some non-
interacting fermionic reservoirs. For example, the small system can be a multi-
level quantum dot, a chain of dots, a driven quantum dot, or a superconducting
dot.
In the absence of coupling to the reservoirs, the retarded Green’s function on
the dot can be written as

G0
s (ε) =

1
ε −Hs + iη

=
dim Hs

∑
a=1

|ψa⟩⟨ψa|
ε − εa + iη

, (5.13)

where Hs is the Hilbert space of the small system and ⟨ψa|ψb⟩ = δab.
When the coupling is switched on, the reservoirs modify the states on the dot.
This is expressed through a non-zero self-energy σ(ε). If the coupling is not too
strong, the eigenvalues εa are slightly pushed below the real axis and we can re-
place them by εa(ε)− iγa(ε), where both εa(ε) and γa(ε) are real quantities. The
self-energy is a non-Hermitian operator, expressing the fact that the reservoirs
induce dissipation on the states of the quantum dot, which therefore acquire a
finite lifetime. For a non-Hermitian matrix, however, it is no longer necessarily
true that an orthonormal set of eigenvectors can be constructed. This means
that if

(Hs + σ(ε)) |ψa(ε)⟩ = (εa(ε)− iγa(ε)) |ψa(ε)⟩
then, generally, ⟨ψa|ψb⟩ ̸= δab. Indeed, it is easy to check that

⟨ψa|ψb⟩ = −2i
⟨ψa|Im σ|ψb⟩

(εa − εb) + i(γa + γb)
,
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where 2i Im σ = σ−σ†. In order to proceed, one introduces the right eigenstates
of the Hermitian adjoint

(Hs + σ(ε))† |ϕa(ε)⟩ = (εa(ε) + iγa(ε)) |ϕa(ε)⟩ .

The above relation implies that ⟨ϕa| is a left eigenvector of (Hs + σ(ε)) with
eigenvalue εa(ε) − iγa(ε). One can then show that an orthogonality relation
exists between the left and right eigenstates [167, 168]〈

ϕa(ε)
∣∣ψb(ε

′)
〉
= δabδ(ε − ε′),

and no orthogonality relation exists in general between the left and right eigen-
vectors themselves ⟨ψa|ψb⟩ ̸= δab, ⟨ϕa|ϕb⟩ ̸= δab. One can, however, impose a
normalization condition ⟨ψa|ψa⟩ = 1, or ⟨ϕa|ϕa⟩ = 1, but not both at the same
time. The completeness of the biorthonormal basis is expressed by

1 = ∑
a
|ψa⟩⟨ϕa| .

The resolvent can then be written in this biorthogonal basis as

Gs(ε) = ∑
a

|ψa(ε)⟩⟨ϕa(ε)|
ε − εa(ε) + iγa(ε)

(5.14)

5.2.1 Narrow resonance approximation

We assume a weak coupling to the reservoirs, so that the real part of the poles
εa(ε) is only slightly modified with respect to the eigenvalues εa of Hs, so that
the equation ε = εa(ε) will have solutions Ea close to the unperturbed eigenval-
ues εa. Moreover, γa(ε) is expected to be small so that the poles of the resolvent
in the lower half of the complex plain remain near the real axis. In other words,
we assume that the quasiparticles associated with the poles of the resolvent
are well-defined. We can then make a narrow resonance approximation, which
amounts to approximating the resolvent by

Gs(ε) ≃ ∑
a

Za |ψa(Ea)⟩⟨ϕa(Ea)|
ε − Ea + iΓa

(5.15)

The resolvent is defined by three quantities:

• The real part of the poles, defined by a self-consistent equation

Ea = εa(Ea)

Generally, this equation requires a numerical calculation.

• The damping given by the imaginary part, related to the inverse lifetime

Γa = Zaγa(Ea)
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Figure 5.1: Multilevel dot.

• A renormalization factor

Za =

(
1 − dεa(ε)

dε

)−1

ε=Ea

.

In real time, one therefore obtains a time-evolution according to the propagator

Gs(t, t′) = −i θ(t − t′)∑
a

Zae−iEa(t−t′)e−Γa(t−t′) |ψa(Ea)⟩⟨ϕa(Ea)| . (5.16)

This allows calculating the time evolution of observables and correlation func-
tions in the basis of the residues of the resolvent. It is important to note that
the approach breaks down in the presence of avoided crossings when the sepa-
ration between any two resonances becomes comparable to their width.

5.3 multilevel dot coupled to normal leads

The first example we have in mind is to study the transport through a multilevel
dot as illustrated in Fig. 5.1. The quantum dot is considered to be a small non-
interacting system composed of a finite number of discrete levels, described by
the Hamiltonian Hs. The system is then coupled to some metallic reservoirs
which are described by a Hamiltonian Hr

Hr = ∑
j=L,R

∫
dε ε |εj⟩⟨εj| , (5.17)

and the continuum states are normalized with ⟨εj|ε′ j′⟩ = δjj′δ(ε − ε′).
We are interested in the out of equilibrium case where the reservoirs’ chemical
potentials are different, µL > µR and at least some discrete levels of the sys-
tem have an energy that is between the conduction and the valence band. The
coupling of the system to the reservoirs is

V = ∑
j

∫
dε
(∣∣vj(ε)

〉〈
εj
∣∣+ ∣∣εj

〉〈
vj(ε)

∣∣), (5.18)

where
∣∣vj(ε)

〉
∈ Hs. In order to proceed, we construct dressed states

|Ψ(εi)⟩ = |εi⟩+ |Ψs(εi)⟩+ |Ψr(εi)⟩ , (5.19)

which are solutions of the Lippmann-Schwinger equation

|Ψ(εi)⟩ = |εi⟩+ G0(ε)V |Ψ(εi)⟩ (5.20)
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where G0(ω) = (ω −Hs −Hr + iη)−1 is the retarded Green’s function when
the coupling is turned off V = 0. Plugging Eq. (5.19) into Eq. (5.20) one gets
two coupled equations:

