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Abstract
This thesis explores the application of Mathematical Morphology to the analysis and
generation of music, focusing on two time-frequency representations: spectrograms
and piano rolls. Mathematical Morphology is a nonlinear image processing tool that
serves to consider topological notions of the image. We present three applications.
The first is to analyze spectrograms with morphological tools to obtain parameters
with which to synthesize a musical instrument sound. The second is to generate
piano rolls with two musical parameters, texture and harmony, by arranging them
through morphological dilation. The third is to apply morphological operators to
analyze piano rolls using graph theory. The thesis thus proposes new approaches for
problems in sound analysis and computational musicology.

Résumé
Cette thèse explore l’application de la Morphologie Mathématique à l’analyse et à la
génération de musique, en se concentrant sur deux représentations temps-fréquence
: les spectrogrammes et les piano roll. La Morphologie Mathématique est un outil
de traitement d’images non linéaire qui sert à exploiter des notions topologiques
de l’image. Nous présentons ici trois applications : la première consiste à analyser
les spectrogrammes avec des outils morphologiques pour obtenir des paramètres avec
lesquels synthétiser un son d’instrument musical. La seconde est de générer des piano
roll avec deux paramètres musicaux, la texture et l’harmonie, en les agençant avec
la dilatation morphologique. La troisième consiste à appliquer des opérateurs mor-
phologiques pour analyser les rouleaux de piano en utilisant la théorie des graphes.
Ainsi, la thèse propose de nouvelles approches pour les problèmes d’analyse sonore
et de musicologie computationnelle.
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Notations

Set theory
1. P(X): the power set of X.

2. BA: the set of functions from A to B, i.e., BA = {f ∈ P(A × B) : a = b ⇒
f(a) = f(b)}

3. |X|: if X is a set, the cardinal of X, i.e., the number of elements of X. If the
number of elements of X is infinite, we can notate |X| = ∞ and, if needed,
use the usual ℵ0,ℵ1, ... for different cardinals.

4. PF (X): the finite subsets of X. We can write PF (X) = {A ∈ P(X) : ∃n ∈
N such that |A| = n}.

Arithmetic
We will use several common number sets. We will use the dot symbol for decimals
since the comma symbol is already used to enumerate elements.

1. N: the set of natural numbers with the zero included2. We will call them the
natural numbers.

2. N∗: the set of natural numbers without the zero. We will call them the positive
natural numbers.

3. Z: the set of integer numbers.

4. Q: the set of rational numbers.
2We follow ISO standards (see (ISO, 2019b))
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5. Q+∗: the set of positive rational numbers.

6. Q+: the set of non-negative rational numbers.

7. R: the set of real numbers.

8. R∗: the set of real numbers without the zero.

9. R+∗: the set of positive real numbers.

10. R+: the set of non-negative real numbers.

11. ı: the imaginary unit, i.e., the number such that ı2 = −1

12. C: the set of complex numbers.

13. T: the one dimensional torus, i.e., R⧸Z.

14. K: a field.

15. z: the complex conjugate of z ∈ C, i.e., if z = a+ bı then z = a− bı

16. Zn: the set of integer numbers modulo n.

17. N: an abbreviation for N ∪ {∞}.

18. Z: an abbreviation for Z ∪ {−∞,∞}.

19. Q: an abbreviation for Q ∪ {−∞,∞}.

20. R: an abbreviation for R ∪ {−∞,∞}.

Functions
1. 1A ∈ {0, 1}X : the characteristic function of subset A of X, i.e.,

1A : X → {0, 1}

x 7→
{

1 if x ∈ A
0 if x /∈ A

.
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2. We will use often the canonical bijection between the subsets of a set X and
its characteristic function, i.e.,

1 : P(X) → {0, 1}X
A 7→ 1A

.

3. supp(f): the support of the function f , i.e., if f : X → K, supp(f) = {x ∈ X :
f(x) 6= 0}, where K is a field.

Functional spaces
1. L1(R;C): the space of functions from R to C that are integrable i.e., such that
||f ||1 =

∫

R
|f(t)| dt <∞.

2. L2(R;C): the space of functions from R to C that are square-integrable i.e.,
such that ||f ||2 =

∫

R
|f(t)|2 dt <∞.

3. L∞(R;C): the space of functions from R to C that are bounded i.e., such that
||f ||∞ = sup{|f(t)| : t ∈ R} <∞.

4. C∞(R;R): The space of smooth functions from R to R, i.e., the functions
f : R→ R such that f (k) exists and is continuous ∀k ∈ N.

Order theory
1. ∨: the supremum symbol as a binary operation (for instance, a ∨ b).

2. ∧: the infimum symbol as a binary operation (for instance, a ∧ b).

3.
∨

: the supremum symbol as a unary operation (for instance,
∨

A).

4.
∧

: the infimum symbol as a unary operation (for instance,
∧

A).

Spaces for music
These spaces are presented in Chapter 2.

1. T : a time space.
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2. Ts: the time space measured in seconds.

3. T1: the time space measured in samples. It is equal to Z.

4. T
p
q : the time space measured in wholes with a p

q
time signature.

5. F : a frequency space.

6. FHz: the frequency space measured in Hertz.

7. N : the space of pitches.

8. N12: the space of chromas.

9. Fst: the frequency space measured in semitones.

10. A: an amplitude range.

11. A2: the Boolean lattice, i.e., {0, 1}.

12. A3: the rhythmic lattice, i.e., {⊥, ·,×}.

13. Dpf: the score dynamics.

14. D128: the MIDI dynamics.

15. APD: the pianistic dynamics.

16. AD: the sustained dynamics.

17. T × F : a time-frequency plane.

18. AT ×F : a musical space. Also notated as M.
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Introduction

Music encompasses a variety of activities, among which two stand out: the generation
of music and the analysis of music. These two activities are the focus of this thesis.
What sets this work apart lies in our approach to the generation and analysis of
music through a specific mathematical and computational discipline: Mathematical
Morphology.

Mathematical Morphology (MM) is a domain that lies at the intersection of
Mathematics and Computer Science. It was originally formulated in the mid-1960s
by Matheron, 1967, 1965, 1975 and J. Serra, 1982. Historically, this was the first
consistent nonlinear image analysis theory (Najman & Talbot, 2010), and it remains
an indispensable tool in today’s field of image analysis.

Although originally developed for image analysis, particularly in the context of
porous media, mathematical morphology has transcended its initial scope. This evo-
lution into a broader discipline is highlighted by the development of a mathematical
formalism based on lattice theory.

The main challenge of this thesis is to explore the applications of MM to music.
Our chosen methodology involves examining the different musical representations to
which MM can be applied, and determining their musical relevance. To achieve this,
we focus on a specific aspect of MM that employs structuring elements. This requires
a space of the form

(TE,�)

where (T,≤) is a complete lattice and E is a set endowed with a notion of neigh-
borhood, that is, for each point p ∈ E, there is a neighborhood V(p) associated.
The order � is the pointwise order induced by ≤, i.e., ∀f, g ∈ TE, f � g ⇔ ∀p ∈
E, f(p) ≤ g(p).

Multiple methods exist for associating a neighborhood with a point, but in MM,
a prevalent approach is to use what is called a structuring element B. The neigh-
borhood of p is then defined as the translation p+B. One way to accomplish this is
by having a group (G,+) acting on E, and consider B as a subset of G.
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Group theory has proven extremely useful in musical analysis and genera-
tion (Lewin, 1987; Andreatta, 2004; Papadopoulos, 2015). Given this, we posit
that MM can be meaningfully applied to music from a group-theoretical perspective.
More precisely, we propose a particular space that we call a musical space and that
is of the form

M = AT ×F

where T represents time, F represents frequency, together constituting the time-
frequency plane T × F , and A represents the set of possible amplitudes. The time-
frequency plane, T × F , is accompanied by a group (GT ×F ,+) that acts on it.
Additionally, the amplitude set is endowed with a complete lattice structure (A,≤).

These musical spaces capture what are commonly referred to as time-frequency
representations of music. Traditionally, musical representations are categorized into
two major families: signal-based and symbolic. Within both of these families, mul-
tiple time-frequency representations exist. Our objective is to establish a unified
framework within which MM can be applied. Due to its algebraic nature, we believe
that MM can be adapted to accommodate both families of representations, despite
their seemingly distinct natures.

Among the various time-frequency representations available, we have selected one
from each major family: spectrograms for the signal-based family and piano rolls for
the symbolic family. These chosen representations are well-studied and provide a
robust foundation for the application of MM. Figure 1 showcases an example of each
representation, featuring the initial five bars of Bach’s Toccata and Fugue in D minor,
BWV 565.

Several questions naturally arise within this context: what types of lattices should
we employ for spectrograms and piano rolls? Which groups are most suitable? What
is the musical significance of the structuring elements? Addressing these questions
constitutes one of the primary focuses of this thesis. Throughout this work, we aim
to answer these questions while ensuring musical relevance.

Although the primary goal of this thesis is to offer tools for both generating and
analyzing music, considerable effort is devoted to establishing a rigorous mathemati-
cal framework. To this end, this thesis is replete with definitions, propositions, exam-
ples, and other standard mathematical terminology. Aside this mathematical rigor,
every theoretical contribution has a computational counterpart. We have made the
code available in a public repository at https://github.com/Manza12/MMM where
one can find the figures, algorithms, and sounds presented throughout this thesis,
together with the code that was used to generate them.

This thesis is organized as follows: Chapter 1 is devoted to providing a com-
prehensive introduction to mathematical morphology. In this chapter, we present

2
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Figure 1: Time-frequency representations of Bach’s Toccata and Fugue in D minor,
BWV 565 bars 1-5.

the key operators that will be used throughout the thesis and define the specific
mathematical constructs essential for applying MM.

For example, we introduce a new formalism for greyscale MM, known as the
residuated triplet, which enables a clear understanding of the roles of each space
involved in the process, namely, the input, the structuring element, and the output.
This distinction between spaces and precision in the use of operations is crucial in
our framework. Unlike in image applications of MM, where the input and the output
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are often of the same nature (i.e., an image), in our case this assumption does not
hold true and lacks musical significance.

In Chapter 2, we explore the diverse options for time, frequency, and amplitude
to construct spaces suitable for applying MM. We examine a range of choices, both
discrete and continuous, as well as algebraic and analytical. We then formalize the
structures that characterize our main representations: spectrograms and piano rolls.

We place particular emphasis on distinguishing between a space (a set of points)
and a group acting on this space (a set of transformations, which in our case are
conceived as shifts). This distinction enables us to assign a musical meaning to these
actions, specifically the concept of translating a timestamp or a pitch by a certain
amount (e.g., shifting A up by 3 semitones results in C).

Moreover, we also address amplitudes in a musically meaningful way. We explore
various possible amplitude ranges and associate them with corresponding musical
phenomena. This effort led to the concept of a residuated triplet; in traditional
image processing, the amplitude range is often limited to grayscale values, but in the
case of piano rolls, this may not be the case.

Finally, this chapter introduces a formal definition of a piano roll as well as a
derived representation known as the chroma roll. While these concepts are standard
in computational musicology, formal mathematical definitions have been lacking. We
aim to provide one that is both flexible and rigorous.

After establishing the fundamental theoretical framework in Chapters 1 and 2,
we turn to our primary contributions in the subsequent chapters. The remaining
three chapters delve into the potential applications of MM for addressing specific
Music Information Retrieval (MIR) tasks.

Chapter 3 explores the use of MM for analyzing spectrograms of sounds produced
by musical instruments. Such sounds possess specific characteristics (an attack, a
sinusoidal component, and a noise element) that make them well-suited for MM anal-
ysis. Specifically, the attack usually manifests as a vertical line in the spectrogram,
while the sinusoidal component appears as a series of horizontal lines (see Figure 2a).
In this context, we lean towards the conventional usage of MM, as it is typically ap-
plied in image analysis. Rather than endowing our structuring elements with musical
significance, we design them to alter the image in a manner conducive to isolating
specific details (the vertical and horizontal lines).

The noise component exhibits distinct characteristics compared to the other el-
ements; it manifests as a density of energy punctuated by holes (see Figure 2b). In
this case, traditional MM techniques prove to be particularly effective, enabling us to
isolate this noise component by filtering out the lines, and thus the other components.

These methods are integrated into a unified morphological processing pipeline.
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Figure 2: Spectrograms of music instruments.

The processed information is subsequently utilized to synthesize a sound that closely
resembles the original input.

Chapters 4 and 5 shift our focus to the use of MM for both generating (Chap-
ter 4) and analyzing (Chapter 5) piano rolls. In these chapters, structuring elements
change from being mere parameters to becoming central actors. We endow them
with musical significance and employ them for both the generation and analysis of
pieces represented as piano rolls.

One of the key contributions emerges in Chapter 4: the formalization of music
generation through two musical (yet mathematical) parameters: texture and har-
mony. While these terms can be contextually ambiguous, we give them precise
mathematical definitions within our framework. This chapter draws upon tools from
other algebraic disciplines, such as the tensor product, and utilizes the full arsenal
of techniques previously exposed, including residuated triplets.

To organize textures and harmonies coherently, we introduce an implementation
model based on Python objects and XML documents. This model is intended for
integration into Computer Assisted Composition (CAC) software, offering an al-
ternative to traditional score editors for generating music that aligns with classical
harmonic procedures.

The final chapter, Chapter 5, is dedicated to applying both MM and graph the-
ory to address complex tasks in Music Information Retrieval (MIR). Specifically, we
tackle two major challenges: chord segmentation and harmonic analysis. MM proves
to be exceptionally well suited for these tasks, particularly for Roman numeral anal-
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ysis. In this context, the operation of erosion takes on significant meaning and serves
as the foundation for constructing what we term a tonal graph.

The tonal graph represents another major contribution of this thesis. We believe
it addresses the challenges of harmonic analysis in a notably elegant manner, offering
high levels of customization while still delivering strong results with minimal config-
uration. Although this concept is introduced for the first time in this work, ongoing
research is being conducted and is expected to be published in subsequent studies.

While the core of our work is firmly anchored in Mathematical Morphology, our
scope broadens to include a diverse array of fields within Mathematics and Computer
Science, such as Group Theory, Abstract Algebra, Fourier Analysis, and Graph The-
ory. Central to our methodology is the role of MM tools as key elements in a holistic
problem-solving pipeline. This approach is vividly demonstrated in Chapters 4 and 5,
where we employ algebraic methods and graph-based strategies to address complex
challenges, ranging from the generation of musical compositions to the analysis of
harmony and texture.
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Chapter 1

Mathematical Morphology

Mathematical Morphology (MM) is a theory and technique used for the analysis and
processing of geometrical structures, initially developed for image analysis in the
mid-1960s by two researches at the École des Mines in Paris: Matheron, 1975 and J.
Serra, 1982. Its mathematical foundation draws upon set theory, lattice theory,
topology, and random functions. While MM is predominantly applied to digital
images, its versatility allows for its use on various other mathematical structures,
including graphs, surface meshes, or solids.

In this chapter, we present the standard framework of deterministic Mathematical
Morphology (MM) based on lattice theory. Specifically, we develop MM based on
structuring elements with our input being sets (leading to binary MM) and functions
(leading to greyscale MM).

As a roadmap, we are guided by the works of Najman and Talbot, 2010 and Bloch
et al., 2007, adopting their notations with few exceptions. Additionally, we aim to
enhance the mathematical formalism of the framework in which we will operate
throughout the thesis. To achieve this, we will use the notion of a group acting
on a set1 for the application of MM with structuring elements. Moreover, we will
incorporate the concept of a residuated lattice triplet for the codomains of functions,
ensuring that the operations performed on them are well defined.

The organization of the chapter is as follows: we begin with the algebraic founda-
tions of MM in Section 1.1, where we present the standard operators in the framework
of complete lattices. Next, in Section 1.2, we delve into the common framework of
MM with structuring elements, introducing the necessity of a group acting on a set
and a residuated lattice triplet. Finally, in Section 1.3, we discuss some essential
considerations for implementing the operators. In particular, we will present our

1This notion already underlies in previous works, but we will make it explicit and central.
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contributions in the Python/PyTorch framework, achieved through the creation of
the MM library nnMorpho.

1.1 Mathematical Morphology on Lattices
The commonly accepted framework for MM in the deterministic setting is the the-
ory of complete lattices (Ronse, 1990). In this section, we provide a review of the
definitions of complete lattices and basic morphological operators. For proofs of
propositions and more in-depth development about this topic, we refer to (Heijmans
& Ronse, 1990) and (Ronse & Heijmans, 1991).

1.1.1 Complete Lattices
The definition of a lattice is based on the concept of partially ordered set or, abbrevi-
ated, poset; this algebraic structure is extensively presented in (Birkhoff, 1948) and
its definition is recalled in Appendix A (Definition A.2).

In order to define a lattice, we use the notions of supremum and infimum. These
notions are defined formally in (Birkhoff, 1948) and their definitions are recalled in
Appendix A (Definitions A.3 and A.4). We recall that the supremum of a set is the
lowest upper bound of the set and the infimum of a set is the greatest lower bound
of the set. We use the notations exposed in the preamble. These elements may not
exist in general lattices.

Definition 1.1 (Lattice). Let (L,≤) be a partially ordered set, and ∨ and ∧ the
supremum and infimum associated with ≤.

1. If ∀a, b ∈ L, ∃c ∈ L : c = a ∨ b then (L,≤) is an upper semilattice.

2. If ∀a, b ∈ L, ∃c ∈ L : c = a ∧ b then (L,≤) is a lower semilattice.

3. If (L,≤) is both an upper semilattice and a lower semilattice then (L,≤) is a
lattice.

We then use the notation (L,≤,∨,∧) for lattices. Let us present the two main
examples of lattices that we are using in this thesis.

Examples 1.2.

1. Let E be a set. Then the set of subsets of E equipped with the set inclusion,
union and intersection, (P(E),⊆,∪,∩) is a lattice.
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2. Let E be a set and (T,≤) be a lattice. We define the pointwise order � by

∀f, g ∈ TE, f � g ⇔ ∀p ∈ E, f(p) ≤ g(p) .

Then, (TE,�) is a lattice. In this case, the supremum ∨ and the infimum ∧

are given by:

∨ : TE × TE → TE

(f, g) 7→ f ∨ g : E → T

p 7→ f(p) ∨ g(p)
∧ : TE × TE → TE

(f, g) 7→ f ∧ g : E → T

p 7→ f(p) ∧ g(p)

.

These two examples are the ones that we will work with throughout the thesis;
the first one is called the binary case and the second one the functional case.

When working with lattices, one can take the supremum and the infimum of any
finite subset by considering each element one by one2. However, we cannot guarantee
that the supremum of an infinite subset of the lattice exists. Lattices that satisfy this
property are called complete. They are presented now and will be utilized throughout
the thesis.

Definition 1.3 (Complete lattice). Let (L,≤,∨,∧) be a lattice. We say that (L,≤
,∨,∧) is a complete lattice if ∀A ⊆ L, ∃∨A ∈ L and ∃∧A ∈ L.

In the case of complete lattices, supremum and infimum can also be considered
as unary operators defined on the power set of the lattice:

∨

: P(L) → L

A 7→ ∨

A

and
∧

: P(L) → L

A 7→ ∧

A

.

We substitute then ∨ and ∧ by
∨

and
∧

in the notation.
A direct consequence of (L,≤,∨,∧) being a complete lattice is that there exist

two particular elements:

• the top element, denoted by ⊤, which is the supremum of L, i.e., ⊤ =
∨

L,

• the bottom element, denoted by ⊥, which is the infimum of L, i.e., ⊥ =
∧

L.

We then use the notation (L,≤,∨,∧,⊤,⊥) for complete lattices.
2It is important to note that supremum and infimum are associative and commutative.

9



Chapter 1. Mathematical Morphology

Remark 1.4. Let (L,≤,∨,∧,⊤,⊥) be a complete lattice. Then,

⊤ =
∧

∅ ⊥ =
∨

∅ .

Let us discuss the Examples 1.2 from the perspective of complete lattices.

Examples 1.5.

1. Let E be a set. Then, the lattice (P(E),⊆) is complete. The top element is E
and the bottom element is ∅.

2. Let E be a set and (T,≤,∨,∧,⊤,⊥) be a complete lattice. Then, (TE,�
,
∨∨∨

,
∧∧∧

,⊤,⊥) is a complete lattice. The unary operators are then written
∨∨∨

: P(TE) → TE

F 7→ ∨∨∨

F : E → T

p 7→ ∨{f(p) ∈ T : f ∈ F}
∧∧∧

: P(TE) → TE

F 7→ ∧∧∧

F : E → T

p 7→ ∧{f(p) ∈ T : f ∈ F}

and the top element and bottom element are

⊤ : E → T

p 7→ ⊤
and ⊥ : E → T

p 7→ ⊥

respectively.

Finally, let us recall the notion of a complemented lattice. Even if it is not needed
for the main tools of mathematical morphology, it is useful for some particular cases
and comes handy in some proofs.

Definition 1.6 (Complemented lattice). Let (L,≤,∨,∧) be a lattice. We say that
(L,≤,∨,∧) is a complemented lattice if there exists a function

·c : L → L

a 7→ ac

called complementation, that satisfies: ∀a ∈ L,

a ∨ ac = ⊤ a ∧ ac = ⊥ .

In this case, we notate (L,≤,∨,∧, ·c).
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1.1.2 Dilation and Erosion
Let us now present the most basic morphological operators: dilation and erosion.

In the following, we omit the tedious notation (L,≤,∨,∧,⊤,⊥) for complete
lattices, and use simply L or, eventually, (L,≤). In order to be consistent, every
time that L is involved, it comes with its usual order, operations and elements (≤,
∨, ∧,

∨

,
∧

, ⊤ and ⊥), and if several lattices are presented, we assign a subscript to
each of them and propagate it through the order, operations and elements to keep
the notations consistent (for instance, L1, ≤1, ∨1, ∧1,

∨

1,
∧

1, ⊤1 and ⊥1).

Definition 1.7 (Dilation). Let L1 and L2 be two complete lattices. We say that an
operation δ : L1 → L2 is a dilation if it commutes with the supremum, i.e.,

∀A1 ⊆ L1, δ
(

∨

1
A1

)

=
∨

2
δ(A1) , (1.1)

where δ(A1) = {δ(a1) ∈ L2 : a1 ∈ A1}.
Definition 1.8 (Erosion). Let L2 and L1 be two complete lattices. We say that an
operation ε : L2 → L1 is an erosion if it commutes with the infimum, i.e.,

∀A2 ⊆ L2, ε
(

∧

2
A2

)

=
∧

1
ε(A2) , (1.2)

where ε(A2) = {ε(a2) ∈ L1 : a2 ∈ A2}.
A direct consequence of Definitions 1.7 and 1.8 is that dilation and erosion are

increasing operators.
Erosions and dilations usually come in pairs; if chosen properly, they form an

adjunction.

Definition 1.9 (Adjunction). Let (P1,≤1), (P2,≤2) be two partially ordered sets.
Let α : P1 → P2 and β : P2 → P1 be two operators. We say that (β, α) is an
adjunction if ∀a1 ∈ P1, ∀a2 ∈ P2,

α(a1) ≤2 a2 ⇔ a1 ≤1 β(a2) . (1.3)

We say that α is lower adjoint of β, and β is upper adjoint of α.

It is important to remark that, since α and β lay at opposite directions of the
order symbol ≤, they do not play similar roles. This is why the adjunction has an
order (β, α).

The next theorem expresses the equivalence between adjunctions and pairs of
erosion-dilation in the case of complete lattices.
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Theorem 1.10. Let L1 and L2 be two complete lattices. Then,

1. Given δ : L1 → L2 and ε : L2 → L1 such that (ε, δ) is an adjunction, δ is a
dilation and ε is an erosion.

2. Conversely,

(a) given a dilation δ : L1 → L2, there is a unique erosion ε such that (ε, δ)
is an adjunction, given by:

ε : L2 → L1

a2 7→
∨{a1 ∈ L1 : δ(a1) ≤ a2}

, (1.4)

(b) given an erosion ε : L2 → L1, there is a unique dilation δ such that (ε, δ)
is an adjunction, given by:

δ : L1 → L2

a1 7→
∧{a2 ∈ L2 : a1 ≤ ε(a2)}

. (1.5)

1.1.3 Opening and Closing
We first recall the general algebraic definitions of opening and closing, as particular
morphological filters. Forms of these operators can be built by composition of adjoint
erosion and dilation.

Definition 1.11 (Opening). Let L be a complete lattice. Let γ : L → L be an
operator such that

1. ∀x, y ∈ L, x ≤ y ⇒ γ(x) ≤ γ(y) , (Increasing)

2. ∀x ∈ L, γ(x) ≤ x , (Anti-extensive)

3. γ2 := γ ◦ γ = γ . (Idempotent)

Then γ is an opening.

Definition 1.12 (Closing). Let L be a complete lattice. Let ϕ : L → L be an
operator such that

1. ∀x, y ∈ L, x ≤ y ⇒ ϕ(x) ≤ ϕ(y) , (Increasing)

2. ∀x ∈ L, x ≤ ϕ(x) , (Extensive)

12



1.2. Mathematical Morphology with Structuring Elements

3. ϕ2 := ϕ ◦ ϕ = ϕ . (Idempotent)

Then ϕ is an closing.

Openings and closings are particular cases of morphological filters. Opening,
being anti-extensive, eliminates (or reduces) elements from the input, while closing,
being extensive, add (or increases) elements. Furthermore, the third condition, idem-
potence, guarantees that all removals or additions take place in the initial iteration.
This differs from conventional linear filters, where applying the same filter multiple
lead to different results.

A common method of creating openings and closings is by combining dilations
and erosions.

Proposition 1.13. Let L1 and L2 be two complete lattices and (ε, δ) be be an ad-
junction with δ : L1 → L2 and ε : L2 → L1. Then,

1. ϕ := ε ◦ δ : L1 → L1 is a closing,

2. γ := δ ◦ ε : L2 → L2 is an opening.

1.2 Mathematical Morphology with Structuring
Elements

Common specific forms of morphological operators are defined based on structuring
elements. A structuring element can be viewed as a pattern that we seek to find (in
the case of erosion) or replicate (in the case of dilation) throughout the input of the
operator.

The most abstract approach to achieve this involves having a binary relation
between elements of the domain3. However, in this work, we are going to introduce
a group action, that naturally leads to a binary relation.

1.2.1 Action of a Group on a Set
In this section, we introduce the action of an additive4 group (G,+) on a set E.
This provides a framework for utilizing the notion of a structuring element. We
use (Rotman, 1994) as reference for group theory.

3The domain is E if the lattice is either (P(E),⊆) or (TE ,�).
4When using the additive notation for a group we assume that this group is commutative.
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Definition 1.14. Let (G,+) be a group with identity element 0 and E be a set. We
say that a function + : E ×G→ E is an action if

1. ∀p ∈ E, p+ 0 = p, (Identity)

2. ∀p ∈ E, ∀x, y ∈ G, (p+ x) + y = p+ (x+ y). (Compatibility)

It should be noted that we deliberately performed an abuse of notation by using +
for both the group operation and the group action. This abuse of notation simplifies
the expressions significantly and the confusion is impossible since the context makes
it clear to which elements + is being applied.

Intuitively, the group G shifts the elements of E. This concept can be compared
with the definition of an affine space, where elements of the affine space (called
points) are shifted by the vectors of the associated vector space. Similarly, in our
case, we also refer to the elements of the set E as points, thus calling E the space,
while the elements of (G,+) are referred to as shifts.

The most basic action is the translation action of a group into itself.

Definition 1.15 (Translation action). Let (G,+) be a group. Then, the translation
action of a group into itself is the function

+ : G×G → G

(x, y) 7→ y + x

. (1.6)

A straightforward approach to create an action when we have a group (G,+) and
a set E that are in bijective relation is by combining the translation action with the
bijection.

Proposition 1.16. Let (G,+) be a group, E be a set and ι : E → G a bijection
between E and G. Then,

+ : E ×G → E

(p, x) 7→ ι−1(ι(p) + x)
(1.7)

is a group action.

We will employ this technique to establish associations between groups and sets.
In the following examples, we present the main groups that will be utilized extensively
in this thesis.

Examples 1.17.
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1.2. Mathematical Morphology with Structuring Elements

1. (R,+) is an additive group. It will represent the continuous translations.

2. (Q,+) is an additive group. It will represent the fractional translations.

3. (Z,+) is an additive group. It will represent the integer translations.

4. (Z12,+) is an additive torsion group. It will represent the integer translations
modulo 12.

5. Let (G1,+1) and (G2,+2) be two additive groups. Then, (G1 × G2,+) is an
additive group, where the sum is defined by

+ : (G1 ×G2)× (G1 ×G2) → G1 ×G2
(

(x1, x2), (y1, y2)
)

7→ (x1 +1 y1, x2 +2 y2)
. (1.8)

We use these examples to illustrate translation in Figure 1.1. The figure illustrates
a significant observation: in this case, the element of the set, denoted by p, represents
a point, while the element of the group, denoted by x, represents a shift. Translating
a point by a shift results in another point.

Whereas translation actions are defined for particular elements of a set, we can
also apply them to a subset of the set; this is done by the following definition: ∀x ∈ G,
∀A ⊆ E,

A+ x := {p+ x ∈ E : p ∈ A} . (1.9)

Similarly, ∀B ⊆ G, ∀p ∈ E,

p+B := {p+ x ∈ E : x ∈ B} . (1.10)

These equations are illustrated in Figure 1.2.
We outline that, even if the addition is commutative, the group action is not. To

maintain consistency, we always place the point-like element first and the shift-like
element after when performing the group action.

The case p+B will be used extensively in the following: B will be the structuring
element (a subset of G) and p will be each of the points of the input. Note also the
importance of the 0 in this case: arrows are depicted going from 0 to the coordinates
of each of the elements of B.

Furthermore, the fact that G is a group makes possible the reflection of B. We
denote by B̌ the reflection of B given by the formula B̌ = {−b ∈ G : b ∈ B}. This
operation is illustrated in Figure 1.3.
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Chapter 1. Mathematical Morphology

p

p+ x

x

(a) Example of a translation action
on R2; p = (−1.3,−0.5) and x =
(π,
√
2).

p

p+ x
x

(b) Example of a translation action
on Z2; p = (−1, 1) and x = (3,−1).

0

3

6

9 Z12

p

p+ x

x

(c) Example of a translation action on
Z12; p = 11 and x = 3.

Figure 1.1: Examples of translation actions.

x

y

A

A+ x

x

(a) Example of the translation of a set of
points A by a group element x in R2.

x

y

p

p+B

B

(b) Example of the translation of a
point p by a set of group elements B.

Figure 1.2: Translation of sets.
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x

y

B

b1

b2

b3

b4

B̌

−b1

−b2
−b3

−b4

Figure 1.3: Example of the reflection B̌ of B.

1.2.2 Binary Mathematical Morphology
Binary morphology is often referred to as morphology on sets because it uses the
lattice (P(E),⊆) with E as the base space. In order to apply operators that rely
on structuring elements, the action of a group (G,+) on E serves as an appropriate
framework, and we employ it throughout this section.
Definition 1.18 (Binary dilation and erosion). Let A ⊆ E and B ⊆ G.

The binary dilation A⊕ B of A by B is defined by:

A⊕ B = {p ∈ E : (p+ B̌) ∩ A 6= ∅} (1.11)
= {a+ b ∈ E : a ∈ A, b ∈ B} . (1.12)

The binary erosion A⊖ B of A by B is defined by:

A⊖ B = {p ∈ E : p+B ⊆ A} . (1.13)

B is called structuring element. If we fix a structuring element B ⊆ G, we can
define the binary dilation and erosion operators

δB : P(E) → P(E)
A 7→ δB[A] = A⊕ B

(1.14)

εB : P(E) → P(E)
A 7→ εB[A] = A⊖ B

(1.15)

that form an adjunction.
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Chapter 1. Mathematical Morphology

The fact that (P(E),⊆) is a complemented lattice (where the complement of an
element A ⊆ E is Ac := {p ∈ E : p 6∈ A}), gives an interesting duality property that
link both operations.

Proposition 1.19. Let A ⊆ E and B ⊆ G. The following equations hold

(A⊖ B)c = Ac ⊕ B̌c (1.16)
(A⊕ B)c = Ac ⊖ B̌c . (1.17)

An intuitive illustration of how these operators transform a shape is given in
Figure 1.4.

(a) Dilation (b) Erosion

Figure 1.4: Illustration of binary dilation and erosion in R2.

The composition of a dilation with an erosion gives either an opening or a closing,
depending on the order of composition.

Proposition 1.20. Let A ⊆ E and B ⊆ G. Then,

1. γB := δB ◦ εB is an opening,

2. ϕB := εB ◦ δB is a closing.

Figure 1.5 provides an intuitive interpretation of opening and closing operations.
During the opening, the little circle outside the shape from Figure 1.4 has been fil-
tered out, while during the closing, the little hole inside the shape has been filled
in. This occurs because the circle and the hole are smaller (in terms of inclusion)
than the structuring element. Despite these changes, the main shape of the object
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1.2. Mathematical Morphology with Structuring Elements

remains unchanged. This preservation of the general shape is one of the most inter-
esting features of morphological filters: they filter out some parts of the object or
its complement that are smaller than the structuring element, yet the overall shape
remains unaffected.

(a) Opening (b) Closing

Figure 1.5: Illustration of binary opening and closing of the shape from Figure 1.4.

1.2.3 Functional Mathematical Morphology
Functional mathematical morphology, or mathematical morphology on functions, is
based on the lattice (TE,�) (see Examples 1.5 2) of functions defined on a space E
and with codomain T , where (T,≤) is a complete lattice. Let (G,+) be a group that
acts on E.

1.2.3.1 Flat morphology

Definition 1.21 (Flat dilation and erosion). Let f ∈ TE and B ⊆ G.
The flat dilation f ⊕ B of f by B is defined as:

f ⊕ B : E → T

p 7→ ∨

b∈B̌
f(p+ b)

. (1.18)

The flat erosion f ⊖ B of f by B is defined as:

f ⊖ B : E → T

p 7→ ∧

b∈B
f(p+ b)

. (1.19)
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Chapter 1. Mathematical Morphology

B is called flat structuring element. If we fix a flat structuring element B ⊆ G,
we can define the flat dilation and erosion operators

δB : TE → TE

f 7→ δB[f ] = f ⊕ B
(1.20)

εB : TE → TE

f 7→ εB[f ] = f ⊖ B
(1.21)

that form an adjunction.
Opening and closing associated to flat erosion and dilation are defined as in

Proposition 1.20.
It is interesting to note that flat morphology generalizes binary morphology

through the usage of the characteristic function.
Proposition 1.22. We recall that

1 : P(E) → {0, 1}E
A 7→ 1A

is the canonical bijection between the subsets of E and their characteristic functions.
We have that

1A⊕B = 1A ⊕ B and 1A⊖B = 1A ⊖ B .

Let us illustrate the effect of these operators on an image, with E = Z2, G =
(Z2,+), and T = {0, 1, ..., 255} (the 8-bit grayscale range).

The impact of dilation on an image can be observed in Figure 1.6 for various
structuring elements. For each size5 k ∈ 2N + 1, the structuring element is the set
B = {(x, y) ∈ Z2 : max{x, y} ≤ k−1

2
}. We observe that dark details are suppressed

by the dilation and that the overall image gets brighter.
In Figure 1.7, we can see the effect of erosion on the same image. In this case,

the bright details are suppressed and the overall image gets darker.
In Figure 1.8, we can observe the impact of the closing and opening defined by

the compositions of erosion and dilation on the same image, with a fixed k = 7. For
the opening, brighter details have disappeared, while the overall shape is preserved.
On the other hand, the closing eliminates darker details (almost entirely); notably,
the black line becomes a gray line. Despite these changes, the overall brightness level
remains similar to the original image, with a slight shift towards darker (for opening)
or brighter (for closing).

5We use the set 2N+ 1 = {2n+ 1 ∈ N : n ∈ N} for referring the odd numbers. Whereas k may
be even, we limit the structuring element sizes to odd numbers in order to get it centered at the
origin.
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1.2. Mathematical Morphology with Structuring Elements

(a) Input image (b) k = 5 (c) k = 9 (d) k = 13

Figure 1.6: Dilations of an image for different structuring elements sizes k.

