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Patchworking, tropical homology, and Betti
numbers of real algebraic hypersurfaces

Abstract

In this thesis, we investigate the Betti numbers of the real part of real algebraic hy-
persurfaces in relation to the homology of the complex part, as well as to the tropical
homology of tropical hypersurfaces.

In particular, we develop a technique, based on Viro’s patchworking method, for con-
structing high-dimensional real algebraic hypersurfaces, and use it to build families of
hypersurfaces whose real parts have asymptotically large Betti numbers. We also prove
tropical analogs to Lefschetz’s hyperplane section theorem, and show that the homology of
non-singular projective tropical hypersurfaces is torsion-free. Finally, we study the action
of the complex conjugation on the homology of some elementary real algebraic hypersur-
faces that serve as building blocks in Viro’s method, and derive the conditions under which
they are Galois maximal.

Keywords

Real algebraic hypersurfaces, toric varieties, Betti numbers, asymptotic Betti numbers,
tropical geometry, tropical homology, tropical Lefschetz hyperplane theorem, Kalinin spec-
tral sequence, patchworking.
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Introduction

A real algebraic variety is an algebraic object defined by equations with real coefficients.
Such equations naturally have real and complex solutions, and the complex conjugation
acts on those solutions as an involution. What we call "topology of real algebraic varieties"
is the study of the topological properties of the conjugation. This thesis inscribes itself in
this field of study.

Understanding the topology of the real part of real algebraic varieties is surprisingly
difficult - much more than that of the complex part. The classification of smooth real
plane projective curves up to isotopy (which is the focus of D. Hilbert’s 16th problem), for
example, was only completed up to degree 6 in the late sixties by D. Gudkov, and in degree
7 by O. Viro in 1979. Regarding real algebraic surfaces in the projective space of dimension
3, even the topology of those of degree 5 has not yet been completely understood.

There are two main directions in which research can advance: new topological con-
straints may be found, and interesting varieties, realizing "extreme" topological types, may
be constructed. Major progress was made in that second direction when Viro invented the
patchworking method, also called Viro’s method, which allows one to build varieties with
complicated prescribed topology by gluing ("patchworking") together simpler varieties.

The patchworking method proved to be very powerful and allowed for the construction
of a diversity of interesting varieties; in particular, Viro used it to disprove V. Ragsdale’s
famous conjecture regarding real projective curves, and I. Itenberg to further show that
the conjecture was wrong by a large asymptotic margin. It was also one of the sources
of tropical geometry, a relatively new domain with strong links to real algebraic geometry
whose main objects of study are certain polyhedral complexes.

In this thesis, we restrict ourselves to the study of the homology of real algebraic
hypersurfaces in toric varieties, and in particular of the dimension of their homology groups
with coefficients in Z2.

In general, the well-known Smith-Thom inequality gives us an upper bound on the
dimension of the total homology of the real part RX of a real algebraic variety X in terms
of the dimension of the total homology of its complex part CX (where Z2 :“ Z{2Z):

dimZ2 H˚pRX;Z2q ď dimZ2 H˚pCX;Z2q. (0.0.1)

13



14 INTRODUCTION

However, other bounds can often be found. There is a certain principle that suggests
that the q-th Betti number of the real part of a real algebraic hypersurface should be
upper-bounded by the sum over p of the (q, p)-th Hodge numbers of its complex part, i.e.

dimZ2 HqpRX;Z2q ď
ÿ

p

hq,ppCXq. (0.0.2)

In general, it is incorrect, but it does hold under certain conditions, and it provides us
with a guideline of sorts. Varieties for which Inequality (0.0.2) is an equality should be
considered as "standard", and we naturally compare more exotic varieties to them.

For instance, the only examples that we had of families of projective hypersurfaces
in general dimension whose Betti numbers are asymptotically maximal in the sense of
Inequality (0.0.1) also verify Inequality (0.0.2) asymptotically - those were constructed by
Itenberg and Viro using a special case of the patchworking method, called combinatorial
patchworking.

Our first result is inspired by their construction. They recursively build a family of
hypersurfaces in ambient dimension n by suspending the hypersurfaces of the family that
they had found in ambient dimension n´ 1, starting with points in the projective line.

We, on the other hand, build a family in ambient dimension n using any families
tXk

d udPN of real projective hypersurfaces in ambient dimensions k “ 1, . . . , n´ 1 (where d
is the degree of Xk

d ); we combine them all together and suspend them, and the asymptotic
Betti numbers of the real parts of the resulting family tY n

d udPN of projective hypersurfaces
in ambient dimension n can be computed from the Betti numbers of the real parts of the
"ingredients" tXk

d udPN (as is the case in Itenberg and Viro’s original construction).
More precisely, if for each k “ 1, . . . , n´ 1 and j “ 0, . . . , k ´ 1,

bjpRXk
d q “ xkj ¨ d

k `Opdk´1q

for some xkj P Rě0, then

bqpRY n
d q ě

1

n

˜

xn´1
q ` xn´1

q´1 `

n´2
ÿ

k“1

q´1
ÿ

j“0

xkj ¨ x
n´1´k
q´1´j

¸

¨ dn `Opdn´1q, (0.0.3)

for q “ 0, . . . , n´ 1, where xkj is set to be 0 for j R t0, . . . , k ´ 1u.
This allows for a lot of flexibility, since we can use any preexisting results in low dimen-

sions and simply "feed them" to the algorithm in order to get results in any dimension, by
applying the process repeatedly.

We use this method on previous results by E. Brugallé and F. Bihan in ambient di-
mension 3, as well as on Itenberg and Viro’s aforementioned families of hypersurfaces, to
obtain two collections of families of real projective hypersurfaces.

Note that the (q, p)-th Hodge number hq,ppCXq of a smooth real projective algebraic
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hypersurface of degree d in ambient dimension n is a polynomial in d of degree n (the same
for any such hypersurface). Let anq be the dominant coefficient of

ř

p h
q,ppCXn

d q; in other
words,

ř

p h
q,ppCXn

d q “ anq ¨ d
n `Opdn´1q.

Our first collection is as follows: for each n ě 3 and each q “ 0, . . . , n´ 1, we build a
family tY n

d udPN of (asymptotically maximal) real projective hypersurfaces such that

bqpRY n
d q “ snq ¨ d

n `Opdn´1q,

for some snq ą anq . In other words, bqpRY n
d q grows asymptotically (in d) faster than the

corresponding sum
ř

p h
q,ppCY n

d q of Hodge numbers from Inequality (0.0.2), though we
cannot expect snq ´ anq to be particularly large.

Our second collection remediates that problem, at least asymptotically in n: for each
n ě 3 and λ P t´ 1

120 ,
1
24u, we build a family tZnd udPN of (asymptotically maximal) real

projective hypersurfaces such that for each q “ 0, . . . , n´ 1,

bqpRZnd q “ tnq ¨ d
n `Opdn´1q,

for some tnq ě 0 that verifies

tn
tn´1

2
`x
?
nu

an
tn´1

2
`x
?
nu

“

b

1
12

b

1
12 ` λ

exp

˜

´
x2

2

˜

1
1
12 ` λ

´
1
1
12

¸¸

` op1q,

where the error term op1q is uniform in x.

This means that btn´1
2
`x
?
nupRZ

n
d q can be made (depending on the choice of λ) to grow

asymptotically (in d) faster than the corresponding sum
ř

p h
p,tn´1

2
`x
?
nupCZnd q of Hodge

numbers, by a margin that is asymptotically (in n) significant.

One of the main difficulties resided in understanding the asymptotic behavior of multi-
indexed sequences arising from the repeated application of Formula (0.0.3), from which
those asymptotic results stem. We managed to do so by associating probabilistic objects
to those sequences, so that we could study them using classical tools from probability
theory.

Regarding constraints on the homology of real algebraic hypersurfaces, we are mostly
interested in the case of hypersurfaces X obtained via combinatorial patchworking. Indeed,
those naturally have a tropical hypersurface Xtrop associated to them, and there is an
interesting fibration from the complex part of X to Xtrop. This gives rise to connections
between the homology of the complex part CX, the tropical homology of Xtrop (a type
of homology well-suited to tropical varieties), and the homology of the real part RX.
Crucial results in that direction were recently obtained in Itenberg’s, L. Katzarkov’s, G.
Mikhalkin’s and I. Zharkov’s [IKMZ16].
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One can in fact see the tropical homology of Xtrop appear on the second page of the
Leray-Serre spectral sequence of the fibration, which converges to the homology of CX. We
can connect that second page to the homology of the real part RX using another spectral
sequence developed by I. Kalinin.

When X was obtained from a primitive triangulation, this allowed K. Shaw and A.
Renaudineau to prove in [RS18] that

dimZ2 HqpRX;Z2q ď
ÿ

p

dimZ2 HqpX
trop;FXtrop,Z2

p q (0.0.4)

where HqpX
trop;FX

trop,Z2
p q is the (q, p)-th tropical homology group with coefficients in Z2

of Xtrop.

To link this bound to the homology of CX, some results regarding the torsion of the
tropical homology of non-singular tropical hypersurfaces in tropical toric varieties were
needed.

Shaw, Renaudineau and the author proved in [ARS19] a tropical analog to Lefschetz’s
hyperplane section theorem stating that given a non-singular tropical hypersurface Xtrop

with full-dimensional Newton polytope in a reasonable tropical toric variety Y trop, the map
induced by inclusion

i˚ : HqpX
trop;FXtrop,Z

p q Ñ HqpY
trop;FY trop,Z

p q

on their tropical homology groups with coefficients in Z is an isomorphism when p ` q ă

dimXtrop and a surjection when p` q “ dimXtrop. It remains true with coefficients in R
even if we do not require Xtrop to be non-singular.

This, in addition to some results regarding the tropical homology of tropical toric
varieties, allowed the three of us to show that the tropical homology of non-singular tropical
hypersurfaces in non-singular toric varieties was torsion-free. We also re-obtain through
purely combinatorial means some statements from [IKMZ16] by considering tropical Euler
characteristics and E-polynomials, in the same spirit as V. Danilov’s and A. Khovanskii’s
[DK86]. All of this enables us to show that dimZ2 HqpX

trop;FX
trop,Z2

p q “ hq,ppCXq which,
combined with Inequality (0.0.4), implies that hypersurfaces obtained using a primitive
triangulation do verify Inequality (0.0.2).

In order to generalize this result, we ("we" being from now on once again a pedantic
synonym for "the author") also investigate a class of varieties (which we call "simplicial
hypersurfaces") that naturally appear as building blocks in the combinatorial case of the
patchworking method, and derive the conditions under which they are Galois maximal, a
property that greatly simplifies the situation with regard to the Leray-Serre and Kalinin
spectral sequences mentioned above.

Finally, we explore the ways in which this could be applied to generalize Inequality
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(0.0.2) to hypersurfaces in toric varieties obtained by non-primitive combinatorial patch-
working, and detail some intermediary results.

All notions alluded to here are properly defined - and all necessary references given -
in the main text, which is organized as follows.

The first part, consisting of Chapters 1 to 4, mainly covers relevant definitions and
preexisting results. More precisely, we define in Chapter 1 real algebraic varieties, focusing
in particular on real algebraic hypersurfaces in toric varieties. We also state some classical
theorems regarding the topology of these hypersurfaces.

In Chapter 2, we describe Viro’s patchworking method, with some additional explana-
tions regarding the combinatorial case.

Some principles of tropical geometry are exposed in Chapter 3; in particular, tropical
hypersurfaces, tropical toric varieties and tropical homology.

In Chapter 4, the links between the homology of the real part of a hypersurface ob-
tained using combinatorial patchworking, the homology of its complex part and the tropi-
cal homology of the associated tropical hypersurface are explained using Leray-Serre and
Kalinin’s spectral sequences. This chapter is more "experimental" than the previous ones,
as some of the ideas detailed there might be new, or at least very recent.

In the second part, consisting of Chapters 5 to 9, we describe the new results that we
have managed to obtain.

The general construction method allowing us to construct families of real projective
algebraic hypersurfaces from lower-dimensional families is described in Chapter 5.

In Chapter 6, we apply this method to build families of real projective algebraic hy-
persurfaces with large asymptotic Betti numbers.

The results of the author’s joint work with Shaw and Renaudineau can be found in
Chapter 7; in particular, the tropical analog to Lefschetz’s hyperplane theorem, as well as
the torsion-freeness of the tropical homology of non-singular tropical hypersurfaces.

In Chapter 8, we study the conditions under which simplicial hypersurfaces are Galois
maximal.

Finally, in Chapter 9, we consider possible generalizations of Inequality 0.0.2 to the case
of real algebraic hypersurfaces in toric varieties obtained via non-primitive combinatorial
patchworking.
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Chapter 1

Topology of real algebraic varieties

1.1 Definitions and basic concepts

A real algebraic variety can be vaguely defined as an algebraic object over the real field
R. Though this general principle can be turned into more precise definitions, we restrict
ourselves (both in this section and throughout this text) almost exclusively to the special
cases of toric varieties and real algebraic hypersurfaces in toric varieties.

We define real projective algebraic hypersurfaces in Subsection 1.1.1 and make a few
observations, before considering toric varieties and their real algebraic hypersurfaces in
Subsection 1.1.2.

1.1.1 Real projective algebraic hypersurfaces

A real projective algebraic variety X in the n-dimensional projective space Pn is a radical
homogeneous ideal I “ pf1, . . . , fkq Ă RrX0, . . . , Xns different from the maximal homo-
geneous idealf. In particular, real projective algebraic varieties are complex projective
algebraic varieties.

One can consider the set of real points of X,

RX :“ trx0, . . . , xns P RPn| fprx0, . . . , xnsq “ 0 for each f P Iu,

as well as its set of complex points,

CX :“ trx0, . . . , xns P CPn| fprx0, . . . , xnsq “ 0 for each f P Iu.

We sometimes improperly call RX or CX real algebraic varieties, implicitly referring to
the underlying variety X.

When the ideal I is generated by a single homogeneous polynomial P of degree d, we
call X a real projective algebraic hypersurface. We say that P gives rise to X.

21



22 CHAPTER 1.

In what follows, we mostly consider smooth real projective algebraic hypersurfaces, i.e.
real projective algebraic hypersurfaces generated by polynomials P such that

trx0, . . . , xns P CPn| BiP prx0, . . . , xnsq “ 0 i “ 0, . . . , nu “ H.

Note that as P is homogeneous, we have that

n
ÿ

i“0

BiP pX0, . . . , Xnq ¨Xi “ degpP q ¨ P pX0, . . . , Xnq,

hence if rx0, . . . , xns is such that BiP prx0, . . . , xnsq “ 0 for i “ 0, . . . , n, we automatically
have P prx0, . . . , xnsq “ 0.

This definition of smoothness coincides with the one from differential geometry. In
particular, the set of real (respectively, complex) points of a smooth real projective algebraic
hypersurface is a compact manifold of real codimension one in RPn (respectively, of complex
codimension one in CPn).

The topology of the complex points CX of a smooth real projective algebraic hyper-
surface X of degree d in Pn depends only on d and n. Indeed, the space Cnd of all complex
projective algebraic hypersurfaces of degree d in the projective space of dimension n can
be identified with the projective space CPN , where N “

`

d`n
n

˘

´ 1 and the projective
coordinates of a point correspond to the coefficients of the homogeneous polynomial that
defines (up to multiplication by a non-zero scalar) the associated hypersurface. The real
projective algebraic hypersurfaces correspond to the subspace RPN Ă CPN . In Cnd , the
set of all singular hypersurfaces is a (singular) hypersurface; their complement in Cnd is
path-connected, and we can see (by continuous deformation) that the set of complex points
of any two smooth complex projective algebraic hypersurfaces (hence, of any two smooth
real projective algebraic hypersurfaces) are homeomorphic.

On the contrary, the topology of the real part of a real projective algebraic hypersurface
can be much more varied. In fact, even in low dimensions, very little is known. For
example, we do not yet have a topological classification of smooth surfaces of degree 5 in
the projective space of dimension 3, and the author spent a significant amount of time
trying to prove that such a surface cannot be homeomorphic to the disjoint union of 23

spheres, a genus 2 surface and a copy of RP2, to no avail.

1.1.2 Toric varieties and real hypersurfaces in toric varieties

Toric varieties are a natural generalization of the projective case. We only briefly introduce
them here; a much more in-depth exposition can be found in W. Fulton’s book [Ful93].
One can also read O. Viro’s article [Vir06] for a shorter account focusing on the type of
questions treated in this text.

We choose N :“ Zn as a lattice and consider the associated vector space NR :“ NbR –
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Rn, as well as its dual M – Zn and its associated vector space MR :“M b R – Rn.

We say that a cone in NR is a rational polyhedral cone if it is generated by a finite
number of integer vectors (i.e. vectors in N), and that it is strongly convex if it does not
contain any non-trivial vector subspace of NR. Given a strongly convex rational polyhedral
cone C in NR, we can consider the (full-dimensional) dual cone

C 1 :“ tu PMR|u ¨ v ě 0 @v P Cu

and the semigroup C 1XM associated to it. It is easy to see that this semigroup is finitely
generated (this fact is known as Gordan’s lemma); hence the ring CrC 1 XM s is finitely
generated. We call the n-dimensional complex variety SpecpCrC 1 XM sq the affine toric
variety associated to C, as it can be represented as an algebraic subvariety of CN , for some
N P N.

For example, the dual cone of the trivial cone 0 Ă N is the entire space MR, and
the associated affine toric variety is the algebraic torus pC˚qn. The affine toric variety
associated to the cone C spanned by the canonical basis e1, . . . , en of NR – Rn (whose
dual cone is the cone spanned by the canonical basis e˚1 , . . . , e˚n of MR – Rn) is the affine
space Cn.

Conventions can slightly vary from one author to the other; for example, Viro directly
defines in [Vir06] the affine toric variety associated to a cone C as SpecpCrCXN sq, without
considering the dual cone. Here, we mostly follow Fulton’s exposition.

Now let Σ be a strongly convex rational polyhedral fan inNR, i.e. a collection of strongly
convex rational polyhedral cones in NR such that every face of a cone in Σ is also in Σ and
that the intersection of two cones in Σ is a face of each.

If we consider two cones ρ Ă η P Σ, we get a reversed inclusion Crη1XM s ãÑ Crρ1XM s,
which in turn induces a morphism (in fact an embedding) SpecpCrρ1XM sq ÝÑ SpecpCrη1X
M sq. It is then possible to glue the affine toric varieties associated to the cones of Σ along
those morphisms, in order to get the toric variety CYΣ. It can be shown that CYΣ is
non-singular if and only if the fan Σ is simplicial unimodular, i.e. if and only if each cone
C P Σ is generated by a collection of vectors in N that can be completed into a basis of
N . The variety CYΣ is compact if and only if the fan Σ is complete, i.e. if the union of its
cones is equal to the entire ambient space NR.

For example, the complete fan whose only 1-dimensional cones (called rays) are Rě0 ¨

p0, 1q, Rě0 ¨ p1, 0q and Rě0 ¨ p´1,´1q gives rise, as a toric variety, to the projective plan
CP2. More generally, the n-dimensional projective space is a toric variety.

Given a toric variety CYΣ, the algebraic torus pC˚qn is naturally embedded in CYΣ

as the affine subspace SpecpCrMR XM sq “ SpecpCrM sq associated to the trivial cone 0

(whose dual is the entire dual space MR). This is, in fact, whence the very name "toric
variety" comes. The embedding depends on the initial choice of the lattice N “ Zn, which
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corresponds to a choice of coordinates. Moreover, the action of the algebraic torus on itself
naturally extends to an action of the algebraic torus on CYΣ. The variety CYΣ can be
written as the disjoint union of the orbits of this action, and is stratified along the closure
(in CYΣ itself) of those orbits. There is an inclusion-reversing bijection between the poset
of those strata and the cones of the fan Σ.

Let ∆ be a rational polytope in MR, i.e. the bounded intersection of a finite number
of rational half-planes. If ∆ is full-dimensional, its normal fan Σ in NR defines a toric
variety CYΣ. Such a CYΣ is always compact, as Σ is complete. If the normal fan Σ of ∆

is simplicial unimodular, we say that ∆ is non-singular, regular or simple.
Affine toric varieties have a natural real structure, i.e. an antiholomorphic involution

called a conjugation; moreover, this real structure is compatible with the inclusion mor-
phisms SpecpCrρ1 XM sq ÝÑ SpecpCrη1 XM sq defined above. Hence a toric variety CYΣ

is a real algebraic variety, and CYΣ and RYΣ can be seen as the sets of complex and real
points of the same real algebraic structure YΣ (which we also call a toric variety), where
RYΣ Ă CYΣ denotes the set of the fixed points of the conjugation. The variety RYΣ can
also be obtained by following the same procedure as for CYΣ, except that one considers
the affine spaces SpecpRrC 1 XM sq instead of SpecpCrC 1 XM sq.

Let us now define real algebraic hypersurfaces in toric varieties. A real Laurent poly-
nomial P P RrX˘0 , . . . , X˘n s gives rise, via its zero locus, to a real algebraic hypersurface
with complex points in the algebraic torus pC˚qn and real points in pR˚qn, which we de-
note as VpC˚qnpP q and VpR˚qnpP q, respectively. Note that the product of P and a non-zero
monomial defines the same real algebraic hypersurface.

Given a toric variety Y , we define VCY pP q (respectively, VRY pP q) as the closure of
VpC˚qnpP q Ă pC˚qn Ă CY (respectively, VpR˚qnpP q Ă pR˚qn Ă RY ) in CY (respectively,
RY ) in the Zariski topology. Once again, VCY pP q and VRY pP q can be seen as the complex
and real points of the same real algebraic object VY pP q, the real algebraic hypersurface in
Y associated to P .

Given such a polynomial P pXq “
ř

λ“pλ1,...,λnqPΛ
cλX

λ1
1 , . . . , Xλn

n , where Λ is a finite
subset of M – Zn and cλ P R˚ for all λ P Λ, we call the convex hull in MR – Rn of Λ the
Newton polytope of P , and denote it by ∆pP q. If we let Σ be the normal fan of ∆pP q, the
hypersurface VYΣ

pP q in the associated toric variety YΣ is a natural compactification of the
hypersurface in the algebraic torus to which P gives rise, for reasons that are detailed in
[Vir06].

1.2 Some classical results

Below are listed some classical theorems on the topology of real algebraic varieties - more
specifically, these theorems all express constraints on their topology. The other side of the
classification problem, i.e. showing that non-prohibited topologies are actually realizable,
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is explored in Chapter 2.
We mostly take inspiration from G. Wilson’s excellent short survey [Wil78], where

proofs can be found. One can also read the more recent and much more in-depth account
[DK00] by A. Degtyarev and V. Kharlamov.

Most of the results below are expressed in terms of the homology of the considered
varieties. Finer observations can be made in low dimensions, but as we mostly focus on
high-dimensional results in the rest of this text, we only mention a few regarding curves
at the end of this section, for their historical significance.

Given a topological spaceX, we define its i-th Betti number as bipXq :“ dimZ2 HipX;Z2q,
with the common notation Z2 :“ Z{2Z. We also write H˚pX;Z2q for its total homology
with coefficients in Z2.

Historically, the first major result in topology of real algebraic varieties was obtained
by A. Harnack in 1876.

Theorem 1.2.1 (Harnack). The set of real points of a smooth real projective algebraic
curve of degree d in RP2 has at most pd´1qpd´2q

2 ` 1 connected components.

Harnack also showed that this bound was optimal by constructing for any degree a
curve realizing it; the curves he built are called Harnack curves.

Harnack’s inequality was in fact a special case of a more general result, the Smith-Thom
inequality.

Theorem 1.2.2 (Smith-Thom inequality). Let Z be a topological space with a finite CW-
complex structure, c : Z ÝÑ Z be a continuous involution compatible with the cell structure,
and F be the set of fixed points of c in Z. Then

dimZ2 H˚pF ;Z2q ď dimZ2 H˚pZ;Z2q.

If this inequality is an equality, Z (considered with the involution c) is said to be
maximal ; we also call Z an M -variety. Such varieties are of particular importance. We
are specially interested in the situation where Z is the set CX of complex points of a real
algebraic variety, c is the complex conjugation on CX, and F is the set of real points RX,
in which case we get

dimZ2 H˚pRX;Z2q ď dimZ2 H˚pCX;Z2q. (1.2.1)

Harnack’s inequality is, indeed, a special case of the Smith-Thom inequality, as it is
easy to show that the set CX Ă CP2 of complex points of a smooth degree d complex
curve X is a (connected) surface of genus pd´1qpd´2q

2 . Hence, we get using Formula (1.2.1)
that

2b0pRXq “ b0pRXq`b1pRXq “ dimZ2 H˚pRX;Z2q ď dimZ2 H˚pCX;Z2q “ 2`pd´1qpd´2q.
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The Smith-Thom inequality is relatively easy to prove by considering an appropriate
cell structure on Z and a well-chosen short exact sequence of complexes (see [Wil78] or
[DK00]). The proof shows that the difference dimZ2 H˚pZ;Z2q ´ dimZ2 H˚pF ;Z2q is even.
If that difference is equal to 2l P 2N, we say that Z (considered with the involution c) is
an pM ´ lq-variety (with l being often equal to 0, 1 or 2).

The same proof also yields the Borel-Swann inequality, which in fact implies the Smith-
Thom inequality.

Theorem 1.2.3 (Borel-Swann inequality). Let Z be a topological space with a finite CW-
complex structure, c : Z ÝÑ Z be a continuous involution compatible with the cell structure,
and F be the set of fixed points of c in Z. Then

dimZ2 H˚pF ;Z2q ď dimZ2

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

,

where 1` c˚ : H˚pZ;Z2q ÝÑ H˚pZ;Z2q and 1 stands for the identity.

When this inequality is an equality, Z (considered with the involution c) is called Galois
maximal (see [DIK00] for additional details). As above, this directly translates in the real
algebraic case to the following inequality:

dimZ2 H˚pRX;Z2q ď dimZ2

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

, (1.2.2)

where 1` c˚ : H˚pCX;Z2q ÝÑ H˚pCX;Z2q and c is the complex conjugation.
The notion has been considered of interest in itself; it will prove to be of importance

in Chapter 4. See for example Krasnov [Kra84], where the Galois maximality of various
families of varieties is proved. Somewhat surprisingly, there are very elementary cases in
which the rank of 1` c˚ : H˚pCX;Z2q ÝÑ H˚pCX;Z2q is not known. One such case was
that of simplicial hypersurfaces, which we define in Chapter 8 and whose Galois maximality
we investigate there.

Galois maximality is equivalent to a condition of degeneration on the second page of
a certain associated spectral sequence, called Kalinin spectral sequence, which was in-
troduced by I. Kalinin in [Kal92] - further explanations can also be found in [Deg92].
Smith-Thom maximality is equivalent to degeneration on the first page of this spectral
sequence. We return to those questions in Chapter 4.

Let us give a few more classical results pertaining to complex varieties on which a
conjugation (i.e. an antiholomorphic involution) acts.

Given a complex manifold Z of real dimension 4n, the cup product defines a quadratic
form on H2npZ;Rq. We denote the signature of this intersection form by σpZq. If Z is a
complex manifold of real dimension not divisible by 4, we let σpZq be 0. As always, the
Euler characteristic of a topological space X is denoted as χpXq.
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Theorem 1.2.4 (Rokhlin). Let X be a complex manifold of real dimension 4n, let c be
a conjugation on X and RX be the set of fixed points of c. If pX, cq is an M -variety, we
have

χpRXq ” σpXq mod 16.

Theorem 1.2.5 (Kharlamov, Gudkov, Krakhnov). Let X be a complex manifold of real
dimension 4n, let c be a conjugation on X and RX be the set of fixed points of c. If pX, cq
is an (M ´ 1)-variety, we have

χpRXq ” σpXq ˘ 2 mod 16.

We can also mention S. Lefschetz’s well-known fixed point theorem.

Theorem 1.2.6 (Lefschetz’s fixed point Theorem). Let Z be a compact topological mani-
fold, c : Z ÝÑ Z be a continuous involution, and F be the set of fixed points of c in Z. Let
c˚ be the map induced on cohomology by c. Then we have

χpF q “
ÿ

i

p´1qitrpc˚|H ipZ,Rqq.

As a last example, let us state the following result, due to V. Kharlamov, which requires
the complex variety Z to be Kähler.

Theorem 1.2.7 (Kharlamov). Let X be a compact Kähler manifold of real dimension 4n,
let c be a conjugation on X and RX be the set of fixed points of c. Then we have

|χpRXq ´ 1| ď hn,npXq ´ 1,

where hn,npXq is the pn, nq-th Hodge number of X.

Interestingly, there exists a purely topological proof by A. Comessatti of this theorem
(which makes no use of the Kähler structure on X) in the case of real projective surfaces.

All those results are very powerful in low dimension, but they yield comparatively less
information in higher dimensions.

Though they are not our main focus in the rest of this text, we still choose to say a few
words regarding real algebraic projective curves in particular, because of their historical
and continued importance in the field.

The topology of the real part RX of a smooth real algebraic curve X in the projective
plane cannot be, in itself, very rich, as RX is a compact manifold of dimension 1, hence a
collection of circles. In a sense, Harnack’s inequality from Theorem 1.2.1 tells us all that
there is to know. What is usually considered instead is the topology of the pair pTP2,RXq.

Figure 1.11 shows all three configurations for M -curves of degree 6 in RP2 (one can
see it as depicting a contractible open subset of RP2). The configuration on the left was

1Picture from [IV96]
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Figure 1.1: Maximal projective curves of degree 6.

obtained by A. Harnack, the middle one by D. Hilbert and the one on the right by D.
Gudkov.

One can check, using elementary methods, that each connected component of RX
either partitions RP2 into a disk and a Möbius strip, in which case we call it an oval, or
its complement in RP2 is connected (and homeomorphic to a disk), in which case we call
it a pseudo-line. When the degree of X is odd, there is exactly one pseudo-line among the
connected components of RX; when it is even, there are none.

Therefore, the main question regarding the topology of pTP2,RXq is the number of
ovals and their arrangement. We say that an oval C1 lies inside another oval C2 if C1 is
contained in the connected component of RP2zC2 homeomorphic to a disk. An oval is even
if it lies inside an even number of ovals, and odd otherwise. As an example, the curve in
Figure 1.22 has 5 even ovals and 3 odd ones.

For a given curve X, let p be the number of even ovals in its real part, and n the
number of odd ovals. The following theorems can be obtained from Theorems 1.2.4, 1.2.5
and 1.2.7 by considering a double covering of CP2 ramified along CX.

Theorem 1.2.8 (Gudkov, Rokhlin). Let X be a smooth real M -curve of degree 2k in the
projective plane. Then

p´ n ” k2 mod 8.

Theorem 1.2.9 (Gudkov, Kharlamov, Krakhnov). Let X be a smooth real (M ´ 1)-curve
of degree 2k in the projective plane. Then

p´ n ” k2 ˘ 1 mod 8.

Theorem 1.2.10 (Petrovsky). Let X be a smooth real curve of degree 2k in the projective
plane. Then

´
3

2
kpk ´ 1q ď p´ n ď

3

2
kpk ´ 1q ` 1.

2Picture from [IV96]
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Figure 1.2: 5 even ovals, 3 odd ovals.

V. Ragsdale conjectured in [Rag04] that an even stronger bound holds.

Conjecture 1.2.11 (Ragsdale’s Conjecture). Let X be a smooth real curve of degree 2k

in the projective plane. Then

p ď
3

2
kpk ´ 1q ` 1,

n ď
3

2
kpk ´ 1q.

However, Viro showed in [Vir80] that the second inequality was wrong by at least 1.
Later, Itenberg used the patchworking method (see Chapter 2) to show in [Ite93] that both
inequalities were in general dramatically wrong (by a quadratic margin). However, whether
they are true (up to a correction of 1 in the case of the inequality on n) for M -curves is
still an open question.
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Chapter 2

Viro’s patchworking method

2.1 Chapter introduction

In Section 1.2, we have seen some constraints on the topology of real algebraic varieties.
Complementarily to finding new restrictions, constructing real algebraic varieties that show
the sharpness of those restrictions is the other component of the classification effort.

Various construction methods have been historically used; one can for example perturb
a union of algebraic varieties that intersect in a certain way.

A particularly efficient technique was developed by Viro in the late 70s. That technique,
often called Viro’s method or patchworking method, allows one to obtain families of real
algebraic hypersurfaces tXtutPRą0 in a given toric variety, such that Xt can be seen as
a gluing ("patchworking") of simpler hypersurfaces for t small enough (or large enough,
depending on the chosen convention). This can be used to build real algebraic hypersurfaces
with prescribed and interesting topologies. We describe this process in Section 2.2.

There exists a simpler, more combinatorial special case of the method, called combi-
natorial patchworking, which we detail in Section 2.3. Though it is strictly speaking less
flexible than the general case, the increased simplicity often allows one to have a better
grasp of the situation.

Viro’s method is strongly linked to tropical geometry, and was one of its sources of
inspiration. Some of those connections are considered in Chapter 4.

The patchworking method has enjoyed considerable success over the years. It was
used by Viro himself to further the classification up to isotopy of smooth real projective
algebraic curves of degree 7, which he completed in [Vir80], as well as to disprove Ragsdale’s
conjecture 1.2.11 in the same article.

Itenberg later used combinatorial patchworking in [Ite93] to show that the conjecture
was also asymptotically wrong. His construction was improved on by E. Brugallé in [Bru06],
using the general case of the patchworking method.

Itenberg and Viro also used combinatorial patchworking in [IV07] to build in each

31
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dimension n a family of asymptotically maximal real projective algebraic hypersurfaces;
this construction was the main inspiration behind the author’s own results in Chapters 5
and 6 (where more details can be found), which rely on Viro’s method as well.

Many others, such as F. Bihan in [Bih03], B. Bertrand in [Ber06] or A. Renaudineau
in his thesis [Ren15], have also successfully made use of this powerful tool.

One naturally wonders about the limitations of the method: for example, what bounds
can be found on the Betti numbers of varieties obtained by combinatorial patchworking,
or under even stricter conditions?

Bounds were found in ambient dimension 3 by Itenberg in [Ite97] using relatively el-
ementary methods, as well as by Itenberg and Shustin using more sophisticated ones in
[IS03].

New constraints were later found, in particular by Renaudineau and K. Shaw (see
[RS18]), using the connections between real and tropical hypersurfaces and the properties
of tropical homology. This is the main subject of Chapters 4 and 9.

2.2 General case

We give a quick description of Viro’s method so as to have the necessary definitions, using
notations and concepts from Subsection 1.1.2 and mostly paraphrasing Viro’s own expo-
sition in [Vir06]. All omitted details can be found there, or in Itenberg’s, G. Mikhalkin’s
and E. Shustin’s notes on Tropical Algebraic Geometry [IMS09]. See [Ful93] for more on
toric varieties.

In what follows, K can be either R or C. Let U1
C Ă C be the unit circle, U1

R be t1,´1u

and define UnK :“ pU1
Kq

n for n P N.
As explained in Subsection 1.1.2, a real Laurent polynomial

P pzq “
ÿ

λ“pλ1,...,λnqPΛ

cλz
λ1
1 , . . . , zλnn ,

where Λ is a finite subset of Zn and cλ P R˚ for all λ P Λ, defines a real algebraic
hypersurface VpC˚qnpP q in the complex torus pC˚qn. From now on, we use the notation
zλ :“ zλ1

1 . . . zλnn , where z “ pz1 . . . , znq P C and λ “ pλ1, . . . , λnq P Z.
In Subsection 1.1.2, given a full-dimensional polytope with integer vertices ∆ Ă Rn,

we denoted by KYΣ the toric variety to which ∆ gave rise via its normal fan Σ. In this
chapter, as well as in Chapter 5, let us call that toric variety K∆ in order to shorten
notations. The embedding ∆ Ă Rn determines an embedding pK˚qn Ă K∆, and there is a
natural action of the torus pK˚qn Ă K∆ on itself by multiplication, which can be naturally
extended to an action S : K∆ˆ pK˚qn ÝÑ K∆ on K∆, as was mentioned in Subsection
1.1.2. Moreover, remember that K∆ is stratified along the closures of the orbits of the
action of the algebraic torus, and that those strata are in (inclusion-preserving) bijection
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with the faces of ∆. Let Γ be a face of ∆, and denote by KΓ the corresponding stratum
of K∆. It can be shown that KΓ is isomorphic to the toric variety to which Γ, seen as a
full-dimensional polytope in the vector space that it spans, gives rise, which justifies the
notation.

There is a stratified (along its intersections with the strata KΓ) subspace of K∆,
denoted as R`∆, which corresponds to the points in K∆ with real nonnegative coordinates
(this can be given precise meaning with the definition ofK∆). We can seeK∆ as a quotient
of R`∆ˆ UnK via the map S : R`∆ˆ UnK ÝÑ K∆.

As stratified topological spaces, R`∆ and the polytope ∆ are homeomorphic, for ex-
ample via the Atiyah moment map M : R`∆ ÝÑ ∆ (see [Ati81]). If x P pR`qn Ă R`∆

and w1, . . . , wk P Zn are such that their convex hull is ∆, then

Mpxq “

řk
i“1 |x

wi |wi
řk
i“1 |x

wi |
.

Thus we have the following map

Φ : ∆ˆ UnK
M´1ˆid
ÝÝÝÝÝÑ R`∆ˆ UnK

S
ÝÝÑ K∆

through which K∆ is seen as a quotient of ∆ ˆ UnK (when K “ R, this quotient can in
fact be quite nicely described in terms of an appropriate gluing of the faces of R`∆ˆ UnR
- see [Vir06]). It restricts to a homeomorphism from ∆̊ˆ UnK to pK˚qn Ă K∆.

Let P be as above a real Laurent polynomial in n variables and ∆ Ă Rn be a full-
dimensional polytope with integer vertices. The stratified topological pair p∆ ˆ UnK , vq,
where v “ Φ´1pVK∆pP qq, is called a chart of P . A slightly different definition exists, where
M can be replaced in the definition of Φ by any "nice enough" homeomorphism.

When there is no possible confusion, we sometimes refer to v itself as the chart (as
opposed to the pair p∆ˆ UnK , vq), and we denote it as Chart∆ˆUnK pP q. By extension, we
also write Chart∆̊ˆUnK pP q :“ Chart∆ˆUnK pP q X p∆̊ˆU

n
Kq, where ∆̊ is the relative interior

of ∆ in Rn.
Let P pzq “

ř

λPΛ cλz
λ as above and Γ Ă Rn. We define the truncation PΓ as the

polynomial PΓpzq “
ř

λPΓXΛ cλz
λ.

The real Laurent polynomial P is completely nondegenerate over K if VpK˚qnpPΓq is
a nonsingular hypersurface for any face Γ of its Newton polytope ∆pP q (including ∆pP q

itself).

A convex subdivision (or regular subdivision) T of an n-dimensional convex polytope
∆ Ă Rn with integer vertices is a finite family t∆iuiPI of n-dimensional convex polytopes
with integer vertices such that:

•
Ť

iPI ∆i “ ∆.
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• For all indices i, j P I, the intersection ∆i X∆j is either empty or a face of both ∆i

and ∆j .

• There is a piecewise linear convex function µ : ∆ ÝÑ R such that the domains of
linearity of µ are exactly the polytopes ∆i.

If each polytope ∆i in the subdivision is a simplex, we say that T is a convex trian-
gulation. Moreover, if each ∆i is a simplex of minimum volume 1

n! , we call T a convex
primitive triangulation.

All is set to state the Main Patchwork Theorem: let ∆ Ă Rn be a convex polytope with
integer vertices and let Q1, . . . , Qs be completely nondegenerate real Laurent polynomials
in n variables such that t∆pQ1q, . . . ,∆pQsqu is a convex subdivision of ∆. Suppose more-
over that Q∆pQiqX∆pQjq

i “ Q
∆pQiqX∆pQjq
j for all i, j P t1, . . . , su. This means that there

exists a unique real Laurent polynomial P pzq “
ř

λP∆XZn cλz
λ such that P∆pQiq “ Qi

for all i. Let µ : ∆ ÝÑ R be a piecewise linear function certifying the convexity of
the subdivision, and consider the family of real Laurent polynomials tPtutPRą0 , where
Ptpzq :“

ř

λP∆XZn cλt
µpλqzλ. Let p∆pQiqˆUnK , viq be the chart of Qi, and p∆ˆUnK , vtq be

the chart of Pt.

Theorem 2.2.1 (Main Patchwork Theorem). The union
Ťs
i“1 vi is a submanifold of ∆ˆ

UnK , smooth in ∆̊ ˆ UnK and with boundary in B∆ ˆ UnK (and corners in the boundary for
n ě 3).

Moreover, for any t ą 0 small enough,
Ťs
i“1 vi is isotopic to vt in ∆ˆUnK by an isotopy

which leaves Γˆ UnK invariant for each face Γ Ă ∆.

We say that such a polynomial Pt (with t ą 0 small enough) has been obtained by
patchworking the polynomials Q1, . . . , Qs, or that it is a patchwork of them.

In particular, Theorem 2.2.1 allows us to recover the topology of the pairs ppK˚qn, VpK˚qnpPtqq

and pK∆, VK∆pPtqq from that of the pairs pK∆pQiq, VK∆pQiq
pQiqq.

Note that though the function µ plays an important role in the definition of the family
of polynomials tPtutPRą0 , its choice (among the piecewise linear functions inducing the
same convex subdivision) does not affect the topology of pK∆, VK∆pPtqq.

Viro’s method has been generalized by B. Sturmfels in [Stu94] to complete intersections
in the combinatorial case (see Section 2.3 below), and then to complete intersections in
the general case by Bihan in [Bih02].

2.3 Combinatorial case

In this section, we present a special case of Theorem 2.2.1 which is often distinguished.
We retain the notations of Section 2.2.

Let P be a real Laurent polynomial in n variables. If P has exactly n`1 monomials with
non-zero coefficients and if its Newton polytope ∆pP q is a non-degenerate n-dimensional
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simplex, we call P a simplicial real polynomial. In particular, the monomials of P and
the vertices of ∆pP q are in bijection. Such polynomials are considered in more detail in
Chapter 8.

If the real polynomials Q1, . . . , Qs that are being patchworked are all simplicial, which
in particular implies that the convex subdivision t∆pQ1q, . . . ,∆pQsqu is a triangulation,
the construction is called a combinatorial patchworking. If it is a primitive triangulation,
we call the construction a primitive combinatorial patchworking.

What makes this case special is that the real chart Chart∆pP qˆUnR pP q of a real simplicial
polynomial P admits a very simple description, which depends only on the signs of the
coefficients of P .

Let us write P as P pzq “
ř

λ aλδpλqz
λ, where the sum is over the vertices λ of the

Newton polytope ∆pP q of P , aλ P Rą0 and δpλq P U1
R “ t1,´1u for all λ.

We now define a sign distribution δ̃ on the 2npn ` 1q vertices of ∆pP q ˆ UnR in the
following way:

δ̃pλ, εq :“ δpλqελ P t1,´1u,

where λ “ pλ1, . . . , λnq P Zn is a vertex of ∆pP q, ε “ pε1, . . . , εnq P UnR and ελ “ ελ1
1 ¨ . . . ¨

ελnn P t1,´1u.
Then the real chart p∆pP q ˆ UnR , Chart∆pP qˆUnR pP qq can be described as follows: for

ε P UnR , the intersection Chart∆pP qˆUnR pP q X p∆pP q ˆ tεuq is empty if δ̃ takes the same
value on all vertices of ∆pP q ˆ tεu. Otherwise, it is isotopic to an (n ´ 1)-dimensional
polyhedron that separates the vertices of ∆pP q ˆ tεu on which δ̃ is positive from those on
which it is negative, by an isotopy which leaves Γˆ UnR invariant for each face Γ of ∆pP q.
This can be shown using arguments similar to those from Lemma 8.5.1, as well as the fact
that the intersection of the chart Chart∆pP qˆUnR pP q with ΓˆUnR , for some face Γ of ∆pP q,
is described by the chart of the troncation P |Γ (see [IMS09, Lemma 2.16]). Note that the
same algorithm describes (up to isotopy) the intersection of Chart∆pP qˆUnR pP q with the
subsets σ ˆ tεu, where σ is a face of ∆pP q.

A simple example of combinatorial patchworking in dimension n “ 2 is given in Figure
2.1; the orange set is (up to isotopy) a patchworked chart in ∆ˆ U2

R.
This shows that for any t ą 0 small enough, the topology of the pair p∆pPtq ˆ

UnR , Chart∆pPtqˆUnR pPtqq, where Pt results from the application of Theorem 2.2.1 to a fam-
ily Q1, . . . , Qs of real simplicial polynomial, only depends on the signs of the coefficients
of the polynomials Qi - hence the appellation "combinatorial".

In fact, this allows for a change in perspective: instead of starting with a family
Q1, . . . , Qs of polynomials and patchworking them, one can start with a convex trian-
gulation T of a polytope ∆ Ă Rn with integer vertices, then choose a sign for each vertex
appearing in the triangulation. One then applies the algorithm described above to ob-
tain a piecewise linear hypersurface X in ∆ ˆ UnR . As simplicial polynomials are always
completely non-degenerate (see Remark 8.2.1 in Chapter 8), one can always find polyno-
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Figure 2.1: A patchworked chart (up to isotopy) in ambient dimension 2.

mials Q1, . . . , Qs such that p∆ˆ UnR , Xq is (stratified) isotopy equivalent to the chart of a
polynomial Pt obtained by patchworking Q1, . . . , Qs.



Chapter 3

Tropical geometry

3.1 Introduction and basic notions

Tropical geometry is a relatively recent field. It can be grossly described as the study of
some piecewise linear objects that are naturally related to other, more algebraic objects.
In particular, there are strong connections to real algebraic varieties and the patchwork-
ing method (which was one of the historical inspirations for the development of tropical
geometry) described in Chapter 2, as is shown later in Chapter 4.

In this chapter, we cover some of the basic notions of tropical geometry. In particular,
tropical operations and polynomials are introduced in this section, tropical hypersurfaces
and tropical toric varieties in Section 3.2, and tropical homology in Section 3.3.

A short introduction to the field can be found in [BIMS15]. For a more complete
exposition, read [IMS09], [MS15] or [MR].

3.1.1 Tropical operations and tropical polynomials

We consider the set of tropical numbers T :“ RYt´8u equipped with the so called tropical
addition and tropical multiplication, which we denote by ”`” and ”¨” and define as follows:
for all x, y P T,

”x` y” “ maxpx, yq, ”x ¨ y” “ x` y.

Those operations are associative and commutative, and satisfy the distributive property.

The neutral element for the addition is ´8, and the neutral element for the multiplica-
tion is 0. Each element x P Tzt´8u admits a multiplicative inverse, which is ´x, but there
is no additive inverse. Because of these properties, T is called a semifield. Topologically,
we identify T with the line segment r0, 1r.

This naturally leads to the notion of tropical polynomial. Let n ě 1. We can consider

37



38 CHAPTER 3.

P P TrX1, . . . , Xns, abstractly defined as

P pXq “
ÿ

λPΛ

sλX
λ

for some finite subset Λ of Zn and some coefficients sλ P R, where Xλ :“ Xλ1
1 . . . Xλn

n . The
set Λ corresponds to the non-trivial monomials of P (as ´8 is the tropical analog of the
classical trivial coefficient 0). As with classical polynomials, we call ConvpΛq the Newton
polytope of P .

As with classical Laurent polynomials, such a tropical polynomial P gives rise to a
well-defined function on the tropical torus Rn (R corresponds to T˚), which takes values
in R if P is non-trivial:

P : Rn ÝÑ T

x “ px1, . . . , xnq ÞÝÑ P pxq “ ”
ÿ

λPΛ

sλx
λ” “ max

λPΛ
tsλ ` λ

K ¨ xu,

where λK ¨ x “
řn
i“1 xiλi . The induced function is piecewise linear on Rn.

Observe that two distinct tropical polynomials can give rise to the same function: for
example,

”0` x` x2 “ 0` x2” for any x P T.

3.2 Tropical toric varieties and tropical hypersurfaces

There are intrinsic definitions of tropical spaces and tropical manifolds, involving balanced
polyhedral complexes and matroidal fans, which can for example be found in [BIMS15] or
in [Mik06].

Here, we only concern ourselves with two particular types of tropical spaces: tropical
toric varieties, and tropical hypersurfaces in tropical toric varieties.

3.2.1 Tropical toric varieties

The description below is dependant on the choice of a lattice in Rn. We always use the
standard lattice Zn Ă Rn.

Let Σ be a strongly convex rational polyhedral fan in Rn (see Subsection 1.1.2). Just
as with classical toric varieties, the fan Σ gives rise to an n-dimensional tropical toric
variety. For any cone ρ of Σ, denote by Lpρq the subspace of Rn spanned by ρ, and set
LZpρq :“ Lpρq X Zn. As Σ is rational, we have an isomorphism LZpρq – Zdim ρ. As a set,
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the tropical toric variety associated to the fan Σ is

YΣ :“
ğ

ρPΣ

Rn{Lpρq.

There is a unique topology on YΣ such that

• The inclusions Rn{Lpρq ãÑ YΣ are continuous for any cone ρ P Σ.

• For any x P Rn and any v P Rn, the sequence px` nvqnPN P Rn – Rn{Lpt0uq
converges in YΣ if and only if v is contained in the support of the fan Σ.

Given a toric variety Y and a cone ρ of the associated fan, we denote by Yρ the stratum
Rn{Lpρq Ă Y (using the same notations as above). There is an inclusion-reversing isomor-
phism of posets ρ ÞÑ Yρ between the set of closed cones of the fan Σ and the closures in
Y of its strata; in particular, for two cones ρ and ρ1 of Σ we have Yρ1 Ă Yρ if and only
if ρ is a face of ρ1 in Σ. We say that a point y P Y is of sedentarity k if it belongs to a
stratum Yρ such that dim ρ “ k; we write sedpyq “ k. This description corresponds to the
decomposition into orbits of classical toric varieties.

A tropical toric variety is naturally equipped with a lattice on each stratum. More
precisely, the stratum Yρ is equipped with the lattice Zn{LZpρq. When ρ is of dimension
k, there is a lattice preserving isomorphism of vector spaces Yρ – Rn´k. If ρ is a cone of
Σ, then there is a projection map πρ : Rn Ñ Yρ. If ρ1 is a face of ρ in the fan Σ, then
Lpρ1q Ď Lpρq and there is a projection map πρ1,ρ : Yρ1 Ñ Yρ. The tropical toric variety Y is
compact if and only if the associated fan Σ is complete. In what follows, we mostly focus
on compact tropical toric varieties.

Proofs and details can be found in [MR, Section 3.2] and [MS15, Sections 6.2 and 6.3].
An equivalent definition, in terms of gluing of affine tropical spaces via appropriate tropical
maps, also exists.

Just as is the case over a field, a tropical toric variety is non-singular if it is built from
a simplicial unimodular rational polyhedral fan.

Given a full-dimensional rational polytope ∆ Ă Rn, its normal fan Σ allows us to define
a tropical toric variety Y , which will be non-singular if and only if ∆ is a simple polytope.

Example 3.2.1. The tropical projective space TPn is the tropical toric variety constructed
from the fan Σ consisting of cones

Rě0ei1 ` ¨ ¨ ¨ ` Rě0eik ,

for all ti1 ¨ ¨ ¨ iku Ł t0, ¨ ¨ ¨ , nu, where e1, ¨ ¨ ¨ , en is the standard basis of Rn and e0 “

´
řn
k“1 ek. It is non-singular as a tropical toric variety.
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Figure 3.1: The fan Σ on the left and tropical projective plane TP 2 to which it gives rise
on the right.

It can also be described as the quotient

Tn`1zp´8, . . . ,´8q

rx0 : . . . : xns „ ra` x0 : . . . : a` xns
,

where a P Tz ´8. The stratification of TPn can be described using homogeneous coordi-
nates. For a subset I Ă t0, . . . , nu define

TPnI “ tx P TPn | xi “ ´8 if and only if i P Iu.

The set TPnI corresponds to the cone

ÿ

iPI

Rě0ei.

The order of sedentarity of a point x “ rx0 : . . . : xns P TPn is sedpxq “ # ti | xi “ ´8u .

Note that though TP 2 is isomorphic as a stratified topological space to the triangle on
the right of Figure 3.1 (and similarly for TPn and a n-simplex), its metric is not what one
would expect from such a comparison; for example, the sequence of points tpn, 2nqunPN Ă
R2 Ă TP 2 converges to the upper left vertex. More details on that can be found in [MR,
Section 3.2].

3.2.2 Tropical hypersurfaces

As in Subsection 3.1.1, let n ě 1 and

P pXq “
ÿ

λPΛ

sλX
λ

be a tropical polynomial, for some finite subset Λ of Zn and some coefficients sλ P R.
We define the tropical hypersurface XP Ă Rn associated to P to be the corner locus of
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the function Rn ÞÑ T associated to P , i.e. the set

XP :“ tx P Rn| Dλ1 ‰ λ2 P Λ s.t. P pxq “ sλ1 ` λ
K
1 ¨ x “ sλ2 ` λ

K
2 ¨ xu.

It corresponds to the set of points in x P Rn such that the function associated to P is
not affine in any neighborhood of x. See Example 3.2.3 for an elementary example where
P is of degree 1, and the right part of Figure 3.2 1 for the tropical conic defined by the
polynomial ”3` 2x` 2y ` 3xy ` y2 ` x2”.

Just as two distinct tropical polynomials can give rise to the same function, two distinct
functions can give to the same hypersurface: consider for example P as above and some
s P Rzt0u, and define P̃ pXq :“ ”

ř

λPΛ s̃λX
λ”, where for each λ we set s̃λ “ sλ ` s.

We then simply define a tropical hypersurface X in a tropical toric variety Y to be
the closure in Y of a tropical hypersurface X0 Ă Rn Ă Y (where Rn corresponds to the
top-dimensional stratum of Y ).

As is the case in the classical setting, if P is a tropical polynomial with full-dimensional
Newton polytope ∆, the most natural tropical toric variety in which to take the closure
of the tropical hypersurface X0 Ă Rn to which P gives rise is the n-dimensional tropical
variety Y generated by the normal fan of the polytope ∆..

By extension, given a tropical polynomial P defining a tropical hypersurface X, we
sometimes write "the Newton polytope of X" to mean the Newton polytope of P .

A tropical hypersurfaceX0 Ă Rn has a natural structure of rational polyhedral complex
induced by its definition as the corner locus of the function induced by a tropical polyno-
mial; each of its faces can be described as σI “ tx P Rn| sλ1`λ

K
1 ¨x “ sλ2`λ

K
2 ¨x @λ1, λ2 P

I, sλ1 ` λ
K
1 ¨ x ą sλ2 ` λ

K
2 ¨ x @λ1 P I, λ2 P ΛzIu for some set I Ă Λ (though not all I Ă Λ

give rise to a face). The same is true of tropical hypersurfaces in tropical toric varieties.
Moreover, a tropical hypersurface X in a toric variety Y naturally induces a structure of
polyhedral complex on Y , in which each face either belongs to the polyhedral complex X,
or is the intersection of a connected component of Y zX with a stratum Yρ of Y . Let us
call this subdivision SP pY q.

