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Papa,

Imaginer ta joie si tu avais tenu ce manuscrit entre tes mains est une douleur. La scéne tourne
en boucle dans ma téte. Ce qui me terrasse, c’est de penser qu’elle a peut-étre tourné en boucle
dans la tienne. Je vois ton sourire, je sens ta main secouer doucement mon épaule, j’entends ta
voix, surtout :

"Ah, ma star !"
Rien de plus. L’amour qui pétille dans tes yeux dit tout le reste.

Je n’ai pas été assez forte pour t’offrir ce bonheur. Je ne me le pardonnerai jamais.

Je t’aime et te dédie ce manuscrit.






Mon premier est ce que qu’une personne née dans les années 90 (disons plutot 85) dit a une
autre personne lorsqu’elle la croise pour la deuxiéme fois de la journée.

Avec 'amour de ma deuxiéme, la vie vous fait & 'aube une promesse qu’elle ne tient jamais.
A Torigine, mon dernier est le résultat de la réaction endothermique entre du calcaire et de
I'argile qui, mélangés a de ’eau, font prise et permettent d’agglomérer entre eux des sables et
des granulats.

Avec mon tout, on peut réer sciemment.

First but not least, je te remercie Guillaume. Si j’ai la chance d’étre en train d’écrire ces
remerciements aujourd’hui (flite, voila que la solution est dévoilée), c’est en premier lieu grace
a toi. Merci de m’avoir proposé ce sujet, alors méme que je n’avais pas été une éléve de
compressed sensing trés assidue, et d’avoir accepté d’embarquer avec moi dans cette aventure.
Les choses semblent toujours limpides lorsque tu les expliques, c’est un réel moteur. Merci pour
ton calme et ta patience que la houle dans laquelle j’ai parfois égaré notre barque n’a pas su
ébranler. Je suis trés heureuse de la rive sur laquelle on accoste aujourd’hui.

Merci Matthieu d’avoir co-encadré ma thése. Je garderai le souvenir de tes discours d’introduction
toujours chargés d’humour, qui rendent le travail plus doux et agréable.

Un immense merci & vous, Nicolas et Yohann, qui avez accepté de rapporter ma thése. Merci
d’avoir pris le temps de la lire avec tant de minutie, et merci pour vos remarques constructives
et avisées. Grace a vous, je crois que je me dirige vers ma soutenance un peu plus sereinement.
Je tiens également & vous remercier grandement, Christophe et Alexandre, pour avoir accepté
de faire partie de mon jury.

Stéphane et Mihai, je garde de trés bons souvenirs de notre collaboration, notamment des
moments passés & Londres & tirer des plans sur le signed clustering. Vous étes les co-auteurs
de mon tout premier papier de recherche, cela nous lie ! Merci Stéphane pour ta gentillesse, et
merci de m’avoir accueillie & Lyon, ot tu as pris le temps de m’expliquer tant de choses.

Merci Sacha pour ta bienveillance. J’ai beaucoup apprécié d’avoir participé a plusieurs reprises
aux rencontres de Statistique Mathématique. Merci aux professeurs de statistique de I’Ensae,
Pierre, Arnak, Nicolas.

Merci au pamplemousse, fruit & pépins qui, sous son masque ol 'amertume se dispute a I’acidité,
cache une splendide douceur, et sans lequel je n’aurais pas eu 'opportunité de commencer cette
these'.

Je remercie toutes celles et ceux qui ont fait partie de mon quotidien pendant les trois années
que j’ai passées a 'Ensae. L’équipe de la direction des études, Corentin, Laurent, Claude,

IDes années plus tard, je regrettai son existence lorsque, assise dans la cantine sans fenétres de la depp, je
devai contempler, quotidiennement et de trés longues minutes durant, Laure en décortiquant une moitié avec
grand soin avant de la savourer lent-goureusement. Mais ga, c’était aprés.
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Rosalinda, et puis les assistants d’enseignement, Arthur (merci pour le clic droit et méme le
ctrl+k, on n’arréte pas le progrés), Jérome, Jérémy, Christophe, Morgane, Jules, Fabien et
Nicolas. Merci Anne pour tes petits poissons. Merci aux doctorants® de ’Ensae, PEC, Lionel,
Gabriel, Avo, Geoffrey, Nicolas, Suzanne, Soléne, Boris, Flore. Merci Badr, pour ta gentillesse
et tous ces bons moments passés a discuter. Et encore désolée pour ce pois chiche que ma mal-
adresse a fait choir sur tes Timberland flambant neuves, au Cirm. Merci Gautier de m’avoir
incitée & aborder mon début de thése avec tranquilité. Je pense que ¢a a joué. Merci Amir
d’avoir pris de mes nouvelles.

Merci aux Jarrets, vous éclairez ma vie. Quand je pense a ce jour de septembre 2015 ou j’ai
poussé pour la premiére fois la porte du café La rencontre - qui porte si bien son nom - je me dis
que c’est fou & quel point dans la vie, on peut parfois tout perdre, mais parfois tout braquer,
tout rafler, tout gagner. Christian, Héléne, Aurélia, Emmanuelle, Soléne, Sandra, Ophélie,
fatche, je vous dois tant. Tant de rires, de délires, de plaisir d’écrire, et plein d’autres rimes
encore (en ire, mais pas que), sans lesquels la traversée de ces années aurait été trés compliquée.
Merci Aurélien, Stéphanie, Léa d’étre venu.e.s pimenter notre jolie bande.

Vous étes les co-auteurs que je porte dans mon coeur.

Merci & Yeboutcheva, Edith, Fanny, Jeanne, Anna et Giséle. Me glisser dans votre peau le
temps de quelques mois a été une indispensable soupape. Merci & Domitille aussi. Toutes les
deux on ne fait que commencer, mais je nous sens déja bien parties.

Laure, la vie passe son temps & semer des choses sur nos chemins, et il s’avére que ce sont
parfois de trés belles surprises. Merci pour la joie de vivre que tu transportes partout avec toi
comme si ¢’était quelque-chose de normal. Ca m’a beaucoup aidée.

Merci Hugo d’avoir fait de la 307 LA piéce ou il fait bon vivre, celle ot les confidences se cachent
sous les éclats de rire. N’en déplaise aux défenseurs de I'ordre, nos entropies se sont trouvées,
bel, et surtout bien.

Merci a tous les d’jeun’s de B2-2, et & Aicha aussi. Terminer ma thése en tant qu’activité
extra-scolaire n’aurait sans doute pas été possible en dehors du climat de franche camaraderie
qui régne dans notre couloir. A B2-2; le lino au sol n’est pas seul & étre rose.

Merci Olivier, d’avoir fait du Scrabble bien plus qu'un jeu de mots, et d’avoir accepté que le
silence ne soit pas un oubli.

Merci aux P’tits Charbos de faire comme si j’avais toujours été 1a. Il faut dire que je vous ai pas
mal simplifié la tache : il y a moins de lettres dans Lucie que dans Kunami, c’est donc plus facile
a broder sur une serviette. Albane et Frangois, merci pour votre bienveillance et votre générosité
débordante. Liselotte et Régis, merci d’étre aussi inspirants - notamment parce-qu’entre deux
quintes de rire, il faut savoir inspirer franchement. Aldée et Colas, merci de m’avoir permis de
découvrir la vie grenobloise depuis l'intérieur, bien que je n’aie pas forcément la bonne dégaine.
Violaine et Théophane, merci de n’avoir jamais oublié un seul de mes anniversaires. Ghislain,
merci d’avoir mis mon pied dans I’étrier de la hacke. Ma vie ne serait pas la méme sans Ableton.

Thomas, merci de m’avoir pendue par les pieds ce jour de juillet 2011. Peut-étre qu'un petit
revival serait de circonstance’ 7 Merci de continuer a nous trouver attachantes malgré notre
bizarrerie sans doute grandissante. Ludo, merci pour tes idées jamais & court et ton farouche
optimisme en l'avenir. Gréace a toi, je peux raconter que j’ai chauffé un poids lourd a travers la
France avec mon beauf et ¢a, ¢a en jette.

2ou devrais-je plutét dire aujourd’hui maitres de conférence, chargés de recherche, professeurs émérites, j’en
passe, et des meilleures

3Cela dit, avec I’age mon estomac est devenu considérablement plus sensible & tout ce qui est inclinaison de
plus de 45 degrés, donc pas slre que ce soit 1a une bonne idée.
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Au milieu des années

que cette thése a duré

mon chemin cabossé

soudain s’est éclairé.

Changée en zia Lu,

tout est devenu fou :

Grace a toi mon Léon

V’la mon coeur en fusion.

Un 6 janvier, tu m’as choisie,
Tu m’as choisie et j’ai dit oui,
Nous deux c’est parti pour la vie.

Gaspard, ta bouille a été un véritable rempart contre le blizzard lors de la derniére ligne droite
qui a mené a ce manuscrit. Merci pour tes grands sourires qui me rappellent que la vie est belle
dans les moment ot j’ai tendance a ’oublier.

Merci ma petite Mam, toi en qui s’est logé tout le courage du monde, et que tu distribues a
ceux que tu aimes : c’est notre force. Je suis tellement heureuse que tu puisses assister & ma
soutenance. Te savoir a I'autre bout du fil me donnera un pep’ du tonnerre ! Merci Jean-Marc
de m’avoir donné la fibre violonistique, sans quoi j’aurais peut-étre opté pour la trompette
(voire méme la flite & bec) et serais aujourd’hui une toute autre personne.

Maman, Papa, Camille, Zoé, je vous aime. Vous m’avez tout donné, et égoistement, j’ai tout
pris. Votre amour, votre humour, votre force, qui m’ont portée jusqu’ici. Maman, merci d’avoir
toujours semé un pincée de magie, un zeste de surprise, une larme de folie sur chacun de tes
gestes. Ca (ga), c’est vraiment toi. Tu m’as appris que amour n’a pas de limite, et qu’en
cela il permet de les franchir toutes. Papa, tu m’as appris que sans la teindre d’originalité, il
manque a la vie sa saveur. Qu’il est malavisé de se robustifier face aux outliers : ils sont la
perle rare. Merci d’étre parti sans éteindre la lumiére. Camille, on dit qu’on ne choisit pas sa
famille, pourtant j’ai toujours vécu dans l'impression que tu m’avais choisie : c’est qu’il m’est
impossible de concevoir que le hasard puisse si bien faire les choses. Tu m’as appris que quand
on veut, on peut, et que quand on peut, on doit. Tu as tracé ma route, je ’ai suivie sans doute.
Zoé, étre céleste tombé d’une perséide. Difficile encore une fois de penser au hasard. Laisse
moi te dire que c¢’est un comble, pour quelqu’'un qui abhorre ’eau gazeuse, d’étre si pétillante.
Tu m’as appris que 'humour désarme 'obscurité. Et que la force n’a nul besoin de montagne
pour se cacher. Les soeurs, io sono la Lucie, voi siete le luci.

Séverin. Peut-on voir les étoiles jusqu’a la magie ? Je balaie le temps, ce truc. Je sais bien qu’on
s’est toujours connus, mais c’est quand méme vachement mieux depuis qu’on s’est rencontrés.






“J’vous jure, faites des MOM.”
Ma mére
(mais elle n’a jamais précisé l’orthographe)






Résumeé

La détection de communautés sur des graphes, la récupération de phase, le clustering signé,
la synchronisation angulaire, le probléme de la coupe maximale, la sparse PCA, ou encore le
single index model, sont des problémes classiques dans le domaine de I’apprentissage statis-
tique. Au premier abord, ces problémes semblent trés dissemblables, impliquant différents
types de données et poursuivant des objectifs distincts. Cependant, la littérature récente révéle
qu’ils partagent un point commun : ils peuvent tous étre formulés sous la forme de problémes
d’optimisation semi-définie positive (SDP). En utilisant cette modélisation, il devient possible
de les aborder du point de vue classique du machine learning, en se basant sur la minimisation
du risque empirique (ERM) et en utilisant la fonction de perte la plus élémentaire: la fonction
de perte linéaire. Cela ouvre la voie a I'exploitation de la vaste littérature liée & la minimisation
du risque, permettant ainsi d’obtenir des bornes d’estimation et de développer des algorithmes
pour résoudre ces problémes. L’objectif de cette thése est de présenter une méthodologie unifiée
pour obtenir les propriétés statistiques de procédures classiques en machine learning basées sur
la fonction de perte linéaire. Cela s’applique notamment aux procédures SDP, que nous con-
sidérons comme des procédures ERM. L’adoption d'un “point de vue machine learning” nous
permet d’aller plus loin en introduisant d’autres estimateurs performants pour relever deux dé-
fis majeurs en apprentissage statistique : la parcimonie et la robustesse face a la contamination
adversaire et aux données & distribution & queue lourde. Nous abordons le probléme des don-
nées parcimonieuses en proposant une version régularisée de l'estimateur ERM. Ensuite, nous
nous attaquons au probléme de la robustesse en introduisant un estimateur basé sur le principe
de la "Médiane des Moyennes" (MOM), que nous nommons l'estimateur minmax MOM. Cet
estimateur permet de faire face au probléme de la robustesse et peut étre utilisé avec n’importe
quelle fonction de perte, y compris la fonction de perte linéaire. Nous présentons également
une version régularisée de l'estimateur minmax MOM. Pour chacun de ces estimateurs, nous
sommes en mesure de fournir un “excés de risque” ainsi que des bornes d’estimation, en utilisant
deux outils clés : les points fixes de complexité locale et les équations de courbure de la fonc-
tion d’excés de risque. Afin d’illustrer la pertinence de notre approche, nous appliquons notre
méthodologie & cing problémes classiques en machine learning, pour lesquels nous améliorons
I’état de art.

keywords: Programmation Semi-Définie, Minimisation du Risque Empirique, Sparsité, Statis-
tique robuste.
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Abstract

Community detection, phase recovery, signed clustering, angular group synchronization, Max-
cut, sparse PCA, the single index model, and the list goes on, are all classical topics within
the field of machine learning and statistics. At first glance, they are pretty different problems
with different types of data and different goals. However, the literature of recent years shows
that they do have one thing in common: they all are amenable to Semi-Definite Programming
(SDP). And because they are amenable to SDP, we can go further and recast them in the clas-
sical machine learning framework of risk minimization, and this with the simplest possible loss
function: the linear loss function. This, in turn, opens up the opportunity to leverage the vast
literature related to risk minimization to derive excess risk and estimation bounds as well as
algorithms to unravel these problems. The aim of this work is to propose a unified methodology
to obtain statistical properties of classical machine learning procedures based on the linear loss
function, which corresponds, for example, to the case of SDP procedures that we look as ERM
procedures. Embracing a machine learning view point allows us to go into greater depth and
introduce other estimators which are effective in handling two key challenges within statistical
learning: sparsity, and robustness to adversarial contamination and heavy-tailed data. We at-
tack the structural learning problem by proposing a regularized version of the ERM estimator.
We then turn to the robustness problem and introduce an estimator based on the median of
means (MOM) principle, which we call the minmax MOM estimator. This latter estimator ad-
dresses the problem of robustness and can be constructed whatever the loss function, including
the linear loss function. We also present a regularized version of the minmax MOM estimator.
For each of those estimators we are able to provide excess risk and estimation bounds, which
are derived from two key tools: local complexity fixed points and curvature equations of the
excess risk function. To illustrate the relevance of our approach, we apply our methodology
to five classical problems within the frame of statistical learning, for which we improve the
state-of-the-art results.

keywords: Semi-Definite Programming, Empirical Risk Minimization, Sparsity, Robust statis-
tics.
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CHAPTER 1

Introduction

La détection de communautés sur des graphes, la récupération de phase, le clestering signé, la
synchronisation angulaire, le probléme de la coupe maximale, la sparse PCA parcimonieuse ou
encore le modéle a indice simple, sont tous des sujets classiques en machine learning et en statis-
tiques. A premiére vue, ce sont des problémes sensiblement différents, avec différents types de
données et des objectifs distincts. Cependant, tout comme de nombreux autres problémes, il
a récemment été montré qu’ils pouvaient s’exprimer sous la forme de problémes d’optimisation
semi-définie positive (SDP). La SDP est une classe de problémes d’optimisation convexe général-
isant la programmation linéaire aux problémes linéaires sur des matrices semi-définies positives
(Tobp, 2001), (WOLKOWICZ, SAIGAL, & VANDENBERGHE, 2012), (BOoYD & VANDENBERGHE,
2004), et qui s’est avérée étre un outil performant dans ’approche computationnelle de prob-
lémes difficiles en machine learning, en optimisation combinatoire, en optimisation polynomiale,
en data mining, en statistiques en grande dimension ou encore dans la formalisation de solu-
tions numériques d’équations aux dérivées partielles. Afin s’en savoir un peu plus, nous nous
plongeons, dans la suite de cette section, dans les fondements de l'optimisation SDP.

1.1 CONTEXTE HISTORIQUE DES ESTIMATEURS SDP

L’optimisation SDP est une classe de problémes d’optimisation dont fait partie la program-
mation linéaire, et peut étre définie comme ’ensemble des problémes d’optimisation sur des
ensembles de matrices symétriques (resp. hermitiennes) semi-définies positives, dont la fonc-
tion de perte est linéaire et les contraintes sont affines, c’est-a-dire I’ensemble des problémes
d’optimisation de la forme

%2§(<A,Z>:<Bj,Z>:bj pourjzl,...,m), (1.1)
ou les matrices A, By, ..., B, sont fixées. Les SDP sont des problémes de programmation

convexe qui peuvent étre résolus en temps polynomial lorsque I’ensemble de contraintes est
compact, et elles jouent un role primordial dans la résolution d’un grand nombre de problémes
convexes et non convexes, ou elles apparaissent souvent comme une relaxation convexe du
probléme initial (ANJOS & LASSERRE, 2011).

1.1.1 LES DEBUTS HISTORIQUES

La premiére utilisation de la programmation semi-définie positive en statistiques remonte &
ScOBEY and KABE (1978) et FLETCHER (1981). La méme année, Shapiro fait usage d’optimisation
SDP pour résoudre un probléme d’analyse factorielle (SHAPIRO, 1982). L’étude des propriétés
mathématiques des estimateurs SDP a ensuite pris de 'ampleur avec 'introduction des inégal-
ités matricielles linéaires (LMI) et de leurs nombreuses applications en théorie du controle, en
identification de systémes et en traitement du signal. Le livre de BoyD, EL GHAOUI, FERON,
and BALAKRISHNAN (1994) est la référence standard pour ce type de résultats, principalement
obtenus dans les années 90.
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1.1.2 LA RELAXATION SDP DU MAX-CUT PAR GOEMANS-WILLIAMSON ET SON HERITAGE

Un tournant notable est franchi avec la publication de GOEMANS and WILLIAMSON (1995), o
I'optimisation SDP permet d’obtenir un ration d’approximation de 0.87 au probléme du MAX-
CuT, qui est réputé comme étant NP-difficile. Le probléme du MAX-CUT est un probléme de
clustering qui, partant d’un graphe G, consiste & trouver une partition SUS® de ’ensemble V' de
ses neeuds telle que la somme des poids des arétes entre S et S€ soit maximale. Dans GOEMANS
and WILLIAMSON (1995), les auteurs abordent ce probléme combinatoire difficile en utilisant le
méthode désormais connue sous le nom de relazation SDP de Goemans-Williamson, et utilisent
la factorisation de Choleski de la solution optimale de cette SDP pour produire un schéma aléa-
toire atteignant la borne de 0.87 en espérance. De plus, ce probléme peut étre considéré comme
une premiére utilisation du Laplacien d’'un graphe pour obtenir un bi-clustering optimal, et
constitue ainsi le premier chapitre d’une longue et fructueuse relation entre le clustering, les
plongements les Laplaciens de graphes. Les estimateurs SDP ont permis d’approcher la solution
d’autres problémes combinatoires difficiles, notamment le probléme de coloration de graphes
(KARGER, MOTWANTI, & SUDAN, 1998), et le probléme de satisfaction de contraintes (GOEMANS
& WILLIAMSON, 1994, 1995). Ces résultats ont ensuite été synthétisés dans GOEMANS (1997),
LEMARECHAL, NEMIROVSKII, and NESTEROV (1995) et WOLKOWICZ (1999). Le schéma aléa-
toire introduit par Goemans et Williamson a ensuite été amélioré pour étudier des problémes
quadratiques quadratiquement contraints (QCQP) plus généraux, notamment dans NESTEROV
(1997) et ZHANG (2000), et développé davantage dans HE, Luo, NIE, and ZHANG (2008). De
nombreuses applications au traitement du signal sont abordées dans OLSSON, ERIKSSON, and
KAHL (2007) et MA (2010); une implémentation spécifique & complexité réduite sous la forme
d’un probléme de minimisation des valeurs propres et son application & la récupération et au
débruitage des moindres carrés binaires est présentée dans CHRETIEN and CORSET (2009).

1.1.3 RELAXATION DES PROBLEMES D’APPRENTISSAGE AUTOMATIQUE ET D’ESTIMATION
STATISTIQUE EN HAUTE DIMENSION

Les applications de la SDP aux problémes liés & I’apprentissage automatique sont plus récentes
et ont probablement commencé avec la relaxation SDP de K-means dans PENG and X1A (2005)
et PENG and WEI (2007a), puis dans AMES (2014). Cette approche a ensuite été améliorée
en utilisant une analyse statistique plus fine par ROYER (2017) et GIRAUD and VERZELEN
(2018). Des méthodes similaires ont également été appliquées a la détection de communautés
dans HAJEK, WU, and XU (2016) ou ABBE, BANDEIRA, and HALL (2015), et pour la reconsti-
tution partielle, dans GUEDON and VERSHYNIN (2016). Cette derniére approche a également
été réutilisée via la technique du noyau pour le clustering de nuages de points dans CHRE-
TIEN, DOMBRY, and FAIVRE (2016). Une autre utilisation de la SDP en machine learning
est I'utilisation extensive des estimateurs des moindres carrés pénalisés par la norme nucléaire
comme substitut & la pénalisation par le rang dans les problémes de recouvrement de matri-
ces de rang faible, tels que la complétion de matrice dans les systémes de recommandation,
le compressed sensing de matrices, le traitement du langage naturel et la tomographie d’état
quantique; ces sujets sont étudiés dans DAVENPORT and ROMBERG (2016). Des liens avec le
design de chaines de Markov & convergence rapide ont également été montrés dans SUN, BOYD,
X1A0, and DIACONIS (2006).

Dans une autre direction, A. Singer et ses collaborateurs ont récemment promu ['utilisation de
la relaxation SDP pour ’estimation sous invariance de groupe, un domaine florissant trouvant
de nombreuses applications (A. S. BANDEIRA, CHARIKAR, SINGER, & ZHU, 2014; SINGER,
2011). Des relaxations SDP ont également été mises en ceuvre dans CUCURINGU (2015) dans le
contexte de la synchronisation sur Zs dans des réseaux multiplex signés avec contraintes, et dans
CUCURINGU (2016) dans le cadre du ranking a partir de comparaisons par paires inconsistentes
et incomplétes, ot une relaxation basée sur la SDP de la synchronisation angulaire sur SO(2)



CHAPTER 1. INTRODUCTION 3

permet ’état de art de la littérature du ranking. La récupération de phase a 1’aide de la SDP a
été étudiée par exemple dans WALDSPURGER, D’ ASPREMONT, and MALLAT (2015) et DEMANET
and HAND (2014). Une extension au regroupement multipartite basé sur la SDP a ensuite été
proposée dans KARGER et al. (1998). D’autres applications importantes de la SDP comprennent
la théorie de I'information (LOVAsz, 1979), l'estimation dans les réseaux électriques (LAVAEI
& Low, 2011), la tomographie quantique (GrRoOSs, Liu, FLAMMIA, BECKER, & EISERT, 2010;
Mazz10TTI, 2011) et I'optimisation polynomiale via des relaxations d’estimateurs des moindres
carrés (BLEKHERMAN, PARRILO, & THOMAS, 2012; LASSERRE, 2015). Cette derniére méthode
a été récemment appliquée a des problémes statistiques dans DE CASTRO, GAMBOA, HEN-
RION, HESS, LASSERRE, et al. (2019), HOPKINS (2018) et DE CASTRO, GAMBOA, HENRION,
and LASSERRE (2017). L’extension au domaine des nombres complexes, avec <~, > désignant le
produit scalaire hermitien, a été & ce jour moins étudiée mais présente de nombreuses applica-
tions intéressantes et produit des algorithmes efficaces (GILBERT & J0sz, 2017; GOEMANS &
WILLIAMSON, 1995).

1.2 LES SDPS EN TANT QUE MINIMISEURS DU RISQUE EMPIRIQUE

Le point d’intérét ici réside dans le fait que bon nombre des problémes mentionnés ci-dessus
peuvent étre reformulés dans le cadre, classique en machine learning, de la minimisation du
risque (VAPNIK, 2000). Il est donc possible de tirer parti de la vaste littérature lice a la
minimisation du risque pour en obtenir ’excés de risque, des bornes d’estimation ainsi que des
algorithmes efficaces pour traiter ces problémes. De plus, il apparait que ces différents problémes
entrent tous dans le cadre défini par une fonction de perte trés simple, sans doute la plus simple
: la fonction de perte linéaire. Cette observation est est la clef de voite de ce travail : plusieurs
estimateurs introduits récemment dans certains des problémes cités précédemment sont en fait
des minimiseurs du risque empirique (ERM) pour des fonctions de perte linéaires. Ils peuvent
donc étre analysés en utilisant toute la machinerie (BOUCHERON, LUGOSI, & MASSART, 2013a;
KovrrcHINSKIL, 2011a; VAPNIK, 2000) développée au cours des quarante derniéres années pour
I'ERM dans ce cadre trés spécifique de la fonction de perte linéaire.

1.2.1 RAPPELS SUR LES ERM

Soient H un espace de Hilbert et ' C H un ensemble de paramétres. On considére une fonction
¢: Hx H — R telle que {(Z, X) := £z(X) quantifie 'erreur commise lors de 'estimation de
Z par X. Soit P une distribution de probabilité sur H. Le risque d’'un paramétre Z € F est
défini par Ply := Ex.p[lz(X)]. Lorsqu’il existe, nous nous intéressons a la valeur de Z qui
minimise ce risque, que nous appelons un oracle :

Z* € argmin £z (X).

ZeF
Pour estimer Z*, supposons que nous disposions d’un certain nombre de points X1,..., Xy € H
distribués selon la distribution P. Une idée naturelle est alors d’estimer chaque P¢y par sa
valeur empirique Pylz := (1/N) Zfil l7(X;). Cela nous donne l'estimateur suivant pour
Poracle Z* :
ZERM € argmin Pnly (12)
ZeF

qui n’est autre que 'illustre estimateur du minimiseur du risque empirique (ERM).

1.2.2 CADRE MATHEMATIQUE

Nous exposons ici le formalisme mathématique qui sous-tend notre approche. Le cadre général
dans lequel nous nous placons est le suivant. Soient A une matrice aléatoire dans R¥*? et
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C C R¥4 un ensemble de contraintes (plus tard, nous examinerons également le cas des nombres
complexes). L’objet que nous souhaitons estimer, par exemple le vecteur d’appartenance a une
communauté dans le cas de la détection de communautés, est lié & un oracle défini par

Z* € argmax (EA, Z), (1.3)
zecC

ou (A,B) = Tr(ABT) = Y A;;B;; lorsque A, B € R%*? et on la contrainte C est de la
forme C = {Z e R™" : Z = 0,(Z,B;) = b;,j = 1,...,m}, ou By,..., B, € R"*". Nous
nous intéressons & Z* car son estimation nous permettra ensuite de récupérer ’objet qui nous
importe vraiment (par exemple, en considérant un vecteur singulier associé a la plus grande
valeur singuliére de Z*). A cette fin, nous considérons I'estimateur naturel suivant de Z* donné
par

Z € argmax (A, Z), (1.4)
zeC
qui est simplement obtenu en remplacant la quantité non observée EA par I'observation A. Il
s’agit donc d’un probléme d’optimisation semi-définie positive (SDP), selon la définition que
nous en avons donnée précédemment.

Notez que dans de nombreuses situations, Z* n’est pas ’objet que nous souhaitons estimer, mais
il existe une relation directe entre Z* et cet objet. Par exemple, considérons le probléme de dé-
tection de communautés sur un graphe, ot 'objectif est de récupérer le vecteur d’appartenance
aux communautés 8* € {—1,1}¢ de d nceuds. Ici, lorsque la conatrainte C est bien choisie, il
existe une relation étroite entre Z* et 3*, donnée par Z* = 5*(3*)". Nous avons donc besoin
d’une étape finale pour estimer $* & partir de Z , par exemple en considérant un vecteur propre
dominant 3 de Z, puis en utilisant le théoréme ‘sin(©)’ de Davis-Kahan (C. DAVIS & KAHAN,
1970; Yu, WANG, & SAMWORTH, 2015) afin de controler I'estimation de 5* par B a partir de
celle de Z* par Z.

Le point de vue que nous adoptons consiste & voir Z comme une procédure de minimisation du
risque empirique (ERM) construite sur une seule observation A, ou la fonction de perte est la
fonction linéaire Z € C — €z(A) = —(A, Z), et oracle Z* est celui qui minimise effectivement
la fonction de risque Z € C — Elz(A) sur C. Notre méthodologie met au jour une approche
générale caractérisée par deux éléments cruciaux : la courbure locale de la fonction de risque
et le calcul d’un point fixe de complexité local.

1.3 EXEMPLES ISSUS DE LA LITTERATURE

La raison d’étre notre intérét pour 1’étude des propriétés statistiques des estimateurs ERM
avec fonction de perte linéaire réside dans le fait que la littérature du machine learning regorge
de problémes qui peuvent étre modélisés sous cette forme. Nous présentons ici une liste de
ces problémes, qui n’est en aucun cas exhaustive. Pour chacun des problémes présentés, nous
explicitons la valeur de la matrice A et de la variable aléatoire X qui nous permettent de nous
conformer au cadre défini dans la Section

1.3.1 DETECTION DE COMMUNAUTES

Les estimateurs ERM avec une fonction de perte linéaire peuvent étre utilisés pour traiter le
probléme de la détection de communautés sur des graphes. Afin d’illustrer cela, nous consid-
érons ici le cadre du Stochastic Block Model (SBM), tel qu’il est présenté dans GUEDON and
VERSHYNIN (2016) ou FEI and CHEN (2019b), et que nous rappelons ci-dessous. Considérons
un ensemble de sommets V = {1,--- ,d}, et supposons qu’il est partitionné en K communautés
C1,- -+ ,Cxk de tailles arbitraires |Cy],- - - , |Ck|. Pour toute paire de noeuds 4, j € V, nous notons
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i ~ j lorsque i et j appartiennent & une méme communauté, et i ¢ j si i et j dans le cas
contraire. Pour chaque paire (7,j) de noeuds de V', nous tragons une aréte entre ¢ et j avec
une probabilité fixe p;; indépendamment des autres arétes. Nous supposons qu’existent des
nombres p et g tels que 0 < g < p < 1, de sorte que p;; > psii~jeti#j, pj=1sii=7
et p;; < ¢ sinon. Nous notons A = (A; j)1<i,j,<d la matrice (symétrique) d’adjacence observée
telle que, pour tout 1 <14 < j < d, A;; est distribué selon une loi de Bernoulli de parameétre p;;.
La structure de communauté d’un tel graphe est capturée par la matrice d’affiliation Z € R4*9,
définie par Zij =1si1~ 7, et Zij = 0 sinon. L’objectif est de reconstruire Z a partir de
Pobservation de A. Le Lemme 7.1 de GUEDON and VERSHYNIN (2016) montre que la matrice
d’affiliation Z est donnée par 'oracle suivant :

d
7" € argmax(E[A], Z),  C:=QZeR™" Z2=0,Z>0,diag(Z) < 1s, Y Zij <X

zec i,j=1

ol A = Zj.j:l Zij = Zszl |Ci|? représente le nombre d’éléments non nuls dans la matrice
d’affiliation Z. Seule la matrice A étant observée, les auteurs considérent l’estimateur suivant
pour Z* :

7 e argmax<A, Z>.
zecC
D’un ‘point de vue machine learning’, cet estimateur est un ERM pour la fonction de perte
lingaire Z — £z(A) = —<A,Z>, construit a partir d’une seule observation de la matrice
aléatoire A. Cette observation constitue notre point de départ dans ’analyse du probléme de
détection de communautés avec tous les outils développés dans la section

1.3.2 CLUSTERING DE VARIABLES

BUNEA, GIRAUD, Luo, ROYER, and VERZELEN (2018) utilisent des estimateurs SDP pour
résoudre le probléme du clustering de variables. Ce probléme consiste & regrouper en clusters
les composantes similaires d'un vecteur X € R?, c’est-a-dire a trouver une partition G =
{G1,...,Gx}de{],...,d} quisépare les composants de X. Pour ce faire, les auteurs observent
N copies indépendantes X1, ..., Xy de X et se placent dans le cas ot la matrice de covariance %
de X suit un modeéle par bloc. Afin de décrire ce modéle, nous définissons la matrice d’affiliation
Q € RP*K associée a une partition G telle que Qqp = 1{aeq,y- On dit alors que X suit un
G-modéle exact de covariance par bloc lorsqu’elle se décompose sous la forme ¥ = QCQT + T,
ou C est une matrice symétrique K x K et I' est une matrice diagonale d x d. Pour une partition
donnée G, nous introduisons également la matrice d’affiliation correspondante Z* € R%*? définie
par Z7; = |Gk|*1]l{i et j appartiennent au méme groupe Gy }- Il existe une correspondance
bijective entre les partitions G et leurs matrices d’affiliation, de sorte que rechercher G est
équivalent a rechercher Z*. En utilisant ’algorithme des K-means et une relaxation de celui-ci
donnée dans PENG and WEI (2007b), les auteurs montrent que la meilleure partition pour les

X; peut étre estimée par celle correspondant & la matrice d’appartenance suivante :

Z cargmax(A, Z), Ci={ZeR™:7=0,2>0,> Zj;=1¥Tr(Z)=K
zZeC -

J
ou A = (1/N) Zil X;X,;' est la matrice de covariance empirique des X;. Dans le cas
non-bruité, nous aurions Z* € argmaxZ€C<E[A],Z>. Encore une fois, de notre point de
vue, lestimateur Z peut étre considéré comme un ERM pour la fonction de perte linéaire
Z = lz(A) = —<A, Z >, construit a partir de ’observation de A, et peut donc analysé selon
notre méthodologie.
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1.3.3 SYNCHRONISATION ANGULAIRE

Le probléme de la synchronisation angulaire consiste a estimer d angles inconnus 6y, -- , 0y
(& un delta de décalage global prés), étant donné un sous-ensemble bruité de leurs différences
mutuelles §;; = 6; — 0;. Ce probléme est étudié dans A. BANDEIRA, BOUMAL, and SINGER
(2016). Les auteurs se placent dans la cas ou ils observent d(d — 1)/2 mesures de la forme
suivante :

a;; = et0ii +e€, pourl<i<j<d.

Ils supposent que les (€;;)i<; sont des variables complexes gaussiennes i.i.d. Le probléme peut
étre reformulé sous la forme suivante :

A=XXT +oW

ot X € C¢ défini par X; = €%, W étant une matrice de Wigner complexe et o > 0 étant la
variance du bruit. L’objectif est alors de reconstruire le vecteur z* = (e'%9)%_, , dont I'estimateur
du maximum de vraisemblance est, & une rotation globale de ses coordonnées prés, la solution
unique du probléme de maximisation suivant :

argmax {i‘TEA CC}, oun ¢&:= {x € C: |z;| = 1 pour tous les i = 1...d}
€€

En remarquant que £ = {Z € H,, : Z = 0,diag(Z) = 14,rank(Z) = 1}, les auteurs construisent

la formulation SDP suivante du probléme, aprés avoir supprimé la contrainte de rang :

Z* € argmin—(E[A4],Z), ou C:={Z€H,:Z=0,diag(Z) =14} (1.5)
zec
Ils montrent que dans ce cadre, z* peut étre obtenu & partir de Z* en tant que son vecteur
propre dominant unitaire. Cependant, E[A] n’est pas connu et seulement observé a travers A.
Z* est alors approché par ’estimateur naturel suivant :

Ze argmax(A,Z), ou C:={Z€H,:Z = 0,diag(2) =14}
zecC
Cela constitue donc un autre exemple d’estimateur ERM basé sur 'observation de la matrice
A et la fonction de perte linéaire Z — (z(A) = —(A, Z).

1.3.4 Max-Cut

Dans HoNG, LEE, and WEI (2021), les auteurs proposent un estimateur SDP pour traiter
le probléeme du MaAX-CuT. Ce probléme est classique en théorie des graphes, et consiste a
considérer un graphe consitué des sommets V' := {1,...,d} et des arétes F C V x V, et a
déterminer une partition SUS = V de ses sommets telle que le nombre d’arétes connectant un
sommet de S & un sommet de S soit maximal parmi toutes les partitions possibles. La plupart du
temps, seule une version partielle ou bruitée A € {0,1}9*? de la matrice d’adjacence du graphe
est effectivement observée. On suppose alors, en général, que la valeur réelle de la matrice
d’adjacence est égale a I'espérance EA de l'observation A. La matrice A est donc considérée
comme notre seule donnée, a partir de laquelle nous souhaitons établir une partition optimale
S* du graphe original. Le choix d'une partition S est équivalent au choix de z € {—1,1}¥, et
il est démontré dans GOEMANS and WILLIAMSON (1995), par un argument de ‘lifting’, quune
partition optimale peut étre obtenue en considérant le vecteur propre dominant d’une solution
du probléme d’optimisation suivant :

7* ¢ argmin (<E[A], Z):Z = 0,2y =1 Vi, rank(Z) = 1) .
ZeRdxd
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Ensuite, en utilisant une relaxation SDP en supprimant la contrainte de rang, nous retrouvons
les procédures classiques de relaxation SDP pour le MAX-CUT introduites par Goemans et
Williamson :

7 € argmin(4,Z), on C:i= {Z eR 7 -0, Zy =1 Vi}
zeC

Il s’agit effectivement d’un estimateur ERM basé sur I'observation de A et de la fonction de

perte linéaire Z — (z(A) := (A, Z) sur un ensemble convexe.

1.3.5 RECUPERATION DE PHASE

Le probléme précédent est proche de celui de la récupération de phase, qui vise & reconstituer
un vecteur x € C% a partir de 1'observation bruitée de I'amplitude de N mesures linéaires
aléatoires : X = |Bx| € RV, ott B € CN*4 est une matrice aléatoire. Dans WALDSPURGER,
D’ASPREMONT, and MALLAT (2013), les auteurs utilisent une stratégie qui consiste a séparer la
phase de 'amplitude et & optimiser uniquement les valeurs des variables de phase. Dans le cas
non-bruité, iels écrivent z = Btdiag(X)u, ott u € CV est un vecteur de phase et Bt € CV*V
est le pseudo-inverse de B. Dans ce formalisme, iels montrent que trouver z € C¢ tel que
|Bx| = X revient a résoudre le probléme suivant :

A zaurgmin<IE[A],zZT>7 £ = {z eCV: |z =1,Vie [N]}
z€E

ot A:= (XX ")o(Iy — BBT) (et o est le multiplicateur matriciel composante-par-composante).

T

En écrivant Z = 2z ', ce probléme est équivalent au suivant :

wmin ((E[A], Z),Z = 0, Zy; = Vi, rank(Z) = 1)

qui est classiquement relaxé en abandonnant la contrainte de rang pour aboutir a I’oracle suivant

Z* axgmin(E[A], Z) , for C = {Z ERVN . 7 -0,Z;=1Vic [N]}
zZec

La valeur optimale de z* est ensuite obtenue comme le vecteur propre dominant de ’oracle Z*.

Un estimateur de Z* & partir de 'observation de A est alors :

7€ argmin<A,Z>,
zeC
ce qui est un probléme d’optimisation SDP que nous considérons comme un ERM pour la
fonction de perte lin¢aire Z — £ (A) := (A, Z).

1.3.6 PCA PARCIMONIEUSE

L’analyse en composantes principales (ACP) est I'un des algorithmes de réduction de dimension
les plus fondamentaux ainsi que I'un des outils de visualisation de données les plus utilisés.
Etant donné un ensemble de données X1,..., Xn € R%, 'objectif de PACP est de trouver les
composantes principales (ej, ..., eq) dans R? (ou simplement les k premiéres (eq, ..., ex)) telles
que la plus grande variance par une certaine projection scalaire des X; sur les e; soit atteinte
sur la premiére coordonnée e, la deuxiéme plus grande variance sur la deuxiéme coordonnée
e2, et ainsi de suite. L’ACP a été largement étudiée et peut étre efficacement exécutée par des
algorithmes de SVD tronqués. Cependant, les composantes sont un mélange de caractéristiques
qui peuvent étre sans signification lorsque ces caractéristiques sont de natures différentes, ou
lorsque I’on se trouve dans la cadre de la grande dimension - c’est-a-dire lorsque d >> N. C’est
14 que ’ACP parcimonieuse intervient : I'objectif est de rechercher des composantes principales
qui ne sont un mélange que d’un petit nombre k de caractéristiques.
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Soient donc X1,..., Xy € R? des points de données aléatoires supposés indépendants et dis-
tribués selon une distribution P. Le probléme consistant a trouver la premiére composante
principale éparse a été résolu dans (JOHNSTONE & Lu, 2009a; JOHNSTONE & Lu, 2009b), o
il est montré qu’elle peut étre exprimée comme 'oracle suivant :
v* €  argmax |IE[A]v]|2,
lvll2=1, [lvllo<k

ott E[A] := Ex.p[X X "] est la matrice de covariance des X;. Il peut étre démontré, et nous le
ferons plus en détail ultérieurement, que v* tel que défini peut étre obtenu comme le vecteur
propre principal de la solution du probléme d’optimisation

Z* € max ((E[A], Z), Z=0,Te(Z) =1,card(Z) < k2) ,

qui est classiquement relaxé en supprimant la contrainte de cardinalité pour mener & ’oracle
suivant :

7* € argmax(E[A], Z), on C:= {Z e R4 Z = 0, Te(Z) = 1} .

zeC

Puisque nous n’observons pas E[A] mais seulement les X, nous considérons I’estimateur suivant
pour loracle :

7 e argmax<A, Z>,

zecC

ou A := (1/N) Zfil X;X,", qui est alors un estimateur ERM basé sur la fonction de perte
linéaire Z — (z(A) = —(A,Z).

1.3.7 LE MODELE MONOVARIE PARCIMONIEUX

La situation est la suivante : nous considérons un modéle semi-paramétrique oli une sortie
Y € R est générée a partir d’'une entrée X € R? via une fonction de ‘liaison’ de la maniére
suivante :

Y =7 ((X,ﬁ*)) te

Ici, B* € RY est supposé étre un vecteur unitaire k-parcimonieux, f : R — R est une fonction
mesurable univariée inconnue, et € est un bruit généralement supposé indépendant de ’entrée.
Les composantes de X sont supposées étre i.i.d. avec une fonction de densité donnée py. La
fonction de densité jointe de X est alors p = ®¢_,py par rapport & la mesure de Lebesgue. Nous
introduisons la fonction de score univariée s : x € R — R par s(z) = —pj(x)/po(x), définie
pour po-presque tous les x € R. A partir de cela, la premiére et la deuxiéme fonction de score
associées & p sont définies comme suit :

S(X) = (s(Xy)) €R? et

1<t<d

T(X) 1= S(X)S(X)T — ding ((5(X0) o,

Le travail de YANG, BALASUBRAMANIAN, and L1U (2018) se concentre sur ce probléme. Les
auteurs montrent que le paramétre S* peut étre obtenu comme le vecteur propre principal de
I'oracle suivant :

Z* € argmin—(E[A],Z), C:={0=Z =2 IzetTr(Z) =1}
zeC

ou A:=YT(X). Cet oracle peut alors étre estimé comme suit :
Z € argmin <—<A, Z)+ )\||Z||1)
zec

ce qui est donc un estimateur ERM régularisé basé sur I'observation A et la fonction de perte
linéaire Z — 05 (A) = —<A,Z>.
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1.3.8 APPRENTISSAGE D’UNE METRIQUE DE DISTANCE

Les estimateurs SDP peuvent également étre utilisés dans ’apprentissage de métriques de dis-
tance, comme cela est fait dans XING, NG, JORDAN, and RUSSELL (2002). L’apprentissage des
distances est particuliérement important, car le choix d’une métrique correctement adaptée a
I’espace des données est crucial pour permettre ’acuité de nombreux algorithmes d’apprentissage,
en particulier en clustering, ot il est essentiel de prendre pleinement en compte les relations
existant entre les données. Considérons un ensemble de points (X;),_; n € R? que nous ob-
servons partiellement ou de maniére bruitée. Maintenant, considérons le probléme consistant &
apprendre des X; une métrique de distance de la forme

dz(X,Y) = /T ((X - V)(X - Y)T2),
ou Z > 0 est une matrice semi-définie positive. Notons que, puisque I'on a
Tr(X - Y)(X = Y)'2Z) = | 2/2(X = Y)|3,

apprendre une telle métrique revient a effectuer une mise a 1’échelle des données en remplagant
chaque point X par Z'/2X puis & appliquer la métrique euclidienne standard aux données
ainsi mises & 1’échelle. Supposons maintenant que nous souhaitons que les X; soient aussi
proches que possible les uns des autres pour cette métrique. Cela nous améne a résoudre
le probléme mingzyq Zgj:l dZ(X,-,Xj)z. Ce dernier probléme étant trivialement résolu par
0, supposons que nous ayons connaissance de M points (Y;);=1. s, distincts des X;, pour
lesquels nous souhaitons que la contrainte suivante soit vérifiée : 2%:1 dz(Y;,Y;) > 1. Cela
empéche que la fonction d ne réduise I’ensemble de données & un seul point. Définissons alors
A= Zi\fj:l (Xi — Xj) (XZ- — Xj)T. Dans le cas non-bruité, la matrice Z* que nous recherchons

peut alors étre obtenue comme une solution du probléme suivant :

M
7* € argmin(E[A4], Z),  C:= ZeRdXd:ZEO,Z<(Yz‘—yj)(Yi_Yj)T7Z>l/221 ;

Zec Py

ot 'on peut montrer que I'ensemble C est convexe (voir ’Annexe 7.1). En pratique, 'observation
A est une version bruitée de E[A], et nous remplacons donc E[A] par A pour obtenir un esti-
mateur de Z* :

Z € argmin(A, Z)
Zec

qui est & nouveau un estimateur ERM pour la fonction de perte linéaire Z — (5 (A) = (A, Z),
construit & partir d’'une observation de la matrice aléatoire A.

1.3.9 TRANSPORT OPTIMAL BRUITE

Soient X = (z1,...,2n) et Y = (y1,...,yn) deux ensembles de points dans R%. Le probléme
du transport optimal quadratique (ou probléme d’assignation quadratique) est défini par la
distance de Wasserstein W5 comme suit :

N
i=1

ou Gy est I'ensemble de toutes les permutations de [N]. Trouver une solution & (2.0) est un
probléme classique en transport optimal qui peut étre reformulé comme un probléme matriciel

Z* € argmin Y _ |lz; — y;13 P,
zeC 4j
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ot C est 'ensemble de toutes les matrices bi-stochastiques N x N (c’est-a-dire ’ensemble des
matrices & composantes positives dont la somme est égale a 1 le long de chaque ligne et de
chaque colonne). En effet, si 7* est une solution optimale de (2.0), alors pour tout ¢ € [N],
Z} iy =1et Z; =0 lorsque j # 77 (i).

