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Titre: Etude de la coexistence de formes dans les noyaux A ≈ 100 à l’aide de faisceaux d’ions stables
et radioactifs
Mots clés: excitation coulombienne, spectroscopie gamma, formes de noyaux

Résumé: Le sujet de la thèse porte sur les mani-
festations du phénomène de coexistence de formes
dans les noyaux atomiques de nombre de masse
A ≈ 100, en particulier les noyaux de 106Cd et de
100Zr.

Le 106Cd a été étudié via l’excitation coulom-
bienne au-delà l’énergie “sûre” en utilisant le dispo-
sitif expérimental AGATA + VAMOS au GANIL,
France. Les sections efficaces d’excitation extraites
de cette mesure ont été analysées à l’aide des
codes en voies couplées GOSIA et FRESCO. Les
probabilités de transition obtenues ont été com-
parées aux résultats d’études précédentes d’exci-
tation coulombienne “sûre” et de mesures de du-
rée de vie, démontrant que les informations sur la
structure nucléaire peuvent être obtenues à par-
tir de données d’excitation coulombienne au-delà
l’énergie “sûre”. La coexistence de formes dans le

106Cd est discutée dans le cadre des calculs au-delà
du champ moyen. Les probabilités de transition E3
vers plusieurs états de parité négative ont été me-
surées pour la première fois.

Une étude du 100Zr par désintégration bêta
a été réalisée avec le spectromètre GRIFFIN à
TRIUMF, Canada. Dans ce travail de thèse, le
schéma de niveau de ce noyau a été étendu.
Les rapports d’embranchement et de mélange ont
été extraits pour plusieurs transitions. En utilisant
les corrélations angulaires γ-γ, plusieurs nouveaux
états 0+ excités ont été identifiés, ainsi que des
candidats pour les états 2+ construits sur eux. Les
résultats sont discutés dans le cadre de récents cal-
culs de type modèle en couches utilisant la tech-
nique Monte Carlo, qui prédisent la coexistence de
formes multiples.

Title: Study of shape coexistence in nuclei with A ≈ 100 using stable and radioactive ion beams
Keywords: Coulomb excitation, gamma-ray spectroscopy, nuclear shapes

Abstract: The thesis focuses on the manifesta-
tions of the shape-coexistence phenomenon in ato-
mic nuclei with mass number A ≈ 100, specifically
106Cd and 100Zr.

The 106Cd nucleus was studied via unsafe Cou-
lomb excitation using the AGATA+VAMOS se-
tup at GANIL, France. The measured excitation
cross sections were analysed with help of coupled-
channel codes GOSIA and FRESCO. The dedu-
ced transition probabilities were compared to re-
sults of previous safe Coulomb-excitation studies
and lifetime measurements, demonstrating that
nuclear structure information can be reliably obtai-
ned from unsafe Coulomb-excitation data. Shape
coexistence in 106Cd is discussed in the context

of Beyond-Mean-Field calculations. Information on
E3 transition strengths to several negative-parity
states in 106Cd is reported for the first time.

A β-decay study of 100Zr was performed with
the GRIFFIN spectrometer at TRIUMF, Canada.
In the present work, the level scheme of this nu-
cleus has been extended. Branching and mixing ra-
tios were extracted for multiple transitions. Using
γ-γ angular correlations, several new low-energy
excited 0+ states were identified, as well as candi-
dates for the 2+ states built on them. The results
are discussed in the framework of recent Monte-
Carlo Shell-Model calculations, which predict mul-
tiple shape coexistence.
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Résumé

Une des questions phares dans le domaine de la structure nucléaire concerne
l’émergence de collectivité, qui se traduit par l’apparition de formes nucléaires
déformées, et son lien avec la structure microscopique du noyau. La forme du
noyau, c’est-à-dire l’écart de sa distribution de masse et de charge par rapport à la
sphéricité, est une des propriétés nucléaires fondamentales. Elle est gouvernée par
des effets macroscopiques (goutte liquide) et microscopiques (structure en couches
du noyau). Leur compétition est à l’origine des changements rapides de forme des
noyaux en fonction du nombre de nucléons.

Comme la forme d’un état nucléaire dépend des particularités de sa fonction
d’onde, il est également possible d’observer des états aux formes radicalement dif-
férentes au sein du même noyau et même dans une très petite gamme d’énergie
d’excitation, ce que l’on appelle la coexistence de formes. On pensait initialement
que la coexistence de formes était un phénomène rare, mais son occurrence a été
établie a travers la carte de noyaux. Les preuves expérimentales décisives de ce
phénomène sont difficiles à obtenir, car elles nécessitent une connaissance exhaus-
tive d’un grand nombre de propriétés nucléaires liées à la déformation nucléaire.
Cependant, ces études sont essentiels pour tester les interactions nucléaires et les
modèles de structure du noyau.

Ce travail de thèse est focalisé sur les manifestations du phénomène de co-
existence de formes dans les noyaux atomiques de nombre de masse A ≈ 100, en
particulier les noyaux de 106Cd et de 100Zr. Les résultats expérimentaux ont été
obtenus par spectroscopie gamma de haute résolution en utilisant deux des sys-
tèmes de détection à la pointe de la technologie : AGATA au GANIL et GRIFFIN à
TRIUMF. Ces résultats sont discutés dans le cadre de récents calculs théoriques de
type Au delà du Champ Moyen (BMF) ou Modèle en Couches utilisant la technique
Monte Carlo (MCSM), qui prédisent la coexistence de formes multiples dans ces
noyaux.

Excitation coulombienne du 106Cd au-delà de l’énergie
“sûre” étudié avec le multi-détecteur AGATA

Les isotopes stables du cadmium étaient considérés comme de parfaits exemples
de noyaux avec des états fondamentaux sphériques et les états excités qui résultent
des vibrations autour de leur forme d’équilibre sphérique. Cependant, suite aux
études expérimentales récentes, avec l’aide des calculs au-delà du champ moyen,
une interprétation différente des schémas de niveaux des 110−112Cd a été proposée,
à savoir en termes de la coexistence de formes multiples [10]. Dans le cadre de
ce projet de thèse, ces études ont été étendues au 106Cd en utilisant les données
de diffusion inélastique. Ces données ont été issues d’une expérience de mesure
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des temps de vie en utilisant la technique Doppler (Recoil-Distance Doppler Shift,
RDDS [54]) qui a été effectuée au GANIL en 2015 et qui était focalisée sur les
propriétés des noyaux d’étain et de cadmium [49, 50]. Le noyaux d’intérêt ont été
produits utilisant des réactions de Transfert de Multi-Nucléons (MNT) entre le
faisceau du 106Cd à l’énergie de 770 MeV, et la cible du 92Mo. Les rayonnements
γ émis par les produits de réaction ont été mesurés par huit détecteurs triples du
spectromètre AGATA [52] en coïncidence avec les produits de réaction qui ont
été identifiés en termes du nombre de masse A et du numéro atomique Z dans le
dispositif VAMOS++ [51].

Dans la même expérience, plusieurs états excités dans le noyau du 106Cd ont
été peuplés grâce à l’excitation coulombienne, c’est-à-dire le processus de diffusion
quasi-élastique de deux noyaux, ou le champ électromagnétique qui agit entre eux
est à l’origine de leur excitation. Ce processus a eu lieu à une énergie de faisceau
qui se trouvait entre 8 et 40% (en fonction de l’angle de diffusion) au dessus de
l’énergie “sûre”, donnée par le critère empirique de Cline [40]. Ce critère, qui donne
la distance minimale d’approche entre le projectile et la cible (ce qui correspond
à une faible énergie incidente et un angle de déviation relativement faible), est
habituellement utilisé pour assurer que l’interaction nucléaire de courte portée peut
être négligée. Dans ce cas, il est possible d’extraire le jeu d’éléments de matrice
de l’opérateur électromagnétique à partir des sections efficaces de population des
états excités. Ils sont liés aux probabilités de transition réduites et aux moments
quadripolaires, et donc aux moments statiques et dynamiques de la distribution de
charge (c’est-à-dire à la forme) des noyaux étudiés. Si le critère de Cline n’est pas
rempli, comme dans le cas de l’expérience décrite ici, l’interaction nucléaire peut
influencer les sections efficaces d’excitation mesurées expérimentalement, rendant
l’extraction des propriétés nucléaires impossible sans recours aux modèles. Par
conséquent, un des objectifs de ce travail de thèse était l’évaluation des effets de
l’interaction nucléaire sur les sections efficaces en fonction de l’angle de diffusion
et du spin-parité de l’état excité.

Dans un premier temps, les section efficaces de peuplement de certains niveaux
excités dans le 106Cd ont été simulés grâce au code de réaction FRESCO [36]. Cela
a permis de prendre en compte les effets induits par la présence de l’interaction
nucléaire en utilisant le modèle du potentiel optique. Ces calculs ont montré que
les données obtenues aux angles de diffusion les plus petits, même si le critère
de Cline n’était pas rempli, étaient très peu affectées par l’interaction nucléaire.
Aux angles de diffusion plus élevés, un écart systématique par rapport au proces-
sus d’excitation coulombienne a été prédit, lié à l’interférence entre l’interaction
nucléaire et l’interaction coulombienne.

L’étape suivante a consisté à simuler les intensités gamma issus des désintégra-
tions de 20 états dans le 106Cd sur la base des données spectroscopiques existantes
(les temps de vie, les rapports d’embranchement et de mélange) en supposant que
l’excitation était due à l’interaction purement coulombienne. Cette tache a été
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réalisée à l’aide du code en voies couplées GOSIA [68], qui est un outil standard
pour analyser les données d’excitation coulombienne à l’énergie “sûre”. À partir
d’une comparaison entre les intensités simulées et mesurées en fonction de l’angle
de diffusion, il a été possible d’évaluer dans quelle mesure l’interaction nucléaire a
affecté les données. Notamment, les distributions obtenues pour les états qui ont
été fortement peuplés dans l’expérience, comme par exemple le 4+1 et le 2+2 , étaient
similaires à ceux calculées pour le processus d’excitation purement coulombien.

Enfin, l’ajustement des éléments de matrice par minimisation du χ2 a été
réalisé avec GOSIA pour extraire l’information concernant la structure du 106Cd à
partir des intensités gamma mesurées. 43 éléments de matrice ont été obtenus, y
compris un certain nombre de nouveaux résultats. En comparant les éléments de
matrice ainsi extraits et ceux issus de mesures précédentes nous avons démontré
qu’il est possible d’obtenir les probabilités de transition fiables à partir des données
d’excitation coulombienne au-delà de l’énergie “sûre”, notamment pour les états
fortement peuplés. En outre, les signes relatifs de certains éléments de matrice ont
été déterminés pour la première fois.

Ces résultats apportent de nouvelles informations sur la structure du 106Cd.
Une comparaison avec les résultats des calculs BMF [50] favorise l’interprétation
en termes de coexistence de formes, même si certains conclusions sont limitées par
le désaccord entre les rapports d’embranchement présents dans la littérature. Pour
la première fois, la probabilité de transition réduite B(E2) pour la voie de désinté-
gration dominante de la tête de bande “oblate” (0+3 ) a été déterminée, et elle est
en excellent accord avec les calculs BMF. En revanche, la collectivité dans la bande
bâtie sur l’état 0+3 est plus faible que ne le suggèrent les prédictions théoriques, et
aussi plus faible que dans les bandes correspondantes dans les 110,112Cd.

En appliquant le formalisme de Quadrupole Sum Rules [5, 6] aux éléments
de matrice E2 déduits des intensités gamma mesurées, les invariants rotationnels
⟨Q2⟩ ont été déterminés pour plusieurs états dans la bande fondamentale du 106Cd.
Ils sont liés a leur déformation globale β. Leur tendance en fonction du spin est
en bon accord avec celle prédite par les calculs BMF, mais en désaccord avec le
modèle vibrationnel [71]. En outre, le schéma de niveaux de basse énergie dans le
106Cd a été réorganisé sur la base des probabilités de transition B(E2) extraites de
notre analyse. Notamment, une bande “gamma” a été proposée, ce qui suggère une
certaine triaxialité de l’état fondamental. Les énergies des états qui forment cette
bande sont en accord avec la systématique des niveaux excités dans les 106−112Cd.

Les sections efficaces d’excitation coulombienne sont aussi sensibles aux élé-
ments de matrice E3 qui sont liés à la collectivité octupolaire (le noyau adopte
une forme de poire). L’élément de matrice ⟨3−1 ||E3||0+1 ⟩ déduit de notre analyse
est en bon accord avec celui déterminé de l’expérience récente [75] qui utilisait
l’excitation coulombienne à l’énergie “sûre”. Pour la première fois, les limites su-
périeures des éléments de matrice E3 liés au peuplement des états 5−1,2 and 1−1
ont été déterminés, fournissant un aperçu de la collectivité octupolaire du 106Cd.
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De plus, nous avons démontré que le peuplement des états 5−2 et 1−1 peut être
expliqué par la présence de transitions E2 collectives entre ces états et le 3−1 , ce
qui est en accord avec le scénario du couplage quadripolaire-octupolaire. Pour véri-
fier cette hypothèse, une expérience de décroissance β de précision a été proposée
à TRIUMF avec le spectromètre gamma GRIFFIN [127] (S2313, porte-paroles :
P. Garrett, D. Kalaydjieva, M. Zielińska). Le but de cette mesure est de chercher
les voies de désintégration faibles des états 5−2 et 1−1 , et de résoudre les diverses
énigmes concernant la structure du 106Cd, mises en évidence dans ce travail de
thèse. Cette proposition d’expérience a été acceptée avec la priorité élevée et l’ex-
périence devrait être planifiée au cours des trois prochaines années.

Coexistence de formes multiples dans le 100Zr étudiée
via décroissance β avec le spectromètre GRIFFIN

Les noyaux riches en neutrons de nombre de masse A≈ 100 présentent une des
rares transitions abruptes de forme de l’état fondamental qui apparaît brusquement
à N = 60 [4]. Ce comportement unique est mis en évidence par les mesures
de masse et de rayons de charge, ainsi que par une baisse soudaine de l’énergie
d’excitation du premier état 2+ dans les noyaux pairs-pairs et une augmentation de
la probabilité de transition réduite B(E2; 2+1 → 0+1 ). L’observation dans les noyaux
autour de N = 60 d’états 0+ à basse énergie d’excitation suggère un scénario de
coexistence de formes.

Récemment, Togashi et al. ont reproduit dans le cadre du modèle en couches
utilisant la technique Monte Carlo (MCSM) [134] la systématique en énergie des
premiers états excités dans les isotopes de zirconium autour de N = 60 et les pro-
babilités de transition correspondantes. Par ailleurs, une explication de la rapidité
de la transition de forme observée à N = 60 a été proposée en invoquant le phé-
nomène d’«évolution de couches de type II» [182] et l’inversion de configurations
du 98Zr et 100Zr avec un mélange faible. Précisément, l’état 0+2 observé à environ
1 MeV dans le 98Zr, qui a une forme prolate, devient l’état fondamental du 100Zr,
tandis que l’état fondamental sphérique du 98Zr correspond à un état 0+4 dans le
100Zr qui n’a pas été identifié encore, mais il est prédit à l’énergie d’excitation
d’environ 1.5 MeV. En outre, l’état 0+2 d’une forme oblate a été prédit de coexister
dans le 100Zr avec l’état 0+3 prolate.

Afin d’étudier la coexistence de formes multiples suggérée dans le 100Zr, une
expérience de décroissance β du 100Y vers 100Zr a été effectuée à l’aide du spectro-
mètre GRIFFIN [127] au laboratoire TRIUMF-ISAC fin 2021. Un mélange d’ions
radioactifs 100Sr et 100Rb – les noyaux père et grand-père du 100Y – a été implanté
dans une bande magnétique située au centre du dispositif expérimental, composé
de 15 détecteurs Clover de gros volume du système GRIFFIN, sept scintillateurs
LaBr3 pour déterminer les temps de vie des états excités, et le multi-détecteur
Si(Li) PACES [144] pour mesurer le spectre d’électrons de conversion.
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La plupart des données ont été accumulées selon le cycle suivant : une phase
de mesure du bruit de fond (0.25s) suivi par une phase de collection (3.5s, ce qui
est équivalent à 5 durées de vie de 100Y), ensuite une phase de décroissance (1s),
et finalement une phase de mouvement de la bande d’implantation (1s).

Le pré-traitement des données a été effectué en utilisant l’environnement d’ana-
lyse GRSISort [164]. Ensuite, chaque cristal HPGe a été étalonné en énergie à l’aide
de sources radioactives, suivi par un ajustement fin sur la base des données sous
faisceau. La procédure add-back et des corrections de diaphonie ont été appli-
quées, ce qui a contribué à améliorer la résolution en énergie et le rapport pic sur
total. Enfin, l’étalonnage en efficacité a été effectué, ce qui était indispensable pour
déterminer les intensités γ relatives. Le nombre total de coïncidences γ-γ, après
la suppression Compton, la procédure add-back et la suppression de coïncidences
fortuites, était ≈ 4× 109.

L’un des principaux objectifs de cette expérience était de développer le schéma
de niveaux du 100Zr grâce aux coïncidences γ-γ. Dans ce projet de thèse, le travail
s’est concentré sur les états au-dessous de 2.2 MeV. A l’aide de l’ensemble de logi-
ciels RadWare [170], plus de 60 transitions gamma ont été placés dans le schéma
proposé, parmi lesquelles 30 ont été observés pour la première fois. A partir des
spectres conditionnées sur des transitions peuplant les niveaux d’intérêt, plusieurs
rapports d’embranchement ont été déterminés avec une précision nettement amé-
liorée. Par ailleurs, six nouveaux états ont été identifiés, notamment le 2+ à 2208

keV, proposée dans notre article [172], et deux états de spin 0. Parmi les résultats
notables on peut aussi mentionner la première observation d’une transition collec-
tive entre l’état 2+3 , précédemment interprété comme la tête de bande γ [146], et
le 0+3 . Par conséquent, le 2+3 a été proposé de faire partie d’une bande rotationnelle
(correspondant probablement à une forme prolate) bâtie sur le 0+3 .

Grâce à l’analyse de corrélations angulaires γ-γ, les rapports de mélangeE2/M1

ont été déterminés pour plusieurs transitions. Les spins de six états ont été attri-
bués pour la première fois, y compris trois états de spin 0. La technique de mélange
des évènements [133] a été appliquée aux matrices de coïncidence γ-γ à l’aide de
GRSISort. Pour chaque cascade étudiée, une condition a été appliquée sur l’une
des transitions, et l’autre transition de la cascade a été ajustée dans les spectres
projetés pour chacun des 49 angles uniques entre les différents cristaux de Ge de
GRIFFIN. L’évolution de cette intensité en fonction de l’angle entre les deux rayons
γ dans la cascade a été analysée afin de déterminer le spin de l’état initial et le
rapport de mélange de la transition, si applicable. De plus, les simulations Geant4
ont été réalisées pour prendre en compte des effets induits sur les corrélations
angulaires par la taille des détecteurs germanium.

Les résultats obtenus pour les structures bâties sur les états 0+1,2 ont été com-
parés avec les prédictions du MCSM et du modèle de mélange à deux niveaux.
Le paramètre d’élongation β de l’état fondamental et celui de l’état 0+2 ont été
calculés en appliquant le formalisme de Quadrupole Sum Rules aux éléments de
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matrice E2 déduits à partir des temps de vie des états 2+1 , 2+2 et 0+2 et les rap-
ports de mélange et d’embranchement déterminés dans ce travail de thèse. Cette
analyse a démontrée de fortes similitudes entre les structures des 100Zr et 98Sr à
basse énergie d’excitation, et les arguments importants en faveur de coexistence
de formes dans le 100Zr. Cependant, nous avons démontré que contrairement au
98Sr le modèle de mélange à deux niveaux n’est pas capable de décrire de manière
cohérente les probabilités de transition dans le 100Zr et le scénario de mélange
impliquant les états à basse énergie est plus compliqué. Enfin, l’état 2+ à 2208

keV a été proposé comme le membre de spin 2 d’une bande bâtie sur le 0+4 . L’es-
pacement de niveaux dans cette structure proposée suggère que sa collectivité est
inférieure à celle des autres bandes bâties sur les états 0+ dans le 100Zr, mais plus
grande que celle de l’état fondamental du 98Zr, qui peut être déduite de l’énergie
d’excitation de l’état 2+ quasi-sphérique correspondant. Dans le futur proche, une
extraction plus rigoureuse de rapports d’embranchement est prévue avec notam-
ment les corrections des pertes par sommation. Le schéma de niveaux du 100Zr
sera aussi étendu aux énergies d’excitation plus élevées.
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Preamble

This manuscript is divided into two main parts.
The first part presents results of the analysis of “unsafe” Coulomb excitation

of 106Cd. I gave presentations on this project at two large collaboration meetings
(GOSIA Workshop, HIL Warsaw, March 27-20, 2023; AGATA Collaboration Mee-
ting, Legnaro, June 10, 2022). The final publication is at an advanced stage of
preparation and is intended to be submitted to European Physics Journal A in au-
tumn 2023. I am a co-spokesperson of an experiment aiming to study the structure
of 106Cd via β decay, motivated by the results obtained within this thesis, which
has been approved by the TRIUMF NP-EEC in July 2023.

The second part presents preliminary results of a β-decay study investiga-
ting low-spin states in 100Zr. The analysis of this data set is in progress, and I
presented selected results at two international conferences (ISTROS ’23, Casta-
Papiernicka, Slovakia, May 14-19, 2023; Zakopane Conference on Nuclear Physics,
Zakopane, Poland, August 28 – September 4, 2022) and in conference proceedings
(D. Kalaydjieva et al., Acta Phys. Pol. B Proc. Suppl. 16, 4-A15 (2023)).
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1 - Nuclear deformation and collectivity

The nucleus is a quantum system consisting of a large number of fermions,
called nucleons - protons and neutrons - connected via the strong nuclear force.
The forces acting between the interacting nucleons depends on all their coordi-
nates, which makes the description of the many-body system a challenging task.
Therefore, usually a mean-field approximation is applied, in which the protons and
neutrons move in a mean field generated by all of the nucleons. This simplification
is at the origin of the shell model, which proposes that the nucleons occupy par-
ticular orbitals following the principle of Pauli, similar to the atomic shells. When
major shells are completely filled (closed), the system is observed to be more stron-
gly bound, as reflected in the measured nuclear masses and two-neutron separation
energies [1].

1.1 Description of the nuclear surface

Describing the nucleus through the time-dependent coordinates of each nucleon
forming it is an overwhelming task even for simple nuclei built from a few nucleons.
Instead, a set of coordinates that defines the nuclear surface can be used. This way
the nucleus is treated as a whole in an analogy to a liquid drop [1].

The electrons in an atom experience a Coulomb potential (∝ 1/r) generated
by the “point-like” nucleus, which is reflected in the spherical shape of the atomic
system. In contrast, the complex nucleon-nucleon interaction can give rise to va-
rious nuclear shapes. While nuclei that have a closed neutron or proton shell are
typically spherical in their ground states, an onset of deformation is observed when
moving away from shell closures. The nuclear surface can be expanded in a series
of spherical harmonics by:

R(θ, ϕ) = R0

1 +
∑
λµ

α∗
λµYλµ(θ, ϕ)

 , (1.1)

where R0 is the radius of the nuclear surface in a spherical configuration, Yλµ are
the spherical harmonics of degree λ and order µ, and αλµ are expansion parameters
describing the deformation of the nuclear surface. The leading contribution to the
departure from a spherical shape originates from the terms with λ = 2 correspon-
ding to the quadrupole deformation, followed by λ = 3 (octupole shapes).

A more natural description of the expansion parameters αλµ can be provided in
the principal axis frame of the nucleus. In particular, the α2µ coefficients describing
the quadrupole deformation can be expressed via deformation parameters β2 and γ:

a20 = β2 cos γ, a2±1 = 0, a22 =
1√
2
β2 sin γ. (1.2)
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The β2 parameter corresponds to the quadrupole deformation along the sym-
metry axis, while γ describes the degree of axial symmetry [1]. Depending on the
values of β2 and γ, the nuclear shapes are classified as prolate (corresponding to
an ellipsoid with two equal short axes) oblate (an ellipsoid with two equal long
axes) and triaxial (all three axes of the ellipsoid have different lengths), as shown
in Fig. 1.1.

Figure 1.1 – Different quadrupole shapes of the nucleus as a function of thedeformation parameters β2 and γ [1].

1.2 Excited nuclear states and γ-ray decay

The ground state of a nucleus is its state with the minimal energy. Any other
state with a higher energy is an excited state and appears due to the reorganization
of one or more nucleons forming the nucleus. Each excited state is described by its
excitation energy (with respect to that of the ground state), angular momentum,
parity and lifetime. The lifetime of an excited nuclear state is the mean time in
which the nucleus remains in that state before naturally reducing its energy by
decaying to a lower-energy state. The decay has a statistical character following
a certain transition probability. The mean lifetime τ of a nuclear state is inver-
sely proportional to the decay constant λ, which determines how many decays on
average will be observed in a given time window.

The decay can proceed via emission of a γ ray with energy given by the diffe-
rence of the excitation energies of the initial and final states. Due to the conser-
vation of the total angular momentum, the following selection rule for the γ decay
has to be satisfied:

|Ii − If | ≤ L ≤ Ii + If , (1.3)
where L is the angular momentum carried by the γ ray (corresponding to the
multipole order 2L, e.g. L = 1 corresponds to a dipole transition) and Ii,f are
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the spins of the initial and final nuclear state. Therefore, transitions between two
nuclear states with spin 0 can only occur via internal conversion (in which the excess
energy is transferred to an atomic electron) as the γ ray is a boson and has a spin
of 1. Furthermore, to conserve parity, i.e. πi = πfπγ , the following rules are valid
for the two possible types of electromagnetic transitions (magnetic and electric):

π(EL) = (−1)L, (1.4)
π(ML) = (−1)L+1. (1.5)

For two transitions with the same L, an electric one is more probable. If more than
one transition type is allowed by the selection rules, those with the lowest multipo-
larity usually dominate, although electric transitions with L+1 multipolarity often
compete with magnetic ones of multipolarity L, giving rise to a mixed transition,
e.g. M1 + E2 .

1.3 Observables related to collectivity

Nuclear states resulting from a promotion of one nucleon (or a few) to a
higher-energy orbital are classified as “single-particle” nuclear excitations, and are
commonly observed e.g. in even-odd nuclei that have an unpaired valence nucleon.
On the contrary, if a large number of nucleons are involved in the excitation, it
has a“collective” character. For deformed nuclei, the rotational symmetry is broken
and collective rotational excitations can occur, resulting in rotational bands built
on each intrinsic shape of the nucleus. For an axially symmetric deformed nucleus,
only rotations perpendicular to the symmetry axis are allowed. Rotational bands
are characterized by the moment of inertia J and the excitation energies of band
members with spin I are given by:

E(I) =
ℏ2

2J
[I(I + 1)−K(K + 1)], (1.6)

where K is the projection of the angular momentum on the symmetry axis. The
energies of the rotational states and the spacing between them increase smoothly
as a function of the angular momentum.

The rigid-rotor model is one of the algebraically solvable limits of the standard
collective model developed by Bohr and Mottelson [2]. Its other limit predicts the
appearance of surface vibrations, understood as oscillations of the nucleus about
its spherical shape forming a spectrum of equally spaced states. Finally, the third
limit is the γ-soft model [3], in which the nucleus has a rigid β deformation, but
exhibits oscillations in γ, which for even-even nuclei leads to an appearance of a
K = 2 band at low excitation energy. The single-particle excitations, for which a
pair of nucleons has to be broken (which typically requires an energy of 1−2 MeV),
appear higher in excitation energy. Therefore, the excited states of even-even nuclei
that are lowest in energy are usually of a collective character.
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A measure of the deformation of the nucleus in a specific state is given by the
intrinsic quadrupole moment Q0. However, experimentally only the spectroscopic
quadrupole moment can be accessed in the laboratory frame, given by:

eQs =

√
16π

5

1√
2I + 1

(I, I, 2, 0|I, I)⟨I||M(E2)||I⟩, (1.7)
where (I, I, 2, 0|I, I) is a Clebsch–Gordan coefficient and ⟨I||M(E2)||I⟩ is the
reduced diagonal matrix element of the electric quadrupole operator [4]. Within
the assumption that the nucleus is an axially symmetric rotor, the matrix elements
of the electric quadrupole operator (both transitional and diagonal ones) can be
related to the intrinsic quadrupole moment via:

⟨KIf∥M(E2)∥KIi⟩ =
√

(2Ii + 1)(Ii,K, 2, 0|If ,K)

√
5

16π
eQ0, (1.8)

By combining Formulas 1.7 and 1.8, the following relation between the quadrupole
moments in the laboratory and intrinsic frame, under the assumption of the axial
rigid rotor model, can be obtained:

Qs =
3K2 − I(I + 1)

(I + 1)(2I + 3)
Q0. (1.9)

By definition if the sign of Q0 is positive/negative, the state is prolate/oblate.
However, if I = 0 or 1/2, even if the intrinsic quadrupole moment is nonzero, the
spectroscopic quadrupole moment is zero as K = I. Thus no information can be
obtained about the shapes of the ground states of even-even nuclei (spin 0+) or
spin-1/2 states in odd-A nuclei by measuring Qs.

Assuming constant charge density and axial symmetry of the nucleus, For-
mula 1.1 can be approximated by

R(θ, ϕ) ≈ R0

(
1 + β2Y20(θ, ϕ)

) (1.10)
and the following expression relating the intrinsic quadrupole moment Q0 to the
deformation parameter β2 can be obtained [4]:

Q0 ≈
3√
5π
ZR2

0 β2

(
1 + 0.36β2

)
. (1.11)

The latter formula is commonly used to estimate the deformation within the ap-
proximation of an axially symmetric rotor from Q0 deduced using Formula 1.8
from experimentally measured E2 matrix elements, obtained from e.g. Coulomb-
excitation studies or calculated from directly measured lifetimes.

While the quadrupole moments depend on the coordinate system, zero-coupled
products of the electric quadrupole operator are rotationally invariant due to the
nature of the electromagnetic multipole operators being spherical tensors. Those

4



invariants are identical in both laboratory and intrinsic coordinate systems and can
be evaluated using the Kumar-Cline sum rules [5,6]. In the principal-axis frame, the
electric quadrupole operator can be expressed through the Q and δ parameters,
which are analogous to the β2 and γ deformation parameters:

M′(E2, µ = 0) = Q cos δ,

M′(E2, µ = ±1) = 0, (1.12)
M′(E2, µ = ±2) =

1√
2
Q sin δ.

The lowest-order invariant can be calculated using experimentally obtained reduced
matrix elements of the electromagnetic quadrupole operator via:

(−1)2Ii√
2Ii + 1

∑
j

⟨Ii∥M(E2)∥Ij⟩⟨Ij∥M(E2)∥Ii⟩
{
2 2 0
Ii Ii Ij

}
=

1√
5
⟨Q2⟩, (1.13)

where the expression in curly brackets is a 6j symbol, Ii is the spin of the investi-
gated state and the sum runs over all states Ij connected to the state of question
via a direct E2 transition. Formula 1.13 can be simplified to:

⟨Q2⟩ = [1/(2Ii + 1)]
∑
j

|⟨Ij ||M(E2)||Ii⟩|2. (1.14)

One should note that not all matrix elements contribute equally to the sum in
Formula 1.14. For example the coupling to the 2+1 state is known to strongly
dominate the sum for the ground state in even-even nuclei [4].

By coupling three quadrupole operators to angular momentum zero one obtains
a higher-order invariant ⟨Q3 cos 3δ⟩ given by:

(−1)2Ii

2Ii + 1

∑
jk

⟨Ii∥M(E2)∥Ij⟩⟨Ij∥M(E2)∥Ik⟩⟨Ik∥M(E2)∥Ii⟩
{
2 2 2
Ik Ii Ij

}
=

=

√
2

35
⟨Q3 cos 3δ⟩. (1.15)

This invariant can be used to deduce whether, for a given Q > 0, the nucleus has a
prolate (⟨Q3 cos 3δ⟩ ≈ 1), oblate (⟨Q3 cos 3δ⟩ ≈ −1), or maximally triaxial shape
(⟨Q3 cos 3δ⟩ ≈ 0). It should be noted that in order to determine the ⟨Q3 cos 3δ⟩
invariant, the relative signs of the involved matrix elements need to be known as
well.

The obtained ⟨Q2⟩ quadrupole invariant can be related to the β2 deformation
parameter via:

⟨Q2⟩ =
(
3ZeR2

0

4π

)2

⟨β22⟩, (1.16)
where R0 = 1.2A1/3 and Z is the atomic mass of the investigated nucleus.
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1.4 Shape coexistence

The shape of a nuclear state depends on the particularities of its microscopic
wave function. Therefore, it is possible to observe distinct intrinsic nuclear shapes
occurring within the same nucleus and in a narrow range of excitation energies. This
phenomenon, known as “shape coexistence”, was believed to be rarely manifested
in nature and has been first suggested to involve the 0+1,2 states in 16O by Morinaga
et al. [7] in 1956. In the years to follow, it has been shown that it is a much more
common effect, as manifestations of shape coexistence were established throughout
the nuclear chart [4], as shown in Figure 1.2. Recently, experimental observations
consistent with multiple shape coexistence have been reported for several nuclei,
for example 186Pb [8,9], 110,112Cd [10,11], 66Ni [12].

Figure 1.2 – Regions of the nuclear chart where shape coexistence has beenexperimentally confirmed. Figure adapted from Ref. [13].
The main driving mechanism behind shape coexistence in the vicinity of closed

shells or sub-shells is the gain in correlation energy from both pairing and qua-
drupole–quadrupole interactions when pairs of nucleons are promoted across shell
gaps. Thus, mostly due to the change in the proton–neutron quadrupole interaction
energy, the excitation energies of shape-coexisting states related to proton excita-
tions often have a parabolic-like behaviour as a function of the neutron number in
a particular isotopic chain. Therefore, the energy systematics of intruder 0+ states,
appearing at low excitation energy, can be a hint of shape coexistence. Enhanced
E0 transitions between 0+ states also indicate different mean-square charge radii
of the two configurations and mixing of their wave functions.

Shape coexistence offers one of the most demanding tests of modern nuclear
theories. However, to firmly establish it experimentally requires an exhaustive know-
ledge of a large number of nuclear properties related to the nuclear deformation,
discussed in Section 1.3.
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Part I

Unsafe Coulomb excitation
of 106Cd
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2 - Introduction

Coulomb excitation is a process, occurring during a collision between a beam
and a target nucleus, in which excited states of one or both nuclei are populated
via the mutually-generated time-dependent electromagnetic field. This experimen-
tal technique has been used for many years to probe nuclear properties such as
transition probabilities and spectroscopic quadrupole moments [14–16]. First ex-
periments date back to early 1950s (e.g. [17,18]), when only light-ion beams were
available, limiting excitation to only few low-lying excited states that could be
populated via a single-step process (Section 3.3). Multi-step Coulomb excitation
(Section 3.3.1) was extensively used during the 1960s and 70s when heavy-ion
accelerators became common. The current renaissance of this technique is mostly
related to the advent of exotic beam facilities, broadening its applicability to short-
lived radioactive nuclei [14, 15].

One can distinguish between “safe” and “unsafe” Coulomb-excitation processes.
The former is governed purely by the electromagnetic interaction, while the latter
- by both Coulomb and nuclear potentials. The two processes can formally be
distinguished by applying Cline’s criterion for low-energy Coulomb excitation [5]:

bmin = 1.25
(
A

1/3
P +A

1/3
T

)
+ 5 fm , (2.1)

where AP and AT are the mass numbers of the projectile and the target, respec-
tively. This is an empirical rule, stating that if the separation distance between
the surfaces of the colliding nuclei is larger than 5 fm, the excited nuclear states
are populated predominantly via the electromagnetic interaction acting between
the reaction partners and the effects due to the nuclear interaction are below
0.5%. This criterion was deduced by systematically analysing inelastic scattering
and transfer-reaction data collected at beam energies of few MeV/A for nuclei with
A ≈ 30 and heavier [5].

On the other hand, the distance of closest approach as a function of the
scattering angle θCM and the beam energy Elab is given by:

b(θCM ) =
αhc

4π

ZPZT

Elab

AP +AT

AT

(
1 +

1

sin(θCM/2)

)
, (2.2)

where ZP and ZT are the atomic numbers of the projectile and the target, respec-
tively, α is the fine-structure constant, h is the Planck constant and c is the speed
of light. Using Formulas 2.1 and 2.2, one can calculate the “safe” bombarding
energy for a given scattering angle and vice versa - the largest “safe” scattering
angle for a given beam energy. It should be mentioned that while Cline’s criterion
can be used as a guideline for performing and analysing Coulomb-excitation expe-
riments, discrepancies were observed for certain systems, e.g. when light projectiles
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are used [19–24]. In such cases a separation of 5 fm is not sufficient and 6.5 fm is
often used instead.

Under safe conditions, the excitation process can be analytically described to
a high precision using the semi-classical approach discussed in Section 3.2. In this
way, intrinsic properties of the nucleus, related to the matrix elements (MEs) of
the electromagnetic operator, can be extracted. However, once the nuclear inter-
action starts to play an important role in the excitation process, it becomes quite
complicated to extract electromagnetic MEs in a reliable way, as one needs to
account for the changes in the excitation cross section induced by the nuclear
interaction, for which no general analytical expression exists. On the other hand,
unsafe Coulomb excitation can be an efficient method to populate off-yrast excited
states that are not easily accessible using other reaction mechanisms, such as e.g.
fusion-evaporation. Notably, multiple “unsafe” Coulomb-excitation studies addres-
sed the properties of high-spin states in the actinide region [25–29]. The beam
energies used in these experiments were 5 to 15% larger than the “safe” energy.
This resulted, in particular, in an enhanced population of negative-parity bands.
Similar enhancement of the population of 3− states was observed also in a recent
Coulomb-excitation study of 102Ru with 12C and 16O beams [30]. Moreover, unsafe
Coulomb excitation was used to populate the states of interest in a number of life-
time measurements, e.g. [31–33]. More recent studies with radioactive ion beams
(RIBs) also benefited from the unsafe Coulomb-excitation process, which led to an
increase of the excitation cross sections partly compensating low intensities of the
RIBs [34,35].

Unsafe Coulomb-excitation data are often collected as a by-product of studies
using deep-inelastic reactions, but they are rarely analysed due to the complexity of
the procedure to account for the effects of the Coulomb-nuclear interference on the
excitation cross sections. In principle, such data can be accurately described using
coupled-channel reaction codes, such as FRESCO [36] or PTOLEMY [37, 38], as
will be discussed in Section 5.6. However, an adequate optical potential has to be
used to describe the effective interaction between the collision partners, including
the nuclear force. The task becomes especially difficult if no elastic scattering data,
needed to adjust the potential parameters, are available. Consequently, there are
not many studies that carefully analyze the effects of Coulomb-nuclear interference
at slightly “unsafe” energies with the aid of detailed coupled-channel calculations,
especially for target-projectile combinations of nuclei with masses around 100.

It is hard to generalize the effects of the nuclear interaction on the inelastic
scattering data, as they differ from one state to another and depend on the beam
energy. An empirical rule, proposed in Ref. [39], states that “the initial Coulomb-
nuclear interference will be constructive (destructive) if the excitation function for
pure Coulomb excitation is approaching or at minimum (maximum)”. Examples of
constructive interference were already discussed (for the off-yrast states), while a
decrease with respect to the pure Coulomb-excitation cross section, resulting from
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the destructive Coulomb-nuclear interference, was reported for the states in the
ground-state bands of 162Dy [40] and 232Th [41].

Summarizing, the Coulomb-nuclear interference is a rather complex phenome-
non, which may result in an increase or a decrease of the excitation cross section
depending on the kinematic conditions (scattering angle or beam energy range).
At small scattering angles, the nuclear interaction leads to an oscillatory behaviour
of the excitation cross section as a function of the scattering angle around the va-
lues resulting from the pure Coulomb-excitation process while at high angles larger
discrepancies are expected. Hence, further investigating the effects caused by the
unsafe conditions would help to better understand to what extent nuclear-structure
parameters can be extracted from such data. This can provide guidance for future
studies aiming to benefit from the enhancement of the cross section due to the
Coulomb-nuclear interference.

This manuscript presents an exploratory work focusing on the the effects indu-
ced by the nuclear interaction on the γ-ray yields observed following the inelastic
scattering of a 106Cd ion beam, impinging on a 92Mo target at 770 MeV beam
energy (exceeding the “safe” energy by 8% and 40% for the minimum and maxi-
mum scattering angles, respectively). This analysis demonstrates the possibility to
extract information from such data that is complementary to the direct lifetime
measurement that was the main goal of the experiment under study.
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3 - “Safe” and “unsafe” Coulomb excitation

The Coulomb-excitation process can be accurately described using the semi-
classical approach, presented in Sections 3.1-3.2, if the excitation is exclusively due
to the well-known electromagnetic force. At beam energies exceeding the “safe”-
energy criterion (Formula 2.2), the nuclear interaction starts to contribute and can
significantly affect the excitation cross sections via Coulomb-nuclear interference
discussed in Section 3.4.

3.1 Semi-classical treatment of safe Coulomb excitation

From a classical point of view, in the scattering of projectiles on a target, the
fraction of the total number of nuclei scattered at a certain solid angle dΩ, i.e. the
differential cross section, is described using Rutherford’s formula:

dσ

dΩ
=
a2

4

1

sin4(θCM/2)
, (3.1)

where θCM is the scattering angle in the center-of-mass system, and a is half of the
distance of the closest approach in a head-on collision, given by ZPZT e

2/(mov
2).

ZP and ZT are the atomic numbers of the projectile and target, respectively, e
is the electron charge, mo is the reduced mass of the projectile and the target
and v is the relative velocity at large distances. The parameter a can also be
expressed using the mass numbers AP,T and the beam energy expressed in MeV
as a = 0.72(1 +AP /AT )ZPZT /E.

Following the scattering, the target and projectile will move along hyperbo-
lic trajectories governed by the long-range Coulomb term ZPZT e

2/r, where r is
the distance between the two nuclei. On the other hand, the mutually-generated
electromagnetic potential experienced by the nuclei depends on the position on
the orbit (r(t)). This time-dependent potential can cause excitation in the beam
and/or the target nucleus. A full quantum-mechanical treatment can be applied
to describe this process, as the theory of the electromagnetic interaction is well
known. However, the problem can be simplified by describing the relative motion
of the projectile and the target in a classical manner, while treating the excitation
process in terms of quantum mechanics. This semi-classical approach was develo-
ped by K. Alder and A. Winther [42] and requires that certain criteria are fulfilled
in order to provide reliable results. In general, the interaction between the nuclei
has to be purely electromagnetic.This is usually true for beam energies below the
Coulomb barrier, when the separation distance between the two nuclei is sufficiently
large and consequently the nuclear interaction between them can be neglected. It
is also required that the wave function of the projectile does not penetrate into the
target nucleus, i.e. the de Broglie wavelength of the projectile, λ−, must be small
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compared to the distance of closest approach in a head-on collision b:

η =
b

2λ−
=
ZPZT e

2

ℏv
≫ 1 , (3.2)

where η is the Sommerfeld parameter. A deviation from the exact calculations of
the order of 1/η can be expected [42]. When the inequality 3.2 is not fulfilled,
as it is often the case for light ions, a full quantum-mechanical description of the
process is necessary. Additionally, the trajectory of the scattered projectile must
not be strongly affected by the transferred energy ∆E. As the energy exchange
happens at an unknown moment, it is not possible to accurately account for this
effect, thus ∆E/E ≪ 1. For the excitation of a state to occur, the perturbation
of the electromagnetic potential experienced by the nucleus of interest has to be
sudden, i.e. the collision time τcoll (which is of the order of a/v) must be shorter
or of the same order of magnitude as the characteristic nuclear time for such a
transition (ℏ/∆E). This is usually quantified by the adiabaticity parameter ξ:

ξ ≡ τcoll
τnucl

=
a∆E

ℏv
≤ 1. (3.3)

The adiabaticity condition (Formula 3.3) limits the energy that can be transferred
in low-energy Coulomb excitation. The beam energies used in typical Coulomb-
excitation experiments are of the order of a few MeV/A, which results in an energy-
transfer cut-off of about 1 – 2MeV. This eliminates potential issues related to the
energy transfer, but other conditions listed above are not automatically fulfilled.

3.2 Theory of safe Coulomb excitation

The electromagnetic potential Ŵ (P, T, r⃗(t)) acting between the projectile (P)
and the target (T) nuclei can be decomposed into terms corresponding to the
mutual electric multipole-multipole interaction (ŴE), the magnetic multipole-
multipole interaction (ŴM ) and the interaction between the electric and the
magnetic multipole moments caused by the relative motion of the two systems
(ŴEM ). Their explicit forms can be found in Ref. [42]. The dominant term is
the monopole-monopole electric Coulomb interaction that describes the hyperbo-
lic trajectories of the collision partners, as discussed in Section 3.1. This term does
not depend on the intrinsic degrees of freedom of the colliding nuclei, thus it can-
not result in their excitation. On the contrary, the terms describing the interaction
between the monopole moment of the projectile (target) and the electric multipole
moments of the target (projectile) can give rise to target (projectile) excitation.
Interaction between higher-order electric multipoles can cause simultaneous mutual
excitations, which are usually negligible (being of the order of 1/η2) [42]. Within
the semi-classical approach, the motion of the center-of-mass of the system can
be completely separated from the intrinsic motion, thus the excitation process can
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be described by the time-dependent Schrödinger equation:

iℏ
∂

∂t
|Ψint(r⃗, t)⟩ =

(
ĤP + ĤT + Ŵ (P, T, r⃗(t))− ZPZT e

2

r(t)

)
|Ψint(r⃗, t)⟩ ,

(3.4)
where ĤP,T are the intrinsic Hamiltionians of the projectile/target and Ψint(r⃗, t)

can be asymptotically expressed as |Ψint(−∞)⟩ = |ΨP
0 ⟩|ΨT

0 ⟩, where ΨP,T
0 are

the ground-state wave functions of the projectile/target. Considering that only the
interaction between the monopole of one of the nuclei and the multipoles of the
other (denoted as V̂ (r⃗(t))) is of importance for the excitation process, separate
equations can be obtained for the wave functions of the target and of the projectile,
each of them of the form:

iℏ
∂

∂t
|Ψ(r⃗, t)⟩ =

(
Ĥ0 + V̂ (r⃗(t))

)
|Ψ(r⃗, t)⟩ , (3.5)

where |Ψ(r⃗, t)⟩ is the wave function of the investigated nucleus and Ĥ0 is its free
Hamiltonian. One can expand |Ψ(r⃗, t)⟩ into orthogonal eigenstates of Ĥ0:

|Ψ(r⃗, t)⟩ =
∑
n

an(t)|n⟩, (3.6)

where |n⟩ solves the equation Ĥ0|n⟩ = En|n⟩ and an(t) are time-dependent coef-
ficients defined as [42]:

an(t) = ⟨n|Ψ(r⃗, t)⟩ exp
(
iEnt

ℏ

)
. (3.7)

The expansion coefficients are referred to as excitation amplitudes and they
are related to the excitation cross section for populating a specific |n⟩ state from
the ground state via: (

dσ

dΩ

)
n

= Pn

(
dσ

dΩ

)
Ruth

, (3.8)
where Pn are the excitation probabilities, which correspond to |an(t)|2 in the
asymptotic limit (t = +∞), and (dσ/dΩ)Ruth is the Rutherford cross section,
given by Formula 3.1. On the other hand, if Formulas 3.6 and 3.7 are substituted
into Formula 3.5, a set of differential equations can be obtained for the excitation
amplitudes:

iℏ
d

dt
ak(t) =

∑
n

⟨k|V̂ (r⃗(t))|n⟩ exp (i(Ek − En)t/ℏ) an(t). (3.9)

The interaction potential V̂ (t) can be expanded into a series of multipoles:

V̂ (r⃗(t)) =
∞∑
λ=1

λ∑
µ=−λ

4πZe

2λ+ 1
(−1)µSE,M

λµ (r⃗, t)M̂(EMλ,−µ) , (3.10)
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where M̂(EMλ, µ) is the electromagnetic operator of multipole order λ with a pro-
jection µ, Z is the atomic number of the collision partner, and the SE,M

λµ (r⃗, t)

functions are defined as [42]:

SE
λµ(r⃗, t) =

Yλµ(ϑ(t), φ(t))

r(t)λ+1
, (3.11)

SM
λµ(r⃗, t) =

1

λc

dr⃗(t)
dt (r⃗ ×∇)

r(t)λ+1
Yλµ(ϑ(t), φ(t)), (3.12)

where Yλµ(ϑ, φ) are spherical harmonics and r(t), ϑ(t) and φ(t) are the time-
dependent spherical coordinates of the position vector r⃗(t) of the investigated
nucleus.

This makes it possible to relate an (Formula 3.9) to the matrix elements of
the M̂(EMλ, µ) operator. These matrix elements, ⟨Ik,mk|M̂(EMλ, µ)|In,mn⟩, go-
vern both the excitation and the de-excitation process between two states with
spin Ik,n and spin projection mk,n and thus carry nuclear structure information.
Therefore, on one hand, by solving the coupled-channel system, one can obtain
the excitation amplitudes related to the matrix elements (MEs) of the multipole
electromagnetic operator, while on the other hand, the excitation cross sections
(dσ/dΩ)n, which are related to |ak| via Formula 3.8, can be measured experi-
mentally. Thus, information on the structure of the investigated nucleus can be
obtained in a model independent way using Coulomb excitation.

3.3 First-order and higher-order effects

When the interaction is relatively weak, i.e. the excitation probability of the
populated states is much smaller than unity, the problem can be treated within
the first-order perturbation theory. Solving the differential equation system (For-
mula 3.9) yields the following expression for the electric excitation cross section of
a state If from the initial state Ii [42]:

σEλ =

(
Z2e

ℏv

)2

(a)−2λ+2B(Eλ; Ii → If )

∫ θmax

θmin

dfEλ(ξ, θCM )

dΩ
dΩ, (3.13)

where B(Eλ; Ii → If ) is the reduced transition probability, related to the reduced
matrix element ⟨If ||Eλ||Ii⟩ and Z2 is the atomic number of the collision partner.
In an analogous way, a formula for excitation caused by the magnetic field can
be obtained, in which v is replaced by c [42]. This results in a suppression of
magnetic excitations by a factor of (v/c)2 with respect to the electric excitations,
making them negligible in low-energy Coulomb-excitation studies in which (v/c)

rarely exceeds 0.1.
The reduced matrix elements ⟨If ||EMλ||Ii⟩ can be calculated from the matrix

elements of the M̂(EMλ, µ) operator using the Wigner-Eckart theorem [43]. The
fE
Mλ(ξ, θ) are referred to as excitation functions and they depend on the scattering
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angle, the adiabacity parameter ξ (Formula 3.3) and the multipolarity E
Mλ [42].

The fE
Mλ(ξ) functions for several multipolarities (integrated over all possible θ

angles) are presented in Fig. 3.1. The largest values are obtained for E1 transitions,
however, since B(E1) values are orders of magnitude smaller than typical reduced
transition probabilities for higher-order multipolarities, the resulting excitation cross
sections are negligible. Therefore, the E2 and E3 transitions are dominant in
the Coulomb-excitation process, even though E1 or M1 transitions may be more
important in the subsequent decay.

Figure 3.1 – The electric (left) and magnetic (right) excitation functions fE
Mλ(ξ)as a function of the adiabaticity parameter ξ. Figure adapted from Ref. [42].

3.3.1 Multi-step excitation

Formula 3.13 can be readily used when direct excitations from the ground state
are investigated, however, when the collision time is large and the electromagnetic
interaction is strong (e.g. for heavier reaction partners), second-order effects such
as multi-step excitation become relevant. In principle, as the excitation process
depends on the kinematics, a range of scattering angles can be selected in which
the second-order effects are suppressed, e.g. only very forward angles. Similarly,
the strength of the electromagnetic field can be reduced by using a light partner.
On the other hand, second-order effects play an important role in the population
of certain states, e.g. excited 0+ states, which cannot be populated in a one-
step excitation from the ground state (excitation via E0 transitions is forbidden).
However, the presence of competing excitation paths may result in complications
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in the analysis. The excitation amplitudes have contributions from both first and
second order effects, atotal = a(I) + a(II). For instance, let us consider the second
excited 2+ state, which can be populated either by a one-step E2 transition from
the ground state or via two-step excitation through an intermediate state, i.e. the
2+1 state. The excitation probability P (0+1 → 2+2 ) will be given by:

P (0+1 → 2+2 ) = |a(I)(0+1 → 2+2 ) + a(II)(0+1 → 2+1 → 2+2 )|
2. (3.14)

Thus, apart from the single-step excitation term, which depends on ⟨0+1 ||E2||2+2 ⟩2
and the two-step term, proportional to ⟨0+1 ||E2||2+1 ⟩2⟨2

+
1 ||E2||2+2 ⟩2, an interfe-

rence term ⟨0+1 ||E2||2+1 ⟩⟨2
+
1 ||E2||2+2 ⟩⟨0

+
1 ||E2||2+2 ⟩ will appear, which contains

non-squared reduced MEs, therefore it depends on their relative signs. The in-
terference term can affect the excitation cross section by increasing it, if its sign is
positive (constructive interference) or decreasing it, if it is negative (destructive in-
terference). It should be noted that multi-step excitations and second-order effects
in general are more probable at large scattering angles (implying a smaller distance
of closest approach) as the nucleus experiences a stronger electromagnetic field
during the scattering process.

3.3.2 Reorientation effect

Another second-order phenomenon is the reorientation effect, defined as the
change of the Coulomb-excitation cross section caused by the static quadrupole
moment Qs of an excited state. The effect can be understood as a two-step exci-
tation in which the intermediate state and the final state are magnetic substates
of the same excited state. It can be related to a time-dependent hyperfine split-
ting of the nuclear levels during the collision.The magnitude of this splitting de-
pends on Qs and increases with scattering angle. Depending on whether the sign
of the Qs is positive or negative, the most strongly populated m = 0 substate
will be lowered/raised in excitation energy, which, because of the strong depen-
dence of the Coulomb-excitation cross section on level energy, will result in its
increase/decrease [44]. Thus by observing the introduced changes in the experi-
mental excitation cross sections, the static quadrupole moments of excited nuclear
states can be measured, which are directly related to the nuclear shape [4]. As al-
ready mentioned, this effect depends on the scattering angle and has a maximum
influence on the excitation cross sections at θ = 180◦ due to the maximum in the
hyperfine splitting at backward scattering.

3.4 Inelastic scattering and Coulomb-nuclear interference

Coulomb excitation is governed by the electromagnetic interaction between the
collision partners. In a more general case of inelastic scattering, nuclear forces may
play an important role.
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A general form of the Hamiltonian of the collision system is given by:

Ĥ = T̂ (R) + ĤP (ξP ) + ĤT (ξT ) + V̂ (R, ξP , ξT ), (3.15)
where T̂ (R) is the kinetic energy operator, ĤP (ξP ) and ĤT (ξT ) are the internal
Hamiltonians of the projectile and the target, respectively and V̂ (R, ξP , ξT ) is the
projectile-target interaction. The Hamiltonians of the target and the projectile de-
pend on the internal coordinates ξ (which can be e.g. coordinates of each nucleon,
or be linked to a collective model description), while V̂ depends both on the re-
lative coordinate between the collision partners R and on the internal coordinates
ξ. Therefore, due to V̂ , it is possible to rearrange the nucleons inside the colliding
nuclei and thus induce excitations. In the particular case of Coulomb excitation, V̂
is the electromagnetic interaction Ŵ (P, T, r⃗(t)), as explained in Section 3.2. Note
that Formula 3.15 is more general than the Hamiltionian in Formula 3.4, as the
latter has no part related to elastic scattering due to the use of the semi-classical
approximation.

Solving the time-independent Schrödinger equation for the Hamiltonian defi-
ned via Formula 3.15 would yield an infinite number of possible final states. The-
refore a limited model space is usually selected, which is restricted to the channels
of interest. The full Hamiltonian is replaced by an effective one, which incorpo-
rates the “bare” interaction, governing the channels of interest and a polarisation
part, which accounts for couplings to the remaining channels. Usually, an effective
projectile-target interaction U(R) is adopted, which reflects the properties of the
polarization part of the Hamiltonian. Subsequently, within a chosen structure mo-
del for the internal Hamiltionians, the model wave function Ψ can be expanded
using the eigenfunctions of the internal Hamiltonians (Φn(ξ), being products of the
eigenfunctions of the projectile and the target) and a set of coefficients depending
on the relative motion of the two nuclei (χn(R)). Using this expansion, multiplying
the time-independent Schrödinger equation by Φ∗

n (describing a particular n state
of the system) and integrating over the internal coordinates ξ, one can obtain the
following coupled-channel system of equations for χn:

[E − ϵn − T̂ (R)− Un,n(R)]χn(R) =
∑
n̸=n′

Un,n′(R)χn′(R), (3.16)
where E is the total energy of the system, ϵn is the eigenenergy of state n and
Un,n′ is the so-called coupling potential, responsible for exciting the system from
state n to state n′, given by:

Un,n′(R) =
∫
dξΦ∗

n(ξ)U(ξ,R)Φn′(ξ). (3.17)
A more complete derivation of the above equations and an introduction to the
methods used to solve the coupled equations 3.16 for particular reaction channels,
including elastic and inelastic scattering, can be found in Ref. [45].
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Asymptotically (at very large distances from the collision point), the solution
of the time-independent Schrödinger equation has the form:

Ψ
(+)
Kα

→ Φα(ξα)e
iKα.Rα +Φα(ξα)fα,α(θ)

eiKαRα

Rα
+∑

α′ ̸=α

Φα′(ξα)fα′,α(θ)
eiKαRα

Rα
,

(3.18)

where ℏK is the linear momentum and Φ(ξ) is the product of the eigenfunctions of
the projectile and the target in either the elastic (α, ground state), or an inelastic
channel (α′, excited state) The first term in expression 3.18 describes a plane wave
propagating in the direction of the beam (eiKα.Rα). The second term describes
the elastic channel - a spherical outgoing wave eiKαRα

Rα
propagating isotropically,

modulated with a function fα,α depending on the scattering angle. The last term
has a similar construction with the summation running over all possible final states
α′. The fα,α′ functions (including the α′ = α case) are referred to as scattering
amplitudes, and are related to cross sections via:(

dσ

dΩ

)
α→α′

=
Kα′

Kα
| fα,α′ |2. (3.19)

Hence, they are closely related to excitation amplitudes used in the description of
Coulomb excitation (Formula 3.8).

When the nuclear interaction can be neglected, the scattering amplitudes are
directly related to the matrix elements of the electromagnetic operator. However,
if the nuclear interaction is not negligible, the excitation cross section depends on
both fCOUL and fNUC :(

dσ

dΩ

)
i→f

=
Kf

Ki
| fCOUL

if + fNUC
if |2. (3.20)

This leads to the appearance of Coulomb-nuclear interference terms, and thus
even for small fNUC the effects from the nuclear interaction on the observed cross
sections may be large [45].