(ε −Hr + iη) |Ψr(εi)⟩ = ∑
j

∫
dε′
∣∣ε′ j〉 〈vj(ε

′)
∣∣Ψs(εi)

〉
(ε −Hs + iη) |Ψs(εi)⟩ = ∑

j

∫
dε′
∣∣vj(ε

′)
〉 [

δijδ(ε − ε′) +
〈
ε′ j
∣∣Ψr(εi)

〉] (5.21)

The first equation gives

|Ψr(εi)⟩ = ∑
j

∫
dε′

|ε′ j⟩
〈
vj(ε

′)
∣∣Ψs(εi)

〉
ε − ε′ + iη

. (5.22)

Introducing the self-energy operator

σ(ε) = ∑
j

∫
dε′
∣∣vj(ε

′)
〉〈

vj(ε
′)
∣∣

ε − ε′ + iη
, (5.23)

the states on the dot are obtained through

|Ψs(εi)⟩ = Gs(ε) |vi(ε)⟩ , (5.24)

where the resolvent is defined as

Gs(ε) = (ε −Hs − σ(ε) + iη)−1. (5.25)

5.3.1 Reduced density matrix

We assume that the basis of dressed states is complete:

1 = ∑
i

∫
dε |Ψ(εi)⟩⟨Ψ(εi)| .

Moreover, we assume that in the steady-state the populations of the reservoirs
fix expectation values of the total system’s operators. This implies that the total
density matrix of the system can be written as

ρ = ∑
i

∫
dε ni(ε) |Ψ(εi)⟩⟨Ψ(εi)| . (5.26)

The reduced density matrix, corresponding to the part on the small system can
then be written as

ρs = ∑
i

∫
dε ni(ε) |Ψs(εi)⟩⟨Ψs(εi)| . (5.27)
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The states on the dot will make appear the resolvent, which now involves the
influence of the reservoirs through the self-energy. Using Eq. (5.24) we can write

ρs = ∑
i

∫
dε ni(ε)Gs(ε) |vi(ε)⟩⟨vi(ε)| G†

s (ε). (5.28)

Using the narrow resonance approximation for the resolvent and inserting into
Eq. (5.28), we obtain

ρs = ∑
i

∫
dε ni(ε)∑

a,b
ZaZb

|ψa(Ea)⟩ ⟨ϕa(Ea)|vi(ε)⟩
ε − Ea + iΓa

⟨vi(ε)|ϕb(Eb)⟩ ⟨ψb(Eb)|
ε − Eb − iΓb

(5.29)
In the weak coupling limit, the integrand will have sharp peaks at energies Ea
and Eb with corresponding widths Γa and Γb. The dominant term in the sum
will then correspond to a resonant condition a = b. The Lorentzian distribution
which appears will then approach a Dirac delta function

lim
Γa→0

1
(ε − Ea)2 + Γ2

a
=

π

Γa
δ(ε − Ea),

resulting in the expression

ρs ≃ ∑
a

∑
i

πni(Ea)Z2
a

Γa
|⟨ϕa(Ea)|vi(Ea)⟩|2 |ψa(Ea)⟩⟨ψa(Ea)| . (5.30)

We introduce the dressed basis

∑
i

πZ2
µ

∣∣〈ϕµ(Eµ)
∣∣vi(Eµ)

〉∣∣2
Γµ

∣∣ψµ(Eµ)
〉〈

ψµ(Eµ)
∣∣ ≡ ∣∣ fµ

〉〈
fµ

∣∣ (5.31)

which in the narrow resonance approximation is complete ∑dim Hs
µ=1

∣∣ fµ

〉〈
fµ

∣∣ = 1

and orthonormal
〈

fµ

∣∣ fν

〉
= δµν. We can then rewrite the reduced density matrix

in the dressed basis in the simpler form

ρs = ∑
µ

pµ

∣∣ fµ

〉〈
fµ

∣∣ (5.32)

where pµ are the populations defined as

pµ ≡ ∑i ni(Eµ)
∣∣〈ϕµ(Eµ)

∣∣vi(Eµ)
〉∣∣2

∑i
∣∣〈ϕµ(Eµ)

∣∣vi(Eµ)
〉∣∣2 . (5.33)

5.3.2 Correlation functions

For non-interacting fermionic systems Wick’s theorem holds. This is true in
the case of a non-interacting dot connected to metallic leads, but also holds



5.3 multilevel dot coupled to normal leads 121

for the case of superconducting leads, since in the case of superconductivity
the fact that the mean-field Hamiltonian is quadratic in the fermionic creation
and annihilation operators means that it is effectively non-interacting. We can
therefore calculate any higher-point correlation function by reducing it to a
sum of two-point correlators. For example, consider the correlation function

⟨c†
a(t)ca(t)c†

b(t
′)cb(t′)⟩ = ⟨c†

a(t)ca(t)⟩ ⟨c†
b(t

′)cb(t′)⟩+ ⟨c†
a(t)cb(t′)⟩ ⟨ca(t)c†

b(t
′)⟩

− ⟨c†
a(t)c

†
b(t

′)⟩ ⟨ca(t)cb(t′)⟩
(5.34)

where the c, c† are operators of the small system. The anomalous terms
⟨c†

a(t)c†
b(t

′)⟩ and ⟨ca(t)cb(t′)⟩ are nonzero only in the superconducting case.
In the normal case, we therefore have to calculate the first two terms on the
right-hand side.
For a two-time correlation function

CAB(t, t′) ≡
〈

A(t)B(t′)
〉

, (5.35)

with single-particle operators A = ∑µ,ν Aµνc†
µcν and B = ∑µ′ν′ Bµ′ν′c†

µ′cν′ , Wick’s
theorem gives

CAB(t, t′) = ⟨A⟩ ⟨B⟩+ ∑
µν

∑
µ′ν′

AµνBµ′ν′ ⟨c†
µ(t)cν′(t′)⟩ ⟨cν(t)c†

µ′(t′)⟩ . (5.36)