Remark 3.2.2. There is an alternative definition of tropical hypersurfaces in Rn in terms
of polyhedral complexes satisfying a certain balancing condition. Those two definitions turn
out to be equivalent, see [MR, Section 2.4].

Example 3.2.3. Consider the tropical affine function P pXq “ ”0`X1` . . .`Xn`1”, and
denote as Hn Ă Rn`1 the associated tropical hypersurface. We call it the standard tropical
hyperplane in Rn`1. The case n “ 2 is illustrated on the left of Figure 3.2.

The hyperplaneHn is a fan of dimension n which has exactly n`2 rays, in the directions
´e1, . . . ,´en`1, and e1 ` ¨ ¨ ¨ ` en`1. Every subset of the rays of size less than or equal to

1Picture from [BIMS15]
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Figure 3.2: On the left, the standard tropical hyperplane in R3. On the right, a tropical
conic in R2.

n spans a cone of Hn. Its Newton polytope is the standard simplex in Rn`1.

3.2.3 A duality theorem

Given as above n ě 1 and
P pXq “

ÿ

λPΛ

sλX
λ

a tropical polynomial, for some finite subset Λ of Zn and some coefficients sλ P R, we
consider the function s : Λ ÝÑ R and the Newton polytope ∆ “ ConvpΛq of P . We also
define Φpsq : ∆ ÝÑ R as the function whose graph is the upper convex hull in Rn`1 of the
graph of s. We define the convex subdivision of ∆ induced by P as the integer subdivision
of ∆ such that its cells are the domains of linearity of Φpsq, which is a piecewise linear
function (see also Chapter 2). Denote it by SP p∆q. For each closed face F of ∆ (of its
original structure as a polytope, before being further subdivided by SP p∆q), denote by
SP pF q the restriction of SP p∆q to F .

Consider the hypersurface X0 Ă Rn to which P gives rise, and let Y be a tropical toric
variety generated by a fan Σ. Let X Ă Y be the closure of X0 in Y , and let as above
SP pRnq be the subdivision of Rn induced by X0, SP pY q be the subdivision of Y induced
by X, and SP pYρq be the subdivision of the stratum Yρ induced by Xρ :“ YρXX (for some
cone ρ P Σ). There is a duality theorem between the cells of SP p∆q and those of SP pRnq,
which can be extended to SP pY q under reasonable hypotheses.

Theorem 3.2.4 (Duality Theorem). Using the above notations, there is an inclusion-
reversing bijection of cells given by

Ψ : SP pRnq ÝÑ SP p∆q

σ ÞÝÑ Ψpσq :“ Conv
`

tλ P Λ|P pxq “ sλ ` λ
K ¨ x @x P σu

˘

.
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XP1 p∆pP1q, S
P1p∆pP1qqq XP2 p∆pP2q, S

P2p∆pP2qqq

Figure 3.3: Duality for n “ 2.

Moreover, we have dimpσq`dimpΨpσqq “ n for all σ P SP pRnq, and the vector space Lpσq
spanned by σ is perpendicular to the vector space LpΨpσqq spanned by Ψpσq. The cells of
SP pRnq that belong to X correspond to cells of SP p∆q of dimension greater than or equal
to 1. Additionally, the cells of SP pRnq that are unbounded (for the usual Euclidian metric)
are in bijection (via Ψ) with the cells of SP p∆q that belong to the boundary B∆ of ∆ Ă Rn.

If ∆ is full-dimensional and the fan Σ that gives rise to Y is its normal fan, we can
extend this bijection thus: let F : ρ ÞÑ F pρq be the inclusion-reversing bijection that maps
the cones of Σ to the faces of ∆ to which they are normal.

Let ρ P Σ. The hypersurface Xρ Ă Yρ – Rn{Lpρq is defined by the restriction P |F pρq of
the polynomial P to the face F pρq (as in Chapter 2), and there is an inclusion-reversing
bijection of cells given by

Ψρ : SP pYρq ÝÑ SP pF pρqq

σ ÞÝÑ Ψρpσq.

We have dimpσq ` dimpΨρpσqq “ dimpYρq “ n´ dimpρq for all σ P SP pYρq and the vector
space Lpσq is perpendicular (in Yρ – Rn{Lpρq) to the vector space LpΨρpσqq.

Moreover, given ρ1, ρ2 P Σ and σ1 P SP pYρ1q, σ2 P SP pYρ2q, we have that σ1 is a face
of the closure of σ2 in Y if and only if Ψρ2pσ2q is a face of the closure of Ψρ1pσ1q in ∆

and ρ2 is a subcone of ρ1.

Proof. See [MR, Theorem 2.3.7] (or [Arn17] for a tediously detailed proof in French) for
the first part of the statement; the second part can easily be deduced from the first part
and from [MR, Section 3.2].

The situation gets slightly more complicated when the fan that gives rise to Y is not
the dual fan of ∆. We will not consider that case here.
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Tropical hyperplane in TP3 Standard simplex of dimension 3

Figure 3.4: Duality for n “ 3.

The theorem is illustrated in Figure 3.32, where one can see two curves XP1 and XP2

with the corresponding subdivisions SP1p∆pP1qq and SP2p∆pP2qq of their respective Netwon
polygons, as well as in Figure 3.4, where one can see the standard tropical plane in TP3.

Let P be a tropical polynomial in n variables. If the induced subdivision SP p∆pP qq of
its Newton polytope is a primitive triangulation (see Chapter 2), we say that the tropical
hypersurface X0 Ă Rn to which P gives rise is non-singular.

If additionally the Newton polytope ∆pP q is full-dimensional and its normal fan is sim-
plicial unimodular, and if Y is the (non-singular, compact) tropical toric variety generated
by this fan, we say that the induced tropical hypersurface X is non-singular in Y .

Note that given such a non-singular hypersurface X Ă Y , the hypersurface Xρ “

X X Yρ Ă Yρ is also non-singular (via the identification Yρ – Rn´dim ρ) for any cone ρ in
the normal fan of ∆pP q.

As mentioned at the beginning of this section, there are more intrinsic definitions of
non-singularity; we do not need them here.

3.3 Definition of tropical homology

Tropical (co)homology is a type of (co)homology on polyhedral complexes computed using
(co)sheaves that are well-suited to their structure. The pivotal article regarding tropical
homology is Itenberg’s, Katzarkov’s, Mikhalkin’s and Zharkov’s [IKMZ16]. Details can
also be found in [BIMS15] or [MZ14]. For a purely sheaf-theoretic approach, see [GS19].

In what follows, we restrict ourselves to cellular tropical (co)homology, though there is
also a notion of singular tropical (co)homology (see the references above). They predictably
turn out to be equivalent.

2Picture from [BIMS15]
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The definition of cellular (co)homology that we use is slightly different from the usual
one, which relies on CW-complex. The reason for this is that the one we choose is more
adapted to the natural cell decomposition of the tropical toric varieties and tropical hy-
persurfaces that we consider (since their cells cannot be expected to be compact).

3.3.1 The tropical (co)sheaves Fp and Fp

In this section, we define a rational polyhedral complex in Rn as a finite collection C of
rational polyhedra (i.e. intersections of a finite number of rational half-spaces) such that
any face of any polyhedron of C is also in C, and that the intersection of any two polyhedra
in C is a face of both polyhedra. We do not ask for the polyhedra to be compact.

We define a rational polyhedron in Y to be the closure in Y of a rational polyhedron
of some stratum Yρ – Rn{Lpρq (remember that each cone ρ of the fan generating Y is
rational). We define a rational polyhedral complex in a tropical toric variety Y to be a
finite collection C of rational polyhedra of Y , such that as above any face of any polyhedron
of C is also in C, and that the intersection of any two polyhedra in C is a face of both
polyhedra. Notice that the restriction of C to any stratum Yρ is a rational polyhedral
complex of Rn´dim ρ – Yρ.

In particular, tropical toric varieties and tropical hypersurfaces in toric varieties are
rational polyhedral complexes.

A polyhedral complex Z has the structure of a category. The objects of this category
are the cells of Z and there is a morphism τ Ñ σ if the cell τ is included in σ. We
use the notation Zop to denote the category that has the same objects as Z, and with
morphisms corresponding to the morphisms of Z but with their directions reversed. Let
A be a commutative ring (for us, A will typically be either Z, Z2, Q or R) and let ModA
denote the category of modules over A.

Given a polyhedral complex Z, a cellular cosheaf G of A-modules on Z is a functor

G : Zop Ñ ModA .

More explicitly, a cellular cosheaf consists of a A-module Gpσq for each cell σ in Z

together with a morphism ισ,τ : Gpσq Ñ Gpτq for each pair τ , σ when τ is a face of σ. Since
G is a functor, for any triple of cells γ Ă τ Ă σ the morphisms ι commute in the sense that

ισ,γ “ ιτ,γ ˝ ισ,τ .

Dually, a cellular sheaf H of A-modules on Z is a morphism H : Z Ñ ModA. Therefore,
for each σ there is a A-module Hpσq and there are morphisms ρτ,σ : Hpτq Ñ Hpσq when τ
is a face of σ.

Let us now define the tropical cellular sheaves and cosheaves on tropical toric varieties
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and hypersurfaces.
Let Y be the tropical toric variety corresponding to a fan Σ Ă Rn. Let ρ be a simplicial

cone of Σ which has rays in primitive integer directions r1, . . . , rs. Then we define the
tangent space

TZpYρq :“
Zn

Z ¨ xr1, . . . , rsy
,

and more generally

TApYρq :“
Ab Zn

Ab Z ¨ xr1, . . . , rsy
“ Ab TZpYρq,

where A is as above a commutative ring and A b Z ¨ xr1, . . . , rsy is the sub-A-module of
AbZn – An equal to the image of Z¨xr1, . . . , rsy Ă Zn by the application Zn ÝÑ AbZn (in
particular, it need not be isomorphic to the abstract tensor product of A and Z¨xr1, . . . , rsy,
though it is whenever Σ is unimodular).

If Yρ and Yη are a pair of strata such that Yη Ă Y ρ, then the generators of the cone η
contain the generators of the cone ρ and thus we get projection maps

πρ,η : TApYρq Ñ TApYηq. (3.3.1)

Now let Z be a rational polyhedral complex in Y . In what follows, Z is usually a
tropical hypersurface X Ă Y with its natural cell structure, or Y itself with the natural
cell structure induced by its strata or the cell structure induced by X.

For each cell σ in Z, its relative interior relintσ is contained in some stratum Yρ of Y .
Let TRpσq denote the tangent space to relintσ in TRpYρq. Since σ is rational, there is a full
rank lattice TZpσq Ă TRpσq. We can, as above, define the tangent space TApσq :“ AbTZpσq.

Now for each p ě 0, we define the integral p-multi-tangent space

FZ,Ap pσq “
ÿ

σĂτĂZρ

p
ľ

TApτq,

where we sum the spaces
Źp TApτq (for each cell τ of Zρ :“ Z X Yρ containing σ) as

subspaces of the ambient p-multi-tangent space
Źp TApYρq.

For τ Ă σ, the maps of the cellular cosheaf iσ,τ : FZ,Ap pσq Ñ FZ,Ap pτq are induced
by natural inclusions when relintpσq and relintpτq are in the same stratum of Y , and
are induced by the quotients πρ,η composed with inclusions when relintpσq Ă Yρ and
relintpτq Ă Yη.

We can likewise define a collection of cellular sheaves FpZ,A from the cosheaves FZ,Ap .
For a face σ of Z, set FpZ,Apσq “ HompFZ,Ap pσq, Aq. For τ a face of σ, the map ρτ,σ :

FpZ,Apτq Ñ F
p
Z,Apσq is given by dualizing the corresponding map from the cosheaf FZ,Ap .

Example 3.3.1. Let Y be a tropical toric variety. Consider the polyhedral structure on
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Figure 3.5: The tropical line X in TP 2 from Example 3.3.2

Y given by Y “
Ť

Y ρ induced by the toric stratification. One has

FYp pY ρ,Zq “
p
ľ

TZpYρq –

p
ľ

Zcodimρ,

and the cosheaf maps are the maps induced by the projection maps πρ,η defined in (3.3.1).

Example 3.3.2. Figure 3.5 shows a tropical line X contained in the tropical projective
plane TP 2 from Example 3.2.1. The polyhedral structure on TP 2 induced by X has 7

vertices, 9 edges, and 3 faces of dimension 2.

For any face σ of this polyhedral structure on TP 2, the rank of FTP 2,Z
p pσq depends only

on the dimension of the stratum of TP 2 which contains the relative interior relintpσq. If
relintpσq is contained in a stratum of TP 2 of dimension k then FTP 2,Z

p pσq –
Źp Zk.

The directions of the rays of the fan for TP 2 are

v1 “ p´1, 0q, v2 “ p0,´1q, and v3 “ p1, 1q.

Referring to the labeling in Figure 3.5, we have

FX,Z1 pxq “ xv1, v2, v3y – Z2, FX,Z1 pσiq “ xviy, and FX,Z1 pτiq “ 0.

When p “ 0, we have FX,Z0 pγq “ Z for all γ in X and FX,Zp pγq “ 0 for all γ in X when
p ě 2.

Example 3.3.3. Let as before Hn Ă Rn`1 denote the standard tropical hyperplane in
Rn`1. If v is the vertex of Hn, then FHn,Zp pvq “

Źp Zn`1 for 0 ď p ď n, and FHn,Zp pvq “ 0

otherwise.
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3.3.2 The tropical homology groups

In order to define the cellular tropical homology and cohomoloy groups of a polyhedral
complex Z, we must fix an orientation for each of its cells. Let Zq denote the cells of
dimension q of Z. We define an orientation map O : Zq ˆ Zq´1 Ñ t0, 1,´1u on pairs of
cells by:

Opσ, τq :“

$

’

’

’

&

’

’

’

%

0 if τ Ć σ,

1 if the orientation of τ coincides with its orientation in Bσ,

´1 if the orientation of τ differs from its orientation in Bσ.

Let Z be a polyhedral complex and G a cellular cosheaf on Z. The groups of cellular
q-chains in Z with coefficients in G are

CqpZ;Gq “
à

dimσ“q
σ compact

Gpσq.

Note that we do not ask that the cells be compact, and simply ignore those that aren’t
(more on this below). The boundary maps B : CqpZ;Gq Ñ Cq´1pZ;Gq are given by the
direct sums of the cosheaf maps iσ,τ for τ Ă σ tensorized by the orientation maps Opσ, τq
for all τ and σ. The q-th homology group of G is

HqpZ;Gq “ HqpC‚pZ;Gqq.

Similarly, let Z be a polyhedral complex and G a cellular cosheaf on Z. The groups of
Borel-Moore cellular q-chains in Z with coefficients in G are

CBMq pZ;Gq “
à

dimσ“q

Gpσq.

The boundary maps B : CBMq pZ;Gq Ñ CBMq´1 pZ;Gq are given by the direct sums of the
cosheaf maps iσ,τ for τ Ă σ tensorized by the orientation maps Opσ, τq for all τ and σ.
The q-th Borel-Moore homology group of G is

HBM
q pZ;Gq “ HqpC

BM
‚ pZ;Gqq.

In particular, we define the pp, qq-th tropical homology group with coefficients in A of a
rational polyhedral complex Z in a tropical toric variety Y to be

HqpZ;FZ,Ap q “ HqpC‚pZ;FZ,Ap qq.
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We sometimes refer to it as a standard tropical homology group, to better distinguish it
from the pp, qq-th Borel-Moore tropical homology group with coefficients in A, which we
define as

HBM
q pZ;FZ,Ap q “ HqpC

BM
‚ pZ;FZ,Ap qq.

Of course, both coincide if Z is compact.
Likewise, if G is a cellular sheaf on a polyhedral complex Z, then the group of q cochains

and q cochains with compact support of G are respectively

CqpZ;Gq “
à

dimσ“q
σ compact

Gpσq and Cqc pZ;Gq “
à

dimσ“q

Gpσq.

The complex of cochains and cochains with compact support of G are formed from
the cochain groups together with the restriction maps rτ,σ combined with the orientation
map O as in the case of cosheaves. The cohomology groups and cohomology groups with
compact support of G are respectively,

HqpZ;Gq :“ HqpC‚pZ;Gqq and Hq
c pZ;Gq :“ HqpC‚c pZ;Gqq.

In particular, we have

CqpZ;FpZ,Aq “ HompCqpZ;FZ,Ap q, Aq and Cqc pZ;FpZ,Aq “ HompCBMq pZ;FZ,Ap q, Aq,

and we define the (standard) tropical cohomology groups with coefficients in A and tropical
cohomology groups with compact support and coefficients in A of a rational polyhedral
complex Z in a tropical toric variety Y to be respectively

HqpZ;FpZ,Aq :“ HqpC‚pZ;FpZ,Aqq

and
Hq
c pZ;FpZ,Aq :“ HqpC‚c pZ;FpZ,Aqq.

Remark 3.3.4. Observe that when p “ 0, the sheaf F0
Z,Aq is simply the constant sheaf

associated to the ring A (and similarly for the cosheaf FZ,A0 ).

Remark 3.3.5. Note that this definition is dependent on the ambient space Y in which
the rational polyhedral complex is embedded.

The Borel-Moore tropical cellular homology groups and tropical cellular cohomology
groups with compact support of a rational polyhedral complex in a tropical toric variety
Y hence defined are independent from the cell structure considered (and equal to the
corresponding singular (co)homology groups).

On the other hand, an additional assumption needs to be made in the standard case.
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Following J. Curry in [Cur13, Chapter 4], we define a regular cell complex to be a space
X equipped with a partition into cells tXαuαPA such that

1. Each point x P X admits an open neighborhood intersecting only finitely many Xα.

2. For any α P A, the open cell Xα is homeomorphic to Rk for some k.

3. If Xα XXβ ‰ H, then Xβ Ă Xα.

4. For any α P A, the pair pXα, Xαq is homeomorphic to the pair pBk, B̊kq, where Bk

is the closed k-dimensional ball and B̊k the open k-dimensional ball.

Note that this is a stricter definition than what is common for regular CW-complexes.
Curry also defines a cell complex to be a space X equipped with a partition into cells

tXαuαPA satisfying the first three conditions of the definition of a regular cell complex, and
such that its one-point compactification, with the cell decomposition tXαuαPA Y tt8uu, is
a regular cell complex.

Then Curry shows that the cellular (in the usual sense, i.e. computed using a CW-
complex structure) homology of a cosheaf (respectively, the cellular cohomology of a sheaf)
on a space with a cell complex structure can be computed using that cell decomposition and
considering only compact cells (even though that cell decomposition does not necessarily
satisfy the conditions to be a regular CW-complex), as we did above (see [Cur13, Chapter
6] or [Cur14, Chapter 7]).

As a rational polyhedral complex in a tropical toric variety automatically satisfies the
first three conditions of the definition of a regular cell complex, we only have to ask that
its one-point compactification (with the induced cell structure) be a regular cell complex
for it to be a cell complex. Hence, under that assumption, we know that the standard
tropical (co)homology groups HqpZ;FZ,Ap q and HqpZ;FpZ,Aq are independent of the chosen
decomposition (and in fact equal to the corresponding singular (co)homology groups).

In what follows, we will only ever compute the standard tropical (co)homology of cell
complexes.

The following lemma helps us characterize tropical hypersurfaces in Rn that are cell
complexes.

Lemma 3.3.6. Let P be a non-trivial tropical polynomial in n variables, ∆ be its Netwon
polytope, and X be the induced tropical hypersurface in Rn. Then Rn, equipped with the nat-
ural cell decomposition induced by X, is a cell complex if and only if ∆ is full-dimensional.

Proof. Suppose first that ∆ is of dimension k ă n. Then one can find a cell σ of X of
dimension n´k that is homeomorphic to Rn´k, and such that its closure σ̃ in the one-point
compactification of Rn is homeomorphic to the pn´kq-sphere (and thus not homeomorphic
to the pn´ kq-closed ball).
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Conversely, suppose that ∆ is full-dimensional. The recession cone of a cell σ is the set

Cσ :“ tv P Rn | x` λv P σ for any x P σ and any λ P Rě0u.

For any cell σ of X, it is easy to show (by considering the cell of the subdivision of ∆

induced by P that is dual to σ under the Duality Theorem 3.2.4) that the recession cone
of σ is such that its intersection with the pn´ 1q-sphere tx P Rn| |x| “ 1u is contractible.
One can then consider a first compactification of Rn as the ball Bn (where we identify
its interior with Rn). In this compactification, the closure σ̃ of σ is such that the pair
pσ̃, σq is homeomorphic to pBdimσ, B̊dimσq. We can then quotient Bn by its boundary
BnzRn to obtain the one-point compactification of Rn. As the intersection Cσ XSn´1 was
contractible, it is easy to see that the closure σ of σ in this new compactification is such
that the pair pσ, σq is homeomorphic to pBdimσ, B̊dimσq.

Observe that if Rn with the cell structure induced by X is a cell complex, then so is
X.

Under reasonable conditions, many well-known results regarding classical homology
also carry over to tropical homology, such as the Mayer-Vietoris sequence (see [JRS17]),
an analog to one of the corollaries of Lefschetz’s hyperplane section theorem (see Chapter
7), Künneth’s formula (see [GS19]) or Poincaré duality with integer coefficients, which is
stated below.

Theorem 3.3.7. Let Z be either an n-dimensional non-singular tropical toric variety,
a non-singular tropical hypersurface in Rn`1, or an n-dimensional non-singular tropical
hypersurface in a (non-singular compact) tropical toric variety. Then for all q, p, we have
a canonical isomorphism

HqpZ;FpZ,Zq – HBM
n´q pZ;FZ,Zn´pq.

Proof. See either [JRS17] or [GS19].

Poincaré duality with coefficients in Q or R immediately follows.
The statement is in fact stated in both [JRS17] and [GS19] for tropical manifolds, which

we have not defined here. Non-singular tropical toric varieties and non-singular tropical
hypersurfaces are special cases of tropical manifolds.

We further study the links between the tropical homology of a tropical variety and the
usual homology of related real algebraic varieties in Chapters 4, 7 and 9.
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Chapter 4

Tropical homology, Betti numbers
and Kalinin’s spectral sequence

4.1 Chapter introduction

In this chapter, we detail some connections between the algebraic and the tropical worlds;
in particular, we relate the homology of the real and complex parts of a real algebraic
hypersurface obtained by combinatorial patchworking and the homology of some tropical
cosheaf on an associated tropical hypersurface. This also allows us to explain the motiva-
tions behind the results of Chapter 7.

This principle can be traced back to I. Itenberg’s, L. Katzarkov’s, G. Mikhalkin’s and
I. Zharkov’s major article [IKMZ16], which shows that the (p, q)-th tropical homology
group with coefficients in Q of an non-singular projective tropical variety obtained as
the tropical limit (more on this below) of a one-parameter family of complex projective
algebraic varieties is equal to the (p, q)-th Hodge number of a general member of that
family.

Roughly summarized, the core idea that we develop here (which is also present in the
aforementioned article) is that a patchworked hypersurface can be seen as a fibration of
sorts on a related tropical hypersurface; we can then consider an analog of the Leray-Serre
spectral sequence associated to that fibration, whose second page-terms will be homology
groups on the tropical hypersurface, with coefficients in the homology of the fibers. Under
certain circumstances, those homology groups coincide with the tropical homology groups
defined in Chapter 3.

The content of this chapter belongs to a gray area of sorts, in the sense that we do not
expose new results or entirely new concepts, but rather a point of view which, as far as the
author is aware, does not appear in this level of generality in the literature (as an example,
both [IKMZ16] and [RS18] only consider the non-singular case). That is not to say that
no one else is familiar with that point of view, but it is nonetheless more "experimental"

53
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than the rest of Part I. As it is still a work in progress, we allow ourselves a slightly lesser
degree of rigour here than in the rest of this text. The same applies to Chapter 9, which
is the direct continuation of this chapter.

4.2 Tropical hypersurfaces as limits of families of patchworked
real algebraic hypersurfaces

We use the concepts and notations of Chapter 2.

Consider the map

Logt : pC˚qn ÝÑ Rn

pz1, . . . , znq ÞÝÑ plogtp|z1|q, . . . , logtp|zn|qq,

for some t P Rą0.

Given a Laurent polynomial P in n variables, we call LogtpVpC˚qnpP qq Ă Rn the amoeba
of VpC˚qnpP q. Note that the amoeba only retains information on the amplitude of the
coordinates of the points of VpC˚qnpP q; their argument appears in the definition of the
coamoeba, which can be found in Chapter 8. Together, they can be used to define the
phase tropical variety - see [KZ16].

Consider also a family of real Laurent polynomials

Ptpzq :“
ÿ

λP∆XZn
cλt

µpλqzλ

indexed by a real parameter t ą 0, where Λ is a finite subset of Zn and we have cλ P R˚

and µpλq P R for all λ P Λ.

Then it can be shown (see for example [Mik04]) that Logt´1pVpC˚qnpPtqq converges, with
respect to the Hausdorff distance on closed sets, to the tropical hypersurface XP Ă Rn to
which the tropical polynomial P pXq :“ ”

ř

λP∆XZn ´µpλqX
λ” gives rise, as t ą

ÝÑ 0. We
say that P is the tropical limit of the polynomials Pt, and that XP is the tropical limit of
the hypersurfaces VpC˚qnpPtq. This process is illustrated in Figure 4.11. Similar statements
can be made using a toric variety (and the associated tropical toric variety) as the ambient
space of the hypersurfaces induced by the polynomials Pt.

Such a family tPtutą0 of real Laurent polynomials can for example be obtained as the
result of a patchworking of polynomialsQ1, . . . , Qs, where µ is assumed to be the restriction
to Λ of a piecewise linear convex function on the Newton polytope ∆ “ ConvpΛq whose
domains of linearity are the Newton polytopes ∆pQiq. In that context, we refer to XP as
to the tropical hypersurface associated to the real hypersurface Pt of the algebraic torus,

1Images from [BIMS15]



4.2. TROPICAL HYPERSURFACES AS TROPICAL LIMITS 55

Figure 4.1: An amoeba in R2, and the associated tropical limit.

for any t ą 0 small enough that the conclusions of the Main Patchwork Theorem 2.2.1
apply.

We consider such a tropical hypersurface XP and such real hypersurfaces Pt for the
rest of the chapter.

Note that if tPtutą0 was obtained using a primitive triangulation, the associated hy-
persurface XP is non-singular. In that special case, interesting computations can already
be made. Indeed, using a cell structure on VRPnpPtq (for t ą 0 small enough) suggested
by the description of (a piecewise linear hypersurface isotopic to) its chart in Subsection
2.3, one can easily compute the Euler characteristic of VRPnpPtq. Likewise, there is a rel-
atively simple combinatorial description of the tropical characteristics χpCBM‚ pXP ;FXPp qq

(see Chapter 7 for more on those). Using the main result from [IKMZ16], the author was
then able to find (in his Master thesis [Arn17]) a purely combinatorial proof of a result by
B. Bertrand (see [Ber10]), which stated that under those assumptions,

χpVRPnpPtqq “ σpVCPnpPtqq,

where σpVCPnpPtqq is the signature of the intersection form on Hn´1pVCPnpPtqq. In fact,
both proofs generalize to complete intersections in non-singular toric varieties (see [Arn17]
and [BB07]).

To simplify notations, let us call Xt the real algebraic hypersurface induced by the
polynomial Pt in either the algebraic torus or a reasonable toric variety, and X the asso-
ciated tropical variety (in either the tropical torus Rn or the corresponding tropical toric
variety). When t ą 0 is small enough, it can be shown, as in Mikhalkin’s [Mik04], that
there is a continuous surjection

F : CXt ÝÑ X

which respects the natural cell structure on X in the following sense: let σ be a k-
dimensional cell of sedentarity 0 of X, dual to some face γ of dimension n´k of the associ-
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Figure 4.2: The stratified fibration F .

ated subdivision of the Newton polytope ∆ of P (see the Duality Theorem 3.2.4). Then the
corestriction of F to the relative interior of σ is a trivial fibration, whose fiber is diffeomor-
phic to CXσˆpS

1qk, where S1 is the unit circle and Xσ is the (n´k´1)-dimensional real
algebraic hypersurface in the algebraic torus induced by Pt|γ , seen (via a change of coordi-
nates) as a polynomial in n´k variables. We define COσ :“ F´1prelintpσqq – CXσˆpC˚qk,
and ROσ Ă RXt as the real part of COσ Ă CXt.

When τ Ă σ is face of sedentarity 0 of σ in X, there is a morphism iσ,τ : Oσ ÝÑ Oτ ,
which is the composition of a homotopy equivalence and an inclusion. Those morphisms
are natural, in the sense that if τ Ă σ Ă η, we have iσ,τ ˝ iη,σ “ iη,τ .

In the primitive case, for a cell σ of dimension k, each CXσ (respectively, RXσ) is a
generic hyperplane in pC˚qn´k (respectively, in pR˚qn´k), or equivalently the complement
of a generic arrangement of n´ k` 1 hyperplanes in CPn´k´1 (respectively, in RPn´k´1).
Following Mikhalkin, we call it the (n ´ k ` 1)-dimensional pair of pants, and denote it
as CPn´k´1 (and RPn´k´1 for its real points). The topology of the real part RP l of an
l-dimensional pair of pants is not very interesting, as it it simply a disjoint union of 2l ´ 1

contractible connected components. The topology of the complex part is more complicated
(see for example [OT92]).

This is illustrated in Figure 4.2, where X is a tropical curve, σ is one of its edges and
τ Ă σ one of its vertices. In red, COσ is diffeomorphic to C˚. In blue, COτ is diffeomorphic
to the 1-dimensional pair of pants, which is in fact the usual pair of pants (i.e. a sphere
minus three points).

The situation is similar when considering cells of nonzero sedentarity. Suppose that the
ambient tropical toric variety is non-singular and spanned by the Newton polytope of P
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Figure 4.3: The stratified fibration F in nonzero sedentarity.

(so that the Duality Theorem 3.2.4 applies). Let σ be a k-dimensional cell of sedentarity
i of X, dual to some face γ of dimension n ´ i ´ k of the associated subdivision of the
Newton polytope ∆ of P (see the Duality Theorem 3.2.4). Then we can assume (if we are
careful in our definition of F ) that the corestriction of F to the relative interior of σ is a
trivial fibration, whose complex fiber is diffeomorphic to CXσˆCiˆpS1qk, where as above
S1 is the unit circle and Xσ is the (n´ i´ k ´ 1)-dimensional real algebraic hypersurface
induced by Pt|γ . We also have COσ “ F´1prelintpσqq – CXσ ˆ Ci ˆ pC˚qk.

This is illustrated in Figure 4.3. In red, we see an open set of X, homeomorphic (as a
stratified space) to T2. There is a 0-dimensional cell τ of sedentarity 2, two 1-dimensional
cells σ1, σ2 of sedentarity 1 and a 2-dimensional cell η of sedentarity 0. Above η, we have
COη – pC˚q2, represented as the product of two cylinders (a blue one and an orange
one). Above each cell σi, we can see COσi – C˚ ˆ C, represented as the product of a
cylinder and a half-sphere, and above τ , we have COτ – C2, represented as the product
of two half-spheres. The morphism iη,σi : COη ÝÑ COσi is homotopically equivalent to
iˆ id : C˚ˆC˚ ÝÑ CˆC˚, where i : C˚ ÝÑ C is the inclusion. Increasing the sedentarity
corresponds to "closing holes".

This decomposition of the hypersurface induced by Xt into simpler pieces (the spaces
Oσ) is, in a sense, nothing more than the statement of the Main Patchwork Theorem; the
piece Oσ corresponds to the chart of the polynomial Qi|γ , where γ belongs to the Newton
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polytope ∆i Ă ∆ of Qi and is the cell of ∆ dual to σ (see for example [IMS09, Lemma
2.17]).

4.3 The Leray-Serre spectral sequence of the fibration

Let A be a commutative ring. In this section, we suppose that X is compact and make
no distinction between Borel-Moore and standard homology in order to simplify notations.
Otherwise, one can simply proceed as in Section 3.3. We also assume that t ą 0 is small
enough for the situation to be as described in the previous section.

For each p P N, we define two cellular cosheaves CUAp and RUAp on X (as we defined
the tropical cosheaves Fp in Section 3.3) in the following way : for a cell σ in X and
K P tC,Ru, we set

KUAp pσq :“ HppKOσ;Aq.

When τ Ă σ, the morphism iσ,τ : KOσ ÝÑ KOτ induces morphisms KUAp pσq ÝÑ
KUAp pτq. This allows us to define the cellular chain groups

CqpX;KUAp q :“
à

dimσ“q

KUAp pσq

and (tensorizing with the orientation morphisms between the cells) the associated cellular
chain complexes C‚pX;KUAp q and homology groups

HqpX;KUAp q :“ HqpC‚pX;KUAp qq.

The cosheaves CUAp could also be considered tropical cosheaves of sorts, and perhaps more
legitimately (as is shown below) than the usual cosheaves FAp defined in Section 3.3. To
better distinguish them, we introduce the following convention: we call CUAp (respectively
RUAp ) the p-th round tropical cosheaf with coefficients in A (respectively, the p-th real
round tropical cosheaf with coefficients in A), and FX,Ap the p-th pointy tropical cosheaf
with coefficients in A. The former are round because U is a round letter, and the latter is
pointy because it is defined using exterior products of vector spaces, and both vectors and
the

Ź

symbol are well-known to be pointy.
When Xt is the result of a primitive combinatorial patchworking, and thus Oσ is a

higher-dimensional pair of pants for each cell σ in X, it can be shown (see [Mik04] or
[Zha13] for inspiration) that we have an isomorphism FX,Ap – CUAp as cosheaves, which
immediately implies an isomorphism of homology groups. If Xt is the result of a non-
primitive patchworking, however, this is not the case. For example, if σ is an n-dimensional
simplex of volume k

n! (with k ą 1) in the subdivision of ∆, and if the associated polynomial
Qi (such that σ is the Newton polytope of Qi) is simplicial, it is known (see for example
[DK86] or [GKZ94]) that COσ “ VpC˚qnpQiq is such that CUAn´1pσq “ Hn´1pCOσ;Aq is of
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rank n´ 1` k. On the other hand, FX,An´1 pσq Ă
Źn´1 Rn is of rank at most n.

Now consider the k-skeleton Xk Ă X, where the cell structure on X is the natural one
(see Chapter 3), and define CY k :“ F´1pXkq and RY k :“ CY k X RXt. Let K P tC,Ru.

There is an induced filtration of topological spaces H Ă KY 0 Ă . . . Ă KY n´2 Ă

KY n´1 “ KXt, which in turn induces an analog (as the fiber is not constant) of the
Leray-Serre spectral sequence, whose terms we denote as Er,LS,Kp,q (where r ě 0 is the
number of the page). Both the chosen coefficients ring A and the spaces X and Xt are
implicit; however, we add "LS" as an index, as this is not the only spectral sequence that
we will be considering.

This spectral sequence has the following properties:

• E1,LS,K
p,q “ CqpX;KUAp q, and B1 coincides with the differentials of the cellular round

tropical homology complexes C‚pX;KUAp q.

• E2,LS,K
p,q “ HqpX;KUAp q.

• The spectral sequence converges (in a finite number of steps) to H˚pKXt;Aq, i.e.
there exists a filtrationH “ F´1Hp`qpKXt;Aq Ă F0Hp`qpKXt;Aq Ă . . . Ă Fp`qHp`qpKXt;Aq “

Hp`qpKXt;Aq such that E8,LS,Kp,q – FpHp`qpKXt;Aq{Fp´1Hp`qpKXt;Aq.

The existence and properties of E‚,LS,K‚,‚ can be proved by choosing a cell structure on CXt

compatible with the stratified fibration F and the real structure, and in the same way
as for the usual Leray-Serre spectral sequence (see the chapter on spectral sequences in
[FF16]).

The appearance of round tropical homology groups on the second page of the complex
spectral sequence E‚,LS,C‚,‚ is the reason why we described them as "better" than the pointy
tropical homology groups, which do not enjoy that connection to the homology of the
complex part CXt (nor to the homology of the real part - see the next section).

In the case of a primitive combinatorial patchworking, we know from [IKMZ16] that
the spectral sequence E‚,LS,C‚,‚ degenerates on the second page, and that if we let A “ Q,
we have

dimE2,LS,C
p,q “ dimHqpX;CUQ

p q “ hp,qpCXtq,

where hp,qpCXtq is the (p, q)-th Hodge number of CXt. When X is a tropical hypersurface
(as opposed to a more general tropical variety), we recover this result through purely
combinatorial means in Chapter 7 (see Corollary 7.1.9).

In general, it is not as clear whether the Leray-Serre spectral sequence degenerates on
the second page, or later.

The spectral sequence E‚,LS,R‚,‚ of the real part is simpler. In fact, when Xt has been
obtained as the result of a (non-necessarily primitive) combinatorial patchworking, which
is the case in which we are most interested, the spaces ROσ are unions of contractible
components (see Lemma 8.5.1). Hence RUAp pσq “ HppROσ;Aq “ 0 if p ‰ 0 for every cell
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σ. Moreover, the first line E1,LS,R
0,q “ CqpX;KUA0 q of the first page of the spectral sequence

(which is the only non-trivial line) associated to the real part is simply a cellular chain
complex (for the usual, non-tropical constant cosheaf A) corresponding to a certain cell
structure on RXt (the one induced by the fibration F , where each cell in RXt is a copy in
a certain quadrant of a cell of X). Hence the spectral sequence always degenerates on the
second page, E2,LS,R

p,q “ 0 for p ‰ 0 and E2,LS,R
0,q “ HqpX;RUA0 q “ HqpRXt;Aq.

As there is not much else to say about the spectral sequence E‚,LS,R‚,‚ , we do not refer to
it from now on; the only thing of importance to remember is the equality HqpX;RUA0 q “
HqpRXt;Aq (in the combinatorial patchworking case). Therefore, we simply write E‚,LS‚,‚

instead of E‚,LS,C‚,‚ from now on.

4.4 Kalinin’s spectral sequence

We now have two important types of cosheaves on X: the cosheaf RUA0 , which allows us
to directly compute (in the combinatorial case, which we consider) the homology of RXt,
as HqpX;RUA0 q “ HqpRXt;Aq, and the cosheaves tCUAp up, which allow us to indirectly
compute the homology of CXt through the spectral sequence E‚,LS‚,‚ . We naturally want
to establish a connection between them, and Kalinin’s spectral sequence allows us to do
so. From now on, we let the ring of coefficients A be equal to Z2, as Kalinin’s spectral
sequence is only defined over Z2.

Our three main references here are I. Kalinin’s original articles [Kal05] and [Kal92], A.
Degtyarev’s [Deg92], and the more sheaf-theoretic [Kra84] by V. Krasnov. All details are
to be found there.

Let Y be an n-dimensional real algebraic variety. We denote the terms of the Kalinin
spectral sequence in homology associated to Y as Er,Kaq pY q, where r ě 0 is the number
of the page. We write the differentials as Br : Er,Kaq pY q ÝÑ Er,Kaq`r´1pY q. There is a single
index q, as opposed to a couple pp, qq as one would expect, because it is a stabilized spectral
sequence, i.e. that it is obtained by taking a certain projective limit (in "the direction p")
associated to a certain classical spectral sequence.

The spectral sequence has the following properties (up to an isomorphism of spectral
sequences):

• E1,Ka
q pY q “ HqpCY ;Z2q, and B1 : HqpCY ;Z2q ÝÑ HqpCY ;Z2q coincides with 1 `

c˚ : HqpCY ;Z2q ÝÑ HqpCY ;Z2q, where 1 is the identity and c˚ is induced by the
conjugation.

• As a consequence, E2,Ka
q pY q “ Kerp1`c˚q

Imp1`c˚q
.

• The spectral sequence converges (in a finite number of steps) to H˚pRX;Z2q, i.e.
there exists a (decreasing) filtration H “ Fn`1H˚pRY ;Z2q Ă FnH˚pRY ;Z2q Ă . . . Ă

F0H˚pRY ;Z2q “ H˚pRY ;Z2q such thatE8,Kap pY q – FpH˚pRY ;Z2q{Fp`1H˚pRY ;Z2q.
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We immediately see that Y is (Smith-Thom) maximal (see Formula 1.2.1) if and only
if its Kalinin spectral sequence degenerates on the first page, and Galois maximal (see
Formula 1.2.2) if and only if its Kalinin spectral sequence degenerates on the second page.

Note that the filtration on H˚pRX;Z2q does not need to respect the natural grading
induced by the degree on H˚pRX;Z2q. The higher-dimensional pair of pants illustrates
this, as it is maximal (we discuss this further below), the homology of its real part is
entirely concentrated in degree 0, but the homology of its complex part is not.

The Kalinin spectral sequence is functorial; a continuous map Y1 ÝÑ Y2 of real algebraic
varieties induces morphisms Er,Kaq pY1q ÝÑ Er,Kaq pY2q which coincide with those induced
by the morphisms HqpCY1;Z2q ÝÑ HqpCY2;Z2q on the first page.

There is also a Kalinin spectral sequence for cohomology, and they both have many
interesting properties, such as a multiplicative structure, connections to Steenrod squares,
etc. However, they are not needed for our purpose here.

What matters to us is that it yields a non-trivial filtration on the homology of the real
part of a real algebraic variety which is connected to the homology of the complex part.

4.5 Bounds on the homology of RXt

For each cell σ in X, we can consider the Kalinin spectral sequence of Oσ. As we are
still restricting ourselves to the combinatorial case, we have as mentioned before that
H˚pROσ;Z2q “ H0pROσ;Z2q “ RUZ2

0 pσq. The spectral sequence yields a filtration H “

FnRUZ2
0 pσq Ă Fn´1RUZ2

0 pσq Ă . . . Ă F0RUZ2
0 pσq “ H0pROσ;Z2q such that E8,Kap pOσq –

FpRUZ2
0 pσq{Fp`1RUZ2

0 pσq.
Since the Kalinin spectral sequence is functorial, we can define for each p the cellular

cosheaves σ ÞÑ FpRUZ2
0 pσq and σ ÞÑ E8,Kap pOσq, as well as the corresponding cellular chain

groups CqpX;FpRUZ2
0 q :“

À

dimσ“q FpRU
Z2
0 pσq and CqpX;E8,Kap q :“

À

dimσ“q E
8,Ka
p pσq,

cellular chain complexes C‚pX;FpRUZ2
0 q and C‚pX;E8,Kap q, and homology groupsHqpX;FpRUZ2

0 q :“

HqpC‚pX;FpRUZ2
0 qq and HqpX;E8,Kap q :“ HqpC‚pX;E8,Kap qq.

We obtain a filtration of cellular chain complexes

C‚pX;Fn´1RUZ2
0 q Ă . . . C‚pX;F1RUZ2

0 q Ă C‚pX;F0RUZ2
0 q “ C‚pX;RUZ2

0 q, (4.5.1)

such that we have

C‚pX;FpRUZ2
0 q{C‚pX;Fp`1RUZ2

0 q – C‚pX;E8,Kap q

as complexes.
Such a filtration gives rise to yet another spectral sequence, whose terms we denote

as Er,HAq,p ("HA" for Homological Algebra), as a matter of pure homological algebra. We
do not study that spectral sequence in detail here, though it can be used to figure out
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maximality conditions on Xt (see [RS18]). What matters to us is that it automatically
implies the following inequality for each q:

dimZ2 HqpRXt;Aq “ dimZ2 HqpX;RUA0 q ď
ÿ

p

dimZ2 HqpX;E8,Kap q. (4.5.2)

All the relations that we have established are summarized in the pseudo-diagram (4.5.3).
In the upper left corner, we have the groups CqpX;CUZ2

p q, which can be seen as the first
page of the Leray-Serre spectral sequence of CXt described in Section 4.3. By taking their
homology with respect to the differential of that spectral sequence, we find the groups
HqpX;CUZ2

p q, on the second page of the Leray-Serre spectral sequence. It converges to the
homology of CXt, with a filtration F‚HlpCXt;Z2q Ă HlpCXt;Z2q such that E8,LS,Z2

p,l´p –

FpHlpCXt;Z2q{Fp´1HlpCXt;Z2q.

We can also go vertically from CqpX;CUZ2
p q, and progress in the Kalinin spectral se-

quence of each Oσ (while simply summing over the cells σ); we find CqpX; Kerp1`c˚qImp1`c˚q
q, where

Kerp1`c˚q
Imp1`c˚q

is the cosheaf σ ÞÑ E2,Ka
p pOσq. On the last page of this "cell-wise" spectral se-

quence, we find the groups CqpX;E8,Kap q, which appear on the 0-th page of the "Homologi-
cal Algebra" spectral sequence mentioned above. By progressing in that spectral sequence,
we find on the first page HqpX;E8,Kap q, and it converges to HqpRXt;Z2q, with a decreasing
filtration F‚HqpRXt;Z2q Ă HqpRXt;Z2q such thatE8,HAq,p – FpHqpRXt;Z2q{Fp`1HqpRXt;Z2q.

CqpX;CUZ2
p q HqpX;CUZ2

p q HlpCXt;Z2q

CqpX; Kerp1`c˚qImp1`c˚q
q

CqpX;E8,Kap q HqpX;E8,Kap q HqpRXt;Z2q

LS

Ka

LS
ř

p`q“l

Ka

HA HA
ř

p

(4.5.3)

Ideally, we would like to find relations between the homology HlpCXt;Z2q of the com-
plex part, and the homology HqpRXt;Z2q of the real part.

In the case of a primitive combinatorial patchworking, the situation greatly simplifies.
As stated before, one can use the theorems from Chapter 7 to see that the Leray-Serre spec-
tral sequence degenerates on the second page, and that dimZ2 HqpX;CUZ2

p q “ hq,ppCXtq;
in fact, this was the primary motivation behind those results.

Moreover, if (and only if) the triangulation is primitive, each Oσ is maximal and the
associated spectral sequence Er,Kap pOσq degenerates on the first page. Hence we have
an isomorphism of cosheaves CUZ2

p – E8,Kap , and isomorphisms of groups HqpX;CUZ2
p q –

HqpX;E8,Kap q. As we mentioned earlier that in the primitive case, we have an isomorphism
CUZ2

p – FX,Z2
p between the round and pointy tropical cosheaves, this yields (using the

bound from Formula (4.5.2)) the following statement, which was the main result from
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Renaudineau’s and Shaw’s [RS18].

Theorem 4.5.1.

dimZ2 HqpRXt;Z2q ď

dimX
ÿ

p“0

dimZ2 HqpX;FX,Z2
p q.

As they directly and exclusively considered the primitive case, they did not need to go
into the details of the various spectral sequences appearing in Diagram (4.5.3).

As said above, this implies (thanks to the results from Chapter 7, which were obtained
as a joint work with Renaudineau and Shaw) that

dimZ2 HqpRXt;Z2q ď hq,n´1´qpCXq ` 1´ δi,n´1
2
, (4.5.4)

where Xt is as before of dimension n´ 1, and δi,n´1
2

is 1 if i “ n´1
2 and 0 otherwise.

Itenberg had already proved this bound for n “ 3 in [Ite97], and conjectured that it
held in general dimension in [Ite17]. This was a refinement of a conjecture by Viro, which
stated that b1pRZq ď h1,1pCZq for a non-singular simply connected compact real surface Z
(without requiring that it come from a primitive patchworking) and turned out to be false
(see [Ite97] again). In other words, real algebraic hypersurfaces obtained using primitive
combinatorial patchworking do obey the principle expressed in the Introduction in Formula
(0.0.2) (as hq,ppCXq “ 0 if q ‰ p and hq,qpCXq “ 1 if q ‰ n´1

2 , see for example [DK86]).
As a bonus of sorts, observe that in the primitive case, the filtration of chain complexes

C‚pX;Fn´1RUZ2
0 q Ă . . . C‚pX;F1RUZ2

0 q Ă C‚pX;F0RUZ2
0 q “ C‚pX;RUZ2

0 q

from Formula (4.5.1) directly implies that

ÿ

p,q

p´1qphq,ppCXtq “
ÿ

p,q

p´1qq dimZ2

´

HqpX;CUZ2
p q

¯

“
ÿ

p,q

p´1qq dimZ2

´

CqpX;CUZ2
p q

¯

“

ÿ

p,q

p´1qq
”

dimZ2

´

CqpX;FpRUZ2
0 q

¯

´ dimZ2

´

CqpX;Fp`1RUZ2
0 q

¯ı

“

ÿ

q

p´1qq dimZ2

´

CqpX;RUZ2
0 q

¯

“
ÿ

q

p´1qq dimZ2

´

HqpX;RUZ2
0 q

¯

“ χpRXtq,

and as it is well-known that
ř

p,qp´1qphq,ppCXtq is equal to the signature σpCXtq of the
intersection form on Hn´1pCXtq (see for example [Voi07]), this allows us to painlessly
recover the equality

χpRXtq “ σpCXtq

from [Arn17] and [Ber10] that was cited in Section 4.2.
In Chapter 9, we discuss possible applications of the concepts exposed above, and in

particular ways in which one could hope to generalize Theorem 4.5.1 and Formula (4.5.4).
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Chapter 5

A flexible construction method

5.1 Chapter introduction

In this chapter, we describe a new construction method for real projective algebraic hyper-
surfaces. It relies on Viro’s method, which is described in details in Chapter 2, as well as
related notions used below, such as complete nondegeneracy. Chapter 6 is the direct con-
tinuation of this chapter, where the methods developed here are applied to build families
of real projective algebraic hypersurfaces with asymptotically large Betti numbers.

In given ambient dimension n, the dimension of the total homology of the complex part
of a smooth projective real algebraic hypersurface Xn

d of degree d satisfies

dimZ2pH˚pCX
n
d qq “

pd´ 1qn`1 ´ p´1qn`1

d
` n` p´1qn`1. (5.1.1)

In particular, it is a polynomial of degree n in d, with 1 as its leading coefficient (see
[DK86]). Moreover, for i “ 0, . . . , n´ 1, the pi, n´ 1´ iq-th Hodge number hi,n´1´ipCXn

d q

is also a polynomial of degree n in d (the same for any such hypersurface). Denote its
leading coefficient by ani (see Subsection 6.2.1 for more details). As hp,qpCXn

d q P t0, 1u if
p`q ‰ n´1 (see for example [DK86]), the sum

ř

p h
i,ppCXn

d q from Inequality (0.0.2) which
played an important role in the Introduction is asymptotically equal to hi,n´1´ipCXn

d q; in
particular, the coefficient ani that we have just defined coincides with the similarly named
coefficient from the Introduction.

If f, g : N ÝÑ N are such that fpdq ď gpdq ` Opdn´1q, using the usual convention for
the O notation, we write f

n
ď g. If both f

n
ď g and f

n
ě g, we say that f n

“ g. We naturally
extend this notation to the case where f and g are both defined on the same infinite subset
of N. Using that notation, we already know from the Smith-Thom inequality (1.2.1) and
(5.1.1) that

ÿ

i

bipRXn
d q

n
ď dn,

where Xn
d is as above.

67
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It is then natural to ask what the maximal value Bn
i pdq of the i-th Betti number

bipRXn
d q “ dimZ2pHipRXn

d qq of the real part of a smooth real algebraic hypersurface
Xn
d Ă Pn of degree d is; Itenberg and V. Kharlamov proved (according to [Bih03], where a

proof in dimension n “ 3 can be found) that for i “ 0, . . . , n´1, there exists βni P Rą0 such
that Bn

i pdq “ βni ¨ d
n ` opdnq. The same question can be asked about linear combinations

of Betti numbers, or under additional conditions.

A family of real algebraic hypersurfaces tXn
d udPN in Pn is asymptotically maximal if

dimZ2pH˚pRXn
d qq

n
“ dimZ2pH˚pCXn

d qqp
n
“ dnq. We also say that a family of real Laurent

polynomials in n variables is asymptotically standard (this is, ironically, non-standard ter-
minology) if the associated family of projective hypersurfaces verifies bipVRPnpPnd qq

n
“ ani ¨d

n

(which implies asymptotic maximality) - in particular, they asymptotically obey the prin-
ciple enounced in the Introduction, which suggested that real projective algebraic hyper-
surfaces should be expected to verify

dimZ2 HqpRX;Z2q ď
ÿ

p

hq,ppCXq.

Asymptotically standard families are in a sense the baseline examples of asymptotically
maximal families, since they are the easiest to build and the "least singular". It is natural
to compare the asymptotic Betti numbers of any asymptotic family of real projective
hypersurfaces to the asymptotically standard case.

In [IV07], Itenberg and Viro constructed for any n an asymptotically standard family
of real algebraic hypersurfaces tXn

d udPN in Pn, as was mentioned in the Introduction. B.
Bertrand achieved similar results with general toric varieties, as well as complete intersec-
tions, in [Ber06]. In [Bih03], F. Bihan gave good lower bounds on the values of βni for n “ 3,
which E. Brugallé further improved in [Bru06] using the same method. A. Renaudineau
also worked on related problems in his thesis [Ren15]. All of these results made use of the
patchworking method.

In the same spirit, we develop a construction technique based on Viro’s method and
inspired by [IV07] such that, given for each k “ 1, . . . , n´ 1 a family of projective smooth
real algebraic hypersurfaces in Pk, which we call "ingredients", we can use them to "cook"
(construct) a family tY n

d udPN of smooth real algebraic hypersurfaces in Pn such that the
asymptotic Betti numbers of tRY n

d udPN can be computed from those of the real parts of
the hypersurfaces used ingredients.

More precisely, we have the following "cooking" theorem, where we let Skd :“ tpx1, . . . , xkq P

Rk|xi ě 0 @i,
řk
i“1 xi ď du be the simplex of side d and dimension k:

Theorem 5.1.1 (Cooking Theorem). Let n ě 2. For k “ 1, . . . , n ´ 1, let tP kd udPN be a
family of completely nondegenerate real Laurent polynomials in k variables, such that P kd
is of degree d and that the Newton polytope ∆pP kd q of P

k
d is Skd . Suppose additionally that
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for k “ 1, . . . , n´ 1 and i “ 0, . . . , k ´ 1,

bipVRPkpP
k
d qq

k
ě xki ¨ d

k

for some xki P Rě0. Then there exists a family tQndudPN of completely nondegenerate real
Laurent polynomials in n variables such that ∆pQnd q “ Snd and such that for i “ 0, . . . , n´1

bipVRPnpQ
n
d qq

n
ě

1

n

˜

xn´1
i ` xn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

xkj ¨ x
n´1´k
i´1´j

¸

¨ dn, (5.1.2)

where xkj is set to be 0 for j R t0, . . . , k ´ 1u.
Moreover, if the families tP kd udPN were obtained using a combinatorial patchworking for

all k, then the family tQndudPN can also be obtained by combinatorial patchworking.
If each family tP kd udPN (for k “ 1, . . . , n´ 1) is such that the associated family of pro-

jective hypersurfaces is asymptotically maximal, then the family of projective hypersurfaces
associated to tQndudPN is also asymptotically maximal.

Remark 5.1.2. In light of Lemma 5.3.1 and Remark 5.3.2 below, the expressions bipVRPkpP kd qq
for k “ 1, . . . , n´ 1 and bipVRPnpQnd qq can be indifferently (and independently) replaced in
the statement by bipVpR˚qkpP kd qq and bipVpR˚qnpQ

n
d qq respectively.