The general formalism presented above can be applied to other direct reactions,
i.e. those occurring without a compound-nucleus formation, with only a small
fraction of the nucleons being involved in the process and a small momentum
transfer. Those are for example transfer and break-up reactions [45].
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4 - Experimental details and observables

The data analysed in the present work are a byproduct of a lifetime mea-
surement populating nuclei of interest via multinucleon transfer reactions. This
experimental project, the setup used for the measurement and the experimental
observables investigated in the present study are introduced in Sections 4.1, 4.2
and 4.3, respectively.

4.1 Experiment E664 at GANIL

The original goals of experiment E664, which provided data for the present
study, were to investigate the structure of the neutron-deficient 106,108Sn and in
particular to probe the robustness of the proton Z = 50 shell closure for nuclei
with neutron number approaching 50. This was to be achieved by performing, for
the first time, direct lifetime measurements of the lowest 2+ and 4+ states in
106,108Sn. The reduced transition probabilities B(E2, 2+1 → 0+1 ) were previously
obtained in Coulomb-excitation studies, however, the reported values were subject
to large uncertainties.

The experiment took place in 2015 at the experimental hall G1 of the largest
accelerator facility in France, GANIL [46]. The stable 106Cd beam was produced
in the ECR (Electron Cyclotron Resonance) ion source [47], subsequently pre-
accelerated in the Compact Cyclotron unit (C0) up to 1 MeV/u and after final
acceleration in the Separated-Sector Cyclotron accelerator (CSS1) up to an energy
of 7.3 MeV/u, delivered onto a 92Mo target [48]. At this beam energy, a number
of Cd and Sn isotopes were populated via multi-nucleon transfer (MNT) reactions,
however, the strongest observed channel was the inelastic scattering of the 106Cd
beam on the Mo target.

The main goals of the E664 experiment were accomplished within the PhD
thesis work of M. Siciliano [48] and subsequently published [49]. Moreover, the
analysis yielded a number of lifetimes in the 102−108Cd isotopes obtained using
the RDDS technique [50]. As discussed in the present manuscript, it was possible
to further benefit from this data set, as the detection system, which included a
position-sensitive particle detector, allowed to simultaneously collect data suitable
for a Coulomb-excitation analysis. The experimental setup will be presented in
more detail in the following section.

4.2 Experimental setup

The beam-like nuclei, produced in the 106Cd + 92Mo collisions, were identified
using VAMOS++ (VAriable MOde Spectrometer) [51], while the de-excitation γ
rays, emitted by the reaction products, were registered using eight AGATA triple
clusters [52]. The data were collected in a particle-gamma coincidence mode, with
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a prompt coincidence time window of 2µs. The RDDS method [53,54] was used for
the lifetime measurement. This required using a plunger device, where the 92Mo
target and a natMg degrader foils were mounted [54]. The experimental setup is
schematically presented in Fig. 4.1. Further details are provided in the following
subsections.

Figure 4.1 – Schematic presentation of the experimental setup. Only the en-trance detector of VAMOS++ is included, together with the first focusingmagnet.The foils of the target and the degrader are mounted on a plunger device, whichis placed inside a vacuum reaction chamber. Eight AGATA triple clusters are usedto detect γ rays emitted by the beam-like reaction products moving with velocity
βS between the foils, or with βU , after slowing down in the degrader.

4.2.1 VAMOS++

To select specific reaction channels, the mass number A and atomic number Z
of the reaction products needed to be determined. Furthermore, measuring the ve-
locity of the ions after the degrader was crucial for performing a Doppler correction
of γ-ray energies. This was achieved using the large-acceptance ion spectrometer
VAMOS++, which allows to identify the registered ions and fully reconstruct their
trajectories inside the spectrometer on an event-by-event basis. The VAMOS++
spectrometer is schematically presented in Fig. 4.2 and described below.

• A dual position-sensitive Multi-Wire Proportional Counter (MWPC)
is placed at the entrance of VAMOS++. This proportional counter provides
the initial position of the ion and its scattering angle θi (with respect to
the beam direction) and ϕi (with respect to the horizontal plane).

• Two large-aperture quadrupole magnets and one magnetic dipole
are used for focusing and bending of the ion trajectory, respectively. The
magnetic rigidity Bρ is fixed for a certain nominal trajectory.
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Figure 4.2 – Schematic presentation of the VAMOS++ spectrometer. The da-shed line depicts an example ion trajectory inside the spectrometer. The systemincludes a doubleMulti-Wire Proportional Counter (MWPC), two quadrupolema-gnets, a dipolemagnet, aMulti-Wire Parallel Plate Avalanche Counter (MWPPAC),two Drift Chambers (DC), and an Ionization Chamber (IC). Figure adapted fromRef. [48].

• A Multi-Wire Parallel Plate Avalanche Counter (MWPPAC) is placed
at the focal plane of the spectrometer. Together with the entrance MWPC,
the signals from the MWPPAC are used to obtain the Time Of Flight (TOF)
of the ions.

• A pair of two-dimensional position-sensitive Drift Chambers (DC)
measures the position of the ion at the focal plane, including θf and ϕf .

• A multi-segmented Ionization Chamber (IC) is placed at the end of
VAMOS++, where the ions deposit their total kinetic energy ETOT . Mea-
suring the energy loss of the ions allows the determination of the atomic
number Z of the ions, as ∆E/∆x ∝ Z2 [55].

A dedicated software is used to reconstruct the trajectories of the ions using
both simulations and reconstruction algorithms specific to VAMOS++. From the
measured coordinates of the ion at the focal plane, it is possible to reconstruct
the path of the ion, determine its initial coordinates (and compare them with
those measured by the entrance detector), and obtain the magnetic rigidity for the
specific trajectory. Using the information on the path of each ion and its initial
and final coordinates, the length of their trajectory D between the MWPC and the
MWPPAC can be calculated. Subsequently, from the measured TOF, the velocity
of the ion can be calculated, which is needed for the Doppler correction of the
γ-ray energy. Using the obtained velocity, TOF, D, and the magnetic rigidity Bρ,
the mass-over-charge (A/q) ratio can be extracted. Finally, using the measured
ETOT , related to the mass of the ion, and the A/q ratio, one can obtain the charge
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state q and the mass number A of the ion. More details about the VAMOS++
spectrometer, trajectory reconstruction process and data processing can be found
in the PhD thesis of M. Siciliano [48].

4.2.2 AGATA spectrometer

Registration of γ rays with high-resolution and high-efficiency detectors is
crucial for nuclear spectroscopy. Typically, such detection systems are based on
semiconductors, and in particular the High-Purity Germanium (HPGe). The per-
formance of HPGe γ-ray detectors is often affected by the Compton-scattering
process, which leads to deterioration of the peak-to-total ratio, as some of the γ
rays leave the detector without depositing their full energy, which results in higher
background levels. To reduce these effects, passive and/or active Compton shiel-
ding is introduced. However, this usually limits the total solid angle covered by
the detectors, and consequently their efficiency. The Advanced Gamma Tracking
Array (AGATA) [52] was developed to overcome this limitation. AGATA consists
of n-type HPGe crystals, electrically segmented into 36 parts. Each segment is
equipped with its own preamplifier, therefore segment signals can be analysed indi-
vidually. From the pulse-shape analysis of the signals from the segments and from
the central electrode, the energy, timing and spatial coordinates of each interaction
point within the detector volume are determined, using state-of-the-art front-end
electronics, based on advanced digital signal processing techniques. Subsequently,
the trajectory of the γ ray inside the AGATA spectrometer is reconstructed through
γ-ray tracking algorithms [56]. This information was used to extract the precise
angle at which the γ ray was emitted, needed for the Doppler correction proce-
dure [48]. In addition, the use of γ-ray tracking resulted in an increased efficiency
by about 30% for the γ rays with energies between 500 and 1200 keV [48]. In
the present experiment, eight AGATA triple clusters were placed at approximately
18.5 cm distance from the target, as presented in Fig. 4.3. The data collected with
three of these crystals had unsolvable issues and needed to be excluded from the
analysis. This limited the total number of detectors to 21. More details on the data
processing and the analysis of raw AGATA data can be found in Ref. [48].

4.2.3 Plunger device

The E664 experiment aimed to measure lifetimes in the picosecond range using
the RDDS method [53, 54]. For this purpose, a differential plunger device [54],
developed by Institute for Nuclear Physics, University of Cologne, was placed inside
the reaction chamber. The target and degrader foils were mounted on frames inside
the device and the distance between them was controlled by a piezo-electric motor.
The target foil was oriented to be perpendicular to the axis of VAMOS++ placed at
the grazing angle of the transfer reaction (25◦ with respect to the beam direction,
as shown in Fig. 4.3). The 92Mo target had a thickness of 0.715 mg/cm2, while
the degrader was made of 1.6 mg/cm2 natural Mg. The reaction products recoiling
out of the target decayed via γ-ray emission either while flying between the foils
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with a velocity βs (= v/c ≈ 10%) or after the degrader with a velocity βu (≈ 9%)
that was reduced compared to βs due to energy losses in the degrader foil [50].
Due to the Doppler effect the emitted γ rays are registered at a shifted energy
E with respect to the actual transition energy E0. The magnitude of this shift
depends on the velocities βs/u and on the angle between the directions of the ion
and of the emitted γ ray:

E = E0

√
1− β2

1− β cos θ
≈ E0(1 + β cos θ). (4.1)

Thus, in a spectrum obtained with a HPGe detector placed at a certain θ angle with
respect to the ion direction, one would observe two differently shifted components
of each γ-ray peak, corresponding to the two emitter velocities βs and βu, as shown
in Fig. 4.4.

Figure 4.3 – Left - the reaction chamber and eight AGATA triple clusters placedat backward angles. Right - the plunger device placed inside the reaction cham-ber [48]. The directions of the beam and the reaction products are indicated withgreen and red arrows, respectively.

Doppler correction of γ-ray energies is possible thanks to the precise measure-
ments of the γ-ray emission angle, achieved with AGATA, and of the velocity of
the projectile βu, provided by VAMOS++. The γ rays emitted after the degrader
will be fully Doppler corrected, while those emitted from nuclei with higher velo-
cities (βs) will still appear at a shifted energy in the obtained spectra. In order
to maximize the Doppler effect and thus the separation between the shifted and
unshifted components, the AGATA detectors were placed at backward angles as
far as possible from 90◦, as presented in Fig. 4.3. A shift towards smaller energies
was observed under such conditions.
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The data were collected at eight different target-degrader distances ranging
from 35 to 521 µm. They were analyzed using the Decay Curve and Differential
Decay Curve methods (DCM and DDCM, respectively [53,54]), in order to extract
level lifetimes from the measured evolution of the intensities of the shifted and
unshifted components as a function of the distance between the foils. This analysis
was performed by M. Siciliano in his PhD work [48] and the final results were
published in Refs. [49, 50].

Figure 4.4 – A schematic presentation of the RDDSmethod. Twodifferent target-degrader distances d1 and d2 are considered. The number of γ rays emitted be-fore (red) or after (blue) the degrader depends on the lifetime τ of the state of in-terest. Using the evolution of the shifted/unshifted peak intensities as a functionof the target-degrader distance, one can extract τ . Figure adapted from Ref. [57].

4.2.4 Unsafe Coulomb-excitation data
As discussed in Section 2, in a typical Coulomb-excitation study one should

ensure that the excitation process occurs at a “safe” beam energy fulfilling Cline’s
criterion (Formula 2.1). Under such conditions, it is possible to obtain information
on the electromagnetic MEs in a model-independent way. However, this has not
been the case of the described experiment, as its original goals required optimizing
of the detection system for nuclei of primary interest, which resulted in placing
VAMOS++ around the grazing angle of the MNT reactions, i.e. θLAB = 25◦ [48].
Under these conditions, ions scattered at 19.4◦ ≤ θLAB ≤ 30◦ could reach the
focal plane of VAMOS++.

Using Formula 2.2 and the beam energy in the middle of the target EBmid =

757 MeV (calculated with elo [58]), one can deduce the distance of the closest
approach of colliding nuclei. For the smallest scattering angle a distance of 4.1 fm
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was obtained. If a similar calculation is carried out for the highest scattering angle,
θLAB = 30◦, it results in a separation of about 0.15 fm.Thus, considering the Cli-
ne’s safe-energy criterion, a contribution from the nuclear interaction greater than
0.5% is expected to be present in the experimental excitation cross sections [40]
and the collected Coulomb-excitation data are considered “unsafe” in the entire
scattering angle range covered by VAMOS++.

4.3 Experimental observables

The experimental observables in a typical Coulomb-excitation experiment are
the intensities of the γ rays registered in coincidence with the projectile or target
nuclei scattered into a specific angular range. In the present analysis, the γ rays
registered in coincidence with 106Cd ions identified in VAMOS++ within a time
window of 2 µs were organized in a γ-particle two-dimensional spectrum presented
in Fig. 4.5. While in the RDDS method level lifetimes are deduced from the evo-
lution of the shifted and unshifted components of the depopulating transitions as
a function of the plunger distance, for a Coulomb-excitation study such a division
of the data is irrelevant. Thus, the data collected at all plunger distances were
summed together. However, one should note that due to the use of the plunger
technique, the observed γ-ray peaks may appear at a shifted energy or have both
shifted and unshifted components, depending on the lifetime of the nuclear state.

Figure 4.5 – Two-dimensional spectrum, with energy of the γ rays on the Y axisand scattering angle of 106Cd in the laboratory coordinate system (θLAB) on theX axis, filled with coincidence γ-particle events using a time window of 2 µs [48].The dashed lines indicate the borders of θLAB ranges considered in the analysisof the Coulomb-excitation data.
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4.3.1 Partial level scheme of 106Cd
A number of excited nuclear states in the beam and the target nuclei were

populated in the process of inelastic scattering of 106Cd on 92Mo. Figure 4.6 shows
the total γ-ray spectrum up to Eγ ≈ 2150 keV summed over all scattering angles.
The observed transitions in 106Cd are labeled with their energies. At energies higher
than 2.2 MeV only a peak at 2805(1) keV was observed, which is shown in the inset
of Fig. 4.6. This peak was interpreted as the shifted component of the transition
depopulating a spin-1 state at 2824.6 keV.

Figure 4.6 – Total γ-ray spectrumup toEγ ≈ 2150 keV. The γ-ray peaks, resultingfrom depopulation of excited states in 106Cd, are labeled with their energies cor-responding to emission at rest, even though in some cases only the shifted com-ponents are present. The inset shows the decay of the spin-1 state at 2824.6 keV.
It is important to stress that the Doppler correction is optimized for the beam

nucleus, thus the peaks corresponding to the excited states in 92Mo are very wide
and shifted towards higher energy. This effect can be clearly seen in Fig. 4.6 where
a broad structure around 1650 keV corresponds to the 2+1 → 0+1 transition in 92Mo
with an unshifted energy of 1509.5 keV.

The observed transitions depopulating excited nuclear states in 106Cd are sum-
marized in the partial level scheme presented in Fig. 4.7. There are a few main
differences between Fig. 4.7 and the level scheme reported in Ref. [50], which was
deduced from the RDDS study based on the same data set. First, the (2)+ level
at 2348 keV was removed from the current level scheme. From the analysis of the
total γ-γ matrix it was concluded that the peak at 1715 keV, reported in Ref. [50]
as the (2)+ → 2+1 decay, can be fully attributed to the 2+2 → 0+1 transition. This
is further supported by the 1084 keV/1715 keV branching ratio obtained from the
present data (0.95(6)), which is consistent within 1σ with the values reported in
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the literature for Iγ(2+2 → 2+1 )/Iγ(2
+
2 → 0+1 ) [59, 60]. By summing the data col-

lected at all plunger distances and carefully investigating the total projection for
low-intensity peaks, a number of transitions were also added to the level scheme,
namely:

• A 1217-keV transition between a state with spin 2− 6 at 2711 keV
and the 4+1 state, due to the observation of a peak at 1210(1) keV
in the γ-ray spectra. The observed peak was interpreted as the shifted
component of a 1217-keV transition, de-exciting the 2 − 6 level proposed
in Refs. [61, 62]. An alternative interpretation can be found in Ref. [63],
where this γ ray was attributed to the decay of a state at 2933.7 keV to
the 2+2 state. However, the 2933.7-keV level has not been confirmed by
later studies and has no counterparts in the heavier Cd nuclei that would
exhibit a similar decay pattern;

• A 1511-keV transition between the 0+3 state at 2144.1 keV and the
2+1 state: at short plunger distances a peak at 1511(2) keV was observed,
which corresponds to the unshifted component of the 0+3 → 2+1 transition.
At longer distances a shifted component also appears, which suggests that
the 0+3 state has a lifetime within the sensitivity range of the RDDS method;

• A 1621-keV transition between the (2+,3+) state at 2254.0 keV and
the 2+1 state: two peaks were observed on the background of the Doppler-
broadened 2+1 → 0+1 line of 92Mo at ≈ 1609 keV and ≈ 1620 keV. They
were interpreted as the shifted and unshifted components, respectively,
of the γ-ray peak resulting from the de-excitation of the (2+, 3+) state.
However, a decay with a similar energy could be observed from the (4+)

state at 2252.2 keV. Due to the proximity in energy, it is not possible to
exclude the alternative interpretation, and moreover, the observed intensity
can have contributions resulting from the decay of both states;

• A 1997-keV transition originating from the 2+5 state at 2630.1 keV,
due to the observation of a peak at 1984(2) keV corresponding to the
shifted component of the 2+5 → 2+1 transition;

• A 2085-keV transition from the 2+,3 state at 2717.9 keV: in the
γ-ray spectra a peak at 2072(1) keV was observed. It can be interpreted as
the shifted component of a transition depopulating either the 2+, 3 state
at 2718 keV, or the 1, 2+, 3 state at 2720.6 keV, or have contributions
resulting from the decay of both states;

• A 2824-keV γ ray between the state of spin 1 at the same excitation
energy, and the ground state.
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Figure 4.7 – Partial level scheme of 106Cd presenting the γ-ray transitions ob-served in the present experiment with their energies given in keV.

Additionally, the intensity of the 4+2 → 4+1 transition was determined, which
has not been analysed in Ref. [50] due to its proximity to the intense 2+1 → 0+1
peak.

4.3.2 Division of the data according to scattering angle

Considering the fact that the current Coulomb-excitation data were collected
in an unsafe regime, the observed excitation cross sections are likely to be affected
by the nuclear interaction. It is expected that the importance of this effect will
increase with the scattering angle, as the separation distance between the nuclear
surfaces decreases. The contribution from the nuclear interaction may differ from
state to state, depending on the different transition strengths and multipolarities
involved in the excitation process. Thus, in order to probe the effects of the nuclear
interaction on the excitation cross section with a fine ∆θLAB step, eleven cuts on
the scattering angle were applied as shown in Fig. 4.5 with red dashed lines. The
first ∆θLAB range is only 0.6◦ wide (19.4◦ < θLAB < 20.0◦), while all others
scattering angle ranges cover ∆θLAB = 1◦. Subsequently, the intensities of all
γ-ray transitions indicated in the level scheme in Fig. 4.7, were measured for all
eleven cuts. Examples of γ-ray spectra corresponding to individual ∆θLAB cuts are
presented in Fig. 4.8.

Figure 4.9 shows the hit pattern in the MWPC at the entrance of VAMOS++
under the condition that a 106Cd ion was identified. For the identification to be
successful, 106Cd ions have to pass through all focal plane detectors and reach
the ionization chamber (see Section 4.2.1).Thus, the number of registered Cd ions
strongly depends not only on the reaction cross section but also on the geometry
and transmittance of VAMOS++. The ∆θLAB ranges considered in the current
analysis, indicated in Fig. 4.9, correspond to sections of the MWPC detector with
different ϕ angular coverage. Moreover, certain areas, e.g. around |ϕ| = 20◦, appear
to be “shadowed” due to the use of magnets in VAMOS++, which prevent some of
the 106Cd ions from reaching the IC. A significantly lower statistics is also observed
at angles greater than θLAB = 27◦, which is mostly related to the decrease of the
cross section for inelastic scattering with scattering angle.
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Figure 4.8 – Total γ-ray spectra obtained in coincidence with different ∆θLABangular ranges indicated in the plot. No normalization is applied.

Figure 4.9 – Hit pattern of 106Cd ions identified in VAMOS, presented in spheri-cal coordinates with θLAB = 0◦ corresponding to the beam direction and ϕ = 0◦to the horizontal plane. The red lines indicate the borders of θLAB ranges consi-dered in the analysis of the Coulomb-excitation data.

As can be seen in Fig. 4.8, the level of statistics in γ-ray spectra corresponding
to individual θLAB ranges varies rapidly with the scattering angle. Considering the
effects discussed above, an efficiency calibration of VAMOS++ would be necessary
in order to enable a comparison between the absolute γ-ray intensities measured
in coincidence with projectiles scattered at different ∆θLAB ranges. This could be
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achieved by comparing the total number of scattered ions (including both elastic
and inelastic scattering) in each ∆θLAB range with a calculated one. Unfortuna-
tely, the analog electronics of the IC could not support very high counting rates.
To reduce loss of data due to pile-up, the rate of validated events was reduced to
4.5 kHz, and only ions identified in VAMOS++ in coincidence with a γ ray registe-
red in AGATA were accepted. Thus, information on elastically scattered 106Cd ions
was not collected during the experiment, and consequently it was not possible to
perform an efficiency calibration of VAMOS++. A simple way to circumvent this
issue is to normalize the γ-ray intensities measured for each ∆θLAB range over
the intensity of the 2+1 → 0+1 transition. Adopting such a procedure will result in a
slight increase in the uncertainties of the experimental observables, which are now
the relative γ-ray intensities.

4.3.3 Extraction of the γ-ray intensities

As discussed earlier, due to the use of the RDDS technique, the observed γ-
ray peaks often consisted of both shifted and unshifted components. Therefore, a
sophisticated procedure is needed to properly extract the γ-ray intensities (peak
areas) from the particle-gated spectra. Furthermore, in particular cases the estima-
tion of the area can be additionally hindered due to an overlap with peaks at similar
energies originating from different transitions. Several types of fits were attempted
under the guidance of M. Siciliano using different fitting programs. The adopted
fits were performed by M. Siciliano within the ROOT framework [64].

In the case of a well-defined (fully shifted or unshifted) and isolated γ-ray
peak, a combination of a Gaussian and a linear function was adopted to reproduce
its shape and the underlying background, respectively. An example of the fitting
procedure used for the more complicated cases, in which two components of the
peak are discerned, is illustrated in Fig. 4.10 for the peak at 633 keV, originating
from the 2+1 → 0+1 transition. First, the particle-gated spectra at the shortest
and longest plunger distances, summed over all scattering angles, were fitted with
a combination of a linear function and two Gaussian functions. This was used
to determine the optimal peak positions and constrain their widths: the unshif-
ted/shifted component of a γ-ray peak dominates at the shortest/longest plunger
distance, enhancing sensitivity to its position and width, see Fig. 4.10.

The fit parameters obtained in this way can be used to fit the components of the
633-keV peak at any plunger distance. Of course, small variations of the parameters
are allowed. This method was validated in Ref. [65] by measuring the intensities of
the two components of the 633-keV peak at all plunger distances. Subsequently,
the extracted intensities were used to perform DCM and DDCM analysis, yielding
lifetimes τ(2+1 ) of 10.7(4) ps and 10.4(2) ps, respectively. These measurements
are in perfect agreement with the previously reported values (10.5(1) ps [66]),
demonstrating that this analysis strategy is suitable even if the peak components
are difficult to separate.
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Figure 4.10 – Example fit (solid green line) of the peak originating from the
2+1 → 0+1 transition with its shifted (S) and unshifted (U) components at the shor-test (A) and longest (B) plunger distances. A combination of two Gaussian func-tions (long-dashed lines) and a linear background (dashed green line) were used.

The spectra obtained by applying cuts on the scattering angle (but summed
for all plunger distances) can be fitted using fit parameters obtained in the same
manner, while still allowing their small variations. The results of this procedure
for the 633-keV peak observed in coincidence with 106Cd nuclei detected in the
∆θLAB range between 21.5◦ and 22.5◦ are presented in Fig. 4.11.

Figure 4.11 – The 633-keV peak in the 21.5◦ < θLAB < 22.5◦ gated spectrumfitted using the routine described in the text. The shifted and unshifted compo-nents of the peak are marked accordingly.
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The fitting procedure described above was also applied in the complex cases
of overlapping peaks with multiple components. For example, the peak at 998

keV, which corresponds to the unshifted component of the 6+1 → 4+1 transition,
may overlap with the shifted component of the peak at 1009 keV from the 6+2 →
4+1 transition. Furthermore, the shifted component of the 998-keV peak overlaps
with the peak at 992 keV, originating from the 2+, 3+, 4+ → 4+1 transition. A
combination of four Gaussian functions and a linear background function was used
to fit this region of the spectrum. The fit parameters were obtained following the
strategy described above, namely using the spectra at the shortest (Fig. 4.12 (A))
and the longest (Fig. 4.12 (B)) plunger distance. As the peaks originating from the
decay of the 6+1 and 2+, 3+, 4+ states could not be separated, they were treated
as a doublet in the following analysis described in Section 6.2.

Figure 4.12 – Same as Fig. 4.10 but for the γ-ray peaks originating from the
6+1 → 4+1 and 6+2 → 4+1 transitions. Their shifted and unshifted componentsare marked accordingly.
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As a next step, the estimated areas of the shifted and unshifted components
of each peak were corrected for the difference in the relative detection efficiency
and summed together. The respective uncertainties were calculated using standard
error propagation. A 4% systematic error was adopted, arising from the fit of the γ-
ray efficiency curve of AGATA. While the efficiency calibration was obtained using
γ rays emitted at rest from a 152Eu radioactive source [65], the γ rays of interest
were emitted in flight and thus had to be Doppler corrected. Therefore, the used
efficiency curve was additionally modified to account for the fact that the efficiency
correction should be applied for the energy of the peak before Doppler correction,
i.e., for the real energy at which the γ rays were registered. Due to the large angular
acceptance of AGATA the non-corrected peaks were Doppler-broadened and the
efficiency correction had to be performed for an averaged energy. This resulted in
an additional systematic error of 0.8 − 2.7%, depending on the transition energy,
which is represented with the error band in Fig. 4.13.

Figure 4.13 – Themodified AGATA efficiency as a function of the Doppler correc-ted γ-ray energy EDC , presented in doubly-logarithmic scale. The error corridoraccounts for the broadness of the γ-ray peaks before Doppler correction, whilethe solid line represents the efficiency for an averaged energy. No other syste-matic errors are presented.
The results of the described fitting procedure for all individual γ-ray transitions,

normalized to the intensity of the 2+1 → 0+1 transition determined in the same way,
are presented in Figs. 6.2 - 6.10 in black.
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5 - Analysis strategies

As discussed in Section 4.2.4, the collected Coulomb-excitation data are consi-
dered unsafe at all scattering angles covered by the present measurement, which
correspond to separation distances ranging from 4 fm to almost touching nuclear
surfaces at the highest scattering angle. As mentioned in Section 4.3.2, we can use
such unsafe Coulomb-excitation data to probe in more detail how the effects of the
nuclear interaction evolve with the scattering angle. Moreover, it is of great interest
to investigate how these effects differ from one state to another, as a function of
their excitation energy and spin-parity.

Possible approaches to “unsafe” Coulomb-excitation data analysis are presented
in Sections 5.1, 5.2 and 5.3. A survey of available spectroscopic data on 106Cd
relevant for the present analysis can be found in Section 5.4, while an introduction
to coupled-channels codes FRESCO and GOSIA is given in Sections 5.6 and 5.7,
respectively. The former section also presents results of a qualitative FRESCO
calculation for the system analysed in the present study.

5.1 Nuclear influence on the data

A proper analysis of unsafe Coulomb-excitation data would require the use
of coupled-channel codes such as FRESCO [36], PTOLEMY [37], etc., which can
account for possible effects of the nuclear interaction on the excitation cross section
in a model-dependent way. This is achieved by employing an optical potential model
(OPM), as described later in Section 5.6.3. The optical potentials are usually
obtained empirically and aim to account for effects originating beyond the channel
of interest. For example, in the case of elastic scattering, the OPM is obtained by
fitting experimental elastic-scattering data in a way that will effectively describe the
cumulative effect of the remaining open reaction channels on the elastic-scattering
cross section.

A serious limitation of this approach can be the lack of an appropriate optical
potential to describe the nuclear interaction in the specific physics case (combi-
nation of collision partners and beam energy). General parametrizations of opti-
cal potential models exist, however, their parameters typically require additional
adjustments of their parameters using elastic (and inelastic) scattering data for
the specific experimental conditions. Unfortunately, such data are scarce. This is
also the case of the present experiment - as stressed in Section 4.3.2, no elastic-
scattering particle singles data were collected as only 106Cd ions, which were in
coincidence with γ rays registered in AGATA, entered the trigger.

Another important note is that the empirical optical potentials are often fitted
to elastic-scattering data at high scattering angles and usually reproduce nicely only
the main interference peak (the so-called Coulomb rainbow), e.g. Fig. 1 of Ref. [67].
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At small scattering angles, the oscillations resulting from the Coulomb-nuclear
interference have much smaller amplitudes, while exhibiting a higher frequency.
Thus, they are often not described very precisely due to the insufficient number of
experimental data points. This presents yet another possible difficulty for analyzing
the current unsafe Coulomb-excitation data, which were collected only at small
scattering angles (up to θLAB = 30◦).

Considering the above, in the present case it is not possible to perform a
quantitative analysis of the unsafe Coulomb-excitation data and to account for the
nuclear influence on the data in an exact way. However, a qualitative description
could be obtained, which is described in Section 5.6.

5.2 Safe Coulomb-excitation approach based on
spectroscopic data

Another approach to evaluate the effects resulting from the nuclear influence
on the excitation process is to compare the experimentally observed excitation
cross sections with calculated ones, assuming a safe Coulomb-excitation process.
The coupled-channel code GOSIA [68] can be used for this goal.

In a typical Coulomb-excitation experiment, the experimentally observed cross
sections depend solely on a set of matrix elements (MEs) of the electromagnetic
operator. This, of course, implies that the nuclear interaction had a negligible
contribution to the excitation process. Based on known spectroscopic data, such
as lifetimes, spectroscopic quadrupole moments, mixing and branching ratios, a
set of transitional and diagonal MEs can be calculated and used to simulate the
intensities expected for a safe Coulomb-excitation process. The geometry of the
detection system must be taken into account in order to enable a proper comparison
between the calculated and measured cross sections.

By performing such a comparison for each observed transition the effects of
the nuclear influence on the excitation process can be evaluated both qualitatively
and quantitatively. Moreover, those effects may change from one excited state to
another, which will provide valuable information on their character. However, a
major drawback of this approach is that it strongly depends on the availability
of previously obtained spectroscopic data. Lack of such measurements or their
insufficient precision will limit its applicability. Such issues are not uncommon even
for stable isotopes like 106Cd. However, one advantage of analysing byproduct data
from a lifetime measurement is that the RDDS analysis has already provided some
of the needed lifetimes. The application of this approach is described in Section 6.1.

5.3 Fitting unsafe Coulomb excitation with GOSIA

As explained in the previous subsection, the expected excitation cross sections
can be obtained using a set of MEs, calculated from the known lifetimes and other
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spectroscopic data. On the other hand, a new set of MEs can be deduced by fitting
the measured intensities with GOSIA. This new set of MEs will be based on the
measured excitation cross sections combined with literature branching and mixing
ratios, but will no longer depend on the previously measured lifetimes. Thus, with
this approach it will be possible to indirectly extract lifetimes from the unsafe
Coulomb-excitation data, in an independent way from the RDDS measurement,
and subsequently compare them to the literature τ values. Furthermore, this will
open a possibility to determine lifetimes that are too short for an RDDS analysis.
Moreover, information on the negative-parity states can be obtained, which is not
accessible via decay spectroscopy. In particular, from the observed population of
such states it may be possible to determine the E3 matrix elements, corresponding
to weak decay branches which are rarely observed experimentally.

A serious drawback of this approach comes from the impossibility to account
for the nuclear interaction using GOSIA. This code is designed to describe safe
Coulomb-excitation experiments, where the excitation process is governed solely
by the electromagnetic force. In order to partially circumvent this issue, a limited
number of experimental points can be included in the fit, namely those obtai-
ned at the smallest scattering angles, where the separation distance is largest and
the excitation process will be the least affected by the nuclear interaction. Sub-
sequently, the new set of fitted MEs can be used to calculate the intensities at
higher scattering angles. If a good agreement is observed between the experimen-
tal and calculated γ-ray yields for a particular state, it is likely that the excitation
process is affected very little by the nuclear interaction. Disagreements with the
“spectroscopic” prediction may then suggest issues with the complementary spec-
troscopic data. The application of this approach and obtained results are described
in Section 6.2.

5.4 Spectroscopic information on 106Cd

To implement any of the approaches proposed in Sections 5.1-5.3, providing
spectroscopic information on the nucleus of interest is necessary. This includes
the excitation energies of the relevant nuclear states, their spin-parities, known
lifetimes, previously measured spectroscopic quadrupole moments, multipolarities
of the transitions populating and depopulating each state, as well as the branching
and mixing ratios of those transitions. A summary of the adopted spectroscopic
data is provided in the following subsections.

5.4.1 Excitation energy and spin-parity
All of the levels populated in the unsafe Coulomb-excitation process must be

included in the analysis. They are summarized in the partial level scheme in Fig. 4.7.
In addition, the 8+1 state at 3044 keV excitation energy was included in the analysis
as a “buffer state” [69]. The excitation energies of the states were taken from the
ENSDF database [59], with the exception of the state at 2711 keV, taken from
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Ref. [62], as explained in Section 4.3.1. These data are listed in Table 5.1.

Table 5.1 – Adopted spectroscopic information on 106Cd including excitationenergies (Ex), spin-parities (Iπ) and lifetimes (τ ). The Ex and Iπ values aretaken from the ENSDF database [59], with a fewmarked exceptions which aredescribed in the text. The lifetimes are taken from the references providedin the table. Those marked with daggers are a weighted average of valuesreported in the listed references. Alternative τ measurements are given inthe last column.
Ex Iπ τ Alternative τ

[keV] [ps] [ps]

632.64(4) 2+1 10.37(15)† [50,65] 10.3(2)† [72–75]
1493.78(5) 4+1 1.4(2) [50] 1.40(5)† [71,72,75]
1716.53(8) 2+2 0.50(2)† [50,60] 0.48(3)† [71,72,75]
1795.25(11) 0+2 1.29(10)† [50,61] −
2104.53(6) 4+2 4.1(7) [50] ≤ 2.9 [76], > 1 [61]
2144.06(4) 0+3 > 1.58 [61] 11+32

−6 [71]
2254.0(5) 2+∗ 0.57+0.27

−0.19 [61] −
2304.92(12) 4+3 1.1(1) [50] < 0.36 [61]
2330.56(6) 5+1 870(290) [59] −
2378.50(4) 3−1 0.20(3) [61] < 0.3 [50]
2485.72(14) 4+∗ 2.34(17)† [50] > 0.92 [61]
2491.66(6) 6+1 < 2 [50] > 0.35 [61]
2503.08(7) 6+2 1.22(15)† [50] 0.26+0.44

−0.14 [61],
0.54(8) [75],
0.73(13) [71]

2566.26(11) 2+4 0.10(1) [61] < 0.3 [50]
2629.20(7) 5−1 8.2(4) [50] −
2630.08(5) 2+5 0.19(3) [61] 0.25+0.13

−0.09 [61]
2710.8(3) [62] 2+∗ 0.16+0.05

−0.04 [61] Shifted‡

2717.86(4) 2+∗ 0.38+0.11
−0.09 [61] Shifted‡

2824.58(5) 1(−)∗ 0.029(1) [60] Shifted‡

2920.14(8) 5−2 0.20+0.05
−0.04 [61] < 0.3 [50]

3044.13(7) 8+1 560(250) [59] −
∗ Assumptions were made for the spin-parity.
† The lifetime is a weighted average of the values given in the listed refe-rences. Note that Ref. [50] provides for certain states two alternative τvalues resulting from DCM and DDCM analyses.
‡ Only a shifted component of the γ-ray peak was observed in the presentmeasurement (τ < 0.3 ps).
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Assumptions for the spin-parity of some states had to be made due to the lack
of information in the literature. Namely, for the states (2+, 3+) at 2254 keV, (2−6)

at 2711 keV and 2+, 3 at 2718 keV, spin-parity of 2+ was adopted for simplicity.
As explained in Section 4.3.1, the γ rays originating from these states could be
assigned to the decay of other closely-lying states, which makes it pointless to
attempt a more precise spin assignment. For the 2+, 3+, 4+ state at 2486-keV
excitation energy, a 4+ spin-parity was assumed. Such spin-parity was proposed in
a β+-decay study of 106In [70] and following inelastic neutron scattering on 106Cd
[61]. Moreover, a spin 4+ was also adopted in another Coulomb-excitation study of
106Cd, published recently [71]. The spin of the state at 2824 keV is firmly assigned
to be 1 [59], but there is not enough evidence in the literature to constrain the
parity of this state. However, its low population in the β+/EC decay of the (2)+

state in 106In [60] favours a negative parity, which was adopted in the present
analysis. For the remaining states considered in the analysis, the spin-parities given
by the evaluated database ENSDF [59] were assumed. The adopted spin-parities
are listed in the second column of Table 5.1. Those, for which assumptions were
made, as discussed above, are marked with an asterisk.

5.4.2 Branching ratios
In Coulomb excitation, the population process does not necessarily have to fol-

low the observed de-excitation path, i.e. apart from the the observed transitions,
all possible excitation/de-excitation paths have to be included. This is clearly illus-
trated by the fact that for the negative-parity states, which primarily decay via
E1 transitions, an E3 population path has to be considered, as discussed in Sec-
tion 3.3. In the present analysis, this consideration resulted in the addition of the
E3 3−1 → 0+1 , 5−1,2 → 2+1 and 1(−) → 2+1 transitions to the level scheme, although
they were not observed in the de-excitation spectra.

Following a comparison of several literature resources [59, 61, 62], a set of
branching ratios was adopted, which is presented in the fourth column of Table 5.2.
Most of the branching ratios were taken from the recent PhD thesis of T. Schmidt
[62] and were extracted using γ-γ and γ-p coincidence information, obtained via
inelastic proton scattering (106Cd(p, p′γ)). The branching ratio from Ref. [59] was
used for the decay of the 8+1 state, while for the Iγ(2+2 → 2+1 )/Iγ(2

+
2 → 0+1 )

branching ratio, the value reported in Ref. [61] was assumed. The latter choice is
based on the good agreement between the result obtained by A. Linnemann [61]
(0.94(14)) and the branching ratio measured from the current data set (0.95(6)).

Considering everything discussed above, the partial level scheme in Fig. 4.7
transforms into a more complex one, presented in Fig. 5.1. As can be seen, 46
transitions are being considered in the analysis, including 4 E3 transitions (depicted
in blue), while only 22 of them were observed in the experimental data (depicted
in red). The arrow widths of the observed transitions correspond to their relative
intensities. The transitions, which were not directly observed in the present study,
are depicted in black.
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Table 5.2 – γ-ray transitions in 106Cd with their energy (Eγ ), relative γ-ray in-tensities (Iγ ) and transition multipolarities (σλ). Eγ are taken from the ENSDFdatabase [59], except for the values marked with daggers, which are taken fromRef. [62]. Iγ and σλ are adopted from the corresponding references. The multi-polarities resulting from assumptions are marked accordingly.
Iπi Iπf Eγ[keV] Iγ σλ
2+1 0+1 632.66(4) 100 [59] E2
4+1 2+1 861.16(4) 100 [59] E2 [59]
2+2 0+1 1716.40(9) 100(10) [61] E2 [59]

2+1 1084.25(23) 94(10) [61] M1+E2 [59]
0+2 2+1 1162.60(10) 100 [59] E2
4+2 4+1 610.77(5) 100.0(41) [62] M1+E2 [59]

2+1 1471.86(5) 51.2(22) [62] E2 [59]
2+2 387.78(18) 3.12(20) [62] E2 [59]

0+3 2+1 1511.41(4) 100.0(41) [62] E2
2+2 427.35(9) 37.6(16) [62] E2

(2+, 3+) 2+1 1621.3(3) 100 [61,62] E2‡

4+3 4+1 811.14(10) 100.0(41) [62] M1+E2 [59]
2+1 1672.6(3) 10.90(53) [62] E2 [61]

5+1 4+2 226.4(5) 100.0(42) [62] M1+E2 [59]
4+1 836.79(7) 37.9(20) [62] M1+E2 [59]

3−1 2+1 1745.82(3) 100 [59] E1 [59]
2+, 3+, 4+ 2+1 1853.5(3)† 100.0(42) [62] E2 [59]

4+1 992.2(3)† 39.2(19) [62] E2‡

2+2 769.4(3)† 14.52(78) [62] E2 [61]
4+2 381.4(3)† 4.23(33) [62] E2‡

6+1 4+1 997.87(4) 100 [62] E2 [59]
6+2 4+1 1009.27(6) 100 [59] E2 [59]
2+4 2+1 1933.6(3)† 100.0(41) [62] M1+E2 [59]

2+2 849.3(3)† 0.79(7) [62] E2∗

0+2 771.4(3)† 0.24(7) [62] E2
5−1 4+2 524.65(5) 100.0(43) [62] E1 [59]

4+1 1135.68(11) 23.8(12) [62] E1 [59]
5+1 298.5(4) 5.91(76) [62] [E1] [59]

2+5 2+1 1997.4(3)† 100.0(41) [62] M1 + E2 [59]
2+2 913.4(3)† 8.94(45) [62] E2∗

0+1 2629.5(3)† 7.01(33) [62] E2
0+2 835.2(3)† 0.54(8) [59] E2
0+3 485.6(3)† 0.46(8) E2

† Eγ is taken from Ref. [62].
‡ σλ was adopted (due to assumptions made for the spin-parity).
∗ σλ was adopted (due to lack of literature data on the mixing ratio).
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Table 5.2 – γ-ray transitions in 106Cd - continued
Iπi Iπf Eγ[keV] Iγ σλ

2− 6 4+1 1216.9(3)† 100 [61,62] E2‡

2+, 3 2+1 2084.9(3)† 100(40) [62] E2‡

2+2 1000.8(3)† 17.8(53) [62] E2‡

3−1 339.2(3)† 5.4(16) [62] E1‡

1(−) 0+1 2823.4(3)† 100.0(42) [62] E1 [60,61]
0+2 1029.3(3)† 5.19(35) [62] E1‡

2+1 2191.1(3)† 2.87(32) [62] E1‡

5−2 4+1 1426.36(6) 100 [59] E1∗

8+1 6+1 552.53(5) 100(3) [59] E2 [59]
6+2 541.00(6) 63(5) [59] E2 [59]

• The 4+2 state at 2105 keV decays by three transitions, connecting it
to the 2+1 , 4+1 and 2+2 states. Discrepancies in the literature are found for
the reported branching ratios [59, 62]. For consistency, the values given
in Ref. [62] were used. However, the branching ratios deduced from the
current data set significantly differ from the literature values, as presented
in Fig 5.2. This suggests a presence of contamination in the data. Unfor-
tunately it is not clear which one of the branches is affected. Thus, firm
conclusions regarding the population of the 4+2 state may not be possible.
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• The (2+,3+) state at 2254.0 keV decays via two transitions - to the 2+1
(Eγ ≈ 1621 keV) and to the 2+2 state (Eγ ≈ 536 keV) - according to the
ENSDF database [59]. However, in the study of T. Schmidt [62], as well
as in the work of A. Linnemann [61], the 536-keV γ ray is attributed to the
decay of the (4)+ state at 2252.2 keV to the 2+2 state. This interpretation
is adopted in the current analysis.

• The 2+,3+,4+ state at 2486 keV decays via two equally strong branches
to the 4+1 and to the 2+1 state, according to Ref. [59]. However, a much
smaller branch to the 4+1 state is reported in Ref. [62], in agreement with
Ref. [61]. Moreover, two new decay branches are observed - to the 2+2
[61, 62] and to the 4+2 state [62]. Later, in Section 6.1, it will be shown
that using the unsafe Coulomb-excitation data it is possible to distinguish
between discrepant literature values in this particular case.

• As reported in Ref. [59], the 6+1 state at 2492 keV decays to the 4+1
and 5+1 states. However, the latter branch was not confirmed by the recent
studies [61,62] and thus it is excluded from the analysis.

• The 2+4 state at 2566 keV decays predominantly via the 2+4 → 2+1
transition, as reported in the ENSDF database. Additionally, two much
weaker branches - 2+4 → 0+2 and 2+4 → 2+2 - were observed in Ref. [61]
(with Iγ of 0.2(1) and 0.4(1), respectively) and in Ref. [62] (with Iγ of
0.24(7) and 0.79(7)). The branching ratios from Ref. [62] were adopted in
the current study.

• The 5−1 state at 2629 keV decays by three transitions, connecting it to
the 4+1 , 4+2 and 5+1 states [59, 62]. For consistency the branching ratios
reported in Ref. [62] were used in the analysis, however one should note
that the intensity of the 5−1 → 5+1 transition reported in Ref. [59] (3.2(8))
is about two times lower than that adopted in Table 5.2.

• Only two transitions depopulating the 2+5 level at 2630 keV are reported
in Ref. [59] (to the ground state and to the first excited 2+ state). In
contrast, in Ref. [62], three additional transitions were observed (to the
0+2 , 2+2 and 0+3 states). The latter two were also confirmed by Ref. [61].

• According to the ENSDF database, the state at 2718 keV decays solely
by a transition to the 2+1 state. However in Refs. [61, 62] two additional
weak branches are observed, namely to the 3−1 and 2+2 states. They were
included in the current analysis.

• Finally the 1(−) state at 2825 keV decays by three transitions - to the
ground state and to the first excited 0+ and 2+ states - as communicated
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in Ref. [62], in contrast to Refs. [59, 61], where only the transition to the
0+1 state is reported.

5.4.3 Transition multipolarities and mixing ratios

The importance of a specific γ-ray transition in the population and decay pro-
cesses depends on many factors, among which is their type (σ) - electric or magnetic
- and their multipolarity (λ). Those for 106Cd have been investigated in the past
using multiple experimental techniques, in particular γ-ray angular distributions
and γ-γ angular correlations [78]. Comparing the work of A. Linnemann [60, 61]
and the evaluated data in Ref. [59] a set of multipolarities σλ was adopted in the
current analysis, which is summarized in the last column of Table 5.2. Most of the
adopted multipolarities are taken from the ENSDF database with a few exceptions
- for the 4+3 → 2+1 , (2+, 3+, 4+) → 2+2 and 1(−) → 0+1 transitions - taken from
Refs. [60,61].

As discussed in the previous subsection, for some states a certain spin-parity
had to be adopted due to lack of information in the literature (these states are
marked with asterisks in Table 5.1). This implies making assumptions also for the
multipolarities of the transitions depopulating those states (which are marked with
double daggers in Table 5.2). For simplicity, an E2 multipolarity was adopted for
the transitions originating from the states at 2254, 2486, 2711 and 2718 keV, with
the exception of the 2+, 3 → 3−1 transition, where an E1 type was adopted in line
with the selection rules. An E1 multipolarity was adopted also for the transitions
depopulating the 1(−) state.

For the M1 + E2 transitions, mixing ratios (δ(E2/M1)) are important con-
straints of the the analysis. The adopted values are summarized in Table 5.3. For
consistency, the values from the ENSDF database [59] were used, with a few ex-
ceptions. More specifically, a discrepancy was found in the literature for the mixing
ratios of the transitions depopulating the 5+1 state [59]. Arbitrarily, the δ(E2/M1)

reported in Ref. [79] were adopted in the analysis. They were obtained from a γ-ray
angular distribution analysis following the 96Mo(13C,3nγ)106Cd reaction.

Table 5.3 – Mixing ratios in 106Cd used in the analysis with corresponding refe-rences. Alternative solutions are presented in the last column. More details aregiven in the text.
Iπi Iπf δ(E2/M1) Alternative δ
2+2 2+1 −1.44(11) [59] −1.53(14) [61]
2+4 2+1 +0.312(33) [61] +2.5(2) [59]
2+5 2+1 −0.11(4) [59] −0.126(50) [61]
4+2 4+1 −0.314(22) [59] −0.36+0.44

−0.62 [61]
4+3 4+1 −0.17(4) [59] −0.14(11) [61]
5+1 4+1 −0.18(5) [79] −0.24(19), −0.03(5) or −5.4+21

−12 [59]
5+1 4+2 −0.58(12) [79] −0.27(4) or −0.57(12) [59]
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As can be seen in Table 5.3, the results obtained in Ref. [61] are in a very
good agreement with those reported in Ref. [59], with the only exception being
the mixing ratio of the 2+4 → 2+1 transition. The value reported in Ref. [61] was
preferred over the evaluated one. This choice is justified later in Section 6.1. Finally,
for some transitions, due to lack of literature data for the multipolarity or mixing
ratio, assumptions had to be made (which are marked with asterisks in Table 5.2).
More specifically, for the 2+4 → 2+2 and 2+5 → 2+2 transitions a pure E2 character
was adopted (although following the selection rules, those transitions can be of a
mixed M1 + E2 character) and the 5−2 → 4+1 transition was assumed to have an
E1 character.

5.4.4 Lifetimes of excited nuclear states
Lifetimes of excited states in 106Cd were previously measured using various

techniques - the RDDS method in Ref. [50,65], direct timing [80] and Doppler-Shift
Attenuation Method (DSAM [81]) following inelastic neutron scattering [60, 61].
Additionally, they were indirectly deduced from matrix elements obtained via safe
Coulomb excitation in Refs. [71–75]. These literature sources were reviewed to
select a set of lifetimes τ to be used in the current analysis. The adopted values
are given in Table 5.1. The lifetimes marked with daggers in Table 5.1 – of the
2+1 , 4+1 , 2+2 , 0+2 , (2+, 3+, 4+) and 6+2 states - are calculated as a weighted average
of the values reported in the references given in the fourth column. The averaging
was performed following the general policies of Nuclear Data Sheets [82]:

τ =

N∑
n=1

wiτi, (5.1)

where wi is the weight of each of the N measurements τi, equal to 1/(στi)
2.

The uncertainty of the averaged value is taken as the larger of the values given by
Formulas 5.2 and 5.3:

σ(τ) =

√√√√ N∑
n=1

wi, (5.2)

σ(τ) =

√√√√ N∑
n=1

wi

N∑
n=1

wi(τ − τi)2

N − 1
. (5.3)

An alternative lifetime measurement (not taken into account in the averaging)
is presented in the last column of Table 5.1. Those will be commented on in the
following.

• The lifetime of the 2+1 state is used for normalization of the cross sections
in the present analysis, which will be discussed in Section 5.7.3. The τ(2+1 )
values, resulting from the two variants of the RDDS data analysis applied
to the present dataset, were reported in Refs. [50,65]. They were averaged
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to obtain the value included in the analysis. Additionally, the ⟨0+1 ||E2||2+1 ⟩
ME was measured in a number of previous Coulomb-excitation experi-
ments [72–75]. The weighted average of 2+1 lifetimes deduced from these
matrix elements is listed in Table 5.1 as an alternative solution.

• The lifetime of the 4+1 state obtained from the current data set using the
RDDS method is 1.4(2) ps [50]. It is adopted in the present analysis. The
evaluated τ(4+1 ) in ENSDF is 1.26(16) ps, obtained from a safe Coulomb-
excitation study [72]. Two more recent safe Coulomb-excitation studies
reported values with improved uncertainties [71,75]. The weighted average
of the lifetimes, calculated using all reported Coulomb-excitation results,
yielded τ = 1.40(5) ps and is given as an alternative value of τ(4+1 ).

• The results for the lifetime of the 2+2 state, obtained by applying the
RDDS method to the current data set [50], and those reported in Ref. [60],
obtained with the DSAM technique, were averaged and adopted in the
analysis. Alternatively, from the results of the Coulomb-excitation stu-
dies [71, 72, 75] one can calculate τ(2+2 ) = 0.48(3), which is in a perfect
agreement with the direct lifetime measurement.

• As already mentioned in Ref. [50] for the lifetime of the 4+2 state there are
conflicting values in the literature. The result from the RDDS measurement
based on the current data set (τ = 4.1(7) ps) is consistent with the limit
given in Ref. [61] (τ > 1 ps), but not with the limit given in Ref. [76]
(τ < 2.9 ps). It should be noted that the experimental branching ratios
for this level from previous studies are also discrepant, as presented in
Section 5.4.2.

• Only a lower limit of τ(0+3 ) was previously obtained via DSAM [61].
This limit is consistent with the observation of both shifted and unshifted
components of the 1511-keV peak in the present data (Section 4.3.1).
Unfortunately, the collected statistics is insufficient to perform an RDDS
analysis. An alternative value is calculated from a ⟨0+3 ||E2||2+1 ⟩ matrix
element obtained via Coulomb excitation [71].

• The lifetime of the state at 2254 keV is taken from Ref. [61] and is
consistent with the observation of both shifted and unshifted components
of the corresponding γ-ray peak (Section 4.3.1). Unfortunately, the posi-
tioning of the peak of interest on the background of the 2+1 → 0+1 peak
from 92Mo hinders the extraction of τ(2+, 3+) via RDDS.

• The first measurement of τ(4+3 ) via RDDS is reported in the work of
M. Siciliano [50] (τ = 1.1(1) ps). However, using DSAM, a limit of this
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lifetime was obtained previously (τ < 0.36 ps) [61], which is inconsistent
with the adopted value.

• The lifetime of the 5+1 state, τ(5+1 ) = 0.87(29) ns, was taken from
Ref. [59]. It is too long to be measured using the RDDS method, thus the
previous measurement could not be confirmed using the present data set.
Surprisingly though, if a γ-ray energy gate is set on the 226-keV transition
depopulating the 5+1 state, both shifted and unshifted components are
observed in the decay of some of the states fed by the 226-keV line. This
is incompatible with the long lifetime of the 5+1 state - since its decay is
expected to happen after the degrader, the states fed by it should also
decay after the degrader. This suggests that the 226-keV γ ray may be due
at least in part to another transition, so far unobserved, originating from a
decay of a short-lived state. This will be further discussed in Section 6.2.

• The lifetimes of the 3−1 , 2+4 and 5−2 states were taken from the DSAM
study of Ref. [61] and are fully consistent with the limits adopted in
Ref. [50]. Those limits originate from the observation of only shifted com-
ponents of the corresponding γ-ray peaks, suggesting a lifetime shorter
than the capabilities of the RDDS technique.

• The lifetime of the 2+,3+,4+ state at 2486 keV was measured for
the first time in the RDDS study based on the present data set [50]. The
obtained value is consistent with a limit deduced using the DSAM tech-
nique [61].

• Only an upper limit of the 6+1 level lifetime was obtained from the
current data set using RDDS due to an unresolved feeding contribution,
suggested by the 6+1 → 4+1 decay curve [50]. A lower limit of τ(6+1 ) was
obtained via DSAM in Ref. [61].

• The lifetime of the 6+2 state obtained via RDDS from the current data
set [50] is at odds with the previous lifetime measurements. The DSAM
study of Ref. [61] suggests a much shorter lifetime, as do two recent safe
Coulomb-excitation studies [71, 75].

• The τ(2+5 ) obtained via DSAM [61] using the most intense decay branch
(2+5 → 2+1 ) is 0.19(3) ps. The authors also report a longer alternative
value deduced using a weaker decay branch (2+5 → 0+1 ). Both results are
consistent with the observation in the present data of only the shifted
component of the 2+5 →2+1 transition (Section 4.3.1).

• The lifetimes of the states at 2711, 2718 and 2825 keV were obtai-
ned using the DSAM technique [60,61]. Based on the present observation
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of only shifted components of the depopulating γ-ray transitions of those
levels (see Section 4.3.1), it was concluded that they have short lifetimes
outside of the sensitivity range of the RDDS technique. Furthermore, even
though these states were not previously considered in the work of M. Sici-
liano [50], one can apply to them the same upper lifetime limit, τ < 0.3 ps,
that Ref. [50] assigned to those for which no unshifted components were
observed in the decay.

5.4.5 Diagonal matrix elements
In Coulomb excitation the population and decay of the nuclear states is gover-

ned by a set of transitional and diagonal matrix elements of the electromagnetic
operator, as explained in Section 3.2. Although diagonal matrix elements have a
limited influence on the excitation cross sections, especially at small scattering
angles (as in the present case), they should be considered in the analysis. A sum-
mary of the diagonal matrix elements adopted in the present analysis is given in
Table 5.4. They are weighted averages of the results from Refs. [71, 73, 75] as
discussed in the following. Formula 5.1, adapted for the diagonal matrix elements,
was used for the averaging and the corresponding uncertainties were calculated via
Formula 5.2 or 5.3.

As can be seen in Table 5.4, the value obtained for the 4+1 state in Ref. [75] is
much larger than the one reported in Ref. [71], although they are consistent within
their large uncertainties. The adopted ⟨4+1 ||E2||4+1 ⟩ and ⟨2+1 ||E2||2+1 ⟩ values are
very similar. Only one measurement is reported for the 6+2 state [75]. Finally, the
weighted average for the 2+2 state is dominated by the value communicated in
Ref. [75], which has a much smaller uncertainty compared to the one reported in
Ref. [71].

Table 5.4 – The adopted diagonal E2 matrix elements (weighted averages ofavailable literature data) together with their values reported in Refs. [71,73,75].
⟨Iπi ||E2||Iπf ⟩ Ref. [71] [eb] Ref. [73] [eb] Ref. [75] [eb] Adopted [eb]

⟨2+1 ||E2||2+1 ⟩ −0.38(17) −0.37(11) −0.25(5) −0.28(4)

⟨4+1 ||E2||4+1 ⟩ −0.15(18) − −0.52(24) −0.28(18)

⟨6+2 ||E2||6+2 ⟩ − − −1.3(8) −1.3(8)

⟨2+2 ||E2||2+2 ⟩ 0.81(38) − 1.33(6) 1.32(8)

The effects induced by the diagonal matrix elements on the experimental ex-
citation cross sections obtained in this study will be addressed in Section 6.2.3.

5.4.6 Negative-parity states
As already discussed in Sections 5.4.2 and 5.4.3, for the negative-parity states

a population path via E3 transitions has to be included. As shown in Fig. 5.1 one-
step excitation from the ground state is assumed for the 3−1 state, while the 5−1,2 and
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1(−) states are populated from below in a two-step excitation via the intermediate
2+1 state. The ⟨Iπi ||E3||Iπf ⟩ matrix elements are in general rather scarce in the
literature. The ⟨0+1 ||E3||3−1 ⟩ values obtained in two previous measurements are
listed in Table 5.5. For the remaining negative-parity states assumptions have to
be made in order to apply the approach proposed in Section 5.2. However, using
the method described in Section 5.3 it is possible to obtain for the first time an
evaluation of those matrix elements or at least provide their upper limits.

Table 5.5 – ⟨0+1 ||E3||3−1 ⟩ values obtained in the previous measurements.
⟨Iπi ||E3||Iπf ⟩ Ref. [75] [eb3/2] Ref. [83] [eb3/2]
⟨0+1 ||E3||3−1 ⟩ 0.28(14) 0.40(5)

5.5 Calculation of matrix elements from spectroscopic data

The reduced matrix elements of interest to the present analysis were calculated
from the adopted spectroscopic data listed in Section 5.4 by applying formulas pro-
vided in Section 5.5.1. The error estimation procedure is described in Section 5.5.2.