(a) Input image (b) k = 5 (c) k = 9 (d) k = 13

Figure 1.7: Erosions of an image for different structuring elements of size k.

1.2.3.2 Grayscale morphology

In this section, we consider grayscale morphology, that is, morphology where the
structuring element is a function. The standard way of defining grayscale morphol-
ogy (Heijmans & Ronse, 1990; Bloch et al., 2007; Najman & Talbot, 2010) is by
using a function b : G→ T and defining the dilation and erosion of f : E → T by b
as: ∀p ∈ E,

(f ⊕ b)(p) = sup
x∈G

(f(p− x) + b(x))

(f ⊖ b)(p) = inf
x∈G

(f(p+ x)− b(x)) .
(1.22)

This definition has a flaw: we cannot assume a priori that addition and subtrac-
tion operations exist in the lattice T . Furthermore, in common cases like T = R

or Z, there is not canonical way to define these operations since the case ∞−∞ is
undefined. Bloch et al., 2007 propose to handle the case∞−∞ in a specific manner
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Chapter 1. Mathematical Morphology

(a) Input image (b) Opening (c) Closing

Figure 1.8: Morphological filters with a structuring element of size k = 7.

for each operator, stating that if f(q)+ b(p− q) takes the form∞−∞, it is set equal
to −∞, and if f(q)− b(q − p) takes the form ∞−∞, it is set equal to ∞.

In this work, we propose an alternative approach to address this issue. We
introduce the concept of a residuated lattice triplet, or simply a residuated triplet,
which is built upon the idea of a residuated lattice. This framework offers a solution
to the problem of undefined operations.

This approach is in the line of using fuzzy sets and logic in MM (Bloch & Maître,
1994). Specifically, we introduce analogs to conjunction and implication (Deng &
Heijmans, 2002) through the utilization of lattice multiplication and residuals. Our
approach closely resembles the one employed in (Maragos, 2005), with the extension
to triplets of lattices in place of considering a single lattice for scalars. Our adaptation
draws upon results from the theory of fuzzy mathematical morphology (Bloch, 2009,
2012) due to the similarity between the two contexts.

The theory of residuated lattices started with the works of Krull, 1924 and Ward
and Dilworth, 1938, 1939 and has been developed during the 20th century. For a
modern approach, we suggest the survey of Jipsen and Tsinakis, 2002 or the mono-
graph of Galatos et al., 2007. We recall the definition of a residuated lattice.

Definition 1.23 (Residuated lattice). Let (L,≤,∨,∧) be a lattice. Let • : L×L→ L

be an operation that is associative and has a neutral element 1 ∈ L, i.e., (L, •,1) is a
monoid. Then, (L,≤,∨,∧, •,1) is a residuated lattice if there exist two operations
/ : L× L→ L and \ : L× L→ L such that ∀x, y, z ∈ L,

x • y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y . (1.23)

We call \ and / the right and left residuals of •, respectively.

22



1.2. Mathematical Morphology with Structuring Elements

We adapt this definition to the case where the operations •, \ and / are defined
for different lattices and we call this a residuated triplet.

Definition 1.24 (Residuated triplet). Let (L1,≤1), (L2,≤2) and (L3,≤3) be three
lattices. If there exists three operations

• : L1 × L2 → L3

(a1, a2) 7→ a1 • a2

/ : L3 × L2 → L1

(a3, a2) 7→ a3/a2

\ : L1 × L3 → L2

(a1, a3) 7→ a1\a3

such that ∀a1 ∈ L1, ∀a2 ∈ L2, ∀a3 ∈ L3,

a2 ≤2 a1\a3 ⇔ a1 • a2 ≤3 a3 ⇔ a1 ≤1 a3/a2 (1.24)

we say that they form a residuated triplet denoted by (L1, L2, L3). The operations
/ and \ are called respectively left and right residuals (with respect to •).

Residuated triplets provide a versatile framework for defining greyscale morphol-
ogy. We choose to set the theory for triplets as it encompasses the most general
case (relevant for some applications to music). However, if we have L1 = L3 or
L1 = L2 = L3, we will encounter particular cases that are also valuable. Notably,
when L := L1 = L2 = L3 and L has an identity element for the lattice multiplication,
we obtain an actual residuated lattice.

We will now outline the conditions we desire for an operation • (referred to as
lattice multiplication) to serve our purposes.

Definition 1.25 (Lattice multiplication). Let (L1,≤1), (L2,≤2) and (L3,≤3) be
three complete lattices. We say that an operation

• : L1 × L2 → L3

(a1, a2) 7→ a1 • a2

(1.25)

is a lattice multiplication if ∀a1 ∈ L1, ∀a2 ∈ L2, ∀A1 ⊆ L1, ∀A2 ⊆ L2,

1. a1 • (
∨

2A2) =
∨

3(a1 • A2) (Distributive property in L2)

2. (
∨

1A1) • a2 =
∨

3(A1 • a2) (Distributive property in L1)

where A1 • a2 = {a • a2 ∈ L3 : a ∈ A1} and a1 • A2 = {a1 • a ∈ L3 : a ∈ A2}.

23



Chapter 1. Mathematical Morphology

Corollary 1.26. Let (L1,≤1), (L2,≤2) and (L3,≤3) be three complete lattices and
• : L1 × L2 → L3 a lattice multiplication. Then, ∀a1, b1 ∈ L1, ∀a2, b2 ∈ L2,

1. a1 ≤1 b1 ⇒ a1 • a2 ≤3 b1 • a2 (Order preserving in L1)

2. a2 ≤2 b2 ⇒ a1 • a2 ≤3 a1 • b2 (Order preserving in L2)

Proof. Let us prove 1 and the other is analogous. We know that a1 ≤1 b1 which is
equivalent to say that b1 =

∨{a1, b1}. Then,

b1 • a2 =
∨

{a1, b1} • a2 Definition 1.25 2
=

∨

{a1 • a2, b1 • a2} ⇒ a1 • a2 ≤3 b1 • a2 .

These conditions ensure that the resulting operations satisfy the properties of
residuals, thus forming a residuated triplet.

Definition 1.27 (Left and right residuals). Let (L1,≤1), (L2,≤2) and (L3,≤3) be
three complete lattices. Let • : L1 × L2 → L3 be a lattice multiplication. We define
the left and right residuals of • by

/ : L3 × L2 → L1

(a3, a2) 7→ a3/a2 :=
∨

1 a2 ↓ a3
\ : L1 × L3 → L2

(a1, a3) 7→ a1\a3 :=
∨

2 a1 ↓ a3

where a2 ↓ a3 := {a ∈ L1 : a • a2 ≤3 a3} and a1 ↓ a3 := {a ∈ L2 : a1 • a ≤3 a3}.

Proposition 1.28. The operations •, / and \ defined in Definition 1.25 and Defi-
nition 1.27 make (L1, L2, L3) a residuated triplet.

Proof. We shall prove that ∀a1 ∈ L1, ∀a2 ∈ L2, ∀a3 ∈ L3,

a2 ≤2 a1\a3 ⇔ a1 • a2 ≤3 a3 ⇔ a1 ≤1 a3/a2 .

Let us prove that a2 ≤2 a1\a3 ⇔ a1 • a2 ≤3 a3. The prove of a1 • a2 ≤3 a3 ⇔
a1 ≤1 a3/a2 is analogous.
⇐
Since a1 • a2 ≤3 a3 then a2 ∈ a1 ↓ a3 ⇒ a2 ≤2

∨

2 a1 ↓ a3 ⇒ a2 ≤2 a1\a3.
⇒
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a2 ≤2 a1\a3
Corollary 1.26 2⇒ a1 • a2 ≤3 a1 • (a1\a3)

⇒ a1 • a2 = a1 •
(

∨

2
a1 ↓ a3

)

Definition 1.25 1
=

∨

3
(a1 • a1 ↓ a3)

where a1 • a1 ↓ a3 := {a1 • a ∈ L3 : a ∈ a1 ↓ a3}.
Since ∀a ∈ a1 ↓ a3, a1 • a ≤3 a3 then a3 is an upper bound of a1 • a1 ↓ a3 and thus

∨

3(a1 • a1 ↓ a3) ≤ a3. We have finally a1 • a2 ≤3

∨

3(a1 • a1 ↓ a3) ≤ a3.

Now that we have a residuated triplet, we can define the grayscale dilation and
erosion.

Definition 1.29 (Grayscale dilation and erosion). Let (T1,≤1), (T2,≤2) and (T3,≤3)
be three complete lattices that form a residuated triplet with the operations •, / and
\, where • is a lattice multiplication.

Let g ∈ TE1 , b ∈ TG2 and f ∈ TE3 . We define the greyscale dilation g ⊕ b of g
by b as:

g ⊕ b : E → T3
p 7→ ∨

x∈G
g(p+ x) • b(−x)

. (1.26)

We define the greyscale erosion f ⊖ b of f by b as:

f ⊖ b : E → T1
p 7→ ∧

x∈G
f(p+ x)/b(x)

. (1.27)

b is called structuring function. If we fix a structuring function b ∈ TG2 , we can define
the flat erosion and dilation operators

εb : TE3 → TE1
f 7→ εb[f ] = f ⊖ b

(1.28)

δb : TE1 → TE3
g 7→ δb[g] = g ⊕ b

. (1.29)

Proposition 1.30. The greyscale erosion and dilation form an adjunction and thus
are actual erosions and dilations.
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Proof. The proof is a direct consequence of the structure of residuated triplet.
See (Bloch, 2009) for a similar proof in the context of conjunctions and implica-
tions.

This is the first example in this work of an erosion and dilation with different
domains; indeed, the adjunction may be represented by the following diagram:

δb[g]�

f

∈ LE3 LE1 ∋
g�

εb[f ]
b ∈ LG2

εb

δb

This diagram also illustrates the anti-extensivity and extensivity properties of the
composition of erosion and dilation (resulting in opening and closing, respectively),
a consequence of the adjunction. By following the diagram, we have

δb[εb[f ]] � f and g � εb[δb[g]] .

It is worth specifying what constitutes the lattice multiplication and residual in
the standard definition of greyscale morphology exposed in Equation (1.22). The
residuated triplet (which is actually a residuated lattice) is (R,R,R) with the ex-
tended addition, defined as

+ : R× R → R

(x, y) 7→ x+ y =











−∞ if (x, y) = (−∞,∞)

−∞ if (x, y) = (∞,−∞)

x+ y otherwise

(1.30)

and the extended subtraction, defined as

− : R× R → R

(x, y) 7→ x− y =











∞ if (x, y) = (∞,∞)

∞ if (x, y) = (−∞,−∞)

x− y otherwise

. (1.31)

The extended addition happens serves as lattice multiplication (with identity
element being 0) while the extended subtraction acts as its left residual (the right
residual is analogous).
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Although the concept of a residuated triplet is not particularly relevant in this
context (since a residuated lattice would suffice), in Chapter 2 we will present a
residuated triplet with different L1, L2, L3 when presenting our model for piano rolls.
For presenting the derived operators of MM we will restrict ourselves to the structure
of residuated lattice (instead of triplet) to remain closer to the existing literature.

1.2.4 Derived Operators
So far, we have introduced the four fundamental operators of mathematical mor-
phology: dilation and erosion, which are the basic operators, as well as opening
and closing, which are morphological filters. However, it is important to note that
Mathematical Morphology offers a range of other operators that provide additional
capabilities. In the following sections, we present some of these additional operators,
that will be employed in this work.

1.2.4.1 Hit-or-miss transform

The hit-or-miss transform is an operator from mathematical morphology derived
from erosion. In its binary version, it uses the complementary of a set imposing spe-
cific conditions on it. As an intuition, the hit-or-miss transform with two structuring
elements C and D imposes that the translation of C, p + C, should be contained
in the set and the translation of D, p+D, should be contained in the complement.
The following definition presents this concept formally.

Definition 1.31 (Hit-or-miss transform). Let A ⊆ E and C,D ⊆ G with C∩D = ∅.
Then, the hit-or-miss transform of A by (C,D), denoted by A⊛ (C,D), is given
by

A⊛ (C,D) = {p ∈ E : p+ C ⊆ A and p+D ⊆ Ac} (1.32)
= (A⊖ C) ∩ (Ac ⊖D) . (1.33)

We call C and D the foreground and background structuring elements, respec-
tively.

Extending the hit-or-miss operator to greyscale morphology is not straightfor-
ward, primarily because the hit-or-miss is not an increasing operator. To address
this challenge, several approaches have been proposed; some notable works in this
area include (Ronse, 1996; Soille, 2002, 2013; Barat et al., 2003a, 2003b), which are
summarized and unified in (Naegel et al., 2007).
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In this work, we rely on the hit-or-miss transform proposed in (Soille, 2002),
called there the unconstrained hit-or-miss, but in a version closer to the one exposed
in (Naegel et al., 2007). We call it flat hit-or-miss.

Definition 1.32 (Flat hit-or-miss). Let (T,∨,∧,+,−,0) be a residuated lattice6.
Let f ∈ TE and C,D ⊆ G with C ∩D = ∅. The flat hit-or-miss of f by (C,D),
denoted by f ⊛ (C,D), is defined by: ∀p ∈ E,

(f ⊛ (C,D))(p) =
(

(f ⊖ C)(p)− (f ⊕ Ď)(p)
)

∨ 0 . (1.34)

Our definition is slightly different from the one in (Naegel et al., 2007) by two
aspects: first, we only define it for flat structuring elements and second, we handle
the subtraction of infinities by the residuation operation; this leads, for instance, to
a different value of ∞−∞: in (Naegel et al., 2007) it is set to 0 and we set it to
∞ (when dealing with the lattice (R,≤)). This yields to the same output for the
thinning operation.

1.2.4.2 Thinning

We now introduce the thinning operation, which will prove to be highly useful in
Chapter 3. We present together both the binary and greyscale cases, each relying on
its respective hit-or-miss transform.

Definition 1.33 (Thinning). Let C,D ⊆ G such that 0 ∈ C and C ∩D = ∅. Let Ψ
be either a set (Ψ ⊆ E) or a function (Ψ ∈ TE). Then, the elementary thinning
of Ψ by (C,D), denoted by Ψ# (C,D), is given by:

Ψ# (C,D) = Ψ− (Ψ⊛ (C,D)) (1.35)

where − denotes either set difference or left residuation, depending on the nature of
Ψ.

Let (C1, D1, C2, D2, ..., Cn, Dn) ∈ P(G)2n be a sequence of structuring elements
that we call templates. The application of successive elementary thinnings

((((Ψ# (C1, D1))#)(C2, D2)# ...)# (Cn, Dn)) (1.36)

is called a thinning.
If we apply this operation iteratively until stability is reached, we obtain what is

known as an ultimate thinning, denoted by #
∞.

6We use the additive notation for the residuated lattice since it is closer to our applications. The
correspondence is the following: we use + in the place of •, − in the place of / and 0 in the place
of 1.
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1.2.4.3 Top-hat

The top-hat operations fall under the category of residues in mathematical mor-
phology (Najman & Talbot, 2010). These operations involve taking the difference
between an input image and its opening (white top-hat) or between the closing and
the image (black top-hat) (Soille, 2013). As opening is anti-extensive and closing is
extensive, the resulting values are positive.

Definition 1.34 (Top-hat). Let (T,∨,∧,+,−,0) be a residuated lattice. Let f ∈
TE and B ⊆ G.

The white top-hat of f by B is given by: ∀p ∈ E,

WTHB[f ](p) =

{

f(p)− γB[f ](p) if f(p) 6= γB[f ](p)

0 if f(p) = γB[f ](p)
. (1.37)

The black top-hat of f by B is given by: ∀p ∈ E,

BTHB[f ](p) =

{

ϕB[f ](p)− f(p) if ϕB[f ](p) 6= f(p)

0 if f(p) = ϕB[f ](p)
. (1.38)

We present the definition in multiple cases because when using the residuation
−, we have ∞−∞ =∞ instead of the desired7 ∞−∞ = 0.

1.2.4.4 Skeleton

Regarding the skeleton, we use Lantuéjoul formula (Lantuéjoul, 1978).

Definition 1.35 (Skeleton). Let A ⊆ E. Then, the skeleton of A, denoted by
S(A), is the set

S(A) =
⋃

i∈N
εiB1

[A] \ γB1
[εiB1

[A]] (1.39)

where B1 ⊆ G is the elementary structuring element8.

This skeleton is equal to the set of the centers of maximal balls (according to the
same distance) included in A.

7As far as we know, this is the only limitation of residuation when formalizing addition and
subtraction in morphological operators.

8This structuring element determines the notion of connectivity.
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1.2.5 Geodesic Transformations
Up to this point, we have introduced operations that involve a single input and one or
two structuring elements. Geodesic transformations, however, require two different
inputs: a marker and a mask. The marker is either expanded (dilation) or shrunk
(erosion), and the mask imposes limitations to this expansion or shrinking, hence the
term “geodesic”. We now present both geodesic dilation and erosion, as well as their
corresponding reconstructions, which lead to and opening and a closing, respectively.
We define the operations in the functional case since the others are restrictions of it.

1.2.5.1 Geodesic dilation

Definition 1.36 (Geodesic dilation). Let f, g ∈ TE. The geodesic dilation of
size 1 of the marker f with respect to the mask g, denoted by δ1g [f ], is defined by:

δ1g [f ] = δB1
[f ] ∧ g (1.40)

where B1 ⊆ G is the unit ball of the grid.
The geodesic dilation of size n of f with respect to g, denoted by δng [f ], is

defined recursively by:
δng [f ] = δ1g [δ

n−1
g [f ]] (1.41)

where δ0g [f ] = f ∧ g.
Geodesic dilation exhibits some useful properties.

Proposition 1.37. Geodesic dilation is increasing in both arguments, extensive in
the marker argument and anti-extensive in the mask argument, i.e.,

1. ∀f1, f2, g1, g2 ∈ TE, f1 � f2 ∧ g1 � g2 ⇒ δ1g1 [f1] � δ1g2 [f2],

2. ∀f, g ∈ TE, f ∧ g � δ1g [f ],

3. ∀f, g ∈ TE, δ1g [f ] � g.

1.2.5.2 Geodesic erosion

Definition 1.38 (Geodesic erosion). Let f, g ∈ TE. The geodesic erosion of size
1 of the marker f with respect to the mask g, denoted by ε1g[f ], is defined by:

ε1g[f ] = εB1
[f ] ∨ g (1.42)

where B1 ⊆ G is the elementary structuring element.
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The geodesic erosion of size n of f with respect to g, denoted by εng [f ], is
defined recursively by:

εng [f ] = ε1g[ε
n−1
g [f ]] (1.43)

where ε0g[f ] = f ∨ g.

Geodesic erosion exhibits some useful properties.

Proposition 1.39. Geodesic erosion is increasing in both arguments, anti-extensive
in the marker argument and extensive in the mask argument, i.e.,

1. ∀f1, f2, g1, g2 ∈ TE, f1 � f2 ∧ g1 � g2 ⇒ ε1g1 [f1] � ε1g2 [f2],

2. ∀f, g ∈ TE, ε1g[f ] � f ∨ g,

3. ∀f, g ∈ TE, g ≤ ε1g[f ].

1.2.5.3 Morphological reconstruction

In practical situations, geodesic dilation and erosion are typically applied iteratively
until stability is achieved. This iterative process enables us to define morphologi-
cal reconstructions, specifically the reconstruction by dilation and reconstruction by
erosion.

Definition 1.40 (Reconstruction by dilation). Let f, g ∈ TE. Then, the recon-
struction by dilation of the mask g from the marker f , denoted9 by δ∞f [g], is
defined by:

δ∞f [g] = δNg [f ] (1.44)

where N ∈ N is such that δNg [f ] = δN+1
g [f ]. When E is finite, N always exists.

Definition 1.41 (Reconstruction by erosion). Let f, g ∈ TE. Then, the recon-
struction by erosion of the mask g from the marker f , denoted by ε∞f [g], is
defined by:

ε∞f [g] = εNg [f ] (1.45)

where N ∈ N is such that εNg [f ] = εN+1
g [f ]. When E is finite, N always exists.

Proposition 1.42. The reconstruction by dilation is an opening and the reconstruc-
tion by erosion is a closing.

9To emphasize the role of each operand, we have permuted the order of the operands.
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Chapter 1. Mathematical Morphology

1.3 Implementation of Mathematical Morphology
Operators

In this section, we will discuss the implementation of the mathematical morphology
operators discussed in the previous sections.

We have chosen to use Python 3 (Rossum & Drake, 2009) for the implementations
and applications in this thesis. There are several libraries in Python that implement
MM operators; we found four: SciPy (Virtanen et al., 2020), scikit-image (Walt et
al., 2014), OpenCV (Bradski, 2000) and Kornia (Riba et al., 2020).

However, these libraries do not fully align with our needs and thus we have
chosen to implement our own libraries: PyMorpho10, serving as a general-purpose
MM library, and nnMorpho11, which is equipped with a PyTorch engine for GPU
acceleration and seamless integration with neural network architectures.

In the following section, we expose the main implementation considerations spe-
cific to our work. Before delving into the computational aspects, let us recapitulate
the mathematical objects that we intend to implement computationally. We require
a space E equipped with an additive group (G,+) that acts on it. Furthermore, we
need a lattice (T,≤) to serve as the range for functional morphology. For imple-
menting greyscale morphology, we must also have a residuated triplet (T1, T2, T3).

1.3.1 Implementation Considerations
There are several aspects that should be decided when implementing a library for
mathematical morphology operators, namely: the data structure, the data types,
the operators families (binary, flat, grayscale), the management of the origin, the
management of the border, the dimensions and the topology of the underlying space.

1.3.1.1 Data structure

The elements on which we apply mathematical morphology operators can be math-
ematically represented as either sets (A ⊆ E) or functions (f ∈ TE). In a computa-
tional context, both sets and functions can be modeled using arrays.

An array is a collection of elements, typically of the same data type, that are
indexed by a set of integers. Each element in the array can be accessed using its
corresponding index. Arrays allow for efficient storage and retrieval of data, making
them well-suited for representing sets and functions in computational settings.

10https://github.com/Manza12/PyMorpho
11https://github.com/Manza12/nnMorpho
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1.3. Implementation of Mathematical Morphology Operators

For instance, a set can be represented as a binary array where each element of
the base space E corresponds to an index in the array. If an element is present in the
set, its corresponding entry in the array is marked as true; otherwise, it is marked as
false. In the case of functions, the value of the array at a specific index represents
the value of the function.

1.3.1.2 Data types

The data type represents our lattice (T,≤); indeed, a data type that serves our
purposes need to be equipped with an order and with arithmetic operations, as well
as bottom and top elements. The most frequent data types are listed in Table 1.1.

Data type Alias Bottom (⊥) Top (⊤)
Boolean bool false true

8-bit integer (unsigned) uint8 0 255
8-bit integer (signed) int8 −128 127
16-bit integer (signed) int16 −32 768 32 767
32-bit integer (signed) int32 ≈ −2× 109 ≈ 2× 109

64-bit integer (signed) int64 ≈ −9× 1018 ≈ 9× 1018

16-bit floating point float16 −∞ ∞
32-bit floating point float32 −∞ ∞
64-bit floating point float64 −∞ ∞

Table 1.1: Common data types.

These data types come with the order operator <= and the arithmetic operators +
and -, which will serve as our lattice multiplication and left residuation, respectively.
We recall that the lattice multiplication will have the additive form since it is the
most common in the greyscale MM literature.

It is important to note that critical cases of addition and subtraction, such as
∞−∞ in floating-point numbers and overflow in integers, are not handled as they
should in some implementations. For instance, in the case of SciPy, these operations
may result in nan values in floating-point numbers or in modular overflow in integers,
as exemplified by 255 + 2 = 1 in uint8 data type.

1.3.1.3 Operators families

We have presented three families of operators: binary, flat and grayscale. Usually,
libraries distinguish between binary and greyscale morphology, and consider flat
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morphology as a particular case of greyscale morphology12. In our libraries, we will
also distinguish between binary and greyscale, but we do this way because of different
reasons.

In principle, by the data types of the input data (the input array and the struc-
turing element) we should be able to infer the family of the operator, namely13

Input data type Structuring element data type Family
Boolean Boolean Binary
Numeric Boolean Flat
Numeric Numeric Greyscale

.

However, for our applications we require another type of morphology for numeric data
types, that actually corresponds to the residuated triplet presented in the following
example.
Example 1.43. Let (T,≤) be a lattice and ({0, 1},≤) be the boolean lattice. Then, the
residuated triplet ({0, 1}, T, T ) is defined with the following lattice multiplication14:

• : {0, 1} × T → T

(b, x) 7→ b • x =

{

x if b = 1

⊥ if b = 0

(1.46)

which has the corresponding left residuation
/ : T × T → {0, 1}

(x, y) 7→ x/y =

{

1 if y ≤ x

0 if y 6≤ x

. (1.47)

This residuated triplet will prove to be useful for certain musical applications.
From a computational perspective, it corresponds to choosing a numeric range for
the data type of the input and the structuring element, and producing a Boolean
output. This functionality can be encapsulated in two modules, namely binary and
greyscale:

Module Input dtype Str. ele. dtype Output dtype Family
binary Boolean Boolean Boolean Binary
binary Numeric Numeric Boolean Greyscale

greyscale Numeric Boolean Numeric Flat
greyscale Numeric Numeric Numeric Greyscale

12Some of them only implement flat morphology.
13In the following table, we use the term numeric to refer to all types except the Boolean type.
14In this case we use multiplicative notation for the lattice multiplication and residuation since

it is more appropriated.
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1.3.1.4 Origin

Since the domain of the structuring element is a group (G,+), there is a notion of
origin. The origin is the identity element for the group (in our case, it is usually
denoted as 0). When using arrays, they do not come with an associated origin (which
is not a problem for a space E). As a result, we need to specify the origin of the
array.

In common applications, the origin is typically set as the central element of the
structuring element array, which is usually assumed to be of odd size. However, this
approach is not sufficient in general and do not suit our musical applications.

In our implementation, we add a parameter for specifying which pixel is the
origin, set by default to the center.

1.3.1.5 Border

Another important element to consider is the border. When the structuring element
is not limited to a single pixel, translating the structuring element near the border
of the input array can cause an overflow of indices. This is a consequence of working
with a finite subset of the space.

To manage this overflow, there are two classical approaches:

1. the Euclidean approach: in this approach, we consider that the input array is
extended with bottom elements outside the actual image. This is equivalent to
considering that our image is defined in the entire space with compact support.

2. the geodesic approach: in this approach, we do not consider the values outside
the input array when taking the infimum or supremum. This approach is called
geodesic because of its similarities with geodesic operators.

In practice, this overflow issue only affects the computation of erosion: the dila-
tion operation is not affected since extending with bottom elements does not alter
the output of a supremum.

1.3.1.6 Dimensions

Even though our main focus will be on using two-dimensional inputs, it is impor-
tant to note that mathematical morphology is defined for every space E with a
group (G,+) acting on it, including cases where E = G = Rd or Zd. In particular,
mathematical morphology is extensively used in processing 3D scan images.
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1.3.1.7 Topology of the underlying space

Every Mathematical Morphology library considers the arrays as being embedded in
a Euclidean space like Rd or Zd. However, in Chapter 5, in Section 5.3 we will use a
space E ≃ Z × Z12, which has cylindrical topology. This has a deep impact on the
implementation of the operators since the translation in the direction of Z12 has no
border and rotates the structuring element.

Although this behavior can be simulated by stacking copies of the input array, our
libraries offer the flexibility to consider other topologies, particularly the cylindrical
(or toroidal) topology.

1.3.2 Computational Model
In this section, we present the computational model implemented in our libraries,
PyMorpho and nnMorpho. We will only discuss the abstraction needed for apply-
ing mathematical morphology with structuring elements, which forms the core of
PyMorpho. The low-level algorithms in nnMorpho are mere adaptations of these ab-
stractions, implemented as C++ extensions for PyTorch, including CUDA kernels.

The computational model presented below, with a syntax similar to that of
Python, exposes the objects needed for implementation. We employ the terms shift,
point, and level to refer to elements of the group, space, and lattice, respectively.
The term image pays homage to the origins of MM but should be understood as the
object upon which MM operations can be performed.

We expose one by one the classes we use with their attributes and methods15 and
give a brief explanation of them.

Shift:
__neg__(self) -> Shift

Shift corresponds to an element of the group x ∈ G. We override the operator - for
being able to refer to its opposite −x, needed in the definition of dilation.

Group:
shift_type: Type[Shift]
__iter__(self) -> Iterator[Shift]

Group corresponds to the group itself, (G,+). We make it iterable for being able to
go through each one of its elements, that are Shifts. We also include the shift_type
as an attribute to link the group with its shift type16.

15We use the notations of Python for the methods that override operators.
16For instance, we might use the constructor in the iteration.
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Point:
__add__(self, shift: Shift) -> Point

Point corresponds to an element of the space p ∈ E. We override the operator +
that takes a Shift as second argument for being able to refer to compute the value
p+ x.

Space:
point_type: Type[Point]
__iter__(self) -> Iterator[Point]

Space corresponds to the space itself, E. We make it iterable for being able to go
through each one of its elements, that are Points. We also include the point_type
as an attribute to link the space with its point type16.

Level:
__add__(self, other: Level) -> Level
__sub__(self, other: Level) -> Level
__le__(self, other: Level) -> bool

Level corresponds to an element of the lattice t ∈ T . We override the operators +
and - for having a lattice multiplication and left residuation17. Moreover, we impose
the levels to be comparable by the operator <=, even is this is not necessary for the
implementation of operators.

Lattice:
level_type: Type[Level]
bot: Level
top: Level
supremum(a: Level, b: Level) -> Level
infimum(a: Level, b: Level) -> Level
__mul__(self, other: Lattice) -> Lattice
__truediv__(self, other: Lattice) -> Lattice

Lattice corresponds to the lattice itself, (T,≤). We require it to have both the
bot and top elements, that are Levels and to define two methods, supremum and
infimum. We also include the level_type as an attribute to link the lattice with its
level type16. In addition, we override the operators * and / to be able to determine
the resulting lattice in lattice multiplication and left residuation.

17Notice that whereas the operators have arguments and output that are Levels, they may not
be the same Level type, allowing for residuated triplets.
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Image:
array: numpy.ndarray
space: Space
lattice: Lattice
__getitem__(self, point: Point) -> Level
__setitem__(self, point: Point, value: Level)

Image corresponds to the input18. The accessing and assignment operators rely on
Point and Level, elements of its attributes space and lattice.

StructuringElement:
array: numpy.ndarray
group: Group
lattice: Lattice
__getitem__(self, shift: Shift) -> Level

StructuringElement corresponds to the structuring element19. The accessing oper-
ator rely on Shift and Level, elements of the group and lattice attributes.

This abstraction allows us to implement the two fundamental operators of Math-
ematical Morphology: dilation and erosion. The general (suboptimal) algorithms for
these operators are presented in Algorithms 1 and 2, and based on Equation (1.22):

(f ⊕ b)(p) = sup
x∈G

(f(p− x) + b(x))

(f ⊖ b)(p) = inf
x∈G

(f(p+ x)− b(x))

It is important to note that this abstraction reflects the fact that we do not
necessarily require a full group (G,+) acting on E for defining MM operators. The
only essential aspect we need is a notion of neighborhood, represented by the methods
add and neg from Point and Shift, which can be transformed into add and sub
associated with Point.

These algorithms, along with some examples of their applications, are imple-
mented in the PyMorpho library. However, while these algorithms demonstrate decent
performance when applied to small arrays (such as piano rolls), their implementa-
tion in pure Python with a high level of abstraction renders them less suitable for
practical applications involving large arrays (as is often the case with spectrograms).

18We use the term image but another (overused) term would be function.
19We use the term structuring element as is more frequent in the literature than structuring

function.
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Algorithm 1 Algorithm for dilation
1: function dilation(image: Image, str_el: StructuringElement)
2: lattice = image.lattice ∗ str_el.lattice
3: output = Image(numpy.empty_like(image.array), image.space, lattice)
4: for point in image.space do
5: val ← lattice.bot
6: for shift in str_el.group do
7: tmp ← image[point + (-shift)] + str_el[shift]
8: val ← lattice.supremum(tmp, val)
9: end for

10: output[point] = val
11: end for
12: return output
13: end function

Algorithm 2 Algorithm for erosion
1: function erosion(image: Image, str_el: StructuringElement)
2: lattice = image.lattice / str_el.lattice
3: output = Image(numpy.empty_like(image.array), image.space, lattice)
4: for point in image.space do
5: val ← lattice.top
6: for shift in str_el.group do
7: tmp ← image[point + shift] - str_el[shift]
8: val ← lattice.infimum(tmp, val)
9: end for

10: output[point] = val
11: end for
12: return output
13: end function

To address this limitation, we have developed the nnMorpho library, which includes
GPU acceleration for some of the most commonly used cases.

In Figure 1.9, we present an overview of nnMorpho’s performance and features
in comparison to other libraries, presented as a poster in DGMM (Romero-García,
2022). nnMorpho surpasses all other libraries when utilized with GPU acceleration.
Furthermore, it offers extensive customization options.
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Feature SciPy scikit-image OpenCV kornia nnMorpho

PyTorch ✗ ✗ ✗ ✓ ✓
Non-flat structuring element ✓ ✓ ✗ ✓ ✓

GPU capability ✗ ✗ ✗ ✓ ✓
Border parameter ✗ ✗ ✗ ✓ ✓
Cylindric topology ✗ ✗ ✗ ✗ ✓
Batch processing ✗ ✗ ✗ ✓ ✓
More than 2D ✓ ✗ ✗ ✗ ✗

Computation of gradients ✗ ✗ ✗ ✓ ✓
Origin parameter ✓ ✓ ✗ ✓ ✓
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Figure 1.9: nnMorpho compared to other Python libraries.
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Chapter 2

Time-Frequency Representations
of Music

In this chapter, our objective is to present various time-frequency representations of
music that allow us to apply mathematical morphology to them. We will refer to
each representation as a musical space, denoted as M, and it will have the form:

M = AT ×F = {f : T × F → A} (2.1)

where T represents time, F represents frequency, and A represents amplitude. Each
element f in the musical spaceM is a function that maps a pair of time and frequency
(t, ξ) to an amplitude value f(t, ξ).

If we endow A with a complete lattice structure and we define a group (GT ×F ,+)
that acts on T ×F , we are able to apply greyscale MM with structuring elements. In
order to achieve this, we consider separately time and frequency in a first instance,
create groups that act on each of them, and then couple them through the Cartesian
product.

In Section 2.1, we explore the various choices available for representing time,
frequency and amplitude, and the resulting mathematical structures that arise from
these choices. Subsequently, we delve into the two primary representations that we
will employ in our applications: spectrograms, that are covered in Section 2.2, and
piano rolls, discussed in Section 2.3.

2.1 Algebraic Structures for Musical Spaces
The algebraic structures underlying musical spaces play a crucial role in defining
how music can be represented and analyzed. In this section, we explore the different
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choices available for each element in a musical space. By examining various com-
binations of these choices, we will uncover the diverse representations that can be
achieved for musical data in this manner.

For the domain of the functions f ∈ M, which represents the time-frequency
plane, we use a space T ×F with a group (GT ×F ,+) acting on it (see Section 1.2.1).
This choice is related to the Generalized Music Interval model proposed by Lewin,
1987.

It is worth mentioning that other approaches, such as the use of the differential
geometry paradigm proposed by Tymoczko, 2009, 2016, would offer more refined
possibilities, particularly when considering spaces with borders. However, for the
spaces considered in this work, the use of a group defined for the entire space is
adequate and sufficiently flexible.

For the codomain of f , we use a complete lattice (A,≤) that models the am-
plitude. This endows (M,�) with the complete lattice structure induced by the
pointwise order.

2.1.1 Time
In order to achieve the desired algebraic structure for representing time, we introduce
a space T , the elements of which are referred to as timestamps, and a group (GT ,+),
the elements of which are known as time shifts. This combination will enable us
to define the necessary operations for time manipulation and analysis within the
musical space.