For the same reasons, one can see that the polynomials P kd do not actually need to
be completely nondegenerate; we only need the associated hypersurfaces VpC˚qkpP kd q in the
complex torus to be smooth.

Regarding the plan of this chapter, the construction method is described in details in
Section 5.2; proof of Formula (5.1.2) and related remarks are found in Section 5.3. This is
arguably the most technical part of this thesis; please bear with us.

5.2 The construction method

5.2.1 Preliminaries

Let n ě 2. As in the hypotheses of Theorem 5.1.1, for k “ 1, . . . , n´ 1, consider a family
tP kd udPN of completely nondegenerate real Laurent polynomials such that ∆pP kd q “ Skd .

As above, let Skd “ tpx1, . . . , xkq P Rk|xi ě 0 @i,
řk
i“1 xi ď du denote the simplex

of side d and dimension k. Let Hk
i :“ tpx1, . . . , xkq P Rk|xi “ 0u for i “ 1, . . . , k and

Hk
d,0 :“ tpx1, . . . , xkq P Rk|

řk
i“1 xi “ du. For any set of indices I Ă t0, 1, . . . , ku, define

Skd,I :“ Skd X p
Ş

iPI H
k
i q if 0 R I and Skd,I :“ Skd XH

k
d,0 X p

Ş

iPIzt0uH
k
i q if 0 P I.

We first define in Subsection 5.2.2 a specific convex triangulation of Sn´1
d , which we

extend to a convex triangulation of Snd .
In Subsection 5.2.3, we then define a family tQ̃ndudPN of real Laurent polynomials such

that ∆pQ̃nd q “ Snd . Moreover, for any m “ 0, . . . , d ´ n and any I Ĺ t0, 1, . . . , n ´
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1u, the homology of the family of real projective hypersurfaces in Pn´1´|I| associated to
the truncation of the polynomials tQ̃ndudPN to the simplices Snd,I X txn “ mu behaves

asymptotically as the homology of the family of hypersurfaces associated to tPn´1´|I|
d udPN

(this will be given more precise meaning later on).
Finally, applying Viro’s method to tQ̃ndudPN and the convex triangulation we devised,

we obtain in Subsection 5.2.4 a family tQndudPN of real Laurent polynomials that fulfills the
conditions of Theorem 5.1.1 (which is proved in Section 5.3).

5.2.2 A convex triangulation of Snd

Given a finite set Λ Ă Zk and a function f : Λ ÝÑ R, we define Φ̃pfq : ConvpΛq ÝÑ R as
the function whose graph is the lower convex hull in Rk`1 of the graph of f (in Chapter 3,
we considered a similar map Φ, except that it was based on the upper convex hull). Note
that Φ̃pfq always defines a convex subdivision of ConvpΛq.

We define by induction a convex subdivision of Sn´1
d .

Lemma 5.2.1. For any n ě 2 and any d ě n, there exists a piecewise linear convex
function µn´1

d : Sn´1
d ÝÑ R with the following properties:

• It defines a convex triangulation of Sn´1
d .

• The sub-simplex tpx1, . . . , xn´1q P Rn´1|xi ě 1 @i,
řn´1
i“1 xi ď d ´ 1u Ă Sn´1

d is one
of the (maximal) linearity domains of µn´1

d .

• More generally, let Γ be any of the faces of dimension k of Sn´1
d , and let Ψ : Rk ÝÑ

Rn´1 be any affine embedding that maps bijectively the vertices of Skd to those of Γ.
Then the pullback to Skd by Ψ of the restriction of µn´1

d to Γ is such that the sub-
simplex tpx1, . . . , xkq P Rk|xi ě 1 @i,

řk
i“1 xi ď d ´ 1u Ă Skd is one of its (maximal)

linearity domains.

Proof. Starting from k “ 0, we will recursively build piecewise linear functions µk with
the following properties: µk is defined on the union of the faces of Sn´1

d of dimension less
than or equal to k, the function µk is strictly positive, the restriction of µk to any face Γ of
dimension i ď k is convex and induces a convex triangulation of Γ, and if Ψ : Ri ÝÑ Rn´1

is any affine embedding that maps bijectively the vertices of Sid to those of Γ (such an
embedding maps integer points to integer points), then the pullback to Sid by Ψ of the
restriction of µk to Γ is such that the sub-simplex tpx1, . . . , xiq P Ri|xj ě 1 @j,

ři
j“1 xj ď

d´ 1u Ă Sid is one of its (maximal) linearity domains.
Let µ0 be constant and equal to 1 on the vertices of Sn´1

d .
Suppose that µk´1 has been defined, and let us define µk (for k ď n´ 1).
Let Γ be any face of dimension k of Sn´1

d , and choose an affine embedding Ψ : Rk ÝÑ
Rn´1 that maps bijectively the vertices of Skd to those of Γ. The function µk´1 is defined on
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Figure 5.1: For k “ 2 and d “ 6, the graph of µ on the face Γ and the induced triangulation
of Γ.

the faces of dimension i ď k´ 1 of Γ. Through Ψ we identify Skd to Γ for the remainder of
this paragraph in order to simplify notations (in particular, we see µk´1 as being defined on
the faces of dimension i ď k´1 of Skd ). Define µ̃ as taking generic, strictly positive and very
small values on the k ` 1 vertices of tpx1, . . . , xkq P Rk|xj ě 1 @j,

řk
j“1 xj ď d´ 1u Ă Skd ,

and equal to µk´1 on the faces of dimension i ď k´ 1 of Skd . Define µ :“ Φ̃pµ̃q : Skd ÝÑ R.
The function µ coincides with µk´1 on the faces of dimension i ď k´1 of Skd - in particular,
it induces the same triangulation of those faces. The convex subdivision that it induces
on Skd is a triangulation, and for small enough values of µ̃ on its vertices, tpx1, . . . , xkq P

Rk|xj ě 1 @j,
řk
j“1 xj ď d´ 1u Ă Skd is one of its (maximal) linearity domains (see Figure

5.1). We define µk on the face Γ as the pushforward of µ to Γ (via the identification Γ – Skd
used at the beginning of the paragraph).

We proceed similarly on all other faces of dimension k of Sn´1
d ; hence we have defined

µk.
We let µn´1

d be equal to µn´1.

We now extend the convex triangulation on Sn´1
d induced by µn´1

d to Snd in the following
sense:

Form “ 0, . . . , d´1, define Snd,m :“ SndXtxn “ mu and Snd,m` :“ SndXtxn P rm,m`1su.
Form “ 1, . . . , d´n odd and i “ 1, . . . , n´1, denote byRnd,m,i “ tpx1, . . . , xi, 0, . . . , 0,mq P

Rn|xj ě 1 @j “ 1, . . . , i,
řn´1
j“1 xj ď d´m´ 1u Ă Snd,m.

Form “ 0, . . . , d´n even and i “ 1, . . . , n´2, denote byRnd,m,i “ tp0, . . . , 0, xn´i´1, . . . , xn´1,mq P

Rn|xj ě 1 @j “ n ´ i ´ 1, . . . , n ´ 1,
řn´1
j“1 xj “ d ´mu Ă Snd,m. Define also Rnd,m,n´1 “

tpx1, . . . , xn´1,mq P Rn|xj ě 1 @j “ 1, . . . , n ´ 1,
řn´1
j“1 xj ď d ´m ´ 1u Ă Snd,m. This is
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Figure 5.2: The sets R3
5,0,2, R3

5,1,1, and R3
5,2,1 in S3

5 .

illustrated in Figure 5.2.
Let also Ond,m,i P Rn be the point p0, . . . , 0, d´m, 0, . . . , 0,mq if i “ 1, . . . , n´ 1, where

d ´ m appears as the i-th coordinate, and let it be the point p0, . . . , 0,mq if i “ 0 (for
m “ 0, . . . , nq.

Lemma 5.2.2. For n ě 2, there exists a triangulation T of Snd that has the following
properties:

• For m “ 1, . . . , d ´ n odd, the cone of Rnd,m,n´1 with the vertex Ond,m`1,n´1 and the
cone Rnd,m,n´1 with the vertex Ond,m´1,n´1 appear in T .

• For m “ 0, . . . , d ´ n even, the cone of Rnd,m,n´1 with the vertex Ond,m`1,0 and the
cone Rnd,m,n´1 with the vertex Ond,m´1,0 appear in T .

• For m “ 0, . . . , d ´ n ´ 1 and i “ 1, . . . , n ´ 2, the join of Rnd,m,i with R
n
d,m`1,n´1´i

appears in T .

Proof. If d ă n` 1, choose any convex subdivision on Snd (all conditions are automatically
satisfied and it matters not, as we are only interested in asymptotic behaviors).

If d ě n ` 1, for m “ 0, . . . , d ´ n, choose functions µn´1
d´m satisfying the conditions of

Lemma 5.2.1, and triangulate Snd,m with the convex subdivision induced by µn´1
d´m (via the

natural identification between Snd,m and Sn´1
d´m given by the projection on the first n ´ 1

coordinates).
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Figure 5.3: For n “ 3 and d “ 6: on the left, the subdivision T̃ restricted to S3
6,0`, on

the right, the subdivision T̃ restricted to S3
6,1`.

Then for m “ 0, . . . , d´n´1 even, triangulate Snd,m` thus: subdivide it into the n sim-
plices ConvpOnd,m`1,0, O

n
d,m,0, . . . , O

n
d,m,n´1q, ConvpO

n
d,m`1,0, O

n
d,m`1,1, O

n
d,m,1, . . . , O

n
d,m,n´1q,

..., ConvpOnd,m`1,0, . . . , O
n
d,m`1,n´1, O

n
d,m,n´1q (this is a classical way to triangulate the

topological product of a simplex and a closed interval). Each of these simplices S is ob-
tained as the join of a k-dimensional face Γk of Snd,m`1 with a n´ k ´ 1-dimensional face
Γn´k´1 of Snd,m, for k “ 0, . . . , n´ 1. See the left side of Figure 5.3.

For m “ 1, . . . , d ´ n ´ 1 odd, subdivide Snd,m` as the union of the n simplices
ConvpOnd,m,0, O

n
d,m`1,0, . . . , O

n
d,m`1,n´1q, ConvpO

n
d,m,0, O

n
d,m,1, O

n
d,m`1,1, . . . , O

n
d,m`1,n´1q, ...,

ConvpOnd,m,0, . . . , O
n
d,m,n´1, O

n
d,m`1,n´1q (the roles of m and m`1 have been reversed). See

the right side of Figure 5.3.
Call the triangulation thus defined T̃ (see Figure 5.4).
We further triangulate each simplex obtained as the join of a k-dimensional face Γk of

Snd,m`1 with a n´k´1-dimensional face Γn´k´1 of Snd,m using the join of the triangulations
of Γk and Γn´k´1.

Choose any triangulation of Snd X txn P rd´ n, dsu which extends that on Snd,d´n.
Any triangulation T built this way clearly satisfies the conditions of the Lemma.

It remains to show that such triangulations can be required to be convex, which is the
case.

Lemma 5.2.3. For any n ě 2 and any d ě n, there exists a piecewise linear convex
function µ̃nd : Snd ÝÑ R such that it gives rises to a convex triangulation T of Snd which
satisfies the conditions of Lemma 5.2.2.

Proof. We first consider a convex subdivision of SndXtxn P rd´n, dsu such that the domains
of linearity are exactly the slices Snd,m` for m “ 0, . . . , d ´ n ´ 1 (a function identically
equal to m2 on Snd,m does the trick).

Now consider on each Snd,m` (for m “ 0, . . . , d´n´ 1) the convex triangulation into n
simplices described in the proof of Lemma 5.2.2. If m is even, let f be defined on the 2n
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Figure 5.4: The triangulation T̃ on S3
6 .

vertices of Snd,m` as being identically equal to 0 on Snd,m, and equal to i on Ond,m`1,i (for
i “ 0, . . . , n´ 1). Then Φ̃pfq : Snd,m` ÝÑ R gives the desired triangulation (and similarly
for m odd).

Using that and applying repeatedly the technical Lemma 5.2.4 (in the notations of the
Lemma, ∆ is Snd Xtxn P rd´n, dsu and Γ is Snd,m`, for successive m “ 0, . . . , d´n´1), we
obtain a convex triangulation T̃ of Snd X txn P rd ´ n, dsu as built in the proof of Lemma
5.2.2.

For m “ 0, . . . , d ´ n, let µn´1
d´m : Snd,m ÝÑ R be a function satisfying the conditions

of Lemma 5.2.1 (where we have identified Snd,m with Snd´m via the projection on the first
n´ 1 coordinates).

We need to further subdivide the simplices obtained as joins (see the proof of Lemma
5.2.2) along the triangulations induced by the functions µn´1

d´m.

Once again, we apply repeatedly Lemma 5.2.4, this time to Snd X txn P rd´ n, dsu and
Snd,m (as ∆ and Γ, respectively, in the notations of the Lemma) for m “ 0, . . . , d´ n.

We get a convex triangulation of Snd X txn P rd ´ n, dsu which is a refinement of T̃
and which coincides with the triangulation induced by the functions µn´1

d´m on Snd,m, and a
piecewise linear convex function µ : Snd X txn P rd ´ n, dsu ÝÑ R certifying the convexity
of this triangulation. Define µ̃nd : tOnd,d,0u Y pS

n
d X txn P rd´ n, dsuq ÝÑ R as being equal

to µ on Snd X txn P rd ´ n, dsu and equal to some large enough R P R on tOnd,d,0u. Then
Φ̃pµ̃nd q extends the triangulation induced by µ to a convex triangulation T on Snd , which is
as wanted.
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The technical result used in the proof of Lemma 5.2.3:

Lemma 5.2.4 (Technical Lemma). Let ∆ Ă Rn be a convex (bounded) polytope with integer
vertices, and let µ : ∆ ÝÑ R be such that µ “ Φ̃pµ|∆XZnq. Let Γ Ă ∆ be a (not necessarily
top-dimensional) face of the convex subdivision induced by µ on ∆. Let ν : Γ ÝÑ R be
such that ν “ Φ̃pν|ΓXZnq. Then there exists a function ξ : ∆ ÝÑ R so that:

1. ξ “ Φ̃pξ|∆XZnq (hence ξ is piecewise linear convex and gives rise to a convex subdi-
vision of ∆).

2. ξ|p∆zΓq “ µ|p∆zΓq.

3. The convex subdivision induced by ξ on ∆ is a refinement of the one induced by µ.

4. The convex subdivision induced by ξ on Γ is the same as the one induced by ν.

Proof. By adding a large enough constant, we can assume that ν is strictly positive. Let
ν̃ be equal to ν on Γ, and 0 everywhere else. Define ξε :“ µ` εν̃, for ε ą 0.

For any ε ą 0, ξε satisfies condition 2 by definition, and if it fulfills condition 1, then it
also satisfies condition 4.

We have ξε “ Φ̃pξε|∆XZnq if and only if for each p P ∆ X Zn, we have ξεppq smaller
or equal to Φ̃pξε|∆ztpuqppq. For any ε ą 0 and any p P p∆zΓq X Zn, this condition is
automatically satisfied as ξεppq “ ξppq ď Φ̃pξ|∆ztpuqppq ď Φ̃pξε|∆ztpuqppq.

We want to show that for every p P Γ X Zn, there exists εp ą 0 such that for every
εp ą ε ą 0, ξεppq ď Φ̃pξε|∆ztpuqppq. Then for every 0 ă ε ă ε0 :“ mintεp|p P Γ X Znu, ξε
satisfies condition 1.

Suppose that there exists p P Γ for which this is not true. Without loss of gen-
erality, by substracting from µ an affine function corresponding to a support hyper-
plane of Graphpµ|Γq Ă Graphpµq, we can assume that µ|Γ is identically 0, and that
there exists M ą 0 such that µ|p∆zΓqXZn ą M . Let p∆zΓq X Zn “ tx1, . . . , xlu and

pΓztpuq X Zn “ ty1, . . . , ymu. There exists a sequence pεkqk such that εk
kÑ8
ÝÝÝÑ
ą

0 and

for every k P N, there are coefficients α1
k, . . . , α

l
k ě 0 and β1

k, . . . , β
m
k ě 0 such that

řl
i“1 α

i
k `

řm
j“1 β

j
k “ 1 for all k and such that

l
ÿ

i“1

αikxi `
m
ÿ

j“1

βjkyj “ p

and

ξεkppq “ µppq`εkν̃ppq “ εkνppq ą
l
ÿ

i“1

αikξεkpxiq`
m
ÿ

j“1

βjkξεkpyjq “
l
ÿ

i“1

αikµpxiq`
m
ÿ

j“1

βjkεkνpyjq.

(5.2.1)
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For any k, we must have
řl
i“1 α

i
k ą 0 (as otherwise, everything happens within Γ, and

a contradiction arises from the convexity of ν). Moreover, for k large enough, we must
also have

řm
j“1 β

j
k ą 0, as otherwise

řl
i“1 α

i
kµpxiq ą M and M ą εkνppq as k goes to

infinity. Assume this to be the case from now on. We can write αk :“
řl
i“1 α

i
k ą 0 and

βk :“
řm
j“1 β

j
k ą 0, and define α̃ik :“

αik
αk

and β̃jk :“
βjk
βk
. Define also Xk :“

řl
i“1 α̃

i
kxi P ∆

and Yk :“
řm
j“1 β̃

j
kyj P Γ. Hence we write p “ αkXk ` βkYk.

We see that

l
ÿ

i“1

αikξεkpxiq `
m
ÿ

j“1

βjkξεkpyjq “ αk

l
ÿ

i“1

α̃ikµpxiq ` βk

m
ÿ

j“1

β̃jkεkνpyjq

ě αkM ` βkεkνpYkq “ εkνpYkq ` αkpM ´ εkνpYkqq

by convexity of ν and the lower bound on µ|p∆zΓqXZn (and αk ` βk “ 1).
As ν is piecewise linear on the compact set Γ, there exists C ą 0 such that ν is

C-Lipschitz continuous. Let D be the diameter of ∆.
We can now write

εkνppq “ εkνpYkq ` εkpνppq ´ νpYkqq ď εkνpYkq ` εkC|p´ Yk|

“ εkνpYkq ` εkCαk|Xk ´ Yk| ď εkνpYkq ` αkεkCD.

But as ν is bounded, we have for any k large enough εkCD ăM ´ εkνpYkq, which gives a
contradiction to Equation (5.2.1).

Only condition 3 remains. Consider the set Ω “ tConvpp1, . . . , pkq|k ě 1, p1, . . . , pk P

∆XZnu of all (not necessarily top-dimensional) non-empty polytopes in ∆ with integer ver-
tices. Consider A P Ω such that µ is not affine over A. Then for ε small enough, ξε won’t be
affine over A either. If A Ă ∆zΓ, this is clear. If not, there are x1, . . . , xk P AXZn linearly
independent in Rn and x P AXZn such that px, µpxqq P RnˆR does not belong to the affine
space V ectppx1, µpx1qq, . . . , pxk, µpxkqqq Ă RnˆR. As px, ξεpxqq converges to px, µpxqq and
V ectppx1, ξεpx1qq, . . . , pxk, ξεpxkqqq converges to V ectppx1, µpx1qq, . . . , pxk, µpxkqqq (for ex-
ample in a Grassmannian sense) when ε ÝÑ 0, we see that for any ε ą 0 small enough,
px, ξεpxqq does not belong to the affine space V ectppx1, ξεpx1qq, . . . , pxk, ξεpxkqqq either. As
Ω is a finite set, there exists ε1 ą 0 such that ξε satisfies condition 3 for any ε1 ą ε ą 0.

We finally define ξ :“ ξε for an arbitrary 0 ă ε ă minpε0, ε1q.

5.2.3 Choosing the coefficients of Q̃n
d

For any Laurent polynomial P in k variables, we write P pzq “
ř

λP∆pP qXZk cP pλqz
λ (where

some coefficients cP pλq P R can be 0). We use the notations of Chapter 2. In particular,
given two real Laurent polynomials in k variables P1 and P2, we say that their charts are
homeomorphic if there is a homeomorphism of stratified topological spaces between the
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pairs p∆pP1qˆU
k
R, Chart∆pP1qˆUkR

pP1qq and p∆pP2qˆU
k
R, Chart∆pP2qˆUkR

pP2qq - remember
that the chart of Pi is actually defined as the pair p∆pPiq ˆ UkR, Chart∆pPiqˆUkR pPiqq.

Lemma 5.2.5. Let n ě 2 and d ě n. Given a convex triangulation T of Snd that satis-
fies the conditions of Lemma 5.2.2 and completely nondegenerate real Laurent polynomials
tP ki u

d´1´k
i“0 such that ∆pP ki q “ Ski (for k “ 1, . . . , n ´ 1), there exists a real Laurent poly-

nomial Q̃nd such that:

1. ∆pQ̃nd q “ Snd .

2. For each simplex S of the triangulation T , the truncation Q̃nd |
S is completely nonde-

generate.

3. For m “ 0, . . . , d´n and k “ 1, . . . , n´1 and for any lattice respecting identification
Rnd,m,k – Skd´m´1´k which lets us see Q̃nd |

Rnd,m,k as a polynomial G in k variables, the
charts of G and P kd´m´1´k are homeomorphic.

4. For m “ 0, . . . , d´ n even, the monomial Q̃nd |
Ond,m,n´1 is a strictly positive constant.

5. For m “ 1, . . . , d´ n odd, the monomial Q̃nd |
Ond,m,0 is a strictly positive constant.

Proof. We define a function c̃ : Snd X Zn ÝÑ R.
Set c̃pOnd,m,n´1q “ 1 for m “ 0, . . . , d´ n even and c̃pOnd,m,0q “ 1 for m “ 1, . . . , d´ n

odd.
For m “ 0, . . . , d ´ n and k “ 1, . . . , n ´ 1, choose a lattice respecting identification

Rnd,m,k – Skd´m´1´k, and via this identification, set c̃pxq “ cPkd´m´1´k
pxq for any x P

Rnd,m,k X Zn.
For any other x P Snd , pick an arbitrary non-zero value for c̃pxq.
All conditions, except a priori Condition 2, are satisfied by polynomial P pzq :“

ř

λPSndXZn
c̃pλqzλ.

As observed in [Vir06], among all polynomials with a given Newton polytope, nondegen-
erate polynomials form an (Zariski) open set. Moreover, as each P ki is nondegenerate, the
hypersurface VK∆pPki q

pP ki q is smooth, and a small perturbation of the coefficients of P ki
will not change the topology of its chart.

With those two observations in mind, we can define c as a small generic perturbation of
c̃ such that all conditions are fulfilled by

ř

λPSndXZn
cpλqzλ, and set Q̃nd :“

ř

λPSndXZn
cpλqzλ.

5.2.4 Defining Qn
d using the Patchwork

Making use of the results of the two previous subsections, we get the following proposition.

Proposition 5.2.6. Let n ě 2. For k “ 1, . . . , n ´ 1, consider a family tP kd udPN of
completely nondegenerate real Laurent polynomials tP ki u

d´1´k
i“0 such that ∆pP ki q “ Ski .

Then for all d ě n, there exists a completely nondegenerate real Laurent polynomial
Qnd , with ∆pQnd q “ Snd , such that:
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1. Qnd is obtained via a patchworking of a family Σ of completely nondegenerate real
Laurent polynomials.

2. For m “ 0, . . . , d ´ n ´ 1 and k “ 1, . . . , n ´ 2, there are polynomials F km P Σ such
that the chart of F km is homeomorphic to the chart of G, for some polynomial

G : px1, . . . , xn´1, xnq ÞÑ P̃ kd´m´1´kpx1, . . . , xkq ` xnP̃
n´1´k
d´m´n`kpxk`1, . . . , xn´1q,

where each P̃ ki is itself such that ∆pP̃ ki q is a translate of Ski and that its chart is
homeomorphic to the chart of P ki .

3. For m “ 1, . . . , d ´ n ´ 1, there are polynomials G`m, G´m P Σ such that the n-
dimensional simplices ∆pG`mq and ∆pG´mq have a (n ´ 1)-dimensional face in com-
mon, and such that the gluing of their charts

pp∆pG`mq Y∆pG´mqq ˆ U
n
R , Chart∆pG`mqˆUnR

pG`mq Y Chart∆pG´mqˆUnR
pG´mqq

is homeomorphic as a (stratified) pair to the gluing of charts

pp∆pG̃`mq Y∆pG̃´mqq ˆ U
n
R , Chart∆pG̃`mqˆUnR

pG̃`mq Y Chart∆pG̃´mqˆUnR
pG̃´mqq,

where
G̃`m : px1, . . . , xn´1, xnq ÞÑ P̃n´1

d´m´npx1, . . . , xn´1q ` γ
`
m ¨ xn,

G̃´m : px1, . . . , xn´1, xnq ÞÑ P̃n´1
d´m´npx1, . . . , xn´1q ` γ

´
m ¨ x

´1
n ,

γ`m and γ´m are some strictly positive constant, and each P̃n´1
i is itself such that

∆pP̃n´1
i q is a translate of Sn´1

i and that its chart is homeomorphic to the chart of
Pn´1
i .

4. The interiors of the simplices ∆pF kmq, ∆pG`l q and ∆pG´p q are disjoint for all k, m,
l and p.

Additionally, if each P kd was obtained by combinatorial patchworking, there exists such
a polynomial Qnd that can also be obtained by combinatorial patchworking.

Proof. By Lemma 5.2.3, there exists a convex triangulation T that satisfies the conditions
of Lemma 5.2.2 and a convex function µ̃nd : Snd ÝÑ R which certifies its convexity.

The triangulation T and the polynomials tP ki u
d´1´k
i“0 satisfy the hypotheses of Lemma

5.2.5, which yields a polynomial Q̃nd satisfying its conditions. We can apply Viro’s Patch-
work Theorem 2.2.1 to T , µ̃nd and Q̃nd (playing the role of P in the notations of Section
2.2) to get a family of polynomials tPtutPRą0 , and let Qnd be any Pt with t small enough
for the conclusions of Theorem 2.2.1 to apply. Let us show that Qnd satisfies all required
conditions.
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Condition 1 is trivially satisfied.

For m “ 0, . . . , d ´ n ´ 1 and k “ 1, . . . , n ´ 2, polynomial F km is defined as the
truncation Q̃nd |

Rnd,m,k‹R
n
d,m`1,n´1´k , where ‹ denotes the join. Observe that F km “ Q̃nd |

Rnd,m,k`

Q̃nd |
Rnd,m`1,n´1´k .

A suitable affine isomorphism Zn ÝÑ Zn, extended to Rn, will mapRnd,m,k to tpx1, . . . , xk, 0, . . . , 0,mq P

Rn|xj ě 1 @j “ 1, . . . , k,
řn´1
j“1 xj ď d´m´1u Ă Snd,m andRnd,m`1,n´1´k to tp0, . . . , 0, xk`1, . . . , xn´1,m`

1q P Rn|xj ě 1 @j “ k ` 1, . . . , n ´ 1,
řn´1
j“1 xj ď d ´ m ´ 2u Ă Snd,m`1. This lin-

ear transformation induces an isomorphic change of coordinates pK˚qn ÝÑ pK˚qn. In
particular, that change of coordinates maps Q̃nd |

Rnd,m,k (respectively, Q̃nd |
Rnd,m`1,n´1´k) to

xmn ¨ P̃
k
d´m´1´k, where P̃ kd´m´1´k is a polynomial in k variables (respectively, xm`1

n ¨

P̃n´1´k
d´m´n`k with P̃n´1´k

d´m´n`k a polynomial in n´ 1´k variables), and Q̃nd |
Rnd,m,k‹R

n
d,m`1,n´1´k

to xmn ¨ P̃ kd´m´1´k ` x
m`1
n ¨ P̃n´1´k

d´m´n`k.

Now P̃ kd´m´1´k has been obtained from Q̃nd |
Rnd,m,k via an isomorphic change of coor-

dinates, and Q̃nd |
Rnd,m,k itself was obtained from P kd´m´1´k via an isomorphic change of

coordinates (since Q̃nd satisfies to Condition 3 of Lemma 5.2.5) and a small generic pertur-
bation, so that the topology of the associated (via the change of coordinates) hypersurface
would not change. Hence the chart of P̃ kd´m´1´k is homeomorphic to the chart of P kd´m´1´k.
The same applies to P̃n´1´k

d´m´n`k.

Finally, there is a trivial homeomorphism of pairs between the toric variety and hyper-
surface induced by F km and those induced by P̃ kd´m´1´k`xnP̃

n´1´k
d´m´n`k, hence between the

corresponding charts and ambient spaces as well. This proves Condition 2.

For m “ 2, . . . , d ´ n ´ 1 even, polynomial G`m (respectively, G´m) is defined as the
truncation Q̃nd |

Ond,m`1,0‹R
n
d,m,n´1 (respectively, the truncation Q̃nd |

Ond,m´1,0‹R
n
d,m,n´1).

For m “ 1, . . . , d ´ n ´ 1 odd, polynomial G`m (respectively, G´m) is defined as the
truncation Q̃nd |

Ond,m`1,n´1‹R
n
d,m,n´1 (respectively, the truncation Q̃nd |

Ond,m´1,n´1‹R
n
d,m,n´1).

The same type of arguments as above yield Condition 3.

Condition 4 is an evident consequence of the definitions of the polynomials F km, G`m
and G´m.

If each P kd was obtained by combinatorial patchworking, it is easy to show, using
repeatedly Lemma 5.2.4, that the triangulation T can be refined to a convex triangulation
T 1 such that its restriction to each Rnd,m,k corresponds to the triangulation used to define
the corresponding polynomial P kd´m´1´k (via the proper identifications). Likewise, the
proof of Lemma 5.2.5 only has to be adapted in that the coefficients of Q̃nd have to be
chosen so that the truncation Q̃nd |

S is completely nondegenerate for each simplex of the
refined triangulation T 1, which is once again a condition generically satisfied.

Then the Patchwork can be applied to T 1 and Q̃nd , and the same conclusions as above
stand for the resulting polynomial Qnd .
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Figure 5.5: From left to right, S2
d ˆ U

d
R, pS

2
d ˆ U

d
Rq„t1u and pS

2
d ˆ U

d
Rq„t0u.

5.3 Computing asymptotic Betti numbers

In this section, we are proving Theorem 5.1.1; more specifically, that families of real Lau-
rent polynomials obtained in Proposition 5.2.6 using the ingredients in the statement of
Theorem 5.1.1 do satisfy Formula 5.1.2.

5.3.1 Preliminaries

We first prove a useful simplifying result. As described in Chapter 2, the projective space
RPk can be obtained as an appropriate quotient of Skd ˆ UkR. In this paragraph and
the following Lemma, we consider intermediate quotients in the following sense: for any
J Ă t0, 1, . . . , ku, we define pSkd ˆU

k
Rq„J as Skd ˆU

k
R quotiented by the equivalence relation

„ J generated by:

• For i P J and i ą 0, ppx1, . . . , xi´1, 0, xi`1, . . . , xkq, pε1, . . . , εi´1, εi, εi`1, . . . , εkqq „

ppx1, . . . , xi´1, 0, xi`1, . . . , xkq, pε1, . . . , εi´1,´1 ¨ εi, εi`1, . . . , εkqq

for all ppx1, . . . , xi´1, 0, xi`1, . . . , xkq, pε1, . . . , εi´1, εi, εi`1, . . . , εkqq P S
k
d ˆ U

k
R.

• If 0 P J , ppx1, . . . , xkq, pε1, . . . , εkqq „ ppx1, . . . , xkq, p´ε1, . . . ,´εkqq

for all ppx1, . . . , xkq, pε1, . . . , εkqq P S
k
d ˆ U

k
R such that

řk
j“1 xj “ d.

See also Figure 5.5.
By extension, for any B Ă SkdˆU

k
R, we define B„J as the quotient of B by the restriction

of the relation „ J . Given a completely nondegenerate real Laurent polynomial P in k

variables and degree d such that ∆pP q “ Skd , we had defined in Chapter 2 its chart pSkd ˆ
UkR, ChartSkdˆU

k
R
pP qq. By extension, we let ChartpSkdˆUkR q„J pP q :“ pChartSkdˆU

k
R
pP qq„J .

We know from the definition of the charts that the pairs ppSkdˆU
k
Rq„t0,1,...,ku, ChartpSkdˆU

k
R q„t0,1,...,ku

pP qq,

ppSkdˆU
k
Rq„t1,...,ku, ChartpSkdˆU

k
R q„t1,...,ku

pP qq and pS̊kdˆU
k
R, ChartS̊kdˆU

k
R
pP qq are homeomor-

phic to the pairs pRPk, VRPkpP qq, pRk, VRkpP qq and ppR˚qk, VpR˚qkpP qq respectively.
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We also know that the pairs pS̊kd ˆU
k
R, ChartS̊kdˆU

k
R
pP qq and pSkd ˆU

k
R, ChartSkdˆU

k
R
pP qq

are homotopy equivalent.

Lemma 5.3.1. For all k ě 1, there is a constant Cpkq ą 0 such that for all completely
nondegenerate polynomials P in k variables and degree d ě 1 such that ∆pP q “ Skd , set of
indices J Ă t0, 1, . . . , ku and index i P t0, 1, . . . , k ´ 1u, we have the following inequality:

|bipChartSkdˆU
k
R
pP qq ´ bipChartpSkdˆU

k
R q„J

pP qq| ď Cpkqdk´1. (5.3.1)

Proof. We proceed by induction on k. The result is trivial for k “ 1, as ChartS1
dˆU

1
R
is a

set of disjoint points, none of which belonging to the boundary of S1
d ˆ U

1
R.

Assume that it has been proven for 1, . . . , k ´ 1. If |J | “ 0, it is trivial. Otherwise, let
j P I. We first consider the case |J | ă k ` 1. Via an appropriate isomorphic change of
coordinates (which corresponds to an affine isomorphism from Snd to itself), we can assume
that j “ 1 and 0 R J .

The space ChartpSkdˆUkR q„J pP q is a quotient of ChartpSkdˆUkR q„pJzt1uqpP q by identifiying
some points in the subsets

A` :“
´

pptx1 “ 0u X Skd q ˆ t1,˘1, . . . ,˘1uq„pJzt1uq

¯

X ChartpSkdˆU
k
R q„pJzt1uq

pP q

and

A´ :“
´

pptx1 “ 0u X Skd q ˆ t´1,˘1, . . . ,˘1uq„pJzt1uq

¯

X ChartpSkdˆU
k
R q„pJzt1uq

pP q.

As 0 R J , A` and A´ are disjoint sets, each homeomorphic to the quotient by „ Jzt1u

of the chart ChartSk´1
d ˆUk´1

R
pP |tx1“0uXSkd q, where P |tx1“0uXSkd is seen as a polynomial in

variables x2, . . . , xk. By induction, we know that

|b˚pA
˘q ´ b˚pChartSk´1

d ˆUk´1
R
pP |tx1“0uXSkd qq| ď Cpk ´ 1qdk´2

and

|b˚pChartSk´1
d ˆUk´1

R
pP |tx1“0uXSkd qq´b˚pChartpSk´1

d ˆUk´1
R q„pt0,1,...,k´1uq

pP |tx1“0uXSkd qq| ď Cpk´1qdk´2,

where b˚ denotes the rank over Z2 of the total homology. Moreoever, using both the Smith-
Thom inequality 1.2.1, Formula 5.1.1 and the fact that Chart

pSk´1
d ˆUk´1

R q„pt0,1,...,k´1uq
pP |tx1“0uXSkd q

is homeomorphic to VRPk´1pP |tx1“0uXSkd q, we see that

b˚pChartSk´1
d ˆUk´1

R
pP |tx1“0uXSkd qq ď 2dk´1 ` k.

Hence,
b˚pA

` \A´q ď 2p2dk´1 ` k ` 2Cpk ´ 1qdk´2q.
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For any pair of spaces X Ă Y , we denote bipY,Xq :“ dimZ2pHipY,Xqq. By looking at
the long exact sequence of the homology of the pair, we get that

|bipChartpSkdˆU
k
R q„pJzt1uq

pP qq ´ bipChartpSkdˆU
k
R q„pJzt1uq

pP q, A` \A´q| ď b˚pA
` \A´q.

The pair pChartpSkdˆUkR q„pJzt1uqpP q, A
` \A´q is a good pair, so

|bipChartpSkdˆU
k
R q„pJzt1uq

pP q, A` \A´q ´ bipChartpSkdˆU
k
R q„pJzt1uq

pP q{pA` \A´qq| ď 1

(the difference of at most 1 coming from the transition between regular homology and
reduced homology).

But ChartpSkdˆUkR q„pJzt1uqpP q{pA
`\A´q is trivially homeomorphic to ChartpSkdˆUkR q„J pP q{A,

where A :“ pA` \A´q„t1u (with a small extension of notation) is homeomorphic to A˘.

Hence once again,

|bipChartpSkdˆU
k
R q„J

pP q, Aq ´ bipChartpSkdˆU
k
R q„J

pP q{Aq| ď 1

and

|bipChartpSkdˆU
k
R q„J

pP qq´bipChartpSkdˆU
k
R q„J

pP q, Aq| ď b˚pAq ď 2dk´1`k`2Cpk´1qdk´2.

Putting all of it together, we get that

|bipChartpSkdˆU
k
R q„pJzt1uq

pP qq´ bipChartpSkdˆU
k
R q„J

pP qq| ď 3p2dk´1`k`2Cpk´1qdk´2q`2.

We can define C1pkq :“ 8`k`2Cpk´1q and simplify 3p2dk´1`k`2Cpk´1qdk´2q`2 ď

C1pkqd
k´1.

The same type of reasoning can be used in the case where |J | “ k ` 1 (and 0

cannot be assumed not to belong to J), except that the sets A` and A´ are not dis-
joint anymore, but are rather two copies of the quotient by „ Jzt0, 1u of the chart
ChartSk´1

d ˆUk´1
R
pP |tx1“0uXSkd q glued along their boundary by the relation generated by

the index 0 to form a set B. By a similar induction argument, it can easily be shown that
there exists another constant C2pkq (depending only on k) such that b˚pBq ď C2pkqd

k´1.
Similarly, B„t1u is homeomorphic to the chart in Pk´1 of a polynomial in k ´ 1 variables
of degree d, hence B„t1u ď 2dk´1 ` k. Then as above, one can write

|bipChartpSkdˆU
k
R q„pJzt1uq

pP qq ´ bipChartpSkdˆU
k
R q„J

pP qq| ď

|bipChartpSkdˆU
k
R q„pJzt1uq

pP qq ´ bipChartpSkdˆU
k
R q„pJzt1uq

pP,Bqq|`

|bipChartpSkdˆU
k
R q„pJzt1uq

pP q, Bq ´ bipChartpSkdˆU
k
R q„pJzt1uq

pP q{Bq|`

|bipChartpSkdˆU
k
R q„pJzt1uq

pP q{Bq ´ bipChartpSkdˆU
k
R q„J

pP q{B„t1uq|`
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|bipChartpSkdˆU
k
R q„J

pP q{B„t1uq ´ bipChartpSkdˆU
k
R q„J

pP q, B„t1uq|`

|bipChartpSkdˆU
k
R q„J

pP q, B„t1uq ´ bipChartpSkdˆU
k
R q„J

pP qq| ď C3pkqd
k´1

for some constant C3pkq which depends only on k.
Hence, by starting from the empty set and proceeding by induction on the cardinal of

J , we can show that

|bipChartSkdˆU
k
R
pP qq ´ bipChartpSkdˆU

k
R q„J

pP qq| ď pk ` 1qmaxpC1pkq, C3pkqqd
k´1.

By setting Cpkq :“ pk ` 1qmaxpC1pkq, C3pkqq, we can conclude.

Remark 5.3.2. This immediately implies corresponding statements regarding the homology
of the hypersurfaces associated to P in RPk, Rk and pR˚qk.

As we are only interested in the asymptotical behavior in d (in the sense described in
Section 5.1) of the Betti numbers, Lemma 5.3.1 means that we can often ignore the distinc-
tion between the homology of a given hypersurface in pR˚qk and that of the corresponding
hypersurface in RPk.

Let k, i ě 0, and X be a submanifold of Rk. Given homology classes α P H̃ipXq and
β P H̃k´1´ipRkzXq (where H̃ indicates the reduced homology), the linking number lpα, βq
is well defined as the transversal intersection (in Rk) number (in Z2) of any cycle a P α
and any k ´ i chain m in Rk, called a membrane, such that Bm “ b, where b is a cycle in
β (a membrane can always be found, since any cycle is a boundary in the trivial reduced
homology of Rk). It can be shown that lpα, βq “ lpβ, αq. We can adapt this operation
to the non-reduced homology by taking the exact same definition when i, k ´ 1 ´ i ‰ 0,
and restricting the linking number to kerpH0pXq ÝÑ H0pRkqq ˆHk´1pRkzXq when i “ 0

(respectively, Hk´1pXq ˆ kerpH0pRkzXq ÝÑ H0pRkqq when k ´ 1 ´ i “ 0), as any cycle
in X whose class belongs to kerpH0pXq ÝÑ H0pRkqq admits a membrane in Rk. In fact,
kerpH0pXq ÝÑ H0pRkqq and H̃0pXq are naturally isomorphic (and similarly for RkzX).
See [FF16] for more details on linking numbers.

This definition can be easily generalized, in our particular case to pairs pY,Xq where
X Ă Y and Y is a disjoint union of convex subsets of Rk.

Given such a pair pY,Xq and a collection of homology classes α1, . . . , αr in HipXq

(respectively, in kerpH0pXq ÝÑ H0pY qq if i “ 0), we say that classes β1, . . . , βr in
Hk´1´ipY zXq (respectively, in kerpH0pY zXq ÝÑ H0pY qq if k´ 1´ i “ 0) are axes for the
collection α1, . . . , αr if for any i, j we have lpαi, βjq “ δi,j P Z2. As the linking number
is a Z2-bilinear product, this implies, in particular, that the classes α1, . . . , αr are linearly
independent.

To help us prove lower bounds on the Betti numbers of the hypersurfaces obtained
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using Proposition 5.2.6 by finding enough cycles and axes, in the spirit of [IV07], we need
the following result:

Lemma 5.3.3. For all k ě 1, there is a constant Dpkq ą 0 with the following property:

Let P be a completely nondegenerate polynomial in k variables and degree d ě 1 such
that ∆pP q “ Skd , and let i P t0, 1, . . . , k ´ 1u. Then there exists

r ě bipVpR˚qkpP qq ´Dpkqd
k´1

such that we can find classes α1, . . . , αr in HipChartS̊kdˆU
k
R
pP qq and β1, . . . , βr in Hk´1´ippS̊

k
dˆ

UkRqzChartS̊kdˆU
k
R
pP qq (respectively, in kerpH0ppS̊kd ˆ UkRqzChartS̊kdˆU

k
R
pP qq ÝÑ H0pS̊kd ˆ

UkRqq if k ´ 1 ´ i “ 0) whose linking numbers in S̊kd ˆ UkR satisfy lpαs, βtq “ δs,t P Z2 (the
classes βt are axes for the classes αs).

Moreover, we can ask that there be cycles b1 P β1, . . . , br P βr and a1 P α1, . . . , ar P

αr such that the sign of P is constant on each bj (when evaluated via the identification
S̊kd ˆ UkR – pR˚qk) and such that each bj and each aj is contained in a single connected
component of S̊kd ˆ U

k
R.

Proof. We know that the inclusion pS̊kdˆU
k
R, ChartS̊kdˆU

k
R
pP qq

in
ãÝÑ pSkdˆU

k
R, ChartSkdˆU

k
R
pP qq

is a homotopy equivalence of pairs. In particular,HipChartS̊kdˆU
k
R
pP qq

in˚
ÝÝÑ HipChartSkdˆU

k
R
pP qq

is an isomorphism.

Let ε P UkR and consider the quadrant ∆ε :“ Skd ˆtεu, which is one of the 2k connected
components of Skd ˆ U

k
R. Let also Xε :“ ChartSkdˆU

k
R
pP q X∆ε.

See ∆ε as a subset of Rk (for example by identifying it with Skd Ă Rk), and see Rk as
a subset of the sphere Sk (via Alexandroff’s compactification). Consider

U :“ Skzptpx1, . . . , xkq P Rk|xj ě δ @j “ 1, . . . , k,
k
ÿ

j“1

xj ď d´ δu Y ChartSkdˆU
k
R
pP qq

for some δ ą 0 (see Figure 5.6). If δ is small enough (as Xε is a manifold with boundaries in
B∆ε, which it intersects transversally), which we assume to be the case, U can be retracted
to SkzSkd and is thus contractible. We can also assume that U X p∆̊εzXεq is homotopically
equivalent to B∆εzXε.

By considering the Mayer-Vietoris sequence of the sets U , ∆̊εzXε, U Y ∆̊εzXε “ SkzXε

and U X p∆̊εzXεq – B∆εzXε, we see that the morphism

j˚ : Hk´1´ip∆̊εzXεq ÝÑ Hk´1´ipS
kzXεq ÝÑ H̃k´1´ipS

kzXεq

induced by the inclusion and the natural morphism from regular to reduced homology has
a cokernel of dimension at most b˚pB∆εzXεq ` 1.
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Figure 5.6: In light grey, the set U illustrated.

Alexander duality (see [FF16]), which is the main tool in this demonstration, can be
applied to Xε Ă Sk, as it is compact and locally contractible. It states that the product

l : H̃k´1´ipS
kzXεq ˆ H̃ipXεq ÝÑ Z2

where as above l is the linking number (defined as in Rk), is non-degenerate.
Hence H̃k´1´ipS

kzXεq and H̃ipXεq are of the same dimension, and we can find sε ě

bipXεq ´ pb˚pB∆εzXεq ` 2q classes βε1, . . . , βεsε P Hk´1´ip∆̊εzXεq such that the classes
j˚pβ

ε
1q, . . . , j˚pβ

ε
sεq P H̃k´1´ipS

kzXεq are linearly independent.
If k´1´i ą 0, let bt,1`. . .`bt,it be a chain representing βεt (for t “ 1, . . . , sε), where each

bt,j is connected. As each bt,j is also a cycle, and since the subspace of H̃k´1´ipS
kzXεq

generated by tj˚rbt,js|t “ 1, . . . , sε, j “ 1, . . . , itu contains the subspace generated by
tj˚pβ

ε
1q, . . . , j˚pβ

ε
sεqu, we can redefine the classes βεt and assume that they can each be

represented by a connected cycle bεt P βεt . In particular, P has constant sign on each cycle
bεt. As Hk´1´ip∆̊εq is trivial, each bεt also admits a membrane in ∆ε.

If k ´ 1´ i “ 0, we can likewise assume that each βεt can be represented by a point pt
in ∆̊εzXε. Denote by δt P t`,´u the sign of P pptq. Choose p`, p´ P ∆̊εzXε such that P
takes positive value on p` and negative value on p´ (if P has constant sign on ∆̊ε, then
Xε “ H, sε “ 0 and we have nothing to do).

Now consider the family of classes rp1 ` pδ1s, . . . , rpsε ` pδsε s P H0p∆̊εzXεq. The family
j˚rp1 ` pδ1s, . . . , j˚rpsε ` pδsε s P H̃0pS

kzXεq has rank at least sε ´ 2; by taking out two
elements (without loss of generality, those numbered sε ´ 1 and sε), we can once again
assume that it is independent. Redefine βεt :“ rpt ` pδts for t “ 1, . . . , sε ´ 2. Now
βεt P kerpH0ppS̊kdˆU

k
RqzChartS̊kdˆU

k
R
pP qq ÝÑ H0pS̊kdˆU

k
Rqq (hence we can use it to compute

linking numbers) and it can be represented by cycles on which P has constant sign.
Applying Alexander duality, and using the fact that Hip∆̊ε X Xεq

in˚
ÝÝÑ HipXεq is an

isomorphism (as is the case when considering the entire space Skd ˆ UkR “
Ť

ε ∆ε), we can
now find classes αε1, . . . αεsε´2 P H̃ip∆̊ε XXεq such that their linking number in Sk verifies
lSkpin˚pα

ε
sq, j˚pβ

ε
t qq “ δs,t for s, t P t1, . . . , sε ´ 2u.
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Now consider the setsB :“
Ť

εPUkR
tβε1, . . . , βsε´2u Ă Hk´1´ippS̊

k
dˆU

k
RqzChartS̊kdˆU

k
R
pP qq

and A :“
Ť

εPUkR
tαε1, . . . , αsε´2u Ă HipChartS̊kdˆU

k
R
pP qq.

Let us compute the linking number of β P B and α P A in S̊kd ˆ UkR. There exists
ε1, ε2 P U

k
R and indices s, t such that α “ αε1s and β “ βε2t . As explained above, β can be

represented by a chain b such that it is the boundary of a membranem in ∆̊ε2 . Let a P α be
a cycle in ∆̊ε1 . The linking number in S̊kd ˆU

k
R of β and α is the (transversal) intersection

number of m and a. If ε1 ‰ ε2, this intersection is necessarily empty. If ε1 “ ε2, m is also
a membrane for b in Sk (via the inclusion ∆ε1 Ă Sk), so the linking number in S̊kd ˆ U

k
R is

the same as in Sk (the intersection number of a and m), and thus equal to δs,t.

We can rename the elements ofB (respectively, A) as β1, . . . , βr (respectively, α1, . . . , αr),
where r :“

ř

εPUkR
psε ´ 2q. We have shown that the elements of the sets B and A are as

required in the statement of the lemma. We only have to show that we have enough of
them.

We see that

r “
ÿ

ε

psε ´ 2q ě
ÿ

ε

pbipXεq ´ pb˚pB∆εzXεq ` 4qq “ bipVpR˚qkpP qq ´ 4 ¨ 2k ´
ÿ

ε

b˚pB∆εzXεq.

For a given ε P UkR, B∆ε is homeomorphic to the (k ´ 1)-sphere. We can once again
apply Alexander duality to see that b˚pB∆εzXεq ď b˚pB∆ε X Xεq ` 1. Moreover, using
arguments similar to those in the proof of Lemma 5.3.1, one can show that there exists
D1pkq, depending only on k, such that b˚pB∆ε XXεq ď D1pkqd

k´1.

Hence

r ě bipVpR˚qkpP qq ´ 4 ¨ 2k ´
ÿ

ε

b˚pB∆εzXεq ě bipVpR˚qkpP qq ´ 2kp5`D1pkqd
k´1q.

By setting Dpkq :“ 2kp5`D1pkqq, we can conclude.

Remark 5.3.4. In the light of Lemma 5.3.1 and Remark 5.3.2, the condition r ě bipVpR˚qkpP qq´

Dpkqdk´1 in the statement can be indifferently replaced by r ě bipVRPkpP qq ´Dpkqd
k´1.

Remark 5.3.5. This can easily be generalized to polynomials whose Newton polytope is
not a simplex.

5.3.2 Finding cycles in a suspension

The next two propositions are based on rather simple ideas, but the many indices and small
technical details involved make for long demonstrations. We include a short summary of
each proof at their beginning.
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We want to find a lower bound on the number of cycles and axes associated to each of
the "pieces" G`m, G´m and F km from Proposition 5.2.6 using Lemma 5.3.3. We start with
the case corresponding to G˘m. The case corresponding to F km is considered in the next
subsection.

Proposition 5.3.6. For all k ě 1, there is a constant Epkq ą 0 with the following property:
Let P be a completely nondegenerate polynomial in k variables and degree d ě 1 such that
∆pP q is a translate of Skd , and let i P t0, 1, . . . , ku. Let λ`, λ´ P Rą0. Write

G` : px1, . . . , xk, xk`1q ÞÑ P px1, . . . , xkq ` λ
` ¨ xk`1

and
G´ : px1, . . . , xk, xk`1q ÞÑ P px1, . . . , xkq ` λ

´ ¨ x´1
k`1.

Define X :“ pChart∆pG`qˆUk`1
R
pG`qYpChart∆pG´qˆUk`1

R
pG´qqXIntp∆pG`qY∆pG´qqˆ

Uk`1
R q (here, ∆pG`q and ∆pG´q are seen as subsets of the same ambient space Rk`1; they

are (k ` 1)-simplices with a common k-face ∆pP q).
Then there exists

r ě bipVpR˚qkpP qq ` bi´1pVpR˚qkpP qq ´ Epkqd
k´1

such that we can find classes α1, . . . , αr in HipXq and β1, . . . , βr in Hk´ipIntp∆pG
`q Y

∆pG´qqˆUk`1
R zXq (respectively, in kerpH0pIntp∆pG

`qY∆pG´qqˆUk`1
R zXq ÝÑ H0pIntp∆pG

`qY

∆pG´qqˆUk`1
R q if k´i “ 0) whose linking numbers in Intp∆pG`qY∆pG´qqˆUk`1

R verifies
lpαs, βtq “ δs,t P Z2 (the classes βt are axes for the classes αs).

Proof. The main idea here is that for each class of degree j in VpR˚qnpP q, there is a class of
degree j in the hypersurface corresponding to the patchworking ofG` andG´ (which comes
from the inclusion of the original class), and another class of degree j` 1 corresponding to
some kind of suspension of a cycle representing the original class. The same can be said
of the classes in the complement of the hypersurface that we use as axes. By proceeding
carefully, we can make it so that those new classes still have the right linking numbers
properties.

Define X0 :“ X X p∆pP q ˆ Uk`1
R q Ă Intp∆pG`q Y∆pG´qq ˆ Uk`1

R , as well as X`0 :“

XXp∆pP qˆUkRˆt1uq and X
´
0 :“ XXp∆pP qˆUkRˆt´1uq. Both X`0 and X´0 are copies

of Chart∆̊pP qˆUkR pP q, and X0 “ X`0 YX
´
0 .

Observe that if ∆pP q is a translate of Skd rather than Skd itself, there is a monomial
xω such that ∆pxωP q “ Skd . Moreover, xωP and P give rise to the same hypersurface
in pR˚qk, hence in the toric varieties R∆pxωP q and R∆pP q; finally, the pairs p∆pxωP q ˆ
UkR, Chart∆pxωP qˆUkR

pxωP qq and p∆pP q ˆ UkR, Chart∆pP qˆUkR
pP qq are trivially isomorphic.

This nuance has no impact on the rest of the proof either.
Using an isomorphic change of variables, we can assume λ˘ to be equal to 1.
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Under the above assumption, note also that the change of variables px1 . . . , xk, xk`1q ÞÑ

px1 . . . , xk, x
´1
k`1q (well defined on pR˚qk`1) induces an homeomorphism of pairs between

p∆pG`qˆUk`1
R , Chart∆pG`qˆUk`1

R
pG`qq and p∆pG´qˆUk`1

R , Chart∆pG´qˆUk`1
R
pG´qq (cor-

responding simply to a vertical symmetry of ∆pG`q).