5.5.1 Formalism
The reduced transition probability B(σL) * for a nucleus to undergo a transition

of a particular multipolarity σL from an initial state Ii to a final state If with the
emission of a γ ray of energy Eγ is related to the partial lifetime τγj (σL) via [84]:

B(σλ(Ii → If )) =
Lℏ[(2L+ 1)!!]2

8πτγj (σL)

(
ℏc
Eγ

)2L+1

. (5.4)
The unit of the transition probability depends on the transition type σ and mul-
tipolarity L as follows - B(EL) values are given in [e2bL], while B(ML) values
in [µ2NbL−1], where µN is the nuclear magneton. The index j denotes a particular
branch in the decay of the Ii state.

The reduced transition probabilities B(σL) are related to the reduced matrix
elements via [2]:

B(σL(Ii → If )) =
1

2Ii + 1
|⟨If ||σL||Ii⟩|2 . (5.5)

As each ⟨If ||σL||Ii⟩ matrix element enters Formula 5.5 squared, it is not possible
to infer the sign of a ME from a lifetime measurement. Therefore, from now on
the absolute values of the matrix elements will be used, unless specified otherwise.

If the nucleus decays via several branches, the partial lifetime for the j-th
branch, τγj (σL), is proportional to the lifetime of the initial decaying state τ(Ii)

*. In this Section, to avoid confusionwith the decay constantλ, themultipole orderis denoted by L.
49



with a coefficient 1/ε(γj). The ε(γj) value is defined as the fraction of the decay
of Ii which proceeds via the particular γj transition:

ε(γj) =
λγj

λTOT
=

λγj∑
i
(1 + αi)λγi

, (5.6)

where λγj is the relative partial decay constant for the γj transition related to the
partial lifetime via:

λγj = 1/τγj . (5.7)
Apart from the emission of a γ ray, the nucleus can lower its energy also via
internal conversion. In this process the excess energy is transferred to an atomic
electron. The decay constant for internal conversion is directly proportional to
the decay constant for the γj transition through the conversion coefficient αj .
Thus, the total decay constant for a j-th decay branch, including both γ-ray and
conversion electron (CE) emission, is (1+αj)λγj . Considering this, the right side
of Formula 5.6 is obtained, where the summing is over all possible decay branches
i. On the other hand, λγj is related to the total decay constant for the j branch
via λ(γ+CE)j/(1 + αj) thus Formula 5.6 can be modified to:

ε(γj) =
λγj

λTOT
=

λ(γ+CE)j

(1 + αj)λTOT
=
BR(γ+CE)j

1 + αj
, (5.8)

where BR(γ+CE)j is the total branching ratio for the j-th transition.
As discussed in Section 5.4.3, certain excited nuclear states decay by competing

γ-ray transitions with similar strengths, but different σL, e.g. M1 + E2. Thus,
part of the γj branch will correspond to a transition with multipolarity L, while
another part - with multipolarity L + 1. This will result in a modification of the
partial lifetime τγj with a coefficient (1 + δ2) for the L and (1 + δ2)/δ2 for the
L+ 1 component of the transition. The mixing ratio δ is given by the ratio of the
transition strengths of the L + 1 and L components. For example, for a mixed
M1 + E2 transition, δ can be expressed using the reduced matrix elements via:

δ = 0.835Eγ [MeV ]
⟨If ||E2||Ii⟩
⟨If ||M1||Ii⟩

. (5.9)
By combining Formulas 5.4, 5.5 and 5.8 one can obtain the general formula for
the squared reduced matrix elements related to the Ii → If transition:

⟨If ||EML||Ii⟩2 =
Lℏ[(2L+ 1)!!]2

8πτ(Ii)(1 + α)

(2Ii + 1)BR

δ2 + 1

(
ℏc
Eγ

)2L+1

. (5.10)
For the particular cases of E1, E2 and M1 matrix elements relevant for the

present analysis, using Eγ expressed in keV and τ in seconds, Formula 5.10 can be
reduced as following:

50



• E1 transitions: the dependence on the mixing ratio δ is omitted as E1

transitions rarely have a meaningful M2 admixture and as they practically
have no influence on the Coulomb-excitation process, they were not consi-
dered in the present analysis. The ⟨If ||E1||Ii⟩ matrix element is expressed
in units of efm.

⟨If ||E1||Ii⟩ =

√
6.29 BR (2Ii + 1) 10−9

τE3
γ (1 + α)

(5.11)

• E2 transitions: the dependence on the energy of the γ ray (Eγ) is stronger
compared to the E1 case. M1 transitions are often mixed with E2 ones,
thus the δ2/(1 + δ2) term is added in the formula. If the transition has
a very large mixing ratio, this coefficient approaches 1, as in the case of
a pure electric quadrupole transition. The ⟨If ||E2||Ii⟩ matrix element is
expressed in units of efm2.

⟨If ||E2||Ii⟩ =

√
81.64 BR (2Ii + 1) δ2

τE5
γ (1 + α)(1 + δ2)

(5.12)

• M1 transitions: if a ⟨If ||M1||Ii⟩ matrix element is much larger than the
E2 matrix element for the same transition, the mixing ratio approaches
0 and the term 1/(1 + δ2) becomes equal to 1. The ⟨If ||M1||Ii⟩ matrix
element is expressed in units of µN .

⟨If ||M1||Ii⟩ =

√
5.69 BR (2Ii + 1) 10−5

τE3
γ (1 + α)(1 + δ2)

(5.13)

Using Formulas 5.11-5.13, a set of reduced matrix elements relevant for the
Coulomb-excitation analysis was calculated from the spectroscopic data summari-
zed in Tables 5.1-5.3.

5.5.2 Error estimation

If the relative uncertainties of all observables in Formula 5.10 were smaller than
15%, standard error propagation was used. For example, the relative uncertainty
of an E2 matrix element, calculated using Formula 5.12, can be estimated using:

σ(⟨If ||E2||Ii⟩)
⟨If ||E2||Ii⟩

=
1

2

√(
σ(BR)

BR

)2

+

(
σ(τ)

τ

)2

+

(
5σ(Eγ)

Eγ

)2

+

(
σ(α)

1 + α

)2

,

(5.14)
where σ(BR), σ(τ), σ(Eγ) and σ(α) are the absolute uncertainties of the bran-
ching ratio, lifetime of the initial state, energy of the γ-ray transition and the
conversion coefficient, respectively. If the transition is mixed, an additional term(

2σ(δ)
δ(1+δ2)

)2
has to be added in the summation under the square root to account
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for the uncertainty of the mixing ratio. The formula needed to calculate the un-
certainty of a M1 matrix element is similar to Formula 5.14 with the coefficient in

front of the relative uncertainty of Eγ changed to 3 and a term
(
2δσ(δ)
1+δ2

)2
added.

If any of the relative uncertainties of the lifetime, Eγ , α, branching or mixing
ratio were larger than 15%, a different procedure for the error estimation was
adopted. The largest and the smallest possible matrix elements were calculated,
considering the uncertainties of the spectroscopic data. The differences between
the adopted matrix element and these two limits were taken to be its uncertainty
interval. Usually such strategy results in asymmetric error bars, larger than those
from a standard error propagation. The reduced matrix elements and their un-
certainties, calculated following the described procedure, are summarized in the
second columns (“Literature”) of Tables 5.6-5.9.

Table 5.6 – Reduced transitional E2 matrix elements, corresponding to thetransitions observed in the present experiment. The MEs calculated using thespectroscopic information summarized in Section 5.4 are given in the secondcolumn. They are compared to those obtained by fitting the experimental γ-ray yields using GOSIA (third column), as explained in Section 5.3. Note that the
⟨2+1 ||E2||0+1 ⟩ matrix element is used for normalization, therefore the fitted MEis not a new result of the present study and consequently its value is given wi-thout uncertainty. The MEs marked with a dagger have a relative sign extractedfrom the current data set. Those marked with an asterisk were chosen to be po-sitive, as discussed in Section 6.2.1. There was no sensitivity to the signs of theremaining MEs. The difference between the absolute values of the MEs, definedas the absolute difference between the literature and fitted ME, divided by theliterature value, is given in the last column. The sign illustrates if the fitted ME issmaller (-) or larger (+) with respect to the literature one.

⟨Iπi ||E2||Iπf ⟩ Literature Fitted Difference

[eb] [eb] [%]

⟨2+1 ||E2||0+1 ⟩ 0.622(5) +0.623 ∗ −
⟨4+1 ||E2||2+1 ⟩ 1.05(8) +1.12(3) ∗ +6.7

⟨2+2 ||E2||0+1 ⟩ 0.168(7) +0.157+0.006
−0.003

∗ −6.5

⟨2+2 ||E2||2+1 ⟩ 0.42(2) +0.41+0.02
−0.01

† −2.4

⟨0+2 ||E2||2+1 ⟩ 0.173(7) +0.125+0.028
−0.008

∗ −28

⟨0+3 ||E2||2+1 ⟩ < 0.069 +0.024+0.006
−0.001

∗ −
⟨4+2 ||E2||2+1 ⟩ 0.093+0.011

−0.009 +0.09(1) † −3.2

⟨4+2 ||E2||4+1 ⟩ 0.35+0.06
−0.05 0.21+0.03

−0.02 −40

⟨4+3 ||E2||4+1 ⟩ 0.22(6) 0.6(1) +173

⟨5+1 ||E2||4+2 ⟩ 0.55+0.23
−0.16 5.5+0.7

−5.0 −
⟨2+, 3+, 4+||E2||2+1 ⟩ 0.095(4) +0.100(4) ∗ +5.3

⟨(2+, 3+)||E2||2+1 ⟩ 0.25+0.06
−0.04 +0.246+0.014

−0.010
∗ 0

⟨6+1 ||E2||4+1 ⟩ > 0.73 +1.27+0.03
−0.18

∗ −
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Table 5.6 – Reduced transitionalE2matrix elements, corresponding to the tran-sitions observed in the present experiment - continued.
⟨6+2 ||E2||4+1 ⟩ 0.91(6) +1.45+0.06

−0.04
∗ +59

⟨2+4 ||E2||2+1 ⟩ 0.115(13) +0.11(2) ∗ −4.3

⟨2+5 ||E2||2+1 ⟩ 0.03(1) 0.018+0.009
−0.008 −40

⟨2+, 3||E2||2+1 ⟩ 0.15+0.03
−0.02 +0.16(1) ∗ +6.7

⟨2− 6||E2||4+1 ⟩ 0.98+0.15
−0.13 +0.64(5) ∗ −35

Table 5.7 – Same as Table 5.6, but for the reduced transitional E2 matrix ele-ments, corresponding to the E2 transitions, which were not observed directlyin the present experimental data. Without additional spectroscopic information(branching ratios), the “fitted” MEs could not be determined from the presentdata set. The MEs marked with a dagger have a relative sign extracted from thecurrent data set, while thosemarkedwith an asterisk were chosen to be positive,as discussed in Section 6.2.1.
⟨Iπi ||E2||Iπf ⟩ Literature Fitted Difference

[eb] [eb] [%]

⟨0+3 ||E2||2+2 ⟩ < 0.99 +0.35+0.08
−0.02

† −
⟨4+2 ||E2||2+2 ⟩ 0.64+0.09

−0.07 +0.37+0.05
−0.03

∗ −42

⟨4+3 ||E2||2+1 ⟩ 0.071+0.006
−0.005 +0.18(1) ∗ +154

⟨5+1 ||E2||4+1 ⟩ 0.005+0.003
−0.002 0.046+0.012

−0.042 −
⟨2+, 3+, 4+||E2||4+1 ⟩ 0.285(12) 0.30(2) +5.3

⟨2+, 3+, 4+||E2||2+2 ⟩ 0.33(2) +0.34(2) † +3

⟨2+, 3+, 4+||E2||4+2 ⟩ 1.02(6) 1.07(7) +5

⟨2+4 ||E2||0+2 ⟩ 0.19(4) 0.18+0.05
−0.06 −5.3

⟨2+4 ||E2||2+2 ⟩ 0.27(3) +0.25+0.05
−0.03

† −7.4

⟨2+5 ||E2||0+1 ⟩ 0.032+0.004
−0.003 +0.022(4) † −31

⟨2+5 ||E2||0+2 ⟩ 0.16+0.03
−0.02 0.105+0.027

−0.024 −34

⟨2+5 ||E2||0+3 ⟩ 0.56+0.10
−0.09 +0.38+0.10

−0.09
∗ −32

⟨2+5 ||E2||2+2 ⟩ 0.51+0.06
−0.05 0.34+0.07

−0.06 −33

⟨2+, 3||E2||2+2 ⟩ 0.39+0.14
−0.13 +0.42+0.05

−0.07
† +7.7

The reduced transitional E2 matrix elements between low-lying states in 106Cd,
corresponding to the transitions that were directly observed in the present expe-
riment (the E2 transitions marked in red in Fig. 5.1) are summarized in Table 5.6.
The states are identified by their spin-parities in accordance with Table 5.2. Tab-
le 5.7 lists the transitional E2 MEs corresponding to the transitions, which were
not directly observed in the present data set (plotted in black in Fig. 5.1), but the
relevant branching ratios are known (Table 5.2). The reduced M1 matrix elements
are summarized in Table 5.8. They were obtained using the literature values of the
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mixing ratios listed in Table 5.3. Finally, the reduced E1 matrix elements, as well
as the E2 MEs for the decay of the buffer state 8+1 , are given in Table 5.9.

Table 5.8 – Same as Table 5.6, but for reduced transitionalM1matrix elements.Without additional spectroscopic information on mixing ratios, the “fitted” MEscould not be obtained from the present data set. The fitted MEs marked with adagger have a relative sign extracted from the present analysis.
⟨Iπi ||M1||Iπf ⟩ Literature Fitted Difference

[µN ] [µN ] [%]

⟨2+2 ||M1||2+1 ⟩ −0.27(2) −0.26+0.01
−0.02

† −3.7

⟨4+2 ||M1||4+1 ⟩ −0.57+0.05
−0.07 −0.33+0.02

−0.04 −42

⟨4+3 ||M1||4+1 ⟩ −0.87(5) −2.18+0.13
−0.16 151

⟨5+1 ||M1||4+1 ⟩ −0.018+0.003
−0.005 −0.176+0.159

−0.006 −
⟨5+1 ||M1||4+2 ⟩ −0.18+0.03

−0.05 −1.801.63−0.09 −
⟨2+4 ||M1||2+1 ⟩ 0.59(4) +0.56+0.11

−0.07
∗ −5.1

⟨2+5 ||M1||2+1 ⟩ −0.40+0.03
−0.04 −0.27(5) −33

Table 5.9 – The reducedE1matrix elements calculated using the spectroscopicinformation provided in Section 5.4 (second column) compared with the set ofMEs obtained from a fit to the experimental γ-ray yields using GOSIA (third co-lumn). These matrix elements could not be determined from the present dataset and have a limited influence on the values of other matrix elements. The E2MEs related to the decay of the buffer state 8+1 are also given. To avoid an im-pression that they are new results of the present analysis, the values of thesematrix elements adopted in the GOSIA fit are quoted without uncertainties.
⟨Iπi ||E1||Iπf ⟩ Literature Fitted

[eb1/2] [eb1/2]

⟨1||E1||0+1 ⟩ 0.0052(1) 0.0052

⟨1||E1||2+1 ⟩ 0.0013(1) 0.0013

⟨1||E1||0+2 ⟩ 0.0054(2) 0.0054

⟨3−1 ||E1||2+1 ⟩ 0.0064+0.0005
−0.0004 0.0064

⟨5−1 ||E1||4+1 ⟩ 0.00103(4) 0.00103

⟨5−1 ||E1||4+2 ⟩ 0.0067(2) 0.0067

⟨5−1 ||E1||5+1 ⟩ 0.0038(3) 0.0038

⟨5−2 ||E1||4+1 ⟩ 0.011(1) 0.010

⟨2+, 3||E1||3−1 ⟩ 0.010+0.004
−0.003 0.010

⟨Iπi ||E2||Iπf ⟩ Literature Fitted

[eb] [eb]

⟨8+1 ||E2||6+1 ⟩ 0.17+0.06
−0.03 0.174

⟨8+1 ||E2||6+2 ⟩ 0.14+0.05
−0.03 0.145

54



5.6 FRESCO calculations

Following the approach proposed in Section 5.1, an attempt was made to
qualitatively describe the experimental excitation cross sections affected by the
nuclear interaction using the coupled-channel code FRESCO [36]. FRESCO is a
general-purpose reaction code based on the coupled-channel equations described
in Section 3.4. Considering the qualitative character of the task, only a subset of
the excited states in 106Cd populated in the present study was included in the
FRESCO analysis, as described in Section 5.6.1. The addressed physics problem
is described using the namelist format explained in Section 5.6.2. The relevant
input files can be found in Appendix A. The global optical potential employed in
the study is described in Section 5.6.3. The obtained results are presented and
discussed in Section 5.6.4.

5.6.1 Physics case
Using FRESCO, it is possible to calculate absolute cross sections for elastic

and inelastic scattering involving both Coulomb and nuclear interaction acting
between the colliding nuclei. Usually, an effective optical potential is employed to
describe the processes beyond elastic scattering. The effective potential has both
a Coulomb and a nuclear part and is typically obtained empirically. The different
channels involved - elastic or inelastic (in which a particular state is excited) - are
coupled via the differential equation system given by Formula 3.16. The couplings,
Formula 3.17, describe the inner structure of the nucleus and can be taken either
from theory of from experiment. However, a main drawback of this approach is
often the lack of a reliable optical potential and/or information for the particular
Coulomb and nuclear couplings involved.

Considering all of the above and the qualitative character of the present inves-
tigation, only a fraction of the level scheme presented in Fig. 5.1 was selected to
explore the Coulomb-nuclear interference effects on the population of the low-lying
excited states in 106Cd. Namely, the strongly populated 2+1 , 4+1 , and 2+2 states were
included in the analysis, together with the 0+2 , 4+3 and 3−1 states, as summarized
in Fig. 5.3. Although their populations are much lower, the latter three states me-
rit an investigation as the experimentally observed γ-ray intensities in their decay
(shown in the insets of Figs. 5.6 B, 5.7 and 5.8 A) exhibit systematic deviations
from Coulomb-excitation predictions. Second-order effects, such as simultaneous
target and projectile excitation, cannot be considered within FRESCO. Thus, only
the ground state of 92Mo was treated in the analysis.

Optimally, all populated states should be included in the coupled-channel ana-
lysis. Limiting the number of studied states may introduce systematic deviations.
Thus, this study should be viewed as a first approximation of the investigated
physics problem.
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Figure 5.3 – Partial level scheme of 106Cd considered in the FRESCO analysis. Thecolors of the arrows correspond to the transition multipolarity: E1 transitionsare presented in green, pure E2 ones in red, E3 in blue and mixed E2 +M1 inorange. Level and transition energies are given in keV.
5.6.2 Preparation of the input file

The FRESCO input file (see Appendix A) starts with a heading that is not
directly used in the calculations. It is followed by a “NAMELIST”, that marks the
beginning of the file and sets the preferred namelist format. The rest of the file
is divided into a few sections : &FRESCO, &PARTITION, &STATES, &POT,
&OVERLAP, and &COUPLING. The physics problem investigated in this work
could be fully described using only the first four namelists, and they will be dis-
cussed in more details in the following. More detailed information on the specific
parameters included in each namelist can be found in Ref. [36].

• &FRESCO - the general numerical parameters that control the calculation
are described in this section. Namely, “hcm” (here 0.005 fm) - the step of
the integration of the coupled-channel equations, “rmatch” (here 400 fm)
- the radius at which the wave function is matched to its asymptotic form
(as described in Section 3.4), and “jtmin” (here 0) and “jtmax” (here 5500)
- initial and final total angular momentum J, which defines the number
of used partial waves. “Rmatch” and “jtmax” should be large enough to
adequately describe the safe Coulomb-excitation process at small scatte-
ring angles where the central long-range electromagnetic force dominates
the process. The considered scattering angular range from “thmin” (5◦) to
“thmax” (100◦) is also defined in this namelist, together with the angle
step “thinc” (1◦). Those angles are defined in the center-of-mass coordi-
nate system. Another important variable which controls the convergence is
“absend” (−1 mb). The calculation is terminated if the absorption in the
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elastic channel is smaller than “absend” in calculations for three consecutive
values of J. If this parameter is negative, the calculations are performed for
the full range from jtmin to jtmax. Several parameters controlling the out-
put are also defined here: “iblock”, “smats” and “xstabl”. Finally, an essential
parameter of the calculation is the beam energy “elab” (here 756.7 MeV)
in the laboratory frame. The adopted energy corresponds to the middle of
the target (according to calculation with elo [58]).

• &PARTITION - this section describes the intrinsic properties of the colli-
ding nuclei, including the mass of the projectile “massp” (106), of the target
“masst” (92) and their atomic numbers - “zp” (48) and “zt” (42), respecti-
vely. Additionally, the Q-value of the first reaction channel “qval” (0 MeV
for elastic scattering) and the number of channels “nex” corresponding to
the number of considered states in 106Cd (7) are provided.

• &STATES - this namelist defines the pairs of projectile and target states
associated with each channel “nex”. Within the &PARTITION namelist, the
user defines “nex” &STATES namelists, which include the information on
the spins - “jp”, “jt”, parities - “bandp” and “bandt”, and energies - “ep”, “et”
of the coupled states in the projectile and the target, respectively. In each
&STATES partition, one pair of projectile and target states is defined. For
example, in the elastic channel, both nuclei are in their ground states with
ep=et=0, jp=jt=0, and bandp=bandt=+1. In the first channel beyond
elastic scattering, which corresponds to the population of the first excited
state in 106Cd, these parameters are as follows: jp=2, ep=0.633 MeV, and
bandp=1, while the target nucleus stays in its ground state. Instead of
explicitly defining the energy and spin-parity of the ground state of 92Mo,
copyt=1 is used, which automatically copies the previously defined state
for the target. The last variable defined here is “cpot”, indicating which
effective potential governs the excitation and relative motion of the target
and projectile in each channel. This variable refers to “kp”, which is later
defined for each potential explicitly.

• &POT - this section specifies the used Coulomb and nuclear potentials.
One has to explicitly define the coupling potentials (Formula 3.17) that can
be either calculated from experimentally measured transition probabilities
or taken from theory, e.g., in the axially-symmetric rigid-rotor model frame-
work. Each potential is labeled with an index “kp”, corresponding to “cpot”
used in &STATES namelist. All potentials with the same “kp” value are
added together to form the total effective potential used in the calculation.
Each potential is characterized by “type”, “shape” and specific parameters
“pi”. More details on the potentials used in the present calculation for 106Cd
are given in the following section.
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5.6.3 Optical potentials in FRESCO

The effective potential used in a FRESCO calculation has both Coulomb and
nuclear parts. In the first approximation, the Coulomb component can be assumed
as the potential induced by uniformly charged spheres with radii RT (target) and
RP (projectile). At large distances R it follows that of structureless charges and
can be calculated with Formula 5.15 [45]. At distances smaller that the separation
distance between the nuclear surfaces (Rc = RT + RP ), the potential can be
obtained with Formula 5.16. Uc0 is a central potential that slowly decreases with
the distance between the colliding nuclei, as shown in Fig. 5.4 with the solid blue
curve.

Uc0(R) =


e2ZTZP

4πϵ0R
R > Rc (5.15)

e2ZTZP e
2

8πϵ0Rc
(3− R2

R2
c

) R ≤ Rc (5.16)
If the nucleus is not spherical, one can expand the Coulomb potential Uc into

a series of multipoles as mentioned in Section 3.2. The monopole part corresponds
to the potential generated by structureless charges (Formula 5.15), which governs
the relative motion of the interacting nuclei. Higher-order multipoles depend on
the internal structure of the nucleus and thus are responsible for transitions from
one state to another. Within a collective model, excitations of the nucleus can be
understood as reorganization of its charge. Those excitations are described by the
coupled-channel system, Formula 3.16, where a transition of the nucleus from one
state to another results in a redistribution of the flux between the involved chan-
nels. For example, for the excitations from the ground state, one can describe the
process as shifting a part of the elastic channel flux to a particular inelastic channel.
Those processes are controlled by the coupling potentials, which in this case are
proportional to the matrix elements of the multipole electromagnetic operator.

Within FRESCO (see Appendix A), the monopole Coulomb potential by default
corresponds to TYPE=0 and is always defined in the beginning of the &POT
namespace. The mass numbers of the collision partners are provided (ap=106.0

and at=92.0), together with the reduced radius (rc=1.200), which can be used
to calculate the distance between the nuclear centers at touching nuclear surfaces
(rcCC, where CC = A

1/3
P +A

1/3
T ). In the following, more potentials with TYPE> 0

are defined. First, a TYPE=12 potential is introduced, which corresponds to a
deformed projectile nucleus. The parameters “p1”, “p2”, and “p3” are the strengths
of the coupling factors with E1, E2, or E3 multipolarities, respectively. They
are explicitly given in different &STEP lists for each two coupled states - final
state “ib” with angular momentum I ′ and initial “ia” with angular momentum I.
The state indices follow those defined in section &STATES. Both populating and
depopulating transitions are explicitly included in the complete coupled-channel
system. The “str” couplings of multipolarity “k”=λ are the reduced transitional
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matrix elements ⟨I ′||M(Eλ)||I⟩ in units of efmλ, which can be calculated from
experimentally obtained transition probabilities B(Eλ; I → I ′) [85]:

STR = (−1)
I−I′+|I−I′|

2 ⟨I ′||M(Eλ)||I⟩ = ±
√
(2I + 1)B(Eλ; I → I ′). (5.17)

The diagonal matrix elements (I = I ′) can be included in the calculation in a
similar way. The transitional matrix elements used in the present analysis were taken
from the second columns of Tables 5.6 and 5.7. They were calculated from the
measured lifetimes and other spectroscopic information, as explained in Section 5.5.
The only exception is the ⟨0+1 ||E3||3−1 ⟩ matrix element, which was taken from the
Coulomb-excitation measurement of D. Rhodes [75]. As magnetic couplings cannot
be defined within FRESCO, the mixed 4+3 → 4+1 and 2+2 → 2+1 transitions were
solely described by their corresponding E2 matrix elements. The diagonal matrix
elements for the 2+1 , 4+1 and 2+2 states were taken from Table 5.4.

Figure 5.4 – Coulomb potential (in blue) and the real part of the nuclear (Woods-Saxon) potential (in red) as a function of the distance R between the nuclearcenters. The effective potential, defined as the sum of the Coulomb and the nu-clear potentials, is presented with the black dashed line. The Coulomb barrier ofabout 220MeV appears in the effective potential at about 12 fm.
As a next step, the volume nuclear potential (TYPE=1) was defined. The nu-

clear part of the effective potential is usually modeled within the Woods-Saxon
parametrization [45]. The nuclear potential Un0(R − R0) between two spherical
nuclei, where R0 = RT + RP , follows the nuclear density and has a real and an
imaginary part. The real part usually enters the description of the elastic scattering
process, while the imaginary part accounts for absorption. In FRESCO this parame-
trization is realized by SHAPE=0, where the volume nuclear potential between two
spherical nuclei as a function of the distance R between their centers is given by:

Un0(R) = − p1

1 + e
R−CCp2

p3

− i
p4

1 + e
R−CCp5

p6

. (5.18)
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The parameters p1, p2 and p3 describe the real part of the potential and correspond
to the potential depth (V0), reduced radius and diffuseness, respectively [85]. The
equivalent parameters p4, p5 and p6 are used for the imaginary part of the potential.
Preferably, these parameters are obtained by fitting experimental data from elastic
and inelastic scattering for the investigated nuclei or an analogous system under
similar kinematic conditions. If that is not possible, the required parameters can
be calculated using global parametrizations, e.g., the parametrization of R. Broglia
and A. Winther [86], which is often used to describe systems of heavy colliding
partners, as in this particular case. In this parametrization, the depth of the nuclear
potential (p1) can be obtained via:

p1 = V 0 = 16πγavR̄TP [MeV], (5.19)
where the reduced radius R̄TP is given by RTRP /(RT + RP ) and the radii of
the projectile and the target (RP , RT ) can be calculated as 1.2A

1/3
i − 0.09 fm.

Thus, parameter p2 is then defined as (1.2CC − 0.18)/CC. The surface tension
parameter γ is given by:

γ = 0.95

(
1− 1.8

NP − ZP

AP

NT − ZT

AT

)
[MeV fm−2], (5.20)

where Ai, Zi and Ni are the mass, atomic and neutron numbers of the projectile
(P ) and the target (T ). The diffuseness av, which corresponds to p3, can be
calculated using

p3 = av =
1

1.17

[
1 + 0.53

(
1

A
1/3
P

+ 1

A
1/3
T

)] [fm]. (5.21)

The real part of the volume nuclear potential, with parameters calculated using
Formulas 5.19-5.21 – V0 = 89.2 MeV, rc = 1.18 fm and av = 0.69 fm – is plotted
in Fig. 5.4 with a solid red curve. The sum of the Coulomb and nuclear potentials
forms the effective potential presented with the dashed black line.

In addition to the real part, the imaginary part of the nuclear potential has
to be provided. There is no clear rule how to handle this task, as the imaginary
part describes the absorption channels, which depend in a complicated way on the
beam energy and the particularities of the system. Often the same reduced radius
and diffuseness as for the real nuclear part are adopted for the imaginary potential,
while the potential depth is taken to be a quarter of V0. This choice is arbitrary,
and in general these parameters should be fitted to experimental data.

Similarly to the Coulomb case, if the nucleus is deformed, within a collective
model (e.g. rotational), excitations related to the nuclear interaction can be inter-
preted in terms of changes in the mass distribution of the nucleus. The separation
between the target and projectile surfaces will depend on the orientation of the
deformed nucleus and so will the nuclear potential Un0(R). The potential can
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be expanded in a multipole series, with the monopole part corresponding to the
potential of a spherical nucleus, given by Formula 5.18. Higher-order multipoles
result in couplings between different channels (excited nuclear states), which are
described by the coupling potentials proportional to the reduced matrix elements of
the corresponding deformation length operator δλ [45]. Those matrix elements are
model dependent and in the current analysis they were calculated from the reduced
electromagnetic matrix elements introduced in the definition of the deformed Cou-
lomb potential within the rotational model framework. When K (the projection of
the angular momentum I on the symmetry axis) is a good quantum number - as
it is for axially symmetric nuclei - and the mass and charge distributions coincide,
⟨I ′||δλ||I⟩ can be calculated from ⟨I ′||Mλ||I⟩ by:

STR = RDEF = ⟨I ′||δλ||I⟩ =
4π

3ZP eR
λ−1
0

⟨I ′||Mλ||I⟩, (5.22)
where R0 = 1.2A

1/3
P is an average radius of the deformed projectile. In the present

calculation, a series of TYPE=12 potentials (deformed projectile) were defined for
each pair of coupled states “ia” and “ib” with multipolarities “k” (see Appendix A)
and strengths (reduced deformation lengths - RDEF) deduced from Formula 5.22.
The adopted signs were as for the deformed Coulomb part.

All potentials with “kp=1” are finally summed together to form the effective
potential, in which the projectile and the target nucleus move and exchange energy.
It is important to stress that although the nuclear couplings alone may have a
limited direct effect on the excitation cross sections, drastic changes may appear
due to the Coulomb-nuclear interference effect (see Section 3.4).

5.6.4 Results and conclusions
Calculations employing both deformed Coulomb and nuclear potentials (using

the input file in Appendix A) and only the deformed Coulomb potential (the first
two &POT in the input file) were performed using FRESCO and the parametriza-
tion of Broglia and Winther [86]. Selected results are presented in the following.

The obtained absolute cross section for elastic scattering is presented in Fig. 5.5
with a solid red curve. It is evident that at small scattering angles (θCM < 46◦,
which corresponds to θLAB < 21◦) there are only small oscillations present in
the cross section and the red curve closely follows the black one (pure Coulomb
interaction). The amplitude of the oscillations increases at higher angles and a
systematic deviation from the pure Coulomb solution appears. The two calculations
differ by less than 10% at angles below θCM = 46◦, while at higher angles the
difference becomes larger than 50%. The cross section in the Coulomb-nuclear
solution decreases to zero faster than the pure Coulomb one, as at higher angles
(smaller separation distances) the absorption increases. The behaviour presented
in Fig. 5.5 is known as Fresnel scattering (rainbow), which appears when the beam
energy is around the Coulomb barrier and the Sommerfeld parameter η ≫ 1 [45],
which is fulfilled in the current study (η = 255).
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Figure 5.5 – Differential cross section for elastic scattering of 106Cd on 92Moas a function of the scattering angle in the center-of-mass coordinate system,calculated with FRESCO using only a deformed Coulomb potential (in black) andboth Coulomb and nuclear potentials (in red). Results of calculations using re-duced/increased depths of the real (V0) and imaginary (W ) parts of the nuclearpotential are also presented.

Typically, the parameters of the real part of the nuclear potential are adjusted
to experimental elastic-scattering data with the goal to closely reproduce at least
the main rainbow peak. This would reduce the number of free parameters involved
in the problem and allow obtaining reliable quantitative results for the inelastic
channels. As this was not possible in the present work, additional calculations using
different values of the nuclear potential parameters (real (V0) and imaginary (W0)
potential depth) were performed in order to illustrate the possible effects. As shown
in Fig. 5.5, increasing or decreasing of the potential depth V0 of the real nuclear
potential results in larger or smaller amplitudes of the cross-section oscillations,
respectively. The main rainbow peak moves towards smaller scattering angles when
using a larger potential depth V0. In addition, the amplitude of the cross-section
oscillations depends also on the imaginary part of the potential. This demonstrates
the complexity of the problem, as the obtained results strongly depend on the
assumed potential.

Moreover, for the inelastic channel, in addition to the potential parameters,
the reduced deformation lengths (RDEF) can also be varied to better describe the
experimental data. It has been observed in other studies that the optimal RDEF
values are usually 20−30% smaller than the values calculated from the experimental
transition probabilities with Formula 5.22 [87]. Therefore the calculations for the
excited states in 106Cd were carried out using the same potential parameters, but
various RDEF values.
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Figure 5.6 – Differential cross sections to populate the 4+1 (A), 2+2 (B) and 0+2(C) states, normalized to the cross section for the first inelastic channel (2+1 ex-citation), as a function of the scattering angle θLAB . The calculations assumedvarious reduced deformation lengths (RDEF) - reduced by 20% (orange), 30%(green) or 50% (blue) with respect to the RDEF calculated from the experimentalelectromagnetic matrix elements using Formula 5.22. The experimentally mea-sured γ-ray intensities of the transitions depopulating the states in question,normalized to the intensity of the 2+1 → 0+1 transition, are presented in the in-sets of each plot for a qualitative comparison.
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In order to enable a more direct comparison between the results of the present
measurement and the FRESCO calculations, Figs. 5.6-5.8 present the excitation
cross sections to populate the 4+1 , 2+2 , 0+2 , 3−1 and 4+3 states, normalized to that
for the first inelastic channel (excitation of the 2+1 state), as a function of the
scattering angle in the laboratory frame. The present experiment provided γ-ray
intensities of transitions depopulating the states in question, normalised to the
2+1 decay. In order to relate them to absolute excitation cross sections, a model
would need to be imposed. To avoid that, no attempt was made to quantitatively
compare the experimental observables and the results of the FRESCO calculation,
but a general comparison with the predicted trends is still possible. Thus, the
experimental γ-ray intensities normalized to that of the 2+1 → 0+1 transition are
presented in the inset of each figure. It is also important to note that the trends
observed for the experimental intensities (as a function of the scattering angle) will
be smeared in comparison with the calculated cross sections due to the integration
over the target thickness, scattering angle, etc.

As it can be observed in Fig. 5.6 (A), at small scattering angles (θLAB <

21◦), the population of the 4+1 state closely follows the one calculated assuming
a pure Coulomb process. At θLAB = 22◦ the Coulomb-nuclear cross sections are
reduced by 13 − 20% (depending on the RDEF values) with respect to the pure
Coulomb solution, while at 30◦ (at almost touching nuclear surfaces), a reduction of
18− 66% is observed, strongly dependent on the used RDEF values. In contrast,
the experimental intensities in the inset of Fig. 5.6 (A) show a smooth trend
consistent with a pure Coulomb-excitation prediction, which suggests that the
effects of the nuclear influence on the excitation process were minimal even at high
scattering angles. Similarly, in Fig. 5.6 (B) it can be seen that for the population
of the 2+2 state the differences between the two solutions are minimal up to about
θLAB ≈ 24◦ (5−13% reduction at θLAB = 22◦ with respect to the pure Coulomb
solution). A rather rapid increase in the Coulomb-nuclear cross section appears
at higher angles (up to almost 130% difference between the solutions at θLAB =

30◦). Finally, Fig. 5.6 (C) presents the population of the 0+2 state. Evidence for
a destructive Coulomb-nuclear interference, which reduces the cross section, can
be found in both the FRESCO calculation and the experimentally observed γ-ray
intensities. For θLAB < 21◦ the differences between the two solutions are minimal,
while already at θLAB = 22◦ the Coulomb-nuclear cross section is reduced by
about 40% with respect to the pure Coulomb prediction.

The results presented above involved states populated via E2 transitions. The
observed trends of the cross sections suggest that for those states both calculations
with and without a nuclear potential produced similar results for θLAB < 22◦. Ho-
wever, if transitions of higher multipolarities are involved in the excitation process,
the deviation from pure Coulomb excitation appears at smaller scattering angles.
This is illustrated in Fig. 5.7, presenting the calculated cross section to populate
the 3−1 state (normalized to that of the 2+1 state). The 3−1 state is populated mostly
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via a direct E3 transition from the ground state. As can be seen in Fig. 5.7, the
Coulomb-nuclear interference induces fluctuations of the excitation cross section
around the pure Coulomb solution. For θLAB < 22◦, their amplitude is larger in
comparison with those observed for states in Fig. 5.6, which are populated via E2

transitions. At higher angles, the cross section strongly increases, reaching values a
few times larger than the pure Coulomb cross section. Moreover, at smaller angles,
the calculation is almost independent of the RDEF values, in contrast to the results
for θLAB > 22◦. The experimentally measured γ-ray intensities exhibit a similar
oscillatory behaviour, with a minimum observed around θLAB = 22◦, followed by
a maximum at higher angles.

Figure 5.7 – Same as Fig. 5.6 but for the 3−1 state.
Finally, the results of a similar calculation for the population of the 4+3 state

are shown in Fig. 5.8 (A). The deviation from pure Coulomb excitation is rather
small and strongly depends on the RDEF values, with a similar trend as for the
2+2 and 0+2 states. However, the measured intensity of the 4+3 → 4+1 transition
has a trend significantly different from the calculated one. The sudden increase in
intensity, starting at θLAB = 22◦, can be attributed to additional population of the
state of interest via an E4 transition from the ground state. Deformed Coulomb
and nuclear potentials were included in the calculation of an additional 4+3 → 0+1
E4 transition. Their parameters were calculated assuming a B(E4; 0+1 → 4+3 )

transition probabilities of 1, 5 and 10 W.u. From Formula 5.17 for the Coulomb
part, STR parameters of 377, 844 and 1193 efm4 were obtained, respectively.
Using Formula 5.22 for the nuclear part, the corresponding RDEF values were
calculated to be 0.18, 0.40 and 0.57 fm. It is visible from Fig. 5.8 (B) that the cross
section changes drastically when the additional E4 coupling potential is included.
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Strong fluctuations appear and a rapid cross-section increase is observed above
θLAB = 22◦, in line with the behaviour of the experimental intensities.

Figure 5.8 – Cross section to populate the 4+3 state, normalized to that for the
2+1 state. (A) Various reduced deformation lengths RDEF are used (as given inthe legend). Experimental normalized intensities for the 4+3 → 4+1 transition arepresented in the inset. (B) Calculations assuming differentE4 reduced transitionprobabilities - 10 W.u. (blue), 5 W.u. (green), 1 W.u. (orange) and zero (red). Thepure Coulomb solution without any E4 transition is presented with a black solidline, while a Coulomb calculation assuming B(E4; 0+1 → 4+3 ) = 10 W.u. is givenwith a dotted-dashed black line. Note the logarithmic scale.

Based on the observed trends of the calculated cross sections, it can be conclu-
ded that the experimentally observed intensities of transitions depopulating the 4+1
and 2+2 states (and possibly other 2+ and 4+ states that are populated by E2

transitions) should be minimally affected by the Coulomb-nuclear interference at
θLAB scattering angles below 22◦. For the 0+2 state, a deviation from the Coulomb-
excitation prediction appears earlier, but the cross sections for θLAB < 21◦ seem
to follow the pure Coulomb trend. The negative-parity states, predominantly popu-
lated via higher-order multipolarity transitions (E3), may be affected to a greater
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extent by the nuclear excitation process, but for θLAB < 22◦ the Coulomb-nuclear
interference induces only small fluctuations of the cross section around the pure
Coulomb solution. A considerable gain in the cross section for θLAB > 22◦ was
observed for the positive-parity states, which have a E4 contribution to their po-
pulation. The experimental data for the 4+3 state are consistent with such a contri-
bution.

5.7 GOSIA calculations

GOSIA is a coupled-channel code developed to handle Coulomb-excitation
data, allowing both realistic simulations of the experimental observables and ex-
traction of matrix elements of the electromagnetic operator. The latter is achieved
via a multi-dimensional χ2 fit of a set of MEs to the experimental γ-ray yields and
additional spectroscopic information, provided as independent data points. This
allows extracting nuclear-structure properties such as electromagnetic transition
probabilities and spectroscopic quadrupole moments of excited states. Various ef-
fects, which can influence the γ-ray yields are accounted for, e.g. detector geometry,
deorientation effect, attenuation due to the finite size of the detector, de-excitation
via the competing internal conversion process, etc. [88]. A basic introduction to
the code is provided in Section 5.7.1, with a more detailed description of specific
GOSIA functions presented in Appendix B. The procedure applied in the present
work to obtain a realistic intensity simulation is discussed in Section 5.7.2 and
the fitting procedure, providing a set of MEs describing the nucleus of interest, is
presented in Section 5.7.3. Sample input files used in the present work are given
in Appendices C and D.

5.7.1 Introduction to the GOSIA code
The main input file of GOSIA consists of a sequence of option commands. The

option names start by “OP,” followed by four characters which indicate the specific
command. For more information on the options used in the particular work, see
Appendix B. Full descriptions of all possible options can be found in the GOSIA
manual [88].

First, in OP,GOSI the user defines the studied nucleus and the experiments
to be used in the fitting procedure. The spin, parity and excitation energy are
provided for each state in the considered level scheme. In total 22 states were
defined, following the level scheme in Fig. 5.1. Subsequently, the reduced matrix
elements used in the fitting procedure are defined. It is possible to declare electric
matrix elements of multipolarities E1-E6, including diagonal E2 (II=IF ), as well
as magnetic ones (M1,M2). For each matrix element, the lower and upper limits
in which the matrix element can be varied during the fitting procedure are also
given. The limits are provided in order to avoid unphysical solutions of the least-
square search. The limits used in the present analysis were chosen in line with
the recommendations in Ref. [89] - it is very unlikely for E1 reduced transition
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probability to exceed 0.01 W.u., for E2 - 300 W.u., for E3 - 100 W.u. and finally for
M1 - 1 W.u. The initial values of the transitional matrix elements were taken from
the second column of Tables 5.6-5.9, and those of the diagonal ones from Table 5.4.
The only exception are the E3 MEs, which will be discussed in Section 6. The
previously known signs of the matrix elements can also be provided accordingly. In
the present analysis, they were only known for diagonal matrix elements (Table 5.4).
In total 58 matrix elements were defined - 9 of E1, 38 - E2, 4 - E3 and 7 of M1

multipolarity.

Subsequently, the user defines the experiments to be analysed. Each experiment
corresponds to a particular combination of bombarding energy, scattering angle and
geometry of the particle and γ-ray detectors. In this work, the defined experiments
correspond to different slices of the particle-γ spectra with respect to the scattering
angle θLAB (Fig. 4.9). For each experiment, the atomic and mass numbers of the
collision partner are provided (92Mo; A = 92, Z = 42), as well as the average
beam energy ELAB and average projectile scattering angle θLAB. As the former,
the energy of the beam in the middle of the target was adopted (756.7 MeV).
The mean scattering angle θLAB is taken to be the middle of each ∆θLAB region
(Fig. 4.9). The first three mean θLAB correspond to 19.7◦, 20.5◦ and 21.5◦. The
azimuthal angular limits of the detector at the middle of each ∆θLAB slice are also
provided. They were deduced from Fig. 4.9 - for example, at the smallest mean
scattering angle θLAB=19.7◦, the particle detector stretches between ϕL=−11.6◦

and ϕU=12.0◦.

For a calculation of the de-excitation γ-ray yields following Coulomb excitation,
information on the competing internal-conversion process is necessary, as well as
the geometry of the γ-ray detectors. These are provided in GOSIA’s OP,YIEL,
see Appendix B. The internal conversion coefficients at specific energies (mesh
points) were provided for each of the multipolarities present in the declared coupling
scheme. In the present analysis, 23 energy mesh points were used, ranging from
0.1 MeV to 3.2 MeV in uneven steps. The internal conversion coefficients for E1,
E2, E3 and M1 transitions were calculated using the online BRICC calculator [91].
By interpolating between those mesh points, GOSIA is able to calculate the internal
conversion coefficient at any specific transition energy. Subsequently, the geometry
of the γ-ray detection system is described. The θLAB and ϕLAB angles for each
of the 21 AGATA detectors were provided for each experiment. Detector sizes and
their distances from the target were specified, as described in Appendix B.

For each experiment, the number of data sets per experiment (i.e. the number
of individual γ-ray spectra that were analysed), the detection upper limits and
the relative normalization factors of the γ-ray detectors have to be provided. The
upper limit is described as the lowest possible intensity, normalized to that of the
2+1 → 0+1 transition, which could be observed in the γ-ray spectrum. An upper
limit of 0.1% of the intensity of the normalization transition was deduced from the
experimental γ-ray spectra.
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Additional spectroscopic information, including branching and mixing ratios,
lifetimes, known transitional and diagonal MEs, needed for the least-square fitting is
then provided. In this work 22 branching ratios were considered. They are calculated
from the relative γ-ray intensities (Iγ), summarized in Table 5.2. Their uncertainties
are determined using standard error propagation. Lifetimes can also be provided as
constraints of the fit. This was done differently for the two approaches adopted in
this work. For a calculation of the γ-ray intensities based solely on the spectroscopic
data found in the literature (the approach described in Section 5.2), all known
lifetimes were provided (20 values taken from Table 5.1). For the lifetime of the
6+1 state a value of 1(1) ps was adopted as only an upper limit of τ < 2 ps was
previously reported in the literature. Only a lower limit is known for the lifetime
of the 0+3 state, τ > 1.58 ps [61], thus no lifetime was provided for this state.
Instead, the ⟨2+2 ||E2||0+3 ⟩ matrix element was fixed at a value of 0.35 eb, which
was taken from the beyond-mean-field (BMF) calculations of T. Rodriguez [50].

When fitting experimental γ-ray intensities (approach from Section 5.3) the
lifetimes that entered the fit were limited to that used for normalization (τ(2+1 )),
lifetime of the unobserved 8+1 state and those of the negative-parity states (3−1 ,
5−1 , 5−2 , 1(−)). The latter are related to the matrix elements describing the E1

decay of these states, and do not affect the excitation process. Finally, the lifetime
of the 5+1 state was provided as a part of error estimation discussed in Section 6.2.

Seven literature values of δ(E2/M1) mixing ratios were considered in the
analysis. These mixing ratios are summarized in the second column of Table 5.3.
Finally, previously measured matrix elements can also be included in the least-
square fit. In the current work, those were the diagonal matrix elements given
in Table 5.4. For the intensity simulations, the ⟨0+1 ||E3||3−1 ⟩ matrix element was
added as well. However, when fitting a set of MEs to the experimental γ-ray
intensities no additional constraints were imposed on the ⟨0+1 ||E3||3−1 ⟩ matrix
element in order to be able to extract its value from the fit.

5.7.2 Simulating intensities

An important feature of GOSIA is the possibility to calculate γ-ray intensities
of transitions depopulating Coulomb-excited states, registered in coincidence with
scattered particles, in the geometry of the experimental setup. Using GOSIA’s
OP,POIN the so-called “point-like” γ-ray yields can be calculated. These are the
yields calculated for the mean beam energy ELAB and mean laboratory scattering
angle θP characterizing each experiment:

Y ((Ii → If ), θP , ELAB) = sin(θP )

∫
ϕP

d2σ(Ii → If )

dΩγdΩP
dϕP , (5.23)

where sin(θP ) is a solid angle factor and the double differential cross section for the
transition Ii → If is proportional to the Rutherford cross section. The differential
cross section describes the angular distribution of the γ rays assuming a point-
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like γ-ray detector, with additional attenuation factors included to account for the
finite size of the detectors.

GOSIA’s OP,INTI option can be used to perform integration over the finite
scattering angle range covered by the particle detector dΩP and over the bombar-
ding energies resulting from the projectile energy loss over the target thickness.
Using this option, one can realize the approach proposed in Section 5.2, namely
simulate realistic γ-particle coincidence intensities based on the set of matrix ele-
ments fitted to the spectroscopic data. The input for OP,INTI for the first three
ranges of scattering angles considered in the analysis is given in Appendix D. In the
first stage of the calculation, an integration over the azimuthal angle ϕ is perfor-
med at specific energy and scattering angle θP mesh points, similar to OP,POIN.
An integration over the bombarding energy and scattering angle follows, relying on
an interpolation between the calculated γ-ray yields at energy and θP mesh points
at which a full Coulomb-excitation calculation is performed. The integrated γ-ray
yields are calculated as:

Y (Ii → If ) =

∫ EMAX

EMIN

dE
1
dE
dx

∫ θMAX

θMIN

Y ((Ii → If ), θP , E) dθP , (5.24)
where EMIN , EMAX correspond to the limits of incident energy, θMIN and θMAX

to the θP scattering angle limits, and dE/dx are the stopping powers provided by
the user. The minimum incident energy EMIN was calculated with the program
“elo” [58], assuming a target thickness of 0.715 mg/cm2. It is important to note
that if another model, e.g. another program, is used for the calculation, the obtai-
ned stopping powers may differ. Indeed, they were found to be about 6.5% smaller
when LISE++ [92] was used and about 14% smaller for a VTL [93] calculation.
This resulted in calculated normalized γ-ray intensities differing by up to 2% bet-
ween those that relied on stopping powers calculated with elo, LISE++, VTL, and
SRIM [94]. Consequently, this source of systematic errors was taken into account
by increasing the uncertainties of the experimental normalized γ-ray intensities by
2%. The simulated intensities are subject to the same systematic uncertainty.

The γ-ray yields obtained with OP,INTI are not directly comparable with the
absolute experimental γ-particle coincidence intensities. In order to obtain a rea-
listic number of γ-particle coincidence counts N , one has to take into account the
beam intensity and detector efficiency [88]:

N = 10−30

[
Q

qe

] [
NA

AT

]
Y (Ii → If ) ϵP ϵγ ∆Ωγ t, (5.25)

where Q is the integrated beam charge in [C], q is the average charge state of the
beam, NA is the Avogadro number, ϵP is the absolute particle detection efficiency,
ϵγ is the energy dependent γ-ray detection efficiency per unit solid angle, ∆Ωγ is
the total solid angle subtended by the γ-ray detectors and t is the measurement
time (accounting for possible acquisition dead time). The integrated γ-particle
coincidence yield Y (Ii → If ) in Formula 5.25 is taken from the output of OP,INTI.
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If in the data analysis only relative numbers of counts are used, all factors in
Formula 5.25 that multiply the calculated γ-ray yield cancel out, apart from the
energy-dependent γ-ray detection efficiency. This strategy was employed in the
present work: the experimentally measured γ-ray intensities in coincidence with
the projectiles registered in each range of scattering angles ∆θP were corrected for
γ-ray detection efficiency and normalized to the number of counts observed in the
2+1 → 0+1 peak. The normalized intensities could then be directly compared to the
corresponding normalized γ-ray yields calculated with OP,INTI.

5.7.3 Fitting experimental γ-ray yields
Sets of transitional and diagonal electromagnetic matrix elements can be ex-

tracted by performing a multi-dimensional χ2 fit to the experimental data using
GOSIA’s OP,MINI. The χ2 function used by the code consists of three compo-
nents [69], accounting for the reproduction of the experimental γ-ray yields, other
spectroscopic data and an user-defined upper limit for γ-ray yields, respectively:

χ2 = SY LD + SSPEC + SUPL. (5.26)
The fitting procedure consists in simulating γ-ray yields, based on the initial set
of MEs, and comparing them to the experimental intensities. The MEs are then
modified, until an optimal reproduction of experimental data is achieved.

Instead of using integrated γ-ray intensities, in order to shorten the compu-
tational time, the experimental γ-ray yields Yexp are “translated” to “point-like”
yields Y corr

exp and are then compared to simulated γ-ray intensities calculated for
a specific energy and a specific scattering angle. The modification of the experi-
mental intensities is done by introducing a correction factor CF i = Y i

poin/Y
i
inti for

each transition i, calculated by comparing the γ-ray intensities resulting from a full
OP,INTI procedure (Yinti) with those resulting from a point-like calculation with
OP,POIN (Ypoin). The correction factors CF are then applied to the experimental
γ-ray yields Yexp:

(Y corr
exp )i = CF i · Y i

exp. (5.27)
This correction procedure, implemented in GOSIA’s OP,CORR, depends on the
used set of matrix elements, thus during the minimization it should be repeated
periodically until a self-consistent solution is found.

In the GOSIA minimization routine, normalized γ-ray intensities are used rather
than absolute cross sections. In order to measure absolute cross sections, informa-
tion such as the absolute particle-detection efficiency, beam intensity, dead time,
etc., has to be provided (see Formula 5.25). However, such data are not always
known with a good precision. For example, the beam intensity may fluctuate du-
ring the experiment, which is hard to quantify and account for. Thus, to avoid
such problems, GOSIA uses normalization constants, which include the Rutherford
cross section, particle detector solid-angle factor, absolute efficiency, integrated
beam current, etc., to relate the experimental and calculated intensities. Instead
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of calculating and providing the normalization coefficients by hand, the normaliza-
tion is usually performed internally by the code. In the present analysis, since the
data from all γ-ray detectors were summed together, one normalization constant
Cm for each experiment m is introduced. To obtain Cm, GOSIA fits the experi-
mental γ-ray yields of all observed transitions in the experiment m by minimizing
the sum of (CmY

m,i
c − (Y corr

exp )m,i)/σ2m,i, where Yc is the calculated γ-ray yield.
However, both the normalization constants and the matrix elements are fitted to
the experimental data, which can result in an ambiguity: changes in the MEs can
be compensated by modifying the normalization constant. Therefore, additional
constraints are needed to obtain reliable results. This can be achieved by providing
additional spectroscopic information such as a known lifetime of a state that is
observed to decay via an intense transition. In the present work, the lifetime of
the 2+1 state, known with a good precision, was used for this aim. Based on the
lifetime, GOSIA calculates the expected intensity of the corresponding transition(s)
for each experiment. From a comparison between the simulated and experimental
yields, the normalization constants can be extracted.This procedure is part of the
least-square search and is implemented by including the SY LD component in the
χ2 function:

SY LD =
∑
m

ωm

∑
i

(CmY
i,m
c − (Y corr

exp )i,m)2

σ2i,m
, (5.28)

where ωm are the user-defined weights with which the experimental yields are
considered for each experiment (1.0 in this work).

The other components of the χ2 function are given by Formulas 5.29 and 5.30.
SSPEC accounts for how well the additional spectroscopic data (lifetimes, bran-
ching and mixing ratios, etc.) are reproduced with the obtained set of MEs. Their
experimental values, Dexp, are compared to the calculated ones, Dc, considering
the experimental uncertainties for all n data points:

SSPEC =
∑
d

ωd

∑
n

(
Dn

c −Dn
exp

)2
/σ2n, (5.29)

where ωd is the weight given by the user for each group of spectroscopic data (e.g.
1.0 for lifetimes).

A SUPL term is added to the χ2 function if GOSIA predicts observation of
a transition, which is not present in the experimental data. In such a case, for
each transition i in experiment m that exceeds the upper limit and has not been
observed, its calculated intensity Y i,m

c , divided by the intensity of the normalising
transition Y m

cN , is compared to the user-defined upper limit u(m):

SUPL =
∑
m

∑
i

(
Y i,m
c

Y m
cN

− u(m)

)2

× 1

u2(m)
. (5.30)

It is important to note that the χ2 function used in GOSIA is normalized to the
number of data points (experimental γ-ray yields and spectroscopic data), rather
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than to the number of degrees of freedom. This is due to the impossibility to clearly
define the exact number of fitted parameters (MEs), as they have very different
influence on the χ2 fit [69].

The statistical errors of the fitted matrix elements can be evaluated using
GOSIA’s OP,ERRO by probing the probability distribution around the χ2 minimum
after the global χ2 minimum has been found. First, GOSIA calculates uncorrelated
uncertainties by sampling each matrix element until a point in the χ2 surface
corresponding to χ2

min + 1 is found. In the second step, to account for possible
correlations between the MEs, a “maximum correlation path” is defined for each
ME, i.e. a curve in the matrix-element space x̄, for which the effect of varying the
matrix element in question is balanced by changes in the other matrix elements to
the largest extent. The uncertainty is then found by requesting the integral of the
normalised probability distribution contained within error bars to be equal to the
confidence limit of 68.3% [88]:∫

l

exp
(
−1

2χ
2(x̄)

)
dx̄∫

exp
(
−1

2χ
2(x̄)

)
dx̄

= 68.3% , (5.31)
where the integration in the numerator is performed along the maximum correlation
path l, and in the denominator over all possible values of x̄, i.e. the entire variation
range of matrix elements defined in OP,GOSI.
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6 - GOSIA analysis and results

Although a qualitative description of the behaviour of the measured cross sec-
tions was achieved with FRESCO, a quantitative analysis was attempted using
GOSIA as proposed in Sections 5.2 and 5.3. As a first step of these two ap-
proaches, an initial set of matrix elements was determined. In order to avoid any
mistakes while calculating the initial set of matrix elements and to cross check the
results obtained with Formulas 5.11, 5.12 and 5.13, a GOSIA minimization proce-
dure was used to obtain a set of MEs, which optimally fits the provided literature
information on lifetimes, branching and mixing ratios, given in Tables 5.2-5.3, and
previously measured matrix elements, including the quadrupole moments given in
Table 5.4. As the lifetime of the 0+3 state was not known, a value of 0.35 eb was
assumed for the ⟨2+2 ||E2||0+3 ⟩ matrix element, taken from the beyond-mean-field
(BMF) calculations of T. Rodriguez [50]. The ⟨0+1 ||E3||3−1 ⟩ matrix element was
taken from the experimental work of D. Rhodes [75] (Table 5.5). The remaining
E3 matrix elements relevant for this study were not previously measured, thus
values of 0.2 eb3/2 for the ⟨2+1 ||E3||5−1 ⟩ matrix element (equivalent to 5 W.u.)
and 0.3 eb3/2 for the ⟨2+1 ||E3||5−2 ⟩ and ⟨2+1 ||E3||1−1 ⟩ matrix elements (12 and
45 W.u., respectively) were adopted as initial values. These matrix elements were
sufficient to reproduce the observed intensities at the smallest scattering angles.

