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Thèse présentée et soutenue à Palaiseau, le 5 octobre 2023, par

VINCENT PLASSIER

Composition du Jury :

Gersende Fort
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Abstract

Centralizing data is impractical or undesirable in many scenarios, especially when sens-
itive information is involved. In such cases, the need for alternative methods becomes
evident. As large datasets are known to facilitate the learning of efficient models, dis-
tributed methods have emerged as a powerful tool to overcome the challenges posed by
centralized data. Consequently, this thesis introduces innovative approaches to tackle
large-scale Bayesian inference and uncertainty quantification, aiming to provide effect-
ive solutions in the context of distributed data environments. The federated Monte
Carlo (MC) approaches allow multiple agents/nodes to conduct computations locally
and securely, with a central server combining the results to obtain samples from the
global posterior distribution. Bayesian posterior sampling techniques benefit from the
incorporation of prior knowledge, leading to improved results. Additionally, the un-
certainty associated with the parameters and the predictions are naturally quantified,
which is crucial for decision-making. Especially with limited or noisy data, the ability
to quantify uncertainty becomes even more essential.

The first part of this manuscript focuses on MC via Markov chains (MCMC) methods.
In particular, we introduce two procedures, named DG-LMC and FALD, designed to target
a global posterior distribution while ensuring scalability. Local agents are associated
with a central server that aggregates information from each agent to generate samples
from the posterior distribution. This approach minimizes the need to transmit large
amounts of data across participating agents, making it especially advantageous in fed-
erated environments with limited bandwidth or low computational power. Considering
the distributed nature of today’s datasets, concerns about trust and confidence arise
when transferring information to a central server. The proposed methods not only ad-
dress practical applications but also extend existing learning algorithms to Bayesian
inference problems. The proposed approach contributes to the development of more
robust and efficient machine learning algorithms, and holds potential applications in
various domains, including epidemiology and finance, where large-scale inference and
data privacy are significant concerns. To demonstrate the effectiveness of the approach,
real-world datasets are employed, and the results show the performance of federated
MCMC simulation.

The second part of the thesis focuses on uncertainty management. Initially, we present
the Bayesian approach, which involves defining a prior and a likelihood. To address
bandwidth bottlenecks while efficiently generating samples, our proposed approach
leverages compression operators. In the final part of this thesis, we introduce a novel fre-
quentist FL method based on conformal predictions. Unlike other methods, our model-
agnostic approach does not rely on specific model assumptions and can be applied to any
underlying prediction model. Referred to as DP-FedCP, this method leverages quantile
regression techniques to generate personalized prediction sets while maintaining robust-
ness to outliers. The label shift between agents is addressed by determining quantiles
based on importance weights. One crucial aspect of our approach is the preservation
of differential privacy, it allows users to assess the confidence level of predictions and
make informed decisions based on the associated level of uncertainty. By incorporating
this privacy measure, we ensure safeguarding the user’s sensitive information.



Résumé

Centraliser les données est indésirable dans de nombreux scénarios, notamment lorsque
des informations sensibles sont traitées. Dans de tels cas, la nécessité de méthodes al-
ternatives devient évidente. Puisqu’un grand nombre de données facilite l’apprentissage
de modèles efficaces, les méthodes distribuées se sont imposées comme un outil puis-
sant pour surmonter les défis de la centralisation des données. Cette thèse présente des
approches innovantes dans les secteurs de l’inférence bayésienne à grande échelle et la
quantification des incertitudes, avec pour but de fournir des solutions à la centralisation
des données. Les approches de Monte Carlo fédéré permettent à plusieurs agents/nœuds
d’effectuer des calculs localement et en toute sécurité, tandis qu’un serveur central com-
bine les résultats obtenus pour échantillonner selon la posteriori globale. Ces techniques
d’échantillonnage a posteriori bayésiennes bénéficient de l’incorporation des connais-
sances à travers la priori, ce qui conduit à des résultats améliorés. De plus, l’incertitude
associée aux paramètres et aux prédictions est naturellement quantifiée, cette capacité
étant d’autant plus nécessaire en présence d’un petit nombre de données ou de données
bruitées.

La première partie de ce manuscrit se concentre sur les méthodes de Monte Carlo via
les chaînes de Markov. En particulier, nous introduisons deux procédures, appelées
DG-LMC et FALD, conçues pour cibler une distribution a posteriori tout en assurant la
scalabilité. Chacune de ces méthodes reposent sur un serveur central pour orchestrer
plusieurs entités locales. Celui-ci agrège l’information provenant de chaque agent afin de
produire des solutions statistiques tout en limitant la quantité de données transférées.
Cette approche réduit le nombre de communications entre participants, ce qui la rend
particulièrement avantageuse dans les environnements fédérés avec une bande passante
limitée. Étant donné la nature distribuée des ensembles de données d’aujourd’hui, des
préoccupations concernant la confiance et la confidentialité se posent lors du transfert
d’informations vers le serveur central. Les méthodes proposées non seulement abordent
des applications pratiques, mais étendent également les algorithmes d’apprentissage
existants aux problèmes d’inférence bayésienne. Les approches développées présentent
des applications potentielles dans divers domaines, notamment l’épidémiologie et la
finance, où l’inférence à grande échelle et la confidentialité des données sont des préoc-
cupations majeures.

La deuxième partie de la thèse se concentre sur la gestion de l’incertitude. Initiale-
ment, nous présentons l’approche bayésienne, qui consiste à définir une a priori et une
vraisemblance. Cette première méthode se base sur des opérateurs de compression afin
de résoudre les problèmes de bande passante. Dans la dernière partie, nous introduis-
ons une méthode fréquentiste basée sur les prédictions conformelles. Contrairement
aux méthodes précédentes, cette approche fonctionne avec n’importe quel modèle pré-
dictif. Nommée DP-FedCP, cette méthode utilise la technique de régression quantile pour
générer des ensembles de prédictions personnalisés et robustes. En outre, elle aborde
efficacement l’hétérogénéité entre agents via la détermination de quantiles basés sur
des pondérations d’importance. Un aspect crucial de notre approche reste la préserva-
tion de la confidentialité, nous veillons à protéger les informations sensibles de chaque
utilisateur.



Thesis outline and reading guide
Outline
This section provides an overview of the structure and content of the thesis, as well
as the reading guide for a comprehensive understanding of the research. The thesis
consists of an introductory part (Part I) followed by two main parts. Part II comprises
two chapters that explore various distributed Monte Carlo sampling methods based on
Markov Chain. Part III consists of two chapters that investigate the use of federated
learning approaches for uncertainty quantification. Precisely, the thesis is organized
into the following chapters:

Part I introduces the problem of federated learning and uncertainty quantification.

• Chapter 1 introduces the problem of federated learning and uncertainty quan-
tification, outlining the main contributions of the thesis. This chapter presents
the research questions, highlighting the significance of the study. It outlines the
objectives, scope, and methodology of the research, providing a clear context for
the subsequent chapters. The literature is reviewed critically, and we examine
existing frameworks relevant to our topics. This chapter identifies gaps in the
current knowledge and recalls the theoretical foundations upon which this study
is built.

Part II presents the distributed Markov Chain Monte Carlo (MCMC) sampling methods.
Both chapters proposed a distributed method based on local agents performing multiple
local updates with a central server computing the consensus step.

• Chapter 2 investigates reliable large-scale Bayesian using distributed MCMC al-
gorithms. The proposed methodology is designed to handle partitioned datasets
stored within a master/slaves architecture. The scalability in high-dimensional
settings through both synthetic and real data experiments is also demonstrated.
This chapter is based on the conference paper Plassier et al. (2021).

• Chapter 3 develops one key direction of the thesis, addressing Bayesian inference in
the context of federated learning. It introduces the Federated Averaging Langevin
Dynamics (FALD) algorithm and proposes VR-FALD?, an enhanced version that
utilizes control variates to correct client drift caused by statistical heterogeneity.
Non-asymptotic bounds are established to showcase the effectiveness of VR-FALD?

in mitigating the impact of statistical heterogeneity in federated learning bench-
marks. This chapter is based on the conference paper Plassier et al. (2023b)

Part III highlights the proposed methodology for federated uncertainty quantification.
Both chapters proposed a federated learning method that provides uncertainty quanti-
fication.

• Chapter 4 focuses on Bayesian inference in federated learning and introduces
the Quantized Langevin Stochastic Dynamics algorithm, which addresses con-
straints such as privacy, communication overhead, and statistical heterogeneity.
Variance reduction techniques are incorporated, leading to improved versions of
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the algorithm. Both non-asymptotic and asymptotic convergence guarantees are
provided, and the performance is demonstrated through various Bayesian Feder-
ated Learning benchmarks. This chapter is based on the conference paper Vono
et al. (2022b).

• Chapter 5 addresses uncertainty quantification within the Federated Learning
framework relying on conformal predictions. A novel federated conformal predic-
tion method based on quantile regression is developed, taking into account privacy
constraints and effectively handling the label shift between agents. The method
provides theoretical guarantees for valid coverage of prediction sets while ensuring
differential privacy, outperforming current competitors in extensive experimental
studies. This chapter is based on the conference paper Plassier et al. (2023a).

Reading guide
Each chapter begins with a concise introduction, providing the necessary contextual
information. For a quick overview of the contributions, readers are encouraged to fo-
cus on the summary of contributions in Chapter 1. While each chapter corresponds to
an accepted conference article, some modifications have been made to improve read-
ability and clarity. A chronological order has been established to facilitate the natural
progression, but it is important to note that each chapter can be read independently.

Certain technical proofs have been omitted from the verbatim articles, and for a thor-
ough grasp of all the details and proofs, please refer to the original articles. In any case,
the main results are still presented, and most details, outcomes and primary proofs are
included.
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Notation

:= Equal by definition

N,R Sets of natural and real numbers

Rd Set of d-dimensional real-valued vectors

〈x, y〉 Inner product of vectors x, y ∈ Rd

‖x‖p `p-norm of vector x ∈ Rd

‖A‖ Matrix norm induced ‖A‖ = sup{‖Au‖ : u ∈ Rp, ‖u‖ = 1}

Rn×d Set of real matrices of size n× d

Sd(R) Set of real symmetric matrices of size d× d

S+
d (R),S++

d (R) Set of real symmetric positive (semi)-definite matrices of size d× d

Id Identity matrix of size d× d

A> Transpose of matrix A

Tr(A), det(A) Trace and Determinant of matrix A

λmin(A), λmax(A) Smallest and Largest eigenvalue of matrix A

A⊗B Kronecker product of A and B

vec(A) Vectorization of matrix A by stacking its columns

B(X ) Borel σ-field on X

1E Characteristic function of set E

Ac Complementary set of set A

P(·) Probability of an event

E[·] Expectation of a random variable

i.i.d.∼ Independent and Identically Distributed

L2(π) Set of square integrable functions with respect to measure π

X ∼ π Random variable X has distribution π

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ

∇f Gradient function of f : Rd → R

∇2f Hessian matrix of f : Rd → R



Part I

Introduction & Preliminaries

“Uncertainty is not a sign of weakness but a path to possibility.”

13



Chapter 1
General Introduction, Motivations
and Contributions
Contents

1.1 Bayesian Inference in a nutshell . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Distributed/Federated Learning . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Federated Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . 21
1.4 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . 24

Machine learning and artificial intelligence (AI) have made great strides in the last
two decades. These advances have been driven by the exponential growth of data and
computational capabilities, benefitting from centralization to aggregate data in a single
location with immense computational resources.

However, this fully centralized machine learning paradigm is increasingly at odds with
real-world use cases due to both technological and societal reasons. On the technological
side, centralized machine learning poses several challenges including (1) data processing
bottlenecks, (2) inefficient utilization of communication resources, (3) coordination and
synchronization issues that can lead to biased and incoherent models. At the societal
level, transmitting data to centralized entities raises concerns about (1) privacy and
exposure of individuals’ private information, (2) ownership dilemmas, (3) centralization
of power, and (4) objective disparities between individual agents at the network’s edge
and those of the centralized entity.

Recognizing these challenges, the machine learning community is now addressing the
problems raised by networked agents. Depending on the context, an agent can either
refer to an autonomous device equipped with local sensors and actuators, or an indi-
vidual operating within a localized context supported by personal storage and comput-
ing facilities. Generally, this can be a company, a hospital, or a government agency. In
any case, the technological trend is evident: as storage and computing capacity contin-
ues to increase at the agent level (referred to as the “edge” of the network), decentralizing
computing tasks becomes increasingly appealing. It is crucial for the machine learning
field to embrace this trend and adapt accordingly. Consequently, one of the significant
challenges of our time is achieving learning in decentralized environments, accounting
for distributed data sources, local computing resources, and heterogeneous goals.

1.1 Bayesian Inference in a nutshell

The Bayesian inference paradigm operates on the principle of treating parameters as
random variables. Instead of “learning” parameters through the minimization of a loss
function, the Bayesian approach infers a distribution, called the “posterior”, over the
parameters by applying the Bayes’ rule. To obtain this posterior distribution, a “prior”



CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND
CONTRIBUTIONS 15

distribution that is independent of the data observations needs to be specified. While
this may appear as an inconvenience, Bayesian inference treats all sources of uncer-
tainty in the modeling process in a unified and consistent manner, requiring explicit
assumptions and constraints. This in itself, is arguably an appealing feature of the
paradigm. However, the most compelling aspect of the Bayesian approach is the auto-
matic implementation of the “Occam’s Razor”. Within the Bayesian framework, there
is a natural preference for simple models that sufficiently explain the data without
unnecessary complexity.

The choice of the prior distribution p(θ) is the starting point of Bayesian learning. After
observing (z(1), . . . , z(N)), this prior distribution is updated to a posterior distribution
using Bayes’ rule:

p(θ | z(1), . . . , z(N)) =
p(θ)p(z(1), . . . , z(N) | θ)

p(z(1), . . . , z(N))
∝ p(θ) L(θ; z(1), . . . , z(N))

The posterior distribution combines two components: (1) the likelihood, denoted as
L(θ; z(1), . . . , z(N)), which encapsulates the information about the parameter θ derived
from observations, and (2) the prior, which contains the information about θ derived
from our background knowledge. Assuming independent observations, the likelihood
can be expressed as follows:

L(θ; z(1), . . . , z(N)) =
N∏
i=1

p(z(i); θ)

where p(z(i); θ) is the probability distribution function (pdf) of the observation for
a given value of the parameter θ. To predict the value of a new observation z, a
Bayesian approach integrates the predictive distribution over the different parameters
with respect to the posterior distribution:

p(y | x, z(1), . . . , z(N)) =

∫
p(y | x, θ) p(θ | z(1), . . . , z(N)) dθ. (1.1)

The resulting predictive distribution, denoted as p(y | x, z(1), . . . , z(N)), is the outcome
of Bayesian inference and serves various purposes based on user requirements. The
ability to generate such a distribution is a fundamental advantage of the Bayesian
approach. Computing the predictive distribution, as expressed in (1.1), lies at the
core of Bayesian inference. Despite its apparent simplicity, it often poses significant
computational challenges.

In the supervised learning setting, where z(i) = (x(i), y(i)), y(i) represents the response
(or the dependent variable) while x(i) denotes the covariate (observation or features),
and the likelihood function can be written as

L
(
θ; (x(1), y(1)), . . . , (x(N), y(N))

)
=

N∏
i=1

p(y(i) | x(i), θ).

1.1.1 Approximate Bayesian inference and MCMC

The Bayesian learning objective is to estimate label probabilities of new covariates.
This involves finding predictive probabilities or making single-valued guesses. Both
tasks require evaluating a function expressed as an expectation with respect to the



CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND
CONTRIBUTIONS 16

posterior distribution over the model’s parameters. Writing the posterior probability
density for the parameters as p(θ|D), with D = {(x(k), y(k))}Nk=1, the expectation of
f(θ) can be computed as follows:

E[f(θ) | D] =

∫
f(θ) p(θ | D) dθ.

Such expectations can be approximated by the Monte Carlo method, using samples
drawn (approximately) from p(θ|D), the previous integral is approximated as:

E[f(θ) | D] ≈ 1

k

k−1∑
j=0

f(θ(j))

While sampling directly from the posterior distribution p(·|D) is often computation-
ally infeasible, it is still possible to generate an ergodic Markov chain with stationary
distribution p(· | D).

Notably, while p(θ,D) has an explicit expression, the marginal distribution of the obser-
vations p(D) is intractable. Let K : (Θ,B(Θ))→ [0, 1] be a Markov kernel (Douc et al.,
2018) and π(·|D) the posterior distribution (with probability density function p(θ|D)).
Assuming K admits π(·|D) as its unique invariant distribution, i.e., π(·|D)K = π(·|D),
where π(A|D) =

∫
K(θ,A)π(dθ|D), for A ∈ B(Θ). It is known that in such a case,

K is ergodic; see e.g. Douc et al. (2018, Chapter 5). Consequently, sampling the new
parameter θk+1 at iteration k ≥ 0 according to K(θk, ·) would generate samples tar-
geting the posterior distribution π(·|D). In modern machine learning area, there is a
demand for algorithms that perform well with high-dimensional parameters and scaled
even for very large number of observations N . The computation of the likelihood poses
a computational bottleneck. This challenge has led to significant research efforts over
the past decade (see Welling and Teh (2011); Bardenet et al. (2017)). One possibility
is the Euler-Maruyama approximation of the Langevin diffusion (Roberts and Tweedie,
1996) given by

θk+1 = θk + γ∇ log p(θk|D) +
√

2γZk+1, (1.2)

where (Zk)k≥0 represents i.i.d. standard Gaussian noises, and γ > 0 denotes the time
discretization step-size. The Langevin Monte Carlo technique defines a Markov chain
with a transition kernel given by Kγ(θ,B) for (θ,B) ∈ Rd × B(Rd), as follows:

Kγ(θ,B) =
1(

4πγ
)d/2 ∫

B
exp

(
− 1

4γ

∥∥∥θ̃ − θ + γ∇ log p(θ|D)
∥∥∥2
)

dθ̃.

At iteration k ∈ N, the new parameter θk+1 is sampled according to Kγ(θk, ·), which is
equivalent to updating θk following (1.2). Under certain conditions on the step-size γ
and the potential U(θ) = log p(θ|D) (refer to Dalalyan (2017b); Durmus and Moulines
(2017) for further details), the distribution of (θk)k∈N converges to the stationary distri-
bution πγ (dependent on the step-size γ) as k goes to infinity. Additionally, note that
πγ approaches the target distribution π as the step-size γ tends to zero. Non-asymptotic
bounds have been derived (in terms of total variation distance or Wasserstein distance)
to analyze the impact of different parameters, such as the step-size γ, the number of
samples N , the dimension of the parameter space d, and properties of the potential
(e.g., log-concavity in the tails).
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However, these methods require calculating the gradient of the log posterior at each it-
eration, which is computationally intensive—O(N) operations. When the dataset size is
large, estimating the gradient over the entire dataset can be prohibitively expensive. To
mitigate this computational cost, an unbiased estimate of the gradient can be computed
using a subset Sk+1 ⊂ [N ] of observations, known as a minibatch. This class of meth-
ods, which employ minibatches, is called Stochastic Gradient MCMC (SGMCMC). The
cost per iteration for SGMCMC algorithms is O(b), where b is the minibatch size. In
the SGLD method introduced by Welling and Teh (2011), the full gradient is replaced,
for any k ≥ 0, by

̂∇L(θk,D) := −∇ log p
(
θk
)
− N

b

∑
l∈Sk+1

∇ log p(yl|xl, θk).

The convergence of this algorithm has been studied in terms of total variation and
Wasserstein convergence bounds (see Dalalyan (2017b); Durmus and Moulines (2019);
Durmus et al. (2019); Dalalyan and Karagulyan (2019)). Under certain assumptions of
strong convexity and Lipschitz continuity on the potential and its Hessian, the number
of iterations required to obtain a distribution that is ε-close to the target (in terms of
total variation or Wasserstein distance) is shown to be O(d/ε).

Research Question #1

How can we draw inspiration from optimization methods to design sampling
algorithms? And how can we introduce control variates to improve accuracy?

While stochastic gradients are unbiased, they introduce additional noise to the Langevin
scheme, which can negatively impact convergence speed. To address this issue, control
variates are employed to reduce the variance of the SGMCMC gradient estimate. The
Wasserstein bounds provided in Chatterji et al. (2018) illustrate a O(

√
γ) improve-

ment in asymptotic bias achieved. Furthermore, as demonstrated in Nagapetyan et al.
(2017); Baker et al. (2019), the standard SGLD requires a minibatch size of b = O(N),
whereas control variates only require a minibatch size of order O(1) to achieve similar
performance. Numerous control variate-based algorithms have been proposed. One
such algorithm is the fixed-point method by Brosse et al. (2018), which relies on control
variates utilizing the minimum θ? = arg minL(·,D) of the loss function. At iteration
k ∈ N, the parameters θk are updated using the following estimator:

˜∇L(θk,D) = ∇ log p
(
θk
)
−∇ log p(θ?)

+
N

b

∑
l∈Sk+1

{
∇ log p(, yl|xl, θk)−∇ log p(, yl|xl, θ?)

}
.

This new gradient estimate leads to improvements in the strongly convex case (Dubey
et al., 2016) and Brosse et al. (2018) derive an upper bound in Wasserstein distance
of order 2 between the distribution of the iterates (θk)k∈N∗ and the Langevin diffusion.
However, these control variates require the determination of the minimum θ? of the
loss function, which is challenging to obtain in practice. Thus, Chatterji et al. (2018)
propose an SVRG-Langevin variance reduction scheme based on the SVRG method
(Johnson and Zhang, 2013). This method involves updating a reference point θ̃k with
a probability q ∈

(
0, 1
]
. The gradient is then estimated using θ̃k, and the resulting
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stochastic gradient is given by:

∇L(θk,D) = ̂∇L(θk,D)− ̂∇L(θ̃k,D) +∇L(θ̃k,D).

To reduce the variance of the stochastic gradient, we need to ensure that VarFk(∇L(θk,D)) <

VarFk( ̂∇L(θk,D)), where VarFk represents the variance conditioned on the random vari-
ables used up to the k-th iteration.

1.2 Distributed/Federated Learning

Training very high-dimensional models via loss minimization in a distrib-
uted/federated manner involves significant communication costs, which can
become a major bottleneck and slow down training. Reducing communica-
tion costs has been identified as one of the major challenges of FL (Kairouz
et al., 2021).

Two promising approaches have been proposed to address this challenge. The first ap-
proach is to have agents perform multiple optimization iterations locally before sending
a model update to the central node. The second approach involves compressing the
exchanged messages. While local updates have been used with some success in prac-
tice, they raise practical issues. Due to statistical heterogeneity, performing multiple
steps can hinder convergence, as model updates target each agent’s local minimizer
(Li et al., 2019; Ro et al., 2021). This results in a tradeoff between communication
cost and convergence (Wang et al., 2020b; Woodworth et al., 2020), and necessitates
new algorithms to limit “client drift” (Karimireddy et al., 2020; Li et al., 2020b) (e.g.,
SCAFFOLD, FED-PROX).

Despite recent progress, developing new algorithms with theoretical guarantees in these
domains remains a major challenge. These new algorithms significantly improve conver-
gence when the target function is strongly convex and many local updates are performed.
However, in the non-convex case (e.g., deep learning, latent-variable models), theoret-
ical guarantees are essentially missing. Existing approaches often rely on Euclidean
averaging of the model weights, which becomes inefficient when agents’ models deviate
significantly from the central model (Frankle et al., 2020). Initial attempts to improve
the aggregation technique have been proposed, with two main approaches investigated:
modifying the averaging scheme using optimal transport (Singh and Jaggi, 2020) or
weight matching (Yurochkin et al., 2018; Wang et al., 2020a), which require significant
computational effort, or using distillation (Lin et al., 2020; Sattler et al., 2020), but re-
quires an additional public dataset, increased training overhead, but without theoretical
guarantees.

Research Question #2

Can we leverage gradient compression schemes to sample from the posterior
distribution?

Another approach to reduce communication costs is to decrease the number of bits
in each message exchanged between agents and the central node. This is achieved
through randomized lossy compression, often a mixture of sparsification and quantiza-
tion. Biased compressors (e.g., Top-k) typically achieve higher compression ratios than
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unbiased ones but can lead the algorithm to converge to spurious minima if directly
applied (Karimireddy et al., 2019). The effect of bias can be mitigated by using error
feedback methods, as advocated in Stich and Karimireddy (2019); Konečnỳ et al. (2016);
Gorbunov et al. (2021); Hanzely and Richtárik (2020); Wang et al. (2021); Horváth and
Richtarik (2020).

Random independent unbiased compressors perform better with increasing numbers
of agents and are less sensitive to statistical heterogeneity. Several techniques have
been proposed to develop such compression operators. However, for high-dimensional
complex models, there is still a need for novel compression techniques. Specifically,
the interactions between the distribution and structure of the compressed messages is
still not clear; and the compression operator needs to be reconsidered for efficient high-
dimensional compression methods. Additionally, the abundance of new compression
techniques calls for more rigorous evaluation frameworks. These measures can be based
on interpretable metrics, or small-scale. However, quantifying the impact of elementary
algorithmic blocks on the overall performance of deep learning models is challenging.

1.2.1 Distributed/Federated Bayesian Learning

Distributed Monte Carlo methods aims to generate samples from the posterior distribu-
tion p(θ|D), but without exchanging observations between the workers and the central
node. Each node has only access to its local dataset Di, and communicates with the
central server to generate samples targeting the global posterior given by

∀θ ∈ Rd, θ ∼ p(θ|D) ∝ p(θ)
N∏
l=1

p(yl|xl, θ) =

n∏
i=1

[
p(θ)1/np(Di|θ)

]
=

n∏
i=1

pi(θ|Di).

The interest in distributed Bayesian inference has significantly grown over the past dec-
ade. In an early paper, Zinkevich et al. (2010) proposed running independent chains on
each subset of the data, while periodically averaging the learned parameters. However,
no clear theoretical convergence guarantee could be provided. Subsequently, sophistic-
ated methods have been proposed to recombine local samples to approximate the desired
global posterior (Neiswanger et al., 2014; Wang and Dunson, 2013; Minsker et al., 2014).
Due to statistical heterogeneity, data imbalance, and noise, the local posteriors can differ
significantly from each other. Better agents with more data might possess more accur-
ate information on the parameter. Several alternative techniques have been proposed,
they utilize the values from workers’ chains to approximate the posterior distribution,
each with its own benefits and drawbacks. Alternative techniques utilize the values
from each chain and approximate posterior expectations, each with its own benefits
and drawbacks. For instance, Neiswanger et al. (2014) propose Gaussian kernel density
estimation (KDE), Wang and Dunson (2013) suggest Gaussian aggregation techniques
based on local samples drawn from the Weierstrass transformation of the subposteriors
(convolution of the subposteriors with Gaussian kernels), Minsker et al. (2014) develop
a median posterior in a reproducing kernel Hilbert space (RKHS), and recombination
of the samples using random partition trees (Wang et al., 2015).

In their seminal work, Scott et al. (2016) propose an exact algorithm for Gaussian
subposteriors. They leverage the Bernstein-von Mises theorem (Van der Vaart, 2000)
which states that under some conditions, if a unique parameter θ? = arg max L(·|D)
exists, then the posterior tends to a normal distribution centered around θ? as the
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number of observations increases. When pi(·|Di) is the density of a Gaussian distribution
N (µi,Σi), the posterior distribution p(·|D) ∝ ∏n

i=1 pi(·|Di) is also Gaussian. It has a
covariance Σ = (

∑
i=1 Σ−1

i )−1 and a mean µ = Σ
∑n

i=1 Σ−1
i µi. Furthermore, if we draw

n independent random variables θi ∼ N (µi,Σi), the weighted combination satisfies

Σ

( n∑
i=1

Σ−1
i θi

)
∼ N

(
µ,Σ

)
. (1.3)

Thus, combining these local draws (θi)
n
i=1 according to (1.3) produces a sample distrib-

uted according to the target posterior distribution. However, it should be noted that
this method lacks theoretical guarantees and performs well only for Gaussian or nearly
Gaussian target distributions.

An alternative approach is to approximate the true posterior density using an estimate
of the kernel density of the subposterior densities; see for example White et al. (2015).
Neiswanger et al. (2014) propose an algorithm to sample according to p̂1 × · · · × p̂M
instead of

∏
i∈[n] pi. Each worker i independently samples parameters θ1

i , . . . , θ
T
i from

the subposterior pi(·|Di), and the resulting samples are combined to derive the proxy
p̂i given by

p̂i(θ) =
1

T

T∑
t=1

N
(
θ | θit, hId

)
.

Here, N (·|·, hId) : Rd × Rd → R+ denotes the Gaussian kernel with bandwidth para-
meter h > 0. Since the approximate subposterior p̂i is a Gaussian mixture, the product∏
i∈[n] p̂i is also a Gaussian mixture contrary to

∏
i∈[n] pi. Therefore, the second part

of the algorithm involves sampling θ ∈ Rd according to this Gaussian mixture. This
method replaces the posterior sampling, from which it is difficult to sample, by mixture
Gaussian sampling. However, this method has several drawbacks. Firstly, the paramet-
ric estimator can be asymptotically biased. Secondly, the number of samples required
to achieve the same level of accuracy, exponentially depends on the dimension d due to
the curse of dimensionality of the kernel density estimators. Moreover, for a multimodal
posterior, the effect of averaging is not clear and can lead to mode collapse.

1.2.2 Bayesian inference methods using local steps on each client

Research Question #3

How to design efficient distributed sampling algorithms for high-dimensional
models?

To address the question of designing efficient distributed sampling algorithms for high-
dimensional models, Vono et al. (2022a); Rendell et al. (2020) have introduced a hier-
archical Bayesian model that enables separate MCMC chains on each agent, client, or
worker. As in the “embarrassingly parallel” approaches, the Global consensus Monte
Carlo objective is to reduce the costs of communication latency. They employ a para-
meter relaxation method, which bears resemblance to the splitting technique used in
optimization, such as the alternating direction method of multipliers (ADMM) (Boyd
et al., 2011). In their approach, an auxiliary parameter zi is associated with each
agent/client/worker, which are assumed to be conditionally independent given the mas-
ter’s parameter θ. The algorithm targets an extended distribution πρ(θ) that depends
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on a tolerance parameter ρ > 0. This distribution is defined as:

πρ(θ) ∝ p(θ)
n∏
i=1

[
K

(ρ)
i (θ, zi)p(zi|Di)

]
.

For i ∈ [n], if lim
ρ→0

K
(ρ)
i (θ, zi) = 1θ(zi), then Scheffé’s lemma (Scheffé, 1947) demon-

strates that (πρ)ρ>0 converges to π in total variation as ρ→ 0. The authors develop a
Metropolis-within-Gibbs scheme that alternates between sampling the agent/client/worker
parameters given the master’s parameter, and sampling the master’s parameter given
the agent/client/worker parameters.

There exists a tradeoff between the bias, which requires ρ � 1, and the mixing time,
which typically improves as the tolerance parameter increases. To obtain samples θ
drawn according to πρ, the authors propose sampling the marginals separately. Each
node independently samples zi in parallel according to πρ(zi|θ), while the central server
samples θ ∼ πρ(θ|z1, . . . , zn). In this procedure, communication is only necessary during
aggregation steps, where an approximation of the full posterior is obtained using samples
from the n chains. When exact sampling is not feasible in practice, Rendell et al. (2020)
consider a Metropolis-Hastings scheme to sample from πρ(zi|θ), while Vono et al. (2022a)
suggest the use of a rejection sampling mechanism. Both approaches provide theoretical
guarantees for their proposed schemes and prove that they admit πρ as a stationary
distribution under mild assumptions.

Research Question #4

Can we provide theoretical guarantees for distributed sampling algorithms?

1.3 Federated Uncertainty Quantification

In the machine learning field, uncertainty quantification plays a critical role in decision-
making processes. Traditional prediction models often provide point estimates without
explicitly addressing the associated uncertainty, leaving decision-makers with limited
insight into the reliability of the predictions. However, in many real-world applications,
having an understanding of the uncertainty is essential for making informed decisions.

1.3.1 Bayesian uncertainty quantification and calibration

Over-parameterized deep models have shown the ability to memorize datasets even when
the labels are completely randomized (Zhang et al., 2021). However, in many applic-
ations, especially those involving decision-making processes, overconfident predictions
can be problematic (Amodei et al., 2016; Del Grosso et al., 2022). Therefore, uncertainty
quantification is necessary to make reliable decisions (autonomous cars, health-related
systems).

The importance of well-calibrated decisions is often emphasized as a means to mitig-
ate the impact of rare but significant errors caused by poorly calibrated models; see
Guo et al. (2017) for detailed calibration measures and Rahaman and Thiery (2021)
for methods leading to better calibration. Deep learning methods are known to suf-
fer from calibration issues, often producing overconfident estimates. These problems
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become more pronounced in scenarios with limited data availability. While the calib-
ration of probabilistic models has been extensively studied, calibrating extremely over-
parameterized models in low-data regimes poses unique challenges. Frequentist learning
proves effective in large data sets when the primary focus is accuracy but falls short in
quantifying epistemic uncertainty due to limited data availability (Lakshminarayanan
et al., 2017). Bayesian learning offers an alternative framework in which optimization
is conducted on the distribution of model parameters, rather than a single vector of
parameters as in frequentist learning.

Many Bayesian methods involve sampling weights to target specific distributions. How-
ever, assessing the quality of predictive uncertainty obtained through these methods
presents a significant challenge. Metrics commonly used in the optimization community,
such as accuracy or loss evaluation, are not well-suited to reflect how effectively an al-
gorithm samples according to the posterior distribution. To evaluate the quality of pre-
dictive distributions obtained through classical methods, Wilson et al. (2021) compare
various predictive distributions with a Hamiltonian ground truth distribution, which
is known to be asymptotically accurate but computationally expensive for large neural
network models.

1.3.2 Conformal predictions for uncertainty quantification

Conformal prediction experienced relatively recent developments in machine learning
and statistics. These methods offer an attractive framework for uncertainty quantifica-
tion. Unlike traditional approaches, conformal methods provide theoretical guarantees
without any assumption except for exchangeability (Lei et al., 2013; Fontana et al.,
2023). Conformal prediction leverages the concept of nonconformity scores to construct
prediction intervals that capture the uncertainty associated to each prediction (Vovk
et al., 1999; Shafer and Vovk, 2008; Balasubramanian et al., 2014). One of the key
advantages is its model-agnostic nature. This flexibility allows practitioners to utilize
conformal prediction as a powerful tool for uncertainty quantification in a wide range of
applications. It can be applied to any underlying prediction model, including regression,
classification, and more advanced machine learning algorithms. We will only detail here
the main derivations of conformal split-prediction methods. As in the classical optim-
ization framework, the training dataset Dtrain is used to learn the predictor f̂ while the
calibration dataset Dcal is reserved for the confidence interval constructions.

At its core, conformal prediction introduces a notion of valid prediction sets by analyz-
ing the distribution of non-conformity measures. These measures quantify the deviation
between a new non-conformity score and the available non-conformity distribution es-
timate on the training data. Larger scores meaning worse agreement between x and
y. These scores are often based on the predictor f̂ and can be therefore considered
as post-processing; for specific choices of non-conformity functions we refer to Angelo-
poulos and Bates (2021) and references therein. As by hypothesis the data are i.i.d.,
the non-conformity scores must have the same distribution – which we note P (V ) –
meaning that:

∀(x, y) ∈ Dcal, V (x, y)
i.i.d.∼ P (V ).

Given a confidence threshold α ∈ (0, 1), the conformal prediction constructs a predic-
tion set Cα(x) for a new instance x by aggregating the non-conformity scores of the
calibration data. From these non-conformity scores, a quantile is calculated. Denote
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by N the number of calibration data and q = d(1 − α)(N + 1)e/(N + 1), the (1 − α)-
quantile corresponds to the qth largest value of {V (x, y)}(x,y)∈Dcal . The prediction set is
ensured to contain the true label YN+1 at the predefined confidence level 1− α ∈ [0, 1].
Specifically, the prediction set is determined ∀x ∈ X , by

Cα(x) =

y ∈ Y : V (x, y) ≤ Q1−α

 N∑
k=1

δV (Xk,Yk)

N + 1
+
δV (XN+1,YN+1)

N + 1


 .

Under the exchangeability assumption on {(Xk, Yk)}k∈[N+1], it is known (Papadopoulos
et al., 2002; Tibshirani et al., 2019) that:

1− α ≤ P
(
YN+1 ∈ Cα(XN+1) | D(train)

)
≤ 1− α+

1

N + 1
.

Thus, the increase of the number of data allows the refinement of the prediction set.
Indeed, the upper bound shows that this set becomes more and more informative when
N increases. Note that Cα(XN+1) cannot include too many possible outputs otherwise
the upper bound would be relatively close to 1.

Research Question #5

How to adapt and customize these prediction sets to the federated case, and
how can we keep theoretical guarantees despite shifts between local

distributions?

Many research gaps remain in the federated conformal prediction framework, notably
(1) regarding results on the quantiles federated computation, (2) ensuring valid cover-
age guarantees while (3) preserving privacy. However, only a few solutions have been
proposed to address these challenges.

Research Question #6

How to efficiently calculate quantiles in a federated environment?

A natural approach to performing federated conformal prediction is to aggregate the
quantiles of different agents. This is studied in Lu and Kalpathy-Cramer (2021); the
authors suggest deriving prediction sets by averaging the local quantiles. However, this
approach is not robust when dealing with heterogeneous data since global quantiles may
not be suitable when at least one agent has limited data. For instance, if the threshold
α ∈ (0, 1) is taken such that α < (N i + 1)−1, then, the quantile for agent i becomes
Q1−α{(N i+1)−1(

∑N i

k=1 δV (Xi
k,Y

i
k )+δ∞)} =∞. This demonstrates the lack of robustness

of the quantile averaging approach, which results in problematic aggregations.

Research Question #7

How to generate prediction sets while preserving data confidentiality?

A more robust approach is developed by Humbert et al. (2023). The authors investigate
the validity of a quantile of quantiles approach instead of using the average quantile.
The theoretical study demonstrates its effectiveness for homogeneous datasets, however
the study lacks mechanisms to handle data heterogeneity.
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1.4 Summary of the contributions

Motivated by the research questions (RQ) previously mentioned, this thesis makes sev-
eral contributions, which are outlined in detail in the following section. Each chapter
focuses on a specific research direction, addressing the following key areas:

F Development of advanced distributed sampling methods targeting a global pos-
terior distribution.

F Construction of efficient simulation methods for potentially high dimensional dis-
tributions, known up to some normalizing constant.

F Application of approximate inference methods for Bayesian deep learning.

F Derivation of federated uncertainty management methods based on conformal
predictions.

Part II: Distributed Sampling & Langevin MC

• Chapter 2: DG-LMC: A turn-key and scalable synchronous distributed MCMC
algorithm via Langevin Monte Carlo within Gibbs (RQ#3-RQ#4)

In this work, we propose an efficient sampling algorithm tailored for master/slave archi-
tectures. Our method specifically focuses on Bayesian inference from shared datasets
{Di}ni=1 observed on n workers. We develop a procedure for approximating posterior
distributions admitting a density given by

π(θ|D1:n) ∝
n∏
i=1

exp(−Ui(θ)), (1.4)

where the potential function Ui : Rdi → R depends on the training set Di. The key
idea of our novel methodology, called Distributed Gibbs using Langevin Monte Carlo
(DG-LMC), consists in designing a joint distribution Πρ with auxiliary variables z1 ∈
Rd1 , . . . , zn ∈ Rdn satisfying

Πρ(D1:n|z1:n, θ) ∝
n∏
i=1

Πρ(Di|zi), Πρ(z1:n|θ) =

n∏
i=1

Πρ(zi|θ), (1.5)

where ρ > 0 is a tolerance parameter such that limρ→0 Πρ(θ|D) = π(θ|D). Working
with Πρ has a significant advantage: the auxiliary variables {zi}ni=1 are conditionally
independent given θ. Consequently, utilizing (1.5) enables the following decomposition:

Πρ(θ|D1:n) =

∫
Πρ(θ, z1:n|D1:n) dz1:n

=
1

Πρ(D1:n)

∫
Πρ(θ, z1:n)Πρ(D1:n|θ, z1:n) dz1:n

=
1

Πρ(D1:n)

∫
Πρ(θ)

n∏
i=1

[
Πρ(Di|zi)Πρ(zi|θ)

]
dz1:n.

By leveraging the Gibbs sampler, the distribution Πρ(θ, z1:n|D1:n) can be efficiently
sampled in parallel without the need to transmit any data.

Contributions. The main contributions can be summarized as follows:
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(1) We introduce a novel methodology called Distributed Gibbs using Langevin Monte
Carlo (DG-LMC) in Section 2.2. This algorithm requires each worker to sample zi
from the conditional distribution Πρ(zi|Di, θ) and to communicate this sample to
the master node. Then, the central node sample θ according to Πρ(θ|z1:n) and
sends back this parameter to every worker.

(2) Importantly, we present a comprehensive quantitative analysis of the induced
bias and demonstrate explicit convergence results in Section 2.3. This represents
our main contribution, and to the best of the authors’ knowledge, this theoret-
ical study is one of the most comprehensive among existing works that focus on
distributed Bayesian machine learning with a master/slaves architecture. Specific-
ally, we discuss the algorithm’s complexity, the selection of hyperparameters, and
offer practitioners simple guidelines for tuning them. Additionally, we conduct a
thorough comparison of our method with existing approaches in Section 2.4.

(3) Finally, in Section 2.5, we demonstrate the advantages of the proposed sampler
over popular and recent distributed MCMC algorithms through various numerical
experiments.

Two main challenges remain: efficiently sampling from the conditional distribution
Πρ(zi|θ,Di) for i ∈ [n], and reducing frequent communication rounds with the mas-
ter node. We address both issues using the Langevin Monte Carlo (LMC) algorithm
to approximate sampling from Πρ(zi|θ,Di) (Rossky et al., 1978; Roberts and Tweedie,
1996). For i ∈ [n], we introduce Πρ whose conditional densities given as follows:

Πρ(zi|Di, θ) ∝ exp

(
−Ui(zi)−

∥∥zi − θ∥∥2
/(2ρi)

)
,

Πρ(θ|z1:n) = N
(
µ(z1:n),Q−1

)
where the precision matrix Q = (

∑n
i=1 ρi

−1)Id and the mean µ(z1:n) = Q−1
∑n

i=1 zi/ρi.
When the tolerance parameter ρ → 0, using (Scheffé, 1947) shows that this data aug-
mentation scheme satisfies

lim
ρ→0

Πρ(θ|D) = lim
ρ→0

∫
Πρ(θ, z1:n)dz1:n = π(θ|D).

Based on the overdamped Langevin stochastic differential equation, at iteration k, we
update the parameters as follows:

z
(k+1)
i =

(
1− γi

ρi

)
z

(k)
i +

γi
ρi
θ(k) − γi∇Ui(z(k)

i ) +
√

2γiξ
(k)
i ,

θ(k+1) = µ(z
(k)
1:n) + Q−1/2ξ

(k)
0 during communication rounds else θ(k),

where γi > 0 is a fixed step-size and {ξ(k)
i : i ∈ [n], k ∈ N} is an i.i.d. sequence of stand-

ard Gaussian random variables. To mitigate communication costs, we allow each worker
to perform Ni ≥ 1 local LMC steps (Dieuleveut and Patel, 2019). Varying Ni across
workers prevents DG-LMC from experiencing significant delays due to imbalanced worker
response times (Ahn et al., 2014). We provide a detailed quantitative analysis of the bias
and establish explicit non-asymptotic convergence results. Our analysis encompasses
the complexity of DG-LMC, the selection of hyperparameters, and offers practitioners
simple guidelines for tuning them. To the best of our knowledge, this theoretical study
is one of the most comprehensive works on distributed Bayesian machine learning with
a master/slave architecture.
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Theorem 1.1 (Informal). Under some assumptions described in Chapter 2, there exist
κ ∈ (0, 1), γ, ρ, C0, C1, C2 > 0 such that for k ≥ 0, the distribution µk of the sample θk
satisfies

W2

(
µk, π(·|D1:n)

)
≤ C0(1− κ)k + C1

√
dγ(ρ2 + γ/ρ2) + C2dρ.

• Chapter 3: FALD: Federated Averaging Langevin Dynamics (RQ#1)

In this chapter, we are interested in sampling from a target distribution π whose dens-
ity can be decomposed as in (1.4). To address these issue, we propose an MCMC
algorithm coined FALD, which combines the ideas of Stochastic Langevin Gradient Dy-
namics (SGLD) and Federated Averaging.

Contributions. The main contributions can be summarized as follows:

(1) We study a random loop version of the FALD algorithm proposed in Deng et al.
(2021), and we establish non-asymptotic upper bounds in Wasserstein distance for
strongly convex potentials U . An analysis of FALD was conducted in Deng et al.
(2021, Theorem 5.7), however, the proof is plagued by an error; see Section 3.B.1.

(2) We give matching lower bounds to show that even with full batch gradients, FALD
can be slower than SGLD due to client-drift.

(3) We propose a new method (VR-FALD?) that circumvents the shortcomings of FALD.
This algorithm extends the Shifted Local-SVRG method of Gorbunov et al. (2021)
to the Bayesian context. VR-FALD? combines the Stochastic Variance Reduced
Gradient Langevin Dynamics (SVRG-LD) (Dubey et al., 2016) and adapts the
bias reduction techniques from SCAFFOLD (Karimireddy et al., 2020).

(4) We derive theoretical guarantees for VR-FALD? which highlight its gradient variance
reduction effect and ability to deal with data heterogeneity.

(5) The results are based on a general framework developed in the supplement, that
encompasses a broad family of federated Bayes algorithms based on Langevin
dynamics. This is the first unifying study among existing works on federated
Bayesian inference.

(6) Finally, Section 3.4 illustrates our findings on classical FL benchmarks and provides
a thorough comparison with existing FL Bayesian methods.

FALD algorithm samples from π while respecting a major constraint: each potential Ui
and its gradient ∇Ui can only be computed by the i-th client. In this method, each
client has a parameter θik which is updated locally while the global parameters θsk is
updated on the central server. At every round, the clients execute SGLD steps to update
their local parameters

θ̃ik+1 = θik − γ∇U i(θik) +
√

2γZik+1,

where Zik+1 is a d-dimension Gaussian possibly correlated between clients. Each client
sends θ̃ik+1 to the central server with probability pc ∈

(
0, 1
]
corresponding to the real-

ization of a Bernoulli Bk+1. During communication rounds, the central server averages
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the received parameters

θsk+1 = (Bk+1/n)
∑
i∈[n]

θ̃ik+1 + (1−Bk+1)θsk.

Then, this server parameter θsk+1 is returned to the local clients which update their
local parameters θik following

θik+1 = Bk+1θ
s
k+1 + (1−Bk+1)θ̃ik+1.

As stated in Theorem 1.2, the samples {θsk}k∈N generated by the central server target
the posterior distribution π. Further explanations on the convergence bounds of FALD
are provided in Chapter 3. Although being theoretically sound, this method may suffer
from high variance due to the stochastic gradients used during the local SGLD and the
heterogeneity of the data, which hinders the convergence. More specifically, we show
the impossibility for an algorithm not tackling heterogeneity to provide an asymptotic
Wasserstein error below the discretization step-size O(γ). To solve this problem, we
propose one alternative: VR-FALD? based on a combination of control variates and bias
reduction techniques. Theoretical improvements are derived and experimental behaviors
of our algorithms are provided.

Theorem 1.2 (Informal). Under assumptions described in Chapter 4, there exist γ? >
0, such that for γ ∈ (0, γ?), there are κ ∈ (0, 1), C0, C1, C2, C3 > 0 such that for k ≥ 0,
the distribution µk of the sample θk satisfies

W 2
2

(
µk, π(·|D1:n)

)
≤ (1− κ)kC0 + γC1E

(∑n
i=1 Ûi(θ?)

)
+
γ2C2

p2
c

n∑
i=1

‖∇Ui
(
θ?
)
‖2 + γ2C3.

Part III: Federated Uncertainty Quantification via Bayesian & Fre-
quentist approaches

• Chapter 4: QLSD: Quantized Langevin stochastic dynamics for Bayesian feder-
ated learning (RQ#2)

Several works attempted to improve the efficiency of distributed/federated learning by
reducing the communication cost. Some methods focused on quantizing each coordinate
of the computed gradients (Alistarh et al., 2017), so that much fewer bits are needed
to be transmitted. Aggressive quantization, such as the binary or ternary representa-
tion, has also been investigated. Other methods imposed sparsity onto gradients during
communication, where only a small fraction of gradients gets exchanged across nodes in
each iteration. The underlying ideas of these methods are basically to compress gradi-
ents, where each entry can be represented by much fewer bits than the original 32-bit
floating-point number. Such compression introduces extra stochastic noises, i.e. quant-
ization error, into the optimization process, and will slow down the convergence or even
leads to divergence (Alistarh et al., 2017). The performance of these approaches relies
on the tradeoff between the number of bits communicated per iteration and the quality
of this information. Thus, aggressive schemes may only send one bit per coordinate
(Bernstein et al., 2018; Tang et al., 2021) or used vector quantization (Leconte et al.,
2021).

Contributions. The main contributions can be summarized as follows:
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(1) We propose QLSD, a general MCMC algorithm specifically designed for Bayesian
inference under the FL paradigm and two variance-reduced alternatives, especially
tackling heterogeneity, communication overhead and partial participation.

(2) We provide a non-asymptotic convergence analysis of the proposed algorithms.
The theoretical part highlights the impact of statistical heterogeneity measured
by the discrepancy between local posterior distributions.

(3) We propose efficient mechanisms to mitigate the impact of statistical heterogeneity
on convergence, either by using biased stochastic gradients or by introducing a
memory mechanism that extends Horváth et al. (2022) to the Bayesian setting.
In particular, we find that variance reduction indeed allows the proposed MCMC
algorithm to converge towards the desired target posterior distribution when the
number of observations becomes large.

(4) We illustrate the advantages of the proposed methods using several FL bench-
marks. We show that the proposed methodology performs well compared to
state-of-the-art Bayesian FL methods.

In this work, we extend these ideas to the Bayesian setting. We develop a novel federated
Bayesian inference algorithm, called Quantized Langevin Stochastic Dynamics (QLSD)
to address the communication bottleneck of distributed/federated algorithms. This
framework incorporates the case of n clients, each owing a local potential Ui : Rd → R
computed based on its local dataset Di. The agents perform Bayesian inference to
target the posterior distribution proportional to exp(−∑n

i=1 Ui) while respecting the
federated learning constraints. Using an unbiased sequence {Ck}k≥1 of compression
operators (Alistarh et al., 2017), these agents only communicate a quantized version
of their stochastic gradient ∇̂Ui at each aggregation round. Then, the central server
performs a Langevin dynamics step based on the received compressed gradients. The
parameter θk is updated using the information of the participating clients Ak+1:

θk+1 = θk − γ
n

|Ak+1|
∑

i∈Ak+1

Ck+1(∇̂Ui(θk)) +
√

2γZk+1, (1.6)

where Zk+1 is a standard Gaussian noise. Under assumptions stated in Theorem 4.5, the
samples {θk} generated by (1.6) are approximately distributed according to

∏
i∈[n] exp(Ui).

However, we illustrate theoretically and experimentally that this method suffers from
heterogeneity and the use of a stochastic gradient ∇̂Ui. To improve performance,
we therefore introduce mechanisms leading to improved versions denoted QLSD? and
QLSD++. In the first version QLSD?, the stochastic gradient ∇̂Ui in (1.6) is replaced
by the oracle ∇̃Ui(θ) = ∇̂Ui(θ) − ∇̂Ui(θ?), where θ? = arg min

∑
i Ui; for more de-

tails, see the Langevin Fixed Point algorithm (Brosse et al., 2018). Interestingly, note
that ∇̃Ui is a biased estimate of ∇Ui since the expectation E[∇̃Ui] 6= ∇Ui in spite
of E[

∑
i ∇̃Ui] =

∑
i∇Ui. In Theorem 4.7, we derive asymptotic and non-asymptotic

convergence guarantees for the proposed algorithm. However, obtaining the minim-
izer θ? is complicated in practical case scenario. Hence, we develop a last alternative
coined QLSD++ relying on the well-known SVRG technique (Johnson and Zhang, 2013)
to reduce the noise introduced by the variance of the stochastic gradient combined
with a memory mechanism to break down the heterogeneity problem (Horváth et al.,
2022; Philippenko and Dieuleveut, 2020). Finally, we illustrate the performance of
the proposed approach compared to various Bayesian federated learning benchmarks.
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Furthermore, we numerically emphasize the compression benefits by achieving similar
precision than classical methods with fewer bits.

Theorem 1.3 (Informal). Under assumptions described in Chapter 4, there exist γ? >
0, such that for γ ∈ (0, γ?), there are κ ∈ (0, 1), C0, C1 > 0 such that for k ≥ 0, the
distribution µk of the sample θk satisfies

W 2
2

(
µk, π(·|D1:n)

)
≤ (1− κ)kC0 + γC1.

• Chapter 5: Conformal Prediction for Federated Uncertainty Quantification Un-
der Label Shift (RQ#5-RQ#6-RQ#7)

Accurate uncertainty quantification is crucial in modern machine learning applications.
This is essential to develop reliable methods guaranteeing the validity of predictions.
However, estimating valid prediction sets can be challenging in distributed settings, and
this challenge is further exacerbated under label shift.

Contributions. The main contributions can be summarized as follows:

(1) We introduce a new method, DP-FedCP, to construct conformal prediction sets
in a federated learning context that addresses label shift between agents; see
Section 5.2. DP-FedCP is a federated learning algorithm based on federated com-
putation of weighted quantiles of agent’s non-conformity scores, where the weights
reflect the label shift of each client with respect to the population. The quantiles
are obtained by regularizing the pinball loss using Moreau-Yosida inf-convolution
and a version of federated averaging procedure; see Section 5.3.

(2) We establish conformal prediction guarantees, ensuring the validity of the result-
ing prediction sets. Additionally, we provide differential private guarantees for
DP-FedCP; see Section 5.4.

(3) We show that DP-FedCP provides valid confidence sets and outperforms standard
approaches in a series of experiments on simulated data and image classification
datasets; see Section 5.5.

Contrary to usual conformal methods, the DP-FedCP algorithm only computes the non-
conformity scores on a subset of N̄ calibration data. For example, N̄ = bN/2c when
half of the calibration datapoints are used. One key mechanism of DP-FedCP consists
in evaluating the discrepancy between the calibration and test distributions (P cal and
P ?). Based on a Radon-Nikodym estimate of the likelihood ratio ŵ?y = dP ?Y /dP

cal
Y , a

valid prediction set can be obtained by weighting the non-conformity scores. Denote by
{(Xk, Yk)}k∈[N̄ ] the calibration samples used to construct the prediction sets. For any
y ∈ Y, we construct a family of weights {p̂?y,y}y∈Y given by

p̂?y,y =
ŵ?y

ŵ?Y ?
N?+1

+
∑N̄

`=1 ŵ
?
Y`

.

Then using these weights, DP-FedCP leverages local non-conformity scores to derive
personalized prediction sets for new datapoint (X?

