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Patchworking, tropical homology, and Betti
numbers of real algebraic hypersurfaces

Abstract

In this thesis, we investigate the Betti numbers of the real part of real algebraic hy-
persurfaces in relation to the homology of the complex part, as well as to the tropical
homology of tropical hypersurfaces.

In particular, we develop a technique, based on Viro’s patchworking method, for con-
structing high-dimensional real algebraic hypersurfaces, and use it to build families of
hypersurfaces whose real parts have asymptotically large Betti numbers. We also prove
tropical analogs to Lefschetz’s hyperplane section theorem, and show that the homology of
non-singular projective tropical hypersurfaces is torsion-free. Finally, we study the action
of the complex conjugation on the homology of some elementary real algebraic hypersur-
faces that serve as building blocks in Viro’s method, and derive the conditions under which

they are Galois maximal.

Keywords

Real algebraic hypersurfaces, toric varieties, Betti numbers, asymptotic Betti numbers,
tropical geometry, tropical homology, tropical Lefschetz hyperplane theorem, Kalinin spec-

tral sequence, patchworking.






Contents

Introduction| 13
| 19
|1 Topology of real algebraic varieties| 21
[1.1 Definitions and basic concepts| . . . . . . . . . .. ... 21
[1.1.1  Real projective algebraic hypersurtaces/. . . . . . . . .. .. ... .. 21

[1.1.2  Toric varieties and real hypersurfaces in toric varieties| . . . . . . . . 22

[1.2  Some classical results|. . . . . . . . . ... 24

2 Viro’s patchworking method)| 31
2.1 Chapter introduction| . . . . . . . . . . . .. 31
2.2 Generalcasel. . . . .. ... 32
2.3 Combinatorial casel . . . . . . . . ... L oL 34

|13 'Tropical geometry| 37
[B.1 Introduction and basic notionsl . . . . . . ... ... ... L. 37
13.1.1 Tropical operations and tropical polynomials| . . . .. ... ... .. 37

[3.2  Tropical toric varieties and tropical hypersurtaces| . . . . . . . .. . ... .. 38
[3.2.1  Tropical toric varieties| . . . . . . . . . . ... 38

[3.2.2  Tropical hypersurfaces| . . . . . . ... .. ... ... 0. 40

[3.2.3 A duality theorem| . . . . . . ... ... o oo 42

[3.3  Definition of tropical homology| . . . . . . . .. .. ... ... ... ... 44
[3.3.1 The tropical (co)sheaves F, and FP| . . .. ... ... ... . ... . 45

[3.3.2  The tropical homology groups| . . . . . .. ... ... ... ...... 48

|4 Tropical homology, Betti numbers and Kalinin’s spectral sequence| 53
4.1  Chapter introduction| . . . . . . . . . ... ... L o 53
4.2 Tropical hypersurtaces as limits of tamilies of patchworked real algebraic |

| hypersurfaces| . . . . . . . . . . 54
4.3 'The Leray-Serre spectral sequence of the fibration|. . . . . . . ... ... .. 58

9



10 CONTENTS
4.4 Kalinin’s spectral sequence|. . . . . . . .. ... o oL 60
4.5 Bounds on the homology of RX, | . . . . . ... ... ... ... ... .... 61

I 1 65

[6__A flexible construction method| 67
b.1 Chapter mntroduction| . . . . . . . . . . ... Lo 67
5.2 _The construction methodl . . . . . ... ... oo o 000000 69

2.1  Preliminaries| . . . . . . . . . .. 69
[p.2.2 A convex triangulation of Sy . . . . ... ..o 70
|5.2.3 Choosing the coefficients of Q% | ..................... 76
[p.2.4  Defining Q) using the Patchworkl . . ... ... ... ... ... ... 7
b.3  Computing asymptotic Betti numbers| . . . . . . .. ... ... ... ... 80
b.3.1  Preliminaries| . . . . . . . . . .. o 80
5.3.2  Finding cycles in a suspension|. . . . . . .. ... ... ... L. 86
b.3.3  Finding cyclesinajoin| . .. ... ... ... ... ... ... 93
5.3.4 Counting cycles| . . . . . . . . ... 102

6  Asymptotically large Betti numbers| 109
[6.1 Chapter introduction| . . . . . . . . . . ... L o 109
6.2 Asymptotically large Betti numbers in arbitrary dimension and index|. . . . 111

[6.2.1  Asymptotic Hodge numbers and combinatorics| . . . . ... ... .. 112
6.2.2 Notations and known resultsf . . . ... ... ... ... ... ... 116
[6.2.3  The first constructionl . . . . . . .. ... ... oL 119
[6.2.4  The second constructionl . . . . . . . . . ... .. ... ... ... .. 123
6.3 Some explicit computations| . . . . . ... ..o 134
6.4  Chapter conclusion| . . . . . . . .. . ... o 135

7 A tropical analog to Lefschetz’s section theorem 139
[7.1 Chapter introduction| . . . . . . . . . . ... oL 139
[(.2 Preliminaries] . . . . . . .. . . . . 145

[[.2.1  Definitions and observations . . . . . . . ... ... ... ... 145
[7.2.2  Counterexamples| . . . . . . . . .. ... oo 148
7.3 Tropical Letschetz hyperplane section theorems| . . . . . . . ... ... ... 151
[7.3.1 Prelimimmary results| . . . . . . . .. ... .. oo 151
[7.3.2 The main proof| . . . . . . .. ... ... ... 159
[r.4 Torsion-freenessl . . . . . . . . . . .. 164
[7.0  Computations with the x, genus| . . . . ... ... ... ... ... ... .. 167




CONTENTS 11
I8 Homology of simplicial real algebraic hypersurfaces| 175
8.1 Chapter mntroduction| . . . . . . . . . . ... oL 175
8.2 Definitions and notations . . . . . ... ... .. oL 177
B3 Coamoebas . . ... ... .. ... 178
[8.3.1  Definition and description of Cx| . . . . . . . .. .. ... ... ... 178

[8.3.2 A more explicit descriptionof Cx| . . . . . . . . . . ... ... 180

8.4  Homological computations| . . . . . . . ... ... ... ... ... 182
[8.4.1  Action of the conjugation on the zonotopes| . . . ... ... ... .. 182

[8.4.2 Homology of Cx| . . . . . . . . . ... .. . ... . ... 183

8.4.3 TImageof 1+ce| .. . . . . . o 184

844 Rankof I 4+ce ... .. . . . 186

8.5  Galois maximality] . . . . . . ... .. 187

|9 Additional constraints on the topology of hypersurfaces obtained by com- |
| binatorial patchworking| 191
9.1 Chapter introduction| . . . . . . . . . . .. ... o 191
0.2 The case of surfaces . . ... .. ... .. ... ... ... ... 193
9.3 Higher dimensions| . . . . . . . . . . ... ... 196




12

CONTENTS



Introduction

A real algebraic variety is an algebraic object defined by equations with real coefficients.
Such equations naturally have real and complex solutions, and the complex conjugation
acts on those solutions as an involution. What we call "topology of real algebraic varieties"
is the study of the topological properties of the conjugation. This thesis inscribes itself in
this field of study.

Understanding the topology of the real part of real algebraic varieties is surprisingly
difficult - much more than that of the complex part. The classification of smooth real
plane projective curves up to isotopy (which is the focus of D. Hilbert’s 16" problem), for
example, was only completed up to degree 6 in the late sixties by D. Gudkov, and in degree
7 by O. Viro in 1979. Regarding real algebraic surfaces in the projective space of dimension

3, even the topology of those of degree 5 has not yet been completely understood.

There are two main directions in which research can advance: new topological con-
straints may be found, and interesting varieties, realizing "extreme" topological types, may
be constructed. Major progress was made in that second direction when Viro invented the
patchworking method, also called Viro’s method, which allows one to build varieties with
complicated prescribed topology by gluing ("patchworking") together simpler varieties.

The patchworking method proved to be very powerful and allowed for the construction
of a diversity of interesting varieties; in particular, Viro used it to disprove V. Ragsdale’s
famous conjecture regarding real projective curves, and I. Itenberg to further show that
the conjecture was wrong by a large asymptotic margin. It was also one of the sources
of tropical geometry, a relatively new domain with strong links to real algebraic geometry

whose main objects of study are certain polyhedral complexes.

In this thesis, we restrict ourselves to the study of the homology of real algebraic
hypersurfaces in toric varieties, and in particular of the dimension of their homology groups
with coefficients in Zs.

In general, the well-known Smith-Thom inequality gives us an upper bound on the
dimension of the total homology of the real part RX of a real algebraic variety X in terms

of the dimension of the total homology of its complex part CX (where Zg := Z/2Z):
dirnz2 H., (RX; ZQ) < diHlZ2 H, (CX, Zg). (0.0.1)

13



14 INTRODUCTION

However, other bounds can often be found. There is a certain principle that suggests
that the ¢-th Betti number of the real part of a real algebraic hypersurface should be
upper-bounded by the sum over p of the (¢, p)-th Hodge numbers of its complex part, i.e.

dimgz, Hy(RX;Zy) < ) h?P(CX). (0.0.2)
p

In general, it is incorrect, but it does hold under certain conditions, and it provides us
with a guideline of sorts. Varieties for which Inequality is an equality should be
considered as "standard", and we naturally compare more exotic varieties to them.

For instance, the only examples that we had of families of projective hypersurfaces
in general dimension whose Betti numbers are asymptotically maximal in the sense of
Inequality also verify Inequality asymptotically - those were constructed by
Itenberg and Viro using a special case of the patchworking method, called combinatorial
patchworking.

Our first result is inspired by their construction. They recursively build a family of
hypersurfaces in ambient dimension n by suspending the hypersurfaces of the family that
they had found in ambient dimension n — 1, starting with points in the projective line.

We, on the other hand, build a family in ambient dimension n using any families
{X g}deN of real projective hypersurfaces in ambient dimensions k = 1,...,n — 1 (where d
is the degree of X C’f); we combine them all together and suspend them, and the asymptotic
Betti numbers of the real parts of the resulting family {Y;'}4en of projective hypersurfaces
in ambient dimension n can be computed from the Betti numbers of the real parts of the
"ingredients" {X¥}4ey (as is the case in Itenberg and Viro’s original construction).

More precisely, if foreach k=1,...,n—1and j=0,...,k—1

bj(RX}) = b - d* + O(d" 1)

for some x? € R>g, then
n 1 n— n— n—l1l— n n—
by(RY]) = — (a:q Pl >y xg?.xq_ll_]’?> A"+ O@d™ Y, (0.0.3)

forq=0,...,n—1, where xf is set to be 0 for j ¢ {0,...,k —1}.

This allows for a lot of flexibility, since we can use any preexisting results in low dimen-
sions and simply "feed them" to the algorithm in order to get results in any dimension, by
applying the process repeatedly.

We use this method on previous results by E. Brugallé and F. Bihan in ambient di-
mension 3, as well as on Itenberg and Viro’s aforementioned families of hypersurfaces, to
obtain two collections of families of real projective hypersurfaces.

Note that the (g, p)-th Hodge number h??(CX) of a smooth real projective algebraic
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hypersurface of degree d in ambient dimension n is a polynomial in d of degree n (the same
for any such hypersurface). Let ay be the dominant coefficient of },, hP(CX}); in other
words, >}, h9P(CX7) = ag - d" + O(d1).

Our first collection is as follows: for each n > 3 and each ¢ = 0,...,n — 1, we build a

family {Y}'}qen of (asymptotically maximal) real projective hypersurfaces such that
bg(RYy") = st - d" + O(d"™),

for some sy > ag. In other words, by(RY,') grows asymptotically (in d) faster than the

corresponding sum Zp h?P(CYy') of Hodge numbers from Inequality (0.0.2), though we

cannot expect sy — ag to be particularly large.

Our second collection remediates that problem, at least asymptotically in n: for each
n >3 and A € {—135, 97}, we build a family {Z7}4en of (asymptotically maximal) real

projective hypersurfaces such that for each ¢ =0,...,n —1,
by(RZg) =ty - d" + o@d™ 1,
for some t; > 0 that verifies
iy —1 L 2
n-l 1 1
L e 2 exp (-g (1 - 1)) +o(1),
Prtroval 5+ A

where the error term o(1) is uniform in x.

This means that b[ NG (RZ}) can be made (depending on the choice of \) to grow

n—1
ndig

asymptotically (in d) faster than the corresponding sum Zp oL 25t vl (CZY}) of Hodge

numbers, by a margin that is asymptotically (in n) significant.

One of the main difficulties resided in understanding the asymptotic behavior of multi-
indexed sequences arising from the repeated application of Formula , from which
those asymptotic results stem. We managed to do so by associating probabilistic objects
to those sequences, so that we could study them using classical tools from probability

theory.

Regarding constraints on the homology of real algebraic hypersurfaces, we are mostly
interested in the case of hypersurfaces X obtained via combinatorial patchworking. Indeed,
those naturally have a tropical hypersurface X*°P associated to them, and there is an
interesting fibration from the complex part of X to X"°P. This gives rise to connections
between the homology of the complex part CX, the tropical homology of X'°P (a type
of homology well-suited to tropical varieties), and the homology of the real part RX.
Crucial results in that direction were recently obtained in Itenberg’s, L. Katzarkov’s, G.

Mikhalkin’s and I. Zharkov’s [IKMZ16].
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One can in fact see the tropical homology of X'°P appear on the second page of the
Leray-Serre spectral sequence of the fibration, which converges to the homology of CX. We
can connect that second page to the homology of the real part RX using another spectral
sequence developed by I. Kalinin.

When X was obtained from a primitive triangulation, this allowed K. Shaw and A.

Renaudineau to prove in [RS18]| that

dimgz, H,(RX; Zs) Zdlmzz H,(Xtrop; FX 0 Te (0.0.4)

where H,(X"™°P; .7-};){ trop’ZQ) is the (g, p)-th tropical homology group with coefficients in Zs
of X'trop,

To link this bound to the homology of CX, some results regarding the torsion of the
tropical homology of non-singular tropical hypersurfaces in tropical toric varieties were
needed.

Shaw, Renaudineau and the author proved in [ARS19] a tropical analog to Lefschetz’s
hyperplane section theorem stating that given a non-singular tropical hypersurface X P
with full-dimensional Newton polytope in a reasonable tropical toric variety Y P, the map

induced by inclusion
s Hq(Xtrop;J—_.pxtroPZ) _ Hq(YtrOp;f;/tmp’Z)

on their tropical homology groups with coefficients in Z is an isomorphism when p 4+ ¢ <
dim X'°P and a surjection when p + ¢ = dim X"°P. It remains true with coefficients in R
even if we do not require X"°P to be non-singular.

This, in addition to some results regarding the tropical homology of tropical toric
varieties, allowed the three of us to show that the tropical homology of non-singular tropical
hypersurfaces in non-singular toric varieties was torsion-free. We also re-obtain through
purely combinatorial means some statements from [IKMZ16] by considering tropical Euler
characteristics and E-polynomials, in the same spirit as V. Danilov’s and A. Khovanskii’s
[DKS86]. All of this enables us to show that dimg, H,(X™°P; f p’ZQ) = h?P(CX) which,
combined with Inequality -, implies that hypersurfaces obtained using a primitive
triangulation do verify Inequality .

In order to generalize this result, we ("we" being from now on once again a pedantic
synonym for "the author") also investigate a class of varieties (which we call "simplicial
hypersurfaces") that naturally appear as building blocks in the combinatorial case of the
patchworking method, and derive the conditions under which they are Galois maximal, a
property that greatly simplifies the situation with regard to the Leray-Serre and Kalinin

spectral sequences mentioned above.

Finally, we explore the ways in which this could be applied to generalize Inequality
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to hypersurfaces in toric varieties obtained by non-primitive combinatorial patch-
working, and detail some intermediary results.

All notions alluded to here are properly defined - and all necessary references given -
in the main text, which is organized as follows.

The first part, consisting of Chapters [I] to [} mainly covers relevant definitions and
preexisting results. More precisely, we define in Chapter [I] real algebraic varieties, focusing
in particular on real algebraic hypersurfaces in toric varieties. We also state some classical
theorems regarding the topology of these hypersurfaces.

In Chapter [2, we describe Viro’s patchworking method, with some additional explana-
tions regarding the combinatorial case.

Some principles of tropical geometry are exposed in Chapter 3} in particular, tropical
hypersurfaces, tropical toric varieties and tropical homology.

In Chapter [4 the links between the homology of the real part of a hypersurface ob-
tained using combinatorial patchworking, the homology of its complex part and the tropi-
cal homology of the associated tropical hypersurface are explained using Leray-Serre and
Kalinin’s spectral sequences. This chapter is more "experimental" than the previous ones,
as some of the ideas detailed there might be new, or at least very recent.

In the second part, consisting of Chapters [f] to [0} we describe the new results that we
have managed to obtain.

The general construction method allowing us to construct families of real projective
algebraic hypersurfaces from lower-dimensional families is described in Chapter [5

In Chapter [6] we apply this method to build families of real projective algebraic hy-
persurfaces with large asymptotic Betti numbers.

The results of the author’s joint work with Shaw and Renaudineau can be found in
Chapter [} in particular, the tropical analog to Lefschetz’s hyperplane theorem, as well as
the torsion-freeness of the tropical homology of non-singular tropical hypersurfaces.

In Chapter [§] we study the conditions under which simplicial hypersurfaces are Galois
maximal.

Finally, in Chapter[J] we consider possible generalizations of Inequality [0.0.2] to the case
of real algebraic hypersurfaces in toric varieties obtained via non-primitive combinatorial

patchworking.
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Chapter 1

Topology of real algebraic varieties

1.1 Definitions and basic concepts

A real algebraic variety can be vaguely defined as an algebraic object over the real field
R. Though this general principle can be turned into more precise definitions, we restrict
ourselves (both in this section and throughout this text) almost exclusively to the special
cases of toric varieties and real algebraic hypersurfaces in toric varieties.

We define real projective algebraic hypersurfaces in Subsection and make a few
observations, before considering toric varieties and their real algebraic hypersurfaces in

Subsection [[L1.21

1.1.1 Real projective algebraic hypersurfaces

A real projective algebraic variety X in the n-dimensional projective space P™ is a radical
homogeneous ideal I = (f1,..., fr) < R[Xo,...,X,] different from the maximal homo-
geneous idealf. In particular, real projective algebraic varieties are complex projective
algebraic varieties.

One can consider the set of real points of X,
RX :={[xo,...,zn] € RP"| f([x0,...,zs]) = 0 for each f € I},
as well as its set of complex points,
CX :={[xo,...,zn] € CP"| f([zg,...,zs]) =0 for each f € I}.

We sometimes improperly call RX or CX real algebraic varieties, implicitly referring to
the underlying variety X.

When the ideal I is generated by a single homogeneous polynomial P of degree d, we
call X a real projective algebraic hypersurface. We say that P gives rise to X.

21



22 CHAPTER 1.

In what follows, we mostly consider smooth real projective algebraic hypersurfaces, i.e.

real projective algebraic hypersurfaces generated by polynomials P such that
{[zo,...,xn] € CP"| 0;P([z0,...,25]) =0 1=0,...,n} = .

Note that as P is homogeneous, we have that

n
Y 6iP(Xo, ..., Xp) - X; = deg(P) - P(Xo, ..., Xn),
i=0
hence if [xg,...,zy] is such that 0; P([zg,...,2,]) = 0 for i = 0,...,n, we automatically
have P([zo,...,xs]) = 0.

This definition of smoothness coincides with the one from differential geometry. In
particular, the set of real (respectively, complex) points of a smooth real projective algebraic
hypersurface is a compact manifold of real codimension one in RP™ (respectively, of complex
codimension one in CP").

The topology of the complex points CX of a smooth real projective algebraic hyper-
surface X of degree d in P depends only on d and n. Indeed, the space C7} of all complex
projective algebraic hypersurfaces of degree d in the projective space of dimension n can
be identified with the projective space CPV, where N = (d:") — 1 and the projective
coordinates of a point correspond to the coefficients of the homogeneous polynomial that
defines (up to multiplication by a non-zero scalar) the associated hypersurface. The real
projective algebraic hypersurfaces correspond to the subspace RPY < CPV. In Cy, the
set of all singular hypersurfaces is a (singular) hypersurface; their complement in C7 is
path-connected, and we can see (by continuous deformation) that the set of complex points
of any two smooth complex projective algebraic hypersurfaces (hence, of any two smooth
real projective algebraic hypersurfaces) are homeomorphic.

On the contrary, the topology of the real part of a real projective algebraic hypersurface
can be much more varied. In fact, even in low dimensions, very little is known. For
example, we do not yet have a topological classification of smooth surfaces of degree 5 in
the projective space of dimension 3, and the author spent a significant amount of time
trying to prove that such a surface cannot be homeomorphic to the disjoint union of 23

spheres, a genus 2 surface and a copy of RP?, to no avail.

1.1.2 Toric varieties and real hypersurfaces in toric varieties

Toric varieties are a natural generalization of the projective case. We only briefly introduce
them here; a much more in-depth exposition can be found in W. Fulton’s book [Ful93].
One can also read O. Viro’s article [Vir06|] for a shorter account focusing on the type of
questions treated in this text.

We choose N := 7™ as a lattice and consider the associated vector space Ng := NQR =~
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R™, as well as its dual M =~ Z™ and its associated vector space Mg := M Q R =~ R".

We say that a cone in Ny is a rational polyhedral cone if it is generated by a finite
number of integer vectors (i.e. vectors in N), and that it is strongly convex if it does not
contain any non-trivial vector subspace of Nr. Given a strongly convex rational polyhedral

cone C' in Ny, we can consider the (full-dimensional) dual cone
C':={ue Mglu-v=0 VoveC}

and the semigroup C’/ n M associated to it. It is easy to see that this semigroup is finitely
generated (this fact is known as Gordan’s lemma); hence the ring C[C" n M] is finitely
generated. We call the n-dimensional complex variety Spec(C[C’ n M]) the affine toric
variety associated to C, as it can be represented as an algebraic subvariety of CV, for some
N eN.

For example, the dual cone of the trivial cone 0 € N is the entire space Mg, and

the associated affine toric variety is the algebraic torus (C*)™. The affine toric variety

associated to the cone C' spanned by the canonical basis eq,...,e, of Ng =~ R™ (whose
dual cone is the cone spanned by the canonical basis e, ..., e} of Mr =~ R") is the affine
space C".

Conventions can slightly vary from one author to the other; for example, Viro directly
defines in [Vir06| the affine toric variety associated to a cone C' as Spec(C[C' n N]), without

considering the dual cone. Here, we mostly follow Fulton’s exposition.

Now let ¥ be a strongly convex rational polyhedral fan in Ng, i.e. a collection of strongly
convex rational polyhedral cones in Ng such that every face of a cone in ¥ is also in ¥ and

that the intersection of two cones in X is a face of each.

If we consider two cones p € n € X, we get a reversed inclusion C[n' n M| — C[p' n M],
which in turn induces a morphism (in fact an embedding) Spec(C[p’ " M]) — Spec(C[n' n
M]). It is then possible to glue the affine toric varieties associated to the cones of ¥ along
those morphisms, in order to get the toric variety CYs. It can be shown that CYy is
non-singular if and only if the fan 3 is simplicial unimodular, i.e. if and only if each cone
C € X is generated by a collection of vectors in N that can be completed into a basis of
N. The variety CYyx is compact if and only if the fan ¥ is complete, i.e. if the union of its
cones is equal to the entire ambient space Np.

For example, the complete fan whose only 1-dimensional cones (called rays) are R -
(0,1), R5p - (1,0) and Rxq - (—1,—1) gives rise, as a toric variety, to the projective plan
CP?. More generally, the n-dimensional projective space is a toric variety.

Given a toric variety CYy, the algebraic torus (C*)™ is naturally embedded in CYx
as the affine subspace Spec(C[Mg n M]) = Spec(C[M]) associated to the trivial cone 0
(whose dual is the entire dual space Mp). This is, in fact, whence the very name "toric

variety" comes. The embedding depends on the initial choice of the lattice N = Z™, which
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corresponds to a choice of coordinates. Moreover, the action of the algebraic torus on itself
naturally extends to an action of the algebraic torus on CYs. The variety CYs can be
written as the disjoint union of the orbits of this action, and is stratified along the closure
(in CYy itself) of those orbits. There is an inclusion-reversing bijection between the poset
of those strata and the cones of the fan X.

Let A be a rational polytope in My, i.e. the bounded intersection of a finite number
of rational half-planes. If A is full-dimensional, its normal fan ¥ in Nr defines a toric
variety CYs. Such a CYy, is always compact, as X is complete. If the normal fan X of A
is simplicial unimodular, we say that A is non-singular, regular or simple.

Affine toric varieties have a natural real structure, i.e. an antiholomorphic involution
called a conjugation; moreover, this real structure is compatible with the inclusion mor-
phisms Spec(C[p’ n M]) —> Spec(C[n’ n M]) defined above. Hence a toric variety CYx
is a real algebraic variety, and CYx, and RYx can be seen as the sets of complex and real
points of the same real algebraic structure Yy (which we also call a toric variety), where
RYs;, € CYy denotes the set of the fixed points of the conjugation. The variety RYs can
also be obtained by following the same procedure as for CYy, except that one considers
the affine spaces Spec(R[C’ n M]) instead of Spec(C[C" n M]).

Let us now define real algebraic hypersurfaces in toric varieties. A real Laurent poly-
nomial P € R[Xai, ..., X*] gives rise, via its zero locus, to a real algebraic hypersurface
with complex points in the algebraic torus (C*)™ and real points in (R*)"™, which we de-
note as V(cx)n (P) and V(g#)» (P), respectively. Note that the product of P and a non-zero
monomial defines the same real algebraic hypersurface.

Given a toric variety Y, we define Vey (P) (respectively, Vry (P)) as the closure of
Vicsyn (P) < (C*)" < CY (respectively, Vi) (P) < (R*)" < RY) in CY (respectively,
RY') in the Zariski topology. Once again, Vey (P) and Vgy (P) can be seen as the complex
and real points of the same real algebraic object V3 (P), the real algebraic hypersurface in
Y associated to P.

Given such a polynomial P(X) = Z/\:()\l’m’)\n)e[x cAXf‘l, ..., X where A is a finite
subset of M =~ Z" and c) € R* for all A € A, we call the convex hull in Mr =~ R"™ of A the
Newton polytope of P, and denote it by A(P). If we let X be the normal fan of A(P), the
hypersurface Vy;, (P) in the associated toric variety Yy is a natural compactification of the
hypersurface in the algebraic torus to which P gives rise, for reasons that are detailed in
[Vir06].

1.2 Some classical results

Below are listed some classical theorems on the topology of real algebraic varieties - more
specifically, these theorems all express constraints on their topology. The other side of the

classification problem, i.e. showing that non-prohibited topologies are actually realizable,
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is explored in Chapter

We mostly take inspiration from G. Wilson’s excellent short survey [Wil78|, where
proofs can be found. One can also read the more recent and much more in-depth account
[DKO0O] by A. Degtyarev and V. Kharlamov.

Most of the results below are expressed in terms of the homology of the considered
varieties. Finer observations can be made in low dimensions, but as we mostly focus on
high-dimensional results in the rest of this text, we only mention a few regarding curves
at the end of this section, for their historical significance.

Given a topological space X, we define its i-th Betti number as b;(X) := dimgz, H;(X;Zs),
with the common notation Zy := Z/27Z. We also write H,(X;Z2) for its total homology
with coefficients in Zs.

Historically, the first major result in topology of real algebraic varieties was obtained
by A. Harnack in 1876.

Theorem 1.2.1 (Harnack). The set of real points of a smooth real projective algebraic

curve of degree d in RP? has at most w + 1 connected components.

Harnack also showed that this bound was optimal by constructing for any degree a
curve realizing it; the curves he built are called Harnack curves.
Harnack’s inequality was in fact a special case of a more general result, the Smith-Thom

inequality.

Theorem 1.2.2 (Smith-Thom inequality). Let Z be a topological space with a finite CW-
complex structure, ¢ : Z — Z be a continuous involution compatible with the cell structure,
and F' be the set of fized points of c in Z. Then

dimZ2 H, (F; ZQ) < diHlZ2 H*(Z; Zg).

If this inequality is an equality, Z (considered with the involution c¢) is said to be
maximal; we also call Z an M -variety. Such varieties are of particular importance. We
are specially interested in the situation where Z is the set CX of complex points of a real
algebraic variety, ¢ is the complex conjugation on CX, and F' is the set of real points RX,

in which case we get
dimzz H*(RX,ZQ) < diHlZ2 H*(CX,ZQ) (121)

Harnack’s inequality is, indeed, a special case of the Smith-Thom inequality, as it is
easy to show that the set CX < CP? of complex points of a smooth degree d complex
curve X is a (connected) surface of genus W. Hence, we get using Formula 1}
that

2b0(RX) = bo(RX)+by (RX) = dimg, Hy(RX;Zs) < dimg, Hy(CX;Zs) = 2+(d—1)(d—2).



26 CHAPTER 1.

The Smith-Thom inequality is relatively easy to prove by considering an appropriate
cell structure on Z and a well-chosen short exact sequence of complexes (see [Wil78] or
IDKO00]). The proof shows that the difference dimg, Hy(Z;Z2) — dimy, Hy(F';Zs) is even.
If that difference is equal to 2 € 2N, we say that Z (considered with the involution c¢) is
an (M — [)-variety (with ! being often equal to 0, 1 or 2).

The same proof also yields the Borel-Swann inequality, which in fact implies the Smith-

Thom inequality.

Theorem 1.2.3 (Borel-Swann inequality). Let Z be a topological space with a finite CW-
complex structure, ¢ : Z — Z be a continuous involution compatible with the cell structure,
and F be the set of fixed points of ¢ in Z. Then

Ker(1
dimz, Hy(F;Z3) < dimg, (‘”(M) :

Im(1+ cy)

where 1 + ¢y : Ho(Z;72) —> Hy(Z;Z2) and 1 stands for the identity.

When this inequality is an equality, Z (considered with the involution ¢) is called Galois
maximal (see [DIKO0| for additional details). As above, this directly translates in the real
algebraic case to the following inequality:

(1.2.2)

Ker(1
dimz, Hy(RX;Zy) < dimg, ( er +c*)>7

Im(1+ cy)

where 1+ ¢, : Hy(CX;Zy) — H,(CX;Zs) and c is the complex conjugation.

The notion has been considered of interest in itself; it will prove to be of importance
in Chapter . See for example Krasnov [Kra84|, where the Galois maximality of various
families of varieties is proved. Somewhat surprisingly, there are very elementary cases in
which the rank of 1 + ¢, : Hy(CX;Zy) — H«(CX;Zs) is not known. One such case was
that of simplicial hypersurfaces, which we define in Chapter [§land whose Galois maximality
we investigate there.

Galois maximality is equivalent to a condition of degeneration on the second page of
a certain associated spectral sequence, called Kalinin spectral sequence, which was in-
troduced by I. Kalinin in [Kal92] - further explanations can also be found in [Deg92].
Smith-Thom maximality is equivalent to degeneration on the first page of this spectral
sequence. We return to those questions in Chapter [4]

Let us give a few more classical results pertaining to complex varieties on which a
conjugation (i.e. an antiholomorphic involution) acts.

Given a complex manifold Z of real dimension 4n, the cup product defines a quadratic
form on H**(Z;R). We denote the signature of this intersection form by o(Z). If Z is a
complex manifold of real dimension not divisible by 4, we let o(Z) be 0. As always, the

Euler characteristic of a topological space X is denoted as x(X).
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Theorem 1.2.4 (Rokhlin). Let X be a complex manifold of real dimension 4n, let ¢ be
a congugation on X and RX be the set of fized points of c. If (X,c) is an M -variety, we

have

X(RX) = o(X) mod 16.

Theorem 1.2.5 (Kharlamov, Gudkov, Krakhnov). Let X be a complex manifold of real
dimension 4n, let ¢ be a conjugation on X and RX be the set of fized points of c. If (X, ¢)

is an (M — 1)-variety, we have
X(RX) = o(X) £+ 2 mod 16.

We can also mention S. Lefschetz’s well-known fixed point theorem.

Theorem 1.2.6 (Lefschetz’s fixed point Theorem). Let Z be a compact topological mani-
fold, ¢ : Z — Z be a continuous involution, and F be the set of fixed points of ¢ in Z. Let

c* be the map induced on cohomology by c¢. Then we have

X(F) = Y (=1)'tr(c¢*|H (Z, R)).
As a last example, let us state the following result, due to V. Kharlamov, which requires

the complex variety Z to be Kahler.

Theorem 1.2.7 (Kharlamov). Let X be a compact Kdhler manifold of real dimension 4n,

let ¢ be a conjugation on X and RX be the set of fixed points of c. Then we have
IX(RX) — 1] < p™"™(X) — 1,

where h'™"™(X) is the (n,n)-th Hodge number of X.

Interestingly, there exists a purely topological proof by A. Comessatti of this theorem
(which makes no use of the Kéhler structure on X) in the case of real projective surfaces.

All those results are very powerful in low dimension, but they yield comparatively less
information in higher dimensions.

Though they are not our main focus in the rest of this text, we still choose to say a few
words regarding real algebraic projective curves in particular, because of their historical
and continued importance in the field.

The topology of the real part RX of a smooth real algebraic curve X in the projective
plane cannot be, in itself, very rich, as RX is a compact manifold of dimension 1, hence a
collection of circles. In a sense, Harnack’s inequality from Theorem tells us all that
there is to know. What is usually considered instead is the topology of the pair (TP?, RX).

Figure shows all three configurations for M-curves of degree 6 in RP? (one can

see it as depicting a contractible open subset of RP?). The configuration on the left was

'Picture from [IV96]
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Figure 1.1: Maximal projective curves of degree 6.

obtained by A. Harnack, the middle one by D. Hilbert and the one on the right by D.
Gudkov.

One can check, using elementary methods, that each connected component of RX
either partitions RP? into a disk and a Md&bius strip, in which case we call it an oval, or
its complement in RP? is connected (and homeomorphic to a disk), in which case we call
it a pseudo-line. When the degree of X is odd, there is exactly one pseudo-line among the
connected components of RX; when it is even, there are none.

Therefore, the main question regarding the topology of (TP? RX) is the number of
ovals and their arrangement. We say that an oval C lies inside another oval Cy if C is
contained in the connected component of RP?\Cy homeomorphic to a disk. An oval is even
if it lies inside an even number of ovals, and odd otherwise. As an example, the curve in
Figure has 5 even ovals and 3 odd ones.

For a given curve X, let p be the number of even ovals in its real part, and n the
number of odd ovals. The following theorems can be obtained from Theorems
and by considering a double covering of CP? ramified along CX.

Theorem 1.2.8 (Gudkov, Rokhlin). Let X be a smooth real M-curve of degree 2k in the
projective plane. Then

p—nEkQ mod 8.

Theorem 1.2.9 (Gudkov, Kharlamov, Krakhnov). Let X be a smooth real (M —1)-curve
of degree 2k in the projective plane. Then

p—n=k*+1 mod8.

Theorem 1.2.10 (Petrovsky). Let X be a smooth real curve of degree 2k in the projective
plane. Then

DO o

—%k(k—1)<p—n< Rk —1) + 1.

2Picture from [IV96]
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Figure 1.2: 5 even ovals, 3 odd ovals.

V. Ragsdale conjectured in [Rag04] that an even stronger bound holds.

Conjecture 1.2.11 (Ragsdale’s Conjecture). Let X be a smooth real curve of degree 2k

i the projective plane. Then

E(k—1)+1,

k(k —1).

n <

DO o

However, Viro showed in [Vir80|] that the second inequality was wrong by at least 1.
Later, Itenberg used the patchworking method (see Chapter to show in [Ite93| that both
inequalities were in general dramatically wrong (by a quadratic margin). However, whether
they are true (up to a correction of 1 in the case of the inequality on n) for M-curves is

still an open question.
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Chapter 2

Viro’s patchworking method

2.1 Chapter introduction

In Section we have seen some constraints on the topology of real algebraic varieties.
Complementarily to finding new restrictions, constructing real algebraic varieties that show
the sharpness of those restrictions is the other component of the classification effort.

Various construction methods have been historically used; one can for example perturb
a union of algebraic varieties that intersect in a certain way.

A particularly efficient technique was developed by Viro in the late 70s. That technique,
often called Viro’s method or patchworking method, allows one to obtain families of real
algebraic hypersurfaces {X:}ier_, in a given toric variety, such that X; can be seen as
a gluing ("patchworking") of simpler hypersurfaces for ¢ small enough (or large enough,
depending on the chosen convention). This can be used to build real algebraic hypersurfaces
with prescribed and interesting topologies. We describe this process in Section

There exists a simpler, more combinatorial special case of the method, called combi-
natorial patchworking, which we detail in Section [2.3] Though it is strictly speaking less
flexible than the general case, the increased simplicity often allows one to have a better
grasp of the situation.

Viro’s method is strongly linked to tropical geometry, and was one of its sources of
inspiration. Some of those connections are considered in Chapter

The patchworking method has enjoyed considerable success over the years. It was
used by Viro himself to further the classification up to isotopy of smooth real projective
algebraic curves of degree 7, which he completed in [Vir80], as well as to disprove Ragsdale’s
conjecture in the same article.

Itenberg later used combinatorial patchworking in [Ite93| to show that the conjecture
was also asymptotically wrong. His construction was improved on by E. Brugallé in [Bru06],
using the general case of the patchworking method.

Itenberg and Viro also used combinatorial patchworking in [IV07] to build in each

31
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dimension n a family of asymptotically maximal real projective algebraic hypersurfaces;
this construction was the main inspiration behind the author’s own results in Chapters [5]
and [6] (where more details can be found), which rely on Viro’s method as well.

Many others, such as F. Bihan in [Bih03], B. Bertrand in [Ber06] or A. Renaudineau
in his thesis [Renl5|, have also successfully made use of this powerful tool.

One naturally wonders about the limitations of the method: for example, what bounds
can be found on the Betti numbers of varieties obtained by combinatorial patchworking,
or under even stricter conditions?

Bounds were found in ambient dimension 3 by Itenberg in [Ite97] using relatively el-
ementary methods, as well as by Itenberg and Shustin using more sophisticated ones in
[IS03].

New constraints were later found, in particular by Renaudineau and K. Shaw (see
[RS18]), using the connections between real and tropical hypersurfaces and the properties

of tropical homology. This is the main subject of Chapters [4 and [0

2.2 General case

We give a quick description of Viro’s method so as to have the necessary definitions, using
notations and concepts from Subsection [1.1.2] and mostly paraphrasing Viro’s own expo-
sition in [Vir06]. All omitted details can be found there, or in Itenberg’s, G. Mikhalkin’s
and E. Shustin’s notes on Tropical Algebraic Geometry [IMS09]. See [Ful93| for more on
toric varieties.

In what follows, K can be either R or C. Let U} < C be the unit circle, U} be {1, —1}
and define U := (UL)" for n € N.

As explained in Subsection [I.1.2] a real Laurent polynomial

A An
P(z) = Z eyt o2,
A=A An)EA

where A is a finite subset of Z™ and ¢y, € R* for all A € A, defines a real algebraic
hypersurface V(c#)»(P) in the complex torus (C*)". From now on, we use the notation
=2z where 2 = (21...,2,) €eCand A = (A1, ..., \,) € Z.

In Subsection [1.1.2] given a full-dimensional polytope with integer vertices A < R"”,
we denoted by K'Yy the toric variety to which A gave rise via its normal fan X. In this
chapter, as well as in Chapter [5] let us call that toric variety KA in order to shorten
notations. The embedding A < R" determines an embedding (K™*)" < KA, and there is a
natural action of the torus (K*)™ < KA on itself by multiplication, which can be naturally
extended to an action S : KA x (K*)" — KA on KA, as was mentioned in Subsection
Moreover, remember that KA is stratified along the closures of the orbits of the

action of the algebraic torus, and that those strata are in (inclusion-preserving) bijection
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with the faces of A. Let I" be a face of A, and denote by KT the corresponding stratum
of KA. It can be shown that KT is isomorphic to the toric variety to which I, seen as a
full-dimensional polytope in the vector space that it spans, gives rise, which justifies the
notation.

There is a stratified (along its intersections with the strata KT') subspace of KA,
denoted as R A, which corresponds to the points in KA with real nonnegative coordinates
(this can be given precise meaning with the definition of KA). We can see KA as a quotient
of Ry A x Ug via the map S: RLA x Uy, — KA.

As stratified topological spaces, Ry A and the polytope A are homeomorphic, for ex-
ample via the Atiyah moment map M : R{A — A (see [Ati8]]). If z € (Ry)" < Ry A

and wi,...,wy € Z™ are such that their convex hull is A, then

Zle |2 |w;

M(x) =
) Py e

Thus we have the following map

M~1xid

O A X UL R.A x Up -5 KA

through which KA is seen as a quotient of A x Uz (when K = R, this quotient can in
fact be quite nicely described in terms of an appropriate gluing of the faces of R A x Uy
- see [Vir06]). It restricts to a homeomorphism from A x Up to (K*)" < KA.

Let P be as above a real Laurent polynomial in n variables and A < R" be a full-
dimensional polytope with integer vertices. The stratified topological pair (A x Ug,v),
where v = @1 (Vi a(P)), is called a chart of P. A slightly different definition exists, where
M can be replaced in the definition of ® by any "nice enough" homeomorphism.

When there is no possible confusion, we sometimes refer to v itself as the chart (as
opposed to the pair (A x Ug,v)), and we denote it as Chartaxyn (P). By extension, we
also write C’hartAxU;é(P) i= Chartaxuy (P) n (A x Ug), where A is the relative interior
of A in R".

Let P(2) = Y cp 22" as above and I' = R”. We define the truncation P as the
polynomial PT'(2) = 3\ 1. caz™.

The real Laurent polynomial P is completely nondegenerate over K if V(K*)n(PF) is
a nonsingular hypersurface for any face I' of its Newton polytope A(P) (including A(P)
itself).

A convex subdivision (or regular subdivision) T of an n-dimensional convex polytope
A c R"™ with integer vertices is a finite family {A,;};c; of n-dimensional convex polytopes

with integer vertices such that:

o Uier Ai = A
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e For all indices 7, j € I, the intersection A; N A; is either empty or a face of both A;
and A;.

e There is a piecewise linear convex function g : A — R such that the domains of

linearity of p are exactly the polytopes A;.

If each polytope A; in the subdivision is a simplex, we say that T is a convex trian-
gulation. Moreover, if each A; is a simplex of minimum volume %, we call T a conver
primitive triangulation.

All is set to state the Main Patchwork Theorem: let A  R™ be a convex polytope with
integer vertices and let @1, ..., Qs be completely nondegenerate real Laurent polynomials

in n variables such that {A(Q1),...,A(Qs)} is a convex subdivision of A. Suppose more-
over that QiA(Qi)mA(Qj) — Q?(Qi)ﬁA(Qj)
exists a unique real Laurent polynomial P(z) = Y\ a~zn exz such that PA@) — @,

for all 7,57 € {1,...,s}. This means that there

for all . Let u : A — R be a piecewise linear function certifying the convexity of
the subdivision, and consider the family of real Laurent polynomials {P;}er_,, where
Pi(2) := Y \ennzn extt® 22 et (A(Qi) x U, v;) be the chart of Q;, and (A x U, v;) be
the chart of P;.

Theorem 2.2.1 (Main Patchwork Theorem). The union | J;_, v; is a submanifold of A x
Uy, smooth in A x Uy and with boundary in 0A x Uy (and corners in the boundary for
n=3).

Moreover, for anyt > 0 small enough, | J;_, v; is isotopic to vy in A x Uy by an isotopy

which leaves I' x Uy invariant for each face I' = A.

We say that such a polynomial P; (with ¢ > 0 small enough) has been obtained by
patchworking the polynomials @1, ..., Qs, or that it is a patchwork of them.

In particular, Theoremallows us to recover the topology of the pairs ((K™*)", Vigyn (P))
and (Ka, Vka(F%)) from that of the pairs (Ka(q,), VK, (@i))-

Note that though the function u plays an important role in the definition of the family
of polynomials {P;}r_,, its choice (among the piecewise linear functions inducing the
same convex subdivision) does not affect the topology of (Ka, Vka(P:)).

Viro’s method has been generalized by B. Sturmfels in [Stu94] to complete intersections
in the combinatorial case (see Section below), and then to complete intersections in
the general case by Bihan in [Bih02].

2.3 Combinatorial case

In this section, we present a special case of Theorem which is often distinguished.
We retain the notations of Section
Let P be a real Laurent polynomial in n variables. If P has exactly n+1 monomials with

non-zero coefficients and if its Newton polytope A(P) is a non-degenerate n-dimensional
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simplex, we call P a simplicial real polynomial. In particular, the monomials of P and
the vertices of A(P) are in bijection. Such polynomials are considered in more detail in
Chapter

If the real polynomials Q1, ..., Qs that are being patchworked are all simplicial, which
in particular implies that the convex subdivision {A(Q1),...,A(Qs)} is a triangulation,
the construction is called a combinatorial patchworking. If it is a primitive triangulation,
we call the construction a primitive combinatorial patchworking.

What makes this case special is that the real chart Chartx P)xUR (P) of a real simplicial
polynomial P admits a very simple description, which depends only on the signs of the
coefficients of P.

Let us write P as P(z) = >}, axd(\)2*, where the sum is over the vertices A of the
Newton polytope A(P) of P, ay € R-g and §(A\) € Ug = {1, —1} for all \.

We now define a sign distribution § on the 2"(n + 1) vertices of A(P) x Ug in the
following way:

o\ €) =6\ e {1,-1},

where A = (A1,...,\,) € Z" is a vertex of A(P), € = (€1,...,¢,) € U and e =)' - ...
e e {1,-1}.

Then the real chart (A(P) x Ug, Chartapyxyp (P)) can be described as follows: for
€ € Ug, the intersection Charta(pyxup(P) 0 (A(P) x {€}) is empty if J takes the same
value on all vertices of A(P) x {€}. Otherwise, it is isotopic to an (n — 1)-dimensional
polyhedron that separates the vertices of A(P) x {e} on which ¢ is positive from those on
which it is negative, by an isotopy which leaves I' x Ug invariant for each face I' of A(P).
This can be shown using arguments similar to those from Lemma[8.5.1] as well as the fact
that the intersection of the chart Charta(pyxpyy (P) with I' x Ug, for some face I' of A(P),
is described by the chart of the troncation P|' (see [IMS09, Lemma 2.16]). Note that the
same algorithm describes (up to isotopy) the intersection of Charta(pyx Uﬂg}(P) with the
subsets o x {e}, where o is a face of A(P).

A simple example of combinatorial patchworking in dimension n = 2 is given in Figure
the orange set is (up to isotopy) a patchworked chart in A x Uﬂ%.

This shows that for any ¢ > 0 small enough, the topology of the pair (A(FP;) x
Ug, Charty pt)xUﬂg(Pt)), where P; results from the application of Theorem m to a fam-
ily Q1,...,Qs of real simplicial polynomial, only depends on the signs of the coefficients
of the polynomials @Q); - hence the appellation "combinatorial".

In fact, this allows for a change in perspective: instead of starting with a family
Q1,...,Qs of polynomials and patchworking them, one can start with a convex trian-
gulation T of a polytope A c R™ with integer vertices, then choose a sign for each vertex
appearing in the triangulation. One then applies the algorithm described above to ob-
tain a piecewise linear hypersurface X in A x Ug. As simplicial polynomials are always
completely non-degenerate (see Remark in Chapter , one can always find polyno-
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Figure 2.1: A patchworked chart (up to isotopy) in ambient dimension 2.

mials Q1, ..., Qs such that (A x Ug, X) is (stratified) isotopy equivalent to the chart of a
polynomial P; obtained by patchworking Q1, ..., Qs.



