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Classification et Segmentation du Réseau Vasculaire dans les Images
Histologiques : Application au Carcinome à Cellules Rénales

Résumé

Le carcinome à cellules rénales (RCC) est l’une des tumeurs malignes les plus courantes et le
diagnostic pathologique postopératoire est la méthode étalon pour le diagnostic du RCC. La
reconnaissance du type de tumeur RCC et la possibilité de migration cellulaire dépendent for-
tement des propriétés géométriques et topologiques du réseau vasculaire. Dans ce travail, nous
explorons le réseau vasculaire visible dans les images histopathologiques du RCC et étudions
s’il est suffisant pour caractériser le sous-type de RCC. Pour ce faire, nous construisons d’abord
une nouvelle base de données d’images histopathologiques RCC, à savoir l’ensemble de don-
nées BigRCC, qui contient 63430 imagettes de carcinome à cellules claires (ccRCC), de car-
cinome papillaire (pRCC), chromophobe (chRCC) et oncocytome. Ensuite, nous construisons
une seconde base de données d’images histopathologiques de RCC du réseau vasculaire de 31
patients, à savoir la base de données VRCC, contenant 424 annotations du réseau vasculaire,
provenant d’images de patchs tumoraux de ccRCC, pRCC et chRCC. Sur la base de ces réseaux
vasculaires du jeu de données VRCC, nous proposons de nouvelles caractéristiques, à savoir
des caractéristiques du squelette du réseau et des caractéristiques des zones entre les vaisseaux.
Ces caractéristiques représentent bien les propriétés géométriques et topologiques des réseaux
vasculaires des images histopathologiques. Ensuite, nous construisons des résultats de réfé-
rence solides avec divers algorithmes (modèles d’apprentissage traditionnels et profonds) sur
l’ensemble de données VRCC. Les résultats des caractéristiques de squelette et de réseau sur-
passent les modèles classiques par apprentissage profond. Malheureusement, il existe peu de
grandes bases de données de réseaux vasculaires annotées manuellement. De plus, l’annotation
du réseau vasculaire est très chronophage, ce qui limite son application potentielle. En outre,
la segmentation automatique du réseau vasculaire à partir d’images histopathologiques reste
un défi majeur en raison de la complexité de l’arrière-plan. Pour faciliter l’utilisation du réseau
vasculaire nous proposons, dans cette thèse, une méthode qui réduit la dépendance aux données
étiquetées grâce à l’apprentissage semi-supervisé (SSL). De plus, compte tenu de la corréla-
tion entre la classification tumorale et la segmentation vasculaire, nous proposons un modèle
d’apprentissage multi-tâches (MTL) qui peut simultanément segmenter le réseau vasculaire à
l’aide du SSL et prédire la classe tumorale dans un contexte supervisé. Cette procédure d’ap-
prentissage multi-tâches offre une solution d’apprentissage automatique de bout en bout pour
segmenter conjointement le réseau vasculaire à partir d’images histopathologiques et classer
les sous-types de tumeurs. Des expériences ont été menées sur l’ensemble de données VRCC,
puis testées sur nos propres ensembles de données RCC et sur les données de la base TCGA.
Les résultats montrent que le modèle MTL-SSL proposé surpasse l’approche conventionnelle
de segmentation par apprentissage supervisé.

Mots-clés : Carcinome à cellules rénales, Base de Données d’images Histopathologiques RCC,
Réseau Vasculaire, Apprentissage Semi-supervisé, Apprentissage Multi-tâches.
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Classification and Segmentation of Vascular Network in Histological
Images: Application to Renal Cell Carcinoma

Abstract

Renal Cell Carcinoma (RCC) is one of the most common malignancies and histopathologi-
cal image analysis is a gold standard for RCC diagnostic method. Recognizing the type of
RCC tumor and the possibility of cell migration highly depends on the geometric and topo-
logical properties of the vascular network. Motivated by the diagnosis pipeline, we explore
whether the vascular network visible in RCC histopathological images is sufficient to charac-
terize the RCC subtype. To achieve this, we firstly build a new RCC histopathological image
dataset, namely the BigRCC dataset, which contains 63430 patch images of clear Cell RCC
(ccRCC), papillary RCC (pRCC), Chromophobe (chRCC), and Oncocytoma. Then we build a
vascular network-based RCC histopathological image dataset of 31 patients, namely the VRCC
dataset, with 424 weakly-labeled vascular network annotations, coming from tumor patch im-
ages of ccRCC, pRCC, and chRCC. Based on these vascular networks of the VRCC dataset,
we propose new handcrafted features, namely skeleton features and lattice features. These fea-
tures well represent the geometric and topological properties of the vascular networks of RCC
histopathological images. Then we build strong benchmark results with various algorithms
(both traditional and deep learning models) on the VRCC dataset. The results of skeleton and
lattice features outperform popular deep learning models. Unfortunately, there is a lack of
large manually annotated vascular network databases for learning-based methods. Moreover,
vascular network annotating is very time-consuming, which would limit its potential applica-
tion. Besides, automatic vascular network segmentation from histopathological images is still
a challenge due to the background complexity. To facilitate vascular network application, in
this thesis, we propose a method that reduces reliance on labeled data through semi-supervised
learning (SSL). Additionally, considering the correlation between tumor classification and vas-
cular segmentation, we propose a multi-task learning (MTL) model that can simultaneously
segment the vascular network using SSL and predict the tumor class in a supervised context.
This multi-task learning procedure offers an end-to-end machine learning solution to jointly
segment the vascular network from histopathological images and classify tumor subtypes. Ex-
periments were carried out on the VRCC dataset and then tested on both own RCC and open-
source TCGA datasets. The results show that the proposed MTL-SSL model outperforms the
conventional supervised-learning segmentation approach.

Keywords: Renal Cell Carcinoma, RCC Histopathological Image Dataset, Vascular Network,
Hand-crafted Features, Semi-Supervised Learning, Multi-Task Learning.
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CHAPTER 1
Introduction

1.1 Preface

Computer-aided diagnosis (CAD) is an interdisciplinary technology that combines elements of
artificial intelligence and computer vision with radiology and medical imaging. This technology
has the advantages of accurate quantitative analysis, repeatability, and a reduced workload for
radiologists.

In recent years, artificial intelligence and smart medicine have become hot topics in the me-
dical field and even globally in society. Conventional pathology consists of tissue sections after
fixation, dehydration, wax immersion, embedding and other processes. After staining, the patho-
logist analyzes the characteristics of the lesions by reading microscopy images to determine the
diagnosis result. Pathology has always been the "gold standard" in the medical diagnosis field, and
pathological diagnosis is the final step in disease determination. CAD also has potential future ap-
plications in digital pathology with the advent of whole slide imaging (WSI) and machine learning
algorithms. It is particularly investigated for the standard H&E stain [Shiraishi et al., 2011]. The
emergence of digital pathology has effectively saved the manpower and time costs of the hospital
pathology department, improved the quality and efficiency of pathological diagnosis, and even re-
duced the risk of misdiagnosis, alleviating the development dilemma of the pathology to a certain
extent.

In digital pathology, digitizing slices is the most basic and critical step. The WSI is scanned and
collected by an automatic microscope or optical magnification system to obtain high-resolution di-
gital images. Then, a computer is used to automatically perform high-precision multi-scaled and
thus obtain and process high-quality data for application in various fields of pathology. The deve-
lopment of digital pathology is based on high-throughput and fast WSI technology. The pathology
department makes all routine slices into digital slices and integrates them into the daily workflow
to realize the whole process of pathology with digital quality control and management. Combi-
ned with computer science technology, it establishes a pathological diagnosis platform. Based on
the all-digital pathology, the archived digitized slices form rich datasets. When these datasets are
combined with emerging computer algorithms such as artificial intelligence (AI) and the powerful
computing power of computers, the computer can automatically detect the lesion area in the digital
slices and quantitatively evaluate various indicators, helping pathologists to make a fast, accurate
and highly repeatable pathological diagnosis. At present, CAD software will gradually become an
indispensable tool in the daily diagnosis of pathologists.

3



4 CHAPITRE 1 — Introduction

1.2 General Context of Our Research

This project is launched by CHU de Nice - Hôpital Pasteur and our Morpheme team, a joint
team between INRIA, CNRS and Université Côte d’Azur.

1.2.1 Brief introduction of medical aspects

Renal cell carcinoma (RCC) is a highly malignant tumor in the urinary system. 90% of
kidney cancers are RCC [Hsieh et al., 2017], which is mainly divided into clear cell RCC
[Lopez-Beltran et al., 2006] (ccRCC) accounting for 75% of RCC, papillary RCC (pRCC) ac-
counting for 10% of RCC and Chromophobe (chRCC) accounting for 5% of RCC. RCC classi-
fication is a challenging task. Cell morphology, tumor architecture, phenotype and genetics data
are mainly used to define the tumor subtype. Most of the current classification research is focu-
sed on the search for biological biomarkers, aiming to define the RCC subtype and also predict
the behavior of the tumor [Cheville et al., 2003, Gao et al., 2020, Cheng et al., 2020]. However,
vasculature also plays an important role [Loukas and Linney, 2004a] in histopathological diagno-
sis [Prasad et al., 2006]. The vascular structure of RCC subtypes is different and may lead to an
accurate diagnosis. For example, ccRCC is characterized by a fishnet-like vascular architecture,
the pRCC has a tree-like structure [Zubiolo et al., 2016] while the chRCC has a linear structure
[Nagashima, 2000]. As shown in Figure 3.15 (see chapter 3) the ccRCC vascular networks are
denser and contain more junctions but fewer end branches than pRCC, the density of chRCC
vascular network is the lowest among subtypes. In this project, we explore the importance of
the vascular network in the RCC diagnosis. We not only extracted hand-crafted features of the
vascular networks to classify subtypes of RCC but also proposed an end-to-end semi-supervised
learning (SSL) model to segment vascular networks automatically, which can outperform the fully
supervised method.

1.2.2 Objective and motivations

Since there is no public RCC dataset with vascular network annotations, we build the VRCC
dataset with vascular annotations. VRCC is extracted from our larger RCC histopathological image
dataset (BigRCC) randomly, which is labeled with RCC categories. The BigRCC dataset contains
the data of 167 WSI, coming from 74 patients, which are cropped into 39986 image patches of
ccRCC, 18254 image patches of pRCC and 4420 image patches of chRCC respectively. VRCC
has 424 vascular network segment images of ccRCC, pRCC and chRCC, coming from 31 patients
(13 for ccRCC, 14 for pRCC and 4 for chRCC).

To explore the potential of traditional algorithms, we propose two sets of features, called "ske-
leton features" and "lattice features", which are extracted from the vascular network. Specifi-
cally, we compute the skeleton of the vascular network. The skeleton is a structure that embeds the
topological and geometrical properties of the vascular network, as shown in Figure 3.15 (see chap-
ter 3). It is composed of three types of elements : junction, non-end branch and end branch. Firstly,
we define some meaningful features from the skeleton to form the skeleton features, containing
the number of end branches (NE), small NE, long NE, and density, etc. Then, we perform a series
of operations on the skeleton to obtain the lattice spatial map. The lattice features that represent
the regions between vessels are extracted from this spatial map. Lattice features include a set of
features, such as the mean area, median area, etc. in Table 4.1 (see chapter 4).
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Then we build solid benchmark results of traditional and deep learning methods on
the VRCC dataset. The results of traditional algorithms with our skeleton and lattice fea-
tures outperform the results of popular deep learning models (Graph Convolutional Net-
work (GCN) [Zhang et al., 2018a], Convolutional Neural Network (CNN) [He et al., 2016,
Simonyan and Zisserman, 2014]).

In order to enhance the application value of the vascular network, we planned to build an
automatic vascular network segmentation model. However, data labeling is often the most chal-
lenging task for the segmentation problem when considering deep learning approaches. Labeling
large-scale images is laborious, time-consuming and exhibits low repeatability. This encouraged
us to find out if it was possible to improve the vascular network segmentation performance using
unlabeled datasets. This is indeed the paradigm of SSL models. Compared with the difficulty of
obtaining manually a vascular network mask for the segmentation task, the labeling for the classi-
fication task is easy to obtain. We conjectured that joint supervised classification and SSL for vas-
cular network segmentation, both embedded in a multi-task learning (MTL) model, may improve
the performance of vascular network segmentation in RCC histopathological images. Additionally,
we annotated 12 vascular network masks of another subtype of RCC, named Oncocytoma, only
for test.

Finally, we conducted benchmark experiments of supervised learning, SSL, both single and
multi-tasks, on RCC histopathological images. The proposed MTL-SSL model performs best,
outperforming and being more robust than the supervised learning models which only use a few
labeled data. Moreover, compared with the single-task SSL, our model indeed improves the seg-
mentation efficiency of the vascular network while also performing tumor classification.

1.3 Thesis Organization

1.3.1 Main contributions

The main contributions of the work can be summarized as follows :
— We present the first work to investigate the importance of geometric and topological pro-

perties of the vascular network for RCCs classification.
— We build a new database and vascular annotated datasets, "BigRCC" and “VRCC", for

RCCs classification and vascular network segmentation.
— We proposed two sets of hand-crafted features, "skeleton features" and "lattice features", to

represent the vascular network, which is extracted from the vascular network segmentation
images.

— We build benchmark results on the VRCC dataset, showing that our proposed features-
based traditional classifier can outperform deep learning models.

— We propose an MTL-SSL model performing joint SSL segmentation and classification
tasks to segment the vascular network using both labeled and unlabeled data.

— We apply an automatic, end-to-end machine learning vascular network segmentation me-
thod in histopathological images, which is robust and outperforms other popular SSL and
supervised learning methods.

— The proposed MTL-SSL model forms a foundation for future developments in multi-
task learning dealing with vascular segmentation and classification from histopathological
images.
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1.3.2 Manuscript organization

Part I (Chapter 1) introduces the background, main context, and objectives of this thesis focu-
sed on the segmentation and classification of the vascular network from the RCC histopathological
images. Main contributions, as well as publications, are illustrated here.

Part II (Chapter 2) focuses on the background of the application of machine learning in histo-
pathological images. Meanwhile, we present the state of the art and the current status and prospects
of machine learning-assisted pathological diagnosis.

In Part III (Chapter 3), we present the medical background of the development and subtype
character of RCC with cell nucleus and vascular network and the pipeline of the annotated histo-
pathological images dataset building. The BigRCC dataset includes the category information of
RCC, which divides into tumor patch images and non-tumor (fiber, necrosis, and normal) patch
images. The VRCC dataset is a part of the tumor patch images from the BigRCC dataset, which
contain the vascular network mask information.

Part IV (Chapter 4) describes the hand-crafted features (skeleton features and lattice features)
extraction from the vascular network of ccRCC, pRCC, and chRCC, these features contain the
topological and geometrical characterization of the vascular network. Then, we calculate the sta-
tistical significance between the features of 3 RCC subtypes. Finally, we choose the features that
are significant in all significant tests to classify RCC subtypes and compare their performance with
former work.

In Part V (Chapter 5), we compare the classification performance of our proposed hand-crafted
features with the graph-based representation feature, which only contains the topological informa-
tion, and with the deep features, which are represented by raw tumor patch images and the binary
patch images of the vascular network masks.

Part VI (Chapter 6) mainly focuses on automatic vascular network segmentation. We propose
an MTL-SSL model, in which joint tumor subtypes classify and SSL segment the vascular network
to improve the performance of vascular network segmentation in RCC histopathological images.
Both labeled and unlabeled patch images are used for training, which reduces the reliance on
manually vascular network annotation. Then we conduct benchmark experiments of supervised
learning, SSL, both single and multi-tasks, on RCC histopathological images and compare them
with our former work as well. Moreover, we involve the new subtype of RCC, named Oncocytoma,
and other cancer patch images obtained from another open-access database TCGA, which are
added only to the test set for the model robustness without training.

Part VII (Conclusion and Perspectives) is the discussion, conclusion, and perspective of the
project. In summary, we outperform the state of the art of RCC subtypes classification by hand-
crafted features, and the vascular segmentation by the MTL-SSL model. Meanwhile, we illustrate
the value of the vascular network for RCC subtyping and the prospect of this project in application
to the pathological diagnosis.

1.3.3 List of publications

— Rudan Xiao, Damien Ambrosetti, Eric Debreuve, Xavier Descombes. "Renal Cell Car-
cinoma Classification from Vascular Morphology," MICCAI 2021. DOI : 10.1007/978-3-
030-87231-1_59.
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— Mohammed Lamine Benomar, Nesma Settouti, Rudan Xiao, Damien Ambrosetti, Xavier
Descombes. "Convolutional Neuronal Networks for Tumor Regions Detection in Histopa-
thology Images," ICDTA 2021. DOI : 10.1007/978-3-030-73882-2_2.

— Rudan Xiao, Damien Ambrosetti, Xavier Descombes. "Semi-Supervised Multi-Task
Learning for Vascular Network Segmentation and Classification of Renal Cell Carcinoma,"
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CHAPTER 2
Machine Learning in

Histopathological
Images

Dans ce chapitre, nous présentons le contexte médical de l’imagerie histopathologique et
son analyse par la méthode traditionnelle d’extraction de caractéristiques et l’approche
par apprentissage profond. Nous décrivons également la situation du développement du
diagnostic/pronostic assisté par ordinateur et son application dans le cas du carcinome
rénal à cellules claires.

In this chapter, we present the medical background of the histopathological image and
its analysis with the traditional feature extraction method and deep learning approach.
We also discusse the development situation of computer-aided diagnosis/prognosis and
the application in RCC.

11
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2.1 Histopathological Images

2.1.1 Brief Introduction

Histology is made up of the Greek words histo (organization) and logos (science). Histology
is the science that studies the fine structure of the normal human body and its related functions.
Microstructure refers to the structure seen under a microscope [Ross and Pawlina, 2006].

The first optical microscope was invented in 1950 by Jansen and Sons in the Netherlands. In
1665, Hooke observed thin slices of plant tissue with a self-made microscope and named cells
for the first time. At present, there is not only an optical microscope but also a laser confocal
microscope (mainly detecting fluorescence signal), electron microscope (divided into the scanning
electron microscope, observe the surface of the sample, resolution 6-10 nm ; transmission electron
microscope, transmission sample observation, resolution 0.1-0.2 nm ) are widely used.

In 1801, Marie François Bichat (1771-1802) first proposed the word tissue and divided the
human body into 21 kinds of tissues [Maulitz, 1973]. August Franz Mayer (1787-1865), a Ger-
man, became Bern’s former surgeon in 1813 and became the professor of anatomy, pathological
anatomy and physiology of town in 1815. He divided tissues into 8 types and coined the term
histology.

In the middle and late 19th century, scientists invented many histological techniques, which led
to the discovery of many types of cells and the fine structure of tissues. Italian scientist Millo Golgi
(1843-1926) and Spanish scientist Santiago Ramon y Cajal (1852-1934), who won the Nobel Prize
in 1909, founded the silver staining technique and used it in the study of nerve cells and nerve
tissue. They are considered the founder of Neuroscience.

From the end of the 19th century up to now, modern histology has developed into a golden
age, and several Nobel Prizes have been awarded in this discipline. For example, in 1908, the
relationship between phagocytes and body defense has been discovered. The functional junction
between neurons is named synapse, which puts forward the theory of neural reflex and the concept
of the synapse. In 1986, Charles Scott Sherrington (1857-1952) won the Nobel Prize for resear-
ching the important functions of nerve growth factor and epidermal growth factor in nerve growth
and embryonic development [Perea et al., 2009].

Nowadays, histochemistry continues to advance, and in addition to basic research, it has also
been fully applied in medical diagnosis. It is the main research method in the discipline of patho-
logy. Autopsy, biopsy, and cell smears all require histological techniques for analysis.

In tumor diagnosis, apart from clinical features, biochemical diagnosis, and imaging data,
only histopathology is the "gold standard" for diagnosing tumors : source, malignancy, the extent
of tumor spread, etc.

A pathological section is a certain size of diseased tissue. Usually, the diseased tissue is em-
bedded in a paraffin block, sliced into thin slices with a microtome, and then the staining method
is selected according to the purpose. Further examination is carried out with a microscope. The
occurrence and development of lesions are analyzed, and finally, a pathological diagnosis is done.

There are three ways to detect molecular pathology :
— The antigen-antibody reaction is used to specifically recognize the target protein, and the

luciferase-labeled antibody is called immunofluorescence (IF). The corresponding sections
need to be observed under a fluorescence microscope.

— The second is also based on the antigen-antibody reaction, but it is labeled with enzymatic
chemistry and is called immunohistochemistry (IHC). After color development, the shades
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Figure 2.1 – Example of IHC staining.
Display specific tissue structures by applying different antibodies (source : Biorepository and Tis-
sue Research Facility, School of Medicine, University of Virginia).

are different and can be observed under an optical microscope, an example of IHC staining
is shown in Figure 2.1.

— For direct detection of target DNA or RNA, nucleic acid probes with labels are usually
used for hybridization, which is called in situ hybridization (ISH). The probe markers are
divided into radioisotopes labeled 3H, 35S, 125I, etc., or non-radioactive. The radioactive
requires autoradiography, and the non-radioactive can be observed by IHC.

Traditional immunohistochemical staining, such as H&E staining, uses Hematoxylin and Eo-
sin staining. Hematoxylin is alkaline, which can make nuclear chromatin and ribosomes blue-
violet, and eosin is acidic, marking cytoplasmic, thus the extracellular matrix becomes pink. Be-
nign and malignant can be judged by qualitative and quantitative analysis, as shown in Figure
2.2 [Kausar et al., 2019]. In addition, there are also various staining methods shown in Figure 2.3,
such as Sirius red staining for collagen components [Li et al., 2016a], Golgi staining for marking
nerves [Du, 2019], Masson trichrome staining for connective tissue [Foot, 1933], and oil red O for
fat [Stanton et al., 2011] staining. Labeling a wide variety of tissue results in a colorful diagnostic
map.

2.1.2 Sample Preparation

Histopathological sections are divided into paraffin section, frozen section and vibrating sec-
tion according to the different preparation methods. The sections used in our project are from
paraffin.
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Figure 2.2 – Benign and malignant grading under H&E staining.
Judging by the morphological features, geometric features, texture features and shape features of
cells and nuclei. The left side is original raw H&E stained microscopy images and the right side is
corresponding stain color normalized images. Microscopy images are taken from the ICIAR 2018
dataset (Kausar, 2019).
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A B

C D

Figure 2.3 – Special stains to reveal specific tissue structures.
A : Sirius red staining (Li, 2016), B : Golgi staining (Du, 2019), C : Masson trichrome staining
(source : Moran Center, University of Utah Health Care), D : Oil red O staining (Stanton, 2011).
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The preparation process of paraffin sections includes the steps of sampling, fixing, washing and
dehydration, clearing, dipping in wax, embedding, sectioning and sticking, dewaxing, staining,
dehydration, clearing, and sealing. Generally, it takes several days from the sampling and fixing to
the cover slip to make the slide sample.

— Fixing
Impregnate fresh materials with appropriate 4% paraformaldehyde to solidify or precipi-
tate the material components in cells and tissues, stop all metabolic processes of cells,
prevent cell autolysis or tissue changes, harden tissues, and maintain the structure of the
living body as much as possible. Fixed time from 1 hour to several days, usually several
hours to 24 hours.

— Washing and dehydration
After the tissue is fixed, the fixative infiltrated into it should be washed away, otherwise,
the fixative left in the tissue will hinder the staining, and some will cause precipitation or
crystallization.
The tissue after fixation or washing is full of water. If the water is not removed, subsequent
clearing, wax dipping and embedding cannot be carried out, because most clearing agents
are benzene, and neither benzene nor paraffin can be mixed with water. Therefore, dehy-
dration must be carried out before transparent and wax dipping. Dehydration is to use of a
dehydrating agent to replace the water in the tissue to facilitate the infiltration of organic
solvents. Commonly used dehydrating agents are a series of different concentrations of
ethanol.
The dehydration steps are : 80%, 90%, 95%, 100% ethanol of various concentrations for 2
hours. This process can be completed automatically by a dehydrator.

— Clearing
After tissue dehydration, because ethanol is insoluble in paraffin, for paraffin to be immer-
sed in tissue blocks, it must go through a substitution process of a solvent that can be mixed
with alcohol and dissolve paraffin, for alcohol to achieve the immersion of tissue blocks
in paraffin. The material block is immersed in this kind of medium immersion liquid and
appears transparent. This liquid is called the transparent agent.
Currently, the best clearing agent is xylene. Usually, the tissue is first immersed in a mix-
ture of pure alcohol and half of the clearing agent for 1 to 2 hours and then transferred to
the pure clearing agent for immersion.

— Wax dipping and embedding
After the tissue is transparent, it is immersed in molten paraffin, so that the paraffin pene-
trates into the tissue and replaces the xylene in the tissue. This process is called paraffin
immersion.
The melting point of paraffin wax used for dipping wax is 56 °C, and the dipping wax
should be carried out in an incubator about 3 °C higher than the melting point of paraffin
wax.
The melted paraffin is poured into the embedding frame, and the paraffin-impregnated
tissue block is placed with the cut side down with warmed tweezers. When the surface
layer of the wax liquid solidifies, it will be rapidly cooled.

— Slicing
The embedded wax block is trimmed into a square or rectangle with a blade, cut into a
4 ∼ 7µm wax strip on a microtome, and gently hold up with a brush and placed on the
paper.
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— Spread, fish and bake
Exhibit :
Ophthalmic tweezers are used to pick up the wax tape which is gently spread on the water
surface of 40-45°C. The tension and the temperature of the water are used to naturally
flatten the slightly wrinkled wax tape.
Fishing pieces :
After the section is fully flattened on the constant temperature water, the wax section is
moved to the middle of the glass slide, and the remaining water on the glass slide is elimi-
nated.
Baked slices :
Usually baked in an oven at 60°C
About 0.5 to 1 hour is necessary to remove the paraffin that dissolves the interstitial space.

— Section Dewaxing and Hydration
Dried sections need to be dewaxed and hydrated before staining in water-soluble dyes. If
the dewaxing is not clean, and the sections are not easily stained or unevenly colored, the
xylene used for dewaxed should be replaced frequently. Therefore, before H&E staining, it
needs to be dewaxed with xylene, and then de benzene by graded alcohol until rehydrated
with distilled water.

— Dyeing
As mentioned in the above section, we can carry out different staining according to dif-
ferent needs. In this project, the slices we use are based on H&E staining. H&E staining is
routine staining of histological and pathological specimens.
First, the nuclei were stained with hematoxylin, and the sections were stained with Harris
hematoxylin for 3-8 minutes, washed with tap water, differentiated with 1% hydrochloric
acid alcohol for a few seconds, rinsed with tap water, returned to blue with 0.6% ammonia
water, and rinsed with running water again. Then it is stained in eosin for 1-3 minutes to
stain the cytoplasm.
Sections need to be dehydrated, transparent and mounted after H&E staining.

— Section dehydration, clearing and coverslip
The stained sections cannot be observed under the microscope, and need to be dehydrated
with a gradient of alcohol from low concentration to the high concentration and transparent
to xylene. Put the slices into 95% alcohol I for 5 minutes, 95% alcohol II for 5 minutes,
absolute ethanol I for 5 minutes, absolute ethanol II for 5 minutes, xylene I for 5 minutes,
and xylene II for 5 minutes, in turn, to dehydrate and transparent.
Take out the section, wipe off excess xylene, air dry, drop a drop of neutral gum, and cover
the section with a coverslip for sealing.