Indeed, time can be measured using different units, and we can represent each of
these units using different mathematical structures. Here we consider three ways of
representing time:

1. time measured in seconds, that can be modeled using the set of real numbers
R,

2. time measured in a computational unit (such as samples or MIDI ticks), that
can be modeled using the set of integers Z,

3. time measured in wholes1, that can be modeled using the set of rational num-
bers Q.

1A whole is a note value in music, represented by , that can be associated to the value 1 ∈ Q.
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2.1.1.1 Measuring time in seconds

For measuring time in seconds, we assume that time is continuous and use (GT ,+) =
(R,+) as the group for time shifts. The space of timestamps, denoted as Ts, repre-
sents time in seconds elapsed from a particular reference point, such as the start of
a piece of music. This leads to a straightforward bijection2 between Ts and (R,+)
which, as shown in Proposition 1.16, induces a group action of (R,+) on Ts.

The timestamps can be represented in the format3 hh:mm:ss.ms, following the
ISO standard ISO, 2019a, or using abbreviations like mm:ss or ss.ms. This split into
hours, minutes, and seconds makes the action of (R,+) on Ts more complex, as it
requires successive Euclidean divisions. Nevertheless, we choose this representation
as opposed to providing the full number of seconds, which may be overwhelming in
a long excerpt.

2.1.1.2 Measuring time in computational units

When working with digital representations of music, such as .wav or .midi files,
we use a discrete representation of time. In this context, we consider the group for
time shifts as (GT ,+) = (Z,+). For representing timestamps, we use T1 = Z, where
t ∈ T1 counts the number of units elapsed from the start of the file.

In the context of .wav files, time is measured in samples, and the sampling
frequency provides the conversion factor between the number of samples and seconds.
The common sampling frequencies are 44.1 kHz or 48 kHz.

For .midi files, time is measured in ticks. To convert between ticks and seconds,
we need the information about the ticks per beat and the beats per minute. These
parameters allow us to determine the tempo and perform the conversion from ticks to
seconds. We will delve into this conversion process in more detail in Section 2.3.2.1.

2.1.1.3 Measuring time in wholes

Measuring time inside a musical score is indeed a critical task, and different ap-
proaches can be taken based on the specific requirements and goals of the analysis.

One possible approach is to use the tempo information provided in the score to
transform all note durations into seconds and then measure time using seconds as

2If the start of the piece is called t0 ∈ Ts, the bijection is Ts → R, t 7→ e(t0, t) ∈ R, where e(t0, t)
is the time elapsed between t0 and t measured in seconds.

3In our computations, we limit the representation to millisecond precision for practical reasons.
However, it is important to note that, in theory, we could refine the time precision as much as
needed since the space is bijective with R.
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the unit. This method can be valid and straightforward when tempo information is
available and consistent throughout the score. However, it does have some limita-
tions. For example, if the tempo indication is not provided or if there are frequent
tempo changes throughout the score, this approach may become less practical and
relevant.

Alternatively, another approach is to take advantage of the existing abstraction
of note values in the score. To do that, we measure durations, i.e., time shifts, using
note values. Some common note values are , ,, C,

�
� and

©
� , and further refined note

values exist. They are defined by the relation

 = 2 , = 4 C = 8
�
� = 16

©
� . (2.2)

As pointed out by Equation (2.2), all the note values are measured in terms of
the whole note . In fact, we can re-arrange Equation (2.2) as

, =
1

2
, C =

1

4
, �

� =
1

8
, ©

� =
1

16
 . (2.3)

It is natural then to associate note values with the rational numbers Q, and
consider then the group (Q,+) to be the group (GT ,+). Notice that durations can
be different from negative powers of 2; if we want to define the duration that is equal
to 3

4
, the symbol , C might be used. The use of tuplets allows us to consider base

powers different from 2 and, in theory, we are able to create a specific note value
that has the duration p

q
 for every p

q
∈ Q.

Whereas in previous measuring options we decided to fix a starting point and
measure time from it, in this case we try to stick to musicological canons; thus, we
avoid naming timestamps by counting the elapsed wholes from the starting point.

When musicians need to specify a particular time in the score, they use bars. The
first bar is given the value 1, and if an anacrusis is present in the score, we assign
it the value 0. To be more precise in the specification of time, musicians use beats
to specify timestamps inside a bar. A beat represents the number of beats4 elapsed
from the start of the bar, starting at 1.

For example, in a 44 time signature, where the beat is C, there are four beats
(1, 2, 3, and 4), each of them one beat apart from the previous. We set the beat
of a time signature to be the note value corresponding to the denominator of the
time signature. For instance, the beat of 44 is C and the beat of 68 is

�
� . However, it

is important to note that this convention deviates slightly from musical standards,
where u� is the usual beat associated to 68. We adopt this simplified convention for
practical reasons.

4Note the overload of the term beat, referring to both a timestamp and a time shift.
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Whereas this notation may be enough for communicating timestamps between
musicians, we introduce a refined notation for musicological purposes. In this nota-
tion, we add an additional element called the offset, which allows us to fully determine
every timestamp in a piece. The offset represents the displacement from the beat and
starts at 0 (finally in alignment with computational conventions). By incorporating
the offset, we can specify timestamps in a more precise and flexible manner, enabling
accurate representation and analysis of musical data.

The time space that we use is T
p
q , where p

q
is the corresponding time signature5.

It can be defined as

T
p
q = {(m, b, o) ∈ N× N∗ ×Q : b ∈ {1, 2, ..., p}, 0 ≤ o <

1

q
} . (2.4)

This refined representation allows for precise specification of timestamps within
a musical piece, remaining close to common musical nomenclature.

Let us provide an example to clarify this notation.

Example 2.1. We consider the beginning of the Violin Sonata No.1 in G minor,
BWV 1001 from Johann Sebastian Bach (see Figure 2.1). We use the space T 

:= T 44.
The following list6 shows when the onsets of the consecutive notes7 occur:

1. Gm→ (1, 1, 0),

2. F5→ (1, 2, 1
32
),

3. E 5→ (1, 2, 2
32
),

4. D5→ (1, 2, 3
32
),

5. C5→ (1, 2, 4
32
),

6. B 4→ (1, 2, 5
32
),

7. A4→ (1, 2, 6
32
),

8. B 4→ (1, 2, 7
32
),

9. G4→ (1, 2, 15
64
).

It is worth to mention that this system does not lead to a straightforward action
between the group (Q,+) and the space T

p
q . It can be compared to the hexadecimal

approach of minutes and hours used for time. While measuring time in wholes and
keeping it simple would have been an option, we chose to adhere to musicological
standards.

2.1.2 Frequency
For representing frequency, we also require a space F and a group (GF ,+) acting
on it. In this context, the elements of the space are pitches or chromas, depending

5Notice that we assume the time space is defined by a single time signature. This may not be
the case in a musical piece, but we left more complex cases for future reasearch.

6See Section 2.1.2.2 for the notation used for notes and chords.
7The first chord, Gm, has a single time associated since it is played at once.
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Figure 2.1: Beginning of the Violin Sonata No.1 in G minor, BWV 1001 from Johann
Sebastian Bach.

on the associated space, while the elements of the group are frequency shifts. As
in the case of time, this choice is closely related to the Generalized Music Interval
framework (Lewin, 1987).

Frequency can be measured using different units; we explore two options:

1. frequency measured in Hertz,

2. frequency measured in semitones.

Depending on the specific use cases, the groups used for each of these units may
vary. In the following, we detail these options.

2.1.2.1 Measuring frequency in Hertz

In signal processing, the unit commonly used to measure frequency is Hertz, which
corresponds to cycles per second. If we assume that the frequency space is continuous,
we can define FHz = R as the space of frequencies measured in Hertz. We naturally
assign (R,+) as the group acting on it.

However, in some cases, the frequency varies logarithmically, such as when using
the Constant-Q transform (CQT) (see Section 2.2.1.2). In such scenarios, the space
of frequencies is still measured in Hertz but restricted to positive frequencies, leading
us to define F log

Hz = R+∗. In this case, the group acting on it is (R+∗, ·).

2.1.2.2 Measuring frequency in semitones

In Western classical music, the common practice is to measure frequency in semitones.
In this case, the set of frequencies F will consist of the pitches used in Western
Classical Music, denoted by N . These pitches are a combination of the octave on
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which they are played and one of the twelve chromas8:

N12 = {C,C,D,E  ,E,F,F,G,A  ,A,B  ,B} . (2.5)

We assume the enharmonic equivalences, such as C = D  and so on. The pitches
are then defined as:

N = N12 × Z . (2.6)
While theoretically, we could write (N, n), where N ∈ N12 and n ∈ Z, we use the

notation [pitch][octave] instead, according to the notation suggested by the Acous-
tical Society of America (Young, 2005). For instance, the central C of the piano is
notated as C4, and the pitch with a frequency of 440 Hz is called A4, following the
ISO standard ISO, 1975.

In this case, the group GF is set to (Z,+). It acts on pitches by shifting the
pitch upwards (for positive shifts) or downwards (for negative shifts). For instance,
C4 + 1 = C4, C4 + 12 = C5 and C4− 5 = G3. Since there is a bijection9 between
N and Z, we can also define the subtraction between pitches; the result is the shift
needed to translate one pitch into the other. For instance, C4 − C3 = 12 and
C4− E4 = −4.

It is important to note that we can extend semitones continuously, allowing (R,+)
to be the group for frequency shifts. We call the space of semitones Fst = R, where
st stands for semitone. This extension would grant access to finer intervals, such as
quarter tones and other divisions of the octave, and also allows us to explore different
temperaments beyond the equal temperament.

Lastly, let us discuss another space for representing frequencies: the chromas. As
mentioned before, we denote this space as N12. It is particularly interesting from
a musical perspective because many considerations, especially harmonic ones, are
made up to an octave. In this case, the group GF for the chromas would be Z12. We
can also extend this representation continuously to the space of continuous chromas
using (12T,+) as the group, where T represents the one dimensional torus T = R⧸Z.

2.1.3 Lattice Structure for the Amplitude Range
For the musical space to be a complete lattice with pointwise order, we need the
amplitude range A to be a complete lattice. In the following, we have a look at the
different options for A that we will use throughout this work.

8We use the term chroma to refer to what is also called a pitch class in music theory. While the
latter may be more mathematically accurate (as it refers to an equivalence class of pitches), the
term chroma emphasizes the circularity of the pitch space, as proposed by Shepard, 1964.

9Given by the midi number, exposed in Section 2.3.2.2.
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We split them into two classes: continuous lattices (whose cardinal is strictly
superior to ℵ0) and discrete ones (with cardinal less or equal to ℵ0). All the lattices
that we present are complete lattices.

2.1.3.1 Continuous lattices

We use the following continuous lattices:

([0, 1],≤) (R,≤) (R
+
,≤) (R

−
,≤)

These continuous lattices are used for spectrograms, with their specific choice
depending on the transform and the unit (e.g., no unit or dB).

It is noteworthy that all of these lattices are isomorphic. In fact, we have the
following increasing bijections:

tan : [0, 1] → R

x 7→ tan
(

(x− 1
2
) · π

)

(2.7)

20 log10 : [0, 1] → R
−

x 7→ 20 log10(x)
(2.8)

20 log10 : R
+ → R

x 7→ 20 log10(x)
. (2.9)

These bijections preserve the order, ensuring that these lattices have the same struc-
ture.

We equip these lattices with a lattice multiplication and thus a structure of
residuated lattice by using the canonical residuation presented in Definition 1.27.

For [0, 1], we employ the classical multiplication ·, which is an internal operation
with an absorbing bottom element. Its corresponding residuation is the classical
division / where the case x/0 is set to 1, a consequence of the definition of residuation.
Indeed, ∀x ∈ [0, 1], x/0 =

∨{a ∈ [0, 1] : a · 0 ≤ x} = 1.
Similarly, for R

+, we use multiplication with the absorbing bottom element,
meaning 0 · ∞ = 0. The residuation here behaves similarly to [0, 1], with x/0 =∞.

In the case of R, we use the extended addition defined in Equation (1.30).
Finally, for R

−, we use the addition, which exhibits similar behavior to R, but
with the residuation (the subtraction) resulting in:

−∞− (−∞) =
∨

{a ∈ R
−
: a+ (−∞) ≤ −∞} =

∨

R
−
= 0 .
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2.1.3.2 Binary and ternary lattices

The binary and ternary lattices are A2 = {0, 1} and A3 = {⊥, ·,×}, respectively.
The former, that has the usual order, is called the Boolean lattice. The later,
whose order is ⊥ < · < ×, is not given in numeric form for distinguishing it from the
Boolean one (as they will appear together often). It is called the rhythmic range
because it helps us to model rhythms. Its elements are called silence (⊥), sustain
(·) and onset (×). As discussed in Section 4.1.1, we will use this range to define the
notion of rhythm (see Definition 4.1).

The Boolean lattice can be combined with any other lattice to form a residuated
triplet by defining the lattice multiplication and left residuation10 by:

• : A2 ×A → A

(a, b) 7→
{

b if a = 1

⊥ if a = 0

/ : A×A → A2

(a, b) 7→
{

1 if a ≥ b

0 if a 6≥ b

.

In particular, the combination of the Boolean lattice with the rhythmic range
will be extensively used in Chapters 4 and 5.

2.1.3.3 Dynamics lattices

In music, the intensity with which a note is played is often expressed using dynamics.
These dynamics are represented in scores by symbols such as p, mf, f, and so on.
We define the lattice of score dynamics as follows:

Dpf = {⊥ < ... < ppp < pp < p < mp < ∅ < mf < f < ff < fff < ... < ⊤} (2.10)

where the ∅ dynamic means that there is no dynamic specified.
When working with a MIDI file, we do not have the symbolic representation

of intensity (dynamics) as in traditional music scores. Instead, we use a numeric
representation known as MIDI dynamics.

The MIDI dynamics lattice is defined as follows:

D128 = ({0, 1, ..., 127},≤) . (2.11)

Each level in this lattice indicates a specific intensity level, with 0 representing silence.

10See Definition 1.24 for the definitions of these concepts.
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2.1.3.4 Amplitudes for piano rolls

In this section, we present the most refined range we have developed for representing
MIDI files and scores as piano rolls in a musical space. This is, in fact, the first
example of the application of a residuated triplet in which none of the triplet’s
elements are repeated.

For the sake of generality, we use D for either Dpf or D128, depending on whether
we want to model scores or MIDI files. We then proceed to describe two different
ways of coupling D with A3:

1. the pianistic dynamics,

2. the sustained dynamics.

The pianistic dynamics represent the dynamics that can be performed on a piano,
where once a note is hit, there is no further control over its intensity. The resulting
lattice is given by:

APD = D ∪ {·} (2.12)

where ⊥D < · < d, ∀d ∈ D \ {⊥D}.
We claim that · is smaller than every other dynamic to capture the concept of

piano scores. In piano notation, whenever a note appears, it should be played at the
indicated dynamic level. Consider the following example:

ff

ppc& wÓ ˙

In this example, the first note is hit with ff intensity, and the second note is hit withpp intensity while the previous one is still sustained. In this case, the last two beats
would sound at pp, since the last dynamic takes priority. Although this may seem
unusual, it is allowed in musical staff notation.

The sustained dynamics represent the dynamics that can be performed on those
music instruments that can control the intensity of a note after hitting it (like strings
or winds). It is defined as

AD = (A3 ×D)⧸∼ (2.13)
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where

(a, b) ∼ (a′, b′)⇔











(a, b) = (a′, b′)

a = a′ = ⊥A3

b = b′ = ⊥D

(2.14)

We associate to AD the pointwise order. We can also represent it by

AD = {⊥} ∪
(

{·,×} × D
)

. (2.15)

This range allows in particular the execution of crescendos and diminuendos; the
following excerpt

ff
��� pp

� �
 

might now be expressed by the sequence of amplitudes

(×, pp), (·, p), (·,mp), (·,mf), (·, f), (×, ff) .
Moreover, we are able to give a sense to the dynamic fp through (×, f), (·, p).
Whereas the pianistic dynamics are totally ordered and can be visualized as

⊥D< · < ... < pp < p < mp< ∅ < mf < f < ff < ... <⊤D

the sustained dynamics are a partial order that is not total, and may be visualized
as

⊥ <
<

...

...

<

<

(×, p)

(·, p)

<

<

<

(×,mp)

(·,mp)

<

<

<

(×, ∅)

(·, ∅)

<

<

<

(×,mf)
(·,mf)<

<

<

(×, f)
(·, f)<

<

<

...

...

<

<

(×,⊤D)

(·,⊤D)

<

.

We can endow the lattice of sustained dynamics with a residuated triplet struc-
ture. Let us define the lattice multiplication

• : A3 ×D → AD
(a, b) 7→ [(a, b)]

(2.16)
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where [(a, b)] is the equivalence class of (a, b) under the equivalence relation ∼.
It is trivial to see that it is a lattice multiplication, since ∀A ⊆ A3, ∀b ∈ D,

(

∨

A
)

• b =
(

∨

A, b
)

=
∨

{(a, b) ∈ AD : a ∈ A} =
∨

(A • b) .

Its residuation is defined by

/ : AD ×D → A3

((a, b), c) 7→
{

a if b ≤ c

⊥ if b 6≤ c

\ : A3 ×AD → D

(a, (b, c)) 7→
{

c if a ≤ b

⊥ if a 6≤ b

. (2.17)

2.2 Representing Music with Spectrograms
In this section, we explore how to represent music using spectrograms, a widely
used and valuable time-frequency representation. Spectrograms serve as a means to
transform music from a signal format (e.g., encoded in .wav format) into an time-
frequency representation, i.e., a function f within a musical space M.

We will present two types of spectrograms and a generalization of both:

1. a spectrogram generated from the Short-time Fourier transform (STFT),

2. a spectrogram generated from the Constant-Q transform (CQT),

3. a combined approach, the Time-frequency-scale transform (TFST), which en-
compasses both STFT and CQT.

All of these spectrograms are Fourier-based transformations, and we will use the
notations introduced in the Preamble and described in Appendix B.

The basic idea behind spectrograms is to transform a function f : T → R, which
represents a wave of musical sound, into a function Sf : T ×F → A. The choices of
T , F , and A are dependent on the specific spectrogram and the nature of T .

In the following sections, we first define the continuous transformations from
which spectrograms can be extracted in Section 2.2.1. Next, we adapt these contin-
uous transformations to the discrete framework in Section 2.2.2, which is used for
actual computations. Finally, in Section 2.2.3, we show how to compute a spectro-
gram using these transformations.
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2.2.1 Continuous Definitions
2.2.1.1 Short-time Fourier transform

The Short-time Fourier transform (STFT) is a widely used operator in signal analysis
and processing, particularly in audio signals. We use the definitions from Gröchenig,
2001 and the notations presented in the Preamble and the Appendix B.

Definition 2.2 (Short-time Fourier transform). Let f ∈ L∞(R;C) and let g ∈
L1(R;C). The Short-time Fourier transform of f with respect to the window g

is defined by

STFTg[f ] : R× R → C

(τ, ω) 7→
∫

R
f(t)g(t− τ)e−2πıtω dt

. (2.18)

Some properties of the STFT are stated in the next proposition.

Proposition 2.3. Let g ∈ L1(R;C). Then, the operator

STFTg : L∞(R;C) → L∞(R× R;C)
f 7→ STFTg[f ]

(2.19)

is linear and
||STFTg[f ]||∞ ≤ ||f ||∞||g||1 (2.20)

which makes it a continuous operator from L∞(R;C) to L∞(R× R;C).
In particular, if ||g||1 = 1,

||STFTg[f ]||∞ ≤ ||f ||∞ . (2.21)

If we limit ourselves to the functions in L2(R;C), we can express the STFT
using the translation and modulation operators, defined as Tτf(t) = f(t − τ) and
Mωf(t) = f(t) · e2πıtω, respectively (detailed in Appendix B).

Proposition 2.4. Let f, g ∈ L2(R;C). Then, ∀(τ, ω) ∈ R× R,

STFTg[f ](τ, ω) = 〈f,MωTτg〉 . (2.22)

An important property, called the fundamental identity of time-frequency analysis
in (Gröchenig, 2001), that we will use in Chapter 3, is the following.

Proposition 2.5 (Fundamental identity of time-frequency analysis). Let f, g ∈
L2(R;C). Then, ∀(τ, ω) ∈ R× R,

STFTg[f ](τ, ω) = e−2πıωtSTFTF [g][F [f ]](ω,−τ) . (2.23)
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Proof. Since this property is not proved in (Gröchenig, 2001) we include its proof
here:

STFTg[f ](τ, ω)
Proposition 2.4

= 〈f,MωTτg〉
= 〈F [f ],F [MωTτg]〉
= 〈F [f ], TωM−τF [g]〉
= 〈f, e2πıτωM−τTωg〉
= e−2πıτω〈f,M−τTωg〉
= e−2πıτωSTFTF [g][F [f ]](ω,−τ)

To finish with a brief introduction to the STFT, let us recall the inversion formula.

Proposition 2.6 (Inversion formula for the STFT). Let g, γ ∈ L2(R;C) such that
〈g, γ〉 6= 0. Then, ∀f ∈ L2(R;C)

f =
1

〈γ, g〉

∫

R

∫

R

STFTg[f ](τ, ω)MωTτγ dω dτ . (2.24)

This leads us to the definition of the inverse STFT.

Definition 2.7 (Inverse short-time Fourier transform). Let g, γ ∈ L2(R;C) such that
〈g, γ〉 6= 0. Then, ∀S ∈ L2(R× R;C) the inverse short-time Fourier transform
of S, denoted by iSTFT[S], is given by:
∀t ∈ R,

iSTFT[S](t) =
1

〈γ, g〉

∫

R

∫

R

S(τ, ω)MωTτγ(t) dω dτ . (2.25)

2.2.1.2 Constant-Q transform

The Constant-Q transform (CQT) is an operator that is well-suited for music rep-
resentation due to its logarithmic frequency resolution, differing from STFT, which
has a linear frequency resolution. This characteristic is particularly important for
music since the musical tuning is based on the concept of octave intervals, which is
a logarithmic feature.

The CQT was initially proposed by Youngberg and Boll, 1978, and later an
efficient method for its computation was introduced (Brown, 1991). As mentioned
in (Schörkhuber & Klapuri, 2010), the CQT can be viewed as a particular case of a
wavelet transform.
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Definition 2.8 (Continuous wavelet transform). Let ψ ∈ L2(R;C) such that
∫

R
ψ(t) dt = 0. Then, the continuous wavelet transform (CWT) is defined by

W : L2(R;C) → L∞(R× R+∗;C)
f 7→ W [f ] : R× R+∗ → C

(τ, σ) 7→ 1√
σ

∫

R
f(t)ψ( t−τ

σ
) dt

. (2.26)

We can express the continuous wavelet transform in terms of the scalar product.
To do that, we recall that the 2-unitary dilation operator is D2

σf(t) = 1√
σ
f
(

t
σ

)

(detailed in Appendix B).

Proposition 2.9. Let f, ψ ∈ L2(R;C). Then, ∀(τ, σ) ∈ R× R+∗,

Wψ[f ](τ, σ) = 〈f, TτD2
σψ〉 (2.27)

and
||Wψ[f ]||∞ ≤ ||f ||2 · ||ψ||2 . (2.28)

Proof. ∀(τ, σ) ∈ R× R+∗,

〈f, TτD2
σψ〉 =

∫

R

f(t) · TτD2
σψ(t) dt

=

∫

R

f(t) · 1√
σ
ψ

(

t− τ
σ

)

dt

=
1√
σ

∫

R

f(t) · ψ
(

t− τ
σ

)

dt

= Wψ[f ](τ, σ) .

Then, ∀(τ, σ) ∈ R× R+∗,

|Wψ[f ](τ, σ)| = |〈f, TτD2
σψ〉|

≤ ||f ||2 · ||TτD2
σψ||2

= ||f ||2 · ||ψ||2

which implies
||Wψ[f ](τ, σ)||∞ ≤ ||f ||2 · ||ψ||2 .
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The Constant-Q transform can now be expressed as a particular case of a wavelet
transform, where ψ(t) = g(t)e2πıt, with g being a window function. However, we
change the 2-unitary dilation to the 1-unitary dilation (presented in Appendix B), in
order to obtain an inequality involving the infinity norm, as shown in Equation (2.20).

Definition 2.10 (Constant-Q transform). Let f ∈ L∞(R;C). Let g ∈ L1(R;C). We
define the Constant-Q transform of f with the window g as

CQTg[f ] : R× R+∗ → C

(τ, σ) 7→ 1
σ

∫

R
f(t) · g( t−τ

σ
)e−2πı t

σ dt

(2.29)

While the CQT is a time-scale transform, we can interpret it as a time-frequency
transform with ξ = 1

σ
.

We can express the Constant-Q transform as a scalar product.

Proposition 2.11. Let f ∈ L∞(R;C). Let g ∈ L1(R;C). Then, ∀(τ, σ) ∈ R×R+∗,

CQTg[f ](τ, σ) = 〈f,M 1

σ
TτD

1
σg〉 (2.30)

and
||CQTg[f ](τ, σ)||∞ ≤ ||f ||∞ · ||g||1 . (2.31)

Proof. ∀(τ, σ) ∈ R× R+∗,

〈f,M 1

σ
TτD

1
σg〉 =

∫

R

f(t) ·M 1

σ
TτD1

σg(t) dt

=

∫

R

f(t) · e2πıt 1σ 1
σ
g
(t− τ

σ

)

dt

=
1

σ

∫

R

f(t) · g
(t− τ

σ

)

e−2πı t
σ dt

= CQTg[f ](τ, σ) .

Then, ∀(τ, σ) ∈ R× R+∗,

|CQTg[f ](τ, σ)| = |〈f,M 1

σ
TτD

1
σg〉|

≤ ||f ||∞ · ||M 1

σ
TτD

1
σg||1

= ||f ||∞ · ||g||1
which implies

||CQTg[f ](τ, σ)||∞ ≤ ||f ||∞ · ||g||1 .
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2.2.1.3 Time-frequency-scale transform

By using the scalar product formulation of the STFT and the CQT, we can observe
their similarity. This similarity can be summarized as a three-dimensional transfor-
mation that we call Time-frequency-scale transform (TFST). The TFST combines
the time-frequency approach of the STFT with the time-scale approach of the CQT,
resulting in a three-dimensional representation.

While the TFST is not a time-frequency representation, it fits perfectly within
the postulates of this work, where we need a space (in this case three-dimensional)
and a group acting on it. The group would be (R,+)× (R,+)× (R+∗, ·).

This transformation is implicitly present in deep-learning applications under dif-
ferent names such as multi-scale spectral loss (Engel et al., 2020) or multi-resolution
spectral distance (Wang et al., 2020). In these cases, an intermediate TFST is com-
puted and then contracted into a single scalar value, which is used as a loss function
for gradient descent.

Previous works have explored similar directions (Levine et al., 1998; Bonada,
2000; Bonada, 2002; Dorran, 2005; Juillerat et al., 2008; Mateo & Talavera, 2020),
proposing two-dimensional representations with varying time-frequency resolutions
instead of using the third dimension.

The TFST can be viewed as a way to overcome the time-frequency uncertainty
principle at the cost of introducing an extra dimension in the representation.
Definition 2.12 (Time-frequency-scale transform). Let g ∈ L1(R;C). We define
the Time-frequency-scale transform with window g as

TFSTg : L∞(R;C) → L∞(R× R× R+∗;C)
f 7→ TFSTg[f ] : R → C

(τ, ω, σ) 7→ 〈f, TτMωD
1
σg〉

. (2.32)

We can establish an inequality for the TFST, similar to those of the STFT and
the CQT. This inequality implies that the TFST is a continuous operator between
L∞(R;C) and L∞(R× R× R+∗;C).
Proposition 2.13. Let f ∈ L∞(R;C). Let g ∈ L1(R;C). Then,

||TFSTg[f ]||∞ ≤ ||f ||∞ · ||g||1 . (2.33)

Proof. ∀(τ, ω, σ) ∈ R× R× R+∗,

|TFSTg[f ](τ, ω, σ)| = |〈f, TτMωD
1
σg〉|

≤ ||f ||∞ · ||TτMωD
1
σg||1

= ||f ||∞ · ||g||1
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then
||TFSTg[f ]||∞ ≤ ||f ||∞ · ||g||1

As mentioned, we can express the STFT and the CQT as particular cases of the
TFST.

Proposition 2.14. Let f ∈ L∞(R;C). Let g ∈ L1(R;C). Then, ∀(τ, ω) ∈ R× R,

STFTg[f ](τ, ω) = e−2πıωτTFSTg[f ](τ, ω, 1) (2.34)

and ∀(τ, σ) ∈ R× R+∗,

CQTg[f ](τ, σ) = e−2πı τ
σ TFSTg[f ](τ,

1

σ
, σ) . (2.35)

Proof. ∀(τ, ω) ∈ R× R,

STFTg[f ](τ, ω) = 〈f,MωTτg〉
= 〈f, e2πıτωTτMωg〉
= e−2πıτω〈f, TτMωD

1
1g〉

= e−2πıωτTFSTg[f ](τ, ω, 1)

∀(τ, σ) ∈ R× R+∗,

CQTg[f ](τ, σ) = 〈f,M 1

σ
TτD

1
σg〉

= 〈f, e2πıτ 1

σTτM 1

σ
D1
σg〉

= e−2πıτ 1

σ 〈f, TτM 1

σ
D1
σg〉

= e−2πı τ
σ TFSTg[f ](τ,

1

σ
, σ)

In addition, we can also see express the TFST as a convolution.

Proposition 2.15. Let f ∈ L∞(R;C). Let g ∈ L1(R;R). Then,
∀(τ, ω, σ) ∈ R× R× R+∗,

TFSTg[f ](τ, ω, σ) = (f ∗MωD
1
σg

∗)(τ) (2.36)
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Proof. ∀(τ, ω, σ) ∈ R× R× R+∗,

(f ∗MωD
1
σg

∗)(τ) = 〈f, Tτ (MωD
1
σg

∗)∗〉
= 〈f, TτMωD

1
σ(g

∗)∗〉
= 〈f, TτMωD

1
σg〉

= TFSTg[f ](τ, ω, σ) .

Corollary 2.16. Let f ∈ L∞(R;C). Let g ∈ L1(R;R). Then, ∀(τ, ω) ∈ R× R,

STFTg[f ](τ, ω) = e−2πıτω(f ∗Mωg
∗)(τ) (2.37)

and, ∀(τ, σ) ∈ R× R+∗,

CQTg[f ](τ, σ) = e−2πı τ
σ (f ∗M 1

σ
D1
σg

∗)(τ) . (2.38)

Representing the STFT, CQT, and TFST as convolutions proves to be advan-
tageous for computational purposes. While the traditional approach of using Fast
Fourier Transform (FFT) (Cooley & Tukey, 1965) is usually preferred due to its log-
arithmic complexity, modern GPU computations have shown superior performance
by using highly parallelizable operations like convolutions (Cheuk et al., 2020).

2.2.2 Discrete Definitions
To perform actual computations, we need to transition from the continuous repre-
sentation to the discrete one. We consider an input time series f = (f[n])N−1

n=0 of size
N ∈ N∗ with a sampling frequency ξs ∈ R, expressed in Hz.

2.2.2.1 Discrete STFT

The discrete STFT is then defined as follows.

Definition 2.17 (Discrete STFT). Let N, J ∈ N∗. Let f = (f[n])N−1
n=0 ∈ CN , let

g = (g[j])J−1
j=0 ∈ CJ . Let j0 ∈ {0, 1, ..., J − 1} be the index corresponding11 to the

11This parameter, often overlooked in the literature by assuming it to be 0 or M/2, is actually
essential for achieving good compatibility between the continuous and discrete STFT. This aspect
is related to what has been discussed in Chapter 1 regarding the distinction between a set of points
E and a group of shifts (G,+); in this case, the indices of f and STFT[f] correspond to points, while
the indices of g correspond to time shifts.
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element of g that acts as 0 of the group (R,+). The discrete STFT of f with
window g and with K ∈ N∗ frequency bins is defined by
∀m ∈ {0, 1, ..., N − 1}, ∀k ∈ {0, 1, ..., K − 1},

STFTg[f][m, k] =
m−j0+J−1
∑

n=m−j0
f[n]g[n−m+ j0]e

−2πın k
K (2.39)

j=n−m+j0
=

J−1
∑

j=0

f[m+ j − j0]g[j]e−2πı(m+j−j0) k
K , (2.40)

where we assume that f[n] = 0, ∀n 6∈ {0, 1, ..., N − 1}.
The discretization points of the STFT are tm = m

ξs
, and ξk = kξs with ξs ∈ R

being the sampling frequency.
We can also introduce another parameter H ∈ N∗, known as the hop size, and

subsample the formula by considering STFTg[f][mH, k].

This definition may differ slightly from other common definitions, especially re-
garding the parameter j0. In many cases, there is no specific attention given to
the computational problem of aligning the window with the signal. However, since
windows are often concentrated in the center bin, we aim to align this bin (indexed
by j0) with the f[m] value. Additionally, we want the oscillatory factor to have the
value 1 at this point. This consideration also resolves the problem of how to pad the
signal, i.e., by adding j0 zeroes at the beginning and J − 1− j0 at the end.

2.2.2.2 Discrete CQT

The discretization of the CQT that we use is based on (Schörkhuber & Klapuri,
2010). However, there are some modifications in our approach. The support of the
window function is defined as t ∈ [−1

2
, 1
2
] in our case, whereas Schörkhuber and

Klapuri, 2010 use t ∈ [0, 1]. Additionally, we center the complex exponential at
t = 0, whereas they center it at t = 1

2
. Moreover, we allow g to be a complex-valued

function, even though for practical cases we will often use a real-valued window
function.

Definition 2.18 (Discrete CQT). Let f = (f[n])N−1
n=0 ∈ CN . Let g ∈ C∞(R;C) with

supp(g) = [−1
2
, 1
2
]. Let K ∈ N∗. The CQT of f with the window12 g is defined by

12Notice that the window function cannot be a discrete function, as it needs to be sampled
differently depending on the desired window size.
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∀m ∈ {0, 1, ..., N − 1}, ∀k ∈ {0, 1, ..., K − 1},

CQTg[f][m, k] =
1

Nk

m+⌊Nk
2

⌋
∑

n=m−⌊Nk
2

⌋

f[n]g
(

n−m
Nk

)

e
−2πın

ξk
ξs (2.41)

=
1

Nk

2⌊Nk
2

⌋
∑

j=0

f
[

j +m− ⌊Nk

2
⌋
]

g

(

j − ⌊Nk

2
⌋

Nk

)

e
−2πı(m+j−⌊Nk

2
⌋) ξk

ξs (2.42)

where tm = m
ξs

are the discretization points of the time, ξk = ξ02
k
B the discretization

points of the frequency, and Nk =

⌊

qξs

ξk(2
1

B −1)

⌋

, with the following parameters:

• ξs ∈ (0,∞): the sampling frequency,

• ξ0 ∈ (0, ξs): the lowest frequency,

• B ∈ N∗: the number of bins per octave,

• q ∈ (0, 1): the scaling factor (inverse of the oversampling), typically equal 1.

With the given parameters, the resulting quality factors Qk for each band13 are
expressed as:

Qk :=
ξk

∆ξk

=
Nkξk

∆ωξs

≈ q

∆ω(2
1

B − 1)
:= Q

where ∆ξk denotes the −3 dB bandwidth of the frequency response of the time-
frequency atom:

(ak[j])
Nk

j=0 :=

(

1

Nk

g

(

j

Nk

− 1

2

)

e
2πıj

ξk
ξs

)Nk

j=0

(2.43)

13The quality factor is supposed to be equal for each band, but the rounding of Nk introduces a
slight variation that is expressed by the ≈ symbol.
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Additionally, ∆ω is the −3 dB bandwidth of the main lobe of the spectrum of
the window function g, which is approximately equal to 1.50 frequency bins for the
Hann window, for example.

It may be interesting to outline the relation between the dilation factor σ from
the continuous CQT and all these parameters. From the frequency component, we
derive that

1

σk
=
ξk

ξs
(2.44)

where (σk)
K−1
k=0 is the sampling of the variable σ from the continuous dilation space

R+∗. From that, we obtain the relation between Nk and σk, that is

Nk =
q

2
1

B − 1
σk = λσk (2.45)

with λ = q

2
1

B −1
.

