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Abstract

An increasing number of large ontologies are being developed and made available, e.g., in
repositories such as the NCBO Bioportal. Ensuring access to the knowledge contained in
ontologies that is most relevant to users has been identified as an important challenge. In
this work, we tackle this challenge by proposing three different approaches to extracting
knowledge from Description Logic ontologies: extracting minimal ontology modules (i.e.,
sub-ontologies that are minimal w.r.t. set inclusion while still preserving all entailments over
a given vocabulary); computing best ontology excerpts (a certain, small number of axioms
that best capture the knowledge about the vocabulary while allowing for a degree of semantic
loss); and determining projection modules (sub-ontologies of a target ontology that entails
subsumption, instance or conjunctive queries that follow from a reference ontology). For
each of these approaches, we are interested in extracting not only one but all instances of the
module notion. For computing minimal modules and best excerpts, we introduce the notion
of subsumption justification as a generalisation of the notion of a justification (a minimal
set of axioms needed to preserve a given logical consequence) to capture the subsumption
knowledge over the vocabulary. Similarly, for computing projection modules, we introduce
the notion of projection justifications that preserve the answers to one of three query types as
given by a reference ontology.

We develop algorithms for computing subsumption (projection) justifications that collect
all axioms that are relevant for answering the queries. The process of extracting minimal sub-
ontologies is guided by specific simulation notions between ontologies. Different algorithms
are required for computing subsumption justifications and projection justifications for the
different query languages. The algorithm for computing subsumption justifications collects
all minimal sub-ontologies that maintain the simulation in order to preserve the answers to
subsumption queries. Similarly, the algorithm for computing projection justifications also
employs the simulation notion, but it collects the relevant axioms in a target ontology that
preserve the same answer to different types of queries in the reference ontology.

Finally, we evaluate our approaches using a prototype implementation of the algorithms
on large ontologies.





Résumé

Un nombre croissant d’ontologies de grande taille sont en cours de développement et rendues
disponibles, par exemple dans les référentiels tels que le bioportail de NCBO. Garantir
l’accès aux connaissances contenues dans des ontologies qui sont les plus pertinentes pour
les utilisateurs est un défi important. Dans ce travail, nous abordons ce défi en proposant
trois approches différentes pour extraire des connaissances des ontologies en logique de
description :

• Extraire les modules minimaux d’une ontologie (c’est-à-dire les sous-ontologies min-
imales pour l’inclusion ensembliste qui préservent toutes les implications sur un
vocabulaire donné). Les modules peuvent aider à comprendre la structure interne d’une
ontologie. Par conséquent, l’extraction des modules minimaux d’une ontologie peut
être utile dans de nombreux cas. Par exemple, le raisonnement à base d’ontologies,
la visualisation d’ontologies, la réutilisation d’ontologies, la structuration de connais-
sances.

• Calculer les meilleurs extraits d’une ontologie (un certain nombre, petit, d’axiomes qui
capturent au mieux la connaissance du vocabulaire tout en permettant un certain degré
de perte sémantique). Ceci afin de résoudre le problème de l’absence de contrôle du
nombre d’axiomes contenus dans un module minimal. Même des modules minimaux
pour de petites signatures peuvent être volumineux, ce qui rend la compréhension
humaine difficile. Par contre, un meilleur extrait préserve autant de connaissances que
possibles relativement à une taille donnée.

• Déterminer les modules de projection (sous-ontologies d’une ontologie cible qui
impliquent des requêtes de souscription, d’instance ou conjonctives qui découlent
d’une ontologie de référence). Différent des notions précedentes, le module de
projection prend en compte une seconde ontologie comme la référence et le but est
d’extraire une sous-ontologie de l’ontologie cible qui préserve les connaissances sur
un vocabulaire donné impliquées par cette ontologie de référence.
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Pour chacune de ces approches, nous souhaitons extraire non seulement une, mais toutes
les instances de la notion correspondante de module. Pour le calcul des modules minimaux et
des meilleurs extraits, nous introduisons la notion de justification de la subsomption en tant
que généralisation de la notion de justification (un ensemble minimal d’axiomes nécessaires
pour préserver une conséquence logique donnée) afin de capturer la connaissance déduite par
subsomption sur le vocabulaire. De même, pour le calcul des modules de projection, nous
introduisons la notion de justification de projection qui préserve les réponses à l’un des trois
types de requête impliquées par une ontologie de référence.

Nous développons des algorithmes pour calculer les justifications de subsomption (resp.
de projection) qui rassemblent tous les axiomes pertinents pour répondre aux requêtes. Le
processus d’extraction de sous-ontologies minimales est guidé par des notions de simulation
spécifiques entre ontologies. Différents algorithmes sont nécessaires pour calculer les
justifications de subsomption et de projection pour les différents langages de requêtes.
L’algorithme de calcul des justifications de subsomption recueille toutes les sous-ontologies
minimales qui respectent les règles de simulation afin de conserver les réponses aux requêtes
de subsomption. De même, l’algorithme de calcul des justifications de projection utilise
également la notion de simulation, mais il recueille les axiomes pertinents dans une ontologie
cible qui conservent la même réponse à différents types de requêtes dans l’ontologie de
référence.

Nous évaluons nos approches à l’aide d’un prototype d’implémentation des algorithmes
sur les grandes ontologies, y compris SNOMED CT et NCI. Les évaluations montrent qu’il
est possible de calculer tous les modules minimaux, les meilleurs extraits, et les modules de
projection d’ontologies à grande échelle. En plus, les modules minimaux et les meilleurs
extraits peuvent être beaucoup plus petits que les ontologies originales, ce qui montre
l’avantage de ces notions.
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Chapter 1

Introduction

Artificial intelligence (AI), also known as machine intelligence, has received considerable
attention in recent years. The current most popular areas include deep learning, speech
recognition, natural language processing. Knowledge representation, as a traditional AI area,
is still a core part of AI research since it was founded in 1956 as an academic discipline.
Knowledge is represented in machine processable form and logic is used for automated
reasoning. Description logics in particular appear to offer a good compromise between ex-
pressive power and computational complexity of reasoning. In computer science, ontologies
are mainly used to represent terminological knowledge. An ontology consists of a TBox
that defines the terminology of the application domain and an ABox that states facts about a
specific world. Different formats for modelling information have been recommended by the
World Wide Web Consortium (W3C), most notably the Resource Description Framework
(RDF) and its extensions RDF Schema (RDFS) and the Web Ontology Language (OWL). In
this thesis, we consider ontologies represented using description logics. Description logics
are a family of knowledge representation formalisms and form the logical underpinning
of OWL. As a mature field of research, description logics offer a wealth of theoretical
results on expressivity and computational complexity as well as existing implementations
of reasoning systems. Applications of description logics encompass several areas including
ontology engineering, web-based information systems and database management, among
others. Furthermore, in this thesis, we focus on methods for extracting knowledge from
ontologies that are represented using description logics for human users. To satisfy different
user requirements, we propose and investigate three different approaches to knowledge
extraction: ontology modules, ontology excerpts and projection modules. A module of an
ontology is a subset of the ontology that captures the knowledge about the terms of interest
as specified by the user. Depending on the module notion, a module may have further desired
properties and provide certain logical guarantees. A drawback of modules, however, is their
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relatively large size. Modules may be as large as the original ontology in the worst case.
Once the ontology and the terms of interest have been fixed, there is no way to control the
module size other than by changing to different module notions altogether. The notion of
ontology excerpts is designed to remedy this issue. An ontology excerpt is a size-bounded
subset of an ontology that preserves the knowledge that is most relevant to users’ concerns.

However, due to the size restriction, ontology excerpts might be incomplete. Different
to the notions of an ontology module and an ontology excerpt, projection modules preserve
the answers to subsumption/instance/conjunctive queries as they follow from a reference
ontology. Lastly, if users already know what they want and can express their interests as an
ontology, they can use this ontology as a reference ontology and extract projection modules
from the target ontology.

1.1 Ontology Modularity

Ontology modularity has investigated for over 10 years. This area has received considerable
attention resulting in a formidable literature. A challenge that remains to date is the develop-
ment of practical algorithms for computing modules that are minimal w.r.t. set inclusion. The
difficulty is due to the inherently high computational complexity of this task. Depending on
the underlying module notion, there may be exponentially many modules that are minimal.

A module is a subset of an ontology that can act as a substitute for the ontology in
certain contexts. A basic requirement for modules is to be indistinguishable from the original
ontology w.r.t. a relation of inseparability. We call such basic modules are also ‘plain’
modules. Further module properties such as self-containment and depletion (also called
weak and strong in [25]) have been proposed in the literature [31, 27] that impose additional
conditions on modules (regarding the knowledge that is contained in the module and that is
left in the ontology without the module). These properties together with a range of different
relations of inseparability give rise to a family of module notions. Several inseparability
notions have been considered, e.g., model theoretic inseparability w.r.t. a signature [27], or
inseparability w.r.t. answers to queries [35]. Popular query types are subsumption, instance
and conjunctive queries. We call modules based on model theoretic inseparability semantic
modules. This is a strong inseparability notion as in the case of E L H r-TBoxes, model
theoretic inseparability w.r.t. a signature Σ coincides with entailment of second-order logic
sentences over Σ (cf. Theorem 4 in [27]). In this thesis, however, we consider a weaker
relation of inseparability that is based on subsumption queries between E L -concepts over
a given signature for an E L H r terminology. We call the resulting modules E L H r-
subsumption modules.
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An important requirement for modules is that they should be as small as possible, which is
useful not only in the ontology re-use scenario [16] but also for other tasks including ontology
classification, debugging, decomposition, matching and summarisation. As the smallest
modules are not necessarily unique, we are interested in computing all basic E L H r-
subsumption modules that are minimal w.r.t. set inclusion. Computing minimal basic
semantic modules of E L H r-terminologies that are additionally self-contained and depleting
has been investigated in [25, 27]. Algorithms for computing minimal modules of DL-
Lite ontologies have been studied in [31]. However, to the best of our knowledge, no
practical approach for computing one or all basic E L H r-subsumption modules of E L H r-
terminologies has been developed so far.

Minimal modules can serve as explanations of the entire set of entailments over a
signature, similar to the justifications for one consequence (i.e., minimal sets of axioms
sufficient to entail the consequence) [20]. In this sense, minimal modules can improve our
understanding of the internal structure of large and complex ontologies. Moreover, being
able to compute all minimal modules allows us to select the smallest minimal module.

In general, extracting minimal modules is intractable, which is the reason why efficiently
extractable approximations of the (union of all) minimal modules have been introduced.
Among such approximations is the family of syntactic locality-based modules [16]. Such
modules may contain more axioms than necessary to ensure the preservation of entail-
ments over a signature. For instance, the size of the syntactic ⊥⊤∗-locality modules [42]
of Snomed CT,1 the Systematized Nomenclature of Medicine – Clinical Terms, (Version
Jan 2016) for 100 signatures consisting of 50 concept names selected at random together
with all role names, ranges from 1 075 to 2 456 axioms. This is in contrast to the size of
the minimal basic subsumption modules for these signatures that ranges from around 50
to 118 axioms. Hence, such minimal modules of Snomed CT may be more than 20 times
smaller than the corresponding syntactic ⊥⊤∗-locality modules. Implementations for extract-
ing locality-based modules are incorporated in the OWLAPI.2

The system MEX3 has been introduced to compute minimal depleting semantic modules
(which are unique for a given signature) from acyclic E L -terminologies (possibly extended
with inverse roles) such as Snomed CT [25]. The MEX-modules contain all minimal basic
subsumption modules, which are generally smaller. The size of the MEX-modules of
Snomed CT for the same signatures as above ranges from 401 to 720 axioms. However,
the corresponding minimal basic subsumption modules are still at least 6 times smaller.
Moreover, MEX cannot handle cyclic E L -terminologies such as some recent versions of

1https://www.snomed.org
2https://github.com/owlcs/owlapi
3https://cgi.csc.liv.ac.uk/~konev/software/

https://www.snomed.org
https://github.com/owlcs/owlapi
https://cgi.csc.liv.ac.uk/~konev/software/
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the National Cancer Institute’s Thesaurus (NCI).4 For instance, the size of the syntactic ⊥⊤∗-
locality modules of NCI (Version 14.01d) for 100 random signatures selected from NCIt
(as before for Snomed CT just with 100 concept names) ranges from 679 to 3 895 axioms,
whereas the size of the corresponding minimal basic E L -subsumption modules ranges from
around 0 to 64 axioms. Clearly, the ratio of the size of the syntactic ⊥⊤∗-locality based
modules to that of the minimal basic subsumption modules is even more than 20 in this
case. Another approach for extracting minimal depleting modules from DL-Lite ontologies
is based on using QBF-solvers [31].

1.2 Ontology Excerpts

Knowledge about a complex system represented in ontologies yields a collection of axioms
that is too large for human users to browse, let alone to comprehend or reason with. In Chapter
5 of this thesis, we propose a computational framework to zoom in on large ontologies
by providing users with either the necessary axioms that act as explanations for sets of
entailments, or fix-sized sub-ontologies containing the most relevant information over a
vocabulary, that is signature, denoted by Σ.

Various approaches to extracting knowledge from ontologies have been suggested in-
cluding ontology summarization [43, 51, 47], ontology modularization [16, 50, 48, 49, 27],
ontology decomposition [11, 36], and consequence justifications [21]. Existing ontology
summarization systems focus on producing an abridged version of RDF/S ontologies by
identifying the most important nodes and their links under certain numeric measures, e.g.,
in/out degree centrality of a node [47]. Ontology modularization is also very helpful to
extract knowledge from ontologies. However, computing minimal modules is known to
be hard. Hence, existing systems are either restricted to tractable DLs [29, 25, 10] or they
compute approximations of minimal modules [16, 11, 40].

However, different module notions and justifications share the property that the number
of the axioms they contain is not bounded (besides the size of the entire ontology). Even
minimal modules for small signatures may be large, rendering human understanding more
difficult, which can be shown by the following experiment.

Figure 1.1 illustrates the dependency between signature size and module size in the
case of SNOMED CT (Version Jan2014) consisting of 297090 axioms, 297079 concept
names, and 62 role names. The coordinates of a point in Figure 1.1 are a pair (n,m) of
numbers, where n corresponds to the number of terms in a signature Σ and m to the number
of axioms in a subset S of the ontology O . The curve connects over 30 data points, each

4https://ncit.nci.nih.gov/

https://ncit.nci.nih.gov/
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Figure 1.1 Size of ⊥⊤∗-local module w.r.t. size of signature Σ of SNOMED CT

of which represents the median value of the sizes of 500 ⊥⊤∗-local modules of SNOMED
CT. Each module is extracted w.r.t. a signature consisting of n concept names, for n with
200 ≤ n ≤ 290000, and 30 role names that are randomly selected from the signature of
SNOMED CT. The special role name ‘RoleGroup’ is always selected. Note that we fixed
the number of role names arbitrarily; similar results can be expected for different numbers
of role names. The time needed to extract 500 modules ranges from about 30 min for small
signatures (containing 200 concept names) to about 90 min for large signatures (containing
250000 concept names).5

We can see from Figure 1.1 that the module sizes increase with the size of the input
signature. For small signatures, the slope is steep, showing that the modules are relatively
large compared to the signature size. However, with increasing signature sizes, the slope
flattens. For different signatures of the same size, there are still variations in the sizes of the
modules for these signatures. In this experiment, the module sizes vary from 2633 to 4086
for signatures up to 100000 concept names and 30 role names. For larger signatures the
variation in module size reduces to 224 for signatures with 290000 concept names and 30 role
names, and converges to 0 as signature is expanded to the whole signature of SNOMED CT.

Let us consider the coordinates of a point in the chart in Figure 1.1 as a pair (n,m) of
numbers, where n corresponds to the size of a signature Σ and m to the size of a subset S of
the ontology O . Let MΣ(O) be the module of the ontology O w.r.t. the signature Σ (under
any module notion). Note that, for a signature Σ′ and a subset S ′ ⊆ O that correspond
to a point in the area above the curve for the ontology O in Figure 1.1, we may have that
MΣ′(O)⊊ S ′. In this case, S ′ likely contains axioms that do not contribute to the meaning
of the symbols in Σ′. Therefore, we are mainly interested in the area below the curve for an
ontology O . Let (n,m) be a point in that area, and let S ⊆O and Σ be such that |Σ|= n and

5The experiments were conducted on a PC equipped with an Intel Xeon E5-2640 CPU running at 2.50GHz
and with 100GB of RAM. We used Debian GNU/Linux 7.3 as operating system, Java version 1.7.0 51 and
OWLAPI version 3.4.8.
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|S |= m. We have that S contains fewer axioms than the module MΣ(O) (not considering
the variation of module sizes), i.e., |S | ≤ |MΣ(O)|. Therefore, S is likely to be incomplete
in capturing the meaning of the symbols in Σ. The trade-off for obtaining full control over
the size of S is a certain degree of incompleteness of S . To this end, the notion of best
excerpts is inspired as size-bounded subsets of ontologies that preserve as much knowledge
about a given signature as possible.

The following real-world example illustrates possible benefits of best excerpts. The
example axioms come from Snomed CT (FS for Finding_ site, RG for Role_ Group).

α1 := Decreased_ blood_volume⊑ Cardiovascular_ finding

α2 := Cardiovascular_ shunt⊑ Cardiovascular_ finding

α3 := Cardiac_ shunt⊑ Cardiovascular_ shunt⊓∃RG.(∃FS.Heart_ structure)

α4 := Cardiovascular_ structure⊑ Body_ system_ structure

Suppose a user is concerned with the cardiovascular disease defined in the Snomed CTontology T

consisting of around 300000 axioms. The user then selects the terms Cardiovascular_ finding,
Decreased_ blood_volume and Cardiac_ shunt from T as her signature Σ of interest. To help the
user zoom in on T for Σ, we can extract, for instance, the ⊥⊤⋆-module and obtain 51 axioms, or the
smallest minimal modules, which yields a further reduction down to 15 axioms, among which are the
axioms given above(α1-α4). Arguably our user still feels overwhelmed by the amount of 15 axioms.
This is where the notion of best k-excerpt steps in. By setting k = 3, the user can get a best 3-excerpt
E1 consisting of the axioms 1–3 listed above. By zooming in further, say extracting one-sized excerpts,
she obtains E2 consisting of the first axiom. As a best excerpt, E1 guarantees all logical entailments
over the terms Cardiac_ shunt and Decreased_ blood_volume. And the singleton E2 keeps the
complete information over the term Decreased_ blood_volume. Note that E2 is returned due to
the fact that it needs more than two axioms to preserve the full information for any other concept in
Σ. Moreover, axiom 4 is missing in E1 and in E2. This is because the latter merely serve to provide
background knowledge for reasoning over, thus not directly linked to, the user’s input terms Σ, which
are excluded from best excerpts due to the size restriction. In this way, the user is able to desired size
that captures the most relevant information for her signature of interest, thus gains size control over a
large ontology.

1.3 Projection Modules
Consider the scenario of the medical condition multiple myeloma, also known as bone marrow cancer
(BMCancer). This is a cancer of plasma cells, an antibody producing type of white blood cell. The
affected blood cells produce the protein albumin that can damage the kidneys. Damaged kidneys
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may be detected in a urine test (Urinalysis) as the presence of increased amounts of albumin in the
urine. Normal protein concentrations in urine should be low. Depending on the amounts of albumin,
this finding is classified as microalbuminuria (MA). The cancerous cells activate certain bone cells
(osteoclasts) to resorb bone tissue causing the release of calcium into the blood (leading to a possible
Hypercalcemia). The disruption of red blood cell production in the bone marrow may cause anemia,
and the breakdown of bone may eventually result in a broken back (Spinal_Fracture).

Suppose a medical terminology T1 consisting of axioms α1, . . . ,α6 generally states that spinal
fractures should be treated with orthopedic surgery and classifies multiple myeloma as bone marrow
cancer. It also states that patients with multiple myeloma should be given cancer treatment. We can
think of the information in T1 as a basic classification and guideline that should be complemented
with more specific domain knowledge on symptoms, diagnostic procedures and types of treatments
where applicable.

We further suppose that domain experts together with ontology engineers in fact have, based
on T1, implemented a more specific terminology T2 including the axioms α2, . . . ,α6 and β1, . . . ,β5,
among many others. In the development of T2, the axiom α1 has been extended to β1 to include more
information on prescribed treatments in the case of a spinal fracture. In particular, β1 additionally
states that a urinalysis should be performed to check for a possibly increased concentration of the
protein albumin as well as medical imaging to detect any bone lesions. Each of these findings can
be essential in diagnosing multiple myeloma, which may otherwise be undetected and, thus, have
fatal consequences. The other axioms from T1 have been preserved in T2, whereas β2, . . . ,β5 are new
axioms classifying treatments and describing symptoms of multiple myeloma.

α1 := Spinal_Fracture⊑ Fracture

α2 := Fracture⊑ ∃prescribe.Orthopedic_Surgery

α3 := Orthopedic_Surgery⊑ Treatment

α4 := Multiple_Myeloma⊑ BMCancer

α5 := BMCancer⊑ ∃prescribe.Cancer_Treatment

α6 := Cancer_Treatment⊑ Treatment

β1 := Spinal_Fracture⊑ Fracture⊓∃prescribe.Urinalysis⊓∃prescribe.Medical_Imaging

β2 := Multiple_Myeloma⊑MA⊓Anemia⊓Hypercalcemia

β3 := MA≡ ∃prescribe.(Urinalysis ⊓∃has_finding.Increased_Albumin)

β4 := Medical_Imaging⊑ Treatment

β5 := Urinalysis⊑ Treatment
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To promote quality and safety in the health care system, the integrity of T2 needs to be veri-
fied. This means checking that T2 correctly implements the knowledge regarding the terms, say,
Spinal_Fracture, Treatment, Multiple_Myeloma, prescribe, and has_finding as used in T1 (un-
derlined). It also means checking that T2 satisfies certain restrictions regarding the formulation of
axioms as well as term usage. In an effort to ensure integrity of T2 w.r.t. T1 and compliance of T2

with guidelines, the axioms from T2 that capture T1’s knowledge need to be inspected. Guidelines by
health insurances may require hospitals to avoid unnecessary treatments so as to avoid medical waste.
Additionally guidelines regarding the style or form of axioms may apply such as restrictions on term
usage or the requirement to use certain design patterns.

A module of T2 for the terms, however, preserves all knowledge of T2 regarding these terms. The
resulting axioms may be too numerous for it to be feasible to inspect them manually. In our illustrating
example, a comprehensive module notion would, when applied to T2 w.r.t. the terms, yield all axioms
of T2 as shown above. A module notion that is minimal (w.r.t. set inclusion) would yield the axioms
β1, . . . ,β5. These axioms preserve T1’s entailments Spinal_Fracture⊑ ∃prescribe.Treatment and
Multiple_Myeloma⊑ ∃prescribe.Treatment, but they also entail, e.g.,

γ := Multiple_Myeloma⊑ ∃prescribe.has_finding.⊤,

which does not follow from T1. On the other hand, the following subsets of T2 that do preserve
the entailments of T1 are not minimal modules of T2 as they do not entail γ: {α2, . . . ,α6,β1},
{α4,α5,α6,β1,β4}, and {α4,α5,α6,β1,β5}. Each of these subsets needs to be inspected to ensure
integrity and compliance of all relevant parts of T2. For the inspection effort to be feasible, every
such subset needs to be as small as possible.

To sum up, the task is to assist users to check how T1’s knowledge is implemented in T2. The
solution is to extract only those subsets from T2 that preserve the mere knowledge of T1 and that
are minimal w.r.t. set inclusion so as to enable processing by a human, which cannot be produced by
existing module notions.

Best practices in engineering individual or networked systems of ontologies include the use of
design patterns [37] and requirement specifications [45]. Design patterns are syntactic templates of
axioms that are to be instantiated with terms. Requirements specifications help by facilitating the
ontology development process including the application of design patterns as well as verification of
the resulting ontologies.

Various approaches to comparing ontologies have been suggested, including ontology mapping,
or ontology alignment [13], and logical difference [28, 30, 34]. Ontology matching is the process
of determining correspondences, in particular the subsumption, equivalence, or disjointness relation
between two concept or relation names from different ontologies. A good concept similarity [33, 1]
is often helpful for ontology matching. In contrast, logical difference focuses on the comparison of
entailed logical consequences from each ontology and returns difference witnesses if differences are
present.
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For latest results on inseparability (in particular inseparability w.r.t. conjunctive queries), see,
e.g., [7, 8, 19], and for a survey on query inseparability, see, e.g., [6].

To compute projection modules, in this thesis, we generalize the notion of justification to subsump-
tion justification as a minimal set of axioms that maintains a consequence. Currently, the approaches
for computing all the justifications of an ontology w.r.t. a consequence can be classified into two
categories: “glass-box" [5, 21, 2, 22] and “black-box" [21, 52, 46]. “Black-box” algorithms use
existing reasoners to check whether a concept inclusion follows on from an ontology while searching
for possible sub-ontology that can serve as justifications. Differently, “glass-box” approaches modify
a pre-existing reasoner implementation in order to keep track of which axioms were used during
the classification of an ontology. Since it is difficult to avoid generating duplicate inferences for the
same consequence and there might exist exponentially many justifications for a given ontology and
a concept inclusion in the worst case, computing all justifications in general is a difficult task. It is
however possible to compute one justification in polynomial time.

1.4 Structure of the Thesis
The structure of the thesis is listed as follows:

Chapter 2 In this chapter, we introduce the relevant notions that are necessary for this thesis.
We start by the foundations of Description Logics E L and then we review the theory of logical
differences, relevant lemmas and theorems. In addition, some existing ontology module notions are
recalled. Finally, we introduce the notion of ontology justification and partial Max-SAT problem.

Chapter 3 We introduce the notion of subsumption justification to capture the subsumption
knowledge concerning a term with respect to all primitive and complex concepts built from terms in
a given vocabulary Σ. It extends the notion of classical justification that is a minimal set of axioms
needed to preserve the entailment of a particular subsumption C ⊑ D.

We provide two dedicated simulation notions to characterise the set of subsumers and the set
of subsumees formulated over a target signature Σ for a given signature term X w.r.t. an E L H -
and E L H r-terminology T . The simulation notions originate from the proof-theoretic approach
from [34] developed for the problem of deciding the logical difference between ontologies [23]. Based
on the simulation notions, we devise recursive algorithms for extracting the minimal subsets of axioms
that preserve the entailments of all Σ-subsumers and all Σ-subsumees of X w.r.t. T . We show that the
respective subsumer and subsumee justifications obtained in this way can then be combined to yield
subsumption justifications.

Finally, we evaluate a prototype implementation for computing subsumption justifications over
large biomedical terminologies. The results are encouraging as they show that computing subsumption
justifications is indeed feasible in several important practical cases.
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Chapter 4 In this chapter, we introduce a module notion, called basic E L H r-subsumption
modules and present two different approaches to compute them. In section 4.2, we extend the
black-box approach for finding one or all justifications in [20], which is based on Reiter’s hitting set
algorithm [38]. Instead of ensuring that a given entailment is preserved, we introduce an oracle to
determine the inseparability between the original ontology and the resulting module. As an oracle we
use a variant of the system CEX, which is a tool for deciding whether two E L H r-terminologies are
logically different w.r.t. a signature [28, 24, 34]. Additionally, several optimisations to speed up the
computation of minimal modules are investigated.

We also present an experimental evaluation of our algorithms by applying them on the prominent
and large medical ontologies Snomed CT and NCI. We note that our algorithms are applicable to
ontologies formulated in any ontology language provided that a tool is available that can effectively
decide the inseparability relation. As CEX works with variants of E L H r-terminologies, we restrict
the presentation of our algorithms to E L H r-terminologies.

An alternative to the black-box approach for computing minimal modules is to directly select the
relevant axioms from an ontology that preserve the desired entailments. Such a glass-box approach
has been investigated for acyclic E L H -terminologies (i.e., without domain and range restrictions
of roles) in Section 4.3. This technique is based on subsumption justification that we introduced
in Chapter 3. In addition, in this thesis we introduce a technique for computing even smaller (but
possibly incomplete) modules called ontology excerpts.

Chapter 5 A best k-excerpt of a TBox is a sub-ontology that contains at most k axioms that best
capture the knowledge about users’ interests in terms of weighted signature. In Chapter 5, we encode
the problem of selecting the right subsumption modules w.r.t. a signature as a partial Max-SAT
problem based on subsumption justifications that we introduced in Chapter 3. Overall we obtain an
algorithm for computing best k-excerpts w.r.t. a signature. Then we introduce weighted signature and
update the encoding method as a weighted partial Max-SAT problem to computing best excerpts for
weighted signature. We also propose a method to rank axioms in excerpts when presenting users a
best excerpt. Finally, we evaluate our algorithm by using it with the prominent bio-medical ontologies
Snomed CT. We demonstrate that computing best k-excerpts is a viable approach for the task of
summarizing large ontologies with a controllable small number of axioms that are most relevant for a
given set of terms.

Chapter 6 We introduce a novel module notion called projection module that entails the queries
that follow on from a reference ontology. We consider subsumption, instance and conjunctive queries
to represent the knowledge to be preserved. We develop algorithms for computing all minimal
projection modules of E L H r-terminologies, inspired by the simulation notions developed for
deciding the logical difference problem [34]. Our preliminary evaluation on real world biomedical
ontologies shows that the projection module notion creates a new dimension to understand relations
among multiple ontologies.
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Chapter 7 In Chapter 7 we summarize the results and indicate some possible future work based
on this thesis.





Chapter 2

Preliminaries

In this chapter we review the theoretical foundation that the following chapters are based on. We start
by explaining the basic notions of the Description Logic E L and some of its extensions. We focus on
these light-weight Description Logics as we deal in this thesis with the knowledge that is represented
in such formalisms. Then we review the theory of logical difference, which plays an important role in
the remainder of this thesis. In Section 2.3, we have a close look at existing ontology module notions.
We follow by introducing the notion of justification, which we will use in Chapter 3. Finally, we
introduce the foundation of the partial Max-SAT problem, which will be used in Chapter 5.

2.1 Description Logic E L and its Extensions
In this section, we are introducing the family of Description Logics E L . We start by briefly reviewing
the Description Logic E L and several of its extensions with range restrictions and conjunction of
roles and the universal role as well as concept subsumptions based on these extensions. For a more
detailed introduction to description logics, we refer to [3].

In the remainder of the thesis, we denote the sets of concept and role names by NC and NR,
respectively. We assume these sets to be mutually disjoint and countably infinite. Capital letters such
as A, B, X , Y , Z will denote concept names from NC, whereas lower-case letters r,s, t will denote role
names from NR.

Definition 1 (Syntax of E L -Family Concepts ) The sets of E L -concepts C, E L ran-concepts D,
E L ⊓-concepts E, and E L ⊓,u-concepts F are built according to the grammar rules:

C ::= ⊤ | A |C⊓C | ∃r.C | dom(r)
D ::= ⊤ | A | D⊓D | ∃r.D | dom(r) | ran(r)
E ::= ⊤ | A | E ⊓E | ∃R.E
F ::= ⊤ | A | F ⊓F | ∃R.F | ∃u.F
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where A ∈ NC, r ∈ NR, u is a fresh logical symbol (the universal role) and R = r1 ⊓ . . .⊓ rn with
r1, ...,rn ∈ NR, for n≥ 1.

Definition 2 (Semantics of E L Concepts) An interpretation I =(∆I , ·I ) consists of a non-empty
set, the domain ∆I , and an interpretation function ·I that maps each concept name A to a subset AI

of ∆I , every role name r to a binary relation rI over ∆I and the universal role u to uI = ∆I ×∆I .
The extension CI of an E L -concept C is defined inductively as follows:

• ⊤I := ∆I ,

• (C⊓D)I :=CI ∩DI ,

• (∃r.C)I := {x ∈ ∆I | ∃y ∈CI : (x,y) ∈ rI },

• (dom(r))I := {x ∈ ∆I | ∃y : (x,y) ∈ rI },

• (ran(r))I := {y ∈ ∆I | ∃x : (x,y) ∈ rI } and

• (r1⊓ . . .⊓ rn)
I := rI

1 ∩ . . .∩ rI
n .

Example 3 To illustrate concept descriptions, consider an example from the biomedical domain. We
assume that Finding_or_region_of_thorax and Mediastinal_Structure are concept names, and
finding_site is a role name. We can specify the concept of Finding_or_region_of_thorax that can
be found in the Mediastinal_Structure by using the following concept:

Finding_or_region_of_thorax⊓∃finding_site. Mediastinal_Structure.

Definition 4 (Concept and Role Inclusions, and TBoxes) Let C be an E L -concept, D an E L ran-
concept, F an E L ⊓,u-concept and r,s ∈NR. The sets of E L H -inclusions α , E L H r-inclusions β ,
E L ran-inclusions γ and E L ran,⊓,u-inclusions δ are built according to the grammar rules:

α ::= C ⊑C |C ≡C | r ⊑ s
β ::= C ⊑C | ran(r)⊑C | ran(r)⊓C ⊑C |C ≡C | r ⊑ s
γ ::= D⊑C | r ⊑ s
δ ::= D⊑ F | r ⊑ s

An L -TBox is a finite set of L -inclusions, where L ranges over the set of E L H , E L H r,
E L ran and E L ran,⊓,u.

We refer to inclusions also as axioms.

Definition 5 (Instance Assertions and ABoxes) Let NI be a set of individuals names and let a,b ∈
NI. Additionally, let C be an L -concept and r ∈ NR, where L ranges over the set of E L , E L ran,
E L ⊓, andE L ⊓,u. A L -instance assertion is an expression of the form:

C(a) or r(a,b).
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An L -ABox is a finite set of E L -instance assertions.

Definition 6 (Semantics of Concepts, Inclusions, Assertions, TBoxes and ABoxes) An interpreta-
tion I satisfies a concept C, an axiom C ⊑ D, C ≡ D or r ⊑ s, and an E L -instance assertion C(a)
or r(a,b) iff, respectively:

• CI ̸= /0,

• CI ⊆ DI ,

• CI = DI ,

• rI ⊆ sI ,

• aI ∈CI , or

• (aI ,bI ) ∈ rI .

We write I |= ϕ iff the interpretation I satisfies the axiom or instance assertion ϕ . An interpretation
I satisfies a TBox T (or an ABox A ), written I |= T (I |= A ), iff for every axiom ϕ ∈ T , it
holds that I |= ϕ (for every instance assertion λ ∈ A , I |= λ ). A TBox T entails an axiom ϕ

or, equivalently, ϕ follows from T , written T |= ϕ , iff for all interpretations I , I |= T implies
I |= ϕ . A TBox T and an ABox A together entail an instance assertion λ or, equivalently, λ follows
from T and A , written (T ,A ) |= λ , iff for all interpretations I , I |= T and I |= A implies
I |= λ .

Note that each of the concepts introduced above is satisfiable.

Example 7 Considering the following concept and role inclusions in the biomedical domain:

α1 ::= Color_finding(finding)≡ Clinical_finding(finding)⊓∃interprets(attribute).Color
α2 ::= Disease(disorder)⊑ Clinical_finding(finding)
α3 ::= interprets(attribute)⊑ concept_module_object_attribute(attribute)

Axiom α1 defines the concept name Color_finding(finding) in terms of the concept names Clin-
ical_finding(finding) and Color as well as the role name interprets(attribute) by stating that
color findings are exactly the clinical findings that interpret colors. Axiom α2 specifies the con-
cept name Disease(disorder) in terms of Clinical_finding(finding) by stating that a disease is
a clinical finding. Finally, Axiom α3 defines interprets(attribute) in terms of the role name con-
cept_module_object_attribute(attribute) by stating that every relationship among the property

‘interprets’ also belongs to the property ‘concept module object attribute’.

Definition 8 (E L H -terminology) An E L H -terminology T is an E L H -TBox consisting of
axioms α of the following form:
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• A⊑C,

• A≡C,

• r ⊑ s, or

• dom(r)⊑C,

where A ∈ NC, r,s ∈ NR, C is an E L -concept and no concept name occurs more than once on the
left-hand side of an axiom.1

Compared to E L H -terminologies, an E L H r-terminology additionally allows for range re-
strictions.

Definition 9 (E L H r-terminology) An E L H r-terminology T is an E L H r-TBox consisting of
axioms α of the following form:

• A⊑C,

• A≡C,

• r ⊑ s,

• dom(r)⊑C or

• ran(r)⊑C,

where A ∈ NC, r,s ∈ NR, C is an E L -concept and no concept name occurs more than once on the
left-hand side of an axiom.

Example 10 (Ex. 7 contd.) We complement axioms α1–α3 with four more axioms α4–α7 from the
biomedical domain:

α1 := Color_finding(finding)≡ Clinical_finding(finding)⊓∃interprets(attribute).Color
α2 := Disease(disorder)⊑ Clinical_finding(finding)
α3 := interprets(attribute)⊑ concept_module_object_attribute(attribute)
α4 := Normal_color(finding)⊑ Color_finding(finding)
α5 := Normal_color(finding)⊑ ∃interprets(attribute).Color(observable_entity)
α6 := ran(finding_sites)⊑ Body_Structure(body_structure)
α7 := Color_finding(finding)≡ Diagnostic_result(finding)⊓∃has_finding(attribute).Color

Axioms α4 and α5 both specify the concept name Normal_color(finding), the former in terms of the
concept name Color_finding(finding) and the latter in terms of the role name interprets(attribute)
and the concept name Color(observable_entity). Then, Axiom α4 states that a normal color is a color

1A concept equation A≡C stands for the inclusions A⊑C and C ⊑ A.
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finding, and α5 states that a normal color can be interpreted as an observable color. Next, Axiom α6

specifies the role name finding_sites in terms of the concept name Body_Structure(body_structure)
by restricting the range of the property ‘finding sites’ to refer to body structures. Finally, Ax-
iom α7 provides an alternative definition of Color_finding(finding) in terms of the role name
has_finding(attribute) and the concept names Diagnostic_result(finding) and Color by stating that
color findings are exactly the diagnostic results that have a finding which is a color.

We have that T = {α1,α2,α3,α4} is an E L H -terminology and T ∪ {α6} is an E L H r-
terminology. The set T ′ = {α1,α2,α3,α4,α5,α6} is an E L H r-TBox, but, according to Definition 9,
it is not an E L H r-terminology as the concept name Normal_color(finding) occurs on the left-hand
side of two axioms, i.e. α4 and α5. Let T ′′ be a TBox obtained from T ′ by replacing α4 and α5 with
Axiom α8.

α8 := Normal_color(finding)⊑ Color_finding(finding) ⊓
∃interprets(attribute).Color(observable_entity)

T ′′ is an E L H r-terminology, and, moreover, T ′′ is semantically equivalent to T ′ (i.e. all axioms
from T ′ are entailed by T ′′, and vice versa). Similarly, accoding to Definition 8, the set T ∪{α7}
is not an E L H -terminology due to the concept name Color_finding(finding) occuring on the
left-hand sides of axioms α1 and α7. In this case, however, we cannot simply replace α1 and α7 with
a fresh axiom that combines the two.

To simplify the presentation, we assume that terminologies do not contain axioms of the form
A≡ B or A≡⊤ (after having removed multiple ⊤-conjuncts) for concept names A and B.

Definition 11 (Signature) A signature Σ is a finite set of symbols from NC and NR. We write sig(χ)
for the signature of χ as the set of concept and role names occurring in χ , where χ ranges over any
syntactic object. Additionally, we define that sigV (χ) := sig(χ)∩V , where V is a set.

The symbol Σ is used as a subscript (or a prefix) to a set of concepts or inclusions to denote that the
elements only use symbols from Σ, e.g., E L Σ, E L ran

Σ , E L ⊓
Σ , E L ⊓,u

Σ
, E L H r

Σ, Σ-ABox or Σ-query
etc.

Definition 12 (Acyclic and Cyclic Terminology) Let T be a terminology and ≺T be the binary
relation over NC defined by A≺T B iff there is an axiom of the form A⊑C or A≡C in T such that
B ∈ sig(C). A terminology T is acyclic if the transitive closure ≺+

T of ≺T is irreflexive; otherwise
T is cyclic.

Definition 13 (Conjunctive Concept Name) A concept name A is called conjunctive in T iff there
exists an axiom of the form A≡ B1⊓ . . .⊓Bn, n≥ 2 in T ; otherwise A is said to be non-conjunctive
in T . We denote by Bi ∈ non-conjT (A) and 1≤ i≤ n.
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Definition 14 (Normalised E L H r-Terminology) Let ϕ ∈ {A,dom(s), ran(s)}, A, B, Bi be con-
cept names, and let r,s be role names. Additionally, let each conjunct Bi be non-conjunctive in T . An
E L H r-terminology T is normalised iff T only contains axioms of the following forms:

• r ⊑ s,

• ϕ ⊑ B1⊓ . . .⊓Bn with n≥ 1,

• A⊑ ∃r.B,

• A⊑ dom(r),

• A≡ B1⊓ . . .⊓Bm with m≥ 2,

• A≡ ∃r.B.

Every E L H r-terminology T can be normalised in polynomial time such that the resulting termi-
nology is a conservative extension of T [23].

Example 15 (Ex. 7 contd.) The axiom α1 in Example 7 can be normalised resulting in, e.g., the
following two new axioms:

• Color_finding(finding) ≡ Clinical_finding(finding) ⊓ A,

• A ≡ ∃interprets(attribute).Color,

where A is a new concept name introduced by the normalization of α1.

Any E L H r-terminology can be normalised by appropriately replacing nested complex concepts
C by fresh concept names XC and adding concept equations XC ≡C to the terminology that define the
new symbols. It can readily be seen that this transformation is tractable and that it does not change
the meaning of the original TBox. The following lemma from [23] makes this precise.

Lemma 16 For every E L H r-terminology T , there is a normalised E L H r-terminology T ’ of
polynomial size in the size of T such that T ≡Σ T ′ with Σ = sig(T ).

2.2 Logical Difference
In this section, we briefly recall basic notions related to logical difference between ontologies and
some lemmas that we will use later in the thesis [23, 28].

Before we give the formal definitions of logical difference, first we recall the notions of instance
and conjunctive queries. While instance queries are simply instance assertions (cf. Definition 5),
conjunctive queries require their own definition.
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Definition 17 (Conjunctive Query) Let NI and NV be disjoint sets of individual and variable names.
A conjunctive query is a first-order formula built according to the following format:

∃y1 . . .∃yn.
∧
i∈I1

Ai(si)∧
∧
j∈I2

r j(t j, t ′j),

where y1, . . . ,yn ∈ NV for n≥ 1 are variable names, I1, I2 are finite sets of indices, and for i ∈ I1 and
j ∈ I2, Ai ranges over concept names in NC, r j ranges over role names in NR, and si, t j, t ′j range over
individual and variable names in NI∪NV.

The notion of entailment of an instance query from a TBox and ABox generalises to conjunctive
queries.

Example 18 We illustrate instance and conjunctive queries with the following example from the
medical domain. Let T be a TBox and A an ABox, where

T :
Doctor ≡ Employee ⊓ ∃treat.Disease

ran(treat) ⊑ Disease

A :
Employee(Ping)
Disease(Anemia)
treat(Ping,Anemia)

Let λ = (Employee⊓∃treat.Disease)(Ping) be an instance query and q(x) = ∃y.Employee(x)∧
treats(x,y) a conjunctive query. Note that q(x) has one free variable, x. It can readily be verified that
(T ,A ) |= λ holds according to Definition 6. Moreover, it is not hard to see that (T ,A ) |= q(x).

Definition 19 (Logical Difference) Let T1 and T2 be E L H r-TBoxes and let Σ be a signature.
Additionally, let L ∈ {E L H r,E L ran,E L ran,⊓,u}. The L -subsumption query, instance query, and
conjunctive query differences between T1 and T2 w.r.t. Σ are the sets cDiffL

Σ (T1,T2), iDiffΣ(T1,T2)

and qDiffΣ(T1,T2), where

• ϕ ∈ cDiffL
Σ (T1,T2) iff ϕ is a L -inclusion with sig(ϕ)⊆ Σ, T1 |= ϕ and T2 ̸|= ϕ;

• (A ,λ ) ∈ iDiffΣ(T1,T2) iff A is an ABox with sig(A )∩ (NC∪NR)⊆ Σ and λ a Σ-instance
assertion, (T1,A ) |= λ and (T2,A ) ̸|= λ ;

• (A ,q(x)) ∈ qDiffΣ(T1,T2) iff A is an ABox with sig(A )∩ (NC ∪NR) ⊆ Σ and q(x) a Σ-
conjunctive query, (T1,A ) |= q(x) and (T2,A ) ̸|= q(x).

The notion of subsumption, instance, and conjunctive query difference between T1 and T2 w.r.t. Σ

is not symmetric. In general, e.g., for subsumption query difference, it holds that cDiffΣ(T1,T2) ̸=
cDiffΣ(T2,T1). Moreover, cDiffΣ(T1,T2) = /0 does not imply cDiffΣ(T2,T1) = /0, and vice versa.
The same holds for instance and conjunctive query difference.
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In remainder of the thesis, if L is not specified in notions as in cDiffΣ(T1,T2), then L is taken
to be the language in which T1 is formulated.

The following examples illustrate subsumption, instance, and conjunctive query differences.

Example 20 Let T1 = {A ≡ ∃r.B⊓X ,r ⊑ s}, T2 = {A ≡ ∃s.B⊓X ,r ⊑ s} and Σ = {A,B,r}. Then
it holds that A ⊑ X ̸∈ cDiffΣ(T1,T2) as T1 |= A ⊑ X and T2 |= A ⊑ X. We also have that T1 |=
∃r.B⊓X ⊑ A, but T2 ̸|= ∃r.B⊓X ⊑ A. Therefore, ∃r.B⊓X ⊑ A ∈ cDiffΣ(T1,T2).

Example 21 Let T1 = {ran(r)⊑ A, ran(s)⊑ B,X ≡ A⊓B}, T2 = /0 and Σ = {X ,s,r}. We have that
the inclusion ϕ = ran(r)⊓ ran(s)⊑ X uses only symbols from Σ and that ϕ is entailed by T1 but not by
T2. Note, however, that ϕ is not an E L H r-inclusion according to Definition 4. Moreover, E L H r-
inclusions such as ran(r) ⊑ A and ran(s) ⊑ B are not E L H r

Σ-inclusions as sig(ran(r) ⊑ A) ̸⊆ Σ

and sig(ran(s)⊑ B) ̸⊆ Σ. In fact, it holds that cDiffΣ(T1,T2) = /0. Extending Σ to, say, the signature
Σ′ = Σ∪{A} yields cDiffΣ′(T1,T2) ̸= /0 as T1 |= ran(r)⊑ A and T2 ̸|= ran(r)⊑ A. Additionally, let
A = {r(a,c),s(b,c)} be a ABox. It can readily be verified that (T1,A ) |= X(c) and (T2,A ) ̸|= X(c).
So, we have that (A ,X(c)) ∈ iDiffΣ(T1,T2).

Example 22 Let T1 = {A⊑ ∃r.⊤,r⊑ s,r⊑ t}, T2 = {A⊑ ∃s.⊤⊓∃t.⊤} and Σ = {A,s, t}. We have
that, e.g., A ⊑ ∃s.⊤ and A ⊑ ∃t.⊤ are each entailed by T1 and T2. This holds for all E L H r

Σ-
inclusions. Note that r⊑ s and r⊑ t are not E L H r

Σ-inclusions as sig(r⊑ s) ̸⊆ Σ and sig(r⊑ t) ̸⊆ Σ.
In fact, we have that cDiffΣ(T1,T2) = /0. Additionally, let A1 = {r(a,b)} be an ABox and λ1 = s(a,b)
be an assertion. We have that λ1 follows from (T1,A1) but not from (T2,A1). However, A1 is an ABox
that is not of the required form as it contains a role name that is not in Σ, i.e., sig(A1)∩(NC∪NR) ̸⊆ Σ.
In fact, for ABoxes A satisfying sig(A )∩ (NC ∪NR) ⊆ Σ and for Σ-instance queries λ , it holds
that (T1,A ) |= λ and (T2,A ) |= λ . That is, iDiffΣ(T1,T2) = /0. Finally, let A2 = {A(a)} be an
ABox and q(x) = ∃x.(s(a,x)∧ t(a,x)) be a conjunctive query (with no free variables). We have that
(T1,A2) |= q() but (T2,A ) ̸|= q(x). So, (A ,q(x)) ∈ qDiffΣ(T1,T2).