2.1.3 Microscope Features and Scanning

Observing the H&E staining sections under a microscope, we can find that the nuclei are
stained bright blue by hematoxylin, the cartilage matrix and calcium salt granules are dark blue,
and the mucus is gray-blue. The cytoplasm was stained with eosin in different shades of pink to
peach, and the eosinophilic granules in the cytoplasm were bright red with strong light reflection.
Collagen fibers are pale pink, elastic fibers are bright pink, red blood cells are orange-red, and
proteinaceous fluid is pink.
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We take the Leica SCN400F slide scanner in our project. The Leica SCN400F scanner is
the ideal solution for digital pathology laboratories. With its specially designed optics, scanning
method and Z-Stack function, the Leica SCN400F slide scanner captures clear images of histopa-
thology samples.

The Leica SCN400F slide scanner captures multiple labeled fluorescent samples through a
combination of tri-frequency cubes and excitation filters, allowing sharp multi-channel images.
This comprehensive slide scanning system incorporates the latest technology to provide truly high-
quality images. The detailed technical specifications and parameters are as follows :

— Slide loading : four slides are placed in one holder, and automatic scanning.
— Scanning speed : 20x magnification 15×15mm, 100 seconds ; 40x magnification

15×15mm, 220 seconds.
— Glass slide size : standard size 26×76mm
— Scanning range (for high resolution) : standard size 24×62mm
— Objective lens : Optical system with Leica lens and optical elements designed for dedicated

digital sensor scanning
— Available magnifications : 5x, 10x, 20x, 40x
— Spatial resolution : 0.25µm/pixel (40x magnification)
— Scanning method : high-speed, high-sensitivity linear CCD equipment, user-selectable (au-

tomatic, semi-automatic, manual scanning)
— Focusing method : dynamic focus/auto focus
— Layer scanning : user-selectable thickness, optional layers from 1 to 100 layers
— Barcode reader : one-dimensional (code 128), two-dimensional (data matrix)
— Storage : 5TB to 20TB
— Image export : .scn, .svs
— Dimensions (W×H×L) : 723×595×582mm
The scanning process consists of a digital microscope or a magnification system to scan the

glass slices one by one under a low-magnification objective lens to acquire an image. A frame of
reference is defined for localizing slide images using a slide-based coordinate system. It specifies a
particular corner of the slide as a nominal reference origin and a right-handed (X, Y, Z) coordinate
system for positioning from that origin. The microscope scanning platform automatically scans
and moves according to the XY axis direction of the slice, and automatically focuses in the Z axis
direction, as shown in Figure 2.4. Then, the scanning control software collects high-resolution
digital images employing program-controlled scanning based on the effective amplification of the
optical magnifying device, and the image compression and storage software automatically splice
the images seamlessly to produce a digital slice with a full field of view. The slide-based (X, Y)
coordinate system is rotated 180 degrees from the original image matrix (row, column) orientation
of the image frames with the left label (see Figure 2.4) [Committee et al., 2010].

2.1.4 WSIs and Image Preprocessing

In 1999, a whole slide image (WSI) is invented, making the preservation and transmission of
pathological sections more convenient and safe [Weinstein et al., 2009]. This digitization of pa-
thological sections is considered to be an important turning point in the pathological development
process, which effectively saves the manpower, time and cost of hospital pathology departments,
improves the quality and efficiency of pathological diagnosis, and alleviates the development di-
lemma of pathology to a certain extent [Fine, 2014].
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s

Figure 2.4 – Slide Coordinates Origin and (X, Y, Z) vs. Image Matrix Origin (Rows, Columns).
(DICOM Standards Committee, 2010)

Digital Pathology (DP) uses the automatic microscope scanning system, combined with the
virtual slicing software system, to scan and seamlessly splice traditional glass slices to generate a
WSI, which is about the order of 106× 106 pixels. DP has all the features of traditional slicing with
the advantage of not being limited by space and time. The DP is a dynamic scale picture, it contains
all the lesion information on the glass slice. On the computer, like under the microscope, it can be
observed at different magnifications (4X, 10X, 20X, 40X, 100X, etc.), and within a specific range
(1X ∼ 100X), to achieve continuous zoom viewing slices. The average size of each slice is more
than 1 Giga Byte (GB), even 3-5 GB, and each pixel is 160 nanometers. WSIs are usually stored
in a multi-resolution pyramid structure [Bejnordi and van der Laak, 2016]. An image file contains
multiple downsampled versions of the original image. Each image in the pyramid is stored as a
series of image tiles to facilitate the fast loading of sub-regions of the image. The storage method of
digital pathological slides is shown in Figure 2.5 [Wetteland et al., 2020]. It solves the problems
that traditional glass slides that are easily damaged, easy to fade, easy to lose, and difficult to
retrieve.

WSI can capture disease processes because they are developed at high resolution, each contai-
ning billions of pixels and up to one million or more microscopic objects with an important pro-
gnostic profile. Computational image analysis enables the mining of large-scale WSI datasets to
extract quantitative morphological features that describe the visual quality of a patient’s tissue.

WSI has several advantages :
— Glass slides are no longer unique.
— Access to cases is possible from any location.
— Digital image analysis can be applied.
— Archived WSI can be easily accessed.
From this point, several secondary advantages arise :
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Figure 2.5 – The WSI is stored in a pyramidal file format, including several down-sampled ver-
sions of the base image.
The annotated region (marked with red at level 0) determines which tiles to extract. Tiles are then
extracted at the desired location from all three levels. (Wetteland, 2020)

— The slide compilation of the case and the case assignment are fast and safe.
— Carrying the slices of cases to the pathologist for diagnosis is unnecessary and paperless

work is possible.
— WSI can be used for a second opinion and be accessible in remote locations.
— WSI of referred cases are still accessible after returning the slides.
— Histological images can easily be provided on tumor boards ;
— The office desk is clean.
— A "home office" is possible [Grobholz, 2018].

At the same time, the WSI system can help segment the required regions and ob-
jects, determine cancer classification and prognosis, and quantify immunohistochemistry
[Gandomkar et al., 2016].

The advancement of WSI quality has laid the foundation for the clinical application of digital
images in anatomical pathology, thereby improving the possibility of computer-aided pathology
diagnosis, and further optimizing the clinical interpretation of histopathology and medical care.
With the popularity of WSI, the role of computer-aided technology in medical imaging becomes
efficient for disease detection, diagnosis and prognosis.

From the image preprocessing perspective, it is not suitable to process so high-resolution
huge images with conventional graphics software packages. OpenSlide is an open-source func-
tion library that provides interfaces to various programming languages such as C and Python
[Goode et al., 2013]. It provides a unified set of application programming interfaces to read WSI
scanned by manufacturers including Philips, Leica, and MIRAX. The automated slide analysis
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platform (ASAP) is an open-source platform based on OpenSlide, Qt, and OpenCV for visualiza-
tion, annotation, and automated analysis of histopathological images [Litjens, 2017].

We use Python programming languages in this project. Python is an ideal image processing
language, there are many useful and convenient libraries we can use, such as OpenSlide to read
WSI files and get patch images, Pillow is used for basic image processing in Python, NumPy is
used for fast, concise, and powerful processing of images, Scikit-image is used for various image
functions such as morphology, thresholding, and edge detection.

WSI preprocessing typically includes cutting patches, background removal, and staining nor-
malization :

— patches cutting
The main method of cutting patches is patch sampling [Cruz-Roa et al., 2014], which treats
the WSI as a grid of small-sized image patches that can be fed into an algorithm to extract
features. By aggregating these features from small-sized blocks, the features on the whole
WSI can be obtained, and then the classification results can be obtained using this infor-
mation. [Xu et al., 2017] cropped the WSI into 151872nm×151872nm overlapping square
blocks for the histopathological classification of brain tumors. These patches are sam-
pled to 224×224 pixels and fed into pre-trained AlexNet [Krizhevsky et al., 2012a] for
classification. During prediction, the 4096-dimensional vector output by the second fully
connected (fc2) layer of the network is used as the block feature. The features of WSI
are obtained by p-norm pooling and feature screening based on inter-class distance from
all block features, and SVM is performed for glioblastoma multiforme (GBM) and low-
grade glioma (LGG) discrimination. [Wang et al., 2016] randomly cropped breast cancer
slices of the Camelyon dataset into 256×256 pixel patches, each patch has a benign and
malignant label, indicating whether it is a lymph node metastasis. After the block is ran-
domly cropped and horizontally flipped, the data are amplified and sent to GoogLeNet
[Szegedy et al., 2015] for training to obtain a model for judging the malignant degree of
the block.

— background removal
WSI usually contains a large number of white background areas, which brings meaningless
calculation and storage overhead. Usually, when processing WSI, the histologists manually
mark Region Of Interest (ROI) areas or use threshold-based Otsu binarization technology
[Otsu, 1979] to remove these backgrounds. The experiments of [Wang et al., 2016] show
that an average of 82% of the area of large full-section pathological images is background,
so that, cropping can greatly improve the efficiency of diagnosis and analysis.

— staining normalization
The low repeatability of the manual production process and the difference in dyes and
scanners cause color differences between WSIs, which leads to errors in subsequent
analysis work. Dye normalization techniques are generally used to eliminate color dif-
ferences between WSIs. [Reinhard et al., 2001] consider that the three channels of the
RGB color space have an obvious correlation, and the adjustment of pixel color must
be linked to the three channels simultaneously, which increases the complexity. While
[Ruderman et al., 1998] proposed the Lαβ color space to reduce the correlation between
channels. [Reinhard et al., 2001] proposed a color transfer method, which first transforms
the image from RGB space to Lαβ space, then adjusts the image with the mean and stan-
dard deviation of the three channels of the Lαβ space, and finally transforms back to RGB
space. Methods relying on statistical features imply the assumption that different sections
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have the same staining composition, but the actual sections contain different types of tis-
sue, and there is no guarantee that the staining composition will always be the same. The
background also has color after color migration. In the field of digital pathology, resear-
chers [Macenko et al., 2009, Vahadane et al., 2015] used the staining separation method to
normalize the staining by mapping the image in the RGB space to the color space of the
stain through a color deconvolution technique. Figure 2.2 displays the color normalized
images corresponding to the original H&E stained images.

2.2 Histopathological Images Analysis

2.2.1 Features Extraction from Histopathological Images

Features extraction is the primary step for histopathological image analysis using machine
learning. The typical steps for machine learning in digital pathological image analysis are shown
in Figure 2.6 [Komura and Ishikawa, 2018].

Hand-crafted features perform an irreplaceable role in medical classification tasks due to low
data requirements and ease of training. Li et al. [Li et al., 2016b] use support vector machines
(HC-SVM) to obtain hand-crafted features and train a second-level window classifier on the pos-
terior probabilities - as an output refinement - that can substantially improve the segmentation
performance. The final performance of HC-SVM with refinement is comparable to CNN in co-
lon histology images. And it also shows that combining and refining the posterior probability
outputs of CNN and HC-SVM can further boost performance. Jeena et al. [Jeena et al., 2021]
proposed hand-crafted texture features for stroke diagnosis. They trained the hand-crafted texture
features by the custom CNN model and other five pre-trained models from ImageNet. The custom
CNN model achieves the best performance with an accuracy of 95.8%. Our team’s previous work
[Zubiolo et al., 2016] uses hand-crafted features (number of end branches (NE) & junctions (NJ),
the length of end branches (LE) & non-end branches (LJ) and their ratios) to represent the vas-
cular network of RCC. In this project, we not only proposed a much bigger dataset, but also new
hand-crafted features (skeleton and lattice features) of RCC and perform a series of classification
tasks as opposed to the former study [Zubiolo et al., 2016].

Among feature extraction algorithms we can find :
— LBP (local binary patterns)

LBP is a simple and effective feature extraction algorithm for texture classification, propo-
sed by [Ojala et al., 2002]. From the perspective of texture analysis, the texture feature of
a pixel on an image refers to the relationship of this pixel with its neighbors.

— CLBP (completely local binary Pattern)
CLBP is the latest form of LBP. The traditional LBP operator loses some information when
extracting texture features. Therefore, [Guo et al., 2010] propose a complete LBP operator,
which consists of two parts, namely the LBP operator and the local part made of the central
pixel.

— OTSU
The Otsu method [Otsu, 1979] was proposed by Nobuyuki Otsu. Among all the segmenta-
tion methods, the Otsu method is one of the most popular methods for image thresholding
because of its simple calculation. Otsu is an automatic threshold selection region-based
segmentation method.
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Figure 2.6 – Typical steps for machine learning in digital pathological image analysis.
After preprocessing whole slide images, various types of machine learning algorithms could be
applied including (a) supervised learning (b) unsupervised learning (c) semi-supervised learning,
and (d) multiple instance learning. (Komura, 2018)
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— LPQ (Local Phase Quantization)
LPQ is an effective texture analysis tool [Ojansivu and Heikkilä, 2008]. The method consi-
ders that the observed image is an image obtained after the original image has undergone a
blurring process. To effectively reflect local information in the LPQ method, the Bayesian
transformation [Digalakis and Neumeyer, 1996] of the partial image is usually calculated.

— GLCM (Gray-Level Co-occurrence Matrices)
The gray level co-occurrence matrix of an image can reflect the comprehensive informa-
tion of the image grayscale concerning direction, adjacent interval, and variation ampli-
tude. It is the basis for analyzing the local patterns of images and their arrangement rules
[Saito et al., 2016].

— ORB (Oriented FAST and Rotated BRIEF)
The ORB feature was published by Ethan Rublee [Rublee et al., 2011]. Alleviating the
high computational cost of the Scale Invariant Feature Transform (SIFT) feature and the
Binary Robust Independent Elementary (BRIEF)-specific feature, the authors propose a
binary feature (0,1 string) based on the Features From Accelerated Segment Test (FAST)
and BRIEF features that are 100 times faster than SIFT, 10 times faster than Speeded Up
Robust Features (SURF), with excellent matching effect as well.

2.2.2 Deep Learning Approach

2.2.2.1 Back Propagation Neural Network

A neural network usually consists of an input layer, hidden layer and output layer, as shown
in Figure 2.7 [Bui, 2021]. Such a neural network model has a wider range of applications, cove-
ring both linearly and nonlinearly separable scenarios. It can be solved by the back-propagation
algorithm. In addition, increasing the number of hidden layers can also improve the ability of data
representation and function fitting. Adding more hidden layers based on three layers becomes a
deep neural network. Once a hidden layer is added, the number of parameters of the model in-
creases sharply, so deep learning requires particularly high computing resources, and the training
time is also very long. Although it consumes computing resources, the advantages of deep learning
are also very prominent. Compared with machine learning, the model automatically completes fea-
ture extraction and does not require manual feature engineering, which is particularly important
for processing high-dimensional data. The common model structures of the neural networks are
shown in Figure 2.8

2.2.2.2 Deep Learning Model Architecture

The deep learning method can learn the scale invariance and deformation-insensitive feature
expression of the image from a large amount of training data according to automatic feature lear-
ning, and can more fully express the image features without being restricted by professional factors
[Janowczyk and Madabhushi, 2016]. The deep learning algorithm can not only learn the charac-
teristic expression of the data but also can be used as a classifier. It has stronger self-learning and
self-adaptive ability and is more suitable for pathological analysis of large data volume.

In the field of image processing and computer vision, convolutional networks (CovNet) ba-
sed on convolution, Pooling and ReLU functions are the most commonly used network struc-
tures for deep learning. Figure 2.9 is a Deep Convolutional Neural Network (DCNN) architecture
[Izadyyazdanabadi et al., 2018b].
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Figure 2.7 – The structure of a 3-layer neural network. (Christian, 2020)
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Figure 2.8 – General architectures of neural network. (source : Asimov Institute)
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Figure 2.9 – Deep convolutional neural network (DCNN) architecture.
A schematic diagram of AlexNet [Krizhevsky et al., 2012b], a DCNN architecture that
was trained on CLE images for diagnostic classification by Izadyyazdanabadi et al.
[Izadyyazdanabadi et al., 2018a] is shown in panel (A). CONV1—CONV5 are the first five convo-
lutional layers and FC6 and FC7 are the fully connected layers 6 and 7. Different feature maps
of the first convolutional layer (color images) were calculated by convolving different filters (red
squares) with the corresponding regions of the input image [illustrated in panel (B)]. (Izadyyazda-
nabadi, 2018)
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Figure 2.10 – Four example images with corresponding augmented images
The augmented parameters : rotate 40 degrees clockwise, width offset factor is 0.2, height offset
factor is 0.2, shear factor is 0.2, zoom range is 0.2, horizontal flip and vertical flip. The actual
images are shown on the left, and our augmented samples (of the 20 created for each image) are
shown on the right. (Alom, 2019)

2.2.2.3 Deep Learning Development Platform

The existing deep learning open source platforms mainly include Caffe, PyTorch, MXNet,
CNTK, Theano, TensorFlow, Keras, etc. We choose the PyTorch platform in this project to
construct our deep learning models.

2.2.2.4 Data Augmentation

Data augmentation techniques can improve the performance of computer vision systems,
which are often used in the preparation stage of the input data of deep learning models, inclu-
ding rotation, width offset, height offset, shear system, zoom, local warping, horizontal flip and
vertical flip, etc. Figure 2.10 [Alom et al., 2019] shows some example images along with different
augmented samples for four different data classes. As can be seen in Figure 2.10, noise has been
added to some parts of the image.

2.2.2.5 Histopathological Images Classification

High-resolution digital pathological images provide a great convenience for computer-aided
diagnosis. One of the major difficulties in the analysis of histopathological images, especially
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H&E stained sections, is appearance variability. To some extent, this can be explained by disease
heterogeneity, but a large part is the result of the tissue preparation and staining process. In the
histopathological image classification task, deep learning-based methods are currently the most
widely used methods. Wang et al. [Wang et al., 2017] developed a bilinear CNN (BCNN) model to
classify breast cancer histopathological images. The BCNN is a new CNN model for fine-grained
classification. BCNN consists of two CNNs, whose convolutional-layer outputs are multiplied
with an outer product at each spatial location. To evaluate the proposed BCNN-based method, the
experimental results on eight classes of colorectal cancer histopathology image datasets show that
the BCNN-based algorithm outperforms traditional CNNs. Wang et al. proposed a comprehen-
sive recognition method with a newly proposed class structure-based deep convolutional neural
network (CSDCNN) [Wang et al., 2022a], the CSDCNN employs an end-to-end training method,
which can automatically learn semantic and discriminative hierarchical features from low-to-high
levels. It provides an accurate and reliable solution for breast cancer multi-classification. Meanw-
hile, they also proposed LPMF2Net based on the deep manifold fusion of multilayer features
[Wang et al., 2022b]. It can capture the complementarity between features at different levels, then
cross-cascaded and fuse the multilayer features to improve the ability to characterize cell structure.
When testing the BreaKHis dataset with the proposed LPMF2Net model, it achieves the best and
most consistent performance at 40×, 100×, 200× and 400× magnification levels, with accuracies
of 94.91%, 96.12%, 95.51%, and 95.42%, respectively. Moreover, the performance of CNNs can
be improved by deep high-order statistic models [Hou et al., 2022], which can outperform cor-
responding first-order counterparts in vision tasks. They integrated asymmetric convolution into
the second-order network and proposed a novel second-order asymmetric convolution network
(SoACNet). SoACNet uses a series of asymmetric convolutional blocks to replace each stand-
square-kernel convolutional layer of the backbone architecture, and then computes second-order
statistics of deep features by global covariance pooling. The classification result of SoACNet on
the BreakHis dataset shows its competitive performance with the state-of-the-art.

However, CNNs do not explicitly extract the complex features of the spatial arrangement of
cells from histopathological images. Graph Neural Networks (GCNs) can address this problem.
[Gadiya et al., 2019] use GCNs by modeling a tissue section as a multi-attributed spatial graph
of its constituent cells to classify cancers. Each cell appearance is captured as a multi-attributed
high-dimensional vertex feature and the spatial relations between neighboring cells are captured
as edge features based on their distances in a graph. The result demonstrated that using GCNs on
histograms gives a competitive performance for detecting malignancy and invasiveness in BACH
dataset [Aresta et al., 2019a] as compared to conventional patch-based CNN.

Almost all human solid malignant tumors require angiogenesis to sustain their aggressive
growth. One way to observe angiogenesis is through histological images. Microvessel density
(MVD) and vascularity have been used to describe and compare vascularization in different tu-
mors or tumor subtypes. For example, breast cancer and sarcoma differ in their vasculariza-
tion patterns [Tomlinson et al., 1999]. Likewise, renal cell carcinoma and breast cancer differ in
terms of MVD [Eberhard et al., 2000]. Different vascular patterns in different tumors or tumor
subtypes may lead to biologically and clinically relevant consequences. However, there is cur-
rently a lack of machine learning models for classifying and subtyping H&E staining histopa-
thological images of cancers based on vascular morphology. In this project, we classify topo-
logical information of RCC vascular networks by GCNs with two different pooling methods :
SAGPoolg [Zhang et al., 2018a] and SAGPoolh. [Cangea et al., 2018]. SAGPoolg is a novel Sort-
Pooling layer that sorts graph vertices in a consistent order so that traditional neural networks



2.2 – 2.2.2 Deep Learning Approach 31

can be trained on the graphs. The experiments on some benchmark graph classification data-
sets (COLLAB [Gallicchio and Micheli, 2020a], D&D, IMDb-B [Cai and Wang, 2018], IMDb-
M [Zhao and Wang, 2019], MUTAG [Zhang et al., 2021], NCI1 [Gallicchio and Micheli, 2020b])
demonstrate that the proposed SAGPoolg achieves highly competitive performance compared to
graph kernels and other graph neural network methods. SAGPoolh combines several advances in
graph neural network design to demonstrate that competitive hierarchical graph classification re-
sults are possible without scarifying sparsity. The results on several established graph classification
benchmarks show its state-of-the-art and can be scalable to large graphs.

Although the deep learning methods have achieved great progress for medical imaging tasks,
traditional machine learning algorithms are still crucial due to interpretability and small data-
sets applicability. Saxena et al. [Saxena et al., 2021] proposed a hybrid ML model to solve the
class imbalance problem. The proposed model employs a pre-trained ResNet50 and the kerne-
lized weighted extreme learning machine to classify breast cancer histopathology images. The
kernelized weighted extreme model achieved a reasonable performance for the classification of
the minority as well as the majority class instances on the BreakHis and BisQue histopathological
images datasets. It also can outperform the same training-testing folds of the BreakHis dataset.
Moreover, a novel CoMHisP framework based on a fuzzy support vector machine with within-
class density information (FSVM-WD) for histopathological image classification was proposed in
[Kumar et al., 2020]. It defines a novel feature extraction technique by optimizing the block size
to extract image micropatterns and compute the center of mass (CoM) for each pixel to extract
feature vectors. The performances of the proposed model are evaluated on the CMTHis dataset
comprising histopathological images of canine mammary tumors (CMT). The results demonstra-
ted that the CoMHisP framework can be influenced by stain normalization and magnification. It
works best with staining normalization and lower magnification, achieving a classification accu-
racy of 97.25% (±1.80%), outperforming traditional ML and deep FE-VGGNET16-based feature
descriptors.

2.2.2.6 Histopathological Images Segmentation

The development of new blood vessels within a tumor is due to the increased demand for
blood by cancerous cells [Ohgaki and Kleihues, 2005, Rodriguez et al., 2012]. Vasculature from
histological images plays a key role in cancer development, subtyping and radiotherapy assess-
ment [Loukas and Linney, 2004b]. Vascular segmentation is crucial in medical imaging tasks, for
example, to obtain a complete liver vascular network from patient abdominal computed tomo-
graphy (CT) images based on graph cut, thinning, and vascular combination [Guo et al., 2020].
Coarse-to-fine vessel segmentation network for OCTA images (OCTA-Net) also shows its ability
to detect thick and thin vessels separately [Ma et al., 2020].

However, the current automatic vascular segmentation for histopathological images is limited
to Immunohistochemistry (IHC) stained histology images. In [Bukenya et al., 2020], the authors
first segment and quantify blood vessels from histopathological images of the brain in case of
Alzheimer disease (AD). They use hematoxylin and diaminobenzidine (H&DAB) stained histo-
logy images. [Kather et al., 2015] obtained vascular hotspot probability maps of WSI by scanning
whole CD34 immunostained histological images of colon cancer samples and then segmenting
blood vessels. The comparison between the H&DAB staining image and the H&E staining image
is shown in Figure 2.11. H&DAB staining for special coloration of blood vessels, the background
is clean and easy to segment, but the background of the H&E image is more complex and has
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A B

Figure 2.11 – Example of H&DAB staining and H&E staining histology images.
A : H&DAB staining. B : H&E staining.

some similar linear structures, such as cell membranes and fibers, etc., which makes the task of
vascular segmentation from H&E images more challenging. Since H&E stained images contain
more information, such as cell morphology, inflammatory cell infiltration, lymph node metastasis,
etc., it is essential for pathological diagnosis. If we can obtain sufficient vascular information from
the H&E images alone, additional operations such as IHC could be avoided, which can save time
and resource costs, and make the diagnosis more accurate.

As far as we know, there is no vascular network segmentation research in H&E staining his-
topathological images. Our classification part of the project shows that the vascular network ar-
chitecture can be used alone to classify RCC histopathological images [Xiao et al., 2021], but its
application is limited due to its reliance on manual vascular masks. In this project, we propose an
MTL-SSL model which can segment vascular networks automatically while predicting the tumor
class.

SSL [Chapelle et al., 2009] plays a key role in segmentation tasks since it allows to reduce
the reliance on large annotated datasets. It can provide an effective way of leveraging unlabe-
led data to improve model performance. Several approaches have been proposed for SSL, such
as Deep Adversarial Networks [Zhang et al., 2017], Cross Pseudo Supervision [Chen et al., 2021]
and Cross Consistency Training [Ouali et al., 2020]. In this project, we use the Mean Teacher
approach [Tarvainen and Valpola, 2017] for SSL. This model was developed from the Temporal
Ensembling Model (TEM). It uses the consistency regularization method to effectively reduce
over-adaptation in SSL. However, only a few studies have investigated if SSL can be applied
to achieve satisfactory results in H&E staining histopathological images, such as NAS-SGAN
[Das et al., 2021] for atypia scoring of breast cancer ; it consists of the discriminator and genera-
tor models that are trained in an adversarial manner using both labeled and unlabeled samples, the
discriminator model is an unsupervised model and the generator model is trained over a stable fea-
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ture matching objective function following a composite Generative Adversarial Networks (GAN)
architecture. The results revealed that NAS-SGAN can better discriminate different cancer grades,
and achieve good robustness and accuracy of the system along with limited labeled data. OSE-
SSL is proposed in [Sparks and Madabhushi, 2016] for content-based image retrieval of prostate
cancer. OSE-SSL incorporates semantic information, and partial class labels, into a machine lear-
ning (ML) scheme such that the low dimensional representation co-localizes semantically simi-
lar images. The yielded area under the precision-recall curve (AUPRC) of CBIR with OSE-SSL
for prostate histology is 0.53±0.03. It outperforms a CBIR with Principal Component Analysis
(PCA) to learn a low dimensional space yielded an AUPRC of 0.44±0.01. Moreover, breast can-
cer classification on the BreakHis dataset with Self-Paced Learning together [Asare et al., 2020]
demonstrates the effectiveness of SSL, which integrates self-training and self-paced learning to
generate and select pseudo-labeled samples. This model can retrain the model with the generated
pseudo labels on unlabeled-target data, and also can prevent the model from ignoring samples
from less represented classes (hard-to-learn samples) together with a class balancing framework,
hence effectively handling the issue of data imbalance. In this project, we apply SSL to RCC his-
topathological images to provide the benchmarks for vascular network segmentation and propose
to improve the segmentation accuracy by jointly solving the tumor classification task.