If in second quantization, we associated creation operators c†
µ to the states

∣∣ fµ

〉
,

the expectation values can be calculated using

⟨c†
µ(t)cν′(t′)⟩ = eiEµt−Γµte−iEνt′−Γνt′ ⟨c†

µcν′⟩ = eiEµ(t−t′)e−Γµ(t−t′)pµδν′µ,

⟨cν(t)c†
µ′(t′)⟩ = e−iEν(t−t′)e−Γν(t−t′)(1 − pν)δνµ′ ,

(5.37)

resulting in

CAB(t, t′) = ⟨A⟩ ⟨B⟩+ ∑
µν

ei(Eµ−Eν)(t−t′)e−(Γµ+Γν)(t−t′)pµ(1 − pν)AµνBνµ

(5.38)

Under the Markovian assumption, the correlation functions can be written as

CAB(t, 0) = Tr(AV(t)[Bρs])

with V(t) = eLt in the time-independent case. We will derive the master equa-
tion by demanding that the evolution of the density matrix due to the Lind-
bladian matches the result of Eq. (5.38). We will present a weak derivation,
considering an infinitesimal evolution. It is, however, possible to derive the evo-
lution superoperator directly. We will present the direct calculation of V(t) in
the Appendix A.



122 master equations for non-interacting fermionic systems

5.3.3 (Weak) derivation of the master equation

Starting from Eq. (5.38), we take the time derivative:

d
dt

CAB(t)
∣∣∣∣
t=0

=∑
µν

i(Eµ − Eν)pµ(1 − pν)AµνBνµ

− ∑
µν

(Γµ + Γν)pµ(1 − pν)AµνBνµ.
(5.39)

We then expect that the above expression is equal to

d
dt

CAB(t)
∣∣∣∣
t=0

= Tr
(

A
[

dV
dt

]
t=0

Bρs

)
. (5.40)

Since, by the definition, d
dt V(t) = LV(t), we have the equality

d
dt

CAB(t)
∣∣∣∣
t=0

= Tr(ALV(0)Bρ) = Tr(ALBρ) (5.41)

because V(0) is the identity map. Assuming that the superoperator L is of the
Lindblad form given in Eq. (5.10), we can identify the term corresponding to
the non-dissipative part

−i Tr(A[Heff, Bρ])) = ∑
µν

i(Eµ − Eν)pµ(1 − pν)AµνBνµ (5.42)

and the dissipative part

Tr(AD[Bρs]) = −∑
µν

(Γµ + Γν)pµ(1 − pν)AµνBνµ. (5.43)

5.3.3.1 Non-dissipative part

We can check that the non-dissipative part is reproduced by a Hamiltonian
which is diagonal in the basis of the c†, c operators:

Heff = ∑
λ

Eλc†
λcλ. (5.44)

Indeed, using the cyclic property of the trace,

−i Tr(A[Heff, Bρs])) = i Tr(HeffABρs − AHeffBρs) = i Tr([Heff, A]Bρs)

= i ⟨[Heff, A]B⟩ ,
(5.45)

and using the commutator
[
c†

λcλ, c†
µcν

]
= c†

µcν(δλµ − δλν), we get

i ⟨[Heff, A]B⟩ = i ∑
µν

(Eµ − Eν)Aµν

〈
c†

µcνB
〉

= i ∑
µν

∑
κλ

(Eµ − Eν)AµνBκλ

〈
c†

µcνc†
κcλ

〉
.

(5.46)
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We can use Wick’s theorem to calculate the expectation value〈
c†

µcνc†
κcλ

〉
= δµνδκλ pµ pκ + δµλδνκ pµ(1 − pν). (5.47)

The first term therefore cancels, and we get the expected result

i ⟨[Heff, A]B⟩ = i ∑
µν

(Eµ − Eν)pµ(1 − pν)AµνBνµ. (5.48)

5.3.3.2 Dissipator

For the dissipative part, we define the dissipator superoperator in the basis of
the c, c† as follows

D[•] = ∑
λ

[
αλ

(
cλ • c†

λ − 1
2

{
c†

λcλ, •
})

+ βλ

(
c†

λ • cλ − 1
2

{
cλc†

λ, •
})]

≡ ∑
λ

[
αλL−

λ + βλL+
λ

]
[•].

(5.49)

where the jump operators L± correspond to an incoherent creation and destruc-
tion of particles. With this notation,

Tr(AD[Bρs]) = ∑
λ

αλ Tr
(

AcλBρsc†
λ − 1

2
A
{

c†
λcλ, Bρs

})
+ ∑

λ

βλ Tr
(

Ac†
λBρscλ − 1

2
A
{

cλc†
λ, Bρs

})
=

1
2 ∑

λ

αλ

〈
[c†

λ, A] cλB + c†
λ[A, cλ] B

〉
+

1
2 ∑

λ

βλ

〈
[cλ, A] c†

λB + cλ[A, c†
λ] B

〉
(5.50)

Using the commutators[
c†

λ, c†
µcν

]
= −c†

µδλν, and
[
cλ, c†

µcν

]
= cνδλµ, (5.51)

we get

Tr(AD[Bρs]) = −1
2 ∑

µν

(αµ + αν)Aµν

〈
c†

µcνB
〉
+

1
2 ∑

µν

(βµ + βν)Aµν

〈
cνc†

µB
〉

= −1
2 ∑

µν

(αµ + αν)Aµν

[
δµν pµ ⟨B⟩+ pµ(1 − pν)Bνµ

]
+

1
2 ∑

µν

(βµ + βν)Aµν

[
δµν(1 − pµ) ⟨B⟩ − pµ(1 − pν)Bνµ

]
= ∑

µ

(
βµ − (αµ + βµ)pµ

)
Aµµ ⟨B⟩

− 1
2 ∑

µν

(
αµ + βµ + αν + βν

)
pµ(1 − pν)AµνBνµ.