This relation implies a relation between the window function from the continuous
case (denoted by gc) and the window function from the discrete case (denoted by
gd); by identification from Equations (2.29) and (2.41), we have that
∀k ∈ {0, 1, ..., K}, ∀t ∈ R,

1

σk
gc

(

t

σk

)

=
1

Nk

gd

(

t

Nk

)

=
1

λσk
gd

(

t

λσk

)

and hence

gc

(

t

σk

)

=
1

λ
gd

(

t

λσk

)

t′:= t
σk⇔ gc (t

′) =
1

λ
gd

(

t′

λ

)

⇔ gc = D1
λgd .

2.2.2.3 Discrete TFST

The TFST requires the discretization of three variables: time, frequency, and scale.
We present its discrete version based on the convolution formula (Equation (2.36)).

Definition 2.19 (Discrete TFST). Let f = (f[n])N−1
n=0 ∈ CN . Let g ∈ C∞(R;C) with

supp(g) = [−1
2
, 1
2
]. Let K,L ∈ N∗. The TFST of f with the window g is defined by
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∀m ∈ {0, 1, ..., N − 1}, ∀k ∈ {0, 1, ..., K − 1}, ∀l ∈ {0, 1, ..., L− 1},

TFSTg[f][m, k, l] =
1

Nl

m+⌊Nl
2
⌋

∑

n=m−⌊Nl
2
⌋

f[n]g
(

n−m
Nl

)

e
−2πı(n−m)

ξk
ξs (2.46)

=
1

Nl

2⌊Nl
2
⌋

∑

j=0

f
[

j +m− ⌊Nl

2
⌋
]

g

(

j − ⌊Nl

2
⌋

Nl

)

e
−2πı(j−⌊Nk

2
⌋) ξk

ξs (2.47)

where ξs ∈ R+∗ is the sampling frequency, and (ξk)
K−1
k=0 and (Nl)

L−1
l=0 represent the

discretization of the frequency and scale variables, respectively. The discretization
points of the time are given by tm = m

ξs
.

In this transform, we have the flexibility to choose the level of discretization for
the frequency and scale variables according to our needs. For instance, if we set a
fixed value Nl = N for all l ∈ {0, 1, ..., L − 1} and vary the frequency linearly as
ξk = k

K
ξs for k ∈ {0, 1, ..., K − 1}, we recover the STFT14. On the other hand, if

we establish an inverse relationship between the scale and frequency, we obtain the
CQT14. The time variable is always discretized linearly, as it is directly linked to the
variable of f, but we can subsample it using a hop size H ∈ N∗, as mentioned earlier.

For computing the STFT and the CQT, we use the Python/PyTorch library
nnAudio (Cheuk et al., 2020). This library is highly efficient, especially for the
CQT, as it leverages GPU acceleration and performs computations using convolu-
tions. As there is no standardized theory for the TFST, we have developed a custom
implementation based on the principles of nnAudio.

2.2.3 Spectrograms
Up to this point, we have been working with transformations that produce complex-
valued functions. This complex representation is useful in signal processing, as it
makes the operators linear, but is inappropriate to our needs where we need the
amplitude A to be a complete lattice15.

To address this limitation, we adopt a common approach used in this kind of
analysis: dropping the phase information and keeping only the modulus. This re-
sults in a representation called a spectrogram, which is the square modulus of the

14Up to a phase factor, as in the continuous case (exposed in Proposition 2.14).
15Complex numbers can be endowed with a partial order, for instance ∀z, ω ∈ C, z � ω ⇔ |z| ≤
|ω|), but it does not fit our purpose.
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original transformation. Using the square instead of the modulus itself is a standard
practice, often referred to as the power spectrogram due to its relations with power
in electronics and acoustics.

For each transformation, we define a corresponding spectrogram by taking the
square modulus of its complex value:

SPECSTFT
g = |STFTg|2, SPECCQT

g = |CQTg|2, SPECTFST
g = |TFSTg|2 .

After taking the square modulus of the complex values, our transforms are no
longer linear, and the codomain has changed from C to R+. As a result, we can now
consider the usual order in R+ and set our amplitude as A = (R+,≤).

It is a common practice to represent the amplitudes of a spectrogram in a loga-
rithmic scale, particularly in decibels (dB). For an output value z ∈ C, the equation
is given by:

|z|2 = 10 log10 |z|2 dB = 20 log10 |z| dB . (2.48)
As mentioned in Equation (2.9), the transformation of a positive value into deci-

bels is an isomorphism between ordered sets.
Furthermore, it transforms products into sums. This is an interesting feature

for our considerations in Mathematical Morphology, as the lattice multiplication we
consider for greyscale morphology is either · or +, depending on whether we are
working with a linear or logarithmic scale in the amplitude range.

Finally, to further restrict our amplitude range, we use Equations (2.20), (2.31)
and (2.33). We consider an input function f with ||f ||∞ = 1, which is equivalent
to ∀t ∈ R,−1 ≤ f(t) ≤ 1, a common condition for audio signals. Additionally, we
choose the window function g with ||g||1 = 1, which is a normalization condition
that can be applied to every window. With these conditions, we have the following
properties.
Proposition 2.20. Let f ∈ L∞(R;C) with ||f ||∞ = 1. Let g ∈ L1(R;C) with
||g||1 = 1. Then,

||SPECSTFT
g [f ]||∞ ≤ 1, ||SPECCQT

g [f ]||∞ ≤ 1 and ||SPECTFST
g [f ]||∞ ≤ 1 .

Proof. Since the STFT and the CQT are particular cases of the TFST with a complex
exponential factor with modulus 1, it is enough to prove the result for the TFST.
∀(τ, ω, σ) ∈ R× R× R+∗,

SPECTFST
g [f ](τ, ω, σ) = |TFSTg[f ](τ, ω, σ)|2

Equation (2.33)
≤

(

||f ||∞ · ||g||1
)2

= 1

which implies that ||SPECTFST
g [f ]||∞ ≤ 1.
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The fact that the spectrograms are bounded by 1 implies that when they are ex-
pressed in decibels, the amplitude range is R−

= [−∞, 0]. This will be the amplitude
range we use for spectrograms in the following.

In Figure 2.2, we present two spectrograms, one from STFT and another from
CQT. Both spectrograms are displayed in logarithmic scale for both frequency and
amplitude.

Additionally, Figure 2.3 illustrates a spectrogram generated by TFST with a
logarithmic scale for both frequency and amplitude. Three different scale values are
shown: Nl = 1024, 4096, 46384. This depiction clearly demonstrates that the TFST
effectively addresses the time-frequency uncertainty by utilizing various window sizes,
enabling more precise representations for different segments of the signal.

(a) STFT (b) CQT

Figure 2.2: Spectrograms of the first notes of Chopin’s Nocturne nº2, Op. 9.

2.3 Representing Music with Piano Rolls
While spectrograms are well-suited for audio signals, they are not directly applicable
to symbolic representations of music such as MIDI files or scores. Indeed, since
symbolic representations cannot be modeled as continuous functions f : T → R, the
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Figure 2.3: Spectrogram of TFST for three window sizes (1024, 4096, 16384) of a
piano A4.

standard transformation formulas used for spectrograms are not applicable in this
context.

Nevertheless, MIDI files and scores are already available in a format that straight-
forwardly yields a time-frequency representation. This format, commonly known as
a piano roll, can be effectively modeled as a function within a musical space, denoted
P : T × F → A, as we will explore further in the following sections.

2.3.1 Piano Roll
Let us begin with a brief overview of piano rolls. Originally, piano rolls were a
mechanical means of recording music before audio recording methods existed. They
were used to preserve performances of great musicians from the early 20th century,
and many archives, such as the Stanford University Piano Roll Archive16, still house
these historical records.

In modern music contexts, the concept of a piano roll has evolved to encompass
any piano roll-like representation of music. Specifically, it refers to a two-dimensional
representation of musical notes, where one axis represents time and the other axis
represents the notes of a piano. In this thesis, we adopt this extended notion of a

16https://exhibits.stanford.edu/supra
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piano roll and provide a formal definition.
It is important to note that there is no universally accepted definition of what a

piano roll should be. The term is used informally, assuming that we all refer to this
particular representation. Temperley, 2004 exposes several piano rolls and points out
the need of marking the onset of each note (which we will do by using the rhythmic
lattice, in our case).

Thus, we present a formal definition of a piano roll.

Definition 2.21 (Piano roll). Let T be a set representing time. Let F be a countable
set representing pitches17. Let (A,≤) be a complete lattice. Then, a piano roll P
of N ∈ N notes is an element of AT ×F such that

P =
N
∨

n=1

νn (2.49)

where ∀n ∈ {1, 2, ..., N}, νn ∈ AT ×F and supp(νn) = [sn, en[×{ξn} for some sn, en ∈
T and ξn ∈ F .

Each function νn ∈ AT ×F is called a note, with sn being its start, en being its
end and ξn being its pitch.

In this definition, a piano roll P is represented as a supremum of individual notes,
each defined by a function νn. The specific way we define a note varies depending
on the amplitude range A that we use.

In Chapters 4 and 5, we will use another related concept that is the activations
piano roll, which we abbreviate as activations.

Definition 2.22 (Activations piano roll). Let T be a set representing time. Let
F be a countable set representing pitches. Let (A,≤) be a either A2 or one of the
presented dynamics D. Then, an activations piano roll A of N ∈ N notes is an
element of AT ×F such that

A =
N
∨

n=1

αn (2.50)

where ∀n ∈ {1, 2, ..., N}, αn ∈ AT ×F and suppαn = {tn} × {ξn} for some tn ∈ T
and ξn ∈ F .

Each function αn ∈ AT ×F is called an activation, with tn being its timestamp
and ξn being its pitch.

17The requirement of F to be countable ensures that pitches are essentially discrete, as opposed
to frequencies, which can vary continuously.
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It can be a bit obscure what this concept means. We present two intuitions: in
the MM framework, the activations are either the input of a dilation or the output of
an erosion; they mean when a structuring element should be replicated (in the case
of dilation) or may be present (erosion). In the framework of music representations,
each activation means that we activate a motive at a particular time-frequency point
(with, eventually, a dynamic information).

Before diving into the different piano roll representations, we introduce a derived
notion that will help us handle more complex musical data.

Definition 2.23 (Piano roll stack). Let T , F and A three sets that may represent
a piano roll. Let I be a countable set of indexes. We call a piano roll stack a
sequence S = (Pi)i∈I of piano rolls belonging to AT ×F .

We have
S : T × F × I → A

(t, ξ, i) 7→ S(t, ξ, i) = Pi(t, ξ)
. (2.51)

This mathematical object allows us to consider several piano rolls that share
time, frequency, and amplitude. It is particularly useful for handling MIDI files with
several tracks and scores with multiple instruments. While we presented for piano
rolls, the same principle applies to activations piano rolls.

In the following sections, we explain how we define piano rolls and stacks for each
input format: in Section 2.3.2, we define it for MIDI files, and in Section 2.3.3, we
define it for scores. Finally, in Section 2.3.4, we introduce a derived version of a
piano roll: the chroma roll.

2.3.2 Representing MIDI Files as Piano Rolls
MIDI is a widely used format for sharing musical data, and is particularly well
adapted for being represented as piano roll with minimal information loss. In the
following sections, we specify the various choices we can make for T , F , and A
when dealing with MIDI files. These choices allow us to customize the piano roll
representation to suit different applications and requirements.

2.3.2.1 Time

Inside a MIDI file, time is expressed using a unit called tick. Specifically, a MIDI file
consists of a series of messages, and each message is separated by a time interval of
∆ ∈ N ticks from the previous one.

To convert ticks into seconds for playing a MIDI file, two parameters are involved:
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1. The ticks_per_beat parameter: an integer value that represents the number
of ticks per beat for the entire MIDI file. The term “beat” in this context refers
to the quarter note value.

2. The microseconds_per_beat parameter: an integer value that can be changed
by a set_tempo message within the file. It represents the number of microsec-
onds per beat.

Using these two parameters, ticks can be converted into seconds to play the MIDI
file. The microseconds_per_beat parameter allows for tempo changes within the
file, providing flexibility in the playback speed.

Let us present the conversion formulas from ticks to seconds. We call ∆ttk ∈ N

a time interval expressed in ticks and ∆ts,∆tµs ∈ R a time interval expressed in
seconds and microseconds, respectively. Let ∆tb ∈ N be a time interval expressed in
beats (quarter notes).

If we call tpm ∈ N∗ the value of ticks_per_beat and mpb ∈ N∗ the value of
microseconds_per_beat, we have that

∆tb · tpb = ∆ttk ∆tb ·mpb = ∆tµs ∆tµs = 106∆ts . (2.52)

From these formulas, we can deduce:

∆ts = ∆tµs · 10−6 = ∆tb ·mpb · 10−6 = ∆ttk ·
mpb
tpb · 10

−6 = spt ·∆ttk . (2.53)

where seconds_per_tick = mpb
tpb 10

−6 ∈ Q is the conversion parameter.
This combination of parameters results in two methods for measuring time within

a MIDI file: using the tick unit or measuring it in seconds after conversion. These
two approaches may not always yield the same results due to the possibility to change
the tempo.

To illustrate this phenomenon, Figure 2.4 shows a musical score, which has been
converted into a MIDI file using a music editor software. The MIDI file is then
represented as two different piano rolls: one with time measured in ticks (Figure 2.4b)
and the other with time measured in seconds (Figure 2.4c). We observe that the
Largo and Adagio (with tempos set to C = 48 and C = 42, respectively) occupy
much more time in the seconds version than in the ticks version, in contrast to the
Allegro (with a tempo of C = 242), which occupies much less time.

As a result, the choice of measuring time in ticks or seconds can significantly
impact the representation of the MIDI file in piano roll format. Depending on the
application’s requirements, either method may be preferred.

We associate the corresponding spaces and groups for each representation:

69



Chapter 2. Time-Frequency Representations of Music

(a) Score
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(b) Piano roll from a MIDI file with time ex-
pressed in ticks.
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⊥
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(c) Piano roll from a MIDI file with time ex-
pressed in seconds.

Figure 2.4: First bars of the first movement of Beethoven’s Piano Sonata No.17,
Op.31 No.2 in different representations.

• If we measure the time in ticks, we use T = Z and GT = (Z,+).

• If we measure the time in seconds, we use T = Q and GT = (Q,+).

2.3.2.2 Frequency

The space we choose for frequency is F = N (the space of pitches) since it is trivially
related with the MIDI numbers; we associate 60 to C4, 69 with A4, etc. This space is
associated with the group (Z,+), where the shift 1 means shift the note one semitone
up. For instance, A4 + 1 = B 4.

In actual MIDI files, the pitches are comprised between 0 and 127, i.e., from C-1
to G9.

Notice that, under these conditions, A = B  . This is a consequence of encoding
frequencies by MIDI numbers inside a MIDI file.
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2.3. Representing Music with Piano Rolls

2.3.2.3 Amplitude

In a MIDI file, the amplitude of notes is determined by the velocity parameter
associated with each note. Additionally, the use of note_on and note_off mes-
sages specifies when a note starts and stops playing. Some MIDI files may omit
the note_off message and instead use a note_on message with a velocity of 0 to
represent the end of a note. For our representation, we can easily handle both cases
by treating a note_on message with velocity 0 as equivalent to a note_off message.

Regarding the amplitude representationA for a MIDI file, there are three options:

• Using only the rhythmic range A3 (as discussed in Section 2.1.3.2), which omits
the velocity information.

• Using a lattice that considers dynamics, as explained in Section 2.1.3.4, with
the dynamics lattice being D128 (as presented in Section 2.1.3.3). There are
two choices: APD128

or AD128
.

We recall the definitions, exposed in Equations (2.12) and (2.15), of the lattices
(APD128

,≤P128) and (AD128
,≤128):

APD128
= D128 ∪ {·}

a ≤P128 b⇔











a = ⊥, or
a = · and b ∈ D128, or
a ≤128 b with a, b ∈ D128 .

AD128
= {⊥} ∪

(

{·,×} × D128

)

a ≤128 b⇔
{

a = ⊥, or
a1 ≤3 b1 and a2 ≤128 b2

.

In Figure 2.5, we present the piano roll of a MIDI file generated from the score
in Figure 2.5a with two different amplitude representations: A = A3 (which we will
use most often due to its simplicity) represented in Figure 2.5b, and A = AD128

(a
more refined representation, left for future research), represented in Figure 2.5c.

Since there are four instruments, we might represent this excerpt as a piano roll
stack with the set of indexes I = {Bass,Vla.,Vln. 2,Vln. 1}, one per instrument.
While the instruments are different and exhibit different timbers, they are all bowed
string instruments and thus have a similar sound. This is why, we might want
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Chapter 2. Time-Frequency Representations of Music

to represent all of them in the same piano roll. In order to do that, we use the
contraction18 in the set of indices of S, i.e.,

∨

i∈I S : T × F → A
(t, ξ) 7→ ∨

i∈I Pi(t, ξ)
. (2.54)

2.3.3 Representing Scores as Piano Rolls
Representing scores as piano rolls involves converting the musical data of a score
into functions P : T × F → A in a musical space. However, it should be noted
that scores can contain a vast amount of information, and not all of it can be fully
rendered under this representation. The information that we choose to retain in the
piano roll representation includes:

• the number of instruments, which may be merged for instruments of the same
family (e.g., merging all the strings into a single representation),

• the pitch information, with potential loss of enharmonic notes,

• the rhythm, up to a certain realization, as some elements such as trills or grace
notes loose their generality after being rendered,

• the dynamics information, if we choose an amplitude space such as APD or AD.

Some of the information that we typically drop in the piano roll representation
includes: the key, the bars, the time signature, the articulation, the tempo, the
timber, the divisi, the moods, etc.

As an example, Figure 2.6 shows an actual score and a score with only the features
we keep.

2.3.3.1 Time

The time inside a score is measured in wholes as exposed in Section 2.1.1.3. We will
then use T

p
q as space of timestamps, with p

q
being a time signature19.

18The term “contraction” is borrowed from the terminology of tensors, where the contraction
of one index involves summing over the values of this index. In the context of piano roll stacks,
it signifies merging multiple piano rolls into a single one, taking the supremum of all the indexed
elements.

19We do not consider the possibility of changing the time signature, even if this is a common
practice, to remain simple.
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(a) Score

(b) Piano roll with A = A3 (c) Piano roll with A = AD128

Figure 2.5: Piano roll representation of mm. 20-22 of Mozart’s Eine kleine Nacht-
musik, K.525.

To create a computational model, we need to discretize time. One approach is
to arbitrarily select a minimum note value, for example, Z

�
, to serve as the smallest

time unit. However, this approach may not work well when dealing with triplets or

73



Chapter 2. Time-Frequency Representations of Music

(a) Original Score
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(b) Resulting score with kept features

Figure 2.6: Difference between the score of mm. 17-23 from Brahms’ Romanze,
Klavierstücke, Op.118, Nº5 and the score with only the kept features.

other complex rhythmic patterns.
To address this issue, we can determine the tatum of the score, which is a common

notion in music theory that can be thought of as the greatest common divisor of all
note values present in the score. The tatum serves as the minimal note value for our
computational model, allowing us to handle various rhythmic patterns accurately.

In the representation of scores as piano rolls, we may encounter grace notes or
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2.3. Representing Music with Piano Rolls

trills, which require determining their rhythmic realization. This means establishing
how these ornamentations are performed within the time structure of the music.

2.3.3.2 Frequency

In scores, the frequency is typically quantized, except in some particular cases like
the glissando where there may be a continuous pitch change. Despite having more
information in scores compared to MIDI files (since enharmonic pitches are distin-
guished), we still quantize the frequency and thus have F = N .

2.3.3.3 Amplitude

In the case of scores, we do not have a velocity range like in MIDI files. However, we
have a range of dynamics denoted by Dpf, as presented in Section 2.1.3.3. Similarly
to MIDI files, we can choose to keep only the rhythmic component and use A3 to
represent the amplitude lattice. This simplification allows us to focus on the essential
rhythmic aspects of the score while disregarding more detailed dynamic variations.
Figure 2.7 shows a representation of the first bars of Beethoven’s Pathetic sonata in
both representations.

2.3.4 Chroma Roll
In this section, we explore the transformation of the space of pitches N into the
space of chromas N12 to create another piano roll representation that we call chroma
roll. The chroma roll is particularly useful for analysis, as it takes advantage of the
concept of equivalence up to the octave commonly used in music theory.

To achieve the chroma roll representation, we consider the description of pitches
given in Equation (2.6), where N = N12 × Z. We then project this space onto
the chromas component using the first projection, denoted as π1. This projection is
defined as follows:

π1 : N12 × Z → N12

(N, n) 7→ N

. (2.55)

Next, we extend this projection to the entire musical space AT ×N using the
supremum operator. The extended projection, denoted as π12, is given by:

π12 : AT ×N → AT ×N12

P 7→ P : T ×N12 → A
(

t, ξ
)

7→ ∨

f
(

t, π−1
1

(

ξ
))

(2.56)
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(a) Score

(b) Piano roll with A = A3 (c) Piano roll with A = AP
Dpf

Figure 2.7: Piano roll representation of mm. 1-2 of Beethoven’s Piano Sonata No.8,
Op.13.

where f
(

t, π−1
1

(

ξ
))

= {f(t, η) ∈ A : η ∈ π−1
1

(

ξ
)

}.
Representing a chroma roll poses some challenges, as we aim to preserve the

cylindrical topology of T ×N12. To address this, we represent the chroma roll in two
dimensions while keeping in mind that the frequency dimension wraps around.

As an example, Figure 2.8 depicts the first bars of Chopin’s Nocturne Op.48 Nº1
in both piano roll representation (Figure 2.8b) and chroma roll representation. The
chroma roll is presented in both the flat representation (Figure 2.8c) and the cylindri-
cal representation (Figure 2.8d). Notably, C and B are very close in the cylindrical
representation (as expected) and appear far apart in the flat representation due to
the limitations of plotting on two dimensions.

2.4 Conclusion
In conclusion, we have presented various time-frequency representations of music, all
of which can be organized as a musical space M = AT ×F , with the possibility of
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(c) Flat chroma roll

(d) Cylindrical chroma roll

Figure 2.8: Piano and chroma roll representations of mm. 1-4 of Chopin’s Nocturne
Op.48 Nº1.
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adding an extra dimension of indices I to represent multiple instruments or tracks.
By endowingA with a complete lattice structure (A,≤), we establish that (M,�)

is also a complete lattice, enabling the application of Mathematical Morphology on
these representations. Moreover, as the domain of functions in M is a space T × F
with a group that acts on it, we can employ mathematical morphology techniques
that use structuring elements.

Table 2.1 provides a summary of the representations we have presented, along
with the different choices available for T , F , and A. In the forthcoming chapters,
we will employ some of these spaces to undertake various musicological tasks.

Representation Space Group unit Amplitude

Spectrogram

STFT Ts ×FHz (R× R,+) s× Hz R
+ or [0, 1]

R or R
− (in dB)

CQT
Ts ×F log

Hz (R,+)× (R+∗, ·) s× Hz R
+ or [0, 1]

R or R
− (in dB)

Ts ×Fst (R× R,+) s× st R
+ or [0, 1]

R or R
− (in dB)

Piano roll MIDI file T1 ×N (Z× Z,+) tick× st A3, A128 or AP128
Score T

p
q ×N (Q× Z,+) × st A3, APDpf or ADpf

Chroma roll MIDI file T1 ×N12 (Z× Z12,+) tick× st A3, A128 or AP128
Score T

p
q ×N12 (Q× Z12,+) × st A3, APDpf or ADpf

Table 2.1: Representations of music depending on the choices for time and frequency.

78



Chapter 3

Analyzing Spectrograms with
Mathematical Morphology

In the preceding chapters, we established a framework for applying mathematical
morphology to various time-frequency representations of music. Particularly, we
demonstrated that a spectrogram can be viewed as a representation of the form
AT ×F , enabling the application of morphological operators based on structuring
elements.

While MM has been applied to analyze spectrograms (Steinberg &
O’Shaughnessy, 2008; Cadore et al., 2011; Xu et al., 2014; Zhang et al., 2015) of
speech, it is not up to (Romero-García, Agón, et al., 2022) that it was first applied
to analyze spectrograms of music.

The primary objective of this chapter is to synthesize an audio signal y(t) that
closely resembles an input signal x(t) from a musical instrument. To achieve this,
we need a method to analyze the input signal x(t) and a method to synthesize the
output signal y(t).

The approach we take is to transform x(t) into a spectrogram S(τ, ω) and then
apply MM operators to extract features that can be used to synthesize the output
signal y(t). The features we need to extract are determined by the synthesis model
we use.

In this thesis, we employ the spectral modeling synthesis (SMS) (X. Serra &
Smith, 1990) for generating sounds of musical instruments. SMS involves analyzing
the spectrum of a signal to extract its spectral features and subsequently synthesizing
a new signal that closely resembles the original one. We adopt an extension of the
SMS model, known as the STN model (Sines plus Transients plus Noise) (T. S. Verma
& Meng, 2000), which incorporates an additional component for transients.
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Chapter 3. Analyzing Spectrograms with Mathematical Morphology

The original SMS model, which consists of sines plus noise, is well-suited for
many musical instrument signals, as it captures the significant sinusoidal component
(e.g., from bowed strings or winds) and the accompanying noise component (e.g., the
sound of the bow or the blow). However, some instruments possess a transient com-
ponent that significantly contributes to their sound (e.g., plucked or struck strings
and idiophones like wood blocks, marimbas, or vibraphones). As a result, the STN
model proves to be more accurate in such cases.

The task we want to perform can be summarized as follows:

1. Transform the input signal x(t) into a spectrogram S(τ, ω).

2. Apply MM operators to estimate the parameters of the STN model.

3. Synthesize the output signal y(t) with the STN model.

The overall pipeline is depicted in Figure 3.1.
In the following, we introduce the STN model in Section 3.1, and we elaborate

on the MM pipeline for parameter extraction in Section 3.2. Finally, in Section 3.3,
we showcase and analyze the results and limitations of our method when applied to
various musical instruments.

3.1 Sines, Transients and Noise Model
The process of generating synthetic sounds requires a suitable synthesis model. The
earliest model for sound synthesis was additive synthesis, which can be traced back
to the work of Fourier, 1888 and Helmholtz, 1865.

However, a significant improvement in sound quality was achieved with the intro-
duction of Sines + Noise synthesis (X. Serra & Smith, 1990), particularly for music
instrument sounds.

The latest evolution in sound synthesis came with the incorporation of a transient
component, resulting in the Sines + Transients + Noise (STN) synthesis. This
breakthrough emerged from a series of papers published towards the end of the
century (T. S. Verma et al., 1997; T. Verma & Meng, 1998; T. S. Verma & Meng,
2000). The STN model has since garnered significant research interest and has seen
further developments in recent times (Driedger et al., 2014; Füg et al., 2016; Fierro
& Välimäki, 2023).

The STN model is based on decomposing a signal y(t) into three components:
the sines s(t), the transients h(t), and the noise w(t). The equation representing this
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Input signal

STFT

Spectrogram

Mathematical
Morphology

Parameters

Filtered
Noise

Harmonic
Oscillator

Transient
Generator

+

Output signal

Figure 3.1: Pipeline for the synthesis of signals.

decomposition is given by:

y(t) = s(t) + h(t) + w(t), (3.1)

where t is a variable representing time measured in seconds. The domain of t will
depend on whether we are in the continuous case (t ∈ R) or in the discrete case
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(t = Tsn ∈ TsZ), where Ts is the sampling period1.

3.1.1 Sinusoidal Oscillators
To generate the sines, we use a sinusoidal oscillator, a well-known technique in the
literature (see (Smith, 2011)). The formula for generating the sines is as follows:

s(t) =
I
∑

i=1

si(t)

=
I
∑

i=1

ai(t) sin
(

2πΦi(t)
)

(3.2)

where I ∈ N∗ is the number of sinusoidal components, ai(t) is the time-varying
amplitude of the ith component si, and Φi(t) =

∫ t

0
ξi(u) du + Φ0, with ξi(t) and

Φ0 are the instantaneous frequency at the time t and the starting phase of the ith
component, respectively.

The parameters to be estimated are then ai(t) and ξi(t) (we drop the starting
phase information Φ0 and set it to 0), from which we can deduce Φi(t) =

∫ t

0
ξi(u) du.

3.1.2 Filtered Noise
To generate the stochastic part w(t), we create a white noise signal and filter it using
a linear time-varying filter (LTV filter).

First, we generate the white noise by using a random process distributed as a
normal distribution N (0, σ) with a standard deviation σ ∈ R+. We select a value
of σ that results in an overall power density of 0 dB. The process of finding the
appropriate σ is described in Section 3.2.2.2.

Next, we apply the LTV filter to the white noise. To do this, we follow the
approach known as the STFT filter (Boashash, 2016), which involves the following
three steps:

1. Calculate the short-time Fourier transform (STFT) S(τ, ω) of the input signal
x(t).

2. Multiply S(τ, ω) by a weight function Θ(τ, ω).
1The sampling period Ts is the inverse of the sampling frequency ξs, i.e., Ts =

1

ξs
.
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3. Synthesize the output signal y(t) by performing an inverse STFT of S(τ, ω) ·
Θ(τ, ω).

The filter itself is represented by the parameter Θ(τ, ω), that we call mask, which
is the parameter we aim to estimate using mathematical morphology as discussed in
Section 3.2.

3.1.3 Transient Generation
To generate the transient component, we follow the approach presented in (T. S.
Verma & Meng, 2000). However, instead of using the inverse cosine transform as
in the original paper, we use the usual Fourier transform and adapt the formulas
accordingly.

The transient is considered the dual of a sinusoid, as sinusoids appear as hori-
zontal lines in spectrograms, while transients appear as vertical lines. To achieve the
rotation in the time-frequency plane, we use the Fourier transform. Specifically, we
make use of the property stated in Proposition 2.5:

STFTg[x](τ, ω) = e−2πıω·tSTFTF [g][F [x]](ω,−τ) . (3.3)

To generate the transient, suppose we want a transient with amplitude a(ξ) and
time t(ξ) (where frequency ξ is the variable). First, we generate the signal

s(ξ) = a(ξ)
(

e2πıΦ(ξ) + e2πıΦ(−ξ)) (3.4)

where Φ(ξ) =
∫ ξ

0
t(ν) dν. Then, we obtain the transient component h(t) by applying

the Fourier transform to s(ξ):

h(t) = F [ξ 7→ s(ξ)](t) . (3.5)

The result of this process is illustrated in Figure 3.2.
When transients exhibit significant variations in amplitudes across frequencies,

they are prone to experiencing temporal leakage. This temporal leakage poses a
problem as it introduces sinusoids before and after the transient, which interferes
with the main feature of the transient - its time concentration. Such artifacts are
undesirable.

Although this issue was not explicitly addressed in (T. S. Verma et al., 1997;
T. Verma & Meng, 1998; T. S. Verma & Meng, 2000), we propose a solution to
mitigate this problem. We apply a window to the transient that is equal to 1 between
minξ∈R t(ξ) and maxξ∈R t(ξ), and zero outside of this interval2.

2To further avoid artifacts, we actually apply a filter to this window with a Hann kernel of 5 ms.
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(a) Spectrogram of signal s(ξ)
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(b) Spectrogram of signal h(t)

Figure 3.2: Rotation of the time-frequency plane by F .

Similarly as for sinusoids, we create multiple transient components and add them
together. While many common musical instruments have only one transient, the STN
model allows us to generate an arbitrary number of transients, offering flexibility for
other applications.

3.2 Mathematical Morphology Analysis
In this section, we will provide a detailed explanation of the process of estimating the
parameters for the given signal x(t) using MM. The parameters we need to estimate
are as follows:

1. For the sinusoidal oscillators, we need to estimate the number of components
I ∈ N, the amplitudes asi (t) and the frequencies ξi(t), ∀i ∈ I.

2. For the filtered noise, we need to estimate the mask Θ(τ, ω).

3. For the transient generator, we need to estimate the number of transient com-
ponents P ∈ N, the amplitudes ahp(ξ) and the times tp(ξ), ∀p ∈ P .

3.2.1 Discrete Version of the Problem
Let us now expose the discrete version of the problem. We consider an input signal
x(t) ∈ [−1, 1]R with the time measured in seconds and finite support [0, T ], with
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T ∈ R+. To transform it into a discrete array, we sample it at a sampling frequency
ξs ∈ R+ measured in Hertz (with corresponding sampling period Ts =

1
ξs

measured
in seconds), and we quantize the amplitudes in floating point values of 32 bits.

We get then a number of samples N = ⌈T · ξs⌉ ∈ N∗, corresponding to the
timestamps tn = nTs ∈ R measured in seconds. We define the discrete input signal
as

{x[n]}N−1
n=0 ∈ [−1, 1]N ,

with x[n] = x(tn), ∀n ∈ {0, 1, ..., N − 1}.
To transform the discrete signal {x[n]}N−1

n=0 into a time-frequency representation,
we use the discrete STFT exposed in Section 2.2.2.1; we leave for future research the
use of the CQT and the TFST.

We choose a STFT with a window g of size J ∈ N∗ and center sample j0 ∈
{0, 1, ..., J − 1}. We choose a hop size of H ∈ N∗ and a number of frequency bins
K ∈ N∗.

By setting M = ⌈N
H
⌉ ∈ N∗ and adapting Equation (2.39) to our case, we obtain:

Z[m, k] =
J−1
∑

j=0

x[m+ j − j0]g[j]e−2πı(m+j−j0) k
K .

The STFT array {Z[m, k]}M−1,K−1
m=0, k=0 ∈ CM×K corresponds to the time-frequency

points {(τ [m],ω[k]}M−1,K−1
m=0,k=0 that are given by:

• τ [m] = tmH ∈ R with time precision Tp = HTs ∈ R.

• ω[k] = k ξs
K
∈ R+ with frequency precision ξp =

ξs
K
∈ R+.

τ and Tp are measured in seconds and ω and ξp are measured in Hertz.
The window function g is chosen to be real, positive and symmetric, having then

g∗ = g. Its length is J ∈ N∗ which gives a time observation To = JTs ∈ R seconds.
We have then an array {g[j]}J−1

j=0 ∈ (R+)J . We set j0 = ⌊J2 ⌋ as the center sample. We
normalize it such that ||g||1 = 1 in order to satisfy the conditions of Equation (2.21).

The spectrogram {S[m, k]}M−1,K−1
m=0, k=0 ∈ [−∞, 0]M×K is calculated from the STFT

array using the formula:

S[m, k] = 10 log10 |Z[m, k]|2 . (3.6)

The values used for the parameters are given in Table 3.1. The parameters T ,
N , and M depend on the input signal and are not explicitly listed in the table.
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Parameter Value Parameter Value
ξs 44 100 Hz H 44
Ts 2.2× 10−5 s K 4096
g Blackman window Tp 1 ms
J 2048 ξp 10 Hz
j0 1024 To 46 ms

Table 3.1: Choice of the parameters for the computations.

3.2.2 Processing Pipeline
The main contribution of this chapter is the use of MM for extracting the following
parameters:

1. For the harmonic oscillator:

(a) the number of sines I,
(b) the amplitudes {asi [m]}M−1

m=0 of each sine,
(c) the frequencies {ξi[m]}M−1

m=0 of each sine.

2. For the filtered noise:

(a) the mask {Θ[m, k]}M−1,K−1
m=0, k=0 .

3. For the transients:

(a) the number of transients P ,
(b) the amplitudes {ahp [k]}K−1

k=0 of each transient,
(c) the times {tp[k]}K−1

k=0 of each transient.

To estimate these parameters, we input the spectrogram S into the morphological
pipeline described in Figure 3.3. In the next sections, we will provide a detailed
explanation of each step.

For illustrative purposes, we use an input signal of a woodblock, as it exhibits
all three features required for our analysis: the sinusoidal component, the noise
component, and a transient. The spectrogram of the woodblock sound is shown in
Figure 3.4. This spectrogram will serve as the input to the morphological pipeline.
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S

Reconstruction
by erosion

Erosion

Vertical
thinning Opening Horizontal

thinning

Vertical
top-hat

Horizontal
top-hat

Threshold Threshold

Filter small
horizontal lines

Filter small
vertical lines

asi , ξi Θ ahp , tp

Sines Noise Transients

Figure 3.3: Pipeline for the morphological processing.
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Figure 3.4: Spectrogram a woodblock.