MTL [Caruana, 1997] aims at improving the performance of multiple related learning tasks
by leveraging comprehensive information among them. MTL achieves better generalization pro-
perties than single-task learning. Classification and segmentation are both key tasks in medical
image processing. Joint segmentation and classification of tumors in 3D automated breast ultra-
sound images show that learning these two tasks simultaneously improves the outcomes of both
of them [Zhou et al., 2021]. The proposed framework consists of two sub-networks : an encoder-
decoder network for segmentation and a lightweight multi-scale network for classification. The
result of the 3D ABUS dataset indicates that segmentation and classification task can promote
each other during the training process, and the performance improved compared to the single-
task learning counterparts. Other joint tasks using MTL in histopathological imaging include
cell detection and segmentation on PMS2-stained colon rectal cancer and tonsil tissue images
[Chamanzar and Nie, 2020]. This model is an end-to-end deep learning algorithm to perform both
single cell detection and segmentation using only point labels and shows significant improvement
in cell detection and segmentation without increasing the annotation efforts. Mitotic cell detection
and counting are one of the strongest prognostic markers for breast cancer diagnosis, Mitosis-
Net [Alom et al., 2020] for mitosis detection from pathological images consists of segmentation,
detection, and classification models. It fast enough to meet the requirements of clinical practice.
MitosisNet is an end-to-end multi-task learning system, where the segmentation and detection
models are used for mitosis reference region detection and the classification model is applied for
further confirmation of the mitosis regions. The results evaluated on "MITOS 2012" and "MI-
TOS 2014” [Ludovic et al., 2013], and Case Western Reserve University (CWRU) datasets show
their reach state-of-the-art performance compared to the existing methods. The problem of poor
interpretability of models becomes critical in medical applications : models that doctors do not un-
derstand and trust are less likely to be used in everyday clinical practice. MTL of a deep k-nearest
neighbor network for histopathological image classification and retrieval [Peng et al., 2019] was
proposed due to that consideration. It can leverage the classic concept of k-nearest neighbors to
improve model interpretability. The original framework is built on top of any existing classification
network and with an advanced loss function strategy. The results evaluated on the colorectal cancer
histology slides show that confidence estimates are strongly correlated with model performance
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and the nearest neighbors are intuitive and useful for expert evaluation. In this project, we combine
the classification task for which labels are easy to obtain and the vascular network segmentation
task for which images have complex backgrounds and manual delineation is cumbersome. Our
MTL aims to improve the performance of the segmentation task on RCC histopathological images
compared to the supervised learning and single segmentation tasks.

2.3 Computer-Aided Diagnosis and Prognosis (CAD & CAP)

2.3.1 CAD

CAD has proven to be an effective tool for assisting histopathological image processing ana-
lysis and can be used in traditional pathology. Especially for cancer patients, decision-making
needs to be as accurate as possible to increase the likelihood of an optimal treatment plan.
[Kostopoulos et al., 2017] proposed a new image acquisition library (HICL-histology image ac-
quisition library), including 3831 histological images of three different diseases, freely open to the
scientific community.

Color is the most important feature in quantitative immunohistochemistry (IHC) image ana-
lysis. IHC can be used to provide information related to the cause and to identify malignancies.
[Shu et al., 2016] developed a color detection statistical model suitable for detecting staining in
digital IHC images.

[Mousavi et al., 2015] extract discriminative information from the histopathology image slides
for diagnosis and glioma tumor grading. [Momeni-Boroujeni et al., 2017] designed a computer
model to help Fine-needle aspiration (FNA) biopsy to diagnose pancreatic cancer. The results of
the study indicate that computer models can be successfully used to distinguish between benign
and malignant pancreatic cytology. The classification accuracy rate is 77%.

To assess the potential impact of digital aids on the interpretation of digital slides,
[Steiner et al., 2018] used a deep learning algorithm to detect breast cancer metastasis in lymph
nodes. Six pathologists examined 70 digital slides with or without a deep learning algorithm-
assisted reading mode. Deep learning algorithm assistance significantly increased the sensitivity
of detection for micrometastases (91% vs 83%, P = 0.02). The image review of micrometas-
tases is easier (P = 0.0005). This study demonstrates that deep learning algorithms improve
the accuracy and efficiency of diagnosis in digital pathology workflows. Artificial intelligence
(AI) is expected to fundamentally change the way we detect and treat breast cancer soon
[Robertson et al., 2018, Feng et al., 2018]. [Fondón et al., 2018] also proposed a CAD tool for
automatically assessing the degree of malignancy in breast tissue samples, this method is based on
the calculation of three sets of features related to nuclei, color regions, and textures considering
local characteristics and global image properties, accuracy levels range from 75.8% when the
5-fold cross-validation was performed to 75% with the external set of new images and 61.11%
when the extremely difficult images were added to the classification experiment. In addition,
[Maeda et al., 2017] developed a CADx for identifying breast epithelial proliferative lesions in
invasive breast cancer. This system can be used for the pathological diagnosis of breast preparative
core needle biopsy (CNB) in routine research. [Veta et al., 2014] outline the method of performing
cost-effective and high-throughput histopathology slide digitization using WSI.

[Fatima et al., 2017] also developed a computer-aided system for eye diseases that aims to
automatically detect papilledema from fundus images.
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[Nayak et al., 2013] evaluates a method based on a variant of Restricted Boltzmann Machine
(RBM) that learns the intrinsic features of image signatures in an unsupervised way. Patches from
a curated library of images are then classified using computational code from the learned repre-
sentation. The system has been evaluated on a small 1k-by-1k patch dataset of glioblastoma mul-
tiforme (GBM) and clear cell renal carcinoma (KIRC) extracted from The Cancer Genome Atlas
(TCGA) open-access database. Evaluations on GBM and KIRC on 1400 and 2500 samples show
the performance of 84% and 81%, respectively.

By combining the latest image analysis technology and medical image information, CADs
provide a new non-invasive detection and analysis method for clinical diagnosis, surgical plan
selection, and overall efficacy evaluation. With the rapid development of medical imaging, not
only the image quality and speed have been improved but also the diagnostic and therapeutic
technology has undergone revolutionary changes.

2.3.2 CAP

Fourier transform infrared (FTIR) spectroscopic imaging can be based on biochemical cor-
relation with normal and diseased states and modern computer-aided mode to identify cancer or
other physiologic conditions. It can also integrate infrared spectral data with patient information,
predicting cancer risk, providing potential pathways for precision medicine and personalized care
in cancer treatment [Tiwari and Bhargava, 2015].

The tumor-matrix ratio (TSR) reflected on the histological images of H&E staining is a po-
tential prognostic factor for survival, and the use of automated image processing techniques to
allow high throughput and precise differentiation of tumor epithelium and stroma can enhance
the prognostic significance of TSR. The use of deep convolutional neural networks (CNN) to
learn natural image features can alleviate the large sample size requirements for dealing with
biomedical classification problems. [Du et al., 2018] used GoogLeNet [Szegedy et al., 2015] to
achieve 90.2 accuracy (vs 91.1 for fine-tuning). This indicates the feasibility of using it to assist
the pathological-based binary classification problem.

Stage II colon cancer (CC) patients lack a standardized analytic technique. [Eriksen et al., 2017]
compared manual stereological estimates of tumor-infiltrating lymphocytes (TILs) with automatic
counts obtained by image analysis, and at the same time investigated the heterogeneity of TILs.
The Spearman’s correlation coefficients for density estimates ranged from 0.9457 to 0.9638 (p
< 0.0001), while those for area fraction estimates ranged from 0.9400 to 0.9603 (p < 0.0001).
Regarding heterogeneity, intra-class correlation coefficients (ICC) for CD3+ TILs varied from
0.615 to 0.746 in the central area, and from 0.686 to 0.746 in the invasive area. ICC for CD8+
TILs varied from 0.724 to 0.775 in the central area, and from 0.746 to 0.765 in the invasive area.

2.3.3 Limitations and Improvements of Computer-Aided Technology

[Xiao et al., 2017] argued that due to the scarcity of publicly available repositories, it is diffi-
cult to validate advances in medical image processing techniques with real clinical data. Therefore
data modeling is needed to establish data that can provide high-quality multimodal clinical data
to validate and compare image registration algorithms, which may be beneficial for the accuracy
and efficiency of brain tumor resection. In addition, the database can be used to test other image
processing methods and neuro-navigation software platforms.
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One of the main obstacles to the quantitative analysis of H&E images is the high variability
observed between different samples and different laboratories. [Tam et al., 2016] used a decision
tree-based support vector machine learning algorithm to classify H&E staining slide images of
44 resected breast tumors based on the existing histological structure. For example, a quantitative
description of H&E variability for each structure is obtained by comparing the structural centroids
of different images, researchers also use intensity centering and histogram equalization (ICHE) to
reduce batch effects.

Multicolor immunofluorescence staining, multiplexed immunohistochemistry (mIHC) or cy-
clic immunofluorescence (cycIF) combined with standard histological staining such as H&E can
provide an in-depth assessment of in situ cell complexity, helping to reveal relationships and
spatial interactions in complex molecular disease states. However, these multiple imaging me-
thods are expensive and can degrade tissue quality and antigenicity. [Burlingame et al., 2018] de-
veloped a new method using the conditional generation confrontation network (cGAN), speedy
histopathological-to-immunofluorescent translation (SHIFT) of whole slide images (WSIs), with
an accuracy of up to 94.5%. This approach not only enhances our understanding of the mapping
of histology and morphological maps to protein expression profiles but also greatly improves the
efficiency of diagnostic and prognostic decisions.

2.3.4 The Prospect of Computer-Aided Technology in the Diagnosis of Renal Can-
cer

Currently, computer-aided technology applied to a variety of cancers has made breakthroughs
in the experimental stage. Although most of them are still far from clinical, they provide a scientific
basis for informational pathology diagnosis in the future. On this basis, the diagnosis, grading,
and prognosis of renal cancer can fully draw on these emerging computer-aided technologies to
provide accurate diagnosis, personalized medical advice and nursing measures for each patient to
optimize cancer treatment.

The review article [Suarez-Ibarrola et al., 2020] pointed out that the main area of research in-
volving Computer-Aided Diagnosis in RCC concerns the differentiation between benign and mali-
gnant small renal masses, Fuhrman nuclear grade prediction, and gene expression-based molecular
signatures. Computer-Aided Detection System (CADe) and Computer-Aided Diagnosis System
(CADx) works on CT images can help pathological detection or identification of lesions and fur-
ther diagnosis of renal cancer in time [Kaur et al., 2019]. [Coy et al., 2017] proposed a quantitative
computer-aided diagnostic (CAD) algorithm on four-phase multidetector computed tomography
(MDCT) to distinguish ccRCC from chRCC, pRCC, oncocytoma, and fat-poor angiomyolipoma
(fp-AML). [Sim et al., 1999] used computer-aided tissue echo quantification to differentiate small
hyperechoic renal cell carcinoma from angiomyolipoma by studying ultrasonographic images.
[Raza et al., 2010] proposed the bag-of-features method, which according to scale-invariant fea-
tures automatically classifies renal cell carcinoma subtypes. [Lee et al., 2017] developed a quanti-
tative feature classification method to differentiate benign fat-poor fp-AML from ccRCC based on
histogram and texture patterns from contrast-enhanced multidetector computer tomography (CE
MDCT) images.

The application of Computer-Aided Techniques in histopathological images of renal cell car-
cinoma has great value and space for improvement. [Waheed et al., 2007] used a simple Bayesian
classifier based on 8 extracted features that work on pathological imaging data to diagnose renal
cell carcinoma as well as other types of cancer. Users can apply their expertise to the valida-
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tion of feature extraction and quantification with this system, and they can also select from a
list of features they think are most important and best suited for the classification at hand. The
overall accuracy of the CNN model proposed by [Fenstermaker et al., 2020] can reach 99.1% in
distinguishing normal and RCC (sensitivity 100%, specificity 97.1%), and the accuracy in dis-
tinguishing ccRCC, pRCC and chRCC cell type is 97.5%, predicting Fuhrman grade is as high
as 98.4%. [Gao et al., 2021] proposed a composite high-resolution network named W-Net for nu-
clear grading of ccRCC in histopathology images. The W-Net can separate the clustered nuclei to
automatically identify the rank of each core in ccRCC.

2.3.5 The Future of Computer-Aided Technology

Precision Medicine is a health care model designed to integrate large amounts of patients
information to identify and classify disease progression and provide tailored treatment solutions
for individual patients. With the increasing use of innovative IT technologies such as big data
and cloud computing in hospital clinical business, the increasing computing power has greatly
improved the data analysis capabilities and diagnostic levels in the medical field. Combined with
algorithm optimization and machine learning, computer-aided technology will greatly enhance the
speed and accuracy of medical diagnosis, and vigorously promote innovation and progress in the
field of precision medicine. Artificial Intelligence & Precision Medicine is the development trend
in the future !

From the doctor’s experience and microscopic observation, we know that specific histological
features and structures of different subtypes of RCC, such as red blood cells, blood vessels, lipid
structures, papillary bodies, etc., may be involved. However, at present, the work of computer-
aided techniques for automatic RCC classification of histopathological images from blood vessels
is still in the blank stage. Our research has created a precedent and has important reference signi-
ficance for future research.

2.4 Conclusion

In this chapter, we first discussed the history and development of histopathology. Pathological
diagnosis remains the current gold standard for cancer diagnosis. However, manual diagnosis of
histopathology images is a great challenge. There are several main reasons : (1) the professional
background and rich experience of pathologists are difficult to inherit, the lack of skilled patho-
logists in small hospitals and clinics, (2) tedious work, expensive and time-consuming and poorly
repeatable, and (3) pathologist fatigue may lead to misdiagnosis. Therefore, the use of computer-
aided cancer diagnosis (CAD) is very urgent and important, which can reduce the heavy workload
of pathologists and help to avoid misdiagnosis. Histopathological image processing is the most
important part of CAD. Next, we mainly focus on the acquisition and processing of WSIs in this
chapter and enumerate some major image analysis methods, including traditional machine lear-
ning methods and deep learning methods.

We elaborated on some feature extraction methods and demonstrated their interpretability. The
interpretability of the model has always been a concern, so feature extraction based on histopa-
thological images combined with interpretable traditional machine learning methods is still an
important research direction. The hand-crafted feature is an artificially designed feature. Accor-
ding to the characteristics of human vision, what kind of features are sensitive to and what kind
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of features are insensitive to extract the distinguishing features of the image? Therefore, each di-
mension of the extracted features often has specific characteristics. physical meaning. At present,
advanced hand-crafted features include SIFT features based on directional gradients reflecting tex-
ture features, SURF features (SIFT improvement), HOG features, etc., as well as shape context
reflecting contour shapes, etc. The hand-crafted feature also has some disadvantages : although
it is based on the optic nerve theory, it is inevitably inappropriate because it is designed by hu-
mans. Moreover, this method depends on the database and needs to be designed according to the
characteristics of the data, that is to say, the designed features are not applicable to all databases.
When the data source changes, for example, the features designed for RGB data are replaced by
Kinect depth images, these feature points will not be used. It must have adapted, so it had to be
redesigned.

Then we also show the power of deep learning methods in WSIs processing tasks. Deep
Convolutional Neural Networks (DCNNs) are one of the most powerful and successful deep lear-
ning methods particularly when the data are images. DCNNs have already delivered excellent
performance in different medical image processing tasks including classification, segmentation,
and detection. Tasks such as classification and segmentation from histopathological images play a
key role in computer-aided cancer diagnosis or prognosis. However, deep learning also has certain
limitations, such as the well-known poor interpretability, and we cannot judge which features play
a role in deep learning. Fully supervised deep learning also typically requires a large amount of an-
notated data, which increases the workload. Semi-supervised learning may have better application
prospects when annotation data is scarce.

At last, we discussed the content, application and development of CAD and CAP. Meanwhile,
we also give talked about the limitations and how to improve their application well, especially
in renal cell carcinoma research, which is related to our project. We also investigated their future
opportunities and prospects.
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3.1 Epidemiology and Main Subtypes of RCC

Worldwide, kidney cancer is the thirteenth most common cancer [Ferlay et al., 2010]. Re-
nal cell carcinoma (RCC) originates in the renal cortex, it accounts for 80% to 85% of mali-
gnant kidney cancer and 2% of all cancers [Kosary and McLaughlin, 1993]. RCC has the hi-
ghest mortality rate among cancers of the genitourinary system. The incidence of RCC is on
the rise ; they are nearly 210000 new cases annually worldwide and approximately 102000
deaths. Men are almost twice as likely to have RCC malignancies compared to women. The
main incidence age at diagnosis is between 55 and 75 years old. North America, Scandi-
navian countries, Australia, and several Western, Eastern, and Northern European countries
have the highest incidence of renal malignancies. Africa and Asia have the lowest incidence
[Jemal et al., 2005, Parkin et al., 2005, Franklin et al., 1996]. In 27 European Union (EU) coun-
tries, the estimated age-standardized incidence rate (the summary rate that would have been ob-
served) of kidney cancer per 100000 Europeans was 15.8 in men and 7.1 in women. The Czech
Republic, Lithuania, Latvia, Estonia and Iceland had the highest RCC incidence rates in Europe,
while Romania, Cyprus and Portugal had the lowest rates [Levi et al., 2008]. The cause of RCC
is not clear, but there is a certain genetic predisposition. Risk factors include smoking, chemical
exposure, and diseases such as high blood pressure and obesity [Ross et al., 1989, Yu et al., 1986].

RCC has a certain relationship with age, and the incidence in Europe and the Uni-
ted States continues to increase with age, reaching a plateau around 70-75 years of age
[Chow and Devesa, 2008]. The relationship between RCC and gender may be related to smo-
king rates, etc., and men have a higher risk [Ferlay et al., 2010]. Smoking is an established
risk factor for RCC. A meta-analysis of nineteen case-control studies and five cohort studies
[Hunt et al., 2005] confirmed that smoking or ever smoking was associated with a higher risk
of RCC than non-smoking. Although the association between smoking and RCC was shown to
be relatively weak, there was a clear dose-response relationship, with higher risk estimates asso-
ciated with heavier smoking [Hunt et al., 2005]. Being overweight has also been identified as a
risk factor for RCC. A meta-analysis of prospective studies [Renehan et al., 2008] found an as-
sociation between body mass index (BMI) and the risk of RCC, with an estimated risk (per 5
kg/m2 increase in BMI) of 1.24 for men and 1.34 for women. There are also studies investiga-
ting the distribution of body fat, demonstrating that the risk of RCC increases with an increasing
waist-to-hip ratio [Adams et al., 2008, Pischon et al., 2006]. Other drug uses or diseases are also
risk factors for RCC. Several large prospective cohort studies have demonstrated that hyperten-
sion or its treatment is associated with the risk of RCC [Chow et al., 2000, Weikert et al., 2008],
and they found that the risk of RCC was associated with increased blood pressure with a clear
dose-response relationship, and anti-stress drugs may have no causal risk for the development of
RCC. In patients with acquired renal cystic disease (ARCD), the incidence of RCC is three to
six times higher than in the general population [Port et al., 1989], which is a clear risk factor for
RCC, and studies have also suggested that dialysis may be associated with the development of
RCC [Nouh et al., 2010, Denton et al., 2002]. A history of urinary tract infection (UTI) may also
be a risk for the development of RCC, and a population-based case-control study from the United
States reported that a history of UTI was positively associated with RCC [Parker et al., 2004].

RCC is the most frequently occurring solid lesion in the kidney and includes different
RCC types with specific histopathological and genetic features [Kovacs et al., 1997]. The 2002
TNM staging classification system is generally recommended for the utilization of clinical
and scientific applications [Sobin, 2009]. The prognostic factors can be divided into anatomi-
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cal, histological, clinical, and molecular. Anatomical factors include tumor size, venous inva-
sion, renal capsule invasion, adrenal gland involvement, lymph node, and distant metastases.
These factors are usually included in the commonly used 2002 TNM staging classification sys-
tem. Histological factors affecting prognosis include Fuhrman grade, histological subtype, pre-
sence of sarcoid-like features, microscopic venous invasion, tumor necrosis, and invasion of the
collecting system. The Fuhrman nuclear grade is the most widely accepted histological gra-
ding system in RCC [Ljungberg et al., 2007]. The TNM classification system, Furman classifi-
cation system, and RCC subtype classification are recommended for clinical examination be-
cause of their impact on prognosis and treatment. According to the World Health Organization
(WHO) classification [Ball, 2005], RCC has three major histologic subtypes : clear cell RCC
[Lopez-Beltran et al., 2006] (ccRCC) accounting for 80 ∼ 90%, papillary RCC (pRCC) accoun-
ting for 10 ∼ 15% and Chromophobe RCC (chRCC) for 4 ∼ 5% of RCC.

3.1.1 The Phenotype and Histomorphology of RCC Subtypes

ccRCC is the most common and aggressive RCC subtype, and approximately 2 ∼ 3% of
tumors in ccRCC are familial/hereditary cases associated with certain autosomal dominant syn-
dromes, characterized by high metastasis, resistance to chemotherapy and radiotherapy, and poor
prognosis. Concerning clinical aspects, ccRCC occurs with few symptoms and/or laboratory ab-
normalities, and approximately 20 ∼ 30% of patients present advanced disease at diagnosis. Fur-
thermore, approximately 30% of patients with locally diseased ccRCC will experience recurrence
or metastasis after surgical resection of the tumor [Moch et al., 2016, Srigley et al., 2013]. So the
early detection of ccRCC and monitoring of disease progression are critical steps to improve pa-
tient survival.

Although current imaging techniques can detect most renal masses (called small renal masses
or SRMs, lower than 4.0 cm in size) when they are still small, 95% percent of SRM cases show
slow growth kinetics, usually, only a few millimeters per year [Uzosike et al., 2018]. Among SRM,
up to 20% of cases are benign, and only about 20% are found to be high-grade in surgically resec-
ted samples [Uzosike et al., 2018, Ball et al., 2015, Campbell et al., 2017]. The pathology of these
small tumors cannot be accurately characterized without a percutaneous biopsy. ccRCC is defined
histologically as malignant epithelial cells with clear cytoplasm, due to the vast accumulation of
lipids and glycogen that are removed in standard histological preparations [Ericsson et al., 1966],
as shown in Figure 3.1.

pRCC is the second most common type of kidney cancer after ccRCC. Chromophilic tumors,
which mostly show a papillary growth pattern, are thus commonly referred to as pRCC with a
relatively early age of onset and a lower male-female preponderance as compared to other renal
cell cancers [Tonk et al., 1995, Dijkhuizen et al., 1998]. pRCC is the most heterogenous RCC;
histological and molecular characterization studies have highlighted the heterogeneity of pRCC
tumors [Wang et al., 2022c]. pRCC is usually histologically divided into 2 types, namely, type 1
and type 2. An example of the histopathological image of pRCC is shown in Figure 3.2.

chRCC is the third most common subtype of all RCCs, originating from progenitor cells (in-
tercalated cells of the collecting tubule) [Gündüz et al., 2022]. Although rare chromophobe tumors
have more aggressive behavior, especially those with adverse features such as vascular invasion,
sarcomatoid change, or necrosis, most classic chromophobe tumors and almost all eosinophilic
chromophobe tumors behave favorably after removal [Przybycin et al., 2011]. A histopathological
image of chRCC is shown in Figure 3.3. Immunohistochemical staining for cytokeratin 7 recognize
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A B

Figure 3.1 – Hematoxylin and eosin staining for ccRCC at different magnification.
A : whole slice image, ∼ 60000 × 60000 Pixels. B : patch image, 2000 × 2000 Pixels

A B

Figure 3.2 – Hematoxylin and eosin staining for pRCC at different magnification.
A : whole slice image, ∼ 60000 × 60000 Pixels. B : patch image, 2000 × 2000 Pixels
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A B

Figure 3.3 – Hematoxylin and eosin staining for chRCC at different magnification.
A : whole slice image, ∼ 60000 × 60000 Pixels. B : patch image, 2000 × 2000 Pixels

to be a useful addition agent in the diagnosis of chromophobe renal cell carcinoma and in distingui-
shing this tumor from oncocytoma and conventional renal cell carcinoma [Mathers et al., 2002].

3.1.2 Cellular and Vascular Characteristics in RCC Subtypes

ccRCC has rich, sinusoid-like vascularity frequently used as a diagnostic criterion
[Kryvenko et al., 2013]. Microscopically, in addition to the characteristic clear cell morpho-
logy determined by the accumulation of cytoplasmic lipids and glycogen, the tumor displayed a
rich vascular network separated by fine sinus-like capillaries separating tumorigenic cells nests.
The abundant vascular supply of ccRCC determines its typical contrast-enhanced radiographic
appearance in contrast medium infusion studies [Grignon and Che, 2005, Tickoo et al., 2010,
Grignon and Che, 2005].

pRCC has a lower vascular density than ccRCC. Type 1 consists of well-defined papillae
lined by a monolayer of small cells with basophilic cytoplasm and low Fuhrman-grade nuclei
[Fuhrman et al., 1982]. Type 2 is characterized by papillary lining with large pseudostratified cells,
eosinophilic cytoplasm, enlarged nuclei, and prominent nucleoli, an example of Type 1 and Type
2 pRCC is shown in Figure 3.4 [Magers et al., 2019].

There are some key features [Williamson, 2022] distinguishing chRCC from potential mimics,
such as prominent cell borders, wrinkled nuclei, variation in cell size, trabecular growth, and
incomplete vascular network. The histological features most frequently associated with a diag-
nosis of chRCC were accentuated cell borders and a combination of hyperchromatic wrinkled
nuclei and perinuclear halos. The most sensitive and specific marker for chRCC is parvalbumin
[Abrahams et al., 2004].
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Figure 3.4 – The example of Type 1 and Type 2 of pRCC in histopathological image.
Caption (A,B) Type 1 pRCC is characterized by papillae with fibrovascular cores lined by a single
layer of neoplastic epithelial cells (H&E, ×200 [panel A] or ×400 [panel B]), and (C) type 1 pRCC
usually exhibits a relatively low nuclear/nucleolar grade (eg, grade 1 or 2. Papanicolaou-stained
direct smear, ×400). (D,E) Type 2 pRCC is characterized by pseudostratified neoplastic epithelium
lining fibrovascular cores (H&E, ×200 [panel D] or ×400 [panel E]), and (F) the nuclear grade is
typically higher (eg, often grade 3. Papanicolaou-stained direct smear, ×400). pRCC indicates
papillary renal cell carcinoma. (Magers, 2019)
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3.2 Histopathological Images Dataset

Classification and segmentation from histopathological images play a key role in computer-
aided diagnosis or prognosis. There are some public histopathological images datasets for the
classification tasks, such as BreaKHis [Spanhol et al., 2015] and BACH [Aresta et al., 2019b] for
breast cancer, LC25000 [Borkowski et al., 2019] with five classes of lung tissue for lung cancer,
and DigestPath [Li et al., 2019] for colon cancer, etc. However, RCC histopathological image da-
tasets are rare, and there is no public database with vascular annotation. As far as we know, we are
the first to perform RCC classification on the vascular network annotated histopathological image
dataset.