N?+1, Y
?
N?+1) ∼ P ?, following

µ̄?y = p̂?y,yδ1 +
∑N̄

k=1 p̂
?
Yk,y

δVk ,

Cα,µ̄?(X?
N?+1) =

{
y ∈ Y : V (X?

N?+1,y) ≤ Q1−α(µ̄?y)
}
. (1.7)
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Non-asymptotic bounds ensuring the validiy of these prediction sets are provided in
Section 5.4. In particular, when the likelihood ratios are known, then the following
result holds.∣∣∣∣P(Y ?

N?+1 ∈ Cα,µ̄?(X?
N?+1)

)
− 1 + α

∣∣∣∣ ≤ 6

N
+

36 + 6 logN

N
‖ŵ?‖2∞

+
14 logN

N

∑
j : N

j

12
<logN

√
N j ,

where N i corresponds to the calibration data owned by agent i ∈ [n]. The prediction set
Cα,µ̄?(X?

N?+1) is generally intractable because determining the exact quantile Q1−α(µ̄?y)
in a federated way is far from being straightforward. Actually, we develop a method
solving this problem while ensuring that no attacker can determine with high confidence
whether a particular individual’s data is included in the dataset or not.



Part II

Distributed Sampling & Langevin
MC

“The concrete is the abstract made familiar by use.”

(Paul Langevin, La pensée et l’action, 1950)
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Performing reliable Bayesian inference on a big data scale is becoming a keystone in
the modern era of machine learning. A workhorse class of methods to achieve this
task are Markov chain Monte Carlo (MCMC) algorithms and their design to handle
distributed datasets has been the subject of many works. However, existing methods are
not completely either reliable or computationally efficient. In this chapter, we propose to
fill this gap in the case where the dataset is partitioned and stored on computing nodes
within a cluster under a master/slaves architecture. We derive a user-friendly centralized
distributed MCMC algorithm with provable scaling in high-dimensional settings. We
illustrate the relevance of the proposed methodology on both synthetic and real data
experiments.

2.1 Introduction

In the current machine learning era, data acquisition has seen significant progress due
to rapid technological advances which now allow for more accurate, cheaper and faster
data storage and collection. This data quest is motivated by modern machine learning
techniques and algorithms which are now well-proven and have become common tools
for data analysis. In most cases, the empirical success of these methods are based on a
very large sample size (Bardenet et al., 2017; Bottou et al., 2018). This need for data
is also theoretically justified by data probabilistic modelling which asserts that under
appropriate conditions, the more data can be processed, the more accurate the inference
can be performed. However, in recent years, several challenges have emerged regarding
the use and access to data in mainstream machine learning methods. Indeed, first the
amount of data is now so large that it has outpaced the increase in computation power of
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computing resources (Verbraeken et al., 2020). Second, in many modern applications,
data storage and/or use are not on a single machine but shared across several units
(Raicu et al., 2006; Bernstein and Newcomer, 2009). Third, life privacy is becoming a
prime concern for many users of machine learning applications who are therefore asking
for methods preserving data anonymity (Shokri and Shmatikov, 2015; Abadi et al.,
2016). Distributed machine learning aims at tackling these issues. One of its popular
paradigms, referred to as data-parallel approach, is to consider that the training data
are divided across multiple machines. Each of these units constitutes a worker node
of a computing network and can perform a local inference based on the data it has
access. Regarding the choice of the network, several options and frameworks have been
considered. We focus here on the master/slaves architecture where the worker nodes
communicate with each other through a device called the master node.

Under this framework, we are interested in carrying Bayesian inference about a para-
meter θ ∈ Rd based on observed data {yk}nk=1 ∈ Yn (Robert, 2001). The dataset is
assumed to be partitioned into S shards and stored on S machines among a collection
of n worker nodes. The subset of observations associated to worker i ∈ [n] is denoted
by yi, with potentially yi = {∅} if i ∈ [S + 1 : n], n > S. The posterior distribution
of interest is assumed to admit a density w.r.t. the d-dimensional Lebesgue measure
which factorizes across workers, i.e.,

π(θ|y1:n) = Z−1
π

n∏
i=1

e−Uyi (Aiθ), (2.1)

where Zπ =
∫
Rd
∏n
i=1 e−Uyi (Aiθ) dθ is a normalization constant and Ai ∈ Rdi×d are

matrices that might act on the parameter of interest. For i ∈ [n], the potential function
Uyi : Rdi → R is assumed to depend only on the subset of observations yi. Note that
for i ∈ [S + 1 : n], n > S, Uyi does not depend on the data but only on the prior. For
the sake of brevity, the dependency of π w.r.t. the observations {yi}ni=1 is notationally
omitted and for i ∈ [n], Uyi is simply denoted by Ui.

To sample from π given by (2.1) in a distributed fashion, a large number of approximate
methods have been proposed in the past ten years (Neiswanger et al., 2014; Ahn et al.,
2014; Rabinovich et al., 2015; Scott et al., 2016; Nemeth and Sherlock, 2018; Chowdhury
and Jermaine, 2018; Rendell et al., 2020). Despite multiple research lines, to the best
of authors’ knowledge, none of these proposals has been proven to be satisfactory.
Indeed, the latter are not completely either computationally efficient in high-dimensional
settings, reliable or theoretically grounded (Jordan et al., 2019).

This work is an attempt to fill this gap. To this purpose, we follow the data aug-
mentation approach introduced in Vono et al. (2020) and referred to as asymptotically
exact data augmentation (AXDA). Given a tolerance parameter ρ, the main idea be-
hind this methodology is to consider a joint distribution Πρ on the extended state
space Rd ×∏n

i=1 Rdi such that Πρ has a density w.r.t. the Lebesgue measure of the
form (θ, z1:n) 7→ ∏n

i=1 Πi
ρ(θ, zi), with θ ∈ Rd and zi ∈ Rdi , i ∈ [n]. Πρ is carefully

designed so that its marginal w.r.t. θ, denoted by πρ, is a proxy of (2.1) for which
quantitative approximation bounds can be derived and are controlled by ρ. In addi-
tion, for any i ∈ [n], Πi

ρ(θ, zi) only depends on the data yi, and therefore plays a role
similar to the local posterior πi(θ) ∝ e−Ui(Aiθ) in popular embarrassingly parallel ap-
proaches (Neiswanger et al., 2014; Scott et al., 2016). However, compared to this class
of methods, AXDA does not seek for each worker to sample from Πi

ρ. Following a data
augmentation strategy based on Gibbs sampling, AXDA instead requires each worker to
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sample from the conditional distribution Πρ(zi|θ) and to communicate its sample to the
master. Πρ is generally chosen such that sampling from Πρ(θ|z1:n) is easy and does not
require to access to the data. However, two main challenges remain: one has to sample
efficiently from the conditional distribution Πρ(zi|θ) for i ∈ [n] and avoid too frequent
communication rounds on the master. Existing AXDA-based approaches unfortunately
do not fulfill these important requirements (Vono et al., 2022a; Rendell et al., 2020). In
this work, we leverage these issues by considering the use of the Langevin Monte Carlo
(LMC) algorithm to approximately sample from Πρ(zi|θ) (Rossky et al., 1978; Roberts
and Tweedie, 1996).

Our contributions are summarized in what follows.

(1) We introduce in Section 2.2 a new methodology called Distributed Gibbs using
Langevin Monte Carlo (DG-LMC).

(2) Importantly, we provide in Section 2.3 a detailed quantitative analysis of the
induced bias and show explicit convergence results. This stands for our main con-
tribution and to the best of authors’ knowledge, this theoretical study is one of
the most complete among existing works which focused on distributed Bayesian
machine learning with a master/slaves architecture. In particular, we discuss the
complexity of our algorithm, the choice of hyperparameters, and provide practi-
tioners with simple prescriptions to tune them. Further, we provide a thorough
comparison of our method with existing approaches in Section 2.4.

(3) Finally, in Section 2.5, we show the benefits of the proposed sampler over popular
and recent distributed MCMC algorithms on several numerical experiments.

Notations and conventions. The Euclidean norm on Rd is denoted by ‖ · ‖. For
` ≥ 1, we refer to {1, . . . , n} with the notation [n] and for i1, i2 ∈ N, i1 ≤ i2, {i1, . . . , i2}
with the notation [i1 : i2]. For 0 ≤ i < j and (uk; k ∈ {i, · · · , j}), we use the notation ui:j
to refer to the vector [u>i , · · · , u>j ]>. We denote by N (m,Σ) the Gaussian distribution
with mean vector m and covariance matrix Σ. For a given matrix M ∈ Rd×d, we denote
its smallest eigenvalue by λmin(M). We denote by B(Rd) the Borel σ-field of Rd. We
define the Wasserstein distance of order 2 for any probability measures µ, ν on Rd with
finite 2-moment by W2(µ, ν) = (infζ∈T (µ,ν)

∫
Rd×Rd ‖θ − θ′‖2dζ(θ, θ′))1/2, where T (µ, ν)

is the set of transference plans of µ and ν.

2.2 Distributed Gibbs using Langevin Monte Carlo
(DG-LMC)

In this section, we present the proposed methodology which is based on the AXDA
statistical framework and the popular LMC algorithm.

AXDA relies on the decomposition of the target distribution π given in (2.1) to introduce
an extended distribution which enjoys favorable properties for distributed computations.
This distribution is defined on the state space Rd×Z, where Z =

∏n
i=1 Rdi , and admits

a density w.r.t. the Lebesgue measure given, for any θ ∈ Rd, z1:n ∈ Z, by

Πρ(θ, z1:n) ∝
n∏
i=1

Π̃i
ρ(θ, zi), (2.2)
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where Π̃i
ρ(θ, zi) = exp(−Ui(zi) − ‖zi−Aiθ‖2

/2ρi) and ρ = {ρi}ni=1 ∈ Rn+ is a sequence of
positive tolerance parameters. Note that Π̃i

ρ is not necessarily a probability density func-
tion. Actually, for Πρ to define a proper probability density, i.e.

∫
Rd×Z

∏n
i=1 Π̃i

ρ(θ, zi)dθdz1:n <
∞, some conditions are required.

Assumption 2.1. There exists n′ ∈ [n − 1] such that the following conditions hold:
mini∈[n′] infzi∈Rdi Ui(zi) > −∞, maxi∈[n′+1:n]

∫
Rdi e−Ui(zi)dzi <∞, and

∑n
j=n′+1 A>j Aj

is invertible.

The next result shows that these mild assumptions are sufficient to guarantee that the
extended model (2.2) is well-defined.

Proposition 2.2. Assume Assumption 2.1. Then, for any ρ ∈ Rn+, Πρ in (2.2) is a
proper density.

The data augmentation scheme (2.2) is approximate in the sense that the θ-marginal
defined by

πρ(θ) =

∫
Z

Πρ(θ, z1:n)dz1:n, (2.3)

coincides with (2.1) only in the limiting case maxi∈[n] ρi ↓ 0 (Scheffé, 1947). For a fixed
ρ, quantitative results on the induced bias in total variation distance can be found in
Vono et al. (2022a). The main benefit of working with (2.2) is that conditionally upon θ,
auxiliary variables {zi}ni=1 are independent. Therefore, they can be sampled in parallel
within a Gibbs sampler. For i ∈ [n], the conditional density of zi given θ writes

Πρ(zi|θ) ∝ exp
(
− Ui(zi)− ‖

zi−Aiθ‖2

2ρi

)
. (2.4)

On the other hand, the conditional distribution of θ given z1:n is a Gaussian distribution

Πρ(θ|z1:n) = N (µ(z1:n),Q−1), (2.5)

with precision matrix Q =
∑n

i=1 A>i Ai/ρi and mean vector µ(z1:n) = Q−1
∑n

i=1 A>i zi/ρi.
Under H2.1, note that Q is invertible and therefore this conditional Gaussian distribu-
tion is well-defined. Since sampling from high-dimensional Gaussian distributions can
be performed efficiently, this Gibbs sampling scheme is interesting as long as sampling
from (2.4) is cheap. Vono et al. (2022a) proposed the use of a rejection sampling step
requiring to set ρi = O(1/di). When di � 1, this condition unfortunately leads to pro-
hibitive computational costs and hence prevents its practical use for general Bayesian
inference problems. Instead of sampling exactly from (2.4), Rendell et al. (2020) rather
proposed to use Metropolis-Hastings algorithms. However, it is not clear whether this
choice indeed leads to efficient sampling schemes.

To tackle these issues, we propose to build upon LMC to end up with a distributed
MCMC algorithm which is both simple to implement, efficient and amenable to a the-
oretical study. LMC stands for a popular way to approximately generate samples from
a given distribution based on the Euler-Maruyama discretization scheme of the over-
damped Langevin stochastic differential equation (Roberts and Tweedie, 1996). At
iteration t of the considered Gibbs sampling scheme and given a current parameter θ(t),
LMC applied to (2.4) considers, for i ∈ [n], the recursion

z
(t+1)
i =

(
1− γi

ρi

)
z

(t)
i + γi

ρi
Aiθ

(t) − γi∇Ui
(
z

(t)
i

)
+
√

2γi ξ
(t)
i
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Algorithm 2.1 Distributed Gibbs using LMC (DG-LMC)

Input: burn-in Tbi; for i ∈ [n], tolerance parameters ρi > 0, step-sizes γi ∈ (0, ρi/(1+
ρiMi)], local LMC steps Ni ≥ 1.
Initialize θ(0) and z(0)

1:n.
for t = 0 to T − 1 do

// Sampling from Πρ(z1:n|θ)
for i = 1 to n // In parallel on the n workers do

u
(0)
i = z

(t)
i

for k = 0 to Ni − 1 // Ni local LMC steps do
ξ

(k,t)
i ∼ N

(
0di , Idi

)
gi =

(
1− γi

ρi

)
u

(k)
i + γi

ρi
Aiθ

(t) − γi∇Ui
(
u

(k)
i

)
u

(k+1)
i = gi +

√
2γiξ

(k,t)
i // See (2.4)

z
(t+1)
i = u

(Ni)
i

// Sampling from Πρ(θ|z1:n)

θ(t+1) ∼ N (µ(z
(t+1)
1:n ),Q−1) // See (2.5)

Output: samples {θ(t)}Tt=Tbi−1.

Figure 2.1 – Illustration of one global iteration of Algorithm 2.1. For each worker, the
width of the green box represents the amount of time required to perform one LMC
step.

where γi > 0 is a fixed step-size and {ξ(k)
i : k ∈ N}i∈[n] a sequence of independent

and identically distributed (i.i.d.) d-dimensional standard Gaussian random variables.
Only using a single step of LMC on each worker might incur important communication
costs. To mitigate the latter while increasing the proportion of time spent on exploring
the state-space, we instead allow each worker to perform Ni (Ni ≥ 1) LMC steps
(Dieuleveut and Patel, 2019; Rendell et al., 2020). Letting Ni varies across workers
prevents Algorithm 2.1 to suffer from a significant block-by-the-slowest delay in cases
where the response times of the workers are unbalanced (Ahn et al., 2014). The proposed
algorithm, coined Distributed Gibbs using Langevin Monte Carlo (DG-LMC), is depicted
in Algorithm 2.1 and illustrated in Figure 2.1.
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2.3 Detailed analysis of DG-LMC

In this section, we derive quantitative bias and convergence results for DG-LMC and show
that its mixing time only scales quadratically w.r.t. the dimension d. We also discuss
the choice of hyperparameters and provide guidelines to tune them.

2.3.1 Non-Asymptotic Analysis

The scope of our analysis will focus on smooth and strongly log-concave target posterior
distributions π. While these assumptions may be restrictive in practice, they allow for
a detailed theoretical study of the proposed algorithm.

Assumption 2.3. (i) For any i ∈ [n], Ui is twice continuously differentiable and

sup
zi∈Rdi

‖∇2Ui(zi)‖ ≤Mi.

(ii) For any i ∈ [n], Ui is mi-strongly convex: there exists mi > 0 such that

miIdi � ∇2Ui.

Under these assumptions, it is shown in Lemma 2.24 in the Appendix that − log π is
strongly convex with constant

mU = λmin(
∑n

i=1miA
>
i Ai). (2.6)

Behind the use of LMC, the main motivation is to end up with a simple hybrid Gibbs
sampler amenable to a non-asymptotic theoretical analysis based on previous works
(Durmus and Moulines, 2019; Dalalyan and Karagulyan, 2019). In the following, this
study is carried out using the Wasserstein distance of order 2.

Convergence Results

DG-LMC introduced in Algorithm 2.1 defines a homogeneous Markov chain (Vt)t∈N =

(θt, Zt)t∈N with realizations (θ(t), z
(t)
1:n)t∈N. We denote by Pρ,γ,N the Markov kernel

associated with (Vt)t∈N. Since no Metropolis-Hastings step is used in combination with
LMC, the proposed algorithm does not fall into the class of Metropolis-within-Gibbs
samplers (Roberts and Rosenthal, 2006). Therefore, a first step is to show that Pρ,γ,N
admits a unique invariant distribution and is geometrically ergodic. We proceed via
an appropriate synchronous coupling which reduces the convergence analysis of (Vt)t∈N
to that of the marginal process (Zt)t∈N. While the proof of the convergence of (Zt)t∈N
shares some similarities with LMC (Durmus and Moulines, 2019), the analysis of (Zt)t∈N
is much more involved and especially in the case maxi∈[n]Ni > 1. We believe that the
proof techniques we developed to show the next result can be useful to the study of
other MCMC approaches based on LMC.

Proposition 2.4. Assume Assumption 2.1-Assumption 2.3 and let c > 0 and γ =
{γi}ni=1 N = {Ni}ni=1 satisfying maxi∈[n] γi ≤ γ̄, mini∈[n]{Niγi}/maxi∈[n]{Niγi} ≥ c
and maxi∈[n]{Niγi} ≤ C1 where γ̄, C1 are explicit constants only depending on (mi,Mi, ρi)i∈[n]

1,2.
1When N = 1n, C1 = γ̄ = 1/maxi∈[n]{Mi + ρ−1

i }.
2When maxi∈[n] Ni > 1, C1 is of order mini∈[n] ρ

2
i when maxi∈[n] ρi → 0, see Lemma 2.20 in the

Appendix.
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Then, there exists a probability measure Πρ,γ,N such that Πρ,γ,N is invariant for Pρ,γ,N ,
there exists C2 > 0 such that for any integer t ≥ 0 and v = (θ, z) ∈ Rd × Z, we have

W2(δvP
t
ρ,γ,N ,Πρ,γ,N ) ≤ C2 ·

(
1−min

i∈[n]
{Niγimi}/2

)t
·W2(δv,Πρ,γ,N ).

Explicit expressions for C1 and C2 are given in Proposition 2.21 in the Appendix. Fi-
nally, if N = N1n for N ≥ 1, then Πρ,γ,N = Πρ,γ,1n.

We now discuss Proposition 2.4. If we set, for any i ∈ [n], Ni = 1, the convergence
rate in Proposition 2.4 becomes equal to 1 − mini∈[n]{γimi}/2. In this specific case,
we show in Proposition 2.13 that DG-LMC actually admits the tighter convergence rate
1−mini∈[n]{γimi} which simply corresponds to the rate at which the slowest LMC con-
ditional kernel converges. On the other hand, when maxi∈[n]Ni > 1, the convergence of
Pρ,γ,N towards Πρ,γ,N only holds if maxi∈[n]{Niγi} is sufficiently small. This condition
is necessary to ensure a contraction in W2 and can be understood intuitively as follows
in the case where N = N1n and γ = γ1n. Given two vectors (θk, θ

′
k) and an appropri-

ate coupling (Zk+1, Z
′
k+1), we can show that Zk+1−Z ′k+1 involves two competing terms:

one keeping Zk+1 − Z ′k+1 close to Zk − Z ′k and another one driving Zk+1 − Z ′k+1 away
from θk − θ′k (and therefore of Zk − Z ′k) as N increases. This implies that N stands
for a tradeoff and the product Nγ cannot be arbitrarily chosen. Finally, it is worth
mentioning that the tolerance parameters {ρi}i∈[n] implicitly drive the convergence rate
of DG-LMC. In the case Ni = 1, a sufficient condition on the step-sizes to ensure a con-
traction is γi ≤ 2/(Mi +mi + 1/ρi). We can denote that the smaller ρi, the smaller γi
and the slower the convergence.

Starting from the results of Proposition 2.4, we can analyze the convergence properties
of DG-LMC. We specify our result to the case where we take for the specific initial
distribution

µ?ρ = δz? ⊗Πρ(·|z?), (2.7)

where z? = ([A1θ
?]>, · · · , [Anθ

?]>)>, θ? = arg min{− log π} and Πρ(·|z?) is defined in
(2.5). Note that sampling from µ?ρ is straightforward and simply consists in setting
z(0) = z? and drawing θ(0) from Πρ(· | z?). For t ≥ 1, we consider the marginal law of
θt initialized at v? with distribution µ?ρ and denote it Γtv? . As mentioned previously,
the proposed approach relies on two approximations which both come with some bias
we need to control. This naturally brings us to consider the following inequality based
on the triangular inequality and the definition of the Wasserstein distance:

W2(Γtv? , π(·|D)) ≤W2(µ?ρP
t
ρ,γ,N ,Πρ,γ,N ) +W2(Πρ,γ,N ,Πρ) +W2(πρ, π(·|D)), (2.8)

where Πρ,γ,N , Πρ and πρ are defined in Proposition 2.4, (2.2) and (2.3), respectively. In
Proposition 2.22 in the Appendix, we provide an upper bound on the first term on the
right-hand side based on Proposition 2.4. In the next section, we focus on controlling
the last two terms on the right-hand side.

Quantitative Bounds on the Bias

The error term W2(πρ, π(·|D)) in (2.8) is related to the underlying AXDA framework
which induces an approximate posterior representation πρ. It can be controlled by
the sequence of positive tolerance parameters {ρi}ni=1. By denoting ρ̄ = maxi∈[n] ρi,
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Table 2.1 – For the specific initialization v? with distribution µ?ρ given in (2.7), depend-
encies w.r.t. d and ε of the parameters involved in Algorithm 2.1 and of tmix(ε; v?) to
get a W2-error of at most ε.

Assumptions ρε γε Nε tmix(ε; v?) Gradient evaluations

Assumption 2.1
Assumption 2.3

d O(d−1) O(d−3) O(d) O(d2 log(d)) O(d3 log(d))

ε O(ε) O(ε4) O(ε−2) O(ε−2| log(ε)|) O(ε−4| log(ε)|)
Assumption 2.1
Assumption 2.7
Assumption 2.3

d O(d−1) O(d−2) O(1) O(d2 log(d)) O(d2 log(d))

ε O(ε) O(ε2) O(1) O(ε−2| log(ε)|) O(ε−2| log(ε)|)

Proposition 2.5 shows that this error can be quantitatively assessed and is of order
O(ρ̄) for sufficiently small values of this parameter.

Proposition 2.5. Assume Assumption 2.1, Assumption 2.3. In addition, let A =
[A>1 , . . . ,A

>
n ]> and denote σ2

U = ‖A>A‖maxi∈[n]{M2
i }/mU , where mU is defined in

(2.6). Then, for any ρ̄ ≤ σ2
U/12,

W2(πρ, π(·|D)) ≤
√

2/mU max(Aρ, Bρ),

where Aρ = dO(ρ̄) and Bρ = d1/2 O(ρ̄) for ρ̄ ↓ 0. Explicit expressions for Aρ, Bρ are
given in Section 2.C in the Appendix.

In the case where π is Gaussian, the approximate distribution πρ admits an explicit
expression and is Gaussian as well (e.g. when n = 1, the mean is the same and the
covariance matrix is inflated by a factor ρId), see for instance Rendell et al. (2020,
Section S2) and Vono et al. (2020, Section 5.1). Hence, an explicit expression for
W2(πρ, π(·|D)) can be derived. Based on this result, we can check that the upper bound
provided by Proposition 2.5 matches the same asymptotics as ρ→ 0 and d→∞.

The second source of approximation error is induced by the use of LMC within Al-
gorithm 2.1 to target the conditional distribution Πρ(z1:n|θ) in (2.4). The stationary
distribution of Pρ,γ,N whose existence is ensured in Proposition 2.4 differs from Πρ.
The associated bias is assessed quantitatively in Proposition 2.6.

Proposition 2.6. Assume Assumption 2.1-Assumption 2.3. For any i ∈ [n], define
M̃i = Mi + 1/ρi and let γ ∈ (R∗+)n, N ∈ (N∗)n such that for any i ∈ [n],

γi ≤
mi

40M̃2
i

min
i∈[n]

(mi/M̃i)
2/max

i∈[n]
(mi/M̃i)

2, (2.9)

Ni =
⌊
mi min

i∈[n]
{mi/M̃i}2/(20γiM̃

2
i max
i∈[n]
{mi/M̃i}2)

⌋
. (2.10)

Then, we have

W 2
2 (Πρ,γ,N ,Πρ) ≤ C3

n∑
i=1

diγiM̃
2
i ,

where C3 > 0 only depends on (mi,Mi,Ai, ρi)
n
i=1 and is explicitly given in Proposi-

tion 2.37 in the Appendix.



CHAPTER 2. DG-LMC: DISTRIBUTED GRADIENT LANGEVIN MONTE CARLO40

With the notation γ̄ = maxi∈[n] γi, Proposition 2.6 implies that W2(Πρ,Πρ,γ,N ) ≤
O(γ̄1/2)(

∑n
i=1 di)

1/2 for γ̄ ↓ 0. Note that this result is in line with Durmus and Moulines
(2019, Corollary 7) and can be improved under further regularity assumptions on U , as
shown below.

Assumption 2.7. U is three times continuously differentiable and there exists Li > 0
such that for all zi, z′i ∈ Rdi , ‖∇2Ui(zi)−∇2Ui(z

′
i)‖ ≤ Li‖zi − z′i‖.

Proposition 2.8. Assume Assumption 2.1-Assumption 2.3-Assumption 2.7. For any
i ∈ [n], define M̃i = Mi + 1/ρi and let γ ∈ (R∗+)n, N ∈ (N∗)n such that for any i ∈ [n],
(2.9) and (2.10) hold. Then, we have

W 2
2 (Πρ,γ,N ,Πρ) ≤ C4

∑
i∈[n]

diγi(1/M̃
2
i + γiM̃

2
i ),

where C4 > 0 only depends on (mi,Mi, Li,Ai, ρi)
n
i=1 and is explicitly given in Proposi-

tion 2.41 in the Appendix.

Mixing Time with Explicit Dependencies

Based on explicit non-asymptotic bounds shown in Propositions 2.4, 2.5 and 2.6 and
the decomposition (2.8), we are now able to analyze the scaling of Algorithm 2.1 in
high dimension. Given a prescribed precision ε > 0 and an initial condition v? with
distribution µ?ρ given in (2.7), we define the ε-mixing time associated to Γv? by

tmix(ε; v?) = min
{
t ∈ N : W2(Γtv? , π(·|D)) ≤ ε

}
.

This quantity stands for the minimum number of DG-LMC iterations such that the θ-
marginal distribution is at most at an ε W2-distance from the initial target π. Under the
condition that nmaxi∈[n] di = O(d) and by assuming for simplicity that for any i ∈ [n],
mi = m,Mi = M,Li = L, ρi = ρ, γi = γ and Ni = N , Table 2.1 gathers the depend-
encies w.r.t. d and ε of the parameters involved in Algorithm 2.1 and of tmix(ε; v?) to
get a W2-error of at most ε. Note that the mixing time of Algorithm 2.1 scales at most
quadratically (up to polylogarithmic factors) in the dimension. When Assumption 2.7
holds, we can see that the number of local iterations becomes independent of d and ε
which leads to a total number of gradient evaluations with better dependencies w.r.t.
to these quantities. Up to the authors’ knowledge, these explicit results are the first
among the centralized distributed MCMC literature and in particular give the depend-
ency w.r.t. d and ε of the number of local LMC iterations on each worker. Overall, the
proposed approach appears as a scalable and reliable alternative for high-dimensional
and distributed Bayesian inference.

2.3.2 DG-LMC in Practice: Guidelines for Practitioners

We now discuss practical guidelines for setting the values of hyperparameters involved
in Algorithm 2.1. Based on Proposition 2.4, we theoretically show an optimal choice of
order Niγi � miρ

2
i /(ρiMi + 1)2. Ideally, within the considered distributed setting, the

optimal value for (Ni, γi)i∈[n] would boil down to optimize the value of maxi∈[n]{Niγi}
under the constraints derived in Proposition 2.4 combined with communication consid-
erations. In particular, this would imply a comprehensive modelling of the communica-
tion costs including I/O bandwidths constraints. These optimization tasks fall outside



CHAPTER 2. DG-LMC: DISTRIBUTED GRADIENT LANGEVIN MONTE CARLO41

the scope of the present chapter, and therefore we let the search of optimal values for
future works. Since our aim here is to provide practitioners with simple prescriptions,
we rather focus on general rules involving tractable quantities.

Selection of γ and ρ

From Durmus and Moulines (2017) and references therein, a simple sufficient condition
on step-sizes γ = {γi}ni=1 to guarantee the stability of LMC is γi ≤ ρi/(ρiMi + 1) for
i ∈ [n]. Both the values of γi and ρi are subject to a bias-variance tradeoff. More
precisely, large values yield a Markov chain with small estimation variance but high
asymptotic bias. Conversely, small values produce a Markov chain with small asymp-
totic bias but which requires many iterations to obtain a stable estimator. We propose
to mitigate this tradeoff by setting γi to a reasonably large value, that is for i ∈ [n],
γi ∈ [0.1ρi/(ρiMi + 1), 0.5ρi/(ρiMi + 1)]. Since γi saturates to 1/Mi when ρi → ∞,
there is no computational advantage to choose very large values for ρi. Based on several
numerical studies, we found that setting ρi of the order of 1/Mi was a good compromise
between computational efficiency and asymptotic bias.

N : A Trade-Off between Asymptotic Bias and Communication Overhead

In a similar vein, the choice of N = {Ni}ni=1 also stands for a tradeoff but here between
asymptotic accuracy and communication costs. Indeed, many local LMC iterations
reduces the communication overhead but at the expense of a larger asymptotic bias
since the master parameter is not updated enough. Ahn et al. (2014) proposed to
tune the number of local iterations Ni on a given worker based on the amount of time
needed to perform one local iteration, denoted here by τi. Given an average number
of local iterations Navg, the authors set Ni = qinNavg with qi = τ−1

i /
∑n

k=1 τ
−1
k so

that n−1
∑n

i=1Ni = Navg. As mentioned by the aforementioned authors, this choice
allows to keep the block-by-the-slowest delay small by letting fast workers perform
more iterations in the same wall-clock time. Although they showed how to tune Ni

w.r.t. communication considerations, they let the choice of Navg to the practitioner.
Here, we propose a simple guideline to set Navg such that Ni stands for a good com-
promise between the amount of time spent on exploring the state-space and commu-
nication overhead. As highlighted in the discussion after Proposition 2.4, as γi be-
comes smaller, more local LMC iterations are required to sufficiently explore the latent
space before the global consensus round on the master. Assuming for any i ∈ [n]
that γi has been chosen following our guidelines in Section 2.3.2, this suggests to set
Navg = d(1/n)

∑
i∈[n] ρi/(γi[ρiMi + 1])e.

2.4 Related work

As already mentioned in Section 2.1, hosts of contributions have focused on deriving dis-
tributed MCMC algorithms to sample from (2.1). This section briefly reviews the main
existing research lines and draws a detailed comparison with the proposed methodology.



CHAPTER 2. DG-LMC: DISTRIBUTED GRADIENT LANGEVIN MONTE CARLO42

Table 2.2 – Synthetic overview of the main existing distributed MCMC methods under
a master-slave architecture. The column Exact means that the Markov chain defined by
the MCMC sampler admits (2.1) as invariant distribution. The column Comm. reports
the communication frequency. A value of 1 means that the sampler communicates
after every iteration. T stands for the total number of iterations and N < T is a
tunable parameter to mitigate communication costs. The acronym D-SGLD stands for
distributed stochastic gradient Langevin dynamics.

Method Type Exact Comm. Bias bounds Scaling

Wang and Dunson (2013) one-shot × 1/T
√

O(ed)
Neiswanger et al. (2014) one-shot × 1/T × O(ed)
Minsker et al. (2014) one-shot × 1/T

√
unknown

Srivastava et al. (2015) one-shot × 1/T × unknown
Wang et al. (2015) one-shot × 1/T

√
O(ed)

Scott et al. (2016) one-shot × 1/T × unknown
Nemeth and Sherlock (2018) one-shot × 1/T × unknown
Jordan et al. (2019) one-shot × 1/T

√
unknown

Ahn et al. (2014) D-SGLD × 1/N × unknown
Chen et al. (2016) D-SGLD × 1

√
unknown

El Mekkaoui et al. (2021) D-SGLD × 1/N
√

unknown
Rabinovich et al. (2015) g. consensus × 1/N × unknown
Chowdhury and Jermaine (2018) g. consensus

√
1 N/A unknown

Rendell et al. (2020) g. consensus × 1/N
√

unknown
This chapter g. consensus × 1/N

√
O(d2 log(d))

2.4.1 Existing distributed MCMC methods

Existing methodologies are mostly approximate and can be loosely speaking divided into
three groups: one-shot, distributed stochastic gradient MCMC and global consensus ap-
proaches. To ease the understanding, a synthetic overview of their main characteristics
is presented in Table 2.2.

One-shot approaches stand for communication-efficient schemes where workers and mas-
ter only exchange information at the very beginning and the end of the sampling task;
similarly to MapReduce schemes (Dean and Ghemawat, 2004). Most of these meth-
ods assume that the posterior density factorizes into a product of local posteriors and
launch independent Markov chains across workers to target them. The local posterior
samples are then combined through the master node using a single final aggregation
step. This step turns to be the milestone of one-shot approaches and was the topic
of multiple contributions Wang and Dunson (2013); Neiswanger et al. (2014); Minsker
et al. (2014); Srivastava et al. (2015); Scott et al. (2016); Nemeth and Sherlock (2018).
Unfortunately, the latter are either infeasible in high-dimensional settings or have been
shown to yield inaccurate posterior representations empirically, if the posterior is not
near-Gaussian, or if the local posteriors differ significantly Wang et al. (2015); Dai et al.
(2019); Rendell et al. (2020). Alternative schemes have been recently proposed to tackle
these issues but their theoretical scaling w.r.t. the dimension d is currently unknown
(Jordan et al., 2019; Mesquita et al., 2020).
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Albeit popular in the machine learning community, distributed stochastic gradient
MCMC methods (Ahn et al., 2014) suffer from high variance when the dataset is large
because of the use of stochastic gradients (Brosse et al., 2018). Some surrogates have
been recently proposed to reduce this variance such as the use of stale or conducive
gradients (Chen et al., 2016; El Mekkaoui et al., 2021). However, these variance re-
duction methods require an increasing number of workers for the former and come at
the price of a prohibitive pre-processing step for the latter. In addition, it is currently
unclear whether these methods are able to generate efficiently accurate samples from a
given target distribution.

Contrary to aforementioned distributed MCMC approaches, global consensus meth-
ods periodically share information between workers by performing a consensus round
between the master and the workers (Rabinovich et al., 2015; Chowdhury and Jermaine,
2018; Vono et al., 2019; Rendell et al., 2020). Again, they have been shown to perform
well in practice, but their theoretical understanding is currently limited.

2.4.2 Comparison with the proposed methodology

Table 2.2 compares Algorithm 2.1 with existing approaches detailed previously. In
addition to having a simple implementation and guidelines, it is worth noticing that
DG-LMC appears to benefit from favorable convergence properties compared to the other
considered methodologies.

We complement this comparison with an informal discussion on the computational and
communication complexities of Algorithm 2.1. Recall that the dataset is assumed to be
partitioned into S shards and stored on S workers among a collection of n computing
nodes. Suppose that the s-th shard has size ns, and let T be the number of total
MCMC iterations and ccom the communication cost. In addition, denote by c(i)

eval the
approximate wall-clock time required to evaluate Ui or its gradient. For the ease of
exposition, we do not discuss the additional overhead due to bandwidth restrictions
and assume similar computation costs, i.e., Nceval ' Nic

(i)
eval, to perform each local

LMC step at each iteration of Algorithm 2.1. Under these assumptions, the total
complexity of Algorithm 2.1 is O(T [2ccom + Nceval]). Following the same reasoning,
distributed stochastic gradient Langevin dynamics (D-SGLD) and one-shot approaches
admit complexities of the order O(T [2ccom + Ncevalnmb/ns]) and O(Tceval + 2ccom),
respectively. The integer nmb stands for the minibatch size used in D-SGLD. Despite
their very low communication overhead, existing one-shot approaches are rarely reliable
and therefore not necessarily efficient to sample from π given a prescribed computational
budget, see Rendell et al. (2020) for a recent overview. D-SGLD seems to enjoy a lower
complexity than Algorithm 2.1 when nmb is small. Unfortunately, this choice comes
with two main shortcomings: (i) a larger number of iterations T to achieve the same
precision because of higher variance of gradient estimators, and (ii) a smaller amount
of time spent on exploration compared to communication latency. By falling into the
global consensus class of methods, the proposed methodology hence appears as a good
compromise between one-shot and D-SGLD algorithms in terms of both computational
complexity and accuracy. Section 2.5 will enhance the benefits of Algorithm 2.1 by
showing experimentally better convergence properties and posterior approximation.
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2.5 Experiments

This section compares numerically DG-LMC with the most popular and recent centralized
distributed MCMC approaches namely D-SGLD and the global consensus Monte Carlo
(GCMC) algorithm proposed in Rendell et al. (2020). Since all these approaches share
the same communication latency, this feature is not discussed here.
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Figure 2.2 – Toy Gaussian experiment. (left) N = 1 local iterations and (right) N = 10.
(top) DG-LMC, (middle) D-SGLD and (bottom) ACF comparison between DG-LMC and
D-SGLD.

2.5.1 Toy Gaussian Example

In this toy example, we first illustrate the behavior of DG-LMC w.r.t. the number of
local iterations which drives the communication overhead. We consider the conjug-
ate Gaussian model π(θ|y1:n) ∝ N (θ|0d,Σ0)

∏n
i=1N (yi|θ,Σ1), with positive definite

matrices Σ0,Σ1. We set d = 2, allocate b = 20, 000 observations to a cluster made
of n = 10 workers and compare DG-LMC with D-SGLD. Both MCMC algorithms have
been run using the same number of local iterations N per worker and for a fixed budget
of T = 100, 000 iterations including a burn-in period equal to Tbi = 10, 000. Regard-
ing DG-LMC, we follow the guidelines in Section 2.3.2 and set for all i ∈ [n], Ai = Id,
ρi = 1/(5Mi) and γi = 0.25ρi/(ρiMi + 1). On the other hand, D-SGLD has been run
with batch-size b/(10n) and a step-size chosen such that the resulting posterior approx-
imation is similar to that of DG-LMC for N = 1. Figure 2.2 depicts the results for N = 1
and N = 10 on the left and right columns, respectively. The top row (resp. middle row)
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Figure 2.3 – Logistic regression. From left to right: negative log-posterior, ACF, HPD
relative error after and during the sampling procedure.
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Figure 2.4 – Bayesian neural network. (left) probability of the most probable label for
8 examples and (right) probability of each label for a single example.

shows the contours of the n local posteriors in dashed gray, the contours of the target
posterior in red and the 2D histogram built with DG-LMC (resp. D-SGLD) samples in
blue (resp. green). When required, a zoomed version of these figures is depicted in the
top right corner. It can be noted that DG-LMC exhibits better mixing properties while
achieving similar performances as shown by the autocorrelation function (ACF) on the
bottom row. Furthermore, its posterior approximation is robust to the choice of N in
contrast to D-SGLD, which needs further tuning of its step-size to yield an accurate
posterior representation. This feature is particularly important for distributed com-
putations since N is directly related to communication costs and might often change
depending upon the hardware architecture.
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2.5.2 Bayesian Logistic Regression

This second experiment considers a more challenging problem namely Bayesian logistic
regression. We use the covtype3 dataset with d = 54 and containing b = 581, 012
observations partitioned into n = 16 shards. We set N = 10, T = 200, 000, Tbi = T/10
for all approaches, and again used the guidelines in Section 2.3.2 to tune DG-LMC. Under
the Bayesian paradigm, we are interested in performing uncertainty quantification by
estimating the highest posterior density (HPD) regions. For any α ∈ (0, 1), define Cα =
{θ ∈ Rd;− log π(θ|y1:n) ≤ ηα} where ηα ∈ R is chosen such that

∫
Cα π(θ|y1:n)dθ = 1−α.

For the three approximate MCMC approaches, we computed the relative HPD error
based on the scalar summary ηα, i.e. |ηα − ηtrue

α |/ηtrue
α where ηtrue

α has been estimated
using the Metropolis adjusted Langevin algorithm. The parameters of GCMC and D-
SGLD have been chosen such that all MCMC algorithms achieve similar HPD error.
Figure 2.3 shows that this error is reasonable and of the order of 1%. Nonetheless,
one can denote that DG-LMC achieves this precision level faster than GCMC and D-
SGLD due to better mixing properties. This confirms that the proposed methodology is
indeed efficient and reliable to perform Bayesian analyzes compared to existing popular
methodologies.

2.5.3 Bayesian Neural Network

Up to now, both our theoretical and experimental results focused on the strongly log-
concave scenario and showed that even in this case, DG-LMC appeared as a competitive
alternative. In this last experiment, we propose to end the study of DG-LMC on an open
note without ground truth by tackling the challenging sampling problem associated
to Bayesian neural networks. We consider the MNIST training dataset consisting of
n = 60, 000 observations partitioned into n = 50 shards and such that for any i ∈ [n] and
k ∈ [10], P(yi = k|θ,xi) = βk where βk is the k-th element of σ(σ(x>i W1+n1)W2+n2),
σ(·) is the sigmoid function, xi are covariates, and W1, W2, n1 and n2 are matrices of
size 784×128, 128 × 10, 1×128 and 1×10, respectively. We set normal priors for each
weight matrix and bias vector, N = 10 and ran DG-LMC with constant hyperparameters
across workers (ρ, γ) = (0.02, 0.005) and D-SGLD using a step-size of 10−5. Exact
MCMC approaches are too computationally costly to launch for this experiment and
therefore no ground truth about the true posterior distribution is available. To this
purpose, Figure 2.4 only compares the credibility regions associated to the posterior
predictive distribution. Similarly to previous experiments, we found that D-SGLD was
highly sensitive to hyperparameters choices (step-size and minibatch size). Except for a
few testing examples, most of conclusions given by DG-LMC and D-SGLD regarding the
predictive uncertainty coincide. In addition, posterior accuracies on the test set given
by both algorithms are similar.

2.6 Conclusion

In this chapter, a simple algorithm coined DG-LMC has been introduced for distributed
MCMC sampling. In addition, it has been established that this method inherits favor-
able convergence properties and numerical illustrations support our claims.

3www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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2.A Proof of Proposition 2.2

Let n′ ∈ [n− 1], p′ =
∑n

i=n′+1 di and consider

B>n′ = [A>n′+1/ρ
1/2
n′+1 · · ·A>n /ρ1/2

n ] ∈ Rd×p
′
,

B̄n′ = B>n′Bn′ =

n∑
i=n′+1

{A>i Ai/ρi} ∈ Rd×d.
(2.11)

Note that under Assumption 2.1, B̄n′ is invertible. Indeed, it is a symmetric positive
definite matrix since for any θ ∈ Rd, 〈B̄n′θ, θ〉 ≥ [mini∈[n] ρ

−1
i ]〈∑n

i=n′+1 A>i Aiθ, θ〉 > 0

using that
∑n

i=n′+1 A>i Ai is invertible. Define the orthogonal projection onto the range
of Bn′ and the diagonal matrix:

Pn′ = Bn′B̄
−1
n′ B

>
n′ , D̃n′ = diag(Idn′+1

/ρn′+1, . . . , Idn/ρn). (2.12)

2.A.1 Technical lemma

Lemma 2.9. Assume Assumption 2.1. For any (θ, zn′+1:n) ∈ Rd × Rp′ , setting z =
zn′+1:n, we have

n∑
i=n′+1

{
‖zi −Aiθ‖2/ρi

}
= (D̃

1/2
n′ z)

>{Ip′ −Pn′}(D̃1/2
n′ z)

+ (θ − B̄−1
n′ B

>
n′D̃

1/2
n′ z)

>B̄n′(θ − B̄−1
n′ B

>
n′D̃

1/2
n′ z).

Proof Setting b = B>n′D̃
1/2
n′ z and using the fact that B̄n′ is symmetric, we have

n∑
i=n′+1

{
‖zi −Aiθ‖2/ρi

}
= θ>B̄n′θ − 2θ>b +

n∑
i=n′+1

∥∥zi∥∥2
/ρi

=

n∑
i=n′+1

∥∥zi∥∥2
/ρi − b>B̄−1

n′ b + (θ − B̄−1
n′ b)>B̄n′(θ − B̄−1

n′ b).

Using that b>B̄−1
n′ b = (D̃

1/2
n′ z)

>Pn′(D̃
1/2
n′ z) and Pn′ is a projection, P2

n′ = Pn′ com-
pletes the proof.

2.A.2 Proof of Proposition 2.2

Proposition 2.10. Assume Assumption 2.1. Then, the function

ψ : (θ, z1:n) 7→
n∏
i=1

exp{−Ui(zi)− ‖zi −Aiθ‖2/(2ρi)}

is integrable on Rd × Rp, where p =
∑n

i=1 di.
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Proof Using Assumption 2.1 and the Fubini theorem, there exists C1 > 0 such that:

∫
Rd

 n′∏
i=1

∫
Rdi

e−Ui(zi)e
−‖zi−Aiθ‖2

2ρi dzi ·
n∏

j=n′+1

∫
Rdj

e−Uj(zj)e
−

∥∥∥∥zj−Ajθ

∥∥∥∥2
2ρj dzj

 dθ

≤ C1

∫
Rd

 n′∏
i=1

∫
Rdi

e
−‖zi−Aiθ‖2

2ρi dzi ·
n∏

j=n′+1

∫
Rdj

e−Uj(zj)e
−

∥∥∥∥zj−Ajθ

∥∥∥∥2
2ρj dzj

 dθ

≤ C1

n′∏
i=1

(2πρi)
di/2

∫
Rd

 n∏
j=n′+1

∫
Rdj

e−Uj(zj) exp

(
−
∥∥∥zj −Ajθ

∥∥∥2
/(2ρj)

)
dzj

 dθ

= C1

n′∏
i=1

(2πρi)
di/2

∫
Rdn′+1

· · ·
∫
Rdn

 n∏
j=n′+1

e−Uj(zj)


∫

Rd

n∏
j=n′+1

e
−

∥∥∥∥zj−Ajθ

∥∥∥∥2
2ρj dθ

 dzn′+1:n.

(2.13)

Using Lemma 2.9 and the fact that Ip′ −Pn′ is positive definite, we obtain

∫
Rd

n∏
j=n′+1

exp

(
−
∥∥∥zj −Ajθ

∥∥∥2
/(2ρj)

)
dθ = exp

(
−(D̃

1/2
n′ z)

>{Ip′ −Pn′}(D̃1/2
n′ z)/2

)

×
∫
Rd

exp

(
−(θ − B̄−1

n′ B
>
n′D̃

1/2
n′ z)

>B̄n′(θ − B̄−1
n′ B

>
n′D̃

1/2
n′ z)/2

)
dθ

≤ det
(
B̄n′

)−1/2
(2π)d/2.

Then, the proof is completed by plugging this expression into (2.13) and using from
Assumption 2.1 that zn′+1:n 7→

∏n
j=n′+1 e−Uj(zj) is integrable.

2.B Proof of Proposition 2.4

This section aims at proving Proposition 2.4 in the main chapter. To ease the under-
standing, we dissociate the scenarios where maxi∈[n]Ni = 1 and maxi∈[n]Ni > 1. In
addition, in all this section ρ ∈ (R∗+)n is assumed to be fixed.

2.B.1 Single local LMC iteration

In this section, we assume that a single LMC step is performed locally on each worker,
that is maxi∈[n]Ni = 1. For this, we introduce the conditional Markov transition kernel
defined for any γ = (γ1, . . . , γn), θ ∈ Rd, z = (z1, · · · , zn) ∈ Rd1 × · · · × Rdn , and for
i ∈ [n], Bi ∈ B(Rdi), by

Qρ,γ(z,B1 × · · · × Bn|θ) =
n∏
i=1

Rρi,γi(zi,Bi|θ),
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where

Rρi,γi(zi,Bi|θ) =

∫
Bi

exp

−
1

4γi

∥∥∥∥∥∥z̃i −
(

1− γi
ρi

)
zi −

γi
ρi

Aiθ + γi∇Ui(zi)

∥∥∥∥∥∥
2


dz̃i

(4πγi)di/2
.

(2.14)
Recall that p =

∑n
i=1 di. The considered Gibbs sampler in Algorithm 2.1 defines a

homogeneous Markov chainX>` = (θ>` , Z
>
` )`≥1 where Z>` = ([Z1

` ]>, · · · , [Zn` ]>). Indeed,
it is easy to show that for any ` ∈ N and measurable bounded function f : Rp → R+,
E[f(Z`+1)|X`] =

∫
Rp f(z)Qρ,γ(Z`,dz|θ`) and therefore (X`)`∈N is associated with the

Markov kernel defined, for any x> = (θ>, z>) ∈ Rd×Rp and A ∈ B(Rd), B ∈ B(Rp), by

Pρ,γ(x,A× B) =

∫
B
Qρ,γ(z,dz̃|θ)

∫
A

Πρ(dθ̃|z̃), (2.15)

where Πρ(·|z̃) is defined in (2.5). Let (ξ`)`≥1 be a sequence of i.i.d. d-dimensional
standard Gaussian random variables independent of the family of independent random
variables {(ηi`)`≥1 : i ∈ [n]} where for any i ∈ [n] and ` ≥ 1, ηi` is a di-dimensional
standard Gaussian random variable. We define the stochastic processes (X`, X̃`)`≥0 on
Rp × Rp starting from (X0, X̃0) = (x, x̃) = ((θ>, z>)>, (θ̃>, z̃>)>) and following the
recursion for ` ≥ 0,

X`+1 = (θ>`+1, Z
>
`+1)>, X̃`+1 = (θ̃>`+1, Z̃

>
`+1)>, (2.16)

where Z`+1 = ([Z1
`+1]>, . . . , [Zn`+1]>)>, Z̃`+1 = ([Z̃1

`+1]>, . . . , [Z̃n`+1]>)> are defined, for
any i ∈ [n], by

Zi`+1 = (1− γi/ρi)Zi` + (γi/ρi)Aiθ` − γi∇Ui(Zi`) +
√

2γiη
i
`+1, (2.17)

Z̃i`+1 = (1− γi/ρi)Z̃i` + (γi/ρi)Aiθ̃` − γi∇Ui(Z̃i`) +
√

2γiη
i
`+1,

and θ`+1, θ̃`+1 by

θ`+1 = B̄−1
0 B>0 D̃

1/2
0 Z`+1 + B̄

−1/2
0 ξ`+1, θ̃`+1 = B̄−1

0 B>0 D̃
1/2
0 Z̃`+1 + B̄

−1/2
0 ξ`+1,

(2.18)
where B̄0, B0 and D̃0 are given in (2.11) and (2.12), respectively. Note that X` and
X̃` are distributed according to δxP

`
ρ,γ and δx̃P

`
ρ,γ , respectively. Hence, by definition

of the Wasserstein distance of order 2, it follows that

W2(δxP
`
ρ,γ , δx̃P

`
ρ,γ) ≤ E

[
‖X` − X̃`‖2

]1/2
. (2.19)

Thus, in this section we focus on upper bounding the squared norm ‖X` − X̃`‖ from
which we get an explicit bound on the Wasserstein distance thanks to the previous
inequality.

Supporting lemmata

Note that Assumption 2.1 implies the invertibility of the matrix B0 defined in (2.11)
since we have the existence of n′ ∈ [n − 1], such that

∑n
i=n′+1 λmin(A>i Ai)/ρi > 0

and by the semi-positiveness of the symmetric matrices {A>i Ai}i∈[n], we get that
λmin(B0) =

∑n
i=1 λmin(A>i Ai)/ρi ≥

∑n
i=n′+1 λmin(A>i Ai)/ρi. To prove Proposition 2.4

in the case maxi∈[n]Ni = 1, we first upper bound (2.19) by building upon the following
two technical lemmas.
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Lemma 2.11. Assume Assumption 2.1 and consider (X`, X̃`)`∈N defined in (2.16).
Then, for any ` ∈ N, it holds almost surely that

‖X`+1 − X̃`+1‖2 ≤ (1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2)‖Z`+1 − Z̃`+1‖2.

Proof Let ` ≥ 0. By (2.18), we have θ`+1 − θ̃`+1 = B̄−1
0 B>0 D̃

1/2
0 (Z`+1 − Z̃`+1) which

implies that

‖X`+1 − X̃`+1‖2 = ‖θ`+1 − θ̃`+1‖2 + ‖Z`+1 − Z̃`+1‖2

≤ (1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2)‖Z`+1 − Z̃`+1‖2.

For any v ∈ Rn, define the block diagonal matrix

Dv = diag
(
v1 · Id1 , . . . , vn · Idn

)
∈ Rp×p (2.20)

and consider the following contraction factor:

κγ = maxi∈[n]

{
|1− γimi| ∨ |1− γi(Mi + 1/ρi)|

}
. (2.21)

Using this notation, the next result holds.

Lemma 2.12. Assume Assumption 2.1-Assumption 2.3 and let γ ∈ (R∗+)n. Then for
any x = (z>, θ>)>, x̃ = (z̃>, θ̃>)>, with (θ, θ̃) ∈ (Rd)2 and (z, z̃) ∈ (Rp)2, for any ` ≥ 1,
we have

W2(δxP
`
ρ,γ , δx̃P

`
ρ,γ) ≤ κ`−1

γ ·
(

(1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2) ·

maxi∈[n]{γi}
mini∈[n]{γi}

)1/2

×
[
κγ‖z − z̃‖+ ‖Dγ/

√
ρB0‖‖θ − θ̃‖

]
,

where Dγ/
√
ρ is defined as in (2.20) with γ/√ρ = (γ1/ρ

1/2
1 , . . . , γn/ρ

1/2
n ), B̄0, B0, Pρ,γ

and κγ are given in (2.11), (2.15), (2.21), respectively.

Proof Consider (Xk, X̃k)k∈N defined in (2.16). By (2.19) and Lemma 2.11, we need
to bound (‖Zk − Z̃k‖)k∈N. Let ` ∈ N∗. For any i ∈ [n], we have by (2.17), that

Zi`+1 − Z̃i`+1 =

(
1− γi

ρi

)
(Zi` − Z̃i`) +

γi
ρi

Ai(θ` − θ̃`)− γi
(
∇Ui(Zi`)−∇Ui(Z̃i`)

)
.

(2.22)

Since Ui is twice differentiable, we have

∇Ui(Zi`)−∇Ui(Z̃i`) =

∫ 1

0
∇2Ui(Z̃

i
` + t(Zi` − Z̃i`)) dt · (Zi` − Z̃i`).