Chapter 3

Tropical geometry

3.1 Introduction and basic notions

Tropical geometry is a relatively recent field. It can be grossly described as the study of
some piecewise linear objects that are naturally related to other, more algebraic objects.
In particular, there are strong connections to real algebraic varieties and the patchwork-
ing method (which was one of the historical inspirations for the development of tropical
geometry) described in Chapter [2] as is shown later in Chapter

In this chapter, we cover some of the basic notions of tropical geometry. In particular,
tropical operations and polynomials are introduced in this section, tropical hypersurfaces
and tropical toric varieties in Section and tropical homology in Section

A short introduction to the field can be found in [BIMSI5|. For a more complete
exposition, read [IMS09|, [MS15] or [MR].

3.1.1 Tropical operations and tropical polynomials

We consider the set of tropical numbers T := Ru{—w} equipped with the so called tropical
addition and tropical multiplication, which we denote by ” +” and ”-” and define as follows:
for all z,y € T,

"x +y”" = max(x,y), "ty =x+4y.

Those operations are associative and commutative, and satisfy the distributive property.

The neutral element for the addition is —o0, and the neutral element for the multiplica-
tion is 0. Each element z € T\{—o0} admits a multiplicative inverse, which is —z, but there
is no additive inverse. Because of these properties, T is called a semifield. Topologically,

we identify T with the line segment [0, 1[.

This naturally leads to the notion of tropical polynomial. Let n = 1. We can consider
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PeT[Xy,...,X,], abstractly defined as

P(X) = > s\ X"
AeA

for some finite subset A of Z" and some coefficients s, € R, where X* := X {\1 ...XM . The
set A corresponds to the non-trivial monomials of P (as —oo is the tropical analog of the
classical trivial coefficient 0). As with classical polynomials, we call Conv(A) the Newton
polytope of P.

As with classical Laurent polynomials, such a tropical polynomial P gives rise to a
well-defined function on the tropical torus R™ (R corresponds to T*), which takes values

in R if P is non-trivial:

P:R" — T

x=(r1,...,o,) —> P(x) =" Z sxx = max{sy + At -z},
oA AeA

where A -z = >ty xiA; . The induced function is piecewise linear on R”.

Observe that two distinct tropical polynomials can give rise to the same function: for
example,

25

"+z+a=0+zx for any = € T.

3.2 Tropical toric varieties and tropical hypersurfaces

There are intrinsic definitions of tropical spaces and tropical manifolds, involving balanced
polyhedral complexes and matroidal fans, which can for example be found in [BIMS15| or
in [Mik06].

Here, we only concern ourselves with two particular types of tropical spaces: tropical

toric varieties, and tropical hypersurfaces in tropical toric varieties.

3.2.1 'Tropical toric varieties

The description below is dependant on the choice of a lattice in R™. We always use the
standard lattice Z" < R™.

Let ¥ be a strongly convex rational polyhedral fan in R™ (see Subsection . Just
as with classical toric varieties, the fan ¥ gives rise to an n-dimensional tropical toric
variety. For any cone p of X, denote by LL(p) the subspace of R™ spanned by p, and set
Lz(p) := L(p) n Z™. As ¥ is rational, we have an isomorphism Lz(p) = Z4™~. As a set,
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the tropical toric variety associated to the fan X is

Yy = | | R"/L(p).

pPES

There is a unique topology on Yy, such that

e The inclusions R"/IL(p) < Yy are continuous for any cone p € ¥.
e For any z € R™ and any v € R", the sequence (z + nv),.y € R* = R"/L({0})

converges in Yy if and only if v is contained in the support of the fan >.

Given a toric variety Y and a cone p of the associated fan, we denote by Y, the stratum
R"/LL(p) < Y (using the same notations as above). There is an inclusion-reversing isomor-
phism of posets p — 7,, between the set of closed cones of the fan ¥ and the closures in
Y of its strata; in particular, for two cones p and p’ of ¥ we have Y,y < Y, if and only
if p is a face of p/ in ¥. We say that a point y € Y is of sedentarity k if it belongs to a
stratum Y, such that dim p = k; we write sed(y) = k. This description corresponds to the
decomposition into orbits of classical toric varieties.

A tropical toric variety is naturally equipped with a lattice on each stratum. More
precisely, the stratum Y, is equipped with the lattice Z"/ILz(p). When p is of dimension
k, there is a lattice preserving isomorphism of vector spaces Y, = R™ % If p is a cone of
¥, then there is a projection map m,: R” — Y,. If p' is a face of p in the fan 3, then
L(p") < L(p) and there is a projection map 7, ,: Y,y — Y,. The tropical toric variety Y is
compact if and only if the associated fan X is complete. In what follows, we mostly focus
on compact tropical toric varieties.

Proofs and details can be found in [MR] Section 3.2] and [MSI5, Sections 6.2 and 6.3].
An equivalent definition, in terms of gluing of affine tropical spaces via appropriate tropical
maps, also exists.

Just as is the case over a field, a tropical toric variety is non-singular if it is built from
a simplicial unimodular rational polyhedral fan.

Given a full-dimensional rational polytope A < R", its normal fan ¥ allows us to define

a tropical toric variety Y, which will be non-singular if and only if A is a simple polytope.

Example 3.2.1. The tropical projective space TP" is the tropical toric variety constructed

from the fan ¥ consisting of cones
Rxoei, + -+ + Rxpey,

for all {i;---ix} & {0,---,n}, where ej,---,e, is the standard basis of R" and ¢y =

— > k_; ek. It is non-singular as a tropical toric variety.
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Figure 3.1: The fan ¥ on the left and tropical projective plane TP? to which it gives rise
on the right.

It can also be described as the quotient

T\ (~c0, ..., —0)

[o:...tan] ~[a+xo:...ta+ ]

where a € T\ — oo. The stratification of TP™ can be described using homogeneous coordi-

nates. For a subset I < {0,...,n} define
TP} ={zxeTP" | z; = —0 if and only if i € I}.

The set TP’ corresponds to the cone

2 Rxoe;.

el
The order of sedentarity of a point x = [z : ...: z,] € TP" is sed(x) = # {i | z; = —o0}.

Note that though TP? is isomorphic as a stratified topological space to the triangle on

the right of Figure (and similarly for TP™ and a n-simplex), its metric is not what one
would expect from such a comparison; for example, the sequence of points {(n,2n)},en ©
R? c TP? converges to the upper left vertex. More details on that can be found in MR,
Section 3.2].

3.2.2 Tropical hypersurfaces

As in Subsection B.1.1] let n > 1 and

P(X) = Z s X
AEA

be a tropical polynomial, for some finite subset A of Z" and some coefficients s) € R.

We define the tropical hypersurface Xp < R™ associated to P to be the corner locus of
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the function R™ — T associated to P, i.e. the set
Xp:i={zeR"IN; # e Ast. P(z) = sy, + A\] - = sy, + Ay - T}

It corresponds to the set of points in z € R™ such that the function associated to P is
not affine in any neighborhood of z. See Example for an elementary example where
P is of degree 1, and the right part of Figure E| for the tropical conic defined by the
polynomial "3 + 2z + 2y + 3zy + y? + x?”.

Just as two distinct tropical polynomials can give rise to the same function, two distinct
functions can give to the same hypersurface: consider for example P as above and some
s € R\{0}, and define P(X) :=" Y, , $4X”", where for each \ we set s} = s) + s.

We then simply define a tropical hypersurface X in a tropical toric variety Y to be
the closure in Y of a tropical hypersurface Xog ¢ R" c Y (where R™ corresponds to the
top-dimensional stratum of Y).

As is the case in the classical setting, if P is a tropical polynomial with full-dimensional
Newton polytope A, the most natural tropical toric variety in which to take the closure
of the tropical hypersurface Xg ¢ R"™ to which P gives rise is the n-dimensional tropical
variety Y generated by the normal fan of the polytope A..

By extension, given a tropical polynomial P defining a tropical hypersurface X, we
sometimes write "the Newton polytope of X" to mean the Newton polytope of P.

A tropical hypersurface Xy c R™ has a natural structure of rational polyhedral complex
induced by its definition as the corner locus of the function induced by a tropical polyno-
mial; each of its faces can be described as o7 = {x € R"| sy, + \{ -z = 55, + Ay -2 VA1, A2 €
I, 55, + M -2 > sy, + Ay -z VAL € I, Ay € A\I} for some set I = A (though not all I = A
give rise to a face). The same is true of tropical hypersurfaces in tropical toric varieties.
Moreover, a tropical hypersurface X in a toric variety Y naturally induces a structure of
polyhedral complex on Y, in which each face either belongs to the polyhedral complex X,
or is the intersection of a connected component of Y\X with a stratum Y, of Y. Let us
call this subdivision Sp(Y).

Remark 3.2.2. There is an alternative definition of tropical hypersurfaces in R™ in terms
of polyhedral complexes satisfying a certain balancing condition. Those two definitions turn

out to be equivalent, see [MR), Section 2.4].

Example 3.2.3. Consider the tropical affine function P(X) ="0+ X1+ ...+ X,+1”, and
denote as H,, = R"*! the associated tropical hypersurface. We call it the standard tropical
hyperplane in R"*1. The case n = 2 is illustrated on the left of Figure

The hyperplane H,, is a fan of dimension n which has exactly n+2 rays, in the directions

—e1,...,—€nt+1, and e; + - - - + e,11. Every subset of the rays of size less than or equal to

'Picture from [BIMS15]
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Figure 3.2: On the left, the standard tropical hyperplane in R?. On the right, a tropical
conic in R2.

n spans a cone of H,. Its Newton polytope is the standard simplex in R™**.

3.2.3 A duality theorem

Given as above n > 1 and

P(X) =) s3Xx*
AeA

a tropical polynomial, for some finite subset A of Z™ and some coefficients sy € R, we
consider the function s : A — R and the Newton polytope A = Conv(A) of P. We also
define ®(s) : A — R as the function whose graph is the upper convex hull in R**! of the
graph of s. We define the conver subdivision of A induced by P as the integer subdivision
of A such that its cells are the domains of linearity of ®(s), which is a piecewise linear
function (see also Chapter . Denote it by ST(A). For each closed face F of A (of its
original structure as a polytope, before being further subdivided by S¥(A)), denote by
SP(F) the restriction of S¥(A) to F.

Consider the hypersurface Xg < R™ to which P gives rise, and let Y be a tropical toric
variety generated by a fan 3. Let X < Y be the closure of Xy in Y, and let as above
Sp(R™) be the subdivision of R™ induced by Xg, Sp(Y) be the subdivision of Y induced
by X, and Sp(Y,) be the subdivision of the stratum Y, induced by X, := Y, n X (for some
cone p € 3). There is a duality theorem between the cells of S¥(A) and those of Sp(R"),
which can be extended to Sp(Y') under reasonable hypotheses.

Theorem 3.2.4 (Duality Theorem). Using the above notations, there is an inclusion-

reversing bijection of cells given by

U:Sp(R") — SP(A)
o — (o) := Conv ({AeA|P(z) = sy + M.ozvre o}).
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Xpy (A(P1), STH(A(P))) Xp, (A(P2), S (A(P)))
Figure 3.3: Duality for n = 2.

Moreover, we have dim(o) + dim(¥ (o)) = n for all 0 € Sp(R™), and the vector space L(o)
spanned by o is perpendicular to the vector space IL(¥ (o)) spanned by V(o). The cells of
Sp(R™) that belong to X correspond to cells of ST(A) of dimension greater than or equal
to 1. Additionally, the cells of Sp(R™) that are unbounded (for the usual Fuclidian metric)
are in bijection (via W) with the cells of ST (A) that belong to the boundary 0A of A  R™.

If A is full-dimensional and the fan X that gives rise to Y is its normal fan, we can
extend this bijection thus: let F' : p — F(p) be the inclusion-reversing bijection that maps
the cones of 3 to the faces of A to which they are normal.

Let p e ¥. The hypersurface X, c Y, = R"/IL(p) is defined by the restriction P|F) of
the polynomial P to the face F(p) (as in Chapter @), and there is an inclusion-reversing

bijection of cells given by

U,:Sp(Y,) — SP(F(p))
o — Y,(0).

We have dim(o) + dim(¥,(c0)) = dim(Y,) = n — dim(p) for all 0 € Sp(Y,) and the vector
space L(o) is perpendicular (in'Y, = R"/IL(p)) to the vector space L(¥,(0)).

Moreover, given pi,p2 € ¥ and 01 € Sp(Y,,), 02 € Sp(Y,,), we have that o1 is a face
of the closure of oo in'Y if and only if ¥,,(02) is a face of the closure of W, (01) in A

and pa 1s a subcone of p1.

Proof. See [MR), Theorem 2.3.7| (or [Arnl7| for a tediously detailed proof in French) for
the first part of the statement; the second part can easily be deduced from the first part
and from [MRI Section 3.2].

O

The situation gets slightly more complicated when the fan that gives rise to Y is not

the dual fan of A. We will not consider that case here.
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=

Tropical hyperplane in TP3 Standard simplex of dimension 3

Figure 3.4: Duality for n = 3.

The theorem is illustrated in Figure where one can see two curves Xp, and Xpo
with the corresponding subdivisions STt (A(P;)) and S72(A(P,)) of their respective Netwon
polygons, as well as in Figure where one can see the standard tropical plane in TP?.

Let P be a tropical polynomial in n variables. If the induced subdivision S (A(P)) of
its Newton polytope is a primitive triangulation (see Chapter , we say that the tropical
hypersurface Xo < R™ to which P gives rise is non-singular.

If additionally the Newton polytope A(P) is full-dimensional and its normal fan is sim-
plicial unimodular, and if Y is the (non-singular, compact) tropical toric variety generated
by this fan, we say that the induced tropical hypersurface X is non-singular in Y.

Note that given such a non-singular hypersurface X < Y, the hypersurface X, =
X nY, cY, is also non-singular (via the identification Y, = R"=dimp) for any cone p in
the normal fan of A(P).

As mentioned at the beginning of this section, there are more intrinsic definitions of

non-singularity; we do not need them here.

3.3 Definition of tropical homology

Tropical (co)homology is a type of (co)homology on polyhedral complexes computed using
(co)sheaves that are well-suited to their structure. The pivotal article regarding tropical
homology is Itenberg’s, Katzarkov’s, Mikhalkin’s and Zharkov’s [IKMZI16|. Details can
also be found in [BIMS15] or [MZ14]. For a purely sheaf-theoretic approach, see [GS19].
In what follows, we restrict ourselves to cellular tropical (co)homology, though there is
also a notion of singular tropical (co)homology (see the references above). They predictably

turn out to be equivalent.

2Picture from [BIMS15]
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The definition of cellular (co)homology that we use is slightly different from the usual
one, which relies on CW-complex. The reason for this is that the one we choose is more
adapted to the natural cell decomposition of the tropical toric varieties and tropical hy-

persurfaces that we consider (since their cells cannot be expected to be compact).

3.3.1 The tropical (co)sheaves F, and F?

In this section, we define a rational polyhedral complex in R™ as a finite collection C of
rational polyhedra (i.e. intersections of a finite number of rational half-spaces) such that
any face of any polyhedron of C'is also in C, and that the intersection of any two polyhedra
in C is a face of both polyhedra. We do not ask for the polyhedra to be compact.

We define a rational polyhedron in Y to be the closure in Y of a rational polyhedron
of some stratum Y, = R"/L(p) (remember that each cone p of the fan generating Y is
rational). We define a rational polyhedral complex in a tropical toric variety Y to be a
finite collection C' of rational polyhedra of Y, such that as above any face of any polyhedron
of C' is also in C, and that the intersection of any two polyhedra in C' is a face of both
polyhedra. Notice that the restriction of C' to any stratum Y, is a rational polyhedral
complex of R?~dimp ~ Y,.

In particular, tropical toric varieties and tropical hypersurfaces in toric varieties are
rational polyhedral complexes.

A polyhedral complex Z has the structure of a category. The objects of this category
are the cells of Z and there is a morphism 7 — ¢ if the cell 7 is included in 0. We
use the notation Z°P to denote the category that has the same objects as Z, and with
morphisms corresponding to the morphisms of Z but with their directions reversed. Let
A be a commutative ring (for us, A will typically be either Z, Zs, Q or R) and let Mod 4
denote the category of modules over A.

Given a polyhedral complex Z, a cellular cosheaf G of A-modules on Z is a functor
G: Z°° — Mody .

More explicitly, a cellular cosheaf consists of a A-module G(o) for each cell o in Z
together with a morphism ¢, ,: G(0) — G(7) for each pair 7, o when 7 is a face of . Since

G is a functor, for any triple of cells v € 7 < ¢ the morphisms ¢ commute in the sense that
LU7’Y = LT7’Y © LU’T'

Dually, a cellular sheaf H of A-modules on Z is a morphism H: Z — Mod 4. Therefore,
for each o there is a A-module H (o) and there are morphisms p; ,: H(7) — H(o) when 7

is a face of o.

Let us now define the tropical cellular sheaves and cosheaves on tropical toric varieties
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and hypersurfaces.

Let Y be the tropical toric variety corresponding to a fan > < R™. Let p be a simplicial
cone of ¥ which has rays in primitive integer directions 71,...,rs. Then we define the
tangent space

ZTL
T7(Y,) i = ———m—
z(Yp) Z-{r1,...,rs)’

and more generally

ARQZ™
TA<Yp) : ©

TAQL (1, ey = A®Te(Yy),

where A is as above a commutative ring and A® Z - {r1,...,rsy is the sub-A-module of
AQZ™ =~ A™ equal to the image of Z-{(ry,...,rs) < Z™ by the application Z" — ARZ" (in
particular, it need not be isomorphic to the abstract tensor product of A and Z-{ry,...,7s),
though it is whenever ¥ is unimodular).

If Y, and Y;, are a pair of strata such that Y;, = ?p, then the generators of the cone 7

contain the generators of the cone p and thus we get projection maps
Tpm: Ta(Y,) = Ta(Yy). (3.3.1)

Now let Z be a rational polyhedral complex in Y. In what follows, Z is usually a
tropical hypersurface X < Y with its natural cell structure, or Y itself with the natural
cell structure induced by its strata or the cell structure induced by X.

For each cell o in Z, its relative interior relint o is contained in some stratum Y, of Y.
Let Tr(o) denote the tangent space to relint o in Tr(Y,). Since o is rational, there is a full
rank lattice 77(0) < Tr(o). We can, as above, define the tangent space Ts(c) := AQTy (o).

Now for each p = 0, we define the integral p-multi-tangent space

p
FoMo) =3, ATalm),

0CTCZ)

where we sum the spaces /P Ta(7) (for each cell 7 of Z, := Z n'Y, containing o) as
subspaces of the ambient p-multi-tangent space A? Ta(Y)).

For 7 < o, the maps of the cellular cosheaf i, ;: fPZ’A(U) — ]:pZ’A(T) are induced
by natural inclusions when relint(o) and relint(7) are in the same stratum of Y, and
are induced by the quotients 7,, composed with inclusions when relint(c) < Y, and
relint(7) C Y.

We can likewise define a collection of cellular sheaves ]-'% 4 from the cosheaves .7-"pZ A,
For a face o of Z, set fZ,A(U) = Hom(]:pZ’A(J),A). For 7 a face of o, the map p,, :

.7-"9 Q4(7) — .7-'% 4(0) is given by dualizing the corresponding map from the cosheaf .7-"1,2 A

Example 3.3.1. Let Y be a tropical toric variety. Consider the polyhedral structure on
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Figure 3.5: The tropical line X in TP? from Example

Y given by Y = U?p induced by the toric stratification. One has

P p
.F;/(Yp,Z> = /\Tz(Yp) ~ /\ZCOdlmp,
and the cosheaf maps are the maps induced by the projection maps 7, defined in (3.3.1)).

Example 3.3.2. Figure |3.5| shows a tropical line X contained in the tropical projective
plane TP? from Example The polyhedral structure on TP? induced by X has 7
vertices, 9 edges, and 3 faces of dimension 2.

For any face ¢ of this polyhedral structure on TP?, the rank of fg P2 (o) depends only
on the dimension of the stratum of TP? which contains the relative interior relint(s). If
relint(o) is contained in a stratum of TP? of dimension k then f;r PQ’Z(G) =~ AP ZF.

The directions of the rays of the fan for TP? are
v; = (=1,0), wve=(0,—-1), and wv3=(1,1).
Referring to the labeling in Figure [3.5] we have
.7-"1X’Z(a:) = (v1,v9,v3) = Z2, ]-"1X’Z(ai) = (v;y, and .7-"1X’Z(T,~) =0.

When p = 0, we have ]-"g(’z('y) = Z for all v in X and f,f(’Z(’y) = 0 for all v in X when
p=2

Example 3.3.3. Let as before H,, — R™"! denote the standard tropical hyperplane in
R If v is the vertex of Hy,, then F™%(v) = AP Z" for 0 < p < n, and Fim%(v) = 0

otherwise.
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3.3.2 The tropical homology groups

In order to define the cellular tropical homology and cohomoloy groups of a polyhedral
complex Z, we must fix an orientation for each of its cells. Let Z9 denote the cells of
dimension ¢ of Z. We define an orientation map O: Z9 x Z9=' — {0,1,—1} on pairs of

cells by:

0if r ¢ o,
O(o,7) := 1 1 if the orientation of 7 coincides with its orientation in oo,

—1 if the orientation of 7 differs from its orientation in do.

Let Z be a polyhedral complex and G a cellular cosheaf on Z. The groups of cellular

q-chains in Z with coefficients in G are

Co(Z:G)= @D Glo).

dimo=¢q
o compact

Note that we do not ask that the cells be compact, and simply ignore those that aren’t
(more on this below). The boundary maps 0: C¢(Z;G) — Cy—1(Z;G) are given by the
direct sums of the cosheaf maps i, for 7 < o tensorized by the orientation maps O(c, 7)

for all 7 and o. The q-th homology group of G is
H(Z;G) = Hy(Cu(Z:G)).

Similarly, let Z be a polyhedral complex and G a cellular cosheaf on Z. The groups of

Borel-Moore cellular q-chains in Z with coefficients in G are

dimo=¢q

The boundary maps 0: C’fM(Z;g) — C’ff\f(Z; G) are given by the direct sums of the
cosheaf maps i, for 7 < o tensorized by the orientation maps O(o,7) for all 7 and o.

The g-th Borel-Moore homology group of G is

HM(Z:G) = Hy(CEY (2;9)).

In particular, we define the (p, q)-th tropical homology group with coefficients in A of a

rational polyhedral complex Z in a tropical toric variety Y to be

Hy(Z, F24) = Hy(Cu(Z; FEY).
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We sometimes refer to it as a standard tropical homology group, to better distinguish it
from the (p, q)-th Borel-Moore tropical homology group with coefficients in A, which we

define as

HPM(Z, 724 = Hy(CBM (z; F24)).

Of course, both coincide if Z is compact.
Likewise, if G is a cellular sheaf on a polyhedral complex Z, then the group of ¢ cochains

and g cochains with compact support of G are respectively

CUZ;G9) = C—B G(o) and CHZ;G) = @ G(o).
dimo=¢q dim o=q
o compact
The complex of cochains and cochains with compact support of G are formed from
the cochain groups together with the restriction maps 7., combined with the orientation

map O as in the case of cosheaves. The cohomology groups and cohomology groups with

compact support of G are respectively,
HY(Z;G) := H(C*(%;9)) and H!(Z;G) := HI(C:(Z;G)).
In particular, we have
CUZ; Fy 4) = Hom(Cy(Z; FP4), A) and  C4(Z; Fy ,) = Hom(CPM(Z; F74), A),

and we define the (standard) tropical cohomology groups with coefficients in A and tropical
cohomology groups with compact support and coefficients in A of a rational polyhedral

complex Z in a tropical toric variety Y to be respectively
HY(Z: 7 ) = HI(CH(Z: )

and
H{Z;FPZ,A) := HY(CZ(Z; Fy 4))-

Remark 3.3.4. Observe that when p = 0, the sheaf ]—"%A) is simply the constant sheaf
associated to the ring A (and similarly for the cosheaf ]-'OZ’A).

Remark 3.3.5. Note that this definition is dependent on the ambient space Y in which

the rational polyhedral complex is embedded.

The Borel-Moore tropical cellular homology groups and tropical cellular cohomology
groups with compact support of a rational polyhedral complex in a tropical toric variety
Y hence defined are independent from the cell structure considered (and equal to the
corresponding singular (co)homology groups).

On the other hand, an additional assumption needs to be made in the standard case.
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Following J. Curry in [Curl3, Chapter 4|, we define a regular cell complex to be a space
X equipped with a partition into cells {X4}aea such that

1. Each point x € X admits an open neighborhood intersecting only finitely many X,,.
2. For any a € A, the open cell X, is homeomorphic to R¥ for some k.
3. IfEng # (J, then XﬁcXia.

4. For any a € A, the pair (X,, X,) is homeomorphic to the pair (B, Bk), where BF

is the closed k-dimensional ball and B* the open k-dimensional ball.

Note that this is a stricter definition than what is common for regular CW-complexes.

Curry also defines a cell complex to be a space X equipped with a partition into cells
{Xa}aea satisfying the first three conditions of the definition of a regular cell complex, and
such that its one-point compactification, with the cell decomposition {X,}aea U {{0}}, is
a regular cell complex.

Then Curry shows that the cellular (in the usual sense, i.e. computed using a CW-
complex structure) homology of a cosheaf (respectively, the cellular cohomology of a sheaf)
on a space with a cell complex structure can be computed using that cell decomposition and
considering only compact cells (even though that cell decomposition does not necessarily
satisfy the conditions to be a regular CW-complex), as we did above (see [Curl3, Chapter
6] or [Curld, Chapter 7]).

As a rational polyhedral complex in a tropical toric variety automatically satisfies the
first three conditions of the definition of a regular cell complex, we only have to ask that
its one-point compactification (with the induced cell structure) be a regular cell complex
for it to be a cell complex. Hence, under that assumption, we know that the standard
tropical (co)homology groups Hy(Z; .7-'pZ ) and HY(Z; .7-'2 ) are independent of the chosen
decomposition (and in fact equal to the corresponding singular (co)homology groups).

In what follows, we will only ever compute the standard tropical (co)homology of cell
complexes.

The following lemma helps us characterize tropical hypersurfaces in R™ that are cell

complexes.

Lemma 3.3.6. Let P be a non-trivial tropical polynomial in n variables, A be its Netwon
polytope, and X be the induced tropical hypersurface in R™. Then R™, equipped with the nat-

ural cell decomposition induced by X, is a cell complex if and only if A is full-dimensional.

Proof. Suppose first that A is of dimension & < n. Then one can find a cell ¢ of X of
dimension n— k that is homeomorphic to R"*, and such that its closure & in the one-point
compactification of R™ is homeomorphic to the (n—k)-sphere (and thus not homeomorphic

to the (n — k)-closed ball).
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Conversely, suppose that A is full-dimensional. The recession cone of a cell o is the set
Cy:={veR"| x4+ \veo for any x € o and any \ € R>¢}.

For any cell o of X, it is easy to show (by considering the cell of the subdivision of A
induced by P that is dual to o under the Duality Theorem that the recession cone
of o is such that its intersection with the (n — 1)-sphere {x € R"| |x| = 1} is contractible.
One can then consider a first compactification of R™ as the ball B™ (where we identify
its interior with R™). In this compactification, the closure & of o is such that the pair
(6,0) is homeomorphic to (Bdim",édim"). We can then quotient B™ by its boundary
B™R" to obtain the one-point compactification of R™. As the intersection C, n S"~! was
contractible, it is easy to see that the closure @ of ¢ in this new compactification is such
that the pair (7,¢) is homeomorphic to (Bdme pdimay, O

Observe that if R™ with the cell structure induced by X is a cell complex, then so is
X.

Under reasonable conditions, many well-known results regarding classical homology
also carry over to tropical homology, such as the Mayer-Vietoris sequence (see [JRS17]),
an analog to one of the corollaries of Lefschetz’s hyperplane section theorem (see Chapter
[7), Kiinneth’s formula (see [GS19]) or Poincaré duality with integer coefficients, which is
stated below.

Theorem 3.3.7. Let Z be either an n-dimensional non-singular tropical toric variety,
a non-singular tropical hypersurface in R™*1, or an n-dimensional non-singular tropical
hypersurface in a (non-singular compact) tropical toric variety. Then for all q,p, we have

a canonical isomorphism
Z7
HY(Z; Fl,) =~ HYY(Z;, iy
Proof. See either [JRS17| or |[GS19]. O

Poincaré duality with coefficients in Q or R immediately follows.

The statement is in fact stated in both [JRS17] and [GS19] for tropical manifolds, which
we have not defined here. Non-singular tropical toric varieties and non-singular tropical
hypersurfaces are special cases of tropical manifolds.

We further study the links between the tropical homology of a tropical variety and the
usual homology of related real algebraic varieties in Chapters [4] [7] and [0
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Chapter 4

Tropical homology, Betti numbers

and Kalinin’s spectral sequence

4.1 Chapter introduction

In this chapter, we detail some connections between the algebraic and the tropical worlds;
in particular, we relate the homology of the real and complex parts of a real algebraic
hypersurface obtained by combinatorial patchworking and the homology of some tropical
cosheaf on an associated tropical hypersurface. This also allows us to explain the motiva-
tions behind the results of Chapter [7]

This principle can be traced back to I. Itenberg’s, L. Katzarkov’s, G. Mikhalkin’s and
I. Zharkov’s major article [IKMZ16|, which shows that the (p,q)-th tropical homology
group with coefficients in Q of an non-singular projective tropical variety obtained as
the tropical limit (more on this below) of a one-parameter family of complex projective
algebraic varieties is equal to the (p,q)-th Hodge number of a general member of that
family.

Roughly summarized, the core idea that we develop here (which is also present in the
aforementioned article) is that a patchworked hypersurface can be seen as a fibration of
sorts on a related tropical hypersurface; we can then consider an analog of the Leray-Serre
spectral sequence associated to that fibration, whose second page-terms will be homology
groups on the tropical hypersurface, with coefficients in the homology of the fibers. Under
certain circumstances, those homology groups coincide with the tropical homology groups
defined in Chapter

The content of this chapter belongs to a gray area of sorts, in the sense that we do not
expose new results or entirely new concepts, but rather a point of view which, as far as the
author is aware, does not appear in this level of generality in the literature (as an example,
both [IKMZ16| and [RS18] only consider the non-singular case). That is not to say that

no one else is familiar with that point of view, but it is nonetheless more "experimental"

o3
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than the rest of Part [ As it is still a work in progress, we allow ourselves a slightly lesser
degree of rigour here than in the rest of this text. The same applies to Chapter [0} which

is the direct continuation of this chapter.

4.2 Tropical hypersurfaces as limits of families of patchworked

real algebraic hypersurfaces

We use the concepts and notations of Chapter

Consider the map

Log, : (C*)* — R"
(21,0 52m) > (logy(|21]), - ., logy(|znl)),

for some t € R~g.

Given a Laurent polynomial P in n variables, we call Log,(V(c#)»(P)) = R" the amoeba
of Vicx)n(P). Note that the amoeba only retains information on the amplitude of the
coordinates of the points of V(c#)n(P); their argument appears in the definition of the
coamoeba, which can be found in Chapter Together, they can be used to define the
phase tropical variety - see [KZ16].

Consider also a family of real Laurent polynomials

Pi(z) := Z exttN A
AEANZ

indexed by a real parameter ¢ > 0, where A is a finite subset of Z™ and we have c) € R*
and pu(A) € R for all A € A.

Then it can be shown (see for example [Mik04]) that Log;—1 (V(c#)» (P;)) converges, with
respect to the Hausdorff distance on closed sets, to the tropical hypersurface Xp < R™ to
which the tropical polynomial P(X) := "3\ _\ 7n —u(A)X*” gives rise, as t —> 0. We
say that P is the tropical limit of the polynomials P;, and that Xp is the tropical limit of
the hypersurfaces Vic#)n (P%). This process is illustrated in Figure Similar statements
can be made using a toric variety (and the associated tropical toric variety) as the ambient
space of the hypersurfaces induced by the polynomials F;.

Such a family {P;};~¢ of real Laurent polynomials can for example be obtained as the
result of a patchworking of polynomials @1, .. ., Qs, where u is assumed to be the restriction
to A of a piecewise linear convex function on the Newton polytope A = Conv(A) whose
domains of linearity are the Newton polytopes A(Q;). In that context, we refer to Xp as

to the tropical hypersurface associated to the real hypersurface P; of the algebraic torus,

Tmages from [BIMST5]
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Figure 4.1: An amoeba in R?, and the associated tropical limit.

for any ¢ > 0 small enough that the conclusions of the Main Patchwork Theorem
apply.

We consider such a tropical hypersurface Xp and such real hypersurfaces P; for the
rest of the chapter.

Note that if {P,};~o was obtained using a primitive triangulation, the associated hy-
persurface Xp is non-singular. In that special case, interesting computations can already
be made. Indeed, using a cell structure on Vgpn(P;) (for ¢ > 0 small enough) suggested
by the description of (a piecewise linear hypersurface isotopic to) its chart in Subsection
one can easily compute the Euler characteristic of Vrpn (F;). Likewise, there is a rel-
atively simple combinatorial description of the tropical characteristics x (CZM (X p; fz‘,XP )
(see Chapter [7| for more on those). Using the main result from [IKMZ16], the author was
then able to find (in his Master thesis [Arn17]) a purely combinatorial proof of a result by
B. Bertrand (see [Ber10]), which stated that under those assumptions,

X (Ve (P2)) = o(Vepn (1)),

where o(Vepn (P)) is the signature of the intersection form on H™ ' (Vepn(F;)). In fact,
both proofs generalize to complete intersections in non-singular toric varieties (see [Arnl7]
and [BBOT]).

To simplify notations, let us call X; the real algebraic hypersurface induced by the
polynomial P; in either the algebraic torus or a reasonable toric variety, and X the asso-
ciated tropical variety (in either the tropical torus R™ or the corresponding tropical toric
variety). When ¢ > 0 is small enough, it can be shown, as in Mikhalkin’s [Mik04], that
there is a continuous surjection

F:CX; — X

which respects the natural cell structure on X in the following sense: let ¢ be a k-

dimensional cell of sedentarity 0 of X, dual to some face v of dimension n — k of the associ-
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Figure 4.2: The stratified fibration F'.

ated subdivision of the Newton polytope A of P (see the Duality Theorem. Then the
corestriction of F' to the relative interior of ¢ is a trivial fibration, whose fiber is diffeomor-
phic to CX, x (S1)¥, where S! is the unit circle and X, is the (n — k — 1)-dimensional real
algebraic hypersurface in the algebraic torus induced by P;|", seen (via a change of coordi-
nates) as a polynomial in n—k variables. We define CO, := F~!(relint(c)) = CX, x (C*)¥,
and RO, < RX; as the real part of CO, c CX,.

When 7 < o is face of sedentarity 0 of o in X, there is a morphism i, : Oy — O,
which is the composition of a homotopy equivalence and an inclusion. Those morphisms
are natural, in the sense that if 7 < o < 7, we have i, 0 iy 5 = iy 7.

In the primitive case, for a cell o of dimension k, each CX, (respectively, RX,) is a

n=k (respectively, in (R*)"~F)

generic hyperplane in (C*) , or equivalently the complement
of a generic arrangement of n — k 4 1 hyperplanes in CP**~1 (respectively, in RP"~*~1),
Following Mikhalkin, we call it the (n — k + 1)-dimensional pair of pants, and denote it
as CP"*=1 (and RP"*~1 for its real points). The topology of the real part RP' of an
I-dimensional pair of pants is not very interesting, as it it simply a disjoint union of 2! — 1
contractible connected components. The topology of the complex part is more complicated
(see for example [OT92]).

This is illustrated in Figure where X is a tropical curve, o is one of its edges and
T < o one of its vertices. In red, CO,, is diffeomorphic to C*. In blue, CO; is diffeomorphic
to the 1-dimensional pair of pants, which is in fact the usual pair of pants (i.e. a sphere
minus three points).

The situation is similar when considering cells of nonzero sedentarity. Suppose that the

ambient tropical toric variety is non-singular and spanned by the Newton polytope of P
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Figure 4.3: The stratified fibration F' in nonzero sedentarity.

(so that the Duality Theorem applies). Let o be a k-dimensional cell of sedentarity
i of X, dual to some face v of dimension n — i — k of the associated subdivision of the
Newton polytope A of P (see the Duality Theorem . Then we can assume (if we are
careful in our definition of F') that the corestriction of F' to the relative interior of o is a
trivial fibration, whose complex fiber is diffeomorphic to CX, x C? x (S')*, where as above
S is the unit circle and X, is the (n — i — k — 1)-dimensional real algebraic hypersurface
induced by P;|?. We also have CO, = F~!(relint(c)) = CX, x C? x (C*)*.

This is illustrated in Figure In red, we see an open set of X, homeomorphic (as a
stratified space) to T2. There is a 0-dimensional cell 7 of sedentarity 2, two 1-dimensional
cells 01, 09 of sedentarity 1 and a 2-dimensional cell n of sedentarity 0. Above 7, we have
Co, = (C*)2, represented as the product of two cylinders (a blue one and an orange
one). Above each cell o, we can see CO,, = C* x C, represented as the product of a
cylinder and a half-sphere, and above 7, we have CO, =~ C2, represented as the product
of two half-spheres. The morphism i, ,, : CO; — CO,, is homotopically equivalent to
ixid : C* x C* — C x C*, where i : C* —> C is the inclusion. Increasing the sedentarity
corresponds to "closing holes".

This decomposition of the hypersurface induced by X; into simpler pieces (the spaces
Oy) is, in a sense, nothing more than the statement of the Main Patchwork Theorem; the

piece O, corresponds to the chart of the polynomial @;|7, where v belongs to the Newton



58 CHAPTER 4.

polytope A; < A of @; and is the cell of A dual to o (see for example [IMS09, Lemma
2.17]).

4.3 The Leray-Serre spectral sequence of the fibration

Let A be a commutative ring. In this section, we suppose that X is compact and make
no distinction between Borel-Moore and standard homology in order to simplify notations.
Otherwise, one can simply proceed as in Section [3.3] We also assume that ¢ > 0 is small
enough for the situation to be as described in the previous section.

For each p € N, we define two cellular cosheaves (CL[I‘)4 and RZ/II;A on X (as we defined
the tropical cosheaves F, in Section in the following way : for a cell ¢ in X and
K € {C,R}, we set

KU;X(U) = Hp(KOgy; A).

When 7 < o, the morphism iy, : KO, — KO; induces morphisms KZ/{;;X(U) —
KZ/{;,;4 (7). This allows us to define the cellular chain groups

C(X; KUY = P KU (o)
dimo=¢q
and (tensorizing with the orientation morphisms between the cells) the associated cellular

chain complexes Co(X; K L{Z‘;‘) and homology groups
Hy(X; KUZY) i= Hy(Co(X; KULY)).

The cosheaves (CZ/{I;4 could also be considered tropical cosheaves of sorts, and perhaps more
legitimately (as is shown below) than the usual cosheaves ]—"{DA defined in Section E To
better distinguish them, we introduce the following convention: we call (CZ/I;1 (respectively
IR{Z/{;‘) the p-th round tropical cosheaf with coefficients in A (respectively, the p-th real
round tropical cosheaf with coefficients in A), and ]-}‘,X A the p-th pointy tropical cosheaf
with coefficients in A. The former are round because U is a round letter, and the latter is
pointy because it is defined using exterior products of vector spaces, and both vectors and
the /\ symbol are well-known to be pointy.

When X; is the result of a primitive combinatorial patchworking, and thus O, is a
higher-dimensional pair of pants for each cell o in X, it can be shown (see [Mik04] or
[Zhal3| for inspiration) that we have an isomorphism .7-'? A s (CZ/lI‘,4 as cosheaves, which
immediately implies an isomorphism of homology groups. If X; is the result of a non-
primitive patchworking, however, this is not the case. For example, if o is an n-dimensional
simplex of volume % (with &£ > 1) in the subdivision of A, and if the associated polynomial

Q; (such that o is the Newton polytope of @);) is simplicial, it is known (see for example
[DKR6] or [GKZ94]) that COy = V(c#yn(Q;) is such that CU | (o) = Hy—1(COg; A) is of
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rank n — 1 + k. On the other hand, ff_”f(a) < A" 'R" is of rank at most n.

Now consider the k-skeleton X* < X, where the cell structure on X is the natural one
(see Chapter , and define CY* := F~1(X*) and RY* := CY* nRX;. Let K € {C,R}.

There is an induced filtration of topological spaces & < KY? c ... ¢ KY" 2
KY" ! = KX, which in turn induces an analog (as the fiber is not constant) of the
Leray-Serre spectral sequence, whose terms we denote as E;jg SK (where r > 0 is the
number of the page). Both the chosen coefficients ring A and the spaces X and X are
implicit; however, we add "LS" as an index, as this is not the only spectral sequence that
we will be considering.

This spectral sequence has the following properties:

. E;,’qL SK Cy(X; K Z/{Zf‘), and ¢; coincides with the differentials of the cellular round

tropical homology complexes C,(X; K L{;‘).
o Epy™N = Hy(X; KUD).

e The spectral sequence converges (in a finite number of steps) to Hi.(K Xy; A), i.e.
there exists a filtration (§ = F 1 H,1 (KX A) € FoHp (KX A) © ... C FpypgHprg(K Xy A) =
Hyyo(KXy; A) such that Eyy™5% ~ F,H,, (K X3 A)/Fy 1 Hyo(KXy; A).

The existence and properties of E:f 5K can be proved by choosing a cell structure on CX;

compatible with the stratified fibration F' and the real structure, and in the same way
as for the usual Leray-Serre spectral sequence (see the chapter on spectral sequences in
[FE16]).

The appearance of round tropical homology groups on the second page of the complex
spectral sequence E:.L 5 is the reason why we described them as "better" than the pointy
tropical homology groups, which do not enjoy that connection to the homology of the
complex part CX; (nor to the homology of the real part - see the next section).

In the case of a primitive combinatorial patchworking, we know from [IKMZ16| that
the spectral sequence E.'j.L SC degenerates on the second page, and that if we let A = Q,
we have

dim B2E5C = dim Hy(X; CUL) = hP1(CXy),

where hP4(CX,) is the (p, ¢)-th Hodge number of CX;. When X is a tropical hypersurface
(as opposed to a more general tropical variety), we recover this result through purely
combinatorial means in Chapter m (see Corollary .

In general, it is not as clear whether the Leray-Serre spectral sequence degenerates on
the second page, or later.

The spectral sequence E::.L SE of the real part is simpler. In fact, when X; has been
obtained as the result of a (non-necessarily primitive) combinatorial patchworking, which
is the case in which we are most interested, the spaces RO, are unions of contractible

components (see Lemma (3.5.1). Hence ]RZ/{};“(U) = H,(ROy; A) = 0 if p # 0 for every cell
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0. Moreover, the first line Eé:qLS’R =Cy(X; K Z/{64) of the first page of the spectral sequence
(which is the only non-trivial line) associated to the real part is simply a cellular chain
complex (for the usual, non-tropical constant cosheaf A) corresponding to a certain cell
structure on RX; (the one induced by the fibration F', where each cell in RX; is a copy in
a certain quadrant of a cell of X). Hence the spectral sequence always degenerates on the

second page, EZ;(JLS’R =0 for p # 0 and E&’CILS’R = H,(X; RUG) = H,(RXy; A).
As there is not much else to say about the spectral sequence E:,’.L S’R, we do not refer to
it from now on; the only thing of importance to remember is the equality H,(X;RUg') =

H,(RX;; A) (in the combinatorial patchworking case). Therefore, we simply write E:;.L o

L

instead of &X' from now on.

4.4 Kalinin’s spectral sequence

We now have two important types of cosheaves on X: the cosheaf RZ/{({‘, which allows us
to directly compute (in the combinatorial case, which we consider) the homology of RX},
as Hy(X;RUZ') = H,(RX;; A), and the cosheaves {(CL{I‘;‘}p, which allow us to indirectly
compute the homology of CX; through the spectral sequence E:;.L S We naturally want
to establish a connection between them, and Kalinin’s spectral sequence allows us to do
so. From now on, we let the ring of coefficients A be equal to Zs, as Kalinin’s spectral
sequence is only defined over Zs.

Our three main references here are I. Kalinin’s original articles [Kal05] and [Kal92|, A.
Degtyarev’s [Deg92|, and the more sheaf-theoretic [Kra84] by V. Krasnov. All details are
to be found there.

Let Y be an n-dimensional real algebraic variety. We denote the terms of the Kalinin
spectral sequence in homology associated to Y as EZ’KQ(Y), where r > 0 is the number
of the page. We write the differentials as 0, : Eg’Ka(Y) — Eg’gil(Y). There is a single
index ¢, as opposed to a couple (p, ¢) as one would expect, because it is a stabilized spectral
sequence, i.e. that it is obtained by taking a certain projective limit (in "the direction p")
associated to a certain classical spectral sequence.

The spectral sequence has the following properties (up to an isomorphism of spectral

sequences):

o E)N(Y) = Hy(CY;Zy), and 0 : Hy(CY;Zy) — H,(CY;Zs) coincides with 1 +
¢« Hy(CY';Zy) — Hy(CY';Zy), where 1 is the identity and ¢, is induced by the
conjugation.

2,K. Ker(l
e As a consequence, By (V) = %

e The spectral sequence converges (in a finite number of steps) to H.(RX;Zs), i.e.
there exists a (decreasing) filtration ¢ = F,, 11 H«(RY;Z9) € F,H.(RY;Zo) ... C
FoH.(RY;Z9) = H(RY'; Z3) such that E;O’K“(Y) ~ F,H.(RY; Zy)/Fp11H«(RY; Zs).
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We immediately see that Y is (Smith-Thom) maximal (see Formula if and only
if its Kalinin spectral sequence degenerates on the first page, and Galois maximal (see
Formula if and only if its Kalinin spectral sequence degenerates on the second page.

Note that the filtration on H,(RX;Zs) does not need to respect the natural grading
induced by the degree on H,(RX;Zs). The higher-dimensional pair of pants illustrates
this, as it is maximal (we discuss this further below), the homology of its real part is
entirely concentrated in degree 0, but the homology of its complex part is not.

The Kalinin spectral sequence is functorial; a continuous map Y; — Y5 of real algebraic
varieties induces morphisms Ej™%(Y;) — E;*(Y3) which coincide with those induced
by the morphisms H,(CY1;Zy) — Hy(CY2;Zs) on the first page.

There is also a Kalinin spectral sequence for cohomology, and they both have many
interesting properties, such as a multiplicative structure, connections to Steenrod squares,
etc. However, they are not needed for our purpose here.

What matters to us is that it yields a non-trivial filtration on the homology of the real

part of a real algebraic variety which is connected to the homology of the complex part.

4.5 Bounds on the homology of RX;

For each cell ¢ in X, we can consider the Kalinin spectral sequence of O,. As we are
still restricting ourselves to the combinatorial case, we have as mentioned before that
H.(ROy;Z2) = Hy(ROy;Zo) = RUOZQ (0). The spectral sequence yields a filtration ¢ =
F,RU (o) © Fy (RUP(0) < ... € FyRUT?(0) = Ho(ROy; Zg) such that By *(0,) =
FyRUZ (0) Fypt RUG? (o).

Since the Kalinin spectral sequence is functorial, we can define for each p the cellular
cosheaves o — F;,,RZ/IOZ2 (o) and 0 — E, K0,), as well as the corresponding cellular chain
groups Co(X; FRUG?) = D gy o=q FyRU;? (o) and Cy(X;; E;O’Ka) = Ddimo—q EJC;O’Ka(U)?
cellular chain complexes Cq (X; FP]RL{OZ2) and C.(X; B ’K“), and homology groups H,(X; FpRZ/{OZQ) =
Ha(Co(X; FyRUZ?)) and Hy(X; ES) i Hy(Cu(X; ).

