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Chapter 1

INTRODUCTION

1.1 Context and Motivations

Gene Regulatory Networks

Gene expression has two major steps: Transcription, which generates mRNA from
genes, and translation, which generates proteins from mRNA. In general, each mRNA
molecule produces a specific protein (or set of proteins). This protein can be structural
(giving it a particular structural property) or be an enzyme (catalyzing a certain reaction).
Additionally, it can also serve only to activate or inhibit other genes. These regulations
(activation or inhibition) between genes constitute gene regulatory networks, which play
a key role in various cellular processes and pathways.

One major problematic of gene regulatory networks is analyzing their dynamical prop-
erties. In the literature, different kinds of dynamical properties have been used to describe
the behaviors of gene regulatory networks, such as the existence of stable states or oscilla-
tions, the reachability between state(s) (for example, whether the trajectory/trajectories
from a state can reach certain state/states), or some properties described by temporal
logic (for example, the sequence of states on a trajectory always satisfies certain property,
or will eventually satisfy certain property, or will satisfy certain property until another
property is satisfied). Knowing the possible dynamical properties of gene regulatory net-
works can help us understand better the underlying nature of these biological systems,
and can further guide us to develop control methods to change the behaviors of certain
systems for medical purposes. Actually, the complexity of gene regulatory networks can
increase dramatically when the number of genes increases, which makes it hard to analyze
these properties.
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Introduction

Modeling of Gene Regulatory Networks

In order to analyze these dynamical properties, one solution is to model mathemat-
ically the gene regulatory networks. Such approaches can be more efficient and cheaper
compared to biological experiments, and can also allow us to understand the dynamics of
the networks at system level. First, a gene regulatory network is abstracted by a directed
graph called influence graph, where the vertices represent the genes in the system and the
arcs represent the regulations between genes. In fact, the initial understanding of gene
regulatory networks normally only contains the relations between genes, so it is natural
that they are abstracted by directed graphs as a first step. As stated before, a gene can
generate different products (mRNA and protein), while in an influence graph we usually
abstract all products of one gene by one entity (one vertex). The structure of the influence
graphs can give some insights about the dynamical properties of gene regulatory networks,
but to determine the dynamical properties, influence graphs are not enough, dynamical
models are also required.

In the literature, different modeling frameworks have been applied to model gene
regulatory networks, mainly continuous models [1–3], discrete models [4–9] and hybrid
models [10–12]. In continuous models, a state is a real vector representing the continuous
expression of each gene. In discrete models, the continuous state space is divided into
discrete regions and a state, also called a discrete state, is a vector of integers representing
a discrete region. Hybrid models have both continuous and discrete components. In hybrid
models, like in discrete models, the continuous state space is divided into discrete regions,
but contrary to discrete models where we do not consider the dynamics inside these
discrete regions, the dynamics of hybrid models inside each discrete region is described
by a simplified continuous model. More details about these modeling frameworks are
introduced in Chapter 2.

One major difference between discrete models and models having continuous behaviors
(continuous or hybrid models) is that: Discrete models can be applied on systems of large
scale, but, for continuous or hybrid models, it is generally difficult to study dynamical
properties of models in high dimension, mainly due to their dynamical complexities.

In fact, the dynamics of a discrete model can be described by all the possible transitions
between discrete states, which is a directed graph with a finite number of nodes, so
theoretically we can determine all dynamical properties, the only constraint is that, when
the dimension (the number of genes) increases, the computational cost can be too high.
Moreover, there are less parameters in discrete models (there are only parameters that

10



Introduction

describe the qualitative properties of the system), so it requires less data or biological
knowledge to construct the models.

For continuous models like ordinary differential equations, there are many open ques-
tions related to dynamical analysis, for instance, there is no general method to prove
the existence of a stable limit cycle for models that have more than three dimensions.
Some hybrid models can be considered as simplifications of ordinary differential equa-
tions, and their dynamical properties are easier to analyze, but still, the dimension of the
systems that can be analyzed by these hybrid models is limited. Additionally, parameter
identification of continuous or hybrid models requires more data.

Scope of the Study and Motivations

A recent proposed hybrid modeling framework: Hybrid gene regulatory network
(HGRN) [11], which is an extension of Thomas’ discrete modeling framework [5, 6], has
lower dynamical complexity compared to other hybrid models. In HGRNs, the time deriva-
tive is a constant vector in each discrete region. So it is easier to analyze and could be
potentially applied to reveal continuous dynamical properties of larger (compared to net-
works that are modeled by continuous models or other hybrid models) gene regulatory
networks. Moreover, HGRN has a special dynamical behavior: The existence of sliding
modes, which means that if a trajectory reaches a boundary of a discrete region but can
not cross this boundary, then it slides along this boundary (such boundaries are also called
"black walls" in the literature). The physical meaning of sliding modes is that some genes
reach temporal stable stables, so their values will not change for some time, while the
values of other genes keep changing.

Before this thesis, few works had studied analysis methods on HGRNs. Only in
[11], a necessary and sufficient condition for the existence of a limit cycle of a specific
2-dimensional HGRN has been discussed. There is no general analysis method of N-
dimensional HGRNs. So the study of such analysis methods is of great interest, which is
the main research direction of this thesis.

Among different kinds of dynamical properties to describe gene regulatory networks,
we mostly focus in this thesis on long-term dynamical properties, in other words, the
behaviors of trajectories when time approaches infinity. For instance, a trajectory can
converge to a limit cycle when time approaches infinity. Such limit cycles represent stable
oscillations which can be found in many gene regulatory networks, such as the circadian
clock. In discrete models, long-term dynamical properties correspond to discrete attrac-
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tors. One limit is that, based on discrete models, it is hard to derive continuous behaviors
inside discrete attractors; for example, we can not distinguish sustained oscillations and
damped oscillations, while such continuous behaviors can be derived from HGRNs. The
study of such long-term behaviors of gene regulatory networks is of great concern. Indeed,
the stable limit cycles correspond to robust oscillations (oscillations will always recover af-
ter small perturbations) which exist in some genetic systems, for example circadian clock,
and the analysis of limit cycles can help us verify whether the networks are correctly
constructed.

1.2 Contributions

The major contributions of this thesis lie in both general analysis methods and the
analysis of some specific networks. The contributions for the general analysis methods
include a limit cycle analysis method presented at CMSB 2022 as regular paper [13] and
a reachability analysis method presented at RP 2023 as regular paper [14].

General Analysis Methods

Limit Cycle Analysis

Our limit cycle analysis method of HGRNs can automatically identify limit cycles
of HGRNs in any dimension and analyze their stability. This method can find all limit
cycles that do not cross the same discrete region for more than once in one period. It is
indeed important to analyze limit cycles, because many gene regulatory networks have
stable oscillations which correspond to stable limit cycles. In this work, we also propose
new concepts associated to HGRNs (for instance, in order to facilitate the analysis of
HGRNs, we propose the new concept "discrete domain", based on which the dynamics of
the original system can be abstracted by transitions on a directed graph), which can be
useful for the future studies of HGRNs.

In the literature, even though few works exist about limit cycles analysis in HGRNs
(only a 2-dimensional limit cycle was analyzed in [11]), limit cycles were studied in other
hybrid models of gene regulatory networks. Most of these works are based on the Poincaré
map, which is also the main idea of our approach. In [15, 16], the Poincaré map is used to
study the limit cycle of simple piecewise affine systems in two dimensions. In these works,
since the system is planar, it is easy to compute and analyze the Poincaré map. In [17–19],
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methods are proposed to find and analyze limit cycles in higher dimensions of piecewise
affine system with a uniform decay rate. The hypothesis of a uniform decay rate in these
works makes it always possible to calculate a Poincaré map because they have a simple
shape. However, for a general piecewise affine system, it is difficult to prove theoretically
the existence of limit cycle except for some particular examples such as negative loops
[20, 21].

Compared to previous works about limit cycles in hybrid systems, our work has two
major novelties: (1) We consider limit cycles with sliding modes, and (2) We use an
abstraction method in order to find automatically cycles of discrete regions, which might
contain limit cycles (in other words, cycles of discrete regions which contain at least one
continuous trajectory).

Reachability Analysis

The second proposed general analysis method is a reachability analysis algorithm
of HGRNs, which can verify automatically if the trajectory from a singular state can
eventually reach certain region (a set of states). This algorithm always stops in finite
time, and in most cases, it gives the correct answer of this reachability problem. In fact,
only in some particular cases, for example in the presence of chaos, the algorithm remains
inconclusive. Such cases exist for general HGRNs, but they are not identified in any pre-
existing HGRN of gene regulatory network. In fact, we have only identified one hybrid
system which is equivalent to a HGRN and which has chaotic attractor, and this is a
hybrid system of an electric circuit.

Actually, this work is related to the decidability problem, which is whether we can
find an algorithm that always stops in finite time and answers this reachability problem.
The decidability problem has not been investigated for HGRNs, but it has been studied
among hybrid systems that are close to HGRNs. The hybrid systems that are the closest
to HGRNs are piecewise-constant derivative systems (PCD systems), which are decidable
in 2 dimensions [22] and become undecidable in 3 dimensions [23]. There exists also a
class of decidable hybrid systems called initialized rectangular automata which does not
include HGRNs. So whether HGRNs are decidable or not is still an open question. In our
work, we formalize a set of trajectories for which this reachability problem is decidable.
Meanwhile, for other trajectories, it is unknown.
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Analysis of Specific Networks

Besides general analysis methods, we also analyze some specific networks of interest,
called the repressilators, which led to two publications: The first one is about the 3-
dimensional repressilator and has been presented at BIOINFORMATICS 2023 as regular
paper [24]; the second one is about 4-dimensional repressilators and has been presented
at CMSB 2023 as regular paper [25].

3-dimensional Repressilator

The 3-dimensional canonical repressilator is a widely studied network in the field of
synthetic biology. In this work, we find a sufficient and necessary condition for the exis-
tence of sustained oscillations in a HGRN of 3-dimensional canonical repressilator, and
we propose a method to compute simple constraints on parameters that satisfy this con-
dition. This result could potentially contribute to the biological construction of synthetic
repressilators. In the literature, most studies of the canonical repressilator use ordinary
differential equations. This work is the first one based on HGRNs.

4-dimensional Repressilators

In our study of 4-dimensional repressilators in the form of discrete models, we provide
a sufficient and necessary condition, which is described by the topological features of
the influence graphs, for the existence of a discrete periodic attractor in 4-dimensional
repressilators. This condition corresponds to a sufficient condition for the existence of
oscillations in associated HGRNs. Other theoretical works investigate the relation between
the topology of influence graphs and the dynamical properties. The major novelty of this
work is that we discover a new topological feature.

Parameter Identification

Finally we also investigate parameter identification problems, which is the first step
toward the understanding of systems. Indeed our analysis methods can be applied only
after that the parameters are identified. There are different kinds of parameter identifica-
tion problems that are related to gene regulatory networks, for example, there are works
aiming to identify the regulations between genes, and there are other works that want to
identify the parameters of dynamical models assuming that the influence graph is known.
Our work belongs to the second case and is based on time series data.
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1.3 Collaborations

The analysis work of the 3-dimensional repressilator and a part of the analysis work
of the 4-dimensional repressilators come from a collaboration with the team of Jean-Paul
Comet at the I3S laboratory (Laboratoire d’Informatique, Signaux et Systèmes de Sophia
Antipolis) in Nice. For this collaboration, I stayed 3 weeks at I3S in June 2022.

1.4 Organization of the Manuscript

Chapter 2 introduces different modeling frameworks that have been used to model
gene regulatory networks, including HGRNs. The notations used in this chapter are also
used in the rest of this thesis.

Chapters 3 and 4 introduce our general analysis method of HGRNs: In Chapter 3
we present our limit cycle analysis method and in Chapter 4 we present our reachability
analysis method. Some new concepts of HGRNs are introduced in Chapter 3, and are also
used in the work of Chapter 4.

In Chapters 5, 6 and 7, we focus on some specific networks. Chapter 5 introduces
our analysis of a HGRN of 3-dimensional repressilator, where we find conditions for the
existence of sustained oscillations in this HGRN. This work relies on some methods of
Chapter 3. In Chapter 6, we present a parameter identification method of HGRNs using
the HGRN of repressilator in Chapter 5 as a case study. The work of Chapter 7 is a
continuation of the work of Chapter 5: In Chapter 7, we present conditions for the existence
of a discrete periodic attractor in discrete models of 4-dimensional repressilators.

Finally, Chapter 8 concludes the whole thesis.

1.5 Notations

ds or dsi
: A discrete state, introduced in Section 2.2

cs or csi
: The celerity vector of a discrete state, introduced in Section 2.3.2

h or hi: A hybrid state, introduced in Section 2.3.2
e or ei: A boundary of HGRN, introduced in Section 2.3.2
τ or τi: A hybrid trajectory of HGRN, introduced in Section 2.3.2
D or Di: A discrete domain, introduced in Section 3.2.1
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T = (Di,Di+1, ...,Dj−1,Dj): A sequence of discrete domains, introduced in Sec-
tion 3.2.2

MT : The transition matrix of the sequence of discrete domains T , introduced in Sec-
tion 3.2.2
S: A compatible zone, introduced in Section 3.2.2
Nd(h, r): The neighborhood in the same discrete state of the hybrid state h with the

radius r, introduced in Section 3.3
ND(h, r): The neighborhood in the same discrete domain of the hybrid state h with

the radius r, introduced in Section 3.3.1
r(h): The reduction vector of hybrid state h, introduced in Section 3.3.2
Sr: A reduction compatible zone, introduced in Section 3.3.2

16



Chapter 2

STATE OF THE ART OF GENE

REGULATORY NETWORKS MODELING

A gene regulatory network is abstracted mathematically by a directed graph IG =
(V, A) called influence graph, where V is the set of vertices representing the genes in the
system and A is the set of arcs representing the regulations between genes. To understand
the dynamical properties of gene regulatory networks, influence graphs are not enough,
we also need dynamical models. Different classes of dynamical models have been used
in the literature to model gene regulatory networks. The most used ones are ordinary
differential equations (ODE) and discrete models, which are presented briefly in the first
two sections of this chapter. Another modeling approach is hybrid modeling which is not
yet widely used for now but is attracting more attention in recent years. In the third
section of this chapter, the piecewise affine systems are presented at first, which are the
most used hybrid systems to model gene regulatory networks; then the hybrid systems
studied in this thesis, Hybrid gene regulatory networks, are presented.

2.1 Ordinary Differential Equations (ODE)

Ordinary differential equations (ODE) are mostly used in the literature to model gene
regulatory networks [1–3, 26–28]. The use of ODEs is based on the assumption that the
numbers of molecules describing the expressions of genes are very big so that real numbers
can be used to represent the expressions of genes. A widely used form to describe the
dynamics of one gene by ODEs, for example G0, is given in Eq (2.1).

dx0

dt
= k0 + f(x1, x2, ..., xm)− γx0 (2.1)

where xi is a real number describing the expression value of gene Gi; G1, G2, ..., Gm are the
genes that influence gene G0; k0 is the production rate of gene G0 when it is not regulated

17



Chapter 2 – State of the Art of Gene Regulatory Networks Modeling

by other genes; γ is the degradation rate which describes, for example, the efficacy of
protease if the expression of the gene is measured by the amount of generated protein;
function f describes the regulations of G1, G2, ..., Gm on G0, and is usually based on Hill
function, for example f can be of the following form.

f(x1, x2, ..., xm) = f1(x1) + f2(x2) + ... + fm(xm) (2.2)

where fi(xi) = ki
xn

i

θn
i +xn

i
if Gi activates G0 and fi(xi) = ki

θn
i

θn
i +xn

i
if Gi inhibits G0.

There are two major limits of ODEs: 1) Their dynamics are hard to analyze; 2) There
are many parameters to be identified. For now it is still difficult (or impossible) to analyze
large networks based on ODEs.

2.2 Discrete Modeling

Discrete models are also widely used to model gene regulatory networks, which in
fact attract more and more attention in the last 20 years. In discrete models [4–9], the
continuous expression of a gene is abstracted by an integer (e.g. 0, 1, 2, ...), called discrete
level, which describes the discrete expression level of a gene. We note ai as the discrete
level of gene Gi. A discrete model is a logic program which is a set of logic rules. The
form of a logic rule is shown as follows:

ai = k ← ϕi (2.3)

where k is a possible discrete level of Gi, and ϕi is a logic formula. The form of a logic
formula ϕ is given as follows:

ϕ :== ⊤ | ⊥ | ai ∼ k | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 (2.4)

where k is a possible discrete level of gene Gi, ∼ is one of the relations {>, <, =,≥,≤},
ϕ1 and ϕ2 are also logic formulas.

A logic rule (see Eq (2.3)) indicates that if at discrete time t (t is an integer) ϕi is
satisfied, then at time t + 1 the discrete level of Gi can be updated to k. For example, a
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2.2. Discrete Modeling

G0

G1 G2

+

+

−

000 001

010 011
100 101

110 111

000 001

010 011
100 101

110 111

Figure 2.1 – Left: A 3-dimensional influence graph. Middle (resp. Right): A transition
graph of discrete states with asynchronous (resp. synchronous) semantics, based on the
influence graph on the left and the logic program of Eq. 2.5.

possible discrete model of the influence graph in Fig 2.1-Left is given as follows:

a0 = 1← ⊤

a1 = 1← (a0 = 1)

a1 = 0← (a0 = 0)

a2 = 1← (a0 = 0) ∧ (a1 = 1)

a2 = 0← (a0 = 1) ∨ (a1 = 0)

(2.5)

In this example, the second line indicates that, if at time t the discrete level of G0 is 1,
then at time t + 1 the discrete level of G1 can be updated to 1; this logic rule corresponds
to the activation from G0 to G1 in the influence graph. The first line indicates that for
any moment t, the discrete level of G0 can be updated to 1 at time t + 1 (in fact, once
the discrete level of G0 reaches 1, it will remain at 1).

The simulation of a discrete model is not solely dependent on these logic rules, but
also relies on the semantics of the model. Intuitively, the semantics dictates the number
of genes that can be updated simultaneously. Various semantics, such as synchronous,
asynchronous, general and most permissive, have been proposed in the literature [29, 30].
For example, the synchronous semantics means that all genes are updated simultaneously
and the asynchronous semantics means that only one gene can be updated at a time.

Based on the choice of semantics, we can obtain the transition graph of discrete states
of a discrete model. A discrete state is an integer vector of length N (if there are N

genes in the system), noted by ds, which assigns the discrete level di
s to gene Gi, where

i ∈ {1, 2, 3, ..., N} and di
s is the ith component of ds. The transition graph of discrete

states is a directed graph containing all possible transitions between discrete states from
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t to t + 1. The transition graph of discrete states describes the dynamics of a discrete
model. Note that depending on the semantics, the dynamics can be non-deterministic, as
is the case for the asynchronous semantics.

For example, Fig 2.1-Middle presents the transition graph of discrete states, derived by
asynchronous semantics, of the discrete model described by the logic program in Eq (2.5).
Consider the discrete state 101 (representing the assignment a0 = 1, a1 = 0, a2 = 1),
according to the logic program in Eq (2.5), G1 can be updated from 0 to 1 and G2 can be
updated from 1 to 0. Since we use asynchronous semantics, only one gene can be updated,
so it can reach 100 or 111, but it cannot make two updates at the same time to reach
110. Fig 2.1-Right presents the transition graph of discrete states, derived by synchronous
semantics, of the same discrete model. It can be seen that the dynamics changes when
the semantics changes.

Compared to ODEs, discrete models are easier to analyze and implement, while they
can still capture the qualitative dynamical properties of gene regulatory networks, which
is sometimes enough in certain biological studies. Due to the dynamical simplicity of
discrete models, they can be used to study large networks. A part of this thesis focuses
on discrete models (Chapter 7).

2.3 Hybrid Modeling

Hybrid models are dynamical systems that contain at the same time discrete and con-
tinuous components, which, following ODEs and discrete models, have been used to model
gene regulatory networks [15–19]. Like discrete models, in hybrid models, the continuous
state space is divided into several discrete regions, and the dynamics in each discrete
region is described by simplified ODE. Compared to ODE, generally the dynamical prop-
erties of hybrid models are easier to analyze, and compared to discrete models, we can
know the continuous behaviors of systems using hybrid models.

In the following subsections, firstly the piecewise affine systems are presented which are
the most studied hybrid models of gene regulatory networks, then hybrid gene regulatory
networks are presented which is the major formalism studied in this thesis.

20



2.3. Hybrid Modeling

2.3.1 Piecewise Affine Systems (PWA)

The piecewise affine systems (PWA) [15–19] are simplifications of ODEs. One major
reason behind these simplifications is that the widely used Hill functions in ODEs can
be approximated by step functions. A general form of PWAs to model gene regulatory
networks is given in Eq (2.6).

dx0

dt
= k0 + g(x1, x2, ..., xm)− γx0 (2.6)

which is similar to Eq (2.1), but here the function g is based on step functions, for example
it can be of the following form:

g(x1, x2, ..., xm) = g1(x1) + g2(x2) + ... + gm(xm) (2.7)

where

gi(xi) =

k+
i if xi ≥ θi

k−
i if xi < θi

(2.8)

with k+
i and k−

i real numbers.
In fact, these θi divide the continuous state space into several discrete regions and in

each discrete region the dynamics is described by affine functions.

2.3.2 Hybrid Gene Regulatory Networks (HGRN)

In this thesis, we mainly focus on a class of hybrid models called Hybrid gene regulatory
networks (HGRN). The difference between HGRNs and PWAs mainly lies in the behaviors
of trajectories on boundaries. HGRN and its basic notions are defined formally as follows.

Consider a gene regulatory network with N genes. For i ∈ {1, 2, 3, ..., N},
the ith gene, noted Gi, has ni + 1 discrete levels which are repre-
sented by integers: {0, 1, 2, ..., ni}. The set of all discrete states is Ed ={
ds = (di

s)i∈[1;N ] ∈ NN | ∀i ∈ {1, 2, ..., N} , di
s ∈ {0, 1, ..., ni}

}
. In fact, the notion of

discrete state in HGRNs is similar as the one in discrete models.

Definition 1 (Hybrid gene regulatory network (HGRN)) A Hybrid gene regula-
tory network (HGRN) is noted H = (Ed, c). Ed is the set of all discrete states. c is a
function from Ed to RN . For each ds ∈ Ed, c(s), also noted cs, is called the celerity of
discrete state ds and describes the time derivative of the system in ds.
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A B CA CB

0 0 0.6 −0.7
0 1 −0.7 −0.9
1 0 0.7 0.8
1 1 −0.6 0.9

Figure 2.2 – Example of a HGRN in 2 dimensions. Left: Influence graph (negative feedback
loop with 2 genes, A = G1, B = G2). Middle: Example of corresponding parameters
(celerities). Right: Corresponding example of dynamics; abscissa represents gene A and
ordinate represents gene B.

Definition 2 (Hybrid state of HGRN) A hybrid state of a HGRN is a couple h =
(π, ds) containing a fractional part π, which is a real vector in [0, 1]N , and a discrete state
ds in Ed. Eh is the set of all hybrid states.

Definition 3 (Hybrid trajectory) A hybrid trajectory τ is a function from a time in-
terval [0, t0] to Eτ = Eh ∪ Esh, where t0 ∈ R+ ∪ {∞}, Eh is the set of all hybrid
states, and Esh is the set of all finite or infinite sequences of hybrid states: Esh =
{(h0, h1, ..., hm) ∈ (Eh)m+1 | m ∈ N ∪ {∞}}.

A hybrid trajectory τ is called a periodic hybrid trajectory if it is defined on [0,∞[ and
∃T > 0,∀t ∈ [0,∞[, τ(t) = τ(t + T ).

A 2-dimensional HGRN is shown in Fig 2.2. In this example, there are two genes,
that we rename for simplicity: A = G1 and B = G2. Gene A activates gene B, so we can
consider that there exists a threshold of gene A such that, when the expression value of
gene A is above this threshold, the derivative of gene B is positive, and when it is below
this threshold, the derivative of gene B is negative. Similarly for gene B, since B inhibits
gene A, when the expression value of B is above a threshold, the derivative of gene A is
negative, and when it is below this threshold, the derivative of gene A is positive. Since
each gene has one threshold, they have two discrete levels: 0 and 1. Therefore, this gene
regulatory network has four discrete states: 00, 01, 10 and 11, where, for example, 01 is a
shorthand representing that the discrete level of gene A is 0 and the discrete level of gene
B is 1.
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In the illustration of the state space (Fig 2.2-Right), black arrows represent the celer-
ities (time derivatives) of each discrete state and red arrows represent a possible hybrid
trajectory of this system, which happens, in this particular case, to be a periodic hybrid
trajectory.

Definition 4 (Boundary) A boundary in a discrete state ds is a set of hybrid states
defined by e(Gi, π0, ds) = {(π, ds) ∈ Eh | πi = π0, }, where i ∈ {1, 2, ..., N} , ds ∈ Ed and
π0 ∈ {0, 1}. In the rest of this thesis, we simply use e to represent a boundary.

Still in the example of Fig 2.2, the hybrid state hM = ((π1
M , 1), (1, 1)) of point M

(πM is the fractional part of hM and π1
M is the first value of the vector πM) belongs to

e1 = (B, 1, (1, 1)), that is, the upper boundary in the second dimension (the dimension of
gene B) of the discrete state 11. Since there is no other discrete state on the other side
of e1, the hybrid trajectory from hM cannot cross e1 and has to slide along e1 (e1 can be
called a black wall). Boundaries like e1, which can be reached by hybrid trajectories but
cannot be crossed, are defined as attractive boundaries. Let us mention that the notion
of black wall has been used in other hybrid systems. Generally, the behavior on black
wall is not easy to define because the derivatives might be different on the different sides
of a black wall. In HGRNs, by using hybrid states, a black wall is separated into two
boundaries, therefore the system can have different derivatives on the different sides of
the wall. There exist other methods to define behaviors of the system on a black wall [31,
32].

The hybrid state hP = ((π1
P , 0), (0, 1)) of point P belongs to e2 = (B, 0, (0, 1)), the

lower boundary in the second dimension of the discrete state 01. The hybrid trajectory
from hP reaches instantly hQ = ((π1

Q, 1), (0, 0)), which belongs to e3 = (B, 1, (0, 0)), the
upper boundary in the second dimension of discrete state 00, because the celerities on
both sides allow this (instant) discrete transition. e2 is called an output boundary of 01
and e3 is called an input boundary of 00.

Although the hybrid trajectory in Fig 2.2 only reaches one new boundary at a time,
in general a hybrid trajectory can reach several new boundaries at the same time. When
a hybrid trajectory reaches several output boundaries at the same time, it can cross
any of them but can only cross one boundary at a time, which causes non-deterministic
behaviors, see for example Fig 2.3.

The simulation of HGRNs is presented more formally as follows.
Consider a hybrid state h = (π, ds) and a hybrid trajectory τ which reaches h at t > 0.
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Figure 2.3 – Illustration of a non-deterministic behavior.

— If h does not belong to any boundary, then dτ(t)
dt

= cs (the time derivative of a
hybrid state h = (π, ds) is defined as dh

dt
= dπ

dt
).

— If h only belongs to one boundary e, let us consider that e is the upper boundary
in ith dimension (the result is easily adapted when e is the lower boundary). In
case di

s is not the maximal discrete level of the ith gene, the discrete state on the
other side of e is noted as ds′ , where dk

s = dk
s′ for all k ̸= i, and di

s + 1 = di
s′ . There

are four possible cases:
■ If ci

s < 0 (ci
s is the ith value of the vector cs), then the hybrid trajectory from the

current hybrid state enters the interior of the current discrete state. e is called
an input boundary of ds. dτ(t+)

dt
= cs, dτ(t−)

dt
= cs′ and τ(t) = ((π′, ds′), (π, ds)),

where π′k = πk for all k ̸= i, and π′i = 0, which means that there is an instant
transition from (π′, ds′) to (π, ds) at t. For instance, the hybrid state Q in Fig 2.2
belongs to an input boundary.

■ If ci
s = 0, then the hybrid trajectory from the current hybrid state will slide

along the boundary e, which is then called a neutral boundary of ds. dτ(t+)
dt

=
dτ(t−)

dt
= cs and τ(t) = (π, ds).

■ If ci
s > 0, and either di

s is the maximal discrete level of the ith gene, or di
s is

not the maximal discrete level of the ith gene but the ith component of cs′ is
negative, then the hybrid trajectory from the current hybrid state will slide
along the boundary e, which is called an attractive boundary of ds. If τ reaches
e at t, then: dτ(t+)

dt

k
= ck

s (where dτ(t+)
dt

k
is the kth component of the vector dτ(t+)

dt
)

for all k ̸= i, dτ(t+)
dt

i
= 0, dτ(t−)

dt
= cs and τ(t) = (π, ds). If τ reaches e at t0 < t,
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then: dτ(t)
dt

k
= ck

s for all k ̸= i, dτ(t)
dt

i
= 0, and τ(t) = (π, ds). For instance, the

hybrid state M in Fig 2.2 belongs to an attractive boundary.
■ If ci

s > 0, di
s is not the maximal discrete level of the ith gene, and the ith compo-

nent of cs′ is positive, then the hybrid trajectory from the current hybrid state
will cross instantly the boundary e and enter the discrete state ds′ . e is called
an output boundary of ds. dτ(t+)

dt
= cs′ , dτ(t−)

dt
= cs and τ(t) = ((π, ds), (π′, ds′)),

where π′k = πk for all k ̸= i, and π′i = 0. For instance, the hybrid state P in
Fig 2.2 belongs to an output boundary.

— If h belongs to several boundaries, then the previous cases can be mixed:
■ If in these boundaries there is no output boundary, then the hybrid trajectory

from the current hybrid state will exit all input boundaries and slide along all
attractive or neutral boundaries.

■ If in these boundaries there is only one output boundary, then the hybrid tra-
jectory from the current hybrid state will cross this output boundary.

■ If in these boundaries there are several output boundaries, then the hybrid
trajectory from the current hybrid state can cross any of them, but can only
cross one boundary at one time, which causes non-deterministic behavior.