(5.52)
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Setting αµ + βµ = 2Γµ, the second term gives the expected dissipative part. The
first part vanishes by imposing that populations satisfy the relation

pµ =
βµ

αµ + βµ
=

βµ

2Γµ
. (5.53)

We then find
αµ = 2Γµ(1 − pµ)

βµ = 2Γµ pµ.
(5.54)

We therefore have a master equation in the basis of the creation and annihilation
operators corresponding to the poles of the resolvent:

Lρs = −i[Heff, ρs] + ∑
µ

2Γµ

(
(1 − pµ)L−

µ + pµL+
µ

)
[ρs] (5.55)

5.4 driven dot

We now consider a dot which is driven so that its Hamiltonian Hs is a periodic
function of time with the frequency ω0 = 2π

T , i.e., Hs(t) = Hs(t + T). In order
to simplify the discussion, we will consider that the Hamiltonian of the reser-
voirs Hr and the coupling between dot and reservoirs V are time-independent
and given by Eq. (5.17) and (5.18), respectively. We will use Floquet the-
ory to show that, at least within the narrow resonance approximation, it is
possible to derive a master equation in the basis of the Floquet states on the dot.

We start by constructing the dressed states

|Ψ(t, εi)⟩ = e−iεt
[
|εi⟩+ |Ψs(t, εi)⟩+ |Ψr(t, εi)⟩

]
, (5.56)

which are solutions of the LS equation. In the absence of coupling between the
dot and the reservoirs, the dressed state |Ψ(εi)⟩ reduces to a state with energy ε

in reservoir i, that is |Ψ(εi)⟩ = |εi⟩ . The time-dependent Schrödinger equation
gives two coupled equations[

ε + i
∂

∂t
−Hr

]
|Ψr(εi, t)⟩ = ∑

j

∫
dε′
∣∣ε′ j〉 〈vj(ε

′)
∣∣Ψs(εi, t)

〉
,[

ε + i
∂

∂t
−Hs

]
|Ψs(εi, t)⟩ = ∑

j

∫
dε′
∣∣vj(ε

′)
〉 (〈

ε′ j
∣∣εi
〉
+
〈
ε′ j
∣∣Ψr(εi, t)

〉)
.

(5.57)

Due to the time-periodicity we can write the dot Hamiltonian, as well as the
states on the dot, using a Fourier decomposition

Hs(t) = ∑
m

e−imω0tHs,m

|Ψs(εi, t)⟩ = ∑
m

e−imω0t |χm(εi)⟩ .
(5.58)
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Using the Fourier transform of Ψs(εi, t), one finds the states on the reservoirs

|Ψr(εi, t)⟩ = ∑
j,m

∫
dε′
∣∣ε′ j〉 〈vj(ε

′)
∣∣χm(εi)

〉
e−imω0t

ε + mω0 − ε′ + iη
, (5.59)

which will give rise to a self-energy operator

σ(ε) = ∑
j

∫
dε′
∣∣vj(ε

′)
〉〈

vj(ε
′)
∣∣

ε − ε′ + iη
. (5.60)

The states on the dot are then determined through an infinite set of equations

(ε + mω0 − σ(ε + mω0)) |χm⟩ − ∑
n
Hs,n |χm−n⟩ = |vi(ε)⟩ δm0. (5.61)

This can be interpreted as a matrix equation in an enlarged Hilbert space Hs ⊗
T, where Hs is the Hilbert space of the isolated dot and T is the vector space
of the Fourier modes [19]. If an element of this Hilbert space can be written as

|ψa⟩ = ∑
m
|χa,m⟩ ⊗ |m⟩ , (5.62)

then the corresponding vector in the physical space is

|ψa(t)⟩ = ∑
m

e−imω0t |χa,m⟩ (5.63)

The cost of extending the Hilbert space is that there is a redundancy in the solu-
tions of Eq. (5.61), so that shifting the quasienergy by multiples of the frequency
results in the same physical state. Within the narrow resonance approximation,
we will see that this means that all injection energies in the reservoirs whose en-
ergies differ by mω0 produce the same time-evolution of correlation functions
(within a phase). This will be interpreted as multiple conducting channels giv-
ing rise to the same response of the small system.
It is convenient to re-write Eq. (5.61) with the help of a linear operator acting
in the extended Hilbert space Hs ⊗ T :

LF(ε) ≡ ∑
m
(ε + mω0 − σ(ε + mω0))⊗Pm − ∑

n
Hs,n ⊗Tn (5.64)

where the translation operator T acts on the Floquet states by translating them
in Fourier space Tn |m⟩ = |m + n⟩ . Moreover, Pm |m′⟩ = δmm′ |m⟩ is the projec-
tor on the m Fourier mode. With this definition, inverting LF gives a general-
ization of Eq. (5.24) to the time-periodic case

|Ψs(εi)⟩ = L−1
F (ε)

[
|vi(ε)⟩ ⊗ |m = 0⟩

]
. (5.65)
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In practice, LF is calculated numerically, for example by truncation and diag-
onalization, or using a continued-fraction method if the drive is harmonic.2 In
the absence of coupling to the reservoirs, the self-energy is zero, and the Flo-
quet spectrum consists of Wannier-Stark ladders of dim Hs. If Hs has a set of
eigenenergies εa, this means that the Floquet spectrum consists of the quasiener-
gies

εa,m = εa − mω0.