We obtain a filtration of cellular chain complexes
Co(X; B aRUE?) € ... Co(X; FIRUE) € Cu(X; FoRUL?) = Co(X;RUE?),  (4.5.1)
such that we have
Co(X; FRUG?) [Co(X; Fypia RUG?) = Cu(X; EPRY)

as complexes.
Such a filtration gives rise to yet another spectral sequence, whose terms we denote
as Egjf A ("HA" for Homological Algebra), as a matter of pure homological algebra. We

do not study that spectral sequence in detail here, though it can be used to figure out
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maximality conditions on X; (see [RS18]). What matters to us is that it automatically

implies the following inequality for each g:

dimg, H,(RX;; A) = dimg, H,(X;RUG) ZdlmZQ (X; B, (4.5.2)

All the relations that we have established are summarized in the pseudo-diagram .
In the upper left corner, we have the groups Cy(X; CL{Z2) which can be seen as the first
page of the Leray-Serre spectral sequence of CX; described in Section [4.3] By taking their
homology with respect to the differential of that spectral sequence, we find the groups
H,(X; (CZ/IPZ2), on the second page of the Leray-Serre spectral sequence. It converges to the
homology of CX;, with a filtration FuH;(CXy;Zy) © Hy(CXy;Zs) such that £
FyH|(CXy;Zo) ) Fp—1 Hi(CXy; Zg).

We can also go vertically from Cj(X; CUpZz), and progress in the Kalinin spectral se-

quence of each O, (while simply summing over the cells o); we find Cy(X; %), where
% is the cosheaf o — E2 K“(OJ). On the last page of this "cell-wise" spectral se-

quence, we find the groups C,(X; E,’ ’K“), which appear on the 0-th page of the "Homologi-
cal Algebra" spectral sequence mentioned above. By progressing in that spectral sequence,
we find on the first page H,(X; Ep’ ’K“), and it converges to H,(RX}; Z2), with a decreasing
filtration Fy Hy(RX¢; Zo) < Hq(RXy; Zs) such that E(%HA ~ FyH (RXy;Zo) ) Fpi1Hy(RXy; Zo).

Cq(X; CU2) iy Hy(X;CU?) 525 HI(CX i Zo)
p+q=1
éKa

Ker(l+c
Cq(X; Im((1+c**)) ) (4.5.3)

[

Cy(X; BP0 s H,(X B 5) =5 Hy(RX,: Z)
»
Ideally, we would like to find relations between the homology H;(CXy;Zs) of the com-
plex part, and the homology H,(RX};Zs) of the real part.
In the case of a primitive combinatorial patchworking, the situation greatly simplifies.
As stated before, one can use the theorems from Chapter[7]to see that the Leray-Serre spec-
tral sequence degenerates on the second page, and that dimg, H,(X; (CUPZ?) = h?P(CXy);
in fact, this was the primary motivation behind those results.
Moreover, if (and only if) the triangulation is primitive, each O, is maximal and the
associated spectral sequence Ej’ Ka(O ) degenerates on the first page. Hence we have

K
an isomorphism of cosheaves CZ/IZ2 ~ ot

, and isomorphisms of groups H,(X; (CLlpZQ) ~
Hy(X; E;O Ka). As we mentioned earlier that in the primitive case, we have an isomorphism
(CZ/lpZ2 > ]-}f( %2 hetween the round and pointy tropical cosheaves, this yields (using the

bound from Formula (4.5.2])) the following statement, which was the main result from
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Renaudineau’s and Shaw’s [RS1§].

Theorem 4.5.1.

dim X
dimg, H,(RXy;Z9) < Z dimz, Hy(X;F, ™).

As they directly and exclusively considered the primitive case, they did not need to go
into the details of the various spectral sequences appearing in Diagram ({4.5.3]).
As said above, this implies (thanks to the results from Chapter |7, which were obtained

as a joint work with Renaudineau and Shaw) that
dimg, Hy(RX;Zs) < h" 179UCX) + 1~ §; n-1, (4.5.4)
)

where X; is as before of dimension n — 1, and J, 1 is 1if i = "= L and 0 otherwise.
Itenberg had already proved this bound for n = 3 in [Ite97], and conjectured that it
held in general dimension in [Itel7]. This was a refinement of a conjecture by Viro, which
stated that b1 (RZ) < h11(CZ) for a non-singular simply connected compact real surface Z
(without requiring that it come from a primitive patchworking) and turned out to be false
(see [Ite97] again). In other words, real algebraic hypersurfaces obtained using primitive
combinatorial patchworking do obey the principle expressed in the Introduction in Formula
(0.0.2) (as R9P(CX) =0 if ¢ # p and R9(CX) = 1 if ¢ # 51, see for example [DKS6]).

As a bonus of sorts, observe that in the primitive case, the filtration of chain complexes
Co(X; By 1 RUP?) © ... Co(X; FIRUP) € Cu(X; FoRUL?) = Co(X; RUE?)
from Formula (4.5.1)) directly implies that

M (~1)PRIP(CX) = Y(~1)¢ dimg, (Hq(X; <cu§2)) = Y (~1)? dimg, (C’q(X; cuZ2)) -

pq p.q p.q

D (= 1)7 [dimz, (Cy(X; FRUG?)) — dimz, (Cy(X; FyiRUS?)) | =

pq

D (1) dimz, (Cy(XGRUG?) ) = Y (1) dimz, (H,(X;RUG?)) = x(RX0),

and as it is well-known that >} (—1)Ph?P(CX;) is equal to the signature o(CXy) of the
intersection form on H" 1(CX;) (see for example [Voi07]), this allows us to painlessly
recover the equality

X(RX;) = 0(CXy)

from [Arnl7| and [Berl0] that was cited in Section
In Chapter [9] we discuss possible applications of the concepts exposed above, and in
particular ways in which one could hope to generalize Theorem and Formula (4.5.4)).
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Chapter 5

A flexible construction method

5.1 Chapter introduction

In this chapter, we describe a new construction method for real projective algebraic hyper-
surfaces. It relies on Viro’s method, which is described in details in Chapter [2] as well as
related notions used below, such as complete nondegeneracy. Chapter [0]is the direct con-
tinuation of this chapter, where the methods developed here are applied to build families
of real projective algebraic hypersurfaces with asymptotically large Betti numbers.

In given ambient dimension n, the dimension of the total homology of the complex part

of a smooth projective real algebraic hypersurface X} of degree d satisfies

(d . 1)n+1 o (_1)n+1
d

dimg, (H,(CX?)) = +n 4 (—1)" (5.1.1)

In particular, it is a polynomial of degree n in d, with 1 as its leading coefficient (see
[DKS86]). Moreover, for i =0,...,n—1, the (i,n — 1 —14)-th Hodge number h*"~1={(CX?7)
is also a polynomial of degree n in d (the same for any such hypersurface). Denote its
leading coefficient by a}' (see Subsection for more details). As h?4(CX}) € {0,1} if
p+q # n—1 (see for example [DK86]), the sum 3}, h*P(CX7) from Inequality which
played an important role in the Introduction is asymptotically equal to him_l_i((CXg); in
particular, the coefficient a}' that we have just defined coincides with the similarly named
coefficient from the Introduction.

If f,g: N — N are such that f(d) < g(d) + O(d" '), using the usual convention for
the O notation, we write f % g. If both f % g and f ; g, we say that f = g. We naturally
extend this notation to the case where f and g are both defined on the same infinite subset
of N. Using that notation, we already know from the Smith-Thom inequality and

(5.1.1) that
Mo(RXY) < d,

where X is as above.

67
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It is then natural to ask what the maximal value B}'(d) of the i-th Betti number
bi(RX}) = dimg,(H;(RX})) of the real part of a smooth real algebraic hypersurface
X! < P" of degree d is; Itenberg and V. Kharlamov proved (according to [Bih03|, where a
proof in dimension n = 3 can be found) that for i = 0,...,n—1, there exists " € R>¢ such
that B'(d) = ' - d" + o(d"™). The same question can be asked about linear combinations
of Betti numbers, or under additional conditions.

A family of real algebraic hypersurfaces {X]}q4en in P" is asymptotically maximal if
dimgz, (H.(RX7)) £ dimg, (H.(CX}))(£ d"). We also say that a family of real Laurent
polynomials in n variables is asymptotically standard (this is, ironically, non-standard ter-
minology) if the associated family of projective hypersurfaces verifies b;(Vrpn (P})) £ al-d"
(which implies asymptotic maximality) - in particular, they asymptotically obey the prin-
ciple enounced in the Introduction, which suggested that real projective algebraic hyper-

surfaces should be expected to verify

dimg, Hy(RX;Zy) < ) h?P(CX).
p

Asymptotically standard families are in a sense the baseline examples of asymptotically
maximal families, since they are the easiest to build and the "least singular". It is natural
to compare the asymptotic Betti numbers of any asymptotic family of real projective
hypersurfaces to the asymptotically standard case.

In [IV07], Itenberg and Viro constructed for any n an asymptotically standard family
of real algebraic hypersurfaces {X}4en in P”, as was mentioned in the Introduction. B.
Bertrand achieved similar results with general toric varieties, as well as complete intersec-
tions, in [Ber06]. In [Bih03], F. Bihan gave good lower bounds on the values of 5]* for n = 3,
which E. Brugallé further improved in [Bru06] using the same method. A. Renaudineau
also worked on related problems in his thesis [Renl5|. All of these results made use of the
patchworking method.

In the same spirit, we develop a construction technique based on Viro’s method and
inspired by [IVQT7] such that, given for each k = 1,...,n — 1 a family of projective smooth
real algebraic hypersurfaces in P*, which we call "ingredients", we can use them to "cook"
(construct) a family {Y'}qen of smooth real algebraic hypersurfaces in P™ such that the
asymptotic Betti numbers of {RY}'}4en can be computed from those of the real parts of
the hypersurfaces used ingredients.

More precisely, we have the following "cooking" theorem, where we let SZ} = {(x1,...,z) €
R¥|2; = 0 V4, Zle x; < d} be the simplex of side d and dimension k:

Theorem 5.1.1 (Cooking Theorem). Let n > 2. Fork =1,....,n—1, let {P§}sen be a
family of completely nondegenerate real Laurent polynomials in k variables, such that Pf
1s of degree d and that the Newton polytope A(Pj) of P(f 18 Sclj. Suppose additionally that
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fork=1,....n—1andi=0,...;k—1,
ey Eok ok

2

for some a:f € Rxo. Then there exists a family {Q}den of completely nondegenerate real

Laurent polynomials in n variables such that A(QY) = S} and such that fori=0,...,n—1
n 1 n—2i—-1

bi(Verr (@) 2 — | af ™! + a7 + 30 3 a2l |, (5.1.2)
k=1j=0

where xf is set to be O for j ¢ {0,..., k—1}.

Moreover, if the families {Pf}deN were obtained using a combinatorial patchworking for
all k, then the family {Q7}qen can also be obtained by combinatorial patchworking.

If each family {P§}aen (for k =1,...,n — 1) is such that the associated family of pro-
jective hypersurfaces is asymptotically mazximal, then the family of projective hypersurfaces

associated to {Q7 }den is also asymptotically mazimal.

Remark 5.1.2. In light of Lemma and Remark below, the expressions b;(Vigpr (PF))
fork=1,...,n—1 and b;(Vep~(QY)) can be indifferently (and independently) replaced in
the statement by bi(V(R*)k(Pf)) and bi(Vigxyn (Q7)) respectively.

For the same reasons, one can see that the polynomials Pf do not actually need to
be completely nondegenerate; we only need the associated hypersurfaces V(C*)k(PC]f) i the

complex torus to be smooth.

Regarding the plan of this chapter, the construction method is described in details in
Section ; proof of Formula ([5.1.2)) and related remarks are found in Section This is

arguably the most technical part of this thesis; please bear with us.

5.2 The construction method

5.2.1 Preliminaries

Let n > 2. As in the hypotheses of Theorem for k =1,...,n — 1, consider a family
{PX} 4en of completely nondegenerate real Laurent polynomials such that A(PF) = Sk.

As above, let S¥ = {(z1,...,2;) € RF|z; > 0 Vi,Zf’;l x; < d} denote the simplex
of side d and dimension k. Let HF := {(z1,...,21) € RF|z; = 0} for i = 1,...,k and
Hg’o = {(x1,...,2) € Rk|2f:1 x; = d}. For any set of indices I < {0,1,...,k}, define
SC’ZI =S¥ (Niey HF) if 0 ¢ I and 5571 =Sk Hg,o N (Nienoy HFYif0Oe I

We first define in Subsection a specific convex triangulation of Sg_l, which we
extend to a convex triangulation of Sj.

In Subsection we then define a family {Qg}deN of real Laurent polynomials such
that A(QS) = S}. Moreover, for any m = 0,...,d —n and any I & {0,1,...,n —
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1}, the homology of the family of real projective hypersurfaces in P11 associated to
the truncation of the polynomials {Q%}4en to the simplices Sgr N {zn = m} behaves
asymptotically as the homology of the family of hypersurfaces associated to {P; 717|I|}deN
(this will be given more precise meaning later on).

Finally, applying Viro’s method to {Qg}deN and the convex triangulation we devised,
we obtain in Subsection a family {Q}}qen of real Laurent polynomials that fulfills the
conditions of Theorem (which is proved in Section [5.3)).

5.2.2 A convex triangulation of S}

Given a finite set A  ZF and a function f : A — R, we define ®(f) : Conv(A) — R as
the function whose graph is the lower convex hull in R¥*! of the graph of f (in Chapter
we considered a similar map ®, except that it was based on the upper convex hull). Note
that ®(f) always defines a convex subdivision of Conv(A).

We define by induction a convex subdivision of qu.

Lemma 5.2.1. For any n = 2 and any d = n, there exists a piecewise linear convex

function ,ug_l : Sg_l —> R with the following properties:
e [t defines a convex triangulation of S’g’*l,

o The sub-simplex {(z1,...,7p_1) € R" tx; > 1 Vi,Z;:ll x, <d-—1} c Sg_l is one

of the (maximal) linearity domains of ,u:fl.

e More generally, let I' be any of the faces of dimension k of Sg_l, and let ¥ : RF —
R™ be any affine embedding that maps bijectively the vertices of SC’? to those of T
Then the pullback to Sg by ¥ of the restriction of qu—l to I' is such that the sub-
simplex {(x1,...,x1) € R¥|z; > 1 Vz’,Zf:I z; <d—1} = Sk is one of its (mazimal)

linearity domains.

Proof. Starting from k& = 0, we will recursively build piecewise linear functions uj with
the following properties: py is defined on the union of the faces of ngl of dimension less
than or equal to k, the function py is strictly positive, the restriction of ug to any face I' of
dimension i < k is convex and induces a convex triangulation of I', and if ¥ : R? — R"?~1
is any affine embedding that maps bijectively the vertices of S% to those of I' (such an
embedding maps integer points to integer points), then the pullback to Sgl by WU of the
restriction of p; to I is such that the sub-simplex {(z1,..., ;) € Ri|z; > 1 Vj, Z;’:l xj <
d—1} c S} is one of its (maximal) linearity domains.

Let pg be constant and equal to 1 on the vertices of ngl.

Suppose that ux—1 has been defined, and let us define py (for k <n —1).

Let I" be any face of dimension k of 5’3—1, and choose an affine embedding ¥ : R¥ —
R"~! that maps bijectively the vertices of S C’f to those of I'. The function ug_1 is defined on
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Figure 5.1: For k = 2 and d = 6, the graph of p on the face I" and the induced triangulation
of I'.

the faces of dimension ¢ < k — 1 of I'. Through ¥ we identify Sk to I for the remainder of
this paragraph in order to simplify notations (in particular, we see 1 as being defined on
the faces of dimension i < k—1 of S% 1) Define fi as taking generic, strictly positive and very
small values on the k + 1 vertices of {(z1,...,z) € R¥|z; > 1V}, Zk <d-—1} c Sk
and equal to px_1 on the faces of dimension i < k — 1 of S¥. Define p := CI)( ) Sk —R.
The function p coincides with yu,_1 on the faces of dimension i < k—1 of S% . - in particular,
it induces the same triangulation of those faces. The convex subdivision that it induces
on Sfj is a triangulation and for small enough values of i on its vertices, {(x1,...,x%) €
RF¥|z; > 1Vj, Z — 1} < S% is one of its (maximal) linearity domains (see Figure
-. We define uy on the face I' as the pushforward of p to I' (via the identification I' = S C’f
used at the beginning of the paragraph).

We proceed similarly on all other faces of dimension k of Sg_l; hence we have defined
-

We let ugfl be equal to fi,—1.

O

We now extend the convex triangulation on Sg_l induced by ,ug_l to S7 in the following
sense:
Form =0,...,d—1, define 57, 1= Sjn{z, =m}and Sy, . = Sjn{z, € [m,m+1]}.
Form=1,...,d—noddandi=1,...,n—1, denote by Ry, ; = {(x1,...,24,0,...,0,m) €
Rz > 1Vj=1,....4, D% L < d—m—l}chm.
Form =0,...,d—nevenandi =1,...,n—2, denote by Ry, = {0,...,0,Zp—i—1,...,Tp_1,m) €
Rz >1Vj=n—i—-1,.. -1, Zj h ZL'j d— m} < Sg - Define also Ry, | =
{(z1,...,2p—1,m) € R"z; > 1 V] =1,...,n—1, Z] 17 <d—m—1} < Sp, . This is
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(0.0.5)

(5.0.0)

(0,0,0)

3
R.‘ 0.2

J

Figure 5.2: The sets R§‘70,2, Rg),Ll’ and R§7271 in S3.

illustrated in Figure [5.2}
Let also O}, . € R™ be the point (0,...,0,d —m,0,...,0,m)ifi=1,...,n—1, where
d — m appears as the i-th coordinate, and let it be the point (0,...,0,m) if ¢ = 0 (for

m=20,...,n).

Lemma 5.2.2. For n > 2, there exists a triangulation T' of S} that has the following

properties:
e form=1,...,d—n odd, the cone of Ry 1 with the vertex OZil,m+1,n—1 and the
cone R}, with the vertex O}, ., _, appear in T.
e Form = 0,...,d —n even, the cone of Ry, . | with the verter Oy ., , and the

n ). n ,
cone Ry, 4 with the vertex Od,m—l,o appear in T'.

e form=0,....,d—n—1andi=1,...,n—2, the join ofR’dl,m,i with Rimﬂm_l_i

appears i T

Proof. If d < n+1, choose any convex subdivision on S (all conditions are automatically

satisfied and it matters not, as we are only interested in asymptotic behaviors).

Ifd=n+1, form=0,...,d—n, choose functions :“Z:;@ satisfying the conditions of
Lemma and triangulate SU’Zm with the convex subdivision induced by /LZ::“ (via the

natural identification between S7 =~ and Sg_l given by the projection on the first n — 1

—m
coordinates).
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Figure 5.3: For n = 3 and d = 6: on the left, the subdivision T restricted to Sg”OJr, on
the right, the subdivision T restricted to Sg”l 4

Then for m = 0,...,d—n—1 even, triangulate Sy, . thus: subdivide it into the n sim-
3 n n n n n n n
plices CO””(Od,mH,Ov Od,m,O’ EER Od,m,n—1)7 CO”U(Od,mH,Ov Od,m+1,1= Od,m,l’ R d,m,n—l)’
ey Conv(Og,mH’O, s O ma1n—1> Og,m,n_l) (this is a classical way to triangulate the

topological product of a simplex and a closed interval). Each of these simplices S is ob-
tained as the join of a k-dimensional face I'y of Sy, ,; with a n — k — 1-dimensional face
Iy_p_q of SS,m: for k=0,...,n — 1. See the left side of Figure

For m = 1,...,d —n — 1 odd, subdivide Sj, . as the union of the n simplices

n n n n n n n
Conv(0g,,.05 Ogms1,00 - > Odms1,0-1)s Conv(Og 10O 1 15 O s 1,15 -+ > Odmes 1 ,0-1)5 -+
Conv(OF 00+ 0% 15O i1 n_1) (the roles of m and m +1 have been reversed). See

the right side of Figure [5.3

Call the triangulation thus defined T (see Figure .

We further triangulate each simplex obtained as the join of a k-dimensional face I'y, of
Sc’im 41 With a n—k —1-dimensional face I';, 1 of SZm using the join of the triangulations
of I'y, and I'y,_p_1.

Choose any triangulation of Sy N {zy, € [d — n,d]} which extends that on Sj,; .

Any triangulation 7" built this way clearly satisfies the conditions of the Lemma.

O

It remains to show that such triangulations can be required to be convex, which is the

case.

Lemma 5.2.3. For any n = 2 and any d = n, there exists a piecewise linear convex
function fi; = S — R such that it gives rises to a convex triangulation T' of S} which
satisfies the conditions of Lemma[5.2.2]

Proof. We first consider a convex subdivision of S n{x,, € [d—n, d]} such that the domains
of linearity are exactly the slices Sy, form =0,...,d —n —1 (a function identically
equal to m? on Sg.m does the trick).

Now consider on each Sg’m 4 (form =0,...,d—n—1) the convex triangulation into n
simplices described in the proof of Lemma [5.2.2] If m is even, let f be defined on the 2n
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Figure 5.4: The triangulation T on S’g.

vertices of S(’im + as being identically equal to 0 on Sc’l"m, and equal to 7 on Og,m 14 (for
i=0,...,n—1). Then ®(f) : Stms — R gives the desired triangulation (and similarly
for m odd).

Using that and applying repeatedly the technical Lemma (in the notations of the
Lemma, A is 5§ n{z, € [d—n,d]|} and I'is S, .,
obtain a convex triangulation T' of S% N {z,, € [d — n,d]} as built in the proof of Lemma

For m = 0,...,d —n, let ,ug:nl1 : Sg’m —> R be a function satisfying the conditions
of Lemma m (where we have identified S’g:m with S via the projection on the first

n — 1 coordinates).

for successive m =0,...,d—n—1), we

We need to further subdivide the simplices obtained as joins (see the proof of Lemma
along the triangulations induced by the functions /ﬂdf}n.

Once again, we apply repeatedly Lemma this time to S} N {z,, € [d — n,d]} and
Sg,m (as A and T, respectively, in the notations of the Lemma) for m =0,...,d — n.

We get a convex triangulation of S% N {z, € [d — n,d]} which is a refinement of T

and which coincides with the triangulation induced by the functions ,ug;ln on S7 . and a

d,m>
piecewise linear convex function p : S} N {z, € [d — n,d]} — R certifying the convexity
of this triangulation. Define fig : {Og 40} U (S} N {zn € [d — n,d]}) — R as being equal
to pon S} N {x, € [d —n,d]} and equal to some large enough R € R on {O} ;,}. Then

O (f1ly) extends the triangulation induced by p to a convex triangulation 7" on S}, which is

as wanted.



5.2. THE CONSTRUCTION METHOD 75

The technical result used in the proof of Lemma

Lemma 5.2.4 (Technical Lemma). Let A < R™ be a convex (bounded) polytope with integer
vertices, and let p: A —> R be such that pu = (f(/,L|AmZn). Let T < A be a (not necessarily
top-dimensional) face of the convex subdivision induced by p on A. Let v : ' — R be
such that v = ®(v|pazn). Then there exists a function & : A — R so that:

1. &€ = ®(€|anzn) (hence € is piecewise linear convex and gives rise to a convex subdi-
vision of A).

2. &lar) = mlar-
3. The convexr subdivision induced by & on A is a refinement of the one induced by .

4. The convex subdivision induced by & on T’ is the same as the one induced by v.

Proof. By adding a large enough constant, we can assume that v is strictly positive. Let
U be equal to v on I', and 0 everywhere else. Define & := u + ev, for € > 0.

For any € > 0, & satisfies condition 2 by definition, and if it fulfills condition 1, then it
also satisfies condition 4.

We have & = ®(E|anzn) if and only if for each p € A A Z", we have &(p) smaller
or equal to é(fem\{p})(p). For any ¢ > 0 and any p € (A\I') n Z", this condition is
automatically satisfied as & (p) = £(p) < B(E|a ) (p) < BEcla ) @)-

We want to show that for every p € I' n Z", there exists €, > 0 such that for every
ep > € >0, &(p) < <i>(§€|A\{p})(p). Then for every 0 < € < €y := min{eplp € I N Z"}, &
satisfies condition 1.

Suppose that there exists p € I' for which this is not true. Without loss of gen-
erality, by substracting from g an affine function corresponding to a support hyper-
plane of Graph(ulr) < Graph(p), we can assume that p|p is identically 0, and that
there exists M > 0 such that u|a\rynzr > M. Let (A\I') n Z" = {x1,...,7} and
(I\{p}) " Z™ = {y1,...,ym}. There exists a sequence () such that e IHTOO> 0 and
for every k € N, there are coefficients oz,lc,...,@f,C > 0 and B,i,...,ﬁ}c” > 0 such that
S ak o+ PRV 8] =1 for all k and such that

l m
dlohzi+ > By =p
i=1 j=1

and

l m l m
oo (p) = p)+eri(p) = exv(p) > ) ajbe, (@) + Y Biée, (y5) = Y allwi)+ Y Blerv(y))-

i=1 j=1 i=1 j=1
(5.2.1)



76 CHAPTER 5.

For any k, we must have Zi=1 ozfC > 0 (as otherwise, everything happens within I', and
a contradiction arises from the convexity of v). Moreover, for k large enough, we must
also have »77" ﬁi > 0, as otherwise Zézl abp(z;) > M and M > ev(p) as k goes to

infinity. Assume this to be the case from now on. We can write ay := 22:1 ot > 0 and

. . 7 ~ J .
Bk = Z;nzl B >~Q, and define &g, := Z—i and f = % Define also X := Zé:l apr; e A
and Y}, := Z;n:l Blyj € T'. Hence we write p = ap Xy, + 1Y
We see that

l m ) l A m.o
D aibe (@) + D Blle (wy) = an D djp(i) + Br Y Blenv(ys)
i=1

o) ot =1
> apM + Brepv(Yi) = exv (Vi) + ap(M — epv(Yy))

by convexity of v and the lower bound on pf(a\ry~z» (and o + B = 1).
As v is piecewise linear on the compact set I', there exists C' > 0 such that v is
C-Lipschitz continuous. Let D be the diameter of A.

We can now write

erv(p) = exv(Yi) + e (v(p) — v(Ya)) < exv(Yi) + eClp — Yy
= Ekl/(Yk) + €]€Coz]€|_X]C — Yk| < le/(Yk) + apeCD.

But as v is bounded, we have for any k large enough €,CD < M — ;v (Y)), which gives a
contradiction to Equation .

Only condition 3 remains. Consider the set Q = {Conv(p1,...,pp)lk =1, p1,...,pk €
ANZ"} of all (not necessarily top-dimensional) non-empty polytopes in A with integer ver-
tices. Consider A € 2 such that u is not affine over A. Then for e small enough, & won’t be
affine over A either. If A ¢ A\T', this is clear. If not, there are x1, ...,z € AnZ" linearly
independent in R™ and © € AnZ" such that (z, u(x)) € R" xR does not belong to the affine
space Vect((x1, p(z1)),. .., (xg, u(zg))) < R" x R. As (x,&(z)) converges to (z, u(x)) and
Vect((x1,&e(x1)), ..., (zk, &(xk))) converges to Vect((x1, pu(z1)),- .., (xg, p(xg))) (for ex-
ample in a Grassmannian sense) when ¢ — 0, we see that for any € > 0 small enough,
(x,&(x)) does not belong to the affine space Vect((z1,&c(x1)), ..., (zk,&(zk))) either. As
) is a finite set, there exists €; > 0 such that &, satisfies condition 3 for any ¢; > € > 0.

We finally define £ := &, for an arbitrary 0 < e < min(eq, €1). O]

5.2.3 Choosing the coefficients of Q"

For any Laurent polynomial P in k variables, we write P(z) = ZAEA(P)mZk cp(N) 2 (where
some coefficients c¢p(A\) € R can be 0). We use the notations of Chapter . In particular,
given two real Laurent polynomials in k variables P; and P», we say that their charts are

homeomorphic if there is a homeomorphism of stratified topological spaces between the
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pairs (A(Py) x UL, ChartA(Pl)xUﬂ’g (P1)) and (A(P) x UE, ChartA(Pg)xUﬂ’g (Py)) - remember
that the chart of P; is actually defined as the pair (A(P;) x UE, C'hartA(Pi)X%;zf (FR)).

Lemma 5.2.5. Let n > 2 and d = n. Given a convex triangulation T of S} that satis-
fies the conditions of Lemma[5.2.2 and completely nondegenerate real Laurent polynomials
{PFYI=37F such that A(PF) = SF (for k =1,...,n — 1), there exists a real Laurent poly-

nomial Qg such that:
INCHEE

2. For each simplex S of the triangulation T, the truncation Qg|s 1s completely nonde-

generate.

3. Form=0,....d—nandk =1,...,n—1 and for any lattice respecting identification
g,m,k >~ Sclj_m_l_k which lets us see Qg]%’mvk as a polynomial G in k variables, the

charts of G and Pég—m—l—k are homeomorphic.
4. Form =0,...,d—n even, the monomial Qmog’ma"*l 1$ a strictly positive constant.

5. Form=1,...,d —n odd, the monomial QNZ|OE’W»0 s a strictly positive constant.

Proof. We define a function ¢ : S n Z" — R.
Set ¢(O7 )=1form=0,...,d—neven and ¢(0}, ,) =1form=1,...,d—n

d,m,n—1
odd.

For m =0,...,d—nand k£ = 1,...,n — 1, choose a lattice respecting identification
ke Sfj_m_l_k, and via this identification, set é(x) = cpk k(:c) for any x €
n n T
dmjk O 7",

For any other x € S, pick an arbitrary non-zero value for ¢(x).

All conditions, except a priori Condition 2, are satisfied by polynomial P(z) := > . SnAZn (N2
As observed in [Vir06], among all polynomials with a given Newton polytope, nondegen-
erate polynomials form an (Zariski) open set. Moreover, as each Pf“' is nondegenerate, the
hypersurface Vi Pik)(Pik) is smooth, and a small perturbation of the coefficients of PF
will not change the topology of its chart.

With those two observations in mind, we can define ¢ as a small generic perturbation of
¢ such that all conditions are fulfilled by Z/\esgmzn c(M\)2?, and set Q) := Z/\esgmzn c(\) 2.

O

5.2.4 Defining ()} using the Patchwork

Making use of the results of the two previous subsections, we get the following proposition.

Proposition 5.2.6. Let n = 2. For k = 1,...,n — 1, consider a family {Pclf}deN of
completely nondegenerate real Laurent polynomials {Pf}g;ol_k such that A(PF) = Sk .
Then for all d = n, there exists a completely nondegenerate real Laurent polynomial

n, with A(QY) = SY, such that:
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1. Q7 is obtained via a patchworking of a family ¥ of completely nondegenerate real

Laurent polynomials.

2. Form=0,....d—n—1and k =1,...,n — 2, there are polynomials F,’fle > such

that the chart of FffI is homeomorphic to the chart of G, for some polynomial

G: (xlv s 7117”_]_,.’15”) = F)(f_m_l_k(xlv s 793]43) + xnpg:nll:];.pk(mk‘-i-l? cee l‘n—l)’

where each PF is itself such that A(Ij’lk) is a translate of S¥ and that its chart is

(2

homeomorphic to the chart of sz

3. Form = 1,...,d —n — 1, there are polynomials G} G, € % such that the n-
dimensional simplices A(G}}) and A(G,,,)) have a (n — 1)-dimensional face in com-

mon, and such that the gluing of their charts
(A(G)) U A(G,)) Uﬂg70hartA(G?n)><U§(G:1) U ChaTtA(G;L)xUDg(G;L))

is homeomorphic as a (stratified) pair to the gluing of charts

(A(Gr) v A(G,) x U, ChartA(é;)xUﬁ(értz) w Chart gy vp (Gin))s

where
Gl (21, 1, Tn) — P;:ﬂl%n(xl, e Tp1) Y T,
G;@ : (xla v 7xn—ly$n> = Pc?:m,n(xla v axn—l) + PYr:L ' I}_Lla

vt oand v, are some strictly positive constant, and each pi”_l is itself such that

A(pinfl) s a translate of Si”*l and that its chart is homeomorphic to the chart of
prt

7

4. The interiors of the simplices A(F), A(G]") and A(G,) are disjoint for all k, m,
[ and p.

Additionally, if each P(f was obtained by combinatorial patchworking, there exists such

a polynomial QY that can also be obtained by combinatorial patchworking.

Proof. By Lemma there exists a convex triangulation T' that satisfies the conditions
of Lemma @ and a convex function f; : S — R which certifies its convexity.

The triangulation 7' and the polynomials {Pf };1:—01—/& satisfy the hypotheses of Lemma
which yields a polynomial Qg satisfying its conditions. We can apply Viro’s Patch-
work Theorem to T', pily and Qg (playing the role of P in the notations of Section
to get a family of polynomials {P,}cr_,, and let Q7 be any P; with ¢ small enough
for the conclusions of Theorem to apply. Let us show that ()% satisfies all required

conditions.
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Condition 1 is trivially satisfied.

For m =0,....d—n—1and k = 1,...,n — 2, polynomial Fffl is defined as the
truncation Q2‘|Rs’m,k*Rgvm+1vn—1—k, where x denotes the join. Observe that 1*—}]’,3Z = @3|R3’mvk‘ +
Q$|R3,m+l,nflfk_

A suitable affine isomorphism Z" — 7Z", extended to R", will map R}, , to {(z1,...,24,0,...,0,m) €
R*|z; >1Vj=1,...,k, Z’;:_ll zr; < d-m—1} c Sqmand Ry, g, 4y to {0,...,0,xk11,y. .., Tp_1,m+
DeRYa; >1Vj =k+1,...nm—1, X' Ja; <d-m-—2} < S7, .. This lin-
ear transformation induces an isomorphic change of coordinates (K*)" — (K*)". In

particular, that change of coordinates maps Q3|Rs,mvk (respectively, Q3|Rgvm+1vn—1—k) to

m+1 |
n

pn—1—k : pn—1—k ST : | Ry o xRy -

Py With P70 a polynomial in n — 1 — k variables), and Q| dm+™ " dm+1n-1-k
m . pk m+1  pn—1-k

to xy! - Py g 2R Py e

xpt P{f—m—l—k’ where ﬁé“_m_l_k is a polynomial in k variables (respectively, z

Now Iaéimflfk has been obtained from Q3|Rg,mvk via an isomorphic change of coor-
dinates, and Q§|Rd;m’k itself was obtained from Pf_m_l_k via an isomorphic change of
coordinates (since Q7 satisfies to Condition 3 of Lemma ) and a small generic pertur-
bation, so that the topology of the associated (via the change of coordinates) hypersurface

would not change. Hence the chart of ﬁf_m_l_ i is homeomorphic to the chart of Pf_m_l_ i

Pn—l—k

The same applies to P~ "~ .

Finally, there is a trivial homeomorphism of pairs between the toric variety and hyper-

pn—1—k
PdfmfnJrk’

corresponding charts and ambient spaces as well. This proves Condition 2.

surface induced by Fffl and those induced by pé“_m_l_ rtTn hence between the

For m = 2,...,d —n — 1 even, polynomial G} (respectively, G,,) is defined as the
truncation Q| %dm+r.o*fimn-1 (respectively, the truncation Q| dm—1.0*fdmn-1).

) is defined as the
R

For m = 1,...,d — n — 1 odd, polynomial G} (respectively, G,,

m

) % |07 *R" . . = 1O «R"
truncation dm+1,n—1"""d,mn—1 (respectively, the truncation dym—1,n—1"""d,m,n—1)
d ’ d

The same type of arguments as above yield Condition 3.

Condition 4 is an evident consequence of the definitions of the polynomials FF G
and G,,,.

If each P; was obtained by combinatorial patchworking, it is easy to show, using
repeatedly Lemma that the triangulation 7" can be refined to a convex triangulation
T’ such that its restriction to each Rg,m,k corresponds to the triangulation used to define
the corresponding polynomial Pg—m—l—k (via the proper identifications). Likewise, the
proof of Lemma only has to be adapted in that the coefficients of Qg have to be
|S

chosen so that the truncation @2‘ is completely nondegenerate for each simplex of the

refined triangulation 7”7, which is once again a condition generically satisfied.

Then the Patchwork can be applied to 7" and Q", and the same conclusions as above

stand for the resulting polynomial Q7. O
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Figure 5.5:  From left to right, 53 x Uf, (53 x UZ)~(1y and (53 x UZ) (0}

5.3 Computing asymptotic Betti numbers

In this section, we are proving Theorem [5.1.1} more specifically, that families of real Lau-
rent polynomials obtained in Proposition [5.2.6] using the ingredients in the statement of

Theorem [5.1.1] do satisfy Formula [5.1.2]

5.3.1 Preliminaries

We first prove a useful simplifying result. As described in Chapter [2] the projective space
RP* can be obtained as an appropriate quotient of ng X Uﬁ. In this paragraph and
the following Lemma, we consider intermediate quotients in the following sense: for any
J = {0,1,...,k}, we define (S% x UE) . as S* x UE quotiented by the equivalence relation

~ J generated by:

e Fori e J and i > 0, ((wl,...,xi_l,o,xiﬂ,...,xk),(61,...,@_1,6@-,6”1,...,ek)) ~
((xlv"'7$iflaoaxi+17'"72316)7(617"'762'71’_1'€i76i+1>"'7€k‘))
for all ((z1,...,2i-1,0, %41, ..., xk), (€1, ..., €1, €y €ig1y. .., €L)) € SS X Uﬁ.

o If0€ J, ((ml,...,mk),(el,...,ek)) ~ (($1,...,xk),(—el,...,—ek))

for all ((x1,...,zk), (€1,...,€x)) € SC’j x UE such that Z?Zl zj = d.

See also Figure [5.5

By extension, for any B — Slj X U{Rf, we define B ; as the quotient of B by the restriction
of the relation ~ J. Given a completely nondegenerate real Laurent polynomial P in k
variables and degree d such that A(P) = S¥, we had defined in Chapter [2|its chart (S¥ x
UE, Chartsstﬂxg(P)). By extension, we let Chart(sngﬂzg)NJ(P) = (C’hartsstng(P))NJ.

We know from the definition of the charts that the pairs ((S¥ x Uu@~{0,1,...,k}a C’hart(ss U)o, k) (P)),
., (P)) and (SkxUE, Chart g,

{1,..., } kxUk

phic to the pairs (RP*, Vigpe (P)), (R¥, Ve (P)) and ((R*)¥, Vigsyk (P)) respectively.

((Sk x U§)~{1,...,k}a Chart(S§ <UE).- (P)) are homeomor-
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We also know that the pairs (S 5 x UE, Chart gk
d

are homotopy equivalent.

(P)) and (S% x UE, Chartsstﬂlg(P))

k
xUg

Lemma 5.3.1. For all k > 1, there is a constant C(k) > 0 such that for all completely
nondegenerate polynomials P in k variables and degree d = 1 such that A(P) = Sg, set of
indices J < {0,1,...,k} and index i € {0,1,...,k — 1}, we have the following inequality:

|bi(Chart gk i (P)) = bi(Chart i iy, (P))] < C(k)d*1. (5.3.1)

Proof. We proceed by induction on k. The result is trivial for k£ = 1, as Chartséx% is a
set of disjoint points, none of which belonging to the boundary of S} x Ug.

Assume that it has been proven for 1,..., k— 1. If |J| = 0, it is trivial. Otherwise, let
j € I. We first consider the case |J| < k + 1. Via an appropriate isomorphic change of
coordinates (which corresponds to an affine isomorphism from S to itself), we can assume
that j =1and 0 ¢ J.

The space C’hart(sstﬂ@NJ(P) is a quotient of C’hart(sstﬂz@Nu\{l})(P) by identifiying

some points in the subsets

A+ = <(({x1 = 0} N 55) X {1, il, ceey il})N(J\{l})) N Chart(S§XU§)~(J\{1}) (P)

and

A = <(({x1 = 0} N ng) X {—1, +1,..., il})N(J\{l})) N Chart(S§XU£)~(J\{1}>(P)'

As0¢ J, AT and A~ are disjoint sets, each homeomorphic to the quotient by ~ J\{1}
of the chart Charts{j*leﬂ’{f’l(

variables xo, ..., x;. By induction, we know that

P[tz1=01053) " where P|{#1=0}054 is seen as a polynomial in

b5 (AT) — by (Chart (P|t=1=04080))| < C(k — 1)d*2

k—1_prk—1
S, xUyg

and

yb*(ohartsg,wﬂg,l(P\{m:O}ﬂSfi))—b*(Chart P|#1=01080))| < C(k—1)d* 2,

(5271 XU§71)~({0,1 ,,,,, k—1}) (

where b, denotes the rank over Zs of the total homology. Moreoever, using both the Smith-

Thom inequality|1.2.1} Formula/5.1.1jand the fact that Chart P]{“:O}“Sg)
{.731 =0}GS§)

SiTIxUE ) (0.1, k—1}>(

is homeomorphic to Vigpr—1(P] , we see that

b*(Cha?"t (P‘{xlzo}ﬁss)) < 2dk,1 n k.

k—1_prk—1
S, xUy

Hence,

be(AT L A7) <2(2d" 7 + k4 2C(k — 1)d"72).
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For any pair of spaces X < Y, we denote b;(Y, X) := dimg, (H;(Y, X)). By looking at
the long exact sequence of the homology of the pair, we get that

]bi(Chart(Sstﬂxg)Nu\{l})(P)) — bi(Chart(Sstk (P), At L A_)’ < by (A+ (] A_).

B)~(\{1})

The pair (C’hart(sstﬂg) (P), A" 1 A7) is a good pair, so

~(\{1})

|bi(Chart(Sstﬂ;§) (P),At LA") — bi(Chart g

dXUnsz)~(J\{1}>(P)/(A+ u A_))| <1

~(\{1})

(the difference of at most 1 coming from the transition between regular homology and

reduced homology).
But C’hm"t(szdC <UE) < (1111, (P)/(A*tLA™) is trivially homeomorphic to Chart(szj <UK) -y (P)/A,

where A := (A% 1 A7) ) (with a small extension of notation) is homeomorphic to AL

Hence once again,
bi(Chart ge sy (P), A) = biChart se sy (P)/A)] <
and
[bi(Chart sk ry _, (P) =bi(Chart gr ), (P), A)] < bi(A) < 2dF 1 4 k+2C (k—1)d* 2.
Putting all of it together, we get that

’bi (C’hart(sk

)y (P) =0 (Chart sy, (P)] < 32" +k+20(k=1)d" %) +

We can define Oy (k) := 8 + &k +2C(k — 1) and simplify 3(2d*~! + k +2C(k—1)d*2) +2 <
Cy(k)dF1,

The same type of reasoning can be used in the case where |J| = k£ + 1 (and 0
cannot be assumed not to belong to J), except that the sets AT and A~ are not dis-
joint anymore, but are rather two copies of the quotient by ~ J\{0,1} of the chart
Chartsk Uk L(P|tm= =0}nSg d) glued along their boundary by the relation generated by
the index 0 to form a set B. By a similar induction argument, it can easily be shown that
there exists another constant Cy(k) (depending only on k) such that b,(B) < Ca(k)d*~*.
Similarly, By} is homeomorphic to the chart in P*=1 of a polynomial in k — 1 variables

of degree d, hence B_(1y < 2d*~1 + k. Then as above, one can write

‘ i(Chart (SkxUE) (P ) (ChCLTt(SkXUk) (P))‘ <

~(J\{1})

)
P)) — (Ch(ITt(SkXUk)N(J\{I})(P, B))|+
)
)

oy (P)/ B+

(J\{l})(
|

‘bl Chart (SkxUE)

bi(

bi(Chart (SkxUE)

bZ(ChCLTt SkXUk ~(\{1}) (P 7B) - b (Chart(stUk)
( (

~(I\{1}) P /B) —b; (C’hart(skak) J( )/Bm{l})“"
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[bi(Chartgr .y, (P)/Beqry) = bi(Chart gr, yry_(P), Boy) |+
|bi(Chart(gr gy, (P), B~qay) = bi(Chart gr iy, (P))] < Cs(k)d*™!

for some constant Cs(k) which depends only on k.
Hence, by starting from the empty set and proceeding by induction on the cardinal of
J, we can show that
|bi(Chartsstﬂ;§(P)) — bi(Chart(ngUﬂzg)NJ(P)ﬂ < (k + Dmaz(Cy(k), C3(k))d* .
By setting C'(k) := (k + 1) max(C1(k), C3(k)), we can conclude.
O

Remark 5.3.2. This immediately implies corresponding statements regarding the homology
of the hypersurfaces associated to P in RP*, R* and (R*)".

As we are only interested in the asymptotical behavior in d (in the sense described in
Section of the Betti numbers, Lemma means that we can often ignore the distinc-
tion between the homology of a given hypersurface in (R*)* and that of the corresponding
hypersurface in RP¥,

Let k,i > 0, and X be a submanifold of R*¥. Given homology classes a € ﬁi(X ) and
B e Hy_1_j(RF\X) (where H indicates the reduced homology), the linking number (v, )
is well defined as the transversal intersection (in R¥) number (in Zy) of any cycle a € a
and any k — i chain m in R¥, called a membrane, such that dm = b, where b is a cycle in
B (a membrane can always be found, since any cycle is a boundary in the trivial reduced
homology of R¥). It can be shown that I(a, 8) = I(8,a). We can adapt this operation
to the non-reduced homology by taking the exact same definition when i,k — 1 — ¢ # 0,
and restricting the linking number to ker(Ho(X) — Ho(RF)) x Hj_1(R*\X) when i = 0
(respectively, Hy_1(X) x ker(Ho(R*\X) — Hy(R¥)) when k — 1 —4 = 0), as any cycle
in X whose class belongs to ker(Hy(X) — Ho(R¥)) admits a membrane in R*. In fact,
ker(Hy(X) — Hy(R¥)) and Hy(X) are naturally isomorphic (and similarly for R\ X).
See |[FE16] for more details on linking numbers.

This definition can be easily generalized, in our particular case to pairs (Y, X) where
X c Y and Y is a disjoint union of convex subsets of R¥.

Given such a pair (Y, X) and a collection of homology classes ai,...,a, in H;(X)
(respectively, in ker(Ho(X) — Ho(Y)) if ¢ = 0), we say that classes f1,...,5, in
Hi_1-;(Y\X) (respectively, in ker(Ho(Y\X) — Ho(Y)) if k —1—1i = 0) are azes for the

collection av, ..., if for any 4, j we have l(a;, 3;) = d;; € Zo. As the linking number
is a Zso-bilinear product, this implies, in particular, that the classes ag, ..., a, are linearly
independent.

To help us prove lower bounds on the Betti numbers of the hypersurfaces obtained
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using Proposition by finding enough cycles and axes, in the spirit of [IV07], we need

the following result:

Lemma 5.3.3. For all k > 1, there is a constant D(k) > 0 with the following property:

Let P be a completely nondegenerate polynomial in k variables and degree d = 1 such
that A(P) = Sk, and leti € {0,1,...,k — 1}. Then there exists

r = bi(Vigsye (P)) — D(k)d* ™!
such that we can find classes aq, . .., ay in Hi(Chartsckak (P)) and B4, ..., Br in Hk,l,i((S?; X
d R

U{Rf)\ChartS:k i (P)) (respectively, in ker(Ho((S(’)g X U{Rf)\ChartS:k g (P)) — Ho(és X
d* YR d >R

UE)) if k — 1 —i = 0) whose linking numbers in S(’lC x UE satisfy l(as, Bt) = 651 € Za (the
classes B are axes for the classes as ).