HGRNs are not yet widely used to model gene regulatory networks, but they could
potentially solve some problems that are difficult to solve by using ODEs or PWAs. For
example, the analysis of limit cycles in ODEs and PWAs is difficult and sometimes it is
not possible to prove theoretically the existence or the stability of limit cycle, while it is
feasible in HGRNs; and HGRNs can be potentially applied on large networks.

This thesis majorly focuses on HGRNs. In the following chapters, we present our works
on different aspects of HGRNs, including analysis of limit cycles (Chapter 3), reachability
analysis (Chapter 4), condition for sustained oscillations in the canonical repressilator
(Chapter 5) and parameter identification (Chapter 6).
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Chapter 3

SEARCH AND STABILITY ANALYSIS OF

LIMIT CYCLES

Many gene regulatory networks have periodic behavior, for instance the cell cycle or
the circadian clock. Therefore, the study of formal methods to analyze limit cycles in
mathematical models of gene regulatory networks is of interest. In this chapter, we study
the limit cycles of HGRNs, and we present a new formal method to find all limit cycles
that are simple and deterministic, and analyze their stability, that is, the ability of the
model to converge back to the cycle after a small perturbation. Before this work, only
2-dimensional limit cycles of HGRNs have been studied [33]; our work fills this gap by
proposing a generic approach applicable in higher dimensions. This method is based on
two major ideas: Firstly, the hybrid states are abstracted to consider only their borders,
in order to enumerate all simple abstract cycles containing possible concrete trajectories;
secondly, a Poincaré map is used, based on the notion of transition matrix of the concrete
continuous dynamics inside these abstract paths. The lower dynamical complexity of
HGRN allows the application of this method on HGRN in any dimension. We apply the
method on three HGRNs of negative feedback loops with 3 components, and a HGRN of
the cell cycle with 5 components. This work has been presented at CMSB 2022 as regular
paper [13].

3.1 Limit Cycles of HGRNs

We define that a periodic hybrid trajectory of HGRN is a limit cycle if there exists
another hybrid trajectory that converges to (when time approaches positive or negative
infinity) (see Fig 3.1) or reaches this periodic hybrid trajectory (see Fig 3.2).

The original definition of limit cycles, which comes from the field of non-linear dy-
namical systems, does not consider periodic trajectories that can be reached by other
trajectories. In fact, there is no such periodic trajectories in non-linear dynamical sys-
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Figure 3.1 – Left: A limit cycle (the blue periodic hybrid trajectory) with another hybrid
trajectory (the red hybrid trajectory) converging to it when time approaches positive
infinity. Right: A limit cycle (the blue periodic hybrid trajectory) with another hybrid
trajectory (the red hybrid trajectory) converging to it when time approaches negative
infinity.

Figure 3.2 – A limit cycle (the blue periodic hybrid trajectory) with other hybrid trajec-
tories (for instance, the red hybrid trajectory) reaching it.

tems, while the existence of sliding modes in HGRNs makes such behaviors exist. In our
work, we choose to consider these periodic hybrid trajectories as limit cycles because they
also show the asymptotic behaviors of the systems.

As there exist limit cycles reached by other hybrid trajectories, there exist also limit
cycles such that from a hybrid state on the limit cycle, there exists a hybrid trajectory
which leaves the limit cycle. Such limit cycles must contain non-deterministic hybrid
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state(s). In our work, we do not consider this type of limit cycles because they are not
realistic when considering real-life systems.

There exist also limit cycles of HGRN such that another hybrid trajectory converges
to it with an infinite number of transitions. For example, the periodic hybrid trajectory in
Fig 3.3 with hybrid states A, B, C, D, which is a limit cycle with only instant transition.

We define that a transition from h1 to h2 is a non-instant transition if h1 and h2 are
two different hybrid states in the same discrete state and the hybrid trajectory from h1

reaches a new boundary for the first time at h2. For example the transition from N to
M in Fig 2.2 is a non-instant transition. And an instant transition is a transition from a
hybrid state in a given discrete state to another hybrid in a different discrete state which
takes no time; for example, in Fig 2.2, the transition from P to Q is an instant transition.

We see that in Fig 3.3, there is hybrid trajectory τ converging to the limit cycle, and
the intersection between this hybrid trajectory and the boundary e1 (the lower boundary
in the second dimension of the discrete state 01) are hybrid states denoted by the sequence
P1, P2, P3, .... From P1, this hybrid trajectory can be divided into shorter hybrid trajec-
tories τPi→Pi+1 (hybrid trajectory from Pi to Pi+1) by this sequence of intersection hybrid
states. The duration of each shorter hybrid trajectory τPi→Pi+1 is denoted by ti. Based on
the above notations, the whole duration of τ is the sum tϵ + t1 + t2 + t3 + ... where tϵ is the
duration of τ before reaching P1. By the similarity between each τPi→Pi+1 , we can derive
that this sum can be expressed by tϵ + t1 + αt1 + α2t1 + α3t1... where α is a positive real
number that is strictly less than 1. In fact, we can see that t1 = EF

∥c00∥2
+ GH

∥c10∥2
+ IJ

∥c11∥2
+ KP2

∥c01∥2

(c00, c01, c10, c11 are the celerity vectors of discrete states 00, 01, 10, 11 and EF is the dis-
tance between E and F for instance), and t2 = LD

ED
EF

∥c00∥2
+ LD

ED
GH

∥c10∥2
+ LD

ED
IJ

∥c11∥2
+ LD

ED
KP2

∥c01∥2

(by the property of similarity), so α = LD
ED

. Since t1 + αt1 + α2t1 + α3t1... is the sum of a
geometric sequence of which the ratio (α) is between 0 and 1, the whole duration of τ is
a finite value, which means that τ converges to this limit cycle in finite time.

In fact, only limit cycles that have only instant transitions can have hybrid trajectories
converging to them in finite time. All hybrid states in such limit cycle are related to the
same point in Euclidean space. We say that the hybrid state (π, ds) and the point x ∈ RN

in Euclidean space are related if x = π + ds. Such periodic hybrid trajectory could be
called a Zeno fixed point. In this chapter, we do not consider such limit cycles because
they are not associated to limit cycles in Euclidean space.

There are also some periodic hybrid trajectories that are not limit cycles (see Fig 3.4).
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Figure 3.3 – A limit cycle with other hybrid trajectories converging to it in finite time.

Figure 3.4 – Periodic hybrid trajectories that are not limit cycles.

3.2 Search of Periodic Hybrid Trajectories

This section presents our methods to find periodic hybrid trajectories which are po-
tential limit cycles. In this chapter, we make two assumptions about periodic hybrid
trajectories in HGRNs.

Assumption 1 Any non-instant transition on a periodic hybrid trajectory does not reach
more than one new boundary at the same time.
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Assumption 2 For any hybrid state h on a periodic hybrid trajectory, there is at most
one output boundary to which h belongs. In other words, any periodic hybrid trajectory
does not have non-deterministic hybrid state.

For Assumption 1, in real-life systems, it is indeed very unlikely for parameters to
be that constrained due to measurement noise. An example of a non-instant transition
reaching two new boundaries at the same time is given in Fig 2.3.

If Assumption 1 is satisfied, then there is no non-instant transition that reaches a
non-deterministic hybrid state. If we further assume that a threshold of one gene only
influences at most one another gene, which is a reasonable assumption for the modeling
of gene regulatory networks, see for example [34], then Assumption 2 is satisfied.

The major reason why we add these two assumptions is that the cases that do not
satisfy these two assumptions are very rare and more complicated to analyze. So it is not
interesting to consider them in practice. However, our approaches can be generalized to
these cases.

Our method to find periodic hybrid trajectories has three steps which are described
in the following.

3.2.1 Abstraction of HGRN with Discrete Domains

First, the HGRN is transformed into a graph of discrete domains. A discrete domain
is a new concept proposed in our work which is defined as follows.

Definition 5 (Discrete domain) A discrete domain D(ds, S−, S+) is a set of hybrid
states inside one discrete state ds, defined by:

D(ds, S−, S+) = {(π, ds) | ∀i ∈ {1, 2, ..., N}, πi ∈


{1} if i ∈ S+

{0} if i ∈ S−

]0, 1[ if i ̸∈ S− ∪ S+

}

where S+ and S− are subsets of {1, 2, ..., N} such that S+ ∩ S− = ∅ and S+ ∪ S− ̸= ∅.
In fact, S+ (S−) represents the dimensions in which the upper (lower) boundaries are
reached by any hybrid state h ∈ D(ds, S−, S+). In the rest of this thesis, we simply use D
to represent a discrete domain when there is no ambiguity.

In the rest of this thesis, as a notation, we add exponents to the vector representation
of a discrete state to indicate which upper (lower) boundaries are reached. For instance,
11+ denotes the discrete domain inside discrete state 11 where the upper boundary is
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Figure 3.5 – Illustration of discrete domains and sequence of discrete domains of the
HGRN in Fig 2.2.

reached for the second dimension and no boundary is reached for the first dimension,
that is: D((1, 1), ∅, {2}) = {(π, (1, 1)) | π1 ∈ ]0, 1[ ∧ π2 = 1} Actually, the discrete state
11 in Fig 2.2 contains 8 discrete domains: 1−1−, 11−, 1+1−, 1−1+, 11+, 1+1+, 1−1 and
1+1. These eight discrete domains are illustrated in Fig 3.5. It is worth mentioning that,
in Fig 3.5, the discrete domain 1+1+ is illustrated by a red square, but in fact it only
contains one hybrid state which is the hybrid state related to the upper-right corner of
11, and the discrete domain 11+ is illustrated by a red rectangle representing all hybrid
states on the upper boundary in the second dimension of 11 excluding these two corners.

It is then possible to build the graph of discrete domains of a HGRN, such as in Fig 3.6,
where the nodes are the discrete domains and the edges are computed by considering only
the signs of the celerities. In this graph, a discrete domain Dj is a successor of discrete
domain Di if:

— There exists an instant transition from Di to Dj, which means that at least one
hybrid trajectory from Di crosses a boundary and instantly reaches Dj; see for
example 0+0 and 1−0 in Fig 3.6 and Fig 3.5.

— Only considering the sign of celerities, it is possible that there is a hybrid trajectory
which begins from Di and reaches Dj without going through another boundary;
see for example 00+ and 0+0 in Fig 3.6 and Fig 3.5: Since the celerity of 00 is
positive in the first dimension and negative in the second, it is possible that there
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Figure 3.6 – Graph of discrete domains of the HGRN in Fig 2.2.

is a hybrid trajectory from 00+ which reaches 0+0. We exclude cases where two new
boundaries are reached at the same time; for instance, there is no edge between
00+ and 0+0−.

Need to mention that this idea of discrete abstraction is commonly used for the analysis
of hybrid dynamical systems [35, 36].

3.2.2 Search of Closed Discrete Trajectories

Before giving the definition of closed discrete trajectories and the method to find them,
some concepts are introduced at first.

A walk in the graph of discrete domains gives a sequence of discrete domains T =
(D0,D1, ...Dp). A hybrid trajectory is said to be inside such a sequence of discrete domains
if it begins from the first discrete domain and reaches by order all discrete domains in the
sequence. Based on this, we define two new notions on such a sequence: The transition
matrix, which allows to compute the final hybrid state of a hybrid trajectory inside a
given sequence of discrete domains, when it exists, and the compatible zone, which is the
set of initial hybrid states so that such a hybrid trajectory exists. These two notions are
presented formally as follows. Note that, there exist hybrid trajectories which are inside
sequences of discrete domains that are not in the graph of discrete domains introduced
in the previous subsection because the cases where two new boundaries are reached at
the same time are excluded for the construction of the graph. In fact, we do not need to
consider such sequences of discrete domains because Assumption 1 is made.
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Definition 6 (Transition matrix) Consider two different discrete domains Di and Dj

such that there exists a sequence of discrete domains T from Di to Dj. If there exists a
hybrid state hi = (πi, dsi

) in Di such that from hi there is a hybrid trajectory τ (defined
on [0, t0]) which is inside T and reaches Dj on hj = (πj, dsj

) at t0, then there exists
a transition matrix M which describes the relation between πi and πj, that is: πj =
s−1(Ms(πi)), where s is a function that adds an extra dimension and the value in the
extra dimension is always 1: s((a1, a2, ..., aN)) = (a1, a2, ..., aN , 1). The transition matrix
M only depends on T .

Consider Fig 3.5, the transition matrix of the sequence of discrete domains (00+, 0+0)

is M(00+,0+0) =


0 0 1
− c2

00
c1

00
1 c2

00
c1

00

0 0 1

 where (c1
00, c2

00) is the celerity vector of discrete state 00.

M(00+,0+0) can describe the relation between hybrid state hB = ((π1
B, π2

B = 1), (0, 1)) and
hybrid state hC = ((π1

C = 1, π2
C), (0, 0)):


π1

C

π2
C

1

 = M(00+,0+0)


π1

B

π2
B

1

 . (3.1)

Similarly, for the sequence of discrete domains (0+0, 1−0), the transition matrix is

M(0+0,1−0) =


1 0 −1
0 1 0
0 0 1

 which describes the relation between hC = ((π1
C = 1, π2

C), (0, 0))

and hD = ((π1
D = 0, π2

D), (1, 0)):


π1
D

π2
D

1

 = M(0+0,1−0)


π1

C

π2
C

1

 . (3.2)

The transition matrix can be computed by the multiplication of the transition ma-
trices of all elementary sequences (sequences of length 2), for example M(00+,0+0,1−0) =
M(0+0,1−0)M(00+,0+0).

To illustrate the method to compute the transition matrix of an elementary sequence
of discrete domains, the following examples are given.

First, we consider an elementary sequence in a 4-dimensional HGRN that is not instant
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3.2. Search of Periodic Hybrid Trajectories

(meaning that all hybrid trajectories inside it are not instant): (a+bc−d, a+bcd+) where
abcd is a discrete state. The celerity vector of this discrete state is denoted by (c1

s, c2
s, c3

s, c4
s)

and we assume that c1
s, c2

s, c3
s, c4

s > 0 and the upper boundary in the first dimension of
abcd is an attractive boundary. Any hybrid trajectory that is inside (a+bc−d, a+bcd+)
can be represented by ((1, π2

i , 0, π4
i ), abcd) −→ ((1, π2

j , π3
j , 1), abcd) where there is sliding

mode in the first dimension because an attractive boundary is reached. The transition
matrix M(a+bc−d,a+bcd+) describes the relation between (1, π2

i , 0, π4
i ) and (1, π2

j , π3
j , 1). In

order to compute this relation, we compute at first the duration of this hybrid trajec-
tory ((1, π2

i , 0, π4
i ), abcd) −→ ((1, π2

j , π3
j , 1), abcd) denoted by t0, which is in fact the time

consumed in the dimension in which new boundary is reached:

t0 = 1− π4
i

c4
s

(3.3)

In other dimensions, the relations between (1, π2
i , 0, π4

i ) and (1, π2
j , π3

j , 1) can be described
based on t0:

1 = 1 + 0× t0 (3.4)

π2
j = π2

i + c2
s × t0 (3.5)

π3
j = 0 + c3

s × t0 (3.6)

The temporal derivative in the first dimension is 0 (Eq (3.4)) because of the existence
of the sliding mode. By reformulating all these above relations and eliminating t0, the
transition matrix M(a+bc−d,a+bcd+) is obtained (Eq (3.7)).



1
π2

j

π3
j

1
1


=



1 0 0 0 0
0 1 0 − c2

S

c4
s

c2
s

c4
s

0 0 1 − c3
s

c4
s

c3
s

c4
S

0 0 0 0 1
0 0 0 0 1





1
π2

i

0
π4

i

1


(3.7)

Second, we consider another elementary sequence in a 4-dimensional HGRN that is
instant (meaning that all hybrid trajectories inside it are instant): (a+bcd+, a+bc(d +
1)−). Any hybrid trajectory inside (a+bcd+, a+bc(d + 1)−) can be represented by
((1, π2

j , π3
j , 1), abcd) −→ ((1, π2

j , π3
j , 0), abc(d + 1)). Since the only difference between

(1, π2
j , π3

j , 1) and (1, π2
j , π3

j , 0) is the value in the fourth dimension, the transition ma-
trix M(a+bcd+,a+bc(d+1)−)) can be obtained by modifying only one line of the identity matrix
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to switch the value in the fourth dimension from 1 to 0 (Eq (3.8)).


1
π2

j

π3
j

0
1


=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 1





1
π2

j

π3
j

1
1


(3.8)

The general method to compute the transition matrix M(Di,Di+1) of any elementary
sequence of discrete domains (Di,Di+1) is given as follows.

— Case 1: The transition between Di and Di+1 is instant (e.g. (0+0, 1−0)). In this case,
by assuming that the boundary in dimension n0 is crossed, M(Di,Di+1) = (akl) ∈
R(N+1)×(N+1), where
— akl = 1, if k = l.
— akl = x, if k = n0 ∧ l = N + 1, where

— x = −1, if the output boundary is an upper boundary.
— x = 1, if the output boundary is a lower boundary.

— akl = 0, otherwise.
— Case 2: The transition between Di and Di+1 is not instant (e.g. (00+, 0+0)). In this

case, by assuming that a new boundary is reached in dimension n0, M(Di,Di+1) =
(akl) ∈ R(N+1)×(N+1), where
— akl = 1, if k = l ̸= n0.
— akl = − ck

cn0 , if k ̸= n0 ∧ l = n0 and there is no sliding mode in dimension k (c
is the celerity vector of the discrete state containing Di and Di+1, and ck is the
kth component of c).

— akl = ck

cn0 x, if k ̸= n0 ∧ l = N + 1 and there is no sliding mode in dimension k,
where
— x = 1, if the new reached boundary is an upper boundary.
— x = 0, if the new reached boundary is a lower boundary.

— akl = x, if k = n0 ∧ l = N + 1. (The value of x is same as the above case.)
— akl = 0, otherwise.

In case 2 of the general method to compute the transition matrix, a priori, several
new boundaries can be reached, in such case, we can choose the dimension of any of them
as n0. While in this chapter, since we only consider sequences on the graph of discrete
domains, there is always a unique n0 for any elementary sequence that is not instant.
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3.2. Search of Periodic Hybrid Trajectories

The second proposed notion associated to sequences of discrete domains is the com-
patible zone.

Definition 7 (Compatible zone) Consider a sequence of discrete domains T =
(D0,D1,D2, ...,Dm). The compatible zone S is the maximal subset of D0 such that from
any hybrid state of S, there is a hybrid trajectory that contains a sub-trajectory inside T .
More formally, for any hybrid state h ∈ S, there is a hybrid trajectory τ from h and there
exists t0 such that the restriction of τ on [0, t0] is a hybrid trajectory inside T .

For a general sequence of discrete domains (a sequence of discrete domains that is not
necessarily in the graph of discrete domains), the compatible zone is of the form: S =
{(π, ds0) ∈ D0 | Wπ > c ∧W ′π = c′} where W, W ′ are matrices and c, c′ are vectors. How-
ever, the compatible zone S of any sequence of discrete domains in the graph of discrete
domains can be expressed only with linear inequalities: S = {(π, ds0) ∈ D0 | Wπ > c}
because, inside these sequences of discrete domains, there is no hybrid trajectory that
has a non-instant transition reaching two new boundaries at the same time. The idea to
compute the compatible zone is based on Theorem 1.

Theorem 1 A hybrid state h = (π, ds0) belongs to the compatible zone S of T =
(D0,D1,D2, ...,Dm) if and only if (π, ds0) ∈ D0, (s−1(M(D0,D1)s(π)), ds1) ∈ D1,
(s−1(M(D0,D1,D2)s(π)), ds2) ∈ D2, ...., (s−1(M(D0,D1,...,Dm−1)s(π)), dsm−1) ∈ Dm−1 and
(s−1(M(D0,D1,...,Dm)s(π)), dsm) ∈ Dm, where M(D0,D1,...,Di) is the transition matrix of
(D0,D1, ...,Di) and Di is inside discrete state dsi

(i ∈ {0, 1, ..., m}).

Proof: Proof of sufficient condition: We can easily see that if h = (π, ds0) belongs to
the compatible zone S of T = (D0,D1,D2, ...,Dm), then ∀i ∈ {1, 2, ..., m}, h also belongs
to the compatible zone of (D0,D1,D2, ...,Di), so (s−1(M(D0,D1,...,Di)s(π)), dsi

) ∈ Di.
Proof of necessary condition: By induction. Consider a sequence of discrete domains

of length 2: (D0,D1), it is evident that h belongs to the compatible zone of (D0,D1) if
(s−1(M(D0,D1)s(π)), ds1) ∈ D1. Now suppose that it is true for any sequence of discrete
domains of length k + 1, and consider a sequence of discrete domains of length k + 2:
(D0,D1,D2, ...,Dk+1). Since it is true for a sequence of discrete domains of length k + 1, h

belongs to the compatible zone of (D0,D1,D2, ...,Dk), so the hybrid trajectory from h will
stay inside (D0,D1,D2, ...,Dk) and will reach Dk at hk = (s−1(M(D0,D1,...,Dk)s(π)), dsk

). Let
hk = (πk, dsk

). We can easily see that s−1(M(D0,D1,...,Dk+1)s(π)) = s−1(M(Dk,Dk+1)s(πk)).
Since (s−1(M(D0,D1,...,Dk+1)s(π)), dsk+1) ∈ Dk+1, we have (s−1(M(Dk,Dk+1)s(πk)), dsk+1) ∈
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Chapter 3 – Search and Stability Analysis of Limit Cycles

Dk+1. So hk belongs to the compatible zone of (Dk,Dk+1). Therefore, h belongs to the
compatible zone of (D0,D1,D2, ...,Dk+1).

□

Thus, all hybrid states that satisfy the constraints in Theorem 1 constitute the com-
patible zone. And we can see that the computation of compatible zone replies on the
computation of transition matrix.

Now we give the definition of closed discrete discrete trajectories. A sequence of discrete
domains T is called a discrete trajectory if the compatible zone of T is not empty, in
other words, there exists at least one hybrid trajectory inside T . A discrete trajectory
T = (D1,D2, ...Dm) is said closed if D1 = Dm. For example, the sequence of discrete
domains (01−, 00+, 0+0, 1−0, 10+) in Fig 3.5 and Fig 3.6 is a discrete trajectory because
its compatible zone is not empty as there exists at least one hybrid trajectory inside this
sequence (e.g. the hybrid trajectory from A to E in Fig 3.5).

In order to find closed discrete trajectories, we use a depth first algorithm. For this,
we rely on the notion of Poincaré section (more explanations about Poincaré section will
be given in the next subsection, here we can simply consider that a Poincaré section is a
boundary of a discrete state). We first choose one or several input boundaries of discrete
states as Poincaré sections, more precisely an input boundary is chosen if it is crossed by
a cycle of discrete states, and then on each discrete domain on these Poincaré sections, we
apply this depth first algorithm. In each step of this depth first algorithm, the compatible
zone is computed and the search continues if the compatible zone is not empty and the
current path does not reach the same discrete domain for more than one time and does
not return to the initial discrete state. This algorithm finds all discrete trajectories that
begin from a discrete domain and return to the initial discrete state without crossing the
same discrete state more than once. An execution of this algorithm on discrete domain
00+ of the HGRN in Fig 2.2 is illustrated in Fig 3.7. Among these discrete trajectories,
we can easily find the closed ones. Note that in Fig 3.7, all discrete trajectories from 00+

that return to 00 happen to be closed but generally we can find discrete trajectories that
are not closed.

Consider the HGRN in Fig 2.2, we can easily see that there is only one cycle of
discrete states in this system, which is 00 −→ 10 −→ 11 −→ 01 −→ 00. Therefore, for this
system, we only need one Poincaré section and any boundary in this cycle can take this
role. Let us choose for instance the input boundary of discrete state 00 (the boundary
between 01 and 00) as Poincaré section, that is, the union of the three discrete domains

38



3.2. Search of Periodic Hybrid Trajectories

Figure 3.7 – Illustration of the depth first algorithm on discrete domain (0, 0+).

0−0+, 00+ and 0+0+. We thus apply the depth first algorithm on each of these three
discrete domains. As a result, we can find 5 discrete trajectories that begin from the
Poincaré section and return to the initial discrete state:
1 : 0−0+ −→ 00− −→ 0+0− −→ 1−0− −→ 10+ −→ 11− −→ 11+ −→ 1−1+ −→ 0+1+ −→ 01− −→ 00+

2 : 00+ −→ 0+0 −→ 1−0 −→ 10+ −→ 11− −→ 1−1 −→ 0+1 −→ 01− −→ 00+

3 : 00+ −→ 0+0 −→ 1−0 −→ 10+ −→ 11− −→ 11+ −→ 1−1+ −→ 0+1+ −→ 01− −→ 00+

4 : 00+ −→ 00− −→ 0+0− −→ 1−0− −→ 10+ −→ 11− −→ 11+ −→ 1−1+ −→ 0+1+ −→ 01− −→ 00+

5 : 0+0+ −→ 1−0+ −→ 1−1− −→ 0+1− −→ 0+0+

Examples of hybrid trajectories inside each of these 5 discrete trajectories are shown
in Fig 3.8. We note that there always exists at least one hybrid trajectory inside a discrete
trajectory since, by definition, its compatible zone is not empty. Among the 5 discrete
trajectories above, only the first one is not closed.

3.2.3 Identification of Periodic Hybrid Trajectories with
Poincaré Map

Consider a closed discrete trajectory T = (D0,D1, ...Dm,D0). We define that a periodic
hybrid trajectory τ is inside T if τ begins from a hybrid state h ∈ D0, reaches by order
all discrete domains of T and finally reaches back the hybrid state h. To check if there

39



Chapter 3 – Search and Stability Analysis of Limit Cycles

Figure 3.8 – Examples of hybrid trajectories inside different discrete trajectories of the
HGRN in Fig 2.2.

is a periodic hybrid trajectory inside T = (D0,D1, ...Dm,D0), we only need to verify the
two following properties:

— ∃(π0, ds0) ∈ D0 such that s−1(MT s(π0)) = π0, and
— (π0, ds0) belongs to the compatible zone of T .

Then (π0, ds0) is called a fixed point of T , the function s−1(MT s()) is the Poincaré map
of the periodic hybrid trajectory that corresponds to this fixed point and D0 (or the
boundary that contains D0) is the associated Poincaré section.

Under Assumption 1, any periodic hybrid trajectory of the system must be inside
one of the closed discrete trajectories found by the depth first algorithm. Meanwhile, if a
periodic hybrid trajectory reaches more than one new boundary at the same time, then
it is not inside any closed discrete trajectories found by the algorithm.

Among the five closed discrete trajectories in the HGRN in Fig 2.2, we find
only one periodic hybrid trajectory of interest, inside the third closed discrete tra-
jectory; it is the hybrid trajectory labeled “3” in Fig 3.8. For this periodic hy-

brid trajectory, π0 = (0.222, 1), MT =


0 0 0.222
0 0 1
0 0 1

, and the compatible zone is
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3.2. Search of Periodic Hybrid Trajectories

Figure 3.9 – Illustration of the Poincaré map of a periodic hybrid trajectory of the HGRN
in Fig 2.2, where G() = s−1(MT s()) is the Poincaré map.

{(π, (0, 0)) | π2 = 1, π1 ∈]0.1428, 0.3469[}. This periodic hybrid trajectory and the asso-
ciated Poincaré map/section are illustrated in Fig 3.9. In this figure, the hybrid state
(π0, ds0) is the fixed point of this Poincaré map that belongs to the compatible zone,
so this hybrid state is the intersection between this periodic hybrid trajectory and the
Poincaré section. Generally in the field of non-linear dynamics, a Poincaré map describes
the dynamics of the intersection point between a periodic trajectory and a lower dimension
subspace (Poincaré section). In HGRNs, a Poincaré map not only describes the dynamics
of a periodic hybrid trajectory but also describes the dynamics of the intersection hybrid
states between all hybrid trajectories from the compatible zone and the Poincaré section.
For example, in Fig 3.9, for any hybrid state in the compatible zone, noted by (π1, ds0), the
hybrid trajectory from this hybrid state returns to the Poincaré section at (G(π1), ds0),
which in this particular case happens to be the fixed point of the Poincaré map.

Actually, there is another periodic hybrid trajectory inside the fifth closed discrete
trajectory; it is the periodic hybrid trajectory labeled “5” in Fig 3.8. This periodic hybrid
trajectory only contains instant transitions. As stated before, our analysis method of limit
cycles does not consider this type of periodic hybrid trajectories.
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The Poincaré map has been widely used in the literature to study limit cycles of
hybrid systems [15–19, 37–40]. The dynamical simplicity of HGRNs and the existence of
sliding modes make the form of Poincaré maps of HGRNs particular: A Poincaré map is
a piecewise affine function on a Poincaré section.

3.3 Stability Analysis of Limit Cycles

In order to define the stability of limit cycles, we give the definition of the neighborhood
in the same discrete state at first.

Definition 8 (Neighborhood in the same discrete state) The neighborhood in the
same discrete state of a hybrid state h = (π0, ds) is a set of hybrid states defined as:
Nd(h, r) =

{
(π, ds) | d(π, π0) < r, π ∈ [0, 1]N

}
, with r > 0 the radius of this neighborhood,

and d the maximum norm between vectors: d(π, π0) = maxi∈{1,2,...,N} | πi − πi
0 |.

Based on the definition of neighborhood in the same discrete state, the stability of
limit cycle is defined as follows.

Definition 9 (Stability of limit cycles in HGRNs) A limit cycle τ of HGRN is sta-
ble if, for any hybrid state h on τ , there exists a neighborhood in the same discrete state
of radius r such that any hybrid trajectory τ0 that begins from this neighborhood Nd(h, r)
satisfies: limt→∞ (Dismin(τ0(t), τ)) = 0 where Dismin(h′, τ) is defined as Dismin(h′, τ) =
minh0∈τ d(x(h′), x(h0)), with h′ ∈ Eh, x(.) the sum (dimension by dimension) of the frac-
tional part and the discrete state of a hybrid state, and d(v1, v2) = max1≤i≤n|vi

1−vi
2| (v1, v2

are two vectors of length n), otherwise it is unstable.