Using Lemma 5.3.3, we can produce:

• classes α̃1, . . . , α̃r1 P HipChart∆̊pP qˆUkR
pP qq and β̃1, . . . , β̃r1 inHk´1´ipp∆̊pP qˆU

k
RqzChart∆̊pP qˆUkR

pP qq

(respectively, in kerpH0pp∆̊pP q ˆ UkRqzChart∆̊pP qˆUkR
pP qq ÝÑ H0p∆̊pP q ˆ UkRq if

k ´ 1´ i “ 0), as well as cycles ã1 P α̃1, . . . , ãr1 P α̃r1 and b̃1 P β̃1, . . . , b̃r1 P β̃r1

• classes γ̃1, . . . , γ̃r2 P Hi´1pChart∆̊pP qˆUkR
pP qq and δ̃1, . . . , δ̃r2 inHk´ipp∆̊pP qˆU

k
RqzChart∆̊pP qˆUkR

pP qq

(respectively, in kerpH0pp∆̊pP q ˆ UkRqzChart∆̊pP qˆUkR
pP qq ÝÑ H0p∆̊pP q ˆ UkRq if

k ´ i “ 0), as well as cycles c̃1 P γ̃1, . . . , c̃r2 P γ̃r2 and d̃1 P δ̃1, . . . , d̃r2 P δ̃r2

where each pair of families of classes and associated cycles verifies the conditions of Lemma
5.3.3 (the classes β̃j are axes to the classes α̃j , P has constant sign over each cycle b̃j
or d̃j , each cycle ãj , b̃j , c̃j or d̃j is contained in a single quadrant ∆̊pP q ˆ tεu, etc.),
r1 “ maxpbipVpR˚qkpP qq ´Dpkqd

k´1, 0q and r2 “ maxpbi´1pVpR˚qkpP qq ´Dpkqd
k´1, 0q.

Moreover, if i´ 1 ą 0, observe that each c̃t is a boundary in ∆̊pP qˆUkR. If i´ 1 “ ´1,
r2 “ 0 and it is also (trivially) true. If i ´ 1 “ 0, we can still assume this to be the
case thus: choose a membrane õs in ∆̊pP q ˆ UkR for each d̃s. Each c̃t is contained by
definition in a single quadrant ∆̊pP q ˆ tεtu (for some εt P UkR). Choose a point pt in
Chart∆̊pP qˆUkR

pP q X p∆̊pP q ˆ tεtuq close enough to the boundary B∆pP q ˆ tεtu that it
doesn’t intersect any õs (which is possible by compacity of the membranes). For each cycle
c̃t, we leave it untouched if it is already a boundary in ∆̊pP qˆUkR, and redefine it as c̃t`pt
otherwise (and we redefine γt :“ rc̃t ` pts). It is now a boundary, and the linking numbers
remain unchanged by that modification.

We also define

• classes α˘1 , . . . , α
˘
r1 P HipX

˘
0 q and β

˘
1 , . . . , β

˘
r1 in Hk´1´ipp∆̊pP q ˆ UkR ˆ t˘1uqzX˘0 q

(respectively, in kerpH0pp∆̊pP q ˆ UkR ˆ t˘1uqzX˘0 q ÝÑ H0p∆̊pP q ˆ UkR ˆ t˘1uq if
k ´ 1´ i “ 0) as well as cycles a˘1 P α

˘
1 , . . . , a

˘
r1 P α

˘
r1 and b˘1 P β

˘
1 , . . . , b

˘
r1 P β

˘
r1 as

copies of α̃t, β̃t, ãt and b̃t in X˘0 and p∆̊pP q ˆ UkR ˆ t˘1uqzX˘0 via the identification
of p∆̊pP q ˆ UkR ˆ t˘1u, X˘0 q with p∆̊pP q ˆ U

k
R, Chart∆̊pP qˆUkR

pP qq.

• classes γ˘1 , . . . , γ
˘
r2 P Hi´1pX

˘
0 q and δ˘1 , . . . , δ

˘
r2 in Hk´ipp∆̊pP q ˆ UkR ˆ t˘1uqzX˘0 q

(respectively, in kerpH0pp∆̊pP q ˆ UkR ˆ t˘1uqzX˘0 q ÝÑ H0p∆̊pP q ˆ UkR ˆ t˘1uq if
k ´ i “ 0) as well as cycles c˘1 P γ˘1 , . . . , c

˘
r2 P γ

˘
r2 and d˘1 P δ˘1 , . . . , d

˘
r2 P δ

˘
r2 as

copies of γ̃t, δ̃t, c̃t and d̃t in X˘0 and p∆̊pP q ˆ UkR ˆ t˘1uqzX˘0 via the identification
of p∆̊pP q ˆ UkR ˆ t˘1u, X˘0 q with p∆̊pP q ˆ U

k
R, Chart∆̊pP qˆUkR

pP qq.
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Consider the sets Γ`˘ “ pIntp∆pG`q Y ∆pG´qq X ∆pG`qq ˆ UkR ˆ t˘u and Γ´˘ “

pIntp∆pG`qY∆pG´qqX∆pG´qqˆUkRˆt˘u and notice that there are pair homeomorphisms
(coming from the definitions of charts and toric varieties)

• φ`` : pΓ``,Γ
`
` XXq ÝÑ ppR˚qk ˆ Rě0, VpR˚qkˆRě0

pG`qq,

• φ`´ : pΓ`´,Γ
`
´ XXq ÝÑ ppR˚qk ˆ Rď0, VpR˚qkˆRď0

pG`qq,

as well as

• φ´` : pΓ´`,Γ
´
` XXq ÝÑ pR˚qk ˆ Rě0, VpR˚qkˆRě0

pG`q,

• φ´´ : pΓ´´,Γ
´
´ XXq ÝÑ pR˚qk ˆ Rď0, VpR˚qkˆRď0

pG`q

induced the change of variables px1 . . . , xk, xk`1q ÞÑ px1 . . . , xk, x
´1
k`1q aforementioned.

We use the same notation for the restriction of these homeomorphisms to one of the
elements of the corresponding pair.

Each of our r homology classes in HipXq will be of one of two types: either the image in
HipXq of a class of HipX0q (with the suspension of the associated axis), or the suspension
of a class of Hi´1pX0q (with the associated axis remaining the same). We proceed in that
order.

Let t P t1, . . . , r1u. By definition, P has constant sign εt P t`,´u when evalu-
ated over the cycles b`t and b´t via the proper identifications. Let mt be a (k ´ i)-
membrane in Xεt

0 whose boundary is bεtt . We define a chain S̃b
`

t in ppR˚qk ˆ tεtxk`1 ě

0uqzVpR˚qkˆtεtxk`1ě0upG
`q as

tpx1, . . . , xk, xk`1q|px1, . . . , xk, 0q P φ
`
εtpb

εt
t q, εtxk`1 P r0, Rsu

ď

tpx1, . . . , xk, εtRq|px1, . . . , xk, 0q P φ
`
εtpmtqu,

for R ą 0 large enough that S̃b
`

t does not intersect VpR˚qkˆtεtxk`1ě0upG
`q (indeed, we have

that εtG`px1, . . . , xk, εtRq “ εtpP px1, . . . , xkq`εtRq is strictly positive for any px1, . . . , xk, 0q P

φ`εtpmtq for R large enough, as mt is compact). We let the (k ´ i)-chain Sb`t in Γ`εtzX be
pφ`εtq

´1pS̃b
`

t q. We also define the (k ´ i` 1)-chain

M`
t :“ pφ`εtq

´1ptpx1, . . . , xk, xk`1q|px1, . . . , xk, 0q P φ
`
εtpmtq, εtxk`1 P r0, Rsuq

where R is the same as above.
We apply the exact same procedure in Γ´εt to get the (k ´ i)-chain Sb´t in Γ´εtzX and

the (k ´ i` 1)-chain M´
t in Γ´εt .

Now we define Sbt :“ Sb`t `Sb
´
t (seen as a chain in pIntp∆pG`qY∆pG´qqˆUk`1

R qzX)
and Mt :“ M`

t `M´
t (seen as a chain in Intp∆pG`q Y∆pG´qq ˆ Uk`1

R ). The chain Sbt
is a (k ´ i)-cycle in pIntp∆pG`q Y∆pG´qq ˆ Uk`1

R qzX, and BMt “ Sbt, hence Mt can be
used as a membrane for Sbt. See Figure 5.7 for an illustration of this procedure.
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Figure 5.7: For k “ 1 and i “ 0, the suspension of the axis β “ rbs “ rq1 ` q2s in
∆pG`q Y∆pG´q ˆ t1u ˆ t1u. The cycle is α “ ras “ rp1 ` p2 ` p3 ` p4s. In light grey, the
preimage by φ˘` of pG˘q´1ty ď 0u. The hatched area corresponds to the membrane M .

We set A :“ traε11 s, . . . , ra
εr1
r1 su Ă HipXq (where we see the cycle aεtt as a cycle in X via

the inclusion Xεt
0 ãÑ X) and B :“ trSb1s, . . . , rSbr1su Ă Hk´ippIntp∆pG

`q Y ∆pG´qq ˆ

Uk`1
R qzXq . The elements of B are axes to the elements of A: indeed, let s, t P t1, . . . , r1u.

The linking number lpraεtt s, rSbssq is equal to the intersection number of aεtt andMs. As aεtt
is contained inX0, this number is equal to the intersection number of aεtt andMsXX0 “ ms,
which is by definition equal to δs,t.

We now define the classes of degree i obtained by suspending (i ´ 1)-cycles. Let
t P t1, . . . , r2u, and ñt be a i-membrane in ∆̊pP q ˆ UkR for c̃t. Name n`t and n´t the copies
of ñt in X`0 and X´0 respectively; we have Bn˘t “ c˘t .

We define four i-chains Scε1,ε2t Ă Γε1ε2 XX (for ε1, ε2 P t`,´u) as

Scε1,ε2t :“ pφε1ε2q
´1ptpx1, . . . , xk,´P px1, . . . , xkqq|px1, . . . , xk, 0q P φ

ε1
ε2pn

ε2
t q, ε2P px1, . . . , xkq ď 0uq

as well as four corresponding (i` 1)-chains N ε1,ε2
t Ă Γε1ε2 as

N ε1,ε2
t :“ pφε1ε2q

´1ptpx1, . . . , xk, xk`1q|px1, . . . , xk, 0q P φ
ε1
ε2pn

ε2
t q, ε2P px1, . . . , xkq ď ´ε2xk`1 ď 0uq.

We define Sct :“ Sc`,`t ` Sc`,´t ` Sc´,`t ` Sc´,´t (seen as a chain in X) and Nt :“

N`,`t ` N`,´t ` N´,`t ` N´,´t (seen as a chain in Intp∆pG`q Y ∆pG´qq ˆ Uk`1
R ). Note

that Sct is a cycle and that BNt “ Sct, hence Nt can be used as a membrane for Sct. See
Figure 5.8 for an illustration of this procedure.

By definition, P has constant sign ρt P t`,´u when evaluated over the cycles d`t
and d´t . Define C :“ trSc1s, . . . , rScr2su Ă HipXq and D :“ trd´ρ1

1 s, . . . , rd
´ρr2
r2 su Ă
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Figure 5.8: For k “ 1 and i “ 1, the thick black line is the suspension of the cycle
γ “ rcs “ rp1`p2`p3`p4s in ∆pG`qY∆pG´qˆt1uˆt1,´1u. The axis is δ “ rds “ rq1`q2s.
In light grey, the preimage by φ˘` of pG˘q´1ty ď 0u. The dotted areas correspond to the
membrane N .
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Hk´ippIntp∆pG
`qY∆pG´qqˆUk`1

R qzXq. The elements of D are axes to the elements of C:
indeed, let s, t P t1, . . . , r2u. The linking number lprScss, rd

´ρt
t sq is equal to the intersection

number of Ns and d
´ρt
t . As d´ρtt is contained in pφ`´ρtq

´1ptpx1, . . . , xk, 0q|ρtP px1, . . . , xkq ě

0uq Ă X´ρt0 , this number is equal to the intersection number of d´ρtt and

Ns X pφ
`
´ρtq

´1ptpx1, . . . , xk, 0q|ρtP px1, . . . , xkq ě 0uq “

n´ρts X pφ`´ρtq
´1ptpx1, . . . , xk, 0q|ρtP px1, . . . , xkq ě 0uq,

which is by definition equal to δs,t.

We now want to show that the linking number of any element in A and any element in
D, as well as any element in B and any element in C, is 0.

First, let raεtt s P A and rd´ρss s P D. Let o be a membrane for d´ρss in X´ρs0 . We can
slightly rise o and d´ρss in the following sense: Let

oλ :“ pφ`´ρsq
´1ptpx1, . . . , xk, λq|px1, . . . , xk, 0q P φ

`
´ρspoquq

and
pd´ρss qλ :“ pφ`´ρsq

´1ptpx1, . . . , xk, λq|px1, . . . , xk, 0q P φ
`
´ρspd

´ρs
s q.

We have Boλ “ pd´ρss qλ and for λ ą 0 small enough, we have rpd´ρss qλs “ rd´ρss s P

Hk´ippIntp∆pG
`q Y ∆pG´qq ˆ Uk`1

R qzXq (observe that if k ´ i “ 0, we have A “ H).
For such a small λ, the linking number of raεtt s and rd

´ρs
s s is equal to the intersection

number of oλ and aεtt , which is 0 as aεtt is contained in X0 and oλ does not intersect X0.

Then, let rSbts P B and rScss P C. As above, Ns is a membrane for Scs. Let εt be as
in the definition of Sbt, and observe that Sbt Ă Γ`εt Y Γ´εt . Observe moreover that

Sbt X Γ˘εt Ă pφ
˘
εtq
´1ppG˘q´1ptεty ą 0uqq.

On the other hand,
Ns X Γ˘εt Ă pφ

˘
εtq
´1ppG˘q´1ptεty ď 0uqq.

Hence, the intersection number of Ns and Sbt, which is equal to the linking number of
rScss and rSbts, is 0.

Note finally that the axes of D were left untouched, and the axes of B are of degree at
least 1; hence, if k´1´i “ 0, all axes in BYD automatically belong to kerpH0pIntp∆pG

`qY

∆pG´qq ˆ Uk`1
R zXq ÝÑ H0pIntp∆pG

`q Y∆pG´qq ˆ Uk`1
R q.

Hence the classes of A Y C Ă HipXq and of B Y D Ă Hk´ipIntp∆pG
`q Y ∆pG´qq ˆ

Uk`1
R zXq (respectively,D Ă kerpH0pIntp∆pG

`qY∆pG´qqˆUk`1
R zXq ÝÑ H0pIntp∆pG

`qY

∆pG´qq ˆ Uk`1
R q if k ´ i “ 0) satisfy all the conditions of the Proposition. We only have

to verify that we have enough of them.

We have found r1 ` r2 “ maxpbipVpR˚qkpP qq ´Dpkqdk´1, 0q `maxpbi´1pVpR˚qkpP qq ´
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Dpkqdk´1, 0q ě bipVpR˚qkpP qq`bi´1pVpR˚qkpP qq´2Dpkqdk´1 such pair of classes. By setting
Epkq :“ 2Dpkq, we can conclude.

5.3.3 Finding cycles in a join

We prove a similar result concerning the join of two polynomials (corresponding to the
polynomials F km from Proposition 5.2.6):

Proposition 5.3.7. For all n ě 3, there is a constant F pnq ą 0 with the following property:
Let k1, k2 ě 1 be such that k1 ` k2 “ n´ 1, and let i P t0, . . . , n´ 1u.

Let also P1 (respectively, P2) be a completely nondegenerate polynomials in k1 variables
(respectively, k2 variables) and degree d1 ě 1 (respectively, d2 ě 1) such that ∆pP1q is a
translate of Sk1

d1
(respectively, ∆pP2q is a translate of Sk2

d2
).

Write

P : px1, . . . , xk1 , y1, . . . , yk2 , zq ÞÑ P1px1, . . . , xk1q ` z ¨ P2py1, . . . , yk2q.

Define ∆1 :“ ∆ppx1, . . . , xk1 , y1, . . . , yk2 , zq ÞÑ P1px1, . . . , xk1qq Ă Rn,
∆2 :“ ∆ppx1, . . . , xk1 , y1, . . . , yk2 , zq ÞÑ z ¨ P2py1, . . . , yk2qq Ă Rn and ∆ :“ ∆pP q Ă Rn.

Observe that ∆ “ ∆1 ‹∆2, where ‹ is as above the join.
Define X :“ Chart

p∆̊1‹∆̊2qˆUnR
pP q.

Then there exists

r ě
i´1
ÿ

j“0

bjpVpR˚qk1 pP1qq ¨ bi´1´jpVpR˚qk2 pP2qq ´ F pnqmax pd1, d2q
n´2 (5.3.2)

such that we can find classes α1, . . . , αr in HipXq and β1, . . . , βr in Hn´1´ip∆̊ ˆ UnRzXq

such that their linking numbers in p∆̊1 ‹ ∆̊2q ˆU
n
R verifies lpαs, βtq “ δs,t P Z2 (the classes

βt are axes for the classes αs).

Remark 5.3.8. Remark that the sum in Formula (5.3.2) is trivial if i “ 0, n´ 1. Hence,
unlike in previous statements, we do not ask that the axes belong to kerpH0pp∆̊1 ‹ ∆̊2q ˆ

UnRzXq ÝÑ H0pp∆̊1 ‹ ∆̊2q ˆ U
n
Rqq if n´ 1´ i “ 0.

Proof. The main idea here is that for each j-cycle in VpR˚qk1 pP1q and (i ´ j ´ 1)-cycle in
VpR˚qk2 pP2q, we can build a j-cycle in X by taking the join of the two cycles. If we are
cautious enough, we can proceed similarly with the cycles used as axes, and have all classes
built in that fashion have the required linking numbers properties. The proof is somewhat
hard to read because there are many copies of the same spaces, which makes keeping track
of the indices difficult.

As in the proof of Proposition 5.3.6, whether the polytopes ∆pPiq are equal to the
simplices Skidi or mere translates of them matters not.
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Define X1 :“ Chart
∆̊pP1qˆU

k1
R
pP1q and X2 :“ Chart

∆̊pP2qˆU
k2
R
pP2q. Let M : R`∆ ÝÑ

∆ be the moment map described in Chapter 2, and φ :“ M ˆ idUnR : R`∆ ˆ UnR ÝÑ

∆ˆ UnR . We know that φ induces a stratified homeomorphism between the pairs pR`∆ˆ

UnR , VpR˚qnpP qq and p∆ ˆ UnR , Chart∆ˆUnR pP qq, which restricts to a homeomorphism φ̊ :

ppR˚qn, VpR˚qnpP qq ÝÑ p∆̊ˆUnR , Chart∆̊ˆUnR
pP qq (via the trivial identification Rną0ˆU

n
R –

pR˚qn).

Explicitly, let q1
0 . . . , q

1
k1
P Zk1 be the vertices of ∆pP1q and q2

0 . . . , q
2
k2
P Zk2 be the

vertices of ∆pP2q. Then for any px1, . . . , xk1 , y1, . . . , yk2 , zq P pR˚qn, which we also write as
px, y, zq P pR˚qk1 ˆ pR˚qk2 ˆ R˚, we have an explicit formula

Mpx, y, zq “

řk1
s“0 |x

q1
s |pq1

s , 0, . . . , 0, 0q `
řk2
t“0 |y

q2
t z|p0, . . . , 0, q2

t , 1q
řk1
s“0 |x

q1
s | `

řk2
t“0 |y

q2
t z|

(5.3.3)

where pq1
s , 0, . . . , 0, 0q P Zn is the point whose first k1 coordinates are those of q1

s P Zk1 and
whose coordinates k1`1 to n are 0, and p0, . . . , 0, q2

t , 1q P Zn is the point whose coordinates
0 to k1 are 0, whose coordinates k1 ` 1 to k1 ` k2 are those of q2

t P Zk2 and whose last
coordinate is 1 (see Chapter 2).

We decompose UnR as Uk1
R ˆ Uk2

R ˆ t1,´1u.

Via the trivial identifications ∆1 – ∆pP1q and ∆2 – ∆pP2q, we have X1 ˆ Uk2
R ˆ

t1,´1u Ă X and X2 ˆ U
k1
R ˆ t1,´1u Ă X.

The moment map restricts to R`∆1 ÝÑ ∆1 Ă ∆ and R`∆2 ÝÑ ∆2 Ă ∆. It
gives rise to pair homeomorphisms pR`∆1 ˆU

k1
R ˆUk2

R ˆ t1,´1u, VR`∆1ˆU
k1
R
pP1q ˆU

k2
R ˆ

t1,´1uq ÝÑ p∆1 ˆ Uk1
R ˆ Uk2

R ˆ t1,´1u, X1 ˆ Uk2
R ˆ t1,´1uq and pR`∆2 ˆ Uk1

R ˆ Uk2
R ˆ

t1,´1u, VR`∆2ˆU
k2
R
pP2qˆU

k1
R ˆt1,´1uq ÝÑ p∆2ˆU

k1
R ˆU

k2
R ˆt1,´1u, X2ˆU

k1
R ˆt1,´1uq

(where for a polynomial Q in l variables, we let VR`∆pQqˆU lR
pQq be the preimage of

VR∆pQqpQq by S : R`∆pQq ˆ U lR ÝÑ R∆pQq).

There are embeddings pRą0q
k1 Ă R`∆1 (induced by the embedding of ∆1 in Rn) and

pRą0q
k2 Ă R`∆2 (induced by the embedding of ∆2 in Rn). The space pRą0q

k1 Ă R`∆1

is actually the space pRą0q
k1 ˆ t0uk2 ˆ t0u Ă R`∆ with the parametrization of R`∆

induced by the canonical basis of Zn, and the space pRą0q
k2 Ă R`∆2 can be seen as

t0uk1 ˆ pRą0q
k2 ˆ t8u Ă R`∆ in the same system of coordinates, or more rigorously as

t0uk1 ˆ pRą0q
k2 ˆ t0u Ă R`∆ via the change of coordinates px, y, zq ÞÑ px, y, z´1q.

Let px, 0, 0q P pRą0q
k1 ˆ t0uk2 ˆ t0u Ă R`∆. Then we have

Mpx, 0, 0q “

řk1
s“0 |x

q1
s |pq1

s , 0, . . . , 0, 0q
řk1
s“0 |x

q1
s |

“ pM1pxq, 0, 0q P ∆1 Ă ∆,

where M1 : R`∆pP1q ÝÑ ∆pP1q.
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Likewise, let p0, y,8q P t0uk1 ˆ pRą0q
k2 ˆ t8u Ă R`∆. Then we have

Mp0, y,8q “

řk2
t“0 |y

q2
t |p0, . . . , 0, q2

t , 1q
řk2
t“0 |y

q2
t |

“ p0,M2pyq, 1q P ∆2 Ă ∆,

where M2 : R`∆pP2q ÝÑ ∆pP2q.
Hence we can rewrite Formula (5.3.3) as

Mpx, y, zq “

řk1
s“0 |x

q1
s |pq1

s , 0, . . . , 0, 0q `
řk2
t“0 |y

q2
t z|p0, . . . , 0, q2

t , 1q
řk1
s“0 |x

q1
s | `

řk2
t“0 |y

q2
t z|

“ (5.3.4)
˜

řk1
s“0 |x

q1
s |

řk1
s“0 |x

q1
s | ` |z| ¨

řk2
t“0 |y

q2
t |
M1pxq,

|z| ¨
řk2
t“0 |y

q2
t |

řk1
s“0 |x

q1
s | ` |z| ¨

řk2
t“0 |y

q2
t |
M2pyq,

|z| ¨
řk2
t“0 |y

q2
t |

řk1
s“0 |x

q1
s | ` |z| ¨

řk2
t“0 |y

q2
t |

¸

.

For each pε1, ε2, εq P Uk1
R ˆ Uk2

R ˆ t 1,´1u, define

Jpε1,ε2,εq :“ tppλx, p1´λqy, 1´λq, pε1, ε2, εqq P ∆ˆUnR |λ P r0, 1s, px, ε1q P X1, py, ε2q P X2u.

It is clearly homeomorphic to the "abstract" topological join pppX1Xp∆̊pP1qˆtε1uqqˆ

pX2Xp∆̊pP2qˆtε2uqqˆr0, 1sq{tpx, y1, 0q „ px, y2, 0q, px1, y, 1q „ px2, y, 1quq ofX1Xp∆̊pP1qˆ

tε1uq and X2 X p∆̊pP2q ˆ tε2uq.
Define the pseudo-join

J :“
ğ

pε1,ε2,εqPUnR

Jpε1,ε2,εq.

It is NOT homeomorphic to the "abstract" join pX1ˆX2ˆr0, 1sq{tpx, y1, 0q „ px, y2, 0q, px1, y, 1q „

px2, y, 1qu (a quotient of J is). Observe that by definition of P , we have VpR˚qk1 pP1q ˆ

VpR˚qk2 pP2q ˆR˚ Ă VpR˚qnpP q. Using Formula (5.3.4), we see that it is mapped to J̊ by φ,
which shows that J̊ Ă X. Taking the closure of J̊ in p∆̊1 ‹ ∆̊2q ˆ U

n
R , we see that J Ă X.

Now let j P t0, . . . , i ´ 1u. We will build i-cycles and (n ´ 1 ´ i)-axes from j- and
(i´ 1´ j)-cycles and (k1 ´ 1´ j)- and (k2 ´ i` j)-axes by taking their join.

Using Lemma 5.3.3, we can produce:

• classes α̃j1, . . . , α̃
j

rj1
P HjpX1q and β̃

k1´1´j
1 , . . . , β̃k1´1´j

rj1
inHk1´1´jpp∆̊pP1qˆU

k1
R qzX1q

(respectively, in kerpH0pp∆̊pP1q ˆU
k1
R qzX1q ÝÑ H0p∆̊pP1q ˆU

k1
R q if k1 ´ 1´ j “ 0),

as well as cycles ãj1 P α̃
j
1, . . . , ã

j

rj1
P α̃j

rj1
and b̃k1´1´j

1 P β̃k1´1´j
1 , . . . , b̃k1´1´j

rj1
P β̃k1´1´j

rj1
.

• classes γ̃i´1´j
1 , . . . , γ̃i´1´j

ri´1´j
2

P Hi´1´jpX2q and δ̃
k2´i`j
1 , . . . , δ̃k2´i`j

ri´1´j
2

inHk2´i`jpp∆̊pP2qˆ

Uk2
R qzX2q (respectively, in kerpH0pp∆̊pP2q ˆ Uk2

R qzX2q ÝÑ H0p∆̊pP2q ˆ Uk2
R q if k2 ´

i ` j “ 0), as well as cycles c̃i´1´j
1 P γ̃i´1´j

1 , . . . , c̃i´1´j

ri´1´j
2

P γ̃i´1´j

ri´1´j
2

and d̃k2´i`j
1 P

δ̃k2´i`j
1 , . . . , d̃k2´i`j

ri´1´j
2

P δ̃k2´i`j

ri´1´j
2

,

where each pair of families of classes and associated cycles verifies the conditions of Lemma
5.3.3 (the classes β̃k1´1´j

s are axes to the classes α̃js, P1 has constant sign over the cycles
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b̃k1´1´j
s , each cycle is contained in a single quadrant, etc.), rj1 “ maxpbjpVpR˚qk1 pP1qq ´

Dpk1qd1
k1´1, 0q and ri´1´j

2 “ maxpbi´1´jpVpR˚qk2 pP2qq ´Dpk2qd2
k2´1, 0q.

We also define

• for each ε2 P U
k2
R and ε P t1,´1u, classes αj1,ε2,ε, . . . , α

j

rj1,ε2,ε
P HjpX1 ˆ tε2u ˆ tεuq

and βk1´1´j
1,ε2,ε

, . . . , βk1´1´j

rj1,ε2,ε
in Hk1´1´jppp∆̊1 ˆ Uk1

R qzX1q ˆ tε2u ˆ tεuq (respectively,

in kerpH0ppp∆̊1 ˆ Uk1
R qzX1q ˆ tε2u ˆ tεuq ÝÑ H0p∆̊1 ˆ Uk1

R ˆ tε2u ˆ tεuqq if k1 ´

1 ´ j “ 0) as well as cycles aj1,ε2,ε P αj1,ε2,ε, . . . , a
j

rj1,ε2,ε
P αj

rj1,ε2,ε
and bk1´1´j

1,ε2,ε
P

βk1´1´j
1,ε2,ε

, . . . , bk1´1´j

rj1,ε2,ε
P βk1´1´j

rj1,ε2,ε
as copies of α̃jt , β̃

k1´1´j
t , ãjt and b̃

k1´1´j
t in X1ˆtε2uˆ

tεu and pp∆̊1ˆU
k1
R qzX1qˆtε2uˆtεu via the identification of p∆̊pP1qˆU

k1
R , X1q with

p∆̊1 ˆ U
k1
R ˆ tε2u ˆ tεu, X1 ˆ tε2u ˆ tεuq.

• for each ε1 P Uk1
R and ε P t1,´1u, classes γi´1´j

1,ε1,ε
, . . . , γi´1´j

ri´1´j
2 ,ε1,ε

P Hi´1´jpX2 ˆ

tε1u ˆ tεuq and δk2´i`j
1,ε1,ε

, . . . , δk2´i`j

ri´1´j
2 ,ε1,ε

in Hk2´i`jppp∆̊2 ˆ Uk2
R qzX2q ˆ tε1u ˆ tεuq

(respectively, in kerpH0ppp∆̊2ˆU
k2
R qzX2qˆtε1uˆtεuq ÝÑ H0p∆̊2ˆtε1uˆU

k2
R ˆtεuqq

if k2 ´ i ` j “ 0) as well as cycles ci´1´j
1,ε1,ε

P γi´1´j
1,ε1,ε

, . . . , ci´1´j

ri´1´j
2 ,ε1,ε

P γi´1´j

ri´1´j
2 ,ε1,ε

and

dk2´i`j
1,ε1,ε

P δk2´i`j
1,ε1,ε

, . . . , dk2´i`j

ri´1´j
2 ,ε1,ε

P δk2´i`j

ri´1´j
2 ,ε1,ε

as copies of γ̃i´1´j
t , δ̃k2´i`j

t , c̃i´1´j
t and

d̃k2´i`j
t in X2 ˆ tε1u ˆ tεu and pp∆̊2 ˆU

k2
R qzX2q ˆ tε1u ˆ tεu via the identification of

p∆̊pP2q ˆ U
k2
R , X2q with p∆̊2 ˆ tε1u ˆ U

k2
R ˆ tεu, X2 ˆ tε1u ˆ tεuq.

Let t P t1, . . . , rj1u and s P t1, . . . , r
i´1´j
2 u. By definition, the cycles ãjt and b̃

k1´1´j
t are

contained in a single quadrant ∆̊pP1qˆ tε
j
tu (for some εjt P U

k1
R ), and the cycles c̃i´1´j

s and
d̃k2´i`j
s are also contained in a single quadrant ∆̊pP2q ˆ tζ

i´1´j
s u (for some ζi´1´j

s P Uk2
R ).

By definition, P1 takes constant sign ε1 over b̃k1´1´j
t and P2 takes constant sign ε2 over

d̃k2´i`j
s (when evaluated via the isomorphism ∆̊pPlq ˆ UklR – pR˚qkl , for l “ 1, 2). Let
εpj, t, sq be 1 if ε1 “ ε2, and ´1 otherwise.

Then the join aj
t,ζi´1´j
s ,εpj,t,sq

‹ ci´1´j

s,εjt ,εpj,t,sq
of aj

t,ζi´1´j
s ,εpj,t,sq

and ci´1´j

s,εjt ,εpj,t,sq
is a i-cycle in

J
pεjt ,ζ

i´1´j
s ,εpj,t,sqq

Ă p∆̊1 ‹ ∆̊2 ˆ tε
j
tu ˆ tζ

i´1´j
s u ˆ tεpj, t, squq XX.

Now consider the join bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

‹ dk2´i`j

s,εjt ,εpj,t,sq
of bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

and dk2´i`j

s,εjt ,εpj,t,sq
. It is

a (n´ 1´ i)-cycle in ∆̊1 ‹ ∆̊2ˆtε
j
tuˆ tζ

i´1´j
s uˆ tεpj, t, squ. Furthermore, the intersection

of bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

‹ dk2´i`j

s,εjt ,εpj,t,sq
with ∆1ˆtε

j
tuˆ tζ

i´1´j
s uˆ tεpj, t, squ is bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

, which

does not intersect X, and the intersection of bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

‹ dk2´i`j

s,εjt ,εpj,t,sq
with ∆2 ˆ tε

j
tu ˆ

tζi´1´j
s u ˆ tεpj, t, squ is dk2´i`j

s,εjt ,εpj,t,sq
, which does not intersect X either. Finally, any point

in the intersection of bk1´1´j

t,ζi´1´j
s ,ε

‹ dk2´i`j

s,εjt ,εpj,t,sq
and ∆̊ ˆ tεjtu ˆ tζ

i´1´j
s u ˆ tεpj, t, squ can be

written as ppλM1pxq, p1´λqM2pyq, 1´λq, ptε
j
tuˆtζ

i´1´j
s uˆtεpj, t, squqq, for some λ Ps0, 1r,

some x P pRą0q
k1 such that xεjt :“ px1pε

j
t q1, . . . , xk1pε

j
t qk1q P pR˚qk1zVpR˚qk1 pP1q and some

y P pRą0q
k2 such that yζi´1´j

s :“ py1pζ
i´1´j
s q1, . . . , yk2pζ

i´1´j
s qk2q P pR˚qk2zVpR˚qk2 pP2q.
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Figure 5.9: For k1 “ k2 “ 1, i “ 1 and j “ 0, the join of cycles a “ a1`a2 and c “ c1`c2

and the join of axes b “ b1 ` b2 and d “ d1 ` d2.

But this is equal to the image of ppx, y, zq, ptεjtu ˆ tζ
i´1´j
s u ˆ tεpj, t, squqq P pRą0q

n ˆ UnR
by φ̊ (see Formula (5.3.4)), for some z P Rą0.

Then
P pxεjt , yζ

i´1´j
s , zεpj, t, sqq “ P1pxε

j
t q ` zεpj, t, sqP2pyζ

i´1´j
s q

is different from zero, as each term is different from zero and of the same sign (by definition
of εpj, t, sq). Hence pxεjt , yζ

i´1´j
s , zεpj, t, sqq R VpR˚qnpP q and we see, via the isomorphism φ,

that the intersection of bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

‹dk2´i`j

s,εjt ,εpj,t,sq
andX is trivial: bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

‹dk2´i`j

s,εjt ,εpj,t,sq

is a cycle in p∆̊1 ‹ ∆̊2 ˆ tε
j
tu ˆ tζ

i´1´j
s u ˆ tεpj, t, squqzX. See also Figure 5.9.

Let us show that for any t1, t2 P t1, . . . , r
j
1u and s1, s2 P t1, . . . , r

i´1´j
2 u, the linking num-

ber of raj
t1,ζ

i´1´j
s1

,εpj,t1,s1q
‹ ci´1´j

s1,ε
j
t1
,εpj,t1,s1q

s P HipXq and rb
k1´1´j

t2,ζ
i´1´j
s2

,εpj,t2,s2q
‹ dk2´i`j

s2,ε
j
t2
,εpj,t2,s2q

s P

Hn´1´ippp∆̊1 ‹ ∆̊2q ˆ U
n
RqzXq is equal to δt1,t2δs1,s2 .

Let m be a membrane for bk1´1´j

t2,ζ
i´1´j
s2

,εpj,t2,s2q
in ∆̊1 ˆ tε

j
t2
u ˆ tζi´1´j

s2 u ˆ tεpj, t2, s2q}, i.e.

a (k1 ´ j)-chain in ∆̊1 ˆ tε
j
t2
u ˆ tζi´1´j

s2 u ˆ tεpj, t2, s2qu such that Bm “ bk1´1´j

t2,ζ
i´1´j
s2

,εpj,t2,s2q
.

We can also assume that m intersects aj
t1,ζ

i´1´j
s1

,εpj,t1,s1q
transversally. Then it is easy to see

that m‹dk2´i`j

s2,ε
j
t2
,εpj,t2,s2q

is a membrane for bk1´1´j

t2,ζ
i´1´j
s2

,εpj,t2,s2q
‹dk2´i`j

s2,ε
j
t2
,εpj,t2,s2q

in p∆̊1‹∆̊2qˆU
n
R .

The linking number will be equal to the transversal intersection number ofm‹dk2´i`j

s2,ε
j
t2
,εpj,t2,s2q
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and aj
t1,ζ

i´1´j
s1

,εpj,t1,s1q
‹ ci´1´j

s1,ε
j
t1
,εpj,t`,s1q

in p∆̊1 ‹ ∆̊2qˆU
n
R . Note that it is necessarily trivial if

we don’t have εjt1 “ εjt2 , ζ
i´1´j
s1 “ ζi´1´j

s2 and εpj, t1, s1q “ εpj, t2, s2q. Assuming from now
on that we do, we write ε1 :“ εjt1 , ε2 :“ ζi´1´j

s1 and ε :“ εpj, t2, s2q to shorten notations.

As above, any point in m ‹ dk2´i`j
s2,ε1,ε (respectively, in ajt1,ε2,ε ‹ c

i´1´j
s1,ε1,ε) can be written

as ppλx, p1´ λqy, 1´ λq, pε1, ε2, εqq for some ppx, 0, 0q, pε1, ε2, εqq P m, pp0, y, 1q, pε1, ε2, εqq P
dk2´i`j
s2,ε1,ε (respectively, ppx, 0, 0q, pε1, ε2, εqq P a

j
t1,ε2,ε

and pp0, y, 1q, pε1, ε2, εqq P c
i´1´j
s1,ε1,ε) and

λ P r0, 1s. As the intersection of ci´1´j
s1,ε1,ε and d

k2´i`j
s2,ε1,ε is trivial, we see that set-wise, we have

m‹dk2´i`j
s2,ε1,ε Xa

j
t1,ε2,ε

‹ci´1´j
s1,ε1,ε “ m‹dk2´i`j

s2,ε1,ε Xa
j
t1,ε2,ε

‹ci´1´j
s1,ε1,εX∆1ˆtε1uˆtε2uˆtεu “ mXajt1,ε2,ε,

but this intersection is not transversal.

We slightly deform bk1´1´j
t2,ε2,ε

‹ dk2´i`j
s2,ε1,ε to make it transversal. We are computing an

intersection number in p∆̊1 ‹ ∆̊2q ˆ tε1u ˆ tε2u ˆ tεu; from now on, we identify it with
∆̊1 ‹ ∆̊2, and embed it in Rn - the intersection number in Rn is the same.

For ρ ą 0, define pbk1´1´j
t2,ε2,ε

qρ :“ bk1´1´j
t2,ε2,ε

` ρen “ tpx, 0, ρq|px, 0, 0q P bk1´1´j
t2,ε2,ε

u and
similarly mρ :“ m ` ρen. For ρ small enough, pbk1´1´j

t2,ε2,ε
qρ ‹ d

k2´i`j
s2,ε1,ε does not intersect X

and induces the same class as bk1´1´j
t2,ε2,ε

‹ dk2´i`j
s2,ε1,ε in Hn´1´ipRnzXq. The chain mρ ‹ d

k2´i`j
s2,ε1,ε

is a membrane for pbk1´1´j
t2,ε2,ε

qρ‹d
k2´i`j
s2,ε1,ε , and for ρ generic enough, it intersects ajt1,ε2,ε‹c

i´1´j
s1,ε1,ε

transversally. Let us count these intersection points.

Any point in mρ ‹ d
k2´i`j
s2,ε1,ε can be written as pλx, p1´ λqy, 1´ λp1´ ρqq for x P m, y P

dk2´i`j
s2,ε1,ε and λ P r0, 1s, or equivalently as p µ

1´ρx, p1 ´
µ

1´ρqy, 1 ´ µq for µ P r0, 1 ´ ρs. The
points in ajt1,ε2,ε ‹ c

i´1´j
s1,ε1,ε can be written as pµv, p1 ´ µqw, 1 ´ µq for some v P ajt1,ε2,ε ,

w P ci´1´j
s1,ε1,ε and µ P r0, 1s. For ρ ą 0 small enough, we can assume that the intersection of

m and ajt1,ε2,ε is equal to the intersection of 1
1´ρ ¨m and ajt1,ε2,ε (since m was assumed to

be generically positioned with respect to ajt1,ε2,ε). See Figure 5.10.

Hence for each µ P r0, 1´ρs, we have |mXajt1,ε2,ε|¨|p1´
µ

1´ρq¨d
k2´i`j
s2,ε1,ε Xp1´µq¨c

i´1´j
s1,ε1,ε| P Z2

intersection points (mod 2) with last coordinate 1 ´ µ (where |.| denotes the cardinality
modulo 2) and |m X ajt1,ε2,ε| is equal to the linking number of rajt1,ε2,εs and rbk1´1´j

t2,ε2,ε
s,

which is by construction δt1,t2 P Z2. Moreover, |p1 ´ µ
1´ρq ¨ d

k2´i`j
s2,ε1,ε X p1 ´ µq ¨ ci´1´j

s1,ε1,ε| “

| 1
1´ρ

1´µ´ρ
1´µ ¨ dk2´i`j

s2,ε1,ε X ci´1´j
s1,ε1,ε|. As µ ÞÑ 1

1´ρ
1´µ´ρ

1´µ maps bijectively r0, 1 ´ ρs to r0, 1s, the
sum over all µ P r0, 1 ´ ρs of | 1

1´ρ
1´µ´ρ

1´µ ¨ dk2´i`j
s2,ε1,ε X ci´1´j

s1,ε1,ε| is equal to the intersection
number in Rk2 of ci´1´j

s1,ε1,ε with the cone

Cdk2´i`j
s2,ε1,ε :“ tr ¨ y|y P dk2´i`j

s2,ε1,ε , t P r0, 1su Ă Rk2 .

See also Figure 5.11. As Cdk2´i`j
s2,ε1,ε is a membrane for dk2´i`j

s2,ε1,ε , this is equal to the linking
number of rdk2´i`j

s2,ε1,ε s and rc
i´1´j
s1,ε1,εs, which is by construction δs1,s2 P Z2. Hence we have

proved that the linking number of raj
t1,ζ

i´1´j
s1

,εpj,t1,s1q
‹ci´1´j

s1,ε
j
t1
,εpj,t`,s1q

s and rbk1´1´j

t2,ζ
i´1´j
s2

,εpj,t2,s2q
‹

dk2´i`j

s2,ε
j
t2
,εpj,t2,s2q

s is equal to δt1,t2δs1,s2 P Z2.
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Figure 5.10: For k1 “ k2 “ 1, i “ 1 and j “ 0, a transversal intersection of the joins
mρ ‹ d and a ‹ c. The big purple points are the intersection points.
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Figure 5.11: The same situation as in Figure 5.10, projected along the direction e1.

Now let us show that for 0 ď j1 ă j2 ď i ´ 1, t1 P t1, . . . , r
j1
1 u, s1 P t1, . . . , r

i´1´j1
2 u,

t2 P t1, . . . , r
j2
1 u and s2 P t1, . . . , r

i´1´j2
2 u, the linking numbers of raj1

t1,ζ
i´1´j1
s1

,εpj1,t1,s1q
‹

ci´1´j1

s1,ε
j1
t1
,εpj1,t1,s1q

s and rbk1´1´j2

t2,ζ
i´1´j2
s2

,εpj2,t2,s2q
‹dk2´i`j2

s2,ε
j2
t2
,εpj2,t2,s2q

s, as well as that of raj2
t2,ζ

i´1´j2
s2

,εpj2,t2,s2q
‹

ci´1´j2

s2,ε
j2
t2
,εpj2,t2,s2q

s and rbk1´1´j1

t1,ζ
i´1´j1
s1

,εpj1,t1,s1q
‹ dk2´i`j1

s1,ε
j1
t1
,εpj1,t1,s1q

s, is 0.

We start with the linking numbers of raj1
t1,ζ

i´1´j1
s1

,εpj1,t1,s1q
‹ci´1´j1

s1,ε
j1
t1
,εpj1,t1,s1q

s and rbk1´1´j2

t2,ζ
i´1´j2
s2

,εpj2,t2,s2q
‹

dk2´i`j2

s2,ε
j2
t2
,εpj2,t2,s2q

s; as before, it is necessarily trivial if we don’t have εj1t1 “ εj2t2 , ζ
i´1´j1
s1 “

ζi´1´j2
s2 and εpj1, t1, s1q “ εpj2, t2, s2q. Assuming from now on that we do, we write ε1 :“ εj1t1 ,
ε2 :“ ζi´1´j1

s1 and ε :“ εpj1, t1, s1q to shorten notations.

We consider a (k1 ´ j2)-chain m in ∆1 ˆ tε1u ˆ tε2u ˆ tεu such that it is a membrane
for bk1´1´j2

t2,ε2,ε
. As before, the chain m‹k2´i`j2

s2,ε1,ε is a membrane for bk1´1´j2
t2,ε2,ε

‹dk2´i`j2
s2,ε1,ε , and the

intersection of m‹k2´i`j2
s2,ε1,ε and aj1t1,ε2,ε ‹ c

i´1´j1
s1,ε1,ε is contained in ∆1 ˆ tε1u ˆ tε2u ˆ tεu and

equal, set-wise, to mX aj1t1,ε2,ε. As j2 ą j1, we have pk1´ j2q` j1 ă k1 and the intersection
m X aj1t1,ε2,ε in ∆1 ˆ tε1u ˆ tε2u ˆ tεu is empty (for m generic enough). Hence the linking
number of raj1t1,ε2,ε ‹ c

i´1´j1
s1,ε1,ε s and rb

k1´1´j2
t2,ε2,ε

‹ dk2´i`j2
s2,ε1,ε s is 0.

The same reasoning applies to the linking number of raj2t2,ε2,ε ‹ c
i´1´j2
s2,ε1,ε s and rb

k1´1´j1
t1,ε2,ε

‹

dk2´i`j1
s1,ε1,ε s, by taking bk1´1´j1

t1,ε2,ε
‹ n as a membrane for bk1´1´j1

t1,ε2,ε
‹ dk2´i`j1

s1,ε1,ε , where n is a
membrane for dk2´i`j1

s1,ε1,ε .

Define the sets A :“ traj
1,ζi´1´j

s ,εpj,t,sq
‹ ci´1´j

s,εjt ,εpj,t,sq
s|j “ 0, . . . , i ´ 1, t “ 1, . . . , rj1, s “

1, . . . , ri´1´j
2 u Ă HipXq and B̃ :“ trbk1´1´j

t,ζi´1´j
s ,εpj,t,sq

‹ dk2´i`j

s,εjt ,εpj,t,sq
s|j “ 0, . . . , i ´ 1, t “
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1, . . . , rj1, s “ 1, . . . , ri´1´j
2 u Ă Hn´1´ipp∆̊1 ‹ ∆̊2q ˆ UnRzXq. By slightly perturbating the

cycles bk1´1´j

t,ζi´1´j
s ,εpj,t,sq

‹ dk2´i`j

s,εjt ,εpj,t,sq
representing the elements of B̃, we can assume that they

are actually contained in ∆̊ˆUnRzX without changing the linking number of their homology
class with the elements of A. Let B Ă Hn´1´ip∆̊ˆU

n
RzXq be the set of the classes of those

slightly modified cycles. Then the elements of A and B satisfy the required conditions.
We only have to check that there are enough of them.

By construction,

|A| “
i´1
ÿ

j“0

rj1 ¨ r
i´1´j
2 “

i´1
ÿ

j“0

maxpbjpVpR˚qk1 pP1qq ´Dpk1qd1
k1´1, 0q ¨maxpbi´1´jpVpR˚qk2 pP2qq ´Dpk2qd2

k2´1, 0q.

Using Formulas (1.2.1) and (5.1.1) and Remark 5.3.2, we know that there exists a
constant C̃pnq, depending only on n, such that b˚pVpR˚qkpP̃ qq ď C̃pnqdk for every k ď n´1

and every completely nondegenerate real Laurent polynomial P̃ in k variables of degree d.
Set also D̃pnq :“ maxtDpkq|k ď n´1u, where D is as above (and thus as in Lemma 5.3.3).

Then for j “ 0, . . . , i´ 1, if bjpVpR˚qk1 pP1qq ´Dpk1qd1
k1´1 ď 0, we have

bjpVpR˚qk1 pP1qq ¨ bi´1´jpVpR˚qk2 pP2qq ď Dpk1qd1
k1´1 ¨ bi´1´jpVpR˚qk2 pP2qq ď

Dpk1qd1
k1´1 ¨ C̃pnqdk2

2 ď Dpk1qC̃pnqmaxpd1, d2q
n´2.

In particular, rj1¨r
i´1´j
2 “ 0 ě bjpVpR˚qk1 pP1qq¨bi´1´jpVpR˚qk2 pP2qq´D̃pnqC̃pnqmaxpd1, d2q

n´2.
We find the same inequality if bi´1´jpVpR˚qk2 pP2qq ´Dpk2qd2

k2´1 ď 0.

If we have both bi´1´jpVpR˚qk2 pP2qq´Dpk2qd2
k2´1 ě 0 and bjpVpR˚qk1 pP1qq´Dpk1qd1

k1´1 ě

0, we find

rj1 ¨ r
i´1´j
2 “ pbjpVpR˚qk1 pP1qq ´Dpk1qd1

k1´1qpbi´1´jpVpR˚qk2 pP2qq ´Dpk2qd2
k2´1q ě

bjpVpR˚qk1 pP1qqbi´1´jpVpR˚qk2 pP2qq´

D̃pnqpbjpVpR˚qk1 pP1qqd2
k2´1 ` bi´1´jpVpR˚qk2 pP2qqd1

k1´1q.

Then we have

D̃pnqpbjpVpR˚qk1 pP1qqd2
k2´1 ` bi´1´jpVpR˚qk2 pP2qd1

k1´1q ď

D̃pnqpnqpC̃pnqdk1
1 d2

k2´1 ` C̃pnqdk2
2 d1

k1´1q ď 2D̃pnqC̃pnqmaxpd1, d2q
n´2.
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Summing over all j “ 0, . . . , i´ 1 and setting F pnq :“ 2nD̃pnqC̃pnq, we get

|A| “
i´1
ÿ

j“0

rj1 ¨ r
i´1´j
2 ě

˜

i´1
ÿ

j“0

bjpVpR˚qk1 pP1qq ¨ bi´1´jpVpR˚qk2 pP2qq

¸

´ F pnqmaxpd1, d2q
n´2,

which allows us to conclude.

5.3.4 Counting cycles

We are now ready to prove the Cooking Theorem, which we state again.

Theorem 5.1.1 (Cooking Theorem). Let n ě 2. For k “ 1, . . . , n ´ 1, let tP kd udPN be a
family of completely nondegenerate real Laurent polynomials in k variables, such that P kd
is of degree d and that the Newton polytope ∆pP kd q of P

k
d is Skd . Suppose additionally that

for k “ 1, . . . , n´ 1 and i “ 0, . . . , k ´ 1,

bipVRPkpP
k
d qq

k
ě xki ¨ d

k

for some xki P Rě0. Then there exists a family tQndudPN of completely nondegenerate real
Laurent polynomials in n variables such that ∆pQnd q “ Snd and such that for i “ 0, . . . , n´1

bipVRPnpQ
n
d qq

n
ě

1

n
pxn´1
i ` xn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

xkj ¨ x
n´1´k
i´1´j q ¨ d

n,

where xkj is set to be 0 for j R t0, . . . , k ´ 1u.
Moreover, if the families tP kd udPN were obtained using the combinatorial case of the

Patchwork for all k, then the family tQndudPN can also be obtained by combinatorial patch-
working.

If each family tP kd udPN (for k “ 1, . . . , n´ 1) is such that the associated family of pro-
jective hypersurfaces is asymptotically maximal, then the family of projective hypersurfaces
associated to tQndudPN is also asymptotically maximal.

Proof. We simply need to apply Propositions 5.3.6 and 5.3.7 to the polynomials appearing
in Proposition 5.2.6. This gives us a collection of cycles and axes, and by showing that
there are enough of them, we prove the statement.

More precisely, for d ď n ` 1, let Qnd be any completely nondegenerate real Laurent
polynomial obtained by combinatorial patchworking such that ∆pQnd q “ Snd (the choice of
Qnd matters not, as we are only interested in asymptotic properties), and let tQndudąn`1

be a family of completely nondegenerate real Laurent polynomials such that ∆pQnd q “ Snd
and satisfying the conclusions of Proposition 5.2.6 with regard to the polynomials P kd (for
k “ 1, . . . , n´ 1). We use the same notations as there.
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As stated in Proposition 5.2.6, if the families tP kd udPN were obtained using combinatorial
patchworking, we can assume this to also be the case for tQndudPN.

We will show that tQndudPN is as wanted. Let C̃ ě 0 be such that for all j “ 0, . . . , n´1

and all k “ 1, . . . , n´ 1, we have

bjpVRPkpP
k
d qq ě xkj ¨ d

k ´ C̃dk´1,

where we set xkj to be 0 if j ě k. Let also i P t0, . . . , n´ 1u.

We know, from the Main Patchwork Theorem 2.2.1, that the topology of the pairs
pSnd ˆ UnR , ChartSndˆU

n
R
pQnd qq is the same as that of pSnd ˆ UnR , vq, where v Ă Snd ˆ UnR is

obtained by appropriately gluing the charts of all polynomials Pi P Σ appearing in the
patchworking.

For m “ 0, . . . , d ´ n ´ 1 and k “ 1, . . . , n ´ 2, we consider the polynomial F km P Σ.
Based on Condition 2 of Proposition 5.2.6, we know that the chart of F km is homeomorphic
to the chart of some polynomial P which satisfies the hypotheses of Proposition 5.3.7, with
some polynomials P̃ kd´m´1´k and P̃n´1´k

d´m´n`k (whose charts are homeomorphic to those of
P kd´m´1´k and Pn´1´k

d´m´n`k) playing the roles of P1 and P2 in the notations of Proposition
5.3.7. In other words and loosely speaking, F km is the join of P̃ kd´m´1´k and P̃n´1´k

d´m´n`k.

Then the proposition implies that there exists

rpF kmq ě
i´1
ÿ

j“0

bjpVpR˚qkpP̃
k
d´m´1´kqq ¨ bi´1´jpVpR˚qn´1´kpP̃n´1´k

d´m´n`kqq (5.3.5)

´ F pnqmax pd´m´ 1´ k, d´m´ n` kqn´2

such that we can find classes α̃1, . . . , α̃rpFkmq in HipChart∆pGqˆUnR pGqq and β̃1, . . . , β̃rpFkmq

in Hn´1´ip∆̊pGq ˆ U
n
RzChart∆pGqˆUnR pGqq such that their linking numbers in ∆pGq ˆ UnR

verifies lpα̃s, β̃tq “ δs,t P Z2.

We pull back these classes via the pair homeomorphism to get classes αF
k
m

1 , . . . , α
Fkm
rpFkmq

in

HipChart∆pFkmqˆUnR
pF kmqq and β

Fkm
1 , . . . , β

Fkm
rpFkmq

inHn´1´ip∆̊pF
k
mqˆU

n
RzChart∆pFkmqˆUnR

pF kmqq

such that their linking numbers in ∆pF kmq ˆ U
n
R verifies lpαF

k
m
s , β

Fkm
t q “ δs,t P Z2.