Using θ` − θ̃` = B̄−1
0 B>0 D̃

1/2
0 (Z` − Z̃`), it follows that

Zi`+1 − Z̃i`+1 =

([
1− γi

ρi

]
Idi − γi

∫ 1

0
∇2Ui(Z̃

i
` + t(Zi` − Z̃i`)) dt

)
(Zi` − Z̃i`)
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+
γi
ρi

AiB̄
−1
0 B>0 D̃

1/2
0 (Z` − Z̃`).

Consider the p× p block diagonal matrix defined by

DU,` = diag

(
γ1

∫ 1

0
∇2U1(Z̃1

` + t(Z1
` − Z̃1

` )) dt, · · · , γn
∫ 1

0
∇2Un(Z̃n` + t(Zn` − Z̃n` )) dt

)
.

With the projection matrix P0 defined in (2.12), the difference Z`+1 − Z̃`+1 can be
rewritten as

Z`+1 − Z̃`+1 =

(
Ip −DU,` −D

1/2
γ D

1/2
γ/ρ(Ip −P0)D̃

1/2
0

)
(Z` − Z̃`),

where Dγ/ρ is defined as in (2.20) with γ/ρ = (γ1/ρ1, . . . , γn/ρn). Since DU,` commutes
with Dγ and P0 is an orthogonal projection matrix, using Assumption 2.3-(i)-(ii), we
get

‖Z`+1 − Z̃`+1‖D−1
γ

= ‖D−1/2
γ (D

1/2
γ D

−1/2
γ −D

1/2
γ DU,`D

−1/2
γ −D

1/2
γ D

1/2
γ/ρ(Ip −P0)D

1/2
γ/ρD

−1/2
γ )(Z` − Z̃`)‖

≤ ‖Ip −DU,` −D
1/2
γ/ρ

(
Ip −P0

)
D

1/2
γ/ρ‖‖Z` − Z̃`‖D−1

γ
.

Note that Assumption 2.1 and Assumption 2.3 and the fact that P0 is an orthogonal
projector, so 0p 4 Ip −P0, imply that

diag({1− γ1(M1 + 1/ρ1)}Id1 , · · · , {1− γn(Mn + 1/ρn)}Idn)

4 Ip −DU,` −D
1/2
γ/ρ

(
Ip −P0

)
D

1/2
γ/ρ

4 diag
({

1− γ1m1

}
Id1 , . . . ,

{
1− γnmn

}
Idn

)
.

Therefore, we get

‖Z`+1 − Z̃`+1‖D−1
γ
≤ max

i∈[n]

{
max(|1− γimi|, |1− γi(Mi + 1/ρi)|)

}
‖Z` − Z̃`‖D−1

γ

= κγ‖Z` − Z̃`‖D−1
γ
. (2.23)

An immediate induction shows, for any ` ≥ 1,

‖Z` − Z̃`‖D−1
γ
≤ κ`−1

γ ‖Z1 − Z̃1‖D−1
γ
. (2.24)

In addition, by (2.22), we have for any i ∈ [n],

Zi1 − Z̃i1 =

(
1− γi

ρi

)
(zi − z̃i) +

γi
ρi

Ai(θ − θ̃)− γi(∇Ui(zi)−∇Ui(z̃i)).

It follows that Z1 − Z̃1 = (Ip −Dγ/ρ −DU,0)(z − z̃) + Dγ/ρD̃
−1/2
0 B0(θ− θ̃). Using the

triangle inequality and Assumption 2.3 gives

‖Z1 − Z̃1‖D−1
γ
≤ (mini∈[n]{γi})−1/2‖(Ip −Dγ/ρ −DU,0)(z − z̃) + (Dγ/

√
ρB0(θ − θ̃)‖

≤ (mini∈[n]{γi})−1/2

[
‖Ip −Dγ/ρ −DU,0‖‖z − z̃‖+ ‖Dγ/

√
ρB0‖‖θ − θ̃‖

]
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≤ (mini∈[n]{γi})−1/2

[
maxi∈[n]{|1− γi(mi + 1/ρi)|, |1− γi(Mi + 1/ρi)|}‖z − z̃‖

+ ‖Dγ/
√
ρB0‖‖θ − θ̃‖

]
≤ (mini∈[n]{γi})−1/2

[
κγ‖z − z̃‖+ ‖Dγ/

√
ρB0‖‖θ − θ̃‖

]
.

Combining (2.24) and the previous inequality and using Lemma 2.11, we get for ` ≥ 1,

‖X` − X̃`‖2 ≤ κ2(`−1)
γ

(
1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2

)
maxi∈[n]{γi}
mini∈[n]{γi}

×
[
κγ‖z − z̃‖+ ‖Dγ/

√
ρB0‖‖θ − θ̃‖

]2

.

The proof is concluded by (2.19).

Specific case of Proposition 2.4

Based on the previous lemmata, we provide in what follows a specific instance of Pro-
position 2.4 in the scenario where maxi∈[n]Ni = 1.

Proposition 2.13. Assume Assumption 2.1-Assumption 2.3 and let γ ∈ (R∗+)n such
that, for any i ∈ [n], γi ≤ 2(mi +Mi + 1/ρi)

−1. Then, Pρ,γ defined in (2.15) admits a
unique stationary distribution Πρ,γ and for any x = (z>, θ>)> with θ ∈ Rd, z ∈ Rp and
any ` ∈ N∗, we have

W 2
2 (δxP

`
ρ,γ ,Πρ,γ) ≤

(
1−min

i∈[n]
{γimi}

)2(`−1)
(

(1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2) ·

maxi∈[n]{γi}
mini∈[n]{γi}

)

×
∫
Rd×Rp

[
(1−min

i∈[n]
{γimi})‖z − z̃‖+ ‖Dγ/

√
ρB0‖‖θ − θ̃‖

]2

dΠρ,γ(x̃),

where B̄0,B0, D̃0, Pρ,γ are defined in (2.11) and (2.12).

Proof For any i ∈ [n], note that the condition 0 < γi ≤ 2(mi +Mi + 1/ρi)
−1 ensures

that κγ = 1−mini∈[n]{γimi} ∈ (0, 1) and the proof follows from Lemma 2.12 combined
with Douc et al. (2018, Lemma 20.3.2, Theorem 20.3.4).

2.B.2 Multiple local LMC iterations

In this section, we consider the general case maxi∈[n]Ni ≥ 1. For this, we intro-
duce the conditional Markov transition kernel defined for any γ = (γ1, . . . , γn), N =
(N1, . . . , Nn), θ ∈ Rd, z = (z1, · · · , zn) ∈ Rd1 × · · · × Rdn , for i ∈ [n] and Bi ∈ B(Rdi),
by

Qρ,γ,N

(
z,B1 × · · · × Bn|θ

)
=

n∏
i=1

RNiρi,γi(zi,Bi|θ), (2.25)
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whereRρi,γi is defined by (2.14). Then, as in the case maxi∈[n]Ni = 1, the Gibbs sampler
presented in Algorithm 2.1 defines a homogeneous Markov chain X>` = (θ>` , Z

>
` )`≥1

where Z>` = ([Z1
` ]>, · · · , [Zn` ]>). Indeed, it is easy to show that for any ` ∈ N and

measurable function f : Rp → R+, E[f(Z`+1)|X`] =
∫
Rp f(z)Qρ,γ,N (Z`, dz|θ`). There-

fore, (X`)`∈N is associated with the Markov kernel defined, for any x> = (θ>, z>) and
A ∈ B(Rd), B ∈ B(Rp), by

Pρ,γ,N (x,A× B) =

∫
B
Qρ,γ,N (z,dz̃|θ)

∫
A

Πρ(dθ̃|z̃), (2.26)

where Πρ(·|z̃) is defined in (2.5). We now define a coupling between δxP
`
ρ,γ,N and

δx̃P
`
ρ,γ,N for any ` ≥ 1 and x, x̃ ∈ Rd × Rp. Let (ξ`)`≥1 be a sequence of i.i.d. d-

dimensional standard Gaussian random variables independent of the family of inde-
pendent random variables {(ηi`)`≥1 : i ∈ [n]} where for any i ∈ [n] and ` ≥ 1, ηi` is a
di-dimensional standard Gaussian random variable. Define by induction the synchron-
ous coupling (θ`, Z`)`≥0, (θ̃`, Z̃`)`≥0, for any i ∈ [n] starting from (θ0, Z0) = x = (θ, z),
(θ̃0, Z̃0) = x̃ = (θ̃, z̃) and for any ` ≥ 0 by

Z̃i`+1 = Ỹ
(i,`)
Ni

, θ̃`+1 = B̄−1
0 B>0 D̃

1/2
0 Z̃`+1 + B̄

−1/2
0 ξ`+1,

Zi`+1 = Y
(i,`)
Ni

, θ`+1 = B̄−1
0 B>0 D̃

1/2
0 Z`+1 + B̄

−1/2
0 ξ`+1,

(2.27)

where B̄0,B0, D̃0 are given by (2.11)-(2.12) and Ỹ (i,`)
0 = Z̃i`, Y

(i,`)
0 = Zi`, and for any

k ∈ N
Ỹ

(i,`)
k+1 = Ỹ

(i,`)
k − γi∇Vi(Ỹ (i,`)

k ) + (γi/ρi)Aiθ̃` +
√

2γiη
(i,`)
k+1,

Y
(i,`)
k+1 = Y

(i,`)
k − γi∇Vi(Y (i,`)

k ) + (γi/ρi)Aiθ` +
√

2γiη
(i,`)
k+1,

(2.28)

where, for any zi ∈ Rdi , Vi is defined by

Vi(zi) = Ui(zi) + (2ρi)
−1
∥∥zi∥∥2

. (2.29)

For any `, k ∈ N consider the p× p matrices defined by

H
(`)
U,k = diag

(
γ1

∫ 1

0
∇2U1((1− s)Y (1,`)

k + sỸ
(1,`)
k ) ds,

. . . , γn

∫ 1

0
∇2Un((1− s)Y (n,`)

k + sỸ
(n,`)
k ) ds

)
,

J(k) = diag
(
1[N1](k + 1) · Id1 , · · · ,1[Nn](k + 1) · Idn

)
, (2.30)

C
(`)
k = J(k)(Dγ/ρ + H

(`)
U,k), (2.31)

M
(`)
k+1 = (Ip −C

(`)
0 )−1 . . . (Ip −C

(`)
k )−1, with M

(`)
0 = Ip. (2.32)

Under Assumption 2.3, we have ‖C(`)
k ‖ ≤ maxi∈[n]{γi(Mi + 1/ρi)}, thus if we suppose

that for any i ∈ [n], 0 < γi < (Mi + 1/ρi)
−1, the matrix (Ip − C

(`)
k ) is invertible. In

addition, for any ` ∈ N, k ≥ maxi∈[n]{Ni},C(`)
k = 0p×p, hence the sequence (M

(`)
k )k∈N

is stationary, and we denote its limit by M
(`)
∞ which is equal to M

(`)
maxi∈[n]{Ni}

.
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Technical lemmata

Similarly to Lemma 2.11, the following result shows that it is enough to consider the
marginal process (Z`, Z̃`)`≥0 to control

W2(δxP
`
ρ,γ,N , δx̃P

`
ρ,γ,N ) ≤ E

[
‖X` − X̃`‖2

]1/2
. (2.33)

Lemma 2.14. Assume Assumption 2.1 and let N ∈ (N?)n,γ ∈ (R∗+)n. Then, for any
` ∈ N, the random variables X` = (θ>` , Z

>
` )>, X̃` = (θ̃>` , Z̃

>
` )> defined in (2.27) satisfy

‖X̃`+1 −X`+1‖2 ≤ (1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2)‖Z̃`+1 − Z`+1‖2,

where B̄0,B0, D̃0 are defined in (2.11)-(2.12).

Proof The proof is similar to the proof of Lemma 2.11 and is omitted.

To ease notation, for any i ∈ [n], we consider all along this section the quantities

m̃i = mi + 1/ρi, M̃i = Mi + 1/ρi. (2.34)

The following lemma provides an explicit expression for ‖Z̃`+1 − Z`+1‖ with respect to
‖Z̃` − Z`‖.

Lemma 2.15. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < M̃−1
i . Then, for any ` ≥ 1, we have

‖Z̃`+1 − Z`+1‖D−1
Nγ
≤
∥∥∥∥[M(`)

∞ ]−1 +
∞∑
k=0

[M(`)
∞ ]−1M

(`)
k+1J(k)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

∥∥∥∥
× ‖Z̃` − Z`‖D−1

Nγ
, (2.35)

where (M
(`)
k )k∈N is defined in (2.32), (Z̃k, Zk)k∈N in (2.27), Nγ = (γ1N1, . . . , γnNn)

and γ/ρ = (γ1/ρ1, . . . , γn/ρn).

Proof Let ` ≥ 1. By (2.28), for any i ∈ [n], k ∈ N, we obtain

Ỹ
(i,`)
k+1 − Y

(i,`)
k+1 =

(
Idi − γi

∫ 1

0
∇2Vi((1− s)Y (i,`)

k + sỸ
(i,`)
k ) ds

)
(Ỹ

(i,`)
k − Y (i,`)

k )

+ (γi/ρi)Ai(θ̃` − θ`).

Consider the process ((Ỹ
(`)
k ,Y

(`)
k ) = {Ỹ(i,`)

k ,Y
(i,`)
k }ni=1)k∈N with values in Rp×Rp defined

for any i ∈ [n], k ≥ 0, by

Ỹ
(i,`)
k = Ỹ

(i,`)
min(k,Ni)

, Y
(i,`)
k = Y

(i,`)
min(k,Ni)

. (2.36)

By (2.27), we have Ai(θ̃` − θ`) = AiB̄
−1
0 B>0 D̃

1/2
0 (Z̃` − Z`). Since

B>0 = [A>1 /ρ
1/2
1 · · ·A>n /ρ1/2

n ]
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and P0 = B0B̄
−1
0 B>0 is the orthogonal projection matrix defined in (2.12), it follows

that

Ỹ
(`)
k+1 −Y

(`)
k+1 =

(
Ip −C

(`)
k

)
(Ỹ

(`)
k −Y

(`)
k ) + J(k)Dγ/

√
ρP0D̃

1/2
0 (Ỹ

(`)
0 −Y

(`)
0 ). (2.37)

Since DNγ commutes with C
(`)
k and J(k), multiplying (2.37) by M

(`)
k+1D

−1/2
Nγ , yields

M
(`)
k+1D

−1/2
Nγ (Ỹ

(`)
k+1 −Y

(`)
k+1) = M

(`)
k D

−1/2
Nγ (Ỹ

(`)
k −Y

(`)
k )

+ M
(`)
k+1J(k)D

−1/2
N D

1/2
γ/ρP0D̃

1/2
0 (Ỹ

(`)
0 −Y

(`)
0 ). (2.38)

By definition of the processes in (2.27)-(2.28) and (2.36), we have for k ≥ maxi∈[n]{Ni},
(Ỹ

(`)
k ,Y

(`)
k ) = (Z̃`+1, Z`+1) and J(k) = 0p×p. Therefore, summing the previous equality

(2.38) yields

M
(`)
∞D

−1/2
Nγ (Z̃`+1 − Z`+1) =

[
M

(`)
0 +

∑∞
k=0 M

(`)
k+1J(k)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

]
×D

−1/2
Nγ (Ỹ

(`)
0 −Y

(`)
0 ).

Multiplying this last equality by [M
(`)
∞ ]−1 and applying the norm ‖ · ‖D−1

Nγ
concludes

the proof.

The three following lemmata aim at providing an explicit upper bound on (2.35). To
this end, for `, k ∈ N and i ∈ [n], consider C

(i,`)
k corresponding to the i-th diagonal

block of C
(`)
k defined in (2.31), i.e.

C
(i,`)
k = 1[Ni](k+1)γi

{
ρ−1
i Idi +

∫ 1

0
∇2Ui((1− s)Y (i,`)

k + sỸ
(i,`)
k ) ds

}
∈ Rdi×di , (2.39)

where, for any ` ∈ N and i ∈ [n], (Y
(i,`)
k , Ỹ

(i,`)
k )k∈N is defined in (2.28). Thus, using

the definition (2.32) of M
(`)
k , we can write [M

(`)
∞ ]−1M

(`)
k as a block-diagonal matrix

diag(([M
(`)
∞ ]−1M

(`)
k )1, . . . , ([M

(`)
∞ ]−1M

(`)
k )n) where for any i ∈ [n], ([M

(`)
∞ ]−1M

(`)
k )i =∏Ni−1

l=k (Idi −C
(i,`)
l ) ∈ Rdi×di .

Lemma 2.16. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (R∗+)n, γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < M̃−1
i . Then, for any i ∈ [n], ` ∈ N and k ∈ [Ni], we

have

‖([M(`)
∞ ]−1M

(`)
k )i − Idi −

∑∞
l=k C

(i,`)
l ‖ ≤ exp{(Ni − k)γiM̃i} − 1− (Ni − k)γiM̃i,

where M
(`)
k , M̃i are defined in (2.32), (2.34) respectively, and M

(`)
∞ is the limit of the

stationnary sequence (M
(`)
k )k∈N.

Proof Let ` ∈ N, i ∈ [n] and k ∈ [Ni]. The approximation error between
∏∞
l=k(Idi −

C
(i,`)
l ) and its linear approximation can be upper bounded as∥∥∥∥∥
∞∏
l=k

(Idi −C
(i,`)
l )− Idi −

∞∑
l=k

C
(i,`)
l

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
m=2

(−1)m
∑

k≤l1<···<lm

C
(i,`)
l1
· · ·C(i,`)

lm

∥∥∥∥∥
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≤
∞∑
m=2

∑
k≤l1<···<lm

‖C(i,`)
l1
‖ · · · ‖C(i,`)

lm
‖ =

∞∏
l=k

(1 + ‖C(i,`)
l ‖)− 1−

∑
l≥k
‖C(i,`)

l ‖

≤ exp

( ∞∑
l=k

‖C(i,`)
l ‖

)
− 1−

∞∑
l=k

‖C(i,`)
l ‖,

where the products and the sums are well-defined since for any l ≥ Ni, we have C
(i,`)
l =

0di . Finally, the proof is concluded using that x 7→ exp(x) − 1 − x is increasing on R
and for l ∈ N, ‖C(i,`)

l ‖ ≤ γiM̃i1[Ni](l + 1) from Assumption 2.3-(i).

For any N = (N1, . . . , Nn) ∈ (N?)n,γ = (γ1, . . . , γn) ∈ (R∗+)n, define the p × p block
matrices

S1 = diag({1−N1γ1M̃1}Id1 , · · · , {1−NnγnM̃n}Idn),

S2 = Ip −
∞∑
l=0

J(l)H
(`)
U,l − (DNDγ/ρ)1/2(Ip −P0)(DNDγ/ρ)1/2, (2.40)

S3 = diag
({

1−N1γ1m1

}
Id1 , . . . ,

{
1−Nnγnmn

}
Idn

)
,

where for any i ∈ [n], M̃i is defined in (2.34) and P0,J(l),H
(`)
U,l are defined in (2.12),

(2.87), (2.88), respectively.

Lemma 2.17. Assume Assumption 2.1-Assumption 2.3. Then, for anyN ∈ (N?)n,γ ∈
(R∗+)n, we have

S1 4 S2 4 S3.

As a result, under the additional assumption, for any i ∈ [n], γiNi ≤ 2/(mi+Mi+1/ρi),
we get ∥∥S2

∥∥ ≤ 1−min
i∈[n]
{Niγimi}. (2.41)

Proof Since P0 is an orthogonal projection defined in (2.12), we have P0 4 Ip, therefore
we easily get

0p×p 4 (DNDγ/ρ)1/2(Ip −P0)(DNDγ/ρ)1/2 4 DNDγ/ρ

and Assumption 2.3-(i)-(ii) imply

diag(N1γ1m1Id1 , · · · , NnγnmnIdn) 4
∞∑
l=0

J(l)H
(`)
U,l 4 diag(N1γ1M1Id1 , · · · , NnγnMnIdn).

Substracting these previous inequalities and adding Ip complete the first part of the
proof. The additional condition, for any i ∈ [n], γiNi ≤ 2/(mi + Mi + 1/ρi), ensures
that S1 is definite-positive. Since S1 � S2, we deduce that S2 is symmetric positive-
definite as well. Then,

∥∥S2

∥∥ is equal to the largest eigenvalue of S2. The inequality
S2 � S3 concludes the second part of the proof.

For any N = (N1, . . . , Nn) ∈ (N?)n,γ = (γ1, . . . , γn) ∈ (R∗+)n, define

rγ,ρ,N = max
i∈[n]
{Niγi/ρi}max

i∈[n]
{NiγiM̃i}

(
1/2 + max

i∈[n]
{NiγiM̃i}

)
+ 4 max

i∈[n]
{NiγiM̃i}2, (2.42)

where M̃i is defined in (2.34).



CHAPTER 2. DG-LMC: DISTRIBUTED GRADIENT LANGEVIN MONTE CARLO57

Lemma 2.18. Assume Assumption 2.1-Assumption 2.3. Let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], Niγi ≤ 2/(mi + M̃i) and γi < M̃−1
i . Then, for any ` ∈ N, we

have

‖[M(`)
∞ ]−1 +

∑∞
k=0[M

(`)
∞ ]−1M

(`)
k+1J(k)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N ‖

≤ 1−min
i∈[n]
{Niγimi}+ rγ,ρ,N ,

where P0, Dγ/ρ, J(k),M
(`)
k and rγ,ρ,N are defined in (2.12), (2.30), (2.32) and (2.42),

respectively.

Proof Let ` ∈ N. For any k ∈ N, define

R
(`)
k =

∞∏
l=k

(Ip −C
(`)
l )− Ip +

∞∑
l=k

C
(`)
l ,

R
(i,`)
k =

∞∏
l=k

(Idi −C
(i,`)
l )− Idi +

∞∑
l=k

C
(i,`)
l , i ∈ [n],

(2.43)

where (C
(i,`)
l )l∈N is defined in (2.39) and remark that the products and the sums are well

defined since for any l ≥ Ni, we have C
(i,`)
l = 0di . By noting, for any k ∈ [maxi∈[n]Ni],

that [M
(`)
∞ ]−1M

(`)
k =

∏∞
l=k(Ip −C

(`)
l ), it follows that [M

(`)
∞ ]−1M

(`)
k = Ip −

∑∞
l=k C

(`)
l +

R
(`)
k . Since for any i ∈ [n], l ≥ Ni, R

(i,`)
k = 0di , thus we have J(k)R

(`)
k+1 = R

(`)
k+1.

In addition, using that M
(`)
0 = Ip, C

(`)
l = J(l)(Dγ/ρ + H

(`)
U,l), DN =

∑∞
k=0 J(k),

DNC
(`)
l = C

(`)
l DN , we get

[M(`)
∞ ]−1 +

∞∑
k=0

[M(`)
∞ ]−1M

(`)
k+1J(k)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

= Ip −
∞∑
l=0

C
(`)
l +

∞∑
k=0

J(k)D
−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

−
∞∑
k=0

∞∑
l=k+1

J(k)D
−1/2
N C

(`)
l D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

+ R
(`)
0 +

∞∑
k=0

R
(`)
k+1J(k)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

= Ip −
∞∑
l=0

J(l)H
(`)
U,l −

( ∞∑
k=0

J(k)

)
D
−1/2
N D

1/2
γ/ρ(Ip −P0)D

1/2
γ/ρD

1/2
N

−
∞∑
l=1

( l−1∑
k=0

J(k)

)
D
−1/2
N C

(`)
l D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

+ R
(`)
0 +

∞∑
k=0

J(k)D
−1/2
N R

(`)
k+1D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

= S2 −
∞∑
l=1

( l−1∑
k=0

J(k)

)
D−1
N C

(`)
l (DNDγ/ρ)1/2P0(Dγ/ρDN )1/2

+ R
(`)
0 +

∞∑
k=1

D−1
N R

(`)
k (DNDγ/ρ)1/2P0(Dγ/ρDN )1/2, (2.44)
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where S2 is defined in (2.40). We now bound the different terms of (2.44) separately.
First, using (2.41), we have ∥∥S2

∥∥ ≤ 1−min
i∈[n]
{Niγimi}.

By recalling R
(`)
0 defined in (2.43), Lemma 2.16 shows that

‖R(`)
0 ‖ ≤ max

i∈[n]
‖R(i,`)

0 ‖ = max
i∈[n]

{∥∥∥∥ ∞∏
l=0

(
Idi −C

(i,`)
l

)
− Idi −

∞∑
l=0

C
(i,`)
l

∥∥∥∥
}

(2.45)

≤ max
i∈[n]

{
exp

( ∞∑
l=0

‖C(i,`)
l ‖

)
− 1−

∞∑
l=0

‖C(i,`)
l ‖

}
(2.46)

≤ max
i∈[n]

{
exp{(Ni − 1)γiM̃i} − 1− (Ni − 1)γiM̃i

}
(2.47)

≤ max
i∈[n]
{((Ni − 1)γiM̃i)

2e(Ni−1)γiM̃i}/2 (2.48)

≤ 4 max
i∈[n]
{(Ni − 1)γiM̃i}2, (2.49)

where, in the penultimate line, we used for any t ≥ 0, that exp(t)− 1− t ≤ t2 exp(t)/2.
Regarding the second term of (2.44), using that P0 is an orthogonal projector, we get∥∥∥∥∥∥

∞∑
l=1

( l−1∑
k=0

J(k)

)
D−1
N C

(`)
l (DNDγ/ρ)1/2P0(DNDγ/ρ)1/2

∥∥∥∥∥∥
≤ max

i∈[n]

(
Niγi
ρi

)∥∥∥∥∥∥
∞∑
l=1

( l−1∑
k=0

J(k)

)
D−1
N C

(`)
l

∥∥∥∥∥∥ .
Combining the following upper bound∥∥∥∥∥∥

∞∑
l=1

( l−1∑
k=0

J(k)

)
D−1
N C

(`)
l

∥∥∥∥∥∥ ≤ max
i∈[n]

{
1

Ni

∞∑
l=1

l‖C(i,`)
l ‖

}

with the fact, for any i ∈ [n], that ‖C(i,`)
l ‖ ≤ γiM̃i1[Ni](l + 1), we get that∥∥∥∥∥∥

∞∑
l=1

( l−1∑
k=0

J(k)

)
D−1
N C

(`)
l (DNDγ/ρ)1/2P0(DNDγ/ρ)1/2

∥∥∥∥∥∥
≤ max

i∈[n]

(
Niγi
ρi

)
max
i∈[n]

{
NiγiM̃i

2

}
. (2.50)

To upper bound the last term of (2.44), we start from the following inequality∥∥∥∥∥∥
∞∑
k=1

D−1
N R

(`)
k

∥∥∥∥∥∥ ≤ max
i∈[n]

{
1

Ni

Ni−1∑
k=1

‖R(i,`)
k ‖

}
.

Lemma 2.16 shows that for any k ∈ [Ni−1] and i ∈ [n], ‖R(i,`)
k ‖ ≤ exp{(Ni−k)γiM̃i}−

1− (Ni − k)γiM̃i. Then, for any i ∈ [n], we have
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1

Ni

Ni−1∑
k=1

‖R(i,`)
k ‖ ≤ 1

Ni

Ni−1∑
k=1

[exp{(Ni − k)γiM̃i} − 1− (Ni − k)γiM̃i]

≤ (NiγiM̃i)
−1

∫ NiγiM̃i

0
(et − 1− t) dt ≤ (NiγiM̃i)

2

12

(
eNiγiM̃i + 1

)
≤ max

i∈[n]
{(NiγiM̃i)

2}, (2.51)

where we have used e2 + 1 ≤ 12. Plugging (2.51), (2.50), (2.49) into (2.41), we get∥∥∥∥[M(`)
∞ ]−1 +

∑
k∈N

[M(`)
∞ ]−1M

(`)
k+1J(k)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

∥∥∥∥
≤ 1−min

i∈[n]
{Niγimi}+ rγ,ρ,N ,

where rγ,ρ,N is defined in (2.42).

Lemma 2.19. Assume Assumption 2.1-Assumption 2.3. Let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], Niγi ≤ 2/(mi + M̃i) and γi < M̃−1
i . Then, for any x =

(z>, θ>)>, x̃ = (z̃>, θ̃>)> ∈ Rp+d, with (θ, θ̃) ∈ (Rd)2, (z, z̃) ∈ (Rp)2 and any ` ≥ 1 we
have

W 2
2 (δx̃P

`
ρ,γ,N , δxP

`
ρ,γ,N ) ≤ (1−min

i∈[n]
{Niγimi}+ rγ,ρ,N )2`−2(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)

×
maxi∈[n]{Niγi}
mini∈[n]{Niγi}

[
‖[M(0)

∞ ]−1‖‖z̃ − z‖+ (
∑

i∈[n] ‖Ai‖/ρi)‖θ̃ − θ‖
]2

,

where B0, B̄0, D̃0, Pρ,γ,N ,M
(0)
∞ , rγ,ρ,N are defined in (2.11), (2.12), (2.26), (2.32), (2.42),

respectively.

Proof Combining Lemma 2.15 and Lemma 2.18, we have for ` ≥ 1,

‖Z̃`+1 − Z`+1‖D−1
Nγ
≤ (1−min

i∈[n]
{Niγimi}+ rγ,ρ,N )‖Z̃` − Z`‖D−1

Nγ
.

Thereby, for any ` ≥ 1, we obtain by induction

‖Z̃` − Z`‖D−1
Nγ
≤ (1−min

i∈[n]
{Niγimi}+ rγ,ρ,N )`−1‖Z̃1 − Z1‖D−1

Nγ
. (2.52)

Define the process ((Ỹ
(0)
k ,Y

(0)
k ) = {Ỹ(i,0)

k ,Y
(i,0)
k }ni=1)k∈N with values in Rp ×Rp defined

for any i ∈ [n], k ≥ 0 by

Ỹ
(i,0)
k = Ỹ

(i,0)
min(k,Ni)

, Y
(i,0)
k = Y

(i,0)
min(k,Ni)

.

By (2.27), it follows that for any i ∈ [n], (Z̃i1, Z
i
1) = (Ỹ

(i,0)
Ni

, Y
(i,0)
Ni

) where (Ỹ
(i,0)

0 , Y
(i,0)

0 ) =

(Z̃i0, Z
i
0). We get by (2.28) for k ≥ 0,

Ỹ
(0)
k+1 −Y

(0)
k+1 =(Ip −C

(0)
k )(Ỹ

(0)
k −Y

(0)
k ) + J(k)Dγ/

√
ρB0(θ̃0 − θ0).

Hence, for k ≥ 0, we obtain
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M
(0)
k+1D

−1/2
Nγ (Ỹ

(0)
k+1 −Y

(0)
k+1)

= M
(0)
k D

−1/2
Nγ (Ỹ

(0)
k −Y

(0)
k ) + M

(0)
k+1J(k)D

−1/2
N D

1/2
γ/ρB0(θ̃0 − θ0).

Summing the previous equality gives

M(0)
∞D

−1/2
Nγ (Ỹ

(0)
N −Y

(0)
N )

= M
(0)
0 D

−1/2
Nγ (Ỹ

(0)
0 −Y

(0)
0 ) +

∞∑
k=0

M
(0)
k+1J(k)D

−1/2
N D

1/2
γ/ρB0(θ̃0 − θ0).

Multiplying by [M
(0)
∞ ]−1 and using the fact that (θ0,Y

(0)
0 ) = (θ, z), (θ̃0, Ỹ

(0)
0 ) = (θ̃, z̃),

we get

D
−1/2
Nγ (Z̃1 − Z1) =[M(0)

∞ ]−1D
−1/2
Nγ (z̃ − z) +

∞∑
k=0

[M(0)
∞ ]−1M

(0)
k+1J(k)D

−1/2
N D

1/2
γ/ρB0(θ̃ − θ).

Plugging the result in (2.52) implies for any ` ≥ 1,

‖Z̃` − Z`‖D−1
Nγ
≤ (1−mini∈[n]{Niγimi}+ rγ,ρ,N )`−1

×

‖[M(0)
∞ ]−1‖‖z̃ − z‖D−1

Nγ
+

∥∥∥∥ ∞∑
k=0

[M(0)
∞ ]−1M

(0)
k+1J(k)D

−1/2
N D

1/2
γ/ρB0

∥∥∥∥‖θ̃ − θ‖
 .

(2.53)

By Assumption 2.3-(ii) and the definitions of C
(0)
l ,M

(0)
k given in (2.31), (2.32), we have

‖Idi −C
(i,0)
l ‖ ≤ 1− γim̃i. As a result and since ([M

(0)
∞ ]−1M

(0)
k )i =

∏k−1
l=0 (Idi −C

(i,0)
l ),

the triangle inequality implies∥∥∥∥∥
∞∑
k=0

[M(0)
∞ ]−1M

(0)
k+1J(k)D

−1/2
N D

1/2
γ/ρB0

∥∥∥∥∥ ≤∑
i∈[n]

√
γi/Ni(‖Ai‖/ρi)

Ni∑
k=1

‖([M(0)
∞ ]−1M

(0)
k )i‖

≤
∑
i∈[n]

√
γi/Ni(‖Ai‖/ρi)

Ni−1∑
k=0

(1− γim̃i)
k

≤
∑
i∈[n]

‖Ai‖
√
Niγi/ρi.

Plugging this result in (2.53), we get

‖Z̃` − Z`‖D−1
Nγ
≤
(

1−min
i∈[n]
{Niγimi}+ rγ,ρ,N

)`−1

×

‖[M(0)
∞ ]−1‖‖z̃ − z‖D−1

Nγ
+
(∑
i∈[n]

‖Ai‖
√
Niγi/ρi

)
‖θ̃ − θ‖

 .
Finally, Lemma 2.14 gives

‖X̃` −X`‖2 ≤ (1−min
i∈[n]
{Niγimi}+ rγ,ρ,N )2`−2(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)
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×
maxi∈[n]{Niγi}
mini∈[n]{Niγi}

[
‖[M(0)

∞ ]−1‖‖z̃ − z‖+

∑
i∈[n]

‖Ai‖/ρi

 ‖θ̃ − θ‖]2

.

Plugging this result into (2.33) concludes the proof.

The following result gives a condition on maxi∈[n]{Niγi} to simplify the contrating term
in Lemma 2.19 to 1−mini∈[n]{Niγimi}/2. To this end, define

A0 = max
i∈[n]
{M̃i}max

i∈[n]
{1/ρi}/2 + 4 max

i∈[n]
{M̃i}2,

A1 = max
i∈[n]
{M̃i}2 max

i∈[n]
{1/ρi}.

Lemma 2.20. Assume Assumption 2.1-Assumption 2.3 and let c ∈ R∗+,N ∈ (N?)n,γ ∈
(R∗+)n such that

min
i∈[n]
{Niγi}/max

i∈[n]
{Niγi} ≥ c,

max
i∈[n]
{Niγi} ≤

cmini∈[n]{mi}
2A0 +

√
2A1cmini∈[n]{mi}

∧ 2

maxi∈[n]{mi +Mi + 1/ρi}
.

(2.54)

Then, 1 − mini∈[n]{Niγimi} + rγ,ρ,N < 1 − mini∈[n]{Niγimi}/2 < 1, where rγ,ρ,N is
defined in (2.42).

Proof The proof is straightforward solving a second order polynomial inequality and
using for any a, b ∈ R∗+, a+ b2

2a+b ≤
√
a2 + b2.

Proof of Proposition 2.4

The next proposition quantifies the convergence of (δxP
`
ρ,γ,N )`∈N to a stationnary dis-

tribution Πρ,γ,N in (P2(Rd),W2). Further, in the case N1 = . . . = Nn we show the
stationnary distribution Πρ,γ,N is equal to Πρ,γ derived in Proposition 2.13.

Proposition 2.21. Assume Assumption 2.1-Assumption 2.3 and let c > 0 and γ =
{γi}ni=1,N ∈ (N?)n such that (2.54) is satisfied, for any i ∈ [n], Niγi < 2/maxi∈[n]{mi+

M̃i} and γi < M̃−1
i . Then, Pρ,γ,N defined in (2.26) admits a unique invariant probab-

ility measure Πρ,γ,N . In addition, for any x = (z>, θ>)> with (θ, z) ∈ Rd × Rp, any
integer ` ≥ 1, we have

W 2
2 (δxP

`
ρ,γ,N ,Πρ,γ) ≤ (1−min

i∈[n]
{Niγimi}/2)2`−2 ·(1+‖B̄−1

0 B>0 D̃
1/2
0 ‖2)

maxi∈[n]{Niγi}
mini∈[n]{Niγi}

×
∫
Rd×Rp

[
‖[M(0)

∞ ]−1‖‖z̃ − z‖+

∑
i∈[n]

‖Ai‖/ρi

 ‖θ̃ − θ‖]2

dΠρ,γ(x̃),

where B0, B̄0,M
(0)
∞ are defined in (2.11), (2.32), respectively. Finally, ifN = N(1, . . . , 1) =

N1n for N ≥ 1, then Πρ,γ,N = Πρ,γ,1n .
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Proof Note that under the conditions on γ andN stated in Proposition 2.21, Lemma 2.20
ensures that 1−mini∈[n]{Niγimi}/2 < 1. Then, from Lemma 2.19 and Douc et al. (2018,
Lemma 20.3.2, Theorem 20.3.4), we deduce the existence and uniquness of a stationary
distribution Πρ,γ,N for Pρ,γ,N . The proof is concluded by using the upper bound given
in Lemma 2.19.

We now show the last statement and assume that N = N1n, for N ≥ 1. By Pro-
position 2.13, we have the existence and uniquness of a stationary distribution Πρ,γ,1n
which is invariant for Pρ,γ defined in (2.15). For ease of notation, we simply denote
Πρ,γ,1n by Πρ,γ We now show that Πρ,γ is also invariant for Pρ,γ,N defined in (2.26).
Using the fact that Pρ,γ defined in (2.15) leaves Πρ,γ invariant from Proposition 2.13
and Fubini’s theorem, we get for any A ∈ B(Rd) and B ∈ B(Rp),

Πρ,γPρ,γ,N (A× B)

=

∫
A×B

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)Pρ,γ,N ((θ̃, z̃), (dθ,dz))

=

∫
A×B

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)Qρ,γ,N (z̃,dz|θ̃)Πρ(dθ|z)

=

∫
A×B

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)

 n∏
i=1

RNiρi,γi(z̃i,dzi|θ̃)

Πρ(dθ|z)

=

∫
A×B

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)

∫
Rp

 n∏
i=1

Rρi,γi(z̃i, dz̃
(1)
i |θ̃)

 n∏
i=1

RNi−1
ρi,γi (z̃

(1)
i ,dzi|θ̃)

Πρ(dθ|z)

=

∫
A×B

∫
Rd×Rp

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)

 n∏
i=1

Rρi,γi(z̃i, dz̃
(1)
i |θ̃)

Πρ(dθ̃(1)|z̃(1)
i )


×

 n∏
i=1

RNi−1
ρi,γi (z̃

(1)
i , dzi|θ̃)

Πρ(dθ|z)

=

∫
A×B

∫
Rd×Rp

Πρ,γ(dθ̃(1),dz̃(1))

 n∏
i=1

RNi−1
ρi,γi (z̃

(1)
i , dzi|θ̃(1))

Πρ(dθ|z).

Using a straightforward induction, we finally get∫
A×B

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)Pρ,γ,N ((θ̃, z̃), (dθ,dz)) =

∫
A×B

Πρ,γ(dθ,dz),

which shows that Pρ,γ,N leaves Πρ,γ invariant. Since this stationary distribution is
unique, we conclude that Πρ,γ,N = Πρ,γ .

We specify our result to the case where we take a specific initial distribution. To define
it, consider

x? = ([θ?]>, [z?]>)>, where θ? = arg min{− log π} and z? = ([A1θ
?]>, · · · , [Anθ

?]>)>.

We define the probability measure

µ?ρ = δz? ⊗Πρ(·|z?).
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Note that sampling from µ?ρ is straightforward and simply consists in setting z0 = z? and
θ0 = B̄−1

0 B>0 D̃
1/2
0 z0 + B̄

−1/2
0 ξ, where ξ is a d-dimensional standard Gaussian random

variable. We now specify our result when using µ?ρ as an initial distribution. Define the
z-marginal under Πρ,γ,N by

πzρ,γ,N =

∫
Rd

Πρ,γ,N (dθ, z), (2.55)

and the transition kernel of the Markov chain {Z`}`≥0, for all z ∈ Rp and B ∈ B(Rp),
by

P zρ,γ,N (z,B) =

∫
Rd
Qρ,γ,N (z,B|θ)Πρ(dθ|z), (2.56)

where Πρ(·|·) and Qρ,γ,N are defined in (2.5) and (2.25), respectively.

Proposition 2.22. Assume Assumption 2.1-Assumption 2.3 and let c > 0 and γ =
{γi}ni=1,N ∈ (N?)n such that (2.54) is satisfied, for any i ∈ [n], Niγi < 2/maxi∈[n]{mi+

M̃i} and γi < M̃−1
i . Then, for any integer ` ≥ 1, we have

W2(µ?ρP
`
ρ,γ,N ,Πρ,γ,N )

≤ 21/2(1−min
i∈[n]
{Niγimi}/2)`−1 · (1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)1/2 max

i∈[n]
{Niγi}1/2

×
{∫

Rd
‖z1 − z?‖2D−1

Nγ
πzρ,γ,N (dz1) +

∫
Rd
‖z1 − z?‖2D−1

Nγ
P zρ,γ,N (z?,dz1)

}1/2

,

where B̄0,B0, D̃0 are defined in (2.11)-(2.12).

Proof Consider for ` ∈ N?, X` = (θ>` , Z
>
` )>, X̃` = (θ̃>` , Z̃

>
` )> defined in (2.27) with

X0 distributed according to µ?ρ and X̃0 distributed according to Πρ,γ,N . Combining
Lemma 2.15, Lemma 2.18 and Lemma 2.20, we have for ` ≥ 1,

‖Z̃`+1 − Z`+1‖D−1
Nγ
≤ (1−min

i∈[n]
{Niγimi}/2)‖Z̃` − Z`‖D−1

Nγ
.

Thereby, for any ` ≥ 1, we obtain by induction

‖Z̃` − Z`‖D−1
Nγ
≤ (1−min

i∈[n]
{Niγimi}/2)n−1‖Z̃1 − Z1‖D−1

Nγ
.

Using ‖Z̃1 − Z1‖2D−1
Nγ

≤ 2‖Z̃1 − z?‖2
D
−1/2
Nγ

+ 2‖Z1 − z?‖2
D
−1/2
Nγ

combined with the defini-

tion of the Wasserstein distance and Lemma 2.14 give

W2(µ?ρP
`
ρ,γ,N ,Πρ,γ) ≤ E

[
‖X̃` −X`‖2

]1/2

≤ (1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2)1/2 max

i∈[n]
{Niγi}1/2E

[
‖Z̃` − Z`‖2

D
−1/2
Nγ

]1/2

≤ 21/2(1−min
i∈[n]
{Niγimi}/2)`−1(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)1/2 max

i∈[n]
{Niγi}1/2

× E

[
‖Z̃1 − z?‖2

D
−1/2
Nγ

+ ‖Z1 − z?‖2
D
−1/2
Nγ

]1/2

. (2.57)
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Since X̃0 is distributed according to the stationnary distribution Πρ,γ,N , X̃1 also and
therefore Z̃1 is distributed according to πzρ,γ,N . Finally, by definition Z1 has distribu-
tion P zρ,γ,N (z?, ·), therefore (2.57) completes the proof.

2.C Proof of Proposition 2.5

The proof of Proposition 3 stands for a generalization of Vono et al. (2022a, Propos-
ition 6) which only considered the specific case ρi = ρ2 for i ∈ [n]. This section is
divided into two parts, the first gathers lemmas which allow us to upper bound the
ξ2-divergence between πρ and π. Then, in the second subsection, we combine these
results to control the Wasserstein distance W2(πρ, π(·|D)) by showing that it is smaller
than χ2(πρ|π(·|D)). For any θ ∈ Rd and ρ ∈ (R∗+)n, define

Uρii (Aiθ) = − log

(∫
zi∈Rd

exp{−Ui(zi)− ‖zi −Aiθ‖2/(2ρi)} dzi/(2πρi)
di/2

)
,

B(θ) =

n∑
i=1

ρi‖∇Ui(Aiθ)‖2/2 (2.58)

B(θ) =

n∑
i=1

{
ρi‖∇Ui(Aiθ)‖2/[2(1 + ρiMi)]− di log(1 + ρiMi)/2

}
and consider

U(θ) =
∑
i∈[n]

Ui(Aiθ), Uρ(θ) =
∑
i∈[n]

Uρii (Aiθ).

2.C.1 Technical lemmata

We start this subsection by Lemma 2.23 which allow us to bound the ratio between the
integrals defined by

∫
Rd exp{−∑i∈[n] U

ρi
i (Aiθ)} and

∫
Rd exp{−∑i∈[n] Ui(Aiθ)} dθ.

Lemma 2.23. Assume Assumption 2.1-Assumption 2.3-(i) and let ρ ∈ (R∗+)n. Then,
we have B(θ) ≤ U(θ) − Uρ(θ), for any θ ∈ Rd. If we assume in addition that for any
i ∈ [n], Ui is convex, we have U(θ)− Uρ(θ) ≤ B(θ), for any θ ∈ Rd.

Proof The proof follows from the same lines as in Vono et al. (2022a, Lemma 14). In
what follows, we give it for the sake of completeness. First, note for any θ ∈ Rd and
i ∈ [n],

exp
{
Ui(Aiθ)− Uρii (Aiθ)

}
=

∫
Rdi

exp
(
Ui(Aiθ)− Ui(zi)− ‖zi −Aiθ‖2/(2ρi)

) dzi

(2πρi)di/2
. (2.59)

Using Assumption 2.3-(i), and a second order Taylor expansion, for any θ ∈ Rd, i ∈
[n], zi ∈ Rdi , we have

Ui(Aiθ)− Ui(zi) ≥ ∇Ui(Aiθ)
>(Aiθ − zi)−Mi‖Aiθ − zi‖2/2.
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Hence, using (2.59), we have for any θ ∈ Rd and i ∈ [n],

exp

(
n∑
i=1

Ui(Aiθ)− Uρii (Aiθ)

)

≥
n∏
i=1

exp

(
ρi

2(1 + ρiMi)

∥∥∥∇Ui(Aiθ)
∥∥∥2
)(

1 + ρiMi

)−di/2 = exp(B(θ)).

Similarly, under the assumption that for any i ∈ [n], Ui is convex, the proof for the
upper bound follows from the same lines using, for any i ∈ [n], θ ∈ Rd and zi ∈ Rdi ,
that

Ui(Aiθ)− Ui(zi) ≤ ∇Ui(Aiθ)
>(Aiθ − zi).

Lemma 2.24. Assume Assumption 2.1-Assumption 2.3. Then, U is mU -strongly con-
vex with

mU = λmin

 n∑
i=1

miA
>
i Ai

 .

Proof Using by Assumption 2.3-(i) that for any i ∈ [n], Ui is twice differentiable and
by Assumption 2.3-(ii) the fact that for any i ∈ [n], Ui is mi-strongly convex, we have
for any θ ∈ Rd

∇2U(θ) =

n∑
i=1

A>i ∇2Ui(Aiθ)Ai �
n∑
i=1

miA
>
i Ai � λmin

(
n∑
i=1

miA
>
i Ai

)
Id = mUId.

For any θ ∈ Rd, define

β(θ) =

(
n∑
i=1

ρi

∥∥∥∥∥∇Ui(Aiθ)

∥∥∥∥∥
2)1/2

. (2.60)

Lemma 2.25. Assume Assumption 2.3-(i) and let ρ ∈ (R∗+)n. Then β is a Lipschitz
function w.r.t. ‖·‖, with Lipschitz constant

Lβ = λmax

(
n∑
i=1

ρiM
2
i A>i Ai

)1/2

. (2.61)

Proof For any θ1, θ2 ∈ Rd, we have using |(∑n
i=1 a

2
i )

1/2 − (
∑n

i=1 b
2
i )

1/2| ≤ (
∑n

i=1(ai −
bi)

2)1/2, that

|β(θ1)− β(θ2)| ≤
(

n∑
i=1

ρi‖∇Ui(Aiθ1)−∇Ui(Aiθ2)‖2
)1/2
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≤
(

n∑
i=1

ρiM
2
i ‖Ai(θ1 − θ2)‖2

)1/2

,

which completes the proof.

Suppose Assumption 2.3-(ii) and for any i ∈ [n], denote θ?i a minimizer of θ 7→ Ui(Aiθ).

Lemma 2.26. Assume Assumption 2.1-Assumption 2.3 and let ρ ∈ (R∗+)n. Then for
any s < mU/(12L2

β), where Lβ is defined in (2.61), we have

log π
[
es{β

2−π[β2]}
]
≤ 8s2L4

β/m
2
U + 4s2{π[β]}2L2

β/mU . (2.62)

In addition,

π(β2) ≤ 2dL2
β/mU + 2

n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2. (2.63)

Proof Using the decomposition

β2(θ)− {π[β]}2 = (β(θ)− π[β])2 + 2π[β](β(θ)− π[β])

and the Cauchy-Schwarz inequality imply, for any s > 0,

π
[
es{β

2−{π[β]}2}
]
≤
{
π[e2s{β−π[β]}2 ]

}1/2
·
{
π[e4sπ[β]{β−π[β]}]

}1/2
. (2.64)

The proof consists in bounding the two terms in the right-hand sided. Since β : Rd → R
is Lβ-Lipschitz by Lemma 2.25, for any 0 ≤ s ≤ mU/(12L2

β), using Vono et al. (2022a,
Lemma 16) and Lemma 2.24 gives setting β̄ = β − π[β], that

π
[
exp{2s(β̄2 − π[β̄2])}

]
≤ exp(16s2L4

β/m
2
U ). (2.65)

In addition, using Bakry et al. (2013, Proposition 5.4.1), Lemma 2.25 and Lemma 2.24,
we get for any s ≥ 0,

π
[
e4sπ[β](β−π[β])

]
≤ e8s2{π[β]}2L2

β/mU .

Plugging this result and (2.65) into (2.64), we get

π
[
es{β

2−{π[β]}2}
]
≤ exp(sπ(β̄2) + 8s2L4

β/m
2
U + 4s2{π[β]}2L2

β/mU ).

The proof of (2.62) follows using π(β̄2) = π(β2)− [π(β)]2 and rearranging terms.

Using the Young inequality, Assumption 2.3-(i),∇Ui(Aiθ
?
i ) = 0, ∇U(θ?) = 0, we have

π(β2) =

∫
Rd

(
n∑
i=1

ρi‖∇Ui(Aiθ)‖2
)
π(θ) dθ

≤ 2

∫
Rd

(
n∑
i=1

ρiM
2
i ‖Ai(θ − θ?)‖2

)
π(θ) dθ + 2

n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2

≤ 2λmax

(
n∑
i=1

ρiM
2
i A>i Ai

)∫
Rd
‖θ − θ?‖2π(θ) dθ + 2

n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2
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≤ 2dL2
β/mU + 2

n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2,

where we have used π[‖θ − θ?‖2] ≤ d/mU by Durmus and Moulines (2019, Proposition
1 (ii)) and Lemma 2.24.

Proposition 2.2 shows that πρ(·) =
∫
Rp Πρ(·, z)dz is well-defined and as such admits a

finite normalizing constant. These two quantities are defined by

Zπρ =

∫
Rd

exp

{
−
∑
i∈[n]

Uρii (Aiθ)

}
dθ, πρ(·) = exp

{
−
∑
i∈[n]

Uρii (Ai·)
}
/Zπρ . (2.66)

Finally, note that the following quantity Zπ is a normalizing constant of π associated
with the potential U , i.e. π = e−U/Zπ,

Zπ =

∫
Rd

exp

{
−
∑
i∈[n]

Ui(Aiθ)

}
dθ. (2.67)

Lemma 2.27. Assume Assumption 2.1-Assumption 2.3 and let ρ ∈ (R∗+)n. Suppose in
addition that 6L2

β ≤ mU where Lβ is given in (2.61). Then, we have

log
(

Zπρ/Zπ

)
≤
{
dL2

β/mU +
n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2
}

(1 + 2L2
β/mU ) + 2L4

β/m
2
U .

Proof From the definitions (2.66) and (2.67), we have Zπρ/Zπ =
∫
Rd π(θ) exp{∑n

i=1 Ui(Aiθ)−
Uρii (Aiθ)} dθ. By Lemma 2.23, we obtain

Zπρ/Zπ ≤
∫
Rd
π(θ) exp(B(θ)) dθ.

Note that B = β2/2 by (2.58)-(2.60), hence using that 6L2
β ≤ mU , Lemma 2.26 applied

with s = 1/2 shows that

log

(∫
Rd
π(θ) exp(B(θ)) dθ

)
≤ π[β2]/2 + 2L4

β/m
2
U + {π[β]}2L2

β/mU .

Using Lemma 2.26-(2.63) and π[β] ≤ π[β2] concludes the proof.

2.C.2 Proof of Proposition 2.5

Based on the technical lemmas derived in Section 2.C.1, we are now ready to bound the
Wasserstein distance of order 2 between π and πρ.

Proof [Proof of Proposition Proposition 2.5] Let ρ ∈ (R∗+)n such that maxi∈[n] ρi =

ρ̄ ≤ σ2
U/12, where σ2

U = ‖A>A‖maxi∈[n]{M2
i }/mU . Then, by definition of Lβ (2.61),

we get
12L2

β ≤ mU . (2.68)
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and Lemma 2.26 can be applied for s = 1 and Lemma 2.27 too. By Lemma 2.24,
U = − log π is mU -strongly convex therefore π satisfies a log-Sobolev inequality with
constant mU (Ledoux, 2001, Theorem 5.2). Finally, Otto and Villani (2000, Theorem
1) shows that π satisfies for any ν ∈ P2(Rd):

W2(ν, π(·|D)) ≤
√

(2/mU )KL(ν|π(·|D)) ≤
√

(2/mU )χ2(ν|π(·|D)), (2.69)

where χ2 is the chi-square divergence and where we have used for the last inequality
that KL(ν|π(·|D)) ≤ χ2(ν|π(·|D)) since for any t > 0, log(t) ≤ t − 1. We now bound
χ2(πρ|π(·|D)). By (2.66) and (2.67), for any θ ∈ Rd, consider the decomposition given
by

πρ(θ)/π(θ)− 1 = (Zπ/Zπρ) exp

(
n∑
i=1

(
Ui(Aiθ)− Uρii (Aiθ)

))
− 1. (2.70)

In the sequel, we will both lower and upper bound (2.70) in order to upper bound
|1 − πρ(θ)/π(θ)|. Using the fact that for all x ∈ R, exp(x) − 1 ≥ x, Lemmas 2.23 and
2.27 yield

πρ(θ)/π(θ)− 1 ≥ log
(

Zπ/Zπρ

)
+

n∑
i=1

(
Ui(Aiθ)− Uρii (Aiθ)

)
(2.71)

≥ −
{
dL2

β/mU +
n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2
}

(1 + 2L2
β/mU )− 2L4

β/m
2
U +B(θ) ≥ −A1,

where

A1 =

{
dL2

β/mU +
n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2
}

(1 + 2L2
β/mU )

+ 2L4
β/m

2
U +

n∑
i=1

(di/2) log(1 + ρiMi),

where we have used in the last inequality that B(θ) ≥ −∑n
i=1(d1/2) log(1 + ρiMi) by

(2.58). In addition, by (2.66) and (2.67) we have

Zπρ/Zπ =

∫
Rd
π(θ) exp{−

n∑
i=1

Uρii (Aiθ)} dθ/

∫
Rd
π(θ) exp{−

n∑
i=1

Ui(Aiθ)} dθ,

which implies by Lemma 2.23 and Jensen inequality

Zπρ/Zπ ≥
∫
Rd
π(θ) exp(B(θ)) dθ ≥ exp(π[B]).