It is noteworthy that in most cases, a value of t high enough is sufficient to obtain
Dismin(τ0(t), τ) = 0, without needing a limit computation. This definition of stability is
illustrated in Fig 3.10 by a 2-dimensional stable limit cycle.

3.3.1 Continuity in the Neighborhood of Periodic Hybrid Tra-
jectories

We call neighborhood of a hybrid trajectory a union of neighborhoods in the same
discrete state of all the hybrid states in this hybrid trajectory. A periodic hybrid trajectory
is said to respect the continuity of neighborhood if there exists a neighborhood of this
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Figure 3.10 – Illustration of Definition 9 (Stability of limit cycles in HGRNs).
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Figure 3.11 – The sequence of turning states of a periodic hybrid trajectory τ : Ts(τ) =
(h1, h2, ..., h9).

hybrid trajectory that is small enough so that all hybrid trajectories starting from this
neighborhood remain in this neighborhood. The continuity of neighborhood is formally
defined after the following definitions.

Definition 10 (Neighborhood in the same discrete domain) The neighborhood in
the same discrete domain of a hybrid state h = (π0, ds) is a set of hybrid states defined as:
ND(h, r) = {(π, ds) ∈ Di | d(π, π0) < r}, where Di is the discrete domain which includes
h.

Definition 11 (Turning states of a periodic hybrid trajectory) Consider a peri-
odic hybrid trajectory τ , we can find a sequence of hybrid states on τ : (h1, h2, ..., hm),
such that each hi represents a hybrid state when τ reaches a new discrete domain and
there is a transition from hi to hi+1 where i ∈ {1, 2, ..., m− 1} and from hm to h1. All
hybrid states in this sequence are the turning states of τ and this sequence is called the
sequence of turning states of τ denoted by Ts(τ).

The sequence of turning states of a periodic hybrid trajectory is given in Fig 3.11.

Definition 12 (Continuity of neighborhood of a periodic hybrid trajectory)
The neighborhood of a periodic hybrid trajectory τ is continuous if for any neighborhood
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in the same discrete domain of a turning state h0 of τ : ND(h0, r0) and for any hybrid state
h1 on τ , there exists a small neighborhood in the same discrete state of h1: Nd(h1, r1),
such that all hybrid trajectories from Nd(h1, r1) will reach ND(h0, r0) in finite time.

When a periodic hybrid trajectory does not have continuity of neighborhood, some
hybrid trajectories in the neighborhood may undergo a “disruption” by touching another
boundary and thus follow another sequence of discrete states.

Without Assumption 1 and Assumption 2, some neighborhoods of a periodic hybrid
trajectory might not respect this continuity, no matter how small they are. For exam-
ple, consider a periodic hybrid trajectory that contains a transition ((1, 1), (a, b)) →
((0, 1), (a+1, b)), where the upper boundaries in the first and second dimensions of discrete
state ab are both output boundaries. In the neighborhood of ((1, 1), (a, b)), no matter how
small it is, we can always find a hybrid state from which the hybrid trajectory reaches the
boundary in the second dimension at first, and as it will reach a different discrete state,
it might never return to the neighborhood of this periodic hybrid trajectory.

We claim that Assumption 1 and Assumption 2 together constitute a sufficient condi-
tion for the continuity of neighborhood of any periodic hybrid trajectories in HGRNs. To
prove this, we give some definitions and propositions as follows.

Proposition 1 Consider a periodic hybrid trajectory τ with the sequence of turning states
Ts(τ) = (h1, h2, ..., hm). For any two adjacent turning states hi and hj (j = i + 1 if i ∈
{1, 2, ..., m− 1}, j = 1 if i = m), for any neighborhood in the same discrete domain of hj:
ND(hj, rj), if Assumption 1 and Assumption 2 are satisfied, there exists a neighborhood in
the same discrete domain of hi: ND(hi, ri), such that any hybrid trajectory from ND(hi, ri)
reaches directly ND(hj, rj) (we say that a hybrid trajectory reaches directly ND(hj, rj) if
it reaches a new boundary for the first time at a hybrid state that belongs to ND(hj, rj)).

Proposition 1 is illustrated in Fig 3.12.

Proof: If the transition between hi and hj is an instant transition, then hi and hj are
related to the same point in Euclidean space, with Assumption 2, we can easily prove this
proposition by choosing the same ND(hi, ri) as ND(hj, rj). In fact, without Assumption 2,
a priori, hi can be non-deterministic, in such case we do not have Proposition 1.

If the transition is not instant, without loss of generality, consider a 4-dimensional
example: hi = ((1, 0, π3

i , π4
i ), ds) and hj = ((1, π2

j , 1, π4
j ), ds). We suppose that the celerity
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Figure 3.12 – Illustration of Proposition 1. hi and hj are two adjacent turning states on
a periodic hybrid trajectory. Black boxes represent neighborhoods in the same discrete
domain of hi/hj that correspond to Proposition 1.
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related to this transition is (c1
s, c2

s, c3
s, c4

s) and we can see that there is a sliding mode in
the first dimension. The duration of this transition is noted as t0, we have:

1 = 1 + t0 × 0

π2
j = 0 + t0 × c2

s

π4
j = π4

i + t0 × c4
s

(3.9)

where
t0 = 1− π3

i

c3
s

. (3.10)

Any hybrid state from the neighborhood in the same discrete domain of hi can be
represented by h′

i = ((1, 0, π3
i + δ3, π4

i + δ4), ds). Suppose that the hybrid trajectory
from h′

i still reaches directly the discrete domain which includes hj at hybrid state
h′

j = ((1, π′2
j , 1, π′4

j ), ds). The duration of this new transition becomes:

t1 = 1− π3
i − δ3

c3
s

= 1− π3
i

c3
s

− δ3

c3
s

= t0 −
δ3

c3
s

. (3.11)

And

1 = 1 + t1 × 0

π′2
j = 0 + t1 × c2

s

π′4
j = π4

i + δ4 + t1 × c4
s

(3.12)

By combining Eq (3.9), Eq (3.11) and Eq (3.12), we have:

π′2
j = π2

j −
δ3

c3
s

× c2
s

π′4
j = π4

i + δ4 −
δ3

c3
s

× c4
s

(3.13)

To ensure that h′
j is included in ND(hj, rj), firstly these constraints must be satisfied:

| δ3

c3
s

× c2
s |< rj

| δ4 −
δ3

c3
s

× c4
s |< rj

(3.14)
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Secondly, we need to ensure that the hybrid trajectory from h′
i reaches the boundary

in the third dimension at first, so these constraints are also needed to be satisfied:

1− π3
i − δ3

c3
s

<
1− π4

i − δ4

c4
s

1− π3
i − δ3

c3
s

<
1− 0

c2
s

(3.15)

Here we suppose that c4
s is positive. We can derive from Eq (3.14) and Eq (3.15) by

using triangle inequality that a sufficient condition, for the constraints in Eq (3.14) and
Eq (3.15) to be satisfied, is:

| δ3 |< rj
| c3

s |
| c2

s |
| δ3 | + | δ4 |<

rj

max(1, |c4
s|

|c3
s|)

| δ3 | + | δ4 |<
1−π4

i

c4
s
− 1−π3

i

c3
s

max( 1
|c3

s| ,
1

|c4
s|)

| δ3 |<| c3
s | (

1
c2

s

− 1− π3
i

c3
s

)

(3.16)

From any hybrid state h′
i = ((1, 0, π3

i + δ3, π4
i + δ4), ds) that satisfies the above con-

straints (Eq (3.16)), the hybrid trajectory reaches directly ND(hj, rj). So any hybrid tra-
jectories from ND(hi, ri) reaches directly ND(hj, rj) if ri satisfies:

ri < min(rj
| c3

s |
| c2

s |
,
1
2

rj

max(1, |c4
s|

|c3
s|)

,
1
2

1−π4
i

c4
s
− 1−π3

i

c3
s

max( 1
|c3

s| ,
1

|c4
s|)

, | c3
s | (

1
c2

s

− 1− π3
i

c3
s

)) (3.17)

In the above demonstration, we consider a transition of a HGRN in four dimensions and
propose a method to find a ND(hi, ri) that satisfies the Proposition 1. The same method
can be used to find such a ND(hi, ri) in any HGRN in N dimension (the only difference
is that there will be more inequalities in Eq (3.14) and Eq (3.15)), if Assumption 1 and
Assumption 2 are satisfied. In fact, Assumption 1 ensures that the constraints on these
δ can be represented by some inequalities of the sum of absolute values of these δ (like
Eq (3.16)). If Assumption 1 is not satisfied, then we need stronger constraints on these δ

represented by linear equations. □
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Figure 3.13 – Illustration of Proposition 2. hi and hj are two turning states on a periodic
hybrid trajectory. Black boxes represent neighborhoods in the same discrete domain of
hi/hj that correspond to Proposition 2.

Proposition 2 Consider a periodic hybrid trajectory τ with the sequence of turning states
Ts(τ) = (h1, h2, ..., hm). For any two turning states hi and hj, for any neighborhood in the
same discrete domain of hj: ND(hj, rj), if Assumption 1 and Assumption 2 are satisfied,
there exists a neighborhood in the same discrete domain of hi: ND(hi, ri), such that all
hybrid trajectories from ND(hi, ri) reach by order all discrete domains between hi and
hj (the discrete domains containing respectively hi,hi+1,hi+2,...,hj−1,hj) and finally reach
ND(hj, rj).

Proposition 2 is illustrated in Fig 3.13.

Proof: Consider two turning states hi and hj, since τ is a periodic hybrid trajectory, we
can find turning states between hi and hj, noted as hi+1, hi+2, ..., hj−1, such that there
are non-instant or instant transitions between hk and hk+1, ∀k ∈ {i, i + 1, ..., j − 1}. (If
j < i, we can take hi as the first turning state in the series of turning states of τ and
renumber hj). Consider a neighborhood in the same discrete domain of hj: ND(hj, rj),
according to Proposition 1 we can find a neighborhood in the same discrete domain of
hj−1: ND(hj−1, rj−1), such that all hybrid trajectories from ND(hj−1, rj−1) reach directly
ND(hj, rj). Then, in the same way, we can find a neighborhood in the same discrete domain
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of hj−2: ND(hj−2, rj−2), such that all hybrid trajectories from ND(hj−2, rj−2) reach directly
ND(hj−1, rj−1). Using this backward method, we can finally find a neighborhood in the
same discrete domain of hi: ND(hi, ri), such that all hybrid trajectories from ND(hi, ri)
firstly reach ND(hi+1, ri+1), then reach ND(hi+2, ri+2), ..., and finally reach ND(hj, rj). □

Proposition 3 Consider a periodic hybrid trajectory τ with the sequence of turning states
Ts(τ) = (h1, h2, ..., hm). For any two adjacent turning states hi and hj (j = i + 1 if
i ∈ {1, 2, ..., m− 1}, j = 1 if i = m) such that the transition from hi to hj is a non-instant
transition (the hybrid trajectory from hi to hj is denoted by τi), for any neighborhood in
the same discrete domain of hj: ND(hj, rj) and for any hybrid state hk on τi (including
hi but not including hj), if Assumption 1 is satisfied, there exists a neighborhood in the
same discrete state of hk: Nd(hk, rk), such that all hybrid trajectories from Nd(hk, rk) reach
ND(hj, rj).

Proposition 3 is illustrated in Fig 3.14.

Proof: Consider two adjacent turning states: hi = ((1, 0, π3
i , π4

i ), ds) and hj =
((1, π2

j , 1, π4
j ), ds) (same example used in the proof of Proposition 1) and the neighbor-

hood in the same discrete domain of hj: ND(hj, rj).
Firstly, we consider hi. Any hybrid state in a neighborhood of the same discrete state of
hi can be represented by h′

i = ((1 + δ1, 0 + δ2, π3
i + δ3, π4

i + δ4), ds) (we can see that δ1

must be negative and δ2 must be positive). We suppose that the hybrid trajectory from
h′

i firstly reaches the upper boundary in the first dimension (an attractive boundary) at
the hybrid state h′′

i = ((1, 0+δ2− δ1c2
s

c1
s

, π3
i +δ3− δ1c3

s

c1
s

, π4
i +δ4− δ1c4

s

c1
s

), ds). To ensure that the
hybrid trajectory from h′′

i reaches ND(hj, rj), we can use the same method as in the proof
of Proposition 1 to get some inequalities of the sum of absolute values of these δ (like
Eq (3.16)) and we call these linear inequalities Constraint 1. To ensure that the hybrid
trajectory from h′

i firstly reaches the upper boundary in the first dimension, the following
inequalities must be satisfied:

−δ1

c1
s

<
1− δ2

c2
s

−δ1

c1
s

<
1− δ3 − π3

i

c3
s

−δ1

c1
s

<
1− δ4 − π4

i

c4
s

(3.18)
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Figure 3.14 – Illustration of Proposition 3. hi and hj are two adjacent turning states
on a periodic hybrid trajectory. hk is a hybrid state on the hybrid trajectory from hi

to hj. Black box represents a neighborhood in the same discrete domain of hj and blue
box represents a neighborhood in the same discrete state of hk. These neighborhoods
correspond to Proposition 3.
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By using triangle inequality, we can get a sufficient condition of Equation 3.18, de-
scribed by inequalities of the sum of absolute values of these δ:

| δ1 | + | δ2 |<
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s

max( 1
|c1

s| ,
1

|c2
s|)

| δ1 | + | δ3 |<
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i
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max( 1
|c1

s| ,
1

|c3
s|)

| δ1 | + | δ4 |<
1−π4

i

c4
s

max( 1
|c1

s| ,
1

|c4
s|)

(3.19)

These inequalities are called Constraint 2.
By combing Constraint 1 and Constraint 2, same as in the proof of Proposition 1 ,we

can get a Nd(hi, ri) such that all hybrid trajectories from Nd(hi, ri) reach ND(hj, rj). In
this example, there is only one sliding boundary (the first dimension) between hi and hj.
If there are several sliding boundaries, to compute the constraints of δ, we need to ensure
that any of these sliding boundaries is reached before any non sliding boundary, so there
will be more inequalities in Eq (3.18). But we can always find a sufficient condition of
these inequalities which is described by inequalities of the sum of absolute values of these
δ.

For any other hybrid state hk in τi (not including hj), we can use exactly the same
method to find such a Nd(hk, rk). □

Proposition 4 Consider a periodic hybrid trajectory τ with the sequence of turning
states Ts(τ) = (h1, h2, ..., hm). hi0 , hi0+1, ..., hj0 is a sequence in Ts(τ) such that ∀i ∈
{i0, i0 + 1, ..., j0 − 2} the transition from hi to hi+1 is an instant transition and the tran-
sition from hj0−1 to hj0 is a non-instant transition (such sequence exists because in this
chapter we do not consider periodic hybrid trajectories with only instant transitions). For
any neighborhood in the same discrete domain of hj0: ND(hj0 , rj0) and for any hybrid
state hi, i ∈ {i0, i0 + 1, ..., j0 − 2}, if Assumption 1 and Assumption 2 are satisfied, then
there exists a neighborhood in the same discrete state of hi: Nd(hi, ri), such that all hybrid
trajectories from Nd(hi, ri) reach ND(hj0 , rj0).

Proof: Without loss of generality, we consider four turning states h1, h2, h3, h4, where
h1 = (π1 = (1, 1, 1, π4

1), ds1 = (a, b, c, d)), h2 = (π2 = (0, 1, 1, π4
1), ds2 = (a + 1, b, c, d)),
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h3 = (π3 = (0, 0, 1, π4
1), ds3 = (a+1, b+1, c, d)), h4 = (π4 = (π1

4, π2
4, π3

4, 1), ds3 = (a+1, b+
1, c, d)). We can see that there is an instant transition from h1 to h2 which crosses the
upper boundary in the first dimension, an instant transition from h2 to h3 which crosses
the upper boundary in the second dimension and a non-instant transition from h3 to h4.
The celerity vector of ds1 is cs1 = (c1

s, c2
s, c3

s, c4
s) and we suppose that all values in cs1 are

positive. The celerity vector of ds2 is cs1 = (c1′
s , c2′

s , c3
s, c4

s) and we also suppose that c1′
s and

c2′
s are positive. Consider the neighborhood in the same discrete domain of h4: ND(h4, r4).

Any hybrid state in the neighborhood in the same discrete state of h1 can be represented
by h′

1 = (π′
1 = (1 + δ1, 1 + δ2, 1 + δ3, π4

1 + δ4), ds1 = (a, b, c, d)).
We suppose that in ds1 , the upper boundaries in the second and third dimension

are attractive boundaries and the upper boundary in the fourth dimension is an output
boundary (there is only one reached output boundary because of Assumption 2). After
the upper boundary e1 in the first dimension in ds1 is crossed, in ds2 the upper boundary
e2 in the second dimension becomes an output boundary (e1 is related to a threshold of
first gene that influences the second gene), so e2 is crossed by the hybrid trajectory.

We want that the hybrid trajectory from h′
1 will firstly cross the upper boundary in

the first dimension and then cross the upper boundary in the second dimension. To ensure
this, we only need to ensure that e1 and e2 are reached before the upper boundary e4 in
the fourth dimension is reached. We do not need to ensure that e1 is reached before e2

because e2 is an attractive boundary. We need to satisfy the following constraints:

−δ1
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s

<
1− δ4 − π4

i

c4
s

− δ2

min(c2
s, c2′

s ) <
1− δ4 − π4

i

c4
s

(3.20)

A sufficient condition, for these constraints, represented by inequalities of the sum of
absolute values of δ, to be satisfied, is:
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1
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(3.21)

This condition is noted Constraint 1.
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After the hybrid trajectory from h′
1 crosses e2, the hybrid state can be represented by

h′
3 = (π′

3 = (0 + ∆1, 0, 1 + ∆3, π4
1 + ∆4), ds3 = (a + 1, b + 1, c, d)) where ∆1, ∆3 and ∆4

are linear combinations of δ1, δ2, δ3 and δ4. To ensure that the hybrid trajectory from
h′

3 reaches ND(h4, r4), using a similar method as in the proof of Proposition 3, we can
get constraints represented by inequalities of the sum of absolute values of these δ (like
Eq (3.16)). By combining these constraints with Constraint 1, we can get Nd(h1, r1) such
that all hybrid trajectories from Nd(h1, r1) reach ND(h4, r4).

The above demonstration only considers one specific example, but this method can be
used to find such Nd(hi, ri) in any case if Assumption 1 and Assumption 2 are satisfied.
In this example, we consider a sequence of two instant transitions. If there is a sequence
of N instant transitions, we only need to ensure that any boundary, that is crossed in the
sequence, is reached before any other boundary is reached, so we have more inequalities
in Eq (3.20). □

Now based on the above propositions, we have the following theorem.

Theorem 2 The neighborhood of a periodic hybrid trajectory is continuous if Assump-
tion 1 and Assumption 2 are satisfied.

Proof: Consider any neighborhood in the same discrete domain of a turning state h0 of
τ : ND(h0, r0) and consider any h1 on τ .

If h1 is not a turning state of τ , then we can find two adjacent turning states hi and hj

such that there is a non-instant transition between hi and hj (a straight hybrid trajectory)
and h1 belongs to this straight hybrid trajectory. According to Proposition 2, we can
find a neighborhood in the same discrete domain of hj: ND(hj, rj), such that all hybrid
trajectories from ND(hj, rj) will finally reach ND(h0, r0). Then according to Proposition 3,
we can find a neighborhood in the same discrete state of h1: Nd(h1, r1), such that all hybrid
trajectories from Nd(h1, r1) will reach ND(hj, rj). So all hybrid trajectories from Nd(h1, r1)
will firstly reach ND(hj, rj) and finally reach ND(h0, r0).

If h1 is a turning state of τ and the transition following h1 is a non-instant transition,
that means that there is a straight hybrid trajectory from h1 that reaches the next turning
state h2. Then, same as the previous case, we can find a neighborhood in the same discrete
state of h1: Nd(h1, r1), such that all hybrid trajectories from Nd(h1, r1) will finally reach
ND(h0, r0).

If h1 is a turning state of Cτ and the transition following h1 is an instant transition,
that means that the hybrid trajectory from h1 firstly crosses a boundary and reaches the
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next turning state h2. We note hj as the first turning state after h2 such that the transition
before hj is a non-instant transition. According to Proposition 2, we can find a neighbor-
hood in the same discrete domain of hj: ND(hj, rj), such that all hybrid trajectories from
ND(hj, rj) will finally reach ND(h0, r0). Then according to Proposition 4, we can find a
neighborhood in the same discrete state of h1: Nd(h1, r1), such that all hybrid trajectories
from Nd(h1, r1) will reach ND(hj, rj). So all hybrid trajectories from Nd(h1, r1) will firstly
reach ND(hj, rj) and finally reach ND(h0, r0).

Now we have proved that for any h1 in τ , we can find a neighborhood in the same
discrete state of h1: Nd(h1, r1), such that all hybrid trajectories from Nd(h1, r1) will finally
reach ND(h0, r0). So the neighborhood of τ is continuous.

□

3.3.2 Eigenanalysis

In this subsection, we present our method to analyze the stability of limit cy-
cles. Consider a periodic hybrid trajectory τ inside the closed discrete trajectory T =
(D1,D2, ...Dm,D1). Suppose that τ reaches D1 at h = (π, ds1), thus we have:

π = s−1(MT s(π)) (3.22)

For π, there might be some dimensions in which the values are 0 or 1 because in these
dimensions the upper or lower boundaries are reached. If we only consider the dimensions
in which the boundaries are not reached, Eq (3.22) becomes:

x = Ax + b (3.23)

where x, called the reduction vector of h (denoted by x = r(h)), is a short version of π

which only contains the dimensions in which the boundaries are not reached. The matrix
A is called the reduction matrix of T and vector b is called the constant vector of T . Based
on the concept of reduction vector, the compatible zone of a sequence of discrete domains
T = (D0,D1,D2, ...,Dm) can be described by S = {(π, ds0) ∈ D0 | r(π) ∈ Sr} where Sr,
called the reduction compatible zone, is a set of reduction vectors of hybrid states in D0.

If the length of x is not 0, meaning that D1 does not contain only a singular hybrid
state (a counter example is the discrete domain 1+1+ in Fig 3.5 which contains only a
singular hybrid state), then the stability analysis method of the limit cycles is based on
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Theorem 3.

Theorem 3 Consider a periodic hybrid trajectory τ inside the closed discrete trajectory
T = (D1,D2, ...Dm,D1), and λ1, λ2, ..., λp the eigenvalues of the reduction matrix A of T .

— If maxi∈{1,2,...,p}|λi| < 1 then τ is a stable limit cycle.
— If maxi∈{1,2,...,p}|λi| > 1 then τ is an unstable limit cycle.
— If maxi∈{1,2,...,p}|λi| = 1 and ∃i0 ∈ {1, 2, ..., p} , |λi0| < 1, then τ is an unstable limit

cycle.
— If ∀i ∈ {1, 2, ..., p} , |λi| = 1, then τ is not a limit cycle.

Proof: Consider a periodic hybrid trajectory τ that exists inside a closed discrete tra-
jectory T . The intersection of τ with the chosen Poincaré section e is h0 = (π0, ds0). The
Poincaré map is noted as xk+1 = Axk + b, where x is the reduction vector of the hybrid
states in the compatible zone of T (x0 = r(h0)). The stability of the fixed point(s) of the
system xk+1 = Axk + b depends on the eigenvalues of A.

If the absolute values of all eigenvalues of A are less than 1, then x0 is asymptotically
stable for the system xk+1 = Axk + b. And since the neighborhood of τ is continuous, we
can find a small neighborhood in the same discrete domain of h0: ND(h0, r0), such that
any hybrid trajectory from ND(h0, r0) stays inside the neighborhood of τ and converges
asymptotically to or reaches τ . Also, based on the fact that the neighborhood of τ is
continuous, for any hybrid state h′ on τ , we can find a neighborhood in the same discrete
state of h′: Nd(h′, r), such that any hybrid trajectory from Nd(h′, r) reaches ND(h0, r0).
Thus, for any hybrid trajectory τ ′ from Nd(h′, r), we have: limt→∞ Dismin(τ ′(t), τ) = 0,
which proves that τ is a stable limit cycle.

If the maximum absolute value of all eigenvalues of A is greater than 1, then x0 is
unstable for system xk+1 = Axk + b, so we can always find a hybrid trajectory from any
small neighborhood in the same discrete domain of h0 that does not converge to or reach
τ . Therefore, τ is unstable.

If the maximum absolute value of all eigenvalues of A is 1 and there is at least one
eigenvalue that differs from 1, then in any small neighborhood in the same discrete domain
of h0, we can find hybrid trajectories that do not converge to or reach τ (which might
converge to or reach another limit cycle), so τ is unstable.

If the absolute values of all eigenvalues are 1, then all hybrid trajectories from any
small neighborhood in the same discrete domain of h0 are periodic hybrid trajectories
(like Fig 3.4), so τ is not a limit cycle.
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Figure 3.15 – Example of a limit cycle inside a sequence of discrete domains where each
discrete domain contains only a singular hybrid state.

□

In case that the length of x is 0, in other words D1 contains only a singular hybrid
state, if there exists i ∈ {1, 2, ..., m} such that Di does not contain only a singular hybrid
state, then Di can be chosen as the new D1 to apply Theorem 3. If any discrete domain in
this sequence contains only a singular hybrid state (see the example in Fig 3.15), then we
have directly that τ is a stable limit cycle because the neighborhood of τ is continuous.

3.4 Applications

In this section, we apply the above limit cycle analysis method on three HGRNs of
negative feedback loop in 3 dimensions and one HGRN of cell cycle in 5 dimensions. The
negative feedback loop in 3 dimensions can be used to describe real biological oscillators,
for example the p53 system [41]. The signs of the celerities in these three HGRNs are
determined by the influence graph (positive for an activation and negative for an inhibi-
tion) and their absolute values of celerities are randomly selected. The parameters of the
HGRN in 5 dimensions are generated randomly respecting the constraints in Table 3 of
[10]. The influence graphs of both systems can be found in Fig 3.16. Details about the
implementation can be found at https://doi.org/10.5281/zenodo.6524936.
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Figure 3.16 – Left: Influence graph of a negative feedback loop with 3 genes, used to build
three models given in Table 3.1. Right: Influence graph of a cell cycle model with 5 genes
from [10]; the multiplex (m) expresses constrains on the joint activation of En and Ep on
B.

Table 3.1 – Parameters of the three HGRNs of negative feedback loop in 3 dimensions.
Left: First model. Middle: Second model. Right: Third model.

A B C CA CB CC

0 0 0 1 -0.6 -0.7
0 0 1 1 0.7 -0.9
0 1 0 -0.8 -0.8 -0.7
0 1 1 -0.8 0.6 -0.9
1 0 0 0.7 -0.6 0.6
1 0 1 0.7 0.7 0.5
1 1 0 -0.9 -0.8 0.6
1 1 1 -0.9 0.6 0.5

A B C CA CB CC

0 0 0 3 -0.6 -0.7
0 0 1 3 0.7 -2.9
0 1 0 -2.8 -0.8 -0.7
0 1 1 -2.8 0.6 -2.9
1 0 0 2.7 -0.6 2.6
1 0 1 2.7 0.7 0.5
1 1 0 -2.9 -0.8 2.6
1 1 1 -2.9 0.6 0.5

A B C CA CB CC

0 0 0 3 -0.6 -0.7
0 0 1 3 0.7 -2.9
0 1 0 -0.8 -0.8 -0.7
0 1 1 -0.8 0.6 -2.9
1 0 0 0.7 -0.6 2.6
1 0 1 0.7 0.7 0.5
1 1 0 -2.9 -0.8 2.6
1 1 1 -2.9 0.6 0.5

3.4.1 3-dimensional Models of Negative Feedback Loop

The parameters of these three HGRNs of negative feedback loop in 3 dimensions are
shown in Table 3.1. The signs of the celerities in these three models are the same so they
have the same graph of discrete states. There is only one cycle of discrete states in each
of these systems, which is:
111 −→ 011 −→ 010 −→ 000 −→ 100 −→ 101 −→ 111
Therefore, for these three models, we choose the input boundary e of 000 in the cycle as
the Poincaré section. Simulations depicting the convergence to the stable cycle or to the
fixed point (see below) in these three HGRNs are shown in Fig 3.17.

In the first HGRN, by using our limit cycle analysis method, we find one sta-
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ble limit cycle and one periodic hybrid trajectory which only contains instant tran-
sitions, which is considered here as a fixed point of this system. Regarding the
stable limit cycle, the fixed point of this limit cycle in discrete domain 0−0+0 is

((0, 1, 0.125), (0, 0, 0)), the transition matrix is


0 0 0 0
0 0 0 1
0 0 0 0.125
0 0 0 1

 , the compatible zone

is {(π, (0, 0, 0)) | π1 = 0, π2 = 1, π3 ∈]0, 0.7[} and the reduction matrix is
[
0

]
, therefore

hybrid trajectories from the neighborhood of this limit cycle will reach this limit cycle
very quickly (less than one turn if the neighborhood is small enough).