3.2.1 BigRCC Dataset Building

3.2.1.1 Data Collection

The paraffin slices technique is very commonly used in the pathological examination. H&E
staining is the most commonly used in the procedure of dyes. The hematoxylin staining solution
is alkaline, and can stain the basophilic structure of the tissue (such as the ribosome, nucleus,
and ribonucleic acid in the cytoplasm) into blue-violet ; The eosin staining solution is an acid
dye, which can stain the eosinophilic structure of the tissue (such as intracellular and intercellular
proteins, including Lewy bodies, alcohol bodies, and most of the cytoplasm) stained pink, making
the morphology of the entire cell organization visible.

We collected all the H&E staining slice samples of RCC subtypes from Hôpital Pasteur, Centre
Hospitalier Universitaire (CHU) de Nice, France. They come from 46 patients of ccRCC, 22 pa-
tients of pRCC and 6 patients of chRCC. We have 107 slices of ccRCC, 51 slices of pRCC and 9
slices of chRCC total. Thus, we got the original WSIs, which are H&E-stained, scanned by Leica
SCN400 scanner at 40x magnification (∼ 60000×60000 pixels), the WSIs have a resolution of
0.25 µm.

3.2.1.2 Categories Annotation

We use the open-access software ASAP to do the categories annotation, Figure 3.5 shows the
display windows of ASAP at the 4X magnification of original WSIs. We consider four classes :
tumor, necrosis, fiber and normal, the example of these four categories is shown in Figure 3.6.

The features of these four categories from H&E staining histopathological images are shown
as follows :

— Tumor
Different subtypes of RCC have different tumor characteristics. ccRCCs include clear
cells, acinar-like, sheet-like, or tubular growth patterns, and a rich vascular network. Some
ccRCCs also have eosinophilic granular cytoplasm, inconspicuous interstitial blood ves-
sels, and sarcomatoid differentiation. There are two subtypes of pRCC, type 1 papillary
surface covered with smaller cuboidal cells, less or moderate amount of cytoplasm. Type
2 tumors have larger cells, higher nuclear grade, eosinophilic cytoplasm, and pseudostrati-
fied nuclei. While cells of chRCC have slightly opaque or finely reticular cytoplasm, they
are usually large polygonal cells, showing a fine reticular cytoplasm and central round to
oval nucleus, and are arranged in compact broad alveoli with or without tubular or tubulo-
cystic areas [Yusenko, 2010].
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Figure 3.5 – The view of the histopathological image in ASAP.
The top left A is the normal area, middle B is the fiber normal, bottom right C is the tumor area.

— Necrosis
Changes in the nucleus are the main morphological markers of the necrosis area, which
are manifested as : (1) pyknosis, the staining becomes darker, and the size of the nucleus
becomes smaller. (2) karyorrhexis, the nuclear membrane ruptures. (3) Karyolysis, only
the outline of the nucleus can be seen.
Changes in the cytoplasm are also a feature of necrosis, the cytoplasm of necrotic cells
is red-stained due to the reduction or loss of the cytoplasmic basophilic substance nu-
cleosome. At the same time, due to the disintegration of the cytoplasmic structure, the
cytoplasm was granular.

— Fiber
The cells of the fibers are fusiform, arranged in bundles, and distributed in the collagen
stroma.

— Normal
The normal area includes normal glomeruli with thin, clear vascular loops and normal
surrounding tubules.

Then the different areas were annotated, and their coordinates were stored in an XML format
file, shown in Figure 3.7. A grouped annotation example is shown in Figure 3.8.

Each slice has a unique identification. Let take the name of the slice in Figure 3.8 as an
example, "HP17.7980.A2.pRCC.scn" means that this sample was collected in 2017, "7980" is the
unique identification number of the patient, "A2" means the second H&E stained slice, "pRCC" is
the pathologically diagnosed subtype of the patient, and ".scn" is the suffix for WSI image files.
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A B

C D

Figure 3.6 – The example of four categories of RCC histopathological images.
A is the tumor patch, B is the necrosis patch, C is the fiber patch, D is the normal patch.
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Figure 3.7 – The XML file format of grouped annotated areas.

3.2.1.3 Patch Images

Finally, we cut the annotated areas of WSIs into smaller patch images to form the BigRCC
database. First, we combined the original image and XML file to find the area borderline accor-
ding to the coordinates from an XML file. Then we use open-slide open source software (win64-
20171122) to iterate every region of interest (ROI) of grouped annotations to generate 2000×2000
Pixels patch images from the original image, shown in Figure 3.9.

The pipeline of the dataset building is shown in Figure 3.10. The number of collected samples
for the BigRCC dataset is shown in Table 3.1.

There are very few open-access histopathological image databases. TCGA database is the
only one that contains the WSI data of RCC, which has two subtypes, ccRCC and pRCC. Our
BigRCC includes three subtypes and has detailed annotations, which is particularly valuable and
has great research contributions. Although in this project, we only use the tumor patch images for
RCC subtyping research based on vascular networks, the large database BigRCC provides a strong
data foundation for RCC-related research, which makes it possible to develop some deep learning
models that require a large amount of input, such as our collaborator from Politecnico di Torino,
Turin, Italy, using BigRCC data to classify RCC tumors and non-tumors with CNN-based models
(publication under review). Another of our collaborators in the Abou Bakr Belkaid University
of Tlemcen, Algeria uses BigRCC data for Tumor Regions Detection in Histopathology Images
based on the CNN model [Benomar et al., 2021].
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Figure 3.8 – The example of grouped annotation, the group include necrosis, fiber, tumor and
normal.

A B

Figure 3.9 – Get patch images (2000×2000 pixels) from tumor annotation.
A : WSI with tumor annotation. B : Display of patch images.
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Figure 3.10 – BigRCC RCC histopathological images dataset building.

TABLE 3.1 – The number of image patches of each category in BigRCC.
BigRCC Necrosis Fiber Normal Tumor Total
ccRCC 3324 1941 7459 27287 39986
pRCC 1602 920 2105 13637 18254
chRCC 79 170 1037 3134 4420

3.2.2 TCGA Open-access Dataset

The Cancer Genome Atlas (TCGA) is a large open-access database (https ://por-
tal.gdc.cancer.gov/), which was launched in 2006 by the National Cancer Institute (NCI) and
the National Human Genome Research Institute (NHGRI). This database contains information
about cancer patients, which includes data on gene expression, mutation, copy number, methyla-
tion, and clinical information of the same sample. As shown in Figure 3.11, it currently contains
data from 20,000 patients and 36 types of cancer. We mainly use the pathological diagnosis slide
data of H&E staining in this project.

3.2.2.1 Downloaded Data

TCGA officially provides the gdc_client download tool (https ://gdc.cancer.gov/access-
data/gdc-data-transfer-tool), which can download the data published by TCGA. This download
tool application requires OS Linux (Ubuntu 16.x or later), OS X (10.9 Mavericks or later), or
Windows (8 or later). Some data are open and can be downloaded without limit, while others are
controlled and cannot be downloaded without a specific application. All the data we downloaded
for my project are open and validated. The downloaded data of RCC in TCGA includes two sub-
types, ccRCC and pRCC, and their project IDs are TCGA-KIRC and TCGA-KIRP respectively.
Meanwhile, we also downloaded other types of cancers to test our vascular network segmentation
model, which includes breast cancer, lung cancer, liver cancer and esophagus cancer.

Next, we downloaded the data through the Manifest option to get a .txt file containing the
downloaded information of samples.



52 CHAPITRE 3 — Histopathological Image Datasets Building

Figure 3.11 – The homepage of TCGA database.

3.2.2.2 Sample Naming

TCGA has a separate ID for each patient, such as ’TCGA-A6-6650-01B-02R’. This ID is
common in the TCGA database. According to this ID, we can find the same patient in different
types of databases, including clinical follow-up information. Let split this example ID with "-" and
disassemble it for a detailed interpretation :

— TCGA : Project, all TCGA sample names start with this.
— A6 : Tissue source site, tissue source code, such as A6 means colon cancer tissue from

Christiana Healthcare Center. For more information about the meaning of codes, can refer
to : https ://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tissue-source-site-codes.

— 6650 : Participant ID.
— 01 : Sample, where the numbers 01 09 represent tumors, and 10 19 represent normal

controls.
— B : Vial, the order in a series of patient tissues, Vial indicates the order of the tissue, A, B,

C, D. For example, B indicates paraffin-embedded tissue.
— 02 : Portion, the serial number of different parts belonging to the same patient tissue, the

same tissue will be divided into 100-120 mg parts and used separately.
— R : Analyte, the type of molecule analyzed, the corresponding information is shown in this

link : https ://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/portion-analyte-codes.

3.2.2.3 Image Patches of TCGA

Following the same methods for BigRCC dataset building, we get patch images of 5 cancers
from the TCGA database, the number of slices and patch images for each cancer are shown in
Table 3.2. We downloaded 100 slides and got 1029 image patches from TCGA totally.
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TABLE 3.2 – The number of slices and image patches of each cancer in TCGA.
cancer Project slices image patches
RCC TCGA-KIRC & TCGA-KIRP 20 433
breast TCGA-BRCA 20 60
liver TCGA-LIHC 20 246
lung TCGA-LUSC 20 120
esophagus TCGA-ESCA 20 170

3.2.3 VRCC (Vascular RCC) Dataset Building

3.2.3.1 Data Source of VRCC

We randomly choose 424 tumor image patches from BigRCC and 90 from TCGA to construct
the VRCC dataset (129 for ccRCC, 129 for pRCC, 166 for chRCC, 20 for RCC_TCGA, 15 for
breast cancer, 20 for liver cancer, 20 for lung cancer and 15 of esophagus cancer). The data of
the VRCC dataset comes from 31 patients of the BigRCC dataset (13 ccRCC patients, 14 pRCC
patients and 4 chRCC patients) and 100 patients of TCGA (20 patients for each cancer).

3.2.3.2 Weakly Vascular Network Annotation and Binary Mask

We use the "ImageJ" software to annotate the vascular networks, as shown in Figure 3.12, and
checked them by medical specialists. We choose the "Enable selection brush" with the size of 25
pixels to make the vascular network annotation, then save the annotations as .roi files from a series
of operations (Analyze −→ Tools −→ ROI Manager). Then we got the binary mask image (Edit
−→ Clear Outside −→ Fill). At last, we save the binary mask image (File −→ Save As −→
PNG with its name), as shown in Figure 3.13. The pixel value of vascular is 255 with white color,
and the value of the background is 0 with black color.

The weakly label of the vascular network has been made with constant width bands and thus
does not take into account the width information and local geometry. We used this annotation
method to speed up the process. We plan to classify RCC subtypes only by extracting relevant
features from the skeleton of the vascular network, so the length of the vessels and the network
connectivity are more important than the width. So to save time and improve efficiency, we adopt
this weakly labeled method to explore the importance of the vascular network in RCC typing. The
comparison between the real vascular network mask and weakly label is shown in Figure 3.14.
The width of the real vascular network mask is different in thickness and is thicker at some nodes
than at the end parts. However, the weakly mask roughly keeps consistent in length with the real
vascular network mask.

As shown in Figure 3.15, the vascular structure of ccRCC is like a "fishnet", pRCC looks like
a "tree" while chRCC has a "linear" structure. To describe these vascular networks, we consider
three elements of junctions, end branches and non-end branches (branches between two junctions)
to represent it.
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Figure 3.12 – The view of the histopathological image in ImageJ.
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Figure 3.13 – The binary mask image of the vascular network.

3.3 Conclusion

Pathological diagnosis is still an important part of the diagnosis of RCC, and computer-aided
diagnosis provides a bright vision for promoting medical development. Correctly classifying RCC
subtypes through the WSIs using machine learning models is also an ongoing goal of researchers.
In histopathological images, cellular and vascular morphologies showed different appearances in
different subtypes of RCC. Based on a large number of cell-related characterization studies, in
this project, we focused on exploring the importance of the vascular network in distinguishing
RCC subtypes, to investigate whether the vascular network can be used alone for the RCC sub-
types classification task. We collected the three most common RCC subtypes : ccRCC, pRCC, and
chRCC. We annotated tumor and non-tumor regions by ASAP and then cut the original WSIs into
patch images with 2000*2000 pixels according to the annotated regions to facilitate subsequent
analysis. All patch images containing category information constitute the BigRCC dataset. Sub-
sequently, for the study of the vascular network, we annotated the binary masks of the vascular
network of 514 tumor patch images with ImageJ, thereby constructing the database VRCC with
vascular network annotations.
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Figure 3.14 – The view of the histopathological image in ImageJ.
A : original image. B : overlay weakly mask on original image. C : overlay real mask on original
image. D : real vascular mask. E : weakly vascular mask. F : overlay weakly mask on the real
mask, the cyan color represents the real mask, the magenta color represent the weakly mask, the
white color represents the overlap part.
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Figure 3.15 – The vascular network examples of ccRCC, pRCC and chRCC images.
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CHAPTER 4
Vascular Network-based

Features
Dans ce chapitre, nous introduisons plusieurs types de caractéristiques liées aux réseaux
vasculaires, telles que les caractéristiques ad-hoc extraites des réseaux, les propriétés
des graphes modélisant le réseau vasculaire et les paramètres issus des approches par
apprentissage profond.

In this chapter, we introduce several types of features related to vascular networks, such
as hand-crafted features, graph features, and deep learning features.

4.1 Hand-crafted Features . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.1 Skeleton Features . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Lattice Features . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Graph-based Features . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Deep Learning Features . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

61





4.1 – Hand-crafted Features 63

4.1 Hand-crafted Features

4.1.1 Skeleton Features

We use the bwskel function of MatLab (version=R2018b) to convert the manually weak vas-
cular network masks into a skeleton, shown in Figure 4.1. The vascular network mask mainly
has three elements : junctions, end branches and non-end branches, as shown in Figure 3.15.
The fishnet-like ccRCC has more junctions and more non-end branches, the tree-like pRCC has
more end branches, while the linear-like chRCC has the lowest density and the least number of
junctions. The graph visualization in Figure 4.4 also supports our assumption. The skeleton fea-
tures are extracted from the skeleton directly, we use the Number of End branches (NE), small
NE (less than nuclear size ×10), long NE (more than nuclear size ×10), average Length of the
End branches (LE), Number of Junctions (NJ), average Length of the non-End branches (LJ), the
density of the vascular network as the basic features of the skeleton. Moreover, we also consider
NE/NJ, NE/(LJ+LE), NJ/(LJ+LE), LE/LJ, and LJ/(LJ+LE) to make the skeleton features robust
and comprehensive. The details are shown in Table 4.1.

ccRCC pRCC chRCC

Manually 

weak 

mask

Skeleton

Figure 4.1 – The example of the skeleton of RCC subtypes.
The skeleton maintains the shape of the mask and keeps the width of the skeleton at 1 pixel, which
facilitates subsequent graphics calculation operations.

4.1.2 Lattice Features

Based on the different structures of vascular networks of ccRCC, pRCC and chRCC, we fur-
ther propose a new set of features "lattice features". But they are not extracted from the skeleton
directly. As shown in Figure 4.3, we first compute the watershed [Soille and Vincent, 1990] on
the vascular skeleton to obtain closed areas. The watershed calculation process is an iterative
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labeling process. The classical calculation method of the watershed is proposed by L. Vincent
[Soille and Vincent, 1990].

The watershed algorithm is a mathematical morphological segmentation method based on to-
pology theory. The main idea is to treat the image as a topological landscape in geodesy. The
water collection basin is the local minimum and its affected area, and the boundary of the water
collection basin forms a watershed. The concept and formation of the watershed can be explai-
ned by simulating the immersion process. On the surface of each local minimum, a small hole is
pierced, and then the entire model is slowly immersed in water. As the immersion deepens, the
influence domain of each local minimum slowly expands outward. A dam is constructed at the
confluence of the basins, forming a watershed. the procedure of the watershed is shown in Figure
4.2 [Chen et al., 2022].

The whole process of the watershed algorithm is as follows :
— All pixels in the gradient image are classified according to their gray values, and a geodesic

distance threshold is set.
— Find the pixel with the smallest gray value (marked as the lowest gray value by default),

let the threshold increase from the minimum value, and these points are the starting points.
— In the process of growing the horizontal plane, it will encounter the surrounding neigh-

borhood pixels, and measure the geodesic distance from these pixels to the starting point
(the lowest point of gray value). If it is less than the set threshold, these pixels are flooded,
otherwise, dams are set on these pixels, so that these neighborhood pixels are classified. In
the process of submerging from low to high, the influence domain of each local minimum
at the h-order height is judged and marked by a first-in-first-out (FIFO) structure.

— As the water level gets higher and higher, more and higher dams will be set up, until the
maximum value of the gray value, all areas meet on the watershed line, and these dams
partition the entire image pixels.

The watershed algorithm responds well to weak edges and is guaranteed to form closed and
continuous edges. We first calculate the Euclidean distance transform of the binary vascular ske-
leton image (Legend A of Figure 4.3), as shown in the Legend B of Figure 4.3. However, noise in
the image and subtle grayscale changes on the surface of the object will cause over-segmentation,
when we use the watershed algorithm directly on the inverse distance transform of the vascular
skeleton (Legend C of Figure 4.3), this results in over-segmentation as shown in the Legend D of
Figure 4.3.

Over-segmentation is due to many local minima. In this case, the general trick is to first use the
"imextendedmin" function of MatLab in watershed-based image segmentation to filter out some
particularly small (referring to small regions) local minima. Then we use the minima imposition
method [Beucher, 1990, Meyer and Beucher, 1990] to solve the problem of local minimum and
modify the distance transformation, as shown in Legend E of Figure 4.3. We modify the result
of the distance transformation is to make sure there is no local minimum in the filtered region,
which is the region after "imextendedmin" operation. This "minima imposition" operation can be
implemented with the function "imimposemin" of MatLab.

Then, we remove surrounding lattice cells which do not include complete vascular informa-
tion. The final obtained lattice spatial map is shown in Legend F of Figure 4.3.

Finally, the closed catchment basin obtained by the watershed algorithm supplies the proba-
bility to analyze the regional characteristics of the image. We define and extract six features from
the lattice map, including mean area, median area, mean perimeter, median perimeter, mean ec-
centricity, and median eccentricity. The details are shown in Table 4.1.



4.2 – 4.1.2 Lattice Features 65

Figure 4.2 – Schematic diagram of the watershed algorithm.
a : Original image ; b : Topographic view; c-d : Two stages of flooding ; e : Result of further
flooding ; f : Beginning of merging of water from two catchment basins (a short dam was built
between them) ; g : Longer dams ; h : Final watershed (segmentation) lines. (Chen, 2022)

TABLE 4.1 – The explanation of each skeleton and lattice feature.
Skleton Features note
NE the Number of End branches
LE average Length of the End branches
small NE NE that LE less than nuclear size ×10
long NE NE that LE more than nuclear size ×10
NJ Number of Junctions
LJ average Length of the non-End branches
density the sum of skeleton pixels
NE/NJ NE/NJ Ratio
LE/LJ LE/LJ Ratio
NE/(LJ+LE) NE/(LJ+LE) Ratio
NJ/(LJ+LE) NJ/(LJ+LE) Ratio
LJ/(LJ+LE) LJ/(LJ+LE) Ratio
Lattice Features note
mean area mean of all lattice areas
median area median of all lattice areas
mean perimeter mean of all lattice perimeters
median perimeter median of all lattice perimeters
mean eccentricity mean of all lattice eccentricities
median eccentricity mean of all lattice eccentricities
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4.2 Graph-based Features

Because the vascular network is a graph-like structure, we transform the vascular network
skeleton into a graph by SKL-Graph [Debreuve, 2020]. SKL-Graph is a computer program whose
purpose is to detect objects in a signal, where an object is defined as a piece of the signal repre-
sented by a set of parameters. A signal is typically a two-dimensional or three-dimensional image.
SKL-Graph is programmed by Python language that can be used to create, manipulate, and learn
the structure, dynamics, and functions of complex graph networks.

Any graph is composed of nodes and edges. Usually, any graph is represented by two sets :
denoted as G = (V, E), where V is a finite set of nodes, and E is a finite set of edges. As shown
in Figure 4.4, in our case the nodes are represented by junctions and end-points, and the edges
connect the nodes according to the shape of the vascular network.

We convert high-dimensional sparse matrices into compressed sparse row matrices (CSR ma-
trices). The procedure is shown in Figure 4.5. While our original matrix stores data in 2D arrays,
the transformed CSR matrices store them in three 1D arrays (Value array, Column index array, and
Row index array). The interpretation is shown as follows :

— Value array : It stores all elements without 0 in the original matrix. The length of the array
is equal to the number of nonzero entries in the original matrix. In this example, there are
7 non-zero elements. So the value array has a length of 7.

— Column index array : This array stores the column indices of the elements in the value
array. (zero-based indexing is used here).

— Row index array : This array stores the cumulative count of all non-zero values in the cur-
rent and previous rows. row_index_array[j] encodes the total number of nonzeros above
the jth row. The last element represents the number of non-zero elements in the original
array. The length is m + 1 ; the number of rows in the original matrix is m.

Then we generated 4 files as input, which include sparse adjacency matrices, node labels, graph
indicators, and graph labels, then feed them into GCN [Kipf and Welling, 2016]. The hand-crafted
features have both topological and geometrical information on the vascular network, but graph-
based features only contain the topological information, we compared these two sets of features’
performance to assess the importance of geometrical information in the vascular network-based
RCC subtype classification task. Most deep learning models are data-driven black-box models,
although we consider only topological information as the branch length is not coded in the adja-
cency matrix, this feature is more explainable than the deep features systematically learned during
network optimization.

4.3 Deep Learning Features

Deep Learning Features include two kinds of features. We consider both raw images and vas-
cular segmentation images as inputs to further evaluate if the vascular network can be used alone
for RCCs classification. Raw images contain all the information, not only the vascular network but
also the complex background, which includes the character of cells and tissues. Vascular segmen-
tation images include all the information about the vascular network, but their interpretability is
harder than for hand-crafted features. We learn these deep features with deep learning models as
baseline experiments, such as LeNet [Wright, 1995], AlexNet [Krizhevsky et al., 2012a], VggNet
[Simonyan and Zisserman, 2014] and ResNet [He et al., 2016]. We compare the performance of
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these features to evaluate whether our proposed hand-crafted features are representative and suffi-
cient to distinguish different subtypes of RCC.

4.4 Conclusion

The features play a very important role in describing how vascular networks classify RCC
subtypes. These three sets of features all represent the vascular network to a certain extent. The
vascular network can be represented by the shape directly (Skeleton Features), by the area proper-
ties after processed (Lattice Features), by the whole mask images (Deep Learning Features), or
by the adjacency matrices after conversion to graph (Graph-based features). These sets of features
facilitate our next classification experiments.
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A B

C D

E F

Figure 4.3 – The pipeline of obtaining the lattice features.
A : The original vascular skeleton ; B :The Euclidean distance transform of the binary vascular ske-
leton image ; C : The inverse distance transform of vascular skeleton ; D : The over-segmentation
result after watershed work directly on the skeleton ; E : The distance transform after minima
imposition modified ; F : The final lattice spatial map after surrounding remove.
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ccRCC pRCC chRCC

Skeleton

Graph

Figure 4.4 – The graph features of ccRCC, pRCC and chRCC.
The red points represent end points of the vascular network, green points represent junctions of
the vascular network.

Figure 4.5 – The procedure of convert 2D Array Matrix to CSR Matrix
The CSR Matrix includes three arrays (Value array, Column index array, and Row index array).
(Ransaka, 2021)





CHAPTER 5
Vascular-based RCC

Classification
Dans ce chapitre, nous avons entrainé les trois approches mentionnées dans le chapitre
précédent (fondées sur des caractéristiques ad-hoc, fondées sur une modélisation par
graphes et par apprentissage profond) en utilisant les méthodes traditionnelles d’ap-
prentissage et d’apprentissage profond. Nous effectuons une analyse statistique des ca-
ractéristiques choisies et montrons leur pertinence pour la classification des réseaux
vasculaires associés aux différents types de carcinome rénal à cellules claires. Les ré-
sultats montrent que les caractéristiques ad-hoc associées à des algorithmes de clas-
sification supervisée classiques donnent de meilleurs résultats que les approches par
apprentissage profond sur l’ensemble des expériences réalisées.

In this chapter, we trained the three features mentioned in the previous chapter (our
hand-crafted features, graph features and deep features) using traditional machine lear-
ning and deep learning methods. We analyze the hand-crafted features and give a solid
benchmark of vascular-based RCC classification. The results show that our proposed
hand-crafted features trained on the traditional machine learning approaches perform
best among all the experiments.

71
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Figure 5.1 – The flow diagram of classification.
1⃝ : Manually vascular annotate ; 2⃝ : Skeletonization weak vascular network mask and graph

represent ; 3⃝ : Extract hand-crafted features from vascular network skeleton.

5.1 Vascular-Based RCC Classification Benchmark Experiments

5.1.1 Classification Pipeline from Vascular Network of RCC

Based on the introduction of input data in Chapter 4, we classify these four types of input data
in this chapter through different classification models. The main process is shown in Figure 5.1.
We mainly divide the experiments into four phases. In the first phase, we directly use the initial
histopathology patch images as input to classify based on four popular deep learning models. In
the second phase, we manually annotated vascular networks and also classified them based on four
mainstream deep learning models according to manually annotated weak vascular network masks.
Compared with the first phase, the second phase proved whether using blood vessels alone can be
effective for RCC subtype classification. In the third phase, first, we transform the weak masks
into vascular network skeletons, as shown in Figure 4.1 in Chapter 4 ; we represent the vascular
network skeleton with a graph, where nodes are the set of junctions and end-points, and edges
are the set of non-end points, which are then classified using two Graph Convolutional Networks
(GCN) [Zhang et al., 2018a] deep learning models. In the fourth phase, we extract hand-crafted
features from the vascular network skeleton, including Skeleton Features directly based on the
skeleton and Lattice Features computed after the watershed ; then we classify these hand-crafted
features by eight common traditional machine learning methods.
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Compared with deep learning, traditional machine learning methods have the following ad-
vantages :

— Reduce reliance on large amounts of data
The most important difference between traditional machine learning and deep learning is
the performance when the scale of data is scaled up. Deep learning algorithms do not work
well when the data is small because they need big data to recognize and understand it
perfectly. However, machine learning algorithms can work in this small data situation.

— Reduce the dependence on hardware
Deep learning algorithms rely on high-computation machines because deep learning in-
cludes GPUs, which are an integral part of their work. Since deep learning operates through
a large number of matrix multiplications, these operations can be efficiently optimized by
using GPUs built for this purpose. In contrast, traditional machine learning algorithms can
run on low-computing machines.