For purely technical reasons, in the first step of the minimization procedure
point-like intensities have to be simulated using OP,POIN for each transition in
the level scheme of the nucleus of interest.Those intensities were calculated using
the initial set of MEs defined in the sub-option ME (see Appendix B). Defining one
experiment in the EXPT sub-option (e.g. at the smallest mean scattering angle) is
sufficient for this calculation. The simulated point-like intensities were saved in an
external file. The weight with which they are taken in the least-square procedure
can be changed within the external file. It was set to 0.0 and thus they did not
enter into the χ2 function.

A χ2 minimization was carried out next (using OP,MINI) and a new set of
matrix elements, better reproducing the spectroscopic data, was saved in the cor-
responding external file. Subsequently, OP,REST was additionally called to replace
the initial set of matrix elements with those from this file. This was followed by
a multiple-step minimization, at each step of which a new set of MEs was found
and saved to an external file. The minimization was terminated when a satisfying
reduced χ2 was obtained (of the order of 10−5). The final set of matrix elements,
corresponding to this minimum, was used in the next step of the analysis - both
for simulating the γ-ray intensities and as an initial set of matrix elements to be
used when fitting experimental data.
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6.1 GOSIA simulations based on spectroscopic data

As the first step, the strategy proposed in Section 5.2 was implemented. Using
the matrix elements obtained from the spectroscopic data, realistic γ-ray intensities
in coincidence with projectiles scattered into each ∆θLAB region were simulated
and compared to the experimental ones, using a normalisation to the 2+1 → 0+1
transition intensity. This task was handled using the GOSIA input file given in
Appendix D in addition to the GOSIA input file given in Appendix C. From the
comparison of simulated and observed intensities, one can evaluate the extent of
the nuclear-induced effects.

OP,INTI, together with OP,REST were called to perform a simulation of γ-
particle coincidence intensities for all eleven ∆θLAB regions (19.4◦ < θLAB < 30◦).
The obtained γ-ray yields, normalized to those of the 2+1 → 0+1 transition at a given
angle, were written to the main output file. These can be directly compared to the
experimental normalized intensities, which were corrected for the γ-ray detection
efficiency, as explained in Section 5.7.2. The obtained simulated intensities as a
function of the scattering angle for each experimentally observed transition were
plotted in Figs. 6.2-6.9 and compared to the experimental normalized yields.

The uncertainties of the simulated γ-ray yields were evaluated. The adopted
procedure was relatively simple for states, which decay by a single transition. Two
additional yield simulations had to be performed, in which the maximum and mini-
mum values of the transitional matrix element governing the depopulating transi-
tion were assumed. The upper and lower limits of each matrix element were taken
from the second columns of Tables 5.6-5.9. Subsequently, the calculated largest
and smallest γ-ray yields were used to plot the uncertainty corridor, as presented
for example in Fig. 6.2 (A) for the 4+1 → 2+1 transition. Only an upper limit of the
⟨2+1 ||E2||0+3 ⟩ matrix element and a lower limit of the ⟨4+1 ||E2||6+1 ⟩ matrix element
were previously known, therefore only upper/lower intensity limits were calculated
for the corresponding transitions and plotted with dashed lines in Figs. 6.6 (B)
and 6.2 (B), respectively. The adopted procedure for calculating the error corridors
takes into account only the major source of the uncertainty - the variations of the
MEs related to the transitions involved in the decay of each state. Effects on the
population of the state of interest, resulting from changes in all other matrix ele-
ments (including diagonal MEs), i.e. correlation effects, have not been considered.
Therefore the presented error corridors may be slightly underestimated in favour
of computational time and are plotted for illustrative purposes.

A more sophisticated calculation of the uncertainty corridor is needed when the
state of interest decays by multiple branches. In such a case, its excitation proceeds
via competing paths involving different matrix elements. Therefore, a combination
of matrix elements has to be carefully selected for each branch, considering their
uncertainties (limits), which would result in a maximum or minimum observed
intensity of the transition of interest. This is illustrated for the experimentally
observed (2+, 3+, 4+) → 2+1 transition. The state at 2486 keV decays via four
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transitions, namely to the 2+1 , 4+1 , 2+2 and 4+2 states as shown with green arrows
in the partial level scheme in Fig. 6.1.

Figure 6.1 – Partial level scheme presenting the decay branches of the
(2+, 3+, 4+) state (in green). The populating transitions discussed in the text aremarked with red arrows.

It was found that the highest intensity of the (2+, 3+, 4+) → 2+1 transi-
tion is observed when the ⟨2+1 ||E2||(2+, 3+, 4+)⟩ and ⟨2+2 ||E2||(2+, 3+, 4+)⟩ ma-
trix elements are at their maximum (considering their uncertainties), while the
⟨4+1 ||E2||(2+, 3+, 4+)⟩ and ⟨4+2 ||E2||(2+, 3+, 4+)⟩ matrix elements are at their
minimum. To explain this, the role of each transition in both the excitation and de-
excitation process has to be considered. Naturally, maximal de-excitation intensity
requires the maximal value of the transitional matrix element ⟨2+1 ||E2||(2+, 3+, 4+)⟩.
Naively, it can be expected that to maximize the intensity of this branch, all other
possible decay branches should have minimal matrix elements. However, the state
of interest is populated from below via all four branches. Thus reducing any of
their matrix elements will result in a smaller population of the state. Those two
processes are competing and highly state dependent. In the discussed case, maximi-
zing the ⟨2+2 ||E2||(2+, 3+, 4+)⟩ matrix element results in a higher overall observed
intensity of the (2+, 3+, 4+) → 2+1 transition, because additional population of
the (2+, 3+, 4+) state proceeds via the 2+2 state, which is excited directly from the
ground state (as marked with a red arrow in Fig. 6.1). The 4+1 and 4+2 states are
excited predominantly in a two-step process through the 2+1 state, and thus the role
of the corresponding excitation paths is much smaller than those involving interme-
diate states populated in one-step excitation from the ground state. Consequently,
they influence mostly the decay pattern and minimizing the ⟨4+1 ||E2||(2+, 3+, 4+)⟩
and ⟨4+2 ||E2||(2+, 3+, 4+)⟩ matrix elements leads to maximizing the de-excitation
proceeding via the 2+1 → (2+, 3+, 4+) transition.

Similar tests were performed for all of the observed transitions. This included
simulating the yields for all possible combinations of transitional matrix elements
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describing the decay of the states of interest. It was observed that M1 transitions
had a very limited influence on the obtained error corridors. Moreover, the compo-
nents of a mixed transition had to be treated similarly - both M1 and E2 matrix
element had to be either maximized or minimized.

Additionally, in some cases by comparing the experimental observables with the
normalized γ-ray yields simulated based on the known spectroscopic data it was
possible to distinguish between discrepant literature information, such as previously
measured matrix elements, branching and mixing ratios. Examples are given in
Fig. 6.4. A few remarks for selected states are provided in the following. A more
extensive discussion will be presented in Section 6.5.

• Fig. 6.4 (A) - simulation of the 6+2 → 4+1 transition intensity, obtained
assuming different values of the ⟨4+1 ||E2||6+2 ⟩ matrix element. The simu-
lated γ-ray yields, based on the matrix element calculated from τ(6+2 ) =

1.22(15) ps, obtained via RDDS from the present data set [50] (presented
with the red curve), significantly underestimate the measured intensities.
However, if a ME calculated from τ(6+2 ) = 0.26+0.44

−0.14 ps, obtained in a
DSAM lifetime measurement [61], is used instead, the simulated yields (in
yellow) are in agreement with the experimental ones (within the large er-
ror corridor), with a tendency to overestimate them. Finally, a simulation
with ⟨4+1 ||E2||6+2 ⟩ = 1.37(10) eb, taken from a recent Coulomb-excitation
measurement [75], corresponding to τ(6+2 ) of 0.54(8) ps, seems to best
describe the experimental data. This suggests that there may be a problem
with the RDDS measurement [50]. A possible explanation for obtaining an
overestimated lifetime using the RDDS method is a feeding of the state of
interest from a long-lived state, which was not taken into account in the
lifetime calculation. According to Ref. [50], no feeding transitions to the 6+2
state were experimentally observed. However, a possible long-lived direct
feeder is the 8+1 state with τ(8+1 ) ≈ 0.6 ns. Its decay would only contribute
to the unshifted component of the 6+2 → 4+1 peak as the nuclei excited to
the 8+1 state would decay only after the degrader foil. This illustrates the
importance of using complementary data to verify lifetime measurements
using a different experimental technique.

• Fig. 6.4 (B) - simulation of the (2+, 3+, 4+) → 2+1 transition inten-
sities, obtained assuming different branching ratios in the decay of the
(2+, 3+, 4+) state. According to the the ENSDF database [59], the state
of interest decays via two equally strong branches to the 2+1 and 4+1 states.
The blue curve in Fig. 6.4 (B) was obtained using this branching ratio. Ho-
wever, completely different decay patterns are proposed in Refs. [61,62]. As-
suming the branching ratios reported in Ref. [62], summarized in Table 5.2,
produces the red curve, which describes much better the experimental ob-
servables. This example illustrates that when discrepancies are present in
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the literature, it is possible to favour one branching ratio over another,
using the Coulomb-excitation data.

• Fig. 6.4 (C) - simulation of the 2+4 → 2+1 transition intensities, obtained
assuming different mixing ratios. The blue curve in the inset of Fig. 6.4
is simulated using a mixing ratio taken from Ref. [59], δ = 2.5(2), which
suggests a dominant E2 component of the mixed transition. In contrast,
a δ of 0.312(33) is reported in Ref. [61], supporting a completely different
interpretation that the transition is dominated by M1. Using the latter
mixing ratio, one obtains the red curve in Fig. 6.4 (C). It is clear from the
comparison of the two simulations that the smaller δ value [61] is consistent
with the experimental data, thus it was adopted in the following analysis.

• Fig. 6.4 (D) - simulation of the 2+5 → 2+1 transition intensities. This
figure again illustrates the possibility of differentiating between discrepant
spectroscopic data. In this particular case, two different solutions for the
mixing ratio of the 2+5 → 2+1 transition were obtained from the same γ-ray
angular distribution study following the 106Cd(n, n′γ) reaction induced by
fast neutrons [95]. The blue curve in the inset of Fig. 6.4 (D) is obtained
using the larger one (δ = 3.2(4)). Using the other solution (δ = −0.11(4))
yields the red curve. By comparing these two results it becomes clear that
the smaller δ value describes better the experimental points, thus this one
has been used in the subsequent analysis. One should note that a more
recent measurement [61] reports a mixing ratio in line with the conclusions
of this test, listed in Table 5.3 as an alternative solution.

• Fig. 6.9 (A) - the last example of discrepant literature information resolved
within the current work. Two different values of the ⟨0+1 ||E3||3−1 ⟩ matrix
element are reported in the literature: 0.40(5) eb3/2 [83] and 0.28(14)

eb3/2 [75]. The γ-ray yields, simulated assuming these two values, are pre-
sented in blue and red in Fig. 6.9 (A), respectively. Although the two matrix
elements are consistent within their uncertainties (and so are the simulated
yields), a much better agreement with the experimental data is obtained
by using the value of Ref. [75]. On the other hand, it can be argued that
the reduction of the experimental excitation cross section with respect to
the predicted one may be due to the Coulomb-nuclear interference effects.
However, the FRESCO calculations presented in Section 5.6 predict that
only small oscillations in the 3−1 excitation cross section are present at small
scattering angles (θLAB below 22◦), while at larger angles the normalized
γ-ray yields will increase, which is inconsistent with such an argument.
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Figure 6.2 – (A) γ-ray intensity of the 4+1 → 2+1 transition, normalized to that ofthe 2+1 → 0+1 transition, as a function of the θLAB scattering angle. Themeasuredintensities are presented in black. In red: γ-ray yields simulated using MEs resul-ting from a fit to the spectroscopic data; in green - those simulated assuming theset of MEs obtained by fitting the first three experimental points. (B) Same, butfor the two components of the 998-keV peak: 6+1 → 4+1 (blue), (2+, 3+, 4+) → 4+1(purple) and their sum (green), simulated using MEs fitted to the first six experi-mental points. The uncertainty corridors are determined considering fits to thefirst three and first six experimental points. The lower limit based on spectro-scopic data is given in red.

Figure 6.3 – Same as Fig. 6.2 (A), but for the γ-ray intensities of the 2+2 → 0+1(A) and 2+2 → 2+1 (B) transitions. The normalized yields simulated using MEs ob-tained from a fit to the spectroscopic data are given in red. The yields simulatedassuming the set ofMEs obtained by fitting the first three experimental points in-cluding all diagonal E2matrix elements listed in Table 6.3 are presented in green,those with ⟨2+2 ||E2||2+2 ⟩=0 eb in blue, and those with all diagonal MEs set to zeroare in orange.
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Figure 6.4 – Same as Fig. 6.2 (A) but for the γ-ray intensities of the 6+2 → 4+1 (A);
(2+, 3+, 4+) → 2+1 (B); 2+4 → 2+1 (C) and 2+5 → 2+1 (D) transitions. (A) - additio-nal simulations using alternative τ(6+1 ) values are presented in yellow [61] andin blue [75]. (B) - a simulation using an alternative set of branching ratios [59] ispresented in blue. (C, D) - the blue curves in the insets are simulated using alter-native mixing ratios. See text for more details.

Figure 6.5 – Same as Fig. 6.2 (A) but for the γ-ray intensities of the 0+2 → 2+1 (A)and 0+3 → 2+1 (B) transitions. (B) - an upper limit deduced from literature spec-troscopic data is indicated with the red dashed line. The γ-ray yields simulatedassuming the ⟨2+1,2||E2||0+3 ⟩ values from Ref. [71] are presented in yellow.
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Figure 6.6 – Same as Fig. 6.2 (A) but for the 4+3 → 4+1 (A) and 5+1 → 4+2 (B)transitions.

Figure 6.7 – Same as Fig. 6.2 (A) but for the 4+2 → 2+1 (A) and 4+2 → 4+1 (B)transitions.

Figure 6.8 – Same as Fig. 6.2 (A) but for the (2+, 3+) → 2+1 (A) and 2+, 3 → 2+1(B) transitions.
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Figure 6.9 – Sameas Fig. 6.2 (A) but for the 3−1 → 2+1 (A); 5−2 → 4+1 (B); 5−1 → 4+2 (C)and 1− → 0+1 (D) transitions. (A) - the γ-ray yields simulated using MEs obtainedfrom a fit to the spectroscopic data, including the adopted ⟨0+1 ||E3||3−1 ⟩ value(Table 5.5) are presented in red, while those based on an alternative ⟨0+1 ||E3||3−1 ⟩value reported in Ref. [83] are in blue.

Figure 6.10 – Same as Fig. 6.2 (A) but for the 2− 6 → 4+1 transition.
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6.2 Fitting unsafe Coulomb-excitation data

Another approach to the unsafe Coulomb-excitation data was proposed in Sec-
tion 5.3. Namely, GOSIA can be used to fit a set of matrix elements to the measured
γ-ray intensities in coincidence with particles scattered at a specific ∆θLAB range,
assuming that those observed for the smallest scattering angles are not influenced
by the Coulomb-nuclear effects in a significant way. Indeed, as it was shown in
Section 5.6.4, under the conditions of the present study, only small deviations from
the pure Coulomb solution are expected at scattering angles below 22◦, which
are in fact comparable with the experimental uncertainties of the relative γ-ray
intensities measured at those angles. A GOSIA fit was therefore performed using
as an input the measured γ-ray intensities corresponding to mean θLAB of 19.7◦,
20.5◦ and 21.5◦. Subsequently, the obtained set of MEs was used to predict the
intensities at higher scattering angles.

The measured γ-ray intensities had first to be transformed to point-like γ-
ray intensities, as explained in Section 5.7.2. The MEs fitted to the spectroscopic
data were used in this procedure and also served as an initial set of MEs in the
GOSIA fit. The point-like experimental intensities resulting from the correction
procedure were written to an external file. In contrast to the procedure described
in the beginning of Section 6, the weights of those γ-ray yields in the χ2 function
(Formula 5.29) were set to 1.0 as they were considered in the fit. The relevant
input files are presented in Appendices C and D.

The following fitting procedure was realized by calling GOSIA’s functions OP,
MINI and OP,REST (see Appendix D). The point-like experimental yields were
read from the external file and compared to the simulated point yields at each
step of the minimization. In addition, certain spectroscopic information was also
included in the least-square function, namely all branching and mixing ratios, taken
from the second column of Table 5.3, all diagonal matrix elements, taken from
Table 1.7, and a few lifetimes (that of the 2+1 state used for normalization and
those of the negative parity states). An exception was made for the branching ratio
Iγ(4

+
2 → 2+1 )/Iγ(4

+
2 → 4+1 ), whose uncertainty was strongly increased, since a

discrepancy was observed between the literature value and the current data set,
as explained in Section 5.4.2. The minimization was repeated until a satisfactory
convergence was obtained, with a reduced χ2 value of 0.74. In total, GOSIA was
called 500 times, performing three subsequent minimizations with 30 steps each.
As a next step, the uncertainties of the fitted matrix elements were evaluated
using OP,ERRO, considering all possible correlations between the matrix elements.
A number of additional tests were performed in order to account for other possible
sources of uncertainty, as described in the following.

• The unexpected strong population of the 5+1 state can be clearly seen
in Fig. 6.6 (B), which shows that the γ-ray yields calculated on the basis
of the spectroscopic data (in red) strongly underestimate the experimen-
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tal ones. This suggests that the observed 226-keV γ ray, assigned to the
5+1 → 4+2 transition, may originate from another state. However, from the
present γ-γ coincidence data it was evident that the adopted placement
of this transition fits well with the one previously proposed. On the other
hand, a coincidence with the 226-keV line reveals both shifted and unshif-
ted components of the transitions depopulating states fed by the 5+1 state.
This is incompatible with the literature value of τ(5+1 ), which is of the
order of 1 ns [59] and suggests instead a much shorter lifetime (few ps).
Such an observation can be explained in a few different ways. For example,
the measured intensities may be strongly affected by the γ-ray background
in this energy region; the spin assignment of the 5+1 state can be wrong
or there may be an unresolved doublet state, which has a similar decay
pattern to that of the 5+1 state. An attempt was made to account for these
possible scenarios by performing the fitting procedure twice: (i) using the
experimental intensity of the 5+1 → 4+2 transition (τ(5+1 ) not provided as
an additional constraint) and (ii) providing the lifetime of the state, but
not the experimental γ-ray yields for this transition. In this way, two sets of
matrix elements were obtained and by comparing them, the effects related
to the 5+1 overpopulation could be accounted for.

Following this procedure, a value of ⟨4+2 ||E2||5+1 ⟩ = 5.5 eb was ob-
tained by fitting the 5+1 → 4+2 transition intensities measured for the first
three ranges of scattering angles. The same matrix element must be equal
to 0.55 eb in order to be consistent with the literature lifetime. There-
fore, a ten-fold increase of the ME was needed to properly describe the
experimental data at the smallest ∆θLAB ranges. Similar conclusions were
reached for all other matrix elements governing the decay of the 5+1 state
- ⟨4+2 ||M1||5+1 ⟩, ⟨4

+
1 ||M1||5+1 ⟩ and ⟨4+1 ||E2||5+1 ⟩. The only other matrix

elements which were strongly affected by the performed tests were those
related to the decay of the 4+2 state, directly fed by the 5+1 state. Repro-
ducing the experimental γ-ray yields of the 5+1 → 4+2 transition resulted
in a 10% increase of ⟨2+1 ||E2||4+2 ⟩, a 12% increase of ⟨4+1 ||E2||4+2 ⟩, and
in a 13% increase of ⟨2+2 ||E2||4+2 ⟩ and ⟨4+1 ||M1||4+2 ⟩ matrix elements.
The remaining matrix elements (i.e. those not involving the 5+1 and 4+2
states) were affected by less than 5%, which is well within their relative
uncertainties.

• The 6+1 state decays by a γ ray with an energy of 998 keV. Its shifted
component overlaps with the (2+, 3+, 4+) → 4+1 transition (992 keV). The-
refore those transitions had to be treated as a doublet in order to obtain
the related matrix elements. The experimentally extracted intensity of the
γ-ray peak at about 992 keV was defined in the present analysis as resulting
from the summing of the intensities of both possible transitions. In addi-
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tion, the fitting procedure was performed considering different numbers of
experimental points - either the first three or the first six. In the latter case
only the intensities of the 6+1 → 4+1 , 4+1 → 2+1 and 2+1 → 0+1 transitions
were provided for the larger three angles. Such a test was attempted in
order to obtain a better description of the experimental points at higher
angles. It was performed only for the 6+1 state, as it was expected that the
cross section to populate the yrast 6+ state would be well described by
the Coulomb interaction up to rather large scattering angles, similarly to
the 4+1 state. Two minimization procedures, each with a large number of
iterations, were performed. The obtained two sets of matrix elements were
rather similar - a change of less than 3% was observed for most MEs, with
the only exception of the ⟨4+1 ||E2||6+1 ⟩ ME, which increased by 11% once
the experimental points at larger scattering angles were also considered.
The larger value of the ⟨4+1 ||E2||6+1 ⟩ matrix element was adopted and the
observed difference between the two solutions was taken into account in
the error estimation.

• As discussed in Section 5.6.4, the FRESCO calculations suggested that
the γ-ray intensities measured in coincidence with projectiles scattered
at the smallest angles will be negligibly affected by the nuclear interac-
tion for most of the states. However, for the 0+ excited states, non-
negligible Coulomb-nuclear effects were predicted to appear already
at θLAB = 22◦. In order to take this into account, a GOSIA fit with the
same number of minimization steps was performed using the first three
experimental points for all transitions, except for 0+2 → 2+1 and 0+3 → 2+1 .
For these two transitions, the intensities measured for θLAB = 22◦ were
effectively excluded from the χ2 fit by setting their experimental uncertain-
ties to very large values. The only MEs which differed significantly from
the previous solution, in which the first three experimental points were
considered for all transitions, were ⟨2+1 ||E2||0+2 ⟩ (increased by 14%), and
⟨2+1 ||E2||0+3 ⟩ and ⟨2+2 ||E2||0+3 ⟩ (increased by 17%). These changes are
consistent with the effects from the destructive Coulomb-nuclear interfe-
rence predicted with FRESCO to increase with the scattering angle (Fig. 5.6
(C)). Additionally, the MEs related to transitions depopulating the 2+5 state,
built on the 0+3 state, were also slightly affected - a change of about 3%

was observed. The remaining MEs were not affected by this test.

• Another series of tests were performed in order to determine the relative
signs of the matrix elements. It was found that using the current data set
only a few signs of matrix elements can be determined. For the remaining
MEs, the solutions involving different combinations of signs, which resulted
in similar absolute χ2 values, had to be considered in the error estimation
procedure. This will be further described in the following section.
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6.2.1 Relative signs of the matrix elements
As already discussed in Section 3.3.1, the relative signs of the matrix elements

can affect the observed cross sections. In order to take this into account and
possibly deduce the relative signs of certain matrix elements, a number of fits to
the experimental data were performed assuming different sign combinations. First,
necessary assumptions were made about the signs of “benchmark” matrix elements,
with respect to which the relative signs of the remaining matrix elements could be
extracted. These benchmark matrix elements were selected as follows:

• Only one matrix element in the decay of each state was chosen to be
positive.

• The transitional matrix elements for the in-band transitions were assumed
to be positive, for example ⟨4+1 ||E2||2+1 ⟩, ⟨4

+
2 ||E2||2+2 ⟩, etc.

• If a state did not belong to a well-developed band, one of the matrix
elements, governing its decay to the ground-state band was selected to be
positive, for example ⟨2+2 ||E2||0+1 ⟩.

Following the adopted convention, the transitional matrix elements marked
in red in Fig. 6.11 were selected to be positive by default. To ensure that they
remain positive during the minimization, their lower limits in the minimization
procedure were set to zero. In addition, the signs of the diagonal matrix elements
were previously measured to be negative for the 2+1 , 4+1 and 6+2 states and positive
for the 2+2 state, and thus their limits were set accordingly.

Figure 6.11 – The matrix elements related to the transitions marked in red wereset to be positive by definition. The relative signs of the remaining matrix ele-ments were investigated in the fit to the experimental data.
In order to extract the signs of the remaining matrix elements, first the experi-

mental intensities were fitted without imposing any restrictions on the signs. The
obtained result favoured all unsigned E2 matrix elements to be positive. However,
it is naturally hard to flip the sign of a matrix element during the fitting procedure,
when starting from a positive initial value. Thus, a series of minimizations were
performed to the first three experimental points imposing a negative sign, and cor-
responding limits, for each matrix element one by one. If the transition was mixed
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and the mixing ratio was known to be negative, the matrix element of the M1

component was set to be positive. Although probing the sign of each ME separately
neglects correlations between the matrix elements, it can be viewed as an approxi-
mate procedure to deduce the signs that the data set is sensitive to. Each fitting
procedure for testing the sign of a specific ME was performed with a fixed number
of minimization steps (3x30x500) and using the set of MEs determined from the fit
to the spectroscopic data as a starting point. This enabled a comparison between
the obtained absolute χ2 values. A summary of the performed tests can be found in
Table 6.1. In the first column is the matrix element for which a negative value was
imposed. The second column gives the difference between the absolute χ2 value
from the solution with all positive E2 MEs (referred to as “standard”) and the one
obtained assuming a negative sign for the considered ME. If the χ2 difference was
smaller than unity, it was concluded that this data set has no sensitivity to the sign
of the particular matrix element, unless the new solution was excluded due to other
criteria, as discussed in the following. However, the absolute values of the obtained
MEs with a different sign combination may differ from the “standard” set of MEs.
This has been taken into account in the error estimation procedure presented in
Section 6.2.2.

The majority of the tests resulted in absolute ∆χ2 ≤ 1. However, the sign
change of some matrix elements resulted in a large increase of the χ2 value. Those
were the ⟨2+2 ||E2||(2+, 3+, 4+)⟩ and ⟨2+1 ||E2||2+2 ⟩ MEs, for which an increase of
the χ2 value by 3 was observed. The experimental data appeared to be sensitive
to the relative signs of those MEs, supporting their positive signs. Sensitivity to
specific signs may also be reflected in other ways. As a consequence of imposing
an incorrect sign combination, certain MEs may take non-physical values. Alter-
natively, a change in the corresponding lifetime and its drastic deviation from the
literature value may be observed, or a non-physical simulated γ-ray intensity distri-
bution as a function of the scattering angle. For example, when the ⟨0+1 ||E2||2+5 ⟩
ME is imposed to be negative, the obtained χ2 value changes insignificantly, howe-
ver, the obtained new set of MEs corresponds to a lifetime of the 2+5 state which is
about 10 times larger than that measured with DSAM [61] (0.19(3) ps). A lifetime
of the order of 2 ps would result in the observation of both shifted and unshifted
components of the corresponding peak, which was not supported by the present
experimental data. Thus the investigated matrix element ⟨0+1 ||E2||2+5 ⟩ should be
positive. The advantage of using byproduct data from an RDDS experiment in
the present analysis is the existence of such additional criteria with regards to the
observed structure of each γ-ray peak. Using a similar strategy, a positive sign was
also favoured for the ⟨2+1 ||E2||4+2 ⟩ matrix element (although the obtained χ2 va-
lue for its negative sign was significantly smaller), and for ⟨2+2 ||E2||(2+, 3+, 4+)⟩.
Experimentally, the corresponding transitions had both shifted and unshifted com-
ponents, while the lifetimes calculated assuming negative signs were too short,
compatible with the observation of only a shifted component. The ⟨2+2 ||E2||2+4 ⟩
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and ⟨2+2 ||E2||(2+, 3)⟩ MEs were also deduced to be positive, as the 2+4 and (2+, 3)

lifetimes obtained assuming their negative signs differed significantly from the li-
terature values in Table 5.1.

In some of the tests, although the obtained χ2 value was similar or even smaller
than that for the “standard” solution, particular matrix elements became unphy-
sically large. For example, imposing a negative sign of the ⟨2+2 ||E2||0+3 ⟩ matrix
element resulted in a B(E2; 2+2 → 0+3 ) value of the order of 200 W.u. Thus, a
positive sign for this ME was adopted. Another possible approach to gain more
information about the relative signs of the investigated MEs is by simulating γ-
particle coincidence intensities using the MEs with different signs and comparing
them to the experimental data. Using this strategy, it was observed that a nega-
tive sign of the ⟨2+1 ||E2||2+2 ⟩ ME yields a decreasing trend of the 2+2 → 2+1 and
2+2 → 0+1 transition intensities as a function of θLAB, which is not consistent with
the experimental data.

As already mentioned, the assignments so far were only tentative as the pos-
sible correlations between the matrix elements were not accounted for. For example,
a reduction in the cross section may be observed if the sign of a particular ma-
trix element is negative, however, the effect might be compensated by changing
the signs of other MEs. Thus additional tests were performed imposing changes
of signs for different combinations of matrix elements that the data were found
to be sensitive to. As all of the MEs for which positive signs were found were
somewhat related to the 2+2 state, see Table 6.1, combinations of sign flips for
the ⟨2+1 ||E2||2+2 ⟩ ME together with each of the investigated MEs - ⟨2+1 ||E2||4+2 ⟩,
⟨4+1 ||E2||4+2 ⟩, ⟨2

+
2 ||E2||(2+, 3+, 4+)⟩, ⟨2+2 ||E2||0+3 ⟩, ⟨2

+
2 ||E2||2+4 ⟩, ⟨2

+
1 ||E2||2+5 ⟩

and ⟨4+2 ||E2||(2+, 3+, 4+)⟩ - were investigated. In addition, selected combinations
of three or more sign flips were tested. The obtained χ2 values were always larger
by at least 2.5 with respect to the “standard” solution. This supports further the
sign assignments in Table 6.1.

Finally, one should comment that the relative signs of the E1 and E3 ma-
trix elements were not probed within this work. Their influence on the Coulomb-
excitation data is typically much lower than that of the E2 matrix elements, and
only in one case it was possible to observe a weak sensitivity to a relative E1/E3

sign [90]. Moreover, in the present work only upper limits for most of the E3 MEs
could be extracted. The signs of MEs related to the 8+1 state had no significant
effect on the obtained results. Sign assignments for the MEs related to the transi-
tions depopulating the 5+1 state were not attempted due to the problems regarding
the large population of this state, discussed above.

6.2.2 Adopted matrix elements and error estimation
Following all of the tests described above, a final set of E2 and M1 matrix

elements, obtained by fitting the first three experimental points (θLAB < 22◦),
was determined. It is summarized in the third columns of Tables 5.6 - 5.9. The
corresponding signs, either assumed as presented in Fig. 6.11 (marked with an
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asterisk in Tables 5.6 - 5.8) or extracted from the present data set (marked with
a dagger), are also given. The sensitivity to diagonal E2 matrix elements will be
discussed in Section 6.2.3, while Section 6.2.4 is focused on the obtained E3 matrix
elements.

Table 6.1 – A summary of the tests performed in order to deduce the relativesigns of the E2matrix elements. One matrix element at a time, given in the firstcolumn, was imposed to be negative and a fit to the experimental data was per-formed. The difference in the absolute χ2 value between the resulting solutionand the solution assuming all positive MEs is given in the second column. Com-ments and conclusions on the signs are given in the last column.
Negative ME Abs. ∆χ2 Comments

⟨4+1 ||E2||(2+, 3+, 4+)⟩ +1.4 No sensitivity to the sign
⟨2+2 ||E2||(2+, 3+, 4+)⟩ +2.7 τ((2+, 3+, 4+)) five times shorterthan τLIT [50]; Positive sign
⟨4+2 ||E2||(2+, 3+, 4+)⟩ +1.0 No sensitivity to the sign

⟨4+1 ||E2||4+3 ⟩ +0.1 ⟨4+1 ||M1||4+3 ⟩ positive;
No sensitivity to the sign

⟨2+2 ||E2||0+3 ⟩ +0.7 Unphysically large ME; Positive sign
⟨2+2 ||E2||(2+, 3)⟩ +0.9 τ((2+, 3)) becomes six timesshorter than τLIT ; Positive sign
⟨2+1 ||E2||2+2 ⟩ +3 Unphysical trends of the simulated

γ-ray intensities; Positive sign
⟨2+1 ||E2||4+2 ⟩ −8 τ(4+2 ) is 10 times shorterthan τLIT [50]; Positive sign
⟨4+1 ||E2||4+2 ⟩ +2 ⟨4+1 ||M1||4+2 ⟩ positive;

No sensitivity to the sign
⟨2+2 ||E2||2+4 ⟩ −0.3 τ(2+4 ) becomes five times smaller;

Positive sign
⟨0+2 ||E2||2+4 ⟩ 0.1 No sensitivity to the sign
⟨0+1 ||E2||2+5 ⟩ 0.2 τ(2+5 ) becomes 10 times larger;

Positive sign
⟨2+1 ||E2||2+5 ⟩ −0.3 ⟨2+1 ||M1||2+5 ⟩ positive;

No sensitivity to the sign
⟨0+2 ||E2||2+5 ⟩ 0.4 No sensitivity to the sign
⟨2+2 ||E2||2+5 ⟩ 0.2 No sensitivity to the sign

The transitional E2 MEs, which were extracted from the current data set on the
basis of directly measured γ-particle coincidence yields for the corresponding tran-
sitions, are given in Table 5.6. The MEs, which were obtained by combining known
branching and mixing ratios with the measured γ-ray yields, are given in Tables 5.7
and 5.8, respectively. Without additional spectroscopic information, these MEs
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could not be determined from the present data set. The transitional E2 matrix
elements involving states unobserved in the present study are given in Table 5.9.
The same table lists the E1 matrix elements, which rely on the additional spectro-
scopic information (lifetimes) provided during the fitting procedure. Those matrix
elements cannot be determined from the present data set and consequently their
values obtained from the fit are provided without quoting uncertainties to avoid
an impression that they are new results of the present study. They are presented
here in the sole purpose of demonstrating that they adopted correct values in the
fit. All MEs listed in Table 5.9 reproduced very well the spectroscopic data that
they were fitted to. It was found, however, that they have rather limited influence
on the extraction of matrix elements presented in Tables 5.6 - 5.8.

The uncertainties of the remaining MEs were calculated taking into account
all possible sources of systematic uncertainty discussed in Section 6.2: fitting expe-
rimental 5+1 → 4+2 transition intensities (referred to as the “5+1 solution” from now
on), fitting more experimental points for the 6+1 → 4+1 transition (called the “6+1
solution” from now on), using different relative signs of matrix elements. The latter
has been done only for alternative solutions with χ2 values similar to the one of the
standard solution (resulting from the fit to the experimental data at the smallest
scattering angles, assuming all positive E2 MEs), which were not excluded due to
other criteria. It was found that changing the sign of a particular ME resulted in a
significant change in only a small number of MEs, therefore this effect was taken
into account only in the calculation of their uncertainties.

• The MEs related to the decay of the 4+1 , 2+2 , 5+1 , 6+1 , 6+2 , 8+1 , (2+, 3+),
(2+, 3) and 2 − 6 states were adopted to be those resulting from the
standard solution. The MEs corresponding to the alternative “5+1 ” and
“6+1 ” solutions and their errors (from OP,ERRO) were used to estimate the
limits of each matrix element, covering its maximum and minimum values
obtained in all considered scenarios.

• The ⟨2+1 ||E2||0+2 ⟩ ME obtained within the standard solution was adopted.
In the corresponding uncertainty, the results of the alternative fits (the
“5+1 ” and “6+1 ” solutions) were included, as well as those obtained by fitting
only two experimental points for the 0+2 → 2+1 transition. This resulted in
asymmetric error bars, favouring larger absolute values of the ⟨2+1 ||E2||0+2 ⟩
ME.

• The MEs related to the decay of the 4+2 state were taken to be a weigh-
ted average of the MEs obtained in the standard, “5+1 ” and negative
⟨4+1 ||E2||4+2 ⟩ solutions. Uncertainties covering the minimum and maximum
MEs resulting from all of the considered solutions were adopted.

• The MEs related to the decay of the 4+3 state were taken to be a weighted
average of the MEs obtained in the standard and negative ⟨4+1 ||E2||4+3 ⟩
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solutions. The uncertainties cover those resulting from both possible solu-
tions.

• The MEs related to the decay of the (2+, 3+, 4+) state were adopted
to be a weighted average of the MEs obtained in the standard, negative
⟨4+1 ||E2||(2+, 3+, 4+)⟩ and negative ⟨4+2 ||E2||(2+, 3+, 4+)⟩ solutions. The
uncertainties were calculated accordingly.

• The MEs related to the decay of the 2+4 state were taken to be a weigh-
ted average of the MEs obtained within the standard and the negative
⟨0+2 ||E2||2+4 ⟩ solution.

• The MEs related to the decay of the 2+5 state were calculated as weighted
averages of the MEs obtained within the standard solution and the negative
⟨2+1 ||E2||2+5 ⟩, ⟨2

+
2 ||E2||2+5 ⟩, and ⟨0+2 ||E2||2+5 ⟩ solutions, which had similar

absolute χ2 values. The adopted uncertainties incorporated all possible
solutions, including an additional test performed using fewer experimental
points for the transitions depopulating excited 0+ states. Moreover, if the
alternative branching ratios from Ref. [61] are used, a rather different set
of transitional MEs related to the 2+5 state is obtained. In particular, the
2+5 → 0+2 transition was not observed in Ref. [61]. The largest change is
recorded for the ⟨0+3 ||E2||2+5 ⟩ ME, as the Iγ(2+5 → 0+3 )/Iγ(2

+
5 → 2+1 )

ratio is almost three times larger in the alternative solution, which will be
further discussed in Section 7.1. The two sets of MEs describing the 2+5
decay, with uncertainties calculated considering similar sign tests, are given
in Table 6.2.

• The ⟨2+1 ||E2||0+3 ⟩ ME obtained within the standard solution was adopted.
The uncertainties of this ME account for the results of the alternative
“5+1 ” and “6+1 ” solutions, as well as those obtained by fitting only two
experimental points for the 0+3 → 2+1 transition.

With this, the error estimation procedure was completed for the fitted E2 and
M1 matrix elements. The resulting MEs with their relative signs are summarized
in the third columns of Tables 5.6, 5.7 and 5.8.

6.2.3 Sensitivity to diagonal matrix elements

It would normally be expected that within the current data set, collected only
at small scattering angles, the sensitivity to relative signs and spectroscopic qua-
drupole moments will be very limited. However, as it was shown in Section 6.2.1,
it was possible to extract some information regarding the signs of specific MEs,
mostly those related to the 2+2 state. Similarly, it can be tested whether performing
the analysis without including the previously measured spectroscopic quadrupole
moments would significantly affect the cross sections obtained under the kinema-
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tic conditions of the present study. Since the diagonal E2 matrix elements of the
2+1 , 4+1 , 6+2 and 2+2 states were provided as additional literature information in
OP,YIEL, the values of these MEs were treated as fit parameters, similarly to the
E1 MEs. A comparison between the literature and fitted diagonal matrix elements
is given in Table 6.3. The MEs provided in the third column of Table 6.3 are not
new results of the present study, but should be viewed as fit parameters, which
were correctly reproduced in the fitting procedure. For this reason, as it was done
in the case of E1 matrix elements listed in Table 5.9, the diagonal matrix elements
resulted from the present fit are quoted without uncertainties.

Table 6.2 – Matrix elements related to the decay of the 2+5 state obtained usingdifferent branching-ratio sets taken from Refs. [61,62].
⟨Iπi ||E2||Iπf ⟩ Fitted ME [eb]

BR from Ref. [62] BR from Ref. [61]
⟨0+1 ||E2||2+5 ⟩ 0.022(4) 0.026+0.007

−0.006

⟨0+2 ||E2||2+5 ⟩ 0.105+0.027
−0.024 −

⟨0+3 ||E2||2+5 ⟩ 0.38+0.10
−0.09 0.57+0.20

−0.15

⟨2+1 ||E2||2+5 ⟩ 0.018+0.009
−0.008 0.016+0.009

−0.006

⟨2+2 ||E2||2+5 ⟩ 0.34+0.07
−0.06 0.30+0.09

−0.06

⟨Iπi ||M1||Iπf ⟩ Fitted ME [µN ]

BR from Ref. [62] BR from Ref. [61]
⟨2+1 ||M1||2+5 ⟩ −0.27(5) −0.23+0.01

−0.09

To further test the sensitivity of the data set to the diagonal matrix elements,
two additional fits to the first three experimental points were performed: one in
which no diagonal MEs were defined and one in which only ⟨2+2 ||E2||2+2 ⟩ was
excluded. The obtained absolute χ2 value differed by less than 1 from the χ2 value
obtained for the standard solution (all positive signs, all diagonal MEs included).
In both tests, certain matrix elements changed significantly with respect to the
standard solution, considering their relative uncertainties, namely those related to
the decay of the 2+2 (14 − 23%), 0+3 (16%), 2+5 (21 − 22%) and 2+, 3 (7%)
states. It was found that this change can be attributed mostly to the constructive
effects induced by the positive quadrupole moment of the 2+2 state. Thus it was
concluded that the present data set has a certain sensitivity to the ⟨2+2 ||E2||2+2 ⟩
matrix element. To illustrate this, the γ-ray yields at higher scattering angles were
simulated (with a similar procedure as in Section 6.1) using different sets of MEs.
The results are shown in Fig. 6.3. For the green curve, the MEs from the standard
solution were used; the blue curve was based on the MEs obtained when the
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quadrupole moment of the 2+2 state was set to zero; the orange curve - on the
MEs obtained with all diagonal E2 matrix elements set to zero. As it is visible
from both Fig. 6.3 (A) for the 2+2 → 0+1 transition and Fig. 6.3 (B) for the
2+2 → 2+1 transition, setting the diagonal MEs to zero has a significant effect on
the simulated distributions. The largest effect originates from the ⟨2+2 ||E2||2+2 ⟩
ME as it can be seen from the comparison of the blue and orange curves. At
small scattering angles (θLAB below 22◦), the differences between the green and
the blue curves are minimal (with overlapping error corridors) and there is only a
3.6% difference at θLAB = 22.5◦. At larger scattering angles, the intensities of the
2+2 → 2+1 transition simulated within the standard solution are larger with respect
to the solution in which ⟨2+2 ||E2||2+2 ⟩ was set to zero - by 16% at 26.5◦ and
25% at 29.5◦. This comparison illustrates the effects induced by the large positive
quadrupole moment of the 2+2 state on the excitation cross section. Regarding the
remaining transitions, no significant changes were found in the observed intensities,
nor in the matrix elements involving the 4+1 or 6+2 states. It should be stressed that
the performed tests were not considered in the error estimation, as one relies on the
literature data for the signs and absolute values of the diagonal matrix elements.

Table 6.3 – Comparison of the diagonal matrix elements taken from the litera-ture (Table 5.4) and those fitted to the experimental data (including the literaturediagonalmatrix elements). To avoid an impression that the latter are new resultsof the present analysis, they are quoted without uncertainties.
⟨Iπi ||E2||Iπf ⟩ Literature ME [eb] Fitted ME [eb]

⟨2+1 ||E2||2+1 ⟩ −0.28(4) −0.28

⟨4+1 ||E2||4+1 ⟩ −0.28(18) −0.29

⟨2+2 ||E2||2+2 ⟩ +1.32(8) +1.32

⟨6+2 ||E2||6+2 ⟩ −1.3(8) −1.3

6.2.4 Negative-parity states
As already discussed, it was assumed that the negative-parity states were pre-

dominantly populated by E3 transitions - 3−1 in one step from the ground state, 5−1,2
and 1− in two steps via the 2+1 state, as shown in Fig. 6.12 in blue. The matrix ele-
ments, obtained by fitting the experimental data collected at 19.4◦ < θLAB < 22◦,
assuming such excitation paths, are given in the first row of Table 6.4 and will be
referred to as a “standard solution” in the following. The value obtained for the
⟨0+1 ||E3||3−1 ⟩ ME agrees with that reported in Ref. [75], but is much smaller than
the one communicated in Ref. [83]. The remaining MEs have not been measu-
red before. The obtained value of the ⟨2+1 ||E3||5−1 ⟩ ME corresponds to a B(E2)

strength of 8.5 W.u, while those for the ⟨2+1 ||E3||5−2 ⟩ and ⟨2+1 ||E3||1−⟩ MEs to
40 and 45 W.u., respectively. The latter MEs appear rather large, which suggests
that important population paths have been omitted.
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Figure 6.12 – Coupling schemes considered in the population of the negative-parity states in 106Cd.

As a first step, additional E3 population paths with one extra step were inclu-
ded - from the 2+1 state for the 3−1 state and from the 4+1 state for the remaining
negative-parity states (presented in red in Fig. 6.12). The additional matrix ele-
ments were introduced in the sub-option ME of OP,GOSI and were fixed at specific
values in the LCK section (see Appendix B). Subsequently, a full minimization was
performed with the same number of minimization steps as for the standard so-
lution. First, a conservative value for the ⟨2+1 ||E3||3−1 ⟩ ME was adopted - two
times larger than that of the ⟨0+1 ||E3||3−1 ⟩ ME obtained in the standard solution
(0.466 eb3/2), which corresponds to 46.5 W.u. A fitting procedure was performed
and the only observed change in the obtained set of MEs was a reduction of the
⟨0+1 ||E3||3−1 ⟩ ME by about 9%. As a next step, the ⟨4+1 ||E3||5−2 ⟩ ME was in-
troduced with a value of 0.584 eb3/2, which corresponds to the same 46.5 W.u.
transition probability. Even though the introduced E3 strength seemed larger than
it is reasonable to expect in 106Cd, the addition of such a coupling had no signifi-
cant effect on the obtained MEs. A similar test was performed for the 5−1 state and
resulted in a reduction of the ⟨2+1 ||E3||5−1 ⟩ ME by 8%. Finally, an additional ME
⟨4+1 ||E3||1−⟩ = 0.305 eb3/2 was introduced, also corresponding to a transition
probability of 46.5 W.u, which resulted in an increase of the ⟨2+1 ||E3||1−⟩ ME
by 7%. Therefore, the matrix elements resulting from the standard solution (first
row of Table 6.4) remained practically unchanged by introducing additional E3

excitation paths, considering their uncertainties.
Another possible population path was investigated for the 5−1,2 and 1− states,

namely via an E2 transition from the 3−1 state. In a quadrupole-octupole cou-
pling scenario, discussed in Section 7.3, a multiplet of negative-parity states is
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coupled to the 3−1 state by E2 transitions of the same strength as that of the
2+1 → 0+1 transition. The analysis was performed under this assumption. First, the
⟨3−1 ||E2||5−2 ⟩ ME was defined in the GOSIA input file and was fixed at a value
of 0.92 eb, which is equivalent to a reduced transition probability of 26 W.u, i.e.
equal to B(E2; 2+1 → 0+1 ). The full minimization procedure was carried out using
the set of matrix elements resulting from the fit to spectroscopic data as initial
values. Only the obtained ⟨2+1 ||E3||5−2 ⟩ ME differed significantly with respect to
the standard solution - a reduction of about 56% was observed, leading to a value
similar to that of the ⟨2+1 ||E3||5−1 ⟩ ME. In addition, the ⟨0+1 ||E3||3−1 ⟩ ME increa-
sed by 12%. This test shows that it is likely that the 5+2 state is built on the 3−1
state, as even a rather strong E2 transition between them cannot fully compensate
the large ⟨2+1 ||E3||5−2 ⟩ ME. On the contrary, a similar value of the ⟨3−1 ||E2||5−1 ⟩
ME (0.92 eb) was already large enough to fully explain the entire population of the
5−1 by a two-step process involving excitation of the 3−1 state via an E3 transition,
followed by the E2 transition. Finally, including a ⟨3−1 ||E2||1−⟩ ME of 0.48 eb,
corresponding to an equivalent transition strength as that of the 2+1 → 0+1 tran-
sition, resulted in the ⟨2+1 ||E3||1−⟩ matrix element decreasing by about 50%. In
addition, the ⟨0+1 ||E3||3−1 ⟩ ME increased by 4%, as summarized in the last row of
Table 6.4.

Table 6.4 – Summary of the obtained reduced transitional E3 matrix elementsof the negative-parity states in 106Cd. They result from GOSIA fits of the expe-rimental γ-ray yields adopting different coupling schemes, as discussed in thetext. To obtain the solutions presented in each row, the ME specified in thefirst column was included in the input file and fixed at a value correspondingto B(E3) = 46.5 W.u. (asterisk) or B(E2) = 26 W.u. (dagger). Bold font is usedto indicate matrix elements that differ with respect to the solution presented inthe first row. All values are given in eb3/2.
Condition ⟨0+1 ||E3||3−1 ⟩ ⟨2+1 ||E3||5−2 ⟩ ⟨2+1 ||E3||5−1 ⟩ ⟨2+1 ||E3||1−⟩

− 0.233(5) 0.54(2) 0.25(3) 0.30(1)
⟨2+1 ||E3||3−1 ⟩∗ 0.211(6) 0.54(2) 0.25(3) 0.30(1)
⟨4+1 ||E3||5−2 ⟩∗ 0.233(5) 0.535(18) 0.25(3) 0.30(1)
⟨4+1 ||E3||5−1 ⟩∗ 0.233(5) 0.54(2) 0.23(3) 0.30(1)
⟨4+1 ||E3||1−⟩∗ 0.233(5) 0.54(2) 0.25(3) 0.32(2)
⟨3−1 ||E2||5−2 ⟩† 0.261(6) 0.24(2) 0.24(3) 0.30(1)
⟨3−1 ||E2||5−1 ⟩† 0.245(6) 0.54(2) 0+0.01

−0.12 0.30(1)
⟨3−1 ||E2||1−⟩† 0.243(6) 0.54(2) 0.24(3) 0.16(2)

The addition of an E2 transition between each negative-parity state and the
3−1 state resulted in drastic changes of the investigated matrix elements. Thus, this
two-step E3-E2 population path cannot be neglected. However, some assumptions
were made for the transition strengths, which leaves room for ambiguity. Using the
current data set, without any additional information on the possible E2 transition
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(i.e. a known branching ratio or its direct observation in the present experiment),
it is not possible to extract both E2 and E3 matrix elements involved in the
population of any of the investigated negative-parity states. On the other hand,
each E3 ME can be described as a function of the assumed E2 ME and their
upper limits can be obtained.

The adopted procedure for each of the states included performing a series of
fits to the experimental data with 19.4◦ < θLAB < 22◦ for different values of the
additional E2 ME. The MEs obtained within the standard solution were taken as
initial values in the minimization. For each fit, the ⟨3−1 ||E2||X⟩ ME was increased
with a fixed step of 0.05 eb (starting from zero), fixed and then a minimization
with 3x3x30 steps was carried out. Additionally, the MEs which had a limited effect
on the investigated E3 transition (i.e. on the population of each negative-parity
state), were fixed at their standard values in order to limit the computational time.
The normalized χ2 value was saved for each value of the ⟨3−1 ||E2||X⟩ ME, together
with the relevant E3 and E2 matrix elements. Only the transitions relevant for the
population and decay of the 1− state are presented in the partial level scheme in
Fig. 6.13. The matrix elements related to those transitions were left free to vary
during the minimization. The remaining MEs were fixed at the values corresponding
to the standard solution.

Figure 6.13 – Partial level scheme including the transitions relevant for the po-pulation and depopulation of the 1− state in 106Cd. Color code: blue - E1 mul-tipolarity; red - E2 ; green - E3. The transitions not observed in the decay butinvolved in the population of the 1− and 3−1 states are presented with arrows inthe corresponding direction.
The obtained ⟨2+1 ||E3||1−⟩ ME as a function of the additional ⟨3−1 ||E2||1−⟩

ME is presented in the upper panel of Fig. 6.16 with a solid green line. The cor-
responding ⟨0+1 ||E3||3−1 ⟩ ME is presented with a dashed green line. As can be
seen, in the region of roughly constant normalized χ2 (see the lower panel of
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Fig. 6.16, in green), the ⟨0+1 ||E3||3−1 ⟩ ME remained almost unchanged with a
tendency to slowly increase. A ⟨3−1 ||E2||1−⟩ ME of about 0.85 eb was found suf-
ficient to account for the total population of the 1− state, while the strength of
the corresponding E3 transition, needed to solely explain the observed 1− popu-
lation is about 45 W.u., corresponding to ⟨1−||E3||2+1 ⟩ = 0.30 eb3/2. By fitting
the obtained distribution with a second order polynomial, one obtains the relation:
⟨2+1 ||E3||1−⟩ = −0.155(8)A2 − 0.217(7)A + 0.30(1), where A = ⟨3−1 ||E2||1−⟩.
Thus, if either the E2 or the E3 ME needed to populate the 1− state is determined
in the future, it will be possible to also extract the other of the two matrix elements
from this relation.

Similar calculations were performed for the 5−1 state, varying the MEs which
govern the transitions presented in Fig. 6.14. The remaining MEs were fixed at their
values obtained in the standard solution and the 5−1 population via the 2+1 → 5−1
transition was probed as a function of the assumed ⟨3−1 ||E2||5−1 ⟩ value.

Figure 6.14 – Partial level scheme including the transitions relevant for the po-pulation and depopulation of the 5−1 state in 106Cd. Color code: blue - E1multi-polarity; red -E2; green -E3; orange - mixedE2+M1 character. The transitionsnot observed in the decay but involved in the population of the 5−1 and 3−1 statesare presented with arrows in the corresponding direction.
The obtained results as a function of the ⟨3−1 ||E2||5−1 ⟩ value are presented in the
upper panel of Fig. 6.16 with a blue solid line for ⟨2+1 ||E3||5−1 ⟩ and a blue dashed
line for ⟨0+1 ||E3||3−1 ⟩. The latter was not largely affected by the addition of the
E2 population path. It was found that the upper limit of the ⟨2+1 ||E3||5−1 ⟩ ME
corresponds to 0.24 eb3/2, while a ⟨3−1 ||E2||5−1 ⟩ ME of 0.75 eb is large enough
to account for the total observed population of the 5−1 state. An ⟨3−1 ||E2||5−1 ⟩
matrix element larger than 0.85 eb resulted in a significantly larger χ2 value, as
the observed population of the 5−1 state could no longer be reproduced. The relation
between the E2 and E3 matrix elements of interest is as follows: ⟨2+1 ||E3||5−1 ⟩ =
−0.113(3)B2 − 0.237(3)B + 0.25(3), where B = ⟨3−1 ||E2||5−1 ⟩.
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The ⟨2+1 ||E3||5−2 ⟩ ME as a function of the ⟨3−1 ||E2||5−2 ⟩ ME was investigated
in a similar manner. The MEs related to the transitions presented in Fig. 6.15
were left free to vary during the minimization, with the only exception being the
⟨3−1 ||E2||5−2 ⟩ ME, which was increased in even steps for each separate fit. The
obtained results are presented in red in Fig. 6.16. The observed γ-ray yields can
be reproduced solely by two-step population via an E2 transition to the 2+1 state
and a subsequent E3 transition with a matrix element of 0.54 eb3/2. A similar
population of the 5−2 state can also be obtained in the alternative two-step process
involving the 3−1 state and an E2 transition with a matrix element of 1.5 eb.
The relation between the two competing transitions is given by: ⟨2+1 ||E3||5−2 ⟩ =
−0.0615(7)C2 − 0.263(1)C + 0.54(2), where C = ⟨3−1 ||E2||5−2 ⟩.

Figure 6.15 – Partial level scheme including the transitions relevant for the po-pulation and depopulation of the 5−2 state in 106Cd, which were varied during thefitting procedure. Color code: blue - E1 multipolarity; red - E2; green - E3. Thetransitions not observed in the decay but involved in the population of the 3−1and 5−2 states are represented with arrows pointing upwards.

In conclusion, relations between the assumed ⟨3−1 ||E2||X⟩ matrix elements and
the ⟨2+1 ||E3||X⟩ ME were extracted, where X is 1−, 5−1 or 5−2 , which can be used
in the future if additional information on the corresponding transitions becomes
available. Upper limits for the discussed E3 matrix elements were extracted for
the first time from the current Coulomb-excitation data and they are summarized
in Table 6.5. Moreover, it was shown that the ⟨0+1 ||E3||3−1 ⟩ ME was not strongly
affected by the performed tests, thus considering all possible scenarios, a value of
0.23+0.04

−0.03 eb
3/2 has been adopted for this matrix element. This value has a much

better precision than the measurement of Ref. [75].
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Figure 6.16 – Upper panel: the ⟨2+1 ||E3||X⟩ ME as a function of the assumed
⟨3−1 ||E2||X⟩ME, whereX is 1− (green), 5−1 (blue) or 5−2 (red). The correspondingvalue of the ⟨0+1 ||E3||3−1 ⟩ matrix element is presented with dotted lines. Lowerpanel: the reduced χ2 value obtained from a GOSIA fit assuming the correspon-ding ⟨3−1 ||E2||X⟩ value.

Table 6.5 – Upper limits of the transitional E3 and E2 MEs describing the po-pulation of the 1− and 5−1,2 states, resulting from the current analysis, as well ascorresponding B(E2) and B(E3) limits expressed in W.u.
X ⟨2+1 ||E3||X⟩ B(E3;X → 2+1 ) ⟨3−1 ||E2||X⟩ B(E2;X → 3−1 )

[eb3/2] [W.u.] [eb] [W.u.]

1− < 0.34 < 58 < 0.85 < 81

5−1 < 0.28 < 11 < 0.75 < 17

5−2 < 0.54 < 40 < 1.6 < 78
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6.3 Calculation of lifetimes

The lifetimes of the populated states can be extracted using the obtained set
of matrix elements, based on the present experimental data, and the literature
branching and mixing ratios. An exception is the lifetime of the 2+1 state, which
was used for normalization, as well as the lifetimes of the negative-parity states
and the unobserved 8+1 state, which were provided as additional constraints of the
GOSIA fit and thus they cannot be determined from it.

As a first step, the transition probabilities, corresponding to each of the obtai-
ned MEs, were calculated using Formula 5.5. The upper and lower limits of the tran-
sition probabilities were also calculated, considering the uncertainties of each ME.
Subsequently, using Formula 5.4, the partial lifetimes τ j = 1/λγj for each decay
branch j were calculated together with their limits, and then combined together:

λTOT = 1/τ =
∑

(1 + αj)λ
γj . (6.1)

The lifetime uncertainty limits were calculated using the corresponding maximum
and minimum transition probabilities. The uncertainties of the transition energy
were taken from the third column of Table 5.2, while the internal conversion coeffi-
cients αj were calculated using the online BRICC calculator [91]. The uncertainties
of αj were not taken into account.