If the set cDiffL
Σ (T1,T2) is not empty, then it typically contains infinitely many concept inclusions.

We make use of the primitive witnesses theorems from [23], which state that if there is a concept
inclusion difference in cDiffL

Σ (T1,T2), then there exists an inclusion in cDiffL
Σ (T1,T2) of one of

the following five types δ1, ...,δ5, which are built according to the grammar rules below:

δ1 ::= r ⊑ s
δ2 ::= C ⊑ A | ran(r)⊓C ⊑ A
δ3 ::= D⊑ A
δ4 ::= A⊑C | dom(r)⊑C | ran(r)⊑C
δ5 ::= A⊑ E | dom(r)⊑ E | ran(r)⊑ E

where δ1 ranges over role inclusions, δ2 and δ4 are E L H r-inclusions, δ3 is an E L ran-inclusion
and δ5 is an E L ran,⊓,u-inclusion. Note that each of these inclusions has either a simple left-hand or
right-hand side.
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The following table summarises results from [23], which identify the types of inclusions that are
sufficient to represent the concept inclusion difference between E L H r-terminologies for the three
query languages that we consider (and from now on simply refer to as ‘ran’, ‘Ran’ and ‘Ran⊓,u’).2

Query language Abbreviation Types of inclusions in cDiffL
Σ (T1,T2)

E L H r
Σ ran δ1, δ2, δ4

E L ran
Σ Ran δ1, δ3, δ4

E L ran,⊓,u
Σ

Ran⊓,u δ1, δ3, δ5

Figure 2.1 The concept differences between E L H r-terminologies

In case two ontologies are logically different, the set cDiffΣ(T1,T2) consists of infinitely many
concept inclusions. The primitive witnesses theorems from [23] allow us to consider only certain
inclusions of a simpler syntactic form.

Definition 23 (Subsumption Difference Witnesses) Let T1 and T2 be E L H r-terminologies, Σ

be a signature and L ∈ {ran,Ran,Ran⊓,u}. The set of all L -subsumption difference witnesses,
denoted by WtnL

Σ (T1,T2), is the set of φ ∈ {A,dom(r), ran(r),r | A ∈ Σ∩NC,r ∈ Σ∩NR } such that
φ occurs either on the left-hand side or right-hand side of L -concept inclusions α where T1 |= α ,
but T2 ̸|= α .

We use lhs(α) (resp. rhs(α)) to represent the left-hand side (resp. right-hand side) of an inclusion
α .

Theorem 24 Let T1 and T2 be E L H r-terminologies, Σ be a signature and L ∈{ran,Ran,Ran⊓,u}.
The set of all L -subsumption difference witnesses is given by

WtnL
Σ (T1,T2) = roleWtnΣ(T1,T2)∪ lhsWtnL

Σ (T1,T2)∪ rhsWtnL
Σ (T1,T2),

where the set roleWtnL
Σ (T1,T2) = {r ∈ Σ∩NR | r ⊑ s or s ⊑ r ∈ the set cDiffL

Σ (T1,T2)}, the
set lhsWtnL

Σ (T1,T2) = {ϕ ∈ (Σ∩NC)∪Σdom ∪Σran | ϕ ⊑ rhs(α) and α is a type-δ4 or type-δ5

inclusions in the set cDiffL
Σ (T1,T2)} and the set rhsWtnL

Σ (T1,T2) = {A ∈ Σ∩NC | lhs(α) ⊑
A and α is a type-δ2 or type-δ3 inclusions in the set cDiffL

Σ (T1,T2)} respectively, depending on
the query language L (cf. Fig. 2.1). The set WtnL

Σ (T1,T2) can be seen as a finite representation of
the set cDiffL

Σ (T1,T2), which is typically infinite when it is not empty.

As a corollary of the primitive witnesses theorems in [23], we have that the representation is
complete in the following sense: cDiffL

Σ (T1,T2) = /0 iff roleWtnΣ(T1,T2) = lhsWtnL
Σ (T1,T2) =

2We refer to Theorems 40 and 61 in [23].
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rhsWtnL
Σ (T1,T2) = /0. Thus, for deciding the existence of concept inclusion differences, it is

equivalent to decide non-emptiness of one of the three witnesses sets.
Observe that the set WtnL

Σ (T1,T2) is finite as Σ is finite. Consequently, it can be seen as a
succinct representation of the set cDiffL

Σ (T1,T2) in the sense that:

cDiffL
Σ (T1,T2) = /0 iff WtnL

Σ (T1,T2) = /0 [23].

Example 25 Let T consist of the following four axioms:

α1 : A⊑ B⊓∃r.X α2 : B⊑ A
α3 : X≡ A⊓B α4 : Y ≡ B⊓∃r.(X ⊓∃s.A)

For Σ = {A,B}, it holds that WtnΣ(T ,{α1,α2}) = cDiffΣ(T ,{α1,α2}) = /0 and WtnΣ(T , /0) = Σ as
A⊑ B,B⊑ A ∈ cDiffΣ(T , /0). If Σ = {A,r}, we have that WtnΣ(T ,T \{α1}) = {A} as A⊑ ∃r.⊤∈
cDiffΣ(T ,T \{α1}).

As we can see from Definition 23, the set WtnL
Σ (T1,T2) can be seen as a finite representation of

the set cDiffL
Σ (T1,T2) [23], which is typically infinite.

The following theorem states that E L ran-subsumption and E L ran,⊓,u-subsumption queries are
sufficient to capture the absence of instance query and conjunctive query differences.

Theorem 26 Let T1 and T2 be E L H r-TBoxes and let Σ be a signature. Then:

• rhsWtnranΣ (T1,T2) ̸= rhsWtnRanΣ (T1,T2)

• rhsWtnRanΣ (T1,T2) = rhsWtnRan
⊓,u

Σ (T1,T2)

• lhsWtnranΣ (T1,T2) = lhsWtnRanΣ (T1,T2)

• lhsWtnRanΣ (T1,T2) ̸= lhsWtnRan
⊓,u

Σ (T1,T2)

This theorem follows from Lemmas 62 and 63 in [23]. The following lemma shows that logical
difference has the property of monotonicity.

Lemma 27 (Monotonicity of Logical Difference) Let T1,T2 be two E L H r-terminologies, and
T ′

2 ⊆T2. Additionally, let Σ be a signature. The following statements hold:

• cDiffΣ(T1,T2)⊆ cDiffΣ(T1,T ′
2 );

• iDiffΣ(T1,T2)⊆ iDiffΣ(T1,T ′
2 );

• qDiffΣ(T1,T2)⊆ qDiffΣ(T1,T ′
2 );

• WtnΣ(T1,T2)⊆WtnΣ(T1,T ′
2 ).
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Algorithms for computing the witnesses sets, and hence for deciding whether a logical difference
w.r.t. a signature exists, have been implemented in the CEX2.5 tool.3 Given two acyclic E L H r-
terminologies T1 and T2 and a signature Σ as input, CEX2.5 can compute and output the set
WtnΣ(T1,T2) in a fully automatic way.

We still note that a new approach for computing logical differences that can also handle large
cyclic terminologies has recently been introduced [12, 34].

2.2.1 Proof system for E L H r

A concept name A is called pseudo-primitive in a normalised terminology T if it does not occur
on the left-hand side of an inclusion of the form A≡C in T . Note that concept names that do not
occur in T are pseudo-primitive in T . A concept name A is said to be non-conjunctive in T if it is
pseudo-primitive in T or there exists a concept of the form ∃r.C such that A≡ ∃r.C ∈T . Otherwise,
A is called conjunctive in T . Thus, A is conjunctive in T iff there exist concept names B1, . . . ,Bn,
n≥ 2 such that A≡ B1⊓ . . .⊓Bn ∈T .

We can now categorise a concept name A w.r.t. a normalised terminology T as one of the
following holds:

• A is pseudo-primitive in T ,

• A is conjunctive in T , or

• there exists exactly one axiom of the form A≡ ∃r.B in T .

Definition 28 Let C be an E L -concept. We define the set sub(C)⊆ E L inductively as follows:

• sub(⊤) = {⊤};

• sub(A) = {A};

• sub(∃r.C) = {∃r.C}∪ sub(C);

• sub(C1⊓C2) = {C1⊓C2}∪ sub(C1)∪ sub(C2).

Moreover, we define the set sub0(C)⊆ E L H inductively as follows

• sub0(⊤) = {⊤};

• sub0(A) = {A};

• sub0(∃r.C) = {∃r.C};

• sub0(C1⊓C2) = sub0(C1)∪ sub0(C2).
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C ⊑C
(AX)

C ⊑⊤ (AXTOP) C ⊑ D
∃r.C ⊑ ∃r.D (EX)

∃r.(C⊓ ran(r))⊑ D
∃r.C ⊑ D

(EXRAN)

C ⊑ E
C⊓D1⊓·· ·⊓Dn ⊑ E

(ANDL)
C ⊑ E1 · · ·C ⊑ En
C ⊑ E1⊓·· ·⊓En

(ANDR)

CA ⊑ D
A⊑ D

(DEFL)
D⊑CA
D⊑ A

(DEFR)
where A≡CA ∈T

CA ⊑ D
A⊑ D

(PDEFL)
where A⊑CA ∈T

B⊑ D
∃r.C ⊑ D

(DOM)
where dom(r)⊑ B ∈T

A⊑ D
ran(r)⊑ D

(RAN)
where ran(r)⊑ A ∈T

∃s.C ⊑ D
∃r.C ⊑ D

(SUB)
ran(s)⊑ D
ran(r)⊑ D

(RANSUB)
where r ⊑ s ∈T

Figure 2.2 Gentzen-style proof system for normalised E L H r-terminologies

Figure 2.2 depicts the Gentzen-style proof system for E L H r-terminologies from [17] extended
with a number of inference rules to deal with the top-concept, and concept inclusions of the form A⊑C,
domain- and range restrictions, and role inclusions [23]. For a normalised E L H r-terminology T

and concepts C,D, we write C ⊢T D iff there exists a proof tree of C ⊑ D using the inference rules of
the calculus shown in Figure 2.2. We use this to characterise which concept inclusions are logically
entailed by a normalised terminology T .

Example 29 Let T = {A ≡ B1⊓X , X ≡ ∃r.B2}. Then a proof tree for T |= B1⊓∃r.B2 ⊑ A looks
as follows.

B1 ⊑ B1
(AX)

B1⊓∃r.B2 ⊑ B1
(ANDL)

∃r.B2 ⊑ ∃r.B2
(AX)

∃r.B2 ⊑ X
(DEFR)

B1⊓∃r.B2 ⊑ X
(ANDL)

B1⊓∃r.B2 ⊑ B1⊓X
(ANDR)

B1⊓∃r.B2 ⊑ A
(DEFR)

The deduction system is sound and complete w.r.t. the model theoretic semantics.

Theorem 30 (see [17, 23]) Let T be a normalised E L H r-terminology and let C,D be E L ran-
concepts. Then: T |=C ⊑ D iff C ⊢T D.

It follows from Theorem 30 that T ̸|= ⊤ ⊑ A holds for every concept name A and for every
normalised E L H r-terminology T .

3The tool is available under an open-source license from https://cgi.csc.liv.ac.uk/~konev/software/

https://cgi.csc.liv.ac.uk/~konev/software/
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2.2.2 Properties Regarding Logical Differences

The following lemma allows us to characterise an entailment of the form T |=C ⊑ A in terms of the
conjuncts that occur in C.

Lemma 31 Let T be a normalised E L H -terminology, r a role name, A a concept name and D an
E L -concept.

1. Assume T |=C ⊑ A, where
C =

l

1≤i≤n

Ai⊓
l

1≤ j≤m

∃r j.C j,

A is pseudo-primitive in T , Ai are concept names for 1 ≤ i ≤ n, C j are E L -concepts for
1≤ j ≤ m, and m,n≥ 0. Then there exists Ai, 1≤ i≤ n, such that T |= Ai ⊑ A.

2. Assume now T |=C ⊑ ∃r.D, where

C =
l

1≤i≤n

Ai⊓
l

1≤ j≤m

∃r j.C j,

Ai are concept names for 1≤ i≤ n, C j are E L -concepts for 1≤ j ≤ m, and m,n≥ 0. Then
either

• there exists Ai, 1≤ i≤ n, such that T |= Ai ⊑ ∃r.D, or

• there exists r j, 1≤ j ≤ m, such that r j = r and T |=C j ⊑ D.

Lemma 31 is an extension of Lemma 15 in [23] additionally allowing for role inclusions in the
terminology. The proof of Lemma 31 uses Theorem 30, which states soundness and completeness
of the Gentzen-style proof system for E L H r-terminologies in Figure 2.2. The proof proceeds
by induction on the length of the left-hand side of a subsumption (cf. Item 1 and 2 of Lemma 31)
that follows from the terminology. The idea is to analyse possible derivations for the subsumption
(determining which inference rules could have been used last) and show that a derivation for a simpler
subsumption can be found. Role inclusion axioms are accounted for by the inference rule (SUB)
in Figure 2.2. Since neither E L H -terminologies nor the subsumptions considered in Lemma 31
contain range concepts, the inference rules (EXRAN), (RAN) and (RANSUB) do not apply.

Lemma 32 Let T be a normalised E L H -terminology, let X be a concept name, let ∃r.D be an
E L H -concept such that T |= X ⊑ ∃r.D. Then there exists an axiom Y ▷◁ ∃s.Z ∈T (▷◁ ∈ {⊑,≡})
such that T |= X ⊑ Y , T |= s⊑ r and T |= Z ⊑ D.

Proof Let ∆ be the derivation of the inclusion X ⊑ ∃r.D w.r.t. T . We assume now towards a
contradiction that there does not exist an application of the (DEFL), (PDEFL) or (SUB) rule w.r.t.
an axiom Y ▷◁ ∃r.Z ∈ T in ∆. It is then easy to see that no concept of the form ∃r.E occurs on the
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left-hand side of any inclusion in ∆. We can infer that no concept of the form ∃r.E occurs on the
right-hand side of any inclusion in ∆ as well, i.e. ∆ is not a derivation of the inclusion A⊑ ∃r.D, which
contradicts our assumption. □

Definition 33 (Concept Witness [23]) Let T1 and T2 be normalised E L H -terminologies, and let
Σ be a signature. The set cWtnΣ(T1,T2) consists of concept names A from Σ such that there exists an
E L Σ-concept inclusion α of the form A⊑ D or C ⊑ A satisfying T1 |= α but T2 ̸|= α .

Lemma 34 (see [23]) Let T be an E L H r-terminology, A j concept names and ∃r.D an E L -
concept. Assume

T |=
l

1≤i≤l

ran(si)⊓
l

1≤ j≤n

A j ⊓
l

1≤k≤m

∃rk.Ck ⊑ ∃r.D,

where Ck, 1≤ k≤m, are E L ran-concepts and l,m,n≥ 0. Then at least one of the following conditions
holds:

(e1) there exists rk, 1≤ k ≤ m, such that T |= rk ⊑ r and T |=Ck⊓ ran(rk)⊑ D;

(e2) there exists A j, 1≤ j ≤ n, such that T |= A j ⊑ ∃r.D;

(e3) there exists rk, 1≤ k ≤ m, such that T |= dom(rk)⊑ ∃r.D;

(e4) there exists si, 1≤ i≤ l, such that T |= ran(si)⊑ ∃r.D.

Now assume that A is pseudo-primitive and

T |=
l

1≤i≤l

ran(si)⊓
l

1≤ j≤n

A j ⊓
l

1≤k≤m

∃rk.Ck ⊑ A,

where Ck, 1≤ k≤m, are E L ran-concepts and l,m,n≥ 0. Then at least one of the following conditions
holds:

(a1) there exists A j, 1≤ j ≤ n such that T |= A j ⊑ A;

(a2) there exists rk, 1≤ k ≤ m such that T |= dom(rk)⊑ A;

(a3) there exists si, 1≤ i≤ l such that T |= ran(si)⊑ A.

The set of E L ran,⊓-concepts is defined as the set of all E L ran,⊓,u-concepts without the universal
role.

Lemma 35 (see [23]) Let T be an E L H r-terminology and ∃R.D a E L ran,⊓-concept with R =

t1⊓·· ·⊓ tq a conjunction of role names. Assume

T |=
l

1≤i≤l

ran(si)⊓
l

1≤ j≤n

A j ⊓
l

1≤k≤m

∃rk.Ck ⊑ ∃R.D,
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where Ck, 1≤ k≤m, are E L ran-concepts and l,m,n≥ 0. Then at least one of the following conditions
holds:

(e1⊓) there exists rk, 1≤ k ≤ m, such that rk ⊑T t1,. . . , rk ⊑T tq, and T |=Ck⊓ ran(rk)⊑ D;

(e2⊓) there exists A j, 1≤ j ≤ n, such that T |= A j ⊑ ∃R.D;

(e3⊓) there exists rk, 1≤ k ≤ m, such that T |= dom(rk)⊑ ∃R.D;

(e4⊓) there exists si, 1≤ i≤ l, such that T |= ran(si)⊑ ∃R.D.

If u is the universal role and T |= C ⊑ ∃u.D, where C is a E L ran-concept and D is a E L ran,⊓-
concept, then at least one of the following holds:

(e1u) there exists a subconcept ∃r.C′ of C such that T |=C′⊓ ran(r)⊑ D;

(e2u) there exists a concept name A in C such that T |= A⊑ ∃u.D;

(e3u) there exists a role name r in C such that T |= dom(r)⊑ ∃u.D;

(e4u) there exists a role name r in C such that T |= ran(r)⊑ ∃u.D;

(e5u) T |=C ⊑ D;

(e6u) there exists a subconcept (ran(r)⊓C′) of C such that T |= ∃r.C′ ⊑ D.

2.3 Ontology Modules
A module is a subset of an ontology that captures the knowledge that the ontology describes about a
signature. In general, there are two different kinds of ontology modules. One is semantic modules
that are based on model-theoretic inseparability [27] and the other one is locality based modules that
are based on syntactic check [42].

2.3.1 Inseparability and Semantic Modules

In this section, we review some notions about inseparability and relative properties, which are
introduced in [27, 40].

Definition 36 (Σ-Reduct) Let I be an interpretation and Σ a signature. The Σ-reduct I |Σ of I is
the interpretation obtained from I by the following rules:

• ∆I |Σ := ∆I ;

• σI |Σ := σI , for all σ ∈ Σ;

• σI |Σ := /0, for all σ ∈ (NC∪NR)\Σ.
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Definition 37 (Σ-Inseparablity) Let T1 and T2 be general TBoxes and Σ a signature. Then T1 and
T2 are Σ-inseparable, denoted as T1 ≡Σ T2, iff {I |Σ |I |= T1 } = {I |Σ |I |= T2 }.

Example 38 Considering the following terminologies T1, T2 and T3. T1 consists of the following
axiom (FS is short for finding_site(attribute)):

Disorder_of_Body_Cavity(disorder) ≡ Disorder_of_Body_Site(disorder)⊓
∃FS.Trunk_Structure(Body_Structure),

T2 consists of the following axioms:

Disorder_of_Body_Cavity(disorder) ⊑ Disorder_of_trunk(disorder)
Disorder_of_trunk(disorder) ⊑ Disorder_of_Body_Site(disorder)⊓

∃FS.Trunk_Structure(Body_Structure),

and T3 consists of the following axiom:

Disorder_of_Body_Cavity(disorder) ⊑ Disorder_of_Body_Site(disorder).

We have that T1 ̸≡T2 ̸≡T3. But for

Σ = {Disorder_of_Body_Cavity(disorder), Disorder_of_Body_Site(disorder)}

we have that T1 ≡Σ T2 ≡Σ T3.

The following lemma shows that inseparability has the monotonicity property.

Lemma 39 Let T1 and T2 be two general TBoxes. Additionally, let Σ1 and Σ2 be two signatures and
Σ1 ⊆ Σ2. Then T1 ≡Σ2 T2 implies T1 ≡Σ1 T2.

We then introduce some notions of semantic modules.

Definition 40 (Σ-Modules) Let T be a general TBox and Σ a signature. Then M ⊆T is a:

• plain Σ-module of T w.r.t. Σ iff M ≡Σ T ;

• self-contained Σ-module of T w.r.t. Σ iff M ≡Σ∪sig(M ) T ;

• depleting Σ-module of T w.r.t. Σ iff T \M ≡Σ∪sig(M ) /0.

We say a plain (self-contained, depleting) Σ-module of T w.r.t. Σ is minimal iff there does not exist an
M ′ ⊊ M such that M ′ is a plain (resp. self-contained, depleting) Σ-module of T w.r.t. Σ.

The following proposition states the relations among these module notions [27].
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Proposition 41 Let T be a general TBox and Σ a signature. If M is a self-contained Σ-module
of T , then it is a plain Σ-module. Additionally, if M is a depleting Σ-module of T , then it is a
self-contained Σ-module.

An algorithm for computing a unique minimal depleting module of an acyclic E L I -terminology,
an E L -terminology additionally allowing for inverse roles, has been implemented in the tool MEX.4

Recently, new algorithms to compute depleting module for DL-Lite TBox [31] and A L C QI -
TBox [15] have been developed.

2.3.2 Locality-Based Modules

Extracting semantic modules (as presented in the last subsection) from real-world ontologies is
computationally difficult. This is why more practical approaches to module extraction have been
investigated resulting, most notably, in the module notions that are based on syntactic locality.
Syntactic locality modules are approximating semantic module notions from above, i.e., they contain
semantic modules but they cannot guarantee minimality w.r.t. set inclusion. Actually syntactic
locality-based modules are usually larger than minimal semantic modules. On the other hand, the
algorithm for extracting syntactic locality-based modules is rather efficient.

We consider the syntactic locality-based notions of ⊥-locality and ⊤-locality. Intuitively, an
axiom α is ⊥-local or ⊤-local w.r.t. a signature Σ if α becomes a tautology after all symbols that are
not in Σ have either been replaced with ⊥ or ⊤. We now give the formal definition of ⊥-locality and
⊤-locality for an E L H r-ontology.

Definition 42 (⊥-locality) Let C be an E L concept, r ∈ NR, A̸∈Σ ∈ NC\Σ and s̸∈Σ ∈ NR\Σ. Addi-
tionally, let C⊥ and C⊤ be defined recursively by the following rules:

C⊥ ::= A ̸∈Σ | ⊥ |C⊓C⊥ |C⊥⊓C | ∃s ̸∈Σ.C | ∃r.C⊥ | dom(s ̸∈Σ) | ran(s ̸∈Σ)

C⊤ ::= ⊤ |C⊤⊓C⊤

An axiom α is ⊥-local w.r.t. a signature Σ if α is of one of the following forms:

C⊥ ⊑C or C ⊑C⊤ or C⊤ ≡C⊤ or C⊥ ≡C⊥.

Definition 43 (⊤-locality) Let C be an E L concept, r ∈ NR, A̸∈Σ ∈ NC\Σ and s̸∈Σ ∈ NR\Σ. Addi-
tionally, let C⊥ and C⊤ be defined recursively by the following rules:

C⊥ ::= ⊥ |C⊓C⊥ |C⊥⊓C | ∃r.C⊥

C⊤ ::= A̸∈Σ |C⊤⊓C⊤ | ∃s ̸∈Σ.C | dom(s̸∈Σ) | ran(s ̸∈Σ)

4The tool is available under an open-source license from https://cgi.csc.liv.ac.uk/~konev/software/

https://cgi.csc.liv.ac.uk/~konev/software/
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An axiom α is ⊤-local w.r.t. a signature Σ if α is of one of the following forms:

C⊥ ⊑C or C ⊑C⊤ or C⊤ ≡C⊤ or C⊥ ≡C⊥.

Definition 44 An E L H r-terminology T is ⊥-local (resp. ⊤-local) w.r.t. Σ iff for every axiom
α ∈T , α is ⊥-local (resp. ⊤-local) w.r.t. Σ. Generally, we say that T is local w.r.t. Σ iff T is either
⊤-local or ⊥-local w.r.t. Σ.

Definition 45 (Locality-based Module) Let T be an E L H r-terminology and Σ be a signature. A
⊥-local (resp. ⊤-local) module of T w.r.t. Σ, denoted by M⊥ (resp. M⊤), is the minimal M ⊆T

such that T \M is ⊥-local (resp. ⊤-local) w.r.t. Σ∪ sig(M ).

Algorithm 1 [16] shows how to compute ⊥-local (resp. ⊤-local) module of a T w.r.t. Σ.

Algorithm 1: Computing a Locality-Based Module for a Signature

1 function LOCALITY-BASED-MODULE (T ,Σ,x)
2 M := /0, T ′ := T

3 repeat
4 M ′ := M

5 for every α ∈T ′ do
6 if α is not x-local w.r.t. Σ∪ sig(M ) then
7 M := M ∪{α}
8 T ′ := T ′ \{α}
9 end

10 end
11 until M = M ′;
12 return M

Proposition 46 If M is a ⊤-local or ⊥-local module, then M is also a plain, self-contained and
depleting Σ-module.

As extracting locality-based modules is rather efficient, when computing semantic modules we
extract locality-based module first.

2.4 Ontology Justification
In this section, we review the notion of ontology justification.
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Definition 47 (Ontology Justification [5]) Let T be an E L H r-TBox and let α be an E L H -
concept inclusion. A subset M ⊆T is called a justification for α from T iff M |= α and M ′ ̸|= α

for every M ′ ⊊ M .

We denote the set of all justifications for an E L H -concept inclusion α from an E L H -
terminology T with JustT (α).

Example 48 Let T = {A⊑ X1⊓X2,X1 ⊑Y,X2 ⊑Y}. Then the set JustT (A⊑Y ) consists of the two
sets {A⊑ X1⊓X2,X1 ⊑ Y} and {A⊑ X1⊓X2,X2 ⊑ Y}.

Note that JustT (α) may contain exponentially many justifications in the number of axioms in T .
Therefore, it is not possible to compute all justifications in polynomial time w.r.t. the size of TBox in
every case. But theoretically, it is possible to compute just one justification in polynomial time [5].

2.5 Partial Max-SAT Problem
Maximum Satisfiability (Max-SAT) problem has shown successfully to have many applications
in various domains in computer science. In this section, we review relevant knowledge about the
Max-SAT problem and its extension, the partial Max-SAT problem.

Let Π be a countably infinite set of propositional variables which we denote with p,q, etc. The
set Φ of propositional logic formulas ϕ is built according to the following grammar rule:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ϕ ↔ ϕ

where p ∈Π is a propositional variable.
A propositional valuation v : Π→{0,1} is a function mapping each propositional variable p ∈Π

to a truth value v(p) ∈ {0,1}. The valuation v is extended to propositional formulas as follows:

v(¬ϕ) := 1− v(ϕ)
v(ϕ ∧ψ) := min{v(ϕ),v(ψ)}
v(ϕ ∨ψ) := max{v(ϕ),v(ψ)}

v(ϕ → ψ) := max{1− v(ϕ),v(ψ)}
v(ϕ ↔ ψ) := max{min{v(ϕ),v(ψ)},min{1− v(ϕ),1− v(ψ)}}

where ϕ,ψ ∈ Φ. A propositional formula ϕ ∈ Φ is satisfied in v iff v(ϕ) = 1. We say that ϕ is
satisfiable iff there exists a valuation v such that v(ϕ) = 1.

A literal ℓ is a propositional variable p or a negated propositional variable ¬p, and a clause is
a disjunction ℓ1 ∨ . . .∨ ℓn of literals ℓi (0 ≤ i ≤ n). For a propositional formula ϕ ∈ Φ, we denote
with Clauses(ϕ) the transformation of ϕ into an equi-satisfiable clause set, i.e., Clauses(ϕ) is a
finite set of propositional clauses such that ϕ is satisfiable iff the formula

∧
ψ∈Ψ ψ is satisfiable,
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where Ψ = Clauses(ϕ). It is known that every propositional formula ϕ ∈ Φ can be transformed in
polynomial time (in the size of ϕ) into an equi-satisfiable set of clauses. Note that the clauses in
Clauses(ϕ) may contain propositional variables that are not present in ϕ .

The Boolean Satisfiability Problem (SAT), also known as Propositional Satisfiability Problem, is
the problem of deciding whether there exists a valuation that satisfies a given propositional formula ϕ ,
or alternatively, all the clauses contained in a set of clauses Ψ = Clauses(ϕ). As an extension, the
set Ψ is split into two sets H and S, called hard and soft clause sets. The problem of finding a valuation
that satisfies all the clauses in H and a maximal number of clauses in S is called the partial Max-SAT
problem.

Definition 49 (Partial Max-SAT Problem [14]) Let H and S be finite sets of propositional clauses.
We say that P = (H,S) is an instance of a partial Max-SAT problem. A valuation v is a solution
of P iff the following conditions are satisfied:

(i) ∑ϕ∈H v(ϕ) = |H|, and

(ii) for every propositional valuation v′ with ∑ϕ∈H v′(ϕ) = |H| it holds that

∑
ψ∈S

v′(ψ)≤ ∑
ψ∈S

v(ψ).

In other words, the objective of a partial Max-SAT problem is to find a propositional valuation
that satisfies all the hard clauses in H and that satisfies a maximal number of the clauses in S. Note
that a partial Max-SAT problem may have several solutions.

Example 50 Let P = (H,S) be a partial Max-SAT problem, where H = {¬p1, p2 ∨ p3} and S =

{p1∨¬p2,¬p3}. We have the following two solutions of P: v1(p1) = 0, v1(p2) = 0, v1(p3) = 1 and
v2(p1) = 0, v2(p2) = 1, v2(p3) = 0.

A weighted clause is a pair (ψ,wψ), where ψ is a clause and wψ is a natural number or infinity
meaning the cost for falsifying the clause ψ . If a clause ψ ∈ H, then wψ is infinite. Given a valuation
v and a set of weighted clauses Φ, the cost of valuation v on Φ is the sum of the weights of the clauses
falsified by v. The Weighted Partial Max-SAT problem for weighted clauses is the problem of finding
an optimal valuation for the variables of Φ, i.e., a valuation of minimal cost.

Definition 51 (Weighted Partial Max-SAT Problem [14]) Let H and S be finite sets of weighted
propositional clauses of the form (ψ,wψ), where ψ is a clause and wψ is a natural number or infinity
meaning the cost for falsifying the clause ψ . We say that P = (H,S) is an instance of a weighted
partial Max-SAT problem. A valuation v is a solution of P iff the following conditions are satisfied:

(i) ∑ϕ∈H v(ϕ) = |H|, and
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(ii) for every propositional valuation v′ with ∑ϕ∈H v′(ϕ) = |H| it holds that

∑
ψ∈S

v′(ψ)×wψ ≤ ∑
ψ∈S

v(ψ)×wψ .

Example 52 Let P ′ = (H,S) be a weighted partial Max-SAT problem, where H = {(¬p1,∞),
(p2∨ p3,∞)} and S = {(p1∨¬p2,4),(¬p3,1)}. We have the following solution of P ′: v1(p1) = 0,
v1(p2)= 0, v1(p3)= 1. The possible solution of P in Example 50: v2(p1)= 0, v2(p2)= 1, v2(p3)= 0
is not a solution of P ′, as the cost of valuation v2 is 4, which is higher than the cost of v1.





Chapter 3

Extraction of Ontology Subsumption
Justifications

In this chapter, we propose a notion called subsumption justification to capture the subsumption
knowledge about a term with respect to all primitive and complex concepts built from terms in a given
vocabulary Σ.

We proceed by first defining the notions of subsumer/subsumee module and subsumer/subsumee
justification and then present algorithms to compute subsumption justifications in E L H - and
E L H r-terminologies. We prove the correctness of algorithms and finally evaluate the algorithms on
large biomedical terminologies.

In the rest, we use the operator ⊗ to combine sets of axioms as follows. Given a set S and
S1,S2 ⊆ 2S, S1⊗ S2 := {S1 ∪ S2 | S1 ∈ S1, S2 ∈ S2 }. For instance, if S1 = {{α1,α2},{α3}} and
S2 = {{α1,α3},{α4,α5}}, then S1⊗S2 = {{α1,α2,α3}, {α1,α2,α4,α5}, {α3,α4,α5}, {α1,α3}}.
For a set M of sets, we define a function Minimise⊆(M) as follows: M ∈Minimise⊆(M) iff M ∈M
and there does not exist a set M ′ ∈ M such that M ′ ⊊ M . Continuing the previous example,
Minimise⊆(S1 ⊗ S2) = {{α1,α3}, {α1,α2,α4,α5}, {α3,α4,α5}}. Note that M⊗ { /0} = M, but
M⊗ /0 = /0. We use ⊗ and Minimise⊆(·) to combine sets of subsumer/subsumee/role subsumption
modules, whose correctness is guaranteed by Proposition 59.

3.1 Subsumption Justifications of E L H -Terminologies
In this section we first introduce the definition of (role) subsumption justification based on the notion
of (role) subsumption module for an E L H -terminology and a given signature.

Definition 53 (Subsumption Justification for E L H -terminology) Let T be a normalised E L H -
terminology, let Σ be a signature, and let X ∈ NC and r ∈ NR. We say that
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• M ⊆ T is an ⟨X ,Σ⟩-subsumee module of T iff for every C ∈ E L Σ, T |= C ⊑ X implies
M |=C ⊑ X;

• M ⊆T is an ⟨X ,Σ⟩-subsumer module M of T iff for every D ∈ E L Σ, T |= X ⊑ D implies
M |= X ⊑ D;

• M ⊆ T is an ⟨r,Σ⟩-role subsumption module of T iff for every s ∈ Σ, T |= r ⊑ s implies
M |= r ⊑ s and every t ∈ Σ, T |= t ⊑ r implies M |= t ⊑ r.

Additionally, a set M is called an ⟨X ,Σ⟩-subsumption module of T iff M is an ⟨X ,Σ⟩-subsumee
and ⟨X ,Σ⟩-subsumer module of T . An ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption) justification is
an ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption) module of T that is minimal w.r.t. ⊊. Similarly, an
⟨r,Σ⟩-role subsumption justification of T is an ⟨r,Σ⟩-role subsumption module of T that is minimal
w.r.t. ⊊.

We denote an ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption) justification as J←
T (X ,Σ) (resp.

J→
T (X ,Σ),JT (X ,Σ)). Note that there may exist multiple ⟨X ,Σ⟩-(subsumer, subsumee) subsump-

tion justifications. So we denote the set of all ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption)
justifications as J←T (X ,Σ) (resp. J→T (X ,Σ),JT (X ,Σ)). Similarly, we denote a ⟨r,Σ⟩-role subsump-
tion justification of T as JT (r,Σ) and the set of all ⟨r,Σ⟩-role subsumption justifications of T as
JT (r,Σ).

According to the Definition 53, it is easy to compute subsumption justifications.

Theorem 54 Let T be a normalised E L H -terminology, let Σ be a signature, and let X ∈ NC and
r ∈ NR. Additionally, let J←T (X ,Σ) (resp. J→T (X ,Σ), JT (X ,Σ)) be the set of all ⟨X ,Σ⟩-subsumee
justifications (resp. subsumer justification, subsumption justification). We have that

J→T (X ,Σ) := Minimise⊆(J←T (X ,Σ)⊗J→T (X ,Σ)).

Example 55 Let Σ= {A1,A2,B} and T = {α1,α2,α3,α4,α5}, where α1 :=X ≡ Y ⊓Z, α2 :=Y ⊑ B,
α3 := Z ≡ Z1⊓Z2, α4 := A1 ⊑ Y , and α5 := A2 ⊑ Z⊓Z1⊓Z2. Then the sets M1 = {α1, α4, α5},
M2 = {α1, α3, α4, α5}, and T are all ⟨X ,Σ⟩-subsumee modules of T , whereas only M1 is an
⟨X ,Σ⟩-subsumee justification of T . The set M3 = {α1, α2} is an ⟨X ,Σ⟩-subsumer justification of T .
Finally, the set {α1, α2, α4, α5} is an ⟨X ,Σ⟩-subsumption justification of T .

Example 56 Let Σ = {r, t} and let T = {α1,α2}, where α1 := r ⊑ s, α2 := s⊑ t. Then the set
M1 = {α1, α2} is an ⟨r,Σ⟩-role subsumption justification of T .

It is not difficult to get the following proposition from the primitive witnesses theorems 24 and
Definition 53.

Proposition 57 Let T be an E L H -terminology, Σ be a signature, X ∈ Σ∩NC and r ∈ Σ∩NR.
Then the following statements hold:
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• M is an ⟨X ,Σ⟩-subsumer module of T iff X ̸∈ lhsWtnΣ(T ,M );

• M is an ⟨X ,Σ⟩-subsumee module of T iff X ̸∈ rhsWtnΣ(T ,M );

• M is a ⟨r,Σ⟩-role subsumption module of T iff r ̸∈ roleWtnΣ(T ,M ).

In the following subsections, we present algorithms for computing subsumer and subsumee
justifications. The algorithms use the following notion of a cover of a set of sets.

Definition 58 (Cover) For a finite set S and a set T⊆ 2S, we say that a set M⊆ 2S is a cover of T iff
M⊆ T and, for every M ∈ T, there exists M ′ ∈M such that M ′ ⊆M .

In other words, a cover is a subset of T containing all sets from T that are minimal w.r.t. ⊊. Therefore,
a cover of the set of all subsumption modules also contains all subsumption justifications. We will use
covers to characterise the output of our algorithms to ensure that all justifications have been computed.

3.1.1 Computing Role Subsumption Justifications

Algorithm 2 shows how to collect relevant Σ-role inclusions by its definition.

Algorithm 2: Computing the set of all Role Subsumption Justifications for Role Inclusions

1 function COVERR (T ,Σ,r)
2 Mr = { /0}
3 for every s ∈ Σ∩NR such that T |= r ⊑ s do
4 Mr :=Mr⊗ JustT (r ⊑ s)
5 end
6 for every t ∈ Σ∩NR such that T |= t ⊑ r do
7 Mr :=Mr⊗ JustT (t ⊑ r)
8 end
9 return Minimise⊆(Mr)

It is easy to see that Algorithm 2 indeed computes all ⟨r,Σ⟩-role subsumption justifications of T

w.r.t. Σ for r ∈ NR.

Proposition 59 Let T be a normalised E L H -terminology, Σ be a signature and r ∈ NR. Addi-
tionally, let M :=COVERR(T ,Σ,r) is computed by Algorithm 2. Then M is the set of all ⟨r,Σ⟩-role
subsumption justifications.

3.1.2 Computing Subsumer Justifications

The algorithm for computing subsumer justifications relies on the notion of a subsumer simulation
between terminologies, which is similar to the simulation notion between ontology hypergraphs
introduced in [12, 34].
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Definition 60 (Subsumer Simulation for E L H -terminology) Let T1 and T2 be two normalised
E L H -terminologies and Σ a signature. A relation S ⊆ sigNC(T1)× sigNC(T2) is called a Σ-
subsumer simulation from T1 to T2 iff the following conditions hold:

(S→NC
) if (X1,X2) ∈ S, then for every B ∈ Σ with T1 |= X1 ⊑ B it holds that T2 |= X2 ⊑ B; and

(S→∃ ) if (X1,X2) ∈ S, then for each Y1 ▷◁1 ∃r.Z1 ∈ T1 with T1 |= X1 ⊑ Y1, T1 |= r ⊑ s, s ∈ Σ, ▷◁1 ∈
{⊑,≡}, there exists Y2 ▷◁2 ∃r′.Z2 ∈ T2 with T2 |= X2 ⊑ Y2, ▷◁2 ∈ {⊑,≡}, T2 |= r′ ⊑ s, and
(Z1,Z2) ∈ S.

We write ⟨T1,X1⟩ ∼→Σ,E L ⟨T2,X2⟩ iff there is a Σ-subsumer simulation S from T1 to T2 with (X1,X2)∈
S. In particular, we write simT ,Σ

→ (X1,X2) when T1 = T2 = T .

A subsumer simulation conveniently captures the set of subsumers in the following sense: if a
Σ-subsumer simulation from T1 to T2 contains the pair (X1,X2), then X2 entails w.r.t. T2 all subsumers
of X1 w.r.t. T1 that are formulated in the signature Σ. Formally, we obtain the following lemma.

Lemma 61 Let T1 and T2 be normalised E L H -terminologies, and let Σ be a signature. If
⟨T1,X1⟩ ∼→Σ,E L ⟨T2,X2⟩, then, for every D ∈ E L Σ with T1 |= X1 ⊑ D, it holds that T2 |= X2 ⊑ D.

Algorithm 3: Computing the set of all Subsumer Justifications for an E L H -terminology

1 function COVER→ (T ,X ,Σ)

2 M→X = { /0}
3 for every B ∈ Σ∩NC such that T |= X ⊑ B do
4 M→X :=M→X ⊗ JustT (X ⊑ B)
5 end
6 for every Y ▷◁1 ∃r.Z ∈T (▷◁1∈ {⊑,≡}) and s ∈ Σ∩NR such that T |= X ⊑ Y and

T |= r ⊑ s do
7 M→∃s.Z := /0
8 for every Y ′ ▷◁2 ∃r′.Z′ ∈T (▷◁2∈ {⊑,≡}) such that T |= X ⊑ Y ′, T |= r′ ⊑ s,

simT ,Σ
→ (Z,Z′) do

9 M→Z′ := COVER→(T ,Z′,Σ)
10 M→∃s.Z :=M→∃s.Z ∪

(
{{Y ′ ▷◁2 ∃r′.Z′}}⊗M→Z′ ⊗ JustT (X ⊑ Y ′)⊗ JustT (r′ ⊑ s)

)
11 end
12 M→X :=M→X ⊗M→∃s.Z
13 end
14 return Minimise⊆(M→X )

Guided by the subsumer simulation notion, we can devise our algorithm for computing subsumer
justifications. Algorithm 3 computes the subsumer justifications for an acyclic normalised E L H -
terminology T , a signature Σ, and a concept name X . Lines 3–13 of the algorithm compute all
⟨X ,Σ⟩-subsumption modules of T . To ensure that the returned modules are minimal w.r.t. ⊊, the
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algorithm calls the function Minimise⊆(M→X ) in Line 14, which removes any set in M→X that is not
minimal.

We illustrate Algorithm 3 with the following two examples. First example, let T = {X ⊑ B, X ⊑
Y, Y ⊑ B} and Σ = {B}. Consider the execution of COVER→(T ,X ,Σ). In Line 4, M→X is set to
JustT (X ⊑ B), where JustT (X ⊑ B) = {{X ⊑ B}, {X ⊑ Y, Y ⊑ B}}. Since there are no axioms of
the form Y ⊑ ∃r.Z ∈T or Y ≡ ∃r.Z ∈T , the lines 6–14 have no effect. Finally, the algorithm returns
M→X in Line 14.

For the second example, let T = {α1, α2, α3, α4, α5} and Σ = {A,B,s}, where α1 = X ⊑ ∃r.A,
α2 = X ⊑ ∃r.B, α3 = X ⊑ ∃r.Y , α4 = Y ≡ A⊓B, and α5 = r ⊑ s. We consider again the execution
of COVER→(T ,X ,Σ). We proceed to Line 5 as there are no concept names in Σ entailed by X w.r.t.
T . However, the concepts ∃r.A, ∃r.B and ∃r.Y are entailed by X w.r.t. T . It holds that simT ,Σ

→ (Z,Z′)
for every (Z,Z′) ∈ {(A,A), (B,B), (Y,Y ), (A,Y ), (B,Y )}, whereas simT ,Σ

→ (Z,Z′) does not hold for
any (Z,Z′) ∈ {(A,B), (B,A), (Y,A), (Y,B)}. Therefore, for every Z ∈ {A,B,Y} the recursive call
COVER→(T ,Z,Σ) is made in Line 9. The following sets are computed in lines 6–12: M→A = { /0},
M→B = { /0}, and M→Y = {{α4}} as well as

M→∃s.A = ({α1, α5}⊗M→A )∪ ({α3, α5}⊗M→Y ) = {{α1, α5},{α3, α4, α5}}

M→∃s.B = ({α2, α5}⊗M→B )∪ ({α3, α5}⊗M→Y ) = {{α2, α5},{α3, α4, α5}}

M→∃s.Y = {α3, α5}⊗M→Y = {{α3, α4, α5}}

Minimise⊆(M→X ) = Minimise⊆(M→∃s.A⊗M→∃s.B⊗M→∃s.Y ) = {{α3, α4, α5}}.

Finally, COVER→(T ,X ,Σ) returns Minimise⊆(M→X ) = {{α3, α4, α5}} in Line 14.
The following theorem shows that Algorithm 3 indeed computes the set of subsumer modules,

thus producing a cover of subsumer justifications.

Theorem 62 Let T be an acyclic, normalised E L H -terminology, and let Σ be a signature. Let
X ∈ NC, and let M→X := COVER→(T ,X ,Σ) computed by Algorithm 3. Then M→X is the set of all
⟨X ,Σ⟩-subsumer justifications of T .

Observe that COVER→(T ,X ,Σ) may be called several times during the execution of Algorithm 3.
The algorithm can be optimised by caching the return value of the first execution, and retrieving it
from memory for subsequent calls.

3.1.3 Computing Subsumee Justifications

Similar with the algorithm for computing subsumer justifications, algorithm for computing subsumee
justifications relies on the notion of subsumee simulation between terminologies, which we introduce
below. Before that, we first introduce the notion of Σ-entailment.
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Definition 63 (Σ-Entailment for E L H -terminology) Let Σ be a signature and T a normalised
E L H -terminology. We say that X ∈ NC is Σ-entailed w.r.t. T iff there exists C ∈ E L Σ with
T |=C ⊑ X; and r ∈ NR is Σ-entailed w.r.t. T iff there exists s ∈ Σ∩NR with T |= s⊑ r.

Example 64 Let T = {X ≡ X1⊓X2, B1 ⊑ X1, X2 ≡ ∃r.Z, B2 ⊑ Z,s⊑ r}. We have that

non-conjT (X) = {X1,X2}.

Then r is Σ-entailed w.r.t. T ; X is complex Σ-entailed w.r.t. T for Σ = {B1,B2,s}; but X is not
complex Σ′-entailed w.r.t. T , where Σ′ ranges over {B1,B2}, {B1,s}, {B2,s}. Additionally, X is not
complex Σ-entailed w.r.t. T ∪{B1 ⊑ X}.

Definition 65 (Subsumee Simulation for E L H -terminology) Let T1,T2 be normalised E L H -
terminologies, and let Σ be a signature. A relation S ⊆ sigNC(T1)× sigNC(T2) is a Σ-subsumee
simulation from T1 to T2 iff the following conditions are satisfied:

(S←NC
) if (X1,X2) ∈ S, then for every B ∈ Σ with T1 |= B⊑ X1, it holds that T2 |= B⊑ X2;

(S←∃ ) if (X1,X2) ∈ S, X1 ≡ ∃r.Y1 ∈T1 and T1 |= s⊑ r, s ∈ Σ and Y1 is Σ-entailed w.r.t. T1, then for
every X ′2 ∈ non-conjT2

(X2), there exists X ′2≡∃r′.Y2 ∈T2 such that T2 |= s⊑ r′ and (Y1,Y2)∈ S;

(S←⊓ ) if (X1,X2) ∈ S and X1 ≡ Y1 ⊓ . . .⊓Yn ∈ T1, then for every X ′2 ∈ non-conjT2
(X2), there exists

X ′1 ∈ non-conjT1
(X1) with (X ′1,X

′
2) ∈ S.