— Shorter execution time
Typically, training a deep learning algorithm takes a long time. This is because there
are many parameters in deep learning algorithms. The training of machine learning will
consume relatively little time, only a few seconds to a few hours.

— More interpretability
Explainability is also one of the factors that need to be considered in the application of deep
learning. For example, if we use deep learning method for image classification, it will not
reveal the reasons for the good classification. While it is possible to mathematically find out
the nodes of a deep neural network that activate when classification is optimal, like a black
box, we will not know the specific work of these neurons. This leaves us unable to interpret
the results of deep learning models. However, machine learning algorithms provide us
with a clear set of rules according to which features are selected, and the importance of
individual features can also be calculated so that explaining the work behind traditional
machine learning models becomes easy.

5.1.2 Experimental Environment

For the traditional machine learning experiment, the programming language used is Python,
and the version is Python3.7.3. based on Windows 64-bit operating system. The hardware platform
is Intel with CPU memory 64 GB (R) Core(TM) i7-8850H CPU @ 2.60GHz with 2 adapters : Intel
with GPU Memory 32 GB (R) UHD Graphics 630 and NVIDIA with GPU Memory 32 GB Quadro
P2000 Laptop.

For the deep learning experiment, the software used in this project is built with the deep lear-
ning framework of Pytorch, the programming language is Python, and the version is Python3.8.5.
The operating system is CentOS Linux release 7.4.1708 (Core). The hardware platform is Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20GHz with 2 physical CPUs and 40 logical CPUs, 10 cores per
physical CPU, and 2 threads per core.
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5.2 Deep Features Based Classification with Convolutional Neural
Networks

We consider both raw images and vascular segmentation images as deep features, then learn
these deep features with four popular Convolutional Neural Networks (CNN) models as the ba-
seline experiments, such as LeNet [Wright, 1995], AlexNet [Krizhevsky et al., 2012a], VggNet
[Simonyan and Zisserman, 2014] and ResNet [He et al., 2016]. The accuracy results of every mo-
del were got by Leave One Out cross-validation methods. All the models are based on the Py-
Torch frame (version=1.7.1) with Multi-GPU support. The programming language used is Python
(3.8.5).

5.2.1 Inputs of Raw Images

The raw image of the tumor patch is a 2000×2000 pixel RGB image. As input to the deep lear-
ning model, it maintains an aspect ratio, resized to 256×256 pixels, 224×224 pixels, or 64×64
pixels depending on the particular model. We also augment the training set using data augmenta-
tion operations, such as cropping, rotation, flip and different normalization (mean=[0.485, 0.456,
0.406], std=[0.229, 0.224, 0.225]).

5.2.2 Inputs of Weak Vascular Network Mask

A weak vascular network mask is obtained by annotating the vascular network with the
constant width from the raw image. It is a 2000×2000 pixels binary image. In order to do a fair
comparison with the raw image, it has also been resized and we considered the same augmentation
and normalize operations to generate more training data as the raw image.

5.2.3 LeNet

LeNet is the collective name for a series of networks, including Lenet 1 - Lenet 5, propo-
sed by Yann LeCun et al. in "Handwritten Digit Recognition with a Back-Propagation Network"
[LeCun et al., 1989]. LeNet is a seven-layer neural network with three convolutional layers, two
pooling layers, and one fully connected layer. All convolution kernels of all convolutional layers
are 5×5, strid=1, pooling method is global pooling, and activation function is Sigmoid. Compared
with Multilayer Perceptron (MLP), LeNet uses relatively fewer parameters and achieves better
results.

The network structure is shown in Figure 5.2 [LeCun et al., 1989].
Some setup used in our project :
— input size : 64×64 pixels
— loss_function : Cross Entropy Loss
— optimizer : Adam
— learning rate : 0.001

5.2.4 AlexNet

AlexNet was designed by 2012 ImageNet competition winner Hinton and his student Alex
Krizhevsky [Krizhevsky et al., 2012a]. Compared with LeNet, AlexNet has more layers. LeNet
has seven layers without the input layer. AlexNet has eight weighted layers, the first five are
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Figure 5.2 – The LeNet-5 architecture.
It consists of two sets of convolutional and average pooling layers, followed by a flattening convo-
lutional layer, then two fully-connected layers and finally a softmax classifier. (LeCun, 1989)

convolutional layers, and the remaining three are fully connected layers. The first convolutional
layer convolves an input image of size 224×224×3 pixels with 96 kernels of size 11×11×3 and
stride=4. The second convolutional layer takes the output of the first convolutional layer as input
and filters it with a 5×5×48 kernel. The third, fourth, and fifth convolutional layers are connec-
ted without a pooling layer in between. The kernels of the second, fourth, and fifth convolutional
layers are only connected to those kernel maps where the previous convolutional layer is also in
the same GPU. The kernels of the third convolutional layer are connected to all kernel maps in the
second convolutional layer. Neurons in a fully connected layer are connected to all neurons in the
previous layer. A response normalization layer follows the first and second convolutional layers.
The max pooling layer follows the response normalization layer and the fifth convolutional layer.
ReLU nonlinearity is applied to the output of each convolutional and fully connected layer.

The network structure is shown in Figure 5.3 [Krizhevsky et al., 2012a].
The highlights of the network are :
— The first use of GPU for network acceleration training put half the cores on each GPU.
— The ReLU activation function is used instead of the traditional Sigmoid activation function

and Tanh activation function. (The sigmoid derivation is more complex and the gradient
disappears when the network is deep.)

— Local Response Normalization (LRN) is used.
LRN helps generalization, ai

x,y represents neuron activation, calculated by applying kernel
i at (x, y) position, and then applying ReLU nonlinearity. The normalized activation of the
Response Normalization bi

x,y is given by

bi
x,y = ai

x,y/

k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(
aj

x,y

)2
β

where N is the number of convolution kernels, that is, the number of Feature Maps ge-
nerated ; k, α, β, n are hyperparameters, and the values used in the paper are k = 2, n =
5, α = 10−4, β = 0.75. The superscript of the output bi

x,y and input aj
x,y indicates the chan-

nel where the current value is located, that is, the direction of the superposition is along the
channel, and the value to be normalized ai

x,y is in the same position as the nearby channels

The squares of the values are accumulated,
∑min(N−1,i+n/2)

j=max(0,i−n/2)

(
aj

x,y

)2
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Figure 5.3 – An illustration of the architecture of AlexNet.
It explicitly shows the delineation of responsibilities between the two GPUs. One GPU runs the
layer parts at the top of the figure while the other runs the layer parts at the bottom. The GPUs com-
municate only at certain layers. The network’s input is 150,528-dimensional, and the number of
neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000. (Krizhevsky, 2012)

— The first two layers of the fully connected layer use Dropout to randomly deactivate neu-
rons to reduce overfitting.

— Use overlapping max pooling in CNN. Previously, average pooling was commonly used
in CNN, and AlexNet all used maximum pooling to avoid the blurring effect of average
pooling. It is also proposed to make the stride smaller than the size of the pooling kernel
so that there will be overlap between the outputs of the pooling layer, which improves the
abundance of features.

— Data augmentation, randomly intercepting a 224×224 size area (and a horizontally flipped
mirror) from the 256×256 pixels original image, which is equivalent to increasing the
amount of data by 2∗(256 − 224)∧2 = 2048 times. If there is no data augmentation, CNN
with many parameters will fall into overfitting only with the original data volume. After
data augmentation is used, overfitting can be greatly reduced and the generalization ability
can be improved. When making predictions, take the four corners of the picture plus the
middle five positions, and flip them left and right to obtain a total of ten pictures, make
predictions on them, and average the ten results. At the same time, the AlexNet paper
mentioned that the RGB data of the image will be processed by PCA, and a Gaussian
perturbation with a standard deviation of 0.1 is performed on the principal component, this
trick can reduce the error rate by another 1% by adding some noise.

— Cascade pooling.
Pooling is non-overlapping in LeNet, i.e. the pooled window size and stride are equal.
While The pooling used in AlexNet is overlapping, that is, the step size of each move
is smaller than the pooling window length when pooling. The AlexNet pools are 3×3
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squares, and each pool moves with the stride=2, so there is overlap. Overfitting can be
avoided by this overlapping pooling way, which contributes 0.3% to the Top-5 error rate.
Compared with the non-overlapping scheme s=2, z=2, the dimensions of the outputs are
equal, and overfitting can be suppressed to a certain extent.

Some setup used in our project :
— input size : 224×224 pixels
— loss_function : Cross Entropy Loss
— optimizer : Adam
— learning rate : 0.0002

5.2.5 VGGNet

VGGNet [Simonyan and Zisserman, 2014] was jointly developed by researchers from Oxford
University’s Visual Geometry Group and Google’s DeepMind team, and won second place in
ILSVRC 2014 (2014 ImageNet Image Classification Competition), reducing the Top-5 error rate.
To 7.3%, it achieved 92.3% accuracy in Top-5.

The increased depth of the convolutional neural network and the use of small convolution ker-
nels have a great impact on the final classification and recognition effect of the network. VGGNet
explores the relationship between the depth and performance of a CNN. By constantly stacking 33
small convolution kernels and 22 max-pooling layers, VGGNet successfully builds a deep CNN
with 16-19 layers.

VGG-16 has 13 convolutional layers with a kernel size of 3×3, 5 max-pooling layers and 3
fully connected layers. The convolution layers are all convolution operations with a size of 3×3,
a stride of 1, and a padding of 1 (the height and width of the feature matrix will not be changed
after convolution). The maximum pooling downsampling layers are all pooling operations with
a pooling kernel size of 2 and a stride of 2. After each downsampling by maximum pooling, the
height and width of the feature matrix will be reduced to half of the original.

The structure diagram of VGG-16 is shown in Figure 5.4 [Simonyan and Zisserman, 2014].
Advantages of VGGNet-16 :
— Simple structure.

The structure of VGGNet is quite simple. It consists of five convolutional layers, three
fully connected layers and one softmax layer. The maximum pooling connection is used
between layers, and the activation functions used between hidden layers are all ReLU.

— Use small convolution kernels.
VGGNet uses convolutional layers with multiple small 3×3 convolution kernels instead of
larger convolutional layers in AlexNet. The receptive field of stacking two 3×3 convolu-
tion kernels is equivalent to the receptive field of a 5×5 convolution kernel, and the recep-
tive field of stacking three 3×3 convolution kernels is equivalent to the receptive field of a
7×7 convolution kernel. Therefore, using multiple small convolution kernels can not only
reduce the number of parameters but also enhance the nonlinear mapping of the network
to improve its expressiveness of the network. Using multiple 3×3 convolution stacks has
two effects : one is to reduce the parameters without affecting the receptive field ; the other
is to increase the nonlinearity of the network.

— Use small filters.
Compared with AlexNet, VGGNet all use 2×2 small filters in the pooling layer, and the
stride is 2.
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Figure 5.4 – The network structure of VGG-16.
It is made up of 5 convolutional blocks and 2 fully connected layers after that. (Simonyan, 2014)

— More channels.
The first layer of VGGNet has 64 channels, and each subsequent layer doubles the chan-
nels, up to a maximum of 512 channels (64-128-256-512-512). Since each channel repre-
sents a feature map, the more channels the more information can be extracted.

— Image Preprocessing.
The training adopts multi-scale training, scales the original image to different sizes, and
then randomly cuts the 224×224 pixels image, performs horizontal flipping and random
RGB color difference adjustment on the image, which can increase a lot of data to prevent
the model from overfitting.

— Convert fully connected layers to convolutional layers.
When testing the network, the three fully connected layers in the training phase are repla-
ced by three convolutional layers, so that the tested network does not have the limitation
of full connection and can receive inputs of arbitrary width and height. If the next three
layers are all fully connected, then in the testing phase, all the images tested can only be
scaled to a fixed size, which is inconvenient for multi-scale testing.

Some setup used in our project :
— input size : 224×224 pixels
— loss_function : Cross Entropy Loss
— optimizer : Adam
— learning rate : 0.0001
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5.2.6 ResNet

The ResNet [He et al., 2016] was proposed by He Kaiming in Microsoft Labs and won first
place in the classification task and first place in the target detection in the ImageNet competition
that year. It won first place in object detection and image segmentation in the COCO dataset.

The ResNet network refers to the VGG19 network, modified on the basis, and added the re-
sidual unit through the short-circuit mechanism, as shown in Figure 5.5. The change is mainly
reflected in the fact that ResNet directly uses the convolution of stride=2 for downsampling, and
replaces the fully connected layer with the global average pool layer. An important design prin-
ciple of ResNet is that when the feature map size is reduced by half, the number of feature maps
is doubled, which maintains the complexity of the network layers.

For ResNet-18, 18 represents the depth of the network, specifying 18 layers with weights,
including convolutional layers and fully connected layers, excluding pooling layers and BN layers.

The ResNet-18 network structure is shown in Figure 5.5 [Ramzan et al., 2020].

Figure 5.5 – The original network structure of ResNet-18. (Ramzan, 2020)

The highlights in the ResNet-18 Network :
— Super deep network structure (more than 1000 layers).
— Propose a residual (residual structure) module to alleviate the degradation problem in deep

networks.
The residual structure uses a shortcut connection, which can also be understood as a short-
cut. Let the feature matrix be added at intervals. The structure of the residual is shown in
Figure 5.6. Note that F (X) and X have the same shape. The addition is the addition of
the numbers at the same position of the feature matrix. There are two different residuals in
ResNet, BasicBlock and Bottleneck.

— Short cut for dimensionality reduction.
Looking at the ResNet18 layer network in figure 5.5, one can find that the shortcuts of some
residual blocks are solid lines, while others are dotted lines. The short cuts of these dotted
lines are dimensioned by a 1×1 convolution kernel (the feature matrix is downsampled in
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the length and width directions, and the depth direction is adjusted to the channel required
by the next layer of residual structure).

— Use Batch Normalization to speed up training (drop dropout) by solving the vanishing
or exploding gradient problem. Batch Normalization satisfies the distribution law of data
feature maps with a mean of 0 and a variance of 1.

Figure 5.6 – The structure of residual. (He, 2016)

Some setup used in our project :
— input size : 256×256 pixels
— loss_function : Cross Entropy Loss
— optimizer : Adam
— learning rate : 0.0001

5.3 Graph-based Classification with Graph Convolutional Networks

In this part, we use the adjacency matrix of every graph, which represents the morphology
of the vascular network from tumor patch images. The GCN [Zhang et al., 2018a] models were
developed by PyTorch deep learning frame (version=1.6.0), and the programming language is
Python (3.8.5).

5.3.1 A Variant of Graph Convolution Networks

GCN [Zhang et al., 2018a] designs a method to extract features from graph data so that we can
use these features to perform node classification, graph classification and get the graph embedding
by the way.

The graph convolution operation is defined as follows :

x1 ∗ x2 = IGFT (GFT (x1) ⊙ GFT (x2))
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The inverse Fourier transform IGFT is defined :

xk =
N∑

i=1
Vkiůx̃i

Where IGFT is The Inverse Graph Fourier Tansform. ⊙ represents the Hadamard product
of the Graph Fourier Transform (GFT ). The GFT refers to the process of projecting the graph
signal onto each feature vector (Fourier basis) to obtain a set of Fourier coefficients. Substituting
GFT (x) = x̃ = V T x into the above formula, we get

x1 ∗ x2 = V
((

V T x1
)

⊙
(
V T x2

))
= V

(
x̃1 ⊙

(
V T x2

))
= V

(
diag (x̃1)

(
V T x2

))
=
(
V diag (x̃1) V T

)
x2

Then we can define the following neural network layers to parameterize the frequency response
matrix :

X ′ = σ

V


θ1

θ2
. . .

θN

V T X


= σ

(
V diag(θ)V T X

)
= σ(ΘX)

Where σ(·) is the activation function, θ = [θ1, θ2, · · · , θN ] is the parameter to be learned, Θ is
the graph filter we need to learn, X is the input graph signal matrix, X ′ is the output graph signal
matrix.

From a spatial perspective, the defined neural network layer introduces an adaptive graph
displacement operator ; from a frequency domain perspective, the neural network layer trains an
adaptive graph filter between X and X ′. The frequency response function can be used for super-
vised learning through the correspondence between tasks and data.

Define L̃sym as a Laplace matrix in the renormalized form, the eigenvalues of L̃sym range
from (-1,1], L̃sym = D̃−1/2ÃD̃−1/2, where Ã = A + I , D̃ij =

∑
j Ãij . I is the identity matrix,

which is added to A to make the diagonal elements 1. At the same time, a parameterized weight
matrix W is defined to perform the affine transformation on the input image signal matrix. The
neural network model with multiple layers as the main body is called GCN :

X ′ = σ
(
L̃symXW

)
5.3.2 Pooling Layer Based on Self-Attention Graph

Self-Attention Graph Pooling (SAGPool) [Lee et al., 2019] uses a Graph Neural Network
(GNN) to learn the importance of nodes. This GNN-based approach makes better use of the struc-
tural information of the graph to learn the importance of nodes. Based on the attention score
calculated by GCN, the pooling operation is performed on each graph. To visualize the pooling
process, we pool each graph separately and finally cascade them for the next calculation. In this
project, we use the TopK-based pooling mechanism [Gao and Ji, 2019].
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The pooling mechanism based on TopK is a process of continuously discarding nodes, which
captures the information of different scales of the graph. Unlike the local sliding window-based
pooling operation in CNN, TopK pooling places the scope on the full-graph nodes. Specifically,
first set a hyperparameter k, k ∈ (0, 1) that represents the pooling rate, then learn a value z repre-
senting the importance of nodes and sort them in descending order, and then put N nodes in the
whole graph downsampled to kN nodes. The formula is expressed as follows :

i⃗ = TopK(z, kN)
X ′ = Xi, :
A′ = Ai,j

Where TopK is a sequence number that returns the first kN data, TopK(z, kN) refers to
sorting by the z index and selecting the first kN nodes. Xi indicates that the feature matrix is
row-sliced according to the value of the vector i⃗, and Ai,j indicates that the adjacency matrix is
simultaneously row-sliced and column-sliced according to the value of the vector i⃗.

The pooling mechanism based on TopK only needs to discard (1−k)N nodes from the original
graph each time. The model structure of TopK given in the paper [Cangea et al., 2018] is shown
in Figure 5.7 :

Figure 5.7 – The full pipeline of the TopK model (for k = 0 :5), leveraging several stacks of
interleaved convolutional/pooling layers. (Cangea, 2018)

Next, define two sets of SAGPool models, as shown in Figure 5.8. Among them, figure A uses
only one pooling layer, called SAGPool_g [Zhang et al., 2018a], "g" stands for global ; figure B
uses multiple pooling layers, called SAGPool_h [Cangea et al., 2018], "h" stands for hierarchi-
cal. SAGPool_g has 3 layers of convolutional layers, after the pooling layer is aggregated by the
readout layer, the vector of the entire graph can be obtained and connected to the MLP for the
classification task. SAGPool_h has a multi-layer structure, which is shown on the right side of
Figure 5.8. There are a total of 3 blocks, the output of each block is subjected to the summation
operation after the readout layer and finally passed to the MLP for classification.

The gpool layer adopts the method of discarding nodes layer by layer to improve the fusion
efficiency of distant nodes, but this method will make it lack the means of effective information
fusion for all nodes. Therefore, in order to achieve effective fusion, a readout layer is added after
the gpool layer to achieve a one-time aggregation of the global information of the graph at this
scale. The specific implementation of the readout layer is to combine global average pooling and
global max pooling, and the final global pooling is the sum of the pooling results of each layer.

The readout mechanism involved in the graph classification based on global pooling performs
a one-time aggregation operation on all nodes after K rounds of iterations. Thus the global repre-



84 CHAPITRE 5 — Vascular-based RCC Classification

Figure 5.8 – The global pooling architecture (A) and the hierarchical pooling architecture (B).
These architectures are applied to all the baselines and SAGPool for a fair comparison. In this
paper, the architecture on the A side is referred to as POOLg and the architecture on the B side is
referred to as POOLh with the POOL method (e.g. SAGPoolg, gPoolh). (Lee, 2019)

sentation of the output graph :
hG = R

(
h(k)

v | v ∈ G
)

Where the readout function R is to perform graph-level predictions. h
(k)
v is the feature repre-

sentation of node v at the k-th iteration. The feature vector hG is calculated for the entire graph
(G) by the readout function R.
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The model summary of SAGPool_g and SAGPool_h in our project is shown in Figure 5.9, and
the accuracy result of the two models are shown in Table 5.3.

A B

Figure 5.9 – The model summary of SAGPool_g (A) and SAGPool_h (B) in our project.

The hyperparameter settings in our project are :
— INPUT_DIM = node_features.size(1) = 4 (int, the dimension of the input feature)

— NUM_CLASSES = 3 (int, number of categorical categories)

— EPOCHS = 30 (int, one epoch is equal to training once using all samples in the training set)

— HIDDEN_DIM = 32 (int, number of hidden layer units)

— LEARNING_RATE = 0.01 (Controls the learning progress of the model, determines
whether the objective function can converge to the local minimum and when it converges
to the minimum)

— WEIGHT_DECAY = 0.0001 (Weight decay is equivalent to L2 norm regularization. Re-
gularization makes the weights smaller by adding a penalty term to the loss function of the
model.)
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5.4 Hand-crafted Features Based Classification with Traditional Ma-
chine Learning Algorithm

In this part, we input the sixteen feature data filtered by three nonparametric tests into eight
traditional supervised machine learning models. The programming language used in this part is
python (Version 3.7.3). First, we use the GridSearchCV function of ’sklearn.model_selection’ to
determine the best parameters for each model to fit our data. We train the model with the best para-
meters and test the model by leave-one-out cross-validation method to get the accuracy (as shown
in Table 5.3), the area under the curve (AUC), and plot the Receiver Operating Characteristic
(ROC) curve (as shown in Figure 5.12) of each model.

5.4.1 Hand-crafted Features Analysis

5.4.1.1 Evaluation Index

Our vascular network annotation data includes 424 patch image data from 31 patients, we
consider a majority vote to translate the results at patch image level to patient level :

Predict labels at the patient level :

C = argmaxj {#j} (5.1)

C : patient class (ccRCC, pRCC and chRCC)
#j : number of patch images that have been classified into class j
It means that if the predicted label of more than half of the patch images of the patient is class

j, the class of the patient is considered to belong to class j, otherwise it belongs to class i.
Normalized confusion matrices at the patient level :
A confusion matrix A (also known as an error matrix [Townsend, 1971]) is a special type

of contingency table with two dimensions (actual and predicted), and the set of classes in both
dimensions.

A =
(

a1,1 a1,2
a2,1 a2,2

)
(5.2)

Normalized confusion matrix B :

B =
(

b1,1 b1,2
b2,1 b2,2

)
(5.3)

ai,j : number of patients of class i classified into class j
bi,j : the probability of samples of class i to be classified into class j : bi,j = ai,j∑

k
ai,k

5.4.1.2 "Leave One Out" Cross-Validation

Leave-One-Out Cross-Validation (LOO-CV) is a common cross-validation method. First of
all, the k-fold cross-validation is a very common machine learning method, that is, the data set is
randomly divided into k parts, of which the training set has (k-1) parts, and the test set accounts
for one part. For example, the first piece of data can be used to test the fit of the model based on the
remaining (k-1) pieces of data, then the second piece of data can be used as the test set to test the fit
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of the corresponding training set, and so on. After completion, each piece of data is used as a test
set exactly once, and the fitness of the model can be obtained by averaging the fitness of the k tests.
This approach is used to calibrate the parameters and has the advantage of avoiding over-fitting. In
this project, there are 31 patients with the VRCC dataset, we take 30 patients for training and 1 for
testing each time. In this project, we use the LeaveOneOut function of ’sklearn.model_selection’
to implement the cross-validation method.

5.4.1.3 Non-parametric Tests

To study the relevance of the proposed features to discriminate the different cancer patch
images, we apply statistical tests between the three populations : ccRCC, pRCC and chRCC.

Since the data of the proposed features are not normally distributed, as shown in Figure 5.10,
we use three common non-parametric tests methods [Hollander et al., 2013] (Kruskal-Wallis Test,
Median Test and Jonckheere-Terpstra Test) to calculate the statistical significance between the
ccRCC, pRCC and chRCC features.

The statistical software SPSS, version 20.0, was used for all the statistical analyses. All the
statistical tests were 2-sided. The level for statistical significance was set α = 0.05.

5.4.1.4 Kruskal-Wallis Test

The idea of the Kruskal-Wallis test is to mix n groups of samples into a data set (that is,
assuming they are from the same distribution), and then sort the merged sample values from small
to large ; replace the sorted values with ranks, starting with the smallest value of 1. Then find the
average rank of each group. If the n groups of data come from the same distribution, the rank of
each group should be similar to the total average rank of the mixed data. If the difference is large,
it means that each group is not from the same population.

The null hypothesis : The distributions of multiple populations from which multiple inde-
pendent samples are drawn are not significantly different.

Inspection Steps :
— Suppose there are m independent simple random samples (X1, . . ., Xni) (i=1, . . ., m).
— Mix sets of sample numbers and sorts them in ascending order.
— Let Ri (i=1, . . ., m) represent the sum of the ranks of the ni observations X1, . . ., Xni of

the i-th sample in this arrangement.
— Calculate statistics H = 12

N(N+1)
∑m

i=1
R2

i
ni

− 3(N + 1)
(When N is sufficiently large, H approximately obeys the chi-square distribution, with
degrees of freedom df = m - 1)

— Find the upper quantile χ2
α,df of the chi-square distribution for a given significance level α

and degrees of freedom df = m − 1.
— When H ≥ χ2

α,df , the m group samples are not all from the same population.

5.4.1.5 Median Test

The Mood’s Median Test tests the null hypothesis that the population medians from which the
samples come are not different. The alternative hypothesis suggests that there are differences in
the medians of the populations from which the samples are drawn.

Once the median of the combined data is determined, the sample values are then put into one
of two groups, one with all values above the median, and the other with all values at or below the
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Figure 5.10 – The distribution of data from hand-crafted features.
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median. A chi-square test was used to compare the actual frequencies of the two groups with the
expected frequencies of no difference. The p-value of the test indicates whether the null hypothesis
should be rejected.

While the Mood’s Median test does not make any assumptions about the distribution of the
data, there are still other assumptions that should be satisfied. They are :

— The sample values are independent both within and between samples
— The sample values come from populations with a continuous rather than discrete distribu-

tion
— The distributions of the populations from which the samples were drawn all have the same

shape

5.4.1.6 Jonckheere-Terpstra Test

The Jonckheere-Terpstra test was independently proposed by Terpstra (1952) and Jonckheere
(1954).

Assume that k independent samples (population) come from continuous distribution functions
with the same shape, and their position parameters (such as median) are recorded as θ1, θ2, · · · , θk.
Assume that the sample size of k samples (population) is ni, i = 1, 2, · · · , k. Let xij be the j-th
independent observation from the i-th sample (population) (i = 1, 2, · · · , k, j = 1, 2, · · · , ni).
Then the observed value xij can be written as the following linear model : xij = µ+θi+εij , i =
1, 2, · · · , k, j = 1, 2, · · · , ni, where the errors are independent and identically distributed.