Moreover, observe that by the definition of polynomials P̃ kd´m´1´k and P̃
n´1´k
d´m´n`k from

Condition 2 of Proposition 5.2.6 (whose charts were assumed to be homeomorphic to those
of P kd´m´1´k and Pn´1´k

d´m´n`k), we have bjpVpR˚qkpP̃
k
d´m´1´kqq “ bjpVpR˚qkpP

k
d´m´1´kqq and

bi´1´jpVpR˚qn´1´kpP̃n´1´k
d´m´n`kqq “ bi´1´jpVpR˚qn´1´kpPn´1´k

d´m´n`kqq, which means that we can
rewrite Inequality (5.3.5) as

rpF kmq ě
i´1
ÿ

j“0

bjpVpR˚qkpP̃
k
d´m´1´kqq ¨ bi´1´jpVpR˚qn´1´kpP̃n´1´k

d´m´n`kqq

´ F pnqmax pd´m´ 1´ k, d´m´ n` kqn´2
“
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i´1
ÿ

j“0

bjpVpR˚qkpP
k
d´m´1´kqq ¨ bi´1´jpVpR˚qn´1´kpPn´1´k

d´m´n`kqq

´ F pnqmax pd´m´ 1´ k, d´m´ n` kqn´2
ě

«

i´1
ÿ

j“0

pxkj ¨ pd´m´ 1´ kqk ´ C̃ ¨ pd´m´ 1´ kqk´1q¨

¨pxn´1´k
i´1´j ¨ pd´m´ n` kq

n´1´k ´ C̃ ¨ pd´m´ n` kqn´2´kq

ı

´ F pnqmax pd´m´ 1´ k, d´m´ n` kqn´2

for any d large enough that xkj ¨ pd ´m ´ 1 ´ kqk ě C̃ ¨ pd ´m ´ 1 ´ kqk´1 and xn´1´k
i´1´j ¨

pd´m´ n` kqn´1´k ě C̃ ¨ pd´m´ n` kqn´2´k for all j “ 0, . . . , i´ 1.

Define C1 :“ np2C̃ maxtxlj |l “ 1, . . . , n´ 1, j “ 0, . . . , l ´ 1u ` F pnqq.

Then we have

rpF kmq ě

˜

i´1
ÿ

j“0

xkjx
n´1´k
i´1´j ¨ pd´m´ 1´ kqkpd´m´ n` kqn´1´k

¸

(5.3.6)

´ C1 max pd´m´ 1´ k, d´m´ n` kqn´2
ě

˜

i´1
ÿ

j“0

xkjx
n´1´k
i´1´j

¸

¨ pd´m´ nqn´1 ´ C1pd´m´ 1qn´2

for all d large enough; if we replace C1 by C̃1 ě C1 large enough, we can assume this to
be the case for all d (and we do).

For m “ 1, . . . , d ´ n ´ 1, we also consider the pair of polynomials G`m, G´m P Σ (still
using the notations of Proposition 5.2.6).

We know that there exist polynomials G̃`m, G̃´m and P̃n´1
d´m´n (with the chart of P̃n´1

d´m´n

homeomorphic to the chart of Pn´1
d´m´n) that satisfy the hypotheses of Proposition 5.3.6

(where G̃`m and G̃´m correspond to G` and G´ and P̃n´1
d´m´n to P in the notations of

the proposition) such that the pair pp∆pG`mq Y ∆pG´mqq ˆ UnR , Chart∆pG`mqˆUnR
pG`mq Y

Chart∆pG´mqˆUnK
pG´mqq is homeomorphic to pp∆pG̃`mqY∆pG̃´mqqˆU

n
R , Chart∆pG̃`mqˆUnR

pG̃`mqY

Chart∆pG̃´mqˆUnR
pG̃´mqq. Loosely speaking, this gluing of charts is homeomorphic to a sus-

pension of the chart of Pn´1
d´m´n.

Then the proposition implies that there exists

spGmq ě bipVpR˚qn´1pP̃n´1
d´m´nqq ` bi´1pVpR˚qn´1pP̃n´1

d´m´nqq ´ Epn´ 1qpd´m´ nqn´2

(5.3.7)

such that we can find classes α̃1, . . . , α̃spGmq in

Hi

´

Chart∆pG̃`mqˆUnK
pG̃`mq Y Chart∆pG̃´mqˆUnK

pG̃´mq
¯
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and β̃1, . . . , β̃spGmq in

Hn´1´i

´”

Intp∆pG̃`mq Y∆pG̃´mqq ˆ U
n
R

ı

z

”

pChart∆pG̃`mqˆUnK
pG̃`mq Y Chart∆pG̃´mqˆUnK

pG̃´mqq
ı¯

(respectively, in the kernel of

H0

´”

Intp∆pG̃`mq Y∆pG̃´mqq ˆ U
n
R

ı

z

”

pChart∆pG̃`mqˆUnK
pG̃`mq Y Chart∆pG̃´mqˆUnK

pG̃´mqq
ı¯

ÝÑ H0

´

Intp∆pG̃`mq Y∆pG̃´mqq ˆ U
n
R

¯

if n´ 1´ i “ 0) whose linking numbers in Intp∆pG̃`mq Y∆pG̃´mqq ˆU
n
R verifies lpα̃s, β̃tq “

δs,t P Z2.

We pull back these classes via the pair homeomorphism to get classes αGm1 , . . . , αGmspGmq
in

Hi

´

Chart∆pG`mqˆUnR
pG`mq Y Chart∆pG´mqˆUnR

pG´mq
¯

and βGm1 , . . . , βGmspGmq in

Hn´1´i

´

“

Intp∆pG`mq Y∆pG´mqq ˆ U
n
R
‰

z

”

Chart∆pG`mqˆUnR
pG`mq Y Chart∆pG´mqˆUnR

pG´mq
ı¯

(respectively, in the kernel of

H0

´

“

Intp∆pG`mq Y∆pG´mqq ˆ U
n
R
‰

z

”

Chart∆pG`mqˆUnK
pG`mq Y Chart∆pG´mqˆUnK

pG´mq
ı¯

ÝÑ H0

`

Intp∆pG`mq Y∆pG´mqq ˆ U
n
R
˘

if n ´ 1 ´ i “ 0) such that their linking numbers in Intp∆pG`mq Y ∆pG´mqq ˆ UnR verifies
lpαGms , βGmt q “ δs,t P Z2.

Moreover, observe that by the definition of polynomials P̃n´1
d´m´n (whose charts were

assumed to be homeomorphic to those of the polynomials Pn´1
d´m´n) from Condition 3 of

Proposition 5.2.6, we have bipVpR˚qn´1pP̃n´1
d´m´nqq “ bipVpR˚qn´1pPn´1

d´m´nqq and bi´1pVpR˚qn´1pP̃n´1
d´m´nqq “

bi´1pVpR˚qn´1pPn´1
d´m´nqq, which means that we can rewrite Inequality (5.3.7) as

spGmq ě bipVpR˚qn´1pP̃n´1
d´m´nqq ` bi´1pVpR˚qn´1pP̃n´1

d´m´nqq ´ Epn´ 1qpd´m´ nqn´2 “

bipVpR˚qn´1pPn´1
d´m´nqq ` bi´1pVpR˚qn´1pPn´1

d´m´nqq ´ Epn´ 1qpd´m´ nqn´2 ě

xn´1
i ¨ pd´m´ nqn´1 ´ C̃pd´m´ nqn´2 ` xn´1

i´1 ¨ pd´m´ nq
n´1 ´ C̃pd´m´ nqn´2

´ Epn´ 1qpd´m´ nqn´2 “ (5.3.8)

pxn´1
i ` xn´1

i´1 q ¨ pd´m´ nq
n´1 ´ p2C̃ ` Epn´ 1qq ¨ pd´m´ nqn´2 “

pxn´1
i ` xn´1

i´1 q ¨ pd´m´ nq
n´1 ´ C2 ¨ pd´m´ nq

n´2

by setting C2 :“ 2C̃ ` Epn´ 1q.
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Now consider the image of the classes αF
m
k
s and αGms (for all s, k,m for which they

were defined) in Hipvq (via the inclusion), where v Ă Snd is as above a gluing of the
charts of the polynomials of Σ. Similarly, consider the image of the axes βF

k
m

t and βGmt in
Hn´1´ipS̊

n
d ˆU

n
Rzvq via the inclusion (respectively, in kerpH0pS̊

n
d ˆU

n
Rzvq ÝÑ H0pS̊

n
d ˆU

n
Rq

if n´1´ i “ 0). We keep the same notations for the images of the classes by the inclusion.

As each axis βF
k
m

t or βGmt is contained in the interior of ∆pF kmq ˆ UnR or ∆pG`mq Y

∆pG´mq ˆ UnR and is a boundary in that interior, we can find for each a membrane also
contained in that interior. As the interiors of these polytopes are all disjoint (see Condition

4 of Proposition 5.2.6), this shows that the linking number in Snd ˆ UnR of βF
k2
m1

t with any

α
F
k2
m2
s is δt,sδm1,m2δk1,k2 , and its linking number with any αGms is 0. Similarly, the linking

number in Snd ˆU
n
R of βGm1

t with any αGm2
s is δt,sδm1,m2 , and its linking number with any

α
Fkm2
s is 0.

This shows that the elements of B :“ tβ
Fkm
t |t “ 1, . . . , rpF kmq,m “ 0, . . . , d´ n´ 1, k “

1, . . . , n´2uYtβGmt |t “ 1, . . . , spGmq,m “ 1, . . . , d´n´1u (with B Ă Hn´1´ipS̊
n
d ˆU

n
Rzvq,

respectively B Ă kerpH0pS̊
n
d ˆ UnRzvq ÝÑ H0pS̊

n
d ˆ UnRq if n ´ 1 ´ i “ 0) are axes to the

elements of A :“ tα
Fkm
t |t “ 1, . . . , rpF kmq,m “ 0, . . . , d´n´1, k “ 1, . . . , n´2uYtαGmt |t “

1, . . . , spGmq,m “ 1, . . . , d´ n´ 1u Ă Hipvq. In particular, this implies that bipvq ě |A|.

We know that v is homeomorphic to ChartSndˆUnR pQ
n
d q, which is itself homotopy equiv-

alent to VpR˚qnpQnd q. Finally, we know from Lemma 5.3.1 that there is a constant Cpnq
(dependent only on n) such that bipVRPnpQnd qq ě bipVpR˚qnpQ

n
d qq ´ Cpnqdn´1. Hence we

get that

bipVRPnpQ
n
d qq ě |A| ´ Cpnqd

n´1 “

d´n´1
ÿ

m“1

spGmq `
d´n´1
ÿ

m“0

n´2
ÿ

k“1

rpF kmq ´ Cpnqd
n´1.

Using the fact that for all l, p ě 1, we have
řp
q“1 q

l ě
pl`1

l`1 ´C3plqp
l for some constant

C3plq ą 0, and going back to Inequality (5.3.8), we get

d´n´1
ÿ

m“1

spGmq ě
d´n´1
ÿ

m“1

pxn´1
i ` xn´1

i´1 q ¨ pd´m´ nq
n´1 ´ C2 ¨ pd´m´ nq

n´2 ě

xn´1
i ` xn´1

i´1

n
pd´ n´ 1qn ´ pxn´1

i ` xn´1
i´1 qC3pn´ 1q ¨ pd´ n´ 1qn´1 ´ C2 ¨ pd´ n´ 1qn´1.

Observe that each xsj is less than, or equal to 1. Moreover, pd´nqn ě pd´n´ 1qn ě dn´

C4pnqd
n´1 for some constant C4pnq ą 0. We can also set C5pnq :“ 2

nC4pnq`2C3pn´1q`C2,
and have

d´n´1
ÿ

m“1

spGmq ě
xn´1
i ` xn´1

i´1

n
dn ´ C5pnqd

n´1.
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Going back to Inequality (5.3.6), we get

d´n´1
ÿ

m“0

n´2
ÿ

k“1

rpF kmq ě
d´n´1
ÿ

m“0

n´2
ÿ

k“1

˜˜

i´1
ÿ

j“0

xkjx
n´1´k
i´1´j

¸

¨ pd´m´ nqn´1 ´ C̃1 ¨ pd´m´ 1qn´2

¸

ě

n´2
ÿ

k“1

˜˜

i´1
ÿ

j“0

xkjx
n´1´k
i´1´j

¸

ˆ

1

n
pd´ nqn ´ C3pn´ 1q ¨ pd´ nqn´1

˙

´ C̃1 ¨ pd´ 1qn´1

¸

.

Set C6pnq :“ nC4pnq ` n
2C3pn´ 1q ` nC̃1. We can write

d´n´1
ÿ

m“0

n´2
ÿ

k“1

rpF kmq ě

˜

n´2
ÿ

k“1

i´1
ÿ

j“0

xkjx
n´1´k
i´1´j

dn

n

¸

´ C6pnqd
n´1.

Hence we can conclude that

bipVRPnpQ
n
d qq ě

d´n´1
ÿ

m“1

spGmq `
d´n´1
ÿ

m“0

n´2
ÿ

k“1

rpF kmq ´ Cpnqd
n´1 ě

dn

n
pxn´1
i ` xn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

xkjx
n´1´k
i´1´j q ´ pC5pnq ` C6pnq ` Cpnqqd

n´1,

which is what we wanted to prove.
The statement regarding asymptotic maximality is a direct application of Lemma 6.2.4

below.
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Chapter 6

Asymptotically large Betti numbers

6.1 Chapter introduction

This Chapter is the direct continuation of Chapter 5, whose notations and definitions we
retain.

One can get varying, and potentially interesting, families of real projective algebraic
hypersurfaces in high ambient dimension by starting with various low-dimensional families
of hypersurfaces and applying the Cooking Theorem 5.1.1 recursively: each application
yields a new family in some dimension n, which can then serve as an ingredient for higher
dimensional constructions. One advantage of that method is that each new family in am-
bient dimension N with "good" asymptotic Betti numbers obtained using other means can
potentially automatically give rise, through repeated applications of the Cooking Theorem,
to new interesting families in all dimensions greater than N .

In particular, we make use of already existing families of projective smooth real alge-
braic hypersurfaces in P3 designed using Bihan’s results from [Bih03] by Brugallé in [Bru06]
to prove the two following theorems.

Theorem 6.1.1. For any n ě 3 and any i “ 0, . . . , n´1, there exists cni ą ani and a family
tQndudPN of completely nondegenerate real Laurent polynomials in n variables such that
∆pQnd q “ Snd , that the associated family of real projective hypersurfaces is asymptotically
maximal and that

bipVRPnpQ
n
d qq

n
ě cni ¨ d

n.

In other words, bipVRPnpQnd qq grows asymptotically strictly faster than the correspond-
ing Hodge number hi,n´1´ipVCPnpQ

n
d qq, though c

n
i cannot be expected to be particularly

large compared to ani (see the end of Subsection 6.2.3 for more details on that). As far as
the author is aware, this had not yet been achieved.

The second theorem, which we prove using probabilistic methods, allows us to find
asymptotic (in the degree d) results that are asymptotically (as the ambient dimension n
goes to infinity) much better.
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Theorem 6.1.2. Let N ě 1. For k “ 1, . . . , N , let tP kd udPN be a family of completely
nondegenerate real Laurent polynomials in k variables such that the Newton polytope ∆pP kd q

of P kd is Skd . Suppose additionally that for k “ 1, . . . , N and i “ 0, . . . , k ´ 1,

bipVRPkpP
k
d qq

k
“ xki ¨ d

k

for some xki P Rě0 such that
řk´1
i“0 x

k
i “ 1 (in particular, the family of projective hypersur-

faces associated to each family tP kd udPN is asymptotically maximal). Set also xki to be 0 for
i R t0, . . . , k ´ 1u.

Define

σ2 :“
2

pN ` 1qpN ` 2q

˜

1

4
`

N
ÿ

k“1

k´1
ÿ

i“0

xki

ˆ

i´
k ´ 1

2

˙2
¸

.

Then for every n ě N ` 1 and any i P Z, there exist xni P Rě0 and a family tQndudPN of
completely nondegenerate real Laurent polynomials in n variables such that ∆pQnd q “ Snd ,
that for i P Z

bipVRPnpQ
n
d qq

n
“ xni ¨ d

n

and such that for any m P Z we have

xnm “
1

σ
?

2π

1
?
n

exp

˜

´

`

n´1
2 ´m

˘2

2nσ2

¸

` o
´

n´
1
2

¯

, (6.1.1)

where the op1q error term is uniform inm. The family of projective hypersurfaces associated
to each family tQndudPN is also asymptotically maximal.

As it is known (see Formula (6.2.9)) that

an
tn´1

2
`x
?
nu
“

d

6

πpn` 1q
exp

`

´6x2
˘

`O
´

n´
3
2

¯

, (6.1.2)

this direct corollary of the theorem clearly shows its usefulness.

Theorem 6.1.3. For any n ě 3 and any i P Z, there exist cni , d
n
i P R and families

tF`,nd udPN and tF´,nd udPN of completely nondegenerate real Laurent polynomials in n vari-
ables such that the Newton polytope ∆pF˘,nd q is Snd , that for i “ 0, . . . , n´ 1, we have

bipVRPnpF
`,n
d qq

n
“ cni ¨ d

n

and
bipVRPnpF

´,n
d qq

n
“ dni ¨ d

n
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and such that we have, for all x P R, that

cn
tn´1

2
`x
?
nu
“

2
?
π

1
?
n

exp
`

´4x2
˘

` o
´

n´
1
2

¯

and

dn
tn´1

2
`x
?
nu
“

?
20

?
3π

1
?
n

exp

ˆ

´20x2

3

˙

` o
´

n´
1
2

¯

,

where the error terms o
´

n´
1
2

¯

are uniform in x. The family of projective hypersurfaces

associated to each family tF˘,nd udPN is also asymptotically maximal.

Remark 6.1.4. In particular, for x “ 0, compare with Formula (6.1.2) and see that for n
odd,

dnn´1
2

ann´1
2

“

?
10

3
` op1q,

which is strictly greater than 1 for n large enough.

These results are currently the only known "counterexamples" in general dimension to
the principle presented in the Introduction, which suggested that real projective algebraic
hypersurfaces should be expected to verify

dimZ2 HqpRX;Z2q ď
ÿ

p

hq,ppCXq.

This chapter is organized as follows: the proofs of Theorems 6.1.1, 6.1.2 and 6.1.3, as
well as some observations regarding Hodge numbers and their relations to more combina-
torial objects, such as Eulerian numbers and hypercube slices, are to be found in Section
6.2.

Explicit approximations of the largest cni (using the notations of Theorem 6.1.1) that
we were able to get for small n are given in Section 6.3.

Finally, some closing observations are made in Section 6.4.

6.2 Asymptotically large Betti numbers in arbitrary dimen-
sion and index

Before proceeding with the proof of Theorems 6.1.1 and 6.1.2, we make in Subsection 6.2.1
a few observations concerning Hodge numbers and their relations to some combinatorial
concepts; there are indeed many connections between Hodge numbers of algebraic varieties
and interesting objects in combinatorics, some of which can be found in M. Baker’s survey
[Bak18]. We also prove results which we later use in Subsection 6.2.3 to show that some
families of real projective algebraic hypersurfaces that we define using the Cooking Theorem
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have appropriately large asymptotic Betti numbers, thereby proving Theorems 6.1.1 and
6.1.2.

6.2.1 Asymptotic Hodge numbers and combinatorics

Let Xn
d be a completely nondegenerate real algebraic hypersurface of degree d in CPn.

Then we have

hp,n´1´ppCXn
d q “

n`1
ÿ

i“0

p´1qi
ˆ

n` 1

i

˙ˆ

dpp` 1q ´ pd´ 1qi´ 1

n

˙

` δn´1,2p (6.2.1)

for p “ 0, . . . , n´ 1, where hp,n´1´ppCXn
d q is the pp, n´ 1´ pq-th Hodge number of CXn

d

and
`

k1

k2

˘

“ 0 if k1 ă k2 (see [DK86]).
Note that

řn`1
i“0 p´1qi

`

n`1
i

˘`

dpp`1q´pd´1qi´1
n

˘

is also equal to the number of ordered (n`
1)-partitions of dpp`1q such that each of the summands belongs to t1, . . . , d´1u. Indeed,
the sum can be interpreted as the number of ordered (n ` 1)-partitions of dpp ` 1q such
that each of the summands is greater than or equal to 1, minus the number of ordered
(n ` 1)-partitions of dpp ` 1q such that each of the summand is greater than or equal to
1 and at least one of the summand is greater than or equal to d. This is expressed using
the inclusion-exclusion formula applied to the sets AI , where AI (for I Ă t1, . . . , n` 1u) is
the set of ordered (n` 1)-partitions of dpp` 1q such that each of the summand is greater
than or equal to 1 and the summands aj are greater than or equal to d for any j P I (in
the formula, i corresponds to |I|).

The asymptotic behavior of such expressions is an interesting topic in itself, related
to lattice paths, hypergeometric functions and some probabilistic notions (see for example
[MPP19]). Note that a more geometric interpretation of Formula (6.2.1) can also be given,
as

řn`1
i“0 p´1qi

`

n`1
i

˘`

dpp`1q´pd´1qi´1
n

˘

is equal to the number of interior integer points in the
section of the cube r0, dsn`1 Ă Rn`1 by the hyperplane t

řn`1
i“0 xi “ pp` 1qdu Ă Rn`1.

For n P N, p P t0, . . . , n´1u and i P t0, . . . , n´1u given, the expression
`

dpp`1q´pd´1qi´1
n

˘

“
`

dpp`1´iq`i´1
n

˘

is a polynomial in d of degree n whose monomial of highest degree is
dn pp`1´iqn

n! if i ă p ` 1, and a constant (in d) for d large enough otherwise. Hence, as
d goes to infinity, hp,n´1´ppCXn

d q is a polynomial in degree n whose monomial of highest
degree is

dn

n!

˜

p
ÿ

i“0

p´1qi
ˆ

n` 1

i

˙

pp` 1´ iqn

¸

. (6.2.2)

As in Section 5.1, we define anp :“ 1
n!

`
řp
i“0p´1qi

`

n`1
i

˘

pp` 1´ iqn
˘

for p P t0, . . . , n ´ 1u.
For convenience, we also define anp :“ 0 for any p P Zzt0, . . . , n´1u. Observe that Formula
(5.1.1) implies that

ř

pPZ a
n
p “ 1 for any n ě 1.

The theory of Ehrhart polynomials tells us that the number of interior integer points
in the section of the cube r0, dsn`1 Ă Rn`1 by the hyperplane t

řn`1
i“0 xi “ pp ` 1qdu is
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a polynomial in d of degree n whose leading coefficient is equal to the n-volume of the
section of the cube r0, 1sn`1 Ă Rn`1 by the hyperplane t

řn`1
i“0 xi “ p ` 1u normalized by

the lattice volume of t
řn`1
i“0 xi “ p` 1u (which is

?
n` 1). In other words, we have

anp “
1

?
n` 1

V oln

˜

r0, 1sn`1 X

#

n`1
ÿ

i“0

xi “ p` 1

+¸

.

Interesting questions can be asked about the volumes of high dimensional polytopes ob-
tained in similar ways (see for example [CK15]).

Consider also that the pn, pq-th Eulerian number Epn, pq (which is equal to the number
of permutations of the set t1, . . . , nu in which exactly p elements are greater than the
previous element) admits the explicit expression

Epn, pq “

p
ÿ

i“0

p´1qi
ˆ

n` 1

i

˙

pp` 1´ iqn. (6.2.3)

Hence we have anp “
1
n!Epn, pq for n ě 1 and p ě 0.

A function p : Z ÝÑ Rě0 is called log-concave if ppmq2 ě ppm´1qppm`1q for allm P Z,
and if its support is a contiguous interval, i.e. if there existm1,m2 P Z such thatm1 ă m2,
ppmq “ 0 for all m ď m1 and all m ě m2, and ppmq ą 0 for all m1 ă m ă m2. The second
condition is sometimes omitted. As is shown, for example, in [Mez19] (Section 6.5), the
sequence of Eulerian numbers tEpn, pqupPZ (for a given n ě 1) is symmetric in n´1

2 and log-
concave; moreover, it is 0 for p ă 0, strictly increasing from p “ 0 to p “ n´1

2 and strictly
decreasing from p “ n´1

2 to p “ n´1 for n odd (respectively, strictly increasing from p “ 0

to p “ n
2 ´ 1, strictly decreasing from p “ n

2 to p “ n´ 1, and Epn, n2 ´ 1q “ Epn, n2 q for
n even), and 0 for p ą n´ 1. This naturally implies the corresponding statements for the
sequence tanpupPZ.

Log-concavity is an interesting notion, though we make no use of it here; a survey of
some of the properties of log-concave functions and sequences (some of which are related
to algebraic geometry) can be found in [SW14].

We want to consider the second order central finite differences of the coefficients anp ,
i.e. the sequence

D2anp :“ anp`1 ´ 2anp ` a
n
p´1,

as it proves a useful notion in Subsection 6.2.3.

Eulerian numbers are known to satisfy the recursive relation

Epn, pq “ pn´ pqEpn´ 1, p´ 1q ` pp` 1qEpn´ 1, pq

for all n ě 1 and p P Z.
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Hence we can see that

n!D2anp “ Epn, p` 1q ´ 2Epn, pq ` Epn, p´ 1q “

ppn´ p´ 1qEpn´ 1, pq ` pp` 2qEpn´ 1, p` 1qq

´ 2ppn´ pqEpn´ 1, p´ 1q ` pp` 1qEpn´ 1, pqq

` ppn´ p` 1qEpn´ 1, p´ 2q ` pEpn´ 1, p´ 1qq “

pn´ p` 1qpEpn´ 1, pq ´ 2Epn´ 1, p´ 1q ` Epn´ 1, p´ 2qq

` pp` 2qpEpn´ 1, p` 1q ´ 2Epn´ 1, pq ` Epn´ 1, p´ 1qq “

pn´ p` 1qpn´ 1q!D2an´1
p´1 ` pp` 2qpn´ 1q!D2an´1

p .

Therefore the finite difference D2anp satisfies the following recursive relation:

D2anp “
n´ p` 1

n
D2an´1

p´1 `
p` 2

n
D2an´1

p . (6.2.4)

Interestingly (though we make no use of that fact), we also see that the finite differences
Epn, p`1q´2Epn, pq`Epn, p´1q obey the same recursive relation as the Eulerian numbers
themselves, up to a shift in parameter pÑ p` 1.

We already know that for n ě 1, the sequence tD2anpupPZ is symmetric in n´1
2 . The

following lemma gives us more precise information:

Lemma 6.2.1. Let n ě 3. If n is odd (respectively, even), there exists 0 ď p̃n ă
n´1

2

(respectively, 0 ď p̃n ă
n
2 ´ 1) such that the sequence tD2anpupPZ satisfies:

1. D2anp “ 0 for p ď ´2 and p ě n` 1.

2. D2anp ą 0 for ´1 ď p ď p̃n and n´ 1´ p̃n ď p ď n.

3. D2anp ď 0 for p P tp̃n ` 1, n´ 2´ p̃nu.

4. D2anp ă 0 for p̃n ` 2 ď p ď n´ 3´ p̃n.

Moreover, there cannot be two consecutive integers n ě 3 such that D2anp̃n`1 “ D2ann´2´p̃n
“

0.

Proof. We proceed by induction. The case n “ 3 can be directly computed (we have
a3

0 “ a3
2 “

1
6 and a3

1 “
2
3).

Suppose the statement true for n´1, and express D2anp as n´p`1
n D2an´1

p´1 `
p`2
n D2an´1

p

using Formula (6.2.4). By symmetry, we only need to consider p ď n´1
2 . Condition 1 is

clearly satisfied.
If D2an´1

p̃n´1`1 “ 0, we set p̃n “ p̃n´1 ` 1. Then we have D2anp ą 0 for ´1 ď p ď p̃n and
n ´ 1 ´ p̃n ď p ď n, and D2anp ă 0 for p̃n ` 1 ă p ă n ´ 2 ´ p̃n. Note in particular that
D2anp̃n`1 “ D2ann´2´p̃n

‰ 0.
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Figure 6.1:

IfD2an´1
p̃n´1`1 ă 0, set p̃n “ p̃n´1`1 ifD2anp̃n´1`1 “

n´p̃n´1

n D2an´1
p̃n´1

`
p̃n´1`3

n D2an´1
p̃n´1`1 ą

0 and set p̃n “ p̃n´1 if D2anp̃n´1`1 ď 0. Then we have D2anp ą 0 for ´1 ď p ď p̃n, D2anp ď 0

for p “ p̃n ` 1, and D2anp ă 0 for p̃n ` 2 ď p ď n´ 3´ p̃n (see Figure 6.1).
In both cases, we have p̃n ě p̃n´1 ě 0, and p̃n is necessarily strictly smaller than n

2 ´ 1,
as D2anp̃n ą 0 and D2ann

2
´1 ă 0 if n is even, as we know that ann

2
´2 ă ann

2
´1 “ ann

2
ą ann

2
`1

(respectively, D2ann´1
2

ă 0 if n is odd, as we know that ann´1
2
´1
ă ann´1

2

ą ann´1
2
`1

).

Remark 6.2.2. Computations carried out on a computer suggest that D2anp is in fact never
0 between ´1 and n; it admits two (symmetric) global maxima, and one global minimum
in p “ n´1

2 if n is odd (respectively, two global minima in p “ n
2 ´ 1, n2 if n is even).

It should be possible to prove it directly, though it does not appear to be a direct conse-
quence of the log-concavity of the sequence .

Remark 6.2.3. We can describe more precisely the asymptotic behaviour of D2anp , though
only its sign matters to us. Indeed, for any s P R, we have

D2an
tn´1

2
`s
?
nu
“

c

6

π

12

pn` 1q
3
2

exp
`

´6s2
˘

p12s2 ´ 1q `O
´

n´
5
2

¯

. (6.2.5)

This can be proved by modifying the proof of Formula (6.2.9) below given in [XW11] (The-
orem 3.1 of that article), which rests on some properties of B-splines, in order to get a
higher order estimate for the coefficients anp , then write out D2anp “ anp`1 ´ 2anp ` a

n
p´1.

Before ending this subsection, we formulate one last recursive relation related to the
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coefficients anp (for n ě 1 and p “ 0, . . . , n ´ 1), which we need later on. It can be
immediately deduced from Itenberg’s and Viro’s work in [IV07] that we have

anp “
1

n

˜

an´1
p ` an´1

p´1 `

n´2
ÿ

k“1

p´1
ÿ

j“0

akj ¨ a
n´1´k
p´1´j

¸

. (6.2.6)

Observe that this means that if every family of polynomials tP kd udPN in Theorem 5.1.1 is
asymptotically standard, i.e. bipVRPkpP kd qq

k
“ aki ¨ d

k, then so is tQndudPN (the asymptotic
inequality in Formula (5.1.2) must be an equality because of the Smith-Thom inequality).
This is the case considered in [IV07].

In Theorem 6.1.2 below, we compute the asymptotics of various families of coefficients
obeying the same recursive relation (6.2.6) as the coefficients anp for n large enough, but
with different initial parameters.

6.2.2 Notations and known results

In this subsection, we define some notations, prove a useful lemma, and quote the results
from Brugallé, Itenberg and Viro that will provide us with the main ingredients for our
constructions.

When considering in what follows the asymptotic Betti numbers of the projective hy-
persurfaces associated to a family of completely nondegenerate real Laurent polynomials
tQndudPN, it is slightly more convenient to use the following notation: if bipVRPnpQnd qq

n
ě

xni ¨d
n for some xni ě 0, we instead write bipVRPnpQnd qq

n
ě pani ` t

n
i q ¨d

n, where tni “ xni ´a
n
i .

If we rewrite the statement of Theorem 5.1.1 with that convention, we get that for
families tP kd udPN of completely nondegenerate real Laurent polynomials in k variables (for
k “ 1, . . . , n´ 1), such that P kd is of degree d and that the Newton polytope ∆pP kd q of P

k
d

is Skd and such that for i “ 0, . . . , k ´ 1,

bipVRPkpP
k
d qq

k
ě paki ` t

k
i q ¨ d

k

for some tki P R, there exists a family tQndudPN of completely nondegenerate real Laurent
polynomials in n variables such that ∆pQnd q “ Snd and such that for i “ 0, . . . , n´ 1

bipVRPnpQ
n
d qq

n
ě

˜

ani `
1

n

˜

tn´1
i ` tn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

2ptkj ¨ a
n´1´k
i´1´j q ` t

k
j ¨ t

n´1´k
i´1´j

¸¸

¨ dn,

(6.2.7)
where tkj is set to be 0 for j R t0, . . . , k ´ 1u.

Remember that a family of real smooth algebraic projective hypersurfaces tXn
d udPN is

aymptotically maximal if b˚pRXn
d q

n
“ b˚pCXn

d q. In particular, if bipRXn
d q

n
ě pani ` t

n
i q ¨ d

n

and
řn´1
i“0 t

n
i “ 0, we have b˚pRXn

d q
n
ě

řn´1
i“0 pa

n
i ` t

n
i q ¨ d

n “ dn
n
“ b˚pCXn

d q, hence
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b˚pRXn
d q

n
“ b˚pCXn

d q (because of the Smith-Thom inequality) and tXn
d udPN is asymp-

totically maximal.
We can now prove the following lemma regarding asymptotic maximality :

Lemma 6.2.4. Let n ě 2. For k “ 1, . . . , n ´ 1, let tP kd udPN be a family of completely
nondegenerate real Laurent polynomials in k variables such that P kd is of degree d and that
the Newton polytope ∆pP kd q of P

k
d is Skd and such that for i “ 0, . . . , k ´ 1,

bipVRPkpP
k
d qq

k
ě paki ` t

k
i q ¨ d

k (6.2.8)

for some tki P R, as in the Cooking Theorem 5.1.1. Let tQndudPN be a family of polynomials
cooked with the ingredients tP kd udPN using the Cooking Theorem.

Suppose additionally that each family tP kd udPN is such that
řk´1
i“0 t

k
i “ 0, hence the

associated family of projective hypersurfaces tVPkpP kd qudPN is asymptotically maximal. Then
the sum over i “ 0, . . . , n´ 1 of the coefficients

1

n

˜

tn´1
i ` tn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

2ptkj ¨ a
n´1´k
i´1´j q ` t

k
j ¨ t

n´1´k
i´1´j

¸

from Formula 6.2.7 is also 0; in particular, the family of hypersurfaces tVPkpQnd qudPN as-
sociated to tQndudPN is also asymptotically maximal, and the asymptotic inequality (6.2.8)
is an asymptotic equality.

Proof. We know that for i “ 0, . . . , n´ 1,

bipVRPnpQ
n
d qq

n
ě

˜

ani `
1

n

˜

tn´1
i ` tn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

2ptkj ¨ a
n´1´k
i´1´j q ` t

k
j ¨ t

n´1´k
i´1´j

¸¸

¨ dn,

where tkj and akj are set to be 0 for j R t0, . . . , k ´ 1u. Set

tni :“
1

n

˜

tn´1
i ` tn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

2ptkj ¨ a
n´1´k
i´1´j q ` t

k
j ¨ t

n´1´k
i´1´j

¸

for i P Z; observe that tni “ 0 if i R t0, . . . , n´ 1u.
Showing that

řn´1
i“0 t

n
i “

ř

iPZ t
n
i “ 0 is enough to conclude (using as above the Smith-

Thom inequality).
Indeed, we have

n´1
ÿ

i“0

tni “
ÿ

iPZ

1

n

˜

tn´1
i ` tn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

2ptkj ¨ a
n´1´k
i´1´j q ` t

k
j ¨ t

n´1´k
i´1´j

¸

“

1

n

˜˜

ÿ

iPZ
tn´1
i

¸

`

˜

ÿ

iPZ
tn´1
i´1

¸

`

n´2
ÿ

k“1

ÿ

jPZ
tkj ¨ p2

ÿ

iPZ
an´1´k
i´1´j `

ÿ

iPZ
tn´1´k
i´1´j q

¸

“
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1

n

˜

0` 0`
n´2
ÿ

k“1

ÿ

jPZ
tkj ¨ p2` 0q

¸

“
2

n

n´2
ÿ

k“1

ÿ

jPZ
tkj “ 0.

We now quote (using our notations) two results that attest the existence of families of
polynomials which we later use as ingredients for the Cooking Theorem to prove Theorem
6.1.1. The first one was proved by Itenberg and Viro in [IV07], and alluded to in Section
5.1.

Theorem 6.2.5 (Itenberg, Viro). Let k ě 1. There exists a family tIkd udPN of completely
nondegenerate real Laurent polynomials in k variables obtained by combinatorial Patchwork
such that Ikd is of degree d and that the Newton polytope ∆pIkd q of I

k
d is Skd and such that

for i “ 0, . . . , k ´ 1,
bipVRPkpI

k
d qq

k
“ aki ¨ d

k.

In particular, the families tVPkpIkd qudPN are asymptotically maximal.

The hypersurfaces associated to the polynomials Ikd are asymptotically standard in the
same sense as above. They serve as "neutral" ingredients in what follows, in that they do
not contribute to any difference from the asymptotically standard case.

The second result comes from [Bru06], where Brugallé builds two families of completely
nondegenerate real Laurent polynomials in 3 variables such that the associated surfaces in
P3 have exceptionally large asymptotic b0 (respectively, b1) using a method from Bihan’s
[Bih03].

Theorem 6.2.6 (Brugallé). There exist families tB`d udPN and tB´d udPN of completely non-
degenerate real Laurent polynomials in 3 variables such that B˘d is of degree d and that the
Newton polytope ∆pB˘d q of B

˘
d is S3

d and such that

b0pVRP3pB`d qq
3
“

3

8
¨ d3 “

ˆ

1

6
`

5

24

˙

¨ d3 “

ˆ

a3
0 `

5

24

˙

¨ d3,

b1pVRP3pB`d qq
3
“

1

4
¨ d3 “

ˆ

2

3
´

5

12

˙

¨ d3 “

ˆ

a3
1 ´

5

12

˙

¨ d3,

b0pVRP3pB´d qq
3
“

1

8
¨ d3 “

ˆ

1

6
´

1

24

˙

¨ d3 “

ˆ

a3
0 ´

1

24

˙

¨ d3

and
b1pVRP3pB´d qq

3
“

3

4
¨ d3 “

ˆ

2

3
`

1

12

˙

¨ d3 “

ˆ

a3
1 `

1

12

˙

¨ d3.

In particular, the families tVP3pB˘d qudPN are asymptotically maximal.

Remark 6.2.7. Of course, Poincaré duality applies, as homology is considered with coef-
ficients in Z2.
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Remark 6.2.8. As far as the author is aware, these are the largest asymptotic values for
each respective Betti numbers of a smooth real projective algebraic surface to have been
obtained to this day, which is why we choose to use them as ingredients in what follows.

Remark 6.2.9. It is not particularly hard, though somewhat tedious, to show that for any
a P r´ 1

24 ,
5
24 s, we can build (using the families tB˘d udPN) a family tP 3

d udPN of completely
nondegenerate real Laurent polynomials in 3 variables such that the Newton polytope ∆pP 3

d q

is S3
d and that for i “ 0, . . . , 2, we have

bipVRPnpP
3
d qq

n
“ x3

i ¨ d
n

with x3
0 “ x3

2 “
1
6 ` a and x3

1 “
4
6 ´ 2a. The idea is to partition S3

d (for very large
degrees d) into smaller, albeit still very large, simplices corresponding either to B`

d̃
or to

B´
d̃
, for some d̃ ă d (with some interstitial space of asymptotically negligible volume).

The proportion λd P r0, 1s (respectively, 1 ´ λd P r0, 1s) of the total volume of S3
d filled by

simplices corresponding to B`
d̃

(respectively, to B´
d̃
) must be such that λd 5

24 ´ p1 ´ λdq
1
24

converges to a as dÑ8.

6.2.3 The first construction

In this subsection, we describe the first of our two main families of constructions. It allows
us to find for every dimension and index Betti numbers that are asymptotically (in d)
strictly superior to the standard case, but not by a large margin: this enables us to prove
Theorem 6.1.1. The other one is described in Subsection 6.2.4 and provides much better
asymptotic (in d) lower bounds on the chosen Betti numbers, but only asymptotically (in
n); it allows us to prove Theorem 6.1.2.

The idea is to carefully pick families of polynomials tP kd udPN in k variables (with k

small) as ingredients for the Cooking Theorem 5.1.1 in order to get families of polynomials
tQndudPN (with n large) with interesting properties.

Given n ě 3 and i “ 0, . . . , n´ 1, the polynomials tP kd udPN (for k “ 1, . . . , n´ 1) must
be chosen so that the asymptotic Betti numbers of the associated families of projective
hypersurfaces are such that the right-hand term of Formula (6.2.7) is large.

As far as the author knows, few interesting (in that regard) families have yet been
constructed in high ambient dimension. Hence, we must work our way up from dimension
3, where we have Theorem 6.2.6, by recursively applying the Cooking Theorem: a fam-
ily tQndudPN that we get as the result of one application of the theorem can serve as an
ingredient for a construction in higher dimension.

Note that should a new family of hypersurfaces with interesting asymptotic Betti num-
ber be developed in a given dimension n, we could immediately use it as an ingredient to
hopefully get new and interesting results in dimension ñ ą n.
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Observe also that since there is only one non-trivial Betti number in ambient dimension
1, and two that are equal in ambient dimension 2 (and hence both asymptotically smaller
than or equal to d2

2 ), nothing interesting can a priori be expected from the direct use of
non-asymptotically standard families in ambient dimension 1 and 2.

In general, it is unclear how to choose the ingredients tP kd udPN so that a given Betti
number is maximized in the resulting family of hypersurfaces, as Formula (6.2.7) is fairly
complicated; the trick we use in the first construction, which is described in the proof of
the following lemma, is to make it so that most terms in the formula are trivial, so that
we can understand it better. The results are most likely, in a sense, suboptimal, but they
suffice for our purpose here.

Lemma 6.2.10. For each n ě 8, there exist families tH`,nd udPN and tH´,nd udPN of com-
pletely nondegenerate real Laurent polynomials in n variables such that H˘,nd is of degree
d and that the Newton polytope ∆pH˘,nd q is Snd and such that for i “ 0, . . . , n´ 1, we have

bipVRPnpH
`,n
d qq

n
“

ˆ

ani `
2

n

5

24
D2an´4

i´2

˙

¨ dn

and
bipVRPnpH

´,n
d qq

n
“

ˆ

ani ´
2

n

1

24
D2an´4

i´2

˙

¨ dn

Moreover, the family of hypersurfaces associated to each familiy is asymptotically maximal.

Remark 6.2.11. The coefficients 1
24 and 5

24 come from Theorem 6.2.6; should we get better
asymptotic results than in Theorem 6.2.6, we would be able to immediately "plug" them in
and improve the asymptotics of Lemma 6.2.10.

Proof. We define tH`,nd udPN first.
We apply the Cooking Theorem to the following ingredients tP kd udPN : let P kd be equal

to Ikd from Theorem 6.2.5 for k P t1, 2, 4, 5, . . . , n ´ 1u, and let P 3
d be equal to B`d from

Theorem 6.2.6. Following the notations introduced with Formula (6.2.7), we get that
t30 “ t32 “

5
24 and t31 “ ´

5
12 , and t

k
j “ 0 for all other k, j (by definition of the polynomials

P kd ). Note in particular that as n ą 7, tn´1
j “ 0 and tkj ¨ t

n´1´k
i´1´j “ 0 for all k, j.

Hence application of Theorem 5.1.1 yields a family tH`,nd udPN such that

bipVRPnpH
`,n
d qq

n
ě

˜

ani `
1

n

˜

tn´1
i ` tn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

2ptkj ¨ a
n´1´k
i´1´j q ` t

k
j ¨ t

n´1´k
i´1´j

¸¸

¨ dn “

˜

ani `
1

n

˜

i´1
ÿ

j“0

2pt3j ¨ a
n´4
i´1´jq

¸¸

¨ dn “

ˆ

ani `
2

n

5

24

`

an´4
i´1 ´ 2an´4

i´2 ` a
n´4
i´3

˘

˙

¨ dn “

ˆ

ani `
2

n

5

24
D2an´4

i´2

˙

¨ dn

for i “ 0, . . . , n´ 1.
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As the sum
ř

jPZD
2amj of second order finite differences is 0 for any m ě 1, and in

particular for m “ n´ 4, we have as above that the family is asymptotically maximal be-
cause of the Smith-Thom inequality, and that the asymptotic inequality bipVRPnpH

`,n
d qq

n
ě

`

ani `
2
n

5
24D

2an´4
i´2

˘

¨dn is in fact an asymptotic equality bipVRPnpH
`,n
d qq

n
“

`

ani `
2
n

5
24D

2an´4
i´2

˘

¨

dn.
The exact same proof, with B´d replacing B`d and ´ 1

24 replacing 5
24 , yields the other

case.

As will become apparent in the proof of Theorem 6.1.1, we also need the following
lemma.

Lemma 6.2.12. For any n ě 3, there exists a family tLndudPN of completely nondegenerate
real Laurent polynomials in n variables such that ∆pLnd q “ Snd , that the associated family
of real projective hypersurfaces is asymptotically maximal and that

b0pVRPnpL
n
d qq “ bn´1pVRPnpL

n
d qq

n
ě

ˆ

an0 `
5

24

3!

n!

˙

¨ dn.

Proof. We proceed by induction on n. The case n “ 3 is simply Theorem 6.2.6.
Now let n ě 4 and suppose that tLn´1

d udPN has been defined. We apply Theorem 5.1.1
to the following families of polynomials tP kd udPN : let P kd be equal to Ikd from Theorem 6.2.5
for k P t1, . . . , n´ 2u, and let Pn´1

d be equal to Ln´1
d . Following the notations introduced

with Formula (6.2.7), we have tn´1
0 ě 5

24
3!

pn´1q! , and tkj “ 0 for all other k ă n ´ 1 (by
definition of the polynomials P kd ).

Hence application of Theorem 5.1.1 yields a family tLndudPN such that

b0pVRPnpL
n
d qq

n
ě

˜

an0 `
1

n

˜

tn´1
0 ` tn´1

0´1 `

n´2
ÿ

k“1

0´1
ÿ

j“0

2ptkj ¨ a
n´1´k
0´1´j q ` t

k
j ¨ t

n´1´k
0´1´j

¸¸

¨ dn
n
ě

ˆ

an0 `
5

24

3!

n!

˙

¨ dn,

as wanted.

We can finally prove Theorem 6.1.1, which we state again.

Theorem 6.1.1. For any n ě 3 and any i “ 0, . . . , n´1, there exists cni ą ani and a family
tQndudPN of completely nondegenerate real Laurent polynomials in n variables such that
∆pQnd q “ Snd , that the associated family of real projective hypersurfaces is asymptotically
maximal and that

bipVRPnpQ
n
d qq

n
ě cni ¨ d

n.

Proof. Let n ě 3 and i P t0, . . . , n´ 1u.
We mainly rely on the construction from Lemma 6.2.10 and the result of Lemma 6.2.1.

However, as D2an´4
p´2 “ 0 for p “ 0, n´1 (the construction from Lemma 6.2.10 cannot help
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us get a large number of connected components), we also need Lemma 6.2.12; moreover,
as we were not able to show in Lemma 6.2.1 that the finite differential D2anp is never 0

between k “ ´1 and k “ n, we need another ad hoc trick.

We assume that n ě 8; the cases n ď 7 are treated in more details in Section 6.3.

If i P t0, n ´ 1u, we define Qnd as Lnd from Lemma 6.2.12, and set cni :“ ani `
5
24

3!
n!

(remember that Poincaré duality applies) - this suffices.

Otherwise, consider D2an´4
i´2 . If it is strictly positive, define Qnd as H`,nd from Lemma

6.2.10 and cni :“ ani `
2
n

5
24D

2an´4
i´2 ; if it strictly negative, define Qnd as H´,nd from the same

lemma and cni :“ ani ´
2
n

1
24D

2an´4
i´2 . In both cases, we are done (using the statement of the

lemma).

If we are unlucky, and i is the only index in t1, . . . , n ´ 2u such that D2an´4
i´2 “ 0, we

know from Lemma 6.2.1 that D2an´5
p is never 0 for p P t´1, . . . , n´5u. Moreover, Formula

6.2.4 tells us that
D2an´4

i´2 “
n´ i´ 1

n´ 4
D2an´5

i´3 `
i

n´ 4
D2an´5

i´2 .

As at least one of the two terms is nonzero, both must be for D2an´4
i´2 to be 0. Observe

also that n´i´1
n´4 ‰ i

n´4 , as otherwise i “ n´1
2 , in which case D2an´4

i´2 “ D2an´4
ppn´4q´1q

2

‰ 0

(the middle term is never 0, see Lemma 6.2.1). Hence D2an´5
i´3 `D

2an´5
i´2 ‰ 0.

Now apply the Cooking Theorem 5.1.1 to the following ingredients tP kd udPN : let P kd be
equal to Ikd from Theorem 6.2.5 for k P t1, . . . , n´2u, and let Pn´1

d be equal toH`,n´1
d from

Lemma 6.2.10 if D2an´5
i´3 `D

2an´5
i´2 ą 0 (respectively, equal to H´,n´1

d from Lemma 6.2.10 if
D2an´5

i´3 `D
2an´5
i´2 ă 0). Following the notations introduced with Formula (6.2.7), we have

tn´1
i “ 2

n´1
5
24D

2an´5
i´2 and tn´1

i´1 “
2

n´1
5
24D

2an´5
i´3 (respectively, tn´1

i “ ´ 2
n´1

1
24D

2an´5
i´2 and

tn´1
i´1 “ ´

2
n´1

1
24D

2an´5
i´3 ), and t

k
j “ 0 for all other k ă n´1 (by definition of the polynomials

P kd ).

Hence application of the Cooking Theorem yields a family tQndudPN such that

bipVRPnpQ
n
d qq

n
ě

˜

ani `
1

n

˜

tn´1
i ` tn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

2ptkj ¨ a
n´1´k
i´1´j q ` t

k
j ¨ t

n´1´k
i´1´j

¸¸

¨ dn “

ˆ

ani `
1

n

5

24

2

n´ 1
pD2an´5

i´2 `D
2an´5
i´3 q

˙

¨ dn

(respectively, bipVRPnpQnd qq
n
ě

´

ani ´
1
n

1
24

2
n´1pD

2an´5
i´2 `D

2an´5
i´3 q

¯

¨ dn).

Define cni :“ ani `
1
n

5
24

2
n´1pD

2an´5
i´2 `D

2an´5
i´3 q (respectively, c

n
i :“ ani ´

1
n

1
24

2
n´1pD

2an´5
i´2 `

D2an´5
i´3 q). This suffices.

In each case above, the family of hypersurfaces associated to the family tQndudPN is
asymptotically maximal, as the family tQndudPN always comes from an application of the
Cooking Theorem to families of polynomials such that the associated families of hypersur-
faces are asymptotically maximal.
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Hence we found in all dimensions n ě 3 and indices i “ 0, . . . , n´1 Betti numbers that
are asymptotically (in d) strictly greater than the standard case - however, the asymptotics
(in n) of that surplus is not very good.

Indeed, the asymptotic behavior of the Eulerian numbers (and hence of the coefficients
anp ) is known: it was shown by G. Polya in [Pol13] (see [Rza08] for a more easily accessible
reference) that for any x P R, we have

an
tn´1

2
`x
?
nu
“

d

6

πpn` 1q
exp

`

´6x2
˘

`O
´

n´
3
2

¯

. (6.2.9)

(what he considered was actually the volume of hypercube slices, which is equivalent, as
seen above).

On the other hand, the surplus that we found in Lemma 6.2.10 in dimension n ě 3

and index 1 ď i ď n ´ 2 relative to the standard case was of the form C 1
nD

2an´4
i´2 , for

some constant C. We have already mentioned in Remark 6.2.3 that for a fixed s P R,
D2an

tn´1
2
`s
?
nu

is O
´

n´
3
2

¯

. Hence, the ratio cni ´a
n
i

ani
, where cni comes from Theorem 6.1.1,

is at most O
`

n´2
˘

. We achieve much better results in the next subsection.

6.2.4 The second construction

In this subsection, we recall the statements of Theorem 6.1.2 and Theorem 6.1.3 and prove
them. They yield good "asymptotic asymptotic" results, in the sense that we find families
of families of polynomials such that the associated Betti numbers are asymptotically of
magnitude cni ¨d

n (as the degree d goes to infinity), while the Betti numbers of the standard
case are of magnitude ani ¨ d

n, with cni
ani

converging (as the dimension n goes to infinity) to
a strictly positive constant.

To do so, we apply recursively the Cooking Theorem 5.1.1 to the ingredients provided
by Theorems 6.2.5 and 6.2.6. The construction itself is simple; the main difficulty lies in
understanding the asymptotic behavior of the sequences recursively defined using Formula
5.1.2 that describe the asymptotic behavior of the Betti numbers, as we cannot expect
most terms to be trivial, unlike in the proof of Theorem 6.1.1. We succeed by applying
probabilistic methods.

Theorem 6.1.2. Let N ě 1. For k “ 1, . . . , N , let tP kd udPN be a family of completely
nondegenerate real Laurent polynomials in k variables such that the Newton polytope ∆pP kd q

of P kd is Skd . Suppose additionally that for k “ 1, . . . , N and i “ 0, . . . , k ´ 1,

bipVRPkpP
k
d qq

k
“ xki ¨ d

k
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for some xki P Rě0 such that
řk´1
i“0 x

k
i “ 1 (in particular, the family of projective hypersur-

faces associated to each family tP kd udPN is asymptotically maximal). Set also xki to be 0 for
i R t0, . . . , k ´ 1u.

Define

σ2 :“
2

pN ` 1qpN ` 2q

˜

1

4
`

N
ÿ

k“1

k´1
ÿ

i“0

xki

ˆ

i´
k ´ 1

2

˙2
¸

.

Then for every n ě N ` 1 and any i P Z, there exist xni P Rě0 and a family tQndudPN of
completely nondegenerate real Laurent polynomials in n variables such that ∆pQnd q “ Snd ,
that for i P Z

bipVRPnpQ
n
d qq

n
“ xni ¨ d

n

and such that for any m P Z we have

xnm “
1

σ
?

2π

1
?
n

exp

˜

´

`

n´1
2 ´m

˘2

2nσ2

¸

` o
´

n´
1
2

¯

, (6.2.10)

where the op1q error term is uniform inm. The family of projective hypersurfaces associated
to each family tQndudPN is also asymptotically maximal.

Remark 6.2.13. As the error term is uniform in m, Formula (6.2.10) is equivalent to

xn
tn´1

2
`x
?
nu
“

1
?

2πσ

1
?
n

exp

ˆ

´x2

2σ2

˙

` o
´

n´
1
2

¯

,

for all x P R (with the error term uniform in x).

Remark 6.2.14. Compare with the standard case of Formula (6.2.9). If we want to get
comparatively large Betti numbers for i near the middle index n´1

2 , we want the variance
σ to be small. If we want large Betti numbers far from the center, we need it to be large.

As always, finding new constructions with interesting asymptotic Betti numbers in low
dimensions would automatically yield improved (either particularly large or small) param-
eters σ2.