Moreover, we can ask that there be cycles by € B1,...,b. € B, and a1 € ay,...,a, €
o, such that the sign of P is constant on each b; (when evaluated via the identification
55 x Uk =~ (R*)*) and such that each b; and each a; is contained in a single connected
component of Si? X U{g.

Proof. We know that the inclusion (S k% UE, Chart g

k
a ¥ Ug

(P)) <% (SkxUE, Chartss UK (P))

is a homotopy equivalence of pairs. In particular, H;(Chart G (P)) ns, H;(Chart Sk XUk (P))

i < UE
is an isomorphism.

Let e e U§ and consider the quadrant A, := S§ x {€}, which is one of the 2* connected
components of 5’5 X Uﬁ. Let also X, := Chartsstﬂxg(P) N A

See A, as a subset of R (for example by identifying it with S 5 c R¥), and see R* as

a subset of the sphere S* (via Alexandroff’s compactification). Consider
k
U:=S"\({(z1,...,25) eR¥z; =0 ¥j =1,...,k, lej < d— 8} u Chartg, ke (P))
j=

for some § > 0 (see Figure[5.6)). If 4 is small enough (as X, is a manifold with boundaries in
0A, which it intersects transversally), which we assume to be the case, U can be retracted
to S¥\S¥ and is thus contractible. We can also assume that U n (AM\X,) is homotopically
equivalent to 0A\ X.

By considering the Mayer-Vietoris sequence of the sets U, AOE\XG, Uvu AQG\X6 = SM\ X,
and U N (Aoe\Xe) ~ 0A\ X, we see that the morphism

Ja: Hyo1 f(ANX.) — Hy_1_i(SP\X.) — Hy_1_:(SF\X,)

induced by the inclusion and the natural morphism from regular to reduced homology has

a cokernel of dimension at most by (0AN\X) + 1.
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O

Figure 5.6: In light grey, the set U illustrated.

Alexander duality (see |[FE16]), which is the main tool in this demonstration, can be

applied to X, = S*, as it is compact and locally contractible. It states that the product
I Hyoqi(SA\Xe) x Hi(Xe) — Zo

where as above [ is the linking number (defined as in R¥), is non-degenerate.

Hence Hj_,_;(S*\X.) and H;(X.) are of the same dimension, and we can find s, >
bi(Xe) — (b+(0ANXe) + 2) classes Bf,...,03; € Hj_1_i(A\X,) such that the classes
Jx(BL)s -, Jx(Bs,) € Hj_1_;(S¥\X,) are linearly independent.

If k—1—i > 0, let by 1+...+bs;, be a chain representing 55 (fort = 1,...,s.), where each
by ; is connected. As each by ; is also a cycle, and since the subspace of ﬁk,l,i(Sk\Xe)
generated by {j.[b;]lt = 1,...,s¢, j = 1,...,4;} contains the subspace generated by
{J«(BT), ..., J«(B5,)}, we can redefine the classes Bf and assume that they can each be
represented by a connected cycle b € Bf. In particular, P has constant sign on each cycle
bs. As Hk_l_,-(Aoe) is trivial, each b§ also admits a membrane in A..

If k—1—1 =0, we can likewise assume that each 8§ can be represented by a point p;
in A\X.. Denote by d; € {+,—} the sign of P(p;). Choose py,p_ € A)\X, such that P
takes positive value on p; and negative value on p_ (if P has constant sign on AOE, then
Xe =, se = 0 and we have nothing to do).

Now consider the family of classes [p1 +ps, ], . - ., [ps. + s, ] € Ho(ANX.). The family
Jelpr + ps, ) Julpse + s, ] € Hy(S™\X,) has rank at least s, — 2; by taking out two
elements (without loss of generality, those numbered s, — 1 and s¢), we can once again
assume that it is independent. Redefine 8§ := [p: + ps,] for t = 1,...,s¢ — 2. Now
Bs € ker(Hg((SoC’j X Uﬁ)\ChartSok O

(
i 7 UE
linking numbers) and it can be represented by cycles on which P has constant sign.

P)) — Ho(S* < UE)) (hence we can use it to compute
Applying Alexander duality, and using the fact that HZ(AE N Xe) s, H;(X,) is an
isomorphism (as is the case when considering the entire space Sfj X Uﬁ = U, A¢), we can

now find classes af, ... a5, 9 € ﬁZ(AE N X¢) such that their linking number in Sk verifies
Lgr(ing(af), j«(B5)) = dsy for s,t e {1,..., s —2}.
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Now consider the sets B := UeeUH’g {BY,- - Bse—2} = Hk_l_i((SsxUﬂg)\Chartgngﬂ,g(P))
a.nd A = UEeUk{ai, ey a56—2} - HZ(Chartsfk Uk(P))
R a*Yr

Let us compute the linking number of 5 € B and a € A in Ss X Uﬁ. There exists
€1,€9 € Uﬁ and indices s, ¢ such that a = oS! and § = ;2. As explained above, § can be
represented by a chain b such that it is the boundary of a membrane m in AOGQ. Let a € a be
a cycle in Aq. The linking number in S 5 x Uk of B and « is the (transversal) intersection
number of m and a. If €; # €9, this intersection is necessarily empty. If €; = €2, m is also
a membrane for b in S*¥ (via the inclusion A, = S¥), so the linking number in Slj x UE is
the same as in S* (the intersection number of a and m), and thus equal to ds .

We can rename the elements of B (respectively, A) as f1, ..., By (respectively, a1, ..., a;),
where r := ZeeUﬂ’g(Se — 2). We have shown that the elements of the sets B and A are as
required in the statement of the lemma. We only have to show that we have enough of
them.

We see that

r= 2(56 -2)> Z(bz(X6> — (0+(0AN\X,) +4)) = bi(V(R*)k (P))—4- 2k — Zb*(aAE\XE)-

€ €

For a given € € UE, 0A, is homeomorphic to the (k — 1)-sphere. We can once again
apply Alexander duality to see that by(0AN\Xe) < bi(0Ac N X¢) + 1. Moreover, using
arguments similar to those in the proof of Lemma [5.3.1] one can show that there exists
D1 (k), depending only on k, such that by (6A, N X.) < Dy(k)d*~1.

Hence

r = b (Vigaye (P)) — 4+ 28 = Y b, (OANX) = bi(Vigaye (P)) — 25(5 + Dy (k)d*™).

By setting D(k) := 2¥(5 + Dy(k)), we can conclude.
O

Remark 5.3.4. In the light of Lemma(5.5.1 and Remark|5.3.2, the condition r = b;(Vigs ) (P))—
D(k)d*=1 in the statement can be indifferently replaced by r = b;(Vgpr (P)) — D(k)d*1.

Remark 5.3.5. This can easily be generalized to polynomials whose Newton polytope is

not a simplex.

5.3.2 Finding cycles in a suspension

The next two propositions are based on rather simple ideas, but the many indices and small
technical details involved make for long demonstrations. We include a short summary of

each proof at their beginning.
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We want to find a lower bound on the number of cycles and axes associated to each of
the "pieces" Gif, G- and F¥ from Proposition using Lemma We start with

m
the case corresponding to GZ. The case corresponding to Fﬁl is considered in the next

subsection.

Proposition 5.3.6. For all k > 1, there is a constant E(k) > 0 with the following property:
Let P be a completely nondegenerate polynomial in k variables and degree d = 1 such that
A(P) is a translate of S%, and let i € {0,1,...,k}. Let \*, A\~ € Ruq. Write

G+ : (xla"'axk’7xk+1) '—>P($1,...,$k)+)\+ " Tk+1

and

G (21, .., Tk, Tpg1) — Plxy, .o xp) + A7 :c,;il

Define X := (Chm"tA(GJr)xUD’g“ (Gﬂu(C’hartA(G,)xUﬂ;gH (G7)NInt(A(GT)UA(G™)) x
Uﬁ“) (here, A(G*) and A(G™) are seen as subsets of the same ambient space RF*1; they
are (k + 1)-simplices with a common k-face A(P)).

Then there exists
r 2 bi(Vigey: (P)) + bi-1 (Vigeye (P)) — B(R)d"!

such that we can find classes aq,...,ap in Hi(X) and Bi,...,Br in Hy_;(Int(A(GT) U
A(GT))xUET™N\X) (respectively, in ker(Ho(Int(A(GT)UA(G™))x U™\ X) — Ho(Int(A(GH)u
A(G7))xUETY) if k—i = 0) whose linking numbers in Int(A(GT)UA(G™)) x UET! verifies

l(as, Br) = st € Ly (the classes Py are azes for the classes as).

Proof. The main idea here is that for each class of degree j in V(g«yn (P), there is a class of
degree j in the hypersurface corresponding to the patchworking of G* and G~ (which comes
from the inclusion of the original class), and another class of degree j + 1 corresponding to
some kind of suspension of a cycle representing the original class. The same can be said
of the classes in the complement of the hypersurface that we use as axes. By proceeding
carefully, we can make it so that those new classes still have the right linking numbers
properties.

Define Xo := X n (A(P) x Up™) < Int(A(GT) U A(G™)) x Ustt, as well as X :=
X N (A(P) x UL x {1}) and X := X n (A(P) x UE x {—1}). Both X and X are copies
of ChartA(P)xU]{g(P)v and Xo = X u X .

Observe that if A(P) is a translate of S% rather than S¥ itself, there is a monomial
z¥ such that A(z¥P) = Sfj . Moreover, z“P and P give rise to the same hypersurface
in (R*)*, hence in the toric varieties RA(2%P) and RA(P); finally, the pairs (A(z*P) x
UﬁaChartA(wa)xUH’g (z*P)) and (A(P) x UE, ChartA(P)XUEzg(P)) are trivially isomorphic.
This nuance has no impact on the rest of the proof either.

Using an isomorphic change of variables, we can assume A* to be equal to 1.
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Under the above assumption, note also that the change of variables (x1 ..., zk, Tgp11) —
(x1... ,xk,x,:il) (well defined on (R*)*+1) induces an homeomorphism of pairs between
(A(GT) x Uﬁ“, ChartA(GJ,)XUDgH (GT)) and (A(G™) x Uﬁ“, ChartA(G_)XUD/gH (G7)) (cor-
responding simply to a vertical symmetry of A(G™)).

Using Lemma [5.3.3] we can produce:

e classes &q,...,04y, € Hi(ChaTtA(P)xUD'g(P» and 31, ..., Br, in Hy_1_i((A(P) xUﬁ)\ChartA(P)xUﬁ(P))
(respectively, in ker(Ho((A(P) x Uﬁ)\ChartA(P)xU]{g (P)) — Hy(A(P) x UE) if
k—1—1=0), as well as cycles a; € a1,...,ar, € &, and by 651,...,5T1 eBm
e classesy1,...,%r, € Hi,l(ChartA(P)XUﬂlg(P)) and by, ..., 0., in Hy_;((A(P) xUﬁ)\C’hartA(P)XUﬂ;{(P))
(respectively, in ker(Ho((A(P) x UE)\Chart Ay (P) — Ho(A(P) x UE) if
;.

k—1i=0), as well as cycles ¢ € 41, ..., ¢, € Y, and Jlegl,...,dm €

where each pair of families of classes and associated cycles verifies the conditions of Lemma
(the classes Bj are axes to the classes &;, P has constant sign over each cycle Z)j
or Jj, each cycle aj, Ej, ¢j or dj is contained in a single quadrant A(P) x {€}, etc.),
r1 = max(b;(Vigs ) (P)) — D(k)d*=1,0) and ry = max (b;—1(Vigs s (P)) — D(k)d*1,0).
Moreover, if i — 1 > 0, observe that each & is a boundary in A(P) x UE. Ifi—1=-1,
ro = 0 and it is also (trivially) true. If i —1 = 0, we can still assume this to be the
case thus: choose a membrane 64 in A(P) X U]{g for each ch. Each ¢; is contained by
definition in a single quadrant A(P) x {e} (for some ¢ € UE). Choose a point p; in
ChartA(P)XUH;{? (P) n (A(P) x {€}) close enough to the boundary dA(P) x {¢} that it
doesn’t intersect any 65 (which is possible by compacity of the membranes). For each cycle
¢¢, we leave it untouched if it is already a boundary in A(P) X Uﬂg, and redefine it as ¢; + p¢
otherwise (and we redefine v, := [¢ + p¢]). It is now a boundary, and the linking numbers
remain unchanged by that modification.
We also define
e classes af,...,af € Hy(Xy) and 55, ..., 8% in Hy_1-((A(P) x Uk x {+1)\X)
(respectively, in ker(Ho((A(P) x UE x {+1}\XF) — Ho(A(P) x UE x {+1}) if
k—1—1=0) as well as cycles afr eaf,...,a;—rl Eoz;_i1 and bij eﬁf,...,b}l E,B;—E as
copies of @, By, a; and by in X and (A(P) x UE x {+1})\XF via the identification
of (A(P) x U x {£1}, X&) with (A(P) x UE, Chart g py i (P)).
o classes 77, ...,7E € Hio1(X{) and 67,...,6% in Hy_;((A(P) x Uf x {1})\X7)

»Yrg
(respectively, in ker(Ho((A(P) x UE x {£+1}\X&) — Ho(A(P) x UE x {+1}) if

k—i = 0) as well as cycles cfr € ’yfr,...,c;—; € ’y;—; and dzj € 5%,...,61;—; € 5:—; as

copies of #;, 0, & and dy in X§ and (A(P) x UE x {£1})\X{" via the identification
of (A(P) x U x {£1}, XF) with (A(P) x UE, Chart py i (P)).
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Consider the sets I'T = (Int(A(GT) U A(G7)) n A(GT)) x UE x {£} and I'] =
(Int(A(GT)UA(G™))NA(G™)) x UL x {+} and notice that there are pair homeomorphisms

(coming from the definitions of charts and toric varieties)
o ¢1: (TL,I1 0 X) — ((R*)* x Rao, Vigs)ixio (GT)),

o ¢ (I, T N X) — ((R*)* x Reo, Vigsyixr, (GT)),

as well as
e ¢7: (I'7, 7 nX) — (R*)F x Ry, Vigs)kxroo (G,
o ¢~ : (IZ,I'Z N X) — (R*)* x Reo, Viprjtwpy (GT)

induced the change of variables (zy ..., zk, zr11) — (21..., 2k, ac,;il) aforementioned.
We use the same notation for the restriction of these homeomorphisms to one of the
elements of the corresponding pair.

Each of our r homology classes in H;(X) will be of one of two types: either the image in
H;(X) of a class of H;(X() (with the suspension of the associated axis), or the suspension
of a class of H;_1(Xp) (with the associated axis remaining the same). We proceed in that
order.

Let t € {1,...,m}. By definition, P has constant sign ¢ € {+,—} when evalu-
ated over the cycles b and b, via the proper identifications. Let m; be a (k — i)-

membrane in X§* whose boundary is bi’. We define a chain gb: in (R*)* x {eaps1 =

0})\WR*)k X {eta:k+1 20} (G+) as

{(xla B >xkaxk+1)|($17 .. 'axkao) € Qb:;(b?), €tTk4+1 € [O,R]}

U {1, ok, eR)| (21, 2, 0) € 0 (mi)},

for R > 0 large enough that gb:r does not intersect ‘/v(R*)kX{etxk+120}(G+> (indeed, we have
that ¢,G*(z1,..., 2k, & R) = (P (z1,...,xK)+€R) is strictly positive for any (z1, ..., zk,0) €
¢ (my) for R large enough, as my is compact). We let the (k — i)-chain Sb;” in T7\X be

( z;)_l(gb:) We also define the (k — i + 1)-chain

M= (05 (s wp ) [(21, - -+, T8, 0) € 9L (M), €xp41 € [0, R]})

where R is the same as above.

We apply the exact same procedure in I';, to get the (k — 4)-chain Sb; in I'_\X and
the (k — i + 1)-chain M, in I'.

Now we define Sb; := Sb,” + Sb;” (seen as a chain in (Int(A(GT)UA(G™)) x UH§+1)\X)
and M, := M;" + M;” (seen as a chain in Int(A(G*) U A(G™)) x UET!). The chain Sb,
is a (k — i)-cycle in (Int(A(G*) U A(G™)) x UF™)\X, and dM; = Sb;, hence M; can be

used as a membrane for Sb;. See Figure for an illustration of this procedure.
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Figure 5.7:  For k = 1 and ¢ = 0, the suspension of the axis 8 = [b] = [¢1 + ¢2] in
A(GT)UA(GT) x {1} x {1}. The cycle is a = [a] = [p1 + p2 + p3 + pa]. In light grey, the
preimage by gbf of (G*)~'{y < 0}. The hatched area corresponds to the membrane M.

We set A := {[a$'],...,[ar']} < H;(X) (where we see the cycle af* as a cycle in X via
the inclusion X' — X) and B := {[Sbi],...,[Sby, ]} © Hip—i((Int(A(GT) U A(G7)) x
UH]§+1)\X) . The elements of B are axes to the elements of A: indeed, let s,t € {1,...,r}.
The linking number [([a;'], [Sbs]) is equal to the intersection number of a;* and M. As a;*
is contained in Xy, this number is equal to the intersection number of a;* and M;n Xy = my,
which is by definition equal to 4y ;.

We now define the classes of degree ¢ obtained by suspending (i — 1)-cycles. Let
te{l,...,ry}, and fiy be a i-membrane in A(P) x UE for ¢ Name n;” and n; the copies
of 7y in X and X respectively; we have onf = ¢

We define four i-chains S¢;"* < I'el n X (for €1, €0 € {+,—}) as
Syt = ( 2)*1({(1‘1, v, =Py, xp) (21, 2, 0) € 9L (ng?), eoP (21, ..., a) < 0})
as well as four corresponding (i + 1)-chains N;" < I'¢l as
N2 o= ( 2)_1({@1, oy T, Tg1)| (w1, -, 28, 0) € GE(05?), e2P(x1,. .., 28) < —€2xp41 < 0}).

We define S¢; := S¢;" + S¢;™ + Se;" + S¢;7 (seen as a chain in X) and N; :=
NT 4+ N7 4+ N7+ N7 (seen as a chain in Int(A(G*) U A(G7)) x Us™h). Note
that S¢; is a cycle and that 0Ny = Sc¢;, hence Ny can be used as a membrane for Sc;. See
Figure for an illustration of this procedure.

By definition, P has constant sign p; € {+,—} when evaluated over the cycles d;"
and di. Define C = {[Sci],....[Ser,]} © Hy(X) and D = {[d;"'],....[d"]} <
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S¢

222

22
b 994

Figure 5.8: For k = 1 and ¢ = 1, the thick black line is the suspension of the cycle
v =[c] = [p1+p2+ps+ps] n A(GT)UA(GT)x {1} x{1,—1}. The axisis d = [d] = [q1+q2].
In light grey, the preimage by qﬁf of (GF)~'{y < 0}. The dotted areas correspond to the
membrane N.
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Hy—i(Int(A(GT) UA(G™)) x UET™)\X). The elements of D are axes to the elements of C:
indeed, let s,t € {1,...,r2}. The linking number I([Scs], [d; 7*]) is equal to the intersection
number of Ny and d; ”*. As d, " is contained in (gbfpt)_l({(ajl, cos e, 0)|pe P, ..oy xg) =

0}) < X, ”, this number is equal to the intersection number of d; ”* and

Nen (¢5,) 7 ({21, -, 20, 0) e P, - - ap) = 0}) =
ng Pt n ((bfpt)_l({(:rl, ooy Tk, 0)|pe P21, . .y ) = 0}),

which is by definition equal to d ;.

We now want to show that the linking number of any element in A and any element in
D, as well as any element in B and any element in C, is 0.

First, let [af'] € A and [d;”*] € D. Let o be a membrane for d;” in X;”*. We can

slightly rise o and ds ”* in the following sense: Let

o) 1= ((ﬁtps)_l({(.%'l, c. ,.I‘k,)\)|(.1‘1, R ,iL'k,O) € <Z>fps(0)})

and
(d;ps))\ = (d)tps)il({(‘rla .- .,$k,)\)|($1, T 7‘7:]?’0) € (bips(d;ps)'

We have doy = (ds”) and for A > 0 small enough, we have [(ds"*),] = [ds”*] €
Hy—i(Int(A(GF) U A(G™)) x UF™)\X) (observe that if k —i = 0, we have A = ).
For such a small A, the linking number of [aj'] and [ds”*] is equal to the intersection
number of oy and ay*, which is 0 as aj* is contained in X and oy does not intersect X.

Then, let [Sb:] € B and [Scs] € C. As above, Ny is a membrane for Sc,. Let € be as
in the definition of Sb;, and observe that Sb; < F;; u I';,. Observe moreover that

Sbe N T, < (6¢) ™ (GF) ™ ({ery > 01).

€t

On the other hand,
Ny nTE < (63) 71 (G ({ey < 0})).

e
Hence, the intersection number of Ny and Sb;, which is equal to the linking number of
[Scs] and [Sb], is 0.

Note finally that the axes of D were left untouched, and the axes of B are of degree at
least 1; hence, if k—1—i = 0, all axes in Bu D automatically belong to ker(Hy(Int(A(GT)u
A(G7)) % Uﬁ“\X) — Ho(Int(A(GT) U A(G7)) x Uﬁ“).

Hence the classes of A U C < H;(X) and of Bu D < Hy_;(Int(A(GT) u A(G™)) x
U\ X) (vespectively, D < ker(Ho(Int(A(GH)UA(G™))x U™\ X) — Ho(Int(A(GF)u
A(G7)) x UE*YY if k — i = 0) satisfy all the conditions of the Proposition. We only have
to verify that we have enough of them.

We have found 1 + ro = max(b;(Vigs )k (P)) — D(k)d*=1,0) + max(b;—1 (Vg (P)) —
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D(k)d*1,0) > bi(Vimsys (P)) +bi—1 (Vi (P))—2D(k)d*~! such pair of classes. By setting
E(k) :=2D(k), we can conclude.
O

5.3.3 Finding cycles in a join

We prove a similar result concerning the join of two polynomials (corresponding to the
polynomials F*¥ from Proposition [5.2.6):

Proposition 5.3.7. For alln = 3, there is a constant F'(n) > 0 with the following property:
Let ky,ky =1 be such that k1 + ko =n —1, and let i € {0,...,n — 1},

Let also Py (respectively, Py) be a completely nondegenerate polynomials in ki variables
(respectively, ko variables) and degree diy = 1 (respectively, da = 1) such that A(Py) is a
translate of 5511 (respectively, A(Pz) is a translate of 5522).

Write

Pi($17--~737k173/17--~73/k272) '_)Pl(mly-“’xlﬂ) +Z'P2(y17"'7yk2)-

Define Ay := A((z1, .y Thys YLy -+ s Yoy 2) — Pr(x1, ..., 28,)) € R,

Ao = A((X1, . s Tl Y1y e ey Ykgs 2) — 2 Po(y1, ..., Uk,)) € R™ and A := A(P) < R™.
Observe that A = A1 * Ao, where x is as above the join.

Define X := Chart A, (P).

Then there exists

YxUR

i—1
r = b (Vigeyia (P1) - bic1j (Vigsysa (P2)) — F(n) max (dy, dp)" 2 (5.3.2)
=0

such that we can find classes ai,... o, in Hi(X) and By,...,B, in Hn_l_i(ﬁ x Ug\X)
such that their linking numbers in (A1 * Ag) x Ug wverifies l(a, By) = 054 € Zo (the classes

Bt are azes for the classes ay).

Remark 5.3.8. Remark that the sum in Formula 1s trivial if © = 0,n — 1. Hence,
unlike in previous statements, we do not ask that the azes belong to ker(Ho((A; * Ag) x
UN\X) — Ho((A1 * Ag) x UR)) if n—1—1i = 0.

Proof. The main idea here is that for each j-cycle in Vigsyr, (Py) and (i — j — 1)-cycle in
Vimsyko (P2), we can build a j-cycle in X by taking the join of the two cycles. If we are
cautious enough, we can proceed similarly with the cycles used as axes, and have all classes
built in that fashion have the required linking numbers properties. The proof is somewhat
hard to read because there are many copies of the same spaces, which makes keeping track
of the indices difficult.

As in the proof of Proposition whether the polytopes A(F;) are equal to the

simplices Sg: or mere translates of them matters not.
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Define X; := Chart&(Pl)xUE;fl (Py) and X := Ch“”A(PQ)xU]g? (P2). Let M : Ry A —
A be the moment map described in Chapter , and ¢ := M xidyp : Ry A x Uy —
A x Ug. We know that ¢ induces a stratified homeomorphism between the pairs (R4 A x
Uﬁ,m) and (A x Ug, Chartaxyp(P)), which restricts to a homeomorphism b :
(R*)"™, Vigz)n (P)) — (A x Ug, ChaTtAxUng (P)) (via the trivial identification RZ ; x Ug =
(R*)").

Explicitly, let ¢f ... ,q,il € ZF be the vertices of A(P;) and Q... ,q,%Q e Z* be the
vertices of A(Pz). Then for any (z1,..., Tk, Y1, - - -, Yky, 2) € (R*)™, which we also write as
(z,y,2) € (R*)* x (R*)*2 x R*, we have an explicit formula

k 1 k 2
Sk 129 1(gk,0,...,0,0) + 3372, [y% 2](0,...,0,q¢7,1)
S lw B |+ 32 [y 2|

M(z,y,z) = (5.3.3)
where (¢,0,...,0,0) € Z" is the point whose first ki coordinates are those of ¢} € ZF and
whose coordinates ki +1 to n are 0, and (0,...,0,¢?,1) € Z" is the point whose coordinates
0 to kq are 0, whose coordinates k1 + 1 to k1 + ko are those of qt2 € 7Z*2 and whose last
coordinate is 1 (see Chapter [2)).

We decompose Ug as Uﬁl X U£2 x {1,—1}.

Via the trivial identifications A; =~ A(P;) and Ag =~ A(P,), we have X; x U§2 X
{1,-1} € X and Xy x Ug* x {1,-1} c X.

The moment map restricts to Ry A; — A; € A and R.Ay — Ay < A It
gives rise to pair homeomorphisms (R A x Uﬂgl X Uf x {1, -1}, VR+A1xUH]§1 (Py) x UﬁQ X
{1,-1}) — (A; x Up* x Uk2 x {1, -1}, X; x Ur2 x {1, -1}) and (Ry Ay x Up' x Uk2 x
{1 =11 Vi g e (P2) URt > {1, —1}) —> (Mg x Up* x UR2 x {1, —1}, Xo x UK x {1, —1})
(where for a polynomial @ in [ variables, we let Vk, AQ)xUL (Q) be the preimage of
Vea(@)(@) by §: RLA(Q) x U — RA(Q)).

There are embeddings (R=¢)* < Ry A; (induced by the embedding of A; in R™) and
(R=0)* = RyAy (induced by the embedding of Ay in R™). The space (Rxo)* < RiA;
is actually the space (Rsg)* x {0}*2 x {0} < R;A with the parametrization of Ry A
induced by the canonical basis of Z", and the space (R=g)*? < R, Ay can be seen as
{0}F1 x (R-g)*2 x {0} « Ry A in the same system of coordinates, or more rigorously as
{0}F1 x (R=g)*2 x {0} = R, A via the change of coordinates (z,y,2) — (x,y, 2 1).

Let (2,0,0) € (Rog)* x {0}*2 x {0} € R, A. Then we have

k 1
Deto |z%(ql,0,...,0,0)

M 0.0) =
(=,0,0) SF Jat|

= (Ml(l'),0,0) S Al c A,

where M1 : R+A(P1) I A(Pl)
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Likewise, let (0,y,0) € {0}* x (R=g)*2 x {00} € R;A. Then we have

k2 1y )0, ..., 0,21
M(O,y,%) — Zt:0|yt’( ) ) 7qt7 ) _ (07M2(y)71)€A2CA7
ko q2
220 [y

where My : RLA(P2) — A(Po).
Hence we can rewrite Formula (5.3.3) as

2
Sk 129 (g, 0,...,0,0) + 3R 1y% (0, ..., 0,62, 1)

M(z,y,z) = ; T = (5.3.4)
Salo |zt + X520 [y 2|
k 1 k 2 k 2
231:0 |xqs ’ M |'Z’ : Ztio |yqt | M |Z| : Ztio |yqt |
B |oql k2 | o2 @) S k2 | o2 2(¥) S ZTE
Zs=0 |29 | + |2] 'Zt=0 |y | Zs=0 |29 | + |2] 'Zt=0 |y | Zs=0 |29 | + |2] 'Zt=0 |y |

For each (e1,€2,¢€) € Ulgl X U£2 x { 1,—1}, define
J(el,eg,e) = {((A'% (1 _)\)Z/, 1 _A)7 (6176276)) €Ax Ullg’)‘ € [07 1]7 (33,61) € Xy, (y7 62) € XQ}'

It is clearly homeomorphic to the "abstract" topological join (((X1 N (A(Pl) x {€1})) x
(X2 (AP x {ea})) % [0, L) /{(,51,0) ~ (92,0, (21,5, 1) ~ (22,5, 1)}) of X1 (A(P) %
{e1}) and Xy  (A(P) x {e2}).

Define the pseudo-join

J = |_| J(El’%e).
(€1,e2,6)eUR
It is NOT homeomorphic to the "abstract" join (X7 x X2 x[0,1])/{(z,y1,0) ~ (z,y2,0), (x1,y,1) ~
(z2,9,1)} (a quotient of J is). Observe that by definition of P, we have Vigsyr, (P1) X
Vimsyka (P2) x R* Co Vig#yn (P). Using Formula , we see that it is mapped to J by ¢,
which shows that J < X. Taking the closure of J in (A; x Ag) x Ug, we see that J < X.

Now let j € {0,...,7 — 1}. We will build i-cycles and (n — 1 — 4)-axes from j- and
(1 —1—j)-cycles and (k1 —1 — j)- and (k2 — i + j)-axes by taking their join.

Using Lemma [5.3.3] we can produce:

o classes &, ... ,dj{ € H;j(X;)and 8177 ,Bfg‘l‘j in Hy, 1 ((A(P)xUE)\X,)
(respectively, in ker(Ho((A(Py) x UP)\X1) —> Ho(A(P)) x Ukl) ifki—1—j=0),

i g i g Tki—1—j _ Fki—1— Thi—1—j _ ki—1—
as well as cycles @l € &J,....a, € &, and B 17 e gP I b1 ]eﬁl .
! v G & L ! & Tl

e classes iifl*j, e ,’711 117] € Hi_1_j(X2) and 5k27i+] 0 Hy,— ZJr]((A(Pg)x

7,1]

UR2 )\ X5) (respectlvely, in ker(Ho((A(Py) x U’”)\Xg) — HO(A( 5) x Up2) if ky —

i+ 7 = 0), as well as cycles 6?1 / ’yl ! ],...,czslljj € 'yll 1 jj and J]friﬂ €

N A e 5
2 2

where each pair of families of classes and associated cycles verifies the conditions of Lemma
(the classes 55 17177 are axes to the classes al, P has constant sign over the cycles
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b1 7177 each cycle is contained in a single quadrant, ete.), 7“{ = max(b;(Vigsym (P1)) —

D(ky)di** =1, 0) and 5 7 = max(bi—1—; (Vigsyra (P2)) — D(ka)da* 7, 0).
We also define

e for each € € U]EQ and € € {1, —1}, classes a{ o 6,...,aij € Hj(X1 x {e2} x {€})
) ) B e 1,€2,€
and ﬁﬁ;’i*j,...,ﬁfjlzl? in Hy,—1-;(((Ar x Ugl)\Xl) x {€2} x {€}) (respectively,
1

in ker(Ho(((A; x Uﬂil)’\xl) x {e2} x {e}) — HO(A1 x UR x {ea} x {e})) if by —

J J J k1—1—j
1eger - - ’ar{m,e € aT{Q’e and by, . €

: ~j pki—1-j ~j Tki—1—j
as copies of &/, 8;* "7, al and b;' Y

1 —4 = 0) as well as cycles aj1,52,e € «
k1—1—j blﬁ—l—]e kjl—l—]

g ey
176276 T{76276 T1:€2,€

{e} and ((A; x U@l)\Xl) x {e2} x {e} via the identification of (A(P}) x U@l,Xl) with
(Ay x U x {ea} x {e}, X1 x {e2} x {e€}).

in X1 X {62} X

k i—1—j i—1—j
e for each €; € Ug' and € € {1,—1}, classes %761’637""7;;*1*]9',51,5 € Hi_1_;(Xy x
N oini . )
fer} > fe]) and 61209, S5 in iy (B > UE)\X0)  fer}  fe])
(respectively, in ker(Ho(((Ag x Ug?)\Xa) x {e1} x {€}) — Ho(Ag x {e1} x Ug? x {e}))
. o i—1—j i—1—j i—1—j i—1—j
if kQ'—A'L + 7 = 0) as well és ‘cycles Cll,ell,e.? € Ve ’C:n;‘l‘JJ',§17e € ‘7;2_1_?751; and
dlff;f:] € 5??6:?] . ,d’:gﬂ@;{el’e € 6f§7_127—‘;‘?61,€ as copies of %—1—3 , 5f 27y Ei_l_] and

Jfriﬂ in X x {e1} x {e} and ((Ay x U{{Q)\Xg) x {e1} x {e} via the identification of
(A(Py) x Up2, Xo) with (Ag x {e1} x Ug2 x {e}, X2 x {e1} x {€}).

Let te{1,... ,T{} and s € {1,..., réﬁl*j}. By definition, the cycles EL{ and l;fl*l*j are
contained in a single quadrant A(Pl) X {ei } (for some eg € Ugl), and the cycles &7 and
d®7"7 are also contained in a single quadrant A(Pg) X {g;'*l*j} (for some ¢ e U£2)'

By definition, P; takes constant sign €; over I;f 1717 and P, takes constant sign ey over
d¥7"7 (when evaluated via the isomorphism A(F) x Uﬂgl ~ (R*)%, for | = 1,2). Let

€(j,t,8) be 1if €, = €9, and —1 otherwise.

Y | i—1—j J i—1—j ; i i
Thenthe Join @, 1o 0 * Coatctins O T (i) M Cod i B2 Yl
> . ) .
J(Eg,cgilij,s(j,t,s)) < (Al * Ag X {Eg} X {4; ]} X {6(]7t7 S)}) nX.
; sso pki—1—j ko—ity k1—1—j ko—i+j ;
Now consider the join b, 55 (5, 0 * L 09 O Vet i) sl i) 1018
a (n—1—i)-cycle in Ay« Ag x {e} x {¢777} x {e(j,t,5)}. Furthermore, the intersection
ki—1—j ko —i+j : J i—1—j : o pRi—1—g ;
of bt,gi‘l‘j,e(j,t,s) *ds,e{,e(j,t,s) with Ay x {€]} x {(s } x{e(j,t,9)} is bt,cf;‘l‘j,e(j,t,s)’ which
does not intersect X, and the intersection of bklf,l;]j ] * defH,j with Ag x {ei} X
o o £ Te(ts) sl (i)
{C9) % {e(g,t, 8)} is dkzj_ﬁ(r‘?t . which does not intersect X either. Finally, any point
S,€1,€(75L,8

. . . k-,li' k7'+‘ o . 1 .
in the intersection of bt,lg'—l—]f,e * dS,ZE{,Ze(jJ,LS) and A x {€/} x {¢s 7} x {e(4,t,s)} can be

written as (AMy(z), (1—X)Ma(y), 1—=X), ({e} x {77 x {e(j, 1, 5)})), for some A €]0, 1[,
some = € (Rog) such that ze := (z1(e))1, ..., x5 (), ) € (R*)kl\V(R*)kl (P1) and some
y € (Rog)*2 such that ¢t ™ o= (y1(¢ )1, oy (G ky) € (R¥)F2\Vigays (Po).
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Figure 5.9: For k1 = ko = 1,7 =1 and j = 0, the join of cycles a = a1 + a9 and ¢ = ¢1 + ¢
and the join of axes b = b1 + by and d = dy + ds.

But this is equal to the image of ((x,y,2), ({e} x {77} x {e(j,t,)})) € (Rag)" x UZ
by qb (see Formula ), for some z € R+.
Then

P(ael,yC 7, ze(j 1, 5)) = Pi(we]) + ze(j t, ) Pa(y¢i ™)

is different from zero, as each term is different from zero and of the same sign (by definition
of €(j,t,s)). Hence (xel,y¢i "7, ze(j, t,5)) ¢ Vir#yn (P) and we see, via the isomorphism ¢,
that the intersection of bfi1 ;.__11__‘?7:,6 Gitis) *d]:ig_?(rj he) and X is trivial: bil ;-__11__%‘-,6 Gits) *dfzgg_?(r; bs)
is a cycle in (A} x Ag x {e]} x (¢ x {e(j,t,5)})\X. See also Figure

Let us show that for any ¢1,t2 € {1,..., r{} and s1,s2 € {1,... ,r;_l_j}, the linking num-

ber of [a) , | . w1 )] € H;(X) and [b" 177 o P2

—1ej L i1y T
t1,Gsy Te(itst) s e(iite,s t2,Csy  ie(iit2,s2)  s2,€q,,€(jit2,52)

Hn—l—i(((dl * Ag) x Up)\X) is equal to ¢, 1,0, s,-

1 R . — . ‘
Let m be a membrane for btzl,giglj‘j,e(j,tz,sQ) in Ay x {e],} x {Cs; 7} x {e(j, t2,52)}, i.e

a (ky — j)-chain in Ay x {e } x {¢5;"79} x {€(j, ta, s2)} such that om = b 170
2 ' t2,Gsy 7 se(dit2,52)
We can also assume that m intersects ai G () transversally. Then it is easy to see
1,657 ,€(J501,81
ko—i+j . k1—1—j ko—i+j . N ’ n
that mxd™ ;" is a membrane for b 7, *xd 2 in (A xAg) x Ug.
52,6, ,€(4t2,52) £2,Csy " 7re(fita,52)  s2,€r,,€(d,t2,52)

The linking number will be equal to the transversal intersection number of mxd2

52,61, ,€(j,t2,52)
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. i—1—7 . o o .. . .. .
anda’ ., e in (A1 xAs) x Ug. Note that it is necessarily trivial if
t1,Gsy - The(itn,s1)  s1€q €(ditr,s1)
: A o . . .
we don’t have eil = eiQ, Co ! =Cey 7 and €(j,t1,51) = €(j, t2, s2). Assuming from now
. ; i—1—j . .
on that we do, we write €1 := €] , €2 := (5;  ’ and € := €(j, 2, 52) to shorten notations.

o i ' o L .
As above, any point in m * dez e, (respectively, in af, ., . * ¢, 2) can be written

as (()\gj, (1 - )‘)ya 1- )‘)a (61, €2, 6)) for some ((QZ, 0, O)a (Ela €2, 6)) em, ((Oa Y, 1)7 (61, €2, E)) €
d{g;’tj (respectively, ((z,0,0), (e1,€2,€)) € af, ., . and ((0,y,1), (e1,€2,¢)) € c@fﬁfi) and
A€ [0,1]. As the intersection of ¢i, &2 and di2/t7 is trivial, we see that set-wise, we have
ka—it+j ~ J i—1—j _

ko—i+j
* *
mathﬁz,e Csq,e1,e m d827€1,6

. i .
mai1762,6*cél,el,gmAl x {61} X {62} X {6} = mmagl,EQ,E’

but this intersection is not transversal.

We slightly deform bf;;le_] * df;;ftj to make it transversal. We are computing an

intersection number in (A; * Ag) x {e1} x {e2} x {e}; from now on, we identify it with
A Aog, and embed it in R” - the intersection number in R" is the same.
For p > 0, define (bkl_l_j)p = BT 4 pe, = {(2,0,p)|(2,0,0) € b7 and

12,€2,€ l2,€2,€ t2,€2,€
o ki—1—j ko —i+j :
similarly m, := m + pe,,. For p small enough, (b;_'~7), * di2/ %/ does not intersect X

l2,€2,€
. ki—1—j . jko—i+j . : ko —itj
and induces the same class as by, ., * *dsj e’ in Hy—1—;(R™\X). The chain m, * ds; ¢

. ki—1—j ko—i+j : e ' i—1—
is a membrane for (b, ., .7 )p*dss ¢/ ¢’ , and for p generic enough, it intersects af, ., *Cs; ;2

transversally. Let us count these intersection points.

Any point in m,, * d’;;;ft] can be written as (Az, (1 — \)y,1 — A(1 —p)) for z € m,y €
d¥2 779 and X € [0,1], or equivalently as (%px, (1— 1T“p)y, 1 —p) for pe[0,1—p]. The

J
t1,€2,€

* cf{lgl_ﬁ can be written as (uv, (1 — p)w,1 — p) for some v € af

points 1n a Lease

weE cls;ili{ and p € [0,1]. For p > 0 small enough, we can assume that the intersection of
m and af, , . is equal to the intersection o'f flp -m and af, ., . (since m was assumed to
be generically positioned with respect to aihez’e). See Figure

— .
! e 1= ) -d2 e A (1= p)-ci ] € 2,

Aty e0,€
intersection points (mod 2) with last coordinate 1 — p (where |.| denotes the cardinality

Hence for each p € [0, 1—p], we have |mn

modulo 2) and |m n a{1762’6| is equal to the linking number of [af, ., ] and [bf;;;;]],

which is by construction &, +, € Za. Moreover, |(1 — l%p) : dﬁg;’tj N1 —p) - nl] =
A o o oo
|ﬁ 1ﬁup ~dS§,€fIJ N Corer ] As p— ﬁ 1fup maps bijectively [0,1 — p] to [0, 1], the

I e ' .
sum over all p € [0,1 — p] of \flpllfup ~d2 o A el e l] is equal to the intersection

. i—1—5 .
number in R*2 of 021761% with the cone

Cdhe—iti . {r-ylye dFe—iti ¢ ¢ [0,1]} < RF2.

52,€1,€ §2,€1,€ 7

. ko—it - ko—iti 1 s o
See also Figure As Cd2/H is a membrane for de2 ¢, , this is equal to the linking
o SH o ‘
number of [dsZ¢/ ] and [cs;e;2], which is by construction &g, ¢, € Zo. Hence we have
L 1
*c' Jand [6™ 57, *
3175t1>5(.]7t+»51) tQ?CSZ 75(]7t2752)

proved that the linking number of [azl’d;l,j7€(j7t1’31)

k2 =ity )] is equal to 0t 1,05, 5, € L.

S2 7E€2 7€(j7t2 ;82
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Figure 5.10: For k1 = ks = 1,7 = 1 and j = 0, a transversal intersection of the joins
m, *d and a * c. The big purple points are the intersection points.
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bap

1.0
Mo

b

b, 1 ¥ a
2 a, M

Figure 5.11: The same situation as in Figure projected along the direction e;.

. ' —1-
Now let us show that for 0 < ji < jo <i—1, 1 € {1,...,77"}, sy € {1,... /5 771},
ty € {1,...,7“{2} and sy € {1,...,7“2 72} the linking numbers of [a’ imimiy . *
t17<sl 76(]17t1731)
o 1 i
¢ and [b AR *d 22 ], as well as that of [a”* , , ,, *
51,61 ,€(J1,t1,51) t2,Cs, €(jz;t2,52) 82,65 €(j2,t2,52) t2,Csy €(j2,t2,52)
i—1—j Ft 1 ko —itj .
c j2]2 ' and [b 1— - 1]1J1 ' * d™2 ]_11+J1' ,is 0
82,6t27€(J27t2752) t1,(sy ,€(71,t1,51) 5175t175(]17t1751)
i—1—j ki—1—j
We start with the linking numbers of[ , xS and [b AR, *
7Csl €(J1st,s1)  s1,6p),€(d15t1,81) 2,5 ,€(j2,t2,52)

Jio_

|; as before, it is necessarily trivial if we don’t have ¢ = etQ, C51 1=

ka—i-+jo
s2,€12,¢(j2,t2,52)

N ' . _ )
Coy o "*and €(j1,t1, 51) = €(jo2, t2, 52). Assuming from now on that we do, we write €1 := eﬁ

€9 1= Cﬁl_l_jl and € := €(j1,11, $1) to shorten notations.

We consider a (k1 — j2)-chain m in A; x {€1} x {€2} x {€} such that it is a membrane

ki —1—j : ko —i+j —1—jo , sko—it]
for by, ., < 7*. As before, the chain muxg;, 61“2]2 is a membrane for bt2 e 2 xdiz e &%, and the
—i+j2 J1

ko —1-j1 . . .
intersection of mxg; ¢, ¢’ and at1 cae * Csper,e 1 contained in Ay x {er} x {ez} x {e} and

J1

1 oeacr A8 J2 > j1, we have (k1 — j2) + j1 < k1 and the intersection

equal, set-wise, to mna

m N aﬁ e I AY X {61} x {€2} x {€} is empty (for m generic enough). Hence the linking

e e S
number of [at1 e * Corer gl] and [b 2 % d52 Eft”] is 0.

to,€0,€
—1—j2 —1-5
The same reasoning applies to the linking number of [a752 e w92 and [b) e *
ko—i+ 1 1 ko —i+
d¥2 1 by taking bt1 526]1 * n as a membrane for bt1 525]1 « d2 0 where n s a
i+j1

membrane for d51 €1,
([ 1-j - o i
Define the sets A := {[al,g;fl*j,e(j,t 9 * csﬁg’e( ',t,s)]"] =0,...,i—1,t=1,...,r, s

i—1—j r k1—1 ko—1 .
1,...,ry 7’} ¢ Hi(X) and B := {[btlgl 1]]6(,“)*(182% (]ts]|] =0,...,1—1, t =
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1,.. r{, s=1,... ,réﬁl*j} c Hn—l—i((A1 * Ag) x Ug\X). By slightly perturbating the
1—1—j « JF2 Tt
1 1=5 . G-
€(Gitss)  sepse(ditys)
are actually contained in A x Ug\ X without changing the linking number of their homology
class with the elements of A. Let B © Hy,_1_;(A x Ug\X) be the set of the classes of those

slightly modified cycles. Then the elements of A and B satisfy the required conditions.

cycles b representing the elements of B, we can assume that they

We only have to check that there are enough of them.

By construction,

Z max(b;(Vigsyes (P1)) = D(k1)d1™ 7", 0) - max(bi1—j(Vigayrs (P2)) — D(ka)d2™ ", 0).

Using Formulas ((1.2.1)) and (5.1.1)) and Remark we know that there exists a
constant C(n), depending only on n, such that bae (V(gxy (P)) < C(n)d" for every k < n—1
and every completely nondegenerate real Laurent polynomial P in k variables of degree d.

Set also D(n) := max{D(k)|k < n—1}, where D is as above (and thus as in Lemma.|5.3.3).
Then for j = 0,...,i— 1, if bj(Vigsye; (P1)) — D(k1)di" ™" < 0, we have

bj(Vigsyer (P1)) - bim1— (Vigsya (P2)) < D(ky)di ™~ bim1—j(Vigsyra (P2)) <
D(k1)d "7t - C(n)ds2 < D(k1)C/(n) max(dy, do)™ 2

In particular, -7 777 = 0 > bi(Vigseyer (Pr)-bim1—j (Vg yio (P2))—D(n)C(n) max(dy, dy)" 2.
We find the same inequality if bi_l_j(V(R*)kQ (Py)) — D(kg)d2*2 71 < 0.

If we have both b;—1—j(Vigayrs (Pa)) = D(k2)do" " = 0 and bj(Vigaye, (P1)—D(k1)di* ' >
0, we find

iy 7 = (b (Vigays (1) = D(k)di™ ™) (bim1—j (Vigsyo (P2) = Dlk2)do™ 1) >

bj(Vimsyrs (P1))bim1— (Vigsya (P2)) —

D(n) (b (Vigoeys (P1))d2™ ™" 4 bim1—j (Vi (P2) )™ 7).

