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Abstract

In this thesis, we address two topics related to the physics of dense baryonic mat-
ter in the V-QCD holographic model for QCD. In a first part, the single V-QCD
baryon solution is analyzed. An important part of this analysis is the construction
of the five-dimensional Tachyon-Chern-Simons action. The most general form of the
Tachyon-Chern-Simons 5-form, compatible with symmetries and flavor anomalies,
is determined. It is the sum of a non-trivial gauge-invariant 5-dimensional form
and a non-invariant closed 5-form that reproduces the flavor anomalies. The single
baryon solution is then considered, and identified as a bulk axial instanton. The
baryon ansatz and the field equations are derived and the boundary conditions are
determined, which ensure that the solution has finite boundary energy and unit
baryon charge. The boundary baryon number, which is computed from the univer-
sal (closed) part of the Tachyon-Chern-Simons action, is shown to coincide with the
bulk axial instanton number. Finally, we present a numerical computation for the
baryon solution. The spectrum of spin and isospin modes is also computed by quan-
tizing the light fluctuations around the baryon. It is shown that there is a partial
restoration of chiral symmetry at the baryon center. In a second part, we initiate the
study of neutrino transport in holography, with the eventual project of extending the
analysis to V-QCD. As a first step, a (toy) model for cold and luke-warm strongly-
coupled nuclear matter at finite baryon density is used to study neutrino transport.
The complete charged current two-point correlators are computed in the strongly-
coupled medium and their impact on neutrino transport is analyzed. The full result
is compared with various approximations for the current correlators and the distri-
butions, including the degenerate approximation, the hydrodynamic approximation
as well as the diffusive approximation and we comment on their successes. Further
improvements are discussed.

Keywords— Holography, dense matter, QCD, flavor anomalies, instantons, baryons,
neutrino transport



Résumé court

Dans cette thèse, nous abordons deux sujets liés à la physique de la matière baryonique
dense dans le modèle de QCD holographique V-QCD. Dans une première partie, la solution
de baryon unique est analysée dans le modèle V-QCD. Une partie importante de cette
analyse est la construction de l’action de Chern-Simons tachyonique en cinq dimensions.
La forme la plus générale de la 5-forme de Chern-Simons tachyonique, compatible avec
les symétries et les anomalies de saveur, est déterminée. C’est la somme d’une forme à
5 dimensions invariante de jauge non triviale et d’une forme à 5 dimensions fermée non
invariante, qui reproduit les anomalies de saveur. La solution de baryon unique est ensuite
considérée et identifiée comme un instanton axial dans le bulk. L’ansatz pour le baryon et
les équations du mouvement sont établies et les conditions aux limites sont déterminées,
ce qui garantit que la solution a une énergie de bord finie et un nombre baryonique égal à
1. Le nombre baryonique du bord, qui est calculé à partir de la partie universelle (fermée)
de l’action de Chern-Simons tachyonique, cöıncide avec le nombre instantonique axial du
bulk. Enfin, nous présentons un calcul numérique pour la solution baryonique. Le spectre
des modes de spin et isospin est également calculé en quantifiant les fluctuations de basse
énergie autour du baryon. Nous mettons en évidence une restauration partielle de la
symétrie chirale au centre du baryon. Dans une deuxième partie, nous initions l’étude du
transport des neutrinos en holographie, avec le projet à termes d’étendre l’analyse à la
V-QCD. Dans un premier temps, un modèle(-jouet) pour la matière nucléaire fortement
couplée, froide ou tiède, à densité baryonique finie, est utilisé pour étudier le transport des
neutrinos. Les corrélateurs à deux points complets du courant chargé sont calculés dans le
milieu fortement couplé et leur impact sur le transport des neutrinos est analysé. Le résultat
est comparé à diverses approximations pour les corrélateurs des courants et les distributions
statistiques, y compris l’approximation dégénérée, l’approximation hydrodynamique ainsi
que l’approximation diffusive et nous commentons leurs succès. Des pistes d’amélioration
sont discutées.

Mots-clés— Holographie, matière dense, QCD, anomalies de saveur, instantons, baryons,
transport de neutrinos



Résumé de la thèse

La matière qui compose le monde phénoménologique peut exister dans diverses phases, qui
sont caractérisées par des propriétés physiques différentes. Lorsque que les conditions de
pression ou de température sont modifiées, la matière peut être amenée à changer de phase,
dans un processus que l’on appelle une transition de phase. L’exemple le plus célèbre de
transition de phase est bien sûr l’ébullition de l’eau, par laquelle l’eau passe de l’état liquide
à l’état gaseux.

La transition liquide-gaz de l’eau est une conséquence de la brisure des liaisons hy-
drogène entre les molécules d’eau, du fait de l’injection d’énergie thermique. De manière
plus générale, les transitions de phase se produisent typiquement lorsque la température,
ou la pression, est de l’ordre de l’échelle des interactions qui contrôlent la dynamique mi-
croscopique du système. L’interaction la plus forte que nous connaissions est l’interaction
forte, qui lie entre eux les nucléons dans les noyaux atomiques, et les quarks et gluons
élémentaires au sein des nucléons. L’échelle de l’interaction forte est de l’ordre de 100 MeV,
ce qui correspond à des températures extrêmes d’environ 1012 K, et des densités massiques
de l’ordre de la densité de saturation nucléaire ρ0 ' 2.5×1017 kg.m−3. À titre de compara-
ison, cela correspond à des températures cent mille fois plus élevées qu’au cœur du soleil,
et des densités 1012 fois plus grandes.

À ce jour, notre connaissance des phases que prend la matière dans des conditions si
extrêmes de température et de densité reste incomplète, aussi bien du point de vue théorique
qu’expérimental. Ce problème est intrinsèquement lié à l’objectif plus général de déterminer
les propriétés de l’interaction forte, décrite par la théorie de la chromodynamique quantique
(QCD). Par ailleurs, cette question est plus qu’une simple curiosité théorique. En effet, on
sait qu’il existe des systèmes macroscopiques observables où ces conditions sont réalisées.
D’une part, de telles températures ont dû exister à un moment dans l’histoire de l’univers
primordial. D’autre part, ces immenses densitées sont a priori atteintes au cœur des étoiles
à neutron.

Malgré la simplicité conceptuelle de la QCD, le caractère fortement couplé de la théorie
à des énergies bien en-dessous d’une centaine de MeV rendent les prédictions théoriques
difficiles dans ce régime. Il existe cependant des méthodes rigoureuses qui fournissent une
description précise de la matière de QCD dans certaines régions de son diagramme de
phase. Pour des énergies bien au-dessus de 100 MeV, la matière de QCD est bien comprise
dans le cadre de la QCD perturbative, tandis que sa description à basse énergie (bien en
dessous de 100 MeV) est contrôlée par la théorie effective chirale. En plus de ces deux
approches, l’avancée la plus récente dans notre compréhension du diagramme de phase de
la QCD est venue de la méthode numérique de la QCD sur réseau, qui est adaptée pour
décrire le régime de basse densité.

La région qu’aucune des méthodes susmentionnées n’est capable de décrire correspond
au régime de la QCD dense et froide, à des densités entre environ 2 et 40 fois la densité
nucléaire ρ0, et grande devant l’échelle de la température. Cette région du diagramme de
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phase est d’autant plus intéressante qu’elle correspond au régime atteint dans les étoiles à
neutron. Les observations d’étoiles à neutron offrent donc une opportunité sans précédent
d’obtenir des données expérimentales sur les propriétés de la matière dense, et ont déjà
commencé à contraindre ces propriétés.

Bien que les données issues des étoiles à neutron soient amenées à jouer un rôle majeur
pour améliorer notre compréhension de la matière dense, il est d’égale importance de
développer des outils théoriques pour décrire la physique dans ce régime. Du fait du
couplage fort, une méthode non-perturbative est nécessaire. Dans ce travail, l’approche
que nous avons suivie est celle de la correspondance holographique.

La correspondance holographique fournit un outil pour étudier les problèmes de cou-
plage fort en théorie quantique des champs. Les principes fondamentaux de la correspon-
dance et de son application à la QCD sont résumés brièvement dans le chapitre 2 de
cette thèse. La méthode holographique associe à une certaine théorie quantique en qua-
tre dimensions, une théorie duale semi-classique en cinq dimensions, qui inclut le champ
gravitationnel. La dimension supplémentaire du dual gravitationnel est interprétée comme
l’échelle d’énergie dans la théorie quantique. Ce qui rend la méthode non-perturbative est
que le dual d’une théorie fortement couplée est faiblement courbé, de telle manière que la
théorie gravitationnelle peut être simplement décrite par la relativité générale. Ainsi, des
observables quantiques non-perturbatives peuvent être déterminées en procédant à la place
à un calcul de relativité générale.

La capacité de l’holographie à adresser des problèmes fortement couplés a rapidement
fait de la QCD l’un de ses objets principaux, avec pour résulat l’élaboration des premiers
modèles de QCD holographique. Bien que l’exemple originel de correspondence ait été
formulé pour une théorie supersymétrique et conforme, des méthodes ont été pensées pour
briser à la fois supersymétrie et invariance conforme. De plus, l’étude des boucles de Wilson
en holographie a permis de déterminer les conditions nécessaires à la réalisation d’une phase
confinée. Tous ces éléments entrent dans la construction du modèle de Sakai et Sugimoto
(WSS), que nous présentons dans la deuxième section du chapitre 2.

Le modèle WSS est probablement le plus abouti des modèles top-down de QCD holo-
graphique. Il contient à la fois les secteurs de couleur et de saveur, avec des spectres de
mésons et boules de glu globalement proches des donnés expérimentales ou des résulats
de la QCD sur réseau. Il inclut également des états baryoniques, dont la construction est
prśentée dans le chapitre 2. Le modèle a cependant plusieurs limitations, parmi lesquelles
la trivialité du groupe de renormalisation pour la constante de couplage de Yang-Mills, et
l’absence de réaction du secteur de saveur sur la couleur. Pour dépasser ces limitations, la
meilleure stratégie à ce stade est de considérer des modèles holographiques bottom-up.

Nous présentons dans la dernière section du chapitre 2 le modèle de QCD holographique
qui est considéré dans cette thèse: le modèle de Veneziano-QCD (V-QCD). La V-QCD est le
plus sophistiqué des modèles bottom-up pour la QCD holographique. Il inclut en particulier
la réaction du secteur de saveur sur le secteur de couleur, qui est cruciale pour étudier la
matière de QCD à grande densité baryonique. Le modèle de V-QCD a déjà été étudié dans
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plusieurs régimes: dans le vide, à température finie et à température et densité finies, dans
le régime où les quarks sont déconfinés. Dans tous ces régimes, plusieurs observables de
QCD (spectres de mésons et de boules de glu, thermodynamique, susceptibilités) ont été
calculées et comparées avec succès avec les données expérimentales et la QCD sur réseau.

Une composante importante qui doit toujours être étudiée en V-QCD, est le régime où
la matière est composée de baryons. Puisque l’on sait que la matière de QCD froide reste
dans la phase baryonique au moins jusqu’à des densités deux fois supérieures à la densité
nucléaire, inclure les baryons est crucial pour construire une description appropriée de la
matière dense.

Dans ce travail, nous avons étudié deux probèmes liés à la physique de la matière
baryonique dense en V-QCD, discutés respectivement dans les chapitres 3 et 4. Dans le
chapitre 3, nous décrivons ce qui est la première étape pour la construction de matière
baryonique en V-QCD, à savoir le calcul de la solution correspondant à un baryon unique.
Nous avons à la fois établi le formalisme approprié pour le baryon de V-QCD (section 5.1),
et calculé une solution numérique explicite (section 5.2). Un élément important de cette
analyse a été l’étude du terme topologique de Chern-Simons, que l’on sait être nécessaire
pour stabiliser la taille des solutions baryoniques en holographie. Jusqu’à maintenant, ce
terme n’avait pas été étudié en détail en V-QCD, car il ne jouait aucun rôle dans les régimes
étudiés. Dans une approche bottom-up, ce terme a été construit ici comme la 5-forme la
plus générale compatible avec les symétries et les anomalies de saveur de la QCD. En
incluant ce terme de Chern-Simons nouvellement construit dans l’action de V-QCD, nous
avons ensuite déterminé les équations du mouvement et les conditions aux limites que la
solution de baryon doit vérifier.

Dans la section 5.2, nous présentons une solution numérique explicite à ce problème
différentiel, qui correspond à un soliton statique pour les champs de saveur dans le dual
gravitationnel. Cette solution est calculée pour un modèle spécifique dans la classe V-QCD,
qui est obtenu en fittant la thermodynamique à basse densité et le spectre de mésons dans
le vide aux données expérimentales et de la QCD sur réseau. Le baryon décrit par cette
solution solitonique est caractérisé dans la théorie du bord par un nombre skyrmionique
égal à 1, et le profil du champ de pions est proche du skyrmion du modèle de Skyrme.
Néanmoins, le baryon de V-QCD est plus réaliste que le skyrmion, puisqu’il est couplé
à tous les mésons plus massifs. Par ailleurs, son influence sur le condensat chiral peut
aussi être étudiée, ce qui montre le comportement attendu d’une restauration partielle de
la symétrie chirale au centre du baryon. Le spectre de baryons est obtenu en quantifiant
les modes d’excitations autour de la solution statique. Nous avons calculé le sous-secteur
du spectre de spin-isospin, à partir de la solution pour un soliton en rotation lente. La
comparaison avec les données expérimentales pour les masses des nucléons et de l’isobar
∆ montre une erreur de l’ordre de 20%, ce qui est cohérent avec les corrections d’ordre
O(1/Nc) attendues dans la limite d’un grand nombre de couleurs Nc.

Dans le chapitre 4, nous nous intéressons au problème de calculer les coefficients radi-
atifs des neutrinos dans la matière des étoiles à neutron. Le transport de neutrinos joue un
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rôle important dans les premiers instants de la formation d’une étoile à neutron. Quand
une étoile à neutron se forme dans une supernova à effondrement de cœur, l’émission de
neutrinos énergiques depuis le cœur chaud et dense est probablement le méchanisme prin-
cipal qui mène au départ du choc de la supernova. Par ailleurs, après le départ du choc,
la proto-étoile à neutron qui reste comme résidu se refroidit principalement par l’émission
de neutrinos.

Cependant, les coefficients radiatifs pour le transport de neutrinos dans la matière
de QCD dense restent mal connus. Le manque de données expérimentales ne peut être
compensée par des calculs théoriques du fait du couplage fort. De nombreuses approxi-
mations ont été considérées dans la littérature, mais leurs résultats dépendent fortement
des modèles. L’holographie a le potentiel d’apporter une contribution décisive dans ce
problème, puisqu’elle permet d’effectuer des calculs en couplage fort.

Dans ce travail, nous avons initié l’étude du transport de neutrinos en holographie, en
considérant comme première étape un simple modèle-jouet. Il s’agit du modèle bottom-
up le plus simple pour décrire une matière baryonique à température et densité finies.
La matière décrite par ce modèle est composée de quarks supersymétriques et déconfinés,
tandis que le groupe de renormalisation du couplage de Yang-Mills est trivial. Malgré
les différences essentielles entre ce modèle et la matière réelle dans les étoiles à neutron,
son étude permet d’établir certains comportements qualitatifs attendus des modèles holo-
graphiques en général.

En particulier, nous avons étudié un ensemble d’approximations pour les coefficients ra-
diatifs, dont la plus importante est l’approximation hydrodynamique. Cette dernière décrit
le régime où les énergies leptoniques impliquées dans le transport de neutrinos (énergie des
neutrinos, potentiels chimiques des électrons et des neutrinos) sont faibles devant l’échelle
d’énergie microscopique, donnée à haute densité par le potentiel chimique baryonique. Pour
étudier l’applicabilité de cette approximation, nous avons procédé, dans le modèle holo-
graphique considéré, à une analyse des coefficients radiatifs dans l’espace des paramètres en
densité baryonique et en énergie des neutrinos. Cette analyse révèle que l’approximation
hydrodynamique est assez bonne à haute densité (avec une erreur de l’ordre de 20 à 50%),
alors qu’elle devient inutilisable à basse densité.

Nous concluons le chapitre 4 par une comparaison des résultats obtenus avec des calculs
précédents dans la littérature. Cette analyse révèle que les opacités calculées avec le modèle
holographique sont supérieures par un ordre de grandeur aux résultats obtenus par diverses
approximations dans la matière baryonique, et beaucoup plus faibles (par deux ordres de
grandeur) que ce que prédit un calcul perturbatif dans la matière de quarks. Cela suggère
que les effets non-perturbatifs ont tendance à réduire l’oppacité des neutrinos.

Les pistes de continuation sont multiples pour chaque sujet, et plusieurs sont men-
tionnées à la fin de chacun des chapitres 3 et 4. D’un point de vue plus large, l’objectif
général qui suit ce travail est d’obtenir une description de la matière baryonique dense en
V-QCD. L’idée sera d’étendre la solution pour un baryon unique afin de déterminer le dual
holographique d’un état contenant une densité finie de baryons. Par ailleurs, une fois cette
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construction effectuée, le projet devra converger avec l’étude du transport des neutrinos,
afin d’étudier les propriétés de transport de la matière baryonique en V-QCD.

À termes, le programme global de cette approche utilisant le modèle de V-QCD, est
d’établir un modèle holographique standard pour la QCD (à grand Nc). Un tel modèle
sera construit par un fit commun des données de QCD dans tous les régimes où elles sont
disponibles, et permettra de faire des prédictions solides dans le régime de matière dense
et froide. Étant donné qu’un fit de cette ampleur est un défi d’un point de vue numérique,
les méthodes modernes d’intelligence artificielle seront probablement les mieux adaptées
pour accomplir cette tâche.
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Introduction

The matter that the phenomenological world is made of can exist in various phases, that
are characterized by qualitatively different physical properties. Under varying conditions
of pressure and temperature, the phase of matter can be modified, as it undergoes a process
called a phase transition. The most famous example of a phase transition is of course the
boiling of water, by which water goes from the liquid phase to the gaseous phase.

The liquid-gas transition in water is a result of the breaking of the hydrogen bounds
between the water molecules, due to the injected thermal energy. More generally, phase
transitons typically occur when the temperature, or pressure, is of the order of the scale
of the interactions that control the microscopic dynamics of the system. The strongest
interaction that we know of is the strong interaction, that binds together the nucleons in
atomic nuclei, and the elementary quarks and gluons within the nucleons. The scale of
the strong interaction is of the order of 100 MeV, corresponding to extreme temperatures
of about 1012 K, and mass densities of the order of the nuclear saturation density ρ0 '
2.5× 1017 kg.m−3. For comparison, these correspond to temperatures a hundred thousand
times higher than in the core of the sun, and densities 1012 times larger.

The problem of understanding the phases of matter in such extreme conditions is more
than a theoretical curiosity. Indeed, macroscopic systems are known where these conditions
should be realized. On the one hand, such high temperatures must have existed at some
point in the history of the early universe. On the other hand, these enormous densities are
expected to be reached in the core of neutron stars.

Under such extreme conditions of temperature and density, the phase of matter is
controlled by the strong interaction. In our modern understanding, the strong interaction is
described by the theory of Quantum Chromodynamics (QCD) [1]. Despite the conceptual
simplicity of the theory, the strongly-coupled nature of QCD at energies below a few
hundred MeV makes it very hard to make theoretical predictions in this regime.

There are however well-controlled methods that give an accurate description of QCD
matter in some regions of its phase diagram. At energies well above 100 MeV, QCD matter
is well understood in terms of perturbative QCD [2, 3, 4], whereas its low energy description
(well below 100 MeV) is controlled by the chiral effective field theory [17, 18, 19]. In addition
to those two approaches, the most recent breakthrough in our understanding of the QCD
phase diagram came from the numerical lattice QCD method, which is appropriate to

10



describe the regime of low density.
The remaining part that none of the above methods is able to capture corresponds

to the regime of dense and cold QCD, at densities between about 2 and 40 times the
nuclear density ρ0, and large compared with the temperature scale. Interestingly, this
region of the phase diagram is the regime that is probed by neutron star matter. Neutron
star observations therefore offer a unique opportunity to obtain experimental data on the
properties of dense QCD matter, and have already started putting constraints on these
properties [66, 68, 79, 8].

Although neutron star data will play a major role in improving our understanding of
dense QCD matter, it is equally important to develop theoretical frameworks to address
the physics in this regime. Because of the strong coupling, a non-perturbative method
is necessary. In this work, we considered the non-perturbative approach given by the
holographic correspondence.

The holographic correspondence, [91, 92, 93, 87], has provided a new tool as well as a
new paradigm for strong coupling effects in Quantum Field Theory. In its application to
QCD, holography has provided very interesting and intuitive ways to address confinement,
[107, 135], the calculation of Wilson loops, [110, 109], the spectra of glueballs and mesons,
[107, 116], the origin of flavor anomalies and their relation to supergravity Chern-Simons
terms, [93], as well as the related chiral symmetry breaking, [136, 121, 124, 137, 138], along
the large-N ideas of Coleman and Witten, [14].

The strong coupling phenomena in QCD-like theories have been investigated via holog-
raphy using a variety of models. A first class contains top-down string-theoretic models
that have been developed to describe both Yang-Mills (YM), [93] as well as QCD, [121, 124].
Bottom-up models, more or less faithful to string theory dicta, have also been developed
both for YM, [144, 145, 146, 147, 149] and QCD, [143, 111, 150]. The holographic models
usually attempt to describe a specific regime of interest, for example the finite temperature
thermodynamics or the finite density dynamics. Others, like [145] and [150], attempt to
provide a complete description of the dynamics in several different regimes.

The different models have various advantages, that range from simplicity (but being
crude in the quantitative part) to complexity (but being closer to real data). The most
complete bottom-up model for YM is Improved Holographic QCD, [145, 147] which has
been shown to describe quantitatively rather well both T = 0 physics for pure YM as well
as finite temperature physics, [148]. Its extension to include flavor results in the so-called
Veneziano-QCD (V-QCD) model [150, 151].

V-QCD is the most sophisticated bottom-up model for holographic QCD. It includes
in particular the back-reaction of the flavor sector on the color sector, which is crucial
to address QCD matter at high baryonic density. The V-QCD model has already been
studied in several regimes: in vacuum [150, 161], at non-zero temperature [163], and at
non-zero temperature and density, in the regime where the quarks are deconfined [164]. In
all these regimes, several QCD observables (meson and glueball spectra, thermodynamics,
susceptibilities) were computed and successfully compared with lattice and experimental
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data.
An important component that still needs to be studied in V-QCD, is the regime where

matter is composed of actual baryons. Since it is known that cold QCD matter remains in
the baryonic phase at least up to two times the nuclear density [26], including baryons is
crucial for giving a proper description of dense matter. In [174], baryonic matter was intro-
duced in V-QCD via a simple homogeneous approximation. This approximation turned out
to produce sensible results for the QCD phase diagram and the equation of state of neutron
star matter [165]. We would like however to have better control over the construction of
baryonic matter in V-QCD, beyond this approximation.

In this work, we addressed two problems related to the physics of dense baryonic matter
in V-QCD. In the first part (chapter 3), we made the first step towards constructing bary-
onic matter in V-QCD, by computing the single baryon solution. We both determined the
appropriate formalism to describe the V-QCD baryon [5], and found an explicit numerical
solution [6]. In the second part (chapter 4), we focused on the transport properties of the
dense QCD matter. This problem is related to the transport of neutrinos in neutron stars,
which plays a crucial role in the mechanism of supernova explosions [62] and the subsequent
cooling of neutron stars [85, 84]. Here, we inititated the study of neutrino transport in
holography, by considering first a simple toy model. Eventually, the project is to extend
the analysis to V-QCD, which would provide a holographic model for neutrino transport
in neutron stars.

The organization of this thesis is as follows. The first chapter gives a brief review of
our current knowledge of the QCD phase diagram, from the three well-controlled methods
that are perturbative QCD, chiral effective field theory and lattice QCD. We also discuss
the current status of the experimental constraints from neutron star observations. In the
second chapter, a brief introduction to the holographic correspondence and its application
to QCD is provided. We then introduce the bottom-up V-QCD model that was used in
this work.

The original work in itself is presented in chapters 3 and 4. Chapter 3 discusses the
construction of the V-QCD baryon, first the formalism [5] and then the numerical solution
[6], whereas the holographic analysis of neutrino transport is presented in chapter 4. Several
technical details are left to the appendix.
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Chapter 1

Phases of QCD

In this first chapter, we discuss the current status of our understanding of the properties of
QCD matter in various phases. We give a brief review of what is known about the phase
diagram of QCD from perturbative QCD, effective field theory and lattice QCD. We then
point out the region of cold and dense QCD matter as the one which is still out of reach
of current methods, and explain how neutron star observations provide experimental data
on the properties of QCD in this regime.

1.1 Asymptotic freedom

Quantum Chromodynamics (QCD) is the quantum field theory that describes the strong
interaction between quarks mediated by gluons. The gluons are the excitations of a gauge
field Aabµ in the adjoint representation of an SU(3) group, whereas the quarks arise from a
spinor field ψai in the fundamental representation of SU(3). The fields are labeled by color
indices a and b, that run over the three colors 1 ≤ a, b ≤ 3. There are Nf = 6 different
flavors of quarks, associated with the flavor index 1 ≤ i ≤ 6, that are characterized by
(generically) different masses. The Lagrangian of QCD is given by the minimal gauge-
invariant Lagrangian coupling the gluon gauge-field to the quarks

LQCD = − 1

2g2
YM

Tr
(
GµνG

µν
)

+

Nf∑
i=1

ψ̄i

(
iγµ(∂µ − iAµ)−mi

)
ψi , (1.1.1)

where gYM is the strong coupling constant and Gµν the field strength for the gluon gauge
field. The color indices are implicit and the index i runs over the flavors of quarks, with
masses mi. The theory is renormalizable, and at small coupling the renormalization group
(RG) flow equation for the Yang-Mills coupling is given by [2, 3]

∂gYM
∂ logµ

= − 1

48π2
(11Nc − 2Nf )g3

YM +O(g4
YM ) , (1.1.2)
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where µ is the energy scale, and Nc the number of colors, equal to 3 in QCD. The all
important minus sign in front of the beta function implies that, as long as Nc is superior to
2
11Nf , the Yang-Mills coupling decreases with the energy scale. This property is famously
known as the asymptotic freedom of non-abelian gauge theories [2, 3]. In particular, QCD,
as we know it today, has Nc = 3 colors and Nf = 6 flavors, so that it is weakly coupled in
the ultraviolet (UV). On the contrary, asymptotic freedom also implies that the Yang-Mills
coupling grows at low energy, meaning that QCD is strongly coupled in the infrared (IR).
The transition between the strongly coupled and the weakly coupled regime is characterized
by an energy scale proper to QCD.

There are several ways of defining the QCD scale, either as an integration constant
for the perturbative RG flow (1.1.2) (in that case it is usually denoted ΛQCD), or directly
from the masses of hadrons observed experimentally. The various definitions all give values
typically between 200 MeV and 300 MeV.

The non-perturbative nature of QCD in the IR is the main reason why so much theo-
retical effort is still spent in controlling low-energy QCD. For this, most of the discussion
in the following will address the strongly-coupled regime of QCD. For now however, we
will focus on the perturbative regime of QCD.

As far as the phase of QCD matter is concerned, asymptotic freedom implies that the
quarks and gluons interact weakly at high temperature and/or density (compared with the
QCD scale). In this regime, the propagating degrees of freedom correspond to long-lived
quark and gluon quasiparticles, which form a weakly-coupled quark-gluon plasma. Because
of the perturbative nature of the strong interaction in this plasma, several of its properties
can be computed analytically. These include thermodynamics but also out-of-equilibrium
observables, such as transport coefficients or thermal radiation [4].

Another important result of the perturbative QCD calculations is in the quantitative
estimate of the precise scale at which weakly-coupled results become accurate. At low
density, it was found that the perturbative results are already quite precise for T & 600−
800 MeV [4, 7], whereas the corresponding baryon chemical potential for the state-of-the-
art calculation at small temperature is around µB ' 2.6 GeV [8]. It is believed that this
last result can still be improved by pushing the perturbative calculation to higher order,
which is currently the subject of active work [9, 10].

At small temperature and high baryon density, the asymptotic freedom of QCD has
also made it possible to exhibit the likely existence of a color supercoducting phase [11,
12], where the quark and gluon degrees of freedom develop a gap, and the low energy
excitations are instead given by bound pairs of quarks. At asymptotically large chemical
potential, the transition temperature T∆

c below which the quark-gluon plasma enters the
color-superconducting phase was found to be proportional to the superconducting gap at
zero temperature ∆. The density dependence of the gap can also be computed, resulting
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in [12]

T∆
c (µB) ∝ ∆(µB) ∝

(
log

(
µB

ΛQCD

)) 5
2

µB , (1.1.3)

where the coefficients of proportionality are constants.
In figure 1.1, we summarize the contents of this section according to the QCD phase

diagram. We show the typical region where QCD matter is well described by the weakly-
coupled quark-gluon plasma, and a sketch of the expected location of the color-superconducting
phase. The other features present in the figure are related to the regimes discussed in the
rest of this chapter.

𝜇𝐵

𝑇𝑐

𝜇𝑙𝑔

𝑇𝑐
Δ(𝜇𝐵)

Perturbative QCD

Lattice 
QCD

EFT

T

≃ 2.6 GeVNeutron star matter

Figure 1.1: Schematic representation of the QCD phase diagram, in the plane of
baryon number chemical potential and temperature. The colored areas indicate the
regions where QCD matter can be described by well-controlled methods. Full lines
indicate first-order phase transitions and the dashed line is the smooth deconfining
crossover at low density. The dots symbolize critical points. The red features are
well established results, whereas the gray ones are speculative. The hatched region
indicates the regime probed by neutron star matter.
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1.2 QCD at low energy

We will now discuss the opposite limit in energy scales, that is the low energy limit of QCD.
The asymptotically free RG flow of the Yang-Mills coupling (1.1.2) implies that QCD is
strongly-coupled in the IR. An important consequence of the increase of the coupling at
low energy is that QCD exhibits the property of confinement in the IR [13]. That is, the
quarks and gluons cannot be directly observed, and are enclosed together within color-
singlet bound states: the hadrons.

Although the low energy hadronic states are color singlets, they still interact via a
residual strong force, known as the nuclear force. The latter can be understood as arising
from the exchange of virtual mesons. The coupling from this residual interaction is weak
at energies well below the QCD scale, such that QCD can effectively be described by a
theory of weakly-coupled hadrons in the IR limit. The appropriate language to formalize
this theory is that of Effective Field Theory (EFT).

The EFT approach [17, 18, 19] exploits the fact that, in the limit of vanishing quark
masses mi → 0, the QCD Lagrangian (1.1.1) exhbitis a global chiral symmetry group
U(Nf )L × U(Nf )R, that rotates the left and right-handed quark fields in flavor space

ψLi →
(
UL
)j
i
ψLj , ψRi →

(
UR
)j
i
ψRj . (1.2.1)

Guided by phenomenology1 (more precisely, the fact that the mass of the pions is much
smaller than the other hadrons), it is assumed that the chiral symmetry is spontaneously
broken at low energies, to the diagonal subgroup U(Nf )V ≡ U(Nf )L+R. In these condi-
tions, the pion fields πa(x) are understood as the massless Goldstone bosons that arise in
the low-energy spectrum of the theory. The pions are collected in the so-called pion matrix

U(x) = exp

(
i

fπ
πa(x)τa

)
, (1.2.2)

where they parametrize the Lie algebra of the broken axial part of the symmetry group, the
τa’s being the generators of the Lie algebra. By convention, the pion fields are normalized
by the pion decay constant fπ.

The low-energy effective Lagrangian for QCD is then written as a functional of the
matrix U , and it is called the Chiral Lagrangian. The latter is constructed as a perturbative
series

L(U) = L(2)(U) + L(4)(U) + . . . , (1.2.3)

where the parameter of the expansion is given by (p/Λχ)2, p being the typical momentum
scale and Λχ ' 1 GeV the hadronic scale (roughly the mass of the lightest massive hadron

1Upon a few reasonable assumptions, it can actually be proven that the chiral group is sponta-
neously broken to the diagonal subgroup in the large Nc limit of QCD [14]. At Nc = 3, this can
also be checked from first principles via numerical lattice calculations [15, 16].
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for massless quarks). Specifically, the L(2n) terms in (1.2.3) are of order (p/Λχ)2n, and the
dots indicate terms of order (p/Λχ)6 and higher. The terms of the series are constructed
as the most general functionals of U that are compatible with the symmetries of QCD,
including chiral symmetry. The general terms determined by the symmetries depend on
unknown parameters, called the low-energy constants. In particular, the quadratic part of
the chiral Lagrangian is given by the non-linear sigma model

L(2)(U) =
1

4
f2
πTr
(
∂µU∂

µU †
)
, (1.2.4)

which contains a single low energy constant fπ.
There is no way to compute the low energy constants within the EFT, so that they need

to be measured experimentally for phenomenological applications. Those constants can
in principle be determined from the QCD Lagrangian, but this requires non-perturbative
approaches such as the numerical lattice QCD method discussed in the next section. Lattice
QCD has been able to compute some low energy constants (see e.g. [20]), but in practice
experimental measurements still give the most precise values.

The Lagrangian (1.2.3) gives an accurate description of the pion physics in the case of
massless quarks. However, the quarks are known to have finite masses in real QCD, meaning
that the chiral symmetry is explicitly broken and the observed pions are not massless. The
mass of the pions mπ is much smaller than the other hadrons though, so that the explicit
breaking of the chiral symmetry can be treated perturbatively2. The chiral symmetry is
said to be an approximate symmetry of QCD, with the pions as pseudo-Goldstone bosons.
The chiral Lagrangian (1.2.3) is modified to include new terms proportional to m2

π, with
m2
π of order O(p2) in the low-energy expansion. In particular, the quadratic part (1.2.4)

contains the mass term for the pions3

L(2)(U) =
1

4
f2
πTr
(
∂µU∂

µU † +m2
π

(
U + U †

))
. (1.2.5)

2We implicitely assumed here that only the two lightest flavors are included in the EFT, such
that the Goldstone bosons acually correspond to the pions observed experimentally. The strange
quark (and the associated bosons, the kaons and eta meson) with a mass of the order of 100 MeV
can also be treated with the chiral Lagrangian to some extent [19], but it results in larger errors in
the predictions of the EFT. The charm, bottom and top quarks have masses larger than 1 GeV, so
they cannot be described by the chiral Lagrangian

3This form where the mass term for the pions appears explicitly is often used in chiral EFT
calculations. It assumes that the QCD θ angle is equal to zero, such that the charged and neutral
pions have the same mass. The θ angle is constrained experimentally to be smaller than 10−10.
The general expression including the theta angle is better expressed in terms of the quark mass

matrix M , as L(2)(U) = (1/4)f2πTr
(
∂µU∂

µU†+afπ
(
MU +U†M†

))
, with a a low energy constant,

whose value is fixed by the Gell-Mann-Oakes-Renner relation. This is also the appropriate form for
a number of flavors larger than 2.
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Another important ingredient that misses from the pion Lagrangian (1.2.3) is baryons.
Despite their mass being of the order of the hadronic scale Λχ, it is indeed a daily observa-
tion that low energy QCD matter contains nucleons, which are stable baryonic states. In
a phenomenological approach, the nucleons are added as external particles, and the chiral
Lagrangian (1.2.3) is completed with terms that couple the pions to the nucleons. This
can be done in a way that is consistent with chiral symmetry [21], and maintaining the
structure of the chiral Lagrangian as a low energy expansion. For example, the leading
order πN Lagrangian takes the form

L(1)
πN = Ψ̄

(
iγµDµ −MN +

gA

2
γµγ5uµ

)
Ψ , (1.2.6)

Dµ ≡ ∂µ +
1

2

[
ξ†, ∂µξ

]
, uµ ≡ i

{
ξ†, ∂µξ

}
, ξ ≡

√
U ,

with Ψ the nucleon spinor field. Those new terms come with additional low energy con-
stants, such as the axial coupling gA in (1.2.6). In addition to the pion-nucleon couplings,
the complete description of the nucleon-nucleon interactions in this formalism requires the
introduction of nucleon-nucleon contact terms. The latter model the short-range interac-
tions due to the exchange of heavier mesons (notably the ω meson), that are integrated
out in the chiral Lagrangian.

The chiral Lagrangian gives a good description of QCD matter at low temperature
and density. In particular, the two and three-nucleon interactions that are computed
from the EFT are rather successful in describing the structure and interactions of light and
medium-mass nuclei [22, 23, 24, 25]. The phase of QCD in this region of the phase diagram
is understood as follows. In the limit of vanishing temperature and density, QCD matter
takes the form of a pion gas. As the baryon chemical potential µB is increased, the fluid
undergoes a first order “liquid-gas” phase transition to the nuclear matter [27, 28, 29, 30,
31, 32, 33, 34]. At zero temperature, this transition is characterized by the baryon density
jumping from zero to a finite value, which happens when the chemical potential is equal
to the energy per nucleon in an iron nucleus

µlg = MN − Eb,iron , (1.2.7)

with MN the nucleon mass and Eb,iron ' 8 MeV the nucleon binding energy for iron. At
µB > µlg, the nuclear matter phase is well described by the chiral Lagrangian, up to an
upper bound where the effective theory starts losing accuracy. The state-of-the-art upper
bound in densities is about two times the nuclear saturation density n0 ' 0.16 fm−3[26].
The corresponding upper bound on the chemical potential has large uncertainties, but it
can be estimated from the results4 of [26] that µB −MN is between 30 and 100 MeV, i.e.

4The value of µB is not computed in [26], but at zero temperature µB is related to the pressure
P and the energy per particle (excluding the mass) E/A via µB = MN + E/A+ P/nB .
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roughly µB ' 1 GeV. Beyond 2n0, the many-body nucleon interactions become large, and
the lack of precise experimental data already for three-body interactions make the effective
theory unusable.

When the temperature is increased, the liquid-gas transition at zero temperature ex-
tends to a line in the phase diagram, that ends at a critical point. This point is located at
a value of the temperature close to the binding energy per nucleon in cold nuclear matter
Tlg ' 10 MeV [31, 33]. At temperatures T > Tlg and much smaller than 100 MeV, QCD
matter is described by a gas of pions and nucleons. When the temperature is of the order
of 100 MeV, the gas also contains higher excited hadronic states. The hadron gas at these
temperatures is modeled by the so-called Hadron Resonance Gas (HRG) model, whose free
energy is that of an ideal gas containing all the infinitely many hadronic species

F (T, µB, V ) =
∑

i∈mesons

FBmi(T, V ) +
∑

i∈baryons

FFmi(T, µB, V ) , (1.2.8)

where V is the volume, and FBmi and FFmi are respectively the single particle partition
functions for bosons and fermions, with mass mi. The HRG model was found to reproduce
well the numerical lattice QCD5 thermodynamics at small density [36, 37], as well as the
observed yields of hadronic species produced in heavy-ion collisions [38]. Note that, as
the particle densities increase, the interactions between the hadrons in the gas should
become larger and invalidate the ideal gas picture used in the HRG. This should happen
both at large T and µB. At low µB, it turns out that the main correction which makes
a difference to describe the experimental results from heavy-ion collisions, comes from
the hard-core short-range repulsion [38]. The latter is introduced via excluded volume
corrections, implemented as a shift of the chemical potentials

µ→ µ− veigen p(T, µ) , (1.2.9)

where p is the pressure, and the eigenvolume of the particles veigen is a dimensionful pa-
rameter.

The HRG description does not apply anymore when the deconfinement temperature
Tc is reached. The best tool to describe the transition and the properties of the stongly-
coupled quark-gluon plasma that exists at T > Tc, is the numerical lattice QCD method.

1.3 Lattice QCD at low baryon density

In this section, we review briefly the principles of lattice QCD, together with some of its
main successes and limitations. Lattice QCD is a numerical method, which aims at com-
puting QCD observables on a discrete lattice, directly from the QCD Lagrangian (1.1.1).

5See below for a brief review of the lattice QCD methods.
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As such, it takes full account of the strongly-coupled nature of QCD at low-energy, leav-
ing it to a computer to perform the non-perturbative calculations that cannot be done
analytically.

As we shall discuss below, lattice QCD for now is best suited for the calculation of
observables in a static system at equilibrium, at temperature T and zero baryon chemical
potential. The expectation value of an operator O in such a system can be written as a
Euclidean path integral over field configurations {Aµ, ψi, ψ̄i},

〈O〉 =
1

Z

∫ ∏
µ

DAµ
∏
i

DψiDψ̄i O e−S
E
QCD , (1.3.1)

where the probability weight of a given configuration is controlled by the QCD Euclidean
action

SEQCD =

∫ 1/T

0
dτ

∫
d3x

[
1

2g2
YM

Tr
(
GµνG

µν
)

+

Nf∑
i=1

ψ̄i

(
iγµE(∂µ + iAµ) +mi

)
ψi

]
, (1.3.2)

the γµE being the Euclidean gamma matrices. Z is the QCD partition function

Z =

∫ ∏
µ

DAµ
∏
i

DψiDψ̄i e−S
E
QCD . (1.3.3)

Upon discretizing space-time, the path integral is replaced by an integral over the field
values at each lattice point x∫ ∏

µ

DAµ
∏
i

DψiDψ̄i →
∏
x

∫ ∏
µ

dAµ,x
∏
i

dψi,xdψ̄i,x . (1.3.4)

Actually, instead of the gauge fields themselves, the gauge-invariant discretization of the
QCD action [13] is written in terms of the link variables

Uµ,x ≡ exp (iaAµ,x) , (1.3.5)

where a is lattice spacing. (1.3.5) is the discrete version of the Wilson line. Another
obstruction to the naive discretization (1.3.4), is that Grassmanian integrals cannot be
defined numerically. This problem is avoided by noting that the fermionic action in (1.3.2)
is quadratic, so that the Grassmanian integrals can be performed analytically. In particular,
the discretized version of the expectation value of a pure glue operator O(Uµ) takes the
form

〈O〉 =
1

Z

∫ ∏
x,µ

dUµ,x O(Uµ,x)
∏
i

det
(
iγµE(∂µ + iAµ) +mi

)
e−S

E
YM,dis(Uµ,x) , (1.3.6)
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where SEYM,disc is the discretized version of the Euclidean Yang-Mills action. Despite the
factor of i, the determinant of the Dirac operator in (1.3.6) is a real and positive quantity,
such that the factor that multiplies O in the integrand can be interpreted as the proba-
bility of a given configuration of the gauge fields on the lattice {Uµ,x}. The integral can
therefore be evaluated with a Monte-Carlo algorithm. In this method, a large number NU

of configurations of the gauge fields are generated randomly according to the appropriate
probability weight. For each configuration i, the value of the operator Oi is evaluated, and
the expectation value is computed by averaging over the configurations

〈O〉 =
1

NU

NU∑
i=1

Oi . (1.3.7)

(1.3.7) is guaranteed to converge towards the exact result (1.3.6) in the limit NU →∞ by
the law of large numbers.

Lattice QCD has been able to improve our understanding of QCD at finite tempera-
ture and low density in an unprecedented manner. The QCD thermodyanmics has been
computed [39, 40, 41], including the equation of state, as well as several screening masses
[42, 43]. We refer to [44, 45, 46] for reviews. One of its most important results is the
determination of the nature of the phase transition between the hadronic gas and the
quark-gluon plasma. The latter was found to correspond to a smooth crossover, which
happens gradually for temperatures between T ' 145 MeV and 165 MeV [47, 48, 49, 50].

Unfortunately, the methods of lattice QCD face a major obstacle at finite baryon
number chemical potential µB, which is known as the sign problem. When a finite µB
is introduced, the Dirac operator in the QCD Lagrangian (1.3.2) is effectively replaced by

MD ≡ iγµE(∂µ + iAµ) +mi → M̃D(µB) ≡ iγµE(∂µ + iAµ) +mi + µqγ
0
E , (1.3.8)

where µq ≡ µB/Nc is the quark number chemical potential. The expectation value of an
operator at finite µB will therefore be evaluated by replacing the determinant of MD by that
of M̃D in (1.3.6). However, unlike that of the zero-density Dirac operator, the determinant
of M̃D is not real anymore. This means that what could be interpreted as a probability in
(1.3.6) is now a complex number, so that the Monte-Carlo method cannot be used anymore
to compute the expectation values. Note that, even if the operator O is real, such that the
expectation value can be computed with the real part of the determinant, the sign of the
real part will not be positive for all configurations (hence the “sign” problem). In absence
of alternative numerical methods to compute such highly-dimensional integral6 as (1.3.6),
lattice QCD is unable to compute the properties of QCD at finite baryonic density. Note
that a similar problem is encountered when one tries to compute real-time observables on

6More precisely, the average can still be formulated in terms of positive probabilities, by absorb-
ing the sign of the real part in the operator. However, computing the resulting integral with the
Monte-Carlo method can be shown to be a NP-hard problem [51].
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the lattice7, even at µB = 0, since in Lorentzian signature −SEQCD should be replaced by
iSQCD in (1.3.1).

The situation is actually not so grim as it seems, and lattice physicists have found
ways to go around the sign problem, at least to some extent. Several methods exist
[54, 55, 56, 57], among which the simplest conceptually is the Taylor expansion around
µB = 0 [58, 59]. The idea is to expand the pressure p(T, µB) for chemical potential µB
smaller than the temperature

p(T, µB)T−4 = p(T, 0)T−4 +

∞∑
n=1

χ2n

(µB
T

)2n
, (1.3.9)

where the χ2n are the baryon number susceptibilities

χ2n ≡
1

(2n)!

d2n
(
p/T 4

)
d
(
µB/T

)2n ∣∣∣∣
µB=0

. (1.3.10)

The latter can be computed on the lattice as zero-density expectation values. As is clear
from (1.3.9), this method is adequate only for chemical potentials up to the scale of the
temperature. This is also true for the other methods that have been developped.

To summarize, the successes of the numerical lattice QCD method give us a good
understanding of many properties of QCD at small density. This includes the important
region around the deconfining crossover, which is not accessible to both the hadronic models
and perturbative QCD. Lattice QCD typically applies for µB . T , as indicated on figure
1.1. However, the sign problem prevents it from exploring phases at µB � T .

The region which remains blank in figure 1.1, at chemical potentials 1 GeV . µB .
2.6 GeV larger than the temperature, cannot be described by either of the well controlled
methods that are perturbative QCD, chiral effective field theory and lattice QCD. As such,
it is still largely an uncharted region of the phase diagram.

Many models have been elaborated to try and address the physics of QCD in this
region (see the reviews [60, 61] and references therein). However, beyond suggesting a
very rich phase structure, those models are unable to produce solid results in the dense
regime of QCD. This region is all the more interesting that the corresponding conditions
are realized in macroscopic systems observed in nature, i.e. in the core of neutron stars.
In the next section, we discuss how neutron star observations put experimental constraints
on the properties of dense QCD matter.

1.4 Dense QCD and neutron stars

Neutron stars are the most compact stars observed in the universe, that are formed as the
remnant of the supernova explosion of a giant star [62]. With masses between 1 and 2

7Although there are techniques to estimate spectral functions and transport coefficients from
equilibrium correlators [52, 53].
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solar masses, and radii of 10 to 20 kilometers, the density at the center of these objects
can reach several times the nuclear saturation density n0 ' 0.16 fm−3. These are baryon
densities much higher than what can be currently reached in experiments on Earth, so that
the observation of neutron stars offers a unique window to probe the properties of QCD
matter at very high density.

Neutron stars are self-gravitating objects whose strucure is determined by the Ein-
stein equations, together with the dynamics of strongly-interacting matter. To a good
approximation8 they are spherically symmetric, sourcing a metric of the form

ds2 = −eΦ(r)dt2 +

(
1− 2Gm(r)

r

)−1

dr2 + r2dΩ2
2 , (1.4.1)

where r is a radial coordinate, equal to 0 at the center of the star. It can be shown that
m(r) is the gravitational mass enclosed within radius r. The matter that consitutes the
neutron star is modeled by a static perfect fluid, with stress-energy tensor

Tµν = diag(p(r) + ε(r), p(r), p(r), p(r)) , (1.4.2)

p(r) being the pressure and ε(r) the energy density. For the ansatz (1.4.1)-(1.4.2), the
Einstein equations reduce to the so-called Tolman-Oppenheimer-Volkov (TOV) equations

dp

dr
= −G

r2
(p(r) + ε(r))

(
m(r) + 4πr3p(r)

)(
1− 2Gm(r)

r

)−1

, (1.4.3)

dm

dr
= 4πr2ε(r) ,

dΦ

dr
= − p′(r))

p(r) + ε(r)
, (1.4.4)

with G the gravitational constant. For the system (1.4.3)-(1.4.4) to be closed, an additional
relation between the pressure and the energy density is necessary. The relation p = p(ε)
is a microscopic property of neutron star matter, known as the equation of state. For a
given value of the central density εc, the structure of a neutron star is fully determined
by its equation of state. In particular, knowing the equation of state makes it possible to
determine the mass M and radius R of the star as a function of εc. Conversely, knowing
the functions (R(εc),M(εc)), or equivalently M(R), allows to infer the equation of state
of neutron-star matter. This means that observing the masses and radii of many neutron
stars to construct the function M(R) (the so-called M-R diagram) puts constraints on the
equation of state of dense QCD matter.

The available data from neutron star observations already puts significant constraints
on the equation of state [64]. To date, the masses of more than 60 neutron stars have been

8The shape of a typical neutron star is slightly different from a sphere due to its rotation. Even
for the fastest rotation velocities (milisecond pulsars), the deviation remains small and can be
treated perturbatively [63].
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measured [65], some of which with accuracies of less than 1% at the 1-σ confidence level.
The most accurate measurements are for pulsars in a binary system, whose masses can
be determined via the Shapiro delay of the periodic signal when the pulsar passes behind
its companion. Most of the recorded masses are between 1.2 and 1.6 solar masses, but
some very massive neutron stars were also observed. The most significant measurements
include the pulsars J1614-2230 (M = (1.908 ± 0.016)M�) [66, 67], J0348+0432 (M =
(2.01 ± 0.04)M�) [68] and J0740+6620 (M = (2.08 ± 0.07)M�) [69, 70], with M� the
solar mass. These observations imply that the equation of state of neutron stars should be
sufficiently stiff to support such high masses. That is, the speed of sound c2

s = ∂p/∂ε in
neutron star matter cannot be too low. In practice, this 2-solar mass condition is already
sufficient to discard many equations of state proposed in the literature [66].

Measuring the radius of a neutron star is more difficult than the mass. The main
methods are based on the analysis of the thermal emission from the surface, each method
focusing on different properties of the emission. These include spectroscopic measurements
[71, 72] (the standard method for other types of stars) and pulse profile modeling [73]. Both
methods have much larger uncertainties than the mass measurements, due to the fact that
they involve the complex physics of the neutron star atmosphere. Most recent results are
due to the pulse profile modeling method, which is the one used by the ongoing NICER
experiment. This method infers the radius of the star from the observation of the periodic
component of the thermal X-ray emission. The latter is understood as arising from the
existence of hot spots at the surface of the star, that enhance the thermal signal when
the star rotation brings them on the line of sight. Given a model for the properties of the
spots, the mass and radius of the star can then be inferred from the gravitational lensing
of the signal. Using this technique, NICER has been able to determine the radii of pulsars
J0030+0451 and J0740+6620 within 10% of accuracy at the 1-σ confidence level (up to
systematics) [74, 75], which gives interesting constraints on the neutron star equation of
state [76, 77]. Several other pulsars have been observed, and their investigation is ongoing
[78].

Another type of observation that brings information about the properties of neutron
star matter is that of a neutron star merger. Such an event can be detected via the emitted
gravitational wave signal, which may be observed with the LIGO/Virgo interferometers.
To date, LIGO/Virgo has confirmed one such observation, GW170817 [79], and another
likely event GW190425 [80]. Apart from the mass of the binary, the observed gravitational
wave signal depends on the tidal deformation of the stars during the inspiral, such that a
larger deformation enhances the gravitational wave emission. Such an effect is quantified by
a quantity Λ called the tidal deformability, which is correlated with the equation of state.
The analysis of GW170817 made it possible to bound the tidal deformability of the two
neutron stars that merged, which is often presented in terms of the inferred deformability
of a 1.4M� neutron star Λ1.4 = 190+390

−120, at the 90% confidence level [81]. The most
interesting part of this result is the upper bound on Λ, which favors compact stars, and
therefore soft equations of state, giving a complementary constraint to the 2-solar mass
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condition.
It is expected that the continued observational effort to measure neutron star masses,

radii and tidal deformabilities should eventually provide us with sharp constraints on the
equation of state. Including the condition of matching with the effective field theory result
at low energy, and perturbatibe QCD at high energy, it was shown in [8] that the current
observational constraints already reduces a lot the space of possible equations of state.

Although it plays a major role in neutron star physics, the equation of state is only
a single observable from the dense QCD matter, which is far from determining all of its
properties. In particular, it is not very sensitive to the nature of the degrees of freedom that
QCD matter is effectively made of. On the contrary, transport phenomena are typically
much more sensitive to those phase properties [82]. Neutron stars have also the potential
to give us information about the transport properties of QCD matter, if they are observed
during the cooling stage. This period after the formation of the star in a supernova lasts
for about 105 years, during which the star cools mainly via neutrino emission [83, 84]. The
neutrinos that are trapped in the core radiate towards the surface, by scattering inside
neutron star matter (see Chapter 4 below for a detailed review of the formalism used to
describe neutrino transport). If this neutrino flux can be observed, this will provide us with
information on the transport of weak charge in dense QCD matter. The main prospect
for obtaining this kind of data would be the observation of a galactic supernova, for which
the late time signal is expected to depend on the properties of dense QCD matter [85].
Observing the thermal flux from a cooling neutron star also provides us in principle with
information about transport, but there is some degeneracy with the dependence on the
characteristics of the outer layers of the star [86, 85].

The contents of this chapter are summarized by figure 1.1. The colored areas indicate
the region of the phase diagram where our understanding of the properties of QCD matter
is good:

� At high temperature and density, where the perturbative picture applies,

� At low temperature and density, where effective field theory can be used,

� At finite temperature and low density, where the numerical lattice QCD method is
effective .

Beyond those regions, that is for cold and dense QCD matter, our knowledge is very limited.
In particular, the properties of matter in the core of neutron stars (hatched area) cannot
be predicted by a solid theoretical model. However, the experimental data from neutron
star observation is providing us with constraints which should help constructing an efficient
phenomenological model.

The work presented in this thesis is part of a more general program, which aims at
investigating the properties of dense QCD matter via the holographic approach. This
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approach has the significant advantage that holographic models are defined over the whole
phase diagram, as long as QCD remains strongly-coupled. This implies that the models
can be compared with real QCD data at temperature and densities where such data exist,
and make predictions for dense QCD matter. Apart from this phenomenological prospect,
another important asset of holography is that it provides an intuitive (gravitational) picture
of the strongly coupled matter, which may help our understanding of its dynamics. Finally,
dynamical real time phenomena and dissipation, which are difficult to describe in other
approaches (including lattice QCD), are naturally described in holographic theories.

The next chapter discusses the holographic approach to QCD. We start by introducing
the fundamental concepts, and then describe in more details the V-QCD framework, which
is the most complete framework for holographic QCD, and the one that is used in this
work.
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Chapter 2

Holographic QCD

This chapter presents a brief introduction to the main ingredients for the construction of
holographic models of QCD. We start from the basics of the holographic correspondence,
before discussing how confinement is implemented in holography. As an illustration, we
then describe the top-down Witten-Sakai-Sugimoto model, whose construction is represen-
tative of the ingredients that holographic QCD models should contain. It is in particular
an inspiration for the bottom-up V-QCD model that we used in this work. The latter is
introduced in the last part of this chapter.

2.1 Basics of the gauge/gravity duality

We provide in this section a brief introduction to the basic principles underlying the holo-
graphic (or AdS/CFT) correspondence. The discussion will remain at the descriptive level,
and we refer the reader to the available reviews [87, 88, 89, 90] for more details about the
duality and its tests.

The holographic correspondence [91, 92, 93] is a well-motivated and amply tested con-
jecture that states the duality between a large N quantum field theory (QFT), and a
semi-classical gravitational theory defined on a higher-dimensional space, which henceforth
will be called the bulk. It is a strong-coupling/weak-coupling duality in the sense that, if
the quantum theory is strongly coupled, then the holographic dual is weakly curved and
vice versa. Via this duality, quantum observables whose evaluation would require a non-
perturbative calculation, can instead be derived from classical computations in general
relativity.

In order to present some generic features of the holographic correspondence, we shall
first focus on the case of a conformal field theory (CFT). Assuming the CFT to admit a
holographic dual (in this case, it is called a holographic CFT 1), the dual geometry cor-

1Not all CFT’s admit holographic duals, as the existence of the dual gravitational description
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responds to the negatively-curved anti-de Sitter space. In particular, the original corre-
spondence [91] was formulated for an explicit 4-dimensional conformal field theory (CFT):
N = 4 SU(N) super-Yang-Mills (SYM). The latter was postulated to be dual to type IIB
string theory on AdS5×S5, which at large N and large ’t Hooft coupling reduces to type
IIB supergravity on AdS5×S5. In the following the S5 factor does not play an important
role so we will focus on the AdS part of the geometry.

The geometric properties of AdS space can be interpreted from the point of view of
the holographic duality. In the so-called Poincaré coordinates2, the AdS5 metric can be
written as

ds2 =
`2

r2

(
dr2 + ηµνdxµdxν

)
, (2.1.1)

where ` is the AdS length and ηµν the 4-dimensional Minkowski metric. A notable property
of the AdS space, is that it possesses a conformal boundary. In the Poincaré coordinates,
this boundary is located at r = 0, and has the geometry of Minkowski space, which is
precisely the space-time on which the dual CFT is defined. That is, the CFT4 dual to
AdS5 may be thought of as living at the boundary of AdS.

Another interesting property of the AdS metric (2.1.1) is related to its isometries. First
of all, it is clear that (2.1.1) is invariant under Poincaré transformations of the boundary
coordinates xµ. Also, it is easy to check that a rescaling of the coordinates

xµ → λxµ , r → λr , (2.1.2)

also leaves the AdS metric invariant. These symmetries are strongly reminiscent of the
conformal symmetry of the dual CFT. In fact, the full isometry group of AdS is precisely
isomorphic to the 4-dimensional conformal group SO(2,4). Therefore, the conformal sym-
metry of the boundary theory is seen to be realized as the isometries of the gravitational
dual.

In addition to the boundary coordinates xµ, the emergence of the fifth “holographic”
coordinate r can also be understood in terms of the boundary theory. Due to the warp
factor `/r in (2.1.1), the proper distance L(r) measured by a local observer at a given
position r, is rescaled compared with the distance as measured along the flat directions of
the boundary Lb

L(r) =
`

r
Lb . (2.1.3)

Conversely, for a fixed value L of the proper distance measured by the local observers, the
corresponding boundary distance changes with r as

Lb(r) =
r

`
L . (2.1.4)

imposes constraints on the structure of the dual CFT [91, 94, 95, 96].
2Note that the Poincaré coordinates cover only a finite patch of AdS, called the Poincaré patch.

The CFT defined on flat space is actually dual to the Poincaré patch, rather than the full AdS
space.
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This means that larger and larger distances are probed in the boundary theory as r in-
creases. The holographic coordinate is therefore interpreted as the (inverse) energy scale
in the quantum theory, with the AdS boundary (r = 0) identified as the UV limit, and the
interior (r →∞) as the IR limit.

When discussing holographic QCD, the QCD-like theories that one wants to describe
are typically not conformal, and become conformal only in the UV limit. In these condi-
tions, the geometry of the bulk is only asymptotically AdS near the boundary, but deviates
from it in the interior. In spite of this, it is still expected that the general properties of the
correspondence as stated for the conformal case should hold: the QFT lives at the bound-
ary of the bulk, and the holographic coordinate is interpreted as the running energy scale.
The deviation from AdS in the interior of the bulk is then understood as the non-trivial
RG flow of the boundary theory3.

2.1.1 Holographic dictionary

We now discuss the correspondence at the level of the boundary quantum operators, where
it translates into the so-called holographic dictionary [93]. The latter associates to every
gauge-invariant boundary operator a dual field in the bulk with the same quantum numbers
under the global symmetries of the theory. In particular, a scalar operator O(x) has a dual
scalar field in the bulk φ(x, r). The boundary value of the dual field is identified as a source
φ0(x) for the operator O in the boundary theory

φ0(x) = lim
r→0

φ(x, r) . (2.1.5)

Equation (2.1.5) is actually correct only for massless fields, and for massive scalar fields φ
it should be generalized to

φ0(x) = lim
r→0

(
r−∆−φ(x, r)

)
, ∆− ≡

1

2

(
d−

√
d2 + 4m2`2

)
, (2.1.6)

where d is the dimension of the boundary and m the mass of the (bulk) scalar field. With
this identification, a quantitative formulation of the correspondence may be written as〈

exp
(∫

ddxφ0(x)O(x)
)〉

QFTd

= exp
(
− Sd+1

on-shell

)∣∣∣∣
φ ∼
r→0

r∆−φ0

, (2.1.7)

where the left-hand side is the (off-shell) generating functional of the boundary QFT, and
the right-hand side the on-shell partition function for the bulk gravitational theory. Note

3Such an identification results in the notion of holographic RG flow. The properties of such flows
and their relation with the RG flow of the boundary theory is the topic of a vast literature; see e.g.
[97, 98, 100, 101, 102, 103, 104].
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that equation (2.1.7) is written in Euclidean signature. There is a similar formula for
Lorentzian signature but it involves a more subtle construction [105].

We wrote (2.1.7) for the example of a specific scalar operator, but it should be under-
stood that the equality generalizes to all types of (single-trace4) operators, where the source
φ0 should be replaced by the boundary value of the appropriate bulk field. In particular,
an important component of the holographic dictionary is that about the holographic duals
of conserved currents. If the boundary theory possesses a global symmetry, associated with
a conserved current Jµ, then the bulk theory contains a dual vector field Aµ. Moreover, it
can be shown that the conservation of the current implies that the bulk theory is invariant
under gauge transformations of the vector field Aµ, which is therefore a gauge field. The
corresponding gauge group is the continuous version of the global symmetry group in d+1
dimensions.

A crucial example is given by the current associated with translation invariance, that is
the stress-energy tensor T µν . Applying the holographic dictionary to T µν as above, implies
that the dual bulk field is a spin-2 gauge field, whose gauge transformations are given by
diffeomorphisms. That is, the stress-energy tensor is dual to the bulk metric. We therefore
reach the important conclusion that the holographic dual of a translation-invariant theory
includes dynamical gravity.

2.1.2 Holography at finite temperature

We shall now discuss how a finite temperature in the boundary theory is realized in the
gravitational dual. An equilibrium thermal state in the boundary theory is described by
its partition fonction. The latter may be obtained from the Lorentzian path integral by
performing a Wick rotation of the time coordinate

t→ −itE , (2.1.8)

to go to Euclidean signature, and compactifying the time direction such that

tE ∼ tE +
1

T
, (2.1.9)

where T is the temperature. In Euclidean signature, the holographic dual of a thermal
state will therefore contain a compact time direction, whose periodicity should correspond
to the temperature of the boundary state.

At a given temperature, and for fixed sources (i.e. for a given theory), there are generi-
cally several competing solutions to the bulk equations of motion, corresponding to different
states in the boundary theory. Among those, the boundary equilibrium state corresponds

4Multi-trace operators can also be included, but the identification of the source from the bound-
ary behavior of the dual field should be modified [106].
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to the solution with lowest free energy. Which solution dominates may depend on the tem-
perature, which signals a phase transition in the boundary theory. In particular, deconfined
phases are typically dual to black holes in the bulk, where the Hawking temperature of the
black hole is equal to the boundary temperature.

The simplest example is again given by N = 4 SYM, which at finite temperature is
dual to an AdS black hole [107], with metric

ds2 =
`2

r2

(
f(r)−1dr2 − f(r)dt2 + d~x2

)
, f(r) = 1− r4

r4
H

, (2.1.10)

in Poincaré coordinates. In equation (2.1.10), rH corresponds to the horizon radius, which
is related to the Hawking temperature TH via

rH =
1

πTH
. (2.1.11)

The Euclidean continuation of the black hole metric is obtained by the transformation
t→ −itE

ds2
E =

`2

r2

(
f(r)−1dr2 + f(r)dt2E + d~x2

)
. (2.1.12)

Requiring that (2.1.12) does not have a conical singularity at the horizon [108] implies that
the Euclidean time direction should be periodic, with period 1/TH . From the identification
with (2.1.9), this means that the Hawking temperature of the black hole is the temperature
of the boundary theory.

2.1.3 Confinement in holography

As discussed in the previous chapter, the confinement of color charge plays a major role in
the low energy dynamics of QCD. It is therefore one of the basic properties that holographic
models of QCD should exhibit. It is the purpose of this subsection to explain what is the
criterium for confinement from the point of view of the gravitational dual.

The observable which is used to indentify the confining behavior of a gauge theory is
the expectation value of the so-called Wilson loop [13] operator

WC ≡ Tr

{
P exp

(∮
C
Aµdxµ

)}
, (2.1.13)

where A is the gauge-field operator, C is a closed contour in space-time and P is the path
ordering operator. A confining theory is characterized by an area law for the Wilson loop

〈WC〉 = exp
(
icS(C)

)
, (2.1.14)

where c is a constant and S(C) refers to the area enclosed by the path C.
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𝐶

Figure 2.1: The Wilson loop

In QCD, Aµ corresponds to the gluon field, and the expectation value of the Wilson
loop WC evaluates the probability of observing a quark-antiquark pair forming at some
point on the contour C, and annihilating at some other point, as shown in figure 2.1. The
area suppression of WC (2.1.14) implies that, for contours of given large diameter D, it is
much more probable to observe a narrow loop with S(C) ∼ D than a broad loop having
S(C) ∼ D2. In particular, resolving the individual quarks in a macroscopic detector of size
L would correspond to observing a broad loop with S(C) ∼ L2, which is heavily suppressed.
Instead, what is observed is a line-like contour describing the path of a free particle, the
latter being a bound state of the quark and anti-quark (a meson).

The holographic correspondence provides a simple method to compute the expectation
value of Wilson loops from the gravitational description [109, 110]. The idea is to consider
the bulk classical string worldsheet Σ, whose boundary coincides with the path C defining
the Wilson loop at the AdS boundary (see figure 2.2). The expectation value of the Wilson
loop is then identified with the on-shell partition function of the dual string worldsheet Σ

〈WC〉 = exp
(
iSNB

on-shell(C)
)
. (2.1.15)

The on-shell action is evaluated on the surface Σ that extremizes the Nambu-Goto action
SNB.
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Σ

C

Figure 2.2: The string wolrdsheet dual to the Wilson loop. The AdS boundary is
represented by the gray surface, and the boundary of the worldsheet Σ coincides with
the loop C.

With the prescription (2.1.15) for evaluating Wilson loops, it is possible to investigate
the confining behavior of given bulk geometries. The typical criterium for confinement to
occur is for the geometry to end at a finite value r0 of the holographic coordinate5, where r0

gives the confining scale of the boundary theory. A simple heuristic way of understanding
how this works is as follows. Let us consider a rectangular Wilson loop of finite extent T
in the time direction t, and L� T in the spatial direction x, as shown in the left of figure
2.3. Then the dual worldsheet in the bulk is essentially invariant under time-translation,
and takes the form shown in the right of figure 2.3 in the (r, x) plane. As one increases the
size of the loop L, the worldsheet extends deeper and deeper in the bulk, until it is forced
to stick to the end of space at r = r0. For L � r0, the action of the worldsheet therefore
goes as

SNB
on-shell(C) ∼ LT , (2.1.16)

which is precisly the area of the Wilson loop. For r0 → ∞, there is no obstacle to the

5In some cases, including the bottom-up soft wall backgrounds [111, 112, 113], the “end of space”
should be understood in an effective sense. That is the space does not end at r0, but the dilaton
becomes so large at r > r0 that the minimizing worldsheet cannot go much beyond r0.
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Figure 2.3: Left: A rectangular Wilson loop, with length T in the time direction,
and L in a spatial direction denoted x. Right: Schematic view of the worldsheet
dual to the rectangular loop, shown in the the (x, r) plane. r is the holographic
coordinate, such that the boundary is located at r = 0. The confining background
is such that the geometry ends at a finite value r = r0. We show two examples of
loop, with L� r0 and L� r0.

worldsheet extending ever deeper in the bulk, so that the area law (2.1.16) is not obtained
and the background is deconfined.

One way of constructing confining backgrounds is to compactify one of the spatial di-
rections of the boundary [107]. The simplest example is given by the AdS soliton geometry
[114], which can be obtained from the Euclidean AdS black-hole (2.1.12) by Wick rotating
one of the spatial coordinates into a new Lorentzian time x1 → it

ds2 =
`2

r2

(
f(r)−1dr2 + f(r)dt2E − dt2 + dx2

2 + dx2
3

)
. (2.1.17)

The geometry described by (2.1.17) ends smoothly at r = rH , which implies that the dual
QFT is confining. rH is not interpreted in terms of a temperature anymore, but rather as
the confining scale of the boundary theory.

The boundary theory dual to the AdS soliton geometry shows an interesting behavior
in the IR. To see this, remember that the Euclidean black hole (2.1.12) is dual to the SYM
theory, defined on a Euclidean space with one compact coordinate of size proportional
to rH . In the low energy limit, at distances much larger than rH , this theory becomes
effectively 3-dimensional. Furthermore, if the boundary conditions for the fermion fields
of the SYM theory are chosen to be anti-periodic along the compact direction, then the
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spin 1/2 fields acquire a mass proportional to r−1
H . The scalar fields can also be shown

to acquire a mass due to quantum effects, whereas only the SU(N) gauge fields remain
massless. As a result, the low energy limit of the theory dual to the Euclidean black hole
corresponds to the Yang-Mills theory in three Euclidean dimensions. By performing the
analytic continuation x1 → it, we see that, at low energy, the dual of the AdS soliton
(2.1.17) reduces to (large N) Yang-Mills in (2+1) dimensions. This observation is the basis
for the construction of the top-down holographic QCD model that is discussed in the next
section.

2.2 The Witten-Sakai-Sugimoto model

We introduce in this section an explicit top-down construction of a holographic QCD model,
known as the Witten-Sakai-Sugimoto (WSS) model. This model can reproduce a large
amount of known properties of QCD with very few parameters. In addition to reviewing
the successes of the holographic approach to QCD, the presentation of this model will also
help understanding some aspects of the V-QCD framework that was used in this work.
The latter is discussed in the next section.

The glue sector of the WSS model is designed to behave as the four-dimensional Yang-
Mills theory at low energy. In analogy with the AdS soliton (2.1.17), this can be obtained
by compactifying one of the spatial directions of the five-dimensional SYM theory [107],
with supersymmetry-breaking boundary conditions around the circle. The gravitational
dual to this construction can be computed in string theory, along the same lines as for the
four-dimensional SYM [115]. The resulting ten-dimensional metric may be written as

ds2 =

(
U

R

) 3
2 (
ηµνdxµdxν + f(U)dτ2

)
+

(
R

U

) 3
2 (
f(U)−1dU2 + U2dΩ2

4

)
,

f(U) ≡ 1− U3
KK

U3
, (2.2.1)

where the holographic coordinate U extends from the boundary at U = ∞, to a finite
value UKK where the geometry smoothly ends. The geometry depends on two dimensionful
parameters: UKK and the radius of curvature R, which determine the periodicity of the
compact coordinate τ

τ ∼ τ +
2π

MKK
, MKK ≡

3

2

U
1/2
KK

R3/2
. (2.2.2)

As expected from the field theoretic picture, the boundary theory dual to (2.2.1) has a
phenomenology close to that of Yang-Mills. In particular, the fact that the geometry ends
at a finite value of U implies confinement and a discrete spectrum of normalizable modes,
which is identified as the glueball spectrum. The masses of the glueballs were even found to
be in rather good agreement with the results of lattice QCD [116, 117]. However, since the
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boundary theory possesses a single scale MKK, the glueball masses are of the order of MKK,
which is also the scale at which the Yang-Mills picture breaks down. As a consequence, the
low energy spectrum contains, in addition to the glueballs, all the Kaluza-Klein modes that
arise from excitations along the compact dimension [118]. Another important difference
with the actual Yang-Mills theory, is that the model does not exhibit any sort of asymptotic
freedom, since the four-dimensional Yang-Mills coupling is simply a constant.

2.2.1 Adding flavor

Despite the limitations that we mentioned, the phenomenological successes of the holo-
graphic Yang-Mills model described above gave an incentive to develop it further, so as
to get closer to QCD. In particular, QCD possesses, in addition to the glue part, a flavor
sector with matter in the fundamental representation of the gauge group (the quarks). For
massless quarks, the theory exhibits a global chiral symmetry group U(Nf )L × U(Nf )R,
where Nf is the number of flavors. Then, according to the holographic dictionary (see
section 2.1), the gravitational dual of a theory containing a massless flavor sector should
include a U(Nf )L × U(Nf )R gauge theory. The flavor sector is therefore implemented by
adding (flavor) D-branes in the bulk [119, 120], whose low energy dynamics are well known
in string theory to be described by U(N) gauge theories.

In the WSS model [121], the specific set of D-branes that realizes the flavor sector is
given by an ensemble of Nf coincident D8-branes, paired with Nf anti-D8-branes (D8-
branes). Those branes are nine-dimensional objects that are taken to be localized in the
compact dimension, where the branes and anti-branes are separated by a finite distance
L (see figure 2.4). The D8 generate the left-handed group U(Nf )L, and the D8 the right-
handed one U(Nf )R.

The vacuum of the boundary theory with the quarks will then be dual to the solution
of the bulk equations of motion including the D-branes. The general bulk solution where
the branes back-react on the geometry is not known, but the problem simplifies in the
quenched limit

Nf � Nc . (2.2.3)

In this limit, the branes can be treated as probes on the glue geometry (2.2.1), and their
dynamics solved on this fixed background.

The general solution for the brane configuration depends on the separation L between
the branes and anti-branes at U →∞. The solution turns out to be trivial in the antipodal
case L = πM−1

KK, meaning that the separation between the branes along the compact
coordinate τ does not depend on U [121]. Even so, the shrinking of the compact dimension
in the interior implies that the proper distance between the branes decreases, until they
merge at U = UKK (see figure 2.4). The consequence of this merging is that, instead of
U(Nf )L × U(Nf )R, the chiral group reduces in the IR to the diagonal subgroup U(Nf )V .
Therefore, the WSS model realizes geometrically the spontaneous breaking of the chiral
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Figure 2.4: A sketch of the flavor branes’ configuration in the confining geometry
of the WSS model, in the (τ, U) subspace. We show the case of antipodal branes,
which merge at the point where the geometry ends U = UKK.

symmetry in the QCD vacuum. Note that the picture is analogous for general L, except
that the branes merge earlier, at U0 > UKK.