We write ⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩ iff there exists a Σ-subsumee simulation S from T1 to T2 with
(X1,X2) ∈ S.

In Line 6 of Algorithm 4, the definition of complex Σ-entailment is given as follows.

Definition 66 (Complex Σ-Entailment) Let T be a normalized E L H -terminology, Σ be a signa-
ture, and let X ∈ NC and r ∈ NR.

We say that X is complex Σ-entailed w.r.t. T iff for every Y ∈ non-conjT (X) at least one of the
following conditions holds:

• there exists B ∈ Σ such that T |= B⊑ Y and T ̸|= B⊑ X;

• there exists Y ≡ ∃r.Z ∈T and r and Z are each Σ-entailed in T .

Otherwise, X is said to be simply Σ-entailed.

Analogously to subsumer simulations, a subsumee simulation captures the set of subsumees as it
is made precise in the following lemma.

Lemma 67 Let T1 and T2 be two normalised E L H -terminologies, and let Σ be a signature. If
⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩, then T2 |= D⊑ X2 holds for every D ∈ E L Σ with T1 |= D⊑ X1.
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Now we present some auxiliary notions for handling conjunctions on the left-hand side of
subsumptions.

We define for each concept name X a so-called definitorial forest consisting of sets of axioms of
the form Y ≡Y1⊓ . . .⊓Yn which can be thought of as forming trees. Any ⟨X ,Σ⟩-subsumee justification
contains the axioms of a selection of these trees, i.e., one tree for every conjunction formulated over Σ

that entails X w.r.t. T . Formally, we define DefForest⊓T (X)⊆ 2T to be the smallest set closed under
the following conditions:

• /0 ∈ DefForest⊓T (X);

• {α} ∈ DefForest⊓T (X) for α := X ≡ X1⊓ . . .⊓Xn ∈T ; and

• Γ∪{α} ∈ DefForest⊓T (X) for Γ ∈ DefForest⊓T (X) with Z ≡ Z1⊓ . . .⊓Zk ∈ Γ and α := Zi ≡
Z1

i ⊓ . . .⊓Zn
i ∈T .

Given Γ ∈DefForest⊓T (X), we set leaves(Γ) := sig(Γ)\{X ∈ sig(C) | X ≡C ∈ Γ} if Γ ̸= /0; and {X}
otherwise. We denote the maximal element of DefForest⊓T (X) w.r.t. ⊆ with max-tree ⊓T (X). Finally,
we set non-conjT (X) := leaves(max-tree ⊓T (X)).

Example 68 Let T = {α1,α2,α3}, where α1 := X ≡Y ⊓Z, α2 :=Y ≡Y1⊓Y2, and α3 := Z ≡ Z1⊓Z2.
Then DefForest⊓T (X) = { /0,{α1},{α1,α2},{α1,α3},{α1,α2,α3}}. We have that leaves({α1,α3}) =
{Y,Z1,Z2}, max-tree ⊓T (X) = {α1,α2,α3}, and non-conjT (X) = {Y1,Y2,Z1,Z2}.

We definite definitorial forest in order to enumerate all possible situations and find all possible
sub-trees such that Case(S←,L

∃ ) can be satisfied.
Using the notion of a subsumee simulation, we can device Algorithm 4 for computing a cover

of the subsumee justifications for a given normalized E L H -terminology T , a concept name
X , and a signature Σ. The function for obtaining the ⟨X ,Σ⟩-subsumee justifications of T is
COVER←(T ,X ,Σ,T ,X). Note that Algorithm 5, Algorithm 6, and Algorithm 7 are called as
subroutines in Line 5, 10 and 13 in Algorithm 4. The five different parameters for Algorithm 4 are
needed due to the recursive calls in Algorithm 7 (Line 11) and Algorithm 6 (Line 9).

The existence of axiom αX1 := X1 ≡ ∃r.Y1 ∈T1 in Line 2 of Algorithm 6 is guaranteed by Line 9
of Algorithm 4. The axiom αX ′2

:= X ′2 ≡ ∃r′.Y ′2 ∈T2 in Line 8 of Algorithm 6 exists as we assume that
⟨T2,X2⟩ subsumee-simulates ⟨T1,X1⟩. Moreover, there is at most one axiom αX1 ∈T1 and at most
one αX ′2

∈T2 as T1 and T2 are terminologies. The concept name X2 may be defined as a conjunction
in T2 whose conjuncts in turn may also be defined as a conjunction in T2 and so forth. In Line 3 of
Algorithm 6all axioms forming the maximal resulting definitorial conjunctive tree are collected.

For Algorithm 7, we define

def ⊓T := {X ∈ sigNC(T ) | X ≡ Y1⊓ . . .⊓Yn ∈T }
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to be the set of concept names that are conjunctively defined in T . For every X ∈ def ⊓T , we set
def ⊓T (X) := α , where α = X ≡ Y1⊓ . . .⊓Yn ∈T .

The axiom αX1 := X1 ≡ Y1⊓ . . .⊓Ym ∈T1 in Line 2 of Algorithm 7 is guaranteed by Line 12 of
Algorithm 4. In case X2 is defined as a conjunction in T2, the pair consisting of T2 containing only a
partial conjunctive tree rooted at X2 and X2 needs to be considered to be sufficient to subsumee simulate
X1 in T1. Therefore Algorithm 7 considers every partial conjunctive tree Γ from DefForest⊓T2

(X2) in
Line 4 and removes the axioms in δΓ connecting the leaves of Γ with the remaining conjunctive tree
from T2 in lines 10 and 11.

Algorithm 4: Computing the set of all Subsumee Justifications for an E L H -terminology

1 function COVER←(T1,X1,Σ,T2,X2)
2 if X1 is not Σ-entailed w.r.t. T1 then
3 return { /0}
4 end
5 M←(X1,X2)

:= COVERNC
← (T1,X1,Σ,T2,X2)

6 if X1 is not complex Σ-entailed in T1 then
7 return Minimise⊆(M←(X1,X2)

)

8 end
9 if X1 ≡ ∃r.Y ∈T1, and r,Y are Σ-entailed w.r.t. T1 then

10 M←(X1,X2)
:=M←(X1,X2)

⊗COVER∃←(T1,X1,Σ,T2,X2)

11 end
12 else if X1 ≡ Y1⊓ . . .⊓Ym ∈T1 then
13 M←(X1,X2)

:=M←(X1,X2)
⊗COVER⊓←(T1,X1,Σ,T2,X2)

14 end
15 return Minimise⊆(M←(X1,X2)

)

Algorithm 5: Computing the set of all Subsumee Justifications for an E L H -terminology – Local
Case

1 function COVERNC← (T1,X1,Σ,T2,X2)

2 M←(X1,X2)
= { /0}

3 for every B ∈ Σ∩NC such that T1 |= B⊑ X1 do
4 M←(X1,X2)

:=M←(X1,X2)
⊗ JustT2(B⊑ X2)

5 end
6 return Minimise⊆(M←(X1,X2)

)

We illustrate Algorithm 4 with the following example.

Example 69 Let T = {X ≡ ∃r.Y, Y ≡ ∃s.Z, Z ≡ A⊓ Z′, A ⊑ B, B ⊑ Z′, Z′ ⊑ A} be an E L H -
terminology, and let Σ = {A,B,r,s} be a signature. It can readily be verified that T is normalised.
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Algorithm 6: Computing the set of all Subsumee Justifications for an E L H -
terminology – Existential Case
1 function COVER∃← (T1,X1,Σ,T2,X2)

2 let αX1 := X1 ≡ ∃r.Y1 ∈T1

3 M←(X1,X2)
:= {max-tree ⊓T2

(X2)}
4 for every s ∈ Σ∩NR such that T1 |= s⊑ r do
5 for every X ′2 ∈ non-conjT2

(X2) do
6 let αX ′2

:= X ′2 ≡ ∃r′.Y ′2 ∈T2 such that T2 |= s⊑ r′

7 M←Y ′2 := COVER←(T1,Y1,Σ,T2,Y ′2)

8 M←(X1,X2)
:=M←(X1,X2)

⊗{{αX ′2
}}⊗ JustT2(s⊑ r′)⊗M←Y ′2

9 end
10 end
11 return Minimise⊆(M←(X1,X2)

)

To determine the ⟨X ,Σ⟩-subsumee justifications of T , we need to execute Algorithm 4 computing
COVER←(T ,X ,Σ,T ,X). As X is (complex) Σ-entailed, Lines 2–4 and Lines 6–8 are omitted. In
Line 5, COVERNC

← (T ,X ,Σ,T ,X) is called which is implemented in Algorithm 4.
The for-loop in Lines 3–5 of Algorithm 5 does not apply as T ̸|= A ⊑ X and T ̸|= B ⊑ X. We

obtain COVERNC
← (T ,X ,Σ,T ,X) = { /0}, and then backtrack to Line 5 of Algorithm 4. The if-statement

in Line 9 applies as T contains an axiom of the form X ≡ ∃r.Y and both, X and r, are Σ-entailed
w.r.t. T . We proceed in Line 10 with calling COVER∃←(T ,X ,Σ,T ,X), which is implemented in
Algorithm 6.

We obtain M←(X ,X)
:= {max-tree ⊓T (X)} = { /0} in Line 3 of Algorithm 6. The for-loop from

Line 4 to 10 is executed for r ∈ Σ as T |= r ⊑ r. The nested for-loop in Lines 5–9 is executed
for X as non-conjT (X) = {X}. In Line 6 αX ′2

is set to X ≡ ∃r.Y and, in Line 8, the recursive call
COVER←(T ,Y,Σ,T ,Y ) is made, which is computed in Algorithm 4.

Then, in Line 10 of Algorithm 4, COVER∃←(T ,Y,Σ,T ,Y ) is called as Y is complex Σ-entailed
w.r.t. T , Y ≡ ∃s.Z ∈T , and s,Z are each Σ-entailed w.r.t. T . Similar to COVER∃←(T ,X ,Σ,T ,X),
the execution of COVER∃←(T ,Y,Σ,T ,Y ) causes another recursive call COVER←(T ,Z,Σ,T ,Z)
from Line 7 of Algorithm 6.

As Z is Σ-entailed w.r.t. T , we have that COVERNC
← (T ,Z,Σ,T ,Z) is executed. The for-loop

starting in Line 3 of Algorithm 5 applies as T |=A⊑ Z and T |=B⊑ Z. We obtain M←Z := JustT (A⊑
Z)⊗JustT (B⊑ Z), where JustT (A⊑ Z)= JustT (B⊑ Z)= {Z≡A⊓Z′, A⊑B, B⊑ Z′, Z′⊑A}. This
finishes the call COVERNC

← (T ,Z,Σ,T ,Z), and we backtrack to Line 4 of COVER←(T ,Z,Σ,T ,Z).
As Z is not complex Σ-entailed, this finishes the call COVER←(T ,Z,Σ,T ,Z) with M←Z = {Z ≡
A⊓Z′, A⊑ B, B⊑ Z′, Z′ ⊑ A}.

We backtrack to Line 10 of COVER∃←(T ,Y,Σ,T ,Y ) and set M←Y := M←Y ⊗{{Y ≡ ∃s.Z}}⊗
M←Z which yields M←Y = {{Y ≡ ∃s.Z, Z ≡ A⊓Z′, A ⊑ B, B ⊑ Z′, Z′ ⊑ A}}. This finishes the call
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Algorithm 7: Computing the set of all Subsumee Justifications for an E L H -
terminology – Conjunctive Case
1 function COVER⊓←(T1,X1,Σ,T2,X2)
2 let αX1 := X1 ≡ Y1⊓ . . .⊓Ym ∈T1

3 M←(X1,X2)
:= /0

4 for Γ ∈ DefForest⊓T2
(X2) do

5 Let δΓ := {def ⊓T2
(X ′) | X ′ ∈ leaves(Γ)∩def ⊓T2

}
6 M←

Γ
:= {Γ}

7 for X ′2 ∈ leaves(Γ) do
8 M←X ′2 := /0

9 for every X ′1 ∈ non-conjT1
(X1) do

10 if ⟨T1,X ′1⟩ ∼←Σ,E L ⟨T2 \δΓ,X ′2⟩ then
11 M←X ′2 :=M←X ′2 ∪COVER←(T1,X ′1,Σ,T2 \δΓ,X ′2)

12 end
13 end
14 M←

Γ
:=M←

Γ
⊗M←X ′2

15 end
16 M←(X1,X2)

:=M←(X1,X2)
∪M←

Γ

17 end
18 return Minimise⊆(M←(X1,X2)

)

COVER∃←(T ,Y,Σ,T ,Y ) and it backtracks to Line 9 and ends the call COVER←(T ,Y,Σ,T ,Y ). We
set M←X :=M←X ⊗{{X ≡ ∃r.Y}}⊗M←Y in Line 8 of Algorithm 6 for COVER∃←(T ,X ,Σ,T ,X). Thus
COVER∃←(T ,X ,Σ,T ,X) returns M←X = {{X ≡ ∃r.Y, Y ≡ ∃s.Z, Z ≡ A⊓Z′, A⊑ B, B⊑ Z′, Z′ ⊑ A}}
and we backtrack to Line 10 of Algorithm 4. Finally, all sets that are not minimal w.r.t. ⊊ are removed
from M←X in Line 15, which ends the execution of COVER←(T ,X ,Σ,T ,X).

The following theorem shows that Algorithm 4 indeed computes a cover of the set of subsumee
modules, which are all subsumee justifications after the function Minimise⊆.

Theorem 70 Let T be an acyclic, normalised E L H -terminology, X ∈ NC and Σ be a signature.
Additionally, let M←X := COVER←(T ,X ,Σ,T ,X) computed by Algorithm 4. Then M←X is the set of
all ⟨X ,Σ⟩-subsumee justifications of T .

The number of subsumption (subsumer, subsumee) justifications depends on T and Σ. Clearly,
it can be exponential many in the size of the terminology. Note that the simulation checks can
be performed in polynomial time [12, 34]. Therefore, our algorithm for computing subsumption
(subsumer, subsumee) justifications runs in exponential time w.r.t. the size of input terminology in the
worst case.
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As we can see from the algorithms given in this section, the reason that there might exist
exponential many subsumption justifications is caused by the fact that there can be exponential many
justifications w.r.t. an inclusion α in the worst case. However, it is obvious that if the number of
justifications w.r.t. an inclusion α is bounded by a constant number, which happens often in real world
ontologies, the number of subsumption justifications is also bounded. In this case, our algorithm
for subsumer justifications becomes polynomial, but the algorithm for subsumee and subsumption
justifications are still exponential in the worst case.

Proposition 71 Let T be a normalised E L H -terminology, let Σ be a signature and X ∈ Σ. The
algorithm of computing all ⟨X ,Σ⟩-subsumption justifications runs in EXPTIME.

3.1.4 Proofs

Proofs about ⊗

Lemma 72 Let S be a set. Additionally, let T1,T2 ⊆ 2S and let M1,M2 ⊆ 2S such that Mi is a cover
of Ti for i ∈ {1,2}. Then M1⊗M2 is a cover of T1⊗T2.

Proof We have to show that:

(i) M1⊗M2 ⊆ T1⊗T2; and

(ii) for every M ∈ T1⊗T2, there exists M ′ ∈M1⊗M2 such that M ′ ⊆M .

For (i), let M ∈M1⊗M2, i.e. M = M1∪M2 with M1 ∈M1 and M2 ∈M2. As Mi is a cover
of Ti, it holds that Mi ∈ Ti for i ∈ {1,2}. Consequently, we have M = M1∪M2 ∈ T1⊗T2.

For (ii), let M ∈ T1⊗T2, i.e. M = M1∪M2 with M1 ∈ T1 and M2 ∈ T2. Hence, there exists
M ′

i ∈Mi with M ′
i ⊆Mi for i ∈ {1,2}. Consequently, it holds that M ′ := M ′

1∪M ′
2 ∈M1⊗M2 and

M ′ ⊆M . □

Proofs about Computing Subsumer Justifications

Lemma 61 Let T1 and T2 be normalised E L H -terminologies, and let Σ be a signature. If
⟨T1,X1⟩ ∼→Σ,E L ⟨T2,X2⟩, then, for every D ∈ E L Σ with T1 |= X1 ⊑ D, it holds that T2 |= X2 ⊑ D.

Proof We prove by induction on the structure of D that for every X1,X2 ∈ NC∪{⊤} with T1 |=
X1 ⊑ D and ⟨T1,X1⟩ ∼→Σ,E L ⟨T2,X2⟩, it holds that T2 |= X2 ⊑ D.

Let D ∈ E L Σ and let X1,X2 ∈ NC such that ⟨T1,X1⟩ ∼→Σ,E L ⟨T2,X2⟩ and T1 |= X1 ⊑D. We now
distinguish between the following cases.

• D =⊤: then we are done, since T2 |= X2 ⊑⊤ always holds.
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• D ∈ Σ∩NC: then we have T2 |= X2 ⊑ D by definition of a Σ-subsumer graph simulation.

• D = ∃r.E: then by Lemma 32 there exists an axiom Y1 ▷◁1 ∃s.ψ1 ∈ T (▷◁1 ∈ {⊑,≡}) such
that T |= X1 ⊑ Y1, T |= ψ1 ⊑ E and T |= s⊑ r. According to the Definition 60 there exists
Y2 ▷◁2 ∃s′.ψ2 ∈T2 with T2 |= X2 ⊑Y2, ▷◁2 ∈ {⊑,≡}, T |= s′ ⊑ r and ⟨T1,X1⟩ ∼→Σ,E L ⟨T2,X2⟩.
By applying the induction hypothesis we have T |= ψ2 ⊑ E. Consequently, it holds that
T2 |= X2 ⊑ ∃r.E.

• D = D1⊓D2: then we have T1 |= X1 ⊑ Di for i ∈ {1,2} and by induction T2 |= X2 ⊑ Di for
i ∈ {1,2}, which finally yields T2 |= X2 ⊑ D.

□

Theorem 62 Let T be an acyclic, normalised E L H -terminology, and let Σ be a signature. Let
X ∈ NC, and let M→X := COVER→(T ,X ,Σ) computed by Algorithm 3. Then M→X is the set of all
⟨X ,Σ⟩-subsumer justifications of T .

Proof We first prove that M→X is a cover of the set of all ⟨X ,Σ⟩-subsumer module of T by
Definition 58. (i) We show that every M ∈M→X is an ⟨X ,Σ⟩-subsumer module of T .

First, we define the relation ⋗T ⊆ NC×NC as follows: for X ,Y ∈ NC we set X ⋗T Y iff there
exists X ′ ▷◁ ∃s.Y ∈T with T |= X ⊑ X ′, T |= s⊑ r and ▷◁ ∈ {⊑,≡}. Note that ⋗T is well-founded
as T is acyclic. The proof now proceeds by induction on ⋗T .

Let X ∈ NC and let M ∈M→X . We now distinguish between the following cases.

• If there does not exist Y ∈ NC with X ⋗T Y , let D ∈ E L Σ such that T |= X ⊑ D. The proof
now continues by induction on the structure of D. For D =⊤ or D = X , it immediately follows
that M |= X ⊑D. For D = B ∈NC and B ̸= X , there exists J ∈ JustT (X ⊑ B) with J ⊆M

(Line 4), i.e. M |= X ⊑D holds. For D = D1⊓D2 we obtain M |= X ⊑D1 and M |= X ⊑D2

by applying the induction hypothesis on D1 and D2. Consequently, it holds that M |= X ⊑ D.
Note that D cannot be of the form ∃r.E by Lemma 32.

• Otherwise, let D ∈ E L Σ such that T |= X ⊑ D. The proof now continues by induction on
the structure of D. The cases of D = ⊤, D = A ∈ NC, and D = D1 ⊓D2 can be proved as
above. For D = ∃r.E. there exists Y ▷◁ ∃r.Z ∈ T such that T |= X ⊑ Y and T |= Z ⊑ E by
Lemma 32. Consequently, there exists α =Y ′ ▷◁2 ∃S.Z′ ∈T such that T |=X ⊑Y ′, T |= s⊑ r,
⟨T ,Z⟩ ∼→

Σ,E L ⟨T ,Z′⟩ and α ∈M . Note that ⟨T ,Z⟩ ∼→
Σ,E L ⟨T ,Z⟩ holds. Furthermore, there

exists J ∈ JustT (X ⊑Y ′) such that J ⊆M and there exists MZ′ ∈ COVER→(T ,Σ,Z′) such
that MZ′ ⊆M . As X ⋗Z′, it follows from the induction hypothesis MZ′ is a ⟨Z′,Σ⟩-subsumer
module of T , i.e. MZ′ |=Z′⊑Additionally, it holds that T |=Z′⊑E by ⟨T ,Z⟩∼→

Σ,E L ⟨T ,Z′⟩
and Lemma 61, which implies that MZ′ |= Z′ ⊑ E. Overall, we hence obtain M |= X ⊑ ∃r.E.
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(ii) We show that for every ⟨X ,Σ⟩-subsumer module M of T there exists M ′ ∈M→X such that
M ′ ⊆M .

The proof now proceeds by induction on ⋗. Let X ∈ NC and let M be a ⟨X ,Σ⟩-subsumer module
of T . We now distinguish between the following cases.

• If there does not exist Y ∈ NC with X ≻T Y , let B ∈ Σ. As M is a ⟨X ,Σ⟩-subsumer module,
there exists SB ∈ JustT (X ⊑ B) with SB ⊆M . Consequently, it is easy to see that there exists
M ′ ∈M→X with M ′ =

⋃
B∈Σ SB as there does not exist X ′ ▷◁ ∃s.Y ∈T with T |= X ⊑ X ′ and

T |= s⊑ r.

• Otherwise, let S be a Σ-subsumer simulation from T to M with (X ,X) ∈ S. Similarly to the
previous case, for every B ∈ Σ there exists SB ∈ JustT (X ⊑ B) with SB ⊆M .

Now let {Y ▷◁ ∃r.Z ∈ T | r ∈ Σ,T |= X ⊑ Y and T |= s ⊑ r} = {Y1 ▷◁1 ∃r1.Z1, . . . ,Yn ▷◁n

∃rn.Zn} and let 1≤ i≤ n. Thus, by definition of S there exists Y ′i ▷◁
′
i ∃si.Z′i ∈M such that M |=

X ⊑Y ′i and M |= si⊑ ri with (Z,Z′i)∈ S, i.e. ⟨T ,Z⟩ ∼→
Σ,E L ⟨T ,Z′i⟩ holds. Consequently, there

exists SY ′i ∈ JustT (X ⊑Y ′i ) with SY ′i ⊆M and Sr′i ∈ JustT (si ⊑ ri) with Sr′i ⊆M . Moreover, as
(Z,Z′i) ∈ S, we have that M is a ⟨Z′i ,Σ⟩-subsumer module of T . It follows from the induction
hypothesis that there exists M ′

Z′i
∈M→Z′i := COVER→(T ,Σ,Z′i) with M ′

Z′i
⊆M . Let

M ′ :=
⋃

B∈Σ

SB∪
n⋃

i=1

(SY ′i ∪Sr′i ∪{Y
′
i ▷◁

′
i ∃si.Z′i}∪M ′

Z′i
).

It is easy to see that M ′ ∈M→X and M ′ ⊆M .

Then we have that M→X is the set of all ⟨X ,Σ⟩-subsumer justifications of T . Let M ∈M→X . We
prove by assuming towards a contradiction. We assume that there exist an M ′ ⊊ M such that
M ′ is a ⟨X ,Σ⟩-subsumer module of T . As M→X is initialed as { /0}, we enumerate all possible
situations that M is generated in the algorithms but α ̸∈M , we have that the absence of α

in any situation will lead to the failure of the subsumer simulation. So M ′ could not be a
⟨X ,Σ⟩-subsumer module of T , which contradicts to our assumption.

□

Proofs about Computing Subsumee Justifications

Lemma 73 Let T be a normalised and acyclic E L H -terminology, let Σ be a signature, and let
X ∈ NC be pseudo-primitive in T .

Then X is not complex Σ-entailed w.r.t. T .

Proof As X is pseudo-primitive in T , we have non-conjT (X) = {X}. We can infer that there
cannot exist B ∈ Σ with T |= B⊑ Y and T ̸|= B⊑ X . Additionally, we observe that no axiom of the
form X ≡ ∃r.Y is contained in T , which implies that X is not complex Σ-entailed w.r.t. T . □
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Lemma 74 Let T be a normalised and acyclic E L H -terminology and let X ∈ NC that is not
complex Σ-entailed w.r.t. T .

Then for every C ∈ E L Σ it holds that: T |= C ⊑ X iff there exists B ∈ sub0(C) such that
T |= B⊑ X.

Proof Let C ∈ E L Σ.
First we prove that for every C ∈ E L Σ it holds that: T |=C ⊑ X only if there exists B ∈ sub0(C)

such that T |= B ⊑ X . We assume that T |=C ⊑ X . Note that T ̸|= ⊤ ⊑C as T is a normalised
terminology, which implies that ⊤ ̸∈ sub(T ). Then, as X is not complex Σ-entailed w.r.t. T , it
follows that there exists Y ∈ non-conjT (X) such that

(i) for every B ∈ Σ with T |= B⊑ Y it holds that T |= B⊑ X , and

(ii) for every Y ≡ ∃r.Z ∈T , r is Σ-entailed, it holds that Z is not Σ-entailed in T .

Note that T |=C ⊑ Y since T |= X ⊑ Y . We now distinguish between the following cases. If Y is
pseudo-primitive in T , then it follows from Lemma 31 that there exists B∈ sub0(C) with T |= B⊑Y ,
which implies that T |= B⊑ X by (i).

Otherwise, there exists an axiom Y ≡∃s.Y ′ ∈T and it holds that T |=C⊑∃s.Y ′. If follows from
Lemma 31 that either (a) there exists B∈ sub0(C) with T |=B⊑Y , or (b) there exists ∃s.C′ ∈ sub0(C)

with T |=C′⊑Y ′. For (a), we have T |=B⊑Y , and thus, T |=B⊑X by (i). We note that (b) cannot
hold as s is Σ-entailed, T |= C′ ⊑ Y ′, and sig(C′) ⊆ Σ, which implies that Y ′ would be Σ-entailed
in T .

“if” Then we prove that for every C ∈ E L Σ it holds that: T |=C ⊑ X if there exists B ∈ sub0(C)

such that T |= B⊑ X .
Let B ∈ sub0(C) such that T |= B⊑ X . Since T |=C ⊑ B, it follows that T |=C ⊑ X . □

Lemma 75 Let T be a normalised and acyclic E L H -terminology and let X ∈ NC be complex
Σ-entailed w.r.t. T .

Then there exists C ∈ E L Σ such that T |=C ⊑ X and T \{α} ̸|=C ⊑ X for α = X ≡ D ∈T .

Proof Let non-conjT (X) = {Y1, . . . ,Yn}. As X ∈ NC is complex Σ-entailed w.r.t. T it holds that
for every 1≤ i≤ n one of the following conditions holds:

1. there exists Bi ∈ Σ such that T |= Bi ⊑ Yi and T ̸|= Bi ⊑ X , or

2. there exists Yi ≡ ∃ri.Zi ∈T such that r, Z is Σ-entailed in T .

For every 1≤ i≤ n, we define

Di :=

Bi if Bi ∈ Σ with T |= Bi ⊑ Yi ,and T ̸|= Bi ⊑ X

∃ri.CZi otherwise, where CZi ∈ E L Σ ,with T |=CZi ⊑ Zi



3.1 Subsumption Justifications of E L H -Terminologies 49

Finally, let C :=
dn

i=1 Di. It is easy to see that T |=C ⊑ X . Note that there exists at most one axiom
of the form α = X ≡ E ∈T as T is a terminology, and that X is primitive in T \{α}.

If we assume towards a contradiction that T \{α} |=C ⊑ X , it would follow from Lemma 31
that there exists 1≤ j ≤ n such that T \{α} |= B j ⊑ X and hence, T |= B j ⊑ X ; contradicting the
assumptions. □

Definition 76 Let T1 and T2 be normalised and acyclic E L H -terminologies, and Σ be a signature.
Additionally, let X1,X2 ∈ NC such that ⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩. Then M ⊆ T2 is a ⟨T1,X1,Σ⟩-
subsumee module of T2 w.r.t. X2 if M |=C ⊑ X2 holds for every C ∈ E L Σ such that T1 |=C ⊑ X1.

Lemma 67 Let T1 and T2 be two normalised E L H -terminologies, and let Σ be a signature. If
⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩, then T2 |= D⊑ X2 holds for every D ∈ E L Σ with T1 |= D⊑ X1.

Proof We prove that for every E L Σ-concept C and for every (A1,A2) ∈ S with T1 |=C ⊑ A1 that
T2 |=C ⊑ A2 holds by induction on the structure of C.

Let now C be an E L Σ-concept and let ⟨T1,A1⟩ ∼←Σ,E L ⟨T2,A2⟩ such that T1 |= C ⊑ A1. We
distinguish between the following cases:

• C =⊤: this case cannot occur since T1 ̸|=C ⊑ A1.

• C = B ∈ NC: as B ∈ Σ, we have T2 |=C ⊑ A2 by the definition 65.

• C = ∃r.D for an E L Σ-concept D: we can infer that T1 |= ∃r.D ⊑ A1,i for every A1,i ∈
non-conjT1

(A1) = {A1,1, . . . ,A1,n}. Moreover, we can infer from Lemma 31 that every A1,i ∈
non-conjT1

(A1) is not pseudo-primitive in T1, i.e. for every A1,i ∈ non-conjT1
(A1) we have

A1,i ≡ ∃r.D1,i ∈ T1 with T1 |= D ⊑ D1,i and r is Σ-entailed. In particular, for every A1,i ∈
non-conjT1

(A1), D1,i is Σ-entailed.

Let now non-conjT2
(A2) = {A2,1, . . . ,A2,m}. It then follows from the definition 65 for every 1≤

j≤m that A2, j ≡ ∃r.D2, j ∈T2 and that there exists 1≤ i≤ n with ⟨T1,D1,i⟩ ∼←Σ,E L ⟨T2,D2, j⟩,
i.e. we obtain T2 |= D⊑ D2, j for every 1≤ j ≤ m by applying the induction hypothesis, and
thus T2 |=C ⊑ A2.

• C = C1 ⊓ . . .⊓Cn: we can infer that T |= C ⊑ A′1 for every A′1 ∈ non-conjT1
(A1), i.e. ev-

ery A′1 ∈ non-conjT1
(A1) Now, let A′2 ∈ non-conjT2

(A2), and let A′1 ∈ non-conjT1
(A1) with

⟨T1,A′1⟩ ∼←Σ,E L ⟨T2,A′2⟩, which exists by the definition 65. It then follows from Lemma 31
that there exists 1≤ j≤ n and a conjunct Y of C j such that Y ∈NC or Y = ∃r.D (for an E L H Σ-
concept D), and T1 |= Y ⊑ A′1, i.e. T1 |=C j ⊑ A′1. By applying the induction hypothesis we
can infer that T2 |=C j ⊑ A′2 holds, and thus T2 |=C ⊑ A′2. Hence, we have T2 |=C ⊑ A′2 for
every A′2 ∈ non-conjT2

(A2), i.e. T2 |=C ⊑ A2.

□
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Lemma 77 Let T1 and T2 be normalised and acyclic E L H -terminologies, and Σ be a signature.
Additionally, let X1,X2 ∈ NC such that ⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩, and let

M←(X1,X2)
:= COVER←(T1,T2,Σ,X1,X2)

computed by Algorithm 4. Then for every M ∈M←(X1,X2)
, we have that for every E L Σ C, T1 |=C⊑ X1

imples that M |=C ⊑ X2.

Proof First, we define the relation ⋗T1 ⊆NC×NC as follows: for X ,Y ∈NC we set X ⋗Y iff either
there exists X ≡ ∃r.Y ∈T1 or there exists X ≡ Y1⊓ . . .⊓Yn ∈T1 such that Yi = Y for some 1≤ i≤ n.
Note that ⋗T1 is well-founded as T1 is acyclic. The proof now proceeds by induction on ⋗T1 .

Let X1,X2 ∈ NC such that ⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩ and let M ∈M←(X1,X2)
. We now distinguish

between the following cases.
If X1 is not Σ-entailed w.r.t. T1, then M = /0 and there does not exist C ∈ E L H Σ with T1 |=

C2 ⊑ X1. Hence, it trivially holds for every C ∈ E L Σ with T1 |=C ⊑ X1 that M |=C ⊑ X2.
Otherwise, X1 is Σ-entailed w.r.t. T1. We further distinguish between the following cases. If X1 is

not complex Σ-entailed w.r.t. T1, then let C ∈ E L Σ such that T1 |=C⊑ X1. Then by Lemma 74 there
exists B∈ sub0(C) such that T1 |=B⊑X1. As ⟨T1,X1⟩∼←Σ,E L ⟨T2,X2⟩ there exists J ∈ JustT2(B⊑X2)

with J ⊆M , which implies that M |=C ⊑ X2.
Otherwise, X1 is complex Σ-entailed w.r.t. T1. We distinguish between the following cases. If

X1 ≡∃r.Y1 ∈T1 such that r or Y1 is not Σ-entailed w.r.t. T1, then let C ∈ E L Σ such that T1 |=C⊑ X1,
and therefore T1 |= C ⊑ ∃r.Y1. By Lemma 31 we can infer that there exists B ∈ sub0(C) with
T1 |= B⊑ ∃r.Y1. We can then show that M |=C ⊑ X2 as above.

If X1≡∃r.Y1 ∈T1 such that T1 |= s⊑ r,s∈Σ and Y1 is Σ-entailed w.r.t. T1, then let C∈ E L Σ such
that T1 |=C ⊑ X1, and therefore T1 |=C ⊑ ∃r.Y1. By Lemma 31 either (a) there exists B ∈ sub0(C)

with T1 |= B ⊑ ∃r.Y1, or (b) there exists ∃r′.C′ ∈ sub0(C) with T1 |=C′ ⊑ Y1 and T1 |= r′ ⊑ s. For
(a), we can show that M |=C ⊑ X2 as above.

For (b), we can infer that for every X ′2 ∈ non-conjT2
(X2) there exists X ′2 ≡ ∃r′.Y ′2 ∈ T2 such

that T2 |= r′ ⊑ s and ⟨T1,Y1⟩ ∼←Σ,E L ⟨T2,Y ′2⟩ as ⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩. Moreover, for every
X ′2 ∈ non-conjT2

(X2) there exists M ′
Y ′2
∈M←(Y1,Y ′2)

(Line 8 in Algorithm 6) such that M ′
Y ′2
∪{X ′2 ≡

∃r.Y ′2} ⊆M (Line 10 in Algorithm 6).
By applying the induction hypothesis we have that for every E L Σ concept D, T1 |= D ⊑ Y ′2

implies that M ′
Y ′2
|= D⊑Y ′2 for every X ′2 ∈ non-conjT2

(X2). Consequently, we have that M |=C′ ⊑ X ′2
for every X ′2 ∈ non-conjT2

(X2). Finally, as max-tree ⊓T2
(X2)⊆M (Line 3 in Algorithm 6), we have

M |=C ⊑ X2.
If X1 ≡ Y1⊓ . . .⊓Ym ∈T1, then let C ∈ E L Σ such that T1 |=C ⊑ X1, i.e. T1 |=C ⊑ X ′1 for every

X ′1 ∈ non-conjT1
(X1). As M←(X1,X2)

̸= /0, we can infer that there exists Γ ∈ DefForest⊓T2
(X2) such that

for every X ′2 ∈ leaves(Γ) there exists ξ (X ′2) ∈ non-conjT1
(X1) with ⟨T1,X ′1⟩ ∼←Σ,E L ⟨T2 \δΓ,X ′2⟩ and

there exists M ′
X ′2
∈ COVER←(T1,T2\δΓ,Σ,ξ (X ′2),X

′
2) with M ′

X ′2
⊆M (Lines 4 to 17 in Algorithm 7).
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By applying the induction hypothesis we have for every X ′2 ∈ leaves(Γ) that M ′
X ′2

is a ⟨T1,ξ (X ′2),Σ⟩-
subsumee module of T2 \δΓ w.r.t. X ′2, i.e. M ′

X ′2
|=C ⊑ X ′2 and M |=C ⊑ X ′2 hold as T1 |=C ⊑ ξ (X ′2).

Consequently, we have M |=C ⊑ X2 as Γ⊆M (Line 16 in Algorithm 7).

□

Lemma 78 Let T1 and T2 be normalised and acyclic E L H -terminologies, and Σ be a signature.
Additionally, let X1,X2 ∈ NC such that ⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩, and let

M←(X1,X2)
:= COVER←(T1,T2,Σ,X1,X2)

computed by Algorithm 4. Moreover, let M ⊆ T2. If T1 |=C ⊑ X1 implies M |=C ⊑ X2 for every
E L Σ concept C. Then we have that there exists M ′ ∈M←(X1,X2)

such that M ′ ⊆M .

Proof First, we define the relation ⋗T1 ⊆NC×NC as follows: for X ,Y ∈NC we set X ⋗Y iff either
there exists X ≡ ∃r.Y ∈T1 or there exists X ≡ Y1⊓ . . .⊓Yn ∈T1 such that Yi = Y for some 1≤ i≤ n.
Note that ⋗ is well-founded as T1 is acyclic.

The proof now proceeds by induction on ⋗. Let X1,X2 ∈NC with ⟨T1,X1⟩ ∼←Σ,E L ⟨T2,X2⟩ and let
M be a ⟨T1,X1,Σ⟩-subsumee module of T2 w.r.t. X2. Additionally, let S be a Σ-subsumee simulation
from T1 to M with (X1,X2) ∈ S.

First, we observe that for every B ∈ Σ with T1 |= B ⊑ X1, there exists JM
B⊑X1

∈ JustT2(B ⊑ X2)

with JM
B⊑X1

⊆M .
We now distinguish between the following cases. If X1 is not Σ-entailed w.r.t. T1, we set M ′ := /0.

Then it holds that M ′ ∈M←(X1,X2)
(Line 3 in Algorithm 4) and M ′ ⊆M .

Otherwise, X1 is Σ-entailed w.r.t. T1, and we proceed as follows. If X1 is not complex Σ-entailed
w.r.t. T1, we set M ′ :=

⋃
B∈Σ JM

B⊑X1
. Then it holds that M ′ ∈M←(X1,X2)

(Line 5 in Algorithm 4 and
Algorithm 5) and M ′ ⊆M .

Otherwise, X1 is complex Σ-entailed w.r.t. T1, which implies that X1 is not pseudo-primitive in T1

by Lemma 73. We now distinguish between the following two cases.
If X1 ≡ ∃r.Y1 ∈T1, we analyse the following subcases.
If r ̸∈ Σ or Y1 is not Σ-entailed w.r.t. T1, then for M ′ :=

⋃
B∈Σ JM

B⊑X1
it holds that M ′ ∈M←(X1,X2)

(Line 5 in Algorithm 4 and Algorithm 5) and M ′ ⊆M .
Otherwise, we assume that Y1 and r is Σ-entailed w.r.t. T1, T |= s ⊑ r and s ∈ Σ. By Con-

dition (S→∃ ) we have that for every X ′2 ∈ non-conjM (X2) there exists X ′2 ≡ ∃r.Y ′2 ∈M such that
(Y1,Y ′2) ∈ S.

Now we show that max-tree ⊓T2
(X2)⊆M by showing that max-tree ⊓T2

(X2) = max-tree ⊓M (X2). It
immediately holds that max-tree ⊓M (X2)⊆max-tree ⊓T2

(X2) as M ⊆T2. Let α ∈max-tree ⊓T2
(X2). If we

assume towards a contradiction that α ̸∈max-tree ⊓M (X2), then there exists ξ ∈ leaves(max-tree ⊓M (X2))

such that ξ ∈ def ⊓T2
and ξ ≡ ∃r.ψ ∈M ⊆T2. We have derived a contradiction.
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Let X ′2 ∈ non-conjM (X2). By Condition (S→∃ ) there exists αX ′2
:= X ′2 ≡ ∃r′.Y ′2 ∈M with T2 |=

s ⊑ r′, s ∈ Σ and ⟨T1,Y1⟩ ∼←Σ,E L ⟨T2,Y ′2⟩. Consequently, it holds that for every E L Σ concept C,
T1 |=C ⊑Y1 implies M |=C ⊑Y ′2. By applying the induction hypothesis there exists M ′

X ′2
∈M←(Y1,Y ′2)

such that M ′
X ′2
⊆M .

We set
M ′ :=

⋃
B∈Σ

T2|=B⊑X2

JM
B⊑X2
∪{max-tree ⊓T2

(X2)}∪ JustT2(s⊑ r′)

∪
⋃

X ′2∈non-conjT2
(X2)

M ′
X ′2
∪{αX ′2

}.

Then it holds that M ′ ∈M←(X1,X2)
(Line 10 in Algorithm 4 and Algorithm 6) and M ′ ⊆M .

If X1≡Y1⊓ . . .⊓Ym ∈T1, then for every X ′2 ∈ non-conjM (X2) there exists ξ (X ′2)∈ non-conjT1
(X1)

such that (ξ (X ′2),X
′
2) ∈ S by Condition (S←⊓ ). Hence, for Γ := max-tree ⊓M (X2) it holds that Γ ∈

DefForest⊓T2
(X2) and Γ⊆M .

Moreover, for every X ′2 ∈ non-conjM (X2) it holds that for every E L Σ concept C, T1 |=C⊑ ξ (X ′2)
implies M |=C ⊑ X ′2.

By applying the induction hypothesis for every

X ′2 ∈ non-conjM (X2),

there exists M ′
X ′2
∈M←(ξ (X ′2),X ′2) such that M ′

X ′2
⊆M . We set

M ′ :=
⋃

B∈Σ
T2|=B⊑X1

JM
B⊑X1
∪Γ∪

⋃
X ′2∈non-conjM (X2)

M ′
X ′2
.

Note that for every X ′2 ∈ non-conjM (X2), ⟨T1,ξ (X ′2)⟩ ∼←Σ,E L ⟨T2 \δΓ,X ′2⟩ holds as (ξ (X ′2),X
′
2) ∈ S

and M ⊆T2 \δΓ.
Then it holds that M ′ ∈M←

Γ
and therefore, M ′ ∈M←(X1,X2)

(Algorithm 7 and Line 13 in Algo-
rithm 4) and M ′ ⊆M .

□

Theorem 70 Let T be an acyclic, normalised E L H -terminology, X ∈ NC and Σ be a signature.
Additionally, let M←X := COVER←(T ,X ,Σ,T ,X) computed by Algorithm 4. Then M←X is the set of
all ⟨X ,Σ⟩-subsumee justifications of T .

Proof By Lemma 77, Lemma 78 and Definition 58, we have that M←X is a cover of of the set of
⟨X ,Σ⟩-subsumee modules of T . Let M ∈M←X .

Then we have that M←X is a cover of the set of ⟨X ,Σ⟩-subsumer modules of T . Let M ∈M←X .
We prove by assuming towards a contradiction. We assume that there exist an M ′ ⊊ M such that M ′

is a ⟨X ,Σ⟩-subsumee module of T . As M←X is initialed as { /0}, we enumerate all possible situations
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that M is generated in the algorithms but α ̸∈M , we have that the absence of α in any situation will
lead to the failure of the subsumee simulation. So M ′ could not be a ⟨X ,Σ⟩-subsumee module of T ,
which contradicts to our assumption. So M←X is the set of all ⟨X ,Σ⟩-subsumee justifications. □

3.2 Subsumption Justifications of E L H r-Terminologies
In this section, we extend the notion of subsumption justification to E L H r language. For a signature
Σ, let Σdom= {dom(t) | t ∈NR∩Σ} and Σran= { ran(t) | t ∈NR∩Σ} be the sets consisting of concepts
of the form dom(t) and ran(t) for every role name t in Σ, respectively. Similar to Definition 53, we
can define subsumption justifications for E L H r-terminology as follows.

Definition 79 (Subsumption Justification for E L H r-terminology) Let Σ be a signature, T a
normalised E L H r-terminology, and let r ∈NR, s∈NR∩Σ and X ∈NC∪{dom(r), ran(r) | r ∈NR }.
We say that

• M ⊆T is an ⟨X ,Σ⟩-subsumee module of T iff for every D ∈ E L ran
Σ such that T |= D⊑ X ,

M |= D⊑ X.

• M ⊆T is an ⟨X ,Σ⟩-subsumer module M of T iff for every C ∈ E L Σ such that T |= X ⊑C,
M |= X ⊑C;

• M ⊆T is a ⟨r,Σ⟩-role subsumption module of T iff for every s ∈ Σ such that T |= α where
α is of the form either r ⊑ s or s⊑ r, M |= α .

Additionally, a set M is called an ⟨X ,Σ⟩-subsumption module of T iff M is an ⟨X ,Σ⟩-subsumee
and ⟨X ,Σ⟩-subsumer module of T . An ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption) justification
is an ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption) module of T that is minimal w.r.t. ⊊. Similarly,
a ⟨r,Σ⟩-role subsumption justification of T is an ⟨r,Σ⟩-role subsumption module of T that is minimal
w.r.t. ⊊.

We denote a ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption) justification as J←
T (X ,Σ) (resp.

J→
T (X ,Σ),JT (X ,Σ)). Note that there may exist multiple ⟨X ,Σ⟩-(subsumer, subsumee) subsump-

tion justifications. So we denote the set of all ⟨X ,Σ⟩-subsumee (resp. subsumer, subsumption)
justifications as J←T (X ,Σ) (resp. J→T (X ,Σ),JT (X ,Σ)). Similarly, we denote a ⟨r,Σ⟩-role subsumption
justification of T as JT (r,Σ) and the set of all ⟨r,Σ⟩-role subsumption justification of T as JT (r,Σ).
The donations are the same as subsumption justification on E L H -terminology.

According to the Definition 79, it is easy to compute subsumption justifications.

Theorem 80 Let T be a normalised E L H r-terminology, let Σ be a signature, and let X ∈ NC.
Additionally, let J←T (X ,Σ) (resp. J→T (X ,Σ), JT (X ,Σ)) be the set of all ⟨X ,Σ⟩-subsumee justifications
(resp. subsumer justification, subsumption justification). We have that

J→T (X ,Σ) := Minimise⊆(J←T (X ,Σ)⊗J→T (X ,Σ)).
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Example 81 Let Σ = {X ,Y,r} and let T = {α1,α2,α3}, where α1 := ran(r)⊑ X, α2 := Y ⊑ X,
α3 := X ≡ ∃r.Z. Then both sets, M = {α1, α3} and T itself, are ⟨X ,Σ⟩-subsumee modules of T .
Moreover, M is a ⟨X ,Σ⟩-subsumee justification of T .

We obtain the following propositions from together with Definition 79. Recall that we use ‘ran’
as an abbreviation for the query language E L H r.

Proposition 82 Let T be a normalised E L H r-terminology, Σ be a signature, X ∈NC∪Σdom∪Σran

and r ∈ Σ∩NR. Then the following statements hold:

• M is an ⟨X ,Σ⟩-subsumer module of T iff X ̸∈ lhsWtnranΣ (T ,M );

• M is an ⟨X ,Σ⟩-subsumee module of T iff X ̸∈ rhsWtnranΣ (T ,M );

• M is an ⟨r,Σ⟩-role subsumption module of T iff r ̸∈ roleWtnΣ(T ,M ).