The corresponding eigenvectors are denoted |ψa,m⟩ . In the presence of coupling
to a continuum, the quasienergies evolve into resonances with a finite imagi-
nary part γa,m. The resolvent operator can be written similarly to the static case
(5.14) using a biorthogonal basis

Gs(ε) =
dim Hs

∑
a=1

∑
m∈Z

|ψa,m(ε)⟩⟨ϕa,m(ε)|
ε − εa,m(ε) + iγa,m(ε)

. (5.66)

Assuming the resonances are narrow, we expect that the equation ε = εa,m(ε)
will have solutions Ea,m = Ea − mω0 which are close to the eigenenergies of the
uncoupled system εa − mω0. We can then approximate the resolvent by

Gs(ε)

∣∣∣∣
ε∼Ea,m

≃ Za |ψa,m(Ea,m)⟩⟨ϕa,m(Ea,m)|
ε − Ea,m + iΓa

. (5.67)

The linear operator LF has the covariance property

LF(ε)Tn = TnLF(ε + nω0). (5.68)

Due to this translation property we can show that

Tn |ψa,m(ε)⟩ = |ψa,m+n(ε − nω0)⟩
⟨ϕa,m(ε)|T−n = ⟨ϕa,m+n(ε − nω0)|

(5.69)

From (5.69) it also follows that if the vector of the enlarged Hilbert space
|ψa,0(Ea)⟩ corresponds to the vector |ψa(t)⟩ in the physical space, then

|ψa,m(Ea−mω0)⟩ = Tm |ψa,0(Ea)⟩

corresponds to another vector |ψ′
a(t)⟩ = e−imω0t |ψa(t)⟩ . These properties will

be useful in the calculation of the reduced density matrix:

ρs(t) = ∑
i

∫
dε ni(ε) |Ψs(εi, t)⟩⟨Ψs(εi, t)| . (5.70)

2 If the drive is harmonic, for example Hs(t) = 2εd cos(ω0t) |d⟩⟨d| , there are only two modes
contributing to the Fourier decomposition: Hs,n = εd(δn,+1 + δn,−1), so that m couples only to
m ± 1. The operator LF then becomes tridiagonal and a continued-fraction method gives the
resolvent elements, as described in Ch.3.
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Within the narrow resonance approximation the reduced density matrix is

ρs(t) ≃ ∑
i

∫
dε ni(ε)∑

a,b
∑
m,n

ZaZb
|ψa,m(Ea,m)⟩⟨ϕa,m(Ea,m)| (|vi(ε)⟩ ⊗ |0⟩)

ε − Ea + mω0 + iΓa

× (⟨0| ⊗ ⟨vi(ε)|) |ϕb,n(Eb,n)⟩⟨ψb,n(Eb,n)|
ε − Eb + nω0 − iΓb

≃ ∑
a

∑
i,m

πni(Ea−mω0)Z2
a

Γa

∣∣∣⟨ϕa,0(Ea)| (|vi(Ea−mω0)⟩ ⊗ |−m⟩)
∣∣∣2 |ψa(t)⟩⟨ψa(t)|

(5.71)

In the second step we have used the resonance condition

Ea − Eb = (m − n)ω0.

In analogy to the static case, we define the dressed basis of states

∣∣ fµ(t)
〉〈

fµ(t)
∣∣ ≡ ∑

i,m

πZ2
µ

Γµ

∣∣∣〈ϕa,0(Eµ)
∣∣ (∣∣vi(Eµ−mω0)

〉
⊗ |−m⟩

)∣∣∣2 ∣∣ψµ(t)
〉〈

ψµ(t)
∣∣

(5.72)
so that

ρs(t) = ∑
µ

pµ

∣∣ψµ(t)
〉〈

ψµ(t)
∣∣ , (5.73)

where the Floquet populations are

pµ =
∑i,m ni(Eµ−mω0)

∣∣∣〈ϕa,0(Eµ)
∣∣ (∣∣vi(Eµ−mω0)

〉
⊗ |−m⟩

)∣∣∣2
∑i,m

∣∣∣〈ϕa,0(Eµ)
∣∣ (∣∣vi(Eµ−mω0)

〉
⊗ |−m⟩

)∣∣∣2 . (5.74)

The states in the Floquet case are therefore populated very differently with
respect to the equilibrium case. Instead of a Fermi-Dirac distribution associated
to each reservoir, one gets infinite copies of Fermi-Dirac distributions with a
chemical potential which is shifted by multiples of the driving frequency. This
suggests the point of view that each state associated to the same quasienergy
Ea is populated due to infinitely many channels in the reservoirs. As explained
in both reference [23] and [22], one could take advantage of the structure of Eq.
(5.74) to selectively control the population of the Floquet states by engineering
the reservoir density of states encoded in the function ni(E). This result agrees
with similar expressions found in the literature [23, 24, 169].

With the definition of the dressed basis, the two-times correlation function can
be written as
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CAB(t, t′) = ⟨A(t)⟩ ⟨B(t′)⟩
+ ∑

µ,ν
ei(Eµ−Eν)(t−t′)e−(Γµ+Γν))(t−t′)pµ(1 − pν)×

×
〈

fµ(t)
∣∣A∣∣ fν(t)

〉 〈
fν(t′)

∣∣B∣∣ fµ(t′)
〉 (5.75)

The correlation functions factorize into a part corresponding to micromotion
within a driving period, governed by Floquet modes

∣∣ fµ(t)
〉

, and a slowly os-
cillating part (which therefore determines the long-time dynamics) that is gov-
erned by the lifetime of the quasiparticles. If the two scales are well-separated,
one can derive a master equation similarly to the static case. The main differ-
ence will be that the master equation will have periodic coefficients since the
operators c†

µ corresponding to the states
∣∣ fµ(t)

〉
are time-periodic.

5.5 superconducting dot

Knowledge of the density matrix completely suffices to characterize the state of
a system. In the presence of superconductivity, the density matrix must there-
fore include information about anomalous expectation values of the type ⟨djdi⟩
and ⟨d†

j d†
i ⟩ , where d, d† are operators on the subspace of the dot. A density ma-

trix in Nambu space can be defined in analogy to the definition of the density
matrix elements in Fock space ρij ≡

〈
d†

j di

〉
, but generalized by replacing the

bare operators d, d† by Nambu spinors Ψ ≡
(

d
d†

)
. We are interested in a single-

level dot coupled to some superconducting leads i, biased with commensurate
voltages si = Vi/V. We are therefore interested in calculating the reduced den-
sity matrix on the dot subspace

ρσ(t) ≡
〈(

dσ(t)
d†
−σ(t)

)
⊗
(
d†

σ(t) d−σ(t)
)〉

=

( ⟨dσ(t)d†
σ(t)⟩ ⟨dσ(t)d−σ(t)⟩

⟨d†
−σ(t)d†

σ(t)⟩ ⟨d†
−σ(t)d−σ(t)⟩

)
.