Apart from the spontaneous chiral symmetry breaking, the WSS model is succesful in
reproducing several aspects of the mesonic properties of QCD. These include the structure
of the chiral Lagrangian, the QCD chiral anomalies, and the meson spectrum, which was
found to be in reasonable quantitative agreement with experimental data [121]. As part of
the successes regarding the spectrum, the model reproduces the Witten-Veneziano formula
[122, 123] for the mass of the η′ meson in the large N limit. The meson interactions that
are computed from the WSS model were also shown to compare well with data [124]. In
particular, the model exhibits vector meson dominance in various sectors, including for
the electromagnetic form factor of the pion. Note that this last property is common to all
proper holographic models.

To give a credible account of the IR physics of QCD, the spectrum of the model should
include all the types of hadrons. That is, in addition to the glueballs and mesons, baryon
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states should also appear. In the next section, we discuss how baryons are realized in the
WSS model. Studying this concrete example gives a good idea of the basic properties that
are expected of baryon solutions in holography. We will also identify clearly what are the
specificities of the WSS baryon.

2.2.2 Holographic baryons

Baryon states are realized in holography as solitonic configurations of the bulk theory
[125, 126], which realizes the intuition from large Nc QCD [127]. In the WSS model, the
baryonic soliton corresponds to an instanton for the chiral U(Nf ) gauge fields AM , which
are the holographic dual of the (boundary) QCD chiral currents. Note that there is a
single remaining (unbroken) gauge group U(Nf ) since the two stacks of branes merge into
a single object in the IR, as shown on figure 2.4. The action that describes the dynamics
of the gauge field in the bulk is given by the low energy effective action of the flavor D-
branes. The latter contains a quadratic Yang-Mills part and a topological Chern-Simons
(CS) term, which may be written as

S = SYM + SCS , (2.2.4)

SYM = − λNc

216π3UKK

∫
d4xdzTr

(
1

2
h(z)F 2

µν +
9U3

KK

4R3
k(z)F 2

µz

)
, (2.2.5)

h(z) ≡
(

1 +
z2

U2
KK

)− 1
3

, k(z) ≡ 1 +
z2

U2
KK

, (2.2.6)

SCS =
Nc

24π2

∫
Tr

(
A ∧ F 2 − i

2
A3 ∧ F − 1

10
A5

)
, (2.2.7)

where F is the chiral field strength and λ = g2
YMNc the ’t Hooft coupling. The integral

is over the four coordinates xµ of the flat boundary, and a new holographic coordinate z,
related to U via

z ≡ UKK

√
U3

U3
KK

− 1 sin(τMKK) . (2.2.8)

We consider the anti-podal case shown in figure 2.4, where the anti-branes are taken to sit
at τ = −(π/2MKK) and the branes at τ = (π/2MKK). This implies that z goes from −∞
on the D8, to +∞ on the D8, being equal to 0 at the point where the space ends.

The instanton dual of the baryon state is a solution of the bulk equations of motion for
the action (2.2.4), with unit instanton number

1

8π2

∫
d3xdzTr

(
F ∧ F

)
= 1 . (2.2.9)
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The integral in (2.2.9) is over the four-dimensional Euclidean space spanned by the holo-
graphic coordinate z and the three spatial directions of the boundary xi. To discuss the
properties of the instanton solution, it is useful to first consider the case of a flat geometry,
corresponding to h(z) = k(z) = 1 in (2.2.5). In that case, the non-abelian structure of the
instanton solution would be given by the standard BPST instanton, in an SU(2) subgroup
of the full U(Nf ) chiral group

AM (~x, z) = −i ξ2

ξ2 + ρ2
g∂Mg

−1 , (2.2.10)

where ρ is the instanton size, and ξ the distance to the center of the solution

ξ ≡
√

(~x− ~X)2 + (z − Z)2 , (2.2.11)

( ~X,Z) being the position of the instanton in the four-dimensional Euclidean space. g is
an SU(2) matrix given by

g(~x, z) =
1

ξ

(
(z − Z)− i(~x− ~X).σ

)
, (2.2.12)

where ~σ = (σ1, σ2, σ3) contains the Pauli matrices.
If the instanton does indeed describe a baryon, it should also source the abelian part of

the gauge field ÂM , which is dual to the baryon number current. This is realized via the
CS part of the action (2.2.7), which includes a Coulomb interaction between the abelian
gauge field and the instanton density

SCS ⊃
Nc

64π2
εMNPQ

∫
d4xdz Â0Tr

(
FMNFPQ

)
. (2.2.13)

With this coupling, the solution for the abelian gauge field sourced by the instanton can
also be computed exactly in the flat limit

Â0(~x, z) =
96π3

λ

R3

U2
KK

1

ξ2

[
1− ρ4

(ρ2 + ξ2)2

]
. (2.2.14)

Apart from the position of the center, the size of the instanton ρ is the only parameter of
the solution (2.2.10) and (2.2.14). In absence of the coupling to the electric field Â0, it
is well known that the scale invariance of the classical Yang-Mills theory implies that all
the sizes give a possible solution. However, the coupling to Â0 breaks the scale invariance
of the action, so that solutions of different sizes have different energies. In flat space, the
energy of a solution of size ρ goes as

Eflat(ρ) = M0 +
Ê

ρ2
, (2.2.15)
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with M0 and Ê two positive constants. So the true solution that minimizes the energy is
such that ρ → ∞, meaning that the coupling to the electric field destroys the instanton
solution.

The geometry (2.2.1) on which the WSS instanton is defined is not flat, which implies
that the solution is different from the BPST instanton. Qualitatively, the instanton tends
to shrink due to the space-time curvature. This gives a competing effect with the Coulomb
repulsion (2.2.15), resulting in an instanton of definite finite size. The solution on the curved
background cannot be derived exactly, but it turns out that the size of the instanton ρ is
much smaller than the bulk radius of curvature R at large ’t Hooft coupling

ρ

R
∼ λ− 1

2 � 1 . (2.2.16)

In these conditions, the instanton is well approximated by the BPST instanton (2.2.10)
and (2.2.14), as long as we consider distances to the center much smaller than λ1/2ρ. Then,
the energy of the solution can be computed exactly up to order O(λ0), which results in an
expression of the form

E(ρ, Z) = M0

[
1 +

1

λ

(
Egλρ

2 +
Ê

λρ2
+ Eg,ZZ

2

)
+O(λ−2)

]
. (2.2.17)

The first term M0 ∼ λNc is the mass of the BPST instanton, which gives the leading order
contribution to the classical part of the baryon mass at λ� 1. The terms at order O(λ0)
give the dependence of the energy on the parameters of the solution. The gravitational
contribution which favors small instantons is given by the term proportional to ρ2, whereas
the term that goes as ρ−2 comes from the Coulomb repulsion. From the point of view of the
boundary theory, the gravitational term is interpreted as the effect of the confining strong
force (recall that the glue sector of the theory is dual to the geometry (2.2.1)). As for the
Coulomb repulsion, it simply implements the fact that higher baryon densities result in
higher energies.

Note that the background curvature has another effect, that corresponds to the Z2

term in (2.2.17). The latter implies that the baryon solution should sit at z = 0, that is
at the point where the geometry caps off. The four-dimensional translational invariance of
the BPST instanton is thus broken in the holographic direction, but remains intact along
the boundary directions.

Most of the properties of the WSS baryon solution are expected to be common to other
holographic models of QCD:

� The boundary baryon state is dual to an instanton configuration of the chiral gauge
fields in the bulk;

� The gravitational attraction makes the instanton shrink, whereas the Coulomb re-
pulsion from the topological Chern-Simons term makes it inflate. The competition
of the two effects results in a finite size for the baryon;
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� The baryon tends to fall towards the IR region (the interior of the geometry) due to
the background curvature.

However, the fact that the baryon size is parametrically small at large ’t Hooft coupling
λ is a specificity of the WSS model. On the one hand, this property is very handy for
computing the baryonic properties, since at leading order in λ−1, the solution is equivalent
to the flat space BPST instanton. On the other hand, it implies that the baryon size is
much smaller than the confining scale M−1

KK, which clashes with the expectation from QCD.
Despite this issue with the baryon size, the WSS model was shown to be quite succesful

in reproducing QCD data in the baryonic sector as well. These include the mass splittings
in the baryon spectrum [128], but also static properties [129], including some nucleon flavor
form factors and baryon-meson vertices. Those observables turn out to be independent of
λ: apart from the zero-point energy, the spectrum is determined by the order O(λ0) term
in (2.2.17), and the relevant size in the flavor form factors is controlled by the mass of the
rho meson rather than the instanton size.

However, the main limitation of the WSS model for baryons is that some baryonic
observables do depend on λ. These include mainly the zero-point energy M0 ∼ λMKK,
which is parametrically larger than the confining scale, and the gravitational form factors
(the matrix elements of the stress-energy tensor). This shortcoming of the WSS model is
a consequence of the fact that the ’t Hooft coupling λ appears as a parameter of the low
energy theory. That is, the dimensional transmutation from λ to MKK is not realized, and
some hadronic scales end-up depending on λ in addition to MKK.

In summary, the WSS model gives an elegant top-down construction of a holographic
theory which contains many properties in common with QCD. The glue sector is dual to the
bulk geometry, and the flavor sector to probe D-branes. Apart from the number of colors
Nc, the model contains only two parameters: the ’t Hooft coupling λ and the mass scale
MKK

6. The theory exhibits confinement, spontaneous breaking of the chiral symmetry,
and its spectrum contains all the types of hadrons, with properties that are mostly in quite
good agreement with experimental or lattice data (with two parameters!). However, the
model also has several limitations. Apart from the fact that the results are valid only at
leading order in the large Nc limit (which is common to all holographic models), these
include:

� The absence of separation between the UV cut-off of the four-dimensional description
and the confining scale, both of which are given by MKK . As a consequence, the
glue sector does not exactly correspond to the Yang-Mills theory in four-dimensions;

6Above, we focused on the case of anti-podal branes, but the brane separation L can be consid-
ered as an additional parameter of the model.

41



� The trivial RG flow of the four-dimensional ’t Hooft coupling λ, and the fact that it
appears as a parameter of the low energy theory;

� The fact that the embedding of the flavor branes can only be computed in the
quenched approximation Nf � Nc, where the back-reaction on the geometry is
negligible;

� A point that was not mentioned above: the bifundamental “tachyon” field dual to
the quark bilinear operator ψ̄ψ is non-local [132]. As a consequence, it is hard to
implement a finite quark mass in the model7. In the WSS model, the tachyon field
arises as the low energy excitations of open strings that connect the branes to the
anti-branes. Because the branes are separated along the compact direction τ , those
strings are stretched to a macroscopic size L ∼M−1

KK.

In the next section, we present the holographic model that was used in this work. This
so-called Veneziano-QCD (V-QCD) model is the most complete framework for holographic
QCD, which is able to overcome all the limitations of the WSS model mentioned above.
In particular, it makes it possible to implement the back-reaction of the flavor sector on
the glue sector, which is crucial for our present purpose of investigating the properties of
dense QCD matter.

2.3 The bottom-up V-QCD framework

In this section, we will introduce the (semi-)bottom-up V-QCD framework that was used
in this work. Until now, the holographic models that we have been considering were top-
down models. That is, models where the holographic dual of the strongly coupled QFT
is given by an explicit construction in string theory. However, the bulk theory that we
ended up dealing with in the large N and strong coupling limit, reduced to a classical
theory of gravity and other fields (such as the WSS gauge field), defined on a specific five-
dimensional geometry. From this observation, the philosophy of the bottom-up approach is
to start directly from a five-dimensional classical theory, whose field content is determined
from the holographic dictionary. The action that determines the dynamics of the bulk
fields may then be written in terms of low energy parameters, in the spirit of effective
field theory. As we will see, the V-QCD action builds up on the successes of the top-down
models, in particular the WSS model, by using an ansatz qualitatively similar to the low
energy actions that arise in string theory. In that sense, V-QCD should be considered as a
semi-bottom-up model, as it satisfies all the qualitative properties implied by string theory
(unlike many other bottom-up models).

7There are ways of improving the model to include quark masses [130, 131, 132, 129, 133], but
explicit calculations can only be done perturbatively in the quark mass.
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The cost of considering a bottom-up approach is that the UV completion of the bulk
theory is not known (although we have some intuition of the underlying string theory
[134]), and the low energy theory that is built typically contains more parameters than
the top-down models. Also, the exact form of the boundary QFT is not known. However,
it is the best approach to tailor a theory as close as possible to QCD8. Indeed, starting
from the holographic dictionary ensures that the boundary operator algebra contains the
main operators that are important for the low energy dynamics of QCD. In particular, the
tachyon field dual to the quark bilinear ψ̄ψ, which is difficult to include in top-down models,
is naturally part of the bottom-up bulk theory. Also, imposing the number of flavors Nf

to be of the same order as the number of colors Nc, does not require to solve complicated
brane dynamics, but simply the back-reaction of the flavor fields on the metric.

The physics of the V-QCD model has been analyzed in various phases, showing good
agreement with QCD data where it is available. The structure of the confining and chirally
broken vacuum has been derived, both at zero quark mass [150] and finite quark mass [160],
and at finite θ-angle [166]. The spectra of the mesonic excitations at zero temperature was
shown to be discrete and gapped (modulo the pions) [161], with linear trajectories for the
radial excitations m2

n ∼ n. Moreover, it has been shown that the V-QCD potentials can be
fitted efficiently to experimental data for meson spectra, with accuracies better than 10%
for most of the states [162].

V-QCD has also been studied at finite temperature T [163] and quark number chemical
potential µq, when ignoring the baryonic states [164]. The structure of the phase diagram
in the (T, µq) plane was shown to exhibit chiral and deconfining9 phase transitions, where
the critical temperature Tc(µq) decreases with the chemical potential, and vanishes at some
critical value µc. The thermodynamics at µq = 0 was also computed, and shown to compare
well with lattice results [165].

Having exposed the motivation for its construction, as well as its successes thus far,
we will now proceed to reviewing the V-QCD model. As mentioned above, V-QCD is a
bottom-up, five-dimensional holographic model for QCD with Nc colors and Nf flavors,
which captures both glue and flavor dynamics, i.e. the flavor sector is fully backreacting.
The holographic description in terms of a 5-dimensional theory is assumed to be valid in
the Veneziano large-N limit,

Nc, Nf →∞, x ≡ Nf

Nc
and λt ≡ g2

YMNc finite , (2.3.1)

8As we will explain below, the convenient approach in practice is to first tailor the glue sector
of the theory to the properties of Yang-Mills, and then tailor the full theory with flavors to QCD.
This is also described in more detail in section 3.2.2.

9It is well known that there is no order parameter for confinement in QCD, when quarks are
taken into account. However, in the large N limit, the confined and deconfined phases can be
distinguished by the scaling of the free energy in the number of colors. The free energy is of order
O(1) in the confined phase, whereas it is of order O(N2

c ) in the deconfined phase.
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where gYM is the Yang-Mills coupling.
The holographic model consists of a five-dimensional bulk theory whose dynamical fields

are in one-to-one correspondence with the lowest-dimensional gauge-invariant operators in
QCD. These are:

1. The five-dimensional metric gab, dual to the stress-tensor;

2. A scalar field λ (the dilaton) dual to the operator TrFµνF
µν (where Fµν is the Yang-

Mills field strength) and encoding the running ’t Hooft coupling;

3. A set of U(Nf )L ×U(Nf )R non-Abelian gauge fields, denoted LM , RM , dual to the

chiral flavor currents J
(L)
µ , J

(R)
µ , whose matrix elements are:(

J(L)
µ

)i
j

= q̄iLγµqL j ,
(
J(R)
µ

)i
j

= q̄iRγµqRj i, j = 1 . . . Nf , (2.3.2)

where qL/R i are the left-handed and right-handed quarks in the fundamental repre-
sentation of U(Nf )L,R;

4. An Nf × Nf complex scalar field matrix T ij (the tachyon) in the bi-fundamental

representation of U(Nf )L × U(Nf )R, dual to the quark bilinear q̄iRqL j .

All the above operators have dimension 4 or smaller. To those, one can add the Yang-Mills
instanton density Tr(F ∧ F ), which describes the CP-odd sector of QCD, related to the θ
angle. The CP-odd sector has been analyzed in V-QCD [166], but for the present purpose
we can as well consider that the θ angle is experimentally constrained to be less than 10−10,
and set it to zero.

The bottom-up nature of the model then resides in truncating the spectrum to the
low-dimension operators listed above10, and writing a phenomenological action describing
the dynamics of the corresponding bulk fields. The general structure of the action is
obtained from string theory. It involves a few a priori unknown functions of the scalars T
and λ, whose relevant features are fixed by a mixture of theoretical and phenomenological
motivations.

The five-dimensional action for the bulk fields takes the following form:

SV−QCD = Sg + SDBI + SCS . (2.3.3)

The first term Sg depends on the color sector alone, while the second and third terms
describe the coupled flavor-color degrees of freedom. SDBI is a Dirac-Born-Infeld-type

10The criterium for the truncation is actually not only given by the dimension of the operators.
There are other operators of dimension less than 4 that are not taken into account, such as ψ̄[γµ, γν ]ψ
or the traceless part of Tr(FµνFρσ). Those operators are ignored because they are expected to be
dual to massive higher excitations of strings, due to their higher tensor structure.
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action which contains the kinetic terms of the tachyon and gauge fields, whereas SCS is a
generalized Tachyon-Chern-Simons action whose role is crucial to correctly recover chiral
anomalies. If we think of this model as originating from a (non-critical) string theory,
then the color action describes the low-energy effective theory of closed string fields, while
the DBI and Tachyon-Chern-Simons actions describe the open string sector living on the
world-volume of Nf pairs of space-filling D4-branes and anti D4-branes. Below we shall
describe in more detail the first two terms in the action. The construction of the TCS term
is part of the results from the work carried out in this thesis, so it will be discussed later,
in section 3.1.3.

The action Sg in (2.3.3) gives a holographic description of the pure glue sector in terms
of the Einstein-dilaton theory of the fields λ and gMN . It has the form:

Sg[g, λ] = M3N2
c

∫
d5x
√−g

[
R− 4

3λ2
gMN∂Mλ∂Nλ+ Vg(λ)

]
, 0 < λ < +∞. (2.3.4)

This is the action for the five-dimensional Improved Holographic QCD (IHQCD) holo-
graphic model for pure Yang-Mills theory [145]. The UV regime of the theory corresponds
to the small-λ region, and the IR is reached as λ → +∞. The dilaton potential Vg(λ) is
chosen in such a way that it allows for a logarithmically running coupling constant in the
UV, leads to color confinement (i.e. a Wilson loop area law) and has a qualitatively correct
glueball spectrum. These requirements fix the large-λ and small-λ behavior of Vg(λ) as
follows [145].

For small λ, one requires an analytic behavior of the glue potential:

Vg(λ) =
12

`2g

[
1 + Vg,1λ+O(λ2)

]
, λ→ 0 . (2.3.5)

The leading term in the expansion ensures that the model admits an asymptotically AdS5

solution with AdS length `g and with λ→ 0 as one approaches the boundary. The second
term ensures that λ (identified with the running ’t Hooft coupling in the UV) has the
correct perturbative running, and the coefficient Vg,1 is fixed by matching the first β-
function coefficient of four-dimensional Yang-Mills. Similarly, higher-order terms in the
expansion (2.3.5) can be fixed by matching higher-order β-function coefficients.

For large λ, matching the expected qualitative behavior of Yang-Mills at low-energy
requires [145]:

Vg(λ) ∼ λ4/3(log λ)1/2 , λ→ +∞ . (2.3.6)

With this asymptotics, the Wilson loop follows an area law. Moreover, the model has a
discrete spectrum of glueball excitations, with masses mn obeying Regge-like asymptotics
m2
n ∝ n, both in the scalar and in the tensor sectors.

We now come to the DBI part of the action, the second term in (2.3.3). In most of the
previous works in the context of V-QCD [150, 151, 156, 157, 160, 161, 163, 164, 166], only
the Abelian vector part of the gauge fields was relevant, and moreover the tachyon matrix
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was restricted to be the identity matrix times a real function τ . These assumptions apply
when considering homogeneous solutions (the vacuum, or a thermal equilibrium state) and
neglecting quark mass differences. In this case the DBI action reduces to an action for a
single Abelian gauge field and a real scalar τ . For illustrative purposes, we first present
this simplified version of the DBI action, because it already contains the phenomenological
potentials which characterize the model. The full DBI action including the non-Abelian
structure will be presented in section 3.1.2.

The simplified DBI action was taken to be of the form, [138, 150]:

SDBI,simpl[gab, λ, τ, vM ] = −M3NcNf× (2.3.7)

×
∫
d5xVf (λ, τ)

√
−det (gMN + κ(λ)∂Mτ∂Nτ + w(λ)FMN ) ,

where the field τ is defined by the tachyon ansatz

T ij = τδij , τ ∈ R , (2.3.8)

and FMN is the field strength of the vector U(1) gauge field vM , defined such that:

(LM )ij = (RM )ij = vMδ
i
j , i, j = 1 . . . Nf . (2.3.9)

The form of the action (2.3.7) is modeled after the Abelian form of Sen’s DBI action
for unstable D-branes [159], which governs top-down holographic models of flavor that
incorporate chiral symmetry breaking (such as the WSS model discussed in the previous
section). Lacking a top-down description, the phenomenological character of the DBI
action (2.3.7) is encoded in three functions of the scalars Vf (λ, τ), κ(λ), w(λ), which affect
both the flavor dynamics and its interaction with color. These functions are constrained
by consistency and phenomenological requirements, which are discussed in detail in [161]
and that we summarize below11.

� Vf (λ, τ) controls the overall effect of flavor over the color background, and it is
crucial (for example) for the correct description of chiral symmetry breaking. More
specifically, we assume that, at large values of τ , it behaves asymptotically as:

Vf (λ, τ) ∼ e−a(λ)τ2
, τ → +∞ , (2.3.10)

with a(λ) > 0. The behavior (2.3.10) is modeled after Sen’s action for unstable
D-branes, and it implies that as τ → ∞ the space-filling flavor branes disappear
[159, 138].

11The functions κ and w can in principle also depend on the tachyon field. We shall not consider
such a dependence in this work.
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� The effective scalar potential including the DBI contribution is

Veff (λ, τ) = Vg(λ)− Nf

Nc
Vf (λ, τ) . (2.3.11)

As τ → ∞, chiral symmetry is broken, the flavor sector decouples due to (2.3.10)
and Veff (λ) reduces to Vg(λ). On the other hand, for τ = 0 (which corresponds to
the UV), the effective dilaton potential contains a flavor contribution:

Veff (λ, τ = 0) = Vg(λ)− Nf

Nc
Vf,0(λ) , Vf,0(λ) ≡ Vf (λ, 0) . (2.3.12)

At small tachyon, the flavor potential Vf follows an expansion of the form:

Vf (λ, τ) = Vf,0(λ)
[
1− â(λ)τ2 +O

(
τ4
)]

. (2.3.13)

� For the correct UV behavior, all functions of λ have a regular power-law expansion
in λ around λ = 0, similar to the one of Vg in (2.3.5):

Veff (λ, τ = 0) = V0

[
1 + V1λ+O(λ2)

]
,

Vf,0(λ) = W0

[
1 +W1λ+O(λ2)

]
,

κ(λ) = κ0

[
1 + κ1λ+O(λ2)

]
, λ→ 0 , (2.3.14)

w(λ) = w0

[
1 + w1λ+O(λ2)

]
,

â(λ) = 1 + a1λ+O(λ2) ,

where W0, κ0 etc. are constants. The UV AdS length is now given by the effective
potential (2.3.11) evaluated at λ = 0, τ = 0:

12

`2
=

12

`2g
− xW0, (2.3.15)

where `2g was defined in (2.3.5) and x in (2.3.1). The other expansion coefficients are
fixed by matching the UV behavior of the QCD operators (dimensions, two-point
function normalization, etc.).

� In the IR regime, thermodynamics and the qualitative features of the meson tra-
jectories constrain the large-λ behavior of the functions Vf,0(λ), κ(λ) and w(λ). In
particular, qualitatively consistent results are obtained if we assume that, to leading
order as λ→ +∞ :

Vf,0 ∼WIRλ
vp , κ ∼ κIRλ−4/3(log λ)1/2, w ∼ wIRλ−4/3(log λ), a ∼ aIR,

(2.3.16)
where WIR, κIR, wIR, aIR and vp are constants, and 4/3 < vp < 10/3.
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2.3.1 Vacuum solution

The Poincaré-invariant vacuum of the dual field theory is described by a bulk solution to
the classical field equations in which all the gauge fields are set to zero. Assuming that the
quark mass matrix is proportional to the identity12, the solution is characterized by the
three functions A(r), λ(r) and τ(r):

ds2 = e2A(r)
(
dr2 + ηµνdx

µdxν
)
, λ = λ(r), τ = τ(r) . (2.3.17)

Here, r is the holographic radial coordinate, and xµ , µ = 0 . . . 3 are identified with the
coordinates of 4d Minkowski space-time, on which the dual field theory is defined.

With the gauge fields identically zero, the TCS action does not contribute to the field
equations, and the Poincaré-invariant solution (2.3.17) is completely determined by the
first two terms in (2.3.3).

While in general the equations of motion have to be solved numerically, the asymptotic
behavior of the solution in the UV and IR can be obtained analytically and it is fixed by
the asymptotic behavior of the potentials discussed in the previous section. Below, we give
a review of the asymptotics of the V-QCD vacuum solution. These results are necessary
to understand the boundary conditions satisfied by the baryon solution that is analyzed in
the next chapter.

UV asymptotics. The region of the geometry corresponding to the UV of the dual
field theory is the region where eA → +∞ and λ → 0 [145]. If the radial coordinate is
chosen as in (2.3.17), this region corresponds to the limit r → 0, and one finds (see e.g.
[145, 161]):

A(r) = − log
(r
`

)
+

4

9 log(rΛ)
+O

(
1

log(rΛ)2

)
, (2.3.18)

λ(r) = − 1

V1

8

9 log(rΛ)
+O

(
1

log(rΛ)2

)
, (2.3.19)

1

`
τ(r) = mr(− log(rΛ))c

(
1 +O

(
1

log(rΛ)

))
+ Σ r3(− log(rΛ))−c

(
1 +O

(
1

log(rΛ)

))
. (2.3.20)

In the equations above, ` is the AdS length, V1 is the first subleading coefficient in the
effective potential (see equation (2.3.14)), and Λ, m and Σ are integration constants of the
field equations. In terms of the dual field theory, Λ is a scale which measures the breaking of
conformal invariance in the UV (it is the holographic manifestation of the QCD scale); m is

12This implies that the quark masses are all the same.
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the quark mass13 and Σ is the quark condensate. The independent leading and subleading
terms in the tachyon expansion correspond to a field theory operator of dimension ∆ = 3,
with the extra logarithm reproducing the QCD mass anomalous dimension. The exponent
c is determined by the O(λ) terms in the expansions of the potentials (2.3.14), see [161]:

c =
4

3

(
1 +

κ1 − a1

V1

)
. (2.3.21)

IR asymptotics The IR region of the geometry corresponds to eA → 0 and λ→ +∞,
[145]. In the chiral symmetry breaking solution (for which τ 6= 0) the tachyon also diverges
in this limit [150]. With the glue potential behaving as in (2.3.6), the IR is found in the
limit r → +∞, and we have [145, 150]:

λ(r) = e
3r2

2R2 +λc
(
1 +O

(
r−2
))
, (2.3.22)

eA(r) =

√
r

R
e−

r2

R2 +Ac
(
1 +O

(
r−2
))
, (2.3.23)

τ(r) = τ0

( r
R

)Cτ (
1 +O

(
r−2
))
. (2.3.24)

Here, Cτ , Ac, and λc are constants determined by the asymptotics of the various potentials
(2.3.14) and (2.3.15), and the first of these constant must obey Cτ > 1; R and τ0 are
integration constants which are (implicit) functions of the integration constants appearing
in the UV. In particular, R plays the role of the non-perturbative IR scale of the theory.

13Recall that we are assuming a quark mass matrix proportional to the identity.
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Chapter 3

The V-QCD baryon

Baryon bound states are difficult to describe quantitatively in terms of quarks and gluons.
In the large-N limit however, [127], they have a nice description as solitons of the effective
chiral theory, [139, 140]. This theory, beyond the ad-hoc higher derivative term introduced
by Skyrme to stabilize the solitons, contains a topological term that is crucial for making
the solitons fermions in the case of Nc odd, [140]. Once the quarks are coupled to external
sources that are flavor gauge fields, this topological part of the action becomes gauged and
reproduces the well-known flavor anomalies, [140, 141, 142].

The issue of flavor anomalies and the associated topological terms, is an important
ingredient of the low-energy dynamics of QCD. In the effective chiral Lagrangian, such
terms emanate from Witten’s five-form topological term, [140], whose quantized coefficient
is given by the number of colors, Nc. Such a term is written as a five dimensional (topo-
logical) integral over a five-manifold with a single boundary which is identified with the
four-dimensional spacetime on which QCD is defined. Once the theory is coupled to vec-
tor sources Lµ, Rµ for the flavor currents, the Noether procedure has given eventually the
gauged WZW term, [140, 141, 142], that controls the anomalous variations of the effective
action under flavor transformations. This action must be both P and C invariant as is
expected from QCD without a θ angle1. Higher topological terms that are gauge invariant
start at six-derivatives, [167, 168] and have been analyzed up to eight derivatives [169].
However, in this context the chiral condensate and its size fluctuations are absent from the
low energy dynamics of the chiral Lagrangian.

The issue of the relevant parity-odd terms in holographic models is also diverse2. In

1The relevant P and C transformations are defined in appendix A.
2In this theory the combined parity transformation P is the product of two transformations P1

and P2 that are defined in appendix A. P2 acts in the usual way on the boundary space coordinates.
P1 acts on the fields. In most cases in holography, parity-odd refers to P2-odd in our notation, and
it always involves the Levi-Civita tensor. From now on we will be careful in specifying the type of
parity transformation we refer to, P1, P2 or P = P1P2.
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the simplest bottom-up model, the hard wall model [143], the relevant terms are five-
dimensional Chern-Simons terms involving the flavor gauge fields Lµ, Rµ. They do not
include, in particular, contributions from the quark condensate field, T , which is dual to
the quark-mass operator and controls chiral symmetry breaking. Moreover, in this simple
model, chiral symmetry breaking occurs by fiat rather than dynamically.

In the more realistic top-down model of Sakai and Sugimoto [121, 124], the topological
terms arise again from a five-dimensional Chern-Simons term that involves the (now unique)
flavor gauge field Aµ. As explained in section 2.2, the reason that the gauge field is unique
is that in the chirally broken case, the branes and antibranes fuse to a single brane and
Aµ is the left-over gauge field after the fusion. However, as it was anticipated later [170],
this Chern-Simons term is not enough to describe the physics of baryons and an extra
contribution, localized at some IR boundary on the flavor brane was added by hand [170].
Again, here the tachyon field is absent as it is a fluctuation of a non-local string.

The V-QCD theory has in general a P2-odd five dimensional Tachyon-Chern-Simons
term that is not only a functional of the flavor gauge fields, AL,Rµ but also of the (matrix-
valued) tachyon field, [138]. As already shown in [138], an analysis of a general tachyon-
dependent CS term is notoriously difficult, and this is why, in that reference, it was deter-
mined based on string theory calculations for a tachyon field that is proportional to the
identity matrix. In this work we shall go a step further and we shall assume that

T = τU (3.0.1)

where U is a unitary matrix and τ a single real field 3. Both τ and the unitary matrix U
are five-dimensional fields. With this assumption, we shall perform a comprehensive search
for the most general tachyon-dependent CS term that is compatible with all symmetry
expectations, and which reproduces the flavor anomalies of QCD. From now on we shall
call these terms the Tachyon-Chern-Simons terms or TCS for short.

The TCS term beyond anomalies is also relevant for dynamical questions. Because of
its structure, and the fact that it is proportional to the five-dimensional ε-tensor, it does
not contribute in several relatively-uniform bulk solutions. Solutions, with full Poincaré
ISO(3,1) invariance, or R×SO(3) invariance relevant at finite temperature and density are
not affected by the TCS term. In the presence of a (weak) electromagnetic field the TCS
term contributes to the two-point functions of currents, [185, 186].

In a similar spirit, it is known that the (T)CS term can mediate mixing and translational
invariance instabilities in finite density contexts, [187, 188, 189, 190], leading to spatially
modulated phases. Finally, being cubic to leading order in the flavor gauge fields, it is
important in the determination of the three point function of the flavor currents.

3A chiral rotation can transform U to the identity. It cannot however change the value of τ .
This means that flavor symmetry is broken to the diagonal vector U(Nf ) but not further, as in
the chiral limit of QCD. The most general form of the tachyon matrix would be instead T = T U ,
where T is a Hermitian matrix. If the latter is non-trivial, the tachyon matrix cannot (in general)
be brought to be proportional to the identity matrix by a L-R gauge transformation.
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Probably, the most important role of the (T)CS term so far, beyond anomalies, is in
the determination of the baryon soliton solution in the holographic context. The baryon
ansatz is sufficiently complicated so that it contributes non-trivially, in several ways. In
particular, the soliton would have the tendency to shrink to a point, but the CS term is
crucial in its stabilisation. As reviewed in section 2.2 in the context of the WSS model,
the soliton is essentially an instanton of the flavor symmetry group, and because of the
CS term it acquires a U(1)B charge. This has a dual effect. First it makes the soliton a
baryon. Second the U(1)B charge repulsion in the bulk stabilizes the soliton that would
like otherwise to collapse as it happens in simpler cases, [128, 171].

This chapter discusses the construction of the single baryon solution in V-QCD. It is
divided in two parts. In the first part, we introduce the formalism for the baryon solution,
including the construction of the TCS term, and the derivation of the appropriate baryon
ansatz. In the second part, we compute numerically the baryon solution for a specific
model in the V-QCD class. We then analyze the quantization of the collective modes of
the solution, which results in the calculation of the baryon spin-isospin spectrum. The
chapter ends with a discussion of limitations, advantages and further directions.

3.1 Tachyon-dependent Chern-Simons term and

formalism for the baryon solution

This section is based on my original work [5].

The goal in this section is two-fold:

1. To analyze the general structure of the TCS term and to understand the relevance
of different parts in dynamics and anomalies.

2. To write the appropriate ansatz of the baryon solution, to derive the equations of
motion, and to understand the boundary conditions relevant for the solution as well
as the conditions for obtaining the correct baryon number.

In this work, we fully answer these questions provided we are in the exact chiral limit.
This implies in particular that the tachyon field will be taken to have the form (3.0.1),
where τ is a real scalar function and U is a (spacetime-dependent) unitary matrix. In the
chiral limit, we are able, on the one hand, to write down the most general combination
of tachyon-dependent Chern-Simons-like terms compatible with symmetries and anomalies
of the boundary theory, and with (bulk) gauge-invariance. On the other hand, we work
out the appropriate ansatz for a cylindrically-symmetric bulk instanton which is regular,
horizonless, has finite mass and unit baryon charge with respect to the boundary theory,
and is therefore the candidate for a single-baryon state in V-QCD.
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3.1.1 Summary

In order to make our main results more directly accessible, we start the discussion by giving
a brief summary of the contents of this section.

CS terms

We call the TCS part of the bulk action anything which is written as a bulk integral of a
five-form,

SCS =
iN2

c

4π2

∫
bulk

Ω5 (3.1.1)

where the normalization is chosen for convenience. We assume4 that Ω5 may depend only
on the flavor sector fields (the tachyon modulus τ , the unitary matrix U and the flavor gauge
fields), but not on the glue sector fields (the metric and dilaton). Under this assumption,
we write the most general form Ω5 which is compatible with the discrete symmetries and
such that, under a bulk gauge transformation, the variation of (3.1.1) reduces to a UV-
boundary term which reproduces the flavor anomalies of QCD. These restrictions largely
(but not completely) fix the form Ω5. It must be the sum of three terms:

Ω5 = Ω0
5 + Ωc

5 + dG4, (3.1.2)

which have the following properties:

1. The first term Ω0
5 is gauge-invariant (under bulk gauge-transformations) but not

closed; it is the sum of four terms:

Ω0
5 =

4∑
i=1

fi(τ)F i5(U,FL, FR), (3.1.3)

where the fi(τ) are arbitrary functions of the tachyon modulus, and F i5(U,FL, FR)
are specific gauge-invariant five-forms which depend on U , its gauge-covariant deriva-
tive DU , and the field-strengths FL and FR of the left and right flavor gauge fields,
and are given explicitly in section 3.1.3.1. The functions fi(τ) can be constrained to
some degree if one makes further assumptions. In particular, their value at τ = 0
can be fixed by asking that in the chirally unbroken phase with trivial tachyon field
τ = 0, (3.1.1) matches the standard gauge Chern-Simons action in 5d for the left
and right gauge fields.

2. The second term in (3.1.2) is closed but not exact and it is completely fixed by the
flavor anomaly (including the overall coefficient):

Ωc
5 = − 1

60
Tr[(U †dU)5] (3.1.4)

4This assumption is dictated by string theory.
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3. The third term in (3.1.2) is written in terms of a 4-form G4, which is fixed, up to a
few arbitrary functions hi(τ). However as it only enters the action via a boundary
term, only the values at τ = 0 of hi(τ) matter, and these values are completely fixed
by the QCD flavor anomaly.

To summarize, the TCS action is parametrized by two sets of functions fi(τ) and hi(τ). The
fi(τ)’s have no effect on anomaly matching, but enter the field equations in the presence
of non-trivial gauge-field configurations; the hi(τ)’s on the other hand are irrelevant for
the dynamics, and their boundary value is fixed by anomaly matching (therefore this
description has a certain redundancy).

In order to match the flavor anomaly, we have to make a further assumption of IR
regularity on the matrix U as it usually happens in holography. This can be translated
into the requirement that the matrix U should go to constant fast enough in the IR, so
that there is no IR contributions to the on-shell action or to the anomalous variation of the
action under gauge symmetry5. The same argument (no IR contributions to the on-shell
action and anomaly) requires the functions fi(τ) and hi(τ) to vanish fast enough in the IR
(which corresponds to the limit τ → +∞ in the chirally broken phase).

The V-QCD baryon

As we mentioned earlier, the TCS action is crucial for correctly describing baryons in
holographic theories. The second part of this work is devoted to lay out the general
grounds for constructing the baryon as an asymptotically-AdS soliton solution of the bulk
theory with the following properties:

� It is time-independent and spherically symmetric with respect to the boundary spa-
tial directions;

� It is a finite-energy excited state over the QCD vacuum. This requires in particular
that all bulk fields which are turned on must have vev-like asymptotics near the AdS
boundary and must reduce to the vacuum fast enough at spatial infinity |~x| → +∞;

� It has baryon-number equal to one with respect to the boundary abelian vector flavor
symmetry U(1)B;

� It is horizonless: the baryon number is not fractionalized, i.e. it is not provided by
deconfined degrees of freedom like in a quark-gluon plasma state.

Here, we construct a bulk SU(2) instanton configuration of the U(Nf ) flavor axial
gauge fields, depending on the four directions (r, ~x) together with a nontrivial function

5This can often be rephrased more rigorously in terms of normalizable vs. non-normalizable
solutions of the field equations near the IR: one then assumes that only normalizable configurations
are physical.
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U(τ, |~x|) describing the non-abelian part of the tachyon, which satisfies all above require-
ments. We argue later that we can neglect the backreaction of the baryon fields on the
background fields (the metric, dilaton and tachyon modulus), that we take to be fixed on
the homogeneous vacuum solution6. Indeed the baryon contributes to order Nc, which is
negligible compared to N2

c and NcNf in the Veneziano limit. Specifically, the construction
involves the following steps:

1. We derive the full equations of motion for the instanton;

2. We identify the boundary conditions such that the finite-energy condition is satisfied.
The boundaries here are 1) the near-AdS region UV boundary r → 0, where the
solution should satisfy vev-like boundary conditions for all the fields; 2) the boundary
at spatial infinity |~x| → ∞, where the fields have to vanish fast enough so that one
can meaningfully describe the solution as a localized lump of finite energy in the
boundary field theory;

3. We identify suitable “regularity” conditions in the IR region of the geometry (using
both a gauge-invariant formulation, and in a Lorenz-like gauge);

4. We show that, under these conditions, the boundary baryon charge coincides with
the bulk instanton number of the solution.

The last item on this list is particularly important because it shows that baryon configu-
rations are topologically stable in the bulk.

We find that, remarkably, the derivation of the baryon number does not depend in
any manner on the non-closed part of the TCS action Ω0

5 and the corresponding TCS
potentials fi(τ) in equation (3.1.3). Rather, the generation of the baryon number and the
contribution of the CS terms to the equations of motion (responsible for the stabilization
of the baryon size) are ensured by two distinct parts of the TCS action (closed and non-
closed, respectively). Although slightly counter-intuitive, it is not a contradiction. The
reason is that the result for the baryon number simply tells us what should be the boundary
behavior of the tachyon field for NB to be non-zero (it should have a Skyrmion winding
from (D.38)). It does not guarantee that a solution with such boundary conditions exists
though. In particular, it is expected that no finite size solution should exist when Ω0

5

vanishes (fi(τ) = 0).
The rest of this section is organised as follows. The first two subsections discuss the

structure of the non-abelian V-QCD flavor action. Section 3.1.2 introduces the full DBI
action, and the expansion that we consider, whereas the form of V-QCD Tachyon-Chern-
Simons terms is determined in section 3.1.3. In section 3.1.4 we give the ansatz of the
baryon state as an SU(2) instanton of the bulk flavor sector. Then, in section 3.1.5, we

6The last requirement in the list above is trivial in this probe regime, since a horizon can only
arise if the backreaction on the metric is non-negligible.
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write the expression for the baryon energy, which generates the equations of motion for
the ansatz fields. Finally, in section 3.1.6 we discuss the boundary conditions at the UV
boundary and spatial infinity, as well as the conditions at the IR end of the bulk spacetime,
which have to be satisfied in order for the baryon to have finite energy and unit charge. In
that section we also compute the baryon charge of the solution and discuss its relation to
the bulk instanton number. Several technical details are left to the Appendix.

3.1.2 Full DBI action

The first step to investigate the V-QCD baryon solution is to determine the appropriate
form of the V-QCD flavor action used to describe its dynamics. We start here by discussing
how the DBI part of the action is treated, whereas the TCS part will be discussed in the
next subsection.

The V-QCD action was introduced in the previous chapter, section 2.3. The simplified
DBI action (2.3.7) presented there is adapted to describe the dynamics of abelian gauge
fields. However, the baryon solution has a non-trivial non-abelian stucture in the chiral
group. To analyze baryons, it is therefore necessary to work with the full DBI action,
including the non-abelian part. The full DBI action is the non-abelian generalization of
(2.3.7), in which the full matrix nature of the tachyon and of the left and right gauge fields
is explicit. It is again based on Sen’s action, deformed by the same three phenomenological
functions of the dilaton and tachyon Vf (λ, T ), κ(λ), w(λ) [150]:

SDBI = −1

2
M3Nc STr

∫
d5xVf (λ, T †T )

(√
−det A(L) +

√
−det A(R)

)
, (3.1.5)

where the symmetrized trace over the flavor indices STr is defined as

STr(M1M2 . . .Mn) =
1

n!

∑
σ∈Sn

Tr(Mσ(1)Mσ(2) . . .Mσ(n)) , (3.1.6)

for every integer n and matrices M1,M2, . . . ,Mn, with Sn the symmetric group. The
convention for the normalization of the SU(Nf ) generators is

Tr
(
t(L)
a t

(L)
b

)
=

1

2
δab , Tr

(
t(R)
a t

(R)
b

)
=

1

2
δab . (3.1.7)

The fields appearing in (3.1.5) are

A
(L)
MN ≡ gMN + w(λ)F

(L)
MN +

κ(λ)

2

[
(DMT )†DNT + (DNT )†DMT

]
, (3.1.8)

A
(R)
MN ≡ gMN + w(λ)F

(R)
MN +

κ(λ)

2

[
DMT (DNT )† +DNT (DMT )†

]
, (3.1.9)
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where FMN is the field strength for the gauge fields and the covariant derivative is such
that

DMT = ∂MT + iTLM − iRMT . (3.1.10)

The bold font indicates that the U(1) part is included in the gauge fields.

There is no simple way to express
√
−det A(L/R) though, even with the help of the

permutativity of the symmetrized trace and within the SU(2) ansatz7. In order to make
the problem tractable, in the following we consider the same kind of expansion that was
considered in [174]. That is, the DBI action is expanded up to quadratic order in the non-
abelian field strengths, where the non-abelian part of the tachyon covariant derivatives is
considered to be of the same order as the field strength. In the quadratic approximation, the
symmetrized trace can be replaced by a simple trace in the DBI action without ambiguity.

We shall work in the chiral limit, with all quark masses set to zero. In this case, in
the chirally broken phase, the flavor group is broken in the large-N limit to the diagonal
U(Nf ) subgroup [14]. This is realized in the bulk theory by considering tachyon field
configurations of the form:

T = τ U , (3.1.11)

where τ is a real scalar and U is a unitary matrix8

The quantities A(L/R) defined in (3.1.8)-(3.1.9) can be written as

A
(L)
MN = g̃

(L)
MN + w(λ)F

(L)
MN + κ(λ)τ2D(MU

†DN)U , (3.1.12)

A
(R)
MN = g̃

(R)
MN + w(λ)F

(R)
MN + κ(λ)τ2D(MUDN)U

† , (3.1.13)

where the abelian part F̂
(L/R)
MN of the field strength and the tachyon derivatives were col-

lected in an effective metric:

g̃
(L/R)
MN ≡ gMN + w(λ)F̂

(L/R)
MN + κ(λ)∂Mτ∂Nτ . (3.1.14)

As in [174], we made the simplifying assumption that the potentials w and κ depend on the
dilaton only. 2-tensor indices can be raised and lowered using the effective metric (3.1.14)
according to the following convention

MA
B =

(
(g̃(L/R))−1

)AC
MCB , M B

A = MAC

(
(g̃(L/R))−1

)CB
, (3.1.15)

where which of L or R should be used will depend on which component (L or R) of the
DBI action we are considering.

7Note however that, with the SU(2) ansatz, the computation can be done in principle at any
finite order in the non-abelian gauge fields.

8The chirally broken vacuum corresponds to a bulk solution with a non-zero profile for τ and
U = I (up to chiral transformations). This solution indeed breaks the flavor symmetry to the
diagonal U(Nf ).
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The expansion of the DBI Lagrangian up to quadratic order in the non-abelian field
strengths is then obtained from√

−det A(L) =

√
−det g̃(L)× (3.1.16)

×
(

1 +
1

2
w tr

(
(g̃(L))−1F (L)

)
+

1

2
κτ2tr

(
(g̃(L))−1D(MU

†DN)U
)

− 1

4
tr

((
(g̃(L))−1

(
wF (L) + κτ2D(MU

†DN)U
))2

)
+

1

8

(
tr
(

(g̃(L))−1
(
wF (L) + κτ2D(MU

†DN)U
)))2

+O
((

(g̃(L))−1
(
wF (L) + κτ2D(MU

†DN)U
))3

))
,

√
−det A(R) =

√
−det g̃(R)× (3.1.17)

×
(

1 +
1

2
wtr

(
(g̃(R))−1F (R)

)
+

1

2
κτ2tr

(
(g̃(R))−1D(MUDN)U

†
)

− 1

4
tr

((
(g̃(R))−1

(
wF (R) + κτ2D(MUDN)U

†
))2

)
+

1

8

(
tr
(

(g̃(R))−1
(
wF (R) + κτ2D(MUDN)U

†
)))2

+O
((

(g̃(R))−1
(
wF (R) + κτ2D(MUDN)U

†
))3

))
,

where the trace over the space-time indices is denoted by tr. The term linear in F in the
first line will vanish upon taking the (flavor) trace of the full expression. Also, as mentioned
before, the U covariant derivatives should be considered as of the same order as the field
strength. The final expression for the expansion of the DBI action (3.1.5) up to quadratic
order in the non-abelian field strength is therefore

SDBI = −M3Nc

∫
d5xVf (λ, τ2)

√
−det g̃(L)× (3.1.18)

×
[

1

2
+

1

4
κτ2

(
(g̃(L))−1

)(MN)
SMN

− 1

8
w2
(

(g̃(L))−1
)MN (

(g̃(L))−1
)PQ

TrF
(L)
NPF

(L)
QM

+
1

16
w2Tr

((
(g̃(L))−1

)[MN ]
F

(L)
NM

)2

+O
(

(F (L))3
)]
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+ (L↔ R) ,

where we defined the symmetric 2-tensor

SMN ≡ TrD(MU
†DN)U = TrD(MUDN)U

† . (3.1.19)

3.1.3 Tachyon-Chern-Simons terms

We now discuss the TCS term in the brane action, i.e., SCS in (2.3.3). The Tachyon-
Chern-Simons term arises as a part of the Wess-Zumino sector, which has been considered
in [137, 138] and adjusted in connection to V-QCD in [150, 161, 166].

The Wess-Zumino term can be derived in flat-space boundary string field theory, [182,
183, 184]. We sketch here the main points of the construction, see [138] for details. The
expression of the full WZ term is

SWZ = T4

∫
C ∧ str eiF , (3.1.20)

where T4 is the tension of the flavor D4 branes, C is a formal sum of the RR potentials

C =
∑

n(−1)
5−n

2 Cn, str denotes the supertrace as defined in [138], and F = dA− iA ∧ A
is the curvature of the superconnection

iA =

 iL T †

T iR

 (3.1.21)

in terms of the gauge fields L, R, and the tachyon T defined above. Expanding the
exponential in (3.1.20) we find four different terms

SWZ = T4

∫
C5 ∧ Z0 + C3 ∧ Z2 + C1 ∧ Z4 + C−1 ∧ Z6 (3.1.22)

where the Z2n’s are the coefficients arising from the expansion of the exponential. The terms
in (3.1.22) play different roles in QCD, [138, 134]. As the theory lives in five dimensions, the
first term contains the five-form flux under which the flavor branes are charged. The second
term is important for the correct holographic implementation of the U(1)A anomaly, [138].
The third term controls the CP-odd interactions associated with magnetic strings. Here,
we shall only discuss further the last term, which is the one important for constructing the
baryon solution.

The last term in (3.1.22) may be written as

SCS =
iNc

4π2

∫
Ω5 (3.1.23)
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where dΩ5 = Z6 and we inserted an explicit expression for the constant F0 = dC−1. F0

is the flux that is proportional to Nc and supports the bulk geometry associated with the
glue. It is the analogue of the RR five-form in the ten-dimensional AdS5 × S5 solution. In
string theory Z6 can be computed straightforwardly, but it is somewhat nontrivial to carry
out the integration to find explicitly the five form Ω5. This task was done in [138] for the
case where the tachyon is proportional to the unit matrix, T = τI.

In the rest of this section we derive a generalized expression for the TCS action, which
is the generalization of the results above to V-QCD and to the more general tachyon
configuration with a nontrivial U matrix in equation (3.1.11).

First, as we are following a bottom-up approach, there is no reason a priori to resort to
the flat space expression of the Wess-Zumino term given in (3.1.20). Therefore, we consider
a general TCS action which satisfy known constraints from the bulk gauge symmetry as well
as the anomaly structure of QCD. Second, instead of taking the tachyon proportional to
the unit matrix, we consider a more general Ansatz (already written down in section 3.1.2)

T = τU (3.1.24)

where τ is scalar and U is a generic SU(Nf ) matrix. While this Ansatz is not the most
general one, it will be sufficient for our purposes. Notice that the presence of the U matrix
allows one to write down expressions which are covariant in the full left and right handed
flavor transformations, rather than only the vectorial transformations. Moreover, the fluc-
tuations of the U field are the pions, so that U maps to the exponential exp(iλaπa/fπ) at
the boundary as the notation suggests, which makes it possible to explicitly compare to
chiral effective theory.

3.1.3.1 Constructing the Tachyon-Chern-Simons term

We proceed to the construction of the TCS action. We require that it satisfies the following
constraints (to be discussed in more detail below):

� The TCS action has the expected behavior under discrete symmetries, i.e., it is
even under both parity (P) and charge conjugation (C) whose actions are defined in
appendix A.4.

� Its variation under infinitesimal (bulk) gauge transformations is closed, dδΩ5 = 0,
and therefore integrates to a boundary term.

� The gauge transformation of the boundary term matches with the expression for the
flavor anomaly in QCD.

� When chiral symmetry is preserved, τ = 0, the result agrees with the standard CS
action for D-branes.
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� All IR contributions to observables vanish9.

In what follows, we construct the most general action satisfying these properties. De-
tails are given in Appendix D and here we only sketch the main points.

The CS action is even under P if for the simple parity operation acting on the forms (P1

in Appendix A), Ω5 is odd. The extra minus sign then comes from reversing the space-time
coordinates (P2 in Appendix A). Under the action of C on the forms, Ω5 is required to be
even. We therefore start by writing down the most general five-form which is P1 odd and
C even, where the transformation properties of the various fields are given in Appendix A.

The ansatz is given as a linear combination of all possible single-trace 5-forms composed
out of U , the gauge fields, their covariant derivatives, and the one-form dτ , with the
coefficients being functions of the only available scalar τ :

Ω5 =
45∑
i=1

f̄i(τ)F
(i)
5 [U,L,R] + dτ ∧

11∑
i=1

gi(τ)F
(i)
4 [U,L,R] (3.1.25)

The forms F
(i)
4 and F

(i)
5 are listed explicitly in Appendix D. Notice that we do not expect

dependence on the closed string sector (i.e. on the metric or dilaton) to appear in these
terms, as it happens in standard string theory.

The most drastic constraint is then the requirement that dδΩ5 = 0. After imposing
this constraint, the general solution can be written as

Ω5 = Ω0
5 + Ωc

5 + dG4 (3.1.26)

where Ω0
5 is invariant under gauge transformations and Ωc

5 is closed, so that indeed (triv-
ially) dδΩ5 = 0.

The nontrivial part of the derivation is to show that (3.1.26) is the only solution. This
is discussed in appendix D. In (3.1.26), Ω0

5 is the most general gauge covariant 5-form with
the expected eigenvalues under P and C:

Ω0
5 = f1(τ)

[
Tr(DU ∧ F(L) ∧ F(L)U †) + Tr(DUU † ∧ F(R) ∧ F(R))

]
+ f2(τ)

[
Tr(DU ∧ F(L)U † ∧DUU † ∧DUU †)
+ Tr(DUU † ∧ F(R) ∧DUU † ∧DUU †)

]
+ f3(τ)

[
Tr(DU ∧ F(L)U † ∧ F(R)) + Tr(DUU † ∧ F(R)U ∧ F(L)U †)

]
+ f4(τ)Tr(DUU † ∧DUU † ∧DUU † ∧DUU † ∧DUU †) . (3.1.27)

and depends on four arbitrary functions of τ .

9This requirement becomes non-trivial as the type of bulk geometries that are relevant are mildly
singular (but are compatible with the Gubser bound).
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The closed term Ωc
5 is completely fixed (up to exact forms which we include in G4 in

(3.1.26) ) to be
Ωc

5 = g0Tr((U †dU)5) (3.1.28)

where g0 is a constant. Lastly, G4 is a generic 4-form, i.e., a linear combination of all the
possible P1 odd and C even 4-forms:

G4 =

11∑
i=1

hi(τ)F
(i)
4 [U,L,R] . (3.1.29)

Explicit expressions for the forms F
(i)
4 can be found in Appendix D. Recall that Ω5 depends

only on the boundary value of G4 and therefore only on hi(τ = 0), so that the functional
form of hi(τ) is irrelevant for the final result, except that the functions should vanish for
τ →∞ in order to avoid undesired IR boundary terms.

The next step is to require agreement of the gauge transformation of the boundary
term with the flavor anomalies of QCD. That is, we write δΩc

5 = dδGc4 and set

δGc4 + δG4

∣∣∣
bdry

= −1

6
Tr

[
ΛL

(
(dL)2 − i

2
d(L3)

)
− (L↔ R)

]
+ d(· · · ) . (3.1.30)

where ΛL is the generator of the left-handed gauge transformation and the right hand
side encodes the flavor anomalies, see e.g. [140, 141, 138]. Notice that the contribution to
the action from the last two terms of (3.1.26) is localized on the UV boundary, because
consistency requires that IR contributions vanish. As we detail in Appendix D, the condi-
tion (3.1.30) completely fixes these terms near the boundary, and therefore also the action
from these terms is fully determined. The result for this part of the action may be written
as

iNc

4π2

∫
Ωc

5 + dG4 = − 1

60

iNc

4π2

∫
Tr((U †dU)5) +

iNc

4π2

∫
G4

∣∣∣
bdry

(3.1.31)

where

24G4

∣∣∣
bdry

=
{

2
[
Tr(L ∧ F(L) U † ∧DU) + Tr(LU † ∧DU ∧ F(L))

]
+ (3.1.32)

+
[
Tr(LU † ∧DU U † ∧ F(R) U) + Tr(LU † ∧ F(R) ∧DU)

]
+

+i
[
Tr(L ∧ LU † ∧R ∧DU)− Tr(L ∧ LU † ∧DU U † ∧RU)

]
+

+i
[
Tr(L ∧ F(L) U † ∧RU) + Tr(LU † ∧RU ∧ F(L))

]
+

+2iTr(L ∧ L ∧ LU † ∧DU)− 2Tr(L ∧ L ∧ LU † ∧RU)+

+2Tr(LU † ∧DU U † ∧DU U † ∧RU)− Tr(LU † ∧DU ∧ LU † ∧DU)+

−2iTr(LU † ∧RU ∧ LU † ∧DU)− 2iTr(LU † ∧DU U † ∧DU U † ∧DU)
}

+
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+
{
L↔ R

}
+ Tr(LU † ∧RU ∧ LU † ∧RU) .

In particular, g0 = −1/60. The explicitly L ↔ R symmetrized expression is given in
Appendix D. Notice that the last term in (3.1.32) is already symmetric. As one can check,
this expressions matches (up to a four dimensional total derivative) the Wess-Zumino terms
of chiral Lagrangians given in the literature [140, 141], see appendix D.

There is however a subtlety in the above derivation. Namely, we assumed that the
IR contributions from integrating the closed terms vanish. For the contribution from dG4

in (3.1.26) this can be easily obtained by adjusting the τ dependence of the coefficient
functions as τ → ∞. But in the Ωc

5 term, the coefficient g0 is required to be a constant,
which cannot be set to zero in the IR. Therefore an IR contribution seems unavoidable.
We solve this by requiring that the solution for U is such that the IR boundary term
vanishes. In Appendix D we argue that this is satisfied given relatively mild assumptions
on the asymptotic IR behavior of U . Such an asymptotic regularity condition for U may
be expected due to the following reason: the geometry in the confined phase ends in an
IR singularity at r → ∞, where all components of the metric vanish so that the space-
time shrinks to a single point [145, 150]. In our choice of coordinates, this single point
is seemingly described by a 4-dimensional manifold at the boundary r → ∞. At this
IR boundary, regularity conditions may be needed in analogy to spherical or cylindrical
coordinates in flat space, where the single point at the origin r = 0 is mapped to a higher
dimensional space (sphere), and regularity conditions for the angular dependence at r = 0
is required to ensure the regularity of the full solution.

More generally, even if the space-time is singular at r →∞, the holographic consistency
of models like the present one relies on considering as physical only field configurations
which vanish (or more precisely, are normalizable in a precise sense given by the radial
Hamiltonian) at the IR endpoint of space-time. Often this condition can be imposed
without having to specify extra input at the singularity (in which case we say that the
singularity is repulsive and the holographic model is calculable [145, 181]). In short, our IR
boundary conditions for holographically acceptable configurations must be such that the
term (3.1.28) does not contribute in the IR. This is satisfied in particular by the baryon
solutions we discuss in later sections.

After the boundary term has been fixed, the only free functions in our results are the
fi’s in (3.1.27). They are however not fully arbitrary: due to the requirement of vanishing
IR contributions to the action, these functions should vanish fast enough in the IR, i.e., as
τ → ∞. Moreover, the analysis of [174] suggests that the Tachyon-Chern-Simons action
should vanish faster than the DBI action in the IR.

There are also conditions at the UV boundary. For the chirally-symmetric vacuum, for
which τ = 0 and U = I, we expect that the Tachyon-Chern-Simons action should reduce
to the standard expression

SCS(τ = 0) =
Nc

24π2

∫
Tr

(
L ∧ F(L) ∧ F(L) +

i

2
L ∧ L ∧ L ∧ F(L) (3.1.33)
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− 1

10
L ∧ L ∧ L ∧ L ∧ L− (L↔ R)

)
up to boundary terms. This is the case if

f1(0) = −1

6
, f2(0) =

i

12
, f3(0) = − 1

12
, f4(0) =

1

60
. (3.1.34)

Finally, setting U = I, the TCS action reduces to that of [138] if

f1(τ) = −1

6
e−τ

2
, f2(τ) =

i

12
(1 + τ2)e−τ

2
,

f3(τ) = − 1

12
e−τ

2
, f4(τ) =

1

120
(2 + 2τ2 + τ4)e−τ

2
. (3.1.35)

That is, our result generalizes the expressions of [138] to U 6= I for these choices of the
functions. We remark that the action with this choice satisfies all the requirements dis-
cussed above. A simple generalization of these functions, which we use below, is to allow
the normalizations of the tachyon field between the DBI and TCS terms to be different.
We choose

f1(τ) = −1

6
e−bτ

2
, f2(τ) =

i

12
(1 + bτ2)e−bτ

2
,

f3(τ) = − 1

12
e−bτ

2
, f4(τ) =

1

120
(2 + 2bτ2 + b2τ4)e−bτ

2
, (3.1.36)

where b is a positive constant. It was argued in [174], within an approximation scheme for
the baryon, that regularity of the solution requires b > 1. We shall observe the same for
the baryon solutions considered in this work.

The precise functions fi(τ) here were chosen by modifying slightly the string theory
result, based on the superconnection formalism, [138]. The modification is the parameter
b inserted in the exponent. However, nothing guarantees that this is the correct choice for
QCD. More constraints on these functions should be derived in order to fix their form.

The TCS terms we have constructed, are written in terms of τ and U separately. This
is general enough, if the tachyon can be split according to equation (3.1.24). However, as
discussed in more detail in section 3.1.4.4, in the general case with non-zero quark masses,
one has to use the more general tachyon ansatz

T = HU (3.1.37)

where now H is a Hermitian matrix, and the TCS terms must be generalized.

3.1.4 Cylindrically symmetric ansatz for a single baryon

As we discussed in the introduction, the presence of the TCS terms is crucial when searching
for baryon solutions. Indeed, the TCS action is responsible for stabilising the baryon size
and position.
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If we think of this model as originating from a five-dimensional non-critical string
theory, a baryon is described by a D0 brane, [134]. The analogue of the C4 flux sourcing
the D3 branes, in this case is a zero-form field strength F0 ∼ Nc. Its Chern-Simons coupling
on the one-dimensional world-volume of the D0 brane is∫

dτAτF0 ∼ Nc

∫
dτAτ (3.1.38)

where Aτ is the world-line gauge field. This is the analogue of the F5 ∧ A Chern-Simons
coupling on the D5 baryon brane in N=4 sYM. As usual, fundamental string end-points
are charged under Aτ and Nc of them are needed to screen the induced charge on the D0

(baryon) brane, as in the N = 4 sYM case. Moreover, on the D4+D4 flavor branes there
is a C1 coupling to the flavor instanton number. C1 is the RR gauge field under which
D0 branes are minimally charged. Therefore D0 number transmutes to flavor instanton
number as in the SS model, [128, 171].

Therefore, in the gravity approximation that we shall be using, a single static baryon D0

brane, is realised in the bulk as a Euclidean instanton of the non-abelian bulk gauge fields
extended in the three spatial directions plus the holographic direction. In this section we
describe the ansatz that is used to compute the instanton solution in the bulk. On general
grounds, it is expected that an appropriate ansatz can be determined by requiring that
the solution is maximally symmetric, that is symmetric under all the symmetries of the
bulk action (2.3.3) compatible with the boundary conditions. In the case of the baryon
solution, this means all the symmetries of the action compatible with the baryon number
being non-zero 10.

3.1.4.1 Ansatz for the glue sector

As explained in the next subsection, we shall consider a baryon whose flavor quantum
numbers are a U(2) subgroup of the U(Nf ) flavor group. This implies that the flavor
action (composed of the DBI (3.1.18) and TCS (3.1.23) actions) for the baryon ansatz does
not depend on Nf

11 and is of order Nc. On the other hand, the glue action (2.3.4) is of
order N2

c . So, at leading order in Nc, the glue sector composed of the metric and dilaton
is not affected by the presence of the baryon and is identical to the vacuum solution. The
latter depends only on the holographic coordinate r

ds2 = e2A(r)(−dt2 + dx2 + dr2) , (3.1.39)

λ = λ(r) . (3.1.40)

10A non-zero baryon number breaks in particular Lorentz invariance. It also breaks charge
conjugation, which should send a baryon solution to a distinct anti-baryon solution.

11When considering that the on-shell action for the baryon solution should correspond to the
classical contribution to the baryon mass, this is the expected scaling at large Nc. This scaling was
equally reproduced in the context of the WSS model [128].
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Let us comment some more on this result that the baryon is a probe on the color back-
ground. In fact, it is well-known that SU(Nf ) instantons are constructed from a single
embedded SU(2) instanton that is then conjugated to cover the full SU(Nf ) group. This
gives rise to many charged moduli associated to the one-instanton solution. However, here
such parameters are fixed and are not moduli. Therefore, in this case the effective (active)
number of flavors is two, and a non-backreaction approximation for a single baryon is valid.
Note, that if flavor were to be gauged, this approximation would be invalidated.

3.1.4.2 Gauge fields ansatz

The left and right handed gauge fields are denoted

L = L+ L̂INf , R = R+ R̂INf , (3.1.41)

where L and R correspond to the SU(Nf ) part of the gauge fields, and L̂ and R̂ to the
U(1) part. From these we define the vector and axial vector gauge fields as

V =
L + R√

2
, A =

L−R√
2

. (3.1.42)

We look for a static instanton configuration for the U(Nf ) gauge fields. This configuration
belongs to a non-trivial class of the homotopy group of U(Nf ) on the 3-sphere at infinity
of the 4-dimensional Euclidean space spanned by (~x, r). Because for any Nf > 1, the
homotopy groups of U(Nf ) and SU(2) are equal

π3 (U(Nf )) = π3 (SU(2)) = Z , (3.1.43)

a U(Nf ) instanton can be constructed by embedding an SU(2) instanton in U(Nf ) (acting
with global U(Nf ) on an instanton for an SU(2) subgroup of U(Nf )).

Because the TCS action (3.1.23) contains cubic couplings for the gauge fields, a consis-
tent ansatz should contain all the matrices in the Lie Algebra of U(Nf ) that can be written
as a product of two SU(2) generators

σaσb = δabI2 + iεabcσc , (3.1.44)

where the σa’s are the Pauli matrices and I2 is the 2 by 2 identity matrix in the same
subsector of the chiral group as the SU(2) subgroup. This implies that the SU(2) instanton
couples via the TCS term to the gauge field in the direction of I2. The full flavor structure
of the baryon ansatz is therefore that of a U(2) subgroup

L = La
σaL
2

+ LTI2,L , R = Ra
σaR
2

+RTI2,R , (3.1.45)

where the superscript T stands for trace, as the corresponding part contains the abelian
part of the gauge field. Note however that, although I2 generates a U(1) subgroup of the
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chiral group, in general12 it is not a subgroup of the abelian part of U(Nf ). In other words,
I2 is a combination of INf and an SU(Nf ) generator

I2 =
2

Nf
INf +

(
I2 −

2

Nf
INf

)
. (3.1.46)

The traceless matrix that appears in (3.1.46) is not any matrix, as it is equal to minus the
traceless part of the strong hypercharge

Y ≡ 1

Nc
INf +

0
0

1
. . .

1

 =

(
1

Nc
+
Nf − 2

Nf

)
INf −

(
I2 −

2

Nf
INf

)
, (3.1.47)

where by convention the 2 flavors of the SU(2) subgroup are assumed to correspond to the
down and up (note that at zero quark mass, this choice is arbitrary). The fact that the
gauge field ansatz (3.1.45) contains a part in the direction of I2 is therefore a sign that the
baryon is charged under baryon number and hypercharge. Because a single combination
of the two charges appears, the baryon number and hypercharge will not be independent
for the classical soliton solution. Specifically, we find that for this ansatz

Y = NB , (3.1.48)

which is the expected result for a baryon composed of the first two flavors13.
To find a relevant U(2) instanton ansatz we follow [173] and look for a configuration

that is invariant under a maximal set of symmetries of the action (2.3.3), compatible with a
finite baryon number. In particular, we look for a U(2) instanton solution that is invariant
under cylindrical transformations. These correspond to rotations in the 3-dimensional
space spanned by x, up to a global SU(2) rotation.

As we look for a static solution, we impose in addition invariance under time-reversal14

t→ −t , LT → −LT , RT → −RT . (3.1.49)

Note that the definition of time-reversal reduces to that of [173] for Nf = 2 flavors. For
Nf > 2, the time component of the non-abelian gauge field will be non-zero, but propor-
tional to the abelian part. The same was observed in the context of the WSS model in
[128].

12With the exception of Nf = 2.
13This does not mean that the baryon spectrum does not contain higher hypercharge states, with

Y > NB . The baryon spectrum is calculated by quantizing the collective modes of the soliton,
including in particular the rotations in isospin space. Such rotations move the baryon around in
the full chiral group, so they will imply the existence of higher hypercharge baryon states.

14The action on the time component of the gauge fields is necessary for the TCS action to be
invariant under time reversal.
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Then, the static, cylindrically symmetric ansatz takes the form:

Lai = −1 + φL2 (ξ, r)

ξ2
εiakxk +

φL1 (ξ, r)

ξ3
(ξ2δia − xixa) +

AL1 (ξ, r)

ξ2
xixa , (3.1.50)

Lar =
AL2 (ξ, r)

ξ
xa , (3.1.51)

LT
0 = ΦL(r, ξ) , (3.1.52)

where i, k = 1, 2, 3 refer to spatial indices, ξ ≡
√
x2

1 + x2
2 + x2

3 is the 3-dimensional spatial
radius and a = 1, 2, 3 is the index for the components in the SU(2)L basis (the Pauli
matrices σa divided by 2). A similar ansatz can be written for the right-handed gauge
field with corresponding fields φR1 , φ

R
2 , A

R
1 , A

R
2 ,Φ

R. These are a priori independent from
the left-handed degrees of freedom, as is the embedding of the corresponding SU(2)R in
SU(Nf )R.

The choice of the ansatz partially fixes the gauge but there is still a residual U(1)L ×
U(1)R invariance that preserves the cylindrical symmetry, corresponding to the SU(2)
transformation

g(L/R) = exp

(
iα(L/R)(ξ, r)

x · σ
2ξ

)
, (3.1.53)

where
x · σ ≡ xaσa . (3.1.54)

Under this gauge transformation,
(
A

(L/R)
1 , A

(L/R)
2

)
is the gauge field, φ

(L/R)
1 + iφ

(L/R)
2 has

charge +1 and Φ(L/R) is neutral.
The V-QCD action possesses another discrete parity symmetry

P : x→ −x , L↔ R . (3.1.55)

A general instanton solution is a linear combination of a P-even instanton and a P-odd
instanton. As discussed in Appendix B, only the P-even part can generate a finite energy
solution. So we also impose the parity symmetry (3.1.55) on the ansatz (3.1.50)-(3.1.52)
for the instanton solution. This relates right and left-handed quantities in the following
manner:

A1 ≡ AL1 = −AR1 , A2 ≡ AL2 = −AR2 , (3.1.56)

φ1 ≡ φL1 = −φR1 , φ2 ≡ φL2 = φR2 , (3.1.57)

Φ ≡ ΦL = ΦR . (3.1.58)
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Also, the right and left-handed gauge fields should belong to the same SU(2) subgroup of
U(Nf )15. Our ansatz is now fully specified by 5 real functions

Aµ̄ ≡ (A1, A2) , φ ≡ φ1 + iφ2 and Φ , (3.1.59)

depending on the two variables xµ̄ ≡ (ξ, r), that we will use as coordinates on a 2D space.
The constraints (3.1.56)-(3.1.58) fix the vector part of the remaining U(1)L×U(1)R gauge
invariance, leaving only a residual (axial) U(1) invariance, corresponding to the SU(2)A
transformation

gL = g†R = exp

(
iα(ξ, r)

x · σ
2ξ

)
. (3.1.60)

Under the transformation (3.1.60), Aµ̄ is the gauge field, φ has charge +1 and Φ is neutral,
with gauge transformations

Aµ̄ → Aµ̄ + ∂µ̄α , φ→ eiαφ , Φ→ Φ . (3.1.61)

3.1.4.3 Tachyon ansatz

The most general cylindrically symmetric16 ansatz for the tachyon field is

T ij = ρ(r, ξ)δij + ϕ(r, ξ)
(x · σ)ij

ξ
, (3.1.62)

where ρ and ϕ are two complex scalar fields and i and j are the indices in the fundamental
representation of the right and left handed SU(2) subgroup, respectively. The parity
transformation acts on the tachyon field as T (x) → T †(−x) [138]. Imposing the parity
symmetry implies that i and j in (3.1.62) describe the same space and constrains ρ and ϕ
to obey

ρ ∈ R , ϕ ∈ iR . (3.1.63)

The tachyon matrix restricted to the SU(2) subgroup TSU(2) can therefore be cast in the
shape of a scalar times an SU(2) matrix

TSU(2) = ρI2 + ϕ
x · σ
ξ

= τ(r, ξ)

(
cos θ(r, ξ) I2 + i sin θ(r, ξ)

x · σ
ξ

)
= τ(r, ξ) exp

(
iθ(r, ξ)

x · σ
ξ

)
, (3.1.64)

15This implies in particular that the manifest SU(2)V invariance of the SU(2) ansatz simply
maps to invariance under the conserved diagonal subgroup SU(Nf )V of the chiral symmetry when
lifted to SU(Nf ).