In this HGRN we can also prove that all hybrid trajectories will reach this limit cycle
except hybrid trajectories which can reach the fixed point of the system. All discrete
trajectories which begin from the Poincaré section and return to the Poincaré section
in this HGRN are shown in Fig 3.18 A. Since in this HGRN there is only one cycle of
discrete states which is also a global attractor, any hybrid trajectory from the Poincaré
section must return to the Poincaré section and it must begin from the compatible zone
or the boundary of the compatible zone of one of the discrete trajectories in Fig 3.18 A.
We see that all discrete trajectories which are not closed will finally reach closed discrete
trajectories (31, 32, 33, 9, 10). Discrete trajectories 31, 32 and 33 have the same transition
matrix and their reduction matrix is

[
0

]
so any hybrid trajectory from 0−0+0 will reach

the limit cycle. For the discrete trajectory 10, the two eigenvalues of the reduction matrix
are 7.0306 and 0.0368, so hybrid trajectories inside discrete trajectory 10 will finally leave
the compatible zone and reach 0−0+0. An example of such hybrid trajectory is illustrated
in Fig 3.19, this hybrid trajectory starts at the hybrid state h1 on the Poincaré section
and returns to the Poincaré section for the first time at hybrid state h2. The compatible
zone of the discrete trajectory 10 is illustrated by the red triangle (not including the
boundaries) and v1 and v2 represent the two eigenvectors. Since the absolute value of the
first eigenvalue is bigger than 1 and the absolute value of the second eigenvalue is smaller
than 1, h2 is farther from the up-right corner (which is a fixed point on the Poincaré
section) in the direction of v1 and is closer to the up-right corner in the direction of v2, so
this hybrid trajectory leaves the compatible zone of the closed discrete trajectory 10 and
reaches the compatible zone of the closed discrete trajectory 11. From here, we can see
that any hybrid trajectories from the Poincaré section will reach the limit cycle except
the hybrid trajectory inside discrete trajectory 9 which is related to a fixed point. As
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Figure 3.17 – Illustration of stable limit cycles and stable fixed point in HGRNs in 3
dimensions. A: Stable limit cycle in the first HGRN. B: Stable limit cycle in the second
HGRN. C: Stable fixed point in the third HGRN.

any hybrid trajectory in this system will finally reach this Poincaré section, all hybrid
trajectories will reach this limit cycle except hybrid trajectories which can reach the fixed
point.

For the second HGRN, by using our method, we can also find one stable limit cycle
and one fixed point. Unlike the first HGRN, hybrid trajectories from the neighborhood
of the limit cycle converge asymptotically to the limit cycle: The limit cycle is inside the
discrete trajectory which begins from 0−0+0 and the reduction matrix of the limit cycle
is

[
0.0298

]
. We can also prove that all hybrid trajectories will converge to this limit cycle

except hybrid trajectories which can reach the fixed point, by using the same method as
for the first HGRN.

Contrary to the first and the second HGRN, we cannot find a limit cycle in the third
HGRN but only a fixed point which is related to the discrete trajectory 2 in Fig 3.18 C.
For the discrete trajectories 3 and 4, the fixed point of the Poincaré map of discrete
trajectories 4 is strictly inside the compatible zone of discrete trajectory 3, the fixed point
of the Poincaré map of the discrete trajectory 3 is the fixed point of this HGRN and
the absolute values of all eigenvalues of the reduction matrix of discrete trajectories 3
and 4 are strictly inferior than 1 (the two eigenvalues of the reduction matrix of discrete
trajectory 3 are 0.3091 and 0.0062, and the two eigenvalues of the reduction matrix of
the discrete trajectory 4 are 0 and 0.1269), so we can prove that all hybrid trajectories in
this system will converge to the fixed point. An illustration of this fixed point is given in
Fig 3.17 C.
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Figure 3.18 – Abstracted representations of the chosen Poincaré sections in the HGRNs
in 3 dimensions, illustrating all possible discrete trajectories which start from and return
to this Poincaré section. The blue dots represent the discrete domains and each arrow
depicts one or several different discrete trajectories (each following a unique sequence of
discrete domains). A: First HGRN. B: Second HGRN. C: Third HGRN.

3.4.2 5-dimensional Model of Cell Cycle

For the HGRN in 5 dimensions, the transition graph of discrete states is more complex
(Fig 3.20). By using a depth first algorithm, we find that there are 1104 cycles of discrete
states in which 930 cycles contain the discrete transition 01010 −→ 01011, 94 cycles contain
00011 −→ 01011 and all the rest contain 00110 −→ 00010. So for this system, we use 3
Poincaré sections which are the input boundary of 01011 between 01010 and 01011, the
input boundary of 01011 between 00011 and 01011 and the input boundary of 00010
between 00110 and 00010. Any limit cycle of this system must cross one of these Poincaré
sections. By using the method above, we find 184 closed discrete trajectories which cross
the first Poincaré section, among these 184 closed discrete trajectories, there is only one
stable limit cycle; we find 50 closed discrete trajectories which cross the second Poincaré
section, these 50 closed discrete trajectories do not contain any limit cycle; and we find
111 closed discrete trajectories which cross the third Poincaré section, among these 111
closed discrete trajectories, there is one stable limit cycle and one unstable limit cycle. In
fact, these two stable limit cycles are the same which crosses both the first and the third
Poincaré sections. This stable limit cycle is the same one studied in [10] to calculate the
constraints of parameters. The simulations of both cycles are shown in Fig 3.21 A and B.
For now we have not identified any biological behavior related to this unstable limit cycle
yet.
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Figure 3.19 – Illustration of a hybrid trajectory inside the closed discrete trajectory 10
in Fig 3.18 A on the Poincaré section. Red triangle represents the compatible zone (not
including boundaries). v1 and v2 represent the two eigenvectors. Hybrid trajectory from
hybrid state h1 on the compatible zone returns to the Poincaré section at hybrid state h2.

For the stable limit cycle of the cell cycle model, the fixed point of this limit cycle in
the discrete domain 01+01+1− is ((0.3714, 1, 0.8581, 1, 0), (0, 1, 0, 1, 1)), and the reduction

matrix is
0 0
0 0

.

For the unstable limit cycle of cell cycle model, the fixed point of this limit cycle in the
discrete domain 000+10− is ((0.6375, 0.2552, 1, 0.3472, 0), (0, 0, 0, 1, 0)), and the reduction

matrix A is


4.95359512 · 103 0 1.37489884 · 10−13

−5.25996267 · 102 0 −1.45993292 · 10−14

−7.15619779 · 102 0 −1.98624389 · 10−14

. The eigenvalues of A are 0,

4.95359512 · 103 and 3.15544362 · 10−30, making it unstable.

The current implementation in Python reaches its limits with respect to execution
time when the size of the system increases: Finding the limit cycles above takes less than
one minute for the HGRNs in 3 dimensions, and 8 hours for the HGRN in 5 dimensions 1.

1. Computations were performed on a standard laptop computer, with an Intel Core I7-8550U 1.80GHz
processor and 16.0GB RAM.
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Figure 3.20 – Transition graph of discrete states of the HGRN of cell cycle in 5 dimensions.
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Figure 3.21 – Simulation of the two limit cycles found in the HGRN of 5 dimensions. A:
Stable limit cycle. B: Unstable limit cycle.

3.5 Summary

This chapter presented a method to find all limit cycles of HGRNs with some minor
restrictions, mainly to remove non-deterministic behaviors and complex loops, and to
analyze their stability. This method is the first one to find and analyze limit cycles of
HGRNs in N dimensions. We showed the merits of this method on randomly generated
HGRNs of a negative feedback loop with 3 components and a HGRN of the cell cycle
with 5 components taken from the literature.

As stated above, a first limitation of this method is that we do not handle complex
periodic hybrid trajectories which are periodic hybrid trajectories crossing a discrete state
for more than once in one period. Such periodic hybrid trajectories are not considered
because they are hard to enumerate.

Another limitation in the application of this method is that we first need to construct
a HGRN of a specific gene regulatory network; however, the observation of real biological
systems is limited and it is not always possible to determine all parameters. In some
cases, some parameters can only be described by constraints, or remain unknown. Thus,
considering extensions of this method that are parameterized or that take into account a
set of constraints on parameters is of interest. Another work about analysis of oscillations
in a parameterized HGRN of a specific network is presented in chapter 5.

In this chapter, we focused on the existence of limit cycles and their stability, which is
one way to describe the dynamical properties of a system. They are of particular interest
because they represent the long-term behaviors of the system. In the next chapter, we
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3.5. Summary

will continue to use the new concepts introduced in this chapter and present our analysis
method of reachability, which is an another kind of dynamical properties.
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Chapter 4

REACHABILITY ANALYSIS

In this chapter, a new reachability method on HGRNs is presented. The reachability
problem concerned in this chapter is, given a singular hybrid state and a region (a set of
hybrid states), to determine whether the hybrid trajectory from this singular hybrid state
will reach this region. This problem is undecidable for general hybrid automata, and is
known to be decidable only for a restricted class of hybrid automata, but this restricted
class does not include HGRNs. So, a priori, this reachability problem in HGRNs is not
decidable; however, we find that it is decidable in some cases. Based on this fact, the main
idea of this work is that if the decidable cases can be determined automatically, then the
reachability problem can be solved partially. The method of this chapter relies on the
concepts introduced in the previous chapter, e.g., transition matrix, discrete domain,
compatible zone, etc. The two major contributions are the following: firstly, we classify
hybrid trajectories into different classes and provide theoretical results about decidability;
then based on these theoretical results, we propose a reachability analysis algorithm which
always stops in finite time and answers partially the reachability problem, meaning that it
gives the correct answer if it is not inconclusive. Finally, by applying our implementation
of this method on a 5-dimensional HGRN of cell cycle, we show a potential application
of this method to estimate the basin of attraction. This work has been presented at RP
2023 as regular paper [14].

4.1 Problem Statement

One important question concerning the analysis of dynamical system is reachability:
Whether a certain state (or set of states) is reachable from an initial state (or set of states),
which is widely used to describe the dynamical properties of gene regulatory networks [42,
43].

Reachability analysis methods have been studied on different formalisms, mainly on
discrete systems [44–46] and hybrid systems [23, 42, 47–51]. In this chapter, we study a
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Figure 4.1 – Illustration of Problem 1 and hybrid trajectory halting in finite time. Red
arrows represent the hybrid trajectory from hini. The blue rectangle represents Rtarget.

reachability analysis method of HGRNs.
There are generally two kinds of reachability problems in hybrid systems: The first

one is, given two states (or sets of states) A and B, to determine whether trajectories (or
a trajectory) from A reach(es) B [23, 48, 51, 52]; the second one is to compute all states
reachable from certain initial states [49, 50, 53, 54]. The reachability problem concerned in
this chapter belongs to the first case, which is to determine whether the hybrid trajectory
from certain hybrid state can reach a certain region (a set of hybrid states) with the
restriction that we only consider single hybrid trajectories, that is, starting from a single
hybrid state and avoiding any non-determinism. The reachability problem of this work is
defined formally as follows, where we assume that the system has N genes (N dimensions).

Problem 1 (Reachability) Consider a hybrid state hini = (πini, dsini
) and a region

Rtarget =
{
(π, dstarget) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}

}
, where ∀i ∈ {1, 2, ..., N} , ai, bi ∈ R

and 0 ≤ ai ≤ bi ≤ 1. Does the hybrid trajectory τ from hini enter the region Rtarget? In
other words, does there exist t0 such that τ(t0) ∈ Rtarget?

Problem 1 is illustrated in the examples of Fig 4.1, where the initial hybrid state of
the hybrid trajectory (the hybrid trajectory is illustrated by red arrows) is hini and the
blue rectangle represents Rtarget.

The following assumptions are made in this chapter.

68



4.1. Problem Statement

Assumption 3 For any sequence of discrete domains T of which the compatible zone is
not empty, we assume that all eigenvalues of the reduction matrix of T are real.

For now, we have not found a reduction matrix with complex eigenvalues. For the defini-
tion of reduction matrix, see Section 3.3.2.

Assumption 4 The hybrid trajectory from hini has no non-deterministic behavior.

Generally, hybrid trajectories with non-deterministic behaviors exist, but among state-of-
the-art HGRNs of gene regulatory networks, the probability of a randomly chosen initial
hybrid state that leads to non-deterministic behaviors is almost 0. Therefore, we ignore
this kind of hybrid trajectory in this chapter. Actually, the method of this work could also
be adapted for non-deterministic hybrid trajectories (each time when a non-deterministic
hybrid state is reached, the current hybrid trajectory splits into two or several hybrid
trajectories, and the same method is applied on each of these new hybrid trajectories).

Assumption 5 Any non-instant transition on a limit cycle does not reach more than one
new boundary at the same time.

This assumption is very similar to Assumption 1 in Chapter 3. In fact, Assumption 5 is
less restrictive than Assumption 1, because there exist periodic hybrid trajectories that
are not limit cycles and have non-instant transition reaching more than one new boundary
at the same time; HGRNs with such periodic hybrid trajectories are ignored in Chapter 3
but are not ignored in this chapter.

In this chapter, we mainly focus on the decidability problem, that is, whether we can
find an algorithm to determine the reachability problem such that this algorithm always
stops in finite time and gives a correct answer.

The decidability problem among some hybrid systems that are close to HGRNs has
been investigated in the literature. It has been proved that, for PCD systems (Piecewise-
Constant Derivative systems), it is decidable in 2 dimensions [22] but it is undecidable
in 3 dimensions [23]. For general hybrid automata, there exists a restricted class called
initialized rectangular automata which is decidable in any dimension [47], but this class
does not include HGRNs.

Up to now, there is no theoretical result of the decidability of the reachability problem
on HGRNs. A priori, we can expect that it is not decidable because of the existence of
chaos. However, if we can show that it is decidable in certain cases, for example, when
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the hybrid trajectory considered in a reachability problem converges asymptotically to
a n-dimensional limit cycle, and if these cases can be identified automatically, then the
reachability problem can be answered partially. Based on this idea, we classified the hybrid
trajectories of HGRNs into different classes which are introduced in the next section.

4.2 Different Classes of Hybrid Trajectories

We classify hybrid trajectories of HGRNs into three classes: Hybrid trajectories halting
in finite time, hybrid trajectories attracted by cycles of discrete domains and chaotic
hybrid trajectories, which are introduced as follows.

4.2.1 Hybrid Trajectories Halting in Finite Time

A hybrid trajectory τ is a hybrid trajectory halting in finite time if ∃t0 such that
the time derivative of τ(t0) is 0 in any dimension; in other words, τ(t0) is a fixed point.
Therefore, the discrete domains reached by a hybrid trajectory halting in finite time form a
finite sequence like (D1,D2, ...,Dm). The hybrid trajectory in Fig 4.1 is a hybrid trajectory
halting in finite time.

Theorem 4 Problem 1 is decidable if the hybrid trajectory from hini is a hybrid trajectory
halting in finite time.

Proof: In this case, the hybrid trajectory is a composition of a finite number of n-
dimensional “straight lines”; to verify if this hybrid trajectory reaches Rtarget, we only
need to verify if any of these “straight lines” crosses Rtarget, which can be verified in finite
time. □

4.2.2 Hybrid Trajectories Attracted by Cycles of Discrete Do-
mains

A hybrid trajectory τ is a hybrid trajectory attracted by a cycle of discrete do-
mains if ∃t0 such that after t0, τ always stays inside a cycle of discrete domains
CT = (D0,D1,D2, ...,Dp,D0), meaning that τ crosses this cycle for an infinite number
of times without leaving it. Intuitively, if a hybrid trajectory τ is attracted by a cy-
cle of discrete domains, then τ converges to or reaches a periodic hybrid trajectory. We

70



4.2. Different Classes of Hybrid Trajectories

Figure 4.2 – Illustration of hybrid trajectories attracted by cycles of discrete domains and
predecessor in the same discrete state. Blues rectangles represent Rtarget of Problem 1 and
blue boxes represent their predecessors in the same discrete state.

say that this periodic hybrid trajectory attracts τ . So the sequence of discrete domains
reached by a hybrid trajectory attracted by a cycle of discrete domains is of the form:
(D1,D2, ...,Dk, (Dk+1,Dk+2, ...,Dk+p)n), where the notation (Dk+1,Dk+2, ...,Dk+p)n means
that the sequence (Dk+1,Dk+2, ...,Dk+p) is repeated an infinite number of times.

In Fig 4.2, both hybrid trajectories are attracted by a cycle of discrete domains: Indeed,
these hybrid trajectories converge to the limit cycle in the center of the figure (which only
has instant transitions).

To prove the decidability of hybrid trajectories attracted by cycles of discrete domains,
we introduce the notion of predecessor in the same discrete state.

Definition 13 (Predecessor in the same discrete state) For any set of hybrid
states in the same discrete state defined by R = {(π, ds) | π ∈ E} where E ⊆ [0, 1]N

is a closed set, the predecessor of R in the same discrete state, noted by Preds(R), is the
union of sets of hybrid states: Preds(R) = ⋃

i∈{1,2,...,q} Zi, such that:
— ∀i ∈ {1, 2, ..., q}, ∃Di (a discrete domain) on an input boundary of ds, such that

Zi ⊆ Di.
— ∀i, j ∈ {1, 2, ..., q} , i ̸= j, Di and Dj are different discrete domains.
— ∀i ∈ {1, 2, ..., q}, ∀h ∈ Zi, the hybrid trajectory τ from h (that is, τ(0) = h) first

reaches R at t0 (that is, τ(t0) ∈ R and ∀t ∈ [0, t0[, τ(t) /∈ R) and the restriction
of τ on [0, t0] is inside the discrete state ds (that is, ∀t ∈ [0, t0], τ(t) ∈ ds). In this
case, we also say that τ reaches τ(t0) ∈ R inside ds.

71



Chapter 4 – Reachability Analysis

— For any hybrid state h that belongs to an input boundary of ds but does not belong
to any Zi, the hybrid trajectory from h cannot reach any hybrid state of R inside
ds.

Examples of predecessors in the same discrete state are illustrated in Fig 4.2 where
blues rectangles represent Rtarget and blue boxes present their predecessors in the same
discrete state.

Proposition 5 Consider Problem 1, if the hybrid trajectory τ from hini has already
crossed at least one discrete state (we say τ has already crossed a discrete state at
t0 if there exists t < t0 such that τ(t0) and τ(t) do not belong to the same discrete
state) without reaching the region Rtarget, then Problem 1 is equivalent to “Does τ reach
Predstarget

(Rtarget)?”.

Proof: According to the Definition 13, we can easily see that if τ reaches
Predstarget

(Rtarget) then it must reach Rtarget. In case that Rtarget is reached by τ , the
only way that Predstarget

(Rtarget) is not reached by τ is that hini is also in the discrete
state dstarget and τ reaches directly Rtarget inside dstarget , however since we add the con-
dition “τ from hini has already crossed at least one discrete state without reaching the
region Rtarget”, this is not possible. So if Rtarget is reached by τ , then Predstarget

(Rtarget)
is also reached by τ . □

Based on Proposition 5, we give the following theorem.

Theorem 5 Problem 1 is decidable if the hybrid trajectory from hini is a hybrid trajectory
attracted by a cycle of discrete domains.

The idea of Theorem 5 can be explained intuitively by Fig 4.2. For better illustration,
the examples in Fig 4.2 has only two dimensions, but this idea can be generalized for
n-dimensional models.

In Fig 4.2 left, the hybrid trajectory which reaches hybrid state A, noted by τ , can
be considered as two hybrid trajectories: The first one is the part of τ before reaching
A and the second one is the part of τ after reaching A. This first one can be considered
as a hybrid trajectory halting in finite time so whether it reaches Rtarget is decidable,
and in this example it does not reach Rtarget. For the second one, these two following
statements can be verified automatically in finite time: 1. The intersection points between
this hybrid trajectory and the “right” boundary of discrete state 01 must be located in the
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line segment AB (because it converges to the limit cycle with only instant transitions); 2.
The line segment AB does not intersect with the predecessor of Rtarget in the same discrete
state (the predecessor is illustrated by blue boxes). Based on these two statements, we can
prove that this second part cannot reach Rtarget either. In this way, we prove theoretically
that Rtarget is not reached by τ , and since this process can be done automatically in finite
time, the problem is decidable. Note that in the general case, this “line segment AB” is
a (n−1)-dimensional region such that the hybrid trajectory always returns to this region
and this region does not intersect the predecessor of Rtarget in the same discrete state.

In Fig 4.2 right, it can be verified automatically in finite time that the limit cycle with
only instant transitions (at the center) reaches Rtarget, and that τ converges to this limit
cycle, so we can prove that τ finally reaches Rtarget, and this case is thus decidable too.

The formal proof of Theorem 5 is given as follows.

Proof: For a hybrid trajectory τ attracted by a cycle of discrete domains, ∃t0 such that
after t0, τ always stays in a cycle of discrete domains CT = (D0,D1,D2, ...,Dp,D0) and
before t0, τ has already crossed at least one discrete state. τ can be separated on two
hybrid trajectories by t0: The restriction of τ on time interval [0, t0], noted by τ[0,t0], and
the restriction of τ on time interval [t0,∞], noted by τ[t0,∞].

For the hybrid trajectory τ[0,t0], whether it reaches Rtarget is decidable, the proof is the
same as the proof of Theorem 4. If it reaches Rtarget, then it is reachable. And if it does
not reach Rtarget, then we need to consider τ[t0,∞].

For the hybrid trajectory τ[t0,∞], in case that τ[0,t0] does not reach Rtarget, accord-
ing to Proposition 5, whether τ[t0,∞] reaches Rtarget is equivalent to whether it reaches
Predstarget

(Rtarget) = ⋃
i∈{1,2,...,q} Zi. If ∀i ∈ {0, 1, 2, ..., p}, ∀j ∈ {1, 2, 3, ..., q}, Zj ̸⊆ Di,

then Predstarget
(Rtarget) is not reachable. Otherwise, if ∃i0 ∈ {0, 1, 2, ..., p} and ∃j0 ∈

{1, 2, 3, ..., q}, such that Zj0 ⊆ Di0 , then to verify if Zj0 is reachable, we need to consider
the relation between the intersection points of τ[t0,∞] with Di0 noted by an infinite se-
quence of hybrid states (hp1, hp2, ...) and Zj0 as follows. When a hybrid trajectory reaches
a discrete domain, it might slide inside this discrete domain, in this case, based on the
general meaning of "intersection", the intersection points of this hybrid trajectory and this
discrete domain are not singular points. In this chapter, we define that the intersection
points between a hybrid trajectory and a discrete domain are the points where the hybrid
trajectory just reaches the discrete domain.

Since τ always stays inside this cycle of discrete domains, the sequence (hp1, hp2, ...)
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converges asymptotically to a hybrid state or reaches a hybrid state which belongs to the
closure of the compatible zone of CT . For both cases, this particular hybrid state is noted
by h∞.

If h∞ ∈ Zj0 , then Predstarget
(Rtarget) is reachable. In case that h∞ is on the boundary

of Zj0 and the sequence (hp1, hp2, ...) converges asymptotically to h∞ without reaching
reaching directly Zj0 , Zj0 is also considered as reachable, which in fact is reached after
infinite times of intersections.

If h∞ /∈ Zj0 , then we can find a small neighborhood of h∞ inside Di0 , noted by Nh∞ ,
such that ∀h ∈ Nh∞ , h /∈ Zj0 . Since the sequence (hp1, hp2, ...) converges to h∞ or finally
reaches h∞, we can find n0 such that ∀n > n0, hpn ∈ Nh∞ . This means that after that
τ[t0,∞] reaches hpn0 , it will never reach Zj0 . So, in this case, to verify if Zj0 is reached,
we only need to verify if the finite sequence (hp1, hp2, ..., hpn0) ever reaches Zj0 , which is
decidable.

Now we see that, for a certain Zi, whether τ[t0,∞] reaches Zi or not is decidable. Since
Predstarget

(Rtarget) has a finite number of such Zi, whether τ[t0,∞] reaches Predstarget
(Rtarget)

is also decidable. □

From the above proof of Theorem 5, we can derive a method to check the reachability
of hybrid trajectories attracted by cycles of discrete domains, which is introduced later in
Section 4.3.

We also develop the following theorem to determine automatically whether a hybrid
trajectory is attracted by a cycle of discrete domains. In order to simplify this theorem,
for the cycle of discrete domains CT = (D0,D1,D2, ...,Dp,D0) and the hybrid state h0

considered in this theorem, we note that:
— The reduction matrix and the constant vector of CT are A and b respectively (the

reduction matrix and the constant vector are defined in Section 3.3.2).
— The reduction compatible zone of CT is described by linear constraints
{x | Wx > c} where c is a vector and W is a matrix. W is of size n0 × n1, where
n1 is the number of dimensions of r(h0) (r(h0) is the reduction vector of h0 which
is defined in Section 3.3.2). Wi is the ith line of matrix W (Wi is of size 1 × n1)
and ci is the ith component of vector c.

— r∞ = limn→∞ fn(r(h0)) where f(x) = Ax + b.
— The eigenvalues and eigenvectors of A are {λi | i ∈ {1, 2, ..., n1}} and {vi | i ∈
{1, 2, ..., n1}} respectively. λ1 is chosen as the eigenvalue with the maximum abso-
lute value among the eigenvalues that differ from 1.
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— The decomposition of r(h0)− r∞ in the directions of eigenvectors of the reduction
matrix A is noted as r(h0)− r∞ = ∑n1

i=1 αivi.

Theorem 6 A hybrid trajectory τ is attracted by a cycle of discrete domains if and
only if τ reaches h0 which belongs to the compatible zone of a cycle of discrete domains
CT = (D0,D1,D2, ...,Dp,D0) such that D0 has no free dimension (meaning that, in D0,
boundaries are reached in all dimensions) or the following conditions are satisfied.

— D0 has at least one free dimension.
— ∀i ∈ {1, 2, ..., n1}, |λi| ≤ 1 ∧ λi ̸= −1.
— ∀i ∈ {1, 2, ..., n0}, we have either Wir∞ = ci or Wir∞ > ci. We use Ie to represent

the maximum set of integers such that ∀i ∈ Ie, Wir∞ = ci and we use In to represent
the maximum set of integers such that ∀i ∈ In, Wir∞ > ci.

— If λ1 ̸= 0 (we assume that λ1 is unique if λ1 ̸= 0) and Ie is not empty, then λ1 is
positive.

— If λ1 ̸= 0, then ∀i ∈ Ie, ∀j ∈ {2, ..., n1} , |Wiv1α1| > n1|Wivjαj| (we ignore the case
where ∃i ∈ Ie, Wiv1 = 0).

— If λ1 ̸= 0, then ∀i ∈ In, maxβ∈{−1,1}n1∥
∑n1

j=1 βjαjvj∥2<
Wir∞−ci

∥Wi∥2
.

The main idea of Theorem 6 is illustrated in Fig 4.3 where the huge rectangle represents
a discrete domain D which has two free dimensions and the zone surrounded by dashed
lines represents the compatible zone S (which is a open set) of a certain cycle of discrete
domains CT . Each dashed line lci represents a linear constraint of the form wT x > c where
w, x are vectors and c is a real number. The fact that a hybrid trajectory τ is attracted
by CT is equivalent to the fact that the intersection points between τ and D, noted by
the sequence (h1, h2, ...), always stay inside S and converge to (λ1 ̸= 0) or reach (λ1 = 0)
h∞, which belongs to the closure of S. This idea of using the intersection points between
a hybrid trajectory and a hyperplan to study the properties of this hybrid trajectory is,
like the previous chapter, also based on Poincaré map.

Whether h∞ belongs to the closure of S or not can be easily verified by using these
linear constraints. A necessary condition for this sequence to always satisfy these linear
constraints is that the absolute values of all eigenvalues of the reduction matrix of CT

are less than or equal to 1. In case that these eigenvalues satisfy this necessary condition,
to verify if this sequence always satisfies these linear constraints, we separate these con-
straints on two classes: The first class contains all constraints which are not reached by h∞:
lc2, lc3, lc4, the second class contains all constraints which are reached by h∞: lc1, lc5. To ver-
ify if lc2, lc3, lc4 are always satisfied, we can verify if this sequence enters and stays in a circle
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Figure 4.3 – Illustration of the idea of Theorem 6. The surrounding rectangle represents a
discrete domain which has two free dimensions and the zone surrounded by dashed lines
represents the compatible zone of a certain cycle of discrete domains. v1 and v2 represent
the two eigenvectors of the reduction matrix of this cycle of discrete domains. h1, h2, ...
represent the intersection points between a hybrid trajectory and this discrete domain.

centered by h∞ which only contains hybrid states satisfying constraints lc2, lc3, lc4 (this is
related to the condition: If λ1 ̸= 0, then ∀i ∈ In, maxβ∈{−1,1}n1∥

∑n1
j=1 βjαjvj∥2<

Wir∞−ci

∥Wi∥2
).

Such circle can always be found if it is sufficiently small, for example: the circle in Fig 4.3.
To verify if lc1, lc5 are always satisfied, we can verify if this sequence is sufficiently “close”
to v1 which is the eigenvector related to the eigenvalue with the maximum absolute value
among the eigenvalues that differ from 1 and which also “points into” S (this is related to
the condition: If λ1 ̸= 0, then ∀i ∈ Ie,∀j ∈ {2, ..., n1} , |Wiv1α1| > n1|Wivjαj|). Here, suf-
ficiently “close” to v1 means intuitively that the angle between −−−→h∞hi and v1 is sufficiently
small.

The formal proof of Theorem 6 is given as follows.

Proof: The proof of the sufficiency part:
In the case that a hybrid trajectory τ is attracted by a cycle of discrete domains, then

after certain moment, τ will always stay in the same cycle of discrete domains, noted by
CT = (D0,D1,D2, ...,Dp,D0).

We consider, at first, the case that there is one Di of CT such that Di has at least one
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free dimension (meaning that there exists one dimension such that the boundaries are not
reached in this dimension), without loss of generality we assume that D0 has at least one
free dimension, so the first condition is satisfied.

A priori, we cannot ensure the second condition, because the decomposition of r(h0)−
r∞ in the directions of certain eigenvectors of the reduction matrix of CT can be zero and
these eigenvectors happen to be associated to eigenvalues of which the absolute values
are greater than 1, however this is extremely rare. So in this chapter we ignore this
case, and based on this assumption, we must have that for any eigenvalue λi, |λi| ≤
1, otherwise we cannot ensure that τ always stays inside this cycle, because if there
exists an eigenvalue such that |λi| > 1, then r∞ is infinitely far away from r(h0). If
there exists λi = −1, we can double this cycle of discrete domains (the doubled cycle of
discrete domains is (D0,D1,D2, ...,Dp,D0,D1, ...,Dp,D0)) to eliminate this eigenvalue. So
the second condition is satisfied.