3.2.2.1 Pre-processing

To prepare the input spectrogram for further processing, we apply two consecutive
morphological operations: reconstruction by erosion and erosion.

Reconstruction by erosion
The first step of our processing is to “fill the holes” in the spectrogram. The

noisy part of a spectrogram often contains holes and hills, as shown in Figure 3.5a.
To ensure that the subsequent operations are not biased by the presence of holes, we
use the reconstruction by erosion technique, as explained in Section 1.2.5.3.

The marker function for the reconstruction by erosion is the zero function, which
is the top element of the space of functions [−∞, 0]R×R (or, in its discrete version,
the space of arrays [−∞, 0]M×K).

Erosion
Once we obtain the result of the reconstruction by erosion, we proceed to apply a

greyscale erosion. The structuring element b we use for this operation is the window
function in dB, i.e., if g is the window, and it is given by:

b = 20 log10(g) . (3.7)

This step is crucial as it helps to reduce the temporal leakage of the spectrogram
and ensures that the masks for the noise and sinusoids are accurately aligned with
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(a) Noisy spectrogram
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(b) Reconstruction by erosion

Figure 3.5: Noisy part of a spectrogram and its reconstruction by erosion.

the actual onsets. The erosion operation is shown in Figure 3.6. The resulting eroded
spectrogram serves as the input for the subsequent steps in our processing pipeline.

3.2.2.2 Processing for the noise component

To obtain the mask Θ for filtering the noise, we simply need to apply an opening
operation to the erosion obtained in the previous step.

Opening
The structuring element used for the opening is a square with the sizes tw and

ξw, which satisfy the following conditions:

20 log10(w(0))− 20 log10(w(t)) > 60 dB, ∀t ∈ R : |t| > tw

2
(3.8)

20 log10(ŵ(0))− 20 log10(ŵ(ξ)) > 60 dB, ∀ξ ∈ R : |ξ| > ξw

2
, (3.9)

This means that the width of the square ensures a 60 dB drop both in time and
frequency. With the parameters provided in Table 3.1, we get tw = 44 ms and
ξw = 193 Hz for the time and frequency dimensions of the rectangular structuring
element, respectively.
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(a) Reconstruction by erosion
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(b) Erosion

Figure 3.6: Erosion of the reconstruction by erosion for avoiding temporal leakage.

The result of applying the opening operation to the erosion result is shown in
Figure 3.7. The resulting image now resembles the overall shape of the noise com-
ponent.

The importance of the reconstruction by erosion step becomes visible in this
process. Its absence would lead the opening operation to propagate the values of
the holes in the spectrogram rather than achieving the desired average value of 0 dB.
This effect is illustrated in Figure 3.8, where we observe that applying the opening
before the reconstruction by erosion (Figure 3.8b) results in a not constant image.
Conversely, applying the opening after the reconstruction yields a uniform image
with an average value of 0 dB.

In order to achieve an average value of 0 dB after the reconstruction by erosion,
we tested several values of σ and determined that setting σ = 30 achieves this desired
outcome3, as illustrated in Figure 3.8.

The application of an erosion to the reconstruction by erosion is a key step, as it
ensures that the noise component aligns accurately with the transient. Without this
erosion step, the noise component could start before the transient. In Figure 3.9,
we display the mask and the filtered noise side by side, highlighting the effects of

3It is worth noting that σ is dimensionless, as the amplitude range is also dimensionless.
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(a) Reconstruction by erosion
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(b) Opening

Figure 3.7: Opening of the reconstruction by erosion.

temporal leakage that can occur if the erosion is not applied.
We have now obtained the mask Θ, which allows us to effectively filter the white

noise. The result is presented in Figure 3.10, where we can observe both the original
spectrogram and the spectrogram of the filtered noise. Notably, the noisy part is
accurately recovered, showcasing the success of the filtering process in faithfully
reconstructing the noise component.

3.2.2.3 Processing for the sinusoidal component

We now explain how we use morphological operators to estimate the parameters for
the harmonic oscillator, which are I, asi and ξi. We use as input for the processing
the erosion since it has no holes and no temporal leakage.

Vertical thinning
The first operator we apply is a vertical thinning; the thinning operator is ex-

plained in Definition 1.33. For obtaining a vertical thinning, i.e., for contracting the
image in the vertical direction to obtain horizontal components, we need to remove
the north, south, north-east, south-west, north-west and south-east points4.

4Since we shall make a choice in the order of removal of the points, we choose this order, i.e., N,
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(a) Spectrogram of white noise
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(b) Opening before the reconstruction by erosion
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(c) Reconstruction by erosion
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(d) Opening after the reconstruction by erosion

Figure 3.8: The result of applying the morphological processing to white noise with
σ = 30.

To remove these points, we select the following pair of structuring elements:

(C,D)N =





0 0 0
− 1 −
− 1 −



 (C,D)NE =





− 0 0
1 1 0
− 1 −



 (C,D)NW =





0 0 −
0 1 1
− 1 −





(C,D)S =





− 1 −
− 1 −
0 0 0



 (C,D)SW =





− 1 −
0 1 1
0 0 −



 (C,D)SE =





− 1 −
1 1 0
− 0 0





S, NE, SW, NW, SE.
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(a) Opening
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(b) Spectrogram of the filtered noise

Figure 3.9: Temporal leakage.

These patterns should be interpreted in the following manner: ones correspond
to the elements of set C, zeroes correspond to the elements of set D, and − means
that the point is not considered in the structuring element. Moreover, we assume
that the origin is located at the center pixel. More formally, if we denote the matrix
associated with the pattern as (aij) : i, j = 1, 2, 3, the corresponding sets C and D

are given by:

C = {(i− 2, j − 2) ∈ Z2 : aij = 1} (3.10)
D = {(i− 2, j − 2) ∈ Z2 : aij = 0} (3.11)

This vertical thinning process transforms the ridges of the input into lines of
one-pixel thickness. However, as seen in Figure 3.11, these lines cannot be directly
used to obtain our parameters. We still need to remove the background information
to obtain precise lines. This is achieved by using the top-hat operation.

Vertical top-hat
To isolate the lines and remove the background, we apply a top-hat operation to

the thinned image. Top-hat is explained in Section 1.2.4.3. Since our objective is to
retrieve the horizontal lines, we use a vertical top-hat by using a structuring element
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(a) Spectrogram of the input
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(b) Spectrogram of the filtered noise

Figure 3.10: Result of extracting the stochastic component of the signal.

with a size of 1× 3 pixels (1 pixel in time and 3 pixels in frequency). The output of
this process is shown in Figure 3.12.

Threshold vertical top-hat
While horizontal lines appear neat in the top-hat image, various artifacts arise

due to the nature of spectrograms. To mitigate some of these artifacts5 we apply
a threshold. Moreover, this threshold operation is done on the reconstruction by
erosion but with the values of the top-hat i.e., if we denote the output of the threshold
by S>, the reconstruction by erosion as S0 and the result of the top-hat as SId−γ, we
have

S>(τ, ω) =

{

S0(τ, ω) if SId−γ(τ, ω) > τv

−∞ if SId−γ(τ, ω) ≤ τv
(3.12)

with τv being the threshold for the vertical top-hat. The value we chose is τv = 5 dB.
The result is shown in Figure 3.13.

5It is very difficult to remove all of them, if not impossible, in part because the border between
signal and noise is not always well defined.
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(a) Reconstruction by erosion
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(b) Vertical thinning

Figure 3.11: Vertical thinning transforming the ridges into one-pixel-thick lines.

Filter small horizontal lines
This step is intended to eliminate lines that are too small to be considered genuine

sinusoids and are more likely to be artifacts. While these lines might represent actual
signals, they tend to contribute less to the desired output and can introduce unwanted
sounds that are perceived as artifacts.

To address this issue, we employ a two-step processing approach. First, we shrink
the lines that are below a certain length threshold, causing them to disappear if they
are too small. Then, we use a reconstruction by dilation to recover the parts that
were previously shrunk.

For shrinking the lines, we remove the west and east points by applying a thinning
that uses the following patterns:

CW =





0 − −
0 1 −
0 − −



 CE =





− − 0
− 1 0
− − 0



 . (3.13)

Following the shrinking operation, we perform a reconstruction by dilation. We
use the shrunken image as the marker and the output of the threshold as the mask.
The minimum length that we allow for a line to be retained serves as a parameter
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(a) Vertical thinning
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(b) Vertical top-hat

Figure 3.12: Vertical top-hat for recovering the horizontal lines.

for this process. In this case, a minimum length of 100 ms was chosen. The result of
this operation is shown in Figure 3.14.

Retrieving the parameters for sinusoids
The last image of the process serves as input to for parameter recovery. This

recovery is not a processing in itself, but rather a “transducer”: it transforms an
image into a list of parameters. The process works as follows:

1. We recover the I connected components, representing individual lines, using
the SciPy (Virtanen et al., 2020) library’s functionality for this purpose.

2. For each component indexed by i, we create an array {(tim, ξim, SO(tim, ξim)}Mi

m=1

where SO is the output of our morphological pipeline for sinusoids.

3. We sort the array with respect to the time.

This approach yields i arrays, each corresponding to a sinusoidal component.
However, two potential issues arise if we synthesize directly from these arrays:

1. Multiple branches for each line may exist, leading to multiple ξ values for the
same t.
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(a) Top-hat
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(b) Threshold

Figure 3.13: Threshold of 5 dB of the vertical top-hat.
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(a) Threshold of the top-hat

0.1 0.15 0.2 0.25
Time (s)

431

646

861

1077

1292

1507

1723

1938

Fr
eq

ue
nc

y 
(H
z)

0.1 0.15 0.2 0.25
Time (s)

431

646

861

1077

1292

1507

1723

1938

Fr
eq

ue
nc

y 
(H
z)

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

(b) Thinning and reconstruction by dilation

Figure 3.14: Removal of the small lines with a thinning followed by a reconstruction
by dilation.
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2. Working with images composed of pixels implies frequency quantization, re-
sulting in significant steps that could generate artifacts, particularly in lower
frequencies.

To address both issues simultaneously, we apply a filter to the array of frequen-
cies. This smooths the frequencies and eliminates artifacts. Specifically, we use a
Butterworth filter (Butterworth, 1930) of order 3, with a critical frequency set to 0.05
times of the Nyquist frequency6. To avoid border problems, we employ Gustafsson’s
method (Gustafsson, 1996). The result is shown in Figure 3.15.

Figure 3.15: Lines and filtered lines recovered in the process superimposed to the
input spectrogram.

3.2.2.4 Processing for transient component

The approach used for retrieving transient parameters is a dual of the one employed
for sinusoids, with the exception that the reconstruction by erosion itself (not its
eroded version) is used. The corresponding steps are as follows:

6In our example, since the time resolution for the array ξ is 0.001 s, the sampling frequency is
1000 Hz and the Nyquist frequency is 500 Hz, which gives a critical frequency of 0.05×500 = 25Hz.
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• Horizontal thinning: instead of a vertical thinning we use an horizontal
thinning, with the templates corresponding to the east, west, north-west, south-
east, north-east, south-west points. The result is shown in Figure 3.16b.

• Horizontal top-hat: instead of a vertical top-hat, we employ an horizontal
top-hat operation, with a structuring element of size 3 × 1 pixels (3 in time
and 1 in frequency). The result is shown in Figure 3.16c.

• Threshold: the threshold operation is performed on the output of the hori-
zontal top-hat, with the same threshold value τv = 5 dB. The result is shown
in Figure 3.16d.

• Filter small vertical lines: we use the same approach as before, but with
a vertical thinning (using templates CN and CS) and with minimal length we
allow being 100 Hz. However, this step did not affect the image in this case as
there are two long lines.

• Retrieving the parameters for transient: the process for retrieving the
lines and applying the filter (in this case to the times array) is the same as
used for sinusoids. The result is shown in Figure 3.17.
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Figure 3.16: Morphological steps for recovering the transient lines.

Once we recover the lines, we use the method exposed in Section 3.1.3 to generate
a transient. The comparison between the input and the spectrogram of the generated
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Chapter 3. Analyzing Spectrograms with Mathematical Morphology

Figure 3.17: Lines and filtered lines recovered in the process superimposed to the
input spectrogram.

transient is shown in Figure 3.18. We see that the shape of the transient is very
similar to the input one.

3.3 Application to Music Instruments

In this section, we evaluate the performance of the proposed method by applying it
to different musical instruments. We use the same set of parameters and test the
method on sounds produced by various instruments: marimba (with a pronounced
transient component), violin (with a prominent sinusoidal component), gong (primar-
ily consisting of a noise component), and piano (featuring a balanced combination
of three components).

All of the sounds used in this chapter are sourced from the University of Iowa
Musical Instrument Samples7 and Studio-On-Line Database (Ballet et al., 1999)
sound libraries.

7https://theremin.music.uiowa.edu/MIS.html.

100

https://theremin.music.uiowa.edu/MIS.html


3.3. Application to Music Instruments

0.0 0.2 0.4 0.6
Time (s)

0

2692

5383

8075

10767

13458

16150

18842

Fr
eq

ue
nc

y 
(H
z)

0.0 0.2 0.4 0.6
Time (s)

0

2692

5383

8075

10767

13458

16150

18842

Fr
eq

ue
nc

y 
(H
z)

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

(a) Spectrogram of the input

0.0 0.2 0.4 0.6
Time (s)

0

2692

5383

8075

10767

13458

16150

18842

Fr
eq

ue
nc

y 
(H
z)

0.0 0.2 0.4 0.6
Time (s)

0

2692

5383

8075

10767

13458

16150

18842

Fr
eq

ue
nc

y 
(H
z)

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

(b) Spectrogram of the generated transient

Figure 3.18: Comparison between the spectrograms of the input and the generated
transient.

3.3.1 Marimba

The marimba sound features a significant transient part and also a notable sinusoidal
component. The processing results are displayed in Figure 3.19. The transient part
has been recovered with high fidelity. However, there are some challenges in the
recovery of the sinusoidal component.

One major issue is the failure to capture an important sine wave with a frequency
of around 2600 Hz. This is a critical concern as, despite its brevity, the sine wave is
clearly intense and prominent, as shown in the spectrogram. The problem occurred
due to the threshold operation, where the sine was split into two parts, both of which
were subsequently suppressed because they were too small.

Another issue is the presence of interference between two sine waves around
1300 Hz causing both of them to go undetected. Additionally, interference effects
are the cause of the break of the sine wave with a frequency of around 500 Hz.

Overall, the retrieval of the sinusoidal component from the marimba sound is
considered to be of mediocre quality.
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(b) Spectrogram of the
generated transient

(c) Lines and filtered lines superim-
posed to the input spectrogram.
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(d) Spectrogram of the input
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(e) Spectrogram of the gener-
ated sinusoids

(f) Lines and filtered lines superimposed
to the input spectrogram.

Figure 3.19: Marimba.

3.3.2 Violin

The results from the violin sound exhibit improvements over those from the marimba,
as demonstrated in Figure 3.20. Multiple sinusoidal components were successfully
detected, and the noise component generated by the bowing of the string was accu-
rately recovered. The input and output spectrograms closely resemble each other.
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However, a notable limitation of the process is related to the attack of the sound.
In the case of the violin, particularly when the attack is strong, it produces a crackling
sound rather than a traditional transient. This unique nature of the attack prevents
its simulation through a transient component, resulting in an unsuccessful recovery
using the noise component.

The method was also applied to a violin sound featuring vibrato, and the results
are depicted in Figure 3.21. The majority of the lines were reasonably recovered,
even if they are not straight. Some lines, due to their brevity and lack of connection
to others, were not recovered. Additionally, interference, this time with the noise,
led to the disconnection of certain lines.

3.3.3 Gong

Among the tested instruments, the gong showcases the best results. The noise com-
ponent is accurately recovered, demonstrating high fidelity in reproducing the orig-
inal noise characteristics. While some minor sinusoidal components are present,
their influence on the output is largely masked by the dominant noise component.
However, the fundamental bass sine, the only sine that is clearly perceptible, is suc-
cessfully recovered. The transient elements, although not extensively pronounced in
the gong sound, are still moderately captured by the method.

3.3.4 Piano

The piano results are probably the more disappointing: while the sinusoidal and noise
components are accurately recovered, the transient component retrieval is notably
inadequate. This outcome contradicts initial expectations, given that the piano
sound is renowned for its significant transient component during its attack.

Despite this unexpected result, several insights might shed light on the situation.
Close examination of the piano spectrogram reveals that the transient is not present
as a distinct, isolated vertical line, as is typical in some other cases. Instead, there
exist small vertical lines at the onset of each sine wave. These shorter vertical lines
correspond to high variations of the amplitude of the sine, experiencing spectral
leakage.

This observation prompts the question of whether the transient component alone
is sufficient or if it should be use as a sub-parameter of the sinusoidal component, or
perhaps even use a hybrid approach tailored to each specific case.
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(b) Spectrogram of the output
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(c) Spectrogram of the sinusoids
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(d) Spectrogram of the noise

Figure 3.20: Violin.

3.4 Discussion and Conclusion

Throughout this chapter, we have explored how MM can be applied to the analysis
of spectrograms of music instrument sounds. These sounds often exhibit distinct ge-
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(c) Spectrogram and lines su-
perimposed

Figure 3.21: Violin vibrato.

ometric patterns, such as lines and holes, making MM well-suited for their detection.
However, the performance of the proposed method falls short of our expectations.

While it does reasonably well in detecting the desired geometric patterns, it lacks
the robustness required for such signal processing applications. This limitation is
evident from the impact of the thresholding process and the presence of interferences.
The method excels in recovering the noise component, which involves fewer steps.
Nonetheless, it is important to acknowledge that the core of noise component recovery
lies in the reconstruction by erosion, a computationally expensive operation that
demands several seconds of GPU computation for only a few seconds of sound.

Many of the challenges in our method are not exclusively rooted in the domain
of mathematical morphology. The shortcomings also extend to the STN synthesis
model. This model, while conceptually appealing, does not perform as well as ex-
pected. In particular, the transient generation has notable issues. For instance, the
synthesized signals are symmetric, an unrealistic feature in musical sounds. Addi-
tionally, the lack of coherent synchronization between transients and sines results in
audible discrepancies.

It is important to note that the distinction between the signal and the noise
can often be ambiguous, with each potentially obscuring the other and yielding un-
desirable outcomes. When the signal overshadows the noise, the situation is less
problematic since the opening operation effectively transforms it into noise, preserv-
ing the coherence of the noise component. However, when the noise masks the signal,
it results in fragmented lines with fading effects to manage, as well as the issue of
small lines that might be overlooked.
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(b) Spectrogram of the sinusoids
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(c) Spectrogram of the noise
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(d) Spectrogram of the output
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(e) Spectrogram of the output

Figure 3.22: Gong.

In conclusion, we believe that significant room for improvement exists both in the
MM pipeline itself to enhance its robustness and in the synthesis method to achieve
smoother component integration.

Additionally, we acknowledge the significant influence that parameter tuning can
have on the outcomes. This emphasizes the importance of incorporating human
expertise into the process. While this might pose challenges for full automation of
the pipeline, it presents an opportunity for meaningful collaboration between humans
and machines.
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(b) Spectrogram of the output
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(d) Spectrogram of the sinusoids
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(e) Spectrogram of the transient

Figure 3.23: Piano.

Specifically, we envision the development of a desktop application that empowers
users to interact with the system. Users could select specific regions of a spectrogram
and use MM techniques to effectively separate noise from the desired signal. This
interactive approach would not only harness the strengths of mathematical morphol-
ogy but also leverage human intuition and domain knowledge to enhance the overall
accuracy and quality of the results.

107





Chapter 4

Mathematical Morphology
Applied to Generate Piano Rolls

In the previous chapter, we have shown how to use MM to analyze spectrograms. In
this chapter and the following, we apply morphological operators to another kind of
time-frequency representation of music: piano rolls. Piano rolls have been exposed
in Section 2.3 as a useful representation of MIDI files and scores. In this chapter, we
focus on generating music in this format through the use of MM.

In the following, we use the notations exposed in Chapter 2. In particular, we
consider the complete lattice (AT ×F ,�), where T × F is a time-frequency space
with (GT ×F ,+) a group acting on it, and (A,≤) is one of the amplitude ranges
exposed in Section 2.1.3, endowing AT ×F with a structure of complete lattice given
by the pointwise order. With this structure, we can apply MM based on structuring
elements as exposed in Section 1.2.

The choices of T , F and A may vary depending on the specific cases, as exposed
in Chapter 2. The selection of T depends on whether the input is derived from a
MIDI file or a musical score. F will be either N or N12. While the amplitude range
might also differ, for the sake of simplicity, we use A3 = {⊥, ·,×} in the examples
provided. Additionally, we employ the Boolean lattice A2 = {0, 1}, which results in
a residuated triplet through the lattice multiplication operation • : A3 × A2 → A3

exposed1 in Section 2.1.3.2.
The chapter is structured as follows: in Section 4.1, we begin by establishing the

definitions of texture and harmony, which we subsequently employ to construct a
concept that we call harmonic texture. Then, in Section 4.2, we expose the process

1It is worth noting that we have modified the order of the inputs of • for consistency with the
subsequent notations.
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of generating piano rolls using MM and harmonic textures.

4.1 Texture and Harmony
The main contribution of this chapter is the establishment of a framework for the
generation of music based on two concepts borrowed from music theory: texture
and harmony. While these terms might exhibit varied and sometimes vague defini-
tions across different contexts, our objective here is to provide precise mathematical
definitions tailored to our specific objectives.

4.1.1 Texture
The term texture holds various interpretations across different domains. In the realm
of music, the concept of texture lacks a universally agreed-upon definition (Moreira,
2019). In (Couturier et al., 2022b), two distinct yet interconnected (Herold, 2012)
interpretations of the term texture have been identified.

The first interpretation is the orchestral texture, which concerns the timbral in-
teractions between musical instruments. This aspect has been extensively studied
in orchestration from the 19th century (Berlioz, 1844; Piston, 1955; Nordgren, 1960;
Guigue & de Paiva Santana, 2018).

The other interpretation, known as symbolic texture, has received less attention,
possibly due to its elusive nature. However, it is this latter interpretation that forms
the basis of our discussion, and we aim to provide a formal definition that captures its
essence. In recent years, there has been a growing interest in investigating symbolic
texture (Giraud et al., 2014; Parada-Cabaleiro et al., 2021; Soum-Fontez et al., 2021;
Couturier et al., 2022a, 2022b).

To formulate our definition of texture, we draw upon the concept of rhythm.
We provide a custom definition of rhythm for our framework, but we will see later
that it is fairly compatible with the definition of rhythm based on trees (Agon et
al., 2002) that is used in Computer Assisted Composition (Jacquemard et al., 2015;
Jacquemard et al., 2017; Ycart et al., 2016).

Definition 4.1 (Rhythm). We say that R ∈ AQ
3 is a rhythm if ∃N ∈ N such that

R =
N
∨

n=1

hn (4.1)
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where the hn ∈ AQ
3 are such that ∃sn ∈ Q, ∃dn ∈ Q+:

hn : Q → A3

t 7→ hn(t) =











× if t = sn

· if t ∈]sn, sn + dn[

⊥ if t /∈ [sn, sn + dn[

and hn ∧ hn′ = ⊥ if n 6= n′.
Each hn is called a hit and has a start sn and a duration2 dn. We notate hn ≡

(sn, dn) and R ≡ {(sn, dn)}Nn=1 for simplicity.

This definition links the notion of rhythm with the notion of time span that is
presented in (Lewin, 1987); each hit is equivalent to a time span, and a rhythm is
given by a set of hits.

In order to include also the possibility of a rhythm to be defined over a time space
T , we include the definition of a placed rhythm.

Definition 4.2 (Placed rhythm). Let T be a time space and ι : T → Q a function3.
We call R0 ∈ AT

3 a placed rhythm if ∃t0 ∈ T , ∃R ∈ AQ
3 such that

R0 = t0 +R : T → A3

t 7→ R0(t) = R(t− t0) := R(ι(t) + (−ι(t0)))
. (4.2)

These definitions might appear intricate for rhythms, but they represent a no-
tion of rhythm that can handle previous mathematical formalizations like the one
exposed in (Toussaint, 2013) and the one proposed in (Agon et al., 2002) (besides
the hierarchical component).

To be able to simplify the representation of rhythms, we are showing that a
rhythm can be represented by a vector.

Let R be a rhythm. We are creating a vector R ∈ AM3 for some M ∈ N that
represents this rhythm. We know that R can be written as

R =
N
∨

n=1

hn

2Notice that the duration may be zero, which is allowed for representing percussive rhythms
where the duration is not featured.

3The requirement for a function ι : T → Q arises from the need to establish an association
between an element t0 ∈ T and an element ι(t0) ∈ Q, thereby enabling the definition of the
additive inverse of t0, denoted as −t0 := −ι(t0).
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Chapter 4. Mathematical Morphology Applied to Generate Piano Rolls

with hn disjoint hit functions with corresponding starts and durations sn and dn,
respectively. We call en = sn + dn the ends.

Without loss of generality, we can order these functions such that n < m⇒ sn <

sm, having additionally that n < m⇒ en ≤ sm due to the hn being disjoint (notice
that they may be equal).

There is a single degenerated case that we will not address: the case where N = 1
and h1 ≡ (0, 0). In the other cases, let a ∈ Q+ be the greatest common divisor (GCD)
in the sense of rationals4 of the set {sn, en}Nn=1, which is commonly called in music
the tatum5.

With a, we can rewrite all the sn, en as ms
n,m

e
n with sn = ms

n · a and en = me
n · a.

Now, let

m0 = min{ms
n,m

e
n}Nn=1 m1 = max{ms

n,m
e
n}Nn=1

and M = m1 −m0 ∈ N if dN 6= 0 and M = m1 −m0 + 1 ∈ N if dN = 0. We give
then the following values to each element of the vector R:

∀m ∈ {0, 1, ...,M − 1}, Rm =
∨

t∈[t0,t1[
R(t) (4.3)

with t0 = (m+m0) · a ∈ Q and t1 = (m+m0 + 1) · a ∈ Q.
Let us illustrate this method with an example.

Example 4.3. Let us consider the rhythm
�
�
�
� |C  C where the vertical bar indicates

the place of the 0. This rhythm is illustrated in Figure 4.1.
It can be represented by the rhythm

R ≡ {(s1, d1) , (s2, d2) , (s3, d3) , (s4, d4)}

≡
{(

−1

4
,
1

8

)

,

(

−1

8
,
1

8

)

,

(

0,
1

4

)

,

(

1

2
,
1

4

)}

. (4.4)

The set {sn, en}4n=1 is
{

−1

4
,−1

8
, 0,

1

4
,
1

2
,
3

4

}

4That is, a ∈ Q+ is the GCD of p ∈ Q and q ∈ Q if ∃mp,mq ∈ Z such that p = a ·mp, q = a ·mq,
and a is the greatest rational that satisfies this property.

5This notion, whose name was given by Bilmes, 1993, has been studied in (Romero-García,
Lascabettes, et al., 2022; Romero-García, Guichaoua, et al., 2022).
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4.1. Texture and Harmony

with the GCD being a = 1
8
. We can rewrite then

s1 = −2 s2 = −1 s3 = 0 s4 = 4

e1 = −1 e2 = 0 e3 = 2 e4 = 6

and have m0 = −2, m1 = 6 and M = 6− (−2) = 8.
The resulting vector is given by

R = (×,×,×, ·,⊥,⊥,×, ·) .

−1
4

0 1
4

1
2

3
4

t

a

⊥

·

×

Figure 4.1: Representation of the rhythm
�
�
�
� |C  C by the function from Equation (4.4).

In the following, we will plot such a vector as

0
�
�

where we left the square empty for ⊥ and specify the place of the 0 and the tatum.
Notice that we used the GCD (the tatum) to quantize the rhythm, but that we

might have use a divisor of the tatum. In the case of the Example 4.3, have we set
the value of a to

©
� = 1

16
and we would have get the vector

0
©
�

Notably, we are capable of converting any rhythm tree into a rhythm. In (Jacque-
mard et al., 2015), it is demonstrated that each rhythm tree possesses an associated
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duration sequence. From this sequence, we can deduce the sequence of hits that
correspond to a rhythm in accordance with our definition6. This transformation
does involve a loss of the hierarchical structure inherent in rhythm trees, yet it is
important to acknowledge that this hierarchical nature cannot be represented within
the piano roll model.

Now, let us introduce our definition of texture.

Definition 4.4 (Texture). A texture T is a countable tuple of rhythms, i.e., T =
(Ri)i∈I ∈ RI ⊂ AT ×I

3 , where I is a countable set. A finite texture of size |I| is a
texture such that |I| <∞.

This definition might not immediately appear closely related to the symbolic
texture, but to give it meaning, we cannot separate it from the concept of harmony.
This concept will be exposed in detail in the following section, but before let us show
that a finite texture can be represented by a matrix.

Indeed, if T = (Ri)i∈I is a finite texture, we can represent each of its rhythms by
a vector by choosing the tatum of each of them. We choose the tatum of all of them
to make them quantized on the same grid, and then we stack them in a matrix in an
order related to I. We show that in the following example.

Example 4.5. Let us consider the rhythms issued from the excerpt

from the first movement of Beethoven’s Piano Sonata No.14, Op.27 No.2.
We may associate a rhythm for each pitch in the following way:

R1 =

{(

0,
1

12

)}

for G3 R2 =

{(

1

12
,
1

12

)}

for C4
R3 =

{(

2

12
,
1

12

)}

for E4 R4 =

{(

0,
3

16

)

,

(

3

16
,
1

16

)}

for G4
6This statement is made without proof, since it seems clear and the proof could be technical

and take us away from our subject.
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or in vector form

R1 =
0 C

R2 =
0 C

R3 =
0 C

R4 =
0 C

In order to stack them into a texture, we need to put all of them in the same
rhythm quantization. Since the tatum of R1, R2 and R3 is 1

12
and the one of R4 is

1
16

, and the GCD between is 1
48

, we can rewritten the rhythms as

R1 =
0 C

R2 =
0 C

R3 =
0 C

R4 =
0 C

and stack them into

T =

0 C

R1

R2

R3

R4

.

Notice that we reversed the traditional order for stacking vectors into matrices
in order to be more coherent with musical notation (where lower indices mean lower
pitches and are place in the bottom).

4.1.2 Harmony
The term harmony can be even more intricate to define than texture. “Harmony”
can refer to a field of study, a feature of a musical piece, or even an adjective.

In this context, harmony will be precisely defined in a mathematical manner to
suit our purpose. In order to achieve this, akin to the process with texture, we first
need to establish what we mean by a chord.
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Definition 4.6 (Chord). A chord C is a finite subset of F or GF , i.e., an element
of P(F) or P(GF).

This definition is intentionally broad. The absence of specification for the space
F and the group GF was intentional to keep the chord concept as general as possible.
However, we will encounter particular chord types in specific scenarios. The following
definition outlines four chord types that will be pertinent to our discussions.

Definition 4.7 (Types of chords). We call

• a positioned chord an element of P(N ),

• a chroma chord an element of P(N12),

• a positioned pattern an element of P(Z),

• a pattern an element of P(Z12).

These definitions comprise the four more general conceptions of chords; we list
some examples in the following.

Examples 4.8.

1. We usually consider the chord F major to be FM = {F,A,C} ∈ P(N12), that
is a chroma chord.

2. The positioned chord CM1,3,5,8
4 = {C4,E4,G4,C5} ∈ P(N ) is a root position

of the C major chord.

3. A cadential six-four chord is the positioned pattern 6
4 = {−5, 0, 4} ∈ P(Z) where

the 0 represents the tonic.

4. We say that the quality of C major is to be a major triad; the pattern of a
major triad starting from its root is M = {0, 4, 7} ∈ P(Z12).

The examples provided illustrate that what are commonly referred to as chords
are in fact one of the different types of chords we proposed. The subsequent examples
highlight instances where our definition identifies entities as chords, although this
may not align with conventional usage.

Examples 4.9.

1. The silence ∅ is any kind of chord, i.e.,

∅ ∈ P(N ), ∅ ∈ P(N12), ∅ ∈ P(Z), ∅ ∈ P(Z12) .
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2. A note n ∈ N forms a (positioned) chord {n} ∈ P(N ).

3. The major scale is the pattern {0, 2, 4, 5, 7, 9, 11} ∈ P(Z12), where 0 represents
the tonic.

4. The third mode of limited transposition of Messiaen is the pattern
{0, 2, 3, 4, 6, 7, 8, 10, 11} ∈ P(Z12).

5. The chromatic scale is Z12 ∈ P(Z12).

6. The V degree is the pattern {2, 7, 11} ∈ P(Z12).

7. A first inversion of an A minor chord is the positioned chord {C4,E4,A4}.

8. The augmented sixth chords may be described by the patterns following patterns:

Italian augmented sixth: {−4, 0, 6} ∈ P(Z)
French augmented sixth: {−4, 0, 2, 6} ∈ P(Z)

German augmented sixth: {−4, 0, 3, 6} ∈ P(Z)

where the 0 represents the tonic.

As in the case of rhythms, every finite non empty chord can be represented by a
vector belonging to AM2 for some M ∈ N∗. This is done as follows: let C be a chord;
then, |C| = N ∈ N∗. Let C = {c1, c2, ..., cN}. We shall discuss two different cases:
F = Z or N and F = Z12 or N12.

In the first case, let us consider the order in F given by the isomorphism with
Z. Then, we can define c0 = minC ∈ F and c1 = maxC ∈ F , with gives7 us
M = (c1 − c0) + 1 ∈ N∗. We define C ∈ AM2 by

∀m = 0, 1, ...,M, Cm =

{

1 if c0 +m ∈ C
0 if c0 +m 6∈ C . (4.5)

The case when F = Z12 or N12 is tackled by using systematically a vector of size
12. We will also use always the index 0 corresponding either to the shift 0 either to
the chroma C.

Chords will be plotted similarly as rhythms, but in this case, as vertical vectors,
which will be exploited in the following section.

7The subtraction between members of F should be understood as the signed distance induced
by the isomorphism with Z.
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Examples 4.10. Let us plot the chords from Examples 4.8.

FM =

1
0
0
0
0
1
0
0
0
1
0
0

C

F

A

CM1,3,5,8
4 =

1
0
0
0
1
0
0
1
0
0
0
0
1

C4

E4

G4

C5

6
4 =

1
0
0
0
0
1
0
0
0
1

−5

0

4

M =

1
0
0
0
1
0
0
1
0
0
0
0

0

4

7

While this representation of chords is adapted to our model, it takes a lot of
place, so we alternate between this and the traditional presentation as sets.

Having defined chords, let us now proceed to define harmony. It is important to
note that the definition of harmony we present is tailored to our specific objectives
and may not align with a universal understanding of the term.

Definition 4.11 (Harmony). A harmony H is an countable tuple of chords, i.e.,
H = (Ci)i∈I ∈ (P(F))I ≃ P(F × I), with I being a countable set. A finite harmony
of size |I| is a harmony where |I| <∞.

We see that the notion of harmony is analogous to the notion of texture with
the substitution of time by frequency and rhythm by chord. We can also establish
the different kinds of harmonies depending on the different choices for the frequency
space or group.

Definition 4.12 (Types of harmonies). Let I be a countable set. We call

• a positioned harmony an element of (P(N ))I ,

• a chroma harmony an element of (P(N12))
I ,

• a positioned harmonic pattern an element of (P(Z))I ,

• a harmonic pattern an element of (P(Z12))
I .

Before showing how to combine textures and harmonies to create music, let us
give some examples of harmonies.

118



4.1. Texture and Harmony

Examples 4.13.

1. A cadential six-four in major mode is the positioned harmonic pattern

({−5, 4, 7, 12}, {−5, 2, 7, 11}, {−12, 4, 7, 12}) ∈ (P(Z))3

where 0 is the tonic.