It follows by (2.70) that πρ(θ)/π(θ)−1 ≤ exp(B(θ)− π
(
B
)
)−1. Combining this result

and (2.71), it follows that the Pearson χ2-divergence between π and πρ can be upper
bounded as where

χ2(πρ|π(·|D)) ≤ max(A2
1, A2), A2 =

∫
Rd

(
exp(B(θ)− π

(
B
)
)− 1

)2
π(θ) dθ.



CHAPTER 2. DG-LMC: DISTRIBUTED GRADIENT LANGEVIN MONTE CARLO69

We now provide an explicit bound forA2. First by Jensen inequality, we have π(exp(B)) ≥
exp(π(B)) which implies that exp(−π(B))π[exp(B)] ≥ ∏n

i=1(1 + ρiMi)
di/2 by (2.58).

Therefore, using that B = β2/2 by (2.58)-(2.60) and Lemma 2.26 with s = 1 since
(2.68) holds, we get by (2.58),

A2 =

∫
Rd

(
exp

(
B(θ)− π

(
B
))
− 1
)2
π(θ) dθ

= exp
(
−2π

(
B
))
π
[
exp

(
2B
)]
− 2 exp

(
−π
(
B
))
π
[
exp

(
B
)]

+ 1

≤
n∏
i=1

(1 + ρiMi)
di · exp(−π{

n∑
i=1

(ρi/(1 + ρiMi))‖∇Ui(Ai·)‖2})π
[
exp(β2)

]
− 2

n∏
i=1

(1 + ρiMi)
di/2 + 1

≤
n∏
i=1

(1 + ρiMi)
di · exp(π{

n∑
i=1

(ρ2
iMi/(1 + ρiMi))‖∇Ui(Ai·)‖2})

× exp

(
8L4

β/m
2
U + 4{2dL2

β/mU + 2
n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2}L2
β/mU

)

− 2
n∏
i=1

(1 + ρiMi)
di/2 + 1, (2.72)

where we have used for the last inequality that for θ ∈ Rd, β(θ)2 − ∑n
i=1(ρi/(1 +

ρiMi))‖∇Ui(Aiθ)‖2 =
∑n

i=1(ρ2
iMi/(1 + ρiMi))‖∇Ui(Aiθ)‖2, π[β]2 ≤ π[β2] by the

Cauchy-Schwartz inequality and Lemma 2.26-(2.63). Similarly to the proof of Lemma 2.26-
(2.63), by Assumption 2.3-(i), ∇Ui(Aiθ

?
i ) = 0, ∇U(θ?) = 0, Durmus and Moulines

(2019, Proposition 1 (ii)) and Lemma 2.24, we have

π

 n∑
i=1

(ρ2
iMi/(1 + ρiMi))‖∇Ui(Ai·)‖2

 ≤ π
 n∑
i=1

ρ2
iMi‖∇Ui(Ai·)‖2


≤ 2dλmax

( n∑
i=1

ρ2
iM

3
i A>i Ai

)
/mU + 2

n∑
i=1

ρ2
iM

3
i ‖Ai(θ

? − θ?i )‖2.

Therefore, we get by (2.72)

A2 ≤ A3

=

n∏
i=1

(1 + ρiMi)
di exp

(
2dλmax

( n∑
i=1

ρ2iM
3
i A>i Ai

)
/mU + 2

n∑
i=1

ρ2iM
3
i ‖Ai(θ

? − θ?i )‖2
)

exp

(
8L4

β/m
2
U + 8

[
dL2

β/mU +

n∑
i=1

ρiM
2
i ‖Ai(θ

? − θ?i )‖2
]
L2
β/mU

)
− 2

n∏
i=1

(1 + ρiMi)
di/2 + 1.

(2.73)

It follows by (2.72) and (2.69) that

W2(πρ, π(·|D)) ≤
√

(2/mU ) max(A2
1, A3), (2.74)

where A1 and A3 are given by (2.71) and (2.73) respectively. Using that L2
β = O(ρ̄)

and an expansion of the bound as ρ̄→ 0 completes the proof.
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2.D Proof of Proposition 2.6 and Proposition 2.8

As in Section 2.B, we assume in all this section that ρ ∈ (R∗+)n is fixed. For any
γ = (γ1, . . . , γn) ∈ (R∗+)n, we establish in this section explicit bounds onW2(πρ,γ,N , πρ)
where πρ is given in (2.1) and πρ,γ,N is the marginal distribution defined by

πρ,γ,N (A) = Πρ,γ,N (A× Rp), A ∈ B(Rd),

of the stationary probability measure Πρ,γ,N associated with the Markov chain (Z`, θ`)`≥0

defined in Algorithm 2.1. Note that in the case N = N(1, . . . , 1), this distribution is
independent of N , see Proposition 2.21. To this purpose, we define an “ideal” dynam-
ics from which we cannot sample but which converges geometrically towards Πρ under
appropriate conditions. The corresponding ideal process will play the same role as the
Langevin dynamics for the study of the unadjusted Langevin algorithm (Durmus and
Moulines, 2019). This dynamics is defined as follows. Consider first for any θ ∈ Rd,
i ∈ [n], the stochastic differential equation (SDE) defined by

dỸ i,θ
t = −∇Vi(Ỹ i,θ

t ) dt− ρ−1
i Aiθ +

√
2 dBi

t, (2.75)

where (Bi
t)t≥0 is a di-dimensional Brownian motion and Vi is defined in (2.29). Note

that under Assumption 2.3-(i), this SDE admits a unique strong solution (Revuz and
Yor, 2013, Theorem (2.1) in Chapter IX). Denote for any i ∈ [n], the Markov semigroup
associated to (2.75) by (R̃iρi,t)t≥0 defined for any ỹi0 ∈ Rdi , t ≥ 0 and Bi ∈ B(Rdi) by

R̃iρi,t(ỹ
i
0,Bi|θ) = P(Ỹ

i,θ,ỹi0
t ∈ Bi),

where (Ỹ
i,θ,ỹi0
t )t≥0 is a solution of (2.75) with Ỹ i,θ,ỹi0

0 = ỹi0. For any bounded measurable
function fi : Rdi → R+, Lemma 2.28 shows the measurability of the function (θ, ỹi0) 7→
E[fi(Ỹ

i,θ,ỹi0
t )] on Rd × Rdi and therefore R̃iρi,t is a conditional Markov kernel.

Lemma 2.28. For any bounded measurable function fi : Rdi → R+ and function fi

satisfying Assumption 2.3-(i), the mapping (θ̃0, ỹ
i
0) 7→ E[fi(Ỹ

i,θ̃0,ỹi0
t )] is Borel measur-

able.

Proof Consider the following stochastic differential equationdθ̃t = 0d,

dỸ i
t = −∇Vi(Ỹ i

t ) dt− ρ−1
i Aiθ̃t +

√
2 dBi

t.

Using Revuz and Yor (2013, Theorem (2.4) in Chapter IX), since Ui satisfies Assump-
tion 2.3-(i), there exists a unique solution (X̃ x̃

t )t≥0 = (θ̃t, Ỹ
i
t )t≥0 with initial condition

x̃ = (θ̃>0 , (ỹ
i
0)>)> ∈ Rp. Then, the proof follows from Revuz and Yor (2013, Theorem

(1.9) in Chapter IX) and the fact that Ỹ i
t is the unique solution of (2.75) with θ = θ0.

Define for any θ ∈ Rd, z = (z>1 , · · · , z>n )> ∈ Rp, and for i ∈ [n], Bi ∈ B(Rdi),

Q̃ρ,γ

(
z,B1 × · · · × Bn|θ

)
=

n∏
i=1

R̃iρi,Niγi(zi,Bi|θ),
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and consider the Markov kernel defined, for any x> = (θ>, z>) and A ∈ B(Rd), B ∈
B(Rp), by

P̃ρ,γ(x,A× B) =

∫
B
Q̃ρ,γ(z,dz̃|θ)

∫
A

Πρ(dθ̃|z̃) , (2.76)

where Πρ(·|z̃) is defined in (2.5). Note that Pρ,γ,N can be interpreted as a discretized
version of P̃ρ,γ using the Euler-Maruyama scheme.

In the sequel, we first derive technical lemmata in Section 2.D.1 that are used to prove
both Proposition 2.6 and Proposition 2.8. Based on these lemmata, we then prove each
proposition in a dedicated section, namely Section 2.D.2 and Section 2.D.3.

2.D.1 Synchronous coupling and a first estimate

The main idea to prove Proposition 2.6 and Proposition 2.8 is to define (X`, X̃`)`∈N
such that for any ` ∈ N, (X`, X̃`) is a coupling between δxP

`
ρ,γ,N defined in (2.26) and

δx̃P̃
`
ρ,γ , and satisfies

E
[
‖X` − X̃`‖2

]
≤ c1(x, x̃)e−c2 mini∈[n]{γimi} + c3γ

α,

where c2, c3 > 0 and α ∈ {1, 2} depending if Assumption 2.7 holds or not. Condi-
tioning with respect to (X0, X̃0) with distribution δx ⊗ Πρ, using the definition of the
Wasserstein distance of order 2 and taking n→∞, we obtain

W2(πρ, πρ,γ) ≤W2(Πρ,Πρ,γ) ≤ c̃3γ
α,

where c̃3 > 0. We now provide the rigorous construction of (X`, X̃`)`∈N.

Let {(B(i,`)
t )t≥0 : i ∈ [n], ` ∈ N} be independent random variables such that for any

i ∈ [n], the sequences {(B(i,`)
t )t≥0 : ` ∈ N} are i.i.d. di-dimensional Brownian motions

and let (ξ`)`≥0 be a sequence of i.i.d. standard d-dimensional Gaussian random variables
independent of {(B(i,`)

t )t≥0 : i ∈ [n], ` ∈ N}. Consider the stochastic process (X̃`)`≥0 on
Rd×Rp starting from X̃0 distributed according to Πρ and defined by the recursion: for
` ∈ N, i ∈ [n],

X̃`+1 = (θ̃>`+1, Z̃
>
`+1)>, Z̃i`+1 = Ỹ

(i,`)
Niγi

, θ̃`+1 = B̄−1
0 B>0 D̃

1/2
0 Z̃`+1 + B̄

−1/2
0 ξ`+1, (2.77)

where (Ỹ
(i,`)
t )t≥0, is a solution of (2.75) starting from Z̃i` with parameter θ ← θ`.

Similarly to the process (X`)`∈N defined in Algorithm 2.1, the process (X̃`)`∈N defines a
homogeneous Markov chain. Indeed, it is easy to show that for any ` ∈ N and measurable
function f : Rp → R+, E[f(Z̃`+1)|X̃`] =

∫
Rp f(z̃)Q̃ρ,γ(Z̃`, dz|θ̃`) and therefore (X̃`)`∈N

is associated with (2.76).

Proposition 2.29. Assume Assumption 2.1-Assumption 2.3-(i), and letN ∈ (N?)n,γ ∈
(R∗+)n. Then, the Markov kernel P̃ρ,γ defined in (2.76) admits Πρ as an invariant prob-
ability measure.

Proof By property of the Langevin diffusion defined in (2.75), for all θ0 ∈ Rd, the
Markov kernel Q̃ρ,γ(·|θ0) admits Πρ(·|θ0) as invariant measure, see e.g. Roberts and
Tweedie (1996) or Kent (1978). Thus, for any θ0 ∈ Rd and B ∈ B(Rp), we have∫

B
Πρ(z1|θ0) dz1 =

∫
z0∈Rp

Q̃ρ,γ(z0,B|θ0)Πρ(z0|θ0) dz0. (2.78)
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Denote by πθρ, πzρ the marginals under Πρ: πθρ(A) = Πρ(A× Rp), πzρ(B) = Πρ(Rd × B),
for A ∈ B(Rd) and B ∈ B(Rp), and consider the Markov chain (X̃`)`∈N defined in (2.77).
For any measurable function f : Rd+p → R+, the Fubini-Tonelli theorem gives

E[f(X̃1)] =

∫
Rd+p

∫
Rd+p

f(x1)Πρ(θ1|z1) dθ1Q̃ρ,γ(z0, dz1|θ0)Πρ(θ0, z0) dθ0 dz0

=

∫
Rd

∫
Rp
f(x1)Πρ(θ1|z1)

∫
Rd

[∫
Rp
Q̃ρ,γ(z0,dz1|θ0)Πρ(z0|θ0) dz0

]
πθρ(θ0) dθ0 dθ1

=

∫
Rd

∫
Rp
f(x1)Πρ(θ1|z1)

[∫
θ0∈Rd

Πρ(z1|θ0)πθρ(θ0) dθ0

]
dz1 dθ1 (2.79)

=

∫
Rd

∫
Rp
f(x1)Πρ(θ1|z1)πzρ(z1) dz1dθ1

=

∫
Rd+p

f(x1)Πρ(θ1, z1) dz1dθ1 = E[f(X̃0)],

where we have used (2.78) in (2.79). Therefore, X1 has distribution Πρ and the Markov
kernel P̃ρ,γ admits Πρ as a stationary distribution, which completes the proof.

Define by induction the synchronous coupling (X` = (θ`, Z`))`≥0, (X̃` = (θ̃`, Z̃`))`≥0,
starting from (θ0, Z0) = (θ, z), (θ̃0, Z̃0) distributed according to Πρ, for any i ∈ [n] and
` ≥ 0, as

Z̃i`+1 = Ỹ
(i,`)
Niγi

, θ̃`+1 = B̄−1
0 B>0 D̃

1/2
0 Z̃`+1 + B̄

−1/2
0 ξ`+1, (2.80)

Zi`+1 = Y
(i,`)
Niγi

, θ`+1 = B̄−1
0 B>0 D̃

1/2
0 Z`+1 + B̄

−1/2
0 ξ`+1,

where we consider for any i ∈ [n], k ∈ N, for t ∈ [kγi, (k + 1)γi)

Ỹ
(i,`)
t = Ỹ

(i,`)
kγi
−
∫ t

kγi

∇Vi(Ỹ (i,`)
l ) dl + (t− kγi)(ρi)−1Aiθ̃` + 21/2(B

(i,`)
t −B(i,`)

kγi
),

Y
(i,`)
t = Y

(i,`)
kγi
− (t− kγi)∇Vi(Y (i,`)

kγi
) + (t− kγi)(ρi)−1Aiθ` + 21/2(B

(i,`)
t −B(i,`)

kγi
).

(2.81)
Let G0 = σ(Z0, Z̃0, θ0, θ̃0), for any ` ∈ N?, let

G` = σ{(Z0, Z̃0, θ0, θ̃0), (B
(i,k)
t )t≥0 : i ∈ [n], k ≤ `}, (2.82)

and for any t ≥ 0, let H(`)
t = σ({(B(i,`)

s )s≤t : i ∈ [n]}), and

F (`)
t the σ-field generated by H(`)

t and G`−1. (2.83)

Note that X` and X̃` are distributed according to ΠρP̃
`
ρ and δx̃P

`
ρ,γ,N , respectively.

Hence, by definition of the Wasserstein distance of order 2, it follows since ΠρP̃
`
ρ = Πρ

by Proposition 2.29 that

W2(Πρ, δxP
`
ρ,γ,N ) ≤ E

[
‖X` − X̃`‖2

]1/2
. (2.84)

We start this section by a first estimate on E[‖X`− X̃`‖2]1/2 and some technical results
needed for the proof of Proposition 2.6 and Proposition 2.8. The following result holds
regarding the process (Ỹ

(i,`)
t )t∈R+ defined, for any i ∈ [n] and ` ∈ N, in (2.81).
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Lemma 2.30. Assume Assumption 2.1-Assumption 2.3. For i ∈ [n], ` ∈ N, denote
by zi`,? the unique minimizer of zi ∈ Rdi 7→ Ui(zi) + ‖zi −Aiθ̃`‖/(2ρi). Then, for any
i ∈ [n], k ∈ N and ` ∈ N,

EG`
[
‖Ỹ (i,`)

kγi
− zi`,?‖2

]
≤ di/m̃i, (2.85)

where m̃i is defined in (2.34).

Proof Let ` ∈ N. By Durmus and Moulines (2019, Proposition 1), for i ∈ [n] and
k ∈ N, we have

EF
(`)
kγi‖Ỹ (i,`)

kγi
− zi`,?‖2 ≤ ‖Z̃i` − zi`,?‖2e−2kγim̃i + (di/m̃i)(1− e−2kγim̃i). (2.86)

By (2.81), using Proposition 2.29 we get that X̃` has distribution Πρ, therefore given
θ̃`, Z̃` has distribution Πρ(·|θ̃`). Then, using (2.86), Durmus and Moulines (2019, Pro-
position 1(ii)) combined with Assumption 2.3, and since (Z̃1

` , . . . , Z̃
n
` ) are independent

given θ̃`, we get the stated result.

Lemma 2.31. Assume Assumption 2.1 and let N ∈ (N?)n,γ ∈ (R∗+)n. Then, for any
` ∈ N, the random variable X` = (θ>` , Z

>
` )>, X̃` = (θ̃>` , Z̃

>
` )> defined in (2.80) satisfies

‖X̃`+1 −X`+1‖2 ≤ (1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2)‖Z̃`+1 − Z`+1‖2,

where B̄0,B0, D̃0 are defined in (2.11)-(2.12).

Proof The proof is similar to the proof of Lemma 2.11 and is omitted.

For any k, ` ∈ N, s ∈ R+ consider the p× p matrices defined by

J(k, s) = diag
(
1[N1](k + 1)1[0,γ1](s) · Id1 , · · · ,1[Nn](k + 1)1[0,γn](s) · Idn

)
, (2.87)

H
(`)
U,k = diag

(
γ1

∫ 1

0
∇2U1((1− s)Y (1,`)

kγ1
+ sỸ

(1,`)
kγ1

) ds, (2.88)

. . . , γn

∫ 1

0
∇2Un((1− s)Y (n,`)

kγn
+ sỸ

(n,`)
kγn

) ds

)
,

C
(`)
k = J(k, 0)(Dγ/ρ + H

(`)
U,k), (2.89)

M
(`)
k+1 = (Ip −C

(`)
0 )−1 . . . (Ip −C

(`)
k )−1, with M

(`)
0 = Ip. (2.90)

Similarly to (2.28), for `, k ∈ N and i ∈ [n], consider C
(i,`)
k corresponding to the i-th

diagonal block of C
(`)
k defined in (2.89), i.e.

C
(i,`)
k = 1[Ni](k+1)γi

{
ρ−1
i Idi +

∫ 1

0
∇2Ui((1− s)Y (i,`)

kγi
+ sỸ

(i,`)
kγi

) ds

}
∈ Rdi×di , (2.91)

where, for any ` ∈ N and i ∈ [n], (Y
(i,`)
kγi

, Ỹ
(i,`)
kγi

)k∈N is defined in (2.81).
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Lemma 2.32. Assume Assumption 2.1-Assumption 2.3 and let γ ∈ (R∗+)n such that,
for any i ∈ [n], γi < 1/M̃i. Then, for any `, k ∈ N, the matrix (Ip −C

(`)
k ) is invertible

and in addition, for any i ∈ [n], we have

‖Idi −C
(i,`)
k ‖ ≤ 1− γim̃i,

where C
(i,`)
k is defined in (2.91).

Proof Let i ∈ [n], `, k ∈ N. By Assumption 2.3, we have ‖∇2Ui‖ ≤ Mi which implies
by (2.91) that ‖C(i,`)

k ‖ ≤ γiM̃i. Since γi < 1/M̃i, the matrix Ip−C
(i,`)
k is invertible and

so is Ip−C
(`)
k . In addition, following the same lines as the proof of Lemma 2.17 implies

‖Idi −C
(i,`)
k ‖ ≤ max{|1− γim̃i|, |1− γiM̃i|} = 1− γim̃i.

For any `, k ∈ N, i ∈ [n], if γi ∈ (0, 1/M̃i), Lemma 2.32 shows the invertibility of the
matrices Ip −C

(`)
k . Therefore, M

(`)
∞ is invertible, and we can define

T
(`)
1 = [M(`)

∞ ]−1 +
∞∑
k=0

[M(`)
∞ ]−1M

(`)
k+1J(k, 0)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N , (2.92)

T
(`)
2 =

∞∑
k=0

{
[M(`)
∞ ]−1M

(`)
k+1D

−1/2
Nγ

∫ +∞

0
J(k, l)[∇V (Ỹ

(`)
kγ+l)−∇V (Ỹ

(`)
kγ )] dl

}
. (2.93)

Using these matrices, we have the following result.

Lemma 2.33. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < 1/M̃i. Then, for any ` ≥ 1,

D
−1/2
Nγ (Z̃`+1 − Z`+1) = T

(`)
1 (Z̃` − Z`)− T

(`)
2 ,

where (Z`, Z̃`)`∈N is defined in (2.80) and DNγ = diag(N1γ1Id1 , . . . , NnγnIdn) ∈ Rp×p.

Proof Let i ∈ [n] and ` ≥ 1. Recall that Vi is defined in (2.29) and for z ∈ Rp, denote
V (z) =

∑n
i=1 Vi(zi). For any k ∈ N, we have

∇Vi(Ỹ (i,`)
kγi

)−∇Vi(Y (i,`)
kγi

) =

[∫ 1

0
∇2Vi((1− s)Y (i,`)

kγi
+ sỸ

(i,`)
kγi

) ds

]
(Ỹ

(i,`)
kγi
− Y (i,`)

kγi
).

For k ≥ 0, it follows from (2.81) that

Ỹ
(i,`)

(k+1)γi
− Y (i,`)

(k+1)γi
=

(
Idi − γi

∫ 1

0
∇2Vi((1− s)Y (i,`)

kγi
+ sỸ

(i,`)
kγi

) ds

)
(Ỹ

(i,`)
kγi
− Y (i,`)

kγi
)

−
∫ γi

0

[
∇Vi(Ỹ (i,`)

kγi+l
)−∇Vi(Ỹ (i,`)

kγi
)
]

dl + (γi/ρi)Ai(θ̃` − θ`).

Consider the process (Ỹ
(`)
t ,Y

(`)
t )t∈R+ valued in Rp × Rp and defined for any t ≥ 0 by

Ỹ
(`)
t = Ỹ

(`)
min(t,Niγi)

, Y
(`)
t = Y

(`)
min(t,Niγi)

. (2.94)

The process (2.94) is continuous with respect to t and defined so that its component
(Ỹ

(i,`)
t ,Y

(i,`)
t ) equals (Ỹ i

t , Y
i
t ) for t ≤ Niγi and is constant for t > Niγi. For l ≥ 0, we

write (Ỹ
(`)
kγ+l,Y

(`)
kγ+l) = (Ỹ

(i,`)
kγi+l

,Y
(i,`)
kγi+l

)i∈[n] ∈ Rp × Rp. Using the matrices defined in
(2.90), for k ∈ N, we obtain
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Ỹ
(`)
(k+1)γ −Y

(`)
(k+1)γ = (Ip−C

(`)
k )(Ỹ

(`)
kγ −Y

(`)
kγ)−

∫∞
0 J(k, l)

[
∇V (Ỹ

(`)
kγ+l)−∇V (Ỹ

(`)
kγ)
]

dl

+ J(k, 0)Dγ/
√
ρP0D̃

1/2
0 (Ỹ

(`)
0 −Y

(`)
0 ), (2.95)

where P0 is defined in (2.12). Recall the matrix M
(`)
k defined in (2.90) with M

(`)
0 = Ip

and for k ≥ 1, M
(`)
k = (Ip − C

(`)
0 )−1 . . . (Ip − C

(`)
k−1)−1. By multiplying (2.95) by

M
(`)
k+1D

−1/2
Nγ , we have

M
(`)
k+1D

−1/2
Nγ (Ỹ

(`)
(k+1)γ −Y

(`)
(k+1)γ) = M

(`)
k D

−1/2
Nγ (Ỹ

(`)
kγ −Y

(`)
kγ)

−M
(`)
k+1D

−1/2
Nγ

∫ ∞
0

J(k, l)
[
∇V (Ỹ

(`)
kγ+l)−∇V (Ỹ

(`)
kγ )
]

dl

+ M
(`)
k+1J(k, 0)D

−1/2
N D

1/2
γ/ρP0D̃

1/2
0 (Ỹ

(`)
0 −Y

(`)
0 ).

By (2.94) and (2.80), we have for t ≥ maxi∈[n]{γiNi}, (Z̃`+1, Z`+1) = (Ỹt,Yt). There-
fore, summing the previous expression over k, we get

M(`)
∞D

−1/2
Nγ (Z̃`+1 − Z`+1) = −

∞∑
k=0

M
(`)
k+1D

−1/2
Nγ

∫ ∞
0

J(k, l)[∇V (Ỹ
(`)
kγ+l)−∇V (Ỹ

(`)
kγ )] dl

+

[
M

(`)
0 +

∞∑
k=0

M
(`)
k+1J(k, 0)D

−1/2
N D

1/2
γ/ρP0D

1/2
γ/ρD

1/2
N

]
D
−1/2
Nγ · (Z̃` − Z`).

By Lemma 2.32, M
(`)
∞ is invertible, and the proof is concluded by multiplying the pre-

vious equality by [M
(`)
∞ ]−1.

Based on Lemma 2.33, we have the following relation between ‖Z̃`+1 − Z`+1‖2 and
‖Z̃` − Z`‖2.

Lemma 2.34. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < 1/M̃i. Then, for any ε > 0 and ` ≥ 1,

‖Z̃`+1 − Z`+1‖2D−1
Nγ
≤ (1 + 2ε)‖T(`)

1 ‖2‖Z̃` − Z`‖2D−1
Nγ

+ (1 + 1/{2ε})‖T(`)
2 ‖2,

where (Z`, Z̃`)`∈N is defined in (2.80) and DNγ = diag(N1γ1Id1 , . . . , NnγnIdn) ∈ Rp×p.

Proof The proof follows from Lemma 2.33 and by using the fact that for a, b ∈ Rp, ε > 0
we have 2〈a, b〉 ≤ 2ε‖a‖2 + (1/{2ε})‖b‖2.

Similarly to Lemma 2.18, we have the following result regarding the contracting term.

Lemma 2.35. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < 1/M̃i and Niγi ≤ 2/(mi + M̃i). Then, for any ` ≥ 0,
we have

‖T(`)
1 ‖ ≤ 1−min

i∈[n]
{Niγimi}+ rγ,ρ,N ,

where T
(`)
1 and rγ,ρ,N are defined in (2.92) and (2.42), respectively.
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Proof The proof is similar to the proof of Lemma 2.18 and therefore is omitted.

In the next lemma, we upper bound the coefficient rγ,ρ,N defined in (2.42). For this,
we explicit a choice of N that we denote N? = (N?

1 (γ1), . . . , N?
n(γn)) ∈ (N?)n defined

for any i ∈ [n], any γi > 0, by

N?
i (γi) =

⌊
mi min

i∈[n]
{mi/M̃i}2/

(
20γiM̃

2
i max
i∈[n]
{mi/M̃i}2

)⌋
, (2.96)

where M̃i = Mi + 1/ρi.

Lemma 2.36. Assume Assumption 2.1-Assumption 2.3 and let γ ∈ (R∗+)n such that,
for any i ∈ [n],

γi ≤
mi

40M̃2
i

mini∈[n]{mi/M̃i}
maxi∈[n]{mi/M̃i}

2

.

Then, for any i ∈ [n], we have N?
i (γi) ∈ N? and

rγ,ρ,N? < min
i∈[n]
{N?

i (γi)γimi}/2,

where rγ,ρ,N? is defined in (2.42).

Proof The assumption on γi combined with the definition (2.96) of N?
i (γi) imply

N?
i (γi) ≥ 2, using in addition mi ≤Mi, maxi∈[n]{N?

i (γi)γiM̃i1N?
i (γi)>1} ≤ 1/20 and

1

20

(
mini∈[n]{mi/M̃i}
maxi∈[n]{mi/M̃i}

)2

≥ N?
i (γi)γiM̃

2
i

mi
>

1

20

(
mini∈[n]{mi/M̃i}
maxi∈[n]{mi/M̃i}

)2

− γiM̃
2
i

mi

≥ 1

40

(
mini∈[n]{mi/M̃i}
maxi∈[n]{mi/M̃i}

)2

. (2.97)

Using the definition (2.42) of rγ,ρ,N? , we have rγ,ρ,N? < 5 maxi∈[n]{N?
i (γi)γiM̃i1N?

i (γi)>1}2.
Thus, plugging (2.97) in the previous inequality gives

rγ,ρ,N? ≤ max
i∈[n]
{mi/M̃i}2 max

i∈[n]

{
N?
i (γi)γiM̃

2
i

mi

}
<

mini∈[n]{mi/M̃i}4

80 maxi∈[n]{mi/M̃i}2
. (2.98)

In addition, (2.97) also shows that

1

40

(
mini∈[n]{mi/M̃i}
maxi∈[n]{mi/M̃i}

)2(
mi

M̃i

)2

≤ N?
i (γi)γimi. (2.99)

Therefore, combining (2.98) and (2.99) completes the proof.
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2.D.2 Proof of Proposition 2.6

We first give the formal statement of Proposition 2.6. For this, consider for any γ ∈
(R∗+)n, i ∈ [n],

N?
i (γi) =

⌊
mi min

i∈[n]
{mi/M̃i}2/

(
20γiM̃

2
i max
i∈[n]
{mi/M̃i}2

)⌋
, (2.100)

and denote N? = (N?
1 (γ1), . . . , N?

n(γn)).

Proposition 2.37. Assume Assumption 2.1-Assumption 2.3 and let γ ∈ (R∗+)n such
that for any i ∈ [n], γi ≤ mi/40M̃2

i (mini∈[n]{mi/M̃i}/maxi∈[n]{mi/M̃i})2. Then, we
have

W 2
2 (Πρ,γ,N? ,Πρ) ≤

4(1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2) maxi∈[n]{mi/M̃

2
i }

5 mini∈[n]{mi/M̃i}2 maxi∈[n]{mi/M̃i}2

×
n∑
i=1

diγimi(1 + γ2
i M̃

2
i /12 + γiM̃

2
i /(2m̃i)),

where B̄0,B0, D̃0 are defined in (2.11)-(2.12), and for any i ∈ [n], m̃i, M̃i are defined
in (2.34).

By Lemma 2.31 and Lemma 2.34, we can note that the proof of Proposition 2.37 boils
down to derive an upper bound on ‖T(`)

2 ‖2 defined in (2.93) for ` ∈ N. The following
lemma provides such a bound.

Lemma 2.38. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < 1/M̃i. Then, for any ` ∈ N, we have

E
[
‖T(`)

2 ‖2
]
≤

n∑
i=1

diNiγ
2
i M̃

2
i

[
1 + γ2

i M̃
2
i /12 + γiM̃

2
i /(2m̃i)

]
,

where m̃i, M̃i,T
(`)
2 are defined in (2.34) and (2.93), respectively.

Proof Let ` ∈ N. Using (2.87), we can write, for any l ∈ R+ and k ∈ N, J(k, l) as a
block-diagonal matrix diag(J1(k, l), . . . ,Jn(k, l)) with Ji(k, l) = 1[Ni](k+1)1[0,γi](s) ·Idi
for any i ∈ [n]. By (2.90) and using for any k ∈ N, that [M

(`)
∞ ]−1M

(`)
k+1 =

∏∞
l=k+1(Idi −

C
(i,`)
l ) is finite by (2.89), we have

‖T(`)
2 ‖2 =

∥∥∥∥ ∞∑
k=0

[M(`)
∞ ]−1M

(`)
k+1D

−1/2
Nγ

∫ ∞
0

J(k, l)
[
∇V (Ỹ

(`)
kγ+l)−∇V (Ỹ

(`)
kγ )
]

dl

∥∥∥∥2

=
n∑
i=1

1

Niγi

∥∥∥∥ ∞∑
k=0

∞∏
l=k+1

(Idi −C
(i,`)
l )

∫ γi

0
Ji(k, 0)

[
∇Vi(Ỹ (i,`)

kγi+l
)−∇Vi(Ỹ (i,`)

kγi
)
]

dl

∥∥∥∥2

.

(2.101)

Since for any i ∈ [n], k ≥ Ni we have Ji(k, 0) = C
(i,`)
l = 0di×di , (2.101) can be rewritten

as

‖T(`)
2 ‖2 =

n∑
i=1

1

Niγi

∥∥∥∥Ni−1∑
k=0

Ni−1∏
l=k+1

(Idi −C
(i,`)
l )

∫ γi

0
Ji(k, 0)

[
∇Vi(Ỹ (i,`)

kγi+l
)−∇Vi(Ỹ (i,`)

kγi
)
]

dl

∥∥∥∥2

,
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and the Cauchy-Schwarz inequality gives

‖T(`)
2 ‖2 ≤

n∑
i=1

1

γi

Ni−1∑
k=0

∥∥∥∥Ni−1∏
l=k+1

(Idi −C
(i,`)
l )

∥∥∥∥2∥∥∥∥∫ γi

0

[
∇Vi(Ỹ (i,`)

kγi+l
)−∇Vi(Ỹ (i,`)

kγi
)

]
dl

∥∥∥∥2
 .

(2.102)
Since, for any i ∈ [n], γiM̃i < 1, we get using Lemma 2.32,∥∥∥∥∥∥

Ni−1∏
l=k+1

(Idi −C
(i,`)
l )

∥∥∥∥∥∥
2

≤ {1− γim̃i}2(Ni−k−1).

By combining (2.102) with the previous result and the Jensen inequality, we have

‖T(`)
2 ‖2 ≤

n∑
i=1

Ni−1∑
k=0

{1− γim̃i}2(Ni−k−1)

∫ γi

0

∥∥∥∥∇Vi(Ỹ (i,`)
kγi+l

)−∇Vi(Ỹ (i,`)
kγi

)

∥∥∥∥2

dl. (2.103)

For i ∈ [n], using Durmus and Moulines (2019, Lemma 21) applied to the potential
V θ
i : yi 7→ Ui(y

i) + ‖yi −Aiθ‖2/(2ρi) yields∫ γi

0
EF

(`)
kγi‖∇Vi(Ỹ (i,`)

kγi+l
)−∇Vi(Ỹ (i,`)

kγi
)‖2 dl =

∫ γi

0
EF

(`)
kγi‖∇V θ̃`

i (Ỹ
(i,`)
kγi+l

)−∇V θ̃`
i (Ỹ

(i,`)
kγi

)‖2 dl

≤ γ2
i M̃

2
i

[
di + diγ

2
i M̃

2
i /12 + (γiM̃

2
i /2)‖Ỹ (i,`)

kγi
− zi`,?‖2

]
,

(2.104)

where zi`,? = arg minzi∈Rdi V
θ̃`
i (zi).

By (2.104), (2.85), Lemma 2.30 and since maxi∈[n] γim̃i < 1, we get

n∑
i=1

Ni−1∑
k=0

{1− γim̃i}2(Ni−k−1)

∫ γi

0
E‖∇Vi(Ỹ (i,`)

kγi+l
)−∇Vi(Ỹ (i,`)

kγi
)‖2 dl

≤
n∑
i=1

diNiγ
2
i M̃

2
i [1 + γ2

i M̃
2
i /12 + γiM̃

2
i /(2m̃i)].

Combining this result with (2.103) completes the proof.

We can now combine Lemma 2.38 and Lemma 2.35 with Lemma 2.34 to get the following
bound.

Lemma 2.39. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < 1/M̃i, Niγi ≤ 2/(mi + M̃i). Suppose in addition
κγ,ρ,N = mini∈[n]{Niγimi} − rγ,ρ,N ∈

(
0, 1
)
, where rγ,ρ,N is defined in (2.42). Then,

for ` ≥ 1, we have

E
[
‖Z̃` − Z`‖2D−1

Nγ

]
≤ (1− κγ,ρ,N + κ2

γ,ρ,N/2)2(`−1)E
[
‖Z̃1 − Z1‖2D−1

Nγ

]
+ 2κ−2

γ,ρ,N

n∑
i=1

diNiγ
2
i M̃

2
i

(
1 +

γ2
i M̃

2
i

12
+
γiM̃

2
i

2m̃i

)
,

where, for any i ∈ [n], M̃i and m̃i are defined in (2.34).
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Proof Taking expectation in Lemma 2.34, we get for any ` ∈ N, ε > 0 that

E
[
‖Z̃`+1 − Z`+1‖2D−1

Nγ

]
≤ (1 + 2ε)E

[
‖T(`)

1 ‖2‖Z̃` − Z`‖2D−1
Nγ

]
+ (1 + 1/{2ε})E

[
‖T(`)

2 ‖2
]
,

where T
(`)
1 and T

(`)
2 are defined in (2.92) and (2.93), respectively. To ease notation,

denote B =
∑n

i=1 diNiγ
2
i M̃

2
i (1 + γ2

i M̃
2
i /12 + γiM̃

2
i /(2m̃i)). Using Lemma 2.38, we

obtain for any ` ∈ N, ε > 0

E
[
‖Z̃`+1 − Z`+1‖2D−1

Nγ

]
≤ (1 + 2ε)E

[
‖T(`)

1 ‖2‖Z̃` − Z`‖2D−1
Nγ

]
+ (1 + 1/{2ε})B. (2.105)

In addition, Lemma 2.35 implies that ‖T(`)
1 ‖2 ≤ (1−κγ,ρ,N )2 almost surely. Therefore,

taking ε = (1− [1− κγ,ρ,N ]2)/(4[1− κγ,ρ,N ]2), (2.105) yields for any ` ≥ 0,

E

[∥∥∥Z̃`+1 − Z`+1

∥∥∥2

D−1
Nγ

]
≤ 1 + (1− κγ,ρ,N )2

2
E

[∥∥∥Z̃` − Z`∥∥∥2

D−1
Nγ

]
+

1 + (1− κγ,ρ,N )2

1− (1− κγ,ρ,N )2
B.

An easy induction implies for any ` ≥ 1,

E
[
‖Z̃` − Z`‖2D−1

Nγ

]
≤
(

1 + (1− κγ,ρ,N )2

2

)`−1

E
[
‖Z̃1 − Z1‖2D−1

Nγ

]
+ 2

1 + (1− κγ,ρ,N )2

(1− (1− κγ,ρ,N )2)2
B. (2.106)

Since κ2
γ,ρ,N = (mini∈[n]{Niγimi}+ rγ,ρ,N )2 and using κ2

γ,ρ,N ≤ 1, we obtain

(1 + (1− κγ,ρ,N )2)/2 = 1− κγ,ρ,N + κ2
γ,ρ,N/2,

(1 + (1− κγ,ρ,N )2)/(1− (1− κγ,ρ,N )2)2 ≤ κ−2
γ,ρ,N .

Combining these inequalities with (2.106) and (2.105) completes the proof.

Lemma 2.40. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N?)n,γ ∈ (R∗+)n

such that, for any i ∈ [n], γi < 1/M̃i, Niγi ≤ 2/(mi+M̃i) and κγ,ρ,N = mini∈[n]{Niγimi}−
rγ,ρ,N ∈

(
0, 1
)
, where rγ,ρ,N is defined in (2.42). Then, for any x ∈ Rd+p and ` ≥ 1,

we have

W 2
2 (δxP

`
ρ,γ,N ,Πρ)

≤ (1− κγ,ρ,N + κ2
γ,ρ,N/2)2(`−1)(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2) max

i∈[n]
{Niγi}E

[
‖Z̃1 − Z1‖2D−1

Nγ

]
+

2(1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2) maxi∈[n]{Niγi}
κ2
γ,ρ,N

n∑
i=1

diNiγ
2
i M̃

2
i [1 + γ2

i M̃
2
i /12 + γiM̃

2
i /(2m̃i)],

where B̄0,B0, D̃0 are defined in (2.11)-(2.12), Pρ,γ,N is defined in (2.26), (Z̃`, Z`)`∈N
is defined in (2.80) and for any i ∈ [n], M̃i, m̃i are defined in (2.34).

Proof By Lemma 2.39, we have the following upper bound for ` ≥ 1,
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E
[
‖Z̃` − Z`‖2D−1

Nγ

]
≤ (1− κγ,ρ,N + κ2

γ,ρ,N/2)2(`−1)E
[
‖Z̃1 − Z1‖2D−1

Nγ

]
+ 2κ−2

γ,ρ,N

n∑
i=1

diNiγ
2
i M̃

2
i

(
1 +

γ2
i M̃

2
i

12
+
γiM̃

2
i

2m̃i

)
.

Using (2.80), Lemma 2.31, combined with the previous inequality, we get for any ` ≥
1,x ∈ Rd+p,

W 2
2 (Πρ, δxP

`
ρ,γ,N ) ≤ (1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)E

[
‖Z̃` − Z`‖2

]
≤ (1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2) max

i∈[n]
{Niγi}E

[
‖Z̃` − Z`‖2D−1

Nγ

]
≤ (1− κγ,ρ,N + κ2

γ,ρ,N/2)2(`−1)(1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2) max

i∈[n]
{Niγi}E

[
‖Z̃1 − Z1‖2D−1

Nγ

]
+

2(1 + ‖B̄−1
0 B>0 D̃

1/2
0 ‖2) maxi∈[n]{Niγi}
κ2
γ,ρ,N

n∑
i=1

diNiγ
2
i M̃

2
i

(
1 +

γ2
i M̃

2
i

12
+
γiM̃

2
i

2m̃i

)
.

Hence, the stated result.

Proof of Proposition 2.6/Proposition 2.37. Proof Since for any i ∈ [n], we
know that

γi ≤ mi/40M̃2
i (min
i∈[n]
{mi/M̃i}/max

i∈[n]
{mi/M̃i})2,

setting
N?
i (γi) =

⌊
mi min

i∈[n]
{mi/M̃i}2/

(
20γiM̃

2
i max
i∈[n]
{mi/M̃i}2

)⌋
implies κγ,ρ,N? ∈ (0, 1) by Lemma 2.36. Thereby, letting n tend towards infinity in
Lemma 2.40 and using Proposition 2.21 conclude the proof.

2.D.3 Proof of Proposition 2.8

We first give the formal statement of Proposition 2.8.

Proposition 2.41. Assume Assumption 2.1-Assumption 2.3-Assumption 2.7 and let
ρ ∈ (R∗+)n,γ ∈ (R∗+)n such that for any i ∈ [n],

γi ≤ mi/(40M̃2
i )(min

i∈[n]
{mi/M̃i}/max

i∈[n]
{mi/M̃i})2.

Then, we have

W 2
2 (Πρ,γ,N? ,Πρ) ≤ 4(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)

maxi∈[n]{mi/M̃
2
i }

mini∈[n]{mi/M̃i}2
R?(γ),

where setting fi = mi/(20M̃i),

R?(γ) =
n∑
i=1

diγ2
i M̃

2
i +

diγ
2
i fi

M̃i

(
diL

2
i +

M̃4
i

m̃i

)
+ diγiM̃if

3
i (1 + fi + f2i )

 ,
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B̄0,B0, D̃0 are defined in (2.11)-(2.12), and for any i ∈ [n], m̃i, M̃i are defined in
(2.34).

We provide the proof of Proposition 2.8 in what follows. Similarly to Lemma 2.34 for
the proof of Proposition 2.6, we derive an explicit relation between ‖Z̃`+1 − Z`+1‖ and
‖Z̃` − Z`‖.

Lemma 2.42. Assume Assumption 2.1-Assumption 2.3-Assumption 2.7 and let N ∈
(N?)n,γ ∈ (R∗+)n such that for any i ∈ [n], Niγi ≤ 2/(mi + M̃i) and γi < 1/M̃i. Then,
for ` ≥ 1, we have

E
[
‖Z̃`+1 − Z`+1‖2D−1

Nγ

]1/2

≤
(

1−min
i∈[n]
{Niγimi}+ rγ,ρ,N

)
E
[
‖Z̃` − Z`‖2D−1

Nγ

]1/2
+ R(γ,N)1/2,

where

R(γ,N) =

n∑
i=1

diNiγ
3
i (diL

2
i + M̃4

i /m̃i) +

n∑
i=1

(
diγ

2
i M̃

2
i + diN

3
i γ

4
i M̃

4
i

)
+

n∑
i=1

diN
4
i γ

5
i M̃

5
i (1 +NiγiM̃i), (2.107)

(Z̃`, Z`)`∈N is defined in (2.80), rγ,ρ,N in (2.42) and for any i ∈ [n], m̃i, M̃i are defined
in (2.34).

Proof Let ` ∈ N. For any k ∈ N, recall that M
(`)
k is defined in (2.90) and invertible

by Lemma 2.32. Define

w` = D
−1/2
Nγ (Z̃` − Z`).

Under this notation, the result given in Lemma 2.33 can be rewritten as

w`+1 = T
(`)
1 w` − T

(`)
2 ,

where T
(`)
1 and T

(`)
2 are defined in (2.92) and (2.93), respectively. By the Minkowsky

inequality and using (2.82), we have

EG`
[
‖w`+1‖2

]1/2
≤ EG`

[
‖T(`)

1 w`‖2
]1/2

+ EG`
[
‖T(`)

2 ‖2
]1/2

. (2.108)

Since by Lemma 2.35,

‖T(`)
1 ‖ ≤ 1−min

i∈[n]
{Niγimi}+ rγ,ρ,N , (2.109)

it remains to bound EG` [‖T(`)
2 ‖2] to complete the proof.

For any i ∈ [n], recall the function V θ`
i : Rdi → R defined for any yi ∈ Rdi by V θ`

i (yi) =
Ui(y

i)+‖yi −Aiθ`‖2/(2ρi). Let k ∈ N, using the Itô formula, we have for l ∈ [kγi, (k+
1)γi),
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∇Vi(Ỹ (i,`)
kγi+l

)−∇Vi(Ỹ (i,`)
kγi

) =

∫ kγi+l

kγi

{
∇2V θ`

i (Ỹ (i,`)
u )∇V θ`

i (Ỹu) + ~∆(∇V θ`
i )(Ỹ (i,`)

u )
}

du

+
√

2

∫ kγi+l

kγi

∇2V θ`
i (Ỹ (i,`)

u ) dBi
u. (2.110)

For any i ∈ [n], k ∈ N, define

a
(i,`)
1,k = 1[Ni](k + 1)[M(i,`)

∞ ]−1M
(i,`)
k+1

∫ γi

0

∫ kγi+l

kγi

∇2V θ`
i (Ỹ (i,`)

u )∇V θ`
i (Ỹ (i,`)

u ) dudl,

a
(i,`)
2,k = 1[Ni](k + 1)[M(i,`)

∞ ]−1M
(i,`)
k+1

∫ γi

0

∫ kγi+l

kγi

~∆(∇V θ`
i )(Ỹ (i,`)

u ) dudl,

a
(i,`)
3,k =

√
21[Ni](k + 1)[M(i,`)

∞ ]−1M
(i,`)
k+1

∫ γi

0

∫ kγi+l

kγi

∇2V θ`
i (Ỹ (i,`)

u ) dBi
u dl.

With these notations and by (2.110), we have

‖T (`)
2 ‖2 =

∑
i∈[n]

1

Niγi

∥∥∥∥∑
k∈N
{a(i,`)

1,k + a
(i,`)
2,k + a

(i,`)
3,k }

∥∥∥∥2

≤ E1 + E2 + E3, (2.111)

where for any j ∈ [3], Ej = 3
∑

i∈[n] ‖
∑Ni−1

k=0 a
(i,`)
j,k ‖2/(Niγi). We now bound {Ej}j∈[3].

Upper bound on E1. For any i ∈ [n], k ∈ N, recall that we have
[
M

(i,`)
∞
]−1

M
(i,`)
k+1 =∏∞

l=k+1(Idi + C
(i,`)
l ) where C

(i,`)
l is defined in (2.89). In addition, since we suppose for

any i ∈ [n], that γiM̃i < 1, Lemma 2.32 implies∥∥∥∥Ni−1∏
l=k+1

(Idi −C
(i,`)
l )

∥∥∥∥2

≤
{

1− γim̃i

}2(Ni−k−1)
.

Combining this result with the Cauchy-Schwarz inequality, we obtain

1

Ni

∥∥∥∥∥
Ni−1∑
k=0

a
(i,`)
1,k

∥∥∥∥∥
2

≤
Ni−1∑
k=0

∥∥∥∥∫ γi

0

∫ kγi+l

kγi

∇2V θ`
i (Ỹ (i,`)

u )∇V θ`
i (Ỹ (i,`)

u ) dudl

∥∥∥∥2

. (2.112)

For i ∈ [n], using the definition of zi`,? = arg minyi∈Rdi V
θ`
i (yi) ∈ Rdi , we have∇V θ`

i (zi`,?) =

0di . Therefore, for i ∈ [n], k ∈ N, conditioning with respect to F (`)
kγi

defined in (2.83)
and using the M̃i-Lipschitz property of V θ`

i by Assumption 2.3 gives

EF
(`)
kγi

[
‖∇2V θ`

i (Ỹ (i,`)
u )∇V θ`

i (Ỹ (i,`)
u )‖2

]
≤ M̃2

i E
F(`)
kγi

[
‖∇V θ`

i (Ỹ (i,`)
u )−∇V θ`

i (zi`,?)‖2
]

≤ M̃4
i E
F(`)
kγi

[
‖Ỹ (i,`)

u − zi`,?‖2
]
.

For any i ∈ [n], k ∈ N, combining this result with the Jensen inequality yields

EF
(`)
kγi

∥∥∥∥∥
∫ γi

0

∫ kγi+l

kγi

∇2V θ`
i (Ỹ (i,`)

u )∇V θ`
i (Ỹ (i,`)

u ) dudl

∥∥∥∥∥
2
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≤ γi
∫ γi

0
l

∫ kγi+l

kγi

EF
(`)
kγi

[
‖∇2V θ`

i (Ỹ (i,`)
u )∇V θ`

i (Ỹ (i,`)
u )‖2

]
du dl

≤ γiM̃4
i

∫ γi

0
l

∫ kγi+l

kγi

EF
(`)
kγi

[
‖Ỹ (i,`)

u − zi`,?‖2
]

dudl. (2.113)

By Lemma 2.30, we have for any i ∈ [n], u ∈ R+,

EG`
[
‖Ỹ (i,`)

u − zi`,?‖2
]
≤ di/m̃i.

Injecting this result in (2.113) yields

E

[∫ γi

0
l

∫ kγi+l

kγi

EF
(`)
kγi

[
‖Ỹ (i,`)

u − zi`,?‖2
]

dudl

]
≤ diγ3

i /(3m̃i).

Finally, this inequality, (2.113) and (2.112), we get

E
[
E1

]
≤

n∑
i=1

diNiγ
3
i M̃

4
i /m̃i. (2.114)

Upper bound on E2. Using the Cauchy-Schwarz inequality, we have

1

Ni

∥∥∥∥∥
Ni−1∑
k=0

a
(i,`)
2,k

∥∥∥∥∥
2

≤
Ni−1∑
k=0

∥∥∥∥∫ γi

0

∫ kγi+l

kγi

~∆(∇V θ`
i )(Ỹ (i,`)

u ) dudl

∥∥∥∥2

.

By Assumption 2.7, we have for any zi ∈ Rdi , ‖~∆(∇V θ`
i )(zi)‖2 ≤ d2

iL
2
i . Therefore, we

obtain∥∥∥∥∥
∫ γi

0

∫ kγi+l

kγi

~∆(∇V θ`
i )(Ỹ (i,`)

u ) dudl

∥∥∥∥∥
2

≤ γi
∫ γi

0
l

∫ kγi+l

kγi

‖~∆(∇V θ`
i )(Ỹ (i,`)

u )‖2 dudl

≤ d2
i γ

4
i L

2
i /3.

Thus, we get

E
[
E2

]
≤

n∑
i=1

d2
iNiγ

3
i L

2
i . (2.115)

Upper bound on E3. For any i ∈ [n], k ∈ N, define

∆
(i,`)
3,k =

∫ γi

0

∫ kγi+l

kγi

∇2V θ`
i (Ỹ (i,`)

u ) dBi
u dl.

Using for any i ∈ [n], k ∈ N, [M
(i,`)
∞ ]−1M

(i,`)
k+1 = Idi −

∑∞
l=k+1 C

(i,`)
l + R

(i,`)
k where R

(i,`)
k

is defined in (2.43), we have, for any i ∈ [n], k ∈ N,∥∥∥∥∥
Ni−1∑
k=0

a
(i,`)
3,k

∥∥∥∥∥
2

=

∥∥∥∥∥∥√2

Ni−1∑
k=0

Ni∏
l=k+1

[
Idi −C

(i,`)
l

]
∆

(i,`)
3,k

∥∥∥∥∥∥
2

= 2

Ni−1∑
k1,k2=0

〈R(i,`)
k1

∆
(i,`)
3,k1

,R
(i,`)
k2

∆
(i,`)
3,k2
〉+ 2

Ni−1∑
k1,k2=0

〈∆(i,`)
3,k1

,∆
(i,`)
3,k2
〉
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+ 2

Ni−1∑
k1,k2=0

〈
Ni∑

l=k1+1

C
(i,`)
l ∆

(i,`)
3,k1

,

Ni∑
l=k2+1

C
(i,`)
l ∆

(i,`)
3,k2
〉

− 4

Ni−1∑
k1,k2=0

〈
Ni∑

l=k1+1

C
(i,`)
l ∆

(i,`)
3,k1

,∆
(i,`)
3,k2
〉+ 4

Ni−1∑
k1,k2=0

〈R(i,`)
k1

∆
(i,`)
3,k1

,∆
(i,`)
3,k2
〉

− 4

Ni−1∑
k1,k2=0

〈R(i,`)
k1

∆
(i,`)
3,k1

,

Ni∑
l=k2+1

C
(i,`)
l ∆

(i,`)
3,k2
〉. (2.116)

We now control the quantities which appear in (2.116). First, by Assumption 2.3, for
any i ∈ [n],xi,yi ∈ Rdi , note that we have

‖∇2V θ`
i (xi)yi‖ ≤ M̃i‖yi‖.

By the Jensen inequality and the Itô isometry, for any k ∈ N, we get

EF
(`)
kγi

[
‖∆(i,`)

3,k ‖2
]

= EF
(`)
kγi

[∥∥∥∥∫ γi

0

∫ kγi+l

kγi

∇2V θ`
i (Ỹ (i,`)

u ) dBi
u dl

∥∥∥∥2
]

≤ γiM̃2
i

∫ γi

0
EF

(`)
kγi

[∥∥∥∥∫ kγi+l

kγi

dBi
u

∥∥∥∥2
]

dl = diγ
3
i M̃

2
i /2. (2.117)

In addition, since for i ∈ [n], (
∫ t

0 ∇2V θ`
i (Ỹ

(i,`)
u ) dBi

u)t≥0 is a (F (`)
t )t≥0-martingale, for

(k1, k2) ∈ {0, . . . , Ni − 1}2 such that k1 < k2, we obtain

EG`
[[

∆
(i,`)
3,k1

]>
∆

(i,`)
3,k2

]
= EG`

[
EF

(`)
k2γi

[
∆

(i,`)>
3,k1

∆
(i,`)
3,k2

]]
= 0.