If the number of observations in one sample (population) is smaller than that of another sample
(population), it can be considered that there is a size relationship between the locations of multiple
samples (population).

Inspection Steps :
— calculate : Uij = The logarithm of the sample (population) i is smaller than the observa-

tions in the sample (population) j = # (Xik < Xjl, k = 1, · · · , ni, l = 1, · · · , nj).
— Sum all Uij in the range of i < j to get the Jonckheere-Terpstra test statistic : J =∑

i<j Uij . When j is large, the null hypothesis should be rejected.
— The critical value c under the null hypothesis can be obtained from (n1, n2, n3) and the

test level α by looking up the critical value table, which satisfies P (J ≥ c) = α.
When encountering a large sample situation, the Jonckheere-Terpstra test statistic can be

approximated normally as Z = J−E(J)√
Var(J)

. That is, under the condition that the null hypo-

thesis holds, when mini {ni} → ∞, and limni→∞
ni∑k

i=1 ni

= λi ∈ (0, 1), then Z =

J−
(

N2−
∑k

i=1 n2
i

)
/4√[

N2(2N+3)−
∑k

i=1 n2
i (2ni+3)

]
/72

→ N(0, 1).

5.4.2 Adaptive Boosting

Adaptive Boosting (Adaboost) was proposed by Yoav Freund and Robert Schapire
[Freund and Schapire, 1997]. Its adaptation lies in that the samples misclassified by the previous
basic classifier are strengthened (that is, get a higher weight), and the weighted total samples are
used again to train the next basic classifier. At the same time, a new weak classifier is added in
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each round until a predetermined small enough error rate or a pre-specified maximum number of
iterations is reached, and the algorithm stops.

The Adaboost iterative algorithm consists of three steps :
— Initialize the weights for the training data.

If there are N samples, each training sample is initially given the same weight : 1/N .
— Train weak classifiers.

In the specific training process, if a sample point has been accurately classified, its weight
will be reduced when constructing the next training set ; on the contrary, if a sample point
has not been accurately classified, its weight will be reduced. Then, the next classifier is
trained using the sample set of updated weights, and the whole training process is iterative.

— Combine the weak classifiers obtained from each training into a strong classifier.
After the training process of each weak classifier is completed, we increase the weight of
the weak classifier with a small classification error rate, so that it plays a larger decisive
role in the final classification function, and reduce the weight of the weak classifier with a
large classification error rate. In other words, a weak classifier with a low error rate has a
larger weight in the final classifier, otherwise, it is smaller.

The classifier with the best model parameter in our project is : AdaBoostClassi-
fier(algorithm=’SAMME.R’, base_estimator=None, learning_rate=1.0, n_estimators=3).

5.4.3 Decision Tree

Decision Tree [Breiman et al., 1984] is a non-parametric supervised learning method that can
summarize decision rules from a series of data with features and labels, and present these rules
with a tree diagram structure to solve classification and regression problems. Decision trees can
solve multi-classification problems and have very good interpretability.

The generation algorithms of decision trees include ID3, C4.5 and C5.0. A decision tree is
a tree structure in which each internal node represents a judgment on an attribute, each branch
represents the output of a judgment result, and finally, each leaf node represents a classification
result.

ID3 : It is determined by the principle of Entropy which is the parent node and which node
needs to be split. For a set of data, the smaller the entropy, the better the classification result.
Entropy is defined as follows :

Entropy = − sum [P (xi) ∗ log 2 (P (xi))]

Where P (xi) is the probability of xi appearing. Therefore, when Entropy tends to 1, it corresponds
to the state with the worst classification effect, and when it goes to 0, it corresponds to a state of
complete classification. The minimization of entropy is the process of improving classification
accuracy.

C4.5 is developed by [Salzberg, 1994]. C4.5 is an extension of Quinlan’s earlier ID3 algorithm
by the gain ratio. The decision trees can be produced by C4.5, which are used for classification
and are often referred to as statistical classifiers.

The C5.0 algorithm [Quinlan, 2004] is a commercial improved version proposed by Quinlan
based on the C4.5 algorithm. The purpose is to analyze the data set containing a large amount of
data. Compared with the C4.5 algorithm, the C5.0 algorithm has the following advantages :

— The construction time of the decision tree is faster than the C4.5 algorithm, and the resul-
ting decision tree is also smaller in size and has fewer leaf nodes.
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— The boosting method is used to combine multiple decision trees to make classification,
which improves the accuracy greatly.

— Provide optional parameters, such as whether to consider the weight of the sample, the cost
of sample misclassification, etc.

Therefore, the generation of the decision tree is mainly divided into the following two steps,
which are usually realized by learning samples for which the classification results are known.

— Node splitting : Generally, when the attribute represented by a node cannot be judged, it is
selected to divide the node into two sub-nodes (if it is not a binary tree, it will be divided
into n sub-nodes)

— Determination of the threshold : select the appropriate threshold to minimize the classifi-
cation error rate (Training Error).

The classifier with best model parameter in our project is : DecisionTreeClassi-
fier(class_weight=None, criterion=’gini’, max_depth=2, max_features=None, max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, splitter=’best’).

5.4.4 Gradient Boosting Tree

The Gradient Boosting Tree algorithm [Friedman, 2001] was originally proposed by Freidman
in 2001. It is an ensemble algorithm (or a combination algorithm). Its base learner is a decision
tree, which can be used for both the training regression and classification model. The algorithm has
three major advantages : it handles mixed types of data naturally, has a strong predictive ability,
and is robust to outliers in the output space (through a powerful loss function).

The core of the Gradient Boosting Tree algorithm is that each tree learns from the residuals of
all trees in the previous training, and then fits into a tree. During training, the residual is approxi-
mately equal to the negative gradient value of the loss function in the current model.

Each calculation of gradient boosting can reduce the previous residual, and then a new model
can be established in the gradient direction of the residual reduction. Therefore, in the gradient
boosting algorithm, the establishment of each new model is to reduce the residual of the previous
model in the direction of the gradient, which is different from the traditional boosting algorithm
that assigns different weights to positive and false samples.

The Gradient Boosting Tree algorithm consists of the following steps :
— Initialize the weak learner f0(x) = arg minc

∑N
i=1 L (yi, c)

— For m = 1, 2, . . . M have :
— Calculate the negative gradient for each sample i = 1, 2, . . . N , that is, the residual

rmi = −
[

∂L (yi, f (xi))
∂f (xi)

]
f(x)=fm−1(x)

— Use the residual obtained in the previous step as the new real value of the sample, and
use the data (xi, rmi) , i = 1, 2, . . . N as the training data of the next tree to obtain a
new regression tree fm(x), whose corresponding leaf node area is Rjm, j = 1, 2, . . . J ,
where J is the number of leaf nodes of the egression tree.

— Calculate the best fit value for the leaf region j = 1, 2, . . . J

Υjm = arg min︸ ︷︷ ︸
Υ

∑
xi∈Rjm

L (yi, fm−1 (xi) + Υ)
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— Update the strong learner

fm(x) = fm−1(x) +
J∑

j=1
ΥjmI (x ∈ Rjm)

— Get the final learner

f(x) = fM (x) = f0(x) +
M∑

m=1

J∑
j=1

ΥjmI (x ∈ Rjm)

The classifier with best model parameter in our project is : GradientBoostingClassi-
fier(criterion=’friedman_mse’, init=None, learning_rate=0.1, loss=’deviance’, max_depth=3,
max_features=None, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=8, presort=’auto’, sub-
sample=1.0, verbose=0, warm_start=False).

5.4.5 K-Nearest Neighbor

K-Nearest Neighbor (KNN), originally proposed by Cover and Hart in 1967 [Cover and Hart, 1967],
is a theoretically mature method and one of the commonest machine learning algorithms. The idea
of this method is : if most of the K most similar samples in the feature space (that is, the closest
neighbors in the feature space) belong to a certain category, then the sample also belongs to this
category.

The KNN algorithm is a non-parametric model. The parametric model uses a fixed number
of parameters or coefficients to define the model. The non-parametric model does not mean that
no parameters are required, but the number of parameters is uncertain, it may increase with the
number of training instances.

KNN can also be adapted to nonlinear cases.
The calculation process of the KNN classification algorithm is as follows :
— Calculate the distance between the point to be classified and the point of the known class.

There are three popular used distances in the KNN algorithm, namely Manhattan distance,
Euclidean distance and Minkowski distance. Assumed that we want to compare the dif-
ferences between X individuals and Y individuals, both of which contain N -dimensional
features. Their mathematical description is as follows

X = (x1, x2, x3, . . . , xn) , Y = (y1, y2, y3, . . . , yn)

— Minkowski distance
Minkowski distance is not a distance, but a definition of a class of distances. Its mathe-
matical definition is as follows : (

n∑
i=1

|xi − yi|p
)1/p

where p can take any value, it can be negative, positive, or infinite. When p=1, it is also
called Manhattan distance, when p=2, it is also called Euclidean distance, and when
p = ∞, it is also called Chebyshev distance.
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— Euclidean distance
Euclidean distance (L2 norm) is the distance between two points in space, which is the
most commonly used. Because the calculation is based on the square difference of each
dimension feature, Euclidean measurement needs to ensure that each dimension index
is at the same scale level. For example, using Euclidean distance for two indicators with
different units of height (cm) and weight (kg) may invalidate the results. Therefore,
when using Euclidean distance, each component should be normalized as much as
possible to reduce the interference caused by the different scale levels of the values.

— Manhattan Distance
The actual driving distance from one intersection to another in Manhattan is cal-
led "Manhattan distance", which is not the simple straight-line distance between two
points, also known as City Blockdistance.

In this project, we take the Minkowski distance.
— Sort the distances from smallest to largest in ascending order.
— Select the K points which have the smallest distance from the points to be classified.
— Count the number of appearances in the category to which the top K points belong.
— Return the category with the highest number of occurrences of the first K points as the

predicted classification of the points to be classified.
The classifier with the best model parameter in our project is :
KNeighborsClassifier(algorithm=’auto’, leaf_size=30, metric=’minkowski’, metric_params=None,

n_jobs=1, n_neighbors=5, p=2, weights=’uniform’).

5.4.6 Logistic Regression

Logistic Regression [Wright, 1995] is used to deal with regression problems where the de-
pendent variable is categorical. The common problem is binary or binomial distribution, but it can
also deal with multi-category problems. It is used as a classification method.

The logistic classifier classifies by probability. The algorithm predicts the probability that an
individual belongs to a certain class according to the predictor variable and then assigns the indivi-
dual to the class with the highest probability. When the response variable is binary, called binomial
logistic regression, and multi-classification is called multinomial logistic regression.

For multinomial logistic regression problems :
Assuming that the value set of the discrete random variable Y is {1, 2, . . . , K}, and there are a

total of k classes of the feature x, then the output probability of the multi-class logistic regression
model is :

P (Y = k | x) = ewk·x

1 +
∑k−1

i=1 ewi·x
, k = 1, 2, . . . , K − 1

P (Y = K | x) = 1
1 +

∑K−1
i=1 ewi·x

, x ∈ Rn+1, wi ∈ Rn+1

Among them, note that Y = k is a category that takes 1 to (K − 1) class, Y = K refers to the
K-th class, and P (Y = K | x) is the K-th class probability.

The origin of multi-class LR is the softmax function,

softmax(x) = ek∑C
k=1 ek
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Operation steps of the logistic regression :
— Write the maximum likelihood function and perform the logarithmic operation

L(W ) =
n∑

i=1
ln p (yi | Xi; W )

=
n∑

i=1
ln
(
ϕ (zi)yi (1 − ϕ (zi))1−yi

)
=

n∑
i=1

yi ln ϕ (zi) + (1 − yi) ln (1 − ϕ (zi)

ϕ(z) is the step function. L(W ) is the cost function J(W ),

ϕ(z) =


0, z < 0

0.5, z = 0
1, z > 0

J(W ) = −
n∑

i=1
yi ln ϕ (zi) + (1 − yi) ln (1 − ϕ (zi))

— Find the minimum value of the cost function using gradient descent.
The negative direction of the gradient is the direction in which the cost function decreases
the fastest. Therefore, we should gradually adjust the weight component wj along the
negative gradient direction until we get the minimum value, so the change of each weight
component should be like this :

∆wj = −η
∂J(W )

∂wj

where η is the learning rate, which controls the step size. ∂J(W )
∂wj

can be calculated as
follows :

∂J(w)
∂wj

= −
n∑

i=1

(
yi

1
ϕ (zi)

− (1 − yi)
1

1 − ϕ (zi)

)
· ∂ϕ (zi)

∂wj

= −
n∑

i=1

(
yi (1 − ϕ (zi)) − (1 − yi)

1
1 − ϕ (zi)

)
· xij

= −
n∑

i=1
(yi − ϕ (zi)) · xij

A special property of the sigmoid function ϕ(z) is used in the derivation of the above
formula :

ϕ(z)′ = ϕ(z)(1 − ϕ(z))

In this way, we get the variable that the gradient descent method updates the weights :

wj := wj + η
n∑

i=1
(yi − ϕ (zi)) · xij
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The classifier with best model parameter in our project is : LogisticRegression(C=1.0,
class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=3,
multi_class=’ovr’, n_jobs=1, penalty=’l2’, solver=’liblinear’, tol=0.0001, verbose=0,
warm_start=False).

5.4.7 Random Forest

Random Forest (RF) [Breiman, 2001] is an extension of the bagging algorithm in ensemble
learning. Based on building a bagging ensemble with a decision tree as the base learner, RF fur-
ther adds random attribute selection in the training process of the decision tree. Specifically, the
traditional decision tree selects an optimal attribute from all the candidate attributes of the current
node (assuming there are d) when selecting the attributes for division ; while in RF, for each node
of the base decision tree, the first A subset containing k attributes is randomly selected from the
set of candidate attributes of the node, and then an optimal attribute is selected from this sub-
set for partitioning. The selection of the number of attributes k to be extracted is important, and
K = log2 d is generally recommended. As a result, the "diversity" of the base learner of the ran-
dom forest comes not only from the perturbation of samples but also from the perturbation of
attributes, which further enhances the generalization ability of the final ensemble.

Algorithm steps of RF :
— Assume that there is a dataset D = {xi1, xi2, . . . , xin, yi} (i ∈ [1, m]), containing N

features, a sampling with replacement process can generate a sampling space (m ∗ n)m∗n

— Build a base learner (decision tree) : generate a decision tree for each sample dj =
{xi1, xi2, . . . , xik, yi} (i ∈ [1, m]) (where K ≪ M), and record the result of each deci-
sion tree hj(x).

— Train T times to make H(x) = max
∑T

t=1 ϕ (hj(x) = y), where ϕ(x) is an algorithm
(super majority voting, relative majority voting, weighted voting, etc.).

The classifier with best model parameter in our project is : RandomForestClassi-
fier(bootstrap=True, class_weight=None, criterion=’gini’, max_depth=None, max_features=’auto’,
max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=31, n_jobs=1, oob_score=False, verbose=0,
warm_start=False).

5.4.8 SVM RBF & SVM Sigmoid

The support vector machine (SVM) [Cao et al., 2008, Smola et al., 2000] estimates hyperplane
to segment the samples. The principle of segmentation is to maximize the interval between the hy-
perplane and the nearest samples (support vectors), which is finally transformed into a convex
quadratic programming problem to solve. It can solve both linearly separable and nonlinear pro-
blems using the kernel trick.

The main idea of SVM can be summarized in two points : (1) It analyzes the linearly sepa-
rable case. For the linearly inseparable case, the non-linear mapping algorithm is used to convert
the linearly inseparable samples in the low-dimensional input space into a high-dimensional fea-
ture space to make them linearly separable, therefore, it is possible to use a linear algorithm to
linearly analyze the nonlinear characteristics of samples in high-dimensional feature space ; (2) It
constructs the optimal segmentation hyperplane in the feature space based on the structural risk
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minimization theory, so that the learner is globally optimized, and the expected risk in the entire
sample space satisfies a certain upper bound with a certain probability.

The key point in SVM is the kernel function. The main idea is to convert the samples that
are linearly inseparable in the initial low-dimensional space into linearly separable samples in a
high-dimensional space. Low-dimensional space vector sets are often difficult to divide, and the
solution is to map them to high-dimensional spaces. But the difficulty brought by this method is
the increase in computational complexity, and the kernel function just solves this problem through
its interpretation as s scalar product.

In SVM theory, different kernel functions will lead to different SVM algorithms. Conside-
ring the generalization problem, two parameters, relaxation coefficient and penalty coefficient are
introduced to smooth the frontiers between classes.

There are four commonly used kernel functions : Given two examples x1 and x2 :
— Linear kernel function

K (x1, x2) = x⊤
1 x2

— Polynomial kernel function

K (x1, x2) =
(
x⊤

1 x2 + c
)d

Where d is the degree of kernel, all interactions of order d or lower. c is a constant term
greater than 0.

— Radial basis (RBF) kernel function (Gaussian kernel function)
Krbf (x1, x2) = exp

(
−∥x1−x2∥2

c

)
Where ∥x1 − x2∥2 is euclidean distance between x1 and x2.

— Sigmoid kernel function (two-layer neural network kernel function)
K (x1, x2) = tanh

(
αx⊤

1 x2 + c
)

Where α and c are constant terms greater than 0.
We take the RBF kernel and sigmoid kernel in our project. RBF kernel function can map

the original space to an infinite-dimensional space. For parameter σ, if it is selected very large,
the weight on the high-order features would decay very quickly, which is equivalent to a low-
dimensional subspace ; conversely, if it is selected very small, we can map arbitrary data to be
linearly separable and may lead to serious overfitting problem. However, in general, by adjus-
ting the parameters, the Gaussian kernel is quite flexible and one of the most widely used kernel
functions. When the sigmoid kernel uses the sigmoid function as the kernel function, the support
vector machine implements a multi-layer perceptron neural network. The weights of nodes are
automatically determined during the training process. Moreover, the theoretical basis of the SVM
determines that it finally obtains the global optimal value instead of a local minimum value, and
also ensures its good generalization ability for unknown samples.

Classification using SVM goes through three steps :
— Choose a suitable mathematical function as the kernel function.
— Using the kernel function for high-dimensional mapping, the data points change from li-

nearly inseparable to linearly separable after mapping.
— The hyperplane that can maximize an interval is found, and the classification is finally

completed.
This interval is determined by the sum of the distances from the point as the support vector
to the hyperplane, and the distance here is the most common geometric distance. We use
wx + b to represent the hyperplane, and the formula for the distance from a point to a
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three-dimensional plane is :

d = |Ax0 + By0 + Cz0 + D|√
A2 + B2 + C2

Similarly, the distance r from a point to an N -dimensional hyperplane can be calculated
by the following formula :

γ(i) =

(
wT x(i) + b

)
∥w∥

Where the dividend wT x(i) + b is the expression of the hyperplane, and the divisor ∥w∥ is
the abbreviation of the L2 normal form. SVM uses this formula to calculate the distance
of a point to the hyperplane.
The goal is to maximize the interval. 2 is a constant, so maximizing the distance between
the two hyperplanes (margin) can be expressed as :

min 1
2∥w∥2

The illustration for the support vectors, the margins and the decision boundary is shown
in Figure 5.11. The margins are the space between the decision boundary and the support
vectors furthest out.
Then use the Lagrangian multiplier method to transform it into the following Lagrangian
function :

L(w, b, a) = 1
2∥w∥2 +

m∑
i=1

αi

[
1 − yi

(
wT xi + b

)]
where α is called the "Lagrange multiplier". Taking the derivative of the above formula
concerning w and b respectively, and setting the derivative to 0, the right-hand formula can
be transformed into the following formula :

m∑
i=1

αi −
m∑

i=1

m∑
j=1

αiαjyiyjxT
i xj

max
α

m∑
i=1

αi −
m∑

i=1

m∑
j=1

αiαjyiyjxT
i xj

The constraints are :

s.t.
m∑

i=1
αiyi = 0

αi ≥ 0
This last formula is usually solved by the quadratic programming algorithm Sequential
Minimal Optimization (SMO) algorithm. The s.t. represents subject to, which means to be
constrained.

The classifiers with the best model parameter in our project are :
’svm_rbf’ : SVC(C=451, cache_size=200, class_weight=’balanced’, coef0=0.0, deci-

sion_function_shape=None, degree=3, gamma=0.002, kernel=’rbf’, max_iter=-1, probabi-
lity=False, shrinking=True, tol=0.001, verbose=False)
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Figure 5.11 – The illustration of SVM.
It includes support vectors, the margins and the decision boundary. (Diego, 2022)
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’svm_sigmoid’ : SVC(C=1.0, cache_size=200, class_weight=’balanced’, coef0=0.33333, de-
cision_function_shape=None, degree=3, gamma=0.012, kernel=’sigmoid’, max_iter=-1, probabi-
lity=False, shrinking=True, tol=0.001, verbose=False)

5.4.9 ROC Plotting and AUC Calculation

Receiver Operating Characteristic (ROC) is a curve drawn on a two-dimensional plane, in
which abscissa is the false positive rate (FPR) and the ordinate is the true positive rate (TPR). For
a classifier, we can get a TPR and FPR point pair based on the performance of the test sample.
In this way, this classifier can be mapped to points to get a ROC curve through (0, 0), (1, 1). In
general, this curve should be above a random classifier, which is the line connecting (0, 0) and
(1, 1). Area Under roc Curve (AUC) is a standard used to measure the quality of a classification
model. The value of AUC is the size of the area below the ROC curve. Typically, the value of AUC
is between 0.5 and 1.0, with a larger AUC representing better performance.

Assume that the number of test samples is m and the number of categories is n (assuming the
category labels are : 0, 1, ..., n-1). After the training is completed, the probability or confidence
of each test sample of each category is calculated, a matrix P in the shape of [m, n] is obtained,
and each row represents the probability value of a test sample under each category (by category
label sort). Meanwhile, the label of each test sample is converted into a binary-like form, and each
position is used to mark whether it belongs to the corresponding category (also sorted by the label,
so that it corresponds to the previous one), thus a label matrix L of [m, n] can also be obtained.
For example, when n is 3, the label should be converted to :

0 ⇒ 100
1 ⇒ 010
2 ⇒ 001

Since the ROC curve is defined for binary classifications, for multi-class problems, there are
two main ways to generalize the ROC curve :

Method 1 : Under each category, the probability that m number of test samples are of this
category (columns in matrix P ) can be obtained. Therefore, according to each column in the
probability matrix P and the label matrix L, the FPR and the TPR under each threshold can be
calculated to draw a ROC curve. In this way, a total of n ROC curves can be drawn. Finally, take
the average of n ROC to obtain the final ROC curve.

Method 2 : At first, for a test sample, the label is only composed of 0 and 1, the position of
1 indicates its category (corresponding to "positive" in the two-class problem), and 0 indicates
other categories ("negative") ; Then if the test sample classifies correctly, the value of the position
corresponding to 1 in the sample label from the probability matrix P is greater than the probability
value of the position corresponding to the label 0. Based on these two points, the label matrix L
and the probability matrix P are expanded in rows and transposed to form two columns, which
results in a binary classification result. Therefore, this method can directly obtain the final ROC
curve after calculation.

We take method 2 to calculate AUC in our project. The ROC curves and AUC values of each
model are shown in Figure 5.12.
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Figure 5.12 – The ROC curves and AUC values were obtained for each model with filtered hand-
crafted features.
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TABLE 5.1 – P-value of non-parametric tests of every feature.
Features Kruskal-Wallis Test Median Test Jonckheere-Terpstra Test
NE 0.00E+00 0.00E+00 0.00E+00
small NE 7.44E-03 2.78E-02 2.42E-03
long NE 0.00E+00 0.00E+00 0.00E+00
NJ 0.00E+00 0.00E+00 0.00E+00
LE 0.00E+00 0.00E+00 0.00E+00
LJ 0.00E+00 0.00E+00 0.00E+00
density 0.00E+00 0.00E+00 0.00E+00
NE/NJ 0.00E+00 0.00E+00 0.00E+00
LE/LJ 1.61E-01 3.79E-01 9.56E-01
NE/(LJ+LE) 5.74E-02 4.30E-01 1.62E-02
NJ/(LJ+LE) 0.00E+00 0.00E+00 0.00E+00
LJ/(LJ+LE) 1.00E-06 2.35E-03 0.00E+00
mean area 0.00E+00 0.00E+00 0.00E+00
median area 0.00E+00 0.00E+00 0.00E+00
mean perimeter 0.00E+00 0.00E+00 0.00E+00
median perimeter 0.00E+00 0.00E+00 0.00E+00
mean eccentricity 0.00E+00 0.00E+00 1.00E-06
median eccentricity 1.80E-05 6.00E-06 5.40E-05

5.5 Results

In this section, we display the results of hand-crafted features analysis and benchmark experi-
ments on the VRCC dataset with traditional classification schemes and deep learning models. The
given accuracy results from the validation are the average of the "leave one out" cross-validation.

5.5.1 Results of Hand-crafted Features Analysis

As shown in Table 5.1, there are only two features (LE/LJ, NE/(LJ+LE) ) whose P-value is
larger than 0.05 for at least one statistical test. Therefore, we choose the 16 features (font with
blue color) that are significant in all 3 tests. We assume that these 16 features are more suitable
for classifying the ccRCC, pRCC and chRCC images. Subsequent experiments, as shown in Table
5.2 also proved this : features filtered by non-parametric tests perform best.

5.5.2 Performance of Hand-crafted Features on Traditional Algorithms under
Non-parameter Test

As shown in Table 5.2, we compare the result of the skeleton and lattice features with the
baseline features : NE, NJ, LE, LJ, NE/NJ and LE/LJ [Zubiolo et al., 2016]. All experiments
used the leave-one-out cross-validation method and a majority vote to obtain patient-level clas-
sification results. Our proposed features, particularly filtered by non-parametric tests (filtered Ske-
leton & Lattice) achieve higher accuracy on almost all traditional machine learning algorithms
(Adaboost [Freund and Schapire, 1997], DecisionTree [Breiman et al., 1984], Gradient Boosting
Tree [Friedman, 2001], KNN [Cover and Hart, 1967], Logistic Regression [Wright, 1995], Ran-
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dom Forest [Breiman, 2001] and SVM [Cao et al., 2008, Smola et al., 2000]) with two different
kernels. This proved that the proposed features are more robust and efficient by adding lattice
features.