Then we have

D(n) (b (Vigsys (P1)da™ ™ + b1 j (Vi (P2)di 171 <
D(n)(n)(C(n)ddy**~t + C(n)d52d,*1 1) < 2D(n)C(n) max(dy, do)" 2.
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Summing over all j = 0,...,7 — 1 and setting F(n) := 2nD(n)C(n), we get
-1 ) ] i—1
A= T (2 b (Vigsyen (P1)) - bie1—5 (Vigeyo (Pz))> — F(n) max(di, d2)" 2,
j=0

J=0

which allows us to conclude.

5.3.4 Counting cycles

We are now ready to prove the Cooking Theorem, which we state again.

Theorem m (Cooking Theorem). Let n > 2. Fork =1,....,n—1, let {PF}sen be a
family of completely nondegenerate real Laurent polynomials in k variables, such that P;
1s of degree d and that the Newton polytope A(Pf) of Pf 18 SC’}. Suppose additionally that
fork=1,....n—1landi=0,...,k—1,

k
bi(Vapr (P)) = af - dF

for some :Bf € R>o. Then there exists a family {Q7}4en of completely nondegenerate real

Laurent polynomials in n variables such that A(Q7) = S} and such that fori=0,...,n—1
nl 1 NN 1k
bi(Veen (Q3)) = — (2} ™! + a7 + D>kl th

k=15=0

where :c;“ is set to be 0 for j ¢ {0,...,k—1}.

Moreover, if the families {P;}deN were obtained using the combinatorial case of the
Patchwork for all k, then the family {Q7}}den can also be obtained by combinatorial patch-
working.

If each family {Pé‘:}deN (for k =1,...,n— 1) is such that the associated family of pro-
jective hypersurfaces is asymptotically mazimal, then the family of projective hypersurfaces

associated to {Qg}deN 18 also asymptotically mazimal.

Proof. We simply need to apply Propositions and to the polynomials appearing
in Proposition [5.2.6] This gives us a collection of cycles and axes, and by showing that
there are enough of them, we prove the statement.

More precisely, for d < n + 1, let @} be any completely nondegenerate real Laurent
polynomial obtained by combinatorial patchworking such that A(Q7) = S% (the choice of
Q) matters not, as we are only interested in asymptotic properties), and let {Q}}4>n+1
be a family of completely nondegenerate real Laurent polynomials such that A(Q7) = S}
and satisfying the conclusions of Proposition with regard to the polynomials Pf (for

k=1,...,n—1). We use the same notations as there.
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As stated in Proposition , if the families {Pclf}deN were obtained using combinatorial
patchworking, we can assume this to also be the case for {Q}}4en.
We will show that {Q7]}4en is as wanted. Let C = 0 besuch that forall j =0,...,n—1

and all k=1,...,n— 1, we have
by (Ve (PE)) > 2t - dF — Cab Y,

where we set xf tobe 0if j > k. Let also i€ {0,...,n —1}.

We know, from the Main Patchwork Theorem that the topology of the pairs
(Sq x Ug, Chartgnxyz (Qg)) is the same as that of (Sy x Ug,v), where v = S x Uy is
obtained by appropriately gluing the charts of all polynomials P; € 3 appearing in the
patchworking.

Form =0,...,d—n—1and k =1,...,n — 2, we consider the polynomial F,]fl e X.
Based on Condition 2 of Proposition we know that the chart of F% is homeomorphic
to the chart of some polynomial P which satisfies the hypotheses of Proposition [5.3.7], with

some polynomials Pé“_m_l_ , and ]5;__%:2 k (whose charts are homeomorphic to those of
Péﬂmflfk and Pg:};’; 4 k) playing the roles of P; and P, in the notations of Proposition
In other words and loosely speaking, F¥ is the join of Pf_m_l_ i and 15;__7,1;2 ke
Then the proposition implies that there exists
i—1 . B
r(En) 2 D5 0i(Vimeyr (P 1)) bim1— (Vigsyn-1- (B0 75 ) (5.3.5)
j=0
—Fn)max(d—m—1—k,d—m—n+k)" >
such that we can find classes a1,..., &, (px) in Hi(ChartA(G)XUDg(G)) and By, .. .,BT(F#L)

in H,_1_i(A(G) x Ug\Chartac)xup (G)) such that their linking numbers in A(G) x Ug
verifies l(ds,ﬁt) = st € Zo.

k k
We pull back these classes via the pair homeomorphism to get classes afm, ey ai";?k ) in

k k °
Hy(Chart age ) xpn (FR)) and 8™, .. ﬁﬂ*;#l) in Hy—1-i(A(Fy,) xUg\Chart g1y o (F,)

such that their linking numbers in A(EF%) x UZ verifies l(af’%, ﬁfﬁb) = st € Zo.

Moreover, observe that by the definition of polynomials Pj—m—l— . and ]5;:”{012 Tk

Condition 2 of Proposition (whose charts were assumed to be homeomorphic to those

of Pollc—m—l—k and P;:T}L:’:H-k)’ we have bj(V(R*)k(ng—m—l—k)) = bj(V(R*)k(Pf—m—l—k)) and

bi—1—j(Vigsyn-1-+ (p;:rlniim)) = bi—1—j(Visyn—1-+ (P;:#;’:Hk)), which means that we can

rewrite Inequality (5.3.5)) as

i1
r(FE) = Y b (Vigeye (Bh 1 1)) - bic1— i (Vigsynoa—s (PR 78 )
i=0

—Fn)max(d—m—1—k,d—m—n+k)" 2=

from
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2 b (Vi ye (Pi—pn—1-1)) - bic1—j (Vigsyn—1-r (PR 78 )

_F(n)max(d—m—1_k,d_m_n+k)n—22
i—1
Z(Z’?-(d—m—l—k)k_é.(d_m_l_k)k—l)_
j=0

(@ d=m—n+ k)" —C (d—m—n+ k)n727k)]

— F(n)max(d—m—1—k,d—m—n+ k)" ?

for any d large enough that xf (d=m—-1-kF=C-(d-m—-1—k*"and 2" F.

N i—1—j
(d—m-n+k)"'F=>C-(d-m-n+k)" 2 Fforall j=0,...,i— 1.
Define C := n(2C~’maX{:1;§»]l =1,...,n—1,=0,...,1 =1} + F(n)).
Then we have
(Z ekl F (d—m—1—k)Fd—m—n+ k)"l’“> (5.3.6)

—Cimax(d—m—1—k,d—m—n+k)"?

<fo n ]k> (d—m—n)""' —Cy(d—m—1)"2

for all d large enough; if we replace C by Cy =0y large enough, we can assume this to
be the case for all d (and we do).

For m =1,...,d —n — 1, we also consider the pair of polynomials G\, G,, € ¥ (still
using the notations of Proposition [5.2.6)).
We know that there exist polynomials éjn, C?’,;b and P;:ikn (with the chart of pr1

d—m—n
homeomorphic to the chart of P;:n{b_n) that satisfy the hypotheses of Proposition m
(where G and G, correspond to Gt and G~ and P; Tln , to P in the notations of
the proposition) such that the pair ((A(G}) u A(G;)) x UR,ChartA(G+)XUn(G+) v
Chart y ¢ YxUT (G;,)) is homeomorphic to ((A(GE)UA(G)) x U, ChartA(G+)XUn(G+ Ju
Chart NG )XU"(G )). Loosely speaking, this gluing of charts is homeomorphic to a sus-

pension of the chart of P}~ nll "

Then the proposition implies that there exists

$(Gm) = bi(Vigsyn1 (Py70 ) + bima (Vigsyn—1 (P1L ) = E(n = 1)(d — m — n)" 2
(5.3.7)

such that we can find classes aq, ..., dyq,,) In

(C’hartA(G+) U (G ) w Chart ¢ )xU;g(é;@»
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and Bla ce 7Bs(Gm) in
Hy1 i ([Int(A(G;L) U AG)) Uﬂg] \ [(ChartA(éme?{(G;) U ChartA(é:n)XUﬁ(é,;))D
(respectively, in the kernel of

Ho ([t(A(GR) © AGR)) x UR|\ [(Charty g (G © Charty g (G))] )
— H, (Ims(A((;,;) U AGD)) % Uﬁ)

if n — 1 —i = 0) whose linking numbers in Int(A(G:) U A(G,)) x Ug verifies I(Gs, ) =
(5571; € ZQ.

We pull back these classes via the pair homeomorphism to get classes af’", el af(gm)
in
H; (ChartA(Gjn) <un (GH) U Chart 5 ;=) Uz (G;I))
and S¢ m,...,ﬁf(gm) in

Hy1_g ([Int(A(G;) U AGy)) x UE]\ [ChmA(GWUﬁ(G;) o C’hartA(GT_n)xUﬁ(G;L)D
(respectively, in the kernel of

Hy ([Im(A(G;) UA(G;) x UR]\ [Chm Ay (Gh) U Chart A(G;)XU}%(G;)D
—> Hy (Int(A(G}) v A(G,)) x Ug)

if n —1—1¢ = 0) such that their linking numbers in Int(A(G}}) v A(G,,)) x Ug verifies
l(asvaﬁt m) = 53,7& € Z2-

Moreover, observe that by the definition of polynomials Pg:i_n (whose charts were

assumed to be homeomorphic to those of the polynomials P;:;Fn) from Condition 3 of

Proposition we have b;(Vigsyn-1 (P51 )) = bi(Vigsynr (PP ) and by (Vigsynr (PE5L ) =
bi—1(Vig#yn— (P71 ), which means that we can rewrite Inequality 1D as

d—m—n

$(Gm) = bi(Vigsy1 (PI5L ) + bict (Vigeyn—1 (P ) — E(n— 1)(d —m — n)" % =

m—n d—m—n

bi(Vigeyn=1 (Pi o)) + bict (Vigsyinr (P, ) = B(n = 1)(d —m —n)"* >

et (d=—m—n)""t=Cd—m—n)""+a2! ' (d—m—n)""' = C(d—m—n)""?
—En-1)(d-m-n)""?%= (5.3.8)

(2 4 ) - (d—m—n)"t = (2C + B(n —1)) - (d—m —n)"? =

(2

(@ P+ d-m—n)""1=Cy-(d—m—n)"?

by setting Cy := 2C + E(n — 1).
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Now consider the image of the classes asF’T and a$m (for all s,k,m for which they
were defined) in H;(v) (via the inclusion), where v < S} is as above a gluing of the
charts of the polynomials of ¥. Similarly, consider the image of the axes Bf m and BtG ™ in
Hp1-i(S7 x Uf\v) via the inclusion (respectively, in ker(Ho(S% x Ui\v) — H(S% x U)
if n—1—14 =0). We keep the same notations for the images of the classes by the inclusion.

As each axis BtF’EL or B¢ is contained in the interior of A(Fk) x Ug or A(G}) u
A(G;,) x Ug and is a boundary in that interior, we can find for each a membrane also
contained in that interior. As the interiors of these polytopes are all disjoint (see Condition

ko

.. . C . . Fr .
4 of Proposition [5.2.6)), this shows that the linking number in S x Ug of 3, ™' with any
ko
ozfmz is Ot,s0my ,moOky ke, and its linking number with any a$m is 0. Similarly, the linking

number in S x Ug of BtGml with any oszm2 is 0t,50m, ,ms, and its linking number with any
k

as"? 1s 0.

This shows that the elements of B : {Bt \t =1,...,r(F¥),m=0,....d—n—1,k=
L...,n=2u{BC"|t =1,...,5(Gp),m = ,...,d—n—l} (with B ¢ Hy, 1 4(S7 x Uf\v),
respectively B < ker(Ho(S’d x Ug\v) — HO(S’Q x Ug) if n —1—1i = 0) are axes to the
elements of A := {at |t—1 (EEY,m=0,....,d—n—1,k=1,....n—=2}u{ay™"|t =
1,...,8(Gp),m=1,...,d—n— 1} c H;(v). In particular, this implies that b;(v) = |A|.

We know that v is homeomorphic to ChartgnxUn(Qg) which is itself homotopy equiv-
alent to Vig#)»(Qj). Finally, we know from Lemma 1| that there is a constant C(n)
(dependent only on n) such that b;(Vep(QY))) = bi( (R*)n(Qd>) — C(n)d™ !, Hence we
get that

bi(Vieen (@) = |A] = C(n)d" ! =
d—n—1 d—n—1n—2

D1 s(Gm) + r(FEY — C(n)d™ .
m=1 m=0 k=1

Using the fact that for all I,p > 1, we have Zq 1d = le — C3(1)p! for some constant
C3(1) > 0, and going back to Inequality ([5.3.8)), we get

d—n—1 d—n—1

Z s(Gp) = Z (a2 d-m—n)" = Oy (d—m—n)""? >
m= m=1

x; +x?11

#(d*nfl)”f(x? Lpa Nes(n—1) - (d—n—-1)""1 -0y (d—n—-1)"""

Observe that each 7 is less than, or equal to 1. Moreover, (d—n)" > (d—n—1)" > d" —
Cy(n)d™! for some constant Cy(n) > 0. We can also set C5(n) := 2Cy(n)+2C3(n—1)+Cs,

and have . X .
—n— n—1 n—
+
N 5(G) = L Cy(n)dn

m=1 n
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Going back to Inequality ((5.3.6), we get

d—n—1n—2 d—n—1n—
5ot 35 ((S50) oo
m=0 k=1 m=0 k
n— i—1
1 ~
( :L'?:L‘?:ll__jk (n(d —n)"—=C3(n—1)-(d— n)”_1> —Cy-(d— 1)”_1> .
k=1 \ \4=0

Set Cg(n) := nCy(n) + n2Cs(n — 1) + nCy. We can write

n—1ln—2 n—21—1
5, Sortety = (£ S i) -

k=17=0

n—1ln—2
bi(Vern (Q) = Y, s(Gm) + ), r(Fy) = C(n)d" ! >
m=1 m=0 k=1
dr n—2i—1
(T al 252} 5 = (Cs(n) + Co(n) + C(n))d" Y,
k=1j=0

which is what we wanted to prove.

107

2>>

The statement regarding asymptotic maximality is a direct application of Lemma [6.2.4]

below.

O
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Chapter 6

Asymptotically large Betti numbers

6.1 Chapter introduction

This Chapter is the direct continuation of Chapter [5] whose notations and definitions we
retain.

One can get varying, and potentially interesting, families of real projective algebraic
hypersurfaces in high ambient dimension by starting with various low-dimensional families
of hypersurfaces and applying the Cooking Theorem recursively: each application
yields a new family in some dimension n, which can then serve as an ingredient for higher
dimensional constructions. One advantage of that method is that each new family in am-
bient dimension N with "good" asymptotic Betti numbers obtained using other means can
potentially automatically give rise, through repeated applications of the Cooking Theorem,
to new interesting families in all dimensions greater than V.

In particular, we make use of already existing families of projective smooth real alge-
braic hypersurfaces in P? designed using Bihan’s results from [Bih03] by Brugallé in [Bru06]

to prove the two following theorems.

Theorem 6.1.1. For anyn = 3 and any i = 0,...,n—1, there exists c; > a}' and a family
{Ql}den of completely nondegenerate real Laurent polynomials in n variables such that
A(QY) = SI, that the associated family of real projective hypersurfaces is asymptotically
maximal and that

bi(Vieen (Q)) = ¢f - d".

In other words, b;(Vep» (Q}})) grows asymptotically strictly faster than the correspond-
ing Hodge number h®"~1=¢(Vepa (Q7)), though ¢ cannot be expected to be particularly
large compared to a (see the end of Subsection for more details on that). As far as
the author is aware, this had not yet been achieved.

The second theorem, which we prove using probabilistic methods, allows us to find
asymptotic (in the degree d) results that are asymptotically (as the ambient dimension n

goes to infinity) much better.

109
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Theorem 6.1.2. Let N > 1. Fork =1,...,N, let {Pc]f}deN be a family of completely
nondegenerate real Laurent polynomials in k variables such that the Newton polytope A(Pé€ )
of Pf 18 5’5. Suppose additionally that fork=1,...,N andi=0,...,k—1,

k
bi(VRIPk(Pf)) = xf -d”

for some xf € R>¢ such that Zi':ol azf =1 (in particular, the family of projective hypersur-
faces associated to each family {Pf}deN is asymptotically mazimal). Set also acf to be O for
i¢{0,...,k—1}.

Define

2 1 N k-1 ‘ E—1 2
7= (N + D)(N +2) <4+;“2x§<2_2> )

=0

Then for everyn = N + 1 and any i € Z, there exist x' € R>o and a family {Q}4en of
completely nondegenerate real Laurent polynomials in n variables such that A(QY) = S7,
that for i€ Z

bi(Vepr (Q)) = 27 - d"

and such that for any m € Z we have

2
1 1 (”_1 — m) 1
n 2 -5
_ _ 7 |+ ( 2) , 6.1.1
m o210 P ( 2no? o\ ( )
where the o(1) error term is uniform in m. The family of projective hypersurfaces associated

to each family {Q7}}4en is also asymptotically mazimal.

As it is known (see Formula (6.2.9))) that

arfn%“rff\/ﬁj = mexp (—62%) + O <n7%> , (6.1.2)

this direct corollary of the theorem clearly shows its usefulness.

Theorem 6.1.3. For any n > 3 and any © € Z, there exist c}',d} € R and families
{F;’n}deN and {F; " }gen of completely nondegenerate real Laurent polynomials in n vari-

ables such that the Newton polytope A(Ff’n) is S7, that for i =0,...,n —1, we have
bi(Vipn (F™)) 2 ¢ - d"

and

bi(Veen (F; ™)) = djf - d”
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and such that we have, for all x € R, that

and

. V20 1 —20z2 _1
ot = Yoy (T ) 7o (n7Y).

where the error terms o (n_%) are uniform in x. The family of projective hypersurfaces

associated to each family {Ff’"}deN is also asymptotically mazimal.

Remark 6.1.4. In particular, for x = 0, compare with Formula and see that for n
odd,
dh_
b VIO

=Y 401
ab 3 +0( )7

which is strictly greater than 1 for n large enough.

These results are currently the only known "counterexamples" in general dimension to
the principle presented in the Introduction, which suggested that real projective algebraic

hypersurfaces should be expected to verify

dimg, Hy(RX;Zy) < ) hP(CX).
p

This chapter is organized as follows: the proofs of Theorems [6.1.1], [6.1.2] and [6.1.3] as

well as some observations regarding Hodge numbers and their relations to more combina-

torial objects, such as Eulerian numbers and hypercube slices, are to be found in Section
Explicit approximations of the largest ¢}' (using the notations of Theorem that
we were able to get for small n are given in Section [6.3]

Finally, some closing observations are made in Section

6.2 Asymptotically large Betti numbers in arbitrary dimen-

sion and index

Before proceeding with the proof of Theorems [6.1.1] and [6.1.2] we make in Subsection [6.2.1
a few observations concerning Hodge numbers and their relations to some combinatorial
concepts; there are indeed many connections between Hodge numbers of algebraic varieties
and interesting objects in combinatorics, some of which can be found in M. Baker’s survey
[Bak18|. We also prove results which we later use in Subsection to show that some

families of real projective algebraic hypersurfaces that we define using the Cooking Theorem
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have appropriately large asymptotic Betti numbers, thereby proving Theorems and
0.1.2)

6.2.1 Asymptotic Hodge numbers and combinatorics

Let X7 be a completely nondegenerate real algebraic hypersurface of degree d in CP".

Then we have

ppn=1l-p(CXT) %1(—1)1' (” * 1) (d(p T = d=1)i- 1) fGnra, (621

1 n
1=0

forp=20,...,n—1, where hp’"_l_p((CXg) is the (p,n — 1 — p)-th Hodge number of CX}
and (kl) = 0if k1 < ko (see [DKS86]).

Note that 37 (—1)? (" (d(pH) (d—1)i= ") is also equal to the number of ordered (n +
1)-partitions of d(p+ 1) such that each of the summands belongs to {1,...,d—1}. Indeed,
the sum can be interpreted as the number of ordered (n + 1)-partitions of d(p + 1) such
that each of the summands is greater than or equal to 1, minus the number of ordered
(n + 1)-partitions of d(p + 1) such that each of the summand is greater than or equal to
1 and at least one of the summand is greater than or equal to d. This is expressed using
the inclusion-exclusion formula applied to the sets A7, where Ay (for I < {1,...,n+1}) is
the set of ordered (n + 1)-partitions of d(p + 1) such that each of the summand is greater
than or equal to 1 and the summands a; are greater than or equal to d for any j € I (in
the formula, i corresponds to |I|).

The asymptotic behavior of such expressions is an interesting topic in itself, related
to lattice paths, hypergeometric functions and some probabilistic notions (see for example
IMPP19]). Note that a more geometric interpretation of Formula can also be given,
as S (—1) (") (d(pﬂ)_(d_l)i_l) is equal to the number of interior integer points in the
section of the cube [0,d]"*! = R™*! by the hyperplane {377 z; = (p + 1)d} = R**+1.

Forne N, pe{0,...,n—1}andi € {0,...,n—1} given, the expression (d(pH) (d=1)i= 1) =

(d(pH_Tj)H_l) is a polynomial in d of degree n whose monomial of highest degree is

dnw if i < p+ 1, and a constant (in d) for d large enough otherwise. Hence, as

d goes to infinity, AP~ 1P (CX}) is a polynomial in degree n whose monomial of highest

f;(g—l)i(”jl)(pﬂ—i)"). s

As in Sectionn7 we define a} := 4 (37 (-1) (”H)(p +1—1i)") forpe {0,...,n—1}.

P n!
For convenience, we also define aj := 0 for any p € Z\{0,...,n—1}. Observe that Formula

1)) implies that ZpeZ p = 1forany n > 1.

The theory of Ehrhart polynomials tells us that the number of interior integer points
in the section of the cube [0,d]"*! c R™*! by the hyperplane {377 z; = (p + 1)d} is

degree is
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a polynomial in d of degree n whose leading coefficient is equal to the n-volume of the
section of the cube [0,1]"*! < R™*! by the hyperplane {3} z; = p + 1} normalized by
the lattice volume of {377 #; = p + 1} (which is v/n + 1). In other words, we have

n 1 n+1 )
ap—mVOZn<01 {sz p+1

Interesting questions can be asked about the volumes of high dimensional polytopes ob-

tained in similar ways (see for example [CK15]).

Consider also that the (n, p)-th Eulerian number E(n, p) (which is equal to the number
of permutations of the set {1,...,n} in which exactly p elements are greater than the

previous element) admits the explicit expression

E(n,p) = Y (-1 (n * 1) (p+1—d)" (6.2.3)

i=0

Hence we have ay = LE(n,p) forn>1andp>

A function p : Z — Ry is called log-concave ifp(m)2 > p(m—1)p(m+1) for all m € Z,
and if its support is a contiguous interval, i.e. if there exist m1, msy € Z such that m; < mao,
p(m) = 0 for all m < m; and all m = mg, and p(m) > 0 for all m; < m < mg. The second
condition is sometimes omitted. As is shown, for example, in [Mez19] (Section 6.5), the
sequence of Eulerian numbers { E(n, p)}pyez (for a givenn > 1) is symmetrlc in 271 and log-
concave; moreover, it is 0 for p < 0, strictly increasing from p =0 to p = and strictly
decreasing from p = 71 top =n—1 for n odd (respectively, strictly increasing from p = 0
to p = § — 1, strictly decreasing from p = § top =n —1, and E(n,5 — 1) = E(n, §) for
n even), and 0 for p > n — 1. This naturally implies the corresponding statements for the

sequence {ay }pez-

Log-concavity is an interesting notion, though we make no use of it here; a survey of
some of the properties of log-concave functions and sequences (some of which are related

to algebraic geometry) can be found in [SW14].

We want to consider the second order central finite differences of the coefficients ay),

i.e. the sequence

2 n._ .n o n n
D%a, = ayq — 2a;, + a,_;,

as it proves a useful notion in Subsection [6.2.3]

Eulerian numbers are known to satisfy the recursive relation
E(n,p) = (n—p)E(n—1,p—1) + (p+1)E(n —1,p)

foralln > 1 and p e Z.
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Hence we can see that

n!DQCL;’ =E(n,p+1)—2E(n,p)+ E(n,p—1) =
(n=p=1E(Mn—=1,p)+(p+2)En-1p+1))
—2((n-p)En—-1Lp—-1)+(p+1)E(n—1p)
+((n—p+1)En—1,p—=2)+pEn—1,p—1)) =
m—p+1)(E(n—1,p) —2E(n—1,p—1)+ E(n—1,p —2))
(p+2)(E(n—1p+1)—2E(n—1p)+E(n—1p—1))=
(n—p+1)(n—1)!D%a~} + (p+2)(n—1)!D%a; 1.

Therefore the finite difference DQa;L satisfies the following recursive relation:

2 n __
Dap—

TD az - D? a, . (6.2.4)
Interestingly (though we make no use of that fact), we also see that the finite differences
E(n,p+1)—2E(n,p)+E(n,p—1) obey the same recursive relation as the Eulerian numbers
themselves, up to a shift in parameter p — p + 1.
We already know that for n > 1, the sequence {D?a'},ez is symmetric in %31, The
following lemma gives us more precise information:

Lemma 6.2.1. Let n > 3. If n is odd (respectively, even), there exists 0 < p, < "=
(respectively, 0 < pn, < % — 1) such that the sequence {D?al'} ez satisfies:

1. D2a;f=0f07"p<—2 andp=>n+1.

2. D?a” >0 for =1 <p<p, andn—1—p, <p<n.

n
P
3. DQCLZ<Oforp6{]5n+1,n—2—ﬁn}.

4. D2ag<0f07’pn+2 Pp<N—3—pPn.

Moreover, there cannot be two consecutive integersn = 3 such that D2a~ 1= = D%q" Up_o_j, =
0.

Proof. We proceed by induction. The case n = 3 can be directly computed (we have

3_.3_1 3_2
ay = a3 = 5 and ay = 3).

Suppose the statement true for n — 1, and express DQQ;} as = p+1D2 a,_ 1+ %Dgag_l

using Formula 1) By symmetry, we only need to consider p < %1 Condition 1 is
clearly satisfied.

If D? @_11“ =0, we set P, = pn—1 + 1. Then we have D2ag >0 for -1 < p < p, and
n—1—p, <p<n,and DQaZ <0 forp, +1 <p<mn—2—p, Notein particular that
D2a~ =D?%a"_, . #0.

n_2_pn
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+ + + o A o + + +
+ + + o A o + + +
+ + + + A A + + + +
+ + + A A A + + +
+ + + A A A + + +
+ + + X A A X + + +
Figure 6.1:

If D2a ! | <0,setpy = pny+1if D%al | = "=Lo=i p2g7-1 +”" —p2gnt >
0 and set p,, = pp—1 if D2a~ _,+1 < 0. Then we have D2a" >0 for —1 < p < P, D? a, <0
for p =p, + 1, and D2a” <O0forp,+2<p<n-—3—p, (see Flgure i
In both cases, we have p, = p,_1 = 0, and Pn is necessarily strictly smaller than § —1,
as D2ag > (0 and D%LZi1 < 0 if n is even, as we know that a?L 9 < aﬁ = aZ > CLZH
n 2 2

(respectively, D%a”_, < 0 if n is odd, as we know that a?_, < a’_, ~ aLIH)
2 2 2

O

Remark 6.2.2. Computations carried out on a computer suggest that D2CLZ 1s 1n fact never
0 between —1 and n; it admits two (symmetric) global mazima, and one global minimum
mp= ; if n is odd (respectively, two global minima in p = 5 — 1,5 if n is even).

It should be possible to prove it directly, though it does not appear to be a direct conse-

quence of the log-concavity of the sequence .

Remark 6.2.3. We can describe more precisely the asymptotic behaviour of D2 , though

only its sign matters to us. Indeed, for any s € R, we have

n 6 12 _5
DQ“l"glwﬁJ:\[ ey o (00 (127 - 1) +0(n78). (6.2.5)

This can be proved by modifying the proof of Formula below given in [XWII1] (The-
orem 8.1 of that article), which rests on some properties of B-splines, in order to get a

higher order estimate for the coefficients a,), then write oul D?a p = Qpi1 — 20, +ay .

Before ending this subsection, we formulate one last recursive relation related to the
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coeflicients aj (for n = 1 and p = 0,...,n — 1), which we need later on. It can be

immediately deduced from Itenberg’s and Viro’s work in [IV07] that we have

1 n—2p—1
_ -1 -1 k —1-k
a, = - <a$ + aZ_l + Z Z aj "1313‘) . (6.2.6)

Observe that this means that if every family of polynomials {Pj}deN in Theorem is
asymptotically standard, i.e. b;(Vipr(PF)) s a¥ - d*, then so is {Q"}4en (the asymptotic
inequality in Formula must be an equality because of the Smith-Thom inequality).
This is the case considered in [IV07].

In Theorem below, we compute the asymptotics of various families of coefficients
obeying the same recursive relation as the coeflicients a;, for n large enough, but

with different initial parameters.

6.2.2 Notations and known results

In this subsection, we define some notations, prove a useful lemma, and quote the results
from Brugallé, Itenberg and Viro that will provide us with the main ingredients for our
constructions.

When considering in what follows the asymptotic Betti numbers of the projective hy-
persurfaces associated to a family of completely nondegenerate real Laurent polynomials
{Q7}den, it is slightly more convenient to use the following notation: if b;(Vep»(Q')) ;
x} -d" for some z > 0, we instead write b;(Vepr (Q7))) > (a +1t7)-d", where t} = 2 —a]'.

If we rewrite the statement of Theorem [5.1.1] with that convention, we get that for
families {Pég }aen of completely nondegenerate real Laurent polynomials in k& variables (for
k=1,...,n—1), such that Pf is of degree d and that the Newton polytope A(Pj;) of ng
is 5’5 and such that for i =0,..., k-1,

k
bi(Vepr (P)) = (af +tf) - d*

for some tf € R, there exists a family {Q}4en of completely nondegenerate real Laurent

polynomials in n variables such that A(Q%) = S and such that for i =0,...,n —1

bi (Vi Q1)) (a? +2 (t?‘l S Y D208 ) + 15 t?:f;»’“)) d",
(6.2.7)
where tf is set to be 0 for j ¢ {0,...,k —1}.
Remember that a family of real smooth algebraic projective hypersurfaces {X}gen is
aymptotically maximal if b,(RX"?) £ b,(CX?). In particular, if b;(RX?) > (@] +t7) - d"
and Y7 = 0, we have by(RX}) > S (a +t) - dh = d" = by(CX}), hence
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b (RX%}) £ b (CX?) (because of the Smith-Thom inequality) and {X7}4en is asymp-
totically maximal.

We can now prove the following lemma regarding asymptotic maximality :

Lemma 6.2.4. Let n > 2. Fork = 1,...,n— 1, let {P5}aen be a family of completely
nondegenerate real Laurent polynomials in k variables such that Pclf is of degree d and that
the Newton polytope A(Pf) of Pf is 55 and such that fori=20,...,k—1,

k
bi(Viewr (P)) = (af + 1) - d* (6.2.8)

for some ti-“ € R, as in the Cooking Theorem . Let {Q7 }aen be a family of polynomials
cooked with the ingredients {PéC }aen using the Cooking Theorem.
Suppose additionally that each family {Pg’f}deN is such that Zi':ol th =0, hence the

associated family of projective hypersurfaces {Vipr (PX)}aen is asymptotically mazimal. Then

the sum over i =0,...,n—1 of the coefficients
1 n—21:—1
1 1 1—k k 1—k
n@ ri S, a0 ﬁu)
J

from Formula is also 0; in particular, the family of hypersurfaces {Vpr(Q¥)}den as-
sociated to {Q7}aen is also asymptotically mazimal, and the asymptotic inequality

s an asymptotic equality.

Proof. We know that for i =0,...,n — 1,
" 1 n—2i—1
bi(Vin (Qi) > | aff + (6171 + 650+ D, D 205 - aln ) + a5 B0 ) )

where t? and a;? are set to be 0 for j ¢ {0,...,k—1}. Set

for i € Z; observe that ¢ = 0if i ¢ {0,...,n — 1}.
Showing that 37/~ t# = 37,_, t = 0 is enough to conclude (using as above the Smith-
Thom inequality).

Indeed, we have

Ztn_Z (tn 1+t 22 . :Lll:jk)—’_tk t;zlljk):
k=13=0
2

zGZ

i((Zt?_l>+<Zt?_ll> 2% @Nak Zt?lljk)_

€7 €7 €7 €L
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n—2 _
i<0+0+22t§.(2+0> %ZZtk—O
k=1 jeZ

k=1 jeZ
O

We now quote (using our notations) two results that attest the existence of families of
polynomials which we later use as ingredients for the Cooking Theorem to prove Theorem
The first one was proved by Itenberg and Viro in [IV0T7], and alluded to in Section
.1

Theorem 6.2.5 (Itenberg, Viro). Let k = 1. There ezists a family {Ig}deN of completely
nondegenerate real Laurent polynomaials in k variables obtained by combinatorial Patchwork
such that Iclf is of degree d and that the Newton polytope A(IZ}’) of ICII€ 18 S§ and such that
fori=0,...,k—1,

bi(Van (1§)) £ aff - d".

In particular, the families {Vipr (I5)}aen are asymptotically mazimal.

The hypersurfaces associated to the polynomials I C’l“ are asymptotically standard in the
same sense as above. They serve as "neutral" ingredients in what follows, in that they do
not contribute to any difference from the asymptotically standard case.

The second result comes from [Bru06|, where Brugallé builds two families of completely
nondegenerate real Laurent polynomials in 3 variables such that the associated surfaces in
P3 have exceptionally large asymptotic by (respectively, b1) using a method from Bihan’s
[Bih03].

Theorem 6.2.6 (Brugallé). There exist families { B} }gen and {By }aen of completely non-
degenerate real Laurent polynomials in 3 variables such that B;{ is of degree d and that the
Newton polytope A(B3) of By is S3 and such that

33 1 5
bo(Vees (By)) = 5 - d 6+) (a3+24>-d37
3 1 2 5
b1 (Vs (B])) = 1 (3 > d’ = (azf - 12) &P,
3 1 1 1
bo(Veps(By)) = ¢ - d (6 ) <@3—24> -’
and

Ileo

_ 3 2 1 1
b1 (Vi (B) 4f=Q+H>f=@Hu>ﬁ

In particular, the families {Vps (Bf)}deN are asymptotically mazimal.

Remark 6.2.7. Of course, Poincaré duality applies, as homology is considered with coef-

ficients in Zs.
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Remark 6.2.8. As far as the author is aware, these are the largest asymptotic values for
each respective Betti numbers of a smooth real projective algebraic surface to have been

obtained to this day, which is why we choose to use them as ingredients in what follows.

Remark 6.2.9. It is not particularly hard, though somewhat tedious, to show that for any
a € [—5q, 53], we can build (using the families {B }aen) a family {P3}aen of completely
nondegenerate real Laurent polynomials in 3 variables such that the Newton polytope A(Pg’)

18 53 and that for i =20,...,2, we have

bi(Vpn (P3)) = 23 - d"

with 3 = x5 = % +a and 73 = % — 2a. The idea is to partition S5 (for very large

degrees d) into smaller, albeit still very large, simplices corresponding either to B:zr or to
Bg, for some d < d (with some interstitial space of asymptotically negligible volume).
The proportion Ag € [0,1] (respectively, 1 — \q € [0,1]) of the total volume of S5 filled by
simplices corresponding to BC"{ (respectively, to Bdf) must be such that /\d2—54 - (1- /\d)2—14

converges to a as d — 0.

6.2.3 The first construction

In this subsection, we describe the first of our two main families of constructions. It allows
us to find for every dimension and index Betti numbers that are asymptotically (in d)
strictly superior to the standard case, but not by a large margin: this enables us to prove
Theorem [6.1.1] The other one is described in Subsection [6.2.4] and provides much better
asymptotic (in d) lower bounds on the chosen Betti numbers, but only asymptotically (in
n); it allows us to prove Theorem

The idea is to carefully pick families of polynomials {Pf}deN in k variables (with k
small) as ingredients for the Cooking Theorem in order to get families of polynomials
{Ql}den (with n large) with interesting properties.

Givenn >3 and i =0,...,n— 1, the polynomials {Pf}deN (for k=1,...,n—1) must
be chosen so that the asymptotic Betti numbers of the associated families of projective
hypersurfaces are such that the right-hand term of Formula is large.

As far as the author knows, few interesting (in that regard) families have yet been
constructed in high ambient dimension. Hence, we must work our way up from dimension
3, where we have Theorem by recursively applying the Cooking Theorem: a fam-
ily {Q7}}aen that we get as the result of one application of the theorem can serve as an
ingredient for a construction in higher dimension.

Note that should a new family of hypersurfaces with interesting asymptotic Betti num-
ber be developed in a given dimension n, we could immediately use it as an ingredient to

hopefully get new and interesting results in dimension 7 > n.
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Observe also that since there is only one non-trivial Betti number in ambient dimension
1, and two that are equal in ambient dimension 2 (and hence both asymptotically smaller
than or equal to ‘12—2), nothing interesting can a priori be expected from the direct use of
non-asymptotically standard families in ambient dimension 1 and 2.

In general, it is unclear how to choose the ingredients {Pk}deN so that a given Betti
number is maximized in the resulting family of hypersurfaces, as Formula is fairly
complicated; the trick we use in the first construction, which is described in the proof of
the following lemma, is to make it so that most terms in the formula are trivial, so that
we can understand it better. The results are most likely, in a sense, suboptimal, but they

suffice for our purpose here.

Lemma 6.2.10. For each n > 8, there exist families {HJr "Yaen and {H; ™ }qen of com-
pletely nondegenerate real Laurent polynomials in n variables such that Hd 1s of degree
d and that the Newton polytope A(Hf’”) is Sy and such that fori =0,...,n—1, we have

n n n 2 5 n m
by (Vipn (H ™)) = ( ai + ~ o D% 4) -d

and

—,n n n 21 2 n—4 m
bi(Vren (Hy ")) = (ai - ﬁﬂD ai—?) -d

Moreover, the family of hypersurfaces associated to each familiy is asymptotically mazimal.

Remark 6.2.11. The coefficients i and % come from Theorem' should we get better
asymptotic results than in Theorem[6.2.0, we would be able to immediately "plug” them in
and improve the asymptotics of Lemma[6.2.10

Proof. We define {H, " }qen first.

We apply the Cooking Theorem to the following ingredients {Pclf baen o let Pf be equal
to 15 from Theorem for k € {1,2,4,5,...,n — 1}, and let PC‘? be equal to Bj from
Theorem Following the notations introduced with Formula , we get that
th=t3=2 and ] = -3,

Pk) Note in particular that as n > 7, t" L'~ 0 and tk i 11 Jk =0 for all k, j.

Hence application of Theorem ylelds a famlly {H "} ey such that

and tk = 0 for all other k,j (by definition of the polynomials

n—2i—1
+, 0 1 1 1-k k 1-k
bi(VRpL(Hd”))?(a?Jrn(t” P Y Y 2t ap Ry + o t?flj>>-d"=

k=17=0
. 1 i—1 5 - o o 25 4 dm™
a; + Zoz(tj'ai—l—j) B +Eﬂ(a 20 el ) d =
j=
an+7iD2an—4 dn
i 247 T2
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As the sum )|

particular for m = n — 4, we have as above that the family is asymptotically maximal be-

ez DZ(L;” of second order finite differences is 0 for any m > 1, and in

cause of the Smith-Thom inequality, and that the asymptotic inequality b;(Vrpn (H ) = Z

(a + 22.D%a]~ ~,)-d™ is in fact an asymptotic equality b;(Vikpn (H; ™)) £ (al + 22 D%a'})-
d".
The exact same proof, with B} replacing BJr and —5; replacmg 57> yields the other

case. O

As will become apparent in the proof of Theorem we also need the following

lemma.

Lemma 6.2.12. For any n > 3, there exists a family {L}}}qen of completely nondegenerate
real Laurent polynomials in n variables such that A(L]}) = SI, that the associated family

of real projective hypersurfaces is asymptotically maximal and that

n 5 3!
bO(VR]P’"(LS)) = bn_l(Van(Lg)) = ( + 24> d".
Proof. We proceed by induction on n. The case n = 3 is simply Theorem [6.2.6]

Now let n > 4 and suppose that {L];~ 1 jen has been defined. We apply Theorem
to the following families of polynomials {Pf}deN : let P(f be equal to I g from Theorem
for ke {1,...,n— 2}, and let P;il be equal to Lgil. Following the notations introduced
with Formula l) we have tg_l = %(n%)!, and tf = 0 for all other k < n —1 (by
definition of the polynomials Pk)

Hence application of Theorem “ yields a family {L}}4en such that

n—20-—1
n n n 1 n—1 k n—1-k n 2
bo(Vrpn (L)) = (ao + - <t0 +t5= + 2 Z ) +HE ) A >

k=1 35=0
5 3!
22 g
(o510 )

as wanted. O

We can finally prove Theorem which we state again.

Theorem Foranyn = 3 and any i = 0,...,n—1, there exists ¢’ > a}' and a family
{Q}den of completely nondegenerate real Laurent polynomials in n variables such that
A(QY) = SI, that the associated family of real projective hypersurfaces is asymptotically

mazximal and that
bi(Vepn (Qg)) = ¢if - d".

Proof. Let n >3 and i € {0,...,n — 1}.
We mainly rely on the construction from Lemma [6.2.10]and the result of Lemma [6.2.1
However, as Dzazzg = 0 for p = 0,n —1 (the construction from Lemma |6.2.10]cannot help
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us get a large number of connected components), we also need Lemma [6.2.12; moreover,
as we were not able to show in Lemma that the finite differential D2a$ is never 0
between k = —1 and k = n, we need another ad hoc trick.

We assume that n > 8; the cases n < 7 are treated in more details in Section

If i € {0,n — 1}, we define Q7 as L7 from Lemma [6.2.12 and set ¢ := a? + n,
(remember that Poincaré duality applies) - this suffices.

Otherwise, consider D2an_4 If it is strictly positive, define Q% as H;“n from Lemma
6.2.10 and c}' := a}' + HﬂD2 a;” 24, if it strictly negative, define Q' as H,"" from the same

lemma and ¢’ := a}' — EﬂDQ vl 24 In both cases, we are done (using the statement of the
lemma).
If we are unlucky, and 7 is the only index in {1,.. — 2} such that D?al~} = 0, we

know from Lemma that DQag_5 is never 0 for p € {—17 ...,n—>5}. Moreover, Formula
[6.2.4] tells us that ,

i
n—4

2 n74_n—i—1 2 n—5
D%a}”) = ————D%a;"5 +

2 n—>5
— D*a;~5.

As at least one of the two terms is nonzero, both must be for D%a. 4 to be 0. Observe

also that 2==1 1 #*

—, as otherwise i = "T_l, in which case D?a a;” 24 = D2a((n -1 # 0

(the middle term is never 0, see Lemma . Hence D%a~ + D?a}'~y # 0.

Z

Now apply the Cooking Theorem to the following ingredients {P baen : let Pk be
equal to I’C from Theoremfor ke{l,...,n—2}, andlet P}~ ! be equal to H; 1 from

Lemma 6.2.10|if Dza D2 e 2 > 0 (respectively, equal to Hd_’n_1 from Lemma|6.2.10]|if

D?a}~p + D%y < 0) Followmg the notations introduced with Formula , we have

o
t;‘_l = %%D%?:; and ¢ = 2.2 D%q"") (respectively, ]! = —ﬁﬂDQ 170 and
t?:ll = —%Q—ZDQ a’, 2), and tk = 0 for all other k < n—1 (by definition of the polynomials
Pk,
d

Hence application of the Cooking Theorem yields a family {Q7}4en such that

1 n—21i—1
bi(Viepn (QT)) = (a? + = (t?‘l P Y2t ap ) R ) ) d =

k=1 j=0

15 2
T D*a}=) + D*a}=)) ) - d”
(a’+n24n—1( a’y +D%*aly) ) -d

2 _n—5 _on_11_2 (2 n->5
Ty +D%al"y) (respectlvely, ci 1= ap— oo (D27 +

repectivl, b (Ve (0) S (af = 3 (D%l + D) ) - ).
Define ¢! := al'+ D
D%a?~7)). This suffices.
In each case above, the family of hypersurfaces associated to the family {Q7}4en is
asymptotically maximal, as the family {Q7}4en always comes from an application of the
Cooking Theorem to families of polynomials such that the associated families of hypersur-

faces are asymptotically maximal.
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O

Hence we found in all dimensions n > 3 and indices ¢ = 0,...,n —1 Betti numbers that
are asymptotically (in d) strictly greater than the standard case - however, the asymptotics
(in n) of that surplus is not very good.

Indeed, the asymptotic behavior of the Eulerian numbers (and hence of the coefficients

n
p

reference) that for any x € R, we have

a?) is known: it was shown by G. Polya in [Pol13] (see [Rza0§| for a more easily accessible

e

aT”T_ler\/ﬁJ = 7T(116+1)6Xp (—6m2) +0 <n_ ) . (6.2.9)
(what he considered was actually the volume of hypercube slices, which is equivalent, as
seen above).

On the other hand, the surplus that we found in Lemma in dimension n > 3
and index 1 < ¢ < n — 2 relative to the standard case was of the form C %Dza?:;, for
some constant C. We have already mentioned in Remark [6.2.3] that for a fixed s € R,

. _3 . clr—al
D2%a?, | is O (n~2 ). Hence, the ratio =%, where ¢? comes from Theorem [6.1.1
| 25 +sv/n] ’ ai ’

is at most O (n*2). We achieve much better results in the next subsection.

6.2.4 The second construction

In this subsection, we recall the statements of Theorem [6.1.2] and Theorem [6.1.3| and prove
them. They yield good "asymptotic asymptotic" results, in the sense that we find families
of families of polynomials such that the associated Betti numbers are asymptotically of
magnitude ¢}'-d" (as the degree d goes to infinity), while the Betti numbers of the standard
case are of magnitude a - d", with S—Z converging (as the dimension n goes to infinity) to
a strictly positive constant. 1

To do so, we apply recursively the Cooking Theorem to the ingredients provided
by Theorems and The construction itself is simple; the main difficulty lies in
understanding the asymptotic behavior of the sequences recursively defined using Formula
that describe the asymptotic behavior of the Betti numbers, as we cannot expect
most terms to be trivial, unlike in the proof of Theorem We succeed by applying
probabilistic methods.

Theorem Let N > 1. Fork =1,...,N, let {Pg}deN be a family of completely
nondegenerate real Laurent polynomials in k variables such that the Newton polytope A(Pclf)
of P(f 18 Sg. Suppose additionally that fork=1,... N andi=0,...,k—1,

k
bz‘(VRPk(ng)) = xf -d”
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for some xf’ € R>g such that Z;:ol :Uf =1 (in particular, the family of projective hypersur-
faces associated to each family {Pj}deN is asymptotically mazimal). Set also :z:i’C to be O for

i¢{0,... k—1}.

Define
2 1 MRl E—1\2
T NI Y (4:22 ( ))

Then for everyn = N +1 and any i € Z, there exist i € R>o and a family {Q7 }4en of

*E‘

completely nondegenerate real Laurent polynomials in n variables such that A(QY) = S},
that forieZ

bi(Veer (Q1)) = 27 - d"

and such that for any m € Z we have

NI

n=l _ ;)2
Ty = g\}ﬂ\/lﬁ exp (—(22“02>) +o0 (n_ ) , (6.2.10)

where the o(1) error term is uniform in m. The family of projective hypersurfaces associated

to each family {Q7}aen is also asymptotically mazimal.

Remark 6.2.13. As the error term is uniform in m, Formula (6.2.10}) is equivalent to

e — 1 L ex _$2 + o0 <n_%>
|*5 +evn] — \ara /n 202 ’
for all z € R (with the error term uniform in x).