(5.76)
The creation and annihilation operators on the dot can be expressed as linear
combinations of the dressed operators

d†
σ(t) = ∑

α
∑

m∈Z

(
ei(Eα+mω0)tu∗

αmΓ†
ασ − σe−i(Eα+mω0)tvαmΓα−σ

)
dσ(t) = ∑

α
∑
m

(
e−i(Eα+mω0)tuαmΓασ − σei(Eα+mω0)tv∗αmΓ†

α−σ

)
.

(5.77)
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Here the index α is shorthand for the reservoir i with momentum k and spin σ,
α = {ikσ}. Since the dressed annihilation operator destroys the steady-state we
only have to compute terms of the form

〈
ΓΓ†〉 . For example,

⟨dσ(t)d†
σ′(t′)⟩ = ∑

αβ
∑
mn

e−i(Eα+mω0)tei(Eβ+nω0)t′uαmu∗
βn ⟨ΓασΓ†

βσ′⟩

= ∑
α

∑
mn

e−iEα(t−t′)e−i(mω0t−nω0t′)uαmu∗
αnδσσ′ .

(5.78)

Similarly, we find:

⟨d†
σ(t)dσ′(t′)⟩ = ∑

α
∑
mn

e−iEα(t−t′)e−i(mω0t−nω0t′)vαmv∗αnδσσ′

⟨dσ(t)dσ′(t′)⟩ = σ ∑
α

∑
mn

e−iEα(t−t′)e−i(mω0t−nω0t′)u∗
αmvαnδσ,−σ′

⟨d†
σ(t)d

†
σ′(t′)⟩ = −σ ∑

α
∑
mn

e−iEα(t−t′)e−i(mω0t−nω0t′)vαmu∗
αnδ−σ,σ′

(5.79)

For the calculation of the density matrix we set t = t′, so this reduces to

ρσ(t) = ∑
α

∑
m,n

e−i(m−n)ω0t
(

uαm
σvαm

)
⊗
(
uαn σvαn

)∗ (5.80)

The coefficients u, v can be calculated if the resolvent operator is known by
multiplying the resolvent with the source term (see Ch.3):(

uαm
vαm

)
=

(R11
m,−sα

R12
m,sα

R21
m,−sα

R22
m,sα

)
Jα

(
xαeiϕα/2

−yαe−iϕα/2

)
(5.81)

The 2 × 2 matrix resulting from the product
(

uαm
vαm

)
⊗
(
uα,n vα,n

)∗ can then be

written as a function of the resolvent elements and the reservoir populations:

∑
i,k

(
um(i, k)
vm(i, k)

)
⊗
(
un(i, k) vn(i, k)

)∗
=

= ∑
i,k

J2
i

(R11
m,−si

R12
m,si

R21
m,−si

R22
m,si

)(
x2

ik −xikyikeiϕi

−xikyike−iϕi y2
ik

)(R11
n,−si

R12
n,si

R21
n,−si

R22
n,si

)†

= ∑
i

∫
dε

(R11
m,−si

R12
m,si

R21
m,−si

R22
m,si

)
Qi(ε)

(R11
n,−si

R12
n,si

R21
n,−si

R22
n,si

)†

(5.82)

We can write this more compactly with the use of a translation operator in
Fourier space, conditioned by the Nambu components

(RC−si)mn = 1N ⊗ ⟨m| R
(|n − si⟩ ⟨n| 0

0 |n + si⟩ ⟨n|

)
|n⟩ ⊗ 1N. (5.83)
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With this definition, the density matrix takes the form

ρ(t) = ∑
i

∫
dε ∑

m,n
e−i(m−n)ω0t(RC−si)m,0Qi(ε)(RC−si)

†
n,0 (5.84)

This is a generalization of Eq. (5.28) to the case of a multiterminal supercon-
ducting dot. Using the narrow resonance approximation, we expect that the
structure of the obtained reduced density matrix will be similar with the previ-
ous section, since for the derivation of Eq. (5.71) we assumed a general Floquet
Hamiltonian without specifying its structure. The new element due to super-
conductivity is the extra structure in Nambu space.

5.5.1 Floquet-Andreev populations

In the narrow resonance limit, the resolvent is sharply peaked near energies
ε = Ea,p = Ea + pω0, where a = ± is the label of the two Wannier-Stark ladders
that appear in the superconducting case within one period. Near those energies,
we can make the approximation

R(ε)mn

∣∣∣∣
ε→Ea,p

≃
∣∣Ψa,m(Ea,p)

〉 〈
Φa,n(Ea,p)

∣∣
ε − pω0 − Ea + iΓa

. (5.85)

As in the normal case, Ψ is a right eigenvector of the R−1 operator, while Φ is
the corresponding left eigenvector. However, since we are working in Nambu
space, for any given index m, |Ψa,m⟩ is a two-component column vector, while
⟨Φa,m| is a row vector, so that |Ψa,m⟩ ⟨Φa,m| is a 2 × 2 matrix. We therefore find

ρ(t) ≃ ∑
a=±

∑
i,p

π

Γa

〈
Φa,0(Ea,p)

∣∣C−si Qi(Ea+pω0)Csi

∣∣Φa,0(Ea,p)
〉
|Ψa(t)⟩⟨Ψa(t)|

(5.86)
Compared to the case of normal reservoirs, Qi plays the role of the reservoir
distribution function ni. The expression is slightly more complicated, because
the action of the operator C is conditioned on the Nambu index, so that if we
write the two component vector Φ =