The algorithm for computing role subsumption justifications for E L H r-terminologies coincides
with the algorithm for E L H -terminologies, cf. Section 3.1.1. Now we present the algorithms for
computing subsumer and subsumee justifications for E L H r-terminologies.

3.2.1 Computing Subsumer Justifications

Similar to the algorithm introduced in Section 3.1.2, we use a specific notion of a subsumer simulation
to guide us when collecting the relevant axioms for subsumer justifications. First, we extend the
definition of a subsumer simulation to E L H r-terminologies.

Definition 83 (Subsumer Simulation for E L H r-terminology) Let T1 and T2 be two normalised
E L H r-terminologies, and let Σ be a signature. Moreover, let N(T ,Σ) = {X ,dom(r), ran(r) | X ,r ∈
(sig(T )∪Σ),X ∈ NC,r ∈ NR }, where T ranges over terminologies. A relation S ⊆ N(T1,Σ)×
N(T2,Σ) is a Σ-subsumer simulation from T1 to T2 iff the following conditions (S→NC

) and (S→∃ ) are
both satified:

(S→NC
) if (X1,X2) ∈ S, then for every ϕ ∈ Σ∪Σdom with T1 |= X1 ⊑ ϕ , it holds that T2 |= X2 ⊑ ϕ;

(S→∃ ) if (X1,X2) ∈ S, X ′1 ▷◁1 ∃r.Y1 ∈ T1 with ▷◁1 ∈ {⊑,≡} and T1 |= X1 ⊑ X ′1, then for every s ∈ Σ

with T1 |= r ⊑ s, there exists X ′2 ▷◁2 ∃r′.Y2 ∈ T2 with ▷◁2 ∈ {⊑,≡} such that T2 |= X2 ⊑ X ′2,
T2 |= r′ ⊑ s and (Y1,Y2) ∈ S.

We write T1 ∼→Σ,ran T2 iff there exists a Σ-subsumer simulation S from T1 to T2 such that for
every ϕ ∈ (Σ∩NC)∪Σdom∪Σran: (ϕ,ϕ) ∈ S.

For X1,X2 ∈ (Σ∩NC)∪Σdom∪Σran, we write ⟨T1,X1⟩∼→Σ,ran ⟨T2,X2⟩ iff there exists a Σ-subsumer
simulation S from T1 to T2 with (X1,X2) ∈ S for which T1 ∼→Σ,ran T2.
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A subsumer simulation captures the set of subsumers in the following way: If a Σ-subsumer
simulation from T1 to T2 contains the pair (X1,X2), then X2 entails w.r.t. T2 all subsumers of X1

w.r.t. T1 that are formulated in the signature Σ. Formally, we obtain the following theorem. Note that
the right-hand side of an E L H r-inclusion ranges over E L -concepts (cf. Definition 4).

Lemma 84 Let T1 and T2 be normalised E L H r-terminologies, Σ a signature and X1 ∈ NC ∪
Σdom ∪Σran. Additionally, let ⟨T1,X1⟩ ∼→Σ,ran ⟨T2,X2⟩. Then, for every D ∈ E L Σ: T1 |= X1 ⊑ D
implies T2 |= X2 ⊑ D.

We can update Algorithm 3 according to the new subsumer simulation and get an algorithm to
compute subsumer justifications for E L H r-terminology, which is shown in Algorithm 8. Compared
with Algorithm 3, additionally, we need to collect the justifications of the inclusion of the form
X ⊑ dom(r) that follows from T . Moreover, the condition of for-loop in Algorithm 3 changes
according to the new subsumer simulation definition.

Algorithm 8: Computing the set of all Subsumer Justifications

1 function COVER→ (T ,X ,Σ)

2 M→X = { /0}
3 for every ϕ ∈ (Σ∩NC)∪{dom(r) | r ∈ Σ} such that T |= X ⊑ ϕ do
4 M→X :=M→X ⊗ JustT (X ⊑ ϕ)

5 end
6 for every Y ▷◁1 ∃r.Z ∈T (▷◁1∈ {⊑,≡}) and s ∈ Σ∩NR such that T |= X ⊑ Y and

T |= r ⊑ s do
7 M→∃s.Z := { /0}
8 for every s ∈ {s′ ∈ Σ∩NR |T |= r ⊑ s′ } do
9 for every Y ′ ▷◁2 ∃r′.Z′ ∈T (▷◁2∈ {⊑,≡}) such that T |= X ⊑ Y ′, T |= r′ ⊑ s,

and ⟨T ,Z⟩ ∼→
Σ,ran ⟨T ,Z′⟩ do

10 M→Z′ := COVER→ (T ,Z′,Σ)
11 M→∃s.Z :=M→∃s.Z ∪

(
{{Y ′ ▷◁2 ∃r′.Z′}}⊗M→Z′ ⊗ JustT (X ⊑Y ′)⊗ JustT (r′ ⊑ s)

)
12 end
13 end
14 M→X :=M→X ⊗M→∃s.Z
15 end
16 return Minimise⊆(M→X )

Theorem 85 Let T be an acyclic, normalised E L H r-terminology, and let Σ be a signature.
Additionally, let X ∈ NC∪Σdom∪Σran, and let M→X := COVER→(T ,X ,Σ) computed by Algorithm 8.
Then M→X is the set of ⟨X ,Σ⟩-subsumer justifications of T .
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3.2.2 Computing Subsumee Justifications

Similar to the algorithm for computing subsumee justifications that presented in Section 3.1.3, we
update the definition of Σ-entailment and Σ-subsumee simulation to deal with range restrictions.

The axioms of the form ran(r) ⊑ X might cause non-trivial entailments. For example, let
T1 = {X ≡ ∃r.Y,Y ≡ A1⊓A2}, T2 = T1∪{ran(r) ⊑ A1}, Σ = {X ,A1,A2,r}. Then we have T1 |=
∃r.(A1⊓A2), however, as the axiom ran(r)⊑ A1 ∈T2, the conjunct A1 of Y is already covered by α .
Hence, when we define the notion of Σ-reachability, an additional parameter ζ ∈ {ε}∪ (NR∩Σ) is
used. We call this additional parameter the context of a role, i.e. an expression of the form ran(ζ ).
We treat ε as a special role name and set ran(ε) =⊤. The set of all role contexts, in symbols C Σ, is
defined as C Σ = {ε}∪ (NR∩Σ).

In the following, we extend the notions of Σ-entailment (Definition 63) and complex Σ-entailment
(Definition 66) to E L H r-terminologies in order to deal with range restrictions.

Definition 86 (Σ-Entailment for E L H r-subsumption) Let T be a normalised E L H r-terminology
and Σ be a signature. For ζ ∈ NR∪{ε}, A ∈ NC and s ∈ NR, we say that:

(i) A∈NC is (Σ, ran,ζ )-entailed in T iff there is an E L Σ-concept C such that T |= ran(ζ )⊓C⊑ A;

(ii) s ∈ NR is Σ-entailed in T iff there exists s′ ∈ NR∩Σ such that T |= s′ ⊑ s.

We now define the notion of a subsumee simulation from T1 to T2 as a subset of sigNC(T1)×
sigNC(T2)×C Σ

T1
, where C Σ

T1
:= {ε}∪ (NR∩ (Σ∪ sig(T1))) is the range of role contexts.

Definition 87 (Complex Σ-Entailment for E L H r-terminology) Let Σ be a signature, T a nor-
malised and acyclic E L H r-terminology, and X ∈ NC∪Σdom∪Σran.

We say that X is complex ⟨Σ, ran,ζ ⟩-entailed w.r.t. T iff for every Y ∈ non-conjT (X) one of the
following conditions hold:

(i) there exists B ∈ Σ(ran,ζ ) such that T |= B⊑ Y and T ̸|= B⊑ X;

(ii) there exists Y ≡ ∃r.Z ∈T and r and Z are each ⟨Σ, ran,ζ ⟩-entailed in T .

Otherwise, X is said to be simply ⟨Σ, ran,ζ ⟩-entailed.

The concept name X being complex Σ-entailed w.r.t. T states that every conjunct of X is either
defined as a Σ-entailed existential restriction (Condition (ii)) or it is entailed by a Σ-concept name,
dom- or ran-concept by which X is not entailed.

Definition 88 (Subsumee Simulation for E L H r-terminology) Let T1 and T2 be two normalised
E L H r-terminologies, and let Σ be a signature. A relation S ⊆ sigNC(T1)× sigNC(T2)×C Σ

T1
is a

Σ-subsumee simulation from T1 to T2 iff the following conditions hold:
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(S←,ran
NC

) if (X1,X2,ζ )∈ S, then for each ϕ ∈Σ∪Σdom∪{ ran(ζ ) | ζ ̸= ε } and for each X ′2 ∈ non-conjT2
(X2)

with T2 ̸|= ran(ζ )⊑ X ′2, T1 |= ϕ ⊑ X1 implies T2 |= ϕ ⊑ X ′2;

(S←,ran
∃ ) if (X1,X2,ζ ) ∈ S and X1 ≡ ∃r.Y1 ∈T1 such that T1 |= s⊑ r for s ∈ Σ and Y1 is (Σ,s)-entailed

in T1, then for every X ′2 ∈ non-conjT2
(X2) not entailed by dom(s) or ran(ζ ) w.r.t. T2, there

exists X ′2 ≡ ∃r′.Y2 ∈T2 such that T2 |= s⊑ r′ and (Y1,Y2,s) ∈ S;

(S←,ran
⊓ ) if (X1,X2,ζ ) ∈ S and X1 ≡ Y1⊓ . . .⊓Yn ∈T1, then for every Y2 ∈ non-conjT2

(X2) not entailed
by ran(ζ ) w.r.t. T2, there exists Y1 ∈ non-conjT1

(X1) not entailed by ran(ζ ) w.r.t. T2 with
(Y1,Y2,ε) ∈ S.

We write T1 ∼←Σ,ran T2 iff there is a Σ-subsumee simulation S from T1 to T2 such that for every
A,r ∈ Σ: (A,A,ε) ∈ S and (A,A,r) ∈ S.

For ζ ∈ Σ∩NR, we write ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨T2,X2⟩ iff there is a Σ-subsumee simulation S from T1

to T2 with (X1,X2,ζ ) ∈ S for which T1 ∼←Σ,ran T2.

Lemma 89 Let T1 and T2 be normalised and acyclic E L H r-terminologies, and let Σ be a signature.
Then: T1 ∼←Σ,ran T2 iff rhsWtnranΣ (T1,T2) = /0.

Lemma 90 Let T1 and T2 be two normalised and acyclic E L H r-terminologies, and let Σ be a
signature. It holds that ⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨T2,X2⟩ iff for every C ∈ E L Σ: T1 |= ran(ζ )⊓C ⊑ X1

implies T2 |= ran(ζ )⊓C ⊑ X2.

Next we device the following algorithms for computing subsumee justifications for E L H r-
terminologies. The notions that we use in the algorithm are the same as the same notions we introduced
in Section 3.1.3 unless we revised them in this section.

Based on the notion of a subsumee simulation, we present Algorithm 9 for Computing the set of
the subsumee justifications for a given E L H r-terminology T , a concept X ∈ NC and a signature Σ.
The function call for obtaining the ⟨X ,Σ⟩-subsumee justifications of T is COVER← (T ,X ,Σ,T ,X ,ε).

The following theorem states that Algorithm 9 can be used to compute a cover of the set of
subsumee modules, which outputs all subsumee justifications via the operator Minimise⊆(·).

Theorem 91 Let T be an acyclic, normalised E L H r-terminology, X ∈NC∪Σdom∪Σran and Σ be
a signature. Additionally, let

M := Minimise⊆(COVER←(T ,X ,Σ,T ,X ,ε)⊗
⊗

r∈Σ∩NR

COVER←(T ,X ,Σ,T ,X ,r))

computed recursively by Algorithm 9. Then M is the set of all ⟨X ,Σ⟩-subsumee justifications of T .
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Algorithm 9: Computing the set of all Subsumee Justifications for an E L H r-terminology

1 function COVER←(T1,X1,Σ,T2,X2,ζ )
2 if X1 is not ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1 then
3 return { /0}
4 end
5 M←(X1,X2)

:= COVERNC
← (T1,X1,Σ,T2,X2,ζ )

6 if X1 is not complex ⟨Σ, ran,ζ ⟩-entailed in T1 then
7 return Minimise⊆(M←(X1,X2)

)

8 end
9 if X1 ≡ ∃r.Y ∈T1, and r is Σ-entailed and Y is ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1 then

10 M←(X1,X2)
:=M←(X1,X2)

⊗COVER∃←(T1,X1,Σ,T2,X2,ζ )

11 end
12 else if X1 ≡ Y1⊓ . . .⊓Ym ∈T1 then
13 M←(X1,X2)

:=M←(X1,X2)
⊗COVER⊓←(T1,X1,Σ,T2,X2,ζ )

14 end
15 return Minimise⊆(M←(X1,X2)

)

Similar to E L H -terminology T , our algorithm for computing subsumption justifications in
E L H r-terminology runs in time exponential in the size of T and signature.

The idea of the proof of the lemmas and theorems in this section is similar with Section 3.1.4.
The difference is that we use Lemma 34 instead of Lemma 31 to take care of role restrictions in
E L H r-terminology.

Proposition 92 Let T be a normalised E L H r-terminology, Σ a signature, X ∈ NC, and ϕ ∈
NC∪{dom(r), ran(r) | r ∈ NR } . The algorithm for computing all ⟨ϕ,Σ⟩-subsumer justifications and
all ⟨X ,Σ⟩-subsumer justifications runs in EXPTIME in the size of T .

Algorithm 10: Computing the set of all Subsumee Projection Justifications for an E L H r-
terminology (S←,L

NC
)

1 function COVERNC← (T1,X1,Σ,T2,X2,ζ)

2 M←(X1,X2)
= { /0}

3 for every B ∈ Σ∪Σdom∪{ ran(ζ ) | ζ ̸= ε } such that T1 |= B⊑ X1 do
4 for every X2 ∈ non-conjT2

(X1) such that ζ = ε or T2 |= ran(ζ )⊑ X2 do
5 M←(X1,X2)

:=M←(X1,X2)
⊗ JustT2(B⊑ X2)

6 end
7 end
8 return Minimise⊆(M←(X1,X2)

)
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Algorithm 11: Computing the set of all Subsumee Projection Justifications for an E L H r-
terminology (S←,L

∃ )

1 function COVER∃← (T1,X1,Σ,T2,X2,ζ)

2 Let αX1 := X1 ≡ ∃r.Y1 ∈T1

3 M←(X1,X2)
:= {max-tree ⊓T2

(X2)}
4 for every s ∈ Σ∩NR such that T1 |= s⊑ r do
5 for every X ′2 ∈ non-conjT2

(X2) such that ζ ̸= ε implies T2 ̸|= ran(ζ )⊑ X ′2 and
T2 ̸|= dom(s)⊑ X ′2 do

6 Let αX ′2
:= X ′2 ≡ ∃r′.Y ′2 ∈T2 M←Y ′2 := COVER←(T1,Y1,Σ,T2,Y ′2,s)

M←(X1,X2)
:=M←(X1,X2)

⊗{{αX ′2
}}⊗ JustT2(s⊑ r)⊗M←Y ′2

7 end
8 end
9 return Minimise⊆(M←(X1,X2)

)

3.3 Evaluation
We have implemented our algorithms for computing subsumption justifications and for computing all
minimal modules for E L H -terminology in Java. In the evaluation, we first show the feasibility of
computing subsumption justifications; The tool we use to compute justifications is BEACON [2].

We have evaluated the performance of the implementation using two prominent biomedical
ontologies: Snomed CT (version Jan 2016), an E L H -terminology consisting of 317891 axioms,
and NCI (version 16.03d), an E L -terminology containing 165341 axioms. All the experiments were
conducted on the machines equipped with Intel Xeon Core 4 Duo CPU running at 2.50GHz and with
64GiB RAM. An execuition timeout is 10 minutes.

Moreover, Table 3.1 details how the computation time was spent on different sub-tasks which
determined the bottleneck of our tool. Indeed, 94.6% of the computation time was spent by BEACON
on computing all justifications for concept name inclusions. Therefore, a considerable boost in
performance of our tool can be expected by precomputing such justifications.

Computation of all Subsumption Justifications Table 3.2 shows the results obtained for
computing all subsumption justifications. The first row indicates the ontology used in each experiment.
The experiments are divided into four categories according to the numbers of concept and role names
included in an input signature, as specified in the second row. For each category, we generated
1000 random signatures and computed the corresponding subsumption justifications for each concept
name in the signature. Row 3 shows that multiple subsumption justifications can exist in real-world
ontologies, e.g., there are 1328 subsumption justifications for a random signature consisting of 30
concept and 10 role names in Snomed CT. Meanwhile, Row 4 reports the cardinality of subsumption
justifications, e.g., the largest one having 27 axioms for a signature of 30 concept and 10 role names
from NCI. Row 5 shows that the subsumption justifications for more than 82.4% of random signatures
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Algorithm 12: Computing the set of all Subsumee Justifications for an E L H r-terminology
(S←,L
⊓ )

1 function COVER⊓←(T1,X1,Σ,T2,X2,ζ )
2 let αX1 := X1 ≡ Y1⊓ . . .⊓Ym ∈T1

3 M←(X1,X2)
:= /0

4 for every Γ ∈ DefForest⊓T2
(X2) do

5 Let δΓ := {def ⊓T2
(X ′) | X ′ ∈ leaves(Γ)∩def ⊓T2

}
6 M←

Γ
:= {Γ}

7 for every X ′2 ∈ leaves(Γ) such that ζ = ε or T2 ̸|= ran(ζ )⊑ X ′2 do
8 M←X ′2 := /0

9 for every X ′1 ∈ non-conjT1
(X1) such that ζ = ε or T2 ̸|= ran(ζ )⊑ X ′1 do

10 if ⟨T1,X ′1⟩ ∼←Σ,ζ ⟨T2 \δΓ,X ′2⟩ then
11 M←X ′2 :=M←X ′2 ∪COVER←(T1,X ′1,Σ,T2 \δΓ,X ′2,ε)

12 end
13 end
14 M←

Γ
:=M←

Γ
⊗M←X ′2

15 end
16 M←(X1,X2)

:=M←(X1,X2)
∪M←

Γ

17 end
18 return Minimise⊆(M←(X1,X2)

)

Sub-Task JUST Reasoner Simulation Check others

Percentage (%) 94.60 1.79 1.57 2.04

Table 3.1 Percentage of computation time consumed by sub-task of the algorithm for
computing subsumption justifications

can be computed within 10 mins, whereas the statistics of the actual computation times is given in
Row 6. More detailed results are shown in Table 3.3.
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Chapter 4

Extraction of Ontology Subsumption
Modules

In this section, we first introduce a notion of ontology module called basic subsumption module w.r.t.
a given signature that preserves all E L H r-inclusions of a terminology over the signature. Note that
this is a different notion from ⟨X ,Σ⟩-subsumption modules that are w.r.t. a particular concept name X
and a signature.

We present two approaches to computing all minimal subsumption modules of an ontology for
a signature: a black-box approach and a glass-box approach. We follow the black-box approach
for finding one or all justifications by replacing the entailment tests with logical difference checks,
obtaining modules that preserve not only a given consequence but all entailments over a signature. The
glass-box algorithm computes all possible subsumption modules of an ontology w.r.t. the signature
by combining all subsumption justifications of every concept name in signature, as discussed in the
previous chapter. At the end, we evaluate both approaches by computing all subsumption modules
on large biomedical ontologies. The experiment shows that either black-box algorithm or glass-box
algorithm is practical to be used to compute basic subsumption modules in large ontologies when the
signature is not relatively large. In general, glass-box algorithm is faster than black-box algorithm.
However, glass-box algorithm can only deal with acyclic terminologies for the moment.

4.1 Definition of Subsumption Module
In general, a module is a subset of an ontology that can act as a substitute for the ontology w.r.t. a given
signature. In this chapter, we consider the notion of basic modules from [10] for E L H -terminologies.
We now give a formal definition of the module notion.

Definition 93 (Basic E L H r-Subsumption Module) Let T be an E L H r-terminology and let Σ

be a signature. A subset M ⊆T is called a basic E L H r-subsumption module of T w.r.t. Σ iff for
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all E L H r-inclusions α with sig(α)⊆ Σ it holds that T |= α iff M |= α . M is called a minimal
basic E L H r-subsumption module of T w.r.t. Σ iff M is minimal w.r.t. ⊊ with that property.

In the remainder, for simplicity’s sake, we refer to a (minimal) basic E L H r-subsumption module of
T w.r.t. Σ as a (minimal) basic subsumption module.

Lemma 94 Let T be an E L H r-terminology, and let Σ be a signature. Then M ⊆ T is a basic
E L H r-subsumption module of T w.r.t. Σ iff cDiffL

Σ (T1,M ) = /0, where L = E L H r.

Every subset M of a terminology T that preserves the entailment of all E L H r-subsumptions
over a given signature Σ is a basic E L H r-subsumption module of T w.r.t. Σ. In particular, T

itself is a basic E L H r-subsumption module of T w.r.t. any signature. It can readily be seen that
M is a basic E L H r-subsumption module of T w.r.t. Σ iff cDiffL

Σ (T1,M ) = /0, for the query
language L = E L H r (cf. Definition 19). We have that M and T are inseparable w.r.t. E L H r-
inclusions over Σ. More precisely, as M ⊆T , it holds that T is a conservative extension of M w.r.t.
E L H r-inclusions over Σ [35].

The following propositions show the relation between the basic E L H r-subsumption module
notion and other module notions.

A relation between basic E L H r-subsumption modules and depleting modules is given below:

Proposition 95 Let T be an E L H r-TBox and Σ a signature. Let M † be a depleting module of T

w.r.t. Σ. Then M † is a basic subsumption module of T w.r.t. Σ.

Proof By Property 41, we have that a depleting Σ-module M † of T , is also a plain Σ-module of
T . As model-theoretic inseparability is strictly stronger than inseparability w.r.t. first-order logic
queries (see, e.g., [26] and references therein), M † is a basic subsumption module w.r.t. Σ. □

There may be exponentially many (in the size of T ) basic subsumption modules (see Example 99).
For the use-case of ontology re-use, however, we are most interested in modules that are as small
as possible [16]. Note that smallest modules (regarding the number of axioms) are also minimal
w.r.t. ⊆, whereas the converse does not hold in general, i.e., there may be minimal modules w.r.t. ⊆
that contain more axioms than other minimal modules w.r.t. ⊆.

Example 96 Let T = {A⊑X⊓Y, X ⊑B, Y ⊑ Z, Z⊑B} be an E L H r-terminology and Σ= {A,B}
be a signature. It holds that both sets, M1 = {A⊑ X ⊓Y, X ⊑ B} and M2 = {A⊑ X ⊓Y, Y ⊑ Z, Z ⊑
B}, are minimal basic E L H r-subsumption modules of T w.r.t. Σ, whereas M1 is the smallest
minimal basic E L H r-subsumption module of T w.r.t. Σ as |M1|< |M2|.

The notion of a justification for a concept inclusion α has been introduced as a minimal subset
of a TBox that entails a given concept inclusion [4]. We can understand a minimal module as a
more general notion of justification: a minimal basic E L H r-subsumption module of T w.r.t. Σ is a
justification for all the concept inclusions over Σ entailed by T .
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Semantic modules of E L H r-terminologies that are self-contained or depleting (in fact, such
modules have both properties [27]) can be strictly larger than basic E L H r-subsumption modules as
illustrated by the following example.

Example 97 Let T = {A ⊑ ∃r.B} be an E L H r-terminology, and Σ = {A,B} be a signature. It
is easy to verify that T itself is a basic, self-contained, and depleting semantic module of T

w.r.t. Σ [25, 27], whereas the empty set is the minimal basic E L H r-subsumption module of T

w.r.t. Σ.

The following example extends Example 96 to show that the modules computed by the system
MEX [25] as well as the modules based on syntactic locality can be strictly larger than minimal basic
E L H r-subsumption modules as introduced in Definition 93. Note that MEX-modules are semantic
modules that are self-contained as well as depleting [27] (equivalently, weak and strong [25]).

Example 98 Consider an E L H r-terminology T = {A ⊑ X ⊓Y ⊓U, X ⊑ B, Y ⊑ Z, Z ⊑ B,U ≡
V ⊓W} and a signature and Σ = {A,B}. It holds that both sets, M1 = {A ⊑ X ⊓Y, X ⊑ B} and
M2 = {A⊑ X ⊓Y, Y ⊑ Z, Z ⊑ B}, are minimal basic E L H r-subsumption modules of T w.r.t. Σ.
Moreover, MEX outputs M3 = M1∪M2 = {A⊑ X ⊓Y ⊓U, X ⊑ B, Y ⊑ Z, Z ⊑ B} as module of T

w.r.t. Σ. Finally, T itself is the ⊥⊤∗-local module of T w.r.t. Σ.

In general, there can be several minimal basic E L H r-subsumption modules of an acyclic
E L H r-terminology for a signature, and even the smallest of such modules are not necessarily
unique. The next example shows a sequence of acyclic E L H r-terminologies whose number of
minimal basic E L H r-subsumption modules for a given signature is exponentially increasing.

Example 99 Let Tn = {A⊑X0}∪{Xi−1⊑Yi⊓Zi | 1≤ i≤ n}∪{Yi⊑Xi, Zi⊑Xi | 1≤ i≤ n}∪{Xn⊑
B} with n≥ 0 be E L H r-terminologies, and let Σ = {A,B} be a signature.

It holds that the set {A⊑ X0, X0 ⊑ B} is the minimal basic E L H r-subsumption module of T0

w.r.t. Σ. The sets {A⊑X0, X0⊑Y1⊓Z1, Y1⊑X1, X1⊑B} and {A⊑X0, X0⊑Y1⊓Z1, Z1⊑X1, X1⊑B}
are the two minimal basic E L H r-subsumption modules of T1. Moreover, the four sets {A ⊑
X0, X0 ⊑ Y1⊓Z1, Y1 ⊑ X1, X1 ⊑ Y2⊓Z2, Y2 ⊑ X2, X2 ⊑ B} and {A⊑ X0, X0 ⊑ Y1⊓Z1, Y1 ⊑ X1, X1 ⊑
Y2⊓Z2, Z2 ⊑ X2, X2 ⊑ B} as well as {A⊑ X0, X0 ⊑Y1⊓Z1, Z1 ⊑ X1, X1 ⊑Y2⊓Z2, Y2 ⊑ X2, X2 ⊑ B}
and {A⊑ X0, X0 ⊑ Y1⊓Z1, Z1 ⊑ X1, X1 ⊑ Y2⊓Z2, Z2 ⊑ X2, X2 ⊑ B} are the minimal basic E L H r-
subsumption modules of T2, etc. In general, it can readily be verified that Tn has 2n many distinct
minimal basic E L H r-subsumption modules w.r.t. Σ.

In the remainder of this section, we present two different approaches for computing minimal basic
E L H r-subsumption modules. We will simply write module instead of ‘basic E L H r-subsumption
module’ in the remainder of this chapter.
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4.2 Black-Box Algorithm
In this section, we extend the black-box approach for finding one or all justifications in [20], which is
based on Reiter’s hitting set algorithm [38]. Instead of ensuring that a given entailment is preserved,
we introduce an oracle to determine the inseparability between the original ontology and the resulting
module. As an oracle we use a variant of the system CEX, which is a tool for deciding whether two
E L H r-terminologies are logically different w.r.t. a signature [28, 24, 34]. Additionally, several
optimisations to speed up the computation of minimal modules are investigated. We present an
experimental evaluation of our algorithms by applying them on the prominent and large medical
ontologies Snomed CT and NCI. We note that our algorithms are applicable to ontologies formulated
in any ontology language provided that a tool is available that can effectively decide the inseparability
relation. As CEX works with variants of E L H r-terminologies, we restrict the presentation of our
algorithms to E L H r-terminologies.

4.2.1 Computing a Single Minimal Module

A first straightforward procedure SINGLE-MINIMAL-MODULE for computing a minimal module of
an E L H r-terminology T w.r.t. a signature Σ is given in Algorithm 13.1 The procedure operates as
follows. First, the variable M is initialised with T . Subsequently, the procedure iterates over every
axiom α ∈ T and checks whether cDiff(T ,M \{α}) = /0, in which case the axiom α is removed
from M . During the execution of the while-loop the set M is hence shrunk by removing axioms that
do not lead to a logical difference until a minimal module of T for Σ remains.

Algorithm 13: Computing a Single Minimal Module w.r.t. a Signature

1 function SINGLE-MINIMAL-MODULE (T ,Σ)

2 M := T

3 for every axiom α ∈T do
4 if cDiff(T ,M \{α}) = /0 then
5 M := M \{α}
6 end
7 end
8 return M

Note that the minimal module that is extracted by Algorithm 13 depends on the order in which
axioms were chosen during the iteration (Line 3), i.e. by iterating over the axioms in a different order
one can potentially obtain a different minimal module. Moreover, one can show that all minimal
modules can be computed by using all possible orderings on the axioms α ∈ T in the for-loop in
Line 3.

1A similar algorithm for DL-Lite ontologies has already been described in Theorem 67 of [31].
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It is easy to see that Algorithm 13 always terminates and that it runs in polynomial time in the
size of T and Σ since deciding the existence of a logical difference between E L H r-terminologies
can be performed in polynomial time in the size of T and Σ.

Regarding correctness, if we assume towards a contradiction that a set Mmin ⊆T computed by
Algorithm 13 applied on T and Σ is not a minimal module of T w.r.t. Σ, then there would exist an
axiom α ∈M such that cDiff(T ,Mmin \{α}) = /0. However, when α was analysed in the for-loop
in Line 3, cDiff(T ,M ′ \{α}) must have been empty as well by monotonicity of |=, where M ′ with
Mmin ⊆M ′ represents the value of the variable M in Algorithm 13 at the time α was inspected.
Consequently, it would hold that α ̸∈Mmin and we have derived a contradiction. We hence obtain the
following result.

Theorem 100 Let T be an E L H r-terminology and let Σ be a signature. Then Algorithm 13
applied on T and Σ computes a minimal module of T for Σ.

Proof Let M be the module of T returned by Algorithm 13 applied on (T ,Σ).
Furthermore, let M0, . . . ,Mn be the sequence of modules of T computed by Algorithm 13 such

that M0 = T and Mn = M .
If we assume towards a contradiction that M is not minimal, then there exists an axiom α ∈M

such that cDiff(T ,M \{α}) = /0. Hence, there exists 0≤ i≤ n such that cDiffΣ(T ,Mi \{α}) ̸= /0.
As Mn ⊆Mi, we can infer that Mn \{α} ⊆Mi \{α} and cDiffΣ(T ,Mi \{α})⊆ cDiffΣ(T ,Mn \
{α}) by Lemma 27. Thus, cDiffΣ(T ,Mn \{α}) ̸= /0, contradicting our assumption. □

As checking the existence of a logical difference can be costly in practice, we now introduce
a refinement of the previous algorithm that potentially allows it to reduce the number of logical
difference checks that are required for computing a minimal module. The refined procedure SINGLE-
MINIMAL-MODULE-BUBBLE is shown in Algorithm 14.

Intuitively, instead of checking whether the removal of a single axiom leads to a logical difference,
the refined procedure removes a set B of axioms from T at once. Such a set B is also called a
bubble. As an additional optimisation we introduce the notion of logical difference core, which will
become relevant in the context of computing all minimal modules when the algorithm for computing
one minimal module has to be executed frequently.

Definition 101 (Logical Difference Core) Let T be an E L H r-terminology and let Σ be a signa-
ture. A subset C ⊆T is said to be a logical difference core of T w.r.t. Σ iff for every α ∈ C it holds
that cDiff(T ,T \{α}) ̸= /0.

Given a logical difference core C of T w.r.t. Σ and a minimal module M of T w.r.t. Σ, it is easy
to see that C ⊆M must hold. The maximal logical difference core can be computed by collecting all
the axioms α ∈T for which cDiff(T ,T \{α}) ̸= /0.
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Algorithm 14: Computing a Single Minimal Module w.r.t. a Signature using Axiom Bubbles

1 function SINGLE-MINIMAL-MODULE-BUBBLE (T ,Σ,n,C)

2 M := T

3 Q := SPLIT(T \C ,n)
4 while Q ̸= [] do
5 B := HEAD(Q)

6 Q := TAIL(Q)

7 if cDiff(T ,M \B) = /0 then
8 M := M \B
9 end

10 else
11 if |B|> 1 then
12 (Bl,Br) := SPLITHALF(B)

13 Q := Bl :: Br :: Q
14 end
15 end
16 end
17 return M

Lemma 102 Let T be an E L H r-terminology and let Σ be a signature. Additionally, let C ⊆T be
a logical difference core of T w.r.t. Σ and M is the set of all minimal modules of T w.r.t. Σ. Then

C =
⋂

M∈M
M .

Proof Let S =
⋂

M∈M
M . First, we prove that S ⊆ C . For every axiom α ∈S , we have α ∈⋂

M∈M
M . As M is minimal w.r.t. set inclusion, we could get that cDiffΣ{T ,T \{α}} ̸= /0. By

Definition 101, we could conclude that for every axiom, α ∈ C . Hence, S ⊆ C .
Then we prove that C ⊆S . We assume now towards a contradiction that there exists an axiom

α such that α ∈ C , but α ̸∈S . As α ̸∈S , there exist a minimal module M such that α ̸∈M and
cDiffΣ(T ,M ) = /0. As M ⊆T \{α}. By Lemma 27, we have that cDiffΣ(T ,T \{α}) = /0, which
contradicts to our assumption that α ∈ C , which implies that cDiffΣ(T ,T \{α}) ̸= /0. □

Lemma 102 shows that every axiom in logical difference core is contained in every minimal
module. Therefore, the black-box algorithm does not need to check the axioms in the logical different
core.

Now, the procedure SINGLE-MINIMAL-MODULE-BUBBLE applied on a terminology T , a
signature Σ, an initial size parameter n for the bubbles, and a logical difference core C of T w.r.t. Σ

operates as follows. First, the variable M is set to contain all the axioms of T and the bubble queue Q
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is initialised by partitioning the axioms contained in T \C into bubbles of size n. Note that the size
of one bubble may be different from n if n is not a divisor of |T |, or if n > |T |. The resulting bubbles
are then stored in the queue Q. As long as Q is not empty, the first bubble B is extracted from the
queue (lines 5 and 6). Note that the empty queue is denoted with [ ]. Subsequently, it is verified in
Line 7 whether the removal of the axioms in B from the minimal module candidate M leads to a
logical difference. If not, all the axioms in B can safely be removed from M in Line 8. Otherwise, if
the bubble contained more than one axiom (Line 10), we have to identify the subsets of B whose
removal does not yield a logical difference. To that end, B is split into two bubbles Bl and Br (Line
11) such that Bl,Br ⊆B, |Bl|=

⌈1
2 · |B|

⌉
, and |Br|=

⌊1
2 · |B|

⌋
. The bubbles Bl and Br are then

prepended to the queue (Line 12), and the algorithm continues with the next iteration.
The correctness of Algorithm 14 can be shown as before with Algorithm 13. Termination on any

input follows from the fact that every axiom in T appears in at most one bubble in Q and that in each
iteration either the overall number of bubbles is reduced, or one bubble that contains more than one
axiom is split into two smaller bubbles. Note that once a bubble B of size 1 has been selected in
Line 5, it will not be contained in Q in subsequent iterations. We obtain the following result.

Theorem 103 Let T be an E L H r-terminology and let Σ be a signature. Additionally, let C ⊆T

be a logical difference core of T w.r.t. Σ. Then Algorithm 14 applied on T , Σ, and C computes a
minimal module of T for Σ.

Regarding computational complexity, we observe that the decomposition of every bubble B

induces a binary tree in which the nodes are labelled with the bubbles resulting from splitting the
parent bubble. In our algorithm, given a bubble B, such a decomposition tree has a depth of at
most ⌊log2 |B|⌋ and the number of nodes in a decomposition tree corresponds to the number of
logical difference checks. As the number of nodes in a binary tree of depth h is bounded by 2h+1−1,
we hence obtain that every initial bubble B results in at most 2 · |B|−1 logical difference checks.
Overall, we can infer that the procedure SINGLE-MINIMAL-MODULE-BUBBLE runs in polynomial
time in the size of T , Σ, and n.

4.2.2 Computing All Minimal Modules

A naïve way to compute all minimal modules is to enumerate all subsets of the input TBox T

and to check their logical difference w.r.t. T and a given signature. For E L H r-terminologies the
logical difference problem can be decided in polynomial time [23]. Example 99 shows that there
are E L H r-terminologies with exponentially many minimal modules. Consequently, computing all
minimal modules of an E L H r-terminology can only be achieved in time exponential in the size of
the terminology in the worst case.

For that reason, upper approximations of (the union of) all minimal modules such as the syntactic
locality-based module notions that can be extracted more efficiently have been introduced [16]. In our
algorithm for computing all minimal modules (and in our experiments for extracting one minimal
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module) we will make use of syntactic ⊥⊤∗-locality modules to speed up computations. These
modules are among the smallest modules based on syntactic locality notions [42]. They can be
obtained by iterating the process of extracting a syntactic ⊥-local module followed by extracting a
syntactic ⊤-local module until a fixpoint is reached. We will extract syntactic ⊥⊤∗-locality modules
using the OWLAPI. Note that any syntactic ⊥⊤∗-locality module Ms of an E L H r-terminology T

w.r.t. a signature Σ contains all the minimal modules of T w.r.t. Σ.
In our algorithm for computing all minimal modules, we make use of a technique developed for

computing all minimal hitting sets [38]. Our algorithm is based on the following observation: given a
minimal module M of T w.r.t. a signature Σ, then for any other minimal module M ′ of T w.r.t. Σ

there must exist α ∈M ′ such that α ̸∈M , i.e. M ′ must be contained in T \{α} for some α ∈M .
Similarly to [38], our algorithm organises the search space using a labelled, directed tree τ ,

called module search tree for T , that is extended during the run of the algorithm. Formally, τ is
a tuple (V ,E ,L ,ρ), where V is a non-empty, finite set of nodes, E ⊆ V ×V is a set of edges,
L is an edge labelling function, mapping every edge e ∈ E to an axiom α ∈ T , and ρ ∈ V is
the root node of τ . The procedure ALL-MINIMAL-MODULES shown in Algorithm 15 operates on
a queue Q that contains the nodes of τ that still have to be expanded. Intuitively, the labels of
the edges on the unique path from the root node to a node v ∈ V are the axioms that should be
excluded from the search for minimal modules. In each iteration a node v is extracted from Q and
the set Tex ⊆ T of exclusion axioms is computed by analysing the path from the root node to v.
The procedure SINGLE-MINIMAL-MODULE-BUBBLE is then used to find a minimal module M

of T \Tex w.r.t. Σ. Subsequently, the tree τ is extended by adding a child vα of v for every α ∈M

and the search for all minimal modules continues in the next iteration on the newly added nodes vα .
We now describe the ALL-MINIMAL-MODULES procedure in detail, together with the optimisa-

tions that we implemented. Some of the improvements to prune the search space have been proposed
in [38] already.

Given an E L H r-terminology T , a signature Σ, a bubble size n≥ 1, and a logical difference
core C ⊆ T of T w.r.t. Σ as input, in the lines 2 and 3 a syntactic ⊥⊤∗-locality module TΣ of T

w.r.t. Σ is extracted from T , the variable τ is initialised to represent a module search tree for T

having only one node ρ . Moreover, the variables M⊆ 2TΣ , containing the minimal modules that have
been computed so far, and W⊆ V , containing the already explored nodes of τ , are both initialised
with the empty set. The queue Q of nodes in τ that still have to be explored is also set to contain the
node ρ as its only element.

The algorithm then enters a while-loop in the lines 4 to 29 in which it remains as long as Q is
not empty. In each iteration the first element v is extracted from Q and v is added to W (lines 5 to 7).
Subsequently, the axioms labelling the edges of the path πv from ρ to v in τ are collected in the set
Tex (Line 8). The algorithm then checks whether πv is redundant, in which case the next iteration of
the while-loop starts.

The path πv is redundant iff there exists an already explored node w ∈W such that (a) the axioms
in Tex are exactly the axioms labelling the edges of the path πw from ρ to w in τ , or (b) w is a leaf node
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Algorithm 15: Computing All Minimal Modules w.r.t. a Signature

1 function ALL-MINIMAL-MODULES (T ,Σ,n,C)

2 TΣ := SYNTACTICLOCALITYMODULE(T ,Σ)
3 M := /0; τ := ({ρ}, /0, /0,ρ); Q := [ρ]; W := /0
4 while Q ̸= [] do
5 v := HEAD(Q)

6 Q := TAIL(Q)

7 W :=W∪{v}
8 Tex := LABELS(PATH(τ,ρ,v))
9 if IS-PATH-REDUNDANT(τ,ρ,Tex,W) then

10 continue
11 end
12 if cDiff(TΣ,TΣ \Tex) ̸= /0 then
13 continue
14 end
15 M := /0
16 if there exists M ′ ∈M such that Tex∩M ′ = /0 then
17 M := M ′

18 end
19 else
20 M := SINGLE-MINIMAL-MODULE-BUBBLE(TΣ \Tex,Σ,n,C )

21 if M = C then
22 return {C }
23 end
24 M :=M∪{M }
25 end
26 for every α ∈M \C do
27 vα := ADDCHILD(τ,v,α)

28 Q := vα :: Q
29 end
30 end
31 return M
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of τ and the edges of πw are only labelled with axioms from Tex. Condition (a) corresponds to early
path termination in [38, 20]: the existence of πw implies that all possible extensions of πv have already
been considered. Condition (b) implies that the axioms labelling the edges of πw lead to a logical
difference when removed from TΣ. Consequently, removing Tex from TΣ also induces a logical
difference by monotonicity of |=, implying that πv and all its extensions do not have to be explored.
Moreover, the current iteration can also be terminated immediately if cDiff(TΣ,TΣ\Tex) ̸= /0 (lines 12
to 14) as no subset of TΣ \Tex can be a module of TΣ (and therefore of T ) w.r.t. Σ.

Subsequently, in Line 15 the variable M that will hold a minimal module of TΣ \Tex is
initialised with /0. At this point we can check if a minimal module M ′ ∈ M has already been
computed for which Tex ∩M ′ = /0 (lines 16 and 17) holds, in which case we set M to M ′.
This optimisation step can also be found in [38, 20] and it allows us to avoid a costly call to
the SINGLE-MINIMAL-MODULE-BUBBLE procedure. Otherwise, in the lines 18 to 24 we have to
apply SINGLE-MINIMAL-MODULE-BUBBLE on TΣ \Tex to obtain a minimal module of TΣ \Tex

w.r.t. Σ. The algorithm then checks whether M is equal to C (lines 20 to 22), in which case the search
for additional modules can be aborted. If the logical difference core C is a minimal module itself,
we can infer that no other minimal module exists since C is a subset of all the minimal modules.
Otherwise, the module M is added to M in Line 23. Finally, in the lines 25 to 28 the tree τ is extended
by adding a child vα to v for every α ∈M \C , connected by an edge labelled with α . Note that it is
sufficient to take α ̸∈ C as a set M with C ̸⊆M cannot be a minimal module of T w.r.t. Σ. The
procedure finishes by returning the set M in Line 30.

Regarding correctness of Algorithm 15, we note that only minimal modules are added to M. For
completeness, one can show that the locality-based module TΣ of T w.r.t. Σ contains all the minimal
modules of T w.r.t. Σ. Moreover, it is easy to see that the proposed optimisations do not lead to a
minimal module not being computed. Overall, we obtain the following result.

Theorem 104 Let T be an E L H r-terminology and let Σ be a signature. Additionally, let n≥ 1,
and let C ⊆T be a logical difference core of T w.r.t. Σ.

Then the procedure ALL-MINIMAL-MODULES shown in Algorithm 15 and applied on T , Σ, n,
and C , exactly computes all the minimal modules of T for Σ.

Algorithm 15 terminates on any input as the paths in the module search tree τ for T that is
constructed during the execution represent all the permutations of the axioms in T that are relevant
for finding all minimal modules. It is easy to see that the procedure ALL-MINIMAL-MODULES runs
in exponential time in size of T (and polynomially in Σ, n, and C ) in the worst case.

The following proposition shows the situation that there exists only one minimal module, which
can be considered as an approximation of Algorithm 15.

Proposition 105 Let T be an E L H r-terminology and Σ a signature. Additionally, let C ⊆T be
a logical difference core of T w.r.t. Σ, M be the set of all minimal modules of T w.r.t. Σ and M ∈M.
It holds that C = M iff |M|= 1.
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4.3 Glass-Box Algorithm
An alternative to the black-box approach for computing minimal modules is to directly select the
relevant axioms from an ontology that preserve the desired entailments, which can be done by
combining subsumption justification of every concept and role name in signature. In this section, we
introduce a glass-box algorithm based on computing subsumption justifications that we introduce in
Chapter 3.

The following theorems show how to use subsumption justifications to compute all minimal
modules for E L H -terminology (Thorem 106) and E L H r-terminology (Theorem 107).

Theorem 106 Let T be an acyclic and normalised E L H -terminology, Σ be a signature and
A ∈ Σ∩NC. Additional, let J→T (A,Σ) be the set of all ⟨A,Σ⟩-subsumer justifications of T w.r.t. Σ.
Similarly, let J←T (A,Σ) be the set of all ⟨A,Σ⟩-subsumee justifications of T w.r.t. Σ and J←T (r,Σ) be
the set of all ⟨r,Σ⟩-role subsumption justifications of T w.r.t. Σ. Then the set of all minimal basic
E L H -modules of T w.r.t. Σ is

MT
Σ

:= Minimize⊆
( ⊗

r∈Σ∩NR

JT (r,Σ)⊗
⊗

A∈Σ∩NC

J→T (A,Σ)⊗
⊗

A∈Σ∩NC

J←T (A,Σ)
)
.

Theorem 106 can be proved by Theorem 24 and Proposition 57. The idea of the proof is that we
need one subsumption justification, for every potential difference witness (cf. Theorem 24), to be
contained in a minimal module in order to prevent the witness (cf. Proposition 57).

As the concept dom(r) and ran(r), r ∈ Σ can also be primitive witness on the left-hand side
for E L H r terminology, so compared with E L H terminology, additionally we need to combine
all ⟨ϕ ′,Σ⟩-subsumer justifications, ϕ ′ ∈ {dom(t), ran(t) | t ∈ NR ∩Σ} for computing all minimal
modules for E L H r-terminologies.

Theorem 107 Let T be an acyclic and normalised E L H r-terminology, Σ be a signature and
A ∈ Σ∩NC. Additional, let J→T (ϕ,Σ) be the set of all ⟨ϕ,Σ⟩-subsumer justifications of T w.r.t. Σ and
ϕ ∈ (Σ∩NC)∪Σdom∪Σran. Similarly, let J←T (A,Σ) be the set of all ⟨A,Σ⟩-subsumee justifications of
T w.r.t. Σ. where Σdom = {dom(t) | t ∈ NR∩Σ} and Σran = { ran(t) | t ∈ NR∩Σ}. Then the set of
all minimal basic E L H r-modules of T w.r.t. Σ is

MT
Σ

:= Minimize⊆
( ⊗

r∈Σ∩NR

JT (r,Σ)⊗
⊗

ϕ∈(Σ∩NC)∪Σdom∪Σran

J→T (ϕ,Σ)⊗
⊗

A∈Σ∩NC

J←T (A,Σ)
)
.

Similar to Theorem 106, Theorem 107 can be proved by Theorem 24 and Proposition 82.