Remark 6.2.14. Compare with the standard case of Formula . If we want to get

n—1
9

o to be small. If we want large Betti numbers far from the center, we need it to be large.

comparatively large Betti numbers for i near the middle index we want the variance
As always, finding new constructions with interesting asymptotic Betti numbers in low
dimensions would automatically yield improved (either particularly large or small) param-

eters 2.

Proof. We define the families {Q7}}qen recursively, starting from n = N + 1.
Let n > N and suppose that families of polynomials {Q}'}4en and coefficients " have
already been defined for all N < m < n and all i € Z.
We apply the Cooking Theorem to the ingredients {P§}gen (for k = 1,...,N)
and {QS}deN (for k=N +1,...,n—1). It yields a family {Q7}4en such that
bi(Varn (Q) = L (a1 4 om0 4 72221 B R (6.2.11)
Z o\ ey T 5)

k=1 7=0

for all 7 € Z.
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Define 27 := (2" + 277 + Si? ;‘;E x;"’ . :L‘I-L__ll__jk) for i € Z (note that it is 0 for
i¢{0,...,n—1}). Lemma tells us that the family of hypersurfaces associated to
{Q}den is asymptotically maximal, that >, _, 2! = 1 and that the asymptotic inequality
(6.2.11]) is in fact an asymptotic equality.

Suppose now that {Q]}4en and ] have been defined for all n > N and i € Z. What is
left to show is that the coefficients z' satisfy Formula (6.2.10]). This is, in fact, the hardest
part, and a consequence of Proposition [6.2.16] at the end of this section.

O

The result below is a direct application of Theorem [6.1.2] to the two most extreme

constructions known in dimension 3, i.e. those from Theorem [6.2.6

Theorem For any n = 3 and any 1 € Z, there exist c}',d} € R and families

17

{FJ’"}deN and {F;""}4en of completely nondegenerate real Laurent polynomials in n vari-
ables such that the Newton polytope A(Fcz—r’n) is S and that fori =0,...,n— 1, we have

and

and

o V20 1 —202? N ( _é)
e = ——exp|——— oln ,
| %5+ +av/n] 3m/n P 3

where the error terms o (n_%) are uniform in x. The family of projective hypersurfaces
associated to each family {Ff’n}deN 1s also asymptotically mazimal.

Proof. Tt is a trivial application of Theorem to N = 3 and the following families of
polynomials: let {Pf}deN be {Ig}deN from Theorem for k = 1,2 and let {Pj’}deN be

{Bf}deN from Theorem when defining {F di’"}deN.

2

We can directly compute that the variance o is equal to

2 1 1 /1) 15\ ., 1 15 1
= [cqo0422 () 42( 4o )12 ) ===
B+1)(3+2) <4+ * 2(2) * <6+24> ) 12 ' 524 8

for {F;"}4en and to

2 1 1/1\? 11 1 11 3
S 2- (= 2(2 - — )12 == -2 - ==
(3+1)(3+2) (4+0+ 2(2) + (6 24> ) 12 524 40
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for {F;""}gen. This is enough to conclude.

Remark 6.2.15. As noted in Remark we can easily get for any a € [—i, %] a
family {Pg}deN of completely nondegenerate real Laurent polynomials in 3 variables such

that the Newton polytope A(Pg) 18 Sg and that fori=0,1,2, we have

with x§ = 13 = é +a and 73} = % — 2a. The same reasoning as in Theorem applied
to {Ié}deN, {Ig}deN and such a family {Pg}deN yields a family {Q7}aen for any n = 4 such
that

and that

[S—
§ -
@

i
ko]
S

g

.

w"“ 8
+ o
[S1fS]

N—
N~
+
Q
—
3I
N[
~—

xrnfl

2 +$\/EJ V2T ﬁ +

Observe also that

xf"—*lﬂ\/ﬁj le x? 1 1
g 2 = exp (2 <1 i 1)) +0(1)
|2 +evil A/t 5 251

The rest of the section is devoted to the proof of the following proposition.

Proposition 6.2.16. Let N > 1. Forn =1,...,N and i€ Z, let x]' € Rxq be such that
= x’%_i, that Y., xi' = 1 and that ! =0 fori¢ {0,...,n —1}.

K3
Recursively define x! € R>q for alln > N as
1 n—21—1
no.__ n— 1 " 1— k
R el ) e

k=1 75=0

forieZ .
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Define

9 1 N k-1 ‘ E—1 2
7= (N + 1)(N +2) <4+Z Zw§<2_2> )

1 1
= ———ex
o\2m A/n P

where the o(1) error term is uniform in m.

Then
(6.2.12)

&
3
VR
—~
‘3
S
[\ =
S
Q| |
[\]
3
SN—
(3]
N~
+
Q
/N
:I
SIS
N—

Proof. The idea is to see the functions ™ : i — ' as discrete distributions, in order to
apply probabilistic techniques.
Define 2, = 2§ = § and 29 = 0 for all i € Z\{—1,0}. This formal trick allows us to

rewrite ' as

for all i € Z and n > N + 1. Each family of coefficients {z]'};cz (for n > 0) defines a

k n—1—k

discrete distribution on Z; the sum Z]ez ;- a;_q_; is simply the probability density of

the convolution of two such distributions in ¢ — 1. It can be directly checked that each

distribution {z!};ez is symmetric in "T_l

We recursively define distributions {Z"},>1 over %Z thus: for k=1,...,N + 1, we set
~k k—1

T =2 ;. 6.2.13

[ it k22 ( )

Note the shifts in both indices. Assume now that ¥ has been defined for any k < n
(for some n > N +1). Let Xj,..., X, be independent random variables such that the

probability density function of X on R is Z*. Define a random variable X, as follows:
Xn+1 = XKk + Xn+1-k,

where K is a uniform random variable on the set {1,...,n}. Define 2""! as the probability
density function of X, .1 on %Z.

Hence for any 7 € %Z, we have

~n+1 }: 2: ~n+1 k

k 1jeZ
It is then trivial to show by induction that Formula holds for all £ > 1. In
particular, ¥ only takes non-trivial values % + Z for odd k, and on Z for even k.
Notice that the variance of the distribution Z* is the same as that of z*~!, which is
Ny it (i — &5 2) (this is equal to § for k = 1). Now let {(XI'reNyi=1,...,N+1} be

a family of independent random variables such that Xf admits Z; as a probability density
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function. For any @ = 1,..., N + 1, recursively define the random variables ' as follows:
ok := 0 for any k € {1,...,N + 1}\{i} and o} := 1. For any n > N + 1, a}'t! :=
&l + a1k where K is a uniform random variable on the set {1,...,n} and {@F}r=1 .,

k

is a family of independent variables such that df follows the same distribution as «;'.

n+1

Intuitively, o;

can be understood as such: consider the set {1,...,n+ 1}. If n +
1 < N + 1, you are done. Otherwise, randomly split it into two sets {1,..., K} and
{K+1,...,n+1}, and proceed similarly with each of these. Continue this procedure until
you have obtained a partition of {1,...,n + 1} into sets of cardinal less than or equal to
N + 1; the random variable a?“ counts the number of sets of cardinal ¢ in that partition.

Let Z, 11 be a random variable of distribution Z, 41, for n = N + 1. Based on what we
have seen of Z,1, the variable Z,, .1 can be chosen so that there are independent random
variables X1, ..., X, (such that X}, is of distribution Zr,) and a uniform random variable K
on the set {1,...,n} such that Z,, ;1 = XK +Xn+1—K~ Moreover, each random variable Xk
can be chosen so that it satisfies the same condition (relative to the appropriate indices),
as long as k > N + 1. Hence Z, 1 can be chosen (since we only concern ourselves with
probability density functions in the statement of the lemma, and not particular random

variables) so that by repeatedly decomposing it in that manner, it can be written as

Ni1aftt

Znpy1 = Z Z X7
i=1 r=1
ifn>N+1.

Using Lemmabelow (notice that there is a shift N — N +1 due to the wording of
the lemma’s statement), we know that E[%] = (Nﬂ)zw and Var(%) = % 1270
fori=1,...,N + 1. Consequently, the sequence of random variables {%}%N converges
in probability to a(N) := m

We now prove some variant of the Local Limit Theorem to get Formula . The
main difficulty lies in the fact that the random variables af, ..., aly, ; are not independent.

We first compute the limit as n — o0 of the characteristic function of %

We denote " := (af,...,a}, ;). The random variable o” takes value in NN+ We

have

1 1
E [exp (ith)] = Z P(a" = k)E [exp (ith> la™ = k} =
\/ﬁ k:(kl,...,kN+1)ENN+1 \/ﬁ

N+1 1 ki N+1 t2Var(X<)
n __ . T _ n __ - ?
Z P(a™ = k) HE[exp (Zt\/ﬁZXi>] = 2 P(a™ = k) H (1 e +
keNN+1 i=1 r=1 keNN+1 i=1
by independence of the random variables XZ“ and Taylor expansion (where as above, X; is
any random variable of law 7).

Moreover, for any € > 0, define NN := {(k1,... kny1) € NV ]% —a(N)| <
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ea(N) fori = 1,...,N + 1}. By hypothesis, for a given € > 0, we have lim,,_,o, P(a™ €
NN = 1.

Let us show that for any ¢t € R, the characteristic function E [exp (zﬁZnﬂ converges

to exp(—— SV a(N)Var(X;)) as n — oo . Indeed, choose € > 0 and consider

E [exp <z\jﬁZn>} = P(a" ¢ NNHE [exp < \tf > la™ ¢ NN“}
P(a" e NYTHE [exp G\}%Zn) la™ e Nﬁ\f;l] .

The first term converges to 0 as n — o0. Moreover,

t t
P(a" e NYHE [exp <i\/ﬁzn> la™ e Ngjl} = > P(a"=kE {exp (i\/ﬁZn> la™ = k:]

keND
N+1 2 2 k;
tV t
5 IP’(a"=k:)H<1 ax +<>> _
keND =1 "
N+1 2 oy \ malV)
t=V. N t
3 rar-n ] (1- oo (D))
reni1 e 2na(N) n
k;—na(N)

~ na(N)\ ~ na(N)
| PVarK)a(N) (2 AT
2na(N) n B

N+1 9 5 o\ \ ma(N)
t“Var(X;)a(N t
H <1_32Lr()]\7a()+0(>> P(a”eN£J1)+ Z P(a" = k)
i=1 na(N) " keNJ

k;—na(N)

~ na(N na
N1 2var(X)av) 2\ )\
[T (1o o= 1
2na(N) n

i=1

v na(N)
Asn — oo, WehaveIP(ozneNNH)—>1andHN+1 (1_W+O(%>) —

exp(—% Zf\:{l Var(X;)a(N)). Moreover, | ‘ a(N “| <eforanyi=1,...,N +1 and any

ke Névrf 1 Hence there exists a function f : R>0 — R such that for n large enough,

k;—na(N)

N+1 2Var( X )a 9 na(N)\ ~na(¥)
[ ((1- 2l (2)) 1| < 19

i=1

for any € > 0 and k € NV+! and such that lim._q f(e) = 0.

en

As € > 0 can be chosen arbitrarily small, this shows that lim,_,., E[exp(i—=Z,)] =

ER
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exp(—%a(N) fogl Var(X;)). As in the statement of the proposition, let us write

N+1 2 1 N k-1 E—1 2
Zvar T INED(N+2) <4+§Z ( ))

Note that using Lévy’s continuity theorem, this already shows that the sequence of dis-

tributions {#"} ey converge in distribution to a normal distribution N (0, a(N) vaz | Var(X;)).

As we want a local result, some additional work is still needed.

The remainder of our proof is inspired by the presentation of the Discrete Local Limit

Theorem on Terence Tao’s blog (|Taol).

By definition, for any m € Z, we have

n—1 n—1
w%:jn-‘rlm:P(ZnJrl:m_ 5 )=P<Zn+1+2=m)-
2

m

As Zpi1 + ”Tfl only takes values in Z and m is also an integer, we can write

1 (™ . n—1 )
1Zn+1+"7‘1=m ~or f exp (“5 (Z 5 >> exp (—itm) dt,

which implies (using Fubini’s theorem) that

-1 1 (™ a1l
P (Zn+1 + nT = m) = J E [exp (itZp+1)] et T emitm gy

27 J_,

and then

n—1 1 (vntt x iE_nol e,
\,’I’l+1]P) Zn+l+ 9 =m :7 E exp 7 Zn+1 e vVntl 2 ¢ “/n+l ' (dx
—+/n+1m

1
:27r 1|x‘< oy [exp(\/i1

using a change of variables.

We want to show that this expression converges to

1 2202 ;,_x n—1

n—1 2
i —x __ —5— — M
e 2 ezx/nﬁ—l 2 e Z\/n+lmd$: 7( 2 ) )

1
il exp | —
27 Jr o\ 2w P ( 2(n + 1)o?

uniformly in m (i.e. that the difference between the two expressions is an o(1) error term

that can be upper-bounded uniformly in m).
We only need to show that

1 . _ato?
771_ JR ‘1Z|$ n+17r]E [exp <Z\/mzn+1>:| — € 2 dx
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converges to 0.

As we have proved above that Lpj<ynginE [exp (iﬁZnH)] converges (for a given

7)20'2
xeR)toe 2 |, we want to show that there exists an absolutely integrable function that

dominates La< N [exp (iﬁZnH)] ’ so that we can conclude using the dominated
2 2

convergence theorem (as x +— e~ s clearly absolutely integrable).

As above, we write

E [exp (z'\/nLHZnH)] = > Pa"=k) ]ﬁlE [exp <z\/7%1 kz X{)] .

keNN+1

For i = 1,...,N + 1, either Var(X;) = 0 and the term E [exp <’L\/7f—+1 Zf’;l 1’")] is
~ > kl
always equal to 1, or Var(X;) # 0 and we write it as (1 — % +o (nwjl )

There exist two constants § > 0 and C7 > 0 such that

2 v 2
‘1_:UVar(XZ) +0< x >

22

—Ciatt <1

<e
2(n+1) n+1

for all |z| < 6y/n + 1 and all i such that Var(X;) # 0. As Var(X;) = 1, there is at least

one such 7.

Define N
Q= {ke Nk > a(2)n}.
n+1 n
Using Chebyshev’s inequality and the fact that E[C:l1+1 ] =a(N) and Var(‘fl:ll) = C(é\r{l),
we see that P(a" ! ¢ Q,,1) < nc—fl for some constant Cy > 0.

Hence

1 E |exp iLZn 1 <
lz|<dv/n+1 \/m +

N+1 ki
€T ~
1 Pa"*! ¢ Q1) + 1 DI P =k) ] E[ex (Z > )] <
lz|<5v/n+1 n+1 |z|<6v/nt1 P i S
ke 1 i=1 Vn+14
& —-C iIc Co —C 22
lpjeoimiy g+ 2 PO =R I <1y T e <
keQn 41
11 22
C6% min (:1;2 52) + e CrigallN) (6.2.14)

assuming (as we can) that § < 1.

Suppose now that we have ‘E [exp (ztf(l)” = 1 for some § <t < 7. It means that

exp (z'tXl) is almost surely of constant argument, hence ¢tX; almost surely takes values

in a + 27Z for some a € R. Thus X; takes values in §+ QT’TZ. But 27“ > 2, and by
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definition P(X; = 3) = P(X, = —1) = 1 (remember that X, comes from the "artificial"
distribution 2 defined at the beginning of the proof). This is impossible. Hence we have

’IE [exp (ztf(l)” < 1 for any § < t < m, and by continuity and compacity there exists a
constant 0 < C3 < 1 such that ‘E [exp (ztf(l)” <(C3<lforanyd<t<m.

Now we can write

Lo
16m<|x|<me [eXp (Z\/mZnH)” S

1
Ly nrtsfejemynril(@" T & Qup1)+

N+1 ki
. T ~
Lyyaricileryirt 2, P =k [ [E [exp (Z =2 )”
keQni1 =1 n r=1

Cy 1 k
< 15\/n+1S\x|<ﬂ\/n+ln +1 + 1(5\/n+1s|x\§7r\/n+1 Z ]P)(anJr = k)031 <

keQnJrl

Cy 9N (nt1) s . (1 s\ *
1|z‘§7r\/mn T 1 + 1|Q?‘S7T\/mc3 2 < CQT[' min ﬁ7 1 + 032 .

This, together with Formula (6.2.14), allows us to conclude: we have shown that

e 2
T, L 1 (—(21 — m) ) + o(n*%)

= e
ov2my/n+1 P 2(n+1)0?

for some error term uniform in m. We can finally observe (by distinguishing the cases

where (%51 — m)2 < n? from the cases where (”T_l — m)2 > n%) that

2 2
1 1 n=l 11 n=1 _ .
exp —( 2 )2 = — exp —7( 2 5 ) —I—o(n_%)
oV2r/n+1 2(n+1)o o/ 2m A/ 2no

with the error term once again uniform in m .

0
Lemma 6.2.17. Let N > 1. Foranyi=1,..., N, recursively define the random variables
ol as follows: of := 0 for any ke {1,...,N}\{i} and o} := 1. For anyn = N, o™ :=
ak +6¢?+17K, where K is a uniform random variable on the set {1,...,n} and {df}kzly._.vn

k

s a family of independent variables such that o?f follows the same distribution as o .

Then for any n = N + 1, we have

n 2n
E[ej'] = m

and

Var(aj') = C(N)n,
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where C(N) is some constant that only depends on N.

Proof. Let i € {1,..., N} and observe that if n > N, then

E[Q?Jrl] _ % (iE[ ]+]E[ sn+1— k) :iiE[ak
k=1

k=1
Hence
n+1 n n+2
E[of] = > E[of] + E[o}*] ZIE
k=1 k=1
and necessarily
i _n+2n+1 N+3N+2 u _(n+2)(n+1) i
P n—1""N+1 - (N+DN A

Moreover, we get from the definition of the random variables o that >3 E[a}] = 1:

thus Y70 E[ak] = %, and finally

(N +1)N (N+1)N (N+1)N

an 1] i i :n+2)(n+1)_(n+l)n 2(n + 1)

k=1

for any n > N.

Let us now compute the variance of 04”+1 First observe that
1 [ b amil 2 (- et~
E[(af )] = = (Z E[(af +aj*! k)2]> = (Z E[(af)’] + E[&;|E[a; k]) =

2 (& 5 dk(n+1—k 2 (¢ 2n(n +1)(n + 2
n(ZEm@ﬂ+2<$&ﬂﬁy>=n<ZEmmﬂ+ 5&;&;)>

k

as the variables &; are independent from each other.

Now define for any n > 1

jass 2(n +1)(n +2)(2n — 3)
g(n +1) g T 3NN+ 12

as is natural to do in such a situation.
Then

n+1 i
gtn+1) = ¥ Bffaby?) - 22 DL BEL3)

zn] E[(a¥)?] + % (Zn: E[(a)?] + 2n(n +1)(n + 2)) 2+ 1)(n+2)(2n—3)

3N2(N + 1)2 3NZ(N £ 1)2
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Y B+ (2 - - 3) S Y

n+ 2 i E[(a*)?] - 2(n + )(n+2)(2n—5) _

n AT 3N2(N +1)2
n+2 [ v 2n(n+1)(2n—5 n+ 2

- (kzl L] - 2 e )> = 24 (m)

for any n = NN, hence as before,
g(n+1)= Wg(]v).
Thus
2(n+1)(n+2)(2n —3 2Znn+1)(2n —95
()] = gl + 1) - g(n) + 2T Rl e IS Rt e )
mg(m " 3]\32(8\:—_'_1)1)2(@ +2)(2n—3) —n(2n - 5)) =
2(n+1) 4n+1)(n—1)

NNt T e

From this, we see that for any n > N,

2(n+1) dn+1)(n—1)  4(n+1)>

n+1y _ n+1\27 _ n+1 2 _ _ —

Var(ozi ) - E[(Oxl ) ] (E[az ]) N(N + 1)9(N) + N2(N + 1)2 N2(N + 1)2
2(n+1) 8(n+1)

v !N T mE g - (DO

for some finite constant C(N) := ]\,2(9]5,]1)1) — Ng(]éﬂ)z that only depends on N.

6.3 Some explicit computations

Given n > 3, we can try to apply the Cooking Theorem [5.1.1]to any combination of families
of polynomials {Pclf}deN for k = 1,...,n—1; these various combinations result in families of
polynomials {Q}4en and associated hypersurfaces with a priori distinct asymptotic Betti
numbers, which we can in turn use to define new polynomials and hypersurfaces in ambient
dimension n + 1. The total number of possibilities in dimension n grows extremely fast as
n goes to infinity (as C2" for some C' > 1), even with a low number of starting ingredients,
i.e. families of polynomials that are already known. Given n > 3 and i € {0,...,n — 1},
it is not yet clear how to pick the combination which will result in the largest asymptotic
value for the i-th Betti numbers b;(Vrpn (Q7)).

The author used a poorly coded C++ program to test out each combination achievable
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i 0 1 2 3 4 5 6
n:
3 0.2083 0.0833 0.2083
4 0.0520 0.0104 0.0104 0.0520
5 0.0104 0.0833 0.0375 0.0833 0.0104
6 0.0017 0.0677 0.0138 0.0138 0.0677 0.0017
7 0.0002 0.0364 0.0238 0.0310 0.0238 0.0364 0.0002

Figure 6.2:

in ambient dimension n = 4,5,6,7 using both constructions from Theorem by Bru-
gallé and the family of constructions from Theorem [6.2.5| by Itenberg and Viro as building
blocks. Any n greater than 7 exceeded the computational power of the author’s arguably
cheap computer.

Figure[6.2shows, forn = 3,...,7and i € {0,...,n—1}, the largest ¢ (rounded down to
the 4-th decimal) such that we were able to cook, using the Cooking Theorem a family
{Q7}den of completely nondegenerate real Laurent polynomials in n variables such that
A(QY) = S}, that the associated family of real projective hypersurfaces is asymptotically
maximal (this is not an additional constraint, as all our ingredients are asymptotically
maximal) and that

bi(Vapn (Q3)) = (al +£7) - d".

In particular, it is enough to complete the proof of Theorem forn < 7.
In Figure we indicate, for 5 < n < 99 odd and ¢ € {0,...,n — 1}, the values of

a

n—1 n—1
—25—2— (rounded down to the 5-th decimal), where d7,_, comes from Theorem [6.1.3
dy 1 —a%_y
The ratio appears to converge relatively fast to lim,_, TanilT = @ — 1 =~ 0.05409.

2

6.4 Chapter conclusion

Concerning possible generalizations, the same method could certainly be applied to more
general toric varieties, though not without any modifications, as it relies heavily on the
geometry of the standard simplex. Given an n-polytope with integer vertices A, and should
we want to define a family of polynomials {P}}4ey such that A(P}) = d - A and such
that the induced family of hypersurfaces in the associated toric variety has interesting
asymptotic Betti numbers, a solution could be to simply divide each d - A into several
"big" simplices (as well as some smaller polytopes to fill in the gaps), in which we apply
the methods described here. Thinking in terms of cycles and axes, it should be relatively

easy to find good asymptotic lower bounds on the Betti numbers.
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5 0.06818 53 0.05552
T 0.06478 55 0.05547
9 0.06227 a7 0.05542
1" 0.06085 59 0.05538
13 0.05984 61 0.05533
15 0.05909 63 0.05529
17 0.05851 65 0.05526
19 0.05805 67 0.05522
21 0.05768 69 0.05519
23 0.05737 71 0.05516
25 0.05711 73 0.05513
27 0.05689 75 0.05510
29 0.05670 77 0.05508
31 0.05653 79 0.05505
33 0.05638 81 0.05503
35 0.05625 83 0.05501
37 0.05614 85 0.05498
39 0.05603 87 0.05496
41 0.05594 89 0.05494
43 0.05585 91 0.05493
45 0.05577 93 0.05491
47 0.05570 95 0.05489
49 0.05564 97 0.05487
51 0.05558 99 0.05486

dy_1—a

Figure 6.3: For n = 5,...,99 odd, the ratio —24——2— %"12’ where d}_, is as in Theorem [6.1.3

n— 2
2
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Another interesting problem would be to find combinatorial analogs to Theorem
i.e. families {Pj’}deN of completely nondegenerate real Laurent polynomials in 3 variables
obtained using the combinatorial Patchwork and such that the Newton polytope A(Pj) is
S;’ and that for ¢ = 0,...,2, we have

with 23 = 23 = % +a and 23 = % — 2a for non-zero a. In particular, those families have to
be asymptotically maximal (non-asymptotically maximal examples are relatively easy to

find).
As the Cooking Theorem respects the combinatorial nature of the ingredients it uses,
this would automatically yield combinatorial versions of Theorems and
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Chapter 7

A tropical analog to Lefschetz’s

section theorem

7.1 Chapter introduction

This chapter is based on a joint work [ARS19] with Arthur Renaudineau E] and Kristin
Shaw E] In this article, we prove a tropical analog to Lefschetz’s section theorem, or
more precisely to one of its best-known corollaries, relating the tropical homology of a
non-singular tropical hypersurface in a non-singular tropical toric variety to the tropical
homology of the ambient variety, assuming some technical conditions. We also directly
prove that the tropical homology of non-singular tropical toric varieties is torsion-free,
and use this, in conjunction with the Lefschetz-like theorem, to show that the tropical
homology of non-singular tropical hypersurfaces in non-singular tropical toric varieties is
also torsion-free (assuming, again, some technical conditions). As a bonus of sorts, this
allows us to obtain some results similar to those of [IKMZI16| relating tropical homology
and Hodge-Deligne numbers through purely combinatorial means, though only in the case
of hypersurfaces.

In the present chapter, we restrict ourselves to two types of ambient non-singular
tropical toric varieties: non-singular compact toric varieties whose dual fan is the same
as that of the full-dimensional Newton polytope of the considered hypersurface, and the
tropical algebraic torus R"*1. Our hypersurfaces are also of two types: either non-singular,
in which case our theorems hold with tropical (co)homology with coefficients in Z and R, or
singular, in which case we restrict ourselves to tropical (co)homology with real coefficients.

Again, the results can be found in their full generality in [ARS19]. Throughout the
chapter, we mostly use definitions and notations from Chapter

As advertised above, the main result of this chapter is the following tropical analog to

1Univ. Lille - Laboratoire Paul Painlevé, Lille, France. arthur.renaudineau@univ-lille.fr
2Univ. of Oslo, Oslo, Norway. krisshaw@math.uio.no
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Lefschetz’s section theorem. Given a tropical toric variety or a tropical hypersurface Z,
we denote as in Chapter 4| by H,(Z; .7-"pZ ’Z) the (g, p)-th tropical homology group of Z with
coefficients in Z, and by HfM(Z; ]-},Z’Z) the (g, p)-th tropical Borel-Moore homology group
of Z with coefficients in Z, and similarly for cohomology. We often simply write .7-"pZ and
FY instead of ]:pZ’Z and fg,z- To avoid confusion, we sometimes refer to H,(Z; ]:pZ) as a
standard tropical homology group.

As explained in Chapter [3| we call a full-dimensional polytope A < R"™*! simple or
non-singular if its normal fan is simplicial unimodular. Such a polytope naturally gives rise
to a non-singular compact tropical toric variety YA via its normal fan . Moreover, any
tropical polynomial P in n + 1 variables defines a tropical hypersurface Xy in R"*! whose
structure is dual to the subdivision of the Newton polytope A(P) of P induced by P itself
(see the Duality Theorem . If the subdivision is primitive, the tropical hypersurface
Xo is non-singular. As in Chapter [3| we call the natural compactification in a non-singular
tropical toric Ya of a non-singular hypersurface Xy c R**! defined by a tropical polynomial

whose full-dimensional Newton polytope is A a non-singular hypersurface in Ya.

Theorem 7.1.1. Let X be an n-dimensional tropical hypersurface in'Y with Newton poly-
tope A, where Y is either R™™! or a tropical toric variety generated by the normal fan
of A, in which case we ask that A be full-dimensional and ¥ be simplicial unimodular.

Then the map induced by inclusion
it HPM (X, FOR) > HPM (v F0F)

s an isomorphism when p + q¢ < n and a surjection when p + q = n.

Moreover, if A is full-dimensional, then the map induced by inclusion
it Hy(X; F)0%) — Ho(Y; 7))

s an isomorphism when p + ¢ < n and a surjection when p + q = n.
Additionally, if X is non-singular in 'Y, the same two statements hold with coefficients
i Z instead of R.

Though we restrict ourselves to slightly less general conditions than in the article
[ARS19|, the theorem covers the most common and reasonable cases. In Section
we present a few counter-examples to its conclusions in cases where its hypotheses are not
satisfied.

The case where X is non-singular and its tropical homology groups with coefficients
in R are considered can be recovered as a consequence of the main theorem from Iten-
berg, Katzarkov, Mikhalkin and Zharkov’s [IKMZ16]. However, the statements regarding
the integer tropical homology of a non-singular tropical hypersurface X and the tropical

homology with coefficients in R of a singular tropical hypersurface X are new.
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Though our theorem is analogous to a well-known corollary of Lefschetz’s section the-
orem, the proofs have little in common. Ours rely on a careful examination of the cellular
homology complexes using a cell decomposition of the ambient space induced by the hy-
persurface itself; we show that the tropical homology of the pair (Y, X) is in a certain sense
"locally trivial" in degrees p + ¢ < n. Notice that unlike the classical Lefschetz section
theorem, ours does not require the ambient variety to be compact, making it closer to the
generalizations that can be found in [Eyr04].

Somewhat disappointingly, our proof does not appear to be easily adaptable to the case
where X c Y is a tropical variety of codimension strictly greater than 1.

As immediate consequences of Theorem [7.1.1] we have the following corollaries.

Corollary 7.1.2. LetY be a (n+1)-dimensional non-singular compact tropical toric vari-
ety defined by a full-dimensional polytope A. Let X be a non-singular tropical hypersurface
'Y, defined by a tropical polynomial whose Newton polytope is also A. Then the map
induced by inclusion
ix: Ho(X; FX) = Hy(Y3 F))

s an isomorphism when p + q¢ < n and a surjection when p + q = n.

Note that as Y and X are compact, the standard and Borel-Moore tropical homology
groups coincide.

We have a similar statement when choosing the tropical torus R"*! as an ambient

variety, rather than a compact one.

Corollary 7.1.3. Let X be a non-singular tropical hypersurface in R"*1, defined by a

tropical polynomial P. Then the map induced by inclusion

n+1
)

is: HPM(X; FY) —» HPM (R 7Y

s an isomorphism when p + q¢ < n and a surjection when p+ q = n.

If additionally the Newton polytope of P is full-dimensional, then the map
it Hy(X; FX) — Hy(R™H FE™

s an isomorphism when p + q¢ < n and a surjection when p + q = n.

It is easy to show that H,IBM(R"H; ]-"Enﬂ) is isomorphic to AP Z" ™! if ¢ = n + 1 and
trivial otherwise, and that H,(R"*1; FEHI) is isomorphic to AP Z"*! if ¢ = 0 and trivial
otherwise.

In the case of real coefficients and singular X, we also have the two corollaries below.

Corollary 7.1.4. Let P be a tropical polynomial whose Newton polytope A is full-dimensional

and non-singular. Let Y be the (n + 1)-dimensional non-singular compact tropical toric
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variety to which A gives rise, and let X be the tropical hypersurface in' Y to which P gives
rise (note that we do not ask for X to be non-singular).

Then the map induced by inclusion
i HPM (X FXR) — HPM (v, FY'R)
s an isomorphism when p + q¢ < n and a surjection when p + q = n.

Corollary 7.1.5. Let X be a tropical hypersurface in R" 1, defined by a tropical polynomial

P (note that we do not ask for X to be non-singular). Then the map induced by inclusion
Ty HfM(X;f;(’R) N HfM(Rn+1;f§"+l7R)

s an isomorphism when p + q¢ < n and a surjection when p+ q = n.

If additionally the Newton polytope of P is full-dimensional, then the map
it Ho(X; FOR) o Hy (R FEVOR)
s an isomorphism when p + q¢ < n and a surjection when p + q = n.

The equivalent statements for rational coefficients are a consequence of the universal
coefficient theorem, or can be directly obtained using the exact same proof.

Observe that we do not even ask that the subdivision of the Newton polytope of P
induced by P be a triangulation.

Adiprasito and Bjorner also established tropical variants of the Lefschetz hyperplane
section theorem in [AB14]. Their theorems relate the tropical homology with real coef-
ficients (but say nothing of integral tropical homology groups) of a non-singular tropical
variety X contained in a tropical toric variety to the tropical homology groups of the inter-
section of X with a so-called “chamber complex", which is a codimension one polyhedral
complex in a tropical toric variety whose complement consists of pointed polyhedra. Their
proof relies on Morse theory, and does not seem to have much in common with ours.

We also give some description of the integral tropical homology of non-singular toric

varieties, using tropical Poincaré duality (see [JRS17]).

Proposition 7.1.6. Let Y be a (n + 1)-dimensional non-singular compact tropical toric
variety. Then the integral tropical homology groups of Y are torsion-free.

Moreover, we have

ranqu(Y;}";/) = hP9(CY)

where CY is the corresponding non-singular compact complez toric variety(i.e. they are de-
fined using the same simplicial unimodular complete fan). In particular, we have Hy(Y; ]:;/) =

0 unless p = q.
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Using this result and Theorem [7.1.1], we get the following statement.

Theorem 7.1.7. Let X be a non-singular n-dimensional tropical hypersurface in'Y with
Newton polytope A\, where Y is either R™! or a toric variety generated by the normal fan ¥

of A, in which case we ask that A be full-dimensional and that ¥ be simplicial unimodular.

Then both the Borel-Moore and standard integral tropical homology groups of X are

torsion-free.

Our main motivation for establishing torsion-freeness of the tropical homology groups
of tropical hypersurfaces comes from the main result from [RS18|, which we have already
discussed in Chapter || (see Formula ) and which we quote again here: let X be
a smooth real algebraic hypersurface in a (n 4+ 1)-dimensional non-singular toric variety
obtained via primitive combinatorial patchworking, and let X*"°P be an associated tropical
hypersurface. Denote by CX (respectively, RX) the complex (respectively, real) points of

X. Then Renaudineau and Shaw proved that for any ¢ = 0,...,n, we have

n
bi(RX) < Y. dimg, Hy(X"oP; FX"7"22),
p=1

Theorem then allows us to see that if the ambient toric variety is either compact
or the algebraic torus, then the integral tropical homology of X'°P is torsion-free, which
implies that dimg, H,(X"P; ]-};X tmp’ZQ) = rank H, (X ]-"If( "), We can then conclude,
either from [IKMZI6] or the results below, that rank H,(X"°?; .7-"1‘,Xtmp) = h?P(CX) (where
h?P(CX) is the (g, p)-th Hodge number of CX) and that we have for any i = 0,...,n

bi(RX) < h"""Y(CX) +1—6;n,

where 51;7% is 1if i = § and 0 otherwise.

As another consequence of the Lefschetz-like Theorem [7.1.1] we are able to express
under the same assumptions (once again using tropical Poincaré duality) the rank of the
integral tropical homology of non-singular tropical hypersurfaces in compact tropical toric
varieties and in R”*! in terms of the Hodge-Deligne numbers of a related real algebraic

hypersurface.

If CY is a complex toric variety, a hypersurface CX < CY is torically non-degenerate if
the intersection of CX with any proper torus orbit of CY is non-singular and CX intersects
each torus orbit of CY transversally. If CY is the complex toric variety associated to the
Newton polytope of CX, then the second condition follows from the first one (see for
example [Kho77]).

Following V. Danilov and A. Khovanskii (see [DK86]), we denote Hodge-Deligne num-
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bers of a complex variety CX by hP4(H¥(CX)) and define the numbers

eP4(CX) := Y (~1)*nPU(H}(CX)),
k

where H é“(CX ) is the k-th cohomology group with compact support of CX. We then define
the polynomial
(CX) 1= ¥ b U(CX)y.
P
Parallelly, given a tropical hypersurface X, we consider the Euler characteristic y (CZM (X; ]-"[f( )
of the tropical integral Borel-Moore cellular complex. Both x,(CX) and x(CZM (X; ]-'If( )
have nice additivity properties, which allow us to get through purely combinatorial com-

putations the following results.

Theorem 7.1.8. Let X be a non-singular tropical hypersurface in a tropical toric variety
Y, and let CX be a complex hypersurface torically non-degenerate in a complex toric va-
riety CY such that the tropical, respectively complex polynomials defining X and CX have
the same full-dimensional Newton polytope A. Moreoever, let Y and CY be either R™*!
and (C*)"*1 or a tropical, respectively complex (n + 1)-dimensional non-singular toric
varieties defined using the normal fan of A (in which case we ask that it be simplicial and
unimodular).
Then we have "
Xy(CX) = D (—1)Px(CEM (X 7))y,
p=0

and thus

(1P (CPY(x; FX)) = 3 ebi(CX),

q

Combining this with our Lefschetz-like theorems and some classical results concerning

Hodge-Deligne numbers, we find the two following corollaries.

Corollary 7.1.9. Let Y and CY be tropical, respectively complex (n + 1)-dimensional
non-singular compact toric varieties coming from the same non-singular full-dimensional
integral polytope /.

Let X be a non-singular tropical hypersurface in'Y (in particular, defined by a tropical
polynomial whose Newton polytope is also A). Let CX be a torically non-degenerate com-
plex hypersurface in CY, defined by a Laurent polynomial whose Newton polytope is A as
well.

Then for all p and g we have

hP4(CX) = rank Hq(X;f];X).
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Corollary 7.1.10. Let X be a non-singular tropical hypersurface in R defined by a
tropical polynomial whose Newton polytope is full-dimensional. If CX is a non-singular

complex hypersurface in (C*)"+1 with the same Newton polytope as X, then

Yl hPI(H(CX)) ifp+q=n
rank HPM (X5 FX) = { hep(HIPP(CX)) ifqg=mn

0 otherwise.

The Hodge-Deligne numbers appearing in the above corollary can be calculated using
the algorithms in [DK86|. For example, we have under the hypotheses of Corollary [7.1.10
that hPP(H: ™P(CX)) = (077).

One can also get Corollary as a consequence of the main theorem of [IKMZ16]|
(though a complete description of the integral tropical homology groups of X would
nonetheless require some analog to Theorem to show the lack of torsion).

All results in this chapter can be easily generalized to cases where the Newton polytope
of the hypersurface X is not full-dimensional. For example, if the ambient variety Y is
R"+1, the hypersurface X is of the form X x R¥ for some k and some (n — k)-dimensional
tropical hypersurface X whose Newton polytope is full-dimensional in R**1~%_ One can
then apply the various theorems stated in this section to X, and use Kiinneth’s formula
for tropical homology (see [GS19]) to obtain information regarding the tropical homology
of X. Likewise if the pair X ¢ Y is of the form X x R¥ ¢ ¥ x R¥, with Y being some non-
singular tropical toric variety dual to the full-dimensional Newton polytope of X. More
delicate generalizations can be found in [ARS19].

In Section [7.2] we explain some notations, prove a preliminary lemma, and show coun-
terexamples to the conclusions of some of the main results when we drop certain hypothe-
ses. In Section [7.3] we prove many lemmas, as well as the Lefschetz-like Theorem [7.1.1]
In Section [7.4] we study the tropical homology of non-singular tropical toric varieties and
the torsion-freeness of tropical hypersurfaces, and prove Proposition [7.1.6] as well as Theo-
rem Finally, in Section we use concepts from V. Danilov’s and A. Khovanskii’s
[DKS86] to prove Theorem and Corollaries [7.1.9 and [7.1.10}

7.2 Preliminaries

We start with some definitions and basic observations in Subsection [7.2.1] then present
some interesting pathological cases in Subsection [7.2.2]
7.2.1 Definitions and observations

Throughout the text and unless otherwise specified, when considering a tropical hypersur-

face X contained in a tropical toric variety Y, we always use the polyhedral structure on
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Figure 7.1: The tropical curve induced by the tropical polynomial ”z + y + xy” in TP2.

X that comes from the subdivision of the associated Newton polytope (see Chapter [3) and
the polyhedral structure on Y induced by that of X.

Let Y be a tropical toric variety and let X < Y be a tropical hypersurface. We say that
the pair (Y, X) is a cellular pair if the cellular structure induced by X on Y makes it a cell
complex according to the definition that we gave in Subsection m (which comes from
[Curl3] and differs slightly from the usual definition). Example below shows that
it needs not necessarily be the case. Requiring (Y, X) to be a cellular pair automatically
implies that X (equipped with its natural polyhedral structure) is also a cell complex.

Given a tropical toric variety Y, we say that a polyhedral complex Z is proper in Y
if for each cell o of Z of sedentarity 0 and each cone p such that o n'Y, # &, one has
dim(oc n'Y,) = dim(o) — dim(p).

If Y is a non-singular tropical toric variety and X a non-singular hypersurface in Y,
then X is proper in Y (see the Duality Theorem. It need not be the case for tropical
hypersurfaces in tropical toric varieties in general: consider for example a tropical curve
induced by the tropical polynomial ”z + y + xy” in TP?, as illustrated in Figure .

Let v be a polyhedron of dimension s and sed(y) = 0 in a tropical toric variety Y. For

each cone p in the fan X defining Y, set v, := v n Y, and define

~° = |_| relint 7,,
p
where relint vy, is the relative interior of 7, (in Y),). If we assume that v is proper in Y, a
face o of 4° of dimension ¢ is necessarily of sedentarity order sed(o) = dim~y — gq.
A tropical hypersurface X in an n + 1 dimensional tropical toric variety Y is combina-
torially ample if for every face « of dimension n + 1 of Y, considered with the polyhedral
structure induced by X, the polyhedral complex 7° is homeomorphic as a stratified topo-

logical space to a product of copies of T and R.
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If Y is a non-singular tropical toric variety and X a non-singular hypersurface in Y,
then X is combinatorially ample in Y. It need not be the case for the closure in a non-
singular toric variety Y of a non-singular hypersurface Xy in R"*!, as is shown in Example
(2.0l

The following lemma about the structure of the cosheaves in the case of a non-singular

tropical hypersurface proves useful later on.

Lemma 7.2.1. Let X be a non-singular tropical hypersurface in Y, where Y is either
R™*1 or the non-singular compact tropical toric variety generated by the normal fan of the
Newton polytope A of X (in which case we ask that A be full-dimensional and that its

normal fan be simplicial and unimodular).

If T is a face of X of dimension q whose relative interior is contained in a stratum Y,

of dimension m, then

p l
FXn) = @FL T (0) @ N\ Talr),
=0

where Hy,—q—1 is the standard tropical hyperplane of dimension m —q —1 in R™™9 and v
denotes its vertez.

If T is a codimension one face of o in X and relint(7) and relint(o) are contained in
the distinct strata Y, and Y, respectively, then the cosheaf map iy r: .7-";((0) — J_';X(T)
together with the above isomorphisms commute with the map

p ! p l
DA 0@ ATolo) ~ DFT )@ ATe() (7.2.1)
=0 =0

which is induced by the map id @, , on each factor of the direct sum, where m, ,: /\l Ty(0) —

N Ty (7) is from Equation, in Chapter E

Proof. Recall that T7(7) denotes the integral points in the tangent space of the face 7.
Now let L be a m — ¢q dimensional affine subspace of R™ =Y, defined over Z such that L
intersects all faces of X, that contain relint(7) transversally and that together T7(L) and
T7(7) generate the lattice T7(Y,). By the above transversality assumption, the intersection

L' = L n X has a single vertex v’ contained in 7.

For every [ there is a map

l
i FE 00 @ N\ Tulr) — FX (),

given by taking the wedge product of the vectors in ]—"pLLl(v) and /\l Ty (7). Taking the
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direct sum of the maps ¢; for all 0 < < p gives a map

p l
P 7L ® N\ Talr) — FX (7). (7.2.2)

If o is a facet of X n'Y), containing the face 7, then by our assumptions on L', we have
Tz(a) >~ Tz(7'> G—)Tz(L/ Nno).

Therefore,
P l
Fo) =@ F W)@ \ Tu(r).
1=0

Now since .7-";( (7) is generated by all ]:;( (o) for o a facet containing 7, the map in Equation
is an isomorphism.

By the assumption that X is non-singular in Y, every non-empty stratum X, = Y,n X
is a non-singular tropical hypersurface in R™, where m = n + 1 — dim p. Therefore, the
hypersurface X, is defined by a tropical polynomial f, and it is dual to a primitive regular
subdivision of the Newton polytope of f, which is induced by f,. A face o of X whose
relative interior is contained in X, is dual to a face of the dual subdivision of A(f,), and
since this dual subdivision is primitive, the face dual to ¢ is a simplex. Therefore, near
the vertex v’ the polyhedral complex L’ is up to an integral affine transformation the
same as a neighborhood of the vertex v of the tropical hyperplane H,,_,—1 and we have
FE ) = Fime

If 7 is a face of o, and 7 and o are contained in Y, and Y, respectively, for n # p, then
we can write T7(Y,) = T7(Lq) ®T7(0) and Ty (Y,)) = T7(L;) ®T%(7), where L, and L, are

the linear spaces chosen in the argument above to intersect o and 7, respectively. Since the

(v). This proves the isomorphism stated in the lemma.

polyhedral structure on X is proper in Y, the map 7,,: T7(Y,) — T7(Y},) restricts to an
isomorphism between T7(L,) and Tz(L;). Therefore, it also restricts to an isomorphism
between FLo"¥ (v,) and FL~% (v,) for all p.

The claim about the commutativity of the above isomorphisms with the maps in For-
mula and iy 7 : ]-"If( (o) = .7:;( (1) follows, since i, is induced by projecting along a

direction 7. O

7.2.2 Counterexamples

In this subsection, we show how everything can go terribly wrong: a series of examples in

which some of our hypotheses are not satisfied and the main theorems fail.

Example 7.2.2. Consider the complete rational fan 3 in R? such that its only 1-dimensional
cones are Rxg - (—2,1), Rxp - (2,1) and R - (0, —1), and the associated toric variety Y.

Consider also the tropical hypersurface X < Y whose Newton polytope is the triangle of
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(1,2)

(0,0) (2,0)

Figure 7.2: The pair (Y, X) from Example

Figure 7.3: The tropical curve induced by the tropical polynomial 70 + zy? + 2%y” in T?.

vertices (0,0),(2,0) and (1,2) (which we do not further triangulate). The pair (Y, X) is
represented in Figure

Both Y and X are singular, and it is easy to see that Ho(X;F;X) =~ Z, and that
H,(Y; ]-'ly ) = Z @ Zo @ Zs; compare with Theorem and Proposition

Example 7.2.3. There are examples of tropical hypersurfaces in tropical toric varieties
which are not cellular pairs. For example, let X < T? be the tropical curve in T? with
three rays in directions (—2,1), (1,—2) and (1,1) (see Figure to which the tropical
polynomial "0 + xy? + z%y” gives rise. In this case, the pair (T2, X) is not a cellular pair,

though X may be combinatorially ample in T?.

Example 7.2.4. On a related note, consider the case when the Newton polytope of the
polynomial that gives rise to X is an interval of lattice length equal to 1 in R™*! (for
n = 1); in particular, and unlike what is required in the second part of Corollary it

is not full-dimensional.
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Then the tropical hypersurface X is a (classical) Z-affine subspace of Y = R"! of
dimension n, and the one point compactification of R"*! (with the cell structure induced
by X) is not a regular cell complex (as shown in Lemma . Upon further subdividing
X and Y so that they form a cellular pair, or using singular tropical homology, we can

compute the standard tropical homology groups to be:

P7mif g =0, Pzt if g =0,
A 1 and Hq(Y;f;/) = A 1

Hq(XS}—;(): . .
0ifg+#0 0if g # 0.