16Up to a global SU(2) transformation.
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where τ and θ are respectively the modulus and phase of the complex number ρ+ϕ, where
ρ and ϕ are defined in (3.1.64),

τ ≡
√
|ρ|2 + |ϕ|2 , θ ≡ arctan

(
− iϕ
ρ

)
. (3.1.65)

Equation (3.1.64) reproduces the Skyrmion ansatz (equation (16) in [172]) for the unitary
part of the tachyon. The SU(Nf ) tachyon ansatz is then obtained by embedding TSU(2)

in SU(Nf )
T = τ(r, ξ)U(r, ξ) , (3.1.66)

where U(r, ξ) is the SU(Nf ) matrix resulting from the embedding of exp
(
iθ(r, ξ)x·σξ

)
.

Note that under the residual U(1)A gauge freedom (3.1.60), the tachyon in equation
(3.1.64) transforms as

θ → θ − α . (3.1.67)

Source and vev Depending on whether we set the quark mass m to 0 or not, the
vev term should be identified differently from the tachyon near-boundary expansion. In
this work, we will consider the case in which all quarks are massless. The situation with
non-zero quark mass will be treated elsewhere.

In the massless quark case, the chiral condensate is simply the coefficient of the leading
term of the tachyon, in the near-boundary expansion as r → 0

TSU(2)(r, ξ) = `Σ(ξ) exp

(
iθ(0, ξ)

x · σ
ξ

)
r3(− log(rΛ))−c (1 + · · · ) . (3.1.68)

We used the fact that the near-boundary behavior of the tachyon modulus is still given
by (2.3.20), except that the amplitude of the chiral condensate Σ generically depends on ξ
due to the presence of the baryon. From (3.1.68), the pion matrix is identified to be

UP (ξ)† ≡ exp

(
iθ(0, ξ)

x · σ
ξ

)
. (3.1.69)

The associated near-boundary expansion of the flavor gauge fields can be found in Appendix
G.1.

To summarize the content of this section, the ansatz for the instanton solution (3.1.50)-
(3.1.52), (3.1.56)-(3.1.58) and (3.1.64) contains 7 dynamical fields

Φ(r, ξ) , φ(r, ξ) ≡ φ1(r, ξ) + iφ2(r, ξ) , Aµ̄(r, ξ) ≡ (Aξ(r, ξ), Ar(r, ξ)) , (3.1.70)

τ(r, ξ) , θ(r, ξ) ,

with a U(1) gauge redundancy under which the fields transform as

φ→ eiαφ , Aµ̄ → Aµ̄ + ∂µ̄α , θ → θ − α . (3.1.71)
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3.1.4.4 Comments on non-zero quark masses

In the presence of a non-trivial quark mass matrix Mij , the near-boundary asymptotics
(3.1.68) must be modified, and the leading asymptotics is now:

Tij 'Mij r(− log rΛ)c + . . . (3.1.72)

Since the nontrivial matrix nature of T starts at leading order, we cannot assume the
decomposition (3.1.66) but the most general form:

T = H(r, ξ)U(r, ξ) (3.1.73)

where the scalar field τ(r, ξ) is replaced by the Hermitian matrix field H(r, ξ). Near the
boundary r → 0, equation (3.1.72) requires to leading order:

H(r, ξ) = H0r(− log rΛ)c +O(r3), U(r, ξ) = U0 +O(r2) r → 0 (3.1.74)

where H0 is a constant Hermitian matrix and U0 is a constant unitary matrix such that
(H0U0)ij = Mij .

Notice that now the matrix U contributes to the source term in the near-boundary
asymptotics. As a consequence, in this case we cannot interpret U(r = 0) as the pion
matrix as in equation (3.1.69) in the massless case.

Furthermore, due to equation (3.1.74), U is constrained to go to a constant matrix as a
function of ~x, at leading order in r. This is very different from the massless quark case, in
which the leading asymptotics of U(r, ξ) is unconstrained, and in particular it is allowed to
be a non-trivial function of the space-time coordinates to leading order in r. This changes
drastically the on-shell asymptotics of our TCS terms17.

As a consequence, the baryon ansatz has to be modified in the massive quark case, and
we will not discuss this case further in the present work.

3.1.5 Constructing the baryon solution

We discuss in this section the construction of the baryon solution. As mentioned in the
previous section, a baryon state is realized in the bulk as an instanton solution on the
4D Euclidean space parametrized by (r, ~x). The instanton is a configuration of the ansatz
of equations (3.1.50)-(3.1.52) and (3.1.64) that obeys the bulk equations of motion. Con-
structing the baryon solution therefore requires deriving the equations of motion obeyed
by the 7 fields of the ansatz in (3.1.70). These field equations are obtained by substituting
the ansatz into the general field equations (C.1),(C.6) and (C.8). We present here the
general procedure for the computation of the equations of motion and give more details in
Appendix F.

17even assuming that the quark mass matrix is proportional to the identity, in which case the
decomposition (3.1.66) still holds.
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As discussed in the previous section, the baryon can be treated as a flavor probe on
the glue background. Note that the modulus of the tachyon field τ is also non-zero in
vacuum (2.3.17). In the Veneziano limit where Nc and Nf are both large and of the same
order, the tachyon modulus couples to the glue sector at leading order in Nc. Because of
that, the back-reaction of the baryon on the tachyon background is also of order O(1/Nc).
The leading order baryon solution is therefore a probe on the vacuum background, and
the back-reaction on the background can be computed order by order in 1/Nc. In the
following, we first discuss the leading order probe baryon solution and then consider the
back-reaction. We do not expect the color back-reaction to be qualitatively important for
the flavor structure of the baryon, which is its most important dynamical property. This
motivates the approximation that we consider later, where we compute the back-reaction
on the tachyon modulus alone, assuming the color background to remain unchanged.

We start the discussion of the baryon construction by a few general results. First note
that, for this particular ansatz, the effective metric g̃MN in equation (3.1.14) is the same
in the L and R sectors. We will simply denote it g̃MN and it is given by the matrix:

−e2A −∂rΦ −x1
ξ ∂ξΦ −x2

ξ ∂ξΦ −x3
ξ ∂ξΦ

∂rΦ e2A+κ(∂rτ)2 κx1
ξ ∂rτ∂ξτ κx2

ξ ∂rτ∂ξτ κx3
ξ ∂rτ∂ξτ

x1
ξ ∂ξΦ κx1

ξ ∂rτ∂ξτ e2A+κ
(
x1
ξ

)2
(∂ξτ)2 κx1

ξ
x2
ξ (∂ξτ)2 κx1

ξ
x3
ξ (∂ξτ)2

x2
ξ ∂ξΦ κx2

ξ ∂rτ∂ξτ κx1
ξ
x2
ξ (∂ξτ)2 e2A+κ

(
x2
ξ

)2
(∂ξτ)2 κx2

ξ
x3
ξ (∂ξτ)2

x3
ξ ∂ξΦ κx3

ξ ∂rτ∂ξτ κx1
ξ
x3
ξ (∂ξτ)2 κx2

ξ
x3
ξ (∂ξτ)2 e2A+κ

(
x3
ξ

)2
(∂ξτ)2


,

(3.1.75)
where the order of the columns (and lines) is (0|r|1|2|3). Its determinant is:

−det g̃ = e10A − e6Aw2
(
(∂rΦ)2 + (∂ξΦ)2

)
+ e8Aκ

(
(∂rτ)2 + (∂ξτ)2

)
− (3.1.76)

− e4Aκw2 (∂rΦ∂ξτ − ∂ξΦ∂rτ)2 .

Another useful observation is that, because the equations of motion are covariant under
the residual gauge transformations (3.1.71), the phase θ in the tachyon ansatz (3.1.64) can
be absorbed into the gauge field. By doing so, the dynamical field content (3.1.70) can be
reduced to a set of 6 fields invariant under the residual gauge freedom. In practice, if we
define

g(θ) ≡ exp

(
iθ
x · σ
2ξ

)
, (3.1.77)

then we consider the following redefinition of the gauge fields

LM → L̃M ≡ g(θ)LMg(θ)† + ig(θ)∂Mg(θ)† , (3.1.78)

RM → R̃M ≡ g(θ)†RMg(θ) + ig(θ)†∂Mg(θ) , (3.1.79)
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which for the ansatz (3.1.50)-(3.1.52) is equivalent to

Aµ̄ → Ãµ̄ ≡ Aµ̄ + ∂µ̄θ , φ→ φ̃ ≡ eiθφ , Φ→ Φ . (3.1.80)

From (3.1.71), it is clear that the gauge field thus redefined is invariant under the residual
gauge transformation (3.1.60).

We shall use these gauge-invariant fields in some of our future calculations in this
chapter. When we do that, we will always write the tildes so that it is clear that we are
using the gauge-invariant fields. Working with the gauge-invariant fields is identical to
working in the unitary gauge.

3.1.5.1 Probe instanton

At leading order in Nc, one can consider the probe regime where the geometry of the
bulk, the dilaton and the modulus of the tachyon field are fixed to their background value
(describing the V-QCD vacuum solution) and search for an instanton solution for the gauge
fields, plus an associated non-trivial solution for the unitary part of the tachyon field. In
our case, there is no abelian field strength in the background (no baryon number density
in the vacuum). Because of this, it is consistent to expand the DBI action at quadratic
order in the abelian field strength also

SDBI = −M3Nc

∫
d5xVf (λ, τ2)

√
−det g̃× (3.1.81)

×
([

1

2
+

1

4
κτ2

(
g̃−1
)MN

SMN−
1

8
w2
(
g̃−1
)MN (

g̃−1
)PQ

Tr F
(L)
NPF

(L)
QM+

+O
(

(F(L))3
)]

+ (L↔ R)

)
,

where SMN was defined in (3.1.19) and g̃ is now the effective background metric

g̃MN ≡ gMN + κ(λ)∂Mτ∂Nτ = gMN + κ(λ(r)) (τ ′(r))2δrMδ
r
N , (3.1.82)

which takes a diagonal form

g̃ =



−e2A 0 0 0 0

0 e2A + κ(∂rτ)2 0 0 0

0 0 e2A 0 0

0 0 0 e2A 0

0 0 0 0 e2A


. (3.1.83)

Its determinant is given by

− det g̃ = e10A(1 + e−2Aκ(∂rτ)2) . (3.1.84)
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SU(2) ansatz Substituting the ansatz (3.1.50)-(3.1.52), (3.1.56)-(3.1.58) and (3.1.64)
into the bulk action (3.1.81) and (3.1.23) yields the expression for the instanton energy18

in terms of the fields of (3.1.70)

E = EDBI + ECS , (3.1.85)

EDBI = 4πM3Nc

∫
drdξ Vf (λ, τ)eA

√
1 + e−2Aκ(∂rτ)2×

×
(

e2Aξ2κ(λ)τ2

(
1

1 + e−2Aκ(∂rτ)2
Ã2
r + Ã2

ξ +
(φ̃+ φ̃∗)2

2ξ2

)
+

+w(λ)2

(
1

8

1

1 + e−2Aκ(∂rτ)2
ξ2(Fµ̄ν̄)2+

1

2

(
|Dξφ|2+

1

1 + e−2Aκ(∂rτ)2
|Drφ|2

)
+

+

(
1− |φ|2

)2
4ξ2

− ξ2

(
1

1 + e−2Aκ(∂rτ)2
(∂rΦ)2 + (∂ξΦ)2

)))
, (3.1.86)

ECS =
4Nc

π

∫
drdξ εµ̄ν̄∂µ̄Φ×

×
[
(f1(τ) + f3(τ))

(
Ãν̄ +

1

2
(−iφ∗Dν̄φ+ h.c.) +

1

4i
∂ν̄(φ̃2 − (φ̃∗)2)

)
+

+
1

2
(3if2(τ)− f1(τ)− f3(τ))(φ̃+ φ̃∗)2Aν̄

]
. (3.1.87)

The differential equations obeyed by the fields of the ansatz are then obtained by extremiz-
ing the energy (3.1.85) with respect to variations of the fields19. The expressions for these
equations (F.38)-(F.43) are presented in appendix F. It is also checked that substituting the
ansatz directly into the general equations of motion (F.26)-(F.28) yields the same equations
as extremizing the energy (3.1.85).

18Strictly speaking, this is the bulk action, which as we shall evaluate it on the solutions of our
equations of motion will also be the on-shell action. As all fields considered are time-independent,
the boundary energy differs from this action by a trivial −

∫
dt factor and this is why we shall call

it the “energy” from now on.
19It is well-known that substituting an ansatz into the action and then varying the action to derive

the equations of motion leads to wrong results. However, symmetry sometimes can protect this
procedure. In our case, the SU(2) instanton ansatz (3.1.50)-(3.1.52), (3.1.56)-(3.1.58) and (3.1.64)
fixes most of the gauge invariance, and therefore one could worry that deriving the equations of
motion for the fields of the ansatz in this manner may not reproduce all the constraints obeyed
by these fields. However we can show that the constraints that one misses in this procedure are
trivially satisfied by our ansatz as it has cylindrical symmetry.

74



3.1.5.2 Inhomogeneous tachyon

To go beyond the probe limit, we now consider the back-reaction on the tachyon modulus
τ . We will assume that the color sector remains fixed to its vacuum value, and write the
equations of motion for the tachyon modulus coupled to the baryon fields. At leading order
in the Veneziano limit, the baryon fields are given by the probe baryon solution, and the
correction to the tachyon background starts at order O(1/Nf ). Note that considering such
a back-reaction will imply that τ will depend on the 3-dimensional radius ξ. Its EoM is
(C.4).

In this case the expression (3.1.81) for the expanded DBI action can still be used but
the effective metric, although symmetric, is not diagonal anymore:

−e2A 0 0 0 0

0 e2A+κ(∂rτ)2 κx1
ξ ∂rτ∂ξτ κx2

ξ ∂rτ∂ξτ κx3
ξ ∂rτ∂ξτ

0 κx1
ξ ∂rτ∂ξτ e2A+κ

(
x1
ξ

)2
(∂ξτ)2 κx1

ξ
x2
ξ (∂ξτ)2 κx1

ξ
x3
ξ (∂ξτ)2

0 κx2
ξ ∂rτ∂ξτ κx1

ξ
x2
ξ (∂ξτ)2 e2A+κ

(
x2
ξ

)2
(∂ξτ)2 κx2

ξ
x3
ξ (∂ξτ)2

0 κx3
ξ ∂rτ∂ξτ κx1

ξ
x3
ξ (∂ξτ)2 κx2

ξ
x3
ξ (∂ξτ)2 e2A+κ

(
x3
ξ

)2
(∂ξτ)2


.

(3.1.88)
Its determinant is given by:

− det g̃ = e10A
(
1 + e−2Aκ

(
(∂rτ)2 + (∂ξτ)2

) )
. (3.1.89)

Soliton energy With the new metric (3.1.88), substituting the ansatz of equations
(3.1.50)-(3.1.52), (3.1.56)-(3.1.58) and (3.1.64) into the DBI action (3.1.81) and the TCS
action (3.1.23) yields the following result for the soliton energy

E = EDBI + ECS , (3.1.90)

EDBI = 4πM3NcNf

∫
drdξ ξ2

√
1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ) e5A − EDBI,vac+

+ 4πM3Nc

∫
drdξ

√
1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ) eA×

×
(

e2Aξ2κ(λ)τ2

(
e2A∆rrÃ

2
r +

(
1− e2A∆ξξ

)
Ã2
ξ +

(φ̃+ φ̃∗)2

2ξ2
−

− 2e2A∆ξrÃrÃξ

)
+

+ w(λ)2

(
1

8
e2A

[
∆rr

(
1− e2A∆ξξ

)
− e2A∆2

ξr

]
ξ2(Fµ̄ν̄)2+
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+
1

2

((
1− e2A∆ξξ

)
|Dξφ|2 + e2A∆rr |Drφ|2

)
+

+

(
1− |φ|2

)2
4ξ2

− 1

2
e2A∆ξr(Drφ

∗Dξφ+ h.c.)−

− ξ2
(

e2A∆rr(∂rΦ)2 +
(
1− e2A∆ξξ

)
(∂ξΦ)2−

− 2e2A∆ξr∂ξΦ∂rΦ
)))

,

(3.1.91)

ECS =
4Nc

π

∫
drdξ εµ̄ν̄∂µ̄Φ×

×
[
(f1(τ) + f3(τ))

(
Ãν̄ +

1

2
(−iφ∗Dν̄φ+ h.c.) +

1

4i
∂ν̄(φ̃2 − (φ̃∗)2)

)
+

+
1

2
(3if2(τ)− f1(τ)− f3(τ))(φ̃+ φ̃∗)2Ãν̄

]
, (3.1.92)

where in the DBI part, EDBI,vac refers to the DBI contribution to the vacuum energy
and the symbol ∆ is defined in (F.53)-(F.55). The equations of motion are obtained by
extremizing the energy (3.1.90) with respect to small deformations of the ansatz fields
(3.1.70). They are presented in Appendix F.2.

3.1.6 Boundary conditions

The field equations presented in the previous section must be subject to appropriate bound-
ary conditions both at spatial infinity ξ → +∞ and at the UV boundary r → 0. Moreover,
certain (generalized) regularity conditions must be imposed at the center of the instanton
ξ = 0 and in the bulk interior. In this section we present the conditions that are imposed
on the fields of the ansatz (3.1.70) for the bulk instanton solution to be the dual of a single
baryon at the boundary.

The discussion assumes that the dynamics for the tachyon modulus τ is also solved and
the equations of motion given by (F.56)-(F.62) (this corresponds to what was referred to as
the inhomogeneous tachyon case in the previous section). The conditions that are presented
will also apply in the probe approximation, where τ is assumed to be a background field
and the equations of motion are given by (F.38)-(F.43).

3.1.6.1 Baryon charge and mass

We start by deriving the expression for the baryon charge and mass in the boundary theory,
in terms of the fields of the ansatz (3.1.70). We will then use these results to determine
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the boundary conditions required for the charge to be equal to unity and the mass to be
finite.

We first discuss the calculation of the baryon charge, whose details can be found in
appendix D.1. The baryon current at the boundary is given by (D.37)

NcJ
µ
B ω4 = − iNc

48π2
dxµ∧

[
− 4iTr(L ∧ F (L))+Tr(L ∧ L ∧ L)+4iTr(R ∧ F (R))−

− Tr(R ∧R ∧R)+6Tr(DU ∧ F (L)U †)+6Tr(DUU † ∧ F (R))−
−2iTr(DUU † ∧DUU † ∧DUU †)

] ∣∣∣
UV

, (3.1.93)

where we denoted by ω4 the Minkowski volume 4-form

ω4 ≡ dt ∧ dx1 ∧ dx2 ∧ dx3 . (3.1.94)

Remarkably, as shown in the appendix, the baryon number current only arises from the
closed, G4 term (3.1.32) in the TCS action and does not depend on the non-closed part
of the CS action Ω0

5 in (3.1.26), (3.1.27). That is, it is also independent of the functions
fi(τ) which are the only degrees of freedom in the CS action that were not fixed by general
arguments in section 3.1.3.

Because no external gauge fields are present in the UV boundary theory, the non-abelian
gauge field at r = 0 should vanish. The baryon number current is therefore simply

JµB ω4 = − 1

24π2
dxµ∧ Tr(dUU † ∧ dUU † ∧ dUU †)

∣∣∣∣
UV

. (3.1.95)

Then the baryon number is20

NB =
1

24π2

∫ [
Tr(dUU † ∧ dUU † ∧ dUU †)

] ∣∣∣∣
UV

, (3.1.96)

which is nothing but the Skyrmion number for a matrix that is identified as the pion field
at the boundary21,

UP (ξ) = U(r = 0, ξ)† . (3.1.97)

Substituting the tachyon ansatz (3.1.64) into (3.1.96), we finally obtain the expression of
the baryon number in terms of the phase θ at the boundary

NB =
1

π

(
θ(ξ =∞)− θ(0)

)
. (3.1.98)

20Remember that the baryon density is ρB = J0 and the raising of indices for the Levi-Civita
tensor is such that ε0123 = −ε0123 = 1.

21 As discussed in section 3.1.4.4, this identification only makes sense for vanishing quark masses.
Moreover, if we take the expression (3.1.96) at face value, for non-zero quark masses the matrix
U(r, ξ) has to asymptote to a constant at r = 0, and the resulting baryon number vanishes identi-
cally. This suggests that for non-zero quark mass both the baryon ansatz (as well as the form of
the TCS action) must be generalized.
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The expression for the baryon number in (3.1.96) is a boundary topological number but
is not manifestly topologically stable in the bulk. On the other hand, a state with baryon
number equal to 1 is expected to be dual to a solution of the bulk equations of motion with
instanton number equal to 1 [126]. We would therefore like to relate the baryon number
(3.1.96) to the bulk instanton number

Ninstanton =
1

8π2

∫
bulk

Tr
(
F(L) ∧ F(L) − F(R) ∧ F(R)

)
(3.1.99)

=
1

2π

∫
drdξ εµ̄ν̄ (Fµ̄ν̄ + ∂µ̄ (−iφ∗Dν̄φ+ h.c.)) ,

where in the second line we substituted the instanton ansatz. The detailed calculation
is presented in Appendix D.2.1. There it is found that, in terms of the baryon ansatz
(3.1.50)-(3.1.52) and (3.1.64), the condition for the baryon number to equal the instanton
number can be written as the vanishing of an IR integral∫

dξ
(
Ãξ(|φ̃|2 − 1) + ∂ξφ̃1 + ∂ξφ̃1φ̃2 − ∂ξφ̃2φ̃1

) ∣∣∣∣
IR

= 0 . (3.1.100)

This condition on the instanton solution follows from the regular IR asymptotics presented
in Table 3.1 that will be discussed in detail in the next section.

Another global property of the baryon solution that can be used to identify the right
boundary conditions is the mass of the nucleon. The mass of the nucleon is the sum of
a classical contribution, equal to the classical instanton energy (3.1.85) evaluated on the
solution, and quantum corrections:

Mnucleon = E + δMQ . (3.1.101)

Requiring the classical contribution to the mass to be finite sets the boundary conditions
for the ansatz fields at ξ →∞, as in Table 3.1. The derivation of Table 3.1 is the topic of
the next subsection.

In terms of the expansion in Nc, the classical mass is of order O(Nc), whereas the
quantum corrections start at order O(1). Computing the quantum corrections requires to
take the sum of the ground state energies for the infinite set of bulk excitations on the
instanton background, and subtract the vacuum energy. It is not known how to do this
calculation, so we can only assume that the classical mass gives the dominant contribution.
Note that it is correct at least in the large Nc limit.

The experimental spectrum of baryons contains the nucleons but also many excited
states, such as the isobar ∆. Here we focus for concreteness on the nucleon mass, but the
mass of the excited states can be derived by an appropriate quantization of the perturbation
modes of the instanton solution. This will be discussed in the next section.
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ξ → 0 ξ →∞ UV IR

φ̃1

ξ
→ f1(r) ξ1/2φ̃1 → 0 φ̃2

1 + φ̃2
2 → 1 φ̃1 → 0

1+φ̃2

ξ
→ 0 ξ1/2(−1 + φ̃2)→ 0 ∂ξφ̃1 + Ãξφ̃2 → 0 ∂rφ̃2 → 0

Ãξ − φ̃1

ξ
→ 0 ξ3/2Ãξ → 0 ∂rÃξ → 0 Ãξ → 0

Ãr → 0 ξ3/2Ãr → 0 Ãr → 0 Ãr → 0

∂ξΦ→ 0 ξ3/2∂µ̄Φ→ 0 Φ→ 0 ∂rΦ→ 0

∂ξτ → 0 τ → τb(r) r−2 τ → 0 τ → τb(rIR)

Table 3.1: Gauge invariant boundary conditions for the fields of the baryon solution
(3.1.70).

3.1.6.2 Boundary conditions for the gauge invariant fields

We are now ready to derive the boundary conditions relevant to the baryon solution.
We present here the general conditions for the gauge-invariant fields (3.1.80) and discuss
separately the 4 boundaries of the (ξ, r) space.

ξ = 0 : The boundary conditions in the limit where the 3D radius ξ goes to 0 are chosen as
in the first column of Table 3.1, where f1(r) is some function of the holographic coordinate.
The first 4 conditions come from requiring that L̃ (3.1.78) and R̃ (3.1.79) are well defined
5D vectors at ξ = 0. The last two conditions respectively come from requiring that the
abelian field strength F̂ (F.16) and the tachyon covariant derivative DMT are well defined
at ξ = 0. The detailed asymptotics of the fields in this limit are presented in Appendix
G.4.

UV : The boundary conditions in the UV limit r → 0, are chosen as in the third column
of Table 3.1. The first three conditions in the column originate from requiring that there
are no sources for the gauge fields at the boundary. The fourth condition for Ãr is a
consequence of (G.7), which originates from the near-boundary analysis of the constraint
(F.38). Finally, the condition for Φ corresponds to setting the baryon chemical potential µ
to 0, and that for τ is due to our choice to work with massless quarks, as mentioned before.

The UV asymptotics of the fields are discussed in more details in Appendix G.1.

ξ →∞ : The boundary conditions in the limit ξ → ∞ are chosen as in the second
column of Table 3.1 and come from requiring that the instanton energy in (3.1.85) is finite.
In particular, the condition for the tachyon modulus τ is that it goes to its value in vacuum
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τb(r). For Φ we set the additional condition that the baryon chemical potential µ is equal
to 0. Finally, for φ̃2, the finite energy condition is

∂rφ̃2(r, ξ) →
ξ→∞

0 , (3.1.102)

or equivalently
φ̃2(r, ξ) →

ξ→∞
φ̃2(0,∞) . (3.1.103)

The value of φ̃2 on the UV boundary at ξ → ∞ is determined by the requirement that
the baryon number (3.1.98) is equal to 1. This condition is for the tachyon phase at the
boundary θ(r = 0, ξ) to be such that

θ(r = 0,∞)− θ(r = 0, 0) = π . (3.1.104)

Because the sources for the gauge fields at the boundary are required to vanish, φ̃2(r =
0, ξ) = − cos θ(r = 0, ξ). Then, from the condition that φ̃2 = −1 at ξ = 0, we deduce that
θ(r = 0, 0) = 0. (3.1.104) therefore implies that

φ̃2(r, ξ) →
ξ→∞

− cosπ = 1 . (3.1.105)

The detailed asymptotics of the fields in the limit ξ →∞ are presented in Appendix G.2.

IR : The regularity conditions in the IR limit r →∞ are chosen as in the last column of
Table 3.1. The ansatz fields obey second order differential equations, whose general solu-
tions are a linear combination of two independent solutions. These independent solutions
can be chosen such that one is finite in the IR while the other is singular. The regularity
conditions correspond to the choice of the IR finite solutions. In that case, the precise
IR asymptotics of the solution are presented in Appendix G.3. Note that the resulting
conditions match those imposed in [172] for chiral symmetry to be broken on the IR wall:

(L−R)|rIR = 0 ,
(
F(L)
µr + F(R)

µr

)∣∣∣
rIR

= 0 . (3.1.106)

As far as the tachyon modulus τ is concerned, it should match the vacuum solution far
from the baryon center, so in particular in the IR at r → ∞. The IR behavior of τ will
therefore be given by (2.3.24).

3.1.6.3 Boundary conditions in Lorenz gauge

The non-linear second-order differential system of equations of motion (F.38)-(F.43) is not
elliptic. This is due to the presence of constraint equations. While this is not problematic
per se, it can lead to trouble when one tries to solve the problem numerically (which we
will eventually do in an upcoming work). This is because the gauge invariance indicates
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ξ → 0 ξ →∞ r → 0 r → rIR →∞
∂ξφ̃1 − (Aξ + ∂ξθ)→ 0 ξ1/2φ̃1 → 0 φ̃1 → sin θ φ̃1 → 0

1+φ̃2

ξ
→ 0 ξ1/2

(
φ̃2 − 1

)
→ 0 φ̃2 → − cos θ ∂rφ̃2 → 0

∂ξAξ → 0 ∂ξAξ → 0 Aξ → 0 Aξ → 0

Ar → 0 ξ3/2
(
Ar − π

rIR

)
→ 0 ∂rAr → 0 ∂rAr → 0

∂ξΦ→ 0 Φ→ 0 Φ→ 0 ∂rΦ→ 0

θ → 0 θ → π
(

1− r
rIR

)
∂rθ + Ar → 0 θ → 0

∂ξτ → 0 τ → τb(r) τ → 0 τ → τb(rIR)

Table 3.2: Boundary conditions in Lorenz gauge.

that given boundary conditions, the solution is not unique. This can be avoided, if one
works with an elliptic system instead.

Equations (F.38)-(F.43) can be recast in elliptic form if we write them in terms of the
gauge variant fields (3.1.50)-(3.1.51), and then fix the gauge with the Lorenz condition

∂rAr + ∂ξAξ = 0 . (3.1.107)

Note that this condition leaves a residual gauge freedom of the form

Aµ̄ → Aµ̄ + ∂µ̄f , ∂2
r f + ∂2

ξ f = 0 , f(0, ξ) = 0 . (3.1.108)

The convenient choice that we present below for the fixing of the residual gauge freedom
(3.1.108) requires to introduce an IR cut-off rIR.

The equations of motion in Lorenz gauge are listed in appendix F.1.3 and the relevant
boundary conditions written in Table 3.2. Because of the gauge fixing these conditions
contain additional information compared with Table 3.1 that we discuss again separately
for each boundary of the (r, ξ) space.

UV : In the UV limit r → 0, the only difference with the gauge invariant conditions
Table 3.1 is the additional condition for Ar, which comes from imposing the Lorenz gauge
(3.1.107) near the boundary.

ξ →∞ : For compatibility with the condition (3.1.104) ∂ξθ should go to 0 as ξ → ∞,
so Aξ should also tend to 0 according to the gauge-invariant condition in Table 3.1. Then
the Lorenz gauge condition in the limit where ξ →∞ reads

∂rAr = 0 = −∂2
rθ , (3.1.109)

81



so that θ at ξ =∞ should be of the form

θ → π + constant× r . (3.1.110)

Then, for a solution with NB = 1, we proved in section 3.1.6.1 that the instanton number
(3.1.99) should also be equal to 1. The latter can be written as a boundary integral

Ninstanton =
1

π

∫ rIR

0
dr
[
Ar + φ̃1∂rφ̃2 − φ̃2∂rφ̃1

]ξ=∞
ξ=0

=
1

π

∫ rIR

0
dr [Ar]

ξ=∞
ξ=0 , (3.1.111)

where, to obtain the first integral above we used the boundary conditions in Table 3.2, and
to obtain the second integral above we used the boundary conditions in Table 3.1. We find
it convenient to choose a residual gauge (3.1.108) such that the instanton winding occurs
at ξ =∞22. In this case the condition that Ãr = 0 at ξ =∞ implies that θ has to go to

θ → π

(
1− r

rIR

)
, ξ → +∞ (3.1.112)

ξ = 0 and IR : Once (3.1.112) is imposed, what remains of the residual gauge freedom
(3.1.108) corresponds to the freedom of choosing the profile of θ on the 1-dimensional space
composed of the lines at ξ = 0 and r = rIR, with the condition that θ goes to 0 at the two
endpoints of this line. The simplest choice is to set

θ(r, 0) = θ(rIR, ξ) = 0 , (3.1.113)

for which the tachyon field is well defined at ξ = 0 and the stronger IR gauge condition
proposed in (D.24) is obeyed. Then, the boundary conditions at ξ = 0 and r = rIR come
from the gauge-invariant ones Table 3.1, with the additional derivative constraints on Aξ
and Ar due to the gauge choice.

To summarize, these boundary conditions ensure that a topological instanton in the
bulk has finite bulk energy (therefore finite boundary mass) and unit baryon charge. The
question of solving the field equation and finding such smooth solutions must be tackled
numerically, and will be addressed in the next section.

3.1.6.4 Further comments

In the WSS model, the size of the instanton becomes small at large ’t Hooft coupling
λ. The flat space BPST instanton therefore gives a good approximation to the WSS
instanton solution near its center. By contrast, there is no possibility in V-QCD which
would make the size of the instanton parametrically small. Instead, the size is set by the

22Another possible choice would be to place it at ξ = 0 as in [175]. That choice has the advantage
that U is regular at ξ →∞ in the limit rIR →∞, but instead it is not well defined at ξ = 0.
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mass scale of the boundary theory which roughly corresponds to ΛQCD. The curvature of
the background space-time should therefore be taken into account in the calculation of the
V-QCD instanton, for which there is no simple BPST approximation.

Moreover, the size of the baryon of the construct is clearly Nc-independent. The reason
is that it is a solution to the gravitational equations to leading order in Nc and the solutions
are Nc independent.

3.2 Numerical baryon solution and baryon spec-

trum

This section is based on my original work [6].

In the previous section, we have established the baryon instanton-like ansatz and its field
equations, as well as the boundary conditions it should satisfy in order for the corresponding
state in the boundary theory to have finite mass and unit baryon charge. Whether or
not a full solution exists satisfying these field equations is a question which can only
be addressed numerically. The corresponding equations are a set of non-linear partial
differential equations in a two-dimensional space, whose numerical resolution is non-trivial.

The purpose of the work presented in this section is to compute and analyze the numer-
ical baryon solution in a specific model in the V-QCD class. We first obtain numerically
the static instanton solution (which corresponds to the baryon ground state), and then
analyse the instanton collective modes and their quantization (which correspond to baryon
excited states).

As important ingredient of this work, we present a specific model in the V-QCD class
which offers a good quantitative match to low-energy QCD parameters, including some
parameters in the flavor sector (like the pion decay constant) which were not correctly
reproduced in previous models.

3.2.1 Summary

We start by giving a summary of the results presented in this section.

Fit to QCD data

We carry out an extensive comparison of the model predictions to experimental and lattice
QCD data in order to pin down the parameters of the V-QCD action in section 3.2.2. The
comparison consists of two main steps:

1. Qualitative comparison to QCD physics. The action both in the limit of weak and
infinitely strong coupling, up to a few remaining parameters, can be determined by
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requiring that the model respects known properties of QCD such as confinement and
asymptotic freedom. This work has been done in earlier literature [145, 150, 161,
160, 174], and we simply review the results here.

2. Quantitative comparison to QCD data. The details of the action at intermediate
coupling, as well as the few remaining weak and strong coupling parameters, can be
tuned so that the predictions of the model match with QCD data. In this step, the
dependence of the predictions on the exact values of the model parameters is typically
weak. In spite of this, the model has been able to describe various observables to a
high precision [147, 165, 162].

As for the second step, the work in this section extends the earlier work where the full
V-QCD model was separately compared to data for thermodynamics [165] and to meson
spectra [162]:

� We fit the model parameters to data for thermodynamics and spectra simultaneously.

� Unlike in [162] (where the model was fitted to a large number of excited meson
states), we stress the lowest lying meson states.

� Importantly, we require a good match of the model with the experimental value of
the pion decay constant fπ ≈ 92 MeV, which was poorly reproduced in both previous
fits.

We now discuss the fit in more detail. The V-QCD model contains two sectors, cor-
responding to gluons (improved holographic QCD [145]) and quarks (tachyon Dirac-Born-
Infeld actions for space filling branes [137, 138]). The former sector can be separately
compared to data from lattice analysis of pure Yang-Mills theory [147]. In this work, we
use the fit of [162] for the gluon sector, and check explicitly that it reproduces both the
lattice data for the thermodynamics of Yang-Mills at Nc =∞ (see figure 3.1) and for the
glueball spectrum (see table 3.4) to a good precision.

Most of the freedom in the full V-QCD model is however in the quark sector. In order
to determine the model parameters in this sector, we compare the predictions to

� Lattice data for the thermodynamics of full QCD with Nf = 2 + 1. We use both the
data for the equation of state at vanishing chemical potential (see figure 3.2) and
for the first nontrivial cumulant of the pressure at nonzero chemical potential (see
figure 3.3).

� Experimental data for lowest lying meson masses and the pion decay constant. See
table 3.6.

The final values of the model parameters are given in table 3.5. Apart from a few exceptions,
the model depends on these parameters through four different functions of the coupling,
which are shown in figure 3.4 for the final fit.
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The fit in figures 3.2, 3.3 and table 3.6 has rather good quality. However, the agreement
when fitting the thermodynamics [165] and the spectra [162] separately was significantly
better. This is the case because the combined fit is challenging: there is some clear tension
between the fit to the properties of the finite temperature state and the zero temperature
vacuum state. It is likely that this tension can be reduced by carrying out a simultaneous
numerical fit of all parameters to all data. We do not attempt to do this technically
demanding task here, but are planning to return to it in future work. In particular, we
expect that the methods of machine learning should be of particular relevance to address
this problem. Notice also that, at least to our knowledge, an overall fit to QCD data of
the similar extent as presented in this work has not been attempted in any other model in
earlier literature.

Static baryon solution

Starting from the formalism introduced in the previous section, we compute in section 3.2.3
the numerical bulk solution for a single static baryon, with the V-QCD potentials presented
in Section 3.2.2.23 In the Veneziano limit Nc → ∞, Nf → ∞, the baryon contribution to
the bulk action is of order Nc, which is negligible compared to N2

c and NcNf . This implies
that the leading order baryon solution can be treated as a “probe” on the background dual
to the vacuum of the boundary theory.

The numerical baryon solution is computed both at leading order and including the
first corrections to the background, which are of order O(1/Nc, 1/Nf ). The leading order
baryon solution is reliably calculated, by ignoring both the tachyon and glue backreactions.
The backreaction of the baryon solution to the tachyon is computed by neglecting the glue
backreaction for simplicity. It is expected that the back-reaction on the color sector, does
not affect the qualitative results for the tachyon backreaction.

For the leading order probe solution, the following results are obtained:

� The instanton number and bulk Lagrangian densities (figure 3.5) are confined to a
region of finite extent in the bulk, which confirms the solitonic nature of the baryon
solution. The integrals of these densities give respectively the baryon number, which
is confirmed to be equal to 1 numerically, and the classical contribution to the nucleon
mass. The latter is found to be relatively close to the experimental nucleon mass for
Nc = 3 colors

M0 '
Nc

3
× 1150 MeV . (3.2.1)

We recall however, that the full result for the V-QCD baryon mass should also include
quantum corrections: these should be computed from the perturbations around the
baryon, together with an appropriate subtraction of the similar fluctuations around
the vacuum state. Computing these corrections goes beyond the scope of this work.

23In addition, the solutions with a different choice of potentials are discussed in Appendix I.
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Although these corrections are subleading at large Nc, starting at order O
(
N0
c

)
, they

may give a sizeable contribution when Nc is set to 3. Note that this state of affairs
regarding quantum corrections is not particular to our model, and is true also for
both the Skyrme model and other holographic models.

� In the previous section, it was found that, for the baryon solution, the pion matrix
at the boundary follows the Skyrmion hedgehog ansatz

UP (ξ) = exp

(
iθ(ξ)

x · σ
ξ

)
, (3.2.2)

with ξ the 3-dimensional radius. Also, the baryon number was shown to be equal to
the skyrmion number for the pion matrix. This indicates that the baryon solution
in V-QCD is qualitatively similar to the Skyrme model skyrmion solution24. To
measure the difference with the Skyrme model skyrmion, the pion phase θ(ξ) is
compared with the Skyrme result in figure 3.6. This indicates that the two solutions
are quantitatively close.

At the next order in the large N expansion, the back-reacted solution provides the
following information:

� The modulus of the chiral condensate
∣∣〈ψ̄ψ〉∣∣ is observed to decrease towards the

baryon center, as shown in figure 3.7. This signals the expected partial restoration
of the chiral symmetry inside the baryon.

� The correction to the baryon Lagrangian density from the back-reaction is calculated
numerically and presented in figure 3.8. The observed behavior is well understood
in terms of the chiral restoration, which has two effects. First, the negative contri-
bution in the UV is mainly understood as a direct consequence of the decrease of
the contribution from the chiral condensate to the Lagrangian density. Second, a
positive correction is observed in the IR, which corresponds to a shift of the baryon
towards the IR. This shift also contributes to the negative region in Figure 3.8, and
is understood as a consequence of the weakening of the IR-repelling bulk force felt
by the baryon in the chirally broken background. The results also indicate that the
correction to the classical soliton mass is negative, and relatively small in absolute
value.

Rotating baryon solution and spin-isospin spectrum

The second part of this section is devoted to the quantization of the isospin collective
coordinates of the bulk soliton dual to a baryon. In the large Nc limit, the moment of

24This should not come as a surprise, as we already know that the dual boundary theory can be
understood in the confined phase as a chiral effective theory coupled to a tower of massive mesons.
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inertia λ of the baryon is of order O(Nc) and the quantization is that of a solid rotor.
The result of this procedure is the derivation of the spin-isospin baryon spectrum for the
V-QCD model considered in this work.

The starting point for the quantization of the collective coordinates is the classical bulk
solution obtained by a time-dependent isospin rotation of the static soliton, parametrized
by

V (t) ≡ exp (it ωaλa) ∈ SU(Nf )L+R

with ωa the rotation velocity. In this work we restrict to the following regime:

� Only an SU(2) subgroup (the same where the static soliton sits) of the full isospin
subgroup is quantized. This means that we impose that V (t) ∈ SU(2)L+R. By
doing so, we compute only a subset of the full spin-isospin spectrum, corresponding
to baryons composed of quarks with 2 flavors (or equivalently, the states with strong
hypercharge Y = 1).

� The rotation is assumed to be stationary and slow. In terms of the rotation velocity
ωa, this means that ωa is assumed to be a constant and obey ω2 � M0/λ. This
regime describes well the baryon states with spins

s� Nc .

The quantization therefore requires the calculation of the bulk solution corresponding
to a slowly rotating baryon. This calculation is done at linear order in ω. Already at this
order, it turns out that a simple rotation of the static soliton fields with V (t) ∈ SU(2)L+R

is not a solution of the bulk equations of motion. Instead, as soon as the soliton is made to
rotate, some new flavor fields are turned on in the bulk, at linear order in ω [177]. These
are the flavor equivalents of the magnetic field sourced by a rotating charge.

The appropriate ansatz for the rotating fields is constructed in section 3.2.5, by impos-
ing the same symmetries as for the static solution, apart from time-reversal. These include
3-dimensional rotations and parity. Once this ansatz is determined, the construction of the
rotating soliton solution follows the same steps as in the static case:

� We derive the expression of the moment of inertia of the soliton in terms of the
ansatz fields.

� We derive the full equations of motion for the fields of the rotating ansatz.

� We identify the boundary conditions such that the moment of inertia is finite. The
boundaries here are 1) the near-AdS region UV boundary r → 0, where the solution
should satisfy vev-like boundary conditions for all the fields; 2) the boundary at
spatial infinity |~x| → ∞, where the fields have to vanish fast enough for the moment
of inertia to be finite.
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� We identify suitable regularity conditions in the IR region of the geometry.

The last part of this section presents the results of the numerical calculation for the
solution to the equations of motion obeyed by the rotating ansatz fields. The spin-isospin
baryon spectrum resulting from this solution is shown in table 3.3. We emphasize that

Spin V-QCD mass Experimental mass

s = 1
2

MN ' 1170 MeV MN = 940 MeV

s = 3
2

M∆ ' 1260 MeV M∆ = 1234 MeV

Table 3.3: Baryon spin-isospin spectrum in the V-QCD model with the potentials of
section 3.2.2, compared with experimental data.

these numbers were obtained by substituting Nc = 3 in the leading order large Nc and
Nf result. In principle, at small values of Nc and Nf , this result is not expected to be
quantitatively accurate.

3.2.2 The V-QCD model: comparison to data

This section describes the procedure for constructing the specific model in the V-QCD
class that was used to compute the numerical baryon solution. The parameters of the
model are determined by comparing to QCD data. This is done in two stages: In the first
stage, we choose the asymptotics of the functions so that the model has the potential to
resemble QCD. In the second stage, we fit the remaining parameters to QCD data. In
earlier work, this second step has been done for pure Yang-Mills [147] (see also [197, 198]),
as well as for full QCD by fitting the thermodynamics [165] and meson spectrum [162]
separately. Here we carry out a simultaneous fit to the thermodynamic and spectrum data
for full QCD, with a slightly higher weight on the spectrum fit because it probes directly
the vacuum phase which is relevant for the current study. Apart from just combining the
earlier thermodynamics and spectra fits, we also choose a different set of observables for
the latter fit as compared to [162]. In this reference, the stress was on fitting a high number
of meson masses including relatively heavy states, in order to obtain a good description of
Regge trajectories. Here we focus on the mesons with lowest masses and also fit the pion
decay constant.

The V-QCD action was introduced in section 2.3, but we will reproduce the expressions
here, so that it is clear what are the parameters that take part in the fit. The five-
dimensional action

SV−QCD = Sg + SDBI + SCS (3.2.3)
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is the sum of three terms25. The action for the glue sector is

Sg = M3N2
c

∫
d5x
√−g

[
R− 4

3λ2
gMN∂Mλ∂Nλ+ Vg(λ)

]
, (3.2.4)

and the flavor action contains a DBI and a CS term. The simplified abelian form of the
DBI action introduced in section 2.3 is given by

SDBI,simpl =−M3NcNf× (3.2.5)

×
∫
d5x Vf (λ, τ)

√
−det (gMN + κ(λ)∂Mτ∂Nτ + w(λ)FMN ) .

This simplified form is sufficient to discuss the fit to QCD data, which is based on properties
of the vacuum and equilibrium thermal states. The CS term was presented in section 3.1.3.
We will not reproduce its expression here since it is not needed for the background analysis.
We emphasize however that this term is included in the action for the V-QCD model, which
is necessary for stabilizing the size of the baryon solutions that we construct below.

3.2.2.1 Comparing V-QCD to data: asymptotics

We now discuss how the potentials Vg(λ), Vf (λ, τ), κ(λ) and w(λ) are determined. We
start by considering the asymptotic constraints as λ → 0 (UV) or λ → ∞ (IR), which
arise from comparison to QCD. The constraints on the asymptotics were already briefly
sketched in section 2.3. Here we provide a more detailed discussion.

In the UV, the field theory becomes weakly coupled and it is far from obvious that
gauge/gravity duality can provide useful predictions. In this region we follow the usual
practice for bottom-up models and adjust the model by hand so that it mimics closely
the behavior of QCD in the perturbative regime. Such choices are expected to give good
boundary conditions for the more interesting, strongly coupled IR physics.

In order to write down the asymptotics as λ→ 0, we write down the effective potential

Veff (λ, τ) = Vg(λ)− Nf

Nc
Vf (λ, τ) , (3.2.6)

as well as the expansion of the flavor potential at small tachyon:

Vf (λ, τ) = Vf,0(λ)
[
1− â(λ)τ2 +O

(
τ4
)]

. (3.2.7)

The UV behavior is in general chosen such that the geometry is asymptotically AdS5 and
the asymptotics of the bulk fields match with the expected (free field) UV dimensions

25The action generically contains an additional CP-odd term that couples the flavor fields to the
holographic axion, dual to the Tr(G∧G) operator. This term was derived in [161, 166] based on the
ideas of [138]. We do not write this term here because, as explained in Section 3.2.5.1, the coupling
to the axion is ignored in the following.
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of the dual operators. Moreover, one can require that the logarithmic running of the
dilaton agrees with the two-loop perturbative running of the QCD coupling. This maps
the subleading terms in the potential Vg and the effective potential Veff to the two-loop
β functions of the YM theory and full QCD, respectively. We implement this constraint
here for the gluon potential Vg only, and choose to fit the other higher order coefficients to
low energy data instead. The explicit definitions of the UV expansions take the form

Vg(λ) = Vg,0
[
1 + Vg,1λ+O(λ2)

]
Veff (λ, τ = 0) = V0

[
1 + V1λ+O(λ2)

]
Vf,0(λ) = W0

[
1 +W1λ+O(λ2)

]
,

κ(λ) = κ0

[
1 + κ1λ+O(λ2)

]
, λ→ 0, (3.2.8)

w(λ) = w0

[
1 + w1λ+O(λ2)

]
,

â(λ) = 1 + a1λ+O(λ2) .

Here the coefficients Vg,0 and V0 are linked to the radii of the UV AdS5 geometry in the
absence of flavors, and for the full background, respectively:

Vg,0 =
12

`2g
, V0 = Vg,0 − xW0 =

12

`2
. (3.2.9)

We fixed the normalization of the tachyon field such that â(λ = 0) = 126.
The requirement that the asymptotic dimension of the q̄q operator equals 3 sets

κ0 =
2`2

3
. (3.2.10)

The subleading coefficients Vg,1 and Vg,2 are determined by comparing to the YM β func-
tion, which sets

Vg,1 =
11

27π2
, Vg,2 =

4619

46656π4
. (3.2.11)

The rest of the parameters are left free at this point.
The IR (λ → ∞) asymptotics of the various functions is chosen such that the model

agrees with various qualitative features. First, the asymptotics of Vg(λ) is adjusted such
that the model has a discrete glueball spectrum with Regge-like linear radial trajectories
(i.e. that the masses behave as m2

n ∼ n as a function of the radial excitation number n).
This requirement automatically implies also color confinement and magnetic screening,
[145].

The geometry ends in a “good” IR singularity according to the classification by Gub-
ser [200]. Second, several requirements constrain the asymptotics of the functions in the
DBI action:

26This is without loss of generality, as we have left the normalization of the tachyon kinetic term
free for the moment.
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� The IR singularity should remain fully repulsive, so that the boundary conditions
for the background and fluctuations are properly determined [150].

� The meson mass spectrum needs to be discrete, admit linear Regge-like radial tra-
jectories, and all meson trajectories should have the same universal slope [161]27.
The mass gap of, say, vector mesons should grow linearly with quark mass at large
values of the mass [160].

� The flavor action should vanish in the IR for chirally broken backgrounds, corre-
sponding to the annihilation of the flavor branes in the IR, [159]. Moreover, the
phase diagram as a function of x, T , µ and the θ-angle, should have the qualitatively
correct structure.

These requirements can be met if we choose the flavor action which behaves as

Vf (λ, τ) ∼ e−a(λ)τ2
, τ → +∞ (3.2.12)

with a(λ) > 0, and require that as λ→∞

Vg ∼ VIRλ4/3(log λ)1/2, Vf,0 ∼WIRλ
vp ,

κ ∼ κIRλ−4/3(log λ)1/2, a ∼ aIR, w ∼ wIRλ−4/3(log λ)wl , (3.2.13)

with 4/3 < vp < 10/3 and wl > 1/2 (see [161] for details).

3.2.2.2 Comparing V-QCD to data: fit of parameters

After the asymptotics of the potentials have been fixed, the remaining task is to determine
the leftover freedom by doing a more precise comparison to QCD data. We shall be using
lattice data for the thermodynamics of the YM theory and QCD as well as glueball masses,
and experimental data for meson masses and decay constants.

The complete ansatz is given by

Vg(λ) = 12

[
1 + Vg,1λ+

Vg,2λ
2

1 + cλλ/λ0
+ VIRe

−λ0/(cλλ)

(
cλλ

λ0

)4/3√
log(1 + cλλ/λ0)

]
(3.2.14)

Vf (λ, τ) = Vf,0(λ)
(
1 + τ4

)τp
exp

(
−a(λ)τ2

)
(3.2.15)

Vf,0(λ) = W0 +W1λ+
W2λ

2

1 + cfλ/λ0
+WIR

(
1 +

W̄1λ0

cfλ

)
e−λ0/(cfλ)(cfλ/λ0)2 (3.2.16)

27There is a certain freedom in this direction. Tachyon condensation induces a mass term for the
axial gauge field in the bulk, and depending on bulk IR asymptotics, it may change the slope of
the radial trajectories for the axial and vector mesons, [156, 157]. It is not yet clear whether this is
true in QCD, [201].
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a(λ) = 1 +
1

2
ast [1 + tanh (−ash + log(λ/λ0))] (3.2.17)

κ(λ) = κ0

[
1 + κ̄0

(
1 +

κ̄1λ0

cκλ

)
e−λ0/(cκλ) (cκλ/λ0)4/3√

log(1 + cκλ/λ0)

]−1

(3.2.18)

w(λ) = w0

{
1 +

w1cwλ/λ0

1 + cwλ/λ0
+ (3.2.19)

+ w̄0e
−λ̂0/(cwλ) (cwλ/λ0)4/3

log(1 + cwλ/λ0)

[
1 + was (log (1 + cwλ/λ0))4

]}−1

where λ0 = 8π2. We have also chosen vp = 2 in the IR, and set `g = 1, so that the AdS
radius is given by

` =
1√

1− xW0/12
(3.2.20)

and consequently, from (3.2.10)

κ0 =
2

3 (1− xW0/12)
. (3.2.21)

Requiring agreement with the two-loop β-function of Yang-Mills fixes the subleading coef-
ficients of Vg in the UV to the values given in (3.2.11).

We now set x = 2/3, roughly corresponding to QCD with Nf = 2 light quarks and
Nc = 3. The rest of the parameters are fitted to data. In addition to the parameters
of the potentials, we also fit the 5D Planck mass M and the characteristic scale Λ of
the background solutions, which is roughly dual to the scale ΛQCD in field theory, see
section 2.3.1.

The fit is carried out in steps. We fit the various functions sequentially to appropriately
chosen observables as we explain below. Although the best strategy would be a global fit
of all the parameters to all appropriate data, this is numerically very demanding and we
are not yet able to do it.

The function Vg is chosen to be the same as in the fit of [162] where it was determined
through a global fit to the QCD spectrum. Even if it was not directly fitted to the data
from Yang-Mills theory, it does produce a good description of the lattice data for Yang-
Mills thermodynamics [148] and the glueball spectra [202, 203, 204], see figure 3.128 and
table 3.4.

The next function to be fitted is Vf (λ, τ) at zero tachyon, i.e., Vf,0(λ). For this function,
we mostly use the lattice data for QCD thermodynamics at high temperatures and zero
density in the chirally symmetric phase. As we are working at zero quark mass in the

28In this figure, the Planck mass M and the scale parameter Λ were fitted independently of the
later fits to full QCD data. This reflects the dependence on x of these parameters: the values for
Yang-Mills are those with x = 0, whereas for full QCD we take x = 2/3.
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Figure 3.1: Our result for the thermodynamics of pure Yang-Mills theory (dashed
curves) compared to lattice data interpolated to Nc → ∞ [148] (solid curves and
error bars). The red, blue, and green curves show the normalized energy density,
pressure, and interaction measure, respectively.

holographic model, chiral symmetry is fully restored in this phase, meaning that the tachyon
is identically zero. This means that the thermodynamics only depends on Vf,0 through the
effective potential

Veff (λ, τ = 0) = Vg(λ)− xVf,0(λ) . (3.2.22)

In order to present our results, we introduce a reference value MUV for the Planck mass,
defined by

M3
UV ≡

1

45π2`3

(
1 +

7x

4

)
, x ≡ Nf

Nc
, (3.2.23)

where x = 2/3. This expression gives the value of the Planck mass for which there is
agreement of the pressure with the perturbative QCD result in the limit T → ∞. We
fitted the effective potential (3.2.22) to latice data for various fixed values of the Planck
mass M , while the other scale parameter Λ, which only affects the temperature scale in
the plots, was allowed to vary freely. Figure 3.2 shows fits with M3/M3

UV = 1.5 (dashed
thin black curves) and M3/M3

UV = 4 (solid thin black curves).29 Note that, although the
fit results are determined mostly by Veff (λ, τ = 0), M and Λ, they also depend on other

29In the right hand plot disentangling the two curves is difficult because they almost overlap.
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Ratio Model Lattice (Nc = 3) Lattice (Nc =∞)

m0∗++/m0++ 1.52
1.603± 0.042 [202]

1.719± 0.016 [204]

1.835± 0.032 [202]

1.903± 0.018 [204]

m2++/m0++ 1.29
1.346± 0.037 [202]

1.437± 0.011 [204]

1.451± 0.048 [202]

1.497± 0.008 [204]

Tc/m0++ 0.162 0.182± 0.004 [202, 203] 0.181± 0.003 [202, 203]

Table 3.4: Our results for glueball mass ratios and the ratio of the mass to the critical
temperature compared to lattice results.

parameters of the theory via the critical temperature of the phase transition between the
chirally-unbroken and the chirally-broken vacuum.

When fitting, we therefore took the critical temperature as an additional fit parameter.
In the next step of the fitting procedure, which is discussed below, the tachyon dependent
functions were adjusted such that the critical temperature is indeed close to the fitted
value. The two values will however be slightly different, and therefore the results for the
thermodynamics with the final fit parameters differ from the direct fits of the effective
potential. The discrepancy is clearly visible in figure 3.2.

The best fits to thermodynamics were obtained at low M3/M3
UV . 2. However, in the

analysis that follows we chose a high value M3/M3
UV ' 4. The reason is that such high

values lead to a better description of the spectrum and in particular of the pion decay
constant, which, as we remarked above, are stressed in the fit. We also note that there is a
simple flat direction in this fit as the thermodynamics is unchanged under uniform rescal-
ings of the coupling λ 7→ cλ in the effective potential. This happens because the kinetic
term in (3.2.4) is invariant under such rescalings, so that a constant in Veff multiplying
λ can be eliminated through a field redefinition. We use this freedom to ensure that the
constructed effective potential is consistent with the choice of Vg, meaning, in particular,
that Vf,0 is set to be positive and monotonic.

The most complicated step in the fit is the next step, where we choose the form of
Vf (λ, τ) at nonzero tachyon, including the function a(λ) in the exponential factor, and the
tachyon kinetic term κ(λ). These functions are probed by the chirally broken vacuum,
which has nonzero bulk tachyon condensate. The main observables are the pion decay
constant, the mass of the ρ meson, and the mass of the lightest scalar flavor nonsinglet
(i.e., isotriplet for Nf = 2) state. When doing the fit, it is important to keep an eye on the
ratio of the meson masses to the critical temperature.

As it turns out, fitting the thermodynamics and meson spectra simultaneously leads to
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tensions in the choices of potentials. The basic issue is that it is difficult to find a choice of
function that would, at the same time, give high enough pion decay constant, heavy enough
scalar states, and the experimentally observed meson mass to critical temperature ratio.
In order to alleviate this tension we introduced an ansatz for the tachyon dependence of
Vf in (3.2.15) and (3.2.17), which is somewhat more detailed than those used in previous
studies. This ansatz has the following properties

� It includes a new parameter τp in (3.2.15), controlling a term which depends on the
tachyon only. We find that increasing τp leads to better fits, so we choose the value
τp = 1 which is close to the maximal possible value. This maximum arises because
Vf (λ, τ) needs to be monotonic in τ at small λ, otherwise no appropriate background
solutions exist.

� The exponent in the tachyon exponential a in (3.2.15), is taken to be a function of
the dilaton a(λ). a(λ) needs to be constant at both large and small λ, but may have
a step in the middle. The fit result is that the IR value of a(λ) should be significantly
higher than the UV value (that was normalized to one).

In addition, the function κ(λ) has three free parameters (notice that κ0 in the ansatz (3.2.18)
is given in (3.2.21)). One of these (in practice κ̄1) is fitted such that the final critical tem-
perature is close to that obtained from the fit of Veff discussed above. Due to tension with
the fit to thermodynamics, we however choose a value that is a bit higher than obtained in
the fit. The other two parameters κ̄0 and cκ, are used to adjust the function such that the
pion decay constant and the scalar masses are optimal. This means, in practice, taking κ̄0

to be close to the critical value beyond which the model stops to be confining for mesons
(see [161]), and adjusting cκ according to the fit of the masses and the decay constant.

The remaining task is to fit the function w(λ), parametrized in (3.2.19). The spectra,
in particular the vector and axial meson masses, do depend on this parameter. But as it
turns out, the dependence is rather weak. Therefore, we fit this function to lattice data on
the baryon number susceptibility

χB(T ) =
1

N2
c

∂2p(T, µ)

∂µ2

∣∣∣
µ=0

(3.2.24)

following [165]. Here µ is the quark chemical potential. For the parameter was in (3.2.19),
we choose a small value30

was = 2× 10−5 (3.2.25)

so that this fit is essentially independent of the IR modification (i.e., the factor in the
square brackets in (3.2.19)). Due to the weak dependence of the spectrum on w(λ) the
last two steps of the fitting procedure need to be done in part in parallel: in practice we

30This value can also be chosen to be zero without affecting the quality of the fits.
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Parameter Value

M3/M3
UV 4.929 (3.8)

Λ 4107 MeV (3350 MeV)

M3/M3
UV|x=0 1.4

VIR 1.804

cλ 2.833

W0 2.376

W1 0.04603

W2 0.02546

WIR 1.783

W̄1 4.357

cf 1.463

Parameter Value

τp 1

ast 2.5

ash 1.5

κ̄0 2.429

κ̄1 0.32

cκ 2.0

w0 1.17

w1 52.5

w̄0 200

cw 0.18

was 2× 10−5

Table 3.5: Choices of model parameters, split in groups. For the first two parameters,
the Planck mass M and the scale Λ, the first set of values are determined by the ρ
mass and fπ, whereas the values in parentheses are the values preferred by the fit
to thermodynamics. We also set x = 2/3 and b = 10 for the additional parameter
appearing in the CS action.

determine first Vf (λ, τ) and κ(λ) using a choice of w(λ) that produces a rough fit to the
lattice data for the susceptibility. When Vf (λ, τ) and κ(λ) are known, we then tune w(λ)
to obtain a good fit as the last step.

The final parameter values are collected in table 3.5. The fits for the QCD thermody-
namics are shown in figures 3.2 and 3.3. The results for the most important meson masses
and the fπ are given in table 3.6.

Before discussing the details of the fit results, we give a summary of the observables
that the various parameters were fitted to. Notice that the parameters in table 3.5 were
grouped in six groups. In the first group (top left), we show the final values fixed to fπ and
mρ for the mass scales M and Λ, as well as the values preferred by the fit to the lattice
results for thermodynamics (values in parentheses). The value of M at x = 0 is the one
used in Figure 3.1 for the thermodynamics of pure Yang-Mills.

The parameters of Vg (middle left group) were not fitted here but we used the values
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Figure 3.2: Fits to the thermodynamics lattice data [40] of QCD with 2+1 flavors.
The thin black solid (M3/M3

UV = 1.5) and dashed curves (M3/M3
UV = 4) are direct

fits of the effective potential (3.2.22). The dotted blue and solid magenta curves
are final fits, with scale parameters M and Λ optimized for thermodynamics and
spectrum data, respectively. The fit parameters are given in table 3.5. These two
fits have different transition temperature compared with the direct fits of the effective
potential; see the text for details.

from [162]. The thermodynamics and glueball masses from this choice were however seen
to agree well with lattice data (figure 3.1 and table 3.4).

The parameters of the Vf,0 potential (the bottom left group) are fitted to the thermo-
dynamic data of figure 3.2 and the parameters of the w potential (the bottom right group)
are fitted to the susceptibility in figure 3.3. The remaining parameters of the tachyon po-
tential Vf (top right group) were adjusted to obtain a spectrum that mimics that of QCD,
as shown in table 3.6. The parameters of the κ potential (middle right group) were fitted
in part to the thermodynamics and in part to the spectrum.

Apart from the parameters fitted to data here, there is a single parameter arising
from the CS sector, which was discussed in section 3.1.3. The most general CS term
contains four functions fi(τ) which are only known at τ = 0 and at τ = ∞. We will
use here the functions derived in [138] arising from flat space string theory, up to the
parameter b which corresponds to a rescaling of the tachyon field in the CS term. The
corresponding expressions for the fi(τ) are given in (3.1.36). Our results here turn out to
have little dependence on different finite values of this additional parameter; we set b = 10
following [174].

We now discuss some additional details of the fit. Figures 3.2 and 3.3, show the final
fit to the thermodynamic data, with the values of M and Λ given in the parentheses in
table 3.5.

The dotted blue curves in figure 3.2, show the results for the thermodynamic fit to the
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Figure 3.3: Fits to the lattice data (with 2+1 flavors) [205] for the light quark
susceptibility of QCD. The dotted blue and solid magenta curves are final fits with
scale parameters optimized for thermodynamics and spectrum data, respectively.

equation of state. They differ from the direct fit of Veff , the solid black curve, because
the transition temperature was adjusted differently in the final fit, in order to obtain a
better agreement with the experimental meson spectrum. As we pointed out above, the
final transition temperature is determined, apart from the effective potential, by the values
of κ̄0, κ̄1 and cκ in table 3.5.

Finally, the solid magenta curves show the fit for the values of M and Λ that reproduce
the values of fπ and the ρ mass, i.e., the values in table 3.5 which are not in parentheses.
Their difference to the dashed blue curves therefore demonstrates the remaining tension
between the fits to thermodynamic and spectrum data. Because we are interested in
baryons in the zero temperature vacuum state in this work, we chose to use this latter fit
in the analysis of the properties of the baryon solution in the rest of this section.

Notice that we only fit the lattice data above the QCD crossover, and in the deconfined
phase of the holographic model, where the phases are separated by a first order phase
transition. The phase transition in the model, is at the same time a deconfining transition
as well as a chiral restoration transition. Since we are in the massless quark case this is in
agreement with universality arguments, [163]. It is possible to obtain higher order phase
transitions by tuning the potentials [207], but such tuning would contradict the other con-
straints we have set, in particular the requirement of linear radial glueball trajectories.
However, it is expected that stringy loop corrections, which map to the pressure of pions
and other light hadrons on the QCD side, can make the transition continuous also in the
current setup for the holographic model [163]. Such corrections are neglected in the holo-
graphic model, but may be added as in the second reference in [163]. After the holographic
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Quantity Model Experiment [206]

fπ 92 MeV∗ 92 MeV

mρ 775 MeV∗ 775 MeV

mρ∗ 886 MeV 1465± 25 MeV

ma1 1240 MeV 1230± 40 MeV

mπ∗ 1260 MeV 1300± 100 MeV

ma0 639 MeV –

Table 3.6: Fitted low lying (flavor nonsinglet) meson masses and the pion decay
constant. The values of the scale parameters M and Λ were chosen such that the
values of fπ and mρ, marked with asterisks, match exactly the experimental values.

model has been fitted to lattice data, even simple hadron resonance gas models for the con-
fined phase equation of state match almost continuously with the model in the deconfined
phase [208].

Regarding the meson spectrum, we compare in table 3.6 the masses of the flavor non-
singlet mesons (i.e. the fluctuation modes with vanishing trace in flavor space) to the
experimental values of isospin I = 1 mesons from the particle data group tables [206]. We
also include the pion decay constant, and its value is used together with the ρ meson mass
to determine the final values of M and Λ, as mentioned above.

Of the remaining mesons, the mass of the lowest axial vector and the mass of the first
pion excitation agree very well with the experimental values. The mass of the excitation
of the ρ meson is however too low. As it turns out, requiring the scalar mass to be high
with respect to the ρ mass leads to a situation where excited states in all sectors are rather
close to the ground states. One should however also notice that the state in QCD that we
are comparing is suspected not to be a clean radial excitation of the ρ but to contain a
significant hybrid component [206]. This may in part explain the difference in the numbers.

As we remarked above, the mass of the lowest scalar ma0 is low: it is slightly less than
mρ. We do not attempt to compare this mass directly to the experimental data as the
scalar sector in QCD has a rather involved structure with several states that resemble pion
and kaon molecules. Nevertheless our result is too low to be identified with any known
state in the spectrum. This is perhaps not surprising since similar issues often appear in
simple potential quark models. We do note, however, that the model of [156, 157], which
is closely related to V-QCD, does produce a significantly heavier flavor non-singlet scalar
state. We also remark that we did not try to fit the pion mass as we carried out the fit
at zero quark mass. It would be simple to fit the pion mass accurately by turning on a
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nonzero quark mass.
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Figure 3.4: Potentials for the choice of parameters given in Table 3.5. Notice that
the left (right) plot uses linear (logarithmic) scale for the dilaton λ.

Finally we show the potentials after the fit in figure 3.4. We remark that all the
functions are simple, i.e. monotonic functions with no rapid changes in behavior. Notice
also that even though we list a high number of parameters in table 3.5, almost all of
these parameters only appear through the functional form of the functions shown in these
plots. As the asymptotic form of the functions is fixed by comparison of QCD properties
independently of the values of the parameters, they only affect the details of the functions
in the middle, i.e., for λ/λ0 = O(1). That is, despite the high number of parameters, the
details of the model and therefore predictions for the observables are tightly constrained
from the beginning, and the fit basically amounts to small tuning of the final results.

3.2.3 The static soliton

Based on the formalism described in the previous section, we discuss here the numerical
solution for the bulk instanton dual to a static baryon state at the boundary.

The ansatz that is relevant for the instanton solution was presented in section 3.1.4.
We fix the residual U(1) gauge freedom by the Lorenz condition (3.1.107), for which the
equations of motion obeyed by the ansatz fields take an elliptic form (see appendix F.1.3).
The most general form of the equations of motion including the back-reaction on the
tachyon field are listed in appendix F.2. Those are the non-linear differential equations
that were solved numerically, with the boundary conditions listed in table 3.2.
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3.2.3.1 Probe and back-reacting solutions

As explained in the previous section, we shall consider a baryon whose flavor quantum
numbers are a U(2) subgroup of the U(Nf ) flavor group. This implies that the flavor
action (composed of the DBI and CS actions in (3.2.3)) for the baryon ansatz does not
depend on Nf and is of order Nc. On the other hand, the glue action is of order N2

c .
Likewise, the tachyon modulus background contributes a factor Nf more than the baryon
fields to the bulk action, which can be seen explicitly from (3.2.27) below. So, at leading
order in the Veneziano limit, both the glue sector (metric and dilaton) and the tachyon
modulus τ are not affected by the presence of the baryon, and remain identical to the
vacuum solution.

We start by computing the numerical baryon solution in this leading order probe regime.
In this case, the equations of motion reduce to the form given in appendix F.1.3.

In the Veneziano limit, the back-reaction on the background starts at order O(1/Nc).
At this order, the correction to the glue sector (metric and dilaton) and tachyon modulus τ
can be computed by solving the linearized Einstein-dilaton equations sourced by the probe
baryon solution, together with the linearized equations for τ . Qualitatively, we do not ex-
pect a dramatic effect on the glue sector from the presence of the baryon. Correspondingly,
the back-reaction on the glue sector is not expected to affect much the flavor structure of
the baryon, which is its most important dynamical property. This motivates the approxi-
mation that we consider in the following, where the baryon is assumed to back-react only
on the tachyon background. The full equations of motion including the back-reaction on
the tachyon are given in appendix F.2.

In summary, we consider two different regimes for the baryon solution, with different
treatments of the tachyon modulus:

� The probe baryon solution, where the tachyon modulus τ is fixed to its vacuum value.
This corresponds to the solution at leading order in the Veneziano expansion. At
this order, the chiral condensate profile around the baryon is trivial, but the other
flavor properties of the baryon are expected to be qualitatively correct.

� The back-reacted tachyon regime, where the equations of motion for τ are solved,
with the gauge fields and tachyon phase θ fixed to the probe baryon solution. In
the Veneziano limit, this will reproduce the leading order O(1/Nf ) correction to the
tachyon background, assuming no back-reaction on the glue sector. In this case, the
solution obtained for the tachyon modulus should give a good idea of the qualitative
behavior of the chiral condensate in presence of the baryon.

3.2.3.2 Baryon mass

Once the soliton solution is found, several static properties of baryons can be computed
[173, 129]. The most elementary of these properties is the nucleon mass. This mass is the
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sum of a classical contribution and quantum corrections

Mnucleon = M0 + δMQ . (3.2.26)

The classical contribution is computed from the bulk on-shell action evaluated on the soliton
solution. It corresponds to the energy of the soliton, whose expression was presented in
section 3.1.5. Here, we reproduce this expression for the purpose of introducing some
definitions. In the approximation where the back-reaction on the glue sector is neglected,
the soliton mass is given by

M0 = Nc

(
NfSτ + SB

)
− EDBI,vac , (3.2.27)

where EDBI,vac is the DBI contribution to the vacuum energy

EDBI,vac =

∫
drdξ 4πξ2ρDBI,vac , ρDBI,vac ≡M3

√
1 + e−2Aκ(∂rτ0)2 Vf (λ, τ0)e5A,

(3.2.28)
with τ0(r) the vacuum profile of the tachyon field. The baryon contribution to the bulk
action is split into two pieces

Sτ =

∫
drdξ 4πξ2ρτ , SB =

∫
drdξ 4πξ2ρB , (3.2.29)

ρτ ≡M3
√

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ)e5A , (3.2.30)

ρB ≡M3
√

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ) eA×

×
(

e2Aκ(λ)τ2

(
e2A∆rrÃ

2
r +

(
1− e2A∆ξξ

)
Ã2
ξ +

(φ̃+ φ̃∗)2

2ξ2
−

− 2e2A∆ξrÃrÃξ

)
+

+ w(λ)2

(
1

8
e2A

[
∆rr

(
1− e2A∆ξξ

)
− e2A∆2

ξr

]
(Fµ̄ν̄)2+

+
1

2ξ2

((
1− e2A∆ξξ

)
|Dξφ|2 + e2A∆rr |Drφ|2

)
+

+

(
1− |φ|2

)2
4ξ4

− 1

2ξ2
e2A∆ξr(Drφ

∗Dξφ+ h.c.)−

−
(

e2A∆rr(∂rΦ)2 +
(
1− e2A∆ξξ

)
(∂ξΦ)2−

− 2e2A∆ξr∂ξΦ∂rΦ
)))

+

102



+
1

π2ξ2
εµ̄ν̄∂µ̄Φ×

×
[
(f1(τ) + f3(τ))

(
Ãν̄ +

1

2
(−iφ∗Dν̄φ+ h.c.) +

1

4i
∂ν̄(φ̃2 − (φ̃∗)2)

)
+

+
1

2
(3if2(τ)− f1(τ)− f3(τ))(φ̃+ φ̃∗)2Ãν̄

]
. (3.2.31)

The covariant quantities Fµ̄ν̄ and Dµ̄φ are defined in Appendix A.5 and the symbol ∆µ̄ν̄ in
(F.53)-(F.55). The fi(τ) are the Chern-Simons potentials, whose expressions are given in
(3.1.36). Note that, as far as flavor fields are concerned, Sτ depends only on the tachyon
modulus τ , whereas SB contains the dependence on the baryon fields. In particular, in the
leading order probe baryon regime, only SB contributes to M0. The total bulk Lagrangian
density will be denoted by ρM

ρM ≡ Nc(Nfρτ + ρB)− ρDBI,vac . (3.2.32)

As discussed in section 3.1.6, computing the quantum corrections δMQ is a difficult
problem that goes beyond the scope of this work. Another comment is that we considered
here the mass of the nucleon, but the experimental spectrum of baryons also contains many
excited states, such as the isobar ∆. The calculation of the spin dependence of the baryon
mass spectrum is the subject of section 3.2.4.

3.2.3.3 Numerical results

We present in this subsection the numerical solution for the static baryon configuration.
The equations of motion written in appendix F are solved with the gradient descent
method31, imposing the boundary conditions of table 3.2. The same kind of method was
used in [195, 178] to compute baryon solutions in other holographic models. We focus here
on the results and give more details about the numerical method in appendix H. We start
by presenting the leading order probe baryon solution and then discuss the back-reaction.
We recall that the back-reacting solution is computed assuming no back-reaction on the
color sector (metric and dilaton).