2. Its corresponding positioned harmony in F is

({C4,A4,C5,F5}, {C4,G4,C5,E5}, {F3,A4,C5,F5}) ∈ (P(N ))3 .

3. The V7-I harmonic pattern is

({7, 11, 2, 5}, {0, 4, 7}) ∈ (P(Z12))
2 .

4. Its corresponding chroma harmony in F is

({C,E,G,B }, {F,A,C}) ∈ (P(N12))
2 .

These examples are illustrated in Figure 4.2

(a) A cadential six-four positioned
harmonic pattern and its positioned
harmony in F

V7 I

C
7

E
11

G
2

B 
5

A 4

F
0

C
7

(b) The V7-I harmonic pattern and its correspond-
ing chroma harmony in F

Figure 4.2: Illustration of the harmonies from Examples 4.13.

These examples highlight the relationship between chords and patterns. While
chords correspond to points in the space F , patterns are shifts within the group GF .
In the upcoming discussion, we will simplify notation by using F interchangeably
for either F or GF . This approach aims to enhance the ease of generalization when
dealing with chords.

As in the case of textures, harmonies can be represented by a matrix.
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Example 4.14. Let us consider the harmony of the left hand of Chopin’s Prelude
nº4 in E minor (Figure 4.3a). If we consider the 11 chords that appear (Figure 4.3b)
and we stack them in order of appearance, we have the harmony given in Figure 4.3c.

(a) Score

(b) Harmony

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

E3

G3

B3

C4

(c) Matrix representing harmony

Figure 4.3: Chopin’s Prelude Nº4, Op.28 mm.0-5.

4.1.3 Harmonic Texture
Now that we have defined texture and harmony, let us see how we can combine them
to create time-frequency elements and create music.

We start by defining the combination of a rhythm and a chord. To do that, we
draw upon two mathematical tools: first, we identify a chord with its characteristic
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function, that is
1 : P(F) → AF

2

C 7→ 1C

. (4.6)

We omit the characteristic function and say that a chord C belongs to AF
2 . In this

case, a harmony is an element of
(

AF
2

)I ≃ AF×I
2 .

Secondly, we use the residuated triplet induced by the lattice multiplication ex-
posed in Section 2.1.3.2.

• : A3 ×A2 → A3

(a, b) 7→ a • b =

{

a if b = 1

⊥ if b = 0

. (4.7)

Now we are able to define a rhythmed chord.

Definition 4.15 (Rhythmed chord). Let R ∈ AT
3 be a rhythm and C ∈ AF

2 be a
chord. Then, the rhythmed chord R⊗ C is defined as

R⊗ C : T × F → A3

(t, ξ) 7→ R(t) • C(ξ)
. (4.8)

Let us illustrate a rhythmed chord in the following example.

Example 4.16. Consider the left hand of the first four measures of the Mozart’s
Piano Sonata No. 8 in A minor, K. 310 / 300d (see Figure 4.7).

Then, if we consider the placed rhythm R0 = t0 + R ∈ AT 
3 given by8 t0 =

(1, 1, 0) ∈ T  and R ≡ {(0, 1
8
), (1

8
, 1
8
), (2

8
, 1
8
), (3

8
, 1
8
)}, and the positioned chord Am =

{A3,C4,E4} ∈ AN
2 , we have that R0 ⊗ Am represents the two first beats of the left

hand. Figure 4.4 illustrates this fact.

We can now define our fundamental mathematical object.

Definition 4.17 (Harmonic texture). Let I be a countable set of indices. Let T =
{Ri}i∈I ∈ AT ×I

3 be a texture and let H = {Ci}i∈I ∈ AF×I
2 be a harmony. We define

the harmonic texture generated by T and H as

T ⊗H =
∨

i∈I
Ri ⊗ Ci ∈ AT ×F

3 . (4.9)

8We recall that, as exposed in Section 2.1.1.3, we denote a timestamp inside a score as a triplet
referring to bar, beat and offset.
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(a) First measure

(1, 1, 0) (1, 3, 0) (2, 1, 0)
Time (m, b, o)

⊥

⋅
×

(b) R0

(1, 1, 0) (1, 3, 0) (2, 1, 0)
Timestamps

A3

C4

E4

No
te

s

⊥

⋅

×

(c) R0 ⊗Am

A3

C4

E4

No
te
s

0

1

(d) Am

Figure 4.4: Model of the left hand of the first measure of Mozart’s Piano Sonata No.
8 in A minor, K. 310 / 300d through the rhythmed chord R0 ⊗ Am.

Remark 4.18. Notice that we made an abuse of notation when writing T⊗H; indeed,
T and H are (strictly speaking) functions with I as domain, which means that their
tensor product would have I × I as domain.

If we present texture and harmony with matrices, i.e., T ∈ AN×I
3 and H ∈ AM×I

2 ,
with N,M, I ∈ N∗, we find that the harmonic texture is a matrix multiplication,
replacing the sum by the supremum.

Indeed, if we have a texture T = (Ri)i∈I and a harmony H = (Ci)i∈I , both
indexed by I, the harmonic texture T ⊗H is written as

(T ⊗H)(t, ξ) =

(

∨

i∈I
Ri ⊗ Ci

)

(t, ξ)

=
∨

i∈I
Ri(t) • Ci(ξ)
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that shall be compared with the matrix multiplication between two matrices A = (ati)
and B = (biξ) that is given by

(A · B)tξ = (ati) · (biξ)
=
∑

i∈I
ati · biξ

with the same requirement of index compatibility.
Moreover, if we use the tensor notation for texture and harmony, i.e., T i

n, Hm
j ,

the harmonic texture HTm
n would be the (supremum) contraction on the index i,

that is, using the Einstein summation convention,

HTm
n = T i

nH
m
i :=

∨

i

T i
nH

m
i (4.10)

Example 4.19. Let us consider the left hand of the measure 41 from the first move-
ment of Beethoven’s Piano Sonata No.17, Op.31 No.2.

Figure 4.5 shows how to render this harmonic texture through matrix multiplica-
tion.

Let us explore some examples of harmonic textures.

Example 4.20. We call the Alberti bass with tatum
�
� the texture

T = (Ri)i∈I =

0
�
�

with I = {0, 1, 2}.
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1

1

1

1
1

E3

B3

E4

(a) Harmony
0

�
�

E3

B3

E4

(b) Harmonic texture

0
�
�

(c) Texture

Figure 4.5: Harmonic texture as a matrix multiplication representing the left hand of
the measure 41 from the first movement of Beethoven’s Piano Sonata No.17, Op.31
No.2.

It is used for instance in the left hand of Mozart’s Piano Sonata No.16 in C major,
K.545 mm.1-4 exposed in Figure 4.6. Indeed, if we choose the following harmonies:

H0 =





{E4}
{G4}
{C4}



 H1 =





{E4}
{G4}
{C4}



 H2 =





{F4}
{G4}
{D4}



 H3 =





{E4}
{G4}
{C4}





H4 =





{F4}
{A4}
{C4}



 H5 =





{E4}
{G4}
{C4}



 H6 =





{D4}
{G4}
{B4}



 H7 =





{E4}
{G4}
{C4}
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we have that the first four measures are represented by supremum of the harmonic
textures

7
∨

j=0

(tj + T )⊗Hj

where tj = (1, 1, 0) + j

2
∈ T  and t+ T = (t+Ri)i∈I ∈ AT  ×I

3 .

Figure 4.6: Mozart’s Piano Sonata No.16 in C major, K.545 mm.1-4.

This construction is extremely flexible and allows us to understand through the
same texture chords of different sizes. Let us show that by examining the left hand
of the first four measures of the Mozart’s Sonata No.16 in A minor, K. 310 / 300d
(Figure 4.7).

Example 4.21. Let R be the rhythm of the Example 4.16 and let C0 and C1 be the
chords C0 = {A3,C4,E4} and C1 = {A3,B3,D4,E4}. Then, the first four measures
of the Mozart’s Sonata No.16 in A minor, K. 310 / 300d are represented by

(t1 +R)⊗ C0 ∨ (t2 +R)⊗ C1 ∨ (t3 +R)⊗ C0 ∨ (t4 +R)⊗ C1

where ∀n ∈ {1, 2, 3, 4}, tn = (n, 1, 0) ∈ T  .

An even more revealing example is the start of the Lacrimosa of Mozart’s Requiem
in D minor, K.626.

Example 4.22. We consider together the parts of the Violins and Viola of the first
two measures of the Lacrimosa of Mozart’s Requiem in D minor, K.626 (Figure 4.8).

Let T ∈
(

AQ
3

)3 be the texture
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Figure 4.7: Mozart’s Sonata No.16 in A minor, K. 310 / 300d, mm.1-4.

0
�
�

Let us consider the harmonies

H0 = ({D4,F4}, {C5}, {D5}) H1 = ({F4,A4}, {A5}, {B 5})
H2 = ({E4,G4}, {D5}, {C5}) H3 = ({G4,C4}, {C6}, {B 5})
H4 = ({F4,D5}, {A5}, {D6}) H5 = ({G3,E4}, {B 5}, {G5})
H6 = ({A3,D4}, {E5}, {F5}) H7 = ({A3,G4}, {A5}, {C5}) .

Then, the excerpt may be represented by the supremum
7
∨

i=0

(ti + T )⊗Hi

with ti = (1, 1, 0) + 3i
8
∈ T 128 and t+ T = (t+Ri)i∈I ∈ AT

128 ×I
3 .

A potential limitation of the notion of texture is that several different textures
in the musical sense may appear as the same texture in our definition. For instance,
the textures and are both represented by the texture R = (Ri)

3
i=0 with

Ri ≡ {( i8 , 18)} but they are fairly different musically. This flaw is solved by defining
the concept of chord texture.
Definition 4.23 (Chord texture). Let T = (Ri)i∈N be a texture and let C ∈ AF

2 be
a positioned chord or a positioned pattern, i.e., F = N or F = Z. We define the
chord texture generated by T and C as

T ⊗ C := T ⊗HC ∈ AT ×F
3 (4.11)

with HC = ({ci})|C|
i=1 and ∀i, j ∈ {1, 2, ..., |C|}, i < j ⇒ ci < cj, where the order in

N is the one induced by the isomorphism with Z.
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Figure 4.8: Lacrimosa of Mozart’s Requiem in D minor, K.626, mm.1-4.

Example 4.24. If we examine the left hand of Chopin’s Nocturnes 1 and 2, Op. 9
(see Figure 4.10), we see that both share the same note values (eighth notes) and
then similar textures; however, if we model them through chord textures, we have a
different point of view.

For Nocturne 1, we choose the texture exposed in Figure 4.9a.
For Nocturne 2, we choose the texture exposed in Figure 4.9b.
With these textures, we can then model the left hand through chord textures with

the following chords:

1. for Nocturne 1, mm. 1-2

C1 = (B 2,F3,B 3,D 4,F4) C2 = (B 2,F3,A3,E 4,F4)
C3 = (B 2,F3,B 3,D 4,F4) C4 = (B 2,F3,B 3,D 4,F4)

2. for Nocturne 2, m. 1

C1 = (E 2,G3,B 3,E 4,G4) C2 = (E 3,A 3,C 4,D4,A 4)
C3 = (E 2,G3,B 3,E 4,G4) C4 = (D2,G3,B 3,E 4,G4) .

Another interesting point of chord textures is that we may model melodies and
motives with them9. Let us see an example.

Example 4.25. Let us consider the right hand of the 3rd movement of Mozart’s
Sonata Nº11 (see Figure 4.11). We consider the texture T = {Ri}3i=0 with

9It is not exclusive to chord textures; we can do that also with harmonic textures, but usually it
is important to keep the notion of order in the notes when dealing with melodies (and with motives,
to a less extent).
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0
�
�

(a) Texture for Nocturne 1

0
�
�

(b) Texture for Nocturne 2

Figure 4.9: Textures for chord textures represented by arrays.

(a) Nocturne 1, mm. 0-2

(b) Nocturne 2, mm. 1-4

Figure 4.10: Incipit of Chopin’s Nocturnes 1 and 2, Op. 9.

0
©
�
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Then, the 10 first notes of the right hand may be represented by the texture T applied
to the chords C1 = (G4,A4,B4,C5) and C2 = (B4,C5,D5,E5). Furthermore, the
second half of the measure 3 and the first eighth of the measure 4 may be represented
by the chord C3 = (G5,A5,B5,C6).

Actually, if we had chosen as texture the sub-texture {Ri}2i=0 of texture T , we
may even justify the second half of measure 2 and the first half of measure 3.

Figure 4.11: Mozart’s Sonata Nº11, 3rd movement, Alla Turca - Allegretto, mm. 0-4

4.2 Generating Piano Rolls with Harmonic Tex-
tures and Mathematical Morphology

We have now a potentially powerful tool for generating piano rolls and explaining the
way scores are created through the use of time-frequency entities (rhythms/chords
and textures/harmonies). However, to generate complex tonal10 pieces, we need to
be able to combine these harmonic textures into bigger structures.

We do that by using morphological dilation and a tree structure. In Section 4.2.1,
we present how to combine several harmonic textures by using the morphological
greyscale dilation. Then, in Section 4.2.2, we organize several dilations into a tree,
which enables us to create complex pieces through the use of hierarchical structures.
Finally, in Section 4.2.3, we expose how to implement this computationally, in par-
ticular by the creation of an XML schema that defines a ScoreXML file that can be
compiled into a PianoRoll data structure.

10In this work, the examples are picked-up from Western tonal music, but the formalism can
handle any type of music based on rational divisions of the time and integer divisions of the octave.
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4.2.1 Combining Harmonic Textures with Dilation
In previous examples, we have seen how to produce music excerpts by using harmonic
textures. However, there was always a moment in which we needed to combine
different harmonic textures to render an excerpt. In these examples, the combination
was made by using the supremum operator on shifted versions of the texture, with
expressions like

∨

t+ T , which emulated concatenation.
In this section, we will generalize both concatenation and superposition by using

morphological dilation. Let us illustrate that with an example. We consider measures
0 to 8 of Beethoven’s Piano Sonata No.17, Op.31 No.2 mm.0-8 (Figure 4.12). We are
showing how to build them by using harmonic textures and morphological dilation.

Figure 4.12: Beethoven’s Piano Sonata No.17, Op.31 No.2 mm.0-8.

Let us define the textures

T1 =

0
©
�

T2 =

0
©
�

T ′
2 =

0
©
�

belonging to AQ×I
3 , with |I| = 4, and the chords11

Dmin = {A4,D5,E5,F5} A7 = {A4,E5,F5,G5}
Dm = {D3,A3,D4,F4} AM = {A2,A3,C4,E4}

belonging to AN
2 , and with cardinal 4 (thus generating harmonies of size 4 for the

chord texture).
We now form the following chord textures:

Dmin2 = T2 ⊗Dmin A72 = T2 ⊗ A7 Dm1 = T1 ⊗Dm
Dmin′

2 = T ′
2 ⊗Dmin A7′

2 = T ′
2 ⊗ A7 AM1 = T1 ⊗ AM .

11The names of the chords are selected based on the quality of the chords (M→major, m→minor,
7→ dominant seventh and min→ minor scale) for avoiding long notations, but we shall recall that
they are positioned chords.
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We want to combine them into a single piano roll P . For doing that, we use the
morphological dilation

P = A⊕ B :=
∨

j∈J
Aj ⊕ Bj

where Aj ∈ AT
38×Z

2 and Bj ∈ AQ×N
3 are the following:

B1 = Dmin2 A1 = {
(

(1, 1, 0), 0
)

,
(

(2, 1, 0), 0
)

,
(

(3, 1, 0), 0
)

}
B2 = Dmin′

2 A2 = {
(

(4, 1, 0), 0
)

}
B3 = A72 A3 = {

(

(5, 1, 0), 0
)

,
(

(6, 1, 0), 0
)

,
(

(7, 1, 0), 0
)

}
B4 = A7′

2 A4 = {
(

(8, 1, 0), 0
)

}
B5 = Dm1 A5 = {

(

(1, 1, 0), 0
)

,
(

(2, 1, 0), 0
)

,
(

(3, 1, 0), 0
)

,
(

(8, 1, 0), 0
)

}
B6 = AM1 A6 = {

(

(4, 1, 0), 0
)

,
(

(5, 1, 0), 0
)

,
(

(6, 1, 0), 0
)

,
(

(7, 1, 0), 0
)

} .

The result is show in Figure 4.13.

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (7, 1) (8, 1)
Time (m, b)

A2

D3

G3

C4

F4

B♭4

E♭5

Pi
tc

h

Figure 4.13: Piano roll generated by a dilation representing the measures 0 to 8 of
the 3rd movement of Beethoven’s of Piano Sonata No.17, Op.31 No.2.

This procedure is a way of generating infinite possibilities of piano rolls, using
three elements:

1. a collection of activations A = (Aj)j∈J ∈ AT ×Z×J
2 ,
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2. a collection of harmonic textures B = (Bj)j∈J ∈ AQ×F×J
3 generated by

(a) a collection of textures T = (Tj)j∈J = (Rj
i )
j∈J
i∈Ij ∈ A

Q×Ij×J
3 ,

(b) a collection of harmonies H = (Hj)j∈J = (Cj
i )
j∈J
i∈Ij ∈ A

F×Ij×J
2 .

The generation of a piano roll P ∈ AT ×F
3 is summarized by the formula12

P = A ⊕B

= A ⊕T ⊗H (4.12)
=
∨

j∈J
Aj ⊕ Tj ⊗Hj

=
∨

j∈J
Aj ⊕





∨

i∈Ij
R
j
i ⊗ Cj

i





=
∨

j∈J

∨

i∈Ij
Aj ⊕Rj

i ⊗ Cj
i . (4.13)

Some interesting nuances merit to be outlined; the textures have Q × Ij × J as
domain, and the harmonies F × Ij × J , which make the harmonic textures having
as domain Q × F × J . This is compatible with the fact that the activations have
T × Z × J as domain, since there is a sum action defined between T and Q, and
between F and Z. However, another possibility, like using T for textures and Q for
activations, can work. In fact, every combination that allows to have a sum between
members of the different spaces (which is required by the definition of the dilation)
is acceptable.

This leads us to explain the meaning of the 0 that is the frequency used in every
point of Aj; this frequency means “no shift”. However, if we consider the measures
150 to 158 of the same piece (Figure 4.14), we see that we might have represented
this excerpt by using the exact same harmonic textures but changing the activations,
making a translation in time of 150 · 3

8
and using −4 instead of 0 in the frequencies.

These considerations lead us to the definition of compatibility.

Definition 4.26 (Compatibility). Let TA and TB be either a time space either a
time group. Let FA and FB be either a frequency space either a frequency group.
We say that TA (resp. FA) is compatible with TB (resp. FB) with output TC (resp.
FC) if there is a sum operator + : TA × TB → TC (resp. + : FA ×FB → FC).

12We assume that ⊗ has priority over ⊕ as in the case of × and +.
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Figure 4.14: Beethoven’s Piano Sonata No.17, Op.31 No.2 mm.150-158.

The compatibility arises in the context of spaces with groups acting on them;
when we have a space E and a group (G,+) acting on it, there is three cases of
compatibility:

1. the group with itself, the output being the group, given by the sum
+ : G×G→ G,

2. the space with the group, the output being the space, given by the sum
+ : E ×G→ E,

3. the group with the space, the output being the space, given by the sum
+ : G× E → E, (x, p) 7→ p+ x.

The only case of incompatibility is between the space and the space, where there
is no meaningful13 interpretation of a sum; what would mean C4 + C4?

The notion of compatibility might also be defined for the lattices; if we have the
lattices AA, AB and AC , the compatibility would mean that there is a residuated
triplet defined by the lattice multiplication • : AA × AB → AC . The paradigmatic
case of that is the lattice multiplication presented in Section 2.1.3.2.

What we think might be the default choice is to use the space-like elements for
activations and the group-like elements for harmonic textures. For instance, we might
have chosen the patterns

min = {−5, 0, 2, 3} 7 = {−5, 2, 3, 5}
m = {0, 7, 12, 15} M = {−5, 7, 11, 14}

which belong to AZ
2 , and thus having harmonic textures belonging to AQ×Z

3 , and the

13Of course we may artificially define a sum, but we only focus on sums that make musical sense.
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activations

A1 = {
(

(1, 1, 0),D5
)

,
(

(2, 1, 0),D5
)

,
(

(3, 1, 0),D5
)

}
A2 = {

(

(4, 1, 0),D5
)

}
A3 = {

(

(5, 1, 0),D5
)

,
(

(6, 1, 0),D5
)

,
(

(7, 1, 0),D5
)

}
A4 = {

(

(8, 1, 0),D5
)

}
A5 = {

(

(1, 1, 0),D3
)

,
(

(2, 1, 0),D3
)

,
(

(3, 1, 0),D3
)

,
(

(8, 1, 0),D3
)

}
A6 = {

(

(4, 1, 0),D3
)

,
(

(5, 1, 0),D3
)

,
(

(6, 1, 0),D3
)

,
(

(7, 1, 0),D3
)

}

which belong to AT
38×N

2 , and we would produce the same piano roll.
We finish this section mentioning that this formalism can handle also the use

of dynamics: if we use functions Aj ∈ DT ×F and the residuated triplet exposed in
Section 2.1.3.4, we would have

A ∈ DT ×F×J , T ∈ AQ×Ij×J
3 , H ∈ AZ×Ij×J

2 ,

and
P = A ⊕T ⊗H ∈ AT ×F

D . (4.14)

4.2.2 Structuring a Piano Roll as a Tree
We have now a way of creating piano rolls that relies on applying the morphological
dilation on activations and harmonic textures that share a set of indexes (that we
called J). However, this is not very practical for creating bigger structures like
complete pieces of music. A mere set of indexes J dos not tell that much about the
structure of a piece and how it is organized.

This is why we develop in this section a more refined strategy, that is organizing
the piano roll as a tree.

Hierarchical structures are omnipresent in music analysis and composition; it is
the core of the generative grammar (Chomsky, 1965) that impulsed the Generative
Theory of Tonal Music (Lerdahl, 1983). In particular, hierarchy is used to explain
structure in music (Lerdahl & Jackendoff, 1983), and its representation in form of
a tree is a very used one (Marsden et al., 2013; Orio & Roda, 2009; Koelsch et al.,
2013; Carnovalini et al., 2021).

In this section, we are going to organize the structure of a musical piece in a tree
formed by activations and piano rolls. This organization will permit us to understand
better the fragments and their relative role. We call this tree a score tree.
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Definition 4.27 (Score tree). We call S a score tree of domain TS ×FS if

S =
(

(A1, B1), (A2, B2), ..., (AN , BN)
)

=
(

(An, Bn)
)N

n=1
(4.15)

with An ∈ ATA×FA

2 and Bn being either a harmonic texture Bn ∈ ATB×FB

3 , either a
score tree of domain TB ×FB, such that TA ×FA and TB ×FB are compatible with
output TS ×FS.

The way of transforming a score tree into a piano roll is by using recursively
the morphological dilation. Indeed, the piano roll PS associated to the score tree
S =

(

(An, Bn)
)N

n=1
is given by the formula

PS =
N
∨

n=1

An ⊕ PBn
(4.16)

where PBn
is either Bn if it is a harmonic texture or the piano roll associated to Bn

if it is a score tree.
In the following, we make the abuse of notation

S = A1 ⊕ B1 ∨ A2 ⊕ B2 ∨ ... ∨ AN ⊕ BN

that consists on identifying a score tree with its resulting piano roll.
Let us show an example of such a decomposition of a score into a score tree.

Example 4.28. We call S the score tree representing first movement of Mozart’s
Piano Sonata No.16 in C major, K.545. We divide its structure in two parts corre-
sponding to the sections enclosed by repeat signs, i.e., Part 1 consists on mm. 1-28
and Part 2 in mm. 29-73. The corresponding score tree description is

S =
(

{(0, 0), (28, 0)} ⊕ Part 1 ∨ {(56, 0), (100, 0)} ⊕ Part 2
)

(4.17)

⊕
(

(1, 1, 0),C4
)

(4.18)

where we factor out the point-like elements (1, 1, 0) and C4.
We can divide even further the score in the following way

S =
(

{(0, 0), (28, 0)} ⊕ ({(0, 0)} ⊕ Exp.)∨

{(56, 0), (100, 0)} ⊕ ({(0, 0)} ⊕ Dev. ∨ {(13, 0)} ⊕ Rec.)
)

⊕
(

(1, 1, 0),C4
)
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where Exp.14 consists on mm. 1-28, Dev.14 on mm. 29-41 and Rec.14 on mm.
42-73.

The split can go even further, but writing it in mathematical form is cumbersome.
We choose rather a diagram shown in Figure 4.15. While the leaves in the tree are
not precisely harmonic textures, they exhibit a certain textural similarity that allows
the possibility of generating them with few textures and harmonies.

For instance, let us show how to render A2 as a score tree. We can indeed
decompose it as in Figure 4.16 with

T1 =

0
©
�

T2 =
0 C

and

C1 = Maj136 , H1 = ({−4}, {5, 12}),
C2 = Maj125 , H2 = (4, 12}, {4, 12}),
C3 = Maj114 , H3 = (2, 12}, {2, 11}),
C4 = Maj103 , H4 = (0, 12}, {0, 4}).

with Majba being the chord formed by taking the elements ath to bth from the list

Maj = (0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21) .

14The labels Exp., Dev. and Rec. stand for the sections of the sonata form, namely Exposition,
Development and Recapitulation respectively.
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S

Part 1

Exp.

Th. A

A1

A2

A3

Br.

P1

Th. B

B1

B2

B3

B4

Part 2

Dev.

D1

D2

D3

ReExp.

Th. A′

A′
1

A′
2

A′′
2

A′
3

Br.′

P ′
1

Th. B′

B′
1

B′
2

B′
3

B′
4

⊕
{(

(1, 1, 0),C4
)}

⊕{(0, 0), (28, 0)}
⊕{(0, 0)}

⊕{(0, 0)}
⊕{(0, 0)}
⊕{(4, 0)}
⊕{(8, 0)}

⊕{(12, 0)}
⊕{(0, 0)}
⊕{(13, 0)}
⊕{(0, 0)}
⊕{(4, 0)}
⊕{(8, 0)}
⊕{(12, 0)}

⊕{(56, 0), (100, 0)}
⊕{(0, 0)}
⊕{(0, 0)}
⊕{(4, 0)}
⊕{(8, 0)}
⊕{(13, 0)}

⊕{(0, 0)}
⊕{(0, 0)}
⊕{(4, 0)}
⊕{(8, 0)}

⊕{(12, 0)}
⊕{(0, 0)}
⊕{(13, 0)}
⊕{(0, 0)}
⊕{(4, 0)}
⊕{(8, 0)}
⊕{(12, 0)}

Figure 4.15: Formal structure of Mozart’s Piano Sonata No.16 in C major, K.545.
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A2

RH

T1 ⊗ C1

T1 ⊗ C2

T1 ⊗ C3

T1 ⊗ C4

LH

T2 ⊗H1

T2 ⊗H2

T2 ⊗H3

T2 ⊗H4

⊕{(0, 0)}
⊕{(0, 0)}
⊕{(1, 0)}
⊕{(2, 0)}
⊕{(3, 0)}

⊕{(0,−12)}
⊕{(0, 0)}
⊕{(1, 0)}
⊕{(2, 0)}
⊕{(3, 0)}

Figure 4.16: Score tree of A2

4.2.3 Computational Implementation
This framework allows us to generate piano rolls by using harmonic textures orga-
nized in score trees. In this section, we show how to implement this model compu-
tationally in an object-oriented language. In particular, we use two languages that
will interact: XML and Python.

The idea is to describe the score tree as an XML file (that we call ScoreXML)
with a XML Schema Definition (XSD) associated that validates it. Once the score
tree is written, it can be compiled by a Python script to produce a piano roll (using
morphological dilation). This piano roll, which is a Python object, can then be plot-
ted15, transformed into a MIDI file or, in future extensions, written as a MusicXML
file.

The full code is available in the repository that accompanies this thesis16, so we
limit ourselves to expose a reduced description of the objects (that serve both for the
XML and for the Python objects). We recall that in Python the methods __neg__,
__add__, __mul__ override the operators -, + and *, respectively. We also precise
that frac stands for fractional numbers and int for integers.

We expose first the most basic elements of our model: time and frequency.

Time: {
value: frac

}
15All the figures that represent piano rolls in this thesis are done with this method.
16https://github.com/Manza12/MMM
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Frequency: {
value: int

}
TimeShift(Time): {

__neg__(self) -> TimeShift
__add__(self, time: TimeShift) -> TimeShift

}
FrequencyShift(Frequency): {

__neg__(self) -> FrequencyShift
__add__(self, frequency: FrequencyShift) -> FrequencyShift

}
TimePoint(Time): {

__add__(self, time: TimeShift) -> TimePoint
}
FrequencyPoint(Frequency): {

__add__(self, frequency: FrequencyShift) -> FrequencyPoint
}
TimeFrequency: {

time: Time
frequency: Frequency

}

With these objects we can already define a piano roll; indeed, we can implement the
lattice multiplication • : A3 ×A2 → A3 by using integer numbers with the product
if we set A2 = {0, 1} and A3 = {0, 1, 2}.

PianoRoll: {
array: int[M][N]
origin: TimeFrequency
tatum: TimeShift
__add__(self, piano_roll: PianoRoll) -> PianoRoll

}

Then, we can create the objects for creating harmonic textures.

Hit: {
start: Time
duration: TimeShift

}
Rhythm: {
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hits: List[Hit]
}
Texture: {

rhythms: List[Rhythm]
__mul__(self, harmony: Harmony) -> HarmonicTexture
__mul__(self, chord: Chord) -> ChordTexture

}
Chord: {

notes: List[Frequency]
}
Harmony: {

chords: List[Chord]
}
HarmonicTexture(PianoRoll): {

texture: Texture
harmony: Harmony

}
ChordTexture(HarmonicTexture): {

texture: Texture
chord: Chord

}

Finally, we can define the score tree. We need for that to define also the activa-
tions.

Activations: {
values: List[TimeFrequency]
__add__(self, piano_roll: PianoRoll) -> PianoRoll

}
ScoreTree: {

components: List[
Tuple[Activations, Union[HarmonicTexture, ScoreTree]]

]
to_piano_roll(self) -> PianoRoll

}
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Chapter 5

Mathematical Morphology
Applied to Analyze Piano Rolls

The analysis of piano rolls using mathematical morphology was the first application of
MM to music (Karvonen & Lemström, 2008; Karvonen, 2008; Karvonen et al., 2011;
Lascabettes, 2019; Lascabettes et al., 2020; Lascabettes et al., 2022). The primary
focus of these works has been on motif detection. In this thesis, we extend the
analysis by incorporating considerations related to texture and harmony. An attempt
to analyze harmony using MM has already been made in a previous study (Romero-
García, Bloch, et al., 2022).

In the previous chapter, we proposed a description of a piano roll P ∈ AT ×F as
a combination of activations of harmonic textures by the formula1

P = A ⊕T ⊗H (5.1)

where A ∈ ATA×FA×J
A , T ∈ ATT×Ij×J

T , H ∈ AFH×Ij×J
H are such that (AA,AT ,AH)

form a residuated triplet, (TA, TT ) and (FA,FH) are compatible (see Definition 4.26),
and J and Ij, ∀j ∈ J , are sets of indices.

This framework has enabled us to establish a method for constructing music using
elementary components known as harmonic textures. These textures are positioned
within the piano roll by means of morphological dilation between them and the
activations. This approach highlights two fundamental parameters of music: texture
and harmony.

In this chapter, our objective is to perform the reverse operation: can we extract
the underlying parameters from a given piano roll? In mathematical terms, this can

1We recall that ⊗ has priority over ⊕.
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be reformulated as follows: given a piano roll denoted as P , can we determine the
values of A , T , and H in such a way that Equation (5.1) is satisfied?

Indeed, this task is highly challenging. It is not even well-posed due to the
existence of a trivial solution where a single texture, harmony, and activation could be
assigned to each note. The more pertinent question is: among the countless possible
choices, which values of A , T , and H would constitute the optimal solution?

Providing a definitive answer to this question is not within our expectations, as
we believe that a unique solution might not exist. Instead, in the upcoming sections,
we delve into the difficulties, theoretical considerations, and practical challenges we
encounter in this endeavor.

The chapter is structured into three main sections. In Section 5.1, we employ
morphological erosion to analyze piano rolls, specifically choosing harmonic textures
as structuring elements. In Section 5.2, we continue to employ erosion, this time with
textures as structuring elements. This analytical approach to piano rolls presents
several challenges that we address by using graphs. The payoff of this approach is
significant, leading to the compression of piano rolls into vertical chords. With these
chord sequences as input, we delve into Section 5.3, where we once again employ
erosion, this time using harmonies as structuring elements. The interpretation of the
erosion proves to be highly productive, enabling us to tackle the Roman numeral
analysis problem using this technique and once again making use of graphs.

5.1 Analyzing Piano Rolls with Harmonic Tex-
tures

We begin by examining what insights the theory of mathematical morphology can
offer regarding a piano roll generated with Equation (5.1). To enhance clarity, we
will accompany each step with illustrative examples.

Let P ∈ AT ×F be a piano roll. In this section, we do not delve into the particular
attributes of A, T , and F . Instead, we assume that these aspects have been appro-
priately determined. We recall that (AT ×F ,�) is a complete lattice. Furthermore,
we assume that (A,A,A) is a residuated triplet and that T × F is compatible with
itself.

In this section, our objective is to find A ∈ AT ×F×J and B ∈ AT ×F×J such that
P = A ⊕B. Similar research is currently be done by Lascabettes, 2023.

To approach this task, we can begin by employing the adjoint operator of dilation
⊕, which is the erosion ⊖. For instance, if we let B1 ∈ AT ×F , applying the erosion
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5.1. Analyzing Piano Rolls with Harmonic Textures

to P results in:
P ⊖ B1 := A1 ∈ AT ×F . (5.2)

Since ⊕ and ⊖ are adjoint operators forming a dilation/erosion pair, we know
that • := ⊕ ◦ ⊖ is a closing and ◦ := ⊖ ◦ ⊕ is an opening2. Consequently, owing to
the anti-extensivity property of the opening, we can assert that

A1 ⊕ B1 = (P ⊖ B1)⊕ B1 = P ◦B1 � P . (5.3)

We can proceed by selecting another B2 ∈ AT ×F and repeating the process to
obtain

A2 ⊕ B2 = (P ⊖ B2)⊕ B2 = P ◦B2 � P . (5.4)

with A2 := P ⊖ B2.
At this point, we can stack B1 and B2 into B; to achieve this, we define B =

(B1, B2) ∈
(

AT ×F)J ≃ AT ×F×J , with J = {1, 2}. Similarly, we can stack A1 and A2

into A = (A1, A2) ∈ AT ×F×J .
However, attempting to directly define an erosion P ⊖ B faces compatibility

issues due to the differing domains T ×F and T ×F × J . To address this issue, we
introduce the trivial group (0,+) with 0 = {0}, which acts on any set X through
the action + : X × 0 → X, (x, 0) 7→ x. In this context, we apply this action to the
set J . Additionally, we use the canonical bijection

ι : AT ×F → AT ×F×0

P 7→ P := ι(P ) : T × F × 0 → A
(t, ξ, 0) 7→ P (t, ξ)

. (5.5)

Since the domains T × F × 0 and T × F × J are now compatible, the erosion
P ⊖B ∈ AT ×F×J becomes well defined. Given the isomorphism, we can simplify
the statement by noting that the domain of the erosion is simply AT ×F . Recalling
that B = (Bj)j∈J , the explicit definition of this erosion is given by

εB : AT ×F → AT ×F×J

P 7→ (P ⊖ Bj)j∈J

. (5.6)

Before delving into the applications of these erosions (which will be used exten-
sively throughout this chapter), let us first define the adjoint dilation of this erosion.