In this way, it was possible to extract the lifetimes of the populated states in
106Cd from the measured γ-ray intensities, in a way that is independent and com-
plementary to the RDDS analysis of Ref. [50]. The obtained results are summarized
in Table 6.6. Certain discrepancies can be noticed, as discussed in the following.

• The obtained τ(0+2 ) is almost twice as large as the lifetime reported in
Ref. [50]. However, considering the large uncertainty of the current result,
the two measurements agree within 2σ.

• The τ(0+3 ) obtained from the present Coulomb-excitation data could not
be determined via the RDDS technique due to the insufficient statistics
at different target-degrader distances. The current result agrees within 1σ

with the lifetime calculated using the ME from another Coulomb-excitation
study [71], equal to 11+32

−6 ps.

• The lifetimes of the 2+2 state obtained via unsafe Coulomb excitation and
via RDDS agree within 1σ. The present result agrees with those obtained
in previous Coulomb-excitation measurements (mean value of τ(2+2 ) =

0.48(3) ps, Table 5.1) within 1σ as well.

• The τ(2+4 ) obtained in the current analysis is consistent with the lifetime
limit deduced from the RDDS study. Moreover, it agrees within 1σ with
the result reported in Ref. [61] (0.10(1) ps). This shows that using the
byproduct data it was possible to access information beyond the limitations
of the RDDS technique.
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Table 6.6 – Lifetimes calculated from the MEs summarized in Tables 5.6, 5.7and 5.8. The lifetimes extracted using the RDDS method from the same data setare given in the third column. The values marked with asterisks are a weightedaverage of the values reported in Ref. [50].
τ [ps] τ [ps]

Iπ Ex [keV] Current work Ref. [50]
0+2 1795 2.46+0.35

−0.82 1.32(10)∗

0+3 2144 13+1
−5 −

2+2 1717 0.55+0.03
−0.05 0.50(2)∗

2+4 2566 0.11+0.04
−0.03 < 0.3

2+5 2630 0.45+0.23
−0.13 −

(2+, 3+) 2254 0.60+0.05
−0.06 −

2+, 3 2718 0.33+0.05
−0.04 −

2− 6 2711 0.37+0.07
−0.05 −

4+1 1494 1.23(7) 1.4(2)

4+2 2105 7.6+1.6
−1.5 4.1(7)

4+3 2305 0.17(2) 1.1(1)

2+, 3+, 4+ 2486 2.12+0.23
−0.20 2.34(17)∗

5+1 2331 9+976
−1 −

6+1 2492 0.66+0.24
−0.03 < 2

6−2 2503 0.48+0.03
−0.04 1.22(15)∗

• The lifetime of the 2+5 state was not obtained in the RDDS analysis of the
current data set. The present result agrees within 2σ with the measurement
of Ref. [61].

• It was possible to obtain the lifetimes of several states, which were not
previously measured in Ref. [50]: (2+, 3+) at 2254 keV, (2+, 3) at 2718
keV and 2− 6 at 2711 keV. However, assumptions were needed regarding
the spins of these states. Moreover, there was some ambiguity regarding
the origin of the relevant γ-ray peaks, which could be attributed to the de-
excitation of other excited states or to a sum of more than one transition.
Thus, the obtained lifetimes should be viewed as lower limits, rather than
absolute measurements. Nevertheless, the values reported in Table 6.6 are
in agreement (well within 1σ) with those reported for the (2+, 3+) and
(2+, 3) states in Ref. [61]. A discrepancy is observed for the obtained life-
time of the 2−6 state, which is almost twice the value reported in Ref. [61],
although the two agree within 3σ.
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• The lifetime of the strongly populated 4+1 state obtained from the present
analysis is also in agreement with the result of the RDDS measurement
within 1σ, although it is slightly shorter. It is important to note that if
the cross section to populate this state was strongly affected by Coulomb-
nuclear effects, the obtained lifetime would be longer with respect to the
literature value. This is due to the Coulomb-nuclear destructive interfe-
rence, predicted with FRESCO (Fig. 5.6 (A)), which would result in a
reduction of the excitation cross section, therefore a reduction of the cor-
responding ME, and an increase of the lifetime. When compared to other
Coulomb-excitation studies, the obtained result shows an agreement within
1σ with Ref. [72] and within 2σ with the more recent studies [71, 75].

• The lifetime obtained for the 4+2 state disagrees with the measurement of
Ref. [50] by more than 3σ. However, considering the discrepant branching
ratios in the decay of this state, it was difficult to make firm conclusions
regarding its character and the obtained lifetime.

• The obtained lifetime of the 4+3 state is much smaller than the value re-
ported in Ref. [50]. A possible reason behind this can be the effects of
the nuclear interaction, which would result in an increased excitation cross
section if an E4 population path is considered. However, according to the
FRESCO calculation the first few experimental points were not strongly af-
fected by the nuclear interaction (Fig. 5.8). Moreover, an additional GOSIA
fit was performed, in which a ⟨0+1 ||E4||4+3 ⟩ ME corresponding to a B(E4)

of 5 W.u. was included. The obtained τ(4+3 ) of about 0.26 ps is still much
smaller than the one extracted with the RDDS technique. Another reason
could be an incorrect mixing ratio for the 4+3 → 4+1 transition. Finally, it is
possible that the obtained new value is correct, while the RDDS measure-
ment was affected by unobserved feeding. In line with the latter, another
study using the DSAM technique yielded an upper limit of 0.36 ps [61],
which is in good agreement with the current value, while it excludes the
value from the RDDS measurement.

• The obtained lifetime of the (2+, 3+, 4+) state is in a good agreement
(within 1σ) with the RDDS result [50].

• The strong population of the 5+1 state cannot be easily explained both wi-
thin the safe and the unsafe Coulomb-excitation scenario. If the first few ex-
perimental points are fitted with GOSIA, a lifetime about 100 times smaller
than the literature value is obtained. This corresponds to non-physical va-
lues of the B(E2; 5+1 → 4+2 ) transition probability of over 900 W.u., which
suggests that there may be a doublet state with a similar de-excitation pat-
tern. Moreover, the observed discrepancies related to the 4+2 state, which
is directly fed by the decay of the 5+1 state, further complicate the problem.
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• The obtained τ(6+1 ) can be viewed as a first measurement of this lifetime,
as previously only upper and lower limits were extracted via RDDS [50]
(< 2 ps) and via DSAM [61] (> 0.35 ps), respectively. The present result
is in a good agreement with both limits.

• The value of τ(6+2 ) reported in Ref. [50] is more than twice as large as the
current value. However, another study [61], using the DSAM technique,
yielded a value of 0.26+0.44

−0.14 ps, almost two times smaller than the current
τ(6+2 ), although they are in agreement within 1σ. Using the matrix elements
reported in the Coulomb-excitation study of Ref. [75], the corresponding
lifetime was calculated to be 0.54(8) ps, which is in line with the present
work. A more recent Coulomb-excitation study reports a larger value of
τ(6+2 ) = 0.73(13) ps, agreeing within 2σ with the present measurement.
Thus, it is possible that the RDDS measurement suffered from unobserved
feeding, which resulted in an overestimation of the 6+2 lifetime.

6.4 Comparison with previous Coulomb-excitation studies

The MEs obtained using the unsafe Coulomb-excitation data can also be
compared with those extracted from previous safe Coulomb-excitation studies
(Table 6.7). The obtained ⟨4+1 ||E2||2+1 ⟩ value determined in the current work is
larger than the values reported in Refs. [71, 75] and agrees with them within 2σ.
It is also consistent with an older safe Coulomb-excitation study [72] within 1σ.
The ⟨6+2 ||E2||4+1 ⟩ value extracted from the current analysis is consistent within 1σ

with the value reported in Ref. [75] and within 3σ with that obtained in Ref. [71].
The obtained ⟨2+2 ||E2||0+1 ⟩ and ⟨2+2 ||E2||2+1 ⟩ matrix elements agree within 2σ and
1σ, respectively, with the values reported in Refs. [71, 75]. The remaining matrix
elements in Table 6.7 were measured only in Ref. [71] and they are in excellent
agreement with the MEs obtained in the current work, however they are subject
to much larger uncertainties (up to 50%). This comparison illustrates once again
that analysis of Coulomb-excitation data from an experiment that does not fulfill
Cline’s safe criterion can yield results that are fully consistent with those obtained
under “safe” conditions.

6.5 Cross-section distributions – positive-parity states

As a final step one can also simulate with GOSIA the intensities of the experi-
mentally observed transitions at all scattering angles, using the set of MEs resulting
from a fit to the first three experimental points (Tables 5.6-5.9). Usually, if a good
agreement between the experimental and the simulated intensities is observed, one
can consider that the set of MEs describes well the electromagnetic properties of the
nucleus of interest. In the present work, discrepancies may result not only from an
incorrect nuclear-structure input, but also from effects of the nuclear interaction.
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Table 6.7 – Selected matrix elements obtained in the current work comparedwith those reported in Refs. [71,72,75]. All MEs are given in units of eb.
ME Current work Ref. [75] Ref. [72] Ref. [71]

⟨4+1 ||E2||2+1 ⟩ 1.12(3) 1.044(25) 1.11(7) 1.05(3)

⟨6+2 ||E2||4+1 ⟩ 1.45+0.06
−0.04 1.37(10) − 1.18(9)

⟨2+2 ||E2||0+1 ⟩ 0.157+0.006
−0.003 0.169(4) − 0.195(15)

⟨2+2 ||E2||2+1 ⟩ 0.41+0.02
−0.01 0.415(15) − 0.44(3)

⟨2+, 3+, 4+||E2||2+1 ⟩ 0.100(4) − − 0.09(4)

⟨2+, 3+, 4+||E2||2+2 ⟩ 0.34(2) − − 0.26(12)

⟨0+3 ||E2||2+1 ⟩ 0.024+0.006
−0.001 − − 0.026(13)

⟨0+3 ||E2||2+2 ⟩ 0.35+0.08
−0.02 − − 0.4(2)

Using FRESCO, it was shown than at scattering angles below 22◦, negligible ef-
fects would be observed from the Coulomb-nuclear interference (Section 5.6.4).
However, at higher angles larger discrepancies are expected and by comparing the
measured transition intensities with the simulation based on the MEs fitted to the
19.4◦ < θLAB < 22◦ range, we can deduce their magnitude. The green curves in
Figs. 6.2-6.9 and their error bands were obtained with a procedure similar to the
one described in Section 6.1 but using as an input the matrix elements fitted to the
first three experimental points. In the following, these curves are compared to those
simulated using the MEs corresponding to the spectroscopic data summarized in
Tables 5.1-5.3 for each transition.

• For strongly populated states decaying with an experimentally observed
intensity of at least 1% of that of the 2+1 → 0+1 transition, a good agree-
ment between the simulated intensities using both sets of MEs is generally
observed.
— The 4+1 → 2+1 transition [Fig. 6.2 (A)]. The experimentally obtained

intensities as a function of the scattering angle are well reproduced by
both literature values of the matrix elements and the results of the
fit to the data from the first three angular ranges. The ⟨4+1 ||E2||2+1 ⟩
matrix element resulting from the fit agrees with the literature value
within 1σ, although it is about 7% larger, see Table 5.6. The distribu-
tion seems rather smooth with no clear oscillations or a decrease of the
intensity with angle, which was predicted by the FRESCO calculation,
see Fig. 5.6 (A). This is rather unexpected, as the largest scattering
angles correspond to almost touching nuclear surfaces.

— The 2+2 → 0+1 and 2+2 → 2+1 transitions [Fig. 6.3]. The experimental
trends seem to be slightly better reproduced using the MEs obtained by
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fitting the current experimental data. However, this can be explained
by the influence of other matrix elements on the population of the 2+2
state, such as e.g. ⟨4+2 ||E2||2+2 ⟩ and ⟨2+5 ||E2||2+2 ⟩, which adopt consi-
derably different values in the fit to the literature data and that to the
measured transition intensities. Nevertheless, both simulations agree
well within the uncertainties with the experimentally obtained intensi-
ties for all scattering angle ranges. The obtained distributions are in line
with the predictions of FRESCO, suggesting that a small deviation from
the pure Coulomb-excitation solution will appear for scattering angles
above 24◦. The matrix elements describing the decay of the 2+2 state
obtained from fits of the intensities of both depopulating transitions
in the 19.4◦ ≤ θLAB ≤ 22◦ range agree within 1σ with the literature
values (Table 5.6). The MEs obtained from this fit are a few percent
smaller than the literature values, see last column of Table 5.6.

— The 6+2 → 4+1 transition [Fig. 6.4 (A)]. As already commented in Sec-
tion 6.1, the intensities predicted on the basis of the matrix elements
fitted to the literature data, namely using the lifetime from the RDDS
study based on the current data set [50], are underestimated with res-
pect to the experimentally observed values. The experimental trend can
be well reproduced at all scattering angles by assuming a significantly
different ⟨6+2 ||E2||4+1 ⟩ matrix element (60% larger, see Table 5.6), re-
sulting from the fit to the first three experimental points. This result
is in a good agreement (1.3σ) with ⟨6+2 ∥E2∥4+1 ⟩ = 1.37(10) eb, ob-
tained in a recent Coulomb-excitation study [75] (note that Ref. [75]
refers to the state in question as 6+1 , but their level scheme reveals
that it is in fact the 6+2 state at 2503 keV). On the other hand, the
fitted ⟨6+2 ||E2||4+1 ⟩ matrix element disagrees with that deduced from
the measured lifetime by more than 8σ. For the 6+2 → 4+1 transition,
pure Coulomb-excitation process is sufficient to account for the mea-
sured cross sections up to at least θLAB = 25◦. Above θLAB = 26◦, if
there is a systematic deviation from the trend predicted with GOSIA,
it is smaller than the uncertainties on the experimental points, which
are larger in this angular range.

• The experimental intensities of transitions depopulating the excited 0+

states have a decreasing trend with a minimum at about 23◦, as predicted
with FRESCO, resulting from the destructive Coulomb-nuclear interference
(see Fig. 5.6 (C)).

— The 0+2 → 2+1 transition [Fig. 6.5 (A)]. As suggested by FRESCO cal-
culations presented in Section 5.6.4, nuclear influence is not negligible
already at 22◦, thus another GOSIA fit to the first two experimental
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points was performed and the difference between its result and that of
the standard analysis (using 19.4◦ < θLAB < 22◦ data) was incorpo-
rated in the obtained uncertainties. The individual experimental points
deviate by less than 2σ from the pure Coulomb-excitation prediction
resulting from the fit to the 19.4◦ ≤ θLAB ≤ 22◦ data. In contrast, the
intensities simulated on the basis of the MEs calculated from the spec-
troscopic data are much larger with respect to the experimental values,
with the exception of the very first data point. The ⟨0+2 ||E2||2+1 ⟩ ma-
trix element determined from this fit is about 30% smaller than that
corresponding to the lifetime of the 0+2 state obtained in Ref. [50],
although the two are in agreement within 2σ, considering the large un-
certainty of the present result.

— The 0+3 → 2+1 transition [Fig. 6.5 (B)]. The uncertainties of the mea-
sured intensities are rather large, however, the third experimental point
seems significantly lower than the first two, in line with the FRESCO
prediction for the 0+2 state. Similar procedure as for the 0+2 state was
used to obtain the uncertainty of the ⟨0+3 ||E2||2+1 ⟩ matrix element. It
was fitted to the experimental data from 19.4◦ ≤ θLAB ≤ 22◦ range,
but its uncertainty accounts for the difference with the result of the fit
performed to the first two experimental points (19.4◦ ≤ θLAB ≤ 21◦).
The obtained ⟨0+3 ||E2||2+1 ⟩ matrix element is in a perfect agreement
with the literature lower limit [61] as well as with the value reported
in Ref. [71]. The experimental points are consistent with the results
of the GOSIA calculations assuming the literature upper limit for the
0+3 lifetime [61] and the B(E2) values for the 0+3 decay obtained in
Ref. [71], but the measured intensities seem to be lower with respect
to the results of the simulation assuming the set of MEs fitted to the
experimental data, although an agreement within 2σ is observed.

• Relatively good agreement between the two approaches is observed
for some of the less strongly populated states:

— The 2+,3+,4+ → 2+1 transition [Fig. 6.4 (B)]. The experimental
points look more randomly scattered around the pure Coulomb-exci-
tation solution in comparison to those for other transitions and in
general follow well the trends predicted with both sets of MEs. The
two simulations agree well within their uncertainties, and so do the
⟨2+, 3+, 4+||E2||2+1 ⟩ matrix elements derived using the two approaches.

— The 2+4 → 2+1 transition [Fig. 6.4 (C)]. A good agreement between
the two simulations (within 1σ) and the experimental data is achieved
assuming a pure Coulomb-excitation process. The ⟨2+4 ||E2||2+2 ⟩ matrix
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elements resulting from the two approaches agree within 1σ and differ
by only 4%. The intensities calculated using the set of matrix elements
resulting from the fit to the spectroscopic data seem to slightly overesti-
mate the measured values. Small deviations of the experimental points
from the simulation start to appear at higher angles (above 25◦), al-
though they resemble a random scatter rather than a systematic effect.

— The 6+1 → 4+1 transition [Fig. 6.2 (B)]. Only upper and lower limits of
the lifetime of the 6+1 state were previously reported (0.35 ps< τ(6+1 ) <

2 ps), which are consistent with the present result. Thus, the intensity
simulated assuming the MEs obtained from a fit to the experimental
data is also in agreement with the lower limit shown with the dotted
line in Fig. 6.2 (B). However, fitting only the first three experimental
points was not sufficient to reproduce well the data at higher angles.
This was rather unexpected, as the decay of the 6+2 state, which has
a similar distribution, was well fitted. Thus it was attempted to per-
form a fit to data from the entire 19.4◦ ≤ θLAB ≤ 26◦ range. This
resulted in an improved agreement (2σ) between the experimental and
simulated intensities for θLAB > 25◦. The uncertainties in Fig. 6.2 (B)
cover the solutions obtained by fitting the first three and the first six
ranges of θLAB. One should also note that the measured intensity of
the 998-keV γ-ray peak includes a small contribution from the (2+, 3+,
4+) → 4+1 transition, plotted in purple, which is accounted for in the
analysis. Another observation is that the populations of the 6+1 and 6+2
states measured in the present experiment are very similar, while in the
“safe” Coulomb-excitation study with a 48Ti target [75] only the 6+2
state has been observed.

— The 2+,3 → 2+1 transition [Fig. 6.8 (B)]. The ⟨2+, 3∥E2∥2+1 ⟩ ma-
trix elements obtained from the fits to the 19.4◦ ≤ θLAB ≤ 22◦ data
and to the literature values are in a good agreement considering their
uncertainties, with the former being 7% larger (Table 5.6). Therefore,
both simulations of the intensities describe equally well the experimen-
tal data below θLAB = 24◦. A linear increase of the measured intensity
is observed at higher angles, which resembles the distribution predicted
with FRESCO for the 2+2 state, see Fig. 5.6 (B).

— The (2+,3+) → 2+1 transition [Fig. 6.8 (A)]. No deviation from the
pure Coulomb-excitation prediction is observed and both sets of MEs
describe equally well the experimental data. As it was already discussed
in Section 4.3.1 the γ ray at about 1620 keV can be attributed to
the decay of both the (2+, 3+) state at 2254 keV and the (4+) state
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at 2252 keV, which has a lifetime shorter by 30% than the (2+, 3+)

state [61]. If both states were populated in the present experiment, one
would expect a combined intensity over a factor of two higher than
that experimentally observed. On the other hand, the experimental
data are well reproduced using the measured lifetime of the 2254-keV
(2+, 3+) level. This hints that the 2252−keV state was probably not
populated in the Coulomb-excitation process, although it appears more
collective. A possible reason behind this could be the spin of the state
at 2252 keV, firmly assigned as a 3+ in Ref. [61]. This would provide a
consistent explanation of the measured cross-section distribution: out
of the two collective states forming the doublet only that at 2254 keV
was populated, with the excitation of the 2252-keV 3+ state being
hindered due to its odd spin. For the same reason, a 2+ spin-parity
would be favoured for the 2254-keV level. One should note that these
conclusions rely on the level lifetimes [61] and should definitely be
verified by complementary measurements.

• Discrepancies between the intensities simulated with the two approaches
and/or the experimental data are observed for the following transitions:

— The 2+5 → 2+1 transition [Fig. 6.4 (D)]. The intensities simulated
using the matrix elements based on the literature spectroscopic data
have a similar overall trend as the experimentally observed ones but
significantly overestimate them (by more than 3σ). On the other hand,
the MEs obtained by fitting the data collected at the smallest scat-
tering angles describe the experimental data well in the full range of
scattering angles. The ⟨2+5 ||E2||2+1 ⟩ matrix element resulting from this
analysis is 40% smaller then the literature value, although the two agree
within 1σ, considering the large uncertainties (Table 5.6). The rather
large uncertainties of the matrix elements involving the 2+5 state are
a consequence of their unknown relative signs, as it was discussed in
Section 6.2.2.

— The 2− 6 → 4+1 transition [Fig. 6.10]. Using the lifetime of the 2−6

state reported in Ref. [61] and assuming a spin of 2+, which implies
a pure E2 character for its decay, results in the simulated intensities
overestimating the experimental data. If the first three experimental
points are fitted, the obtained ⟨2− 6||E2||4+1 ⟩ matrix element is 35%

smaller than the literature value. The simulated intensities using the
latter ME and assuming a pure Coulomb-excitation process are in a
good agreement with the experimental data for all scattering angles.
One should note, however, that if an M1 admixture was introduced, it
would be possible to reproduce both the measured transition intensi-
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ties and the level lifetime at the same time. The ⟨2− 6||E2||4+1 ⟩ value
resulting from the fit agrees with the literature value within 2σ.

— The 5+1 → 4+2 transition [Fig. 6.6 (B)]. The peak corresponding to
the 5+1 → 4+2 transition was not observed at the smallest scattering
angle, but a rather strong population of the 5+1 state is observed at
higher angles, which cannot be easily explained assuming neither pure
Coulomb excitation, nor the nuclear influence on the population pro-
cess if the spin-parity assignment is correct. As shown in Section 6.2
the E2 matrix element necessary to reproduce the measured cross sec-
tions assuming a pure Coulomb-excitation process corresponds to a
B(E2; 5+1 → 4+2 ) value of about 900 W.u., which is clearly nonphy-
sical and discrepant with the known lifetime of this state (Table 5.1).
The intensities predicted using the spectroscopic data are an order of
magnitude smaller than those experimentally measured. Even the ma-
trix elements fitted to the first two experimental points do not provide
a correct reproduction of the intensities at larger scattering angles.
Therefore the 5+1 state constitutes a puzzle which requires more inves-
tigation.

• Signature of higher-order multipolarities involved in the excitation pro-
cess was observed for some of the 4+ states. The experimental distributions
of the transitions depopulating 4+2,3 states may be explained by the presence
of a non-negligible E4 strength carried by these levels, which has a very
limited influence on the pure Coulomb-excitation cross sections, but, in
contrast, becomes important when nuclear interaction starts to play a role.
The effect of an E4 excitation on the measured cross section was discus-
sed on the basis of FRESCO calculations in Section 5.6.4. Moreover, from
inelastic scattering of protons and deuterons on A ≈ 100 nuclei [96] it was
concluded that the E4 strength tends to be fragmented between states
around 2.5− 3 MeV, which would be consistent with the current data for
the 4+2,3 states in 106Cd.

— The 4+2 → 2+1 and 4+2 → 4+1 transitions [Fig. 6.7]. Both simulations
are in a good agreement with the experimental data at the smallest
scattering angles for 4+2 → 2+1 decay. A disagreement between the two
solutions is observed for the other depopulating transition, which can be
linked to the discrepancy between the literature value of the branching
ratio for the decay of the 4+2 state and the intensities measured in the
present experiment, discussed in Section 5.4.2. The experimental data
for both transitions exhibit a rather rapid increase in the cross section
at scattering angles higher than 22◦, which hints at possible contri-
butions from higher-order multipolarities in the excitation process. The
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distributions resemble an oscillation with a very large amplitude, depar-
ting from pure Coulomb excitation by more than 5σ. One should note,
however, that the 4+2 state is fed by the decay of the 5+1 state, whose
unusual features make it more difficult to draw conclusions regarding
the character of the 4+2 state and the role of the nuclear effects in its
excitation. The ⟨4+2 ||E2||2+1 ⟩ matrix element determined from the fit
to the 19.4◦ ≤ θLAB ≤ 22◦ data is consistent within 1σ with the value
deduced from the literature data, while for the ⟨4+2 ||E2||4+1 ⟩ values the
agreement is worse (within 2σ).

— The 4+3 → 4+1 transition [Fig. 6.6 (A)]. Similar conclusions as for the
4+2 state can be drawn for the 4+3 state. The intensities simulated using
the literature value of the ⟨4+3 ||E2||2+1 ⟩ matrix element differ by more
than 2σ from the values obtained using the MEs fitted to the measured
γ-ray intensities. The former strongly underestimate the experimental
data, while the latter can describe only the very first few experimental
points. Interestingly, the transition strength deduced from the present
data for the 4+3 state is larger than that corresponding to the lifetime,
while it is smaller for the 4+2 state. The ⟨4+3 ||E2||2+1 ⟩ matrix element
obtained from the present data is about three times larger than the
literature value, however the two agree within 3σ.
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7 - Discussion and outlook

Based on the excitation energy pattern of the low-lying states, stable cadmium
isotopes were considered textbook examples of spherical vibrational nuclei [2,104].
As an example, a partial level scheme of 112Cd organized into one-, two- and
three-phonon multiplets is presented in Fig. 7.1.

Figure 7.1 – Low-energy excited states in 112Cd organized into one-, two- andthree-phonon multiplets. Figure adapted from Ref. [105].
However, a large difference between the reduced transition probabilities of the

transitions connecting each of the proposed two-phonon states with the one-phonon
2+1 state is present. The B(E2; 4+1 → 2+1 ) value follows the expectation for a
harmonic vibration, while B(E2; 2+2 → 2+1 ) is substantially lower than twice the
B(E2; 2+1 → 0+1 ) value and B(E2; 0+3 → 2+1 ) is almost vanishing. This decay pat-
tern could be explained by strong mixing with a shape-coexisting deformed intruder
structure that was systematically observed in the cadmium isotopes [106]. This
scenario was questioned following e.g. the multi-step Coulomb-excitation study of
114Cd [107]. From a comparison of an extensive set of E2 matrix elements de-
termined in this study with the results of a mixing calculation it was concluded
that the strong mixing hypothesis could not provide a consistent description of the
measured E2 strengths.

A good reproduction of the observed transition probabilities could be achieved
within an IBM configuration mixing calculation with a partial dynamical symme-
try [108]. This calculation introduced terms resulting in mixing of phonon states.
The mixing was needed to distribute the E2 strength among several levels and
thus explain the small B(E2) values for the transitions connecting the two- and
three-phonon 0+ states to the 2+1 state. However such a redistribution of the E2

strength would require its enhancement in higher-lying levels, which, as pointed
out by Garrett et al. [11], is not experimentally observed. As an alternative, a
reorganisation of the level schemes of 110−116Cd was proposed [105] in terms of
rotational structures.

Following the proposed rearrangement of the level scheme, Garrett et al. per-
formed a series of experiments utilizing β+/electron-capture decay of 110,112In and
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β− decay of 112Ag to populate excited states in 110,112Cd [10, 11]. Several low-
intensity γ rays, depopulating key states, were observed. Transition probabilities
were calculated using the extracted branching ratios in combination with previously
measured lifetimes [103,109]. The obtained B(E2, 2+5 → 0+4 ) = 34(15) W.u. and
B(E2, 4+6 → 2+5 ) = 77(30) W.u. in 112Cd demonstrated the increased collectivity
of the structure built on the 0+4 state, presented in Fig. 7.2. Additionally, a γ band
(K = 2) associated with the ground state, built on the presumed two-phonon 2+

state, was proposed. Moreover, a rotational structure built on the reinterpreted 0+3
two-phonon state and a γ band associated with the established “intruder” band
were proposed (Fig. 7.2).

Figure 7.2 – Left: partial experimental level scheme of 112Cd, presenting the col-lective, low-lying, positive-parity bandswith their in-band and band-head decays.The experimental transition probabilities are given in W.u. (values in square bra-ckets are relativeB(E2) values). Right: the collective wave functions of the band-heads in the (β2, γ) plane, calculated using the SCCM method, with color codingcorresponding to that used for the bands in the experimental level scheme. Fi-gure adapted from Ref. [10].
Similar results were obtained for 110Cd. The observed similarities between 110Cd

and 112Cd hinted that the neutron degrees of freedom affected minimally the obser-
ved structure, favouring an interpretation invoking multiparticle-multihole proton
excitations. This scenario is supported by the energy systematics of the excited 0+

states as a function of the mass number, presented in Fig. 7.3. The observed para-
bolic shape with a minimum near the mid-shell is typical for multiparticle-multihole
excitations, which are the main mechanism behind shape coexistence [13]. The
idea of low-lying coexisting structures with different intrinsic shapes was explored
using beyond-mean-field (BMF) calculations, based on the symmetry conserving
configuration mixing (SCCM) method with the Gogny D1S energy density functio-
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nal [110]. Within this model the nuclear states in the laboratory frame are obtained
by mixing intrinsic states with well-defined deformations, which makes it a perfect
tool for studying nuclear collectivity (vibrations, rotations, shape evolution, shape
coexistence, shape mixing). As a downside, due to computational limitations in
the implementation of the variational principle, parity and time-reversal symme-
try breaking was not allowed, which resulted in stretched excitation-energy spectra
with respect to the experimental ones [111,112]. In the calculated potential energy
surfaces (PES) for 110Cd projected on angular momentum 0 (see Fig. 15 (a) in
Ref. [11]), a clear minimum at a prolate deformation β2 ≈ 0.15 is present. This
is not consistent with a vibrational interpretation. Moreover, two more shallow
minima were observed, corresponding to different deformation parameters (|β2|
about 0.4 and 0.1) [11]. Further insight in the structure of the different bands was
obtained by analysing the collective wave functions calculated within the SCCM
method [110]. As an example, the results for the first four 0+ states in 112Cd are
presented on the right side of Fig. 7.2 [11]. The model predicts the existence of a
prolate ground state with β2 ≈ 0.2, a more deformed (β2 ≈ 0.4) triaxial 0+2 state,
an oblate 0+3 state and a shape-mixed, evolving towards prolate 0+4 state. Based
on the calculated transition probabilities, the levels of 110,112Cd were organized
into bands, strikingly similar to those suggested by experimental data, see Figs. 2
and 3 in Ref. [10]. In addition to the bands built on the 0+ states, two γ bands
were predicted. The two γ bands were strongly mixed, resulting in enhanced E2

transitions between the band members, which was in line with the experimentally
observed transition probabilities. Generally, the predicted B(E2) values were well
reproduced for the decays of the band heads, while those for the in-band transitions
were overestimated, as were the quadrupole moments.

The structure of Cd isotopes can also be described in the framework of shell-
model calculations. Unfortunately, for isotopes heavier than 104Cd a model space
including proton orbitals beyond the Z = 50 shell gap becomes prohibitively large.
Among the recent shell-model calculations for Cd nuclei, that of Ref. [113] focused
on the deformation of low-spin states in 98−108Cd. The model space included the
2d5/2, 3s1/2, 2d3/2, 1g7/2 and 1h11/2 neutron orbitals and the 2p1/2 and 1g9/2
proton orbitals with an inert core of 88Sr. An effective realistic nucleon-nucleon
interaction originating from the CD-Bonn [114] potential was used, resulting in a G
matrix called the v3sb effective interaction [115]. The effective proton charge (eπ =

1.7e) was determined by fitting the calculated B(E2; 8+1 → 6+1 ) value in 98Cd to
the known experimental value [116], while that for the neutrons (eν = 1.1e) by
comparing experimental and calculated B(E2; 2+1 → 0+1 ) values in 102,104Cd [117].
The calculations were conducted in the full model space without any additional
truncations. However, the model space did not permit proton excitations across
the Z = 50 shell gap, even though such correlations were implicitly included by
the use of proton and neutron effective charges. Therefore, the model could not
accurately describe the shape-coexisting states arising from multi-particle multi-
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hole excitations. Nevertheless, the calculation predicted a non-zero β2 deformation
parameter for the ground state (β2 ≈ 0.18 for 106Cd) as well as its certain triaxiality.
Very similar β2 values were reported for the excited 0+2,3 states.

Figure 7.3 – Systematics of the excitation energies of low-lying excited statesin 102−124Cd as a function of the neutron number N. The ground-state band ispresented in black. Themembers of the intruder structure are presented in blueand those of the presumably oblate structure in red. Lighter colors and dottedlines are used for tentative assignments. Figure adapted from Ref. [4] with thenew data from Ref. [62].
The scenarios discussed above differ in their predictions of shapes of specific

states in Cd nuclei, which can be explored via low-energy Coulomb excitation. A
series of experiments focused on the 110Cd nucleus has been performed at HIL,
Warsaw [118], LNL Legnaro [119] and Argonne National Laboratory (ANL). From
the collected data it will be possible to determine the β and γ deformation para-
meters of the 0+1 , 0+2 and 0+3 states via the quadrupole sum rules approach [5, 6].

While 110,112Cd were and are still extensively studied, there are not many recent
experiments addressing the structure of 108Cd, especially in terms of transition pro-
babilities. Based on the B(E2) values resulting from a DSAM lifetime measure-
ment [98], the 2+3 state in 108Cd was ruled out as a three-phonon state and instead
assigned as a band member of the rotational band built on the intruder 0+ state.
The decays out of this band were found to be very weak, suggesting a high purity
of the intruder configuration. Based on comparison with the neighboring 110,112Cd
nuclei, it was concluded that the intruder band is moving towards higher excitation
energies, while the members of the presumed two- and three-phonon structures
are spread over a larger energy range. In addition to an IBM-based interpretation
similar to those proposed for 110,112Cd, an arrangement of the observed levels into
collective bands was suggested, including notably a K = 2 γ band. An earlier
study [120] identified a potential 6+ member of this band.
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7.1 Shape coexistence in 106Cd

In contrast to 108Cd, a large number of recent works were focused on 106Cd.
Two low-energy Coulomb-excitation studies were performed, yielding quadrupole
moments of the 2+1 , 4+1 , 6+2 and 2+2 states (summarized in Table 5.4) [71,75] and
|β2| deformation parameters of the 0+1 and 2+1 states [71]. The RDDS measure-
ment of Siciliano et al. [50] obtained the lifetimes or lifetime limits of a number
of low-lying excited states, some of which for the first time. They were inves-
tigated with a guidance from a SCCM calculation performed along the lines of
those for 110,112Cd [10, 11], which predicted a number of low-energy coexisting
structures [50]. The collective wave functions of the first few members of these
structures are presented in Fig. 7.4. The ground state of 106Cd was predicted to
have a well-defined prolate shape (β2 = 0.2), which is consistent with the measu-
red B(E2; 2+1 → 0+1 ) value that corresponds to β2 ≈ 0.17. The calculated 0+2 and
0+3 states have a larger oblate (β2 ≈ 0.27) and prolate (β2 ≈ 0.35) deformation,
respectively.

Figure 7.4 – Collective wave functions as a function of the deformation parame-ters (β, γ). Color-coded rectangles: black - the ground state band ; red - even-spinstates from theK = 2 band associated with the ground state; magenta - oblateshape-mixing 0+ and triaxial shape-mixing 2+ states; orange - prolate shape-mixing band.
The partial level schemes of 106,110,112Cd resulting from the SCCM calculation,

presenting decay properties of the 0+1,2,3 states and the 2+ states built on them,
are compared in Fig. 7.5. The transition probabilities, given in W.u., are taken
from Refs. [10, 11, 50]. In the BMF calculations the oblate configuration is the
0+3 state in 110,112Cd, and the 0+2 state in 106Cd. However, from the experimental
point of view, the oblate band-head in 106Cd seems to be the 0+3 state. A clear
indication for this is the preferential decay of the 0+3 state to the 2+2 state, which
is consistent with the decay patterns of the presumably oblate structures in hea-
vier Cd isotopes (presented e.g. in Figs. 36,39 in Ref. [4]). Moreover, the B(E2)

value corresponding to the decay of the oblate deformed 0+ state in the BMF cal-
culation agrees with the value obtained in the present Coulomb-excitation study,
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B(E2; 0+3 → 2+2 )= 41+19
−5 W.u., as it is the case in the heavier Cd isotopes, see

Figs. 7.5 and 7.6. The obtained ⟨0+3 ||E2||2+2 ⟩ matrix element is also in a perfect
agreement with the result of a previous measurement [71], although the latter has
a large experimental uncertainty (50%).

Based on the decay pattern of the 2+5 state, it was assigned as part of the
band built on the 0+3 state. The 2+5 → 0+3 transition was observed for the first
time in Ref. [61] and later confirmed in Ref. [62]. However, a discrepancy in the
reported branching ratios is present. Using those from the most recent study [62]
in the Coulomb-excitation analysis yields a B(E2; 2+5 → 0+3 ) value of 10+6

−5 W.u.
If one uses the alternative branching ratios from an older study [61], a value of
22+18

−10 W.u. is obtained. Both these values are smaller than the one predicted by
the theory (52 W.u.), suggesting a smaller collectivity of the band built on the 0+3
state. One should note that while the BMF calculations predict that the collectivity
of the oblate structure (built on the calculated 0+3 state in 112,114Cd and on the
0+2 state in 106Cd) decreases with N , an inverse trend seems to be observed in
the B(E2) data, even though the energy spacing in the band in question suggests
the opposite. Both in the experiment and in the calculation, the B(E2; 0+3 → 2+2 )

value in 106Cd is less enhanced than its counterparts in the heavier Cd nuclei, which
is in line with the higher excitation energy of the 0+3 state. One should also note
that a 2+5 lifetime of 0.19(3) ps was obtained from a DSAM measurement following
inelastic neutron scattering [61]. This lifetime, together with the branching ratios
reported in Ref. [62], corresponds to a larger transition probability (21+8

−6 W.u.),
which is still smaller than the value predicted by theory. To provide a firm conclusion
on the collectivity of the band built on the 0+3 state, the relevant branching ratio
needs to be remeasured.

A transition connecting the 0+2 state with the ground-state band was previously
observed and from the current Coulomb-excitation analysis a B(E2; 0+2 → 2+1 ) va-
lue of 5.2+2.3

−0.7 W.u. was obtained. According to the BMF prediction (Fig. 7.5) a
much smaller B(E2) value is expected between the prolate deformed 0+ state and
the 2+1 state (again, note that the 0+2 and 0+3 states seem inverted in the calcu-
lation). The experimentally obtained value suggests a stronger coupling between
the presumed prolate-deformed structure and the ground-state band compared to
the calculation, which is in line with the lower excitation energy of the 0+2 state.
An even larger B(E2; 0+2 → 2+1 ) value was obtained in the Coulomb-excitation
study [71]. However, the lifetime of the 0+2 state from the RDDS study based on
the current data set [50] was used to constrain the GOSIA fit in Ref. [71], therefore
the obtained MEs reproduced the provided lifetime, which is discrepant with the
value obtained in the current work. Unfortunately, the 2+3 state at 2370 keV, which
based on its decay properties [61] is interpreted as built on the 0+2 state, has not
been populated in the present experiment. Hence, the key ⟨2+3 ||E2||0+2 ⟩ matrix
element reflecting the collectivity of the band built on the 0+2 state could not be
determined.
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Figure 7.5 – Partial level schemes of 106,110,112Cd, presenting the decay of the
0+1,2,3 states and the 2+ states build on them, resulting from the SCCM calcu-lation [10, 11, 50, 121]. The arrow widths and labels represent the B(E2) valuesexpressed in Weisskopf units. Only transitions with B(E2) values of at least 1W.u. are plotted.

Figure 7.6 – Same as Fig. 7.5, but presenting experimental data. The B(E2) va-lues in 106Cd are from the present study, with the exception of the B(E2; 2+1 →
0+1 ) value, which was taken from ENSDF [59]. Two alternative values of
B(E2; 2+5 → 0+3 ), obtained using the branching ratios reported in Ref. [62] (inred) and in Ref. [61] (in blue), are given. TheB(E2; 2+3 → 0+2 ) value in 106Cd is notknown. The transition probabilities in 110,112Cd are taken from Ref. [10] with theexception of the values given in gray which are from Ref. [122].

As one can deduce from the comparison of Figs. 7.5 and 7.6, the in-band
transitions in the ground-state band are less collective than those predicted within
the SCCM calculation. Siciliano et al. [50] attempted to evaluate the deformation
of the ground state. Using the transition probabilities obtained in Ref. [50] and
adopting the axially-symmetric rigid-rotor model (Formulas 1.8 and 1.11), β2 was
calculated to be about 0.17, in reasonable agreement with the SCCM prediction
(β2 ≈ 0.2). The beyond-mean-field calculations predicted rather constant deforma-
tion within the ground-state band (β2 ≈ 0.2). However, a smaller β2 ≈ 0.12 was
obtained from the B(E2; 6+2 → 4+1 ) value, which was explained by possible mixing
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between the closely lying 6+1 and 6+2 states [50]. The LSSM calculation performed
by Schmidt et al. [113] also investigated the evolution of the deformation within
the bands built on the ground state and on the 0+2 state in 106Cd. A small increase
of β2 was reported for both bands between the 0+ and 2+ states, followed by a
slow decrease of the β2 parameter with increasing spin (see Fig. 5 in Ref. [113]).
The reported deformation of the 6+2 state (β2 ≈ 0.175), although smaller than the
deformation of the ground state (β2 ≈ 0.185), is still much larger than the value
reported in Ref. [50]. However, within the axially-symmetric rigid-rotor model, the
⟨6+2 ||E2||4+1 ⟩ extracted in the current study (Table 5.6) corresponds to β2 ≈ 0.18,
which is in line with both discussed theoretical calculations.

The properties of the ground-state band were also discussed by Gray et al. [71]
by comparing the ratio of the ⟨Q2⟩ quadrupole invariants [5, 6] for the 2+1 and
0+1 states with the predictions of various models. The experimentally obtained
value (presented in red in Fig. 7.7) was shown to be lower than those predicted
by all models. The observed decrease of ⟨Q2⟩ with spin is in contrast with the
trend observed for 114Cd [107]. Based on this result, the vibrational interpretation
was ruled out and it was concluded that the Cd isotopic chain can be described
as evolving from seniority to a rotational character with the influence of intruder
states on the properties of other structures increasing towards midshell.

The ⟨Q2⟩ quadrupole invariants for several states were evaluated by applying
Formula 1.14 to E2 matrix elements obtained in the current study. In this evalua-
tion, E2 matrix elements reported in the last columns of Tables 5.6 and 5.7 were
used in addition to the diagonal E2 MEs taken from Table 5.4. The deformation
parameters β2 were calculated using Formula 1.16. The results are presented in
Table 7.1 together with the experimental values reported in Ref. [71] and those
resulting from the BMF [50] and the LSSM calculations [113].

Table 7.1 – Rotational invariants ⟨Q2⟩ and deformation parameters |β2| calcula-ted from thematrix elements obtained in the current work, in Ref. [71] and thoseresulting from the SCCM [50, 121] and LSSM calculations [113].
This work Ref. [71] BMF This work BMF LSSM

Iπ ⟨Q2⟩[e2b2] ⟨Q2⟩[e2b2] ⟨Q2⟩[e2b2] |β2| |β2| |β2|
0+1 0.413(8) 0.443(13) 0.575 0.174(2) 0.205 0.186

2+1 0.411(28) 0.375(29) 0.574 0.173(5) 0.205 0.192

4+1 0.66+0.08
−0.10 > 0.28(3) 0.838 0.22+0.01

−0.02 0.248 0.190

2+2 0.53+0.10
−0.07 > 0.21(13) 0.661 0.20+0.02

−0.01 0.220 −
0+3 0.27+0.15

−0.07 − 1.03 0.14+0.04
−0.02 0.27 0.176

The ⟨Q2⟩ values obtained for the 0+1 and 2+1 states from the current data
suggest a ratio identical with unity (1.00(7)), which is in a perfect agreement with
the results of the BMF calculation and in contradiction with the decreasing trend
reported in Ref. [71] (see Fig. 7.7). The ⟨Q2⟩ for the 4+1 state is also larger than
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the value obtained in the work of Gray et al. [71] and the corresponding ratio
⟨Q2⟩4+1 /⟨Q

2⟩0+1 of 1.6+0.02
−0.03 follows the increasing trend predicted by the BMF

calculation as illustrated in Fig. 7.7. However, the obtained ⟨Q2(4+1 )⟩ should be
viewed as a lower limit, as some key matrix elements were not considered in the
sum, for example those relating the 4+1 state to the 3+ and 5+ states in the
K = 2 band. Similarly, the ⟨Q2⟩ invariant for the 2+2 band-head of the γ band
should be treated as a lower limit, although the current value is already large
compared to the theory and previous measurements. Finally, a similar calculation
was performed for the 0+3 state. The obtained result is much smaller than the value
predicted by the SCCM calculation, suggesting a smaller deformation. However, the
actual value depends strongly on the adopted branching ratio for the 2+5 → 0+3
decay (if the branching ratio from Ref. [61] is used, ⟨Q2(0+3 )⟩ = 0.45+0.33

−0.16 eb is
obtained instead). Evaluation of ⟨Q2⟩ for the 0+2 state was not attempted, as the
key ⟨2+3 ||E2||0+2 ⟩ and ⟨2+2 ||E2||0+2 ⟩ matrix elements could not be deduced from
the present data set.

this work

Figure 7.7 – The ⟨Q2⟩ quadrupole invariants for low-lying states in 106Cd obtai-ned in Ref. [71] (red) and in thiswork (black), normalized to the ⟨Q2⟩0+1 value, com-
pared to the predictions of several theoretical models including beyond-mean-field calculations (BMF) [50], generalized triaxial rotor model (GTRM), IBM calcu-lations in the U(5) limit (IBM-U(5)), shell-model (jj45) [75] and surface vibrationsabout a spherical shape (vib). For more details see Ref. [71] and the referencestherein. Figure adapted from Ref. [71].

A common feature for all discussed states is that the deformation parameters
β2 obtained from the current experimental data are smaller than those predicted
with BMF, which is typical for this type of calculations, as discussed in Ref. [10,11].
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However, the general trend of the deformation within the ground state band seems
to be correctly reproduced. Although the β2 values predicted for the 0+1 and 2+1
states by the LSSM calculation [113] are in overall good agreement with the expe-
rimental data, β2(4+1 ) seems underestimated and the predicted trend of β2 values
within the ground-state band is different than the one experimentally observed.
On the contrary, the β2 of the 0+3 state obtained within the framework of LSSM
describes better the experimentally obtained deformation (if the branching ratio
from Ref. [61] is used for the 2+5 → 0+3 transition, the obtained β2 = 0.18+0.06

−0.04 is in
perfect agreement with the prediction of the LSSM calculation). One should note,
however, that the LSSM calculation did not include proton excitations through the
Z = 50 shell gap, and most probably the microscopic structure of the 0+3 state
and the band built upon it is not correct.

7.2 Triaxiality in 106Cd

According to the BMF calculation, the K = 2 band associated with the ground
state has a very similar overall deformation as that of the ground state and γ = 25◦,
as it can be deduced from the collective wave functions presented in Fig. 7.4. The
properties of this band resulting from the calculation are presented in the left panel
of Fig. 7.8. By comparing the predicted and experimental transition probabilities,
Siciliano et al. [50] proposed the level scheme in the right panel of Fig. 7.8. A main
drawback of this arrangement is the lack of a possible candidate for the 3+ member
of the γ band. The lowest 3+ state in 106Cd is the 2252-keV level, according to the
assignment in Ref. [61]. As discussed in Section 5.4, the 2254-keV and 2252-keV
states form a doublet, however based on the analysis of the experimental γ-ray
yields, it was concluded that predominately the decay of the state at 2254 keV
was observed in the current data set. This is in line with the spin assignment of
the state at 2252 keV as a 3+, as typically the odd-spin members of the K = 2

bands are much less populated in low-energy Coulomb excitation than their even-
spin counterparts. This is due to cancellations between the competing excitation
paths, as discussed e.g. in Refs. [107,123]. Considering the state at 2252-keV as a
possible γ-band member, the level scheme was rearranged as proposed in Fig. 7.9.
The B(E2) values describing the decay of the 3+ state were calculated using the
lifetime measured in Ref. [61] combined with the branching and mixing ratios taken
from Refs. [62] and [61], respectively. The strongest observed branch is going to
the K = 2 band-head, followed by a decay to the 4+1 state. The strong 3+ → 2+2
decay is consistent with the pattern predicted by the BMF calculation, although
the actual B(E2) value is underestimated by the theory. One should note however,
that for the decay of the 3+ state to the 4+1 and 2+2 states, out of two possible
mixing ratios reported in Ref. [61] values corresponding to a stronger E2 character
were adopted.
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A possible candidate for the 4+ member of the γ band is then the 2486-
keV state, which agrees with the assignment of Ref. [71]. Based on the trend
of the measured 2+, 3+, 4+ → 2+1 transition intensities, Fig. 6.4 (B), no direct
E4 transition to the ground state would be expected from the state at 2486

keV, making it a good candidate for a member of the K = 2 band. One should
note however, that an unexpectedly strong branch is observed to the 4+2 state,
which can be due to the assumption that this transition has a pure E2 character.
Furthermore, the transition connecting the 2+, 3+, 4+ state with the 2+2 band-head
is also rather weak, although one should note that a larger branching ratio for this
decay branch was measured in Ref. [61]. Subsequently, the previously proposed 4+

γ-band member can be reinterpreted as a band-head of the K = 4 band associated
with the ground state. The collectivity of the 4+2 state is supported by its strong
population in the current experiment, and the K = 4 assignment is consistent with
its preferred decay to the K = 2 band-head. A K = 4 character would also be in
line with a presence of a non-negligible E4 matrix element coupling this state with
the ground state, suggested by the enhancement of the 4+2 excitation cross sections
observed for higher scattering angles, see Fig. 6.7. Moreover, a strong transition
connecting the 4+ states in the K = 2 and K = 4 bands is observed, in line with
the BMF prediction, although the B(E2; (4+) → 4+2 ) value presented in Fig. 7.9
may be overestimated as already mentioned.

The proposed assignment of K = 2 band members in 106Cd can be further
discussed in the context of the energy systematics of K = 2 structures in the
neighbouring Cd isotopes, presented in Fig. 7.10. The excitation energy of the 2+2
state increases monotonically with decreasing mass number A. The 3+ and the
4+ γ-band members follow a similar pattern, with the spacing between the two
gradually decreasing with A. The currently proposed 3+ and 4+ γ-band members
in 106Cd fit well with these energy systematics. The previously assigned 6+ γ-
band member in 106Cd [50] is at a rather low energy, resulting in a narrow energy
spacing in the K = 2 band. Another possible 6+ candidate in 106Cd would be
the level at 2924.8 keV, which is the only other firmly assigned 6+ state in 106Cd.
However, following the systematics, one would expect a 6+ K = 2 band member
at an even higher excitation energy. Thus, further studies are needed to extend
the level scheme of 106Cd. A rather large B(E2; 6+1 → 4+1 ) value is obtained
from the current Coulomb-excitation analysis, which would agree well with the
interpretation of the state as a member of the K = 2 band proposed by Ref. [50].
However, another possible explanation of this observation is that the 6+1,2 states in
106Cd result from a strong mixing between a seniority state and a member of the
rotational ground-state band. Long-lived 6+ seniority states were indeed observed in
the lighter Cd nuclei, e.g. 102Cd [124]. As the result of the mixing, both 6+1,2 states
would have a collective character, consistent with the large B(E2; 6+1,2 → 4+1 )
values obtained in the present analysis. Similarity in the structure of the two 6+

states is also supported by the fact that the B(E2; 8+1 → 6+1,2) values agree within
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error bars. The observed pattern cannot be reproduced by the SCCM calculations
as the seniority states are outside of the model space.

The 5+ states in K = 2 bands should follow a similar trend as a function
of A as lower-spin band members. Such a behaviour is observed in 110,112Cd,
while the systematics reveal a sudden decrease of the 5+ energy in 108Cd. This
casts doubt on the assignment of the 5+1 level as a part of the K = 2 band
proposed in Ref. [98]. In fact, there is another 5+ state identified in 108Cd at 2906
keV excitation energy [125] that would fit better with the energy systematics, as
presented in Fig. 7.10, and has a dominating decay to the 4+ and 3+ states from
the γ band. This suggests that the 5+1 state in 108Cd has a different configuration,
which may be similar to that of the 5+1 state in 106Cd.

Figure 7.10 – Systematics of the ground-state band members (in black) andthose of the K = 2 bands in 104−114Cd. The solid lines and filled circles cor-respond to the level scheme presented in Fig. 7.9, while dashed lines and opencircles indicate the K=2 bandmembers proposed in Ref. [50]. For 108Cd, the filledcircle corresponds to the 5+2 state which seems a better candidate for a K = 2band member than the 5+1 state (open circle) proposed in Ref. [98], as discus-sed in the text. The open green square denotes a possible candidate for the 6+member of the γ band in 106Cd.

7.3 Negative-parity states

Data on E3 transition strengths are in general difficult to obtain. The present
study provided a new B(E3; 3− → 0+1 ) value, which is more precise than those
resulting from previous experiments, as well as information about the properties of
the 5−1 , 5−2 and 1− states in 106Cd. The intensity simulation using the ⟨0+1 ||E3||3−1 ⟩
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matrix element obtained by fitting the data from the first three ranges of scatte-
ring angle [Fig. 6.9 (A)] resembles an average of the experimental points, which
have an oscillatory behaviour, as predicted with FRESCO (Fig. 5.7). The simula-
tion assuming the ⟨0+1 ||E3||3−1 ⟩ value from Ref. [83] strongly overestimates the
measured intensities, although an agreement within 2σ between the result of the
present fit and the value of Ref. [83] is observed. Using the ME from Ref. [75]
yields a better agreement with the experimental data, however, the uncertainty of
this measurement is rather large.

The experimental yields for the 5−2 → 4+1 transition presented in Fig. 6.9 (B)
display an oscillatory behaviour around the pure Coulomb-excitation cross section.
This trend is very similar to the cross-section distribution observed for the 3−1 → 2+1
transition. Such a behaviour is expected when the main population path involves an
E3 transition (see Fig. 5.7 obtained with FRESCO). The dependence of the 5−1 →
4+2 transition intensity on scattering angle, Fig. 6.9 (C), is similar to those observed
for the 4+2,3 states, for which it was postulated that higher-order multipolarities (i.e.
E4) are important in the excitation process. In the case of the 5−1 state one can
hypothesize that the observed sudden departure from the pure Coulomb-excitation
prediction for θLAB > 23◦ is caused by the Coulomb-nuclear interference involving
an E5 transition. This suggestion is supported by the fact that substantial E5

components in the wave functions of several 5− states in 110,112Cd were reported
following inelastic proton and deuteron scattering [97]. Finally, a much smaller
deviation from the pure Coulomb-excitation prediction is observed for the 1− → 0+1
transition, Fig. 6.9 (D). It can be speculated that this deviation is caused by the
Coulomb-nuclear interference, which has a constructive character.

The limit extracted in the current work for the ⟨5−1 ||E3||2+1 ⟩ matrix element
(Table 6.5) corresponds to a reduced transition probability smaller than 10.7 W.u.
Much larger E3 strengths are required if the population of the 5−2 and 1− states is
linked solely to E3 transitions from the 2+1 state: B(E3; 5−2 → 2+1 ) = 40(3) W.u.
and B(E3; 1− → 2+1 ) = 45(3) W.u. (calculated using the MEs reported in the
first row of Table 6.4). Therefore, it seems more realistic that the population of
the 5+2 and 1− states involves other excitation paths. Moreover, Linnemann et
al. [60] suggested the 1− state as a candidate for the quadrupole-octupole cou-
pled (QOC) 1− state in 106Cd, based on the measured large B(E1; 1− → 0+1 )
value as well as its excitation energy and decay pattern, which are similar to
those of other known quadrupole-octupole candidates in the even-even stable
cadmium isotopes. Coupling of one-phonon quadrupole and one-phonon octupole
surface vibrations would result in the appearance of five negative-parity states
(1−, 2−, 3−, 4−, 5−), which have excitation energy equal to approximately
the sum of the single-phonon energies (E(2+1 ) + E(3−1 )). In heavier Cd isotopes,
i.e. 108−114Cd, candidates for all five members of the quintuplet were found, see
Ref. [98] for 108Cd, Ref. [99] for 112Cd, and Ref. [100] for 114Cd. In the case of
106Cd the expected EQOC = 632.6+ 2378.5 = 3011.1 keV. The excitation energy
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of the 1− and 5−2 states are 2824.6 keV and 2920.1 keV, respectively. Thus, both
states fit well the energy criterion. In the decay of the members of the quintu-
plet, a destruction of the quadrupole phonon results in an E2 transition to the 3−1
state with a transition strength comparable to that of the 2+1 → 0+1 transition.
Connecting E2 transitions between the proposed QOC states and the 3−1 state were
previously reported in 114Cd (except for the 1− quintuplet candidate) [100], and
a strong E2 transition was observed between the 5−1 and 3−1 states in 112Cd [99].
Similarly, transitions to the one-phonon quadrupole state involve the destruction of
an octupole phonon, thus the associated E3 transition strength should be similar
to the B(E3) strength of the 3−1 → 0+1 transition [100]. Therefore, one can further
test the QOC hypothesis for the 1− and 5−2 states using the results of the tests
summarized in Table 6.4.

Assuming a value of the ⟨1−||E2||3−1 ⟩ matrix element, which corresponds to
a B(E2) value of 26 W.u. (similar to the 2+1 → 0+1 strength), results in a reduc-
tion of the ⟨1−||E3||2+1 ⟩ matrix element to 0.16(2) eb3/2, which corresponds to
13(3) W.u. The adopted ⟨3−1 ||E3||0+1 ⟩ matrix element, Section 6.2.4, corresponds
to a transition strength of 11+4

−3 W.u., which perfectly fits the QOC expectation
of B(E3; 3−1 → 0+1 ) ≈ B(E3; 1− → 2+1 ) and further supports the suggestion of
Ref. [60]. However, to this date no direct E2 transition connecting the 1− and 3−1
states has been observed.

On the other hand, an alternative explanation can be offered if one considers
the ground state of Cd to be deformed. Then it is possible that the 1− state
originates from the coupling of the octupole vibration to the static quadrupole
deformation. This coupling would give rise to four octupole-vibrational bands with
K= 0, 1, 2, 3 [101]. Both bands with K= 0 and K= 1 have band-heads with spin-
parity 1−. The states in the K= 0 band have odd spin (1, 3, 5, ..), while those in
the K= 1 band follow no spin restrictions (1, 2, 3, ..) [101]. Therefore, it is also
possible that the 1−1 state in 106Cd is the band-head of a K= 0 or a K= 1 band
and if so, one should observe a rotational-like structure built on it. This hypothesis
merits an investigation in a future experiment. Moreover, a new dedicated study is
needed to measure the small unobserved decay branch to the 3−1 state, essential
to firmly extract the ⟨1−||E3||2+1 ⟩ matrix element.