TABLE 5.2 – The Accuracy obtained by 3 feature sets on different algorithms.
Methods baseline

Skeleton
full
Skeleton & Lattice

filtered
Skeleton & Lattice

Adaboost [Freund and Schapire, 1997] 0.6933 0.8533 0.9000
DecisionTree [Breiman et al., 1984] 0.6933 0.8700 0.9167
Gradient Boosting Tree [Friedman, 2001] 0.680 0.8733 0.9333
KNN [Cover and Hart, 1967] 0.7333 0.9100 0.9467
Logistic Regression [Wright, 1995] 0.7300 0.8967 0.9167
Random Forest [Breiman, 2001] 0.7100 0.9400 0.9367
SVM RBF [Cao et al., 2008] 0.6900 0.9067 0.9100
SVM Sigmoid [Smola et al., 2000] 0.6633 0.8433 0.9300

5.5.3 Results of Vascular-Based RCC Classification Benchmark

TABLE 5.3 – The benchmark results on the VRCC dataset.
Methods Input Feature Accuracy

(LeaveOneOut)
Traditional Algorithm
Adaboost [Freund and Schapire, 1997] Segment Hand-crafted 0.9000
Decision Tree [Breiman et al., 1984] Segment Hand-crafted 0.9167
Gradient Boosting Tree [Friedman, 2001] Segment Hand-crafted 0.9333
KNN [Cover and Hart, 1967] Segment Hand-crafted 0.9467
Logistic Regression [Wright, 1995] Segment Hand-crafted 0.9167
Random Forest [Breiman, 2001] Segment Hand-crafted 0.9367
SVM RBF [Cao et al., 2008] Segment Hand-crafted 0.9100
SVM Sigmoid [Smola et al., 2000] Segment Hand-crafted 0.9300
Deep Learning
LeNet [LeCun et al., 1989] Raw Deep 0.6616
AlexNet [Krizhevsky et al., 2012a] Raw Deep 0.6178
VGG-16 [Simonyan and Zisserman, 2014] Raw Deep 0.6440
ResNet-18 [He et al., 2016] Raw Deep 0.8091
LeNet [LeCun et al., 1989] Segment Deep 0.8905
AlexNet[Krizhevsky et al., 2012a] Segment Deep 0.8750
VGG-16 [Simonyan and Zisserman, 2014] Segment Deep 0.8590
ResNet-18 [He et al., 2016] Segment Deep 0.8850
GCN+SAGPoolg [Zhang et al., 2018a] Segment Graph 0.8596
GCN+SAGPoolh [Cangea et al., 2018] Segment Graph 0.8772
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As shown in Table 5.3, the results of the traditional methods range from 90% to 94.67%, which
is higher than most others. This demonstrates that our proposed skeleton and lattice features are
efficient and robust.

For the results of deep learning baselines, the accuracy with vascular segmentation input is
much better than raw image input. We argue that a bigger dataset is needed to train raw images,
but vascular segmentation can work well on a small dataset and proved that we can just use the
vascular network to do classification.

The results of the two GCN models are lower than some vascular segment input-based deep
learning models (89.05% vs 87.72%) and traditional algorithm models (94.67% vs 87.72%).
Maybe because the graph features only contain the topological information of vascular, whereas
the other features contain both topological and geometrical information.

5.6 Conclusion

To demonstrate the importance of the vascular network structure of RCC, we build the VRCC
datasets with accurate vascular annotations. In this way, we can characterize ccRCC, pRCC and
chRCC from the topological and geometrical information of RCC vascular networks, by our pro-
posed "skeleton and lattice features". Our Hand-crafted features trained with 8 popular traditional
machine learning algorithms provide a better explanation for the RCC classification task and the
model performance with our Hand-crafted features is much better than the "graph features" (only
topological information) and the baseline deep learning features (both vascular segment masks and
raw images) from the vascular network mask. And the accuracy of deep learning with vascular seg-
ment mask input is much better than with raw image input. This can be explained by the lack of
training data. Segmenting the vascular network, and even more computing Hand-crafted features,
somehow reduce the dimensionality of the problem and thus require less training data. All the
results in this chapter proved that the vascular network can be used alone for RCC classification
and is sufficient to define the tumor subtypes.

However, there are still some limitations of our classification research which is based on the
manual vascular network annotation. Automatic subtyping application has been limited due to the
time required for manual vascular labeling. It would be improved if we can segment the vascular
network from the H&E stained histopathological images automatically. But supervised learning is
challenging for the vascular segmentation task in our project due to lacking ground truth. This is
the motivation for our next semi-supervised segmentation research.





Automatic Segmentation of Vascular
Network





CHAPTER 6
Coupling Vascular

Network Segmentation
and RCC Classification

Dans ce chapitre, nous proposons un modèle d’apprentissage multi-tâches (MTL) qui
permet de segmenter le réseau vasculaire à l’aide d’un apprentissage semi-supervisé
et de prédire la classe tumorale dans un contexte supervisé simultanément. Cette pro-
cédure d’apprentissage multitâche offre une solution d’apprentissage automatique de
bout en bout pour la segmentation du réseau vasculaire et la classification des tumeurs.
La validation a été effectuée sur une base de données d’images histopathologiques de
carcinome à cellules claires (RCC), puis sur la base de données publique TCGA. Les ré-
sultats montrent que le modèle MTL-SSL proposé surpasse l’approche conventionnelle
de segmentation par apprentissage supervisé.

In this chapter, we propose a multi-task learning (MTL) model that can simultaneously
segment the vascular network using SSL and predict the tumor class in a supervised
context. This multi-task learning procedure offers an end-to-end machine learning solu-
tion to joint vascular network segmentation and tumor classification. Experiments were
carried out on a database of histopathological images of renal cell carcinoma (RCC) and
then tested on both our own RCC and the open-access TCGA datasets. The results show
that the proposed MTL-SSL model outperforms the conventional supervised-learning
segmentation approach.
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Figure 6.1 – The HRNet structure consists of parallel high-to-low resolution subnetworks.
The parallel sub-networks repeatedly exchange information across resolutions : cross-resolution
multi-scale fusion. The horizontal direction represents the network depth, and the vertical direction
represents the feature map scale (resolution). (Sun, 2019)

6.1 Multi-Task Learning Pipeline

In this part, we chose the HRNet as our backbone of the model, and choose the Mean Teacher
as the SSL method. These choices have been made according to experiments.

6.1.1 HRNet Backbone

HRNet was completed by a team led by Wang Jingdong at Microsoft Research Asia
[Sun et al., 2019]. It has integrated image classification, image segmentation, target detection, face
alignment, gesture recognition, style transfer, super-score, optical flow, depth estimation, edge de-
tection, etc. HRNet backbone is sensitive to the target location and can output high-resolution
feature maps. It starts with a high-resolution subnetwork as the first stage, and gradually adds
high-to-low resolution subnetworks, forming more stages, and connecting the multi-resolution
subnetworks in parallel. By performing multi-scale fusions, each high-to-low resolution repea-
tedly receives information from other parallel representations, resulting in rich high-resolution
representations. The entire network structure is shown in Figure 6.1.

6.1.2 Mean Teacher

For the SSL structure, we chose the Mean Teacher [Tarvainen and Valpola, 2017] according
to the backbone selection experiment, shown in Figure 6.2, which has two neural networks : a
“student module” and a “teacher module”, these two modules shared the same architecture.

The core idea of Mean Teacher is as follows : The model acts as both student and teacher. The
teacher generates the learning goals of the student ; the student uses the goals generated by the
teacher model to learn.
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Both the student and the teacher modules evaluate the input slightly perturbed with Gaussian
noise (η and η′) within their computation. The weights of the student module are updated using the
Adam optimizer, whereas the weights of the teacher module are the Exponential Moving Average
(EMA) of the student weights. EMA is a type of moving average (MA) that gives recent data points
more weight and significance. The exponential moving average is also known as exponentially
weighted moving averages.

Mean Teacher’s training strategy :
— Training data : labeled samples x1, y1, and unlabeled samples x2.
— Input the labeled data x1, y1 into the student to calculate loss1.
— Enter the unlabeled data x2 into the student to calculate the label1
— Input the unlabeled data x2 into the teacher to calculate the label2
— We hope that the predicted labels of the two networks are as equal as possible, so the loss

function loss2 is obtained according to label1 and label2.
— Update the student network according to loss = loss1 + loss2.
— In each step, after updating the parameters of the student network, use the parameters of

the student network to update the parameters of the teacher network,
Therefore, the second term of the objective function of the Mean Teacher model is :

J(θ) = Ex,η′,η

[∥∥f (x, θ′, η′)− f(x, θ, η)
∥∥2
]

where J is consistency cost, as the expected distance between the prediction of the student
model (with weights θ and noise η) and the prediction of the teacher model (with weights
θ′ and noise η′).
The update method of the model parameter θ is :

θ′
t = αθ′

t−1 + (1 − α)θt

where θ′
t is the EMA of successive θ weights at the training step t, α is a smoothing

coefficient hyperparameter.

6.1.3 Proposed MTL-SSL model

Our proposed MTL-SSL model has a shared backbone encoder with task-specific heads shown
in Figure 6.3. It consists of a classification task in a supervised learning context and a segmentation
task using SSL, as shown in Figure 6.4. We chose HRNet [Sun et al., 2019] as the backbone after
comparison with other models (see the experimental section). The entire backbone part of HRNet
is divided into 4 stages, and each stage is divided into two parts : a blue box and an orange box.
The blue box part is the basic structure of each stage, which is composed of multiple branches.
The blue box of stage I in HRNet uses BottleNeck and the blue box of stages II&III&IV uses Ba-
sicBlock. The orange box part is the transition structure of each stage, the orange box of stage I in
HRNet is a TransitionLayer, the orange box of stages II&III is a superposition of a FuseLayer and
a TransitionLayer, and the orange box of stage IV is a FuseLayer. FuseLayer is used for informa-
tion interaction between different branches. BasicBlock structure contains a residual branch and
a short-cut branch, which is one more short-cut branch than the traditional convolution structure.
BottleNeck structure can reduce the number of parameters and channels in the intermediate feature
map, which can consume less memory and be conducive to building a network with more layers.
TransitionLayer is used to generate an input feature map that downsamples twice the branch. The
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Figure 6.2 – The Mean Teacher method.
The figure depicts a training batch with a single labeled example. Both the student and the teacher
model evaluate the input applying noise (η, η′) within their computation. The softmax output of
the student model is compared with the one-hot label using classification cost and with the teacher
output using consistency cost. After the weights of the student model have been updated with
gradient descent, the teacher model weights are updated as an exponential moving average of the
student weights. Both model outputs can be used for prediction, but at the end of the training, the
teacher’s prediction is more likely to be correct. A training step with an unlabeled example would
be similar, except no classification cost would be applied. (Tarvainen, 2017)
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Figure 6.3 – The 4 stages of the HRNet backbone and its different heads.

orange box of stage I obviously cannot be used as FuseLayer, because the previous stage has only
one branch and the orange of stage IV is followed by the neck and head, which also longer needed
TransitionLayer.

HRNet segmentation heads (student head and teacher head) aggregate the output representa-
tions at four different resolutions, and then use 1*1 convolutions to fuse these representations.
HRNet classification head fed the four-resolution feature maps into a bottleneck and the number
of output channels is increased to 128, 256, 512, and 1024, respectively, then the high-resolution
representations are downsampled by a 2-stride 3*3 convolution outputting 256 channels and added
to the second-high-resolution representations. This scheme is repeated twice to get 1024 channels
over the small resolution and finally, the 1024 channels are transformed to 2048 channels through
a 1*1 convolution finally. The codes of Multi-task and HRNet backbone were developed according
to the shared repository [Vandenhende et al., 2020] and [Sun et al., 2019]. The main hyperparame-
ters used in this work are the same as [Vandenhende et al., 2020] and [Sun et al., 2019]. Ensuring
fair comparison ; all the models were trained using the same hyperparameters.

For the loss function, we use the cross-entropy (CE) and our proposed Vessel Loss func-
tions between the student’s predictions and the ground truth on the labeled dataset to get loss2.
The consistency cost, called loss3 here, is computed from the student’s prediction and the tea-
cher’s prediction by Mean Square Error (MSE) on the unlabeled dataset. The semi-supervised
loss4 is the sum of the supervised loss2 and the consistency cost loss3 by consistency weights,
which were taken from [Tarvainen and Valpola, 2017]. Classification loss1 is computed by the CE
function on the class-labeled dataset. Final loss5 of our MTL-SSL model is the weighted sum of
semi-supervised loss4 and classification loss1, we defined 2 :1 ratio between SSL task weight and
classification task weight in our experiments.
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6.2 Proposed Vessel Loss Function

6.2.1 Definition of Loss Functions

Supervised learning in machine learning is essentially considered given a series of training
samples (xi, yi), trying to learn the mapping relationship of x → y, so that given a x, even if this
x is not in the training sample, it can output ŷ, as close as possible to the real y. The loss function
is used to estimate the gap between the output ŷ of the model and the true value y, and guide the
optimization of the model. The structural risk of the model includes empirical risk, and the loss
function is the core part of the empirical risk function :

θ̂ = arg min
θ

1
N

N∑
i=1

L (yi, f (xi; θ) + λΦ(θ))

In the formula, the previous mean function is the empirical risk, L (yi, f (xi; θ)) is the loss
function, the latter item is the structural risk, and the Φ(θ) measures the complexity of the model.

We used several classical loss functions in our models, such as CE, Dice and MSE loss func-
tions.

6.2.1.1 Cross Entropy Loss

The most commonly used loss function for image semantic segmentation tasks is the pixel-
level cross-entropy loss, which examines each pixel one by one, and the predictions (probability
distribution vectors) for each pixel class are compared to our one-hot encoded vector. One-hot
encoding is a sparse way of representing data in a binary string where only a single bit can be 1
and all other bits are 0. Our binary image segmentation task, which has two classes (vessel pixels
and non-vessel pixels), can also be viewed as a binary classification task. In binary classification,
we usually use the sigmoid function to compress the output of the model into the (0,1) interval, and
the ŷi ∈ (0, 1) is used to represent the probability that the model is judged to be a positive class
given the input xi. Since there are only two classes (positive and negative classes), the probability
of the negative class is also obtained :

p (yi = 1 | xi) = ŷi

p (yi = 0 | xi) = 1 − ŷi

Combine the two equations :

p (yi | xi) = (ŷi)yi (1 − ŷi)1−yi

Assuming that the data points are independently and identically distributed, the likelihood can
be expressed as :

L(x, y) =
N∏

i=1
(ŷi)yi (1 − ŷi)1−yi

Taking the logarithm of the likelihood, and then adding a negative sign to minimize the nega-
tive log-likelihood, gives the cross-entropy loss function :
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NLL(x, y) = JCE = −
N∑

i=1
yi log (ŷi) + (1 − yi) log (1 − ŷi)

However, the vessel pixels and non-vessel pixels are obviously imbalanced for one tumor patch
image. If the loss function does not consider the sample balance problem, the learning process will
tend to segment most of the non-vessel parts. To solve this imbalance problem, we adopt the class-
balanced cross-entropy loss function [Xie and Tu, 2015], given as follows :

ℓ
(m)
side

(
W, w(m)

)
= − β

∑
j=Y+

log
(
σ
(
y

(m)
j

))
− α(1 − β) ×

∑
j=Y−

log
(
1 − σ

(
y

(m)
j

))
Where ℓ

(m)
side

(
W, w(m)

)
is the loss of the m-th side output, W and w(m) denote the parameters

of the convolutional layer and the m-th edge output, respectively. We use Y+ and Y− to denote
vessel and non-vessel pixels. Weights β and α are used to balance classes. β is defined by the
ratio of vessel pixels to all pixels. α is a hyperparameter, which we set to 2.5 in our experiments.
σ
(
y

(m)
j

)
represents the probability map generated by applying a sigmoid on the activation value

y
(m)
j at pixel j.

In the multi-classification task, the derivation idea of the cross-entropy loss function is the
same as that of the two-classification. The change is that the real value yi is a one-hot vector, and
the compression of the model output is changed from the original Sigmoid function to Softmax.
function. The Softmax function limits the output range of each dimension between (0,1), and the
output sum of all dimensions is 1, which is used to represent a probability distribution.

p (yi | xi) =
K∏

k=1

(
ŷk

i

)yk
i

Among them, k ∈ K represents one of the K categories, and the same assumption is made
that the data points are independent and identically distributed, the negative log-likelihood can be
obtained as :

NLL(x, y) = JCE = −
N∑

i=1

K∑
k=1

yk
i log

(
ŷk

i

)
Since yi is a one-hot vector, the output on all other categories except the target class is 1, so

the above formula can also be written as :

JCE = −
N∑

i=1
yci

i log
(
yĉi

i

)
Among them, ci is the target class of xi, usually, this cross-entropy loss function applied to

multi-classification is also called Softmax Loss or Categorical Cross Entropy Loss. We use this
Cross Entropy Loss for the classification task, which has 3 classes.
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6.2.1.2 Dice Loss

Another loss function commonly used in semantic segmentation tasks is based on the Dice co-
efficient, which is essentially a measure of the overlap between two objects/shapes. This measure
ranges from 0 to 1, where a Dice coefficient of 1 indicates complete overlap. Dice coefficients
were originally intended for binary data and can be calculated as :

Dice = 2|A ∩ B|
|A| + |B|

|A ∩ B| represents the common element between sets A and B, and |A| represents the number
of elements in set A (same for set B).

For evaluating the Dice coefficients on the predicted segmentation mask, we can approximate
|A ∩ B| by an element-wise multiplication between the predicted mask and the label mask, and
then sum the resulting matrix.

To design a loss function that can be minimized, one can simply use 1− Dice. This loss func-
tion is called the soft Dice loss because we directly use the predicted probability instead of using
a threshold to convert it into a binary mask.

Dice loss is proposed when the proportion of foreground is too small. The dice coefficient is
derived from the binary classification, which is essential to measure the overlapping part of the
two samples.

For the output of the neural network, the numerator is related to the predictions and labels,
while the denominator is related to the number of activations in each mask, respectively, which
has the effect of normalizing the loss according to the dimension of the label mask.

For each class of mask, a Dice loss is computed :

1 −
2
∑

pixels ytrue ypred∑
pixels

(
y2

true + y2
pred

)
The Dice loss for each class is summed and averaged to get the final Dice soft loss.

6.2.1.3 Mean Squared Error Loss

MSE loss is the most commonly used loss function in machine learning and deep learning
regression tasks, also known as L2 Loss. Its basic form is as follows :

JMSE = 1
N

N∑
i=1

(yi − ŷi)2

In fact, under certain assumptions, we can use the maximum likelihood to get the form of the
mean squared loss. Assuming that the error between the model prediction and the true value obeys
the standard Gaussian distribution (µ = 0, σ = 1), then given a xi, the probability that the model
will output the true value yi is :

p (yi | xi) = 1√
2π

exp
(

−(yi − ŷi)2

2

)
Further, we assume that the N sample points in the data set are independent of each other, then

given the probability of all x outputting all true values y, the likelihood is the cumulative product
of all p (yi | xi).
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For computational convenience, we usually maximize the log-likelihood :

LL(x, y) = log(L(x, y)) = −N

2 log 2π − 1
2

N∑
i=1

(yi − ŷi)2

Removing the first term irrelevant to ŷi, and then converting to minimize the negative log-
likelihood, we obtain :

NLL(x, y) = 1
2

N∑
i=1

(yi − ŷi)2

This loss is a form of mean squared loss. Therefore, under the assumption that the error bet-
ween the model output and the true value follows a Gaussian distribution, minimizing the mean
square error loss function is essentially consistent with the maximum likelihood estimation. The-
refore, in the scenario where this assumption can be satisfied, the MSE loss is a good choice of the
loss function.

In our project, we use MSE to calculate the consistency cost from the student’s prediction and
the teacher’s prediction on the unlabeled dataset.

6.2.2 Main Idea and Realization of Our Proposed Loss Function.

The weak label of the vascular network has been made with constant width bands and thus does
not take into account the local geometry [Xiao et al., 2021]. As shown in Figure 6.5, compared
with the real mask, the weakly label is sometimes wider than the actual width of the vessel and
sometimes narrower. The segmentation is the prediction mask of learning vessel features with
weak labels, but its width is not always consistent. In order to figure out the accuracy of the
segment model, we calculate the overlap ratio between the real mask and segmentation (0.712). It
is even bigger than the overlap ratio between the real mask and weakly label (0.568). That means
our predictions were successful with regard to vascular features. However, if the width information
is considered, the accuracy is limited. Since our previous studies have shown that RCC subtypes
can be well classified by only the information extracted from the vascular skeleton (without any
width information), the classical loss functions like Dice loss are not adapted here due to false
positive and negative pixels that may appear at the border of a vessel due to a lack of precision
of the manually labeled image but not to the obtained segmentation. To overcome this imprecise
ground truth we proposed a new loss function to restrict the results in terms of vessel detection,
basically considering length but not the width of vessels. We dilated (with a disk of radius 3,
according to experiment Table 6.2 the segmentation result from S to obtain DS and the ground
truth GT to obtain DGT . We computed the ratio of miss-detected vessels as :

MV = |{(i, j) : GT (i, j) = 1, DS(i, j) = 0}|
|{(i, j) : GT (i, j) = 1}|

(6.1)

and the ratio of falsely detected vessels as :

FV = |{(i, j) : S(i, j) = 1, DGT (i, j) = 0}|
|{(i, j) : S(i, j) = 1}|

. (6.2)

Finally, we defined the following global performance index :

IV = 1 − (MV + V F )/2 (6.3)
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Figure 6.5 – Calculate the missing part and the false part between the generated segmentations,
weakly labels, and real vascular masks by comparing them.
For the overlay images in the last line : the cyan color represent the real mask, the magenta co-
lor represent the groud truth (weakly mask), the yellow color represent the segmentation by our
proposed MTL-SSL model, the white color represent the overlap part.
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The loss value is (MV + V F )/2.
As shown in Figure 6.5, the generated vascular segmentation is even closer to the real vascular

mask than the weakly ground truth. Generated segmentation has a smaller MV (0.231) than ground
truth (0.233) and also a smaller FV (0.272) than ground truth (0.292) after overlap with the real
mask. This loss function will be used in our CNN for segmentation but also as an evaluation
method.

6.3 Vascular Network Segmentation Benchmark of RCC

6.3.1 Experimental Environment

The computing platform we used is Nef (https ://wiki.inria.fr/ClustersSophia/Clusters_Home),
which is Inria Sophia Antipolis Méditerranée research center multidomain scientific experimen-
tation infrastructure for computation, storage and visualization. The platform relies on a cluster
computing approach (several generations of high-performance servers are combined to provide
heterogeneous parallel architecture), fast network interconnect, high capacity storage and inter-
connection to Inria Sophia interactive visualization platform.

The experimental software in this project is built with the deep learning framework of Pytorch,
the programming language is Python, and the version is Python3.8.5. The operating system is
CentOS Linux release 7.4.1708 (Core). The hardware platform is Intel(R) Xeon(R) CPU E5-2630
v4 @ 2.20GHz with 2 physical CPUs and 40 logical CPUs, 10 cores per physical CPU, and 2
threads per core.

6.3.2 Backbone Choice

We conducted experiments on different supervised classification models (GoogLeNet
[Szegedy et al., 2015], ShuffleNet [Zhang et al., 2018b], VggNet [Simonyan and Zisserman, 2014],
ResNet [He et al., 2016] and HRNet [Sun et al., 2019]) and competitive SSL models
(Cross Pseudo Supervision (CPS) [Chen et al., 2021], Cross Consistency Training (CCT)
[Ouali et al., 2020], Entropy Minimization (EM) [Vu et al., 2019] Deep Co-Training (DCT)
[Qiao et al., 2018] and Mean Teacher (MT) [Tarvainen and Valpola, 2017]) to select the more
efficient backbone. For the classification, to avoid using the data of the same patient for both
training and testing, we split our database into train input with 18624 tumor patch images (8913
of ccRCC, 9079 of pRCC and 632 of chRCC), validation with 4843 tumor patch images (2049
of ccRCC, 2523 of pRCC and 271 of chRCC), and test with 6973 tumor patch images (4420 of
ccRCC, 2250 of pRCC and 303 of chRCC). For training input of SSL segmentation, we used both
the labeled vascular masks of our dataset with 335 tumor patch images (112 of ccRCC, 111 of
pRCC and 112 of chRCC) and the 1005 unlabeled data from the RCC dataset randomly, which is
3 times the labeled data, so we had 1340 training input in total. Meanwhile, the validation of SSL
segmentation with 32 tumor patch images (8 of ccRCC, 9 of pRCC and 15 of chRCC) and test
with 57 tumor patch images (9 of ccRCC, 9 of pRCC and 39 of chRCC) were selected randomly.
All the experiments have been repeated 5 times. The mean and standard deviation of the different
model results are shown in Table 6.1. HRNet backbone performed best in both classification
(0.9369) and SSL segmentation tasks (0.4614 vs 0.4537). We found that the results of the single
SSL segmentation method are not ideal, and even the best segmentation result did not reach 0.5.
So we try the multi-task approach to improve the segmentation results. The results of most SSL
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methods have been greatly improved after the joint classification task. And MTL-SSL based on
mean teacher reaches the best performance among all the segmentation methods (0.7979).

All the code and parameters of SSL models used were from the open-access repository
SSL4MIS [Luo, 2020].

TABLE 6.1 – Performance of different backbones.
Methods Backbone Accuracy

GoogLeNet 0.9348(0.01)
ShuffleNet 0.7753(0.07)

Classification VggNet 0.9114(0.01)
ResNet 0.8863(0.03)
DenseNet 0.762(0.001)
HRNet 0.9369(0.03)

Method Backbone MV(↓) FV(↓) IV(↑)
DCT (ECCV 2018) UNet 0.3770(0.02) 0.7453(0.05) 0.4388(0.02)
EM (CVPR 2019) UNet 0.3340(0.04) 0.7686(0.01) 0.4487(0.02)
CCT (CVPR2020) Single UNet 0.3644(0.03) 0.7474(0.03) 0.4417(0.004)
CPS (CVPR 2021) Task UNet 0.3459(0.01) 0.7467(0.01) 0.4537(0.01)
MT (NIPS 2017) UNet 0.3622(0.002) 0.7827(0.002) 0.4275(0.001)
DCT (ECCV 2018) HRNet 0.2926(0.02) 0.7846(0.01) 0.4614(0.004)
EM (CVPR 2019) HRNet 0.3049(0.01) 0.7844(0.01) 0.4554(0.01)

SSL CCT (CVPR2020) Single HRNet 0.2842(0.02) 0.7951(0.01) 0.4604(0.01)
Segmentation CPS (CVPR 2021) Task HRNet 0.3190(0.02) 0.7733(0.01) 0.4539(0.01)

MT (NIPS 2017) HRNet 0.2934(0.02) 0.7932(0.01) 0.4567(0.01)
DCT (ECCV 2018) HRNet 0.3032(0.01) 0.1073(0.02) 0.7948(0.01)
EM (CVPR 2019) HRNet 0.1307(0.04) 0.2893(0.06) 0.7900(0.01)
CCT (CVPR2020) Multi HRNet 0.1562(0.05) 0.4189(0.05) 0.7209(0.05)
CPS (CVPR 2021) Task HRNet 0.2142(0.03) 0.8455(0.01) 0.4702(0.02)
MT (NIPS 2017) Our HRNet 0.2798(0.02) 0.1243(0.03) 0.7979(0.01)

6.3.3 Segmentation Benchmarks of Vascular Network

We conducted benchmark experiments on supervised learning, SSL, single segmentation task
and MTL. For SSL, the split ratios were the same as in the backbone choice experiment : 335 labe-
led and 1005 unlabeled data for training input, 32 for validation and 57 for the test. For supervised
learning, we only used the labeled vascular masks of our dataset, 335 labeled data for training
input, 32 for validation and 57 for the test. All the data were selected randomly according to the
patient. For the common parameter setup, the input size was 512*512 pixels, the optimizer was
Adam. We used batches of size 8, the epoch of 200 and a poly learning rate decay scheme. The
initial learning rate was 0.002 and weight decay was 1 × 10−6. For the parameter setup specific
to SSL, the error moving average decay was 0.99, the consistency type was mean square error, the
consistency was 0.1, and the consistency ramp-up was 50.