2The symbol for opening and composition is the same (◦) but will be discernible from the context.
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Proposition 5.1. Let εB : AT ×F → AT ×F×J be the erosion defined in Equa-
tion (5.6), with B = (Bj)j∈J ∈ AT ×F×J . We define A = (Aj)j∈J ∈ AT ×F×J .
Then, the adjoint operator of εB is the dilation

δB : AT ×F×J → AT ×F

A 7→ ∨

j∈J(Aj ⊕ Bj)
. (5.7)

Proof. We know by Theorem 1.10 that since εB : AT ×F → AT ×F×J is an erosion
there is an adjoint dilation given by the formula

δ : AT ×F×J → AT ×F

A 7→ ∧{P ∈ AT ×F : A � εB[P ]}
. (5.8)

We shall prove that
∨

j∈J(Aj ⊕Bj) =
∧{P ∈ AT ×F : A � εB[P ]}. By replacing

εB[P ] by P ⊖ B, let us call P = {P ∈ AT ×F : A � P ⊖ B}. We are proving
that

∨

j∈J(Aj ⊕Bj) ∈P and that ∀P ∈P,
∨

j∈J(Aj ⊕Bj) � P , which means that
∨

j∈J(Aj ⊕ Bj) =
∧

P and finishes the proof.
∨

j∈J(Aj ⊕ Bj) ∈P

Indeed, ∀j0 ∈ J ,

Aj0 � Aj0 •Bj0

= (Aj0 ⊕ Bj0)⊖ Bj0

�
(

∨

j∈J
(Aj ⊕ Bj)

)

⊖ Bj0

which means that A �
(

∨

j∈J(Aj ⊕ Bj)
)

⊖B and thus
∨

j∈J(Aj ⊕ Bj) ∈P.
∀P ∈P,

∨

j∈J(Aj ⊕ Bj) � P

∀P ∈P,

A � P ⊖B ⇒ ∀j ∈ J, Aj � P ⊖ Bj

⇒ ∀j ∈ J, Aj ⊕ Bj � (P ⊖ Bj)⊕ Bj

⇒ ∀j ∈ J, Aj ⊕ Bj � P ◦Bj � P

⇒
∨

j∈J
(Aj ⊕ Bj) � P .
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5.1. Analyzing Piano Rolls with Harmonic Textures

Now we have erosion and dilation defined, and thus opening and closing. By
letting P ∈ AT ×F being a piano roll, B ∈ AT ×F×J a stack of structuring elements,
and A ∈ AT ×F×J a stack of activations, we can write

P ⊖B ∈ AT ×F×J
A ⊕B ∈ AT ×F

P ◦B ∈ AT ×F
A •B ∈ AT ×F×J .

(5.9)

Let us return to the process of adding more Bj to B with the property ∀j ∈ J ,
P ◦ Bj � P which can be restated using Equation (5.9) as P ◦B � P . At some
point, it might3 happen that P ◦ B = P , allowing us to potentially conclude the
search.

Let us illustrate this process with an example. For the examples, we make the
following choices for time, frequency and amplitude: our space is T  × N with its
corresponding group (Q × Z,+), and the residuated triplet is given by the lattice
multiplication • : A3 × A2 → A3. This means that P ∈ AT  ×N

3 , B ∈ AQ×Z×J
3 ,

leading to A ∈ AT  ×N×J
2 .

Now, let us consider the piano roll P in Figure 5.1, which represents the first two
measures of the third movement of Beethoven’s Piano Sonata No.14, Op.27 No.2.

We want to evaluate the different choices for B = (Bj)j∈J such that P = P ◦B.
To measure the quality of these choices, we introduce the concept of redundancy of
a decomposition. For this purpose, we first define a measure for a piano roll with
amplitude ranges A2 or A3.

Definition 5.2 (Measure of a piano roll). Let P ∈ AT ×F be a piano roll. For all
a ∈ A, let µa : ΣT ×F → R+ be a measure, where ΣT ×F is a σ-algebra over T × F .
Then, we define the measure of P relative to {µa}a∈A as

|P | =
∑

a∈A
µa({(t, ξ) ∈ T × F : P (t, ξ) = a}) ∈ R+ . (5.10)

It is evident by the definition that the measure of a piano roll is an increasing
function from (AT ×F ,�) to (R+,≤), i.e., P0 � P1 ⇒ |P0| ≤ |P1|.

The choice of {µa}a∈A depends on the choices of T , F and A. When dealing with
activations piano rolls, i.e., A ∈ AT ×F

2 , we use

|A| = µδ(supp(A)) (5.11)
3The emphasized term might here indicates the possibility that the search might not reach a

conclusion if the selection of the Bj is not appropriate. Furthermore, even when the search does
conclude, there is no guarantee that we obtain the desired elements.
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(a) Score

(1, 1) (1, 3) (2, 1) (2, 3) (3, 1)
Time (m, b)

C 2

B2

A3

G4

F5

Pi
tc

h

×

(b) Piano roll

Figure 5.1: Third movement of Beethoven’s Piano Sonata No.14, Op.27 No.2 mm.
1-2.

where µδ is the discrete measure defined by µδ(X) = |X|, ∀X ⊆ T × F .
However, when using a piano roll with amplitude represented as the rhythmic

range A3, we use a different measure. Let P ∈ AT  ×N
3 . Since the time-frequencies

(t, ξ) ∈ T  ×N where P (t, ξ) is the attack (×) form a discrete set, we use a discrete
measure for them. However, for the values where P (t, ξ) is the sustain (·) we use a
different measure: the product measure between the Lebesgue measure induced by
the isomorphism between Q and T  , and µδ, the discrete measure presented before.
We call it µ. This results in the following measure definition:

|P | = c× · µδ({(t, ξ) ∈ T × F : P (t, ξ) = ×}) + c· · µ(supp(P )) (5.12)

where c×, c· ∈ R+ are the coefficients that control the relative weight given to the
measure of attacks and the measure of sustains, respectively.

Now let us compute the measure of the piano roll shown in Figure 5.1. As there

148



5.1. Analyzing Piano Rolls with Harmonic Textures

are 25
�
� and 27

©
� , the measure of the attacks is 52c×, and the measure of the sustains

is (25× 1
8
+ 27× 1

16
)c·, leading to a total measure of P :

|P | = c× · 52 + c· ·
(

25

8
+

27

16

)

= 52c× +
77

16
c· .

With this framework in place, we can introduce the concept of redundancy.

Definition 5.3 (Redundancy). Let P ∈ AT ×F and B ∈ AT ×F×J . We define the
redundancy of B over P denoted by ρ(B, P ) as

ρ(B, P ) =

(

∑

j∈J |P ⊖ Bj| · |Bj|
)

− |P |
|P | ∈ R , (5.13)

where | · | is defined as in Equation (5.12).

The redundancy may be negative. Indeed, if we have P ◦B � P it may happen
that

∑

j∈J |P ⊖ Bj| · |Bj| < |P |. When P ◦B = P , the redundancy is positive and
we give it in percentage. Moreover, the redundancy is not limited to 100 %.

While the redundancy relies on the choice of (c×, c·) ∈ (R+)
2, to gain an overview,

we can use two reference sets of coefficients: (c×, c·) = (1, 0) and (c×, c·) = (0, 1). We
denote the resulting redundancies as ρ× and ρ·, respectively.

Now that we have established a measure to assess the efficiency of different choices
for B, we can proceed to evaluate a couple of scenarios. Specifically, we present two
examples: one involving a trivial choice and another involving a more effective one.

The trivial choice is to select B = (Bj)
2
j=1, where we choose the note values that

are already present in the score. That is,

B1 =

0 1/8
Time (wholes)

-1

0

1

Sh
ift

 (s
em

ito
ne

s) ×

B2 =

0 1/16
Time (wholes)

-1

0

1

Sh
ift

 (s
em

ito
ne

s) ×

.
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The resulting Aj = P ⊖ Bj are

A1 =

(1, 1) (1, 3) (2, 1) (2, 3)
Time (m, b)

C 2

B2

A3

G4

F5

Pi
tc

h

A2 =

(1, 1) (1, 3) (2, 1) (2, 3)
Time (m, b)

C 2

B2

A3

G4

F5

Pi
tc

h

and the resulting Aj ⊕ Bj are

A1 ⊕ B1 =

(1, 1) (1, 3) (2, 1) (2, 3) (3, 1)
Time (m, b)

C 2

B2

A3

G4

F5

Pi
tc

h

×

A2 ⊕ B2 =

(1, 1) (1, 3) (2, 1) (2, 3)
Time (m, b)

C 2

B2

A3

G4

F5

Pi
tc

h

×

where we have P ◦B = (A1 ⊕ B1) ∨ (A2 ⊕ B1) = P .
We can now compute the corresponding redundancies:

ρ× =

∑2
j=1 |Aj| · µ×(Bj)− µ×(P )

µ×(P )
ρ· =

∑2
j=1 |Aj| · µ·(Bj)− µ·(P )

µ·(P )

=
27 · 1 + 52 · 1− 52

52
=

27 · 1
16

+ 52 · 1
16
− 77

16
77
16

=
27

52
=

29

77
≈ 51.9 % ≈ 37.7 %

where µ× and µ· are the measures obtained by setting (c×, c·) to (1, 0) and (0, 1),
respectively.
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Now, let us choose B = (Bj)
5
j=1 with

B1 =

0 1/81/4
Time (wholes)

0

5

Sh
ift

 (s
em

ito
ne

s)

⊥

·

×

B2 =

0 1/8 1/4
Time (wholes)

3

8

13

Sh
ift

 (s
em

ito
ne

s)

⊥

·

×

B3 =

0 1/8 1/4
Time (wholes)

0

20

40

Sh
ift

 (s
em

ito
ne

s)

⊥

·

×

B4 =

0 1/8 1/4
Time (wholes)

7

12

17

Sh
ift

 (s
em

ito
ne

s)

⊥

·

×

B5 =

0 1/8 1/4
Time (wholes)

0

5

10

Sh
ift

 (s
em

ito
ne

s)

⊥

·

×

.

We have that A = (Aj)j∈J = P ⊖B is

A =

(1, 1) (1, 3) (2, 1) (2, 3) (3, 1)
Time (m, b)

C 2

B2

A3

G4

F5

Pi
tc

h

A1
A2
A3

A4
A5

The redundancies are

ρ× =

∑5
j=1 |Aj| · µ×(Bj)− µ×(P )

µ×(P )
=

9 · 2 + 1 · 11 + 3 · 4 + 2 · 4 + 2 · 4− 52

52

=
5

52
≈ 9.6 %

ρ· =

∑5
j=1 |Aj| · µ·(Bj)− µ·(P )

µ·(P )
=

9 · 1
4
+ 1 · 11

8
+ 3 · 1

4
+ 2 · 1

4
+ 2 · 1

4
− 77

16
77
16

=
9

77
≈ 11.7 % .
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These redundancies are fairly small. To reduce them to the minimum, we are
using an alternative approach that involves modifying A to contain fewer activations.
This strategy will be explored in the following section.

5.2 Analyzing Piano Rolls with Textures

In the previous section, we showed how to use erosion and a measure to analyze a
piano roll P using a stack of harmonic textures B. This involved searching for A

and B such that P = A ⊕B. However, our original intention was to take this a
step further: to find A , T and H such that P = A ⊕T ⊗H .

In this section, we attempt to find these elements, with a specific focus on the
texture component. Let us consider an example involving measures from later in the
same musical piece, as depicted in Figure 5.2.

(a) Score

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

A 2

F 3

E4

D5

C6

Pi
tc

h

⊥

·

×

(b) Piano roll

Figure 5.2: Third movement of Beethoven’s Piano Sonata No.14, Op.27 No.2 mm.
53-56.

This excerpt can be built by using a single texture applied to several harmonies.
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5.2. Analyzing Piano Rolls with Textures

If we choose the texture

T =

0
�
�

and the harmonies

H1 = ({−12, 0, 15, 24, 27}, {3, 7, 24, 27}, {0, 3, 27, 31})
H2 = ({−7}, {5, 8, 24, 29}, {0, 5, 29, 32})
H3 = ({−5}, {3, 7, 24, 27}, {0, 3, 27, 31})
H4 = ({−7}, {2, 7, 23, 26}, {−1, 2, 26, 31})
H5 = ({−9}, {7, 12, 19, 27}, {0, 3, 27, 31})
H6 = ({−7}, {8, 13, 17, 25}, {5, 8, 20, 29})
H7 = ({−5}, {7, 12, 15, 24}, {3, 7, 19, 27})
H8 = ({−5}, {5, 11, 14, 23}, {−1, 5, 17, 26}) .

we have that
P = A ⊕T ⊗H ∈ AT  ×N

3 (5.14)

where J = {1, 2, ..., 8}, I = {1, 2, 3} and

A = (Aj)j∈J =
(

(

(53, 1, 0) +
j − 1

2
,G3))8

j=1
∈ AT  ×N×J

2

T = (T )8j=1 ∈ AQ×I×J
3

H = (Hj)
8
j=1 ∈ AN×I×J

2 .

The redundancies are

ρ× =

∑8
j=1 |Aj| · µ×(T ⊗Hj)− µ×(P )

µ×(P )
=

17 + 7 · 13− 108

108
= 0 %

ρ· =

∑8
j=1 |Aj| · µ·(T ⊗Hj)− µ·(P )

µ·(P )
=

17+7·13
8
− 108

8
108
8

= 0 % .

The challenge lies in determining how to get T , H , and A from the given
piano roll P . We believe that this task is extremely complex, so we will proceed by
assuming we have the texture T and demonstrate how to obtain H and A .
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To achieve this, we once again employ the erosion. However, this time we use the
erosion of a piano roll by a texture. It is important to note that since P ∈ AT  ×N

3

and T ∈ AQ×I
3 , there is no direct definition for such an erosion.

For the sake of generality, let us abstract away the specific choices for time and
frequency and consider P ∈ AT ×F

3 and T ∈ AQ×I
3 . We will employ a similar approach

as in the previous section and use the bijections:

ι3 : AT ×F
3 → AT ×F×0

3 ι2 : AQ×I
3 → AQ×0×I

3 (5.15)

where we recall that 0 = {0}.
We have now two compatible domains T × F × 0 and Q× 0× I. Moreover, we

can use the inclusion:

ιZ : AQ×I
3 → AQ×Z×I

3

T = (Ri)i∈I 7→ T ⊗ 0 := (Ri ⊗ 0)i∈I

(5.16)

and treat any texture as a stack of piano rolls.
The erosion is now well defined and has the explicit expression

εT : AT ×F
3 → AT ×F×I

2

P 7→ (P ⊖Ri ⊗ 0)i∈I

with corresponding adjoint dilation

δT : AT ×F×I
2 → AT ×F

3

A 7→ ∨

i∈I Ai ⊕Ri ⊗ 0

where T = (Ri)i∈I ∈ AQ×I
3 and A = (Ai)i∈I with Ai ∈ AT ×F

2 , ∀i ∈ I.
Let us illustrate this technique with our example. By calling A T = (ATi )i∈I =
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P ⊖ T , we have

AT1

=

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

A 2

F 3

E4

D5

C6

Pi
tc

h

AT2

=

(53, 1) (54, 1) (55, 1) (56, 1)
Time (m, b)

B 3

A 4

F 5

Pi
tc

h

AT3

=

(53, 1) (54, 1) (55, 1) (56, 1)
Time (m, b)

B2

A3

G4

F5

E 6

Pi
tc

h

AT1 ⊕R1 ⊗ 0

=

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

A 2

F 3

E4

D5

C6

Pi
tc

h

⊥

·

×

AT2 ⊕R2 ⊗ 0
=

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

A 2

F 3

E4

D5

C6

Pi
tc

h

⊥

·

×

AT3 ⊕R3 ⊗ 0

=

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

A 2

F 3

E4

D5

C6

Pi
tc

h
⊥

·

×

and

A
T ⊕ T ⊗ 0 =

∨

i∈I
Ai ⊕Ri ⊗ 0 =

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

A 2

F 3

E4

D5

C6

Pi
tc

h

⊥

·

×

= P . (5.17)

In this case, we have a huge redundancy4. Indeed, using the reference redundan-

4The redundancy of T over P is defined as the redundancy of T ⊗ 0 over P .
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cies, we obtain

ρ× =

∑3
i=1 |Ai| · µ×(Ri ⊗ 0)− µ×(P )

µ×(P )
=

108 · 1 + 44 · 2 + 95 · 1− 108

108

=
183

108
≈ 169.4 %

ρ· =

∑3
i=1 |Ai| · µ·(Ri ⊗ 0)− µ·(P )

µ·(P )
=

108 · 1
8
+ 44 · 1

8
+ 95 · 1

8
− 108

8
108
8

=
183

108
≈ 169.4 % .

The challenge now is to remove the redundant activations of A T such that the
redundancy is 0 %.

5.2.1 Extracting a Minimal Set of Activations
We recall that we have a piano roll P ∈ AT ×F

3 and a texture T ∈ AQ×I
3 . Let us

consider A ∈ AT ×F×I
2 such that P = A ⊕ T ⊗ 0. Then, by using the properties of

mathematical morphology, we have that

A � A • T ⊗ 0

= (A ⊕ T ⊗ 0)⊖ T ⊗ 0

= P ⊖ T ⊗ 0

:= A
P
T

(5.18)

which means that by taking the erosion A P
T = P ⊖ T ⊗ 0 we will always have extra

activations. We are focusing now on extracting Amin � A P
T such that it is minimal,

i.e.,
∀A ∈ AT ×F×I

2 : P = A ⊕ T ⊗ 0, Amin � A
P
T . (5.19)

Since the amplitude range of A P
T is the Boolean lattice A2, we can use the

isomorphism given by the support function5

supp : AT ×F×I
2 → P(T × F × I)
A 7→ supp(A )

and identify A P
T with its support. From now, we make the abuse of notation A P

T ⊆
T × F × I. We use then ⊆ instead of � for the order.

5The inverse of the characteristic function.
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Let us now transform our problem into a problem on sets: we call

A
P
T = {A ⊆ T × F × I : P = A ⊕ T ⊗ 0} (5.20)

and we want to find the Amin ∈ A
P
T that are minimal in the sense of ⊆.

Let us give a brief overview of how such a task can be achieved. Let X =
{x1, x2, ..., xn} be a set with |X| = n ∈ N∗. We call Xi1,i2,...,ik = X \ {xi1 , xi2 , ..., xik}.
The lattice (P(X),⊆) of subsets of X with |X| = 3 is shown in Figure 5.3 with the
arrows meaning inclusion.

X

X3 X2 X1

X2,3 X1,3 X1,2

X1,2,3

Figure 5.3: Graph of inclusion for subsets of X with |X| = 3.

If we set X = A P
T and remove the elements that do not belong to A

P
T , we

can identify a minimal element as one that has no outgoing edges. However, to
exhaustively check all the edges and explore the entire graph6, we would need to
perform

∣

∣A P
T

∣

∣! checks. This quickly becomes infeasible; for instance, in the excerpt of
Figure 5.2 of 4 measures, we have

∣

∣A P
T

∣

∣ = 247, 247! ≈ 10484, which is astronomically
large.

Nonetheless, there is a theoretical insight that can aid us. Since we are interested
in exploring the elements of A

P
T , which are those A satisfying A ⊕ T = P , the

following property holds: if A1 ⊆ A2, then A1 ⊕ T ⊆ A2 ⊕ T . Therefore, if we find
a A such that A ⊕ T 6⊆ P , there is no need to explore any subset A ′ ⊆ A .

This insight helps to reduce the number of elements to check. Nevertheless, even
with this optimization, the worst-case complexity remains O(n!) with n =

∣

∣A P
T

∣

∣.
However, we know that there are 2|A P

T | subsets of A P
T and then we can check if

they belong to A
P
T one by one. This approach leads to the graph depicted in Figure 5.4

and a time complexity of O(2n). In order to exploit the property mentioned before,
we avoid the exploration of deeper nodes once it is determined that they do not belong
to A

P
T . This pruning strategy significantly reduces the number of paths explored.

6All the graphs used in this work are in fact digraphs (directed graphs).
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X

X1 X2 X3

X1,2 X1,3 X2,3

X1,2,3

Figure 5.4: Graph of the subsets of X with 2|X| − 1 arrows, where |X| = 3.

While this approach is better in terms of time complexity, it has a drawback: we
no longer know if a node is minimal with this graph since there are missing edges in
terms of inclusion; for instance, if we attain X1,2 as a minimal node and later we see
that X2 works but not X2,3, we may be tempted to say that X2,3 is minimal (since
there is no outgoing edges) but this is not true since X2 is already an option.

To determine if a node without outgoing edges in this graph is truly minimal,
it is necessary to compare it against all other minimal subsets found earlier. While
this is possible, we still have a time complexity of O(2n), which is intractable: in our
example with

∣

∣A P
T

∣

∣ = 247, the number of subsets to consider is 2247 ≈ 1074, which
is far beyond the capabilities of current computing resources.

5.2.2 Linear Approach
In this section, we present an alternative approach to tackling this problem. This
approach leverages the inherent topology of our space and converts the problem
into a shortest path problem within a directed acyclic graph (DAG), ultimately
transforming it into a linear problem.

As previously discussed, the challenge involves exploring all possible combina-
tions of elements in A P

T to identify the minimal subsets. While this is initially an
exponential problem, we can capitalize on the structure of the set A P

T to reformulate
it into a linear problem in the size of the graph.

The central insight guiding our strategy is as follows: since each rhythm Ri has a
support contained inside an interval [si, ei] ⊆ Q, any element in the piano roll denoted
as (t, ξ, P (t, ξ)) ∈ T × F × A can be attributed to an activation within [t − ei, t −
si]×{ξ}×{i} ⊆ T ×F×I. In essence, covering an element (t, ξ, P (t, ξ)) necessitates

158



5.2. Analyzing Piano Rolls with Textures

selecting an element from a restricted set A(t,ξ) ⊂ A P
T capable of producing the value

P (t, ξ).
We use this principle to construct a graph wherein each element of the piano roll

has the activations capable of covering it. Subsequently, we traverse paths within
this graph, ensuring the inclusion of at least one activation for each element of the
piano roll.

Let us illustrate the process of creating the graph using a fragment from our
example, as depicted in Figure 5.5. We only consider the measure 54 of Beethoven’s
Piano Sonata No. 14, Op. 27 No.2.

(a) Score
(54, 1) (54, 3) (55, 1)

Time (m, b)

C 3

B3

A4

G5

Pi
tc

h

⊥

·

×

(b) Piano roll

Figure 5.5: Third movement of Beethoven’s Piano Sonata No.14, Op.27 No.2 measure
54.

The resulting activations A P
T = (Ai)i∈I , I = {1, 2, 3} are

(54, 1) (54, 3) (55, 1)
Time (m, b)

C 3

B3

A4

G5

Pi
tc

h A1
A2
A3 .

To construct the graph G = (V , E) that represents the potential activations cov-
ering each element of P , we begin by determining the vertices V .

Each vertex will be an element of T × T × F × I denoted by (tP , tA , ξ, i) where
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• tP ∈ T is the time coordinate of the element of P that is covered,

• tA ∈ T is the time coordinate of the activation that covers it,

• ξ ∈ F is the frequency coordinate of both the element of P and the activation7,

• i ∈ I is the index of the activation.

The resulting vertices of the graph are depicted in Figure 5.6. The coordinates
(tP , ξ) are used to create the axes that map the elements of the piano roll. Each
element belonging to a cell is of the form (tA , i), indicating the timestamp of the
activation and the index. Please note that in the diagram, pitch notations are used
based on the default system, rather than the ones present in the actual score (for
instance, we use E  instead of D and G instead of F).

Having defined the vertices of the graph, our next task is to determine the edges.
As a reminder, our goal is to find a path that passes through at least one element of
each cell of the grid defined by (tP , ξ), skipping those where there are no elements.
This ensures that each element of the score is covered by at least one activation. To
model this, we need to select edges that connect elements from each cell of the grid.
Furthermore, we will arrange these edges in a topological order, creating a directed
acyclic graph that allows us to find a linear solution to the shortest path problem.

Various edge choices are possible, but we opt for the following approach:

1. We arrange the non-empty different cells in the lexicographical order going first
through the frequency axis and then through the time axis.

2. For two consecutive cells, we connect every node in the first cell with a node
in the second cell.

The result of this process leads to a directed acyclic graph. Moreover, the graph
is a chain of bipartite graphs. This concept will be exposed in Section 5.2.4. The
resulting graph is depicted in Figure 5.7. Since the number of edges is big and
makes the graph difficult to understand, we zoom to the vertices that are on the cells
(

(3, 0),C3) and
(

(3, 1
8
),B 3) in Figure 5.7b.

Now, each path in this graph that goes from a node at the bottom left to a node
at the top right represents a sequence of nodes that corresponds to the activations
selected from A to cover P .

The challenge at this point is to devise a method for determining the optimal
path. The objective is to minimize the number of distinct activations used, and this

7The frequency coordinate is shared by the covered element and the activation because of the
nature of the dilation by a texture.

160



5.2. Analyzing Piano Rolls with Textures

((1, 0), 0)

((1, 1/8), 0)
((1, 0), 1)

((1, 1/8), 0)
((1, 0), 1)

((1, 1/8), 0)
((1, 0), 1)

((1, 1/8), 0)
((1, 0), 1)

((2, 0), 0)
((1, 1/8), 1)
((1, 0), 1)

((2, 0), 0)
((1, 0), 1)

((2, 0), 0)
((1, 0), 1)

((2, 0), 0)
((1, 1/8), 1)
((1, 0), 1)

((2, 1/8), 0)
((1, 0), 2)

((2, 1/8), 0)
((1, 1/8), 1)
((1, 0), 2)

((2, 1/8), 0)
((1, 1/8), 1)
((1, 0), 2)

((2, 1/8), 0)
((1, 0), 2)

((3, 0), 0)
((1, 1/8), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((4, 0), 0)
((3, 1/8), 1)
((3, 0), 1)

((2, 1/8), 2)

((4, 0), 0)
((3, 0), 1)

((2, 1/8), 2)

((4, 0), 0)
((3, 0), 1)

((2, 1/8), 2)

((4, 0), 0)
((3, 1/8), 1)
((3, 0), 1)

((2, 1/8), 2)

((4, 1/8), 0)
((3, 0), 2)

((4, 1/8), 0)
((3, 1/8), 1)
((3, 0), 2)

((4, 1/8), 0)
((3, 1/8), 1)
((3, 0), 2)

((4, 1/8), 0)
((3, 0), 2)

tP/ξ

C 3

E 3

G3

A 3

B 3

B3

E 4

G5

A 5

B 5

B5

E 6

(1, 0) (1, 1/8) (2, 0) (2, 1/8) (3, 0) (3, 1/8) (4, 0) (4, 1/8)

Figure 5.6: Vertices of the graph of activations for the piano roll given in Figure 5.5.

consideration relies not only on the edges between two individual nodes, but also on
the nodes selected along the path. Addressing this issue has led to the use of the
derived graph.
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((1, 0), 0)

((1, 1/8), 0)
((1, 0), 1)

((1, 1/8), 0)
((1, 0), 1)

((1, 1/8), 0)
((1, 0), 1)

((1, 1/8), 0)
((1, 0), 1)

((2, 0), 0)
((1, 1/8), 1)
((1, 0), 1)

((2, 0), 0)
((1, 0), 1)

((2, 0), 0)
((1, 0), 1)

((2, 0), 0)
((1, 1/8), 1)
((1, 0), 1)

((2, 1/8), 0)
((1, 0), 2)

((2, 1/8), 0)
((1, 1/8), 1)
((1, 0), 2)

((2, 1/8), 0)
((1, 1/8), 1)
((1, 0), 2)

((2, 1/8), 0)
((1, 0), 2)

((3, 0), 0)
((1, 1/8), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((3, 1/8), 0)
((3, 0), 1)
((2, 0), 2)

((4, 0), 0)
((3, 1/8), 1)
((3, 0), 1)

((2, 1/8), 2)

((4, 0), 0)
((3, 0), 1)

((2, 1/8), 2)

((4, 0), 0)
((3, 0), 1)

((2, 1/8), 2)

((4, 0), 0)
((3, 1/8), 1)
((3, 0), 1)

((2, 1/8), 2)

((4, 1/8), 0)
((3, 0), 2)

((4, 1/8), 0)
((3, 1/8), 1)
((3, 0), 2)

((4, 1/8), 0)
((3, 1/8), 1)
((3, 0), 2)

((4, 1/8), 0)
((3, 0), 2)

tP/ξ

C 3
E 3
G3
A 3

B 3

B3

E 4

G5

A 5

B 5

B5

E 6

(1, 0) (1, 1/8) (2, 0) (2, 1/8) (3, 0) (3, 1/8) (4, 0) (4, 1/8)

(a) Full graph.

(

(3, 0), 0
)

(

(1, 1
8
), 2
)

(

(3, 1
8
), 0
)

(

(3, 0), 1
)

(

(2, 0), 2
)

(b) Zoom on the vertices between the
cells

(

(3, 0),C3) and
(

(3, 1

8
),B 3)

Figure 5.7: Graph of activations for the piano roll given in Figure 5.5.

5.2.3 The Derived Graph of a Graph

The notion of derived graph of a graph was introduced by Harary and Norman,
1960 under the name of line graph, and it is known by various other names such as
interchange graph, adjoint, or edge-to-vertex dual (Beineke, 1970). The idea behind
this construction appeared earlier in (Whitney, 1932; Krausz, 1943), and it has been
extensively studied by researchers like Beineke, 1968, 1970; Beineke and Zamfirescu,
1982; Beineke and Bagga, 2021, from who we borrow the term derived graph and the
notation ∂G, used for instance by Beineke, 1968, 1970.

The definition of the derived graph is as follows.
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Definition 5.4 (Derived graph). Let G = (V , E) be a graph where E ⊆ V2. Then,
the derived graph of G is the graph ∂G = (E , E ′) where e′ ∈ E ′ ⊆ E2 ⇔ e′ =
(

(v1, v2), (v2, v3)
)

such that (v1, v2) ∈ E and (v2, v3) ∈ E .
Since the vertex v2 is shared, we will rather write e′ ∈ E ′ ⊆ V3, e′ = (v1, v2, v3).

Notice that we can derive a graph as much as we want, and we notate ∂kG the
kth derived graph of G. The kth derived graph of G can be seen as the graph whose
vertices are the paths of length k + 1 of G and the edges represent that two paths
share common elements and thus can form a bigger path.

To illustrate this concept, let us consider the following example.

Example 5.5. Let G = (V , E) be the graph represented by

1

2

3

4

5

6 7 8 .

Then, the derived graph of G, ∂G is represented by

(1, 2)
(2, 4)

(2, 5)
(1, 3)

(3, 4)

(3, 5)

(4, 6)

(5, 6)
(6, 7) (7, 8) .

The 2nd derived graph of G, ∂2G is represented by

(1, 2, 4) (2, 4, 6)

(1, 2, 5)

(2, 5, 6)

(4, 6, 7)

(5, 6, 7)(1, 3, 4)

(3, 4, 6)

(1, 3, 5) (3, 5, 6)

(6, 7, 8) .

The derived graph becomes useful when we want to consider second-order infor-
mation in a graph. To further explain this concept, let us consider a simple problem
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as a toy example, which will provide insights into solving the larger problem of finding
minimal activations.

Imagine assigning a letter to each node in the graph presented in the previous
example. The graph is illustrated as follows:

S

A

B

C

D

A A E .

Now, the goal is to find a path from node S (start) to node E (end) that uses the
minimum number of distinct letters. In other words, we aim to minimize the number
of different letters encountered along the path (excluding the start and end nodes).
We can assign a weight of 1 to an edge if the letters on the connected nodes are
different, and a weight of 0 if they are the same. This gives us the weighted graph:

1

1

1

1

1

1

1

1

0 0S

A

B

C

D

A A E .

If we choose the path S −B−D−A−A−E and calculate its weight, we get 3,
which represents the number of different letters (A, B, and D) encountered along
the path. However, if we choose the path S − A − C − A − A − E, we still get a
weight of 3, even though there are only 2 distinct letters (A and C) in this case.

This issue can be addressed using the concept of the derived graph. By differen-
tiating the graph once, we obtain the following modified graph (with artificial start
and end nodes denoted as SS and EE):

1

1

0

0

1

1

1

1

0

0
0 0

1

1

SA

AC

AD

SB

BC

BD

CA

DA

AA AESS EE .
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In this new graph, if we follow the path SS − SA − AC − CA − AA − AE − EE
(which can be simplified to S −A−C −A−A−E), we obtain a weight of 2, which
accurately represents the number of distinct letters.

By using this concept, we can iteratively differentiate the graph to consider com-
mon letters that are spaced more than two edges apart. The number of times we
need to differentiate is equal to the distance (in terms of edges) between the common
letters minus one.

5.2.4 Chain of Bipartite Graphs
In this chapter, we use a particular type of graph: chain of bipartite graphs. This
concept appears in (Sathiamoorthy, 2020) and can be understood as a chain in the
sense of (Concas et al., 2021) of bipartite graphs. We present the definition next.

Definition 5.6 (Chain of bipartite graphs). A graph G = (V , E) is a chain of
bipartite graphs of size L ∈ N∗ if the set of vertices V can be subdivided into L
disjoint non-empty subsets

V = V1 ∪ V2 ∪ ... ∪ VL (5.21)

such that ∀l ∈ {1, 2, ..., L−1}, all the vertices of Vl are connected with all the vertices
in Vl+1, and there are no other edges.s

Formally, for digraphs,

V =
L
⋃

l=1

Vl, l 6= l′ ⇒ Vl ∩ Vl′ = ∅ and ∀l ∈ {1, 2, ..., L}, Vl 6= ∅

E ⊆ {(u, v) ∈ V2 : ∃l ∈ {1, 2, ..., L− 1}, u ∈ Vl, v ∈ Vl+1} .

If E = {(u, v) ∈ V2 : ∃l ∈ {1, 2, ..., L − 1}, u ∈ Vl, v ∈ Vl+1}, we say that the
digraph is a chain of complete bipartite graphs.

We use the notation Gn1→n2→...→nL
for a chain of bipartite graphs and

Kn1→n2→...→nL
for a chain of complete bipartite graphs, where nl = |Vl|, l ∈

{1, 2, ..., K}.

Example 5.7. The chain of complete bipartite graphs K1→3→2→4→2→1 is represented
by
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v11

v21

v22

v23

v31

v32

v41

v42

v43

v44

v51

v52

v61 .

We denote the number of vertices of a graph G by |G|V and the number of edges by
|G|E . The kth derived graph of chains of complete bipartite graphs have the following
properties.

Proposition 5.8. Let Kn1→n2→...→nL
be a chain of complete bipartite graphs. Then,

∀k ∈ {1, 2, ..., L− 1},
1. ∂kKn1→n2→...→nL

is a chain of bipartite graphs of size L− k,

2.
∣

∣∂kKn1→n2→...→nL

∣

∣

V =
∑L

l=k+1

∏k

m=0 nl−m,

3.
∣

∣∂kKn1→n2→...→nL

∣

∣

E =
∑L

l=k+2

∏k+1
m=0 nl−m.

Proof. Let us prove the first statement by induction over k.
∂0Kn1→n2→...→nL

= K is indeed a chain of bipartite graphs of length L −
0 = L. Now, if ∂kKn1→n2→...→nL

is a chain of bipartite graphs of size L − k,
then we have Vkk+1,Vkk+2, ...,VkL disjoint non-empty sets such that the vertices in
Vl are connected only to those on Vl+1. Thus, the edges can be split into
Ek+1→k+2, Ek+2→k+3, ..., EL−1→L, where El→l+1 is the set of edges that connect ele-
ments of Vl with elements of Vl+1. They are then disjoint and an element of El→l+1

is connected to one in El′→l′+1 in ∂k+1Kn1→n2→...→nL
only if l + 1 = l′.

It remains to be seen that the El→l+1 are non empty. Their cardinal is equal
to the cardinal of Vkl times nl+1, so let us compute the cardinal of Vkl . We know
that the elements of Vkl are paths of length k + 1. Since the graph is complete, we
know that there are

∏k

m=0 nl−m paths, which implies that |Vkl | =
∏k

m=0 nl−m and
|El→l+1| =

(

∏k

m=0 nl−m
)

nl+1 =
∏k+1

m=0 nl+1−m 6= 0.
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Finally, let us prove the formulas 2 and 3:

∣

∣∂kKn1→n2→...→nL

∣

∣

V =
L
∑

l=k+1

|Vkl | =
L
∑

l=k+1

k
∏

m=0

nl−m

∣

∣∂kKn1→n2→...→nL

∣

∣

E =
L−1
∑

l=k+1

|Vkl |nl+1 =
L−1
∑

l=k+1

(

k
∏

m=0

nl−m

)

nl+1

=
L−1
∑

l=k+1

k+1
∏

m=0

nl+1−m =
L
∑

l=k+2

k+1
∏

m=0

nl−m .