Therefore,
Ni−1∑
k1,k2=0

EG`
[
〈∆(i,`)

3,k1
,∆

(i,`)
3,k2
〉
]

= diNiγ
3
i M̃

2
i /2.

Second, since for any i ∈ [n], l ∈ N,C(i,`)
l ∈ Rdi×di is symmetric positive semi-definite,

we have

Ni−1∑
k1,k2=0

〈
Ni∑

l=k1+1

C
(i,`)
l ∆

(i,`)
3,k1

,∆
(i,`)
3,k2
〉 =

〈
N∑
l=1

Cl


l−1∑
k1=0

∆3,k1 ,
l−1∑
k1=0

∆3,k2

〉
≥ 0.

Third, using for any i ∈ [n], l ∈ N, using ‖C(i,`)
l ‖ ≤ γiM̃i by definition (2.89) and

Assumption 2.3 and combining the Cauchy-Schwarz inequality with (2.117), for any
i ∈ [n], (k1, k2) ∈ {0, . . . , Ni − 1}2, we get

Ni−1∑
k1,k2=0

EG`
[
〈

Ni∑
l=k1+1

C
(i,`)
l ∆

(i,`)
3,k1

,

Ni∑
l=k2+1

C
(i,`)
l ∆

(i,`)
3,k2
〉
]
≤ diN4

i γ
5
i M̃

4
i /8.

Using (2.117) again and Lemma 2.16, for i ∈ [n], we obtain

Ni−1∑
k1,k2=0

EG`
[
〈R(i,`)

k1
∆

(i,`)
3,k1

,R
(i,`)
k2

∆
(i,`)
3,k2
〉
]
≤ (diγ

3
i M̃

2
i /2)

Ni−1∑
k1,k2=0

E
[
‖R(i,`)

k1
‖‖R(i,`)

k2
‖
]
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≤ (diγ
3
i M̃

2
i /2)


Ni−1∑
k=0

(exp[(Ni − k)γiM̃i]− 1− [(Ni − k)γiM̃i])


2

≤ (diγ
3
i M̃

2
i /2)

(M̃iγi)
−1

∫ NiγiM̃i

0
{et − 1− t}dt


2

≤ (eNiγiM̃i + 1)2

288
diN

6
i γ

7
i M̃

6
i .

Similarly, we get Moreover, using the Cauchy-Schwarz inequality, for any i ∈ [n] we get

Ni−1∑
k1,k2=0

E[〈∆(i,`)
k1

,R
(i,`)
k2

∆
(i,`)
k2
〉] ≤

Ni−1∑
k1,k2=0

E
[
‖∆(i,`)

k1
‖‖∆(i,`)

k2
‖‖R(i,`)

k2
‖
]

≤ diNiγ
3
i M̃

2
i

24
(eNiγiM̃i + 1)N3

i γ
2
i M̃

2
i

≤ diN4
i γ

5
i M̃

4
i

eNiγiM̃i + 1

24
.

In addition, for any i ∈ [n], we have also

Ni−1∑
k1,k2=0

E

〈R(i,`)
k1

∆
(i,`)
3,k1

,

Ni∑
l=k2+1

C
(i,`)
l ∆

(i,`)
3,k2
〉

 ≤ diN5
i γ

6
i M̃

5
i

eNiγiM̃i + 1

24
.

For any i ∈ [n], k ∈ N, regrouping the previous results and using that NiγiM̃i ≤ 2 give

E[E3] ≤
n∑
i=1

{diNiγ
2
i M̃

2
i + diN

3
i γ

4
i M̃

4
i }+

n∑
i=1

diN
4
i γ

5
i M̃

5
i (1 +NiγiM̃i). (2.118)

Combination of our previous results. Injecting the three upper bounds (2.114),
(2.115), (2.118) in (2.111), we get

E
[
‖T (`)

2 ‖2
]
≤

n∑
i=1

diNiγ
3
i (diL

2
i + M̃4

i /m̃i) +
n∑
i=1

{diγ2
i M̃

2
i + diN

3
i γ

4
i M̃

4
i }

+
n∑
i=1

diN
4
i γ

5
i M̃

5
i (1 +NiγiM̃i). (2.119)

Using the recursion defined in (2.108), and combining the upper bounds derived in
(2.109) and (2.119) completes the proof.

Lemma 2.43. Assume Assumption 2.1-Assumption 2.3-Assumption 2.7 and let N ∈
(N?)n,γ ∈ (R∗+)n such that for any i ∈ [n], Niγi ≤ 2/(mi + M̃i), γi < 1/M̃i and
κγ,ρ,N = mini∈[n]{Niγimi} − rγ,ρ,N ∈

(
0, 1
)
, where rγ,ρ,N is defined in (2.42). Then,

for ` ≥ 1, we have

E
[
‖Z̃`+1 − Z`+1‖2D−1

Nγ

]1/2
≤ (1−κγ,ρ,N )`−1E

[
‖Z̃1 − Z1‖2D−1

Nγ

]1/2
+{κγ,ρ,N}−1R(γ,N),

where R(γ,N) is given in (2.107).
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Proof The proof follows from Lemma 2.42 combined with a straightforward induction.

Proof of Proposition 2.8/Proposition 2.41. Proof [Proof of Proposition 2.8/Pro-
position 2.41.] By Proposition 2.21 and Lemma 2.36, Pρ,γ,N? converges in W2 to
Πρ,γ,N? . Therefore, using (2.84), Lemma 2.31 and Lemma 2.43 and taking ` → +∞,
we obtain

W 2
2 (Πρ,γ,N? ,Πρ) ≤ 4(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)

maxi∈[n]{N?
i (γi)γi}

mini∈[n]{N?
i (γi)γimi}

R(γ,N?), (2.120)

where N? is defined in (2.100). By definition of N?
i (γi), we have γiM̃iN

?
i (γi) ≤ fi =

mi/(20M̃i) which completes the proof upon using it in (2.120).

2.E Explicit mixing times

This section aims at providing mixing times for DG-LMC with explicit dependencies w.r.t.
the dimension d and the prescribed precision ε. We specify our result to the case where
for any i ∈ [n], mi = m, Mi = M , ρi = ρ, γi = γ, Ni = N and for the specific initial
distribution

µ?ρ = δz? ⊗Πρ(·|z?),
where

x? = ([θ?]>, [z?]>)>, where θ? = arg min{− log π} and z? = ([A1θ
?]>, · · · , [Anθ

?]>)>.

Note that sampling from µ?ρ is straightforward and simply consists in setting z0 =

z? and θ0 = B̄−1
0 B>0 D̃

1/2
0 z0 + B̄

−1/2
0 ξ, where ξ is a d-dimensional standard Gaussian

random variable. Starting from this initialization, we consider the marginal law of θ`
for ` ≥ 1 and denote it Γ`x? . By Proposition 2.21, since for any i ∈ [n], Ni = N ,
the stationary distribution associated to Pρ,γ,N is Πρ,γ = Πρ,γ,1n . We build upon the
natural decomposition of the bias:

W2(Γ`x? , π(·|D)) ≤W2(µ?ρP
`
ρ,γ,N ,Πρ,γ) +W2(Πρ,γ ,Πρ) +W2(πρ, π(·|D)),

where Πρ,γ , Πρ and πρ are defined in Proposition 2.4, (2.2) and (2.3), respectively.
The following subsections focus on deriving conditions on `ε, γε, Nε and ρε to satisfy
W2(Γ`εx? , π(·|D)) ≤ ε, where ε > 0.

2.E.1 Lower bound on the number of iterations `ε

In this section, we derive a lower bound on `ε such that W2(µ?ρP
`ε
ρ,γ,N ,Πρ,γ) ≤ ε/3

following the result provided in Proposition 2.22. Recall that we define the z-marginal
under Πρ,γ by

πzρ,γ =

∫
Rd

Πρ,γ(θ, z) dθ,
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and the transition kernel of the Markov chain {Z`}`≥0, for all z ∈ Rp and B ∈ B(Rp),
by

P zρ,γ,N (z,B) =

∫
Rd
Qρ,γ,N (z,B|θ)Πρ(θ|z) dθ,

where Πρ(·|z) and Qρ,γ,N are defined in (2.5) and (2.25), respectively. In the case
N = 1n, we simply denote P zρ,γ,N by P zρ,γ . We need to bound in Proposition 2.22 the
factor {∫

Rd
‖z1 − z?‖2D−1

Nγ
πzρ,γ(dz1) +

∫
Rd
‖z1 − z?‖2D−1

Nγ
P zρ,γ,N (z?,dz1)

}1/2

.

Our next results provide such bounds.

Lemma 2.44. Assume Assumption 2.1. Then, the transition kernel P zρ,γ leaves πzρ,γ
invariant, that is πzρ,γP zρ,γ = πzρ,γ , where πzρ,γ is defined by (2.55).

Proof We have for any B ∈ B(Rp)∫
B
πzρ,γ(dz) =

∫
B

∫
Rd

Πρ,γ(dθ,dz) =

∫
B
πzρ,γ(dz)

∫
Rd

Πρ,γ(dθ|z).

Therefore, using the fact that Pρ,γ leaves Πρ,γ invariant from Proposition 2.13 and
Fubini’s theorem, we get∫

B
πzρ,γ(dz) =

∫
B

∫
Rd

Πρ,γ(dθ,dz) =

∫
B

∫
Rd

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)Pρ,γ((θ̃, z̃), (dθ,dz))

=

∫
B

∫
Rd

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)Qρ,γ(z̃,dz|θ̃)Πρ(θ|z) dθ

=

∫
B

∫
Rd×Rp

Πρ,γ(dθ̃,dz̃)Qρ,γ(z̃, dz|θ̃)
∫
Rd

Πρ(θ|z) dθ

=

∫
Rd
πzρ,γ(dz̃)P zρ,γ(z̃,B).

For any i ∈ [n], let θ?i a minimizer of θ 7→ Ui(Aiθ), and define

u? = ([A1(θ? − θ?1)]>, · · · , [An(θ? − θ?n)]>)>

Lemma 2.45. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N∗)n,γ,ρ ∈
(R∗+)n such that, for any i ∈ [n], γi ≤ 2/(mi+Mi+1/ρi) and denote z? = ([A1θ

?]>, · · · , [Anθ
?]>)>.

Then, for any z ∈ Rp and ε > 0,∫
Rp
‖z̃ − z?‖2

D−1
Nγ
P zρ,γ(z, dz̃) ≤ min

i∈[n]
{Ni}−1

[
κ2
γ(1 + 2ε)‖z − z?‖2

D−1
γ

+ (1 + 1/(2ε)) max
i∈[n]
{γiM2

i }‖u?‖2 + Tr(Dγ/ρP0) + 2
n∑
i=1

di

]
,

where the transition kernel P zρ,γ is defined in (2.56) with N = 1n.
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Proof Let γi ≤ 2/(mi +Mi + 1/ρi) for any i ∈ [n], and ξ be a d-dimensional Gaussian
random variable independent of {ηi : i ∈ [n]} where for any i ∈ [n], ηi is a di-dimensional
Gaussian random variable. Take z ∈ Rp and let Z be the random variable distributed
according to δzP

z
ρ,γ , and defined by

θ = B̄−1
0 B>0 D̃

1/2
0 z + B̄

−1/2
0 ξ,

and for any i ∈ [n],

Zi =
(

1− γi/ρi
)
zi − γi∇Ui(zi) +

γi
ρi

Aiθ +
√

2γiη
i

=
(

1− γi/ρi
)
zi − γi∇Ui(zi) +

γi
ρi

AiB̄
−1
0 B>0 D̃

1/2
0 z +

γi
ρi

AiB̄
−1/2
0 ξ +

√
2γiη

i

=
(

1− γi/ρi
)
zi − γi[∇Ui(zi)−∇Ui(Aiθ

?)]− γi[∇Ui(Aiθ
?)−∇Ui(Aiθ

?
i )]

+
γi
ρi

AiB̄
−1
0 B>0 D̃

1/2
0 z +

γi
ρi

AiB̄
−1/2
0 ξ +

√
2γiη

i.

Let

D?
U = diag

(
γ1

∫ 1

0

∇2U1(z1 + t(A1θ
? − z1)) dt, · · · , γn

∫ 1

0

∇2Un(zn + t(Anθ
? − zn)) dt

)
,

D̃?
U = diag

(
γ1

∫ 1

0

∇2U1(A1θ
? + t(A1θ

?
1 −A1θ

?)) dt, · · · , γn
∫ 1

0

∇2Un(Anθ
? + t(Anθ

?
n −Anθ

?)) dt

)
.

Since P0D
−1/2
ρ z? = D

−1/2
ρ z?, it follows that

Z − z? =

[
Ip −D?

U −D
1/2
γ D

1/2
γ/ρ(Ip −P0)D

−1/2
ρ

]
(z − z?)− D̃?

Uu
?

+ D
1/2
γ D

1/2
γ/ρB0B̄

−1/2
0 ξ + D

1/2
2γ η.

With the notation H = Ip−D?
U −D

1/2
γ D

1/2
γ/ρ(Ip−P0)D

−1/2
ρ , (2.23), and using the fact

that for any ε > 0, a, b ∈ Rd, |〈a, b〉| ≤ ε‖a‖2 + (4ε)−1‖b‖2, it follows, for any z ∈ Rp,
that∫

Rp
‖z̃ − z?‖2

D−1
γ
P zρ,γ(z, dz̃)

=

∫
Rp

∫
Rd

∥∥∥H(z − z?)− D̃?
Uu

? + D
1/2
γ D

1/2
γ/ρB0B̄

−1/2
0 ξ + D

1/2
2γ η

∥∥∥2

D−1
γ

φd(ξ) dξφp(η) dη

=
∥∥∥H(z − z?)− D̃?

Uu
?
∥∥∥2

D−1
γ

+ Tr(Dγ/ρP0) + 2

n∑
i=1

di

≤ κ2
γ‖z − z?‖2D−1

γ
− 2〈H(z − z?), D̃?

Uu
?〉D−1

γ
+
∥∥∥D̃?

Uu
?
∥∥∥2

D−1
γ

+ Tr(Dγ/ρP0) + 2
n∑
i=1

di

≤ κ2
γ(1 + 2ε)‖z − z?‖2

D−1
γ

+

(
1 +

1

2ε

)
max
i∈[n]
{γiM2

i }‖u?‖2 + Tr(Dγ/ρP0) + 2
n∑
i=1

di.
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Proposition 2.46. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N∗)n,γ,ρ ∈
(R∗+)n such that, for any i ∈ [n], γi ≤ 2/(mi +Mi + 1/ρi). Then, we have∫

Rd
‖z1 − z?‖2D−1

Nγ
πzρ,γ(dz1)

≤ min
i∈[n]
{Ni}−1 2

1− κ2
γ

1 + κ2
γ

1− κ2
γ

max
i∈[n]
{γiM2

i }‖u?‖2 + Tr(Dγ/ρP0) + 2
n∑
i=1

di

,
with κγ defined in (2.21).

Proof With the choice ε = (1− κ2
γ)/(4κ2

γ) in Lemma 2.45 and using Lemma 2.44, we
have∫

Rp
‖z̃ − z?‖2

D−1
γ
πzρ,γ(dz̃) ≤

κ2
γ + 1

2

∫
Rp
‖z − z?‖2

D−1
γ
πzρ,γ(dz)

+
1 + κ2

γ

1− κ2
γ

max
i∈[n]
{γiM2

i }‖u?‖2 + Tr(Dγ/ρP0) + 2

n∑
i=1

di.

Rearranging terms concludes the proof.

Lemma 2.47. Assume Assumption 2.1-Assumption 2.3 and let N ∈ (N∗)n,γ,ρ ∈
(R∗+)n such that, for any i ∈ [n], Niγi ≤ 2/(mi + Mi + 1/ρi), γiM̃i < 1 and denote
z? = ([A1θ

?]>, · · · , [Anθ
?]>)>. Then, we have∫

Rp
‖z̃ − z?‖2

D−1
Nγ
P zρ,γ,N (z?, dz̃) ≤ 2

n∑
i=1

γiNi

(
1 + Tr(P0)/ρi

)
+ 4

n∑
i=1

di,

where the transition kernel P zρ,γ,N is defined in (2.56).

Proof Let {(ηik)k≥1 : i ∈ [n]} be independent random variables such that for any
i ∈ [n], the sequences {(ηik)k≥1} are i.i.d. di-dimensional Brownian motions and let ξ
a d-dimensional standard Gaussian random variable independent of {(ηik)k≥1 : i ∈ [n]}.
Consider the stochastic process (Yk)k∈N initialized for any i ∈ [n] at Y i

0 = Aiθ
? and

defined, for any i ∈ [n], k ∈ N, by

Y i
k+1 = Y i

k − γi∇Vi(Y i
k ) + (γi/ρi)Aiθ +

√
2γiη

i
k+1, (2.121)

where the potential Vi = yi 7→ Ui(y
i) + ‖yi‖2/(2ρi) and

θ = B̄−1
0 B>0 D̃

1/2
0 z? + B̄

−1/2
0 ξ. (2.122)

In addition, we define the random variable Z = (Z1, . . . , Zn), for any i ∈ [n], as

Zi = Y i
Ni .

By definition, note that Z is distributed according to P zρ,γ,N (z?, ·). Define the process
(Yk = {Yi

k}ni=1)k∈N valued in Rp × Rp defined for any i ∈ [n], k ≥ 0 by

Yi
k = Y i

min(k,Ni)
,
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and consider the following matrices defined, for any k ∈ N, by

HU,k = diag

(
γ1

∫ 1

0
∇2U1((1− s)Y 1

k + sz?) ds,

. . . , γn

∫ 1

0
∇2Un((1− s)Y n

k + sz?) ds

)
,

J(k) = diag
(
1[N1](k + 1) · Id1 , · · · ,1[Nn](k + 1) · Idn

)
,

Ck = J(k)(Dγ/ρ + HU,k), (2.123)

Mk+1 = (Ip −C0)−1 . . . (Ip −Ck)
−1, with M0 = Ip.

Using these notations and (2.121), for any k ∈ N, we get

Yk+1 − z? =(Ip −Ck)(Yk − z?) + J(k)

(
Dγ/

√
ρB0θ −Dγ∇V (z?) + D

1/2
2γ ηk+1

)
.

Multiplying the previous equality by Mk+1D
−1/2
Nγ , we obtain, for k ≥ 0,

Mk+1D
−1/2
Nγ (Yk+1 − z?) = MkD

−1/2
Nγ (Yk − z?)

+ Mk+1J(k)D
−1/2
Nγ

(
Dγ/

√
ρB0θ −Dγ∇V (z?) + D

1/2
2γ ηk+1

)
.

Summing the previous equality over k ∈ N gives

M∞D
−1/2
Nγ (YN − z?) = M0D

−1/2
Nγ (Y0 − z?)

+
∞∑
k=0

Mk+1J(k)D
−1/2
Nγ

(
Dγ/

√
ρB0θ −Dγ∇V (z?) + D

1/2
2γ ηk+1

)
.

Multiplying the last equality by [M∞]−1 and using the fact that Y0 = z?, we get

D
−1/2
Nγ (Z − z?)

=
∞∑
k=0

[M∞]−1Mk+1J(k)D
−1/2
Nγ

(
Dγ/

√
ρB0θ −Dγ∇V (z?) + D

1/2
2γ ηk+1

)
. (2.124)

Recall that P0 = B0B̄
−1
0 B>0 . Hence, by (2.122) and using P0D

−1/2
ρ z? = D

−1/2
ρ z?, we

get
Dγ/

√
ρB0θ −Dγ∇V (z?) = Dγ/

√
ρB0B̄

−1/2
0 ξ −Dγ∇U(z?).

Plugging this equality into (2.124) yields

D
−1/2
Nγ (Z − z?) = −

∞∑
k=0

[M∞]−1Mk+1J(k)D
1/2
γ/N∇U(z?)

+
∞∑
k=0

[M∞]−1Mk+1J(k)D
1/2
γ/(Nρ)B0B̄

−1/2
0 ξ

+
√

2

∞∑
k=0

[M∞]−1Mk+1J(k)D
−1/2
N ηk+1. (2.125)
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Recall that [M∞]−1Mk+1 = (([M∞]−1Mk+1)1, . . . , ([M∞]−1Mk+1)n) is a block-diagonal
matrix where, for any i ∈ [n], ([M∞]−1Mk+1)i =

∏∞
l=k+1(Idi −Ci

l) where Ci
l is defined

in (2.123). In addition, since we suppose for any i ∈ [n], that γiM̃i < 1, Lemma 2.32
implies ∥∥∥∥∥

Ni−1∏
l=k+1

(Idi −Ci
l)

∥∥∥∥∥
2

≤
(
1− γim̃i

)2(Ni−k−1)
.

We now upper bound separately each term on the right-hand side of (2.125). First,
using the Cauchy-Schwarz inequality, we have∥∥∥∥∥∥

∞∑
k=0

[M∞]−1Mk+1J(k)D
1/2
γ/N

∥∥∥∥∥∥
2

≤
n∑
i=1

(γi/Ni)

∥∥∥∥∥∥
∞∑
k=0

([M∞]−1Mk+1)iJi(k)

∥∥∥∥∥∥
2

≤
n∑
i=1

(γi/Ni)

∥∥∥∥∥∥
Ni−1∑
k=0

Ni−1∏
l=k+1

(
Idi −Ci

l

)∥∥∥∥∥∥
2

≤
n∑
i=1

γi

Ni−1∑
k=0

∥∥∥∥∥∥
Ni−1∏
l=k+1

(
Idi −Ci

l

)∥∥∥∥∥∥
2

≤
n∑
i=1

γi

Ni−1∑
k=0

(
1− γim̃i

)2(Ni−k−1)

≤
n∑
i=1

Niγi. (2.126)

Second, using the same techniques as for the above inequality, we obtain∥∥∥∥∥∥
∞∑
k=0

[M∞]−1Mk+1J(k)D
1/2
γ/(Nρ)B0B̄

−1/2
0 ξ

∥∥∥∥∥∥
2

≤
n∑
i=1

Niγi
ρi

∥∥∥∥B0B̄
−1/2
0 ξ

∥∥∥∥2

(2.127)

Finally, the third term can be upper-bounded as

E


∥∥∥∥∥∥√2

∞∑
k=0

[M∞]−1Mk+1J(k)D
−1/2
N ηk+1

∥∥∥∥∥∥
2
 ≤ 2

n∑
i=1

di. (2.128)

Combining (2.125), (2.126), (2.127) and (2.128), we get∫
Rp
‖z̃ − z?‖2

D−1
Nγ
P zρ,γ,N (z?,dz̃) ≤

n∑
i=1

γiNi

(
1 + Tr(P0)/ρi

)
+ 2

n∑
i=1

di.

Given ε > 0, we are now ready to provide a condition on the number of iterations `ε to
achieve W2(µ?ρP

`ε
ρ,γ,N ,Πρ,γ) ≤ ε/3 in the case where for any i ∈ [n], mi = m, Mi = M ,

ρi = ρ, γi = γ and Ni = N . Define
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E2
0 = 18Nγ(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖)

 2

N(1− κ2
γ)

(
1 + κ2

γ

1− κ2
γ

· γM2‖u?‖2

+ (γ/ρ)Tr(P0) + 2

n∑
i=1

di

)
+ 2bγN

(
1 + Tr(P0)/ρ

)
+ 4

n∑
i=1

di

.
Theorem 2.48. Assume Assumption 2.1-Assumption 2.3 and let N = N1n,γ =
γ1n,ρ = ρ1n, ρ > 0, γ > 0, N ≥ 1, such that γ < 1/M̃ , Nγ < 2/(m + M̃), and
(2.54) is satisfied. Then, for any ε > 0, any

`ε ≥ 2 log(E0/ε)/(Nγm),

we have, W2(µ?ρP
`ε
ρ,γ,N ,Πρ,γ) ≤ ε/3.

Proof By some algebra and using 1/ log(1/(1 − x)) ≤ 1/x for 0 < x < 1, the proof
directly follows from Proposition 2.22 combined with Proposition 2.46 and Lemma 2.47.

2.E.2 Upper bound on the tolerance parameter ρε

Define

R0 = 2σ2
U

(
dσ2

U +
n∑
i=1

M2
i ‖Ai(θ

? − θ?i )‖2
)

+ 2σ4
U ,

R1 = dσ2
U +

n∑
i=1

M2
i ‖Ai(θ

? − θ?i )‖2 +
n∑
i=1

diMi/2

R2 = 2dmax
i∈[n]
{Mi}σ2

U + 2
n∑
i=1

M3
i ‖Ai(θ

? − θ?i )‖2 + 8σ4
U

+ 8σ2
U

2dσ2
U + 2

n∑
i=1

M2
i ‖Ai(θ

? − θ?i )‖2
 .

Recall that ρ̄ = maxi∈[n]{ρi}. Then, the following result holds.

Lemma 2.49. Assume Assumption 2.1-Assumption 2.3. For any ε > 0, let ρε ∈ (R∗+)n

such that

ρ̄ε ≤
−R1 +

√
R2

1 + 4R0εm
1/2
U /(3

√
2)

2R0
∧ ε

√
mU

3
√

2
√
R2 + [R2/(12σ2

U ) +
∑n

i=1 diMi]2

∧ 1

12σ2
U

∧ −
∑n

i=1 diMi +
√

(
∑n

i=1 diMi)2 + 6R2

2R2
.

Then, W2(πρε , π(·|D)) ≤ ε/3.



CHAPTER 2. DG-LMC: DISTRIBUTED GRADIENT LANGEVIN MONTE CARLO93

Proof Let ε > 0. From (2.74), for any ρ̄ ≤ 1/(12σ2
U ),W2(πρ, π(·|D)) ≤

√
2
mU

max(A1, A
1/2
3 ),

whereA1, A3 are defined in (2.71) and (2.73) respectively. This implies thatW2(πρ, π(·|D)) ≤
ε/3 is verified if max(A1, A

1/2
3 ) ≤ ε√mU/(3

√
2). First, A1 ≤ ε

√
mU/(3

√
2) holds if

ρ̄ ≤
−R1 +

√
R2

1 + 4R0εm
1/2
U /(3

√
2)

2R0
∧ 1

12σ2
U

. (2.129)

We now focus on A3. Using the fact that for any x ∈ R, ex ≥ x+ 1, we have 2
∏n
i=1(1 +

ρiMi)
di ≥ 2 +

∑n
i=1 di log(1 + ρiMi) and therefore

A3 ≤ exp

(
ρ̄2R2 +

n∑
i=1

di log(1 + ρiMi)

)
− 1−

n∑
i=1

di log(1 + ρiMi).

Since
∑n

i=1 di log(1 + ρiMi) ≤ ρ̄
∑n

i=1 diMi, ρ̄2R2 +
∑n

i=1 di log(1 + ρiMi) ≤ 3/2 holds
for

ρ̄ ≤ −
∑n

i=1 diMi +
√

(
∑n

i=1 diMi)2 + 6R2

2R2
. (2.130)

Since for any x ≤ 3/2, ex ≤ 1 + x+ x2 and using the fact that ρ̄ ≤ 1/(12σ2
U ), it follows

that

A3 ≤ ρ̄2R2 +

(
ρ̄2R2 + ρ̄

n∑
i=1

diMi)

)2

≤ ρ̄2

B1 +

(
R2

12σ2
U

+
n∑
i=1

diMi

)2
 .

Hence, A1/2
3 ≤ ε√mU/(3

√
2) holds under (2.130) and

ρ̄ ≤ ε
√
mU

3
√

2

√
R2 +

(
R2

12σ2
U

+
∑n

i=1 diMi

)2
. (2.131)

The proof is concluded by combining (2.129), (2.130) and (2.131).

2.E.3 Upper bound on the step-size γε and number of local iteration
N ε

Based on Proposition 2.37 or Proposition 2.41, we now determine an upper bound on
γε to ensure W2(Πρ,Πρ,γε) ≤ ε/3 in the case N = N1n,γ = γ1n,ρ = ρ1n where
ρ > 0, γ > 0, N ≥ 1. The following results hold depending if Assumption 2.7 is
considered. Define

Cρ =
4M̃2(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)

5m
,

C0 = (M̃2/2)
[
M̃/m̃+ 1/6

] n∑
i=1

di, C1 =
n∑
i=1

di, C2 = ε2/(9Cρ).

Lemma 2.50. Assume Assumption 2.1-Assumption 2.3 and let ρ, γ > 0 and N ≥ 1.
In addition, set ρ = ρ1n, γε = γε1n, N ε = Nε1n and ε > 0 such that

γε ≤
−C1 +

√
C2

1 + 4C0C2

2C0
∧ m

40M̃2
. (2.132)

Then W2(Πρ,Πρ,γε) ≤ ε/3.
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Proof Let ε > 0. By Proposition 2.37, note that W 2
2 (Πρ,Πρ,γε,Nε) ≤ ε2/9 is satisfied

if
C0γ

2
ε + C1γε ≤ C2.

Since this inequality is satisfied under the choice (2.132), we have W2(Πρ,Πρ,γε,Nε) ≤
ε/3. Eventually, using Proposition 2.21 shows that Πρ,γε,Nε = Πρ,γε .

In addition to the assumptions of Lemma 2.50, under Assumption 2.7 we get a more
interesting mixing-time for γ. For any ε ∈ R∗+, ρ ∈ R∗+, define

Cρ =
4(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)

m
, (2.133)

γ̄ε =
ε

3M̃
√
Cρ
∑

i∈[n] di
∧ ε2

18CρM̃ f3
∑

i∈[n] di
∧ ε

√
M̃

3
√
Cρf

∑
i∈[n] di(diL

2
i + M̃4/m̃)

∧ m

40M̃2
,

(2.134)

where f = m/(20M̃).

Lemma 2.51. Assume Assumption 2.1-Assumption 2.3-Assumption 2.7. Then, for
any N ∈ N∗, ε ∈ R∗+, ρ ∈ R∗+, γ ∈ (0, γ̄ε], we have

W2(Πρ,γ ,Πρ) ≤ ε/3,

where γ = γ1n,ρ = ρ1n.

Proof For any ε ∈ R∗+, ρ ∈ R∗+, γ ∈ (0, γ̄ε] applying Proposition 2.41, we get

W 2
2 (Πρ,γ ,Πρ) ≤ 4(1 + ‖B̄−1

0 B>0 D̃
1/2
0 ‖2)

m
R?(γ),

where

R?(γ) =
n∑
i=1

{
diγ

2M̃2 +
diγ

2f

M̃

(
diL

2
i +

M̃4

m̃

)
+ diγM̃ f3(1 + f + f2)

}
.

Since γ ≤ γ̄ε, we have R?(γ) ≤ R?(γ̄ε) where we denoted γ̄ε = (γ̄ε, . . . , γ̄ε). Thus, we
get W2(Πρ,γ ,Πρ) ≤ ε/3.

2.E.4 Discussion

Let ρε = ρε1n such that W2(πρε , π(·|D)) ≤ ε/3. From Lemma 2.49, we can take
ρ̄ε = O(ε/d) when ε→ 0 and d→∞. Similarly, under Assumption 2.1-Assumption 2.3,
in the asymptotic regime ε → ∞ and d → ∞, we obtain by Lemma 2.50 that γ̄ε =
O(ε4/d3), Nε = O(d/ε2) is enough to ensure that W2(Πρ̄ε ,Πρ̄ε,γ̄ε) ≤ ε/3. On the
other hand, when Assumption 2.7 is additionally assumed, we only need to suppose
γ̄ε = O(ε2/d2) and N̄ε = O(1). For these step-sizes choices, Theorem 2.48 shows the
number of iterations `ε = O(d2 log(d/ε)/ε2) ensures that W2(δx?P

`ε
ρ,γ,N ,Πρ,γ) ≤ ε/3.
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This chapter focuses on Bayesian inference in a federated learning context (FL). While
several distributed MCMC algorithms have been proposed, few consider the specific
limitations of FL such as communication bottlenecks and statistical heterogeneity. Re-
cently, Federated Averaging Langevin Dynamics (FALD) was introduced, which extends
the Federated Averaging algorithm to Bayesian inference. We obtain a novel tight
non-asymptotic upper bound on the Wasserstein distance to the global posterior for
FALD. This bound highlights the effects of statistical heterogeneity, which causes a
drift in the local updates that negatively impacts convergence. We propose a new
algorithm VR-FALD? that uses control variates to correct the client drift. We establish
non-asymptotic bounds showing that VR-FALD? is not affected by statistical heterogen-
eity. Finally, we illustrate our results on several FL benchmarks for Bayesian inference.

3.1 Introduction

The paradigm of fully centralized machine learning is increasingly at odds with real-
world use cases. Centralized machine learning leads to (a) data processing bottlenecks,
(b) inefficient use of communication resources and (c) risks exposing individuals’ private
data. As storage and computational capacity increases at the agent level, it becomes
increasingly attractive to decentralize computational tasks whenever possible. The term
federated learning (FL) was recently coined to capture some aspects of this grand chal-
lenge (McMahan et al., 2017; Kairouz et al., 2021; Yang et al., 2019; Alistarh et al.,
2017; Horváth et al., 2022; Wang et al., 2021).

Reducing communication costs has been identified as one of the major challenges of
FL (Kairouz et al., 2021). Two main approaches have been proposed to achieve this
goal. In the former, agents perform multiple local optimization steps before sending
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a model update to the central node (McMahan et al., 2017). The latter consists in
compressing the messages exchanged (Alistarh et al., 2017; Horváth et al., 2022). In
this chapter, we focus on the first approach which is widely used in practice. However,
due to statistical heterogeneity, performing multiple steps can hinder convergence, as
model updates target each agent’s local minimizer (Li et al., 2019; Ro et al., 2021). This
results in a tradeoff between communication cost and convergence (Wang et al., 2020b)
and a need for algorithms that mitigate client drift (Karimireddy et al., 2020).

Most of existing FL algorithms minimize a training loss. However, their results do
not provide reliable uncertainty quantification, a strong requirement in safety-critical
applications (Coglianese and Lehr, 2016; Fatima et al., 2017). We address this problem
by considering the federated version of Bayesian inference (Welling and Teh, 2011;
Yurochkin et al., 2019; Chen and Chao, 2021; Izmailov et al., 2021; Wilson et al.,
2021). The objective is to compute the predictive distribution, the highest posterior
density regions (HPD). To this end, it is required to sample the posterior distribution
π ∝ exp(−U) associated with the model at hand. This target posterior decomposes into
the product of local posteriors π =

∏
i∈[n] π

i. It is well known that sampling according to
product distributions (Neiswanger et al., 2014; Hoffman et al., 2013; Minsker et al., 2014;
Wang et al., 2015; Al-Shedivat et al., 2021; Dai et al., 2021) raises serious computational
challenges even when sampling from each local posterior πi is reasonably easy. We tackle
this question in our contributions which can be summarized as follows.

Contributions.

• We study a random loop version of the FALD algorithm proposed in Deng et al.
(2021), and we establish non-asymptotic upper bounds in Wasserstein distance for
strongly convex potentials U . An analysis of FALD was conducted in (Deng et al.,
2021, Theorem 5.7). However, the proof is plagued by an error; see Section 3.B.1.

• We give matching lower bounds to show that even with full batch gradients, FALD
can be slower than Stochastic Gradient Langevin Dynamics (SGLD) due to client-
drift.

• We propose a new method VR-FALD? that circumvents the shortcomings of FALD.
This algorithm extends the Shifted Local-SVRG of Gorbunov et al. (2021) to the
Bayesian context. It combines Stochastic Variance Reduced Gradient (SVRG)
Langevin Dynamics (LD) (Dubey et al., 2016) and adapts the bias reduction
techniques from SCAFFOLD (Karimireddy et al., 2020).

• We derive theoretical guarantees for VR-FALD? which highlight its gradient variance
reduction effect and its ability to deal with data heterogeneity.

• The results are based on a general framework developed in the supplement, that
encompasses a broad family of federated Bayes algorithms based on Langevin
dynamics. This is the first unifying study among existing works on federated
Bayesian inference.

• Finally, in Section 3.4 we illustrate our results using classical FL benchmarks and
provide a thorough comparison with existing FL Bayesian methods.
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Related works. Many distributed MCMC algorithms have been proposed in the last
decade, and it is difficult to credit all the references. The first significant contributions
in this direction are the Consensus Monte Carlo (CMC) approach and “embarrass-
ingly parallel” MCMC algorithms; see, e.g. Neiswanger et al. (2014); Wang and Dunson
(2013); Scott et al. (2016). These methods require running separate MCMC chains on
each client/computational node, with each chain targeting the local posterior πi. In
the final stage, the algorithms recombine the samples from these chains to generate
samples from the desired global posterior π (Minsker et al., 2014). The local posteriors
may differ significantly from each other due to statistical heterogeneity, data imbalance,
and / or inaccurate approximation. The effectiveness of the final combinations is either
based on stringent assumptions on the local likelihoods (Liu and Ihler, 2014; Nemeth
and Sherlock, 2018; Mesquita et al., 2020; Chittoor and Simeone, 2021) or on “fusion”
algorithms that are exact but scale badly with the dimension; see, e.g. Dai et al. (2021);
De Souza et al. (2022).

Vono et al. (2020); Rendell et al. (2020); Plassier et al. (2021); Vono et al. (2022a)
introduced hierarchical Bayesian models to simulate separate MCMC chains on each
machine. Inspired by the alternating direction method of multipliers (Boyd et al.,
2011), each client is assigned an auxiliary parameter that is conditionally independent
given the server parameter. These authors developed MCMC schemes which alternate
between sampling the clients parameters given the server parameter, and sampling the
server parameter given the clients parameters. However, these approaches require tuning
an additional hyperparameter to control the dispersion of the “local parameters”. This
parameter characterizes the tradeoff between computational tractability and closeness
to the original target distribution.

A competing approach to Federated Averaging, the quantized-SGD scheme, has been
proposed in (Alistarh et al., 2017) for non-Bayesian FL. In this framework, the agents
do not adapt parameters locally, but a random subset of the agents compute at each
iteration a new gradient estimator and transmit a compressed form—see Haddadpour
et al. (2021), among many others, (Bernstein et al., 2018; Tang et al., 2021) for scalar
quantization or (Shlezinger et al., 2020), for vector quantization. These approaches
have been extended to the Bayesian inference context in Lee et al. (2020); Zhang et al.
(2022); Vono et al. (2022b). Performance analysis is given in Vono et al. (2022b); Sun
et al. (2022).

The Federated Gradient Stochastic Langevin Dynamics (FSGLD) algorithm introduced
by El Mekkaoui et al. (2021) extends the distributed-SGLD (DSGLD) (Ahn et al.,
2014) to the FL setting. Specifically, FSGLD operates passing a Markov chain between
computing nodes and using only local data to estimate gradients at each step.

Methods with multiple local steps have been considered by several authors. Deng et al.
(2021) designed FALD as a Bayesian version of FedAvg. Al-Shedivat et al. (2021)
proposed FedPa as a generalization of FedAvg. This method performs several local
steps to infer Gaussian approximations of the clients local parameters. These local
parameters are then reweighed using the estimated local means and covariance matrices
before being aggregated on the central server.

Notation and Convention. The Euclidean norm on Rd is denoted by ‖ · ‖, and we
set N∗ = N \ {0}. For n ∈ N?, we refer to {1, . . . , n} with the notation [n]. We denote
by P2(Rd) the set of probability measures on Rd with finite 2-moment. For any random
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variable ξ with values in Rd, we define Var(ξ) = E[‖ξ − Eξ‖2]. Let µ, ν be in P2(Rd),
we define the Wasserstein distance of order 2 by W2(µ, ν) = (infζ∈Π(µ,ν)

∫
Rd×Rd ‖x −

x′‖2dζ(x, x′))1/2, where Π(µ, ν) is the set of transference plans of µ and ν.

3.2 Algorithm derivation

We aim to sample a target probability density function π defined for x ∈ Rd by

π (x) ∝∏n
i=1 π

i (x) , πi(x) ∝ exp(−U i(x)), (3.1)

where n is the number of clients and the potential U i is a finite sum expressed by

U i(x) = $iU0(x) +
∑Ni

j=1 U
i,j(x),

with {$i}i∈[n] ∈
[
0, 1
]n and

∑
i∈[n]$

i = 1. This setting encompasses the Bayesian
federated learning as a particular case, in which π stands for the global posterior dis-
tribution and {πi}i∈[n] are referred to as local posteriors (Wu and Robert, 2017; Dai
et al., 2021). In this case U0 is the global negative log-prior, Ni denotes the number of
observations of client i, U i,j is the negative log-likelihood of the j-th data of client i,
and $iU0 is the fraction of the negative log-prior allocated to this client (Rendell et al.,
2020).

Federated Averaging Langevin Dynamics (FALD). FALD, proposed in Deng et al.
(2021), is an extension to the Bayesian setting of FedAvg (McMahan et al., 2017).
The updates performed on the ith client define a sequence of local parameters (Xi

k)k∈N
which are transmitted according to some preset schedule (which is deterministic in Deng
et al. (2021) and is random in this work) to a central server. The central server averages
the local parameters to update the global parameter. This global parameter is finally
transmitted back to each client, and is used as a starting point of a new round of local
iterations. Hence, each iteration k ≥ 0 of FALD can be decomposed into two steps:

(1) Local iteration on each client. Each client i performs one step of the Langevin
Monte Carlo algorithm (Grenander and Miller, 1994; Roberts and Tweedie, 1996) with
a stochastic gradient associated with its local potential:

Gik+1 = ∇̂U ik+1(Xi
k),

X̃i
k+1 = Xi

k − γGik+1 +
√

2γ Zik+1,
(3.2)

where γ > 0 and for x ∈ Rd, ∇̂U ik+1(x) is an unbiased estimator of ∇U i(x) given by
(see Welling and Teh (2011) – general updates are considered in the supplement)

∇̂U ik+1 = $i∇U0 + (Ni/bi)
∑

j∈Sik+1
∇U i,j , (3.3)

where (Sik)k∈N? is a sequence of i.i.d. uniform random subsets of [Ni] of cardinal number
bi. Moreover, (Zik)k∈N∗ , i ∈ [n] are sequence of i.i.d Gaussian random variables which
might be correlated across the agents and the central server. More precisely, given
independent sequences, (Z̃ik)k∈N∗ , i ∈ [n] and (Z̃k)k∈N∗ of i.i.d. d-dimensional standard
Gaussian random variables, for τ ∈

[
0, 1
]
we set

Zik =
√
τ Z̃k +

√
1− τ Z̃ik. (3.4)
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(2) A local update. With probability pc ∈
(
0, 1
]
, the ith client communicates its

parameter X̃i
k+1, resulting from the first step, to the central server which in turns

broadcasts the average Xk+1 = n−1
∑

i∈[n] X̃
i
k+1. Finally, each client updates its para-

meter as Xi
k+1 = Xk+1. When no communication is performed, each client updates its

parameter as Xi
k+1 = X̃i

k+1.

The local recursions defined by FALD can be written for i ∈ [n] and k ≥ 0 as

Xi
k+1 = (1−Bk+1)X̃i

k+1 + (Bk+1/n)
∑

j∈[n] X̃
j
k+1, (3.5)

where (Bk)k∈N∗ is a sequence of i.i.d. Bernoulli random variables with parameter pc.

For k ≥ 1, denote by µ(γ)
k the distribution of the average parameter

Xk = (1/n)
∑

i∈[n]X
i
k. (3.6)

Non-asymptotic Wasserstein bounds between µ
(γ)
k and the target distribution π are

established in Theorem 3.1 under the following assumptions.

A1. For any i ∈ [n], U i is continuously differentiable. In addition, there exist m,L > 0
such that for any i ∈ [n], the function U i is L-smooth and m-strongly convex, i.e., for
any x, x′ ∈ Rd,

(m/2)‖x′ − x‖2 ≤ U i(x′)− U i(x)− 〈∇U i(x), x′ − x〉 ≤ (L/2)‖x′ − x‖2.
A2. For any i ∈ [n], ({∇̂U ik}i∈[n])k∈N are i.i.d. unbiased estimates of {∇U i}i∈[n]. In
addition, there exists L̂ ≥ 0 such that for any x, x′ ∈ Rd we have

E
[
‖∇̂U ik(x′)− ∇̂U ik(x)‖2

]
≤ L̂2‖x′ − x‖2.

In the minibatch scenario (3.3), A2 is satisfied if for i ∈ [n], j ∈ [Ni] there exists Lij ≥ 0

such that for any x, x′ ∈ Rd, ‖∇U i,j(x′)−∇U i,j(x)‖ ≤ Lij‖x′ − x‖.
Finally, we also consider the following optional smoothness condition on the poten-
tials {U i}i∈[n]. This additional assumption, often satisfied in applications have been
considered e.g. in Durmus and Moulines (2019); Dalalyan and Karagulyan (2019).

HX1. There exists L̃ ≥ 0, such that for any i ∈ [n], the function U i is three times
continuously differentiable and for any x, x′ ∈ Rd, ‖∇2U i(x)−∇2U i(x′)‖ ≤ L̃‖x− x′‖.

We introduce some key quantities appearing in the theoretical derivations below. Denote
by x? the minimizer of

∑
i∈[n] U

i which exists and is unique under A1. We define

Vπ =
∫
Rd Var{n−1

∑
i∈[n] ∇̂U i1(x)}π(dx),

V? = Var{n−1
∑

i∈[n] ∇̂U i1(x?)},
(3.7)

the average of the stochastic gradient variance under the stationary distribution π and
at the minimum x?, respectively. Finally, the statistical heterogeneity between the
clients is quantified by (see, e.g. Stich et al. (2018))

H = n−1
∑

i∈[n] ‖∇U i
(
x?
)
‖2.

For ease of presentation, for two sequences (ak)k∈N and (bk)k∈N we write ak . bk if
there exists C > 0 only depending on the constants introduced in A1, A2 and HX1
such that ak ≤ Cbk, for any k ∈ N.
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Theorem 3.1 (Simplified). Assume A1, A2 and suppose for any i ∈ [n], Xi
0 = X0.

Then, there exist γ̄ > 0, such that for any γ ∈
(
0, γ̄
]
, k ∈ N, X0 ∼ µ0 ∈ P2(Rd), we

have

W 2
2 (µ

(γ)
k , π(·|D)) . (1− γm/8)k I(µ0) +

γe

n
J + γVπ

+
γ2(1− pc)

p2
c

{
H + pcV? +

d

n

}
+
γ(1− τ)(1− n−1)d

pc
,

where J = d, e = 1 and I(µ0) < ∞ is a function of the initial condition µ0. If HX1
holds, then e = 2 and J = d(1 + d/n).

Elements of proof are provided in Section 3.3; a precise statement is given in The-
orem 3.22 with detailed proofs. Note the step-size upper bound γ̄ is proportional to pc.
In the single user case (n = pc = τ = 1), we recover up to numerical constants the results
stated in Durmus and Moulines (2019); Dalalyan and Karagulyan (2019). Note that,
under HX1 the leading term in the step-size γ is proportional to the stochastic gradient
variance Vπ, in accordance with the bounds obtained for SGLD by e.g. , Dalalyan and
Karagulyan (2019). More discussions on these bounds are postponed after the statement
of Theorem 3.3.

Lower bounding the effect of heterogeneity. Similar to FedAvg, the convergence
of FALD is impaired by data heterogeneity. Multiple local SGLD steps described in (3.2)
cause Xi

k to target the local posteriors πi ∝ exp(U i). We now provide lower bound
on the Wasserstein distance between the distribution of the samples generated by FALD
and the target distribution π which is proportional to the heterogeneity γ2H.

Proposition 3.2. There exist γ̄ > 0, potentials {U i}2i=1 on R satisfying A1, HX1 and
an instance of FALD satisfying A2 such that for any γ ∈

(
0, γ̄
]
, we have

lim inf
k→∞

W 2
2 (µ

(γ)
k , π(·|D)) & γ2H.

This proposition extends Karimireddy et al. (2020, Theorem II) to the Bayesian context
and underlines the same limitation as FedAvg. To circumvent this, various bias reduc-
tion techniques have been suggested in the stochastic optimization literature (Horváth
et al., 2022; Gorbunov et al., 2021). In the next section, we adapt similar mechanisms
to derive an alternative to FALD satisfying better finite bounds.

FALD with control variates and bias reduction. To mitigate the impact of local
stochastic gradients, we adapt variance-reduction techniques (Wang et al., 2013; Kovalev
et al., 2020) and bias-reduction techniques (Horváth et al., 2022; Gorbunov et al., 2021).
This new approach introduces a different recursion rule in step (1) of FALD, while keeping
step (2) unchanged. The local update rule is based on a reference point Yk ∈ Rd
common to all clients. This common point is updated with probability qc ∈

(
0, 1
]
and

allows the inclusion of a local shift Ck to recenter the local gradients. This mechanism
eliminates the “infamous non-stationarity of the local methods” (paraphrasing Gorbunov
et al. (2021)) and therefore avoids extra bias. At each iteration k, the first step of the
VR-FALD? algorithm is divided into two parts:
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(1.1) Update of the reference parameter and control variate. The variance re-
duced gradient requires a sporadic computation of the full local gradient. Let (BY

k )k∈N∗

be a sequence of i.i.d. Bernoulli random variables with parameter qc ∈
(
0, 1
]
. If

BY
k+1 = 1, then the client reference point Yk is updated: the clients transmit their

local parameter {Xi
k}i∈[n] to the central server which computes their average Yk+1 =

n−1
∑

i∈[n]X
i
k; which is sent back to the clients. The clients then compute the full

gradients {∇U i(Yk+1)}i∈[n] and transmit them to the central server which updates the
shift Ck+1 = n−1

∑
i∈[n]∇U i(Yk+1). To summarize, the reference point and the shift

are updated according to

Yk+1 = (1−BY
k+1)Yk + (BY

k+1/n)
∑

i∈[n]X
i
k,

Ck+1 = (1−BY
k+1)Ck + (BY

k+1/n)
∑

i∈[n]∇U i(Yk+1).
(3.8)

(1.2) Local iteration on each client. This step is similar to FALD, upon replacing
the local updates (2) by the variance-reduced version

Gik+1 = ∇̂U ik+1(Xi
k)− ∇̂U ik+1(Yk) + Ck, (3.9)

X̃i
k+1 = Xi

k − γGik+1 +
√

2γZik+1. (3.10)

The VR-FALD? analysis relies on the following additional assumption.

A3. There exists ω ≥ 0 such that for any i ∈ [n], k ∈ N? and x, y ∈ Rd, the following
inequality holds

E

[∥∥∥∇̂U ik(x)− ∇̂U ik(y)−∇U i(x) +∇U i(y)
∥∥∥2
]
≤ ω‖x− y‖2.

Under A1 and A2, A3 is satisfied with ω = 2L2 + 2L̂2. However, using this result leads
to some discrepancy in previous existing analysis, since ω = 0 in the non-stochastic
gradient case while 2L2 + 2L̂2 6= 0 in general. Finally, in the minibatch scenario (3.3),
if {∇U i,j}j∈[Ni] are Li-Lipschitz, then A3 holds with ω = maxi∈[n]{NiL

2
i /bi}; see Re-

mark 3.17.

For k ≥ 0, denote by µ(VR?,γ)
k the distribution of the average Xk = n−1

∑
i∈[n]X

i
k where

Xi
k is defined as in (3.5) with X̃i

k given in (3.10). With these notations, we obtain the
following theoretical guarantee on VR-FALD?.

Theorem 3.3 (Simplified). Assume A1, A2, A3 and suppose for i ∈ [n], Xi
0 = Y0 =

X0. Then, there exist γ̄VR? > 0, such that for any qc ≤ pc, γ ∈ (0, γ̄VR?], k ∈ N,
X0 ∼ µ0 ∈ P2(Rd), we have

W 2
2 (µ

(VR?,γ)
k , π) . (1− γm/8)k IVr?(µ0) +

γe

n
J +

γ2d

nqc
ω

+
γ(1− τ)(1− n−1)d

pc
+
γ2(1− pc)

p2
c

{
γV? +

d

n

}
,

where J = d, e = 1, V? is defined in (3.7), IVr?(µ0) < ∞ is a function of the initial
condition µ0. If HX1 holds, then e = 2 and J = d(1 + d/n).
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The proof is postponed to Section 3.B.2. Compared to Theorem 3.1, the client-drift
term does no longer appear, highlighting the advantage of VR-FALD? in dealing with
data heterogeneity between agents.

Further, the variance of the stochastic gradients of VR-FALD? only appear in the factor
γ2ω. This result agrees with Chatterji et al. (2018) for SVRG-LD, which might be
seen as a particular instance of VR-FALD? with n = 1, pc = 1. Nevertheless, a close
inspection of the proof in Chatterji et al. (2018) reveals a gap—see Remark 3.33, which
is corrected in the proof of Theorem 3.32.

Complexity and Communication costs. We now discuss the complexity and com-
munication costs of FALD and VR-FALD?. We study two extreme cases: (A) the local
computation cost is negligible and only the communication cost matters, which is typ-
ical in cross-device applications. (B) the communication cost is negligible and only the
local computation cost (complexity) matters. More general scenarios are discussed in
the supplement Section 3.D. In this discussion, it is assumed that HX1 is satisfied and
τ = 1. In both cases, for a target precision ε > 0, we optimize the hyperparameters
(number of iterations Kε, learning rate γε, probability of communication pc,ε) to ensure
W2(µ

(γ)
Kε
, π) ≤ ε (FALD) orW2(µ

(VR?,γ)
Kε

, π) ≤ ε (VR-FALD?). The values of the parameters
d, m, ω, H, J, Vπ and V? are reported in Table 3.5.
(Scenario A) The objective is to minimize the number of communications pc,εKε. As
γ can be arbitrarily small, we set Kε = γ−1λε, pc,ε = ρεγ, where λε, ρε > 0. Hence,
the optimization problem becomes min{λερε} subject to I(µ0) exp(−λεm/8) + ρ−2

ε (H+
d/b) ≤ ε2. As ε ↓ 0+, the minimum number of communications pc,εKε scales as
Õ(ε−1

√
H + n−1d) for FALD and Õ(ε−1

√
n−1d) for VR-FALD?.

(Scenario B) We take pc,ε = 1 and seek to minimize the total number of iterations Kε.
As ε ↓ 0+, Kε scales as Õ(ε−2(Vπ + ε

√
n−1J)) for FALD and Õ(ε−1

√
n−1J + n−1ωd) for

VR-FALD?.
In Figures 3.1a-3.1b, we display the optimal number of communications pc,εKε as a
function of ε (left panels Figures 3.1a-3.1b). We also exhibit the physical time which
corresponds to the time of the Langevin diffusion. The total physical times – λε for (A)
and γεKε for (B) – are displayed in the middle panels Figures 3.1a-3.1b. Finally, the right
panels Figures 3.1a-3.1b represent the average physical time between two consecutive
communications — ρ−1

ε for (A) and γ/pc,ε for (B). Note that, the total physical time is
(almost) the same for FALD, VR-FALD?, in scenarios (A) and (B). VR-FALD? significantly
reduces the number of communications pc,εKε in scenario (A) (top panel) and number
of rounds Kε (B) (bottom panel) w.r.t. FALD.