Similarly, if one assumes an ⟨5−2 ||E2||3−1 ⟩ matrix element corresponding to a
transition probability as large as the B(E2; 2+1 → 0+1 ) value, a significant reduction
of B(E3; 5−2 → 2+1 ) is observed, to a value of 8(1) W.u. This value also agrees well
with the adopted B(E3; 3−1 → 0+1 ) value (Section 6.2.4). Thus, one can speculate
that the 5−2 state is also a member of the quadrupole-octupole quintuplet. In
addition, one should mention that the 5−2 → 3−1 transition was previously reported
in Ref. [61], however in a more recent study of the same group it was not confirmed.
From the reported Iγ(5

−
2 → 3−1 )/Iγ(5

−
2 → 2+1 ) = 0.09(1) and the adopted 5−2

lifetime (Table 5.2), one can calculate ⟨3−1 ||E2||5−2 ⟩ = 2.8 eb, which corresponds
to a transition strength of 239 W.u. This value does not seem reasonable.
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The systematics of the excitation energies of the 3−1 , 1−1 and 5−1,2 states in the
106−114Cd isotopes are presented as a function of the mass number in Fig. 7.11.
As the energy of the 2+1 state is approximately constant, one would expect that
the energies of quadrupole-octupole coupled states follow a trend that is similar to
that of the 3−1 state. As one can see in Fig. 7.11, this is indeed true for the 1−1 and
5−1 states in 110−114Cd. An inversion between the 5−1 and 5−2 states taking place
between 108Cd and 110Cd would be necessary to maintain the same trend of the
5− states in 106,108Cd as suggested in Ref. [102].

Figure 7.11 – Excitation energy systematics of the 3−1 , 1−1 , 5−1 and 5−2 states in
106−114Cd [59]. The inversion of configurations of the 5−1 and 5−2 states, sugges-ted in Ref. [102], is schematically presented with the dashed lines.

If the proposed inversion is adopted, the presumed second configuration in
Fig. 7.11 corresponds to the 5−1 states in 106,108Cd and the 5−2 states in hea-
vier Cd nuclei. This state appears at a roughly constant excitation energy in
106−114Cd. Moreover, if an additional transition relating the 5−1 and 3−1 state with
a B(E2; 5−1 → 3−1 ) = 26 W.u. is included in the coupling scheme, the entire
observed population of the 5−1 state is accounted for without any ⟨5−1 ||E3||2+1 ⟩
matrix element needed (Table 6.4).

Although the quadrupole-octupole coupling scheme fits well the experimental
findings for the 5−2 state, another possible interpretation exists. Questions about
the validity of the QOC character of the presumed 5− member of the QOC quin-
tuplet in 112Cd were raised following one-neutron transfer study [102]. In this
work, the second largest spectroscopic strength was observed for the 5−1 state in
contrast to the weak or non population of the remaining members of the quintu-
plet. Considering this observation in combination with a previously known enhanced
B(E2,5−1 → 3−1 ) value [103], Jamieson et al. [102] suggested that the 5−1 state
in 112Cd is part of a rotational band based on the 3−1 state. Similar interpretation
can be adopted in the present study. The members of rotational negative-parity
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bands would also be connected via strong E3 transitions to positive-parity states.
In fact, the present data do not permit discriminating between the two scenarios.
Observation of higher-spin members of the band built on the 3−1 state could resolve
the issue.

7.4 Outlook - future β+/EC decay study of 104,106In

The current study raised a number of questions regarding discrepant spectro-
scopic data in 106Cd. Although in some cases it was possible to differentiate bet-
ween the discrepant branching or mixing ratios using the unsafe Coulomb-excitation
data, there are many remaining structural puzzles in 106Cd to be solved.

The lack of spectroscopic information for certain states resulted in assumptions
on their spins, parities, multipolarities of de-exciting transitions, etc. Some of the
structural conclusions of the current analysis were hindered by the missing or dis-
crepant literature information concerning decay properties of the states in question.
For example, the discrepant literature information on the branching ratios in the
decay of the 2+5 state prevented from drawing firm conclusions on the collectivity
of the presumably oblate structure built on the 0+3 state.

Questions have also arisen following the unexpected observation of certain
levels in this study, e.g. the 5+1 state, which has a lifetime suggesting its much
lower collectivity. Moreover the branching ratio for the decay of the 5+1 state is
unusual, with the 226-keV decay to the 4+2 state being twice as intense as the 837-
keV transition to the 4+1 state. In the neighbouring 108Cd, the 5+1 state is known
at a similar energy (2565 keV, compared to 2331 keV in 106Cd) and decays, as
one would expect, preferentially to the 4+1 state, even though the energy difference
between the 5+1 → 4+1 and 5+1 → 4+2 transitions in 108Cd (1037 keV and 326 keV,
respectively) is smaller than in 106Cd. In the current work, it was investigated if
other possible placements of the 226-keV transition in the level scheme of 106Cd can
explain its observed large intensities. It was concluded that a decay of a hypothetical
new state at about 2.5 MeV or higher (i.e. where one could assume that an excited
state has avoided observation), yields equally unphysical E2 strengths. On the other
hand, a coincidence with the 226-keV γ ray revealed shifted (i.e. corresponding to
γ-ray emission in flight) components of the transitions de-exciting the 4+2 , 2+2 and
2+1 states, which is inconsistent with the measured long lifetime of the 5+1 state.
Therefore the 226-keV transition may be a doublet, either de-exciting a collective
state close in energy to the 5+1 state or with an entirely different placement in the
level scheme. Its placement and the properties of the level at 2331-keV excitation
energy clearly require re-investigation.

In Section 7.2, a proposed reorganization of the low-energy level scheme of
106Cd was discussed, regarding in particular theK = 2 andK = 4 bands associated
with the ground state. In heavier Cd isotopes, the 2+2 states are band heads of
well developed γ bands. In 106Cd, due to non-conclusive spin assignments and
discrepant literature information on transition probabilities, such a structure is not
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firmly established. For example, based on previous spin assignments, there are
several candidates for the first 3+ state, including the 2252-keV, 2254-keV, 2710-
keV and 2718-keV states. Although the current work argues that the state at 2252
keV is a good candidate for the 3+ member of the γ band, one has to confirm its
spin unambiguously. Previous studies yield mutually exclusive spin assignments for
this state, namely (2+, 3) or 3+ from a (n,n’γ) study [61], and (4+) from a (p,p’γ)
study [62]. The higher-spin members of the γ band are also controversial. Due
to the strong population of the 2486-keV (2+, 3+, 4+) state in the safe Coulomb-
excitation experiment of Gray et al. [71], it was postulated to be a γ-band member.
In contrast, Siciliano et al. [50] proposed the 2107-keV 4+2 state, together with the
2331-keV 5+1 states as γ-band members.

Moreover, the branching ratio Iγ(4+2 → 2+1 )/Iγ(4
+
2 → 4+1 ) obtained from the

current data set differs significantly from the literature value of 0.611(19) [59],
however our data seem to be internally consistent, as presented in Fig. 5.2. The
Iγ(4

+
2 → 2+1 )/Iγ(4

+
2 → 4+1 ) intensity ratios obtained from γ singles are approxi-

mately constant, within error bars, as a function of θLAB (a deviation is observed
for θLAB < 22◦, where the statistics is low). Summing the data from all scattering
angles and gating on a transition below (633 keV, 2+1 → 0+1 ) and above (226 keV,
5+1 → 4+2 ) yielded very similar results, although with considerably larger uncer-
tainties. It is worth noting that the present study represents the first measurement
where the 2105-keV state was observed following inelastic scattering of heavy ions.
This reaction mechanism preferentially populates excited states of a collective cha-
racter. It is therefore possible that previous experiments on 106Cd, which used β
decay, inelastic neutron and proton scattering and fusion-evaporation reactions,
observed in fact a doublet of states at 2105 keV, while in the present measurement
one member of the doublet is populated more strongly than the other. Similar
scenario was already observed in 112Cd, where inconsistent branching ratios in the
decay of a 1871-keV state, populated using various reaction mechanisms [106,126],
were the first hint of the presence of a doublet of 4+, 0+ states at this excitation
energy. Finally, discrepancies in the literature are also evident for the decay of the
2+2 γ band-head. Those reported in Ref. [62] are dominated by the branch to the
2+1 state, while a direct ground-state decay was found to dominate in all other
available studies.

Therefore, one would benefit largely from a new β-decay study of 106Cd to
resolve the existing ambiguities. Such a measurement would make it possible to
pin down the structure of the γ band by firmly assigning the spins of key states and
possibly observing low-intensity branches in and out of band, connecting it to other
existing structures. Moreover, it would be possible to extend to higher spin the rota-
tional bands built on the excited 0+ states, and possibly identify more 0+ states at
higher energies. A precise determination of the 2+5 → 0+3 decay branch is necessary
to compare the collectivity of the structure built on the 0+3 state with the model
predictions, as mentioned in Section 7.1. Additionally, such an experiment would
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allow searching for low-intensity E2 transitions between negative-parity states, e.g.
5−2 → 3−1 . As it was discussed in Section 6.2.4, the excitation cross sections of
the 5−1 , 5−2 and 1− states strongly depend not only on the corresponding E3 ma-
trix elements, but also on the B(E2) values between the state in question and
the 3−1 state. The hypothesis of a strong E2 coupling between the 3−1 and 5−2 ,
and/or the 3−1 and 1− states would explain the enhanced population of the 5−2
and 1− states, otherwise the excitation uniquely via the 2+1 state would require a
B(E3; 5−2 → 2+1 ) value of 40(3) W.u. and a B(E3; 1− → 2+1 ) value of 45(3) W.u.,
Table 6.4, drastically different from e.g. B(E3; 3−1 → 0+1 ) and close to the largest
B(E3) values known in the nuclear chart. A verification of this scenario can be
provided by a direct observation of the weak 5−2 → 3−1 and 1− → 3−1 transitions.
Moreover, the possible observation and assignment of other negative parity states
in 106Cd can contribute greatly to the discussion on the character of the 5−2 and 1−

states, suggested as possible members of the quadrupole-octupole coupled quintu-
plet. Finally, fast-timing measurements with LaBr3 detectors would help resolving
the issue with the 5+1 lifetime. In addition, one would be able to directly measure
the lifetime of the 0+3 state, which is in the sensitivity range of the fast-timing
method. There is also a possibility that lifetimes of other less-collective states in
106Cd would be extracted, giving further insight into their structures.

For these reasons, a β-decay experiment to study 106Cd at the ISAC facility at
TRIUMF was recently proposed (S2313, spokespersons: P. Garrett, D. Kalaydjieva,
M. Zielińska) aiming to extend the work presented in the current manuscript.
At the July 2023 meeting, the TRIUMF Nuclear Physics Experiments Evaluation
Committee recommended 11 shifts with high priority for this project, which should
be scheduled within three years. For this study, a setup identical to that described
in Part II of the present thesis will be used, namely GRIFFIN [127] together with its
ancillary detectors (PACES and eight LaBr3 detectors with BGO shielding). This
will allow performing γ-γ angular correlations [128] to firmly establish the spins
of key states. The spins of the decaying 106In nuclei (7+ for the ground state and
(2+) for the isomeric state) will allow populating a wide range of spins in 106Cd,
thus enabling a search for possible 6+ and higher-spin members of the γ band.
Furthermore, as presented in Fig. 7.3, the detailed information on low-spin states
across the Cd isotope chain, and in particular about the excited 0+ states, ends
abruptly at 106Cd; in fact, there are no excited non-yrast low-spin states assigned
in 104Cd. Thus, within the S2313 project an investigation of the structure of 104Cd
via the 104In β+/EC decay was also proposed. Ten shifts with medium priority
were recommended for this study.
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Part II

β-decay study of 100Zr
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8 - Shape coexistence in nuclei with A ≈ 100

The changes in the ground-state mean-square charge radii δ⟨r2⟩ as a function
of the neutron number for nuclei with mass A ∼ 100 are presented in Fig. 8.1 [4].
A sudden increase of δ⟨r2⟩ is observed for the Rb, Sr, Y and Zr isotopes at N = 60.
Moreover, at the same time their binding energy increases, as can be concluded
from the two-neutron separation energies [129]. These observations were related
to a sudden onset of deformation appearing at N = 60. While usually deformation
changes gradually within an isotopic chain, a rapid change of the ground-state
shape is observed for those nuclei. This interpretation is also supported by the vast
reduction of the energy of the 2+1 states in the even-even Zr and Sr isotopes, which
is related to an increase of collectivity. As can be seen in Fig. 8.2 (A), this pheno-
menon has a well localized character as a much more gradual shape transition is
observed in both lighter (Kr) and heavier (Mo, Ru) nuclei. Furthermore, the syste-
matics of the B(E2; 2+1 → 0+1 ) values expressed in single particle units, normalized
to the number of nucleons A [presented in Fig. 8.2 (B)] indicate that almost all
nucleons contribute to the collectivity at N = 60, i.e. the B(E2; 2+1 → 0+1 )/A

value is saturated at unity resembling a perfect rigid rotor.

Figure 8.1 – Changes in the mean-square charge radii as a function of the neu-tron number for the ground states of the Kr–Ru nuclei. Figure adapted fromRef. [4].
Various theoretical models attempted to reproduce the sudden change of the

ground-state deformation occurring at N = 60 in Zr and Sr nuclei. As an example,
Figure 8.3 presents experimental B(E2; 2+1 → 0+1 ) values for Zr isotopes with
52 < N < 66 compared to the results of relativistic beyond-mean-field calculations
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with the PC-PK1 force [130], nonrelativistic BMF using SLy4 [130] and Gogny-
D1S [131] interactions, interacting boson model (IBM) with self-consistent mean-
field approximation based on the Gogny-D1M energy density functional [132], shell
model [133] and the large-scale Monte-Carlo shell model (MCSM) [134]. While all
BMF and IBM calculations reproduce rather satisfactorily the B(E2; 2+1 → 0+1 )
values in the well-deformedN = 60, 62 Zr nuclei, they fail to describe the properties
of lighter Zr isotopes. In contrast, “standard” shell-model calculations accurately
reproduced the B(E2; 2+1 → 0+1 ) values for Zr isotopes with 52 < N < 58,
however, due to the limitations of the valence space, they could not be extended
towards heavier Zr isotopes. A successful description of the evolution of collectivity
on both sides of the shape transition at N = 60 has only been achieved via the
MCSM calculations.

Figure 8.2 – Left: Systematics of the excitation energies of the 2+1 states in Kr, Sr,Zr, Mo and Ru isotopes as a function of the neutron number. Right: Systematicsof the B(E2; 2+1 → 0+1 ) values in W.u., normalized to the mass A, for Kr, Sr, Zr,Mo and Ru isotopes. Figure adapted from Ref. [4].

A sudden change of the ground-state configuration may be explained by the
coexistence of two configurations with distinct shapes which interchange at N =

60. A shape-coexistence scenario in Zr and Sr nuclei is supported by the appearance
of low-energy excited 0+ states in both 98Sr and 100Zr nuclei. An interpretation has
therefore been proposed that the 0+2 states in the Sr and Zr isotopes with N < 60

correspond to a deformed configuration that interchange with the nearly spherical
ground state at N = 60, which becomes non-yrast for N ≥ 60. For example, the
ground state of 96Sr is believed to be spherical and its first excited 2+1 state was
suggested to have a vibrational character [135,136], as its spectroscopic quadrupole
moment is compatible with zero and a rather low reduced transition probability
is measured for its decay to the ground state. On the other hand, two closely-
spaced excited 0+ states were established at low excitation energy in 96Sr. They
are connected by a strong E0 transition [137,138], suggesting both a considerable
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mixing and a shape difference between their configurations. Excited 2+ states were
identified as possible candidates for members of rotational bands built on these
collective structures.

Figure 8.3 – Experimental B(E2; 2+1 → 0+1 ) values for Zr isotopes with 52 <
N < 66 compared with results of several theoretical approaches (see text forreferences). Figure adapted from Ref. [131].

In contrast to the ground-state band of 96Sr, that in 98Sr has a rotational
character with large in-band transition probabilities. Large negative quadrupole
moments were measured via Coulomb excitation [135, 136] for the ground-state
band members indicating prolate deformation with |β2| ≈ 0.5. At the same time,
the spectroscopic quadrupole moment of the 2+2 state in 98Sr is compatible with
zero and the in-band 2+2 → 0+2 transition has a reduced transition probability very
similar to the B(E2; 2+1 → 0+1 ) value in 96Sr. This shape-coexistence scenario bet-
ween the well-deformed prolate ground-state band and a weakly deformed excited
structure in 98Sr was put on firm ground in Ref. [136] by extracting the quadrupole
invariants ⟨Q2⟩ for both 0+1 and 0+2 states via Coulomb excitation.

Far less precise information is available in the literature regarding the shapes
of 98Zr and 100Zr nuclei. Two RDDS measurements were carried out to determine
lifetimes of low-lying excited states in 98Zr, populated via fission [131] and in a two-
neutron transfer reaction [139]. Based on the measured lifetimes of the first excited
2+, 4+ and 6+ states, Singh et al. [131], proposed the existence of two deformed
configurations coexisting with a spherical ground state. The obtained B(E2; 2+1 →
0+2 ) value (corresponding to β2 ≈ 0.21 within the rigid rotor model) suggested that
the 2+1 state is a part of the moderately deformed structure built on the 0+2 state.
Based on the large B(E2; 6+1 → 4+1 ) and B(E2; 4+1 → 2+2 ) values, the 2+2 , 4+1
and 6+1 states were proposed to be members of a rotational band built on the
highly deformed 0+3 state. The measured large B(E2; 4+1 → 2+1 ) value supported
a strong mixing between the moderately and strongly deformed configurations, in
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line with the large E0 transition strength between the 0+2 and 0+3 states [140].
This triple shape coexistence interpretation was guided by MCSM calculations
and explained by the type-II shell evolution (see Section 13.1 for further details).
According to these calculations, a prolate 0+2 state and a strongly deformed triaxial
0+3 state coexist with the nearly spherical ground state in 98Zr. The model, however,
predicted larger collectivity in the prolate band with respect to the experimental
findings, and failed to reproduce the strong mixing between the two deformed
configurations.

A different interpretation of the 98Zr structure was offered in Ref. [139] based
on calculations within the framework of configuration mixing in the interacting
boson model (IBM-CM). The 0+1 and 2+3 states were proposed to be spherical
single-particle states. The remaining low-lying states were organized into multi-
phonon structures built on the weakly-deformed intruder 0+2 state: the 2+1 state
being the one-phonon state, the 0+3 , 2

+
2 and 4+1 states members of the two-phonon

triplet and the 6+1 state a three-phonon state. The measured lifetimes of the 2+1
and 4+1 states, longer with respect to those in Ref. [131], pointed to significantly
reduced collectivity. The B(E2; 2+2 → 2+1 ) value of 46+35

−14 W.u., obtained for the
first time in Ref. [139], is in line with both interpretations. On one hand, a strong
E2 transition is expected between the two-phonon and one-phonon states, on the
other hand, this can also be interpreted in terms of strongly mixed deformed confi-
gurations built on the 0+2 and 0+3 states as proposed in Ref. [131]. Both MCSM and
IBM-CM approaches yielded an overall good description of the experimental transi-
tion probabilities in 98Zr. However, there are certain major differences between the
predictions of the two models, which may allow to disentangle the structural puzzle
of 98Zr in the future. For example the B(E2; 2+2 → 0+3 ) value predicted by MCSM
is almost 10 times larger than the value obtained in the IBM-CM calculation. The
τ(2+3 ) measured in Ref. [139] combined with the currently known branching ra-
tio for this transition [141] yields an unphysically large transition probability (over
500 W.u.), which suggests that these two observables should be remeasured. Mo-
reover, a measurement of the quadrupole moments of the 2+ states would also
discriminate between the two interpretations.

Although much less is known about 100Zr in comparison to its lighter isotone
98Sr, their structures seem strikingly similar. The states in the ground-state bands
are closely spaced and linked by strong E2 transitions. The observation of an
enhanced E0 transition between the 0+2 state and the ground state, and a much
smaller moment of inertia of the rotational structure built upon it, compared to
the ground-state band, suggest the existence of a low-energy configuration with a
different shape [13]. In order to confirm whether the sudden ground-state shape
transition in Zr is due to the interchange between configurations in 98Zr and 100Zr,
as it seems to be the case for the Sr isotopes, precise information on the decay
properties of 98,100Zr is needed. The structure of 100Zr was previously investigated
mostly following fission or β decay. The lifetimes of the ground-state band members

135



were measured up to spin 12 using various techniques as summarized in Ref. [147].
In contrast, apart from that of the 0+2 state, lifetimes of non-yrast states are not
known, and therefore the conclusions regarding collectivity of the structure built
on the 0+2 state rely solely on level energies. A third low-lying 0+ state in 100Zr
was identified, but contrary to 98Zr there is no rotational structure known to be
associated with it. On the other hand, Ref. [146] proposed a K = 2 “proto-γ”
band, suggesting that the triaxial degree of freedom may influence the structure
of 100Zr. There is no equivalent of this structure in the 98Sr isotone, however
Ref. [136] related the observed reduction of the spectroscopic quadrupole moment
of the 2+1 state in 98Sr with respect to the rigid-rotor expectation to a certain
degree of triaxiality.

The current knowledge of the low-energy part of the 100Zr level scheme seems
insufficient. In order to firmly establish low-spin levels, and in particular assign the
structures built on states with presumably different shapes, a study of β decay
into 100Zr has been proposed and perfomed at TRIUMF, Canada. The collected
data have been partially analysed within this PhD project. Among the goals of this
experiment was a search for possible candidates for the band-head of the “proto-γ”
band proposed in Ref. [146], as well as a measurement of lifetimes of non-yrast
states in 100Zr via the fast-timing technique.

To firmly establish shape coexistence in 100Zr, a direct measurement of the
deformation of excited states is required. This is possible only by employing the
Coulomb-excitation technique to determine their spectroscopic quadrupole mo-
ments, or even better, to extract a complete set of transitional and diagonal elec-
tromagnetic matrix elements which can be further analysed using the quadrupole
sum rules approach [5, 6] in order to obtain a model-independent information on
the shape parameters. To this aim, a low-energy Coulomb-excitation measurement
to study 100Zr has been proposed and approved by the PAC of the Argonne Natio-
nal Laboratory. It currently awaits scheduling within the nuCARIBU project [142].
As shown in Section 5.4 for 106Cd, Coulomb-excitation studies require a precise
knowledge of various spectroscopic information on the nucleus of interest. Thus,
the established level scheme and precisely measured branching and mixing ratios in
100Zr resulting from the present analysis will greatly enhance the sensitivity of the
future Coulomb-excitation measurement to key nuclear-structure parameters such
as spectroscopic quadrupole moments.
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9 - β decay

The radioactive β− decay in a nucleus consists of the conversion of a neutron
to a proton (or vice-versa for the β+ decay). Both Z and N change by one unit,
while the total mass number A is preserved. In addition, an electron (positron) and
anti-neutrino (neutrino) are emitted:

β− : A
ZXN →A

Z+1 YN−1 + e− + ν̃e, (9.1)
β+ : A

ZXN →A
Z−1 WN+1 + e+ + νe. (9.2)

The β+ decay competes with the electron capture process ϵ, in which an orbital
electron, usually from the K shell, is captured by the nucleus and a neutrino is
emitted:

ϵ : A
ZXN + e− →A

Z−1 WN+1 + νe. (9.3)
The latter two processes are energetically forbidden for free protons or for protons
in hydrogen atoms.

9.1 Energy release in β decay

The particles emitted in β decay have a continuum of energies from zero up
to an upper limit given by the difference between the initial and the final nuclear
states. The experimentally obtained continuous electron spectra remained a puzzle
for more than a decade after its first observation [1]. It was finally explained in 1931

by Pauli by the existence of a third body in the process. This unknown particle was
named neutrino by Fermi and due to the conservation of electric charge, it was
concluded that the neutrino has to be electrically neutral. The conservation of the
angular momentum on the other hand implied that the spin of ν is 1/2, as for the
electron.

The Q value is defined as the difference between energies corresponding to the
initial and final nuclear masses. Therefore, Q value of the β− process, relevant for
this study, is given by:

Qβ− = mN (AZXN )c2 −mN (AZ+1YN−1)c
2 −mec

2, (9.4)
where mN denotes the nuclear masses, me is the mass of the emitted electron and
the antineutrino is treated as massless. The mass of the nucleus and the mass of
the atom M(AZXN ) are related via:

M(AZXN ) = mN (AZXN )c2 + Zmec
2 −

Z∑
i=1

Bi, (9.5)
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where Bi represents the binding energy of the i-th electron. If the differences in
binding energies are negligible, the following formula is obtained by substituting
Formula 9.5 into Formula 9.4:

Qβ− =M(AZXN )c2 −M(AZ+1YN−1)c
2. (9.6)

Note that if A
Z+1YN−1 is an excited nuclear state, the Q value has to be decreased

by its excitation energy.

9.2 Fermi theory of the process of β decay

Half-lives in β decay are typically far longer than the characteristic nuclear
times (10−20 s). Therefore, in the description of the β-decay process, in order to
enable transitions between the nuclear states, a potential V is introduced that can
be treated as a weak perturbation of the nuclear interaction W . The nuclear states
are eigenstates of W , and approximate eigenstates of V +W . The transition rate
between these quasi-stationary states can be evaluated using Fermi’s Golden Rule:

λ =
2π

ℏ
|Vfi|2ρ(Ef ), (9.7)

where ρ(Ef ) is the density of the final states (that can also be written as dnf/dEf )
and the matrix element Vfi is the integral of the interaction V between the initial
and final quasi-stationary states of the system, which for β− decay is given by:

Vfi =

∫
ψ∗
fV ψidV = g

∫
ψ∗
Dψ

∗
eψ

∗
ν̃OxψPdV, (9.8)

where g, referred to as a coupling constant, is a scalar quantity describing the
strength of the weak interaction, x indicates the form of the mathematical operator
(V (vector) - A (axial vector)), and ψD,e,P,ν are the wave functions of the daughter
nucleus, the emitted electron, the parent and the antineutrino, respectively [1].

Within the “allowed approximation”, the nuclear matrix element Mif , given by∫
ψ∗
fOxψidV, does not depend on the electron and the antineutrino momenta.

Therefore, the dependence of λ in Formula 9.7 on the e− and ν̃ energies originates
only from the density of the final states ρ(Ef ) and the following formula can be
obtained [1]:

λ =
g2|Mfi|2

2π3ℏ7c3

∫ pMAX

0
F (ZD, p)p

2(Q− Te)
2dp, (9.9)

where p is the momentum of the electron, F (ZD, p) is the Fermi function accoun-
ting for effects appearing due to the Coulomb interaction between the β particle
and the daughter nucleus and p2(Q− Te)

2 is a statistical factor depending on the
number of final states. Formula 9.9 can be further reduced to:

λ =
g2m5

ec
4|Mfi|2

2π3ℏ7
f(ZD, Q), (9.10)
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where the latter is known as the Fermi integral, often expressed using the half-life
t1/2 instead of the transition rate:

ft1/2 =
2π3ℏ7 ln(2)
g2m5

ec
4|Mfi|2

. (9.11)
The ft1/2 values can be used to compare β-decay probabilities in different nuclei.
As they cover a very wide range (103 − 1020), their logarithms are often used
instead. The transitions with the lowest log ft values are the fastest ones.

9.3 Angular momentum and parity selection rules

Conservation of the total angular momentum in β decay requires that:

I⃗P = I⃗D + L⃗+ S⃗, (9.12)
where ⃗IP,D are the total angular momentum of the parent/daughter nucleus, and
L⃗ (L⃗e + L⃗ν̃) and S⃗ (s⃗e + s⃗ν̃) are the total orbital and spin angular momentum of
the emitted electron-antineutrino pair. As the intrinsic spin of e− and ν̃ are both
1/2, the total spin of the pair is either 0 or 1.

There are two types of classification of decays corresponding to S = 0 (Fermi
decays) or S = 1 (Gamow-Teller decays). If the total lepton angular momentum
is L = 0, then ∆I = 0 for Fermi decays, and ∆I = 0 (but no 0 → 0 decays) or
∆I = ±1 for Gamow-Teller decays.

The change of the parity between the initial and final states is given by πP =

πD(−1)L. In principle, all transitions satisfying this condition should be considered,
i.e. |Mfi|2 =

∑
L |ML

fi|. However, lower values of L are typically dominant and
with the increase of L, the transition rate λ decreases dramatically, while the half-
life increases. This is a result of the reduced overlap of the e−ν̃ wavefunctions with
the nucleus at higher L values. The most probable transitions correspond to L = 0,
and they are referred to as superallowed or allowed, following the classification in
Table 9.1. Note that a superallowed transition between two nuclei with 0+ states
is only possible via a Fermi decay. If the initial and final states have opposite
parities, the parity selection rule is violated and the e−ν̃ pair must carry an odd
orbital momentum. The decays with the lowest odd orbital momentum L = 1

are classified as “first-forbidden”. The next possible decay involving parity change
is with L = 3 and is the third-forbidden decay, etc. The ft1/2 value giving the
relative intensity of those transitions is presented in the last column on Table 9.1
and decreases by a factor of ≈ 104 for each increase of L by a unit.
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Table 9.1 – A classification of transitions that may occur in a β decay process:superallowed (the nucleon that transformed did not change its shell-model or-bital), allowed (L = 0) and nth forbidden (the e−ν̃ pair carry an orbital angularmomentum of nℏ). The “unique” transitions are Gamow-Teller transitions where
L⃗ and S⃗ are aligned.
Type of the transition Selection rules Le−ν̃ ∆π ft1/2 [s]

Superallowed ∆I = 0,±1 0 no 103 − 104

Allowed ∆I = 0,±1 0 no 2 · 103 − 106

1stforbidden ∆I = 0,±1 1 yes 106 − 108

Unique 1st forbidden ∆I = ±2 1 yes 108 − 109

2ndforbidden ∆I = ±1,±2 2 no 2 · 1010 − 2 · 1013

Unique 2nd forbidden ∆I = ±3 2 no 1012

3rdforbidden ∆I = ±2,±3 3 yes 1018

Unique 3rd forbidden ∆I = ±4 3 yes 4 · 1015

4thforbidden ∆I = ±3,±4 4 no 1023

Unique 4th forbidden ∆I = ±5 4 no 1019
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10 - γ-γ angular correlations

Each excited nuclear state with angular momentum I has (2I + 1) substates
with projections of the angular momentum m = −I, −I + 1, ..., I − 1, I, which
in the absence of external fields have nearly degenerate energies [1]. The angular
distributionW (θ) of γ rays emitted in the decay of an excited state I to a particular
final substate mf is given by:

W (θ) =
∑
mi

p(mi)Wmi→mf
(θ), (10.1)

where the sum is over all possible initial substatesmi, p(mi) is the population of the
initial substate and Wmi→mf

(θ) is a characteristic anisotropic angular distribution
for the mi → mf transition, depending on the transition multipolarity.

For example, let us assume dipole transitions in a 1+ → 0+ → 1+ decay
cascade. The initial state has three possible substates with projection of the angular
momentum +1, 0, and −1, while the intermediate state has only one substate (0).
The angular distributions of transitions de-exciting individual substates of the spin-
1 state would be W (θ)+1→0 = W (θ)−1→0 = 1

2(cos
2(θ) + 1) and W (θ)0→0 =

sin2(θ). If all substates are equally populated (p(mi) = 1/3), as in the case of β
decay, the total angular distribution W (θ) has no dependence on θ:

W (θ) =
2

3

(
1

2
(cos2(θ) + 1)

)
+

1

3
sin2(θ) = const. (10.2)

Therefore, the angular distribution of an unpolarized sample is isotropic, due to
the random orientation of the ensemble of nuclei in the sample. In order to observe
the individual angular distributions, it is necessary to create an uneven population
of the initial substates. Such alignment may be due to the reaction mechanism
(e.g. in heavy-ion induced fusion-evaporation reactions). However, even if there
is no initial alignment, angular correlations between subsequent γ-ray decays can
be investigated. If the radiation populating the initial state mi is registered in
coincidence with the mi → mf transition, the direction of the first emitted γ ray
can be used to define a Z axis and therefore an orientation axis for the magnetic
substates. This way, a polarization of the nucleus is effectively generated and the
population of magnetic substates is unequally distributed. For example, in a cascade
0+ → 1+ → 0+, if the first transition is registered, the Z axis can be defined
along the emission axis, i.e. θ1 = 0 by definition and W (θ1)0→0 = sin2(0) = 0.
Therefore, mf = 0 can not be populated in this cascade, while mf of 1 and −1

are equally populated resulting in total W (θ2) ∝ (1 + cos2(θ2)). This way the
anisotropic spatial distribution of the second γ ray with respect to the first one
can be observed.

141



The angular correlations depend on the spins of the nuclear states in the cas-
cade and multipolarities of the emitted γ rays (including multipole mixing ratios).
For an arbitrary cascade, W (θ) can be expressed as:

W (θ) =
∑

i=0, even

BiiAiiPi(cos(θ)), (10.3)

where Bii is the initial nuclear orientation, Pi(cos(θ)) are Legendre polynomials of
order i, Aii are coefficients depending on the spins of the involved states, multipo-
larities and mixing ratios [148] and the sum only includes even i values to conserve
parity. Since the states of interest are populated in β decay the initial nuclear
orientation is isotropic, i.e. Bii = 1. The Aii coefficients can be calculated using
angular momentum algebra [148–151]. Note that Aii do not depend on the parity
of the involved states, therefore it is not possible to obtain direct information on
the parity from angular-correlation measurements.

For cascades involving low transition multipolarities, usually only the first few
terms of Formula 10.3 are necessary:

W (θ) = A00 [1 + a2P2(cos(θ)) + a4P4(cos(θ))] , (10.4)
where A00 is a normalizing factor, ai = Aii/A00 and θ is the angle between the
two successive γ rays in the investigated cascade. The dependence of angular
correlations on the spins of the involved states is illustrated in Fig. 10.1, presenting
W (θ) for I → 2+ → 0+ cascades calculated assuming different spins I of the initial
state. For transitions that can be mixed, mixing ratios δ = 0 were assumed. The
observed angular correlations have distinct patterns and are symmetric with respect
to θ = 90◦. The corresponding a2 and a4 coefficients are given in Table 10.1.

Table 10.1 – Theoretical a2 and a4 coefficients describing angular correlationsfor the cascades specified in the first column. Mixing ratios are assumed to beequal to 0.
Cascade a2 a4

0 → 2+ → 0+ 0.357 1.143

1 → 2+ → 0+ −0.25 0

2 → 2+ → 0+ 0.25 0

3 → 2+ → 0+ −0.071 0

4 → 2+ → 0+ 0.102 0.009

On the other hand, the coefficients a2 and a4 depend strongly on the mixing
ratio, as shown in Figure 10.2 for a 2+ → 2+ → 0+ cascade, although the sensiti-
vity to δ effectively disappears for large δ values. Similar a2 and a4 combinations
can result from cascades involving different spin sequences, therefore additional
spectroscopic information is required to assign definite spins.
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Figure 10.1 – Angular correlationsW (θ) calculated for a cascade I → 2+ → 0+assuming different initial spins I and mixing ratios equal to 0.

Figure 10.2 – The a2,4 coefficients as a function of the mixing ratio for a 2+ →
2+ → 0+ cascade. Figure adapted from Ref. [152].

As will be discussed in Section 12.3, the measured angular correlations are
attenuated with respect to those calculated with Formula 10.3 due to various ex-
perimental effects. This is usually accounted for by introducing suitable attenuation
coefficients multiplying terms in W (θ).
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11 - Experimental details

This work is based on a β-decay measurement performed in November 2021

at the TRIUMF facility [153, 154], Canada. The instrumentation used for this
study is introduced in Section 11.1, while the initial data processing is presented
in Section 11.2.

11.1 Experiment S1790

A beam mixture of 100Rb and 100Sr, produced using the Isotope Separation
On-Line (ISOL) technique [155], was delivered to the GRIFFIN decay station [127]
situated in the ISAC I experimental hall [156]. Excited states in 100Zr were popula-
ted in the β− decay of 100Y and studied using GRIFFIN and its ancillary detectors.

11.1.1 Beam production

The world’s largest cyclotron [157] is situated at TRIUMF. It is capable of
accelerating proton beams up to 520 MeV. First, H− ions are produced from H2

gas using hot-filament ionization. They are then transported through an electro-
static beam line to the cyclotron, where they are accelerated using high-frequency
alternating electric fields. Finally, the negative ions are stripped of their electrons
by passing through thin graphite extraction foils. The extracted H+ ions are next
delivered onto a thick production target. A cocktail of radioactive ions is produced
in the induced spallation and fission reactions. The products diffuse to the sur-
face of the heated target and effuse to the ion source where they are ionized, and
subsequently accelerated and mass separated.

In the present experiment a 9.8 µA beam of 480-MeV protons was focused
on a UCX primary target coupled with a rhenium surface-ion source, heated to
≈ 2200◦C. The effused ions, mostly singly charged, were accelerated through a
potential difference of ≈ 30 kV and mass separated based on their charge-to-mass
ratio, using a high-resolution mass separator providing ∆m/m mass resolution of
the order of 1/1000 - 1/2000 [158].

The nucleus of interest, 100Zr, is populated via β− decay of the (1)− ground
state of 100Y (T1/2 = 732(5) ms [147]). However, using the described technique,
100Y has a prohibitively low production yield due to its refractory nature (high mel-
ting temperature and high ionisation energy). On the other hand, the grand-mother
and mother nuclei of 100Y, i.e. 100Rb and 100Sr, are easily surface-ionized and could
be extracted with relatively high yields – 5x104/s and 2x104/s, respectively. The
β−-decay chain used to populate 100Zr in the present experiment is highlighted in
red in Fig. 11.1. The (4−) ground state of 100Rb with a half-life of 52(2) ms de-
cays predominately to 100Sr (T1/2 = 200(2) ms). However, a weaker β−-n branch
to 99Sr was also observed in the present data set (marked in blue in Fig. 11.1).
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Figure 11.1 – The main β−-decay chain used to populate 100Zr in the presentexperiment (in red) and a weaker (5.6(12)% [159] or 26(8)% [160]) β−-n branchto A = 99 isotopes (in blue). The half-lives and decay modes are taken fromRef. [159].

The Q values of the β− decay of 100Rb, 100Sr, 100Y and 100Zr are as follows:
13574(21) keV, 7506(13) keV, 9050(14) keV, 3420(11) keV [159].

11.1.2 Beam deposition and decay

The beam mixture of 100Rb and 100Sr was transported to the low-energy expe-
rimental area of the ISAC I (Isotope Separator and ACcelerator) hall and delivered
onto a mylar tape of the Moving Tape Collector at the center of the GRIFFIN
spectrometer, marked as (2) in Fig. 11.2.

The Moving Tape Collector enabled the removal of the source of activity from
the center of the GRIFFIN array, and typically operates in a cycling mode. Each
cycle starts with a background measurement, then the beam is implanted onto the
tape for a certain period of time (“beam on”). Subsequently, the beam is deflected
by an electrostatic kicker and the subsequent measurement period is labelled as
“beam off”. The decay of the implanted radioactive ions can be observed throughout
the cycle, or in selected periods. At the end of every cycle the beam deposition
spot on the tape is moved outside of the array behind a thick (5 cm) lead shielding
wall, labelled as (1) in Fig. 11.2.
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Figure 11.2 – Experimental setup, including the Moving Tape Collector with re-lated lead shielding (1); mylar tape for beam deposition placed inside a vacuumreaction chamber (2); GRIFFIN HPGe clover detectors (one hemisphere shown,(3)); LaBr3 detectors (4); PACES (5); beam line (6).

In the experiment two main cycle lengths were used referred to as “short”
and “long” cycle. Most of the data were collected using the short cycle: 0.25s
background measurement; 3.5s “beam on”; 1s “beam off” and 1s for the tape
movement. The “beam on” period is approximately equal to five half-lives of 100Y
and was chosen to effectively saturate the 100Y activity, while keeping the 100Zr
activity suppressed (T1/2(100Zr) = 7.1(4) s), see Fig. 11.3. A small portion of the
data were also collected with a longer “beam on” (20 s) and “beam off” (30 s)
periods to observe the decay of 100Zr into 100Nb and 100Mo.

Figure 11.3 – Simulation of the activity build up of 100Y (red), 100Sr (blue), 100Rb(green) and total (magenta) as a function of time [161]. The “beam on” period inthe “short” cycle is illustrated with the shaded blue area.
11.1.3 GRIFFIN spectrometer

The daughter nuclei, produced in a β− (or β−-n) decay, can be in an excited
nuclear state and subsequently they de-excite through several γ decays. A large
number of γ rays were observed, originating from all of the nuclei in the investigated
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decay chains. They were registered by the high-efficiency HPGe clover detectors of
the GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigation of Nuclei)
spectrometer, labelled (3) in Fig. 11.2.

GRIFFIN consists of 64 HPGe crystals organized into 16 clover detectors. They
are installed at 16 of the 18 available positions in a frame with a rhombicubocta-
hedral geometry. The remaining two positions are for the beam line and the tape
system ((6) and (1) in Fig. 11.2, respectively). The frame consists of mechanical
substructures - two “coronas”, each holding four GRIFFIN detector units at 90◦,
and four “lampshades” that each hold two GRIFFIN detector units at either 45◦ or
135◦ relative to the beam line [127].

Each GRIFFIN clover detector can be equipped with a set of bismuth germa-
nate (BGO) Compton-suppression shields composed of separate front, side and
back segments. The setup can be operated in two main configurations – a “high-
efficiency” mode, in which the HPGe detectors are positioned 11 cm away from
the tape and the front BGO shields are retracted, or an “optimized peak-to-total”
mode, in which the HPGe crystals are placed 14.5 cm away from the beam spot
and are fully Compton suppressed, see Fig. 1 in Ref. [127]. In the latter mode, a
delrin absorber can also be placed around the vacuum chamber in order to suppress
neutrons and electrons interacting with the HPGe detectors.

During the S1790 experiment the detectors were arranged in the “optimized
peak-to-total” configuration, with 10-mm thick delrin absorber, and one of the
clovers was removed to make space for the cooling system of PACES. The coor-
dinates of the center of each crystal are given in Table E.1 in Appendix E. The
large number of crystals and high γ-ray detection efficiency of the GRIFFIN spec-
trometer make it a perfect tool for performing γ-γ angular correlations [128]. Each
two crystals can be organized into a pair with a specific opening angle, resulting
in a total of 52 unique opening angles (see the last two columns of Table E.1 in
Appendix E) that can be used for an angular-correlation analysis.

11.1.4 Ancillary detectors

In the present study, GRIFFIN was complemented by a set of ancillary detec-
tors [127]:

• Pentagonal Array for Conversion Electron Spectroscopy (PACES)
is an array of 5 lithium-drifted silicon (Si(Li)) detectors with approxima-
tely 5 mm thickness each. PACES has a combined solid angle coverage of
8% [144]. The detector can be used for registration of conversion electrons
and alpha particles and is cooled to liquid nitrogen temperature in order
to improve its resolution. In the present experiment, PACES was used for
the registration of conversion electrons emitted in the decay of the excited
daughter nuclei. The detector is placed inside the vacuum reaction chamber
at backward angles, as marked with (5) in Fig. 11.2.
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• 7 LaBr3(Ce) fast scintillator detectors (doped with 5% cerium) coupled
to Photo Multiplier Tubes (PMT) were placed in the ancillary triangu-
lar positions on the GRIFFIN frame. Triangular BGO shields were used to
reduce the amount of Compton-scattered γ rays. Due to their good ti-
ming resolution, the LaBr3(Ce) detectors were used for fast-timing lifetime
measurements in 100Zr, reported in the PhD thesis of H. Bidaman [163],
University of Guelph, Canada.

• Zero Degree Scintillator (ZDS) is a 1-mm thick BC422Q fast plastic
scintillator. It is mounted inside the vacuum chamber, just behind the mylar
tape (Fig. 11.2 (2)) and has a maximum solid angle coverage of 25% [144].
Thanks to its great timing properties, the ZDS can be used together with
the LaBr3 detectors for fast-timing measurements, or to select events that
involve emission of β particles. In the analysis of the present experimental
data the information from the ZDS was not used as due to the high rates
and purity of the delivered radioactive ion beam the background level was
low and tagging on β particles was not necessary.

The signals from all GRIFFIN HPGe detectors and ancillary detectors were
processed by a custom-built digital electronics modules designed to operate at high
counting rates (up to 50 kHz/crystal) [127] read out by the Maximum Integrated
Data Acquisition System (MIDAS) [165]. Using the described setup, a large amount
of data (40 TB) was collected in a triggerless mode within about two days of active
data taking.

11.2 Data processing and calibration

The raw data from the data acquisition system were saved in a specific MIDAS
format and had to be first “translated” to a format readable within the GRSISort
framework [164]. GRSISort is an environment based on ROOT [64], designed to
facilitate the analysis of GRIFFIN data sets.

11.2.1 From raw data to histograms
As a first step, the raw data were unpacked and organized in “TFragments” with

the help of a GRSISort macro prepared following the examples given in Ref. [164].
Subsequently, the fragments were organized into ROOT trees containing “events”.
An event is a sequence of single detector hits registered in a given time window.
Each hit contains information about the channel (i.e. detector), integrated charge
of the pulse, timestamp, etc. [164]. The beginning of an event is given by a single
detector hit. An event may contain multiple hits from different detector types -
HPGe, LaBr3, etc.

In the present study a static time window of 2 µs was used for the event buil-
ding. About six weeks were needed to unpack and sort the collected raw data.
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Multiple checks were performed at each step to ensure no data were lost or cor-
rupted. As the final step, the events were filled into histograms following various
coincidence conditions using the GRSIProof framework [164]. An energy calibration
of the detectors was required at this stage, which was obtained as described in the
following section.

11.2.2 Energy calibration of GRIFFIN
An initial energy calibration of GRIFFIN detectors was performed using data

collected with five standard sources: 56Co, 60Co, 133Ba, 152Eu and 207Bi. The
source data were unpacked, sorted and organized into two-dimensional charge-
channel histograms. The raw spectra obtained from the 60Co data are shown in
Fig. 11.4 (A). Each bin on the X axis represents a single crystal with its specific
label used in the program, while the charge on the Y axis is given in arbitrary
units. It is possible to obtain a one-dimensional spectrum of each HPGe crystal by
projecting this two-dimensional histogram for a specific detector.

Figure 11.4 – Two-dimensional histograms obtained from the 60Co source databefore (A) and after (B) energy calibration. Each bin on the X axis corresponds toa single GRIFFIN crystal. On the Y axis, the raw charge is given in arbitrary units(panel A) and the calibrated energy in keV (panel B). The two lines in panel Bcorrespond to the 1173-keV and 1333-keV γ rays emitted by the 60Co source. Themissing four crystals were removed from the setup to put the cooling system ofPACES.
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The charge peak positions were extracted from the one-dimensional spectra for
each crystal using a semi-automatic procedure based on the newly-implemented
feature of GRSISort TSourceCalibration [164], as shown in the left side of Fig. 11.5.
The procedure reads energies and relative intensities of calibration peaks for each
source from external files. The fitting procedure was controlled through two pa-
rameters: threshold (peak height relative to the largest peak) and sigma (peak
width). They were varied to obtain satisfactory results. The data collected with all
five sources were treated simultaneously. The extracted peak positions in arbitrary
units were compared to their literature energies ELIT and fitted with a polynomial
function. The goodness of the calibration was tested by calculating the differences
between the calculated (ECAL) and literature energies as shown on the right side
of Fig. 11.5. A linear calibration function was used for the majority of the crystals
with only a few exceptions, where a higher-order (quadratic or cubic) polynomial
was preferred. Additionally, the calibration of several detectors had to be performed
“by hand” as the automatic procedure failed or did not reach satisfactory results.
The obtained calibration functions for all 60 crystals of the GRIFFIN clover de-
tectors were applied to the sorted data. The calibrated 60Co data are presented in
Fig. 11.4 (B) where the 1173-keV and 1333-keV γ-ray peaks are well aligned in all
crystals.

Figure 11.5 – Part of the TSourceCalibration interface. Left: Spectrum obtainedwith a 56Co source. The marked peaks were automatically identified and fitted.Right: Residuals, i.e. (ELIT − ECAL), as a function of the γ-ray energy. Data pointsobtained with the 56Co (blue), 60Co (black), 133Ba (yellow), 152Eu (red) and 207Bi(green) sources are presented.
The residuals (differences between the experimental and literature energies)

obtained by fitting the spectra of a single crystal (in red) and the total summed
spectra for all sixty crystals (in black) are compared in Fig. 11.6 (A). Although
the energy calibration of a few crystals resulted in residuals larger than 0.5 keV,
overall, the applied calibration leads to deviations from the literature data smaller
than 0.2 keV. However, summing the spectra of all individual crystals results in a
broadening of the γ-ray peaks, i.e. an increase of their full width at half maximum
(FWHM). This effect increases with the energy and at energies higher than 3 MeV,
the FWHMALL of a peak in the summed spectrum is larger by more than 0.5 keV
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than the FWHMsingle of the same peak in single-crystal spectra, as demonstrated
in Fig. 11.6 (B).

Figure 11.6 – (A) Difference between the literatureELIT and experimentalECALpeak positions, obtained from the calibrated source spectra of a random singlecrystal (in red) and the summed spectra of all HPGe detectors (in black). (B) Thedifference between the FWHM of the peaks in the summed spectra and in thespectra of a single crystal. An increase of the FWHM with ELIT is observed.
The energy calibration procedure described above should be understood as an

initial alignment of energy spectra, which needed to be further refined using in-
beam data, as the gain was observed to be slightly rate dependent. However, no
significant “gain drift” was observed in the in-beam data over the duration of the
experiment, suggesting that the electronics of GRIFFIN detectors was very stable.

11.2.3 Add-back procedure and cross-talk correction

When γ rays interact with the detector material, they may deposit only a part
of their energy if a Compton-scattering event occurs (γ ray scattering from a
charged particle, mostly atomic electrons). Such events do not contribute to the
main photo-peak and instead contribute to the background at lower energies. This
results in a deterioration of the energy resolution and peak-to-total ratio, especially
for low-energy γ-ray peaks. Thus, Compton scattering degrades data quality and
measures need to be taken to suppress it. As discussed in Section 11.1.3, active
anti-Compton BGO shielding was used during the experiment and anti-coincidences
between the HPGe and the BGO detectors were required when sorting the data.

It is possible to further reduce the effects from Compton scattering and recover
some of the lost events when clusters of HPGe detectors are employed by using add-
back algorithms. A γ ray may deposit its total energy in a HPGe clover through a
series of Compton scatterings between individual crystals forming the clover. The
energy of the original γ ray may be recovered if the signals from the individual
crystals registered within a fixed add-back time window are summed together.
However, when interactions occur close in time in neighbouring crystals within
the same clover, cross-talk effects start to play an important role, i.e. the signals
from individual crystals may interfere with and distort each other. This leads to a
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shift of the energy resulting from the add-back procedure, and a worsened energy
resolution. The effect depends on the particularities of the experimental setup, on
the energy deposited in the neighbouring crystals and the time differences between
the events. A detailed discussion of several methods used for cross-talk correction
can be found in Ref. [168].

Selected peaks in the total (all HPGe detectors) spectrum of the 56Co source,
obtained using the add-back procedure, are shown in Fig. 11.7 with (blue) and
without (red) cross-talk corrections applied. The effects are rather small at ener-
gies below 1 MeV. However, at higher energies the applied correction significantly
improves the quality of the spectra. A reduction of the peak broadening towards
lower energy is observed, and the peak energies are slightly shifted and reproduce
better the literature energy values. Furthermore, the separation of doublet peaks is
facilitated (see the region around 2610 keV in Fig. 11.7). The described procedures
are crucial for disentangling complex data sets with many observed transitions as
in the case of the present study.

Figure 11.7 – Selected γ-ray peaks observed in the total 56Co source spectrumobtained with the add-back procedure with (blue) and without (red) a cross-talkcorrection.

11.2.4 Efficiency calibration

An efficiency calibration has to be performed to allow for a comparison to be
made between the intensities of γ-ray peaks with different energies. The differences
in the detector response as a function of the energy were investigated using 152Eu,
56Co and 133Ba sources placed at the center of GRIFFIN. The energies (Eγ) and
relative intensities (Iγ) of the observed γ rays are known with good precision. The
measured values were compared to the literature Eγ and Iγ to obtain the relative
efficiency (ε(Eγ)) in arbitrary units, i.e. the likelihood of detecting γ rays of a
particular energy Eγ relative to another reference energy.
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If γ-ray detectors cover large solid angles, summing effects may strongly in-
fluence the observed energy spectra, including those of calibration sources emitting
γ rays in cascades. In “summing out”, the photo-peak efficiency is reduced due to
summing of the γ ray of interest with other γ rays depositing their full or partial
energy in the same crystal. Summing effects in GRIFFIN data can be evaluated
making use of the fact that γ-ray angular correlations are symmetric about 90◦,
which means that the number of coincident γ rays observed in pairs of crystals
separated by 180◦ is equal to the number of those which are summed in a single
crystal (i.e. an angular difference of 0◦ between the two emitted γ rays). Therefore,
the magnitude of the summing effects for each transition can be determined from
the experimental data by using γ-γ coincidences between detectors separated by
180◦ [168].

Due to prolonged unavailability of coincidence source data from the S1790
experiment following a failure of a server at the University of Guelph, summing
correction factors Csum determined from 56Co, 133Ba, and 152Eu source data in
Ref. [169] were used in the present work. The values reported in Table 3.1 of
Ref. [169] were extracted for the high-efficiency configuration of GRIFFIN used in
the experiment, thus had to be scaled (as 0.57(Csum − 1) + 1) to account for the
difference in the solid angle in the present work.

To obtain the efficiency calibration, in total 30 experimental points with ener-
gies between 81 and 3273 keV were fitted with the function:

ln(ε(Eγ)) = [(A+Bx+ Cx2)(−G) + (D + Ey + Fy2)(−G)](−1/G), (11.1)
where x = ln(Eγ/100), y = log(Eγ/1000) and Eγ is given in keV. The fit was
carried out with the EFFIT program from the RadWare package [170]. The data
from different sources were scaled until the points overlapped to obtain the relative
efficiency curve presented in Fig. 11.8. The corresponding coefficients are: A =

8.05(9), B = 1.4(3), C = 0, D = 6.792(1), E = −0.407(3), F = −0.044(3),
G = 15. A 3% relative uncertainty was conservatively adopted for the efficiency
based on the analysis of residuals presented in Fig. 11.9.

Using the nominal activity of the sources the total absolute efficiency of the
setup was estimated to be ≈ 9% at 1 MeV. This value is slightly smaller than
the efficiency predicted using the GRIFFIN efficiency calculator [167], which yields
10% absolute efficiency at 1 MeV for a setup consisting of 15 GRIFFIN clusters
and a 10 mm delrin absorber.

11.2.5 γ-γ coincidences
Among the main goals of this study is to extend the existing level scheme of

100Zr and obtain the relative intensities of different decay branches with a better
precision than previously reported [147]. This can be achieved by analysing γ-γ
coincidence data. Only γ rays registered in a narrow time window can be considered
correlated in time. Thus, as a first step, signals of the individual GRIFFIN crystals
were time-aligned. [163].
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Figure 11.8 – Relative efficiency as a function of the γ-ray energy, presented indoubly-logarithmic scale. Efficiencies deduced from experimental data, with sca-ling factors for each source applied, are presented in black and the relative effi-ciency curve in red.

Figure 11.9 – Relative differences in percent between the efficiency εCAL calcula-ted using the curve obtainedwith EFFIT and the experimentallymeasured values
εEXP as a function of the energy of the γ ray. The shaded area corresponds tothe 3% uncertainty adopted in the analysis.

On the basis of the HPGe-HPGe time difference spectra it was possible to
select a “prompt” coincidence time window of 300 ns. If the time difference between
two γ rays registered by GRIFFIN is smaller than 300 ns, they can be considered
to be emitted in a cascade. However, some of those events may still be due to
random coincidences, i.e. time-uncorrelated events. In order to correct for that,
two-dimensional γ-γ matrices were created for both prompt (time difference ∆t <

300ns) and time-random events (350ns < ∆t < 713ns). The time-random matrix
was scaled with a coefficient of 0.83 (calculated as the ratio of the widths of
the two ∆t regions) and subtracted from the prompt matrix. The resulting time-
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random-subtracted matrix was gated on several γ rays of different energies and
the obtained energy spectra were investigated for possible over-subtraction of time
randoms or large self-coincidence peaks. Although this procedure resulted in a small
self-coincidence peak for the most intense γ ray (212 keV), it was confirmed to
perform correctly for less intense peaks (e.g. 1108 keV).

If the counting rates during the experiment are high, a loss of data may occur
due to pile-up events. These are events in which a second γ ray hits a detec-
tor before the charge collection related to the previous γ ray is completed, and
consequently the new signal is superimposed on top of the first one. The GRIFFIN
DAQ is capable of separating some of the pile-up signals and recovering infor-
mation on the individual γ rays that were added together. Pulses that exhibit a
systematic increase of the amplitude during sampling are recognized, and flagged
as pile-ups [166]. The amplitude of each signal is sampled KValue times. In the
current experiment, events without pile-up corresponded to KValue = 379, while
for the recovered pile-up events, which amounted to about 11% of the obtained
data, the number of samples is lower, thus 0 < KValue < 379. Due to the shorter
integration time, the recovered pile-up events correspond to a worse energy reso-
lution. Thus, they were excluded from the γ-γ coincidence matrices by requiring a
KValue = 379.

Finally, only the data collected with the “short” tape cycle were used to inves-
tigate the structure of 100Zr. However, it was found that the information on the
cycle time was not properly stored for many among the data runs. Thus, an effort
was made to recover this information by calculating it on a sub-run-by-sub-run
basis from the saved data of the PPG (Programmable Pattern Generator), which
was used to control the movement of the tape. The possibility to exclude part of
the data collected in a cycle is crucial in the angular-correlation analysis, as it will
be explained in Section 12.3.
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12 - Analysis and results

A γ-γ matrix was built using all data collected with the short-cycle tape mo-
vement setting using a 300 ns prompt coincidence window. After implementing
all of the procedures described in Section 11.2, the total number of Compton-
suppressed coincidence events was ≈ 4x109 (with add-back implemented and after
the subtraction of time-random events). Although the richness of the current data
set makes it possible to largely extend the level scheme of 100Zr with respect to
earlier measurements presented in Section 12.1, this manuscript is focused mainly
on the low-lying excited states in 100Zr with excitation energy below 2.2 MeV. The
obtained results have a preliminary character and the analysis will be refined and
extended in the future.

12.1 Information from previous β-decay studies of 100Zr

The work of Wohn et al. [145] is the most detailed previous study of the β
decay of the 100Y ground state. It has confirmed and largely extended the level
scheme of 100Zr proposed in the earlier works [143,171].

The primary beam was produced with a Re surface ionization source contai-
ning enriched 235U bombarded with neutrons. A beam of ions with mass 100

(predominately 100Sr) was mass separated by the TRISTAN facility at Brookhaven
National Laboratory and delivered onto a mylar tape connected to a moving tape
station. Decay data were collected in several different tape movement modes to
enable separation between long- and short-lived decay products. The γ rays emitted
from the excited products of the decay were registered with either one (for γ-ray
singles measurements), or two or four (for γ-γ coincidence and angular correlation
measurements) Ge(Li) detectors. A thin plastic scintillator was used to register β
particles, which helped improving the quality of γ-ray singles spectra by applying
a β-coincidence gate. In addition a Si(Li) detector with 200 mm2 area and 3 mm
depletion depth was used for detection of conversion electrons.