5.2.5 Modeling the Problem as a Shortest Path Problem
We have currently all the tools that we need to solve our initial problem (to find a
minimal set of activations). Indeed, the graph presented in Figure 5.7 is a chain of
complete bipartite graphs of length 26: each cell is a set of vertices Vl and they are
ordered in the lexicographical order starting by the frequency. We have then a graph
isomorphic to

K1→2→2→2→2→3→2→2→3→2→3→3→2→2→3→3→3→3→4→3→3→4→2→3→3→2 .

We want now to find a path that starts from one of the first nodes to one of
the end nodes. To model that as a shortest path problem, we add an artificial node
at the beginning that is connected to all the first nodes and one that is connected
to all of the end nodes (thus having a complete bipartite graph of length 28 with
n1 = n28 = 1).

We want now to assign weights to this graph. We saw in Section 5.2.3 that we
can know information from k ∈ N∗ vertices before if we use the k−1th derived graph.
In our case, we want to know if an activation (tA , ξ, i) is present already in the path,
thus assigning 0 to the weight of the edge. To do that, we need to compute the
maximum number of cells that can separate two activations. We call it

KT = max{ei − si
∆P

: i ∈ I} (5.22)

where T = (Ri)i∈I and supp(Ri) ⊆ [si, ei] ⊆ Q and ∆P is the time resolution of the
piano roll to perform the computations8.

8Note that KT depends on computational parameters.
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In our case, if we choose as ∆P the tatum, i.e.,
�
� , we have

KT = max{
1
8
− 0
1
8

,
3
8
− 1

8
1
8

,
4
8
− 3

8
1
8

}

= max{1, 2, 1} = 2

Instead of the lexicographical order that starts by frequency we can use the
one that starts by time and solve the problem with a derived graph of first order.
The problem is that this approach, where we only take into account the number of
different activations, is that it gives a huge quantity of shortest paths. We would like
to refine this approach to find a better path.

5.2.6 The Sparsity of Time Activations
In order to improve the quality of our results we introduce the notion of sparsity of
time activations. The idea behind this is that we want to have the textures activated
in the minimum possible times. Moreover, we require a property for the chosen
activations: when an activation is chosen and has timestamp tA and index i, we
need to choose activations with the same timestamp and with the remaining indices
in I \ {i}. This is related to the concept that a texture should be complete once it
is activated.

This allows us to eliminate several activations that cannot be chosen. Indeed, if
we consider the contraction

λ(t) =
∧

i∈I

∨

ξ∈F
A (t, ξ, i) =

∧

i∈I

∨

ξ∈F
Ai(t, ξ)

we have the timestamps where this property can hold.
Then, we multiply9 A by λ and we get the filtered activations that might have

this property.
However, even after filtering A with λ, we need to ensure that the property

aforementioned holds. To do that, we need to go through every element in frequency.
This is why we presented the graph in the lexicographical order of frequency first.
We have then that there are at most

KF = max{| supp(P |t)| : t ∈ T } (5.23)

9The multiplication is performed between an element of AT ×F×I
2 and an element of AT

2 , which
means that it should be understood as A · λ : T × F × I → A2, (t, ξ, i) 7→ A (t, ξ, i) · λ(t).
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elements at the same time, which gives us the order of derivation

K = KT ·KF − 1 . (5.24)

In our example, where kF = 4, we have k = 4 · 4− 1 = 15, which is a huge order
of derivation. Indeed, if we call

G = K1→2→2→2→2→3→2→2→3→2→3→3→2→2→3→3→3→3→4→3→3→4→2→3→3→2

our graph and if we use the formulas from Proposition 5.8, we have

|G|V =
26
∑

l=1

nl = 67 |∂15G|V =
26
∑

l=16

15
∏

m=0

nl−m = 84 633 984

|G|E =
26
∑

l=2

nlnl−1 = 174 |∂15G|E =
26
∑

l=17

16
∏

m=0

nl−m = 192 595 968 .

These sizes are too big to perform computations (specially because the result is
only a single measure). When we filter the activations with the contraction we obtain
the graph

G = K1→2→2→2→2→2→1→1→2→1→2→2→1→2→1→1→1→1→1→1→1→1→1→1→1→1 .

Then, the sizes of the graph and its 15th derivative are

|G|V = 35 |∂15G|V =
26
∑

l=16

15
∏

m=0

nl−m = 1568

|G|E = 48 |∂15G|E =
26
∑

l=17

16
∏

m=0

nl−m = 1560 .

which is now tractable. Indeed, we obtain as minimal activations

Amin
1

=

(54, 1) (55, 1)
Time (m, b)

C 3

B3

A4

G5

Pi
tc

h

Amin
2

=

(54, 1) (55, 1)
Time (m, b)

C 3

B3

A4

G5

Pi
tc

h

Amin
3

=

(54, 1) (55, 1)
Time (m, b)

C 3

B3

A4

G5

Pi
tc

h
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We finish by giving some bounds of our problem: while the problem is now linear
in N (the number of elements of P ), it has a polynomial component due to the
derivation. Indeed, if we call our graph G and we set nmax = max{nl : l ∈ {1, 2, ..., L},
we have the bounds

|G|V ≤ (N + 1)nmax, |G|E ≤ (N + 1)n2
max,

|∂KG|V ≤ (N + 1−K)nK+1
max , |∂KG|E ≤ (N −K)nK+2

max .

5.2.7 Conclusions
While the utilization of the derived graph proves to be a powerful theoretical tool
for transforming the problem into a linear one, it comes at the price of a polynomial
bound in the size of texture and number of simultaneous elements in the score. This
limitation presents a significant drawback that often renders practical computations
unfeasible.

We consider the challenge of finding the minimal activations as a highly intricate
one, closely tied to the inherent complexity of music and its extensive combinatorial
nature.

Nonetheless, we believe that this approach offers a profound method for music
analysis, as it delves into the essence of each note. Future research might attempt to
address this problem using machine learning techniques. While the abstract nature of
the problem presents significant difficulties, there could exist various heuristics (such
as identifying repeated patterns) that facilitate pruning possibilities in rhythmically
complex scenarios.

In particular, an approach centered around genetic algorithms, with evolving
agents attempting to cover the score, could enhance efficiency and explanatory power.
This methodology could mirror the creative process in musical composition, where
motifs are often modified and used as foundational material. Exploring such an
approach will be a key direction for our future research in this field, although it
extends beyond the scope of this thesis.

5.3 Analyzing Piano Rolls with Harmonies
In the preceding sections, we analyzed piano rolls using both harmonic textures
and textures. In this section, we extend our analysis of piano rolls incorporating a
frequency object: harmonies. The principal innovation of this section is the develop-
ment of what we refer to as the tonal graph, a construct that enables us to reframe
the harmonic analysis challenge as a shortest path problem.
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To initiate our exploration, let us delve deeper into the harmonic analysis problem
itself.

5.3.1 Harmonic Analysis
The harmonic analysis problem involves providing a harmonic interpretation of a
musical score, or a fragment of it, by using harmonic features such as chords, scales, or
Roman numerals. Our focus lies in the task of Roman numeral analysis, which entails
assigning a label expressed as a Roman numeral, along with potential additional
indications, to a each fragment of the score. These indications, coupled with the
knowledge of the tonic, allow us to deduce details about the chord, its inversion, and
any sevenths or added notes (Tymoczko et al., 2019).

There exist diverse approaches to conduct Roman numeral analysis. In this
work, we confine our focus to identifying the tonic, the Roman numeral label, and
any added notes. We abstain from specifying the inversion; however, this aspect can
be addressed using a straightforward dictionary-based lookup approach. Figure 5.8
provides an illustration of a Roman numeral analysis of the previously provided
excerpt.

G♯: i iv i V7 i N i V7

Figure 5.8: Roman numeral analysis of the third movement of Beethoven’s Piano
Sonata No.14, Op.27 No.2 mm. 53-56.

Roman numeral analysis was initially introduced by Weber, 1832, building upon
the groundwork laid by Rameau, 1722. While other techniques, such as Rie-
mann’s functional analysis (Riemann, 1893), have garnered the interest of music
analysts (Agmon, 1995; Illescas et al., 2007; De Haas et al., 2013), they maintain a
close relationship with Roman numeral analysis. Nevertheless, as highlighted by Ty-
moczko et al., 2019, the translation between Roman numerals and tonal functions is
not symmetrical, with the former generally encapsulating more information than the
latter. Hence, we opt for Roman numeral analysis due to its richness in explanatory
capabilities.

Automatic Roman numeral analysis begins with the contributions of Winograd,
1968 and Maxwell, 1992, who proposed rule-based algorithms. Subsequently, Tem-
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perley introduced another rule-based algorithm (Temperley, 1997). Further progress
in this direction encompasses works such as (Pardo & Birmingham, 2002; Temperley,
2002, 2004; Illescas et al., 2007; Temperley, 2009; De Haas et al., 2013).

Additionally, a significant advancement within the harmonic analysis domain is
the construction of datasets. Although a substantial dataset emerged in 2002 (Goto
et al., 2002), it was not until 2015 that we witnessed a proliferation of Roman numeral
analysis datasets for classical music (Devaney et al., 2015; López, 2017; Chen &
Su, 2018; Neuwirth et al., 2018; Tymoczko et al., 2019), with Micchi et al., 2020
consolidating many of these datasets into a meta-corpus. This influx of datasets has
paved the way for the development of machine learning techniques; some of these
datasets include neural network architectures for automatic analysis (Chen & Su,
2018; Micchi et al., 2020; López et al., 2021).

5.3.2 The Tonal Graph
In this work, we introduce an alternative approach distinct from rule-based and
machine learning methods: a novel model for Roman numeral analysis, framed as a
shortest path problem within a chain of bipartite graphs.

To construct this graph, we leverage the outcomes of the preceding section, com-
prising a collection of activations denoted as A ∈ AT ×N×I

2 . However, we contract
these activations across the dimension I to yield A =

∨

i∈I A =
∨

i∈I Ai ∈ AT ×N
2 .

This aggregated representation is depicted in Figure 5.9.

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

A 2

F 3

E4

D5

C6

Pi
tc

h

Figure 5.9: Input activations A ∈ AT ×N
2 representing the excerpt from Figure 5.2.

Furthermore, the harmonic attributes we aim to identify are independent of the
pitch octave. Thus, we use activations up to the octave, considering them as a
chroma roll. This leads to the representation depicted in Figure 5.10.

In order to build the tonal graph, we use as input the activations and a harmony.
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(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
Time (m, b)

C

F
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ro
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a

Figure 5.10: Input activations A ∈ AT ×N12

2 up to the octave representing the excerpt
from Figure 5.2.

The harmony represents the different Roman numerals we allow in our analysis. For
instance, a common harmony that we can use is the one presented in Table 5.1.

RN Chord RN Chord RN Chord
I {0, 4, 7} IV {0, 5, 9} vi {0, 4, 9}
i {0, 3, 7} iv {0, 5, 8} VI {0, 3, 8}
ii {2, 5, 9} V {2, 7, 11} viiº {2, 5, 11}
iiº {2, 5, 8} V45 {0, 2, 7} N {1, 5, 8}

Table 5.1: Harmony that we choose for analyzing common tonal music.

The final aspect we need to address before detailing how we construct the tonal
graph is the concept of erosion applied to a piano roll by a harmony. Our input con-
sists of A ∈ AT ×N12

2 along with a harmony represented by an element H ∈ AZ12×I
2 .

To achieve this, we apply a similar approach to the one discussed in Section 5.2 con-
cerning the erosion of a texture. In this case, we treat A as an element of AT ×N12×0

2 ,
and H as an element of A0×Z12×I

2 . The erosion operation is then defined as follows:

A⊖H : T ×N12 × I → A2

(t, ξ, i) 7→ (A⊖ Ci)(t, ξ)
(5.25)

where H = (Ci)i∈I .
We now expose the creation of the tonal graph.

Definition 5.9 (Tonal graph). Let A ∈ AT ×N12

2 be a chroma roll. Let H = AZ12×I
2

be a chroma harmony. We consider the erosion of A by H, A ⊖ H ∈ AT ×N12×I
2 .
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Then, the tonal graph of A associated with H is the graph G = (V , E) where

V = supp(A⊖H) ⊆ T ×N12 × I, and
E = {

(

(t1, ξ1, i1), (t2, ξ2, i2)
)

∈ V2 : A|]t1,t2[ = ∅} .

Let us discuss in detail the interest of this construction. Each vertex takes the
form of a triplet (t, ξ, i) ∈ T × N12 × I representing a potential interpretation of
the chord as a Roman numeral. Here is how the components of this triplet shall be
interpreted:

• the time value t designates the moment when the chord is present within the
musical piece,

• the chroma ξ represents the tonic, that is the key to which the Roman numeral
is subordinated,

• the index i corresponds to the Roman numeral, characterizing the harmonic
label.

For any two successive time points t1 and t2, i.e., A|]t1,t2[ = ∅, all vertices existing
at time t1 are linked to all vertices at time t2. This makes the graph a chain of
complete bipartite graphs. Moreover, traversing a path within the graph signifies an
interpretation of each chord present in the input as a Roman numeral in a key.

Let us illustrate that with an example.

Example 5.10. We consider the activations piano roll A ∈ AT ×N12

2 from Figure 5.10.
H = AZ12×I

2 is the harmony exposed in Table 5.1.
Then, the erosion A⊖H is

(53, 1) (54, 1) (55, 1) (56, 1) (57, 1)
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We can then build the tonal graph that may be represented as
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We now aim to reformulate the task of identifying the correct Roman numeral
analysis10 into a shortest path problem.

To achieve this, we must assign weights to each edge, such that we have a shortest
path problem. One of the simpler yet effective methods involves assigning a weight
denoted as w using the formula:

w
(

(t1, ξ1, i1), (t2, ξ2, i2)
)

=

{

1 if ξ1 6= ξ2

0 if ξ1 = ξ2
(5.26)

which means that we count the number of modulations. This way, our shortest path
problem is a minimization of modulations (which makes a lot of musical sense).

We add a start node S connected to the first nodes and an end node E connected
to the final nodes and we have then the graph

10The existence of a (single) correct interpretation may be discussed by musicologists, but there
are a lot of cases where there is no doubt, as in this example.
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and the shortest path

(G : i,G : iv,G : i,G : V,G : i,G : N,G : i,G : V) ,

which gives us the expected solution.
It is important to highlight that the algorithm favored V over viiº when the chord

was V7 (and thus the erosion detected both of them) solely due to the sequence order
in the harmony, while both options shared an identical path length. The issue of the
sevenths will be discussed later.

5.3.3 Application to Other Pieces
Let us show its application to more complex pieces to see its effectiveness. We start
by Bach’s Prelude 1 in C major from the first book of the Well Tempered Clavier.
Following our established approach, we take the output from the preceding section,
contract it in I, and generate a chroma roll of activations to which we apply the
erosion and generate the tonal graph.

The expected result that we target is exposed in Figure 5.11. The input chroma
roll11 is presented in Figure 5.12.

We choose as previously the harmony of Table 5.1. The resulting graph12 is
presented in Figure 5.13.

11Technically, we shall represent the chroma roll with crosses since it represents activations, but
we have decided to represent it with black and white for improving clarity.

12We omitted the edges (except the shortest path ones) for clarity but they are obvious because
it is a chain of complete bipartite graphs.
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Figure 5.11: Roman numeral analysis of Bach’s Prelude in C major, BWV 846.
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Figure 5.12: Chroma roll of Bach’s Prelude in C major, BWV 846 with chords played
at once.

Table 5.2 presents a comparative analysis between the expected analysis (the one
of Figure 5.11) and the outcome derived from our shortest path algorithm. Focusing
solely on the agreement between the tonic and the Roman numeral (excluding sev-
enths and assuming that 7º corresponds to vii) we observe 22 out of 32 matching
instances, resulting in an accuracy rate of 68.75 %.

In the harmony table provided in Table 5.1, our consideration was limited to
triads. However, for a thorough analysis of tonal music, the inclusion of seventh
chords is necessary. Yet, the challenge arises when seventh chords can be perceived as
a supremum of two triads; for instance, ii∨IV = {2, 5, 9}∨{5, 9, 10} = {2, 5, 9, 10} =
ii7. Consequently, the erosion detects both ii and IV along with ii7.

To address this scenario and prioritize seventh chords, a strategic approach in-
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Figure 5.13: Tonal graph of Bach’s Prelude in C major, BWV 846.

Measure 1 2 3 4 5 6 7 8 9 10 11
Actual C: I ii V I vi G: V I IV ii V I

Expected C: I ii7 V7 I vi G: V7 I IV7 ii7 V7 I
Measure 12 13 14 15 16 17 18 19 20 21 22
Actual D: iiº i C: iiº I IV ii G: I IV IV ii iiº

Expected D: 7º i C: 7º I IV7 ii7 V7 I F: V7 I G: 7º
Measure 23 24 25 26 27 28 29 30 31 32
Actual C: iiº V I V45 V i I V45 V I

Expected C: 7º V7 I V457 V7 G: 7º C: I V457 V7 F: V7

Table 5.2: Result of the analysis of Bach’s Prelude in C major, BWV 846 by means
of the tonal graph.

volves assigning a reduced weight to edges leading to seventh chords13. For instance,
we can deduct an arbitrary small amount14 from the weight of each arrow directed
towards a seventh chord.

The new chords that we add to the harmony presented in Table 5.1 are shown in
Table 5.3.

While we omit the presentation of the new graph due to its similarity to the
previous one, the corresponding results are captured in Table 5.4. In this updated
analysis, we have achieved 24 accurate chord identifications out of 32, resulting in a

13Actually, we may also play with the order of exploration of the graph to check later the seventh
chords, but is not a robust approach in our opinion.

14We chose 0.1 for practical computations.
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RN Chord RN Chord RN Chord
I7 {0, 4, 7, 11} IV7 {0, 5, 9, 4} vi {0, 4, 9, 7}
i7 {0, 3, 7, 10} iv7 {0, 5, 8, 3} VI7 {0, 3, 8, 7}
ii7 {2, 5, 9, 0} V7 {2, 7, 11, 5} viiº7 {2, 5, 11, 9}
iiº7 {2, 5, 8, 0} V457 {0, 2, 7, 5} 7º {0, 2, 7, 8}

Table 5.3: Seventh chords extending the harmony presented in Table 5.1.

75 %accuracy rate.
Notably, further enhancements can be made to address the remaining errors. Two

notable avenues for improvement are evident: first, certain options should be ruled
out as possibilities; for example, the last chord cannot be a I in C because there is a
B  ; random modulations in various places can be rectified – such as the modulation
occurring one measure earlier in measure 12, where we want to enforce the V7 to
resolve into the I.

We initiate the refinement process by implementing the first technique, employing
the hit-or-miss transform. Subsequently, we proceed to apply the second technique
involving the utilization of weights that are depend on the Roman numerals of the
vertices.

Measure 1 2 3 4 5 6 7 8 9 10 11
Actual C: I ii7 V7 I vi G: V7 I IV7 ii7 V7 D: IV

Expected C: I ii7 V7 I vi G: V7 I IV7 ii7 V7 I
Measure 12 13 14 15 16 17 18 19 20 21 22
Actual 7º C: ii 7º I IV7 ii7 V7 I I IV7 C: 7º

Expected D: 7º i C: 7º I IV7 ii7 V7 I F: V7 I G: 7º
Measure 23 24 25 26 27 28 29 30 31 32
Actual C: iiº7 V7 I V457 V7 i I V457 V7 I

Expected C: 7º V7 I V457 V7 G: 7º C: I V457 V7 F: V7

Table 5.4: Result of the analysis using seventh chords.

By adopting a hit or miss transform instead of an erosion, we gain the ability
to not only specify which chromas we desire but also those we wish to exclude. To
achieve this, we introduce two harmonies: one for the “contains” condition (equiva-
lent to erosion) and another for the “contained” condition (complemented erosion).
For the second harmony, we use scales like the major scale Maj = {0, 2, 4, 5, 7, 9, 11}
or a combination of minor scales (natural, harmonic, and melodic). This refined
approach yields an accuracy of 27 out of 32 (84.375 %), with the remaining errors
attributed to timing discrepancies in modulations.
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To address this timing issue, we can weight differently the chains in function of
the corresponding Roman numeral. For instance, we can assign lower weights to
V7 − I and 7º− I transitions. By reducing the weight by 0.1 to edges linking these
Roman numerals (in major and minor modes), we achieve a success rate of 29 out
32 (90.625 %). The remaining errors can be summarized as follows:

1. In measure 22, we get C: 7º instead of G: 7º; this is due to the equivalence
between these two chords and the fact that there is no G chord before or after.

2. In measure 23, we get iiº7 instead of C: 7º; this is interesting because whereas
we have affirmed the the correct chord is C: 7º, there may be an argument to
defend the actual output15.

3. In measure 28, we get E: 7º instead of G: 7º; this is the same problem than
the first item.

5.3.4 Conclusion
In conclusion, the construction of tonal graphs proves to be remarkably beneficial
for the analysis of chroma rolls comprised of chords. The examples we have pre-
sented are just a glimpse of the potential; by adjusting harmonies, weights, edges, or
even incorporating higher-order weights derived from the graph, we can significantly
enhance their accuracy. Notably, future research may involve using machine learn-
ing to learn edge weights, offering an avenue for refinement and optimization in the
analysis process.

15This argument is that it is followed by a V and the iiº−V movement is very present in tonal
music.
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Throughout this thesis, we have demonstrated the utility of mathematical morphol-
ogy in the analysis and generation of time-frequency representations of music. Our
focus has centered on two primary representations: spectrograms and piano rolls.
In the following, we will provide a summary of the main findings, their respective
successes, and the contributions and future prospects of our research.

Overall, MM proves effective in both time-frequency representations. Neverthe-
less, the approach we employed for each of them differs significantly. While we
adopted a more traditional approach for spectrograms, MM reveals itself as more
meaningful and adaptable when applied to piano rolls. Let us delve deeper into each
application.

Spectrograms are very useful representations of sound, but they lack an important
element: phase information. While this is not problematic in most cases, it does im-
pose constraints on certain applications. For instance, the sum of two spectrograms
is not the spectrogram of the sum, which makes linear analysis inappropriate. Fur-
thermore, the spectrogram of the combination of two sounds is not the supremum of
the spectrograms, which violates one of the basic assumptions for using MM. This
fact challenges the applicability of the MM framework.

In particular, the presence of interferences cannot be effectively addressed by the
STN model. When our processing pipeline (see Figure 3.3) is applied to spectro-
grams with interferences, the output proves inadequate. This raises questions about
the suitability of these methods for critical cases. Future research may explore the
application of MM to a different class of spectrograms: those derived from the time-
frequency-scale transformation. This transformation could mitigate time-frequency
uncertainty and resolve interference issues.

Despite these challenges, our current pipeline performs well at detecting both
horizontal and vertical lines. Lines in the spectrogram are a crucial component
of many musical instruments, and we perform correctly at detecting them in such
instruments. Furthermore, the pipeline effectively identifies noise, which is particu-
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larly important for other types of instruments, especially percussion ones. While the
outcomes of this procedure are promising, there is significant room for refinement;
the results do not yet capture the purity of the original sounds. This issue could
be attributed either to the synthesis model, the detection model, or most likely, a
combination of both. Subsequent research may illuminate the way to integrate these
two components, resulting in a more coherent and robust model.

Our current pipeline can replicate the sound of a musical instrument but does
not identify the specific instrument or the number of instruments present. This task,
called polyphonic multi-pitch estimation, exceeds our current capabilities and was
explored at the outset of the doctoral research without success.

However, we believe that the geometry of spectrograms remains largely an un-
charted territory. The presence of holes in noisy spectrograms, complementary to
lines, may be well adapted to MM operators. Given our success in detecting holes
and lines, a model that generates sounds while adhering to these constraints might
prove more effective. We propose that future research could explore an approach
based on what we might call ridges and sinks model, that would be more adapted to
MM.

Transitioning to the realm of piano rolls, MM emerges as an elegant and seamless
approach. Furthermore, it catalyzed the development of a new formalism of greyscale
MM based on residuated triplets.

The introduction of residuated triplets aligns effectively with the demands of
MM. It underscores a critical distinction between the interpretation of inputs in
erosion/dilation operations and their corresponding outputs. In standard MM, both
are interpreted as images, but with residuated triplets, the lattices hold distinct
meanings, influencing the interpretation. Our model typically interprets the input
of a dilation (or the output of an erosion) as an activation, while the input of an
erosion (or the output of a dilation) represents the object itself, in our case, piano
rolls.

Also important is the relationship between the space and the group that acts on
it, especially in the context of music. An input piano roll represents a musical piece,
whereas a structuring element represents a motif. The group elements encompass
rhythms in the time dimension and Roman numerals in the frequency dimension,
which are combined to generate motives. This framework enables us to understand
a musical piece as a composition of building blocks (the motives) activated through
the dilation operator.

While mathematical morphology has been at the forefront of our discussion, we
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must acknowledge the utilization of other tools in our research, notably tensor prod-
ucts and graphs. Let us delve into their roles and significance.

Tensor product, a versatile mathematical construct, finds application across nu-
merous domains. In our case, it served as a means to encapsulate the concept of
a chord distributed rhythmically over time. Through the amalgamation of diverse
rhythms and chords, i.e., texture and harmony, we crafted intricate musical motifs
and elucidated entire compositions.

We posit that the use of texture and harmony as compositional tools bears signif-
icant potential, particularly in the realm of education. The amalgamation of these
parameters can serve as a fertile playground for aspiring musicians, offering a novel
and meaningful approach to music creation.

While we proposed a XML approach to create music, it is not intended to be
a way of writing music. Instead, we envision the development of a user-friendly
interface that streamlines the process and abstracts the XML from the user. Such
an interface could potentially serve as an alternative to traditional score editors and
sequencers, eliminating the need for users to know staff notation. Furthermore, it
could incorporate suggestions to enhance the intuitiveness of music creation. An
implementation of this interface in OpenMusic (Agón, 1998) is ongoing.

Expanding upon the concept of texture and harmony, their integration could
transcend mere composition; it may extend into the realm of Artificial Intelligence
(AI) applied to music generation and analysis. An AI agent, equipped to compre-
hend musical pieces or segments using these factors, may find alignment with com-
mon neural networks, given the inherent array-like nature of these musical objects.
Additionally, genetic algorithms, capable of manipulating parameters individually
to produce incremental changes akin to musical evolution, could play a role. We
ardently believe that this approach represents a significant stride in advancing the
understanding of music by machines.

Another notable facet of our research is the application of graph theory, partic-
ularly the extensive use of chains of bipartite graphs. These graphs represent the
concept of sequential decision-making, mirroring the process of musical piece analysis
in a meaningful manner.

They perform particularly well for Roman numeral analysis. However, there
are still many unexplored possibilities. A promising avenue for future research lies
in determining the correct weights for the different edges using machine learning
techniques with annotated corpora. Additionally, the utilization of derived graphs
may prove beneficial in transitioning from sequences of two chords to more complex
chord sequences.

The use of such graphs for the extraction of a minimal set of activations has shown
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theoretically promising but practically limited. This challenge remains for the future,
possibly necessitating the development of novel tools for resolution. Furthermore, it
is worth noting that our assumptions regarding prior knowledge of the texture are
not warranted a priori.

The quest for a unified method to simultaneously uncover texture and harmony
is, in our opinion, one of the most exhilarating challenges this thesis presents. We
view it as an all-in analysis that can provide a comprehensive understanding of a
musical piece at various levels: from the hierarchical perspective at a broader level,
through the identification of the motives that constitute a piece at a medium level,
to the recognition of individual notes as harmonic elements related to a tonic at a
lower level. Such an approach could foster a compelling human-machine interaction,
with machines proposing possibilities and humans making decisions.
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Appendix A

Order theory

The foundations of lattice theory is order theory. We recall here some basic concepts.

Definition A.1 (Binary relation). A binary relation R between X and Y is a
subset of X × Y . We notate R ⊂ X × Y . It is usually expressed by means of a
symbol like ≺ that points out the importance of the order in the relation. In this
case, we use the notation

a ≺ b :⇔ (a, b) ∈ R .
In an abuse of notation, we will say that the symbol ≺ is the binary relation.
A binary relation on X is a binary relation between X and X.

Definition A.2 (Partial order). Let L be a set. A partial order � on L is a binary
relation on L that satisfies the three following properties:

1. ∀a ∈ L, a � a (Reflexivity)

2. ∀a, b ∈ L, a � b ∧ b � a⇒ a = b (Antisymmetry)

3. ∀a, b, c ∈ L, a � b ∧ b � c⇒ a � c. (Transitivity)

We call (L,�) a partially ordered set.

We also recall the definitions of the supremum and infimum.

Definition A.3 (Supremum). Let (L,�) be a partially ordered set. Let A ⊆ L. We
say that a0 ∈ L is the supremum of A, and we notate a0 =

∨

A, if a0 is the least
upper bound of A, i.e.,

1. ∀a ∈ A, a � a0, (Upper bound)
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2. ∀b ∈ {c ∈ L : ∀a ∈ A, a � b}, b � a0. (Least upper bound)

We use the notation a ∨ b for
∨{a, b}.

Definition A.4 (Infimum). Let (L,�) be a partially ordered set. Let A ⊆ L. We
say that a0 ∈ L is the infimum of A, and we notate a0 =

∧

A, if a0 is the greatest
lower bound of A, i.e.,

1. ∀a ∈ A, a0 � a, (Lower bound)

2. ∀b ∈ {c ∈ L : ∀a ∈ A, c � a}, b � a0. (Greatest lower bound)

We use the notation a ∧ b for
∧{a, b}.

A direct consequence of the definitions that is used extensively is the following.

Proposition A.5. Let (L,�) be a partially ordered set. Let A ⊆ L. Let b ∈ L.

1. If
∨

A ∈ L, then
∀a ∈ A, a � b⇔

∨

A � b . (A.1)

2. If
∧

A ∈ L, then
∀a ∈ A, b � a⇔ b �

∧

A . (A.2)
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Functional Analysis

Functional Analysis is the study of spaces made of functions and the operators be-
tween them. Let us recall the classical functional spaces.

B.1 Common functional spaces

Let D and C be two sets. We recall that we call CD the space of functions f : D → C

that have D as domain and C as codomain.

Definition B.1 (Lp spaces). Let p ∈ [1,∞]. If p ∈ [1,∞[, we call the Lp(R;C)
space the set

Lp(R;C) = {f ∈ CR :
∫

R
|f(x)|p dx <∞}/∼ (B.1)

where f ∼ g ⇔
∫

R
|f(x)− g(x)|p dx = 0.

We call the p-norm of a function f ∈ Lp to ||f ||p =
∫

R
|f(x)|p dx

For p =∞, we use

L∞(R;C) = {f ∈ CR : supx∈R |f(x)| <∞}/∼ (B.2)

where f ∼ g ⇔
∫

R
supx∈R |f(x)− g(x)| = 0.

We call the ∞-norm of a function f ∈ L∞(R;C) to ||f ||∞ = supx∈R |f(x)|.

All the Lp(R;C) spaces are Banach spaces, i.e., complete normed vector spaces.
Furthermore, the space L2 is a Hilbert space with scalar product defined in Defini-
tion B.13.
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B.2 Common operators
If we have a subtraction operator defined in the domain, we can define the translation
operator.

Definition B.2 (Translation operator). Let C be a set and let E and G be two
sets such that a subtraction − : E × G → E is defined. Let a ∈ G. Then, the
translation operator is defined as

Ta : CE → CE

f 7→ Ta[f ] : E → C

x 7→ f(x− a)

. (B.3)

Definition B.3 (Reflection operator). Let C be a set and (G,+) be a group. Then,
the reflection operator is defined as

R : CG → CG

f 7→ R[f ] : G → C

x 7→ f(−x)

. (B.4)

When the set C has a ring structure, we can define the addition and multiplication
operators.

Definition B.4 (Addition and multiplication operators). Let D be a set. Let
(R,+, ·) a ring. Then, the addition operator is defined as

+ : (RD, RD) → RD

(f, g) 7→ f + g : D → R

x 7→ f(x) + g(x)

. (B.5)

The multiplication operator is defined as

· : (RD, RD) → RD

(f, g) 7→ f · g : D → R

x 7→ f(x) · g(x)

. (B.6)

When we have a field structure in the domain, we can define the scaling operator.

Definition B.5 (Scaling operator). Let (K,+, ·) be a field and C a set. Let s ∈
K \ {0}. Then, the scaling operator is defined as

Ds : CK → CK

f 7→ Ds[f ] : K → C

x 7→ f
(

x
s

)

. (B.7)
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B.2. Common operators

The scaling operator may be defined differently depending on what norm you
want to preserve.

Definition B.6 (p-unitary scaling operator). Let s ∈ K \ {0}. Let p ∈ [1,∞]. We
define the p-unitary scaling operator of scale s as

Dp
s : CR → CR

f 7→ Dp
s [f ] : R → C

x 7→ |s|− 1

pf
(

x
s

)

(B.8)

where we assume 1
∞ = 0.

Proposition B.7. The p-unitary scaling operator is unitary for the p norm, i.e.,

||Dp
s [f ]||p = ||f ||p . (B.9)

When the codomain is C, we can define the conjugate operator.

Definition B.8 (Conjugate operator). Let D be a set. Then, the conjugate op-
erator is defined as

· : CD → CD

f 7→ f : D → C

x 7→ f(x)

. (B.10)

If the domain is a group, we can define the involution operator.

Definition B.9. Let (G,+) be a group. The involution operator is defined as

·∗ : CG → CG

f 7→ f ∗ : G → C

x 7→ f(−x)

. (B.11)

When the domain is R and the codomain is C, we can define the modulation
operator.

Definition B.10 (Modulation operator). Let ξ ∈ R. Then, the modulation op-
erator is defined as

Mξ : CR → CR

f 7→ Mξ[f ] : R → C

t 7→ f(t) · e2πıtξ

. (B.12)
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Appendix B. Functional Analysis

Proposition B.11. Let τ ∈ R. Let ξ ∈ R. Then, ∀f ∈ CR,

TτMξ = e−2πıτξMξTτ MξTτ = e2πıτξTτMξ .

Another important operator is the convolution.

Definition B.12 (Convolution operator). The convolution operator is defined as

∗ : L1(R;C)× Lp(R;C) → Lp(R;C)
(f, g) 7→ f ∗ g : R → C

t 7→
∫

R
f(u) · g(t− u) du

. (B.13)

When the functions belong to L2(R;C), we can define the scalar product of two
functions.

Definition B.13 (Scalar product). Let f, g ∈ L2(R;C). Then, the scalar product
between f and g is defined as

〈f, g〉 =
∫

R

f(x) · g(x) dx . (B.14)

The convolution can be expressed in terms of the scalar product.

Proposition B.14. Let f, g ∈ L2(R;C). Then, ∀x ∈ R,

(f ∗ g)(x) = 〈f, Txg∗〉 . (B.15)

B.3 Fourier theory
In this section we will recall the basics of Fourier transformations, in particular to
establish the notations used throughout this thesis.

The Fourier Transform is defined for functions in L1(R;C) as follows.

Definition B.15. Let f ∈ L1(R;C). Then, the Fourier Transform of f is defined
by

f̂ : R → C

ξ 7→
∫

R
f(t)e2πıtξ dt

. (B.16)

The Fourier Transform is the linear operator F defined by

F : L1(R;C) → L∞(R;C)

f 7→ F [f ] = f̂

. (B.17)
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B.3. Fourier theory

Proposition B.16. The Fourier transform is an unitary operator in L2(R;C), i.e.,

F : L2(R;C) → L2(R;C)
f 7→ F [f ] : R → C

ξ 7→ 〈f,Mξ[1]〉

(B.18)

where 1 is the function 1 : R→ C, t 7→ 1, and

||F [f ]||2 = ||f ||2 . (B.19)
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