Figures 3.1a-3.1b also illustrate that the “embarrassingly parallel” approach of (Neiswanger
et al., 2014) is far from optimal. Indeed, our results show the importance of making
multiple interactions (rather than a single consensus step) and using correlated noises
between clients. In scenario (A), the optimal number of communications scales inversely
proportional to 1/ε which improve the bounds Õ(1/ε2) derived in Deng et al. (2021,
Section 5.3.1). For scenario (B), FALD has the same complexity as QLSD Vono et al.
(2022b) under similar assumptions; see also Sun et al. (2022). VR-FALD? has the lowest
complexity (Õ(1/ε)) among the Bayesian Federated algorithms reported earlier. This
bound matches the one obtained by Chatterji et al. (2018) for the fully centralized
SVRG-LD (corresponding to n = 1).
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(Scenario A) Numerical results optimizing pc,εKε.
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(Scenario B) Numerical results optimizing Kε.
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Figure 3.1 – Complexity and Communication costs.

3.3 Proofs outline

We briefly outline the main steps of the proof of Theorems 3.1 and 3.3. Details of
the proofs can be found in the supplementary chapter, where we analyze the two al-
gorithms under a common unifying framework. For both algorithms, the local paramet-
ers (Xi

k)i∈[n], k ≥ 0, are given by (3.5), where (X̃i
k)i∈[n] stands for local iterations, which

are given in (3.2) for FALD and (3.9) for VR-FALD?. Then, we bound the Wasserstein
distance between the target distribution π and the distribution of Xk = n−1

∑
i∈[n]X

i
k

which is denoted by (µ
(γ)
k )k∈N. The Wasserstein distance is defined as the infimum over

the coupling. We use below the synchronous coupling construction used in (Durmus and
Moulines, 2019; Dalalyan and Karagulyan, 2019) for the analysis of Stochastic Gradient
Langevin algorithms.

Synchronous coupling. We first construct a Brownian motion (Wt)t≥0 by Wt =√
τ W̃t+

√
(1− τ)/n

∑
i∈[n] W̃

i
t, starting from b+1 independent d-dimensional standard

Brownian motions (W̃i
t)t≥0, i ∈ [n], and (W̃t)t≥0. Second, we define the following stand-

ard Gaussian random variables Z̃ik+1 = γ−1/2(W̃i
(k+1)γ−W̃i

kγ), Z̃k+1 = γ−1/2(W̃(k+1)γ−
W̃kγ), and we set Zik as in (3.4). For k ∈ N, it holds that√γ∑i∈[n] Z

i
k+1 =

√
n(W(k+1)γ−

Wkγ). Finally, we consider (Xt)t≥0 the strong solution of the Langevin diffusion associ-
ated with π and starting from X0 ∼ π (see (3.1)) and driven by (Wt)t≥0:

dXt = −(1/n)
∑

i∈[n]∇U i(Xt) dt+
√

2/n dWt. (3.11)
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Under A1 and A2, π is the unique stationary distribution for the Langevin diffusion,
hence the distribution of Xt is π for all t ≥ 0; see e.g. Roberts and Tweedie (1996).
Hence, (Xk,Xkγ) defines a coupling between µ(γ)

k and π, thus for any k ∈ N we get

W 2
2 (µ

(γ)
k , π) ≤ E

[
‖Xk − Xkγ‖2

]
.

The rest of the proof then consists in bounding the right-hand side. It is worth noting
that in contrast to most analysis on Langevin dynamics, we consider a Langevin diffusion
(3.11) we scale the gradient term by n−1 and the Brownian motion by n−1/2. This
scaling is adapted to the averaging procedure defining (Xk)k∈N.

Decomposition of E[‖Xk − Xkγ‖2]. Denote by Fk the filtration generated by X0, (Wt)t≤kγ
and ({Xi

l }ni=1)l≤k. Using the definition (3.6) of (Xk)k∈N combined with A1, we show in
Proposition 3.5 that for any γ . 1

EFk
[
‖X(k+1)γ −Xk+1‖2

]
. (1− γm/2)‖Xkγ −Xk‖2 + Ek + γ2Sk + Vk, (3.12)

where Vk = n−1
∑

i∈[n] ‖Xi
k −Xk‖2 and

Sk = VarFk(n−1
∑

i∈[n]G
i
k),

Ek = γ−1‖EFk [Ik]‖2 + EFk
[
‖Ik‖2

]
,

with Ik = n−1
∑

i∈[n]

∫ (k+1)γ
kγ (∇U i(Xs)−∇U i(Xkγ))ds.

Bounding Ek. The term Ek accounts for the difference between the diffusion and its
discretization; the bound is the same for FALD and VR-FALD?. By adapting Durmus and
Moulines (2019, Lemma 21), we establish in Lemma 3.8 that

E
[
Ek
]
. γ2d/n. (3.13)

Under HX1, for γ . 1 the bound can be sharpened in

E
[
Ek
]
. (γ3d/n)(1 + d/n). (3.14)

The right-hand side of (3.13) has a higher order with respect to the step-size γ in
comparison to (3.14). This step is the reason why we consider the more restrictive as-
sumptionHX1, which leads to different guarantees depending on whether this condition
is met or not.

Bounding Sk. Sk is the conditional variance of the stochastic gradient. This is the
main difference between the two algorithms. For FALD, we show in Lemma 3.21 that

E
[
Sk
]
. E

[
‖Xk − Xkγ‖2

]
+ E

[
Vk
]

+ Vπ. (3.15)

On the other hand, under A3, we establish in Lemma 3.29 that for VR-FALD?, it holds
that

E
[
Sk
]
. ωE

[
‖Xk − Xkγ‖2

]
+ ωE

[
Vk
]

+
γωd

nqc

+ ωqc

k−1∑
l=0

(1− qc)
k−l−1E

[
‖Xlγ −Xl‖2

]
.
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Compared to the inequality (3.15), which holds for FALD, the variance term Vπ for
VR-FALD? is replaced by γωd/nqc, which can be made arbitrarily small with γ → 0.
Note that this term is inversely proportional to the update probability qc of the control
variate. Interestingly, the term Sk vanishes when ω = 0, i.e., when each client uses its
full local gradient at each iteration.

Bounding Vk. We show in Lemma 3.20 (FALD) and Lemma 3.28 (VR-FALD?), there
exist a0, a1 ≥ 0 satisfying

E[Vk] ≤ (1− γm/8)ka0 + a1.

To establish this result, we consider the sequence (fk)k∈N with general term given by

fk = Vk + αdd
2
k + ασσ

2
k,

where αd, ασ ≥ 0 are given in (3.101); dk = ‖Xk − x?‖ denotes the distance between
the average parameter Xk and the minimizer x? of the global potential U ; σk = 0 for
FALD and σ2

k = n−1
∑

i∈[n] EFk [‖∇̂U ik(Yk)−∇̂U ik(x?)‖2] for VR-FALD? with Yk defined in
(3.8). The weights αd, ασ are tailored to prove a contraction; more precisely, we show
the existence of a2 > 0 whose expression is given in Lemma 3.14, such that

fk+1 ≤ (1− γm/4)fk + γ2a2 + 2γd
(
1− τ

)
(1− n−1). (3.16)

An immediate induction combines with Vk ≤ fk yields a first bound for E[Vk] of the
form (3.3) with a1 of order γ. In a final step Lemma 3.12, we refine this bound to obtain
a term a1 of order γ2.

Gathering all the bounds. The proof is concluded by plugging the upper bounds
derived for Ek, Sk, Vk into (3.12).

3.4 Numerical experiments

To illustrate our findings, we perform three numerical experiments on both synthetic
toy-examples and real datasets. We compare FALD, VR-FALD? with Bayesian federated
learning benchmarks: DG-LMC (Plassier et al., 2021), the Federated Stochastic Langevin
Dynamics FSGLD (El Mekkaoui et al., 2021), the Quantized Langevin Stochastic Dy-
namic (QLSD) and its variance-reduced version QLSD++ (Vono et al., 2022b). We also in-
clude in our benchmark state of the art (centralized MCMC) algorithms: HMC (Brooks
et al., 2011), the Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh,
2011) and the preconditioned SGLD (pSGLD) (Li et al., 2016).

Gaussian posterior. We consider n = 100 clients associated to local Gaussian poten-
tials with mean {µi}i∈[n] and covariance {Σi}i∈[n], i.e., U i(x) = (1/2)(x− µi)>Σ−1

i (x−
µi). For different values of the hyperparameters (pc, γ, τ), we run 100 chains with
k1 = 107 iterations: (Xk)

k1
k=1 and discard 10% of the samples (more details are re-

ported in Section 3.E.1). For each chain, we estimate the posterior variance σ2
? =∫

‖x − x?‖2dπ(x|D) using FALD and VR-FALD?, where π(·|D) ∝ exp(−∑i∈[n] U
i) and

x? = arg maxx∈Rd π(x|D). We compute a Monte-Carlo estimates (over 102 independent
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Probability pc pc = 1/5 pc = 1/10 pc = 1/20
Stepsize γ 1

2pcγ̄
1
5pcγ̄

1
10pcγ̄

1
2pcγ̄

1
5pcγ̄

1
10pcγ̄

1
2pcγ̄

1
5pcγ̄

1
10pcγ̄

FALD (τ = 0) 2.5E+01 9.5E-01 3.9E-02 3.6E+01 1.1E+00 8.2E-02 4.2E+01 2.0E+00 1.1E-01
VR-FALD? (τ = 0) 4.8E-02 2.6E-02 1.4E-02 5.0E-02 4.9E-02 3.7E-02 9.8E-02 5.3E-02 3.9E-02
VR-FALD? (τ = 1) 2.8E-02 2.0E-02 1.3E-02 4.1E-02 3.7E-02 1.4E-02 8.6E-02 4.3E-02 2.1E-02

Table 3.1 – Asymptotic bias in function of τ , pc and γ.
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Figure 3.2 – MSE comparison with pc = 1/5 and γ = γ̄/3.

replications) of the Mean Squared Error (MSE) given by {(k1 − k0)−1
∑k1

k=k0+1 ‖Xk −
x?‖2 − σ2

?}2 where k1 is the total number of samples and k0 is the burn-in period. The
values of the hyperparameters are reported in Section 3.E.1. From Table 3.1, VR-FALD?

always outperforms FALD for any choices of pc, γ. This illustrates the impact of the
heterogeneity and supports the theoretical findings given in Theorems 3.1 and 3.3. Fur-
thermore, the asymptotic bias for VR-FALD? improves when τ = 1 as derived in the
theoretical analysis.

Bayesian Logistic Regression. We assess the performance of FALD and VR-FALD?

using calibration metrics—the expected calibration error (ECE), the Brier score (BS), and
the negative log likelihood (nNLL); see Guo et al. (2017)—and predictive accuracy. We
consider Bayesian logistic regression applied to the Titanic dataset, which consists of p =
2 classes with N = 2201 samples in dimension d = 4. This dataset is allocated between
n = 10 clients in a very heterogeneous manner, as displayed in Figure 3.3. We use an
isotropic Gaussian prior with a mean of zero and variance 1. We also report the total
variation distance between the predictive distribution obtained for FALD and VR-FALD?

to the predictive distribution approximated by 100 long runs of Langevin Stochastic
Dynamics (LSD). These metrics are evaluated on a test data sets of 441 samples, and
the mean and standard deviation are reported in Table 3.2. Moreover, we illustrate the
quality improvement of VR-FALD? over FALD in Figure 3.4. We compared the Wasserstein
distance using POT (Flamary et al., 2021) between the empirical distributions generated
by FALD, VR-FALD? to the estimated target distribution. Based on the same samples,
we compute the relative highest posterior density (HPD) error; see Section 3.E.2 for
details.
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Method Accuracy Agreement 104× TV 10×ECE 10×BS 10×nNLL
LSD 72.4 ± 0.1 99.9 ± 0.1 5.53 ± 2.00 1.20 ± 0.01 3.44 ± 0.00 5.30 ± 0.00
FALD 77.0 ± 0.8 91.3 ± 0.9 533.32 ± 8.13 1.05 ± 0.09 3.37 ± 0.01 5.19 ± 0.00
VR-FALD? 74.9 ± 0.1 93.6 ± 0.1 287.81 ± 2.04 1.00 ± 0.05 3.51 ± 0.00 5.35 ± 0.00

Table 3.2 – Bayesian Logistic Regression on Titanic.
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Figure 3.3 – Logistic regression – dataset distribution (Log Scale) and negative log-
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Figure 3.4 – Logistic regression – HPD relative error (left) and Wasserstein distance
(right).

Bayesian Neural Network: MNIST. To illustrate the behavior of FALD and VR-FALD?

in a non-convex setting, we perform Bayesian Neural Network (BNN) inference on the
MNIST dataset (Deng, 2012). To this end, we distribute the dataset to n = 20 clients as
follows: 80% of the data labeled y ∈ {0, . . . , 9} are equally allocated to clients i = y + 1
and i = y + 10; the remaining data are evenly distributed among the n clients. The
likelihood of the observations is computed using LeNet5 neural network (LeCun et al.,
1998) with an isotropic Gaussian prior. Finally, we implement FALD and its variants
with pc = 1/n and qc = Nn/Nd, where Nn is the batch size used in the experiments
and Nd is the total number of data. All standard deviations and the values of the other
parameters are reported in Section 3.E.3.

In Table 3.3 we can observe that the best results are obtained by VR-FALD?: it achieves
similar performance to the (fully centralized) SGLD and pSGLD. Alleviating client drift
using control variates is still effective even in the highly non-convex BNN setting.
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Method SGLD pSGLD FALD VR-FALD? FSGLD

Accuracy 99.1 99.2 99.1 99.2 98.5
103×ECE 6.88 21.6 4.07 4.34 6.34
102×BS 1.66 1.45 1.47 1.39 2.39
102×nNLL 3.53 4.24 3.06 3.43 4.87

Table 3.3 – Performance of Bayesian FL algorithms on MNIST.

Bayesian Neural Network: CIFAR10. We consider the CIFAR10 dataset (Kr-
izhevsky et al., 2009) and the ResNet-20 model (He et al., 2016). We split the data
across 20 clients, similar to the previous example. Denote by Y = {y1, . . . , y10} the set
of labels. Then 80% of the data associated with a label yj ∈ Y, j ∈ [10], is distributed
among clients j and j+10, while the rest of the data is evenly distributed among clients.
We assess the performance of FALD and VR-FALD? against HMC, Deep Ensemble, and
SGLD. We follow Izmailov et al. (2021) by computing the accuracy, agreement, and
total deviation distance between the predictive distribution. All of these quantities are
defined in the Appendix; see Section 3.E.4. We also report the calibration results and
all resulting scores in Table 3.4; the results for HMC and SGLD are from Izmailov et al.
(2021, Table 6). Details on the implementation and choice of hyperparameters can be
found in Section 3.E.4. We can see that VR-FALD? gives very similar results to SGLD
and performs favorably in terms of agreement. Finally, FALD and VR-FALD? outperform
Deep Ensembles.

Method HMC SGD Deep Ens. SGLD FALD VR-FALD?

Accuracy 89.6 91.57 91.68 89.96 92.54 92.03
Agreement 94.0 90.99 91.03 92.43 91.53 91.12
10× TV 0.74 1.45 1.49 1.03 1.42 1.39
102×ECE 5.9 4.71 5.44 4.41 3.79 3.26
10×BS 1.4 1.69 1.45 1.53 1.16 1.20
10×nNLL 3.07 3.35 3.81 3.15 2.75 2.63

Table 3.4 – Performance of Bayesian FL algo. on CIFAR10.

3.5 Conclusion

In this work, we propose VR-FALD? which extends the FALD Deng et al. (2021) algorithm
by introducing control variates to mitigate client drift and reducing stochastic gradient
variance. We develop a unifying framework for Bayesian FL combining ideas from
Langevin Monte Carlo and Federated Averaging schemes. The theory covers a wide
range of local stochastic gradient algorithms; connections can even be made with the
global consensus Monte Carlo method (Rendell et al., 2020; Vono et al., 2022a). Using
this theoretical framework, we develop non-asymptotic bounds for the algorithms FALD
and VR-FALD?, and discuss the choice of hyperparameters (learning rate, communication
probability, control variate update probability) to obtain optimal tradeoffs. Our analysis
allows to correct some errors in the results obtained previously for FALD. The results we
obtain on both toy examples and applications to BNNs clearly show the importance of
variance reduction and heterogeneity, even when the potential is non-convex.
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Theoretical road map. The derivations leading to Theorem 3.1 and Theorem 3.3
are split on two sections:

• Section 3.A consists of general results under mild assumptions. In this section,
we derive an upper bound on Vk – see Section 3.A.3, and provide a Wasserstein
upper bound holding for numerous federated averaging Langevin schemes in The-
orem 3.10.

• Section 3.B is subdivided between the results on FALD (Section 3.B.1) and VR-FALD?

(Section 3.B.2). In both subsections, we prove intermediate results showing that
results of Section 3.A.3 hold, and finally we apply Theorem 3.10 to provide the
final theoretical guarantees on FALD and VR-FALD?.

3.A General scheme and technical results

Problem statement. We consider a general recursion that includes both FALD and
VR-FALD?. This general scheme is based on i.i.d. random variables {ξk}k∈N taking values
in a measurable space (E, E) and whose joint distribution is denoted by νξ. Moreover,
we introduce a family of measurable functions {Gi : Rd × Y2 × C2 × E → Rd , Yi :
Rd×Y2×E→ Y , Ci : Rd×Y×C2×E→ C}ni=1, where (Y,Y) and (C, C) are measurable
spaces. For each i ∈ [n], the functions (Gi,Yi,Ci) correspond to the update of the local
parameter and control variate by the ith agent. To define the global control variate
update, we consider the function D : Y × Cn+1 × (Rd)n+1 × E → Y × C. Starting
from {Gi0}ni=1, {Xi

0}ni=1 ∈ (Rd)n, (C0, {Ci0}ni=1) ∈ Cn+1, (Y0, {Y i
0}ni=1) ∈ Yn+1 and set

X0 = n−1
∑n

i=1X
i
0. For each k ∈ N the random variables are updated according to

Gik+1 = Gi
(
Xi
k, Y

i
k , Yk, C

i
k, Ck, ξk+1

)
, (3.17)

X̃i
k+1 = Xi

k − γGik+1 +
√

2γ
(√

τ/n Z̃k+1 +
√

1− τ Zik+1

)
,

Y i
k+1 = Yi

(
Xi
k, Y

i
k , Yk, ξk+1

)
, (3.18)

Cik+1 = Ci
(
Xi
k, Y

i
k , C

i
k, Ck, ξk+1

)
, (3.19)

Xi
k+1 = Bk+1

n∑
j=1

X̃j
k+1 + (1−Bk+1)X̃i

k+1, (3.20)

(Yk+1, Ck+1) = D(Yk, Ck, {Cik}ni=1, {Xi
k}ni=1, ξk+1), (3.21)

where τ ∈
[
0, 1
]
; γ ∈

(
0, γ̄
]
is the step-size; {(Bk, ξk, Z̃k, Z1

k , . . . , Z
n
k ) : k ∈ N?} is a

set of independent sequences of i.i.d. random variables such that for any k ∈ N∗ Bk,
is a Bernoulli random variable with parameter pc ∈

(
0, 1
]
; and (Z̃k, Z

1
k , . . . , Z

n
k ) are

d-dimensional standard Gaussian random variables. Recall that (ξk)k≥1 is a set of i.i.d.
random variables distributed according to νξ such that Assumption 3.4 holds to ensure
that the combination of functions {Gi}i∈[n] provides an unbiased estimate of ∇U .

In iteration k ≥ 0, the local parameter of the ith client is denoted by Xi
k, and G

i
k stands

for its local gradient. If Bk = 1 (communication round), the local parameter Xi
k is set

to the value of the global server parameter Xk. If Bk = 0, Xi
k is set to the local update

X̃i
k. Moreover, we write Y i

k the reference point used to compute the control variate Cik.
The first step (3.17) corresponds to the computation of a stochastic estimate of ∇U i
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by the ith client. Then, the client updates the reference point Y i
k (3.18) at which the

local control variate is computed. The client also update its own local control variate
Cik in (3.19). If Bk+1 = 1, then the server averages the parameter of each client, and
broadcasts this average. If Bk+1 = 0, then each client keeps X̃i

k+1 as its new local
parameter. Finally, the server updates the reference point Yk and the global control
variate Ck according to (3.21). Denote the filtration {Fk}k∈N defined for any k ≥ 0, by

Algorithm 3.2 Stochastic Averaging Langevin Dynamics - FALD and its variants

Input: initial vectors (Xi
0)i∈[n], noise parameter τ ∈

[
0, 1
]
, number of communica-

tion rounds K, probability pc ∈
(
0, 1
]
of communication, probability qc ∈

[
0, 1
]
to

update the control variates, and step-size γ
Initialize: Y0 = (1/n)

∑n
i=1X

i
0 and C0 = (1/n)∇U(Y0)

for k = 0 to K − 1 do
Draw Bk+1 ∼ B(pc), Z̃k+1 ∼ N (0d, Id) // On every client
for i = 1 to n do // In parallel on the n clients

Draw ξik+1 ∼ νiξ, Z̃ik+1 ∼ N (0d, Id)

Compute Gik following (3.17)
Set X̃i

k+1 = Xi
k − γGik +

√
2γ (

√
τ/n Z̃k+1 +

√
1− τ Z̃ik+1)

if Bk+1 = 1 then
Broadcast X̃i

k+1 to the server // Communication round
else

Update Xi
k+1 ← X̃i

k+1 // Local step

if B̃k+1 = 1 then // Control variate update round
Broadcast the necessary information to the server in order to update

(Y i
k , C

i
k, Yk, Ck)
else

Set (Y i
k+1, C

i
k+1, Yk+1, Ck+1)← (Y i

k , C
i
k, Yk, Ck) // No update

if Bk+1 = 1 then // During communication round
Update then broadcast Xk+1 ← (1/n)

∑n
i=1 X̃

i
k+1 // On the central

server
Update the local parameter Xi

k+1 ← Xk+1 // On every client

if B̃k+1 = 1 then // During control variate update round
If needed, update then broadcast Yk+1 ← (1/n)

∑n
i=1X

i
k // On the

central server
Update (Y i

k , C
i
k) using the parameters (Xi

k, Y
i
k , Yk, Yk+1, Ck) // On every

client
Update then broadcast Ck+1 ← (1/n)

∑n
i=1C

i
k+1 // On the central

server
Output: samples {X`}{`∈[K] :B`=1}.

Fk = σ

X0,

(
Bl, Cl, Yl, Z̃l, ξl,

(
Cil , G

i
l, X

i
l , X̃

i
l , Y

i
l , Z

i
l

)
i=1,...,n

)
0≤l≤k

 (3.22)
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and consider the conditional expectation and variance denoted by EFk , VarFk(·) =
EFk [‖· − EFk [·]‖2] respectively. For k ∈ N, we introduce Xk the average of the local
parameters given by

Xk =
1

n

n∑
i=1

Xi
k, (3.23)

and we set

Vk =
1

n

n∑
i=1

‖Xi
k −Xk‖2. (3.24)

Finally, to control the distance between the average parameter Xk and the minimizer
x? = arg minU , we consider the parameter dk, which for k ≥ 0 is given by

dk = ‖Xk − x?‖. (3.25)

For each k ∈ N and γ ∈
(
0, γ̄
]
, we denote by µ

(γ)
k the distribution of Xk defined

by (3.23). To ensure the quality of the samples generated by Algorithm 3.2, we con-
trol the Wasserstein distance W2(π(·|D), µ

(γ)
k ). Recall that the Wasserstein distance

is the infimum of E[‖Xkγ −Xk‖2] over all couplings (Xkγ , Xk) such that Xkγ is dis-
tributed according to π(·|D). Thus, to study the convergence of (µ

(γ)
k )k∈N, we intro-

duce a synchronous coupling (Xkγ , Xk)k≥0 with values in (Rd)2 between π(·|D) and
µ

(γ)
k , starting from the couple (X0, X0) distributed according to ζ ∈ P2(Rd × Rd),

i.e., ζ(Rd, ·) = µ
(γ)
0 ∈ P2(Rd) and ζ(·,Rd) = π(·|D). Since log π(·|D) is supposed

m-strongly concave by A1, note that π(·|D) belongs in P2(Rd). Based on independ-
ent d-dimensional standard Brownian motions ({W̃t, {W̃i

t}ni=1})t≥0, we define Wt =√
τW̃t +

√
(1− τ)/n

∑n
i=1 W̃

i
t. For k ∈ N?, we introduce Z̃k = γ−1/2(W̃kγ − W̃(k−1)γ),

and for i ∈ [n], we consider Z̃ik = γ−1/2(W̃i
kγ − W̃i

(k−1)γ). Therefore, for all k ∈ N? we
can verify that Wkγ −W(k−1)γ =

√
γτZ̃k +

√
γ(1− τ)/n

∑n
i=1 Z̃

i
k. Moreover, consider

(Xt)t≥0 the strong solution of the Langevin stochastic differential equation (SDE) given
by

dXt = − 1

n
∇U(Xt) dt+

√
2

n
dWt. (3.26)

The Langevin diffusion defines a Markov semigroup (P̃t)t≥0 satisfying π(·|D)P̃t = π(·|D)
for any t ≥ 0, see for example Roberts and Tweedie (1996, Theorem 2.1). Note that Xt
and Xk are distributed according to π(·|D) and µ(γ)

k , respectively. From the definition
of the Wasserstein distance of order 2 it follows that

W2(π(·|D), µ
(γ)
k ) ≤ E

[
‖Xkγ −Xk‖2

]1/2
.

So the proof consists mainly of upper bounding the squared norm ‖Xkγ −Xk‖, from
which we derive an explicit bound on the Wasserstein distance by the previous inequal-
ity.

First upper bound on EFk [‖X(k+1)γ −Xk+1‖2]. Under mild assumptions, we derive
a first bound in Proposition 3.5 to control ‖X(k+1)γ −Xk+1‖2 based on ‖Xkγ −Xk‖2,
(1/n)

∑n
i=1G

i
k and Vk. This decomposition highlights the different approximations

brought by the discretization of the Langevin diffusion (3.26) between the averaged
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parameter (Xk)k∈N defined in (3.23) and {Xkγ}k∈N. Recall that x? = arg minU and for
all k ∈ N, consider Ik the approximation error defined by

Ik =

∫ (k+1)γ

kγ

(
∇Ū(Xs)−∇Ū(Xkγ)

)
ds. (3.27)

For γ̄ > 0 small enough and k ∈ N, for all γ ∈
(
0, γ̄
]
and under the following assumption

Assumption 3.4 we control the distance between the target distribution π(·|D) and µ(γ)
k .

Assumption 3.4. For any {(xi, yi, ci)}ni=1 ∈ R3d, we have

n∑
i=1

∫
E
Gi

({
(xj , yj , cj)

}n
j=1

, ξi

)
dνξ(ξ

i) =
n∑
i=1

∇U i(xi).

Proposition 3.5. Assume A1, Assumption 3.4 hold and let γ ≤ 2(3L)−1. Then, for
any k ∈ N, we have

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤
[
1− γm

(
1− 3γL

)]
‖Xkγ −Xk‖2 + γ

(
2L2

m
+ 3γL2

)
Vk

+

(
2

γm

∥∥∥EFk [Ik]∥∥∥2
+ 3EFk

[∥∥Ik∥∥2
])

+ γ2 VarFk

 1

n

n∑
i=1

Gik

 ,

where Vk,Fk, dk are defined in (3.24), (3.22) and (3.25).

Proof Let k be in N and γ in
(

0, 2(3L)−1
]
. Recall the stochastic processesXk+1,X(k+1)γ

are defined in (3.23) and (3.26) by
X(k+1)γ = Xkγ − γ∇Ū(Xkγ)− Ik +

√
2/n

(
W(k+1)γ −Wkγ

)
,

Xk+1 = 1
n

∑n
i=1

[
Xi
k − γGik +

√
2γ
(√

τ/n Z̃k+1 +
√

1− τ Z̃ik+1

)]
,

with Ik defined in (3.27). Substracting the two above equations gives

X(k+1)γ −Xk+1 = (Xkγ −Xk)−

∫ (k+1)γ

kγ
∇Ū(Xs)ds−

γ

n

n∑
i=1

Gik

 .

Taking the conditional expectation of the above equation and developing the squared
norm, we obtain

EFk
[
‖X(k+1)γ −Xk+1‖2

]
= EFk

[
‖Xkγ −Xk‖2

]
−2γ

〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
− 2

〈
Xkγ −Xk,EFk

[
Ik
]

+ γ∇Ū(Xk)−
γ

n

n∑
i=1

EFk
[
Gik

]〉

+ EFk


∥∥∥∥∥∥Ik + γ∇Ū(Xkγ)− γ

n

n∑
i=1

Gik

∥∥∥∥∥∥
2
 . (3.28)
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Using that for all α > 0, (a, b) ∈ (Rd)2, 2〈a, b〉 ≤ α‖a‖2 + (1/α)‖b‖2 combined with
Assumption 3.4, for any ε > 0 we have

− 2

〈
Xkγ −Xk,EFk

[
Ik
]

+ γ∇Ū(Xk)−
γ

n

n∑
i=1

EFk
[
Gik

]〉
≤ ε‖Xkγ −Xk‖2

+
2

ε

∥∥∥EFk [Ik]∥∥∥2
+

2γ2

ε

∥∥∥∥∥∥∇Ū(Xk)−
1

n

n∑
i=1

∇U i(Xi
k)

∥∥∥∥∥∥
2

. (3.29)

In addition, the unbiased property Assumption 3.4 implies that

EFk


∥∥∥∥∥∥Ik + γ∇Ū(Xkγ)− γ

n

n∑
i=1

Gik

∥∥∥∥∥∥
2
 = γ2 VarFk

 1

n

n∑
i=1

Gik



+ EFk


∥∥∥∥∥∥γ
(
∇Ū(Xkγ)−∇Ū(Xk)

)
+ Ik + γ∇Ū(Xk)−

γ

n

n∑
i=1

∇U i(Xi
k)

∥∥∥∥∥∥
2
 . (3.30)

The Young inequality shows that

EFk


∥∥∥∥∥∥γ
(
∇Ū(Xkγ)−∇Ū(Xk)

)
+ Ik + γ∇Ū(Xk)−

γ

n

n∑
i=1

∇U i(Xi
k)

∥∥∥∥∥∥
2


(3.31)

≤ 3γ2
∥∥∥∇Ū(Xkγ)−∇Ū(Xk)

∥∥∥2
+ 3EFk

[∥∥Ik∥∥2
]

+ 3γ2

∥∥∥∥∥∥∇Ū(Xk)−
1

n

n∑
i=1

∇U i(Xi
k)

∥∥∥∥∥∥
2

.

By A1 we know that Ū is L-smooth and convex which imply the co-coercivity of

Ū (Nesterov, 2003, Theorem 2.1.5), that is for all x, y ∈ Rd,
∥∥∥∇Ū(y)−∇Ū(x)

∥∥∥2
≤

L
〈
∇Ū(y)−∇Ū(x), y − x

〉
. Hence, we deduce that

∥∥∥∇Ū(Xkγ)−∇Ū(Xk)
∥∥∥2
≤ L

〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
. (3.32)

Setting ε = γm, we have 0 < ε ≤ 1 and 1 + 1/ε ≤ 2(γm)−1. Therefore, (3.29), (3.30)
and (3.32) associated with (3.28) show that

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤
(
1 + γm

)
‖Xkγ −Xk‖2+

(
2

γm

∥∥∥EFk [Ik]∥∥∥2
+ 3EFk

[∥∥Ik∥∥2
])

− γ
(
2− 3γL

) 〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
+ γ2

(
3 +

2

γm

)∥∥∥∥∥∥∇Ū(Xk)−
1

n

n∑
i=1

∇U i(Xi
k)

∥∥∥∥∥∥
2

+ γ2 VarFk

 1

n

n∑
i=1

Gik

 . (3.33)
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For any i ∈ [n], by A1, the m-convexity of Ū gives that〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
≥ m‖Xkγ −Xk‖2 (3.34)

In addition, under A1 the Jensen inequality implies∥∥∥∥∥∥∇Ū(Xk)−
1

n

n∑
i=1

∇U i(Xi
k)

∥∥∥∥∥∥
2

≤ L2Vk, (3.35)

where Vk is defined in (3.24). Therefore, using the assumption on γ and plugging (3.34)
and (3.35) in (3.33) yields the expected inequality.

3.A.1 General supporting lemmas

In this subsection, we consider the stochastic processes (Xk)k∈N, (Xkγ)k∈N defined in
(3.23) and (3.26). We derive several lemmas which allow us to derive a recursion on
E[‖Xkγ −Xk‖2].

Lemma 3.6. Assume A1 holds. Then, for any k ∈ N and γ > 0 we have

E
[∥∥Ik∥∥2

]
≤ dγ3L2

n

(
1 +

γL2

2m
+
γ2L2

12

)
.

Proof Let k be in N. Using the Jensen inequality, we have

E
[∥∥Ik∥∥2

]
= E


∥∥∥∥∥∥
∫ (k+1)γ

kγ

(
∇Ū(Xs)−∇Ū(Xkγ)

)
ds

∥∥∥∥∥∥
2


≤ γ
∫ (k+1)γ

kγ
E

[∥∥∥∇Ū(Xs)−∇Ū(Xkγ)
∥∥∥2
]

ds

≤ L2γ

∫ (k+1)γ

kγ
E
[
‖Xs − Xkγ‖2

]
ds. (3.36)

Further, for any s ∈ R+, using Durmus and Moulines (2019, Lemma 21) applied to
(Xnt)t∈R+ we obtain

EFkγ
[
‖Xs − Xkγ‖2

]
≤ d(s− kγ)

n

(
2 + (s− kγ)2L

2

3

)
+

3

2
(s− kγ)2L2‖Xkγ − x?‖2.

Integrating the previous inequality on [kγ, (k + 1)γ], it implies∫ (k+1)γ

kγ
E
[
‖Xs − Xkγ‖2

]
ds ≤ γ2

n

(
d+

nL2γ

2
E
[
‖Xkγ − x?‖2

]
+
dL2γ2

12

)
. (3.37)
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Plugging (3.37) in (3.36) gives

E
[∥∥Ik∥∥2

]
≤ L2γ3

n

(
d+

nL2γ

2
E
[
‖Xkγ − x?‖2

]
+
dL2γ2

12

)
. (3.38)

Applying Durmus and Moulines (2019, Proposition 1) to (Xnt)t∈R+ , we get

E
[
‖Xkγ − x?‖2

]
≤ d

nclientsm
. (3.39)

Thus, combining (3.38) with (3.39) completes the proof.

Lemma 3.7. Assume A1 and HX1 hold. Then, for any k ∈ N and γ > 0 we have

E

[∥∥∥EFk [Ik]∥∥∥2
]
≤ 2γ4d

3n

(
L3 +

dL̃2

n

)
,

where Ik is defined in (3.27).

Proof Denote ∆ the Laplacian defined, for all x ∈ Rd, by ∆U(x) = {∑d
l=1(∂2Uj)(x)/∂x2

l }dj=1,
moreover let k ∈ N be a fixed integer and γ > 0. Using the Itô formula, we have for
s ∈

[
kγ, (k + 1)γ

]
∇Ū(Xs)−∇Ū(Xkγ) =

∫ s

kγ

1

n
∆(∇Ū)(Xu)−∇2Ū(Xu)∇Ū(Xu)du+

√
2

n

∫ s

kγ
∇2Ū(Xu)dBu.

(3.40)
We will upper bound separately the three terms of the previous equality. First, the
L-Lipschitz property of ∇Ū given by A1 implies for any u ∈ R+ that∥∥∥∇2Ū(Xu)∇Ū(Xu)

∥∥∥ ≤ L∥∥∥∇Ū(Xu)−∇Ū(x?)
∥∥∥ . (3.41)

In addition, since for u ∈ R+, the random variable Xu is distributed according to the
stationary distribution π(·|D) ∝ exp(−U), we know from Dalalyan (2017a, Lemma 2)
that

E

[∥∥∥∇Ū(Xu)−∇Ū(x?)
∥∥∥2
]
≤ dL

n
. (3.42)

Therefore, we deduce from (3.41) and (3.42) the following bound

E

[∥∥∥∇2Ū(Xu)∇Ū(Xu)
∥∥∥2
]
≤ dL3

n
. (3.43)

Denote (ei)
d
i=1 the canonical basis of Rd; using that U is three times continuously differ-

entiable we can apply the Schwarz’s theorem which combined with HX1, immediately
yield that

∥∥∥∆(∇Ū)(x)
∥∥∥2

=
d∑
i=1

∣∣∣∣∣∣∣
d∑
j=1

∂2
j ∂iŪ(x)

∣∣∣∣∣∣∣
2

≤ d
d∑
i=1

d∑
j=1

∣∣∣∂i∂2
j Ū(x)

∣∣∣2



CHAPTER 3. FALD: FEDERATED AVERAGING LANGEVIN DYNAMICS 116

= d
d∑
i=1

lim
ε→0

ε−2
d∑
j=1

∣∣∣∂2
j Ū(x+ ε · ei)− ∂2

j Ū(x)
∣∣∣2


≤ d
d∑
i=1

lim
ε→0

{
ε−2

(
L̃‖(x+ ε · ei)− x‖−1

)2
}
≤
(
dL̃
)2
. (3.44)

Lastly, we upper bound the third term derived in (3.40). Since the potentials {U i}i∈[n]

are supposed L-smooth and Ū twice continuously differentiable, for s ∈
[
kγ, (k + 1)γ

]
we know that

∫ s
kγ ∇2Ū(Xu)dBu is a Fs-martingale. Thus, for k ≥ 0 we deduce that

EFk

∫ (k+1)γ

kγ
∇2Ū(Xu) du

 = 0. (3.45)

Eventually, combining (3.40), (3.43), (3.44) and (3.45) with the Jensen and Young
inequalities give

1

γ
E

[∥∥∥EFk [Ik]∥∥∥2
]

=
1

γ
E


∥∥∥∥∥∥
∫ (k+1)γ

kγ
EFk

[
∇Ū(Xs)−∇Ū(Xkγ)

]
ds

∥∥∥∥∥∥
2


≤
∫ (k+1)γ

kγ
E

∥∥∥∥EFk [∇Ū(Xs)−∇Ū(Xkγ)
]∥∥∥∥2
ds

=

∫ (k+1)γ

kγ
E


∥∥∥∥∥∥EFk

[∫ s

kγ

1

n
∆(∇Ū)(Xu)−∇2Ū(Xu)∇Ū(Xu)du

]∥∥∥∥∥∥
2
ds

≤ 2

∫ (k+1)γ

kγ
(s− kγ)

∫ s

kγ
E

 1

n2

∥∥∥∥∥
∫ s

kγ
∆(∇Ū)(Xu)du

∥∥∥∥∥
2

+
∥∥∥∇2Ū(Xu)∇Ū(Xu)du

∥∥∥2

ds

≤ 2

∫ (k+1)γ

kγ
(s− kγ)2

(
dL3

n
+

(dL̃)2

n2

)
ds =

2γ3d

3n

(
L3 +

dL̃2

n

)
.

Multiplying this last inequality by γ > 0 proves the expected result.

Lemma 3.8. Assume A1 hold. Then, for any k ∈ N and γ ∈
(

0, (3m)−1
]
we have

2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+3E
[∥∥Ik∥∥2

]
≤


3γ2dL2

nm

(
1 + 19γL2

36m

)
γ3d
nm

(
5L3 + 4dL̃2

3n

)
if HX1 holds and γ ≤ L−1.

Proof Let k be in N and γ ∈
(

0, (3m)−1
]
, using Lemma 3.6 we have

E
[∥∥Ik∥∥2

]
≤ γ3dL2

n

(
1 +

γL2

2m
+
γ2L2

12

)
.
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Therefore, we deduce

2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+ 3E
[∥∥Ik∥∥2

]
≤ 3γ2dL2

nm

(
1 +

γL2

2m
+
γ2L2

12

)
.

Moreover, if we additionally suppose the regularity of the Hessian of the potentials
(U i)ni=1 as stated in HX1, we sharpen the upper bound on E[‖EFk [Ik]‖2]. Indeed, we
show in Lemma 3.7 that

2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]
≤ 4γ3d

3nm

(
L3 +

dL̃2

n

)
.

Hence, we deduce that

2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+ 3E
[∥∥Ik∥∥2

]
≤ 3γ3dL2

n

(
1 +

γL2

2m
+
γ2L2

12

)
+

4γ3d

3nm

(
L3 +

dL̃2

n

)

≤ γ3dL3

nm

(
3 +

4

3
+

19γL

36

)
+

4γ3d2L̃2

3n2m
.

3.A.2 Derivation of the central theorem

Assumption 3.9. There exist αv ∈
(
0, 1
)
and (v1, v2) ∈ (R+)2 such that for any k ∈ N,

Vk satisfies
E
[
Vk
]
≤ v1α

k
v + v2,

where Vk is defined in (3.24).

HX2. There exist qc ∈ (0, 1) and α0, α1, α2, α3, α4 ∈ R+ satisfying

(1− qc)(1 + α0 +
√

(α0 − 1)2 + 4α1) < 2

such that for k ≥ 0 the following inequality holds

(1−qc)
−1E

[
‖X(k+1)γ −Xk+1‖2

]
≤ α0E

[
‖Xkγ −Xk‖2

]
+α1

k−1∑
l=0

(1−qc)
k−lE

[
‖Xlγ −Xl‖2

]
+ α2E

[
Vk
]

+ α3

k−1∑
l=0

(1− qc)
k−lE

[
Vl
]

+ α4.

With the notation introduced in HX2, consider

δ =
−1− α0 +

√
(α0 − 1)2 + 4α1

2
. (3.46)

At iteration k ≥ 0, recall that µ(γ)
k denotes the distribution of the average parameter Xk

(3.23). The next result controls the Wasserstein distance between µ(γ)
k and the posterior

distribution π.



CHAPTER 3. FALD: FEDERATED AVERAGING LANGEVIN DYNAMICS 118

Theorem 3.10. Assume HX2 and Assumption 3.9 hold. Then, for any probability
measure µ(γ)

0 ∈ P2(Rd), k ∈ N, we have

W 2
2

(
µ

(γ)
k , π

)
≤
(
1 + α0 + δ

)k (
1− qc

)k
W 2

2

(
µ

(γ)
0 , π

)
+ (1− qc)v1

(
α2 +

α3

α0 + δ

)
αkv −

(
1 + α0 + δ

)k (
1− qc

)k
αv −

(
1 + α0 + δ

) (
1− qc

)
+

1− qc

qc − (1− qc)(α0 + δ)

(α2 +
α3

α0 + δ

)
v2 + α4

 .
Proof For any k ∈ N, define

uk =
(
1− qc

)−k E [‖Xkγ −Xk‖2
]
, Sk =

k∑
l=0

ul,

vk =
(
1− qc

)−k (
α2E

[
Vk
]

+ α4

)
+ α3

k−1∑
l=0

(1− qc)
−lE

[
Vl
]
.

(3.47)

With the above notations, HX2 becomes

uk+1 ≤ α0uk + α1

k−1∑
l=0

ul + vk,

which can be rewritten as

Sk+1 − Sk ≤ α0

(
Sk − Sk−1

)
+ α1Sk−1 + vk. (3.48)

Since δ is solution of δ(1 + α0 + δ) + α0 − α1 = 0, adding (1 + δ)Sk in (3.48) gives that

Sk+1 + δSk ≤
(
1 + α0 + δ

)(
Sk −

α0 − α1

1 + α0 + δ
Sk−1

)
+ vk

=
(
1 + α0 + δ

) (
Sk + δSk−1

)
+ vk.

Using the fact that α0 ≤ 1 +
√

(α0 − 1)2 + 4α1, we obtain 2(1 + δ) = 1 − α0 +√
(α0 − 1)2 + 4α1 ≥ 0. Hence 1 + δ > 0, which leads to the following upper bound

uk+1 ≤ uk+1 + (1 + δ)

k∑
l=0

ul = Sk+1 + δSk.

Thus, we obtain that

uk ≤ Sk + δSk−1 ≤
(
1 + α0 + δ

)k−1
(
u1 + (1 + δ)uk

)
+

k−1∑
l=1

(
1 + α0 + δ

)k−l−1
vl.

Plugging the definition (3.47) of uk and vl inside the previous inequality, we get

(
1− qc

)−k E [‖Xkγ −Xk‖2
]
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≤
(
1 + α0 + δ

)k−1
((

1− qc

)−1 E
[
‖Xγ −X1‖2

]
+ (1 + δ)E

[
‖X0 −X0‖2

])

+
k−1∑
l=1

(
1 + α0 + δ

)k−l−1

(1− qc

)−l (
α2E

[
Vl
]

+ α4

)
+ α3

l−1∑
j=0

(1− qc)
−jE

[
Vj

] .
(3.49)

Moreover, using HX2 we obtain that

E
[
‖Xγ −X1‖2

]
≤ (1− qc)α0E

[
‖X0 −X0‖2

]
+ (1− qc)α2E

[
V0

]
+ α4, (3.50)

combining (3.49) with (3.50) yield

E
[
‖Xkγ −Xk‖2

]
≤
(
1 + α0 + δ

)k (
1− qc

)k E [‖X0 −X0‖2
]

+ α2

k−1∑
l=0

(
1 + α0 + δ

)k−l−1 (
1− qc

)k−l E [Vl]
+ α3

k−2∑
j=0

(1− qc)
k−jE

[
Vj

] k−1∑
l=j+1

(
1 + α0 + δ

)k−l−1

+ (1− qc)α4

k−1∑
l=0

(
1 + α0 + δ

)l (
1− qc

)l
. (3.51)

Consider the function f : a ∈ R→ R defined by f(a) = a(1 + α0 + a) +α0−α1. Using
the definition (3.46) of δ combined with the increasing property of f , we deduce from
f(δ) = 0 > f(−α0) = −α1 that δ > −α0, and thus we get 1 +α0 + δ > 1 which implies
that

k−1∑
l=j+1

(
1 + α0 + δ

)k−l−1 ≤
k−j−2∑
l=0

(
1 + α0 + δ

)k−j−l−2 ≤ (1 + α0 + δ)k−j−1

α0 + δ
. (3.52)

Therefore, plugging (3.52) in (3.51) gives

k−2∑
j=0

(1−qc)
k−jE

[
Vj

] k−1∑
l=j+1

(
1 + α0 + δ

)k−l−1 ≤
k−2∑
l=0

(
1− qc

)k−l
(1 + α0 + δ)k−l−1

α0 + δ
E
[
Vl
]
.

(3.53)
In addition, since HX2 ensures that (1− qc)(1 + α0 + δ) < 1, we have

k−1∑
l=0

(
1 + α0 + δ

)l (
1− qc

)l ≤ 1

qc − (1− qc)(α0 + δ)
. (3.54)

The last inequality combined with (3.51) and (3.53) show that

E
[
‖Xkγ −Xk‖2

]
≤
(
1 + α0 + δ

)k (
1− qc

)k E [‖X0 −X0‖2
]

+

(
α2 +

α3

α0 + δ

)
k−1∑
l=0

(
1 + α0 + δ

)k−l−1 (
1− qc

)k−l E [Vl]+
(1− qc)α4

qc − (1− qc)(α0 + δ)
.

(3.55)
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Further, since we assume Assumption 3.9, we have

k−1∑
l=0

(
1 + α0 + δ

)k−l−1 (
1− qc

)k−l E [Vl] ≤ v1

k−1∑
l=0

(
1 + α0 + δ

)k−l−1 (
1− qc

)k−l
αlv

+ v2

k−1∑
l=0

(
1 + α0 + δ

)k−l−1 (
1− qc

)k−l
. (3.56)

A calculation gives that

k−1∑
l=0

(
1 + α0 + δ

)k−l−1 (
1− qc

)k−l
αlv ≤ (1− qc)

αkv −
(
1 + α0 + δ

)k (
1− qc

)k
αv −

(
1 + α0 + δ

) (
1− qc

) (3.57)

and combining (3.54), (3.56) with (3.57), we find that

k−1∑
l=0

(
1 + α0 + δ

)k−l−1 (
1− qc

)k−l E [Vl]
≤ (1− qc)v1

αkv −
(
1 + α0 + δ

)k (
1− qc

)k
αv −

(
1 + α0 + δ

) (
1− qc

) +
(1− qc)v2

qc − (1− qc)(α0 + δ)
. (3.58)

Therefore, plugging (3.58) inside (3.55) shows that

E
[
‖Xkγ −Xk‖2

]
≤
(
1 + α0 + δ

)k (
1− qc

)k E [‖X0 −X0‖2
]

+ (1− qc)v1

(
α2 +

α3

α0 + δ

)
αkv −

(
1 + α0 + δ

)k (
1− qc

)k
αv −

(
1 + α0 + δ

) (
1− qc

)
+

1− qc

qc − (1− qc)(α0 + δ)

(α2 +
α3

α0 + δ

)
v2 + α4

 . (3.59)

Eventually, since the Wasserstein distanceW2(π, µ
(γ)
k ) is the infimum over all couplings,

we obtain that W 2
2 (π, µ

(γ)
k ) ≤ E[‖Xkγ −Xk‖2]. Moreover, it follows from the strongly

convex assumption A1 that π ∈ P2(Rd). Thus, we can apply Villani (2008, Theorem
4.1) to prove the existence of an optimal coupling ζ such that taking (X0, X0) distrib-
uted according to ζ implies that E[‖X0 −X0‖2]1/2 = W2(π, µ

(γ)
0 ). Substituting these

results into (3.59) completes the proof.

3.A.3 Upper bound on Vk

The goal of this subsection is to prove the upper bound derived in Lemma 3.13 for
(E
[
Vk
]
)k∈N to ensure that Assumption 3.9 holds. Recall that for k ≥ 0, Vk is defined in

(3.24), dk in (3.25), Gik in (3.17) and we introduce Ḡik = EFk [Gik]. To prove the central
lemma of this subsection, we also consider the assumptionsHX3 andHX4 given below.

HX 3. There exist Ad, Aσ ∈
(
0, 1
)
, Bd, Bσ, Cd, Cσ, Dd, Dσ ∈ R+, such that for any

k ∈ N, we have

E
[
d2
k+1

]
≤
(
1−Ad

)
E
[
d2
k

]
+BdE

[
σ2
k

]
+ CdE

[
Vk
]

+Dd,
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E
[
σ2
k+1

]
≤
(
1−Aσ

)
E
[
σ2
k

]
+BσE

[
d2
k

]
+ CσE

[
Vk
]

+Dσ.

HX4. There exist A, Ā,B, B̄, C, C̄,D, D̄ ≥ 0 such that for any i ∈ [n], k ∈ N, we have

1

n

n∑
i=1

E

[∥∥∥Ḡik∥∥∥2
]
≤ ĀE

[
Vk
]

+ B̄E
[
d2
k

]
+ C̄E

[
σ2
k

]
+ D̄,

1

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]
≤ AE

[
Vk
]

+BE
[
d2
k

]
+ CE

[
σ2
k

]
+D.

With the notation considered in HX3 and HX4, for any γ > 0 we also introduce the
following quantities:

Cγ =
4(1− pc)γ

2

pc − 4Ad

B +
2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

) ,
Cγ
r =

9γ2
(
1− pc

)
Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

)
,

Cγ
σ =

4(1− pc)γ
2

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ CγBd

(
2 +

3

Aσ −Ad

)
,

Cγ
d0

= 7Cγ , Cγ
V = 1 + 2CγCd,

Cγ
δ =

4(1− pc)γ
2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)

+
Cγ

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)(
Dd +

BdDσ

Aσ

)
+

8
(
1− τ

)
(n− 1)γd

npc
.

(3.60)

If Ad ≤ Aσ/2 and AdAσ ≥ 8BdBσ, we also introduce a convergence rate (proved later
in Lemma 3.12) defined by

α = Ad −
2(Aσ −Ad)−1BdBσ

1 +
√

1 + 4(1−Ad)−1(Aσ −Ad)−1BdBσ
. (3.61)

Lemma 3.11. Assume HX3 and also that Ad ≤ Aσ/2, AdAσ ≥ 8BdBσ hold. Then,
we have

Ad/2 < α ≤ Ad.

Proof First, introduce δα ∈ R+ the unique non-negative solution of

δ2
α + δα =

BdBσ
(1−Ad)(Aσ −Ad)

.

Since we supposeAd ≤ Aσ/2, thus we haveAd ≤ 1/2 which implies that (1−Ad)(A2
d/4 +Ad/2) ≥

Ad/4. In addition, using AdAσ ≥ 8BdBσ, we get that

(
1−Ad

)(A2
d

4
+
Ad
2

)
≥ Ad

4
≥ 2BdBσ

Aσ
≥ (1−Ad)

(
δ2
α + δα

)
.
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Hence, the increasing property of the function x ∈ R+ 7→ x2 + x combined with the
fact that δα ≥ 0 prove that Ad ≥ 2δα. Moreover, a calculation shows that α satisfies
α = 1− (1−Ad)(1 + δα). Thus, using 0 ≤ 2δα ≤ Ad implies that α ∈

(
Ad/2, Ad

]
.

The random variable Vk given in (3.24) measures the averaged distance between the
global parameter Xk and the local ones (Xi

k)i∈[n]. The first lines of the proof of the
next lemma are based on Gorbunov et al. (2021, Lemma E.3), however their purpose
was to upper bound

∑
l wlEVl for some weights wl > 0, while we prefer to control EVk to

combine this bound with that of Proposition 3.5. Moreover, the assumptions considered
in this work are different, so the proof requires the development of other techniques

Lemma 3.12. Assume HX3, HX4 hold with Ad < min(Aσ/2, pc/4), AdAσ ≥ 8BdBσ

and consider γ ≤ p
1/2
c (2− 2pc)

−1/2[A+ (1 + 2/pc)Ā]−1/2. Then, for any k ∈ N, we
have

E
[
Vk
]
≤
(
1− α

)k (
Cγ
V E
[
V0

]
+ Cγ

d0
E
[
d2

0

]
+ Cγ

σE
[
σ2

0

]
+ 2Dd

)
+ Cγ

r

k−2∑
i=0

(
1− α

)k−i−1 E
[
Vi
]

+ Cγ
δ ,

where Vk is defined in (3.24).

Proof Let k ∈ N?, using for i ∈ [n] the definitions (3.20), (3.23) of Xi
k and Xk

Xi
k+1 = Xi

k − γGik +
√

2γ
(√

τ/n Z̃k+1 +
√

1− τ Z̃ik+1

)
,

Xk+1 = Xk −
γ

n

n∑
j=1

Gik +

√
2γτ

n
Z̃k+1 +

√
2(1− τ)γ

n

n∑
i=1

Zik+1.