Table 6.3 gives a quantitative evaluation. The proposed MTL-SSL model, which combines a
classification task and a semi-supervised segmentation task, reaches the best performance (0.7979)
among all the experiments (0.4567 ∼ 0.7925). The accuracy of classification also improved from
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TABLE 6.2 – Evaluate with different Strel Radius.
Radius MV(↓) FV(↓) IV(↑)
1 0.1353(0.02) 0.3514(0.06) 0.7566(0.02)
2 0.1208(0.02) 0.3361(0.06) 0.7716(0.02)
3 (Our) 0.2798(0.02) 0.1243(0.03) 0.7979(0.01)
4 0.1040(0.02) 0.3205(0.06) 0.7878(0.02)
5 0.0835(0.02) 0.3426(0.04) 0.7870(0.01)

TABLE 6.3 – Performance of different models.
Supervised MV(↓) FV(↓) IV(↑)
single-task 0.2551(0.02) 0.1600(0.03) 0.7924(0.01)
multi-task 0.3119(0.05) 0.1032(0.01) 0.7925(0.02)

Segmentation Semi-Supervised MV(↓) FV(↓) IV(↑)
single-task 0.2934(0.02) 0.7932(0.01) 0.4567(0.01)*
multi-task (Our) 0.2798(0.02) 0.1243(0.03) 0.7979(0.01)

Accuracy
Classification single-task 0.8236 (0.06)

multi-task (Our) 0.8586 (0.05)

TABLE 6.4 – Performance of differently labeled data in training.
Labeled=200 Labeled=300 Labeled=all (335)

Supervised MV(↓) 0.091(0.01) 0.1067(0.02) 0.2551(0.02)
Task FV(↓) 0.4120(0.02) 0.3670(0.03) 0.1600(0.03)

IV(↑) 0.7483(0.01) 0.7631(0.01) 0.7924(0.01)
Semi-Supervised MV(↓) 0.1100(0.02) 0.1046(0.004) 0.2798(0.02)
Multi-task FV(↓) 0.3580(0.04) 0.3302(0.03) 0.1243(0.03)
(Our) IV(↑) 0.7660(0.01) 0.7826(0.02) 0.7979(0.01)
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0.8236 with the single task to 0.8586 with the multi-tasks. And Table 6.4 shows that the smaller
the scale of the labeled data, the more advantages of our model, the difference of IV between our
proposed model and the fully supervised method is from 0.0055 to 0.0195.

6.4 Test on New Subtype of RCC and Other Type of Cancers

6.4.1 New Subtype of RCC and Other Cancers

In our project, to validate our models, we collected patch images of Oncocytoma, a new sub-
type of RCC, from our database and also download the diagnosis slice of breast cancer, liver can-
cer, lung cancer and esophagus cancer from TCGA ((https ://portal.gdc.cancer.gov/)) to test our
model, so here I briefly introduce the pathological features of these five cancers. Some examples
of histopathological images of these cancers are shown in Figure 6.7.

6.4.1.1 Oncocytoma

Renal oncocytoma accounts for approximately 3 − 7% of RCC. Histologically, tumor cells
with finely granular cytoplasm proliferate in edematous, myxomatous, or hyalinoid stroma with
a nested, tubular-cystic, solid, or trabecular pattern [Kuroda et al., 2003]. Oncocytoma has been
recognized as a distinct subtype of benign kidney tumor for decades [Klein and Valensi, 1976,
Moch et al., 2016]. Imaging techniques currently used cannot reliably distinguish oncocytoma
from malignant lesions ; therefore, patients must undergo resection or biopsy for a definitive diag-
nosis. The adjunctive use of pathological features and immunostaining helps differentiate oncocy-
toma from other renal tumors characterized by granular, eosinophilic cytoplasm, especially chro-
mophobe renal cell carcinoma [Schatz and Lieber, 2003]. Despite the evaluation of many biomar-
kers over the years, the pathological diagnosis of oncocytoma and differentiation from its mimics
remains a challenge [Wobker and Williamson, 2017]. An example of the histopathological image
of oncocytoma is shown in Figure 6.6.

Nuclei are characterized by roundness and regularity, however, it has also been demons-
trated that oncocytomas may contain areas of "degenerative" cytological atypia, resulting in
plaques of tumor cells with large nuclei, irregular nuclear outlines, and chromatin smears
[Trpkov et al., 2010]. An unusual pattern is sometimes encountered in oncocytomas where areas
of less cytoplasm are found, resulting in an appearance known as "small cell" oncocytoma, onco-
cytoma with pseudorosettes, or "oncoblastic" cells [Petersson et al., 2011].

Although oncocytomas are recognized as benign, vascular invasions have been reported for up
to 5.4% [Davis, 1991]. However, it has low vascular density compared to other subtypes of RCC,
as shown in Figure 6.6.

6.4.1.2 Breast Cancer

Breast cancer is the most common malignancy, with approximately 1.4 million women diag-
nosed with breast cancer in 2008, accounting for 23% of all new cancer cases [Jemal et al., 2011].

With the close integration of histopathology and clinical medicine, pathological types are gra-
dually classified according to the degree of invasion of cancer cells to surrounding tissues and the
possibility of distant metastasis roughly divided into non-invasive cancer, early invasive cancer
and invasive cancer.
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One of the hallmarks of cancer is the formation of new vascular, and vascular invasion is also
considered to be an important step in breast cancer metastasis and is the main cause of mor-
bidity, progression, and death of the disease. Determining the metastatic potential of primary
tumors often requires testing vascular invasion. This process results in locally increased micro-
vessel density (MVD) with dilated and tortuous abnormal vessels. The tumor vasculature was
studied pathologically using microscopy on immunohistochemically (IHC)-stained tissue speci-
mens [McDonald and Choyke, 2003], and quantification of microvessels is a prognostic parameter
[Uzzan et al., 2004].

6.4.1.3 Liver Cancer

Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer and is the fourth
leading cause of cancer-related death and is currently the leading cause of liver-related death,
killing more than 1 million people worldwide each year [Siegel et al., 2016, Miller et al., 2018,
Bray et al., 2018]. The characteristics of HCC are influenced by various factors, such as tumor
size, relevance to cirrhosis, tumor thrombus in the portal vein, intrahepatic metastasis, necrosis,
and hemorrhage. Unlike cancers of other organs, HCC is often nodular with fibrous capsules and
septa, and the presence of capsules and septa is considered a useful diagnostic clue for the imaging
diagnosis of HCC [Kojiro, 2005].

In most cases, HCC can be differentiated by cytological atypia and structural abnormalities
(eg, thickening of the liver plate), including endothelial lining, pseudo glandular configuration,
tumor involvement of lymphatic vessels (more common in resected material), and portal veins and
loss of hepatic lobules. Most HCCs show trabecular, nested, solid, or pseudoscalar growth patterns.
Abnormal vessels can be identified within the lobules rather than the portal vein, which is often
helpful in well-differentiated HCC. Bile production is seen in a considerable number of tumor
cells and is characteristic of hepatocyte differentiation. Well-differentiated HCC has abundant fine-
grained eosinophilic cytoplasm, round nuclei, scattered chromatin, and prominent nucleoli. If the
biopsy is indeed taken from a liver mass and shows hepatocytes on H&E slides, the differential list
includes HCC and its analogs such as focal nodular hyperplasia (FNH), hepatic adenoma (HA),
and DN. Tumor cells in HCC can also exhibit fatty, clear cellular changes, or prominent nuclear
inclusions [Jiang et al., 2018].

HCC is detected as a hypervascular tumor on angiography and/or contrast-enhanced CT.
Meanwhile, most of the small HCCs of the inapparent nodular type were uniformly distributed
in the well-differentiated cancer tissues, and different numbers of portal vein bundles were preser-
ved in the nodules. At the tumor/non-tumor boundary, well-differentiated HCC cells proliferated
in a replacement growth pattern as if they were replacing hepatocytes in the surrounding liver
tissue, and there was no envelope formation. In these tumors, tumor cell invasion into the portal
vein retained within the tumor was observed and was defined as "stromal invasion" [Kojiro, 2005].
[Tomizawa et al., 1995]. Well-differentiated early-stage HCC has the following four main histo-
logical features : (1) increased cell density, increased nuclear/cytoplasmic ratio, and an irregular
trabecular pattern ; (2) increased eosinophilic or basophilic staining intensity ; (3) frequent aci-
nar and/or pseudo glandular patterns ; (4) frequent fatty changes and/or marked changes in cancer
cells. Underdevelopment of arterial tumor vessels (unpaired arteries) is thought to be a major cause
of fat changes.
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6.4.1.4 Lung Cancer

Lung cancer has the highest mortality rate of all cancers [Howlader et al., 2016]. The prognosis
for lung cancer is poor and varies significantly based on tumor stage at diagnosis. Adenocarcinoma
(LUAD) and squamous cell carcinoma (LUSC) are the most common subtypes of lung cancer.

Two-thirds of squamous cell carcinomas present a central lung tumor, while many of the re-
maining third are peripheral [Travis, 2011]. [Funai et al., 2003] suggest that morphological fea-
tures of squamous differentiation include intercellular bridging, squamous pearl formation, and
single-cell keratinization. These features are evident in well-differentiated tumors ; however,
they are difficult to find in poorly differentiated tumors. Squamous cell carcinoma occurs most
often in segmental bronchi and involves lobes and main bronchi [Carlile and Edwards, 1986].
Squamous cell carcinoma can have papillary, clear cell, small cell, and basal cell subtypes
[Melamed et al., 1977, Churg et al., 1980]. Papillary squamous cell carcinoma often exhibits a
pattern of exophytic endobronchial growth [Dulmet-Brender et al., 1986, Sherwin et al., 1962].
The diagnosis of LUAD relies entirely on histopathological features. Important information re-
lated to prognosis and diagnosis can be obtained from the histopathological features of LUAD
[Barletta et al., 2010, Borczuk et al., 2009]. The pathological subtypes of LUAD (squamous, aci-
nar, papillary, solid, and micropapillary) can lead to different recurrence and survival rates
[Sica et al., 2010]. Meanwhile, novel histomorphological features of LUAD have been disco-
vered, such as tumor budding, lymphovascular invasion, and tumor spread through air spaces
[Higgins et al., 2012, Yamaguchi et al., 2010, Lee et al., 2020].

The vascular invasion proved to be an independent significant recurrence risk factor for lung
cancer [Shimada et al., 2012]. In the study, [Yoo et al., 2010], histological and immunofluores-
cence studies showed that primitive blood vessels had distinct features from similar-looking lym-
phatic vessels. They have multiple channels surrounded by a loose collagen matrix, in stark
contrast to the single-channel structure of other vascular systems. The rod-shaped nuclei lined
longitudinally along the channel are considered to be provascular endothelial cells, but do not
express LYVE-1, a specific marker for lymphatic vessels, indicating a distinct difference from
lymphatic endothelial cells. Taken together these findings and the characterization of novel linear
vascular structures in cancer models may have important implications for cancer prognosis and
therapy.

6.4.1.5 Esophageal Cancer

Esophageal cancer is one of the least studied and deadliest cancers worldwide, with the sixth
highest mortality rate of all cancers [Enzinger and Mayer, 2003]. Esophageal cancer affects more
than 450,000 people worldwide and the incidence is increasing rapidly [Pennathur et al., 2013].
More than 90% of esophageal cancers are squamous cell carcinomas or adenocarcinomas. About
three-quarters of adenocarcinomas occur in the distal esophagus [Daly et al., 2000], whereas squa-
mous cell carcinomas are more evenly distributed between the middle and lower thirds. The cer-
vical esophagus is a rare disease site that is extremely aggressive and has poor survival prognostic
[Mao et al., 2011, Enzinger and Mayer, 2003].

Squamous cell carcinoma arises from the stratified squamous epithelial lining of the organ,
while adenocarcinoma affects the columnar gland cells that replace the squamous epithelium
[Blot et al., 1993]. Sarcomas and small cell carcinomas typically account for less than 1% − 2%
of all esophageal cancers [Young Jr et al., 1981, Kwatra et al., 2003]. In rare cases, other carcino-



6.4 – 6.4.2 Test on New Subtype of RCC and Other Cancers Dataset 125

mas, melanoma, leiomyosarcoma, carcinoid, and lymphoma may also develop in the esophagus
[Blot et al., 1993].

Histopathological evaluation is based on the invasion depth (vertical tumor invasion depth),
tumor size, lymphatic invasion, venous invasion, lymph node metastasis, tumor differentiation,
growth pattern, degree of nuclear atypia and histological grade [Tajima et al., 2000]. The distance
from the invasive front to the muscular mucosa is measured using microscopy with an ocular lens
scale and defined as vertical tumor invasion depth. In specimens where the muscular mucosa is
disrupted by ulceration or tumor invasion, the muscular mucosa level is estimated by drawing a
line to connect the remaining muscular mucosa [Eguchi et al., 2006]. Tumor differentiation is eva-
luated according to the World Health Organization classification [Travis et al., 2004]. The degree
of nuclear atypia is classified as low (sharp nuclei of uniform size with homogeneous chromatin :
one point) or high (polymorphic nuclei with vesicular or dot-like chromatin : two points). The
growth pattern is classified as expansive (large solid nests with a clear tumor margin : one point)
or infiltrative (small nests and dissociated cells with an unclear tumor margin : two points). The
degree of nuclear atypia and growth pattern are evaluated at the deepest area of the invading tu-
mor. The histological grade of each tumor is calculated by adding the nuclear atypia and growth
pattern scores to obtain Grade 1 : two points ; Grade 2 : three points ; or Grade 3 : four points
[Eguchi et al., 2006]. Meanwhile, vessel permeation, vertical tumor invasion depth in the submu-
cosal layer, and histological grade are important factors in determining patients who do not require
additional surgical treatment after endoscopic mucosal resection [Tajima et al., 2000].

In squamous epithelium, the microvascular pattern of intracapillary loops is the only reliable
indicator of tissue atypia [Inoue et al., 2015]. Histopathological features of superficial esopha-
geal cancers can be diagnosed by evaluating microvascular patterns on magnifying endoscopy
[Arima et al., 2005]. The size of avascular areas and associated type 4 vessels can be used to as-
sess the extent and depth of tumor invasion. The size of avascular areas is related to the depth
of tumor invasion. Four types of Microvascular patterns are defined as follows : Type 1 is cha-
racterized by thin, linear capillaries in the subepithelial papilla and is generally seen in normal
mucosa. Type 2 is characterized by distended, dilated vessels, and the shape of capillaries in the
subepithelial papilla is preserved. Type 2 is generally seen in inflammatory lesions. Type 3 is cha-
racterized by spiral vessels with an irregular caliber and crushed vessels with red spots, and the
arrangement of the vessels is irregular. Type 4 is characterized by multilayered, irregularly bran-
ched, reticular vessels with an irregular caliber. Type 4 is generally seen in cancers with deeper
invasion. Avascular areas and stretched type 4 vessels are seen in cancers with downward growth.

6.4.2 Test on New Subtype of RCC and Other Cancers Dataset

Figure 6.8 shows the segmentation results of the proposed MTL-SSL and fully supervised
models on our own database, which include subtypes within the training set and new subtypes
without training, it reveals that our MTL-SSL performs better and especially has smaller false
detection than the fully supervised model. Figure 6.9 shows the segmentation results of MTL-SSL
on the TCGA dataset. And Table 6.5 shows that our MTL-SSL model is more robust than fully
supervised segmentation when considering with new subtype (0.7867 vs 0.7067) and other dataset
tests (0.8786 vs 0.8691 in TCGA-RCC; 0.7418 vs 0.6965 in TCGA-BRCA; 0.8127 vs 0.7551
in TCGA-LIHC; 0.8080 vs 0.7644 in TCGA-LUSC; 0.7959 vs 0.7737 in TCGA-ESCA). When
testing a new cancer type that is not involved in training, traditional supervised segmentation
methods are more intended to over-segment, so they have lower MV scores but higher FV, thus
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A B

Figure 6.6 – Hematoxylin and eosin staining for oncocytamas at different magnification.
A : whole slice image, ∼ 60000 × 60000 Pixels ; B : patch image, 2000 × 2000 Pixels.

TABLE 6.5 – Performance of new subtype of RCC and other cancers.
Task Dataset MV(↓) FV(↓) IV(↑)

Our-RCC (new subtype) 0.1366(0.03) 0.4501(0.04) 0.7067(0.01)
TCGA-RCC (2 subtypes) 0.087(0.01) 0.1746(0.03) 0.8691(0.01)

Supervised TCGA-BRCA (breast) 0.2179(0.05) 0.3892(0.21) 0.6965(0.10)
Task TCGA-LIHC (liver) 0.1720(0.02) 0.3177(0.03) 0.7551(0.02)

TCGA-LUSC (lung) 0.1865(0.02) 0.2847(0.04) 0.7644(0.02)
TCGA-ESCA (esophagus) 0.1734(0.02) 0.2792(0.03) 0.7737(0.01)
Our-RCC (new subtype) 0.1631(0.02) 0.2635(0.04) 0.7867(0.01)
TCGA-RCC (2 subtypes) 0.068(0.01) 0.1746(0.02) 0.8786(0.01)

Semi-Supervised TCGA-BRCA (breast) 0.1863(0.03) 0.3301(0.1) 0.7418(0.03)
Multi-Task TCGA-LIHC (liver) 0.1483(0.03) 0.2262(0.08) 0.8127(0.03)
(Our) TCGA-LUSC (lung) 0.1930(0.02) 0.1910(0.07) 0.8080(0.03)

TCGA-ESCA (esophagus) 0.1663(0.02) 0.2419(0.08) 0.7959(0.03)
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Figure 6.7 – H&E staining for other cancers at different magnification.
Their vascular morphology is quite different.
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Figure 6.8 – Segmentation results of the proposed MTL-SSL and fully supervised models for the
four subtypes of RCC.
The four subtypes of RCC include cRCC, pRCC, chRCC, and the new subtype Oncocytoma which
is without training. (The blue color represents the miss detected part of the vessels and the red color
represents the false detected part of the vessels.)
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Figure 6.9 – Segmentation results of the proposed MTL-SSL model on the TCGA dataset.
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affecting the final segmentation result. Our MTL-SSL model appears to be versatile with respect
to vascular segmentation tasks, it has the potential to segment vascular from other subtypes of
RCC and even other cancers without adding manual vascular masks for training. This provides a
solid foundation for the study of the vascular network in H&E stained histopathological images of
cancers, which is no longer limited to immunostaining and artificial labeling.

Furthermore, segmentation of vascular networks in histopathology images is very challenging,
in this context, our MTL-SSL model has improved state of art by favorable HRNet backbone, loss
strategy, and MTL with classification.

6.5 Conclusion

We propose an MTL-SSL model performing joint SSL segmentation and classification tasks
to segment the vascular network using both labeled and unlabeled data. It can reduce the reliance
on manually segmented vascular network masks to some extent and can achieve automatic seg-
mentation.

We apply the first automatic, end-to-end vascular network segmentation method in challenging
H&E staining histopathological images. And in our experiments, this MTL-SSL model obtained
the best performances both in segmentation and classification tasks among fully supervised lear-
ning, SSL, multi, single segmentation tasks. It is also versatile on the new RCC subtype and other
cancers testing. Meanwhile, the MTL-SSL model can outperform the fully supervised in both our
own dataset and other TCGA datasets. That clarified applying the HRNet backbone-based multi-
task model (jointly with an SSL principle segmentation and fully supervised classification) to the
vascular network segmentation of histopathological images is valuable.

We conducted plentiful experiments for backbone selection, HRNet performs best among
them, which may be because HRNet is the connection of multi-resolution sub-networks. HR-
Net can maintain high-resolution feature maps, so that more suitable for segmentation tasks with
pixel-imbalanced binary images. For other networks, their strong semantic information is obtained
by downsampling, and then upsampling to restore high-resolution recovery position information.
However, this approach will cause a large amount of effective information to be lost in the conti-
nuous up-and-down sampling process. HRNet achieves the purpose of strongly semantic informa-
tion and precise location information at the same time by paralleling multiple resolution branches
and continuously performing information interaction between different branches, so that easier to
capture the details of vascular networks by HRNet.

We choose the mean teacher method from a bunch of competitive semi-supervised segmenta-
tion networks. The advantage of the mean teacher depends on its average weight method, which
can update the teacher model at each training step and guide the learning of the student model in
a timely manner. Additionally, the model has a better intermediate representation because weight
averaging improves the output of all layers, not just the top output. These aspects have two practi-
cal advantages in terms of temporal aggregation : First, more accurate target labels lead to a faster
feedback loop between the student model and the teacher model, which improves test accuracy.
Second, the method is scalable to large datasets and online learning.

To adapt our weak labeling method, we proposed a new evaluation method. We computed
the ratio of miss-detected vessels(MV), the ratio of falsely detected vessels (FV), and the global
performance index (IV), this evaluation method can help segment the vascular network, which
more focus on the length of vessels rather than the width. That’s because we have already proved
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that extracting features only with the length of the vessels and the network connectivity can classify
RCC subtypes effectively.

Our study lays the foundation for exploring the importance of vascular geometry and topologi-
cal morphology in different cancers. However, our research still has limitations. We use the weak
labeling method to save annotation time so that our method can’t adapt to some tasks which need
exact segmentation of the vascular network. We have only seen its application in H&E stained his-
topathological images so far. In other types of images, vascular networks play an important role,
such as OCT images. In order to expand its automatic segmentation value, we should try to apply
it to different kinds of images.
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CHAPTER 7
Conclusion and

Perspectives
7.1 Conclusion

The classification of RCC subtypes is of great value for RCC diagnosis, treatment, and prog-
nosis. Due to the many similarities in the tissue morphology of each subtype, the subtype classi-
fication task of RCC based on H&E staining has always been a challenging task in the medical
field. In this project, instead of distinguishing subtypes, as usually done by cell morphology, we
present the first work to investigate the importance of the vascular network characters (geometric
and topological properties) for RCCs classification.

However, there are not enough open-access datasets of histopathological images of RCC. In
order to overcome this problem and achieve our goal, we established a BigRCC database with
62220 patch images from ccRCC, pRCC and chRCC. Then we manually annotated the vascular
network of the 424 tumor patch images from the BigRCC to form the VRCC dataset to facilitate
the extraction of the hand-crafted features of the vascular network, which include skeleton and
lattice features.

The results of feeding these hand-crafted features into a machine learning model outperform
the results of graph features based on GCN models that only include the topological character
of vascular, and also beat the deep features based on popular deep learning approaches. This
demonstrates that we can distinguish RCC subtypes only by vascular networks. Since our model
is based on the traditional machine learning models, the proposed hand-crafted features, which
reach the accuracy of 0.9467 in our research, can also provide good results on a small dataset and
reduce the dependence on a large amount of data.

Although our classification algorithm reaches excellent performance, it is time-consuming
and based on manual vascular network annotations. Therefore, its application is limited to a cer-
tain extent. To solve this issue, we propose an end-to-end model to segment the vascular networks
automatically. This model is an MTL-SSL model performing joint SSL segmentation and classi-
fication tasks using both labeled and unlabeled data, which even can reach considerable results
based on only limited data.

Usually, the segmentation of blood vessels based on H&E staining is very complicated, be-
cause the background includes many structures similar to the vascular, such as linear structures
of cell membranes and fibers. Most of the previous vascular segmentation studies were based
on immunostaining, our research is the first vascular network segmentation study based on H&E
staining.
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To prove the robustness of our MTL-SSL model, we also labeled a new subtype of RCC
(Oncocytoma) from our database and downloaded data on RCC subtypes and other cancers (breast
cancer, lung cancer, liver cancer and esophagus cancer) from the open-access TCGA database.

Our proposed MTL-SSL model reaches the best performance among all the experiments,
it can outperform the fully supervised method in our own dataset (0.7979 vs 0.7925), new
subtype testing (0.7867 vs 0.7067), and other data from TCGA (0.8786 vs 0.8691 in RCC;
0.7418 vs 0.6965 in breast cancer ; 0.8127 vs 0.7551 in liver cancer ; 0.8080 vs 0.7644 in lung
cancer ; 0.7959 vs 0.7737 in esophagus cancer). This shows that compared to the fully supervised
approach, our model can not only reduce the reliance on a huge labeled data required through the
SSL method but also demonstrates its excellence and robustness in tests on new subtypes and other
datasets. Meanwhile, it forms a foundation for future developments in multi-task learning dealing
with vascular segmentation and classification from histopathological images.

7.2 Perspectives

Although computer-aided pathology has received extensive attention in the fields of medicine
and oncology, there are still many deficiencies in its clinical practical application. First, differences
in the baseline experiments of the study designs, the features extracted, and the machine learning
methods employed can make it difficult to compare multiple methods ; second, due to the lack of
open-access databases of histopathological images, most of the machine learning algorithms used
in these studies are based on the researchers’ own data. If there is no external validation, the ge-
neralizability and reproducibility of the results cannot be applied to other datasets or populations ;
Meanwhile, the repeatability, reproducibility, sample size, statistical power, and standardization
are also important factors to be considered in future research. Finally, the transition from experi-
mental research tools to basic clinical applications will be a challenge if data heterogeneity is not
considered in future studies.

There are many kinds of traditional hand-crafted features, and most of them are obtained
by summarizing a large amount of prior knowledge. The design of features requires a certain
basic knowledge of histological morphology. The image preprocessing process also has a great
impact on the evaluation results of hand-crafted features, so how to preprocess the images and
select appropriate features to classify RCC subtypes is a difficult task. Our proposed hand-crafted
features not only meet the above requirements but are also validated by statistical methods. Their
classification performance is even better than that of deep learning methods, which provides a
solid benchmark result for classifying RCC subtypes by vascular networks, and also provides a
reference for subsequent related studies.

Some conventional wisdom is that large amounts of data underpin the development of AI ac-
tually underestimates the potential of machine learning on small datasets. These new techniques
do not require large labeled datasets. An artificial intelligence approach based on small data num-
bers is suitable for situations where the scale of data is small or when not enough labeled data
are available, which reduces the reliance on large data collection. Our study demonstrates that
effective methods can still achieve comparable or even better results than fully supervised deep
learning methods on small datasets for classification and segmentation tasks on limited datasets.
Furthermore, the research on multi-task and semi-supervised learning is progressing rapidly, and
it would be more effective and more widely applicated in the medical field in the future.
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Even though our MTL-SSL has constructive results for vascular segmentation, especially in
the RCC test of TCGA data (0.8786), it still has a big space to improve. Further investigations
will concern the adjustment of the labeled and unlabeled data ratio, the regulation of the loss
function and the improvement of the edge-preserving regularization model used as segmentation
post-processing, or the involvement of an attention module in the proposed MTL-SSL framework.

From the medical perspective, to further improve our work, we can also consider more markers
from other immunostaining, not only from H&E staining images ; but study the tumor micro-
environment as well, such as surrounding blood vessels, immune cells, fibroblasts, bone marrow-
derived inflammatory cells, various signaling molecules and extracellular matrix ; graph modeling
with the nucleus, then do the interact analysis between the vascular skeleton graph and nucleus
graph.
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