The intersection points of τ with D0 will converge to or reach a certain hybrid state
h∞ = (π∞, ds0) which belongs to the closure of the compatible zone. We have that r∞

is the short version of π∞ by only considering the dimensions where boundaries are not
reached in D0. Based on Assumption 5, the reduction compatible zone can be described
by {x | Wx > c}. If h∞ belongs to the compatible zone, then we have ∀i ∈ {1, 2, ..., n0},
Wir∞ > ci. Else if h∞ does not belong to the compatible zone but belongs to the closure
of the compatible zone, then we have that for some i ∈ {1, 2, ..., n0}, Wir∞ = ci. This
means that some "boundaries" of the reduction compatible zone are reached, and for others
i ∈ {1, 2, ..., n0}, we have Wir∞ > ci. So the third condition is satisfied.

We note the intersection hybrid states of τ and D0 as the sequence (h0, h1, h2, ...). We
have that r(hn) = r∞ + ∑n1

i=1 λn
i αivi where vi are eigenvectors of the reduction matrix

of CT and r(h0) − r∞ = ∑n1
i=1 αivi. By choosing λ1 as the eigenvalue with maximum

absolute eigenvalue among the eigenvalues that differ from 1, if λ1 ̸= 0, then we have:
limn→∞|λn

1 α1| >> |λn
i αi| where i ̸= 1, and limn→∞

∑n1
i=1 λn

i αivi → 0. This proves that the
fifth and the sixth conditions are satisfied.

Suppose that λ1 ̸= 0. Since the sequence (h0, h1, h2, ...) is inside the compatible zone,
if Ie is not empty, then for any j ∈ Ie, we should have ∀n ∈ N, Wj

∑n1
i=1 λn

i αivi > 0.
When n is sufficiently big, for any j ∈ Ie, the sign of Wj

∑n1
i=1 λn

i αivi is dominated only
by Wjλ

n
1 α1v1, meaning that Wj

∑n1
i=1 λn

i αivi and Wjλ
n
1 α1v1 have the same sign, in fact,

when n is sufficiently big, we have |Wjλ
n
1 α1v1| >

∑n1
i=2|Wjλ

n
i αivi|, this means that adding∑n1

i=2 Wjλ
n
i αivi to Wjλ

n
1 α1v1 does not change the sign of Wjλ

n
1 α1v1. So the sign of λ1 is
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positive, otherwise we can not ensure that ∀j ∈ Ie, ∀n ∈ N, Wj
∑n1

i=1 λn
i αivi > 0, which is

equivalent to ∀j ∈ Ie,∀n ∈ N, Wjλ
n
1 α1v1 > 0 when n is sufficiently big. This proves that

the fourth condition is satisfied.
In the case that any Di of CT has no free dimension, we can easily prove the sufficiency

part.
The proof of the necessity part:
If D0 has no free dimension, then τ reaches a periodic hybrid trajectory which is a

special case of τ being attracted by a cycle of discrete domains.
If these six conditions are satisfied, to prove that τ is attracted by a cycle of discrete

domains, we only need to prove that τ always returns to the compatible zone of CT . This
can be easily proved if λ1 = 0. From now on, we suppose λ1 ̸= 0. We note that the hybrid
trajectory from h0 returns to D0 at h1. We have that r(h1)−r∞ = ∑n1

i=1 λiαivi. A sufficient
condition for "h0 belongs to the compatible zone" is (∀j ∈ Ie, Wj

∑n1
i=1 αivi > 0) ∧ (∀j ∈

In, maxβi∈{−1,1}∥
∑n1

i=1 βiαivi∥2<
Wjr∞−ci

∥Wj∥2
) which is satisfied in this case. In fact, the first

part of this sufficient condition is a necessary condition for h0 to belong to the compatible
zone and the second part is ensured by the sixth condition. Now we want to prove that
this sufficient condition is also satisfied for h1. The fifth condition indicates that for any
j ∈ Ie the sign of Wj

∑n1
i=1 αivi is dominated by the sign of Wjα1v1, so Wjα1v1 is also

positive. Since ∀i ̸= 1, we have either |λ1| > |λi| or |λ1| < |λi| ∧ αi = 0, so we have
∀j ∈ Ie, ∀i ∈ {2, ..., n1} , |Wjv1λ1α1| > n1|Wjviλiαi|. This means that for any j ∈ Ie the
sign of Wj

∑n1
i=1 αiλivi is also dominated by the sign of Wjα1λ1v1. Since λ1 is positive if Ie is

not empty, we have ∀j ∈ Ie, Wj
∑n1

i=1 λiαivi > 0, because the sign of Wj
∑n1

i=1 λiαivi is same
as the sign of Wjα1λ1v1 which is same as the sign of Wjα1v1 of which the sign is positive.
Since ∀λi, |λi| ≤ 1, we have maxβi∈{−1,1}∥

∑n1
i=1 βiλiαivi∥2≤ maxβi∈{−1,1}∥

∑n1
i=1 βiαivi∥2. So

we also have ∀j ∈ In, maxβi∈{−1,1}∥
∑n1

i=1 βiλiαivi∥2<
Wjr∞−ci

∥Wj∥2
. By now we proved that

h1 also belongs to the compatible zone. By mathematical induction, we can prove that
τ always returns to the compatible zone of CT . So τ is attracted by a cycle of discrete
domains. □

Theorem 6 is used later in the algorithm to analyze reachability.

4.2.3 Chaotic Hybrid Trajectories

In this thesis, a hybrid trajectory of HGRN is called a chaotic hybrid trajectory if it
does not reach a fixed point and it is not attracted by a cycle of discrete domains. So
all hybrid trajectories which are not included in the previous two classes are considered
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chaotic hybrid trajectories. It is worth mentioning that the dynamics of chaotic hybrid
trajectories, a priori, can be different from the chaotic dynamics of classic nonlinear dy-
namical systems. The reason why we still use the terminology "chaotic" is that a similar
concept of chaos has been used in some pre-existing works of other hybrid systems [55,
56].

As stated before, the sequence of discrete domains reached by a hy-
brid trajectory of the previous two classes is of the form: (D1,D2, ...,Dm) or
(D1,D2, ...,Dk, (Dk+1,Dk+2, ...,Dk+p)n). While a chaotic hybrid trajectory corresponds to
an irregular sequence of discrete domains, like an irrational number with each digit re-
placed by a discrete domain.

To prove such chaotic hybrid trajectories exist, we have constructed a HGRN with
chaotic hybrid trajectories based on a pre-existing model of electrical circuit with a chaotic
attractor [56].

In our work, we have not yet found a method to check reachability for chaotic hybrid
trajectories, which, a priori, can be undecidable. So, in this subsection, we only introduce
a method to predict whether a hybrid trajectory is chaotic, which is based on a necessary
condition.

We prove that a chaotic hybrid trajectory has the following properties.

Property 1 For a chaotic hybrid trajectory τ , there exist t0 and a finite set of discrete
domains LD, such that after t0, τ cannot reach any discrete domain which does not belong
to LD, and for any discrete domain D0 ∈ LD, D0 is reached by τ an infinite number of
times.

Proof: This can be proved by the fact that the number of discrete domains is finite and
the hybrid trajectory does not stay in a particular discrete domain. In fact, this property
is true for any hybrid trajectory which is not a hybrid trajectory halting in finite time. □
Following Property 1, for any D0 ∈ LD, τ will return to D0 an infinite number of times,
and each time it stays inside a sequence of discrete domains of the form (D0, ...,D0) (only
the first and the last discrete domain are D0). The set of all such sequences of discrete
domains is noted by LD0 , and we make the following assumption.

Assumption 6 LD0 is a finite set.

This Assumption is based on the fact that the number of discrete domains is limited and
the dynamics in the discrete states is simple (a constant vector).
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Property 2 Following the notions of Property 1, for any D0 ∈ LD, we can find t1 > t0

such that τ reaches D0 at t1 and there exists a finite set of sequences of discrete domains
LT which satisfies the following properties:

— ∀T ∈ LT , T is of the form (D0, ...,D0).
— From t1, τ will return to D0 an infinite number of times, and each time it stays in

a sequence of discrete domains which belongs to LT . More formally, if τ reaches
D0 at tα, then from tα, it will return to D0 at tβ, and the restriction of τ on [tα, tβ]
is inside a sequence of discrete domains of LT .

— From t1, ∀T ∈ LT , T is crossed by τ an infinite number of times.
— LT contains at least two sequences of discrete domains.

Proof: For the first two properties, according to Property 1, from t1, τ will return to D0

an infinite number of times, and each time it stays in a sequence of discrete domains of
the form (D0, ...,D0), all these sequence constitute LT . And according to Assumption 6,
LT contains a finite number of sequences.

For the third property, for any T ∈ LT , if it is crossed by τ a finite number of times,
then we can increase the value of t1 such that from t1, T is not crossed by τ any more. This
result is also based on the fact that LT is a finite set which is a result of Assumption 6.

For the fourth property, if there is only one sequence of discrete domains, then after
certain moment, τ will always stay in the same cycle of discrete domains. In this case, τ

is attracted by a cycle of discrete domains and is not a chaotic hybrid trajectory. □

Following the notations of Property 2, the sequence of discrete domains crossed by
τ from t1 can be described by the sequence (T1, T2, T3, ...), where ∀i ∈ N, Ti ∈ LT . This
sequence has the following properties.

Property 3 ∃i ∈ N, such that Ti ̸= Ti+1.

Proof: This is a direct result of the fact that all elements of LT must appear in the
sequence (T1, T2, T3, ...) and LT has at least two elements. □

Property 4 ∀i ∈ N,∃k ∈ N, such that Ti = Ti+k.

Proof: If it is not true, then it means that Ti is crossed by τ for finite times, which
contradicts with Property 2. □

By combining Property 3 and Property 4, we get a necessary condition for τ to be a
chaotic hybrid trajectory:
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Property 5 ∃i ∈ N, ∃k ∈ N, k ̸= 1, such that Ti ̸= Ti+1 and Ti = Ti+k.

This condition is used in the following section to predict whether a hybrid trajectory is a
chaotic hybrid trajectory.

4.3 Reachability Analysis Algorithm

In this section, we present our reachability analysis algorithm. The main algorithm
is presented in Algorithm 1. Its main idea is that we continue simulating the hybrid
trajectory τ from hini until reaching one of the following situations:

— τ reaches Rtarget. In this case, the algorithm stops and returns “Rtarget is reached”.
— At some time t0, τ is already attracted by a cycle of discrete domains and the peri-

odic hybrid trajectory, which attracts τ , reaches Rtarget. In this case, the algorithm
stops and returns “Rtarget is reached”.

— At some time t0, τ is already attracted by a cycle of discrete domains and after
t0 there is no more chance to reach Rtarget. In this case, the algorithm stops and
returns “Rtarget is not reached”.

— Property 5 is satisfied, therefore τ is probably chaotic. In this case, the algorithm
stops and returns “unknown result”.

More details about Algorithm 1 are discussed as follows.
To check if a transition h → h′ reaches Rtarget ={

(π, dstarget) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}
}
, we need to consider two cases: Firstly,

if h → h′ is an instant transition, then we only need to verify if h′ belongs to
Rtarget; secondly, if h → h′ is a non-instant transition, meaning that h → h′ is
an N -dimensional straight line, then we only need to verify if h → h′ crosses a
boundary of Rtarget. To give an example of the second case, if a boundary of Rtarget

is
{
(π, dstarget) | πi0 = ai0 , πi ∈ [ai, bi], i ∈ {1, 2, ..., N} \ {i0}

}
, we only need to ver-

ify if h → h′ contains a hybrid state ht = (πt, dstarget) such that πi0
t = ai0 and

∀i ∈ {1, 2, ..., N} \ {i0} , πi
t ∈ [ai, bi].

To determine if the current simulation is attracted by a cycle of discrete domains or
if the current simulation is probably a chaotic hybrid trajectory, we use Theorem 6 or
Property 5 respectively.

The main idea of the function Stop_condition is the following. Its second argument,
CycleD, represents the cycle of discrete domains attracting the current hybrid trajectory.
Its first argument, Cycleh, represents the last part of the simulation inside CycleD. The
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Algorithm 1 Reachability analysis algorithm
Input 1: A hybrid state hini = (πini, dsini

)
Input 2: A region Rtarget =

{
(π, dstarget) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}

}
Output: “Rtarget is reached”, “Rtarget is not reached” or “unknown result”

1: Current hybrid state h := hini

2: while h is not a fixed point do
3: h′ := next hybrid state so that h→ h′ is a transition
4: if Transition h→ h′ reaches Rtarget then
5: return “Rtarget is reached”
6: else
7: h := h′

8: if Current simulation is attracted by a cycle of discrete domains then
9: if Stop_condition(Cycleh, CycleD, Rtarget) returns “Yes” then

10: return “Rtarget is not reached”
11: else if Stop_condition(Cycleh, CycleD, Rtarget) returns “Reached” then
12: return “Rtarget is reached”
13: end if
14: else if Current simulation is probably a chaotic hybrid trajectory then
15: return “unknown result”
16: end if
17: end if
18: end while
19: return “Rtarget is not reached”
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objective of the function Stop_condition is, knowing that this hybrid trajectory is at-
tracted by a cycle of discrete domains, to determine if the hybrid trajectory can reach
Rtarget after an infinite number of transitions (see Fig 4.2 right). If it is the case, the
function returns “Reached”. Otherwise, if from the current hybrid state, there is no more
chance to reach Rtarget (see Fig 4.2 left), then the function returns “Yes”. For both cases,
this function can give the right answer in finite time, and the result stops the algorithm.
However, if both cases don’t apply, the function returns “No” and the algorithm contin-
ues. The idea of the function Stop_condition is based on the proof of Theorem 5. The
details of the function Stop_condition are presented in Algorithm 2.

Algorithm 2 Stop condition
Input 1: A list of hybrid states Cycleh = (h0, h1, h2, ...., hp, h′

0) which describes
the last part of the simulation inside CycleD

Input 2: A list of discrete domains CycleD = (D0,D1,D2, ...,Dp,D0) such that
∀i ∈ {0, 1, 2, ..., p} , hi ∈ Di, h′

0 ∈ D0 and the hybrid trajectory from h0 is attracted
by (D0,D1,D2, ...,Dp,D0)

Input 3: A region Rtarget =
{
(π, dstarget) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}

}
Output (three possibilities): “Yes”, “No”, and “Reached”

1: Compute the hybrid states h∞
0 , h∞

1 , h∞
2 , ..., h∞

p such that the intersection hybrid states
between this hybrid trajectory and D0,D1,D2, ...,Dp converge to or reach these hybrid
states after an infinite number of transitions.

2: var_stop← True
3: for i ∈ {0, 1, 2, ..., p} do
4: if Di is on an input boundary of dstarget then
5: if Hybrid trajectory from h∞

i reaches Rtarget inside dstarget then
6: return “Reached”
7: else if Non-intersection condition is satisfied then
8: var_stop← var_stop ∧ True
9: else if Non-intersection condition is not satisfied then

10: var_stop← var_stop ∧ False
11: end if
12: end if
13: end for
14: if var_stop = True then
15: return “Yes”
16: else if var_stop = False then
17: return “No”
18: end if

In order to describe the Non-intersection condition in Algorithm 2, we note the prede-
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cessor in the same discrete state of Rtarget as Predstarget
(Rtarget) = ⋃

i∈{1,2,...,q} Zi. We note
r(Zi) as the set of the reduction vectors of all hybrid states of Zi.

This Non-intersection condition (its formal definition will be given later) is a suf-
ficient condition for that ∀j ∈ {1, 2, ..., q} , if Zj ⊂ Di (Di is a discrete domain
that belongs to the cycle of discrete domains attracting the hybrid trajectory), then{
x ∈ Sr(Di) | ∥x− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}
∩ r(Zj) = ∅ where Sr(Di) is

the reduction compatible zone of the cycle of discrete domains (Di,Di+1, ...,Dp,D0, ...,Di),
n1 is the dimension of Sr(Di), r(hi)− r(h∞

i ) = ∑n1
k=1 αkvk, vk are the eigenvectors of the

reduction matrix of this cycle (Di,Di+1, ...,Dp,D0, ...,Di).

The idea of the Non-intersection condition is illustrated in Fig 4.4 by a 2-
dimensional example. Initially, we want to verify ∀j ∈ {1, 2, ..., q} , if Zj ⊂
Di, then

{
x ∈ Sr(Di) | ∥x− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}
∩ r(Zj) = ∅. This

is equivalent to say that the black box does not intersect the blue boxes in Fig 4.4 left. The
reason why we want to verify this condition, noted here as Condition1, is that once it is
satisfied, there is no more chance that a hybrid trajectory can reach Rtarget directly fromDi

(here "directly" means that it does not reach another discrete state before reaching Rtarget).
However, it is complicated to compute directly the intersection of these sets. So, firstly
we overestimate the set of all hybrid states in this discrete state which can be reached by
hybrid trajectories from

{
h ∈ S(Di) | ∥r(h)− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}

and which are reached before these hybrid trajectories reaching new discrete states. This
set of hybrid states is illustrated by the red zone in Fig 4.4 middle (note that Fig 4.4 is
just a illustration, the shape of the real red zone is slightly different from the one in this
figure). If this red zone does not intersect the blue rectangle, then Condition1 is satisfied.
However, this intersection is still difficult to compute. So secondly, we move the "thick-
ness" of the red zone to the blue rectangle in Fig 4.4 right. Now to verify if Condition1 is
satisfied, we only need to verify if the red trajectory in Fig 4.4 right reaches the blue and
red zone, which can be done automatically and is called Non-intersection condition.

The Non-intersection condition is defined formally as follows. The hybrid trajec-
tory from h∞

i can be represented by h∞
i = h∞

i,0 → h∞
i,1 → ... → h∞

i,K where{
h∞

i,j, j ∈ {1, 2, ..., K}
}

represents all hybrid states at which this hybrid trajectory reaches
new boundaries (similar to the turning states in Chapter 3) and h∞

i,K represents the hybrid
state at which this hybrid trajectory reaches an output boundary of dstarget for the first
time. We note uj, j ∈ {1, 2, ..., K} as the left derivative of hybrid state h∞

i,j. We use wj ∈
{0, 1}N , j ∈ {1, 2, ..., K} to describe the dimension where the new boundary is reached
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Figure 4.4 – Illustration of the Non-intersection condition in Algorithm 2.

in each transition, for the transition h∞
i,j−1 → h∞

i,j, j ∈ {1, 2, ..., K}: if the new boundary
is reached in the mj

th dimension, then w
mj

j = 1 and wk
j = 0, k ∈ {1, 2, ..., N} \ {mj}.

Based on the notations of uj and wj, we compute a sequence lj, j ∈ {0, 1, 2, ..., K − 1, K}
as follows: l0 = maxβ∈{−1,1}n1∥

∑n1
k=1 βkαkvk∥2 and ∀j ∈ {1, 2, ..., K − 1, K} , lj = lj−1

|
uj ·wj
∥uj ∥2

|

where uj · wj is the inner product of uj and wj. The Non-intersection condition is sat-
isfied if the hybrid trajectory from h∞

i,0 does not reach directly the region R′
target ={

(π, dstarget) | πi ∈ [max(ai − lK , 0), min(bi + lK , 1)], i ∈ {1, 2, ..., N}
}
. The reason why we

compute this sequence lj is illustrated in Fig 4.5 by a 2-dimensional example. Intuitively,
when a bunch of hybrid trajectories with radius lj−1 reaches a new boundary, the radius
can increase. We can see that the sequence lj is increasing. To simplify the computation,
we choose the maximum value lK to overestimate the hybrid states that can be reached
by these hybrid trajectories. This choice of the value lK is only for overestimation, it is
possible that a smaller value also works.

Here we prove that the Non-intersection condition is
a sufficient condition so that ∀j ∈ {1, 2, ..., q} , if Zj ⊂
Di, then

{
x ∈ Sr(Di) | ∥x− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}
∩ r(Zj) = ∅.

We note this hybrid trajectory h∞
i = h∞

i,0 → h∞
i,1 → ... → h∞

i,K which begins from
h∞

i,0 and finally reaches h∞
i,K as τi. If the Non-intersection condition is satisfied, then

for any hybrid state hx which belongs to Rtarget and for any hybrid state hy which
belongs to τi, the distance between hx and hy is greater than lK . On the other hand,
for any hybrid trajectory τx which is inside this discrete state and begins from the
region

{
h ∈ S(Di) | ∥r(h)− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}

where S(Di) is
the compatible zone of this cycle, for any hybrid state h′

x on τx, we can find a hybrid
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Figure 4.5 – Illustration of the idea of computing the sequence lj.

state h′
y on τi, such that the distance between h′

x and h′
y is smaller than lK . If τx

crosses Rtarget, then there exists a hybrid state h′′
y which is on τx and also belongs to

Rtarget, such that ∃h′′
x on τi, the distance between h′′

x and h′′
y is smaller than lK which

is not possible as h′′
y belongs to Rtarget. This proves that ∀j ∈ {1, 2, ..., q} , if Zj ⊂

Di, then
{
x ∈ Sr(Di) | ∥x− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}
∩ r(Zj) = ∅.

In fact, if the hybrid trajectory from hini does not reach Rtarget and hi is sufficiently
close to h∞

i , then the Non-intersection condition must be satisfied, because LK is suf-
ficiently close to 0 in this case. Based on this fact, it can be proved that if the hybrid
trajectory from hini is attracted by a cycle of discrete domains and does not reach Rtarget,
then the Non-intersection condition must be verified in finite time for all discrete domains
which belong to an input boundary of the discrete state of Rtarget and belong to the at-
tractive cycle of discrete domains (the cycle of discrete domains which attracts the hybrid
trajectory from hini). In this case, this algorithm returns "Yes", meaning that the hybrid
trajectory from hini has no more chance to reach Rtarget.

It can be proved that Algorithm 1 always stops in finite time. Firstly, if the hybrid
trajectory from hini is a hybrid trajectory halting in finite time, then the algorithm stops
after a finite number of transitions. Secondly, if the hybrid trajectory is a chaotic hybrid
trajectory, then Property 5 will be satisfied after a finite number of transitions, and once
it is satisfied, the algorithm stops. Thirdly, if the hybrid trajectory is attracted by a cycle
of discrete domains, then there are three cases: 1. The hybrid trajectory reaches Rtarget in
finite time; 2. The hybrid trajectory reaches Rtarget after an infinite number of transitions;
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3. The hybrid trajectory does not reach Rtarget. We assume here that Property 5 is not
satisfied before the hybrid trajectory reaching the attractive cycle of discrete domains.
For case 1, the algorithm stops in finite time, as the hybrid trajectory will eventually
reach Rtarget. For case 2, the function Stop_condition returns "Reached" in finite time.
For case 3, the function Stop_condition returns "Yes" in finite time. We need to mention
that, since Property 5 is a necessary condition for the hybrid trajectory from hini to be a
chaotic hybrid trajectory, a priori, it could be true even if the hybrid trajectory belongs
to other classes; however, empirically, we never identified such case, which should be rare.
Yet, an “unknown result” should be taken as a possible missed formal positive or negative
case.

4.4 Application: Estimation of Basins of Attraction

In this section, we present a potential application of this reachability analysis method
which is to estimate the basin of attraction of attractors. An attractor can be a stable fixed
point, a stable limit cycle or a chaotic attractor. The basin of attraction of an attractor is
the set of all hybrid states such that hybrid trajectories from these hybrid states converge
to or reach this attractor. Here, estimating the basin of attraction means estimating the
percentage of hybrid states which belong to the basin of attraction in a given region. A
concrete example of application is presented in follows.

In this example, we consider a pre-existing 5-dimensional HGRN of cell cycle from [10,
13]. This HGRN has a stable limit cycle and a stable fixed point. We apply our reachability
analysis method on this HGRN to estimate, for each discrete state ds, the percentage of
hybrid states which belong to the basin of attraction of this limit cycle, noted by PLC(ds),
and the percentage of hybrid states which belong to the basin of attraction of this stable
fixed point, PF P (ds).

To estimate these, we define two regions: RLC
target and RF P

target, such that for any hybrid
trajectory, whether it reaches or converges to the stable limit cycle or the stable fixed
point is equivalent to whether it reaches RLC

target or RF P
target respectively. These regions are

found manually and defined as:
RLC

target = {(π, (0, 0, 0, 0, 1)) | π1 ∈ [0.82, 0.84], π2,3,4 ∈ [0, 0.01], π5 ∈ [0.99, 1]}
RF P

target = {(π, (2, 1, 0, 1, 0)) | π1,2,3,4,5 ∈ [0, 1]}.
For RLC

target, it can be easily verified that it contains hybrid states from the stable limit
cycle and we can also prove that any hybrid trajectory which reaches this region must
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reach this stable limit cycle. RF P
target covers the whole discrete state which contains the

stable fixed point, so reaching the stable fixed point is equivalent to reaching RF P
target.

Then, in each discrete state ds, we randomly generate ns hybrid states by uniform
distribution and we check whether these hybrid states reach RLC

target or RF P
target by using

our reachability analysis method. We note nLC(ds) the number of generated hybrid states
that reach RLC

target and we note nF P (ds) the number of generated hybrid states that reach
RF P

target. PLC(ds) and PF P (ds) can be estimated by PLC(ds) = nLC

ns
and PF P (ds) = nF P

ns
.

In our experimentation, we choose ns = 20. A higher value of ns can increase the
precision of estimation, but it also takes more time. This setting takes nearly 30 minutes
on a standard laptop computer 1. The estimation results of PLC and PF P are illustrated
in the transition graph of discrete states in Fig 4.6. For each node in Fig 4.6, the two
floating point numbers represent estimated PLC and PF P . For example, for discrete state
20000, PLC(20000) = 0.75 and PF P (20000) = 0.25. The cycle of discrete states which
contains the stable limit cycle is illustrated by the red arrows and the discrete state which
contains the stable fixed point is illustrated by a red node. These results could provide
useful information if we want to control a gene regulatory network such that the hybrid
trajectory moves from one attractor to another.

4.5 Summary

In this chapter, we propose a reachability analysis method for HGRNs. In the first
part of this work, we classify hybrid trajectories of HGRNs into different classes: Hybrid
trajectories halting in finite time, hybrid trajectories attracted by cycles of discrete do-
mains and chaotic hybrid trajectories, and provide some theoretical results about these
hybrid trajectories regarding the reachability problem. Then, based on these theoretical
results, we provide the first reachability analysis algorithm for HGRNs. Based on a first
implementation, we apply this method on a 5-dimensional HGRN of cell cycle to estimate
the basin of attraction of a stable limit cycle and a stable fixed point.

Since we use Property 5 (a necessary condition for chaotic hybrid trajectories) on line
14 in Algorithm 1, the algorithm might return inconclusive results (“unknown result”)
even in the cases that are decidable (non-chaotic hybrid trajectories). In fact, among
HGRNs of gene regulatory networks, the cases that satisfy Property 5 are likely to be

1. Computations were performed on a standard laptop computer, with an Intel Core I7-8550U 1.80GHz
processor and 16.0GB RAM.
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Figure 4.6 – Estimation results of PLC and PF P and illustration of the transition graph
of discrete states
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very rare: There is no identified HGRN of gene regulatory network with either chaos or
non-chaotic hybrid trajectory that satisfies Property 5. The example with chaos in this
chapter is not a biological model but comes from physics. For now, this algorithm can be
considered sufficient for checking reachability in practice. However, it could be interesting
to further investigate the decidability of chaotic hybrid trajectories and the condition for
a hybrid trajectory to be chaotic.

This chapter and the previous one focus on the general analysis methods of HGRNs.
These methods are very adapted to the study of oscillations in some specific networks.
The following chapter focuses on this topic.
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Chapter 5

CONDITION FOR SUSTAINED

OSCILLATION IN CANONICAL

REPRESSILATOR

The better control of synthetic oscillations in repressilator is an important question
in synthetic biology. Most previous works use ordinary differential equations to study
repressilators. In this chapter, we explore the possibility to use HGRN to study oscillations
in the canonical repressialtor and aim to find conditions for the existence of sustained
oscillations described by separable constraints on parameters. The methods in this chapter
rely on the work in Chapter 3. Two major results are the following: 1) we develop, by
using the Poincaré map, a sufficient and necessary condition for the existence of sustained
oscillations (Section 5.4); 2) based on this condition, we give a method using the range
enclosure property of Bernstein coefficients to compute compatible separable constraints
(Section 5.5). The work of this chapter follows a 3-week research stay at the I3S laboratory
(Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis) in Nice in June
2022 and has been presented at conference BIOINFORMATICS 2023 as regular paper
[24].

5.1 Introduction of Canonical Repressilator

Repressilators represent gene regulatory networks consisting of at least one feedback
loop, in which the expression of each gene inhibits the expression of the next gene. In
this chapter, we focus on a specific repressilator called canonical repressilator, which is
a network with three genes having a unique feedback loop with only inhibitions and
not having any other regulation. The influence graph of the canonical repressilator is
illustrated in Fig 5.1.

The canonical repressilator is widely studied in synthetic biology because it could
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Figure 5.1 – The influence graph of the canonical repressilator.

generate synthetic sustained oscillations, which could be the treatment of diseases related
to circadian rhythms, for instance, by allowing drug delivery at a particular pace. The
first biological implementation of the canonical repressilator with sustained oscillations is
realized in [57] by using three natural repressor proteins, the TetR, LacI and CI repressors
and the stability of these oscillations is improved later in other works [58].

In fact, how to biologically implement a canonical repressilator with sustained oscil-
lations is still an open question, particularly in eukaryotic cells, therefore exploring new
models to search for conditions for sustained oscillations is of high interest.

Previous works about mathematical analysis of oscillations in the canonical repressila-
tor are mainly based on differential equations. Many models of the canonical repressilator
with three components are developed from a differential equation model using 6 variables
[57], with 3 variables for repressor-protein concentrations and 3 variables for correspond-
ing mRNA concentrations. This 6-variable model can also be reduced to a 3-variable
model with only repressor-protein variables under certain assumptions [59]. These mod-
els and their variations are extensively studied in the literature [60–65]. One major limit
about differential equations is that some dynamical properties are hard to analyze. So in
this chapter, we use HGRNs to study oscillations in the canonical repressilator, as the
dynamical properties of HGRNs are easier to analyse.