First upper bound on E
[
Vk
]
. Substracting the two above equations combined with

the Jensen inequality give

E
[
Vk+1

]
=

1

n

n∑
i=1

E

[∥∥∥Xi
k+1 −Xk+1

∥∥∥2
]

=
1− pc

n

n∑
i=1

E


∥∥∥∥∥∥∥(Xi

k −Xk)− γ(Gik −Gk) +
√

2(1− τ)γZik+1 −
√

2(1− τ)γ

n

n∑
j=1

Zjk+1

∥∥∥∥∥∥∥
2


=
1− pc

n

n∑
i=1

E

[∥∥∥(Xi
k −Xk)− γ(Ḡik − Ḡk)

∥∥∥2
]

+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥(Gik − Ḡik)− (Gk − Ḡk)
∥∥∥2
]

+ 2(1− τ)γE


∥∥∥∥∥∥∥Zik+1 −

1

n

n∑
j=1

Zjk+1

∥∥∥∥∥∥∥
2
 ,

where the inner product is eliminated using that EFk [Gik − Gk] = Ḡik − Ḡk (with Fk
defined in (3.22)). Recall that, for any u0, u1 ∈ Rd and ε > 0, it holds ‖u0 + u1‖2 ≤
(1 + ε)‖u0‖2 + (1 + ε−1)‖u1‖2. In addition, denoting I ∼ Unif([n]) and using the Jensen
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inequality, we obtain that

n−1
n∑
i=1

E[‖(Gik − Ḡik)− (Gk − Ḡk)‖2] = E[‖(GIk − ḠIk)− (Gk − Ḡk)‖2]

≤ E[‖GIk − ḠIk‖2].

Setting u0 = Xi
k −Xk, u1 = γ(Ḡik − Ḡk) and ε = 2/pc, we get

E
[
Vk+1

]
≤ 1− pc

n

n∑
i=1

E

[∥∥∥(Xi
k −Xk)− γ(Ḡik − Ḡk)

∥∥∥2
]

+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]

+ 2
(
1− τ

)
(1− 1/n)γd

≤ (1− pc)(1 + pc/2)

n

n∑
i=1

E

[∥∥∥Xi
k −Xk

∥∥∥2
]

+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]

+
(1− pc)(1 + 2/pc)γ

2

n

n∑
i=1

E

[∥∥∥Ḡik − Ḡk∥∥∥2
]

+ 2
(
1− τ

)
(1− 1/n)γd.

Using (1−pc)(1+pc/2) ≤ 1−pc/2 and n−1
∑n

i=1 EFk [‖Ḡik − Ḡk‖2] = EFk [‖ḠIk − Ḡk‖2] ≤
EFk [‖ḠIk‖2], we finally obtain that

E
[
Vk+1

]
≤
(

1− pc/2
)
E
[
Vk
]

+
(1− pc)(2 + pc)γ

2

pcn

n∑
i=1

E

[∥∥∥Ḡik∥∥∥2
]

+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]

+ 2
(
1− τ

)
(1− 1/n)γd.

Combining the last inequality with HX4, it shows

E
[
Vk+1

]
≤

1− pc

2
+ (1− pc)γ

2

[
A+

2 + pc

pc
Ā

]E
[
Vk
]
+(1−pc)γ

2

(
D +

2 + pc

pc
D̄

)

+(1−pc)γ
2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+(1−pc)γ

2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
+2
(
1− τ

)
(1− 1/n)γd.

Since γ ≤ p
1/2
c

2(1−pc)1/2
[
A+(1+2/pc)Ā

]1/2 , the above inequality implies that

E
[
Vk+1

]
≤
(

1− pc

4

)
E
[
Vk
]

+ (1− pc)γ
2

(
D +

2 + pc

pc
D̄

)
+ 2

(
1− τ

)
(1− 1/n)γd

+ (1− pc)γ
2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+ (1− pc)γ

2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
.

Using by convention that
∑−1

l=0 = 0, an induction shows that

E
[
Vk
]
≤
(

1− pc

4

)k
E
[
V0

]
+

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)
+

8
(
1− τ

)
(n− 1)γd

npc
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+ (1− pc)γ
2

(
B +

2 + pc

pc
B̄

)
k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
+ (1− pc)γ

2

(
C +

2 + pc

pc
C̄

)
k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
σ2
l

]
. (3.62)

Moreover, for any l ∈ N? the assumption HX3 implies that

E
[
d2
l

]
≤
(
1−Ad

)
E
[
d2
l−1

]
+BdE

[
σ2
l−1

]
+ CdE

[
Vl−1

]
+Dd,

and unrolling the recursion gives that

E
[
d2
l

]
≤
(
1−Ad

)l E [d2
0

]
+

l∑
j=1

(
1−Ad

)l−j (
BdE

[
σ2
j−1

]
+ CdE

[
Vj−1

])
+
Dd

Ad
. (3.63)

Similarly, we also have

E
[
σ2
l

]
≤
(
1−Aσ

)l E [σ2
0

]
+

l∑
j=1

(
1−Aσ

)l−j (
BσE

[
d2
j−1

]
+ CσE

[
Vj−1

])
+
Dσ

Aσ
.

(3.64)
Hence, by plugging (3.64) in (3.62) we obtain that

E
[
Vk
]
≤
(

1− pc

4

)k
E
[
V0

]
+

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)
+

8
(
1− τ

)
(n− 1)γd

npc

+ (1− pc)γ
2

(
B +

2 + pc

pc
B̄

)
k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
+ (1− pc)γ

2

(
C +

2 + pc

pc
C̄

)
k−1∑
l=0

(
1− pc

4

)k−l−1 (
1−Aσ

)l E [σ2
0

]
+Bσ(1− pc)γ

2

(
C +

2 + pc

pc
C̄

)
k−1∑
l=0

l∑
j=1

(
1− pc

4

)k−l−1 (
1−Aσ

)l−j E [d2
j−1

]

+ Cσ(1− pc)γ
2

(
C +

2 + pc

pc
C̄

)
k−1∑
l=0

l∑
j=1

(
1− pc

4

)k−l−1 (
1−Aσ

)l−j E [Vj−1

]

+
4(1− pc)γ

2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
. (3.65)

In addition, interchanging the summations gives

k−1∑
l=0

l∑
j=1

(
1− pc

4

)k−l−1 (
1−Aσ

)l−j E [V 2
j−1

]

=
k−2∑
i=0

k−i−2∑
l=0

(
1− pc

4

)k−i−2−l (
1−Aσ

)lE
[
Vi
]
.

Thus, using that
∑k−i−2

l=0

(
1− pc/4

)k−i−2−l (
1−Aσ

)l ≤ 4
(
1−Ad

)k−i−1 (
pc − 4Ad

)−1,

we can simplify the upper bound of E
[
Vk
]
derived in (3.65). Indeed, we can write
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E
[
Vk
]
≤
(

1− pc

4

)k
E
[
V0

]
+

4(1− pc)γ
2
(
1−Ad

)k
pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]
+

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)
+

8
(
1− τ

)
(n− 1)γd

npc
+

4(1− pc)γ
2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)

+ (1− pc)γ
2

(
B +

2 + pc

pc
B̄

)
k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
+Bσ(1− pc)γ

2

(
C +

2 + pc

pc
C̄

)
k−1∑
l=0

(
1− pc

4

)k−l−1 l−1∑
j=0

(
1−Aσ

)l−j−1 E
[
d2
j

]

+
4(1− pc)γ

2Cσ
pc − 4Ad

(
C +

2 + pc

pc
C̄

)
k−2∑
l=0

(
1−Ad

)k−l−1 E
[
Vl
]
. (3.66)

Upper bound on E
[
d2
k

]
. For l ≥ 1, plugging (3.64) into (3.63) yields the following

upper bound

E
[
d2
l

]
≤
(
1−Ad

)l E [d2
0

]
+ Cd

l∑
j=1

(
1−Ad

)l−j E [Vj−1

]
+
Dd

Ad

+Bd

l∑
j=1

(
1−Ad

)l−j [ (
1−Aσ

)j−1 E
[
σ2

0

]

+

j−1∑
i=1

(
1−Aσ

)j−i−1
(
BσE

[
d2
i−1

]
+ CσE

[
Vi−1

])
+
Dσ

Aσ

]
.

The above inequality leads to the next inequality

E
[
d2
l

]
≤
(
1−Ad

)l E [d2
0

]
+Bd

l∑
j=1

(
1−Ad

)l−j (
1−Aσ

)j−1 E
[
σ2

0

]

+ Cd

l∑
j=1

(
1−Ad

)l−j E [Vj−1

]
+BdCσ

l∑
j=1

j−1∑
i=1

(
1−Aσ

)j−i−1 (
1−Ad

)l−j E [Vi−1

]

+BdBσ

l∑
j=1

j−1∑
i=1

(
1−Ad

)l−j (
1−Aσ

)j−i−1 E
[
d2
i−1

]
+
Dd

Ad
+
BdDσ

AdAσ
. (3.67)

By interchanging the double summations in (3.67), we obtain
l∑

j=1

j−1∑
i=1

(
1−Ad

)l−j (
1−Aσ

)j−i−1 E
[
d2
i−1

]

=
l−1∑
i=1

 l∑
j=i+1

(
1−Ad

)l−j (
1−Aσ

)j−i−1

E
[
d2
i−1

]

=

l−2∑
i=0

l−i−2∑
j=0

(
1−Ad

)l−i−2−j (
1−Aσ

)jE
[
d2
i

]
≤ 1

Aσ −Ad

l−2∑
i=0

(
1−Ad

)l−i−1 E
[
d2
i

]
.

(3.68)
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Similarly, we can also get that

l∑
j=1

j−1∑
i=1

(
1−Ad

)l−j (
1−Aσ

)j−i−1 E
[
Vi−1

]
≤ 1

Aσ −Ad

l−2∑
i=0

(
1−Ad

)l−i−1 E
[
Vi
]
.

(3.69)
Plugging back (3.68) and (3.69) in (3.67) shows

E
[
d2
l

]
≤
(
1−Ad

)l E [d2
0

]
+
Bd
(
1−Ad

)l
Aσ −Ad

E
[
σ2

0

]
+

BdBσ
Aσ −Ad

l−2∑
i=0

(
1−Ad

)l−i−1 E
[
d2
i

]
+ Cd

l−1∑
i=0

(
1−Ad

)l−i−1 E
[
Vi
]

+
BdCσ
Aσ −Ad

l−2∑
i=0

(
1−Ad

)l−i−1 E
[
Vi
]

+
Dd

Ad
+
BdDσ

AdAσ
.

(3.70)

Now, we want to control
∑l−2

i=0

(
1−Ad

)l−i−1 E
[
d2
i

]
. For this, for any l ∈ N define

Ul = E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

]
+
Dd

(
1−Ad

)−l
Ad

+
BdDσ

(
1−Ad

)−l
AdAσ

+ Cd

l−1∑
i=0

(
1−Ad

)−i−1 E
[
Vi
]

+
BdCσ
Aσ −Ad

l−2∑
i=0

(
1−Ad

)−i−1 E
[
Vi
]

(3.71)

and consider

Sl =
l∑

i=0

(
1−Ad

)−i E [d2
i

]
.

With the above notation, (3.70) can be rewritten as

Sl − Sl−1 ≤
BdBσ(

1−Ad
)

(Aσ −Ad)
Sl−2 + Ul. (3.72)

For l ≥ 2, using the upper bound derived in (3.72) gives

E
[
d2
l

]
=
(
1−Ad

)l (
Sl − Sl−1

)
≤ BdBσ

(
1−Ad

)l−1
Sl−2

(Aσ −Ad)
+
(
1−Ad

)l
Ul. (3.73)

Finally, we define

δα =
−1 +

√
1 + 4

(
1−Ad

)−1
(Aσ −Ad)−1BdBσ

2
(3.74)

such that δα is solution of the equation

δ2
α + δα =

BdBσ(
1−Ad

)
(Aσ −Ad)

(3.75)

Thus for l ≥ 2, the definition of δα combined with (3.72) show

Sl + δαSl−1 ≤
(
1 + δα

) (
Sl−1 + δαSl−2

)
+ Ul.

Unrolling this recursion gives

Sk + δαSk−1 ≤
(
1 + δα

)k−1 (
S1 + δαS0

)
+

k∑
l=2

(
1 + δα

)k−l
Ul. (3.76)
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Upper bound on
∑k−1

l=0

(
1− α̃

)l−j−1 E[d2
j ]. Let consider a fixed α̃ ∈ {pc/4, Aσ}, by

assumption we have Ad < α̃ < 1. Since we want to control
∑k−1

l=0 (1− pc/4)k−l−1E[d2
l ]

and
∑k−1

l=0 (1− pc/4)k−l−1
∑l−1

j=0

(
1−Aσ

)l−j−1 E[d2
j ] involved in the inequality (3.66),

we first study
∑k−1

l=0 (1− α̃)k−l−1E[d2
l ]. From (3.73), we deduce that

k−1∑
l=0

(
1− α̃

)k−l−1 E
[
d2
l

]
≤ BdBσ

(1−Ad)(Aσ −Ad)
k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1
Sl−2

+
k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1
Ul. (3.77)

Since we suppose HX3 and Ad ≤ Aσ/2, AdAσ ≥ 8BdBσ we can apply Lemma 3.11
which shows that 1− α = (1−Ad)(1 + δα) ∈

(
0, 1− α̃

)
and leads to

k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−3 ≤
(
1 + δα

)−3
k−1∑
l=0

(
1− α

)l (
1− α̃

)k−l−1

≤
(
1− α

)k
(α̃− α)(1 + δα)3

. (3.78)

Moreover, for l ≥ 2 applying the result given by (3.76), we have

Sl−2 ≤
(
1 + δα

)l−3 (
S1 + δαS0

)
+

l−2∑
j=2

(
1 + δα

)l−j−2
Uj . (3.79)

Using the definition of Ul given by (3.71), we can write the following equality

k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1
l−2∑
j=2

(
1 + δα

)l−j−2
Uj

=

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

]) k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−j−2

+

(
Dd

Ad
+
BdDσ

AdAσ

)
k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l−j (
1− α̃

)k−l−1 (
1 + δα

)l−j−2

+

(
Cd +

BdCσ
Aσ −Ad

)
k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−j−2
j−1∑
i=0

(
1−Ad

)−i−1 E
[
Vi
]

(3.80)

We now upper bound each quantity separately. Regarding the first double sum, since
(1−Ad)(1 + δα) = 1− α we get

k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−j−2

=
k−3∑
j=2

(
1−Ad

)j+2
k−1∑
l=j+2

(
1− α̃

)k−l−1 (
1− α

)l−j−2
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≤ 1

α̃− α
k−1∑
j=4

(
1−Ad

)j (
1− α

)k−j ≤ (1−Ad)4 (1− α)k−3

(Ad − α)(α̃− α)
. (3.81)

Using (1−Ad)(1 + δα) = 1 − α combined with
∑k−1

l=j+2(1− α)l−j−2(1− α̃)k−l−1 ≤
(α̃− α)−1(1− α)k−j−2 give

k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l−j (
1− α̃

)k−l−1 (
1 + δα

)l−j−2

=
(
1−Ad

)2 k−1∑
l=0

l−2∑
j=2

(
1− α

)l−j−2 (
1− α̃

)k−l−1

=
(
1−Ad

)2 k−3∑
j=2

k−1∑
l=j+2

(
1− α

)l−j−2 (
1− α̃

)k−l−1

≤
(
1−Ad

)2
α̃− α

k−3∑
j=2

(
1− α

)k−j−2 ≤ (1− α)
(
1−Ad

)2
α(α̃− α)

. (3.82)

The same arguments show that

k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−j−2
j−1∑
i=0

(
1−Ad

)−i−1 E
[
Vi
]

≤
k−4∑
i=0

k−3∑
j=i+1

k−1∑
l=j+2

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−j−2 (
1−Ad

)−i−1 E
[
Vi
]

≤
k−4∑
i=0

E
[
Vi
] k−3∑
j=i+1

(
1−Ad

)j−i+1
k−1∑
l=j+2

(
1− α̃

)k−l−1 (
1− α

)l−j−2

≤ 1

α̃− α
k−4∑
i=0

E
[
Vi
] k−3∑
j=i+1

(
1−Ad

)j−i+1 (
1− α

)k−j−2

=

(
1− α

) (
1−Ad

)2
α̃− α

k−4∑
i=0

E
[
Vi
] k−3∑
j=i+1

(
1−Ad

)j−i−1 (
1− α

)k−j−3

≤
(
1− α

)−1 (
1−Ad

)2
(Ad − α)(α̃− α)

k−4∑
i=0

(
1− α

)k−i−1 E
[
Vi
]
. (3.83)

Therefore, plugging (3.81), (3.82), (3.83) inside (3.80) implies

k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−j−2
Uj

≤
(
1− α

) (
1−Ad

)2
α(α̃− α)

(
Dd

Ad
+
BdDσ

AdAσ

)
+

(
1−Ad

)4 (
1− α

)k−3

(Ad − α)(α̃− α)

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+

(
1− α

)−1 (
1−Ad

)2
(Ad − α)(α̃− α)

(
Cd +

BdCσ
Aσ −Ad

)
k−4∑
i=0

(
1− α

)k−i−1 E
[
Vi
]
. (3.84)
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In addition, by definition of Ul provides in (3.71) we have

k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1
Ul =

(
Dd

Ad
+
BdDσ

AdAσ

)
k−1∑
l=0

(
1− α̃

)k−l−1

+

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

]) k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1

+

(
Cd +

BdCσ
Aσ −Ad

)
k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1
l−1∑
i=0

(
1−Ad

)−i−1 E
[
Vi
]
.

Thus, a calculation yields that

k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1
Ul ≤

(
1−Ad

)k
α̃−Ad

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+
1

α̃

(
Dd

Ad
+
BdDσ

AdAσ

)
+

1

α̃−Ad

(
Cd +

BdCσ
Aσ −Ad

)
k−2∑
i=0

(
1−Ad

)k−i−1 E
[
Vi
]
. (3.85)

Plugging (3.79) in (3.77) shows

k−1∑
l=0

(
1− α̃

)k−l−1 E
[
d2
l

]
≤ BdBσ

(
S1 + δαS0

)
(1−Ad)(Aσ −Ad)

k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−3

+
BdBσ

(1−Ad)(Aσ −Ad)
k−1∑
l=0

l−2∑
j=2

(
1−Ad

)l (
1− α̃

)k−l−1 (
1 + δα

)l−j−2
Uj

+
k−1∑
l=0

(
1−Ad

)l (
1− α̃

)k−l−1
Ul. (3.86)

Hence, by combining (3.78), (3.84), (3.85) and (3.86) we obtain for Ad > α, that

k−1∑
l=0

(
1− α̃

)k−l−1 E
[
d2
l

]
≤ BdBσ

(
S1 + δαS0

) (
1− α

)k
(1−Ad)(Aσ −Ad)(α̃− α)(1 + δα)3

+

(1−Ad)k
α̃−Ad

+
BdBσ

(
1− α

)k
(Aσ −Ad)(Ad − α)(α̃− α)

(E [d2
0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+

(
1

α̃
+

BdBσ
α(α̃− α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)

+

(
Cd +

BdCσ
Aσ −Ad

)
k−2∑
i=0

(1−Ad)k−i−1

α̃−Ad
+

BdBσ
(
1− α

)k−i−1

(Aσ −Ad)(Ad − α)(α̃− α)

E
[
Vi
]
.

(3.87)

In addition, the above bound holds even ifAd = α by considering that (Ad−α)−1BdBσ =
0.
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Upper bound on
∑k−1

l=0 (1− pc/4)k−l−1E
[
d2
l

]
. Applying (3.87) with α̃ = pc/4 gives

k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
≤ 4BdBσ

(
S1 + δαS0

) (
1− α

)k
(1−Ad)(Aσ −Ad)(pc − 4α)(1 + δα)3

+

4
(
1−Ad

)k
pc − 4Ad

+
4BdBσ

(
1− α

)k
(Aσ −Ad)(Ad − α)(pc − 4α)

(E [d2
0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+

(
4

pc
+

4BdBσ
α(pc − 4α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)

+ 4

(
Cd +

BdCσ
Aσ −Ad

)
k−2∑
i=0

(1−Ad)k−i−1

pc − 4Ad
+

BdBσ
(
1− α

)k−i−1

(Aσ −Ad)(Ad − α)(pc − 4α)

E
[
Vi
]
.

(3.88)

Upper bound on
∑k−1

l=0 (1− pc/4)k−l−1
∑l−1

j=0

(
1−Aσ

)l−j−1 E[d2
j ]. Recall that we

consider that (Ad − α)−1BdBσ = 0 in the specific case where Ad = α. This time,
setting α̃ = Aσ in (3.87) shows that

l−1∑
j=0

(
1−Aσ

)l−j−1 E
[
d2
l

]
≤ BdBσ

(
S1 + δαS0

) (
1− α

)l
(1−Ad)(Aσ −Ad)(Aσ − α)(1 + δα)3

+

(1−Ad)l
Aσ −Ad

+
BdBσ

(
1− α

)l
(Aσ −Ad)

(
Ad − α

)
(Aσ − α)

(E [d2
0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+

(
1

Aσ
+

BdBσ
α(Aσ − α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)

+

(
Cd +

BdCσ
Aσ −Ad

)
l−2∑
i=0

(1−Ad)l−i−1

Aσ −Ad
+

BdBσ
(
1− α

)l−i−1

(Aσ −Ad)(Ad − α)(Aσ − α)

E
[
Vi
]
.

(3.89)

Moreover, we have the two following bounds

k−1∑
l=0

(
1− pc

4

)k−l−1 (
1−Ad

)l ≤ 4
(
1−Ad

)k
pc − 4Ad

,

k−1∑
l=0

(
1− pc

4

)k−l−1 (
1− α

)l ≤ 4
(
1− α

)k
pc − 4α

.

(3.90)

Therefore, permuting the summations implies

k−1∑
l=0

(
1− pc

4

)k−l−1 l−2∑
i=0

(
1−Ad

)l−i−1 E
[
Vi
]
≤

k−3∑
i=0

E
[
Vi
] k−1∑
l=i+2

(
1− pc

4

)k−l−1 (
1−Ad

)l−i−1

≤ 4

pc − 4Ad

k−3∑
i=0

(
1−Ad

)k−i−1 E
[
Vi
]
. (3.91)
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In a similar way, we obtain

k−1∑
l=0

(
1− pc

4

)k−l−1 l−2∑
i=0

(
1− α

)l−i−1 E
[
Vi
]
≤ 4

pc − 4α

k−3∑
i=0

(
1− α

)k−i−1 E
[
Vi
]
. (3.92)

Hence, the combination of (3.89) with (3.90), (3.91), (3.92) yields

k−1∑
l=0

(
1− pc

4

)k−l−1 l−1∑
j=0

(
1−Aσ

)l−j−1 E
[
d2
l

]

≤ 4BdBσ
(
S1 + δαS0

) (
1− α

)k
(pc − 4α)(1−Ad)(Aσ −Ad)(Aσ − α)(1 + δα)3

+
4

Aσ −Ad

(1−Ad)k
pc − 4Ad

+
BdBσ

(
1− α

)k
(pc − 4α)(Ad − α)(Aσ − α)

(E [d2
0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+
4

pc

(
1

Aσ
+

BdBσ
α(Aσ − α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)

+
4

Aσ −Ad

(
Cd +

BdCσ
Aσ −Ad

)
k−3∑
i=0

(1−Ad)k−i−1

pc − 4Ad
+

BdBσ
(
1− α

)k−i−1

(pc − 4α)(Ad − α)(Aσ − α)

E
[
Vi
]
.

(3.93)

Upper bound on E
[
Vk
]
. Plugging (3.88) and (3.93) in (3.66), we obtain

E
[
Vk
]
≤
(

1− pc

4

)k
E
[
V0

]
+

4(1− pc)γ
2
(
1−Ad

)k
pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]
+

4(1− pc)γ
2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)
+

8
(
1− τ

)
(n− 1)γd

npc

+ (1− pc)γ
2

(
B +

2 + pc

pc
B̄

) 4BdBσ
(
S1 + δαS0

) (
1− α

)k
(1−Ad)(Aσ −Ad)(pc − 4α)(1 + δα)3

+

4
(
1−Ad

)k
pc − 4Ad

+
4BdBσ

(
1− α

)k
(Aσ −Ad)(Ad − α)(pc − 4α)

(E [d2
0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+

(
4

pc
+

4BdBσ
α(pc − 4α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)

+ 4

(
Cd +

BdCσ
Aσ −Ad

)
k−2∑
i=0

(1−Ad)k−i−1

pc − 4Ad
+

BdBσ
(
1− α

)k−i−1

(Aσ −Ad)(Ad − α)(pc − 4α)

E
[
Vi
] 

+ 4(1− pc)γ
2Bσ

(
C +

2 + pc

pc
C̄

) BdBσ
(
S1 + δαS0

) (
1− α

)k
(pc − 4α)(1−Ad)(Aσ −Ad)(Aσ − α)(1 + δα)3

+
1

Aσ −Ad

(1−Ad)k
pc − 4Ad

+
BdBσ

(
1− α

)k
(pc − 4α)(Ad − α)(Aσ − α)

(E [d2
0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
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+
1

pc

(
1

Aσ
+

BdBσ
α(Aσ − α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)

+
1

Aσ −Ad

(
Cd +

BdCσ
Aσ −Ad

)
k−3∑
i=0

(1−Ad)k−i−1

pc − 4Ad
+

BdBσ
(
1− α

)k−i−1

(pc − 4α)(Ad − α)(Aσ − α)

E
[
Vi
] 

+
4(1− pc)γ

2Cσ
pc − 4Ad

(
C +

2 + pc

pc
C̄

)
k−2∑
l=0

(
1−Ad

)k−l−1 E
[
Vl
]
. (3.94)

For any negative number j < 0, using the convention that
∑j

l=0 = 0 and simplifying
the calculations provided by (3.94), we find that

E
[
Vk

]
≤
(

1−
pc

4

)k
E
[
V0

]
+

4(1− pc)γ2
(

1−Ad
)k

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]

+
4(1− pc)γ2BdBσ

(
S1 + δαS0

) (
1− α

)k
(pc − 4α)(1−Ad)(Aσ −Ad)(1 + δα)3

B +
2 + pc

pc
B̄ +

Bσ

Aσ − α

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8
(
1− τ

)
(n− 1)γd

npc

+ 4(1− pc)γ2

( 1

pc
+

BdBσ

α(pc − 4α)(Aσ −Ad)

)(
B +

2 + pc

pc
B̄

)

+
Bσ

pc

(
1

Aσ
+

BdBσ

α(Aσ − α)(Aσ −Ad)

)(
C +

2 + pc

pc
C̄

)(Dd
Ad

+
BdDσ

AdAσ

)

+
4γ2

(
1− pc

)(
1−Ad

)k
pc − 4Ad

B +
2 + pc

pc
B̄ +

Bσ

Aσ −Ad

(
C +

2 + pc

pc
C̄

)(E
[
d2

0

]
+

Bd

Aσ −Ad
E
[
σ2

0

])

+
4γ2

(
1− pc

)
BdBσ

(
1− α

)k
(pc − 4α)

(
Ad − α

)
(Aσ −Ad)

B +
2 + pc

pc
B̄ +

Bσ

Aσ − α

(
C +

2 + pc

pc
C̄

)(E
[
d2

0

]
+

Bd

Aσ −Ad
E
[
σ2

0

])

+
4γ2

(
1− pc

)
pc − 4Ad

Cσ (C +
2 + pc

pc
C̄

)
+

(
Cd +

BdCσ

Aσ −Ad

)B +
2 + pc

pc
B̄ +

Bσ

Aσ −Ad

(
C +

2 + pc

pc
C̄

)
×
k−2∑
i=0

(
1−Ad

)k−i−1
E
[
Vi

]

+
4γ2

(
1− pc

)
BdBσ

(pc − 4α)
(
Ad − α

)
(Aσ −Ad)

(
Cd +

BdCσ

Aσ −Ad

)B +
2 + pc

pc
B̄ +

Bσ

Aσ − α

(
C +

2 + pc

pc
C̄

)
×
k−3∑
i=0

(
1− α

)k−i−1 E
[
Vi

]
. (3.95)

As explained in (3.75), recall that

δ2
α + δα =

BdBσ(
1−Ad

) (
Aσ −Ad

) , α = Ad − δα(1−Ad).

Thus, when BdBσ 6= 0 then δα 6= 0, which implies that Ad 6= α and gives

BdBσ(
Ad − α

) (
Aσ −Ad

) = 1 + δα.

In addition, in the proof of Lemma 3.11 we saw that 2δα ≤ Ad ≤ 1/2 and also that
Ad/2 ≤ α ≤ Ad. Therefore, we can regroup several terms in (3.95) and write
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E
[
Vk
]
≤
(

1− pc

4

)k
E
[
V0

]
+

4(1− pc)γ2
(
1−Ad

)k
pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]

+
4(1− pc)γ2δα

(
S1 + δαS0

) (
1− α

)k
(pc − 4Ad)(1 + δα)2

B +
2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)
+

9γ2
(

1− pc

) (
1− α

)k
pc − 4Ad

B +
2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)(E [d2
0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+
4(1− pc)γ2Dσ
Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8
(
1− τ

)
(n− 1)γd

npc

+ 4(1− pc)γ2

( 1

pc
+

2BdBσ
Ad(pc − 4Ad)(Aσ −Ad)

)(
B +

2 + pc

pc
B̄

)

+
Bσ
pc

(
1

Aσ
+

2BdBσ
Ad(Aσ −Ad)2

)(
C +

2 + pc

pc
C̄

)(Dd
Ad

+
BdDσ
AdAσ

)

+
9γ2

(
1− pc

)
pc − 4Ad

Cσ (C +
2 + pc

pc
C̄

)
+

(
Cd +

BdCσ
Aσ −Ad

)B +
2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)
×
k−2∑
i=0

(
1− α

)k−i−1 E
[
Vi
]
. (3.96)

Recall that we defined Cγ in (3.60) by

Cγ =
4(1− pc)γ

2

pc − 4Ad

B +
2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

) .
Hence, using (3.96) we get that

E
[
Vk
]
≤
(

1− pc

4

)k
E
[
V0

]
+

4(1− pc)γ
2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)

+
Cγ

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)(
Dd +

BdDσ

Aσ

)
+

8
(
1− τ

)
(n− 1)γd

npc

+

4(1− pc)γ
2
(
1−Ad

)k
pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+

9CγBd
(
1− α

)k
4
(
Aσ −Ad

)
E

[
σ2

0

]

+
9

4
Cγ
(
1− α

)k E [d2
0

]
+ Cγ

(
1− α

)k−2 (
Ad − α

)
(1−Ad)

(
S1 +

Ad − α
1−Ad

S0

)

+

9γ2
(
1− pc

)
Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

) k−2∑
i=0

(
1− α

)k−i−1 E
[
Vi
]
.

Finally, we conclude the proof remarking that

Cγ
(
1− α

)k−2
(Ad − α)

[
(1−Ad)S1 + (Ad − α)S0

]
≤ Cγ

(
1− α

)k−2
(Ad − α)

[
(2−Ad − α)E

[
d2

0

]
+BdE

[
σ2

0

]
+ CdE

[
V0

]
+Dd

]
≤ Cγ

(
1− α

)k (
4E
[
d2

0

]
+ 2BdE

[
σ2

0

]
+ 2CdE

[
V0

]
+ 2Dd

)
. (3.97)
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In order to ease notation, with the definitions used in HX4 and (3.60), consider for any
γ ∈ R+ the variable Cγ

ε ∈ R+ defined by

Cγ
ε = Cγ

V E
[
V0

]
+ Cγ

d0
E
[
d2

0

]
+ Cγ

σE
[
σ2

0

]
+ 2Dd (3.98)

In addition, with the previous notations consider

δ =
2
(

1−Ad/2
)−1

Cγ
r

1 +

√
1 + 4

(
1−Ad/2

)−1
Cγ
r

and define

γV =
p

1/2
c

(2− 2pc)1/2
[
A+ (1 + 2/pc)Ā

]1/2
.

Lemma 3.13. Assume HX3, HX4 hold with 4Cγ
r ≤ Ad < min(Aσ/2, pc/4), AdAσ ≥

8BdBσ and let γ ∈
(
0, γV

]
. Then, for any k ≥ 1, we have

E
[
Vk
]
≤
(

1− Ad
4

)k(
2Cγ

ε +
4Cγ

rCγ
δ

Ad

)
+ Cγ

δ ,

where Vk is defined in (3.24), Cγ
ε ,C

γ
r ,C

γ
δ in (3.60) and (3.98).

Proof Let k in N be fixed. Since the assumptions of Lemma 3.12 are satisfied, we
know that

E
[
Vk
]
≤
(
1− α

)k
Cγ
ε + Cγ

r

k−2∑
l=0

(
1− α

)k−l−1 E
[
Vl
]

+ Cγ
δ , (3.99)

where α is defined in (3.61). In addition, Lemma 3.11 shows that Ad/2 ≤ α. Hence,
multiplying the last inequality by the weight ωk defined for any l ∈ N, by

ωl =
(

1−Ad/2
)−l

,

we obtain the following inequality

ωkE
[
Vk
]
≤ Cγ

ε +
Cγ
r

1−Ad/2
k−2∑
l=0

ωlE
[
Vl
]

+ Cγ
δωk.

Applying the sharp Grönwall inequality (Holte, 2009), we get

ωkE
[
Vk
]
≤ Cγ

ε + ωkC
γ
δ +

Cγ
r

1−Ad/2
k−1∑
l=0

(
Cγ
ε + ωlC

γ
δ

)(
1 +

Cγ
r

1−Ad/2

)k−l−1

.

Therefore, a calculation shows that

ωkE
[
Vk
]
≤ Cγ

ε +ωkC
γ
δ+Cγ

ε

(
1 +

Cγ
r

1−Ad/2

)k
+

Cγ
rCγ

δ

1−Ad/2
k−1∑
l=0

ωl

(
1 +

Cγ
r

1−Ad/2

)k−l−1

,
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and simplifying the previous inequality gives the following upper bound:

E
[
Vk
]
≤ Cγ

δ+ω−1
k Cγ

ε+Cγ
ε

(
1− Ad

2
+ Cγ

r

)k
+Cγ

rCγ
δ

k−1∑
l=0

(
1− Ad

2
+ Cγ

r

)k−l−1

. (3.100)

In addition, using 4Cγ
r < Ad < pc/4 implies 0 < 1 − Ad/2 + Cγ

r < 1 which combined
with (3.100) gives

E
[
Vk
]
≤ Cγ

δ + ω−1
k Cγ

ε + Cγ
ε

(
1− Ad

2
+ Cγ

r

)k
+

Cγ
rCγ

δ

Ad/2− Cγ
r

(
1− Ad

2
+ Cγ

r

)k
.

Eventually, combining the last inequality with the assumption 4Cγ
r < Ad completes the

proof.

With the notation of the assumptions HX3 and HX4, we define

αd =
4γ2

pcAd
max

{
pcB + 3B̄,

4Bσ
Aσ

(
pcC + 3C̄

)}
, ασ =

4γ2
(
pcC + 3C̄

)
pcAσ

. (3.101)

The following lemma is used in the convergence proof of VR-FALD? (see Lemma 3.28).

Lemma 3.14. Assume HX3, HX4 hold with

Ad ≤ min

(
Aσ,

pc

4

)
, αdCd + ασCσ ≤

pc

8
, αdBd + γ2

(
C +

3

pc
C̄

)
≤ ασAσ

2
,

and consider γ ≤ p
1/2
c (2− 2pc)

−1/2[A+ (1 + 2/pc)Ā]−1/2. Then, for any k ∈ N, we
have

E
[
Vk
]

+ αdE
[
d2
k

]
+ ασE

[
σ2
k

]
≤
(

1− Ad
2

)k (
E
[
V0

]
+ αdE

[
d2

0

]
+ ασE

[
σ2

0

])

+
2(1− pc)γ

2

Ad

(
D +

2 + pc

pc
D̄

)
+

2αdDd + 2ασDσ

Ad
+

4
(
1− τ

)
(n− 1)γd

nAd
,

where Vk is defined in (3.24).

Proof Let k ∈ N?, using for i ∈ [n] the definitions (3.20), (3.23) of Xi
k and Xk

Xi
k+1 = Xi

k − γGik +
√

2γ
(√

τ/n Z̃k+1 +
√

1− τ Z̃ik+1

)
,

Xk+1 = Xk −
γ

n

n∑
j=1

Gik +

√
2γτ

n
Z̃k+1 +

√
2(1− τ)γ

n

n∑
i=1

Zik+1.

Substracting the two above equations combined with the Jensen inequality give

E
[
Vk+1

]
=

1

n

n∑
i=1

E

[∥∥∥Xi
k+1 −Xk+1

∥∥∥2
]
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=
1− pc

n

n∑
i=1

E


∥∥∥∥∥∥∥(Xi

k −Xk)− γ(Gik −Gk) +
√

2(1− τ)γZik+1 −
√

2(1− τ)γ

n

n∑
j=1

Zjk+1

∥∥∥∥∥∥∥
2


=
1− pc

n

n∑
i=1

E

[∥∥∥(Xi
k −Xk)− γ(Ḡik − Ḡk)

∥∥∥2
]

+ 2(1− τ)γE


∥∥∥∥∥∥∥Zik+1 −

1

n

n∑
j=1

Zjk+1

∥∥∥∥∥∥∥
2


+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥(Gik − Ḡik)− (Gk − Ḡk)
∥∥∥2
]
.

Hence, we get

E
[
Vk+1

]
≤ 1− pc

n

n∑
i=1

E

[∥∥∥(Xi
k −Xk)− γ(Ḡik − Ḡk)

∥∥∥2
]

+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]

+ 2
(
1− τ

)
(1− 1/n)γd

≤ (1− pc)(1 + pc/2)

n

n∑
i=1

E

[∥∥∥Xi
k −Xk

∥∥∥2
]

+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]

+
(1− pc)(1 + 2/pc)γ

2

n

n∑
i=1

E

[∥∥∥Ḡik − Ḡk∥∥∥2
]

+ 2
(
1− τ

)
(1− 1/n)γd.

We finally obtain

E
[
Vk+1

]
≤
(

1− pc/2
)
E
[
Vk
]

+
(1− pc)(2 + pc)γ

2

pcn

n∑
i=1

E

[∥∥∥Ḡik∥∥∥2
]

+
(1− pc)γ

2

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]

+ 2
(
1− τ

)(
1− 1

n

)
γd.

Combining the last inequality with HX4 shows

E
[
Vk+1

]
≤

1− pc

2
+ (1− pc)γ

2

[
A+

2 + pc

pc
Ā

]E
[
Vk
]

+ (1− pc)γ
2

(
D +

2 + pc

pc
D̄

)
+ (1− pc)γ

2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+ (1− pc)γ

2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
+ 2

(
1− τ

)(
1− 1

n

)
γd.

Since γ ≤ p
1/2
c

2(1−pc)1/2
[
A+(1+2/pc)Ā

]1/2 , the above inequality implies that

E
[
Vk+1

]
≤
(

1− pc

4

)
E
[
Vk
]

+ (1− pc)γ
2

(
D +

2 + pc

pc
D̄

)
+ 2

(
1− τ

)
(1− 1/n)γd
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+ (1− pc)γ
2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+ (1− pc)γ

2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
.

The previous bound combined with HX3 gives that

E
[
Vk+1

]
+ αdE

[
d2
k+1

]
+ ασE

[
σ2
k+1

]
≤
[(

1− pc

4

)
+ αdCd + ασCσ

]
E
[
Vk
]

+

αd(1−Ad) + ασBσ + (1− pc)γ
2

(
B +

2 + pc

pc
B̄

)E
[
d2
k

]

+

ασ(1−Aσ) + αdBd + (1− pc)γ
2

(
C +

2 + pc

pc
C̄

)E
[
σ2
k

]

+ (1− pc)γ
2

(
D +

2 + pc

pc
D̄

)
+ 2

(
1− τ

) (n− 1)

n
γd+ αdDd + ασDσ. (3.102)

By assumption, we have

αdCd + ασCσ ≤
pc

8
,

αdBd + γ2

(
C +

3

pc
C̄

)
≤ ασAσ

2
,

(3.103)

and by definition of αd, ασ given in (3.101), we know that ασBσ + γ2(B + 3B̄/pc) ≤
αdAd/2. In addition, since we suppose that Ad ≤ min(pc/4, Aσ), the last inequalities
combined with (3.103) imply

1− pc

4
+ αdCd + ασCσ ≤ 1− Ad

2

1−Ad +
ασ
αd
Bσ +

(1− pc)γ
2

αd

(
B +

2 + pc

pc
B̄

)
≤ 1− Ad

2

1−Aσ +
αd
ασ
Bd +

(1− pc)γ
2

ασ

(
C +

2 + pc

pc
C̄

)
≤ 1− Ad

2
.

(3.104)

Thus, by taking up (3.102) and using (3.104), we get

E
[
Vk+1

]
+ αdE

[
d2
k+1

]
+ ασE

[
σ2
k+1

]
≤
(

1− Ad
2

)(
E
[
Vk
]

+ αdE
[
d2
k

]
+ ασE

[
σ2
k

])

+ (1− pc)γ
2

(
D +

2 + pc

pc
D̄

)
+ 2

(
1− τ

)(
1− 1

n

)
γd+ αdDd + ασDσ.

Finally, the stated result follows by induction.

3.B Main results

Section 3.B is divided into four subsections in which we prove theoretical results for
the FALD and VR-FALD? algorithms. These analyses are presented in Theorem 3.22 and
Theorem 3.30. The proofs are based on Lemma 3.13 proved in Section 3.A.3 to ensure
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that the local parameters {Xi
k}i∈[n] do not deviate too much from Xk, then we apply

the general result given in Section 3.A to obtain explicit upper bounds for W2(π, µ
(γ)
k ).

Until the end of this chapter, we consider a family of independent random variables
(ξi)ni=1 distributed according to ν⊗nξ , and we denote (H i)ni=1 a family of functions defined
on Rd × E→ Rd such that for each i ∈ [n], x ∈ Rd, H i(x, ξi(·)) is measurable on (E, E)
and satisfies the following condition:

A4. Assume there exists L̂ ≥ 0, such that for any i ∈ [n], x, y ∈ Rd, we have

E
[
H i(x, ξi)

]
= ∇U i(x),

E

[∥∥∥H i(y, ξi)−H i(x, ξi)
∥∥∥2
]
≤ L̂2

∥∥y − x∥∥2
.

The assumption A4 is equivalent to A2 written in the main chapter, though for clarity
we prefer to replace the stochastic gradient ∇̂U ik by H i(·, ξi). To simplify the notation,
in what follows we consider the random variable ξ = (ξ1, . . . , ξn), and we denote

H :

Rd × En → Rd(
x, z
)
7→∑n

i=1H
i(x, zi)

.

Thus, for each x ∈ Rd, with this notation we have H(x, ξ) =
∑n

i=1H
i(x, ξi). We also

introduce the averaged versions Ū , H̄ of the local potentials {U i}i∈[n] and the stochastic
gradients {H i}i∈[n] defined by

Ū(x) =
1

n

n∑
i=1

U i(x), H̄(x, z) =
1

n

n∑
i=1

H i(x, zi).

Remark 3.15. In the minibatch scenario without replacement, the ith client draws a
minibatch Ji ⊂ [Ni] of size bi = |Ji| ∈ [Ni] among Ni data and computes its stochastic
gradient, which for x ∈ Rd is given by H i(x, ξi) =

∑
j∈Ji ∇U i,j(x). Using the result

provided in Vono et al. (2022b, Lemma S4), we know that

E

[∥∥∥H i(y, ξi)−H i(x, ξi)
∥∥∥2
]

=
∥∥∥∇U i(y)−∇U i(x)

∥∥∥2
+ Var

(
H i(y, ξi)−H i(x, ξi)

)

≤

1 +
bi(Ni − bi) maxNij=1 L

i
j

Ni(Ni − 1)L

L2
∥∥y − x∥∥2

.

Therefore, A4 is satisfied for a choice of L̂ > 0 such that

L̂ ≤ L

√√√√1 +
n

max
i=1

{
bi(Ni − bi)[Ni(Ni − 1)]−1(

Ni
max
j=1

Lij)L
−1

}
.

A5. For i ∈ [n], j ∈ [Ni], assume that U i,j is continuously differentiable, convex and
there exists Lij > 0 such that for any x, y ∈ Rd,

U i,j(y) ≤ U i,j(x) +
〈
∇U i,j(x), y − x

〉
+
Lij
2

∥∥y − x∥∥2
.
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A6. Assume there exists ω̃ > 0 such that for any x ∈ Rd,

E

[∥∥∥H(x, ξ)−H(x?, ξ)−∇U(x)
∥∥∥2
]
≤ ω̃n2

∥∥x− x?∥∥2
.

A1 combined with A4 implies A6 with ω̃ = 2L2 + 2L̂2. However, this new assump-
tionA6 is interesting because without stochastic gradient we obtain ω̃ = 0, which allows
us to recover the classical Langevin bounds.

Remark 3.16. Consider the same scenario as detailed in Remark 3.15 and define

ω̃ =

 n∑
i=1

bi(Ni − bi) maxNij=1 L
i
j

n2Ni(Ni − 1)

L.

Applying Vono et al. (2022b, Lemma S4) we have the following lines

E

[∥∥∥H̄(x, ξ)− H̄(x?, ξ)−∇Ū(x)
∥∥∥2
]

= Var
(
H̄(x, ξ)− H̄(x?, ξ)

)
=

1

n2

n∑
i=1

Var
(
H i(x, ξi)−H i(x?, ξ

i)
)
≤ ω̃

∥∥x− x?∥∥2
.

Therefore, A6 is satisfied and in the deterministic case where all data are used to cal-
culate the gradient, we have ω̃ = 0.

To deal with variance reduction based algorithms, we consider the following assump-
tion A7, which is also implied by A1-A4, however the constant ω vanishes with exact
gradient computation.

A7. Assume there exists ω ≥ 0 such that for any i ∈ [n] and x, y ∈ Rd,

E

[∥∥∥H i(x, ξi)−H i(y, ξi)−∇U i(x) +∇U i(y)
∥∥∥2
]
≤ ω

∥∥x− y∥∥2
.

Remark 3.17. In the minibatch scenario without replacement detailed in Remark 3.15,
the use of Vono et al. (2022b, Lemma S4) implies that

E

[∥∥∥H i(x, ξi)−H i(y, ξi)−∇U i(x) +∇U i(y)
∥∥∥2
]

= Var
(
H i(x, ξi)−H i(y, ξi)

)
≤ bi(Ni − bi)
Ni(Ni − 1)

L
Ni

max
j=1

Lij
∥∥x− y∥∥2

.

Thus, A7 is satisfied by setting

ω =
n

max
i=1

{
bi(Ni − bi)
Ni(Ni − 1)

Ni
max
j=1

Lij

}
L.

In the deterministic case, we obtain ω = 0. Similarly, in the minibatch scenario with
replacement it is sufficient to set

ω =
Ni − bi
bi

Ni∑
j=1

(Lij)
2

to ensure that A7 holds.
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3.B.1 Study of FALD

Remark on the theoretical analysis of Deng et al. (2021)

FALD has been proposed in Deng et al. (2021), the authors develop an MCMC algorithm
targeting the distribution proportional to exp(−n−1

∑n
i=1 U

i) and also establish non-
asymptotic bounds. They introduce (Deng et al., 2021, Lemma B.2) the stochastic pro-
cesses {(θ̄it)t≥0}i∈[n] satisfying the Langevin stochastic differential equations for t ≥ 0,
dθ̄it = −∇U i(θ̄it) +

√
2bdWi

t where {(Wi
t)t≥0}i∈[n] are independent d-dimensional stand-

ard Brownian motion and define θ̄t = n−1
∑n

i=1 θ̄
i
t. Then, it is asserted (Deng et al.,

2021, Lemma B.5) that (θ̄t) is solution of the Langevin stochastic differential equa-
tion dθ̄t = −n−1

∑n
i=1∇U i(θ̄t) +

√
2 dWt, where Wt = n−1/2

∑n
i=1 W

i
t. However, this

statement cannot hold in all generalities, and we give a counter-example. For instance,
consider the Gaussian potentials {U i : x ∈ Rd 7→ Σ−1

i (x−mi)}i∈[n] where {(mi,Σi)}i∈[n]

are the mean and the covariance parameters; if for i ∈ [n], θ̄i0 is distributed ac-
cording to exp(−U i), then n−1

∑n
i=1 θ̄

i
t follows N (n−1

∑n
i=1 mi, n−2

∑n
i=1 Σi) whereas

exp(−n−1
∑n

i=1 U
i) corresponds to the density of the Gaussian N (

∑n
i=1(Σ̄Σ−1

i )mi, bΣ̄)
where Σ̄ = (

∑n
i=1 Σ−1

i )−1. Therefore, for any t ≥ 0, in this case θ̄t is distributed ac-
cording to N (n−1

∑n
i=1 mi, n−2

∑n
i=1 Σi) and thus cannot be distributed according to

exp(−n−1
∑n

i=1 U
i) as crucially used in the proof of Deng et al. (2021, Lemma B.5).

Theoretical analysis

In this section, we prove the first theoretical guarantee on FALD stated in Theorem 3.22.
Similar to McMahan et al. (2017), the clients update their local parameters {Xi

k}i∈[n]

several times before transmitting them to the server with probability pc ∈
(
0, 1
]
. Then,

the server aggregates the local parameters to update its own parameter Xk as in (3.23).
For all i ∈ [n], k ∈ N, consider the stochastic gradients defined by

Gik = H i(Xi
k, ξ

i
k+1), (3.105)

Ḡik = ∇U i(Xi
k). (3.106)

Lemma 3.18. Assume A1, A4 and A6 hold. Then for any k ∈ N, we have

1

n

n∑
i=1

E
[
‖Ḡik‖2

]
≤ 3L2E

[
Vk
]

+ 3L2E
[
d2
k

]
+

3

n

n∑
i=1

‖∇U i(x?)‖2,

1

n

n∑
i=1

E
[
‖Gik − Ḡik‖2

]
≤ 3L̂2E

[
Vk
]

+ 3ω̃E
[
d2
k

]
+ 3E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]
.

For any i ∈ [n], k ∈ N, recall the stochastic gradients Gik, Ḡ
i
k are defined in (3.105) and

(3.106), respectively

Proof Using the Young inequality combined with the Lipschitz property A1 of the
gradients (U i)ni , for k ≥ 0 we get

1

n

n∑
i=1

E
[
‖Ḡik‖2

]
=

1

n

n∑
i=1

E
[
‖∇U i(Xi

k)−∇U i(Xk) +∇U i(Xk)−∇U i(x?) +∇U i(x?)‖2
]
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Algorithm 3.3 Stochastic Averaging Langevin Dynamics - FALD

Input: initial vectors (Xi
0)i∈[n], noise parameter τ ∈

[
0, 1
]
, number of communication

rounds K, probability pc of communication, step-size γ.
for k = 0 to K − 1 do

// On each client
Draw Bk+1 ∼ B(pc), Z̃k+1 ∼ N (0d, Id)
// In parallel on the n clients
for i = 1 to n do

Draw ξik+1 ∼ νξ and Z̃ik+1 ∼ N (0d, Id)
Compute Gik = H i(Xi

k, ξ
i
k+1)

Set X̃i
k+1 = Xi

k − γGik +
√

2γ (
√
τ/n Z̃k+1 +

√
1− τ Z̃ik+1)

if Bk+1 = 1 then
Broadcast X̃i

k+1 to the server
else

Update Xi
k+1 ← X̃i

k+1

if Bk+1 = 1 then
// On the central server
Update then broadcast the global parameter Xk+1 = 1

n

∑n
i=1 X̃

i
k+1

// On each client
Update the local parameter Xi

k+1 ← Xk+1

Output: samples {X`}{`∈[K] :B`=1}.

≤ 3L2E
[
Vk
]

+ 3L2E
[
d2
k

]
+

3

n

n∑
i=1

‖∇U i(x?)‖2.

In addition, since the random variables (Gik− Ḡik)ni=1 are centered and independent, the
Young and the Jensen inequality imply that

1

n

n∑
i=1

E

[∥∥∥Gik − Ḡik∥∥∥2
]

= E


∥∥∥∥∥∥ 1

n

n∑
i=1

(
Gik − Ḡik

)∥∥∥∥∥∥
2


= E

∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1) + H̄(Xk, ξk+1)− H̄(x?, ξk+1)

+ H̄(x?, ξk+1)−∇Ū(Xk) +∇Ū(Xk)−
1

n

n∑
i=1

∇U i(Xi
k)

∥∥∥∥∥
2


≤ 3E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)− 1

n

n∑
i=1

∇U i(Xi
k)− H̄(Xk, ξk+1) +∇Ū(Xk)

∥∥∥∥∥∥
2


+ 3E

[∥∥∥H̄(Xk, ξk+1)−∇Ū(Xk)− H̄(x?, ξk+1)
∥∥∥2
]

+ 3E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

≤ 3L̂2E
[
Vk
]

+ 3ω̃E
[
d2
k

]
+ 3E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]
.
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Lemma 3.19. Assume A1 and A4 hold. Then, for any γ ∈ (0,m(6L̂2)−1], we have

E
[
d2
k+1

]
≤
(

1− γm

2

)
E
[
d2
k

]
+

2γL2

m
E
[
Vk
]

+ 3γ2E
[
‖H̄(x?, ξ)‖2

]
+

2γd

n
,

where Vk, dk are defined in (3.24) and (3.25).

Proof Let k be in N. Rewriting the expression of Xk+1 defined in (3.23), we obtain

E
[
d2
k+1

]
= E

[∥∥∥Xk+1 − x?
∥∥∥2
]

= E


∥∥∥∥∥∥∥Xk − x? −

γ

n

n∑
i=1

H i(Xi
k, ξ

i
k+1) +

√
2γ

√ τ

n
Z̃k+1 +

√
1− τ
n

n∑
i=1

Zik+1


∥∥∥∥∥∥∥

2


= E
[∥∥Xk − x?

∥∥2
]
− 2γE

〈Xk − x?,
1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

〉

+ γ2E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

∥∥∥∥∥∥
2
+

2γd

n
. (3.107)

Further, the Young inequality combined with A4 give

E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

∥∥∥∥∥∥
2
 ≤ 3

n

n∑
i=1

E

[∥∥∥H i(Xi
k, ξ

i
k+1)−H i(Xk, ξ

i
k+1)

∥∥∥2
]

+ 3E
[
‖H̄(x?, ξ)‖2

]
+ 3E

[∥∥∥H̄(Xk, ξk+1)− H̄(x?, ξ)
∥∥∥2
]

≤ 3L̂2E
[
Vk
]

+ 3L̂2E
[
d2
k

]
+ 3E

[
‖H̄(x?, ξ)‖2

]
. (3.108)

In addition, using the fact that for any vectors a, b ∈ Rd, 2|〈a, b〉| ≤ m ‖a‖2 + ‖b‖2/m
we can upper bound the inner product derived in (3.107) as follows

− E

〈Xk − x?,
1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

〉 = −E
[〈
Xk − x?,∇Ū(Xk)

〉]

+ E

〈Xk − x?,
1

n

n∑
i=1

[
H i(Xk, ξ

i
k+1)−H i(Xi

k, ξ
i
k+1)

]〉
≤ −E

[〈
Xk − x?,∇Ū(Xk)

〉]
+mE

[
d2
k

]
/2 + L2E

[
Vk
]
/(2m)

≤ −mE
[
d2
k

]
/2 + L2E

[
Vk
]
/(2m). (3.109)
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Therefore, plugging (3.108) and (3.109) in (3.107) shows

E
[
d2
k+1

]
≤
(

1− γ
[
m− 3γL̂2

])
E
[
d2
k

]
+ γ

(
3γL̂2 +

L2

m

)
E
[
Vk
]

+ 3γ2E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+
2γd

n
.