Supposons maintenant que nous n’observions pas exactement les points de X’ et de ), mais que
nous n’ayons accés qu’a une version bruitée de ces points : pour tout i € [N], X; = z; + 0G;
et Y; =y; + oG, oo >0 et (G, G)N., sont des vecteurs gaussiens standard i.i.d. de R%. Le
probléme d’assignation quadratique pour ces deux ensembles bruités de points est une solution
du probléme suivant :

Z € argmin(4, Z) ot A = (||Xz‘ - YJH%)

Zec 1<i,j<N’

et il peut étre démontré que dans le cas non-bruité, Z* € argmin ;. <EA, Z > Le probléme du
transport optimal quadratique bruité vise a identifier une transition de phase nette, c’est-a-dire
une valeur o* telle que 1) si 0 < o*, alors 7 = Z* avec grande probabilité et 2) pour tous
o > o*, Z # Z* avec une probabilité supérieure a 1/2.

1.4 CONTRIBUTIONS

Comme le montrent les exemples exposés ci-dessus, qui confortent nos déclarations précédentes,
I'étude générale des fonctions de perte linéaires en machine learning présente un réel intérét.
L’objectif de cette thése est de proposer une méthodologie unifiée pour obtenir les propriétés
statistiques des procédures classiques en machine learning basées sur la fonction de perte
linéaire, telles que les procédures SDP introduites ci-dessus que nous considérons désormais
comme des procédures ERM. Le cadre général est celui défini précédemment dans la section

. Cependant, certains problémes reposent sur une structure particuliére, telle que la parci-
monie, et d’autres sont confrontés a 1’écueil de la robustesse. Pour ces problémes, un ERM n’est
pas la bonne réponse. Adopter le point de vue du machine learning nous permet d’aller plus
loin en introduisant d’autres estimateurs qui se trouvent étre efficaces pour relever ces deux
défis cruciaux en apprentissage statistique. Nous abordons le probléme de ’apprentissage struc-
turel en proposant une version régularisée de cet estimateur ERM, en ajoutant une fonction de
régularisation a la fonction objectif dans (2.1). Ensuite, nous nous tournons vers le probléme
de la robustesse et introduisons un estimateur basé sur le principe de la médiane des moyennes
(MOM), qui a été introduit dans LECUE and LERASLE (2020) et que nous appelons le minimax
MOM. Cet estimateur permet de surmonter le probléme de la robustesse et peut étre construit
quelle que soit la fonction de perte. En particulier, il s’adapte & notre configuration ou ’on
considére la fonction de perte linéaire. Nous montrons que les estimateurs ainsi obtenus sont
robustes & la contamination des données ainsi qu’aux données a queue lourde. Tout comme
pour 'estimateur ERM, nous présentons une version classique et une version régularisée de
Pestimateur minimax MOM dans cette configuration.

Pour chacun des estimateurs précédemment évoqués, nous sommes en mesure de proposer des
garanties statistiques lorsque E[A] n’est observée que partiellement a travers A. En particulier,
notre approche conduit & de nouveaux taux de convergence non-asymptotiques ou & des pro-
priétés de reconstruction exacte pour une large gamme d’estimateurs se conformant a notre
cadre. Ensuite, afin de montrer la pertinence de notre approche, nous appliquons ces bornes
générales & cinq problémes : le clustering signé, la synchronisation angulaire, le probléme du
MAaAx-Cut, ’ACP parcimonieuse et le modéle a indice unique. En utilisant notre approche,
nous fournissons un excés de risque et des bornes d’estimation en guise de garanties statistiques
et améliorons 1’état de I’art pour ces cinq problémes.



CHAPTER 2

Introduction

Community detection, phase recovery, signed clustering, angular group synchronization, Max-
cut, sparse PCA, and the single index model are all classical topics in machine learning and
statistics. At first glance, they are pretty different problems with different types of data and
different goals. However, as well as many other problems, they have recently been shown to be
amenable to Semi-Definite Programming (SDP). SDP is a class of convex optimization prob-
lems generalising linear programming to linear problems over semi-definite matrices (TODD,
2001), (WOLKOWICZ et al., 2012), (BOoYD & VANDENBERGHE, 2004), and which was proved
to be an important tool in the computational approach to difficult challenges in automatic
control, combinatorial optimization, polynomial optimization, data mining, high-dimensional
statistics and the numerical solution to partial differential equations. Let us make a dig into
the foundations of SDP optimization.

2.1 HISTORICAL BACKGROUND OF SDP ESTIMATORS

SDP is a class of optimization problems which includes linear programming as a particular
case, and can be written as the set of problems over symmetric (resp. Hermitian) positive
semi-definite matrix variables, with linear cost function and affine constraints, i.e. optimization
problems of the form

A,Z):(Bj, Z) =bs for j=1,....m) 2.1
o ((A,2) : (B;. Z) = by for j=1.....m), (2.1)
where A, By,..., B, are given matrices. SDPs are convex programming problems which can

be solved in polynomial time when the constraint set is compact and it plays a paramount role
in a large number of convex and non-convex problems, for which they often appear as a convex
relaxation (ANJOS & LASSERRE, 2011).

2.1.1 EARLY HISTORY

Early use of Semi-Definite programming in statistics can be traced back to SCOBEY and KABE
(1978) and FLETCHER (1981). In the same year, Shapiro used SDP in factor analysis (SHAPIRO,
1982). The study of the mathematical properties of SDP then gained momentum with the
introduction of Linear Matrix Inequalities (LMI) and their numerous applications in control
theory, system identification and signal processing. The book of BOYD et al. (1994) is the
standard reference of these type of results, mostly obtained in the 90’s.

2.1.2 THE GOEMANS-WILLIAMSON SDP RELAXATION OF MAX-CUT AND ITS LEGACY

A notable turning point is the publication of GOEMANS and WILLIAMSON (1995), where SDP
was shown to provide a 0.87 approximation to the NP-Hard problem known as MAX-CuUT.
The MAX-CUT problem is a clustering problem on graphs which consists in finding two com-
plementary subsets S and S¢ of nodes such that the sum of the weights of the edges between
S and S¢ is maximal. In GOEMANS and WILLIAMSON (1995), the authors approach this dif-
ficult combinatorial problem by using what is now known as the Goemans-Williamson SDP

11
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relazation, and use the Choleski factorization of the optimal solution to this SDP in order to
produce a randomized scheme achieving the 0.87 bound in expectation. Moreover, this problem
can be seen as a first instance where the Laplacian of a graph is employed in order to provide
an optimal bi-clustering in a graph, and certainly represents the first chapter of a long and
fruitful relationship between clustering, embedding and graph Laplacians. Other SDP schemes
for approximating hard combinatorial problems are, to name a few, for the graph coloring prob-
lem (KARGER et al., 1998), and the satisfiability problem (GOEMANS & WILLIAMSON, 1994,
1995). These results were later surveyed in GOEMANS (1997), LEMARECHAL et al. (1995) and
Workowicz (1999). The randomized scheme introduced by Goemans and Williamson was
then further improved in order to study more general Quadratically Constrained Quadratic
Programmes (QCQP) in various references, most notably NESTEROV (1997), ZHANG (2000)
and further extended in HE et al. (2008). Many applications to signal processing are discussed
in OLSSON et al. (2007) and MA (2010); one specific reduced complexity implementation in the
form of an eigenvalue minimization problem and its application to binary least-squares recovery
and denoising is presented in CHRETIEN and CORSET (2009).

2.1.3 RELAXATION OF MACHINE LEARNING AND HIGH-DIMENSIONAL STATISTICAL
ESTIMATION PROBLEMS

Applications of SDP to problems related to machine learning is more recent and probably
started with the SDP relaxation of K-means in PENG and X1A (2005) and PENG and WEI
(2007a) and later in AMES (2014). This approach was then further improved using a refined
statistical analysis by ROYER (2017) and GIRAUD and VERZELEN (2018). Similar methods have
also been applied to community detection in HAJEK et al. (2016) or ABBE et al. (2015), and for
the weak recovery viewpoint, in GUEDON and VERSHYNIN (2016). This last approach was also
re-used via the kernel trick for the point cloud clustering in CHRETIEN et al. (2016). Another
incarnation of SDP in machine learning is the extensive use of nuclear norm-penalized least-
square costs as a surrogate for rank-penalization in low-rank recovery problems such as matrix
completion in recommender systems, matrix compressed sensing, natural language processing
and quantum state tomography; these topics are surveyed in DAVENPORT and ROMBERG (2016).
Connections with the design of fast converging Markov-Chains were also exhibited in SUN et al.
(2006).

In a different direction, A. Singer and collaborators have recently promoted the use of SDP
relaxation for estimation under group invariance, an active area with many applications (A. S.
BANDEIRA et al., 2014; SINGER, 2011). SDP-based relaxations have also been considered in
CUCURINGU (2015) in the context of synchronization over Zs, in signed multiplex networks
with constraints, and in CUCURINGU (2016) in the setting of ranking from inconsistent and in-
complete pairwise comparisons where an SDP-based relaxation of angular synchronization over
SO(2) outperformed a suite of state-of-the-art algorithms from the ranking literature. Phase
recovery using SDP was studied for example in WALDSPURGER et al. (2015) and DEMANET
and HAND (2014). An extension to multi-partite clustering based on SDP was then proposed in
KARGER et al. (1998). Other important applications of SDP are information theory (LOVAsz,
1979), estimation in power networks (LAVAEI & Low, 2011), quantum tomography (GROSS
et al., 2010; Mazz10TTI, 2011) and polynomial optimization via Sums-of-squares relaxations
(BLEKHERMAN et al., 2012; LASSERRE, 2015). Sums of squares relaxations were recently ap-
plied to statistical problems in DE CASTRO et al. (2019), HOPKINS (2018) and DE CASTRO
et al. (2017). Extension to the field of complex numbers, with <-, > denoting the Hermitian in-
ner product, has been less extensively studied but has many interesting applications and comes
with efficient algorithms (GILBERT & J0sz, 2017; GOEMANS & WILLIAMSON, 1995).
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2.2 SDPs AS EMPIRICAL RISK MINIMIZERS

The point of interest here lies in the fact that many of the problems mentioned above can be
recast in the classical machine learning framework of risk minimization (VAPNIK, 2000). It is
therefore possible to leverage the vast literature related to risk minimization to derive excess
risk and estimation bounds as well as algorithms to unravel them. It appears that the general
framework that can encapsulate all these problems relies in fact on a simple loss function,
maybe the simplest one: the linear loss function. This observation is the baseline of this work:
several estimators introduced recently in some of the problems cited at the beginning are in fact
empirical risk minimizers (ERM) for linear loss functions. They can therefore be analyzed using
all the machinery (BOUCHERON et al., 2013a; KOLTCHINSKII, 2011a; VAPNIK, 2000) developed
during the last forty years for ERM in this very specific framework of linear loss function.

2.2.1 REMINDERS ON ERMs

Let H be a Hilbert space and F' C H be a set of parameters. Consider a function £ : H x H — R
such that £(Z, X) := £z(X) quantifies the error made when estimating Z with X. Let P be
a probability distribution on H. The risk of a parameter Z € F is quantified by Pl; =
Ex~p[lz(X)]. When it exists, we are interested on the value of Z that minimizes this risk,
which we call an oracle:

Z* € argmin Plz(X).
ZeFr
To estimate Z*, assume we are given some data points Xi,..., Xy € H which are distributed
according to the distribution P. A natural idea is then to estimate each P{; by its empirical
value Pylz := (1/N) vazl £7(X;). This gives us the following estimator for the oracle Z*:

ZERM S argmin Pynly (2.2)
zZeF

which is the celebrated empirical risk minimizer (ERM) estimator.

2.2.2 MATHEMATICAL FRAMEWORK

Here, we outline the mathematical formalism that underpins our approach. The general frame-
work in which we stand is as follows. Let A be a random matrix in R%*?¢ and C ¢ R%*? be a
constraint (we will also consider the complex numbers case later on). The object that we want
to recover, for instance the community membership vector in community detection, is related
to an oracle defined as

Z* € argmax (EA, Z), (2.3)
zec
where (A, B) = Tr(AB") = > A;;B;; when A, B € R**? and the constraint C is of the form
C={ZeR"™:Z = 0,<Z,Bj> =b;,j =1,...,m}, where By,...,B,, € R**". We would
like to estimate Z*, from which we can ultimately retrieve the object that really matters to us
(for instance, by considering a singular vector associated to the largest singular value of Z*).
To that end, we consider the following natural estimator of Z* given by

Z € argmax (A, Z), (2.4)
zec

which is simply obtained by replacing the unobserved quantity EA by the observation A. This
is then a semidefinite program (SDP), according to the definition we gave earlier.

Note that in many situations, Z* is not the object we want to estimate, but there is a straight-
forward relation between Z* and this object. For instance, consider the community detection
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problem, where the goal is to recover the class community vector 3* € {—1,1}% of d nodes.
Here, when C is well chosen, there is a close relation between Z* and 8*, given by Z* = 5*(3*) .
We therefore need a final step to estimate 8* from Z, for instance by letting B denote a top
eigenvector of Z, and then using the Davis-Kahan sm(@) Theorem (C. Davis & KAHAN, 1970;
YU et al., 2015) to control the estimation of 8* by ﬂ from the one of Z* by Z.

The point of view we adopt is to see Z as an empirical risk minimization (ERM) procedure built
on a single observation A, where the loss function is the linear one Z € C — ¢4 (A) = 7<A, Z>,
and the oracle Z* is indeed the one minimizing the risk function Z € C — Efz(A) over C.
Our methodology uncovers a general approach characterized by two crucial points: the local
curvature of the excess risk and the computation of a local complexity fixed point.

2.3 EXAMPLES FROM LITTERATURE

The rationale behind our interest in studying the statistical properties of ERM estimators with
a linear loss functions lies in the fact that the litterature on statistical learning is teem with
problems that can be modeled under this form. We provide here a list of those problems, which
is by no means exhaustive. For each of the problems presented, we explain the value of the
matrix A and the random variable X that enable us to enter the framework defined in Section

2.3.1 COMMUNITY DETECTION

ERM estimators with a linear loss function can be used to handle the problem of community
detection on graphs. Indeed, to present this point of view, we consider the setup of the Stochas-
tic Block Model (SBM), as in GUEDON and VERSHYNIN (2016) or FEI and CHEN (2019b), that
we recall below. We consider a set of vertices V' = {1,--- ,d}, and assume it is partitioned
into K communities Cy,--- ,Ck of arbitrary sizes [C1],- - ,|Ck|. For any pair of nodes i,j € V,
we denote by i ~ j when i and j belong to the same community, and by i ¢ j if ¢ and j do
not belong to the same community. For each pair (4,j) of nodes from V, we draw an edge
between ¢ and j with a fixed probability p;; independently from the other edges. We assume
that there exist numbers p and ¢ satisfying 0 < ¢ < p < 1, such that p;; > p if i ~ j and i # j,
pi; = 1if i = j and p;; < ¢ otherwise. We denote by A = (A; j)1<s,j,<d the observed symmetric
adjacency matrix, such that, for all 1 < i < j <d, A;; is distributed according to a Bernoulli
of parameter p;;. The community structure of such a graph is captured by the membership
matrix Z € R4 defined by Z;; = 1 if i ~ j, and Z;; = 0 otherwise. The objective is to
reconstruct Z from the observation A. Lemma 7.1 of GUEDON and VERSHYNIN (2016) shows
that the membership matrix Z is given by the following oracle:

d
7* € argmax(E[A], Z),  C:={ZeR™,Z=0,Z2>0,diag(Z) X 1s, »_ Zij <\
zZecC =
where A = Zz =12, Ele |C|* denotes the number of nonzero elements in the membership

matrix Z. Since only the A matrix is observed, the authors consider the following estimator
for Z*:

Z e argmax<A,Z>.
zZeC
From a machine learning perspective, this estimator is an ERM with the linear loss function
Z — lz(A) := —(A, Z), constructed from a single observation of the random matrix A. This
observation is our starting point for the analysis of the community detection problem with all
the tools developed in section
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2.3.2 VARIABLE CLUSTERING

SDP estimators have been considered in BUNEA et al. (2018) to solve the variable clustering
problem. The problem is that of grouping into clusters similar components of a vector X € R,
that is to find a partition G = {G1,...,Gk} of {1,...,d} that separates the components of X.
To that end, the authors observe N independent copies X1,..., Xy of X and place themselves
in the case where the covariance matrix X of X follows a block model. To describe this model,
we define the membership matrix Q € R¥X associated with a partition G as Q = Tiaec,y-
Then, ¥ is said to follow an exact G-block covariance model when it decomposes as % =
QCQT 4T, where C is a symmetric K x K matrix and I' is a diagonal d x d matrix. For a
given partition G, we also introduce its corresponding partnership matrix Z* € R%*? defined

* —1 .
by Zij = |Gg|7'1 i and j belong to the same group Gk}' There is a one-to-one correspondence

between partitions G and their corresponding partnership matrices, so that looking for G is
equivalent to looking for Z*. Using the K-means algorithm and a relaxation of it given in PENG
and WEI (2007b), the authors show that the best partition for the X;’s can be estimated with
the one corresponding to the following partnership matrix:

Z € argmax(A, Z), Ci={ZeR™:7=0,2>0,> Zj;=1¥Tr(Z)=K

zZ
eC F;

where A := (1/N) Zi\; X; X, is the empirical covariance of the X;’s. In the noiseless case,
we would have Z* € argmaxy.(E[A], Z). Again, from our perspective the estimator 7 can
be seen as an ERM with the linear loss function Z — £z (A) := —(A, Z), constructed from the
observation of A, and therefore analysed using our methodology.

2.3.3 ANGULAR SYNCHRONIZATION

The angular synchronization problem consists of estimating d unknown angles 61, --- , 8, (up to
a global shift angle) given a noisy subset of their pairwise offsets d;; = 6; — 8;. This problem is
investigated in A. BANDEIRA et al. (2016). The authors consider that they observe d(d — 1)/2
measurements of the following form:

;5 = 6L61’j + €55, for 1 <i<j<d.

They assume the (€;;)i<;’s to be i.i.d. complex Gaussian variables. The problem can be rewrit-
ten under the following form:

A=XX" +oW

with X € C? defined by X; = €%, W being a complex Wigner matrix and o > 0 being the
variance of the noise. The aim is then to reconstruct the vector z* = (e*%/)%_,, whose maximum
likelihood estimator is, up to a global rotation of its coordinates, the unique solution of the
following maximization problem:

argmax {j:TIEA x}, where & := {x eCh: |z =1foralli=1. ..d}

el

By noticing that &€ = {Z € H,, : Z > 0,diag(Z) = 14,rank(Z) = 1}, they construct the
following SDP formulation of the problem, after removing the rank constraint:

Z* € argmin —(E[A],Z), where C:={Z€eH, :Z = 0,diag(Z) = 14} (2.5)

zecC

They show that in this setting, * can be obtain from Z* as its leading unit-length eigen vector.
However, E[A] is not known and only observed through A, so the following constitutes a natural
estimator for Z*:

Ze argmax(A,Z), where C:={ZcH,:Z = 0,diag(Z) = 14}
zeC
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This is therefore another example of an ERM estimator based on the observation of the matrix
A and the linear loss function Z — (7 (A) = —(A, Z).

2.3.4 Max-Cut

In HONG et al. (2021), the authors propose an SDP estimator to handle the MAX-CUT problem.
The MAX-CUT problem is a classical graph theory problem, which consists of taking a graph
with vertices V := {1,...,d} and edges E C V x V and finding a partition SUS = V of vertices
such that the number of edges connecting a vertex in S to a vertex in S is maximal among all
possible partitions. Most of the time, we observe only A € {0, 1}9*4
of the adjacency matrix of the graph. Hence, the true adjacency matrix of the graph is not
observed but it is usually assumed to be equal to the expectation EA of the observed one A.

a noisy or partial version

Hence, A is considered as our data and from this data, we wish to find an optimal partition S*
of the original graph. Choosing a partition S being equivalent to choosing z € {—1,1}", it is
shown in GOEMANS and WILLIAMSON (1995) via a lifting argument that an optimal partition
is a first eigenvector of a solution to the following optimization problem:

Z* € argmin <<E[A], Z):Z = 0,Zy=1Virank(Z) = 1) .
ZeRdxd
Then, using an SDP relaxation by removing the rank constraint, we recover the classical M AX-
Cut SDP relaxation procedures introduced by Goemans and Williamson:

7 € argmin(A, Z), where Ci= {Z ER™ Z -0, Zi =1 Vi}
zZeC

It is indeed an ERM procedure based on the observation of A and the linear loss function
Z —Uz(A) = (A, Z) over a convex set.

2.3.5 PHASE RECOVERY

The former problem is close to the one of phase recovery, which aims at recovering a vector
x € C? from the noisy observation of the amplitude of N random linear measurements: X =
|Bx| € RN, with B € CV*? a random matrix. In WALDSPURGER et al. (2013), the authors use
a strategy that involves separating phase from amplitude and optimizing only the values of the
phase variables. In the noiseless case, they write z = BT diag(X)u, where u € C¥ is a phase
vector and BT € CV*V is the pseudo-inverse of B. In this format, they show that finding
x € C% such that |Bz| = X is equivalent to solving the following problem:

AN argmin<E[A],zZT>, £ = {z eCV:|yl=1,vie [N]}
z€€

where A := (X X T) o (I N — BB+) (and o is the component-wise matrix multiplicator). Writing
Z = 2%, this problem is equivalent to the following one:

min (<IE[A], 7Y, 7 = 0, Zi; = Vi, rank(Z) = 1)

which is classically relaxed by droping the rank constraint to arrive at the following oracle:

2" argmin(E[A], Z) , for €= {Z e RYN : 7 20,2, = 1 Vi € [N]}
zec

The optimal value of z* is then obtained as the first eigenvector of the oracle Z*. An estimator
of Z* from the observation of A is then:

7 e argmin<A, Z>
zec

which is a SDP optimization problem that we see as an ERM with the linear loss function
Z — EZ(A) = <A, Z>
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2.3.6 SpPARSE PCA

Principal Components analysis (PCA) is one of the most fundamental dimension reduction
algorithm as well as one of the most used data visualization tool. Given a dataset X1,..., Xy €
R?, the aim of PCA is to find principal components (e1,...,eq) in R? (or just the first k& ones
(e1,...,ex)) such that the highest variance by some scalar projection of the data on the e;’s
is attained on the first coordinate eq, the second highest variance on the second coordinate e,
and so on. PCA has been widely studied and can be efficently performed via truncated SVD
algorithms, however components are a mixture of features that can be meaningless when those
features are of different nature, or when we are in a high-dimensional setting - that is when
d >> N. This is where the sparse PCA is called for: the aim is to look for principal components
which are a mixture of only a small number k of features.

Let then X1,..., Xy € R? be some random data points which are supposed independent and
distributed according to a distribution P. The problem of finding the first sparse principal
component has been settled down in (JOHNSTONE & Lu, 2009a; JOHNSTONE & Lu, 2009b) by
finding that it can be expressed as the following oracle:
v* €  argmax |IE[A]v||2
llvll2=1, lvllo<k

where E[A] := Ex.p[X X "] is the covariance matrix of the X;’s. It can be shown, and we will
do so in more detail later, that v* such defined can be obtain as the leading eigen vector of the
solution of the optimization problem Z* € max <<E[A], Z), Z=0,Tr(Z)=1,card(Z) < k2),
which is classically relaxed by removing the cardinality constraint to lead to the following oracle:

7* € argmax(E[A], Z), where C:= {Z eR™1Z = 0,Te(Z) = 1} .
zeC

Since we do not observe E[A] but only the X;’s, we take the following estimator for the oracle:

7€ argmaX<A, Z>.
zeC
with A := (1/N) Zil X;X,", which is then an ERM estimator based on the linear loss function
Z — gz(A) = 7<A, Z>

2.3.7 THE SPARSE SINGLE INDEX MODEL

The situation is as follows: we consider a semi-parametric model where an output ¥ € R is
generated from an input X € R?, via a ‘link’ function in the following way:

v =7 ((X.57) +e

Here, $* € R? is assumed to be a k-sparse unit vector, f : R — R is an unknown univariate
measurable function and € is a noise that is generally assumed to be independent of the input.
The entries of X are assumed to be i.i.d. with a given density function py. The joint density
function of X is then p = ®7_,po with respect to the Lebesgue measure. We define a univariate
score function s : z € R — R by s(x) = —p{(x)/po(x), defined for pp-almost all z € R. From
this, the first and second score functions associated with p are defined as follows:

S(X) = (s(Xy)) e R? and

1<t<d

T(X) = S(X)S(X)T — ding ((5/(X0) -,

The work of YANG et al. (2018) focuses on this problem. The authors show that the parameter
B* can be obtain as the leading eigen vector of the following oracle:

Z* € argmin —(E[A4], Z), C:={0=Z <I;andTr(Z) =1}
zec
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where A := YT(X). This oracle can then be estimated as follows:

7 € argmin (—(A, Z)+ >\||Z||1>
zeC

which takes the form of a regularized ERM estimator based on the observation A and the linear

loss function Z — €z(A) = —(A, Z).

2.3.8 DISTANCE METRIC LEARNING

SDP estimators can also be used in learning distance metrics, as it is done in XING et al. (2002).
Learning distances is particularly important, as the choice of a metric that is correctly adapted
to the input space is crucial to the acuity of many learning algorithms, especially in clustering,
where it is essential to take deep account of the relationships between the data. Let’s consider
a set of points (X;),_; n € R? that we observe partially or with noise. Now, consider the task
of learning a distance metric of the form

d2(X,Y) = |/ Te((X - Y)(X - Y)T2),

where Z = 0 is positive semidefinite. We note that, since one has Tr((X - Y)(X - Y)"Z) =
|Z1/2(X — Y)||3, learning such a distance metric amounts to finding a rescaling of data that
replaces each point X with Z'/2X and applying the standard Euclidean metric to the rescaled
data. Now, assume that we want the X;’s to be as close as possible to each other for this
metric. This leads us to solve the problem minzsg Zi\fj:l dz(X;, X;)?. Since this last problem
is trivially solved by 0, suppose we have knowledge of M points (Y;);=1...m, distinct from the
X,’s, for which we want the following constraint to be verified: Zf\’/[jzl dz(Y;,Y;) > 1. This
prevent the situation where dyz collapses the dataset into a single point. Let us then define
A = Z?fj:l (le - Xj) (Xi - Xj)T. In the noiseless case, the matrix Z* we are looking for
can then be taken as a solution to the following problem:

M

7* cargmin(E[4]2),  C={ZeRM: 220, Y ((Vi-Y) (V- )L 2) 21

zec i,j=1

where one can show that the set C is convex (see Appendix 7.1). In practice, the observation
A is a noisy version of E[A], so we just replace E[A] with A to get an estimator of Z*:

7 e argmin<A, Z>
zecC

which is again an ERM estimator with the linear loss function Z — €z(A) = (A, Z), con-
structed from an observation of the random matrix A.

2.3.9 NOISY OPTIMAL TRANSPORT

Let X = (z1,...,zy) and Y = (y1,...,yn) be two clouds of points in R?. The quadratic
optimal transport problem (or quadratic assignment problem) is defined by the Ws-Wasserstein
distance

N
W3 (X,Y) = nin > llzi =y lI? (2.6)
=1

where Gy is the set of all permutations of [N]. Finding a solution to (2.0) is a standard problem
in optimal transport that can be lifted to the matrix problem

YARS argminz l|lzs — yngZij
Zec =
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where C is the set of all N x N bi-stochastic matrices (i.e. of matrices with non-negative entries
summing to one along each rows and columns). Indeed, if 7* denotes an optimal solution to
(2.0) then for all i € [N], Z; . ;) =1 and Z; = 0 when j # 77(i).

Let us now assume that we do not observe exactly the points in X and Y but we only have
access to a noisy version of these points: for all ¢ € [N], X; = z; + 0G; and Y; = y; + oG},
where o > 0 and (G;, G})N.; are 2N i.i.d. standard Gaussian vectors in R%. The quadratic
assignment problem for this two noisy cloud of points is a solution to the problem

AS argmin<A,Z> where A = (||X1 — YJH§>

zZec 1<i,j<N

and it can be shown that in the free noise case, we have Z* € argmin ., <IEA, VA > The noisy
quadratic optimal transport problem is to identify a sharp phase transition that is a o* such
that 1) if 0 < ¢* then with high probability Z = Z* and 2) for all o > o*, with probability
larger than 1/2, Z # Z*.

2.4 CONTRIBUTIONS

As substantiated by the examples we enumerated above, in line with our prior statements, there
is a real interest in the general study of linear loss functions in machine learning. The aim of this
thesis is to propose a unified methodology to obtain statistical properties of classical machine
learning procedures based on the linear loss function such as the SDP procedures introduced
above that we are now looking as ERM procedures. The general framework is the one previously
defined in Section . However, some problems rely on some structure such as sparsity, and
other ones are facing the problem of robustness. For these issues, ERM is not the right answer.
Embracing a machine learning view point allows us to explore further and introduce other
estimators which are effective in handling those two key challenges within statistical learning.
We attack the structural learning problem by proposing a regularized version of this ERM
estimator, adding a regularization function to the objective function in (2.1). Afterwards, we
turn to the robustness problem and introduce an estimator based on the median of means
(MOM) principle, which have been introduced in LECUE and LERASLE (2020) and that we
call the minmax MOM. This latter estimator addresses the problem of robustness and can be
constructed whatever the loss function. In particular, it fits our linear loss function setup. We
show that the resulting estimators are robust to data contamination as well as to heavy-tailed
data. As for ERMs, we present a classical and a regularized version of the minmax MOM
estimator in this setup.

For each of those estimators we are able to propose statistical guarantees when E[A] is only
partially observed through A. In particular, our approach leads to new non-asymptotic rates of
convergence or exact reconstruction properties for a wide range of estimators that fall within
our framework. Then, in order to show the versatility of our approach, we apply these general
bounds to four problems: signed clustering, angular synchronization, MAX-CUT and sparse
PCA. Using our approach, we provide general excess risk and estimation bounds as optimal
statistical guarantees and improve the state-of-the-art results for these five problems.



CHAPTER 3

General excess risk and estimation bounds

In this chapter, we provide high probability excess risk and estimation bounds satisfied by
four procedures (ERM, minmax MOM and their regularized versions) in the setup introduced
above, that is for the linear loss function. The proofs of all the results are postponed to
Chapter 0. They use state-of-the art machinery such as localization, homogeneity arguments,
local curvature and fixed point complexity parameters. In particular, there are several ways to
localize around the oracle depending on the metric used; it can be either the excess risk itself
or a natural local curvature metric, denoted later by the G function or the standard Lo metric
with respect to the probability measure of the data. Depending on the metric, this defines
different local curvatures and different fixed points. For each type of localization, we state a
statistical result. We therefore obtain various bounds for each of the four estimators in this
section. Hence, this section provides a complete description of the results one can obtain for
these estimators in the setup of linear loss functions and for any regularization norm. We will
then apply these results to several of the problems discussed in Chapter 2 to show how these
general bounds can be applied in concrete examples.

3.1 GENERAL FRAMEWORK

Throughout this section, we place ourselves in the classical context considered in machine
learning and provide its relation with the setup from the Introduction section, in particular, we
specify for each example the random matrix A appearing in (2.3) and (2.1).

Let H be a Hilbert space and X be a random vector with values in H distributed according
to a distribution P. For any function g : H — R for which it makes sense, we denote by
Pg :=Ex.plg(X)] the expectation of the g function under the distribution P. For each p > 1,
we denote by |||z, = (P[|g|p])% its L,(P)-norm. Let C be a subset of H. For all Z in H, the
loss function of Z is the linear loss function, {7 : X € H — 7<X, Z>, which can be seen as
an alignment measure and quantifies the error made when estimating Z with X. As usual in
machine learning, we are interested in the best element in H that minimizes the risk (i.e. the
expectation of the loss function) over C, that is we want to estimate/learn/infer/test

Z* € argmin Plz(X). (3.1)
zeC

Sometimes Z* is called the oracle because it is a quantity we would like to know but we
usually cannot have a direct access to it because the distribution P of X is not known to the
Statistician and so is the risk function Z — P¢z(X). However, we have access to a sample
distributed according to P. This sample (or dataset) is denoted by {X; : ¢ € [N]} where
N € N is called the sample size. From a mathematical point of view (X;);e[n is a family of
i.i.d. random variables distributed according to P — in the section below concerning median-
of-means estimators, we will relax this assumption and consider a situation where a fraction of
the dataset may have been corrupted by an adversary, in that case the X;’s are not anymore
assumed to be i.i.d..

The setup we just introduced is pretty much the same as in the Introductory section. We

20
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just have to identify the random matrix A for each particular examples. Since, the ‘linear loss
function’ setup is not standard in machine learning, we provide the connection between A and
the X;’s for each example:

— in community detection, N = 1 and A = X; is the adjacency matrix of the observed
graph

— in variable clustering, A := (1/N) Ef\il X;X," is the empirical covariance of the observed
variables X;’s

— in angular synchronization, A = (e“sii + eij) is made of the noisy measurements

of the pairwise offsets.

1<i<yj<d

— in the MAX-CuUT problem, A is the adjacency matrix of the oriented graph we observe.
We want to know what is the maximum cut of the graph associated with E[A].

— in phase recovery, A := (XXT) o (IN - BB*), where X is the vector of the N observed
measurements |Bx| and B is the measurement matrix, that is the linear operator through
which the target vector x is observed.

— in sparse PCA, A = (1/N) vazl X;X," is the empirical covariance matrix of the dataset
from which we want to extract the principal components.

— in the single index model, A = (1/N) Ef\il Y.T(X;), where for any ¢ € [N], ¥; =
f(<Xi,ﬂ*>) + €; is the noisy output associated to the input X; via the link function
f, and T(X;) € R4 is the second order score matrix of X;.

— in distance metric learning, A := Z;ijl (XZ- — Xj) (Xl- — Xj)—r where the X;’s are the

observed data from which we want to learn the metric.
~ in noisy optimal transport, A = (|| X;—Y;|13)1<i j<n, where {X1,..., Xy} and {Y7,..., Yy}
are the two sets of observed data that we wish to transport one over the other.

Remark 1. Most of the problems introduced in section 2 are presented as maximization
problems, whereas ERM is a minimization problem. One can just take the opposite of the
linear loss function, or replace A with —A, or C with —C. Here, we consider the loss function
éz A 7<A,Z>.

Moving back to the ‘learning with a linear loss function’ introduced at the beginning of this
section, we want to estimate/learn the oracle Z* from the data (X;);c[n). Let Z be an estimator
constructed with these data. The quality of prediction of Z is measured via the excess risk
PL, where Z € C — Lz := {7z — {7~ is called the excess loss. The quality of estimation of 7 is
measured by the error rate ||Z — Z*||7,, where Ly is taken with respect to the P distribution.

There are many ways to construct estimators in the machine learning context considered here.
We will see four of them below. The most classical one is the empirical risk minimization
procedure (VAPNIK, 2000) introduced in the next section. Before moving to the construction
of estimators, we say a word about the set C. In all examples introduced in Section 2, C is a
convex set because of algorithmic considerations. For our theoretical purpose, we will however
need a weaker assumption given now: the star-shaped property.

Definition 1. We say that a set C is star-shaped in Z* when for all Z € C, the segment [Z, Z*]
is in C.

In all our results we will assume C to be star-shaped in Z*. This property is satisfied in all
examples introduced in the Introduction chapter because a convex set is star-shaped in any of
its elements.
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3.2 THE ERM ESTIMATOR AND ITS REGULARIZED VERSION: DEFINITIONS AND
GENERAL BOUNDS

In this section, we consider the ‘i.i.d. setup’ introduced in the previous section and consider
the standard ERM estimator and its regularized version for which we provide high probability
excess risk and estimation bounds.

3.2.1 THE ERM ESTIMATOR FOR THE LINEAR LOSS FUNCTION

For any loss function, and in particular for the linear one considered here, ¢, : X € H —
—<X7 Z>, which is defined for any Z € C, the ERM is

Z € argmin Pyl (3.2)
zeC

where Pylz = (1/N) vazl l7(X;) = (1/N) vazl —(X;,Z). The ERM is the natural empirical
version of the oracle Z* since P{¢; appearing in the definition of Z* in (3.1) has been replaced by
its empirical counterpart Py¢z. When there is only one observation, that is IV = 1, for instance
in the community detection problem, we simply have Pyly; = Pily = 7<X1, Z> = 7<A, Z>.

The study of the statistical properties of ERM estimators goes back to VAPNIK and CHER-
VONENKIS (1974) and has been at the heart of many researches since then (KOLTCHINSKII,
2011a). The results presented below are for the special case of the linear loss function. They
are however based on nowadays classical concepts in machine learning.

One key quantity driving the rate of convergence of the ERM with a linear loss function is
a local complexity fixed point parameter. This kind of parameter carries all the statistical
complexity of the problem. It can however be hard to compute (see for instance Section
below), since it requires to control with large probability the supremum of empirical processes
indexed by ‘localized classes’, that is the set C intersected with a neighborhood of the oracle.
We now define such a complexity fixed point related to the problem we are considering here.

Definition 2. [Complexity fixed point parameter] Consider 0 < § < 1. The fixed point
complexity parameter at deviation 1 — ¢ is

7 (6) =inf [r>0:P| sup (Pv—P)lz<—|>1-4]. (3.3)
ZEC:PLy<r 2

Fixed point complexity parameters have been extensively used in Learning Theory since the
introduction of the localization argument (BIRGE & MASSART, 1993; KOLTCHINSKII, 2011b;
MASSART, 2007; van de GEER, 2000). When they can be computed, they are preferred to the
(global) analysis developed by Chervonenkis and Vapnik (VAPNIK, 1998) to study ERM, since
the latter analysis always yields slower rates given that the Vapnik-Chervonenkis bound is a
high-probability bound on the non-localized empirical process sup Z€C<A —-EA, Z—-Z *>, which
is an upper bound for r*(§) since {Z € C: PLz < r} C C. The gap between the two global and
local analysis can be important since fast rates cannot be obtained using the global approach,
whereas the localization argument resulting in fixed points such as the one in Definition 2 may
yield fast rates of convergence or even exact recovery results when r*(4) = 0.

An example of a Vapnik-Chervonenkis’s type of analysis of SDP estimators (that is a global ap-
proach) can be found in GUEDON and VERSHYNIN (2016) for the community detection problem.
An improvement of the latter approach has been obtained in FEI and CHEN (2019b) thanks
to a localization argument. Somehow, a fixed point such as is a sharp way to measure the
statistical performances of ERM estimators, and in particular for the SDP estimators that we
considered in the previous chapter. They can even be proved to be optimal (in a minimax sense)
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when the noise A — EA is Gaussian (LECUE & MENDELSON, 2013), and under mild conditions
on the complexity of C.

In what follows, we give some statistical properties of the ERM Z build from this complexity
parameter (all proofs are postponed to Section 0).

Theorem 3. We assume that the constraint C is star-shaped in Z*. Then, for all0 < § < 1,
with probability at least 1 — 0, it holds true that PL, < 1*(6).

This result shows that Z is almost a minimizer of the true objective function Z — —<]EA, Z >
over C up to r*(9). In particular, when r*(§) = 0, Z is exactly a minimizer such as Z* and, in
that case, we can work with Z as if we were working with Z* without any loss. Then, in this
‘exact reconstruction case’; the information contained about A on E[A] is enough for inferring
Z* exactly, just as if we had known E[A].

The importance of Theorem 3 stems from the fact that it puts forward two important concepts
originally introduced in Learning Theory, namely that the complexity of the problem comes
from the one of the local subset CN{Z : PLz < r*(d)}, and that the ‘radius’ 7*(d) of the
localization is the solution of a fixed point equation.

The main conclusion of Theorem 3 is that all the information for the problem of estimating Z*
via Z is contained in the fixed point r*(9). We therefore have to compute or upper bound such
a fixed point. This might be difficult in great generality but some tools exist that can help to
find upper bounds on 7*(9).

A first task is to understand the shape of the local sets C N {Z : (EA, Z* — Z) < r} for r > 0,
and to that end it is helpful to characterize the curvature of the excess risk 7 — <EA, AR >
around its minimizer Z*. This type of local characterization of the excess risk is also a tool
used in Learning Theory that goes back to classical conditions such as the Margin assumption
(MAMMEN & TSYBAKOV, 1999; TSYBAKOV, 2004) or the Bernstein condition (BARTLETT &
MENDELSON, 2006). The latter condition was initially introduced as an upper bound of the
variance term by its expectation: for all Z € C, E [£z(A)?] < ¢oE [Lz(A)] for some absolute
constant ¢y, but it has now been better understood as a way to discriminate the oracle from
the other points in the model C. These assumptions were global assumption in the sense that
they concern all Z in C. It has been recently shown (CHINOT, LECUE, & LERASLE, 2018) that
only the local curvature of the excess risk needs to be understood. We now introduce this tool
in our setup. In what follows, GG is some function from H to R. The radius defining the local
subset onto which we need to understand the curvature of the excess risk is also solution of a
fixed point equation.

Definition 4. [Complexity fixed point parameter with G-localization| Consider 0 < § < 1.
The fixed point complexity parameter with respect to a G-localization at deviation 1 — § is

re(8) =inf [ r>0:P sup  (Pn—P)Lz<’|>1-3 (3.4)
Z€C:G(Z—7*)<r 2

The difference between r* and r{ lies in the fact that the local subsets are not defined with the
same proximity function: 7* used the excess risk function for localization whereas rf, uses the
G function. The latter G function should play the role of a simple description of the curvature
of the excess risk around the oracle as it is granted in the following assumption.

Assumption 3.1. For all Z € C, if PLyz < r}(d) then PL; > G(Z* — Z).

Typical examples of curvature functions G will have the form G(Z* — Z) = 6||Z* — Z||* for
some £ > 1, § > 0 and some norm || - ||. In that case, the parameter x was initially called the
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margin parameter (MAMMEN & TSYBAKOV, 1999; TsYBAKOV, 2003). Even though the relation
given in Assumption has been typically referred to as a margin condition or a Bernstein
condition in the Learning Theory literature, we will rather call it a local curvature assumption,
following GUEDON and VERSHYNIN (2016) and CHINOT et al. (2018), since this type of relation
describes the behavior of the risk function locally around its oracle. The main advantage for
finding a local curvature function G is that 7 (d) should be easier to compute than 7*(J) and
r*(8) < r&(8) because of the definition of rf,(6) and {Z € C: (EA, Z* — Z) < r§(6)} C {Z €
C:G(Z*—Z)<r(0)} (thanks to Assumption 3.1).

If this assumption holds, then we can get the following bound on the excess risk.

Theorem 5. We assume that the constraint C is star-shaped in Z* and that the ‘local curvature’
Assumption holds for some 0 < § < 1. With probability at least 1 — §, it holds true that

r&(8) > PL, > G(Z* — Z).

When it is possible to describe the local curvature of the excess risk around its oracle by some G
function and when some estimate of () can be obtained, Theorem 5 applies and estimation
results of Z* by Z, with respect to both the ‘excess risk’ metric <IEA, zZ* — Z> and the G
metric follow. If not, either because understanding the local curvature of the excess risk or
the computation of 7 () is difficult, it is still possible to apply Theorem 3 with the global VC
approach, which boils down to simply upper bound the fixed point r*(§) used in Theorem 3 by
a global parameter that is a complexity measure of the entire set C

P*(8) <inf [r>0:P sup<A—IEA,Z—Z*>§% >1-4|. (3.5)
zZeC

Interestingly, if the latter last resort approach is used then, following the approach from GUE-
DON and VERSHYNIN (2016), Grothendieck’s inequality (GROTHENDIECK, 1953; PISIER, 2012)
appears to be a powerful tool to upper bound the right-hand side of (3.9) in the case of the
community detection problem, such as in GUEDON and VERSHYNIN (2016), as well as in the
MAX-CuT problem. Of course, when it is possible to avoid this likely suboptimal global ap-
proach, one should do so because the local approach will always provide better results.

Finally, proving a ‘local curvature’ property such as in Assumption may be difficult because
it requires to understand the shape of the local subsets C N {Z : <IEJA, z* — Z> <r}r>0.
It is however possible to simplify this assumption if getting estimation results of Z* only with
respect to the G function — and not necessarily an upper bound on the excess risk <IEA, AR/ >
— is enough. In that case, Assumption may be replaced by the following one.

Assumption 3.2. For all Z € C, if G(Z* — Z) < r§(9), then PLz > G(Z* - Z).

Assumption assumes a curvature of the excess risk function in a ‘G neighborhood’ of Z*,
unlike Assumption which grants this curvature in an ‘excess risk neighborhood’. The shape
of a neighborhood defined by the G function may be easier to understand — for instance when
G is a norm, a neighborhood defined by G is the ball of a norm centered at Z* with radius
r&(9). In general, the latter assumption and Assumption do not compare. The following
result establishes that, under Assumption 3.2, Zis a good estimate of Z* with respect to the
G function, but no guarantee on the excess risk is obtained.

Theorem 6. We assume that the constraint C is star-shaped in Z* and that the ‘local curvature’
Assumption holds for some 0 < § < 1. We assume that the G function is continuous,
G(0) =0 and GINZ* - Z)) < AG(Z* = Z) for any X € [0,1] and Z € C. Then, with probability
at least 1 — 8, it holds true that G(Z* — Z) < r%5(6).
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Results like Theorem 3, 5 and © appeared in many papers on ERM in Learning Theory such as
in BARTLETT and MENDELSON (2006), KoLTCHINSKII (2011b), MASSART (2007) and LECUE
and MENDELSON (2013). In all these results, typical loss functions, such as the quadratic or
logistic loss functions, were not linear ones such as the one we are using here. From that
point of view, our problem is easier. What is much more complicated here than in other more
classical problems in Learning Theory is the computation of the fixed point. First, because the
stochastic process Z — <A —EA, Z— Z*> may be far from being a Gaussian process if the noise
matrix A —EA is complicated. Secondly, because the local sets {Z € C : <IEA7 7% — Z> <r}or
{ZeC:G(Z*—-2Z) <r} for r >0 may be very hard to describe in a simple way. However,
instrumental results are available in the literature to circumvent this kind of problems, such as
in FEI and CHEN (2019b), or those we will present in Section

In the next chapter, we will see how these results apply in community detection, signed cluster-
ing, angular group synchronization and the MAX-CUT problem. All these problems share the
feature that the oracle Z* does not have some special structure onto which one can leverage on
to improve the rates of convergence. They are however situations such as in sparse PCA where
the target has a structure that can be used to improve statistical the performances. In such
cases, one may consider some regularization procedures like in the following section.

3.2.2 THE REGULARIZED ERM ESTIMATOR FOR THE LINEAR LOSS FUNCTION

We focus here on structural learning in which targets/oracles have a structure (such as sparsity,
low rank or regularity) onto which the statistician can leverage to construct more statistically
efficient estimators. The typical approach to this problem is to regularize the ERM in order to
force the estimator toward the desired structure.

We place ourselves in the framework defined above in Section except that we need here a
regularization function, i.e. a function that favors some structure. In this work, we consider a
general norm defined at least on the span of C and denoted by || - ||. Typical examples are the
¢1 norm and the trace-norm used in high-dimensional statistics to induce sparsity or low-rank.
When Z* has some structure a natural way to force an estimator toward Z* is by adding a
mutliple of this norm. This yields to the regularized ERM, later called RERM:

ZRERM ar%éncin (Pntz + M| Z]) -

where A > 0 is called the regularization parameter and has the role to make a trade-off between
the data adequation term Py¢z and the regularization term || Z||.