5.2 A HGRN of Canonical Repressilator

In this chapter, we assume that each gene has one threshold when it influences another
gene. Although, a priori, one gene can have multiple thresholds for another gene, here we
only consider the simplest case. Based on this assumption, since each gene only influences
one other gene in the canonical repressilator, it has only two discrete levels separated by
only one threshold.
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5.2. A HGRN of Canonical Repressilator

The parameters (celerities) of this HGRN of the canonical repressilator are shown
symbolically in Table 5.1. Each parameter in Table 5.1 is strictly positive and is denoted
by Cxyizj, which represents the absolute value of the celerity of variable x when the discrete
level of variable y is i and the discrete level of variable z is j. Consider the influence of
A on B: When the discrete level of A is 1, meaning that the expression of A is above the
threshold to inhibit B, then the time derivative of B is always negative, no matter the
discrete level of B (0 or 1) which corresponds to the negative values −Cba1b0 and −Cba1b1.
On the other hand, when the expression of A is below the threshold to inhibit B, the time
derivative of B is always positive, corresponding to parameters Cba0b0 and Cba0b1. From
the parameters in this table, we can also see that the number of different parameters (12)
is smaller than the multiplication of the number of dimensions by the number of discrete
states (24), because some discrete states have celerities in common (same regulation on
some variables).

In addition to the threshold which separates the discrete levels 0 and 1, each gene
also has a maximal value and a minimal value. For example, when A inhibits B (see
Figure 5.1), B will continue to decrease until it reaches the minimal value (most of the time
this minimal value is 0) which is related to the lower boundary in the second dimension
(the dimension of gene B) of discrete state 10∗, where ∗ can be 0 or 1. Similarly, when A
does not inhibit B, B will continue to increase until it reaches the upper boundary in the
second dimension of 01∗.

Table 5.1 – Parameters of the HGRN of the canonical repressilator.
A B C CA CB CC

0 0 0 Cac0a0 Cba0b0 Ccb0c0
0 0 1 −Cac1a0 Cba0b0 Ccb0c1
0 1 0 Cac0a0 Cba0b1 −Ccb1c0
0 1 1 −Cac1a0 Cba0b1 −Ccb1c1
1 0 0 Cac0a1 −Cba1b0 Ccb0c0
1 0 1 −Cac1a1 −Cba1b0 Ccb0c1
1 1 0 Cac0a1 −Cba1b1 −Ccb1c0
1 1 1 −Cac1a1 −Cba1b1 −Ccb1c1

Figure 5.2 gives two simulations with two different choices of parameters. The sim-
ulation on the left represents a sustained oscillation while the simulation on the right
represents a damped oscillation. In the simulation on the left, gene C continues to in-
crease from t = 0 until it reaches the maximal value, which also means that the hybrid
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trajectory reaches an attractive boundary, then the hybrid trajectory will slide along this
boundary (called the sliding mode) so that the value of gene C stays unchanged for some
time.

Figure 5.2 – Simulations of the HGRN of the canonical repressilator with two different
choices of parameters (Abscissa represents time and ordinate represents the sum of the
fractional part and the discrete state of each gene). Parameters of the model on the left:
Cac0a0 = 1, Cac0a1 = 1.9, Cac1a0 = 1.3, Cac1a1 = 0.4, Cba0b0 = 3.8, Cba0b1 = 2.5, Cba1b0 = 2.7,
Cba1b1 = 3.3, Ccb0c0 = 1.5, Ccb0c1 = 0.8, Ccb1c0 = 1.9, Ccb1c1 = 1.5. Parameters of the
model on the right: Cac0a0 = 1.5, Cac0a1 = 0.7, Cac1a0 = 0.6, Cac1a1 = 1.6, Cba0b0 = 2.1,
Cba0b1 = 0.4, Cba1b0 = 0.3, Cba1b1 = 3.3, Ccb0c0 = 1.25, Ccb0c1 = 0.25, Ccb1c0 = 0.23,
Ccb1c1 = 1.23.

5.3 Qualitative Behaviors in this HGRN of Canonical
Repressialtor

In this section, we discuss different qualitative properties of this HGRN. To analyze
dynamical properties of a HGRN, we need to firstly analyze the transition graph of discrete
states, which is determined by the signs of celerities. The signs of celerities of this HGRN
of the repressilator can be found in Table 5.1, based on which the transition graph of
discrete states can be constructed using the classical discrete asycnhronous semantics, see
Figure 5.3.

From the transition graph, we can see that there is a unique cycle of discrete states,
which is 001 −→ 011 −→ 010 −→ 110 −→ 100 −→ 101 −→ 001. This cycle is a global attractor
of discrete states (the unique terminal strongly connected component), which means that
any hybrid trajectory in this HGRN will finally enter this cycle.
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Figure 5.3 – Transition graph of discrete states of the HGRN of the canonical repressilator.

Following the same sequence of discrete states, there is a special hybrid trajectory:
((1, 1, 0), (0, 0, 1)) −→ ((1, 0, 0), (0, 1, 1)) −→ ((1, 0, 1), (0, 1, 0)) −→ ((0, 0, 1), (1, 1, 0)) −→
((0, 1, 1), (1, 0, 0)) −→ ((0, 1, 0), (1, 0, 1)) −→ ((1, 1, 0), (0, 0, 1)). It is illustrated in Figure 5.4
by green arrows. This hybrid trajectory contains 6 different hybrid states (the last and
the first one are identical). From each hybrid state in this hybrid trajectory, there is an
instant transition (transition which crosses boundaries between discrete states and takes
no time), which reaches the next hybrid state. This hybrid trajectory represents also a
closed hybrid trajectory, meaning that starting from each of these 6 hybrid states, the
hybrid trajectory will return to the initial hybrid state. When representing hybrid tra-
jectories, we often use an embedding of hybrid states in RN : A hybrid state (π, ds) is
represented in RN by summing its discrete and fractional parts: π + ds. We say that the
hybrid state (π, ds) and the point π+ds ∈ RN are related. When doing so, the six previous
hybrid states are embedded in the same point H0 in R3: H0 = (1.0, 1.0, 1.0). H0 is called a
characteristic state of this HGRN. The characteristic state is formally defined as follows:

Definition 14 (Characteristic state) A characteristic state of a HGRN is a state H in
Euclidean space such that: For any hybrid state h0 related to H, all hybrid trajectories from
h0 will never reach a hybrid state which is not related to H, and there exist oscillations
in any small neighborhood of H.

In this chapter, we say that a hybrid trajectory of a HGRN is an oscillation if it
is related to an oscillation in Euclidean space. Likewise, the nature of an oscillation of a
HGRN (damped or sustained) and the relation between an oscillation and a characteristic
state (converging to the characteristic state, moving away from it, etc.) are determined
by the related oscillation in Euclidean space. A neighborhood of a characteristic state H

is defined as a set N (H) = {(π, ds) ∈ Eh | ∥π + ds −H∥ < r} where r ∈ R is the radius
of the neighborhood.
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Figure 5.4 – Illustration of the closed hybrid trajectory with only instant transitions (green
arrows), two special hybrid trajectories which can reach directly the characteristic state
(black arrows), and a hybrid trajectory without sliding mode (red arrows) in this HGRN
of the canonical repressilator.

In Euclidean space, a characteristic state is a fixed point, because from any hybrid
state h related to a characteristic state, all hybrid trajectories can only reach hybrid states
related to this characteristic state.

We can easily prove that H0 is a characteristic state: Apart from the 6 hybrid states
on this closed hybrid trajectory, there are two other hybrid states which are related to H0:
((1, 1, 1), (0, 0, 0)) and ((0, 0, 0), (1, 1, 1)) From each of these two other hybrid states, all
hybrid trajectories reach directly the closed hybrid trajectory, and once they do, they can
never leave it. Finally, we can find oscillations which follow the unique cycle of discrete
states in any neighborhood of H0. In this HGRN, there is only one characteristic state.
This can be proved by verifying all “corners” of discrete states.

All hybrid trajectories in this HGRN will oscillate in this unique cycle of discrete
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states, except some special hybrid trajectories from discrete state 000 or 111 which can
reach directly a hybrid state related to the characteristic state, see for example the black
arrows in Figure 5.4. These oscillations can have several different dynamical properties.

To better illustrate the possible dynamical properties in this repressilator, different
qualitative behaviors of a HGRN of negative feedback loop in 2 dimensions are illustrated
in Figure 5.5, where black arrows represent celerities in each discrete state and red arrows
represent some hybrid trajectories. The three figures are obtained by choosing three differ-
ent parameterisations, which represent the three qualitative behaviors of this HGRN. The
closed hybrid trajectory with hybrid states P, M, N, Q contains only instant transitions.
The state in Euclidean space that is related to states P, M, N, Q is a characteristic state,
and is the only characteristic state in this HGRN. On the left, the characteristic state is
stable as all hybrid trajectories tend to converge to it. In this case, there is no sustained
oscillation. On the right, the characteristic state is unstable as all hybrid trajectories from
a small neighborhood of the characteristic state will move away from it and will finally
reach a stable limit cycle containing at least one sliding mode. Between these two cases,
in the middle, there is a third possibility in which all hybrid trajectories circle around the
characteristic state without getting closer or moving away, which we call parallel cycles
and can be considered as a special case of sustained oscillations.

The HGRN of the repressilator in 3 dimensions (Figure 5.1) is more complicated than
the example HGRN of negative feedback loop in 2 dimensions (Figure 5.5), but we think
that it also has three similar qualitative behaviors, since each discrete state in the only
cycle of discrete states has only one successor (Figure 5.3). However, we have no proof
for the non-existence of other possibilities yet, for example chaos or the co-existence of
sustained oscillations and a stable fixed point. So in this chapter, we make Hypothesis 1.

Hypothesis 1 In this HGRN of canonical repressilator (see Figure 5.1 and Table 5.1),
either the characteristic state is stable and all oscillations are damped, or the characteristic
state is unstable and all oscillations are sustained.

In this HGRN of the canonical repressilator, the characteristic state is said stable if we can
find a small neighborhood around the characteristic state such that all oscillations which
begin from this neighborhood converge to the characteristic state, and the characteristic
state is said unstable if there is no damped oscillation which converges to it.

Now, based on Hypothesis 1, we can use the stability of the characteristic state to de-
termine the existence of sustained oscillations in this HGRN of the canonical repressilator:
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All oscillations are sustained if and only if the characteristic state is unstable. This is the
main idea used in this chapter to find conditions for the existence of sustained oscillations.
A similar idea was used in other works with differential models, see for example [65–67].

The problem now is how to analyze the stability of the characteristic state. To do so,
we apply a method based on the Poincaré map.

Figure 5.5 – Illustration of different qualitative behaviors in a HGRN of negative feedback
loop in 2 dimensions. The three subfigures represent three different choices of parameters.

5.4 A Sufficient and Necessary Condition for Sus-
tained Oscillation

In this section, firstly we present in details how we compute symbolically a Poincaré
map that determines the stability of the characteristic state and then we develop a suf-
ficient and necessary condition for sustained oscillation by symbolic eigenanalysis of this
Poincaré map. The idea of the method to compute the Poincaré map in this chapter is
same as the computation of the transition matrix in Chapter 3.

5.4.1 Symbolic Computation of Poincaré Map

In order to analyze the stability of the characteristic state, we only need to consider
hybrid trajectories without sliding mode around this state. Indeed, the characteristic
state is stable if we can find a small neighborhood around the characteristic state such
that all oscillations which begin from this neighborhood converge to the characteristic
state. Such a hybrid trajectory exists because otherwise, the celerities would prevent the
characteristic state from existing. Without loss of generality, we choose the lower boundary
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in the second dimension of discrete state 011 as Poincaré section; see the blue boundary
in Figure 5.4. Now, we consider any hybrid trajectory τ which begins from a hybrid state
s1 = ((x1, 0, z1), (0, 1, 1)) on the Poincaré section and returns to the Poincaré section for
the first time at s7 = ((x7, 0, z7), (0, 1, 1)) without sliding mode; such a hybrid trajectory is
illustrated in red in Figure 5.4. Thus, the Poincaré map is an affine application describing
the relation between (x1, 0, z1) and (x7, 0, z7). Since s1 is on an input boundary of the
discrete state 011, from s1, τ will first (continuously) cross the discrete state 011 and
reach a hybrid state ((x2, y2, 0), (0, 1, 1)) on the lower boundary in the third dimension of
011 which is the output boundary of this discrete state towards 010. We name this output
boundary e1. Then, it crosses instantly e1 and reaches an input boundary of 010 in hybrid
state ((x2, y2, 1), (0, 1, 0)). The duration of crossing in discrete state 011 is:

t1 = 0− z1

−Ccb1c1
(5.1)

It should be noted that, to ensure that this hybrid trajectory τ has no sliding mode in
011, we also need to ensure that the lower boundary in the first dimension and the upper
boundary in the second dimension of 011 are not reached before e1, which gives us two
additional inequalities:

t1 <
0− x1

−Cac1a0
(5.2)

t1 <
1− 0
Cba0b1

(5.3)

In fact, these inequalities can always be satisfied if τ is sufficiently close to the character-
istic state, which is the case we consider here. Therefore, in the rest of this section, we do
not consider these additional constraints.

Based on the duration t1 and the fact that there is no sliding mode, we can get the
relation between (x1, 0, z1) and (x2, y2, 1):

x2 = x1 − Cac1a0 × t1 (5.4)

y2 = 0 + Cba0b1 × t1 (5.5)

Following the same process, we can get the duration of τ in each discrete state and
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the relations between hybrid states from one input boundary to another input boundary:

t2 = 1− x2

Cac0a0
t3 = 0− y3

−Cba1b1
t4 = 1− z4

Ccb0c0
(5.6)

t5 = 0− x5

−Cac1a1
t6 = 1− y6

Cba0b0
(5.7)

y3 = y2 + Cba0b1 × t2 z3 = 1− Ccb1c0 × t2 (5.8)

x4 = 0 + Cac0a1 × t3 z4 = z3 − Ccb1c0 × t3 (5.9)

x5 = x4 + Cac0a1 × t4 y5 = 1− Cba1b0 × t4 (5.10)

y6 = y5 − Cba1b0 × t5 z6 = 0 + Ccb0c1 × t5 (5.11)

x7 = 1− Cac1a0 × t6 z7 = z6 + Ccb0c1 × t6 (5.12)

where t2, t3, t4, t5, t6 are the durations of τ in discrete states 010, 110, 100, 101, 001 re-
spectively, and (0, y3, z3), (x4, 1, z4), (x5, y5, 0), (1, y6, z6), (x7, 0, z7) are the fractional parts
of the hybrid states when τ first reaches 110, 100, 101, 001, 011 respectively.

Based on the above equations, the Poincaré map can be calculated to describe the
relation between (x1, 0, z1) and (x7, 0, z7) as follows. One dimension is missing in the
matrix below; indeed, this dimension is useless in the computation of the stability, for
more details see Chapter 3 Section 3.3.2.x7

z7

 =
b1 c1

b2 c2

 x1

z1

 +
a1

a2

 (5.13)

In the above equation, a1, a2, b1, b2, c1, c2 are nonlinear combinations of the celerity
values. Their expressions are given in the follows. We can easily derive that b1 and c2 are
strictly positive, while b2 and c1 are strictly negative.

b1 = B1

D0
b2 = B2

D0
c1 = C1

D0
c2 = C2

D0
(5.14)

B1 = Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c0Ccb1c1 + Cac0a1Cac1a0Cba0b1Cba1b0Ccb1c0Ccb1c1

+ Cac0a1Cac1a0Cba1b0Cba1b1Ccb1c0Ccb1c1 + Cac1a0Cac1a1Cba0b1Cba1b0Ccb1c0Ccb1c1

+ Cac1a0Cac1a1Cba1b0Cba1b1Ccb1c0Ccb1c1

(5.15)
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B2 = − Cac0a1Cba0b0Cba0b1Ccb0c0Ccb0c1Ccb1c1 − Cac0a1Cba0b0Cba0b1Ccb0c1Ccb1c0Ccb1c1

− Cac0a1Cba0b0Cba1b1Ccb0c1Ccb1c0Ccb1c1 − Cac0a1Cba0b1Cba1b0Ccb0c0Ccb0c1Ccb1c1

− Cac0a1Cba0b1Cba1b0Ccb0c1Ccb1c0Ccb1c1 − Cac0a1Cba1b0Cba1b1Ccb0c1Ccb1c0Ccb1c1

− Cac1a1Cba0b1Cba1b0Ccb0c1Ccb1c0Ccb1c1 − Cac1a1Cba1b0Cba1b1Ccb0c1Ccb1c0Ccb1c1

(5.16)

C1 = − Cac0a0Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c0 − Cac0a0Cac0a1Cac1a0Cba0b1Cba1b0Ccb1c0

− Cac0a0Cac1a0Cac1a1Cba0b1Cba1b0Ccb1c0 − Cac0a1C
2
ac1a0Cba0b1Cba1b0Ccb0c0

− Cac0a1C
2
ac1a0Cba0b1Cba1b0Ccb1c0 − Cac0a1C

2
ac1a0Cba1b0Cba1b1Ccb1c0

− C2
ac1a0Cac1a1Cba0b1Cba1b0Ccb1c0 − C2

ac1a0Cac1a1Cba1b0Cba1b1Ccb1c0

(5.17)

C2 = Cac0a0Cac0a1Cba0b0Cba0b1Ccb0c0Ccb0c1 + Cac0a0Cac0a1Cba0b0Cba0b1Ccb0c1Ccb1c0

+ Cac0a0Cac0a1Cba0b1Cba1b0Ccb0c0Ccb0c1 + Cac0a0Cac0a1Cba0b1Cba1b0Ccb0c1Ccb1c0

+ Cac0a0Cac1a1Cba0b1Cba1b0Ccb0c1Ccb1c0 + Cac0a1Cac1a0Cba0b0Cba0b1Ccb0c0Ccb0c1

+ Cac0a1Cac1a0Cba0b0Cba0b1Ccb0c1Ccb1c0 + Cac0a1Cac1a0Cba0b0Cba1b1Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c0Ccb0c1 + Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba1b0Cba1b1Ccb0c1Ccb1c0 + Cac1a0Cac1a1Cba0b1Cba1b0Ccb0c1Ccb1c0

+ Cac1a0Cac1a1Cba1b0Cba1b1Ccb0c1Ccb1c0

(5.18)

D0 = Cac0a0Cac1a1Cba0b0Cba1b1Ccb0c0Ccb1c1 (5.19)

5.4.2 Symbolic Eigenanalysis

The stability of the characteristic state depends on the two eigenvalues of
b1 c1

b2 c2

,

which are:

λ1 =
b1 + c2 +

√
(b1 − c2)2 + 4c1b2

2 (5.20)

λ2 =
b1 + c2 −

√
(b1 − c2)2 + 4c1b2

2 (5.21)

Property 6 These two eigenvalues are real and strictly positive.

Proof: From the expressions of b1, b2, c1, c2, we know that b1 > 0, b2 < 0, c1 < 0, c2 > 0,
so we have (b1 − c2)2 + 4c1b2 > 0, therefore these two eigenvalues are real. Moreover, the
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expression of the product of these two eigenvalues is:

λ1 × λ2 =b1c2 − c1b2 = Dλ1×λ2

D0
(5.22)

where

Dλ1×λ2 = Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c1Ccb1c0 (5.23)

D0 = Cac0a0Cac1a1Cba0b0Cba1b1Ccb0c0Ccb1c1 (5.24)

Therefore, λ1 × λ2 > 0. Since λ1 is strictly positive, so is λ2. □

Suppose that two eigenvectors which are related to λ1 and λ2 respectively are v1 =
(v1

1, v2
1) and v2 = (v1

2, v2
2). We have the following property on v1 and v2.

Property 7 v1
1 × v2

1 < 0 and v1
2 × v2

2 > 0.

Proof: Since v1 is a eigenvector related to λ1, we have:

λ1

v1
1

v2
1

 =
b1 c1

b2 c2

 v1
1

v2
1

 (5.25)

From which, we have:
v2

1 = λ1 − b1

c1
v1

1 (5.26)

By developing the expression λ1−b1
c1

, we have:

λ1 − b1

c1
=

c2 − b1 +
√

(c2 − b1)2 + 4c1b2

2c1
(5.27)

We can see that whether c2 − b1 is positive or negative, λ1 − b1 is always strictly positive
because |c2 − b1| <

√
(c2 − b1)2 + 4c1b2. Since c1 is strictly negative, we have v1

1 × v2
1 < 0.

Similarly for v2, we can have:

v2
2 = λ2 − b1

c1
v1

2 (5.28)

and
λ2 − b1

c1
=

c2 − b1 −
√

(c2 − b1)2 + 4c1b2

2c1
(5.29)
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So, similarly, whether c2 − b1 is positive or negative, λ2 − b1 is always strictly negative.
And since c1 is strictly negative, we have v1

2 × v2
2 > 0. □

Based on these properties, we develop the following theorem to verify the stability of
the characteristic state.

Theorem 7 The characteristic state is unstable if and only if λ1 ≥ 1.

Proof: For any hybrid trajectory τ sufficiently close to the characteristic state but
different from the characteristic state, which reaches the chosen Poincaré section at a
hybrid state s = ((x1, 0, z1), (0, 1, 1)), and then reaches this Poincaré section again for
the first time at another hybrid state s′ = ((x2, 0, z2), (0, 1, 1)), such that there is no
sliding mode between s and s′, since the hybrid state ((1, 0, 0), (0, 1, 1)) (which is related
to the characteristic state) is a fixed point of the Poincaré map, we can have the following
relation: x′

2

z′
2

 =
b1 c1

b2 c2

 x′
1

z′
1

 (5.30)

where (x′
1, z′

1) and (x′
2, z′

2) are the new coordinates of (x1, z1) and (x2, z2) by taking (1, 0)
as the new origin, which means that x′

i = xi − 1, z′
i = zi − 0, where i ∈ {1, 2}. In fact,

this change of coordinates allows to remove the affine vector
a1

a2

 in Equation 5.13.

Vectors (x′
1, z′

1) and (x′
2, z′

2) can be decomposed by:
x′

1

z′
1

 = α1v1 + β1v2 (5.31)

x′
2

z′
2

 = α2v1 + β2v2 (5.32)

where α1, β1, α2, β2 ∈ R and α1 is not null as x′
1 < 0, z′

1 > 0, v1
1 × v2

1 < 0 and v1
2 × v2

2 > 0.

By multiplying Equation 5.31 on the left by
b1 c1

b2 c2

 and from Equation (5.30), we

can derive that:
α2 = λ1α1 (5.33)

β2 = λ2β1 (5.34)

Consider the case where λ1 ≥ 1. Since |α1| is strictly positive, then we have |α2| ≥ |α1|,
which means that s′ is not closer to the characteristic state than s in the direction of v1.
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Therefore, any sequence of the intersection points of τ with this Poincaré section will
never converge to the characteristic state, which indicates that the characteristic state is
unstable. This proves that “the characteristic state is unstable” is a necessary condition
for “λ1 ≥ 1”.

Now consider the case where the characteristic state is unstable, meaning that there
is no damped oscillation that converges to it. We suppose that λ1 < 1. Since λ1 > λ2 >

0, we have |α2| < |α1| and |β2| < |β1|, which means that if τ is sufficiently close to
the characteristic state, then it converges to the characteristic state, which contradicts
the hypothesis stating that the characteristic state is unstable. This proves that “the
characteristic state is unstable” is a sufficient condition for “λ1 ≥ 1”. □

Based on Hypothesis 1 and Theorem 7, the condition λ1 ≥ 1 is a sufficient and
necessary condition for the existence of sustained oscillations in this HGRN of canonical
repressilator.

Since our final objective is to provide practical information for the construction of
synthetic networks, conditions like λ1 ≥ 1 might not be a good result, because the set
of models under this constraint is not easy to figure. In the next section, a method to
compute separable constraints based on the condition λ1 ≥ 1 is presented.

5.5 Computation of Sufficient Separable Constraints
on Parameters

In this section, we propose a method to compute separable constraints on parame-
ters based on the condition λ1 ≥ 1 which is developed in the previous section. In this
chapter, "separable constraints" mean constraints with separable form: Each parameter
is constrained by an interval, for example Cac0a0 ∈ [Cac0a0, Cac0a0]. The reason why we
choose constraints of separable form is that they can be easily interpreted and used. In
other words, these separable constraints represent a n-dimensional bounding box in the
space of parameters (celerities). What we want to do is to find such a n-dimensional box
so that any model in this bounding box satisfies the condition λ1 ≥ 1, which means that
any model in this box has sustained oscillations.

Firstly, we present a simplification of the condition λ1 ≥ 1. Secondly, we introduce a
method to verify if all models in a given bounding box satisfy this simplified condition.
At last, using the method in the second part, we propose a search algorithm to find some
separable constraints.
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5.5.1 Condition Simplification

The condition:

λ1 =
b1 + c2 +

√
(b1 − c2)2 + 4c1b2

2 ≥ 1 (5.35)

can be reformulated as:

b1 + c2 − 2 ≥ −
√

(b1 − c2)2 + 4c1b2 (5.36)

which is equivalent to:

(b1 + c2 − 2 ≥ 0) ∨ ((b1 + c2 − 2 < 0) ∧ ((b1 + c2 − 2)2 ≤ (b1 − c2)2 + 4c1b2)) (5.37)

or:
(b1 + c2 − 2 ≥ 0) ∨ (b1c2 − c1b2 − b1 − c2 + 1 ≤ 0) (5.38)

This last condition is equivalent to (P1 ≥ 0) ∨ (P2 ≥ 0) where P1 and P2 are polynomials
on parameters. The expressions of P1 and P2 are given as follows.

P1 = Cac0a0Cac0a1Cba0b0Cba0b1Ccb0c0Ccb0c1 + Cac0a0Cac0a1Cba0b0Cba0b1Ccb0c1Ccb1c0

+ Cac0a0Cac0a1Cba0b1Cba1b0Ccb0c0Ccb0c1 + Cac0a0Cac0a1Cba0b1Cba1b0Ccb0c1Ccb1c0

− 2Cac0a0Cac1a1Cba0b0Cba1b1Ccb0c0Ccb1c1 + Cac0a0Cac1a1Cba0b1Cba1b0Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba0b0Cba0b1Ccb0c0Ccb0c1 + Cac0a1Cac1a0Cba0b0Cba0b1Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba0b0Cba1b1Ccb0c1Ccb1c0 + Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c0Ccb0c1

+ Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c0Ccb1c1 + Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba0b1Cba1b0Ccb1c0Ccb1c1 + Cac0a1Cac1a0Cba1b0Cba1b1Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba1b0Cba1b1Ccb1c0Ccb1c1 + Cac1a0Cac1a1Cba0b1Cba1b0Ccb0c1Ccb1c0

+ Cac1a0Cac1a1Cba0b1Cba1b0Ccb1c0Ccb1c1 + Cac1a0Cac1a1Cba1b0Cba1b1Ccb0c1Ccb1c0

+ Cac1a0Cac1a1Cba1b0Cba1b1Ccb1c0Ccb1c1

(5.39)
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P2 = Cac0a0Cac0a1Cba0b0Cba0b1Ccb0c0Ccb0c1 + Cac0a0Cac0a1Cba0b0Cba0b1Ccb0c1Ccb1c0

+ Cac0a0Cac0a1Cba0b1Cba1b0Ccb0c0Ccb0c1 + Cac0a0Cac0a1Cba0b1Cba1b0Ccb0c1Ccb1c0

− Cac0a0Cac1a1Cba0b0Cba1b1Ccb0c0Ccb1c1 + Cac0a0Cac1a1Cba0b1Cba1b0Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba0b0Cba0b1Ccb0c0Ccb0c1 + Cac0a1Cac1a0Cba0b0Cba0b1Ccb0c1Ccb1c0

+ Cac0a1Cac1a0Cba0b0Cba1b1Ccb0c1Ccb1c0 + Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c0Ccb0c1

+ Cac0a1Cac1a0Cba0b1Cba1b0Ccb0c0Ccb1c1 + Cac0a1Cac1a0Cba0b1Cba1b0Ccb1c0Ccb1c1

+ Cac0a1Cac1a0Cba1b0Cba1b1Ccb0c1Ccb1c0 + Cac0a1Cac1a0Cba1b0Cba1b1Ccb1c0Ccb1c1

+ Cac1a0Cac1a1Cba0b1Cba1b0Ccb0c1Ccb1c0 + Cac1a0Cac1a1Cba0b1Cba1b0Ccb1c0Ccb1c1

+ Cac1a0Cac1a1Cba1b0Cba1b1Ccb0c1Ccb1c0 + Cac1a0Cac1a1Cba1b0Cba1b1Ccb1c0Ccb1c1

(5.40)

Condition (P1 ≥ 0) ∨ (P2 ≥ 0) seems preferable to λ1 ≥ 1 because it only contains
polynomials. In fact, one can easily prove that solutions for (P1 ≥ 0)∨ (P2 ≥ 0) exist. For
example, by only considering Cac0a0 and Cac0a1, which are two parameters describing
the derivative of gene A when gene C does not inhibit gene A, P1 and P2 can be expressed
by:

P1 = p11 × Cac0a0 + p12 × Cac0a1 + p13 × Cac0a0 × Cac0a1 + p14 (5.41)

P2 =p21 × Cac0a0 + p22 × Cac0a1 + p23 × Cac0a0 × Cac0a1 + p24 (5.42)

where pij (with i ∈ {1, 2}, j ∈ {1, 2, 3, 4}) are expressions of parameters which do not
include Cac0a0 and Cac0a1. We can see that if Cac0a0 and Cac0a1 converge to 0 while other
parameters remain unchanged, P1 and P2 converge to p14 and p24 respectively, which
are both positive. This indicates that the solutions of (P1 ≥ 0) ∨ (P2 ≥ 0) exist and
also implies a new control strategy for the existence of sustained oscillations: Controlling
the derivatives of gene A when A is not inhibited by C such that these derivatives are
sufficiently small, while keeping other parameters unchanged.