(
ũ ṽ

)
, then

Csi Φ
†
a,0(Ea,p) =

(
ũ∗

a,−si
(Ea,p)

ṽ∗a,si
(Ea,p)

)
=
[
1N ⊗T−p

](ũ∗
a,−si+p(Ea)

ṽ∗a,si+p(Ea)

)
(5.87)

The expectation value in Eq. (5.86) can be rewritten as

Φa,0(Ea,p)C−si QiCsi Φa,0(Ea,p)
† =

(
ũa,−si+p(Ea)
ṽa,si+p(Ea)

)T

Qi

(
ũ∗

a,−si+p(Ea)

ṽ∗a,si+p(Ea)

)
. (5.88)

This quantity can be identified with the occupation of the Floquet-Andreev
state a imposed by the reservoir labeled i. Indeed, if we write the reduced
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density matrix in a dressed basis of states as before ρ(t) = ∑a pa |Fa(t)⟩⟨Fa(t)|
then the Floquet-Andreev populations are given by

pa ≡
∑i,p

〈
Φa,0(Ea,p)

∣∣C−si Qi(Ea+pω0)Csi

∣∣Φa,0(Ea,p)
〉

∑i,p
〈
Φa,0(Ea,p)

∣∣Φa,0(Ea,p)
〉 (5.89)

Comparing to Eq. (5.74), one sees that the addition of superconductivity results
in the Fermi-Dirac distribution being replaced by the matrix Q, defined as

Qi(E) =
2πρ0 J2

i√
E2 − ∆2

(
E −∆eiϕi

−∆e−iϕi E

)
θ(E − ∆), (5.90)

so that the population of the Floquet-Andreev state with energy Ea depends
on an ensemble of step functions θ(Ea+pω0−∆), representing copies of the
superconducting reservoirs with a gap value that appears shifted by multiples
of the voltage bias.

5.6 conclusions

We have presented work towards a method for deriving Markovian master
equations, where the long-time evolution of correlation functions is controlled
by the energies and linewidths of the resonances of the system’s resolvent.
The method relies on the assumption that resonances are narrow and well-
separated, so that for any two resonances the condition |E1 − E2| ≫ Γ1,2 holds,
and on the use of Wick’s theorem for the calculation of correlation functions.
For a dot coupled to superconducting reservoirs, we have derived a density ma-
trix description in the basis of the Floquet-Andreev resonances, and given an
expression for the calculation of the populations associated to the resonances.
The derivation of the master equation in the superconducting case is left for
future work.
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6
C O N C L U S I O N

The main theme of this thesis is to study the Floquet spectrum of voltage-
biased superconducting junctions. We focused on two particular systems, the
S-QD-S junction and the S-QD-S-QD-S bijunction. In Chapter 3, we presented
a method that builds up on previous work [107–109] that permits to extract
observables from the resolvent of the particular system. We presented an
efficient algorithm for the calculation of the resolvent elements based on a
continued fraction method. In particular, we argue that the Floquet spectrum
could be probed by local tunneling spectroscopy. Such an experiment has yet
to be performed, but it would allow the exploration of Floquet physics with
simple application of constant voltage bias. Contrary to closed Floquet systems
that often suffer from thermalization, the voltage-biased superconducting
junction should reach a Floquet steady state because a) the system is open so
it does not have to thermalize [30], and b) the existence of the superconducting
gap offers protection to the resonances. The use of a quantum dot is therefore
critical, because its states are typically detached from the superconducting
continua. To the best of my knowledge, there is only one experiment which
has measured the Floquet spectrum in Josephson junctions, under microwave
irradiation [32], although the interpretation of this experiment has been
recently questioned [128].
We studied the bijunction in two regimes depending on the distance R between
the QDs. The first regime R ≲ ξ0 results in hybridization of the states on
the dots. In equilibrium, this hybridization results in the formation of a
macroscopic Andreev molecule and in a non-local Josephson effect [78]. We
studied the Andreev molecule in the presence of commensurate voltage bias,
and shown how the Floquet spectrum and the MAR current are modified due
to the hybridization.
In Chapter 4 we studied the bijunction in the opposite regime R ≫ ξ0. This
regime was first studied in Ref. [139], proposing that a long-range coupling
will develop between the dots. We showed that the system in this regime is
an interferometer and, as a result, the MAR current oscillates as a function
of the applied voltage. We focused on the influence of the Floquet-Tomasch
effect on the spectrum of the bijunction at large R, and showed that, in this
limit, the system is effectively described by two resonances coupled indirectly
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through a continuum of states. Moreover, we found that the amplitude of the
Floquet-Tomasch oscillations of the spectral function depends on the quartet
phase and could potentially be controlled non-locally by changing the phase
drop on one of the dots.
A different point of view is taken in Chapter 5, where we present (preliminary)
work on the derivation of a master equation in the Floquet basis of states.
The method relies on the assumption that if the coupling to the reservoirs
is weak, the Floquet-Andreev resonances will be sharp, so that associated
quasiparticles are well-defined. The lifetime of these quasiparticles would then
control the long-time dynamics. We apply the method first to a dot coupled
to normal leads and then to a dot with a time-periodic Hamiltonian. In the
case of a superconducting dot, we derived the populations of the Floquet-
Andreev states, but the derivation of the master equation is left for future work.