As for the ERM, convergence rates achieved by the RERM ZRERM a1e driven by a local
complexity fixed point parameter. However, the regularization norm appears in this type of
parameter: it is now the set C intersected with balls with respect to || || centered at Z* (and for
some radius) that are “localized” by some neighborhood of Z*. Somehow the model in structural
learning is of the form CN{Z : [|Z — Z*|| < r}. As in the ERM case, one may consider two
different ways to construct localization: either via the excess risk or via a local curvature G
function. However, to avoid a lengthy presentation, we focus only on the latter one, i.e. on a
localization via a local curvature G function because it is this result that we will use for the
our application later in sparse PCA. In what follows, we consider a function G : H — R, which
characterizes the curvature of the objective function, i.e. the risk, Z € H — P{z around its
minimizer Z*.

Definition 7. For parameter A > 0, radius p > 0 and deviation parameter § € (0, 1), we define
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the complexity fixed point for the structural learning with a linear loss function by
TEERM,G(Aa p,0) =

inf{r>0:P sup \(P—PN)£Z|§L >1-61,
ZeCi||Z— 2| <p,G(Z—Z*)<r 3A

where we recall that for all Z € C, Lz = £z — {7+ is the excess loss function of Z.

After introducing the fixed point rigry ¢ (A4, p,d), we are now in a position to introduce the G
function. As we already mentioned above, the G function describes the curvature of the excess
risk locally around the oracle.

Assumption 3.3. We assume there exist A > 0, p* > 0 and ¢ € (0, 1) such that, for all Z € C
satisfying G(Z — Z*) = ripra.a (4, p*,0) and || Z — Z*|| < p*, then APLz > G(Z — Z*).

We now leverage on the structure inducing property of the regularization norm and explain what
features must the radius p* appearing in Assumption have in relation to this property. We
will use the assumption below, that is adapted from the one in LECUE and MENDELSON (2017),
to get the statistical bounds satisfied by the RERM estimator ZRERM  The idea is that the
regularization norm ||.|| is expected to promote some structure by having a large subdifferential
at elements in H having this structure. First, let us recall what the subdifferential of ||.|| at a
point Z is:

@)z = {® € H: |Z+h]| - |1Z] > (@,h) for all h € H}.

Elements in (9)|.]|)z are called the subgradients of ||-|| in Z. What matters in structural learning
to get fast rates is that Z* is close to an element with a structure induced by the regularization

norm. Therefore we consider the set of all subgradients of || - || of points close to Z*:
forany p>0: To(p)= | (@7
ZeZ*+£B

where B is the unit ball of ||.||. We expect I'z«(p) to be a large subset of the unit dual sphere
(or dual ball, when 0 € Z* + (p/20)B) of ||.|| when Z* is structured or close to a structured
element in H, for the notion of structure associated with ||.||. This intuition is formalized in
the following definition.

Definition 8. For A >0, p > 0 and 0 € (0,1) we define:
H, 4= {Z €C:||Z-Z=p and G(Z—-2Z") < rﬁERM’G(A,p,(S)}
and

Alp, A) := inf >, 7 — 7).
(p, A) zé%,,,w:fiﬁ’(p)< , )

We say that p > 0 satisfies the A-sparsity equation when A(p, A) > (4/5)p.

Note that it is always true that A(p, A) < p — because ||Z — Z*|| = p and P is a subgradient
of || - || — hence, a radius p satisfying the A-sparsity equation is somehow extremal up to the
absolute constant 4/5 (the analysis works for any other absolute constant, there is nothing
special with 4/5). It means that I'z«(p) is almost as big as the unit dual sphere (or ball) of
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All the material introduced above (complexity fixed points, local curvatures and the sparsity
equation) are the corner stones of our statistical analysis of RERMs. Once introduced, we
are in a position to state our main result on RERM estimators for linear loss functions and a
general regularization norm.

Theorem 9. Let § € (0,1). Assume that the constraint set C is star-shaped in Z*. Consider a
continuous function G : H — R such that G(0) = 0. Suppose the existence of A > 0 and p* > 0
such that Assumption holds and p* > 0 satisfies the A-sparsity equation from Definition
Define the function r*(.) := rgpry g (A, - 6) and assume that

10 (7)o 200
21A p* 3A  p*
Then, with probability at least 1 — 3, the following bounds hold for the RERM estimator defined

||ZRERM 7Z*|| < p* , G(ZRERM - Z*) < T*(p*) and PEZR,ERM < r Ef )

(3.7)

We note that in the case where G is the risk function Z — P/{y - that is when the excess risk
is used for localization, because, by linearity G(Z — Z*) = P{y_z+ = PLyz - Assumption is
trivially verified with A = 1, and as a consequence Theorem 9 applies.

3.3 THE MEDIAN OF MEANS ESTIMATOR AND ITS REGULARIZED VERSION:
DEFINITIONS AND GENERAL BOUNDS

In this section, we move to the construction and the statistical analysis of another family
of estimators introduced in LECUE and LERASLE (2020) whose aims are to solve robustness
issues related to adversarial contamination of the dataset as well as heavy-tailed data. We are
interested here in the case where our data could be contaminated by possible outliers generated
by an adversary and the inliers data may be heavy-tailed. Even though the framework seems
not in favor of statisticians because the dataset is of poor quality, we still want to achieve the
same statistical performance as if there was no outliers and light-tailed (such as sub-gaussian)
data. It is known that the classical ERM or RERM approaches from the previous section do
not perform well in general on this type of dataset and that is the reason why we move to MOM
estimators.

The statistical framework considered in this section cannot be the ideal i.i.d. setup considered
in the previous section that fits well for ERM and RERM. Indeed, the i.i.d. framework do not
allow for adversarial corruption. That is why we consider the following setup in this section.
Assumption 3.4. [Adversarial contamination setup| Let N 4.i.d. random vectors (X;)N, in H.
These vectors are first given to an adversary who is allowed to modify up to |O| of them. This
modification does not have to follow any rule and is unknown to the statistician. This leads
to the modified dataset {X7,..., X x} that the adversary gives to the statistician. Hence, the
dataset at hands {X7, ..., Xy} is said to be ‘adversarially’ contaminated. It can be partitioned
into two groups: the modified data (X;);co, which can be seen as outliers and the ‘good data’,
or inliers, (X;);ez such that for any i € Z, X; = X;. Of course, the statistician does not know
which data has been modified or not so that the partition OUZ = {1,..., N} is unknown to
the statistician.

Remark 2. Since there are two types of data considered in Assumption (the ‘good’ )Z'Z-’s
and the corrupted ones X;’s), we need to be clear on the objects we will be using later: the risk
function and its associated oracle are the one associated with the ‘good’ data:

ZeC— Ply =E(—X,Z) and Z* € argmin P(y,
zeC
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where X has the same probability distribution as X’l, . ,)A(: ~. It is also the same for the Lo-

norm: for all Z € H, || Z||., = IE<)Z', Z>2. Note that the Ly-norm is in general different from
the original Hilbert norm defining H, which is denoted by || - ||2.

The adversarial contamination setup addresses several questions in statistics regarding the
rates of convergence, the probability deviations and the number of outliers. Many approaches
have been introduced to answer these questions (HUBER & RONCHETTI, 2009). There was
an important renewal of this topic during the last ten years (CATONI, 2012; DIAKONIKOLAS
et al., 2016). The approach we use in this section is based on the median-of-means principle
(JERRUM, VALIANT, & VAZIRANI, 1986; NEMIROVSKY & YUDIN, 1983): [N] is partitioned
into K equal-size groups By, ..., Bg (without loss of generality, K is assumed to divide N,
otherwise we only have to remove some data). For any function g : H — R and k € [K]
we define Pp,g = (K/N)3> ;cp, 9(Xi), the empirical mean of g over By. Then, we define
MOMy(g) as the median of these K empirical means:

MOMK(g) = Med(PBlga SERE) PBKg)'

This data partition scheme is at the heart of our approach to answer the robustness issues.
It is used as a building block in the minmax MOM estimator. We recall its construction and
provide its statistical properties in the remaining of this section as well as for its regularized
version for the robust structural learning problem.

3.3.1 THE MINMAX MOM ESTIMATOR FOR THE LINEAR LOSS FUNCTION.

To solve the robustness to adversarial corruption as well as to heavy-tailed data, one can use
a systematic approach called the minimax MOM estimator in LECUE and LERASLE (2020).
It works whenever a loss function exists and a robust gradient descent algorithm may also be
constructed out of it (see LECUE and LERASLE (2020) for more details). When the dataset has
been splited into K equal size blocks, it takes the following form:

5MOM

w o € argmin sup MOMgk (€7 — £z/) (3.8)
Zec z'eC

and can therefore be used in the particular case studied here of the linear loss function x —
ly(x) = —<Z,x>. From our theoretical perspective, the aim of the minmax MOM estimator
ZA}\(/IOM is to achieve the rates of convergence for the same deviation probabilty in the contam-
inated and heavy-tailed setup as in the ideal i.i.d. setup with light-tailed data, as long as the
number of outliers is not too large. It is the aim of the next section to prove such statistical
bounds. As for the ERM case, rates of convergence are given by local complexity fixed points
that depends on the choice of localization. Below, we consider three different ways to localize:

either via the Lo(P)-norm, or via the excess risk or via some general curvature function G.
MOM ESTIMATOR WITH EXCESS-RISK LOCALIZATION.

As previously for ERMs, the convergence rate of the minmax MOM estimator is driven by a
local complexity fixed point parameters. In this section, we consider the case where the excess
risk is simple enough so that it can serve as a localization. In that case, there is no need to
identify the curvature of the excess risk locally around Z* since the excess risk describes it by
itself. There is therefore no curvature assumption. In the next two paragraphs the picture will
be different.

Definition 10. Let o1, ...,0n5 be N independent Rademacher variables which are independent
of the X;’s. For v > 0, we define:

ryomer(Y) = inf {r >0 : max <E(T), v 12800VK(7“)> < r2}
’ gl
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where, for all > 0,

N
E(r):=E sup %ZUiEZ(Xi) and Vi (r) = \/5 sup  \/Var(Lz(X)).

ZeC:PLZz<r2 ZeC:PLZ<r?

In the case of excess risk localization, there is no need for other tools than the fixed point
myom,er (7) to describe the rate of convergence of the minmax MOM. This is what shows the
following result.

Theorem 11. We consider the adversarial contamination setup of Assumption 5./. We assume
that the constraint set C is star-shaped in Z*. Let v = 1/6400 and consider K, a divisor of N
such that K > 100|O|. Then, it holds true that with probability at least 1 — exp(—T2K/625),

PL juom < roner ()%

Compared to the fixed point from Definition 2 describing the rate of convergence of the ERM,
we note that the one from Definition 10 uses a local Rademacher complexity, denoted by E(r) ,
and a variance term, denoted by Vi (r); there is no need to upper bound with high probability
the supremum of an empirical process. For minmax MOM estimators, the task of computing
fixed point complexity parameters is therefore easier. Moreover, as one can see in Theorem |1,
the convergence rate is obtained with an exponentially large probability even though no strong
concentration property is assumed; only the existence of a second moment (so that the variance
term Vi (r) exists) is required. This shows the robustness to heavy-tail data of minmax MOM
estimators for the linear loss function as well as its robustness with respect to adversarial
contamination since it is proved in the setup of Assumption 35./. However, the computation of
the complexity term E(r) may require more moments than just 2 in order to recover a Gaussian
regime, i.e. a rate achieved when the data have a light subgaussian tail.

MOM ESTIMATOR WITH L9-LOCALIZATION.

In this section, we consider the case where the behaviour/curvature of the excess risk locally
around the oracle Z* is well described by the Lo-norm to the square. This is the situation when
a margin assumption APLz > ||Z — Z*||%2,VZ € C holds, i.e. with a margin parameter equal
to 2 MAMMEN and TSYBAKOV (1999). In that case, one needs to modify the definition of the
complexity fixed point parameter by using a Lo-localization.

Definition 12. Let 01,...,0n be independent Rademacher variables which are independent
of the X;’s. For v > 0, we define

N
1 -
TK/[OM7L2 (v):=inf | r>0:E sup — Zaiﬁz(Xi) < 'yr2
ZecC: ”Z_Z*”LQST N i=1

where we recall that || Z]|L, = \/E<)?,Z>2 forall Z € H.

As we said above, we use the Ly-norm in the localization to define the fixed point ry;on 1, (7)
when it describes the curvature of the excess risk around Z*. We now formalize this property
in the next assumption.

Assumption 3.5. There exists A > 0 such that for any Z € C, if |Z — Z*||7, < Ck,a, then
1Z — Z*||2, < APLy, where Cic 4 = max (r;mMM (7)2,7*1A2(K/N)) for 7 = 1/3200.
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Looking at Assumption 3.5, this may be surprising to have a quadratic term ||Z — Z*||%2
describing a linear term PLy; = <EX AR > However, one may see that the local curvature
of the excess risk from Assumption holds only for Z in C not in H. Thanks to the two
tools introduced above (a local complexity fixed point and a curvature assumption), we are now
ready to state our main result on the minmax MOM estimator in the adversarial contamination
setup for a Lo-localization.

Theorem 13. We consider the adversarial contamination setup of Assumption 7./. We assume
that the constraint set C is star-shaped in Z*. Let v = 1/3200. Assume the existence of
0 < A <1 such that Assumption holds. Let K be a divisor of N such that K > 100|O].
Then, it holds true that with probability at least 1 — exp(—T72K/625):

Ck,a

PL gon < and || Z)OM — 7|2, < Cr.a.

Theorem 13 can be used under a margin assumption with a margin parameter equal to 2. It
can be extended to margin parameter other than 2. However, one may be interested in other
situations where the local curvature of the excess risk is not described by the square of the Lo
norm but for instance by the square of the native Hilbert norm of H - as it will be the case for
the sparse PCA problem. In the next paragraph, we provide a statistical bound for the minmax
MOM estimator for a local curvature of the excess risk described by a general G function.

MOM ESTIMATOR WITH (G LOCALIZATION.

In this final paragraph regarding the minmax MOM estimator, we consider a general G function
describing locally the excess risk around Z* and derive statistical bounds when this function is
used for localization. When applied to the particular cases of the excess risk or the Ly norm
to the square, we recover the last two results. However, other G functions may be considered,
for instance, if the calculation of 1oy pr(7) is too hard or if Lo-norm to the square does not
describe well enough the excess risk. We need first to define a complexity fixed point for a
localization with respecto to a general GG function. Unlike in the previous section dealing with
the Ly to the square localization and as in the last but one section dealing with a excess risk
localization, there is a variance term in this fixed point equation.

Definition 14. Let 01,...,0n5 be N independent Rademacher variables which are independent
of the X;’s. For G : H — R and v > 0, we define:

E
mom,g(7) += inf {7‘ >0 & max (GW(T) \/12800VK,G(T)) < r2}

where, for all » > 0,

N
1 -
Eq(r) :=E sup — o, Lz (X;

( ) ZeC:G(Z—-Z*)<r? N; Z( )

and Vg g(r) = K sup \/ Var(Lz(X)).

N zec:q(z—z+)<r2
The function G characterizes the curvature of the excess risk Z € C — PLy = <EX A >
locally around its minimizer Z*. This is formalized in the following assumption.

Assumption 3.6. There exist A > 0 and v > 0 such that for all Z € C, if G(Z — Z*) <
(rviom,c(1)?, then APLz > G(Z — Z*).
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The difference between {5y gr and 73oMm,q 1S that the local subsets are not defined using the
same proximity function to the oracle Z*. The main advantage in finding a curvature function
G satisfying Assumption Is that r{joy ¢ may be easier to compute than 7oy gr. since
the shape of a neighborhood defined by G may be easier to understand than the one defined
by the excess risk. However, one always has r{;oy gr < Thru g Since there is no better way to
describe the excess risk than the excess risk itself. We now obtain statistical bounds satisfied
by the minmax MOM estimator (3.8) under this local curvature assumption.

Theorem 15. We consider the adversarial contamination setup of Assumption 5./. We assume
that the constraint set C is star-shaped in Z*. We consider a continuous function G : H — R
be a continuous function. Let v = 1/6400. We assume the existence of 0 < A < 2 such that
the local curvature Assumption holds for those values of v and G. Then, with probability at
least 1 — exp(—72K/625) it holds true that:

]. * * - *
PL yon < 5riiom,a(7)? and  G(Z* = ZgM) < rsomc ().

Theorem may be applied in the examples introduced from Section 2 if one is willing to
handle robustness issues for these (none structured) learning problems. If one wants to handle
the robustness issues in structural learning then one may consider regularized versions of the
minmax MOM estimator.

3.3.2 THE REGULARIZED MINMAX MOM ESTIMATOR FOR THE LINEAR LOSS FUNCTION

We are now considering the setup of structural learning that allows for high-dimensional statis-
tics, i.e. when the dimension of the parameter to estimate Z* is larger than the number of
observations. In that case, some structure is usually assumed to be satisfied by Z* and should
be taken into account for the construction of estimators. On top of that, we consider a setup
where the data may have been corrupted by some outliers and the inliers may be heavy-tailed.
We therefore have to face several issues related to robustness and high-dimensions that we
propose to solve using a regularized version of the minmax MOM estimator introduced in
Section

ZiMOM € argmin sup (MOM (07 — £z2/) + A(|| Z]| — |1 Z']])) (3.9)
zZec Zz'ec
where A > 0 is some regularization parameter and || - || is a norm inducing some structure. In

the following sections, we provide statistical guarantees for this estimator. As in the previous
sections, the convergence rates depend on local complexity fixed points, local curvature proper-
ties of the excess risk and of the ‘structure inducing power’ of the regularization norm || - ||. As
previously, the choice of the localization function plays a key role in the definition of all these
concepts. We therefore consider three paragraphs depending on the localization function used:
it can either be the excess risk, the Lo-norm or some general function G.

RMOM ESTIMATOR WITH EXCESS-RISK LOCALIZATION.

As in the previous section, we start with the excess risk localization.

Definition 16. Let 01,...,0n be independent Rademacher variables which are independent
of the X;’s. For v > 0 and p > 0, we define:

E
TRvom,Er (7; p) = inf {7“ >0 @ max <(:K))7400\/§VK(T7 p)) < r2}



CHAPTER 3. GENERAL EXCESS RISK AND ESTIMATION BOUNDS 32

where, for all p,r > 0and C,, ={Z €C:||Z - Z*|| < p, PL; <12},

N
E(r,p) :==E | sup %Zmﬁz(jﬁ') and Vg (r, p) == \/5 sup 1/ Var(Lz(X)).
i=1

Z€Cy Z€Cp,r

The sparsity equation introduced for the study of the RERM in Definition ¢ has to be slightly
modified according to this new definition of the complexity parameter.

Definition 17. For v > 0 and p > 0, let

Ay={ZeC:|1Z-2"| = pand PLy < riorsn (7.9 }

and

A(p) := inf  sup <¢',Z — Z*>.
Z€H, 9el 4+ (p)

We say that p satisfies the sparsity equation if A(p) > 4p/5.

We are now ready to state our main statistical result satisfied by the regularized minmax MOM
estimator for the linear loss function and for an excess-risk localization.

Theorem 18. We consider the adversarial contamination setup of Assumption 7./. Let K €
[N] be such that K > 100|O|. Let p* > 0 satisfying the sparsity equation from Definition
Let v = 1/3200 and take A = (11/(40p*))rimom er (V: 20%) as regularization parameter. Then,
with probability at least 1 — 2 exp(—72K/625),

PEZ”IP;N;OM < TEMOM,ER(%2P*)2 and HZAI%I,\,A\OM —Z"| < 2p".

Note that one may replace ri\jon gr (7, 20") by any real number r* larger than iy ron gr (7, 207)-
This observation is particularly useful since we usually only know how to upper bound local
complexity fixed points such as riyion gr(7,20") and that we use it to define A, the regular-
ization parameter.

RMOM ESTIMATOR WITH L9 LOCALIZATION.

In this section, we look at the case where the Lo-norm to the square is used to describe the local
curvature of the excess risk. As we mentioned above, it is the case when the margin assumption
with margin parameter equals to 2 holds. We define below the appropriate complexity fixed
point parameter, the local curvature assumption and the associated sparsity equation.

Definition 19. Let (0;);<ny be independent Rademacher variables independent of the X;’s.
For p > 0 and v > 0, we define:

N

* . 1 e
TRMOM, L, (V: p) i=inf | 7> 0: E sup ~ D oils(Xi)|| <r®
zecilz-z+<p ) 2~z |, <r | N

We turn now to the sparsity equation that is used to construct the radius p* which defines the
model C N (Z* + p*B) where both Z* and ZI@KOM lie (with high probability).
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Definition 20. For 7, p and A > 0, let:

K *
Ck(7,p, A) := max <320000AzNa?"RMOM,L2 (%P)2) )

Hyni={ZeC:|Z2=2"| = pand | Z = 2"|1, < VO (3.0, A)

and A(p, A) := inf sup (®,7Z—Z%).
ZeHp A PET 2+ (p)

A real number p > 0 is said to satisfy the A-sparsity equation if A(p, A) > 4p/5.

The next definition is the formal way to say that the Lo-norm to the square can be used to
describe the curvature of the excess risk closed to the oracle.

Assumption 3.7. There exists A, v and p* > 0 such that p* satisfies the A-sparsity equation
from Definition 20 and for both b € {1,2} and all Z € C, if || Z — Z*||7, = Ck(y,bp*, A) and
|Z — Z*|| < bp*, then ||Z — Z*||}, < APLy.

After introducing the three key concepts in structural learning: local complexity fixed point,
local curvature assumption and the sparsity equation, we can now state our excess risk and
estimation (with respect to both Lo and the regularization norm) bounds.

Theorem 21. We consider the adversarial contamination setup of Assumption . Let K
be a divisor of N and assume that K > 100|0|. Grant Assumption for some A € (0,1],
v = 1/32000 and p* that satisfies the A-sparsity equation from Definition 20. Define X =
(11/(40p*))Cr (7, 2p*, A). Then it holds true that with probability at least 1 —2 exp(—72K/625):

Z * * 93 % %
|ZESOM = Z¥|| < 2p%, PL zryom < ﬁTRMOM,LQ(%QP )?,

||Z11§%\§OM - 77, < TRMOM L, (75 2p%)%.

and

Again the same result as the one of Theorem 2! holds if one replaces 7;\io\ 1, Py any upper
bound on riyiom L, -

RMOM ESTIMATOR WITH (G LOCALIZATION.

Finally, we consider a function G : H — R that is expected to describe well the local curvature
of the excess risk and that is used to define all the subsequent localization. An example of such
a G function is given in the sparse PCA case studied later. Indeed, in Lemma 39 below, we will
use Z € R4 — G(Z) = || Z||3 as a localization function (we recall that || - ||2 is the canonical
norm over H; it is in general different from the Lo one that was used above for localization).
We are now introducing a complexity fixed point that uses the G function for localization.

Definition 22. Let o1, ...,on be independent Rademacher variables independent of the X;’s.
For G: H — R and A,~ and p > 0, we define:

E
rrmom,c (7, p) i= inf {7‘ >0 : max (G(r’p)AOO\/iVK,G(r, P)) < 7“2}
’ gl

where, for all 7, p > 0,

N
1 ~ K =
Ec(r,p):==E | sup N E oiLz(Xi)|| and Vi c(r,p) == \ v 5P/ Var(Lz(X)),
1=1

ZeCp ZeCp r

with C,, ={Z e€C:||Z—-Z*| < p,G(Z — Z*) <r*}
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An example of computation of an upper bound of the local complexity fixed point 7§\ ion. (7, p)
is provided in the sparse PCA example in Lemma 19 below. The final ingredient to derive the
rate of convergence is the radius p that needs to satisfies a sparsity equation.

Definition 23. For all v and p > 0, consider
f,={zeC: |2~ 2" =pand G(Z - Z°) < rinonc(1)* }
and

A(p):= inf sup (®,Z-Z%).
Z€H, ®eT 2+ (p)

We say that p satisfies the sparsity equation if A(p) > 4p/5.

Finally, we write the assumption saying that the G function is indeed appropriate to describe
the excess risk locally around Z*.

Assumption 3.8. There exists A > 0, v > 0 and p* > 0 such that p* satisfies the spart-
sity equation from Definition and for both b € {1,2} and all Z € C, if G(Z — Z*) =
o, (Y5 0p*)? and ||Z — Z*|| < bp*, then APLy > G(Z — Z*).

We are now ready to state the following result on the statistical properties of the regularized
minimax MOM in the context of robust structural learning with a linear loss function and for
a general G function describing the local curvature of the excess risk.

Theorem 24. We consider the adversarial contamination setup of Assumption . Let G :
H — R be a continuous function such that G(0) = 0 and for alla« > 1 and Z € C,G(a(Z —
Z*)) > aG(Z — Z*). Let K € [N] be such that K > 100|O|. Grant Assumption for some
A € (0,1], v = 1/32000 and p* that satisfies the sparsity equation from Definition 25. Define
A = (11/(40p"))rRaom,c (V5 20%). Then with probability at least 1 — 2 exp(—T2K/625), it holds
true that:

> * * 3 * *
||ZIP2\§OM -7 || <2p7, Pﬁz‘ggOM < ﬁ.OTRMOM,G(szp )2, and

G(ZAI%&OM - Z") < rgmom,c (75 2p*)%.

In the sparse PCA example, Theorem will be applied for the study of a ¢;-regularized
minmax MOM estimator. However, applying Theorem 2/ requires several intermediate results,
such as proving that Z — G(Z) = ||Z||3 can be used as a local curvature of the excess risk,
find a p* satisfying the sparsity equation of Definition and compute an upper bound for
the local complexity fixed point riyon.q(7, ). For the last task, one needs to handle the
variance term Vi ¢ as well as the complexity term Eg(r, p). For the latter, we need to find an
upper bound on the expected supremum of a Rademacher process over the interpolation body
Cow ={Z €C:||Z—-2% < p,G(Z—Z*) < r?}. This step is usually the hardest one and
requires some techniques from empirical process theory that we are now developing in the next
section.



CHAPTER 4

Statistical Applications

In the previous chapter, we developed theoretical tools that enable us to obtain high probabil-
ity excess risk and estimation bounds for procedures that take the form of ERM or minmax
MOM estimators, all based on a linear loss function. In this opening chapter, we deploy these
theoretical tools to address four classical problems in the realm of statistical learning: the
signed clustering problem, the angular synchronization problem, the MAX-CuUT problem and
the sparse PCA problem. Using our methodology to handle those problems, we are able to
improve the state-of-the art results as well as provide statistical optimal guarantees for adver-
sarially corrupted and heavy-tailed data.

4.1 TOOLS FOR THE COMPUTATION OF LOCAL COMPLEXITY FIXED POINTS

In this section, we present concentration and in expectation results for two specific interpolation
norms of the difference between the covariance matrix and its empirical version. These results
are typical results that we used to compute local complexity fixed points like the ones introduced
in the previous section. Indeed, in order to use any of the general statistical bounds presented in
Chapter 3, we have to compute local complexity fixed points. We provide two such examples in
this section that will be useful for the rest of the chapter when we will apply our methodology
to several classic problems. Note that the bounds presented here hold under weak moment
assumptions.

4.1.1 STATISTICAL SETUP

In this section, X1,..., Xy are i.i.d. centered random vectors in R? and we denote by ¥ their
covariance matrix, that is 3 := IEX;'—Xl. The entries of ¥ are denoted by X,4: Xpq = EX1,X14
for all p,q € [d]. We denote the empirical covariance matrix by Sy = (1/N) 3N, X X;
and its entries by i]pq, p,q € [d]. The aim of this section is to provide large deviation and
in expectation upper bounds for the norm of ¥ — X, for two norms defined by interpolation
bodies. We define B; and B as the unit balls for the norms || - ||; and || - |2 respectively.

4.1.2 CONTROL OF || — Sy|| FOR A By/B; INTERPOLATION NORM.

In order to upper bound the deviation of the empirical covariance matrix X around ¥ with
respect to some norm, we need to assume some concentration properties on the X;’s. We
therefore consider such an assumption now.

Assumption 4.1. There exists w > 0 and ¢ > 1 such that the following holds. For all p, ¢ € [d]
and all 2 <r < 2log(ed/k) +t we have || X1, X1, — E(X1,X1) |2, < w?r.

In other words, Assumption is a growth condition on the first 2log(ed/k) 4+ t moments of
the products X;,X;, of the coordinates of X;. This growth condition is the one exhibited by
sub-exponential (i.e. 1) variables.

35
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This is, for instance, the case of a product of two sub-gaussian (i.e. 13) variables because
N0V Iy < |Uls |V ]I, and the 7-th moment of a 1), variable growths like r1/® (see Chapter
1 in CHAFAI, GUEDON, LECUE, and PAJOR (2012) for more details).

Assumption does not require the existence of any moment beyond the 2log(ed/k) + t-th
moment and is therefore called a weak moment assumption: Assumption essentially assumes
the existence of log(ed/k) subgaussian moments on the coordinates of the data. We will see
below that this assumption is enough to get estimation result for the estimator of the first
sparse principal component in deviation with the improved rate of order

k2 log(ed/k)
— N (4.1)
Consider k € [d]. We denote by || - || the following interpolation pseudo-norm onto R4*¢ defined
by

JAll = sup ((4,2): Z € kBi N By, Z = 27). (4.2)

Theorem 25. There exists an absolute constant co such that the following holds. Grant As-
sumption for some w and t > 1 and assume that N > 2log(ed/k) + t. With probability at
least 1 — exp(—t), it holds true that

k2(log(ed/k) +t)
N

[En =3 < cowz\/

Moreover, if Assumtion /.1 holds for somew > 0 andt = 1, and provided that N > 2log(ed/k)+

1, it holds true that E [||2N - Z||} < cwﬂﬂw.

Remark 3. Classical estimation result require the number of observations to be larger than
klog(ed/k) where s is the sparsity of signal to be reconstructed. Here, we observe in Theorem
that N is only asked to be larger than log(ed/k) so it is a much weaker assumption. This is
due to the fact that we do not have to lower bound a quadratic process, since our loss function
is linear. It is usually isomorphic or just lower bounds results on a quadratic process which
requires N to be larger than the sparsity up to a log factor, a property that we don’t need here
in the context of linear loss functions.

4.1.3 CONTROL OF ||Z — £y|| FOR A By /SLOPE INTERPOLATION NORM.

We consider the following assumption.

Assumption 4.2. There exists w > 0 and ¢ > 3 such that the following holds. For all p, q € [d]
and all 2 < r < log(ed?) + t we have || X1,X1, — E(X1,X14)]

L, < w?r.

Our aim is to analyze the statistical properties of a SLOPE regularization for various problems
and to show that the optimal rate

k2log(ed/k)
N

can be achieved by a unique regularization method which does not require the a priori knowledge
on the sparsity parameter k. To that end we introduce the SLOPE regularization norm of a
d x d matrix A

d
|Allszore =Y bogAfy 4

p,q=1



CHAPTER 4. STATISTICAL APPLICATIONS 37

where b := (by, : p,q € [d]) are decreasing weights for some lexicographical order over [d]?

starting at (1,1) such that for all k € [d], by = \/log(ed?/k?) +t. For instance, one may
assume that b is a symetric matrice and set by, = /log(ed?/(pq)) +t when ¢ > p. We also
denote by (Afp,q) : p,q € [d]) the non-increasing sequence (for the same lexicographical order
over [d]? used before) of the rearrangement of the absolute values of the entries of A, for instance
Alyqy = min(|Apg| : p,q € [d]) and AF, ) = max(|Apq : p,q € [d]). We denote by Bsropg the
unit ball of the SLOPFE norm.

Consider p > 0. We denote by || - ||, the following interpolation pseudo-norm onto R**? defined
by

[ All, = sup (<Aa Z):Z € pBsrope N B2) ~ (4.3)

Theorem 26. There exists an absolute constant cy such that the following holds. Consider k €
[d) and v > 1. Grant Assumption /.~ for some w and t > max (2log([log(k?)]), v log(ed?/k?))
and assume that N > log(ed?) +t. With probability at least 1 — 2 exp(—t/2), it holds true that

Co’u}2

VN

XN =X, <

min(p, d).

4.2 THE GRAPH CLUSTERING PROBLEM (STOCHASTIC BLOCK MODEL):
REVISITING RESULTS FROM LITERATURE

In order to support the relevance of the methodology developed in the previous chapter, based
on the curvature of excess risk, we begin by showing that it is possible - and this is the starting
point of this work - by looking at some of the existing evidence in the literature through the
new prism it provides, to achieve the same result in a simpler way. To this end, we look at the
graph clustering problem, for which the existing literature is abundant.

Indeed, the rapid growth of social networks on the Internet has led many statisticians and
computer scientists to focus their research on data coming from graphs, and it turns out that
an important topic that has attracted particular interest during the last decades is that of
community detection (FORTUNATO, 2010; PORTER, ONNELA, & MUCHA, 2009), where the goal
is to recover mesoscopic structures in a network, the so-called communities. A community
consists of a group of nodes that are relatively densely connected to each other, but sparsely
connected to other dense groups present within the network. The motivation for this line of
work stems not only from the fact that finding communities in a network is an interesting and
challenging problem of its own, as it leads to understanding structural properties of networks,
but community detection is also used as a data pre-processing step for other statistical inference
tasks on large graphs, as it facilitates parallelization and allows one to distribute time-consuming
processes on several smaller subgraphs (that is, the extracted communities).

One challenging aspect of the community detection problem arises in the setting of sparse
graphs. Many of the existing algorithms, which enjoy theoretical guarantees, do so in the
relatively dense regime for the edge sampling probability, where the expected average degree is
of the order ©(logd). The problem becomes challenging in very sparse graphs with bounded
average degree. To this end, GUEDON and VERSHYNIN (2016) proposed a semidefinite relaxation
for a discrete optimization problem, an instance of which encompasses the community detection
problem, and showed that it can recover a solution with any given relative accuracy even in the
setting of very sparse graphs with an average degree of order O(1).

A subset of the existing literature for community detection and clustering relies on spectral
methods, which consider the adjacency matrix associated with a graph and employ its eigen-
values, and especially eigenvectors, in the analysis process or to propose efficient algorithms
to solve the task at hand. Along these lines, LE, LEVINA, and VERSHYNIN (2016) proposed a
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general framework for optimizing a general function of the graph adjacency matrix over dis-
crete label assignments by projecting onto a low-dimensional subspace spanned by vectors that
approximate the top eigenvectors of the expected adjacency matrix. The authors consider the
problem of community detection with & = 2 communities, which they frame as an instance of
their proposed framework, combined with a regularization step that shifts each entry in the
adjacency matrix by a small constant 7, which renders their methodology applicable in the
sparse regime as well.

In the remainder of this section, we focus on the community detection problem on random
graphs under the general stochastic block model. We build on the works of GUEDON and
VERSHYNIN (2016) and FEI and CHEN (2019b), who both tackle this problem, and revisit the
evidence they provide via the prism of our methodology.

4.2.1 STATISTICAL SETUP

We place ourselves within the context of the stochastic block model (SBM). We consider a
set of vertices V = {1,--- ,d}, and assume it is partitioned into K communities Cy,--- ,Cx of
arbitrary sizes |C1]| = {1, -+, |Ck| = k.

Definition 27. For any pair of nodes i,j € V, we denote by 7 ~ j when i and j belong to the
same community (that is, there exists k € {1,..., K}) such that i,j € Cx), and we denote by
i o4 7 if ¢ and j do not belong to the same community.

For each pair (7, j) of nodes from V', we draw an edge between ¢ and j with a fixed probability
p;; independently from the other edges. We assume that there exist numbers p and ¢ satisfying
0 < ¢ <p<1,such that

pij > p, if i ~ j and i # j,
pi; < q, otherwise.

We denote by A = (4; ;)1<ij,<a the observed symmetric adjacency matrix, such that, for all
1 <4< j<d, Ay is distributed according to a Bernoulli of parameter p;;.

The community structure of such a graph is captured by the membership matrix Z € R4*4,
defined by Z;; = 1 if i ~ j, and Z;; = 0 otherwise. The main goal in community detection is
to reconstruct Z from the observation A.

4.2.2 REVISITING GUEDON AND VERSHYNIN’S RESULTS

Spectral methods for community detection are very popular in the literature (BLONDEL, GUIL-
LAUME, LAMBIOTTE, & LEFEBVRE, 2008; CLAUSET, NEWMAN, & MOORE, 2004; F&1 & CHEN,
2019b; GUEDON & VERSHYNIN, 2016; VERSHYNIN, 2018). There are many ways to introduce
such methods, one of which being via convex relaxations of certain graph cut problems aiming
to minimize a modularity function such as the RatioCut (NEWMAN, 2006). Such relaxations
often lead to SDP estimators, such as the ones introduced in Chapter

Considering a random graph distributed according to the generalized stochastic block model,
and its associated adjacency matrix A (ie. A = AT and A;;j ~ Bern(p;j) for 1 <i<j<d
and p;; as defined in (!.1)), we will estimate its membership matrix Z via the following SDP
estimator

Z e argmaX<A, Z>,
zeC
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Zig < Aand A =Y Z; =

ij=1

where C = {Z € R4, Z = 0,2 > 0,diag(Z) = 1,30, ,
Zszl |€x|? denotes the number of nonzero elements in the membership matrix Z. The motiva-
tion for this approach stems from the fact that the membership matrix Z is actually the oracle,

that is, Z* = Z (see Lemma 7.1 in GUEDON and VERSHYNIN, 2016 or Lemma 29 below), where

Z* € argmax(EA, 7).
zeC

Following the strategy from Theorem 3 and from our point of view, the upper bound on 7*(¢)
from GUEDON and VERSHYNIN (2016) is the one that is based on the global approach — that
is, without localization. Indeed, they use the observation that, for all » > 0, it holds true that

(@) (b)
sup (A-EA,Z—-27") < sup(A—EA,Z - Z*) < 2K¢||A — EA| cu, (4.5)
zec:(EA,Z*~Z)<r zec

where (b) is Grothendieck’s inequality they recall in Lemma 2% below. Therefore, the localiza-
tion around the oracle Z* by the excess risk ‘band’ B := {Z : <IEA, zZ* — Z> < r} is simply
removed in inequality (a). As a consequence, the resulting statistical bound is based on the
complexity of the entire class C whereas, in a localized approach, only the complexity of C N B}
matters.

Lemma 28 (Grothendieck’s inequality). For C' € R4 we define its ‘cut’ norm in the follow-
mg way:

d
1C]lcut := s,ter?ffl}digl Cysiti, C={Z=0:Zy=1,i=1,...,d}

Then, there exists an absolute constant K¢, called the Grothendieck constant, such that for any
C € R¥™?, one has:

d
C,2) < Ke||Cllowt = K Cijsit;
?élé< > > GH ||cut G s,ter?fai{,l}d i]z=:1 ijSilj

The next step in the proof of GUEDON and VERSHYNIN (2016) is a high-probability upper bound
on ||[A — EA||cus which follows from Bernstein’s inequality (see (6.33) in Appendix (.2) and a
union bound: since one has [|A — EA[cus = max, ye_1,1}4 <A —EA, xyT>, then for all ¢t > 0,
|[A—EA||cut < td(d—1)/2 with probability at least 1—exp (2dlog 2 — (d(d — 1)t%)/(16p + 8t/3))
where p := 2/[d(d—1)] 3, _; pij(1—pi;). The resulting upper bound on the fixed point obtained
in GUEDON and VERSHYNIN (2016) is:

(0) < gKG <2d10g(2) + log((ls)> . (4.6)

Then, applying Theorem 3 gives that for any 6 € (0,1), one has with probability at least 1 — 4,
that (EA, Z* — Z) < r*(J). Let us then place ourselves under the condition of Theorem 1 in
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GUEDON and VERSHYNIN (2016): we consider € € (0,1), d € N such that d > 5.10*/¢? and
we assume that max (p(1 — p),q(1 — q)) > 20/d, as well as the existence of a and b such that
p=a/d>b/d=qand (a—b)?>210%%(a+b). Then, taking § = e35-¢, we obtain

(EA, Z* — Z) <1*(8) < ed® = €| Z*|3
which is the result from Theorem 1 in GUEDON and VERSHYNIN (2016). Finally, Guédon and
Vershynin use a (global) curvature property of the excess risk in their Lemma 7.2.

Lemma 29 (Lemma 7.2 in GUEDON and VERSHYNIN (2016)). For all Z € C,

(BA, 2" - 2) > 212" - 2,

Therefore, a (global — that is for all Z € C) curvature assumption holds for a G function
which is here the £¢*? norm, a margin parameter x = 1 and § = (p — ¢)/2 for the community
detection problem. However, this curvature property is not used to compute a ‘better’ fixed-
point parameter, but only to obtain a éfx‘i estimation bound since

16 K¢(2dlog(2) + log(1/4))
3(p—q) '

12— 27 < (2) (BA,Z° — 2) <
pP—q

The latter bound together with the Davis-Kahan sin-Theta theorem (see Corollary 1 in YU,
WANG, and SAMWORTH (2014)) allow the authors to obtain estimation bounds for the commu-
nity membership vector z*.

4.2.3 REVISITING FEI AND CHEN RESULTS

The approach from FEI and CHEN (2019b) improves upon the one in GUEDON and VER-
SHYNIN (2016) because it uses a localization argument: the curvature property of the excess
risk function from Lemma 29 is used to improve the upper bound in (/.0) obtained following
a global approach. Indeed, FEI and CHEN (2019b) obtain a high-probability upper bound on
the quantity

sup <A—IEA,Z—Z*>
ZeC:|| 2~ Z|1 <

depending on r. This leads to an exact reconstruction result in the ‘dense’ case and expo-
nentially decaying rates of convergence in the ‘sparse’ case. This is a typical example where
the localization argument shows its advantage upon the global approach. The price to pay is
usually a more technical proof for the local approach compared with the global one. However,
the argument from FEI and CHEN, 2019b also uses an unnecessary peeling argument together
with an unnecessary a priori upper bound on ||Z — Z*||; (which is actually the one from GUE-
DON and VERSHYNIN (2016)). It appears that this peeling argument and this a priori upper
bound on ||Z — Z*||; can be avoided thanks to our approach from Theorem 3. This improves
the probability estimate and simplifies the proofs (since the result from GUEDON and VER-
SHYNIN, 2016 is not required anymore, and neither is the peeling argument). For the signed
clustering problem we consider in the next section as an application of our main results, we
will mostly adapt the probabilistic tools from FEI and CHEN (2019b) (in the ‘dense’ case) to
the methodology associated with Theorem 3, without needing either of these two arguments.
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4.3 THE SIGNED CLUSTERING PROBLEM (SIGNED STOCHASTIC BLOCK MODEL)

Much of the clustering literature, including both spectral and non-spectral methods, has focused
on unsigned graphs, where each edge carries a non-negative scalar weight that encodes a measure
of affinity (similarity, trust) between pairs of nodes. However, in numerous instances, the above-
mentioned affinity takes negative values, and encodes a measure of dissimilarity or distrust.
Such applications arise in social networks where users relationships denote trust-distrust or
friendship-enmity, shopping bipartite networks which capture like-dislike relationships between
users and products (BANERJEE, SARKAR, GOKALP, SEN, & DAvuLcu, 2012), online news and
review websites, such as Epinions and Slashdot, that allow users to approve or denounce others
(LESKOVEC, HUTTENLOCHER, & KLEINBERG, 2010a), and clustering financial or economic time
series data (AGHABOZORGI, SHIRKHORSHIDI, & WAH, 2015). Such applications have spurred
interest in the analysis of signed networks, which has recently become an increasingly important
research topic (LESKOVEC, HUTTENLOCHER, & KLEINBERG, 2010Db), with relevant lines of
work in the context of clustering signed networks including, in chronological order, KUNEGIS
et al. (2010), CHIANG, WHANG, and DHILLON (2012) and CUCURINGU, DAVIES, GLIELMO, and
TvyAGI1 (2019). The latter work proposed regularized versions of signed clustering methods to
handle sparse graphs — a regime where standard spectral methods are known to underperform.

4.3.1 STATISTICAL SETUP

We focus on the problem of clustering a K-weakly balanced graph: a signed graph is said to be
K-weakly balanced if and only if all the edges are positive, or the nodes can be partitioned into
K e N disjoint sets such that positive edges exist only within clusters, and negative edges are
only present across clusters (J. A. Davis, 1967). We consider a signed stochastic block model
(SSBM) similar to the one introduced in CUCURINGU et al. (2019), where we are given a graph
G with d nodes {1,...,d} which are divided into K communities, {C1, -+ ,Cx}, such that, in
the noiseless setting, edges within each community are positive and edges between communities
are negative.

The only information available to the user is given by a d x d sparse adjacency matrix A
constructed as follows: A is symmetric, with A;; = 1 for all 4 € [d], and for all 1 < i < j < d,
Aij = Sij(QBij — 1) where

and s;; ~ Bern(9),

B.. Bern(p) if i ~ j
*J Bern(q) if i £ j

for some 0 < ¢ <1/2 <p <1andé € (0,1). Moreover, all the variables B;;,s;; for 1 < i <
J < n are assumed to be independent.

We remark that this SSBM model is similar to the one considered in CUCURINGU et al. (2019),
which was governed by two parameters, the sampling probability § as above, and the noise level
7, which may flip entries of the adjacency matrix.

Our aim is to recover the community membership matrix or cluster matrix Z = (Zij)i,j§d> with
Z;j=1when i~ j and Z;; = 0 when i % j using only the observed censored adjacency matrix

A.

Our approach is similar in nature to the one used by spectral methods in community detection.
We first observe that for a := §(p+ ¢ — 1) and J = (1)4xq We have Z = Z* where

7" cargmax(EA—aJ,Z), C={ZeR™:7~»0,Z;;€(0,1],Z;=1,Yie[d} (47
zecC

The proof of (1.7) is detailed in Section
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Since we do not know EA and «, we should estimate both of them. We will estimate EA with
A but, for simplicity, we will assume that « is known. The resulting estimator of the cluster
matrix 7 is

Ze argmax(A — aJ, Z), (4.8)
zZeC

which is indeed an ERM estimator based on the observation of the matrix A — «J and the loss
function Z — £z(A) = 7<A, Z>. We can therefore use the tools introduced in section to
obtain statistical properties on the estimation of Z* from (/.7) by Z.

We will use the following notations: s := §(p—q)?, 8 :=6(p—q), p:= dmax{1 —6(2p—1)%,1—

§5(2¢—1)?}, v i=max{2p—1,1—-2q}, [m] := {1,--- ,m} for all m € N, I}, := |Cy| for all k € [K],
2. _ K 2 pr . K -

AN=3  B = kgl(Ck xCr) and C~ = k;Jk/(

to denote absolute constants whose values may change from one line to another.

Cr, X Cis). We also use the notation cg, ¢1, . ..

4.3.2 MAIN RESULT FOR THE ESTIMATION OF THE CLUSTER MATRIX IN SIGNED
CLUSTERING

Our main result concerns the reconstitution of the K" communities from the observation of the
matrix A. In order to avoid solutions with some communities of degenerated size (too small or
too large), we consider the following assumption.

Assumption 4.3. Up to constants, the elements of the partition C;U---UCk of {1,...,d} are
of the same size: there are absolute constants ¢y and ¢; such that for any k € [K], d/(c1 K) <
ICel = I < cod/ K.

We are now ready to state the main result on the estimation of the cluster matrix Z* from
(1.7) by the SDP estimator Z from (1.8).

Theorem 30. There is an absolute positive constant ¢y such that the following holds. Grant

Assumption /.5. Assume that
dvé > logd (4.9)
sd > coK?v (4.10)
Klog(2eKd 6% 9
and %e) < max <p7 35) (4.11)

Then, with probability at least 1 — exp(—dvd) — 3/(2eKd), exact recovery holds true, that is
Z = Z*. We recall the constants defined above : s := 6(p — q), 0 := 6(p — q), p := dmax{l —
§(2p —1)2,1—8(2¢ — 1)?}, v i=max{2p — 1,1 — 2¢}.