Based on the collected data, 64 γ-ray transitions were placed between 20

levels in 100Zr. The highest reported state had an excitation energy of 4288 keV,
while the weakest transition placed in the decay scheme (2+2 → 4+1 ) amounted
to 0.09% of the intensity of the 2+1 → 0+1 transition. Several rather intense lines
remained unplaced, some of which will be further discussed in Section 12.2. The
authors also reported that due to the close detector geometry (5− 7 cm from the
tape) coincidence summing was not negligible. While the summing corrections have
been applied to the measured intensities, it seems that the branching ratios were
extracted from singles spectra, and thus the results should be taken with caution
and possibly verified using coincidence data. The level scheme proposed by Wohn
et al [145] is presented in Fig. 12.1 for states below 2.2 MeV excitation energy.
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Figure 12.1 – Low-energy part of the decay scheme for the ground state of 100Y,obtained in Ref. [145]. Energies (in keV) and relative intensities of γ-ray transitionsare given and illustrated by arrow widths. Figure adapted from Ref. [145].

The half-lives of 100Sr (193 ms) and 100Y (735 ms) were measured and the
spin-parity of the ground state of 100Y was constrained to 1± or 2−. The four
Ge(Li) detectors were positioned to form 6 distinct opening angles between each
two crystals - 90◦, 105◦, 120◦, 135◦, 150◦ and 165◦. Using γ-γ angular correlations
for Ii → 2+1 → 0+1 cascades, the spin assignment of the 0+2 state at 331 keV,
previously reported in Ref. [143], was confirmed. In addition, the 0+3 state was
identified for the first time and a mixing ratio for the 2+2 → 2+1 transition was
extracted. However, due to a low coincidence statistics, the latter was subject to a
large uncertainty. The spin-parities of the remaining populated states were proposed
to be 1± or 2+ (based on the spin-parity of the parent nucleus) if a transition to
the ground state was observed.

Finally, using triple coincidences between a β particle, a γ ray and a conversion
electron registered in the Si(Li) detector, the K and L +M conversion-electron
intensities related to the 118-keV (0+2 → 2+1 ) E2, 212-keV (2+1 → 0+1 ) E2 and
331-keV (0+2 → 0+1 ) E0 transitions were measured. The branching ratio of the E0

and E2 transitions de-exciting the 331-keV 0+2 level was determined.

12.2 Level scheme of 100Zr obtained from the present data

The γ-ray spectrum up to 2 MeV energy obtained by projecting the time-
random-subtracted γ-γ coincidence matrix is presented in Fig. 12.2. A large number
of γ-ray peaks is observed, mostly originating from the decay of excited states
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in 100Zr (indicated with black asterisks). Only the most intense lines in 100Zr,
previously reported and summarized in the ENSDF database [147], are marked.
Some of the γ rays, originating from other nuclei in the β-decay chain of 100Rb,
are marked as well: 100Sr (red), 100Y (blue) and 100Nb (green) [159].

Figure 12.2 – Part of a projection of the γ-γ coincidencematrix for γ-ray energiesup to 2 MeV. Most intense γ rays among those previously known in 100Sr (red),
100Y (blue), 100Zr (black), and 100Nb (green) [159] are marked.

The decay scheme of 100Zr was constructed by gating on the obtained γ-γ
matrix using the ESCL8R program from the RadWare package [170]. The γ-γ
histogram was projected with the help of the SLICE program [170]. A smooth
background was simulated using the GF3 RadWare program [170] and used as
an input for ESCL8R. As a first step, the low-energy levels reported in previous
β-decay studies [145,171] were investigated.

Using the current coincidence data the placement of all γ rays proposed by
Wohn et al. [145] resulting from decay of states up to an excitation energy of
2.2 MeV (summarized in Fig. 12.1) was confirmed. The 1606.8 keV γ ray connecting
the 0+2 state and the (1, 2+) state at 1938 keV, which was previously reported
only in Ref. [171] and listed as “uncertain” by the ENSDF evaluators, was also
confirmed. In addition, a 1670.8-keV γ ray, which was observed in Ref. [145], but
not placed in the level scheme, has been placed in the current work. Moreover,
five new transitions between the states reported in Ref. [145] were observed in
the current data set: a γ-ray doublet at ≈ 366 keV and γ rays at 375.4(2) keV,
612.2(2) keV, and 929.0(6) keV. The latter was found to connect the (1, 2+) state
at 1807.7 keV and the 2+2 state. It can be speculated that Wohn et al. have also
observed this line, as indicated in Fig. 12.3 in green. However, their coincidence
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data were probably insufficient to resolve the 929-keV line from the 928.34(3)-keV γ
ray, originating from the decay of the 2+3 state in 100Mo. Similarly, the low-intensity
366-keV doublet in 100Zr was obscured by the 365.31(4)-keV γ ray originating from
the (1+, 2, 3+) state at 376.1 keV in 100Y, marked in Fig. 12.3 in red.

Figure 12.3 – γ-ray singles spectra from the decay ofA = 100 isotopes observedin Ref. [145]. The lines from the decay of 100Y (transitions de-exciting states in
100Zr) are labelled with their energies. Some of the lines from the decay of 100Sr,
100Zr and 100Nb are also labelled with the corresponding element symbol. Seethe text for the discussion of the peaks indicated in red and green. Figure adap-ted from Ref. [145].

In the current work it was possible to resolve the 366-keV doublet in 100Zr and
separate it from the 365-keV line in 100Y by using suitable coincidence conditions.
Fig. 12.4 illustrates the effects of using different gates and demonstrates that the
centroids of the three resulting peaks correspond to distinct energies, i.e. different
transitions. The spectrum of 100Y was obtained by gating on the 484.7-keV γ ray
depopulating the state at 860.60 keV [147]. To observe the 366.2-keV transition in
100Zr connecting the (1, 2+) state at 1808 keV and the (1, 2+) state at 1441.5 keV,
coincidences were required with the 1229-keV γ ray depopulating the latter, as
illustrated on the right side of Fig. 12.4. The 366.9-keV line in 100Zr is also clearly
observed in the spectra obtained by gating on the 742-keV γ ray originating from
the 1938-keV state.

Another doublet at 612 keV was resolved. In Ref. [145] the 612-keV line was
attributed solely to the transition connecting the states at 1808 and 1196 keV.
However, as demonstrated in Fig. 12.5, if a gate is set on the 497-keV γ ray
depopulating the (1, 2+) state at 1938 keV to the state at 1441 keV, a 612.2-keV
line is clearly observed (in red). Therefore, the observed 612-keV γ ray corresponds
to the decay of the 1441-keV state to the 829-keV 0+3 state. On the other hand,
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if a gate is set on the 885-keV γ ray originating from the state at 2693 keV [145],
the observed intensity of the 611.5-keV line is too large to be solely attributed to
the new transition from the 1441-keV state to the 0+3 state, thus the previously
reported transition between the states at 1808 and 1196 keV is indeed present as
well. These new findings suggest the existence of a pair of doublet cascades with
611− 367-keV and 366− 612-keV γ rays. The large number of coincidence events
was crucial for disentangling these γ rays.

Finally, a new 375.4-keV γ ray was found connecting the states at 2183 keV
and 1807 keV. This placement was confirmed by gating on a transition directly
populating the state at 2183 keV, as further explained in Section 12.2.1.

Figure 12.4 – Energy spectra obtained by applying gates on the 484.7-keV γ raydepopulating the state at 860.6 keV in 100Y (black), and on the 1229-keV (blue) and
742-keV (red) γ rays originating from excited states in 100Zr. The observed peaksare labeled with their energy given in keV. The 352-keV line originates from thedecay of the 4+1 state in 100Zr.

Thanks to the high coincidence statistics, several new states up to about
2.2 MeV excitation energy were identified:

• A state at 1773.99(7) keV was proposed based on the observation of an
intense γ-ray transition with an energy of 1561.42(6) keV in coincidence
with the transition depopulating the 2+1 state, see Fig. 12.6. In addition, a
weaker 577.94(5)-keV branch decaying out of the proposed state to the 2+3
state was found. Gating on the 1561.4-keV line revealed an intense feeding
transition with an energy of 1072.0(2) keV, connecting the proposed state
at 1774 keV with a previously reported state at 2846.34(7) keV [145].
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Figure 12.5 – Energy spectra obtained by applying gates on the 885.06(6)-keV
γ ray depopulating the state at 2692.84(9) keV (blue) and on the 496.63(9)-keV(red) transition originating from the 1937.97(6)-keV excited state in 100Zr. Theobserved peaks are labelled with their energy given in keV. The correspondinggating transitions are marked in the partial level scheme in the right panel usingthe same color code. The doublet cascades with 611−367-keV and 366−612-keV
γ rays are indicated in green.

• Similarly, a state at 1883.16(6) keV was placed due to the observation of
an intense 1670.63(5)-keV line, which was previously reported in Ref. [145],
but remained unplaced, in a 212.6-keV gated spectrum shown in Fig. 12.6.
Two other decay branches of the new state were identified: to the 0+2
state via a 1552.07(7)-keV γ ray and to the 0+3 state via a 1053.83(7)-keV
transition. Gating on any of these transitions revealed an intense feeding
transition with an energy of 962.9(1) keV, suggesting that the new state
is also connected to the 2846.34(7)-keV state.

• The existence of a state at 1970.75(7) keV was deduced following the
observation of 775.08(8)-keV and 1758.4(2)-keV γ rays in the spectra ga-
ted on the 1195.98(9)-keV and 212.59(2)-keV γ rays, respectively. Another
branch depopulating the state at 1970.8 keV to the 1441.4 keV state was
observed with an energy of 529.39(3) keV. A feeding 799.6(3)-keV γ ray,
originating from the state at 2770.76(8) keV [145] was observed in coinci-
dence with all three γ rays depopulating the proposed state at 1970 keV.

• A state at 2068.09(15) keV was proposed following the observation of
an intense 1855.53(11)-keV transition in coincidence with the 212.6-keV
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2+1 → 0+1 transition. Rather intense transitions from the new 2068.1-keV
state to the 2+2 state (Eγ = 1189.8(2) keV) and to the 2+3 state (Eγ =

872.0(3) keV) were observed as well. A feeding γ-ray transition with an
energy of 777.9(3) keV, originating from the decay of the 2846.34(7)-keV
state [145] was identified.

• A new state at 2143.70(4) keV was proposed based on the observation
of a 1931.00(5)-keV γ ray in coincidence with the transition depopulating
the 2+1 state, see Fig. 12.6. Several other decay branches of the new state
were found, namely to the state at 1807.5 keV (Eγ = 336.23(3) keV),
to the state at 1938 keV (260.50(7)-keV γ ray), to the 2+2 and 2+3 states
(1265.26(4) keV and 947.62(7) keV, respectively). A feeding transition
with an energy of 702.55(3) keV was observed in coincidence with all five
transitions de-exciting the proposed state at 2143.7 keV. It originates from
the decay of the 2846.34(7)-keV state, previously reported in Ref. [145].

• Finally, a new state at 2208.51(5) keV was found due to the observation
of an intense 1995.97(8) keV line in the spectrum obtained by gating on
the 212.6-keV line. The new state was found to decay to the 0+2 , 0+3 , 2+2 ,
4+1 states, to the states at 1441.4 and 1294.8 keV, as well as via a direct
transition to the ground state, as reported in Ref. [172]. A feeding transition
with an energy of 637.6(1) keV, originating from the state at 2846.34(7)

keV [145], was observed in coincidence with all eight depopulating γ rays.
It is interesting to note that a (5+) state with an almost identical energy
(2208.40(8) keV) was previously proposed in Ref. [146] following fission of
248Cm and 252Cf. This state cannot be populated in the present experiment
due to the low spin of the parent nucleus. The decay pattern of the (5+)

state differs significantly from that of the new 2208.51(5)-keV state with
the only exception being the 1644-keV γ ray to the 4+1 state. Based on
its decay pattern, including transitions to the 4+1 and several 0+ states, as
summarized in Table 12.1, this state was assigned to have spin 2 [172].

The spectrum presented in Fig. 12.6 was obtained by gating the total γ-γ ma-
trix on the 212.6-keV γ ray. The γ-ray peaks which indicated the existence of the
above-mentioned new states are labelled in red. Previously observed γ-ray transi-
tions at 1551.4 keV (between the states at 2846.3 and 1294.8 keV [145]), 1595.0
keV (between the state at 1807.5 keV and the 2+1 state), 1725.3 keV (between
the state at 1938.0 keV and the 2+1 state), and 1891.8 keV (between the state at
2770.8 keV and the 2+2 state [145]) are labelled in black.

The excitation energies of the identified states in 100Zr were obtained via a
least-squares fit to the set of measured γ-ray energies, performed using GLS [170].
These level and transition energies are listed in Table 12.1. The transitions observed
for the first time in this work are presented in red in the proposed partial level
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schemes of 100Zr summarized in Figs. 12.7 (up to 1.8 MeV) and 12.8 (up to
2.2 MeV). The states and transitions in black were reported already in Ref. [145]
and are confirmed in the present study. The proposed new states are also marked
in red.

Figure 12.6 – Part of the energy spectrum obtained by gating the total γ-γmatrixon the 212.6-keV 2+1 → 0+1 transition in 100Zr. Selected transitions are labelledwith their energies in keV. Red colour is used for those reported for the firsttime in the present work.

The γ-ray energies in Table 12.1 and their uncertainties were obtained using an
additional in-beam calibration. It was found that although the energy calibration
resulting from a fit to the source data yielded very small residuals (< 0.2 keV)
for the source peaks (see Fig. 11.6), certain systematic discrepancies from the
literature were observed for the measured energies in the in-beam decay data.
This gain change was found to depend on the counting rate, i.e. it was largest
for the decay of 100Sr and 100Y, and vanishing for the decay of 100Nb. Therefore,
it was necessary to refine the energy calibration applied to 100Zr data using well
known intense lines in 100Zr. The γ rays used for this calibration are summarized
in Table 12.2, where the literature values of the γ-ray energies ELIT

γ are taken
from Ref. [147], while the experimental ones EINI

γ were obtained by fitting the
corresponding peaks in the total projection of the γ-γ matrix with the initial energy
calibration applied (see Section 11.2.2). The peaks of interest were fitted with a
combination of a Gaussian function, a skewed Gaussian, and the background of a
step function with a constant. The uncertainties of EINI

γ in Table 12.2 originate
from the peak fitting procedure and account for the systematic effects evaluated
by using different fitting functions and performing the fit to different regions of the
spectrum around the peak of interest.
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Table 12.1 – Excited states of 100Zr with spin-parities Iπi (marked with daggers ifextracted via γ-γ angular correlations in the present work, or with double dag-gers if deduced from the observed decay pattern) and excitation energies Ei
x,decaying to states with energies Ef

x via γ rays with energies Eγ . The intensitiesrelative to the most intense transition depopulating the state of interest, extrac-ted from the current analysis, are given in the fifth column, while those takenfrom literature [147] are presented in the last column for comparison. Energiesare given in keV. Transitions used for the in-beam calibration are marked withasterisks.
Iπi Ei

x[keV] Ef
x [keV] Eγ[keV] Iγ Iγ [147]

2+1 212.53(3) 0 212.60(2)∗ 100 100
0+2 331.08(4) 212.53(3) 118.58(3)∗ 100 100
4+1 564.54(7) 212.53(3) 352.05(5)∗ 100 100
0+3 829.28(6) 212.53(3) 616.74(5)∗ 100 100
2+2 878.49(4) 564.54(7) 314.2(5) 0.83(9) 0.9(3)

331.08(4) 547.54(7)∗ 31.2(13) 30(4)
0 878.47(11)∗ 54(2) 52(4)

212.53(3) 665.98(4)∗ 100(4) 100(6)
2+3 1196.08(5) 829.28(6) 366.9(4) 3.03(13) −

878.49(4) 317.61(6) 6.2(3) 4.0(8)
564.54(7) 631.66(10)∗ 23.9(10) 21.4(20)
212.53(3) 983.5(2) 36.3(15) 34(4)
331.08(4) 865.04(5)∗ 84(4) 65(4)

0 1195.98(9)∗ 100(4) 100(6)

0+†
4 1294.77(5) 878.49(4) 416.36(7) 7.4(4) 10.0(12)

212.53(3) 1082.26(4)∗ 100(4) 100(9)
2+† 1441.36(4) 829.28(6) 612.2(2) 3.6(2) −

0 1441.23(11)∗ 16.9(7) 21(4)
331.08(4) 1110.33(3) 58(3) 65(20)
212.53(3) 1228.85(3)∗ 100(4) 100(10)

0+†
5 1773.99(7) 1196.08(5) 577.94(5) 6.3(3) −

212.53(3) 1561.42(6) 100(4) −
1† 1807.49(4) 1441.36(4) 366.23(11) 2.1(3) −

1294.77(5) 512.73(5) 15.8(7) 10(3)
878.49(4) 929.00(6) 21.9(10) −
1196.08(5) 611.5(5) 29.3(13) 28(3)

0 1807.41(5)∗ 42.8(18) 67(13)
829.28(6) 978.1(2) 55(2) 40(4)
331.08(4) 1476.55(5)∗ 91(4) 73(8)
212.53(3) 1594.98(4) 100(4) 100(13)

(1, 2+)‡ 1883.16(6) 829.28(6) 1053.83(7) 14.4(7) −
331.08(4) 1552.07(7)∗ 25.2(8) −
212.53(3) 1670.63(5) 100(3) −
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Table 12.1 – Excited states in 100Zr - continued
Iπi Ei

x[keV] Ef
x [keV] Eγ[keV] Iγ Iγ [147]

1(−)† 1937.97(6) 331.08(4) 1606.77(12) 3.1(2) −
0 1937.66(11) 4.8(3) 11.2(14)

1294.77(5) 643.40(13)∗ 6.7(3) 6.7(9)
829.28(6) 1109.2(2) 9.4(4) 11(3)
212.53(3) 1725.3(2)∗ 11.1(5) 10.7(17)
1441.36(4) 496.93(9) 14.3(8) 13.7(20)
1196.08(5) 741.95(9)∗ 70(3) 69(5)
878.49(4) 1059.44(5)∗ 100(4) 100(7)

(1, 2, 3)† 1970.75(7) 1441.36(4) 529.39(3) 11.4(7) −
1196.08(5) 775.08(8) 81(4) −
212.53(3) 1758.4(2) 100(4) −

0+†
6 2068.09(15) 1196.08(5) 872.0(3) 65(4) −

212.53(3) 1855.53(11) 94(5) −
878.49(4) 1189.8(2) 100(5) −

(0+, 2+)† 2143.71(4) 1196.08(5) 947.62(7) 2.8(2) −
1883.16(6) 260.49(7) 4.1(2) −
1807.49(4) 336.23(3) 22(3) −
878.49(4) 1265.26(4) 41.0(18) −
212.53(3) 1931.01(5) 100(4) −

(1, 2+) 2182.67(8) 1807.49(4) 375.4(2) 6.5(11) −
0 2182.57(13) 8.3(5) 57(15)

1937.97(6) 244.70(4) 100(5) 100(8)
2+‡ 2208.51(5) 1441.36(4) 767.30(5) 6.7(4) −

1294.77(5) 913.78(7) 9.2(7) −
0 2208.04(11) 9.4(5) −

829.28(6) 1379.10(10) 18.8(9) −
331.08(4) 1877.34(10) 23.0(11) −
564.54(7) 1644.01(12) 50(4) −
878.49(4) 1329.99(5) 58(3) −
212.53(3) 1995.97(8) 100(5) −
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Figure 12.8 – Continuation of Fig. 12.7. The spin assignments in red result fromthe γ-γ angular correlation analysis described in Section 12.3 or were deducedfrom the decay pattern observed in the present work.
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Table 12.2 – Energies of γ rays in 100Zr used for the refined energy calibration.Literature valuesELIT
γ [147] are compared with those obtained from S1790 data

using the initial energy calibration described in Section 11.2.2 (EINI
γ ).

EINI
γ [keV] ELIT

γ [keV] EINI
γ − ELIT

γ [keV]

118.313(4) 118.63(5) −0.32(5)
212.314(1) 212.61(4) −0.30(4)
351.75(5) 351.966(13) −0.21(5)
547.16(8) 547.41(7) −0.25(11)
616.40(4) 616.67(7) −0.27(8)
631.38(2) 631.81(8) −0.43(8)
642.95(1) 643.43(12) −0.48(12)
665.696(6) 666.00(12) −0.30(12)
741.63(4) 741.99(7) −0.36(8)
864.724(3) 865.04(8) −0.32(8)
878.22(8) 878.64(9) −0.42(12)
1038.33(4) 1038.68(12) −0.35(13)
1058.94(9) 1059.51(7) −0.57(11)
1081.82(8) 1082.33(8) −0.51(11)
1195.71(2) 1196.09(7) −0.38(7)
1228.39(13) 1228.99(8) −0.61(15)
1441.05(7) 1441.3(2) −0.25(21)
1476.236(3) 1476.53(14) −0.29(14)
1550.99(5) 1551.4(2) −0.41(21)
1636.58(6) 1637.0(3) −0.42(31)
1724.8(1) 1725.44(16) −0.68(19)
1807.099(5) 1807.9(2) −0.8(2)
1891.46(2) 1891.8(2) −0.34(20)
2016.41(3) 2017.0(3) −0.59(30)
2239.928(4) 2240.5(2) −0.57(20)

The difference between the energies obtained using the initial calibration and
the literature values for the transitions listed in Table 12.2 was investigated as a
function of the γ-ray energy EINI

γ , see Fig. 12.9. A systematic trend was obser-
ved, with the experimentally obtained energies of the γ-ray peaks, EINI

γ , being
consistently smaller than the literature values ELIT

γ , and the difference between
EINI

γ and ELIT
γ increasing with the γ-ray energy. The residuals were fitted with

a linear function, yielding calibrated γ-ray energy Eγ = EINI
γ + ∆Eγ , where

∆Eγ = −0.000144399 ∗ EINI
γ − 0.249751. To estimate the uncertainty of ∆Eγ ,

the covariance matrix C [173] resulting from the least square fit was used. The
diagonal elements C11 and C22 of the covariance matrix correspond to the squared
absolute uncertainties of the intercept and slope parameters, respectively. The ab-
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solute uncertainty of ∆Eγ is then calculated via
√
C11 + 2C12EINI

γ + C22EINI
γ

2,

where the elements of the covariance matrix were found to be C11 = 8.12× 10−4,
C12 = −8.41 × 10−7 and C22 = 1.37 × 10−9. Finally, the uncertainty of Eγ was
calculated as a square root of the sum of the squared absolute uncertainty of the
peak position originating from the fitting procedure, a systematic uncertainty esti-
mated by performing the fit to different regions of the spectrum around the peak
of interest, and the σ(∆Eγ), calculated as explained above.

Figure 12.9 – A least-squares linear fit of the differences between the experi-mentally measured peak positions of the transitions in Table 12.2, EγINI , andthe literature values [147], ELIT , as a function of EγINI . The presented uncer-tainty corridor was calculated using the covariance matrix as explained in thetext.

12.2.1 Measurement of branching ratios
In order to measure the relative transition intensities, a series of “gates from

above” were applied on the total γ-γ matrix. The gates were set on the most intense
transitions directly feeding each state of interest, summarized in Table 12.3. Some
of these transitions (marked with daggers) were observed for the first time in the
current study, while others were previously reported in Ref. [145]. They originate
from the decay of the states listed in the second column of Table 12.3, including
a new state at 4160.24(14) keV proposed in the current work.

The gating procedure was carried out using GRSISort [164]. A narrow gate
region around the peak of interest was selected in order to avoid possible conta-
minants. In order to account for coincidences with nearby peaks or Compton-
scattering background events, in addition to each gate on a transition of interest
two background regions in its vicinity were selected. The spectra obtained by gating
on those background regions were summed and scaled to the width of the gate.
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Table 12.3 – Transitions directly feeding states, whose decay was investigatedin the present work.Ef
x are the excitation energies of the investigated states,Ei

xthose of the states feeding them, and Eγ are γ-ray energies of the feeding tran-sitions. The values marked with asterisks are taken from Ref. [147]. The remai-ning values are extracted from the current work. The γ-ray energies Eγ markedwith daggers correspond to transitions observed for the first time in the presentstudy. The state marked with double daggers is also proposed in this work. Thevalues marked with double asterisks were reported in Ref. [172].
Ef

x [keV] Ei
x[keV] Eγ[keV]

878.49(4) 1807.49(4) 929.00(6)†

2770.76(8)∗ 1891.77(4)
1937.97(6) 1059.44(5)

1196.08(5) 1937.97(6) 741.99(3)
1970.75(7) 775.06(4)†

2770.76(8)∗ 1574.5(1)†

1294.77(5) 2846.34(7)∗ 1551.39(4)
1937.97(6) 643.4(1)
2932.10(13)∗ 1637.07(4)

1441.36(4) 1937.97(6) 496.63(8)
2770.76(8)∗ 1329.0(3)

1773.99(7) 2846.34(7)∗ 1072.0(2)†

1807.49(4) 2692.84(9)∗ 885.06(6)
2846.34(7)∗ 1038.57(6)
2932.10(13)∗ 1124.3(1)†

1883.16(6) 2846.34(7)∗ 962.9(1)†

1937.97(6) 2182.67(8)∗ 244.74(5)
2770.76(8)∗ 832.3(3)
2846.34(7)∗ 908.1(1)
2692.84(9)∗ 754.7(1)

1970.75(7) 2770.76(8)∗ 799.6(3)†

2068.09(15) 2846.34(7)∗ 777.9(3)†

2143.70(4) 2846.34(7)∗ 702.55(3)†

2182.67(8) 4160.24(14)†† 1977.6(1)†

2932.10(13)∗ 749.26(6)†

2208.51(5)∗∗ 2846.34(7)∗ 637.6(1)∗∗

The scaled background spectrum was then subtracted from the spectrum gated on
the line of interest. Subsequently, in each gated spectrum, the area of each γ-ray
peak corresponding to a transition depopulating the state of interest was extracted
by fitting the peak with a combination of a Gaussian, a skewed Gaussian and a step
function. For example, the 2+2 state at 878.5 keV is directly populated by three in-
tense transitions with energies of 929, 1892 and 1059 keV, see Table 12.3, therefore
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three gated spectra were obtained for each feeding transition. Subsequently, the
γ-ray peaks corresponding to the decay of the 878-keV state (with energies of 314,
547, 878 and 666 keV, see Table 12.1), observed in each of the three gated spectra,
were fitted. The extracted areas for each peak were summed together and efficiency
corrected using the efficiency curve obtained in Section 11.2.4. A 3% systematic
uncertainty was adopted in addition to the statistical errors resulting from the peak
fitting procedure, as discussed in Section 11.2.4. The measured absolute intensities
were normalized to those of the most intense branch, which in the current example
is the 2+2 → 2+1 transition. The uncertainties of the relative intensities Iγ were
calculated using standard error propagation. The obtained results can be found in
Table 12.1. Note that to extract the branching ratios in the decay of the state at
1807 keV, the areas of the peaks at 366.2 keV and 611.5 keV were corrected for
possible contamination from the 366.9-keV (2+3 → 0+3 ) and 612.2-keV (depopula-
ting the state at 1441 keV) lines (see level scheme in Fig. 12.5). This was done by
subtracting the efficiency-corrected numbers of coincidence counts corresponding
to the latter transitions, calculated using the measured relative intensities in the
decay of the states at 1196.1 keV and 1441.4 keV. Similar procedure was adopted
to evaluate the branching ratio for the 1109.2-keV transition, depopulating the
state at 1938.0 keV, which was corrected for a possible contamination from the
1110.3-keV γ ray originating from the state at 1441.4 keV.

When two γ rays deposit their energy in the same crystal within a narrow time
window, a sum peak at an energy Eγ1+Eγ2 appears in the singles spectra. If coin-
cidence data are used, both the gating and the coincident γ rays will experience
summing effects. An attempt was made to evaluate the influence of the “summing
in” effects on the obtained relative Iγ by measuring the areas of sum peaks corres-
ponding to forbidden 0+ → 0+ transitions. The obtained area was summed with
the area of the 0+ → 2+1 transition and the relative intensities Iγ were re-evaluated.
It was found that the “summing in” effect for the states at 1295, 1774, 2068 and
2144 keV (assigned as 0+ states in the present study, see Section 12.3), resulted in
a reduction of the relative intensities of the remaining transitions by 1.9%, 2.0%,
2.7% and 2.8%, respectively, which is comparable with the relative uncertainties
of the corresponding intensities, or smaller than them. Moreover, the competing
process of “summing out” is often large enough to compensate the effects of the
“summing in”. As mentioned in Section 11.2.4, the magnitude of summing effects
for each transition can be determined from the experimental data by using γ-γ
coincidences between detectors separated by 180◦. Such corrections have not been
applied at this stage of the analysis and the obtained preliminary branching ratios
will be refined in the future.

The branching ratios resulting from the present study are listed in Table 12.1.
The obtained branching ratios can be compared to those measured in Ref. [145]
and the evaluated data summarized in Ref. [147]. The relative intensities of the
transitions depopulating the 2+2 state are in agreement within 1σ with the previous

171



measurement. Similarly, the Iγ(2+3 → 2+1 )/Iγ(2
+
3 → 0+1 ) branching ratio agrees

within 1σ with the literature value. The current Iγ(2+3 → 2+2 )/Iγ(2
+
3 → 0+1 )

and Iγ(2
+
3 → 4+1 )/Iγ(2

+
3 → 0+1 ) values agree within 2σ with those reported in

Ref. [147], while Iγ(2+3 → 0+2 )/Iγ(2
+
3 → 0+1 ) differs by 3σ. The relative intensity

of the transitions depopulating the state at 1295 keV measured in the present study
and in Ref. [145] are in agreement within 2σ, while those in the decay of the state
at 1441 keV agree within 1σ. The relative intensities of transitions depopulating
the state at 1807 keV differ from the literature values by 1 to 3σ, suggesting a
stronger branch to the 0+2 state, as it is the case for the 1196-keV state.

The branching ratios of all transitions originating from the state at 1937 keV
agree within a 1σ confidence interval with the literature values, with the only
exception being the transition to the ground state. Also for the states at 1441,
1807 and 2183 keV excitation energy, ground-state decays were reported [145] to
be considerably stronger than in the present work. A particularly large discrepancy
is observed for the state at 2183 keV: the intensity of the transition to the ground
state reported in Ref. [145] is seven times higher than the one obtained in the
current work. The literature value, despite its large uncertainty, differs from the
relative Iγ measured in the current study by more than 3σ. This may be related
to the extraction of transition intensities by Wohn et al. [145] from singles γ-ray
spectra.

12.3 Angular correlations with GRIFFIN

Angular-correlation data collected with large detector arrays such as GRIFFIN
are affected by various experimental factors leading to attenuation of the observed
distribution. These result from e.g. a finite detector size (i.e. the γ-ray angular
distribution is integrated over the solid angle covered by the detector) or inter-
actions with the electromagnetic field of cascading atomic electrons leading to
depolarisation of nuclear states, which is known as the nuclear deorientation ef-
fect. Attenuation factors Qii can be defined to account for the effects of the finite
crystal size. They depend on the γ-ray energies and on the solid angle covered by
the detector, which is related to its size, shape and distance from the source. The
attenuation factors can be calculated analytically for simple detector shapes, or ob-
tained from a simulation. Similarly, attenuation factors for the deorientation effect
can be introduced, as it is done e.g. in the Coulomb-excitation code GOSIA [88].
However, as the impact of the deorientation effect is strongly lifetime-dependent,
for shortly-lived nuclear states, such as those considered in the present analysis, it
can usually be neglected. Thus, the ai parameters introduced in Section 10, descri-
bing the correlations between the emitted γ rays, can be expressed as ai = ci/Qii,
where ci are the coefficients extracted by fitting the data with the function given
by Formula 10.3.
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In the analysis of angular-correlation data it is also necessary to account for the
fact that the numbers of detector pairs are not the same for each opening angle that
can be investigated (see Appendix E for GRIFFIN), which is done by normalizing
the measured intensities for each angle to the corresponding number of detector
pairs. In order to take into account differences in the efficiency of individual crystals,
one could a priori obtain efficiency curves for each detector separately, and fold the
efficiency correction into the γ-γ coincidence matrix. Another possible solution,
which is less time consuming, is to use the event-mixing technique described in the
following section. The method used to handle the attenuation effects induced by
the finite solid angle of the detectors is described in Section 12.3.4.

12.3.1 Event-mixing technique
Experimentally, the continuous physical angular correlation W (θ) is measured

for discrete opening angles between two γ rays with energies of Ea and Eb. The
discrete ω(θi;Ea, Eb) values are related to W (θ) via:

ω(θi;Ea, Eb) =
∑
j,k

εj(Ea)εk(Eb)

∫ θi+∆θ

θi−∆θ
Njk(θ;Ea, Eb)W (θ)dθ. (12.1)

The angle θi is one of the considered angles between crystal pairs, the j and k

indices denote crystals which satisfy the θi = |θj − θk| condition, εj,k(Ea,b) are
the efficiencies of crystals j and k, and the Njk(θ;Ea, Eb) weighting distributions,
describing the crystal pair response, are related to the attenuation factors Qii

introduced above. The integration is performed over the range of θ subtended by
the detectors.

Let us now consider another experimental y(θi;Ea, Eb) and theoretical Y (θ)

distributions related via:

y(θi;Ea, Eb) =
∑
j,k

εj(Ea)εk(Eb)

∫ θi+∆θ

θi−∆θ
Njk(θ;Ea, Eb)Y (θ)dθ. (12.2)

If we divide Formula 12.1 by Formula 12.2 the dependence on the relative efficien-
cies of the individual crystals will cancel out:

ω(θi)

y(θi)
=

∫ θi+∆θ
θi−∆θ Ni(θ;Ea, Eb)W (θ)dθ∫ θi+∆θ
θi−∆θ Ni(θ;Ea, Eb)Y (θ)dθ

. (12.3)
If Y (θ) = 1, i.e. the distribution is isotropic, and if the changes of W (θ) over the
detector size ∆θ can be neglected, Formula 12.3 reduces to W (θi) = ω(θi)/y(θi).

It is possible to construct such an isotropic distribution Y (θ) using the experi-
mental data collected at the same time as the coincidence data used to calculate
ω(θi;Ea, Eb). To construct y(θi;Ea, Eb), γ rays with the same energies Ea and
Eb should be used, but originating from decays separated by a sufficiently long
time to assure that they are not correlated. y(θi, Ea, Eb) obtained in this way will
be uniform and affected by the same pair number and efficiency differences as
w(θi, Ea, Eb).
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12.3.2 Prompt and event-mixing γ-γ matrices

As mentioned in Section 11.1.3, the individual GRIFFIN crystals can be paired
into 52 unique opening angles, corresponding to the angles between the two regis-
tered γ rays. The number of detector pairs for each unique opening angle θi in the
current experiment (considering the exclusion of one GRIFFIN clover) are given
in the last column of Table E.1 in Appendix E. Prompt coincidence γ-γ matrices
(∆t < 300 ns) for each opening angle were created using the data collected in
the “short cycle” mode. Additionally, a gate was set on the cycle time in order to
exclude the data collected during the tape movement and the background period,
corresponding to the first 1.0 s and 0.25 s of each cycle, respectively. This was ne-
cessary due to the impossibility to properly define the angle between the registered
γ rays in these time periods, as the moving tape was not in the center of GRIFFIN.

Using add-back procedure resulted in a reduction of the number of opening
angles. This is due to the similar time difference conditions of ∆t < 300 ns for both
prompt coincidences and add-back. Thus, if coincident γ rays were registered in
different crystals of the same clover, their energies were added together. Therefore,
coincidences in the same crystal (θi = 0◦) or in two neighboring or diagonal crystals
in the same clover (15.4◦ and 21.9◦), were omitted, leaving 49 unique opening
angles. Finally, a time random background subtraction was applied to the prompt
matrix similarly to the procedure described in Section 11.2.5.

As explained in Section 12.3, it is possible to correct for differences in the
efficiency of the individual crystals, as well as different numbers of detector pairs
for each opening angle by constructing a uniform angular distribution from the same
data set and using it for normalization. In practice, a histogram of uncorrelated
events (separated by a large time difference eliminating any chance of correlation)
has to be prepared for each opening angle. This is done by requiring coincidence
between HPGe hits from different events, i.e. using event mixing (each event is
2µs long, while the prompt coincidence window is 300 ns). Since the angular-
correlation distribution extracted from those event-mixing matrices will be used
to divide the distribution extracted from the prompt matrices, the statistical error
in the normalized distribution will increase. To reduce this effect, each individual
detector hit can be paired with many other hits, creating a histogram much larger
than the prompt matrix. Of course, a downside of this procedure is that it is time
consuming, thus a compromise is necessary. In the present analysis, the level of
statistics in the event-mixing matrices is about two orders of magnitude higher than
in the prompt ones. One should note that a time-random subtraction is not needed,
as essentially all “coincidences” resulting from event mixing are time random.

12.3.3 Extracting angular correlations

As a first step, for each selected cascade, gates were set on a transition either
feeding or depopulating the intermediate state in the prompt and the event-mixing
matrices sorted for each opening angle. A background-subtraction procedure was
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also applied. Subsequently, the peak corresponding to the other transition in the
investigated cascade was fitted using GRSISort in each gated spectrum. For all
cases described in the following, cascades of the type Ii → 2+ → 0+ were studied.

As an example, for the 0+2 → 2+1 → 0+1 cascade originating from the well-
established 0+2 state, the gate was set on the 118.6-keV γ ray and the 212.6-keV
peak was fitted in the gated spectra. The extracted absolute numbers of counts as
a function of θi are presented in Fig. 12.10 (A) for both prompt (CP

i ) and event-
mixing (CM

i ) coincidence conditions. These numbers are strongly affected by the
different numbers of detector pairs for each opening angle θi. They were therefore
divided, for each experimental point, by the corresponding number of detector pairs
(taken from Table E.1) to obtain the normalized counts shown in Fig. 12.10 (B).
Finally, the event-mixing technique was used to obtain the distribution in Fig. 12.10
(C), where each point is given by CP

i /C
M
i multiplied by a global normalization

constant of
∑

i(C
M
i )/

∑
i (C

P
i ). This way, the distribution in Fig. 12.10 (C) is

corrected for the effect of different efficiencies of individual detectors and number of
detector pairs, and is largely improved in comparison to that presented in Fig. 12.10
(B). However, small systematic deviations can still be observed with respect to
the expected distribution calculated using Formula 10.4, presented with the red
curve. They are related to finite sizes of the detectors and can be accounted for as
explained in the following section.

12.3.4 Simulations accounting for the finite detector sizes
To calculate the impact of the finite size of the detectors a realistic Monte-

Carlo simulation of the entire detector setup can be performed within the GEANT4
framework [174–176]. The approach adopted in the present work takes advantage
of the fact that W (θ) is a linear combination of Legendre polynomials, see For-
mula 10.3. Therefore, it is sufficient to use the Legendre polynomials as a probabi-
lity distribution in the simulation and then fit the experimental data with a linear
combination of the simulated histograms to extract directly the corresponding a2,4
coefficients. As the angular distributions always have positive values, the following
distributions are used:

Z0(θ) = 1, (12.4)
Z2(θ) = 1 + P2(cos(θ)), (12.5)
Z4(θ) = 1 + P4(cos(θ)). (12.6)

More details on the simulation procedure and validation of the method (referred
to as “Method 1” in the following) can be found in Refs. [128,152].

The simulated histograms can be used as a basis to construct histograms for
any combination of level spins and mixing ratios δ, i.e. a2,4 coefficients:

Z(θ) = xZ1(θ)+yZ2(θ)+zZ4(θ) = A00[(1−a2−a4)Z0+a2Z2+a4Z4], (12.7)
where Z(θ) is a linear combination of the Z0,2,4 distributions given by Formu-
las 12.4-12.5 [128] and x, y, z are scaling factors.
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Figure 12.10 – Angular correlations for the 0+2 → 2+1 → 0+1 cascade. (A) Raw coin-cidence counts obtained from the prompt (black) and event-mixing (red; scaledby a factor of 1/10) γ-γ matrices. (B) Same as (A), but normalized to the numberof detector pairs for each θi. (C) Angular correlation obtained from (A) using theevent-mixing technique. The theoretically calculated curve for a 0+ → 2+ → 0+cascade is presented in red. The observed discrepancies are due to the finite sizeof the detectors.
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A large set of histograms for different spins and mixing ratios (if applicable)
can then be easily constructed and fitted to the experimental data. The unknown
transition mixing ratio and level spin can be determined by searching for the mi-
nimum of the obtained χ2/NDF distribution as a function of these parameters.
The number of degrees of freedom for a fit of the mixing ratio and the overall
scaling factor are given by NEXP −2, where NEXP is the number of experimental
points. The uncertainty of the mixing ratio can be extracted from the limits of the
χ2
MIN +1 region [177]. This method is referred to as “Method 2” in the following.

12.4 Spin assignment and extraction of mixing ratios in 100Zr

Properties of several excited states in 100Zr, summarized in Table 12.4, were in-
vestigated via γ-γ angular correlations in the Ii → 2+1 → 0+1 cascades. The only ex-
ception is the state at 1937 keV, which was probed using the 1937 keV→ 2+2 → 0+1
cascade. The spins Ii of the investigated states and/or the mixing ratios δ of the
transitions depopulating these states were previously unknown.

Table 12.4 – Spins Ii of selected states with excitation energy Ei extracted via
γ-γ angular correlations in the present study. Gates were applied on the tran-sitions with Eγ given in the third column of the table. Cascades Ii → 2+1 → 0+1were investigated for all states, except for the 1(−) state at 1938 keV, which wasprobed using the Ii → 2+2 → 0+1 cascade. The experimental a2,4 coefficients ex-tracted from the fits using Method 1 are given in the fourth and fifth columns.The corresponding mixing ratio obtained with Method 2 is presented in the lastcolumn. Themixing ratiosmarked with daggers are extracted using theZ(θ) dis-tributions simulated for the 0+4 → 2+1 → 0+1 cascade.
Ii Ei [keV] Eγ [keV] a2 a4 χ2/NDF δ

0+3 829.3 616.7 0.325(3) 1.052(4) 1.87 −
0+4 1294.8 1082.3 0.310(6) 1.061(8) 2.09 −
0+5 1774.0 1561.4 0.34(1) 1.15(2) 0.76 −
0+6 2068.1 1855.5 0.29(3) 0.89(4) 0.88 −
2+2 878.2 666.0 −0.226(3) 0.262(4) 1.54 4.2(1)†

2+3 1196.1 212.6 0.424(5) 0.120(7) 1.00 −1.01(3)

2 1441.4 1228.9 −0.153(6) 0.304(8) 0.62 9.4(9)†

1 1807.5 1595.0 −0.176(5) −0.013(7) 0.96 −0.065(4)

1(−) 1938.0 1059.4 −0.248(6) −0.002(9) 2.16 −0.007(7)

The experimental angular correlations for all investigated states were extracted
from the data organized into prompt and event-mixing γ-γ matrices. Gates were
applied on the transitions given in the third column of Table 12.4 for every opening
angle. The 212.6-keV γ-ray peak was fitted with a combination of a Gaussian and
a skewed Gaussian function in all gated spectra except when the 1196-keV state

177



and the 1938-keV state were investigated, for which the 983.4-keV and 878.5-keV
peaks were fitted, respectively. The areas extracted from the prompt coincidence
spectra were normalized to those obtained from the event-mixed spectra. These
results together with their uncertainties are presented in black in the left panels of
Figs. 12.12-12.19.

The Z(θ) histograms were obtained from the simulations for the following
cascades: 1295 keV→ 2+1 → 0+1 , 2+3 → 2+1 → 0+1 , 1807 keV→ 2+1 → 0+1 and
1938 keV→ 2+2 → 0+1 . As an input for the simulation, energies of the γ rays and
the levels in the investigated cascade, relative intensities, internal conversion co-
efficients, level half-lifes, etc., were provided. In the present study an intensity of
100% was adopted for both transitions in the cascade as each cascade was inves-
tigated separately. Additionally, information about the population mechanism had
to be provided: the decay mode (β− decay of 100Y), half-life of the mother nucleus
(732 ms), excitation energy of the β-decaying state in the mother nucleus (ground-
state decay), decay Q value (9050 keV), etc. As a final result, γ-γ matrices for
all opening angles corresponding to the Z0, Z2 and Z4 distributions were obtained
for each cascade. These individual γ-γ matrices were then gated on the transition
given in the third column of Table 12.4. The other transition in the cascade was
then fitted. The extracted areas were normalized to the number of detector pairs
for each opening angle. The Z0,2,4 distributions (defined by Formulas 12.4-12.6)
extracted from the simulated data for the 1295 keV→ 2+1 → 0+1 cascade are shown
in Fig. 12.11. These distributions take into account the finite size of the detectors
and were used as templates to fit the experimental data.

Figure 12.11 – Angular distributions Z0, Z2 and Z4 defined by Formulas 12.4-12.6extracted from the simulated data for the 0+4 → 2+1 → 0+1 cascade. The numberof coincidence counts normalized to the number of detector pairs for each ope-ning angle is given on the Y axis.
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The simulated basis distributions for the decay of the states at 1196, 1807

and 1938 keV were extracted with a similar procedure. Simulations could not be
prepared for the remaining investigated states at 829, 878, 1441, 1774 and 2068

keV due to technical issues with the servers at the University of Guelph. However,
although the attenuation factors depend on the energy of the investigated γ rays,
this dependence is rather weak at energies above 100 keV as it can be concluded
from Figs. 8 and 9 in Ref. [128]. Therefore the simulated distributions for the
cascade with the initial state at 1295 keV were used instead. The mixing ratios δ
obtained in this way are marked with daggers in Table 12.4. This approximation
was validated by comparing the mixing ratios obtained for the 1807 keV→ 2+1 and
2+3 → 2+1 transitions using two sets of simulations. If the simulations performed
for the 1807 keV→ 2+1 → 0+1 cascade were used, a mixing ratio of −0.065(4) was
obtained for the 1595-keV transition. Analysing the same cascade but using the
simulations performed for the 1295 keV→ 2+1 → 0+1 cascade yielded an almost
identical value of −0.064(4). Similarly, the δ(2+3 → 2+1 ) value obtained using the
simulations for the 1295 keV→ 2+1 → 0+1 cascade is −1.00(3), consistent with the
value reported in Table 12.4 within 1σ.

Following the Method 1 described in Section 12.3.4, the experimental angular
correlations for all investigated cascades were fitted with the simulated data. The
obtained a2,4 coefficients are given in the fourth and fifth column of Table 12.4
together with the χ2/NDF value corresponding to the fit. A fit of the simulated
Z(θ) distributions to the experimental points as a function of θ is presented in the
left panels of Figs. 12.12-12.19. These fits do not assume any particular spins in
the cascade. The “residuals”, i.e. differences between simulated and experimental
points are given in the lower part of each plot. All fits corresponded to χ2/NDF

values smaller than 2.5. The mixing ratios and spins of the investigated transitions
were obtained using the Method 2 described in Section 12.3.4, i.e. by comparing
the experimental and simulated data for specific combinations of the spin of the
initial state and δ of the first transition in the cascade. The obtained χ2/NDF are
larger than those obtained with Method 1 (left panel of Figs. 12.12-12.19) because
assumptions concerning spins and delta values lead to additional constraints on the
a2,4 values. In some cases, the best fit does not correspond to a χ2 value that is
small enough to belong to the region encompassing 99% of the total probability
distribution [128]. This limit, marked with a dashed horizontal line in Figs. 12.13-
12.19 and referred to as the “99% limit” in the following, implies that there is
less than a 1% chance of statistical fluctuations leading to a larger χ2 value for
the spin and mixing ratio solution and hence its rejection. If none of the spin and
mixing ratio hypotheses result in a χ2 value below the 99% limit, it likely indicates
underestimated uncertainties, or the presence of a contaminating γ-ray influencing
the distribution. Therefore the analysis of these cases will be refined in the future
by refitting the corresponding γ-ray peaks and reevaluating the uncertainties of the
extracted areas. For some of them, however, we may still confidently assign a spin
value if the other spin hypotheses result in χ2 values that are extremely large.
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• The mixing ratio of the 2+2 → 2+1 transition was extracted using Me-
thod 2 to be 4.2(1). A spin of 2 was favoured, as previously reported in
Ref. [147], see Fig. 12.12. However, the obtained mixing ratio is much lar-
ger than the previously reported value of 1.0(3) [145]. The value obtained
by Wohn et al. was fitted to six experimental points, while in the present
study a set of 49 opening angles were used. The new mixing ratio suggests
that the transition has a strong E2 character. This solution corresponds to
a χ2/NDF value that is an order of magnitude lower than those obtained
assuming other initial spins, even though it does not reach the 99% limit
discussed above.

Figure 12.12 – Angular correlation for the 2+2 → 2+1 → 0+1 cascade obtainedvia the two procedures described in Section 12.3.3. Left panel: The experimentaldistribution (black) compared with the simulated one (Method 1, red). The cor-responding a2,4 coefficients and the χ2/NDF value are given in the plot. Rightpanel: Goodness of the fit (Method 2) for considered spins of the initial state(Ji = 0, 1, 2, 3, 4) as a function of the mixing ratio (δ). The best combination ofinitial level spin and transition mixing ratio for the 2+2 → 2+1 transition is deter-mined from the minimum of the reduced χ2 function.

• The spin of the state at 1196 keV was confirmed to be 2, as sug-
gested by its decay pattern [147]. The δ(2+3 → 2+1 ) value was measured
for the first time in the present work. A value of −1.01(3) was obtained,
suggesting equal contributions of the M1 and E2 components to the in-
tensity of the investigated transition. The 99% limit has not been reached
in the present analysis.

• The fourth 0+ state in 100Zr was found to be the state at 1295 keV,
which was previously assigned as (2−, 3) state by the ENSDF evalua-
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tors [147]. The 99% level was not reached, but spin of 0 corresponds to
χ2/NDF orders of magnitude smaller than those for other spins as can be
seen in the right panel of Fig. 12.14.

• For the state at 1441 keV Wohn et al. suggested a spin of (1, 2+) based
on the its observed direct decay to the ground state. In the present work,
the spin-1 solution is excluded by the least-square fit, as presented in the
right panel of Fig. 12.15. The solution for spin 2 reaches the 99% limit
discussed above. The transition to the 2+1 state was found to have a large
positive mixing ratio (9.4(9)), i.e. a strong E2 character.

Figure 12.13 – Same as Fig. 12.12 but for the 1196 keV→ 2+1 → 0+1 cascade.

• The state at 1807 keV was previously proposed to have a spin of (1, 2+).
In the present study spin 2 was refuted by the χ2 analysis as the green curve
does not reach the 99% limit. The solutions with spin 1, 3 and 4 correspond
to similar χ2/NDF values. On the other hand, the decay pattern involving
intense transitions to the ground and 0+2 states, and transitions to the 0+3,4
states, hints that a spin-1 assignment is the most probable, as otherwise
these transitions would correspond to higher-order multipolarities and their
relative intensities with respect to the decay to 2+ states would be hard to
explain. The extracted mixing ratio for the transition to the 2+1 state has
a negative value that is small, but not consistent with zero.

• The state at 1938 keV was also proposed to be a spin-1 or a 2+ state
by Wohn et al. The spin-2 solution is less probable than all other solutions.
Similar arguments regarding the decay pattern of the 1938-keV state can be
used as for the 1807-keV state, which also exclude spin 3 and 4 as possible
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solutions - the 1938-keV state decays to all four 0+1,2,3,4 states, although
with much less intense transitions with respect to the decay to the 2+1
state than those from the 1807-keV state. The extracted mixing ratio for
the 1938 keV→ 2+2 transition is very small and consistent with 0. Thus, the
two possible scenarios for its parity, i.e. negative or positive, would result
in a pure E1 or pure M1 transition to the 2+2 state, respectively. It seems
more probable to observe a pure E1 than a pure M1 transition, which
often have a significant E2 component. For this reason, a 1(−) spin-parity
was proposed for the 1938-keV state.

Figure 12.14 – Same as Fig. 12.12 but for the 1294 keV→ 2+1 → 0+1 cascade.

• The state at 1773-keV excitation energy, proposed for the first time
in the present study, was firmly assigned as a spin-0 state, making it the
fifth excited 0 state in 100Zr under 2 MeV excitation energy. This solution
reached the 99% limit.

• The proposed state at 2068 keV was suggested to be the sixth spin-0
state in 100Zr based on the results presented in Fig. 12.19.

In addition, the spin assignment of the 0+3 state was confirmed. The level at
1970 keV was investigated as well, although the obtained χ2/NDF distributions
as a function of the mixing ratio were inconclusive. Spins 1, 2, 3 and 4 (although
it is unlikely to populate such high spin in a β-decay of the (1−) ground state of
100Y) were found equally probable, while 0 was excluded. No suggestions regarding
the spin of the 1970-keV state were found in its decay pattern either, as it decays
via roughly equally intense transitions to the 2+1 , 2+2 and 2+3 states.
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Figure 12.15 – Same as Fig. 12.12 but for the 1441 keV→ 2+1 → 0+1 cascade.

Figure 12.16 – Same as Fig. 12.12 but for the 1773 keV→ 2+1 → 0+1 cascade.

The new level at 2143 keV was investigated as a possible candidate for a seventh
0 state in 100Zr. The obtained correlations in the 2143 keV→ 2+1 → 0+1 cascade
suggested a preference for spins 2 and 0, however, the presence of a contamination
in the γ-ray spectra prevented us from drawing unambiguous conclusions on the
spin of the 2143-keV state. In the future, other cascades in the decay of the 1970-
keV and 2143-keV states will be investigated.

Finally, the spins of the states at 1883.2 keV and 2182.7 keV have not been
investigated via γ-γ angular correlations due to temporary unavailability of the data
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following a server failure at the University of Guelph. However, based on the decay
pattern of the former, spin of (1, 2+) was adopted. The strongest decay branch of
the latter is observed to the state assigned as 1(−), which suggests that it must be
a partity-changing transition (E1).

Figure 12.17 – Same as Fig. 12.12 but for the 1807 keV→ 2+1 → 0+1 cascade.

Figure 12.18 – Same as Fig. 12.12 but for the 1938 keV→ 2+2 → 0+1 cascade.
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Figure 12.19 – Same as Fig. 12.12 but for the 2068 keV→ 2+1 → 0+1 cascade.
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13 - Discussion

As discussed in Section 8, the tremendous lowering of the excitation energy
of the 2+1 state in 100Zr with respect to 98Zr could only be described in a satis-
factory manner by the the Monte-Carlo Shell-Model (MCSM) calculations [134].
The results of these calculations are presented in more detail in Section 13.1. The
experimental information about the collectivity of structures built on the ground
state and on the first three excited 0+ states in 100Zr, obtained from the present
data, is discussed in Section 13.2 in the context of multiple shape coexistence
suggested by the MCSM calculation. Finally, the planned next steps in the analysis
are presented in Section 13.3.

13.1 Monte-Carlo Shell-Model predictions

The rapid onset of deformation, occurring at N = 60 in the Zr isotopic chain,
was investigated by Togashi et al. within the framework of the large-scale Monte
Carlo shell model [134]. The model space used in the calculation included eight
proton (0g7/2, 1d5/2, 1d3/2, 2s1/2, 0g9/2, 0f5/2, 1p3/2, 1p1/2) and eight neutron
(1f7/2, 2p3/2, 0h11/2, 0g7/2, 1d5/2, 1d3/2, 2s1/2 and 0g9/2) orbitals with no
truncation of the occupation numbers. Such a large model space is much beyond
the current limits of conventional shell-model calculations. The effective interaction
was constructed from the existing ones: JUN45 [178], SNBG3 [179] and VMU [180]
with small adjustments to better reproduce the experimental data as described in
Ref. [134]. Effective charges (eπ, eν) = (1.3e, 0.6e) were used.

The calculated excitation energies of the 2+1,2 states in Zr isotopes with 50 ≤
N ≤ 70, presented in Fig. 13.1 (A), show a remarkably good agreement with
the experimental values. Similarly, a reasonable reproduction of the experimental
excitation energies of the 0+2 state is obtained, see Fig. 13.1 (B). Furthermore,
the predicted reduced transition probabilities compare well with the experimental
values, as illustrated by Fig. 13.1 (C). The sharp increase in collectivity appearing
at N = 60 is reproduced for the first time.

A method, called a T-plot, was developed within the MCSM to obtain infor-
mation on the intrinsic shape of individual MCSM eigenstates (see Refs. [181,182]
for details). Within the T-plot approach, a Potential Energy Surface (PES) is
determined from a constrained Hartree-Fock calculation using the same effective
interaction. Then each of the MCSM basis vectors is plotted as a circle on the PES,
with an area corresponding to the overlap probability of a given vector with the
investigated eigenstate. Thus, the location of each circle in the T-plot corresponds
to the intrinsic shape of the basis vector, and its size reflects the importance of it
in the considered eigenstate. The T-plot for the ground state of 100Zr is presented
in Fig. 13.2 (A). The basis vectors are concentrated in a rather small area and they
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correspond to quadrupole moments Q0 ≈ 380 fm2 and Q2 ≈ 0, which indicates
a strongly deformed prolate shape. According to the T-plot presented in Fig. 13.2
(B), the first excited 0+ state in 100Zr is less deformed, but with an oblate shape.

Figure 13.1 – Results of the MCSM calculations for Zr isotopes with 50 ≤ N ≤
70 [134]. (A) - excitation energy systematics of the 2+1,2 states; (B) - excitation
energy systematics of the 0+1,2 states, with the first four 0+ states shown for 100Zr;(C) - reduced transition probables for selected 2+ → 0+ transitions. Figure adap-ted from Ref. [134].

Using this method, the shapes of 0+ and 2+ states in 90−110Zr were determi-
ned from the MCSM calculation. As presented in Figs. 13.1 (A) and (B), a variety
of different intrinsic shapes (spherical, prolate, oblate, triaxial) is predicted at low
excitation energy in the Zr isotopes. In particular, multiple shape coexistence ap-
pears for the 100Zr (N = 60), with the ground state calculated to be prolate,
followed by an oblate 0+2 state, a prolate 0+3 and a spherical 0+4 state. The pro-
ton occupation numbers [183] for these four states are presented in Fig. 13.3. A
striking similarity is observed between those calculated for the 0+4 state in 100Zr
and the ground state of 98Zr. This supports the scenario in which the spherical
ground state of 98Zr becomes the off-yrast fourth 0+ state in 100Zr. On the other
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hand, the occupation numbers of the proton orbitals for the 0+2 state in 98Zr are
similar to those of the 0+1 state in 100Zr. Compared to the spherical configuration,
the average occupation of the proton 0g9/2 orbital strongly increases (from 0.4 to
3.5), while those of the pf -shell orbitals decrease.

A B100Zr  01
+ 100Zr  02

+

Figure 13.2 – T-plots for the 0+1 (A) and 0+2 (B) states of 100Zr [183].