Probe baryon solution

We start with the numerical results obtained for the probe baryon solution. In this case
the modulus of the tachyon field τ is fixed to its background value, and the equations of
motion take the form presented in appendix F.1.3.

The instanton number and bulk Lagrangian density in the (ξ, r)-plane are presented in
figure 3.5, where all dimensionful quantities are expressed in units of the classical soliton

31The name heat diffusion method also appears in the literature.
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mass (3.2.27). The bulk Lagrangian density is given by (3.2.32) , whereas the expression
for the instanton number density can be obtained by dividing equation (3.1.99) by 4πξ2

ρNi ≡
1

8π2ξ2
εµ̄ν̄
[
Fµ̄ν̄ + ∂µ̄

(
− iφ∗Dν̄φ+ h.c.

)]
. (3.2.33)

Figure 3.5 shows the expected behavior for a solitonic configuration, that is the densities
are confined to a region of finite extent in the bulk. The size of this lump in the ξ direction
gives an estimate of the baryon size, which is of the order of M−1

0 . The numerical value for
the classical soliton mass M0 is obtained by integrating the Lagrangian density in Figure
3.5

M0 '
Nc

3
× 1150 MeV . (3.2.34)

This number is expected to give the leading contribution to the nucleon mass in the V-QCD
model with the parameters of Table 3.5. As discussed above, the full result for the nucleon
mass also receives quantum corrections (3.1.101) whose evaluation is an unsolved problem.

In Figure 3.6, we also plot the profile at the boundary (r = 0) for the non-abelian
phase θ of the tachyon field (3.1.64). As stated above, the pion matrix in the boundary
theory (3.1.69) reproduces32 the skyrmion hedgehog ansatz, and the associated skyrmion
number is equal to the baryon number. Figure 3.6 should therefore be compared with the
corresponding plot of the pion field in the Skyrme model skyrmion solution in the chiral
limit [176]. This plot is reproduced33 in Figure 3.6. It makes it clear that the shape of
the boundary skyrmion is close to that of the Skyrme model. Note, in particular, that the
asymptotic behavior is the same:

θ(0, ξ) ∼
ξ→0

ξ , θ(0, ξ)− π ∼
ξ→∞

1

ξ
. (3.2.35)

This can be seen from the asymptotic analysis in appendix G.

Back-reacted tachyon

We now discuss the numerical results obtained when taking into account the back-reaction
on the tachyon field. In this case, the gauge fields and tachyon phase θ are fixed to the
probe baryon solution, and the equation of motion for the tachyon modulus τ is solved on
this background. The corresponding equation of motion for τ is written in appendix F.2.

32This comparison is well defined even though the phase θ transforms under the residual U(1)
gauge freedom: the boundary gauge transformations of UP match exactly those of the pion matrix
in the Skyrme model, and the gauge is fixed in both cases by requiring the absence of sources for
the gauge fields.

33Notice that θ goes from 0 to π, instead of π to 0 for the skyrmion, because the boundary value
of the tachyon field is the conjugate of the pion matrix (3.1.69). So it is actually π−Fskyrmion that
is plotted in Figure 3.6.
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Figure 3.5: Instanton number (3.2.33) (left) and bulk Lagrangian (3.2.32) (right)
density for the static soliton solution in the probe baryon regime. All quantities are
expressed in units of the classical mass of the soliton (3.2.27). The center of the
soliton is located at ξ = 0 where the density diverges as ξ−1. The UV boundary is
located at r = 0. The green line in the right plot indicates the boundary of the region
over which the mean value is computed to define the relative difference in Figure 3.8.

For a back-reacted tachyon, the chiral condensate profile around the baryon can be
computed from the near-boundary behavior of the tachyon modulus

τ(r, ξ) ∼
r→0

Σ(ξ) r3 , (3.2.36)

where Σ is proportional to the modulus of the chiral condensate
∣∣〈ψ̄ψ〉∣∣. The relative

difference of Σ(ξ) with the vacuum value Σ(∞) is plotted in Figure 3.7. This shows the
expected behavior, where the chiral symmetry tends to be restored inside the baryon. Note
that the result that is shown is valid in the limit of large Nc and large Nf . There is a priori
no guarantee for it to be a quantitatively accurate approximation when a small number
of flavors (for example Nf = 2 or 3) is substituted in the leading large Nf result. So, at
small Nf and Nc, Figure 3.7 should not be considered as more than an indication of the
qualitative behavior of the chiral condensate in presence of the baryon.

Another interesting information that can be extracted from this back-reacted tachyon
solution, is the effect of the back-reaction on the soliton mass (3.2.27). The leading order
correction to the on-shell Lagrangian density due to the back-reaction on τ can be expressed
as

N−1
c δρM =

1

2
Nfδτ

2 δ
2Sτ
δτ2

∣∣∣∣
probe

+ δτ
δSB
δτ

∣∣∣∣
probe

+O
(
N−2
f

)
, (3.2.37)

where δτ refers to the order O
(
N−1
f

)
correction to τ , and Sτ and SB are defined in (3.2.29).
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Figure 3.6: Radial profile of the non-abelian phase of the tachyon field (3.1.64) at
the UV boundary (blue line). The dashed gray line indicates the asymptotic value
π. For comparison, we also plotted in black the profile for the pion fields in the
skyrmion solution of the Skyrme model. The parameters of the Skyrme model were
chosen such that fπ and the soliton mass are equal to those of the V-QCD model,
with the parameters of Table 3.5.

Note that we dropped the terms that vanish on-shell

δSτ
δτ

∣∣∣∣
probe

=
δSB
δϕB

∣∣∣∣
probe

= 0 , ϕB ∈ {Φ, φ,Aµ̄, θ} . (3.2.38)

Equation (3.2.37) can be simplified by using the back-reacted equations of motion for the
tachyon modulus

δ(NfSτ + SB)

δτ

∣∣∣∣
back-react

= 0 , (3.2.39)

which, at leading order in Nf , implies that

δSB
δτ

∣∣∣∣
probe

+Nfδτ
δ2Sτ
δτ2

∣∣∣∣
probe

= O
(
N−1
f

)
, (3.2.40)

and finally

N−1
c δρM = −1

2
Nfδτ

2 δ
2Sτ
δτ2

∣∣∣∣
probe

+O
(
N−2
f

)
. (3.2.41)
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Figure 3.7: Chiral condensate profile around the static soliton solution in the back-
reacted tachyon regime, where the baryon center is at ξ = 0. The plotted quantity is
the relative difference between the modulus of the chiral condensate and the chiral
condensate in vacuum. In the Veneziano limit Nc, Nf →∞, the difference is of order
O(1/Nf ), so that it has to be multiplied by Nf in order to obtain a finite result.
We also divide by 3, which means that what the figure shows is the large Nf result,
where the value Nf = 3 is substituted for the number of flavors. As discussed in the
text, there is no reason for this result to be quantitatively accurate for Nf = 3, but
it gives an indication of the qualitative behavior.

Although the correction to the mass (3.2.41) is suppressed by a factor O(1/Nf ) in the
Veneziano limit, it can be sizeable when a realistic value is substituted for Nf . Figure
3.8 shows the relative difference between the bulk Lagrangian density for the back-reacted
solution and the probe baryon solution, when setting Nf = 3 in the leading large N result.
As for the chiral condensate, there is no reason for the result to be quantitatively accurate
at Nf = 3, but it gives an indication of the qualitative behavior.

We should also emphasize that the definition of the relative difference which is shown
in Figure 3.8 is not the standard one, where the difference of the two quantities that are
compared is divided by the quantity of reference (as in (3.2.45) for instance). The usual
definition of the relative difference is not appropriate to compare the densities over the
(ξ, r) plane, since the place where the densities go to zero is not exactly the same for the
probe and back-reacted solutions. Instead, we define the relative difference by dividing the
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difference of the two densities by a reference value ρ̄M

∆relρM ≡
ρM,back-reacted − ρM,probe

ρ̄M
. (3.2.42)

ρ̄M is defined as the mean value of the probe density over the region of the bulk where
most of the density is contained. To be more precise, the criterion that we used to define
the relevant region is given by

3

Nc
ρM ≥ 0.7M4

0 , (3.2.43)

whose boundary is shown by the green line in the right of Figure 3.5. In practice, the
mean value is then computed numerically by averaging over the cells contained in the
given region, denoted A here

ρ̄M =
1

Ncells

∑
i∈A

ρM (i) , (3.2.44)

where Ncells is the number of grid cells contained in A.
Figure 3.8 indicates that there is a region near the UV boundary where the back-reacted

Lagrangian density decreases with respect to the probe solution. This is understood easily
as coming from the decrease of the tachyon modulus in presence of the baryon, which is
dual to the decrease of the chiral condensate observed in Figure 3.7. Another noticeable
feature of Figure 3.8 is the shift of the baryon Lagrangian density towards the IR. This can
be understood as another consequence of the partial chiral restoration at the baryon center.
Indeed, the interaction of the baryon with the tachyon modulus results in a repulsive force
from the IR. So a decrease of the tachyon modulus weakens this force, and implies the
observed shift towards the IR.

Even at small values of Nf , the relative difference between the probe and back-reacted
solutions is observed to be relatively small numerically, of the order of a few 10%. This is
also the case at the level of the soliton masses

Nf

3

M0,back-reacted −M0,probe

M0,probe
' −10% . (3.2.45)

Here again, the number in (3.2.45) is the leading large Nf result, that cannot precisely be
trusted for small Nf and should be considered as indicative.

3.2.4 Quantization of the isospin collective modes

The baryon states of equal half-integer spin and isospin are found by quantizing the soliton
collective coordinates (or zero modes) around the static solution [176]. These modes are

� The spatial position of the soliton ~X = (X1, X2, X3) .
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Figure 3.8: Relative difference of bulk Lagrangian density for the static soliton solu-
tion in the probe baryon and the back-reacted tachyon regime. The relative difference
is defined as the difference of the two densities divided by the mean value of the probe
density (3.2.44). The mean value is taken over the area delimited by the green line in
the right of Figure 3.5, which is the region where the density is substantially different
from zero. The ratio is multiplied by Nf in order to obtain something finite in the
Veneziano limit. The UV boundary is located at r = 0 and the baryon center at
ξ = 0.

� The isospin orientation of the soliton, encoded in an SU(Nf )V matrix34 V .

The baryon solution can be deformed in many ways in addition to these modes, such
as changing the position of the soliton in the holographic direction, or the size of the
soliton [128]. Quantizing such modes leads to a tower of excited baryon states in each spin
sector. In the following, we focus on the lowest states of these towers and consider only
the quantization of the zero modes.

There is no guarantee in principle that the rotation modes can be studied as those of a
rigid rotor, independently from the dilation mode of the soliton. In [128], it was actually
found that the geometry of the collective modes manifold for dilation and isospin rotation

34The relevant collective coordinates are actually only a subgroup of the isospin group SU(Nf )V .
For instance, for Nf = 2 they are the elements of SU(2)V /Z2 and for Nf = 3, the elements of
SU(3)V /U(1)Y , where U(1)Y refers to the strong hypercharge subgroup.

109



had to be such that the modes are rather quantized as a 4D harmonic oscillator, with energy
levels given by equation (5.24) in this reference. The rigid rotor is a good approximation to
the harmonic oscillator only when its fundamental frequency is very large compared with
its inverse moment of inertia. In QCD, this condition is fulfilled in the large Nc limit. This
property is reproduced in the holographic QCD model of [128], as is manifest from the large
Nc limit of the energy levels, equation (5.31) in [128]. Their equation (5.24) also indicates
that the rigid rotor (large Nc) approximation is better for lower spins. In the following,
we assume that the rotation modes can be treated as those of a rigid rotor. According to
the previous discussion, once we set the number of colors to its physical value Nc = 3, this
should not induce too large errors for the low spin modes that exist in real QCD (s = 1/2
and 3/2). Note that the same rigid rotor approximation was considered in the context of
the hard wall model [177] .

The spatial position of the baryon is actually irrelevant to the study of baryon states,
so it will be kept fixed at ~X = 0. We are therefore left with the problem of quantizing the
isospin rotation mode of the soliton. To do so, we consider a configuration where the soliton
isospin orientation V (t) evolves with time, but sufficiently slowly to be approximated by
the ansatz

L(t) = V (t)L(sol) (r, ξ)V (t)† − idV (t)V (t)† , (3.2.46)

R(t) = V (t)R(sol) (r, ξ)V (t)† − idV (t)V (t)† , (3.2.47)

T (t) = V (t)T (sol) (r, ξ)V (t)† , (3.2.48)

where the superscript (sol) refers to the field evaluated in the static soliton solution. V (t)
is parametrized as

V (t) ≡ exp (it ωaλa) , (3.2.49)

the λa’s being the generators of SU(Nf ), and the angular velocity is identified to be

ωaλa = −iV (t)†
dV (t)

dt
. (3.2.50)

We assume that the rotation is stationary

dωa

dt
= 0 , (3.2.51)

and slow, so that ω can be treated as a perturbation on top of the static soliton background.
Also, from now on we restrict to the case of Nf = 2. This means that we shall quantize
only a subset of the full isospin rotations. Specifically, we restrict to V (t) ∈ SU(2)V , in
the same subgroup as the baryon solution.

The starting point for the quantization of the isospin rotation modes is the classical
Lagrangian that controls their dynamics. The latter is obtained in the next section by
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substituting the slowly rotating ansatz (3.2.46)-(3.2.48) into the bulk action (3.2.3) and
evaluating it on-shell for the slowly rotating soliton solution

Lrot = −M0 +
1

2
λ~ω2 , (3.2.52)

where M0 is the mass of the static soliton and λ its moment of inertia. The classical
Hamiltonian is then computed, and quantized in the canonical way described in Appendix
K. As a result, the eigenstates of the Hamiltonian are shown to have same spin and isospin
and its eigenvalues are given by

Es = M0 +
1

2λ
s(s+ 1) , (3.2.53)

where s refers to the spin. In particular, the nucleon states correspond to s = 1/2 and the
isobar ∆ to s = 3/2.

3.2.5 The rotating soliton

This section is dedicated to the calculation of the rotating soliton solution, from which can
be computed the moment of inertia λ that controls the splitting of the baryon energy levels
(3.2.53). We start by determining the ansatz relevant to the solution, before deriving the
equations of motion for the fields of the ansatz as well as the boundary conditions they
should obey. We finally describe the numerical solution for the rotating solution. We work
with a slowly rotating soliton, at first order in the rotation velocity ω. Also, we recall that
we only consider the quantization of the subsector of the chiral group that contains the 2
flavors of the soliton solution.

3.2.5.1 Ansatz for the rotating instanton

Substituting the naive ansatz (3.2.46)-(3.2.48) with V (t) ∈ SU(2) into the equations of
motion, reveals that this ansatz in itself cannot solve the time-dependent equations of
motion. The reason is that the components (L/R)a0 and (LT/RT)r,i in (3.1.45) are turned
on at linear order in ω [177], as is the abelian phase of the tachyon (detT−1). Accordingly,
the ansatz (3.2.46) for the gauge fields should be supplemented by

L0(t) = V (t)L
(rot)
0 (r, ξ; ~ω)V (t)† − i∂0V (t)V (t)† , (3.2.54)

LT
r,i(t) = L

T,(rot)
r,i (r, ξ; ~ω) , (3.2.55)

and likewise for the right-handed fields. Also, the ansatz for the tachyon field (3.2.48)
should be modified to

T (t) = V (t)T (rot)(r, ξ; ~ω)V (t)† , (3.2.56)

where L(rot) and (detT (rot) − 1) start at linear order in ω.
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To determine relevant ansätze for L(rot) and T (rot), we proceed as in the case of the
static soliton and impose the maximal number of symmetries of the bulk action. In the
rotating case, this includes the cylindrical symmetry and parity. For Nf = 2 flavors, the
cylindrical symmetry of the static soliton solution (3.1.50)-(3.1.52) implies that a constant
isospin rotation of the soliton is equivalent to a constant spatial rotation. So the soliton
rotating in isospin space can be seen as rotating instead in physical space, with angular
momentum ~ω. In particular, ~ω transforms as a pseudo-vector in 3-dimensional space35. At
linear order in ~ω, the cylindrically symmetric ansatz for the gauge fields of the rotating
soliton is then [175, 177]

(L/R)i = V (t)(L/R)
(sol)
i V (t)† , (L/R)r = V (t)(L/R)(sol)

r V (t)† , (3.2.57)

(L/R)T
0 = (L/R)

T,(sol)
0 ,

(L/R)0 = V (t)

(
ωb

[
χ

(L/R)
1 (r, ξ)εabc

xc

ξ
+ χ

(L/R)
2 (r, ξ)

(
xaxb

ξ2
− δab

)]
+ (3.2.58)

+
v(L/R)(r, ξ)

ξ2
(~ω.~x)xa + ωa

)
σa

2
V (t)† ,

(L/R)T
i =

ρ(L/R)(r, ξ)

ξ

(
ωi − (~ω · ~x)

xi
ξ2

)
+B

(L/R)
ξ (r, ξ)(~ω · ~x)

xi
ξ2

+Q(L/R)(r, ξ)εibcω
bx

c

ξ
,

(3.2.59)

(L/R)T
r = B(L/R)

r (r, ξ)
~ω · ~x
ξ

, (3.2.60)

where the superscript (sol) refers to the field in the static soliton configuration36, and we
introduced the new 2-dimensional fields

χ
(L/R)
1,2 , v(L/R) , ρ(L/R) , B

(L/R)
µ̄ , Q(L/R) . (3.2.61)

Imposing symmetry under the parity transformation (the full transformation P = P1 · P2

in terms of the definitions in Appendix A)

P : ~x→ −~x , L↔ R , ~ω → ~ω , (3.2.62)

35Strictly speaking, ~ω is a definite 3-dimensional vector, and the rotation breaks the cylindrical
symmetry. However, as is standard for broken symmetries, the appropriate ansatz can be derived
by assuming that ~ω transforms as a pseudo-vector (in that case, ~ω is regarded as a field, called a
spurion).

36At order O(ω2), the static fields will receive corrections from the rotation. These could in
principle contribute to the moment of inertia in (3.2.74). It is not the case because the static fields
sit at a saddle point of the static action. The leading contribution to the Lagrangian (3.2.74) from
the O(ω2) correction to the static fields therefore starts at order O(ω4), corresponding to an O(ω2)
correction to the moment of inertia.
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relates the right-handed and left-handed fields as

χ1 ≡ χL1 = −χR1 , χ2 ≡ χL2 = χR2 ,

v ≡ vL = vR ,

ρ ≡ ρL = −ρR , (3.2.63)

Bµ̄ ≡ BL
µ̄ = −BR

µ̄ ,

Q ≡ QL = QR .

For the tachyon field, the ansatz that has the right transformation properties under 3-
dimensional rotations and parity takes the form

T = V (t) exp

(
iζ(r, ξ)

~ω · ~x
ξ

)
T (sol)V (t)† , ζ(r, ξ) ∈ R . (3.2.64)

The ansatz thus defined is invariant under a U(1)s × U(1)r residual gauge freedom,
where the first factor was already present in the static case (3.1.60), as denoted by the
subscript “s”, and the second factor appears in the rotating solution, as denoted by the
subscript “r”. This new factor is an axial U(1) gauge freedom that is a subgroup of the
chiral U(1)A

ĝL = ĝ†R = exp

(
iβ(r, ξ)

~ω · ~x
ξ

)
, (3.2.65)

under which only Bµ̄, ρ and ζ transform, with transformation rules

Bµ̄ → Bµ̄ + ∂µ̄β , ρ→ ρ+ β , ζ → ζ − 2β . (3.2.66)

Also, the complex scalar field
χ ≡ χ1 + iχ2 , (3.2.67)

transforms as a charge 1 complex scalar field under U(1)s in (3.1.60).
In the case of a rotating soliton, one should in principle consider the coupling to

the holographic axion A, dual to the boundary Yang-Mills instanton density operator
Tr (G ∧G) [145, 161, 166]. This coupling appears because of the additional residual U(1)A
gauge freedom (3.2.65), which turns on the abelian phase of the tachyon ζ and the axial
part of the abelian gauge field Bµ̄ and ρ. However, as for the other color fields, the action
of the baryon on the axion is suppressed by a factor O

(
N−1
c

)
in the large Nc limit. The

rotating baryon solution will therefore decouple from the axion field at leading order in Nc.
At next-to-leading order, the axion will contribute to the order O

(
N−1
c

)
correction to the

moment of inertia37. In the following, we consider the same approximation as in the static

37The g0i component of the metric will also be turned on by rotation, and contribute at order
O
(
N−1c

)
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case and ignore the action on the color sector. This implies in particular that we set the
axion to 0.

As in the case of the static soliton, there exists a redefinition of the ansatz fields such
that the tachyon phases θ and ζ are absorbed into the gauge fields

χ̃ ≡ eiθχ , B̃µ̄ ≡ Bµ̄ +
1

2
∂µ̄ζ , ρ̃ ≡ ρ+

1

2
ζ . (3.2.68)

The resulting fields are invariant under the residual gauge freedom (3.1.60) and (3.2.65).
In addition to this field redefinition, for later use it is also convenient to define the field
strength for the Bµ̄ gauge field

Bµ̄ν̄ ≡ ∂µ̄Bν̄ − ∂ν̄Bµ̄ , (3.2.69)

and the covariant derivative for the ρ and χ field

Dµ̄ρ = ∂µ̄ρ−Bµ̄ , Dµ̄χ = (∂µ̄ − iAµ̄)χ . (3.2.70)

Lorenz gauge

Because we obtain the static soliton solution by fixing the residual gauge freedom (3.1.60)
to the Lorenz gauge

∂rAr + ∂ξAξ = 0 , (3.2.71)

we work in the same gauge for the rotating soliton. Also, we fix the additional gauge
freedom (3.2.65) by imposing a similar Lorenz condition for Bµ̄

∂rBr + ∂ξBξ = 0 . (3.2.72)

For this choice, the equations of motion for Bµ̄ (J.8) and (J.9) are elliptic and can be solved
numerically by a heat diffusion method upon setting the right boundary conditions.

Note that the Lorenz condition (3.2.72) leaves a residual gauge freedom of the form

Bµ̄ → Bµ̄ + ∂µ̄f , ∂2
r f + ∂2

ξ f = 0 , f(0, ξ) = 0 . (3.2.73)

Part of the choice of boundary conditions will correspond to the choice of residual gauge
freedom (3.2.73). The explicit choice that we make is discussed below, in Section 3.2.5.3.

3.2.5.2 Moment of inertia and equations of motion

The Lagrangian for the rotational collective modes of the soliton is obtained by substitut-
ing the ansatz (3.2.57)-(3.2.60) and (3.2.64) into the bulk action (3.2.3). This yields the
Lagrangian of a rigid rotor

Lrot = −M0 +
1

2
λ~ω2 , (3.2.74)
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where M0 is the mass of the static soliton (3.2.27), and we defined the moment of inertia

λ ≡ λDBI + λCS , (3.2.75)

λDBI =

∫
drdξ 4πξ2ρλ,DBI , λCS =

∫
drdξ 4πξ2ρλ,CS , (3.2.76)

ρλ,DBI ≡ −
2

3
M3NcVf (λ, τ)eA

√
1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)×

×
(

e2Aκ(λ)τ2

(
4e2A∆rrB̃

2
r + 4(1− e2A∆ξξ)

[
B̃2
ξ +

2

ξ2
ρ̃2

]
−

− 8e2A∆ξrB̃ξB̃r − 2χ̃2
1

)
−

− w(λ)2

(
1

2
(1− e2A∆ξξ)|Dξχ|2 +

1

2
e2A∆rr|Drχ|2−

− 1

2
e2A∆ξr (Dξχ

∗Drχ+ h.c.) +
1

4
(1− e2A∆ξξ)(∂ξv)2+

+
1

4
e2A∆rr(∂rv)2 − 1

2
e2A∆ξr∂rv∂ξv+

+
1

2ξ2
(v2 + |χ|2)(1 + |φ|2)− v(χφ∗ + h.c.)−

− 2e2A∆rrξ
−2(Drρ)2 − 2(1− e2A∆ξξ)ξ

−2(Dξρ)2+

+ 4e2A∆ξrξ
−2DrρDξρ− 2e2A∆rr(∂rQ)2−

− 2(1− e2A∆ξξ)(∂ξQ)2 + 4e2A∆ξr∂rQ∂ξQ−
− 2ξ−2Q2

[
2− e2Aξ

(
∂ξ∆ξξ + e2A∂r(e

−2A∆ξr)
) ]
−

− 1

2

[
e2A∆rr(1− e2A∆ξξ)− e4A∆2

ξr

]
(Bµ̄ν̄)2

))
, (3.2.77)

where the ∆ symbol is defined in Appendix J,

ρλ,CS ≡
2Nc

3π2ξ2
εµ̄ν̄
(
Dµ̄ρ

(
(f1(τ) + f3(τ))(Dν̄φχ

∗ + h.c.)−

− 2(2f3(τ)− f1(τ))
(
Dν̄ φ̃+ h.c.

)
χ̃1−

− 4(f1(τ)− f3(τ)− if2(τ))Ãν̄ φ̃1χ̃2

)
+

+ ρ̃
(

2(f3(τ)− if2(τ))
(
− Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(i∂ν̄φχ

∗ + h.c.)
)
−

− ∂ν̄τf ′1(τ)(Dµ̄φχ
∗ + h.c.) + ∂ν̄τf

′
3(τ)(Dµ̄φ̃χ̃+ h.c.)−

− 2i∂ν̄τf
′
2(τ)Ãµ̄φ̃1χ̃2

)
+
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+ 2∂ν̄τ(f ′1(τ)− f ′3(τ))Dµ̄ρ χ̃1φ̃1+

+ ∂µ̄(ξQ)
(

(f1(τ) + f3(τ)) (iχ∗Dν̄φ+ h.c.) +

+ 4(f1(τ) + f3(τ)− 3if2(τ))Ãν̄ φ̃1χ̃1

)
+

+ 2∂ν̄τ(f ′1(τ) + f ′3(τ))∂µ̄(ξQ)φ̃1χ̃2−
− 8(f1(τ) + f3(τ))ξQDµ̄ρ∂ν̄Φ + 8∂ν̄τ(f ′1(τ) + f ′3(τ))ξQρ̃∂µ̄Φ+

+ v
(
Bµ̄ν̄

[1

2
(f1(τ) + f3(τ)) (|φ|2 − 1) + (f1(τ)− f3(τ)− if2(τ))φ̃2

1

]
+

+ (f1(τ) + f3(τ))ξQFµ̄ν̄ − 2(f3(τ)− if2(τ))B̃µ̄(Dν̄ φ̃+ h.c.)φ̃1

)
+

+ v∂ν̄τ
(

(f ′1(τ) + f ′3(τ))
(
B̃µ̄(1− |φ|2)− 2ξQÃµ̄

)
+ 2if ′2(τ)B̃µ̄φ̃

2
1

))
. (3.2.78)

We recall that the tildes on the static fields refer to the redefined fields that contain the
non-abelian tachyon phase θ (3.1.80). The total bulk Lagrangian density for the rotating
fields is denoted by ρλ

ρλ ≡ ρλ,DBI + ρλ,CS . (3.2.79)

The equations of motion for the fields of the rotating soliton ansatz are obtained by ex-
tremizing the moment of inertia (3.2.75) with respect to small deformations of the fields.
They are presented in Appendix J.

3.2.5.3 Boundary conditions

We present in Table 3.7 the boundary conditions that are imposed on the fields of the
rotating soliton ansatz (3.2.57)-(3.2.60) and (3.2.64), which obey the equations of motion
(J.5)-(J.12). We discuss separately the 4 boundaries of the (ξ, r) space

� UV : In the UV limit r → 0, the condition that v, χ̃, Bξ, ρ and Q should vanish
comes from requiring that there is no source for the gauge fields at the boundary.
Moreover, the condition for Br comes from imposing the Lorenz gauge.

The condition for ζ is somewhat more subtle than the other fields. The reason is
that, because the quark mass is set to 0, there is no source term for the tachyon
field. The abelian phase ζ is therefore not associated with any source. At the level
of the near-boundary behavior, it translates into the fact that the boundary value of
ζ appears in front of the vev term for the tachyon field

T (r, ξ) =
r→0

`Σ(ξ) exp

(
iζ(0, ξ)

~ω · ~x
ξ

+ iθ(0, ξ)
x · σ
ξ

)
r3(− log (rΛ))−c (1 + · · · ) ,

(3.2.80)
where the dots refer to terms that go to 0 near the boundary; Σ(ξ) is proportional
to the modulus of the chiral condensate in the boundary theory

∣∣〈ψ̄ψ〉∣∣. The UV
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ξ → 0 ξ → L→∞ r → 0 r → rIR →∞
v + χ̃2 → 0 v → −1 v → −1 ∂rv → 0

χ̃1 → 0 χ̃1 → 0 χ̃1 → − sin θ χ̃1 → 0

∂ξχ̃2 → 0 χ̃2 → −1 χ̃2 → cos θ ∂rχ̃2 → 0

∂ξBξ → 0 ∂ξBξ → 0 Bξ → 0 Bξ → 0

Br → 0 Br → 0 ∂rBr → 0 ∂rBr → 0

∂ξρ−Bξ → 0 ρ→ 0 ρ→ 0 ρ→ 0

Q→ 0 Q→ 0 Q→ 0 ∂rQ→ 0

ζ → 0 ζ → 0 rζ → 0 ζ → 0

Table 3.7: Boundary conditions for the rotating soliton solution in Lorenz gauge.

condition for ζ will therefore not come from a choice of source at the boundary, but
rather from the requirement that the solution be regular. The equation of motion
for ζ (J.12) has two linearly independent solutions, one of which behaves as r−2 near
the boundary and the other as r0. Requiring that

rζ →
r→0

0 , (3.2.81)

will therefore select the regular behavior.

� ξ → L (L→∞) : Requiring that the moment of inertia (3.2.75) should be finite
imposes that, as ξ →∞

ξ3/2χ̃1 → 0 , ξ3/2∂µ̄χ̃2 → 0 , ξ3/2∂µ̄v → 0 , (3.2.82)

ξ3/2

(
Bµ̄ +

1

2
∂µ̄ζ

)
→ 0 , ξ1/2

(
ρ+

1

2
ζ

)
→ 0 , ξ3/2∂µ̄Q→ 0 . (3.2.83)

For regularity ∂ξζ should go to 0 as ξ →∞ so Bξ should also tend to 0 from (3.2.83).
Then the Lorenz gauge condition in the limit where ξ →∞ reads

∂rBr = 0 = −1

2
∂2
r ζ , (3.2.84)

so at ξ →∞, ζ should take the form

ζ →
ξ→∞

ζ(0) + rζ(1) . (3.2.85)
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In the UV, from (3.2.83)

lim
ξ→∞

ζ(ξ, 0) = −2 lim
ξ→∞

ρ(ξ, 0) = 0 , (3.2.86)

because the source for ρ is set to 0. We shall further fix the residual gauge freedom
(3.2.73) such that ζ = 0 in the IR. With this choice, the linear part also vanishes in
(3.2.85) and

ζ →
ξ→∞

0 . (3.2.87)

The final condition for Bξ, ∂ξBξ → 0 rather than Bξ → 0, is chosen to impose Lorenz
gauge even at finite L in the numerical solution.

� IR : As for the static soliton, the conditions in the IR limit r → rIR are regularity
conditions. In section 3.1, it was found that the resulting conditions for the gauge
fields were equivalent to the conditions imposed in the hard-wall model for chiral
symmetry to be broken on the IR wall

(L−R)|rIR = 0 ,
(
F(L)
µr + F(R)

µr

)∣∣∣
rIR

= 0 . (3.2.88)

In the following, our strategy is to assume that the IR regularity conditions for
the gauge field are still equivalent to (3.2.88) in the case of the rotating soliton.
This assumption will be confirmed numerically if a solution can be found with this
behavior in the IR. It can also be checked analytically by studying the IR asymptotics
of the equations of motion. With the ansatz (3.2.57)-(3.2.60), (3.2.88) translates to

χ1|IR = 0 , Bξ|IR = 0 , ρ|IR = 0 , (3.2.89)

∂rχ2|IR = 0 , ∂rQ|IR = 0 . (3.2.90)

Finally, the condition for Br comes from the Lorenz gauge (3.2.72) and, as stated in
the previous point, the residual gauge freedom (3.2.73) is chosen such that ζ = 0 in
the IR.

� ξ = 0 : The boundary conditions in the limit where ξ goes to 0 come from requiring

that L̃ and R̃ are well defined vectors at ξ = 0 and that the field strength (J.1)-(J.4)
is a well defined 2-tensor. The additional constraint on Bξ is imposed by the choice
of Lorenz gauge. The final condition ζ →

ξ→0
0 fixes what remained of the residual

gauge freedom (3.2.73) after setting ζ to 0 in the IR. Note that for this choice the
tachyon matrix (3.2.64) is well defined at ξ = 0.
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3.2.5.4 Numerical results : the spin-isospin spectrum

We present in this subsection the numerical solution for the slowly rotating soliton con-
figuration. The equations of motion written in appendix J are solved with the gradient
descent method, imposing the boundary conditions of Table 3.7.

At linear order in ω, the rotating solution is a probe on the static background. At
leading order in Nf , the static background will correspond to the probe baryon solution
presented in Section 3.2.3.3. Order O

(
N−1
f

)
corrections to the rotating solution will come

from including the back-reaction on the tachyon in the static background, as discussed in
Section 3.2.3.3. We start by presenting the leading order probe baryon solution and then
discuss the back-reaction. We recall that the back-reacting solution is computed assuming
no back-reaction on the color sector (metric and dilaton).

Probe baryon background

We start with the numerical results obtained for the probe baryon background. In this
case the modulus of the tachyon field τ is fixed to its vacuum value, and the equations of
motion take the form presented in appendix J.3.
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Figure 3.9: Left: bulk Lagrangian density for the rotating fields (3.2.79) in the probe
baryon approximation. All quantities are expressed in units of the classical mass of
the static soliton M0 (3.2.27). The center of the soliton is located at ξ = 0 where the
density diverges as ξ−1. The UV boundary is at r = 0, and the green line indicates
the boundary of the region over which the mean value is computed to define the
relative difference in figure 3.10. Right: Same as the left figure, but at some given
value of the 3-dimensional radius ξ. This figure makes it clear that the Lagrangian
density eventually reaches 0 as r → 0, as it should in absence of sources.
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The bulk Lagrangian density for the rotating fields (3.2.79) in the (ξ, r)-plane is pre-
sented in Figure 3.9, where all dimensionful quantities are expressed in units of the classical
soliton mass M0 (3.2.27). As for the static fields, Figure 3.9 shows the expected behavior
for a solitonic configuration, that is the densities are confined to a region of finite extent
in the bulk. The size of the lump is again of the order of M−1

0 .
Note that the density is observed to have a maximum very close to the UV boundary.

This is associated with the flavor gauge fields of the rotating solution having the same kind
of sharp behavior near the boundary. However, it is possible to check that the smooth
vev-like behavior is recovered asymptotically as one goes closer to r = 0

Aµ ∼ r2 × vev .

To check this, one needs to go very close to the boundary r = 0, so log coordinates
u = log(r) are more appropriate. We have explicitly checked that the vev behavior is
recovered very near the boundary. We believe that this feature is a peculiarity of the UV
behavior of our choice of V-QCD potentials, and that it can be avoided with a better
choice. In particular, this behavior is not observed for the potentials of [165], for which
the solution is analyzed in Appendix I.

The numerical value for the classical moment of inertia density λ in (3.2.75) is obtained
by integrating the Lagrangian density in Figure 3.9

1

λ
' 3

Nc
× 60 MeV . (3.2.91)

From this result, the spin-isospin spectrum of the baryons (3.2.53) can be computed and
compared with experimental QCD data, as shown in Table 3.8. We set Nc = 3 in the large
N result to make this comparison. We recall that the estimation (3.2.34) for the soliton
mass gives only the classical contribution, which can receive sizeable O

(
N0
c

)
quantum

corrections at finite Nc. Likewise, (3.2.91) is the leading order contribution to the moment
of inertia in the Veneziano limit. Also, the V-QCD potentials presented in Section 3.2.2
were not fitted to baryonic properties, but rather to QCD thermodynamics and mesonic
properties. In light of these remarks, the precise numerical value for the baryon spectrum
presented in Table 3.8 should not be taken too seriously, but rather as an indicative result.
In particular, we shall not mention the numerical accuracy of the result as it is much better
than the theoretical uncertainty.

Back-reacted tachyon background

We now discuss the slowly rotating soliton solution computed on the static background that
takes into account the back-reaction on the tachyon field. The corresponding equations of
motion for the rotating fields are written in Appendix J.2.
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Spin V-QCD mass Experimental mass

s = 1
2

MN ' 1170 MeV MN = 940 MeV

s = 3
2

M∆ ' 1260 MeV M∆ = 1234 MeV

Table 3.8: Baryon spin-isospin spectrum in the V-QCD model with the potentials of
Section 3.2.2, compared with experimental data.

We are interested in the effect of the back-reaction on the soliton moment of inertia
(3.2.75). In the large Nf limit, the correction is of order O

(
N−1
f

)
δλ = δτ

δλ

δτ

∣∣∣∣
probe

+O
(
N−2
f

)
, (3.2.92)

where δτ refers to the order O
(
N−1
f

)
correction to τ . Figure 3.10 shows the relative dif-

ference between the bulk Lagrangian density for the back-reacted and probe backgrounds,
when setting Nf = 3 in the large N result. The definition of the relative difference is
analogous to the static case (3.2.42)

∆relρλ ≡
ρλ,back-reacted − ρλ,probe

ρ̄λ
, (3.2.93)

where the criterion defining the region over which the mean value ρ̄λ is computed is now
given by

3

Nc
ρλ ≥M2

0 . (3.2.94)

This region is delimited by the green line in figure 3.9.
The dominant effect of the tachyon back-reaction observed in Figure 3.10 is the same

as in the static case shown in Figure 3.8: the density decreases in the UV and is shifted
towards the IR. Even more strikingly than for the soliton mass in the static case, even at
small values of Nf , the relative difference between the probe and back-reacted solutions is
observed to be small numerically, of the order of a few percent. At the level of the soliton
moment of inertia we obtain

Nf

3

1
λback-reacted

− 1
λprobe

1
λprobe

' 0.37% . (3.2.95)

As for the static mass, we would like to emphasize here again that precise quantitative
results such as (3.2.95) cannot be trusted when substituting a small number of flavors in
the large N result. The result in (3.2.95) should be considered as an indication, that the
moment of inertia does not seem to be affected much by the back-reaction of the baryon
on the background.
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Figure 3.10: Relative difference of bulk Lagrangian density for the slowly rotating
soliton computed on the probe baryon and the back-reacted tachyon backgrounds.
The relative difference is defined as the difference of the two densities divided by the
mean value of the probe density. The mean value is taken over the area delimited
by the green line in the left of Figure 3.9, which is the region where the density is
substantially different from zero. The ratio is multiplied by Nf in order to obtain
something finite in the Veneziano limit. The UV boundary is located at r = 0 and
the baryon center at ξ = 0.

3.3 Discussion and outlook

In the first part of this chapter, we have determined the form of the Tachyon-Chern-Simons
action in V-QCD in the chiral limit and set up the formalism for obtaining single-baryon
configurations. Several questions remain open.

The most important drawback of the TCS action that was obtained is that it is limited
to the exact chiral limit. We have assumed an ansatz for (3.1.2) which, based on the
factorization of the tachyon (3.0.1), is made up of terms of the form:

Ω5 ⊃ f(τ)× 5-form(U, gauge fields) (3.3.1)

However this cannot be the full story when quark masses are non-zero: if this is the case,
instead of (3.0.1), the scalar function τ must be replaced by a Hermitian matrix (see
footnote 5). Therefore, one cannot write the simple ansatz (3.3.1) for the TCS terms,
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which instead must have a more complicated dependence on the matrix T , such that it
effectively reduces to the form (3.3.1) for zero quark masses.

A possible way to proceed is to return to the superconnection formalism of Quillen,
(see [138] for a description) which has been used and shown to be relevant in string theory
calculations of the Tachyon-Chern-Simons terms, [138]. In a recent paper [191], it was
shown that it is an appropriate formalism for anomalies. If this formalism is used in
our analysis here, it will reduce the four unknown tachyon dependent functions that can
appear to only one. It is possible that within the superconnection formalism, the problem
of writing the general TCS term may be tractable. The difficult part is in writing the
anomaly related tachyon-dependent six form as the exterior derivative of a five-form.

The other result from this chapter is the construction of the V-QCD baryon configu-
ration, for which we found a concrete numerical solution. The solution presented here has
several advantages with respect to similar constructions in the literature, as well as some
limitations. In order to discuss them, we shall compare the results of this work with the two
main models of holographic QCD in which single-baryon solutions were analyzed. These
are the top-down Witten-Sakai-Sugimoto model (WSS) [121, 124, 128] and the bottom-up
Hard-Wall model (HW) [143, 178].

The main improvement with respect to both models mentioned above is that the V-
QCD background solution on which the baryon solution is constructed is a more accurate
description of the QCD vacuum. The V-QCD vacuum possesses a rich structure, including
the running of the Yang-Mills coupling and the spontaneous breaking of the chiral symme-
try in the chiral limit. Moreover, it incorporates the back-reaction of the flavor sector onto
the color sector, due to the Veneziano limit. The model can have several parameters that
can be adjusted to experimental data if one wants to produce a precise phenomenological
model for strongly-coupled QCD [161, 163] although generically, the dependence on these
parameters is weak.

We now focus on the comparison with the HW model. In the HW model, a baryon
state was constructed as a bulk axial instanton for the chiral gauge fields, using the same
kind of ansatz that is considered in this work [173]. However, the main difference is that
the bulk geometry was arbitrarily fixed to AdS5, where a hard wall was placed in the IR
for the boundary theory to be confining. Because of the gravitational potential, the bulk
soliton was found to fall on the IR wall. This indicates that the hard wall model is too
crude to stabilize the baryon solution dynamically. Moreover, since its position is at the
very end of space, the properties of the soliton will strongly depend on the IR boundary
conditions.

On the contrary, the baryon solution that is constructed in the present work is well
localized in the holographic direction. It stands at a value of the holographic coordinate of
the order of the inverse of the soliton mass. This is due to the fact that, beyond the metric,
the V-QCD vacuum contains another field under which the baryon is charged: the tachyon
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field38 dual to the quark bilinear operator. The combined effect of the baryon boundary
conditions and the interaction of the gauge fields with the tachyon field, result in a force
that balances the gravitational attraction towards the IR.

We now discuss the WSS model. As discussed in section 2.2, the main drawback of
the baryon solution that was constructed in [128] is that the baryon size was found to be
parametrically small at large ’t Hooft coupling. Instead, the size of the baryon solution
that we derived in V-QCD is set by the mass scale of the boundary theory, which roughly
corresponds to ΛQCD. Note that this was not an obstacle to the calculation of meaningful
baryon form factors in the WSS model, as the latter were found to be related to the
scale set by the rho meson mass rather than the soliton mass [129]. Nevertheless, the
infinitesimal size of the soliton will be an issue for classical fields in the bulk, such as the
chiral condensate, as well as the gravitational form factors.

Another aspect where our construction is an improvement, compared with previous
settings, lies in the tachyon dependence of the bulk action. First, the DBI form of the
kinetic action for the flavor fields contains an infinite sum of corrections compared with
the quadratic action considered in the HW model. In vacuum, such a square-root behavior
was found to play an important role to reproduce linear trajectories for the meson spectrum
[161]. Although in the WSS model the same kind of action was introduced in [130], the
present work is the first one in which a baryon solution is computed by keeping the full
DBI action for the tachyon39. Second, and most importantly, we consider for the fist time
the tachyon dependence of the topological Chern-Simons (CS) term. In our bottom-up
approach, this term was constructed as the most general topological action compatible
with QCD symmetries and chiral anomalies.

The approach we followed here presents also some limitations. Apart from the usual
drawbacks which are intrinsic in a bottom-up model (a certain amount of indeterminacy
in the action, no known embedding as a low energy approximation of string theory), the
most important limitation is that the solution presented here is only valid in the exact
chiral limit. This is related to the CS term mentioned above: as was explained in the
first section, our construction only applies in the limit of zero quark masses, as turning on
non-zero quark masses requires modifying both the CS term and the instanton ansatz.

Finally we should mention that, in this work, we focused on a small subsector of the
baryon spectrum. This is due to the specific ansatz considered for the quantization of the
soliton excitations:

38The baryon solution including a non-trivial tachyon in the context of the HW model was
considered in [196, 178]. In that work it was also found, as in our model, that considering a non-
trivial tachyon resulted in a repulsive force on the baryon from the IR, although the mechanism for
this to happen is different (in our case the baryon is a probe on the tachyon background). At large
chiral condensate, this could eventually make the baryon detach from the IR wall, but only a finite
distance from it.

39Note that the calculation is done here by expanding the DBI action at quadratic order in the
non-abelian fields, but keeping the abelian part of the tachyon fully non-linear.
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� We considered only the zero-modes, which resulted in the spin-isospin spectrum
of the baryons. However, the experimentally observed baryon spectrum contains
higher excited states for each isospin eigenvalue. These states are understood in
the holographic picture as non-zero modes of the soliton, that is modes that are
associated with a non-trivial potential, for which the soliton solution sits at the
minimum. These include for instance the dilation and oscillating modes considered
in the WSS model [128].

� Within the isospin zero-modes, we focused on a subgroup containing Nf = 2 flavors.
For phenomenology, it is interesting to quantize higher subgroups, in particular Nf =
3. When introducing asymmetric masses for the quarks, this will make it possible to
discuss the properties of holographic hyperons.

� We restricted to the case of a slowly rotating soliton, which is enough to compute the
spin-isospin spectrum at s� Nc. In particular, at linear order in the rotation velocity
ω, there is no deformation of the static fields, such that the cylindrical symmetry
is preserved. The consequence on the spectrum is that only states with equal spin
and isospin s = I are reproduced. States that do not obey s = I are observed
experimentally, such as N(1520) or ∆(1950). Reproducing such states will require a
rotating ansatz that deviates from cylindrical symmetry. This can be obtained, for
example, by computing the solution at next order in ω.

� The assumption of slow rotation also means that the linear Regge trajectories that are
observed experimentally cannot be reproduced. Namely, the spin-isospin spectrum
that we compute is that of the rigid rotor, for which the masses go as M ∼ s2 at large
spin, instead of M ∼ s1/2 for a linear trajectory. It is expected that reaching the
linear regime, if it can be reached in this framework, will require to consider states
with s & Nc. For such high spins, the relevant ansatz for the rotating soliton should
be fully non-cylindrical. In particular, it will reproduce the linear Regge behavior if
it turns out that the solution resembles a string at high rotation velocity [192].

All the points above can be the subject of future improvements.
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Chapter 4

Holographic neutrino transport

The work presented in this chapter will be the subject of an upcoming paper.

Neutrino transport plays a pivotal role in various astrophysical processes involving
dense QCD matter. The most studied class of such processes are the core collapse su-
pernovae which occur in the last stages of the lifetime of massive stars. Neutrino-driven
heating and turbulence are crucial ingredients in the complex dynamics that leads to the
explosion of the star (see the reviews [210, 211]). Strong explosions, similar to what is
observed in nature, are only obtained in simulations that properly take into account these
ingredients.

Neutrino interactions are also important in the physics of neutron stars. Right after a
neutron star is formed in a supernova explosion, its temperature is comparable to the QCD
scale, and subsequently cools down due to neutrinos emitted by various processes [83, 212].
Neutrino cooling is the main mechanism for the first ∼ 105 years (after which photon
cooling dominates).

Apart from a supernova remnant, a hot neutron star can also be formed as a prod-
uct of a binary neutron star collision. The observation of gravitational waves from the
merger event GW170817 by the LIGO and Virgo collaborations together with the anal-
ysis of the electromagnetic signal from the kilonova has boosted the interest in neutron
stars recently [79, 213]. State-of-the-art neutron star binary merger simulations are now
developing towards a stage where the effects of neutrino transport are included [214, 215].
While it can be estimated that this effect is relatively small in the actual merger phase,
neutrino emission affects significantly the evolution of the hypermassive neutron star after
the merger within timescales accessible in simulations [216]. This is expected to hold even
for a class of events where a black hole is formed: analysis of the electromagnetic signal
from GW170817 suggests that a collapse to a black hole took place about one second after
the merger in this event [217], which is easily long enough for neutrino effects to matter.
Moreover, neutrinos affect drastically the composition of the ejecta, the evolution of the
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torus, and the jet formation after the merger [218].
The importance of neutrino transport has sparked a wide literature studying the neu-

trino emission rates and opacities in dense matter. Most theoretical studies of neutrino
transport focus on the nuclear matter phase, which is natural as most of the matter in
neutron stars and in the collapsing core in the supernova process is known to be in this
phase, and various effective theory tools are available for nuclear matter. There is a vast
literature on this topic, see [219, 220, 221, 222].

Computing the emissivities and opacities at high densities boils down to computing
the correlators of the currents of the weak interactions in the strongly interacting QCD
matter. Standard methods for estimating these correlators include the use of mean-field
theory [223] and the addition of correlation effects through ring resummation, i.e., the
random phase approximation [224, 225] and its improvements (see, e.g., [226, 227]). Results
in various limits and approximation schemes, such as the degenerate limit and the “elastic”
approximation where the recoil of the nucleon is neglected [228], have been worked out.

However, for the highest densities reached in core collapse supernovae or in the cores
of massive neutron stars, other phases than regular nuclear matter may appear. Phase
transitions may play an important role in neutrino transport: while the equation of state
typically changes modestly at phase boundaries (e.g. densities may jump by an O(1) factor
at a first order transition), observables related to transport can easily change by orders of
magnitude. Perhaps the most natural transition to consider is the transition from nuclear
matter to quark matter, where neutrino emissivities are expected to be larger than in
regular nuclear matter by orders of magnitude. This is indicated by analyses both in the
ungapped regime [229, 230, 231, 232, 233], and in color-superconducting phases [241, 242,
243, 12]. But estimates for neutrino transport are also available in phases with pion [234,
235, 236] or kaon condensates [237, 238] and nuclear matter with superfluidity [239, 240].

At high densities in QCD, i.e., densities well above the nuclear saturation density
ns ≈ 0.16 fm−3, all these results include however sizable or uncontrolled uncertainties.
This happens because first-principles methods are not reliable in this region of the phase
diagram. For the equation of state, loop expansions in chiral perturbation theory for pure
neutron matter converge below n ≈ 2ns [244], while perturbation theory requires densities
above n ≈ 40ns to be reliable [245], which is clearly higher than the densities reached in
neutron star cores. The uncertainty of the equation of state [8, 246, 247] readily affects the
estimates of neutrino opacities and emissivities, and approximations used in the compu-
tation of the current-current correlators bring in additional uncertainty. The importance
of the uncertainties in the densest regions is enhanced because the neutrino interactions
with QCD matter become significantly stronger with increasing density. In the absence of
reliable first-principle methods, it is therefore useful to analyze neutrino transport in this
region by alternative and complementary approaches, such as the gauge/gravity duality.

The holographic correspondence has proved to be useful to study the properties of QCD,
in particular the properties of hot QCD plasma produced in heavy ion collisions. Examples
include the description of the far-from-equilibrium dynamics right after the collision [248,
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249], and the famous estimate for the shear viscosity in strongly coupled plasma [250, 251].
Naturally, transport in hot quark gluon plasma at low densities has been studied also in
holographic models that mimic properties of QCD more closely, see for example [145] and
[252]-[257].

There has also been a considerable interest in studying dense matter by using the
gauge/gravity correspondence (see recent reviews [151, 258]). The equation of state of QCD
matter at high density has been analyzed both in the nuclear matter [174, 259, 260, 208, 261]
and quark matter [262, 165, 263, 264] phases as well as in more exotic phases [265, 266,
267, 268, 269], aiming at applications in neutron star physics. Also transport coefficients
in quark matter, i.e., viscosities and conductivities, have been estimated [270, 271].

In this work, we initiate the holographic study of neutrino transport. We consider a
simple holographic model, based on an Einstein-Yang-Mills action. In this model, charged
black hole geometries (Reissner-Nordström black holes) are interpreted as the dual of dense
unpaired quark matter in QCD. We analyze charged current interactions in holographic
matter, leading to estimates for the emission and absorption of neutrinos. Neutral current
interactions (neutrino scattering) will be discussed in future work.

The structure of this chapter is as follows. We start by giving a brief summary of
the results in section 1. In section 2, we review the formalism used to describe neutrino
transport. The holographic model that is used to compute the charged current 2-point
functions is introduced in section 3, with the calculation of the correlators described in
section 4. Section 5 is devoted to the analysis of the results obtained for the neutrino
radiative coefficients.

4.1 Summary of results

The transport of neutrinos is described by the Boltzmann equation1 for the neutrino dis-
tribution fν

(Kν · ∂)fν = j(Eν)(1− fν)− 1

λ(Eν)
fν ,

with Kν the on-shell neutrino 4-momentum and Eν the neutrino energy. The radiative
coefficients j and λ are properties of the medium: j is the neutrino emissivity and λ
the mean free path. As reviewed in section 4.2, the calculation of the neutrino radiative
coefficients in a neutron star requires the knowledge of the chiral current two-point function
in dense QCD matter. Computing this correlator is a strongly-coupled issue, which remains
unsolved. As mentioned in the introduction, several approximations have been considered
in the literature but these remain highly model-dependent.

In this work, the approach that we follow is to compute the chiral current two-point
function holographically, using the simplest holographic model where this calculation can

1Written in flat space here, for simplicity.
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be done. We focus here on the charged current contribution, leaving the analysis of the
neutral current for future work. The model contains many of the properties that are
expected from a quark-gluon plasma at finite density but also has simplifications that
are unphysical. It has an underlying scaling symmetry in the absence of baryon density,
and the mechanism of chiral symmetry breaking is not (yet) implemented. Therefore our
calculation should be considered as a first step towards performing this calculation in a
successful theory, like holographic V-QCD, [150].

An important property of holographic strongly coupled theories at finite density is the
following: although scaling symmetries are broken by the finite density, there is an emergent
one-dimensional scaling symmetry at zero temperature which is also accompanied by a
large density of states at very low energies, [272] and can even be responsible for glassy
behaviour, [273]. This symmetry is associated to an AdS2 factor2 in the geometry of the
relevant black hole. Such a regime exists in our theory and it is the one that controls most
of the calculation. It has been also seen in the phenomenologically successful and more
complete model of V-QCD, in [164]. It is an interesting question, that we do not address in
this paper, to investigate what are the signals of this behavior, in both neutrino transport
as well as the dynamics of neutron star mergers.

The holographic toy model that we consider is a bottom-up model where, in addition to
the metric, the 5-dimensional bulk contains gauge fields belonging to the U(Nf )L×U(Nf )R
flavor group dual to the field theory chiral current operators. The bulk holographic action
which controls the dynamics of these fields, is the Einstein-Yang-Mills action

S = Sc + Sf .

Sc = M3N2
c

∫
d5x
√−g

(
R+

12

`2

)
,

Sf = − 1

8`
(M`)3w2

0Nc

∫
d5x
√−g

(
Tr F

(L)
MNFMN,(L) + Tr F

(R)
MNFMN,(R)

)
,

where F(L/R) is the field strength for the chiral gauge fields, Nc the number of colors and `
the AdS length. The model has two dimensionless parameters, M` and w0 and these enter
in the physics of the dual, strongly-coupled quantum field theory. As detailed in Appendix
O, the parameters are fixed to match the lattice result for the QCD thermodynamics in
the deconfined phase at low baryon density.

The background solution is the gravitational dual of a medium composed of quark
matter at equilibrium, at finite temperature T and quark number chemical potential µ.
We consider isospin symmetric matter, with isospin chemical potential

µ3 = 0 .

2AdSd stands for the anti-de Sitter geometry in d space-time dimensions. AdSd is a constant
negative curvature manifold with infinite volume and maximal O(2,d-1) symmetry.
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Neutron star matter is known to be far from isospin symmetry, as it contains many more
neutrons than protons. This isospin asymmetry may have a significant influence on the
transport of neutrinos, as can be seen for example in the condition for β-equilibrium below.
In this work, we restrict to the isospin symmetric case for the sake of simplicity3 , leaving
the study of isospin imbalance for future work. The corresponding gravitational dual
corresponds to a charged AdS black-hole with a charge proportional to µ.

To this strongly-coupled medium, we add neutrinos and electrons so that we have full
charge neutrality. The neutrinos that scatter in this medium are assumed to be sufficiently
close to equilibrium for the chemical potential µν to be well defined, and at β−equilibrium
with the quarks and electrons

µν = µe + µ3 = µe .

However, the distribution of neutrinos is generically different from the equilibrium distri-
bution. In particular, it is expected that there is generically no Fermi surface with chemical
potential µν associated to it.

Following the usual holographic procedure, the charged current two-point function is
then evaluated from the solution to the equations of motion for gauge field perturbations
on the black-hole background. The correlators are computed numerically for energies ω
and momenta k between 0 and a few times r−1

H , rH being the horizon radius.
From the numerical solution for the chiral current correlator, the neutrino charged

current radiative coefficients can be computed as a function of the neutrino energy. This
calculation is the main result of this work. When completed with the neutral current
coefficients, it can be used to simulate numerically the transport of neutrinos, in the kind
of quark matter described by our holographic model. The numerical results are discussed
in detail in Section 4.5. Here, we give a summary of this analysis.

Approximations

We considered in this work several approximations, in which the radiative coefficients have
simpler expressions. Apart from academic interest, these approximations are useful to
obtain a better qualitative understanding of the exact numerical results. We list them
below

� The degenerate approximation, where the expressions in the limit of µ� T are used
for the Bose-Einstein and Fermi-Dirac equilibrium distributions nb and nf . In this
limit, the weak processes which contribute to neutrino transport are clearly identified.
This is summarized in table 4.1.

� The hydrodynamic approximation, where the radiative coefficients are computed by
expanding the charged current 2-point function GRc (ω, k) at leading order in the

3As we discuss later in this introduction, a non-zero µ3 may change non-trivially the background
solution and phase, and makes the computation of current correlators more involved.
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hydrodynamic expansion, that is at leading order in rHω and rHk. Note that, at
µ � T , the parameters of the expansion are ω/µ and k/µ, rather than ω/T and
k/T . As reviewed in Section 4.4, this emergence of a hydrodynamic behavior at low
temperature is a consequence of the AdS2 geometry of an extremal horizon.

In relation to this, a cautionary note is relevant here. Typically, as T → 0, like in the
case studied here, hydrodynamics is known to break down as the non-hydrodynamic
poles of the energy-momentum tensor correlators are moving towards zero energy
and momentum and eventually collide with the hydrodynamic poles. However, in an
AdS2 regime, like the one encountered here, there are indications that there is a kind
of hydrodynamics that survives, [299]. The relevant poles of the correlators were
studied in a toy model in [300]. An infinite lattice of equidistant poles were found
that seemed to collide once in a while with the hydrodynamic pole. However, we
have found that the presence of such an infinite lattice of poles do not seem to affect
our two-point correlator of currents and its leading hydrodynamic behaviour. We
suspect that this is because the residues of these poles are very small in this regime.
A calculation of these residues, in a large d limit, using the framework of [301] seems
to corroborate this expectation. It is however a topic that may be important more
generally, and more is needed to understand it fully.

The leading order hydrodynamic expression for the retarded correlator of the charged
currents, is given by

GRc,λσ(ω, k) = −iσ
(
P⊥λσ(ω, k)ω + P

‖
λσ(ω, k)

ω2 − k2

ω + iDk2

)
,

where P⊥ and P ‖ are respectively the projectors transverse and longitudinal to the 3-
momentum k. In this approximation, the only strongly-coupled calculation required
to determine the charged current correlator, is that of the two transport coefficients:
the conductivity σ and the diffusivity D. In the simple holographic model considered
in this work, analytic expressions can be derived for the transport coefficients

σ =
|Mud|2

8rH
Nc(M`)3w3

0 , D =
1

2
rH ,

where Mud is the ud component of the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
M`, w0 and Nc are the parameters of the theory and rH is the horizon radius of the
dual black hole, which is an explicit function of the baryon density and temperature.

The hydrodynamic approximation approaches the exact result in the limit where
all the leptonic energies µe, µν , Eν are much smaller than r−1

H . At µ � T , rHµe
(and rHµν) is found to asymptote to a constant close to 1, (4.3.26). For rHEν
also smaller than one, the leptonic energies are therefore at the limit of the regime of
validity of the hydrodynamic approximation. As we summarize in more details below,
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this approximation typically gives a good qualitative description of the radiative
coefficients, but its accuracy is around a few tens percent.

� The diffusive approximation, where the hydrodynamic approximation is used, and
it is further assumed that the dominant contribution to the radiative coefficients
comes from the time-time component of the retarded 2-point function. We show in
Appendix Q that this approximation is valid in the degenerate and hydrodynamic
regime

T � µe, µν , Eν � µ .

We use the diffusive and degenerate approximation to derive approximate expressions
for the opacities

κ(Eν) ≡ j(Eν) +
1

λ(Eν)
.

The results are shown in (4.5.22) for neutrinos, and in (4.5.25)-(4.5.26) for anti-
neutrinos. When it comes to describing the actual numerical results, these approx-
imate expressions were found to be inaccurate. However, the expression at Eν = 0
(4.5.27)

κe,0 =
G2
Fσ

π2
µ4
ν ,

which originates fully in the transverse part of the correlator, was found to be in
good agreement with the exact result for baryon densities nB & 10−2 fm−3. (4.5.27)
is therefore a good estimate of the typical scale of the opacities as a function of the
baryon density.

Properties of the radiative coefficients

We now summarize the main properties of the numerical solution for the neutrino radiative
coefficients, that are presented in Section 4.5. The radiative coefficients depend on several
parameters: the neutrino energy Eν , but also the parameters of the theory M` and w0, as
well as the environmental parameters µ and T . As detailed in Appendix O, M` and w0 are
fixed by matching the zero-density thermodynamics of the model to the free quark-gluon
plasma result. As for the environmental parameters, the temperature is fixed to values
typical of young neutron stars4 [274]

T = 10 MeV ,

and we investigate the remaining 2-dimensional parameter space, of neutrino energy Eν and
baryon density nB. We consider regimes of energy and density that are typical of transport

4Of course, the temperature is not constant as a function of the distance to the center of the
star. However, the typical relative variation is of order 1.
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in a neutron star, i.e. energies below ten times the temperature [274] and densities much
larger than the thermal scale

Eν . 10T , nB � T 3 .

We first discuss the charged current polarization functions, which are the direct outcome
of the holographic calculations. The polarization functions at nB = 1 fm−3 are shown in
figure 4.13. The comparison with the leading order hydrodynamic prediction reveals that
the polarization functions look qualitatively similar to the hydrodynamic expressions. We
also evaluate quantitatively the difference between the two, focusing on the region of the
energy-momentum space which is relevant to the calculation of the neutrino opacities. As
a result, we find that the error from the hydrodynamic approximation to the transverse
polarization function is comprised between 0 and about 50%, whereas for the longitudinal
part it ranges from 0 to about 100%.

The next step of the analysis in section 4.5 is the discussion of the neutrino opacities
themselves. The latter were computed numerically for a whole range of baryon densities
nB and neutrino energy Eν , for values typical of transport in a neutron star

10−3 fm−3 ≤ nB ≤ 1 fm−3 , 0 ≤ Eν ≤ 100 MeV .

The solutions at the two extreme values of the density, nB = 10−3 fm−3 and nB = 1 fm−3,
are shown as a function of the neutrino energy in figure 4.16. The general qualitative
behavior depends mainly on the statistical factors, so that it agrees with other calculations
discussed in the literature: the opacities increase with both the density and the neutrino
energy. When the baryon chemical potential is much larger than the temperature, a dip is
observed in the neutrino opacity for energies close to the neutrino chemical potential µν .

The accuracy of the various approximations introduced before is then analyzed in de-
tail, over the full parameter space of density and neutrino energy. The corresponding
2-dimensional plots of the relative differences are shown in figures 4.18 to 4.23. The main
conclusion from this analysis is that the accuracy of the approximations are typically better
at high baryonic density. In particular, for nB & 10−1 fm−3

(
T/(10 MeV)

)3
, the hydrody-

namic approximation is within 0 to 50% from the exact neutrino opacity, whereas the error
is less than 30% for anti-neutrinos (see figure 4.1). That is, extracting only the leading
order transport coefficients σ and D from the holographic calculation is a sufficient input
to obtain a good estimate of the opacities at those densities.

At densities nB . 10−2 fm−3
(
T/(10 MeV)

)3
, the hydrodynamic approximation is much

cruder, with errors exceeding 100% at high neutrino energy. This means that higher order
transport coefficients are required to produce a reasonable approximation. For even smaller
densities, as µ/T becomes of order 1, rHEν becomes larger than 1 for Eν & T . In this
case, the hydrodynamic expansion breaks down, and the full holographic 2-point function is
needed to compute the opacities. The reason for this breakdown is that the hydrodynamic
expansion (4.4.44) and (4.4.53) is an expansion in (rHω, rHk), where ω and k depend on
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Figure 4.1: Relative difference between the hydrodynamic approximation and the
exact opacities, for neutrinos (Left) and anti-neutrinos (Right).

the leptonic energies in the radiative integrals. In particular, large values of rHω and rHk
are explored for large rHEν . This is discussed in detail in section 4.5.2.

Comparison with the literature

In the last section of this work, our results are compared with other calculations of the
neutrino radiative coefficients from the literature. We focus on the recent results in non-
relativistic nuclear matter from [274], and the calculations in weakly-coupled quark matter
from [231]. The opacities computed from the holographic model

κe−(0) ' 6.2× 102 km−1
( nB

0.1 fm−3

) 5
3

(
(M`)3

(M`)3
free

)− 1
2
(

w2
0(M`)3

(w2
0(M`)3)free

) 5
6

,

are found to be about an order of magnitude larger than the results from approximate
calculations in nuclear matter, which is about two orders of magnitude smaller than the
perturbative result in quark matter (see figure 4.2). This indicates that, although the
holographic matter is deconfined, the strong coupling implies that the neutrino opacity is
highly suppressed compared with the perturbative estimate. We caution however that the
model we used is not very close to the real theory and more effort is needed to corroborate
the results.
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Figure 4.2: Neutrino opacity from our holographic result (blue) compared with the
perturbative QCD result [231] (orange), at nB = 0.11 fm−3 and T = 10 MeV. The
opacity is expressed in km−1.

4.2 Formalism for the transport of neutrinos

In this section, we give a complete review of the elements of formalism that are used to
describe the transport of neutrinos. The idea is to make clear the connection between
neutrino transport and the retarded chiral-current two-point function, which is the quan-
tity that we compute in this work using holographic methods. We start from the basic
definitions of the real-time correlators in the closed-time-path formalism, before deriving
the Boltzmann equation, obeyed by the neutrino distribution function. The collision term
in the Boltzmann equation depends on the neutrino self-energy in the medium of propa-
gation. The charged current contribution to the self-energy is then computed explicitly at
quadratic order in the Fermi weak coupling constant GF , in terms of the chiral current
two-point function. The final form of the neutrino Boltzmann equation is presented at the
end of this section.

4.2.1 Definitions in the closed-time-path formalism

The mathematical objects which contain the information about the transport of neutrinos
in a given medium, are the (exact) real-time propagators of the neutrinos

iGαβ(x1, x2) ≡
〈
T ψα(x1)ψ̄β(x2)

〉
, (4.2.1)

where ψ the neutrino spinor field. T is a time-ordering operator, for which the possible
choices are made explicit below (see (4.2.4)-(4.2.7)). The brackets refer to the expectation
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value in the medium at finite temperature. The convenient formalism to compute out-
of-equilibrium real-time quantities such as (4.2.1) is the so-called Schwinger-Keldysh, or
closed-time-path (CTP) formalism. The latter relies on the fact that all real-time corre-
lation functions can be written as correlation functions on a specific path in the complex
time plane: the CTP, shown in figure 4.3.

𝑡0

𝑡0

ℝ

𝑖ℝ

+

−

Figure 4.3: The closed-time-path. The turning point of the contour on the right of
the figure should thought of as being pushed to infinity.

In particular, the propagators can be expressed in terms of the two-point correlation
function on the CTP, which is defined as

iGαβ(x1, x2) ≡
〈
TCψα(x1)ψ̄β(x2)

〉
≡ Tr

{
ρ(t0)TCψα(x1)ψ̄β(x2)

}
, (4.2.2)

where ρ(t0) is the density matrix at the initial time on the CTP, C denotes the CTP and
TC is the time-ordering operator on the CTP. The CTP two-point function can be split
into several pieces depending on the location of the points x1 and x2 on the path, which is
written in matrix form as

G(x1, x2) =
(
Gεε

′
(x1, x2)

)
ε,ε′=±

=

G++(x1, x2) G+−(x1, x2)

G−+(x1, x2) G−−(x1, x2)

 , (4.2.3)
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where the indices + and − refer to the upper and lower branches of the path as indicated in
figure 4.3 so that ε (ε′) gives to the location of the point x1 (x2). The correlation functions
Gεε

′
can be defined in terms of regular propagators as

iG++
αβ (x1, x2) ≡ iGFαβ(x1, x2) ≡

〈
Tψα(x1)ψ̄β(x2)

〉
, (4.2.4)

iG−−αβ (x1, x2) ≡ iGF̄αβ(x1, x2) ≡
〈
TAψα(x1)ψ̄β(x2)

〉
, (4.2.5)

iG+−
αβ (x1, x2) ≡ iG<αβ(x1, x2) ≡ −

〈
ψ̄β(x2)ψα(x1)

〉
, (4.2.6)

iG−+
αβ (x1, x2) ≡ iG>αβ(x1, x2) ≡

〈
ψα(x1)ψ̄β(x2)

〉
. (4.2.7)

In the above expressions, T and TA are respectively the real time-ordering and reverse
time-ordering operators.

The retarded and advanced propagators are combinations of (4.2.4)-(4.2.7)

GRαβ(x1, x2) ≡ GFαβ(x1, x2)−G<αβ(x1, x2) = −iθ
(
x0

1 − x0
2

) 〈
{ψα(x1), ψ̄β(x2)}

〉
, (4.2.8)

GAαβ(x1, x2) ≡ GFαβ(x1, x2)−G>αβ(x1, x2) = iθ
(
x0

2 − x0
1

) 〈
{ψα(x1), ψ̄β(x2)}

〉
. (4.2.9)

Note that the four propagators in (4.2.4)-(4.2.7) are not independent. In particular, the
anti-commutation relations for the fermion field operators imply that

G< +G> = GF +GF̄ . (4.2.10)

Also, from the definition of the time ordering

GF (x1, x2) = θ
(
x0

1 − x0
2

)
G>(x1, x2) + θ

(
x0

2 − x0
1

)
G<(x1, x2) . (4.2.11)

Therefore, all correlators in (4.2.4)-(4.2.9) can be expressed in terms of G< and G>.

Relations at equilibrium for bosonic two-point functions

Although only fermions were considered above, the CTP formalism is perfectly well adapted
to describe bosonic real-time correlators as well. As we shall see in the next section, the
transport of neutrinos is controlled by the chiral current real-time two-point functions in
the medium. The latter is a bosonic correlator, which can be expressed in terms of the
two-point function on the CTP

iGµν(x1, x2) ≡ 〈TCJµ(x1)Jν(x2)〉 , (4.2.12)

where J refers to the chiral current and we omitted the flavor indices. When the medium
is at equilibrium, the 2-point function (4.2.12) obeys further constraints that we present
here. Only the results are given, but the derivations are standard and simple. They are
reviewed in Appendix L.1.
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The first useful property obeyed by the 2-point function at equilibrium is related to
the time-translation invariance of the system. If we focus on the time dependence of the
propagators, it implies that

Gµν(t1, t2) = Gµν(∆t, 0) ≡ Gµν(∆t) , ∆t ≡ t1 − t2 . (4.2.13)

In particular, the retarded and advanced propagators are

iGRµν(∆t) = θ(∆t) 〈[Jµ(∆t), Jν(0)]〉 , iGAµν(∆t) = −θ(−∆t) 〈[Jµ(0), Jν(−∆t)]〉 .
(4.2.14)

In momentum space, the expressions (4.2.14) imply that the behavior of the retarded 2-
point function under a change of sign of p0 is fixed

ImGRµν(−p0) = −ImGRµν(p0) , ReGRµν(−p0) = ReGRµν(p0) . (4.2.15)

The other equilibrium result that we use is a consequence of the so-called Kubo-Martin-
Schwinger (KMS) symmetry. The latter gives a relation between the forward and backward
propagators

G<B(p) = e−βp
0
G>B(p) . (4.2.16)

Using this result, G<µν and G>µν can be expressed in terms of the imaginary part of GRµν
only

G<µν(p) = 2inb(p
0)ImGRµν(p) , (4.2.17)

G>µν(p) = 2i
(
nb(p

0) + 1
)
ImGRµν(p) , (4.2.18)

where nb is the Bose-Einstein distribution

nb(E) ≡ 1

eβE − 1
. (4.2.19)

4.2.2 Boltzmann equation for neutrinos

We introduce in this subsection the equation which controls the dynamics of neutrino
transport. The fundamental equation obeyed by the neutrino propagator is an exact QFT
result, called the Kadanoff-Baym equation [296]. Upon certain semi-classical limits, this
equation results in the Boltzmann equation for the neutrino distribution function, which is
what neutrino transport simulations aim at solving. We first review the derivation of the
Kadanoff-Baym equation from the Schwinger-Dyson equation, and then explain how the
Boltzmann equation arises.