4.4 Evaluation
To demonstrate the practical applicability of our approach, we have implemented Algorithms 14
and 15 in a Java prototype to compute one and all minimal basic E L H r-subsumption modules of
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biomedical ontologies: Snomed CT (version Jan 2016), an acyclic E L -terminology consisting of
317 891 axioms, and NCIt (version 18.04e), a cyclic E L H r-terminology containing 139 748 axioms.
The experiments have been carried out on machines equipped with an Intel Xeon Core 4 Duo CPU
running at 2.50GHz and with 64GiB of RAM.

Black-box Algorithm on E L - and E L H r-Terminology

Tables 4.1 and 4.2 show the results for computing one minimal basic E L H r-subsumption module
of Snomed CT and NCIt for 100 random signatures of different sizes. When the size of the signature
increases, it takes more time in general to compute one minimal module and the size of their
minimal module is also increasing. Moreover, in our experiments the median computation times were
decreasing with an increasing bubble size for signatures with 200 concept names.

Table 4.3 shows that there exist several minimal basic subsumption modules of Snomed CT for
the selected signatures (which contain concept names connected to at most 8 other axioms). Similarly,
Table 4.4 also shows that there also exist several minimal basic subsumption modules of NCIt for the
random signatures. In our experiments the number of minimal modules rose up to 32, and the size of
the minimal modules varied from one signature to another.

Although a precomputation of the maximal logical difference core has the potential of narrowing
down the search space, it requires extra computational effort, which can be potentially very time-
consuming. In order to check whether the use of the logical difference core can help to speed up the
process of searching for all minimal modules, we computed all the minimal modules of Snomed CT
and NCIt with and without precomputing the maximal logical difference core for the same signatures.
It turns out that in our experiments the precomputation of the maximal core was beneficial to the
overall performance: the overall computation process was sped up by more than three times for
Snomed CT.

Comparison between Black-box and Glass-box Approaches

In the following experiment, we compare our approaches for computing all minimal basic modules
using the glass-box approach and the black-box approach in terms of computation time, as depicted
in Figure 4.1. The x-axis is labelled with the sizes of the input ontologies. To obtain different sized
input ontologies, we used random signatures to extract their MEX-modules [27], yielding 328 sub-
ontologies of sizes ranging from 14 to 2271. Our method (red squares) was generally about 10 times
faster than the search-based approach (blue triangles) except for 11 small sized input ontologies. This
indicates that our approach is suitable for computing all minimal basic modules, especially for large
ontologies.
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Figure 4.1 Time comparison of computing minimal modules by glass-box approach and
black-box approach over different sized input ontologies

|Σ∩NC| 50
Bubble Size 10 25 50 100

Time (s) 67 / 523 / 200 / 87.2 68 / 483 / 197 / 82.5 70 / 505 / 202 / 85.3 71 / 507 / 204 / 86.4
Sizes 50 / 118 / 77 / 14.6 50 / 118 / 77 / 14.5 50 / 118 / 77 / 14.6 50 / 118 / 77 / 14.6
Size MEX-Mod 401 / 720 / 587 / 60.7
Size ⊥⊤∗-Mod 1075 / 2456 / 1803 / 300.2

|Σ∩NC| 75
Bubble Size 10 25 50 100

Time (s) 225 / 584 / 434 / 102.0 216 / 1359 / 531 / 209.8 226 / 575 / 447 / 101.0 231 / 586 / 450 / 101.8
Sizes 78 / 177 / 110 / 16.4 75 / 216 / 113 / 20.8 78 / 177 / 110 / 15.8 78 / 178 / 110 / 15.9
Size MEX-Mod 679 / 971 / 825 / 72.0
Size ⊥⊤∗-Mod 1939 / 3779 / 2641 / 373.2

Table 4.1 Computation of one minimal basic subsumption module of Snomed CT for 100
random signatures containing 50/75 concept names and all role names (minimal / maximal /

median / standard deviation)
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|Σ∩NC| 50
Bubble Size 10 25 50 100

Time (s) 13 / 319 / 53.5 / 93.1 13 / 318 / 55.0 / 96.5 14 / 328 / 54.5 / 101.0 13 / 325 / 64.0 / 97.29
Sizes 45 / 240 / 119.5 / 55.6 49 / 240 / 119.5 / 55.4 49 / 240 / 119.5 / 55.3 47 / 242 / 119.5 / 55.6
Size ⊥⊤∗-Mod 116 / 597 / 250.0 / 146.2

|Σ∩NC| 100
Bubble Size 10 25 50 100

Time (s) 81 / 513 / 230.0 / 133.8 92 / 555 / 238.0 / 145.2 82 / 530 / 245.0 / 141.3 94 / 526 / 242.0 / 143.5
Sizes 145 / 307 / 222.0 / 53.1 145 / 307 / 222.0 / 53.2 145 / 307 / 221.0 / 53.0 145 / 308 / 224.0 / 52.5
Size ⊥⊤∗-Mod 328 / 1284 / 590.0 / 241.4

Table 4.2 Computation of one minimal basic subsumption module of NCIt for 100 random
signatures containing 50/100 concept names and all role names (minimal / maximal / median

/ standard deviation)

Optimisation Core C = /0 Core C ̸= /0

Time (s) 5 / 709 / 24 / 238.7 2 / 118 / 7 / 36.0
Number of Modules 1 / 32 / 6 / 9.2
Size of Modules 81 / 265 / 126 / 46.5

Table 4.3 Computation of all minimal basic subsumption modules of Snomed CT for 20
selected signatures consisting of 30 concept names and all role names using a bubble size

of 50 (min / max / med / std dev)

Optimisation Core C = /0 Core C ̸= /0

Time (s) 1 / 454 / 44 / 142.5 1 / 173 / 24 / 54.8
Number of Modules 1 / 30 / 3.5 / 8.2
Size of Modules 8 / 73 / 52 / 10.4

Table 4.4 Computation of all minimal basic subsumption modules of NCIt for 20 random
signatures consisting of 30 concept names and all role names using a bubble size of 10 (min /

max / med / std dev)



Chapter 5

Extraction of Best Ontology Excerpts

Real-world ontologies are usually too large for users to comprehend. Therefore, in this section,
we introduce a new notion called best ontology excerpt, a size-restricted subset of the ontology.
We present an approach to computing best ontology excerpts by encoding the problem as a partial
maximum satisfiability problem (Max-SAT). Then we introduce a notion of weighted signature and
update our approach to computing best excerpts for weighted signature by encoding it as a weighted
partial Max-SAT problem. Finally, we evaluate our approach on large ontologies.

5.1 Ontology Excerpts
In this chapter, we are interested in gaining more control over the size of a module in order to be able
to reuse the knowledge contained in an ontology in a scenario where resources are restricted in terms
of cognitive ability in human users, and time and space available in technical systems.

We start with a definition of ontology excerpts.

Definition 108 (Ontology Excerpt) Let O be an ontology and let k > 0 be a natural number. A
k-excerpt of O is a subset E ⊆O consisting of at most k axioms, i.e. |E | ≤ k.

An ontology excerpt is a subset of the ontology of a certain size. However, we are interested in those
excerpts that preserve (as much as possible) the meaning of or the knowledge about the symbols in a
signature of interest. To quantify the meaning of an excerpt, we need some metric µ . We assume that
the lower the value of µ for an excerpt is, the more meaning is preserved by the excerpt. This is made
precise as follows.

Definition 109 (Incompleteness Measure) Let O be an ontology. An incompleteness measure µ

is a function that maps every triple (O,Σ,E ) consisting of an ontology O , a signature Σ, and an
excerpt E ⊆ O to a non-negative real number.

Given an incompleteness measure, we can define the best excerpt as follows.
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Definition 110 (Best k-Excerpt) Let O be an ontology, let Σ be a signature, and let k > 0 be a
natural number. Additionally, let µ be an incompleteness measure. A best k-excerpt of O w.r.t. Σ

under µ is a k-excerpt E of O such that

µ(O,Σ,E ) = min{µ(O,Σ,E ′) | E ′ is a k-excerpt of O }.

We first use as incompleteness measure µ the number cDiff(O,Σ,E ) of E L -concept inclusion
difference witnesses in Σ w.r.t. O and E , which is formally defined as cDiff(O,Σ,E ) = |WtnΣ(O,E )|.
An example of best excerpts under this incompleteness measure is illustrated below.

Example 111 (Ex. 25 contd.) Let O consist of the following four axioms:

α1 : A ⊑ B⊓∃r.X α2 : B ⊑ A
α3 : X ≡ A⊓B α4 : Y ≡ B⊓∃r.(X ⊓∃s.A)

For Σ = {A,B}, the values cDiff(O,Σ,E ) for all 2-excerpts E of O are given in the second row of the
table below.

{α1,α2} {α1,α3} {α1,α4} {α2,α3} {α2,α4} {α3,α4}

0 2 2 2 2 2

One can thus see that {α1,α2} is the best 2-excerpt of O w.r.t. Σ under cDiff.

The following example shows that best k-excerpt is not monotonic w.r.t. k, the size of an excerpt.

Example 112 Let O consist of the following four axioms:

α1 : A1 ⊑ A2 α2 : A2 ⊑ A3

α3 : A3 ⊑ B1⊓B2 α4 : X ≡ Y

For Σ = {A1,B1,B2,X ,Y}, the best 1-excerpt is {α4} and the best 3-excerpt is {α1,α2,α3}.

To preserve the largest possible amount of semantic information in a k-excerpt, it would be
preferable to extract k-excerpts that have the lowest cDiff-value among all the subsets of size k.
However, it is difficult in general to compute all such excerpts in an exhaustive way as all the

(|O|
k

)
subsets of size k would have to be enumerated. The following experiment and example show that we
need an alternative approach to computing best ontology excerpts instead of enumerating all possible
ontology excerpts.

We performed an experiment on the ontology MESH 1, for which we randomly extracted excerpts
and computed their cDiff-values w.r.t. a considered signature containing 5000 concept names and

1http://bioportal.bioontology.org/ontologies/MESH

http://bioportal.bioontology.org/ontologies/MESH
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Figure 5.1 Distribution of 93170 Random Excerpts over Respective cDiff-Values

no role names and the corresponding locality-based module contained 1610 axioms. To limit the
search space, we selected a subset of MESH containing 2491 axioms, from which we randomly
extracted 93170 many k-excerpts, for k = 100. Indeed, for an ontology of that size and a k-value
of 100, there exist around 6.2×10180 k-excerpts, which renders an exhaustive search through all the
excerpts impossible. The results that we obtained are summarized in Table 5.1. The total number of
possible k-excerpts is given in the first column, and the cDiff-values that we observed, except for the
value 1416, were regrouped into several intervals that are shown in the 6 right-most columns of the
table. The percentage of k-excerpts whose cDiff-values fell into the respective intervals is shown in
the second row of these columns. The results show that the performance of ontology excerpts varies a
lot. It is necessary to develop an algorithm to compute approximate or even best excerpts.

IR Excerpt
We introduced an approximate approach to compute excerpts, called IR excerpts [9], based on the
technique of Information Retrieval (IR).

In the field of IR, vector representations of documents and queries are a fundamental tool for
modelling problems, based on which different retrieval strategies can be applied. We first define the
vector representation for axioms and signatures.

In the remainder of this section, we assume that every ontology O is associated with a strict total
order ≺ on the elements of sig(O). Whenever we want to access the i-th signature element of O we
refer to the i-element w.r.t. the assumed order ≺, starting from the smallest element. For a signature
Σ⊆ sig(O) or axiom α ∈ O , we can define the signature vector of Σ and the axiom vector of α as
follows.

Definition 113 (Signature and Axiom Vector) For a signature Σ⊆ sig(O), the signature vector of
Σ, written

−→
Σ = [v1,v2, · · · ], is a vector of length |sig(O)| such that vi = 1 if the i-th element of sig(O)

appears in Σ, otherwise vi = 0. Similarly, for an axiom α ∈ O we define −→α =
−−−→
sig(α).
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Example 114 (Ex. 111 contd.) Let O be the ontology defined as in Example 25, and let Σ= {A,B,r}.
We assume the strict total order ≺ ⊆ sig(O)× sig(O) given by A ≺ B ≺ X ≺ Y ≺ r ≺ s. Then we
obtain the following signature vector for Σ and axiom vectors for each axiom of O:

−→
Σ = [1,1,0,0,1,0] −→α1 = [1,1,1,0,1,0] −→α2 = [1,1,0,0,0,0]

−→
α3 = [1,1,1,0,0,0] −→α4 = [1,1,1,1,1,1]

Then we can define the distance of an axiom and a set of signature by the distances measures
between the axiom and signature vectors. A first measure is the cosine value, resulting in the
COS-k-module.

Definition 115 (COS-distance between Axiom and Signature) Given an axiom α and a signature
set Σ, the COS-distance between α and Σ is defined as follows:

dcos(α,Σ) = cos(−→α ,
−→
Σ ) =

∑
n
i=1 xiyi√

∑
n
i=1 x2

i

√
∑

n
i=1 y2

i

,

where −→α = [x1,x2, ...,xn] and
−→
Σ = [y1,y2, ...,yn].

Example 116 (Ex. 114 contd.) Let O be the ontology defined as in Example 25, let ≺ be the total
order on sig(O) as defined in Example 114, and let Σ = {A,B,r}. Then we have that:

dcos(α1,Σ) = 3/(
√

4
√

3)≈ 0.8660 dcos(α2,Σ) = 2/(
√

2
√

3)≈ 0.8164
dcos(α3,Σ) = 2/(

√
3
√

3)≈ 0.6667 dcos(α4,Σ) = 3/(
√

6
√

3)≈ 0.707

Therefore, the ranking of the axioms will be α1 ▷ α2 ▷ α4 ▷ α3.

In general, IR-excerpts are computed mainly by the following three steps:

(i) represent each axiom and signature as a vector;

(ii) compute the cosine similarity (COS) value between each axiom vector and a signature vector;

(iii) rank all axioms according to its similarity value and the top-k ranked axioms are IR k-excerpts;

Obviously, the ranking based on vector similarity is stable so that IR-excerpts are monotonic with
respect to a given terminology and a signature.

Figure 5.1 shows the distribution of the gain value over the 93170 excerpts of the MESH-fragment,
i.e. each bar in the chart shows the number of excerpts that have the cDiff-value shown on the x-axis
that is associated with the bar (no excerpts having an cDiff-value of 1435 or 1445 were found). We
note that the excerpt extracted using the IR-technique had a Gain value (lowest cDiff-value of 1416)
that was higher than the values of all the random excerpts we extracted.

Judging from the experimental results that we obtained so far, one could draw the conclusion that
excerpts produced by the IR-technique appear to result in low cDiff-values in general. To test this
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Nr. of
Excerpts

cDiff-Value Intervals

[1419,1420] [1421,1425] [1426,1430] [1431,1435] [1436,1440] [1441,1448]

6.2×10180 2.14×10−5 0.16 3.45 19.26 56.03 21.10

Table 5.1 Percentage of k-Excerpts Falling into Various cDiff-Value Intervals

hypothesis, we conducted another experiment in which we limited the size of the ontology in such a
way that an exhaustive enumeration of all its excerpts is feasible.

We performed an exhaustive computation of all the k-excerpts, with 1≤ k ≤ 19, together with
the cDiff-values of a fragment O f of SNOMED CT that contains 19 axioms, using Σ = sig(O f ) as
signature. For every 1 ≤ k ≤ 19 we also computed the excerpts returned by the IR method for Σ.
The results that we obtained are shown in Table 5.2. The first column indicates the value of k and
the total number of possible k-excerpts is given in the second column. The 24 cDiff-values that we
observed were then regrouped into 8 intervals of three elements, and the percentage of k-excerpts
whose cDiff-value fell into the respective intervals is shown in the last 8 columns. The interval that
contained the cDiff-value for the excerpt computed by the IR-method is indicated using a background
coloured in gray. One can see that in none of the cases for k < 19, the k-excerpt obtained using the
IR-based technique had the lowest cDiff-value. In other words, the IR-based technique fails to extract
the best excerpt for k < 19.

The previous experiment has thus established that our hypothesis was wrong, i.e., the IR-based
technique cannot guarantee to find the best excerpts in every case. Moreover, we can derive an ever
stronger conclusion using the following example.

Example 117 Let O consist of the following three axioms:

α1 : A1 ⊑ B1⊓∃r.X , α2 : A3 ⊑ A2⊓B3, α3 : A2 ⊑ B2

Let Σ = sig(O). Then the cDiff-values for all 1- and 2-excerpts of O are respectively shown in the
left- and right-hand side of the table below.

{α1} {α2} {α3}

cDiff 4 5 6

{α1,α2} {α1,α3} {α2,α3}

3 4 2

The COS-distance between each of the three axioms αi and Σ is as follows (using an implicit
order on the signature elements): dcos(α1,Σ)≈ 0.707, dcos(α2,Σ)≈ 0.612, dcos(α3,Σ) = 0.5. Thus,
we obtain the following IR-ranking for the axioms: α1 ▷ α2 ▷ α3. Although the best 1-excerpt is
{α1}, the best 2-excerpt is given by {α2,α3} without having the highest ranked axiom α1.
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k
Nr. of

Excerpts
cDiff-Value Intervals

[0,2] [3,5] [6,8] [9,11] [12,14] [15,17] [18,20] [21,23]

1 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
2 171 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
3 969 0.00 0.00 0.00 0.00 0.00 0.00 0.10 99.90
4 3 876 0.00 0.00 0.00 0.00 0.00 0.00 0.52 99.48
5 11 628 0.00 0.00 0.00 0.00 0.00 0.02 1.52 98.46
6 27 132 0.00 0.00 0.00 0.00 0.00 0.10 3.46 96.44
7 50 388 0.00 0.00 0.00 0.00 0.03 0.34 6.67 92.97
8 75 582 0.00 0.00 0.00 0.00 0.10 0.87 11.45 87.58
9 92 378 0.00 0.00 0.00 0.00 0.31 1.94 17.89 79.87

10 92 378 0.00 0.00 0.00 0.00 0.78 3.96 25.58 69.68
11 75 582 0.00 0.00 0.00 0.00 1.78 7.63 33.31 57.28
12 50 388 0.00 0.00 0.00 0.05 3.83 13.79 38.80 43.52
13 27 132 0.00 0.00 0.00 0.35 8.10 22.56 39.18 29.81
14 11 628 0.00 0.00 0.01 1.94 16.10 31.49 32.68 17.78
15 3 876 0.00 0.00 0.70 7.22 27.73 34.73 20.92 8.69
16 969 0.00 0.00 4.75 19.09 37.36 26.73 8.98 3.10
17 171 0.00 2.34 18.71 34.50 31.58 10.53 1.75 0.58
18 19 0.00 36.84 31.58 26.32 5.26 0.00 0.00 0.00
19 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2 Percentage of k-Excerpts Falling into Various cDiff-Value Intervals

5.2 Encoding Approach of Computing Best Excerpt
In this section, we aim to find an exact algorithm to compute best excerpts. We achieve this based on
subsumption justifications introduced in Chapter 3 together with an encoding of the best k-excerpt
problem into a partial Max-SAT problem, with the aim of delegating the task of finding the best
excerpt to a Max-SAT solver. In that way we can leverage the decades of research efforts dedicated to
developing efficient SAT solvers for our problem setting. We continue with reviewing basic notions
relating to propositional logic and Max-SAT.

The objective of a partial Max-SAT problem is hence to find a propositional valuation that satisfies
all the hard clauses in H and that satisfies a maximal number of the soft clauses in S. Note that a
partial Max-SAT problem may nevertheless admit several solutions.

Note that our encoding requires that a cover of the ⟨A,Σ⟩-subsumption justifications has already
been computed for every concept name A ∈ Σ. Moreover, our partial Max-SAT encoding is language
agnostic, i.e., it works for any TBox as long as its subsumption justifications can be computed.
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As we are interested in finding a subset M ⊆T of a TBox T that fulfills certain properties, we
encode the presence of an axiom α ∈ T in M using a propositional variable pα . Intuitively, in a
solution v to our partial Max-SAT problem we will have that v(pα) = 1 if, and only if, the axiom α is
contained in the best k-excerpt.

First, we define the set ϒL
Σ

. Let L be the language that the terminology is formulated in and let Σ

be a signature. We set ϒL
Σ

to be the set WtnΣ(T1,T2), where T1 and T2 are L -terminologies. Then
it follows from the primitive witnesses theorems in [23] that

• ϒE L
Σ

= Σ∩NC,

• ϒE L H
Σ

= Σ,

• ϒE L H r

Σ
= Σ∪{dom(r), ran(r) | r ∈ Σ∩NR }.

For encoding the set of all ⟨σ ,Σ⟩-subsumption justifications Jσ (σ ∈ Σ), we next introduce an
encoding method for a sub-terminology.

Definition 118 (Encoding of Terminology Subsets) Let T be an L -terminology. For every axiom
α ∈T , let pα ∈Π be a fresh propositional variable.

For a subset M ⊆ T , we define the propositional formula FM that encodes M as FM :=∧
α∈M pα . Moreover, for a set M⊆ 2T , we define the propositional formula GM associated with M

as
GM :=

∨
M∈M

FM =
∨

M∈M
(
∧

α∈M
pα).

Example 119 Let T = {α1,α2,α3,α4,α5}, M = {α1,α2,α3}, and M= {{α2,α3},{α1,α4}}. Then
FM = pα1 ∧ pα2 ∧ pα3 and GM = (pα2 ∧ pα3)∨ (pα1 ∧ pα4).

Definition 120 (Encoding of the Best Excerpt Problem) For every σ ∈ ϒL
Σ

, let Jσ be the set of all
the ⟨σ ,Σ⟩-subsumption justifications of an L -terminology T , and let qσ be a fresh propositional
variable. The partial Max-SAT problem for finding best k-excerpts of T w.r.t. Σ, denoted with
Pk(T ,Σ), is defined as follows. We set Pk(T ,Σ) := (Hk(T ),Sk(T ,Σ)), where

Hk(T ) := Card(T ,k)∪
⋃

σ∈ϒL
Σ

Clauses(qσ ↔ GJσ
),

Sk(T ,Σ) := {qσ | σ ∈ ϒ
L
Σ },

and Card(T ,k) is the set of clauses specifying that at most k clauses from the set { pα | α ∈ T }
must be satisfied.

In the hard part of our partial Max-SAT problem, the clauses in Card(T ,k) specify that the
cardinality of the resulting excerpt E ⊆T must be equal to k. We do not fix a certain encoding that
should be used to obtain Card(T ,k), but we note that there exist several techniques that require a
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polynomial number of clauses in k and in the size of T (see e.g. [44]). Moreover, for every sigma
symbol σ ∈ ϒL

Σ
, the variable qσ is set to be equivalent to the formula GJ, i.e. qσ will be satisfied

in a valuation if and only if the resulting excerpt will have the property that the knowledge of σ

w.r.t. Σ in T is preserved. Note that σ ∈ ϒL
Σ

, which depends on the description language that T is
formulated on. Finally, the set Sk(T ,Σ) of soft clauses specifies that a maximal number of qσ must be
satisfied, enforcing that the resulting excerpt E will yield the smallest possible number of difference
witnesses (whilst obeying the constraint that |E | ≤ k).

Example 121 Let T consist of the following four axioms:

α1 := A⊑ X1⊓X2⊓Y α2 := X1 ⊑ B
α3 := X2 ⊑ B α4 := r ⊑ s

Let Σ = {A,B,Y,r,s} be a signature. Then, for σ ∈ ϒE L H
Σ

= Σ, we obtain the following ⟨σ ,Σ⟩-
subsumption justifications Jσ :

JA = {{α1,α2},{α1,α3}},

JB = {{α1,α2},{α1,α3}},

JY = {{α1}},

Jr = {{α4}},

Js = {{α4}}.

Each subsumption justification Jσ is encoded as a propositional logic formula Gσ as follows:

GA = ((p1∧ p2)∨ (p1∧ p3)),

GB = ((p1∧ p2)∨ (p1∧ p3)),

GY = p1,

Gr = p4,

Gs = p4.

By using SAT solver, we obtain the assignments of truth values for the propositional variables in
the tuple ⟨p1, p2, p3, p4⟩ (in this order) for different k value:

• when k=1: ⟨0,0,0,1⟩;

• when k=2: ⟨1,0,0,1⟩;

• when k=3: ⟨1,1,0,1⟩ and ⟨1,0,1,1⟩;



5.2 Encoding Approach of Computing Best Excerpt 85

• when k=4: ⟨1,1,1,1⟩.

Finally, we have that for Σ, the best 1-excerpt is {α4}, the best 2-excerpt is {α1,α4}, the best
3-excerpts are {α1,α2,α4} and {α1,α3,α4}, and the best 4-excerpt is T .

The encoding has the following properties.

Lemma 122 Let T be an L -terminology and Σ be a signature. Additionally, let 0≤ k ≤ |T | and
let v be a valuation that satisfies Hk(T ).

Then it holds that for E := {α ∈T | v(pα) = 1}, the following statement holds:

cDiffΣ(T ,E ) = {σ ∈ ϒ
L
Σ | v(qσ ) = 0}.

Proof It is not difficult to get the conclusions that the following statements are equivalent:

1. σ ∈ cDiffΣ(T ,E ).

2. For every J ∈ Jσ ,J ̸∈ E .

3. For each J , there exists an axiom α ∈T ∩J such that v(α) = 0. i.e., v(
∧

α∈J pα) = 0.

4. v(GJσ
) = v(

∨
J∈JA

(
∧

α∈J pα)) = 0.

5. v(qσ ) = 0.

6. σ ∈ {σ ∈ ϒL
Σ
| v(qσ ) = 0}.

The equivalence between the statements 4 and 5 is based on the fact that Clauses(qσ ↔ GJσ
) is in the

hard part of the encoding.
□

Lemma 123 Let T be an L -terminology and let Σ be a signature. Additionally, let 0 ≤ k ≤ |T |
and let E ⊆T with |E |= k. Then there exists a valuation v such that E = {α ∈T | v(pα) = 1}, v
satisfies Hk(T ) and ϒL

Σ
\cDiffΣ(T ,E ) = {σ ∈ ϒL

Σ
| v(qσ ) = 1}.

Proof Let v be a valuation defined by setting: first, for every α ∈ T , let v(pα) = 1 iff α ∈ E .
Additionally, for every σ ∈ ϒL

Σ
we set v(qσ ) = 1 iff v(GJσ

) = 1. Finally, We assume that v is
extended to the additional variables in Card(T ,k) and

⋃
σ∈ϒL

Σ

Clauses(qσ ↔GJσ
) such that v satisfies

Card(T ,k) and
⋃

σ∈ϒL
Σ

Clauses(qσ ↔ GJσ
). Note that such an extension is possible as exactly k

variables from { pα | α ∈T } are initially set to 1.
Now it follows from Lemma 122 that ϒL

Σ
\cDiffΣ(T ,E ) = {σ ∈ ϒL

Σ
| v(qσ ) = 1}. □

We can now show the correctness of our encoding, i.e. a best k-excerpt can be obtained from a
solution to the partial Max-SAT problem Pk(T ,Σ).

Theorem 124 (Correctness & Completeness) Let T be an L -terminology, let Σ be a signature,
and let 0≤ k ≤ |T |. It holds that E ⊆T is a best k-excerpt of T w.r.t. Σ iff there exists a solution v
of the partial Max-SAT problem Pk(T ,Σ) such that E = {α ∈T | v(pα) = 1}.
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Proof First we prove the correctness.
Let M := {α ∈ T | v(pα) = 1}. We have to show that there does not exist a set E ⊆ T with

|E | ≤ k and |cDiffΣ(T ,E )| < |cDiffΣ(T ,M )|. We now assume towards a contradiction that there
exists a set E ⊆T with |E | ≤ k and |cDiffΣ(T ,E )|< |cDiffΣ(T ,M )|.

Note that v(qσ ) = 1 implies σ ̸∈ cDiffΣ(T ,M ) for every σ ∈ ϒL
Σ

.
Then by Lemma 123 there exists a valuation v′ such that E = {α ∈T | v′(pα) = 1}, v′ satisfies

Hk(T ) and ϒL
Σ
\cDiff(T ,E ) = {A ∈ Σ∩NC | v′(qA) = 1}.

From |cDiffΣ(T ,E )|< |cDiffΣ(T ,M )|, we can infer that

|ϒL
Σ |− |cDiffΣ(T ,M )|< |ϒL

Σ |− |cDiffΣ(T ,E )|.

Hence, by Lemma 122 we have

|{σ ∈ ϒ
L
Σ | v(qσ ) = 1}|< |{σ ∈ ϒ

L
Σ | v′(qσ ) = 1}|,

which contradicts v being a solution of the partial Max-Sat problem Pk(T ,Σ) (Item (ii) of Defini-
tion 49).

Then we prove the completeness. Lemma 123 shows that there exists a valuation v such that
E = {α ∈T | v(pα) = 1}, v satisfies Hk(T ) and ϒL

Σ
\cDiffΣ(T ,E ) = {σ ∈ ϒL

Σ
| v(qσ ) = 1}.

We assume towards a contradiction that there exists a valuation v′ that satisfies Hk(T ) and

|{A ∈ ϒ
L
Σ | v(qA) = 1}|< |{A ∈ ϒ

L
Σ | v′(qA) = 1}|.

Let E ′ := {α ∈T | v′(pα) = 1}. Hence, by Lemma 122 it holds that

|ϒL
Σ |− |cDiffΣ(T ,E )|< |ϒL

Σ |− |cDiffΣ(T ,E ′)|.

Finally, it would hold that |cDiffΣ(T ,E ′)|< |cDiffΣ(T ,E )|, contradicting the fact that E is a best
k-excerpt of T w.r.t. Σ (Definition 110). □

Algorithm 16 shows how best excerpts are computed by using partial Max-SAT encoding. In
Line 9, the algorithm iterates over every σ ∈ ϒL

Σ
and the set of all subsumption justifications Jσ

are computed. The formula GJσ
is computed next and stored in a set S. After the iteration over all

element σ in ϒL
Σ

is complete, the partial Max-SAT problem Pk(T ,Σ) is constructed with the help
of the formulas GJσ

that are stored in S. Subsequently, a solution v of Pk(T ,Σ) is computed using a
partial Max-SAT solver and the best k-excerpt is returned by analysing which variables pα have been
set to 1 in the valuation v.
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Algorithm 16: Computing Best k-Excerpts for an L -terminology

1 function ComputeBestExcerpt(T ,Σ,k)
2 if k = 0 then
3 return /0
4 end
5 if k = |T | then
6 return T

7 end
8 S := /0
9 for every σ ∈ ϒL

Σ
do

10 Compute ⟨σ ,Σ⟩-subsumption justifications of T : Jσ

11 Transfer Jσ to its propositional formula GJσ

12 S := S∪{GJσ
}

13 end
14 Compute Pk(T ,Σ) using S
15 Find the set of solutions V of Pk(T ,Σ) using partial Max-SAT solver
16 return {{α ∈T | v(pα) = 1,v ∈V }}

As Proposition 92 shows, the computation of all subsumption justifications runs in EXPTIME
in the size of T . Note that the cardinality encoding Card(T ,k) can be kept in linear size of T

and k [44]. However, the second part of the hard clauses Clauses(qσ ↔ GJσ
) can be exponential

due to the fact that the number of subsumption justifications of each σ is exponential in the worst
case. Therefore, we can construct a non-deterministic algorithm to solve the encoding problem in
EXPTIME, that is, solving the encoding problem is in NEXPTIME. Together with the EXPTIME-
upper bound for pre-computing all subsumption justifications, the whole problem of computing best
excerpts is NEXPTIME. We arrive at the following conclusion.

Proposition 125 Let T be an L -terminology, let Σ be a signature, and let 0 ≤ k ≤ |T |. Then
checking whether a subset E ⊆T is a best k-excerpt of T w.r.t. Σ is in NEXPTIME.

5.3 Computing Best Excerpt for Weighted Signatures
Best k-excerpts provide users with a way to extract the most relevant axioms from a big ontology with
respect to a given signature. However, in certain cases, concepts or roles in the signature can have
different importance. How to reflect such importance differences among signature elements, in this
section, we extend the best excerpt notion to the case of weighted signatures. For this, we propose
a new incompleteness measure considering a weighted signature and study the corresponding best
k-excerpts.

First, we introduce the definition of weighted signature.
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Definition 126 (Weighted Signature) A weight function is a function w : NC∪NR→ R∪{∞} map-
ping a symbol σ ∈ NC∪NR to a value w(σ) ∈ R or to w(σ) = ∞. Given a signature Σ and a weight
function w, a weighted signature Σw is the set Σw = {(σ ,w(σ)) | σ ∈ Σ}.

A signature Σ is weighted uniformly under a weight function w if, and only if, w assigns the
same value to every symbol in Σ, i.e. w(σ1) = w(σ2) for every σ1,σ2 ∈ Σ. For a weight function w
whose range equals {1.0} (i.e., w maps every symbol to 1.0), we also write Σ◦ instead of Σw. For
instance, Σw = {(A,2.0),(B,0.9),(r,1.3)} is the weighted signature for the signature Σ = {A,B,r}
and a weight function w satisfying w(A) = 2.0, w(B) = 0.9 and w(r) = 1.3. On the other hand,
a weight function w′ satisfying w′(A) = w′(B) = w′(r) = 1.4 weighs the symbols in Σ uniformly
resulting in Σw′ = {(A,1.4),(B,1.4),(r,1.4)}, whereas Σ◦ = {(A,1.0),(B,1.0),(r,1.0)}.

For best k-excerpts under a weighted signature Σw, we use, as an incompleteness measure µ
Σw
T

for Σw and T , the sum of the weights of the E L -concept inclusion difference witnesses and role
inclusion difference witnesses in Σ w.r.t. T and E , formally:

µ
Σw
T (E ) = ∑

σ∈WtnΣ(T ,E )

w(σ).

For computing the best k-excerpts for a weighted signature, similar to the case of Σ◦ (equivalent
to unweighted case), we present an encoding approach, but to a weighted partial Max-SAT problem,
with the aim of delegating the task of finding the best excerpt to a Max-SAT solver.

Definition 127 (Encoding of the Best Excerpt Problem for Weighted Signature) Let T be an L -
terminology, let Σw be a weighted signature, and let 0≤ k ≤ |T |. Additionally, for every σ ∈ ϒL

Σw
,

let Jσ be the set of the ⟨σ ,Σw⟩-subsumption justifications of T , and let qσ be a fresh propositional
variable.

The weighted partial Max-SAT problem for finding best k-excerpts of T w.r.t. Σw, denoted with
Pk(T ,Σw), is defined as follows.

We set Pk(T ,Σw) := (Hk(T ),Sk(T ,Σw)), where

Hk(T ) := Card(T ,k)∪
⋃

σ∈ϒL
Σw

Clauses(qσ ↔ GJA),

Sk(T ,Σw) := {(qσ ,w(σ)) | σ ∈ ϒ
L
Σw
},

and Card(T ,k) is a set of clauses specifying that at most k clauses from the set { pα | α ∈T } must
be satisfied.

In the hard part of our weighted partial Max-SAT problem, the clauses are the same as the
unweighted case given in Definition 120.

In the soft part of the problem, the set Sk(T ,Σw) specifies that the sum of the weights of the
concept names in the signature must be maximal by a solution of the problem, enforcing that the
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resulting excerpt E will yield the smallest possible sum of weights of difference witnesses (whilst
obeying the constraint that |E | ≤ k).

We can now show the correctness of our encoding, i.e. a best k-excerpt for a weighted signature
can be exactly obtained from any solution to the weighted partial Max-SAT problem Pk(T ,Σw).

Theorem 128 (Correctness & Completeness) Let T be an L -terminology, and let Σw be a weighted
signature. Then: v is a solution of the weighted partial Max-SAT problem Pk(T ,Σw) iff {α ∈ T |
v(pα) = 1} is a best k-excerpt of T w.r.t. Σw.

The proof of Theorem 128 is similar to Theorem 124.
Our algorithm for finding a best k-excerpt given a TBox T and a weighted signature Σw (and

k with 0≤ k ≤ |T |) as input is shown in Algorithm 17. First, the algorithm checks whether k = 0
or k = |T |, in which case the empty set or T itself is the best k-excerpt, respectively. Otherwise,
the algorithm continues by computing subsumption justifications for each concept name or role
name σ in Σw and then transfers them to propositional formula GJσ

. After the iteration over all the
concept names and role names σ in Σw is complete, the weighted partial Max-SAT problem Pk(T ,Σw)

is constructed with the help of the formulas GJσ
that are stored in S. Subsequently, a solution v

of Pk(T ,Σw) is computed using a weighted partial Max-SAT solver and the best k-excerpt is returned
by analyzing which variables pα have been set to 1 in the valuation v.

Similar to Proposition 125, we have the same complexity for computing best excerpts regarding a
weighted signature, as stated below.

Proposition 129 Let T be an L -terminology, let Σw be a weighted signature, and let 0≤ k ≤ |T |.
Then checking whether a subset E ⊆T is a best k-excerpt of T w.r.t. Σw is in NEXPTIME.

Algorithm 17: Computing Best k-Excerpts of T for Weighted Signature Σ

1 function ComputeBestExcerpt(T ,Σw,k)
2 if k = 0 then
3 return /0
4 end
5 if k = |T | then
6 return T

7 end
8 S := /0
9 for every σ ∈ ϒL

Σw
do

10 Compute ⟨σ ,Σw⟩-subsumption justifications of T : JT (σ ,Σw)

11 Transfer JT (σ ,Σw) to its propositional formula GJσ

12 S := S∪{GJσ
}

13 end
14 Compute Pk(T ,Σw) using S
15 Find the set of solutions V of Pk(T ,Σw) using weighted partial Max-SAT solver
16 return {{α ∈T | v(pα) = 1,v ∈V }}
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Example 130 Let T consist of the following five axioms:

α1 := A⊑ X1⊓X2⊓X3⊓X4 α2 := X1 ⊑ B1

α3 := X2 ⊑ B1 α4 := X3 ⊑ B2

α5 := X4 ⊑ B2

Let Σ = {A,B1,B2} be a signature. Then, for σ ∈ Σ, we obtain the following ⟨σ ,Σ⟩-subsumption
justifications Jσ :

JA = {{α1,α2},{α1,α3},{α1,α4}, {α1,α5}},

JB1 = {{α1,α2},{α1,α3}}, and

JB2 = {{α1,α4},{α1,α5}}.

Each subsumption justification Jσ is encoded as a propositional logic formula Gσ as follows:

GA = ((p1∧ p2)∨ (p1∧ p3)∨ (p1∧ p4)∨ (p1∧ p5)),

GB1 = ((p1∧ p2)∨ (p1∧ p3)), and

GB2 = ((p1∧ p4)∨ (p1∧ p5)).

Now let w1,w2,w3 be weight functions such that

w1(A) = w1(B1) = w1(B2) = 1.0,

w2(A) = w2(B1) = 1.0 and w2(B2) = 2.0, and

w3(A) = w3(B2) = 1.0, w3(B1) = 2.0.

Feeding the resulting weighted signatures Σw1 , Σw2 and Σw3 together with k = 2 to a SAT solver yields
the following solutions. For Σw1 , we obtain four assignments of truth values for the propositional
variables in the tuple ⟨p1, p2, p3, p4, p5⟩ (in this order): ⟨1,1,0,0,0⟩, ⟨1,0,1,0,0⟩, ⟨1,0,0,1,0⟩ and
⟨1,0,0,0,1⟩. Then we decode the assignments to sets of axioms. We obtain the following best
2-excerpts for Σw1: {α1,α2}, {α1,α3}, {α1,α4} and {α1,α5}.

In the case of Σw2 , however, the solutions returned by the SAT-solver are the assignments
⟨1,0,0,1,0⟩ and ⟨1,0,0,0,1⟩. Consequently, the best 2-excerpts for Σw2 are {α1,α4} and {α1,α5}.

Finally, for Σw3 , the SAT-solver yields ⟨1,1,0,0,0⟩ and ⟨1,0,0,1,0⟩ resulting in {α1,α2} and
{α1,α4} as the best 2-excerpts for Σw3 .

Example 130 shows that, different weights of Σ-symbols can influent the final results of best
excerpts. By giving higher weights on preferring Σ-concept names (like Σw2 or Σw3), users can reduce
the number of best k-excerpts. However, in some extreme cases, as shown in the following example
where a signature has a much higher weight than the others, the best excerpts for the weighted
signature can be totally irrelevant to those w.r.t. Σ◦.
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Example 131 Let T consist of the following five axioms:

α1 := α1 := A1 ⊑ X α2 := X ⊑ Y
α3 := Y ⊑ Z α4 := A2 ⊑ B1

α5 := A3 ⊑ B2

Let Σ = {A1,A2,A3,B1,B2,Y,Z} be a signature. Now let w1,w2 be weight functions such that
w1(A1)=w1(A2)=w1(A3)=w1(B1)=w1(B2)=w1(Y )=w1(Z)= 1.0 (i.e., Σw1 is Σ◦) and w2(A1)=

w2(A2) = w2(A3) = w2(Y ) = 1.0 and w2(Z) = 9.0. We obtain that the best 3-excerpt EΣ◦ for Σ◦ is
{α4,α5}. We have that the best 3-excerpt EΣ◦ for Σw1 only contains two axioms α4 and α5, as for any
best 3-excerpt E ′, µΣ◦

T (E ′) = µΣ◦
T ({α4,α5}). The best 3-excerpt EΣw2

for Σw2 is {α1,α2}. However,
|WtnΣ◦(T ,EΣ◦) |=| {A1,Y,Z} |= 3 and |WtnΣw2

(T ,EΣw2
) |=| {A2,A3,B1,B2} |= 4.

In Example 131 the value of w2(Z) is significantly greater than the value of w2 for the other
concept names in the signature. Therefore, EΣ◦ is not the same as EΣw2

. In such situations, where the
weight of a signature symbol is much larger than for the other symbols, the number of difference
witnesses has diminishing impact. We aim to remedy the situation in the following proposition, i.e.,
Proposition 132, by increasing the impact of the number of difference witnesses. This is achieved by
ensuring that the weight of any Σ-symbol is smaller than the sum of any other two Σ-symbols.

Proposition 132 Let T be an L -terminology, Σw be a weighted signature and let Σ◦ be a uniform
signature under the weight function w. Then the following statements hold:

(i) If 1≤ w(σ)⪇ 1+ 1
|ϒL

Σw |
for every σ ∈ ϒL

Σw
, then every best k-excerpt of T w.r.t. Σw will be a

best k-excerpt of T w.r.t. Σ◦, but not vice versa.

(ii) If ∑σi∈Σ1 wσi > ∑σ j∈Σ2 wσ j for any Σ1,Σ2 ∈ 2ϒL
Σw and | Σ1 |>| Σ2 |, then every best k-excerpt of

T w.r.t. Σw is a best k-excerpt of T w.r.t. Σ◦.

5.4 Ranking Axioms in Best Excerpts
Real-world ontologies are usually too large for human user to browse and comprehend. Best excerpts
can help human users to better understand ontologies in order to, say, choose between different
ontologies. Ontology excerpts usually consist of more than one axiom. In order to present ontology
excerpts in a way that is more friendly to human users, in this section, we present an approach to
ranking axioms in excerpts according to a weighted signature.

To obtain an axiom ranking, we first define a notion for weighing axioms.

Definition 133 (Weighted Axiom) An axiom weight function φ is a function φ : T → R+ mapping
an axiom α ∈T to a value φ(α) ∈ R+.
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Next we introduce our definition for an axiom ranking. The idea is that an axiom with a larger
weight should be ranked at a higher position in the ranking order.

Definition 134 (Axiom Ranking) Let T be an L -terminology, φ an axiom weight function and
α,β ∈T be two axioms. We say that α is preferred over β , denoted as α ⪰ β , iff φ(α)≥ φ(β ).

Now we present an axiom weight function. Intuitively, an axiom that appears in subsumption
justifications of several Σ-symbols with higher weights should receive a higher weight.

Definition 135 Let T be a terminology, Σw be a signature with a weight function w. Additionally, let
Jσ be the set of the ⟨σ ,Σw⟩-subsumption justifications of T and Jσ =

⋃
J∈Jσ

J . The axiom weight
function φ(·) induced by w is defined as following:

φΣw(α) = ∑
{σ ∈Σw∩sig(α) | α∈Jσ}

w(σ).

We denote with ⪰Σw the axiom ranking induced by φΣw .

Example 136 (Ex. 130 contd.) Note that α1 (resp. α2,α3,α4,α5) is contained in at least one of
the subsumption justifications of Σ-symbols {A,B1,B2} (resp. {A,B1}, {A,B1}, {A,B2}, {A,B2}).
For w3, as α1 ∈ JA,JB1 and JB2 , so φ(α1) = w(A)+w(B1)+w(B2) = 4.0. Similarly, we have that
φ(α2) = φ(α3) = w(A)+w(B1) = 2.0, and φ(α4) = φ(α5) = w(A)+w(B2) = 3.0. Hence, the 2-best
excerpts w.r.t. w3 are {α1,α2} and {α1,α4}, we can order the axioms by α1 ⪰Σw α2 and α1 ⪰Σw α4.

It can readily be seen that the axiom ranking function φ(·) in Definition 135 gives a total ordering
over the axioms in T w.r.t. to a given weighted signature Σw. Note that the axiom weight function only
depends on the terminology and weighted signature. For a terminology and a weighted signature, the
relative order of two axioms is always the same as long as both axioms are contained in the excerpts,
which is easy to see by Definition 135. That is, ⪰ is a stable ordering of the axioms given a weighted
signature. However, note that the axioms in best k-excerpts are not monotonic (cf. Example 112).

5.5 Evaluation
We have implemented our algorithms for computing best excerpts in Java. We used the prominent
medical ontologies Snomed CT (version Jan 2016) consisting of 317891 axioms, and the NCI
Thesaurus (NCI, version 16.03d) containing 165 341 axioms.

Computation Time of Partial Max-SAT Encoding

The first experiment is to test the efficiency of our encoding method. Table 5.3 shows the time needed
to compute best excerpts of NCI and Snomed CT for randomly generated signatures of different
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Snomed CT NCI
Time (s) Minimal Maximal Median STDEV Minimal Maximal Median STDEV

MaxSat 0.01 1.27 0.15 0.35 0.01 0.16 0.01 0.02

Table 5.3 Times for computing best excerpts encoding the input for and running SAT4J
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Figure 5.2 Comparison of the size of best excerpts preserving one or two concept names
with the size of ⊥⊤∗-local modules for 2500 signatures

sizes (10/30/50 concept names and 10/30/50 roles names). In total over 3000 signatures have been
considered. After precomputing the subsumption justifications for every concept name in every
signature, the time was measured as that needed to prepare the input and run the partial Max-SAT
solver to compute best k-excerpts for every size k. The minimal, maximal, median, and standard
deviation of the execution times show that computing best excerpts of any size using Max-SAT is
very efficient given that the subsumption justifications have been computed.

Performance of Best Excerpts

In the second experiment, we compare the size of locality based modules with the number of axioms in
best excerpts needed to preserve a certain amount of knowledge. We denote with #(PreservedΣ(best)=
n), for n ∈ {1,2}, the minimal number of axioms needed by a best excerpt to preserve the knowledge
of n concept names w.r.t. the signature Σ (i.e., the number k of axioms of a best excerpt E of T

such that n = |Σ∩NC \ cWtnΣ(T ,E )|). Instead of using random signatures, however, we consider a
scenario where a user searches for sub-ontologies of Snomed CT related to a particular concept name.
We computed 2500 different signatures each consisting of a concept name related to diseases, the
TOP-concept (called ‘SNOMED CT Concept’) and all role names of Snomed CT. All weights of
Σ-symbols are equal in this experiment.
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In Figure 5.2, the 2500 signatures are presented along the x-axis in ascending order w.r.t. the
size of their respective ⊥⊤∗-local modules (black line). The y-axis represents the number of axioms
in the module and excerpts for a signature. The red (resp. green) line presents the sizes of best
excerpts that preserve the knowledge for one (resp. two) concept name(s), i.e., #PreservedΣ(best) = 1
(resp. #PreservedΣ(best) = 2). Best excerpts provide a conciser way for zooming in on an ontology,
in particular, when sacrificing completeness is acceptable. For this experiment, after computing
the subsumption justifications of all concept names in a signature, it only took 0.15s on average to
compute the best excerpts.