Therefore, we have exact reconstruction in the dense case (that is under assumption (1.9)),
which stems from condition (£.11).

The latter condition is in the same spirit as the one in Theorem 1 of FEI and CHEN (2019b), it
measures the SNR (signal-to-noise ratio) of the model which captures the hardness of the SSBM.
As mentioned in FEI and CHEN (2019b), it is related to the Kesten-Stigum threshold (MOSSEL,
NEEMAN, & Svry, 2015). If this condition is dropped out, then we do not have anymore exact
reconstruction but only a controlled exponential rate of convergence: there exists a universal
constant Cy such that, with probability at least 1 — exp(—dvd) — 3/(2eKd), it holds true that

. 2ed? sd
7" — 7|1 € — — . 4.12
12~ 2l < 2o (- o (112)

A proof of (1.12) can be found in
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This shows that in the dense case, exact reconstruction is possible when (K2 + K log(d))/d < 1
and, otherwise, we only have a control of the estimation error with an exponential convergence
rate.

We then obtain results of the same nature as in FEI and CHEN (2019b), or in the more recent
paper of Xu, JoG, SuN, and LoH (2020). In those two articles, the authors show the existence
of a phase transition, with exact recovery in the regime (K2 + K log(d))/d < 1, and exponential
rate with exponent ~ —sd/K otherwise, where s is some measurement of the SNR of the
Ztlixd

problem. Note that the estimation bound is given with respect to the norm. This is not

a surprise since it is the behavior of the excess risk over C around Z*.

In some recent works (FEI & CHEN, 2019a, 2020), the authors were able to obtain sharp
constants in the rate ( ) for the Synchronization model, the Censored Block Model as well
as the Stochastic Block Model. Their proof relies on the construction of a dual certificate and
goes through the study of the dual problem. We see the proof technique behind Theorem

of different nature as a straight ‘primal’ approach and it is not clear how to relate the two
approaches. The two similar approaches were both developed in the compressed sensing and
matrix completion problems (to name a few) where the ‘primal’ approach was based on the Null
Space Property or the Restricted Isometry Property or some neighborliness property (FOUCART
& RAUHUT, 2013) and, at the same time and for the same problems, a ‘dual’ approach relying
on the construction of a dual or approximate dual certificate was performed (CANDES & TAO,
2010; GRrosS, 2011). But, to the best of our knowledge, no clear connection has been made
between the two approaches. It would be however interesting to have a clear picture on the
two types of approaches, and see if they are actually the same or coming from a more general
approach.

4.4 'THE ANGULAR SYNCHRONIZATION PROBLEM

In this section, we introduce the group synchronization problem as well as a stochastic model
for this problem. We consider a SDP relaxation of the original problem (which is exact) and
construct the associated SDP estimator such as in (2.1).

4.4.1 STATISTICAL SETUP

The angular synchronization problem consists of estimating d unknown angles 61,--- , 604 (up
to a global shift angle) given a noisy subset of their pairwise offsets (6; — 0;)[27], where [27]
is the modulo 27 operation. The pairwise measurements can be realized as the edge set of a
graph G, typically modeled as an Erdds-Renyi random graph (SINGER, 2011).

The aim of this section is to show that the angular synchronization problem can be analyzed
using our methodology. In order to keep the presentation as simple as possible, we assume that
all pairwise offsets are observed up to some Gaussian noise: we are given d;; = (6; —6;+0g;;)[27]
foralll <i¢ < j < dwhere (g;;: 1 <i<j<d)ared(d—1)/2i.i.d. standard Gaussian variables
and o > 0 is the noise variance. We may rewrite the problem as follows: we observe a d x d
complex matrix A defined by

€% ifq<j
A= Solz*(x*)"] where S = (S;)axd, Sij = 1 ifi=j (4.13)
e % if i > j
¢ denotes the imaginary number such that (2 = —1, z* = (z})4, € C4, 2f =i i=1,...,d,
# denotes the conjugate vector of z and So[z*(z*) ] is the element-wise product (S;;7iZ;)axd-
In particular, S is a Hermitian matrix (i.e. ST = 5), with E[S;;] = exp(—0?/2) for i # j and
E[Si;] = 1if i = j. We want to estimate (01, ...,64) (up to a global shift) from the observation
of the matrix of data A.
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Unlike the statistical model introduced in A. BANDEIRA et al. (2016), the noise here is mul-
tiplicative in A. From a physical point of view, it makes more sense to consider an additive
noise on the offsets, that is we observe (0; — ; + 0g;;)[27]. The noise becomes multiplicative
by passing to the exponential. However, to compare our methodology with the one from A.
BANDEIRA et al. (2016), we also consider the model therein (that is, an additive noise on the
matrix Z* = z*(z*)" instead of the additive noise in A). We recover similar results in this
latter model than the one in A. BANDEIRA et al. (2016). For the moment, we consider the
multiplicative noise and the data matrix A as introduced above in ( ). We will turn to the
addtive noise model from A. BANDEIRA et al. (2016) at the very end of this section in a remark.

The first step is to find an (vectorial) optimization problem which solutions are given by (6;)%;
(up to global angle shift) or some bijective function of it. Estimating (6;)%_; up to global angle
shift is equivalent to estimating the vector x* = (e'?*)%_,. The latter is, up to a global rotation
of its coordinates, the unique solution of the following maximization problem

argmax {ET EA 33} = {(eWiFboN)d_ gy e [0,27)}. (4.14)
z€Ce:|z;|=1
A proof of (1.141) is given in Section . Let us now rewrite (4.14) as an ERM with a linear

loss function. To that end, we classically use a lifting procedure (D’ ASPREMONT, EL GHAOUI,
JORDAN, & LANCKRIET, 2007; LEMARECHAL & OUSTRY, 2018) that we will now describe. For
all z € C?, we have 2 EAz = tr(EAX) = (EA, X) where X = 2z' and {Z € C™*?: Z =
2zl |z =1} ={Z € Hy : Z = 0,diag(Z) = 14,rank(Z) = 1} where H, is the set of all d x d
Hermitian matrices and 15 € C? is the vector with all coordinates equal to 1. It is therefore
straightforward to construct a SDP relaxation of ( ) by dropping the rank constraint. It
appears that this relaxation is exact since, for C = {Z € H, : Z = 0,diag(Z) = 14},

argmax(EA, Z) = {Z*} (4.15)
zZeC
where Z* = x*(z*)T. A proof of (1.17) can be found in Section . Finally, as we only

observe A, we consider the following SDP estimator of Z*

Ze argmax(A, 7). (4.16)
zeC

In the next section, we use the strategy from Theorem » to obtain statistical guarantees for the
estimation of Z* by Z.

Intuitively, the above maximization problem ( ) attempts to preserve the given angle offsets
as best as possible, by aiming to maximize the following objective function

d
argmax E e i Ayiett (4.17)
01,...,04€[0,27) i,j=1

where the objective function value is incremented by +1 whenever an assignment of angles
6; and 6; perfectly satisfies the given edge constraint d,; = (0; — 6;)[27| (that is, for a clean
edge for which ¢ = 0), while the contribution of an incorrect assignment (that is, of a very
noisy edge) will be almost uniformly distributed on the unit circle in the complex plane. Due
to non-convexity of optimization in ( ), it is difficult to solve it computationally (ZHANG
& HUANG, 20006); one way to overcome this problem is to consider the SDP relaxation from
(1.15) such as in (1.106) but it is also possible to consider a spectral relaxation such as the one
proposed by SINGER (2011), which replaces the individual constraints that all z;’s should have
unit magnitude by the much weaker single constraint E?Zl |zi|? = d, leading to

d
argmax E ZiAijZj. (4.18)
215024€C; S0, |zil2=d i j—1
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The solution to the resulting maximization problem is simply given by a top eigenvector of the
Hermitian matrix A, followed by a normalization step. We remark that the main advantage
of the SDP relaxation ( ) is that it explicitly imposes the unit magnitude constraint for

*0i which we cannot otherwise enforce in the spectral relaxation solved via the eigenvector

e
method in (1.18) (at the end of the day, our estimator & from Corollary 32 below is a top
eigenvector which may not satisfied the unit magnitude constraint). The above SDP program
(1.15) is very similar to the well-known Goemans-Williamson SDP relaxation for the seminal
MAX-CUT problem of finding the maximal cut of a graph (the MAX-CUT problem is considered
in Section below), with the main difference being that here we optimize over the cone of

complex-valued Hermitian positive semidefinite matrices, not just real symmetric matrices.

4.4.2 MAIN RESULTS FOR PHASE RECOVERY IN THE SYNCHRONIZATION PROBLEM (IN THE
MULTIPLICATIVE NOISE MODEL)

Our main result concerns the estimation of the matrix of offsets Z* = x*(2*) T from the obser-
vation of the matrix A. This result is then used to estimate (up to a global phase shift) the
angular vector z* = (e~*%)%_|. Our first result follows from Theorem

Theorem 31. Consider 0 < e < 1. If 0 < y/log(ed?*) then, with probability at least
1 — exp(—eotd(d — 1)/2), it holds true that

M)

a

¢ 27 |1Z2* - Z|3<(EA, Z* - Z) < 12—8\/Ea4d(d —1). (4.19)

Once we have an estimator Z for the oracle Z *, we can extract an estimator Z for the vector
of phases * by considering a top eigenvector (i.e. an eigenvector associated with the largest
eigenvalue) of Z. Tt is then possible to quantify the estimation properties of z* by Z using a
‘sin-Theta’ theorem and Theorem

Corollary 32. Let & be a top eigenvector of Z with Buclidean norm |Z|l2 = Vd. Consider
0 < e <1 and assume that o < y/log(ed*). We have the existence of a universal constant
co > 0 (which is the constant in the Davis-Kahan theorem for Hermitian matrices) such that,
with probability at least 1 — exp(—ea*d(d —1)/2), it holds true that

zE(rCI:l\izr\I:I | — za™|]2 < 800\/2/361/4602/402\/g. (4.20)

It follows from Corollary 32 that we can estimate * (up to a global rotation z € C : |z| = 1) with
a (3-estimation error of the order of 02v/d with exponential deviations. Given that ||z* ||z = V/d,
this means that a constant proportion of the entries are well estimated when ¢ is taken like a
constant. For a value of € ~ 1/d?, the rate of estimation is like 02, we therefore get a much
better estimation of * but only with constant probability. It is important to recall that Z and
Z can be both efficiently computed by solving a SDP problem and then by considering a top
eigenvector of its solution (for instance, using the power method).

We finish the section on the angular group synchronization with the additive model as con-
sidered in A. BANDEIRA et al. (2016). Our aim is still to put forward our methodology and
to show that it has a wide spectrum of applications and that, in particular, it covers also the
model introduced in A. BANDEIRA et al. (2016).

4.4.3 THE ANGULAR GROUP SYNCHRONIZATION MODEL WITH ADDITIVE NOISE FROM
A. BANDEIRA ET AL. (2016)

As mentioned above, we chose to study a multiplicative noise model in A since it makes more
sense from a physical point of view to have an additive noise on the offsets d;; = 0; — 0;[27]
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(this additive noise becoming multiplicative by passing to the exponential in A). However, in A.
BANDEIRA et al. (2016), the authors considered a model with additive noise on Z* = z*(z*)T.
In this ‘additive’ model, we observe C' = Z* + ¢W, where W is a complex Wigner matrix and
o > 0 is the noise level. The MLE z is solution to the problem

Fe€ argmax z’Cuz, (4.21)
z€C4,|z;|=1Vi
which can be hard to compute in practice. Using the same approach as above, a SDP relaxation
can be obtained by removing a rank one constraint, yielding the SDP estimator

Ze argmax<0, X>, (4.22)
zeC
where C 1= {Z € H, : diag(Z) =14 and Z = 0}. Statistical properties of Z have been obtained
in A. BANDEIRA et al. (2016). We recall this result now.

Theorem 33 (Theorem 2.1 in A. BANDEIRA et al. (2016)). Let & be a solution of (/.21). Then
with probability at least 1—O(d~3), Min,ec.|z|=1 [|2Z—2%(|2 < 120. Moreover, if o < (1/18)d"/*,

then (/.2”) has a unique solution which is the rank one matriz $% .

Our methodology (here Theorem 5 is applied) may also be used to handle the ‘additive’ noise
model from A. BANDEIRA et al. (2016). We consider the same SDP estimator Z as defined in
(1.22) and we obtain the following result (the proof is postponed in Section 7.5).

Theorem 34. Let & be a top eigenvector of Z. With probability at least 1 — 5exp(—d/2),

min |[2Z — x¥||2 < 40¢po
z€C:|z|=1

where cq is the constant appearing in the Davis-Kahan theorem for Hermitian matrices.

Compared with Theorem 2.1 from A. BANDEIRA et al. (2016), the estimation rate that we get
for estimator Z is the same (up to an absolute constant) as the one obtained for the MLE &
in Theorem 33, it is of the order of 0. Note however that our result for Z holds without any
restriction of the noise level o, whereas in Theorem 3 one needs o < (1/18)d"/* to get this
result for . Note also that our result holds with exponentially large probability, whereas the one
in Theorem 33 holds only with polynomial deviation. From a statistical perspective, our result
improves the one from A. BANDEIRA et al. (2016). However, the main interest of Theorem

is not on the statistical performance of Z but on the sharpness of the SDP relaxation since it
shows that the SDP relaxation (/.22) is actually exact when o < (1/18)d*/*. This is a result
that we do not have and that our methodology cannot obtain, since it is designed to prove only
an estimation bound. But from a statistical point of view, it does not improve the estimation
rate to know that the SDP relaxation is exact: our result shows that the SDP relaxation is
doing as good as MLE, without proving that they are the same (up to global phase).

A proof of Theorem 3 is given in Section . We actually provide three estimation bounds
for Z in this proof. We are doing so because our aim is to show how a general methodology
works in various examples. This methodology relies on the computation of a fixed point (rk(9)
from () here). Hence, understanding how to bound this fixed point is part of the objective of
this work. We therefore use the angular group synchronization problem with additive noise as
a playground to show three different ways to upper bound such a fixed point. Using the three
computations, we actually obtain the following three upper bounds

8cooV/d with probability at least 1 — exp(—d?/2)

E(ch}‘ir‘1_1 |22 — 2 [l2 < ¢ coy/36KS0d/*  with probability at least 1 — exp(—d/2)
40coo with probability at least 1 — 5exp(—d/2),
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where ¢g is the constant appearing in the Davis-Kahan theorem for Hermitian matrices and
K g is Grothendieck constant in the complex case. Each of the three bounds above follows from
different upper bounds on the complexity fixed point 7. For instance, the second one follows
from the ‘global’ approach, and the third one follows from a decomposition similar to the one
from FEI and CHEN (2019b) and is the one we used in Theorem

4.5 THE MAX-CUT PROBLEM

4.5.1 STATISTICAL SETUP

Let A° € {0,1}%*? be the adjacency (symmetric) matrix of an undirected graph G' = (V, E?),
where V := {1,...,d} is the set of the vertices and the set of edges is E* := EUET U {(4,1) :
AY =1} where E == {(i,j) € V? : i < jand A), = 1} and ET = {(j,) : (4,j) € E}. We
assume that G has no self loop so that AY, = 0 for all i € V. A cut of G is any subset S of
vertices in V. For a cut S C V, we define its weight by cut(C_v’7 S) = (1/2) X i jesxs AY;, that
is the number of edges in E between S and its complement S = V\S. The MAX-CUT problem
is to find the cut with maximal weight

S* € argmax cut(G, S). (4.23)
ScVv

The Max-CuUT problem is a NP-complete problem, but GOEMANS and WILLIAMSON (1995)
constructed a 0.878 approximating solution via a SDP relaxation. Indeed, one can write the
MAX-CUT problem in the following way. For a cut S C V, we define the membership vector
x € {—1,1}% associated with S by setting z; := 1 if i € S and x; = —1ifi ¢ S for alli € V.
We have cut(G, S) = (1/4) Z?’j:l AY; (1 —zix5) == cut(G, ) and so solving (.22) is equivalent
to solving

xz* € argmax cut(G,x). (4.24)
ze{—1,1}¢

Since (z;x;)i,; = xzx |, the latter problem is also equivalent to solving

d
1
Z € argmax 7§jA9j(1fZ¢j) , C::{ZeRdXd:ZEO,Z“-:LVZ‘:L“,,d}
zec \ 452

(4.25)

which admits a SDP relaxation by removing the rank-1 constraint. This yields the following
SDP relaxation problem of MAX-CUT from GOEMANS and WILLIAMSON (1995)

Z* € argmin(A°, Z), (4.26)
zZeC

Uunlike the other examples from the previous sections, the SDP relaxation in ( ) is not
exact, except for bipartite graphs (see KHOT and NAOR (2009) or GARTNER and MATOUSEK
(2012) for more details). Nevertheless, thanks to the approximation result from GOEMANS
and WILLIAMSON (1995), we can use our methodology to estimate Z* and then deduce an
approximate optimal cut. The MAX-CUT problem is therefore a good setup for us to test
our methodology in a context where the SDP relaxation is not exact, but still widely used in
practice. Thus the type of question we want to answer here is: what can we say in a setup
where only partial or noisy information is available on E[A], and when the SDP relaxation
associated with E[A] is also not exact. This differs from the previous setup where exactness of
the SDP relaxation holds, and this interesting peculiarity is one of the reasons why we have
chosen to present this problem here. Our motivation stems from the observation that, in many
situations, the adjacency matrix A° is only partially observed, but nevertheless, it might be
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interesting to find an approximating solution to the MAX-CUT problem. Let us then introduce
a stochastic model for the partial information available on E[A], the adjacency matrix here.

We observe A = SoAY = (s;; A%—)lgi,jgd a ‘masked’ version of A%, where § € R%*? is symmetric
with upper triangular matrix filled with i.i.d. Bernoulli entries: for all i,5 € V such that
i < j, Sij = Sji = si; where (s;;)i<; is a family of i.i.d. Bernoulli random variables with
parameter p € (1/2,1). Consider B := —(1/p)A, so that E[B] = —A°. We can write Z* as
an oracle since Z* € argmaxZ€C<EB, Z" — Z> and so we estimate Z* via the SDP estimator
Ze argmaXZeC<B7 Z>. Our first aim is to quantify the cost we pay by using Z instead of Z*
in our final choice of cut. It appears that the fixed point used in Theorem 3 may be used to
quantify this loss

r*(A)=inf [r>0:P sup (B—EB,Z—-Z*y<(1/2)r| >1—-A|. (4.27)
zec(EB,2*~Z)<r

Our second result is an explicit high-probability upper bound on the latter fixed point.

4.5.2 MAIN RESULTS FOR THE MAX-CUT PROBLEM

In this section, we gather the two results on the estimation of Z* from Z and on the approximate
optimality of the final cut constructed from Z. Let us now explicitly provide the construction
of this cut. We consider the same strategy as in GOEMANS and WILLIAMSON (1995). Assume
that Z has been constructed. Let G be a centered Gaussian vector with covariance matrix Z.
Let & be the sign vector of G. Using the statistical properties of Z , it is possible to prove near
optimality of Z.

We denote the optimal values of the MAaX-CuUT problem associated with the graph G and its
SDP relaxation by
1
R 0 *\ 0 - R *
SDP(G) = (1/4){A°,J — Z2*) = max - ZAM(l — Z;;) and Max-CuT(@) := cut(G, S*),
J
where S* is a solution of (1.23) and J = (1)gxq. Our first result is to show how the 0.878-
approximation result from GOEMANS and WILLIAMSON (1995) is downgraded by the incomplete

information we have on the graph (since we only partially observed the adjacency matrix A°
via the masked matrix A).

Theorem 35. For all 0 < A < 1. With probability at least 1 — A (with respect to the masked
S), it holds true that

N 0.878r* (A
SDP(G) > E [cut(c;,gmz} > 0.878SDP(G) — #
To make the notation more precise, & is the sign vector of G which is a centered Gaussian

variable with covariance Z. In that context, E [cut(G, 33)|Z] is the conditional expectation

according to G for a fixed Z. Moreover, the probability ‘at least 1 — A’ that we obtain is with
respect to the random mask, that is to the randomness in A.

Let us now frame Theorem into the following perspective. If we had known the entire
adjacency matrix (which is the case when p = 1), then we could have used Z* instead of Z. In
that case, for z* the sign vector of G* ~ N(0, Z*), we know from GOEMANS and WILLIAMSON
(1995) that

SDP(G) > E [cut(G, z*)] > 0.878SDP(G). (4.28)
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Therefore, from a trade-off perspective, Theorem characterizes the price we pay for not
observing the entire adjacency matrix A°, but only a masked version A of it. It is an interesting
output of Theorem 35 to observe that the fixed point 7*(A) measures, in a quantitative way,
this loss. If we were able to identify scenarios of p and d for which r*(A) = 0, that would prove
that there is no loss for partially observing A in the MAX-CUT problem. The approach we
use to control r*(A) is the global one, which does not allow for exact reconstruction (that is,
to show that r*(A) = 0).

Let us now turn to an estimation result of Z* by Z via an upper bound on r* (A).

Theorem 36. There exists a universal constant C' > 0 such that With probability at least
1—474:

(2log4)(1 —p)(d —1)  8dlog4
p - 3

(EB,Z* - Z)<r*(4™") <C 2d\/

In particular, it follows from the approximation result from Theorem 37 and the high-probability
upper bound on 7*(A) from Theorem 50 that, with probability at least 1 — 4~¢

E [cut(ax)\z} > 0.878SDP(G) — ——C . .

0.878 2d\/(2log4)(1 —p)d=1) | 8dlogd ) o)

This result is non-trivial only when the right-hand side term is strictly larger than 0.5 - SDP(G),
which is the performance of a random cut. As a consequence, (1.29) shows that one can still do
better than randomness even in an incomplete information setup for the MAX-CUT problem
when p, d, and SDP(G) are such that

: 4)(1 - -1 1
0.378SDP(G) > @C Qd\/(%g JA-p)d-1)  8d ;)gél
p

For instance, when p is like a constant, it requires SDP(G) to be larger than cyd®/? (for some
absolute constant ¢p) and when p = 1 — 1/d, it requires SDP(G) to be at least cod (for some
absolute constant c).

Remark 4. To get exact recovery, that is 7*(A) = 0, in the MAX-CUT problem (which shows
that there is no loss for the MAX-CUT problem by observing only a masked version of the
adjacency matrix), we have to develop a local approach, as for the Signed Clustering and
the Group Synchronization problems. To that end, we would need to solve two problems:
firstly, find a curvature for the objective function Z — (EB,Z* — Z), and secondly, study
the oscillations of the empirical process Z — <]EB - B, Z* -7 > We leave those two difficult
problems for future research.

4.6 'THE SPARSE PCA PROBLEM

Principal Components analysis (PCA) is one of the most fundamental dimension reduction
algorithm as well as one of the most used data visualization tool. It can be efficiently per-
formed via some truncated SVD algorithms on the N x d data matrix (N being the number
of data and d the dimension of the data, that is the number of features) which requires only
O(k? min(d, N)) operations to get the first k top eigenvectors (GOLUB & VAN LOAN, 2013;
HALKO, MARTINSSON, & TRrROPP, 2011).

However, principal components are linear mixture of features that may be of very different
nature and as so are for most of the time meaningless. This problem becomes more salient for
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high-dimensional data (i.e. when d > N) where the diversity of features (text, socio-professional
categories, geographic location, familiar situation, consumption habits, etc.) may be very large.
Moreover, in the high-dimensional setting, PCA no longer provides meaningful estimates of the
principal components of the actual covariance matrix > as exhibited by the phase transition
from BaIk, BEN AROUS, and PECHE (2005).

One way to alleviate both interpretation and inconsistency in the high-dimensional setting is
to look for principal components which are linear mixture of a small number of features — that
is “sparse” principal component. This problem is known as sparse PCA and was introduced in
JOHNSTONE and LU (2009b) and JOHNSTONE and LU (2009a). It can be stated as the following
optimization problem:

by € argmax  [|Syve, (4.30)
vlla=L.[lvllo<k
where the X;’s are i.i.d. centered vectors in R? with covariance E[X; X, | = %,
Sy = (1/N) Zivzl(Xi — XN)(X; — Xn) T is the empirical covariance matrix, ||v|o is the size of
the support of v and k is some fixed sparsity level.

From an algorithmic point of view there are two major issues in the optimization problem

(4:30):

1. the objective function that we want to maximize is convex; and it is notoriously difficult
to maximize a convex function even on a convex set

2. because of the sparsity constraint ‘||v|lg < k’, the constraint set is not convex.

If the sparsity constraint was not there, then ( ) would be the classical PCA problem for
finding a first principal component, that is a top eigenvector of $n. In that case, even though
it is a maximization problem of a convex function on a convex set, this problem can be solved
efficiently for instance via the power method and is in fact one of the few situation where
maximizing a convex function can be performed efficiently.

The extra sparsity constraint in ( ) somehow emphasis this original issue that the objective
function to maximize is convex. One way to overcome this issue is to adapt the power method to
this extra constraint, see JOURNEE, NESTEROV, RICHTARIK, and SEPULCHRE (2010). Another
way is via SDP relaxation (D’ ASPREMONT et al., 2007). We will use this latter approach so we
present it in the next subsection in more details.

4.6.1 SDP RELAXATION IN SPARSE PCA

Let X € R? be a centered random vector with distribution P. Let Xi,..., Xy € R% be N
independant copies of X. Define A := (1/N) sz\il X;X,", the empirical covariance matrix of
the X;’s. Let ¥ := E[A] = Ex.p[XX7”] be their covariance matrix. We are looking for a
first principal component with a support of small cardinality, that is for a vector v* € R? with
unit-length and cardinality less than a certain integer k£ < d, and such that the variance of the
X,’s when projected onto v* is maximal. This can be written as follows:

vt e argmaXE[<X7v>2] where & := {v eRY: j]la =1, ||v]lo < k} . (4.31)
veE

This problem is known to be NP-hard in general (MAGDON-ISMAIL, 2015), so we are looking
to relax it. One way to do this is to replace the cardinality function by the /¢-norm. Another
way is via the lifting procedure, which is described for example in LEMARECHAL and OUSTRY
(2018) and is based on the principle that quadratic objective functions and constraint sets of a
vector v can be written as linear objective functions and constraint sets of the symmetric rank

one matrix vv! .
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In our case, we first note that E[<X,11>2] = (E[A],vv") = (Z,vv"). Then, if Z = vv” with
v e S$ and ||v|lo < k, we have Tr(Z) = ||v]|3 = 1 and || Z||o < k?. Finding a solution of (1.71)
is then equivalent (D’ASPREMONT et al., 2007; LEMARECHAL & OUSTRY, 2018) to finding a
top singular vector of Z*, where Z* is solution of the optimization problem

RS argmcax<E[A],Z> where Cp := {Z eR™: Z =T v e RETH(Z) = 1, | Z])0 < k2} .
Ze

In the latter problem, the objective function has now become a linear one thanks to the lifting
approach, however the constraint set is not convex. We are now working on that issue to get a
full SDP relaxation of (1.31). First, we may replace the condition “Z = vv™™”
condition “Z > 0 and rank(Z) = 17 in Cy.

However, Cy := {Z € R™*?: Z = 0,Tx(Z) = 1,||Z||o < k* rank(Z) = 1} is not convex, because
of two non-convex constraints: the cardinality constraint “ || Z||o < k®” and the rank constraint

by the equivalent

“rank(Z) = 1”7 that we are just dropping out of Cy. By doing so, we end up with the following
convex optimization problem:

7* € argmax(E[A], Z) where C := {Z e R™?: Z = 0, Tx(Z) = 1}. (4.32)
zec
We then see Z* as an oracle for the linear loss function Z — (z(X) = —(XX,Z) and its

associated risk function Z — Efz(X) over the model C, that is Z* € argminy, . Plz. This
enables us to leverage the methodological tools introduced in Section * to derive estimators for
Z* and provide statistical guarantees onto them.

This configuration allows us to refer to the work of WANG, BERTHET, and SAMWORTH (2016).
The authors study the sparse PCA problem where the distribution of the data Xi,..., Xy
belongs to a class P of distributions that all have a sub-exponential tail; it includes, among
others, sub-Gaussian distributions (see equation (4) in WANG et al. (2016) for a definition). In
particular, they propose the following ¢;-regularized ERM estimator

N
5 : —1 T . .
Ze argmin <W ;XiXi L Z)+ M|Z|l1 | where C:={Z:Z =0,Tr(Z) =1} (4.33)

and provide an algorithm for solving it in polynomial time. We report below their main results
for this estimator.

Theorem 37. [Theorem 5 in WANG et al. (2016)] Let X1,...,Xn € R? be i.i.d. random
vectors with distribution in P and a covariance matriz satisfying the spiked covariance model:
E[X;X,"] = I;+ 0B*(B*) ", where B* is a k-sparse vector with unit euclidean norm. Let X =
4y/log(d)/N, e = log(d)/(4N) and consider iy, € argmax|,,—; v Z¢, where Z¢ is an e-
mazimizer of Z — (% SN XX, Z) — M| Z||1 over the model C defined in (/.7). Finally,
let @g’é be the k-sparse vector derived from ¥y . by setting all but its largest k coordinates in
absolute value to 0. If 41og(d) < N < k2d?0=2 and 0 < 0 < k, then it holds true that:

2
E (V20 ()7, - 5°(5")T o] < (32v2+ )/ )

We are now using our methodology to propose several estimators and provide our insights on the
sparse PCA problem. In particular, we will extend Theorem 37 to the heavy-tailed framework,
provide in-deviation results and improve the rate to the optimal one k?log(ed/k)/N (thanks
to localization). On top of that, we will construct new estimators based on the MOM principle
to handle robustness issues in sparse PCA.
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4.6.2 EXACTNESS AND CURVATURE IN THE SPIKED COVARIANCE MODEL.

We present here two results that will be of crucial importance in the analysis of our estimators
(the proofs are postponed to Section ). The first one concerns the exactness in the spiked
covariance model. That is, the oracle Z* as defined by equation ( ), obtained after a lifting
and a convex relaxation of the initial problem, turns out to be a matrix of rank one whose
unit-norm leading eigenvector is +5*.

Lemma 38. In the spiked covariance model ¥ = 0(6*)(8*)" + I, with §* € S$~' and B* is
k-sparse, we have Z* = (8*)(8*)T, for Z* defined in (/.7").

The second one concerns the curvature of the excess risk function around the oracle Z*. Fol-
lowing our methodology, we need to understand the behavior of the excess risk around Z* in
order to find a good G function that will be used to be define localized subsets of our model.
Then, later, based on the results from Section we will compute the Rademacher complexities
of these localized subsets and then the local complexity fixed points as introduced in Section

The fixed point is then used to establish statistical bounds on our estimators. Finding
the ‘right’ curvature function of the excess risk is therefore important in our approach. The
following result provides a curvature of the excess risk ‘globally’, that is on the entire set C and
not just around Z* (see the proof in Section 39).

Lemma 39. In the spiked covariance model ¥ = 0(6*)(8*)" + I, with §* € S$~' and B* is
k-sparse, the following holds. For all Z € C, we have PLy = (X,7Z* — Z) > (0/2)|Z* — Z||3.

As a consequence, using our terminology, the problem has an excess risk curvature function
given by G : Z — ||Z||2 - where || - ||2 is the canonical Hilbertian norm in R4*?¢, We will
therefore use the fo-norm to the square to define our localized models for the study of all
estimators introduced below.

4.6.3 (1-REGULARIZED ERM ESTIMATOR

Since the parameter we want to estimate has a sparse structure, the choice of estimators reg-
ularized by an appropriate norm will enable us to take advantage of this structural property.
We start with a regularized ERM estimator, as presented in Section , where the ¢1-norm
is used as regularization norm:

RPN ¢ argmin (Pylz +A|Z]h), where Ci={Z €R™:Z=0,Te(2) =1} (434)
zec

and (z(X) = —(XX",Z) and Pylz = (1/N) Zfil £7(X;). This puts us in condition to use
the results of Section to provide statistical guarantees on ZA)F\{ERM.

Lemma 39 shows that, for any value of p > 0 and ¢ € (0,1), Assumption is satisfied with
A=2/0and G : Z € R¥*? — || Z||3. In order to proceed with our methodology, the next step is
then to identify a value of p* which satisfies the 2/6-sparsity equation from Definition 3. This
is the purpose of the following Lemma (the proof is given in section ).

Lemma 40. Let A > 0, 6 € (0,1), and define 7*(.) = rhpry.a(4; - 9). If p > 10k\/T*(p),
then p satisfies the A-sparsity equation from Definition
The last step is to compute the local complexity fixed point of Definition 7, which is what we

are working on below.

Lemma 41. Grant Assumption with t = log(ed/10k). Suppose that B* is k-sparse, with
k <ed/200. Let A =2/6 and assume that N > 3log (ed/lOk). Then there exists an absolute
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constant b > 0 such that, defining:

1 ed p? b2 A2(ed)*
* L 2 * o
p* = 200bAk"} | — log (k: > and 7*(p) : bA\/ log ( , (4.35)

Np?
one has ripru.G (A, ¥, 10k/ed) < r*(p*) and p* satisfies the A-sparsity equation from Defini-
tion
We are now ready to state our main result concerning the ¢;-regularized ERM estimator for
the sparse PCA problem.

Theorem 42. Grant Assumption with t = log(ed/10k). Suppose that 5* is k-sparse, with
k < ed/200. Assume that N > 3log (ed/lOk) and that \ satisfies the following inequalities:

20 1 ed 2 1 ed

—b,| =1 <AL —b/=1 — 4.36

21"\| N 8 (2001/210g(200)1/4k> == \/N 08 <2002/3k> (4.36)
where b is the absolute constant introduced in Lemma above. Let C = 40b. Then, with

probability at least 1 — 10k /ed, it holds true that:

. 1 ed - k2 ed
RERM _ x| - 2 | RERM _ 7+~ v, |
125 Z*|lh < 10Ck Nz log(k>, 125 Z* . < C No? log(k>

and

C? k2 ed
PEZ)I\KERM S 7mlog (k) .

Note that if one is willing to get a better deviation parameter, one can assume N larger than
T log(ed/10k), for T large enough.

Up to this point, we have introduced an estimator for Z* and provided a convergence rate with
high probability. However, our primary focus is not on Z* itself, but rather on its unit-norm
leading eigenvectors £8*. The purpose of the upcoming result is to leverage the preceding one
in order to establish properties related to 5*.

Corollary 43. LetB € R? be a leading unit length eigenvector of Z:{‘ERM, Under the conditions

of Theorem /”, there exists an absolute constant D > 0 such that with probability at least
1 —10k/ed:

~ A N N k,z d
1387 = 8°(8") Il < Dy <z log (k)

1/2
We therefore obtain a convergence rate of magnitude (kQ log (ed/k) /(N 92)) , when our

dataset is made up of i.7.d random variables whose distribution satisfies Assumption 4.1, which
includes the case of i.i.d sub-Gaussian variables but it goes much beyond up to variables with
only log d moments. The result of WANG et al. (2016) is available for a class of distributions,
including sub-Gaussian distributions, whose covariance matrix fits within the spiked covariance
model. They obtain a convergence rate of magnitude (k? 10g(al)/(]\/'¢92))1/27 although our result
holds with polynomial deviation while theirs is in expectation. We also note that our result
does not suffer from any restrictive condition concerning . We therefore slightly improve the
results from WANG et al. (2016); this improvement is of the same order as the one obtained
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for the LASSO in BELLEC, LECUE, and TSYBAKOV (2018) and is due to a careful localization
argument. This shows that our analysis is precise enough to catch the subtle difference between
the log d rate from WANG et al. (2016) and the log(ed/k) obtained in Theorem /2. Our result
also extends the scope of Theorem 37 to heavy-tailed data since we only require the existence of
log d moments. However, to get this improvement for the Lasso type estimator ( ), one needs
to choose A\ depending on k in ( ), which is unknown in practice. To solve this issue, we
could use a Lepskii’s adaptation scheme as in BELLEC et al. (2018). However, we will not follow
this path but rather consider another regularization norm: the SLOPE norm, that allows to
get the same results as in Theorem /2 but a choice of )\ independent of k. This will also give
us the opportunity to run our methodology one more time for a different regularization norm.

4.6.4 SLOPFE REGULARIZED ERM ESTIMATOR

In this section, we study a regularized ERM estimator of Z* with the SLOPFE norm (introduced
in Section , and whose definition is restated below) as the regularization norm. We consider
a lexicographical order over [d]? such that for any k € [d], the k? largest elements in [d]? belong
to [k]2. We fix t > 0 (which will be choosen appropriately later) and we define, for p < g,

bpe(t) =1 \/log(ed?/pq) +t, and by, (t) = by,(t) for p > q. For Z € R¥4 we define Z* the

matrix obtained from Z by reordering its element in absolute value in non-increasing order,
and we finally define its SLOPEFE norm by:

d
1ZsLope == bpgZiy

p,q=1

Our estimator is then:

ZBERM ¢ angénCin (Pntz + M| Z||sropg) for C:={Z e R :Z »0,Te(Z) =1}  (4.37)

and a regularization parameter A > 0 to be chosen later. This puts us in condition to use the

results of Section to provide statistical guarantees on Z?gg}\fE.

As before, the essence of Lemma 39 in this context is that, for any value of p > 0 and ¢ €]0, 1],
Assumption is satisfied with A =2/0 and G : Z € R?™¢ — || Z|]3. In order to proceed with
our methodology, our next step is then to identify a value of p* which satisfies the 2/6-sparsity
equation. This is the purpose of the following Lemma.

Lemma 44. Assume that 5* is k-sparse, for some k € [d]. Let A >0, § € (0,1) and t > 0.
Define Ty (t) :=3 25:1 bee(t). If p > 10Pk(t)\/7"1*:tERM,G(A» p,0), then p satisfies the A-sparsity
equation from Definition

Following the path traced by our methodology, all that remains is to calculate the complexity
fixed-point parameter

TEERM,G(Aa p,0)

=inf[r>0:P sup |(P7PN)£Z|§L >1-9
2€C:|Z-2 |sLopp<pllZ—Z" |2< VT 34

The next Lemma gives us an upper bound for TEERMG(A, p,90), when p satisfies the sparsity
equation of Definition
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Lemma 45. Grant Assumption for t = 2log(ed?/k?). Suppose that B* is k-sparse, with
k < d/(e*log(d)). Let A >0, and assume that N > 3log(ed?). Then, there exists an absolute
constant b > 0 such that, defining:

bA b2 2 9
p* = IOFZW min (10T%;d)  and r* := N min (10I';; d)

one has ripry (4, p*, 2k /(ed?)) < r* and p* satisfies the A-sparsity equation rom Definition
, where T'y = T'x(2log(ed?/k?)) is the quantity introduced in Lemma

We are now ready to state our main result concerning the SLOPE regularized ERM estimator
for the sparse PCA problem.

Theorem 46. Grant Assumption for t = 2log(ed?/k?). Suppose that 5* is k-sparse, with
k < min (d/(62 log(d)), (6/140\/§)Qd). Assume that N > 3log(ed?) and that \ satisfies the
following inequalities:

106 2b
<A< —, 4.38
21V N 3VN ( )
where b is the constant previously defined in Lemma /5. Then there exist an absolute constants

C1 > 0 such that one has with probability at least 1 — 2k?/(ed?):

SRERM . k> ed?
1Zstope — Z"lscope < Clﬁlog =l

SRERM * k2 ed?
1Zstope — Z%1l2 < Ch Wlog =3

* _ SRERM k? ed?
and <E,Z _ZSLOPE> SClmlOg ﬁ .

We can now use this result to obtain properties about our object of interest, which is not
directly Z*, but its unit-length leading eigenvectors +3*.

Corollary 47. Let B e R be a leading unit-eigen vector of Z?SLOPE. Under the conditions
of Theorem /0, there exists an absolute constant C' > 0 such that with probability at least
1 — 2k?/ed?:

AA * * kQ d2
1367 = 8°(5) Il < €y | 373 log (ek?)

Here again, we obtain a rate of convergence of magnitude \/ (1/N62)log (ed2 / k2), holding with
polynomial deviation, with no restriction on the value of §. We note that this result holds with
a value of the regularization parameter A that does not depend on the sparsity level k of 5*.

4.6.5 {1 REGULARIZED MINMAX MOM ESTIMATOR.

Here, we consider the case where data may be corrupted with outliers. We place ourselves
in the framework of the adversarial contamination, which is described in Assumption 3./: the
dataset {X71,..., Xy} used by the statistician may have been corrupted by an adversary. As
a consequence, on top of the structural learning problem, we now have to face a robustness
to data contamination problem. To deal with these issues all together, we use a regularized
minmax MOM estimator.
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We therefore consider an equi-partition of {1,..., N} into By U --- U Bg = [N], where |By| =
N/K for all k € [K]. We consider a ¢;-regularized minmax MOM estimator
ZRNOM € argmin sup (MOMg (£z — £z/) + A(|| Z]1 — 1Z]11)) ,
Zec z'ec

for C := {Z e R™?:0=<Z <1, Tr(Z) =1} and a regularization parameter A to be chosen
later.

In what follows, we provide some statistical guarantees on 4 f?]\)/{ OM hased on Theorem 2| which
is our general result for regularized minmax MOM estimators for a general G function used
for localization. Here, following Lemma 39, we will use G : Z — (0/2)||Z||3 (and A = 1) for
such a localization function. Following our methodology, once the curvature of the excess risk is
chosen, we have to find an upper bound on the local complexity fixed point TEMOM,G(% p) from
Definition 22. But before that we find a sufficient condition on a radius p so that it satisfies
the sparsity equation from Definition

Lemma 48. Consider v > 0. If p > 0 is such that p > 10k+/2/0ri\iom 6 (7 p)s then p satisfies
the sparsity equation from Definition

Now that we know how to grasp a value of p that satisfies the sparsity equation, the subsequent
task is to compute the fixed-point parameter TEMOM,G(% p) as introduced in Definition 22, after

which, thanks to Theorem |, we will be able to provide some statistical bounds on ZA}?A}/{ OM

Lemma 49. Grant assumption fort = 1. Suppose that 5* is k-sparse, for some k € [d].
Assume that N > 2log(ed/k)+1 and that < k. Define G : Z € R¥*? — (§/2)||Z||3. Consider
v > 0. There exist absolute constants B and D > 0 such that, defining:

. k> 1 ed [ 2K
p*(7y) := max \/4@37 No2 log (k) ;10DE No2
1/4

/
IBp [ 6 2B(ed)® |6 K
* = —_— —1 —_— _— ‘D —_—
and 71*(7,p) = max S\~ og( ~0p 5 : ~o |

one has riyiom.a (7, 2* (7)) < 77 (7, p* (7)) and p*(v) satisfies the sparsity equation from Defi-
nition 7. The values of B and D are explicited in Section .

We are now ready to state our main result about the ¢;-Regularized MOM estimator for the
sparse PCA problem.

Theorem 50. Grant assumption fort = 1. Suppose that 8* is k-sparse, for some k € [d].
Assume that N > 2log(ed/k) + 1 and let K be a divisor of N such that K > 100|O|. Let
v =1/32000 and X := 11r*(v,2p*(7))/(40p* (7)), where r*(.,.) and p*(.) are defined in Lemma

above. Then, there exists positive constants C1,Cy and Cs such that, with probability at least
1 —exp(—72K/625), it holds true that:

X Cik d
HZIFE\;[\OM_Z*ng\/ﬁmaX k log<ek>;\/E )

);W

=

123N

=8,

—Z%l2 < \/va%max k 10g<

C d
and P‘CZ%{\E\Ol\d S Niz max <k2 log (2) ,K) .
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Since our primary focus is not on Z* itself, but its unit-norm leading eigenvector 5*, we are
now in the process of providing a result on §*.

Corollary 51. Let/g’ € R? be a leading unit length eigenvector of Z[Fg\ﬁOM. Under the conditions
of Theorem 50, there exists a universal constant D > 0 such that with probability at least
1 —exp(—72K/625):

I1BBT = B*(8*) |2 < \/%max k4 [log <e]5);\/?

In the case where K < k?log (ed/k), we get a rate of convergence of magnitude \/k’Q/(NHQ) log (ed/k),
with no restrictions on the value of . This happens with an exponentially large probability
depending on the number of groups K even though we only have logd moments and a dataset

that may have been corrupted by an adversary. A similar analysis of a SLOPE regularization

of the minmax MOM estimator will lead to a sparsity parameter free choice of .



CHAPTER 5

Simulation study

Since it has been known since Kant that theory without practice is useless, this chapter contains
the outcome of numerical experiments on three of the application problems considered: signed
clustering, MAX-CUT and angular synchronization.

5.1 SIGNED CLUSTERING

To assess the effectiveness of the SDP relaxation, we consider the following experimental setup.
We generate synthetic networks following the signed stochastic block model (SSBM) previously
described in Section , with K = 5 communities. To quantify the effectiveness of the
SDP relaxation, we compare the accuracy of a suite of algorithms from the signed clustering
literature, before the SDP relaxation (i.e., when we perform these algorithms directly on A) and
after the SDP relaxation (i.e., when we perform the very same algorithms on Z ). To measure
the recovery quality of the clustering results, for a given indicator set z1,..., T, we rely on
the error rate consider in CHIANG et al. (2012), defined as

K 74— Tr+
v = § xc 14(:o7n]"C + .1‘0 Lcom$C

> , (5.1)

c=1

where z. denotes a cluster indicator vector, A, (= EA) is the complete K-weakly balanced
ground truth network — with 1’s on the diagonal blocks corresponding to inter-cluster edges,

and —1 otherwise — with A.m = AL, — A, and L} = denotes the combinatorial graph
Laplacian corresponding to A_,,,. Note that x7 A, x. counts the number of violations within

the clusters (since negative edges should not be placed within clusters) and X LY, z. counts
the number of violations across clusters (since positive edges should not belong to the cut).
Overall, (5.1) essentially counts the fraction of intra-cluster and inter-cluster edge violations,
with respect to the full ground truth matrix. Note that this definition can also be easily adjusted
to work on real data sets, where the ground truth matrix A, is not available, which one can

replace with the empirical observation A.

In terms of the signed clustering algorithms compared, we consider the following algorithms
from the literature. One straightforward approach is to simply rely on the spectrum of the
observed adjacency matrix A. KUNEGIS et al. (2010) proposed spectral tools for clustering, link
prediction, and visualization of signed graphs, by solving a 2-way ‘signed’ ratio-cut problem
based on the combinatorial Signed Laplacian (Hou, 2005) L = D — A, where D is a diagonal
matrix with D;; = Y, |A;;|. The same authors proposed signed extensions for the case of
the random-walk Laplacian L, = I — D7'A, and the symmetric graph Laplacian Lgy, =
I — D~'Y2AD~'/2_ the latter of which is particularly suitable for skewed degree distributions.
Finally, the last algorithm we considered is BNC of CHIANG et al. (2012), who introduced a
formulation based on the Balanced Normalized Cut objective

K 1

. (DT — Az,
Mgy Lz }ET Z LET—DJJ(- ) (5.2)
c=1 c -
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which, in light of the decomposition D¥ — A =Dt — (At - A7) =Dt - AT+ A= = LT+ A~
is effectively minimizing the number of violations in the clustering procedure.

In our experiments, we first compute the error rate vpefore of all algorithms on the original
SSBM graph (shown in Column 1 of Figure 51), and then we repeat the procedure but with the
input to all signed clustering algorithms being given by the output of the SDP relaxation, and
denote the resulting recovery error by vufer. The third column of the same Figure 51 shows
the difference in errors vs = Ypefore — Yaster between the first and second columns, while the
fourth column contains a histogram of the error differences 5. This altogether illustrates the
fact that the SDP relaxation does improve the performance of all signed clustering algorithms,
except L, and could effectively be used as a denoising pre-processing step. One potential reason
why the SDP pre-processing step does not improve on the accuracy of L could stem from the
fact that L has a good performance to begin with on examples where the clusters have equal
sizes and the degree distribution is homogeneous. It would be interesting to further compare
the results in settings with skewed degree distributions, such as the classical Barabéasi-Albert
model (ALBERT & BARABASI, 2002).