Note that the curvature of the space-time has an influence on the transport of neutrinos
inside a neutron star. The equations obeyed by the neutrino propagators should therefore
be written in a generally covariant form. To keep the presentation of the formalism as
simple as possible, we consider the case of flat space-time. The covariant form can be
inferred from the final form of the equations.
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4.2.2.1 Kadanoff-Baym equation

To derive the Kadanoff-Baym equation, the starting point is the Schwinger-Dyson equation
on the CTP contour. The latter relates the exact neutrino propagator G to the free
propagator G0 and the neutrino self-energy Σ

G(x1, x2) = G0(x1, x2) +

∫
C

d4ud4v G0(x1, u)Σ(u, v)G(v, x2) , (4.2.20)

which is written diagrammatically in figure 4.4. The area of integration C contains inte-

= + Σ

Figure 4.4: Diagrammatic representation of the Schwinger-Dyson equation (4.2.20).
Thick lines correspond to exact fermion propagators and thin lines to free propaga-
tors.

grations over spatial coordinates and over the CTP contour. The self-energy is equal to
the interacting part of the 1PI 2-point function

− iΣ ≡
〈
ψψ̄
〉

1PI
−
〈
ψψ̄
〉

1PI, free
. (4.2.21)

(4.2.20) is valid for any x1, x2 on the CTP and can be understood as a matrix equation, if
we write the self-energy Σ in matrix form as in (4.2.3)

Σ(x1, x2) =
(

Σεε′(x1, x2)
)
ε,ε′=±

=

Σ++(x1, x2) Σ+−(x1, x2)

Σ−+(x1, x2) Σ−−(x1, x2)

 . (4.2.22)

In particular, the +− component of (4.2.20) reads

G<(x1, x2) ≡ G+−(x1, x2) = G0,+−(x1, x2)+

+

∫ ∞
t0

d3ud3vdu0,+dv0,+G
0,++(x1, u)Σ++(u, v)G+−(v, x2)−

−
∫ ∞
t0

d3ud3vdu0,+dv0,−G
0,++(x1, u)Σ+−(u, v)G−−(v, x2)−

−
∫ ∞
t0

d3ud3vdu0,−dv0,+G
0,+−(x1, u)Σ−+(u, v)G+−(v, x2)+
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+

∫ ∞
t0

d3ud3vdu0,−dv0,−G
0,+−(x1, u)Σ−−(u, v)G−−(v, x2) ,

(4.2.23)

where the subscripts + and − on the real times u0 and v0 indicate on which branch of the
CTP the integral is performed. We then use the fact that the free propagator G0 is the
inverse of the Dirac operator i/∂ −m, which implies in particular that

(i/∂x −m)G0,+−(x, y) = 0 , (i/∂x −m)G0,++(x, y) = δ(x− y) . (4.2.24)

Applying the Dirac operator to (4.2.23) therefore results in the following equation for G<

(i/∂x1
−m)G<(x1, x2) =

∫
d4v

[
Σ++(x1, v)G<(v, x2)− Σ<(x1, v)G−−(v, x2)

]
. (4.2.25)

(4.2.25) is called the Kadanoff-Baym equation for the propagator G<(x1, x2). In analogy
to the neutrino propagator, we define Σ< = Σ+− and Σ> = Σ−+.

The first step towards the Boltzmann equation, is to go from (4.2.25) to an equation for
G< in momentum space. The appropriate way of doing so for correlators which generically
are not translation-invariant, is via a Wigner transform, that is a Fourier transform with
respect to the separation between the two points

F (X, k) ≡
∫

d4y eik·yF
(
X +

y

2
, X − y

2

)
. (4.2.26)

Note that the Wigner transform of a convolution is not the product of the Wigner trans-
forms. We shall however consider the semiclassical gradient approximation

k � ∂X , (4.2.27)

which corresponds to requiring that the system is sufficiently dilute for the mean free path
of a neutrino to be much larger than its de Broglie wavelength. In this approximation, the
Wigner transform of a convolution is simply the product of the Wigner transforms. Then,
assuming (4.2.27) and Wigner transforming (4.2.25) gives

( /K −m)G<(X, k) = Σ++(X, k)G<(X, k)− Σ<(X, k)G−−(X, k) , (4.2.28)

where we defined

Kµ ≡ −kµ +
i

2
∂µX . (4.2.29)

There is another way of writing the Schwinger-Dyson equation, which is shown in figure
4.5. Starting from this alternative writing, the adjoint Kadanoff-Baym equation can be
shown to be

G<(X, k)

(←−
/K
∗ −m

)
= G++(X, k)Σ<(X, k)−G<(X, k)Σ−−(X, k) . (4.2.30)
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= + Σ

Figure 4.5: Alternative writing of the Schwinger-Dyson equation. The difference
with figure 4.4 is whether the exact propagator comes before or after the self energy
in the right-hand side.

Taking the trace of the difference of (4.2.28) and (4.2.30) results in an equation that
depends only on the +− and −+ correlators

i∂Xµ Tr
{
γµG<(X, k)

}
= −Tr

{
G>(X, k)Σ<(X, k)− Σ>(X, k)G<(X, k)

}
, (4.2.31)

where we used the fact that for every two-point function F

F++ + F−− = F< + F> . (4.2.32)

4.2.2.2 The Boltzmann equation

We now explain how the Boltzmann equation for the neutrino distribution function is
derived from (4.2.31). This requires considering the so-called quasi-particle approximation.

The quasi-particle approximation consists in assuming that the propagator for the
system out of equilibrium can be written in the same form as the free propagator at
equilibrium5

iG0,<(k) = −(/k +m+ µγ0)
π

Ep

[
nf (Ep − µ)δ(Ep − k0 − µ)−

− (1− nf (Ep + µ))δ(Ep + k0 + µ)
]
, (4.2.33)

iG0,>(k) = (/k +m+ µγ0)
π

Ep

[
(1− nf (Ep − µ))δ(Ep − k0 − µ)−

− nf (Ep + µ)δ(Ep + k0 + µ)
]
, (4.2.34)

5See appendix L.2 for a review of the derivation of (4.2.33)-(4.2.34), and appendix L.3 for a
more detailed discussion of the quasi-particle approximation.
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but replacing the Fermi-Dirac distribution by space-time dependent particle and anti-
particle distributions, fν(X;~k) and fν̄(X;~k)

iG<ν (X; kν) = −(/kν + µνγ0)
1− γ5

2

π

Eν

[
fν(X;~kν)δ(Eν − k0

ν − µν)−

− (1− fν̄(X;−~kν))δ(Eν + k0
ν + µν)

]
, (4.2.35)

iG>ν (X; kν) =
1− γ5

2
(/kν + µνγ0)

π

Eν

[
(1− fν(X;~kν))δ(Eν − k0

ν − µν)−

− fν̄(X;−~kν)δ(Eν + k0
ν + µν)

]
. (4.2.36)

In the above expressions, we neglected the neutrino mass, Eν is the on-shell neutrino energy

Eν =

√
~k2
ν , (4.2.37)

and µν is the chemical potential of neutrinos at β−equilibrium with the medium, which is
related to the electron (µe) and isospin (µ3) chemical potentials via

µν = µe + µ3 . (4.2.38)

Note also the presence of the left-handed projectors (1 − γ5)/2, which account for the
left-handed nature of the neutrinos in the Standard Model.

The Boltzmann equations for neutrinos and anti-neutrinos are then obtained by sub-
stituting (4.2.35)-(4.2.36) into the Kadanoff-Baym equation (4.2.31)

(Kν · ∂)fν(X;~kν) = − i
4

Tr
[
/KνΣ<(Kν)(1− fν) + Σ>(Kν) /Kνfν

]
, (4.2.39)

(Kν · ∂)fν̄(X;~kν) =
i

4
Tr
[
/KνΣ<(−Kν)fν̄ + Σ>(−Kν) /Kν(1− fν̄)

]
, (4.2.40)

where Kν is the on-shell neutrino momentum

Kλ
ν ≡

(
Eν ,~kν

)
. (4.2.41)

The quasi-particle approximation is exact in the limit of free particles at equilibrium
(both thermodynamic and β−equilibrium). It is therefore justified when the neutrino mean
free path is large compared to the typical neutrino wavelength, and the neutrinos are close
to equilibrium. In a neutron star, the neutrinos are at equilibrium for layers of the star
such that the optical depth to the surface is much larger than one for all neutrino energies.
This is typically the case in the core of the star, but not near the neutrinosphere. The
quasiparticle approximation is expected to be valid near the core, but it is not clear to what
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extent it is justified up to the neutrinosphere. In absence of alternative methods to the
Boltzmann equation (solving directly the Kadanoff-Baym equation is too complicated), it
is always assumed in astrophysical simulations that the quasiparticle approximation applies
for neutrinos. We will therefore follow the same assumptions here.

As we shall see in the next subsection, the real time propagators for the electrons
also appear in the neutrino Boltzmann equations, via the self-energies. The electrons are
assumed to be at equilibrium with chemical potential µe, and in a regime where the quasi-
particle approximation can be used. Within those assumptions, the electron propagators
are given by

iG<e (t; pe) = −(/pe +me + µεγ0)
π

Ee

[
fe(t; ~pe)δ(Ee − p0

e − µe)−

− (1− fē(t;−~pe))δ(Ee + p0
e + µe)

]
, (4.2.42)

iG>e (t; pe) = (/pe +me + µeγ0)
π

Ee

[
(1− fe(t; ~pe))δ(Ee − p0

e − µe)−

− fē(t;−~pe)δ(Ee + p0
e + µe)

]
, (4.2.43)

where fe and fē are the electron and positron distribution functions, and Ee ≡
√
~k2
e +m2

e

is the on-shell electron energy.

4.2.3 Charged current self-energy

As we have explained in the previous section, the Boltzmann equation is determined by the
neutrino self-energy. In this section, we derive the neutrino self-energy (4.2.21) at leading
order in the weak coupling Fermi constant GF . We restrict our analysis in this work to the
contribution from the charged current interaction of electronic neutrinos with the baryonic
matter

u+ e− 
 d+ νe . (4.2.44)

This means that several other components are not considered here:

� The neutrino self-energy receives a contribution from the neutral current interactions

ν + q 
 ν + q , ν̄ + q 
 ν̄ + q , (4.2.45)

q + q′ 
 ν + ν̄ + q + q′ , (4.2.46)

where q and q′ are quarks. Those interactions are not negligible a priori and should
be taken into account when addressing neutrino transport. The calculation of neutral
current neutrino self-energies in holography will be the subject of a future work.
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� In general, the other charged leptons contribute if they are present in the medium.
In particular, there may be a significant muon component in the core of neutron
stars [283, 284]. We assume in this work that the only charged leptons present in
the medium are electrons. In presence of muons, the muonic neutrinos also couple
to the medium, and their transport is described by a separate Boltzmann equation.

� The propagating neutrinos do not interact only with the baryonic matter, but also
with the leptons contained in the medium. Assuming the leptonic component to be
composed of electrons, the corresponding charged current processes are given by

νe + e− 
 νe + e− , ν̄ + e+ 
 ν̄ + e+ . (4.2.47)

e+ + e− 
 νe + ν̄e . (4.2.48)

The contribution to the neutrino self-energy from these leptonic processes can be
derived from a weakly-coupled calculation, which can be added independently from
the strongly coupled component considered here. The expressions can be found in
[285].

The Feynman diagram for the +− neutrino self-energy from the reaction (4.2.44) at
order O(G2

F ) is represented in figure 4.6. Applying the Feynman rules in the limit where

e−

W W

+ −

+ −

Figure 4.6: Diagram for the calculation of the charged current +− neutrino self-
energy at leading order in the electroweak interactions. Lines correspond to free
propagators, whereas the hatched blob denotes the W current-current correlator in
the dense medium

〈
J−µ J

+
ν

〉
. This two-point function is the exact non-perturbative

quantity, that is computed holographically in this work. For illustration, the one-
loop contributions to this correlator are shown in figure 4.7, where only the quark
component is considered here. The + and − are the Schwinger-Keldysh indices
referring to the location of the operators on the CTP contour in figure 4.3.

the neutrino momentum is much smaller than the W-boson mass6 yields the following

6In which case the free W diagonal propagators reduce to −iG0;±±
W,µν =

δµν
M2
W

. See appendix M for

a review of the weak vertices involved in neutrino interactions.
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result for the self-energy

Σ<
c (X; kν) = −2iG2

F

∫
d4ke
(2π)4

γλ(1− γ5)
(
iG<e (ke)

)
γσ(1− γ5)

(
iG>c,σλ(ke − kν)

)
. (4.2.49)

where we defined the W boson 2-point function

iGc,σλ ≡
〈
J−σ J

+
λ

〉
, (4.2.50)

J±λ being the W boson current. The expression for the backward self-energy Σ>
c is obtained

from (4.2.49) by exchanging the < and >.

u

d

+ −

ν

e−

+ −

Figure 4.7: 1-loop diagram for the W −+ current-current correlator, from the quark
(left) and lepton (right) contributions. Only the quark component is included in this
work.

We now proceed to write the quark contribution to the W current J+
λ in terms of the

chiral currents J
(L/R)
λ . As we shall see in the next section, the latter are the duals of the

bulk gauge fields in the holographic set-up. We assume here for simplicity that Nf is even
and the quarks are divided into an equal number of up and down type quarks. Later we
will set Nf = 2. The quark W current is

J+,λ = −MCKM
ij ūiγλ

1− γ5

2
dj , (4.2.51)

where u is a vector that gathers the Nf/2 up flavors of quarks (of weak isospin I3 = 1/2)
and d gathers the Nf/2 down flavors of quarks (of weak isospin I3 = −1/2), Nf being the
number of flavors. MCKM

ij is the CKM matrix that determines the mixing between mass
and weak eigenstates of the quarks. As for the chiral currents, they are expressed as

J
(L/R),λ
ij = q̄iγλ

1∓ γ5

2
qj , (4.2.52)
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where the minus sign is for the left-handed current. The vector q contains all the Nf flavors
of quarks

q =

u
d

 . (4.2.53)

In order to write the W current (4.2.51) in terms of the chiral currents (4.2.52), we introduce
the enlarged CKM matrix

M̃CKM ≡



0 MCKM

0 0


, (4.2.54)

of size Nf ×Nf . (4.2.51) can then be written as

J+,λ = −M̃CKM
ij J

(L),λ
ij . (4.2.55)

4.2.4 Emissivity and absorption

In this subsection, the results from Sections 4.2.2 and 4.2.3 are combined to obtain the final
form of the kinetic equation obeyed by the neutrino distributions. From there, the radiative
coefficients that control the neutrino transport are identified, and classified according to
the radiative process they correspond to.

Substituting the expression for the charged current self-energy (4.2.49) into the Boltz-
mann equations (4.2.39) and (4.2.40) results in the following kinetic equations for the
neutrino and anti-neutrino distribution functions

Kν · ∂
Eν

fν =
iG2

F

4

∫
d3ke
(2π)3

1

EeEν
×

×
[
Lλσe

(
(1− fν)feG

>
c,σλ(qeν)− fν(1− fe)G<c,σλ(qeν)

)
+

+ Lλσē

(
(1− fν)(1− fē)G>c,σλ(qēν)− fνfēG<c,σλ(qēν)

)]
, (4.2.56)

Kν · ∂
Eν

fν̄ = − iG
2
F

4

∫
d3ke
(2π)3

1

EeEν
×
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×
[
Lλσe

(
fν̄feG

>
c,σλ(qeν̄)− (1− fν̄)(1− fe)G<c,σλ(qeν̄)

)
+

+ Lλσē

(
fν̄(1− fē)G>c,σλ(qēν̄)− (1− fν̄)fēG

<
c,σλ(qēν̄)

)]
, (4.2.57)

where fν and fν̄ both have argument (X,~kν), and fe and fē argument (X,~ke). We defined
several condensed notations for the momenta ke − kν in the different leptonic sectors

qeν ≡ (Ee − Eν − µe + µν ,~ke − ~kν) , qeν̄ ≡ (Ee + Eν − µe + µν ,~ke + ~kν) , (4.2.58)

qēν ≡ (−Ee−Eν −µe +µν ,−~ke−~kν) , qēν̄ ≡ (−Ee +Eν −µe +µν ,−~ke +~kν) , (4.2.59)

and the lepton tensors

Lλσ(e/ē) ≡ Tr
[
( /Ke ±me)γ

σ(1− γ5) /Kνγ
λ(1− γ5)

]
. (4.2.60)

In (4.2.60) the + is for e and the − for ē, and the K’s refer to the on-shell momenta

Ke ≡ (Ee,~ke) , Kν ≡ (Eν ,~kν) . (4.2.61)

Computing explicitly the trace in (4.2.60) gives

Lλσē = Lλσe = 8
(
Kλ
eK

σ
ν +Kσ

eK
λ
ν − (Ke.Kν)ηλσ + iελσαβKe,αKν,β

)
. (4.2.62)

Note that the antisymmetric part will vanish in the contraction with the current-current
correlator if the medium is assumed to be isotropic and the interactions preserve parity.

The transport equation for neutrinos can be further simplified by assuming that the
medium in which they scatter is at equilibrium. This implies that the electrons follow the
Fermi-Dirac distribution

fe(~ke) = nf (Ee − µe) ≡ ne , fē(~ke) = nf (Ee + µe) ≡ nē , (4.2.63)

and the chiral current 2-point functions can be expressed in terms of the retarded correlators
according to (4.2.17) and (4.2.18). Then, (4.2.56) and (4.2.57) become

Kν · ∂
Eν

fν = −G
2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ×

×
[
ImGRc,σλ(qeν)

(
(1− fν)ne(1 + nb(q

0
eν))− fν(1− ne)nb(q0

eν)
)

+

+ImGRc,σλ(qēν)
(
(1− fν)(1− nē)(1 + nb(q

0
ēν))− fνnēnb(q0

ēν)
)]
,

(4.2.64)

Kν · ∂
Eν

fν̄ =
G2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ×
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×
[
ImGRc,σλ(qeν̄)

(
fν̄ne(1 + nb(q

0
eν̄))− (1− fν̄)(1− ne)nb(q0

eν̄)
)

+

+ ImGRc,σλ(qēν̄)
(
fν̄(1− nē)(1 + nb(q

0
ēν̄))− (1− fν̄)nēnb(q

0
ēν̄)
)]
.

(4.2.65)

The emissivities j(Eν), j̄(Eν) and mean free paths λ(Eν), λ̄(Eν) are defined such that

Kν · ∂
Eν

fν ≡ j(Eν)(1− fν)− 1

λ(Eν)
fν , (4.2.66)

Kν · ∂
Eν

fν̄ ≡ j̄(Eν)(1− fν̄)− 1

λ̄(Eν)
fν̄ . (4.2.67)

The two radiative coefficients are themselves the sum of two terms, corresponding to the
contributions from electrons and positrons

j(Eν) = je−(Eν) + je+(Eν) , j̄(Eν) = j̄e−(Eν) + j̄e+(Eν) , (4.2.68)

1

λ(Eν)
=

1

λe−(Eν)
+

1

λe+(Eν)
,

1

λ̄(Eν)
=

1

λ̄e−(Eν)
+

1

λ̄e+(Eν)
. (4.2.69)

In the quasi-particle picture, each of these coefficients can be associated with a given weak
interaction process between the neutrinos and the baryonic matter

e− + u
 ν + d :
(
je− , λe−

)
, d+ e+ 
 ν̄ + d :

(
j̄e+ , λ̄e+

)
, (4.2.70)

u
 ν + d+ e+ :
(
je+ , λe+

)
, d
 ν̄ + u+ e− :

(
j̄e− , λ̄e−

)
. (4.2.71)

These are identified as the various versions of the β reaction (4.2.44). Note that, as men-
tioned before, the purely leptonic processes are not included. Also, as far as the baryonic
component of the medium is concerned, the quasi-particle picture is not expected to give a
good description of the interaction of the leptons with the strongly-coupled QCD matter.
Writing the weak reactions as in (4.2.70)-(4.2.71) corresponds to approximating the chiral
current two-point functions with the 1-loop contribution, which comes from the diagrams
in figure 4.7. However, at strong coupling, the exact 2-point functions receive contributions
from all numbers of loops, which means that the weak processes that occur typically involve
many quarks and gluons. It is still useful to make the identification as in (4.2.70)-(4.2.71)
because it summarizes the exchange of flavor charges that occurs in each reaction. It also
makes it clear what is the relation between the various coefficients that we defined and
the weak processes that are usually considered in the literature, from a weakly-coupled
perspective.

From (4.2.64) and (4.2.65), the expressions for the various contributions to the emis-
sivity and absorption can be identified to be

je−(Eν) = −G
2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qeν)ne

(
1 + nb(q

0
eν)
)
,

148



je+(Eν) = −G
2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qēν)(1− nē)

(
1 + nb(q

0
ēν)
)
, (4.2.72)

1

λe−(Eν)
= −G

2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qeν)(1− ne)nb(q0

eν) ,

1

λe+(Eν)
= −G

2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qēν)nēnb(q

0
ēν) , (4.2.73)

j̄e−(Eν) = −G
2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qeν̄)(1− ne)nb(q0

eν̄) ,

j̄e+ = −G
2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qēν̄)nēnb(q

0
ēν̄) , (4.2.74)

1

λ̄e−(Eν)
= −G

2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qeν̄)ne

(
1 + nb(q

0
eν̄)
)
,

1

λ̄e+(Eν)
= −G

2
F

2

∫
d3ke
(2π)3

1

EeEν
Lλσe ImGRc,σλ(qēν̄)(1− nē)

(
1 + nb(q

0
ēν̄)
)
. (4.2.75)

Detailed balance Because the medium in which the neutrinos scatter is assumed to
be at equilibrium, the charged current emissivities and mean free paths (4.2.72)-(4.2.75)
are actually related by a detailed balance condition. In terms of the fermionic and bosonic
equilibrium distribution functions, detailed balance refers to the equalities

ne
(
1 + nb(q

0
eν)
)

= (1− ne)nb(q0
eν)e−β(Eν−µν) , (4.2.76)

(1− nē)
(
1 + nb(q

0
ēν)
)

= nēnb(q
0
ēν)e−β(Eν−µν) , (4.2.77)

ne
(
1 + nb(q

0
eν̄)
)

= (1− ne)nb(q0
eν̄)e−β(−Eν−µν) , (4.2.78)

(1− nē)
(
1 + nb(q

0
ēν̄)
)

= nēnb(q
0
ēν̄)e−β(−Eν−µν) , (4.2.79)

which imply that

je−,e+(Eν) =
e−β(Eν−µν)

λe−,e+(Eν)
, (4.2.80)

j̄e−,e+(Eν) =
e−β(Eν+µν)

λ̄e−,e+(Eν)
. (4.2.81)

Due to the detailed balance relations, the emissivity and absorption are not indepen-
dent quantities. It is therefore sufficient to study one of the two quantities, or a linear
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combination. The usual quantity that is considered is the opacity corrected for stimulated
absorption [274],

κ(Eν) ≡ j(Eν) +
1

λ(Eν)
, (4.2.82)

which determines the (Eν-dependent) location of the neutrinosphere.
We conclude this section by commenting on the expressions obtained for the neutrino

radiative coefficients (4.2.72)-(4.2.75). Up to kinematic and statistical factors that are
straightforwardly determined from the quasi-particle approximation (4.2.42)-(4.2.43), all
the contributions are expressed in terms of only one function : the imaginary part of the
retarded 2-point function for the charged chiral currents. All the processes in (4.2.70)-
(4.2.71) are captured by this single correlator. Computing this correlator in neutron-
star matter is a strongly-coupled problem, which is why the transport of neutrinos in
neutron stars remains an unsettled issue. In this work, we consider a simple holographic
model where the strongly-coupled computation of the chiral current 2-point function can
be done exactly. The holographic model and the computation of the retarded correlator
are described in the next sections.

4.3 The holographic model

We introduce in this section the holographic model that is used to compute the charged
current retarded correlator. It is the simplest bottom-up model describing the dynamics of
chiral current operators. We assume therefore the strongly interacting medium is described
by a strongly interacting quantum theory with Nf quarks and U(Nf )L × U(Nf )R chiral
symmetry. According to holographic duality, this theory is dual to a five dimensional
gravitational theory that lives on five dimensional Anti-de Sitter space AdS5, which is a
constant negative curvature space with a four-dimensional boundary. It is this form of
the theory that we solve using gravitational methods in order to compute the two-point
current-current correlator.

The background solution of this model at finite temperature and density will be then
reviewed, and the expressions of the particle densities will be determined as a function of
the chemical potentials.

4.3.1 Action

We consider a five-dimensional asymptotically AdS bulk theory, whose field content is
dictated by the types of operators that we want the dual (boundary) quantum field theory

to include. In the present case, the operators of interest are the chiral currents J
(L/R)
µ , which

are dual to chiral gauge fields in the five dimensional bulk LM and RM . The latter, are
elements of the Lie algebra of the chiral group U(Nf )L× U(Nf )R. The bulk gravitational
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action is constructed as the sum of a color and a flavor part

S = Sc + Sf . (4.3.1)

The action for the color sector is the 5-dimensional Einstein-Hilbert action

Sc = M3N2
c

∫
d5x
√−g

(
R+

12

`2

)
, (4.3.2)

where R is the 5D Ricci scalar, M the 5D Planck mass, ` the AdS radius and Nc the number
of colors. For the flavor sector, we make the simplest choice of a quadratic Yang-Mills action
for the chiral gauge fields

Sf = − 1

8`
(M`)3w2

0Nc

∫
d5x
√−g

(
Tr F

(L)
MNFMN,(L) + Tr F

(R)
MNFMN,(R)

)
, (4.3.3)

where w0 is the flavor Yang-Mills coupling, and F(L/R) are the field strengths of the gauge
fields L and R

F(L) ≡ dL− iL ∧ L , F(R) ≡ dR− iR ∧R . (4.3.4)

As usual in holographic theories, the number of colors Nc is assumed to be large in order
for the semi-classical treatment of the bulk theory to be valid. Since we are interested in
describing dense baryonic matter, the back-reaction of the flavor sector on the glue sector
will play an important role. In order for this back-reaction to be finite, we consider the
so-called Veneziano large N limit

Nc →∞ , Nf →∞ ,
Nf

Nc
fixed . (4.3.5)

Although Nc and Nf are assumed to be large, finite values of Nc and Nf will eventually be
substituted in the large N result for phenomenological applications. Specifically, Nc will
be set to 3, and from now on we fix the flavor sector to be composed of Nf = 2 massless
flavors. When the chiral group is U(2)L×U(2)R, the chiral currents and their dual gauge
fields can be decomposed in the Pauli basis {σa}

J (L)
µ =

1

2
Ĵ (L)
µ I2 +

1

2

3∑
a=1

Ja,(L)
µ σa , LM =

1

2
L̂M I2 +

1

2

3∑
a=1

LaMσa ,

J (R)
µ =

1

2
Ĵ (R)
µ I2 +

1

2

3∑
a=1

Ja,(R)
µ σa , RM =

1

2
R̂M I2 +

1

2

3∑
a=1

RaMσa , (4.3.6)

and the CKM matrix (4.2.54) takes the form

M̃CKM =

0 Mud

0 0

 . (4.3.7)
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Then, substituting the decomposition (4.3.6) into the definition of the charged current
(4.2.55) gives

J+,λ = −1

2
Mud

(
J

(L),λ
1 − iJ (L),λ

2

)
. (4.3.8)

Among the bulk gauge fields, the charged currents will therefore be dual to L1 and L2,
that is the non-abelian left-handed gauge fields orthogonal to the isospin direction.

4.3.2 Background solution

We now present the background solution for the bulk action (4.3.2), at finite temperature
and density. The dual state of matter that it describes in the dual boundary theory
corresponds to a plasma of deconfined (generalized) quarks and gluons. Introducing a finite
density of deconfined baryonic matter is equivalent to sourcing the bulk baryon number
gauge field with a chemical potential

V̂0

∣∣∣
boundary

= 2µ , (4.3.9)

where we defined the vector gauge field

VM ≡ LM + RM =
1

2
V̂M I2 +

1

2

3∑
a=1

V a
Mσa . (4.3.10)

µ is the quark number chemical potential, related to the baryon number chemical potential
by µB = Ncµ. Then, the background solution is given by the solution of the Einstein-
Maxwell equations obeying the boundary condition (4.3.9), together with appropriate reg-
ularity conditions in the IR. The derivation of the solution is reviewed in appendix N. It
corresponds to an asymptotically AdS5 Reissner-Nordström (RN) black-hole7, with metric

ds2 = e2A(r)
(
−f(r)dt2 + f(r)−1dr2 + ~dx

2
)
, (4.3.11)

where

eA(r) =
`

r
, f(r) = 1−

(
r

rH

)4

(1 + 2 (1− πTrH)) + 2 (1− πTrH)

(
r

rH

)6

, (4.3.12)

rH =
2

πT

1 +

√
1 +

w2
0

3Nc

µ2

π2T 2

−1

. (4.3.13)

7The phase diagram and the associated thermodynamics of RN black holes has been studied in
holography in [279, 280].
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The background solution for the gauge field is given by

V̂0 = 2µ

(
1−

(
r

rH

)2
)
. (4.3.14)

In (4.3.11), the coordinate r is the holographic coordinate, defined such that the AdS
boundary is located at r = 0 and the horizon at r = rH . Note that the background that we
consider is such that all non-abelian gauge fields vanish. In particular, the field dual to the
isospin current is not sourced, meaning that the dual thermal state is isospin symmetric,
with isospin chemical potential

µ3 = 0 . (4.3.15)

In the following, we consider conditions relevant for neutron stars, where the baryon
chemical potential is much higher than the temperature, i.e. µ � T . In this limit, the
charged black-hole is nearly extremal and the horizon radius is essentially controlled by
the chemical potential

rH =

√
3Nc

w2
0

2

µ

(
1 +O

(
T

µ

))
. (4.3.16)

4.3.3 Particle densities

In (4.3.14), the background gauge field is expressed in terms of the baryon number chemical
potential µB = Ncµ. Instead of the chemical potential, the relevant physical observable
is given by the dual thermodynamic state variable, that is the baryon density. In this
subsection, we explain how the chemical potential µ is traded for the baryon density nB.
We also compute the chemical potentials for the leptons at equilibrium with the baryonic
matter.

The baryon density is defined to be the vev of the 0 component of the baryon current

nB ≡
1

Nc

〈
Ĵ0
L + Ĵ0

R

〉
, (4.3.17)

and the current vev is obtained by differentiating the grand-canonical potential Ω with re-
spect to µB. The holographic correspondence states that Ω is equal to minus the Euclidean
on-shell bulk action, [279, 280]

Ω = −SEon-shell = −(M`)3

(
N2
c r
−4
H +Nc

w2
0

6
µ2r−2

H

)
V3 , (4.3.18)

where V3 is the volume of the boundary 3-dimensional Euclidean space. This gives the
following expression for the equilibrium density

nB(µ, T ) = − 1

V3

∂Ω

∂µB
= (M`)3w2

0(rHT )−2T 2µ , (4.3.19)
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where the dimensionless quantity rHT is a function of the ratio µ/T that we reproduce
here for convenience

rHT =
2

π

1 +

√
1 +

w2
0

3Nc

µ2

π2T 2

−1

. (4.3.20)
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Figure 4.8: The dependence of the baryon number density nB on the baryonic chem-
ical potential µ. The precise quantity that is shown is the density in units of the
temperature, nB/T

3. The latter does not depend independently on T and µ, but only
on µ/T . The dashed orange line corresponds to the cubic fit at high density µ� T ,
(4.3.21). For comparison with the typical scales in a neutron star, the dotted green
line indicates the value of the nuclear saturation density n0 ' 0.16 fm−3, in units of
the temperature at T = 10 MeV. We also compare our result with the degenerate
Fermi gas at β−equilibrium, which is shown as the red dot-dashed line.

At high density µ� T , the expression (4.3.19) simplifies and nB is found to behave as
µ3

nB(µ) =
(M`)3w4

0

12Nc
µ3

(
1 +O

(
T

µ

))
. (4.3.21)

The profile for nB/T
3 as a function of µ/T is shown in figure 4.8, where the parameters

are those of Appendix O. For comparison, figure 4.8 also shows the relation between nB
and µ in the case where all fermionic species are described by a degenerate Fermi gas. The
quark matter described by our model is seen to have a harder equation of state than the
degenerate Fermi gas, but the two are relatively close.
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Figure 4.9: The dependence of the electron chemical potential on the baryonic chem-
ical potential µ. The precise quantity that is shown is the chemical potential in units
of the temperature, µe/T . The latter does not depend independently on T and
µ, but only on µ/T . The dashed orange line corresponds to the linear fit at high
density µ � T , (4.3.26). We compare our result with the degenerate Fermi gas at
β−equilibrium, which is shown as the green dot-dashed lines.

In addition to the particle densities, the calculations for the transport of neutrinos close
to equilibrium also require the knowledge of the leptonic chemical potentials µe and µν for
given µ and T . µν is related to the isospin chemical potential µ3 and the electron chemical
potential µe via the condition of β−equilibrium (4.2.38). Since µ3 is set to 0, µν and µe
are equal in the medium that we consider.

The electrons are described by a relativistic Fermi liquid at equilibrium, so the relation
between the electron density ne− and the electron chemical potential µe is known explicitly

ne−

T 3
=

1

π2

∫ ∞
me
T

dx
x
√
x2 −

(
me
T

)2
1 + ex−

µe
T

. (4.3.22)

Likewise, the positron density is given by

ne+

T 3
=

1

π2

∫ ∞
me
T

dx
x
√
x2 −

(
me
T

)2
1 + ex+µe

T

. (4.3.23)

Moreover, the electron fraction

Ye ≡
ne− − ne+

nB
, (4.3.24)
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is fixed by the condition of charge neutrality in the medium

Ye =
Nc

6
. (4.3.25)

Combining (4.3.22)-(4.3.25) and (4.3.19) then gives a relation that fixes µe as a function
of µ and T .

At high density µ� T , the leptonic chemical potentials behave linearly in µ

µν = µe = M`w
4
3
0

(
π2

24

) 1
3

µ

(
1 +O

(
T

µ

))
. (4.3.26)

In figure 4.9 we show the dependence of µe on µ/T , for the parameters of Appendix O.
Figure 4.9 also shows the comparison with the chemical potentials in a degenerate Fermi
gas at β−equilibrium. µe is observed to be of the same order as in the Fermi gas.

4.4 Holographic calculation of the chiral current

2-point functions

This section discusses the calculation of the retarded 2-point function for the charged cur-
rent (4.2.55), in the holographic model presented above. To do so, we follow the now
standard prescription of [297], and study the linearized field equations for small perturba-
tions δL1,2 of the bulk gauge fields dual to the chiral currents J1,2

(L)

∂M
(√−g (∂MδLN,a − ∂NδLM,a

))
= 0 . (4.4.1)

We choose the axial gauge
L1,2
r = 0 , (4.4.2)

and define the 4-dimensional Fourier transform of the perturbation as

δLaµ(r; t, ~x) =

∫
dk4

(2π)4
e−i(ωt−

~k.~x)Laµ,k(r) . (4.4.3)

To avoid clutter, the k dependence of Laµ will not be written explicitly in the following.
We also omit the flavor index in most places, since the action is invariant under exchange
of L1 and L2. We first present the general expression for the 2-point functions. We then
study its behavior in the hydrodynamic limit.
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4.4.1 General expression

The general tensor structure of the chiral current 2-point function can be inferred from the
symmetries of the background. The finite temperature plasma is invariant under SO(3)
spatial rotations, as well as chiral transformations8. This implies that the 2-point function
can be decomposed into a longitudinal and transverse part to the 3-momentum ~k, according
to 〈

J
(L),a
λ J (L),b

σ

〉R
(ω,~k) = δab

(
P⊥λσ(ω,~k)iΠ⊥(L)(ω,

~k) + P
‖
λσ(ω,~k)iΠ

‖
(L)(ω,

~k)
)
, (4.4.4)

where a, b ∈ {1, 2} and the non-zero components of P⊥ and P ‖ are

P⊥ij (ω,~k) = δij −
kikj
~k2

, (4.4.5)

P
‖
00 =

~k2

ω2 − ~k2
, P

‖
0i = P

‖
i0 = − ωki

ω2 − ~k2
, P

‖
ij =

kikj
~k2

ω2

ω2 − ~k2
. (4.4.6)

The sum of the two projectors is the flat 4-dimensional projector transverse to kµ

P⊥µν + P ‖µν = ηµν −
kµkν
k2
≡ Pµν , kµ =

(
−ω,~k

)
. (4.4.7)

Note that we did not include any term involving the Levi-Civita tensor in (4.4.4) because
the bulk action is symmetric under parity (~x↔ −~x). Also, the polarization functions have
the following properties :

� At ~k = 0, the transverse and longitudinal directions cannot be distinguished anymore,
so that the 2-point function should be written as〈

J
(L),a
λ J (L),b

σ

〉R
(ω, 0) = δabPλσ iΠ(L)(ω) , (4.4.8)

which implies that

Π
‖
(L)(ω, 0) = Π⊥(L)(ω, 0) . (4.4.9)

� Due to the shape of the longitudinal projector (4.4.6), and since the retarded 2-point
function should be regular at ω = k, Π‖ vanishes for light-like momenta as

Π‖(ω,~k)
∣∣∣
ω2→~k2

∼ ω2 − ~k2 . (4.4.10)

8Remember that this model does not account for neither explicit or spontaneous breaking of
the chiral symmetry. Chiral symmetry imposes that the correlator should obey the Ward identity
〈JλJσ〉 kσ = 0.
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The 3-dimensional part of the gauge field perturbation can also be decomposed into
transverse and longitudinal parts

L⊥i = Li −
ki
~k2

(kjLj) , (4.4.11)

L‖i =
ki
~k2

(kjLj) . (4.4.12)

We now write the equations of motion (4.4.1) component by component. In the axial
gauge (4.4.2), the N = r component implies a constraint

∂rL0 +
f(r)

ω
∂r (kiLi) = 0 , (4.4.13)

and the other equations of motion are

∂r

(
1

r
∂rL0

)
−
√
~k2

rf(r)
E‖ = 0 , (4.4.14)

∂r

(
f(r)

r
∂rL‖i

)
+

1

rf(r)

ωki√
~k2
E‖ = 0 , (4.4.15)

∂r

(
f(r)

r
∂rL⊥i

)
+

1

rf(r)

(
ω2 − f(r)~k2

)
L⊥i = 0 . (4.4.16)

We defined the longitudinal electric field

E‖ ≡
√
~k2L0 +

ω√
~k2

(kjLj) . (4.4.17)

Because of the constraint (4.4.13), (4.4.14) and (4.4.15) are actually the same equation,
which can be written as a differential equation for E‖

∂r

(
f(r)

r

∂rE
‖

ω2 − f(r)~k2

)
+

1

rf(r)
E‖ = 0 . (4.4.18)

The charged current retarded 2-point function is then extracted from the solution to
the equations of motion (4.4.16) and (4.4.18), with infalling boundary conditions at the
horizon [297]. The on-shell action for the infalling solution reads

Son-shell =
1

8`
(M`)3w2

0Nc

∫
d4k

(2π)4

[
`

r
f(r)

(
L⊥,ai (−k)∂rL⊥,ai (k)−

− E‖,a(−k)
∂rE

‖,a(k)

ω2 − f(r)k2

)]r=ε
r=rH

, (4.4.19)
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with ε a UV cut-off. The AdS boundary contribution to (4.4.19) can be rewritten as

Son-shell =
1

8`
(M`)3w2

0Nc

∫
r=ε

d4k

(2π)4

[
`

r
Lλa(−k)δab

(
P⊥λσ(k)

∂rL⊥i (k)

Li(k)
+

+ P
‖
λσ(k)

∂rE
‖(k)

E‖(k)

)
Lσb (k)

]r=ε
.

(4.4.20)

According to the prescription of [297], this implies that the polarization functions for the
left-handed chiral currents are given by

Π⊥(L)(ω,
~k) = −1

4
(M`)3w2

0Nc
1

ε

∂rL⊥i
L⊥i

∣∣∣∣
r=ε

, (4.4.21)

Π
‖
(L)(ω,

~k) = −1

4
(M`)3w2

0Nc
1

ε

∂rE
‖

E‖

∣∣∣∣∣
r=ε

. (4.4.22)

To obtain the polarization functions for the charged current Π
⊥,‖
c , (4.3.8) implies that

(4.4.21)-(4.4.22) should be multiplied by a factor 1
2 |Mud|2

Π⊥c (ω,~k) = −1

8
(M`)3w2

0Nc|Mud|2
1

ε

∂rL⊥i
L⊥i

∣∣∣∣
r=ε

, (4.4.23)

Π‖c(ω,
~k) = −1

8
(M`)3w2

0Nc|Mud|2
1

ε

∂rE
‖

E‖

∣∣∣∣∣
r=ε

. (4.4.24)

Whether the expressions (4.4.23) and (4.4.24) give finite results or need to be regularized
depends on the near-boundary behavior of the solutions. The latter is obtained by solving
(4.4.16) and (4.4.18) at r → 0

L⊥ = L⊥0 + r2

(
L⊥2 −

1

2
(ω2 − ~k2)L⊥0 log r

)(
1 +O

(
r2
))
, (4.4.25)

E‖ = E
‖
0 + r2

(
E
‖
2 −

1

2
(ω2 − ~k2)E

‖
0 log r

)(
1 +O

(
r2
))
, (4.4.26)

with the two independent integration constants given by the source L⊥0 , E
‖
0 and vev terms

L⊥2 , E
‖
2 . This behavior implies that the polarization functions are subject to a logarithmic

UV divergence, which behaves as (ω2 − k2) log ε. The log term contributes only to the
real part of the polarization functions, whereas the imaginary part does not need to be
regularized. Since only the imaginary part enters in the expression for the neutrino radiative
coefficients, no regularization is required for our purpose.
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4.4.2 Hydrodynamic limit

We study in this section the hydrodynamic limit for the retarded 2-point function of the
charged current, whose dual field is not sourced by a chemical potential. The expression for
the correlators is given by (4.4.23) and (4.4.24). The hydrodynamic limit corresponds to
the limit of ω and ~k small compared with the temperature. In this regime, the correlators
can be expressed in a systematic expansion in ω and k, whose coefficients correspond to
the transport coefficients of the corresponding currents [298]. At leading order in the
hydrodynamic expansion, the 00 component of the retarded 2-point function exhibits an
imaginary diffusive pole of diffusivity D

〈J0J0〉R =
σ~k2

ω + iD~k2

(
1 +O

(
ω,~k2

))
, (4.4.27)

where the transport coefficient σ which controls the residue is the DC conductivity. The
notation O refers to a term that is at most of the indicated order, but can be much smaller
depending on the relative values9 of ω and ~k2. In particular, since the imaginary part of the
retarded Green’s function is odd in ω (see (4.2.15)), the first correction to the numerator
in (4.4.27) should be of order O(ω2) when ~k = 0. From (4.4.4), (4.4.27) then implies that
the leading order hydrodynamic approximation to the longitudinal polarization function is
given by

Π‖(ω, k) =
−iσ(ω2 − ~k2)

ω + iD~k2

(
1 +O

(
ω,~k2

))
. (4.4.28)

As for the transverse part of the correlator, it is not associated with any hydrodynamic
mode, so that it is analytic in the hydrodynamic limit

Π⊥(ω, k) = ic0ω
(

1 +O
(
ω2,~k2

))
+O

(
ω,~k2

)
, (4.4.29)

where c0 is a real constant, and we made explicit the decomposition into real and imaginary
parts. Note that the corrections to the imaginary part start at order O

(
ω3, ω~k2

)
, since

Im Π⊥ is odd in ω according to (4.2.15). Using the fact that, when ~k = 0, the transverse
and longitudinal polarization functions are equal, the coefficient at linear order in ω in
(4.4.29) is shown to correspond to the conductivity

Π⊥(ω, k) = −iσω
(

1 +O
(
ω2,~k2

))
+O

(
ω2,~k2

)
. (4.4.30)

The shape of the correlators (4.4.28) and (4.4.30) is determined by hydrodynamics, but the
transport coefficients D and σ are computed from the microscopic theory. In the present

9The terms that appear in the expansion in the parentheses of (4.4.27) do not correspond to

a simple double Taylor expansion in ω and ~k2. Instead, corrections to the denominator will yield

terms of the form aω2+b~k4

ω+iD~k2
. These are always small corrections for ω and ~k2 small and real, but

they are not of a definite order in ω or ~k2.
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case, the holographic calculation makes it possible to extract analytic expressions for the
leading order transport coefficients.

In this work, we are interested in conditions typical of neutron star matter, where the
baryon chemical potential µ is much larger than the temperature T . In this regime and for
the bulk action (4.3.3), it can be shown that the hydrodynamic approximation to the 2-
point function (4.4.28)-(4.4.30) is valid not only at ω, k � T , but extends to T � ω, k � µ
[299]. In the following, we summarize the procedure for computing the hydrodynamic
approximation to the 2-point function at µ� T from the equations of motion (4.4.16) and
(4.4.18), and give the expression for the transport coefficients D and σ. We refer to [299]
for more details 10.

4.4.2.1 Transverse correlator

We start by analyzing the transverse polarization function (4.4.23), whose expression at
leading order in the hydrodynamic expansion is given by (4.4.30). To compute Π⊥ in the
hydrodynamic regime, we solve the equations of motion for the transverse fluctuations
(4.4.16) at ω, k, T � µ. To do this, a small parameter ε� 1 is introduced, and we consider
the following scaling of the energy, momentum and temperature

rHω → ε rHω , rHk → εarHk , rHT → εbrHT , a, b > 0 . (4.4.31)

Since we are interested in the linear terms in the hydrodynamic expansion, we consider
(rHk)2 � rHω, that is a > 1/2. As far as the temperature exponent is concerned, b < 1
corresponds to the usual hydrodynamic limit ω � T , whereas b ≥ 1 corresponds to the
regime where ω > T but the hydrodynamic approximation remains valid as long as ω � µ.
The bulk is then divided into two regions where different approximations to the equation
of motion (4.4.16) are valid

� The outer region, where the holographic coordinate r is sufficiently far from the
horizon for

ω2

f2
L⊥ � ∂2

rL⊥ ,
k2

f
L⊥ � ∂2

rL⊥ , (4.4.32)

to be obeyed. For a > 1/2, this region includes the boundary at r = 0, and inside it
the equation of motion (4.4.16) reduces to

∂r

(
f(r)

r
∂rL⊥

)
= 0 . (4.4.33)

10The problem considered in [299] is not exactly the same, as they consider perturbations of the
gauge field in the group under which the black hole is charged (in our case, such a gauge field is
dual to a current that enters the neutral current, but does not contribute to the charged current).
In that case, the gauge field perturbation couples to the metric perturbation, and the linearized
Maxwell equations have to be solved together with the linearized Einstein equations. The general
method that they use still applies to the present case though, which is even simpler.
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The solution to (4.4.33) is given by

L⊥out = A+B

∫ r

0
dr′

r′

f(r′)
, (4.4.34)

with A and B two integration constants.

� The inner region, where the holographic coordinate r is sufficiently close to the
horizon for

ω2 � f(r)k2 , (4.4.35)

to be obeyed11. For b < 1, the outer region extends down to the horizon, and the
solution in the inner region reduces to an infalling boundary condition for the outer
solution at the horizon

B = irHωA . (4.4.36)

For b ≥ 1, the solution in the inner region is better analyzed by zooming on the
near-horizon geometry, which is done by defining

u ≡ ε ζ , (4.4.37)

where u = 1−r/rH . ζ is the radial coordinate that describes the AdS2-Schwarzschild
factor of the near-horizon geometry (which has an additional R3 factor). For b = 1,
the equation of motion (4.4.16) reduces in the inner region to the equation for a
massless scalar field in AdS2-Schwarzschild

∂ζ

(
(4πrHTζ + 12ζ2)∂ζL⊥

)
+

(rHω)2

4πrHTζ + 12ζ2
L⊥ = 0 . (4.4.38)

The infalling solution in the inner region is then given by

L⊥in = C

(
3ζ

3ζ + πrHT

)− iω
4πT

, (4.4.39)

with C an integration constant.

For b > 1, ω � T implies that the near-horizon region of the AdS2-Schwarzschild
space-time is not probed by the perturbation, and the equation of motion (4.4.16)
reduces in the inner region to the equation for a massless scalar field in AdS2

∂ζ

(
12ζ2∂ζL⊥

)
+

(rHω)2

12ζ2
L⊥ = 0 . (4.4.40)

11In general, the inner region is simply defined as a region where rH−r � rH . When considering
(rH~k)2 � 1, the additional condition (4.4.35) can be added. This results in ~k2 disappearing from
the inner equation of motion.
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The infalling solution in the inner region is then given by

L⊥in = C exp

(
irHω

12ζ

)
, (4.4.41)

with C an integration constant.

The full solution at leading order in ε is finally obtained by imposing that the outer and
inner solutions (4.4.34) and (4.4.41) (or (4.4.39)) are equal in the region where they match.
It can be shown that there exists such a matching region, where the outer and inner regions
overlap. This region is reached by setting u to be of order O(εc), with 1 − a < c < 1. In
practice, this amounts to defining

u ≡ εcv ⇐⇒ ζ = εc−1v , (4.4.42)

and equating L⊥out(v) and L⊥in(v) for v of order 1. Proceeding as such, the solution to
(4.4.16) in the outer region is obtained as

L⊥out(r) = A

(
1 + irHω

∫ r
rH

0
dx

x

f(x)
+O

(
ε2, ε1+b, ε2a

))
. (4.4.43)

Then, from (4.4.23), the transverse polarization function is found to follow the hydrody-
namic behavior (4.4.30)

Π⊥c (ω,~k) = −|Mud|2
8

r−2
H (M`)3w2

0Nc

(
− irHω

(
1 +O

(
(rHω)2, (rH~k)2, rHT

))
+

+O
(
(rHω)2, (rH~k)2, r2

HωT
))

. (4.4.44)

The DC conductivity is identified to be

σ =
|Mud|2

8rH
Nc(M`)3w2

0 , (4.4.45)

with rH the black-hole horizon radius, whose expression is given by (4.3.13). This result
agrees with the universal result derived in [302]. For µ� T , the expression simplifies to

σ =
1

16
|Mud|2

√
Nc

3
(M`w0)3 µ

(
1 +O

(
T

µ

))
. (4.4.46)

4.4.2.2 Longitudinal correlator

We now turn to the longitudinal polarization function (4.4.24), whose expression at leading
order in the hydrodynamic expansion is given by (4.4.28). In this case, the equation of
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motion that has to be solved at ω, k, T � µ is (4.4.18). A small parameter ε� 1 is again
introduced, and the same kind of scaling of the energy, momentum and temperature as in
(4.4.31) is considered. To describe the diffusive pole of the longitudinal correlator, we want
to include in the calculation terms of order (rH~k)2. Therefore, unlike the transverse case,
we now consider general positive values for the momentum exponent a.

The bulk is still divided into outer and inner regions, which are defined as in the
previous section. The longitudinal equation of motion (4.4.18) is solved separately in each
region as follows

� In the outer region, (4.4.18) reduces to

∂r

(
f(r)

r

∂rE
‖

ω2 − f(r)k2

)
= 0 , (4.4.47)

with solution

E
‖
out = A+B

∫ r

0
dr′r′

ω2 − f(r′)~k2

f(r′)
, (4.4.48)

with A and B two integration constants.

� In the inner region, the shape of the equation of motion depends on the relative size
of the energy ω and the temperature T . For b < 1, the outer region extends down
to the horizon, and the solution in the inner region reduces to an infalling boundary
condition for the outer solution at the horizon

B =
iA

(rHω)2 + 1
2 i(rH

~k)2
. (4.4.49)

For b = 1, the equation of motion (4.4.18) in the inner region takes the same form
(4.4.38) as in the transverse case (with L⊥ replaced by Ê‖), and the infalling solution
is

E
‖
in = C

(
3ζ

3ζ + πrHT

)− iω
4πT

, (4.4.50)

with C an integration constant.

For b > 1 (ω � T ), (4.4.18) has the form (4.4.40) in the inner region and the infalling
solution is given by

E
‖
in = C exp

(
irHω

12ζ

)
, (4.4.51)

with C an integration constant.

By matching the two solutions, the solution to (4.4.18) in the outer region is obtained
as

E
‖
out(r) = A

(
1 +

i

(rHω)2 + 1
2 i(rH

~k)2

∫ r
rH

0
dxx

(rHω)2 − f(x)(rH~k)2

f(x)
×
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×
(

1 +O
(
ε, εb, ε2a

)))
. (4.4.52)

Then, from (4.4.24), the longitudinal polarization function is found to follow the hydrody-
namic behavior (4.4.28)

Π‖c(ω,
~k) = r−2

H

−irHσ
(
(ωrH)2 − (~krH)2

)
ωrH + 1

2 i(
~krH)2

(
1 +O

(
ωrH , (~krH)2, rHT

))
. (4.4.53)

The diffusivity is identified to be

D =
1

2
rH , (4.4.54)

which, for µ� T , simplifies to

D =

√
3Nc

w0
µ−1

(
1 +O

(
T

µ

))
. (4.4.55)

4.5 Analysis of the radiative coefficients

This section is dedicated to the analysis of the neutrino charged current radiative coeffi-
cients computed from the holographic model, which are the final target of this work. The
coefficients are computed by performing the integrals over the loop electron momentum
(4.2.72)-(4.2.75), where the charged current retarded 2-point function is computed holo-
graphically following Section 4.4. We first draw the consequences of the presence of the
statistical factor to determine which coefficients dominate and which are suppressed.

We then introduce a set of approximations that help understand the behavior of the
computed coefficients. These include the hydrodynamic approximation discussed in the
previous section for the correlators. Finally, we present the numerical results for the ra-
diative coefficients, and estimate the accuracy of the various approximations. We end the
section by comparing the results of this work with some examples of radiative coefficients
that are currently used to describe neutrino transport in simulations.

4.5.1 Statistics at large baryonic density

We assume in this subsection that the conditions in the medium where the neutrinos
scatter are typical of neutron stars, so that the baryonic and electron densities are very
high, µ/T, µe/T � 1. In these conditions, the medium at equilibrium is highly degenerate.
We investigate here the consequences of having such a highly degenerate medium for the
neutrino radiative coefficients (4.2.72)-(4.2.75).

As far as the neutrino chemical potential µν is concerned, we recall that β−equilibrium
(4.2.38) with µ3 = 0 implies that it is equal to the electron chemical potential, µe.
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The effect of a high density will appear via the statistical factors in (4.2.72)-(4.2.75),
which contain the electron Fermi-Dirac distribution, and the Bose-Einstein distribution
from the chiral currents correlator at equilibrium. Below, we review the degenerate limit
of the statistical factors, which is valid at high density. These approximations depend on
the fact that the distributions are evaluated against the imaginary part of the retarded
2-point functions for the chiral currents. By dimensional analysis, at µ � T , the 2-point
functions obey

ImGRc (ω, k) = µ2F

(
ω

µ
,
k

µ

)(
1 +O

(
T

µ

))
, (4.5.1)

where F is some dimensionless function which vanishes linearly at ω = 0. Given these
properties, within the integrand of the radiative coefficients (4.2.72)-(4.2.75), the Bose-
Einstein factors can be approximated by

nb(ω) = −θ(−ω)− π2

6

(
T

µ

)2

δ′
(
ω

µ

)
+O

(
T

µ

)3

, (4.5.2)

where θ is the Heaviside distribution and δ the Dirac distribution. When the integration
path is such that ω ≥ ω0 � T , the Bose-Einstein distribution is exponentially suppressed

nb(ω) = e−βω0

(
T

µ
δ

(
ω − ω0

µ

)
+O

(
T

µ

)2
)

+O
(

e−2βω0

)
. (4.5.3)

At high electronic chemical potential µe � T , the distributions for the electrons and
positrons at equilibrium (4.2.63) are approximated by

ne = θ
(
µe − Ee

)
− π2

6

(
T

µ

)2

δ′
(
Ee − µe

µ

)
+O

(
T

µ

)3

+O
(
e−βµe

)
, (4.5.4)

nē = e−β(µe+Ee) +O
(
e−2βµe

)
. (4.5.5)

In particular, (4.5.5) implies that the following processes involving positrons

ν + d+ e+ → u and d+ e+ → ν̄ + u (4.5.6)

are exponentially suppressed

1

λe+
: nēnb(q

0
ēν) = O(e−β(Ee+µe)) ,

j̄e+ : nēnb(q
0
ēν̄) = O(e−β(Ee+µe)) , (4.5.7)

where the momenta q``′ were defined in (4.2.59); their time components are

q0
eν ≡ Ee − Eν − µe + µν = Ee − Eν , q0

eν̄ ≡ Ee + Eν − µe + µν = Ee + Eν , (4.5.8)
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q0
ēν ≡ −Ee−Eν−µe+µν = −Ee−Eν , q0

ēν̄ ≡ −Ee+Eν−µe+µν = −Ee+Eν . (4.5.9)

Moreover, (4.5.2) implies that the emission of a neutrino by the decay of an up quark is
also suppressed

je+ : (1− nē)
(
1 + nb(q

0
ēν)) = 1− θ(Ee + Eν) +O

(
T

µ

)2

= O
(
T

µ

)2

.

The only positronic process that may play a significant role in the transport of neutrinos at
high density, is the absorption of an anti-neutrino by the medium, resulting in the emission
of a positron

ν̄ + u→ d+ e+ (4.5.10)

The statistical factor for this process is approximated by

1

λ̄e+
: (1− nē)

(
1 + nb(q

0
ēν̄)
)

= θ(q0
ēν̄) +O

(
T

µ

)2

, (4.5.11)

which is of order 1 at electron energies Ee ≤ Eν .
The charged current sector also accounts for weak processes involving electrons

e− + u
 ν + d and d
 ν̄ + u+ e− (4.5.12)

For the processes involving neutrinos, the degenerate approximations are given by

je− : ne
(
1 + nb(q

0
eν)
)

= θ(µe − Ee)θ(q0
eν) +O

(
T

µ

)2

, (4.5.13)

1

λe−
: (1− ne)nb(q0

eν) = −θ(Ee − µe)θ(−q0
eν) +O

(
T

µ

)2

. (4.5.14)

This shows that the emission of neutrinos dominates for Eν < µν , whereas the absorption
dominates for Eν > µν . From the detailed balance condition (4.2.80), the ratio of the
subleading coefficient to the leading one is given by a Boltzmann factor e−β|Eν−µν |. When
|Eν − µν | . T 2/µ, both terms are of the same order O(T/µ)2.

For the processes involving anti-neutrinos, the statistical factors are approximated by

j̄e− : (1− ne)nb(q0
eν̄) = −θ(Ee − µe)θ(−q0

eν̄) +O
(
T

µ

)2

, (4.5.15)

1

λ̄e−
: ne

(
1 + nb(q

0
eν̄)
)

= θ(µe − Ee)θ(q0
eν̄) +O

(
T

µ

)2

. (4.5.16)

(4.5.15) implies that the emission of anti-neutrinos is suppressed for µν > 0. From the
detailed balance condition (4.2.81), the suppression of the emissivity with respect to the
absorption is given by a Boltzmann factor e−β(Eν+µν).

To summarize the contents of this section, we show in Table 4.1 the radiative processes
that contribute to the transport of neutrinos for a given neutrino energy, as well as the
associated radiative coefficients.
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Eν Eν < µν µν < Eν

ν processes e− + u→ ν + d ν + d→ e− + u

ν̄ processes
ν̄ + u+ e− → d

ν̄ + u→ d+ e+

ν̄ + u+ e− → d

ν̄ + u→ d+ e+

coefficients je− , λ̄e− , λ̄e+ λe− , λ̄e− , λ̄e+

Table 4.1: Radiative processes that contribute to the transport of neutrinos as a
function of the neutrino energy Eν , in the degenerate limit.

4.5.2 Approximations to the neutrino radiative coefficients

In this subsection, we present and analyze a set of approximations that result in simpler
expressions for the radiative coefficients. Although not required for the calculation of the
coefficients which can be done numerically, the approximations presented below provide
some qualitative understanding of the numerical results. Here, we define and investigate the
regime of validity of the approximations, leaving the numerical analysis of their accuracy
for the next subsection. They are defined as follows:

The degenerate approximation, which corresponds to replacing the equilibrium
statistical distributions nb and nf by their expression in the limit of µ � T , (4.5.2) and
(4.5.4). This approximation is of course well known and purely related to the statistical
factors whose general expression is analytically known. It is therefore not of much use
for numerical calculations. However, it simplifies a lot the expression of the opacities,
which helps a better conceptual understanding of the neutrino transport. The degenerate
approximation is exact in the limit of µ/T →∞.

The hydrodynamic approximation, where the charged current 2-point function
is replaced by the leading order hydrodynamic expressions (4.4.28) and (4.4.30), with the
transport coefficients given by (4.4.45) and (4.4.54). From Section 4.4.2, this approximation
is expected to be exact when all energies µe, µν , Eν are much smaller than the baryonic
chemical potential µ, because in this case we will have rHω, rHk � 1. Below we discuss
its validity in more detail.

At the level of the two-point functions, the criterion for the validity of the hydrody-
namic approximation was shown in Section 4.4.2 to correspond to rHω, rHk � 1. The
radiative coefficients (4.2.72)-(4.2.75) are defined as integrals over the loop electron mo-
mentum containing the retarded charged current 2-point function, which is a function of
two arguments ω and k. For the radiative coefficients, we therefore need to determine the
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region in the (ω, k) plane which contributes to the calculation of the integral.

ω = k

ω = Dk2
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Figure 4.10: Region of the (ω, k) plane which contributes to the calculation of the
radiative coefficients, for nB = 1 fm−3 and T = 10 MeV. We consider neutrino
energies between 0 and 100 MeV. The left plot shows the region for neutrino energies
Eν < µν , where the dotted line corresponds to Eν = 0. It should be combined with
the right plot when Eν > µν .

The corresponding region is shown in figure 4.10, where the baryon density nB is taken
to be much larger than T 3, and the neutrino energy Eν to go from 0 to a few times T . For
concreteness, the figure is constructed by setting nB = 1 fm−3, and Eν = 0 − 10T , which
is the range of energies investigated in the numerical analysis of the next subsection. We
use the anti-symmetry of the imaginary part of the retarded two-point function (4.2.15)
to restrict to the half space ω > 0. Then, the boundaries of the integration area are
determined from the Fermi-Dirac and Bose-Einstein distributions, which behave as step
functions at high density, as well as the range of neutrino energies.

All possible values of the angle θ between the electron and neutrino momentum are
taken into account. In the left figure, the dotted line in the middle corresponds to Eν = 0,
and it separates the region relevant to the calculation of 1/λ̄e− (below) from that relevant
to je− (above). The output of this analysis is that the scales that control the size of the
region are shown to be controlled by the leptonic energies12. This confirms that we enter
the hydrodynamic regime when µe, µν and Eν are much smaller than µ.

12For the situation considered here where nB = 1 fm−3 and Eν < 100 MeV, Eν is always smaller
than the chemical potential µν . When Eν becomes significantly larger than µν , the shape of the
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Notice that, for µ� T , µe (and µν) are actually proportional to µ, according to (4.3.26).
Whether or not the hydrodynamic approximation is relevant to the calculation of the
radiative coefficients therefore depends on the parameters of the bulk action, w0 and M`.
For the values of the parameters derived from matching the ideal plasma thermodynamics
(O.3) and (O.6), the following number is found for the leptonic chemical potentials in units
of the horizon radius

rHµν = rHµe ' 1.17

(
(M`)3

(M`)3
free

) 1
2

(
w2

0(M`)3(
w2

0(M`)3
)

free

) 1
6 (

1 +O
(
T

µ

))
, (4.5.17)

where we also set the number of colors to Nc = 3. This number is of order 1, which
explains why the hydrodynamic approximation can produce sensible results. Notice that
the dependence on the parameters of the bulk action is weak.

The diffusive approximation, where the leading hydrodynamic expression of the
retarded 2-point function is used, and it is assumed that the time-time component of
the retarded 2-point function dominates completely the integral in the calculation of the
opacities (4.2.72)-(4.2.75). To show that this approximation is valid in the hydrodynamic
regime, we evaluate the contribution of each component of the 2-point function to the
integral, specifying to the case of the electronic neutrino emissivity je− (it is analogous for
anti-neutrinos and/or positronic processes). The precise analysis is done in Appendix Q,
and we reproduce here the main steps and results.

We consider the degenerate and hydrodynamic regime, where rHµe = ε is much smaller
than 1, with all the leptonic energies of the same order and much larger than rHT

rHEν ∼ rHµν = rHµe = ε , rHT = O(εa) , ε� 1, a� 1 . (4.5.18)

Since the temperature is assumed to be negligible, the degenerate expression of the statis-
tical distributions can be used (4.5.2) and (4.5.4). je− (4.2.72) can then be written as an
integral over the first argument of the charged current 2-point function ω

je−(Eν) = −G
2
F

8π2

∫ π

0
dθ sin θ

∫ µν−Eν

0
dω

ω + Eν
Eν

Lλσe ImGRc,σλ
(
ω, k(ω, θ)

)
, (4.5.19)

with
k(ω, θ) ≡

√
(ω + Eν)2 + E2

ν − 2(ω + Eν)Eν cos θ .

From (4.4.28) and (4.4.30), the imaginary part of the hydrodynamic retarded correlator is
given by

ImGRc,σλ(ω, k) = −σω
(
P⊥σλ(ω, k) + P

‖
σλ(ω, k)

ω2 − k2

ω2 +D2k4

)
+O(ε2) , (4.5.20)

bounding curves deviates significantly from straight lines. However, the size of the region is still
controlled by the scales indicated in figure 4.10, up to factors of order 1.
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where P⊥ and P ‖ are the projectors defined in (4.4.5)-(4.4.6). The 2-point function reaches
the maximum of the diffusion peak when ω is equal to ω∗(Eν , θ), whose expression is given
in (Q.8). Since ω∗ is of order O(ε2), which is parametrically smaller than the upper bound
of the integral in the hydrodynamic limit, the integral can be split into two parts: the first
part including the diffusion peak and the other being such that ω � k2. These two parts
are respectively labeled by the subscripts “diff” and “lin”. The following hydrodynamic
scalings can then be derived for the contribution of each component of the 2-point function
to the emissivity

j
(00)
e−,diff

= O(ε4) , j
(00)
e−,lin = O(ε4 log ε) ,

j
(0i)
e−,diff

= O(ε6) , j
(0i)
e−,lin = O(ε4) , (4.5.21)

j
⊥,(ij)
e−,diff

= O(ε6) , j
⊥,(ij)
e−,lin = O(ε4) ,

j
‖,(ij)
e−,diff

= O(ε8) , j
‖,(ij)
e−,lin = O(ε4) ,

where the powers in ε are determined by the form of the hydrodynamic 2-point function

(4.5.20). As long as µν − Eν is much larger than O(ε2), the term j
(00)
e−,lin dominates all

the other contributions to the neutrino emissivity. When Eν is so close to the neutrino
chemical potential that µν−Eν is smaller thanO(ε2), the integral includes only the diffusive

part, and the leading term becomes j
(00)
e−,diff

. Since in both cases, the time-time component

dominates, this shows that the diffusive approximation is valid in the hydrodynamic limit13.
To illustrate the above discussion, figure 4.11 compares the contribution to the neutrino

emissivity from the various components of the hydrodynamic 2-point function, at Eν =
0 and nB = 1 fm−3. Two cases are considered for the values of the leptonic chemical
potentials. The right plot shows the result for the actual values of µe and µν derived from
thermodynamic (4.3.22) and β−equilibrium (4.2.38), whereas in the left plot we consider
values fifty times smaller, which goes deeper into the hydrodynamic regime.

The left figure is completely consistent with the hydrodynamic scalings shown in
(4.5.21). It confirms in particular that the time-time component of the 2-point function
gives the largest contribution in the hydrodynamic limit. Also, it shows that the leading
contribution to the time-time integral does not come from the diffusion peak itself, but
rather from the region D~k2 � ω < µν − Eν .

For the actual equilibrium values of µe and µν (on the right), the contribution from
the time-time component is found to be of the same order as the other contributions.
This indicates that the diffusive approximation to the neutrino radiative coefficients is not
accurate to describe the actual result, and is only of the right order of magnitude. The
latter is not surprising, since in this case rHµe and rHµν are not much smaller than one.

13With the exception of vanishing Eν ; see the discussion in appendix Q.
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Figure 4.11: Comparison between the contributions of the various components of the
charged current 2-point function to the integrand of the neutrino emissivity, in the
hydrodynamic approximation. We fix nB = 10−1 fm−3, T = 10 MeV and Eν = µn/2.
The right plot is for the actual values of the leptonic chemical potentials µe and µν
derived from equilibrium, whereas the left plot is for values fifty times smaller. The
various contributions include the time-time (blue), time-space (green) and space-
space (red) components. The orange line shows the contribution from the diffusive
peak to the time-time component, which corresponds to the lower bound (Q.9). In
the right plot the orange and blue lines are almost confounded. The areas under the
curves give the corresponding contributions to the emissivity, whereas the grayed
area does not contribute to the integral due to the statistical factor.

Approximate expressions We now use the crudest diffusive (and degenerate) approx-
imation to derive simple approximate expressions for the radiative coefficients. Details are
again provided in Appendix Q. For generic values of the leptonic energies (much smaller
than µ), the diffusive approximation is found to result in the following simplified expression
for the neutrino opacity (defined in (4.2.82))

κe−(Eν) =
8G2

Fσ

3π2
E4
ν log

(
D|µν − Eν |
D2E2

ν

)
+O(ε4) , (4.5.22)

where ε is the parameter of the hydrodynamic expansion (4.5.18). (4.5.22) is valid as long
as |µν − Eν | is much larger than O(ε2).

The point Eν = µν is a peculiar point, since the opacity vanishes there in the degenerate
limit. This translates in the presence of a dip at Eν = µν in the logarithm of κe− , which
is clearly visible in the numerical analysis we carry out in section 4.5.3. When taking
into account the finite temperature, the finite value of the opacity at Eν = µν can be
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calculated at leading order in T/µ from the corrections to the equilibrium distribution
functions (4.5.2) and (4.5.4)

κe−(µν) =
8G2

Fσ

3
T 2r−2

H

[
4 log

(
2µν
me

)
− 1

]
(1 +O(ε) +O(me/µν)2

)
. (4.5.23)

This expression gives the depth of the dip in opacity in the hydrodynamic limit. In Ap-
pendix Q, the typical width of the dip is also estimated

∆Eν =

√
3Nc

w2
0

µ2
ν

µ
. (4.5.24)

As for the anti-neutrino opacity, the degenerate and diffusive approximation is given by

κ̄e−(Eν) =
8G2

Fσ

3π2
E4
ν log

(
D(µν + Eν)

D2E2
ν

)
+O(ε4) , (4.5.25)

κ̄e+(Eν) =
8G2

Fσ

3π2
E4
ν log (DEν) +O(ε4) . (4.5.26)

Note that the leading log term in (4.5.23) and (4.5.26) actually vanishes as the neutrino
energy goes to zero. In this limit, the appropriate expression is given by the term of order
O(ε4), which results in the following approximation

κ̄e−(0) = κe−(0) ≡ κe,0 =
G2
Fσ

π2
µ4
ν +O(ε5) . (4.5.27)

This gives an estimate of the typical size of the opacity at a given baryon density.
To summarize, the analysis of Appendix Q shows that the approximate expressions

given above (4.5.22) and (4.5.25)-(4.5.27) are valid in the hydrodynamic limit. This occurs
when the leptonic energies are much smaller than the baryonic chemical potential. Figure
4.10 and equation (4.5.17) indicate that the conditions in the medium, where the neutrinos
scatter, are such that the leptonic and baryonic energies are of the same order. Therefore,
the approximate expressions shown above are expected to give a rough estimate of the
exact opacities.

To obtain a more precise idea of the usefulness of those expressions in the present
context, we would like to compare them with the exact opacities. In figure 4.12, the plots
of the approximate expressions as a function of neutrino energy are shown together with
the numerical solution for the opacities, which is discussed in the next subsection. The
state variables that characterize the medium are fixed to T = 10 MeV and nB = 0.31 fm−3.
The approximation to the neutrino opacity is given by (4.5.22), and for anti-neutrinos
in (4.5.25)-(4.5.26), to which we add the expression at zero-energy (4.5.27). It is observed
that κe,0 as defined in (4.5.27) gives a good approximation of the opacities at zero neutrino
energy. However, the energy dependence given by (4.5.22) and (4.5.25)-(4.5.26) is quite
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Figure 4.12: Comparison of the hydrodynamic-degenerate approximations (orange),
with the exact numerical opacities (blue), for neutrinos (Left) and anti-neutrinos
(Right). The approximations are given by (4.5.22) and (4.5.25)-(4.5.26), summed
with the typical value at Eν = 0, κe,0 in (4.5.27). The medium is characterized by
T = 10 MeV and nB = 0.31 fm−3, and the opacities are normalized by κe,0.

far from the actual result. This is particularly striking in the case of the neutrino opacity,
where even the monotonicity is not correctly reproduced.

Therefore, the conclusion from figure 4.12 is that, although the expression (4.5.27) gives
a good estimate of the opacities at leading order in the hydrodynamic limit, the dependence
on the neutrino energy derived from (4.5.22) and (4.5.25)-(4.5.26) is not accurate. It is
likely that more accurate expressions could be obtained by including the terms of order
O(ε4), beyond the leading log term. However, those result in complicated expressions that
are not very useful for a qualitative understanding.

4.5.3 Numerical results

We present here the results of the numerical calculation of the neutrino transport coeffi-
cients (4.2.72)-(4.2.75). We first discuss the strongly-coupled component which is computed
holographically. This is the imaginary part of the charged current polarization functions.
The latter are calculated according to the procedure described in Section 4.4. In particular,
we are interested in estimating the accuracy of the hydrodynamic approximation (4.4.44)
and (4.4.53) to the 2-point function for the parameters of interest. Then, we analyze the
radiative coefficients themselves, that are obtained by computing the integrals over the loop
electron momentum (4.2.72)-(4.2.75), which include the charged current 2-point function.
We estimate the accuracy of the approximations introduced in the previous subsection over
a range of parameters relevant for neutron stars.

In the following, we fix the temperature to a value that is typically relevant to neutrino
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transport calculations, for example in a cooling proto-neutron star

T = 10 MeV . (4.5.28)

We shall investigate the numerical results for the remaining 2-dimensional parameter space,
spanned by the baryon number density nB and neutrino energy Eν .

4.5.3.1 Charged current polarization functions

Figure 4.13 shows the numerical result for the imaginary part of the charged current polar-
ization functions Π⊥(ω, k) and Π‖(ω, k), for nB = 1 fm−3. In terms of chemical potentials,
this corresponds to µ/T ' 65. rHω and rHk are varied between 0 and 2, which includes
the region over which the integral is performed to compute the radiative coefficients14 (see
figure (4.15)).

For the smallest values of ω and k, the hydrodynamic approximations (4.4.44) and
(4.4.53) are expected to be relevant. This is confirmed at the qualitative level by comparing
figure 4.13 with the hydrodynamic result plotted in figure 4.14: whereas the longitudinal
polarization function Im Π‖ shows a peak at a location set by the position of the diffusive
pole ω = Dk2, the transverse one Im Π⊥ goes to zero near the origin, remaining relatively
close to a linear behavior in ω up to rHω = 1.

Figure 4.13: Imaginary part of the transverse (Left) and longitudinal (Right)
charged current retarded polarization functions. The energy and momentum are
expressed in units of r−1

H , and the polarization functions are normalized by σ/rH .
The medium is characterized by nB = 1 fm−3 and T = 10 MeV.