Proof. We define the families tQndudPN recursively, starting from n “ N ` 1.
Let n ą N and suppose that families of polynomials tQmd udPN and coefficients xmi have

already been defined for all N ă m ă n and all i P Z.
We apply the Cooking Theorem 5.1.1 to the ingredients tP kd udPN (for k “ 1, . . . , N)

and tQkdudPN (for k “ N ` 1, . . . , n´ 1). It yields a family tQndudPN such that

bipVRPnpQ
n
d qq

n
ě

1

n
pxn´1
i ` xn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

xkj ¨ x
n´1´k
i´1´j q ¨ d

n (6.2.11)

for all i P Z.
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Define xni :“ 1
npx

n´1
i ` xn´1

i´1 `
řn´2
k“1

ři´1
j“0 x

k
j ¨ x

n´1´k
i´1´j q for i P Z (note that it is 0 for

i R t0, . . . , n ´ 1u). Lemma 6.2.4 tells us that the family of hypersurfaces associated to
tQndudPN is asymptotically maximal, that

ř

iPZ x
n
i “ 1 and that the asymptotic inequality

(6.2.11) is in fact an asymptotic equality.
Suppose now that tQndudPN and xni have been defined for all n ą N and i P Z. What is

left to show is that the coefficients xni satisfy Formula (6.2.10). This is, in fact, the hardest
part, and a consequence of Proposition 6.2.16 at the end of this section.

The result below is a direct application of Theorem 6.1.2 to the two most extreme
constructions known in dimension 3, i.e. those from Theorem 6.2.6.

Theorem 6.1.3. For any n ě 3 and any i P Z, there exist cni , d
n
i P R and families

tF`,nd udPN and tF´,nd udPN of completely nondegenerate real Laurent polynomials in n vari-
ables such that the Newton polytope ∆pF˘,nd q is Snd and that for i “ 0, . . . , n´ 1, we have

bipVRPnpF
`,n
d qq

n
“ cni ¨ d

n

and
bipVRPnpF

´,n
d qq

n
“ dni ¨ d

n.

Moreover, for all x P R, we have

cn
tn´1

2
`x
?
nu
“

2
?
π

1
?
n

exp
`

´4x2
˘

` o
´

n´
1
2

¯

and

dn
tn´1

2
`x
?
nu
“

?
20

?
3π

1
?
n

exp

ˆ

´20x2

3

˙

` o
´

n´
1
2

¯

,

where the error terms o
´

n´
1
2

¯

are uniform in x. The family of projective hypersurfaces

associated to each family tF˘,nd udPN is also asymptotically maximal.

Proof. It is a trivial application of Theorem 6.1.2 to N “ 3 and the following families of
polynomials: let tP kd udPN be tIkd udPN from Theorem 6.2.5 for k “ 1, 2 and let tP 3

d udPN be
tB˘d udPN from Theorem 6.2.6 when defining tF˘,nd udPN.

We can directly compute that the variance σ2 is equal to

2

p3` 1qp3` 2q

˜

1

4
` 0` 2

1

2

ˆ

1

2

˙2

` 2

ˆ

1

6
`

5

24

˙

12

¸

“
1

12
`

1

5

5

24
“

1

8

for tF`,nd udPN and to

2

p3` 1qp3` 2q

˜

1

4
` 0` 2

1

2

ˆ

1

2

˙2

` 2

ˆ

1

6
´

1

24

˙

12

¸

“
1

12
´

1

5

1

24
“

3

40
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for tF´,nd udPN. This is enough to conclude.

Remark 6.2.15. As noted in Remark 6.2.9, we can easily get for any a P r´ 1
24 ,

5
24 s a

family tP 3
d udPN of completely nondegenerate real Laurent polynomials in 3 variables such

that the Newton polytope ∆pP 3
d q is S

3
d and that for i “ 0, 1, 2, we have

bipVRPnpF
`,n
d qq

n
“ x3

i ¨ d
n

with x3
0 “ x3

2 “
1
6 ` a and x3

1 “
4
6 ´ 2a. The same reasoning as in Theorem 6.1.3 applied

to tI1
dudPN, tI

2
dudPN and such a family tP 3

d udPN yields a family tQndudPN for any n ě 4 such
that

bipVRPnpQ
n
d qq

n
“ xni ¨ d

n

and that

xn
tn´1

2
`x
?
nu
“

1
?

2π
b

1
12 `

a
5

1
?
n

exp

˜

´
x2

2p 1
12 `

a
5 q

¸

` o
´

n´
1
2

¯

.

Observe also that

xn
tn´1

2
`x
?
nu

an
tn´1

2
`x
?
nu

“

b

1
12

b

1
12 `

a
5

exp

˜

´
x2

2

˜

1
1
12 `

a
5

´
1
1
12

¸¸

` op1q

is asymptotically strictly greater than 1 for |x| ă
d

lnp 1
12
q´lnp 1

12
`a

5
q

1
1
12`

a
5

´12
and a ă 0 as well as for

|x| ą

d

lnp 1
12
q´lnp 1

12
`a

5
q

1
1
12`

a
5

´12
and a ą 0. The only x for which we cannot get a strict asymptotic

inequality are ˘ limaÑ0

d

lnp 1
12
q´lnp 1

12
`a

5
q

1
1
12`

a
5

´12
“ ˘ 1

12 .

The rest of the section is devoted to the proof of the following proposition.

Proposition 6.2.16. Let N ě 1. For n “ 1, . . . , N and i P Z, let xni P Rě0 be such that
xni “ xnn´1

2
´i
, that

ř

iPZ x
n
i “ 1 and that xni “ 0 for i R t0, . . . , n´ 1u.

Recursively define xni P Rě0 for all n ą N as

xni :“
1

n
pxn´1
i ` xn´1

i´1 `

n´2
ÿ

k“1

i´1
ÿ

j“0

xkj ¨ x
n´1´k
i´1´j q

for i P Z .
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Define

σ2 :“
2

pN ` 1qpN ` 2q

˜

1

4
`

N
ÿ

k“1

k´1
ÿ

i“0

xki

ˆ

i´
k ´ 1

2

˙2
¸

.

Then

xnm “
1

σ
?

2π

1
?
n

exp

˜

´

`

n´1
2 ´m

˘2

2nσ2

¸

` o
´

n´
1
2

¯

, (6.2.12)

where the op1q error term is uniform in m.

Proof. The idea is to see the functions xn : i ÞÑ xni as discrete distributions, in order to
apply probabilistic techniques.

Define x0
´1 “ x0

0 “
1
2 and x0

i “ 0 for all i P Zzt´1, 0u. This formal trick allows us to
rewrite xni as

xni “
1

n

n´1
ÿ

k“0

ÿ

jPZ
xkj ¨ x

n´1´k
i´1´j

for all i P Z and n ě N ` 1. Each family of coefficients txni uiPZ (for n ě 0) defines a
discrete distribution on Z; the sum

ř

jPZ x
k
j ¨ x

n´1´k
i´1´j is simply the probability density of

the convolution of two such distributions in i ´ 1. It can be directly checked that each
distribution txni uiPZ is symmetric in n´1

2 .

We recursively define distributions tx̃nuně1 over 1
2Z thus: for k “ 1, . . . , N ` 1, we set

x̃ki “ xk´1

i` k´2
2

. (6.2.13)

Note the shifts in both indices. Assume now that x̃k has been defined for any k ď n

(for some n ě N ` 1). Let X1, . . . , Xn be independent random variables such that the
probability density function of Xk on R is x̃k. Define a random variable Xn`1 as follows:

Xn`1 “ XK `Xn`1´K ,

where K is a uniform random variable on the set t1, . . . , nu. Define x̃n`1 as the probability
density function of Xn`1 on 1

2Z.
Hence for any i P 1

2Z, we have

x̃n`1
i “

1

n

n
ÿ

k“1

ÿ

jPZ
x̃kj ¨ x̃

n`1´k
i´j .

It is then trivial to show by induction that Formula (6.2.13) holds for all k ě 1. In
particular, x̃k only takes non-trivial values 1

2 ` Z for odd k, and on Z for even k.

Notice that the variance of the distribution x̃k is the same as that of xk´1, which is
ř

iPZ x
k´1
i

`

i´ k´2
2

˘2 (this is equal to 1
4 for k “ 1). Now let tX̃r

i |r P N, i “ 1, . . . , N`1u be
a family of independent random variables such that X̃r

i admits x̃i as a probability density
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function. For any i “ 1, . . . , N ` 1, recursively define the random variables αni as follows:
αki :“ 0 for any k P t1, . . . , N ` 1uztiu and αii :“ 1. For any n ě N ` 1, αn`1

i :“

α̃Ki ` α̃
n`1´K
i , where K is a uniform random variable on the set t1, . . . , nu and tα̃ki uk“1,...,n

is a family of independent variables such that α̃ki follows the same distribution as αki .
Intuitively, αn`1

i can be understood as such: consider the set t1, . . . , n ` 1u. If n `
1 ď N ` 1, you are done. Otherwise, randomly split it into two sets t1, . . . ,Ku and
tK`1, . . . , n`1u, and proceed similarly with each of these. Continue this procedure until
you have obtained a partition of t1, . . . , n ` 1u into sets of cardinal less than or equal to
N ` 1; the random variable αn`1

i counts the number of sets of cardinal i in that partition.
Let Zn`1 be a random variable of distribution x̃n`1, for n ě N ` 1. Based on what we

have seen of x̃n`1, the variable Zn`1 can be chosen so that there are independent random
variables X̃1, . . . , X̃n (such that X̃k is of distribution x̃k) and a uniform random variable K
on the set t1, . . . , nu such that Zn`1 “ X̃K`X̃n`1´K . Moreover, each random variable X̃k

can be chosen so that it satisfies the same condition (relative to the appropriate indices),
as long as k ą N ` 1. Hence Zn`1 can be chosen (since we only concern ourselves with
probability density functions in the statement of the lemma, and not particular random
variables) so that by repeatedly decomposing it in that manner, it can be written as

Zn`1 “

N`1
ÿ

i“1

αn`1
i
ÿ

r“1

X̃r
i

if n ě N ` 1.
Using Lemma 6.2.17 below (notice that there is a shift N Ñ N`1 due to the wording of

the lemma’s statement), we know that Erα
n
i
n s “

2
pN`1qpN`2q and Varpα

n
i
n q “

CpN`1q
n

nÑ8
ÝÝÝÑ 0

for i “ 1, . . . , N ` 1. Consequently, the sequence of random variables tα
n
i
n unPN converges

in probability to apNq :“ 2
pN`1qpN`2q .

We now prove some variant of the Local Limit Theorem to get Formula (6.2.12). The
main difficulty lies in the fact that the random variables αn1 , . . . , αnN`1 are not independent.

We first compute the limit as nÑ8 of the characteristic function of Zn?
n
.

We denote αn :“ pαn1 , . . . , α
n
N`1q. The random variable αn takes value in NN`1. We

have

E
„

exp

ˆ

it
1
?
n
Zn

˙

“
ÿ

k“pk1,...,kN`1qPNN`1

Ppαn “ kqE
„

exp

ˆ

it
1
?
n
Zn

˙

|αn “ k



“

ÿ

kPNN`1

Ppαn “ kq
N`1
ź

i“1

E

«

exp

˜

it
1
?
n

ki
ÿ

r“1

X̃r
i

¸ff

“
ÿ

kPNN`1

Ppαn “ kq
N`1
ź

i“1

˜

1´
t2VarpX̃iq

2n
` o

ˆ

t2

n

˙

¸ki

by independence of the random variables X̃r
i and Taylor expansion (where as above, X̃i is

any random variable of law x̃i).
Moreover, for any ε ą 0, define NN`1

ε,n :“ tpk1, . . . , kN`1q P NN`1| |
ki
n ´ apNq| ă
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εapNq for i “ 1, . . . , N ` 1u. By hypothesis, for a given ε ą 0, we have limnÑ8 Ppαn P
NN`1
ε,n q “ 1.

Let us show that for any t P R, the characteristic function E
”

exp
´

i t?
n
Zn

¯ı

converges

to expp´ t2

2

řN`1
i“1 apNqVarpX̃iqq as nÑ8 . Indeed, choose ε ą 0 and consider

E
„

exp

ˆ

i
t
?
n
Zn

˙

“ Ppαn R NN`1
ε,n qE

„

exp

ˆ

i
t
?
n
Zn

˙

|αn R NN`1
ε,n



`

Ppαn P NN`1
ε,n qE

„

exp

ˆ

i
t
?
n
Zn

˙

|αn P NN`1
ε,n



.

The first term converges to 0 as nÑ8. Moreover,

Ppαn P NN`1
ε,n qE

„

exp

ˆ

i
t
?
n
Zn

˙

|αn P NN`1
ε,n



“
ÿ

kPNN`1
ε,n

Ppαn “ kqE
„

exp

ˆ

i
t
?
n
Zn

˙

|αn “ k



“

ÿ

kPNN`1
ε,n

Ppαn “ kq
N`1
ź

i“1

˜

1´
t2VarpX̃iq

2n
` o

ˆ

t2

n

˙

¸ki

“

ÿ

kPNN`1
ε,n

Ppαn “ kq
N`1
ź

i“1

˜

1´
t2VarpX̃iqapNq

2napNq
` o

ˆ

t2

n

˙

¸napNq

¨

¨

¨

˝

˜

1´
t2VarX̃iqapNq

2napNq
` o

ˆ

t2

n

˙

¸napNq
˛

‚

ki´napNq

napNq

“

N`1
ź

i“1

˜

1´
t2VarpX̃iqapNq

2napNq
` o

ˆ

t2

n

˙

¸napNq
»

–Ppαn P NN`1
ε,n q `

ÿ

kPNN`1
ε,n

Ppαn “ kq¨

¨

¨

˚

˝

N`1
ź

i“1

¨

˝

˜

1´
t2VarpX̃iqapNq

2napNq
` o

ˆ

t2

n

˙

¸napNq
˛

‚

ki´napNq

napNq

´ 1

˛

‹

‚

fi

ffi

fl

.

As nÑ8, we have Ppαn P NN`1
ε,n q ÝÑ 1 and

śN`1
i“1

´

1´ t2VarpX̃iqapNq
2napNq ` o

´

t2

n

¯¯napNq
ÝÑ

expp´ t2

2

řN`1
i“1 VarpX̃iqapNqq. Moreover, |ki´apNqnapNqn | ă ε for any i “ 1, . . . , N ` 1 and any

k P NN`1
ε,n . Hence there exists a function f : Rą0 ÝÑ Rą0 such that for n large enough,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N`1
ź

i“1

¨

˝

˜

1´
t2VarpX̃iqapNq

2napNq
` o

ˆ

t2

n

˙

¸napNq
˛

‚

ki´napNq

napNq

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă fpεq

for any ε ą 0 and k P NN`1
ε,n , and such that limεÑ0 fpεq “ 0.

As ε ą 0 can be chosen arbitrarily small, this shows that limnÑ8 Erexppi t?
n
Znqs “
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expp´ t2

2 apNq
řN`1
i“1 VarpX̃iqq. As in the statement of the proposition, let us write

σ2 “ apNq
N`1
ÿ

i“1

VarpX̃iq “
2

pN ` 1qpN ` 2q

˜

1

4
`

N
ÿ

k“1

k´1
ÿ

i“0

xki

ˆ

i´
k ´ 1

2

˙2
¸

.

Note that using Lévy’s continuity theorem, this already shows that the sequence of dis-
tributions tx̃nunPN converge in distribution to a normal distributionN p0, apNq

řN
i“1 VarpX̃iqq.

As we want a local result, some additional work is still needed.

The remainder of our proof is inspired by the presentation of the Discrete Local Limit
Theorem on Terence Tao’s blog ([Tao]).

By definition, for any m P Z, we have

xnm “ x̃n`1
m´n´1

2

“ P
ˆ

Zn`1 “ m´
n´ 1

2

˙

“ P
ˆ

Zn`1 `
n´ 1

2
“ m

˙

.

As Zn`1 `
n´1

2 only takes values in Z and m is also an integer, we can write

1Zn`1`
n´1

2
“m “

1

2π

ż π

´π
exp

ˆ

it

ˆ

Zn`1 `
n´ 1

2

˙˙

exp p´itmq dt,

which implies (using Fubini’s theorem) that

P
ˆ

Zn`1 `
n´ 1

2
“ m

˙

“
1

2π

ż π

´π
E rexp pitZn`1qs e

itn´1
2 e´itmdt

and then

?
n` 1P

ˆ

Zn`1 `
n´ 1

2
“ m

˙

“
1

2π

ż

?
n`1π

´
?
n`1π

E
„

exp

ˆ

i
x

?
n` 1

Zn`1

˙

e
i x?

n`1
n´1

2 e
´i x?

n`1
m
dx

“
1

2π

ż

R
1|x|ď

?
n`1πE

„

exp

ˆ

i
x

?
n` 1

Zn`1

˙

e
i x?

n`1
n´1

2 e
´i x?

n`1
m
dx

using a change of variables.

We want to show that this expression converges to

1

2π

ż

R
e´

x2σ2

2 e
i x?

n`1
n´1

2 e
´i x?

n`1
m
dx “

1

σ
?

2π
exp

˜

´

`

n´1
2 ´m

˘2

2pn` 1qσ2

¸

uniformly in m (i.e. that the difference between the two expressions is an op1q error term
that can be upper-bounded uniformly in m).

We only need to show that

1

2π

ż

R

ˇ

ˇ

ˇ

ˇ

1|x|ď
?
n`1πE

„

exp

ˆ

i
x

?
n` 1

Zn`1

˙

´ e´
x2σ2

2

ˇ

ˇ

ˇ

ˇ

dx
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converges to 0.

As we have proved above that 1|x|ď
?
n`1πE

”

exp
´

i x?
n`1

Zn`1

¯ı

converges (for a given

x P R) to e´
x2σ2

2 , we want to show that there exists an absolutely integrable function that
dominates

ˇ

ˇ

ˇ
1|x|ď

?
n`1πE

”

exp
´

i x?
n`1

Zn`1

¯ı
ˇ

ˇ

ˇ
so that we can conclude using the dominated

convergence theorem (as x ÞÑ e´
x2σ2

2 is clearly absolutely integrable).

As above, we write

E
„

exp

ˆ

i
x

?
n` 1

Zn`1

˙

“
ÿ

kPNN`1

Ppαn “ kq
N`1
ź

i“1

E

«

exp

˜

i
x

?
n` 1

ki
ÿ

r“1

X̃r
i

¸ff

.

For i “ 1, . . . , N ` 1, either VarpX̃iq “ 0 and the term E
”

exp
´

i x?
n`1

řki
r“1 X̃

r
i

¯ı

is

always equal to 1, or VarpX̃iq ‰ 0 and we write it as
´

1´ x2VarpX̃iq
2pn`1q ` o

´

x2

n`1

¯¯ki
.

There exist two constants δ ą 0 and C1 ą 0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

1´
x2VarpX̃iq

2pn` 1q
` o

ˆ

x2

n` 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ă e´C1
x2

n`1 ď 1

for all |x| ă δ
?
n` 1 and all i such that VarpX̃iq ‰ 0. As VarpX̃1q “

1
4 , there is at least

one such i.

Define
Ωn :“ tk P NN`1|k1 ě

apNq

2
nu.

Using Chebyshev’s inequality and the fact that Erα
n`1
1
n`1 s “ apNq and Varpα

n`1

n`1 q “
CpN`1q
n`1 ,

we see that Ppαn`1 R Ωn`1q ď
C2
n`1 for some constant C2 ą 0.

Hence
ˇ

ˇ

ˇ

ˇ

1|x|ďδ
?
n`1E

„

exp

ˆ

i
x

?
n` 1

Zn`1

˙ˇ

ˇ

ˇ

ˇ

ď

1|x|ďδ
?
n`1Ppα

n`1 R Ωn`1q ` 1|x|ďδ
?
n`1

ÿ

kPΩn`1

Ppαn`1 “ kq
N`1
ź

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

exp

˜

i
x

?
n` 1

ki
ÿ

r“1

X̃r
i

¸ffˇ

ˇ

ˇ

ˇ

ˇ

ď

1|x|ďδ
?
n`1

C2

n` 1
`

ÿ

kPΩn`1

Ppαn`1 “ kqe´C1
x2

n`1
k1 ď 1|x|ďδ

?
n`1

C2

n` 1
` e´C1

x2

2
apNq ď

C2δ
2 min

ˆ

1

x2
,

1

δ2

˙

` e´C1
x2

2
apNq, (6.2.14)

assuming (as we can) that δ ă 1.

Suppose now that we have
ˇ

ˇ

ˇ
E
”

exp
´

itX̃1

¯ı
ˇ

ˇ

ˇ
“ 1 for some δ ď t ď π. It means that

exp
´

itX̃1

¯

is almost surely of constant argument, hence tX̃1 almost surely takes values

in a ` 2πZ for some a P R. Thus X̃1 takes values in a
t `

2π
t Z. But 2π

t ě 2, and by



132 CHAPTER 6.

definition PpX̃1 “
1
2q “ PpX̃1 “ ´

1
2q “

1
2 (remember that X̃1 comes from the "artificial"

distribution x0 defined at the beginning of the proof). This is impossible. Hence we have
ˇ

ˇ

ˇ
E
”

exp
´

itX̃1

¯ı
ˇ

ˇ

ˇ
ă 1 for any δ ď t ď π, and by continuity and compacity there exists a

constant 0 ă C3 ă 1 such that
ˇ

ˇ

ˇ
E
”

exp
´

itX̃1

¯ı
ˇ

ˇ

ˇ
ă C3 ă 1 for any δ ď t ď π.

Now we can write
ˇ

ˇ

ˇ

ˇ

1δ
?
n`1ď|x|ďπ

?
n`1E

„

exp

ˆ

i
x

?
n` 1

Zn`1

˙ˇ

ˇ

ˇ

ˇ

ď

1δ
?
n`1ď|x|ďπ

?
n`1Ppα

n`1 R Ωn`1q`

1δ
?
n`1ď|x|ďπ

?
n`1

ÿ

kPΩn`1

Ppαn`1 “ kq
N`1
ź

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

exp

˜

i
x

?
n` 1

ki
ÿ

r“1

X̃r
i

¸ffˇ

ˇ

ˇ

ˇ

ˇ

ď 1δ
?
n`1ď|x|ďπ

?
n`1

C2

n` 1
` 1δ

?
n`1ď|x|ďπ

?
n`1

ÿ

kPΩn`1

Ppαn`1 “ kqCk1
3 ď

1|x|ďπ
?
n`1

C2

n` 1
` 1|x|ďπ

?
n`1C

apNq
2
pn`1q

3 ď C2π
2 min

ˆ

1

x2
, 1

˙

`

ˆ

C
apNq

2π2

3

˙x2

.

This, together with Formula (6.2.14), allows us to conclude: we have shown that

xnm “
1

σ
?

2π

1
?
n` 1

exp

˜

´

`

n´1
2 ´m

˘2

2pn` 1qσ2

¸

` opn´
1
2 q

for some error term uniform in m. We can finally observe (by distinguishing the cases
where

`

n´1
2 ´m

˘2
ď n

3
2 from the cases where

`

n´1
2 ´m

˘2
ě n

3
2 ) that

1

σ
?

2π

1
?
n` 1

exp

˜

´

`

n´1
2 ´m

˘2

2pn` 1qσ2

¸

“
1

σ
?

2π

1
?
n

exp

˜

´

`

n´1
2 ´m

˘2

2nσ2

¸

` opn´
1
2 q

with the error term once again uniform in m .

Lemma 6.2.17. Let N ě 1. For any i “ 1, . . . , N , recursively define the random variables
αni as follows: αki :“ 0 for any k P t1, . . . , Nuztiu and αii :“ 1. For any n ě N , αn`1

i :“

α̃Ki `α̃
n`1´K
i , where K is a uniform random variable on the set t1, . . . , nu and tα̃ki uk“1,...,n

is a family of independent variables such that α̃ki follows the same distribution as αki .

Then for any n ě N ` 1, we have

Erαni s “
2n

pN ` 1qN

and
Varpαni q “ CpNqn,
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where CpNq is some constant that only depends on N .

Proof. Let i P t1, . . . , Nu and observe that if n ě N , then

Erαn`1
i s “

1

n

˜

n
ÿ

k“1

Erα̃ki s ` Erα̃n`1´k
i s

¸

“
2

n

n
ÿ

k“1

Erαki s.

Hence
n`1
ÿ

k“1

Erαki s “
n
ÿ

k“1

Erαki s ` Erαn`1
i s “

n` 2

n

n
ÿ

k“1

Erαki s

and necessarily

n`1
ÿ

k“1

Erαki s “
n` 2

n

n` 1

n´ 1
. . .

N ` 3

N ` 1

N ` 2

N

N
ÿ

k“1

Erαki s “
pn` 2qpn` 1q

pN ` 1qN

N
ÿ

k“1

Erαki s.

Moreover, we get from the definition of the random variables αni that
řN
k“1 Erαki s “ 1:

thus
řn`1
k“1 Erαki s “

pn`2qpn`1q
pN`1qN , and finally

Erαn`1
i s “

n`1
ÿ

k“1

Erαki s ´
n
ÿ

k“1

Erαki s “
pn` 2qpn` 1q

pN ` 1qN
´
pn` 1qn

pN ` 1qN
“

2pn` 1q

pN ` 1qN

for any n ě N .

Let us now compute the variance of αn`1
i . First observe that

Erpαn`1
i q2s “

1

n

˜

n
ÿ

k“1

Erpα̃ki ` α̃n`1´k
i q2s

¸

“
2

n

˜

n
ÿ

k“1

Erpα̃ki q2s ` Erα̃ki sErα̃n`1´k
i s

¸

“

2

n

˜

n
ÿ

k“1

Erpαki q2s `
n
ÿ

k“1

4kpn` 1´ kq

N2pN ` 1q2

¸

“
2

n

˜

n
ÿ

k“1

Erpαki q2s `
2npn` 1qpn` 2q

3N2pN ` 1q2

¸

as the variables α̃ki are independent from each other.

Now define for any n ě 1

gpn` 1q :“
n`1
ÿ

k“1

Erpαki q2s ´
2pn` 1qpn` 2qp2n´ 3q

3N2pN ` 1q2
,

as is natural to do in such a situation.

Then

gpn` 1q “
n`1
ÿ

k“1

Erpαki q2s ´
2pn` 1qpn` 2qp2n´ 3q

3N2pN ` 1q2
“

n
ÿ

k“1

Erpαki q2s `
2

n

˜

n
ÿ

k“1

Erpαki q2s `
2npn` 1qpn` 2q

3N2pN ` 1q2

¸

´
2pn` 1qpn` 2qp2n´ 3q

3N2pN ` 1q2
“
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n` 2

n

n
ÿ

k“1

Erpαki q2s ` p2´ p2n´ 3qq
2pn` 1qpn` 2q

3N2pN ` 1q2
“

n` 2

n

n
ÿ

k“1

Erpαki q2s ´
2pn` 1qpn` 2qp2n´ 5q

3N2pN ` 1q2
“

n` 2

n

˜

n
ÿ

k“1

Erpαki q2s ´
2npn` 1qp2n´ 5q

3N2pN ` 1q2

¸

“
n` 2

n
gpnq

for any n ě N , hence as before,

gpn` 1q “
pn` 2qpn` 1q

pN ` 1qN
gpNq.

Thus

Erpαki q2s “ gpn` 1q ´ gpnq `
2pn` 1qpn` 2qp2n´ 3q

3N2pN ` 1q2
´

2npn` 1qp2n´ 5q

3N2pN ` 1q2
“

2pn` 1q

pN ` 1qN
gpNq `

2pn` 1q

3N2pN ` 1q2
ppn` 2qp2n´ 3q ´ np2n´ 5qq “

2pn` 1q

pN ` 1qN
gpNq `

4pn` 1qpn´ 1q

N2pN ` 1q2
.

From this, we see that for any n ě N ,

Varpαn`1
i q “ Erpαn`1

i q2s ´ pErαn`1
i sq2 “

2pn` 1q

NpN ` 1q
gpNq `

4pn` 1qpn´ 1q

N2pN ` 1q2
´

4pn` 1q2

N2pN ` 1q2
“

2pn` 1q

NpN ` 1q
gpNq ´

8pn` 1q

N2pN ` 1q2
“ pn` 1qCpNq

for some finite constant CpNq :“ 2gpNq
NpN`1q ´

8
N2pN`1q2

that only depends on N .

6.3 Some explicit computations

Given n ě 3, we can try to apply the Cooking Theorem 5.1.1 to any combination of families
of polynomials tP kd udPN for k “ 1, . . . , n´1; these various combinations result in families of
polynomials tQndudPN and associated hypersurfaces with a priori distinct asymptotic Betti
numbers, which we can in turn use to define new polynomials and hypersurfaces in ambient
dimension n` 1. The total number of possibilities in dimension n grows extremely fast as
n goes to infinity (as C2n for some C ą 1), even with a low number of starting ingredients,
i.e. families of polynomials that are already known. Given n ě 3 and i P t0, . . . , n ´ 1u,
it is not yet clear how to pick the combination which will result in the largest asymptotic
value for the i-th Betti numbers bipVRPnpQnd qq.

The author used a poorly coded C++ program to test out each combination achievable
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Figure 6.2:

in ambient dimension n “ 4, 5, 6, 7 using both constructions from Theorem 6.2.6 by Bru-
gallé and the family of constructions from Theorem 6.2.5 by Itenberg and Viro as building
blocks. Any n greater than 7 exceeded the computational power of the author’s arguably
cheap computer.

Figure 6.2 shows, for n “ 3, . . . , 7 and i P t0, . . . , n´1u, the largest tni (rounded down to
the 4-th decimal) such that we were able to cook, using the Cooking Theorem 5.1.1, a family
tQndudPN of completely nondegenerate real Laurent polynomials in n variables such that
∆pQnd q “ Snd , that the associated family of real projective hypersurfaces is asymptotically
maximal (this is not an additional constraint, as all our ingredients are asymptotically
maximal) and that

bipVRPnpQ
n
d qq

n
ě pani ` t

n
i q ¨ d

n.

In particular, it is enough to complete the proof of Theorem 6.1.1 for n ď 7.

In Figure 6.3, we indicate, for 5 ď n ď 99 odd and i P t0, . . . , n ´ 1u, the values of
dnn´1

2

´ann´1
2

ann´1
2

(rounded down to the 5-th decimal), where dnn´1
2

comes from Theorem 6.1.3.

The ratio appears to converge relatively fast to limnÑ8

dnn´1
2

´ann´1
2

ann´1
2

“
?

10
3 ´ 1 – 0.05409.

6.4 Chapter conclusion

Concerning possible generalizations, the same method could certainly be applied to more
general toric varieties, though not without any modifications, as it relies heavily on the
geometry of the standard simplex. Given an n-polytope with integer vertices ∆, and should
we want to define a family of polynomials tPnd udPN such that ∆pPnd q “ d ¨ ∆ and such
that the induced family of hypersurfaces in the associated toric variety has interesting
asymptotic Betti numbers, a solution could be to simply divide each d ¨ ∆ into several
"big" simplices (as well as some smaller polytopes to fill in the gaps), in which we apply
the methods described here. Thinking in terms of cycles and axes, it should be relatively
easy to find good asymptotic lower bounds on the Betti numbers.
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Figure 6.3: For n “ 5, . . . , 99 odd, the ratio
dnn´1

2

´ann´1
2

ann´1
2

, where dnn´1
2

is as in Theorem 6.1.3.
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Another interesting problem would be to find combinatorial analogs to Theorem 6.2.6,
i.e. families tP 3

d udPN of completely nondegenerate real Laurent polynomials in 3 variables
obtained using the combinatorial Patchwork and such that the Newton polytope ∆pP 3

d q is
S3
d and that for i “ 0, . . . , 2, we have

bipVRPnpP
3
d qq

n
“ x3

i ¨ d
n

with x3
0 “ x3

2 “
1
6 ` a and x3

1 “
4
6 ´ 2a for non-zero a. In particular, those families have to

be asymptotically maximal (non-asymptotically maximal examples are relatively easy to
find).

As the Cooking Theorem respects the combinatorial nature of the ingredients it uses,
this would automatically yield combinatorial versions of Theorems 6.1.1 and 6.1.2.
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Chapter 7

A tropical analog to Lefschetz’s
section theorem

7.1 Chapter introduction

This chapter is based on a joint work [ARS19] with Arthur Renaudineau 1 and Kristin
Shaw 2. In this article, we prove a tropical analog to Lefschetz’s section theorem, or
more precisely to one of its best-known corollaries, relating the tropical homology of a
non-singular tropical hypersurface in a non-singular tropical toric variety to the tropical
homology of the ambient variety, assuming some technical conditions. We also directly
prove that the tropical homology of non-singular tropical toric varieties is torsion-free,
and use this, in conjunction with the Lefschetz-like theorem, to show that the tropical
homology of non-singular tropical hypersurfaces in non-singular tropical toric varieties is
also torsion-free (assuming, again, some technical conditions). As a bonus of sorts, this
allows us to obtain some results similar to those of [IKMZ16] relating tropical homology
and Hodge-Deligne numbers through purely combinatorial means, though only in the case
of hypersurfaces.

In the present chapter, we restrict ourselves to two types of ambient non-singular
tropical toric varieties: non-singular compact toric varieties whose dual fan is the same
as that of the full-dimensional Newton polytope of the considered hypersurface, and the
tropical algebraic torus Rn`1. Our hypersurfaces are also of two types: either non-singular,
in which case our theorems hold with tropical (co)homology with coefficients in Z and R, or
singular, in which case we restrict ourselves to tropical (co)homology with real coefficients.

Again, the results can be found in their full generality in [ARS19]. Throughout the
chapter, we mostly use definitions and notations from Chapter 3.

As advertised above, the main result of this chapter is the following tropical analog to

1Univ. Lille - Laboratoire Paul Painlevé, Lille, France. arthur.renaudineau@univ-lille.fr
2Univ. of Oslo, Oslo, Norway. krisshaw@math.uio.no
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Lefschetz’s section theorem. Given a tropical toric variety or a tropical hypersurface Z,
we denote as in Chapter 4 by HqpZ;FZ,Zp q the pq, pq-th tropical homology group of Z with
coefficients in Z, and by HBM

q pZ;FZ,Zp q the pq, pq-th tropical Borel-Moore homology group
of Z with coefficients in Z, and similarly for cohomology. We often simply write FZp and
FpZ instead of FZ,Zp and FpZ,Z. To avoid confusion, we sometimes refer to HqpZ;FZp q as a
standard tropical homology group.

As explained in Chapter 3, we call a full-dimensional polytope ∆ Ă Rn`1 simple or
non-singular if its normal fan is simplicial unimodular. Such a polytope naturally gives rise
to a non-singular compact tropical toric variety Y∆ via its normal fan Σ. Moreover, any
tropical polynomial P in n` 1 variables defines a tropical hypersurface X0 in Rn`1 whose
structure is dual to the subdivision of the Newton polytope ∆pP q of P induced by P itself
(see the Duality Theorem 3.2.4). If the subdivision is primitive, the tropical hypersurface
X0 is non-singular. As in Chapter 3, we call the natural compactification in a non-singular
tropical toric Y∆ of a non-singular hypersurfaceX0 Ă Rn`1 defined by a tropical polynomial
whose full-dimensional Newton polytope is ∆ a non-singular hypersurface in Y∆.

Theorem 7.1.1. Let X be an n-dimensional tropical hypersurface in Y with Newton poly-
tope ∆, where Y is either Rn`1 or a tropical toric variety generated by the normal fan Σ

of ∆, in which case we ask that ∆ be full-dimensional and Σ be simplicial unimodular.
Then the map induced by inclusion

i˚ : HBM
q pX;FX,Rp q Ñ HBM

q pY ;FY,Rp q

is an isomorphism when p` q ă n and a surjection when p` q “ n.
Moreover, if ∆ is full-dimensional, then the map induced by inclusion

i˚ : HqpX;FX,Rp q Ñ HqpY ;FY,Rp q

is an isomorphism when p` q ă n and a surjection when p` q “ n.
Additionally, if X is non-singular in Y , the same two statements hold with coefficients

in Z instead of R.

Though we restrict ourselves to slightly less general conditions than in the article
[ARS19], the theorem covers the most common and reasonable cases. In Section 7.2.2,
we present a few counter-examples to its conclusions in cases where its hypotheses are not
satisfied.

The case where X is non-singular and its tropical homology groups with coefficients
in R are considered can be recovered as a consequence of the main theorem from Iten-
berg, Katzarkov, Mikhalkin and Zharkov’s [IKMZ16]. However, the statements regarding
the integer tropical homology of a non-singular tropical hypersurface X and the tropical
homology with coefficients in R of a singular tropical hypersurface X are new.
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Though our theorem is analogous to a well-known corollary of Lefschetz’s section the-
orem, the proofs have little in common. Ours rely on a careful examination of the cellular
homology complexes using a cell decomposition of the ambient space induced by the hy-
persurface itself; we show that the tropical homology of the pair pY,Xq is in a certain sense
"locally trivial" in degrees p ` q ď n. Notice that unlike the classical Lefschetz section
theorem, ours does not require the ambient variety to be compact, making it closer to the
generalizations that can be found in [Eyr04].

Somewhat disappointingly, our proof does not appear to be easily adaptable to the case
where X Ă Y is a tropical variety of codimension strictly greater than 1.

As immediate consequences of Theorem 7.1.1, we have the following corollaries.

Corollary 7.1.2. Let Y be a pn`1q-dimensional non-singular compact tropical toric vari-
ety defined by a full-dimensional polytope ∆. Let X be a non-singular tropical hypersurface
in Y , defined by a tropical polynomial whose Newton polytope is also ∆. Then the map
induced by inclusion

i˚ : HqpX;FXp q Ñ HqpY ;FYp q

is an isomorphism when p` q ă n and a surjection when p` q “ n.

Note that as Y and X are compact, the standard and Borel-Moore tropical homology
groups coincide.

We have a similar statement when choosing the tropical torus Rn`1 as an ambient
variety, rather than a compact one.

Corollary 7.1.3. Let X be a non-singular tropical hypersurface in Rn`1, defined by a
tropical polynomial P . Then the map induced by inclusion

i˚ : HBM
q pX;FXp q Ñ HBM

q pRn`1;FRn`1

p q

is an isomorphism when p` q ă n and a surjection when p` q “ n.
If additionally the Newton polytope of P is full-dimensional, then the map

i˚ : HqpX;FXp q Ñ HqpRn`1;FRn`1

p q

is an isomorphism when p` q ă n and a surjection when p` q “ n.

It is easy to show that HBM
q pRn`1;FRn`1

p q is isomorphic to
Źp Zn`1 if q “ n` 1 and

trivial otherwise, and that HqpRn`1;FRn`1

p q is isomorphic to
Źp Zn`1 if q “ 0 and trivial

otherwise.
In the case of real coefficients and singular X, we also have the two corollaries below.

Corollary 7.1.4. Let P be a tropical polynomial whose Newton polytope ∆ is full-dimensional
and non-singular. Let Y be the pn ` 1q-dimensional non-singular compact tropical toric
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variety to which ∆ gives rise, and let X be the tropical hypersurface in Y to which P gives
rise (note that we do not ask for X to be non-singular).

Then the map induced by inclusion

i˚ : HBM
q pX;FX,Rp q Ñ HBM

q pY ;FY,Rp q

is an isomorphism when p` q ă n and a surjection when p` q “ n.

Corollary 7.1.5. Let X be a tropical hypersurface in Rn`1, defined by a tropical polynomial
P (note that we do not ask for X to be non-singular). Then the map induced by inclusion

i˚ : HBM
q pX;FX,Rp q Ñ HBM

q pRn`1;FRn`1,R
p q

is an isomorphism when p` q ă n and a surjection when p` q “ n.
If additionally the Newton polytope of P is full-dimensional, then the map

i˚ : HqpX;FX,Rp q Ñ HqpRn`1;FRn`1,R
p q

is an isomorphism when p` q ă n and a surjection when p` q “ n.

The equivalent statements for rational coefficients are a consequence of the universal
coefficient theorem, or can be directly obtained using the exact same proof.

Observe that we do not even ask that the subdivision of the Newton polytope of P
induced by P be a triangulation.

Adiprasito and Björner also established tropical variants of the Lefschetz hyperplane
section theorem in [AB14]. Their theorems relate the tropical homology with real coef-
ficients (but say nothing of integral tropical homology groups) of a non-singular tropical
variety X contained in a tropical toric variety to the tropical homology groups of the inter-
section of X with a so-called “chamber complex", which is a codimension one polyhedral
complex in a tropical toric variety whose complement consists of pointed polyhedra. Their
proof relies on Morse theory, and does not seem to have much in common with ours.

We also give some description of the integral tropical homology of non-singular toric
varieties, using tropical Poincaré duality (see [JRS17]).

Proposition 7.1.6. Let Y be a pn ` 1q-dimensional non-singular compact tropical toric
variety. Then the integral tropical homology groups of Y are torsion-free.

Moreover, we have
rankHqpY ;FYp q “ hp,qpCY q

where CY is the corresponding non-singular compact complex toric variety(i.e. they are de-
fined using the same simplicial unimodular complete fan). In particular, we have HqpY ;FYp q “
0 unless p “ q.
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Using this result and Theorem 7.1.1, we get the following statement.

Theorem 7.1.7. Let X be a non-singular n-dimensional tropical hypersurface in Y with
Newton polytope ∆, where Y is either Rn`1 or a toric variety generated by the normal fan Σ

of ∆, in which case we ask that ∆ be full-dimensional and that Σ be simplicial unimodular.

Then both the Borel-Moore and standard integral tropical homology groups of X are
torsion-free.

Our main motivation for establishing torsion-freeness of the tropical homology groups
of tropical hypersurfaces comes from the main result from [RS18], which we have already
discussed in Chapter 4 (see Formula (4.5.4)) and which we quote again here: let X be
a smooth real algebraic hypersurface in a pn ` 1q-dimensional non-singular toric variety
obtained via primitive combinatorial patchworking, and let Xtrop be an associated tropical
hypersurface. Denote by CX (respectively, RX) the complex (respectively, real) points of
X. Then Renaudineau and Shaw proved that for any i “ 0, . . . , n, we have

bipRXq ď
n
ÿ

p“1

dimZ2 HqpX
trop;FXtrop,Z2

p q.

Theorem 7.1.7 then allows us to see that if the ambient toric variety is either compact
or the algebraic torus, then the integral tropical homology of Xtrop is torsion-free, which
implies that dimZ2 HqpX

trop;FX
trop,Z2

p q “ rankHqpX
trop;FXtrop

p q. We can then conclude,
either from [IKMZ16] or the results below, that rankHqpX

trop;FXtrop

p q “ hq,ppCXq (where
hq,ppCXq is the pq, pq-th Hodge number of CX) and that we have for any i “ 0, . . . , n

bipRXq ď hi,n´ipCXq ` 1´ δi,n
2
,

where δi,n
2
is 1 if i “ n

2 and 0 otherwise.

As another consequence of the Lefschetz-like Theorem 7.1.1, we are able to express
under the same assumptions (once again using tropical Poincaré duality) the rank of the
integral tropical homology of non-singular tropical hypersurfaces in compact tropical toric
varieties and in Rn`1 in terms of the Hodge-Deligne numbers of a related real algebraic
hypersurface.

If CY is a complex toric variety, a hypersurface CX Ă CY is torically non-degenerate if
the intersection of CX with any proper torus orbit of CY is non-singular and CX intersects
each torus orbit of CY transversally. If CY is the complex toric variety associated to the
Newton polytope of CX, then the second condition follows from the first one (see for
example [Kho77]).

Following V. Danilov and A. Khovanskii (see [DK86]), we denote Hodge-Deligne num-
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bers of a complex variety CX by hp,qpHk
c pCXqq and define the numbers

ep,qc pCXq :“
ÿ

k

p´1qkhp,qpHk
c pCXqq,

where Hk
c pCXq is the k-th cohomology group with compact support of CX. We then define

the polynomial
χypCXq :“

ÿ

p,q

ep,qc pCXqyp.

Parallelly, given a tropical hypersurfaceX, we consider the Euler characteristic χpCBM‚ pX;FXp qq
of the tropical integral Borel-Moore cellular complex. Both χypCXq and χpCBM‚ pX;FXp qq
have nice additivity properties, which allow us to get through purely combinatorial com-
putations the following results.

Theorem 7.1.8. Let X be a non-singular tropical hypersurface in a tropical toric variety
Y , and let CX be a complex hypersurface torically non-degenerate in a complex toric va-
riety CY such that the tropical, respectively complex polynomials defining X and CX have
the same full-dimensional Newton polytope ∆. Moreoever, let Y and CY be either Rn`1

and pC˚qn`1, or a tropical, respectively complex pn ` 1q-dimensional non-singular toric
varieties defined using the normal fan of ∆ (in which case we ask that it be simplicial and
unimodular).

Then we have

χypCXq “
n
ÿ

p“0

p´1qpχpCBM‚ pX;FXp qqyp,

and thus
p´1qpχpCBM‚ pX;FXp qq “

ÿ

q

ep,qc pCXq.

Combining this with our Lefschetz-like theorems and some classical results concerning
Hodge-Deligne numbers, we find the two following corollaries.

Corollary 7.1.9. Let Y and CY be tropical, respectively complex pn ` 1q-dimensional
non-singular compact toric varieties coming from the same non-singular full-dimensional
integral polytope ∆.

Let X be a non-singular tropical hypersurface in Y (in particular, defined by a tropical
polynomial whose Newton polytope is also ∆). Let CX be a torically non-degenerate com-
plex hypersurface in CY , defined by a Laurent polynomial whose Newton polytope is ∆ as
well.

Then for all p and q we have

hp,qpCXq “ rankHqpX;FXp q.
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Corollary 7.1.10. Let X be a non-singular tropical hypersurface in Rn`1 defined by a
tropical polynomial whose Newton polytope is full-dimensional. If CX is a non-singular
complex hypersurface in pC˚qn`1 with the same Newton polytope as X, then

rankHBM
q pX;FXp q “

$

’

’

’

&

’

’

’

%

řq
l“0 h

p,lpHn
c pCXqq if p` q “ n

hp,ppHn`p
c pCXqq if q “ n

0 otherwise.

The Hodge-Deligne numbers appearing in the above corollary can be calculated using
the algorithms in [DK86]. For example, we have under the hypotheses of Corollary 7.1.10
that hp,ppHn`p

c pCXqq “
`

n`1
p`1

˘

.
One can also get Corollary 7.1.9 as a consequence of the main theorem of [IKMZ16]

(though a complete description of the integral tropical homology groups of X would
nonetheless require some analog to Theorem 7.1.7 to show the lack of torsion).

All results in this chapter can be easily generalized to cases where the Newton polytope
of the hypersurface X is not full-dimensional. For example, if the ambient variety Y is
Rn`1, the hypersurface X is of the form X̃ ˆRk for some k and some pn´ kq-dimensional
tropical hypersurface X̃ whose Newton polytope is full-dimensional in Rn`1´k. One can
then apply the various theorems stated in this section to X̃, and use Künneth’s formula
for tropical homology (see [GS19]) to obtain information regarding the tropical homology
of X. Likewise if the pair X Ă Y is of the form X̃ˆRk Ă Ỹ ˆRk, with Ỹ being some non-
singular tropical toric variety dual to the full-dimensional Newton polytope of X̃. More
delicate generalizations can be found in [ARS19].

In Section 7.2, we explain some notations, prove a preliminary lemma, and show coun-
terexamples to the conclusions of some of the main results when we drop certain hypothe-
ses. In Section 7.3, we prove many lemmas, as well as the Lefschetz-like Theorem 7.1.1.
In Section 7.4, we study the tropical homology of non-singular tropical toric varieties and
the torsion-freeness of tropical hypersurfaces, and prove Proposition 7.1.6 as well as Theo-
rem 7.1.7. Finally, in Section 7.5, we use concepts from V. Danilov’s and A. Khovanskii’s
[DK86] to prove Theorem 7.1.8 and Corollaries 7.1.9 and 7.1.10.

7.2 Preliminaries

We start with some definitions and basic observations in Subsection 7.2.1, then present
some interesting pathological cases in Subsection 7.2.2.

7.2.1 Definitions and observations

Throughout the text and unless otherwise specified, when considering a tropical hypersur-
face X contained in a tropical toric variety Y , we always use the polyhedral structure on
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Figure 7.1: The tropical curve induced by the tropical polynomial ”x` y ` xy” in TP 2.

X that comes from the subdivision of the associated Newton polytope (see Chapter 3) and
the polyhedral structure on Y induced by that of X.

Let Y be a tropical toric variety and let X Ă Y be a tropical hypersurface. We say that
the pair pY,Xq is a cellular pair if the cellular structure induced by X on Y makes it a cell
complex according to the definition that we gave in Subsection 3.3.2 (which comes from
[Cur13] and differs slightly from the usual definition). Example 7.2.3 below shows that
it needs not necessarily be the case. Requiring pY,Xq to be a cellular pair automatically
implies that X (equipped with its natural polyhedral structure) is also a cell complex.

Given a tropical toric variety Y , we say that a polyhedral complex Z is proper in Y

if for each cell σ of Z of sedentarity 0 and each cone ρ such that σ X Yρ ‰ H, one has
dimpσ X Yρq “ dimpσq ´ dimpρq.

If Y is a non-singular tropical toric variety and X a non-singular hypersurface in Y ,
then X is proper in Y (see the Duality Theorem 3.2.4). It need not be the case for tropical
hypersurfaces in tropical toric varieties in general: consider for example a tropical curve
induced by the tropical polynomial ”x` y ` xy” in TP 2, as illustrated in Figure 7.1.

Let γ be a polyhedron of dimension s and sedpγq “ 0 in a tropical toric variety Y . For
each cone ρ in the fan Σ defining Y , set γρ :“ γ X Yρ and define

γ˝ :“
ğ

ρ

relint γρ,

where relint γρ is the relative interior of γρ (in Yρ). If we assume that γ is proper in Y , a
face σ of γo of dimension q is necessarily of sedentarity order sedpσq “ dim γ ´ q.

A tropical hypersurface X in an n` 1 dimensional tropical toric variety Y is combina-
torially ample if for every face γ of dimension n` 1 of Y , considered with the polyhedral
structure induced by X, the polyhedral complex γo is homeomorphic as a stratified topo-
logical space to a product of copies of T and R.
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If Y is a non-singular tropical toric variety and X a non-singular hypersurface in Y ,
then X is combinatorially ample in Y . It need not be the case for the closure in a non-
singular toric variety Y of a non-singular hypersurface X0 in Rn`1, as is shown in Example
7.2.5.

The following lemma about the structure of the cosheaves in the case of a non-singular
tropical hypersurface proves useful later on.

Lemma 7.2.1. Let X be a non-singular tropical hypersurface in Y , where Y is either
Rn`1 or the non-singular compact tropical toric variety generated by the normal fan of the
Newton polytope ∆ of X (in which case we ask that ∆ be full-dimensional and that its
normal fan be simplicial and unimodular).

If τ is a face of X of dimension q whose relative interior is contained in a stratum Yρ

of dimension m, then

FXp pτq –
p
à

l“0

FHm´q´1

p´l pvq b
l

ľ

TZpτq,

where Hm´q´1 is the standard tropical hyperplane of dimension m´ q ´ 1 in Rm´q and v
denotes its vertex.

If τ is a codimension one face of σ in X and relintpτq and relintpσq are contained in
the distinct strata Yρ and Yη, respectively, then the cosheaf map iσ,τ : FXp pσq Ñ FXp pτq
together with the above isomorphisms commute with the map

p
à

l“0

FHm´q´1

p´l pvq b
l

ľ

TZpσq Ñ
p
à

l“0

FHm´q´1

p´l pvq b
l

ľ

TZpτq, (7.2.1)

which is induced by the map idbπη,ρ on each factor of the direct sum, where πη,ρ :
Źl TZpσq Ñ

Źl TZpτq is from Equation 3.3.1 in Chapter 3.

Proof. Recall that TZpτq denotes the integral points in the tangent space of the face τ .
Now let L be a m´ q dimensional affine subspace of Rm – Yρ defined over Z such that L
intersects all faces of Xρ that contain relintpτq transversally and that together TZpLq and
TZpτq generate the lattice TZpYρq. By the above transversality assumption, the intersection
L1 “ LXX has a single vertex v1 contained in τ .

For every l there is a map

il : FL
1

p´lpv
1q b

l
ľ

TZpτq Ñ FXp pτq,

given by taking the wedge product of the vectors in FL1p´lpvq and
Źl TZpτq. Taking the
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direct sum of the maps il for all 0 ď l ď p gives a map

p
à

l“0

FL1p´lpv1q b
l

ľ

TZpτq Ñ FXp pτq. (7.2.2)

If σ is a facet of X X Yρ containing the face τ , then by our assumptions on L1, we have

TZpσq – TZpτq ‘ TZpL
1 X σq.

Therefore,

FXp pσq –
p
à

l“0

FL1Xσp´l pv
1q b

l
ľ

TZpτq.

Now since FXp pτq is generated by all FXp pσq for σ a facet containing τ , the map in Equation
7.2.2 is an isomorphism.

By the assumption that X is non-singular in Y , every non-empty stratum Xρ “ YρXX

is a non-singular tropical hypersurface in Rm, where m “ n ` 1 ´ dim ρ. Therefore, the
hypersurface Xρ is defined by a tropical polynomial fρ and it is dual to a primitive regular
subdivision of the Newton polytope of fρ which is induced by fρ. A face σ of X whose
relative interior is contained in Xρ is dual to a face of the dual subdivision of ∆pfρq, and
since this dual subdivision is primitive, the face dual to σ is a simplex. Therefore, near
the vertex v1 the polyhedral complex L1 is up to an integral affine transformation the
same as a neighborhood of the vertex v of the tropical hyperplane Hm´q´1 and we have
FL1p´lpv1q – F

Hm´q´1

p´l pvq. This proves the isomorphism stated in the lemma.
If τ is a face of σ, and τ and σ are contained in Yη and Yρ respectively, for η ‰ ρ, then

we can write TZpYρq “ TZpLσq‘TZpσq and TZpYηq “ TZpLτ q‘TZpτq, where Lσ and Lτ are
the linear spaces chosen in the argument above to intersect σ and τ , respectively. Since the
polyhedral structure on X is proper in Y , the map πρη : TZpYρq Ñ TZpYηq restricts to an
isomorphism between TZpLσq and TZpLτ q. Therefore, it also restricts to an isomorphism
between FLσXXp pvσq and FLτXXp pvτ q for all p.

The claim about the commutativity of the above isomorphisms with the maps in For-
mula (7.2.1) and iσ,τ : FXp pσq Ñ FXp pτq follows, since iσ,τ is induced by projecting along a
direction πρ,η.

7.2.2 Counterexamples

In this subsection, we show how everything can go terribly wrong: a series of examples in
which some of our hypotheses are not satisfied and the main theorems fail.

Example 7.2.2. Consider the complete rational fan Σ in R2 such that its only 1-dimensional
cones are Rě0 ¨ p´2, 1q, Rě0 ¨ p2, 1q and Rě0 ¨ p0,´1q, and the associated toric variety Y .
Consider also the tropical hypersurface X Ă Y whose Newton polytope is the triangle of
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Figure 7.2: The pair pY,Xq from Example 7.2.2

Figure 7.3: The tropical curve induced by the tropical polynomial ”0` xy2 ` x2y” in T2.

vertices p0, 0q, p2, 0q and p1, 2q (which we do not further triangulate). The pair pY,Xq is
represented in Figure 7.2.