5.2 Max-Cut

For the MAX-CUT problem, we consider two sets of numerical experiments. First, we consider
a version of the stochastic block model which essentially perturbs a complete bipartite graph

0n1 XNy 177,1 XMng

B = , (5.3)

17L2><7L1 0n2 XNng

where 1, xn, (respectively, 0,,xn,) denotes an ny X ng matrix of all ones, respectively, all
zeros. In our experiments, we set n; = np = 5, and fix n = 500. We perturb B by deleting
edges across the two partitions, and inserting edges within each partition. More specifically, we
generated the full adjacency matrix A° from B by adding edges independently with probability
7 within each partition (i.e., along the diagonal blocks in (5.3)). Finally, we denote by A the
masked version we observe, A = A® 0 S, where S denotes the adjacency matrix of an Erdés-
Rényi(n, §) graph. The graph shown in Figure 52 is an instance of the above generative model.
Note that, for small values of 7, we expect the maximum cut to occur across the initial partition

Figure 52: Illustration of MAX-CUT in the setting of a perturbation of a complete bipartite
graph.

Pp in the clean bipartite graph B, which we aim to recover as we sparsify the observed graph
A. The heatmap in the left of Figure 53 shows the Adjusted Rand Index (ARI) between the
initial partition Pg and the partition of the MAX-CUT SDP relaxation in ( ), as we vary
the noise parameter n and the sparsity J. As expected, for a fix level of noise 7, we are able to
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Figure 51: Summary of results for the Signed Clustering problem. The first column denotes
the recovery error before the SDP relaxation step, meaning that we consider a number of
signed clustering algorithms from the literature which we apply directly the initial adjacency
matrix A. The second column contains the results when applying the same suite of algorithms
after the SDP relaxation. The third column shows the difference in errors between the first
and second columns, while the fourth column contains a histogram of the delta errors. This
altogether illustrates the fact the SDP relaxation does improve the performance of all signed
clustering algorithms except L. Results are averaged over 20 runs.
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recover the hypothetically optimal MAX-CUT, for suitable levels of the sparsity parameter.
The heatmap in the right of Figure shows the computational running time, as we vary
the two parameters, showing that the MANOPT solver takes the longest to solve dense noisy
problems, as one would expect.
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Figure 53: Numerical results for MAX-CUT on a perturbed complete bipartite graph, as we
vary the noise level 77 and the sampling sparsity §. Results are averaged over 20 runs.

In the second set of experiments shown in Figure 5, we consider a graph A° chosen at random
from the collection' of graphs known in the literature as the GSET, where we vary the sparsity
level 6, and show the MAX-CUT value attained on the original full graph A°, but using the
MAX-CUT partition computed by the SDP relaxation ( ) on the sparsified graph A.
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Figure 54: Max-Cut results for the G53 benchmark graph (from the GSET collection) with
n = 1000 nodes and average degree ~ 12. Results are averaged over 20 runs.

5.3 ANGULAR SYNCHRONIZATION

For the angular synchronization problem, we consider the following experimental setup, by
assessing the quality of the recovered angular solution from the SDP relaxation, as we vary the
two parameters of interest. In the xz-axis in the plots from Figures 55 and 50 we vary the noise
level o, under two different noise models, Gaussian and outliers. On the y-axis, we vary the
sparsity of the sampling graph.

We measure the quality of the recovered angles via the Mean Squared Error (MSE), defined as
follows. Since a solution can only be recovered up to a global shift, one needs an MSE error

Lhttp://web.stanford.edu/~yyye/yyye/Gset/
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that mods out such a degree of freedom. The following MSE is also more broadly applicable for
the case when the underlying group is the orthogonal group O(d), as opposed to just SO(2) as
in the present work, where one can replace the unknown angles 64, ..., 0y with their respective
representation as 2 x 2 rotation matrices hy, ..., hqg € O(2). To that end, we look for an optimal
orthogonal transformation O € O(2) that minimizes the sum of squared distances between the
estimated orthogonal transformations and the ground truth measurements

d
O = argmin Y _ ||h; — Ohi| %, (5.4)
0€0(2)
where hi,..., hqg € O(2) denote the 2 x 2 rotation matrix representation of the estimated angles
01,...,04. In other words, O is the optimal solution to the alignment problem between two

sets of orthogonal transformations, in the least-squares sense. Following the analysis of SINGER
and SHKOLNISKY (2011), and making use of properties of the trace, one arrives at

d ) 4 A .
i:Zl |hi — Oh;||% ; Trace [(hl — Ohi> (hi . Ohi) ]

d d
= Z Trace [2] - QOiLih?} = 4d — 2 Trace |O Z hihT| . (5.5)
i=1 i=1

If we let Q denote the 2 x 2 matrix

ISH

d
Q=1 (5:6)
=1

it follows from (5.5) that the MSE is given by minimizing
1 .
2> Ihi = Ohil[f = 4 = 2Tr(0Q). (5.7)
i=1

In ARUN, HUANG, and BOLSTEIN (1987) it is proven that Tr(0Q) < Tr(VUTQ), for all
O € O(3), where Q = UXVT is the singular value decomposition of . Therefore, the MSE is
minimized by the orthogonal matrix O =VUT and is given by

def

d
MSE = =3 |h; — Ohi||f = 4 — 2 Trace(VUTURVT) = 4 - 2(01 + 02), (5.8)
i=1

ISHR

where 01, 09 are the singular values of ). Therefore, whenever @ is an orthogonal matrix for
which o1 = 09 = 1, the MSE vanishes. Indeed, the numerical experiments (on a log scale) in
Figures 55 and 50 confirm that for noiseless data, the MSE is very close to zero. Furthermore,
as one would expect, under favorable noise regimes and sparsity levels, we have almost perfect
recovery, both by the SDP and the spectral relaxations, under both noise models.
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Figure 55: Recovery rates (MSE (5.9) - the lower the better) for angular synchronization with
n = 500, under the Gaussian noise model, as we vary the noise level o and the sparsity p of
the measurement graph. Results are averaged over 20 runs.
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Figure 56: Recovery rates (MSE (5.9) - the lower the better) for angular synchronization with
n = 500, under the Outlier noise model, as we vary the noise level v and the sparsity p of the
measurement graph. Results are averaged over 20 runs.



CHAPTER O

Proofs

This chapter gathers all the proofs from the previous chapters — general excess risk and esti-
mation bounds as well as applications.

6.1 PROOFS OF CHAPTER

We define the regularized excess risk £3 := Lz + A(||Z|| — | Z*]|), and the regularized loss
03 =1Lz + A|.|| for all Z € C.

6.1.1 PROOFS OF SECTION : THE ERM ESTIMATOR
6.1.1.1 PROOF OF THEOREM

Denote 7* = r*(J). Assume first that »* > 0 (the case r* = 0 is analyzed later). Let Q* be the
event onto which for all Z € C if (EA,Z* — Z) < r* then (A —EA,Z — Z*) < (1/2)r*. By
Definition of r*, we have P[Q2*] > 1 — 4.

Let Z € C be such that <IEA, zZ* — Z> > r* and define Z’ such that
7' —7* =" (BA, 2" — 2) (2 - 27).

We have (EA,Z* — Z') = r* and Z' € C because C is star-shaped in Z*. Therefore, on the
event Q*, <A —EA, 7' — Z*> < (1/2)r* and so (A —EA,Z — Z*) < (1/2)(EA, Z* — Z>. It
therefore follows that on the event Q*, if Z € C is such that <IEA, z* — Z> > r* then

(A, Z — Z*) < (-1)2)(EA, Z* — Z) < —1*/2,

which implies that <A, Z -7 *> < 0 and therefore Z does not maximize Z — <A7 Z > over C.
As a consequence, we necessarily have <]EA, YARA > < 7* on the event Q* (which holds with
probability at least 1 — ).

Let us now assume that 7* = 0. There exists a decreasing sequence (ry), of positive real
numbers tending to r* = 0 such that for all n > 0, P[Q2,] > 1 — § where Q, is the event
Q, = {¢(r,) < 0/2} where for all r > 0,

P(r)=— sup (A—EA,Z - Z*).
T zeC:(EA,Z*~Z)<r

Since C is star-shapped in Z*, 1 is a non-increasing function and so (Q2,), is a decreasing
sequence (i.e. Q41 C Q, for all n > 0). It follows that P[N,Q,] = lim,, P[Q,] > 1 —§. Let
us now place ourselves on the event N,$,. For all n, since €2, holds and 7, > 0, we can
use the same argument as in first case to conclude that <IEA, AR/ > < r,. Since the latter
inequality is true for all n (on the event N,,) and (r,), tends to zero, we conclude that
(EA,Z* - Z) <0 =r"

64
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6.1.1.2 PROOF OF THEOREM

Consider § € (0,1). Following the same lines as in the proof of Theorem 3, replacing r* by r¢,, we
show that on an event €2 that holds with probability at least 1—4, we have (EA, Z*—Z) < r£(6).
Assumption then allows us to conclude that with the same probability 1—4, <]EA, Z*—Z > >

G(Z* — Z), which concludes the proof.

6.1.1.3 PROOF OF THEOREM

Consider r* = r;(0). First assume that r* > 0. Let Z € C be such that G(Z* — Z) > r*.
Consider f : A € [0,1] = G(A(Z* — Z)). We have f(0) = G(0) =0, f(1) = G(Z* - Z) > r*
and f is continuous. Therefore, there exists A\g € (0,1) such that f(N\g) = r*. We let Z’ be
such that Z' — Z* = A\g(Z — Z*). Since C is star-shapped in Z* and ¢ € [0, 1] we have Z’' € C.
Moreover, G(Z* — Z') = r*. As a consequence, on the event Q* such that for all Z € C if
G(Z*—Z) <r* then (A—EA,Z — Z*) < (1/2)r*, we have (A—EA, Z' — Z*) < (1/2)r*. The
latter and Assumption imply that, on *:

(1/2)r* > (A, Z' = Z*) +(BA, Z* = Z') > (A, Z' = Z*)+ G(Z* = Z') > (A, Z' — Z*) +r*
and so <A7 AR Z*> < —r*/2. Finally, using the definition of Z’, we obtain
(A, Z = 7%y = (1/ M)A, Z" = Z*) < —r* [ (2\g) < 0.

In particular, Z cannot be a maximizer of Z — <A, Z > over C and so necessarily, on the event

Q*, G(Z* - Z) < r*.
Let us now consider the case where 7* = 0. Using the same approach as in the proof of
Theorem 3, we only have to check that the function

z/):7‘>0—>1 sup <A—IEA,Z—Z*>
T Zec:G(Zz*—2Z)<r
is non-increasing. Consider 0 < r; < 7. Without loss of generality, we may assume that
there exists some Z5 € C such that G(Z* — Z3) < ry and 9¢(r3) = <A —EA, Z; — Z*>/7"2. If
G(Z* — Zy) < ry then ¥(ry) < (r1/r2)¥(r1) < ¥(r1). If G(Z* — Z3) > 71 then there exists
Ao € (0, 1) such that for Z1 = Z*+\o(Z2— Z*) we have G(Z*—Z;) = r1 and Z; € C. Moreover,
T = G(/\o(Z* — ZQ)) S AoG(Z* — Zg) S /\07‘2 and so )\0 Z 7’1/7”2. It follows that
1

1 . ,
b(rs) = g<A—1EA, Zy— 7% = o (A—FA, 7, — 7°) < A’;Qw(rl) < (1),

where we used that ¢(r) > 0 for all r > 0 because Z* € {Z € C: G(Z* — Z) < r} for all r > 0.

6.1.2 PROOFS OF SECTION : THE REGULARIZED ERM ESTIMATOR
6.1.2.1 PROOF OF THEOREM

Let 6 € (0,1). Let A > 0 and p* > 0 be such that Assumption holds, and assume that
p* > 0 satisfies the A-sparsity equation from Definition 5. Let v := 1/(34). In the rest of the
proof, we write *(.) for rggrp (4, 0). Let us define

B:={ZeC:||Z-Z"|<p*and G(Z - Z*) <r*(p")}.
Consider the following event:
Q:={VZeB, [(P—Pn)Lz|<yr*(p")}.

By definition of 7*(.), Q holds with probability at least 1 — J. Let us now prove the statistical
bounds announced in Theorem 9 on the event (2.
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Suppose that Z € B. This means that || Z — Z*| < p* and G(Z — Z*) < r*(p*). Moreover, on
() it also means that [(P — Pnx)L;| < yr*(p*), and then:
PL, = (P—Pn)Ly+ PnLy
<r*(p*) + PNLy
=" (p") + P (L = A(|1Z]| = 12°1D))
= (p") + P Ly + M1 27] = 1 2])

(i) X
<At (p") + M Z - Z7||
< rt(pt) + Ap”

@) r*(p")
< 3 * *\

< 3yr*(p”) Y

where (7) holds since PNE’\Z < 0 by definition of Z and (i) holds because of the choice of A
given in (3.7).

Then, if we can show that Z € B, we will have the desired bounds on €. Since we know that
PNLf/\Z < 0, it is sufficient to prove that for any Z € C\B, PxL? > 0.

Let Z € C\B. Because C is star-shaped in Z* and by the regularity properties assumed for G,
we have the existence of Zy € 9B, the border of B, and o > 1 such that Z — Z* = a(Zy — Z*).
The border of B, that we denoted by 9B is the set of all Z € C such that either ||Z — Z*|| = p*
and G(Z — Z*) < r*(p*) or |Z — Z*|| < p* and G(Z — Z*) = r*(p*). By linearity of the loss
function, we have PyLz = aPyLz,. Moreover, we have by the triangular inequality that
12| =127l = laZo = (a = ) Z7*|| = | 27|
z al|Zo|| = (=D Z7 = |1Z7]| = (| Zoll = 127)

and so

PyLy = PnLz +M|1Z] - 127])
> aPnLz, + (|| Zo|| = |Z7])) = aPy Ly, (6.1)
We showed that for any Z € C\B, there exist Zy € 0B and « > 1 such that PNL'} > aPN/J%O.

Hence, we only have to show that Z — PN,C} is positive on the border of B to show that it is
positive over C\B5.

Let Zy € OB. Two cases arise: either ||Zo—Z*|| = p* and G(Z—Z*) < r*(p*), or || Zo—Z*|| < p*
and G(Z — Z*) = r*(p*).

FIRST CASE: We assume that || Zy — Z*|| = p* and G(Z — Z*) < r*(p*), that is Zy € Hp« a.
Let V € H be such that ||Z* — V|| < p*/20 and ® € 9]|.||[(V). We have:

1Zoll = 11271 = | Zoll = V] = [|2% = V]|
>(®,Z0—-V)— 2" = V| (since ® € d|.[(V))
— (8,2~ 2*) —(®,V — 2°) — | 2" = V|
> (9,20 —2Z*) —2||Z* = V|| (since (®,U) < ||U]| for any U € H)

o P

>(Y, 20— 2") — —.

> (0.2~ 27) - 2

This is true for any @ €~ U J|.|[(V)) = T'z«(p*). Then taking the sup over I'z-(p*) gives:
vVez 454y

*

* * p
1Zol = 127l = sup  (®,Z0 - Z") — =

DET 7+ (p*) 10
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and then taking the infimum over H,- 4 gives:

Zo| - 12" > inf || Z| - ||Z*
1Zoll =127 =, inf [ Zo]l — || 27|

p*, A
: N
> inf su S 72y —-277) — —
T ZoE€EH x4 QGFZRP*)< 0 > 10
* rroT
=A(p"A)——=>—
0", A) =152 167

where the last inequality holds since p* is supposed to satisfy the A-sparsity equation. Then,
we have:

PyLy, = PnLzy+ M| Zoll — |1 Z*]) = PxLz, + E)\p =PLy, — (P~ Py)Lg, + EAp )

But on €, we have (P — Py)Lz, < yr*(p*) since Zy € B, and we know by definition of Z* that
PLz, > 0. Then we conclude that:

7 * * [ %k
PyLy, > 150" =" (p") > 0

where the last inequality is due to the choice of A given in (3.7).

SECOND CASE: Now we assume that ||Zy — Z*| < p* and G(Z — Z*) = r*(p*). We have:

PnLy, =PnLz, — MNI|IZ*]| = 1 Zo])
>PLy, — (P—PN)Ly, — M| ZF — ZO”
Z PEZO - (P - PN)L:ZO - )\p"<

But we know from Assumption that PLy, > A7'G(Zy — Z*), and on Q we have (P —
Pn)Lz, < ~yr*(p*). Then we get:

PnLy, > ATNG(Zo = Z%) = yr*(p*) = Ap* = A7 (p%) — 77 (p*) = Ap* > 0,

where the last inequality comes from the choice of A given in (3.7).

Then, we proved that PN/J%O > 0 for any Zy € 9(B) and as we said before, this implies that
Py L% is positive over C\B. Since PNEAZ < 0 we conclude that on ©, Z necessarily belongs to
B, which proves the bounds announced in Theorem

6.1.3 PROOFS OF SECTION : THE MINMAX MOM ESTIMATOR

6.1.3.1 PROOF OF THEOREM

The proof of this theorem is broken down into two steps. First, we identify an event §2 on which
the estimator ZAII\éIOM has the desired properties. Then, we show that this event holds with high
probability. For the sake of simplicity, in the rest of the proof we write r* for r{;o)\ gr(7) and
Z for ZMOM. Let v = 1/6400, and consider the set C, 1= {Z eC:PL; < (r*)*}. Define the
event Qg as follows:

O = {vz €C,,3J C [K]:|J| > K/2 and Vk € J,|(Pg, — P)Lz| < (7’*)2/4} .

We start with showing that on Q g, the estimator Z satisfies the excess risk bound announced
in Theorem

Lemma 52. On the event Q, PL, < (r*)%
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Proof. Let Z € C\Cy. Let a := (r*)"2PLyz > 1, and let Zy = Z* + a~Y(Z — Z*). By
the star-shaped property of C, Zy € C, and by linearity of ¢, PLz, = o 'PLy; = (r*)?,
so that Zy € C,. Then, on Qp, there exists strictly more than K/2 blocks Bj on which
|(Pg, — P)Lz,| < (r*)?/4, that is P, Lz, > PLz, — (r*)?/4 = (3/4)(r*)? and so Pp, Lz =
aPg, Lz, > a(3/4)(r*)? because o > 1. This holds on strictly more than half of the blocks By,

therefore Med(—Pg, Lz : k € [K]) > —(3/4)(r*)? and this holds for all Z € C\C,, hence, we
have

sup MOMg (£z- —£7) < —(3/4)(r*)2. (6.2)
zec\c,

Moreover, on Qp, for Z € C,, there exists strictly more than K/2 blocks Bj on which
—Pp, Lz < (r*)2/4 — PLy < (r*)%/4, since PLz > 0 by definition of Z*. Therefore, we
have

sup MOMg (£z- —£7) < (r*)*/4. (6.3)
zec,

But by definition of Z, we have:

zeC

= max (Sup MOMgk (€z+« —£€z), sup MOMg (£z+ — ﬂz)>
zec, Zec\Cy

(7“*)2
4

<

that is, MOMg ({z- — €5) > —(1/4)(r*)* > —(3/4)(r*)?. From (0.2) we conclude that, neces-
sarily, Z € C,, that is, PL, < (r*)% O

At this point, we proved that on the event Qy, the estimator Z satisfies the statistical bounds
announced in Theorem |1. Now it remains to prove that Qg holds with high probability.

Lemma 53. Assume that |O| < K/100. Then Qg holds with probability at least 1—exp(—T2K /625).

Proof. Consider

¢t €R = Tysy +2(t — (1/2))]1{1/%1%1}7
so that for any t € R,

Liz1y < 6(t) < 1y o)

For k € [K], let Wy, := {X, :i € By} and Fz(W}) = (Pp, — P)Lz. We also define the coun-
terparts of these quantities constructed with the non-corrupted vectors: Wk = {)?Z RS Bk}

and Fy(Wy) = (?E — P)Lyz, where ?ELZ = (K/N)Y e, L7(X;). Define

. dxd
Vi ZERT S N Lp i<y /)
Ke[K]

We show now that, with high probability, if Z € C,, then ¢(Z) > K/2. In the contaminated
framework, it is sufficient to prove that, with high probability, for all Z € C,,

Yo < 9K (6.4)

P M T .
o {|F‘Z(Wk)\> . } 100
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Indeed, consider Z € C, such that (0.1) holds. Then, there exist at least (1 —49/100)K =
(51/100)K blocks By, on which |Fz(Wy)| < (r*)2/4. On the other hand, we know that |O] <
K/100, so that among the (51/100)K previous blocks, at most //100 contain corrupted data.
The other (50/100)K = K/2 contain only non-corrupted data, so we have Fz(W}) = Fz(Wy)
on these blocks. We conclude that 3, - x ]l{\Fz(Wk)IS(r*)"‘M} > K/2, that is ¥(Z) > K/2, if
(6.1) holds.

Let Z € C,. We have:
1 — 2
Z] {lFZ(Wk)\>%}

ke[K

—~ (7”*)2 . (7"*)2
= Z ]l{IFz(Wk)>W}P<|FZ(Wk)> 3 >+IP’<|FZ(Wk)|> < )

— . (7"*)2
a Z H{IFZ(W;C)D%}_E 1{|Fz(m)|>¥} + Z IP’(IFz(Wk)> < )

ke[K] e
e ¢<4|F<(;m> —Ee <4|F(Z(§NV'“)|> Y P<|Fz<m>| > <r;>2>

ke[K] ra

su AFZ W)l \ |, ((4UFz(Ve)] ey
< ZG(IZ)A, kez[;q ¢ < (7“*)2 ) E ¢ < (T*)2 ) + kez[;qp <|FZ(W19)| > 3 ) .

(6.5)

We start with bounding the last sum in the previous inequality. For each k € [K], it follows
from Markov’s inequality and the definition of 7* that

P <|Fz<m> > ) ) < B [Fe] = B () Van(ea()
64 oy 2 1
= (r)a (VK(T )) < 200

Plugging that into (6.5), we get:

K 4| Fy (W, 4| F, (W,
Z 1 P ()| (792 < %4- sup Z (I)< | (ZE);N) —E (1>< | (ZE)Qk)|>
ke[K] {' Z(Wk)‘>T} 2€Cy \ kelK] " :

(6.6)

We now we have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2
in BOUCHERON et al. (2013a) for ¢ = 12/25), we get that with probability at least 1 —
exp(—72K/625), for all Z € C,,

A|Fz(Wy)| B A|Fz(Wh)|

Eﬂ ) mo (V) o7
12 s 4 F (W)l 4| Py (W)
< K+E 265’7,665[;‘(]“#( )2 ) ]E¢< )2 ) : (6.8)

Let now €1, ..., ex be Rademacher variables independent from the )?i’s. By the symmetrization
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Lemma, we have:

E|op 3 ¢<4|F(i£;vk>|>E ¢<4|%E¥k>|>

Z€C kelK]

< 2E | sup Z €LP (ZW) . (6.9)

Z€Cy e (r*)?

As ¢ is 2-Lipschitz with ¢(0) = 0, we can use the contraction Lemma (see LEDOUX and
TALAGRAND (2013), Theorem 4.12) to get that:

E | sup Z 3%0) (W) < 8E | sup Z ekw
Z€Cy 1K) (r*) 2€Cy 1 e[K) (r*)
8 —
=———E | su ex(Pg, — P)Lz| . 6.10
)2 Zeg’kez[;(] k(Pp, — P)Lz (6.10)

Now, let (0;)i=1,....n be a family of Rademacher variables independent from the )N(Z-’s and the
€;’s. For any k € [K] and any 4 € [N], the variables ex0;Lz(X;) and 0;Lz(X;) have the same
distribution, so that we get, using the symmetrization Lemma;:

N

—— K ~

E|sup Y e(Pp, —P)Lz| <2E|sup =Y 0,L7(X;)| =2KE(r*) < 2K~(r*)>.
zec zec, N “
€ kelK) €6y T =

Combining this with (6.7), (6.9) and (6.10), we finally get that, with probability at least 1 —
exp(—T72K/625)

sup Y ¢ <W> —E|¢ (M) < (12 +327> K. (6.11)
]

zet, o O\ T R 25

Plugging that into (6.0), we conclude that with probability at least 1 — exp(—72K/625), one
has

112 4
)R SO §<200+25+327>K§1(i)1(
S {1F2 >0

from our choice of parameters. This allows to affirm that Qg holds with probability at least
1 — exp(—T72K/625), which concludes the proof.

O

6.1.3.2 PROOF OF THEOREM

The proof is divided into two parts. First, we identify an event ()i on which the estimator has
the desired statistical properties. Second, we prove that this event holds with high probability.
For the sake of simplicity, we write Z for ZMOM and r* for TyoM,L, (V) with v = 1/3200.
Let 0 < A < 1 be such that Assumption holds. We define v = A2?/y, 7 = (24)7},

Ck a4 = max ((T’*)Q,VK/N) and Br 4 == {Z eC:|Z-2Z|r, < W/CKA} - where the Lo-
norm is defined as Z — || Z||, = E[(X, Z>2]1/2. We consider the following event:

K
QO = {vz € Bia,37 C {L,..., K} :|J| > 5 and vk € J,|(Pp, — P)Lz| < TCKA}.
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We show in the next three lemmas that, on Qg, 7 satisfies the statistical bounds announced
in Theorem .13. Then the fourth lemma will prove that Qx holds with large probability, the
one announced in Theorem .

Lemma 54. If there exists n > 0 such that:

sup MOMg(lz« —Llz) < —n and sup MOMg Uz« —lz) <n (6.12)
ZeC\Bk . a ZeBK,a

then ||Z — Z*||3, < Cka.

Proof. Assume that (0.12) holds. Then:

inf MOMg(ly; — €7« . Nl
s OMg(lz —Lz<) >n (6.13)

Moreover, if we define Z — Tk (Z) = supzcc MOMg ({7 — {z/), then:

Tk (Z*) = max( sup  MOMg Uz« —€z), sup MOMg (£« —EZ)> <. (6.14)
ZeC\Bxk, a Z€BK, A

By definition of Z, we have Tk (Z) = sup .. MOMkg (b, —z) < Tg(Z*) <n. But by (0.12),
any Z € C\Bg, 4 satisfies:

Tk (Z) > MOMgk(ly —bz+) > inf  MOMg(£y —lz+) >
ZGC\B}QA

which allows us to conclude that, necessarily, Zc Bi, a, ie. || Z* — Z||2L2 < Ck,a. O

Lemma 55. Assume that K > 100|0|. Then on Qg, (0.12) holds with n = 7Cxk 4.

Proof. Let Z € C be such that ||Z — Z*||, > /Ck,a. By the star-shaped property of C, there
exists Zy € C and o > 1 such that | Zy — Z*||1, = \/Ck,4 and Z — Z* = a(Zy — Z*). Now, for
each block By we have by the linearity of the loss function:

PBk‘CZ :aPBkﬁzo. (6.15

~~

As Zy € Bk 4, on Q there exist strictly more than K/2 blocks on which |(Pg, — P)Lz,]
7Ck, 4. Moreover, since ||Zo — Z*||1, = m, we get from Assumption that PLy,
A_1||ZO — Z*H%2 = A_ch,/L Then, on these blOCkS, PBkao — fz*) > Pﬁzo — TC}QA
(A7 — 7)Ck, 4, which implies that Pg, ({z- — {z,) < —(A™' — 7)Cx,a < —7Ck, 4, since we
have 7 = (24)~!. From (0.17) we conclude that, on Qg, there exist srictly more than K/2
blocks By on which Pg, ({z- —lz) < —atCg.a < —TCk, 4, since a > 1. This is true for all
Z € C\Bk, 4; in other words, we have

IV IV IA

sup MOMK(fz* —gz) S —TCK’A
Z€eC\Bk,a

Moreover, on Q, for any Z € Bg a, there exist stricly more than K/2 blocks By, such that
|(Pg, — P)Lz| < 7Ck,a, so that Pg, ({7 —{lz+) > —7Ck a4 + P(lz — £z+) > —7Ck_ 4, since
P(ly; — lz+) > 0 by definition of Z*. Then, we have Pp, ({z- —{z) < TCk, 4 on stricly more
than K/2 blocks, which implies that MOMg (¢z+ — £z) < 7Ck 4. This being true for any
Z € Bk, a, we conclude that ( ) holds with n = 7Ck a. O

Lemma 56. Grant Assumption and assume that K > 100|0|. On Qg, PL, < 27Ck 4.



CHAPTER 6. PROOFS 72

Proof. Assume that Qg holds. From Lemmas 5 and 55 , ||ZA*Z*||%2 < Ck, a, that is Z € Bk.a.
Therefore, on strictly more than K/2 blocks By, we have |(PBk — P)£Z| < 7Ck, 4, and then
on these blocks:

PL; < Pp, L, +7Ck 4. (6.16)
In addition, by definition of Z and (6.11) (for n = 7Cx 4):

MOMK(KZ* — ZZ*) S sup MOMK(EZ* — fz) S TCK’A
zeC

which implies the existence of K/2 blocks (at least) on which:
Pp, L; <1Ck A (6.17)

As a consequence, there exist at least one block By on which (6.16) and (6.17) holds simul-
taneously. On this block, we have: PL, < 7Ck 4 + 7Cg a4 = 27Ck 4, which concludes the
proof. O

At this point, we proved that on the event Q, the estimator Z has the statistical properties
announced in Theorem |3. In the final lemma, we show that Qg holds with high probability.

Lemma 57. Assume that |O| < K/100. Then Qg holds with probability at least 1—exp(—T2K /625).

Proof. Consider

¢:tE€R = Ly>y +2(t — 1/2)1{1/2§t§1}’
so that for any ¢t € R,

Tps1y < o(t) < ]l{t21/2}'

For k € [K], let Wy, := {X, :i € By} and Fz(Wy) = (Pg, — P)Lz. We also define the coun-
terparts of these quantities constructed with the non-corrupted vectors: Wk = {)}, RS Bk}

and Fz(Wy) = (Pp, — P)Lz, where Pg, Lz = (K/N)Y,c 5 L2(X;). Define

W(2Z) =Y L ps (Wi <0 a}

ke[K]

We are now showing that, with high probability, if Z € Bk a, then ¢(Z) > K/2. In the
adversarial corruption setup, it is enough to prove that the following inequality occurs with
high probability: for all Z € Bk 4,

49K
Z ]1{\Fz(Wk)\>rcK,A} = 100 (6.18)
ke[K]

Indeed, consider Z € C such that (6.18) holds. Then, there exist at least (1 — 49/100)K =
(51/100) K blocks By, on which |FZ(W;€)| < 7Ck, 4. On the other hand, we know that |O| <
K /100, so that among the (51/100) K previous blocks, at most K /100 contain corrupted data.
The other (50/100)K = K/2 contain only non-corrupted data, so we have Fyz(W;) = Fz(W;)
on these blocks. We conclude that 3, o x ]l{le(Wk)lngK,A} > K/2, that is ¥(Z) > K/2, if
(6.18) holds.
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Then, we only have to show that (6.1%) holds uniformly over all Z € Bg 4 with high probability.
This is what we do now. Let Z € Bk 4. We have:

Z {\FZ W) \>TCKA}

ke[K]
7 TCK,A = TCK7A
= Z 1{|FZ(W}¢)|>TCK,A} *P (|FZ(Wk)| > 9 ) +]P) <FZ(Wk) > B >
ke[K] L
-2 ! E|1 + P <|FZ W)l > TOK,A)
B F W 7C - = TCK,A
e {1F2(Wi)|>7Cxc.a } {le(Wk)|> X } e 2
< q)(le(le)_E ¢<|F<W>|> - 3 (Imetiin > C5)
ke[K] 7Ck.a 7Ck.A ke[K] 2

|Fz(Wh)] |Fz(Wh)] 7CK A
< P ———|-E|®| —— F VV : .
Sup k;ﬂ ( TCK,A TCK’A + Z | Z k | > 2

ZEBrc,a ke[K]
(6.19)

We start with bounding the last sum in the previous inequality. For each k € [K], it follows
from Markov’s inequality, the definition of Cx 4 and the linearity of the loss function that

P (I > ) < G ]

~ o (3 ) vartez(%)

4 K ~
< e () B

4 K * (12
7mﬁ||z_z ||L2
<4 K. 4 _ 1
= (7Cxa)? N 4= 720 7 2000

Plugging the latter result into (6.19), we get:

|Fz (W] | Fz(Wi)]
Z {\Fz Wi)|>7Cxk, A} sup) Z ® <7-CKA> SR (TCKA>

ke[K]

(6.20)

We now have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2 in BOUCHERON
et al. (2013a) for taking t = 12/25), we get that with probability at least 1 — exp(—72K/625),
for all Z € Bi 4,

|Fz (W] |Fz (W]
o) - ()
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Let now €1, ..., ex be Rademacher variables independent from the )Z'i’s. By the symmetrization

Lemma, we have:

E | sup Z o <|FZ(ﬁ7k)|> —E|¢ (Wm> <2E | sup Z €L <FZ(W’€)>

ZEBK, A ke [K] TCK,A TCK7A

As ¢ is 2-Lipschitz with ¢(0) = 0, we can use the contraction Lemma (see LEDOUX and
TALAGRAND (2013), Theorem 4.3) to get that:

E | sup Z €L (Fm) <2E | sup Z € @

>~ k
Z€EBK, A ke[K] TCk A _ZEBK,A ke[K] TCK7A
Pg, — P)LC
=2E | sup ( B;C'K A) Z

ZGBK.A kE[K] s

Now, let (0;)i=1,... x be a family of Rademacher variables independant from the )N(i’s and the
€r’s. Using the symmetrization Lemma one more time, we get

N _
(Pg, — P)Lz K L7(X;)
Ok T2 <R | osup — .

- ZeBE,A N Z Ck,a

E | sup Z €k

ZeBK, A kG[K] CK7A =1

To bound this last term, we consider two cases: either Cx 4 = (1*)? or Cx 4 = vK/N. In the

first case, by definition of r* we have:

N
< v(r*)2N = 4N.

In the second case, we decompose the supremum into two parts:

N
sup E o L7(X;)
ZeEBK, A i=1
N N
= max sup E oiL7(X;), sup E oiL7(X;)
ZeBk,aillZ—Z* |y <r* i ZEBr,am*<||Z—2Z" ||, <\ YK i=1

Let Z € By, a be such that r* < ||Z — Z*||, < \/%4¥. Since C is star-shapped in Z*, there
exists Zy € C such that ||Zy — Z*||r, = r* and Z — Z* = k(Zy — Z*) for some k > 1, so that
k= Z = Z*1,/1Z0 — Z*||L, < (WK/N)(r*)~'. Moreover, we have by linearity of £ that

Lz, = kLyz. Therefore, we obtain

N N
sup E o Lz(X;) < sup sup g oikLz,(X;)
ZEBye ar* < || Z— 7% || 1, </HE i=1 1<k< L\ /BE Z0€BK il Zo—Z* ||, < 325
N
vK 1 =~
=4/ —— sup g oLz, (X5).

*
N r Zo€Br Al Zo—Z* || Ly <r* ;4

Since Cx 4 = vK/N > (r*)?, we get, using the definition of r*:

N ~ [vK 1 N .
E| sup ZUiEZ(Xi) <\V ¥ ~E sup Zaiﬁz(Xi)

*
ZeBk, A =1 r ZGBK,A5H27Z*||L2ST* =1

vK
S -

1
N r—*v(r*)2N < Ck,a7YN.



CHAPTER 6. PROOFS 5

Finally, we get that whatever the value of Cx 4 is:

N ~
Lz7(X;

E | sup E o; 2(Xi)
ZEBK,A i=1 )

< ~N.

Combining all these inequalities, we finally get that, with probability at least 1—exp(—12K/625),
for all Z € Bk, 4,

12 1 8y 49
_ < = — T < 2
2. Yip@orsrea) < 357 Tagp™ T 7 5 < q00™
ke[K]
from our choice of parameters. This concludes the proof. O
6.1.3.3 PROOF OF THEOREM
The proof of this theorem follows the same lines as the one of the last Theorem || and 13: we

start with identifying an event on which our estimator has the desired properties, and then we
prove that this event holds with large probability.

For the sake of simplicity, we write Z for Z}\(/IOM and 7* for 1oz () for v = 1/6400. Consider
Aand G : H — R such that Assumption 3.6 holds. DefineC, ¢ := {Z eC:GZ-27"< (7‘*)2}.
We consider the following event:

*\2
O = {vz €Cyg,3J C [N]: |J| > K/2 and Vk € J,|(Pp, — P)Lz| < Q}

We first show that on the event Qg, 7 satisfies the statistical bounds announced in Theorem

Lemma 58. If there exists n > 0 such that

sup MOMg(lz« —Llz) < —n and  sup MOMg(lz —€z) <17 (6.21)
ZeC\Cyc ZeCy

then G(Z — Z*) < (r*)2.

Proof. Assume that (6.21) holds. Then:

inf  MOMg(by; — €5« . 6.22
e MOMyc(tz = tz-) > (6.22)

Moreover, define Z — Tk (Z) = supzcc MOMk (07 — £z/), we have

Tk (Z*) = max ( sup MOMg(lz« —lz), sup MOMgk ({z~ EZ)> <n (6.23)
ZeC\Cy,a ZeCy.c

and, by definition of Z, we also have Tk (Z) = sup ¢ MOMEg (€, —Lz) < supzce MOMk (£z+—
lz) =Tk (Z*) <n. However, by (0.22), any Z € C\C,,¢ must satisfy

TK(Z) ZMOMK(ngéz*) > inf MOMK(KZ—KZ*) >n.
ZeC\Cy,a

Therefore, we necessarily have Z € CNC, ¢, that is G(Z — Z*) < (). O

Lemma 59. Assume that A < 2. On the event Qg, (0.71) holds with n = (r*)? /4.
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Proof. Let Z be such that G(Z — Z*) > (r*)2. By the star-shaped property of C and the
regularity property of G, there exist Zy € 0C,,¢ and o > 1 such that Z = Z* + a(Zy — Z¥).
Since G(Zo— Z*) = (r*)?, we have by Assumption *.0 that PLz, > A~1G(Zy— Z*). Moreover,
on Q, there are at least K/2 blocks By on which |(Pp, — P)Lz,| < (r*)?/4 and so Pp, Lz, >
PLz, — (r*)2/4> AYG(Zo — Z*) — (r*)?/4 > (r*)? /4 since we assumed that A < 2. Now, by
linearity of the loss function, we have on these blocks

Pp. Ly = aPp, Lz, > a(r*)?/4> (r*)?/4.
We conclude that MOMg (£z- — £7) < —(r*)?/4. This being true for any Z € C\C,,¢ we have:
(r*)?
sup MOMg bz« —Lz) < — )
ZeC\Cy.c 4

This shows the left-hand side inequality of (0.21) for n = (r*)%/4.

Next, let Z € C be such that G(Z — Z*) < (r*)2. On Qg, there are at least K/2 blocks By on
which |(Pp, — P)Lz,| < (r*)?/4, that is —Pp, Lz < (r*)?/4 — PLz < (r*)?/4 since PLz >0
by definition of Z*. Then, MOMk (¢z+ — £z) < (r*)?/4. This holds for all Z € C, g, in other
words, the right-hand side inequality of (0.21) holds for n = (7*)?/4 and this concludes the
proof. O

Lemma 60. Assume the conditions of Theorem 1 are met. Then, on Qx, PL; < (r*)?/2.
Proof. From Assumption combined with the fact that A < 2, we have from Lemmas

and 70 that G(Z — Z*) < (r*)2. Then on Q there exist strictly more than K/2 blocks By, on
which |(Pp, — P)L,| < (r*)%/4, that is:

(7,.*)2
PEZ §P3k£2+ 1 (6.24)

Moreover, by (©.22) and by definition of Z, we have:

MOMK(EZ - gz*) S sup MOMK(EZ - KZ)
zeC

*\2
< sup MOMg (z- —lz) =Tg(Z") <n= )
zeC 4

As a consequence, there exist at least K /2 blocks By on which Pg, (¢, — £z-) < (r*)?/4, that

1S:

*\2
Pp, L, < (T4) . (6.25)

So there must be at least one block By, on which (6.21) and (6.25) hold simultaneously. On
this block, we have:

*)2
4 4 4 2

PL, <Py Ly4

O

At this stage of the proof, we have shown that on the event Qg, the estimator Z has the
statistical bounds announced in Theorem |5. The final ingredient is to show that, under the
conditions of Theorem !5, Qx holds with exponentially large probability. This is the purpose
of the next result that can be proved using the same proof as the one of Lemma

Lemma 61. Assume the conditions of Theorem 15 are met, with A < 2. Then Qk holds with
probability at least 1 — exp(—72K/625).
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6.1.4 PROOFS OF SECTION : THE REGULARIZED MOM ESTIMATOR
6.1.4.1 PROOF OF THEOREM

The proof is structured in the same way as the previous ones: we identify an event on
which ZAIP;XOM has the desired statistical properties, then we show that this event holds with
high probability. Let v = 1/32000. Consider p* > 0 such that p* satisfies the sparsity
equation of Definition 7. For the sake of simplicity, all along this proof we write Z for
ZAIP}%OM and 1y = rRyom er (7, 0p7) for both b € {1,2}. For b € {1,2}, we define B, :=
{ZeC:PL, <(r})* and || Z — Z*|| < bp* }. Then we define:

*\2
O = {Vb € {1,2},VZ € B,,3J C [K],|J| > K/2,Yk € J,|(Ps, — P)Ls| < (gbo)}

Finally, we consider A := (11/(40p*))(r5)?. We begin the proof by showing that on Qx, Z has
the statistical properties announced in Theorem

Lemma 62. If there exists n > 0 such that

sup MOMg (U7« —Lz) + X ([|1Z2*]| - | Z]|]) < —n (6.26)
ZeC\B2
and
sup MOM i (¢- — £2) + X (12"~ 121) < (6.27)
€

then PL, < (r3)? and |Z — Z*|| < 2p*.

Proof. For Z € C, define S(Z) = supycec MOMg (€7 —Lz) + X(|| Z]| — || Z"||). For all Z € C\B>

we have:
5(2) = MOMk £z — £z) + A(I1Z] = 1Z7]])
>, dnf . MOMk (€7 = Z) + MIIZ] = 1271) > n
since (6.20) holds. Moreover, we have by definition of Z:

S(2) < 8(z7) = EUIZMOMK@Z* —Lz) +AZ7 = 121) <
S

since ( ) holds. This shows that necessarily Z € Bs. O

We are now looking for n > 0 such that (0.20) and (6.27) hold, which the following Lemma
allows us to do.

Lemma 63. Under the assumptions of Theorem and on the event event Qg , (0.20) and
(0.27) hold with n = 19(r3)?/50.

Proof. Let b € {1,2}. Let Z € C\B,. By the star-shaped property of C, there exist Zy € 9B,
and « > 1 such that Z = Z* + a(Zy — Z*). As a consequence, by linearity of the loss function
and convexity of the regularization norm, for all k € [K] we have

Pp, Ly = Pp Lz + M| Z] - | 2*])

= aPp, Lz, + MlaZo + (1 - ) 2| — [ 27])
> aPp, Lz, + Ma(l|Zol| - | 2°]l) = aPp, £, (6.28)
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Now, since Zy € OBy, we have either a) PLz, = (r)? and || Zo — Z*|| < bp* or b) PLz, < (r})?
and || Zy — Z*|| = bp*.

In the first case a), on Q, there are at least K/2 blocks By on which Pp, Lz, > PLz, —
(r1)?/20 = (19/20)(r;)?. Therefore, on these blocs, we have

Pp, Ly, = Pp, Lz, + M| Zoll - [|12*]))

19 * *
> 502 = NZo— 27
19 *\ 2 *
> — —
= 20(7‘1)) Abp
19 ., 11b, ., 2(r5)2/5  forb=2
= — - > .
20 (Tb) 40 (TZ) - { (r§)2/5 fOr b _ 1’ (6 29)

where we used in the case b = 1 that 75 > 15 /4/2 thanks to Proposition from the Appendix.

In the second case b), we have Z, € pr* from Definition 17. Since the sparsity equation holds
for p = p*, it also holds for p = bp* (see Proposition in the Appendix). Let V' € H be such
that || Z* — V|| < bp*/20 and @ € 9||.||(V). We have:

1Zoll = 12711 = | Zoll = IV} = [|2" = V|
>(®,Zy—V)—|Z" = V| (since @ € 9|.[|[(V))
= (B, Zg— 27— (®,V — Z°) — || 2" — V|
> (9,20 —2Z*) —2||Z* = V|| (since (®,U) < ||U]| for any U € H)

bp*
>(D,Zy—Z") — .
> (0.2-27) -
This is true for any ® € U 9||.|[(V) =Tz« (bp*). Then taking the sup over I'z-(bp*)
VezZ*+bp* /20
gives:
||Z0||7||Z H Z sup <(I)3Z07Z >7 10
Q€T 2+ (bp*)

and then taking the infimum over H, bp* gives:

1Zoll =127l = inf [[Zo] — |27
Zoepr*

bp*
> inf sup D, Zy— 2% —
Zo€Hy = @EFZ*(Qp*)< 0 > 10
bp* 7
— A(bp*) — > —ppo* :
(") = 75 = 16 (6.30)

where the last inequality holds since bp* satisfies the sparsity equation. Then, A(||Zo||—|1Z*||) >
(7/10)\bp* = (77/400)b(r3)%. Now, since Zy € By, on Qg there exist at least K/2 blocks By,
such that |(Pg, —P)Lz,| < (r;)?/20 and so Pg, Lz, > (r;)?/20 - because PLz, > 0. Therefore,
on the very same blocks,

Pp, L3, = Pp, Lz, + M| Zoll - [|12*]])

1, e 77 o 134(r3)%/400  for b=2
> —— —b > 31
Z ~5p(m)" + q5p?t2) 2 { 20(r5)2/400  for b= 1, (6:31)
where we used that r{ < r} (see Proposition in the Appendix). As a consequence, it follows
from (6.28), the fact that a > 1, (6.29) and (6.31) for b = 2 that for all Z € C\Bs, on more
than K/2 blocks By: Pg, L > (134/400)(r3)? and so (6.20) holds for n < (134/400)(r3)?.
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Let us now turn to Equation (6.27). Let Z € By. On Qg there exist at least K /2 blocks By
such that |(Pp, — P)Lz| < (r})?/20. On these blocks By, all Pg, L£3’s are such that
Py, Ly = Pp, Lz + M| 2|l - 12*])
1 * *
> PLy = 55(r])* = M|Z - 27|

1 * *
> (1)~ M

- 20
1, ., 11, 13,
= (1) = 1 3)? > ~ (73 (632
because r} < r; (see Proposition in the Appendix). Next, it follows from (6.2%), the fact

that a > 1, (0.29) for b=1, (6.31) for b =1 and (6.32) that
* -1 —-29 13
sup MOM (- ~ £2) + A(12°] = 12]) < mas ( )

Zee 5 7 400 40

13, ..,

= E(r%‘) (6.33)

and so (0.27) holds for n > 13(r3)%?/40. As a consequence, ((.20) and (6.27) both hold for
n = 132(r})?/400. O

At this stage, we have shown that on the event Q, the estimator Z has the statistical properties
announced in Theorem |%. In what follows we prove that in the framework of Theorem 15, Qg
holds with exponentially large probability.

Lemma 64. Assume that K > 100|0|, and let p* > 0 be such that it satisfies the sparsity
equation from Definition 17. Then, Qi holds with probability at least 1 — 2 exp(—T72K/625).