Performance Comparison between Best Excerpts and IR Excerpts

In the third experiment, we compare the performance of best excerpts with IR excerpts [9] using the
same set of signatures as in Fig. 5.2.

Time (s)
#Axioms in excerpts

#PreservedΣ=1 #PreservedΣ=2
Best excerpts 94.20 5.90 28.34
IR excerpts 0.01 68.83 112.83

Table 5.4 Performance comparison of best and IR excerpts

Table 5.4 shows the average values of time and minimal size of best excerpts and IR excerpts when
#PreservedΣ is 1 and 2, respectively. Note that the computation time of best excerpts in Table 5.4
includes the computation time of subsumption justifications. Table 5.3 already shows that our
encoding method is very efficient. Most of the computation time of best excerpts is used to compute
subsumption justifications. We observed that it took only 0.01s to compute IR excerpts, which is
much faster than computing best excerpts. However, for preserving the knowledge completeness
#PreservedΣ =1 or 2, the average minimal size of best excerpt is much less than IR excerpts. In other
words, best excerpt is more succinct compared with IR excerpt w.r.t. the knowledge in signature.



Chapter 6

Extraction of Ontology Projection
Module

Ontology comparison helps understanding the overlap and differences among ontologies, which is
often desired while a user manipulates multiple knowledge sources. To understand the relations
among these ontologies, in this chapter, we propose a novel notion called projection module that
entails all queries that follow from a reference ontology. The aim is to study the techniques to extract
projection modules which allow us to compare the reasoning capacities of different ontologies.

We develop a unified algorithm for computing minimal projection modules of acyclic E L H r-
terminologies for subsumption, instance and conjunctive queries. The algorithms are based on
simulation notions developed for detecting logical differences between E L H r-terminologies. More-
over, we prove that the relevant theoretic results are correct. Finally, we do some experimental
evaluations to show that there exist projection modules between large biomedical ontologies, which
shows the overlap and differences existing among different real-world ontologies.

6.1 Projection Modules
A projection module of an ontology gives a way to explain how the knowledge that is encoded
in a reference ontology is implemented in the target ontology. We are interested in computing all
projection modules, since it provides a complete list of all implementations of an ontology regarding
a reference, each of which may be necessary to be checked. To enable a manual validation by domain
experts, we need to present only necessary information, so we focus on computing minimal projection
modules.

A terminology T1 together with a signature Σ and a query language Q determine a set Φ of
queries from Q formulated using only symbols from Σ that follow from T1. A projection module of
another terminology T2 is a subset of T2 that entails the queries in Φ. For convenience, we bundle
the parameters together in a tuple ρ = ⟨T1,Σ,T2⟩, which we call a projection setting.
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Definition 137 (Projection Module) Let T1,T2 be two E L H r-terminologies and Σ a signature.
Additionally, let ρ = ⟨T1,Σ,T2⟩ be a projection setting, and A be a Σ-ABox. A subset M ⊆ T2

is a subsumption (resp. instance, conjunctive query) projection module under projection setting ρ ,
denoted as M c

ρ (resp. M i
ρ , M q

ρ ) if:

• M c
ρ : for each E L H r

Σ-inclusion α , T1 |= α implies M |= α;

• M i
ρ : for each Σ-instance assertion λ , (T1,A ) |= λ implies (M ,A ) |= λ ;

• M q
ρ : for each q(⃗a), (T1,A ) |= q(⃗a) implies (M ,A ) |= q(⃗a), where a⃗ is a tuple of individual

names in A and q(⃗a) is a Σ-conjunctive query.

A minimal subsumption (resp. instance, query) projection module is a projection module M c
ρ (resp.

M i
ρ ,M

q
ρ ) minimal w.r.t. ⊊.

Projection module is a notion more fine-grained than logical difference in the sense that when an
ontology T1 has no logical difference with the other T2, we can further extract sub-ontologies of T1

that contain the knowledge in the reference ontology T2.

Example 138 Let T1 = {A1 ⊑ A2,A2 ⊑ A3}, T2 = {A1 ⊑ A3⊓B1,B1 ⊑ ∃r.A3}, and Σ = {A1,A3,r}.
Additionally, let ρ = ⟨T1,Σ,T2⟩. We have that cDiffΣ(T1,T2) = /0. However, M c

ρ = {A1 ⊑ A3⊓B1},
So we have that M c

ρ ⊊ T2, which means that a strict sub-ontology of T2 is sufficient to capture all
concept subsumption information of T1 about Σ. Moreover, T2 also entails a consequence A1 ⊑ ∃r.A3,
which is not the case for T1.

The following example shows that the three notions of projection modules based on different
query languages are distinct.

Example 139 Let Σ = {X ,Y,Z,B,r,s} and T = {X ⊑ Y,Y ⊑ ∃t.Z, ran(r) ⊑ A1, ran(s) ⊑ A2,B ≡
A1⊓A2}. Additionally, let ρ = ⟨T ,Σ,T ⟩. We have that M c

ρ = {X ⊑ Y}, M i
ρ = M c

ρ ∪{ran(r) ⊑
A1, ran(s)⊑ A2,B≡ A1⊓A2} and M q

ρ = T .

Note that there might exist several, even exponentially many, subsumption projection modules
given a reference ontology, an implement ontology, and a signature.

Example 140 Let T1 = {X ⊑ Z} and T2 = {X ⊑ Y1 ⊓Y2,Y1 ⊑ Z,Y2 ⊑ Z} and Σ = {X ,Z}. Addi-
tionally, let ρ = ⟨T1,Σ,T2⟩. We have that both {X ⊑ Y1⊓Y2,Y1 ⊑ Z} and {X ⊑ Y1⊓Y2,Y2 ⊑ Z} are
subsumption projection modules under ρ = ⟨T1,Σ,T2⟩.

Definition 141 (Q-Projection Simulation) Let T1,T2 be two E L H r-terminologies and Σ be a
signature. Additionally, let Q ∈ {c, i,q}. We say that T1 is Q-projection simulated by T2 under the
setting ρ = ⟨T1,Σ,T2⟩ (written T1⇝

Q
Σ

T2) iff there exists a Q-projection module M Q
ρ ⊆T2 under ρ .
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Example 142 Let T1 = {X ⊑ Z} and T2 = {X ⊑ Y,Y ⊑ Z} and Σ = {X ,Z}. Additionally, let
ρ = ⟨T1,Σ,T2⟩. We have that M Q

ρ = T2 for Q ∈ {c, i,q}. So T1⇝
Q
Σ

T2.

The Q-projection relation satisfies the monotonicity properties as described below:

Proposition 143 Let T1, T2, T3 be E L H r-terminologies, Σ be a signature and Q ∈ {c, i,q}. If
T2 ⊆T3 and T1⇝

Q
Σ

T2, then T1⇝
Q
Σ

T3.

This proposition shows that if we extend the ontology from T2 to T3, the larger ontology T3 will
Q-projection simulate all the ontologies that T2 Q-projection simulates.

Proposition 144 Let T1, T2, T3 be E L H r-terminologies, Σ be a signature and Q ∈ {c, i,q}. If
T1 ⊆T2 and T2⇝

Q
Σ

T3 then T1⇝
Q
Σ

T3.

By this proposition, if an ontologyT3 Q-projection simulates T1, then T3 also Q-projection simulates
all sub-ontologies of T1.

Now we consider projection modules under a special setting of the form ρ⟲ = ⟨T ,Σ,T ⟩, that is,
the reference ontology is also the implementing ontology (Example 139). A projection module under
ρ⟲ is also called an automorphic projection module.

Proposition 145 Let T be an E L H r-terminology, Σ a signature and ρ⟲ = ⟨T ,Σ,T ⟩. Addi-
tionally, let M c

ρ⟲
be a subsumption projection module under ρ⟲. Then M c

ρ⟲
is a basic E L H r-

subsumption module of T w.r.t. Σ.

This proposition can be obtained from Definition 93 and Definition 137. It shows that we can compute
basic E L H r-subsumption modules by computing automorphic projection modules.

In Example 138, the automorphic projection module of T2 is T2 itself, which is different from
its projection module w.r.t. T1 as discussed above. It shows that automorphic projection module is
indeed a different notion from projection module.

6.2 Computing Role Projection Justifications
Definition 146 (Role Projection Justification) Let T1 and T2 be E L H r-terminologies and Σ be
a signature. Additionally, let ρ = ⟨T1,Σ,T2⟩. A set M ⊆ T2 is called a role projection module
under ρ , denoted by J R

ρ , iff for every s∈ Σ∩NR, T1 |= r1 ⊑ s implies M |= r2 ⊑ s. A role projection
justification under ρ is the role subsumption module under ρ that is minimal w.r.t. ⊆.

We denote the set of all role projection justifications under ρ as JR
ρ .

Example 147 Let T1 = {r ⊑ t} and T2 = {r ⊑ s,s ⊑ t} and Σ = {r, t}. Additionally, let ρ =

⟨T1,Σ,T2⟩. We have that JR
ρ = {T2}= {{r ⊑ s,s⊑ t}}.
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Algorithm 18: Computing the set of all Projection Justifications for Role Inclusions

1 function COVERR (T1,Σ,T2)

2 M= { /0}
3 for every r,s ∈ Σ∩NR such that T1 |= r ⊑ s do
4 M :=M⊗ JustT2(r ⊑ s)
5 end
6 return Minimise⊆(M)

Lemma 148 Let T1 and T2 be E L H r-terminologies and Σ be a signature. Additionally, let
ρ = ⟨T1,Σ,T2⟩. If JR ∈ JR

ρ , then roleWtnΣ(T1,JR) = /0.

Algorithm 18 shows how to collect relevant Σ-role inclusions by Definition 146. The set of all
role projection justifications of an E L H r-terminology can therefore be computed in polynomial
time.

Theorem 149 Let T1 and T2 be E L H r-terminologies and Σ be a signature. Additionally, let
ρ = ⟨T1,Σ,T2⟩. Let M := COVERR(T1,Σ,T2) computed by Algorithm 18. Then M is the set of all
role projection modules under ρ .

This theorem follows from Definition 47 and Definition 146.

6.3 Computing Subsumption Projection Justifications
The notion of projection justification between terminologies depends on several parameters. To better
manage these parameters, we wrap them in a subsumption setting χ , which is a tuple of the form
⟨T1,X1,Σ,T2,X2,L ⟩, where T1 and T2 are the normalised E L H r-terminologies, Σ is a signature,
X1,X2 ∈ NC ∪{dom(r), ran(r) | r ∈ NR }, and L ∈ {E L H r,E L ran,E L ran,⊓,u}. We recall that
ran, Ran and Ran⊓,u are abbreviations for E L H r, E L ran and E L ran,⊓,u, respectively. Besides,
LΣ means L -concept that only consists of the concept and role names in Σ.

Definition 150 (Subsumption Projection Justification) Let L ∈ {ran,Ran,Ran⊓,u}. Additionally,
let χ = ⟨T1,X1,Σ,T2,X2,L ⟩, where X1,X2 ∈ NC ∪{dom(r), ran(r) | r ∈ NR }. A set M ⊆ T2 is
called a subsumer projection module under χ iff for every C ∈LΣ, T1 |= X1 ⊑C implies M |= X2 ⊑C.
M ⊆T2 is called a subsumee projection module under χ iff for every C ∈LΣ, T1 |=C ⊑ X1 implies
M |=C ⊑ X2.

M is called a subsumption projection module under χ iff M is a subsumer projection module
and a subsumee projection module under χ . A subsumee (resp. subsumer, subsumption) projection
justification under χ is a subsumee (resp. subsumer, subsumption) projection projection module
under χ that is minimal w.r.t. ⊆.
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We denote the set of all subsumee (resp. subsumer, subsumption) projection justifications under χ as
J←χ (resp. J→χ , Jχ ), where χ = ⟨T1,X1,Σ,T2,X2,L ⟩.

Proposition 151 Let T be a normalised E L H r-terminology, let Σ be a signature, and let X ∈ NC.
Additionally, let χ = ⟨T ,X ,Σ,T ,X , ran⟩. Then a subsumer (resp. subsumee, subsumption) projection
module under χ is a ⟨X ,Σ⟩-subsumer (resp. subsumee, subsumption) module. Similarly, a subsumer
(resp. subsumee, subsumption) projection justification under χ is a ⟨X ,Σ⟩-subsumer (resp. subsumee,
subsumption) justification.

This proposition follows from Definition 79 and Definition 137.
Using Definition 93 and Definition 19, we obtain the following lemma stating the absense of

certain concept names, and domain and range restrictions of role names as left-hand and right-hand
difference witnesses between a reference terminology T1 and a subsumer and subsumee justification
of a second terminology T2.

Lemma 152 Let χ(ϕ) = ⟨T1,ϕ,Σ,T2,ϕ,L ⟩ and χ(A) = ⟨T1,A,Σ,T2,A,L ⟩, where ϕ ∈ (Σ∩
NC)∪Σdom∪Σran, A ∈ Σ∩NC and L ∈ {ran,Ran,Ran⊓,u}. Then we have that for every Jχ(ϕ) ∈
J→

χ(ϕ), ϕ ̸∈ lhsWtnL
Σ (T1,Jχ(ϕ)), and for every Jχ(A) ∈ J←

χ(A), A ̸∈ rhsWtnL
Σ (T1,Jχ(A)).

To obtain subsumption modules, we can use the operator ⊗ to combine sets of role projection
justifications, subsumer and subsumee projection justifications, one justification for each potential
difference witness that needs to be prevented; cf. Lemma 152 and 148. This is made precise in the
following theorem.

Theorem 153 Let L ∈ {ran,Ran,Ran⊓,u} and ML
ρ be the set of all L -projection modules under

ρ = ⟨T1,Σ,T2⟩ that are minimal w.r.t. ⊊. Then

ML
ρ = Minimize⊆

(
JR

ρ ⊗
⊗

ϕ∈(Σ∩NC)∪Σdom∪Σran

J→
χ(ϕ) ⊗

⊗
A∈Σ∩NC

J←
χ(A)

)
where χ(ψ) = ⟨T1,ψ,Σ,T2,ψ,L ⟩.

In [23], it is shown that concept difference on E L ran and E L ran,⊓,u captures exactly the instance
and query difference in E L H r-terminology, respectively. So we can convert the problem of com-
puting instance and conjunctive query projection modules to the problem of computing subsumption
projection modules on E L ran(Ran) and E L ran,⊓,u(Ran⊓,u) respectively. Therefore, in the following
subsections, we present a general algorithm for computing subsumer and subsumee projection justi-
fications for subsumption, conjunctive and instance query by three different logics: E L H r(ran),
E L ran(Ran) and E L ran,⊓,u(Ran⊓,u).

Due to the fact that there may exist exponentially many minimal modules in the worst case, our
algorithm introduced later runs in exponential-time in the worst case.

As in Chapter 3, we use the notion of covers to characterise the output of our algorithms to ensure
that all justifications have been computed. We recall that LΣ is a L concept that only constructed by
the concept and role names in Σ.
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6.3.1 Computing Subsumer Projection Justifications

In this section, we introduce our algorithm to compute all subsumer projection justifications. The
algorithm relies on the notion of a subsumer simulation between terminologies.

In [23] it was shown that

• lhsWtnranΣ (T1,T2) = lhsWtnRanΣ (T1,T2);

• lhsWtnRanΣ (T1,T2) ̸= lhsWtnRan
⊓,u

Σ (T1,T2).

Therefore, we just need algorithms to deal with two query languages, i.e., Ran and Ran⊓,u.
To handle existential restrictions via the universal role in the query language Ran⊓,u, we use a

notion of reachability in terminologies. Let NC
dom,ran =NC∪{dom(r) | r ∈NR }∪{ ran(r) | r ∈NR }.

For ϕ ∈NC
dom,ran and a normalised E L H r-terminology T , let FT (ϕ)⊆NC

dom,ran be the smallest
set closed under the following conditions:

• ϕ ∈ FT (ϕ);

• Y ∈ FT (ϕ) if ψ ∈ FT (ϕ), T |= ψ ⊑ X ′ and X ′ ▷◁ ∃r.Y ∈T ;

• dom(r) ∈ FT (ϕ) if ran(r) ∈ FT (ϕ).

Intuitively, for concept names X , the set FT (X) contains X together with all directly and indirectly im-
plied role successors of X , independent of any signature. For example, let T = {Y ⊑ X ,X ≡∃r.Z, Z ⊑
∃r.B}. Then it holds that FT (Y ) = {Y,Z,B}, FT (X) = {X ,Z,B}, FT (Z) = {Z,B}, FT (B) = {B},
FT (dom(r)) = {dom(r)} and FT (ran(r)) = {dom(r), ran(r)}.

In order to deal with Ran⊓,usubsumption queries, we extend Definition 83 and get the following
definition.

Definition 154 (Subsumer Simulation for Ran and Ran⊓,u Subsumption Query) Let T1 and T2

be two normalised E L H r-terminologies, and let Σ be a signature. Moreover, let L ∈ {Ran,Ran⊓,u}
and let N(T ,Σ) = {X ,dom(r), ran(r) | X ,r ∈ (sig(T )∪Σ),X ∈NC,r ∈NR }, where T ranges over
terminologies. A relation S⊆ N(T1,Σ)×N(T2,Σ) is a ⟨Σ,L ⟩-subsumer simulation from T1 to T2

iff the following conditions (S→NC
) and (S→∃,L ) are both satisfied:

(S→NC
) if (X1,X2) ∈ S, then for every ϕ ∈ Σ∪Σdom with T1 |= X1 ⊑ ϕ , it holds that T2 |= X2 ⊑ ϕ;

(S→∃,Ran) if (X1,X2)∈ S and X ′1 ▷◁1 ∃r.Y1 ∈T1 with ▷◁1 ∈ {⊑,≡} such that T1 |= X1⊑ X ′1 and T1 |= r⊑ s
for some s ∈ Σ, then for every s ∈ Σ with T1 |= r ⊑ s, there exists X ′2 ▷◁2 ∃r′.Y2 ∈ T2 with
▷◁2 ∈ {⊑,≡} such that T2 |= X2 ⊑ X ′2, it holds that T2 |= r′ ⊑ s and (Y1,Y2) ∈ S;

(S→∃,Ran⊓,u) if (X1,X2)∈ S and X ′1 ▷◁1 ∃r.Y1 ∈T1 with ▷◁1 ∈ {⊑,≡} such that T1 |= X1⊑ X ′1 and T1 |= r⊑ s
for some s ∈ Σ, there exists X ′2 ▷◁2 ∃r′.Y2 ∈T2 with ▷◁2 ∈ {⊑,≡} such that T2 |= X2 ⊑ X ′2 and
for every s ∈ Σ with T1 |= r ⊑ s, it holds that T2 |= r′ ⊑ s and (Y1,Y2) ∈ S.
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We write T1 ∼→Σ,Ran T2 iff there exists a ⟨Σ,Ran⟩-subsumer simulation S from T1 to T2 such that
for every ϕ ∈ (Σ∩NC)∪Σdom∪Σran: (ϕ,ϕ) ∈ S.

Moreover, we write T1 ∼→Σ,Ran⊓,u T2 iff there exists a ⟨Σ,Ran⊓,u⟩-subsumer simulation S from T1

to T2 such that for every ϕ ∈ (Σ∩NC)∪Σdom∪Σran: (ϕ,ϕ) ∈ S, and for every ψ ∈ FT1(ϕ), there
exists a ψ ′ ∈ FT2(ψ) such that (ψ,ψ ′) ∈ S.

For X1,X2 ∈ NC and L ∈ {Ran,Ran⊓,u}, we write ⟨T1,X1⟩ ∼→Σ,L ⟨T2,X2⟩ iff there exists a
⟨Σ,L ⟩-subsumer simulation S from T1 to T2 with (X1,X2) ∈ S for which T1 ∼→Σ,L T2.

This definition of subsumer simulation is extended from Definition 83 to additionally handle
Ran⊓,u-subsumption queries.

A subsumer simulation conveniently captures the set of subsumers in the following sense: If a
Σ-subsumer simulation from T1 to T2 contains the pair (X1,X2), then X2 entails w.r.t. T2 all subsumers
of X1 w.r.t. T1 that are formulated in the signature Σ. Formally, we obtain the following theorem
from [34].

Theorem 155 We have the following conclusions:

• T1 ∼→Σ,ran T2 iff lhsWtnranΣ (T1,T2) = /0;

• T1 ∼→Σ,Ran T2 iff lhsWtnRanΣ (T1,T2) = /0;

• T1 ∼→Σ,Ran⊓,u T2 iff lhsWtnRan
⊓,u

Σ (T1,T2) = /0.

Theorem 156 If ⟨T1,X1⟩ ∼→Σ,L ⟨T2,X2⟩, then T2 |=X2⊑D for every D∈LΣ such that T1 |=X1⊑D.

Note that T2 |=X2⊑D for every D∈LΣ such that T1 |=X1⊑D does not imply that ⟨T1,X1⟩∼→Σ,L
⟨T2,X2⟩, because T1 ∼→Σ,L T2 is the one of conditions that ⟨T1,X1⟩ ∼→Σ,L ⟨T2,X2⟩ holds (cf. Defini-
tion 154).

For example, let T1 = {X1 ⊑ A,B⊑ B′}, T2 = {X2 ⊑ A} and Σ = {A,B,B′}. Then B /∈ FT1(X1).
Note that T1 ∼→Σ,L T2 does not hold as B in T1 is not simulated by anything in T2. Therefore,
also ⟨T1,X1⟩ ∼→Σ,L ⟨T2,X2⟩ does not hold. However, we have that for every D ∈LΣ: T1 |= X1 ⊑ D
implies T2 |= X2 ⊑ D. In particular, T1 |= X1 ⊑ A and T2 |= X2 ⊑ A.

When computing subsumer projection justification, in Algorithm 26, it distinguishes different
cases. If L = ran or Ran, then the algorithm calls Algorithm 23 and Algorithm 22.

In order to collect the axioms necessary to satisfy the conditions of Definition 154, we develop
Algorithm 19 for Case (S→NC

), Algorithm 20 for Case (S→∃,Ran), and Algorithm 21 for Case (S→∃,Ran⊓,u).
Note that Algorithm 19 is same for ran-, Ran- and Ran⊓,u-subsumption queries.

Observe that COVER→(T1,X1,Σ,T2,X2,L ) may be called several times during the execution of
Algorithm 22. The algorithm can be optimised by caching the return value of the first execution, and
retrieving it from memory for subsequent calls.
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Algorithm 19: Computing the set of all Subsumer Projection Justifications (S→NC
)

1 function COVERNC→ (T1,X1,Σ,T2,X2)

2 M→X2
= { /0}

3 for every B ∈ (Σ∩NC)∪{dom(r) | r ∈ Σ} such that T1 |= X1 ⊑ B do
4 M→X2

:=M→X2
⊗ JustT2(X2 ⊑ B)

5 end
6 return Minimise⊆(M→X2

)

Algorithm 20: Computing the set of all Subsumer Projection Justifications (S→∃,Ran) (L ∈
{ran,Ran})
1 function COVER1,∃

→ (T1,X1,Σ,T2,X2,L )

2 M→X = { /0}
3 for every Y ▷◁1 ∃r.Z ∈T1 (▷◁1∈ {⊑,≡}) and s ∈ Σ∩NR such that T1 |= X ⊑ Y and

T1 |= r ⊑ s do
4 M→∃s.Z := { /0}
5 for every Y ′ ▷◁2 ∃r′.Z′ ∈T2 (▷◁2∈ {⊑,≡}) such that T2 |= X ⊑ Y ′, T2 |= r′ ⊑ s, and

⟨T1,z⟩ ∼→Σ,L ⟨T2,z′⟩ do
6 M→Z′ := COVER→(T1,Z,Σ,T2,Z′,L )

7 M→∃s.Z :=M→∃s.Z ∪
(
{{Y ′ ▷◁2 ∃r′.Z′}}⊗M→Z′ ⊗ JustT2(X ⊑ Y ′)⊗ JustT2(r

′ ⊑ s)
)

8 end
9 M→X :=M→X ⊗M→∃s.Z

10 end
11 return Minimise⊆(M→X )

The following theorem shows that Algorithm 22 indeed computes the set of subsumer projection
justifications.

Theorem 157 Let T1 and T2 be acyclic, normalised E L H r-terminologies, and let Σ be a signature.
Additionally, let Let χ = ⟨T1,X1,Σ,T2,X2,L ⟩ and M := COVER→(T1,X1,Σ,T2,X2,L ) computed
by Algorithm 22. If T1 ∼→Σ,L T2, then M is the set of all subsumer projection justifications under χ .

6.3.2 Computing Subsumee Projection Justifications

We now introduce algorithms of computing subsumee projection justifications based on subsumee
simulation. The basic idea of the algorithm is to collect as few axioms from T2 as possible to maintain
the subsumee simulation between Σ-concept names. In [23], we know that

• rhsWtnranΣ (T1,T2) ̸= rhsWtnRanΣ (T1,T2);

• rhsWtnRanΣ (T1,T2) = rhsWtnRan
⊓,u

Σ (T1,T2).
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Algorithm 21: Computing the set of all Subsumer Projection Justifications (S→∃,Ran⊓,u) (L =

Ran⊓,u)

1 function COVER2,∃
→ (T1,X1,Σ,T2,X2,L )

2 M→(X1,X2)
= { /0}

3 for every Y ▷◁1 ∃r.Z ∈T1 (▷◁1∈ {⊑,≡}) with T1 |= X1 ⊑ Y , T1 |= r ⊑ s for some
s ∈ Σ∩NR do

4 M→∃r.Z := { /0}
5 for every Y ′ ▷◁2 ∃r′.Z′ ∈T2 (▷◁2∈{⊑,≡}) with T2 |= X2 ⊑ Y ′ and T2 |= r′ ⊑ s for

every s ∈ {s′ ∈ Σ∩NR |T1 |= r ⊑ s′ } and ⟨T1,Z⟩ ∼→Σ,L ⟨T2,Z′⟩ do
6 M→r′ := { /0}
7 for every s ∈ Σ∩NR with T1 |= r ⊑ s do
8 M→r′ :=M→r′ ⊗ JustT2(r

′ ⊑ s)
9 end

10 M→Z′ := COVER→(T1,Z,Σ,T2,Z′,L )

11 M→∃r.Z :=M→∃r.Z ∪
(
JustT2(X2 ⊑ Y ′)⊗{{Y ′ ▷◁2 ∃r′.Z′}}⊗M→r′ ⊗M→Z′

)
12 end
13 M→(X1,X2)

:=M→(X1,X2)
⊗M→∃r.Z

14 end
15 return Minimise⊆(M→(X1,X2)

)

Therefore, it is sufficient to have algorithms of computing all subsumee projection justifications for
query languages ran and Ran.

The axioms of the form ran(r) ⊑ X might cause non-trivial entailments. For example, let
T1 = {X ≡ ∃r.Y,Y ≡ A1⊓A2}, T2 = T1∪{ran(r) ⊑ A1}, Σ = {X ,A1,A2,r}. Then we have T1 |=
∃r.(A1⊓A2). However, as the axiom α ran(r) ⊑ A1 ∈ T2, the conjunct A1 of Y is already covered
by α . Hence, when we define the notion of Σ-entailment, additional parameter ζ ∈ {ε}∪ (NR∩Σ)

is used. We call this additional parameter context of a role, i.e. an expression of the form ran(ζ ).
We treat ε as a special role name and set ran(ε) =⊤. The set of all role contexts, in symbols C Σ, is
defined as C Σ = {ε}∪ (NR∩Σ).

For a signature Σ, let Σdom = {dom(t) | t ∈ NR ∩Σ} and Σran = { ran(t) | t ∈ NR ∩Σ} be the
sets consisting of concepts of the form dom(t) and ran(t) for every role name t in Σ, respectively.
Furthermore let Σ(ran,ζ ) = Σ∪Σdom∪{ ran(ζ ) | ζ ̸= ε } and Σ(Ran,ζ ) = Σ∪Σdom∪Σran, for ζ ∈ C Σ.
Note that Σ(Ran,ζ ) = Σ(Ran,ζ ′) for every ζ ,ζ ′ ∈C Σ. For example, let Σ = {A,B,r} be a signature. Then
Σdom = {dom(r)}, Σran = {ran(s)}, C Σ = {r,ε}, Σ(ran,ζ ) = {A,B,r,dom(r), ran(ζ )} and Σ(Ran,ζ ) =

{A,B,r,dom(r), ran(r)}.
In order to deal with Ran-subsumption query, we extend Definition 86 in Section 3.2.2 and get

the following definitions.
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Algorithm 22: Computing the set of all Subsumer Projection Justifications

1 function COVER→ (T1,X1,Σ,T2,X2,L )

2 if L ∈ {ran,Ran} then
3 M→(X1,X2)

:= COVERNC
→ (T1,X1,Σ,T2,X2)⊗COVER1,∃

→ (T1,X1,Σ,T2,X2,Ran)

4 end
5 if L = Ran⊓,u then
6 M→(X1,X2)

:= { /0}
7 for every ψ1 ∈ FT1(X1) do
8 M→ψ1

:= { /0}
9 for every ψ2 ∈ FT2(X2) do

10 M→ψ1,ψ2
:=

COVERNC
→ (T1,ψ1,Σ,T2,ψ2)⊗COVER2,∃

→ (T1,ψ1,Σ,T2,ψ2,Ran
⊓,u)

11 M→ψ1
:=M→ψ1

∪M→ψ1,ψ2

12 end
13 M→(X1,X2)

=M→(X1,X2)
⊗M→ψ1

14 end
15 end
16 return Minimise⊆(M→(X1,X2)

)

Definition 158 (Σ-Entailment) Let T be a normalised E L H r-terminology and Σ be a signature.
For L ∈ {ran,Ran}, ζ ∈ NR∪{ε}, A ∈ NC and s ∈ NR, the following statements hold:

(i) A∈NC is (Σ, ran,ζ )-entailed in T iff there is an E L Σ-concept C such that T |= ran(ζ )⊓C⊑ A;

(ii) A ∈ NC is (Σ,Ran,ζ )-entailed in T iff there is an E L ran
Σ -concept D such that T |= D⊑ A;

(iii) s ∈ NR is Σ-entailed in T iff there exists s′ ∈ NR∩Σ such that T |= s′ ⊑ s.

We then get the following definition by extending the Definition 87 in Section 3.2.2 for Ran-
subsumption query.

Definition 159 (Complex Σ-Entailment) Let T be a normalised and acyclic E L H r-terminology,
let Σ be a signature, and let X ∈ NC.

We say that X is complex ⟨Σ,L ,ζ ⟩-entailed w.r.t. T iff for every Y ∈ non-conjT (X) one of the
following conditions holds:

1. there exists B ∈ Σ(L ,ζ ) such that T |= B⊑ Y and T ̸|= B⊑ X;

2. there exists Y ≡ ∃r.Z ∈T and r and Z are each ⟨Σ,L ,ζ ⟩-entailed in T .

Otherwise, X is said to be simply ⟨Σ,L ,ζ ⟩-entailed.
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The concept name X being complex Sigma-entailed w.r.t. T states that every conjunct of X is either
defined as a Σ-entailed existential restriction (Condition 2) or it is entailed by a Σ-concept name, dom-
or ran-concept by which X is not entailed.

We now define the notion of a subsumee simulation from T1 to T2 in a role context as a subset of
sigNC(T1)× sigNC(T2)×C Σ

T1
, where C Σ

T1
:= {ε}∪ (NR∩ (Σ∪ sig(T1))) is the range of role contexts.

We extend Definition 88 and obtain the following notion of subsumee simulation. The new
definition works also for Ran-subsumption queries.

Definition 160 (Subsumee Simulation) Let T1 and T2 be two normalised E L H r-terminologies,
and let Σ be a signature. A relation S⊆ sigNC(T1)× sigNC(T2)×C Σ

T1
is a ⟨Σ,L ⟩-subsumee simula-

tion from T1 to T2 iff S satisfies the following conditions:

(S←,L
NC

) if (X1,X2,ζ ) ∈ S, then for every ϕ ∈ Σ(L ,ζ ) and for every X ′2 ∈ non-conjT2
(X2) with T2 ̸|=

ran(ζ )⊑ X ′2, T1 |= ϕ ⊑ X1 implies T2 |= ϕ ⊑ X ′2;

(S←,L
∃ ) if (X1,X2,ζ ) ∈ S and X1 ≡ ∃r.Y1 ∈ T1 such that T1 |= s ⊑ r for s ∈ Σ and Y1 is (Σ,L ,s)-

entailed in T1, then for every X ′2 ∈ non-conjT2
(X2) not entailed by dom(s) or ran(ζ ) w.r.t. T2,

there exists X ′2 ≡ ∃r′.Y2 ∈T2 such that T2 |= s⊑ r′ and (Y1,Y2,s) ∈ S;

(S←,L
⊓ ) if (X1,X2,ζ ) ∈ S and X1 ≡ Y1⊓ . . .⊓Yn ∈T1, then for every Y2 ∈ non-conjT2

(X2) not entailed
by ran(ζ ) w.r.t. T2, there exists Y1 ∈ non-conjT1

(X1) not entailed by ran(ζ ) w.r.t. T2 with
(Y1,Y2,ε) ∈ S.

We write T1 ∼←Σ,ran T2 iff there is a Σ-subsumer simulation S from T1 to T2 such that for every
A,r ∈ Σ: (A,A,ε) ∈ S and (A,A,r) ∈ S.

We write T1 ∼←Σ,Ran T2 iff there is a Σ-subsumer simulation S from T1 to T2 such that for every
A ∈ NC∩Σ: (A,A,ε) ∈ S.

For L ∈ {ran,Ran} and ζ ∈ Σ∩NR, we write ⟨T1,X1⟩ ∼←,L
Σ,ζ
⟨T2,X2⟩ iff there is a Σ-subsumer

simulation S from T1 to T2 with (X1,X2,ζ ) ∈ S for which T1 ∼←Σ,L T2.

Analogously to subsumer simulations, a subsumee simulation captures the set of subsumees as it
is made precise in the following theorem from [34].

Theorem 161 We have the following conclusions:

• T1 ∼←Σ,ran T2 iff rhsWtnranΣ (T1,T2) = /0;

• T1 ∼←Σ,Ran T2 iff rhsWtnRanΣ (T1,T2) = /0.

Theorem 162 Let ⟨T1,X1⟩ ∼←,L
Σ,ζ
⟨T2,X2⟩. Then:

• Q = ran: for every C ∈ E L Σ with T1 |= ran(ζ )⊓C⊑ X1, it holds that T2 |= ran(ζ )⊓C⊑ X2;
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Algorithm 23: Computing the set of all Subsumee Projection Justifications (S←,L
NC

)

1 function COVERNC← (T1,X1,Σ,T2,X2,L ,ζ)

2 M←(X1,X2)
= { /0}

3 for every B ∈ Σ(L ,ζ ) such that T1 |= B⊑ X1 do
4 for every X2 ∈ non-conjT2

(X1) such that ζ = ε or T2 |= ran(ζ )⊑ X2 do
5 M←(X1,X2)

:=M←(X1,X2)
⊗ JustT2(B⊑ X2)

6 end
7 end
8 return Minimise⊆(M←(X1,X2)

)

• Q = Ran: for every C ∈ E L ran
Σ with T1 |=C ⊑ X1, it holds that T2 |=C ⊑ X2.

In order to collect the axioms necessary to satisfy the conditions of Definition 160, we develop
Algorithm 23 (for Case (S←,L

NC
)), Algorithm 24 (for Case (S←,L

∃ )) and Algorithm 25 (for Case
(S←,L
⊓ )).

The algorithm for computing subsumee projection justifications relies on the notion of subsumee
simulation between terminologies [12, 34]. First we present some auxiliary notions for handling
conjunctions on the left-hand side of subsumptions.

Like in Section 3.1.3, we define for each concept name X a so-called definitorial forest consisting
of sets of axioms of the form Y ≡ Y1 ⊓ . . .⊓Yn which can be thought of as forming trees. Any
⟨X ,Σ⟩-subsumee projection justification contains the axioms of a selection of these trees, i.e., one tree
for every conjunction formulated over Σ that entails X w.r.t. T .

In our algorithms, definitorial forest is used to enumerate all possible situations and find all
possible sub-trees such that Case(S←,L

∃ ) can be satisfied.
For the next algorithm, we recall the definition of def ⊓T . def ⊓T := {X ∈ sigNC(T ) | X ≡Y1⊓ . . .⊓

Yn ∈T } is the set of concept names that are conjunctively defined in T . For every X ∈ def ⊓T , we set
def ⊓T (X) := α , where α = X ≡ Y1⊓ . . .⊓Yn ∈T .

The axiom αX1 := X1 ≡ Y1⊓ . . .⊓Ym ∈ T1 in Line 2 of Algorithm 25 is guaranteed by Line 12
of Algorithm 26. In the case where X2 is defined as a conjunction in T2, the pair consisting of T2

containing only a partial conjunctive tree rooted at X2 and X2 needs to be considered to be sufficient
to subsumee simulate X1 in T1. Therefore Algorithm 25 considers every partial conjunctive tree Γ

from DefForest⊓T2
(X2) in Line 4 and removes the axioms in δΓ connecting the leaves of Γ with the

remaining conjunctive tree from T2 in Lines 11.
The following theorem shows the correctness of the algorithms 26 can compute minimal subset

of T2 that maintains subsumee simulation w.r.t. ran-subsumption query.
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Algorithm 24: Computing the set of all Subsumee Projection Justifications (S←,L
∃ )

1 function COVER∃← (T1,X1,Σ,T2,X2,L ,ζ)

2 Let αX1 := X1 ≡ ∃r.Y1 ∈T1

3 M←(X1,X2)
:= {max-tree ⊓T2

(X2)}
4 for every s ∈ Σ∩NR such that T1 |= s⊑ r do
5 for every X ′2 ∈ non-conjT2

(X2) such that ζ ̸= ε implies T2 ̸|= ran(ζ )⊑ X ′2 and
T2 ̸|= dom(s)⊑ X ′2 do

6 Let αX ′2
:= X ′2 ≡ ∃r′.Y ′2 ∈T2

7 M←Y ′2 := COVER←(T1,Y1,Σ,T2,Y ′2,L ,s)

8 M←(X1,X2)
:=M←(X1,X2)

⊗{{αX ′2
}}⊗ JustT2(s⊑ r)⊗M←Y ′2

9 end
10 end
11 return Minimise⊆(M←(X1,X2)

)

Algorithm 25: Computing the set of all Subsumee Projection Justifications (S←,L
⊓ )

1 function COVER⊓←(T1,X1,Σ,T2,X2,L ,ζ )
2 let αX1 := X1 ≡ Y1⊓ . . .⊓Ym ∈T1

3 M←(X1,X2)
:= /0

4 for every Γ ∈ DefForest⊓T2
(X2) do

5 Let δΓ := {def ⊓T2
(X ′) | X ′ ∈ leaves(Γ)∩def ⊓T2

}
6 M←

Γ
:= {Γ}

7 for every X ′2 ∈ leaves(Γ) such that ζ = ε or T2 ̸|= ran(ζ )⊑ X ′2 do
8 M←X ′2 := /0

9 for every X ′1 ∈ non-conjT1
(X1) such that ζ = ε or T2 ̸|= ran(ζ )⊑ X ′1 do

10 if ⟨T1,X ′1⟩ ∼
←,L
Σ,ε ⟨T2 \δΓ,X ′2⟩ then

11 M←X ′2 :=M←X ′2 ∪COVER←(T1,X ′1,Σ,T2 \δΓ,X ′2,L ,ε)

12 end
13 end
14 M←

Γ
:=M←

Γ
⊗M←X ′2

15 end
16 M←(X1,X2)

:=M←(X1,X2)
∪M←

Γ

17 end
18 return Minimise⊆(M←(X1,X2)

)
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Algorithm 26: Computing the set of all Subsumee Projection Justifications

1 function COVER←(T1,X1,Σ,T2,X2,L ,ζ )
2 if X1 is not ⟨Σ,L ,ζ ⟩-entailed w.r.t. T1 then
3 return { /0}
4 end
5 M←(X1,X2)

:= COVERNC
← (T1,X1,Σ,T2,X2,L ,ζ )

6 if X1 is not complex ⟨Σ,L ,ζ ⟩-entailed-entailed in T1 then
7 return Minimise⊆(M←(X1,X2)

)

8 end
9 if X1 ≡ ∃r.Y ∈T1, and r,Y are Σ-entailed w.r.t. T1 then

10 M←(X1,X2)
:=M←(X1,X2)

⊗COVER∃←(T1,X1,Σ,T2,X2,L ,ζ )

11 end
12 else if X1 ≡ Y1⊓ . . .⊓Ym ∈T1 then
13 M←(X1,X2)

:=M←(X1,X2)
⊗COVER⊓←(T1,X1,Σ,T2,X2,L ,ζ )

14 end
15 return Minimise⊆(M←(X1,X2)

)

Theorem 163 Let χ = ⟨T1,X1,Σ,T2,X2,L ⟩, where T1 and T2 are two acyclic and normalised
E L H r-terminologies, Σ is a signature and X1,X2 ∈ Σ∩NC. Additionally, let

M := COVER←(T1,X1,Σ,T2,X2, ran,ζ ).

If T1 ∼←Σ T2, then for every M ∈M, it holds that ⟨T1,X1⟩ ∼←,L
Σ,ζ
⟨M ,X2⟩ and M is minimal w.r.t.

set inclusion.

The following theorem shows that the set of all subsumee projection justifications can be computed
by Algorithm 26.

Theorem 164 Let χran = ⟨T1,X1,Σ,T2,X2, ran⟩, χRan = ⟨T1,X1,Σ,T2,X2,Ran⟩, where T1 and T2

are two acyclic and normalised E L H r-terminologies, Σ is a signature and X1,X2 ∈ Σ∩NC. Addi-
tionally, let

Mran := Minimise⊆(COVER←(T1,X1,Σ,T2,X2, ran,ε)⊗
⊗

r∈Σ∩NR

COVER←(T1,X1,Σ,T2,X2, ran,r)),

MRan := COVER←(T1,X1,Σ,T2,X2, ran,ε).

If T1 ∼←Σ T2, then Mran is the set of all subsumee justifications under χRan and MRan is the set of all
subsumee justifications under χRan.

Theorem 164 follows from Definition 137, Theorem 162 and Theorem 163.



6.4 Proofs 109

The number of (minimal) projection justifications depends on T1, T2 and Σ and exponential
bounded in the size of the terminologies. The simulation checks can be performed in polynomial
time [12, 34]. Algorithm 26 runs in exponential time in the number of axioms contained in the input
terminologies, in the worst case. On the one hand, the algorithm uses justifications (see Line 6 of
Alg. 24 and Line 5 of Alg. 23) whose number grows exponentially for role inclusions as well as
concept name inclusions. The different justifications are each incorporated using the operator ⊗
resulting in possibly different subsumption justifications. The majority of the running time will be
spent on computing justifications. Another source of exponential blowup is contained in Line 4
of Algorithm 25. The number of elements in the set DefForest⊓T (X) grows exponentially in |T |.
According to our experience so far, however, it seems plausible to assume that definitorial forests
in practical ontologies remain rather small and, thus, they do not cause a serious slowdown of the
algorithm.

6.4 Proofs

6.4.1 Proof Regarding Subsumption Projection Justification

Lemma 152 Let χ(ϕ) = ⟨T1,ϕ,Σ,T2,ϕ,L ⟩ and χ(A) = ⟨T1,A,Σ,T2,A,L ⟩, where ϕ ∈ (Σ∩
NC)∪Σdom∪Σran, A ∈ Σ∩NC and L ∈ {ran,Ran,Ran⊓,u}. Then we have that for every Jχ(ϕ) ∈
J→

χ(ϕ), ϕ ̸∈ lhsWtnL
Σ (T1,Jχ(ϕ)), and for every Jχ(A) ∈ J←

χ(A), A ̸∈ rhsWtnL
Σ (T1,Jχ(A)).

Proof We first prove that ϕ ̸∈ lhsWtnL
Σ (T1,Jχ(ϕ)), where L = {ran,Ran,Ran⊓,u} for every

Jχ(ϕ) ∈ J→
χ(ϕ), ϕ ̸∈ lhsWtnL

Σ (T1,Jχ(ϕ)). According to the Theorem 40 and 61 in [23], we
have that the sets lhsWtnL

Σ (T1,Jχ(ϕ)) ⊆ (Σ∩NC)∪{dom(r) | r ∈ Σ}∪{ ran(r) | r ∈ Σ} of left-
hand subsumption query difference witnesses consist of the left-hand sides of the type-δ4 in-
clusions in cDiffL

Σ (T1,T2). As δ4 ::= A ⊑ C | dom(r) ⊑ C | ran(r) ⊑ C, we can get that ϕ ̸∈
lhsWtnL

Σ (T1,Jχ(ϕ)) for every Jχ(ϕ) ∈ J→
χ(ϕ) by Definition 137.

Then we prove that A ̸∈ rhsWtnL
Σ (T1,JA) for every JA ∈J←

χ ′ . According to the Theorem
40 and 61 in [23], we have that the sets rhsWtnL

Σ (T1,T2) ⊆ NC ∩Σ of right-hand subsumption
query difference witnesses consist of the right-hand sides of type-δ2 and type-δ3 inclusions in
cDiffL

Σ (T1,T2), respectively, depending on the query language L . We distinguish according to the
different query languages:

• when L = Ran or Ran⊓,u: we consider type-δ3 inclusions. As δ3 := D⊑ A and Definition 137,

we have that A ̸∈ rhsWtnL
Σ (T1,JA) for every JA ∈J←

χ ′ .

• when L =ran: we consider type-δ2 inclusions. As δ2 :=C ⊑ A | ran(r)⊓C ⊑ A, we have that
A ̸∈ rhsWtnranΣ (T1,JA) for every JA ∈J←

χ ′ .

□
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Theorem 153 Let L ∈ {ran,Ran,Ran⊓,u} and ML
ρ be the set of all L -projection modules under

ρ = ⟨T1,Σ,T2⟩ that are minimal w.r.t. ⊊. Then

ML
ρ = Minimize⊆

(
JR

ρ ⊗
⊗

ϕ∈(Σ∩NC)∪Σdom∪Σran

J→
χ(ϕ) ⊗

⊗
A∈Σ∩NC

J←
χ(A)

)
where χ(ψ) = ⟨T1,ψ,Σ,T2,ψ,L ⟩.

Proof Let S1 and S2 be sets of sets that are each minimal w.r.t. ⊊, i.e., they satisfy: ∀S ∈ Si with

i ∈ {1,2}, there is no S′ ∈ Si such that S⊂ S′. We say that S1
∗
⊆S2 iff for every S2 ∈ S2, there exists

an S1 ∈ S1 such that S1 ⊆ S2.
Then let

SL
ρ = Minimize⊆

(
JR

ρ ⊗
⊗

ϕ∈(Σ∩NC)∪Σdom∪Σran

J→
χ(ϕ) ⊗

⊗
A∈Σ∩NC

J←
χ(A)

)
It can readily be seen that S1

∗
⊆S2 and S2

∗
⊆S1 implies S1 = S2, using the property of minimality

w.r.t. ⊊ of S1 and S2. Therefore, to show the lemma, it is sufficient to show that ML
ρ

∗
⊆SL

ρ and

SL
ρ

∗
⊆ML

ρ .