Whereas the Borel-Moore homology groups are

NP Z"™ if ¢ = n,

i xs) - {1
0ifg#mn

and
P+l if g =n+1,
HoM vy = !
0if g #n+1.
We see that the conclusions of Corollary do not hold for the standard tropical ho-
mology groups; the fact that (R"*!, X) is not a cellular pair is what makes the proof fail.

However, the conclusions regarding the Borel-Moore tropical homology groups do apply.

Example 7.2.5. Here is a counterexample to the conclusions of Corollary when we
drop the condition that Y is defined by the normal fan of the Newton polytope of the
polynomial that gives rise to X. Consider the standard tropical hyperplane X°¢ < R**+1,
The case n = 2 is depicted in the left of Figure [7.4] Let ¥ be the fan for the (n + 1)-
dimensional projective space blown up in a toric fixed point, and let Y be the tropical
toric variety defined by 3. Let X denote the compactification of X° in Y. Then it can be
computed that rank Hy (X, F;X) = 1 and rank H;(Y, F{) = 2, so the map H;(X, F{X) —
Hy(Y,FY) is not surjective (unlike in the conclusion of Corollary for n > 2).

The connected component of Y\ X containing the stratum of Y dual to the ray of X
corresponding to the exceptional divisor of the blow up does not satisfy the condition to

be combinatorially ample, which is where the proof fails.

The complex geometric version of the same scenario also does not satisfy the conclusions
of the Lefschetz hyperplane section theorem (as the hypersurface of the toric variety is not

ample).
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Figure 7.4: The standard tropical hyperplane in R3 on the left, its closure in the tropical
toric variety described in Example [7:2.5] on the right.

7.3 Tropical Lefschetz hyperplane section theorems

This section is mainly dedicated to proving Theorem but we first need some inter-

mediate lemmas.

7.3.1 Preliminary results

A tropical hypersurface X in a tropical toric variety Y induces a polyhedral structure on
Y. As above, and unless it is explicitly mentioned, we use this polyhedral structure on Y
to compute its cellular tropical homology groups.

If Z is a polyhedral complex, Z' < Z is a subpolyhedral complex and G is a cosheaf on
Z, then the restriction cosheaf G|z is a cosheaf on Z’ which assigns the Z-module G(0)
for o a face of Z'. The cosheaf G|z can also be considered as a cosheaf on Z. In this case,
it assigns G(o) if o is a face of Z’ and 0 otherwise.

Since we consider the polyhedral structure on Y induced by X, the tropical hypersur-
face X is a subpolyhedral complex of Y and we have the cosheaves .7-"]3/ |x, which can be
considered on X or Y as described above.

To prove our Lefschetz-like theorems, we consider two exact sequences of cosheaves.

The first is the exact sequence of cosheaves on Y given by

0 F dx > Fyt >0l >0 (7.3.1)
for A = Z,R. The second one consists of cosheaves on X and is given by

0— FXA - FXA Iy > NA -0 (7.3.2)

for A = Z,R. We often simply write Q, and N, for Q% and sz_

The injective maps on the left-hand side of both cosheaf sequences are both natural
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inclusions on the stalks over faces. The cosheaves Q;;‘ and ./\/’54 are defined as the cokernel
cosheaves in both short exact sequences. The cosheaves .7-";/ ’A| X, ]-";/’A, and .7-};)( A are all
free A-modules.

The main idea of the proofs is that the cosheaves Qﬁ and ./\/];,4 vanish locally in the right
degrees (and under the right hypotheses), in a sense that is made clear in the remainder

of this section.

Example 7.3.1. Consider the tropical line X in TP? from Example and Figure
in Chapter Then the cosheaf Q) on TP? assigns the trivial Z-module to any face of
T P? which is also a face of X. For ¢ a face of TP? which is not a face of X, then Q,(c) =
fEPQ(J). The inclusion maps Q,(c) — Q,(7) are either 0 or equal to tgr: fEPQ(J) —
FIPX (7).

For z the unique vertex of sedentarity 0 of X, the cosheaf N, assigns N,(z) = 0 for all
p < 2. When p = 2, we have N, (z) = A*Z2

For an edge o; of X the Z-module N,(0;) is a free module of rank 1, and similarly for

the three other vertices 7; of X that have non-zero sedentarity.

We recall the definition of v° for a (closed) face v of X of dimension s and sed(vy) = 0.
For each cone p in the fan X defining Y, set v, := v n Y, and define

~° = |_| relint .
p

The set «° is not a polyhedral complex since the strata are not closed polyhedra, however

~° is a subpolyhedral complex of Y. The set «° is a stratified subset of Y and it can be

viewed as a poset with the order relations given by inclusions.

Lemma 7.3.2. Let X be an n-dimensional tropical hypersurface in 'Y, where Y is either
R or a toric variety generated by the normal fan of the Newton polytope of X (which
we then suppose to be full-dimensional).

Then for every face v of Y, considered with the polyhedral structure induced by X, the

stratified set v° has a unique minimal face by inclusion.

Proof. If Y = R"*! we have v° = relint v and it is trivial.

Otherwise, this is a direct consequence of the second part of the Duality Theorem [3.2:4]
The cell v is dual to a certain cell A of the subdivision of the Newton polytope A of X. By
definition of +°, its minimal face corresponds to the cone p of the fan defining Y, where p
is such that it is normal to the minimal face F'(p) of A that contains A\ (using the notations
of the Duality Theorem . O

If v is a face of a polyhedral complex Z and G is a cellular cosheaf of A-modules (for
some commutative ring A) on Z, we can consider the cosheaf G restricted to +° even

though ~° is not a polyhedral complex. Similarly to how we defined cellular cosheaves in
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Figure 7.5: A depiction of the polyhedral complexes ~° for two faces v from Example

Section the restriction G|,0 is a functor from 4° considered as a poset to the category

of A-modules. The groups of Borel-Moore chains of G restricted to v° are

CPM(% G = @B G

dim p=¢q

The chain groups form a complex with the boundary map
0: C7M (7%:Glye) — O (771 Glye) (7.3.3)

given by the cosheaf maps combined with the orientation map inherited from Z. The
homology groups of this complex are denoted H, fM (7%;Gl+e). For simplicity, we denote by

o o
y
Fp  the cosheaves Fy |,o.

Example 7.3.3. Let X be a tropical hypersurface in a 3-dimensional tropical toric variety
Y. We describe the polyhedral complexes v° for some faces v of X. If v is a face of X
which does not intersect any of the strata Y, for p # 0, then 7° consists of a single cell,
which is simply relint(y). Therefore, v° is combinatorially isomorphic to RY, where ¢ is
the dimension of ~.

Suppose that v is a 2-dimensional face of X and ynY), # & for a unique 1-dimensional
stratum Y,. There must be two 2-dimensional strata Y, and Y, of ¥ which contain Y,
moreover 7y has non-empty intersection with both Y, and Y,,. Therefore, v° consists of
four open cells and is combinatorially isomorphic to T?, see the left-hand side of Figure
If v is 2-dimensional and intersects only a single 2-dimensional stratum Y),, then ~°
consists of two open cells and is combinatorially isomorphic to R x T.

Suppose 7 is a 1-dimensional face of X of sedentarity 0 such that v n'Y), is non-empty
for a unique stratum Y, of codimension 1. Such a situation is depicted on the right-hand
side of Figure Then ~° consists of two open cells, the 1-dimensional cell 79 = v N R3
and the point v, := vy N Y.
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In the case of such a 1-dimensional face v, we have F) |0(7) = AP Z?* and F () =
AP Z for all p.

Lemma 7.3.4. Let X be an n-dimensional tropical hypersurface in'Y with Newton polytope
A, where Y is either R™*1 or a toric variety generated by the normal fan ¥ of A, in which
case we ask that A be full-dimensional and X be simplicial unimodular.

Consider the polyhedral structure on Y obtained by refinement by X. Let v be a face
of Y of sedentarity 0. Then for any p and all r # dim -y,

PN F ) =0

for A=17,R.

Remark 7.3.5. If Y is the toric variety generated by X, the assumption that X should
be simplicial unimodular means that Y is non-singular. However, X is not required to be

non-singular (even though its Newton polytope is simple).

Proof. Using the Duality Theorem as in the proof of Lemma [7.3.2] we consider the
cell X dual to o in the subdivision of A, and F'(n) the minimal face of A containing \. The
face F'(n) is dual to a cone 7 of X.

As ¥ is required to be simplicial unimodular, we can assume, up to a change in coor-
dinates (induced by some element of SL(n,Z)), that 7 is the cone Rye; + ... + Ri€dimy-

If we let ¢ be the dimension of v and k be the dimension of its minimal face -,, we
then see (thanks to the Duality Theorem that the stratification on ~° is isomorphic
to the stratification of R* x T97% (with strata corresponding to subcones of 7).

Moreover, the Borel-Moore chain groups for «° are

p
CPM(y B = @ N Talw).
fritvac

From this description, it follows that there is an isomorphism of the chain complexes for
the tropical homology of v° and the chain complexes for the cellular Borel-Moore tropical
homology groups of R¥ x T4=%_ Therefore, there are isomorphisms of the corresponding
homology groups.

By [JRS17], the space R* x T9=* satisfies Poincaré duality for tropical homology and
the Borel-Moore tropical homology groups of R1™* x T* are zero, except in degree ¢q. The

statement of the lemma follows. O
We need the following lemma regarding the cosheaves ]-}I,R.

Lemma 7.3.6. Let P be a tropical polynomial in n + 1 wvariables, such that its Newton

polytope A is (n+1)-dimensional and such that the subdivision it induces on A has a single
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(n + 1)-dimensional cell (in other words, it coincides with the natural decomposition into
faces of A as a polytope). Let X < R be the associated tropical hypersurface, and let v
be its central vertex.

Then
P

X,R _ n+1
Ffw) = AR™

for0 < p<mn, and f:fﬂf(v) = 0.

Proof. The hypersurface X is a translate of the normal fan of A, minus its top-dimensional
cones (that correspond to R"*1\ X).

We proceed by induction on n. The statement is trivial for n = 0; suppose now that
we have proved it for all k£ < n.

If p < n, choose any (p + 1)-dimensional face F' of A, and consider the associated
n —p cell 0. The star in X of the relative interior of o (i.e. starx(c) = {relint(7) | o <
7 < X} < R 1) is isomorphic to & x R" P, where ¢ = RP*! is the tropical hypersurface
associated to the restriction of P to the face F' (and R™ P corresponds to the orthogonal
complement in R™™! of the vector space spanned by F). Let @ be the central vertex of &.

Similarly to Lemma [7.2.1] we have

1
FXR(o) = é FRo) @ \R".
1=0
By induction, dim ]-"f’R(f)) = (lerl) for any | < p, which shows that dim %, “(¢) =
P o (T (TR = ("7 = dim APR"L. By definition, 7, (o) < Fp " (v) = APRFY,
which allows us to conclude in the case p < n.

Now suppose that p = n. Consider a vertex o of A; let vy,...,vy € R*™! be vectors
spanning the rays of the 1-dimensional faces of A to which o belongs (one vector for
each 1-dimensional face). The family {vi,...,vx} is not necessarily free, but as A is full-
dimensional, it spans R"*!. Let o; be the n-dimensional cell of X dual to the face parallel
to v; (and thus perpendicular to v;).

By definition, we have Y | FIR(6;) « Fi®(v) (asv e osfori = 1,...,N). Moreover,

7% (0;) =~ A" L(0y), where L(o;) is the vector space spanned by o;.

Suppose that sz\il F7®(6;) € A"R"*!. Using the non-degenerate pairing A" R™™! x
A R 5 A"TLR?HL induced by the exterior product, we see that this implies that
there exists a non-zero vector v that belongs to each space L(0;); in particular, v would be
perpendicular to each v;, which yields a contradiction and allows us to conclude the case
p=n.

Finally, the case p > n is trivial, as .7-",5( ’R(v) is by definition the sum of the p-th exterior

products of vector spaces spanned by cells of dimension less than or equal to n, which is

then necessarily 0. O
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Remark 7.3.7. Without additional non-singularity hypotheses, we would not necessarily
have FpZ(v) = AP Z" for 0 < p < n.

Lemma 7.3.8. Let X be an n-dimensional tropical hypersurface in'Y with Newton polytope
A, where Y is either R™* ! or a toric variety generated by the normal fan ¥ of A (in which
case we ask that A be full-dimensional).

For o a face of X of dimension q and sedentarity sed(c), we have NS(O’) =0 if
p<n-—q—sed(o).

Moreover, if Y is non-singular and X is non-singular in 'Y, then for o a face of X of

dimension q and sedentarity sed(c), we have ./\/'pZ(a) =0ifp<n-—q—sed(o).

Proof. Let A = Z,R. Given a face o of dimension ¢ of X, the Z-module ]-";(’A(a) is a
submodule of Fp’ “4(5), and the map FX o) - .7-";/"4 (o) is simply the inclusion map.

Let Y, be the minimal stratum of Y such that o is contained in Y,. Let m = n +
1 —sed(o) be the dimension of Y, (as Y is generated by the normal fan of the Newton
polytope of X, we have m > 1). By definition of the cosheaves ]-"];X’A and ]:;/’A, we can
restrict ourselves to Y),, which we can identify with R™.

Consider first the cosheaf ./\/'II)R(J) = .7-";/ (o) /]—";( ®(5). As we are using coefficients
in R, we simply have to show that .7:;/ ®(5) and ]:;( ®(5) have the same dimension if
p<n—q-—sed(o).

By definition, we know that

dimg FY % (o) = <’;‘>

We also know, using the Duality Theorem that o is dual to a certain cell A of
dimension m — q of the associated subdivision of A. Via the identification Y, =~ R™, and
up to a change in coordinates (corresponding to an element of SL(m,Z)), the star of the
relative interior of o in X, is then isomorphic to ¢ x RY, for some polyhedral complex
¢ < R™~7 dual to some (m — q)-dimensional Newton polytope in R™~? (corresponding to
the closure of \) with a single top-dimensional cell, as in Lemma

Similarly to Lemma we then have

p p—l
-
FrRo) = @D F ) /R,
=0
where v is the central vertex of &, and we know from Lemma that
dimg F7F(v) = <m ; q)

ifl<m—-qg—1=(n+1-sed(c))—q—1=n—qg—sed(o) (and 0 otherwise). This implies

that if p < n — ¢ —sed(o), then dim ./T"Z}X’R(O') =>r (ml_q) (pq_l) = (T;), which allows us
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to conclude.

Suppose now that Y is non-singular and X is non-singular in Y.

As X is non-singular, X, < Y, = R™ is dual to a primitive triangulation 7" of some
polytope in R™ (see the Duality Theorem . In particular, the cell o is dual to some
unimodular (m — ¢)-simplex v of T. Up to the action of some element of SL(m,Z),
corresponding to a change of variables, we can assume 7 to be the standard (m — ¢)-
simplex in R™ whose m — g+ 1 vertices are zg := (0,...,0),z1 := (1,0,...,0),...,Zpm—q :=
0,...,0,1,0,...,0).

By definition of the duality between the triangulation T and the cellular subdivision
of X,, the star of the relative interior of o in X, is then isomorphic to Hy,—4—1 x R? <

R™™ % x R? = R™, and we have

P p—l p p—l P
f;(,Z(J) ~ G_)}—lﬂquflyZ(v) ®/\Zq - @/\Zm—q®/\zq ~ /\Zm _ ]:;/,Z(U)’
1=0 1=0

as in the description from Lemma [7.2.1]

Using the canonical base {e1...,€m—q,€m—g+1,---,€m} of Z™ 9 x 729 =~ Z™ and the
associated base {e;, A ... A 6ip}0gi1<mip<m of APZ™, we immediately see from that de-
scription and the definitions of the standard tropical hyperplane H,,_,_1 and the cosheaves
]_.le_q_l,Z (see Example that F; % (o) is the free sub-Z-module of Fp “(c) = AP Z™
spanned by all the elements e;; A ... Ae; A€, A ... A e such that i3 < ... <7y, that
ii<m-—qandthat < m—qg—1 (forl=0,...,p).

This implies that if p <m —q¢—1=n —q—sed(o), then fi)X’Z(O') = .7:;/’2(0) and the
quotient Fp %(0)/F (o) = NE(o) is trivial. O

Lemma 7.3.9. Let X be an n-dimensional tropical hypersurface in'Y with Newton polytope
A, where Y is either R**1 or a toric variety generated by the normal fan ¥ of A, in which
case we ask that A be full-dimensional and X be simplicial unimodular.

Let Ae {Z,R}. For a face v of X of sedentarity 0, we have

E[BM o. 7_—X,A _
q (’7 ' p |’Y°) =0
for all ¢ # dim~y.

Proof. Denote by 7, the unique minimal face of 4° (see Lemma and suppose it is
contained in the stratum Y), . Let I" denote the star of ~,, in X, .

Using the Duality Theorem we know that there is a cell A of the subdivision of
A dual to X such that X is contained in the relative interior of the face F'(p,,) of A, and
such that 7, is dual to A.

Then as a polyhedral complex, the star I' < R*t1=sed(m) i up to GLy 1 1—sed(ym) (Z),

equal to a basic open set of IV x R4m¥m where I is the tropical hypersurface in R+ 1-sed(ym)—dimym
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dual to the closure of A (and its face structure). For the notion of basic open set, see [JSS15],
Definition 3.7].

Moreover, the star of any other face v, in 4 is, up to GL,+1(Z), equal to a basic open
set of IV x RAm Y,

Let v be the vertex of I'. Then as in Lemma 7.2.1} for any face v, in 7°, we have

P !
'A im
FA) =D F, () o \ A,
=0

For each [ from 0 to p, let C¥ ot (the coefficients ring A is implicit) denote the chain

complex whose terms are

!
I’ A '
- ® e A,
P"Yﬂég
sed(vp)=dim y—q

We define the boundary maps of the complex on the direct summands. If v, is a face of

Yp, then the map on the direct summand is

! !
Ay, -7:;_’114(1’) ® /\Adlmvp — ]-'pF_’Zq(v) ® /\Ad’m%”
where 7, : Al Adimve . AL A4y g induced by the projection map
Ty p'" TA(}//)) —> TA(Yp’)

from Formula (3.3.1)). If v, is not a face of ,, then the map is 0.
As in Lemma there are isomorphisms of chain complexes

p
BM X,A ~ i
CoM (v Fb o) = @ OB
=0
By distributivity of tensor products (and because of the definition of CZM (v°; F) O’A), see
the proof of Lemma [7.3.4]), we also have the isomorphisms

Crl = F () @ CPM (v F).

Moreover, the homology of the chain complex CZM (v, F D’A) vanishes except in degree
q = dim~ by Lemma , so we also have HfM(q/o, .7-70’A) = 0 for all ¢ # dim~. Because
the tensor product is right exact, we have Hy(C% ’l) = 0 for ¢ # dim~ and all [ and p. It
now follows that HfM(vo; ]:;(’AHO) = 0 for ¢ # dim~. O

Lemma 7.3.10. Let X be an n-dimensional tropical hypersurface in'Y with Newton poly-
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tope A, where Y is either R"*1 or a toric variety generated by the normal fan ¥ of A, in
which case we ask that A be full-dimensional and ¥ be simplicial unimodular.
Let A € {Z,R}. For a face v of X of sedentarity 0, we have

o A
HPY (7% Ny o) = 0
for all g # dim~y.

Proof. The chain groups CfM (’yo;./\/;;“\vo) are all zero for ¢ > dim+y, therefore it suffices
to prove the vanishing of the homology of the cosheaf N’I;“Ho in degrees strictly less than
dim~y. To do this we return to the short exact sequence from Formula , but restricted
to v°, namely

O — f;(’AHo — fg/’AHo — NZ;A|’YO — 0

The idea is to show that the appropriate homology groups of the cosheaves ]-}5( ’Alvo and
]—“g ’A],yo vanish in order to conclude using a long exact sequence argument.

By Lemma we have HfM('yo;ff’AHo) = 0 for ¢ < dim~.

Next we will show that HfM('yo; ]-';/’Aho) = 0 for ¢ < dim~. By Lemma there is
a unique maximal cone p,, in the fan of Y such that Y, n~° # J. Let Y be the tropical
toric variety of dimension n + 1 defined by the fan consisting of the single cone p,, (and its
faces). There is a correspondence between the strata of 4° and the strata of 17, where a ¢-
dimensional stratum o of v corresponds to a (n+1—dim ’y+q)—dimensional stratum & of Y.
Moreover, under this correspondence we have .7:;/ ’A]ﬂ,o (o) = .7-';/ ’A(6). The cellular chain
complex CEM (v°; ]—"X’Aho) is isomorphic to the chain complex C’ﬂj\gﬂ_dimy(}}; .7-";7"4).

By Lemma [7.3.4], we have HfM(}};f;}’A) = 0 for ¢ < n + 1 and therefore, it follows
that HfM(’yo;]:;/’AHo) =0 for ¢ < dim~.

Considering the long exact sequence in homology to which the sequence re-
stricted to v° gives rise proves that HfM ('yo;./\/fho) = 0 for all ¢ # dim~. O

7.3.2 The main proof

The major part of the proof of the Lefschetz-like Theorem [7.1.1]is split into Propositions
7.3.11] and [7.3.13] below; the theorem itself then follows easily.

Proposition 7.3.11. Let X be an n-dimensional tropical hypersurface in Y with Newton
polytope A, where Y is either R or a toric variety generated by the normal fan ¥ of A,
in which case we ask that A be full-dimensional and X be simplicial unimodular.

Let Ae{Z,R}. Then HPM(Y; Q;‘) =0 for all g <n+ 1, and therefore the map

HPM(X; 7Y x) — HPM (v FY4)

1 an 1somorphism when ¢ < n and a surjection when ¢ = n.
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If in addition A is full-dimensional, then Hy(Y; Qg‘) =0 for all ¢ < n+1, and therefore
the map
Hy(X; 7y x) — Hy(Y; Fy )

s an isomorphism when ¢ < n and a surjection when q = n.

Remark 7.3.12. Of course, if A is full-dimensional and Y comes from the normal fan
of A, then' Y and X are compact, both types of homology groups coincide, and the second
part of the statement is an immediate consequence of the first. This remark also applies to

the mext proposition.

Proof. We consider the polyhedral structure on Y given by refinement by X. For any face
o of Y which is also a face of X, we have QpA(a) = 0. Therefore, we have the following

isomorphisms of cellular chain complexes (see Section |3.3)):

cEMy oy = @ Frio)
oeY\X

and

C(YV;oh= P Fo).
Ugcf)ﬁ\p)a{ct

The complement Y\ X consists of connected components each of dimension n+ 1. Each
such connected component is equal to v°, where v is a n + 1 dimensional face of Y with
polyhedral structure induced by X. For ~ a face of Y of dimension n + 1, we have the
equality of cosheaves F) A s .7-";/ 7A‘70. Each face o in Y\ X is contained in 4° for a unique
(n + 1)-dimensional face vy of Y. Moreover, the boundary of the face o contained in ¢ is
also contained in «°. Therefore, the cellular chain complexes for Qg‘ split and we have the

following isomorphisms,

coMy:gn = @ oM FSY

p
dimy=n+1
and
C(v;oh= @ B Fm.
dimy=n+1
v compact

This produces the isomorphism

PN = B HPY G E)
dimy=n+1
Moreover, if A is full-dimensional and Y = R"*! the pair (Y, X) is a cellular pair,

as proved in Lemma [3.3.6] Hence we know, as explained in Section [3.3] that we have the
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following isomorphism as well:

Hy(Y;Q))= @ HM%5F.
dimy=n+1
~ compact
If A is full-dimensional and Y is generated by X, both complexes coincides and this is
trivial, as noted in Remark

It follows from Lemma that H,?M(’yo;fgo’A) = 01if ¢ # n + 1, and we obtain
that H(?M(Y; Qﬁ) =0 for all ¢ <n+1 (and Hy(Y; Qf,‘) =0forallg <n+1if Ais
full-dimensional).

A direct comparison of the respective chain complexes gives isomorphisms H, f My, ]-";/ A |x) =
HPM(X; Fyx) (and Hq(Y;]:;/’A\X) ~ Hq(X;fg’A]X) if A is full-dimensional). Lastly,
combining this with the long exact sequence in homology associated to the short exact se-
quence and the vanishing of HZM (Y’ Qﬁ) (and Hy(Y; Q;‘) if A is full-dimensional)
for all ¢ < n + 1 allows us to finish. O

Proposition 7.3.13. Let X be an n-dimensional tropical hypersurface in 'Y with Newton
polytope A, where Y is either R or a toric variety generated by the normal fan ¥ of A,
in which case we ask that A be full-dimensional and X be simplicial unimodular.
Then
BM R
HY(X;N,) =0

for all p + q < n, and therefore the map
HPM(X; FR) — HPY (X5 FF )

s an isomorphism when p + q¢ < n and a surjection when p+ q = n.
Moreover, if A is full-dimensional, then Hq(X;N}I,R) =0 for all p+q < n, and therefore
the map
X,R YR
Hy(X;F,7) — Hy(X; 7,7 x)

s an isomorphism when p + q¢ < n and a surjection when p+ q = n.
Additionally, if X is non-singular, the same two statements hold with coefficients in Z
instead of R.

Proof. By Lemma for a face o of dimension ¢ and sedentarity k, we have NE(J) =0
if k<n-—q—p, and NpZ(O') =0if k <n—qg—pand X is non-singular. This is in fact the
only point where the non-singularity of X is directly used when considering coefficients in
Z. For the remainder of the proof, A is implicitly meant to be either R, or Z with the
assumption that X is non-singular.

Moreover, there are no faces of X of dimension ¢ and which have order of sedentarity

strictly greater than n — ¢ (as Y is either R"™! or generated by the normal fan of A, in
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which case the Duality Theorem applies). Therefore, the Borel-Moore cellular chain

groups with coefficients in NI;A can be written as

n—q
A A
CPM( XN = @ @ N(o).
k=max{0,n—g—p+1} dimo=q
sed(o)=k
Perform the change of variables k + ¢ = m:
CEM(X N = ) P No). (7.3.4)
m=max{g,n—p+1} dimo=q
sed(o)=m—q

As in the proof of Proposition [7.3.11} if in addition A is full-dimensional, then (Y, X)
is a cellular pair, the cellular chain complexes compute the standard homology of X and

we also have the isomorphism

n

Co(X; N = D P No). (7.3.5)
m=max{g,n—p+1} dimo=q
sed(o)=m—q

o compact

We now filter the cellular chain complexes for ./\/'1[;4 using the order of sedentarity of

faces. Set

COMXND) = @ Nio) and Cun(XGN) = @ N (o).
dimo=¢q dimo=¢q
sed(o)<m—q sed(o)<m—q
o compact

Notice that C’(;,m(X;NIf‘) c C’;,mH(X;N;‘), where the = in the exponent denotes either
Borel-Moore or standard homology (with it being implied that we only consider standard

homology when A is full-dimensional).

As the Duality Theorem [3:2.4] applies, the boundary operator can only increase the

order of sedentarity by at most 1. Therefore,
. . A . . A
va,m(XaNp ) < Cq—l,m(Xva )7
and there is a filtration of the chain complex C§ (X ;NPA) by successive chain complexes:
. CAFAY _ m CATA " CArA " CArA
C,(X,Np ) = C,m(X,Np ) D C’,’n,l(X,./\/‘p )D - D C’.’m(X,Np ) >0,

where m = max{q,n — p + 1}. The first and last terms of the filtration come from the
bounds on the direct sum in Equations ([7.3.4)) and ([7.3.5]).

The spectral sequence associated to this filtration (see for example A. Fomenko and
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D. Fuchs’ textbook [FE16| for more details on such constructions) for the Borel-Moore

complex has 0-th page consisting of the terms

ES,.= @ N o). (7.3.6)

dimo=¢q
sed(o)=m—q

The differentials Jp: Eg’m — EY

¢—1,m are induced by the usual cellular differentials. The

complex E?}m is then
0— Ep,,, — E,

—1m _)E?,m _)E(()),m — 0.

Notice that the differential ¢y decreases the dimension of the cells by one and also increases
the sedentarity of the cells by one. A ¢-dimensional face of sedentarity m — ¢ is in the
boundary of a unique face v of X of dimension m and sedentarity 0 (see the Duality Theo-
rem . Moreover, the differential dy is defined on the direct summands from Equation
and it restricts to a non-zero map NI‘)A(U) — NI;A(U’ ) only if o and ¢’ are contained in
the same m-dimensional sedentarity 0 face v of X. In this case, the map N;'(c) — Nz (o”)
is the same as the one defined in for the complex CBM (’y";/\/f\yo). Therefore, we

have an isomorphism of complexes for every m:

Elm= @ CPMO5N ).
dimy=m
sed(y)=0

By Lemma(7.3.10, for a face y of dimension m and sedentarity 0, we have H, qB M (~e, ./\/'pA lyo) =
0 for ¢ # m, and the first page of the spectral sequence associated to the filtration under
consideration satisfies Eq17m = 0 if ¢ # m. Moreover, for m < n — p, the entire complex

EE)’m is 0 by definition of the filtration, so E(;m = (0 for all ¢ when m <n —p.
=

Therefore, the spectral sequence E7, satisfies Ey,,, = 0 for any r > 1 and ¢ < n — p.

Since E;, converges, we conclude that ﬁfM(X;Nf) =0 for p+ ¢ < n.

The reasoning is the same for Hy(X; /\/];4), under the assumption that A is full-dimensional:
consider the spectral sequence associated to the filtration of the chain complex for the stan-
dard homology. The first page of this spectral sequence has terms like in Equation ,

except that the sum is taken over the faces ¢ which are compact.

In order to proceed with a similar argument to that used for Borel-Moore homology,
we use the fact that if o is compact (and thus appears in the sum), then the unique face
v of X of sedentarity 0 which contains o is also compact (and hence also appears in the
sum). This is true, as Y is either compact (in which case the statement is trivial), or equal
to R"*1 in which case there are only cells of sendarity 0 and o is equal to v (and the
statement is once again trivial). The rest of the argument is then the same as in the case

of the Borel-Moore homology, except that we only consider compact faces of X.



164 CHAPTER 7.

To complete the proof of the proposition, consider the long exact sequence in homology
associated to the short exact sequence in ((7.3.2)). Applying the vanishing statements for
HfM(X;N;l) gives the isomorphisms HqBM(X; ]-}f(’A) ~ HfM(Y; ]:;/’A) for all p+ q < n.
This completes the proof. O

We can now prove the following Theorem, which contains the statements of the Lefschetz-

type Corollaries [7.1.2] [7.1.3] [7.1.4) and [7.1.5] as sub-cases.

Theorem Let X be an n-dimensional tropical hypersurface in'Y with Newton poly-
tope A\, where Y is either R"*1 or a tropical toric variety generated by the normal fan ¥

of A, in which case we ask that A be full-dimensional and ¥ be simplicial unimodular.

Then the map induced by inclusion
i HPM (X5 FoR) — HPM (Y5 FYR)

s an isomorphism when p + ¢ < n and a surjection when p + q = n.

Moreover, if A is full-dimensional, then the map induced by inclusion
i Hy(X; FOR) — H (Y FYR)

s an isomorphism when p + ¢ < n and a surjection when p+ q = n.

Additionally, if X is non-singular, the same two statements hold with coefficients in Z
instead of R.

Proof. This is a direct consequence of Propositions [7.3.11] and [7.3.13] O

7.4 Torsion-freeness

We start this section with the proof of Proposition [7.1.6] which we state again below.

We only consider tropical (co)homology with coefficients in Z in this section; hence, we
omit to specify the coefficients ring.

For a non-singular compact complex toric variety CY', we let h?2(CY") denote its (p, q)-
th Hodge number. Recall that h??(CY’) = 0 if p # ¢ and the numbers h?P(CY’) form the
toric h-vector of the full-dimensional simple polytope A whose normal fan is the fan defining
CY (see [Ful93|, Section 5.2]).

Proposition Let'Y be a (n + 1)-dimensional non-singular compact tropical toric
variety. Then the integral tropical homology groups of Y are torsion-free.

Moreover, we have

rank Hy(Y; F) ) = hP4(CY)
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where CY is the corresponding non-singular compact complex toric variety(i.e. they are de-
fined using the same simplicial unimodular complete fan). In particular, we have Hy(Y; .7-";/) =

0 unless p = q.

Proof. As Y is compact, standard and Borel-Moore homology groups coincide. For the
duration of this proof, and unlike in the previous sections, we switch to computing the
cellular homology groups of Y using the polyhedral structure on Y which is dual to the
polyhedral structure on the defining fan ¥ (instead of the structure induced by some
hypersurface X).

Let us first show that H,(Y; .7-";/) = 0 for all p > ¢q. Notice that every stratum Y, is
compact (those strata make up the cell structure on Y'). With this cellular structure on
Y, a face Y, of dimension ¢ has sedentarity order n + 1 — ¢q. By definition, we have that
FY(Ys) = N FY'(Ys) where dim FY (Y,) = . Therefore, we have F) (Y,) = 0if p > ¢.
Hence the chain groups Cq(Y;}";f ) are equal to zero for any ¢ < p, which implies that
Hq(Y;]-"g) = 0 for ¢ < p.

As noted in Subsection [3:3.2] the tropical cohomology groups are the cohomology of the
complex dual to the tropical cellular cosheaf complex (i.e. C?(X, Fy) =~ Hom(Cy(X, ]-'I;X ),7Z)).
Therefore, we can apply the universal coefficient theorem for cohomology (see [Hat02, The-

orem 3.2|) to get the exact sequence
0 — Ext(Hy(Y; Fy ), Z) - H N (Y; FY) — Hom(Hg41 (Y3 Fy) ), Z) — 0. (7.4.1)
When ¢ < p, we have Hq(Y;F;) = 0, hence
H™YY; FY) =~ Hom(Hy (Y3 F) ), Z).

This means that HI(Y; Fy) is torsion-free for all § < p, and equal to 0 for all ¢ < p.
The tropical toric variety Y is a tropical manifold, thus Poincaré duality for tropical
homology with integral coefficients (see Theorem [3.3.7)) states that

H‘j(Y;}"}Ii) = Hy1-4(Y; ]'—7}1/+1—p)

for all ¢ and p. This shows that Hy41—4(Y; ]:XH_p) is torsion free if ¢ < p (which is
equivalent ton +1 — ¢ > n + 1 — p) and is trivial if § < p (which is equivalent to
n+l—g¢g>n+1-—p).
We have shown that H,(Y; ]-";/ ) is torsion free for all p, g, and trivial if p # q.
We also have
n+1
X(Ce(Y; .7:;/)) = Z (—1)qranqu(Y;}'g) = (—1)pranka(Y;]:;/).
q=0

Let f, denote the number of strata of ¥ of dimension ¢; (fo,..., fnt1) is then the
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f-vector of a polytope A whose normal fan ¥, is the fan defining Y. For every p and ¢, we

have rank Cy(Y; F)) = (g) fg- Therefore,
n+1 q
K7 = 3 07 (1) = 107
q=0

where (hg, ..., hn41) is the h-vector of the simple polytope A. By [Ful93, Section 5.2|, we
have h, = dim H*(CY') = h??(CY’), which completes the proof. O

Remark 7.4.1. We needed Y to be compact so that it is automatically a cell complez (in
the sense defined in Section , in order to compute its homology using its strata as cells.
In fact, it should be possible to show that any non-singular tropical toric variety Y whose
generating fan is full-dimensional (without necessarily being complete) is a cell complex;

the proof would then be the same, showing that the tropical homology of Y is torsion-free.

We can now move on to the torsion-freeness of the tropical homology of hypersurfaces
in toric varieties, and prove Theorem [7.1.7]

Proposition Let X be a non-singular n-dimensional tropical hypersurface in Y
with Newton polytope A, where Y is either R"*1 or a toric variety generated by the normal
fan X of A, in which case we ask that A be full-dimensional and that ¥ be simplicial
untmodular.

Then both the Borel-Moore and standard integral tropical homology groups of X are

torsion free.

Proof. Suppose first that the Newton polytope A of X is full-dimensional. Then both the
standard and Borel-Moore tropical homology of Y is torsion-free, as Y is either R**! or
compact (as the dual fan of A gives rise to Y'), in which case Proposition applies.

Under that assumption, X is a cell complex in the sense of Section [3.3] and we can use
its cell structure to compute its standard tropical homology.

By applying the Lefschetz-like Theorem and using the torsion-freeness of the
tropical Borel-Moore homology of Y, we directly get that H, fM (X; .7-";( ) is torsion-free for
ptg<n.

As noted in Subsection the tropical cohomology groups are the cohomology of
the complex dual to the tropical cellular cosheaf complexes. By the universal coefficients
theorem for cohomology (see [Hat02, Theorem 3.2|), we then have for every p and ¢ the

following short exact sequence:
0 — Ext(Hy—q-1(X; Fnp), Z) = H" U(X; F?) - Hom(H,—o(X; Fi ), Z) — 0.

If p4+q = n, then 2n —p — ¢ — 1 < n, and it follows from the Lefschetz-like Theorem

[ 11] that
Hyq1(X; Fpt ) = Hyq 1 (Y, Fpy ).
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Since we know Hy,—q—1(Y; .7-"3;_1,) to be a free Z-module, this means that Ext(H,—q—1(X; ff_p), 7)
is trivial. We also know that the Z-module Hom(H,,_4(X; ff,p), Z) is free, as it consists

of maps to a free module. Therefore, for all p + ¢ = n we have
H"(X; F¢?) = Hom(Hp—q(X; Fpr ). Z)

and H"9(X; Fy ) is torsion free. The tropical hypersurface X is a non-singular trop-
ical manifold, so by Poincaré duality for tropical homology with integral coefficients (see

Theorem [3.2.4)), we have
H" (X, Fy ) = HPM(X; FY)

for all p,q. This, combined with the torsion freeness of H"~9(X; Fy ) established above,
proves that HfM(X; ]:;() is torsion free for all p + g = n, and thus for all p, q.

Using Poincaré duality again, we see then that the standard tropical cohomology groups
of X are all torsion-free. By considering once more the same short exact sequence from
the universal coefficients theorem as above, we can conclude that the standard tropical

homology groups of X are all torsion-free, which is what had to be proved.

Suppose now that the Newton polytope A of X is not full-dimensional, but rather of
dimension n+1—k. By our hypotheses, Y must then be equal to R**!. Then X is isomor-
phic to X x R¥, where X is some non-singular (n — k)-dimensional tropical hypersurface
X in R™"1~* whose Newton polytope is full-dimensional in R?1-% (this can be seen with
the Duality Theorem . We know that the tropical homology of X is torsion-free
from what is above; using Kiinneth’s formula for tropical homology (see |[GS19]), we can

conclude that so is the tropical homology of X.
O

7.5 Computations with the x, genus

In this section, we prove Theorem and Corollaries [7.1.9 and [7.1.10]

The k-compactly supported cohomology group Hf((CX ) of a complex hypersurface
CX < (C*)"*! carries a mixed Hodge structure (see [DKS6]).

The numbers e2?(CX) are defined to be

ePI(CX) := Y (—=1)*hPI(HE(CX),
k

where hP9(H¥(CX)) denotes the Hodge-Deligne numbers of CX.
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The numbers e2?(CX) are the coefficients of the E-polynomial of CX,

E(CX;u,v) := Z el I(CX)uPvl.
P
This polynomial has nice additive properties; see Danilov and Khovanskii’s [DKS86| for
more details and useful results. The x, genus of CX is defined to be
Xy(CX) = B(CX;y,1) := > el (CX)yP.

p.q

We first prove the following lemma.

Lemma 7.5.1. Let X be a non-singular tropical hypersurface in a tropical toric variety
Y. Let o be a face of X of dimension q whose relative interior is contained in a stratum

Y, of dimension m. Then the polynomial defined by
Xo(A) = Z(—l)p rankf];X(U))\p.
p=0
18
Xo(A) = (1 =)™ = (1= A)I(=A)""1.

Proof. Using the isomorphism in Lemma we know that

p l
Flo) = l@f,fi“z“ () ® A\ Tz(0),
=0

where v is the central vertex of the standard (m — ¢ — 1)-dimensional tropical hyperplane
Hpy—g1.

We know that rank A' Ty (o) is equal to (9), and that as noted in Example the
rank of fi”qul(v) is (M77) if p—1 <m—q, and 0 otherwise.

p—l1
This means that

and similarly that
n k
D 1(~1)* rank (/\ TZ(U)> A= (1= N
p=0

Hence we obtain by tensorization that

n n P k
Xo) = Y (1P rank FX (o) = Y (~1)7 [Z rank (fi",;‘q‘l(v)) - rank </\ TZ(O—)>] AP =

=0 p=0 k=0
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(1= A = X)™7 = (=A™,

which allows us to conclude O

We can now prove Theorem which we first state again.

Theorem Let X be a non-singular tropical hypersurface in a tropical toric variety
Y, and let CX be a complex hypersurface torically non-degenerate in a complex toric va-
riety CY such that the tropical, respectively complex polynomials defining X and CX have
the same full-dimensional Newton polytope A. Moreoever, let Y and CY be either R+
and (C*)"*1 or a tropical, respectively compler (n + 1)-dimensional non-singular toric
varieties defined using the normal fan of A (in which case we ask that it be simplicial and
unimodular).

Then we have

Xy(CX) = Y (=1)Px(CIM (X F))yPs
p=0

and thus
(—1Px(CIM(X; ) = Y, eb(CX).
q
Proof. First, consider the case where Y, respectively CY, are not equal to R"*!, respec-
tively (C*)n+1,
The variety CX is stratified by its intersection with the open torus orbits of CY.
Moreover, the numbers e2’?(CX) are additive along strata by [DK86, Proposition 1.6]. So

we have
DlebI(CX) = > ) el(CX,)
q P q

for CX = 1,CX,, where CX, := CX nCY, and CY/, is the open torus orbit corresponding
to the cone p of the fan ¥ defining ¥ and CY.

The tropical hypersurface X admits a stratification analogous to that of CX, with
X, = X nY, corresponding to CX,. The Euler characteristics of the chain complexes for

cellular tropical Borel-Moore homology of X satisfy the same additivity property. Namely,

X(CBM (X, FX)) = Y Ix(CBM (X, 0.
P

Moreover, for any face p of the fan ¥ defining ¥ and CY (if they are not the tropical,
respectively algebraic torus), the fact that X and CX have the same Newton polytope
implies that CX, and X, do as well; their Newton polytope is the face of the initial Newton
polytope A that is dual to p, and CX,, X,, CY, ~ (C*)*+1-dimpr apq y, ~ Rrti-dimp
also satisfy the hypotheses of the theorem.

Therefore, it suffices to prove the statement for Y = R"*! and CY = (C*)"*!, and the

case where Y and CY are compact can then be recovered by summing over their strata.
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We now assume that X is in R"*! and CX is in (C*)"*!. In [KS16, Section 5.2, Katz
and Stapledon give a formula for the x, genus of a torically non-degenerate hypersurface
in the torus. Their formula utilizes convex subdivisions of polytopes to refine the formula
in terms of Newton polytopes of Danilov and Khovanskii [DK86]. Note that they use the
term "schon" to describe what we call "torically non-degenerate". Let A be the Newton
polytope for CX, and A a convex subdivision (as defined in Chapter 2) of the lattice
polytope A (this subdivision needs not, in general, be a primitive triangulation). Then the

formula is

Xy(CX) = D xy(CXp)(—1)rH1-dimE (7.5.1)

FEON
where CXr is the hypersurface in the torus (C*)"*! defined by the polynomial obtained
by restricting the polynomial defining CX to the monomials corresponding to the lattice
points in the face F of A, and 0A is the boundary of A in R"*1. Notice that our description
of CXp differs from the one in [KS16] up to the direct product with a torus (hence also
the sign (—1)nFi-dimf)

In our case, A is the subdivision induced by the tropical polynomial which gives rise
to X. In particular, it is a primitive triangulation of A. Then for each face F of A,
the variety CXp is the complement of a hyperplane arrangement. By either [Sha93]
or [DKS86|, we can see that its mixed Hodge structure is pure and that x,(CXp) =
>, (=)™ dim He P (CXp)yP.

In fact, this hyperplane arrangement complement is C,,—, x (C*)4, where dim F' =
n+1—q and C,—4 is the complement of n + 2 — ¢ generic hyperplanes in CP"79. Using
[Zhal3], we see that we have dim He "P(CXp) = dim H,—p(CXp) = rank F;*_,(oF), where
or is the g-dimensional face of the tropical hypersurface X dual to F.

Therefore, we get that
Xo(CXp) = Y3 (=17 dim HIP(CXp)y? =y 3 (~1)" P rank B (op)y? " =
P P
y" Y (=1 rank Fl (op)(y )P =y (1 =y )I[(1L—y )P = (—y )] =
p

v~y = Dy - DT (=),

using Lemma Hence x,(CXF) only depends on the dimension of F'. We can express
Equation ([7.5.1)) in terms of the f-vector of bounded faces of X. Namely,

Xy(CX) = Y (=1)y~H y = D[y — D" = (=1)" T fg, (7.5.2)
q=0

where fé’ denotes the number of bounded faces of X of dimension ¢, as a face F' of the

triangulation A is contained in the boundary dA if and only if the face o of X dual to it
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is unbounded (see the Duality Theorem [3.2.4]).

On the other hand, we can compute the Euler characteristics of the Borel-Moore chain
complexes

X(CPM (X5 7)) = D ()8 ™ rank FX (7). (7.5.3)
T€X

The star of a face 7 of X is a basic open subset and satisfies Poincaré duality from
[JRS17]. Therefore, we have

rank )\ (1) = rank Ho(star(7); 7, ) = rank H? (star(r); Fy 7)

n
- X
— Z (=1)""9rank F;" ().
q=0o0>7,dimo=q
since rank Fy ”(o) = rank fg_p(a) (the last equality comes from considering the Euler
characteristics of the compactly supported cohomology of star(7), whose only non-trivial
group is in degree n). Combining this with and swapping the order of the sum, we

obtain

X(CPM (X5 FN)) = D ()T rank X (1) = . (=1 rank F (o) Y (—1)Hm 7

TeX oeX TCO

If o is a bounded face of X, then Y. _ (—1)%™7 = 1, as we are computing the classi-
cal Euler characteristic of a contractible space. If o is an unbounded face of X, then
Dirc U(—l)din” = 0, since the one-point compactification of o is homemorphic to a closed
ball (X is a cell complex because A is full-dimensional, as in Section, and ZTCU(—l)dimT

is equal to the Euler characteristic of the one-point compactification minus 1.

Therefore, the sum in Equation ([7.5.3]) becomes
XCPM(XGFED) = Y, ()" T rank FE (7).
T€X
7 bounded
For a face 7 of dimension ¢, we have as before

Z(—l)p rank ff_p(T)yp = (—1)"3/”2(—1)”_7’ rankf,i(_p(T)y"_p =
P P

(=1)"y" (1 =y A —y™ )" = ()] = (S (y - Dy - DT (1)
using Lemma [7.5.1]
We can now compare this with Equation (7.5.2), and see that

SEDXEEYGFEY =Y Y ()T (1) rank FY () =

p TeX
7 bounded
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D (mprdimT (2(1)prankf§_p(7)yp> =
T b‘[(-)%lfl(ded b
Z (_1)n7dim'r ((_1)ny71<y . 1)dim‘r[(y _ 1>n+17dimr . (_1)n+17dim'r]> _

TeX
7 bounded

S 1)ty (g — Dy — 17— (1 = (),
q=0

which concludes the proof.

O

Remark 7.5.2. It is easy to generalize the theorem to situations in which Y is not nec-
essarily generated by the normal fan of the Newton polytope of X but where X and Y
intersect "nicely” (and CX and CY do as well), using the additivity of both the genus xy

and the tropical Euler characteristics by summing over the strata of Y and CY .

We can now prove Corollaries [7.1.9] and [7.1.10, which we also state again.

Corollary Let Y and CY be tropical, respectively complexr (n + 1)-dimensional
non-singular compact toric varieties coming from the same non-singular full-dimensional
integral polytope /.