Proof. Consider

¢:t€R = Ty>y +2(t — 1/2)1{1/29‘51}’
so that for any t € R,

l{tzl} <o) < ]l{t21/2}‘

For k € [K], let W, :={X, :i € By} and Fz(W},) = (Pp, — P)Lz. We also define the coun-
terparts of these quantities constructed with the non-corrupted vectors: Wk = {)?Z RS Bk}
and Fz(Wy) = (Pp, — P)Lz, where Pp, L7 := £, L7(X;) and PLy := E[L(X;)]. For
both b € {1, 2}, define

Z—(Z2)= ) 1

()2 -
re[K] {\FZ(W;«NS%}

Consider b € {1,2}. We want to show that, with high probability, if Z € By, then ¥, (Z) > K/2
which follows if one can proves that

49K
DL e S %. (6.34)
relK] {|Fz(Wk)\> 25 }

Indeed, consider Z € B, such that (0.31) holds. Then, there exist at least (1 — 49/100)K =
51K/100 blocks By, on which |Fz(W)| < (r£)2/20. On the other hand, we know that |O] <
K/100, so that among the 51K /100 previous blocks, at most K /100 contains corrupted data.
The other 50K /100 = K/2 contain only non-corrupted data, so we have FZ(Wk) = Fz (W) on
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these block and so ,(Z) > K/2.

Let Z € B,. We have:

R

ke[K]
B kez[;(] 1{'FZ(W}C)‘>(T§O)2} -F <|FZ(W’€) - (’Z’:O) > <|FZ(Wk>| o (4*0) )
W <r;:>2>
= i woey =Bl | |+ S P10 >
kez[;q { = [{ b }] g[;q ( ST
W 7 o r¥ 2
< 2{:1 ¢<W> E [¢> (W) +y IE”<|Fz(Wk)| > ) )
ke[K

ke[K]

<sup | 36 20|Ff(‘;Vk)\ “E o 20|Ff*(T;Vk)| + 3 (IR, (40)2
(r3) ()

Z€Bo \ e[k ke[K]
(6.35)

We start with bounding the last sum in the previous inequality. For each k € [K], Markov’s
inequality and the definition of r; yield to

<|FZ(Wk) > (23 ) < (120)2 [Fz(Wk) ]
- (et
< T (VD) <

Plugging this last result into (0.35), we get:

K 20| Fz (W) 20(Fz (Wy)|
2 1{%(%)»%} <q00 "5 | 2 (b( (r})? >_E ¢< (r})? )

ke[K] ke[K]

We now we have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2
in BOUCHERON et al. (2013a) with ¢ = 12/25), we get that with probability at least 1 —
exp(—72K/625), for all Z € By,

20|FZ )| 20|FZ(Wk)\
Z¢< ) M( GE )

ke[K]
<K 5l Y0 (MW> B¢ (20|FZ(2)|> : (6.37)

25 Z€By i) (r3)? (r3)

Let now €1, ..., ex be Rademacher variables independant from the )N(Z-’s. By the symmetrization
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Lemma, we have:

“ 20| Fz(Wi)l\ 20 Fz (Wy)|
Eze&%;(]‘ﬁ( p)? ) M( ri)? )

20| Fz (W
< 2E | sup Z €Ld (W) ) (6.38)
Z€Bs 1 ek b

As ¢ is Lipschitz with ¢(0) = 0, we can use the contraction Lemma (see LEDOUX and TALA-
GRAND (2013), chapter 4) to get that:

Elsup 3 o | 22N Cop | gy 3 ¢, 2202000
ZeBy ez (r3)* T |zes Sy 1)
40 —
=——FE sup Z ek(PBk - P),CZ (639)

(T;)Q ZEeBy kE[K]

Now, let (0;)i=1,...,~ be a family of Rademacher variables independant from the )~(i’s and the
€;’s. Using the symmetrization Lemma again, we get:

N
L K ~
E | sup ex(Pg, — P)Lz| <2E | sup — oLz (X;
ZeB, kez[;(] (Pa, — P) zes, N ; %)

<2KE(r, bp*) < 2K~(rp)*.

Combining this with (0.37), (6.38) and (0.39), we finally get that, with probability at least
1 — exp(—72K/625):

wp 3 ¢<20|Fz*<wk>|> & ¢<20|FZ<W;€>|> S(
]

zec, Ke[K (T“b)z (7"2)2

Plugging that into ( ), we conclude that, with probability at least 1 — exp(—72K/625), for
all Z € By,

112 49
Ay e S (200 +o5rt 1607) K< oK
kG[K] {lFZ(Wk)‘> 20 }

12
2 11607 | K. 6.40
55 T v) (6.40)

for our choice of parameters. Now, in order for Qg to hold, this inequality must be veri-
fied for both b = 1 and 2. Then, we finally conclude that Qx holds with probability 1 —
2 exp(—72K/625), which concludes the proof.

O

6.1.4.2 PROOF OF THEOREM

Let K > 0 be a divisor of N such that K > 100|O|. Let v = 1/32000. Let A € (0,1] and p* > 0
be such that Assumption holds and satisfying the sparsity equation from Definition
Define v = 320000A2.

For the sake of simplicity, we write all along this proof Z for ZA]P}%{OM. For b € {1,2}, we define

T = TRmom, L, (7, 00%),

K
Ck,p '= max <1/N, (r;)2> = Ok (7,bp", A),
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recall that the Lo-norm associated with the good data X is defined as || Z|1, = E[(X, Z>2]1/2.
With these notation, we have A := (11/(40p*))Ck 2. Finally, we define the event onto which Z
will have the desired properties:

and the localized models By = {Z €C:||Z—-Z%|| <bp* and || Z — Z*||1, < C’K,b} - we

K
K
O =Vbe{l,2},VZ € Bk, 1 > —
K 1.2} b kzzl {l(PBk—P>Lz|sC§)’b} 2
First, we show that on Qg Z has the statistical properties announced in Theorem 2. Then,

we show that Qx holds with high probability.

Lemma 65. If there exists n > 0 such that

sup  MOMg (b7« —Lz) + M[|Z*|| = [|1Z]]) < —n (6.41)
Z€eC\Bk,2
and
ZuléMOMK(fz»« —Lz)+ X127 = 11Z1l) <, (6.42)
€

then ||Z — Z*|| < 2p* and |Z — Z*||1, < v/Ck,2-

Proof. Assume that such an 7 exists. For Z € C, define S(Z) = sup,cc MOMg({z — {z) +
M| Z|| = |1Z"]]). For Z € C\Bk,2 we have:

5(Z) > MOMk (lz — tz-) + A1 Z] = 127

> inf MOMg(ly —lz<)+ X(||Z]| = 1Z7]) >
> it MOMc(tz — £z) + M1 Z] ~ 12°]) > n

since (6.11) holds. Moreover, we have by definition of Z:

S(2)<8(27) = ZHQMOMK(EZ* —Lz) + A1Z7 = 121) <,
S

since (.12) holds. This shows that necessarily Z € B . O

We are now looking for 7 > 0 such that (6.11) and (6.12) hold. In the following result we
identify such a 7 on the event Q.

Lemma 66. Under the conditions of Theorem 21 and on the event Qg, (0./1) and (0./°) hold
with n = 33C}.2/100.

Proof. Consider b € {1,2} and Z € C\Bg . From the star-shaped property of C, we have the
existence of Zy € OBk, and o > 1 such that Z = Z* + a(Zy — Z*). As a consequence, by
linearity of the loss function and convexity of the regularization norm, for all k € [K] we have

Py, Ly = Pp, Lz + M| 2|l - 12*])

= aPp, Lz, + MlaZo + (1 - ) 2| [ 27])
> aPp, Lz, + (|| Zol| - | 2°]l) = aPp, £, (6.43)

Now, since Zy € 0Bk, we have either a) ||Zo — Z*||1, = \/Ck,p and ||Zy — Z*|| < bp* or b)
1Z0 — Z* 1 < v/Crc and |2 — Z°|| = bp*.

In the first case a), on Q, there are at least K/2 blocks By on which Pg, L, > PLz, —
Ck,5/(20). But from Assumption .7, we have in this case that APLz, > ||Zo— Z*||7, = Ck.s,
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so that, on the same blocks of data, Pp, Lz, > (1/A)Ckp — (1/20)Ckp > (19/20)Ck p, since
we assumed that 0 < A < 1. Therefore, on these blocs, we have
Py, L3, = P, Lz, + M| Zoll — |1 2*])
19
> —Crp—MZy—Z2*
> X Cks~AlZo - 2|

19
> —Cgp— A\bp*
<30 K,b 14

19 116
= %CKJ) - ECK,Z

But thanks to Proposition from the Appendix, we have that r; > r3/v/2, from which we
deduce that Cx 1 > Ck 2/2. As a consequence, on the previous blocks, we have

70}(2/40 forb=1

Pg, L} > ’ 44
L2 2 { 16CK /40  for b=2. (6.44)
In the second case b), we have Z, € E[bp*, 4 from Definition 20. Since the sparsity equation is

satisfied by p*, it is also satisfied by bp* as well (see Proposition in the Appendix). Let
V € H be such that || Z* — V| < bp*/20 and @ € J||.||(V). We have:

1Zoll = 1271l = 1 Zoll = V| = | 2" = V|
> (0,7~ V) —||Z2* = V| (since ® € d|.|(V))
= (220 -2") = (2V -2") — | 2" - V]|
>(®,Zo—2") = 22" = V| (since (2,U) < |[U]| for any U € H)

bp*
>(®,20-2") — —.
= < s 40 > 10
This is true for any ® € U I||.|[(V) = Tz« (bp*). Then taking the sup over I'z«(bp*)
VEZ*+bp* /20
gives:
* * bp*
1Zoll =12 = sup (@, 20— 2") = 5
Q€T 7+ (bp*)

and then taking the infimum over H, bo*,A gives:

1Zoll = 12" = inf [ Z]| = [|Z7]]

ZoEHypx A
b *
> inf sup (@, Zy— 27) — -2
Zo€Hypx a4 BET 7+ (2p%) 10
bp* 7
= *Y > * .
Albe") = 75 = g (6.45)

where the last inequality holds since bp* satisfies the sparsity equation. Then, \(||Zo||—||Z*|]) >
(7/10)\bp* = (77/400)bCk 2. Now, since Zy € Bgp, on i there exist at least K /2 blocks
By, such that |(Pg, — P)Lz,| < Ck/(20) and so Pg, Lz, > —Ck/(20) (because PLz, > 0).
Therefore, on the very same blocks,

Pp, L3, = Pp, Lz, + M| Zo] = 12°)

1 o 57(r3)2/400  for b=1
>__C 0k > 2 6.46
T { 134(r%)2/400  for b= 2, (6.46)
where we used that Ckx 1 < Ck 2 because r; < rj (see Proposition in the Appendix). As a

consequence, it follows from (0.13), the fact that a > 1, (6.11) and (6.10) for b = 2 that, for
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all Z € C\B 2, on more than K/2 blocks By: Pp, L > (134/400)C 5 and so (©.11) holds for
1 < (134/400)Ck 2.

Let us now turn to Equation (0.12). Let Z € Bi 1. On Qp there exist at least K /2 blocks By,
such that |(Pp, — P)Lz| < Ck.1/20. On these blocks By, all Pp,L£}’s are such that

Pp Ly = Pg, Lz +\N||Z| - | Z7])
1
> PLy — Q—OCK,l = MZ -7

1
> ——Ckg1—\p*
=790 K,1 P
1 11 13

2OCK,1 4OCK,2 > 4001(,27 (6.47)

where we used the fact that, thanks to Proposition in the Appendix, Cx,1 < Ck 2. Next,
it follows from (6.13), the fact that o > 1, (6.11) and (6.13) for b =1 and (6.17) that

-7 =57 13
. — *|| — < L =L e
ZlgéMOMK(EZ Lz) + M| 27| ||Z||)max<40, 400,40) Ckp2

13

40

and so (0.12) holds for n > 13Ck 2/40. As a consequence, (0.11) and (0.12) both hold for
n= 1320[{72/400.

Ck2 (6.48)

O

From Lemmas 5 and 60, we conclude that on the event Qg ZecB K,2. We use this information
to upper bound the excess risk of Z in the following result.

Lemma 67. Under the conditions of Theorem and on the event Qg , we have

27
PL, < —Cko.
Z =100 "7
Proof. From Lemmas 65 and 60, we have that ZeB k2. On Qf, this implies the existence of
stricly more than K/2 blocks By on which

Ck2

PLy < Pp,Ly+ 5"

(6.49)

Now, by definition of Z, (¢.12) and Lemma (0 we get

MOwaz—&Q+AW@%%MW)S?%MOMKMT—%E+WNZW—HHD
S

Ckp2
< 33—+
- 100

This means that there exist at least K/2 blocks By on which Pp L, + 2| - 12*]) <
33CKk,2/100. Since A(|Z*|| — | Z]|) < A||Z* — Z|| < 2A\p* = 11Ck 2/20, we have on these blocks

Ck2 n HCK,z _ 99 CK,Z.
100 20 100

Therefore, there exist at least a block By, on which (6.19) and (6.50) hold simultaneously. On
this block, we can write

Pp, L, <33

(6.50)

Cko Ck2 , Ckpo Ck.2
PL, < Pg L, 2 < 997K, 2 _ g7 K2
2= Bkt 50" =220 Ty 100
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At this stage, we have shown that on the event Qg , the regularized minmax MOM-estimator
Z has the statistical properties announced in Theorem 21. In what follows, we prove that, in
the framework of Theorem 21, Qk holds with exponentially large probability.

Proposition 6.1. Consider p* that satisfies the sparsity equation from Definition 20. Assume
that K > 100|O|. Then, Qx holds with probability at least 1 — 2 exp(—7T2K/625).

Proof. Consider b € {1,2}. Define

¢t €R = Lysyy +2(t— 1/2)Lyy oy
so that for any t € R,

Lg>1y < o(t) < Leis1/a)-

For k € [K], let W, :={X, :i € B} and Fz(W}) = (Pp, — P)Lz. We also define the coun-
terparts of these quantities constructed with the non-corrupted vectors: Wk = {)?Z RS Bk}

and Fz(Wy) = (Pp, — P)Lz, where Pp, Lz = (K/N)Ycp L2(X;). For be {1,2}, define

W@ =2, H{IFZ(Wk)lgcfo’b}'

ke[K]

We would like to show that, if Z € B, then ¢4(Z) > K/2 with high probability. As we

showed in the proof of Lemma 53, in our framework this is true if we show that with high
probability, for all Z € By,
49K
1 . < —, 6.51
2 {|Fz(wk>\>cgg’b} =100 (6.51)

ke[K]

and this is what we do now. Let Z € Bk ;. We have:

2 1{|Fz<%\>c£%”}

ke[K]
= 2 | Y i O —P<|FZ(Wk) i(()’b> +P(|Fz(Wk) C;Ob>
| {1F2 1> |
= Z 1 _ + Z (|FZ Wi)| > b>
ke[K] {IFZ(W’“)|> 20 } [ {lFZ(Wk 1> } ke[K] 40
. ¢<2ogz<wk>>E ’ 20|f;<wk>|> Py e (|FZ ) |>cob>
kE[K] Kb Kb ke[K]
< | Y ¢<2ou;z<wk>|> . ¢<20|%<wk>|> F Y P (|FZ Tl cob)
2€Bxb \ ek Kb Kb ke[K]

(6.52)

We start with bounding the last sum in the previous inequality. For each k € [K], Markov’s
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inequality and the definition of Ck  yield to

2
P <|F2(Wk) CZBZ)) < (Cft?b) E [|FZ(Wk)|2]
w0\ (K 5 r 2
(en) (| (o lesn
2
< (;ﬁ) Sz -7z,
2
< (i) %Cmgzxo% 1 ﬁ.

Plugging this last result into (6.52), we get:

Z n{lFZ(Wk)\>C§J’b}

ke[K]
<K sip | S @ <20|FZ Wk)|> _E ¢ <2O|FZ(Wk)|> . (6.53)

= 9200 Z€Brc.s Ke[K] CK b CK,b

We now have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2 in BOUCHERON
et al. (2013a) with ¢ = 12/25), we get that with probability at least 1 — exp(—72K/625), for all
Z € BK,b»

20| Fz (Wy)| 20| Fz (Wy)|
e (2 ).

ke[K] ’
12K 20| Fz (W, 20| F (W,
22 LR | sup Z é 20[Fz(We)| | _ E¢ 2017 (W) ) (6.54)
25 Z€Bxn i) Ckp Crp
Let now €1, ..., ex be Rademacher variables independant from the X’i’s. By the symmetrization

Lemma, we have:

£ s Z¢<20|FZ(Wk)|>E ¢<2OFZ(Wk)>
(K]

ZEBryb e Crkp Ckp
20| Fy (W,
<2E | sup > exd w . (6.55)
ZEBK’ka[K] K,b

As ¢ is Lipschitz with ¢(0) = 0, we can use the contraction Lemma (see LEDOUX and TALA-
GRAND (2013), chapter 4) to get that:

20| Fy (W, 20F, (W,
E| sip 3 et w <o | sup Y 620020V
ZEBK,bke[K] Kb

)

=_——RE| sup Y e(Pp, —P)Ly (6.56)
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Now, let (0;);=1,..,~ be a family of Rademacher variables independant from the )Z'i’s and the
€;’s. Using the symmetrization Lemma again, we get:

N
L K -
E | sup Z €x(Pp, —P)Lz| <2E | sup *Zaiﬂz(Xi)
Z€EBKk b k‘G[K] ZEBK=b N =1

S QK(T'Z)Q § QK’)/CK’b.

Combining this with ( ), (6.55) and (6.50), we finally get that, with probability at least
1 —exp(—72K/625):

sup z{;ﬂ ¢ (20|FZ(Wk)|> —E |¢ <2O|FZ(W’“)|> < (;? + 1607) K (6.57)

Z€Br e Crp Ckp

Plugging that into ( ), we conclude that, with probability at least 1 — exp(—72K/625), for
all Z € BK,ln

12

1 49
ddy e S (++1607)K§K
S {|FZ(Wk)\> I } 200 ' 25 100

for our choice of parameters. Now, in order for Qg to hold, this inequality must be veri-
fied for both b = 1 and 2. Then, we finally conclude that Q2 holds with probability 1 —
2 exp(—72K/625), which concludes the proof.

O

6.1.4.3 PROOF OF THEOREM

The proof is structured in the same way as the previous ones: we identify an event on which
ZAIP}IKOM has the desired statistical properties, then we show that this event holds with high
probability. We place ourselves under the conditions of Theorem 2/, i.e., we assume the ex-
istence of A € (0, 1] such that Assumption holds, v = 1/32000 and p* which satisfies the
sparsity equation from Definition 22. For b € {1, 2} we define r; = rrmom,c (7, 20") and

By = {z €C:G(Z—2)<(r})? and ||Z - 27| < bp*}.

With these notation, A = (11/(40p*))r3. We consider the event

K
1 K
Q.o =14 Vbe {1,2},YZ € By, Z]l (|(ka — P)Ly| < 20(’"2)2) -2
k=1

For the sake of simplicity, in the rest of the proof we write Z = ZAIP}%OM.

Lemma 68. If there exists n > 0 such that

sup MOM (b7« — £z) + A([|1Z7]| = | Z]]) < —n (6.58)
ZeC\B2
and
sup MOMk ({7« — Lz) + A1 Z*[| = |1 Z]]) <n (6.59)
€

then | Z — Z*|| < 2p* and G(Z — Z*) < rson. (1 20")*.
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Proof. Let n be such that (6.58) and (6.59) hold. For all Z € C, define S(Z) = sup 4 cc MOMg (£7—
Lz) + M| Z]| = |1 Z']]). Tt follows from (6.58) that for all Z € C\Ba,

5(2) 2 MOMg (£z — £z-) + A(1Z] = [[Z27[)) > n
Moreover, it follows from the definition of Z and (0.79) that

S(2) < 8(z7) = sup MOM (€z+ — £z) + A(I1Z711 = 11 Z11) <
S

This shows that necessarily Z € B,. O

Lemma 69. Under the conditions of Theorem 2/ and on the event Qi c, (0.98) and (0.59)
hold with n = (33/100)(r3)2.

Proof. Let b € {1,2}. Let Z € C\B,. By the star-shaped property of C and the regularity
property of G, there exist Zy € 9B, and a > 1 such that Z = Z* + a(Zy — Z*). As a
consequence, by linearity of the loss function and convexity of the regularization norm, for all
k € [K] we have

P, L} = Ps, Lz + M1 2] - 12°])
= aPp, Lz, + MlaZo + (1 - ) 2| - [ 27])
> aPp, Lz, + Ma(l|Zol| - | 2°]l) = aPp, £, (6.60)

Now, since Zy € 0By, we have either a) G(Zy — Z*) = (r})? and ||Zy — Z*|| < bp* or b)
G(Zo— 27) < (r})? and ||Zo — 27| = bp".

In the first case a), on Qg g, there are at least K/2 blocks By on which Pg, Lz, > PLyz, —
(r1)?/(20). But we also have from Assumption .= that APLz, > G(Zo — Z*) = (r})?, so that
Pp, Lz, > (1/A)(r})* — (1/20)(r})? > (19/20)(r})?, since we assumed that A < 1. Therefore,

on these blocs, we have

Pp, Ly, = Pp, Lz, + M| Zoll - 1271}

19 * *
> 55(r)* = AlZo = 27|
19 N
> %(Tb)z — Abp
19, .o 116, 5 (r5)2/5  forb=1
= ()2 = = (r5)2 >
200"~ 02 a5 forb=2, (6.61)
2

where we used in the case b = 1 that 7§ > r3/4/2 thanks to Proposition from the Appendix.

In the second case b), we have Z, € H, bp- from Definition 23. Since the sparsity equation holds
for p = p*, it also holds for p = bp* (see Proposition in the Appendix). Let V € H be such
that || Z* — V|| < bp*/20 and ® € 9]|.||(V). We have:

1Zoll = 11Z7[1 = | Zoll = VI = [|2* = V]|
>(®,Z0—V)—|Z*=V| (since ® € d|.|(V))
= (®,20-27) (&, V - 27) — |Z" = V]
>(®,Z0—2*) = 2|Z* = V|| (since (®,U) < ||U]| for any U € H)
bp*

>(®,20—2") - TR
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This is true for any ® € U O||.|[(V) = Tz« (bp*). Then taking the sup over I'z«(bp*)
VEZ*+bp* /20
gives:
* * bp*
1Zoll =12 = sup (@, 20— 2") =I5
QET 7+ (bp~)

and then taking the infimum over Hy, 4 gives:

1Zoll =127 = inf [ Z]| - [|Z7]]
Zo€eH

0 bp*, A
b *
> inf sup (@, Zy— 27) — 2
Zo€Hp,x 4 ®ET 4+ (2p*) 10
b *
C Ay = s Ty (6.62)

10 = 10
where the last inequality holds since bp* satisfies the sparsity equation. Then, A(||Zo||—|1Z*||) >
(7/10)Abp* = (77/400)b(r3)?. Now, since Zy € By, on Q¢ there exist at least K /2 blocks By
such that |(Pg, — P)Lz| < (r})?/(20) and so Pp, Lz, > —(r;)?/(20) (because PLz, > 0).

Therefore, on the very same blocks,

Pp, L, = P, Lz, + M| Zoll = 1Z2°])

7 57(r3)2/(400)  forb=1
> (pF 2 — p(r* 2 2 6.63
= —5510)" + 350(r2) —{ 134(r%)2/(400)  for b = 2, (6.63)
where we used that rj < r3 (see Proposition in the Appendix). As a consequence, it follows
from (6.00), the fact that o > 1, (0.61) and (0.63) for b = 2 that, for all Z € C\Bz, on more
than K/2 blocks By: Pg, L > (134/400)(r3)? and so (0.53) holds for n < (134/400)(r3)?.

Let us now turn to Equation ( ). Let Z € By. On Qg ¢ there exist at least K /2 blocks By,
such that |(Pp, — P)Lz| < (r7)?/(20). On these blocks By, all Pg, L}’s are such that

Py, Ly = Pp. Lz + M| Z] - 1Z*|l)

1
> PLy — 2—0(7«;)2 - MIZ -2z (6.64)
1 * *
> —%(7’1)2 —Ap
1 L, 11, 13,
= () = 1 (r3)” 2 ~ (73’ (6.65)
because r; < r3 (see Proposition in the Appendix). Next, it follows from ( ), the fact

that a > 1, (6.61) and (6.63) for b =1 and (6.61) that
—1 —57 13
MOMg (b7« — ¢ Mz = 112]) < — |73
sup MOM e (17- ~ £2) + X(|2°]| = 2]) < max (5. 307 5 ) 2
13

= (3 (6.66)

and so (0.59) holds for 7 > 13(r3)?/(40). As a consequence, (6.5%) and (6.59) both hold for
n = 132(r3)?/(400). O

From Lemmas (% and 09, we conclude that on the event Qx ¢, Z € By, that is | Z — Z*|| < 2p*
and G(Z — Z*) < (r3)?. The following lemma gives us an upper bound on the excess risk PL .

Lemma 70. Under the conditions of Theorem ”/, and on the event Qg g, we have

PL; < (93/100)(r3)>.
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Proof. From Lemmas and 09, we get that on Qg q, Z € By. This implies the existence of
stricly more than K/2 blocks By on which |(Pg, — P)EZ{ < (r3)?/(20), that is:

PL, < Pp L, + (r3)?/(20). (6.67)
Moreover, by (.59), the definition of Z and (19), we have:

MOM (£ — ) + A (I1Z]] = 12°]) < sup MOM (¢, — £2) + A (121 — 121

<sup MOMg(lz- —Llz) + A (HZ*” - HZH)

zec
< By
As a consequence, there exist at least K/2 blocks By on which
Pu,Ly < oo (r)? ~ A (121 - 12°)
< S+ AIZ - 2]
< %(r;)2 +2)\p* = %(r;)z. (6.68)

So there must be at least a block By, on which (6.67) and (6.6%) hold simultaneously. On this
block, we have

1, 88 . 1, 93 .
PLy, < Pp, L+ %(?‘2)2 < ﬁ(rz)z + %(7”2)2 = ﬁ(%ﬂ

O

At this stage, we have shown that on the event Qy g, the estimator 7 has the statistical
properties announced in Theorem /. In what follows we prove that under the conditions of
Theorem 24, Qp ¢ holds with exponentially large probability.

Lemma 71. Assume that K > 100|0|, and let p* > 0 be such that it satisfies the sparsity
equation from Definition 25. Then, Qi holds with probability at least 1 — 2 exp(—T72K/625).

Proof. Consider
Gt €R = Lysyy +2(t— 1/2)Lp poycry,
so that for any t € R,
Igs1y < o(t) < 1{1:21/2}'
For k € [K], let W}, := {X, :i € By} and Fz(Wy) = (Pp, — P)Lz. We also define the coun-

terparts of these quantities constructed with the non-corrupted vectors: Wk = {)?i RS Bk}

and Fz(Wy) = (Pp, — P)Lz, where Pp, Lz := K3, L7(X;) and PLz := E[L(X;)]. For

both b € {1, 2}, define
Z—p(Z)= Y 1

(’V‘*)Q .
=t {\Fz(wkngg—o}

Let b € {1,2}. We want to show that, with high probability, if Z € By, then ¢,(Z) > K/2. As
we showed in the proof of Lemma 53, in our framework this is equivalent to proving that the
following inequality occurs with high probability:

19K
DAy e S o (6.69)
T {|Fz(Wk)\> £ } 100




CHAPTER 6. PROOFS 91

and this is what we do now. Let Z € B,. We have:

B o i)

kE[K]
-y | R AR WY AP AT Gk
{lFZ(wm (532} Z\Wh 40 Z\Wk 40
ke[K] |
= 1 )2 + P |Fz(
2N e N et ) (' 4 )
QOFZ(Wk)) 20|FZ(Wk)|> ( )
< o | T _R (g [ A + P (|Fz(
ez[;q < (r)? (r5)? ke [K] z
w 20[F(Wi)| | 20|z (Wi)| _ ()
SZegb keZ[[:q¢< (TZ)Q > E (b( (TZ)Q ) +k;(]P<|FZ 40 )

(6.70)

We start with bounding the last sum in the previous inequality. For each k € [K], Markov’s
inequality and the definition of r; yield to

— ¥ 2 2
P (lFZ(Wk) > (4b0)> < 1(2?;) [FZ(Wk) }
2 ~
~ e () var(e2(3)
< e (D)’ < 55

Plugging this last result into (6.70), we get:

K 20| F (Wy)| 20| Fz (Wy)|
2 l{le(Wk>\> V=900 "o, 2 ¢< (r})? >_E ¢< (r})? )

ke[K] ke[K]

We now have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2 in BOUCHERON
et al. (2013a) with ¢ = 12/25), we get that with probability at least 1 —exp(—72K/625), for all
Z € By,

20|FZ )| 20\FZ(Wk)\
Z¢< G ) M( GE >§

ke[K]
LTS - Z(b(m@) B <2OF<W>|> | 6.72
]

% PEE 2\ T ) i ?

Let now €1, ..., ex be Rademacher variables independant from the )?i’s. By the symmetrization
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Lemma, we have:

WIFZ W _ |, [ 200E2(W)|
£ ZSEEbkez[;{]qs( )P ) - ¢< 0i)? )

(6.73)

< 2E | sup Z €k¢< (r;)?
b

20|FZ(Wk)|>
Z€By ke[K]

As ¢ is Lipschitz with ¢(0) = 0, we can use the contraction Lemma (see LEDOUX and TALA-
GRAND (2013), chapter 4) to get that:

E | sup Z erd M < 2E | sup Z ekm
zeBy Lo (r)? N EE (r)?
4 — <
U sup Y ex(Pp, — P)Ly (6.74)

(7“?;)2 ZeBy ke [K]

Now, let (0;)i=1,...,~ be a family of Rademacher variables independant from the )?i’s and the
€;’s. Using the symmetrization Lemma again, we get:

N
L K ~
E | sup ex(Pg, — P)Lz| <2E | sup — o, L7 (X;
ZeB, keE[;(] (P5, — P) zes, N ; (%)

< 2K Eg(ry, bp*) < 2K~(rp)°.

Combining this with (6.72), (6.74) and (6.75), we finally get that, with probability at least
1 —exp(—T72K/625):

sup Y ¢ (MFZ(W’“)'> ~E|¢ (MFZW> < (12 + 1607) K. (6.75)
]

zec, kel (Tb)z (Tb)2 25

Plugging that into (6.71), we conclude that, with probability at least 1 — exp(—72K/625), for
all Z € By,

112 49
R <++1607>K§K
R {|Fz<wk>\> 2 } 200 ' 25 100

for our choice of parameters. Now, in order for 2k ¢ to hold, this inequality must be ver-
ified for both b = 1 and 2. Then, we finally conclude that Qg ¢ holds with probability
1 —2exp(—72K/625), which concludes the proof.

O

6.2 PROOFS OF CHAPTER

6.2.1 STOCHASTIC PROCESSES
6.2.1.1 PROOF OF THEOREM

The proof of Theorem 25 relies on several lemmas. We first recall that kB N By C 2conv(Uyz N
82d *4) where Uyz is the set of all matrices in R**? with k2 non zero entries (see, for instance,
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equation (3.1) in MENDELSON, PAJOR, and TOMCZAK-JAEGERMANN (2007)) and so for all
Ae Rdxd7

1/2

2
A <2 sup > A,

IC[d)x[d]:|I|=k? (p,q)€l

We therefore need to find a high probability upper bound on the f5 norm of the k? largest
entries of Xy — 3. To that end, we start with the following result.

Lemma 72. Let (zpq : p,q € [d]) be real-valued random variables (not necessarily independent)
and A\t > 1 be two positive constants. We assume that for r = 2log(ed/k) + t, we have
IzpgllL, < A/r for all p,q € [d]. Then, with probability at least 1 — exp(—t),

1/2
sup Z 22, < 62)\\/2k‘2 (log(ed/k) +t).
rcldx[d:11=k? \ S "e;
Moreover:
1/2

E sup Z zgq < e?\y/6k2log(ed/k)

ICld]x[d:[I1=k? \ (, yer

Proof. We define for all p, q € [d],
Zpq = 2pql (|2pg| < eAVT) and Yyq = 2pgI(|2p| > eAV/T)

so that we have |z,q|" = | Zpq|? + |Ypqel?. As a consequence and by convexity of x € Rt — z?/2,
we have for all I C [d] x [d]

/2
1 1 1 1
] Z qu < [l Z |2pq|" = il Z | Zpql" + il Z |¥pql"- (6.76)
(pg)el (p@)el (pg)el (p.a)el

Let I C [d] x [d] be such that |I| = k*. We have

1

7 D 1Zpgl" < (ervr) (6.77)

(p.a)el

For the second term in the right hand side inequality of ( ), we have
i § Y, ‘t < i § Y, |t
‘I‘ rqgl — |I| Pq
(pa)el (p,9)€ld] x[d]

and for 0 :=r/t and all p,q € [d], we have

t t w0]*/° 1-1/6
E[|Ypq|"] = E [|2pg|"I(|2pg| > eAv/T)] <E {|qu| ] P [|zpg| > eAV/T]

¢ K
e2d?’

< (W) <Z§q\%> VR = (W)

It follows that

1 d? k> ATt
E sup I3 Z |qu|t < ﬁ(/\\/;)t = M

rcid)x [ 11=k2 | (el e2d? e?
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Hence, using (0.70), (0.77) and the last inequality, we get EZ! < (eA/r)! + (A\/7)t/e? <
2(eAy/7)t where

1/2

1
Z = sup m Z zf,q

IC[d)x [d]:|I|=k? (p,g)el

As a consequence, || 2|, < eAv2r and so, for t > 2 we get by Markov’s inequality that
Z < e2X\V/2r with probability at least 1 — exp(—t).
Now, by taking simply t = 1 we get:

1212, < eAV2r = eAy/2(2log(ed/k) + 1) < eA\/61og(ed/k)

since k < d. By consequence, E[Z] = || 2|1, < eAy/6log(ed/k), which concludes the proof. O

The proof of Theorem 27 will follow from Lemma 72 if one can apply the latter to the variables
Zpg = Ypg—Spq. We therefore have to check that (3,,—X,, : p,d € [d]) satisfies the assumptions
of Lemma 72. In other words, it only remains to show that for all p,q € [d], ﬁ]pq — Ypg has
r := 2log(ed/k) + t sub-gaussian moment under Assumption /.!. To that end we use a version
(see Lemma 2.8 in LECUE and MENDELSON (2014)) of a result due to Latala taken from LATALA
et al. (1997) (see Theorem 2 and Remark 2 in LATAEA et al. (1997)) which states the following:

Lemma 73. (LATARA et al., 1997) There exists an absolute constant co for which the following
holds. Let z be a mean-zero random variable and z1,...,zx be be N independent copies of z.
Consider pg > 2 and assume that there exists k1 > 0 and o > 1/2 for which ||z||L, < k1p® for

every 2 <p <po. If N > p(r)naX{Qa_Ll} then for every 2 < p < po,

< c1(a)k1y/p,
LP

;N
|72
where ¢1(a) = ¢cpexp((2a — 1)).

We use Lemma 73 to prove the following moment growth condition on the f]pq —Xpq, P, q € [d].

Lemma T74. There exists an absolute constant co such that the following holds. Grant As-
sumption with parameters w and t > 2. For all p,q € [d] and all 2 < r < 2log(ed/k) +t, if
N > 2log(ed/k) 4+t then |Xpg — Lpgllz, < (cow?/VN)/r.

Proof. Consider p, q € [d]. It follows from Assumption and Lemma 73 that for all p, ¢ € [d]
and all 2 < r < 2log(ed/k) + t,

- 1 cow?

N
1
||qu - quHLr < \/Nuﬁ ;XipXiq - IEXipXquLr < \/N \/;
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6.2.1.2 PROOF OF THEOREM

The proof of Theorem 20 relies on several lemmas. We first use a decomposition similar to the
one from LECUE and MENDELSON (2018). We have

||5]N—Z||p§min sup Z ZN—E)pq, sup Z ZN— X)pg
Z€Bs p.g=1 ZepBsrLorE p.q=1
. 2\ . 2 Z)?p,q)
= min Z (Xn—%)2,p  sup Z Z(p q)ﬂpq 5
pa=1 Z€pBsrorE 4, 1—1 Pq
d (En =)
. & (P,9)
= min Yy —X)2 ,p max —— | . 6.78
p,qz=1( )pq p,q€(d] /6pq ( )

We already proved a high probability upper bound on the £ norm of the k? largest entries of
$n — ¥ in the previous section under a weaker assumption than the one in Assumption

We just have to use it for £ = d to handle the left-hand side term of (6.73). Therefore, with
probability at least 1 — exp(—t),

d /d
2
E (EN E)pq < cow | —.

p,q=1

It only remains to handle the second term in the right-hand side inequality of ( ). To that
end, we start with the following result.

Lemma 75. Let z := (zpq : p,q € [d]) be real-valued random variables (not necessarily in-
dependent) and A\t > 1 be two positive constants. We denote by (zz"p o D€ [d]) the

non-increasing sequence (for the same levicographical order over [d)? used before) of the re-
arrangement of the absolute values of the entries of z. Consider pg,qo € [d]. We assume that
for r =logled?/(poqo)] + t, we have q € [d]. Then,

Z*
I (p0,90) I, < e2)\.
Poqo

Proof. To make the presentation of the proof simpler, we index the entries of d x d matrices
by [d?]. We therefore have d* random variables (z;); (not necessarily independent) and j3; =

V19og(ed?/j) +t for all j € [d?]. Consider jo € [d?] and set ro = log(ed?/jo) + t. We assume
that ||z;lL,, < Ay/ro for all p,q € [d]. We want to prove that |z} /Bj,llz, < e?X. We first
remark that

*
Z]O

zil == Z. 6.79
/BJU Ic[dz] |I| =Jjo 6]0‘I‘Z| ]| ( )

We define for all j € [d?],

Zj = 2 (|2] < eAv/ro) and Yj = 21 (|z5] > eA/ro) -

It follows from the convexity of z € Ry — ! and the definitions above that

t a2
AT 1 — ElY;/*
EZ < t< & T it 6.80
el Ti=do 3;0|1|Z|J| ( Bio ) JOZ B, \680)
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Next, for the second term in the right-hand side inequality of (0.20) for 8 := rq/t and all
j € [d?], we have

E|Y;|! = E [|2:[tI(|2:] > e <E (12" B[l > exgig] 7
V51" = E [|2[*1(|2;] > eAv/ro)] <E ||z (2] > eAv/ro]

’I‘o—t
t ”ZjHLr t /2 _p t ot —t Jo
< (A\/%) ( e)\\/rT;] < (eA) ro T = (eX) N B
We end up in (0.50) with EZt < (eA)’ + A\t < (e2\)1. O
Lemma 76. Let z := (zpq : p,q € [d]) be real-valued random variables (not necessarily in-

dependent) and X > 0,t > 3 be two constants. We denote by (szp,q) : p,q € [d]) the non-
increasing sequence (for the same lezicographical order over [d)? used before) of the rearrange-
ment of the absolute values of the entries of z. Consider ro = log(ed?) +t and assume that
|zpgllz, < A/ for all p,q € [d] and 2 < r < ro. Consider k € [d] and v > 1. Then, when
t > max (2log([log(k?)1), v log(ed?/k?)), with probability at least 1 — exp(—t/2),

Z*
max <W> < V2e3 .

pa€ld?] \ Bpq

Proof. We use the same ’vectorial’ notation as the one introduced in the proof of Lemma
We remark that for all j € [d?], we have (1/82;) < v/2/8; when t > 3 and for all j > k2,
1/B; < V/2/By2 when t > vylog(ed?/k?), hence,

o *
max <J> < v2max (;2'7_ :

j€ld?] \ B 2

j—&Luwﬂ%%%O-

Markov’s inequality with probability at least 1—exp(—t), 23, /B2 < e3\. The union bound yields
that with probability at least 1 — [log(k?*)] exp(—t), max (23,/B2s : j = 0,1,..., [log(k?)]) <
e3\.

I follows from lemma 75 that for all j = 0,1, ..., [log(k?)], we have ||23; /82|, < €*X and so by

O

The proof of Theorem 27 will follow from Lemma 70 if one can apply the latter to the variables
Zpg = Ypg — Lpg- We therefore have to check that the family of random variables (3,, — 5, :
p,d € [d]) satisfies the assumptions of Lemma 70. In other words, it only remains to show that
for all p,q € [d], f]pq — ¥,, has r := log(ed?) + ¢ sub-gaussian moment under Assumption

To that end we use a version (see Lemma 2.8 in (LECUE & MENDELSON, 2014)) of a result
due to Latala taken from LATALA et al. (1997) (see Theorem 2 and Remark 2 in LATAEA et al.

(1997)) which states the following:

Lemma 77. (LATARA et al., 1997) There exists an absolute constant co for which the following
holds. Let z be a mean-zero random variable and z1,...,zx be be N independent copies of z.
Consider pg > 2 and assume that there exists k1 > 0 and o > 1/2 for which ||z||L, < k1p® for

every 2 <p <po. If N > pi™ 2= then for every 2 < p < po,

N
1
HTNE z| < c1(a)k1/p,
i=1 P

where ¢1 (o) = cpexp((2a — 1)).

We use Lemma 77 to prove the following moment growth condition on the flpq — Xy, P, q € [d].
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Lemma T78. There exists an absolute constant cg such that the following holds. Grant As-
sumption with parameters w and t > 3. For all p,q € [d] and all 2 < r < 2log(ed?) +t, if
N > 2log(ed?) 4+t then || Xpg — Spelln, < (cow?/V/N)y/r.

Proof. Consider p, q € [d]. It follows from Assumption and Lemma 77 that for all p, ¢ € [d]
and all 2 < r < 2log(ed?) +t,

[ V)

Cow

. 1 1
13pg — Zpgllr, < —=ll—= )  XipXig — EXipXigllz, < VT
Pq Pq \/N \/N ; p<*1q P q \/N
O
Proof of Theorem We set for all p, g € [d], zpq = ipq — ¥pq- It follows from Lemma
for a = 1 that for all 2 < r < 2log(ed?) +t, ||zpqg|lL, < A\/7 where A = cow?/v/N. The result
now follows from Lemma 70. ]

6.2.2 SIGNED CLUSTERING
6.2.2.1 PROOF OF EQUATION (1.7)

We recall that the cluster matrix Z € {0,1}4%¢ is defined by Z;; = 1 if i ~ j and Z;; = 0 when
it jand a = d(p+q—1). For all matrix Z € [0,1]7%¢, we have

d
<Z7 EA — OLJ> == Z ZU(EA?] - Oé) = Z ZU(EAU - OL) + Z Z?](]EA’Lj — Ol)

i,j=1 (i,7)eCt (i,5)eC—
d
=[0@2p—1)—a] D Zy+[QR¢-1)—a] Y Zy+(1-a)> Zi
(i,5)€CT:i] (i,5)eC— i=1
d
=dp—a) | Y. Zij— >, Ziy|+ 1—a)ZZ
(i,5)ect (i,5)€C— =1

The latter quantity is maximal for Z € [0,1]4*? such that Z;; = 1 for (i,5) € C* and Z;; = 0
for (i,7) € C™, that is when Z = Z. As a consequence {Z} = argmax ;¢ (g 1jaxa(Z, EA — aJ).
Moreover, Z € C C [0,1]9*? so we also have that Z is the only solution to the problem
maXZ€c<Z,EA—aJ> and so Z = Z*. [ ]

6.2.2.2 PROOF OF THEOREM

For a problem, such as the signed clustering, where it is possible to characterize the curvature
of the excess risk, we start to identify this curvature because the curvature function GG, coming
out of it, defines the local subsets of C driving the complexity of the problem. Then, we turn to
the stochastic part of the proof, which is entirely summarized into the complexity fixed point
r&(A) from (1). Finally, we put the two pieces together and apply the main general result from
Theorem € to obtain estimation results for the SDP estimator (1.%) in the signed clustering
problem.

CURVATURE EQUATION
In this section, we show that the objective function Z € C — <Z JEA—aJ > satisfies a curvature

equation around its maximizer Z* with respect to the £¢*%-norm given by G(Z* — Z) = 6||Z* —
Z||x with parameter 0 = §(p — ¢) (and margin exponent x = 1).
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Proposition 6.2. For § = §(p — q), we have for all Z € C, (EA — o], Z* — Z) = 0||Z* — Z|;.

Proof. Let Z be in C. We have

d
(2= Z,BA—aJ) =Y (Z" - Z);;(EA; — a)
i,j=1
= Y (Z5-Zy)@2p-1)—a)+ > (Z—Ziy)(6(2¢— 1) — )
(i,j)ect (i,j)ec—

=d(p—q) Z (Z" = Z)ij — Z (Z" = Z)y;

(i,5)ect (i,j)€eC—

Moreover, for all (i,j) € C*,Z;; = 1and 0 < Z;; < 1,50 (Z* — Z)ij = [(Z* — Z)i;]. We also
have for all (i, j) € C~, (2" — Z)ij = —Zij = —|(Z* — Z);;| because in that case Z;; = 1 and
0 S Z” S 1. HGIICG7

(Z*=Z,BA—ad)y=6(p—q) | > (Z°=2)yl+ Y. [(Z"=2)il| =012 - 2.
(i,5)ect (i,5)eC—

O

COMPUTATION OF THE COMPLEXITY FIXED POINT r%(A)

Define W := A —IEA the noise matrix of the problem. Since W is symmetric, its entries are not
independent. In order to work only with independent random variables, we define the following
matrix ¥ € R4x4:

Wi if i < j
U, = v = 6.81
J { 0 otherwise, ( )

where 0 entries are considered as independent Bernoulli variables with parameter 0 and there-
fore, ¥ has independent entries and satisfies the relation W =0 + U T,

In order to obtain upper bounds on the fixed point complexity parameter ri(A) associated
with the signed clustering problem, we need to prove a high-probability upper bound on the
quantity

sup (W, Z - Z*) (6.82)
ZeC:||Zz=2Z*|1<r
and then find a radius 7 as small as possible such that the quantity in (0.22) is less than (6/2)r.
We denote C, := CN(Z*+rB{*") ={Z € C:||Z — Z*||s <r} where B{** is the unit ¢{**-ball
of R¥*d,

We follow the strategy from FEI and CHEN (2019b) by decomposing the inner product <VV, Z —
Z *> into two parts according to the SVD of Z*. This observation is a key point in the work
of FEI and CHEN (2019b) compared to the analysis from GUEDON and VERSHYNIN (2016).
This allows to perform the localization argument efficiently. Up to a change of index of the
nodes, Z* is a block matrix with K diagonal blocks of 1’s. It therefore admits K singular
vectors Usy, = I(i € Cx)/+/|Ck| with multiplicity I, associated with the singular value I for all
k € [K]. We can therefore write

K
Z%< = ZlkU.k ® Uok - UDUT?
k=1
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where U € R¥X has K column vectors given by Uer,k = 1,..., K and D = diag(ly,...,lx).

We define the following projection operator
P:MeR™ - UUTM + MUUT —UUTMUUT,

and its orthogonal projection P+ by

d
PLiMeR™ 5 M—P(M)=1;—UUT)MIs—UU") = Y (M,Usk @Us)Usi @ Usi
k=K+1

where Uy, € R4 k= K +1,...,d are such that (Us;, : kK =1,...,d) is an orthonormal basis of
R,

We use the same decomposition as in (FEI & CHEN, 2019b): for all Z € C,
W2 —-2") =(W,P(Z - 2")+PHZ = 2")) = (P(Z—2"),W) + (P(Z = Z*),W).