14In principle, the integrals go up to infinite electron momentum, but the contribution from high
energies is exponentially suppressed by the statistical factors. In practice, computing the integral
over a finite region as the one shown in figure 4.15 is sufficient, and the contribution from outside
of this region is completely negligible.
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Figure 4.14: Same as figure 4.13 but for the hydrodynamic approximation to the
polarization functions (4.4.44) and (4.4.53).

To extend the previous discussion to the quantitative level, we show in figure 4.15 the
relative difference between figures 4.13 and 4.14, together with the region in the (ω, k)
plane which gives a sizable contribution to the radiative coefficients. We consider a range
of neutrino energies which is typical of transport in a neutron star Eν = 0−100 MeV [274].
For this range of neutrino energies, the dominant coefficients are given by the neutrino
emissivity je− and the anti-neutrino absorption 1/λ̄e− . The region which contributes to
the calculation of the radiative coefficients is indicated by the purple polygon in figure 4.15.

Figure 4.15 shows that, in the region relevant for the calculation of je− and 1/λ̄e− , the
accuracy of the hydrodynamic approximation is of about 0 to 50% for the transverse part,
and 0 to 100% for the longitudinal part. Also, the largest deviation from the hydrodynamic
result is consistently reached in the corners of the plots, that is for the largest values of ω
and k. Note that the region where the hydrodynamic approximation is the best, is different
for the transverse and longitudinal parts : whereas it is located near the line ω = k for the
transverse part, it is close to the location of the diffusive peak ω = D~k2 for the longitudinal
part. This observation is consistent with the respective leading order of the corrections in
the hydrodynamic expansion, as shown in (4.4.28) and (4.4.30). It also indicates that the
first corrections in ω and ~k2 have opposite signs.

All in all, the numerical results for the polarization functions presented in this subsec-
tion indicate that, at nB = 1 fm−3 and for the region in the (ω, k) plane which is relevant
for neutrino transport, the hydrodynamic approximations (4.4.28) and (4.4.30) not only
reproduce the qualitative features of the exact numerical result, but are also quite good
quantitatively. This is especially true for the transverse part of the correlator. This sug-
gests that, in the calculation of the radiative coefficients (4.2.72)-(4.2.75), replacing the
retarded 2-point function by its leading order hydrodynamic approximation may give a
rather good approximation to the coefficients. In the following, we investigate the validity
of this statement for a whole range of baryon densities nB and neutrino energies Eν .
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Figure 4.15: Relative difference of the imaginary part of the transverse (Left) and
longitudinal (Right) charged current retarded polarization functions with the hy-
drodynamic approximation. The relative difference is defined as the absolute value
of the difference divided by the hydrodynamic approximation. The parameters of
the medium are the same as in figures 4.13 and 4.14. The red and pink contours
correspond respectively to the 10% and 20% lines, and the purple polygon encloses
the area that is relevant for the calculation of je− and 1/λ̄e− . The way this region is
determined is detailed in Section 4.5.2. The white dashed lines indicate the location
where the relative difference typically goes to 0. For the transverse part (Left) it
corresponds to the line of lightlike momenta ω = k, and for the longitudinal part
(Right) to the location of the diffusive peak ω = Dk2.

4.5.3.2 Radiative coefficients

We now turn to the analysis of the radiative coefficients themselves, that are the emissivities
and absorptions listed in (4.2.72)-(4.2.75). More specifically, we shall be analyzing the
opacities defined as in (4.2.82). We consider a range of baryon number densities, nB,
between 10−3 and 1 fm−3, and neutrinos energies between 0 and 100 MeV. These are
typical values for neutrinos scattering in a cooling neutron star [274].

For the parameters of interest, the neutrino chemical potential is positive and large com-
pared with the temperature, so that the emission of anti-neutrinos (4.5.15) is suppressed.
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The two quantities that will be the object of our analysis are therefore

κ̄e(Eν) ≡ κ̄e−(Eν) + κ̄e+(Eν) =
1

λ̄e−(Eν)
+

1

λ̄e+(Eν)
, (4.5.29)

κe(Eν) ≡ κe−(Eν) = je−(Eν) +
1

λe−(Eν)
.

We first present in figure 4.16 plots of the opacities at the two extreme values of baryonic
density that we considered,

n
(1)
B = 10−3 fm−3 and n

(2)
B = 1 fm−3 . (4.5.30)

which correspond to the values of the chemical potentials

µ1 ' 47 MeV and µ2 ' 650 MeV , (4.5.31)

respectively. We also show in figure 4.17 the full density dependence of the opacity at zero
neutrino energy. The qualitative behavior is essentially dictated by statistics, so it is the
same that was observed in previous works, for example15 in [274]. The anti-neutrino opacity
increases with the baryon density and the neutrino energy. As for the neutrino opacity, it
also increases with density, but has a different behavior as a function of the neutrino energy:
it is more or less a constant until a threshold located near Eν ∼ µν , where it decreases in
relative value to a number of order O(T/µ)2. An estimate of the typical magnitude and
parameter dependence of the opacities at Eν . T is given by (4.5.27), which was derived
within the diffusive approximation.

To estimate quantitatively the accuracy of the approximations presented in Section
4.5.2, the opacities were numerically computed and compared to the results from the ap-
proximations over the whole 2-dimensional parameter space of baryon number density
nB = 10−3 − 1 fm−3 and neutrino energy Eν = 0 − 100 MeV. We discuss in turn the de-
generate, hydrodynamic, diffusive and diffusive and degenerate approximations, analyzing
each time both the neutrino and anti-neutrino opacities.

Figure 4.18 shows the relative difference between the exact opacities calculated numer-
ically and the opacities calculated within the degenerate approximation. In the case of the
neutrino opacity, the approximation is worst on the curve Eν = µν , where the degenerate
approximation goes to 0 whereas the exact result remains finite. Apart from that curve,
the magnitude of the error is of about 5 to 30% over most of the parameter space, and it
reduces when |Eµ−µν | increases, that is both at larger baryon density and larger neutrino
energy.

For anti-neutrinos, the degenerate approximation becomes very good at high density,

and it reaches less than 5% of error at nB = n
(2)
B . On the contrary, the approximation

becomes unreliable for the lowest densities, reaching more than 50% at nB = n
(1)
B . The

error depends only marginally on the neutrino energy over the range investigated.
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Figure 4.16: Neutrino (Left) and anti-neutrino (Right) opacities as a function of the

neutrino energy Eν . We show two values of the baryon density, n
(1)
B = 10−3 fm−3 and

n
(2)
B = 1 fm−3, associated to the corresponding chemical potentials µ1 and µ2. The

opacities are normalized by the typical value at Eν = 0 (4.5.27), evaluated for the

largest density n
(2)
B . In the plot for the neutrino opacity, the typical scales that control

the location, depth (4.5.23) and width (4.5.24) of the observed dip are indicated,
where we defined ∆ log10(Eν/T )(µ) ≡ log10(µν +∆Eν(µ)/2)− log10(µν−∆Eν(µ)/2).
The region in gray corresponds to neutrino energies larger than 100 MeV, which is
not expected to be relevant for transport in a neutron star. It is included in the
plot in order to show the complete qualitative behavior of the neutrino opacities as
a function of Eν , including the threshold at Eν = µν .

We now focus on the hydrodynamic approximation. We start by discussing separately
the transverse and longitudinal components, for which the relative difference between the
hydrodynamic and the exact opacity is respectively shown in figures 4.19 and 4.20.

The qualtative behavior for the transverse part of the opacity is similar for neutrinos
and anti-neutrinos: the error becomes larger at higher neutrino energy and smaller at
higher density. There is an exception to this trend in the case of anti-neutrinos, for which
the approximation crosses the exact result on a curve at low density and high energy (which
appears as a blue line in the bottom-right corner of right Figure 4.19). In both cases, the

error is smaller than 30% for nB = n
(2)
B or Eν < T . However, the error grows large at

low density and high energy, reaching more than 800% at nB = n
(1)
B and Eν = 10T in the

case of neutrinos, and about 70% for anti-neutrinos. That being said, we note that the
error is smaller than 40% over most of the parameter space for anti-neutrinos, whereas the

15Note that the neutrino chemical potential was negative in [274], whereas it is positive here.
This implies that the role of neutrinos and anti-neutrinos are exchanged with respect to [274].
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Figure 4.17: Neutrino opacity at zero neutrino energy, as a function of the baryon
density nB. At Eν = 0, the opacities are the same for neutrinos and anti-neutrinos.
The dashed orange line shows the asymptotic power-law behavior at nB � T 3,
κe ∼ n

5/3
B (see equation (4.5.33) in the next subsection).

error on the neutrino opacity is already larger than 60% for a wide range of energies at
nB < 0.1 fm3.

In short, the main information from figure 4.19 is that the hydrodynamic approximation
to the transverse part of the opacities is reasonably good at high density and low Eν , but
becomes mostly unreliable at low density and high Eν . The situation turns out to be better
for the anti-neutrino opacity, which remains quite good over the whole parameter space
that was investigated. This last point is most probably accidental, and we would expect
no significant difference were we to take into account all possible values of energies and
densities.

The error from the hydrodynamic approximation to the longitudinal part of the opac-
ities is shown in figure 4.20. The qualitative behavior of the error on the neutrino opacity
is essentially similar to the transverse case, apart from the presence of a curve where the
error vanishes (in blue in the left of figure 4.20). Quantitatively, the error is smaller than
the transverse case: at high density it is of about 20%, and although it grows large at
low density and high energy, it remains below 80%. As for the error on the anti-neutrino
opacity, it is very similar to the transverse case. It depends marginally on the parameters
over the range that is investigated, and is typically comprised between 30% and 50%. All
in all, the comparison between figures 4.20 and 4.19 indicate a similar qualitative behavior,
but with the approximation to the longitudinal opacity typically more accurate than for
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Figure 4.18: Relative difference between the degenerate approximation and the exact
opacities, for neutrinos (Left) and anti-neutrinos (Right).

the transverse opacity.
Finally, figure 4.21 shows the error from the hydrodynamic approximation for the total

opacity, which is the sum of the transverse and longitudinal parts. On the whole, figure
4.21 looks similar to the figure for the transverse part (figure 4.19). This indicates that
the latter contributes more to the opacity than the longitudinal part over a large part of
the parameter space. This is true for sure at small neutrino energy, where the longitudinal
part becomes very small, of order O(me/µν)4. The contribution from the longitudinal part
implies that the error on the total opacity is lower than for the transverse part.

On the whole, figure 4.21 indicates that the hydrodynamic approximation to the opaci-
ties is reasonably accurate at high density and/or low neutrino energy, whereas it becomes
unreliable in the opposite limit. More precisely, the following quantitative results are ob-
served

� The error from the hydrodynamic approximation to the neutrino opacity is between 0
and 40% for densities nB > 10−1 fm−3 or neutrino energies Eν < 20 MeV. The error
exceeds 100% for densities typically smaller than 3 × 10−3 fm−3 and Eν > 60 MeV.
Some additional information can be extracted from the comparison of figure 4.21
with the plot for the degenerate approximation (figure 4.18). In figure 4.18, the
white line where the error is equal to 100% corresponds to the place where Eν = µν .
In the degenerate limit, this line separates the region where the neutrino opacity is
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Figure 4.19: Relative difference between the hydrodynamic approximation and the
exact transverse opacities, for neutrinos (Left) and anti-neutrinos (Right).

dominated by emissivity je− from that where it is dominated by the absorption 1/λe−
(see Table 4.1). Since the location of the Eν = µν line is close to the contour at 90%
accuracy in the right of figure 4.21, this means that the hydrodynamic approximation
describes reasonably well the neutrino emissivity, whereas it is very rough as far as
the absorption is concerned.

� The accuracy of the hydrodynamic approximation to the anti-neutrino opacity is
between 10 and 40% over the range of parameters that was considered.

The last approximation that we investigate is the so-called diffusive approximation, in
which only the contribution from the time-time component of the current-current corre-
lators is included in the hydrodynamic approximation. The error for this approximation
is shown in figure 4.22. On the whole, the error for neutrinos is observed to take values
typically between 20 and 60%, whereas for anti-neutrinos the range is between 60 and 80%.
For neutrinos, the difference is observed to vanish on one curve in the parameter space,
which is located close to the curve Eν = µν (the white curve at 100% error in figure 4.18).
Comparing with the previous analysis of the hydrodynamic approximation, we see that the
accuracy of the diffusive approximation is worse for anti-neutrinos. In the case of neutrinos,
the comparison depends on the parameters: although the diffusive approximation is found
to be less accurate at low energy or high density, the error is actually much smaller at high
energy and low density.
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Figure 4.20: Relative difference between the hydrodynamic approximation and the
exact longitudinal opacities, for neutrinos (Left) and anti-neutrinos (Right). We
do not show the region of small Eν since there are large numerical errors there. The
reason is that the longitudinal opacity becomes very small in this region, of order
O(me/µν)

4, with me the electron mass.

To conclude, the general outcome observed in figure 4.22 is that, as expected, the
diffusive approximation is essentially less accurate than the hydrodynamic approximation.
However, there is an exception in the case of the neutrino opacity, at low density and high
energy. The latter is due to accidental cancellations, which are not expected to occur for
general setups.

For completeness, we also analyze the accuracy of the crudest approximation to the
opacities, which is obtained by combining the degenerate approximation with the diffusive
approximation. This specific approximation is the one that is used to derive the approxi-
mate expressions (4.5.22) and (4.5.25)-(4.5.26). The error for this diffusive and degenerate
approximation is shown in figure 4.23. As expected, the error is dominated by the degener-
ate approximation at low density, whereas the main cause of error comes from the diffusive
approximation at high density.

In order to give another view on the above analysis, we compare in figures 4.24 and
4.25 the exact opacity computed numerically with the various approximations at the two
extreme values considered for the baryon density. Figure 4.24 shows the result for neutrinos
and figure 4.25 for anti-neutrinos. These figures illustrate the general results from the
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Figure 4.21: Relative difference between the hydrodynamic approximation and the
exact total opacities, for neutrinos (Left) and anti-neutrinos (Right).

analysis of this section. The degenerate approximation is good at high density and becomes

unreliable at low density. At high density nB = n
(2)
B , the hydrodynamic approximation is

within a few tens of percents of error from the exact result, whereas the diffusive one is

off by about a factor of 2. At low density nB = n
(1)
B , both approximations tend to lose

accuracy. However, they appear in some cases to be quite close to the exact result over the
range of neutrino energies considered here, which is due to accidental crossings with the
exact result. This happens for the diffusive approximation in the case of neutrinos, and for
the hydrodynamic approximation in the case of anti-neutrinos.

The main conclusion from the analysis of this subsection is that, for neutrino energies
of a few times the temperature, the accuracy of the hydrodynamic approximation depends
on the baryonic density. At nB & 10−1 fm−3

(
T/(10 MeV)

)3
, the holographic opacities

are quite well approximated by using the leading order hydrodynamic expressions of the
correlators (4.4.28) and (4.4.30), whereas higher order corrections become large at lower
densities. In practice, this means that, for the highest densities realized in neutron stars,
computing only the leading order flavor transport coefficients σ and D from the holographic
model is a sufficient input to obtain a good estimate of the neutrino opacities. At lower
densities, higher order transport coefficients are required to produce a reasonable approx-
imation. Eventually, as µ/T becomes of order 1, rHEν becomes significantly larger than
1 for Eν & T . When this is the case, the hydrodynamic expansion cannot be used any-
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Figure 4.22: Relative difference between the diffusive approximation and the exact
opacities, for neutrinos (Left) and anti-neutrinos (Right).

more, and the full holographic calculation of the chiral current 2-point function is needed
to compute the opacities.

4.5.4 Comparison with other calculations

We conclude this section by comparing the results obtained for the neutrino opacities
with other calculations from the literature. We start by evaluating the typical order of
magnitude of the opacities and compare it with other references. The leading process of
neutrino emission is known to be qualitatively different in quark matter compared with
nuclear matter. Indeed, whereas the direct Urca process is kinematically suppressed in
nuclear matter, it can be realized in quark matter [229, 230]. Since our calculations take
place in deconfined matter, the second part of this subsection brings the focus on the
comparison with previous results in quark matter.

In Appendix Q, approximate expressions for the opacities are derived within the diffu-
sive and degenerate approximation (defined in Section 4.5.2). In particular, at zero neutrino
energy the final result is given by (Q.24)

κe,0(nB) =
G2
F |Mud|2
2304

(
3π4
) 1

6 N
1
2
c (M`)7w

25/3
0

(
µ(nB)

)5
+O(ε4) , (4.5.32)

where ε is the small parameter of the hydrodynamic expansion (4.5.18). We compare
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Figure 4.23: Relative difference between the diffusive and degenerate approximation
and the exact opacities, for neutrinos (Left) and anti-neutrinos (Right).

(4.5.32) with the exact value of the opacity at Eν = 0 in figure 4.26, which shows that
(4.5.32) reproduces the correct order of magnitude for the opacity at nB > 10−2 fm−3.
Substituting the numerical values of the parameters results in the following number

κe−(0) ' 6.2× 102 km−1
( nB

0.1 fm−3

) 5
3

(
(M`)3

(M`)3
free

)− 1
2
(

w2
0(M`)3

(w2
0(M`)3)free

) 5
6

, (4.5.33)

where we also used (4.3.21) to express µ as a function of the baryon density nB.
It is interesting to compare (4.5.33) with the values of the opacities that are currently

used in numerical simulations of neutrino transport. The most common rates that are
used to describe neutrino transport in nuclear matter are based on mean-field calculations
[223], often completed by the random phase approximation to include some degree of
nucleon-nucleon correlations [224, 225]. The latest results using these methods in the non-
relativistic regime are summarized in [274]. To compare with (4.5.33), we note that the
opacities computed in [274] at Eν = 0 and nB = 0.11 fm−3 are between 1 and about
30 km−1. The value that we obtained (4.5.33) is therefore about one order of magnitude
larger than the largest opacities from [274]. Also, in [274] multiplying the baryon density
by 10 results in opacities which are about 100 times larger. This dependency is close to

the behavior in n
5/3
B from our conformal result (4.5.33).

We now consider the comparison with references that address the calculation of the
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Figure 4.24: Neutrino opacity κe− and its various approximations as a function of
the neutrino energy Eν , for nB = n

(1)
B (Left) and nB = n

(2)
B (Right). The opacity is

normalized by the approximate value at Eν = 0 (Q.24), evaluated at nB = n
(2)
B .

neutrino radiative coefficients in quark matter [229, 230, 231, 232, 233]. The approach
considered in those references is qualitatively very different from ours, since the calculations
are done in perturbative QCD. The comparison with our results will therefore indicate
how much our strongly-coupled calculation differs from the weakly-coupled result. More
specifically, the results that are most readily compared with those presented in this work
are derived in [231]. The neutrino opacity κe−(Eν) for degenerate neutrinos is given by
equation (6.27) of [231]

κpQCD
e− (Eν) =

4G2
F

π3
|Mud|2pF (d)2pF (ν)×

×
[

1 +
1

2

pF (ν)

pF (d)
+

1

10

(
pF (ν)

pF (d)

)2
] [

(Eν − µν)2 + (πT )2
]
, (4.5.34)

where the pF (fi) refer to the Fermi momentum of the corresponding species. We considered
the case |pF (d)−pF (ν)| ≥ |pF (u)−pF (d)|, since it is the right ordering in isospin symmetric
matter. The weakly coupled quark matter is described by a Fermi liquid, for which the
relation between the Fermi momentum and the chemical potential is given by

pF (u) = µu (1 +O(αs)) , pF (d) = µd (1 +O(αs)) , (4.5.35)

where αs ≡ g2/(4π), g being the strong interaction Yang-Mills coupling. At leading order
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Figure 4.25: Anti-neutrino opacity κ̄e− and its various approximations as a function
of the neutrino energy Eν , for nB = n

(1)
B (Left) and nB = n

(2)
B (Right). The opacity

is normalized by the approximate value at Eν = 0 (Q.24), evaluated at nB = n
(2)
B .

O(α0
s), (4.5.34) becomes

κpQCD
e− (Eν) =

8G2
F

π3
|Mud|2µ2µν

[
(Eν − µν)2 + (πT )2

] [
1 +

1

2

µν
µ

+
1

10

(
µν
µ

)2
]
. (4.5.36)

The comparison between the perturbative result (4.5.36) and the exact neutrino opacity
computed from our holographic model is shown in figure 4.27. We consider fixed values of
the temperature T = 10 MeV and baryon density nB = 0.11 fm−3, whereas the neutrino
energy Eν is varied. Figure 4.27 shows that, although the qualitative behavior of the two
opacities is the same, the perturbative opacity is about two orders of magnitude larger
than the result from our calculation.

Note that the widths of the dip in opacity at Eν = µν scale differently in the energy
scales for the two results. Whereas the estimate for the width in our calculation is given by
(4.5.24), which is controlled by the neutrino and baryonic chemical potentials, it is clear
from (4.5.36) that the width of the perturbative result is controlled by the temperature

∆Eν '
√

3Nc

w2
0

µ2
ν

µ
, ∆EpQCD

ν = πT . (4.5.37)

We conclude this comparative analysis by a numerical estimate of the two opacities,
which should support the results shown in figure 4.27. The typical order of magnitude of
κe− will be estimated from its value at Eν = 0. For our holographic result the estimate is
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Figure 4.26: The ratio of the neutrino opacity at Eν = 0 over the approximate
expression from the hydrodynamic and degenerate approximation (4.5.32). The ratio
is shown as a function of the baryon density in fm−3.

given by (4.5.33). For the perturbative result, the corresponding number can be inferred
from equation (6.28) of [231], together with (7.27)

κpQCD
e− (0) ' 7.9× 104 km−1

( nB
0.1 fm−3

) 5
3
, (4.5.38)

This shows that the perturbative opacity is about two orders of magnitude larger than
our holographic calculation (4.5.33). The dependence on the baryon number density nB is
given by the same power 5/3, which is a consequence of the degenerate limit.

All in all, the analysis of this section indicates that the magnitudes of the rates com-
puted from our strongly-coupled holographic model are larger than the results from ap-
proximate calculations in nuclear matter, but still much smaller than the perturbative
result, by about two orders of magnitude . Since the holographic calculation was done in
the deconfined phase, it is rather surprising that we obtain rates that are much closer in
magnitude to the nuclear result. The quark matter that we considered is also such that
the direct Urca process is not kinematically suppressed, so we might have expected the
resulting opacities to be closer to the result from [231]. The lesson from this compari-
son is that the neutrino emissivity is highly suppressed when taking full account of the
non-perturbative nature of the strong interaction.

4.6 Outlook

The results of the work presented in this chapter were summarized in section 4.1. There
are two main points. First, we observed that the neutrino radiative coefficients in the kind
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Figure 4.27: Neutrino opacity from our holographic result (blue) compared with the
perturbative QCD result [231] (orange), at nB = 0.11 fm−3 and T = 10 MeV. The
opacity is expressed in km−1.

of dense quark matter that was considered, were quite well described by hydrodynamics for
neutrino energies Eν smaller than the baryonic chemical potential µ. Second, by comparing
with previous results in the literature, we found that the numerical values of the opacities
that we computed are larger than the estimates in nuclear matter [274] by about an order
of magnitude, and two orders of magnitude smaller than the result in weakly-coupled quark
matter [231]. These results suggest that the neutrino transport properties of the strongly-
coupled matter show an interesting hydrodynamic behavior, which is very different from
the weakly-coupled regime. However, despite the common points (especially the strong
coupling), the simple setup considered in this work is by many aspects not very close to
the target problem of neutrino transport in QCD matter. The results obtained in this work
therefore need to be corroborated by further studies.

The analysis presented here can be extended and improved in several ways. Since we
focused on the charged current correlators, an obvious extension is the holographic analysis
of the neutral current correlators and their impact on neutrino transport, simply by using
the setup described here. As we already mentioned above, this will be the topic of a future
publication.

As for the setup, perhaps the most natural place to search for improvements is the
holographic model. We shall now provide a summarized description of the physics of the
toy model, in order to sketch possible improvements.

The model describes a strongly coupled large-Nc plasma, and Nf quarks with Nf ∼ Nc

so that they have non-trivial backreaction on the glue dynamics. There is a U(Nf )×U(Nf )

190



chiral symmetry that is unbroken (no pions here). The theory is conformal like N =
4 super-Yang-Mills, ie. at zero temperature and density, the mesons are vectorial and
massless, and the spectrum continuous, as is the case in conformal theories. The spectral
density is fixed by conformal invariance. This spectrum is quite similar in many respects
(but not all) to what is expected in quark-gluon plasma phases. The axial U(1)A is not
anomalous here, but also does not enter in the dynamics.

This model is the simplest holographic model in which the calculation of chiral current
2-point functions at finite baryon density can be performed. There are several directions
for its improvement

� As already mentioned, a next step is to add an isospin chemical potential together
with the baryon chemical potential. It is well known that in real world QCD, two
different extra phases are possible in such a case. The first, [286], is pion conden-
sation, that can be established from the chiral Lagrangian, while the other, [287],
is ρ-condensation that also breaks the rotational symmetry. In the model we use,
there are no pions, but one in principle could have vector meson condensation. This
possibility was already found to be realized in [281, 282], which discussed a simi-
lar holographic model but for a three-dimensional (ABJM) theory. A mapping of
the phases and the determination of the (expected second order) phase transition of
the four-dimensional theory is necessary before the calculations at finite baryon and
isospin chemical potential is done.

� A Chern-Simons (CS) term can be added. In the absence of a tachyon, such a term
is unique and is the same as in N = 4 super-Yang-Mills, [90]. It controls the P-
odd structure of the correlators, it generates the chiral anomalies, and may have an
interesting impact in the associated neutrino diffusion problem16. In the vacuum
of the holographic theory, the CS term affects correlators of currents starting from
the three point functions, while it is explicitly independent of the string coupling
constant (dilaton). However, at finite baryon density, it affects also the two-point
functions of currents.

� As flavor is added by adding flavour branes to the glue sector, [119], one could also
upgrade the five-dimensional flavour action to the DBI action which include a class
of long distance non-linearities of the flavour gauge fields, [90].

� The model used is relatively close to N = 4 SU(Nc) SYM coupled to fundamental
flavor fields (N = 2 hypermultiplets), [119], which is an interesting model to test our
formalism. This is a top-down model with Nf D7 branes embedded non-trivially in
the ten-dimensional background space-time, AdS5 × S5. It is conformal to leading
order, as the running of the gauge coupling due to the presence of the hypermultiplets

16The effects of the Chern-Simons term on transport in holographic theories has been discussed
for example in [291, 292, 290].
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is subleading in 1/Nc for Nf ∼ O(1). Its associated holographic physics has been
analysed in detail, [293, 275, 276]. Because the embedding of the flavor branes inside
AdS5 × S5 is non-trivial the flavour gauge fields are subjected to a different open
string metric than in the previous items. In this case, the full DBI action is used as
well as the CS term.

� A further improvement, but keeping to the top-down nature of the holographic the-
ory, is to use the Sakai-Sugimoto model [121, 124], introduced in section 2.2. In
this case the glue sector is confining and non-scale invariant while we have quarks
and antiquarks with a chiral symmetry that is similar to QCD with chiral group
U(Nf )L × SU(Nf )R. This setup is close to QCD, with the only exception that the
relevant field that is important for giving mass to the quarks, the open string tachyon
is missing.17

� The bifundamental open string tachyon, which in the present setup is not included, is
important in the holographic setup, as it is the order parameter for chiral symmetry
breaking in QCD, [138], as well as a way of adding a mass to the quarks. A simple
holographic model that includes the bifundamental open string tachyon, using Sen’s
string theory action, [295], was proposed and analyzed in [156, 157, 186]. The model
does extremely well in describing chiral symmetry breaking and meson spectra. It is
therefore a good laboratory for testing the calculations of the present paper.

� As mentioned in the introduction to this thesis, eventually the goal is to analyze
neutrino tranpsort in V-QCD (reviewed in section 2.3), which is the best holographic
model so far to address QCD dynamics in a variety of arenas.

� In all the setups mentioned above, including V-QCD, either quarks are all massless
or all quarks have the same mass. In the case studied in this paper, the flavor
sector is assumed to contain two massless flavors. In QCD, this would correspond
to including only the two lightest flavors up and down, and neglecting their masses.
At the densities relevant for neutron stars, it is expected that neglecting the up and
down masses is a good approximation. On the other hand, it cannot be excluded
that neutron star cores exhibit some degree of strangeness. In order to take into
account strange quarks, the current model would need to be extended to include a
third massive flavor. Working with an SU(3) chiral group instead of SU(2) is just
a matter of algebra, but including quark masses actually requires the bulk theory to
include the bifundamental tachyon field T ij , with a non-trivial matrix structure. This
involves the analogue of the non-abelian DBI action for the tachyon. An example of
this was worked out in the appendix of reference [157]. The formalism needs to be

17Of course, as mentioned in section 2.2, it is part of that theory, but for the relevant configuration,
the tachyon string is non-local, [132].
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developed so that we can address masses of the strange quark substantially different
from those of up or down quarks.

Apart from the simplicity of the holographic model, our approach included other ap-
proximations and simplifications of the general formalism which are typical in the literature
on neutrino transport.

� The derivation of the Boltzmann equation for neutrinos used the semiclassical gradi-
ent approximation (see (4.2.27) below), which holds when the mean free paths of the
neutrinos are much longer than their de Broglie wavelengths. A particular higher
order correction includes the effects of the (maximal) breaking of parity by the neu-
trinos (which are left-handed), and results in the so-called chiral kinetic theory [288].
Those corrections were found to be particularly relevant to neutrino transport [289].

� We used the so-called quasi-particle approximation for neutrinos, so that their prop-
agator has the same form as the free propagator but with generalized particle distri-
bution functions (see (4.2.35)-(4.2.36) below).

� We assumed that the neutrinos are sufficiently close to equilibrium so that their
chemical potential is well defined, and at β-equilibrium with the medium.

� We also assumed that the medium composed of electrons and quark matter was at
thermal equilibrium. This is expected to be a good approximation as the astro-
physical times should always be much longer than the thermalization time for the
medium.

While it is expected that these approximations work well in many cases relevant for neutron
stars and supernovae, it is also clear that they will not apply to all regimes, and eventually
a description of neutrino transport which is valid for neutrinos fully out of equilibrium is
desirable. This would require to solve the full Kadanoff-Baym equations instead of the
Boltzmann equations, which is much more involved numerically.

In addition to going fully out of equilibrium, there are other extensions to our formalism
related to the leptonic component, that are mentioned in section 4.2.3:

� We did not include muons (or muon neutrinos). While muons are relatively massive,
their effect may be significant at the highest densities reached in neutron stars or
core-collapse supernovae [277, 278].

� We did not include the purely elecroweak interactions between neutrinos and leptons.
Since these interactions are weak, they may be analyzed separately, and their effect
can be added on top of the results presented here.

We leave such extensions of our approach for future work.
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General discussion

In this work, we made progress towards the description of dense baryonic matter using the
holographic V-QCD model. On the one hand, we constructed the single baryon solution
in V-QCD, and analyzed some of its properties. On the other hand, we made the first step
towards an analysis of neutrino transport in V-QCD, by considering first a toy model of
strongly-coupled quark matter.

Specific directions of improvement for each of these topics were mentioned in the pre-
vious chapters. In particular, obvious extensions include the calculation of the static prop-
erties of the V-QCD baryon, and the analysis of the neutrino rates from neutral current
interactions in the toy model presented above.

From a wider perspective, the general program that follows from this work, is to obtain
a description of dense baryonic matter from V-QCD. The exact gravitational dual of such
a boundary state would be given by a finite density of instantons. Computing a solution
of this sort is probably out of our reach, but we expect that it should be effectively well
described in terms of a codimension-1 baryonic membrane. The idea will be to use the
single baryon solution as an input to determine the dynamics of this membrane.

Once the solution for baryonic matter is obtained, it will be interesting to understand
what are the improvements compared with the homogeneous approximations considered
in [174]. In particular, it will make it possible to examine the robustness of the results
obtained in the context of neutron stars [165].

Eventually, this project should converge with the analysis of neutrino transport, to
investigate the transport of neutrinos in neutron star matter with V-QCD. As mentioned
in section 1.4, the transport properties are of particular interest for investigating the phases
of dense QCD matter, since they are expected to be more sensitive to the phase structure
than bulk thermodynamic properties [82].

The final goal of this approach with the V-QCD framework is to provide a state-of-the-
art holographic model for dense (large N) QCD. The advantages of V-QCD make it a good
framework for this purpose. Its structure based on (non-critical) string theory ensures a
good match with QCD properties, and is quite rigid, depending on a few scalar functions.
The asymptotic behavior of these functions is constrained by qualitative properties of
QCD, and the remaining freedom is contained in a few parameters. The model is in good
qualitative agreement with QCD for generic values of the parameters. By adjusting the
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parameters, QCD data can be fitted with a good accuracy, with a number of parameters
much smaller than the amount of data.

In analogy with the phases where the comparison with QCD is possible, it is expected
that the predictions of V-QCD in the bayonic phase should also be qualitatively reliable.
Moreover, because the model applies to the whole part of the phase diagram where QCD
is strongly coupled, it offers a unique opportunity to go further and fit jointly QCD data
in different regimes. Then, predictions can be made for dense QCD, based on a consistent
model solidly anchored in available data. As explained in section 3.2.2, it is typically
not easy to produce a simultaneous fit of quark-gluon-plasma thermodynamics and meson
spectra. Including baryonic properties will make the fit even more challenging. Eventually,
the best approach for this procedure should probably involve the methods of machine
learning, that would hopefully result in a V-QCD model that can reproduce well most
available QCD data, with a minimal set of parameters.
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Appendix

A Conventions and Symmetry Transformations for

V-QCD

A.1 Conventions for the gauge fields

For the SU(Nf ) generators λa, A = 1, . . . N2
f − 1, we take

(λa)† = λa , Tr(λaλb) =
1

2
δab . (A.1)

On the other hand the normalization for the U(1) generator is

λ0 = I , (A.2)

where I is the Nf ×Nf identity matrix. For the SU(Nf ) generators λa, a = 1, . . . , N2
f − 1,

we have
[λa, λb] = ifabc λ

c , Tr(λa{λb, λc}) = dabc , (A.3)

where fabc and dabc are, respectively, the structure constants and the normalized anomaly
Casimir for SU(Nf ). Because of (A.1) fabc and dabc are real numbers.

We define the gauge fields to be Hermitian

Aµ = AU(1)
µ I +Aaµλ

a , (A.4)

where AU(1) and Aaµ are real. In differential form notation18, the field strength and covariant
derivative then read

F = dA− iA ∧A , D ≡ d− iA· (A.5)

where A· indicates the representation-dependent action of the gauge algebra. In particular
the Bianchi identity reads

DF = dF + iF ∧A− iA ∧ F = 0 , (A.6)

and the covariant derivative of the tachyon is given by

DT = dT + i TAL − iART DT † = dT † − iALT † + i T †AR . (A.7)

18We use the conventions of Appendix B of [90].
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A.2 Normalization of the chiral currents

Currents are defined to be Hermitian. We decompose a U(Nf ) flavor current as

Jµ =
1

2Nf
JU(1)
µ I + Jaµλ

a. (A.8)

This decomposition corresponds to the following normalization for the currents

Ja µL,R = Trflavor

(
iq̄γµ

1± γ5

2
λaq

)
, (A.9)

J
U(1) µ
L,R = Trflavor

(
iq̄γµ

1± γ5

2
q

)
. (A.10)

Notice that the normalization of the currents and gauge field (A.4) has been chosen in such
a way that the boundary coupling of the current to the gauge field reads

2

∫
d4xTr(JµAµ) =

∫
d4x

(
JU(1)µAU(1)

µ + JaµAaµ

)
. (A.11)

A.3 Gauge Transformations

Under gauge transformations with parameters (VL, VR) ∈ SU(Nf )L×SU(Nf )R, the gauge
fields and tachyon transform in the following way

AL → VLALV
†
L − idVLV

†
L , AR → VRARV

†
R − idVRV

†
R ,

FL → VL FL V
†
L , FR → VR FR V †R , (A.12)

T → VRTV
†
L , T † → VLT

†V †R .

An infinitesimal gauge transformation is defined as Vε(x) = eεΛ(x) ' 1 + εΛ(x) and the
gauge transformation of a field as A→ A+ εδΛA. From (A.12) we have then:

δΛA = −iDΛ = −i dΛ + [Λ, A] ,

δΛF = [Λ, F ] ,

δΛLT = −TΛL ,

δΛRT = ΛRT .

(A.13)

Notice that the generators of gauge transformations are antihermitian. When we decom-
pose them in their U(1) and SU(Nf ) parts, we will write

Λ = iαI + iΛaλa , (A.14)

with α and Λa real parameters. In particular we have, from (A.4) and (A.14)

δAU(1)
µ = ∂µα and δAaµ = (DµΛ)a . (A.15)
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A.4 Discrete symmetries

We describe here the transformation properties of the flavor fields under parity and charge
conjugation. These were presented in [138].

Parity

The parity transformation is
P = P1 · P2 . (A.16)

where P2 is the action of parity on space

P2 : (x1, x2, x3)→ (−x1,−x2,−x3) . (A.17)

and P1 the action on the flavor fields.

P1 : L↔ R , T ↔ T † . (A.18)

Charge conjugation

The action of charge conjugation on the flavor fields is

C : L→ −Rt , R→ −Lt , T → T t , T † →
(
T †
)t
. (A.19)

A.5 The 2D theory for the ansatz fields

We present in this subsection conventions and definitions for the theory of the fields of the
instanton ansatz (3.1.50)-(3.1.52) and (3.1.62) that live on the 2D space (ξ, r) ≡ xµ̄. The
first thing to note is that we choose the following convention for the 2D Levi-Civita tensor

εξr = 1 . (A.20)

Before imposing the parity symmetry, the fields of the gauge-field ansatz exist in two
copies L and R that each have a residual gauge freedom (3.1.53) under which the fields
have well-defined transformation properties :

� Φ(L/R) is neutral.

� φ(L/R) ≡ φ(L/R)
1 + iφ

(L/R)
2 has charge 1.

� A
(L/R)
µ̄ ≡

(
A

(L/R)
ξ , A

(L/R)
r

)
is the gauge field.
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From these, we construct the L/R covariant derivatives of the complex scalars φ(L/R) under
the residual gauge freedom

Dµ̄φ
(L/R) ≡

(
∂µ̄ − iA(L/R)

µ̄

)
φ(L/R) , (A.21)

which in component reads

Dµ̄φ
(L/R)
1 = ∂µ̄φ

(L/R)
1 +A

(L/R)
µ̄ φ

(L/R)
2 , Dµ̄φ

(L/R)
2 = ∂µ̄φ

(L/R)
2 −A(L/R)

µ̄ φ
(L/R)
1 . (A.22)

We define also the gauge-invariant field strength for A
(L/R)
µ̄

F
(L/R)
µ̄ν̄ = ∂µ̄A

(L/R)
ν̄ − ∂ν̄A(L/R)

µ̄ . (A.23)

Once the parity symmetry (3.1.56)-(3.1.58) is imposed, the L/R fields collapse into a single
set with the residual gauge freedom (3.1.60). Also, the ansatz for the tachyon takes the
form of (3.1.64) and the tachyon phase θ can be absorbed into the gauge fields to build
gauge invariant quantities (3.1.80)

Ãµ̄ ≡ Aµ̄ + ∂µ̄θ , φ̃ ≡ eiθφ . (A.24)

B The P-odd instanton

We justify in this appendix the statement made in Section 3.1.4 that a baryon state in
the boundary theory corresponds to an axial instanton for the bulk gauge fields, that is an
instanton solution even under parity

P : x→ −x , L↔ R , (B.1)

and that a P-odd instanton cannot have a finite energy. This implies that not only a P-odd
instanton cannot generate baryon number, but also does not correspond to any other finite
energy state in the boundary theory.

Requiring the ansatz to be P-odd imposes the following relation between the left and
right-handed ansatz fields, instead of (3.1.56)- (3.1.58)

A1 ≡ AL1 = AR1 , A2 ≡ AL2 = AR2 , (B.2)

φ1 ≡ φL1 = φR1 , φ2 ≡ φL2 = −φR2 − 2 , (B.3)

Φ ≡ ΦL = −ΦR . (B.4)

Note that, because of the condition for φ2 (B.3), the P-odd ansatz completely fixes the
residual gauge (3.1.53). The P-odd tachyon ansatz is

TSU(2) = iτ(r, ξ) exp

(
iθ(r, ξ)

x · σ
ξ

)
, τ, θ ∈ R . (B.5)
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We still consider the chiral limit where the quark masses are equal to 0. In this case, due
to the factor i, the P-odd ansatz is not continuously connected to a vacuum state with
tachyon UV asymptotics given by (2.3.20). It is rather connected to a U(1)A rotation of
the vacuum, which is not degenerate with the vacuum due to the U(1)A anomaly. There
is therefore no such thing as a static P-odd instanton solution taking root on the vacuum.
This result can be interpreted as the bulk equivalent of the non-conservation of the U(1)A
charge.

C The DBI contribution to the baryon equations

of motion

The DBI equations of motion for the flavor sector are obtained from varying (3.1.18) with
respect to the gauge fields L and R and the tachyon field τ .

abelian EoM The left-handed abelian equations of motion are obtained to be

∂N

[
Vf (λ, τ2)

√
−det g̃(L)w×

×
(
L(L)

(
(g̃(L))−1

)[MN ]
+

1

4
w2Tr

(
FMS

(L) F
(L)N
S − FNS(L) F

(L)M
S

)
−

−1

4
w2Tr

(
F (L)[MN ]F

(L)C
C

)
− 1

2
κτ2S[MN ]

)]
=

=
1

4
Vf (λ, τ2)

(√
−det g̃(L)

(
(g̃(L))−1

)(MN)
+

√
−det g̃(R)

(
(g̃(R))−1

)(MN)
)
×

× κτ2Tr
[
iDNU

†U + h.c.
]

+ Ĵ
(L)
CS , (C.1)

where the indices are raised according to (3.1.15). Note that, because g̃ is not symmetric,
SMN is a priori not symmetric either. We denoted by L(L/R) the left-handed/right-handed

integrand of (3.1.18) divided by Vf (λ, τ2)
√
−det g̃(L/R)

L(L/R) ≡ 1

2
+

1

4
κτ2

(
(g̃(L/R))−1

)(MN)
SMN (C.2)

− 1

8
w2
(

(g̃(L/R))−1
)MN (

(g̃(L/R))−1
)PQ

TrF
(L/R)
NP F

(L/R)
QM

+
1

16
w2Tr

((
(g̃(L/R))−1

)[MN ]
F

(L/R)
NM

)2

,

and the contribution from the TCS action to the abelian EoMs is denoted by ĴCS

− 1

M3Nc
δL̂SCS = δL̂ ∧ Ĵ (L)

CS , (C.3)
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and likewise for R. The right-handed equations of motion are the same19 upon L↔ R and
U ↔ U †.

Tachyon EoM Because it also appears in the effective metric (3.1.14), the equations of
motion for the modulus of the tachyon field have a form similar to the abelian gauge field
equations of motion

∂N

[
Vf (λ, τ2)

√
−det g̃(L)κ∂Mτ×

×
(
L(L)

(
(g̃(L))−1

)(MN)
+

1

4
w2Tr

(
FMS

(L) F
(L)N
S + FNS(L) F

(L)M
S

)
−1

4
w2Tr

(
F (L)(MN)F

(L)C
C

)
− 1

2
κτ2S(MN)

)
+ (L↔ R)

]
=

= Vf (λ, τ2)

[√
−det g̃(L)

(
1

2

(
(g̃(L))−1

)(MN)
κτSMN +

1

Vf

δVf
δτ
L(L)

)
+ (L↔ R)

]
+

+ JτCS , (C.4)

where the contribution of the TCS action to the tachyon EoM is denoted by JτCS

− 1

M3Nc
δτSCS = δτJτCS . (C.5)

The equations of motion for U are

1

4

[
D(M

(
Vf (λ, τ2)κτ2

√
−det g̃(L)

(
(g̃(L))−1

)(MN)
DN)U

†
)
U−h.c.+(L↔ R)

]
= JUCS ,

(C.6)
where the contribution of the CS action to the U EoM is denoted by JUCS

− 1

M3Nc
δUSCS = Tr

(
δUJUCSU

†
)
. (C.7)

Non-abelian EoM As the non-abelian part of the gauge fields does not appear in the
effective metric g̃, the DBI contribution to the non-abelian equations of motion is much
simpler than for the abelian part and the tachyon

1

2
DN

[
Vf (λ, τ2)

√
−det g̃(L)w2

(
1

2
F (L)[NM ] − 1

4

(
(g̃(L))−1

)[NM ]
F

(L)C
C

)]
= (C.8)

=
1

8
Vf (λ, τ2)

(√
−det g̃(L)

(
(g̃(L))−1

)(MN)
+

√
−det g̃(R)

(
(g̃(R))−1

)(MN)
)
×

19Here it shouldn’t be forgotten that it also changes the definition of the raising of indices.
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× κτ2

(
iDNU

†U − 1

Nf
Tr(iDNU

†U) + h.c.

)
+ J

(L)
CS ,

and the right-handed equations are obtained by exchanging (L ↔ R) and U ↔ U †. The
contribution of the TCS action to the non-abelian EoMs is denoted by JCS

− 1

M3Nc
δLSCS = δLa ∧ J (L) a

CS , (C.9)

and likewise for R.

D Tachyon-dependent Chern-Simons terms

In this appendix, we discuss the TCS action for a tachyon proportional to a unitary matrix
(T = τU).

First, we construct the most general single-trace Ω5 form out of the fields τ , U , L and
R, which is invariant under global SU(Nf )L × SU(Nf )R transformations. Moreover, the
exterior derivative F6 = dΩ5 must be gauge invariant (i.e., invariant under local trans-
formations also), and have the expected eigenvalues under parity and charge conjugation.
That is, we require that our ansatz for Ω5 is odd under the action of the P1 operator and
charge conjugation even, with definitions of Appendix A.

In order to write down our ansatz, we first construct all possible single trace 5-forms
and 4-forms built out of the non-abelian 1-forms L/R and DU = dU − iRU + iUL as well
as the 2-forms F (L/R) (recall that DU † = −U †DUU † is not independent). They are then
made covariant under global transformations by adding instances U or U † in the traces.
We then apply the projector I+P1−C −P1C on the forms, which projects to the P1-odd
C-even subspace. This leaves us with 45 independent P odd and C even 5-forms, which

we denote by F
(i)
5 [U,L,R], and 11 independent 4-forms, which we denote by F

(i)
4 [U,L,R].

The complete list of 4-forms is given by

F
(1)
4 = Tr(L ∧ F(L)U † ∧DU) + Tr(LU † ∧DU ∧ F(L))+

+ Tr(R ∧DUU † ∧ F(R)) + Tr(R ∧ F(R) ∧DUU †)
F

(2)
4 = Tr(LU † ∧DUU † ∧ F(R)U) + Tr(LU † ∧ F(R) ∧DU)+

+ Tr(RU ∧ F(L)U † ∧DUU †) + Tr(R ∧DU ∧ F(L)U †)

F
(3)
4 = −Tr(L ∧ LU † ∧DUU † ∧RU) + Tr(LU † ∧DUU † ∧R ∧RU)+

+ Tr(L ∧ LU † ∧R ∧DU) + Tr(LU † ∧R ∧R ∧DU)

F
(4)
4 = Tr(L ∧ F(L)U † ∧RU) + Tr(LU † ∧RU ∧ F(L))+

+ Tr(LU † ∧R ∧ F(R)U) + Tr(LU † ∧ F(R) ∧RU)

F
(5)
4 = −Tr(L ∧ L ∧ LU † ∧DU)− Tr(R ∧R ∧R ∧DUU †)
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F
(6)
4 = Tr(L ∧ L ∧ LU † ∧RU) + Tr(LU † ∧R ∧R ∧RU)

F
(7)
4 = Tr(LU † ∧DUU † ∧DUU † ∧RU) + Tr(LU † ∧R ∧DUU † ∧DU)

F
(8)
4 = Tr(R ∧DUU † ∧R ∧DUU †)− Tr(LU † ∧DU ∧ LU † ∧DU)

F
(9)
4 = Tr(LU † ∧R ∧DUU † ∧RU)− Tr(LU † ∧RU ∧ LU † ∧DU)

F
(10)
4 = −Tr(LU † ∧DUU † ∧DUU † ∧DU)− Tr(R ∧DUU † ∧DUU † ∧DUU †)
F

(11)
4 = Tr(LU † ∧RU ∧ LU † ∧RU) (D.1)

The complete list of 5-forms is the following:

F
(1)
5 = Tr(DU ∧ F(L) ∧ F(L)U †) + Tr(DUU † ∧ F(R) ∧ F(R)) (D.2)

F
(2)
5 = Tr(DU ∧ F(L)U † ∧DUU † ∧DUU †) + Tr(DUU † ∧DUU † ∧DUU † ∧ F(R))

F
(3)
5 = Tr(DUU † ∧ F(R)U ∧ F(L)U †) + Tr(DU ∧ F(L)U † ∧ F(R))

F
(4)
5 = Tr(DUU † ∧DUU † ∧DUU † ∧DUU † ∧DUU †)
F

(5)
5 = Tr(L ∧ L ∧ L ∧ L ∧ L)− Tr(R ∧R ∧R ∧R ∧R)

F
(6)
5 = Tr(L ∧ L ∧ L ∧ LU † ∧RU)− Tr(LU † ∧R ∧R ∧R ∧RU)

F
(7)
5 = Tr(L ∧ L ∧ L ∧ LU † ∧DU) + Tr(R ∧R ∧R ∧R ∧DUU †)
F

(8)
5 = Tr(L ∧ L ∧ LU † ∧R ∧RU)− Tr(L ∧ LU † ∧R ∧R ∧RU)

F
(9)
5 = Tr(L ∧ L ∧ LU † ∧DUU † ∧RU) + Tr(LU † ∧DUU † ∧R ∧R ∧RU)+

+ Tr(L ∧ L ∧ LU † ∧R ∧DU) + Tr(LU † ∧R ∧R ∧R ∧DU)

F
(10)
5 = Tr(L ∧ L ∧ LU † ∧DUU † ∧DU)− Tr(R ∧R ∧R ∧DUU † ∧DUU †)
F

(11)
5 = Tr(L ∧ LU † ∧RU ∧ LU † ∧RU)− Tr(LU † ∧R ∧RU ∧ LU † ∧RU)

F
(12)
5 = Tr(L ∧ LU † ∧RU ∧ LU † ∧DU) + Tr(L ∧ LU † ∧DU ∧ LU † ∧RU)+

+ Tr(LU † ∧R ∧R ∧DUU † ∧RU) + Tr(LU † ∧R ∧DUU † ∧R ∧RU)

F
(13)
5 = Tr(L ∧ LU † ∧DUU † ∧R ∧RU) + Tr(L ∧ LU † ∧R ∧R ∧DU)

F
(14)
5 = Tr(L ∧ LU † ∧R ∧DUU † ∧RU) + Tr(LU † ∧R ∧RU ∧ LU † ∧DU)

F
(15)
5 = Tr(L ∧ LU † ∧DUU † ∧DUU † ∧RU)+

− Tr(LU † ∧DUU † ∧DUU † ∧R ∧RU)+

+ Tr(L ∧ LU † ∧R ∧DUU † ∧DU)− Tr(LU † ∧R ∧R ∧DUU † ∧DU)

F
(16)
5 = Tr(L ∧ LU † ∧DU ∧ LU † ∧DU)− Tr(R ∧R ∧DUU † ∧R ∧DUU †)
F

(17)
5 = Tr(L ∧ LU † ∧DUU † ∧R ∧DU)− Tr(LU † ∧DUU † ∧R ∧R ∧DU)
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F
(18)
5 = Tr(L ∧ LU † ∧DUU † ∧DUU † ∧DU)+

+ Tr(R ∧R ∧DUU † ∧DUU † ∧DUU †)
F

(19)
5 = Tr(LU † ∧R ∧DU ∧ LU † ∧RU) + Tr(LU † ∧RU ∧ LU † ∧DUU † ∧RU)

F
(20)
5 = Tr(LU † ∧RU ∧ LU † ∧DUU † ∧DU)+

− Tr(LU † ∧R ∧DUU † ∧DUU † ∧RU)

F
(21)
5 = Tr(LU † ∧DU ∧ LU † ∧DUU † ∧RU)+

− Tr(LU † ∧DUU † ∧R ∧DUU † ∧RU)+

+ Tr(LU † ∧R ∧DU ∧ LU † ∧DU)− Tr(LU † ∧R ∧DUU † ∧R ∧DU)

F
(22)
5 = Tr(LU † ∧DUU † ∧DUU † ∧DUU † ∧RU)+

+ Tr(LU † ∧R ∧DUU † ∧DUU † ∧DU)

F
(23)
5 = Tr(LU † ∧DU ∧ LU † ∧DUU † ∧DU)+

+ Tr(R ∧DUU † ∧R ∧DUU † ∧DUU †)
F

(24)
5 = Tr(LU † ∧DUU † ∧R ∧DUU † ∧DU)+

+ Tr(LU † ∧DUU † ∧DUU † ∧R ∧DU)

F
(25)
5 = Tr(LU † ∧DUU † ∧DUU † ∧DUU † ∧DU)+

− Tr(R ∧DUU † ∧DUU † ∧DUU † ∧DUU †)
F

(26)
5 = Tr(L ∧ L ∧ L ∧ F(L))− Tr(R ∧R ∧R ∧ F(R))

F
(27)
5 = Tr(L ∧ L ∧ LU † ∧ F(R)U)− Tr(R ∧R ∧RU ∧ F(L)U †)

F
(28)
5 = Tr(L ∧ L ∧ F(L)U † ∧RU) + Tr(L ∧ LU † ∧RU ∧ F(L))+

− Tr(LU † ∧R ∧R ∧ F(R)U)− Tr(LU † ∧ F(R) ∧R ∧RU)

F
(29)
5 = −Tr(L ∧ F(L)U † ∧R ∧RU)− Tr(LU † ∧R ∧RU ∧ F(L))+

+ Tr(L ∧ LU † ∧R ∧ F(R)U) + Tr(L ∧ LU † ∧ F(R) ∧RU)

F
(30)
5 = Tr(L ∧ L ∧ F(L)U † ∧DU) + Tr(L ∧ LU † ∧DU ∧ F(L))+

+ Tr(R ∧R ∧DUU † ∧ F(R)) + Tr(R ∧R ∧ F(R) ∧DUU †)
F

(31)
5 = Tr(L ∧ LU † ∧DUU † ∧ F(R)U) + Tr(L ∧ LU † ∧ F(R) ∧DU)+

+ Tr(R ∧RU ∧ F(L)U † ∧DUU †) + Tr(R ∧R ∧DU ∧ F(L)U †)

F
(32)
5 = Tr(L ∧ F(L) ∧ LU † ∧RU)− Tr(LU † ∧R ∧ F(R) ∧RU)

F
(33)
5 = Tr(LU † ∧RU ∧ LU † ∧ F(R)U)− Tr(LU † ∧RU ∧ F(L)U † ∧RU)

F
(34)
5 = Tr(L ∧ F(L)U † ∧DUU † ∧RU) + Tr(LU † ∧R ∧DU ∧ F(L))+
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+ Tr(LU † ∧DUU † ∧ F(R) ∧RU) + Tr(LU † ∧R ∧ F(R) ∧DU)

F
(35)
5 = Tr(LU † ∧RU ∧ F(L)U † ∧DU) + Tr(LU † ∧DU ∧ F(L)U † ∧RU)+

+ Tr(LU † ∧R ∧DUU † ∧ F(R)U) + Tr(LU † ∧ F(R) ∧DUU † ∧RU)

F
(36)
5 = Tr(L ∧ F(L) ∧ LU † ∧DU) + Tr(R ∧DUU † ∧R ∧ F(R))

F
(37)
5 = Tr(LU † ∧DU ∧ LU † ∧ F(R)U) + Tr(R ∧DUU † ∧RU ∧ F(L)U †)

F
(38)
5 = Tr(LU † ∧DUU † ∧RU ∧ F(L)) + Tr(L ∧ F(L)U † ∧R ∧DU)+

+ Tr(LU † ∧DUU † ∧R ∧ F(R)U) + Tr(LU † ∧ F(R) ∧R ∧DU)

F
(39)
5 = Tr(L ∧ F(L)U † ∧DUU † ∧DU) + Tr(LU † ∧DUU † ∧DU ∧ F(L))+

− Tr(R ∧DUU † ∧DUU † ∧ F(R))− Tr(R ∧ F(R) ∧DUU † ∧DUU †)
F

(40)
5 = Tr(LU † ∧DUU † ∧DUU † ∧ F(R)U) + Tr(LU † ∧ F(R) ∧DUU † ∧DU)+

− Tr(RU ∧ F(L)U † ∧DUU † ∧DUU †)− Tr(R ∧DUU † ∧DU ∧ F(L)U †)

F
(41)
5 = Tr(LU † ∧DU ∧ F(L)U † ∧DU)− Tr(R ∧DUU † ∧ F(R) ∧DUU †)
F

(42)
5 = Tr(LU † ∧DUU † ∧ F(R) ∧DU)− Tr(R ∧DU ∧ F(L)U † ∧DUU †)
F

(43)
5 = Tr(L ∧ F(L) ∧ F(L))− Tr(R ∧ F(R) ∧ F(R))

F
(44)
5 = Tr(L ∧ F(L)U † ∧ F(R)U) + Tr(LU † ∧ F(R)U ∧ F(L))+

− Tr(R ∧ F(R)U ∧ F(L)U †)− Tr(RU ∧ F(L)U † ∧ F(R))

F
(45)
5 = Tr(LU † ∧ F(R) ∧ F(R)U)− Tr(RU ∧ F(L) ∧ F(L)U †)

The most general single-trace ansatz for Ω5 which is covariant under the global transfor-
mations and has the desired P and C eigenvalues can therefore be written as

Ω5 =

45∑
i=1

f̄i(τ)F
(i)
5 [U,L,R] + dτ ∧

11∑
i=1

gi(τ)F
(i)
4 [U,L,R] (D.3)

where we added the most general dependence on the scalar τ . Notice that the Ansatz
includes 56 arbitrary functions of τ .

Requiring that dΩ5 is gauge invariant, i.e., requiring that δdΩ5 = 0, sets 41 conditions
for the functions f̄i, gi, of which 29 are algebraic and 12 involve their first derivatives. This
reduces the number of free functions down to 15. Notice that the latter 12 constraints are
differential equations, the solutions of which contain 12 integration constants. We comment
on these integration constants below.

As it turns out, the result for Ω5 after imposing the above constraints is something one
could have guessed from the start: it is given as a sum of two terms, where the first term
(involving 4 of the 15 free functions) is explicitly gauge invariant and the second term is
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a closed form (involving 11 of the 15 free functions). For such a solution, it is immediate
that indeed δdΩ5 = 0. The solution may be written explicitly as

Ω5 = Ω0
5 + Ωc

5 + dG4 , (D.4)

where

Ω0
5 = f1(τ)

[
Tr(DU ∧ F(L) ∧ F(L)U †) + Tr(DUU † ∧ F(R) ∧ F(R))

]
+

+ f2(τ)
[
Tr(DU ∧ F(L)U † ∧DUU † ∧DUU †)+

+ Tr(DUU † ∧ F(R) ∧DUU † ∧DUU †)
]
+

+ f3(τ)
[
Tr(DUU † ∧ F(R)U ∧ F(L)U †) + Tr(DU ∧ F(L)U † ∧ F(R))

]
+

+ f4(τ)Tr(DUU † ∧DUU † ∧DUU † ∧DUU † ∧DUU †) (D.5)

is the gauge-invariant term and Ωc
5+dG4 is the closed term. The latter was, for convenience,

divided into two parts, where
Ωc

5 = g0Tr((U †dU)5) (D.6)

with g0 a constant, and G4 is a general P1 odd and C even 4-form, i.e.,

G4 =

11∑
i=1

hi(τ)F
(i)
4 [U,L,R] . (D.7)

(Note that gi(τ) = h′i(τ).)
Several comments are in order. Notice that the gauge invariant term is indeed the most

general P1-odd C-even 5-form composed of the covariant forms DU , F(L), and F(R). Only
this term contributes to the F6 = dΩ5, which is given as

F6 = dτ ∧
{
f ′1(τ)

[
Tr(DU ∧ F(L) ∧ F(L)U †) + Tr(DUU † ∧ F(R) ∧ F(R))

]
+

+f ′2(τ)
[
Tr(DU ∧ F(L)U † ∧DUU † ∧DUU †)+Tr(DUU † ∧ F(R) ∧DUU † ∧DUU †)

]
+

+f ′3(τ)
[
Tr(DUU † ∧ F(R)U ∧ F(L)U †) + Tr(DU ∧ F(L)U † ∧ F(R))

]
+

+f ′4(τ)Tr(DUU † ∧DUU † ∧DUU † ∧DUU † ∧DUU †)
}

+

+f1(τ)
[
Tr(DU ∧ F(L) ∧ F(L)U † ∧DUU †) + Tr(DUU † ∧DUU † ∧ F(R) ∧ F(R))+

−iTr(F(L) ∧ F(L)U † ∧ F(R)U) + iTr(F(L)U † ∧ F(R) ∧ F(R)U)+

+iTr(F(L) ∧ F(L) ∧ F(L))− iTr(F(R) ∧ F(R) ∧ F(R))
]
+

+f2(τ)
[
− 2iTr(DU ∧ F(L)U † ∧DUU † ∧ F(R))+

−2iTr(DU ∧ F(L) ∧ F(L)U † ∧DUU †)+
+Tr(DU ∧ F(L)U † ∧DUU † ∧DUU † ∧DUU †)+
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−2iTr(DUU † ∧DUU † ∧ F(R) ∧ F(R))+

+Tr(DUU † ∧DUU † ∧DUU † ∧DUU † ∧ F(R))
]
+

+2f3(τ)
[
Tr(DU ∧ F(L)U † ∧DUU † ∧ F(R))+

+iTr(F(L) ∧ F(L)U † ∧ F(R)U)− iTr(F(L)U † ∧ F(R) ∧ F(R)U)
]
+

−5if4(τ)
[
Tr(DU ∧ F(L)U † ∧DUU † ∧DUU † ∧DUU †)+

+Tr(DUU † ∧DUU † ∧DUU † ∧DUU † ∧ F(R))
]

(D.8)

In particular, the 6-form derived by using the flat space expression in [138] is obtained for

f1(τ) = −1

6
e−τ

2
, f2(τ) =

i

12
(1 + τ2)e−τ

2
,

f3(τ) = − 1

12
e−τ

2
, f4(τ) =

1

120
(2 + 2τ2 + τ4)e−τ

2
. (D.9)

Moreover, we require that the bulk action agrees in the chirally symmetric case, τ = 0 and
U = I, with the standard expression

Ω0
5 = − i

6
Tr

(
L(F(L))2 +

i

2
L3F(L) − 1

10
L5 − (L↔ R)

)
(D.10)

up to boundary terms. This is the case if

f1(0) = −1

6
, f2(0) =

i

12
, f3(0) = − 1

12
, f4(0) =

1

60
. (D.11)

Notice that the choice in (D.9) satisfies these conditions.
In (D.4) Ωc

5 is a closed 5-form which cannot be expressed globally as a total exterior
derivative. This form is related to the fifth de Rham cohomology group H5(SU(Nf )L ×
SU(Nf )R/SU(Nf )V ) which reduces to the class of Tr((dUU−1)5).

We then comment on the 12 integration constants mentioned above. We find that these
correspond to shifts of various linear combinations of the functions f̄i in (D.3). In more
detail, the 12 conditions involving derivatives are of the form

d

dτ

(
linear combinations of f̄i

)
= linear combinations of gi (D.12)

Instead of solving these conditions for f̄i one can eliminate the gi’s (as we have in practice
done above by using the functions hi instead in (D.7), which are derivatives of the gi’s),
in which case the question of the integration constants does not arise explicitly. However
notice that there are only 11 functions gi (and equivalently 11 hi’s) but there are 12
conditions so only 11 of the constants can be removed this way and one of them remains.
It is tempting to identify 11 of the integration constants with the freedom of adding

11∑
i=1

CiF
(i)
4 [U,L,R] (D.13)
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in the closed contribution to Ω5. However explicit computation shows that this is not pre-
cisely correct: one also needs to include contributions from the gauge invariant terms (D.5).
Nevertheless, the conclusion is that 11 of the constants can be absorbed in the functions
hi(τ) and fi(τ) without loss of generality. The remaining integration constant however
cannot be absorbed in this way: it is identified as the constant g0 in (D.6) – again explicit
computation shows that it is actually a combination of g0 and a constant term in the func-
tion f4 in (D.5). Despite these technical complications, the computation shows that the
result in (D.4)–(D.7) is consistent.

The result for Ω5 is then constrained by requiring that it produces the correct QCD
flavor anomaly at the boundary. To do this we first compute the (linearized) gauge trans-
formation of the pure gauge term:

δΩc
5 = 5g0d

{
Tr[ΛLd((U †dU)3) + ΛRd((dUU †)3)]

}
. (D.14)

Moreover, the gauge transformation of the dG4 can be written as

dδG4 = d[Tr(ΛLdG3L + ΛRdG3R)] (D.15)

where the 3-forms can be found by computing the gauge transformation of G4,

δG4 = −Tr[dΛL ∧G3L + dΛR ∧G3R] . (D.16)

Matching with the QCD anomalies therefore requires that, at the boundary,

Tr[ΛLdG3L + ΛRdG3R] + 5g0Tr[ΛLd((U †dU)3) + ΛRd((dUU †)3)]

= − 1

6
Tr

[
ΛL

(
(dL)2 − i

2
d(L3)

)
− (L↔ R)

]
. (D.17)

This equation fixes the boundary values of all the functions hi in G4 and the value of the
constant g0:

g0 = − 1

60
, h1(0) =

1

12
, h2(0) =

1

24
, h3(0) =

i

24
, h4(0) =

i

24
,

h5(0) = − i

12
, h6(0) = − 1

12
, h7(0) =

1

12
, h8(0) =

1

24
, h9(0) =

i

12
,

h10(0) =
i

12
, h11(0) =

1

24
. (D.18)

Notice that since dG4 integrates to a boundary term,
∫

Ω5 is therefore determined up to
the four functions fi, assuming that there is no IR boundary contribution. As for the G4,
this can be ensured by choosing the hi such that they vanish in the IR. The IR contribution
from Ωc

5, however cannot be eliminated by the remaining freedom in the choice of the 5-
form. Therefore the vanishing of this contribution needs to be required as an additional
constraint on the solutions. We shall discuss this point in more detail below.
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After imposing the constraints, the explicit form for G4 at the boundary reads

24G4

∣∣
bdry

= 2
[
Tr(L ∧ F(L) U † ∧DU) + Tr(LU † ∧DU ∧ F(L))+ (D.19)

+Tr(R ∧DU U † ∧ F(R)) + Tr(R ∧ F(R) ∧DU U †)
]
+

+
[
Tr(LU † ∧DU U † ∧ F(R) U) + Tr(LU † ∧ F(R) ∧DU)+

+Tr(R ∧DU ∧ F(L) U †) + Tr(RU ∧ F(L) U † ∧DU U †)
]
+

+i
[
− Tr(L ∧ LU † ∧DU U † ∧RU) + Tr(L ∧ LU † ∧R ∧DU)+

+Tr(LU † ∧R ∧R ∧DU) + Tr(LU † ∧DU U † ∧R ∧RU)
]
+

+i
[
Tr(L ∧ F(L) U † ∧RU) + Tr(LU † ∧RU ∧ F(L))+

+Tr(LU † ∧R ∧ F(R) U) + Tr(LU † ∧ F(R) ∧RU)
]
+

+2i
[
Tr(L ∧ L ∧ LU † ∧DU) + Tr(R ∧R ∧R ∧DU U †)

]
+

−2
[
Tr(L ∧ L ∧ LU † ∧RU) + Tr(LU † ∧R ∧R ∧RU)

]
+

+2
[
Tr(LU † ∧DU U † ∧DU U † ∧RU) + Tr(LU † ∧R ∧DU U † ∧DU)

]
+

+
[
− Tr(LU † ∧DU ∧ LU † ∧DU) + Tr(R ∧DU U † ∧R ∧DU U †)

]
+

+2i
[
− Tr(LU † ∧RU ∧ LU † ∧DU) + Tr(LU † ∧R ∧DU U † ∧RU)

]
+

−2i
[
Tr(LU † ∧DU U † ∧DU U † ∧DU) + Tr(R ∧DU U † ∧DU U † ∧DU U †)

]
+

+Tr(LU † ∧RU ∧ LU † ∧RU) .

Our final result can then be compared to the chiral Lagrangian Wess-Zumino term
written in [141] and given below in (D.62). We find that∫

Ωc
5 +

∫
G4

∣∣
bdry

=
40i π2

Nc
SWZ +

1

24

∫
d[Tr(LU † ∧ dRU)− Tr(RU ∧ dLU †)] (D.20)

where SWZ is the action from this reference, discussed below in Appendix D.3. That is,
the expressions agree up to a derivative term, which is C-odd. Notice that adding such
a derivative in G4 would leave Ω5 unchanged. Because none of the P1-odd C-even forms

F
(i)
4 is gauge invariant, there is no freedom of adding gauge invariant terms such as (D.61)

below. Moreover, the normalization of the action also agrees (up to differences in sign
conventions) with [141].
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IR contribution from Ωc
5

We investigate here the contribution to
∫

Ωc
5 – where Ωc

5 is the non-exact closed part of the
TCS 5-form (D.6) – that comes from the singular IR point at r → ∞, and determine the
condition for it to vanish. This will put constraints on the extreme IR behavior (r → ∞)
of the gauge transformations that are allowed in the bulk.

Ωc
5 is a closed form, so in principle it can be written locally as the exterior derivative of

some 4-form ω4. However, as noted in [140], there is no way to find an explicit expression
in terms of U for such an ω4. On the other hand, what can be done is to write ω4 order
by order in the pion field Π defined as

U = e
2i
fπ

Π
. (D.21)

Up to order O(Π7), we find that locally Ωc
5 is equal to

Ωc
5 = g0Tr

{
i

(
2

fπ

)5

d
(

Π (dΠ)4
)}

+ (D.22)

+ g0Tr

{
160i

21f7
π

d
(
3Π2dΠ ∧ΠdΠ3+3ΠdΠ ∧ΠdΠ ∧ΠdΠ2−2Π3dΠ4

)
+O(Π8)

}
,

where all higher orders will also be written as the exterior derivative of a 4-form containing
four exterior derivatives of Π. When integrating over the bulk, Ωc

5 expanded in powers of Π
can therefore be written as a boundary integral, with contributions from the UV boundary
and IR singularity∫

Ωc
5 = ig0

(
2

fπ

)5 [∫
Tr
{

Π (dΠ)4
}]IR

UV

+ (D.23)

+ ig0
160

21f7
π

[ ∫
Tr{3Π2dΠ ∧ΠdΠ3+

+ 3ΠdΠ ∧ΠdΠ ∧ΠdΠ2 − 2Π3dΠ4 +O(Π8)}
]IR
UV

.

So the condition for the IR contribution to vanish at all orders in Π, is for the derivative
of Π (or equivalently U) in one of the boundary coordinates xµ to be identically 0 in the
IR. Note that it is always obeyed by the instanton ansatz (3.1.64) because of its invariance
under time reversal. Also, we expect that it should be possible for physically relevant
solutions to impose the more natural stronger condition

∂µU(x, r) →
r→∞

0 , (D.24)

which is Lorentz invariant.
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D.1 Baryon charge

We now check the coupling of the non-abelian fields to the abelian vectorial charge. To do
this, we separate the vectorial abelian term by replacing L/R → Φ + L/R (see (3.1.41)).
Notice that here Φ is a generic abelian one-form, Φ = ΦMdx

M , where the index M runs
over all the five coordinates. Consequently, the field strengths are replaced using the rules
F(L/R) → dΦ + F (L/R), while DU is unchanged. Therefore the bulk term becomes

Ω0
5 = Ω0

5

∣∣
Φ=0

+ 2dΦ ∧ (f1(τ) + f3(τ))Tr[DU ∧ (F (L)U † + U †F (R))]+ (D.25)

+ 2dΦ ∧ f2(τ)Tr[(DU U †)3] + 2(f1(τ) + f3(τ))dΦ ∧ dΦ ∧ Tr(DU U †) .

Notice that gauge invariance of these terms guarantees that the dependence on Φ is through
the derivative. Moreover only the functions f1 + f3 and f2 appear in the coupling term.
For this expression, the constraints (D.11) impose that

f1(0) + f3(0) = −1

4
, f2(0) =

i

12
. (D.26)

For the Ω5 of [138], we find that

f1(τ) + f3(τ) = −1

4
e−τ

2
, f2(τ) =

i

12
(1 + τ2)e−τ

2
. (D.27)

As it turns out, it is convenient to rewrite the coupling as

Ω0
5 =Ω0

5

∣∣
Φ=0

+ 2(f1(τ)+f3(τ))dΦ ∧ dΦ ∧ Tr(DU U †)+

− 2Φ ∧ d{(f1(τ)+f3(τ))Tr[DU ∧ (F (L)U † + U †F (R))]+f2(τ)Tr[(DU U †)3]}+
+ 2d{Φ ∧ (f1(τ)+f3(τ))Tr[DU ∧ (F (L)U † + U †F (R))]+f2(τ)Tr[(DU U †)3]} .

(D.28)

There are also boundary terms involving Φ, which arise from G4. They can be written
as

G4

∣∣
bdry

= G4

∣∣
Φ=0

+
1

12
Φ ∧ [−4iTr(L ∧ F (L)) + Tr(L ∧ L ∧ L) + 4iTr(R ∧ F (R))+

− Tr(R ∧R ∧R) + 6Tr(DU ∧ F (L)U †) + 6Tr(DUU † ∧ F (R))+

− 2iTr(DUU † ∧DUU † ∧DUU †)]+ (D.29)

+
1

12
d[Φ ∧ (2iTr(LU † ∧RU) + 3Tr(LU † ∧DU) + 3Tr(R ∧DUU †))] .