Let X be a non-singular tropical hypersurface in'Y (in particular, defined by a tropical
polynomial whose Newton polytope is also A). Let CX be a torically non-degenerate com-
plex hypersurface in CY , defined by a Laurent polynomial whose Newton polytope is A as
well.

Then for all p and q we have
hP(CX) = rank Hy(X; F;)).

Proof. We know (see [DK86] or [ACMMI8]) that hP4(H*(CY)) = 0 if & # p + ¢; hence,
el1(CY) = (—1)PT9pP9(CY), where hP4(CY') denotes the usual (p,q)-th Hodge number
of CY. The same is true of CX.

By combining Proposition with the Lefschetz hyperplane section theorems for
tropical homology and the homology of complex hypersurfaces of toric varieties (as well as

classical results regarding Hodge structures), we have
rank Hy(X; F,\) = rank Hy(Y; Fy ) = h?9(CY) = hP9(CX)

for p + g < n. The above equations combined with the classical and tropical Poincaré
duality theorems (see Theorem [3.2.4]) for X, Y, CX and CY (all are compact) establish the

same equalities when p + g > n.
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Therefore, it only remains to prove the statement when ¢ + p = n. It follows from the
tropical and complex versions of Lefschetz theorems and from Proposition [7.1.6] that for

p < 5, we have
X(CPM(X; 7)) = (=1)Prank Hy(Y; F) ) + (—1)" P rank H, (X3 F,Y),

and
> 1el9(CX) = dim HPP(CY) + (—1)" dim HP" P(CX).
q

For p > 3, we have
X(CEM(X; FX)) = (=1)Prank Hps 1 (Y5 Fyyy) + (—1)" P rank Hy_p(X; FY),

and

Y 1eP9(CX) = dim HPHPH(CY) + (—1)" dim HP"P(CX).
q

For p = 5, we get
X(C?M(X;fg)) = (—1)% rankH%(X;]:?)a

and
>led(CX) = dim H2'2 (CX).
q

Again, using Proposition [7.1.6] on tropical toric varieties, we have
rank H,(Y; 7)) ) = dim HP?(CY).

The statement of the corollary then follows from Theorem [7.1.8 O

Corollary [7.1.10. Let X be a non-singular tropical hypersurface in R" ™' defined by a

tropical polynomial whose Newton polytope is full-dimensional. If CX is a non-singular

n+1

complex hypersurface in (C*) with the same Newton polytope as X, then

SlohP(HCX)) ifp+q=n
rank HPM(X; FX) = < ppe(H"+P(CX)) ifg=n

0 otherwise.

Proof. The proof follows the same lines as the proof of Corollary [7.1.10, We know from
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IDKS86| that

n+1> .
ifp=qgqandk=n+1+0p
WPI(HE((CF)™) = < p

0 otherwise .

The Borel-Moore tropical homology groups of R™*! satisfy HfM (R”H;fgnﬂ) = 0 if
qg#n+1and

n 1
rankHE%(R”H;fE H) = <n; )

The standard tropical homology groups of R"*! satisfy H,(R""!; an“) =01if ¢ # 0 and

n 1
rankHo(]R"H;]:;& +1) = (n * >
p
Combining the tropical Lefschetz-like Theorem and Poincaré duality for the tropical
homology of X, we deduce from this that when p + ¢ # n,
(bi1) ifa=n,

BM X
rank H,'V (X; F,') = . .
0 ifg#n

The hypersurface CX is a non-singular affine variety, so the Andreotti-Frankel theorem
and Poincaré duality imply H¥(CX) = 0 if k < n. By the Lefschetz-type theorems for the
Hodge-Deligne numbers on H'(CX) (see [DKS86, Section 3]), if & > n, one has

n+1 .
( > ifp=qgqandk=n+p
WP(HECX)) = { \p+1
0 otherwise.
Therefore
(=1)"hP1(H}(CX)) ifp+g<nandp+#q
1
(=1)"wP1(H?(CX)) + (—1)n*P (n * 1) ifp+g<nandp=gq
PICX) = | 1 b
(1)t n ifp+g>nandp=q
p+1
0 otherwise.

We can then conclude by applying Theorem [7.1.8| O



Chapter 8

Homology of simplicial real algebraic

hypersurfaces

8.1 Chapter introduction

Let P be a real Laurent polynomial in n variables. As in Chapter [2] if P has exactly n+ 1
monomials with non-zero coefficients and if its Newton polytope A(P) is a non-degenerate
n-dimensional simplex, we call P a simplicial real polynomial. We also call the associated
hypersurface Vics)n(P) a simplicial real algebraic hypersurface.

Such hypersurfaces are natural building blocks from which more complicated objects
can be constructed. For example, the combinatorial case of the Patchwork method (see
Chapter [2) consists in gluing such hypersurfaces together. Hence, a greater understanding
of their properties might help us find new bounds on the topology of patchworked vari-
eties (see Chapter @] for more details), in the same spirit as Formula in addition to
improving our understanding of simplicial real algebraic hypersurfaces themselves, which
are among the most natural and simple examples of real algebraic varieties.

In this chapter, we study the homology of a class of objects closely associated to simpli-
cial real algebraic hypersurfaces, their coamoebas; more specifically, we describe the action
of the complex conjugation on the coamoebas. Assuming that a certain conjecture, based
on an article by G. Kerr and I. Zharkov [KZ16], holds (which seems very likely), this al-
lows us to describe the action of the complex conjugation on the homology of the simplicial
real algebraic hypersurfaces themselves, and in particular to identify the conditions under
which they are Galois maximal (see Chapters [I| and .

Let X be a simplicial real algebraic hypersurface. In this chapter, we denote the real
(respectively, complex) points of X in (R*)"™ (respectively, (C*)™) by RX (respectively,
CX). Unless otherwise specified, all real algebraic varieties considered are hypersurfaces
in the complex torus. The complex conjugation ¢ on the complex torus naturally acts

on CX. Our goal here is to better understand this action and the induced action ¢, on

175
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the homology H,(CX) of CX with coefficients in Zs (in this chapter, we always consider
homology with coefficients in Zs).

In their article [KZ16] that was mentioned above, Kerr and Zharkov show in particular
that the complex part CX of a simplicial real algebraic hypersurface is homeomorphic to
the associated phase tropical variety T X. Moreover, it is easy to see that the phase tropical
variety T X retracts by deformation to the coamoeba Cx of X. Hence we get a homotopy
equivalence CX — Cx. Private conversations with Zharkov have led us to believe that

this homotopy equivalence satisfies the following condition:

Conjecture 8.1.1. Let X be a simplicial real algebraic hypersurface. There is a homotopy

equivalence ¢ : CX — Cx such that the following diagram commutes for all i = 0:

HA(CX) 2 Hi(Cx)

H;(CX) —% H,(Cx)
where ¢y s induced by the complex conjugation on either CX or Cx .

This would immediately imply

dim(Im(1 + ¢y : Hi(CX) — H;(CX))) =
dim(Im(1 + ¢y : Hi(Cx) — H;(Cx))),

where 1 is the identity.

Our main goal here is to prove the following result, though the details of the proof
might be of interest in themselves when considering other related questions. Consider
a simplicial real algebraic hypersurface X, the Newton polytope A of the simplicial real
Laurent polynomial P that defines X, and pick a vertex O of A. The edges of A containing
O define n integer vectors (choosing 0 as their initial point). Define A € M, «n(Z2) as the

matrix whose rows are these n vectors modulo 2.

Theorem 8.1.2. If RX intersects non-trivially each quadrant of (R*)™, then

dimg, (H,(RX)) = dimy, <K6T(H6)> :

Im(1+ cy)
where 1 + ¢, : Hy(Cx) — H.(Cx).

Otherwise, we have

. Ker(1+ cy) . n—ran
dimz <m<(1+>> — dimg, (H,(RX)) = 2(2"7"*% () — 1 — (n — rankg, (4)).

The condition on the intersection of RX with the quadrants of (R*)™ is equivalent to a

condition on the matrix A and the signs of the monomials of P, as proved in Lemma[8.5.1]
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Remember that a real algebraic variety X is Galois maximal if

dimy, (H,(RX)) = dimg, <K67‘<1+C>> |

Im(1 + cx)

where 1+ ¢, : H(CX) — H,(CX), as defined in Chapter [1]
If Conjecture holds, then Theorem immediately implies

Theorem 8.1.3. If RX intersects non-trivially each quadrant of (R*)", then X is always
Galois maximal.
Otherwise, we have

. Ker(1 + c) ) n—ran
iz <m<1+>> — dimz, (Hy (RX)) = 2(2" () — 1 — (n - ranks, (4))),

where 1 + ¢, @ Hyx(CX) — H.(CX), and X is Galois mazimal if and only if n —
rankyz, (A) € {0, 1}.

The rest of this chapter is organized as follows. In Section [8:2] we go over some
definitions and notations. In Section the coamoeba Cx associated to X is introduced
and described in a way suited to computations. In Section[8.4] the action of the conjugation

on the homology of Cx is described. In particular, the rank of 1+ ¢, is computed. Finally,

Theorem is proved in Section [8.5]

8.2 Definitions and notations

We denote the n-dimensional torus (R/27Z)" (seen as the product of n unit circles) by
T, and use either additive or multiplicative notations, based on context, to describe its
natural group law. In particular, we frequently apply matrices with integer coefficients to
elements of T™.

Given a vector of signs (e1,...,e,) € {1,—1}", we define §(¢) = (d1,...,9,) € Z§ by
the relation &; = (—1)%.

Given a finite set S, let |S| denote the cardinality of S.

We define Arg : (C*)" — T,  (z1,...,2n) — (arg(z1),...,arg(zy)).

Throughout this chapter, we use the following conventions: for any z = (z1,...,2,) €
C™, any matrix G € M,x,(Z) and any vector v = (v1,...,v,) € Z", we define z¥ :=
21252 ... 20 € C and 2% := (2¢",...,26") € C", where G is the i-th line of G. Choosing
lines instead of columns has the advantage of allowing us to write Arg(z%) = G - Arg(z),
and the disadvantage that for another matrix H € My, x,(Z), we have (zG)H = MG,

Consider as above a simplicial polynomial P(z) = )] cqz®, for some coeflicients

QEAP
co € R*, and the associated simplicial real algebraic hypersurface Xp. Up to multiplication

by a non-trivial Laurent monomial (which doesn’t change Xp), the polynomial P can be
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chosen so that Ap has 0 € Z™ as one of its vertices. We assume this to be the case from
now on. Moreover, let us denote the non-null vertices of Ap by a}g, ...,af € 2" and
define Ap € M, x,(Z) as the matrix whose i-th line is a’l'g for i = 1,...,n. If we also
define % := 0 € Z", we can write indifferently P(z) = Yiaerp CaZ =D o caipzaiP =
2i=1,.n Ca;ZAZP + co-

For any G € M,,«x»(Z), we define the algebraic morphism

Z = ZG.

If G is invertible, then ®¢ is an algebraic isomorphism that sends Xz = {(P(z) =
Zizl,..‘,n Caﬁ,Z(AP'G)l +co = 0} to XP = {P(Z) = Z

the real structure. This means that up to such isomorphisms, we can consider the matrix

i=1,...,n Ca;ZAfD + c¢o = 0} and respects
Ap defining the simplex Ap up to right-multiplication by invertible matrices with integer

coefficients.

Remark 8.2.1. The complex part CXp < (C*)" of a simplicial real algebraic hypersurface
Xp is smooth.

Let Xp be given as above by P(z) = Zi:l,...,n c; 2% + cg, for some coefficients ¢; € R*
and a simplex Ap. Let A be the n x n matrix whose lines correspond to the vertices «; of
Ap and the monomials of P (for i = 1,...,n). We also introduce B, the cofactor matrix
of A, and Pr(z) = >,_; , cizi +co (the L stands for "linear").

Then P(z) = Pr, o ®4(z), thus &4 : (C*)" — (C*)” maps CXp to the hyperplane
CXp, :={PL(2) = 0}. But a0 ®p = Pgepiay.ra: (2155 2n) (zfet(A), . ,zget(A)) is a
local diffeomorphism, which implies that so is ®4 by a dimensional argument. Hence the

smoothness of CXp can be deduced from the smoothness of CXp, .

8.3 Coamoebas

As above and for the remainder of this chapter, let P(z) = Zi:h_.’n g;ci2® + ¢o, where
e=(e1,...,en) € {1,—1}" and ¢; € R for all 7, be a simplicial real polynomial (we can
suppose without loss of generality that the constant term is positive). Let X := Xp
(C*)™ be the associated simplicial real algebraic hypersurface, and let Ap be the Newton
polytope of P, and A be the n x n matrix whose lines correspond to the vertices of Ap

and the monomials of P, i.e. A® = o,

8.3.1 Definition and description of Cx

The coamoeba Cx < T of X is the closure in T" of the image Arg(CX). The conjugation ¢

acts as —id on T™; if we fix a representation of 7™ as [0, 27|™ with its boundary quotiented
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Figure 8.1: In black, the coamoeba C X 0 In white, the open zonotope Z
L

as needed, which we do from now on, ¢ is the central symmetry.

We will use the convenient description of Cx given by Kerr and Zharkov in [KZ16] in the
linear case, i.e. when the coamoeba is given by an affine hyperplane, as an intermediate
step to get to the general case. Let us introduce the simplicial polynomials PE (z2) =
Zizl,...,n ¢izi+co and Pp(z) = Zizl,...,n €;¢; 2 + co, where the coefficients ¢; and &; are the
same as in P. Name C X, 5 and C Xp, the associated coamoebas.

Consider T := T' = R/27Z and identify it with the unit circle via the map E : [0] —
exp(if). We say that (61,...,6,) € T™ are in an allowed configuration if there is no open
half-circle in T' containing all the 6; as well as the point 1 = E[0] ( which corresponds to
the constant term).

A zonotope is the Minkowski sum in R" of a finite collection of segments. Now consider
such a zonotope Z; if the quotient map R" — T" = (R/277Z)" restricted to the interior
of Z is an embedding, we call in the rest of this chapter, by extension, the image Z of the

interior of Z an (open) zonotope of T".

Lemma 8.3.1. The points of CXPJr are exactly the n-tuples (01,...,0,) € T™ in allowed
L

configurations. There is an n-dimensional zonotope Z in R", generated by n+ 1 segments,
such that the quotient map R"® — T™ = (R/27Z)" restricted to the interior of Z is an
embedding, and such that the open zonotope Z of T™ which is the image of the interior of
Z is the complement of the points in allowed configurations (see Figure .

The proof is almost trivial - see [KZ16] for related details. Note that Z is contractible
in 7™, hence (T",CXP;) is of the same homotopy type as (T", T™\{*}).

We now consider the slightly more general case of CXPL' Let § = (01,...,0n) =
d(e1,-..,en) € Zy be as in Section

Lemma 8.3.2. The coamoeba CXPL 1 a translate of CXP+ bym-0eTm, ie. CXPL =
L
CXPL+ +mT-dcT™.
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The zonotope of forbidden configurations from Lemma has simply been translated;
the proof is once again almost trivial.

Let us now consider the general case of Cx.

Lemma 8.3.3. Using the same notations as above, the coamoeba Cx is the preimage of
the coamoeba Cx, by the map A-: 1" — 1", i.e. Cx = A_l(CXPL).

Proof. First, let us show that Arg(CX) = A=1(Arg(CXp,)).
Indeed, if § = (01,...,0,) € Arg(CX), by definition there exists r = (r1,...,7,) €
(R~0)™ such that z := (r01,...,7r,0,) belongs to CX, i.e. P(r101,...,7m,0,) = Zizl,...,n EicirAiQAi—i-
co = Po(r A, . rA"04") = 0. Hence (rA' 04", ... rA"04") ¢ CXp, and 04 = A -0
belongs to Arg(CXp,).
Conversely, suppose that A -6 € Arg(CXp,). Then by definition there exists s =
(51,...,8,) € (Rsg)™ such that Pp(s1041,...,5,04") = Zizl,...,n gicisi0r +co = 0. If
there exists r = (r1,...,7,) € (R=g)™ such that r4 = s, then 2z := (r16y,...,7r,0,) is such
that P(z) = 0 and we can conclude that § € Arg(CX). Now consider the cofactor matrix
B of A, and

(R>o)" — (R>0)" — (R>o)
r=(r1,...,Th) — rB—s (T‘B)A = pdet(4) — (rlliet(A), e T‘#t(A)).

This clearly shows that ® 4 is surjective from (R>()™ onto itself; thence we have shown
that Arg(CX) = A~1(Arg(CXp,)).

As A- : T" — T" is continuous, we immediately have that Cx = Arg(CX) c
A~ (Arg(CXp,)) = A71(C Xp, ). Following the same reasoning as in Remark the
map A- : T — T™ is a local diffeomorphism, because (AB)- = (det(A)-Id)- : T" — T™
is a local diffeomorphism, where B is the comatrix of A. Consider 6 € Ail(WXPL)), an

open neighborhood U < T™ of 6 such that (A-)|y is an embedding, and some open neighbor-
hood V< T™ of . Then A- (U nV) is an open neighborhood of A -6 € Arg(CXp, ), hence
there exists pe A- (U V) n Arg(CXp,). Then ((A-)|v)"L(p) e Vn A7 (Arg(CXp,)) =
V A Arg(CX), which shows that 6 € Arg(CX). O

8.3.2 A more explicit description of Cx

It is well-known (for example, using the theorem of structure of finitely generated abelian
groups) that there exists two (non-uniquely defined) invertible matrices G, H € My, xn(Z)

such that
dq 0

0 dn
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where di|da|...|d, € Z and dydy...dj is the greatest common divisor of the non-trivial
k-minors of A (for k =1,...,n).
Consider 6¢ = G- 6 € Z, where § = §(e1,...,e,) € Z5 is as above.

We partition {1,...,n} in the following way:
0= fie{l,...n} | 6= [0]sd; = [0]a},

"= {ie{l,....n} | 0% =[1]2,d; = [0]2},
V= fie{1,...,n} | 6% =10]2,d; = [1]2},
M= fie{l,...,n} | 6% =[1]s,d; = [1]2}.

For the remainder of this chapter, we fix two such matrices G and H. Moreover, as
observed in Section [8.2] we can consider A up to right-multiplication by invertible matrices
with integer coeflicients: hence we can, and do, assume that H is the identity matrix. Hence

from now on we have

A=G 1. D.

Then Cx lends itself to the following description: define the set of indices € :=
{0,...,dy — 1} x ... x{0,...,d, — 1} and let 50 e {0,1}" be the unique lifting of §¢.
Let also G/E;L be the preimage of G - Cx,, by the quotient map [0,27]" — T™ (see
the left part of Figure .

Cover [0, 27]™ with d; ...d, hyperrectangular cells C,, := [ali—f, (o1 + 1)3—7;] X ... X
[anz—:, (o, + 1)3—:] for a = (o, ..., an) € 2. Define Cx © [0,27]™ as the set such that the
pair (Cy,Cqy N é}) is mapped to the pair ([O,QW]”,G/E;L) by (z1,...,2n) — (d1z1 —
127, ..., dpzn — ap2m) (see the right part of Figure . Then

Proposition 8.3.4. The pair (IT",Cx) is the image of ([0,27]",Cx) by the quotient map
[0,27]" — T™.

The coamoeba Cx is the complement in T™ of dy...d, open zonotopes indexed by the
set of indices ), such that the center of zonotope Zy, for a = (a1,...,ap) € Q), is in
- ((gél/dl, e ,(gén/dn) + 27 - (a1/di, ..., an/dy,) € T™. Those zonotopes are translate of

each other.

Proof. From Lemma we know that Cx = A_I(CXPL) =D G- Cxp, )-

As explained in Lemmas|8.3.1] and [8.3.2] the coamoeba C Xt is the complement in 7™

of an open zonotope centered In U, and C Xp, is the complement I 7™ of the same zonotope
translated and now centered in (617,...,0,7) =7-d€ T

The linear isomorphism G is then applied to it, so that G - C Xp, is the complement in
T™ of an open zonotope (geometrically the starting zonotope deformed by G) centered in

7-60% € T™. The last step is to take the preimage by the covering map D-: T — T™.
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Figure 8.2:  On the left, G/-C\XJPL. On the right: the coamoeba Cx in black and the
zonotopes in white.

8.4 Homological computations

Let us now study the action of the conjugation ¢ on Cx, using the description from Propo-
sition [8.3.4] As pointed out earlier, ¢ simply acts as the central symmetry on 7" seen as
an appropriate quotient of [0,27]™. It maps Cx to itself, and zonotopes to one another.

Let us describe that action more precisely.

8.4.1 Action of the conjugation on the zonotopes

Let a = (a1,...,04) € Q2 ={0,...,dy — 1} x ... x{0,...,d, — 1}. We define c(a) €  as
the index such that Z.) = ¢(Zs). Then:

If i € I%9 then c(a); is the unique lifting to {0, ..., d; — 1} of [d; — a;]4,. In particular,
notice that c¢(a); = «; if and only if o; € {0,d;/2}.

If i € 1% | then c(a); is the unique lifting to {0, ...,d; — 1} of [d; — ;]4,. In particular,
notice that ¢(a); = o if and only if a; = 0.

If i e I'Y then c(a); = (d; — 1) — ;. In particular, notice that c(a); is never equal to
Q.

If i e I, then c¢(a); = (d; — 1) — ;. In particular, notice that c(a); = a; if and only
if a; = (d;i —1)/2.

Denote by F := {a € Q|c(a) = a} the set of fixed points of c. If [T} # 0, then
F = @. If |[I'0] = 0, there are 2" fixed points: the indices 8 € Q such that §; € {0, d;/2}
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ifie %0 B8 =0ifie % and B; = (d; — 1)/2 if i e IbL.

8.4.2 Homology of Cx

Denote by I'y, ..., Iy, € Hyp—1(T™) the n homology classes induced by the (n—1)-dimensional
tori {[#;] = 0} = T™. They form a basis of H,_1(T").

Using a Mayer-Vietoris long exact sequence, it is easy to see that
Hi(Cx) 2% Hy(T™),

where in, is induced by the inclusion, is an isomorphism for £ = 0,...,n — 2, and that
Hp(Cx) = 0 for k > n. As the conjugation acts trivially on the homology of T™ (with

coefficients in Zsg) and as it is compatible with the inclusion, this shows that
1+cy: Hk(CX> —> Hk(CX)

is trivial for k =0,...,n — 2.

We also get a short exact sequence

0— Hn(Tn) I n—1(|_| aZa) I n—l(CX) I n—l(Tn) - 07

ael)

where 07, is the border of zonotope Z,, which is homeomorphic to a (n—1)-sphere. From

it, we deduce the following lemma:

Lemma 8.4.1. Given By,...By, € H,_1(Cx) such that in.(B;) = T'; for all i, we have an

isomorphism
Daca Z2 - [3Za]>
Hn_ C = YR Bz @ ag .
16x) <i=@...,n ’ ) < Ly - Zaeﬂ[aza]

We already know that c.([0Za]) = [0Z,(4)] (as we consider homology with coefficients

in Zg, we need not concern ourselves with orientation), where c(«) is as above - we only
need to find suitable classes B; and describe how ¢, acts on them.

Let us define B;, for i € {1,...,n}. Consider the (n — 1)-dimensional torus {[#;] =
0} < T, and the set I; of intersections between {[6;] = 0} and the open zonotopes of
the complement of Cx in T™. Notice that a given zonotope Z, can intersect several times
{[0:] = 0} - each of these intersections appears as a distinct element of I;. Call N;(«) the
number of such intersections. We would like to define B; as the class of {[#;] = 0}, with a
modification (since {[f;] = 0} is in general not included in Cx).

For each intersection «y € I;, let a(y) < Q be the index of the zonotope corresponding to
7. The intersection 7 of {[6;] = 0} and Z, )
of dimension n — 1. Call ST the half-sphere that lies in the direction e; of {[¢;] = 0}, and

S, the one lying in direction —e; .

) cuts 07,y in two (topological) half-spheres
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Figure 8.3: As a black broken line, the cycle Bvl In that example, I; is of cardinal 4.

We start our construction with {[¢;] = 0}. For each v € I;, we remove the intersection
{[0:] = 0} () Za(y), and we add S;. Thus we obtain a (n — 1)-cycle - name it B; and name
its class B;. Observe that parts of the border of a given zonotope Z, can appear several
times in B;: in other words, there can be several Sj that are subsets of the same Z, (with
non-trivial intersections). Notice also that S;r can be homotopically contracted in T™ to
the intersection {[0;] = 0} () Zs(y). Thus B; is a lift of I';, as required. This construction
is illustrated in Figure [8.3

8.4.3 Image of 1 + ¢,

We want to compute the image of 1 + ¢, : H,—1(Cx) — H,—1(Cx), and in particular its

dimension. Using the description in Lemma [8.4.1] we see that

Im(l+c) = > Zo-(1+c)(Bi)+ Y. Zo [0Z0 + 0Zy(n)] (8.4.1)

i=1,....,n (o759

Let us make some observations about the image of B; under c,. It is the class of
the mirror image by central symmetry of B;. This means that it consists of {[6:] = 0},
without the intersections {[0;] = 0} () Z(4) (for v € I;), and with all the ST, i.e. the half-
spheres lying in the direction —e;. Thus B; + c«(B;) = > c1,[0Z4 ()] (since by definition
SAT + S, = 0Za) - each 0Z, appears N;(«a) times.

It would be possible to compute N;(«) exactly. However, we only want to compute the

image of 1 + ¢4 - the following observations suffice for our purpose.
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Since we are considering coefficients in Zs, we only have to pay attention to the parity
of Nij(«). Let us define J; := {a € @ | N;(a) = [1]e2}. The number of intersections
N;(«) depends only on the length of the zonotope Z, in the direction e; (which is the same
for all o) and on the i-th coordinate of the center of Z,, i.e. on «;.

As we only have to consider the coordinate «; and because of the symmetry of the
situation, it is clear that if 5 € J;, then ¢(f8) € J;. Consider the description of
Im(1 4+ cy); if B # ¢(B), we have

625 + 626(5) € Z Ly - [aZa =+ aZc(a)]'

a€el)
Thus for any i € {1,...,n} we get
Zo ((L+c)(Bi) + Y Lo [0Za + 0Z(o)] =
a€el)
Zo- Y [0Zs] + ) Lo+ [0Za + 0Zpa)] =
ped; ae)
Lo Y. [0Z]+ ), Lo [0Za + 02y,
peJinF aef)

where as above F' is the set of fixed elements [ € ().
We need to determine for all ¢ € {1,...,n} the set J; n F. Doing so will allow us to

prove the following lemma.

Lemma 8.4.2. If [I*°] # 0, the image of 1 + ¢y is Y.
If |10 =0,

aeQ

1+C* ZZQ +C* ZZQ 6Z +0Z()]

1€10,0 ae)

Proof. Indeed, as noted in Subsection 1}, there are no fixed points if [I%°] # 0.
Let us now consider the case
Ifi e 1% B3 e J; for all B such that 8; = 0, and 3 ¢ J; for all 8 such that 8; = (d; —1)/2.
In particular, J; n F' is the set of cardinality 2lI™1=1 of all B € € such that 5; = 0,
B; € {0,d;/2} if j € 190 — {3}, Bj = 0if j € I and B; = (d; —1)/2 if j e IVL.
If i e I%', B e J; for all 8 such that 3; = 0. In particular, J; n F = F. Remember
Lemma 8.4.1} we have >} .o[0Za] = 0 in H,_1(Cx). Then,

Z [aZa] = Z [aZa] + Z [aZoz] < Z [aZa + aZc(a)]‘

aeF aeF ael) ael)

This implies that Zs - ((1 + ¢x)(Bi)) € Xpeq Z2 - [0Za + 0Zyo)]-
Ifie IV, B¢ J; for all B such that 3; = (d; — 1)/2. In particular, J; n F = & .
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Using description (8.4.1)) , we can conclude. O]

8.4.4 Rank of 1 + ¢,

Let us compute the rank of 1 + ¢,. We get the following proposition.
Proposition 8.4.3. If [I'0] # 0,

dim(Im(1 + ¢y)) = % ~1.
I =0,
dy...d, — 211"
dim(Im(1 + ¢)) = [190] + = 5 .
Proof. We will first compute the dimension of
Z ZQ‘<(1+C*) ZZQ (9Z +6Z()]

i=1,..,m aef

( D Z- Bz’) @ (@ Za - [5Za]> ;
i=1,...,m a€el)

then quotient by Z3 - ¥,,.[0Z4] to get the dimension in H,_1(Cx) (see Lemma [8.4.1).
Denote by Q@ < Q a set defined as such: for each pair of elements {a,c(a)}, where
a € Q\F, choose exactly one element to be included in Q. Thus 3. Z2 - [0Z + 0Zc)] =
e Lo - [0Zo + 0Zc(q)]- This sum is clearly a direct sum before quotienting.
If [IY0] # 0, then Im(1 + cx) = YocqZ2 - [0Za + 0Zpa)] = Dpeq L2 - [0Za +
0Z(a)]- When we quotient by Zs - 3} ,.q[0Za], the dimension decreases by exactly one, as
Yac0l0Za] € Xoneq Lo - [0Z0 + 0Z(q)] (since there is no fixed point). Hence

in

dy...dn

dim(Im(1 +¢y)) = Q| —1 = 5L
If |I0] = 0, we can see that
Z Lo - 1 + C* Z Lo - aZ + aZc(oz)]

1€10,0 acQ)

is actually a free sum before quotienting. Indeed, suppose that for each o € Q (respectively,
i € I1°9) there is A\, € Za (respectively, \; € Z3), not all 0, such that

DAL+ ea(Bi) + D Aal0Za + 0Zy(o)] = (8.4.2)

1€10,0 CEEQ

For i € I°0, consider B defined by 8; = 0, 3; = d;/2 if j € I%° — {3}, B; = 0 if j € 1!
and B; = (d; —1)/21if j € I%t. As explained in the description of J; n F in the proof
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of Lemma the class [0Zg] only appears in ((1 + c¢4)(B;)) among all the terms of
equation . Thus A; is necessarily 0. We can then conclude from the independence
of the family {[0Zn + 0Z.(q)]},cq before the quotient that all A, are 0, which proves our
point.

Consider 8 € Q defined by 8; = d;/2 if j € I°?, 8; = 0 if j € I®! and B; = (d; — 1)/2
if j € IV, Since [0Zg] appears in >, o[0Z4] but not in Y. j00Z2 - ((1 + cx)(By)) +
Y et L2 - [0Z + 0Z,4)] (once again going back to the proof of Lemma , we see that
2aeal0Zal & 2icro0 Lo - (1 + c)(Bi)) + 2eq Z2 - [0Z0 + 0Z¢(o)]- This means that the
dimension of >, 00 Z2 - (1 + ¢ )(Bi)) + X eq Z2 - [0Za + 0Z,(«)] does not decrease when

we quotient. Thus

IO‘O‘

dy...d, — 2l
2 b

9 - | £

dim(Im(1 + ) = [19°] +10] = [1°0] + =

= 1% +

as stated. O

8.5 Galois maximality

We are still using the notations of the previous sections.
To prove Theorem [8.1.2) we need to compare dimg, (%) and dimgz, (H.(RX)).
We consider H,(RX) first, with the following lemma.

Lemma 8.5.1. The real part RX < (R*)™ consists of 2" contractible connected components
if 6 = 8() € Zy™ is not in the image of A- : Zo™ — Zo", and of 2" — 272 K(A) contractible
connected components if it is. Thus Hy(RX) is of Zo-dimension 2™ if 6 ¢ Im(A) and of
Zy-dimension 2" — 27 aK(A) i 5 e Tm(A).

Proof. Consider the 2" quadrants of (R*)", and let v = (71,...,7v,) € {1, —1}" index the
quadrant Q- := {(z1,...,2n) € (R*)"|z171 > 0,..., 2,7, > 0}. Consider as in Section
the real polynomial Pr(z) = Zizl,...,n £i¢iz; + o associated to P(z) = Zizl,...,n giciz +¢q.
Then the map

Pp-1: Q(l,.“,l) - Q(1,...,1)
A—l

z— 0
where we extend the notation to include rational exponents, is a well defined homeomor-
phism that maps RXp, N Q1) to RX nQq, . 1). In particular, RX n Q.. 1) is empty
if e, =1 for alli e {1,...,n}, and is non-empty and contractible otherwise. Now observe
that RX N @ is isomorphic to RXp N Q(1,.. 1), where P, (z) := Zi:l,...,n eivdiciz + co.
Since §(e1741, ..., enyA") = 3(e) + A-5(7), we see that RX n Q. is empty if 6(c) = A-5(7),
and non-empty and contractible otherwise.

O
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The following lemma links the conditions of Theorem Lemma and Propo-
sition B.43]

Lemma 8.5.2. The real part RX intersects non-trivially each quadrant of (R*)™ if and
only if § ¢ Im(A) if and only if [I*°] # 0.

Proof. The first equivalence comes from Lemma Then

seIm(A) «— 3w eZ"st.A-x=G ' D-2=0 —
el st.D-x=G - §=06" < 5Gelm(D) —
(69); = 0Vist.d; = [0]y < [IV0] =o0.

We are now ready to prove the main result.

Proof of Theorem[8.1.3. As mentioned at the beginning of Subsection 842 1 + ¢, :
Hyp(Cx) — Hy(Cx) is trivial for k # n — 1. Moreover, we know that Hy(Cx) is iso-
morphic to H,(T™) for k # n—1, and that dim(H,—1(Cx)) =n+d; ...d,—1 (as is shown
by Lemma .

Therefore, from Proposition [8:4.3] and Lemmas [8.5.1] and [8:5.2] we see that if RX

intersects non-trivially each quadrant of (R*)"

. (Ker(1+ci)\ . o dim(Im ) =
dlm(M>—dlm(H*(Cx)) 2dim(Im(1 +¢y)) =

dy...dn

2”—1+(d1...dn—1)—2( —1) — 2" = dim(H,(RX)).

Otherwise, we have by definition of the sets IT1+! in Section that rankyz, (Ap) =
rankz, (A) = |10 + [I%Y] = n — [1%9] (since [I%°] = 0) and

dim (K”(”C)) _ dim(H. (Cy)) — 2dim(Im(1 + cy)) —

Im(1+ cy)
di...dy— 2|10’°|>

+

2”—1+(d1...dn—1)—2(|10’0 5

2" — 2 — 2(n — rankg, (A)) + 27 rankzy (4),

hence
] Ker(1 + cy)
m | -
Im(1 + cy)
2" — 2 — 2(n — rankg, (A)) + 2" () — (n — grorank(d))
2(2nrankz;(4) _ 1 (n — rankg, (A))).

) — dim(H,(RX)) =
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This ends the proof. O
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Chapter 9

Additional constraints on the
topology of hypersurfaces obtained

by combinatorial patchworking

9.1 Chapter introduction

This last chapter is a continuation of Chapter [d] and we retain the same assumptions
and notations. Rather than completed results, we explain here what we think might be
potential ways to make use of the constructions detailed in Chapter [4] in particular the
bound from Formula , which we restate:

dimg, Hy(RX;; A) < ) dimg, Hy(X; E2K®). (9.1.1)
p

As explained in the Introduction, there is a principle of sorts that suggests that the
g-th Betti number of the real part of an n-dimensional real algebraic variety X should be
expected to be bounded by the (¢,n — ¢)-th Hodge number of CX (possibly with some
small correction). Viro’s conjecture, which was mentioned in Chapter 4, exemplifies this
principle.

Of course, this principle, in general, is wrong, and by a large margin, as shown in Chap-
ter [0l However, it does hold under certain constraints, such as when X is a non-singular
hypersurface in a suitable toric variety obtained by primitive combinatorial patchworking,
in which case Formula does state that by(RX) < h4""179(CX) + 1 — 5,LnT—1 It is
natural, then, to try to relax slightly that condition.

We call a convex triangulation of an integer polytope A maximal if the only integer
points contained in any simplex of the triangulation are its vertices. Note that this is not
related to the definition of a maximal real algebraic variety.

In ambient dimension 3, Itenberg showed in [[te97] that if X; is a real projective

191
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algebraic surface obtained via patchworking using a maximal triangulation, then
b (RX;) < RHH(CXy).
Moreover, the principle still holds for by(RX}), up to a correction, as we have
bo(RX;) < 1+ h%3(CX,) + Ny,

with Ng being the number of 3-dimensional simplices I' in the triangulation such that
Vir=)s (Qr) has 8 connected components (where Qr is one of the polynomials being patch-
worked and T is its Newton polytope).

A correction is indeed necessary, as the following example shows that the bound

bo(RX;) < 1+ h¥"~1(CX,) fails in all dimensions n > 3 for maximal triangulations.

Example 9.1.1. Consider the standard simplex A < R" of side length n in dimension n
(for n = 3), and the point P := (1,...,1,0) € A. For each € = (ey,...,€,1) € {1,—1}"71,

consider the (n — 1)-dimensional simplex
A= COHV(P, P +ejer,...,P+ en_len_l),

where e; is the i-th vector of the canonical basis of R™. Let T be a maximal triangulation
of A containing the n-dimensional simplices A, := Conv((0,...,0,2),A.) (for each € €
{1,—1}"71), and choose a sign distribution on A n Z" such that each vertex of each
simplex A, has sign +, except P, whose sign is —. This is illustrated in Figure 9.1} Let
also (0,0, 3) have sign —. By applying combinatorial patchworking to this construction,
we get a hypersurface Y in P" such that RY has at least two connected components: one
is a sphere "around P", and one passes "in between (0,0,2) and (0,0,3)" (see Section
2.3); hence by(RY) > 2. On the other hand, one can see (with Formula (6.2.1)) that
RO"=L(CY) = 0. Thus, by(RY) > 1 + hO"~L(CY).

Example shows that the bounds from the primitive case might not hold under

looser conditions. Let us look once more at Diagram [4.5.3] which we display again:

Co(X; CUE2) ~FBny Hy(X;CUZ) =£25 H)(CXy; Zo)
p+q=1
éKa

Ker(l+4c
Co(X; Im((lJrc:))) (9.1.2)

[

Cy(X; BXKYy AL, (X, BLR %‘k Hy(RXy; Zy)
P

We see that the two main obstacles to connecting the homology of RX; to that of CX}
are understanding the passage from Hq(X;(CZ/{pZ2) to Hy(CXy; Zs), i.e. the Leray-Serre
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(0,0,3)

Figure 9.1: Construction from Example [0.1.7]in dimension n = 3.

spectral sequence of CXy, and relating H,(X; (CL{Z?Q) and Hy(X; E;O’Ka).

One could directly try to adapt classical degeneration results to our special type of
Leray-Serre spectral sequence, or compare Hg(X; (CL{pZ?) and Hy(X; Eg) ’Ka), for example
using generalized spectral sequences (see [Mat13]).

The primitive case also suggests the use of three types of tools: the first type would be
Lefschetz-like theorems regarding the homology of various cosheaves (in particular (CLlpZ2
and E,’ ’Ka) on X, in the same spirit as Section though a similar proof might not
work (as it is not clear which cosheaf to choose on the ambient space in order to make
a comparison). Poincaré duality theorems for those cosheaves would also prove useful.
The only statements that we have for now require the triangulation to be primitive, but it
might be possible to adapt them. Finally, one can compare various Euler characteristics,
such as that of the complex C,(X; (CZ/IPZ?), as in Section

We look at surfaces in ambient dimension 3 in Section for inspiration, and discuss

what could be done in higher dimension in Section [9.3]

9.2 The case of surfaces

We consider, as Itenberg did in [[te97], the case of a maximal triangulation T of the
standard 3-dimensional simplex A of side length d.

Given a simplex I" with integer vertices (not necessarily in ambient dimension 3), let O
be any of its vertices, and consider the vectors corresponding to the edges of I' containing

O (and having O as their origin). Let A be the matrix with coefficients in Zo whose lines
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are those vectors modulo 2, and define the rank of the simplex as the rank of A.

Maximal triangulations have the special property, in ambient dimension 3, that each of
their simplex I' of dimension strictly less than 3 has rank equal to its dimension. This also
means that simplices of dimension 3 are of rank at least 2. In particular, if Conjecture[8.1.]
does hold, then Theorem immediately implies that each space O, is Galois maximal
(in fact, this can also be proved directly).

w,Ka : . . . . Ker(1+c4:Hp(COs;Z2)— Hp(COs;Z2))
We get that E, is isomorphic as a cosheaf to o — Tm(itcs:Hy(COwiZ)— Hy(COwiZs))

for any p, and that it is isomorphic as a cosheaf to (CZ/IPZ? for p = 0,1. Moreover,
Ey ’Ka(a) = I;;T((lljcc::}%(((écg:;zz;)):fé 2((((?3;’;%22)))) is isomorphic as a group to (CZ/{QZ2 (o) for

o in X of dimension 1 or 2.

Hence the trios of complexes

0 —— Co(X; EP Y —— C1(X; EPRY) —— Co(X; B R —— 0
0 —— Co(X; EP Y —— O1(X; EPRY) —— Co(X; EP Ry —— 0

0 —— Co(X; B —— C1(X; BEPORY) —— Co(X; EQRY) —— 0

and

0 —— Co(X;CUPR) —— C\(X;CUP2) —— Co(X;CU2) —— 0
0 —— Cy(X;CUP”) —— C\(X;CU) —— Co(X;CU2) —— 0

0 —— Co(X; CUP?2) —— C1(X;CUE) —— Co(X;CUE2) —— 0

are the same, except for the upper right entry, where Co(X; E5 ’Ka) ~ Cy(X; %)

It can be directly shown that Ho(X;CUZ?) = 0. Considering the direction of the
morphisms of the Leray-Serre spectral sequence, and computing the FEuler characteristic
of the complex C,(X; CUZ?), we find that the dimensions of the groups Hy,(X; (CUpZ?) (i.e.

the homology of the second trio of complexes, displayed in the same order) are

1 0 h%2(CX:) + (d® — Ng)
a Y CXy) — (d® — Ng) +a 0

h2’0(CXt) 0 1



9.2. THE CASE OF SURFACES 195

where Ng is the total number of 3-dimensional simplices in the triangulation 7" and a :=
dimg, Ho(X; (CLIlZ ?). Note that as h!"!(CX;) is a polynomial in d whose dominant monomial
is 2d3, and as h' (CX;) — (d* — Ng) +a > 0, this means that if we can find a triangulation
such that Ng is significantly smaller than %d3 and d large enough (which does not seem
particularly hard), the associated number a is nonzero and we have found an example of

nondegeneracy of the Leray-Serre spectral sequence on the second page.

Similarly, the dimensions of the groups Hy(X; Ep’ ’Ka) (i.e. the homology of the first

trio of complexes, displayed in the same order) are

1 b h%2(CX;) + (d® — Ng) + b —2c
a RYH(CXy) — (d® — Ng) + a 0
hQ’O(CXt) 0 1

where b := dimg, Hl(X;ESO’Ka) and ¢ = Y 4im oo dimz, (Im(1 + ¢4 : Ho(COy; Zo) —>
H,(COy;Zs))); this comes from the fact that we have replaced Co(X; CUZ2) by its sub-

quotient Co(X; By %) = Cy(X; %ﬁ) In particular, we have

b = dimg, <Im(01 (X; CUE) — Co(X; CUZ)) A Co(X; Im(1 + c*))>

We can see (using the Galois maximality of the spaces O,) that ¢ = %(d3 —2Ng+ N7+
2Ng), with N7 (respectively, Ng) being the number of 3-dimensional simplices I' in the
triangulation such that V(g«ys(Qr) has 7 (respectively, 6) connected components (where
Qr is one of the polynomials being patchworked and I' is its Newton polytope). Hence
d® — Ng —2c = Ng — N7 — 2Ng = Ng — Ng (as Ng = Ng + N7 + Ng).

Furthermore, we can use for each o of dimension 0 arguments similar to those from
Chapter [§] to show that b < N,

Hence, using Formula (9.1.1]), we find that
o(RX;) Z dimz, Hy(X; Ef"®) =1+ h?(CXy) + (d® — Ng) + b —2c
<1+ hO’Q(CXt) + Ns.

We have recovered the bound from [Ite97].

It also seems possible to show that under the same assumptions, b < Hq(X; ]:2Z ) and

= Hy(X ;.7-"1Z %), where .FPZ? is the usual p-th pointy tropical homology cosheaf, which
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would then yield
b1 (RX;) < hMH(CXy) — (d® — Ng) + Hi(X; F22) + Hao(X; FP2),

Whether that bound is better or worse than the one from [Ite97] is not entirely clear.

9.3 Higher dimensions

It is not immediately clear how to generalize the case of a maximal triangulation in ambient
dimension 3 to higher dimensions. Asking that the triangulation be maximal does not seem
to give us any directly useful property.

Looking at what we actually made use of in dimension 3, we might want to consider
quasi-primitive triangulations, i.e. triangulations such that every simplex, except possibly

the top-dimensional ones, is of rank equal to its dimension.

As in dimension n = 3, we would have that EOO Ka

o Ker(1+c4:Hp(COy;Z2)—> Hyp(COy;Z2))
. Tm(1+cs: Hp(COgiZa)—Hy(COyiZ2))

7o - 0,Ka _ Ker(14c4:Hp—1(COs;Z2)— Hp—1(COs3Z2)) -
0 CZ/{p for p < n — 1. Moreover, £, "(c) = Tn(itcs: Ho 1 (COs 70—y 1 (COsZa)) 15

isomorphic as a group to (Cu%il(O') for o in X of dimension strictly greater than 0.
Using Formula (9.1.1), we would then get

is isomorphic as a cosheaf to

for any p, and that it is isomorphic as a cosheaf

by (RX) de% (X;CU%)

for all g < n — 2, and
by (RX;) Z dimz, Hy(X;CU?) +b

for ¢ € {n — 2,n — 1} and some correction b (which can be bounded as in dimension 3).
However, there is no immediately evident way to relate the terms Hg(X ;(CM?) on the
second page of the Leray-Serre spectral sequence to the homology of CX;.

A more natural and less restrictive condition on the triangulation might be to ask that
each space O, be Galois maximal; if Conjecture [8.1.1] holds, Theorem [8.1.3] gives us an

exact criterion for Galois maximality - it was, in fact, the main motivation behind that

result.
This makes the situation slightly more complicated, as we now have that EOO Ka g
isomorphic as a cosheaf to o ?;T((lljf:, ff”(%cg ".’sz)):ffp(%cg ”.’ZZ;)))) Moreover, E;" Ka(a) =
. P (o] p (e8]

Ker(1+4c4:Hy(COy;22)— Hy(COs3Z2)) - . - . Zs
Tn(ITcs Hy (COsiZ3)—H,(COiZa)) 1S isomorphic as a group to CU;? (o) for any o in X and

q such that ¢ < n —1 —dim(o) (and in fact, for any ¢ in X and ¢ such that dim(c) =n

as well). Hence, not only do we need to understand the homology of the cosheaves CZ/IPZ?,

Ker(1+c4:Hp(COs;Z2)—> Hyp(COs;Z2)) -
but also that of the cosheaves o — Tn(Lten Hy(COs 7 ) — A (COs 7)) 11 order to make use

of Formula (9.1.1]).
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Besides computing Fuler characteristics and trying to prove Lefschetz- or Poincaré
duality-inspired theorems regarding those cosheaves, as suggested in Section [9.1] one could
also try comparing the round and pointy tropical cosheaves (CZ/{pZ2 and pr?. They cannot
be expected to be isomorphic when the triangulation is not primitive, but given a cell
o, they both seem to be related to the homology of the ambient space (C*)™ of CO, -
CZ/{pZ2 (0) = Hy(COy;Zs) via the classical Lefschetz section theorem, and ]-"52 by definition
(via some identification H,((C*)™;Z) =~ AP Z").
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