51(2) 52(2)

The next step is to control with large probability the two terms S7(Z) and S2(Z) uniformly for
al ZelCn(Z* + rBfXd). To that end, we use the two following propositions where we recall
that p = dmax(1 —§(2p — 1)%,1 — 6(2¢ — 1)?) and v = max(2p — 1,1 — 2q). For the sake of
clarity, we postpone the proof of Propositions and 0.4, based on the work of FEI and CHEN
(2019Db), to Appendix

Proposition 6.3. There are absolute positive constants cg, ¢, cs and ¢ such that the following
holds. If [e;rK/d] > 2e K dexp(—(9/32)dp/K) then we have

ragsy
K 2eKd ark
P sup S1(Z) < ear —plog ceTK >1-3 il .
zecn(Z* +rBixd) d [2=] 2eKd

Proposition 6.4. There exists an absolute constant ¢y > 0 such that the following holds.
When dvd > log d, with probability at least 1 — exp(—dvd),

é
sup Sa2(Z) ScoKml—V.
zecen(Z*+rBixd) d

It follows from Proposition and Proposition that when dvé > logd, for all r such that
[cirK/d] > 2eKdexp(—(9/32)dp/K) we have, for
B

C”meem)) ,

A = A(r) ;= exp(—dvd) — 3 (f

with probability at least 1 — A,

1) K 2eKd
sup <I/V,Z—Z*>§c0Km/—V+czr —plog fTK .
zeen(Z*+rBixd) d d [171
Moreover, we have
[év Kp 2eKd 0
C()K'r' 7 + cor 7 log (WI) S 57" (683)

for 8 = 6(p — q) when K\/v < Vdd(p — q) and [¢;rK/d] > 2eKdexp(—62d/(Kp)). In partic-
ular, when (p — ¢)2dé > K?v and 1 > 2eKdmax (exp(—6%d/(Kp)),exp(—(9/32)dp/K)), we
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conclude that for all 0 < r < d/(c1K) (6.23) is true. Therefore, one can take r5(A(0)) = 0,
meaning that we have exact reconstruction of Z*:

if (p— q)%dd > K?v and d > K max(p/6?log(2eK?p/0?),(1/p)log(2¢K?/p)), then, with prob-
ability at least 1 — exp(—dvd) — 3/(2¢Kd), one has Z = Z*.

If (p— q)?dé > K?v and 1 < 2eKdmax (exp(—02d/(Kp)),exp(—(9/32)dp/K)) then we do
not have exact reconstruction anymore, but we see that (0.83) is true for any r such that
2eKd exp(—0%d/(16c3Kp)) < [92E] < 2eKd exp(—c3Kdv/(c3p)), which is possible since
(p — q)?dé > K?v, and then we can conclude that r*(A) < QCeld; exp ( 62d )

- 16C%Kp

Therefore, it follows from Theorem ¢ that

A 2ed? 02d
7¥ -7 < — —_— .
12 =20 < exp< 160%)
6.2.3 ANGULAR SYNCHRONIZATION

6.2.3.1 PROOF OF EQUATION

We recall that the offsets are d;; = (6; — 6;)[27] and we will use the fact that, if g is A(0,1),
then Ee'?9 = e~ /2. For all 1, ...,vq € [0,27), we have v; —y; = d;; for all i # j € [d] if and
only if 662/2EAU‘6L’” — e =0 for all ¢ # j € [d]. We therefore have

argmin Z |e”2/2IEAijxj —x]? p = {(e¥itoNd_ g, € [0,27)}). (6.84)
z€C:|z;|=1 i#]
Moreover, for all z = (z;)%_; € C? such that |z;| =1 fori=1,...,d, we have
. d
D1 PRy — il = Y |ai @iy — il = ) |l - ey
i#j i) ij=1

d
=24 — 2R Z TiTTT; | = 2d° — 2|(z*, z)|?

ij=1

where R(z) denotes the real part of z € C. On the other side, we have

d
.’ET(602/2EA).T = Z@xff;xj + chieaz/zxi = d(egz/Q — 1) + |<£C*7$>|2
i#] i=1

Hence, minimizing  — Z;i# |e”2/2EA¢j:cj — 14| over all x = (x;); € C? such that |z;| = 1 is
equivalent to maximize x — 7 ' EAz over all x = (z;); € C? such that |z;| = 1. This concludes
the proof with (0.31).

6.2.3.2 PROOF OF EQUATION

Define C' = {Z € €4 : |Z;;| < 1,Vi,j € [d]}. We first prove that C C C’. Consider Z € C.
Since Z = 0, there exists X € C¥? such that Z = XX 7. For all i € {1,...,d}, denote by
Xjo the i-th row vector of X. We have || X;q[3 = (Xie, Xje) = Zi; = 1, since diag(Z) = 14.
Moreover, for all 7, j € [d], we have |Z;;| = |(Xie, Xjo)| < || Xie|l2]| Xje|l2 < 1. This proves that
ZeC andsoCcCC.

Consider Z' € argmax (?}?(CEA7 Z)):Z € C’}. Since C’ is convex and the objective function
Z — R((EA, Z)) is linear (for real coefficients), Z’ is one of the extreme points of C’. Extreme
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points of C’ are matrices Z € C?*¢ such that |Z;;| = 1 for all i,j € [d]. We can then write each
entry of 7" as Z]; = e'Pii for some 0 < B;; < 2w and now we obtain

d d
%(<EA Z Z EA%J =R Z 6—02/2€L5i_7‘e—bﬁi.7‘ LR Z eb57‘,1‘,e—bﬁu
4,J=1 i#j i=1
- Z e’ /2 COS i 57.] + Z COS i 6”) < e’ /2(d d) +d.

i#]

The maximal value e° /2(d? — d) + d is attained only for Bi; = 6;5 for all 4,7 € [d], that is for
7' = (e"é"j)i,j:17___7d = Z*. But we have Z* € C and C C C’, so Z* is the only maximizer of
Z — §R(<EA,Z>) on C. But for all Z € C we have <IEA,Z> = R, then Z* is the only
maximizer of Z — <IEA, Z> over C.

6.2.3.3 PROOF OF THEOREM

CURVATURE OF THE OBJECTIVE FUNCTION

Proposition 6.5. Consider § = 6_02/2/2. Then, for any Z € C, on has: <IEA, Z* — Z> >
01z — Z|I3.

Proof. Consider Z = (z;;e'?)!._ ) € C where z;; € R and 0 < f3;; < 2r for all ¢, j € [d]. Since
7} = Z;; =1 for all i € [d], we have, on one side, (EA,Z* — Z) = e“’z/QFT(Z* —Z)xz* € R,
and so

d
(BA, 2"~ 2) = R((EA, 2" - 2)) =% | > EA(Z" = 2);

i,j=1

_éR Ze 0'/2 L6'L] z]_z e L/BLJ)

1,5=1

d
6_02/25)? Zl—z (03 =Bij)

— —0?/2 Z (1 = z;; cos(8i; — Bij). (6.85)

ij=1

On the other side, we showed in the proof of (1.17) that C C {Z € C¥*¢: |Z;;| < 1,Vi,j € [d]}.
So we have |z;;| < 1 for all 4,j € [d] and

d
12— 2= Y12 = 2 = 3 Jes — e = 3 1 e
i,j=1 i,j=1 1,j=1

d
= 3 (1= zijcos(Bij — 6i5))? + 25 sin®(Bi; — bij)

J=1

~.

d
= Z 1 —2z;5cos(Bi; — d:5) + zizj (6.86)
7,j=1
d
S 2 Z (1 — Zij COS(Bij — (5”)) (687)
i,5=1

We conclude with (6.95) and (6.80). O
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In fact, it follows from the proof of Proposition that we have the following equality: for all
ZeC,

(EA,7°~ 2) =6 (I12° ~ 213 + 1121 ~ 12711
where |Z|?> = (|Z;j|*)1<i,j<a (in particular, |Z*|*> = (1)4xq). We therefore know exactly how
to characterize the curvature of the excess risk for the angular synchronization problem in

terms of the ¢5 (to the square) and the ¢; norms. Nevertheless, we will not use the extra term
[1Z*> = |Z|?||1 in the following.

COMPUTATION OF THE COMPLEXITY FIXED POINT 77 (J)

It follows from the (global) curvature property of the excess risk for the angular synchronization
problem obtained in Proposition that for the curvature G function defined by G(Z* — Z) =
0|1Z* — Z||3,YZ € C, we just have to compute the r%(d) fixed point and then apply Theorem
in order to obtain statistical properties of Z (with respect to both the excess risk and the G
function). In this section, we compute the complexity fixed point r () for 0 < ¢ < 1.

Following Proposition 6.5, the natural ‘local’ subsets of C around Z* which drive the statistical
complexity of the synchronization problem are defined for all » > 0 by C, = {Z € C : ||Z —
Z* s <7} =CN(Z* +rB3*?).

Consider Z € C,.. Denote by bf? (resp. bj;) the real (resp. imaginary) part of b; = ZZi; — Z;;
for all i, j € [d]. Since [|Z — Z*||2 <1 we also have Y=, ;(bj5)* + (bf;)* < 7? and so

(A—EA,Z—-2")=((S—ES)oZ*,Z—Z*) =2R | Y _(Sij — ESij)bi;

i<j
=2 Z(cos(ogij) - Ecos(agij))bg - Sin(agij)bfj
1<j
<2r Z(COS(U%J‘) — Ecos(agi;))? + (sin(agi;))?
i<j

<2r [1—e 9% +2e9%/2 ZECOS(O’QM) — cos(0gij)
i<j

where we used that E cos(cg) = R(Ee) = e~ /2 for g ~ N'(0,1). Now it remains to get a
high-probability upper bound on the sum of the centered cosinus of g;;. To get such a bound,
we use Bernstein’s inequality: if Y7,..., Yy are N independent centered random variables such
that |Y;| < M a.s. forall i =1,..., N then for all ¢ > 0, with probability at least 1 — exp(—t),

N
1 2Mt

— > Yi<oVat+ —, 6.88

VN = 3VN (6.88)

where 02 = (1/N) vazl var(Y;). In our context, this gives tha for all ¢ > 0, with probability
at least 1 — exp(—t),

2t

1 2t 2
—_ Ecos(og;;) —cos(og;i) < V2Vi+ —— < (1—¢e° \/%+7,
\/NZ (Ugj) (Ug])— —( ) 3\/N

i<j 3VN

for N=d(d—1)/2and V = ECOS2(0'g)2—(ECOS(O'g))2 = (1/2)(1—6_"2)2 (because E cos?(og) =
(1/2)E(1 + cos(20g)) = (1/2)(1 + e7277) when g ~ N(0,1)).
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We now have all the ingredients to compute the fixed point 7 (8) for 0 < 6 < 1: for 8 = 6*02/2/2
and ¢ = log(1/4),

4 2 2
re(d) < 7 (1 —e 7 427 /2 ((1 — e_"Q)vtN + ;)) = %+8(1—6_02)(602/2+2*/tN).

In particular, using 1— e~ < o2 and for t = eo* N (where N = d(d—1)/2) for some 0 < € < 1,
if €7°/2 < 202,/eN then r%(8) < (128/3)0* N /e.

END OF THE PROOF OF THEOREM AND COROLLARY 32: APPLICATION OF THEOREM 5 Take

§ = exp(—ea®N) (for N = d(d—1)/2), we have r}(5) < (128/3)\/ec* N when e’ /2 < 2,/er®N
(which holds for instance when o < y/log(eN?)) and so it follows from Theorem © (together
with the curvature property of Proposition and the computation of the fixed point r(6)
just above, that with probability at least 1 —exp(—eotd(d—1)/2), 9<Z* —Z>§ < <IEA, zZ* —Z> <
(128/3)y/ea* N, which is the statement of Theorem

Proof of Corollary 32: The oracle Z* is the rank one matrix 2*7* " which has d for largest
eigenvalue and associated eigenspace {A\z* : A € C}. In particular, Z* has a spectral gap g = d.
Let # € C? be a top eigenvector of Z with norm ||Z[s = V/d. It follows from the Davis-Kahan
Theorem (see, for example, Theorem 4.5.5 in (VERSHYNIN, 2018) or Theorem 4 in (VU, 2010))
that there exists a universal constant ¢y > 0 such that

T A
min _— = 22—
€Clzl=1 Vd  Vd

where g = d is the spectral gap of Z*. We conclude the proof of Corollary 32 using the upper
bound on ||Z — Z*||2 from Theorem 31. [ |

Co .\ A «
l2 < EIIZ— Z" |2,

6.2.4 Max-Cur

In this section, we prove the two main results from Section using our general methodology
for Theorem 36 and the technique from GOEMANS and WILLIAMSON (1995) for Theorem
6.2.4.1 PROOF OF THEOREM

The proof of Theorem 35 follows the one from GOEMANS and WILLIAMSON (1995) up to a
minor modification due to the fact that we use the SDP estimator Z instead of the oracle
Z*. Tt is based on two tools. The first one is Grothendieck’s identity: let g ~ A(0,1;) and
u,v € Sg_l, we have

E[sign({g,u))sign({g,v))] = %arcsin(<u, v)), (6.89)

and the identity: for all ¢ € [—1,1]

2 2
1 — —arcsin(t) = —arccos(t) > 0.878(1 —t). (6.90)
™ ™
We now have enough tools to prove Theorem 5. The right-hand side inequality is trivial since

MAx-CuT(G) < SDP(G). For the left-hand side, we denote by X, ..., Xy (resp. X7,...,X3)
the d columns vectors in 82‘1_1 of Z (resp. Z*). We also consider the event Q* onto which
<EB, Z* — Z> < r*(9), which hold with probability at least 1 — § according to Theorem 3. On
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the event Q*, we have

[cut(G z \Z} Z A — x| == Z AY, ( E[sign <Xi7g>)sign(<)2j,g>)}>
1,5=1 i,j=1
)1 2 1
@ 1 Z o (1 — ;arcsm(<X1,Xj> > Py Z A arccos Xl,Xj>
= =
< '7 Z A% (1 - (X, X;))
1,j=1
0 878 0.878
ZA J>+—ZA — (X0, X))
i,j=1 1,j=1
_0 878<A° J—Z")+ 0. 878<A° Z* — Z) = 0.878SDP(G) — —0 578 (EB,Z* - Z)

> 0.878 SDP(G) — @ “(6)

where we used (6.39) in (i) and (6.90) in (ii).

6.2.4.2 PROOF OF THEOREM

For the MAaX-CuUT problem, we do not use any localization argument; we therefore use the (likely
sub-optimal) global approach. The methodology is very close to the one used in GUEDON and
VERSHYNIN (2016) for the community detection problem. In particular, we use both Bernstein
and Grothendieck inequalities to compute high-probability upper bound for r*(4). We recall
theses two tools now. For Bernstein’s inequality, see Equation ( ) above. The second tool
is Grothendieck inequality (GROTHENDIECK, 1956) (see also PISIER (2012) or Theorem 3.4 in
GUEDON and VERSHYNIN (2016)): if C € R?*9 then

C,Z) < Kg||Cllew = K Cijsi 6.91
Zlgé( 1Z2) € Kql|Cllews = Ko mafl}dz jsit (6.91)

where C = {Z = 0: Z; = 1,i = 1,...,d} and K¢ is an absolute constant, called the
Grothendieck constant.

In order to apply Theorem 3, we just have to compute the fixed point 7*(§). As announced, we
use the global approach and Grothendieck inequality ( ) to get

sup (B—EB,Z - 2"} < sup(B —EB, Z — Z*) < 2K ||B — EB|ew,  (6.92)
zec:(EB,z*—Z)<r zec

because Z* € C. It follows from Bernstein’s inequality (0.8%8) and a union bound that for all
t > 0, with probability at least 1 — 49 exp(—t),

1—p)d(d—1)t 4t
”B - ]EBHCUt = sup Z (Blj - EBij)(Sitj + Sjti) < 2 % + —

ste{+1}H | <y P 3

Therefore, for t = 2dlog 4, with probability at least 1 — 4%,

(2log4)(1 —p)(d—1) . 8dlog 4
P 3

() < ||B—EB|lcut <4Kg 2d\/

for § = 4=%. Then the result follows from Theorem
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6.2.5 SPARSE PCA
6.2.5.1 PROOF OF LEMMA

Let Z € C and consider its SVD Z =}, o;u;u; . We have
(898" = 2Z) =0((B") ()T, (ﬁ*)(ﬁ*)T —Z)y+ {14, (BB - Z)
2 o)) (BB = Y o)

=0 1*ZUZ‘<U1',§*>2

?

(@)

—GZO'Z ul, *> )y >0

where we used in (2) that (I4, (8*)(8*)" — Z) = Tr ((8*)(8*)") — Tr (Z) = 0, and in (i) that
|<ui, ,6’*>| < 1 (by Cauchy-Schwart). Hence, 8*(5*) T is a solution to the problem max (<Z7 Z>, 7 € C).

Moreover, using the latter computation, it is straightforward to check that it is unique, that is

o1 =1 and uyu{ = B*(8*)", otherwise inequality (7i) would be strict.

6.2.5.2 PROOF OF LEMMA

Let Z € C and consider its SVD Z = ). oyu;u; . In the proof of Lemma %, we proved that
(2,2* - _9201 (ui, B*)%).

On the other-hand, we have

12~ 21 =T ((z* - 2)(2" - 2)7)

2

= > iy Tr ((ws] = (B8 ) ugu] — (8)(8)T))

= 22@(1 — 2<ui,ﬂ*>2) + Za? — 0

2
=522 - 2)+ (1213 - 12Il.) < 5(=.2" - 2).

SRS

6.2.5.3 PROOF OF LEMMA

It follows from the k-sparsity of 3* that Z* = B*(8*)' is k’-sparse. Let us denote I :=
supp(Z*): we have |I| < k?. Consider p > 0. To solve the sparsity equation, we will use

the following result on the sub-differential of a norm: if ||.|| is a norm over R?¢ we have for
Z = Rdxd:
o(z)={ (2ES (2 Z)=]Z]} i Z#0
B* ifZ=0

where S* (resp. B*) is the unit-sphere (resp. unit-ball) for the dual norm associated with ||.||,
that is Z € R4 — || Z||* = supHH”:1<Z7 H). Here, we consider the ¢;-norm, whose dual norm



CHAPTER 6. PROOFS 106
is the /o, norm.

Since Z* € Z* + (p/20) B, we have

O)-1.(2%) CTz-(p) := U allhv).

VezZ*+(p/20)B

Then, there exists ®* € I'z-(p) which is norming for Z*, that is ||®*||.c = 1 and <<I>*,Z*> =
|Z*|]1. Let Z € H, 4 := Z* + (pS1 N \/r*(p)Bz). For J C [d]?, let P; be the coordinate
projection on J. Since the supports of P;cZ and Z* are disjoints, we can choose ®* such that
it is also norming for P;cZ. Then, we have:

(8,2 — 27 = (&, P(Z — Z7)) + (&", Pp(Z — Z7))
—(®*, Pr(Z — Z*))| + | Pre Z||x
|0 | PH(Z = Z) | + [ PreZ s
—1P1(Z = Z7)|lx + | P1<(Z = Z") |
1Z = Z* ||y = 2| P1(Z — Z7)|]x

= p—2/|P1(Z — Z)]x.

AVARIY,

Now, we have ||P;(Z — Z*)|1 < k||P1(Z — Z*)||2 < k|| Z — Z*||2 < k+/7*(p). We conclude that
<<I>*,Z — Z*> > p — 2ky/r*(p). Then, sup <(I’,Z — Z*> > <(I’*,Z — Z*> > p—2k/r*(p).
)

2l 2+ (p
Since this is true for any Z € H, a, we conclude that ¢ > p — 2k\/7*(p), where Pr(Z — Z*)
is the quantity introduced in Definition . Then, if we choose p such that p > 10ky/r*(p), we
have A(p, A) > (4/5)p, and the A-sparsity equation is satisfied by such a p.

6.2.5.4 PROOF OF LEMMA

From Lemma 39, we get that Assumption holds with G : Z € R¥*4 — || Z||2 and A = 2/6,
for any p > 0 and ¢ € (0,1). Moreover, Assumption is granted for ¢ = log(ed/10k) and
w > 0. Let then ¢y > 0 be the constant provided by Theorem 25, and define b = 3cow?. Let us
define the following function:

. p2 b2A2(€d)4

We also consider

1 ed
* . 2 |
p* = 200Abk log ( 7 >,

as well as r* = r(p*). We have:

*)2 4
100827 = 1008254, | L) 1o (ed)” _
N 4104 log(%4)

*)2 4
< 200k2bA (’)N) log ((ig) ) = (p*)2, (6.93)

so that p* > 10k+/r*. Let us then define k* := p* /v/r*. Since k* > k, any 2 < r < 2log(ed/k*)+
t satisfies 2 < r < 2log(ed/k) + t, so that Assumption holds with w, t and k*. We are
then in measure to apply Theorem with those parameters. As a consequence, as soon as
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N > 2log(ed/k*) 4 t, one has with probability at least 1 — exp(—t):

. (k*)2 <log (;—d) +t>

158 — Zp < cow ~ (6.94)
where ||.||x+ is the ¢;/¢5 interpolation norm defined in (1.2). Now, we have:
sup |(P— Pn)Lg| < Vr* sup |(P — Pn)Lz|
ZeCN(Z*+p* BiN\/r* Ba) ZeCN(Z*+k*B1NB3)
| X
_ I vT T
=V NZ)@XZ. E[X; X, ]
i=1
k*
= VSN = k- (6.95)
Combining it with (6.91), we get that with probability at least 1 — exp(—t):
(p*)? (log (,Td) + t)
sup |(P — Pn)Lyz| < cow?
ZeCN(Z*+p*B1N/1*Bs) N
2(p*)2 d
< cowQ\/('ZOV) log (f()) (6.96)

since k* > 10k. Now, we have:
oo ()
- bA\/(p;z) oy (200%4 (12?(;/10/€)>
o v (G

(p*)? ed
> -
_bA\/ N log 05 )

where the last inequality holds since we assumed that k& < ed/200. Combining it with (6.90),
we conclude that:

7,,*
sup |[(P—Pn)Lz| < 34
ZEeCN(Z*+p* BLN/r* By)

which allows us to conclude that r;ppy (A, p* ™) < r*. Moreover, we have from (0.07)
that

p" 2 10kVT™ 2 10k i par (A, 0% e ")

that is, p* satisfies the A-sparsity equation from Definition &. These results are valid provided
that N > 2log(ed/k*) + ¢, which is ensured by the assumption that N > 3log(ed/10k), given
that k* > 10k. This concludes the proof.

6.2.5.5 PROOF OF THEOREM

From Lemma 39, we get that Assumption holds with G : Z € R¥™*4 — || Z||2 and A = 2/6,
for any p > 0 and § € (0,1). Moreover, since we assumed that N > 3log(ed/10k), Lemma
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applies and so, for p* and 7*(p*) (defined in (1.27)) we have ripgy (A, p*, 10k/ed) < r*(p*)
and p* satisfies the A-sparsity equation from Definition . We are then in position to apply
Theorem 9, provided that A satisfies (3.7). Now, we have:

r(p*) _ 1 (bA)*(ed)*\ _ 1 (ed)*
e —bA\/Nlog< N(p)? ) =bA Nlog (2002k410g(“’}f)>’

so that:
3 ed r*(p*) 4 ed
bA, [ —1 < <bA,| =1
\/N o8 <2002/3k> =T =P\ N %8\ 200172 10g(200) 174k )
since we assumed that k < ed/200. As a consequence, ) is satisfied as soon as:
2|~ 10 cd
21"\| N "%\ 200172 10g(200) /3% | == f N log 2002/%

which is the assumption made in (1.30). We only have to check that this authorized interval
for A is not empty, which is ensured as soon as ed/k > 200%8/47 /10g(200)2%/47, which is granted
by the assumption that k& < ed/200.

We are then in measure to apply Theorem Y, which enables us to state that, with probability
at least 1 — 10k /ed:

A 1 ed e
ZRERM _7* < p* = 92004 2 — 1 ) =4 2 1
12X 1 <p 00Abk* [ = log | — 00bk N02 og

| ZREEM — Z%)|5 <\ /Therac (A, p*, 10k/ed) < o 40b 9 log ( p )

10k

(p*)? 2 k° ed
and PﬁzﬁERM < A 'rigrag (4, p*, 10k /ed) < T00RZA = 800b N—Hlog -

This concludes the proof.

6.2.5.6 PROOF OF COROLLARY

From Theorem 2, we get the existence of a universal constant C' > 0 such that with probability
at least 1 — 20 (k/ed)3/4, | ZRERM _ 7|1, < C\/k2(N62)log(ed/k). Now, we can use Davis-
Kahan sin-theta theorem (see Corollary 1 in YU et al. (2014)) to get the existence of a universal
constant ¢o > 0 such that sin(Q(8, %)) = (1/v2)||B67 — B*(6*) T |l2 < (co/9)|| ZRERM — Z*||
where g := A; — Ao (\; being the i*? largest eigen value of Z*) is the spectral gap of Z*. Here,
we know that Z* = 8*(8*)" is rank one, with 1 as order one eigen value and 0 as order (d — 1)
eigen value. Then we get ¢ = 1, which leads us to the desired result, with D = v/2¢q x C.

6.2.5.7 PROOF OF LEMMA

Let A, ¢ and t > 0. In the rest of the proof, we write r5(.) for rigry.a (A, 0), bpg for bpg(t)
and ', for Ty, (). We consider a lexicographical order on [d]?, b € R?*¢ and the norm ||.|[sLorE
as they are defined in section

Let I := supp((Z*)*) be the set of non-zero coefficients of (Z*)%. Since Z* = g*(8*)" is k*-
sparse, whe have by construction that |I| < k2. Let Py (resp. Prc) be the coordinate projection
on I (resp. on I°).
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We know that for Z # 0:
Oll-Iszore(2) = {® € Sspopr : (2,2) = |Zlszors |

where we denoted S%;,pp the unit-sphere of the dual norm of the SLOPE norm. Since
e+ %BSLOPE7 we know that 8||-||SLOPE(Z*) CI'g« (p) Then:

sup (9,72 —-2Z*) > sup (0,2 —2").
PET 4+ (p) 2€0|.lsLorr(Z*)

Let o, = be the permutations of [d]? such that, for any (p,q) € [d]?, (2*)},, = 125 (.| 20d
(Z=2*)} , = (Z = Z*)n(p,g|- Notice that we have by assumption o([k]?) = I. We then define

g
®* and ®* as follows: for all 1 < p,q < d,

* SgH(Z;q) bafl(p,q) if (pa Q) < (ka k),
P sen((Z — Z*)p,q) ba-1(p,q) Otherwise
and
P, =s8n((Z = Z%)p,q) br-1(p,9)-

We easily check that such a ®* belongs to d|| - ||sLopr(Z*) and d* to | lscore(Z — Z*).
Now let Z € H, 4. We have:
(@%,Z — Z*) = (®*,P(Z — Z*)) + (®*, P1c(Z — Z%))

k § i} . . (6.97)
> s80(Z5 (00002 = Z7)ap.q) + (@F, Pre(Z — Z7)).

p,q=1

Regarding the first term, we have:

k k k
Z Sgn(Z;(p,q))bp,q(Z - Z*)a(p,q) < Z bp.q ’(Z - Z*)Tr(znq) = Z bp,q(Z — Z*)zﬁ),q’
p,g=1 p,q=1 p,q=1

where the first inequality comes from the fact that the operator (-)# orders the absolute values
of (Z — Z*) in non-increasing order (notice that the inequality holds only for the sum, not for
each independent term of the sum). Therefore:

k k
> sen(Z a2 =270, > = > bpo(Z— 27, (6.98)
p,q=1 p,q=1

Concerning the second term in (6.97):

(®, Pre(Z — 27)) = <5*,PIC(Z - Z*)> - <&>*,Z - Z*> - <§>*,PI(Z - Z*)>

k
_ _ gx _ _ o\
- HZ Z HSLOPE Z_: b'n'*loa(p,q)(Z Z )w—loa(p,q) (699)
p,q=1
k
>|1Z - Z*||sore — Y bpg(Z—Z)} .
p,q=1
Putting (6.97), (6.98) and (6.99) together, we obtain
k k
(.2~ Z*) > ||1Z = Z*||score =2 Y bpg(Z =2V y=p—=2 Y bpo(Z—Z)} .
p,q=1 p,q=1

(6.100)
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Now, since ||Z — Z*||2 < /7, we can show that for any k € [d], (ZfZ*)ﬁkk < /r&/k. Indeed,
assume the existence of ko € [d] such that (Z — Z *) ko ko > \/k? Then by construction we have
that for any (p, q) < (ko, ko), (Z — Z*)qu > (Z - Z*)koko’ so that

* * * T'* *
1Z-z13=1Z-2) 3> > ((Z-2%)> >  E=r,
0

(p,a)<(ko,ko) (p,a)<(ko,ko)

since the k3 largest elements of (Z—Z*)* belong to [ko)?, as a result of which | {(p,q) : (p,q) < (ko,ko)} | <
k2. This is inconsistent with the fact that ||Z — Z*||s <

As a consequence, we have:

k k—1
Z bpq(Z_Z*);uaq_Z Z bpq(Z_Z*)ge"‘bkk(Z_Z*)ﬁkk
p,q=1 =1 (£,0)<(p,q)<(£+1,6+1)

- i VTG
< S n <) < €104 DY be(Z = 20+ b Y
(=1

k—1 = k

(20+1) bg\ﬁ \F<3\ﬁ2bu+bkk\/£z§3\/%2bu
{=1 (=1
= /el

Then, under the assumption that p > 10I'y/7& (A, p,0), we get from ( ) that <<I>*,Z —
Z*) > (4/5)p. and then:

4
sup O, 77> (9", Z2-7%)> —p.

Since this is true for any Z € H(p, A), we conclude that:

A(p,A) = inf sup (9%, Z—Z%) >

4
Z€eH(p,A) oS 5”

SLOPE

that is, p satisfies the A-sparsity equation from Definition

6.2.5.8 PROOF OF LEMMA

From Lemma 39, we get that Assumption holds with G : Z € R¥™4 — || Z||%2 and A = 2/6,
for any p > 0 and ¢ € (0, 1).

For r and p > 0, we define C,., := {Z € C: |Z — Z*||scope < p,||Z — Z*||s < \/7}. Let A > 0.
For any p and » > 0. We have

sup |<E—XA)N,Z—Z*>|§ sup |<E—2N,Z>|
ZeC,,, Ze(pBsLopeNy/TB2)
=T sup (-2, 2Z)|
Ze(L=BsLoprnBz)
=7 - gN”% (6.101)

where |||,/ /7 is the SLOPE /{5 interpolation norm defined in (/.). Assumption . is granted
for t = 2log(ed?/k?). Let us now check that k < d/(e?log(d)): we have that k?log(ek?) < ed?,
hence,

2log([log(k*)]) < 2log(log(k?) + 1) = 2log(log(ek?)) < 2log (ifj) :
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that is, ¢ > max (2log([log(k?)]), 2log(ed?/k?)). We are then in position to apply Theorem
with v = 2 and ¢ = 2log(ed?/k?): there exists a universal constant ¢y > 0 such that, provided
that N > log (ed?) + t, one has with probability at least 1 — 2 exp(—t/2):

2
& Cow . P

Plugging this last result into ( ), we get that:

2
- N cow® . P
su Y=3XN,Z -7 < r min | —,d 6.102
ZECIr),p|< N > vIN (\/; ) ( )

with probability at least 1 —2exp(—t/2). Next, let us define b := 3cow? and for p > 0, consider

*(p) == %min d—z
r*(p) == Wi (bA\/N,p>.

One can check that for this choice of 7*, one has (\/7*(p)cow?/v/N) min (p/«/r*(p),d) <
r*(p)/3A whatever the value of p is. From ( ) we then deduce that rigry o (4, P, 2e71/2) <
r*(p). Let us now consider
= IOFk \F min (10T; d) ,
where I'f :=3 Z§:1 bee(t). Tt is straighforward to verify that
LN 1/2
p" = 1005 (p") /2 2 10T (A, 07, 2¢772)
which, according to Lemma </, guarantees that p* satisfies the A-sparsity equation from Def-

inition ©. Finally, plugging the expression of p* into the one of r*(p*), we get that r*(p*) =
(b*A?/N)min (d, 101";)2. The previous results hold provided that N > log (ed?) + ¢, which
is granted by the assumption that N > 3log(ed?). This concludes the proof, noting that
2exp(—t/2) = 2k?/(ed?).

5.9 PROOF OF THEOREM

From Lemmas % and 39, we get that Assumption 5.3 holds with G : Z — || Z||3 and A = 2/6.
From Lemma 15, we get the existence of a constant b > 0 such that, provided that N >
3log(ed?), defining p* := 10T'%(bA/v/N) min (10T';;d) and r* = (b*A?/N) min (d, 1OFZ)2, with
[y = Tk(2log(ed®/k?)), one has rippy (4, p*,2k%/ed?) < r* and p* satsifies the A-sparsity
equation from Definition &. Let us now upper bound I'}:

IN

3 Ulog( >+3k 2log
=1

/\
o

) (6.103)
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Concerning the first term in this last inequality, we have:

2
k k
ed? ed? ed? ed?
E log (ﬁ) =2 E log (52> \/10g (7712) + E log <£2>
(=1 {=1

m<t

<2Zlog< >+Zlog<€2>

m<¥

il ed?
<3k log = | (6.104)

Moreover, we have:

Zlog<£;> <Z/u L 11og< )du

k ed? 2 k
= log | — | = klog(ed®) — 2 [ulog(u) — u}o
u=0 u

ed? ed?
=klog el + 2k < 3klog 2 | (6.105)

Combining ( ), ( ) and ( ), we finally get that Ty < (9 + 3v/2)k,/log (%2) <

14k, /log (ed?/k?). As a consequence, we have

ed? d
10T}, < 140k /log < 2 > < 140k+/2log (d) < 14()k\/7k <d,

since we assumed that k& < min (d/(e2 log(d)), (e/(140\/§))2d). We conclude that min (10}, d) =

10I';, < 140k4/log (ed2/k2). Plugging this result into the expression of r* and p*, we finally
get that:

k2 ed? k2 ed?
* 2712 42 * 2

so that 7*/p* = bA/v/N. As a consequence, (3.7) is satisfied as soon as:

106 e 2b
21V N 3V N

which is ( ). We are then in position to apply Theorem 9, which allows us to conclude that,
with probability at least 1 — 2k?/ed?:
||ZA§ERM - Z*HSLOPE S p* 5 G(ZAE'ERM - Z*) S ’I"* and PEZRERI\/I S Ail’l’*.
A

This concludes the proof.

6.2.5.10 PROOF OoF COROLLARY

The proof follows exactly the same lines as the one of Corollary 13, so we do not detail it here.

6.2.5.11 PROOF OF LEMMA

Consider A =2/6 and v > 0. In the rest of the proof we write r*(p) for rj\iom.q(A,7,p). For
any J C [d]?, let P; be the coordinate projection on J. Consider p > 0. Let I := supp(Z*) be
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the set of non-zero coefficients of Z*. From Lemma 3=, we have that |I| < k?. Moreover, we
know that for any Z # 0, 9||.|[1(Z) = {(I) €8x :(®,7Z) = ||Z||1}, where S, is the unit-sphere
for ||.||oo- Since Z* € Z* + 45 By, we have that 9|.||1(Z2*) C T'z-(p) = U I|.11(Z). Let

ZeZ*+45B1
then ®* € 9||.||1(Z*). Consider
ZeHya={2eC:|Z2-2"h=pand|Z 2| <v2/0r" (o)}

Since Z* and P§(Z) have disjoint supports, we can choose ®* so that it is also norming for
Pf(Z). Then, we have:
(81,2 2°) = (8%, (7 7)) + (0", P}(Z — )
> —[|®* o1 P1(Z — Z7)|I1 + (@", P{(Z))
=12 =271 = 1P(Z = Z7)|1) + |1PF(Z = Z7)]x
=2(P{(Z=2Z")h = 11Z = Z"|h
=1z -2y = 2P(Z = Z7)|lx
=p=2|P(Z - Z")|h (6.106)

where we used the fact that ||®*|| = 1. Then, since Z € H, 4, we have:

2
1Pr(Z = Z7)|y < K[P1(Z = Z7)|2 < kl|Z = Z7[|2 < k\/;r*(/)) (6.107)

Combining ( ) and ( ), we finally get that:

(0, Z—-Z*)>p— Qk\/gr*(p). (6.108)

As a consequence, sup¢epz*(p)<<1),Z —Z*) > (®*,Z — Z*) > p — 2k+/2/60r*(p). This being
true whatever Z € H, 4, it follows that A(p) > p—2k+/2/0r*(p). We conclude that any p such
that p > 10k+/2/607*(p) satisfies A(p) > (4/5)p.

6.2.5.12 PROOF OF LEMMA

Consider v > 0. From Lemma 39, we get that Assumption holds with G : Z € R¥x4 —
(0/2)]|Z]|3 and A = 1, for any v > 0, in particular for the value of v we have just set. Moreover,
Assumption is granted for t = 1 and w > 0. Let then ¢y > 0 be the constant provided by
Theorem 25, and consider B := 3cow? and D := 1600w?. Let us define the following function:

1/4
IBp (6 2B(ed)? [6 K
: —_— 1 — 7 4= Dy —
r:(y,p) = max S\~ 0g< 07 ~ ; Vo

We also consider

) K[ ed [2K

as well as 7*(y) = r(v,p*). One can check that p* such defined satisfies both of the two
conditions below:

1/4
2Bp [ 6 2B(ed)? [6
1) p>10k | =L Z10g | 2y /=
(1) p=10k ™ Nog< 20, VN

2K
>1 _— Nl
and (2) p>10kD NG (6.109)
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so that p* > 10k./2/0r*. Let us define k* = /0/2p*/r*. We have log(ed/k*) + 1 <
log(ed/10k) + 1, so that Assumption still holds with w, ¢ = 1 and k*. Then, since we
assumed that N > 2log(ed/k) + 1 > 2log(ed/k*) + 1, Theorem 25 applies and allows us to
affirm that

N
1 YT S ¥ 2\/6(k*)210g(ed/lz*)
— X — X < .

E ||+ §._1 XXT —EXXT| | < cow ® : (6.110)

k*

where || - ||g+ is the ¢1 /{5 interpolation norm defined in (1.2) for k = k*.

For r and p > 0, define C, , := {Z eC:||1Z-Z*|1=pand ||Z —Z*|]2 < 2/91"*(;))}. Let us
now upper bound Eg(r*, p*) and Vi g(r*, p*) from Definition

Bounding the complexity term E(r*,p*). Let o1,...,0n be i.i.d. rademacher variables
independent from the X;’s. We have C,- ,« C 1/2/0r* (k*B1 N Bs). As a consequence:

N 5 L N
s%p,p ; \/; * sup N;Uz‘ﬁz(){z)

Ze(k*B1NB2)N(C—Z*)

2
= sup XX, 7 ). (6.111)
\/; Ze(k*B1NB2)N(C—Z*) < Z >

Now, it follows from the desymmetrization inequality (see Theorem 2.1 in KOLTCHINSKII
(2011c)) that:

E sup < ZUZXXT >

Z€e(k* BiNBy)N(C—2Z*)

N
1 ~ o~ -~
< 2E sup =Y XX - E[X;X]),Z
zZe(k*BinB)n(c—-2+) | \ IV =
+i sup <IE [)?)?T} Z>‘
\/NZE(k*BlﬁBg)ﬂ(sz*) ’
1 & 2
or || LS %X o pmsn| |+ 2 sup <IE [%X7] 7z>
NZ | ] . VN Ze(k* BinBa)n(C—2*)
6(k*)21 d/k* 2 ~~
< 2cow2\/ (k*)? log(ed/k") | 2 sup <IE [XXT} ,Z> , (6.112)
N V'N Ze(k* BinBa)n(C—2+)
where we used ( ) in the last inequality.

Concerning the second term in ( ), we have for any Z € (k*B1 N Ba) N (C — Z*):

o~ i (i4)
(E[XXT,2]) = (08"(8")T +14,2) 2 0(6" (). 2) < 018"311 )12 < 0

where we used the fact that (Id,Z) = Tr(Z) = 0 in (i) and Cauchy-Schwarz in (ii). as a

consequence:

sup
ZG(k*BlﬂBg)ﬂ(sz*)

(B [XXT] ,z>’ <. (6.113)
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Combining ( ), ( ) and ( ), we finally get that:

N
Ea(r*,p*) = Csup Z
2 6(k*)%2log(ed/k*) 20
< ok 2\/ e
< \/;r <200w N + \/N
6(k*)? log(ed/k*)
< V20r* 2\/ 114
< V20r <3cow 2N , (6.114)
where we used the assumption that 6 < k < k*.
Bounding the variance term Vi ¢(r*, p*). Let us now upper bound the variance term
Vi.a(r®, p) \/ sup 1/ Var( LZ
N zec, -

For X distributed as the )z,»’s and Z € Cy« ,+, one has:
Var(£z(X)) = E[((£2(X) - P(L(X)?] = E(XXT —~E[XXT],Z - Z*)7]

d
Z [ (X X@ _E[X® X@))(XE X0 E[)z(s))z(t)})} (Z — Z)po(Z — Z%)s
p,q,

d
= Z Tyqy5,6(Z = Z%)pg(Z — Z7) st

P,q,s,t=1

where we defined T, s = E [()?(p))?(q) —EX®X@)(XEOX®O —E[XEXO))| for all 1 <

D, q,s,t < d. Remembering that Assumption is granted, we have:

H(;)?(p)f N E[(X;(p))zl”%z < (2w?)? ifp=qgq=s=t
Tpgo = IXOXO —BXOXW), < Q)2 i (g) = (5:0).0 # g
0 otherwise.

Then:

VarEZ (Z - Z*pp+z4w (Z - Z*)

PF£q

NZ =25 = 4 Z = Z7|5 < (8w /0)(r").

i

This being true for any Z € C,- ,~ and any X distributed as the X;’s, we conclude that:

2K
Vica(r, p) < 20\ | o (6.115)

Combining ( ) and ( ), we finally get that:

Eq(r*, p* B | 6(p*)? 2 edr* K
max (C:O:y’p),400ﬁVK’g(r*,p*)) < max ’Y\l (f\]) log (\/;ep: ),D mr*
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Now, one can check that r* satisfies both of the two conditions below:

B | 6(p*)? 2 edr* 2 K 12
(3) b~ ¥ 1og<\/;p*>§(r) and (4) D ~o <(r)

Then, we have:

E. * ok
i (G(’;”’)Aoo\/ivK,G(r*,p*)) < ()2

which, according to Definition 22, allows us to conclude that riy\ion g (7, p*) < 7*. Moreover,

we have from ( ) that p* > \/2/010kr* > /2/010kr§\i0om q (7, p*), that is, p* satisfies the
sparsity equation from Definition 2. This concludes the proof.

6.2.5.13 PROOF OF THEOREM

The assumptions of Lemma 9 are met, which gives us the existence of two positive constants
B and D such that, defining

400+/3Bk? 1 ed 2K
* = \/ log [ — |;10Dk/ —
P max 5 Noz Og<k), 0Dk Noz

and

1/4

6 2B(ed)? |6 K
* = —1 i St A s Dy —
r(7,p) = max | Vo | og( 0, \w D\ |
one has TﬁMOM’G(’y,p*) < r*(v, p*) and p* satisfies the sparsity equation from Definition
From Lemma 0, we get that Assumption .= holds with G : Z € R™4 — (9/2)/Z||3 and A = 1
for any v > 0, as a result of which the validity conditions of Theorem 2/ are met. Then, fixing
~v = 1/32000 and defining A = (11r* (v, 2p*))/(40p*), it is true that with probability at least
1 —2exp(—72K/625),
RMOM * * 93 * *\) 2
IZENOM = 211 < 207, PLggom < 356 (7 (7,207))
2
and || ZRMOM _ 7|, < \/;r*(’y,Zp*). (6.116)

Now, we can write:

k d
p" < Dy max | Iy [log (‘;)ﬂ? (6.117)

with D; := rnax(400\/§B’y_17 IOﬂD). On the other hand, since d > k, we get that:

* > Dok oe (€2 > p,*_
p = 2 NH g k = 2\/@7

where Dy := 400v/3B~y~!. As a consequence, we have:

o (3 o (PR ) e (55 (7)) <2 (),
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so that:

1/4
ey < 222 (i ()i
1/4 1/4
< max 1/273 (Nlo egl)) Ng2)A ) max(ﬁlog(e:) ;K1/4>;D ]\%
1/4 2
o 22012 Vi () )

7\/tmax k log<e:> VK |, (6.118)

2\5

where C' := max (121/4\/2BD17—1; D). Combining ( ), ( ) and ( ), we finally get
that, with probability at least 1 — 2exp(—72K/625):

N k d
||Z§?§OM*Z*II1§2D1\/WIH&X k log(iﬁ);\/g :

RMOM - V2C ed\
| ZEMOM — Z*||, < T e ky/log <k)¢E
);K) .

=&

93C?
and P[,Z?KOM < 100Nd max <k2 log (

T his concludes the proof.

6.2.5.14 PROOF OF COROLLARY

From Theorem 70, we get the existence of a universal constant Cy > 0 such that with probability
at least 1 —exp(—72K/625), HZAE},\;{OM —Z*||2 < Co(N6O?)~1/2 max (k log (ed/k); \/E) . Now,

we can use Davis-Kahan sin-theta theorem (see Corollary 1 in YU et al. (2014)) to get the
existence of a universal constant ¢y > 0 such that sin(0(3, 8*)) = (1/v2)||88T — B*(6%) T ||2 <
(co/g)HZAI}}l)\f\OM — Z*||o where g := A1 — Ao (\; being the i*} largest eigen value of Z*) is the
spectral gap of Z*. Here, we know that Z* = 3*(5*)7 is rank one, with 1 as order one eigen
value and 0 as order d — 1 eigen value. Then we get g = 1, which leads us to the desired result,
with D = \/§CO X 02.
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Appendix

7.1 DISTANCE METRIC LEARNING: CONVEXITY OF THE CONSTRAINT SET

Here we show that the constraint set C of the ERM estimator of the distance metric learning
problem presented in Section 2 is convex. We recall the definition of this set:

1/2

N
C=ZeR™ . 220 ((vi-Y;) (vi-Y) ,2)"" >1

ij=1

where (Y;)}Y, are N given points in RY. Fot the sake of simplicity, we define, for (i, ) € [d]?,
Vij = (Yz - Yj) € R, Let Z; and Z5 be two elements of C, and consider ¢ € [0,1]. Let us show
that Z' = tZ1 + (1 — t) Zs still belongs to C. We have:

2
N
SNavilz) ) = N iz Y (Vi 2) v 2
i,j=1 (4,7)€E[N]? (4,7)#(p,q)
> N (V.2
(4,5)€[N]?
=t > VgV, Zo+(0-0 > (ViyVij.Z
(4,5)€[N]? (4,5)€[N]?
2 2
Z V” w’ +1_t Z ZJ U’
(4,5)€[N]? (4,5)€[N]?
2 2
>t S vl ) va-n | Y (v 2
(4,5)€[N]? (4,5)€[N]?

>t+(1—t)=1

since each Z(i,j)e[N]2<v VJ, , £ € {1,2}, is larger or equal to one, as Zy € C. Then,

Z' € C. We conclude that C is convex.