We first show that ML
ρ

∗
⊆SL

ρ . By Theorem 24, the set of all L -subsumption difference witnesses
is defined as

WtnL
Σ (T1,T2) = roleWtnL

Σ (T1,T2)∪ lhsWtnL
Σ (T1,T2)∪ rhsWtnL

Σ (T1,T2),

where the set roleWtnL
Σ (T1,T2)= {r∈Σ∩NR | r⊑ s∈ cDiffL

Σ (T1,T2) or s⊑ r∈ cDiffL
Σ (T1,T2)},

the set lhsWtnL
Σ (T1,T2) = {ϕ ∈ (Σ∩NC)∪Σdom ∪Σran | ϕ ⊑ rhs(α) and α is a type-δ4 or type-

δ5 inclusions in the set cDiffL
Σ (T1,T2)} and the set rhsWtnL

Σ (T1,T2) = {A ∈ Σ∩NC | lhs(α) ⊑
A and α is a type-δ2 or type-δ3 inclusions in the set cDiffL

Σ (T1,T2)} respectively, depending on the
query language L . With Lemma 148, Lemma 152 and Lemma 72, we have that WtnL

Σ (T1,M) = /0
for every M ∈ SL

ρ . Consequently, by Definition 137 and Definition 19, every M ∈ SL
ρ is a projection

module under ρ , which means there exists M′ ∈ML
ρ such that M′ ⊆M. Hence, ML

ρ

∗
⊆SL

ρ .

Now we show that SL
ρ

∗
⊆ML

ρ . Let M ∈ML
ρ be a minimal projection module under ρ . Since

WtnL
Σ (T1,M) = /0, there exists JR ∈ JR

ρ such that JR ⊆M; for every ϕ ∈ (Σ∩NC)∪Σdom∪Σran,
there exists Jϕ ∈ J→

χ(ϕ) such that Jϕ ⊆M; and for every A ∈ Σ∩NC, there exists JA ∈ J←
χ(A) such

that JA ⊆M. Consequently, there exists S ∈ SL
ρ such that S⊆M. Hence, SL

ρ

∗
⊆ML

ρ . □

6.4.2 Canonical Model & Helpful Lemmas

The material of this section comes from an unpublished appendix of [34]. As it has not been published
yet, we list relevant definitions and lemmas in this section in order to make the proofs in this thesis
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self-contained. We assume that NI is countably infinite set of individual names disjoint with NC

and NR. An ABox A is a non-empty finite set of assertions of the form ⊤(a), A(a) and r(a,b),
where a,b ∈ NI, A ∈ NC, and r ∈ NR. By obj(A ) we denote the set of individual names in A . An
E L H ⊥-knowledge base K (KB) is a pair (T ,A ) consisting of an E L H ⊥-TBox T and an ABox
A . Assertions of the form C(a) and r(a,b), where a,b ∈NI, C an E L -concept or an E L ⊓,u-concept,
and r ∈ NR, are called instance assertions.

We define a canonical model, IK , for E L H ⊥-knowledge bases K . IK can be constructed in
polynomial time and gives the same answers to instance queries as K ; i.e., IK |= α if, and only if,
K |= α , for any instance assertion α .

Let sub(T ) denote the set of all subconcepts of concepts used in T , sigNR(T ) the set of all role
names occurring in T . Take fresh individual names xran(r),D for every r ∈ rol(T ) and D ∈ sub(T )

and set
NIaux := {xran(r),D | r ∈ sigNR(T ) and D ∈ sub(T )}.

Now define the generating interpretation WK of a KB K = (T ,A ) as follows:

∆WK := obj(A )∪NIaux;
AWK := {a ∈ obj(A ) |K |= A(a)}∪{xran(r),D ∈ NIaux |T |= ran(r)⊓D⊑ A};
rWK := {(a,b) ∈ obj(A )×obj(A ) | s(a,b) ∈A and T |= s⊑ r} ∪

{(a,xran(s),D) ∈ obj(A )×NIaux |K |= ∃s.D(a) and T |= s⊑ r} ∪
{(xran(s),D,xran(s′),D′) ∈ NIaux×NIaux |T |= ran(s)⊓D⊑ ∃s′.D′, T |= s′ ⊑ r};

aWK := a, for all a ∈ obj(A ).

A path in WK is a finite sequence d0r1d1 · · ·rndn, n ≥ 0, where d0 ∈ obj(A ) and, for all i < n,
(di,di+1) ∈ rWK

i+1 . We use paths(WK ) to denote the set of all paths in WK . If p ∈ paths(WK ), then
tail(p) denotes the last element dn in p.

The canonical model IK of a knowledge base K is the restriction of WK to all domain elements
d such that there is a path in WK with tail d. The following result summarizes the main properties of
IK .

Theorem 165 Let K = (T ,A ) be an E L H ⊥-KB. Then

(i) IK is a model of K ;

(ii) IK can be computed in polynomial time in the size of K ;

(iii) for all xC,D ∈ ∆IK and all a ∈ obj(A ), if C0 is a E L ⊓,u-concept or of the form ran(r), then
the following holds:

• K |=C0(a) iff aIK ∈CIK
0 ; and

• T |=C⊓D⊑C0 iff xC,D ∈CIK
0 .
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Proof See Theorem 2 (Extended Version) in [23]. □

Lemma 166 Let T be an E L H r-terminology, let A ∈NC, r ∈NR, and let C be an E L ⊓,u-concept.
Then the following statements hold:

(i) T |= A⊑C iff (T ,{A(a)}) |=C(a);

(ii) T |= ran(r)⊓A⊑C iff (T ,{r(a,b),A(b)}) |=C(b);

(iii) T |= ∃r.A⊑C iff (T ,{r(a,b),A(b)}) |=C(a);

(iv) T |= ran(r)⊑C iff (T ,{r(a,b)}) |=C(b);

(v) T |= dom(r)⊑C iff (T ,{r(a,b)}) |=C(a).

Proof Follows immediately from the definition of logical entailment w.r.t. TBoxes or knowledge
bases. □

Lemma 167 Let T be a normalised E L H r-terminology. Assume T |= D ⊑ ∃u.C, where D is
either a concept name or of the form ran(r), dom(r), or ran(r)⊓A with A,r ∈ sig(T )∪Σ. Then one
of the following statements holds:

• if T |= A⊑ ∃u.C, then there exist n≥ 0 and r1, . . . ,rn ∈ NR such that T |= A⊑ ∃r1. . . .∃rn.C;

• if T |= ran(r)⊓A⊑ ∃u.C, then there exist n≥ 0 and r1, . . . ,rn ∈ NR such that

– T |= ran(r)⊓A⊑ ∃r1. . . .∃rn.C, or

– T |= ∃r.A⊑ ∃r1. . . .∃rn.C;

• if T |= ran(r)⊑ ∃u.C, then there exist n≥ 0 and r1, . . . ,rn ∈ NR such that

– T |= dom(r)⊑ ∃r1. . . .∃rn.C, or

– T |= ran(r)⊑ ∃r1. . . .∃rn.C;

• if T |= dom(r)⊑ ∃u.C, then there exist n≥ 0 and r1, . . . ,rn ∈ NR such that

– T |= dom(r)⊑ ∃r1. . . .∃rn.C, or

– T |= ran(r)⊑ ∃r1. . . .∃rn.C.
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Proof If T |= A ⊑ ∃u.C, it follows from Lemma 166 that K |= ∃u.C(a) for K = (T ,{A(a)}).
Hence, by Theorem 165 we have aIK ∈ (∃u.C)IK , i.e. there exists x ∈ ∆IK with x ∈ CIK . If
x ∈ obj(A ), we have T |= A ⊑ C by Theorem 165 and Lemma 166. We can now assume that
x ̸∈ obj(A ), i.e. there exists a finite sequence d0r1d1 · · ·rndn, n≥ 1, where d0 = a, dn = x and, for all
i < n, (di,di+1) ∈ rIK

i+1 . By definition of IK and by Theorem 165 we have K |= (∃r1 . . .∃rn.C)(a),
and consequently T |= A⊑ ∃r1 . . .∃rn.C by Lemma 166.

If T |= ran(r)⊓A⊑ ∃u.C, it follows from Lemma 166 that K |= ∃u.C(a) for

K = (T ,{r(a,b),A(b)}).

Hence, by Theorem 165 we have aIK ∈ (∃u.C)IK , i.e. there exists x ∈ ∆IK with x ∈ CIK . If
x ∈ obj(A ), we either have T |= ran(r)⊓A⊑C or T |= ∃r.A⊑C by Theorem 165 and Lemma 166.
We can now assume that x ̸∈ obj(A ), i.e. there exists a finite sequence d0r1d1 · · ·rndn, n≥ 1, where
d0 ∈ obj(A ), dn = x and, for all i < n, (di,di+1) ∈ rIK

i+1 . By definition of IK and by Theorem 165
we have K |= (∃r1 . . .∃rn.C)(d0). Consequently, by Lemma 166, T |= ran(r)⊓A⊑ ∃r1 . . .∃rn.C if
d0 = b and T |= ∃r.A⊑ ∃r1 . . .∃rn.C otherwise.

The cases for T |= dom(r) ⊑ ∃u.C and T |= ran(r) ⊑ ∃u.C can be proved analogously to the
previous case. □

In the following we also make use of the following easy equivalence, which allows to characterise
conjunctions of roles in terms of simple roles.

Lemma 168 (See [23]) Let T be a normalised E L H r-terminology, let C be an E L ran-concept,
and let D be an E L ⊓-concept which contains the occurrences Si = ri,1⊓ . . .⊓ ri,mi of intersections of
roles, 1≤ i≤ k. Then, T |=C ⊑ D holds if, and only if, there exist role names si, 1≤ i≤ k, such that
si ⊑T ri, j for 1≤ i≤ k, 1≤ j ≤ mi and T |=C ⊑ D′, where D′ is obtained from D by replacing Si

with si.

Lemma 169 Let T a normalised E L H r-terminology T and Σ a signature. Additionally, let
V := NC ∪{dom(r), ran(r) | r ∈ Σ∪ sig(T )} and X ∈ V . Let E be an E L ⊓-concept such that
T |= X ⊑ ∃r.D. Then there exists Y ▷◁ ∃s.Z ∈ T (▷◁ ∈ {⊑,≡}) such that T |= X ⊑ Y , T |= s ⊑ r
and T |= Z ⊑ D.

Proof Let C be the E L -concept obtained from E by replacing the intersection of roles with simple
roles as in Lemma 168. If X is either a concept name or of the form ran(r) or dom(r), the lemma can
be proved by analysing the structure of the derivation X ⊢T ∃r.C. For the case where X = ran(r)⊓A,
it follows from Lemma 35 that either T |= A⊑ ∃r.C or T |= ran(r)⊑ ∃r.C, i.e. we can apply one of
the previous cases. □

6.4.3 Proof Regarding Subsumer Projection Justification

The followings notions are required to handle concepts of the form ∃u.C.
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Definition 170 Let T be a normalised E L H r-terminology and a signature Σ. Let V := NC ∪
{dom(r), ran(r) | r ∈ Σ∪ sig(T )} and ψ ∈ V . The relation⇝T ⊆ V ×V is inductively defined as
follows:

(i) {ψ}⇝T {ψ};

(ii) {ψ}⇝T {ψ ′} if {ψ}⇝T {X} and T |= X ⊑ ∃r.ψ ′.

For ψ ∈ V , we define ForwardReachT (ψ) = {ψ ′ | {ψ}⇝T {ψ ′}}.

Definition 171 Let T be a normalised E L H r-terminology T and Σ a signature. Additionally, let
ϕ ∈ NC∪{dom(r), ran(r) | r ∈ NR }.

If ϕ = ran(r), we define

ReachT (ϕ) := ForwardReachT (ϕ)∪ForwardReachT (dom(r));

otherwise, let ReachT (ϕ) := ForwardReachT (ϕ).

The definition of ReachT (X) coincides with the definition of FT (C) in Section 6.3.1

Lemma 172 Let T a normalised E L H r-terminology T and Σ a signature. Additionally, let V :=
NC∪{dom(r), ran(r) | r ∈ Σ∪sig(T )} and X ∈V , let E be an E L ⊓-concept, and let r1, . . . ,rn ∈NR

(n ≥ 0) such that T |= X ⊑ ∃r1. . . .∃rn.E. Then there exists Y ∈ ForwardReachT (X) such that
T |= Y ⊑ E.

Proof By induction on n. For n = 0, nothing remains to be shown as X ∈ ForwardReachT (X).
Let now n ≥ 1. It then follows from Lemma 169 that there exists an axiom Y ▷◁ ∃s.Z ∈ T

(▷◁ ∈ {⊑,≡})such that T |= X ⊑Y , T |= s⊑ r, and T |= Z ⊑ ∃r2 . . .∃rn.E. Furthermore, we obtain
from the induction hypothesis that there exists Z′ ∈ ForwardReachT (Z) such that T |= Z′ ⊑ E. As
{X}⇝T {Z}, it is then easy to see that Z′ ∈ ForwardReachT (X). □

Lemma 173 Let T be a normalised E L H r-terminology and Σ a signature. Additionally, let
xX ∈ V with X ∈ NC∪{dom(r) | r ∈ NR }∪{ ran(r) | r ∈ NR } and let D be an E L ⊓-concept. Then
T |= X ⊑ ∃u.D iff there exists xY ∈ ReachT (xX) such that T |= Y ⊑ D.

Proof The direction “⇐” follows immediately from the definition of the set ReachT (xX) and of
the relation⇝T .

For the direction “⇒” assume that T |= X ⊑ ∃u.D holds. We now distinguish between the
following cases.

If X = A, it follows from Lemma 167 that there exist n≥ 0 and r1, . . . ,rn ∈ NR such that T |=
A⊑ ∃r1. . . .∃rn.D. Thus, by Lemma 172 there exists xY ∈ ForwardReachT (xA)⊆ ReachT (xA) such
that T |= Y ⊑ D.
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If X = ran(r), it follows from Lemma 167 that there exist n ≥ 0 and r1, . . . ,rn ∈ NR such that
either

• T |= ran(r)⊑ ∃r1. . . .∃rn.D, or

• T |= dom(r)⊑ ∃r1. . . .∃rn.D.

In the former case we can prove the statement of the lemma analogously to the case for X = A. In the
latter case we observe that by Lemma 172 there exists xY ∈ ForwardReachT (xdom(r))⊆ ReachT (xX)

such that T |= Y ⊑ D.
The case for X = dom(r) can be shown analogously. □

It is shown in [23] that lhsWtnranΣ (T1,T2) = lhsWtnRanΣ (T1,T2).

Lemma 174 Let T be a normalised E L H r-terminology, let X be a concept name, let ∃r.D be an
E L -concept such that T |= X ⊑ ∃r.D. Then there exists an axiom Y ▷◁ ∃s.Z ∈T (▷◁ ∈ {⊑,≡}) such
that T |= X ⊑ Y , T |= s⊑ r and T |= Z ⊑ D.

Proof Let ∆ be the derivation of the inclusion X ⊑ ∃r.D w.r.t. T . We assume now towards a
contradiction that there does not exist an application of the (DEFL), (PDEFL) or (SUB) rule w.r.t.
an axiom Y ▷◁ ∃r.Z ∈ T in ∆. It is then easy to see that no concept of the form ∃r.E occurs on the
left-hand side of any inclusion in ∆. We can infer that no concept of the form ∃r.E occurs on the
right-hand side of any inclusion in ∆ as well, i.e. ∆ is not a derivation of the inclusion A⊑ ∃r.D, which
contradicts our assumption. □

Lemma 175 Let T1 and T2 be normalised E L H r-terminologies, let Σ be a signature. Moreover,
let X1,X2 ∈ NC∪dom(r)∪ ran(r),r ∈ NR.

Then: If ⟨T1,X1⟩ ∼→Σ,Ran ⟨T2,X2⟩ holds, then T2 |= X2 ⊑C holds for every C ∈ E L Σ such that
T1 |= X1 ⊑C .

Proof We prove by induction on the structure of C that for every X1,X2 ∈ NC∪dom(r)∪ ran(r)∪
{⊤} with ⟨T1,X1⟩ ∼→Σ,Ran ⟨T2,X2⟩ and T1 |= X1 ⊑C it holds that T2 |= X2 ⊑C.

Let C ∈ E L Σ and let ϕ1,ϕ2 ∈ NC such that (X1,X2) ∈ S and T1 |= ϕ ⊑C. We now distinguish
between the following cases.

• C =⊤: then we are done, since T2 |= X2 ⊑⊤ always holds.

• C ∈ Σ∩NC or C = dom(r): then we have T2 |= X2 ⊑C by Definition 154.

• C = ∃r.E: then by Lemma 174 there exists an axiom Y1 ▷◁1 ∃s.X1 ∈ T1 (▷◁1 ∈ {⊑,≡}) such
that T1 |= X1 ⊑ Y1, T1 |= ψ1 ⊑ E and T |= s⊑ r. As S is Σ-subsumer simulation, there exists
Y2 ▷◁2 ∃s′.ψ2 ∈T2 with T2 |=X2⊑Y2, ▷◁2 ∈ {⊑,≡}, T |= s′⊑ r and (X1,X2)∈ S. By applying
the induction hypothesis we have T |= ψ2 ⊑ E. Consequently, it holds that T2 |= X2 ⊑ ∃r.E.
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• C = C1 ⊓C2: then we have T1 |= X1 ⊑Ci for i ∈ {1,2} and by induction T2 |= X2 ⊑Ci for
i ∈ {1,2}, which finally yields T2 |= X2 ⊑C.

□

Theorem 176 Let χ = ⟨T1,X1,Σ,T2,X2,Ran⟩where T1 and T2 are two acyclic normalised E L H r-
terminologies, Σ is a signature and X1,X2 ∈ NC∪{dom(r), ran(r) | r ∈ NR }. Additionally, let

M→X := COVER→(T1,X1,Σ,T2,X2,Ran).

If ⟨T1,X1⟩ ∼→Σ,Ran ⟨T2,X2⟩, then M→X is the set of subsumer projection justification under χ .

Proof We first prove that M→X is a cover of the set such that M ∈M→X is a subsumer projection
module under χ . By Thoerem 156, we have that proving M→X is the set of M such that subsumer
projection module under χ is equal to prove M→X := {M ⊆ T2 | ⟨T1,X1⟩ ∼→Σ,Ran ⟨M ,X2⟩} for
Ran-subsumption query. .

(i) We show that every M ∈M→X is an subsumer projection module under χ .
First, we define the relation ⋗T ⊆ NC×NC as follows: let T be an E L H r terminology. For

X ,Y ∈ NC we set X ⋗T Y iff there exists X ′ ▷◁ ∃r.Y ∈ T with T |= X ⊑ X ′ and ▷◁ ∈ {⊑,≡}. Note
that ⋗T is well-founded as T is acyclic. The proof now proceeds by induction on ⋗T1 .

Let X1,X2 ∈ NC and let M ∈M→X . We now distinguish between the following cases.

• If there does not exist Y ∈ NC with X1 ⋗T1 Y , let D ∈ E L Σ such that T1 |= X1 ⊑ D. The proof
now continues by induction on the structure of D. For D =⊤ or D = X , it immediately follows
that M |= X2 ⊑D. ForD = B∈NC and B ̸= X , there exists J ∈ JustT2(X2 ⊑ B) with J ⊆M

(Line 4 in Algorithm 19), i.e. M |= X ⊑ D holds. Similar with the case when D = dom(r)
and r ∈ NR. For D = D1⊓D2 we obtain M |= X2 ⊑ D1 and M |= X2 ⊑ D2 by applying the
induction hypothesis on D1 and D2. Consequently, it holds that M |= X2 ⊑ D. Note that D
cannot be of the form ∃r.E by Lemma 174.

• Otherwise, let D ∈ E L Σ such that T1 |= X1 ⊑ D. The proof now continues by induction on
the structure of D. The cases of D =⊤, D = A ∈ NC, D = dom(s),s ∈ NR and D = D1⊓D2

can be proved as above. For D is of the form ∃s.D′. there exists Y ▷◁ ∃r.Z ∈ T1 such that
T1 |= X1 ⊑ Y , T1 |= r ⊑ s and T1 |= Z ⊑ D′ by Lemma 174. As ⟨T1,X1⟩ ∼→Σ,Ran ⟨T2,X2⟩, we
have T2 |= X2 ⊑ ∃s.D′. Consequently, we have that there exists α = Y ′ ▷◁2 ∃r′.Z′ ∈ T2 such
that T2 |= X2 ⊑ Y ′ and T2 |= r′ ⊑ s by Lemma 174. and α ∈M . Furthermore, there exists
MZ′ ∈ COVER→ (T1,X1,Σ,T2,X2,Ran) such that MZ′ ⊆M . As X ⋗Z′, it follows from the
induction hypothesis MZ′ is a subsumer projection module under χ ′ = {T1,Z,Σ,T2,Z′,Ran},
i.e. for every D′′ ∈ E L Σ, T1 |= Z ⊑ D′′ implies MZ′ |= Z′ ⊑ D′′. Hence, we can infer that
M∃s.Z |= X2 ⊑ ∃r.D′(Line 7 in Algorithm 20 ).
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(ii) We show that for every subsumer projection module under χ , there exists M ′ ∈M→X such
that M ′ ⊆M .

The proof now proceeds by induction on ⋗. Let X1,X2 ∈ NC and let M be a subsumer projection
module under χ = {T1,X1,Σ,T2,X2,Ran}We now distinguish between the following cases.

• If there does not exist Y ∈ NC with X1 ≻T1 Y , let B ∈ Σ. As M is a ⟨T1,X1,Σ⟩ subsumer
projection module of T2, there exists SB ∈ JustT2(X2 ⊑ B) with SB ⊆M . Consequently,
it is easy to see that there exists M ′ ∈ M→X2

with M ′ =
⋃

B∈Σ SB as there does not exist
X ′ ▷◁ ∃s.Y ∈T2 with T2 |= X ⊑ X ′ and T2 |= s⊑ r.

• Otherwise, ⟨T1,X1⟩ ∼→Σ,Ran ⟨T2,X2⟩. Similarly to the previous case, for every B ∈ Σ there
exists SB ∈ JustT2(X ⊑ B) with SB ⊆M .

Now let {Y ▷◁ ∃r.Z ∈ T1 | r ∈ Σ,T1 |= X1 ⊑ Y and T1 |= s ⊑ r} = {Y1 ▷◁1 ∃r1.Z1, . . . ,Yn ▷◁n

∃rn.Zn} and let 1 ≤ i ≤ n. Thus, as ⟨T1,X1⟩ ∼→Σ,Ran ⟨T2,X2⟩, by the definition of subsumer
simulation(Definition 154), there exists Y ′i ▷◁

′
i ∃si.Z′i ∈M such that M |= X ⊑ Y ′i and M |=

si ⊑ ri with ⟨T1,Z⟩ ∼→Σ,Ran ⟨T2,Z′i⟩ holds. Consequently, there exists SY ′i ∈ JustT2(X ⊑ Y ′i )
with SY ′i ⊆M and Sr′i ∈ JustT2(si ⊑ ri) with Sr′i ⊆M Moreover, as (Z,Z′i) ∈ S, we have that
M is a ⟨Z′i ,Σ⟩-subsumer module of T2. It follows from the induction hypothesis that there
exists M ′

Z′i
∈M→Z′i :=COVER→ (T1,Zi,Σ,T2,Z′i) with M ′

Z′i
⊆M . Let

M ′ :=
⋃

B∈Σ

SB∪
n⋃

i=1

(SY ′i ∪Sr′i ∪{Y
′
i ▷◁

′
i ∃si.Z′i}∪M ′

Z′i
).

It is easy to see that M ′ ∈M→X and M ′ ⊆M .

Then we prove that for any M ∈M→X , M is a subsumer projection justification under χ . We
assume that M is a subsumer projection justification under χ and there exist a redundant axiom
α ∈M , such that M \{α} is still a subsumer module under χ . Once we go through all possible case
when S is ⊗ to M→X such that α ∈ S and S ∈ S, we have that if α is removed from S, the subsumer
simulation does not hold anymore. By Theorem 156, we have that there exists D ∈ E L ran

Σ , such that
T1 |= X1 ⊑ D does not imply T2 |= X2 ⊑ D. So, M is not a subsumer projection justification under χ ,
which contradict our assumption.

□

Lemma 177 Let T1 and T2 be two acyclic normalised E L H r-terminologies, Σ is a signature and
X ,X ′ ∈ NC∪{dom(r), ran(r) | r ∈ NR }. If ⟨T1,X⟩ ∼→Σ,Ran⊓,u ⟨T2,X ′⟩, then T2 |= X ′ ⊑C for every
C ∈ E L ⊓,u

Σ
such T1 |= X ⊑C.

Proof Let ⟨T1,X⟩ ∼→Σ,Ran⊓,u ⟨T2,X ′⟩ and let C be an E L ⊓,u
Σ

-concept C with T1 |= X ⊑ C. The
proof now proceeds by induction on the structure of C.
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• C =⊤: then we are done, since T2 |= A⊑⊤ always holds.

• C ∈ NC or C = dom(r): then we have T1 |= X ⊑C implies T2 |= X ′ ⊑C by Definition 154.

• C =C1⊓ . . .⊓Cn: then we have T1 |=X ⊑Ci for every 1≤ i≤ n and by induction T2 |=X ′⊑Ci,
which finally yields T2 |= X ′ ⊑C.

• C = ∃R.D with R = r1⊓ . . .⊓ rn (n≥ 1) and D an E L ⊓
Σ-concept: let r ∈ NR such that T1 |=

r ⊑ ri for every 1≤ i≤ n and T1 |= X ⊑ ∃r.D (cf. Lemma 168). Then by Lemmas 169 there
exists a Z ▷◁ ∃s.Y ∈ T1 (▷◁ ∈ {⊑,≡}) such that T1 |= X ⊑ Z, T1 |= s ⊑ r and T1 |= Y ⊑ D.
By definition 154, there exists a Z′ ▷◁ ∃s′.Y ′ ∈ T2 (▷◁ ∈ {⊑,≡}) such that T2 |= X ′ ⊑ Z′,
T2 |= s′ ⊑ ri for every i ∈ [1,n] and T2 |= Y ′ ⊑ D. Thus we get T2 |= Y ′ ⊑ D by applying the
induction hypothesis. Hence we have T2 |= X ′ ⊑ ∃r.D.

Let now X ∈ (NC∩Σ)∪{dom(r) | r ∈ Σ}∪{ ran(r) | r ∈ Σ}, and let D be an E L ⊓,u
Σ

-concept
such that T1 |= X ⊑ D. Now, let D′ be the E L ⊓,u

Σ
-concept of the form D′0 ⊓

dn
i=1∃u.Du

i , where
D′0 and Du

i (1 ≤ i ≤ n) are E L ⊓
Σ-concepts, such that |= D ≡ D′. It then follows from the previous

parts of the proof that T2 |= X ⊑ D′0 holds. Let now 1 ≤ i ≤ n. It then follows from Lemma 173
that there exists xY ∈ ReachT1(xX) such that T1 |= Y ⊑ Du

i . By definition of ⟨T1,X1⟩ ∼→Σ,L ⟨T2,X2⟩
(Definition 154), there is xY ′ ∈ ReachT2(xX ′) such that xY ↪→ f

Σ
xY ′ . We thus obtain T2 |=Y ′ ⊑Du

i from
the previous parts of the proof, and it follows that T2 |= X ⊑ ∃u.Du

i holds by Lemma 173. Overall,
we can conclude that T2 |= X ⊑ D′, i.e. T2 |= X ⊑ D.

□

Lemma 178 If T1 ∼→Σ,Ran⊓,u T2, then lhsWtnRan
⊓,u

Σ (T1,T2) = /0.

Proof Let D be an E L ⊓,u
Σ

-concept such that T1 |= X1 ⊑ D. Now, let D′ be the E L ⊓,u
Σ

-concept of
the form D′0⊓

dn
i=1∃u.Du

i , where D′0 and Du
i (1≤ i≤ n) are E L ⊓

Σ-concepts, such that |= D≡ D′. It
then follows from Lemma 177 that T2 |= X ⊑ D′0 holds. Let now 1 ≤ i ≤ n. It then follows from
Lemma 173 that there exists Y ∈ReachT1(xX) such that T1 |=Y ⊑Du

i . By definition of T1 ∼→Σ,Ran T2,
there is Y ′ ∈ ReachT2(X

′) such that Y ↪→ f
Σ

Y ′. We thus obtain T2 |= Y ′ ⊑ Du
i from the previous parts

of the proof, and it follows that T2 |= X ⊑ ∃u.Du
i holds by Lemma 173. Overall, we can conclude

that T2 |= X ⊑ D′, i.e. T2 |= X ⊑ D. □

Lemma 179 Let T1,T2 be two normalised E L H r-terminology and Σ a signature. Additionally,
let X ∈ NR ∩ sig(T1)∩{dom(r), ran(r) | r ∈ NR } and X ∈ NR ∩ sig(T1) and X ′ ∈ NR ∩ sig(T1)∩
{dom(r), ran(r) | r ∈ NR } and X ∈ NR ∩ sig(T2) such that T1 |= X ⊑ C entails T2 |= X ′ ⊑ C for
every E L ⊓

Σ-concept C. Moreover, let A ▷◁ ∃r.Y ∈T1 (▷◁ ∈ {≡,⊑}) such that there exists s ∈ Σ with
T1 |= r ⊑ s and T1 |= X ⊑ A.

Then there exists A′ ▷◁ ∃r′.Y ′ ∈T2 such that the following holds:

• T2 |= X ′ ⊑ A′;
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• T2 |= r′ ⊑ s for every s ∈ Σ with T2 |= s⊑ r; and

• if T1 |= Y ⊑C, then T2 |= Y ′ ⊑C for every E L ⊓
Σ-concept C.

Proof Let S = {s ∈ Σ |T1 |= s⊑ r} and let

n⋃
i=1

{A′i ⊑ ∃r′i.Y ′i }= {A′ ⊑ ∃r′.X ′ |T2 |= X ′ ⊑ A′,

A′ ▷◁ ∃r′.Y ′ ∈T2, ▷◁ ∈ {⊑,≡}, ∀s ∈ S : T2 |= r′ ⊑ s}.

Let R =
d

s∈S s. As T1 |= A⊑ ∃R.⊤, we have T2 |= A⊑ ∃R.⊤, and therefore n≥ 1 by Lemmas 168
and 169. If we assume for every 1≤ i≤ n that there exists a E L ⊓

Σ-concept Ci with T1 |= ran(ri)⊓
Y ⊑ Ci and T2 ̸|= ran(r′i)⊓X ′i ⊑ Ci, it would follow that T1 |= X ⊑ ∃R.(C1 ⊓ . . .⊓Cn) and hence,
T2 |= X ⊑ ∃R.(C1⊓ . . .⊓Cn). By Lemmas 168 and 169 we could infer that there exists 1 ≤ j ≤ n
such that T2 |= A′j ⊑ ∃r′j.X ′j and T2 |= ran(r′j)⊓X ′j ⊑Ci for every 1≤ i≤ n, which contradicts our
assumption. □

Lemma 180 If lhsWtnRan
⊓,u

Σ (T1,T2) = /0, then T1 ∼→Σ,Ran⊓,u T2.

Proof Let
S = {(X ,X ′) | ∀C ∈ E L ⊓

Σ : T1 |= X ⊑C =⇒ T2 |= X ′ ⊑C}.

Clearly, (X ,X) ∈ S for every X ∈ (NC∩Σ)∪{dom(r), ran(r) | r ∈ NR }. We now show that S is a
⟨Σ,Ran⊓,u⟩-simulation:

• Let (X ,X ′) ∈ S with T1 |= X ⊑ Z, and thus by definition of S also T2 |= X ′ ⊑ Z, which
satisfying Condition (S→NC

) of Definition 154.

• Let (X ,X ′) ∈ S with X ▷◁1 ∃r.Y ∈T1 ▷◁1 ∈ {⊑,≡} such that T1 |= r ⊑ s for some s ∈ Σ

Then by 179, there exists X ′2 ▷◁2 ∃r′.Y ′ ∈ T2 with ▷◁2 ∈ {⊑,≡} such that T2 |= X2 ⊑ X ′2 and
for every s ∈ Σ with T1 |= r ⊑ s, and T1 |= Y ⊑C implies T2 |= Y ′ ⊑C for all E L ⊓

Σ -concepts
C. But then (Y,Y ′) ∈ S by definition, satisfying Condition (S→∃,Ran⊓,u) of Definition 154 overall.

Let now X ∈ (NC∩Σ)∪{dom(r) | r ∈ Σ}∪{ ran(r) | r ∈ Σ}. We assume towards a contradiction
that there exists xY ∈ ReachT1(xX) such that (xY ,xY ′) ̸∈ S for every xY ′ ∈ ReachT2(xX). Hence, for
every xY ′ ∈ReachT2(xX ′) there exists an E L ⊓

Σ -concept CY ′ such that T1 |=Y ⊑CY ′ and T2 ̸|=Y ′⊑CY ′ .
Let now D =

d
xY ′∈ReachT2 (xX ′ )

CY ′ . We can then infer that T1 |= Y ⊑ D and T2 ̸|= Y ′ ⊑ D for every
xY ′ ∈ ReachT2(xX). By Lemma 173 it holds that T1 |= X ⊑ ∃u.D but T2 ̸|= X ⊑ ∃u.D, which
contradicts with lhsWtnRan

⊓,u

Σ (T1,T2) = /0. □
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Theorem 181 Let χ = ⟨T1,X1,Σ,T2,X2,Ran
⊓,u⟩, T1 and T2 be two acyclic normalised E L H r-

terminologies, and let Σ be a signature. Additionally, let X ∈ (NC∩Σ)∪{dom(r), ran(r) | r ∈ NR },
and let M→X := COVER→ T1,X1,Σ,T2,X2,Ran

⊓,u.
Then: If ⟨T1,X1⟩ ∼→Σ,Ran⊓,u ⟨T2,X2⟩ holds, then M→X is the set of all subsumer projection justifica-

tions under χ .

Proof The proof is similar to the proof of Lemma 176(by using Lemma 179).
□

Theorem 156 If ⟨T1,X1⟩ ∼→Σ,L ⟨T2,X2⟩, then T2 |=X2⊑D for every D∈LΣ such that T1 |=X1⊑D.

Proof It follows from Lemma 175 (Case Ran) and Lemma 177 (Case Ran⊓,u).
□

Lemma 182 Let T1 and T2 be two normalised E L H r-terminologies and Σ be a signature. Addi-
tionally, let X ∈NR∩sig(T1)∩{dom(r), ran(r) | r ∈NR } and X ′ ∈NR∩sig(T2)∩{dom(r), ran(r) |
r ∈ NR } and X ∈ NR ∩ sig(T1) be such that T1 |= X ⊑ C entails T2 |= X ′ ⊑ C for every E L ran

Σ -
concept C. Moreover, let A ▷◁ ∃r.Y ∈T1 (▷◁ ∈ {≡,⊑}) such that there exists s ∈ Σ with T1 |= r ⊑ s
and T1 |= X ⊑ A.

Then there exists A′ ▷◁ ∃r′.Y ′ ∈T2 such that the following holds

• T2 |= X ′ ⊑ A′;

• T2 |= r′ ⊑ s; and

• If T1 |= Y ⊑C, then T2 |= Y ′ ⊑C for every E L ran
Σ -concept C.

Proof The lemma can be proved analogously to Lemma 179.
Let S = {s ∈ Σ |T1 |= s⊑ r} and let

n⋃
i=1

{A′i ⊑ ∃r′i.Y ′i }= {A′ ⊑ ∃r′.X ′ |T2 |= X ′ ⊑ A′,

A′ ▷◁ ∃r′.Y ′ ∈T2, ▷◁ ∈ {⊑,≡}, ∀s ∈ S : T2 |= r′ ⊑ s}.

Let R =
d

s∈S s. As T1 |= A⊑ ∃R.⊤, we have T2 |= A⊑ ∃R.⊤, and therefore n≥ 1 by Lemmas 168
and 169. If we assume for every 1≤ i≤ n that there exists a E L ⊓

Σ-concept Ci with T1 |= ran(ri)⊓
Y ⊑ Ci and T2 ̸|= ran(r′i)⊓X ′i ⊑ Ci, it would follow that T1 |= X ⊑ ∃R.(C1 ⊓ . . .⊓Cn) and hence,
T2 |= X ⊑ ∃R.(C1⊓ . . .⊓Cn). By Lemmas 168 and 169 we could infer that there exists 1 ≤ j ≤ n
such that T2 |= A′j ⊑ ∃r′j.X ′j and T2 |= ran(r′j)⊓X ′j ⊑Ci for every 1≤ i≤ n, which contradicts our
assumption. □

Theorem 155 We have the following conclusions:
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• T1 ∼→Σ,ran T2 iff lhsWtnranΣ (T1,T2) = /0;

• T1 ∼→Σ,Ran T2 iff lhsWtnRanΣ (T1,T2) = /0;

• T1 ∼→Σ,Ran⊓,u T2 iff lhsWtnRan
⊓,u

Σ (T1,T2) = /0.

Proof We first prove T1 ∼→Σ,Ran⊓,u T2 iff lhsWtnRanΣ (T1,T2) = /0, which follows from Lemma 178
and Lemma 180. Then T1 ∼→Σ,Ran T2 iff lhsWtnRanΣ (T1,T2) = /0 can be proved analogously as
above using Lemma 182. As lhsWtnranΣ (T1,T2) = lhsWtnRanΣ (T1,T2), we have that T1 ∼→Σ,ran T2 iff
lhsWtnranΣ (T1,T2) = /0. □

Theorem 157 Let T1 and T2 be acyclic, normalised E L H r-terminologies, and let Σ be a signature.
Additionally, let Let χ = ⟨T1,X1,Σ,T2,X2,L ⟩ and M := COVER→(T1,X1,Σ,T2,X2,L ) computed
by Algorithm 22. If T1 ∼→Σ,L T2, then M is the set of all subsumer projection justifications under χ .

Proof It follows from Theorem 176 (Case Ran) and Theorem 181 (Case Ran⊓,u). □

6.4.4 Proof Regarding Subsumee Projection Justification

Lemma 183 Let T be a normalised and acyclic E L H -terminology, let Σ be a signature, and let
X ∈ NC be pseudo-primitive in T . Then X is not complex Σ-entailed w.r.t. T .

Proof As X is pseudo-primitive in T , we have non-conjT (X) = {X}. We can infer that there
cannot exist B ∈ Σ with T |= B⊑ Y and T ̸|= B⊑ X . Additionally, we observe that no axiom of the
form X ≡ ∃r.Y is contained in T , which implies that X is not complex Σ-entailed w.r.t. T . □

Lemma 184 Let T1 and T2 be normalised and acyclic E L H r-terminologies, and let Σ be a
signature. Then: if ⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨T2,X2⟩ then T2 |= ran(ζ )⊓C ⊑ X2 holds for every C ∈ E L Σ,

T1 |= ran(ζ )⊓C ⊑ X1.

Proof Let C be an E L Σ-concept and let ⟨T1,X1⟩ ∼←Σ,ran ⟨T2,X2⟩ζ with X1,X2 ∈ NC such that
T1 |=C ⊑ X1 if ζ = ε , or T1 |= ran(r)⊓C ⊑ X1 if ζ = r. We distinguish these three cases, which are
mutually exclusive as T1 is a terminology and prove by introduction:

• X is pseudo-primitive in T1: it follows from Lemma 34 that there exists Z ∈ Σ(ran,ζ ) such
that T1 |= Z ⊑ X1. It follows from Item (S←,L

NC
) of Definition 160 that T2 |= Z ⊑ Y2 for every

Y2 ∈ non-conjT2
(X2) with T2 ̸|= ran(ζ ) ⊑ Y2 if ζ ̸= ε . Hence, T2 |= ran(ζ )⊓D ⊑ X2 by

Lemma 34.
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• there exists an axiom of the form X1 ≡ ∃s.B1 in T1: By Lemma 34 we have that either a1)
there exists Z ∈ Σ(ran,ζ ) such that T1 |= Z ⊑ X1, or a2) there exists a conjunct ∃t.C′ of C
such that T1 |= t ⊑ s and T1 |= ran(t)⊓C′ ⊑ B1. For a1), we proceed as above and obtain
T2 |= ran(ζ )⊓C ⊑ X2. Consider a2). As T1 |= ran(t)⊓C′ ⊑ B1 and C′ is an E L Σ-concept, it
holds that B is (Σ, ran, t)-entailed by Defintion 158. Let Y2 ∈ non-conjT2

(X2). As t ∈ NR∩Σ

with T1 |= t ⊑ s, we obtain by Item (S←,L
∃ ) of Definition 160 that either i) T2 |= dom(t)⊑ Y2,

ii) T2 |= ran(r)⊑Y2, for ζ = r, or iii) there exists Y2 ≡ ∃r′.B2 ∈T2, such that T2 |= t ⊑ r′ and
(B1,B2, t) ∈ S For i), it implies that T2 |= ∃t.D′ ⊑Y ′. For ii), we obtain T2 |= ran(r)⊑Y2. For
iii), since T1 |= ran(t)⊓D′⊑B, and D′ is an E L Σ-concept, the induction hypothesis yields that
T2 |= ran(t)⊓D′ ⊑ B2. Then T2 |= ∃t.(ran(t)⊓D′)⊑ ∃t.B2 and, thus, T2 |= ∃t.D′ ⊑ Y2. For
ζ = ε , we have that T2 |= ∃t.D′ ⊑Y2 for every Y2 ∈ non-conjT2

(X2). Hence, T2 |= ∃t.D′ ⊑ X2.
For ζ = r, we obtain that T2 |= ∃t.D′ ⊑Y2 or T2 |= ran(r)⊑Y2 for every Y2 ∈ non-conjT2

(X2).
Hence, T2 |= ran(r)⊓∃t.D′ ⊑ X2.

• there exists an axiom of the form X ≡ X1⊓ . . .⊓Xn in T1: By Item (S←,L
⊓ ) of Definition 160 we

have that b1) for ζ = r: T2 |= ran(r)⊑Y2 or there exists i ∈ {1, ...,n} such that T1 ̸|= ran(r)⊑
Xi and (xXi ,xY ′ ,ε) ∈←↩ran, or b2) for ζ = ε: (xXi ,xY ′ ,ε) ∈←↩ran for some i ∈ {1, ...,n}. For
b1), we have that T2 |= ran(r) ⊑ Y2, or, since T2 |= ran(r)⊓D ⊑ Xi, (xXi ,xY ′ ,ε) ∈ ←↩ran,
and Xi is non-conjunctive in T1, we have that T2 |= ran(r)⊓D ⊑ Y ′ by applying one of the
two previous cases. This implies that T2 |= ran(r)⊓D ⊑ Y ′ for every Y2 ∈ non-conjT2

(X2).
Hence, T2 |= ran(r)⊓D ⊑ X ′. For b2), since T2 |= D ⊑ Xi, (xXi ,xY ′ ,ε) ∈ ←↩ran, and Xi is
non-conjunctive in T1 we obtain T2 |= D⊑Y ′ by applying one of the previous two cases again.
We have established that T2 |= D⊑ Y ′ for every Y2 ∈ non-conjT2

(X2). Hence, T2 |= D⊑ X2.

□

Lemma 185 If ⟨T1,X1⟩ ∼←,Ran
Σ,ζ

⟨T2,X2⟩, then: for every E L ran
Σ -concept D such that T1 |= D⊓

ran(ζ )⊑ X, it holds that T2 |= D⊓ ran(ζ )⊑ X ′.

Proof We show the lemma by induction on the structure of D. Let D be an E L ran
Σ -concept and

let ⟨T1,X1⟩ ∼←,Ran
Σ,ζ

⟨T2,X2⟩ with X ∈ NC such that T1 |= D⊑ X if ζ = ε , or T1 |= ran(r)⊓D⊑ X
if ζ = r. Note that D ̸=⊤ if ζ = ε . We distinguish between the following cases, which are mutually
exclusive as T1 is a terminology:

• X is pseudo-primitive in T1: as ran(ζ )⊓D is an E L ran-concept, it follows from Lemma 34
that there exists Z ∈ Σ(Ran,ζ ) such that T1 |= Z ⊑ X .

As ⟨T1,X1⟩ ∼←,Ran
Σ,ζ

⟨T2,X2⟩ and Z ∈ Σ(Ran,ζ ), it follows from Item (S←,L
NC

) of Definition 160
that T2 |= X ⊑ Y2 for every Y2 ∈ non-conjT2

(X) with T2 ̸|= ran(ζ ) ⊑ Y ′ if ζ ̸= ε . Hence,
T2 |= ran(ζ )⊓D⊑ X ′. by Lemma 34.
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• there exists an axiom of the form X1 ≡ ∃s.B1 in T1: By Lemma 34 we have that either a1)
there exists Z ∈ Σ(Ran,ζ ) such that T1 |= Z ⊑ X1, or a2) there exists a conjunct ∃t.D′ of D
such that T1 |= t ⊑ s and T1 |= ran(t)⊓D′ ⊑ B1. For a1), we proceed as above and obtain
T2 |= ran(ζ )⊓D⊑ X . Consider a2). As T1 |= ran(t)⊓D′ ⊑ B and ran(t)⊓D′ is an E L ran

Σ -
concept, it follows Defintion 158 that B is (Σ,Ran, t)-entailed. Let Y2 ∈ non-conjT2

(X2).
As t ∈ NR ∩Σ with T1 |= t ⊑ s, we obtain by Item (S←,L

∃ ) of Definition 160 that either i)
T2 |= dom(t)⊑ Y2, ii) T2 |= ran(r)⊑ Y2 for ζ = r, or iii) there exists Y2 ≡ ∃r′.B2 ∈ T2 with
T2 |= t ⊑ r′ and ⟨T1,B1⟩ ∼←,Ran

Σ,t ⟨T2,B2⟩. For i), we have that T2 |= ∃t.D′ ⊑ Y2. For ii), we
obtain T2 |= ran(r)⊑ Y ′. For iii), since T1 |= ran(t)⊓D′ ⊑ B1, and ran(t)⊓D′ is an E L ran

Σ -
concept, the induction hypothesis yields that T2 |= ran(t)⊓D′ ⊑ B2. Then T2 |= ∃t.(ran(t)⊓
D′)⊑ ∃t.B2 and, thus, T2 |= ∃t.D′ ⊑ Y2. For ζ = ε , we have that T2 |= ∃t.D′ ⊑ Y2 for every
Y2 ∈ non-conjT2

(X2). Hence, T2 |= ∃t.D′ ⊑ X2. For ζ = r, we obtain that T2 |= ∃t.D′ ⊑ Y ′ or
T2 |= ran(r)⊑ Y2 for every Y2 ∈ non-conjT2

(X2). Hence, T2 |= ran(r)⊓∃t.D′ ⊑ X2.

• there exists an axiom of the form X1 ≡ X11⊓ . . .⊓X1n in T1:

Let Y2 ∈ non-conjT2
(X2). By Item (S←,L

⊓ ) of Definition 160 we have that b1) for ζ = r:
T2 |= ran(r)⊑Y2 or there exists i∈{1, ...,n} such that T1 ̸|= ran(r)⊑X1i and ⟨T1,X1i⟩∼←,Ran

Σ,ε

⟨T2,Y2⟩, or b2) for ζ = ε: ⟨T1,X1i⟩ ∼←,Ran
Σ,ε ⟨T2,Y2⟩ for some i ∈ {1, ...,n}. For b1), we have

that T2 |= ran(r) ⊑ Y2, or, since T2 |= ran(r)⊓D ⊑ Xi, ⟨T1,X1i⟩ ∼←,Ran
Σ,ε ⟨T2,Y2⟩, and X1i

is non-conjunctive in T1 we have that T2 |= ran(r)⊓D ⊑ Y2 by applying one of the two
previous cases. This implies that T2 |= ran(r)⊓D⊑ Y2 for every Y2 ∈ non-conjT2

(X2). Hence,
T2 |= ran(r)⊓D ⊑ X2. For b2), since T2 |= D ⊑ X1i, ⟨T1,X1i⟩ ∼←,Ran

Σ,ε ⟨T2,Y2⟩, and Xi is
non-conjunctive in T1, we obtain T2 |= D⊑Y2 by applying one of the previous two cases again.
We have established that T2 |= D⊑ Y2 for every Y2 ∈ non-conjT2

(X2). Hence, T2 |= D⊑ X2.