Both Y and X are singular, and it is easy to see that H0pX;FX1 q – Z2 and that
H1pY ;FY1 q – Z‘ Z2 ‘ Z2; compare with Theorem 7.1.7 and Proposition 7.1.6.

Example 7.2.3. There are examples of tropical hypersurfaces in tropical toric varieties
which are not cellular pairs. For example, let X Ă T2 be the tropical curve in T2 with
three rays in directions p´2, 1q, p1,´2q and p1, 1q (see Figure 7.3) to which the tropical
polynomial ”0` xy2 ` x2y” gives rise. In this case, the pair pT2, Xq is not a cellular pair,
though X may be combinatorially ample in T2.

Example 7.2.4. On a related note, consider the case when the Newton polytope of the
polynomial that gives rise to X is an interval of lattice length equal to 1 in Rn`1 (for
n ě 1); in particular, and unlike what is required in the second part of Corollary 7.1.3, it
is not full-dimensional.
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Then the tropical hypersurface X is a (classical) Z-affine subspace of Y “ Rn`1 of
dimension n, and the one point compactification of Rn`1 (with the cell structure induced
by X) is not a regular cell complex (as shown in Lemma 3.3.6). Upon further subdividing
X and Y so that they form a cellular pair, or using singular tropical homology, we can
compute the standard tropical homology groups to be:

HqpX;FXp q “

$

&

%

Źp Zn if q “ 0,

0 if q ‰ 0
and HqpY ;FYp q “

$

&

%

Źp Zn`1 if q “ 0,

0 if q ‰ 0.

Whereas the Borel-Moore homology groups are

HBM
q pX;FXp q “

$

&

%

Źp Zn if q “ n,

0 if q ‰ n

and

HBM
q pY ;FYp q “

$

&

%

Źp Zn`1 if q “ n` 1,

0 if q ‰ n` 1.

We see that the conclusions of Corollary 7.1.3 do not hold for the standard tropical ho-
mology groups; the fact that pRn`1, Xq is not a cellular pair is what makes the proof fail.
However, the conclusions regarding the Borel-Moore tropical homology groups do apply.

Example 7.2.5. Here is a counterexample to the conclusions of Corollary 7.1.2 when we
drop the condition that Y is defined by the normal fan of the Newton polytope of the
polynomial that gives rise to X. Consider the standard tropical hyperplane Xo Ă Rn`1.
The case n “ 2 is depicted in the left of Figure 7.4. Let Σ be the fan for the pn ` 1q-
dimensional projective space blown up in a toric fixed point, and let Y be the tropical
toric variety defined by Σ. Let X denote the compactification of Xo in Y . Then it can be
computed that rankH1pX,FX1 q “ 1 and rankH1pY,FY1 q “ 2, so the map H1pX,FX1 q Ñ
H1pY,FY1 q is not surjective (unlike in the conclusion of Corollary 7.1.2 for n ě 2).

The connected component of Y zX containing the stratum of Y dual to the ray of Σ

corresponding to the exceptional divisor of the blow up does not satisfy the condition to
be combinatorially ample, which is where the proof fails.

The complex geometric version of the same scenario also does not satisfy the conclusions
of the Lefschetz hyperplane section theorem (as the hypersurface of the toric variety is not
ample).
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Figure 7.4: The standard tropical hyperplane in R3 on the left, its closure in the tropical
toric variety described in Example 7.2.5 on the right.

7.3 Tropical Lefschetz hyperplane section theorems

This section is mainly dedicated to proving Theorem 7.1.1, but we first need some inter-
mediate lemmas.

7.3.1 Preliminary results

A tropical hypersurface X in a tropical toric variety Y induces a polyhedral structure on
Y . As above, and unless it is explicitly mentioned, we use this polyhedral structure on Y
to compute its cellular tropical homology groups.

If Z is a polyhedral complex, Z 1 Ă Z is a subpolyhedral complex and G is a cosheaf on
Z, then the restriction cosheaf G|Z1 is a cosheaf on Z 1 which assigns the Z-module Gpσq
for σ a face of Z 1. The cosheaf G|Z1 can also be considered as a cosheaf on Z. In this case,
it assigns Gpσq if σ is a face of Z 1 and 0 otherwise.

Since we consider the polyhedral structure on Y induced by X, the tropical hypersur-
face X is a subpolyhedral complex of Y and we have the cosheaves FYp |X , which can be
considered on X or Y as described above.

To prove our Lefschetz-like theorems, we consider two exact sequences of cosheaves.
The first is the exact sequence of cosheaves on Y given by

0 Ñ FY,Ap |X Ñ FY,Ap Ñ QAp Ñ 0 (7.3.1)

for A “ Z,R. The second one consists of cosheaves on X and is given by

0 Ñ FX,Ap Ñ FY,Ap |X Ñ NA
p Ñ 0 (7.3.2)

for A “ Z,R. We often simply write Qp and Np for QZ
p and N Z

p .
The injective maps on the left-hand side of both cosheaf sequences are both natural
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inclusions on the stalks over faces. The cosheaves QAp and NA
p are defined as the cokernel

cosheaves in both short exact sequences. The cosheaves FY,Ap |X , FY,Ap , and FX,Ap are all
free A-modules.

The main idea of the proofs is that the cosheaves QAp and NA
p vanish locally in the right

degrees (and under the right hypotheses), in a sense that is made clear in the remainder
of this section.

Example 7.3.1. Consider the tropical line X in TP 2 from Example 3.3.2 and Figure 3.5
in Chapter 3. Then the cosheaf Qp on TP 2 assigns the trivial Z-module to any face of
TP 2 which is also a face of X. For σ a face of TP 2 which is not a face of X, then Qppσq “
FTP 2

p pσq. The inclusion maps Qppσq Ñ Qppτq are either 0 or equal to ισ,τ : FTP 2

p pσq Ñ

FTP 2

p pτq.
For x the unique vertex of sedentarity 0 of X, the cosheaf Np assigns Nppxq “ 0 for all

p ă 2. When p “ 2, we have Nppxq “
Ź2 Z2.

For an edge σi of X the Z-module Nppσiq is a free module of rank 1, and similarly for
the three other vertices τi of X that have non-zero sedentarity.

We recall the definition of γo for a (closed) face γ of X of dimension s and sedpγq “ 0.
For each cone ρ in the fan Σ defining Y , set γρ :“ γ X Yρ and define

γ˝ :“
ğ

ρ

relint γρ.

The set γ˝ is not a polyhedral complex since the strata are not closed polyhedra, however
γo is a subpolyhedral complex of Y . The set γo is a stratified subset of Y and it can be
viewed as a poset with the order relations given by inclusions.

Lemma 7.3.2. Let X be an n-dimensional tropical hypersurface in Y , where Y is either
Rn`1 or a toric variety generated by the normal fan of the Newton polytope of X (which
we then suppose to be full-dimensional).

Then for every face γ of Y , considered with the polyhedral structure induced by X, the
stratified set γo has a unique minimal face by inclusion.

Proof. If Y “ Rn`1, we have γo “ relint γ and it is trivial.
Otherwise, this is a direct consequence of the second part of the Duality Theorem 3.2.4.

The cell γ is dual to a certain cell λ of the subdivision of the Newton polytope ∆ of X. By
definition of γo, its minimal face corresponds to the cone ρ of the fan defining Y , where ρ
is such that it is normal to the minimal face F pρq of ∆ that contains λ (using the notations
of the Duality Theorem 3.2.4).

If γ is a face of a polyhedral complex Z and G is a cellular cosheaf of A-modules (for
some commutative ring A) on Z, we can consider the cosheaf G restricted to γo even
though γo is not a polyhedral complex. Similarly to how we defined cellular cosheaves in
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Figure 7.5: A depiction of the polyhedral complexes γo for two faces γ from Example 7.3.3.

Section 3.3, the restriction G|γo is a functor from γo considered as a poset to the category
of A-modules. The groups of Borel-Moore chains of G restricted to γo are

CBMq pγo;G|γoq :“
à

dim ρ“q

Gpγρq.

The chain groups form a complex with the boundary map

B : CBMq pγo;G|γoq Ñ CBMq´1 pγ
o;G|γoq (7.3.3)

given by the cosheaf maps combined with the orientation map inherited from Z. The
homology groups of this complex are denoted HBM

q pγo;G|γoq. For simplicity, we denote by
Fγ

o

p the cosheaves Fγ
o

p |γ˝ .

Example 7.3.3. Let X be a tropical hypersurface in a 3-dimensional tropical toric variety
Y . We describe the polyhedral complexes γo for some faces γ of X. If γ is a face of X
which does not intersect any of the strata Yρ for ρ ‰ 0, then γ˝ consists of a single cell,
which is simply relintpγq. Therefore, γ˝ is combinatorially isomorphic to Rq, where q is
the dimension of γ.

Suppose that γ is a 2-dimensional face of X and γXYρ ‰ H for a unique 1-dimensional
stratum Yρ. There must be two 2-dimensional strata Yρ1 and Yρ2 of Y which contain Yρ,
moreover γ has non-empty intersection with both Yρ1 and Yρ2 . Therefore, γo consists of
four open cells and is combinatorially isomorphic to T2, see the left-hand side of Figure
7.5. If γ is 2-dimensional and intersects only a single 2-dimensional stratum Yρ, then γo

consists of two open cells and is combinatorially isomorphic to Rˆ T.
Suppose γ is a 1-dimensional face of X of sedentarity 0 such that γ X Yρ is non-empty

for a unique stratum Yρ of codimension 1. Such a situation is depicted on the right-hand
side of Figure 7.5. Then γo consists of two open cells, the 1-dimensional cell γ0 “ γ X R3

and the point γρ :“ γ X Yρ.
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In the case of such a 1-dimensional face γ, we have FYp |γopγq –
Źp Z3 and Fγ

o

p pγq –
Źp Z for all p.

Lemma 7.3.4. Let X be an n-dimensional tropical hypersurface in Y with Newton polytope
∆, where Y is either Rn`1 or a toric variety generated by the normal fan Σ of ∆, in which
case we ask that ∆ be full-dimensional and Σ be simplicial unimodular.

Consider the polyhedral structure on Y obtained by refinement by X. Let γ be a face
of Y of sedentarity 0. Then for any p and all r ‰ dim γ,

HBM
r pγo;Fγo,Ap q “ 0

for A “ Z,R.

Remark 7.3.5. If Y is the toric variety generated by Σ, the assumption that Σ should
be simplicial unimodular means that Y is non-singular. However, X is not required to be
non-singular (even though its Newton polytope is simple).

Proof. Using the Duality Theorem 3.2.4 as in the proof of Lemma 7.3.2, we consider the
cell λ dual to σ in the subdivision of ∆, and F pηq the minimal face of ∆ containing λ. The
face F pηq is dual to a cone η of Σ.

As Σ is required to be simplicial unimodular, we can assume, up to a change in coor-
dinates (induced by some element of SLpn,Zq), that η is the cone R`e1 ` . . .` R`edim η.

If we let q be the dimension of γ and k be the dimension of its minimal face γη, we
then see (thanks to the Duality Theorem 3.2.4) that the stratification on γo is isomorphic
to the stratification of Rk ˆ Tq´k (with strata corresponding to subcones of η).

Moreover, the Borel-Moore chain groups for γo are

CBMr pγo;Fγo,Ap q “
à

γρXγo‰H
dim γρ“r

p
ľ

TApγρq.

From this description, it follows that there is an isomorphism of the chain complexes for
the tropical homology of γo and the chain complexes for the cellular Borel-Moore tropical
homology groups of Rk ˆ Tq´k. Therefore, there are isomorphisms of the corresponding
homology groups.

By [JRS17], the space Rk ˆ Tq´k satisfies Poincaré duality for tropical homology and
the Borel-Moore tropical homology groups of Rq´k ˆ Tk are zero, except in degree q. The
statement of the lemma follows.

We need the following lemma regarding the cosheaves FR
p .

Lemma 7.3.6. Let P be a tropical polynomial in n ` 1 variables, such that its Newton
polytope ∆ is pn`1q-dimensional and such that the subdivision it induces on ∆ has a single
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pn ` 1q-dimensional cell (in other words, it coincides with the natural decomposition into
faces of ∆ as a polytope). Let X Ă Rn`1 be the associated tropical hypersurface, and let v
be its central vertex.

Then

FX,Rp pvq “

p
ľ

Rn`1

for 0 ď p ď n, and FX,Rn`1pvq “ 0.

Proof. The hypersurface X is a translate of the normal fan of ∆, minus its top-dimensional
cones (that correspond to Rn`1zX).

We proceed by induction on n. The statement is trivial for n “ 0; suppose now that
we have proved it for all k ă n.

If p ă n, choose any pp ` 1q-dimensional face F of ∆, and consider the associated
n ´ p cell σ. The star in X of the relative interior of σ (i.e. starXpσq “ trelintpτq | σ Ă

τ Ă Xu Ă Rn`1) is isomorphic to σ̃ ˆ Rn´p, where σ̃ Ă Rp`1 is the tropical hypersurface
associated to the restriction of P to the face F (and Rn´p corresponds to the orthogonal
complement in Rn`1 of the vector space spanned by F ). Let ṽ be the central vertex of σ̃.

Similarly to Lemma 7.2.1, we have

FX,Rp pσq –
p
à

l“0

F σ̃,Rl pṽq b

p´l
ľ

Rn´p.

By induction, dimF σ̃,Rl pṽq “
`

p`1
l

˘

for any l ď p, which shows that dimFX,Rp pσq “
řp
l“0

`

p`1
l

˘`

n´p
p´l

˘

“
`

n`1
p

˘

“ dim
ŹpRn`1. By definition, FX,Rp pσq Ă FX,Rp pvq Ă

ŹpRn`1,
which allows us to conclude in the case p ă n.

Now suppose that p “ n. Consider a vertex o of ∆; let v1, . . . , vN P Rn`1 be vectors
spanning the rays of the 1-dimensional faces of ∆ to which o belongs (one vector for
each 1-dimensional face). The family tv1, . . . , vNu is not necessarily free, but as ∆ is full-
dimensional, it spans Rn`1. Let σi be the n-dimensional cell of X dual to the face parallel
to vi (and thus perpendicular to vi).

By definition, we have
řN
i“1F

σi,R
n pσiq Ă FX,Rn pvq (as v P σi for i “ 1, . . . , N). Moreover,

Fσi,Rn pσiq –
Źn Lpσiq, where Lpσiq is the vector space spanned by σi.

Suppose that
řN
i“1F

σi,R
n pσiq Ĺ

ŹnRn`1. Using the non-degenerate pairing
ŹnRn`1ˆ

Ź1 Rn`1 ÝÑ
Źn`1 Rn`1 induced by the exterior product, we see that this implies that

there exists a non-zero vector v that belongs to each space Lpσiq; in particular, v would be
perpendicular to each vi, which yields a contradiction and allows us to conclude the case
p “ n.

Finally, the case p ą n is trivial, as FX,Rp pvq is by definition the sum of the p-th exterior
products of vector spaces spanned by cells of dimension less than or equal to n, which is
then necessarily 0.
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Remark 7.3.7. Without additional non-singularity hypotheses, we would not necessarily
have FX,Zp pvq “

Źp Zn`1 for 0 ď p ď n.

Lemma 7.3.8. Let X be an n-dimensional tropical hypersurface in Y with Newton polytope
∆, where Y is either Rn`1 or a toric variety generated by the normal fan Σ of ∆ (in which
case we ask that ∆ be full-dimensional).

For σ a face of X of dimension q and sedentarity sedpσq, we have NR
p pσq “ 0 if

p ď n´ q ´ sedpσq.
Moreover, if Y is non-singular and X is non-singular in Y , then for σ a face of X of

dimension q and sedentarity sedpσq, we have N Z
p pσq “ 0 if p ď n´ q ´ sedpσq.

Proof. Let A “ Z,R. Given a face σ of dimension q of X, the Z-module FX,Ap pσq is a
submodule of FY,Ap pσq, and the map FX,Ap pσq Ñ FY,Ap pσq is simply the inclusion map.

Let Yρ be the minimal stratum of Y such that σ is contained in Yρ. Let m “ n `

1 ´ sedpσq be the dimension of Yρ (as Y is generated by the normal fan of the Newton
polytope of X, we have m ě 1). By definition of the cosheaves FX,Ap and FY,Ap , we can
restrict ourselves to Yρ, which we can identify with Rm.

Consider first the cosheaf NR
p pσq “ F

Y,R
p pσq{FX,Rp pσq. As we are using coefficients

in R, we simply have to show that FY,Rp pσq and FX,Rp pσq have the same dimension if
p ď n´ q ´ sedpσq.

By definition, we know that

dimRFY,Rp pσq “

ˆ

m

p

˙

.

We also know, using the Duality Theorem 3.2.4, that σ is dual to a certain cell λ of
dimension m ´ q of the associated subdivision of ∆. Via the identification Yρ – Rm, and
up to a change in coordinates (corresponding to an element of SLpm,Zq), the star of the
relative interior of σ in Xρ is then isomorphic to σ̃ ˆ Rq, for some polyhedral complex
σ̃ Ă Rm´q dual to some pm´ qq-dimensional Newton polytope in Rm´q (corresponding to
the closure of λ) with a single top-dimensional cell, as in Lemma 7.3.6.

Similarly to Lemma 7.2.1, we then have

FX,Rp pσq –
p
à

l“0

F σ̃,Rl pvq b

p´l
ľ

Rq,

where v is the central vertex of σ̃, and we know from Lemma 7.3.6 that

dimRF σ̃,Rl pvq “

ˆ

m´ q

l

˙

if l ď m´ q´1 “ pn`1´ sedpσqq´ q´1 “ n´ q´ sedpσq (and 0 otherwise). This implies
that if p ď n ´ q ´ sedpσq, then dimFX,Rp pσq “

řp
l“0

`

m´q
l

˘`

q
p´l

˘

“
`

m
p

˘

, which allows us
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to conclude.
Suppose now that Y is non-singular and X is non-singular in Y .
As X is non-singular, Xρ Ă Yρ – Rm is dual to a primitive triangulation T of some

polytope in Rm (see the Duality Theorem 3.2.4). In particular, the cell σ is dual to some
unimodular (m ´ q)-simplex γ of T . Up to the action of some element of SLpm,Zq,
corresponding to a change of variables, we can assume γ to be the standard (m ´ q)-
simplex in Rm whose m´q`1 vertices are x0 :“ p0, . . . , 0q, x1 :“ p1, 0, . . . , 0q, . . . , xm´q :“

p0, . . . , 0, 1, 0, . . . , 0q.
By definition of the duality between the triangulation T and the cellular subdivision

of Xρ, the star of the relative interior of σ in Xρ is then isomorphic to Hm´q´1 ˆ Rq Ă
Rm´q ˆ Rq “ Rm, and we have

FX,Zp pσq –
p
à

l“0

FHm´q´1,Z
l pvq b

p´l
ľ

Zq Ă
p
à

l“0

l
ľ

Zm´q b
p´l
ľ

Zq –
p
ľ

Zm “ FY,Zp pσq,

as in the description from Lemma 7.2.1.
Using the canonical base te1 . . . , em´q, em´q`1, . . . , emu of Zm´q ˆ Zq – Zm and the

associated base tei1 ^ . . . ^ eipu0ďi1ă...ipďm of
Źp Zm, we immediately see from that de-

scription and the definitions of the standard tropical hyperplane Hm´q´1 and the cosheaves
FHm´q´1,Z
l (see Example 3.3.3) that FX,Zp pσq is the free sub-Z-module of FY,Zp pσq –

Źp Zm

spanned by all the elements ei1 ^ . . .^ eil ^ eil`1
^ . . .^ eip such that i1 ă . . . ă ip, that

il ď m´ q and that l ď m´ q ´ 1 (for l “ 0, . . . , p).
This implies that if p ď m´ q ´ 1 “ n´ q ´ sedpσq, then FX,Zp pσq “ FY,Zp pσq and the

quotient FY,Zp pσq{FX,Zp pσq “ N Z
p pσq is trivial.

Lemma 7.3.9. Let X be an n-dimensional tropical hypersurface in Y with Newton polytope
∆, where Y is either Rn`1 or a toric variety generated by the normal fan Σ of ∆, in which
case we ask that ∆ be full-dimensional and Σ be simplicial unimodular.

Let A P tZ,Ru. For a face γ of X of sedentarity 0, we have

HBM
q pγ˝;FX,Ap |γ˝q “ 0

for all q ‰ dim γ.

Proof. Denote by γm the unique minimal face of γ˝ (see Lemma 7.3.2) and suppose it is
contained in the stratum Yρm . Let Γ denote the star of γm in Xρm .

Using the Duality Theorem 3.2.4, we know that there is a cell λ of the subdivision of
∆ dual to X such that λ is contained in the relative interior of the face F pρmq of ∆, and
such that γm is dual to λ.

Then as a polyhedral complex, the star Γ Ă Rn`1´sedpγmq is, up to GLn`1´sedpγmqpZq,
equal to a basic open set of Γ1ˆRdim γm , where Γ1 is the tropical hypersurface in Rn`1´sedpγmq´dim γm
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dual to the closure of λ (and its face structure). For the notion of basic open set, see [JSS15,
Definition 3.7].

Moreover, the star of any other face γρ in γo is, up to GLn`1pZq, equal to a basic open
set of Γ1 ˆ Rdim γρ .

Let v be the vertex of Γ1. Then as in Lemma 7.2.1, for any face γρ in γo, we have

FX,Ap pγρq –
p
à

l“0

FΓ1,A
p´l pvq b

l
ľ

Adim γρ .

For each l from 0 to p, let Cp,l‚ (the coefficients ring A is implicit) denote the chain
complex whose terms are

Cp,lq “
à

ρ | γρ‰H
sedpγρq“dim γ´q

FΓ1,A
p´l pvq b

l
ľ

Adim γρ .

We define the boundary maps of the complex on the direct summands. If γρ1 is a face of
γρ, then the map on the direct summand is

idb πρ,ρ1 : FΓ1,A
p´l pvq b

l
ľ

Adim γρ Ñ FΓ1,A
p´l pvq b

l
ľ

Adim γρ1 ,

where πρ,ρ1 :
ŹlAdim γρ Ñ

ŹlAdim γρ1 is induced by the projection map

πρ,ρ1 : TApYρq Ñ TApYρ1q

from Formula (3.3.1). If γρ1 is not a face of γρ, then the map is 0.

As in Lemma 7.2.1, there are isomorphisms of chain complexes

CBM‚ pγo;FX,Ap |γoq –

p
à

l“0

Cp,l‚ .

By distributivity of tensor products (and because of the definition of CBM‚ pγo;Fγ
o,A

l q, see
the proof of Lemma 7.3.4), we also have the isomorphisms

Cp,l‚ – FΓ1,A
p´l pvq b C

BM
‚ pγo;Fγ

o,A
l q.

Moreover, the homology of the chain complex CBM‚ pγo;Fγ
o,A

l q vanishes except in degree
q “ dim γ by Lemma 7.3.4, so we also have HBM

q pγo,Fγ
o,A

l q “ 0 for all q ‰ dim γ. Because
the tensor product is right exact, we have HqpC

p,l
‚ q “ 0 for q ‰ dim γ and all l and p. It

now follows that HBM
q pγ˝;FX,Ap |γ˝q “ 0 for q ‰ dim γ.

Lemma 7.3.10. Let X be an n-dimensional tropical hypersurface in Y with Newton poly-
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tope ∆, where Y is either Rn`1 or a toric variety generated by the normal fan Σ of ∆, in
which case we ask that ∆ be full-dimensional and Σ be simplicial unimodular.

Let A P tZ,Ru. For a face γ of X of sedentarity 0, we have

HBM
q pγ˝;NA

p |γ˝q “ 0

for all q ‰ dim γ.

Proof. The chain groups CBMq pγ˝;NA
p |γ˝q are all zero for q ą dim γ, therefore it suffices

to prove the vanishing of the homology of the cosheaf NA
p |γ˝ in degrees strictly less than

dim γ. To do this we return to the short exact sequence from Formula (7.3.2), but restricted
to γo, namely

0 Ñ FX,Ap |γ˝ Ñ FY,Ap |γ˝ Ñ NA
p |γ˝ Ñ 0.

The idea is to show that the appropriate homology groups of the cosheaves FX,Ap |γ˝ and
FY,Ap |γ˝ vanish in order to conclude using a long exact sequence argument.

By Lemma 7.3.9, we have HBM
q pγ˝;FX,Ap |γ˝q “ 0 for q ă dim γ.

Next we will show that HBM
q pγ˝;FY,Ap |γ˝q “ 0 for q ă dim γ. By Lemma 7.3.2, there is

a unique maximal cone ρm in the fan of Y such that Yρm X γo ‰ H. Let Ỹ be the tropical
toric variety of dimension n`1 defined by the fan consisting of the single cone ρm (and its
faces). There is a correspondence between the strata of γo and the strata of Ỹ , where a q-
dimensional stratum σ of γ˝ corresponds to a pn`1´dim γ`qq-dimensional stratum σ̃ of Ỹ .
Moreover, under this correspondence we have FY,Ap |γopσq “ F Ỹ ,Ap pσ̃q. The cellular chain
complex CBM‚ pγ˝;FY,Ap |γ˝q is isomorphic to the chain complex CBM‚`n`1´dim γpỸ ;F Ỹ ,Ap q.

By Lemma 7.3.4, we have HBM
q pỸ ;F Ỹ ,Ap q “ 0 for q ă n ` 1 and therefore, it follows

that HBM
q pγ˝;FY,Ap |γ˝q “ 0 for q ă dim γ.

Considering the long exact sequence in homology to which the sequence (7.3.2) re-
stricted to γo gives rise proves that HBM

q pγo;NA
p |γoq “ 0 for all q ‰ dim γ.

7.3.2 The main proof

The major part of the proof of the Lefschetz-like Theorem 7.1.1 is split into Propositions
7.3.11 and 7.3.13 below; the theorem itself then follows easily.

Proposition 7.3.11. Let X be an n-dimensional tropical hypersurface in Y with Newton
polytope ∆, where Y is either Rn`1 or a toric variety generated by the normal fan Σ of ∆,
in which case we ask that ∆ be full-dimensional and Σ be simplicial unimodular.

Let A P tZ,Ru. Then HBM
q pY ;QAp q “ 0 for all q ă n` 1, and therefore the map

HBM
q pX;FY,Ap |Xq Ñ HBM

q pY ;FY,Ap q

is an isomorphism when q ă n and a surjection when q “ n.
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If in addition ∆ is full-dimensional, then HqpY ;QAp q “ 0 for all q ă n`1, and therefore
the map

HqpX;FY,Ap |Xq Ñ HqpY ;FY,Ap q

is an isomorphism when q ă n and a surjection when q “ n.

Remark 7.3.12. Of course, if ∆ is full-dimensional and Y comes from the normal fan
of ∆, then Y and X are compact, both types of homology groups coincide, and the second
part of the statement is an immediate consequence of the first. This remark also applies to
the next proposition.

Proof. We consider the polyhedral structure on Y given by refinement by X. For any face
σ of Y which is also a face of X, we have QAp pσq “ 0. Therefore, we have the following
isomorphisms of cellular chain complexes (see Section 3.3):

CBM‚ pY ;QAp q “
à

σPY zX

FY,Ap pσq

and
C‚pY ;QAp q “

à

σPY zX
σ compact

FY,Ap pσq.

The complement Y zX consists of connected components each of dimension n`1. Each
such connected component is equal to γo, where γ is a n ` 1 dimensional face of Y with
polyhedral structure induced by X. For γ a face of Y of dimension n ` 1, we have the
equality of cosheaves Fγ

o,A
p – FY,Ap |γo . Each face σ in Y zX is contained in γo for a unique

pn` 1q-dimensional face γ of Y . Moreover, the boundary of the face σ contained in γo is
also contained in γo. Therefore, the cellular chain complexes for QAp split and we have the
following isomorphisms,

CBM‚ pY ;QAp q “
à

dim γ“n`1

CBM‚ pγo;Fγo,Ap q

and
C‚pY ;QAp q “

à

dim γ“n`1
γ compact

CBM‚ pγo;Fγo,Ap q.

This produces the isomorphism

HBM
q pY ;QAp q “

à

dim γ“n`1

HBM
q pγo;Fγo,Ap q.

Moreover, if ∆ is full-dimensional and Y “ Rn`1, the pair pY,Xq is a cellular pair,
as proved in Lemma 3.3.6. Hence we know, as explained in Section 3.3, that we have the
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following isomorphism as well:

HqpY ;QAp q “
à

dim γ“n`1
γ compact

HBM
q pγo;Fγo,Ap q.

If ∆ is full-dimensional and Y is generated by Σ, both complexes coincides and this is
trivial, as noted in Remark 7.3.12.

It follows from Lemma 7.3.4 that HBM
q pγo;Fγ

o,A
p q “ 0 if q ‰ n ` 1, and we obtain

that HBM
q pY ;QAp q “ 0 for all q ă n ` 1 (and HqpY ;QAp q “ 0 for all q ă n ` 1 if ∆ is

full-dimensional).
A direct comparison of the respective chain complexes gives isomorphismsHBM

q pY ;FY,Ap |Xq –

HBM
q pX;FY,Ap |Xq (and HqpY ;FY,Ap |Xq – HqpX;FY,Ap |Xq if ∆ is full-dimensional). Lastly,

combining this with the long exact sequence in homology associated to the short exact se-
quence (7.3.1) and the vanishing of HBM

q pY ;QAp q (and HqpY ;QAp q if ∆ is full-dimensional)
for all q ă n` 1 allows us to finish.

Proposition 7.3.13. Let X be an n-dimensional tropical hypersurface in Y with Newton
polytope ∆, where Y is either Rn`1 or a toric variety generated by the normal fan Σ of ∆,
in which case we ask that ∆ be full-dimensional and Σ be simplicial unimodular.

Then
HBM
q pX;NR

p q “ 0

for all p` q ď n, and therefore the map

HBM
q pX;FX,Rp q Ñ HBM

q pX;FY,Rp |Xq

is an isomorphism when p` q ă n and a surjection when p` q “ n.
Moreover, if ∆ is full-dimensional, then HqpX;NR

p q “ 0 for all p`q ď n, and therefore
the map

HqpX;FX,Rp q Ñ HqpX;FY,Rp |Xq

is an isomorphism when p` q ă n and a surjection when p` q “ n.
Additionally, if X is non-singular, the same two statements hold with coefficients in Z

instead of R.

Proof. By Lemma 7.3.8, for a face σ of dimension q and sedentarity k, we have NR
p pσq “ 0

if k ď n´ q´ p, and N Z
p pσq “ 0 if k ď n´ q´ p and X is non-singular. This is in fact the

only point where the non-singularity of X is directly used when considering coefficients in
Z. For the remainder of the proof, A is implicitly meant to be either R, or Z with the
assumption that X is non-singular.

Moreover, there are no faces of X of dimension q and which have order of sedentarity
strictly greater than n ´ q (as Y is either Rn`1 or generated by the normal fan of ∆, in
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which case the Duality Theorem 3.2.4 applies). Therefore, the Borel-Moore cellular chain
groups with coefficients in NA

p can be written as

CBMq pX;NA
p q :“

n´q
à

k“maxt0,n´q´p`1u

à

dimσ“q
sedpσq“k

NA
p pσq.

Perform the change of variables k ` q “ m:

CBMq pX;NA
p q :“

n
à

m“maxtq,n´p`1u

à

dimσ“q
sedpσq“m´q

NA
p pσq. (7.3.4)

As in the proof of Proposition 7.3.11, if in addition ∆ is full-dimensional, then pY,Xq
is a cellular pair, the cellular chain complexes compute the standard homology of X and
we also have the isomorphism

CqpX;NA
p q :“

n
à

m“maxtq,n´p`1u

à

dimσ“q
sedpσq“m´q
σ compact

NA
p pσq. (7.3.5)

We now filter the cellular chain complexes for NA
p using the order of sedentarity of

faces. Set

CBMq,m pX;NA
p q :“

à

dimσ“q
sedpσqďm´q

NA
p pσq and Cq,mpX;NA

p q :“
à

dimσ“q
sedpσqďm´q
σ compact

NA
p pσq.

Notice that C‚
q,mpX;NA

p q Ă C‚
q,m`1pX;NA

p q, where the ‚ in the exponent denotes either
Borel-Moore or standard homology (with it being implied that we only consider standard
homology when ∆ is full-dimensional).

As the Duality Theorem 3.2.4 applies, the boundary operator can only increase the
order of sedentarity by at most 1. Therefore,

BC‚
q,mpX;NA

p q Ă C‚
q´1,mpX;NA

p q,

and there is a filtration of the chain complex C‚
‚ pX;NA

p q by successive chain complexes:

C‚
‚ pX;NA

p q “ C‚
‚,npX;NA

p q Ą C‚
‚,n´1pX;NA

p q Ą ¨ ¨ ¨ Ą C‚
‚,m̃pX;NA

p q Ą 0,

where m̃ “ maxtq, n ´ p ` 1u. The first and last terms of the filtration come from the
bounds on the direct sum in Equations (7.3.4) and (7.3.5).

The spectral sequence associated to this filtration (see for example A. Fomenko and
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D. Fuchs’ textbook [FF16] for more details on such constructions) for the Borel-Moore
complex has 0-th page consisting of the terms

E0
q,m –

à

dimσ“q
sedpσq“m´q

NA
p pσq. (7.3.6)

The differentials B0 : E0
q,m Ñ E0

q´1,m are induced by the usual cellular differentials. The
complex E0

‚,m is then

0 Ñ E0
m,m Ñ E0

m´1,m Ñ ¨ ¨ ¨ Ñ E0
1,m Ñ E0

0,m Ñ 0.

Notice that the differential B0 decreases the dimension of the cells by one and also increases
the sedentarity of the cells by one. A q-dimensional face of sedentarity m ´ q is in the
boundary of a unique face γ of X of dimension m and sedentarity 0 (see the Duality Theo-
rem 3.2.4). Moreover, the differential B0 is defined on the direct summands from Equation
(7.3.6) and it restricts to a non-zero mapNA

p pσq Ñ NA
p pσ

1q only if σ and σ1 are contained in
the same m-dimensional sedentarity 0 face γ of X. In this case, the map NA

p pσq Ñ NA
p pσ

1q

is the same as the one defined in (7.3.3) for the complex CBM‚ pγ˝;NA
p |γoq. Therefore, we

have an isomorphism of complexes for every m:

E0
‚,m “

à

dim γ“m
sedpγq“0

CBM‚ pγ˝;NA
p |γoq.

By Lemma 7.3.10, for a face γ of dimensionm and sedentarity 0, we haveHBM
q pγ˝;NA

p |γ˝q “

0 for q ‰ m, and the first page of the spectral sequence associated to the filtration under
consideration satisfies E1

q,m “ 0 if q ‰ m. Moreover, for m ď n ´ p, the entire complex
E0
‚,m is 0 by definition of the filtration, so E1

q,m “ 0 for all q when m ď n´ p.

Therefore, the spectral sequence E‚‚,‚ satisfies Erq,m “ 0 for any r ě 1 and q ď n ´ p.
Since E‚‚,‚ converges, we conclude that HBM

q pX;NA
p q “ 0 for p` q ď n.

The reasoning is the same forHqpX;NA
p q, under the assumption that ∆ is full-dimensional:

consider the spectral sequence associated to the filtration of the chain complex for the stan-
dard homology. The first page of this spectral sequence has terms like in Equation (7.3.6),
except that the sum is taken over the faces σ which are compact.

In order to proceed with a similar argument to that used for Borel-Moore homology,
we use the fact that if σ is compact (and thus appears in the sum), then the unique face
γ of X of sedentarity 0 which contains σ is also compact (and hence also appears in the
sum). This is true, as Y is either compact (in which case the statement is trivial), or equal
to Rn`1, in which case there are only cells of sendarity 0 and σ is equal to γ (and the
statement is once again trivial). The rest of the argument is then the same as in the case
of the Borel-Moore homology, except that we only consider compact faces of X.
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To complete the proof of the proposition, consider the long exact sequence in homology
associated to the short exact sequence in (7.3.2). Applying the vanishing statements for
HBM
q pX;NA

p q gives the isomorphisms HBM
q pX;FX,Ap q – HBM

q pY ;FY,Ap q for all p` q ă n.
This completes the proof.

We can now prove the following Theorem, which contains the statements of the Lefschetz-
type Corollaries 7.1.2, 7.1.3, 7.1.4 and 7.1.5 as sub-cases.

Theorem 7.1.1. Let X be an n-dimensional tropical hypersurface in Y with Newton poly-
tope ∆, where Y is either Rn`1 or a tropical toric variety generated by the normal fan Σ

of ∆, in which case we ask that ∆ be full-dimensional and Σ be simplicial unimodular.

Then the map induced by inclusion

i˚ : HBM
q pX;FX,Rp q Ñ HBM

q pY ;FY,Rp q

is an isomorphism when p` q ă n and a surjection when p` q “ n.

Moreover, if ∆ is full-dimensional, then the map induced by inclusion

i˚ : HqpX;FX,Rp q Ñ HqpY ;FY,Rp q

is an isomorphism when p` q ă n and a surjection when p` q “ n.

Additionally, if X is non-singular, the same two statements hold with coefficients in Z
instead of R.

Proof. This is a direct consequence of Propositions 7.3.11 and 7.3.13.

7.4 Torsion-freeness

We start this section with the proof of Proposition 7.1.6, which we state again below.

We only consider tropical (co)homology with coefficients in Z in this section; hence, we
omit to specify the coefficients ring.

For a non-singular compact complex toric variety CY , we let hp,qpCY q denote its pp, qq-
th Hodge number. Recall that hp,qpCY q “ 0 if p ‰ q and the numbers hp,ppCY q form the
toric h-vector of the full-dimensional simple polytope ∆ whose normal fan is the fan defining
CY (see [Ful93, Section 5.2]).

Proposition 7.1.6. Let Y be a pn ` 1q-dimensional non-singular compact tropical toric
variety. Then the integral tropical homology groups of Y are torsion-free.

Moreover, we have
rankHqpY ;FYp q “ hp,qpCY q
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where CY is the corresponding non-singular compact complex toric variety(i.e. they are de-
fined using the same simplicial unimodular complete fan). In particular, we have HqpY ;FYp q “
0 unless p “ q.

Proof. As Y is compact, standard and Borel-Moore homology groups coincide. For the
duration of this proof, and unlike in the previous sections, we switch to computing the
cellular homology groups of Y using the polyhedral structure on Y which is dual to the
polyhedral structure on the defining fan Σ (instead of the structure induced by some
hypersurface X).

Let us first show that HqpY ;FYp q “ 0 for all p ą q. Notice that every stratum Y σ is
compact (those strata make up the cell structure on Y ). With this cellular structure on
Y , a face Y σ of dimension q has sedentarity order n ` 1 ´ q. By definition, we have that
FYp pY σq “

ŹpFY1 pY σq where dimFY1 pY σq “ q. Therefore, we have FYp pY σq “ 0 if p ą q.
Hence the chain groups CqpY ;FYp q are equal to zero for any q ă p, which implies that
HqpY ;FYp q “ 0 for q ă p.

As noted in Subsection 3.3.2, the tropical cohomology groups are the cohomology of the
complex dual to the tropical cellular cosheaf complex (i.e. CqpX,FpXq – HompCqpX,FXp q,Zq).
Therefore, we can apply the universal coefficient theorem for cohomology (see [Hat02, The-
orem 3.2]) to get the exact sequence

0 Ñ ExtpHqpY ;FYp q,Zq Ñ Hq`1pY ;FpY q Ñ HompHq`1pY ;FYp q,Zq Ñ 0. (7.4.1)

When q ă p, we have HqpY ;FYp q “ 0, hence

Hq`1pY ;FpY q – HompHq`1pY ;FYp q,Zq.

This means that H q̃pY ;FpY q is torsion-free for all q̃ ď p, and equal to 0 for all q̃ ă p.
The tropical toric variety Y is a tropical manifold, thus Poincaré duality for tropical

homology with integral coefficients (see Theorem 3.3.7) states that

H q̃pY ;FpY q – Hn`1´q̃pY ;FYn`1´pq

for all q̃ and p. This shows that Hn`1´q̃pY ;FYn`1´pq is torsion free if q̃ ď p (which is
equivalent to n ` 1 ´ q̃ ě n ` 1 ´ p) and is trivial if q̃ ă p (which is equivalent to
n` 1´ q̃ ą n` 1´ p).

We have shown that HqpY ;FYp q is torsion free for all p, q, and trivial if p ‰ q.
We also have

χpC‚pY ;FYp qq :“
n`1
ÿ

q“0

p´1qq rankCqpY ;FYp q “ p´1qp rankHppY ;FYp q.

Let fq denote the number of strata of Y of dimension q; pf0, . . . , fn`1q is then the
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f -vector of a polytope ∆ whose normal fan Σ is the fan defining Y . For every p and q, we
have rankCqpY ;FYp q “

`

q
p

˘

fq. Therefore,

χpC‚pY ;FYp qq :“
n`1
ÿ

q“0

p´1qq
ˆ

q

p

˙

fq “ p´1qphp,

where ph0, . . . , hn`1q is the h-vector of the simple polytope ∆. By [Ful93, Section 5.2], we
have hp “ dimH2ppCY q “ hp,ppCY q, which completes the proof.

Remark 7.4.1. We needed Y to be compact so that it is automatically a cell complex (in
the sense defined in Section 3.3), in order to compute its homology using its strata as cells.
In fact, it should be possible to show that any non-singular tropical toric variety Y whose
generating fan is full-dimensional (without necessarily being complete) is a cell complex;
the proof would then be the same, showing that the tropical homology of Y is torsion-free.

We can now move on to the torsion-freeness of the tropical homology of hypersurfaces
in toric varieties, and prove Theorem 7.1.7.

Proposition 7.1.7. Let X be a non-singular n-dimensional tropical hypersurface in Y

with Newton polytope ∆, where Y is either Rn`1 or a toric variety generated by the normal
fan Σ of ∆, in which case we ask that ∆ be full-dimensional and that Σ be simplicial
unimodular.

Then both the Borel-Moore and standard integral tropical homology groups of X are
torsion free.

Proof. Suppose first that the Newton polytope ∆ of X is full-dimensional. Then both the
standard and Borel-Moore tropical homology of Y is torsion-free, as Y is either Rn`1 or
compact (as the dual fan of ∆ gives rise to Y ), in which case Proposition 7.1.6 applies.

Under that assumption, X is a cell complex in the sense of Section 3.3, and we can use
its cell structure to compute its standard tropical homology.

By applying the Lefschetz-like Theorem 7.1.1 and using the torsion-freeness of the
tropical Borel-Moore homology of Y , we directly get that HBM

q pX;FXp q is torsion-free for
p` q ă n.

As noted in Subsection 3.3.2, the tropical cohomology groups are the cohomology of
the complex dual to the tropical cellular cosheaf complexes. By the universal coefficients
theorem for cohomology (see [Hat02, Theorem 3.2]), we then have for every p and q the
following short exact sequence:

0 Ñ ExtpHn´q´1pX;FXn´pq,Zq Ñ Hn´qpX;Fn´pX q Ñ HompHn´qpX;FXn´pq,Zq Ñ 0.

If p` q ě n, then 2n´ p´ q ´ 1 ă n, and it follows from the Lefschetz-like Theorem
7.1.1 that

Hn´q´1pX;FXn´pq – Hn´q´1pY,FYn´pq.
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Since we knowHn´q´1pY ;FYn´pq to be a free Z-module, this means that ExtpHn´q´1pX;FXn´pq,Zq
is trivial. We also know that the Z-module HompHn´qpX;FXn´pq,Zq is free, as it consists
of maps to a free module. Therefore, for all p` q ě n we have

Hn´qpX;Fn´pX q – HompHn´qpX;FXn´pq,Zq

and Hn´qpX;Fn´pX q is torsion free. The tropical hypersurface X is a non-singular trop-
ical manifold, so by Poincaré duality for tropical homology with integral coefficients (see
Theorem 3.2.4), we have

Hn´qpX;Fn´pX q – HBM
q pX;FXp q

for all p, q. This, combined with the torsion freeness of Hn´qpX;Fn´pX q established above,
proves that HBM

q pX;FXp q is torsion free for all p` q ě n, and thus for all p, q.

Using Poincaré duality again, we see then that the standard tropical cohomology groups
of X are all torsion-free. By considering once more the same short exact sequence from
the universal coefficients theorem as above, we can conclude that the standard tropical
homology groups of X are all torsion-free, which is what had to be proved.

Suppose now that the Newton polytope ∆ of X is not full-dimensional, but rather of
dimension n`1´k. By our hypotheses, Y must then be equal to Rn`1. Then X is isomor-
phic to X̃ ˆ Rk, where X̃ is some non-singular pn ´ kq-dimensional tropical hypersurface
X̃ in Rn`1´k whose Newton polytope is full-dimensional in Rn`1´k (this can be seen with
the Duality Theorem 3.2.4). We know that the tropical homology of X̃ is torsion-free
from what is above; using Künneth’s formula for tropical homology (see [GS19]), we can
conclude that so is the tropical homology of X.

7.5 Computations with the χy genus

In this section, we prove Theorem 7.1.8 and Corollaries 7.1.9 and 7.1.10.

The k-compactly supported cohomology group Hk
c pCXq of a complex hypersurface

CX Ă pC˚qn`1 carries a mixed Hodge structure (see [DK86]).

The numbers ep,qc pCXq are defined to be

ep,qc pCXq :“
ÿ

k

p´1qkhp,qpHk
c pCXqq,

where hp,qpHk
c pCXqq denotes the Hodge-Deligne numbers of CX.
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The numbers ep,qc pCXq are the coefficients of the E-polynomial of CX,

EpCX;u, vq :“
ÿ

p,q

ep,qc pCXqupvq.

This polynomial has nice additive properties; see Danilov and Khovanskii’s [DK86] for
more details and useful results. The χy genus of CX is defined to be

χypCXq “ EpCX; y, 1q :“
ÿ

p,q

ep,qc pCXqyp.

We first prove the following lemma.

Lemma 7.5.1. Let X be a non-singular tropical hypersurface in a tropical toric variety
Y . Let σ be a face of X of dimension q whose relative interior is contained in a stratum
Yρ of dimension m. Then the polynomial defined by

χσpλq :“
n
ÿ

p“0

p´1qp rankFXp pσqλp.

is
χσpλq “ p1´ λq

m ´ p1´ λqqp´λqm´q.

Proof. Using the isomorphism in Lemma 7.2.1, we know that

FXp pσq –
p
à

l“0

FHm´q´1

p´l pvq b
l

ľ

TZpσq,

where v is the central vertex of the standard pm´ q ´ 1q-dimensional tropical hyperplane
Hm´q´1.

We know that rank
Źl TZpσq is equal to

`

q
l

˘

, and that as noted in Example 3.3.3, the
rank of FHm´q´1

p´l pvq is
`

m´q
p´l

˘

if p´ l ă m´ q, and 0 otherwise.
This means that

n
ÿ

k“0

p´1qk rankFHm´q´1

k pvqλk “ p1´ λqm´q ´ p´λqm´q,

and similarly that
n
ÿ

p“0

p´1qk rank

˜

k
ľ

TZpσq

¸

λk “ p1´ λqq.

Hence we obtain by tensorization that

χσpλq “
n
ÿ

p“0

p´1qp rankFXp pσqλp “
n
ÿ

p“0

p´1qp

«

p
ÿ

k“0

rank
´

FHm´q´1

p´k pvq
¯

¨ rank

˜

k
ľ

TZpσq

¸ff

λp “



7.5. COMPUTATIONS WITH THE χY GENUS 169

p1´ λqqrp1´ λqm´q ´ p´λqm´qs,

which allows us to conclude

We can now prove Theorem 7.1.8, which we first state again.

Theorem 7.1.8. Let X be a non-singular tropical hypersurface in a tropical toric variety
Y , and let CX be a complex hypersurface torically non-degenerate in a complex toric va-
riety CY such that the tropical, respectively complex polynomials defining X and CX have
the same full-dimensional Newton polytope ∆. Moreoever, let Y and CY be either Rn`1

and pC˚qn`1, or a tropical, respectively complex pn ` 1q-dimensional non-singular toric
varieties defined using the normal fan of ∆ (in which case we ask that it be simplicial and
unimodular).

Then we have

χypCXq “
n
ÿ

p“0

p´1qpχpCBM‚ pX;FXp qqyp,

and thus
p´1qpχpCBM‚ pX;FXp qq “

ÿ

q

ep,qc pCXq.

Proof. First, consider the case where Y , respectively CY , are not equal to Rn`1, respec-
tively pC˚qn`1.

The variety CX is stratified by its intersection with the open torus orbits of CY .
Moreover, the numbers ep,qc pCXq are additive along strata by [DK86, Proposition 1.6]. So
we have

ÿ

q

ep,qc pCXq “
ÿ

ρ

ÿ

q

ep,qc pCXρq

for CX “ \ρCXρ, where CXρ :“ CXXCYρ and CYρ is the open torus orbit corresponding
to the cone ρ of the fan Σ defining Y and CY .

The tropical hypersurface X admits a stratification analogous to that of CX, with
Xρ “ X X Yρ corresponding to CXρ. The Euler characteristics of the chain complexes for
cellular tropical Borel-Moore homology of X satisfy the same additivity property. Namely,

χpCBM‚ pX;FXp qq “
ÿ

ρ

χpCBM‚ pXρ;F
Xρ
p qq.

Moreover, for any face ρ of the fan Σ defining Y and CY (if they are not the tropical,
respectively algebraic torus), the fact that X and CX have the same Newton polytope
implies that CXρ and Xρ do as well; their Newton polytope is the face of the initial Newton
polytope ∆ that is dual to ρ, and CXρ, Xρ, CYρ – pC˚qn`1´dim ρ and Yρ – Rn`1´dim ρ

also satisfy the hypotheses of the theorem.
Therefore, it suffices to prove the statement for Y “ Rn`1 and CY “ pC˚qn`1, and the

case where Y and CY are compact can then be recovered by summing over their strata.



170 CHAPTER 7.

We now assume that X is in Rn`1 and CX is in pC˚qn`1. In [KS16, Section 5.2], Katz
and Stapledon give a formula for the χy genus of a torically non-degenerate hypersurface
in the torus. Their formula utilizes convex subdivisions of polytopes to refine the formula
in terms of Newton polytopes of Danilov and Khovanskii [DK86]. Note that they use the
term "schön" to describe what we call "torically non-degenerate". Let ∆ be the Newton
polytope for CX, and ∆̃ a convex subdivision (as defined in Chapter 2) of the lattice
polytope ∆ (this subdivision needs not, in general, be a primitive triangulation). Then the
formula is

χypCXq “
ÿ

FP∆̃
FĆB∆

χypCXF qp´1qn`1´dimF , (7.5.1)

where CXF is the hypersurface in the torus pC˚qn`1 defined by the polynomial obtained
by restricting the polynomial defining CX to the monomials corresponding to the lattice
points in the face F of ∆̃, and B∆ is the boundary of ∆ in Rn`1. Notice that our description
of CXF differs from the one in [KS16] up to the direct product with a torus (hence also
the sign p´1qn`1´dimF ).

In our case, ∆̃ is the subdivision induced by the tropical polynomial which gives rise
to X. In particular, it is a primitive triangulation of ∆. Then for each face F of ∆̃,
the variety CXF is the complement of a hyperplane arrangement. By either [Sha93]
or [DK86], we can see that its mixed Hodge structure is pure and that χypCXF q “
ř

pp´1qn`p dimHn`p
c pCXF qy

p.

In fact, this hyperplane arrangement complement is Cn´q ˆ pC˚qq, where dimF “

n ` 1 ´ q and Cn´q is the complement of n ` 2 ´ q generic hyperplanes in CPn´q. Using
[Zha13], we see that we have dimHn`p

c pCXF q “ dimHn´ppCXF q “ rankFXn´ppσF q, where
σF is the q-dimensional face of the tropical hypersurface X dual to F .

Therefore, we get that

χypCXF q “
ÿ

p

p´1qn`p dimHn`p
c pCXF qy

p “ yn
ÿ

p

p´1qn´p rankFXn´ppσF qyp´n “

yn
ÿ

p

p´1qp rankFXp pσF qpy´1qp “ ynp1´ y´1qqrp1´ y´1qn`1´q ´ p´y´1qn`1´qs “

y´1py ´ 1qqrpy ´ 1qn`1´q ´ p´1qn`1´qs,

using Lemma 7.5.1. Hence χypCXF q only depends on the dimension of F . We can express
Equation (7.5.1) in terms of the f -vector of bounded faces of X. Namely,

χypCXq “
n
ÿ

q“0

p´1qqy´1py ´ 1qqrpy ´ 1qn`1´q ´ p´1qn`1´qsf bq , (7.5.2)

where f bq denotes the number of bounded faces of X of dimension q, as a face F of the
triangulation ∆̃ is contained in the boundary B∆ if and only if the face σF of X dual to it
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is unbounded (see the Duality Theorem 3.2.4).

On the other hand, we can compute the Euler characteristics of the Borel-Moore chain
complexes

χpCBM‚ pX;FXp qq “
ÿ

τPX

p´1qdim τ rankFXp pτq. (7.5.3)

The star of a face τ of X is a basic open subset and satisfies Poincaré duality from
[JRS17]. Therefore, we have

rankFXp pτq “ rankH0pstarpτq;FXp q “ rankHn
c pstarpτq;F

n´p
X q

“

n
ÿ

q“0

ÿ

σĄτ,dimσ“q

p´1qn´q rankFXn´ppσq.

since rankFn´pX pσq “ rankFXn´ppσq (the last equality comes from considering the Euler
characteristics of the compactly supported cohomology of star(τ), whose only non-trivial
group is in degree n). Combining this with 7.5.3 and swapping the order of the sum, we
obtain

χpCBM‚ pX;FXp qq “
ÿ

τPX

p´1qdim τ rankFXp pτq “
ÿ

σPX

p´1qn´dimσ rankFXn´ppσq
ÿ

τĂσ

p´1qdim τ .

If σ is a bounded face of X, then
ř

τĂσp´1qdim τ “ 1, as we are computing the classi-
cal Euler characteristic of a contractible space. If σ is an unbounded face of X, then
ř

τĂσp´1qdim τ “ 0, since the one-point compactification of σ is homemorphic to a closed
ball (X is a cell complex because ∆ is full-dimensional, as in Section 7.3), and

ř

τĂσp´1qdim τ

is equal to the Euler characteristic of the one-point compactification minus 1.

Therefore, the sum in Equation (7.5.3) becomes

χpCBM‚ pX;FXp qq “
ÿ

τPX
τ bounded

p´1qn´dim τ rankFXn´ppτq.

For a face τ of dimension q, we have as before

ÿ

p

p´1qp rankFXn´ppτqyp “ p´1qnyn
ÿ

p

p´1qn´p rankFXn´ppτqyn´p “

p´1qnynp1´ y´1qqrp1´ y´1qn`1´q ´ p´y´1qn`1´qs “ p´1qny´1py ´ 1qqrpy ´ 1qn`1´q ´ p´1qn`1´qs

using Lemma 7.5.1.