5.5.2 Satisfiability under Separable Constraints

In this subsection, we adapt the range enclosure property of Bernstein coefficients to
verify if all models in a given bounding box satisfy the condition (P1 ≥ 0)∨ (P2 ≥ 0). The
Bernstein coefficients have been used in the literature to, for example, compute images
for polynomial dynamical system [50, 68], or compute affine lower bound functions for
polynomials [69], etc.
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Before introducing the Bernstein coefficients, we firstly introduce the notion of multi-
indice. A multi-indice is a vector of non-negative integers. Given two multi-indice i =
(i1, i2, ..., in) and j = (j1, j2, ..., jn), we write i ≤ j if ∀k ∈ {1, 2, ..., n}, ik ≤ jk. We also

write i
j

for ( i1
j1

, i2
j2

, ..., in

jn
) and

j

i

 for
j1

i1

 j2

i2

...
jn

in

 which is the multiplication of

all binomial coefficient
jk

ik

, k ∈ {1, 2, ..., n}.

Using the multi-indice, a polynomial f : Rn → R can be represented as follows:

f(x) =
∑
i∈Id

aix
i (5.43)

where ai ∈ R, i and d are multi-indices, Id is the set of all multi-indices i such that i ≤ d,
and xi = xi1

1 xi2
2 ...xin

n is the product of all x
ij

j , where xj is the jth variable of polynomial f .
f can also be expressed by Bernstein expansion as follows:

f(x) =
∑
i∈Id

biBd,i(x) (5.44)

where
Bd,i(x) = βd1,i1(x1)...βdn,in(xn) (5.45)

βdk,ik
(xk) =

dk

ik

 xik
k (1− xk)dk−ik (5.46)

bi =
∑
j≤i

i

j


d

j

aj (5.47)

where d and i are multi-indices and k ∈ {1, 2, ..., n}. The values bi, for i ∈ Id are called
Bernstein coefficients.

One fundamental property of Bernstein coefficients for our approach is the range en-
closure property, which can be derived from the convex hull property. The convex hull of
a set S, noted Conv(S), is the smallest convex set that contains S.

Lemma 1 (Convex hull property) Conv {(x, f(x)) | x ∈ B} ⊆
Conv {(i/d, bi) | i ∈ Id}.

Lemma 2 (Range enclosure property) min {bi | i ∈ Id} ≤ f(x) ≤ max {bi | i ∈ Id},
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∀x ∈ B, where B = [0, 1]n is the unit box.

The range enclosure property over-approximates the range of the image of f on B

and can be used to verify if all models in a given bounding box satisfy the condition
(P1 ≥ 0)∨(P2 ≥ 0). To do so, we need to firstly make a change of variables of polynomials
P1 and P2, such that all variables are included in [0, 1]. For example, the variable Cac0a0 ∈
[Cac0a0, Cac0a0] is replaced by Cac0a0 = (Cac0a0 − Cac0a0)×Xac0a0 + Cac0a0, where Xac0a0 ∈
[0, 1]. By doing so, we get two new polynomials P ′

1 and P ′
2.

So now, to verify if (P1 ≥ 0)∨(P2 ≥ 0) is always true in a given bounding box, we only
need to verify if (P ′

1 ≥ 0)∨ (P ′
2 ≥ 0) is always true in the unit box. To do so, we compute

the Bernstein coefficients {b1,i} and {b2,i} (where i ∈ Id) of P ′
1 and P ′

2 respectively. A
sufficient condition for the condition “(P ′

1 ≥ 0) ∨ (P ′
2 ≥ 0) is always true in the unit box”

(condition1) is “(∀i ∈ Id, b1,i ≥ 0) ∨ (∀i ∈ Id, b2,i ≥ 0)” (condition2), according to the
range enclosure property. In fact, since the minimum value of the image of P ′

1 on the unit
box is always larger or equal to the minimum value of {b1,i}, “{b1,i} are not negative”
(∀i ∈ Id, b1,i ≥ 0) indicates that “P ′

1 is not negative on the unit box”, and the same holds
for P ′

2. Since there is a finite number of Bernstein coefficients, condition2 can be verified.
Therefore, in this chapter, condition2 is used to verify if all models in a given bounding
box always have sustained oscillations.

5.5.3 Search of Separable Constraints

Based on the method introduced in the previous subsection, we propose a depth first
algorithm to find some bounding boxes which satisfy condition2. This algorithm is illus-
trated in Figure 5.6. Initially, each parameter is included in an interval. In this implemen-
tation, without loss of generality, we assume that each parameter is included initially in
[0, 1]. Then, we verify if condition2 is satisfied for this bounding box using the method
proposed in the previous subsection. If it is satisfied, then it is a bounding box such that
all models in it have sustained oscillations. If condition2 is not satisfied, then there might
be some models in this bounding box which do not have sustained oscillations, in this case
the bounding box is split into two smaller bounding boxes (by splitting the largest interval
into two) which have the same volume and the process is repeated on each of these two
new bounding boxes. Each path in this algorithm will stop, either when a bounding box
which satisfies condition2 is found or when the length of the largest interval is smaller
than a certain threshold. In fact, similar ideas are widely used to find solution sets under
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non-linear constraints [70, 71].

Figure 5.6 – Illustration of the algorithm to search for some bounding boxes.

Since this HGRN of the canonical repressilator has 12 parameters (see Table 5.1), and
if we assume that the number of possible smallest intervals for each parameter are the
same, noted m, then there are at most m12 smallest bounding boxes to check. Verifying all
these boxes can be time consuming. In our implementation, we assume that the intervals of
these three genes are identical, which means that we search for bounding boxes such that
Caciaj = Cbaibj = Ccbicj and Caciaj = Cbaibj = Ccbicj for any i, j ∈ {0, 1}, where, for example,
[Cac0a0, Cac0a0] is the interval of the parameter Cac0a0, so that we only need to consider 4
independent intervals when searching for bounding boxes. This assumption is only applied
here to decrease the number of possible bounding boxes. A similar assumption about
the symmetry between these three genes was also made in works based on differential
equations, see for example [59]. We also assume that the minimal length of interval is
greater or equal to 0.5. A value smaller than 0.5 could naturally be chosen, but this
might exponentially increase the number of possible bounding boxes, which could also
exponentially increase the execution time. With these assumptions, we obtain 5 bounding
boxes which satisfy the condition2. In the results below, (y, x) represents (c, a), (a, b) and
(b, c), where y inhibits x, for example Cxy0x0 presents Cac0a0, Cba0b0 and Ccb0c0.
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Bounding box 1: Cxy0x0 ∈ [0, 0.5], Cxy0x1 ∈ [0, 0.5], Cxy1x0 ∈ [0.5, 1], Cxy1x1 ∈ [0, 1]
Bounding box 2: Cxy0x0 ∈ [0, 0.5], Cxy0x1 ∈ [0.5, 1], Cxy1x0 ∈ [0, 0.5], Cxy1x1 ∈ [0, 0.5]
Bounding box 3: Cxy0x0 ∈ [0, 0.5], Cxy0x1 ∈ [0.5, 1], Cxy1x0 ∈ [0.5, 1], Cxy1x1 ∈ [0, 1]
Bounding box 4: Cxy0x0 ∈ [0.5, 1], Cxy0x1 ∈ [0.5, 1], Cxy1x0 ∈ [0, 0.5], Cxy1x1 ∈ [0, 0.5]
Bounding box 5: Cxy0x0 ∈ [0.5, 1], Cxy0x1 ∈ [0.5, 1], Cxy1x0 ∈ [0.5, 1], Cxy1x1 ∈ [0, 1]
We can see that these constraints are easy to interpret and some intuitive results can

be derived from them: For instance, from Bounding box 2, we can get that sustained
oscillations exist if the values of Cxy0x1 are close to each other and are sufficiently larger
than any Cxy0x0, Cxy1x0 and Cxy1x1.

5.6 Summary

In this chapter, we constructed a HGRN of the canonical repressilator. By computing
and analyzing analytically a Poincaré map and based on a hypothesis, we develop a
sufficient and necessary condition for the existence of sustained oscillations. Then we
adapt the range enclosure property of Bernstein coefficients to find some bounding boxes
in parameters space which satisfy this sufficient and necessary condition. These bounding
boxes (intervals of parameters) can provide useful information for the design of synthetic
circuits. Moreover, an intermediate result implies some new control strategies for sustained
oscillations: Controlling the absolute values of the derivatives of one gene under certain
regulations such that these values are sufficiently small, while keeping other parameters of
the system unchanged. The work of this chapter can be considered as an extension of the
limit cycle analysis method in Chapter 3 on a specific gene regulatory network because
both works rely on the method of Poincaré map. The difference between the work of
this chapter and the work of Chapter 3 is that, in the work of this chapter we analyze
symbolically a HGRN while in the work of Chapter 3 the exact values of parameters are
assumed to be known. This symbolic analysis approach can be further applied to other
networks. This chapter focuses on the analysis of a HGRN of the canonical repressilator,
while another important problem is the identification of parameters based on data which
is investigated in the next chapter.
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Chapter 6

PARAMETER IDENTIFICATION BASED ON

TIME SERIES DATA

In the previous chapter, we studied the dynamical properties of a specific HGRN under
certain constraints on parameters. An another challenge is how to find these constraints
on parameters from data. In this chapter, we study the problem of parameter identifica-
tion of HGRNs. In the literature, there are works focusing on identifying parameters of
HGRNs based on biological knowledge [72, 73]. This thesis studies parameter identifica-
tion methods based on time series data. We consider the parameter identification problem
as an optimization problem and we mainly focus on meta-heuristic optimization methods
like the genetic algorithm. As opposed to many parameter identification problems, which
aim to find a specific choice of parameters, in this chapter we want to find a set of pa-
rameters that can provide more information about the possible qualitative properties of
the system. We use the HGRN model of the repressilator studied in the previous chapter
as a case study, although the method can be generalized on other HGRNs.

6.1 Definition of the Parameter Identification Prob-
lem

This section defines the parameter identification problem concerned in this chapter.
Firstly, the parameters and the form of the parameter set to identify are presented in
Section 6.1.1. Then the type of data is presented in Section 6.1.2.

6.1.1 Representation of the Parameter Set to Identify

In this chapter, we consider the same HGRN studied in Chapter 5, but the method
is generic and can be extended for other HGRNs. Chapter 5 focused on the analysis of
qualitative behaviors so the absolute values of the thresholds that separate discrete levels
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are not considered, while in this chapter, since the objective is to identify parameters from
continuous expression data, we not only need to consider the parameters describing the
time derivatives in each discrete state but also need to consider these thresholds.

Therefore, there are two classes of parameters considered in the work of this chapter:
The parameters describing the time derivatives of each discrete state are denoted by
Vac0a0, Vac0a1, Vac1a0, Vac1a1, Vba0b0, Vba0b1, Vba1b0, Vba1b1, Vcb0c0, Vcb0c1, Vcb1c0, Vcb1c1; and
the parameters describing the thresholds are denoted by θca, θab, θbc. By assuming that
all these parameters are positive, the dynamics of gene X is described by the following
equations if X does not reach its maximum or minimum value.

dX

dt
=



VXY 0X0 if xY < θY X ∧ xX < θXZ

VXY 0X1 if xY < θY X ∧ xX ≥ θXZ

−VXY 1X0 if xY ≥ θY X ∧ xX < θXZ

−VXY 1X1 if xY ≥ θY X ∧ xX ≥ θXZ

(6.1)

where (Y, X, Z) ∈ {(c, a, b), (a, b, c), (b, c, a)}; xa/xb/xc is the continuous expression of gene
a/b/c over time. If X reaches its maximum or minimum value, then its time derivative
is 0 which corresponds to the existence of a sliding mode. In this chapter, we impose
that the maximum value of each gene is 1 and the minimum value of each gene is 0 (the
reason for this choice will be presented in the next subsection), so θca, θab, θbc are real
numbers between 0 and 1. In fact, the HGRN studied in Chapter 5 can be considered as a
normalization over two levels (between 0 and 2) of the model considered in this chapter.

Many works about parameter identification aim to find a specific choice of parameters,
in other words, assign a specific value to each parameter. In the work of this chapter,
instead of finding a specific choice of parameters, we want to find a parameter set which
can be described by constraints on parameters under the following form:

∀(Y, X) ∈ {(c, a), (a, b), (b, c)},∀i, j ∈ {0, 1}, VXY iXj ∈ IXY iXj = [IXY iXj, IXY iXj]

and

∀(Y, X) ∈ {(c, a), (a, b), (b, c)}, θY X ∈ IY X = [IY X , IY X ]

where ∀(Y, X) ∈ {(c, a), (a, b), (b, c)},∀i, j ∈ {0, 1}, IXY iXj, IXY iXj, IY X , IY X ∈ R, 0 ≤
IXY iXj < IXY iXj, 0 ≤ IY X < IY X ≤ 1. In other words, each parameter is constrained indi-
vidually by an interval. The form of these constraints is the same as the form of separable
constraints in Chapter 5. The difference is that we also consider here the constraints on
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thresholds. In this chapter, this kind of parameter set constrained by intervals is called
regular parameter set. A regular parameter set is denoted by Ps.

In order to simplify the parameter identification problem, we choose to fix the length
of these intervals to identify; more precisely, we want to find a regular parameter set under
the following form:

∀(Y, X) ∈ {(c, a), (a, b), (b, c)},∀i, j ∈ {0, 1}, VXY iXj ∈
[max(0, V̂XY iXj − ϵXY iXj), V̂XY iXj + ϵXY iXj]

and

∀(Y, X) ∈ {(c, a), (a, b), (b, c)}, θY X ∈ [max(0, θ̂Y X − ϵY X), min(1, θ̂Y X + ϵY X)]

where ∀(Y, X) ∈ {(c, a), (a, b), (b, c)},∀i, j ∈ {0, 1}, ϵXY iXj and ϵY X , which are positive
real numbers, are chosen (fixed), so we only need to identify the values of V̂XY iXj and
θ̂Y X .

The reason why we choose to identify a parameter set is that a parameter set can
cover more possible qualitative properties of the system compared to a single choice of
parameters, and the reason why we choose to use a regular parameter set is that it is
easier to sample models from such a parameter set.

6.1.2 Data Representation

In this chapter, we investigate parameter identification methods based on time series
data. The inference of gene regulatory networks from time series data is in fact an active
research area [74, 75]. The time series data used in this chapter is formally represented
as a sequence: (xt0

X , xt1
X , ..., xtm

X ) where X ∈ {a, b, c} represents one gene of the system; the
sequence (t0, t1, ..., tm) is a sequence of time representing the moments when we know the
continuous expressions of genes; xti

X represents the expression of gene X at time ti.
For now, we do not have biological time series data that correspond to the canonical

repressilator, thus simulated data is used in this chapter to verify the parameter identifi-
cation methods. More precisely, we randomly choose parameters of this model and make a
simulation from a randomly chosen initial state to obtain time series data. In this chapter,
we simply choose that, for each gene, the maximum value is 1 and the minimum value is
0. Indeed, a priori, the maximum and minimum values are unknown; in that case, we can
also consider these values as parameters to identify. In order to make the data more real-
istic, we also add noise independently on each data point following a normal distribution.
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The data are presented in Table 6.1 and their illustration is given in Fig 6.1. In Table 6.1,
there are some values which are less than 0 or bigger than 1 because of the added noise.

Table 6.1 – Time series data used to verify the parameter identification methods.
ti 0 0.24 0.49 0.73 0.98 1.22 1.47 1.72 1.96 2.21 2.45 2.71 2.95 3.19 3.44 3.68 3.93 4.18 4.42 4.67 4.91
xti

a 0.51 0.96 0.95 0.84 0.71 0.63 0.54 0.40 0.23 0.35 0.74 1.01 0.97 0.95 0.83 0.78 0.61 0.56 0.44 0.21 0.33
xti

b 0.66 0.00 -0.02 0.00 -0.02 0.00 -0.02 -0.01 0.39 0.95 0.35 0.03 -0.02 0.00 -0.01 0.03 0.01 0.00 -0.01 0.36 1.03
xti

c 0.82 0.62 0.92 1.00 0.99 0.98 0.98 1.01 0.90 0.44 0.00 0.26 0.67 0.94 0.99 1.01 1.01 0.97 1.00 0.88 0.43

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

a
b
c

Figure 6.1 – Illustration of the time series data used to verify the parameter identification
methods.

The parameters of the HGRN used to obtain these data are given as follows. Although
these values are chosen randomly without any biological consideration, they can be used
to verify the parameter identification methods at the first stage.

Vac0a0 = 1 Vac0a1 = 1.9 Vac1a0 = 1.3 Vac1a1 = 0.4

Vba0b0 = 3.8 Vba0b1 = 2.5 Vba1b0 = 2.7 Vba1b1 = 3.3

Vcb0c0 = 1.5 Vcb0c1 = 0.8 Vcb1c0 = 1.9 Vcb1c1 = 1.5

θca = 0.8 θab = 0.4 θbc = 0.2
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6.2. Description of the Method

6.2 Description of the Method

6.2.1 Objective Function for the Optimization of Regular Pa-
rameter Set

We consider the parameter identification problem as an optimization problem. More
precisely, we use an objective function to describe how well a regular parameter set fits the
data and we want to find a regular parameter set that minimizes this objective function.
This objective function is given in Eq (6.2).

lim
ns→∞

1
ns

∑
Mi∈Sample(Ps)

f(Mi) (6.2)

where ns models are randomly sampled from a given regular parameter set Ps (here ns

models mean ns different choices of parameters) following the uniform distribution. These
ns sampled models are denoted by Sample(Ps) = {M1, M2, ..., Mns}. The expression of
function f is given in Eq (6.3).

f(Mi) = 1
3(m + 1)

∑
X∈{a,b,c}

∑
j∈{0,1,2,...,m}

w(xtj

X)(xi,tj

X − x
tj

X)2 (6.3)

where, for each sampled model Mi, we compute the simulated time series data from
the same initial states (xt0

a , xt0
b , xt0

c ), and these simulated data are denoted by
(xi,t0

X , xi,t1
X , ..., xi,tm

X ), X ∈ {a, b, c}. The mean squared error is used to measure the differ-
ence between the input data and these simulated data. We also add weights to the mean
squared error because some data points are more important than others for parameter
identification. The weight of data point x

tj

X is denoted by w(xtj

X), which is proportional to
the estimated time derivative of x

tj

X . More precisely, w(xtj

X) = max(|x
tj
X −x

tj−1
X

tj−tj−1
|, |x

tj+1
X −x

tj
X

tj+1−tj
|)

if 0 < j < m, w(xtj

X) = |x
tj+1
X −x

tj
X

tj+1−tj
| if j = 0 and w(xtj

X) = |x
tj
X −x

tj−1
X

tj−tj−1
| if j = m. In fact, this

objective function describes the average of function f on a regular parameter set.
In practice, it is impossible to let ns converge to infinity, so in the implementation we

choose a finite value of ns to compute the estimated value of the objective function.

6.2.2 Estimation of Potential Parameter Set

The final objective of this work is to find a regular parameter set that optimizes globally
this objective function (a global minimum). However, finding the global minimum is non-
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trivial. So what we can do is to find some local minimums.
In the parameter space, there exist some local minimums which are not reasonable,

see for example Fig 6.2. This local minimum is not reasonable because the frequencies
of the models that belong to this local minimum are too high. Such unreasonable local
minimum exists because there is a finite number of data points in the real sequence. The
number of such unreasonable local minimums decreases when the number of data points
increases.

0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a_real

Figure 6.2 – Illustration of the real sequence of gene A and some simulated sequences of
gene A by models belonging to a local minimum which is not reasonable.

In order to avoid finding these unreasonable local minimums, before applying the
optimization algorithms, we propose a method to estimate a potential parameter set
that does not contain these unreasonable local minimums. This idea is shown in Fig 6.3.
The grey area represents the whole parameter space, the red squares represent some
regular parameter sets which are local minimums. In this illustration, for example, the
left red square with the illustration of simulated data represents an unreasonable local
minimum and the right one with the illustration of simulated data represents a reasonable
local minimum. What we want to do is to find a potential parameter set (the blue area)
that does not contain the unreasonable local minimums. Then we could search for local
minimums starting from this potential parameter set, which could improve the efficiency
of the searching process.

Two types of constraints are considered to compute this potential parameter set. The
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Figure 6.3 – Illustration of the idea to estimate a potential parameter set that does not
contain the unreasonable local minimums. The grey area represents the whole parameter
space, the red squares represent some regular parameter set which are local minimums
and the blue area represents this potential parameter set.

first type consists in constraints on the maximum absolute value of the time derivatives
of genes, which can be computed by the estimated time derivatives. More precisely, the
maximum absolute value of the estimated time derivative of one gene is increased by an
order of magnitude and this increased value is used as the constraint on the maximum
absolute value of the time derivatives of this gene. The second type is based on the number
of boundaries reached between t0 and tm. We assume that this sequence corresponds to an
oscillation, and that it shows more than one period and less than two periods. So, based
on the analysis of this HGRN in Chapter 5, we know that the number of boundaries
reached between t0 and tm must be between 6 and 36, where 6 is the minimum number of
boundaries reached by one period and the number of boundaries reached by two periods
must be less than 36. Details about how this potential parameter set is used are presented
in the following section.

6.2.3 Parameter Identification based on Genetic Algorithm

Generally, the methods to optimize an objective function can be classified in two
categories based on whether the information of gradient is used or not. For now, we have
not yet found a method to compute the gradient of this objective function, so we chose
to use methods that are not based on gradient.

The most used class of optimization methods that is not based on gradient is meta-
heuristics [76–82]. Among different meta-heuristics, in this chapter, we choose to use
the genetic algorithm [83–85] which is one of the most studied meta-heuristics. In fact,
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Chapter 6 – Parameter Identification based on Time Series Data

genetic algorithms have also been used to identify parameters of HGRNs in [73], which,
contrary to this work, uses biological knowledge to identify the parameters. The idea of
genetic algorithm comes from the process of natural selection. The main pipeline of genetic
algorithm is illustrated in Fig 6.4. Details about each step are presented as follows.

Figure 6.4 – Illustration of the major steps of a genetic algorithm.

In the step of initial population, some regular parameter sets that intersect the poten-
tial parameter set are randomly generated. In practice, to verify if a regular parameter
set intersects the potential parameter set, we simply verify if the center of this regular
parameter set (for example, if VXY iXj ∈ [max(0, V̂XY iXj− ϵXY iXj), V̂XY iXj + ϵXY iXj], then
the center of VXY iXj is V̂XY iXj) belongs to the potential parameter set. These randomly
generated regular parameter sets are called the initial population (the first generation).

In the step of selection, we compute the estimated values (as stated before, the exact
values of the objective function are hard or maybe impossible to compute, so we estimate
the values by choosing a finite value of ns) of the objective function of each regular
parameter set in the current population and choose the top ntop regular parameter sets,
which are the ntop regular parameter sets with the minimum ntop estimated values of the
objective function.

In the step of generation of new population (new generation), we compute the new
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population based on the top ntop regular parameter sets from the previous population.
The generation of new population is based on two operators: Crossover and mutation.
In the literature, many sorts of crossover and mutation have been proposed [86]. In this
chapter, we adapt the classic crossover and mutation which are presented as follows.

Consider two regular parameter sets P p
s and P q

s . The intervals of P p
s and P q

s are denoted
by

VXY iXj ∈ [max(0, V̂ p
XY iXj − ϵXY iXj), V̂ p

XY iXj + ϵXY iXj]

θY X ∈ [max(0, θ̂p
Y X − ϵY X), min(1, θ̂p

Y X + ϵY X)]

and

VXY iXj ∈ [max(0, V̂ q
XY iXj − ϵXY iXj), V̂ q

XY iXj + ϵXY iXj]

θY X ∈ [max(0, θ̂q
Y X − ϵY X), min(1, θ̂q

Y X + ϵY X)]

respectively, where (Y, X) ∈ {(c, a), (a, b), (b, c)}, i, j ∈ {0, 1}. The operator crossover can
generate a new regular parameter set, denoted by P pq

s , from P p
s and P q

s . The intervals of
P pq

s are

VXY iXj ∈ [max(0, V̂ pq
XY iXj − ϵXY iXj), V̂ pq

XY iXj + ϵXY iXj]

θY X ∈ [max(0, θ̂pq
Y X − ϵY X), min(1, θ̂pq

Y X + ϵY X)]

where

V̂ pq
XY iXj = αV̂ p

XY iXj + (1− α)V̂ q
XY iXj

θ̂pq
Y X = αθ̂p

Y X + (1− α)θ̂q
Y X

where α is a randomly generated real number from [0, 1] following a uniform distribution.
The mutation operator can generate a new regular parameter set P p′

s from P p
s . The

intervals of P p′
s are

VXY iXj ∈ [max(0, V̂ p′
XY iXj − ϵXY iXj), V̂ p′

XY iXj + ϵXY iXj]

θY X ∈ [max(0, θ̂p′
Y X − ϵY X), min(1, θ̂p′

Y X + ϵY X)]

where
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V̂ p′
XY iXj = max(0, βXY iXjV̂

p
XY iXj)

θ̂p′
Y X = min(1, max(0, βY X θ̂p

Y X))

where βXY iXj, βY X are randomly generated real numbers from [1− δ, 1 + δ] where δ is a
small positive real number. In other words, the mutation operator adds some small noises
on the original intervals.

In order to compute the new population, firstly we apply the crossover on pairs of
top ntop regular parameter sets from the previous populations to get some new regular
parameter sets, and then we apply the mutation on these new regular parameter sets to
get finally the new population.

Different criteria can be used to determine when the algorithm stops; in this work, we
choose to fix the number of generations, in other words the loop in Fig 6.4 is repeated for
a fixed number of times.

6.3 Application

The minimum value of the objective function of each generation (the estimated value of
the objective function of the regular parameter set that minimizes the objective function
in the current generation) is shown in Fig 6.5. The execution time of the algorithm is 17
minutes. Computations were performed on a standard laptop computer, with an Intel Core
I7-8550U 1.80GHz processor and 16.0GB RAM. Globally, we can see that new generations
are generally better with regard to the estimated values of the objective function and it
seems that this curve converges. So we can assume that a local minimum is found which
means that the best regular parameter set in the last population is very close to a local
minimum.

Simulated data of this best regular parameter set in the last population are shown in
Fig 6.6. We can see that the simulated data are close to the input data, which indicates that
this parameter set could potentially cover the real qualitative properties of the system.

This regular parameter set is given as follows. We can see that this regular parameter
set does not include the real parameters. In fact, because of the facts that we search for a
set of parameters instead of a specific choice of parameters and noises are added to data,
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Figure 6.5 – The training curve of the genetic algorithm. Abscissa represents the number
of generations and ordinate represents the minimum value of the objective function of
each generation.
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Figure 6.6 – Illustration of the last regular parameter set found by the genetic algorithm.
Red curves represent input data and other curves represent simulated data of this regular
parameter set.

even the global minimum does not necessarily include the real parameters.

Vac0a0 ∈ [0.66, 0.76] Vac0a1 ∈ [0.58, 0.68] Vac1a0 ∈ [0.67, 0.77] Vac1a1 ∈ [0.89, 0.99]

Vba0b0 ∈ [1.45, 1.55] Vba0b1 ∈ [1.74, 1.84] Vba1b0 ∈ [2.00, 2.10] Vba1b1 ∈ [1.41, 1.51]

Vcb0c0 ∈ [0.73, 0.83] Vcb0c1 ∈ [0.63, 0.73] Vcb1c0 ∈ [1.29, 1.39] Vcb1c1 ∈ [1.36, 1.46]

θca ∈ [0.87, 0.97] θbc ∈ [0.27, 0.37] θab ∈ [0.29, 0.39]

The above result is only the result of one execution of the algorithm. By executing
the algorithm for several times, different regular parameter sets (local minimums) can
be found. Some regular parameter sets can generate data that are visually close to the
input data, while others cannot. This leads to an open question of this work: For a local
minimum found by this method which cannot generate data that visually fit the input
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data, does there exist another local minimum which generates data that visually fit better
the input data? Or can we verify if the found local minimum is the global minimum? We
note that the global minimum does not necessarily generate data that visually fit best the
input data, but we can assume that it is true if the objective function is chosen properly.

6.4 Summary

In this chapter, we propose a method based on a genetic algorithm to identify pa-
rameter sets from time series data. The results show that the obtained parameter sets
could potentially cover the qualitative properties of the real system. The major limit of
this work is that only simulated data are used. To further evaluate this method, real
data from biological experiments are required, because the distribution of real data could
be different from simulated data which could potentially influence the effectiveness of the
method. There are also open questions related to the identification of the global minimum
that can be further investigated. Generally, this work is only a beginning of the study of
parameter identification of HGRN based on time series.

The study of this chapter and the previous one were based on the 3-dimensional
repressilator. In the next chapter, we will investigate the dynamical properties of the
4-dimensional repressilator with a discrete formalism.
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Chapter 7

CONDITION FOR A DISCRETE PERIODIC

ATTRACTOR IN 4-DIMENSIONAL

REPRESSILATORS

In this chapter, we study the 4-dimensional repressilators, which is a continuation of
the work in Chapter 5. Initially, the idea was to develop, like in Chapter 5, constraints on
celerities of 4-dimensional repressilators for the existence of sustained oscillations. How-
ever, it is a non-trivial task, because this extra dimension makes the use of Poincaré map
to analyze the stability of characteristic states more complicated. Thus, in this chapter,
we turn to discrete models and aim to find the condition for the existence of a discrete pe-
riodic attractor based on the asynchronous semantics, because the existence of a discrete
periodic attractor based on the asychronous semantics in a discrete model is a sufficient
condition for the existence of a limit cycle in the associated HGRN. We aim to find such
a condition described by the topological features of influence graphs, which follows some
theoretical works [87–91]. Our major contributions include: 1) discovering that, with one
exception, the relations between gene regulation thresholds do not impact the existence
of discrete periodic attractors in any of the influence graphs considered in this study; 2)
identifying a sufficient and necessary condition of simple form for the existence of a dis-
crete periodic attractor when the same exception is ignored; 3) identifying new topological
features of influence graphs that are necessary for predicting the existence of discrete peri-
odic attractor in 4-dimensional repressilators. The work of this chapter has been presented
at CMSB 2023 as regular paper [25].