Here, the total derivative term does not contribute to Ω5 and we drop it. Interestingly,
the covariant terms in (D.29) cancel against the boundary term arising from (D.28) after
using the conditions (D.26). Therefore the full baryon coupling takes a simple form:∫

Ω5 −
∫

Ω5

∣∣
Φ=0
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=− 2

∫
Φ ∧ d{(f1(τ) + f3(τ))Tr[DU ∧ (F (L)U † + U †F (R))]+f2(τ)Tr[(DU U †)3]}+

+ 2

∫
(f1(τ) + f3(τ))dΦ ∧ dΦ ∧ Tr(DU U †)+

+
1

12

∫
Φ ∧ [−4iTr(L ∧ F (L)) + Tr(L3) + 4iTr(R ∧ F (R))− Tr(R3)]

∣∣
bdry

. (D.30)

Notice that here the integral on the last row is four dimensional whereas the other integrals
are five dimensional.

We then extract the expression for the baryon number current and charge. The full
action contains the dilaton gravity, DBI, and TCS terms. Only the DBI and TCS terms
depend on the gauge fields and are therefore relevant for the analysis of the baryon number
current. As it turns out, the charge of the baryon will only arise from the TCS term. The
full action may be written as

S = S(5D) + S(4D) =

∫
drd4x L(5D) +

∫
d4x L(4D)

∣∣
r=0

(D.31)

where r = 0 is the UV boundary and the bulk has r > 0. The 5D piece arises from the
DBI and TCS terms whereas the boundary term arises from the CS sector only. The DBI
action is given in section 3.1.2, but the expression will not be needed here. The division of
the CS term into 5D and 4D pieces is not well defined per se, but for concreteness we may
take the 5D term to be (D.25) so that the 4D term is (D.29).

The variation of the on-shell action is then (after partial integration of the 5D term
and using the EOM as usual)

δSon−shell = −
∫
d4x

∂L(5D)

∂ ∂rΦM
δΦM

∣∣
r=0

+

∫
d4x

∂L(4D)

∂ΦM
δΦM

∣∣
r=0

+ · · · (D.32)

where the dots stand for boundary terms from the variations of the other fields and we
assumed that the boundary Lagrangian L(4D) is independent of the derivatives of Φ.

Moreover, in order to obtain this expression, the term ∂L(5D)

∂ ∂rΦM
δΦM must vanish in the

IR. Otherwise the variation will receive an inconsistent IR contribution. Similarly we must
assume that contributions from spatial infinity in the partial integration vanish. This will
be justified in the next subsection.

We can read off the (five dimensional) baryon current as

JMB =
∂L(5D)

∂ ∂rΦM

∣∣∣
r=0
− ∂L(4D)

∂ΦM

∣∣∣
r=0

. (D.33)

We did not comment on the gauge dependence yet. Without loss of generality, we may
assume that L(5D) is gauge invariant and depends on Φ only through its derivatives, while
L(4D) is not gauge invariant. Indeed this holds for the choices of the TCS terms specified
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above, i.e., that the 5D CS term is (D.25) while the 4D term is (D.29) (omitting the
irrelevant last line). Gauge invariance implies, in particular, that the variation of S(5D)

vanishes for any infinitesimal vectorial U(1) transformation depending on the space-time
coordinates, i.e., for δΦµ = ∂µε. Inserting this in the formula (D.32) and integrating
partially we observe that by gauge invariance we must have

∂

∂xµ

(
∂L(5D)

∂ ∂rΦµ

)
r=0

= 0 (D.34)

where µ is summed over the four Minkowski coordinates. (Recall that these terms would
vanish by the EOMs for homogeneous configurations.) Notice also that

∂L(5D)

∂ ∂rΦr
= 0 (D.35)

i.e. the 5D action is independent of ∂rΦr since the derivatives of Φ only appear either
through the field strength or in the TCS term. Notice that we did not fix the gauge so far,
but to make contact with field theory we should choose the gauge where Φr = 0.

We now discuss the term arising from the 4D action. Recall that we chose to use (D.25)
for the 5D action so that the full Φ dependent 4D piece is given in (D.29). Because this is
a boundary term at r = 0, there is no dependence on Φr such that

∂L(4D)

∂Φr
= 0 . (D.36)

The other terms may be written as

−∂L
(4D)

∂Φµ
ω4

∣∣∣
r=0

= − iNc

48π2
dxµ∧ [−4iTr(L ∧ F (L)) + Tr(L ∧ L ∧ L)+

+ 4iTr(R ∧ F (R))− Tr(R ∧R ∧R) + 6Tr(DU ∧ F (L)U †)+

+ 6Tr(DUU † ∧ F (R))− 2iTr(DUU † ∧DUU † ∧DUU †)] (D.37)

where ω4 = dx0∧dx1∧dx2∧dx3 is the four dimensional volume form. The first four terms
in the square brackets reflect the mixed anomaly. They vanish for vectorial external gauge
fields, L = R. For zero external gauge fields the last term gives the expected topological
baryon current,

− Nc

24π2
εµνρσ Tr

(
∂νUU

† ∧ ∂ρUU † ∧ ∂σUU †
)
. (D.38)

The divergence of the current (D.37) is given by

−∂µ
∂L(4D)

∂Φµ
ω4

∣∣∣
r=0

= − iNc

48π2
d[−4iTr(L ∧ F (L))+Tr(L ∧ L ∧ L)+4iTr(R ∧ F (R))+
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− Tr(R ∧R ∧R)+6Tr(DU ∧ F (L)U †)+6Tr(DUU † ∧ F (R))+

− 2iTr(DUU † ∧DUU † ∧DUU †)] . (D.39)

Explicit computation of the exterior derivative gives

−∂µ
∂L(4D)

∂Φµ
ω4

∣∣∣
r=0

=
Nc

48π2

[
2Tr(F (L) ∧ F (L))− 2Tr(F (R) ∧ F (R))+

+ iTr(L ∧ L ∧ F (L))− iTr(R ∧R ∧ F (R))
]
. (D.40)

This anomaly contribution vanishes for vectorial gauge fields, L = R. In conclusion, since
we have shown earlier that the divergence of the first contribution in (D.33) vanishes, we
have that

∂µJ
µ
B = 0 , JrB = 0 (D.41)

in the absence of axial gauge fields at the boundary.
The contribution from the TCS action to the first term in (D.33) can also be computed

explicitly (omitting the nonlinear term):20

∂L(5D)
CS

∂ ∂rΦµ

∣∣∣
r=0

ω4 = (D.42)

− iNc

2π2
dxµ ∧ {(f1(0) + f3(0))Tr[DU ∧ (F (L)U † + U †F (R))] + f2(0)Tr[(DU U †)3]} .

After imposing the conditions (D.26), this contribution cancels the last three terms in (D.37).
This cancellation is however superficial: We can also use the equations of motion to write

∂L(5D)

∂ ∂rΦµ

∣∣∣
r=0

= ∂ν

∫
dr
∂L(5D)

∂ ∂νΦµ
. (D.43)

Then the baryon number is, taking the configuration to be independent of time,

NB =

∫
d3xJ0

B =

∫
drd3x ∂k

∂L(5D)

∂ ∂kΦ0
−
∫
d3x

∂L(4D)

∂Φ0

∣∣∣
r=0

(D.44)

where the first term, arising from the 5D bulk action, integrates into a boundary term at
spatial infinity, so that the UV boundary contribution only arises from the second term

20The minus sign arises due to consistency with the chosen coordinate system. Because we have
chosen that r = 0 is the UV boundary value of the holographic coordinate, taking ω5 = dr ∧ ω4,∫
M
gω5 = −

∫
d5x g, and

∫
∂M

fω4 =
∫
d4x f is consistent with

∫
M
df =

∫
∂M

f where ∂M is the UV
boundary. Notice that if we changed r 7→ 1/r, there would be no need to include a minus sign in
any of the definitions.
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in (D.44) and the purported cancellation is absent. Assuming that the contributions from
spatial infinity vanish, the result may be written as the following 3D boundary integral:

NB= − iNc

48π2

∫
[−4iTr(L ∧ F (L)) + Tr(L ∧ L ∧ L) + 4iTr(R ∧ F (R))+

− Tr(R ∧R ∧R) + 6Tr(DU ∧ F (L)U †) + 6Tr(DUU † ∧ F (R))+

− 2iTr(DUU † ∧DUU † ∧DUU †)] . (D.45)

Notice that, in the end, the derivation of the baryon number did not require using the
conditions (D.26). Even more remarkably, NB does not depend in any manner on the non-
closed part of the TCS action Ω0

5 and the corresponding TCS potentials fi(τ). Here, the
generation of the baryon number and the contribution of the TCS terms to the equations
of motion (responsible for the stabilization of the baryon size) are ensured by two distinct
parts of the CS action (closed and non-closed). Although slightly counter-intuitive, it is
not a contradiction though. The reason is that the result for the baryon number simply
tells us what should be the boundary behavior of the tachyon field for NB to be non-zero
(it should have a Skyrmion winding from (D.38)).It does not guarantee that a solution
with such boundary conditions exists though. In particular, it is expected that no finite
size solution should exist when Ω0

5 vanishes (fi(τ) = 0).

B3

D3

V4

r = 0

r = ∞

Figure 28: Volume of integration V4 for the baryon and its three-dimensional bound-
aries B3 + D3.
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D.2 Boundary terms to the baryon charge

We finish by discussing the boundary terms at spatial infinity. That is, we consider the
baryon number in a finite 3D volume. We take this volume to be the three ball B3, but
the analysis is the same for any shape of the volume. By using the equations of motion as
above, the charge may be written as

NB =

∫
B3

d3xJ0
B =

∫
dr

∫
∂B3

dS nk
∂L(5D)

∂ ∂kΦ0
−
∫
B3

d3x
∂L(4D)

∂Φ0
(D.46)

where the unit vector n is normal to the surface element dS of ∂B3. We can also write
down the TCS contributions explicitly:

NB =

∫
dr

∫
∂B3

dS nk
∂L(5D)

DBI

∂ ∂kΦ0
+

+
iNc

2π2

∫
D3

[
(f1(τ)+f3(τ))Tr[DU ∧ (F (L)U † + U †F (R))]+

+ f2(τ)Tr[(DU U †)3]
]
+

+
iNc

π2

∫
D3

(f1(τ)+f3(τ))dΦ ∧ Tr[DU U †]+

− iNc

48π2

∫
B3

[
− 4iTr(L ∧ F (L)) + Tr(L ∧ L ∧ L) + 4iTr(R ∧ F (R))+

− Tr(R ∧R ∧R) + 6Tr(DU ∧ F (L)U †) + 6Tr(DUU † ∧ F (R))+

− 2iTr(DUU † ∧DUU † ∧DUU †)
]

(D.47)

where D3 is the boundary at spatial infinity. The boundary of the whole four-dimensional
(holographic and spatial dimensions) volume therefore breaks into two terms, ∂V4 = B3 +
D3 where B3 lies at the holographic boundary r = 0 and D3 lies at spatial infinity, see
figure 28. Notice that there is no boundary at r =∞ as the geometry shrinks into a single
point in the IR, where it ends in a singularity (represented by a blob in the figure). It
is important to check that the boundary contributions of the first three lines vanish for
soliton configurations at large volumes, i.e., when ∂B3 is far from the soliton.

If the conditions (D.26) hold, the most important contributions (i.e., those that are
expected to contribute to the charge of the soliton solution in the limit of large volume)
can be written as a four dimensional bulk integral:

NB =
iNc

2π2

∫
V4

d
{

(f1(τ)+f3(τ))Tr[DU ∧ (F (L)U † + U †F (R))]+

+ f2(τ)Tr[(DU U †)3]
}

+

+

∫
dr

∫
∂B3

dS nk
∂L(5D)

DBI

∂ ∂kΦ0
+
iNc

π2

∫
D3

(f1(τ)+f3(τ))dΦ ∧ Tr[DU U †]+
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− iNc

48π2

∫
B3

[
− 4iTr(L ∧ F (L)) + Tr(L ∧ L ∧ L) + 4iTr(R ∧ F (R))+

− Tr(R ∧R ∧R)
]
r=0

. (D.48)

That is, while the conditions (D.26) were not necessary to derive the main formula (D.45),
they are necessary to write down the charge as a compact bulk integral for finite volumes.

We now show the vanishing of the contribution to (D.47) at spatial infinity for the
baryon solution. This is most conveniently done by using the gauge fields redefined to
absorb the tachyon phase as in (3.1.78). The 3-forms that are integrated on D3 can then
be written as

Tr
[
Ã ∧

(
F̃ (L) + F̃ (R)

)]
, (D.49)

Tr
[
Ã3
]
, (D.50)

dΦ ∧ Tr
[
Ã
]

= 0 , (D.51)

where A is defined in (3.1.42). On the other hand, the DBI action21 can be written in
terms of the redefined gauge fields as

SDBI = −M3Nc

∫
d5xVf (λ, τ2)

√
−det g̃× (D.52)

×
([

1

2
+

1

4
κτ2

(
g̃−1
)MN

Tr ÃMÃN−

−1

8
w2
(
g̃−1
)MN (

g̃−1
)PQ

Tr F̃
(L)
NP F̃

(L)
QM +O

(
(F(L))3

)]
+ (L↔ R)

)
,

from which it is clear that both Ã and F̃ (L/R) should vanish at spatial infinity for a finite
energy cylindrically symmetric baryon solution. This implies that there is no contribution
from spatial infinity to the baryon number (D.47).

D.2.1 Details on the relation to the bulk instanton number

We derive in this subsection the condition for the baryon number (3.1.96) to equal the bulk
instanton number

Ninstanton =
1

8π2

∫
bulk

Tr
(
F(L) ∧ F(L) − F(R) ∧ F(R)

)
, (D.53)

or in terms of the ansatz fields (3.1.70)

Ninstanton =
1

2π

∫
drdξ εµ̄ν̄ (Fµ̄ν̄ + ∂µ̄ (−iφ∗Dν̄φ+ h.c.)) . (D.54)

21In the probe limit. The result extends straightforwardly to the inhomogeneous tachyon case.

217



We first notice that (3.1.96) can be rewritten in terms of the redefined gauged fields of
(3.1.78) at the boundary as

NB =
1

24π2

∫ [
−iTr(L̃3 − R̃3 + 3L̃ ∧ R̃2 − 3L̃2 ∧ R̃)

] ∣∣∣∣
UV

. (D.55)

Because the redefined gauge fields at the boundary take a pure gauge form, F̃(L/R) = 0,
which implies that L̃2 = −id L̃ and likewise for R̃. (D.55) can then be rewritten as

NB =
1

24π2

∫ [
−iTr(L̃3 − R̃3 − 3 d(L̃ ∧ R̃))

] ∣∣∣∣
UV

=
1

24π2

∫ [
−iTr(L̃3 − R̃3)

] ∣∣∣∣
UV

= − 1

8π2

∫ [
Tr

(
F̃(L) ∧ L̃ +

1

3
i L̃3 −

(
F̃(R) ∧ R̃ +

1

3
i R̃3

))] ∣∣∣∣
UV

. (D.56)

On the other hand Tr(F̃(L)∧ F̃(L)) = d
[
Tr
(
F̃(L) ∧ L̃ + 1

3 i L̃
3
)]
≡ dω3(L̃), and likewise for

R, where ω3 is the Chern-Simons 3-form. So, using Stoke’s theorem, we find that

NB = Ninstanton −
1

8π2

∫ [
ω3(L̃)− ω3(R̃)

] ∣∣∣∣
IR

, (D.57)

where the contribution from spatial boundaries was dropped because of the boundary
conditions Table 3.1. Therefore, the condition for the baryon number to equal the instanton
number is that ∫ [

ω3(L̃)− ω3(R̃)
] ∣∣∣∣
IR

= 0 . (D.58)

In terms of the baryon ansatz of equations (3.1.50)-(3.1.52) and (3.1.64) the condition reads∫
dξ
(
Ãξ(|φ̃|2 − 1) + ∂ξφ̃1 + ∂ξφ̃1φ̃2 − ∂ξφ̃2φ̃1

) ∣∣∣∣
IR

= 0 . (D.59)

D.3 Gauged WZ term

The gauged WZ term was first written down fully by Witten in [140] (equation (24)) where
he also derived the chiral anomalies (equation (25)). It was then noted that this expression
has some typos and that it is defined up to a gauge invariant term by [141] and [142]. First
note that the authors all have different conventions for the gauge fields:

AWitten
L/R = −AKaymakcalan

L/R = −i(L/R)Mañes . (D.60)
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Upon these conventions, the expressions derived in [141] (equation (4.18)) and [142] (equa-
tion (69)) are exactly the same and differ from Witten’s expression by the following:

� As mentioned above, Witten’s expression should be corrected, by adding iA3
L to

ALdAL + dALAL in the second line, interchanging R↔ L in the second term of the
third line and replacing the 1

2 in front of A2
LUA

2
RU
−1 by 1 in the last line.

� They add to Witten’s Γ̃

i

48π2
Tr

∫
(d(ALUdARU

−1)− F(L)UF(R)U−1) , (D.61)

where the second term is such that the gauge-invariant form F(L)UF(R)U−1 does
not appear in the final expression and the first one yields a 3-dimensional boundary
term that vanishes .

We write here their expression using the convention of [141]

SWZ(U,AL, AR) = C

∫
Tr
[
β5
]

+ 5Ci

∫
Tr
[
ALα

3 +ARβ
3
]
−

− 5C

∫
Tr
[
(dALAL +ALdAL)α+ (dARAR +ARdAR)β

]
+

+ 5C

∫
Tr
[
dALαUARU

−1 + dARβU
−1ALU

]
+

+ 5C

∫
Tr
[
ARU

−1ALUβ
2 −ALUARU−1α2

]
+

+
5C

2

∫
Tr
[
(ALα)2 − (ARβ)2

]
+ 5Ci

∫
Tr
[
A3
Lα+A3

Rβ
]
+

+ 5Ci

∫
Tr
[
(dARAR +ARdAR)U−1ALU−

− (dALAL +ALdAL)UARU
−1
]
+

+ 5Ci

∫
Tr
[
ALUARU

−1ALα+ARU
−1ALUARβ

]
+

+ 5C

∫
Tr
[
A3
RU
−1ALU −A3

LUARU
−1 +

1

2
(UARU

−1AL)2
]
, (D.62)

where C = −iNc
240π2 , α = dUU−1 and β = U−1dU . Note that all terms are P1-odd. They are

also C even, apart from the term in the third line which is the sum of a C-even non-closed
4-form and a C-odd exact 4-form.
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Gauge transformations It can be checked that (D.62) reproduces the correct chiral
anomalies

δSWZ(U,AL, AR) = −10C

∫
Tr

[
ΛL

(
(dAL)2 − i

2
d(A3

L)

)
− (L↔ R)

]
, (D.63)

upon a general infinitesimal gauge transformation, where the various fields transform as

δU = ΛLU − UΛR , (D.64)

δAL/R = −idΛL/R + [ΛL/R, AL/R] . (D.65)

E The TCS contribution to the baryon equations

of motion

The TCS action reads

SCS =
iNc

4π2

∫
Ω5 , (E.1)

where Ω5 is the TCS 5-form, which is decomposed as in (3.1.26)

Ω5 = Ω0
5 + Ωc

5 + dG4 . (E.2)

The expressions for each term are given in Appendix D. Upon a small variation of the fields,
Ωc

5 and dG4 yield boundary terms which do not contribute to the equations of motion. The
TCS contribution to the equations of motion is therefore given by varying the first term
Ω0

5 (D.5).

Gauge field EoM Upon a little variation of the gauge field L → L + δL, Ω0
5 changes

as

δLΩ0
5 = Tr

{
δL ∧

(
− if1(τ)

(
F(L) ∧ F(L) + U †F(R) ∧ F(R)U − L ∧ F(L) ∧ U †DU−

− F(L) ∧ U †DU ∧ L− L ∧ U †DU ∧ F(L)−
− U †DU ∧ F(L) ∧ L

)
−

− d
[
f1(τ)(U †DU ∧ F(L) + F(L) ∧ U †DU)

]
−

− if2(τ)
(
F(L) ∧ U †DU ∧ U †DU + U †DU ∧ U †DU ∧ F(L)+

+ U †DU ∧ F(L) ∧ U †DU−
− L ∧ U †DU ∧ U †DU ∧ U †DU−
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− U †DU ∧ U †DU ∧ U †DU ∧ L+

+ F(R) ∧DUU † ∧DUU † +DUU † ∧DUU † ∧ F(R)+

+DUU † ∧ F(R) ∧DUU †
)
−

− d
[
f2(τ)U †DU ∧ U †DU ∧ U †DU

]
−

− if3(τ)
(
F(L) ∧ U †F(R)U+U †F(R)U ∧ F(L)−L ∧ U †F(R) ∧DU−

− U †F(R) ∧DU ∧ L− L ∧ U †DU ∧ U †F(R)U−
− U †DU ∧ U †F(R)U ∧ L

)
−

− d
[
f3(τ)(U †DU ∧ U †F(R)U + U †F(R) ∧DU)

]
−

− 4if4(τ)U †DU ∧ U †DU ∧ U †DU ∧ U †DU
)}

, (E.3)

and δRΩ0
5 is obtained by exchanging L ↔ R, U ↔ U † and multiplying by −1. From the

definition of the CS currents (C.3) and (C.9), (E.3) can be written as

δLΩ0
5 = 4π2iM3 Tr

{
2δL ∧ J (L)

CS +
1

Nf
δL̂ ∧ Ĵ (L)

CS INf

}
, (E.4)

where

Ĵ
(L)
CS =

1

4!
εMNPQRĴ

(L),M
CS dxN ∧ dxP ∧ dxQ ∧ dxR ,

J
(L) a
CS =

1

4!
εMNPQRĴ

(L) a,M
CS dxN ∧ dxP ∧ dxQ ∧ dxR , (E.5)

with the quantities Ĵ
(L),M
CS and J

(L) a,M
CS appearing respectively in (C.1) and (C.8).

U EoM Upon a little variation of U , U → U + δU , Ω0
5 changes as

δUΩ0
5 = Tr

{
δU

(
− f1(τ)

(
iL ∧ F(L) ∧ F(L)U † − iF(L) ∧ F(L)U † ∧R−

− U †DU ∧ F(L) ∧ F(L)U † + iL ∧ U †F(R) ∧ F(R)−
− iU †F(R) ∧ F(R) ∧R− U †F(R) ∧ F(R) ∧DUU †

)
+

+ d
[
f1(τ)(F(L) ∧ F(L)U † + U †F(R) ∧ F(R))

]
−

− f2(τ)
(
iL ∧ F(L) ∧ U †DU ∧ U †DUU †−

− iF(L) ∧ U †DU ∧ U †DUU † ∧R−
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− U †DU ∧ F(L) ∧ U †DU ∧ U †DUU †+
+ iL ∧ U †DU ∧ F(L) ∧ U †DUU †−
− iU †DU ∧ F(L) ∧ U †DUU † ∧R−
− U †DU ∧ U †DU ∧ F(L) ∧ U †DUU †+
+ iL ∧ U †DU ∧ U †DU ∧ F(L)U †−
− iU †DU ∧ U †DU ∧ F(L)U † ∧R−
− U †DU ∧ U †DU ∧ U †DU ∧ F(L)U †+

+ iL ∧ U †F(R) ∧DUU † ∧DUU †−
− iU †F(R) ∧DUU † ∧DUU † ∧R−
− U †DUU † ∧ F(R) ∧DUU † ∧DUU †+
+ iL ∧ U †DUU † ∧ F(R) ∧DUU †−
− iU †DUU † ∧ F(R) ∧DUU † ∧R−
− U †DUU † ∧DUU † ∧ F(R) ∧DUU †+
+ iL ∧ U †DUU † ∧DUU † ∧ F(R)−
− iU †DUU † ∧DUU † ∧ F(R) ∧R−
− U †DUU † ∧DUU † ∧DUU † ∧ F(R)

)
+

+ d
[
f2(τ)

(
F(L) ∧ U †DU ∧ U †DUU † + U †DU ∧ F(L) ∧ U †DUU †+

+U †DU ∧ U †DU ∧ F(L)U †+U †F(R) ∧DUU † ∧DUU †+
+U †DUU † ∧ F(R) ∧DUU †+
+U †DUU † ∧DUU † ∧ F(R)

)]
−

− f3(τ)
(
iL ∧ F(L) ∧ U †F(R) − iF(L) ∧ U †F(R) ∧R−

− U †F(R)DU ∧ F(L)U † + iL ∧ U †F(R) ∧ UF(L)U †−
− iU †F(R) ∧ UF(L)U † ∧R− U †F(R) ∧ UF(L)U † ∧DUU †+
+ F(L) ∧ U †DUU † ∧ F(R) − U †DUU † ∧ F(R) ∧ UF(L)U †

)
+

+ d
[
f3(τ)

(
F(L) ∧ U †F(R) + U †F(R)U ∧ F(L)U †

)]
−

− 4f4(τ)
(
iL ∧ U †DU ∧ U †DU ∧ U †DU ∧ U †DUU †−
− iU †DU ∧ U †DU ∧ U †DU ∧ U †DUU † ∧R−
− U †DU ∧ U †DU ∧ U †DU ∧ U †DU ∧ U †DUU †

)
+
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+ 4 d
[
f4(τ)U †DU ∧ U †DU ∧ U †DU ∧ U †DUU †

])}
. (E.6)

From (C.7), (E.6) can be written as

δUΩ0
5 = 4π2iM3 Tr

(
δUJUCSU

†
)
, (E.7)

where
JUCS ≡ JUCS dt ∧ dr ∧ dx1 ∧ dx2 ∧ dx3 , (E.8)

and where JUCS can be read off from (C.6).

F The baryon ansatz field equations

We present in this appendix the derivation of the differential equations obeyed by the fields
of the baryon ansatz (3.1.70). We start with some general results which are useful to derive
those equations and then specify to the two different regimes of approximation considered
in this work, the probe instanton and the inhomogeneous tachyon.

We first write down the expression for the inverse of the effective metric g̃ (3.1.75),
which is found to take a relatively simple form

− det g̃ g̃−1 =


α0 −Xr − ~Xt

Xr αr ~Y t

~X ~Y gS

 , (F.1)

where we defined 2 scalars

α0 ≡ e8A + e6Aκ
(
(∂rτ)2 + (∂ξτ)2

)
, (F.2)

αr ≡ e4A
(
e4Af − w2(∂ξΦ)2 + κ(∂ξτ)2e2A

)
, (F.3)

the 4-vector X with components

Xr ≡ e4Aw
(
e2A∂rΦ + κ∂ξτ(∂rΦ∂ξτ − ∂ξΦ∂rτ)

)
, (F.4)

Xi ≡ e4Axi
ξ
w
(
e2A∂ξΦ− κ∂rτ(∂rΦ∂ξτ − ∂ξΦ∂rτ)

)
, (F.5)

the 3-vector ~Y with components

Yi ≡ −e4Axi
ξ

(−w2∂rΦ∂ξΦ + e2Aκ∂rτ∂ξτ)) , (F.6)
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and the symmetric 3-matrix gS with components

(gS)ii = e8A − e4Aw2

(
(∂rΦ)2 + (∂ξΦ)2

(
1− x2

i

ξ2

))
− (F.7)

− e2Aκw2(∂ξτ∂rΦ− ∂rτ∂ξΦ)2

(
1− x2

i

ξ2

)
+

+ e6Aκ

(
(∂rτ)2 + (∂ξτ)2

(
1− x2

i

ξ2

))
,

(gS)ij = −e2Axixj
ξ2

(−e2Aw2(∂ξΦ)2 + e4Aκ(∂ξΦ)2 − κw2(∂ξτ∂rΦ− ∂rτ∂ξΦ)2) . (F.8)

Provided these results, the equations of motion (C.1),(C.6) and (C.8) are simplified in the
following ways:

� The superscripts (L) and (R) can be removed from g̃.

� F
(L/R)C
C = (g̃−1)[MN ]F

(L/R)
NM = 0 because F

(L/R)
0M = 0.

�

TrDNU
†U = 0 . (F.9)

� In terms of the redefined gauge fields (3.1.78), the following replacements can be
performed

iDNU
†U →

√
2ÃN , (F.10)

1

4

[
D(M

(
Vf (λ, τ2)κτ2

√
−det g̃(L)

(
(g̃(L))−1

)(MN)
DN)U

†
)
U − h.c.+ (L↔ R)

]
→ −i

√
2∂M

(
Vf (λ, τ2)κτ2

√
−det g̃

(
g̃−1
)(MN)

ÃN

)
−

− Vf (λ, τ2)κτ2
√
−det g̃

(
g̃−1
)(MN)

[
ṼM , ÃN

]
, (F.11)

where A and V are defined in (3.1.42).

� Within the ansatz the matrices SMN and F
(L/R)
MN can be written

F
(L/R)
MN =

 0 0

0 F
(L/R)
(4)

 , (F.12)

SMN =

 0 0

0 S(4)

 , (F.13)
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where F
(L/R)
(4) is an antisymmetric 4-matrix

F
(L/R) a
(4),ij = εaij

(
φ

(L/R)
1

)2
− 2

(
1 + φ

(L/R)
2

)
ξ2

+ (F.14)

+ (xiε
ajk − xjεaik)xk

ξDξφ
(L/R)
2 +

(
φ

(L/R)
1

)2
− 2

(
1 + φ

(L/R)
2

)
ξ4

+

+ (xiδja − xjδia)
Dξφ

(L/R)
1

ξ2
+ xaε

ijkxk

(
1 + φ

(L/R)
2

)2

ξ4
,

F
(L/R) a
(4),ir = −εaikxk

Drφ
(L/R)
2

ξ2
− (ξ2δia − xixa)

Drφ
(L/R)
1

ξ3
+ xixa

F
(L/R)
ξr

ξ2
, (F.15)

where the covariant derivative Dφ is defined in (A.21) and the field strength Fµ̄ν̄
in (A.23). We recall that the abelian part of the field strength is included in the
effective metric g̃ and has the components

F̂
(L/R)
(4),r0 = ∂rΦ(r, ξ) , F̂

(L/R)
i0 =

xi
ξ
∂ξΦ(r, ξ) . (F.16)

S(4) is a symmetric 4-matrix

(S(4))rr = 2(∂rθ +Ar)
2 = 2Ã2

r , (F.17)

(S(4))ri = 2(Ar + ∂rθ)(Aξ + ∂ξθ)
xi
ξ

= 2ÃrÃξ
xi
ξ
, (F.18)

(S(4))ij = 2

(
(eiθφ+ e−iθφ∗)2

4ξ2

(
δij −

xixj
ξ2

)
+ (Aξ + ∂ξθ)

2xixj
ξ2

)
= 2

(
(φ̃+ φ̃∗)2

4ξ2

(
δij −

xixj
ξ2

)
+ Ã2

ξ

xixj
ξ2

)
, (F.19)

where we recall that we defined the 2-vector (Aξ, Ar) = (A1, A2). Then, noting that
g̃−1 can be written

− det g̃ g̃−1 =

 e8A + e6Aκ
(
(∂rτ)2 + (∂ξτ)2

)
−Xt

X S

 , (F.20)

with S the symmetric 4-matrix

S ≡

 e4A
(
e4A − w2(∂ξΦ)2 + κ(∂ξτ)2e2A

)
~Y t

~Y gS

 , (F.21)
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the following expressions can be obtained for the matrices with raised indices

(
F (L/R)

)MN
= (−det g̃)−2

 0 XtF
(L/R)
(4) Σ

−ΣF
(L/R)
(4) X ΣF

(L/R)
(4) Σ

 , (F.22)

SMN = (−det g̃)−2

 −XtSX −XtS(4)S
SS(4)X SS(4)S

 , (F.23)

(
F (L/R)

)MS (
F (L/R)

) N

S
= (F.24)

= (−det g̃)−3

 XtF
(L/R)
(4) SF (L/R)

(4) X −XtF
(L/R)
(4) SF (L/R)

(4) S
ΣF

(L/R)
(4) SF (L/R)

(4) X SF (L/R)
(4) SF (L/R)

(4) S

 ,

(
F (L/R)

)MN (
F (L/R)

)
NM

= (−det g̃)−2tr
(
SF (L/R)

(4) SF (L/R)
(4)

)
, (F.25)

where the symmetric and antisymmetric parts are easily identified.

F.1 Probe instanton

We consider first the case of the probe regime. We recall the expressions of the non-abelian
equations of motion in (C.6) and (C.8)

1

2

[
D(M

(
Vf (λ, τ2)κτ2

√
−det g̃

(
g̃−1
)(MN)

DN)U
†
)
U − h.c.

]
= JUCS , (F.26)

1

2
DN

[
Vf (λ, τ2)

√
−det g̃ w2F (L)NM

]
(F.27)

=
1

2
Vf (λ, τ2)

√
−det g̃

(
g̃−1
)MN

κτ2

(
iDNU

†U − 1

Nf
Tr(iDNU

†U) + h.c.

)
+ 2J

(L)
CS .

With the quadratic expansion introduced in Section 3.1.5.1, the abelian gauge field equa-
tions (C.1) are modified to take the same shape as the non-abelian part

Nf∂N

[
Vf (λ, τ2)

√
−det g̃ w2F̂ (L)NM

]
(F.28)

= Vf (λ, τ2)
√
−det g̃

(
g̃−1
)MN

κτ2Tr
(
iDNU

†U + h.c.
)

+ 2Ĵ
(L)
CS ,

where the result (F.9) was used to simplify the right-hand side.
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SU(2) ansatz Substituting the ansatz (3.1.50)-(3.1.52), (3.1.56)-(3.1.58) and (3.1.64)
into the equations of motion (F.26)-(F.28) yields the following system of equations for the
fields of the ansatz (3.1.70)

xa

2ξ3
σa

[
∂r

(
Vf (λ, τ2)κτ2 e3A√

1 + e−2Aκ(∂rτ)2
ξ2Ãr

)
(F.29)

+Vf (λ, τ2)κτ2e3A
√

1 + e−2Aκ(∂rτ)2
(
∂ξ(ξ

2Ãξ) + 2φ̃1φ̃2

)]
=
i

2
JUCS ,

∂r

[
Vf (λ, τ2)w2eA

∂rΦ√
1 + e−2Aκ(∂rτ)2

]
(F.30)

+ Vf (λ, τ2)w2eA
√

1 + e−2Aκ(∂rτ)2
∂ξ(ξ

2∂ξΦ)

ξ2
= −ĴCS 0 ,

eA√
1 + e−2Aκ(∂rτ)2

Vf (λ, τ2)w2x
a

ξ3

[
∂ξ(ξ

2Fξr)− (iφ∗Drφ− iφDrφ
∗)
]

(F.31)

= 4Vf (λ, τ2)
xa

ξ

e3A√
1 + e−2Aκ(∂rτ)2

κτ2Ãr + 4J
(L) a
CS r ,

εiakxk
2ξ2

[
VfeA

√
1 + e−2Aκ(∂rτ)2w2

(
iDξDξφ̃− iφ̃

|φ|2 − 1

ξ2
+ h.c.

)
(F.32)

+

(
iDr

(
VfeAw2√

1 + e−2Aκ(∂rτ)2
Drφ̃

)
+ h.c.

)]

+
ξ2δia − xixa

2ξ3

[
VfeA

√
1 + e−2Aκ(∂rτ)2w2

(
DξDξφ̃− φ̃

|φ|2 − 1

ξ2
+ h.c.

)
+

(
Dr

(
VfeAw2√

1 + e−2Aκ(∂rτ)2
Drφ̃

)
+ h.c.

)]

− xixa
2ξ4

[
VfeA

√
1 + e−2Aκ(∂rτ)2w2 (2iφ∗Dξφ+ h.c.) +

+2ξ2∂r

(
VfeAw2√

1 + e−2Aκ(∂rτ)2
Fξr

)]

= 4Vfe3A
√

1 + e−2Aκ(∂rτ)2κτ2

(
ξ2δia − xixa

2ξ3
(φ̃+ φ̃∗)− xixa

2ξ4
(−2ξ2Ãξ)

)
+ 4J

(L) a
CS i ,
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where we used the covariant quantities (A.21) and (A.23). The right-handed equations are
obtained by performing

φ→ −φ∗ , Aµ̄ → −Aµ̄ . (F.33)

It can be checked that (F.30), (F.31) and (F.32) yield the same form for the equations of
motion as what was found in [173] and [175] when the tachyon and the CS contribution
are set to 0. We derive the CS contribution in the next subsection.

F.1.1 TCS contribution

The general form of the contribution of the TCS term to the equations of motion is pre-
sented in Appendix E. For the SU(2) ansatz (3.1.50)-(3.1.52) and (3.1.64), the CS currents

Ĵ
(L)
CSM , J

(L) a
CSM and JUCS in the probe approximation are found to be

Ĵ
(L)
CS 0 = Ĵ

(R)
CS 0 =

−f1(τ)

4π2M3ξ2

((
1 +

f3(τ)

f1(τ)

)
εµ̄ν̄ (Fµ̄ν̄ + ∂µ̄(−iφ∗Dν̄φ+ h.c.))

+

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
εµ̄ν̄
(

1

2
Fµ̄ν̄(φ̃+ φ̃∗)2 −Aµ̄∂ν̄(φ̃+ φ̃∗)2

)
+ 2τ ′

(
f ′1(τ) + f ′3(τ)

f1(τ)
(Ãξ(|φ|2 − 1) +

i

2
(φ̃+ φ̃∗)(Dξφ̃−Dξφ̃

∗))

)
−3iτ ′

f ′2(τ)

f1(τ)
Ãξ(φ̃+ φ̃∗)2

)
, (F.34)

J
(L) a
CS r = −J (R) a

CS r

=
f1(τ)

2π2M3ξ3
xa ∂ξΦ

((
1 +

f3(τ)

f1(τ)

)
(1− |φ|2)+ (F.35)

+

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
(φ̃+ φ̃∗)2

2

)
,

J
(L) a
CS i =

ξ2δia − xixa
2ξ3

f1(τ)εµ̄ν̄

2π2M3

(
− i
(

1 +
f3(τ)

f1(τ)

)
∂µ̄ΦDν̄ φ̃+

+ 2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
φ̃∂µ̄ΦÃν̄ + h.c.

)
+

− xixa
2ξ4

f1(τ)

2π2M3

(
− 2

(
1 +

f3(τ)

f1(τ)

)
∂rΦ(|φ|2 − 1)+

+

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
∂rΦ(φ̃+ φ̃∗)2

)
+
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+
εiakxk

2ξ2

f1(τ)

2π2M3

((
1 +

f3(τ)

f1(τ)

)
εµ̄ν̄(∂µ̄ΦDν̄ φ̃+ h.c.)+ (F.36)

+
f ′1(τ) + f ′3(τ)

f1(τ)
τ ′(φ̃+ φ̃∗)∂ξΦ

)
.

JUCS = σa
xa
2ξ3
× −i
π2M3

(
(f1(τ) + f3(τ)− 3if2(τ))εµ̄ν̄(φ̃+ φ̃∗)∂µ̄Φ(Dν̄ φ̃+Dν̄ φ̃

∗)+

+ (f ′1(τ) + f ′3(τ))τ ′∂ξΦ(|φ|2 − 1)− 3i

2
f ′2(τ)τ ′∂ξΦ(φ̃+ φ̃∗)2

)
.

(F.37)

Note that only f1(τ) + f3(τ) and f2(τ) contribute to the equations of motion.

F.1.2 Full EoMs

Substituting (F.34)-(F.37) into (F.29),(F.30),(F.31) and (F.32) yields the full set of 6 real
equations of motion for the 6 fields of the SU(2) ansatz (3.1.70) in the probe instanton
limit (where the tachyon modulus τ is a background field)

∂r

(
e2Ak κτ2ξ2Ãr

)
+ e2Ahκτ2

(
∂ξ(ξ

2Ãξ) +
1

2i
(φ̃2 − (φ̃∗)2)

)
=
f1(τ) + f3(τ)− 3if2(τ)

2π2M3
εµ̄ν̄(φ̃+ φ̃∗)∂µ̄Φ(Dν̄ φ̃+Dν̄ φ̃

∗)

+
1

2π2M3
(f ′1(τ) + f ′3(τ))τ ′∂ξΦ(|φ|2 − 1)− 3i

4π2M3
f ′2(τ)τ ′∂ξΦ(φ̃+ φ̃∗)2 , (F.38)

∂r
[
kw2 ξ2∂rΦ

]
+ hw2 ∂ξ(ξ

2∂ξΦ)

=
f1(τ)

4π2M3

((
1 +

f3(τ)

f1(τ)

)
εµ̄ν̄ (Fµ̄ν̄ + ∂µ̄(−iφ∗Dν̄φ+ h.c.)) +

+

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
εµ̄ν̄
(

1

2
Fµ̄ν̄(φ̃+ φ̃∗)2 − Ãµ̄∂ν̄(φ̃+ φ̃∗)2

)
+

+2τ ′
f ′1(τ) + f ′3(τ)

f1(τ)

(
Ãξ(|φ|2 − 1) +

i

2
(φ̃+ φ̃∗)(Dξφ̃−Dξφ̃

∗)

)
−

−3iτ ′
f ′2(τ)

f1(τ)
Ãξ(φ̃+ φ̃∗)2

)
, (F.39)

kw2
[
∂ξ(ξ

2Fξr)− (iφ∗Drφ− iφDrφ
∗)
]

= 4e2Ak κτ2ξ2Ãr
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+
2f1(τ)

π2M3
∂ξΦ

((
1 +

f3(τ)

f1(τ)

)
(1− |φ|2) +

1

2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
(φ̃+ φ̃∗)2

)
,

(F.40)

hw2

(
DξDξφ̃− φ̃

|φ|2 − 1

ξ2

)
+Dr

(
kw2Drφ̃

)
+ h.c.

= 4e2Ahκτ2φ̃+

+
2f1(τ)εµ̄ν̄

π2M3

(
−i
(

1 +
f3(τ)

f1(τ)

)
∂µ̄ΦDν̄ φ̃+ (F.41)

+2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
φ̃∂µ̄ΦÃν̄

)
+ h.c. ,

hw2
(
−iφ∗Dξφ̃+ h.c.

)
+ ξ2∂r

(
kw2Frξ

)
= 4e2Ahκτ2ξ2Ãξ

− 2f1(τ)

π2M3
∂rΦ

((
1 +

f3(τ)

f1(τ)

)
(1− |φ|2) +

1

2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
(φ̃+ φ̃∗)2

)
, (F.42)

hw2

(
iDξDξφ̃− iφ̃

|φ|2 − 1

ξ2

)
+ iDr

(
kw2Drφ̃

)
+ h.c.

=
2f1(τ)

π2M3

((
1 +

f3(τ)

f1(τ)

)
εµ̄ν̄∂µ̄ΦDν̄ φ̃+

f ′1(τ) + f ′3(τ)

f1(τ)
τ ′φ̃∂ξΦ

)
+ h.c. . (F.43)

where we defined

k(r) ≡ eA√
1 + e−2Aκ(∂rτ)2

Vf (λ, τ2) , h(r) ≡ eA
√

1 + e−2Aκ(∂rτ)2Vf (λ, τ2) . (F.44)

(F.38)-(F.43) are consistent with the equations of motion derived in [173] (equation (19))
and [175] (equations (2.16)-(2.19)) in the limit where the tachyon goes to 022.

F.1.3 Lorenz gauge

We write in this subsection the equations of motion (F.38)-(F.43) in the Lorenz gauge,
which corresponds to the constraint

∂rAr + ∂ξAξ = 0 . (F.45)

22Except that γ should be divided by 2 in (2.19) of [175] and multiplied by -1 in (2.17) and
(2.18). Also, to obtain the same coefficients for γ it is necessary to change the convention for the
normalization of the abelian gauge field Φ: Φ→ Φ/

√
2Nf .
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In this gauge, the equations of motion for the 2-dimensional gauge field Aµ̄ can be written
in an elliptic form, which is the appropriate form to solve the equations numerically via
the heat diffusion method. The full set of equations of motion in Lorenz gauge reads

∂r
(
e2Ak κτ2ξ2∂rθ

)
+ e2Ahκτ2∂ξ(ξ

2∂ξθ)

+ ∂r
(
e2Ak κτ2ξ2Ar

)
+ e2Ahκτ2

(
∂ξ(ξ

2Aξ) +
1

2i
(φ̃2 − (φ̃∗)2)

)
=
f1(τ) + f3(τ)− 3if2(τ)

2π2M3
εµ̄ν̄(φ̃+ φ̃∗)∂µ̄Φ

(
Dν̄ φ̃+ h.c.

)
+

1

2π2M3
(f ′1(τ) + f ′3(τ))τ ′∂ξΦ(|φ̃|2 − 1)− 3i

4π2M3
f ′2(τ)τ ′∂ξΦ(φ̃+ φ̃∗)2 , (F.46)

∂r
[
kw2 ξ2∂rΦ

]
+ hw2 ∂ξ(ξ

2∂ξΦ)

=
f1(τ)

4π2M3

((
1 +

f3(τ)

f1(τ)

)
εµ̄ν̄
(
Fµ̄ν̄ + ∂µ̄

(
−iφ̃∗Dν̄ φ̃+ h.c.

))
+

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
εµ̄ν̄
(

1

2
Fµ̄ν̄(φ̃+ φ̃∗)2 − Ãµ̄∂ν̄(φ̃+ φ̃∗)2

)
+ 2τ ′

f ′1(τ) + f ′3(τ)

f1(τ)

(
Ãξ(|φ̃|2 − 1) +

i

2
(φ̃+ φ̃∗)

(
Dξφ̃− h.c.

))
− 3iτ ′

f ′2(τ)

f1(τ)
Ãξ(φ̃+ φ̃∗)2

)
, (F.47)

kw2
[
ξ2(∂2

ξAr + ∂2
rAr) + 2ξFξr −

(
iφ̃∗Drφ̃+ h.c.

)]
= 4e2Ak κτ2ξ2Ãr

+
2f1(τ)

π2M3
∂ξΦ

((
1 +

f3(τ)

f1(τ)

)
(1− |φ̃|2) +

1

2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
(φ̃+ φ̃∗)2

)
, (F.48)

hw2

(
DξDξφ̃− φ̃

|φ̃|2 − 1

ξ2

)
+Dr

(
kw2Drφ̃

)
+ h.c.

= 4e2Ahκτ2φ̃

+
2f1(τ)εµ̄ν̄

π2M3

(
−i
(

1 +
f3(τ)

f1(τ)

)
∂µ̄ΦDν̄ φ̃+

+2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
φ̃∂µ̄ΦÃν̄

)
+ h.c. , (F.49)

hw2
(
−iφ̃∗Dξφ̃+ h.c.

)
+ ξ2kw2(∂2

ξAξ + ∂2
rAξ) + ξ2(kw2)′Frξ
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= 4e2Ahκτ2ξ2Ãξ

− 2f1(τ)

π2M3
∂rΦ

((
1 +

f3(τ)

f1(τ)

)
(1− |φ̃|2) +

1

2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
(φ̃+ φ̃∗)2

)
, (F.50)

hw2

(
iDξDξφ̃− iφ̃

|φ̃|2 − 1

ξ2

)
+ iDr

(
kw2Drφ̃

)
+ h.c.

=
2f1(τ)

π2M3

((
1 +

f3(τ)

f1(τ)

)
εµ̄ν̄∂µ̄ΦDν̄ φ̃+

f ′1(τ) + f ′3(τ)

f1(τ)
τ ′φ̃∂ξΦ

)
+ h.c. . (F.51)

F.2 Inhomogeneous tachyon

This appendix presents the expressions for the equations of motion for the ansatz fields
(3.1.70) in the case where the tachyon modulus τ is allowed to be dynamical.

The equations of motion involve the inverse effective metric which in this case takes
the following form

g̃−1 =



−e−2A 0 0 0 0

0 ∆rr −x1
ξ ∆ξr −x2

ξ ∆ξr −x3
ξ ∆ξr

0 −x1
ξ ∆ξr e−2A −

(
x1
ξ

)2
∆ξξ −x1

ξ
x2
ξ ∆ξξ −x1

ξ
x3
ξ ∆ξξ

0 −x2
ξ ∆ξr −x1

ξ
x2
ξ ∆ξξ e−2A −

(
x2
ξ

)2
∆ξξ −x2

ξ
x3
ξ ∆ξξ

0 −x3
ξ ∆ξr −x1

ξ
x3
ξ ∆ξξ −x2

ξ
x3
ξ ∆ξξ e−2A −

(
x3
ξ

)2
∆ξξ


,

(F.52)
where we defined the symbol ∆ as

∆ξξ ≡
e6Aκ (∂ξτ)2

−det g̃
=

e−4Aκ (∂ξτ)2

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)
, (F.53)

∆ξr ≡
e6Aκ ∂ξτ∂rτ

−det g̃
=

e−4Aκ ∂ξτ∂rτ

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)
, (F.54)

∆rr ≡
e8A(1 + e−2Aκ (∂ξτ)2)

−det g̃
=

e−2A (1 + e−2Aκ (∂ξτ)2)

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)
. (F.55)

The equations themselves are then obtained by extremizing the energy (3.1.90) with
respect to small deformations of the ansatz fields (3.1.70)

∂r

(
κτ2X e4A∆rrξ

2Ãr

)
+ ∂ξ(κτ

2X e2A(1− e2A∆ξξ)ξ
2Ãξ)

− ∂r(κτ
2X e4A∆ξrξ

2Ãξ)− ∂ξ(κτ
2X e4A∆ξrξ

2Ãr)
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+
1

2i
κτ2X e2A(φ̃2 − (φ̃∗)2)

=
εµ̄ν̄

2π2M3

[
(f1(τ) + f3(τ)− 3if2(τ))(φ̃+ φ̃∗)∂µ̄Φ(Dν̄ φ̃+Dν̄ φ̃

∗)

+∂µ̄Φ∂ν̄τ

(
(f ′1(τ) + f ′3(τ))(|φ|2 − 1)− 3i

2
f ′2(τ)(φ̃+ φ̃∗)2

)]
, (F.56)

∂r
[
w2X e2A∆rrξ

2∂rΦ
]

+ ∂ξ
[
w2X (1− e2A∆ξξ)ξ

2∂ξΦ
]

− ∂r
[
w2X e2A∆ξrξ

2∂ξΦ
]
− ∂ξ

[
w2X e2A∆ξrξ

2∂rΦ
]

=
f1(τ)

4π2M3
εµ̄ν̄
((

1 +
f3(τ)

f1(τ)

)
(Fµ̄ν̄ + ∂µ̄(−iφ∗Dν̄φ+ h.c.)) +

+

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)(
1

2
Fµ̄ν̄(φ̃+ φ̃∗)2 − Ãµ̄∂ν̄

(
(φ̃+ φ̃∗)2

))
+

+2∂ν̄τ

(
f ′1(τ) + f ′3(τ)

f1(τ)
(Ãµ̄(|φ|2 − 1) +

i

2
(φ̃+ φ̃∗)(Dµ̄φ̃−Dµ̄φ̃

∗))−

−3i
f ′2(τ)

2f1(τ)
Ãµ̄(φ̃+ φ̃∗)2

))
, (F.57)

∂ξ

[
w2X e2A

[
∆rr(1− e2A∆ξξ)− e2A∆2

ξr

]
ξ2Fξr

]
− w2X e2A∆rr(iφ

∗Drφ− iφDrφ
∗)+

+ w2X e2A∆ξr(iφ
∗Dξφ− iφDξφ

∗)

= 4κτ2X e4A∆rrξ
2Ãr − 4κτ2X e4A∆ξrξ

2Ãξ+

+
2f1(τ)

π2M3
∂ξΦ

((
1 +

f3(τ)

f1(τ)

)
(1− |φ|2) +

1

2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
(φ̃+ φ̃∗)2

)
,

(F.58)

Dξ

[
w2X (1− e2A∆ξξ)Dξφ̃

]
+Dr

[
w2X e2A∆rrDrφ̃

]
−

−Dξ

[
w2X e2A∆ξrDrφ̃

]
−Dr

[
w2X e2A∆ξrDξφ̃

]
− w2X φ̃ |φ|

2 − 1

ξ2
+ h.c.

= 4κτ2X e2Aφ̃+

+
2f1(τ)εµ̄ν̄

π2M3

(
−i
(

1 +
f3(τ)

f1(τ)

)
∂µ̄ΦDν̄ φ̃+

+2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
φ̃∂µ̄ΦÃν̄

)
+ h.c. , (F.59)

∂r

[
w2X e2A

[
∆rr(1− e2A∆ξξ)− e2A∆2

ξr

]
ξ2Frξ

]
−
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− w2X (1− e2A∆ξξ)(iφ
∗Dξφ− iφDξφ

∗) + w2X e2A∆ξr(iφ
∗Drφ− iφDrφ

∗)

= 4κτ2X e2A(1− e2A∆ξξ)ξ
2Ãξ − 4κτ2X e4A∆ξrξ

2Ãr−

− 2f1(τ)

π2M3
∂rΦ

((
1 +

f3(τ)

f1(τ)

)
(1− |φ|2) +

1

2

(
3i
f2(τ)

f1(τ)
− 1− f3(τ)

f1(τ)

)
(φ̃+ φ̃∗)2

)
, (F.60)

iDξ

[
w2X (1− e2A∆ξξ)Dξφ̃

]
+ iDr

[
w2X e2A∆rrDrφ̃

]
−

− iDξ

[
w2X e2A∆ξrDrφ̃

]
− iDr

[
w2X e2A∆ξrDξφ̃

]
− iw2X φ̃ |φ|

2 − 1

ξ2
+ h.c.

=
2f1(τ)

π2M3
εµ̄ν̄
((

1 +
f3(τ)

f1(τ)

)
∂µ̄ΦDν̄ φ̃+

f ′1(τ) + f ′3(τ)

f1(τ)
∂ν̄τ φ̃∂µ̄Φ

)
+ h.c. , (F.61)

∂r

[
Y
(
∂rτLDBI+

+ e2AX
(

e2Aξ2κ(λ)τ2
(

∆rr,rÃ
2
r −∆ξξ,rÃ

2
ξ − 2∆ξr,rÃrÃξ

)
+

+ w(λ)2

(
1

8

(
∆rr,r

(
1− e2A∆ξξ

)
− e2A∆rr∆ξξ,r − 2e2A∆ξr,r∆ξr

)
ξ2(Fµ̄ν̄)2+

+
1

2

(
−∆ξξ,r |Dξφ|2 + ∆rr,r |Drφ|2

)
− 1

2
∆ξr,r(Drφ

∗Dξφ+ h.c.)−
−ξ2

(
∆rr,r(∂rΦ)2 −∆ξξ,r(∂ξΦ)2 − 2∆ξr,r∂ξΦ∂rΦ

)) ) )]
+

+ ∂ξ

[
Y
(
∂ξτLDBI

+ e2AX
(

e2Aξ2κ(λ)τ2
(

∆rr,ξÃ
2
r −∆ξξ,ξÃ

2
ξ − 2∆ξr,ξÃrÃξ

)
+

+ w(λ)2

(
1

8

(
∆rr,ξ

(
1− e2A∆ξξ

)
− e2A∆rr∆ξξ,ξ − 2e2A∆ξr,ξ∆ξr

)
ξ2(Fµ̄ν̄)2+

+
1

2

(
−∆ξξ,ξ |Dξφ|2 + ∆rr,ξ |Drφ|2

)
− 1

2
∆ξr,ξ(Drφ

∗Dξφ+ h.c.)−
−ξ2

(
∆rr,ξ(∂rΦ)2 −∆ξξ,ξ(∂ξΦ)2 − 2∆ξr,ξ∂ξΦ∂rΦ

)) ) )]
−

− δ

δτ
(log Vf )LDBI

= 2X e2Aξ2κτ

(
e2A∆rrÃ

2
r +

(
1− e2A∆ξξ

)
Ã2
ξ +

(φ+ φ∗)2

2ξ2
− 2e2A∆ξrÃrÃξ

)
+

1

π2M3
εµ̄ν̄∂µ̄Φ

[
(f ′1(τ) + f ′3(τ))

(
Ãν̄ +

1

2
(−iφ∗Dν̄φ+ h.c.) +

1

4i
∂ν̄(φ̃2 − (φ̃∗)2)

)
+

1

2
(3if ′2(τ)− f ′1(τ)− f ′3(τ))(φ̃+ φ̃∗)2Ãν̄

]
, (F.62)
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where we defined

X ≡
√

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ) eA , (F.63)

LDBI ≡ Nfξ
2X e4A+

+ X
(

e2Aξ2κ(λ)τ2×

×
(

e2A∆rrÃ
2
r +

(
1− e2A∆ξξ

)
Ã2
ξ +

(φ̃+ φ̃∗)2

2ξ2
− 2e2A∆ξrÃrÃξ

)
+

+ w(λ)2

(
1

8
e2A

[
∆rr

(
1− e2A∆ξξ

)
− e2A∆2

ξr

]
ξ2(Fµ̄ν̄)2+

+
1

2

((
1− e2A∆ξξ

)
|Dξφ|2 + e2A∆rr |Drφ|2

)
+

+

(
1− |φ|2

)2
4ξ2

− 1

2
e2A∆ξr(Drφ

∗Dξφ+ h.c.)−

− ξ2
(

e2A∆rr(∂rΦ)2 +
(
1− e2A∆ξξ

)
(∂ξΦ)2−

− 2e2A∆ξr∂ξΦ∂rΦ
)))

, (F.64)

Y ≡ e−2Aκ

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)
, (F.65)

and introduced the following condensed notation

∆xy,r ≡
1

Y
δ∆xy

δ ∂rτ
, ∆xy,ξ ≡

1

Y
δ∆xy

δ ∂ξτ
, x, y ∈ {r, ξ} . (F.66)

These are equal to

∆rr,r = −2∂rτ∆rr , ∆rr,ξ = 2∂ξτ
[
−∆rr + e−2A

]
, (F.67)

∆ξξ,r = −2∂rτ∆ξξ , ∆ξξ,ξ = 2∂ξτ
[
−∆ξξ + e−2A

]
, (F.68)

∆ξr,r = −2∂rτ∆ξr + e−2A∂ξτ , ∆ξr,ξ = −2∂ξτ∆ξr + e−2A∂rτ . (F.69)

G Asymptotics of the probe instanton solution

We present in this appendix the analytical asymptotics near the boundaries of the 2-
dimensional space (r, ξ) of the bulk instanton solution in the probe limit. The leading
asymptotics will be necessary to determine the boundary conditions for the numerical
method used to compute the instanton solution.
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G.1 UV asymptotics

We start by analyzing the asymptotics of the solution near the AdS-like UV boundary,
that is in the limit where r → 0, which are obtained by solving the equations of motion
(F.38)-(F.43) in this limit. This analysis involves the UV asymptotics of the background
(2.3.14) and (2.3.18)-(2.3.20). According to the holographic dictionary, the UV asymptotics
contain the external sources and vacuum expectation values (vev) for the operators dual
to the instanton bulk fields.

At leading order in r, (F.39), (F.41), (F.42) and (F.43) respectively determine the
power-law behavior of the two independent solutions for Φ, φ̃1, Ãξ and φ̃2, which are the
components of the gauge fields (3.1.50)-(3.1.52), redefined to absorb the tachyon phase as
in (3.1.80). These power-laws correspond to the standard result for massless gauge fields
on AdS

ϕ = ϕ(0)(ξ)(1 + · · · ) + r2ϕ(2)(ξ)(1 + · · · ) , (G.1)

where ϕ represents all the above mentioned fields, the (0) index refers to the source for the
dual operator, the (2) index to a term proportional to the vev for that operator and the
dots terms that go to 0 at the boundary. Note that this behavior does not apply to Ãr as
the equations of motion are first order for Ãr in the r direction.

For the baryon state under study, the chemical potential is set to 0 : Φ(0) = 0 and
there is no source for the gauge field at the boundary, which for the redefined gauge fields
(3.1.80) corresponds to

Ã
(0)
ξ = ∂ξθ(0, ξ) , φ̃

(0)
1 = sin θ(0, ξ) , φ̃

(0)
2 = − cos θ(0, ξ) , (G.2)

where θ is the phase in the tachyon ansatz (3.1.64). Near the boundary, the ansatz fields
at leading order therefore behave as

Φ = Φ(2)(ξ) r2(1 + · · · ) , (G.3)

φ̃1 = sin θ(0, ξ)(1 + · · · ) + φ̃
(2)
1 (ξ) r2(1 + · · · ) , (G.4)

φ̃2 = − cos θ(0, ξ)(1 + · · · ) + φ̃
(2)
2 (ξ) r2(1 + · · · ) , (G.5)

Ãξ = ∂ξθ(0, ξ)(1 + · · · ) + Ã
(2)
ξ (ξ) r2(1 + · · · ) . (G.6)

Then, the constraint (F.38) imposes that Ãr vanishes at the boundary, and behaves at
most linearly in r

Ãr = Ã(1)
r (ξ) r (1 + · · · ) , (G.7)

where Ã
(1)
r obeys

∂ξ(ξ
2∂ξθ(0, ξ))− sin(2θ(0, ξ)) + 4ξ2Ã(1)

r (ξ) = 0 . (G.8)
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From the behavior of the background (2.3.14) and (2.3.18)-(2.3.20), we deduce the order
of the next terms in the UV expansion

Φ = Φ(2)(ξ) r2

(
1 +O

(
1

r log rΛ

))
, (G.9)

φ̃1 = sin θ(0, ξ) + φ̃
(2)
1 (ξ) r2

(
1 +O

(
1

r log rΛ

))
, (G.10)

φ̃2 = − cos θ(0, ξ) + φ̃
(2)
2 (ξ) r2

(
1 +O

(
1

r log rΛ

))
, (G.11)

Ãξ = ∂ξθ(0, ξ) + Ã
(2)
ξ (ξ) r2

(
1 +O

(
1

r log rΛ

))
, (G.12)

Ãr = Ã(1)
r (ξ) r

(
1 +O

(
1

r log rΛ

))
. (G.13)

Note the peculiar feature that the source mode does not receive r-dependent corrections
when moving away from the boundary. This property is specific to the chiral limit mq = 0.

G.2 Asymptotics at ξ →∞
We study here the EoMs (F.38)-(F.43) in the limit where ξ → ∞, given the boundary
conditions of the second column of Table 3.1, which impose that the instanton energy is
finite. These asymptotics contain information about the tail of the meson cloud far from
the baryon, which determines the long range meson-exchange interaction between baryons.

We assume that the fields can be expanded as Taylor series in 1/ξ and analyse the
EoMs order by order in 1/ξ. This yields the following behavior for the instanton fields in
the limit ξ →∞

Φ(r, ξ) =
Φ̂6(r)

ξ6
+O(ξ−7) , (G.14)

φ̃1(r, ξ) =
φ̂1,1(r)

ξ
+
φ̂1,2(r)

ξ2
+
φ̂1,3(r)

ξ3
+
φ̂1,4(r)

ξ4
+
φ̂1,5(r)

ξ5
+O(ξ−6) , (G.15)

φ̃2(r, ξ) = 1 +
φ̂2,1

ξ
+
φ̂2,2

ξ2
+
φ̂2,3

ξ3
+
φ̂2,4(r)

ξ4
+
φ̂2,5(r)

ξ5
+O(ξ−6) , (G.16)

Ãξ(r, ξ) =
Âξ,2(r)

ξ2
+
Âξ,3(r)

ξ3
+
Âξ,4(r)

ξ4
+
Âξ,5(r)

ξ5
+O(ξ−6) , (G.17)

Ãr(r, ξ) =
Âr,3(r)

ξ3
+
Âr,4(r)

ξ4
+
Âr,5(r)

ξ5
+
Âr,6(r)

ξ6
+O(ξ−7) , (G.18)
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where φ̂2,1, φ̂2,2 and φ̂2,3 are constants and Âr,n is a linear combination (with r-dependent

coefficients) of φ̂′1,n−2, φ̂
′
1,n−4, · · · , Â′ξ,n−1, Â

′
ξ,n−3, · · · . The other coefficients obey second

order differential equations:

F ′′ +
(kw2)′

kw2
F ′ = SF , F = φ̂2,n, Φ̂n , (G.19)

G′′ +
(kw2)′

kw2
G′ − 4

e2Ahκτ2

kw2
G = SG , G = φ̂1,n, Âξ,n , (G.20)

where k and h are defined in (F.44) and SG and SF are source terms that depend on lower
order coefficients. In particular

Sφ̂1,1
= Sφ̂1,2

= SÂξ,2 = SÂξ,3 = 0 . (G.21)

Note that, because of the UV boundary conditions of Table 3.2, the boundary values of
the coefficients φ̂1,n, φ̂2,n and Âξ,n can all be written explicitly in terms of the asymptotics

of θ(0, ξ) at ξ →∞. In particular, this implies that φ̂2,1 = 0.
Another interesting observation is that the source terms are such that the solution at

ξ →∞ can be divided into two independent parity sets

Φ even , φ1 odd , φ2 even up to r-independent terms , Aξ even , Ar odd ,
(G.22)

or

Φ odd , φ1 even , φ2 odd up to r-independent terms , Aξ odd , Ar even .
(G.23)

G.2.1 IR behavior of the large ξ coefficients

The homogeneous solutions of (G.19) are of the form

F (r) = c1 + c2

∫
dr

k(r)w(r)2
, (G.24)

where c1,2 are two independent constants. From (2.3.16) and (G.26), it is clear that the
second term in (G.24) is singular in the IR. For regularity in the IR c2 should therefore be
set to 0 for every coefficients obeying (G.19). Note that in the UV, c2 parametrizes the
freedom for the vev term that goes like ∼ r2 as r → 0. Comparing with the UV expansions

(G.3)-(G.6), we see that this constraint imposes that Φ(2) and φ̃
(2)
2 are fixed in terms of

θ(0, ξ), φ̃
(2)
1 and Ã

(2)
ξ .

Near the IR boundary, the homogeneous solutions of (G.20) are found to behave as

G(r) = c′1 exp

(
aIRτ

2
0

( r
R

)2Cτ (
1 +O(r−2)

))
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+ c′2 exp

(
− 2Cτ

3aIR(Cτ − 1)

(
κIR
wIR

)2

τ2
0

( r
R

)2Cτ−2 (
1 +O(r−2)

))
. (G.25)

The first solution diverges in the IR so for all coefficients obeying (G.20), c′1 should be set

to 0. In terms of the UV expansion of (G.3)-(G.6), this should impose φ̃
(2)
1 and Ã

(2)
ξ in

terms of θ(0, ξ).

G.3 IR asymptotics

We consider in this subsection the asymptotic behavior of the fields near the IR boundary,
that is in the limit where r → ∞. For each field, there exist generically two independent
solutions in the IR as in (G.24) and (G.25), only one of which is regular. The asymptotics
we present in the following are the unique regular asymptotics.

From the asymptotics of the background (2.3.16) and (2.3.22)-(2.3.24) we find the
functions k(r) and h(r) defined in (F.44) to behave in the IR as

k(r) ∼ WIRR

τ0Cτ

(√
3

2
κIR

)−1/2

e2Ac+(5/3)λc
( r
R

)3/2−Cτ × (G.26)

× exp

(
−τ2

0

( r
R

)2Cτ (
1 +O(r−2)

)
+ 2

r2

R2

)
,

h(r) ∼ WIRτ0Cτ
R

(√
3

2
κIR

)1/2

e(1/3)λc
( r
R

)Cτ−1/2
× (G.27)

× exp

(
−τ2

0

( r
R

)2Cτ (
1 +O(r−2)

)
+ 2

r2

R2

)
.

The IR behavior of the fields is obtained by solving the equations of motion (F.38)-
(F.43) in the IR limit. In this limit the CS terms become negligible, which simplifies a lot
the EoMs.

The IR behavior of Φ, φ̃1 and Ãξ is found to be separable in ξ and r

Φ(r) =
1

r
αΦ(ξ)

(
1 +O

(
r−2Cτ

))
, (G.28)

φ̃1(r) = α1(ξ) exp

(
−ζ
( r
R

)2Cτ−2 (
1 +O(r−2)

))
, (G.29)

Ãξ(r) = αξ(ξ) exp

(
−ζ
( r
R

)2Cτ−2 (
1 +O(r−2)

))
, (G.30)
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where we defined the constant

ζ ≡ 2

3

Cτ
aIR(Cτ − 1)

(
κIR
wIR

)2

τ2
0 . (G.31)

and αΦ(ξ) obeys an independent linear ODE

α′′(ξ) +
2

ξ
α′(ξ)− 1

β
α(ξ) = 0 , (G.32)

with

β ≡
√

3

8

e−2AcκIRCτR

aIR
. (G.33)

(G.32) is compatible with the condition that Φ goes to 0 at ξ → ∞ and admits a unique
solution up to overall normalization once the boundary condition that ∂ξΦ goes to 0 at
ξ → 0 is imposed.

From (G.29) and (G.30), the constraint (F.38) in the IR limit then fixes the leading
behavior for Ãr to be

Ãr(r) =
αr(ξ)

r
exp

(
−ζ
( r
R

)2Cτ−2 (
1 +O(r−2)

))
, (G.34)

We finally discuss the φ̃2 field, whose IR behavior is more subtle as the r and ξ depen-
dence cannot be factorized. Instead, the relevant ansatz is found to be of the form

φ̃2(r, ξ) = F

(
ξ

β log r

)
, (G.35)

where β is defined in (G.33) and the function F obeys a second order non-linear ODE

F ′′(X)− F (X)
F (X)2 − 1

X2
+ F ′(X) = 0 , X ≡ ξ

β log r
. (G.36)

It can be checked numerically that (G.36) admits a unique solution compatible with the
boundary conditions

F (0) = −1 , F (∞) = 1 . (G.37)

The plot of the corresponding solution is shown in figure 29

G.4 Asymptotics at ξ = 0

We present here the asymptotics of the instanton solution near the center of the baryon
at ξ = 0. We assume that the fields are regular at ξ = 0 and can be expanded as Taylor
series. Then, solving the EoMs (F.38)-(F.43) order by order in ξ with the condition that
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ξ

β log (r)

-1.0

-0.5

0.5

1.0

F(X)

Figure 29: Numerical solution to (G.36) with the boundary conditions of (G.37).

the gauge fields (3.1.50)-(3.1.52) are well defined at ξ = 0, yields the following asymptotics
up to order O(ξ4)

Φ(r, ξ) = Φ̄0(r) + Φ̄2(r)ξ2 + Φ̄4(r)ξ4 +O(ξ6) , (G.38)

φ̃1(r, ξ) = φ̄1,0(r)ξ + φ̄1,3(r)ξ3 +O(ξ5) , (G.39)

φ̃2(r, ξ) = −1 + φ̄2,2(r)ξ2 + φ̄2,4(r)ξ4 +O(ξ6) , (G.40)

Ãξ(r, ξ) = Āξ,0(r) + Āξ,2(r)ξ2 + Āξ,4(r)ξ4 +O(ξ6) , (G.41)

Ãr(r, ξ) = Ār,1(r)ξ + Ār,3(r)ξ3 +O(ξ5) , (G.42)

where Φ, φ̃2 and Ãξ are even and φ̃1 and Ãr are odd. All the coefficients of the expansions
are expressed in terms of the 4 functions Φ̄0, φ̄1,0, φ̄2,0 and Ār,0. Note that, as in the
ξ →∞ limit, the UV boundary conditions of Table 3.2 imply that the boundary values of
the coefficients φ̄1,n, φ̄2,n and Āξ,n can all be written explicitly in terms of the asymptotics
of θ(0, ξ) at ξ → 0.

H Numerical method for the computation of the

baryon solution

We detail in this appendix the numerical method that was used to solve the static soliton
equations of motion. We summarize how the gradient descent method works, and specify
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the type of grid that was used to obtain the solution. We also present some precision tests
that support the validity of the numerical solution.

H.1 Method and grid choice

In the gradient descent method, the solution to the equations of motion is found by rephras-
ing the original minimisation of the energy M0 problem, into a flow in a fictitious time, so
that the limit of that flow is the solution of the original problem. Specifically, the limiting
field configuration of the flow will minimize the soliton energy M0. The limiting solution is
found, by starting from a reasonable initial field configuration that satisfies the boundary
conditions, and then evolving the fields. In practice, the fictitious time evolution equations
are taken to be

∂τΦ =
δM0

δΦ
, ∂τ φ̃1,2 = − δM0

δφ̃1,2

, ∂τAµ̄ = −δM0

δAµ̄
, ∂τθ = −δM0

δθ
, (H.1)

and they are solved numerically. The fields above have been defined in section 3.1.4.
Equations (H.1) must be also supplemented by the boundary conditions of table 3.2 for
any value of the fictitious time.

Note that the gradients of the action with respect to the fields are nothing but the
respective equations of motion. Also, the signs in front of the gradients, mean that M0

is maximized with respect to Φ, and minimized with respect to all the other fields. This
choice of sign ensures that the coefficient of the Laplacian is positive in the right hand sides
of (H.1). In these conditions, the ellipticity of the equations of motion guarantees that the
diffusive problem has a limiting solution which is the solution we are looking for.

The numerical algorithm is then constructed by discretizing the differential equations
(H.1). That is, the bulk is covered by a grid, and the derivatives are approximated by
finite differences between the values of the fields at the points of this grid. We denote by
n the number of points in the holographic direction and by m the number in the radial
direction. Note that the bulk has infinite extent, but the soliton solution is confined to a
finite region. Therefore, it can be computed by considering finite cut-offs. In practice, the
following cut-offs

rmax ' 30M−1
0 , ξmax ' 100M−1

0

were found to be good enough to solve the problem reliably. Those numbers may seem
large given that the baryon density is mainly confined to rM0 and ξM0 of order 1, as seen
on Figure 3.5. However, the chiral gauge fields have non-trivial power-law asymptotics23

away from the baryon center, which can only be captured by using sufficiently large cut-
offs. The gradients associated with these long-range tails are small though, so that a few
grid points are sufficient to describe them. Instead of a linear grid, we therefore considered

23This long-range behavior of the meson cloud is due to the fact that we consider the chiral limit,
and will be suppressed exponentially when introducing finite quark masses.

242



a logarithmic grid, where most points are concentrated near the baryon center, and only
a few points cover the region that separates the baryon from the cut-offs. The precise
definition of the grid that we used is given by

r(k) = exp
(
k∆r + log (rmin + 1)

)
− 1 , 0 ≤ k ≤ n , (H.2)

ξ(j) = exp
(
j∆ξ

)
− 1 , 0 ≤ j ≤ m, (H.3)

where the spatial steps are

∆r =
1

n

(
log (rmax + 1)− log (rmin + 1)

)
, ∆ξ =

1

m
log (ξmax + 1) . (H.4)

Note that we introduced a UV cut-off rmin since the boundary is a singular point of the
equations and the boundary conditions there must be imposed on a shifted boundary, as
usual. As long as rmin � r(1) in (H.2), having rmin finite does not influence the baryon
solution. In practice we found that the precision of the vacuum solution for the tachyon
field is very good for r > rmin ' 0.02M−1

0 . Also, the size of the grid that was chosen to
produce the numerical results presented in the text is (n,m) = (100, 100). Below, we show
evidence that the baryon solution has already converged well for such a grid size.