We can now compare this with Equation (7.5.2), and see that

ÿ

p

p´1qpχpCBM‚ pX;FXp qqyp “
ÿ

p

ÿ

τPX
τ bounded

p´1qn´dim τ p´1qp rankFXn´ppτqyp “
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ÿ

τPX
τ bounded

p´1qn´dim τ

˜

ÿ

p

p´1qp rankFXn´ppτqyp
¸

“

ÿ

τPX
τ bounded

p´1qn´dim τ
´

p´1qny´1py ´ 1qdim τ rpy ´ 1qn`1´dim τ ´ p´1qn`1´dim τ s

¯

“

n
ÿ

q“0

p´1qqy´1py ´ 1qqrpy ´ 1qn`1´q ´ p´1qn`1´qsf bq “ χypCXq,

which concludes the proof.

Remark 7.5.2. It is easy to generalize the theorem to situations in which Y is not nec-
essarily generated by the normal fan of the Newton polytope of X but where X and Y

intersect "nicely" (and CX and CY do as well), using the additivity of both the genus χy
and the tropical Euler characteristics by summing over the strata of Y and CY .

We can now prove Corollaries 7.1.9 and 7.1.10, which we also state again.

Corollary 7.1.9. Let Y and CY be tropical, respectively complex pn ` 1q-dimensional
non-singular compact toric varieties coming from the same non-singular full-dimensional
integral polytope ∆.

Let X be a non-singular tropical hypersurface in Y (in particular, defined by a tropical
polynomial whose Newton polytope is also ∆). Let CX be a torically non-degenerate com-
plex hypersurface in CY , defined by a Laurent polynomial whose Newton polytope is ∆ as
well.

Then for all p and q we have

hp,qpCXq “ rankHqpX;FXp q.

Proof. We know (see [DK86] or [dCMM18]) that hp,qpHk
c pCY qq “ 0 if k ‰ p ` q; hence,

ep,qc pCY q “ p´1qp`qhp,qpCY q, where hp,qpCY q denotes the usual pp, qq-th Hodge number
of CY . The same is true of CX.

By combining Proposition 7.1.6 with the Lefschetz hyperplane section theorems for
tropical homology and the homology of complex hypersurfaces of toric varieties (as well as
classical results regarding Hodge structures), we have

rankHqpX;FXp q “ rankHqpY ;FYp q “ hp,qpCY q “ hp,qpCXq

for p ` q ă n. The above equations combined with the classical and tropical Poincaré
duality theorems (see Theorem 3.2.4) for X,Y,CX and CY (all are compact) establish the
same equalities when p` q ą n.
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Therefore, it only remains to prove the statement when q ` p “ n. It follows from the
tropical and complex versions of Lefschetz theorems and from Proposition 7.1.6 that for
p ă n

2 , we have

χpCBM‚ pX;FXp qq “ p´1qp rankHppY ;FYp q ` p´1qn´p rankHn´ppX;FXp q,

and
ÿ

q

ep,qc pCXq “ dimHp,ppCY q ` p´1qn dimHp,n´ppCXq.

For p ą n
2 , we have

χpCBM‚ pX;FXp qq “ p´1qp rankHp`1pY ;FYp`1q ` p´1qn´p rankHn´ppX;FXp q,

and
ÿ

q

ep,qc pCXq “ dimHp`1,p`1pCY q ` p´1qn dimHp,n´ppCXq.

For p “ n
2 , we get

χpCBM‚ pX;FXn
2
qq “ p´1q

n
2 rankHn

2
pX;FXn

2
q,

and
ÿ

q

e
n
2
,q

c pCXq “ dimH
n
2
,n
2 pCXq.

Again, using Proposition 7.1.6 on tropical toric varieties, we have

rankHppY ;FYp q “ dimHp,ppCY q.

The statement of the corollary then follows from Theorem 7.1.8.

Corollary 7.1.10. Let X be a non-singular tropical hypersurface in Rn`1 defined by a
tropical polynomial whose Newton polytope is full-dimensional. If CX is a non-singular
complex hypersurface in pC˚qn`1 with the same Newton polytope as X, then

rankHBM
q pX;FXp q “

$

’

’

’

&

’

’

’

%

řq
l“0 h

p,lpHn
c pCXqq if p` q “ n

hp,ppHn`ppCXqq if q “ n

0 otherwise.

Proof. The proof follows the same lines as the proof of Corollary 7.1.10. We know from
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[DK86] that

hp,qpHk
c ppC˚qn`1qq “

$

’

&

’

%

ˆ

n` 1

p

˙

if p “ q and k “ n` 1` p

0 otherwise .

The Borel-Moore tropical homology groups of Rn`1 satisfy HBM
q pRn`1;FRn`1

p q “ 0 if
q ‰ n` 1 and

rankHBM
n`1pRn`1;FRn`1

p q “

ˆ

n` 1

p

˙

.

The standard tropical homology groups of Rn`1 satisfy HqpRn`1;FRn`1

p q “ 0 if q ‰ 0 and

rankH0pRn`1;FRn`1

p q “

ˆ

n` 1

p

˙

.

Combining the tropical Lefschetz-like Theorem 7.1.1 and Poincaré duality for the tropical
homology of X, we deduce from this that when p` q ‰ n,

rankHBM
q pX;FXp q “

$

&

%

`

n`1
p`1

˘

if q “ n,

0 if q ‰ n
.

The hypersurface CX is a non-singular affine variety, so the Andreotti-Frankel theorem
and Poincaré duality imply Hk

c pCXq “ 0 if k ă n. By the Lefschetz-type theorems for the
Hodge-Deligne numbers on Hn

c pCXq (see [DK86, Section 3]), if k ą n, one has

hp,qpHk
c pCXqq “

$

’

&

’

%

ˆ

n` 1

p` 1

˙

if p “ q and k “ n` p

0 otherwise.

Therefore

ep,qc pCXq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p´1qnhp,qpHn
c pCXqq if p` q ď n and p ‰ q

p´1qnhp,qpHn
c pCXqq ` p´1qn`p

ˆ

n` 1

p` 1

˙

if p` q ď n and p “ q

p´1qn`p
ˆ

n` 1

p` 1

˙

if p` q ą n and p “ q

0 otherwise.

We can then conclude by applying Theorem 7.1.8.



Chapter 8

Homology of simplicial real algebraic
hypersurfaces

8.1 Chapter introduction

Let P be a real Laurent polynomial in n variables. As in Chapter 2, if P has exactly n` 1

monomials with non-zero coefficients and if its Newton polytope ∆pP q is a non-degenerate
n-dimensional simplex, we call P a simplicial real polynomial. We also call the associated
hypersurface VpC˚qnpP q a simplicial real algebraic hypersurface.

Such hypersurfaces are natural building blocks from which more complicated objects
can be constructed. For example, the combinatorial case of the Patchwork method (see
Chapter 2) consists in gluing such hypersurfaces together. Hence, a greater understanding
of their properties might help us find new bounds on the topology of patchworked vari-
eties (see Chapter 9 for more details), in the same spirit as Formula 4.5.4, in addition to
improving our understanding of simplicial real algebraic hypersurfaces themselves, which
are among the most natural and simple examples of real algebraic varieties.

In this chapter, we study the homology of a class of objects closely associated to simpli-
cial real algebraic hypersurfaces, their coamoebas; more specifically, we describe the action
of the complex conjugation on the coamoebas. Assuming that a certain conjecture, based
on an article by G. Kerr and I. Zharkov [KZ16], holds (which seems very likely), this al-
lows us to describe the action of the complex conjugation on the homology of the simplicial
real algebraic hypersurfaces themselves, and in particular to identify the conditions under
which they are Galois maximal (see Chapters 1 and 4).

Let X be a simplicial real algebraic hypersurface. In this chapter, we denote the real
(respectively, complex) points of X in pR˚qn (respectively, pC˚qn) by RX (respectively,
CX). Unless otherwise specified, all real algebraic varieties considered are hypersurfaces
in the complex torus. The complex conjugation c on the complex torus naturally acts
on CX. Our goal here is to better understand this action and the induced action c˚ on

175
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the homology H˚pCXq of CX with coefficients in Z2 (in this chapter, we always consider
homology with coefficients in Z2).

In their article [KZ16] that was mentioned above, Kerr and Zharkov show in particular
that the complex part CX of a simplicial real algebraic hypersurface is homeomorphic to
the associated phase tropical variety T X. Moreover, it is easy to see that the phase tropical
variety T X retracts by deformation to the coamoeba CX of X. Hence we get a homotopy
equivalence CX ÝÑ CX . Private conversations with Zharkov have led us to believe that
this homotopy equivalence satisfies the following condition:

Conjecture 8.1.1. Let X be a simplicial real algebraic hypersurface. There is a homotopy
equivalence φ : CX ÝÑ CX such that the following diagram commutes for all i ě 0:

HipCXq HipCXq

HipCXq HipCXq

φ˚

c˚ c˚

φ˚

where c˚ is induced by the complex conjugation on either CX or CX .

This would immediately imply

dimpImp1` c˚ : HipCXq Ñ HipCXqqq “

dimpImp1` c˚ : HipCXq Ñ HipCXqqq,

where 1 is the identity.
Our main goal here is to prove the following result, though the details of the proof

might be of interest in themselves when considering other related questions. Consider
a simplicial real algebraic hypersurface X, the Newton polytope ∆ of the simplicial real
Laurent polynomial P that defines X, and pick a vertex O of ∆. The edges of ∆ containing
O define n integer vectors (choosing 0 as their initial point). Define A PMnˆnpZ2q as the
matrix whose rows are these n vectors modulo 2.

Theorem 8.1.2. If RX intersects non-trivially each quadrant of pR˚qn, then

dimZ2pH˚pRXqq “ dimZ2

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

,

where 1` c˚ : H˚pCXq ÝÑ H˚pCXq.
Otherwise, we have

dimZ2

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

´ dimZ2pH˚pRXqq “ 2p2n´rankZ2
pAq ´ 1´ pn´ rankZ2pAqqq.

The condition on the intersection of RX with the quadrants of pR˚qn is equivalent to a
condition on the matrix A and the signs of the monomials of P , as proved in Lemma 8.5.1.
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Remember that a real algebraic variety X is Galois maximal if

dimZ2pH˚pRXqq “ dimZ2

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

,

where 1` c˚ : H˚pCXq ÝÑ H˚pCXq, as defined in Chapter 1.
If Conjecture 8.1.1 holds, then Theorem 8.1.2 immediately implies

Theorem 8.1.3. If RX intersects non-trivially each quadrant of pR˚qn, then X is always
Galois maximal.

Otherwise, we have

dimZ2

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

´ dimZ2pH˚pRXqq “ 2p2n´rankZ2
pAq ´ 1´ pn´ rankZ2pAqqq,

where 1 ` c˚ : H˚pCXq ÝÑ H˚pCXq, and X is Galois maximal if and only if n ´
rankZ2pAq P t0, 1u.

The rest of this chapter is organized as follows. In Section 8.2, we go over some
definitions and notations. In Section 8.3, the coamoeba CX associated to X is introduced
and described in a way suited to computations. In Section 8.4, the action of the conjugation
on the homology of CX is described. In particular, the rank of 1` c˚ is computed. Finally,
Theorem 8.1.2 is proved in Section 8.5.

8.2 Definitions and notations

We denote the n-dimensional torus pR{2πZqn (seen as the product of n unit circles) by
Tn, and use either additive or multiplicative notations, based on context, to describe its
natural group law. In particular, we frequently apply matrices with integer coefficients to
elements of Tn.

Given a vector of signs pε1, . . . , εnq P t1,´1un, we define δpεq “ pδ1, . . . , δnq P Zn2 by
the relation εi “ p´1qδi .

Given a finite set S, let |S| denote the cardinality of S.
We define Arg : pC˚qn ÝÑ Tn, pz1, . . . , znq ÞÝÑ pargpz1q, . . . , argpznqq.

Throughout this chapter, we use the following conventions: for any z “ pz1, . . . , znq P

Cn, any matrix G P MnˆnpZq and any vector v “ pv1, . . . , vnq P Zn, we define zv :“

zv1
1 z

v2
2 . . . zvnn P C and zG :“ pzG

1
, . . . , zG

n
q P Cn, where Gi is the i-th line of G. Choosing

lines instead of columns has the advantage of allowing us to write ArgpzGq “ G ¨ Argpzq,
and the disadvantage that for another matrix H PMnˆnpZq, we have pzGqH “ zH¨G.

Consider as above a simplicial polynomial P pzq “
ř

αP∆P
cαz

α, for some coefficients
cα P R˚, and the associated simplicial real algebraic hypersurface XP . Up to multiplication
by a non-trivial Laurent monomial (which doesn’t change XP ), the polynomial P can be
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chosen so that ∆P has 0 P Zn as one of its vertices. We assume this to be the case from
now on. Moreover, let us denote the non-null vertices of ∆P by α1

P , . . . , α
n
P P Zn, and

define AP P MnˆnpZq as the matrix whose i-th line is αiP for i “ 1, . . . , n. If we also
define α0

P :“ 0 P Zn, we can write indifferently P pzq “
ř

αP∆P
cαz

α “
ř

i“0,...,n cαiP
zα

i
P “

ř

i“1,...,n cαiP
zA

i
P ` c0.

For any G PMnˆnpZq, we define the algebraic morphism

ΦG : pC˚qn Ñ pC˚qn

z ÞÑ zG.

If G is invertible, then ΦG is an algebraic isomorphism that sends XP̃ “ tP̃ pzq “
ř

i“1,...,n cαiP
zpAP ¨Gq

i
` c0 “ 0u to XP “ tP pzq “

ř

i“1,...,n cαiP
zA

i
P ` c0 “ 0u and respects

the real structure. This means that up to such isomorphisms, we can consider the matrix
AP defining the simplex ∆P up to right-multiplication by invertible matrices with integer
coefficients.

Remark 8.2.1. The complex part CXP Ă pC˚qn of a simplicial real algebraic hypersurface
XP is smooth.

Let XP be given as above by P pzq “
ř

i“1,...,n ciz
αi ` c0, for some coefficients ci P R˚

and a simplex ∆P . Let A be the nˆ n matrix whose lines correspond to the vertices αi of
∆P and the monomials of P (for i “ 1, . . . , n). We also introduce B, the cofactor matrix
of A, and PLpzq “

ř

i“1,...,n cizi ` c0 (the L stands for "linear").
Then P pzq “ PL ˝ ΦApzq, thus ΦA : pC˚qn Ñ pC˚qn maps CXP to the hyperplane

CXPL :“ tPLpzq “ 0u. But ΦA ˝ ΦB “ ΦdetpAq¨Id : pz1, . . . , znq ÞÑ pz
detpAq
1 , . . . , z

detpAq
n q is a

local diffeomorphism, which implies that so is ΦA by a dimensional argument. Hence the
smoothness of CXP can be deduced from the smoothness of CXPL .

8.3 Coamoebas

As above and for the remainder of this chapter, let P pzq “
ř

i“1,...,n εiciz
αi ` c0, where

ε “ pε1, . . . , εnq P t1,´1un and ci P Rą0 for all i, be a simplicial real polynomial (we can
suppose without loss of generality that the constant term is positive). Let X :“ XP Ă

pC˚qn be the associated simplicial real algebraic hypersurface, and let ∆P be the Newton
polytope of P , and A be the n ˆ n matrix whose lines correspond to the vertices of ∆P

and the monomials of P , i.e. Ai “ αi.

8.3.1 Definition and description of CX

The coamoeba CX Ă Tn of X is the closure in Tn of the image ArgpCXq. The conjugation c
acts as ´ id on Tn; if we fix a representation of Tn as r0, 2πsn with its boundary quotiented
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Figure 8.1: In black, the coamoeba CX
P`
L

. In white, the open zonotope Z

as needed, which we do from now on, c is the central symmetry.
We will use the convenient description of CX given by Kerr and Zharkov in [KZ16] in the

linear case, i.e. when the coamoeba is given by an affine hyperplane, as an intermediate
step to get to the general case. Let us introduce the simplicial polynomials P`L pzq “
ř

i“1,...,n cizi ` c0 and PLpzq “
ř

i“1,...,n εicizi ` c0, where the coefficients ci and εi are the
same as in P . Name CX

P`
L

and CXPL the associated coamoebas.

Consider T :“ T 1 “ R{2πZ and identify it with the unit circle via the map E : rθs ÞÑ

exppiθq. We say that pθ1, . . . , θnq P T
n are in an allowed configuration if there is no open

half-circle in T containing all the θi as well as the point 1 “ Er0s ( which corresponds to
the constant term).

A zonotope is the Minkowski sum in Rn of a finite collection of segments. Now consider
such a zonotope Z̃; if the quotient map Rn ÝÑ Tn “ pR{2πZqn restricted to the interior
of Z̃ is an embedding, we call in the rest of this chapter, by extension, the image Z of the
interior of Z̃ an (open) zonotope of Tn.

Lemma 8.3.1. The points of CX
P`
L

are exactly the n-tuples pθ1, . . . , θnq P T
n in allowed

configurations. There is an n-dimensional zonotope Z̃ in Rn, generated by n` 1 segments,
such that the quotient map Rn ÝÑ Tn “ pR{2πZqn restricted to the interior of Z̃ is an
embedding, and such that the open zonotope Z of Tn which is the image of the interior of
Z̃ is the complement of the points in allowed configurations (see Figure 8.1).

The proof is almost trivial - see [KZ16] for related details. Note that Z is contractible
in Tn, hence pTn, CX

P`
L

q is of the same homotopy type as pTn, Tnzt‹uq.

We now consider the slightly more general case of CXPL . Let δ “ pδ1, . . . , δnq :“

δpε1, . . . , εnq P Zn2 be as in Section 8.2.

Lemma 8.3.2. The coamoeba CXPL is a translate of CX
P`
L

by π ¨ δ P Tn, i.e. CXPL “
CX

P`
L

` π ¨ δ Ă Tn.
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The zonotope of forbidden configurations from Lemma 8.3.1 has simply been translated;
the proof is once again almost trivial.

Let us now consider the general case of CX .

Lemma 8.3.3. Using the same notations as above, the coamoeba CX is the preimage of
the coamoeba CXPL by the map A¨ : Tn ÝÑ Tn, i.e. CX “ A´1pCXPL q.

Proof. First, let us show that ArgpCXq “ A´1pArgpCXPLqq.

Indeed, if θ “ pθ1, . . . , θnq P ArgpCXq, by definition there exists r “ pr1, . . . , rnq P

pRą0q
n such that z :“ pr1θ1, . . . , rnθnq belongs to CX, i.e. P pr1θ1, . . . , rnθnq “

ř

i“1,...,n εicir
AiθA

i
`

c0 “ PLpr
A1
θA

1
, . . . , rA

n
θA

n
q “ 0. Hence prA1

θA
1
, . . . , rA

n
θA

n
q P CXPL and θA “ A ¨ θ

belongs to ArgpCXPLq.

Conversely, suppose that A ¨ θ P ArgpCXPLq. Then by definition there exists s “
ps1, . . . , snq P pRą0q

n such that PLps1θ
A1 , . . . , snθ

Anq “
ř

i“1,...,n εicisiθ
Ai ` c0 “ 0. If

there exists r “ pr1, . . . , rnq P pRą0q
n such that rA “ s, then z :“ pr1θ1, . . . , rnθnq is such

that P pzq “ 0 and we can conclude that θ P ArgpCXq. Now consider the cofactor matrix
B of A, and

pRą0q
n ΦB
ÝÝÑ pRą0q

n ΦA
ÝÝÑ pRą0q

n

r “ pr1, . . . , rnq ÞÝÑ rB ÞÝÑ prBqA “ rdetpAq “ pr
detpAq
1 , . . . , rdetpAqn q.

This clearly shows that ΦA is surjective from pRą0q
n onto itself; thence we have shown

that ArgpCXq “ A´1pArgpCXPLqq.

As A¨ : Tn ÝÑ Tn is continuous, we immediately have that CX “ ArgpCXq Ă
A´1pArgpCXPLqq “ A´1pCXPL q. Following the same reasoning as in Remark 8.2.1, the
map A¨ : Tn ÝÑ Tn is a local diffeomorphism, because pABq¨ “ pdetpAq ¨ Idq¨ : Tn ÝÑ Tn

is a local diffeomorphism, where B is the comatrix of A. Consider θ P A´1pArgpCXPLqq, an
open neighborhood U Ă Tn of θ such that pA¨q|U is an embedding, and some open neighbor-
hood V Ă Tn of θ. Then A ¨ pU XV q is an open neighborhood of A ¨ θ P ArgpCXPLq, hence
there exists ρ P A ¨ pU X V q XArgpCXPLq. Then ppA¨q|U q

´1pρq P V XA´1pArgpCXPLqq “

V XArgpCXq, which shows that θ P ArgpCXq.

8.3.2 A more explicit description of CX

It is well-known (for example, using the theorem of structure of finitely generated abelian
groups) that there exists two (non-uniquely defined) invertible matrices G,H P MnˆnpZq
such that

G ¨A ¨H “ D “

»

—

—

–

d1 0
. . .

0 dn

fi

ffi

ffi

fl

,
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where d1|d2| . . . |dn P Z and d1d2 . . . dk is the greatest common divisor of the non-trivial
k-minors of A (for k “ 1, . . . , n).

Consider δG “ G ¨ δ P Zn2 , where δ “ δpε1, . . . , εnq P Zn2 is as above.
We partition t1, . . . , nu in the following way:

I0,0 :“ ti P t1, . . . , nu | δGi ” r0s2, di ” r0s2u,

I1,0 :“ ti P t1, . . . , nu | δGi ” r1s2, di ” r0s2u,

I0,1 :“ ti P t1, . . . , nu | δGi ” r0s2, di ” r1s2u,

I1,1 :“ ti P t1, . . . , nu | δGi ” r1s2, di ” r1s2u.

For the remainder of this chapter, we fix two such matrices G and H. Moreover, as
observed in Section 8.2, we can consider A up to right-multiplication by invertible matrices
with integer coefficients: hence we can, and do, assume thatH is the identity matrix. Hence
from now on we have

A “ G´1 ¨D.

Then CX lends itself to the following description: define the set of indices Ω :“

t0, . . . , d1 ´ 1u ˆ . . . ˆ t0, . . . , dn ´ 1u and let ĂδG P t0, 1un be the unique lifting of δG.
Let also ČG ¨ CXPL be the preimage of G ¨ CXPL by the quotient map r0, 2πsn ÝÑ Tn (see
the left part of Figure 8.2).

Cover r0, 2πsn with d1 . . . dn hyperrectangular cells Cα :“ rα1
2π
d1
, pα1 ` 1q2π

d1
s ˆ . . . ˆ

rαn
2π
dn
, pαn` 1q2π

dn
s for α “ pα1, . . . , αnq P Ω. Define ĂCX Ă r0, 2πsn as the set such that the

pair pCα, Cα X ĂCXq is mapped to the pair pr0, 2πsn, ČG ¨ CXPL q by pz1, . . . , znq ÞÑ pd1z1 ´

α12π, . . . , dnzn ´ αn2πq (see the right part of Figure 8.2). Then

Proposition 8.3.4. The pair pTn, CXq is the image of pr0, 2πsn, C̃Xq by the quotient map
r0, 2πsn ÝÑ Tn.

The coamoeba CX is the complement in Tn of d1 . . . dn open zonotopes indexed by the
set of indices Ω, such that the center of zonotope Zα, for α “ pα1, . . . , αnq P Ωq, is in
π ¨ pĂδG1{d1, . . . ,

ĂδGn{dnq ` 2π ¨ pα1{d1, . . . , αn{dnq P T
n. Those zonotopes are translate of

each other.

Proof. From Lemma 8.3.3, we know that CX “ A´1pCXPL q “ D´1pG ¨ CXPL q.
As explained in Lemmas 8.3.1 and 8.3.2, the coamoeba CX

P`
L

is the complement in Tn

of an open zonotope centered in 0, and CXPL is the complement in Tn of the same zonotope
translated and now centered in pδ1π, . . . , δnπq “ π ¨ δ P Tn.

The linear isomorphism G is then applied to it, so that G ¨ CXPL is the complement in
Tn of an open zonotope (geometrically the starting zonotope deformed by G) centered in
π ¨ δG P Tn. The last step is to take the preimage by the covering map D¨ : Tn ÝÑ Tn.
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Figure 8.2: On the left, ČG ¨ CXPL . On the right: the coamoeba CX in black and the
zonotopes in white.

8.4 Homological computations

Let us now study the action of the conjugation c on CX , using the description from Propo-
sition 8.3.4. As pointed out earlier, c simply acts as the central symmetry on Tn seen as
an appropriate quotient of r0, 2πsn. It maps CX to itself, and zonotopes to one another.
Let us describe that action more precisely.

8.4.1 Action of the conjugation on the zonotopes

Let α “ pα1, . . . , αnq P Ω “ t0, . . . , d1 ´ 1u ˆ . . .ˆ t0, . . . , dn ´ 1u. We define cpαq P Ω as
the index such that Zcpαq “ cpZαq. Then:

If i P I0,0, then cpαqi is the unique lifting to t0, . . . , di´ 1u of rdi´αisdi . In particular,
notice that cpαqi “ αi if and only if αi P t0, di{2u.

If i P I0,1 , then cpαqi is the unique lifting to t0, . . . , di´1u of rdi´αisdi . In particular,
notice that cpαqi “ αi if and only if αi “ 0.

If i P I1,0, then cpαqi “ pdi ´ 1q ´ αi. In particular, notice that cpαqi is never equal to
αi.

If i P I1,1, then cpαqi “ pdi ´ 1q ´ αi. In particular, notice that cpαqi “ αi if and only
if αi “ pdi ´ 1q{2.

Denote by F :“ tα P Ω|cpαq “ αu the set of fixed points of c. If |I1,0| ‰ 0, then
F “ H. If |I1,0| “ 0, there are 2|I

0,0| fixed points: the indices β P Ω such that βi P t0, di{2u
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if i P I0,0, βi “ 0 if i P I0,1 and βi “ pdi ´ 1q{2 if i P I1,1.

8.4.2 Homology of CX

Denote by Γ1, . . . ,Γn P Hn´1pT
nq the n homology classes induced by the pn´1q-dimensional

tori trθis “ 0u Ă Tn. They form a basis of Hn´1pT
nq.

Using a Mayer-Vietoris long exact sequence, it is easy to see that

HkpCXq
in˚
ÝÝÑ HkpT

nq,

where in˚ is induced by the inclusion, is an isomorphism for k “ 0, . . . , n ´ 2, and that
HkpCXq “ 0 for k ě n. As the conjugation acts trivially on the homology of Tn (with
coefficients in Z2) and as it is compatible with the inclusion, this shows that

1` c˚ : HkpCXq ÝÑ HkpCXq

is trivial for k “ 0, . . . , n´ 2.
We also get a short exact sequence

0 ÝÑ HnpT
nq ÝÑ Hn´1p

ğ

αPΩ

BZαq ÝÑ Hn´1pCXq ÝÑ Hn´1pT
nq ÝÑ 0,

where BZα is the border of zonotope Zα, which is homeomorphic to a pn´1q-sphere. From
it, we deduce the following lemma:

Lemma 8.4.1. Given B1, . . . Bn P Hn´1pCXq such that in˚pBiq “ Γi for all i, we have an
isomorphism

Hn´1pCXq –

˜

à

i“1,...,n

Z2 ¨Bi

¸

‘

ˆÀ

αPΩ Z2 ¨ rBZαs

Z2 ¨
ř

αPΩrBZαs

˙

.

We already know that c˚prBZαsq “ rBZcpαqs (as we consider homology with coefficients
in Z2, we need not concern ourselves with orientation), where cpαq is as above - we only
need to find suitable classes Bi and describe how c˚ acts on them.

Let us define Bi, for i P t1, . . . , nu. Consider the pn ´ 1q-dimensional torus trθis “
0u Ă Tn, and the set Ii of intersections between trθis “ 0u and the open zonotopes of
the complement of CX in Tn. Notice that a given zonotope Zα can intersect several times
trθis “ 0u - each of these intersections appears as a distinct element of Ii. Call Nipαq the
number of such intersections. We would like to define Bi as the class of trθis “ 0u, with a
modification (since trθis “ 0u is in general not included in CX).

For each intersection γ P Ii, let αpγq Ă Ω be the index of the zonotope corresponding to
γ. The intersection γ of trθis “ 0u and Zαpγq cuts BZαpγq in two (topological) half-spheres
of dimension n´ 1. Call S`γ the half-sphere that lies in the direction ei of trθis “ 0u, and
S´γ the one lying in direction ´ei .



184 CHAPTER 8.

Figure 8.3: As a black broken line, the cycle ĂB1. In that example, I1 is of cardinal 4.

We start our construction with trθis “ 0u. For each γ P Ii, we remove the intersection
trθis “ 0u

Ş

Zαpγq, and we add S`γ . Thus we obtain a pn´ 1q-cycle - name it ĂBi and name
its class Bi. Observe that parts of the border of a given zonotope Zα can appear several
times in ĂBi: in other words, there can be several S`γ that are subsets of the same Zα (with
non-trivial intersections). Notice also that S`γ can be homotopically contracted in Tn to
the intersection trθis “ 0u

Ş

Zαpγq. Thus Bi is a lift of Γi, as required. This construction
is illustrated in Figure 8.3.

8.4.3 Image of 1 ` c˚

We want to compute the image of 1` c˚ : Hn´1pCXq ÝÑ Hn´1pCXq, and in particular its
dimension. Using the description in Lemma 8.4.1, we see that

Imp1` c˚q “
ÿ

i“1,...,n

Z2 ¨ pp1` c˚qpBiqq `
ÿ

αPΩ

Z2 ¨ rBZα ` BZcpαqs (8.4.1)

Let us make some observations about the image of Bi under c˚. It is the class of
the mirror image by central symmetry of ĂBi. This means that it consists of trθis “ 0u,
without the intersections trθis “ 0u

Ş

Zαpγq (for γ P Ii), and with all the S´γ , i.e. the half-
spheres lying in the direction ´ei. Thus Bi ` c˚pBiq “

ř

γPIi
rBZαpγqs (since by definition

S`γ ` S
´
γ “ BZα) - each BZα appears Nipαq times.

It would be possible to compute Nipαq exactly. However, we only want to compute the
image of 1` c˚ - the following observations suffice for our purpose.
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Since we are considering coefficients in Z2, we only have to pay attention to the parity
of Nipαq. Let us define Ji :“ tα P Ω | Nipαq ” r1s2u. The number of intersections
Nipαq depends only on the length of the zonotope Zα in the direction ei (which is the same
for all α) and on the i-th coordinate of the center of Zα, i.e. on αi.

As we only have to consider the coordinate αi and because of the symmetry of the
situation, it is clear that if β P Ji, then cpβq P Ji. Consider the description (8.4.1) of
Imp1` c˚q; if β ‰ cpβq, we have

BZβ ` BZcpβq P
ÿ

αPΩ

Z2 ¨ rBZα ` BZcpαqs.

Thus for any i P t1, . . . , nu we get

Z2 ¨ pp1` c˚qpBiqq `
ÿ

αPΩ

Z2 ¨ rBZα ` BZcpαqs “

Z2 ¨
ÿ

βPJi

rBZβs `
ÿ

αPΩ

Z2 ¨ rBZα ` BZcpαqs “

Z2 ¨
ÿ

βPJiXF

rBZβs `
ÿ

αPΩ

Z2 ¨ rBZα ` BZcpαqs,

where as above F is the set of fixed elements β P Ω.
We need to determine for all i P t1, . . . , nu the set Ji X F . Doing so will allow us to

prove the following lemma.

Lemma 8.4.2. If |I1,0| ‰ 0, the image of 1` c˚ is
ř

αPΩ Z2 ¨ rBZα ` BZcpαqs.
If |I1,0| “ 0,

Imp1` c˚q “
ÿ

iPI0,0

Z2 ¨ pp1` c˚qpBiqq `
ÿ

αPΩ

Z2 ¨ rBZα ` BZcpαqs.

Proof. Indeed, as noted in Subsection 8.4.1, there are no fixed points if |I1,0| ‰ 0.
Let us now consider the case |I1,0| “ 0.
If i P I0,0, β P Ji for all β such that βi “ 0, and β R Ji for all β such that βi “ pdi´1q{2.

In particular, Ji X F is the set of cardinality 2|I
0,0|´1 of all β P Ω such that βi “ 0,

βj P t0, dj{2u if j P I0,0 ´ tiu, βj “ 0 if j P I0,1 and βj “ pdj ´ 1q{2 if j P I1,1.
If i P I0,1, β P Ji for all β such that βi “ 0. In particular, Ji X F “ F . Remember

Lemma 8.4.1; we have
ř

αPΩrBZαs “ 0 in Hn´1pCXq. Then,

ÿ

αPF

rBZαs “
ÿ

αPF

rBZαs `
ÿ

αPΩ

rBZαs Ă
ÿ

αPΩ

rBZα ` BZcpαqs.

This implies that Z2 ¨ pp1` c˚qpBiqq Ă
ř

αPΩ Z2 ¨ rBZα ` BZcpαqs.
If i P I1,1, β R Ji for all β such that βi “ pdi ´ 1q{2. In particular, Ji X F “ H .
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Using description (8.4.1) , we can conclude.

8.4.4 Rank of 1 ` c˚

Let us compute the rank of 1` c˚. We get the following proposition.

Proposition 8.4.3. If |I1,0| ‰ 0,

dimpImp1` c˚qq “
d1 . . . dn

2
´ 1.

If |I1,0| “ 0,

dimpImp1` c˚qq “ |I
0,0| `

d1 . . . dn ´ 2|I
0,0|

2
.

Proof. We will first compute the dimension of

ÿ

i“1,...,n

Z2 ¨ pp1` c˚qpBiqq `
ÿ

αPΩ

Z2 ¨ rBZα ` BZcpαqs

in
˜

à

i“1,...,n

Z2 ¨Bi

¸

‘

˜

à

αPΩ

Z2 ¨ rBZαs

¸

,

then quotient by Z2 ¨
ř

αPΩrBZαs to get the dimension in Hn´1pCXq (see Lemma 8.4.1).
Denote by Ω̃ Ă Ω a set defined as such: for each pair of elements tα, cpαqu, where

α P ΩzF , choose exactly one element to be included in Ω̃. Thus
ř

αPΩ Z2 ¨ rBZα`BZcpαqs “
ř

αPΩ̃ Z2 ¨ rBZα ` BZcpαqs. This sum is clearly a direct sum before quotienting.
If |I1,0| ‰ 0, then Imp1 ` c˚q “

ř

αPΩ Z2 ¨ rBZα ` BZcpαqs “
ř

αPΩ̃ Z2 ¨ rBZα `

BZcpαqs. When we quotient by Z2 ¨
ř

αPΩrBZαs, the dimension decreases by exactly one, as
ř

αPΩrBZαs P
ř

αPΩ̃ Z2 ¨ rBZα ` BZcpαqs (since there is no fixed point). Hence

dimpImp1` c˚qq “ |Ω̃| ´ 1 “
d1 . . . dn

2
´ 1.

If |I1,0| “ 0, we can see that

ÿ

iPI0,0

Z2 ¨ pp1` c˚qpBiqq `
ÿ

αPΩ̃

Z2 ¨ rBZα ` BZcpαqs

is actually a free sum before quotienting. Indeed, suppose that for each α P Ω̃ (respectively,
i P I0,0) there is λα P Z2 (respectively, λi P Z2), not all 0, such that

ÿ

iPI0,0

λip1` c˚pBiqq `
ÿ

αPΩ̃

λαrBZα ` BZcpαqs “ 0. (8.4.2)

For i P I0,0, consider β defined by βi “ 0, βj “ dj{2 if j P I0,0 ´ tiu, βj “ 0 if j P I0,1

and βj “ pdj ´ 1q{2 if j P I1,1. As explained in the description of Ji X F in the proof
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of Lemma 8.4.2, the class rBZβs only appears in pp1 ` c˚qpBiqq among all the terms of
equation (8.4.2). Thus λi is necessarily 0. We can then conclude from the independence
of the family trBZα ` BZcpαqsuαPΩ̃ before the quotient that all λα are 0, which proves our
point.

Consider β P Ω defined by βj “ dj{2 if j P I0,0, βj “ 0 if j P I0,1 and βj “ pdj ´ 1q{2

if j P I1,1. Since rBZβs appears in
ř

αPΩrBZαs but not in
ř

iPI0,0 Z2 ¨ pp1 ` c˚qpBiqq `
ř

αPΩ̃ Z2 ¨ rBZα`BZcpαqs (once again going back to the proof of Lemma 8.4.2), we see that
ř

αPΩrBZαs R
ř

iPI0,0 Z2 ¨ pp1 ` c˚qpBiqq `
ř

αPΩ̃ Z2 ¨ rBZα ` BZcpαqs. This means that the
dimension of

ř

iPI0,0 Z2 ¨ pp1` c˚qpBiqq `
ř

αPΩ̃ Z2 ¨ rBZα ` BZcpαqs does not decrease when
we quotient. Thus

dimpImp1` c˚qq “ |I
0,0| ` |Ω̃| “ |I0,0| `

|Ω| ´ |F |

2
“ |I0,0| `

d1 . . . dn ´ 2|I
0,0|

2
,

as stated.

8.5 Galois maximality

We are still using the notations of the previous sections.
To prove Theorem 8.1.2, we need to compare dimZ2

´

Kerp1`c˚q
Imp1`c˚q

¯

and dimZ2pH˚pRXqq.
We consider H˚pRXq first, with the following lemma.

Lemma 8.5.1. The real part RX Ă pR˚qn consists of 2n contractible connected components
if δ “ δpεq P Z2

n is not in the image of A¨ : Z2
n ÝÑ Z2

n, and of 2n´2n´rankpAq contractible
connected components if it is. Thus H˚pRXq is of Z2-dimension 2n if δ R ImpAq and of
Z2-dimension 2n ´ 2n´rankpAq if δ P ImpAq.

Proof. Consider the 2n quadrants of pR˚qn, and let γ “ pγ1, . . . , γnq P t1,´1un index the
quadrant Qγ :“ tpx1, . . . , xnq P pR˚qn|x1γ1 ą 0, . . . , xnγn ą 0u. Consider as in Section 8.3
the real polynomial PLpzq “

ř

i“1,...,n εicizi`c0 associated to P pzq “
ř

i“1,...,n εiciz
Ai`c0.

Then the map

ΦA´1 : Qp1,...,1q Ñ Qp1,...,1q

z ÞÑ zA
´1
,

where we extend the notation to include rational exponents, is a well defined homeomor-
phism that maps RXPL XQp1,...,1q to RX XQp1,...,1q. In particular, RX XQp1,...,1q is empty
if εi “ 1 for all i P t1, . . . , nu, and is non-empty and contractible otherwise. Now observe
that RX XQγ is isomorphic to RXPγ XQp1,...,1q, where Pγpzq :“

ř

i“1,...,n εiγ
Aiciz

Ai ` c0.
Since δpε1γ

A1 , . . . , εnγ
Anq “ δpεq`A ¨δpγq, we see that RXXQγ is empty if δpεq “ A ¨δpγq,

and non-empty and contractible otherwise.
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The following lemma links the conditions of Theorem 8.1.2, Lemma 8.4.2 and Propo-
sition 8.4.3.

Lemma 8.5.2. The real part RX intersects non-trivially each quadrant of pR˚qn if and
only if δ R ImpAq if and only if |I1,0| ‰ 0.

Proof. The first equivalence comes from Lemma 8.5.1. Then

δ P ImpAq ðñ Dx P Z2
n s.t. A ¨ x “ G´1 ¨D ¨ x “ δ ðñ

Dx P Z2
n s.t. D ¨ x “ G ¨ δ “ δG ðñ δG P ImpDq ðñ

pδGqi “ 0 @i s.t. di “ r0s2 ðñ |I1,0| “ 0.

We are now ready to prove the main result.

Proof of Theorem 8.1.2. As mentioned at the beginning of Subsection 8.4.2, 1 ` c˚ :

HkpCXq ÝÑ HkpCXq is trivial for k ‰ n ´ 1. Moreover, we know that HkpCXq is iso-
morphic to HkpT

nq for k ‰ n´1, and that dimpHn´1pCXqq “ n`d1 . . . dn´1 (as is shown
by Lemma 8.4.1).

Therefore, from Proposition 8.4.3 and Lemmas 8.5.1 and 8.5.2, we see that if RX
intersects non-trivially each quadrant of pR˚qn,

dim

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

“ dimpH˚pCXqq ´ 2 dimpImp1` c˚qq “

2n ´ 1` pd1 . . . dn ´ 1q ´ 2

ˆ

d1 . . . dn
2

´ 1

˙

“ 2n “ dimpH˚pRXqq.

Otherwise, we have by definition of the sets I˘1,˘1 in Section 8.3 that rankZ2p∆P q “

rankZ2pAq “ |I
0,1| ` |I1,1| “ n´ |I0,0| (since |I1,0| “ 0q and

dim

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

“ dimpH˚pCXqq ´ 2 dimpImp1` c˚qq “

2n ´ 1` pd1 . . . dn ´ 1q ´ 2

˜

|I0,0| `
d1 . . . dn ´ 2|I

0,0|

2

¸

“

2n ´ 2´ 2pn´ rankZ2pAqq ` 2n´rankZ2
pAq,

hence

dim

ˆ

Kerp1` c˚q

Imp1` c˚q

˙

´ dimpH˚pRXqq “

2n ´ 2´ 2pn´ rankZ2pAqq ` 2n´rankZ2
pAq ´ p2n ´ 2n´rankpAqq “

2p2n´rankZ2
pAq ´ 1´ pn´ rankZ2pAqqq.
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This ends the proof.
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Chapter 9

Additional constraints on the
topology of hypersurfaces obtained
by combinatorial patchworking

9.1 Chapter introduction

This last chapter is a continuation of Chapter 4, and we retain the same assumptions
and notations. Rather than completed results, we explain here what we think might be
potential ways to make use of the constructions detailed in Chapter 4, in particular the
bound from Formula (4.5.2), which we restate:

dimZ2 HqpRXt;Aq ď
ÿ

p

dimZ2 HqpX;E8,Kap q. (9.1.1)

As explained in the Introduction, there is a principle of sorts that suggests that the
q-th Betti number of the real part of an n-dimensional real algebraic variety X should be
expected to be bounded by the (q, n ´ q)-th Hodge number of CX (possibly with some
small correction). Viro’s conjecture, which was mentioned in Chapter 4, exemplifies this
principle.

Of course, this principle, in general, is wrong, and by a large margin, as shown in Chap-
ter 6. However, it does hold under certain constraints, such as when X is a non-singular
hypersurface in a suitable toric variety obtained by primitive combinatorial patchworking,
in which case Formula (4.5.4) does state that bqpRXq ď hq,n´1´qpCXq ` 1 ´ δi,n´1

2
. It is

natural, then, to try to relax slightly that condition.
We call a convex triangulation of an integer polytope ∆ maximal if the only integer

points contained in any simplex of the triangulation are its vertices. Note that this is not
related to the definition of a maximal real algebraic variety.

In ambient dimension 3, Itenberg showed in [Ite97] that if Xt is a real projective

191
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algebraic surface obtained via patchworking using a maximal triangulation, then

b1pRXtq ď h1,1pCXtq.

Moreover, the principle still holds for b0pRXtq, up to a correction, as we have

b0pRXtq ď 1` h0,2pCXtq `N8,

with N8 being the number of 3-dimensional simplices Γ in the triangulation such that
VpR˚q3pQΓq has 8 connected components (where QΓ is one of the polynomials being patch-
worked and Γ is its Newton polytope).

A correction is indeed necessary, as the following example shows that the bound
b0pRXtq ď 1` h0,n´1pCXtq fails in all dimensions n ě 3 for maximal triangulations.

Example 9.1.1. Consider the standard simplex ∆ Ă Rn of side length n in dimension n
(for n ě 3), and the point P :“ p1, . . . , 1, 0q P ∆. For each ε “ pε1, . . . , εn´1q P t1,´1un´1,
consider the (n´ 1)-dimensional simplex

∆ε :“ ConvpP, P ` e1ε1, . . . , P ` en´1εn´1q,

where ei is the i-th vector of the canonical basis of Rn. Let T be a maximal triangulation
of ∆ containing the n-dimensional simplices ∆̃ε :“ Convpp0, . . . , 0, 2q,∆εq (for each ε P

t1,´1un´1), and choose a sign distribution on ∆ X Zn such that each vertex of each
simplex ∆̃ε has sign `, except P , whose sign is ´. This is illustrated in Figure 9.1. Let
also p0, 0, 3q have sign ´. By applying combinatorial patchworking to this construction,
we get a hypersurface Y in Pn such that RY has at least two connected components: one
is a sphere "around P", and one passes "in between p0, 0, 2q and p0, 0, 3q" (see Section
2.3); hence b0pRY q ě 2. On the other hand, one can see (with Formula (6.2.1)) that
h0,n´1pCY q “ 0. Thus, b0pRY q ą 1` h0,n´1pCY q.

Example 9.1.1 shows that the bounds from the primitive case might not hold under
looser conditions. Let us look once more at Diagram 4.5.3, which we display again:

CqpX;CUZ2
p q HqpX;CUZ2

p q HlpCXt;Z2q

CqpX; Kerp1`c˚qImp1`c˚q
q

CqpX;E8,Kap q HqpX;E8,Kap q HqpRXt;Z2q

LS

Ka

LS
ř

p`q“l

Ka

HA HA
ř

p

(9.1.2)

We see that the two main obstacles to connecting the homology of RXt to that of CXt

are understanding the passage from HqpX;CUZ2
p q to H˚pCXt;Z2q, i.e. the Leray-Serre
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Figure 9.1: Construction from Example 9.1.1 in dimension n “ 3.

spectral sequence of CXt, and relating HqpX;CUZ2
p q and HqpX;E8,Kap q.

One could directly try to adapt classical degeneration results to our special type of
Leray-Serre spectral sequence, or compare HqpX;CUZ2

p q and HqpX;E8,Kap q, for example
using generalized spectral sequences (see [Mat13]).

The primitive case also suggests the use of three types of tools: the first type would be
Lefschetz-like theorems regarding the homology of various cosheaves (in particular CUZ2

p

and E8,Kap ) on X, in the same spirit as Section 7.3, though a similar proof might not
work (as it is not clear which cosheaf to choose on the ambient space in order to make
a comparison). Poincaré duality theorems for those cosheaves would also prove useful.
The only statements that we have for now require the triangulation to be primitive, but it
might be possible to adapt them. Finally, one can compare various Euler characteristics,
such as that of the complex C‚pX;CUZ2

p q, as in Section 7.5.

We look at surfaces in ambient dimension 3 in Section 9.2 for inspiration, and discuss
what could be done in higher dimension in Section 9.3.

9.2 The case of surfaces

We consider, as Itenberg did in [Ite97], the case of a maximal triangulation T of the
standard 3-dimensional simplex ∆ of side length d.

Given a simplex Γ with integer vertices (not necessarily in ambient dimension 3), let O
be any of its vertices, and consider the vectors corresponding to the edges of Γ containing
O (and having O as their origin). Let A be the matrix with coefficients in Z2 whose lines
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are those vectors modulo 2, and define the rank of the simplex as the rank of A.

Maximal triangulations have the special property, in ambient dimension 3, that each of
their simplex Γ of dimension strictly less than 3 has rank equal to its dimension. This also
means that simplices of dimension 3 are of rank at least 2. In particular, if Conjecture 8.1.1
does hold, then Theorem 8.1.3 immediately implies that each space Oσ is Galois maximal
(in fact, this can also be proved directly).

We get that E8,Kap is isomorphic as a cosheaf to σ ÞÑ Kerp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq

Imp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq

for any p, and that it is isomorphic as a cosheaf to CUZ2
p for p “ 0, 1. Moreover,

E8,Ka2 pσq “ Kerp1`c˚:H2pCOσ ;Z2qÝÑH2pCOσ ;Z2qq

Imp1`c˚:H2pCOσ ;Z2qÝÑH2pCOσ ;Z2qq
is isomorphic as a group to CUZ2

2 pσq for
σ in X of dimension 1 or 2.

Hence the trios of complexes

0 C2pX;E8,Ka2 q C1pX;E8,Ka2 q C0pX;E8,Ka2 q 0

0 C2pX;E8,Ka1 q C1pX;E8,Ka1 q C0pX;E8,Ka1 q 0

0 C2pX;E8,Ka0 q C1pX;E8,Ka0 q C0pX;E8,Ka0 q 0

and
0 C2pX;CUZ2

2 q C1pX;CUZ2
2 q C0pX;CUZ2

2 q 0

0 C2pX;CUZ2
1 q C1pX;CUZ2

1 q C0pX;CUZ2
1 q 0

0 C2pX;CUZ2
0 q C1pX;CUZ2

0 q C0pX;CUZ2
0 q 0

are the same, except for the upper right entry, where C0pX;E8,Ka2 q – C0pX; Kerp1`c˚qImp1`c˚q
q.

It can be directly shown that H0pX;CUZ2
1 q “ 0. Considering the direction of the

morphisms of the Leray-Serre spectral sequence, and computing the Euler characteristic
of the complex C‚pX;CUZ2

2 q, we find that the dimensions of the groups HqpX;CUZ2
p q (i.e.

the homology of the second trio of complexes, displayed in the same order) are

1 0 h0,2pCXtq ` pd
3 ´NSq

a h1,1pCXtq ´ pd
3 ´NSq ` a 0

h2,0pCXtq 0 1
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where NS is the total number of 3-dimensional simplices in the triangulation T and a :“

dimZ2 H2pX;CUZ2
1 q. Note that as h

1,1pCXtq is a polynomial in d whose dominant monomial
is 2

3d
3, and as h1,1pCXtq´pd

3´NSq`a ě 0, this means that if we can find a triangulation
such that NS is significantly smaller than 1

3d
3 and d large enough (which does not seem

particularly hard), the associated number a is nonzero and we have found an example of
nondegeneracy of the Leray-Serre spectral sequence on the second page.

Similarly, the dimensions of the groups HqpX;E8,Kap q (i.e. the homology of the first
trio of complexes, displayed in the same order) are

1 b h0,2pCXtq ` pd
3 ´NSq ` b´ 2c

a h1,1pCXtq ´ pd
3 ´NSq ` a 0

h2,0pCXtq 0 1

where b :“ dimZ2 H1pX;E8,Ka2 q and c “
ř

dimσ“0 dimZ2pImp1 ` c˚ : H2pCOσ;Z2q ÝÑ

H2pCOσ;Z2qqq; this comes from the fact that we have replaced C0pX;CUZ2
2 q by its sub-

quotient C0pX;E8,Ka2 q “ C0pX; Kerp1`c˚qImp1`c˚q
q. In particular, we have

b “ dimZ2

´

ImpC1pX;CUZ2
2 q Ñ C0pX;CUZ2

2 qq X C0pX; Imp1` c˚qq
¯

We can see (using the Galois maximality of the spaces Oσ) that c “ 1
2pd

3´2NS`N7`

2N6q, with N7 (respectively, N6) being the number of 3-dimensional simplices Γ in the
triangulation such that VpR˚q3pQΓq has 7 (respectively, 6) connected components (where
QΓ is one of the polynomials being patchworked and Γ is its Newton polytope). Hence
d3 ´NS ´ 2c “ NS ´N7 ´ 2N6 “ N8 ´N6 (as NS “ N6 `N7 `N8).

Furthermore, we can use for each σ of dimension 0 arguments similar to those from
Chapter 8 to show that b ď N6.

Hence, using Formula (9.1.1), we find that

b0pRXtq ď
ÿ

p

dimZ2 HqpX;E8,Kap q “ 1` h0,2pCXtq ` pd
3 ´NSq ` b´ 2c

ď 1` h0,2pCXtq `N8.

We have recovered the bound from [Ite97].

It also seems possible to show that under the same assumptions, b ď H1pX;FZ2
2 q and

a “ H2pX;FZ2
1 q, where FZ2

p is the usual p-th pointy tropical homology cosheaf, which
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would then yield

b1pRXtq ď h1,1pCXtq ´ pd
3 ´NSq `H1pX;FZ2

2 q `H2pX;FZ2
1 q.

Whether that bound is better or worse than the one from [Ite97] is not entirely clear.

9.3 Higher dimensions

It is not immediately clear how to generalize the case of a maximal triangulation in ambient
dimension 3 to higher dimensions. Asking that the triangulation be maximal does not seem
to give us any directly useful property.

Looking at what we actually made use of in dimension 3, we might want to consider
quasi-primitive triangulations, i.e. triangulations such that every simplex, except possibly
the top-dimensional ones, is of rank equal to its dimension.

As in dimension n “ 3, we would have that E8,Kap is isomorphic as a cosheaf to
σ ÞÑ

Kerp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq

Imp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq
for any p, and that it is isomorphic as a cosheaf

to CUZ2
p for p ă n ´ 1. Moreover, E8,Kan´1 pσq “ Kerp1`c˚:Hn´1pCOσ ;Z2qÝÑHn´1pCOσ ;Z2qq

Imp1`c˚:Hn´1pCOσ ;Z2qÝÑHn´1pCOσ ;Z2qq
is

isomorphic as a group to CUZ2
n´1pσq for σ in X of dimension strictly greater than 0.

Using Formula (9.1.1), we would then get

bqpRXtq ď
ÿ

p

dimZ2 HqpX;CUZ2
p q

for all q ă n´ 2, and
bqpRXtq ď

ÿ

p

dimZ2 HqpX;CUZ2
p q ` b

for q P tn ´ 2, n ´ 1u and some correction b (which can be bounded as in dimension 3).
However, there is no immediately evident way to relate the terms HqpX;CUZ2

p q on the
second page of the Leray-Serre spectral sequence to the homology of CXt.

A more natural and less restrictive condition on the triangulation might be to ask that
each space Oσ be Galois maximal; if Conjecture 8.1.1 holds, Theorem 8.1.3 gives us an
exact criterion for Galois maximality - it was, in fact, the main motivation behind that
result.

This makes the situation slightly more complicated, as we now have that E8,Kap is
isomorphic as a cosheaf to σ ÞÑ Kerp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq

Imp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq
. Moreover, E8,Kaq pσq “

Kerp1`c˚:HqpCOσ ;Z2qÝÑHqpCOσ ;Z2qq

Imp1`c˚:HqpCOσ ;Z2qÝÑHqpCOσ ;Z2qq
is isomorphic as a group to CUZ2

q pσq for any σ in X and
q such that q ă n ´ 1 ´ dimpσq (and in fact, for any σ in X and q such that dimpσq “ n

as well). Hence, not only do we need to understand the homology of the cosheaves CUZ2
p ,

but also that of the cosheaves σ ÞÑ Kerp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq

Imp1`c˚:HppCOσ ;Z2qÝÑHppCOσ ;Z2qq
in order to make use

of Formula (9.1.1).
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Besides computing Euler characteristics and trying to prove Lefschetz- or Poincaré
duality-inspired theorems regarding those cosheaves, as suggested in Section 9.1, one could
also try comparing the round and pointy tropical cosheaves CUZ2

p and FZ2
p . They cannot

be expected to be isomorphic when the triangulation is not primitive, but given a cell
σ, they both seem to be related to the homology of the ambient space pC˚qn of COσ -
CUZ2

p pσq “ HppCOσ;Z2q via the classical Lefschetz section theorem, and FZ2
p by definition

(via some identification HpppC˚qn;Zq –
Źp Zn).
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