An immediate extension of the work presented in the last chapter is to treat the
case of degeneracies or near degeneracies in the Floquet spectrum. In particu-
lar, the method we presented breaks down near avoided crossings, so this case
needs to be considered separately.
An interesting direction for future work would be to consider whether a
Floquet-Andreev qubit is possible. Since the Andreev level qubit has already
been proposed and experimentally realized, it would be interesting to see if a
periodically driven qubit can be realized and manipulated with the use of a
second drive. In fact, it has been proposed that Floquet qubits present certain
advantages with respect to their equilibrium counterparts: for example, a Flo-
quet qubit would offer multiple dynamical "sweet spots" which can be chosen
in situ by changing the drive frequency [133–135].
A third point is to consider a more realistic description of the S-QD-S junction.
Electrons in a quantum dot are confined in a small space, therefore making the
effect of Coulomb interactions important. A starting point would be to work in
the Fock space of the dot, where one can derive an effective four-level system in
the absence of voltage bias [170]. Assuming that, upon turning on the voltage,
the four levels evolve into four Floquet-Andreev resonances, a possible way to
move forward would be to try to derive a master equation in the Floquet basis
of this Fock space [171, 172].
Finally, incommensurate voltages could be considered. This could be done as a
perturbation on the commensurate case, or by mapping the system to a Floquet
tight-binding lattice of higher dimensions [121].



Part V

A P P E N D I X





A
D I R E C T D E R I VAT I O N O F T H E T I M E - E V O L U T I O N
S U P E R O P E R AT O R

It is, in fact, possible to derive the superoperators L and V(t, t′) directly, and
not for infinitesimal times as was done in 5.3.3. Given the resolvent, we can asso-
ciate creation and annihilation operators cλ, c†

λ to its poles at energies Eλ + iΓλ.
We expect a time-independent Liouville operator L, resulting in an exponential
form for the evolution superoperator

V(t, t′) = e(t−t′)L. (A.1)

We write L = −iadH +D, with

H = ∑
λ

Eλc†
λcλ,

D[•] = ∑
λ

[
αλ

(
cλ • c†

λ − 1
2

{
c†

λcλ, •
})

+ βλ

(
c†

λ • cλ − 1
2

{
cλc†

λ, •
})]

≡ ∑
λ

[
αλL−

λ + βλL+
λ

]
[•].

(A.2)

In order to have a compact notation, we have introduced the superoperator
adH(•) = [H, •].

We want to calculate V(t)[Bρ] = eLt[Bρ]. It is convenient to introduce a super-
operator MB which acting on the operator ρ multiplies it on the left by the
operator B, i.e. MB[ρ] ≡ Bρ.
In the stationary state, we expect that Lρ = 0. We can take advantage of this
fact to equate L(Bρ) = LMB(ρ) = [L,MB](ρ). We are interested in the case
of the operator B being any single-particle operator acting on the subsystem
states

B = ∑
µν

Bνµc†
νcµ. (A.3)

For the non-dissipative part of the Liouvillian it is straightforward to calculate

−i[adH,MB]ρ = −i[H, Bρ] + iB[H, ρ] = −i[H, B]ρ. (A.4)

Explicit calculation of the commutator
[
c†

λcλ, c†
νcµ

]
= c†

νcµ(δλν − δλµ), gives

−i[H, B]ρ = ∑
µν

i(Eµ − Eν)Bνµc†
νcµρ. (A.5)
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For the dissipative part, for any superoperator of the form

LA = A • A† − 1
2

{
A† A, •

}
we can write

[LA,MB](ρ) = ABρA† − 1
2

A† ABρ − 1
2

BρA† A − BAρA† +
1
2

BA† Aρ +
1
2

BρA† A

= [A, B]ρA† − 1
2

[
A† A, B

]
ρ.

(A.6)

We therefore have[
Lcλ

,Mc†
νcµ

]
(ρ) =

[
cλ, c†

νcµ

]
ρc†

λ − 1
2

[
c†

λcλ, c†
νcµ

]
ρ

= δλνcµρc†
ν −

1
2
(δλν − δλµ)c†

νcµρ[
Lc†

λ
,Mc†

νcµ

]
(ρ) =

[
c†

λ, c†
νcµ

]
ρcλ − 1

2

[
cλc†

λ, c†
νcµ

]
ρ

= −δλµc†
νρcµ −

1
2
(δλµ − δλν)c†

νcµρ,

(A.7)

so that[
D,Mc†

νcµ

]
(ρ) =ανcµρc†

ν −
1
2
(αν − αµ)c†

νcµρ − βµc†
νρcµ −

1
2
(βµ − βν)c†

νcµρ

=αν
pν

1 − pν
(δµν − c†

νcµ)ρ − βµ
1 − pµ

pµ
c†

νcµρ

− 1
2
(αν − αµ + βµ − βν)c†

νcµρ

(A.8)

for α, β given by Eq. (5.54), we find[
D,Mc†

νcµ

]
(ρ) = βµδµνρ − 1

2
(αν + αµ + βµ + βν)c†

νcµρ

= 2Γµ pµδµνρ − (Γµ + Γν)c†
νcµρ.

(A.9)

So, for µ ̸= ν :

L(c†
νcµρ) =

[
i(Eµ − Eν)− (Γµ + Γν)

]
c†

νcµρ (A.10)

and the evolution superoperator follows with an exponentiation

V(t)(c†
νcµρ) = ei(Eµ−Eν)te−(Γµ+Γν)tc†

νcµρ. (A.11)

It remains to study the special case of µ = ν for which

L(c†
µcµρ) = 2Γµ pµρ − 2Γµc†

µcµρ.
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We can postulate V(t)(c†
µcµρ) ≡ g(t)ρ+ f (t)c†

µcµρ. Using the property d
dt V(t) =

LV(t) we get

ġ(t)ρ + ḟ (t)c†
µcµρ = L(g(t)ρ + f (t)c†

µcµρ) = f (t)L(c†
µcµρ) (A.12)

from which we get

ḟ (t) = −2Γµ f (t) ⇒ f (t) = c1e−2Γµt

ġ(t) = 2Γµ pµ f (t) ⇒ g(t) = c2 − pµe−2Γµt (A.13)

Since V(0) = 1 we get the conditions f (0) = 1 and g(0) = 0, which in turn
give c1 = 1, c2 = pµ. We therefore have

V(t)(c†
µcµρ) = pµ(1 − e−2Γµt)ρ + e−2Γµtc†

µcµρ.
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