Figure 13.3 – Proton occupation numbers calculated within the MCSM frame-work for the 0+1,2 states of 98Zr and the first four 0+ states in 100Zr [183].
The corresponding neutron effective single-particle energies (ESPEs) for the

0+1,2 states in 98Zr and the ground state of 100Zr are presented in Fig. 13.4. For
the 0+1 state of 98Zr the ESPEs of the neutron orbitals from 2s1/2 to 0g7/2 are
distributed over a large energy range (4 MeV), while those for the excited prolate 0+

state and for the ground state of 100Zr span over only 2 MeV. The strong occupation
of the 0g9/2 proton orbital is correlated with the neutron ESPEs reorganization.
This effect is referred to as the type-II shell evolution, and it provides a microscopic
explanation of the sudden shape transition observed in the Zr isotopes. It is related
to the monopole part of the tensor force, which is attractive between proton and
neutron orbitals with different spin-orbital coupling (j< − j′> or j> − j′<, where
“j<” denotes j = l − s (for example g7/2) and “j>” is j = l + s, e.g. g9/2) and
repulsive for orbitals with similar spin-orbit couplings (j> − j′> or j< − j′<) [184].
Thus, a proton excitation from a j< to a j> orbital leads to a reduction of the
spin-orbit splitting for certain neutron orbitals j′, and vice versa. Consequently,
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occupation of neutron j′< orbitals is enhanced, which further favours excitation of
protons to j> orbitals. This self-reinforcing effect can stabilize low-lying deformed
configurations.

Figure 13.4 – Neutron effective single-particle energies for the 0+1,2 states in 98Zr
and the ground state of 100Zr. Figure adapted from Ref. [134].

In the Zr isotopes, the spherical configuration involves protons filling the 0f5/2
(j<), 0p3/2 (j>) and 0p1/2 (j<) orbitals, as shown in Fig. 13.3 for e.g. the ground
state of 98Zr. Their promotion across the Z = 40 gap to the 0g9/2 (j>) can
thus predominantly be described as a j< to a j> excitation, leading to lowering
of neutron j′< orbitals such as 0g7/2 (as shown in Fig. 13.4) and their enhanced
occupation, which in turn reduces the Z = 40 gap and favours proton excitation
across it.

The deformed configurations stabilized by the type-II shell evolution effect
correspond to drastically different ESPEs, both for proton and neutrons, compared
to the spherical configurations. Consequently, the mixing between deformed and
spherical states is strongly suppressed in spite of their proximity in energy, which
explains the rapidity of the ground-state shape transition at N = 60.

13.2 Multiple shape coexistence in 100Zr

The results obtained in the present work support the multiple shape-coexistence
scenario predicted by MCSM. Figure 13.5 presents excitation energies of low-lying
levels in 100Zr as well as in-band B(E2) values resulting from the MCSM calcula-
tions. While an experimental verification of actual shapes predicted by the model
would require a measurement of spectroscopic quadrupole moments of members
of each band, certain conclusions can already be reached on the basis of level
energies, as well as relative and absolute E2 transition strengths obtained in the
present work, as discussed in the following.
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Figure 13.5 – Left: Low-lying levels of 100Zr predicted by the MCSM calcula-tion [134] organized into prolate (red) and oblate (dark blue) structures The 0+4state (light blue) is predicted to be spherical.B(E2) values are given inW.u. Right:Experimental low-energy level scheme of 100Zr. The 0+4 state proposed in thepresent work is presented in magenta. Figure adapted from Ref. [134].

13.2.1 Properties of the band built on the 0+2 state

As discussed in Section 13.1, according to the MCSM calculation the 0+2 state
is oblate deformed. Using Formulas 1.14 and 1.16, the ⟨Q2⟩ invariants and re-
lated deformation parameters |β2| can be calculated from the reduced transition
probabilities obtained within the MCSM framework, summarized in Fig. 13.5. A
rather large |β2| value of 0.38 is expected for the ground state. Only a lower limit of
|β2(0+2 )| can be extracted from the transition strengths reported in Fig. 13.5 as the
B(E2; 0+2 → 2+1 ) value, likely to have a large contribution to the ⟨Q2⟩ invariant,
has not been published. The obtained |β2(0+2 )| > 0.26 limit suggests that the 0+2
state is also strongly deformed. The calculation reproduces well the 0+2 excitation
energy, as shown in Fig. 13.5, but not the level spacing in the corresponding band.

Using data obtained following spontaneous fission of 248Cm and 252Cf, Urban
et al. [187] extended the level scheme of 100Zr proposed in Ref. [145] towards higher
spins. Several new levels were reported, forming the structures built on the ground
state and on the 0+2 state, as well as related in- and inter-band transitions. Using
γ-γ angular correlations, spins of several states were firmly assigned, including the
ground-state band levels up to spin 10 and the 4+ and 6+ states built on the 0+2
state. These two bands are presented on the left side of Fig. 13.6.

Based on the energy systematics, notably the almost equidistant energy spacing
in the corresponding band, the authors argued that the 0+2 state has a nearly
spherical or weakly deformed shape. Within the Nilsson model framework, the 0+2
state was suggested to correspond to an oblate configuration, resulting from the
promotion of a pair of neutrons from the 9/2+[404] “extruder” to the 11/2−[505]

orbital, downsloping on the oblate side (see Fig. 7 in Ref. [187]). On the other
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hand, the strongly deformed ground state of 100Zr was described as resulting from
a promotion of two neutrons from the 9/2+[404] to the 3/2−[541] orbital on the
prolate side. The sharp shape transition of the ground state of Zr at N = 60 was
suggested to occur [187] due to these local effects superimposed on the gradual
evolution of the ground state towards prolate deformation in the 50 < N < 66,
36 < Z < 50 region caused by the interaction of the ground states with collective
“intruder” 0+ excited states [13].

Figure 13.6 – Partial level scheme of 100Zr including the ground-state band, thestructure built on the 0+2 state, as well as the “proto-triaxial” (in red) and the“proto-γ” (in green) bands, reported in Ref. [146]. The presumed band head ofthe latter is indicated in blue. Figure adapted from Ref. [146].
From an experimental point of view, a firm statement whether the nucleus is

prolate, oblate or triaxial can only be made on the basis of ⟨Q3 cos(3δ)⟩ invariants,
or, to some extent, the measured spectroscopic quadrupole moments. However, the
magnitude of the deformation, given by the ⟨Q2⟩ invariant, can be deduced from
the measured B(E2) values and further related to the β2 deformation parameter
(Formulas 1.14 and 1.16). Using the γ-γ coincidence data collected in the present
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study with the LaBr3 detectors, the lifetimes of several key states were measured
via the fast-timing technique as a part of the PhD thesis of H. Bidaman [163]. To
extract the lifetime of the 2+2 state, which can be used to deduce the collectivity of
the 2+2 → 0+2 transition, the γ rays directly feeding (1059.4 keV) and depopulating
(666.0 keV) the state of interest were assigned as TAC START and STOP signals.
Additionally, a gate on the 212.6-keV 2+1 → 0+1 transition observed in GRIFFIN
HPGe detectors was applied in order to select the 100Zr decay. Using the generalized
centroid difference method [188] a lifetime of 13(5) ps was obtained. This value,
combined with the branching ratios reported in Table 12.1 and the mixing ratio
for the 2+2 → 2+1 transition taken from Table 12.4, yields the reduced transition
probabilities summarized in Table 13.1. The experimental B(E2; 2+2 → 0+2 ) value
of 7.7+5.4

−2.4 W.u. is significantly smaller than the value predicted by the MCSM
calculations (42 W.u., as presented in Fig. 13.5).

Table 13.1 – Reduced transition probabilities of the transitions depopulating the
2+2 state obtained by combining the branching and mixing ratios obtained in thepresent study with the lifetime of the 2+2 state deduced from the same datasetin Ref. [163].

2+2 → If B(E2) [W.u.]

2+2 → 0+1 1.3+0.9
−0.4

2+2 → 0+2 7.7+5.4
−2.4

2+2 → 2+1 8.8+5.8
−2.6

2+2 → 4+1 3.3+2.7
−1.2

Using the fast-timing technique, it was also possible to extract from the present
dataset the lifetimes of the 2+1 (852(32) ps) and 0+2 (7.61(44) ns) states [163],
which agree with the literature values within 1σ interval (837(22) ps and 7.96(22) ns
[147], respectively). The lifetimes obtained for other states, e.g. the 4+1 state,
were subject to considerably larger uncertainties than those resulting from lifetime
measurements using different experimental techniques [147]. The right panel of
Fig. 13.7 presents the reduced E2 transition probabilities deduced from the life-
times and branching ratios obtained from the present data set, with the exception
of the B(E2; 4+1 → 2+1 ) value that was calculated from a more precise literature
lifetime [147]. These values are in a good agreement with the MCSM calculation
for the ground-state band (see Fig. 13.5 for comparison). Furthermore, on the
basis of these experimental B(E2) values, it is possible to extract deformation pa-
rameters |β2| as it was done earlier using B(E2) values resulting from the MCSM
calculation. The |β2| = 0.35(1) obtained for the ground state is in a rather good
agreement with the predicted value of 0.38. However, a similar calculation for the
0+2 state using the obtained B(E2; 0+2 → 2+1 ) and B(E2; 2+2 → 0+2 ) values yields
|β2| = 0.20(2), inconsistent with the lower limit given by the MCSM (|β2| > 0.26).
On the other hand, the |β2| values obtained from the experimental data are signi-
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ficantly different for the 0+1 and 0+2 states, which puts on firm ground the shape
coexistence scenario between a strongly deformed ground-state configuration and
a less deformed one, related to the 0+2 state.

The shape-coexistence scenario was previously confirmed in the N = 60 iso-
tone 98Sr in an extensive Coulomb-excitation study [135, 136]. The deformation
parameters obtained from the ⟨Q2⟩ invariants, |β2(0+1 )| = 0.409(6) and especially
|β2(0+2 )| = 0.21(2), are similar to those obtained from the present study for 100Zr.
A comparison of level energies and reduced transition probabilities for transitions
between key low-energy states in 98Sr and 100Zr, presented in Fig. 13.7, demons-
trates a striking similarity in the structure of the two nuclei.

Figure 13.7 – Partial level schemes of 98Sr (left) and 100Zr (right) including thefirst few members of the structures built on the 0+1,2 states. The arrow widthsand labels represent reduced transition probabilities in W.u. obtained from thepresent study for 100Zr [163] (with the only exception being the B(E2; 4+1 → 2+1 )value, taken from Ref. [147]) and taken from Ref. [136] for 98Sr.

One can test a hypothesis that the observed 0+1 and 0+2 states in 100Zr, as well
as their 2+ band members, result from mixing of two “pure” configurations. In a
simple two-state mixing model, commonly applied to shape-coexisting states [4],
the experimentally observed 0+1,2 and 2+1,2 states are assumed to be linear combi-
nations of two configurations I+A,B:

| Iπ1 ⟩ = +cos θI | I+A ⟩+ sin θI | I+B ⟩, (13.1)
| I+2 ⟩ = − sin θI | IπA⟩+ cos θI | I+B ⟩,

where spin I takes values of 0 and 2, and θI is referred to as the mixing angle.
Under a simplifying assumption that no transitions between different pure confi-

gurations are allowed, e.i. ⟨2+B∥E2∥0+A⟩ = ⟨2+A∥E2∥0+B⟩ = 0, it is possible to ex-
tract the mixing amplitudes for the 0+ and 2+ states, as well as the ⟨2+A∥E2∥0+A⟩,
⟨2+B∥E2∥0+B⟩ matrix elements between the pure configurations, from four matrix
elements coupling the 0+1,2 and 2+1,2 states. The relevant formulas can be found in
Ref. [4].

Such a calculation based on the E2 matrix elements resulting from the current
study of 100Zr was carried out, using ⟨2+1 ||E2||0+1 ⟩ = 1.01(2) eb, ⟨2+1 ||E2||0+2 ⟩ =
0.54(2) eb, ⟨2+2 ||E2||0+1 ⟩ = −0.13+0.04

−0.02 eb and ⟨2+2 ||E2||0+2 ⟩ = 0.33+0.10
−0.06 eb. The
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relative signs of matrix elements were adopted to be the same as those experimen-
tally determined in 98Sr [136] based on the observed similarities in the structure
of the two nuclei. The obtained mixing amplitudes, cos2(θ0) = 0.77+0.03

−0.05 and
cos2(θ2) = 0.999+0.001

−0.015, are consistent with a weak mixing between the strongly
and weakly deformed configurations, predicted within the type-II shell-evolution
scenario. This is the same conclusion as it was reached for 98Sr from E2 matrix
elements reported in Ref. [136] (0.88(2) and 0.998(2), respectively). The intrin-
sic quadrupole moments for both the weakly deformed (QA

0 = +1.11+0.20
−0.12 eb)

and strongly deformed configuration (QB
0 = +3.64+0.030

−0.003 eb) are smaller with
respect to the 98Sr case (QA

0 = 1.33(8) eb, QB
0 = +3.81(2) eb). Using these

values, it is possible to calculate the ⟨2+1 ||E2||2+2 ⟩ matrix element predicted by the
two-level mixing model following formulas given in Ref. [185]. The resulting value,
−0.03+0.08

−0.05 eb, is much smaller than the experimental ⟨2+1 ||E2||2+2 ⟩ matrix element
of |0.35+0.10

−0.06| eb, see Fig. 13.7. This suggests that the two-level mixing model is not
capable of a consistent reproduction of the measured transition strengths in 100Zr
and the mixing scenario involving the low-lying states is more complicated. This
does not seem to be the case of 98Sr, where the ⟨2+1 ||E2||2+2 ⟩ = |0.07+0.10

−0.05| eb
obtained from the Coulomb-excitation analysis [136] agrees within 1σ with the
value calculated assuming two-state mixing (−0.04(2) eb).

13.2.2 Structure built on the 0+3 state and the question of triaxiality
The calculations of Togashi et al. [134] predict a rotational band built on a

well-deformed prolate 0+3 state, with a level spacing within this structure resembling
that observed in the ground-state band, as presented in Fig. 13.5. A good candidate
for the 2+ member of this band would be the 2+3 state at 1196 keV, however there
was no direct transition observed between the two states. In the present study, the
366.9-keV γ ray corresponding to the 2+3 → 0+3 transition was observed for the
first time, offering an argument in support of this interpretation.

Using Formula 5.4, the relative B(E2; 2+3 → If ) values normalized to B(E2;

2+3 → 0+1 ) were calculated from γ-ray energies Eγ and relative γ-ray intensities Iγ
taken from Table 12.1 via:

B(E2; 2+3 → If )

B(E2; 2+3 → 0+1 )
=

δ(2+3 → If )
2

δ(2+3 → If )2 + 1

Iγ(2
+
3 → 0+1 )

Iγ(2
+
3 → If )

E5
γ(2

+
3 → 0+1 )

E5
γ(2

+
3 → I+i )

, (13.2)
yielding the results summarized in Fig. 13.8. The mixing ratio δ(2+3 → 2+1 ) was
taken from Table 12.4. The 2+3 → 2+2 transition was not included in Fig. 13.8
as the corresponding mixing ratio has not yet been extracted from the current
dataset. Based on the obtained relative B(E2) values, the decay to the 0+3 state
is preferred, in line with the interpretation of the 2+3 state as a member of the
band built on the 0+3 state. The relatively large values for decay to the 0+2 and 4+1
states, however, are indicative of significant configuration mixing.

Using the LaBr3 timing data collected in the present experiment a measurement
of the lifetime of the 2+3 state was attempted [163]. Unfortunately, it seems that

194



τ(2+3 ) is outside of the sensitivity region of the fast-timing technique and only an
upper limit of τ(2+3 ) < 23 ps could be extracted. This value corresponds to a lower
limit of the reduced transition probability of B(E2; 2+3 → 0+3 ) > 2.3 W.u., which
does not provide a meaningful constraint on the collectivity of the transition of
interest. In a recent RDDS measurement performed at GANIL following a fusion-
fission reaction [186] only yrast states in 100Zr were populated. Hopefully, the
future Coulomb-excitation study of 100Zr will yield the B(E2; 2+3 → 0+3 ) value, or
at least its upper limit.

Figure 13.8 – Partial level scheme of 100Zr for the decay of the 2+3 state. Arrowwidths and labels represent B(E2) values relative to the B(E2; 2+3 → 0+1 ) value.The decay to the 2+2 state is omitted due to the unknown mixing ratio. The re-maining transitions, presented in black, are labeled with their energies in keV.

A rather different interpretation of the 2+3 state was offered in Ref. [146]. For
the first time, K = 2 bands in 100,102Zr were reported, suggesting the importance
of triaxiality in structure of Zr isotopes. In the proposed structures indicated in
green and red in Fig. 13.6, spins of the states at 1856.2 and 2244.7 keV were
firmly identified to be 4 via γ-γ angular correlations. The spins of the remaining
proposed states in 100Zr were tentatively assigned on the basis of their decay
pattern and the fact that the fission process populated predominately yrast states.
Using the tentatively assigned spins and level energies, the energy staggering S(I)
in each band was calculated and investigated as a function of the spin I. Based on
the observed patterns, the two proposed bands were identified as “proto-triaxial”
(γ-rigid, marked in red) and “proto-γ” (γ-soft, marked in green) structures. Guided
by the energy systematics, Urban et al. suggested the state at 1196 keV (indicated
in blue in Fig. 13.6) as a possible candidate for the band head of the proto-γ band,
although no transitions connecting higher-spin members of the proto-γ band to
the 1196-keV state are known. No candidate was proposed for the band head of
the proto-triaxial band, expected at about 1.9 MeV excitation energy [146].

However, as discussed above, based on the data obtained in the current study,
the presumed band head of the γ-soft structure at 1196 keV appeared more likely
to be the 2+ band member of a rotational band built on the 0+3 state due to its
preferred decay to the 0+3 state and only a weak decay branch to the 2+1 state,
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which would be an expected decay pattern of a K = 2 bandhead. No other possible
candidate, i.e. a 2+ state with excitation energy lower than that of the proposed
(3+) γ-band member (1398.3 keV) was identified in the present data, and thus the
question of triaxiality in 100Zr remains open.

The state at 1970 keV identified in the present study could potentially be a
candidate for the band head of the γ-rigid (aka proto-triaxial) structure. However,
there is currently not enough information to confirm such claim. While in the further
analysis it may be possible to firmly assign the spin of this level, one would also
expect to observe a strong decay from higher-spin members of the proto-triaxial
band to the band head. Due to the low spin of the parent nucleus 100Y, it is not
likely that those states were populated in the present experiment.

13.2.3 Possible band built on the 0+4 state
According to the MCSM calculations reported in Ref. [134], the spherical

ground state of 98Zr becomes the off-yrast fourth 0+ state in 100Zr. As shown
in the left panel of Fig. 13.5, the predicted 0+4 state has an excitation energy of
≈ 1.5 MeV. The 0+4 state assigned in the current work, presented in magenta in
the right panel of Fig. 13.5, has an excitation energy of ≈ 1.3 MeV. Although at a
first glance the theoretical and experimental excitation energy are similar, in order
to obtain more information on the collectivity of this state, an attempt has been
made to identify the 2+ member of a rotational-like structure built upon it.

To this aim, all states with excitation energies lower than 4 MeV that were
observed in the present dataset to decay to the 0+4 state were investigated, as
presented in Fig. 13.9. Several of the transitions feeding the 0+4 state - represented
in Fig. 13.9 with blue arrows - were already reported in Ref. [145] and confirmed
in the present study. These are summarized in Table 13.2. The transitions reported
for the first time in the present study are indicated in Fig. 13.9 with green arrows.
Four among them originated from (1±, 2+) states proposed in Ref. [145], however,
those transitions have not been observed previously. These are listed in Table 13.3.
Finally, a number of new states were proposed (indicated in green in Fig. 13.9)
decaying via transitions observed for the first time in the present work, summarized
in Table 13.4. The spin-parities of those states have not been assigned, with the only
exception being the 2+ state at 2208.5 keV [172]. The γ-ray energies reported in
Tables 13.2-13.4 were extracted by fitting the corresponding peaks in the spectrum
obtained by gating on the 1082.3-keV γ ray depopulating the 0+4 state.

As reported in Table 12.1, the states at 1807.5 keV and 1938.0 keV decay
via 16% and 7% branches, respectively, to the 0+4 state. Although they are lowest
in energy among those that directly feed the state of interest, both the 1807.5-
keV and 1938.0-keV states were assigned to have spin 1 in the present work (see
Section 12.4). The next possible candidate for a 2+ state built on the 0+4 state
is the newly proposed state at 2208.5 keV [172]. To further test this hypothesis
the relative reduced transition probabilities (normalized to B(E2; 2+ → 0+1 )) were
calculated for the pure E2 transitions, i.e. those between the state at 2208 keV
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and the 0+2,3,4 and 4+1 states. The remaining decays (to the 2+1,2 states and the
state at 1441 keV, assigned as spin 2) may have a mixed E2/M1 character. As the
corresponding mixing ratios have not been determined yet, these transitions were
not considered in the comparison.

Table 13.2 – Excitation energies Ei of states that decay directly to the 0+4 state,and energies Eγ of the corresponding γ-ray transitions. These transitions werereported in Ref. [145]. The valuesmarkedwith asterisks are taken from Ref. [147].
Ei [keV] Eγ [keV]

1807.49(4) 512.73(5)

1937.97(6) 643.40(13)

2846.34(7)∗ 1551.39(4)

2932.10(13)∗ 1637.07(4)

Table 13.3 – Same as Table 13.2, but for transitions that have been observed forthe first time in the present work originating from states reported in Ref. [145].
Ei [keV] Eγ [keV]

2692.84(9)∗ 1398.0(5)

2770.76(8)∗ 1475.4(3)

3069.82(20)∗ 1774.9(5)

3956.64(24)∗ 2656(2)

Table 13.4 – Same as Table 13.2, but for new transitions originating from statesproposed in the present study.
Ei [keV] Eγ [keV]

2208.51(5) 913.78(7)

2287.9(2) 992.4(2)

3271.3(3) 1975.9(3)

3477.5(5) 2182.1(5)

3590.3(3) 2294.8(3)

3915.9(4) 2620.5(4)

The obtained normalized B(E2) values are summarized in Fig. 13.10. The 2+

state at 2208.5 keV has a clear preference to decay to the 0+4 state with respect
to all other possible stretched E2 branches. This observation supports the possible
interpretation of the state at 2208.5 keV as a member of a rotational-like band
built on the 0+4 state. In order to firmly evaluate the collectivity of the 2+ → 0+4
transition, the lifetime of the 2+ state at 2208.5 keV is needed. However, a first
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estimate can be made based on the level spacing within the band. The 2+1 → 0+1
transition energy is 212.6 keV, while the 2+2 → 0+2 transition has an energy of
547.5 keV. The state at 1196 keV, proposed to be built on the 0+3 state, decays to
it via a 366.9-keV transition. If the state at 2208.5 keV is built on the 0+4 state,
this would correspond to 913.8-keV spacing between the two lowest band members,
much larger than those observed for other rotational bands in 100Zr, which suggests
a lower collectivity of the structure built on the 0+4 state. For comparison, the 2+3
state in 98Zr, interpreted as built on the quasi-spherical ground state, is observed
at 1745-keV excitation energy.

Figure 13.9 – Partial level scheme of 100Zr presenting all decays to the 0+4 stateoriginating from states below 4 MeV excitation energy, which were observed inthe present work, as well as decay branches of the 0+4 state. States and transi-tions plotted in green were identified in the present study. Level and transitionenergies are given in keV.
The remaining candidates for the spin-2 0+4 band member have even higher

excitation energies, and thus would indicate an even lower collectivity. In the future,
an attempt will be made to determine spins at least of some of these states from
the analysis of γ-γ correlations in their decay.

13.3 Summary and outlook

In the present work, the level scheme of 100Zr was investigated up to ≈ 2.2 MeV
excitation energy and six new levels were proposed within this energy range. Howe-
ver, numerous observed γ rays with higher energies, including some intense ones,
remain to be placed. Therefore, in the future, it will be possible to largely extend
the existing level scheme of 100Zr. Multiple new levels have already been identi-
fied, e.g. during the investigation of possible candidates for the 2+ member of a
structure built on the 0+4 state presented in Section 13.2.3.

The branching ratios within the investigated level scheme were extracted using
gates from above. For the moment, no summing corrections were applied due to

198



the temporary unavailability of the data stored on the servers of the University
of Guelph. Although it was shown in Section 12.2.1 that the summing-in effect
influences the extracted branching ratios by only a few percent (i.e. within their
relative uncertainties), in the near future corrections for both summing-in and
summing-out effects will be determined from the experimental data by using γ-γ
coincidences between detectors separated by 180◦, as described in Section 11.2.4.
The branching ratios in the decay of higher-lying states will also be extracted.
Once the complete level scheme is established, limits of the log(ft) values will be
determined.

Figure 13.10 – Relative transition probabilities for the E2 transitions depopula-ting the proposed 2+ state at 2208.5 keV, normalized to the B(E2, 2+ → 0+1 )value. The relevant transitions are indicated with green arrows and the arrowwidths reflect the relative B(E2) values. The remaining transitions (in black) arelabeled with their energies in keV.

Using γ-γ angular correlations, three new 0+ states were identified at relatively
low excitation energies. A possible member of a presumed rotational band built
on the 0+4 state was proposed. However, there exist other candidates for the 2+

member of this band, and their spins and decay patterns will be analysed in the
future. Possible candidates for rotational states built on the excited 0+5,6 states
proposed in the present study will also be investigated. Furthermore, a search for
the “proto-triaxial” and “proto-γ” band heads will be carried out.

Some of the angular correlations presented in Section 12.4 need further refi-
nement to reach the 99% limit, including those for key states, e.g. 2+2,3 and 0+4 .
The spin assignments for several of the reported states were not conclusive, e.g.
for the levels at 1971 keV and 2144 keV, which will be investigated using different
cascades (with the 2+3 and 2+2 intermediate state, respectively). In addition, the
mixing ratios of several transitions remain to be extracted from the current data
set. Apart from nuclear-structure interest, their determination is important for the
analysis of the future Coulomb-excitation experiment on 100Zr. Furthermore, it
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will be attempted to provide spin assignments for other states that are observed
to decay via intense γ ray transitions.

The full simulations accounting for the attenuation of the correlations due to
the finite detector size of GRIFFIN crystals were performed only for the 2+3 →
2+1 → 0+1 , 0+4 → 2+1 → 0+1 , 1807 keV→ 2+1 → 0+1 and 1938 keV→ 2+2 → 0+1
cascades. Although it was shown in Section 12.4 that the attenuation effects only
marginally influence the extracted results, the simulations for at least some of the
remaining cascades will be performed.

Furthermore, using γ-γ angular correlations, it is not possible to directly obtain
the parity of the investigated states. The parities of certain states could be deduced
using arguments regarding their decay pattern, however, the high coincidence effi-
ciency and granularity of GRIFFIN would make it possible to perform a Compton
polarimetry analysis [189] in the future and firmly establish the parities of other
states. This method makes use of the fact that the linear polarization of γ rays
emitted in a cascade differs for electric and magnetic types of radiation [190].

Finally, the conversion-electron data collected with PACES has not yet been
analysed in detail. While all of the conversion-electron transitions reported in
Ref. [145] were observed on-line, most of the collected data was affected by a
low-frequency noise appearing at random moments during the experiment. Thus,
as a first step, the usable data has to be identified.

In parallel to the work presented in this manuscript, a β-decay measurement
into 98Zr and 98Sr performed using the 8π spectrometer [191] is being analysed
at the University of Guelph. The new structural information obtained from these
studies can be used for systematic comparisons with the 100Zr case, improving
our understanding of the shape-coexisting structures observed in this region of the
nuclear chart. Moreover, the MCSM calculations for the Zr isotopes are currently
being refined by the group of T. Otsuka, Center for Nuclear Study, University of
Tokyo.

200



A - FRESCO input file

106Cd + 92Mo at 757-MeV
NAMELIST
&FRESCO hcm=0.005, rmatch=400.0 jtmin=0.0 jtmax=5500.0 absend=−1

thmin=5.0 thmax=−100.0 thinc=1.0 iblock=7 smats=2 xstabl=1 elab=756.7 /
&PARTITION namep=’106Cd’ massp=106.0 zp=48

namet=’92Mo’ masst=92 zt=42 qval=0.0000 nex=7 /
&STATES jp=0.0 bandp=1 ep=0.0 cpot=1 jt=0.0 bandt=1 et=0.0 /
&STATES jp=2.0 bandp=1 ep=0.63264 cpot=1 copyt=1 /
&STATES jp=4.0 bandp=1 ep=1.49378 cpot=1 copyt=1 /
&STATES jp=2.0 bandp=1 ep=1.71653 cpot=1 copyt=1 /
&STATES jp=0.0 bandp=1 ep=1.79525 cpot=1 copyt=1 /
&STATES jp=4.0 bandp=1 ep=2.30492 cpot=1 copyt=1 /
&STATES jp=3.0 bandp=−1 ep=2.3785 cpot=1 copyt=1 /
&partition /
&POT kp=1 ap=106.0 at=92.0 rc=1.200 /
&POT kp=1 type=12 shape=10 p1=0.064 p2=63.3 p3=280.0 /

&STEP ib=1 ia=2 k=2 str=62.216 /
&STEP ib=2 ia=1 k=2 str=62.216 /
&STEP ib=2 ia=2 k=2 str=−28.0 /
&STEP ib=2 ia=3 k=2 str=105.190 /
&STEP ib=3 ia=2 k=2 str=105.190 /
&STEP ib=3 ia=3 k=2 str=−28.0 /
&STEP ib=1 ia=4 k=2 str=16.798 /
&STEP ib=4 ia=1 k=2 str=16.798 /
&STEP ib=2 ia=4 k=2 str=42.25 /
&STEP ib=4 ia=2 k=2 str=42.25 /
&STEP ib=4 ia=4 k=2 str=132 /
&STEP ib=2 ia=5 k=2 str=17.255 /
&STEP ib=5 ia=2 k=2 str=17.255 /
&STEP ib=2 ia=6 k=2 str=7.075 /
&STEP ib=6 ia=2 k=2 str=7.075 /
&STEP ib=3 ia=6 k=2 str=21.98 /
&STEP ib=6 ia=3 k=2 str=21.98 /
&STEP ib=2 ia=7 k=1 str=0.064 /
&STEP ib=7 ia=2 k=1 str=0.064 /
&STEP ib=1 ia=7 k=3 str=280 /
&STEP ib=7 ia=1 k=3 str=280 /

&step /
&POT kp=1 type=1 p1=89.23 p2=1.18074 p3=0.69523 p4=22.3075
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p5=1.18074 p6=0.69523 /
&POT kp=1 type=12 shape=10 p2=0.95614 /

&STEP ib=1 ia=2 k=2 str=0.95614 /
&STEP ib=2 ia=1 k=2 str=0.95614 /
&STEP ib=2 ia=2 k=2 str=−0.43 /

&step /
&POT kp=1 type=12 shape=10 p2=1.6166 /

&STEP ib=2 ia=3 k=2 str=1.6166 /
&STEP ib=3 ia=2 k=2 str=1.6166 /
&STEP ib=3 ia=3 k=2 str=−0.43 /

&step /
&POT kp=1 type=12 shape=10 p2=0.258 /

&STEP ib=1 ia=4 k=2 str=0.25815 /
&STEP ib=4 ia=1 k=2 str=0.25815 /
&STEP ib=4 ia=4 k=2 str=2.0283 /

&step /
&POT kp=1 type=12 shape=10 p2=0.6493 /

&STEP ib=2 ia=4 k=2 str=0.6493 /
&STEP ib=4 ia=2 k=2 str=0.6493 /

&step /
&POT kp=1 type=12 shape=10 p2=0.265 /

&STEP ib=2 ia=5 k=2 str=0.26517 /
&STEP ib=5 ia=2 k=2 str=0.26517 /

&step /
&POT kp=1 type=12 shape=10 p2=0.1087 /

&STEP ib=2 ia=6 k=2 str=0.10873 /
&STEP ib=6 ia=2 k=2 str=0.10873 /

&step /
&POT kp=1 type=12 shape=10 p2=0.3378 /

&STEP ib=3 ia=6 k=2 str=0.3378 /
&STEP ib=6 a=3 k=2 str=0.3378 /

&step /
&POT kp=1 type=12 shape=10 p1=0.005585 /

&STEP ib=2 ia=7 k=1 str=0.005585 /
&STEP ib=7 ia=2 k=1 str=0.005585 /

&step /
&POT kp=1 type=12 shape=10 p3=0.7576 /

&STEP ib=1 ia=7 k=3 str=0.7576 /
&STEP ib=7 ia=1 k=3 str=0.7576 /

&step /
&pot /
&overlap /
&coupling /
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B - Structure of the GOSIA input files

The main GOSIA input file consists of a sequence of option commands. The
option names start by “OP,” followed by four characters which indicate the specific
command.

• OP,FILE - with this command the user defines the additional files to be
used in the calculation. Each file corresponds to a unit number, which is
called and then the file name is given [88]. The units used in the present
work are: 22 - an output file (106Cd.out), 3 - a file with experimentally
obtained γ-ray yields (106Cd.yld), 4 - a file with these γ-ray yields modified
to resemble point-like yields corresponding to a specific beam energy and
scattering angle, as explained in Section 5.7.2 (106Cd.f4), 8 and 9 - files
containing information on the solid angle covered by the γ-ray detectors,
and the related γ-ray attenuation factors (agata.f8, agata.f9), 7 - a file
containing information used in the fast approximation of the Coulomb-
excitation process [88] (106Cd.f7) and 12 - a file listing the values of the
matrix elements (106Cd.me).

• OP,TITL - a user-given title to be displayed as a header of the output.

• OP,GOSI - option that sets the mode in which GOSIA will be used, namely
fitting a set of MEs to experimental data. Within GOSI, the user defines
the investigated nucleus and the experiments to be used in the fitting
procedure. This is done in four sub-options - LEVE, ME, EXPT and CONT:

1. LEVE - LEVEls is used to declare the level scheme of the nucleus of
interest. Each state is defined with a single record: n, Pn, Sn, En, which
correspond to a user-given state index (from 1 to the total number of
states N), parity (± 1), spin and excitation energy in MeV, respectively.

2. ME - the reduced Matrix Elements used in the fitting procedure are
defined here. They are separated according to the type (electric, ma-
gnetic) and multipolarity (λ) of the electromagnetic operator. One has
to first provide the E1 matrix elements (“1 0 0 0 0” marks the begin-
ning of E1 MEs definition), followed by the E2 (2 0 0 0 0) and E3

(3 0 0 0 0), with the highest possible multipolarity for electric tran-
sitions being E6. The definitions continue with the magnetic matrix
elements - M1 (7 0 0 0 0), or at most M2 (8 0 0 0 0).

Each matrix element is defined by a single line providing nI , nF ,
ME, RL and RU , which correspond to the index of the initial and final
states (according to the indexation in LEVE), the matrix element given
in ebλ/2 for electric and µNb(λ−1)/2 for magnetic MEs, and the lower
and upper limits in which the matrix element can be varied during

203



the fitting procedure, respectively. The matrix elements provided in
this sub-option can be understood as the initial set of MEs for the
minimization procedure. They will be varied within their limits in order
to obtain the best fit of the data.

3. EXPT - within the EXPEriment sub-option, the user defines the expe-
riments to be considered. Each experiment corresponds to a particular
combination of bombarding energy, scattering angle and geometry of
the particle and γ-ray detectors. First, one declares Nex, ZI , AI , which
refer to the total number of experiments to be analysed, atomic number
and mass number of the investigated nucleus. Then, ZU , AU , ELAB,
θLAB, Mc, Ma, IAX, ϕL, ϕU , IKIN , LN are provided for each expe-
riment separately. ZU and AU are the atomic and mass numbers of the
collision partner. A negative sign in front of ZU signifies that excita-
tions of the projectile are analysed. ELAB is the mean projectile energy
in the laboratory coordinate system. The mean scattering angle θLAB

is usually taken to be the middle of each ∆θLAB region covered by the
particle detector. Mc and Ma are the numbers of magnetic substates
to be included in the full and in the approximate Coulomb-excitation
calculation, respectively [88]. The IAX flag is used to declare if the
particle detector is axially symmetric, which is not the case for the
present experiment. Thus, IAX=1 and a more detailed description of
the detector geometry is given later in another option. The coverage in
ϕ of the particle detector is given via ϕL and ϕU , which in the present
analysis are taken to be the azimuthal angular limits of the particle
detector at the middle of each ∆θLAB slice. The IKIN flag is used to
select which of the two possible kinematic solutions should be used
(relevant when Aprojectile > Atarget). Finally, LN can be used to tie
together the normalisation constants Cm (see Formula 5.28) for a pair
of experiments. In the present case each experiment has an independent
normalization and LN = Nex.

4. CONT - this sub-option is used to control the execution and output.
Without going into details (which can be found in Ref. [88]), a few
control sequences were called in the input file used for the present ana-
lysis: LCK, WRN , INR, SPL, INT and PRT . LCK can be used
for fixing values of specific matrix elements in the fit. The remaining
parameters control various aspects of the calculation, e.g. accuracy
and printout, including warning statements, etc. The option definition
is terminated by END, and a blank line.

• OP,YIEL - option which is used for calculating de-excitation γ-ray yields
following Coulomb excitation. First, the internal conversion coefficients are
provided at specific energies (mesh points) for each of the multipolarites
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listed in the definition of the MEs in OP,GOSI. Subsequently, the geometry
of the γ-ray detection system is described. The number of detectors used
in each experiment is declared first (21 in this work). A sequence of 21

numbers follows, each corresponding to a particular detector type, then
the θ and ϕ angle coordinates of the center of each defined detector. This
procedure is repeated for each experiment. Seven types of detectors were
defined in the current work, depending on their distance from the target,
ranging from 18.9 to 20.8 cm. The size and shape of each detector was
also provided - 4 cm radius of the crystal, 9 cm height of the detector
cylinder, 0.1 cm inner electrode (to be excluded from the active volume
of the detector) and 0.1 cm Al absorber covering every crystal [52]. This
information was provided in option OP,GDET in order to calculate the solid
angle covered by each type of detector and the related γ-ray attenuation
factors, stored in files “agata.f8” and “agata.f9”.

Figure B.1 – Part of the hit pattern of 106Cd ions identified in VAMOS, corres-ponding to the first (θLAB between 19.4◦ and 20.0◦) and second (θLAB between
20.0◦ and 21.0◦) experiments defined in GOSIA. The description of the particledetector shape for the first region is illustrated. The ∆ϕ coverage is given forthree distinct θLAB angles - beginning of the region (blue), middle (red) and end(green).

The information needed for the fitting procedure is provided next. First,
a transition to be used for normalization is defined. In the current work, the
intensity of the 2+1 → 0+1 transition, denoted by “2 1”, is used to norma-
lize all calculated intensities in each experiment. Then NDST , UPL and
Y NRM are provided for each experiment, corresponding to the number
of data sets per experiment (1), upper limit (assumed to be 0.1% of the
normalizing transition, see Section 5.7.1) and relative normalization factors
of the γ-ray detectors (1), respectively. Finally, one has to select the file
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from which the intensities to be fitted will be imported: either 106Cd.yld
(3), 106Cd.f4 (4) or none (0), if the intensities will be simulated instead.

Additional spectroscopic information needed for the least-square fit is
provided in OP,YIEL starting with the declaration of the number of known
branching ratios and the weight with which they are considered in the
fit (1.0). They are defined by a sequence n1, n2, n1, n3, BR((n1 →
n2)/(n1 → n3)), σ(BR). The second transition (n1 → n3) is typically
the most intense transition, which is used for normalization of the other
branches.

As a next step, the number and weight (1.0) of lifetimes to be consi-
dered in the least-square search are declared. The lifetimes are introduced
as: n, τ , σ(τ), where n is the index of the state, τ the mean lifetime (not
the half-life) expressed in picoseconds, and σ(τ) is its absolute uncertainty.
Subsequently, δ(E2/M1) mixing ratios to be used in the analysis are pro-
vided. The used syntax is as follows: n1, n2, δ, σ(δ), where n1 and n2 are
the indices of the states involved in the mixed transition.

Finally, the previously measured matrix elements may also be defined
to be included in the least-square fit. They are introduced by a record:
λ, n1, n2, ME, σ(ME), where λ is defined as in the ME section of
OP,GOSI, i.e. 2 denotes an E2 matrix element and 3 an E3 one, and ME

is ⟨n1||EMλ||n2⟩. The matrix elements are expressed in ebλ/2 for electric
and µNb(λ−1)/2 for magnetic transitions.

• OP,RAW - this option is used if the measured γ-ray intensities are not
corrected for detection efficiency and/or if spectra from individual detectors
are summed together in the analysis. Separately for each experiment, the
efficiency curve parameters for every γ-ray detector are provided (in the
present case they are equal to 0, 0, 0, 0, 0, 0, 0, 0, as the data are efficiency
corrected), the number of detector clusters, i.e. groups of detectors that
have their energy spectra summed together (1) and which detectors are
included in each cluster, following their definitions in OP,YIEL (1, 2, .., 21).

• OP,POIN - within this option one can calculate the so called “point-like”
γ-ray yields (Formula 5.23). Those are the yields calculated at the mean
beam energy ELAB and mean scattering angle θLAB characterizing each
experiment in the EXPT sub-option.

• OP,INTI - this option can be used to perform integration over the finite
scattering angle range covered by the particle detector dΩP and over the
bombarding energies resulting from the projectile energy loss over the tar-
get thickness (Formula 5.24). In the first stage of the calculation, γ-ray
yields, integrated over the azimuthal angle phi, are calculated at specific
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energy and scattering angle θLAB mesh points (similar to OP,POIN). This
is followed by integration over the relevant ranges of bombarding energy
and scattering angle, relying on interpolation between the calculated γ-ray
yields at the energy and scattering angle mesh points specified by the user.
The user provides first NE and ±Nθ, which are the number of energy and
θLAB mesh points at which the full Coulomb-excitation calculation will be
performed. If the sign in front of Nθ is negative, the particle detector is
declared to be non-axial and additional information needs to be provided
at a later stage. The following records: EMIN , EMAX , θMIN , θMAX are
the limits of the incident energy in MeV and the limits of the scattering
angle of the detected particles in the laboratory frame between which the
integration is carried out (Formula 5.24).

Three beam energy mesh points were declared in the current work -
before (EMAX = 770) MeV, at the middle (756.7 MeV) and after the target
(EMIN = 743.4 MeV). The θMIN and θMAX values for each experiment
followed Fig. 4.9. The scattering angle mesh points were taken to be the
largest, the smallest and the mean scattering angle of each ∆θLAB region,
i.e. the “experiment” defined in tge EXPT section. For example, in the first
experiment, the scattering angle mesh points were 19.4◦, 19.7◦, 20.0◦ (see
Fig. B.1). For each θ mesh point, it was also necessary to provide the lower
and upper limit of the ϕ coordinate of the particle detector. The selected
regions for the first experiment are illustrated in Fig. B.1 with the dashed
lines. The information discussed above was provided for each experiment
defined in the sub-option EXPT.

Furthermore, the energy loss in the target material has to be considered
during the evaluation of the γ-ray yields. Therefore, at the specified energy
mesh points the stopping powers dE/dx were calculated with the program
elo [58] and provided in units of MeV/(mg/cm2) in the input file. Finally,
the numbers of equal subdivisions of the ranges of energy and scattering
angle (EMIN to EMAX , θMIN to θMAX) are provided. These are used for
interpolation of the Coulomb-excitation yields between the mesh points in
the integration procedure. In total ten energy subdivisions were requested,
while for the θ only two were considered necessary. If the detector has no
axial symmetry, for each subdivision one has to provide the ∆ϕ covered
by the particle detector, as illustrated in Fig. B.1 for the first experimental
region.

The input to OP,INTI, summarized in Appendix D, can be directly atta-
ched to the main input file in Appendix C to perform intensity calculations
using the matrix elements defined in the ME sub-option. A set of matrix
elements given in an external file (106Cd.me) can also be included in the
calculation if OP,REST is called before OP,INTI.
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• OP,MINI - this option is used to perform a χ2 fit of a set of matrix
elements to the experimental data. Additional information for the minimi-
zation routine has to be provided: number of steps, minimum χ2 value at
which the procedure is terminated, convergence criterion (maximum dif-
ference between the sets of MEs in two subsequent minimization steps,
before the procedure is terminated), etc. [88]. If OP,REST is also called,
the initial set of MEs will be read before OP,MINI is executed, otherwise
the matrix elements defined in OP,GOSI will be used.
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C - Main part of the GOSIA input file

OP,FILE
22 3 1
106Cd.out
3 3 1
106Cd.yld
4 3 1
106Cd.f4
8 3 1
agata.f8
9 3 1
agata.f9
7 3 1
106Cd.f7
12 3 1
106Cd.me
0 0 0
OP,TITL
Exp. 106Cd+92Mo
OP,GOSI
LEVE
1,1 0 0.0
2,1 2 0.63264
3,1 4 1.49378
4,1 2 1.71653
5,1 0 1.79525
6,1 4 2.10453
7,1 4 2.30492
8,1 5 2.33056
9,-1 3 2.37850
10,1 4 2.48572
11,1 6 2.49166
12,1 6 2.50308
13,1 2 2.56626
14,-1 5 2.6292
15,-1 5 2.92014
16,1 8 3.04413
17,1 0 2.14406
18,1 2 2.2541
19,1 2 2.63008
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20,1 2 2.71786
21,-1 1 2.82458
22,1 2 2.7108
0 0 0 0
ME
1 0 0 0 0

1 21 0.00517 0.0000001 0.021
2 9 0.0064 0.0000001 0.03
2 21 0.00128 0.0000001 0.021
3 14 0.00103 0.0000001 0.04
3 15 0.0102 0.0000001 0.04
5 21 0.00535 0.0000001 0.021
6 14 0.0067 0.0000001 0.04
8 14 0.00380 0.0000001 0.04
9 20 0.0096 0.0000001 0.03

2 0 0 0 0
1 2 0.62272 0.0000001 2.114
1 4 0.168 0.0000001 2.114
1 19 0.032 0.0000001 2.114
2 2 -0.28 -3.0 -0.0000001
2 3 1.08326 0.0000001 2.837
2 4 0.422 0.0000001 2.114
2 5 0.17255 0.0000001 0.945
2 6 0.09263 0.0000001 2.837
2 7 0.07075 0.0000001 2.837
2 10 0.0953 0.0000001 2.837
2 13 0.1151 0.0000001 2.114
2 17 0.0689 0.0000001 0.945
2 18 0.253 0.0000001 2.837
2 19 0.0263 0.0000001 2.114
2 20 0.1487 0.0000001 2.114
3 3 -0.28 -3.0 -0.0000001
3 6 0.3497 0.0000001 2.837
3 7 0.2193 0.0000001 2.837
3 8 0.00456 0.0000001 3.136
3 10 0.2845 0.0000001 2.837
3 11 0.732 0.0000001 3.409
3 12 0.91094 0.0000001 3.409
3 22 0.97702 0.0000001 2.114
4 4 1.32 0.0000001 4.000
4 6 0.64181 0.0000001 2.837
4 10 0.3270 0.0000001 2.837
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4 13 0.2685 0.0000001 2.114
4 17 0.35 0.0000001 0.945
4 19 0.5079 0.0000001 2.114
4 20 0.3929 0.0000001 2.114
5 13 0.1886 0.0000001 2.114
5 19 0.1562 0.0000001 2.114
6 8 0.5467 0.0000001 3.136
6 10 1.0201 0.0000001 2.837
11 16 0.17094 0.0000001 3.899
12 12 -1.3 -4.0 -0.0000001
12 16 0.14302 0.0000001 3.899
17 19 0.5573 0.0000001 2.114

3 0 0 0 0
1 9 0.28 0.0000001 0.684
2 14 0.2 0.0000001 0.857
2 15 0.3 0.0000001 0.857
2 22 0.3 0.0000001 0.447

7 0 0 0 0
2 4 -0.265 -2.99 -0.0000001
2 13 0.596 0.0000001 2.99
2 19 -0.3983 -2.99 -0.0000001
3 6 -0.5676 -4.01 -0.0000001
3 7 -0.8734 -4.01 -0.0000001
3 8 -0.0177 -4.44 -0.0000001
6 8 -0.1807 -4.44 -0.0000001

EXPT
3 48 106
-42 92 756.7 19.7 3,1,1 -11.6 12.0 1 1
-42 92 756.7 20.5 3,1,1 -16.0 16.0 1 2
-42 92 756.7 21.5 3,1,1 -19.0 19.0 1 3
CONT
LCK,
0,0
WRN,3.
INR,
SPL,1.
INT,1.
1,1000
PRT,
4,0
5,1
10,0
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11,0
12,0
13,0
14,0
17,0
18,1
0,0
END,

OP,YIEL
0
23 4
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.7 1.8 1.9
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.8 3.0 3.1 3.2
1
1.669E-01 2.34E-02 3.67E-03 1.400E-03 7.55E-04 4.86E-04
3.83E-04 4.24E-04 5.21E-04 5.78E-04 6.36E-04 6.96E-04
7.56E-04 0.000815 0.000874 0.000931 0.000987 0.001041
0.001096 0.001203 0.001294 0.001339 0.001386
2
1.495E+00 1.287E-01 1.295E-02 4.00E-03 1.92E-03 1.1140E-03
7.75E-04 6.08E-04 5.50E-04 5.45E-04 5.51E-04 5.64E-04 5.84E-04
0.000608 0.000635 0.000666 0.000698 0.000732 0.000766 0.000836
0.000906 0.000942 0.000977
3
15.08 0.667 0.0417 0.01036 0.00436 0.0023 0.001513 0.001068 0.000832
0.000759 0.000708 0.000673 0.000652 0.00064 0.000635 0.000637
0.000645 0.000656 0.000671 0.000708 0.000751 0.000775 0.000799
7
4.63E-01 6.88E-02 1.152E-02 4.30E-03 2.20E-03 1.329E-03 8.97E-04
6.83E-04 5.93E-04 5.76E-04 5.72E-04 5.78E-04 5.91E-04 0.00061
0.000635 0.000662 0.000692 0.000723 0.000756 0.000826 0.000896
0.000932 0.000968
21 21 21
1 2 1 3 1 3 2 1 3 2 4 5 6 5 6 4 5 6 5 6 7
162.3 145.2 162.5 149.6 162.7 149.7 144.6 162.4 150.0 144.9 119.3
115.8 132.7 117.2 133.2 119.2 115.7 132.5 117.1 133.1 126.4 268.9
267.5 53.6 85.4 123.1 157.7 123.0 196.5 229.9 194.9 85.6 67.1 73.0
106.1 100.4 157.7 139.2 144.9 177.9 172.3 194.1
1 2 1 3 1 3 2 1 3 2 4 5 6 5 6 4 5 6 5 6 7
162.3 145.2 162.5 149.6 162.7 149.7 144.6 162.4 150.0 144.9 119.3
115.8 132.7 117.2 133.2 119.2 115.7 132.5 117.1 133.1 126.4 268.9
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267.5 53.6 85.4 123.1 157.7 123.0 196.5 229.9 194.9 85.6 67.1 73.0
106.1 100.4 157.7 139.2 144.9 177.9 172.3 194.1
1 2 1 3 1 3 2 1 3 2 4 5 6 5 6 4 5 6 5 6 7
162.3 145.2 162.5 149.6 162.7 149.7 144.6 162.4 150.0 144.9 119.3
115.8 132.7 117.2 133.2 119.2 115.7 132.5 117.1 133.1 126.4 268.9
267.5 53.6 85.4 123.1 157.7 123.0 196.5 229.9 194.9 85.6 67.1 73.0
106.1 100.4 157.7 139.2 144.9 177.9 172.3 194.1
2 1
1
0.001
1
1
0.001
1
1
0.001
1
4
22,1.0

4 2 4 1 0.94 0.14
6 2 6 3 0.512 1.0
6 4 6 3 0.0312 0.0024
7 2 7 3 0.109 0.007
8 3 8 6 0.379 0.026
10 3 10 2 0.392 0.025
10 4 10 2 0.1452 0.010
10 6 10 2 0.0423 0.004
13 4 13 2 0.0079 0.0008
13 5 13 2 0.0024 0.0007
14 3 14 6 0.238 0.016
14 8 14 6 0.0591 0.008
16 12 16 11 0.630 0.053
17 4 17 2 0.376 0.022
19 1 19 2 0.0701 0.0044
19 4 19 2 0.0894 0.0058
19 5 19 2 0.0054 0.0008
19 17 19 2 0.0046 0.0008
20 4 20 2 0.178 0.089
20 9 20 2 0.054 0.027
21 2 21 1 0.0287 0.003
21 5 21 1 0.0519 0.004
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6,1.0
2 10.35 0.08
8 870 290
9 0.204 0.030
14 8.2 0.4
15 0.20 0.05
21 0.029 0.001

7,1.0
4 2 -1.44 0.11
6 3 -0.314 0.022
7 3 -0.17 0.04
8 3 -0.18 0.05
8 6 -0.58 0.12
13 2 0.312 0.033
19 2 -0.11 0.04

4,1.0
2 2 2 -0.28 0.04
2 3 3 -0.28 0.18
2 4 4 1.32 0.08
2 12 12 -1.30 0.80

OP,RAW
1
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
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0,0,0,0,0,0,0,0
1
21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2
0,0,0,0,0,0,0,0
...............
0,0,0,0,0,0,0,0
1
21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
3
0,0,0,0,0,0,0,0
...............
0,0,0,0,0,0,0,0
1
21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0
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D - Second part of the GOSIA input file

The following options can be directly attached to the file in Appendix C in
order to perform minimization, error estimation or integration:

• OP,MINI

OP,MAP has to be executed before OP,MINI is called for the first time.
The first run of OP,MINI does not require OP,REST. The following section
is attached to the main part of the input file to fit a set of matrix elements
to to the experimental data:

OP,REST
0,0
OP,MINI
2100,30,0.001,0.001,0.1,1,2,1,1,0.001
OP,MINI
2100,30,0.001,0.001,0.1,1,2,1,1,0.001
OP,MINI
2100,30,0.001,0.001,0.1,1,2,1,1,0.001
OP,EXIT

• OP,ERRO

The following section is attached to the main part of the input file to
perform error estimation (to account for correlations between the matrix
elements, the option parameters have to be changed to 1,0,0,1,1,1E+36):

OP,REST
0,0
OP,ERRO
0,0,0,0,0,1E+36
OP,EXIT

• OP,INTI

To perform a simulation of γ-ray intensities considering the particle de-
tector geometry and target thickness, the following section can be attached
to the main part of the input file:
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OP,REST
0,0
OP,INTI
3 -3 743.4 770 19.4 20
743.4 756.7 770
19.4 19.7 20.0
1
-6.0 6.5
1
-11.6 12.0
1
-14.0 14.0
3 -3 743.4 770 20 21
743.4 756.7 770
20 20.5 21
1
-14.0 14.0
1
-16.0 16.0
1
-17.0 17.0
3 -3 743.4 770 21 22
743.4 756.7 770
21 21.5 22
1
-17.0 17.0
1
-19.0 19.0
1
-20.4 20.0
4
743.4 750 760 770
37.26 37.21 37.13 37.05
10 -2
12.5 23.6 28.0
4
743.4 750 760 770
37.26 37.21 37.13 37.05
10 -2
28.0 32.0 34.0
4
743.4 750 760 770
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37.26 37.21 37.13 37.05
10 -2
34.0 38.0 40.4
OP,EXIT

Only the first three θLAB ranges declared in the analysis are described
here. The description of the remaining eight angular ranges was provided
when simulating the γ-ray intensities at the full coverage of VAMOS++.

The same input file can be used to transform the experimental intensi-
ties to point like yields, by calling OP,CORR before OP,EXIT. In addition
the number of the file containing γ-ray intensities to be read has to be
changed to 3 in OP,YIEL (which corresponds to the 106Cd.f3 file).
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E - GRIFFIN crystal coordinates

Table E.1 – Coordinates (polar ϑi and azimuthal φi angles) of the centre of eachHPGe crystal with respect to the beam direction (ϑ = 0◦) in the “optimized peak-to-total” GRIFFIN configuration used in the S1790 experiment (with Clover 13 re-moved). Possible opening angles (θ) between the centers of a detector pair, in-cluding cases where a crystal pairs with itself (θ = 0◦), and the correspondingnumber of pairs are given in the two last columns [127, 162].
Crystal Clover ϑi φi θ NPAIRS

1 1 37.9 80.1 0 60
2 1 53.2 77.2 15.442 120
3 1 53.2 57.8 21.905 60
4 1 37.9 54.9 29.143 60
5 2 37.9 170.1 33.143 60
6 2 53.2 167.2 38.382 40
7 2 53.2 147.8 44.57 120
8 2 37.9 144.9 47.445 120
9 3 37.9 260.1 48.741 80
10 3 53.2 257.2 51.473 80
11 3 53.2 237.8 55.17 40
12 3 37.9 234.9 59.978 60
13 4 37.9 350.1 60.102 80
14 4 53.2 347.2 62.34 60
15 4 53.2 327.8 62.492 40
16 4 37.9 324.9 63.423 80
17 5 82.3 30.3 68.957 80
18 5 97.7 30.3 71.431 56
19 5 97.7 14.7 73.358 80
20 5 82.3 14.7 73.629 56
21 6 82.3 75.3 75.774 56
22 6 97.7 75.3 80.942 56
23 6 97.7 59.7 81.546 40
24 6 82.3 59.7 83.894 56
25 7 82.3 120.3 86.868 56
26 7 97.7 120.3 88.966 112
27 7 97.7 104.7 91.034 112
28 7 82.3 104.7 93.132 56
29 8 82.3 165.3 96.106 56
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Table E.1 – continued
Crystal Clover ϑi φi θ NPAIRS

30 8 97.7 165.3 98.454 40
31 8 97.7 149.7 99.058 56
32 8 82.3 149.7 104.226 56
33 9 82.3 210.3 106.371 56
34 9 97.7 210.3 106.642 80
35 9 97.7 194.7 108.569 56
36 9 82.3 194.7 111.043 80
37 10 82.3 255.3 116.577 80
38 10 97.7 255.3 117.508 40
39 10 97.7 239.7 117.66 60
40 10 82.3 239.7 119.898 80
41 11 82.3 300.3 120.022 60
42 11 97.7 300.3 124.83 40
43 11 97.7 284.7 128.527 80
44 11 82.3 284.7 131.259 80
45 12 82.3 345.3 132.555 120
46 12 97.7 345.3 135.43 120
47 12 97.7 329.7 141.618 40
48 12 82.3 329.7 146.857 60
49 13 − − 150.857 60
50 13 − − 158.095 56
51 13 − − 164.558 112
52 13 − − 180.000 56
53 14 126.8 167.2
54 14 142.1 170.1
55 14 142.1 144.9
56 14 126.8 147.8
57 15 126.8 257.2
58 15 142.1 260.1
59 15 142.1 234.9
60 15 126.8 237.8
61 16 126.8 347.2
62 16 142.1 350.1
63 16 142.1 324.9
64 16 126.8 327.8
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