7.2 A PROPERTY OF LOCAL COMPLEXITY FIXED POINTS

Let H be a Hilbert space and C C H. We consider a linear loss function defined for all Z € C
by ly;: X € H— 7<X, Z> and its associated oracle over C: Z* € argmin, . P{z. The excess
loss function of Z € C is defined as Lz = £z — £z+. Let || - || be a norm defined (at least) over
the span of C. Let G : H — R be a function. For all p > 0 and r > 0, we consider the localized
model C,, ={Z €C:||Z—-Z"|| < p,G(Z — Z*) < r} with respect to a G localization and the
associated Rademacher complexity

E(r.p)=E| sup |+ Zmﬁz

zZeC,.,

118
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and variance term

V(r,p) = Zselép Var(Lz).
oo

Let 6 and 7 be two positive constants. We consider a local complexity fixed point: for all p > 0,
r*(p) = inf (7“ > 0:max (0E(r, p), 7V (r,p)) < 7“2) .

Proposition 7.1. We assume that C is star-shaped in Z*. We assume that G is such that for
alla>1and all Z € C,G(a(Z — Z*)) > aG(Z — Z*). Then, for all p > 0 and b > 1, we have
*(p) < r*(bp) < Vbr*(p).

Proof. Let p > 0and b > 1. For all r > 0, C,» C Cp, and so r*(p) < r*(bp). Let us now prove
the second inequality.

We start with some homogeneity property of the complexity and variance terms:
E(Vbr,bp) < bE(r, p) and V (Vbr, bp) < bV (r, p). (7.1)

We prove (7.1) for the complexity term, the proof for the variance term is identical. Let
Z € Cbp,\/Er and define Zy such that Z = Z* + b(Zy — Z*). Since b > 1 and C is star-
shaped in Z*, Zy € C. Moreover, b||Zy — Z*|| = ||Z — Z*|| < bp and, by the property of G,
bG(Zo — Z*) < G(Z — Z*) < br®>. We conclude that Z, € C, . Moreover, by linearity of the
loss function, we have Lz = bLz,. We deduce that

(7.2)

N
1
Sb sup ‘75 Jiﬁz Xz

Zoecpﬂ‘ N P 0( )

N
1
sup ‘7 ZUiEZ(Xi)
Zerpy\/gT N i—1

and so (7.1) holds for the complexity term. It also holds for the variance using similar tools.
Next, it follows from (7.1) that

r*(bp) = inf (r > 0: max (0E(r, bp), 7V (r,bp)) < r2) =inf | » > 0 : max <0E <\/5\;B, bp) ,TV (\/1;

<inf | 7> 0: max <9E <\;B,p> TV <\;Bp>> < (%)2 < Vbr*(p).

7.3 A PROPERTY OF THE SPARSITY EQUATION
We consider the same setup as in Section and define for all p > 0,

H,={zeC:|7-2|=pGZ-2) <"} T)= U 2l 12)
2:|Z—2+|<p/20

and A(p) = infzep, supq,epz*(p)@), Z — Z*>. In the previous section we said that p satisfies
the sparsity equation when A(p) > cop where 0 < ¢y < 1 is some absolute constant. In the
following result we show that if p satisfies the sparsity equation then any number larger than p
also satisfies this equation.

Proposition 7.2. We assume that C is star-shaped in Z*. We assume that G is such that for
alla>1landall Z € C,G(a(Z — Z*)) > aG(Z — Z*). Let 0 < ¢ < 1. Then, for all p > 0 and
b > 1, if p is such that A(p) > cop then A(bp) > cobp.

Sl=
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Proof. Let p > 0 be such that A(p) > cop and let b > 1. Let Z € Hy,. Let us show that there
exists ® € I'z+(bp) such that (®,Z — Z*) > cobp.

Let Zy be such that Z = Z* + b(Zy — Z*). Since b > 1 and C is star-shaped in Z*, Z; € C.
Moreover, b||Zy — Z*|| = ||Z — Z*|| = bp and, using the property of G and Proposition 7.1,
bVG(Zo — Z*) < G(Z — Z*) < (r*(bp))? < b(r*(p))?. Therefore, we have Zy € H,. But,
since we assumed that A(p) > cgp, there exists & € I'z«(p) such that <<I>, Zy — Z*> > cop
and so (®,Z — Z*) > cobp. We conclude the proof by noting that I'z-(p) C I'z«(bp) and so
[ONSH (bp) | |

7.4 ADDITIONAL PROOFS FOR SIGNED CLUSTERING

PROOF OF PROPOSITION : CONTROL OF Si(Z) ADAPTED FROM FEI AND CHEN (2019B)

The noise matrix W is symmetric and has been decomposed as W = ¥ + ¥ " where ¥ has been
defined in (7.12). For all Z € C N (Z* 4+ rBY*?), we have

$1(2) = (P(Z - 2°), W) = (P(W), Z - Z*)

=(UU'W,Z -2+ (WUU",Z—-Z*) —(UU'WUU",Z — Z*)
=2(UU'W,Z-2*)—(UU'WUU",Z - Z*)

2000, 2 -2+ 20UV, Z - Z*) - (UUT (W + ¥\ UU ", Z - Z¥)

20U, Z - Z*)+ 20UV, Z - 2"y - 2(UUTWUU ", Z — Z*)

20U, 2 -2+ 2UUVT,Z - Z*) —2(UU T, (Z - Z*)UU ). (7.3)

An upper bound on S1(Z) follows from an upper bound on the three terms in the right side of
(7.3). Let us show how to bound the first term. Similar arguments can be used to control the
other two terms.

Consider V := UUTW. Let us find a high-probability upper bound on the term (UU ¥, Z —
Z*)y =(V,Z — Z*) uniformly over Z € CN (Z* +rB{*%). For all k € [K], i € Cj, and j € [d],

we have
d
= (UUT)u¥y; = Z qftj = Z U, = Z U,
t=1 teCy tEC tECk

Therefore, given j € [n] the V;;’s are all equal for ¢ € C;. We can therefore fix some arbitrary
index i) € Ci, and have V;; = V;, ; for all ¢ € C;,. Moreover, (V;,; : k € [K],j € [d]) is a family
of independent random variables. We now have

(S EFSED D ID WAL SIED DI SN BE

ke[K]i€Ck j€[n] ke[K] je[n] 1€C,
=D D WVasww
ke[K] j€n]
which is a weighted sum of dK independent centered random variables X} ; := [V, ; with

weights wy ; = (1/1k) > 2ice, (Z — Z7)i5 for k € [K],j € [d]. We now idenfity some properties
on the weights wy;.

The weights are such that

> Yl < A5 S Sz -2 =17 - 2

ke[K] jeld] ke[K] je[d] i€Ck

clK cHK
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which is equivalent to say that the weights vector w = (wy; : k € [K],j € [d]) is in the ££9-ball
(17K /d)BE. Tt is also in the unit £X7-ball since for all k € [K] and j € [d],

Z— 7%, .
iyl < S IEZ 2l 7 g <1

1€Ck lk
We therefore have w € BE4 N (¢;r K /d)BE? and so
Sup <V’ Z - Z*> < sup Z Xk, jWhj- (7.4)
zeen(Z*+rB{*?) weBEIN(errK/d)BI | o117 e[d)

It remains to find a high-probability upper bound on the latter term. We can use the following
lemma to that end.

Lemma 79. Consider Xy ; = > cc, Vij for (k,j) € [K] x [d]. For all 0 < R < Kd, if
[R] > 2eKdexp(—(9/32)dp/K) then with probability at least 1 — ([R]/(2¢Kd)) (R]

d 2eKd
sup Z Xp jwr,; < 4\/800R’ / ?p log < eR )
wEBLINRBE (1 jye[K]x[d] IE]

Proof of Lemma . Consider N = Kd and assume that 1 < R < N. We denote by
X > X5 >, > X§ (resp. wf > -+ > w}) the non-decreasing rearrangement of | Xy ;|
(resp. |wy ;|) for (k,j) € [K] x [d]. We have

sup Z Xk, jwg,j < sup ZX*
weBYNRBY (k.5)e[K]x[d] weBYNRBY ;4
[R] [R] [R]
< sup ZXw + sup Z X w}! <ZX —|—RX(RH1§22X*
weBL =1 WERBY ;R 4+1 i=1 i=1

Moreover, for all 7 > 0, using a union bound, we have

[R]
ZX;‘>T =P (37 C[K]xd:|I|=[R] and Z | Xp il >
3 (k)el
=P Z ukv]Xk] >T
ICTRIX AR 111 = R] e =1+ ““J)d(m)ef
< > Y. Pl D Xejuks >
ICIRIX(dET|=R] ue{£1} 1R \(ki)erl
SR SR VL] P sUR RS
CIKIx[d\T|=[R] ue {£1}171  \(k.j)el teCy

Let us now control each term of the latter sum thanks to Bernstein inequality. The random
variables (U ; : t,j € [d]) are independent with variances at most p = § max(1—46(2p—1)2,1—
§(2g—1)?) since Var(¥;;) = 0 when i > j and Var(¥;;) = Var(A;; —E[A;;]) = Var(A;;) < p for
J > i. Moreover, |¥;;| = 0 when j < i and |V;;| = |W;| = |Ai; — EA;;| < 2 for j > i because
A;; € {—1,0,1}. It follows from Bernstein’s inequality that for all I C [K] x [d] satisfying
|I| = [R] and u € {£1}[7] that

72 72
P v < STR A2
Z Z tjUk,j > T exp ( |—R-|lk,0+47'/3> €xXp (2[R-|Codp/K+4T/3>

(k,j)el teCy

< exp <4[R1_codp/K>
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when 7 < (3/2)[R]codp/K. Therefore, sup,epynrpy >- Xk, jwk,; < 27 with probability at
least

N\.rr 72 _r?
= (i 2 e (mwcodp/f() - (fsmwcodp/f()

when
B3/ Rleodp/K = 7> Ve R]) | % o (2[27>

which is a non vacuous condition since [R] > 2eN exp(—(9/32)dp/K). The result follows, in

the case 1 < R < N, by taking 7 = /8¢ [ R] \/(dp/K) log (2¢N/[R]) and using that 2R > [R]
when R > 1.

For 0 < R <1, we have

sup Z Xk jwg; =R max |Xy;
weBKINRBEY o ~E (k,5)€[K]x[d]

and using Bernstein inequality as above we get that with probability at least 1—exp(—K72/(8codp)),
max i, j)e (k][4 | Xk,;| < 7 when 3codp/(2K) > 7 > \/8codplog(dK)/K which is a non vacuous
condition When 9codp > dK log(dK). By taking 7 = /8codplog(dK)/K, we obtain, that for

all 0 < R <1, if 9¢pdp > 4K log(dK) then with probability at least 1 — 1/(dK),

8codplog(dK)

sup Z X jwr; <R e

wEBLINRBE (1 jye[K]x[d]

We apply Lemma 79 for R = ¢y K/d to control (7.1):

CITKW

R
Kp 2eKd f%}
P 3 V. Z —-Z%) < —1 >1-
ST oo ey R =

zeen(Z*+rBixd)

when [c1rK/d]| > 2eKdexp(—(9/32)dp/K).

Using the same methodology, we can prove exactly the same result for the quantity

sup (vu'w', z - z%).
zeen(z*+rBixdy

We can also use the same method to upper bound SUP con(z=+rBE*9) <UUT\IIT7 (Z—Z*)UUT>,
we simply have to check that the weights vector w' = (wy; : k € [K],j € [d]) where wy;
(/1) Y sice, [(Z—Z*)UUT);; is also in BE4N(cirK/d)Bf4 for any Z € C such that ||Z—Z* |1
7. This is indeed the case, since we have for all i € [d], ¥’ € [K] and j € C, [(Z—Z*)UU ],

ZZ=1(Z — Z%)ip(UUT),; = Zpeck/ (Z — Z*);p/liy which is therefore constant for all elements
in j € Cys. Therefore, we have

DD NTHED DD D DD NCEESE

ke[K] jeld] ke[K k'€[K] JEC zeC;, pECys

DD ZZIZ 2yl <12 - 2 A < 28

d
ke[K] k' €[K] ]Eck/ 16Ck PEC,,

A
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and for all ' € [K] and j € Cy,

1€Cx peck/

Therefore, w’ € BE?N (c;rK/d) B¢ and we obtain exactly the same upper bound for the three
terms in (7.3). This concludes the proof of Proposition

PROOF OF PROPOSITION (.1: CONTROL OF THE S3(Z) TERM FROM FEI AND CHEN (2019B)

In this section, we prove Proposition .1. We follow the proof from FEI and CHEN (2019b) but
we only consider the “dense case” which is when ddv > logd — we recall that v = max(2p —
1,1 — 2q). For a similar uniform control of So(Z) in the “sparse case 7, when ¢y < dov < logd
for some absolute constant ¢g, we refer the reader to FEI and CHEN (2019b).

For all Z € C, we have Sy(Z) = (PH(Z — Z*),W) = (P*+(Z),W) because, by construction
of the projection operator, P(Z*) = 0. Therefore, S3(Z) < ||P(Z)|+||W|op where | - ||.
denotes the nuclear norm (i.e. the sum of singular values) and || - [op denotes the operator
norm (i.e. maximum of the singular value). In the following Lemma &0, we prove an upper
bound for ||P+(Z)]]. and then, we will obtain a high-probability upper bound onto |[W||op.

Lemma 80. For all Z e CN(Z* + rBfXd), we have

k K
IPH2)]. = Tx(PH(2)) < ZF|1Z - 27 < 2

Proof. Since Z = 0 so it is for (I — UU ") Z(Iy — UU ") and so PH(Z) = (I — UU ") Z (14 —
UUT) = 0 therefore |P1(2)]||« = Tr(P1(Z)). Next, we bound the trace of P1(2).

Since I;—UU T is a projection operator, it is symmetric and (]Id—UUT)2 =1;—UUT, moreover,
Tr(Z) =d=Tr(Z*) when Z € C so

Te(PH(Z)) = Te(PH(Z — Z%) = Te((la —UU ") (Z — Z*)(1q —UU "))

Tr((Iy — UUT(Z — Z*)) = Te((Iy — UUTY(Z — Z*))

= Tr(2) — Te(Z°) + Ti(UUT (2" = 2)) = Y _(UU")i(Z" = Z);5

,J

ZZ 2,9 Y LY -2

€[K] ,JGC;v kE[K] 1,7€C
K CIK *
ST o Y Nz -2)1 < =12 - Z*|h
ke[K]i,j€Ck

where we used in (7) that for 7 and j in a same community, we have Z;; = 1 and Z;; € [0,1],
thus (Z* — Z)i; = |(Z* — Z);;]. Finally, when Z is in the localized set C N (Z* + rB{*%), we
have ||Z — Z*||; < r which concludes the proof. O

Now, we obtain a high-probability upper bound on ||[W|op. In the following, we apply this
result in the “dense case” (i.e. ndév > logd) to get the uniform bound onto S2(Z) over Z €
CN(Z*+rB{Y).

Lemma 81 (Lemma 4 in FEI and CHEN (2019b)). With probability at least 1 — exp(—dvd),
[Wllop < 16v/6vd + 168+/log(d).

Proof. Let A’ be an independent copy of A and R € R%*? be a random symmetric matrix
independent from both A and A’ whose sub-diagonal entries are independent Rademacher
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random variables. Using a symmetrization argument (see Chapter 2 in KOLTCHINSKII (2011D)
or Chapter 2.3 in van der VAART and WELLNER (1996)), we obtain for W = A — EA,
NG L (i) ) (ii)
E[Wlop = E[[A —EA"[lop < E[lA—A'llop = E[(A—A")oRlop < 2E[Aoc Rlop
where o is the entry-wise matrix multiplication operation, (i) comes from Jensen’s inequality,
(i) occurs since A — A’ and (A — A’) o R are identically distributed and (%ii) is the triangle
inequality. Next, we obtain an upper bound onto E[|A o R|lop.

We define the family of independent random variables (§;; : 1 < ¢ < j < d) where for all
1<i<j<d

\/UElAi-.\ with probability %
Cj=19 — \/HE{T‘ with probability “4i (7.5)
ij
0 with probability 1 — EA,;.

We also put b;; := /[EA;;| for all 1 < ¢ < j < d. It is straightforward to see that (§;;b;; :
1<i<j<d)and (A;jjR;; : 1 <i < j <d) have the same distribution. As a consequence,
Ao R|op and || X|lop have the same distribution where X € R%*? is a symmetric matrix with
Xij = &ijbyj for 1 < i < j < d. An upper bound on E||X|[op follow from the next result due to
A. S. BANDEIRA and VAN HANDEL (2016).

Theorem 82 (Corollary 3.6 in A. S. BANDEIRA and VAN HANDEL (2016)). Let&;;,1 <i<j <
d be independent symmetric random variables with unit variance and (b;j,1 <i < j <d) be a
family of real numbers. Let X € R be the random symmetric matriz defined by Xij = &ijbij

foralll <i<j<d. Consider o := maxi<i<q { ijl bfj}. Then, for any o > 3,

2
B[ Xlop < e~ |20+ 14a1;?%?%61{Hfijbin?[alog(dﬂ} 10g(d)}
where, for any g > 0, || - ||, denotes the L,-norm.
Since (&5 : 1 <4 < j < d) are independent symmetric such that Var(&;;) = E[§7;] = 1 we can
apply Lemma 2 to upper bound E|X|op = E||A o R[lop. We have ||£;;bijl2a10g(a)y] < 1 for
any o > 3 and b?j = |]EAij\ < dv. It therefore follows from Lemma 22 for o« = 3 that

E|Wllop < 2€3 {2\/%+ 42\/10g(d)] < 8v/dov + 168+/log(d). (7.6)

The final step to prove Lemma “! is a concentration argument showing that ||[W||op is close
to its expectation with high-probability. To that end we rely on a general result for Lipschitz
and separately convex functions from BOUCHERON, LuGosi, and MASSART (2013b). We first
recall that a real-valued function f of N variables is said separately convex when for every
i=1,...,N it is a convex function of the i-th variable if the rest of the variables are fixed.

Theorem 83 (Theorem 6.10 in BOUCHERON et al. (2013b)). Let X be a convex compact set
m R with diameter B. Let X1,--- ,Xn be independent random variables taking values in X.
Let f: XN — R be a separately convex and 1-Lipschitz function, with respect to the £Y -norm
(i.e. |f(z)— f)| < |z —yla for all z,y € XN). Then Z = f(X1,...,Xn) satisfies, for all
t > 0, with probability at least 1 — exp(—t2/B?), Z < E[Z] +t.

We apply Theorem =5 to Z := ||[W|lop = f(Aij —EA;;,1 <i<j<d)= %HA—IEAHOP where

f is a 1-Lipschitz with respect to £-norm for N = d(d — 1)/2 and separately convex function
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and (A;; —EA;;,1 <i<j <d)is a family of N independent random variables. Moreover, for
each i > j, (A—EA);; € [-1—-0(2p —1),1 — §(2¢g — 1)], which is a convex compact set with
diameter B = 2(1 + §(p — q)) < 4. Therefore, it follows from Theorem 53 that for all ¢ > 0,
with probability at least 1 — exp(—t2/16), |[W|lop < E[|W|lop + v2t. In particular, we finish
the proof of Lemma =1 for t = 4v/6vd and using the bound from (7.0). O

It follows from Lemma = that when nvd > logd, [|[Wllop < 184vdév with probability at
least 1 — exp(—dvd). Using this later result together with Lemma 50 concludes the proof of
Proposition

7.5 PROOF OF THEOREM FOR ANGULAR SYNCHRONIZATION WITH ADDITIVE
NOISE

Here we consider the following model: we observe C' = Z* + ¢W, where Z* = x*(z*) T, 2* =
()4 and W € C?*? is a complex Wigner matrix (i.e. W = WT, its above-diagonal entries
are complex numbers whose real and imaginary parts are independent normally distributed
random variables with mean zero and variance 1/2, and its diagonal entries are zero).

Let us first show that Z* is the oracle in our approach. That is to show that

Z* € argmax(EC, Z) (7.7)
zeC

where C:={Z € H; : Z = 0,diag(Z) = 14}.

We recall that the offsets are 6;; = (6; — 0;)[27] for 4, j =1,...,d. Consider v1,...,7vq € [0,27]
and define z; = eV, i=1,...,d. We have for alli,j =1,....,d:

%)

Yi— V= 51‘]‘[277] = el il = () —> Z:].’Ej —x; < ECijmj —z; =0

It follows that

d
argmin {3 [ECja; — aif? § = {(ebwﬁf’o))gf:l L0y € [o,zfr)}. (7.8)
z€Ce:|z;|=1V1 =1
Let us now rewrite the latter optimization problem as a SDP problem.

Let z € C? be such that |x;| =1 for alli = 1,...,d. We have

d d
> [ECya; —ail® = ) (ECya; — 2:)(BCya; — )
i,j=1 i,j=1
d d
= Z ‘EC@‘IL’”Z + |CL’1| 2 (ECHZL’J + IEC”IJIZ'Z) = 2d2 — 2§R Z ]EC’ijxjfi
= | T X, ij=1

— 2% — 2R (ETEC:Z:) — 2d® — 7 ECu,

where we used in the last inequality that E[C] = Z* = 2*7% | so that T ECx = [z, z*)? €
R. Next, we see that 7' ECz = <]EC,X> where X = 2Z'", hence, minimizing z € C% —
szzl |E[Cijz; — 4]® over all z € C? such that |z;| = 1 boils down to maximizing X €
C¥*d 5 tr(E[C]X) € R over the set {X = 27" : 2 € C4 |a;| = 1Vi} = {X € Hy : X =
0,diag(X) = 14, rank(X) = 1} where Hy is the set of hermitian matrices of size d x d. Then,
it follows from (7.8) that

argmax (EC, X) ={2"}
X€EHy:X >0,diag(X)=14,rank(X)=1
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_ T
because for all 8y € [0,27), (e/#i+00))d_ (et(@i+00))d_ = Z*. The latter inequality is almost
the result that we want to prove in (7.7); it only remains to show that the rank one constraint
may be dropped. We use the same approach as the one we used to show ( ).

First, one can easily check that the following inclusion holds true
CcC:={ZecC™ |z, <1,Vijeld}

Second, the objective function Z — §R(<IEC, Z>) is linear (with respect to real coefficient),
hence, maximizing it over the convex set C’ yields a solution at an extreme point of C’, that
is in the set of matrices Z € C%*? such that |Z;;| = 1 for all (4,5). Let X = (e#i1); j<,, with
0 < f;; < 27 be an extreme point of C’. We have

d d d
§R<<]Ec, X>) —R ]ZZI EC;; X,; | =% ]ZZI otbis =B | JZZI cos(6;; — Bij) < d>

and the maximum is achieved when 3;; = 6;;[2n] for all (¢,7), that is when X = Z*. Since
Z* € C C C', then Z* is the unique maximizer of Z — <EC, Z> over C. Therefore (7.7) holds
and so Z* is also the oracle in this model.

7.5.1 CURVATURE OF THE OBJECTIVE FUNCTION

Consider Z € C. We can write Z = (xijeLﬁij)i,j:17_“7d7 with 0 < z;; <1 (we recall that C C C’
defined above) and 3;; € [0,27). On one side, we have

d
(BC, 2" - 7) =R((BC, 2" - 2)) =% | Y BCyi(Z" — Z);
Q=1
d d
- R Z et0ii (e—béij _ xije—bﬁij) - R Z (1 _ mijeb(éij_ﬂij))

ij=1 i.j=1
d
= > (1= wijcos(dyy — Byy))-
i,j=1
On the other side, we have

d d d
||Z* o Z”g _ Z |(Z* o Z)ij|2 _ Z |6L5ij _ xijebﬂij 2 _ Z ‘1 _ mijeb(—61j+6ij)|2

i,j=1 i,j=1 i,j=1
d d
= > (1 —ayjcos(Byy — 655))° + afy sin®(Byy — 6:5) = Y (1= 245 cos(Bij — 6ij) + ;)
i,j=1 t,j=1
d
S 2 (171'” COS(ﬂij 75”)) :2<EC,Z* 7Z>
7,7=1

where we used in the last but one inequality that 0 < z;; < 1.

We conclude that the excess risk satisfies the following curvature: for all Z € C,
1
(EC,Z* - Z) > §||X* — X3 (7.9)

That is Assumption 3.1 holds with G : M € C¥*4 — (1/2)||M||3.
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7.5.2 THREE UPPER BOUNDS ON THE FIXED POINT 7/ (A) IN THE ANGULAR GROUP
SYNCHRONIZATION MODEL WITH ADDITIVE NOISE

According to our methodology (associated with Theorem 5), we need to calculate the following
fixed point: let A € (0,1), and consider

ra(A)=inf<dr>0:P sup (C-EC,Z—-Z*)<r/2|>1-A
ZeC:G(Z*—Z)<r

= inf r>0:P<sup<oVV,Z—Z*>§r/2> >1-A
zZeC,

where C, = {z €C:|Z— 22 < \/ﬂ}

For pedagogical purposes, we show how to perform this computation via three different means,
yielding three different results. We obtain the following upper bounds

ré(exp(—d?/2)) < 320%d%, 1% (exp(—d/2)) < 36 KS0d®/? and 75 (5 exp(—d/2)) < 2(200)2d.

Each of the three bounds follows from a different strategy. The first one is based on the inclusion
C. C Z*+ @ngd7 the second one on C,. C C and is therefore the approach that we called
“global", and the last one follows from the strategy used in (FEI & CHEN, 2019b) that we
already used for the signed clustering problem.

7.5.2.1 FIRST UPPER BOUND ON THE FIXED POINT 7 USING C, C Z* + \/27'B§Xd

In this section, we use the following inclusion to obtain the result
C. C Z* +V2rBd*, (7.10)

where B$*¢ is the Euclidean ball in R4*¢. We have

sup <0VV,Z—Z*> <o sup <VV,Z>:J\/27“HW||2.
ZeC:||Z—Z* ||a<V2r Zev2rBdxd

Next, we use Borell’s concentration inequality for Gaussian processes (LEDOUX, 2001): for all
u > 0, with probability at least 1 — exp(—u?/2), we have that

[Wlls <E|W]2+ sup E(W, Z>2u <d+u.
ZeBgrd

As a consequence, for A = exp(—d?/2) and r = 320%d?, we have, with probability at least
1-A,

sup <O’VV,Z*Z*> < 2doV2r <r/2.
ZEC:||Z—Z*||2<V2r

Hence, one has 7% (A) < 320242

We apply Theorem  to get that with probability at least 1 — exp(—d?/2)

%HZ —Z*|3 < (EC, Z* - Z) < r§(exp(—d?/2)) < 3207%d>. (7.11)

Next, we know that the oracle Z* is the rank-one matrix 2*7* | which has n as its largest
eigenvalue and associated eigenspace {Az* : A € C}. In particular, Z* has a spectral gap g = d.
Let Z € C% be a top eigenvector of Z with norm ||Z|ly = v/d. It follows from Davis-Kahan
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Theorem (see, for example, Theorem 4.5.5 in VERSHYNIN (2018) or Theorem 4 in VU (2010))
that there exists an universal constant ¢y > 0 such that

. T T* Co . =
min  ||—= —z—=|l2 < —=||Z - Z7||2,
i1 ==l <22 - 2]
where g = d is the spectral gap of Z*. Using ( ), we conclude that, with probability at least
1 — exp(—d?/2), it holds true that

min ||z — zz*||2 < 8cooVd.
z€C:|z]=1

7.5.2.2 SECOND UPPER BOUND ON THE FIXED POINT 7: THE GLOBAL APPROACH

One may wonder what type of result we can get for the angular group synchronization problem
with additive noise using the global approach. It is the aim of this last section to answer this
question.

As for the community detection problem we will use Grothendieck inequality for the global
approach. As in ( ), the global approach is also using an inclusion of the localized set C,,
but unlike ( ), we just drop off the localization: we are simply using C,, C C. We have that

sup <0VV,Z—Z*> Sasup<VV,Z—Z*> SQKgaHWcht,
ZeC:||Z—2Z*|2<V2r zec

where we used Grothendieck’s inequality as in ( ) but in the complex case (Kg denoting
Grothendieck’s constant in the complex case). Here the cut norm in the complex case is defined
as

Whew = sup | > Wigsity|.

sty €C:fsi|=lt51=1" "
We therefore end up with the computation of the cut norm of the noise as in GUEDON and

VERSHYNIN (2016) for the community detection problem.

Here the noise being Gaussian, the cut norm ||W ||y is the supremum of a Gaussian process
for which we can use Borell’s concentration inequality (see LEDOUX (2001)) to get for all u > 0,
with probability at least 1 — exp(—u?/2),

2
[Wlewe < ENWllowe +u sup B S Wagsity| < [Wllewe + ud
si,t;€C:|s;]=[t;]=1 i,j

Next, we use Slepian’s lemma (see Chapter 3 from LEDOUX and TALAGRAND (1991)) to handle
the complexity term E||W||cy:. First, we need to upper bound the canonical metric associated
with the Gaussian process: for every s;, s}, t;,t; € C: [s;| = [t;| = [s{| = [t}| = 1 we have

2
]E‘ ZWZ‘J‘SZ‘T,J‘ — Z Wijsgt;. = Z ‘Sitj — S;t;|2
[2¥) 2%

,J

= Z |si(t; — 1) — (s} — si)t;-|2 <2d Z [t; —t;\z + Z |ls; — s%|?
.7 J i

2

)

= 2dE‘ > gilsi— i)+ > _mi(t; —t))
i J
where (g;);, (n;); are i.i.d. N(0,1). It follows from Slepian’s lemma that

E||W ||owt < V2dE sup ‘ S gilsi— )+ S mylty — 1) < 4v/2dd.

sit; €C:si|=(t;|=1" " J
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Together with Borell’s inequality above for u = v/d, we obtain that with probability at least
1 —exp(=n/2), [|W|leur < IN3/2.

As a consequence, for A’ = exp(—d/2), we have r§(A’) < 36Kgad3/2. It follows from Theo-
rem O that with probability at least 1 — exp(—n/2)

1, - -
517 - Z*3 < (EC, Z* - Z) < r§(exp(—d/2)) < 36 KGad>/>. (7.12)

and so
min ||z — zz*||2 < 00\/36K80d1/4.
z€C:|z|=1

We conclude that the global approach is better than the local approach using the inclusion in

7.5.2.3 THIRD UPPER BOUND ON THE FIXED POINT rf,: END OF THE PROOF OF
THEOREM

The final approach is based on a decomposition from FEI and CHEN (2019b) that we already
used for the signed clustering problem. Here, for the angular group synchronization problem,
the projection operator is simpler since Z* is the rank-one matrix 2*7% " and all the processes
are Gaussian processes.

In order to work with independent random variables, we consider the following matrix ¥ € C%*¢

Wi ifi <j
U, = * o 1
J { 0 otherwise, (7.13)

where 0 entries are considered as independent Gaussian variables with 0 Var_il_ance and therefore,
U has independent Gaussian entries, and satisfies the relation W = ¥ 4+ ¥ .

Like we did for the signed clustering problem, we decompose the inner product <VV7 Z—7Z *> into

two parts according to the SVD of Z*. We know that Z* is the rank-one matrix Z* = IFT,
then v := z*/v/d is a unit singular vector of Z* and we define the following projection operator

P:MeC™ 5 vo" M+ Muo" —vv Moo ',
and its associated orthogonal projection
PLiMeC™ 5 M —PM)=Iy—vo YMIqg—vo").

For any Z € C, := CN{Z* 4+ v2rB3*?}, we consider the following decomposition as in (FEI &
CHEN, 2019b)

(W, Z —2*)=(P(Z — Z*) W) + (PX(Z - Z*),W).

S1(2) S2(2)

Next, we upper bound with large probability each of the two last terms uniformly over all
Z € Cr. We start with the S1(Z) term: for any Z € C,, we have

Si1(2) = (W, P(Z = 27)) =(P(W),Z = Z7)
='W, Z-Z*)+(Wuov'",Z—-2*) — (v0 ' Wov',Z - Z*)
=2(v0' W, Z - Z*) — (v0 " Wov',Z — Z*)
=200, Z — Z°) 4+ 200", Z— 2°) — (vp (W4T Yo", Z — Z7)
=2(v0' U, Z—Z*)+2(v0' U, Z - Z*) - 2(v0 " Vv, Z — Z*)
=2(v0' U, Z - Z*) +2(v0' O, Z - Z*) = 2(v0 U, (Z — Z*)wv").
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Then, bounding separately each of those three terms will lead us to a bound for S;(Z). Let us
show how to bound the first term. Similar arguments can be used to control the other two terms.

We define V := v0' ¥, so that V;; = Do VitV = Zkgj v U Wi, We want to find a
high-probability upper bound on <V, Z -7 *> To that end we simply use the inclusion C, C
+V2rB3*4 to get

sup (V. Z —2*) < sup (V. Z) = V2r|[V ]2

ZeCy Zev2rBg*?
so that
1
2
sup (V,Z =2 <V2EVI2 < V2r [ D0 Juil?[v; PE[g;
€Cr ij k<j

1/2
1 .
— E j < V2rd.
n =
J
Moreover, we have

E[(V,Z - Z*)"] = E[(¥,v0"(Z - Z*))") = Z (o™ (Z = Z7))i;
, »J

—ZZvlka Z" ki 2ZZ|Z Z*) g%g%.

Now, we apply Borell’s inequality (see, for instance, Theorem 4.1 in LEDOUX (2001) or page 56-
57 in LEDOUX and TALAGRAND (1991)): for u = d, with probability at least 1 — exp(—u?/2),

sup (V,Z —Z*) <E [sup (V,Z2-2")
ZeC, ZeC,

1 sup \/]E [|<V,Z— Z*>|2]u

ZeCy

<\/T+\/>u_2\/f

Similar calculus yield to the same upper bounds for the two other terms. Therefore, we obtain,
with probability at least 1 — 3 exp(—d?/2), it holds true that

sup S1(Z) < 6vV2rd. (7.14)

ZeCy
Now, it remains to control the second S2(Z) term. For any Z € C,, we have
S2(2) = (W, PH(Z = Z7)) = (W, P(Z)) < [PV op-
Since Z = 0, we have (I; —vo')Z(I4 —vo") = 0, that is P(Z) = 0 and so
IPH(2)ll. = Te(PH(2) @ Te(PH(Z = 27)) = Te((la — 03" )(Z = Z7)(la — 00 "))
D 1y — 05T\ (Z — 27)) = Te(Z — Z¥) —Tr(m?T(Z—Z*))
(#47) *
= Tr(vo" sz% = 2)ij < I3IZ — 272

=|Z - Z*||]s < V2r.
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where (i) is due to the fact that PL(Z*) = 0 by construction, (ii) holds because (I; — vv ')
is Hermitian and (I — vo')? = (I —vo") and (4ii) holds since Tr(Z) = Tr(Z*) = 1 for any
Z €C,.

Moreover, it follows from DAVIDSON and SzZAREK (2001) that, for all v > 0, with probability
at least 1 — 2exp(—u?/2), [|[Wllop < 2V/d + u. We conclude that with probability at least
1 —2exp(—2d), we have

sup S2(Z) < 4v2dr. (7.15)
ZeCy

It follows from (7.11) and (7.15) that with probability at least 1 — 5exp(—d/2)

sup <VV,Z — Z*> < 10V 2rd.

ZeC,
Then, for A = 5exp(—d/2) and r = 2(200)%d we have, with probability at least 1 — A,
supgce, (oW, Z — Z*) < r/2. Hence, we conclude that rg;(A) < 2(200)2d.

Now, we apply Corollary 5 to get that, with probability at least 1 — 5exp(—d/2)

1 -
S1Z = 27| < 2(200)%.

Next, we know that the oracle Z* is the rank-one matrix 2*7* | which has d for largest eigenvalue
and associated eigenspace {\z* : A € C}. In particular, Z* has a spectral gap g = d. Let & € C¢
be a top eigenvector of Z with norm ||z = v/d.

It follows from Davis-Kahan Theorem (see, for example, Theorem 4.5.5 in VERSHYNIN (2018)
or Theorem 4 in VU (2010)) that there exists an universal constant ¢y > 0 such that

. z x* €O\ 5 N
min ||—=—-z—|2 < —||Z - Z7|2,
Lemin | 7 \/&H ; I |
where g = n is the spectral gap of Z*. Using the previous inequality, we conclude that, with
probability at least 1 — 5 exp(—d/2)

min ||z — zz"||2 < 40¢q0.
z€C:|z|=1

7.6 SOLVING SDPS IN PRACTICE

The practical implementation of our approach to the various problems we have studied here
resorts to solving a convex optimization problem. In the present section, we describe the various
algorithms we used for solving these SDPs.

7.6.1 PIERRA’S METHOD

For SDPs with constraints on the entries, we propose a simple modification of the method
initially proposed by PIERRA (1984). Let f: R4 5 R be a convex function. Let C denote
a convex set which can be written as the intersection of convex sets C = SN ---NSy. Let
us define H = R4 x ... x R4 (J times) and let D denote the (diagonal) subspace of H of
vectors of the form (Z,...,Z). In this new formalism, the problem can now be formulated as
a minimization problem over the intersection of two sets only, i.e.

J

. 1
min | < élf(Zj)iz:(Zj)f:1€(51X"'XSJ)QD
iz
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Define F(Z) = 5 ZJJ=1 f(Z;). The algorithm proposed by PIERRA (1984) consists of performing
the following iterations

1 1 : 1
Zrt = Proxy, s +ier (BP) and BP™! = Projy(Z°P*1).
Pierra’s method can be shown to converge in the setting of our finite dimensional experiments
using MARTINET (1972, Chapter V).
7.6.1.1 APPLICATION TO COMMUNITY DETECTION

Let us now present the computational details of Pierra’s method for the community detection
problem. We will estimate its membership matrix Z via the following SDP estimator

7 € argmax ;o (A, Z),

where C = {Z € R4, Z = 0,7 > 0,diag(Z) = 14,3 Z; < My and A = 0. Zy =

Zszl |Ck|? denotes the number of nonzero elements in the membership matrix Z. The mo-
tivation for this approach stems from the fact that the membership matrix Z is actually the
oracle, i.e., Z* = Z , where Z* € argmax,.c(E[A],Z). The function f to minimize in the
Pierra algorithm is defined as f(Z) = —(4, Z).

Let us denote by S, the set of symmetric positive semi-definite matrices in R?*?. The set C is
the intersection of the sets

Si =S, 52:{Z6Rd”|220}; ng{ZeRdXd|diag(Z)jI};

d
and Sy =< Z R Y Z; <A

ij=1
We now compute for all B = (Bj){; € (R™”)* and j =1,...,4 (J = 4 here)
PrOXISIX---XS4+%5F (B).7 = PrOXISj_;'_%Ef (BJ) .
We have for J =4

. € 1 €
PI"OXIS]A-%sf (Bj) = argminges, — 5 (A, Z) + 3 |1Z - Bj||3 = Ps, (Bj + 27 A>

On the other hand, the projections operators Ps;,j = 1,2, 3,4 are given by

Ps,(Z1) = Umax {%,0} U, where Z; has eigenvalue decomposition Z; = USU ',

Ps,(Z3) = max {Z5,0}, Ps,(Z3) = Z3 — diag(Z3) + min {17 diag(Z3)} ,
A
Ps,(Z24) = =—=— Z4.
! ZU (24)ij *

To sum up, Pierra’s method can be formulated as follows.

For all iterations k in N, compute the SVD of Bf + 554 = U*S*(U*)T. Then compute for all
j=1,....4

1 , € € . €
Bi ! = i (Uk max {zk, 0} (UM)T 4 max {Bg +5aA 0} +B5 + 714~ diag(B% + 714

. . € A €
+m1n{1,d1ag(B§+MA)}+E BT A, B{;+MA>.
ij \P4 T 2444y
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7.6.1.2 APPLICATION TO SIGNED CLUSTERING

Let us now turn to the signed clustering problem. We will estimate its membership matrix Z
via the following SDP estimator Z € argmax o (A, Z), where C = {Z € R¥*? : Z = 0, Z;; €
[0,1],Z; =1,i=1,...,d}. Asin the community detection case, the function f to minimize in
the Pierra algorithm is defined as f(Z) = —(4, Z).

Let us denote by S, the set of symmetric positive semi-definite matrices in R4*¢. The
set C is the intersection of the sets S1 = Sy, Sy = {Z € R4 | Z €[0,1]7?} and S5 =
{ZERdXd | Zii =1, Zzl,,d}

As before, for j=1,...,3

€
Proxlg].—&-%ef (BJ) = st <B] + ﬁ A>
and the projection operators Ps;, j = 1,2,3 are given by
Ps, (Z1) = Umax{X, 0} u', Ps,(Z2) = min {max{2270} , 1} and Ps,(Z3) = Z3 — diag(Z3) +1

To sum up, Pierra’s method can be formulated as follows.

At each iteration k, compute the SVD of B} + 554 = US¥(U*)T. Then compute for all
j=1,...,3

1 t €
k+1 _ Lk k k : k
B’ —3<U max{Zﬂ}U —&-mln{max{BQ-i-?'SA,O},l}
+B’§+EA—diag<B’§+€A> +I>.

7.6.2 THE BURER-MONTEIRO APPROACH AND THE MANOPT SOLVER

To solve the MAX-CuUT and Angular Synchronization problems, we rely on MANOPT, a freely
available MATLAB toolbox for optimization on manifolds BOUMAL, MISHRA, ABSIL, and SEPUL-
CHRE (2014). MANOPT runs the Riemannian Trust-Region method on corresponding Burer-
Monteiro non-convex problem with rank bounded by p as follows. The Burer-Monteiro ap-
proach consists of replacing the optimization of a linear function <A, Z > over the convex set
Z ={Z = 0: A(Z) = b} with the optimization of the quadratic function (AY,Y) over the
non-convex set Y = {Y € R>*?P : A(YYT) =b}.

In the context of the MAX-CUT problem, the Burer-Monteiro approach amounts to the following
steps. Denoting by Z the positive semidefinite matrix Z = 22T, note that both the cost function
and the constraints lend themselves to be expressed linearly in terms of Z. Dropping the NP-
hard rank-1 constraint on Z, we arrive at the well-known convex relaxation of MAX-CuUT from
GOEMANS and WILLIAMSON (1995)

A argmin<A, Z>,
zecC

where C:={Z e R4 : 7 = 0,Z;; =1,Vi=1,...,d}.

If a solution Z of this SDP has rank 1, then Z = 2*z*" for some z*, which then gives the
optimal cut. Recall that in the general case of higher rank Z,

Y € argmin(AY,Y), (7.16)
XeB

where B := {Y € R™? : diag(YYT) = 1}. Note that the constraint diag(Y'Y”) = 1 requires
each row of Y to have unit ¢§ norm, rendering Y to be a point on the Cartesian product of d
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unit spheres S ! in RP , which is a smooth manifold. Also note that the search space of the
SDP is compact, since all Z feasible for the SDP have identical trace equal to d.

If the convex set Z is compact, and m denotes the number of constraints, it holds true that
whenever p satisfies % > m, the two problems share the same global optimum BARVINOK
(1995), BURER and MONTEIRO (2005). Building on pioneering work of BURER and MONTEIRO
(2005), BouMAL, VORONINSKI, and BANDEIRA (2016) showed that if the set Z is compact and
the set ) is a smooth manifold, then % > m implies that, for almost all cost matrices A,
global optimality is achieved by any Y satisfying a second-order necessary optimality conditions.
Following BOUMAL et al. (2016), for p = [v/2d], for almost all matrices A, even though (7.10)
is non-conver, any local optimum Y is a global optimum (and so is Z =YYT), and all saddle
points have an escape (the Hessian has a negative eigenvalues). Note that for p > d/2 the same

statement holds true for all A, and was previously established by BoumAL (2015).
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Résumeé : La détection de communautés sur des
graphes, la récupération de phase, le clustering signé,
la synchronisation angulaire, le probleme de la coupe
maximale, la sparse PCA, ou encore le single in-
dex model, sont des problemes classiques dans le
domaine de I'apprentissage statistique. Au premier
abord, ces problemes semblent trés dissemblables,
impliquant différents types de données et poursui-
vant des objectifs distincts. Cependant, la littérature
récente révele qu’ils partagent un point commun :
ils peuvent tous étre formulés sous la forme de
problémes d’optimisation semi-définie positive (SDP).
En utilisant cette modélisation, il devient possible de
les aborder du point de vue classique du machine
learning, en se basant sur la minimisation du risque
empirique (ERM) et en utilisant la fonction de perte
la plus élémentaire: la fonction de perte linéaire. Cela
ouvre la voie a I'exploitation de la vaste littérature liée
a la minimisation du risque, permettant ainsi d’obte-
nir des bornes d’estimation et de développer des al-
gorithmes pour résoudre ces problemes. Lobjectif de
cette thése est de présenter une méthodologie unifiee
pour obtenir les propriétés statistiques de procédures
classiques en machine learning basées sur la fonc-
tion de perte linéaire. Cela s’applique notamment aux
procédures SDP, que nous considérons comme des

procédures ERM. Ladoption d’'un “point de vue ma-
chine learning” nous permet d’aller plus loin en in-
troduisant d’autres estimateurs performants pour re-
lever deux défis majeurs en apprentissage statistique
: la parcimonie et la robustesse face a la contamina-
tion adversaire et aux données a distribution a queue
lourde. Nous abordons le probléme des données par-
cimonieuses en proposant une version régularisée
de l'estimateur ERM. Ensuite, nous nous attaquons
au probléme de la robustesse en introduisant un es-
timateur basé sur le principe de la "Médiane des
Moyennes” (MOM), que nous nommons I'estimateur
minmax MOM. Cet estimateur permet de faire face
au probléme de la robustesse et peut étre utilisé avec
n’importe quelle fonction de perte, y compris la fonc-
tion de perte linéaire. Nous présentons également
une version régularisée de I'estimateur minmax MOM.
Pour chacun de ces estimateurs, nous sommes en
mesure de fournir un “exces de risque” ainsi que des
bornes d’estimation, en utilisant deux outils clés : les
points fixes de complexité locale et les équations de
courbure de la fonction d’exces de risque. Afin d'illus-
trer la pertinence de notre approche, nous appliquons
notre méthodologie a cing problemes classiques en
machine learning, pour lesquels nous améliorons
I'état de I'art.




Title : Learning with a linear loss function: excess risk and estimation bounds for ERM and minimax MOM

estimators, with applications.
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Abstract : Community detection, phase recovery, si-
gned clustering, angular group synchronization, Max-
cut, sparse PCA, the single index model, and the list
goes on, are all classical topics within the field of ma-
chine learning and statistics. At first glance, they are
pretty different problems with different types of data
and different goals. However, the literature of recent
years shows that they do have one thing in common:
they all are amenable to Semi-Definite Programming
(SDP). And because they are amenable to SDP, we
can go further and recast them in the classical ma-
chine learning framework of risk minimization, and
this with the simplest possible loss function: the linear
loss function. This, in turn, opens up the opportunity
to leverage the vast literature related to risk minimiza-
tion to derive excess risk and estimation bounds as
well as algorithms to unravel these problems. The aim
of this work is to propose a unified methodology to ob-
tain statistical properties of classical machine learning
procedures based on the linear loss function, which
corresponds, for example, to the case of SDP proce-
dures that we look as ERM procedures. Embracing a

machine learning view point allows us to go into grea-
ter depth and introduce other estimators which are ef-
fective in handling two key challenges within statisti-
cal learning: sparsity, and robustness to adversarial
contamination and heavy-tailed data. We attack the
structural learning problem by proposing a regulari-
zed version of the ERM estimator. We then turn to the
robustness problem and introduce an estimator ba-
sed on the median of means (MOM) principle, which
we call the minmax MOM estimator. This latter esti-
mator addresses the problem of robustness and can
be constructed whatever the loss function, including
the linear loss function. We also present a regulari-
zed version of the minmax MOM estimator. For each
of those estimators we are able to provide excess risk
and estimation bounds, which are derived from two
key tools: local complexity fixed points and curvature
equations of the excess risk function. To illustrate the
relevance of our approach, we apply our methodology
to five classical problems within the frame of statisti-
cal learning, for which we improve the state-of-the-art
results.
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