7.1 4-dimensional Repressilators

In the literature, there are works studying extensions of the 3-dimensional canonical
repressilator by adding more genes into the network [92–96]. Most of these works focus on
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Figure 7.1 – An influence graph of a 4-dimensional repressilator.

some specific networks. In this work, we study all 4-dimensional gene regulatory networks
where genes are linked only through inhibition, and where every gene has an impact on at
least one other gene. These networks are called 4-dimensional repressilators. An influence
graph of such networks is shown in Fig 7.1.

Our analysis of these 4-dimensional repressilators is based on two underlying assump-
tions about their dynamics.

Assumption 7 If one gene influences m different genes, then it has m distinct thresholds
that correspond to each of these m genes.

Consider the influence graph of Fig 7.1, G2 inhibits G0 and G3, so G2 has two distinct
thresholds because of Assumption 7, meaning that it has three discrete levels: 0, 1, 2. Since
each of the other genes only influences one other gene, they only have two discrete levels:
0, 1. A similar assumption can be found in [34] for example.

The relations between the two thresholds of G2 can have impact on the dynamical
properties of the system. To show the relations between thresholds on an influence graph,
we introduce the notion of influence graph with thresholds which is defined as IGS =
(V, A, s) where V and A are the sets of genes (nodes) and regulations (edges) between
genes respectively, as in the definition of an influence graph (see Chapter 2), and the
function s assigns an integer to each regulation that represents the minimum discrete
level of the source gene necessary to inhibit the target gene. Thus, the function s also
characterizes the relationship between thresholds.

From the influence graph of Fig 7.1, by considering all different relations between
thresholds, we can get two different influence graphs with thresholds as illustrated in
Fig 7.2. For the regulation G2 → G3 in the left influence graph with thresholds, s(G2 →
G3) = 2 (which is the number on the arc) means that G3 is inhibited by G2 if the discrete
level of G2 is bigger or equal to 2. For the regulation G2 → G0 in the same graph,
s(G2 → G0) = 1 means that G0 is inhibited by G2 if the discrete level of G2 is bigger or
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Figure 7.2 – Different influence graphs with thresholds, corresponding to the influence
graph of Fig 7.1.

equal to 1. We can see that, in the left influence graph with thresholds, the threshold of
G2 triggering the inhibition of G0 is smaller than the threshold triggering the inhibition
of G3, while in the right influence graph with thresholds, the situation is reversed. We can
also see that the function s gives all possible discrete levels of the system.

A priori, different discrete models (logic programs) can be associated to the same
influence graph with thresholds, particularly when one gene is inhibited by several genes.
Moreover, different choices of logic programs lead to different transition graphs, in other
words different dynamical properties. In this chapter, we make an assumption about the
dynamics when one gene is inhibited by several genes.

Assumption 8 In an influence graph with threshold IGS = (V, A, s), for any gene G, its
discrete level can decrease by 1 if there exists a regulation from G′ to G and the current
discrete level of G′ is bigger or equal to s(G′ → G), otherwise its discrete level can increase
by 1.

In fact, Assumption 8 is equivalent to assume that the inhibitions are disjunctive, meaning
that only one inhibitor is enough to decrease the target gene. Similar assumptions about
the disjunction or conjunction of gene regulation can be found in [97, 98]. Consider the
influence graph with thresholds on the left of Fig 7.2; Assumption 8 leads to the following

125



Chapter 7 – Condition for a Discrete Periodic Attractor in 4-dimensional Repressilators

logic program (for reminder, the discrete level of gene Gi is noted by ai):

a0 = 0← (a2 ≥ 1)

a0 = 1← (a2 < 1)

a1 = 0← (a0 ≥ 1) ∨ (a3 ≥ 1)

a1 = 1← (a0 < 1) ∧ (a3 < 1)

a2 = 0← (a1 ≥ 1) ∧ (a2 ≤ 1)

a2 = 1← (a1 ≥ 1) ∧ (a2 = 2)

a2 = 1← (a1 < 1) ∧ (a2 = 0)

a2 = 2← (a1 < 1) ∧ (a2 ≥ 1)

a3 = 0← (a2 ≥ 2)

a3 = 1← (a2 < 2)

(7.1)

Note that, for instance, there needs to be two rules in order to make G2 increase to the
expression level 2: One to update it from level 0 to level 1 (line 7) and one to make it
increase from 1 to 2 (line 8); this is because we did not constraint the dynamics to be
unitary and we thus need to encode this property inside the rules. Using Assumption 8,
we get a unique discrete model from any influence graph with thresholds, which simplifies
the analysis.

In this work, we use the asynchronous semantics, which is formally defined as follows.
We consider a system with N genes noted as G0, G1, G2, ..., GN . For any discrete state ds

at time t, if there exists a logic rule ai0 = k ← ϕ where i0 ∈ {0, 1, 2, ..., N}, such that ds

satisfies ϕ and di0
s ̸= k, then at time t + 1, the system can reach the new discrete state

d′
s such that d′i

s = di
s for i ∈ {0, 1, 2, ..., N} \ {i0} and d′i0

s = k. The transition graph of
discrete states based on the asynchronous semantics corresponding to the discrete model
of Eq (7.1) is illustrated in Fig 7.3.

The general logic rules for an arbitrary IGS are given in Eq (7.2).

ai = k + 1← (ai = k) ∧ (k < MaxGi
) ∧ (∀G ∈ reg(Gi), G < s(G→ Gi))

ai = k − 1← (ai = k) ∧ (k > 0) ∧ (∃G ∈ reg(Gi), G ≥ s(G→ Gi))
(7.2)

where MaxGi
is the maximum discrete level of Gi and reg(Gi) is the set of all genes

that inhibit Gi. Obviously, the rules of Eq (7.1) can be derived from the ones of Eq (7.2)
by simplification. Some simplifications also involve the knowledge of the asynchronous

126



7.1. 4-dimensional Repressilators

0000

1000

0100

0010

0001

1001 1010

1100 0101

0011

0110

0020

1011

0021

0111

0120

1101

0121

1020

1021

1110

1111

1120

1121

Figure 7.3 – Transition graph of discrete states of a model of 4-dimensional repressila-
tor (corresponding to Eq (7.1)) based on asynchronous semantics. Red discrete states
represent a discrete periodic attractor.
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semantics given in the previous paragraph.

7.2 Feature Selection and Search of Candidate Con-
dition based on Decision Tree

The definition of a discrete periodic attractor is given as follows.

Definition 15 A discrete periodic attractor is a set of discrete states Ea such that:
— Ea contains at least two discrete states.
— For any two discrete states ds, d′

s ∈ Ea, there exists a path in the transition graph
of discrete states from ds to d′

s.
— For any discrete state ds ∈ Ea and for any discrete state d′

s /∈ Ea, there is no path
in the transition graph of discrete states from ds to d′

s.

One example of discrete periodic attractor is given by the red discrete states in Fig 7.3.
In order to find a condition for the existence of a discrete periodic attractor, we

firstly construct a decision tree model following the five steps below. The reason why we
want to construct a decision tree model is that if we could obtain a decision tree with a
classification accuracy of 1.0 to predict the existence of a discrete periodic attractor, then
this decision tree is equivalent to a sufficient and necessary condition for the existence of a
discrete periodic attractor in 4-dimensional repressilators. This work indeed only considers
a finite number of discrete models, and a decision tree can be intuitively explained.

1. Generate all influence graphs with thresholds of 4-dimensional repressilators.

2. For each influence graph with thresholds, check the existence of a discrete periodic
attractor using an attractor identification algorithm. Here, an influence graph hav-
ing a discrete periodic attractor means that the associated discrete model (which
is unique because of Assumption 8) has a discrete periodic attractor.

3. Compute manually some features which could be potentially used to predict the
existence of a discrete periodic attractor.

4. Construct a decision tree model which uses the features in the previous step to
predict the existence of a discrete periodic attractor.

5. Manually drop some features which do not influence the prediction result.

In step 1, there are 50625 influence graphs with thresholds in total without removing
the graphs that are equivalent.
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7.2. Feature Selection and Search of Candidate Condition based on Decision Tree

In step 2, we use the function attracting_components of the Python library NetworkX
to verify the existence of a discrete periodic attractor. We find that any influence graph
with thresholds which has a discrete periodic attractor has only one discrete periodic
attractor.

In step 3, we compute two classes of features on the influence graph to describe the
topology of the influence graph: The number of cycles of length n and the total out-degree
of cycles of length n.

For the first class, since the system has 4 genes, there are only cycles of length 2, 3
and 4. We use C2, C3 and C4 to represent the numbers of cycles of length 2, 3 and 4,
respectively. For example, for the influence graph in Fig 7.1, there is no cycle of length
2 or 4 (C2 = 0, C4 = 0) and two cycles of length 3 (C3 = 2). It is logical to use these
features to predict the existence of a discrete periodic attractor because, in this class of
repressilators, the length of a cycle determines whether it is a negative feedback loop or a
positive feedback loop as there are only inhibition regulations and the presence of loops is
related to the existence of attractor(s). For example, it is already known that the presence
of a negative feedback loop is a necessary condition for sustained oscillations [89] and the
presence of positive feedback loop is a necessary condition for multistability [88].

The second class of features is a new class of features introduced in this work which
is defined formally as follows.

Definition 16 (Total out-degree of cycles of length n) The total out-degree of cy-
cles of length n is the total number of arcs which go from a vertex which belongs to a cycle
of length n to a vertex which does not belong to this cycle.

For example, for the influence graph in Fig 7.1, the arc G2 → G3 goes from the cycle of
length 3: G0 → G1 → G2, to G3, which does not belong to this cycle. There are two arcs
like this in this influence graph: G2 → G3 (for the cycle G0 → G1 → G2) and G2 → G0

(for the cycle G1 → G2 → G3). So the total out-degree of cycles of length 3 is 2. Since, in
this influence graph, there is no cycle of length 2, the total out-degree of cycles of length
2 is 0. Since any graph considered in this chapter has only 4 genes, the total out-degree
of cycles of length 4 is always 0. We use OD2 and OD3 to denote the total out-degree of
cycles of length 2 and 3, respectively.

To explain the motivation about these features describing the total out-degree of
cycles, let’s consider the two influence graphs in Fig 7.4. The dynamical properties of
these two influence graphs are different: Any influence graph with thresholds associated
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G0 G1

G2 G3

−
−
−−
−

− G0 G1

G2 G3

−
−
−−
−

−

Figure 7.4 – Left: Influence graph always having a discrete periodic attractor. Right:
Influence graph never having a discrete periodic attractor.

to the left influence graph has a discrete periodic attractor while any influence graph
with threshold associated to the right influence graph does not have a discrete periodic
attractor. However, the topologies of these two influence graphs are similar: The numbers
of cycles of length 2, 3 and 4 of these two graphs are identical and they both have 6 arcs.
In order to find a condition for discrete periodic attractor, we need to find a way to exhibit
the topological difference between these two graphs, and these new features are effective:
For the left graph, OD2 = 1, OD3 = 3; for the right one, OD2 = 2, OD3 = 2. Note that
these features do not depend on the relations between thresholds.

In step 4, we construct a decision tree to predict the existence of a discrete periodic
attractor based on the 5 features C2, C3, C4, OD2 and OD3 using all influence graphs
with thresholds considered in this chapter. This decision tree is constructed automatically
using the decision tree model of the Python library Scikit-learn.

The accuracy of prediction of this decision tree is nearly 0.9990. Initially, we wished
this accuracy to be 1 because in that case, the decision tree would provide a sufficient
and necessary condition for the existence of a discrete periodic attractor. This small lack
of accuracy is actually caused by a few influence graphs with thresholds all related to the
same influence graph. By analyzing this influence graph, a very interesting result arises:

There exists one particular influence graph such that, for any influence graph with
thresholds that is not associated to this influence graph (or any isomorphism), the existence
of a discrete periodic attractor does not depend on the relations between thresholds and
can be predicted by this decision tree with an accuracy of 1.

This particular influence graph is shown in Fig 7.5. This figure also presents all influ-
ence graphs with thresholds, associated to this influence graph, having a discrete periodic
attractor. In fact, with the exception of the relation between the thresholds presented in
this figure (the only arcs assigned with numbers), the relations between the thresholds of
G2 do not influence the existence of a discrete periodic attractor, meaning that for any
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7.3. Condition Simplification

G0 G1

G2

G3

−2

−2−2

−1

−1
−1

Figure 7.5 – The particular influence graph whose the relations between thresholds in-
fluence the existence of a discrete periodic attractor. Amongst all influence graphs with
thresholds associated to this influence graph, only a subset has a discrete periodic attrac-
tor; this subset is characterized by the thresholds depicted in the figure.

order of thresholds of G2 added to this figure, it always has a discrete periodic attractor.

In step 5, we manually drop features that do not influence the accuracy of the decision
tree model. To do so, we re-train the decision tree each time after dropping one feature
and observe if the accuracy decreases. Finally, we find that only keeping the features OD2
and OD3 ensures the same accuracy. We have also verified that this is the only couple
of features that can maintain this accuracy. The final decision tree is shown in Fig 7.6.
In this tree, the blue leaves predict the existence of a discrete periodic attractor, and the
other leaves predict the non-existence of a discrete periodic attractor. We can see that
except the second leaf from the right, models in all other leaves are classified correctly.
In fact, this second leaf from the right contains all models associated to the particular
influence graph of Fig 7.5. This means that apart from this particular influence graph, this
tree describes a sufficient and necessary condition for the existence of a discrete periodic
attractor in 4-dimensional repressilators.

7.3 Condition Simplification

In this subsection, we compute a simplified sufficient and necessary condition for the
existence of a discrete periodic attractor based on the decision tree of Fig 7.6. The four
paths which end at blue leaves, which are the leaves related to the existence of a discrete
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outdegree_c2 <= 4.5
gini = 0.047

samples = 50625
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Figure 7.6 – A decision tree model to predict the existence of a discrete periodic attractor.
Blue leaves represent the models classified as having a discrete periodic attractor and
orange leaves represent the models classified as not having a discrete periodic attractor.
“gini” describes the purity of models in a node regarding the two classes considered here:
Models having a discrete periodic attractor and models not having a discrete periodic
attractor; if all models in a node belong to the same class then gini = 0, otherwise gini >
0 (gini = 1− (numberclass1

numbertotal
)2− (numberclass2

numbertotal
)2). “sample” represents the number of models in

a node. The first value of “value” represents the number of models not having a discrete
periodic attractor and the second value of “value” represents the number of models having
a discrete periodic attractor.
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7.3. Condition Simplification

periodic attractor, are equivalent to the following logic rules:

(OD2 ≤ 4 ∧OD3 ≤ 4 ∧OD2 ≤ 1 ∧OD3 ≤ 2 ∧OD3 > 1 ∧OD2 ≤ 0) ∨

(OD2 ≤ 4 ∧OD3 ≤ 4 ∧OD2 ≤ 1 ∧OD3 > 2) ∨

(OD2 ≤ 4 ∧OD3 ≤ 4 ∧OD2 > 1 ∧OD2 ≤ 2 ∧OD3 > 3) ∨

(OD2 ≤ 4 ∧OD3 > 4)

(7.3)

Since OD2 and OD3 are integers, these logic rules can be simplified as follows.

(OD2 = 0 ∧OD3 = 2) ∨

(OD2 ∈ {0, 1} ∧OD3 ∈ {3, 4}) ∨

(OD2 = 2 ∧OD3 = 4) ∨

(OD2 ∈ {0, 1, 2, 3, 4} ∧OD3 ∈ {5, 6, 7, ...})

(7.4)

Moreover, for all influence graphs, OD2 and OD3 are not independent and they are linked
by the following constraints. Since there is a finite number of models, these constraints
can be easily obtained by enumerating all models and comparing the values of OD2 and
OD3.

If OD2 = 0 then OD3 ∈ {0, 1, 2, 3}

If OD2 = 1 then OD3 ∈ {0, 1, 2, 3, 4}

If OD2 = 2 then OD3 ∈ {0, 1, 2, 3, 4, 5}

If OD2 = 3 then OD3 ∈ {0, 1, 2, 3}

If OD2 = 4 then OD3 ∈ {0, 1, 2, 3, 4, 6, 8}

(7.5)

By combining Eq (7.4) and Eq (7.5), we get the following result, which is a sufficient
and necessary condition for the existence of a discrete periodic attractor in case that the
influence graph is not equivalent to the one in Fig 7.5:

(OD2 = 0 ∧OD3 ∈ {2, 3}) ∨

(OD2 = 1 ∧OD3 ∈ {3, 4}) ∨

(OD2 = 2 ∧OD3 ∈ {4, 5}) ∨

(OD2 = 4 ∧OD3 ∈ {6, 8})

(7.6)
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This result is of simple form and we can also find some patterns in it: The values of OD2
are powers of 2 (20, 21, 22) except 0, and OD3 increases as OD2 increases. These patterns
might lead to some general theoretical results for N-dimensional repressilators.

7.4 Number of Oscillatory Dimensions in a Discrete
Periodic Attractor

In this subsection, we also investigate the number of oscillatory dimensions in the
discrete periodic attractors. For a discrete periodic attractor, oscillating in 3 dimensions
means that there exists one dimension i0 and an integer a such that for any discrete state
ds in this discrete periodic attractor, di0

s = a, and for any dimension i which differs from
i0, we can find two discrete states ds1 , ds2 in this discrete periodic attractor, such that
di

s1 ̸= di
s2 . An example of a discrete periodic attractor that oscillates in 3 dimensions

is given in Fig 7.7 where there is no oscillation in the first dimension. Oscillating in 4
dimensions means that for any dimension i, we can find two discrete states ds1 , ds2 in
this discrete periodic attractor, such that di

s1 ̸= di
s2 . For example, the discrete periodic

attractor in Fig 7.3 oscillates in 4 dimensions.
By automatically verifying the isomorphisms of all influence graphs with discrete peri-

odic attractors except the influence graph of Fig 7.5, we find that there are, in total, only
8 different (non-isomorphic) influence graphs which always have discrete periodic attrac-
tors. Any influence graph with thresholds corresponding to these 8 influence graphs has
only one discrete periodic attractor. Among these 8 influence graphs, 2 of them (Fig 7.8)
can have discrete periodic attractors which oscillate in both 3 and 4 dimensions depend-
ing on different relations between thresholds, and the other 6 (Fig 7.9) only have discrete
periodic attractors which oscillate in 4 dimensions.

7.5 Summary

In this chapter, we study the condition for the existence of a discrete periodic attractor
in 4-dimensional repressilators under some dynamical assumptions. With the guide of
decision tree models, we find a special influence graph for which the relations between
thresholds influence the existence of a discrete periodic attractor. For all other influence
graphs, we show that the existence of a discrete periodic attractor does not depend on

134



7.5. Summary

0000

1000

01000010 0001

1010 1001

01010110

0200

0011

0020

0002

0111

0201

0102

0012

0021

0022

0120

0210

0121

0112

0211

0220

0221

0202

0122

0212

0222

1011

1020

1002

1012

1021

1022

1100

1110 1101

1111

1120

1102

1112

1121

1122

1200

1201

1202

1210

1211

1212

1220

1221

1222

Figure 7.7 – Example of a discrete periodic attractor (red discrete states) that oscillates
in 3 dimensions. The discrete model corresponds to the left influence graph in Fig 7.8,
with s(G1 → G0) = s(G2 → G0) = s(G3 → G0) = 1.

135



Chapter 7 – Condition for a Discrete Periodic Attractor in 4-dimensional Repressilators
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Figure 7.8 – The two influence graphs which have discrete periodic attractors oscillating
in 3 or 4 dimensions. All arcs represent inhibitions between genes.
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Figure 7.9 – The six influence graphs which have discrete periodic attractors oscillating
only in 4 dimensions. All arcs represent inhibitions between genes.

the relations between thresholds and we find a sufficient and necessary condition with a
simple form, describing the topology of the influence graph, for the existence of a discrete
periodic attractor.

We use an exhaustive and computational approach to find this condition and we find
some patterns in this condition. In our next step, we would like to prove this result in a
more mathematical way, and try to extend this result for repressilators in N dimensions.

The topological feature used in this work, that is, the total out-degree of cycles of
length n, could be potentially simplified based on other more common features. If it is
possible, the simplified result could be more easily used for the design of new synthetic
circuits.

Meanwhile, only the topology of influence graphs is considered in this work. For fu-
ture works, we will also investigate how the relations between thresholds influence some
complex dynamical properties.
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Chapter 8

CONCLUSION AND PERSPECTIVES

8.1 Summary of Contributions and Limits

With a lower dynamical complexity compared to ODEs and other hybrid systems,
HGRN is a promising formalism to understand the global dynamical properties of gene
regulatory networks. Methods related to HGRNs have not been exhaustively explored
in the literature. In this thesis, we mainly focus on developing new analysis methods
of HGRNs. There are two major research directions: The first one is to develop general
analysis methods and the second one is to analyze some specific networks modeled as
HGRNs.

For the general analysis methods, we propose a limit cycle analysis method which can
identify all limit cycles inside simple cycles of discrete states (limit cycles that do not cross
the same discrete state for more than once in one period) and analyze their stability; we
also propose a reachability analysis method which can verify if the hybrid trajectory from
a given singular hybrid state can reach certain region (a set of hybrid states). Among the
state-of-the-art HGRNs of gene regulatory networks, these methods can fulfill successfully
their tasks. While for general HGRNs (including other HGRNs which can model systems
that are not gene regulatory networks), these methods might still have some limits.

For both methods, we ignore the existence of non-deterministic hybrid states. Indeed,
for the current existing HGRNs of gene regulatory networks, ignoring these states does
not influence the analysis results, mainly because such cases are very rare based on current
observations. But in the future, we might have to consider non-deterministic behaviors.
In that case, these algorithms should become more complex (for the identification of limit
cycles, there will be more connections in the graph of discrete domains; for the reachability
analysis method, a singular hybrid state could lead to several distinct hybrid trajectories),
so some optimizations of these algorithms are required; and the method to analyze the
stability of limit cycles should be adapted, because we might need to consider several
Poincaré maps.

137



For the limit cycle analysis method, for now we only consider limit cycles inside simple
cycles of discrete states, while, a priori, there could exist limit cycles that cross the same
discrete state or the same discrete domain for more than once in one period. In that case,
the enumeration of all possible cycles that could potentially contain limit cycles, becomes
more difficult. In order to solve this problem, more mathematical tools are likely to be
required.

For the reachability analysis method, for now we have only solved the reachability
problem of hybrid trajectories with regular behaviors. Whether chaotic hybrid trajectories
are decidable or not is still an open question. Therefore, exploring the boundary between
decidable hybrid trajectories and undecidable ones should be an interesting theoretical
study. There are also open questions related to the discrimination of chaotic hybrid tra-
jectories: Whether we can find a sufficient and necessary condition for a hybrid trajectory
to be chaotic.

In our works of analyzing some specific networks, we focus on a class of networks called
repressilators. We first study the 3-dimensional repressilator using HGRNs and then study
4-dimensional repressilators using discrete models. There are also some improvements that
can be done for these works.

The analysis of the 3-dimensional repressilator is based on the analysis of the stability
of the characteristic state, which, in this case, has only one cycle of discrete states around
it. For a HGRN of a 4-dimensional repressilator, a characteristic state can have several
cycles of discrete states around it, so the application of Poincaré map becomes more
complex. For now, we have not yet found a method to analyze such a characteristic state.
In order to find such a method, we might need to consider other methods from control
theory.

In the analysis of periodic attractors in discrete 4-dimensional repressilators, we find
new topological features to describe a sufficient and necessary condition for the existence
of a periodic attractor. We use an exhaustive strategy to prove that it is a sufficient
and necessary condition because there is a finite and not too large number of influence
graphs. If we could further prove it in a more mathematical way, then this result could
be potentially extended for n-dimensional repressilators.

The final objective of these works on repressilators is to implement a synthetic repres-
silator with a controllable period into a living cell. Thanks to this thesis, some conditions
about oscillation have been found. The next step is to compare these theoretical results
with practice. So a continuation of this work is to collaborate with a team of biologists
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to verify whether these conditions are compatible with the real systems.
We have also investigated the parameter identification methods based on time series

data. An open question of this work is that whether we can ensure that the global minimum
of the objective function is found, which could be an interesting continuation of this work.

8.2 Perspectives

Following the works of this thesis, there are other interesting directions that can be
explored.

Predict Possible Long-term Continuous Behaviors

There is a strong link between HGRNs and discrete models: The transition graph of
discrete states of a HGRN corresponds to the transition graph of discrete states of the
associated discrete model following the asynchronous semantics. The major difference be-
tween these two frameworks is that the celerities of HGRNs give extra information about
the long-term continuous behaviors. Indeed, in discrete models, for example, we can iden-
tify discrete periodic attractors, but we do not know whether the continuous oscillations in
these discrete periodic attractors are sustained oscillations, damped oscillations or chaotic
attractors. By sampling many HGRNs from a discrete model under certain hypothesis of
the distribution of celerities and by using our methods to classify trajectories (introduced
in Chapter 4), we could predict possible long-term continuous behaviors of a discrete
model, for example, we can know if a system can have sustained oscillations or a stable
fixed point, depending on the parameters. Furthermore, we can also predict the possible
co-existence of attractors, for example, a co-existence of a stable limit cycle and a stable
fixed point. Theoretically this approach can be applied on HGRNs in any dimension. But
for models in higher dimensions, a large amount of simulations is required, which can be
time consuming. To deal with this problem, it could be useful to explore new methods for
the simulation of HGRNs.

Improve the Algorithm to Identify Discrete Attractors

In our work of 4-dimensional repressilators, we find a condition, which is described
by topological features of the influence graphs, for the existence of a discrete periodic
attractor. If we can extend these results for n-dimensional repressilators (the form of

139



the condition can be different in n-dimensional cases) and understand better how these
topological features lead to periodic attractors, then these new results could be potentially
used to accelerate the identification of attractors in more general discrete models. For
instance, for certain discrete models, they could potentially give extra information about
the existence or the location of certain periodic attractors.

Networks Inference based on HGRNs

In the parameter identification part of this thesis, we assume that we already know the
influence graph. In some cases, such information is however unknown. It could be interest-
ing to investigate inference methods of influence graphs based on HGRNs, which can lead
to automatic construction of HGRNs with little biological knowledge (by combining the
parameter identification approaches proposed in this thesis). In the literature, there are
methods that can infer influence graphs based on discrete models [75, 99]. These methods
can be potentially extended for HGRNs by not only considering the discrete levels, but
also considering the signs of the time derivatives estimated from data.

Applications on Other Networks

Overall, some methods of this thesis have not yet been applied on specific biological
problems. If some suitable applications can be found, it could be interesting to further
investigate the merits of these proposed methods. Such applications can be, for example,
to find all periodic trajectories of a given system, or to estimate the continuous basin of
attraction of certain attractors. Also, even though this framework is proposed to model
gene regulatory networks, it has potential to solve problems of other classes of networks,
for example, ecological networks [100, 101], because the dynamics of HGRNs can be
considered as a simplification of certain types of ordinary differential equations.
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Titre : Identifier et analyser les comportements dynamiques à long terme des réseaux de
régulation génétique à l’aide de modélisation hybride
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Résumé : Utiliser des modèles dynamiques
pour révéler les propriétés dynamiques des
réseaux de régulation des gènes peut nous ai-
der à mieux comprendre la nature de ces sys-
tèmes biologiques et à développer nouveaux
traitements médicaux. Dans cette thèse, nous
nous concentrons sur une classe de systèmes
dynamiques hybrides appelés réseaux de ré-
gulation des gènes hybrides (HGRN) et vi-
sons à analyser les propriétés dynamiques à
long terme. Nous proposons des méthodes
pour trouver des cycles limites et analyser leur
stabilité, et pour analyser l’accessibilité dans
HGRNs. Ceci est suivi d’une étude plus ap-
profondie de certains réseaux d’intérêt pour la

biologie des systèmes : Les répressilateurs, et
nous trouvons des conditions pour l’existence
d’oscillations soutenues dans le répressilateur
canonique en dimension 3, et des conditions,
décrites par les caractéristiques topologiques
des réseaux, pour l’existence d’un attracteur
périodique dans les répressilateurs discrets
en dimension 4. En résumé, cette thèse pro-
pose de nouvelles méthodes pour analyser
certaines propriétés des HGRNs qui n’ont pas
été étudiées auparavant, par exemple la stabi-
lité des cycles limites à N dimensions, l’acces-
sibilité, etc. Les résultats pourront être déve-
loppés à l’avenir pour étudier d’autres grands
réseaux complexes.

Title: Identifying and Analyzing Long-term Dynamical Behaviors of Gene Regulatory Networks
with Hybrid Modeling

Keywords: Hybrid modeling, Limit cycle, Reachability, Repressilator, Attractor, Gene regula-

tory networks

Abstract: Using dynamical models to reveal
dynamical properties of gene regulatory net-
works can help us better understand the na-
ture of these biological systems and develop
new medical treatments. In this thesis, we
focus on a class of hybrid dynamical sys-
tems called Hybrid Gene Regulatory Network
(HGRN) and aim to analyze long-term dynam-
ical properties. We propose methods to find
limit cycles and analyze their stability, and to
analyze the reachability in HGRNs. This is fol-
lowed by a deeper study of some networks of
interest for Systems Biology: The repressila-

tors, and we find conditions for the existence
of sustained oscillations in the 3-dimensional
canonical repressilator, and conditions, which
are described by topological features of the
networks, for the existence of a periodic attrac-
tor in discrete 4-dimensional repressilators.
In summary, this thesis proposes new meth-
ods to analyze some properties of HGRNs
that were not investigated before, for instance,
the stability of N-dimensional limit cycles, the
reachability, etc. The results can be further de-
veloped in the future to study other large com-
plex networks.
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