□

Lemma 185 If ⟨T1,X1⟩ ∼←,Ran
Σ,ζ

⟨T2,X2⟩, then: for every E L ran
Σ -concept D such that T1 |= D⊓

ran(ζ )⊑ X, it holds that T2 |= D⊓ ran(ζ )⊑ X ′.

Proof The statement of the lemma follows from Lemma 184 and Lemma 185. □

We then give the definition of sub(D) for E L ran-concept D, which will be used in the following
proof.

Definition 186 Let D be an E L ran-concept, A ∈ NC and r ∈ NR.
We define the set sub(D)⊆ E L ran inductively as follows:

• sub(⊤) = {⊤};

• sub(A) = {A};

• sub(dom(r)) = {dom(r)};
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• sub(ran(r)) = {ran(r)};

• sub(∃r.D) = {∃r.D}∪ sub(D);

• sub(D1⊓D2) = {D1⊓D2}∪ sub(D1)∪ sub(D2).

Moreover, we define the set sub0(C)⊆ E L H inductively as follows

• sub0(⊤) = {⊤};

• sub0(A) = {A};

• sub0(dom(r)) = {dom(r)};

• sub0(ran(r)) = {ran(r)};

• sub0(∃r.C) = {∃r.C};

• sub0(C1⊓C2) = sub0(C1)∪ sub0(C2).

Lemma 187 Let T be a normalised and acyclic E L H r-terminology, let Σ be a signature, and let
X ∈ NC be pseudo-primitive in T .

Then X is not complex ⟨Σ,L ,ζ ⟩-entailed w.r.t. T .

Proof As X is pseudo-primitive in T , we have non-conjT (X) = {X}. We can infer that there
cannot exist B ∈ Σ with T |= B⊑ Y and T ̸|= B⊑ X . Additionally, we observe that no axiom of the
form X ≡ ∃r.Y is contained in T , which implies that X is not complex ⟨Σ,L ,ζ ⟩ w.r.t. T . □

Lemma 188 Let T be a normalised and acyclic E L H r-terminology and let X ∈NC is not complex
⟨Σ,Ran,ζ ⟩-entailed w.r.t. T .

Then for every D ∈ E L ran
Σ it holds that: T |= D ⊑ X iff there exists B ∈ sub0(D) such that

T |= B⊑ X.

Proof Let D ∈ E L ran
Σ .

“only if”: We assume that T |= D⊑ X . Note that T ̸|=⊤⊑D as T is a normalised terminology,
which implies that ⊤ ̸∈ sub(T ). Then, as X is not complex Σ-entailed w.r.t. T , it follows that there
exists Y ∈ non-conjT (X) such that

(i) for every B ∈ Σ(Ran,ζ ) with T |= B⊑ Y it holds that T |= B⊑ X , and

(ii) for every Y ≡ ∃s.Y ′ ∈T , it holds that either s is not Σ-entailed or Y ′ is not ⟨Σ,Ran,ζ ⟩-entailed
in T .
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Note that T |= D ⊑ Y since T |= X ⊑ Y . We now distinguish between the following cases. If
Y is pseudo-primitive in T , then it follows from Lemma 34 that there exists B ∈ sub0(D), B ∈
NC∪{dom(r), ran(r) | r ∈ NR } with T |= B⊑ Y , which implies that T |= B⊑ X by (i).

Otherwise, there exists an axiom Y ≡∃s.Y ′ ∈T and it holds that T |= D⊑∃s.Y ′. If follows from
Lemma 35 that either (a) there exists B ∈ sub0(C),B ∈ sub0(D), B ∈ NC∪{dom(r), ran(r) | r ∈ NR }
with T |=B⊑Y , or (b) there exists D′⊓ran(s′)∈ sub(D) with T |=D′⊓ran(s′)⊑Y ′ and T |= s′⊑ s.
For (a), we have T |= B ⊑ Y , and thus, T |= B ⊑ X by (i). We note that (b) cannot hold as
sig(D′)⊆ Σ, which implies that T |= D′⊓ ran(s)⊑ Y ′ always holdes, then Y ′ is ⟨Σ,Ran,ζ ⟩-entailed,
which contradicts to (ii). So T |= B⊑ X .

“if” Let B ∈ sub0(D) such that T |= B⊑ X . Since T |= D⊑ B, it follows that T |= D⊑ X . □

Lemma 189 Let T be a normalised and acyclic E L H r-terminology and let X ∈NC is not complex
⟨Σ, ran,ζ ⟩-entailed w.r.t. T . Then for every C ∈ E L Σ it holds that: T |=C⊓ ran(ζ )⊑ X iff there
exists B ∈ sub0(C) such that T |= B⊑ X.

Proof Let C ∈ E L Σ.
“only if”: We assume that T |=C⊓ ran(ζ ) ⊑ X . Note that T ̸|= ⊤ ⊑C as T is a normalised

terminology, which implies that ⊤ ̸∈ sub(T ). Then, as X is not complex Σ-entailed w.r.t. T , it
follows that there exists Y ∈ non-conjT (X) such that

(i) for every B ∈ Σ(ran,ζ ) with T |= B⊑ Y it holds that T |= B⊑ X , and

(ii) for every Y ≡ ∃s.Y ′ ∈T , it holds that either s is not Σ-entailed or Y ′ is not ⟨Σ, ran,ζ ⟩-entailed
in T .

Note that T |=C⊓ ran(ζ )⊑ Y since T |= X ⊑ Y . We now distinguish between the following cases:
If Y is pseudo-primitive in T , then it follows from Lemma 34 that there exists B ∈ sub0(C),

B ∈ NC∪{dom(r), ran(r) | r ∈ NR } with T |= B⊑ Y , which implies that T |= B⊑ X by (i).
Otherwise, there exists an axiom Y ≡ ∃s.Y ′ ∈ T and it holds that T |=C⊓ ran(ζ )⊑ ∃s.Y ′. If

follows from Lemma 35 that either (a) there exists B ∈ sub0(C), B ∈NC∪{dom(r), ran(r) | r ∈NR }
with T |= B⊑Y , or (b) there exists C′⊓ ran(s′)∈ sub(C) with T |=C′⊓ ran(s′)⊑Y ′ and T |= s′ ⊑ s.
For (a), we have T |= B ⊑ Y , and thus, T |= B ⊑ X by (i). We note that (b) cannot hold as
sig(C′)⊆ Σ, which implies that T |=C′⊓ ran(s′)⊑ Y ′ always holdes, then Y ′ is ⟨Σ, ran,ζ ⟩-entailed,
which contradict to (ii). So T |= B⊑ X .

“if”: let B ∈ sub0(C) such that T |= B ⊑ X . Since T |= C⊓ ran(ζ ) ⊑ B, it follows that T |=
C⊓ ran(ζ )⊑ X . □

Lemma 190 Let χ = ⟨T1,X1,Σ,T2,X2, ran⟩ and M←(X1,X2)
:= COVER←(T1,X1,Σ,T2,X2, ran,ζ ). If

⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨T2,X2⟩, then M←(X1,X2)
is the set such that for every M ∈M←(X1,X2)

, ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨M ,X2⟩ and for any M ′ ⊆M , ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨M ′,X2⟩ does not hold.
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Proof First we prove that M←(X1,X2)
is a cover of the set M such that for every M ∈M←(X1,X2)

,
⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨M ,X2⟩ hold.

(i) We show that every M ∈M←(X1,X2)
, ⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨M ,X2⟩ holds. That is, we prove that for

every C ∈ E L Σ, T1 |= ran(ζ )⊓C ⊑ X1 implies that M |= ran(ζ )⊓C ⊑ X2 and M ⊆T2.
First, we define the relation ⋗T ⊆ NC×NC as follows: for X ,Y ∈ NC we set X ⋗Y iff either

there exists X ≡ ∃r.Y ∈T or there exists X ≡ Y ⊓ . . .⊓Yn ∈T such that Yi = Y for some 1≤ i≤ n.
Note that ⋗T is well-founded as T is acyclic. The proof now proceeds by induction on ⋗T2 .

Let X1,X2 ∈ NC such that ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨T2,X2⟩, and let M ∈M←(X1,X2)
. We now distinguish

between the following cases.
If X1 is not ⟨Σ, ran,ζ ⟩-entailed in T1, then M = /0 and there does not exist C ∈ E L Σ with

T1 |= ran(ζ )⊓C ⊑ X1. Hence, it trivially holds for every C ∈ E L Σ with T1 |= ran(ζ )⊓C ⊑ X1 that
M |= ran(ζ )⊓C ⊑ X2.

Otherwise, X1 is ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1. We further distinguish between the following cases.
If X1 is not complex ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, then let C ∈ E L Σ such that T1 |=C⊑ X1. Then by
Lemma 189 there exists B∈ sub0(C) such that T1 |= B⊑ X1. As ⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨T2,X2⟩, there exists

J ∈ JustT2(B⊑ X2) with J ⊆M , which implies that M |=C ⊑ X2, hence, M |= ran(ζ )⊓C ⊑ X2.
Otherwise, X1 is complex ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1. We distinguish between the following

cases:

• If X1 ≡ ∃r.Y1 ∈T1 such that r is not Σ-entailed or Y1 is not ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1. then
let C ∈ E L Σ such that T1 |= ran(ζ )⊓C ⊑ X1, and therefore T1 |= ran(ζ )⊓C ⊑ ∃r.Y1. By
Lemma 34 we can infer that there exists B ∈ sub0(C) (B ∈ NC∪{dom(r), ran(r) | r ∈ NR })
with T1 |= B⊑ ∃r.Y1. We can then show that M |=C ⊑ X2 as above.

• If X1 ≡ ∃r.Y1 ∈ T1 such that T1 |= s ⊑ r, s ∈ Σ and Y1 is ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, then
let C ∈ E L Σ such that T1 |= C⊓ ran(ζ ) ⊑ X1, and therefore T1 |= C⊓ ran(ζ ) ⊑ ∃r.Y1. By
Lemma 34 either (a) there exists B ∈ sub0(C) (B ∈ NC ∪{dom(r), ran(r) | r ∈ NR }) with
T1 |= B ⊑ ∃r.Y1, or (b) there exists ∃r′.C′ ∈ sub0(C) with T1 |= C′⊓ ran(r′) ⊑ Y1 and T1 |=
r′ ⊑ s.

For (a), we can show that M |=C⊓ ran(ζ )⊑ X2 as above.

For (b), as ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨T2,X2⟩, we can infer that for every X ′2 ∈ non-conjT2
(X2), there

exists X ′2≡∃r′.Y ′2 ∈T2 such that T2 |= r′⊑ s and ⟨T1,Y1⟩ ∼←,ran
Σ,ζ

⟨T2,Y ′2⟩. Moreover, for every
X ′2 ∈ non-conjT2

(X2) not entailed by dom (s) or ran(ζ ), there exists M ′
Y ′2
∈M←(Y1,Y ′2)

(Line 6 in
Algorithm 24) such that M ′

Y ′2
∪{X ′2 ≡ ∃r.Y ′2} ⊆M (Line 8 in Algorithm 24).

By applying the induction hypothesis we have that for every M ′
Y ′2
∈M←(Y1,Y ′2)

, ⟨T1,Y1⟩ ∼←,ran
Σ,s

⟨M ,Y ′2⟩ holds.

Consequently, for every X ′2 ∈ non-conjT2
(X2) that does not entailed by dom (s) or ran(ζ ),

we have that M |= C′⊓ ran(s) ⊑ Y ′2, which imples M |= ∃r.(C′⊓ ran(s)) ⊑ ∃r.Y ′2 ≡ X ′2 then
we infer that M |= ∃r.(C′ ⊓ ran(s)) ⊑ ∃r.Y ′2 ≡ X ′2 for every X ′2 ∈ non-conjT2

(X2) that does
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not entailed by dom (s) or ran(ζ ). As ∃r′.C′ ∈ sub0(C) and max-tree ⊓T2
(X2)⊆M (Line 3 in

Algorithm 24), we have M |= ran(ζ )⊓C ⊑ X2.

If X1 ≡ Y1 ⊓ . . .⊓Ym ∈ T1, then let C ∈ E L Σ such that T1 |= ran(ζ )⊓C ⊑ X1, i.e. T1 |=
ran(ζ )⊓C ⊑ X ′1 for every X ′1 ∈ non-conjT1

(X1) such that T2 |= ran(r)⊑ X ′2. As M←(X1,X2)
̸= /0,

we can infer that there exists Γ ∈ DefForest⊓T2
(X2) such that for every X ′2 ∈ leaves(Γ), there

exists ψ ∈ non-conjT1
(X1) such that ⟨T1,ψ⟩ ∼←,ran

Σ,ζ
⟨T2 \δΓ,X ′2⟩. We can get that there exists

M ′
X ′2
∈ COVER←(T1,T2 \δΓ,Σ,ψ,X ′2, ran,ε) with M ′

X ′2
⊆M (Lines 4 to 17 in Algorithm 25).

By applying the induction hypothesis we have for every X ′2 ∈ leaves(Γ), ⟨T1,ψ⟩ ∼←,ran
Σ,ζ

⟨M ′
X ′2
,X ′2⟩ where M ′

X ′2
⊆ T2 \ δΓ i.e. M ′

X ′2
|= C ⊑ X ′2 (as ζ = ε) and M |= C ⊑ X ′2 hold as

T1 |=C ⊑ ψ . Consequently, we have M |=C ⊑ X2 as Γ⊆M (Line 14 in Algorithm 25).

(ii) We show that for every X1,X2 ∈ NC with ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨T2,X2⟩, and for every subsumee
module M such that ⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨T2,X2⟩, there exists M ′ ∈M←(X1,X2)

such that M ′ ⊆M .
First, we define the relation ⋗T1 ⊆ NC×NC as follows: for X ,Y ∈ NC we set X ⋗Y iff either

there exists X ≡ ∃r.Y ∈T1 or there exists X ≡ Y1⊓ . . .⊓Yn ∈T1 such that Yi = Y for some 1≤ i≤ n.
Note that ⋗ is well-founded as T1 is acyclic.

The proof now proceeds by induction on ⋗. Let X1,X2 ∈NC with ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨T2,X2⟩ and let
M be a subsumee module under χ = ⟨T1,X1,Σ,T2,X2, ran,ζ ⟩. Additionally, let S be a Σ-subsumee
simulation from T1 to M with (X1,X2,ζ ) ∈ S.

First, we observe that for every φ ∈ Σ(ran,ζ ) with T1 |=B⊑X1, there exists JM
φ⊑X1

∈ JustT2(φ ⊑X2)

with JM
φ⊑X1

⊆M as M is a subsumee module under χ = ⟨T1,X1,Σ,T2,X2, ran,ζ ⟩.
We now distinguish between the following cases. If X1 is not ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, we

set M ′ := /0. Then it holds that M ′ ∈M←(X1,X2)
(Line 3 in Algorithm 26) and M ′ ⊆M .

Otherwise, X1 is ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, and we proceed as follows. If X1 is not complex
⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, we set M ′ :=

⋃
φ∈Σran,ζ JM

φ⊑X1
. Then it holds that M ′ ∈M←(X1,X2)

(Line 5
in Algorithm 26 and Algorithm 23) and M ′ ⊆M .

Otherwise, X1 is complex ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, which implies that X1 is not pseudo-
primitive in T1 by Lemma 187. We now distinguish between the following two cases:

1. If X1 ≡ ∃r.Y1 ∈T1, we analyse the following subcases:

• If r ̸∈ Σ or Y1 is not ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, then for M ′ :=
⋃

φ∈Σ JM
φ⊑X1

it holds that
M ′ ∈M←(X1,X2)

(Line 5 in Algorithm 26 and Algorithm 23) and M ′ ⊆M .

• Otherwise, we assume that Y1 and r are ⟨Σ, ran,ζ ⟩-entailed w.r.t. T1, T |= s ⊑ r and
s ∈ Σ. By Condition (S→∃ ) we have that for every X ′2 ∈ non-conjM (X2) not entailed by
dom(s) or ran(ζ ) w.r.t. T2 there exists X ′2 ≡ ∃r.Y ′2 ∈M such that (Y1,Y ′2,s) ∈ S.

Now we show that max-tree ⊓T2
(X2)⊆M by showing that

max-tree ⊓T2
(X2) = max-tree ⊓M (X2).
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It immediately holds that max-tree ⊓M (X2) ⊆ max-tree ⊓T2
(X2) as M ⊆ T2. Let α ∈

max-tree ⊓T2
(X2). If we assume towards a contradiction that α ̸∈ max-tree ⊓M (X2), then

there exists ξ ∈ leaves(max-tree ⊓M (X2)) such that ξ ∈ def ⊓T2
and ξ ≡ ∃r.ψ ∈M ⊆ T2.

We have derived a contradiction.

Let X ′2 ∈ non-conjM (X2)such that X ′2 not entailed by dom(s) or ran(ζ ). By Condi-
tion (S→∃ ) there exists αX ′2

:= X ′2 ≡∃r′.Y ′2 ∈M with T2 |= s⊑ r′, s∈ Σ and (Y1,Y ′2,s)∈ S.
Consequently, it holds that ⟨T1,Y1⟩ ∼←,ran

Σ,s ⟨M ,X2⟩. By applying the induction hypothe-
sis there exists M ′

X ′2
∈M←(Y1,Y ′2)

such that M ′
X ′2
⊆M .

We set
M ′ :=

⋃
φ∈Σ(ran,ζ )

T2|=φ⊑X2

JM
φ⊑X2
∪{max-tree ⊓T2

(X2)}∪ JustT2(s⊑ r′)

∪
⋃

X ′2∈non-conjM (X2)
T2|=ran(ζ )⊑x′2

M ′
X ′2
∪{αX ′2

}.

Then it holds that M ′ ∈M←(X1,X2)
(Line 10 in Algorithm 26 and Line 7 in Algorithm 24)

and M ′ ⊆M .

2. If X1 ≡ Y1⊓ . . .⊓Ym ∈ T1, then for every X ′2 ∈ non-conjM (X2) that is not entailed by ran(ζ )

w.r.t. T2, there exists ψ ∈ non-conjT1
(X1) such that ⟨T1,ψ⟩ ∼←,ran

Σ,ζ
⟨T2 \ δΓ,X ′2⟩ by Condi-

tion (S←,L
⊓ ). Hence, for Γ := max-tree ⊓M (X2) it holds that Γ ∈ DefForest⊓T2

(X2) and Γ⊆M .

Moreover, for every X ′2 ∈ non-conjM (X2) that is not entailed by ran(ζ ) w.r.t. T2, it holds that
M is a subsumee module under χψ = ⟨T1,ψ,Σ,T2,X ′2, ran,ζ ⟩. By applying the induction
hypothesis for every X ′2 ∈ non-conjM (X2), there exists M ′

X ′2
∈M←(ψ,X ′2)

such that M ′
X ′2
⊆M .

We set
M ′ :=

⋃
φ∈Σ

T2|=φ⊑X2

JM
φ⊑X2
∪Γ∪

⋃
X ′2∈non-conjM (X2)
T2|=ran(ζ )⊑x′2

M ′
X ′2
.

Note that for every X ′2 ∈ non-conjM (X2) that is not entailed by ran(ζ ) w.r.t. T2, it holds that
⟨T1,φ⟩ ∼←,ran

Σ,ζ
⟨T2 \δΓ,X ′2⟩, as (φ ,X ′2,ε) ∈ S and M ⊆T2 \δΓ.

Now we have that for every M ∈M←X1,X2
, M, ⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨T2,X2⟩ holds by Definition 58.

We prove by assuming towards a contradiction. We assume now towards a contradiction that
there exists an M ′ ⊆M , that⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨M ′,X2⟩ does not hold. Let α ∈M \M ′. As M←X

is initialed as { /0}, we enumerate all possible situations that M is generated in the algorithms But
none of them is possible, as the absence of α will break the condition of subsumee simulation. Then
⟨T1,X1⟩ ∼←,ran

Σ,ζ
⟨M ′,X2⟩ does not hold anymore. Finally, we have that M←(X1,X2)

is a cover of the set
such that for every M ∈M←(X1,X2)

, ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨M ,X2⟩. □
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Theorem 163 Let χ = ⟨T1,X1,Σ,T2,X2,L ⟩, where T1 and T2 are two acyclic and normalised
E L H r-terminologies, Σ is a signature and X1,X2 ∈ Σ∩NC. Additionally, let

M := COVER←(T1,X1,Σ,T2,X2, ran,ζ ).

If T1 ∼←Σ T2, then for every M ∈M, it holds that ⟨T1,X1⟩ ∼←,L
Σ,ζ
⟨M ,X2⟩ and M is minimal w.r.t.

set inclusion.

Proof It follows from Lemma 190. □

Lemma 191 Let χ = ⟨T1,X1,Σ,T2,X2, ran⟩ and

Mran := COVER←(T1,X1,Σ,T2,X2, ran,ε)⊗
⊗

r∈Σ∩NR

COVER←(T1,X1,Σ,T2,X2, ran,r).

If ⟨T1,X1⟩ ∼←,ran
Σ,ζ

⟨T2,X2⟩, then M←(X1,X2)
is the set of all subsumee projection justifications under χ .

Proof By Lemma 190 and Lemma 72, we have that for every M ∈Mran, M is the minimal set such
that ⟨T1,X1⟩ ∼←,ran

Σ,ε ⟨M ,X2⟩, and ⟨T1,X1⟩ ∼←,ran
Σ,r ⟨M ,X2⟩. By Theorem 162, we have that for every

C,C′ ∈ E L ran
Σ with T1 |= ran(r)⊓C ⊑ X1 and T1 |= C′ ⊑ X1, it holds that T2 |= ran(r)⊓C ⊑ X2

and T2 |= C′ ⊑ X2. By Definition 137, we have that M←(X1,X2)
is the set of all subsumee projection

justifications under χ .
□

Lemma 192 Let χ = ⟨T1,X1,Σ,T2,X2,Ran⟩ and M←(X1,X2)
:= COVER←(T1,X1,Σ,T2,X2,Ran,ζ ). If

⟨T1,X1⟩ ∼←,Ran
Σ,ζ

⟨T2,X2⟩, then M←(X1,X2)
is the set of all subsumee projection justifications under χ .

Proof Similar as proof of Lemma 190, we can proof that M←(X1,X2)
is the set such that for M ∈

M←(X1,X2)
, ⟨T1,X1⟩ ∼←,Ran

Σ,ζ
⟨M ,X2⟩ and M is minimal w.r.t. set inclusion. By Theorem 162, we have

that for every C ∈ E L ran
Σ with T1 |=C ⊑ X1 , it holds that T2 |=C ⊑ X2. By Definition 137, we have

that M←(X1,X2)
is the set of all subsumee projection justifications under χ . □

Theorem 164 Let χran = ⟨T1,X1,Σ,T2,X2, ran⟩, χRan = ⟨T1,X1,Σ,T2,X2,Ran⟩, where T1 and T2

are two acyclic and normalised E L H r-terminologies, Σ is a signature and X1,X2 ∈ Σ∩NC. Addi-
tionally, let

Mran := Minimise⊆(COVER←(T1,X1,Σ,T2,X2, ran,ε)⊗
⊗

r∈Σ∩NR

COVER←(T1,X1,Σ,T2,X2, ran,r)),

MRan := COVER←(T1,X1,Σ,T2,X2, ran,ε).

If T1 ∼←Σ T2, then Mran is the set of all subsumee justifications under χRan and MRan is the set of all
subsumee justifications under χRan.
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Proof It follows from Lemma 191 and Lemma 192. □

6.5 Evaluation
We implemented the algorithms introduced above in Java. Now we present a first evaluation of the
proposed projection module extraction techniques on real-world biomedical ontologies with the help
of PULi [22], a state-of-the-art tool for computing justifications for E L ontologies. All experiments
were conducted on machines equipped with an Intel Xeon Core 4 Duo CPU running at 2.50 GHz and
with 64 GiB of RAM.

We consider computing projection modules between two prominent biomedical ontologis: MeSH1

and Snomed CT2. As MeSH is a hierarchically-organized terminology for indexing and cataloging
of biomedical information. Therefore, MeSH was used as reference ontology in our experiment.
We chose Snomed CT as an implementing ontology since it contains overwhelmingly many axioms.
Automated tool support is needed for extracting the most relevant information to be shown to users.
There exist 29962 common concept names between MeSH and Snomed CT. For every common
concept name, we generated a signature by including its super-concepts that are also common concept
names between these two terminologies. In total, 6572 signatures were generated this way. The
number of concept names contained in each signature ranges from 2 to 13. The computation of
projection modules for each signature finished within 1 second.

Note that when Snomed CT was constructed, MESH was not used as a guideline or a reference
ontology. However, our experiment shows that for 19.8% of the signatures among those tested, there
exist projection modules between MESH and Snomed CT, which illustrates the overlap between these
two ontologies. The resulting projection modules are relatively small, thus lending themselves to
manual inspection. Table 6.1 shows the minimal, maximal and median value of ⊥⊤⋆-module and
projection module w.r.t. the generated signatures. One can see that, in general, projection module is
smaller than the star modules of the implementing ontology SNOMED, so that users can focus on a
smaller number of axioms in Snomed CT to verify how the knowledge of MESH about a signature is
implemented in Snomed CT.

# ⊥⊤⋆-Mod(Snomed CT) #M c
ρ (Projection Module)

1 / 116 / 2.0 1 / 4 / 1.0

Table 6.1 Sizes of ⊥⊤⋆-modules of Snomed CT and Projection Modules of Snomed CT regarding
MeSH (minimal / maximal / median)

1http://bioportal.bioontology.org/ontologies/MESH
2http//www.ihtsdo.org/snomed-ct/

http://bioportal.bioontology.org/ontologies/MESH
http//www.ihtsdo.org/snomed-ct/


Chapter 7

Conclusion and Future Work

7.1 Conclusion
In this thesis, we presented a framework to assist users to extract knowledge from terminologies
that are formulated in the Description Logics E L H and E L H r. We provided three different
approaches catering for users’ demands: extracting minimal basic subsumption modules (Chapter 4)
that preserve subsumption queries over the terms of interest, computing best excerpts (Chapter 5)
that best capture users’ interest with a size restriction, and computing projection modules of a target
ontology (Chapter 6) that entail subsumption, instance and conjunctive queries from a reference
ontology. Computing best excerpts and minimal subsumption modules (glass-box approach) is based
on a notion called subsumption justification. We presented algorithms for computing subsumption
justifications of an acyclic E L H - and E L H r-terminology w.r.t. a signature (Chapter 3). The
black-box approach for computing minimal modules is language-independent. However, it relies on
an external tool for computing the logical difference between ontologies. At present, the state-of-
the-art tool for computing logical differences can only handle (cyclic) E L H r-terminologies. For
computing projection modules, we proposed a new notion called projection justification. Contrary to
subsumption justifications that only consider one ontology, a projection justification is related to two
ontologies. A projection justification is a subset of a target ontology obtained from projecting into the
target ontology all subsumption entailments of a reference ontology. We presented the algorithms for
computing projection justifications for three different types of queries (subsumption, instance and
conjunctive queries) and proved their correctness. A summary of the computational complexity of the
algorithms developed in this thesis is presented in Table 7.1. In general, subsumption justifications,
minimal modules, projection justifications and projection modules can all be computed in EXPTIME
in the size of the input. However, computing best excerpts runs in NEXPTIME since the input clauses
of the partial Max-SAT encoding can be exponentially large, which in turn is due to fact that the
number of subsumption justifications is exponentially bounded. We implemented Java-prototypes
of our algorithms and we evaluated them on large biomedical ontologies. The results show that the
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approaches we propose in this thesis can assist users to extract knowledge that is relevant to their
interests from description logic terminologies.

Conditions Subsumption Justification Minimal Module Best Excerpt Projection Justification Projection Module
General Case EXP EXP NEXP EXP EXP

Table 7.1 Complexity Results for E L H r-Terminologies

7.2 Future Work
We conclude the thesis by discussing possible directions for future work.

Subsumption Justification We would like to evaluate our algorithms for computing subsumption
justifications for E L H r-terminologies after an efficient tool for computing justifications for E L H r-
terminologies has been developed. Morever, we expect that the algorithms for computing subsumption
justifications could be extended to deal with cyclic terminologies and general E L -TBoxes. A
complete complexity analysis is also expected.

Basic Subsumption Modules In the near future, we plan to generate a benchmark for basic
subsumption modules on E L H - and E L H r-fragment of Snomed CT and NCI ontology. We also
expect to be able to compute basic subsumption modules of ontologies formulated in more expressive
description logics. One option is to extend the algorithm to compute subsumption justifications
as mentioned above. We can also benefit from the research on logical difference and uniform
interpolation, as the black-box algorithm is language-independent. It has been shown that our
black-box algorithm can be used to compute subsumption modules for A L C H -ontologies in [32].

Best Ontology Excerpts Currently, the notion of best excerpts that has been investigated is based
on the metric of logical difference. We would like to explore alternative metrics to enrich the family of
ontology excerpts. One possibility is based on restricted reasoning tasks, such as instance retrieval of
named concepts [41], named concept subsumption [39], or unsatisfiable concepts [18]. The intuition
is that these simplified reasoning tasks are often the main concern in real applications. The current
definition of ontology excerpt insists on keeping the original form of the axioms. Another interesting
direction to generalise the notion of ontology excerpts is to allow for modified axioms. For this, a
procedure similar to knowledge compilation appears to be promising.

Computing optimal ontology excerpts is often computationally too expensive. An alternative is
to compute approximate ontology excerpts. For this, it is possible to benefit from approximating
algorithms for Constraint-Satisfaction-Problems once the previous task can be conducted. A different
sort of technique for extracting quasi-optimal excerpts has been proposed by using a model from
Information Retrieval [9]. The empirical study shows that it gives non-trivial results compared to
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a direct enumeration or random selection on large real-world ontologies but nevertheless fails to
find the optimal excerpts. To improve this technique, a possibility is to take into account the logical
contribution of each single axiom into the existing approximating model, which could boost its
performance.

Projection Modules We expect that the algorithms can be extended to deal with cyclic terminolo-
gies and possibly general E L H r-TBoxes and consider algorithms for ranking different projection
modules, via weighted signatures for instance. Moreover, we would like to find applications for
projection modules. For example, developing a uniform upper ontology to guide ontology engineers
to build ontologies that satisfy certain requirements.





Bibliography

[1] Alsubait, T., Parsia, B., and Sattler, U. (2014). Measuring similarity in ontologies: A new family
of measures. In Proceedings of EKAW’14: the 19th International Conference on Knowledge
Engineering and Knowledge Management, pages 13–25.

[2] Arif, M. F., Mencía, C., Ignatiev, A., Manthey, N., Peñaloza, R., and Marques-Silva, J. (2016).
BEACON: An efficient SAT-based tool for debugging EL+-ontologies. In Proceedings of SAT’16:
the 19th International Conference on the Theory and Applications of Satisfiability Testing, pages
521–530.

[3] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., editors (2010).
The description logic handbook: theory, implementation, and applications. Cambridge University
Press, 2 edition.

[4] Baader, F., Peñaloza, R., and Suntisrivaraporn, B. (2007a). Pinpointing in the description logic
EL. In Proceedings of KI’07: the 30th Annual German Conference on Artificial Intelligence,
volume 4667 of LNAI, pages 52–67.

[5] Baader, F., Peñaloza, R., and Suntisrivaraporn, B. (2007b). Pinpointing in the description logic
E L . In Proceedings of DL’07: the 20th International Workshop on Description Logics.

[6] Botoeva, E., Konev, B., Lutz, C., Ryzhikov, V., Wolter, F., and Zakharyaschev, M. (2017).
Inseparability and conservative extensions of description logic ontologies: A survey. In Reasoning
Web Summer School 2016, volume 9885 of LNCS, pages 27–89.

[7] Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., and Zakharyaschev, M. (2016a). Games
for query inseparability of description logic knowledge bases. Artificial Intelligence, 234:78 – 119.

[8] Botoeva, E., Lutz, C., Ryzhikov, V., Wolter, F., and Zakharyaschev, M. (2016b). Query-based
entailment and inseparability for alc ontologies. In Proceedings of IJCAI’16: the 25th International
Joint Conference on Artificial Intelligence, pages 1001–1007. AAAI Press.

[9] Chen, J., Ludwig, M., Ma, Y., and Walther, D. (2015). Towards extracting ontology excerpts. In
Proceedings of KSEM’15: the 8th International Conference on Knowledge Science, Engineering
and Management, pages 78–89.

[10] Chen, J., Ludwig, M., and Walther, D. (2016). On computing minimal el-subsumption modules.
In Proceedings of the Joint Ontology Workshops 2016 Episode 2: The French Summer of Ontology
co-located with the 9th International Conference on Formal Ontology in Information Systems
(FOIS 2016).

[11] Del Vescovo, C. and Peñaloza, R. (2014). Dealing with ontologies using cods. In Proceedings of
DL’14: the 27th International Workshop on Description Logics, volume 1193 of CEUR Workshop
Proceedings, pages 157–168.



136 Bibliography

[12] Ecke, A., Ludwig, M., and Walther, D. (2013). The concept difference for E L -terminologies
using hypergraphs. In Proceedings of DChanges’13: the 1st International Workshop on: Document
Changes: Modeling, Detection, Storage and Visualization.

[13] Euzenat, J. and Shvaiko, P. (2013). Ontology Matching, Second Edition.

[14] Fu, Z. (2007). Extending the Power of Boolean Satisfiability: Techniques and Applications. PhD
thesis, Princeton University.

[15] Gatens, W., Konev, B., and Wolter, F. (2014). Lower and upper approximations for depleting
modules of description logic ontologies. In Proceedings of ECAI’14: the 21st European Conference
on Artificial Intelligence, pages 345–350.

[16] Grau, B. C., Horrocks, I., Kazakov, Y., and Sattler, U. (2008). Modular reuse of ontologies:
Theory and practice. Journal of Artificial Intelligence Research, 31(1):273–318.

[17] Hofmann, M. (2005). Proof-theoretic approach to description-logic. In Proceedings of LICS’05:
the 20th Annual IEEE Symposium on Logic in Computer Science, pages 229–237.

[18] Jiménez-Ruiz, E. and Grau, B. C. (2011). Logmap: Logic-based and scalable ontology matching.
In Proceeding of ISWC’11: the 10th International Semantic Web Conference, pages 273–288.

[19] Jung, J. C., Lutz, C., Martel, M., and Schneider, T. (2017). Query conservative extensions in
horn description logics with inverse roles. In Proceedings of IJCAI’17: the 26th International
Joint Conference on Artificial Intelligence, pages 1116–1122.

[20] Kalyanpur, A., Parsia, B., Horridge, M., and Sirin, E. (2007). Finding all justifications of OWL
DL entailments. In Proceedings of ISWC’07 & ASWC’07: the 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference, volume 4825 of LNCS, pages 267–280.

[21] Kalyanpur, A., Parsia, B., Sirin, E., and Hendler, J. A. (2005). Debugging unsatisfiable classes
in OWL ontologies. Journal of Web Semantic, 3(4):268–293.

[22] Kazakov, Y. and Skocovský, P. (2018). Enumerating justifications using resolution. In Pro-
ceedings of IJCAR’18: the 9th International Joint Conference on Automated Reasoning, pages
609–626.

[23] Konev, B., Ludwig, M., Walther, D., and Wolter, F. (2012a). The logical difference for the
lightweight description logic EL. Journal of Artificial Intelligence Research, 44:633–708.

[24] Konev, B., Ludwig, M., and Wolter, F. (2012b). Logical difference computation with CEX2.5.
In Proceedings of IJCAR’12: the 6th International Joint Conference on Automated Reasoning,
pages 371–377.

[25] Konev, B., Lutz, C., Walther, D., and Wolter, F. (2008a). Semantic modularity and module
extraction in description logics. In Proceedings of ECAI’08: the 18st European Conference on
Artificial Intelligence, pages 55–59.

[26] Konev, B., Lutz, C., Walther, D., and Wolter, F. (2009). Formal Properties of Modularisation,
pages 25–66. Springer Berlin Heidelberg, Berlin, Heidelberg.

[27] Konev, B., Lutz, C., Walther, D., and Wolter, F. (2013). Model-theoretic inseparability and
modularity of description logic ontologies. Artificial Intelligence, 203:66–103.



Bibliography 137

[28] Konev, B., Walther, D., and Wolter, F. (2008b). The logical difference problem for description
logic terminologies. In Proceedings of IJCAR’08: the 4th International Joint Conference on
Automated Reasoning, pages 259–274.

[29] Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., and Zakharyaschev,
M. (2009). Minimal module extraction from DL-Lite ontologies using QBF solvers. In Proceedings
of DL’09: the 21st International Workshop on Description Logics, pages 836–841.

[30] Kontchakov, R., Wolter, F., and Zakharyaschev, M. (2008). Can you tell the difference between
dl-lite ontologies? In In Proceedings of KR’08: the 11th International Conference on Principles of
Knowledge Representation and Reasoning, pages 285–295.

[31] Kontchakov, R., Wolter, F., and Zakharyaschev, M. (2010). Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artificial Intelligence, 174(15):1093–1141.

[32] Koopmann, P. and Chen, J. (2017). Computing ALCH-subsumption modules using uniform
interpolation. In Proceedings of SOQE’17: the Workshop on Second-Order Quantifier Elimination
and Related Topics, pages 51–66.

[33] Lehmann, K. and Turhan, A. (2012). A framework for semantic-based similarity measures for
ELH -concepts. In Proceedings of JELIA’12: the 13th European Conference on Logics in Artificial
Intelligence, pages 307–319.

[34] Ludwig, M. and Walther, D. (2014). The logical difference for ELHr-terminologies using
hypergraphs. In Proceedings of ECAI’14: the 21st European Conference on Artificial Intelligence,
pages 555–560.

[35] Lutz, C. and Wolter, F. (2010). Deciding inseparability and conservative extensions in the
description logic EL. Journal of Symbolic Computation, 45(2):194–228.

[36] Martín-Recuerda, F. and Walther, D. (2014). Fast modularisation and atomic decomposition
of ontologies using axiom dependency hypergraphs. In Proceedings of ISWC’14: the 13th
International Semantic Web Conference, pages 49–64.

[37] Presutti, V., Blomqvist, E., Daga, E., and Gangemi, A. (2012). Pattern-based ontology design.
In Ontology Engineering in a Networked World, pages 35–64.

[38] Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95.

[39] Ren, Y., Pan, J. Z., and Zhao, Y. (2010). Soundness preserving approximation for tbox reasoning.
In Proceedings of AAAI’10: the 24th AAAI Conference on Artificial Intelligence.

[40] Romero, A. A., Kaminski, M., Grau, B. C., and Horrocks, I. (2016). Module extraction in
expressive ontology languages via datalog reasoning. Journal of Artificial Intelligence Research,
55:499–564.

[41] Rudolph, S., Tserendorj, T., and Hitzler, P. (2008). What is approximate reasoning? In
Proceedings of RR’08: the 2nd International Conference on Web Reasoning and Rule Systems,
pages 150–164.

[42] Sattler, U., Schneider, T., and Zakharyaschev, M. (2009). Which kind of module should I
extract? In Proceedings of DL’09: the 21st International Workshop on Description Logics, volume
477.



138 Bibliography

[43] Schlicht, A. and Stuckenschmidt, H. (2007). Criteria-based partitioning of large ontologies.
In Proceedings of K-CAP’07: the 4th International Conference on Knowledge Capture, pages
171–172.

[44] Sinz, C. (2005). Towards an optimal cnf encoding of boolean cardinality constraints. In
Proceedings of CP’05: the 11th International Conference on Principles and Practice of Constraint
Programming, pages 827–831.

[45] Suárez-Figueroa, M. C. and Gómez-Pérez, A. (2012). Ontology requirements specification. In
Ontology Engineering in a Networked World, pages 93–106.

[46] Suntisrivaraporn, B., Qi, G., Ji, Q., and Haase, P. (2008). A modularization-based approach
to finding all justifications for OWL DL entailments. In Proceeding of ASWC’08: the 3rd Asian
Semantic Web Conference, pages 1–15.

[47] Troullinou, G., Kondylakis, H., Daskalaki, E., and Plexousakis, D. (2015). RDF digest: Efficient
summarization of RDF/S KBs. In Proceedings of ESWC’15: the 12th European Semantic Web
Conference, volume 9088 of Lecture Notes in Computer Science, pages 119–134.

[48] Vescovo, C. D., Gessler, D., Klinov, P., Parsia, B., Sattler, U., Schneider, T., and Winget, A.
(2011a). Decomposition and modular structure of bioportal ontologies. In Proceedings of ISWC’11:
the 10th International Semantic Web Conference, volume 7031 of Lecture Notes in Computer
Science, pages 130–145.

[49] Vescovo, C. D., Parsia, B., and Sattler, U. (2012). Logical relevance in ontologies. In Proceedings
of DL’12: the 25th International Workshop on Description Logics, volume 846.

[50] Vescovo, C. D., Parsia, B., Sattler, U., and Schneider, T. (2011b). The modular structure of
an ontology: Atomic decomposition. In Proceedings of IJCAI’11 : the 22nd International Joint
Conference on Artificial Intelligence, pages 2232–2237.

[51] Zhang, X., Cheng, G., and Qu, Y. (2007). Ontology summarization based on rdf sentence
graph. In Proceedings of WWW’07: the 16th International Conference on World Wide Web, pages
707–716.

[52] Zhou, Z., Qi, G., and Suntisrivaraporn, B. (2013). A new method of finding all justifications
in OWL 2 EL. In Proceedings of WI’13: the IEEE/WIC/ACM International Conferences on Web
Intelligence, pages 213–220.



!  

Titre :  Extraction de connaissances à partir de terminologies en logique de description. 

Mots clés : Représentation et raisonnement des connaissances, logique de description, Web 
sémantique, modularité d'ontologies, différence logique. 

Résumé : Un nombre croissant d'ontologies de grande taille sont en cours de développement et 
rendues disponibles, par exemple dans des référentiels tels que le bioportail de NCBO. Garantir 
l'accès aux connaissances les plus pertinentes pour les utilisateurs contenues dans des ontologies est 
un défi important. Dans ce travail, nous abordons ce défi en proposant trois approches différentes pour 
extraire des connaissances des ontologies en logique de description: extraire les modules minimaux 
d’ontologies (c’est-à-dire les sous-ontologies minimales pour l’inclusion ensembliste qui préservent 
toutes les implications sur un vocabulaire donné) ; calculer les meilleurs extraits d’ontologie (un 
certain nombre, petit, d’axiomes qui capturent au mieux la connaissance du vocabulaire tout en 
permettant un certain degré de perte sémantique) ; et déterminer les modules de projection (sous-
ontologies d'une ontologie cible qui impliquent des requêtes de subsomption, d'instance ou 
conjonctives qui découlent d'une ontologie de référence). Pour chacune de ces approches, nous 
souhaitons extraire non seulement une, mais toutes les instances de la notion correspondante de 
module. Pour le calcul des modules minimaux et des meilleurs extraits, nous introduisons la notion de 
justification de la subsomption en tant que généralisation de la notion de justification (un ensemble 
minimal d'axiomes nécessaires pour préserver une conséquence logique donnée) afin de capturer la 
connaissance déduite par subsomption sur le vocabulaire. De même, pour le calcul des modules de 
projection, nous introduisons la notion de justifications de projection qui préservent les réponses à 
l’un des trois types de requête impliquées par une ontologie de référence. Enfin, nous évaluons nos 
approches à l’aide d’un prototype d’implémentation des algorithmes sur de grandes ontologies.

Title : Knowledge Extraction from Description Logic Terminologies 

Keywords : Knowledge Representation and Reasoning, Description Logics, Semantic Web, Ontology 
Modularity, Logical Difference. 

Abstract : An increasing number of large ontologies are being developed and made available, e.g., in 
repositories such as the NCBO Bioportal. Ensuring access to the knowledge contained in ontologies 
that is most relevant to users has been identified as an important challenge. In this work, we tackle this 
challenge by proposing three different approaches to extracting knowledge from Description Logic 
ontologies: extracting minimal ontology modules (i.e., sub-ontologies that are minimal w.r.t. set 
inclusion while still preserving all entailments over a given vocabulary); computing best ontology 
excerpts (a certain, small number of axioms that best capture the knowledge about the vocabulary 
while allowing for a degree of semantic loss); and determining projection modules (sub-ontologies of 
a target ontology that entails subsumption, instance or conjunctive queries that follow from a 
reference ontology). For each of these approaches, we are interested in extracting not only one but all 
instances of the module notion. For computing minimal modules and best excerpts, we introduce the 
notion of subsumption justification as a generalisation of the notion of a justification (a minimal set of 
axioms needed to preserve a given logical consequence) to capture the subsumption knowledge over 
the vocabulary. Similarly, for computing projection modules, we introduce the notion of projection 
justifications that preserve the answers to one of three query types as given by a reference ontology. 
Finally, we evaluate our approaches using a prototype implementation of the algorithms on large 
ontologies.

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 


	Contents
	1 Introduction
	1.1 Ontology Modularity
	1.2 Ontology Excerpts
	1.3 Projection Modules
	1.4 Structure of the Thesis

	2 Preliminaries
	2.1 Description Logics
	2.2 Logical Difference between Ontologies
	2.2.1 Proof system for ELHr
	2.2.2 Properties Regarding Logical Differences

	2.3 Ontology Modules
	2.3.1 Inseparability and Semantic Modules
	2.3.2 Locality-Based Modules

	2.4 Ontology Justification
	2.5 Partial Max-SAT Problem

	3 Extraction of Ontology Subsumption Justifications
	3.1 Subsumption Justifications of ELH-Terminologies
	3.1.1 Computing Role Subsumption Justifications
	3.1.2 Computing Subsumer Justifications
	3.1.3 Computing Subsumee Justifications
	3.1.4 Proofs

	3.2 Subsumption Justifications of ELHr-Terminologies
	3.2.1 Computing Subsumer Justifications
	3.2.2 Computing Subsumee Justifications

	3.3 Evaluation

	4 Extraction of Ontology Subsumption Modules
	4.1 Definition of Subsumption Module
	4.2 Black-Box Algorithm
	4.2.1 Computing a Single Minimal Module
	4.2.2 Computing All Minimal Modules

	4.3 Glass-Box Algorithm
	4.4 Evaluation

	5 Extraction of Best Ontology Excerpts
	5.1 Ontology Excerpts
	5.2 Encoding Approach of Computing Best Excerpt
	5.3 Computing Best Excerpt for Weighted Signatures
	5.4 Ranking Axioms in Best Excerpts
	5.5 Evaluation

	6 Extraction of Ontology Projection Module
	6.1 Projection Modules
	6.2 Computing Role Projection Justifications
	6.3 Computing Subsumption Projection Justifications
	6.3.1 Computing Subsumer Projection Justifications
	6.3.2 Computing Subsumee Projection Justifications

	6.4 Proofs
	6.4.1 Proof Regarding Subsumption Projection Justification
	6.4.2 Canonical Model & Helpful Lemmas
	6.4.3 Proof Regarding Subsumer Projection Justification
	6.4.4 Proof Regarding Subsumee Projection Justification

	6.5 Evaluation

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