A remark is that, instead of (H.1), one can consider the diffusive problem with general
diffusion coefficients, which are generically field and position-dependent

∂τΦ = DΦ(r, ξ)
δM0

δΦ
, ∂τ φ̃1,2 = −Dφ(r, ξ)

δM0

δφ̃1,2

, ∂τAµ̄ = −DA(r, ξ)
δM0

δAµ̄
, (H.5)

∂τθ = −Dθ(r, ξ)
δM0

δθ
.

Although a uniform diffusion coefficient amounts to a redefinition of the fictitious time
τ , the dependence on the fields and position in the bulk actually modify the diffusive
problem. A good choice for the purpose of solving (H.5) numerically is to set the diffusion
coefficients such that the coefficients of the fields’ Laplacians are equal to 1. This choice
has the advantage that the stability properties of the discretized version of (H.5) are more
tractable. If we ignore the first and zeroth order derivatives, requiring the absence of modes
growing with τ implies the famous bound on the time step ∆τ (see for example chapter
3.6 of [209])

∆τ <
∆ξ2∆r2

2(∆ξ2 + ∆r2)
, (H.6)

which is valid for uniform spatial grids, with steps ∆x in the ξ direction, and ∆r in the
r direction. For the logarithmic grid that we used (H.2)-(H.3), (H.6) would still apply
with the definitions of ∆r and ∆ξ from (H.4), since they correspond to the smallest point
separation on the grid. However, the full equations of motion include first and zeroth order
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derivatives of the fields, so that the stability bound is more complicated than (H.6). For
the grid that we used, we found that using as a bound

∆τ <
∆r2

4
, (H.7)

resulted in stable algorithms. We do not claim any generality of this result though, and
different bounds were actually observed for different grids.

H.2 Precision tests

We now present some tests of the numerical precision of the soliton solution computed via
the gradient-descent method. We first investigate the convergence of the observables as a
function of the grid size. Left figure 31 shows the evolution of the calculated soliton mass
as a function of the grid size for n = m. It is observed that the soliton mass converges in
the limit of large grid size, and the value that we derive at n = m = 100 is already within
0.2% of accuracy from the limiting value. Actually, even at n = 50, the error on the mass
is already less than one percent.

As another test of the precision of the solution, we also investigated the convergence
for the divergence of the 2-dimensional gauge field

LA(r, ξ) ≡ |∂rAr + ∂ξAξ| . (H.8)

Due to the Lorenz gauge fixing (3.1.107), the baryon solution should be such that LA
vanishes everywhere in the bulk. To estimate what is the error on the Lorenz condition in
the numerical solution, LA(r, ξ) is computed numerically and compared with the typical
scale of the gradients of Aµ̄. One way of defining this typical scale, is via the combination
of derivatives orthogonal to (H.8)

DA(r, ξ) ≡ |∂rAr − ∂ξAξ| . (H.9)

The accuracy of the Lorenz gauge fixing will therefore be estimated by comparing the two
quantities LA and DA, where the criterion for accuracy is that LA should be much smaller
than DA. Because DA vanishes in some places in the bulk, calculating the ratio of LA over
DA does not give a globally well-defined indicator of the precision of the Lorenz gauge.
Instead, we will use two global indicators, that are defined from the maxima and mean
values of LA and DA

i1 ≡
L̄A
D̄A

, i2 ≡
LA,max
D̄A

. (H.10)

The first indicator i1 estimates the average error on the Lorenz gauge fixing over the whole
solution, whereas i2 indicates what is the error at the location in the bulk where it is
the worst. Here, it should be clarified what we mean by the mean values L̄A and D̄A in
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Figure 30: Density plot of the quantity DA defined in (H.9), as an function of r and
ξ. All dimensionful quantities are expressed in units of the soliton mass M0, and the
grid size is (n,m) = (100, 100). The orange dots correspond to the grid points that
belong to the region AD (H.11), where DA is significantly different from 0.

(H.10). The definition is similar to what was used to define the mean of the Lagrangian
density (3.2.44). That is, the mean value is computed over a region of the bulk where
the derivatives of Aµ̄ are significantly different from zero. Specifically, the corresponding
region AD is defined as

(r, ξ) ∈ AD ⇐⇒ DA(r, ξ) ≥ 0.1DA,max . (H.11)

In the numerical solution, AD contains a finite number of grid cells, Ncells, and the definition
of the mean values over AD is analogous to (3.2.44)

L̄A =
1

Ncells

∑
i∈AD

LA(i) , D̄A =
1

Ncells

∑
i∈AD

DA(i) . (H.12)

For concreteness, Figure 30 shows the density plot of DA over the (r, ξ) plane for a grid of
size (n,m) = (100, 100), together with the grid points that belong to AD.

The plot of the two indicators i1 and i2 defined in (H.10) is shown in the right of
Figure 31, as a function of the grid size. Although it is much slower than for the baryon

245



50 100 150 200 250 300
n

0.002

0.001

0.000

0.001

0.002

0.003
(M

0(
n)

M
0(

10
0)

)/M
0(

10
0)

50 100 150 200 250 300
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6
LA, max/DA

LA/DA

Figure 31: Left : Relative difference of the soliton mass M0 with the value at
n0 = 100, as a function of the grid size n. Right : the two indicators for the
accuracy of the Lorenz gauge fixing, i1 (orange) and i2 (blue) from (H.10), as a
function of the grid size n.

mass, i1 and i2 are also found to converge, towards a value which is consistent with zero.
The indicator i2 is observed to be much larger than i1, which means that the maximum
of the gauge field divergence LA is reached at the top of a narrow peak. In particular,
for the grid that we used to produce the numerical results presented in the main text
(n,m) = (100, 100), i1 and i2 are found to take the following values

i1(100) ' 2.5% , i2(100) ' 30% . (H.13)

This means that on average the Lorenz condition is well obeyed within 2% over most of the
baryon solution, but there is a narrow region in the bulk where the error grows up to 30%.
For the largest grid investigated that has (n,m) = (300, 300), the average accuracy of the
Lorenz gauge fixing is given by i1(300) ' 0.8%, and the maximum error by i2(300) ' 8%.

The fact that the value i2(100) is quite high, indicates that there is a small region
in the bulk where the Lorenz condition is not very well obeyed for the solution on the
grid that we used, with (n,m) = (100, 100). Since i2(300) ' 8% is much smaller, another
way of checking the quality of the solution at n = 100 is to compare the numerical field
configurations computed at n = 100 with those at n = 300. In particular, we will focus
on the two bulk quantities that were analyzed in this work, that are the instanton number
and Lagrangian densities (3.2.33) and (3.2.32). The relative differences of the two types
of densities between the n = 100 and the n = 300 solutions are shown in Figure 32. The
definition for the relative differences is the same as (3.2.44), where the mean of the bulk
Lagrangian density is still computed over the region bounded by the green line in Figure
3.5. For the instanton number density, the average is computed over the region where
|ρNi |M−4

0 ≥ 2.8× 10−3. The two solutions are compared on the grid with n = 100. Figure

246



1 2 3 4
r M0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
0

| Ni(300) Ni(100)|
Ni

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

0.5 1.0 1.5 2.0 2.5 3.0 3.5
r M0

0.5

1.0

1.5

2.0

2.5

M
0

| M(300) M(100)|
M

0.00000

0.00258

0.00516

0.00774

0.01032

0.01290

0.01548

0.01806

0.02064

0.02322

Figure 32: Left : Relative difference of the instanton number densities computed
on the grids with (n,m) = (100, 100) and (n,m) = (300, 300). Right : Relative
difference of the bulk Lagrangian densities computed on the grids with (n,m) =
(100, 100) and (n,m) = (300, 300).

32 shows that the densities computed at n = 100 and n = 300 only differ by a few percent
of the mean value, with a maximum of about 8% in the case of the instanton number
density.

In addition to the grid size, we also studied the convergence of the soliton mass as
a function of the cut-offs ξmax and rmax. As far as the radial cut-off is concerned, we
found that larger ξmax modified the soliton mass by less than 0.01%. For the holographic
coordinate, it was found that larger IR cut-offs rmax do not affect the soliton mass by more
than about 0.2%.

The conclusion of this analysis of the numerical precision is that the grid that we used
with (n,m) = (100, 100) gives a very precise value for the soliton mass M0, and a result
within a few percent of accuracy for the densities. This means that the solution can be
trusted at the qualitative level, and also at the quantitative level as far as M0 is concerned,
which is the observable that we were interested in in this work. When extracting other
observables from the baryon solution, one should check in each case the properties of
convergence, and adapt the grid size to the desired level of accuracy. In particular, the
analysis of the densities in Figure 32 indicates that accuracies better than the percent level
may require grid sizes larger than (n,m) = (100, 100).
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I Numerical baryon solutions for a different set of

potentials

In this appendix we present, for comparison, the numerical baryon solution obtained for
a different set of V-QCD potentials. We focus on the leading order probe baryon case,
for static and rotating baryons. The potentials are those derived in [165], the set “7a” in
Appendix A of this reference, and can also be found in Appendix B of [174]. The value of
the pion decay constant fπ for these potentials is significantly smaller than the experimental
value, so they are not expected to give a quantitatively good description of all baryonic
properties. The potentials of [165] have the same UV and IR asymptotics fitted to QCD
properties as the ones that were used in this work though (with parameters given in Table
3.2), so the qualitative behavior should be the same. The purpose of this appendix is to
check the previous statement by reproducing the plots of the main text for the potentials
of [165]. We also compute the baryon spectrum in this case and compare with Table 3.8.

I.1 Static soliton
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r M0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
0

NiM 4
0

0.00000

0.00245

0.00490

0.00735

0.00980

0.01225

0.01470

0.01715

0.01960

0.02205

0.5 1.0 1.5 2.0 2.5 3.0 3.5
r M0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

M
0

3
Nc MM 5

0

0.00

0.21

0.42

0.63

0.84

1.05

1.26

1.47

1.68

1.89

Figure 33: Instanton number (left) and bulk Lagrangian (right) density for the static
soliton solution in the probe baryon regime. All quantities are expressed in units of
the classical mass of the soliton (3.2.27). The center of the soliton is located at ξ = 0
where the density diverges as ξ−1.

The instanton number and Lagrangian density in the (ξ, r)-plane are presented in Figure
33, where all dimensionful quantities are expressed in units of the classical soliton mass
(3.2.27). By comparing with Figure 3.5, it is observed that the qualitative shape of the
densities are similar. However, the densities are typically located significantly closer to the
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Figure 34: Radial profile of the non-abelian phase of the tachyon field (3.1.64) at the
UV boundary. The blue line corresponds to the solution for the V-QCD potentials
presented in Section 3.2.2, and the orange line for those of [165]. The dashed gray
line indicates the asymptotic value π.

UV boundary for the potentials of [165], in units of the soliton mass. Also, the extent of the
densities in the holographic direction is smaller, especially for the Lagrangian density. The
numerical value for the classical soliton mass M0 is obtained by integrating the Lagrangian
density in Figure 33

M0 '
Nc

3
× 265 MeV . (I.1)

This value is about 4 times smaller than for the potentials used in the main text (3.2.34).
Our numerical analysis indicate that this small value for M0 can be traced back to the
smallness of the pion decay constant for the potentials of [165].

In Figure 34, we also plot the profile at the boundary (r = 0) for the non-abelian phase
θ of the tachyon field (3.1.64), and compare with Figure 3.6. We see that the results are
close up to the rescaling of the radial coordinate as a function of the soliton mass M0.
That being said, we notice that θ(ξM0) increases somewhat faster from the baryon center
for the potentials of [165] compared with those of the main text.

I.2 Rotating soliton

The bulk Lagrangian density for the rotating fields in the (ξ, r)-plane is presented in Figure
35, where all dimensionful quantities are expressed in units of the classical soliton mass M0
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Figure 35: Lagrangian density for the rotating fields in the probe baryon approxima-
tion, for the potentials of [165]. All quantities are expressed in units of the classical
mass of the static soliton M0 (3.2.27). The center of the soliton is located at ξ = 0
where the density diverges as ξ−1. The UV boundary is at r = 0.

Spin Pot 2 Pot 1 Experimental mass

s = 1
2

MN ' 340 MeV MN ' 1170 MeV MN = 940 MeV

s = 3
2

M∆ ' 640 MeV M∆ ' 1260 MeV M∆ = 1234 MeV

Table 2: Baryon spin-isospin spectrum in the V-QCD model with the potentials
of [165] (Pot 2), compared with the potentials used in the main text (Pot 1) and
experimental data.

(3.2.27). Comparing with Figure 3.9, we see that the Lagrangian densities for the two sets
of potentials are qualitatively different. In particular, the maximum of the density is well
separated from the boundary for the potentials of [165]. As stated in the main text, we
believe that this behavior is more generic than that of Figure 3.9. Also, as was observed
for the static solution, the density has a lesser extent in the holographic direction (in units
of M0) for the potentials of [165].

The numerical value for the classical moment of inertia density λ in (3.2.75) is obtained
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by integrating the Lagrangian density in Figure 35

1

λ
' 3

Nc
× 200 MeV . (I.2)

From this result, the spin-isospin spectrum of the baryons can be computed and compared
with the result for the potentials of the main text, shown in Table 3.8. This comparison
is presented in Table 2, setting Nc = 3 in the large N result. Table 2 indicates that the
baryon masses for the potentials of [165] are much smaller than experimental data, which
is a consequence of the low mass of the soliton (I.1). Note however that the mass difference
between the nucleon and the ∆ is much closer to experimental data than for the potentials
of section 3.2.2.

J Equations of motion for the rotating soliton

We present in this appendix the expressions for the equations of motion for the rotating
soliton ansatz fields. These equations are obtained by extremizing the moment of inertia
(3.2.75) with respect to variation of the fields. We start by giving the expression of the
components of the field strength that are turned on by the slow rotation, as those are
useful to compute the moment of inertia. We then write the equations of motion, first in
the general tachyon back-reaction regime and then in the probe baryon regime.

J.1 Field strength

For the slowly rotating soliton ansatz of (3.2.57)-(3.2.60) and (3.2.64), the components of
the field strength that are already non-zero in the static soliton solution are identical to the
static solution at linear order in ω. Their expressions are given by equations (F.14)-(F.16).
The effect of slow rotation at linear order is to source the components F0r, F0i, F̂ij and
F̂ir, where the superscript (L/R) is implicit. These components are expressed in terms of
the fields of the ansatz as

F0r = V (t)

(
− (∂rχ1 +Arχ2) εabcωb

xc

ξ

+ (∂rχ2 −Arχ1)

(
ωa − (~ω.~x)

xa

ξ2

)
− ∂rv (~ω.~x)

xa

ξ2

)
σa

2
V (t)† , (J.1)

F0i = V (t)

(
xaεibcωb

xc

ξ2

(
−χ1

1 + φ2

ξ

)
+
xa

ξ

(
ωi − xi

ξ2
(~ω.~x)

)(
χ2
φ2

ξ
+ χ1

φ1

ξ
− v

ξ

)
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+
~ω.~x

ξ

(
xixa

ξ2
− δia

)
χ2 − vφ2

ξ

+ εaki
(~ω.~x)xk

ξ2
(χ2 + v)

φ1

ξ
+ εakiωk

(
−χ1 + χ2φ1

ξ

)
+ xiεabcωb

xc

ξ2

(
χ1 + χ2φ1

ξ
− (∂ξχ1 +Aξχ2)

)
+
xi

ξ

(
ωa − xa

ξ2
(~ω.~x)

)
(∂ξχ2 −Aξχ1) +

(~ω.~x)xixa

ξ3
(−∂ξv)

)
σa

2
V (t)† , (J.2)

F̂ir =
xi(~ω.~x)

ξ2
(∂ξBr − ∂rBξ) +

(
ωi − xi(~ω.~x)

ξ2

)
Br − ∂rρ

ξ
− εibcωbx

c

ξ
∂rQ , (J.3)

F̂ij =
xiωj − ωixj

ξ2
(∂ξρ−Bξ) + 2

Q

ξ
εijkωk +

(
∂ξQ−

Q

ξ

)
ωb
xc

ξ

(
εjbc

xi

ξ
− εibcx

j

ξ

)
. (J.4)

J.2 Equations of motion in the tachyon back-reaction regime

The general equations of motion in the tachyon back-reaction regime are given by

w2
[
∂ξ
(
X (1− e2A∆ξξ)ξ

2∂ξv
)
− 2X

(
v(1 + |φ|2)− (χφ∗ + h.c.)

)]
+

+ ∂r

(
ξ2w2X e2A∆rr∂rv

)
− ∂r

(
ξ2w2X e2A∆ξr∂ξv

)
− ∂ξ

(
ξ2w2X e2A∆ξr∂rv

)
=

2εµ̄ν̄

π2M3

(
Bµ̄ν̄

[
1

2
(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

]
+

+ (f1 + f3)ξQFµ̄ν̄ − 2(f3 − if2)B̃µ̄(Dν̄ φ̃+ h.c.)φ̃1+

+ ∂ν̄τ
[
(f ′1 + f ′3)

(
B̃µ̄(1− |φ|2)− 2ξQÃµ̄

)
+ 2if ′2B̃µ̄φ̃

2
1

])
, (J.5)

w2
[
Dξ

(
X (1− e2A∆ξξ)ξ

2Dξχ̃
)
+X

(
2vφ̃− χ̃(1 + |φ|2)

)]
+Dr

(
ξ2w2X e2A∆rrDrχ̃

)
−

−Dr

(
ξ2w2X e2A∆ξrDξχ̃

)
−Dξ

(
ξ2w2X e2A∆ξrDrχ̃

)
+ h.c.

= 4ξ2e2AXκτ2χ̃+

+
εµ̄ν̄

π2M3

(
6(f1 − f3)Dµ̄ρDν̄ φ̃− 4i(f3 − if2)ρ̃ Ãµ̄∂ν̄ φ̃+

+ ∂µ̄(ξQ)
(

2i(f1 + f3)Dν̄ φ̃+ 4(f1 + f3 − 3if2)Ãν̄ φ̃
)

+

+ 2∂ν̄τ
[
(f ′1 − f ′3)Dµ̄ρ φ̃− (f ′1 − f ′3)ρ̃Dµ̄φ̃

])
+ h.c. , (J.6)

w2
[
− iDξ

(
X (1− e2A∆ξξ)ξ

2Dξχ̃
)
− iX

(
2vφ̃− χ̃(1 + |φ|2)

)]
−
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− iDr

(
ξ2X e2A∆rrw

2Drχ̃
)

+ iDr

(
ξ2X e2A∆ξrw

2Dξχ̃
)

+

+ iDξ

(
ξ2X e2A∆ξrw

2Drχ̃
)

+ h.c.

=
εµ̄ν̄

π2M3
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+
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+
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[
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+ h.c. , (J.7)
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− 1
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(
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(
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)
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− 2∂ξ

(
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1
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, (J.8)
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, (J.9)
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(f3 − if2)v(Dν̄ φ̃+ h.c.)φ̃1

)
+

+ (f3 − if2)
(
−Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(−i∂ν̄ φ̃χ̃+ h.c.)

)
+

+ ∂ν̄τ

(
− 1

2
(f ′1 + f ′3)∂µ̄

(
v(1− |φ|2)

)
− if ′2∂µ̄(vφ̃2

1)−

− 1

2
f ′1(Dµ̄φχ

∗ + h.c.) +
1

2
f ′3(Dµ̄φ̃χ̃+ h.c.)− if ′2Ãµ̄φ̃1χ̃2+
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+ 4(f ′1 + f ′3)ξQ∂µ̄Φ

)]
, (J.12)

where

X =
√

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)Vf (λ, τ) eA , (J.13)

and the symbol ∆µ̄ν̄ is given by

∆ξξ ≡
e6Aκ (∂ξτ)2

−det g̃
=

e−4Aκ (∂ξτ)2

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)
, (J.14)

∆ξr ≡
e6Aκ ∂ξτ∂rτ

−det g̃
=

e−4Aκ ∂ξτ∂rτ

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)
, (J.15)

∆rr ≡
e8A(1 + e−2Aκ (∂ξτ)2)

−det g̃
=

e−2A (1 + e−2Aκ (∂ξτ)2)

1 + e−2Aκ ((∂rτ)2 + (∂ξτ)2)
. (J.16)

J.3 Equations of motion in the probe baryon approximation

In the probe baryon approximation, the modulus of the tachyon field τ is fixed to its
vacuum value. In particular, it does not depend on the radius ξ, so that the equations of
motion are somewhat simplified

hw2
[
∂ξ(ξ

2∂ξv)− 2
(
v(1 + |φ|2)− (χφ∗ + h.c.)

)]
+ ∂r

(
ξ2kw2∂rv

)
=

2

π2M3

(
2Bξr

[
1

2
(f1(τ) + f3(τ)) (|φ|2 − 1) + (f1(τ)− f3(τ)− if2(τ))φ̃2

1

]
+

+ 2(f1(τ) + f3(τ))ξQFξr − 2(f3(τ)− if2(τ))εµ̄ν̄B̃µ̄(Dν̄ φ̃+ h.c.)φ̃1

)
+

+
2

π2M3
∂rτ

[
(f ′1(τ) + f ′3(τ))

(
B̃ξ(1− |φ|2)− 2ξQÃξ

)
+ 2if ′2(τ)B̃ξφ̃

2
1

]
, (J.17)

hw2
[
Dξ(ξ

2Dξχ̃) + 2vφ̃− χ̃(1 + |φ|2)
]

+Dr

(
ξ2kw2Drχ̃

)
+ h.c. =

4ξ2e2Ahκτ2χ̃+

+
εµ̄ν̄

π2M3

[
6(f1 − f3)Dµ̄ρDν̄ φ̃+ ∂µ̄(ξQ)

(
2i(f1 + f3)Dν̄ φ̃+ 4(f1 + f3 − 3if2)Ãν̄ φ̃

)
−

−4i(f3 − if2)ρ̃ Ãµ̄∂ν̄ φ̃
]

+

+
2

π2M3
∂rτ

[
(f ′1 − f ′3)Dξρ φ̃− (f ′1 − f ′3)ρ̃Dξφ̃

]
+ h.c. , (J.18)

hw2
[
−iDξ(ξ

2Dξχ̃)− 2ivφ̃+ iχ̃(1 + |φ|2)
]
− iDr

(
ξ2kw2Drχ̃

)
+ h.c.
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=
εµ̄ν̄

π2M3

[
Dµ̄ρ

(
−2i(f1 + f3)Dν̄ φ̃− 4(f1 − f3 − if2)Ãν̄ φ̃

)
+

+ 2∂µ̄(ξQ)(f1 + f3)Dν̄ φ̃+ 2(f3 − if2)ρ̃
(

2Ãµ̄∂ν̄ φ̃− Fµ̄ν̄ φ̃
) ]

+

+
2

π2M3
∂rτ

[
i(f ′1 + f ′3)ρ̃ Dξφ̃− 2if ′2 ρ̃Ãξφ̃+ (f ′1 + f ′3)∂ξ(ξQ)φ̃

]
+ h.c. , (J.19)

kw2
[
∂ξ(ξ

2Bξr) + 2Drρ
]

= 4e2Akκτ2ξ2B̃r−

− 1

2π2M3

[
(f1 + f3)(Dξφχ

∗ + h.c.)− 2(2f3 − f1)
(
Dξφ̃+ h.c.

)
χ̃1−

− 4(f1 − f3 − if2)Ãξφ̃1χ̃2 − 8(f1 + f3)ξQ∂ξΦ+

+ 2v(f3 − if2)(Dξφ̃+ h.c.)φ̃1−

− 2∂ξ

(
v

[
1

2
(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

])]
, (J.20)

ξ2∂r(kw
2Brξ) + 2hw2Dξρ = 4e2Ahκτ2ξ2B̃ξ+

+
1

2π2M3

[
(f1 + f3)(Drφχ

∗ + h.c.)− 2(2f3 − f1)
(
Drφ̃+ h.c.

)
χ̃1−

− 4(f1 − f3 − if2)Ãrφ̃1χ̃2 − 8(f1 + f3)ξQ∂rΦ+

+ 2v(f3 − if2)(Drφ̃+ h.c.)φ̃1−

− 2∂r

(
v

[
1

2
(f1 + f3) (|φ|2 − 1) + (f1 − f3 − if2)φ̃2

1

])
−

− ∂rτ
[
(f ′1 + f ′3)v(1− |φ|2) + 2if ′2 vφ̃

2
1 − 2(f ′1 − f ′3)χ̃1φ̃1

] ]
, (J.21)

∂r(kw
2Drρ) + hw2∂ξDξρ = 4e2Ahκτ2ρ̃+

+
1

4π2M3

[
εµ̄ν̄∂µ̄

(
(f1 + f3)(Dν̄φχ

∗ + h.c.)− 2(2f3 − f1)
(
Dν̄ φ̃+ h.c.

)
χ̃1−

− 4(f1 − f3 − if2)Ãν̄ φ̃1χ̃2 − 8(f1 + f3)ξQ∂ν̄Φ
)
−

− 2(f3 − if2)εµ̄ν̄
(
−Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(−i∂ν̄ φ̃χ̃+ h.c.)

)
+

+ ∂rτ
(
f ′1(τ)(Dξφχ

∗ + h.c.)− f ′3(τ)(Dξφ̃χ̃+ h.c.) + 2if ′2(τ)Ãξφ̃1χ̃2+

+ 2(f ′1 − f ′3)∂ξ(χ̃1φ̃1)− 8(f ′1 + f ′3)ξQ∂ξΦ
)]
, (J.22)

ξ2∂r(kw
2∂rQ) + hw2

[
∂ξ(ξ

2∂ξQ)− 2Q
]

= (J.23)
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− ξ

4π2M3

[
− εµ̄ν̄∂µ̄

(
(f1 + f3)(iχ∗Dν̄φ+ h.c.) + 4(f1 + f3 − 3if2)Ãν̄ φ̃1χ̃1

)
−

− 8(f1 + f3)εµ̄ν̄Dµ̄ρ∂ν̄Φ + (f1 + f3)v εµ̄ν̄Fµ̄ν̄+

+ 2∂rτ(f ′1 + f ′3)
(

4ρ̃∂ξΦ− ∂ξ(φ̃1χ̃2)− v Ãξ
) ]

,

ξ2∂r

[
e2Akw2κτ2

(
Br +

1

2
∂rζ

)]
+

+ e2Ahw2κτ2

[
∂ξ

[
ξ2

(
Bξ +

1

2
∂ξζ

)]
− 2

(
ρ+

1

2
ζ

)]
= − 1

4π2M3

[
εµ̄ν̄∂µ̄

(
(f3 − if2)v(Dν̄ φ̃+ h.c.)φ̃1

)
+

+ (f3 − if2)εµ̄ν̄
(
−Fµ̄ν̄ φ̃1χ̃2 + Ãµ̄(−i∂ν̄ φ̃χ̃+ h.c.)

)
+

+ ∂rτ

(
− 1

2
(f ′1 + f ′3)∂ξ

(
v(1− |φ|2)

)
− if ′2∂ξ(vφ̃2

1)−

− 1

2
f ′1(τ)(Dξφχ

∗ + h.c.) +
1

2
f ′3(τ)(Dξφ̃χ̃+ h.c.)−

− if ′2(τ)Ãξφ̃1χ̃2 + 4(f ′1 + f ′3)ξQ∂ξΦ

)]
, (J.24)

where

k(r) =
eA√

1 + e−2Aκ(∂rτ)2
Vf (λ, τ2) , h(r) = eA

√
1 + e−2Aκ(∂rτ)2Vf (λ, τ2) . (J.25)

K Quantization of the rigid rotor

We proceed in this subsection to the quantization of the classical Lagrangian (3.2.74) along
the lines of [177]. For this purpose, it is more convenient to reintroduce the SU(2) matrix
V (t) from the definition of ~ω in (3.2.50). It gives

Lrot = −M0 + 2λ
3∑

a=0

u̇2
a , (K.1)

where we parametrized the SU(2) matrix V (t) as

V (t) = u0I2 + iuiσ
i , (K.2)
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where the ua’s parametrize the 3-sphere24 S3∑
a

u2
a = 1 . (K.3)

S3 can be alternatively described by 3 unconstrained coordinates [177] qα ≡ (y, θ1, θ2) in
the domains

y ∈ [−1, 1] , θ1, θ2 ∈ [0, 2π) , (K.4)

which are related to the ua’s as

u1 + iu2 ≡ z1 =

√
1− y

2
eiθ1 , u0 + iu3 ≡ z2 =

√
1 + y

2
eiθ2 . (K.5)

In terms of these coordinates, the Lagrangian (K.1) is rewritten as

Lrot = −M0 + 2λGαβ q̇
αq̇β , (K.6)

where G is the metric of S3, which in the qα coordinates reads

Gαβdqαdqβ =
1

4

1

1− y2
dy2 +

1− y
2

dθ2
1 +

1 + y

2
dθ2

2 . (K.7)

The momentum conjugate to qα is then

pα ≡
∂L

∂q̇α
= 4λGαβ q̇

β , (K.8)

and the classical Hamiltonian

Hc = M0 +
1

8λ
Gαβpαpβ . (K.9)

The quantum Hamiltonian operator is found by applying the quantization rules

Hq = M0 −
1

8λ

1√
G
∂α

(√
GGαβ∂β

)
= M0 −

1

8λ
∇α∇α , (K.10)

which is hermitian [177] with respect to the scalar product

〈A|B〉 ≡
∫

dq3
√
GfA(q)∗fB(q) . (K.11)

24The ua’s actually parametrize S3/Z2 because the collective coordinates live in SU(2)V /Z2 .
This means that ua and −ua correspond to the same point . In the qα coordinates, the identification
is between (y, θ1, θ2) and (y, θ1 + π, θ2 + π) .
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Spin and Isospin operators The classical Hamiltonian (K.9) is invariant under an
SO(4) rotation of the momentum pα. Because SO(4) ' SU(2) × SU(2), this symmetry
can be mapped to two SU(2) symmetries which are

� (Time-independent) isospin rotation of the fields, which acts on V (t) as

V (t)→WV (t) , W ∈ SU(2) . (K.12)

� 3D (time-independent) spatial rotation, which acts on V (t) as25

V (t)→ V (t)R , R ∈ SU(2) . (K.13)

After quantization, there should be an isospin operator Ii that generates the symmetry of
(K.12) and a spin operator Si that generates the symmetry of (K.13)

[Ii, V ] =
σi

2
V , [Si, V ] = V

σi

2
, (K.14)

where the multiplication should be understood as the action on the wave function. The
expression for the spin and isospin operators can be derived explicitly

S3 = − i
2(∂θ1 + ∂θ2) ,

S+ = 1√
2
ei(θ1+θ2)

(
i
√

1− y2∂y + 1
2

√
1+y
1−y∂θ1 − 1

2

√
1−y
1+y∂θ2

)
,

S− = 1√
2
e−i(θ1+θ2)

(
i
√

1− y2∂y − 1
2

√
1+y
1−y∂θ1 + 1

2

√
1−y
1+y∂θ2

)
,

(K.15)


I3 = − i

2(∂θ1 − ∂θ2) ,

I+ = − 1√
2
ei(θ1−θ2)

(
i
√

1− y2∂y + 1
2

√
1+y
1−y∂θ1 + 1

2

√
1−y
1+y∂θ2

)
,

I− = − 1√
2
e−i(θ1−θ2)

(
i
√

1− y2∂y − 1
2

√
1+y
1−y∂θ1 − 1

2

√
1−y
1+y∂θ2

)
,

(K.16)

where the raising and lowering are defined as usual

S± =
1√
2

(S1 ± iS2) , I± =
1√
2

(I1 ± iI2) . (K.17)

Si and Ii are checked to be hermitian with the scalar product of (K.11).
The Hamiltonian (K.10) then takes a simple form in terms of the spin and isospin

operators

Hq = M0 +
1

2λ
S2 = M0 +

1

2λ
I2 , (K.18)

25Under a spatial rotation xiσ
i → R†xiσ

iR, so the fields of (3.2.57)-(3.2.58) and (3.2.64) are
invariant if V (t) transforms as in (K.13) .
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which makes it clear that the eigenstates of Hq have same spin and isospin and the eigen-
values are given by

Es = M0 +
1

2λ
s(s+ 1) , (K.19)

where s refers to the spin. In particular the nucleon states correspond to s = 1/2 and their
wavefunctions are easily found to be

|p ↑〉 = 1
πz1 , |n ↑〉 = i

πz2 ,

|p ↓〉 = − i
π z̄2 , |n ↓〉 = − 1

π z̄1 ,
(K.20)

where z1 and z2 where defined in (K.5). The next level s = 3/2 corresponds to the isobar
∆ states.

L Details of the formalism for neutrino transport

We review in this appendix a few results of QFT at finite temperature, that are useful for
the formalism which describes neutrino transport.

L.1 Bosonic correlators at equilibrium

In this subsection, we review in more detail the derivation of the equilibrium properties
obeyed by the chiral current real-time two-point functions. Specifically, we explain how the
results (4.2.15) and (4.2.16) are obtained. Instead of the chiral-current 2-point function,
we consider the case of a scalar operator

iGB(x1, x2) ≡ 〈TCJ(x1)J(x2)〉 , (L.1)

where J is a scalar hermitian operator. The case of a vector such as the chiral current is
completely analogous.

As mentioned in the text, the first result (4.2.15) is related to the invariance of the
system at equilibrium under time-translation. At the level of the bosonic 2-point function
(L.1), this invariance implies that

GB(t1, t2) = GB(∆t, 0) ≡ GB(∆t) , ∆t ≡ t1 − t2 . (L.2)

The expressions for the retarded and advanced propagators are the equivalent of (4.2.14)

iGRB(∆t) = θ(∆t) 〈[J(∆t), J(0)]〉 , iGA(∆t) = −θ(−∆t) 〈[J(0), J(−∆t)]〉 . (L.3)

Taking the complex conjugate of the retarded correlator gives

− i(GRB(∆t))∗ = θ(∆t) 〈[J(0), J(∆t)]〉 = −iGAB(−∆t) , (L.4)
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so that
(GRB(∆t))∗ = GAB(−∆t) . (L.5)

In momentum space, (L.5) reads

(GRB(p0))∗ = GAB(p0) . (L.6)

When combined with the property (which does not require equilibrium)

GAB(p0) = GRB(−p0) , (L.7)

(L.5) fixes the behavior of the retarded (and advanced) 2-point function under a change of
sign of p0

ImGRB(−p0) = −ImGRB(p0) , ReGRB(−p0) = ReGRB(p0) . (L.8)

Likewise, time-translation invariance implies that the time-ordered and anti-time-ordered
propagators are related by

(GFB(p0))∗ = −GF̄B(p0) . (L.9)

We now focus on the result (4.2.16), which is a consequence of the KMS symmetry.
Because the Hamiltonian Ĥ is the generator for time translation, the operator J can be
shifted with an imaginary time according to

J(t) = e−βĤJ(t− iβ)eβĤ . (L.10)

If we substitute this equality in the G<B propagator, we obtain

iG<B(∆t) = 〈J(0)J(∆t)〉
= Tr

[
e−β(Ĥ−µN̂)J(0)e−βĤJ(∆t− iβ)eβĤ

]
= Tr

[
eβµN̂J(0)e−βĤJ(∆t− iβ)

]
= Tr

[
e−βµN̂J(∆t− iβ)eβµN̂J(0)e−β(Ĥ−µN̂)

]
= Tr

[
eβµJ(∆t− iβ)J(0)e−β(Ĥ−µN̂)

]
= eβµTr

[
e−β(Ĥ−µN̂)J(∆t− iβ)J(0)

]
= eβµiG>B(∆t− iβ) , (L.11)

where N̂ is the boson number operator, and µ the associated chemical potential. We used
the cyclicity of the trace to go from the second to the third line, and the fact that [N̂ , J ] = J
to go from the third to the fourth line. In momentum space (L.11) becomes

G<B(p) = e−β(p0−µ)G>B(p) . (L.12)

Note that the bosonic chemical potentials are equal to zero in the nuclear matter. This is
why no chemical potential appears in (4.2.16).
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L.2 Free fermion propagator

We review here the derivation of the equilibrium free fermion propagator G0(x1, x2) at
finite temperature and density. The expression for the latter is

iG0
αβ(x1, x2) ≡ Tr

[
ρ0TC{ψα(x1)ψ̄β(x2)}

]
Tr [ρ0]

, (L.13)

where ρ0 ≡ exp (−β(H0 − µN0)) is the equilibrium grand canonical density matrix. The
equilibrium Hamiltonian and particle number operators can be expressed in terms of the
fermion and anti-fermion creation and annihilation operators as

N0 =

∫
d3p

(2π)32Ep

(
a†pap − b†pbp

)
, H0 =

∫
d3p

(2π)32Ep
Ep

(
a†pap + b†pbp

)
, (L.14)

where Ep =
√
~p2 +m2 is the fermion on-shell energy. We dropped the zero-point energy,

which yields the same factor in the numerator and denominator of expectation values such
as (L.13). Starting from the canonical anti-commutation relations of the fermionic creation
and annihilation operators

{ap, a
†
p′} = (2π)32Epδ

(
~p− ~p′

)
, {bp,b

†
p′} = (2π)32Epδ

(
~p− ~p′

)
, (L.15)

we obtain that

{e−β(H0−µN0), ap} = e−β(H0−µN)
(

1 + e−β(Ep−µ)
)

ap , (L.16)

{e−β(H0−µN0), bp} = e−β(H0−µN)
(

1 + e−β(Ep+µ)
)

bp . (L.17)

These commutators can then be used to compute the expectation values

Tr
[
ρ0 a†pap′

]
Tr [ρ0]

= (2π)32Epnf (Ep − µ)δ
(
~p− ~p′

)
, (L.18)

Tr
[
ρ0 b†pbp′

]
Tr [ρ0]

= (2π)32Epnf (Ep + µ)δ
(
~p− ~p′

)
, (L.19)

where nf is the Fermi-Dirac distribution

nf (E) ≡ 1

eβE + 1
. (L.20)

In terms of the creation and annihilation operators, the fermionic spinor field in the inter-
action picture reads

ψα(x) =
∑
s=±

∫
d3p

(2π)32Ep

[
as,pus,α(~p)e−ip·x + b†s,pvs,α(~p)eip·x

]
. (L.21)
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Substituting (L.21) into (L.13) and using (L.18)-(L.19) gives the final result26 for the free
fermionic propagator at finite temperature and density

iG0
αβ(x1, x2) =

∫
d3p

(2π)32Ep

[
(/p+

+m)
(
θC(x0

1 − x0
2)− nf (Ep − µ)

)
e−ip·(x1−x2)

+(/p− +m)
(
θC(x0

2 − x0
1)− nf (Ep + µ)

)
eip·(x1−x2)

]
, (L.22)

where θC is the Heaviside function on the CTP and we defined

/p± = ±Epγ0 − ~p · ~γ . (L.23)

In particular, the Wightman functions for the free quasi-particles are given in momentum
space by

iG0,<(k) = −(/k +m+ µγ0)
π

Ep

[
nf (Ep − µ)δ(Ep − k0 − µ)−

− (1− nf (Ep + µ))δ(Ep + k0 + µ)
]
, (L.24)

iG0,>(k) = (/k +m+ µγ0)
π

Ep

[
(1− nf (Ep − µ))δ(Ep − k0 − µ)−

− nf (Ep + µ)δ(Ep + k0 + µ)
]
. (L.25)

To go from (L.22) to (L.24)-(L.25), we used the fact that the 0-component of the quasi-
particle momentum is shifted with respect to that of the particle as

k0 = p0 − µ . (L.26)

L.3 A discussion of the “quasi-particle” approximation

In this sub-appendix, we discuss in more detail the underlying assumptions of what is
referred to as the quasi-particle approximation (introduced in section 4.2.2.2). The starting
point of this approximation is more of a near-equilibrium approximation. At equilibrium,
the fermionic Wightman functions obey relations similar to (4.2.17)-(4.2.18)

G<αβ(pν) = −nf (p0
ν − µν)ραβ(pν) , (L.27)

G>αβ(pν) = (1− nf (p0
ν − µν))ραβ(pν) , (L.28)

26Recall the spinor sum rules which in this normalization read
∑
s=± us,α(p)ūs,β(p) = (/p+m)αβ

and
∑
s=± vs,α(p)v̄s,β(p) = (/p−m)αβ .
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where ραβ is the equilibrium spectral density. The approximation then assumes that the
neutrinos are sufficiently close to equilibrium for the Wightman functions to be parametrized
as

G<αβ(X, pν) = −F (X, p0
ν , ~p

2
ν )ραγ(X, p0

ν , ~pν)
δγβ − γ5

γβ

2
, (L.29)

G>αβ(X, pν) = (1− F (X, p0
ν , ~p

2
ν ))

δαγ − γ5
αγ

2
ργβ(X, p0

ν , ~pν) , (L.30)

where F is the neutrino distribution function, and the spectral density ρ is further assumed
to be close to its equilibrium value, up to corrections in the coupling. Note the presence
of the projectors (1 − γ5)/2, that implement the fact that the Standard Model neutrinos
are left-handed.

Upon assuming the ansatz (L.29)-(L.30), the quasi-particle approximation is then a
consequence of the weakly-coupled nature of the neutrino interactions. That is, the equi-
librium spectral density is equal to the free spectral density, up to corrections from the
interactions

ρ(p0
ν , ~pν) =

π

Eν
/pν
(
δ(p0

ν − Eν)− δ(p0
ν + Eν)

)
+O(G2

F ) , Eν ≡ |~pν | . (L.31)

Another consequence of the weak coupling is that, at leading order, the energy of the
neutrino quasi-particles is shifted with respect to that of the neutrinos as in (L.26)

k0
ν = p0

ν − µν +O(G2
F ) , (L.32)

so that the Wightman functions for the quasi-neutrinos are given by

G<ν,αβ(X, kν) = −Fν(X, k0
ν ,
~k 2
ν )ραγ(X, k0

ν + µν ,~kν)
δγβ − γ5

γβ

2
, (L.33)

G>ν,αβ(X, kν) = (1− Fν(X, k0
ν ,
~k 2
ν ))

δαγ − γ5
αγ

2
ργβ(X, k0

ν + µν ,~kν) . (L.34)

The quasi-neutrino distribution function Fν is split into neutrino and anti-neutrino distri-
butions as

Fν(X, k0
ν ,
~k 2
ν ) = fν(X, k0

ν ,
~k 2
ν )θ(k0

ν + µν) +
(
1− fν̄(X, k0

ν ,
~k 2
ν )
)
θ(−k0

ν − µν) . (L.35)

The ansatz (L.33) is then substituted in the Kadanoff-Baym (KB) equation (4.2.31),
that we reproduce here for convenience

i∂Xµ Tr
{
γµG<(X, k)

}
= −Tr

{
G>(X, k)Σ<(X, k)− Σ>(X, k)G<(X, k)

}
. (L.36)

There is a similar equation for the other Wightman function

i∂Xµ Tr
{
γµG>(X, k)

}
= −Tr

{
G>(X, k)Σ<(X, k)− Σ>(X, k)G<(X, k)

}
. (L.37)
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The difference of the two KB equations implies that a specific trace of the spectral function
is preserved by the kinetic evolution27

i∂Xµ Tr {γµρ(X, k)} = 0 . (L.38)

The equation for the distribution functions is then given by

i∂Xµ Fν(X, k)Tr {γµρ(X, k)} = −Tr
{
Fν(X, k)ρ(X, k)Σ<(X, k)+

+ (1− Fν)Σ>(X, k)ρ(X, k)
}
. (L.39)

At leading order in the weak coupling, this reduces to the Boltzmann equations for the
neutrino and anti-neutrino distribution functions, (4.2.56) and (4.2.57).

In the general case, the ansatz for the Wightman functions contains several fields, that
are organized according to the expansion in the generators of the Clifford algebra, with the
condition of SO(3) symmetry

G>(X, k0
ν ,
~k2
ν) = S(X, k0

ν ,
~k2
ν) + iγ5P(X, k0

ν ,
~k2
ν)+

+ γ0V(0)(X, k
0
ν ,
~k2
ν) + kiγ

iV(1)(X, k
0
ν ,
~k2
ν)+

+ γ5γ0A(0)(X, k
0
ν ,
~k2
ν) + kiγ

5γiA(1)(X, k
0
ν ,
~k2
ν)+

+ ki[γ
0, γi]D(X, k0

ν ,
~k2
ν) . (L.40)

Imposing that the Standard Model neutrinos are left-handed further reduces the form of
the ansatz

G>(X, k0
ν ,
~k2
ν) =

1− γ5

2

(
γ0V(0)(X, k

0
ν ,
~k2
ν) + kiγ

iV(1)(X, k
0
ν ,
~k2
ν)
)
. (L.41)

This can be rewritten in terms of an effective neutrino chemical potential out of equilibrium
µeff

G>(X, k0
ν ,
~k2
ν) =

1− γ5

2
F(X, k0

ν ,
~k2
ν)
(
/k + µeff(X, k0

ν ,
~k2
ν)γ0

)
, (L.42)

where the field F contains information about the spectrum and the distribution of neutri-
nos. The quasi-particle approximation assumes that µeff is close to the chemical potential
of β-equilibrium, and that F can be factorized as a distribution function, times the sum of
Dirac delta functions that appear in the leading order equilibrium spectral density (L.31).
Instead of a single Boltzmann equation for the neutrino distribution function, the general
transport problem with the ansatz (L.42) will involve two coupled equations for the two
scalar fields µeff and F . The formalism and computational setup we have in chapter 4,
allows then the evaluation of the two independent distributions far from equilibrium.

27In deriving (L.38) and (L.39), we use the fact that the trace of γ5γµ1 . . . γµn is zero for all
n ≤ 3.
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M Weak vertices for neutrino interactions

The charged current neutrino self-energy at leading order in the electroweak couplings is
computed from the diagram in figure 4.6. The expression for the weak vertices appearing
in this diagram is given by the Glashow-Weinberg-Salam (GSW) theory. We are interested
in energy scales much lower than the W boson mass, in which regime the weak vertices
are well described by a low energy effective theory, where the W and Z boson exchanges
are replaced by weak current contact interactions. For easy reference, the purpose of this
appendix is to give a review of the form that the effective vertices take.

After electroweak symmetry breaking, the GSW Lagrangian contains terms that couple
the electroweak vector bosons to the fermion electroweak currents

Seff =

∫ [
−gW√

2
W±µ (Jµ± + J̄µ±) +

gW
cos θW

Zµ(Jµ0 + J̄µ0 ) + eAµ(Jµem + J̄µem)

]
(M.1)

with gW the electroweak coupling constant, θW the Weinberg angle and e = gW sin θW
the elementary charge. From left to right, the currents that appear are respectively the
charged, neutral and electromagnetic currents. The currents without bar are the lepton
currents and those with the bar are the QCD currents made out of quarks.

Integrating out (classically) the weak bosons we get the quadratic effective action

Seff ′ =

∫ [
g2
W

2
(Jµ+ + J̄µ+)DW

µν(Jν− + J̄ν−) + h.c.+
g2
W

cos2 θW
(Jµ0 + J̄µ0 )DZ

µν(Jν0 + J̄ν0 )+

+ eAµ(Jµem + J̄µem) +O(eG2
F )

]
(M.2)

where DW,Z are the tree-level gauge boson propagators in a given gauge. The higher
order corrections come from the cubic and quartic interactions between the electroweak
gauge bosons, as well as Higgs interactions. They start at order O(eG2

F ), with the leading
contribution coming from the WWγ vertex. In the limit where all momenta are much
smaller than MW , the W,Z propagators are replaced by Dirac deltas and we obtain

Seff ′ =

∫ [
2
√

2GF

(
(Jµ+ + J̄µ+)ηµν(Jν− + J̄ν−) + h.c.+ 2(Jµ0 + J̄µ0 )ηµν(Jν0 + J̄ν0 )

)
+

+ eAµ(Jµem + J̄µem) +O(eG2
F )

]
(M.3)

This can be decomposed as

Seff ′ = SW + SS + SJ2 + Sγ (M.4)

with

SW = 2
√

2GF

∫ [
Jµ+J−µ + h.c.+ 2Jµ0 J0µ

]
+O(eG2

F ) (M.5)
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SS = 4
√

2GF

∫ [
Jµ+J̄−µ + h.c.+ 2Jµ0 J̄0µ

]
+O(eG2

F ) (M.6)

SJ2 = 2
√

2GF

∫ [
J̄µ+J̄−µ + h.c.+ 2J̄µ0 J̄0µ

]
+O(eG2

F ) (M.7)

and

Sγ =

∫ [
eAµ(Jµem + J̄µem)

]
+O(eG2

F ) (M.8)

SW is the standard leptonic Fermi interaction and its neutral counterpart, whereas Sγ gives
the electromagnetic interaction of the fermions. SS is the interaction of leptons with the
QCD weak current, and SJ2 is the weak interaction of the strong currents. It is small and
is therefore not expected to play an important role in the strongly-coupled quark-gluon
plasma. It can be included if necessary in the holographic calculation by changing the
boundary conditions of the gauge fields, according to the standard double-trace dictionary,
[106]. The higher order corrections that start at order O(eG2

F ) include tree level terms, as
well as electroweak loop corrections. These terms include higher-point couplings between
the weak currents, as well as couplings of the charged current to the photon.

We now want to compute the effective interaction for neutrinos in the strong plasma
and for this we must compute

e−Weff = 〈e−SS 〉 (M.9)

where the expectation value is obtained in the state (or ensemble) of strongly coupled
matter. This can be expanded as

Weff = 4
√

2GF

∫ [
2Jµ+〈J̄−µ〉+ h.c.+ 4Jµ0 〈J̄0µ〉+

+ 4
√

2GF

(
Jµ+J−ν〈J̄−µJ̄ν+〉+ h.c.+ 2Jµ0 J0ν〈J̄0µJ̄

ν
0 〉
)

+O(eG2
F )

]
(M.10)

The contact interactions with the one point functions contribute to the neutrino chemical
potential µν , so they can be absorbed in the definition of µν . Then, the effective action for
the neutrino interactions contains the term quadratic in the neutrino current plus higher
order corrections

Weff = 32G2
F

∫ [
Jµ+J−ν〈J̄−µJ̄ν+〉+ h.c.+ 2Jµ0 J0ν〈J̄0µJ̄

ν
0 〉+O(eG2

F )

]

N Background solution for the transport analysis

We review in this appendix the derivation of the Reissner-Nordström background solution
(4.3.11)-(4.3.14).
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The equations of motion from the action (4.3.1) are the Einstein-Yang-Mills equations

RMN −
1

2

(
R+

12

`2

)
gMN = −w

2
0`

2

4Nc
Tr

{
F

(L)
MPF

(L)P
N +

1

4
F

(L)
PQF(L)PQgMN+

+ (L↔ R)

}
, (N.1)

D
(L/R)
M

(√−gF (L/R)MN
)

= 0 , (N.2)

with D
(L/R)
M the Yang-Mills covariant derivatives

D
(L)
M ≡ ∂M − i[LM , . ] , D

(R)
M ≡ ∂M − i[RM , . ] . (N.3)

The background solution is found by starting from the ansatz

ds2 = e2A(r)
(
−f(r)dt2 + f(r)−1dr2 + ~dx

2
)
, (N.4)

RM = LM =
1

4
δ0
M V̂0(r)I2 . (N.5)

This ansatz fixes the gauge for the gauge field, up to a shift by a constant. As we shall see
below, the regular boundary conditions in the IR (N.10) remove this degeneracy.

Substituting the ansatz (N.4)-(N.5) into the equations of motion (N.1)-(N.2) results in
the following system of equations for the ansatz fields

∂2
rA− (∂rA)2 = 0 , (N.6)

∂rA
(
∂rf + 4∂rAf(r)

)
− 4

`2
e2A(r) +

w2
0`

2

48Nc
e−2A(r)(∂rV̂0)2 = 0 , (N.7)

∂r

(
eA(r)∂rV̂0

)
= 0 = 0 . (N.8)

The two integration constants of (N.6) correspond to translations and rescalings of r. We
fix the definition of the coordinate r by writing the solution as

A(r) = log

(
`

r

)
, (N.9)

which implies in particular that the boundary is located at r = 0. We look for a solution
with a horizon at r = rH , where the blackening function f(r) vanishes. For the gauge field
to be regular at the horizon, the time component should vanish

V̂0(rH) = 0 . (N.10)
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This implies that the solution of (N.8) is given by

V̂0 = 2µ

(
1−

(
r

rH

)2
)
, (N.11)

with the boundary source µ corresponding to the quark number chemical potential. Finally,
the solutions for the gauge fields and the scale factor A(r) can be substituted in (N.7), which
yields an equation for f(r)

∂rf −
4

r
(f(r)− 1)− w2

0µ
2

3Nc

(
r

rH

)4

r = 0 . (N.12)

The solution takes the form

f(r) = 1−
(
r

rH

)4(
1 +

w2
0

6Nc
µ2r2

H

)
+

w2
0

6Nc
µ2r2

H

(
r

rH

)6

. (N.13)

To avoid a conical singularity of the Euclidean solution at finite temperature, the derivative
of f(r) at the horizon should be related to the field theory temperature

f ′(rH) = −4πT . (N.14)

This condition results in an equation for the horizon radius rH

w2
0

6Nc
µ2r2

H = 2(1− πTrH) , (N.15)

whose solution determines the location of the black-hole horizon as a function of the chem-
ical potential µ and the temperature

rH(T, µ) =
2

πT

1 +

√
1 +

w2
0

3Nc

µ2

π2T 2

−1

. (N.16)

Note that (N.15) allows to rewrite f(r) in the form presented in the text

f(r) = 1−
(
r

rH

)4

(1 + 2 (1− πTrH)) + 2 (1− πTrH)

(
r

rH

)6

. (N.17)

O Parameters of the bulk action for neutrino trans-

port

The bulk action (4.3.1) possesses two parameters: the five-dimensional Planck mass M`,
which controls the overall normalization of the action, and the flavor coupling w0. We
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detail in this appendix how the values of these parameters are fixed by matching to QCD
data.

First, the 5-dimensional Planck mass M` is fixed by imposing that the zero-chemical
potential limit of the pressure be that of a free quark-gluon plasma

p =
π2N2

c

45
T 4

(
1 +

7Nf

4Nc

)
. (O.1)

Lattice results [40] indicate that, for temperatures equal to a few times the deconfining
temperature, the pressure in the quark-gluon plasma is already close (within about 20%)
to the ideal result (O.1). Setting (M`) to match (O.1) will therefore ensure that the
thermodynamics of the holographic model is close to that of QCD in the deconfined phase.
The pressure of the holographic model is computed from the grand-canonical potential
(4.3.18). At µ� T , it is given by

p = (M`)3

[
N2
c (πT )4 +

1

8
NfNcw

2
0(πT )2µ2 +O(µ4)

]
. (O.2)

(O.2) matches (O.1) at µ = 0 if (M`)3 is equal to

(M`)3
free =

13

6

1

45π2
, (O.3)

where the number of flavors was set to Nf = 2, and that of colors to Nc = 3.
As far as the parameter w0 is concerned, it can be fixed such that the baryon number

susceptibility at zero density agrees with the ideal Fermi gas result. As for the pressure, it
was observed to give a good approximation to the exact result for the quark-gluon plasma
on the lattice [205]. The baryon number susceptibility is defined as the first non-trivial
cumulant of the pressure at µB = µ3 = 0

χB =
∂2p

∂2µB

∣∣∣∣
µB=0

. (O.4)

From (O.2) it is equal to

χB =
Nf

2Nc
w2

0(M`)3(πT )2 , (O.5)

whereas the ideal Fermi gas result is

χB,free =
Nf

3Nc
T 2 . (O.6)

Matching the two results fixes the value of w0 to be(
w2

0(M`)3
)

free
=

2

3π2
. (O.7)

In the numerical calculations done in this chapter 4, we used the values of the param-
eters given by (O.3) and (O.7). For comparison, we discuss below another choice for the
value of the parameter w0.
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UV limit of the two-point function Fixing w0 as in (O.7) also implies that
the holographic two-point function agrees with the perturbative QCD result in the UV
limit [161, 164]. Here, we will prove explicitly this result. So we now consider the Eu-
clidean version of the correlator (4.4.23) and (4.4.24) in the UV limit where ω2 + ~k2 goes
to infinity. In this case the temperature and chemical potential become irrelevant and the
computation can be equivalently performed in (Euclidean) AdS space-time. It follows that
the Lorentz invariance of the theory is effectively restored and the Euclidean correlator can
be written as 〈

J
(L)
λ J (L)

σ

〉E
(k) = Pλσ(k)ΠE

(L)(k) , (O.8)

where the 4-dimensional projector transverse to k was defined in (4.4.7). The function Π(k)
is computed following the standard holographic method, starting from the perturbation

δLµ(r;x) =

∫
dk4

(2π)4
eik.xL(0)

µ,kψ(r) , (O.9)

which obeys the equation of motion

∂2
rψ −

1

r
∂rψ − k2ψ = 0 , (O.10)

together with a boundary condition fixing the normalization of the perturbation

ψ(0) = 1 . (O.11)

The solution of this differential problem can be expressed in terms of a modified Bessel
function of the second type

ψ(r) = krK1(kr) , (O.12)

and the Euclidean on-shell action is

Son−shell = − 1

8`
(M`)3w2

0Nc

∫
r=ε

d4k
`

r
L(0)
µ (−k)Pµν(k)L(0)

ν (k)∂rψψ . (O.13)

Near the boundary, K1 has the following behavior

K1(kr) ∼
r→0

1

kr
+

1

2
kr log (kr) + C0kr , (O.14)

where C0 is a constant that does not depend on k. This implies that the on-shell action has
a logarithmic divergence which is removed by the appropriate counter-term. This leaves
the renormalized on-shell action

Sren = − 1

16
(M`)3w2

0Nc

∫
r=ε

d4kL(0)
µ (−k)Pµν(k)L(0)

ν (k)k2 log (k2) +O(k2) , (O.15)
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and

ΠE
(L)(k) = −Nc

8
(M`)3w2

0k
2 log(k2) . (O.16)

Identifying with the perturbative QCD result

ΠE
(L),QCD(k) = −Nc

8

2

3π2
k2 log(k2) , (O.17)

fixes the value of w0 in terms of M`

w2
0 =

2

3π2(M`)3
, (O.18)

which agrees with the value derived from the susceptibility (O.7).

P Eddington-Finkelstein coordinates

The general solution to the equations of motion (4.4.16) and (4.4.18) behaves near the
horizon as the superposition of an infalling and outgoing waves

L⊥ = c1(rH − r)−iγ + c2(rH − r)iγ , E‖ = d1(rH − r)−iγ + d2(rH − r)iγ , γ ≡ ω

4πT
.

(P.1)
Imposing infalling boundary conditions amounts to setting c2 = d2 = 0, and the infalling
solution can be rewritten as

L⊥ = c exp

(
−iγ log

(
1− r

rH

))
, E‖ = d exp

(
−iγ log

(
1− r

rH

))
, (P.2)

which makes it apparent that the solution oscillates very fast near the horizon as soon
as ω in non-zero. When solving the equations of motion numerically, such fast oscillating
solutions require high numerical precision to obtain good accuracy for the behavior of the
solution near the boundary. To avoid working with such solutions, it is more convenient
to do the numerical calculations in the natural coordinates for infalling solutions, that are
the infalling Eddington-Finkelstein coordinates. The change of coordinate is given by

~x→ ~x , t→ u = t− r∗(r) , r → r , (P.3)

where the tortoise coordinate r∗(r) is such that

dr∗

dr
=

1

f(r)
. (P.4)

Then, the Fourier transform of the gauge field perturbation transforms as

Lµ,k(r)→ eiωr
∗(r)Lµ′,k(r) , (P.5)
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which can be decomposed into

L⊥(r)→ eiωr
∗F⊥(r) , E‖(r)→ eiωr

∗F‖(r) . (P.6)

Notice that, since near the horizon the tortoise coordinate behaves as

r∗(r) ∼ − 1

4πT
log

(
1− r

rH

)
, (P.7)

the fields F⊥ and F‖ do not oscillate near the horizon, and are instead analytic at r = rH
28.

Applying the transformation (P.5) to the equations of motion (4.4.16) and (4.4.18) gives
the differential equations obeyed by the gauge-fields in Eddington-Finkelstein coordinates,
F⊥ and F‖

∂2
rF⊥ +

(
f ′(r) + iω

f(r)
− 1

r

)
∂rF⊥ −

k2

f(r)
F⊥ = 0 , (P.8)

∂2
rF‖ +

(
f ′(r) + iω

f(r)
− 1

r
+

k2f ′(r)

ω2 − f(r)k2

)
∂rF‖ −

k2

f(r)
F‖ = 0 . (P.9)

These equations can be solved numerically by shooting from the horizon, where two bound-
ary conditions are imposed. The first condition fixes the normalization of the solution

F⊥(rH) = F‖(rH) = 1 , (P.10)

and the second one selects the infalling solution at the horizon. In Eddington-Finkelstein
coordinates, this corresponds to requiring that the fields F⊥ and F‖ are regular at r = rH .
By analyzing the equations of motion (P.8)-(P.9) near the horizon, for the regular solution
we find the following relation between the fields and their first derivative at the horizon

∂rF⊥(rH) =
k2

iω − 4πT
F⊥(rH) , ∂rF‖(rH) =

k2

iω − 4πT
F‖(rH) . (P.11)

Q Analysis of the diffusive approximation

This appendix presents an analysis of the diffusive approximation, where the time-time
component of the two-point function is assumed to give the largest contribution to the
opacities. We first investigate the validity of this approximation, and then use it to derive
approximate expressions for the radiative coefficients as a function of the various parame-
ters.

28The infalling Eddington-Finkelstein coordinates are well-defined beyond the horizon, and there
exists a solution to the equations of motion which is perfectly regular at r = rH in these coordinates.

273



Q.1 Radiative coefficients in the hydrodynamic limit

This subsection presents the analysis of the radiative coefficients in the hydrodynamic
regime rHµe, rHµν , rHEν � 1, which results in the scalings (4.5.21). The results justify
the validity of the diffusive approximation in the degenerate and hydrodynamic limit.

A small parameter ε is introduced, and we consider the following scaling of the param-
eters

rHEν ∼ rHµν = rHµe = ε , rHT = O(εa) , (Q.1)

where we take a � 1. This ensures that the temperature is much smaller than all other
energy scales in the problem, such that the degenerate expression of the statistical dis-
tributions can be used (4.5.2) and (4.5.4). We then consider the integrals over the loop
electron momentum which define the radiative coefficients (4.2.72)-(4.2.75). We focus on
the neutrino emissivity je− for concreteness, but the others are analogous. The integral
over ke can be rewritten as an integral over the energy q0

eν

je−(Eν) = −G
2
F

8π2

∫ π

0
dθ sin θ

∫ µν−Eν

0
dω

ω + Eν
Eν

Lλσe ImGRc,σλ
(
ω, k(ω, θ)

)
, (Q.2)

ω ≡ q0
eν = Ee − Eν ,

k(ω, θ) ≡
√

(ω + Eν)2 + E2
ν − 2(ω + Eν)Eν cos θ ,

where we neglected the mass of the electrons29, and the boundaries of the energy integral are
fixed by the Fermi-Dirac and Bose-Einstein distributions. Substituting the hydrodynamic
expression of the correlators gives

je−(Eν) =
G2
F

8π2

∫ π

0
dθ sin θ

∫ µν−Eν

0
dω

ω + Eν
Eν

Lλσe × (Q.3)

× σω
(
P⊥λσ(ω, k(ω, θ)) + P

‖
λσ(ω, k(ω, θ))

ω2 − k2(ω, θ)

ω2 +D2k4(ω, θ)

)
,

which is the sum of several components

j⊥e−(Eν) =
2G2

Fσ

π2

∫ π

0
dθ sin θ(1− cos θ)

∫ µν−Eν

0
dω ω(ω + Eν)2× (Q.4)

×
(

1 +
(ω + Eν)Eν
k2(ω, θ)

(1 + cos θ)

)
,

j
(00)
e− (Eν) =

G2
Fσ

π2

∫ π

0
dθ sin θ(1 + cos θ)

∫ µν−Eν

0
dω ω(ω + Eν)2× (Q.5)

29The mass of the electron is equal to about 0.5 MeV, which is much smaller than the temperature
T = 10 MeV.
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× k2(ω, θ)

ω2 +D2k4(ω, θ)
,

j
(0i)
e− (Eν) = −2G2

Fσ

π2

∫ π

0
dθ sin θ(1 + cos θ)

∫ µν−Eν

0
dω ω2(ω + Eν)2× (Q.6)

× ω

ω2 +D2k4(ω, θ)
,

j
‖,(ij)
e− (Eν) =

G2
Fσ

π2

∫ π

0
dθ sin θ(1 + cos θ)

∫ µν−Eν

0
dω ω3(ω + Eν)2× (Q.7)

× ω2

k2(ω, θ)(ω2 +D2k4(ω, θ))
.

The diffusive approximation assumes that the component j
(00)
e− dominates over the other

contributions. We now proceed to investigate the validity of this statement in the hydro-
dynamic limit. This will be done by determining the hydrodynamic scaling (the scaling in
ε) for each component of the emissivity (Q.4)-(Q.7).

For a given angle θ, the integration over ω meets the diffusive peak ω = Dk2 when ω
is equal to

ω∗(Eν , θ) ≡
1 + 2DEν cos θ −

√
(1 + 2DEν cos θ)2 − 4D(Eν +DE2

ν)

2D
− Eν

= 2DE2
ν(1− cos θ)(1 +O(ε)) . (Q.8)

From (Q.1), ω∗ is of order O(ε2) whereas the upper bound of the integral µν − Eν is of
order O(ε). The integrals are therefore such that, over most of the integration region, ω is
much larger than Dk2. Specifically, the integrals can be split into two parts as∫ µν−Eν

0
=

∫ Aω∗

0
+

∫ µν−Eν

Aω∗
, (Q.9)

where A is a number much larger than one which is independent of ε. The first part
contains the contribution from the diffusion peak, whereas ω � Dk2 in the second part.

We now investigate the scaling of the first part of the integral in (Q.9) that we label
with the subscript “diff”. Since the transverse integrand (Q.4) does not depend on rH , its
hydrodynamic scaling is easily derived

j⊥e−,diff = O(ε6) . (Q.10)

The longitudinal integrands require a more careful study since rH appears via the diffusion
constant D = 1

2rH . The hydrodynamic scaling of the longitudinal emissivity coming from
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the first part of the integral in (Q.9) can be found by determining appropriate upper and
lower bounds. The lower bound is determined according to the following∫ Aω∗

0
dωF (ω, θ)

k2(ω, θ)ω

ω2 +D2k4(ω, θ)
>

∫ 2ω∗

0
dωF (ω, θ)

k2(ω, θ)ω

ω2 +D2k4(ω, θ)
(Q.11)

≈
∫ 2ω∗

0
dωF (ω, θ)

ω∗ω

D (ω2 + (ω∗)2)
>

∫ 2ω∗

0
dωF (ω, θ)

1

2D

(
1−

( ω
ω∗
− 1
)2
)
,

where F (ω, θ) > 0 and the sign ≈ means that the two expressions are equal up to a factor
1 +O(ε). To write the first expression on the second line, we used the fact that Dω is of
order O(ε2) over the integration interval, so that k2(ω, θ) = ω∗/D(1 + O(ε)). The upper
bound is obtained by replacing the fraction in (Q.11) by its maximum value reached at
ω = ω∗ ∫ Aω∗

0
dωF (ω, θ)

k2(ω, θ)ω

ω2 +D2k4(ω, θ)
<

∫ Aω∗

0
dω

F (ω, θ)

2D
. (Q.12)

Then, for each component of the longitudinal emissivity (Q.5)-(Q.7), the bounds on the
contribution from the region around the diffusion peak are obtained by replacing F (ω, θ) in
(Q.9) and (Q.12) by the appropriate expression, and performing the integral. This results
in the following bounds

j
(00)
e−,diff

= α(00)
4G2

Fσ

3π2
E4
ν(1 +O(ε)) = O(ε4) , (Q.13)

j
(0i)
e−,diff

= −α(0i)
32G2

Fσ

3π2
D2E6

ν(1 +O(ε)) = O(ε6), (Q.14)

j
‖,(ij)
e−,diff

= α(ij)
64G2

Fσ

5π2
D4E8

ν(1 +O(ε)) = O(ε8), (Q.15)

α(00) ∈
(

4

3
, A

)
, α(0i) ∈

(
4

5
,
A3

6

)
, α(ij) ∈

(
32

21
,
A5

10

)
.

We now discuss the contribution from the second part of the integral in (Q.9), where
ω � Dk2. Since this contribution includes essentially the region where ω and k are of
the same order ω ∼ k = O(ε), we label it with the subscript “lin”. The scaling of the
transverse part is again easily derived

j⊥e−,lin = O(ε4) . (Q.16)

For the longitudinal part, the integrals are computed by neglectingD2k4 in the denominator
of the correlator, which results in integrands that are independent of the diffusion constant
D. As for the transverse part, the hydrodynamic scaling of the (0i) (Q.6) and (ij) (Q.7)
components are then easily derived to be

j
(0i)
e−,lin = O(ε4) , (Q.17)
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j
‖,(ij)
e−,lin = O(ε4) . (Q.18)

The (00) component is somewhat more subtle since the integrand contains a term that goes
as ω−1. This implies that the time-time component contains a term of order O(ε4 log (ε2))

j
(00)
e−,lin =

8G2
Fσ

3π2
E4
ν log

(
D(µν − Eν)

D2E2
ν

)
+O(ε4) . (Q.19)

As long as µν−Eν is much larger thanO(ε2), this term dominates all the other contributions
to the neutrino emissivity. When Eν is so close to the neutrino chemical potential that
µν − Eν is smaller than O(ε2), the integral includes only the diffusive part in (Q.10) and
(Q.13)-(Q.15). Since in both cases the time-time component dominates, the conclusion of
this analysis is that the diffusive approximation is valid in the hydrodynamic limit.

Note that there is one exception to this argument which happens in the limit where
Eν goes to zero. In this limit, the only remaining scale is the neutrino chemical potential,
such that all contributions (Q.4)-(Q.7) behave like µ4

ν . This means that the diffusive
approximation does not apply when Eν � µν .

Q.2 Approximate expressions for the radiative coefficients

In this subsection, we take the hydrodynamic limit (Q.1) to derive approximate expressions
for the neutrino radiative coefficients. We consider the degenerate limit of the distribution
functions (4.5.2) and (4.5.4), and assume in a first time that |µν − Eν | � O(ε2).

According to the analysis of the previous subsection, the radiative coefficients are dom-
inated by the log term coming from the time-time component of the 2-point function. For
the opacities we obtain

κe−(Eν) =
8G2

Fσ

3π2
E4
ν log

(
D|µν − Eν |
D2E2

ν

)
+O(ε4) , (Q.20)

κ̄e−(Eν) =
8G2

Fσ

3π2
E4
ν log

(
D(µν + Eν)

D2E2
ν

)
+O(ε4) . (Q.21)

(Q.20) is valid as long as |µν − Eν | is much larger than O(ε2). In particular, instead of
diverging, the opacity goes to zero at Eν = µν in the degenerate limit.

From Table 4.1, the anti-neutrino opacity also receives a contribution from the positronic
processes. The latter is obtained from (Q.21) by replacing µν +Eν by µν +Eν − µe = Eν

κ̄e+(Eν) =
8G2

Fσ

3π2
E4
ν log (DEν) +O(ε4) . (Q.22)

Note that the leading order log term in (Q.20)-(Q.22) vanishes when Eν goes to zero,
such that the opacities become of order O(ε4) in this limit. The expressions of the opacities
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at Eν = 0 are of particular interest, since they set the typical opacity scale at a given value
of the baryonic density nB. The latter can easily be computed from (Q.4)-(Q.7)

κe,0 ≡ κe−(0) = κ̄e−(0) =
G2
Fσ

π2
µ4
ν +O(ε5) . (Q.23)

Substituting the expressions for the conductivity σ (4.4.45), and the neutrino chemical
potential (4.3.26), we obtain the dependence of the zero-energy opacities on µ and the
parameters of the bulk action (M`) and w0

κe,0(nB) =
G2
F |Mud|2
2304

(
3π4
) 1

6 N
1
2
c (M`)7w

25/3
0

(
µ(nB)

)5
+O(ε4) , (Q.24)

which is valid in the degenerate and hydrodynamic limit.
We are now interested in the regime where |µν − Eν | is smaller than O(ε2). When

|µν − Eν | goes to zero, both the neutrino emissivity and absorption calculated with the
degenerate limit of the distribution functions go to zero. This implies the existence of a
dip in the log of the neutrino opacity at Eν = µν , which is clearly visible on figure 4.16.
Here we would like to understand what are the typical width and depth of this dip. As
soon as |µν − Eν | becomes of order O(ε2), the integral over energies that appears in the
neutrino emissivity (Q.3) contains only the first part in (Q.9), where ω and Dk2 are of the
same order. Then, for T � µν −Eν = O(ε2), the neutrino opacity is bounded from above
by

κe−(Eν) <
G2
Fσ

Dπ2

∫ |µν−Eν |
0

dω(ω + Eν)2 =
G2
Fσ

Dπ2
µ2
ν |µν − Eν |

(
1 +O(ε)

)
. (Q.25)

This becomes much smaller than the leading contribution from the diffusion peak (Q.13)
when

1

D
µ2
ν |µν − Eν | � E4

ν ⇐⇒ |µν − Eν | � Dµ2
ν . (Q.26)

Replacing the diffusion constant D by its expression D = rH/2, we find that the typical
width of the dip in opacity at Eν = µν is given by

∆Eν =

√
3Nc

w2
0

µ2
ν

µ
. (Q.27)

The depth of the dip is controlled by the value of the opacity at Eν = µν . At zero tempera-
ture, the opacity will be exactly zero at Eµ = µν , and the depth of the dip infinite. At finite
temperature, the finite value of the opacity comes from the order O(T/µ)2 corrections in
(4.5.2) and (4.5.4). The latter are evaluated as derivatives in energy at the point Eν = µν

κe−(µν) =
2G2

Fσ

3
T 2

∫ π

0
dθ sin θ(1 + cos θ)∂ω

[
ω(ω + µν)2 k2(ω, θ)

ω2 +D2k4(ω, θ)

]∣∣∣∣
ω=0

(1 +O(ε)).

(Q.28)
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The angular integral in (Q.28) is singular, which translates the appearance of a non-
analytic behavior in the temperature ∼ T 2 log T . The latter can be traced back to the
divergence of the retarded 2-point function at θ = 0, which is due to the forward scattering
of soft electrons at µe = µν . As expected, the divergence is regularized when taking into
account that the electron mass me is finite

κe−(µν) =
8G2

Fσ

3
T 2r−2

H

[
4 log

(
2µν
me

)
− 1

]
(1 +O(ε) +O(me/µν)2

)
. (Q.29)
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