Eventually, the assumption γ ≤ m(6L̂2)−1 completes the proof.

For any γ ∈ (0,m(6L̂2)−1], under A1, A4 and A6 using Lemma 3.18 and Lemma 3.19
we have shown that HX3 and HX4 hold with the following quantities

A = 3L̂2, B = 3ω̃, C = 0, D = 3E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]
,

Ā = 3L2, B̄ = 3L2, C̄ = 0, D̄ = (3/n)
∑n

i=1 ‖∇U i(x?)‖2,

Ad = γm/2, Bd = 0, Cd = 2γL2/m, Dd = 3γ2E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+ 2γd/n,

Aσ = 1, Bσ = 0, Cσ = 0, Dσ = 0.
(3.110)

For any γ > 0, consider the following variables

Cγ =
4(1− pc)γ

2

pc − 4Ad

(
B +

2 + pc

pc
B̄

)
, Cγ

r = 3CγCd, Cγ
V = 1 + 2CdC

γ ,

Cγ
ε = Cγ

V E
[
V0

]
+ 7CγE

[
d2

0

]
+ 2Dd,

Cγ
δ =

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)
+

CγDd

Ad
+

8
(
1− τ

)
(n− 1)γd

npc
.

(3.111)

We also introduce γ1 and Iγ , which are defined for any γ > 0 by

γ1 =
p

1/2
c

(2− 2pc)
1/2
[
A+ (1 + 2/pc)Ā

]1/2
∧ m

6L̂2
∧ pc

2m
∧ qc

m
, (3.112)

Iγ =
{
γ ∈ (0, γ1) : γm ≥ 8Cγ

r

}
.

Based on Lemma 3.13, we derive the following result.

Lemma 3.20. Assume A1, A4 and A6 hold. Then, for any γ ∈ Iγ and k ≥ 1, we have

E
[
Vk
]
≤
(

1− Ad
4

)k(
2Cγ

ε +
4Cγ

δCγ
r

Ad

)
+ Cγ

δ , (3.113)

where Vk is defined in (3.24) and Cγ
ε ,C

γ
r ,C

γ
δ in (3.111).

Proof For any γ ∈ Iγ , we have 4Cγ
r ≤ Ad and moreover it is easy to check that

Ad < min(Aσ/2, pc/4), AdAσ ≥ 8BdBσ = 0. In addition, since A1, A4 and A6 are
satisfied we can apply Lemma 3.18 and Lemma 3.19 which show that HX3, HX4 hold
with the variables introduced in (3.110). Therefore, we can use Lemma 3.13 to complete
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the proof.

Based on the results presented in this section, we can rewrite the upper bound on
(E
[
Vk
]
)k∈N given in Lemma 3.20 into the format of Assumption 3.9. We consider for

γ > 0,

v1 = 2Cγ
ε +

4Cγ
δCγ

r

Ad
, v2 = Cγ

δ . (3.114)

Lemma 3.21. Assume A1, Assumption 3.4, A4 hold and let γ ≤ 2(3L)−1. Then for
any k ∈ N, we have

E
[
‖X(k+1)γ −Xk+1‖2

]
≤
[
1− γm

(
1− 3γL

)
+ 3γ2L̂2

]
E
[
‖Xkγ −Xk‖2

]
+ γ

(
2L2

m
+ 3γ(L2 + L̂2)

)
E
[
Vk
]

+

 2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+ 3E
[∥∥Ik∥∥2

]
+

3γ2

n2

∫
Rd

VarF0

(
H(x, ξ)

)
π(dx).

Proof For any k ∈ N, recall that Fk is defined in (3.22) and using Proposition 3.5 we
obtain

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤
[
1− γm

(
1− 3γL

)]
‖Xkγ −Xk‖2 + γ

(
2L2

m
+ 3γL2

)
Vk

+

(
2

γm

∥∥∥EFk [Ik]∥∥∥2
+ 3EFk

[∥∥Ik∥∥2
])

+ γ2 VarFk

 1

n

n∑
i=1

Gik

 . (3.115)

Since the stochastic gradients (H i(·, ξik+1))ni=1 are unbiased, A4 with the Young inequal-
ity imply that

VarFk

 1

n

n∑
i=1

Gik

 = EFk


∥∥∥∥∥∥ 1

n

n∑
i=1

[
H i(Xi

k, ξ
i
k+1)−∇U i(Xi

k)
]∥∥∥∥∥∥

2


= EFk

∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1)− 1

n

n∑
i=1

∇U i(Xi
k) +∇Ū(Xk)

+ H̄(Xk, ξk+1)− H̄(Xkγ , ξk+1)−∇Ū(Xk) +∇Ū(Xkγ) + H̄(Xikγ , ξk+1)−∇Ū(Xkγ)

∥∥∥∥∥∥
2

≤ 3L̂2Vk + 3L̂2‖Xk − Xkγ‖2 + 3 VarFk
(
H̄(Xkγ , ξk+1)

)
.

Taking the expectation and using that Xkγ has distribution π combined with (3.115)
complete the proof.

For notational convenience, we also introduce the time step-size γ2 defined by

γ2 =
pc

4m
∧ 1

6(L+ L̂2/m)
∧ pcm

38(1− pc)1/2
(
pcω̃ + 3L2

)1/2
L

.



CHAPTER 3. FALD: FEDERATED AVERAGING LANGEVIN DYNAMICS 145

Theorem 3.22. Assume A1, A4 and A6 hold and let γ ∈ (0, γ1 ∧ γ2). Then, for any
initial probability measure µ(γ)

0 ∈ P2(Rd), k ∈ N, we have

W 2
2

(
µ

(γ)
k , π

)
≤
(

1− γm

2

)k
W 2

2

(
µ

(γ)
0 , π

)
+

8L2

m2
v1

(
1− γm

8

)k
+

6L2

m2
v2 +

6γd

nm2
κI

+
6γ

n2m

∫
Rd

VarF0(H
(
x, ξ1

)
)π(dx),

where v1, v2 are defined in (3.114) and κI = L2(1 + γL2/m). If in addition we suppose
HX1, set κI = 2γ(L3 + dL̃2/n).

Proof We know that Assumption 3.4 is satisfied since for any i ∈ [n], x ∈ Rd
the stochastic gradient H i(x, ξi1) is unbiased. The constraint γ ≤ γ1 combined with
Lemma 3.19 impliesHX3 and plugging the expression ofAd, Aσ, Bd, C, C̄, Cd, Cσ provided
in (3.110) into Cγ

r defined in (3.111) gives that

Cγ
r =

72γ3(1− pc)L
2(ω̃ + (1 + 2/pc)L

2)

(pc − 2γm)m
.

For any γ ∈
(
0, γ2

]
, we have (pc− 2γm)m2 ≥ 576(1− pc)γ

2L2(ω̃ + (1 + 2/pc)L
2) which

shows that γ ∈ Iγ . Thus, we can apply Lemma 3.20 which proves that Assumption 3.9
holds with qc = γm and αv = 1−Ad/4 and v1, v2 defined in (3.114). Since the assump-
tions of Lemma 3.21 are satisfied, HX2 holds, and therefore we can apply Theorem 3.10
with

(1− qc)α0 = 1− γm
(
1− 3γL

)
+ 3γ2L̂2, α1 = 0,

(1− qc)α2 = γ

(
2L2

m
+ 3γ(L2 + L̂2)

)
, α3 = 0,

(1− qc)α4 =

 2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+ 3E
[∥∥Ik∥∥2

]+
3γ2

n2

∫
Rd

VarF0

(
H(x, ξ1)

)
π(dx).

Furthermore, using Lemma 3.8 we have

2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+ 3E
[∥∥Ik∥∥2

]
≤ 3γ2dL2

nm

(
1 +

19γL2

36m

)
. (3.116)

Moreover, if we suppose HX1, we obtain

2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+ 3E
[∥∥Ik∥∥2

]
≤ γ3d

nm

(
5L3 +

4dL̃2

3n

)
. (3.117)

Finally, with the notation of Theorem 3.10 we obtain 1 + δ = 0, and using γ ≤
(6(L+m−1L̂2))−1 combined with (3.116) or (3.117) if we suppose HX1 give the expec-
ted result.

Now, consider the time step-sizes γ3 and γ? defined by

γ3 =
pcm

3L2 + pcω̃
, γ? = γ1 ∧ γ2 ∧ γ3. (3.118)

From the previous result, the next corollary controls the asymptotic bias obtained by
Algorithm 3.3.
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Corollary 3.23. Assume A1, A4 and A6 hold and let γ ∈ (0, γ?), τ = 1. Then, for
any initial probability measure µ(γ)

0 ∈ P2(Rd), k ∈ N, we have

6−4n

γd
lim sup
k→∞

W 2
2

(
µ

(γ)
k , π

)
≤
∫
Rd VarF0(H

(
x, ξ1

)
)π(dx)

ndm
+
κ̃I
m2

+
(1− pc)γL

2

p2
cm

2

1

d

n∑
i=1

∥∥∥∇U i(x?)∥∥∥2
+
pc

nd
E

[∥∥∥H(x?, ξ)
∥∥∥2
]

+
L2 + pcω̃

m

 ,

where κ̃I = L2 and if we suppose HX1, κ̃I = γ(L3 + dL̃2/n).

Proof Using Theorem 3.22 combined with γ ≤ γ1 ∧ γ2 gives that

lim sup
k→∞

W 2
2

(
µ

(γ)
k , π

)
≤ 6γ

n2m

∫
Rd

VarF0(H
(
x, ξ1

)
)π(dx) +

6γd

nm2
κI +

6L2

m2
v2. (3.119)

Further, recall that Ad, B, B̄,D, D̄,Dd are provided in (3.110) and Cγ
δ is defined in

(3.111) by

Cγ
δ =

4(1− pc)γ
2

pc

(
D +

2 + pc

pc
D̄

)
+

CγDd

Ad
+

8
(
1− τ

)
(n− 1)γd

npc

≤ 12(1− pc)γ
2

pc

1 +
12γ

m

(
ω̃ +

3

pc
L2

)E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+
8
(
1− τ

)
(n− 1)γd

npc

+
36(1− pc)γ

2

p2
cn

n∑
i=1

∥∥∥∇U i(x?)∥∥∥2
+

96(1− pc)γ
2d

pcnm

(
ω̃ +

3

pc
L2

)

≤ 156(1− pc)γ
2

pc
E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+
36(1− pc)γ

2

p2
cn

n∑
i=1

∥∥∥∇U i(x?)∥∥∥2

+
96(1− pc)γ

2d

pcnm

(
ω̃ +

3

pc
L2

)
+

8
(
1− τ

)
(n− 1)γd

npc
. (3.120)

Finally, setting τ = 1 combined with (3.119) and (3.120) show that

lim sup
k→∞

W 2
2

(
µ

(γ)
k , π

)
≤ 6γ

n2m

∫
Rd

VarF0(H
(
x, ξ1

)
)π(dx) +

6γd

nm2
κI

+
8(1− pc)γ

2L2

npcm2

156

n
E

[∥∥∥H(x?, ξ)
∥∥∥2
]

+
36

pc

n∑
i=1

∥∥∥∇U i(x?)∥∥∥2
+

96d

m

(
ω̃ +

3

pc
L2

) .

3.B.2 Study of VR-FALD?

In this alternative of FALD derived in Section 3.B.1, we introduce control variates to
cope with both heterogeneity and variance in local gradients. Instead of using H i(Xi

k)
to update the local parameter Xi

k, this time the ith client uses the proxy H i(Xi
k, ξ

i
k+1)−
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H i(Yk, ξ
i
k+1)+∇U i(Yk) based on an analog of the SVRG algorithm (Johnson and Zhang,

2013; Karimireddy et al., 2020) and where Yk is a global reference point updated with
probability qc ∈

(
0, 1
]
. We derive an explicit upper bound on the Wasserstein distance

between the distribution of the server parameter Xkγ and the target distribution π. We
also show how this new global control variate mitigates the effect of heterogeneity in
the convergence rate. To do so, we consider the stochastic gradients defined for any
i ∈ [n], k ∈ N, by

Gik = H i(Xi
k, ξ

i
k+1)−H i(Yk, ξ

i
k+1) + Ck, (3.121)

Ḡik = ∇U i(Xi
k)−∇U i(Yk) + Ck (3.122)

and denote

σk =

 1

n

n∑
i=1

EFk
[∥∥∥H i(Yk, ξ

i
k+1)−H i(x?, ξ

i
k+1)

∥∥∥2
]1/2

. (3.123)

Lemma 3.24. Assume A1, A4 and A6 hold. Then for any k ∈ N, we have

1

n

n∑
i=1

E
[
‖Ḡik‖2

]
≤ 3L2E

[
Vk
]

+ 3L2E
[
d2
k

]
+ 3E

[
σ2
k

]
,

1

n

n∑
i=1

E
[
‖Gik − Ḡik‖2

]
≤ 3L̂2E

[
Vk
]

+ 3ω̃E
[
d2
k

]
+ 3E

[
σ2
k

]
.

For any i ∈ [n], k ∈ N, recall the stochastic gradients Gik, Ḡ
i
k are defined in (3.121) and

(3.122), respectively

Proof For k ≥ 0, Lipschitz property of {∇U i}i∈[n] supposed in A1 gives that

1

n

n∑
i=1

E
[
‖Ḡik‖2

]
=

1

n

n∑
i=1

E
[
‖∇U i(Xi

k)−∇U i(Yk) +∇Ū(Yk)‖2
]

≤ 3

n

n∑
i=1

E
[
‖∇U i(Xi

k)−∇U i(Xk)‖2
]

+
3

n

n∑
i=1

E
[
‖∇U i(Yk)−∇U i(x?)‖2

]
+

3

n

n∑
i=1

E
[
‖∇U i(Xk)−∇U i(x?)‖2

]
≤ 3L2E

[
Vk
]

+ 3L2E
[
d2
k

]
+ 3E

[
σ2
k

]
and the proof is concluded by noting that A4 gives

1

n

n∑
i=1

E‖Gik − Ḡik‖2 = E

VarFk

 1

n

n∑
i=1

Gik




≤ E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1)

∥∥∥∥∥∥
2
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Algorithm 3.4 VR-FALD?

Input: initial vectors (Xi
0)i∈[n], noise parameter τ ∈

[
0, 1
]
, number of communication

rounds K, probability pc of communication, probability qc to update the control
variates, step-size γ and batch size r.
Initialize Y0 = (1/n)

∑n
i=1X

i
0 and C0 = (1/n)∇U(Y0)

for k = 0 to K − 1 do
// On each client
Draw Bk+1 ∼ B(pc), Z̃k+1 ∼ N (0d, Id)
// In parallel on the n clients
for i = 1 to n do

Draw ξik+1 ∼ νξ, Z̃ik+1 ∼ N (0d, Id)
Compute Gik = H i(Xi

k, ξ
i
k+1)−H i(Yk, ξ

i
k+1) + Ck

Set X̃i
k+1 = Xi

k − γGik +
√

2γ (
√
τ/n Z̃k+1 +

√
1− τ Z̃ik+1)

if Bk+1 = 1 then
Broadcast X̃i

k+1 to the server
else

Update Xi
k+1 ← X̃i

k+1

if B̃k+1 = 1 then
Broadcast Xi

k to the server
else

Update Yk+1 ← Yk and Ck+1 ← Ck

if Bk+1 = 1 then
// On the central server
Update then broadcast the global parameter Xk+1 ← (1/n)

∑n
i=1 X̃

i
k+1

// On each client
Update the local parameter Xi

k+1 ← Xk+1

if B̃k+1 = 1 then
// On the central server
Update then broadcast Yk+1 ← (1/n)

∑n
i=1X

i
k

// On each client
Compute and broadcast ∇U i(Yk+1)
// On the central server
Update then broadcast Ck+1 ← (1/n)∇U(Yk+1)

Output: samples {X`}{`∈[K] :B`=1}.
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≤ 3E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1)

∥∥∥∥∥∥
2
+ 3E

[∥∥∥H̄(Yk, ξk+1)− H̄(x?, ξk+1)
∥∥∥2
]

+ 3E

[∥∥∥H̄(Xk, ξk+1)− H̄(x?, ξk+1)−∇Ū(Xk)
∥∥∥2
]
.

Lemma 3.25. Assume A1 and A4 hold. Then, for any γ ∈ (0,m(6L̂2)−1], we have

E
[
d2
k+1

]
≤
(

1− γm

2

)
E
[
d2
k

]
+

2γL2

m
E
[
Vk
]

+ 4γ2E
[
σ2
k

]
+ 10γ2E

[
‖H̄(x?, ξ)‖2

]
+

2γd

n
,

where Vk, dk, σk are defined in (3.24), (3.25) and (3.123).

Proof Let k be in N. Writing the expression of Xk+1 defined in (3.23) and developing
the expectation of the squared norm give

E
[
d2
k+1

]
= E

[∥∥∥Xk+1 − x?
∥∥∥2
]

= E

∥∥∥∥∥Xk − x? −
γ

n

n∑
i=1

H i(Xi
k, ξ

i
k+1) + γH̄(Yk, ξk+1)− γ∇Ū(Yk)

+
√

2γ

√ τ

n
Z̃k+1 +

√
1− τ
n

n∑
i=1

Zik+1

∥∥∥∥∥
2


= E
[∥∥Xk − x?

∥∥2
]
− 2γE

〈Xk − x?,
1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

〉

+ γ2E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

∥∥∥∥∥∥
2
+ γ2E

[∥∥∥H̄(Yk, ξk+1)−∇Ū(Yk)
∥∥∥2
]

− 2γ2E

〈 1

n

∑
i=1

H i(Xi
k, ξ

i
k+1), H̄(Yk, ξk+1)− γ∇Ū(Yk)

〉+
2γd

n

= E
[
d2
k

]
− 2γE

〈Xk − x?,
1

n

n∑
i=1

∇U i(Xi
k)

〉+ 2γ2E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

∥∥∥∥∥∥
2


+ 2γ2E

[∥∥∥H̄(Yk, ξk+1)−∇Ū(Yk)
∥∥∥2
]

+
2γd

n
. (3.124)

Using the Young inequality combined with A4 show
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E


∥∥∥∥∥∥ 1

n

n∑
i=1

H i(Xi
k, ξ

i
k+1)

∥∥∥∥∥∥
2
 ≤ 3

n

n∑
i=1

E

[∥∥∥H i(Xi
k, ξ

i
k+1)−H i(Xk, ξ

i
k+1)

∥∥∥2
]

+ 3E

[∥∥∥H̄(Xk, ξk+1)− H̄(x?, ξ)
∥∥∥2
]

+ 3E
[
‖H̄(x?, ξ)‖2

]
≤ 3L̂2E

[
Vk
]

+ 3L̂2E
[
d2
k

]
+ 3E

[
‖H̄(x?, ξ)‖2

]
. (3.125)

We also have that

E

[∥∥∥H̄(Yk, ξk+1)−∇Ū(Yk)
∥∥∥2
]

≤ 2E

[∥∥∥H̄(Yk, ξk+1)− H̄(x?, ξk+1)
∥∥∥2
]

+ 2E
[
‖H̄(x?, ξ)‖2

]
≤ 2E

[
σ2
k

]
+ 2E

[
‖H̄(x?, ξ)‖2

]
. (3.126)

In addition, using the fact that for any vectors a, b ∈ Rd, 2
∣∣∣〈a, b〉∣∣∣ ≤ m ‖a‖2 + ‖n‖2 /m,

we can upper bound the inner product derived in (3.124) as follows

− E

〈Xk − x?,
1

n

n∑
i=1

∇U i(Xi
k)

〉 = −E
[〈
Xk − x?,∇Ū(Xk)

〉]

+ E

〈Xk − x?,
1

n

n∑
i=1

[
H i(Xk, ξ

i
k+1)−H i(Xi

k, ξ
i
k+1)

]〉
≤ −E

[〈
Xk − x?,∇Ū(Xk)

〉]
+mE

[
d2
k

]
/2 + L2E

[
Vk
]
/(2m)

≤ −mE
[
d2
k

]
/2 + L2E

[
Vk
]
/(2m). (3.127)

Hence, combining (3.124), (3.125), (3.126) and (3.127) implies that

E
[
d2
k+1

]
≤
(

1− γm+ 6γ2L̂2
)
E
[
d2
k

]
+

(
γL2

m
+ 6γ2L̂2

)
E
[
Vk
]

+ 4γ2E
[
σ2
k

]
+ 10γ2E

[
‖H̄(x?, ξ)‖2

]
+

2γd

n
.

Using the assumption on γ completes the proof.

Lemma 3.26. Assume the L-smoothness of the potentials {U i}i∈[n] and A4 hold. Then,
for any k ∈ N, we have

E
[
σ2
k+1

]
≤ (1− qc)E

[
σ2
k

]
+ 2qL̂2E

[
d2
k

]
+ 2qL̂2E

[
Vk
]
,

where Vk, dk, σk are defined in (3.24), (3.25) and (3.123).
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Proof Let’s consider k ≥ 0, using A4 implies that

E
[
σ2
k+1

]
=

1

n

n∑
i=1

E

[∥∥∥H i(Y i
k+1, ξ

i
k+1)−H i(x?, ξ

i
k+1)

∥∥∥2
]

=
1− qc

n

n∑
i=1

E

[∥∥∥H i(Y i
k , ξ

i
k+1)−H i(x?, ξ

i
k+1)

∥∥∥2
]

+
qc

n

n∑
i=1

E

[∥∥∥H i(Xi
k, ξ

i
k+1)−H i(x?, ξ

i
k+1)

∥∥∥2
]

= (1− qc)E
[
σ2
k

]
+

2q

n

n∑
i=1

E
[ ∥∥∥H i(Xi

k, ξ
i
k+1)−H i(Xk, ξ

i
k+1)

∥∥∥2

+
∥∥∥H i(Xk, ξ

i
k+1)−H i(x?, ξ

i
k+1)

∥∥∥2
]

≤ (1− qc)E
[
σ2
k

]
+ 2qL̂2E

[
d2
k

]
+ 2qL̂2E

[
Vk
]
.

Which shows the expected result.

For any γ ∈ (0,m(6L̂2)−1], under A1, A4 and A6 we have shown that Lemma 3.24 and
Lemma 3.25 imply HX3 and HX4 with

A = cV = 3L̂2, B = cd = 3ω̃, C = cσ = 3, D = c = 0,

Ā = 3L2, B̄ = 3L2, C̄ = 3, D̄ = 0,

Ad = γm/2, Bd = 4γ2, Cd = 2γL2/m, Dd = (10γ2)E

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+ 2γd/n,

Aσ = q, Bσ = 2qL̂2, Cσ = 2qL̂2, Dσ = 0.
(3.128)

For any γ > 0, consider the following variables

αd =
4γ2

pcAd
max

{
pcB + 3B̄,

4Bσ
Aσ

(
pcC + 3C̄

)}
, ασ =

4γ2
(
pcC + 3C̄

)
pcAσ

. (3.129)

Lemma 3.27. Assume A1, A4 and A6 hold with

Ad ≤ min

(
Aσ,

pc

4

)
, αdCd + ασCσ ≤

pc

8
, αdBd + γ2

(
C +

3

pc
C̄

)
≤ ασAσ

2
,

and consider γ ≤ m(6L̂2)−1 ∧ p1/2
c (2− 2pc)

−1/2[A+ (1 + 2/pc)Ā]−1/2. Then, for any
k ∈ N, we have

E
[
Vk
]
≤
(

1− Ad
2

)k (
E
[
V0

]
+ αdE

[
d2

0

]
+ ασE

[
σ2

0

])
+

2αdDd

Ad
+

4
(
1− τ

)
(n− 1)γd

nAd
,

where Vk is defined in (3.24).

Proof Applying Lemma 3.14 with the variables provided in (3.128) gives the result.

Let’s introduce γ1 > 0 such that
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γ1 ≤
m

128L̂2
∧ m

8 max
(

3L2 + pcω̃, 24L̂2
) ∧ 2q

m
∧ pc

2m
∧ pc[

2(1− pc)(pcA+ 3Ā)
]1/2

∧ pc

8

6

(
L2

m2 max

(
3L2 + pcω̃, 24L̂2

))
+ 2

qc

1/2
.

Under A1, A4 and A6, for all γ ∈
(
0, γ1

]
the assumptions of Lemma 3.27 are satisfied.

The upper bound on (E
[
Vk
]
)k∈N derived in Lemma 3.27 can be rewritten into the

format of Assumption 3.9 by considering

ṽ1 = E
[
V0

]
+ αdE

[
d2

0

]
+ ασE

[
σ2

0

]
, ṽ2 =

2αdDd

Ad
+

4
(
1− τ

)
(n− 1)γd

nAd
. (3.130)

In addition, for any γ > 0, consider the following variables

Cγ =
4(1− pc)γ

2

pc − 4Ad

B +
2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

) ,
Cγ
r =

9γ2
(
1− pc

)
Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

)
,

Cγ
σ =

4(1− pc)γ
2

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ CγBd

(
2 +

3

Aσ −Ad

)
,

Cγ
d0

= 7Cγ , Cγ
V = 1 + 2CγCd,

Cγ
δ =

CγDd

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)
+

8
(
1− τ

)
(n− 1)γd

npc
,

Cγ
ε = Cγ

V E
[
V0

]
+ Cγ

d0
E
[
d2

0

]
+ Cγ

σE
[
σ2

0

]
+ 2Dd.

(3.131)

Based on Lemma 3.12, we derive the following result.

Lemma 3.28. Assume A1, A4 and A6 hold and consider γ ∈
(
0, γ1

]
. Then, for any

k ∈ N, we have

E
[
Vk
]
≤
(

1− Ad
4

)k(
Cγ
ε +

4Cγ
r ṽ1

Ad

)
+

2Cγ
r ṽ2

Ad
+ Cγ

δ ,

where Vk is defined in (3.24) and Cγ
ε ,C

γ
r ,C

γ
δ in (3.131).

Proof Since we suppose A1, A4 and A6 hold with γ ≤ γ1, the assumptions of
Lemma 3.27 are satisfied. Therefore, for any l ∈ N, we obtain

E
[
Vl
]
≤
(

1− Ad
2

)l
ṽ1 + ṽ2. (3.132)

Moreover, the condition γ ≤ m/128L̂2 ensures that AdAσ = qγm/2 ≥ 8BdBσ =
64qγ2L̂2, hence we can apply Lemma 3.12. Then, plugging (3.132) in the bound derived
in Lemma 3.12 gives

E
[
Vk
]
≤
(
1− α

)k
Cγ
ε + Cγ

r

k−2∑
i=0

(
1− α

)k−i−1 E
[
Vi
]

+ Cγ
δ , (3.133)
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where α is defined in (3.61) by

α = Ad −
2(Aσ −Ad)−1BdBσ

1 +
√

1 + 4(1−Ad)−1(Aσ −Ad)−1BdBσ
. (3.134)

Using Lemma 3.11, we know that Ad/2 < α ≤ Ad and combining this bound with
(3.132) and (3.133) leads to

E
[
Vk
]
≤
(

1− Ad
4

)k(
Cγ
ε +

4Cγ
r ṽ1

Ad

)
+

2Cγ
r ṽ2

Ad
+ Cγ

δ .

In order to rewrite the upper bound on (E
[
Vk
]
)k∈N given in Lemma 3.28 in the format

of Assumption 3.9, we consider for γ > 0

v1 = Cγ
ε +

4Cγ
r ṽ1

Ad
, v2 =

2Cγ
r ṽ2

Ad
+ Cγ

δ . (3.135)

Lemma 3.29. Assume A1, A7, Assumption 3.4 and hold and let γ ≤ (6L)−1. Using
the convention that

∑−1
0 = 0, then for any k ∈ N, we have

E
[
‖X(k+1)γ −Xk+1‖2

]
≤
[
1− γm+ γ2

(
3mL+ 4ω

)]
E
[
‖Xkγ −Xk‖2

]
+ 4γ2ωqc

k−1∑
l=0

(1− qc)
k−l−1E

[
‖Xlγ −Xl‖2

]
+ γ

(
2L2

m
+ 3γL2 + 4γω

)
E
[
Vk
]

+

 2

γm
E

[∥∥∥EFk [Ik]∥∥∥2
]

+ 3E
[∥∥Ik∥∥2

]+
16γ3ωd

nqc

(
1 +

γL

qc

)
.

Proof For k ∈ N, using the independence of (ξik+1)i∈[n] combined with Assumption 3.4
and A7, we obtain

VarFk

 1

n

n∑
i=1

Gik

 = EFk


∥∥∥∥∥∥ 1

n

n∑
i=1

[
∇U i(Xi

k)−∇U i(Yk)−H i(Xi
k, ξ

i
k+1) +H i(Yk, ξ

i
k+1)

]∥∥∥∥∥∥
2


=
1

n

n∑
i=1

EFk
[∥∥∥∇U i(Xi

k)−∇U i(Yk)−H i(Xi
k, ξ

i
k+1) +H i(Yk, ξ

i
k+1)

∥∥∥2
]

≤ ω

n

n∑
i=1

∥∥∥Xi
k − Yk

∥∥∥2
. (3.136)

Denote tk ∈ N the time when the reference point of the control variate is updated,
therefore we have

tk =

0, if k = 0

max
{
l ∈
{

0, . . . , k − 1
}

: Yk = n−1
∑n

i=1X
i
k

}
, if k ≥ 1

. (3.137)
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Hence, for any i ∈ [n], k ≥ 0, we have

Xi
k − Yk = (Xi

k −Xk) + (Xk − Xkγ) + (Xkγ − Xtkγ) + (Xtkγ − Yk).

Thus, for k ≥ 0, combining the previous line with Young’s inequality, it yields that

1

n

n∑
i=1

E

[∥∥∥Xi
k − Yk

∥∥∥2
]
≤ 4E

[
Vk
]
+4E

[
‖Xk − Xkγ‖2

]
+4E

[
‖Xkγ − Xtkγ‖2

]
+4E

[
‖Xtkγ − Yk‖2

]
.

(3.138)
For k ≥ 1, by definition of tk, we have

E
[
Vtk

]
=

k−1∑
l=0

P
(
tk = l

)
E
[
Vl
]

= q
k−1∑
l=0

(1− qc)
k−l−1E

[
Vl
]
.

Moreover, for k ≥ 1 we get

E

[∥∥∥Xkγ − Xtkγ

∥∥∥2
]

=

k−1∑
l=0

P
(
tk = l

)
E

[∥∥∥Xkγ − Xlγ

∥∥∥2
]

= q
k−1∑
l=0

(1− qc)
k−l−1E


∥∥∥∥∥∥−
∫ kγ

lγ
∇Ū(Xs)ds+

√
2

n

(
Wkγ −Wlγ

)∥∥∥∥∥∥
2


≤ 2γq
k−1∑
l=0

(k − l)(1− qc)
k−l−1

∫ kγ

lγ
E

[∥∥∥∇Ū(Xs)
∥∥∥2
]

ds+
2d

n

 . (3.139)

Using Dalalyan (2017a, Lemma 2) with s ∈ R+, we obtain

E
[
‖∇Ū(Xs)‖2

]
≤ dL/n.

Using by convention that
∑0

l=1 = 0, for any k ∈ N and x 6= 1 we have

k∑
l=1

l2xl−1 = (1− x)−3

(
1 + x− xk

[
2x+ kx(1− x) + (k + 1)(1 + k(1− x))(1− x)

])
.

Thus, setting x = 1− q inside the last shows that

k∑
l=1

l2(1− qc)
l−1 ≤ 2/q3

c .

Hence, the above line combined with
∑k

l=1 l(1 − qc)
l−1 = q−2

[
1− (1 + kq)(1− qc)

k
]

and (3.139) yield the following upper bound

E

[∥∥∥Xkγ − Xtkγ

∥∥∥2
]
≤ 2γdq

n

k−1∑
l=0

[
(k − l)(1− qc)

k−l−1
(

2 + (k − l)γL
)]

≤ 2γdq

n

k−1∑
l=0

[
(k − l)(1− qc)

k−l−1
(

2 + (k − l)γL
)]
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≤ 4γd

nqc

(
1 +

γL

qc

)
. (3.140)

In addition, by definition (3.137) of tk, we immediately get for any k ≥ 1, that

E

[∥∥∥Xtkγ −Xtk

∥∥∥2
]

=

k−1∑
l=0

P
(
tk = l

)
E
[
‖Xlγ −Xl‖2

]
= q

k−1∑
l=0

(1− qc)
k−l−1E

[
‖Xlγ −Xl‖2

]
.

Combining (3.136), (3.138) with (3.140), for any k ≥ 1 we obtain

E

VarFk

 1

n

n∑
i=1

Gik


 ≤ 4ωE

[
‖Xk − Xkγ‖2

]

+ 4ωqc

k−1∑
l=0

(1− qc)
k−l−1E

[
‖Xlγ −Xl‖2

]
+ 4ωE

[
Vk
]

+
16γωd

nqc

(
1 +

γL

qc

)
. (3.141)

Since Y0 = n−1
∑

i=1X
i
0, we have VarFk(n−1

∑n
i=1G

i
k) ≤ ωVk and therefore the above

inequality also holds for k = 0. Lastly, using Proposition 3.5 gives

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤
[
1− γm

(
1− 3γL

)]
‖Xkγ −Xk‖2 + γ

(
2L2

m
+ 3γL2

)
Vk

+

(
2

γm

∥∥∥EFk [Ik]∥∥∥2
+ 3EFk

[∥∥Ik∥∥2
])

+ γ2 VarFk

 1

n

n∑
i=1

Gik

 .

Hence, plugging (3.141) in the above inequality yields the expected result.

Based on Lemma 3.29, for any γ > 0 introduce the following notations

α0 =
(
1− qc

)−1
[
1− γm+ γ2

(
3mL+ 4ω

)]
, α1 =

4γ2ωq(
1− qc

)2 , (3.142)

α2 =
γ

1− qc

(
2L2

m
+ 3γL2 + 4γω

)
, α3 = 0,

α4 = (1− qc)
−1

2 supl∈N
γm

E

[∥∥∥EFl [Il]∥∥∥2
]

+ 3 sup
l∈N

E
[∥∥Il∥∥2

]
+

16γ3ωd

nqc

(
1 +

γL

qc

) .

For ease of reading, we also introduce the time step-size γ2 defined by

γ2 ≤
qc

L
∧ qc

2m
∧ 1

6(L+ 4m−1ω)
. (3.143)

Theorem 3.30. Assume A1, A4, A6, A7 and let γ ∈ (0, γ1∧γ2). Then, for any initial
probability measure µ(VR?,γ)

0 ∈ P2(Rd), k ∈ N, we have
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W 2
2

(
µ

(VR?,γ)
k , π

)
≤
(

1− γm

2

)k
W 2

2

(
µ

(VR?,γ)
0 , π

)
+

(
1− γm

8

)k 3L2

m2
v1

+
6L2

m2
v2 +

6γd

nm2
κI +

32γ2ωd

nmq
,

where v1, v2 are defined in (3.135) and κI = L2(1 + γL2/m). If in addition we suppose
HX1, set κI = 2γ(L3 + dL̃2/n).

Proof We know that Assumption 3.4 is satisfied since for any i ∈ [n], x ∈ Rd the
stochastic gradient H i(x, ξi) is unbiased. Lemma 3.28 proves that Assumption 3.9 holds
with αv = 1−Ad/4 and v1, v2 defined in (3.135). Lemma 3.29 implies that HX2 holds
with the choice of (αi)

4
i=0 detailed in (3.142). Finally, since HX2 and Assumption 3.9

hold, we can apply Theorem 3.10 to show that

W 2
2

(
µ

(VR?,γ)
k , π

)
≤
(
1 + α0 + δ

)k (
1− qc

)k
W 2

2

(
µ

(VR?,γ)
0 , π

)
+ (1− qc)v1

(
α2 +

α3

α0 + δ

)
αkv −

(
1 + α0 + δ

)k (
1− qc

)k
αv −

(
1 + α0 + δ

) (
1− qc

)
+

1− qc

qc − (1− qc)(α0 + δ)

(α2 +
α3

α0 + δ

)
v2 + α4

 , (3.144)

where δ = 2−1(
√

(α0 − 1)2 + 4α1 − 1− α0) is defined in (3.46). Using for any a >
0, b ≥ 0, that

√
a+ b ≤ √a+ b/(2

√
a), we obtain

α0 +
√

(α0 − 1)2 + 4α1 = 1 +
(
α0 − 1

)1 +

√
1 +

4α1(
α0 − 1

)2


≤ 1 + 2
(
α0 − 1

)1 +
α1(

α0 − 1
)2
 = 2α0 − 1 +

2α1

α0 − 1
.

Since γ ≤ γ2 ≤ q(2m)−1 ∧ {6(L+ 4m−1ω)}−1, the previous line implies that

2
(
1− qc

) (
1 + α0 + δ

)
= (1− qc)

(
1 + α0 +

√
(α0 − 1)2 + 4α1

)
≤ 2(1− qc)

(
α0 +

α1

α0 − 1

)

= 2

1− γm+ γ2

(
3mL+ 4ω +

4qω

qc − γm+ γ2
(
3mL+ 4ω

))


≤ 2(1− γm/2). (3.145)

This upper bound gives that

(1− qc)(α0 + δ) = (1− qc)
(
1 + α0 + δ

)
+ q − 1 ≤ q − γm/2.

Thus, we deduce that
1

qc − (1− qc)(α0 + δ)
≤ 2

γm
. (3.146)
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Further, using γ ≤ γ2 combined with the definitions of α0, α2, α3, αv and δ show that

αkv −
(
1 + α0 + δ

)k (
1− qc

)k
αv −

(
1 + α0 + δ

) (
1− qc

) ≤ 8

3γm

(
1− γm

8

)k
,

α2 +
α3

α0 + δ
=

γ

1− qc

(
2L2

m
+ 3γL2 + 4γω

)
≤ 3γL2

(1− qc)m
.

(3.147)

Lastly, plugging (3.145), (3.146) and (3.147) in (3.144) yields

W 2
2

(
µ

(VR?,γ)
k , π

)
≤
(

1− γm

2

)k
W 2

2

(
µ

(VR?,γ)
0 , π

)
+

(
1− γm

8

)k 3L2

m2
v1

+
6L2

m2
v2 +

2(1− qc)α4

γm
. (3.148)

In addition, following the lines provided in the proof of Theorem 3.22, we deduce

2(1− qc)α4

γm
≤ 6γdL2

nm2

(
1 +

19γL2

36m

)
+

32γ2ωd

nmq
. (3.149)

If in addition we suppose HX1, then we obtain

2(1− qc)α4

γm
≤ γmL2

(
1 +

γL2

2m
+
γ2L2

12

)
+

4γ

9

(
L3 +

dL̃2

n

)
+

32γ2ωd

nmq
. (3.150)

Finally, plugging (3.149) or (3.150) if HX1 holds inside (3.148) combined with γ ≤ qL−1

lead to the expected result.

Now, consider the time step-sizes γ3 and γ? defined by

γ3 =
pcm

3L2 + 16L̂2 + pcω̃
, γ? = γ1 ∧ γ2 ∧ γ3.

From the previous result, the next corollary controls the asymptotic bias obtained by
Algorithm 3.4.

Corollary 3.31. Assume A1, A4, A6, A7 and let γ ∈ (0, γ?) with τ = 1. Then, for
any initial probability measure µ(VR?,γ)

0 ∈ P2(Rd), k ∈ N, we have

9−9b

γd
lim sup
k→∞

W 2
2

(
µ

(VR?,γ)
k , π

)
≤ κI
m2

+
γω

mq

+
(1− pc)γL

2

p2
cm

5

(
L2 + L̂2 + pcω̃

)1 +
γ

nd
E

[∥∥∥H(x?, ξ)
∥∥∥2
](L2 +

qc

pc
L̂2

)
,

where κ̃I = L2(1 + γL2m−1) and if we suppose HX1, κ̃I = γ(L3 + dL̃2n−1).

Proof Applying Theorem 3.30 with γ ∈ (0, γ1 ∧ γ2) shows that

lim sup
k→∞

W 2
2

(
µ

(VR?,γ)
k , π

)
≤ 6L2

m2
v2 +

6γd

nm2
κI +

32γ2ωd

nmq

≤ 6L2Cγ
δ

m2
+

12L2Cγ
r ṽ2

Adm2
+

6γd

nm2
κI +

32γ2ωd

nmq
. (3.151)
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Plugging the definitions of ṽ1, ṽ2 provided in (3.130) combined with the previous in-
equality, we obtain

lim sup
k→∞

W 2
2

(
µ

(VR?,γ)
k , π

)
≤ 6L2Cγ

δ

m2
+

24L2Cγ
rαdDd

A2
dm

2
+

48L2Cγ
r

(
1− τ

)
(n− 1)γd

nA2
dm

2

+
6γd

nm2
κI +

32γ2ωd

nmq
.

Further, recall that Ad, B, B̄,D, D̄,Dd are provided in (3.128) and αd is defined in
(3.129) by

αd =
4γ2

pcAd
max

{
pcB + 3B̄,

4Bσ
Aσ

(
pcC + 3C̄

)}
=

24γ

pcm
max

{
3L2 + pcω̃, 8(pc + 3)L̂2

}
≤ 768γ

pcm

(
L2 + L̂2 + pcω̃

)
.

Moreover, Cγ
δ ,C

γ
r are defined in (3.131) by

Cγ
δ =

CγDd

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)
+

8
(
1− τ

)
(n− 1)γd

npc

=
10Cγ

m

1 +
64γqL̂2

(2q − γm)m

5γE

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+
d

n

+
8
(
1− τ

)
(n− 1)γd

npc

≤ 360(1− pc)γ
2

mp2
c

(
3L2 + 11L̂2 + pcω̃

)5γE

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+
d

n


+

8
(
1− τ

)
(n− 1)γd

npc
, (3.152)

Cγ
r =

9γ2
(
1− pc

)
Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

)

≤ 144γ2(1− pc)

p2
c

3qL̂2 + γ

(
L2

m
+ 8γL̂2

)(
pcω̃ + 3L2 + 16L̂2

)
≤ 432γ2(1− pc)

p2
c

(
pcL

2 + qL̂2
)

Eventually, for the specific choice τ = 1 combined with (3.151) and (3.152), it yields
that

lim sup
k→∞

W 2
2

(
µ

(VR?,γ)
k , π

)
≤ 6γd

nm2
κI +

32γ2ωd

nmq
+

18432γCγ
rDdL

2

A2
dm

3pc

(
L2 + L̂2 + pcω̃

)
+

2160(1− pc)γ
2L2

p2
cm

3

(
3L2 + 11L̂2 + pcω̃

)5γE

[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+
d

n

 . (3.153)

Therefore, using (3.152) and (3.153) we can finally conclude that

99 lim sup
k→∞

W 2
2

(
µ

(VR?,γ)
k , π

)
≤ γd

nm2
κI +

γ2ωd

nmq
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+
(1− pc)γ

2L2

p2
cm

5

(
L2 + L̂2 + pcω̃

)γE[∥∥∥H̄(x?, ξ)
∥∥∥2
]

+
d

n

(L2 +
qc

pc
L̂2

)
.

The single client case corresponds to n = pc = 1 and leads for k ≥ 0 to Vk = 0.
Moreover, the assumption Assumption 3.9 holds with v1 = v2 = 0. Thus, we obtain a
convergence bound for SVRG-LD from Theorem 3.30.

Theorem 3.32. Assume A1, A4, A6, A7 and let γ ∈ (0, γ1∧γ2). Then, for any initial
probability measure µ(VR?,γ)

0 ∈ P2(Rd), k ∈ N, we have

W 2
2

(
µ

(VR?,γ)
k , π

)
≤
(

1− γm

2

)k
W 2

2

(
µ

(VR?,γ)
0 , π

)
+

6γd

nm2
κI +

32γ2ωd

mq
,

where κI = L2(1 + γL2/2m + γ2L2/12). If in addition we suppose HX1, set κI =
3γ(L3 + dL̃2/n).

Remark 3.33.

• The constants obtained in this result can be refined by directly using that E[Vk] = 0
in the proof of Lemma 3.29 and by simplifying the calculations detailed in The-
orem 3.30.

• The proof given in Chatterji et al. (2018, Theorem 4.2-Option 2) on the conver-
gence of SVRG-LD seems to have some gaps since the authors use Grönwall’s
inequality (Clark, 1987) as if ♠ = τ2(8δd+ 4Mδ2d+ 4δ2MΩ1) were constant,
which is not the case because Ω1 =

〈
∇f(yk)−∇f(xk), yk − xk

〉
depends on the

iteration k. If we denote ♠k instead of ♠ and adopt their other notation (we also
correct a typography in the right-hand term), we obtain

E
[∥∥xk − x̃∥∥2

2

]
≤ ♠k +

k−1∑
j=τs

E
[
‖xj − x̃‖22

]
. (3.154)

Then, it is claimed in the proof of Chatterji et al. (2018, Theorem 4.2-Option
2) that (3.154) implies E[‖xk − Xk‖2] ≤ ♠k exp(τρ). But this inequality cannot
hold in all generalities, for example if we consider : τs = 0, for j < k, ♠j = 1,
xj = x̃ +

√
2j/d · 1 and ♠k = 0, xk = x̃ + 1/

√
d, then (3.154) holds for j ∈ [k]

but E[‖xk − Xk‖2] = 1 whereas ♠k exp(τρ) = 0.

3.C Lower bound on the heterogeneity in a Gaussian case

In this section, we want to illustrate the heterogeneity problem by lower bounding the
Wasserstein distance W2 in a simple case. To simplify the calculations, we assume that
each client performs 2 local iterations following the FALD update before communicat-
ing its local parameter to the central server. More specifically, take (µ1, µ2, σ1, σ2) ∈
R2 × (R∗+)2 and define the potentials U1 : x ∈ Rd 7→ σ−2

1

(
x− µ1

)2, U2 : x ∈ Rd 7→
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σ−2
2

(
x− µ2

)2. Thus, the global posterior distribution π is Gaussian with mean m̄ and
variance σ̄2 given by

m̄ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

σ̄ =

(
1

σ2
1

+
1

σ2
2

)−1/2

. (3.155)

The objective is to illustrate the problem of heterogeneity in the basic version of FALD.
To do so, we first show that this algorithm generates samples targeting a distribution
πγ ∈ P2(Rd) where the distance W2(π, πγ) is lower bounded by a heterogeneity term.
To this end, we introduce the Markov kernel, which for each γ > 0,B ∈ B(Rd) is given
by

Pγ(x,B) =

∫
B

exp


−

∥∥∥∥∥∥x′ −
(

1− γ
σ̄2 + γ2

2

(
1
σ4

1
+ 1

σ4
2

))
x− γm̄

σ̄2 + γ2

2

(
µ1

σ4
1

+ µ2

σ4
2

)∥∥∥∥∥∥
2

2γ

(
1 +

(
1− γ

2σ̄2

)2
)


dx′

(2π)d/2
,

and we define the stochastic processes (Ak, Ãk)k≥0 on Rd×Rd starting from (X0, X0) =
(x, x̃) and following the recursion for k ≥ 0,

Ak+1 = Ak −
γ

σ̄2

(
Ak − m̄

)
+
γ2

2

(
Ak − µ1

σ4
1

+
Ak − µ2

σ4
2

)
+
√
γ

[(
1− γ

2σ̄2

)
Zk+1 + Zk+2

]
,

Ãk+1 = Ãk −
γ

σ̄2

(
Ãk − m̄

)
+
γ2

2

(
Ãk − µ1

σ4
1

+
Ãk − µ2

σ4
2

)
+
√
γ

[(
1− γ

2σ̄2

)
Zk+1 + Zk+2

]
.

(3.156)
It is possible to verify that (Ak, Ãk) is distributed according to (δxP

k
γ , δx̃P

k
γ ).

Lemma 3.34. Let γ ∈
(

0, 2(σ1σ2)4[σ̄2(σ4
1 + σ4

2)]−1
)
. Then, there exists πγ ∈ P2(Rd)

such that for any distribution π0 ∈ P2(Rd), the sequence (π0P kγ )k∈N converges to πγ in
P2(Rd).

Proof Let k ∈ N and consider the stochastic processes (Al, Ãl)l∈N defined in (3.156),
subtracting the two recursions we obtain

Ak+1 − Ãk+1 =

1− γ

σ̄2
+
γ2

2

(
1

σ4
1

+
1

σ4
2

)(Ak − Ãk) .
Since 0 < γ < 2(σ1σ2)4[σ̄2(σ4

1 + σ4
2)]−1, taking the norm in the previous inequality

implies that

∥∥∥Ak+1 − Ãk+1

∥∥∥ =

1− γ

σ̄2
+
γ2

2

(
1

σ4
1

+
1

σ4
2

)∥∥∥Ak − Ãk∥∥∥ . (3.157)

Finally, combining (3.157) with Douc et al. (2018, Lemma 20.3.2), we deduce that the c-
Dobrushin coefficient of Pγ is upper bounded by 1−γ/σ̄2 +γ2/2

(
1/σ4

1 + 1/σ4
2

)
. Hence,

applying Douc et al. (2018, Theorem 20.3.4) we deduce the existence and uniqueness of
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a stationary distribution πγ ∈ P2(Rd) for the Markov Kernel Pγ such that

W2(π0P kγ , π) ≤
(

1− γ/σ̄2 + γ2/2
(

1/σ4
1 + 1/σ4

2

))k
W2(π0, πγ).

Lemma 3.34 shows the existence of an invariant distribution πγ ∈ P2(Rd) for Pγ and
the next lemma specifies this distribution of πγ .

Lemma 3.35. Assume γ ∈
(

0, 2(σ1σ2)4[σ̄2(σ4
1 + σ4

2)]−1
)
. Then, the stationarity dis-

tribution πγ is Gaussian with parameters given by

m(γ) =

m̄− γσ̄2

2

(
µ1

σ4
1

+ µ2

σ4
2

)
1− γσ̄2

2

(
1
σ4

1
+ 1

σ4
2

) , σ2
(γ) =

σ̄2 − γ
2 + γ2

8σ2

1− γ
2

(
σ̄2

σ4
1

+ σ̄2

σ4
2

)
− γ

2

(
1
σ̄ −

γ
2

(
σ̄
σ4

1
+ σ̄

σ4
2

))2 .

Proof First, let k ∈ N be fixed and introduce

α = 1− γ

σ̄2
+
γ2

2

(
1

σ4
1

+
1

σ4
2

)
, β =

γm̄

σ̄2
− γ2

2

(
µ1

σ4
1

+
µ2

σ4
2

)
,

Z̃k =

(
1− γ

2σ̄2

)
Z2k−1 + Z2k.

Moreover, consider (Al)l∈N the stochastic process following (3.156) and initialized at
πγ . By induction, we know that

Ak = αkA0 + β
k−1∑
l=0

αl +
√
γ
k−1∑
l=0

αk−l−1Z̃l. (3.158)

Since Ak is distributed according to πγP kγ , we have that Ak follows πγ . Denote νkγ the
distribution of √γ∑k−1

l=0 α
k−l−1Z̃l − β

∑k−1
l=0 α

l, combining (3.158) with the definition
of the Wasserstein, we have

W 2
2

(
πγ , ν

k
γ

)
≤ E


∥∥∥∥∥∥Ak −√γ

k−1∑
l=0

αk−l−1Z̃l − β
k−1∑
l=0

αl

∥∥∥∥∥∥
2
 = α2kE

[∥∥A0

∥∥2
]
. (3.159)

Since A0 is distributed according to πγ belonging to P2(Rd), we deduce that E[‖A0‖2] <
∞. Consequently, (3.159) implies that (νkγ )k∈N converges to πγ , but using the fact
that (νkγ )k∈N converges to a Gaussian distribution, we obtain by uniqueness of the
limit in metric space (P2(Rd),W2) that πγ is a Gaussian distribution. Recalling that
m(γ) denotes the expectation of the random variable distributed according to πγ , using
(3.156) at stationarity yields

m(γ) = m(γ) −
γ

σ̄2

(
m(γ) − m̄

)
+
γ2

2

(
m(γ) − µ1

σ4
1

−
m(γ) − µ2

σ4
2

)
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Thus, we deduce that

m(γ) =
m̄− (γσ̄2/2)

(
µ1/σ

4
1 + µ2/σ

4
2

)
1− (γσ̄2/2)

(
1/σ4

1 + 1/σ4
2

) .

In addition, we can obtain the standard deviation σ(γ) of πγ since we have

Var

β k−1∑
l=0

αl +
√
γ
k−1∑
l=0

αk−l−1Z̃l

 = γVar

k−1∑
l=0

αk−l−1Z̃l

 =
γ(1− α2k)

1− α2
Var(Z̃0)

−−−→
k→∞

γVar(Z̃0)

1− α2

=

γ

(
2− γ

σ̄2 + γ2

4σ̄4

)
1−

(
1− γ

σ̄2 + γ2

2

(
1
σ4

1
+ 1

σ4
2

))2

=
1− γ

2σ̄2 + γ2

8σ̄4

1
σ̄2 − γ

2

(
1
σ4

1
+ 1

σ4
2

)
− γ

2

(
1
σ̄2 − γ

2

(
1
σ4

1
+ 1

σ4
2

))2 .

Theorem 3.36. Assume γ ∈
(

0, 2(σ1σ2)4[σ̄2(σ4
1 + σ4

2)]−1
)
. Then, the Wasserstein dis-

tance between the stationnary distribution πγ and the target π of FALD is lower bounded
as

W2

(
πγ , π

)
≥ γ

2

∣∣µ1 − µ2

∣∣ ∣∣∣∣∣ σ̄2

σ2
1

− σ̄2

σ2
2

∣∣∣∣∣ .
Proof Based on Lemma 3.35, we know that πγ is Gaussian with parameters (m(γ), σ

2
(γ))

and using that π is Gaussian too with parameters (m̄, σ̄2) given in (3.155), we have that

W 2
2

(
πγ , π

)
=
(

m(γ) − m̄
)2

+
(
σ(γ) − σ̄

)2
≥ γ2σ̄4

4

∣∣∣∣∣∣
(

1

σ4
1

+
1

σ4
2

)
m̄− µ1

σ4
1

− µ2

σ4
2

∣∣∣∣∣∣
2

=
γ2σ̄4

(
µ1 − µ2

)2
4

(
1

σ2
1

− 1

σ2
2

)2

.
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3.D Analysis of the complexity and communication cost

In this section, we study the optimal choices of k, γ when pc is fixed. For c0, c1, c2 ≥ 0
fixed, we consider the following optimization problem:

mink∈N?,γ>0

{
k
}

Subject to
{
c0 exp

(
−8kγ/m

)
+ c1γ + c2γ

2 ≤ ε2
}
.

Using that the constraint must be saturated at the optimum (which can be proved), we
can write k as a function of γ. Hence, the problem becomes

mink,γ

{
8
γm log

(
c0

ε2−c1γ−c2γ2

)}
Subject to 0 < γ and ε2 − c1γ − c2γ

2 > 0

. (3.160)

Let us introduce x ∈ R∗+, defined by x = ε−2γ and let c̃2 = ε2c2. We can rewrite (3.160)
as 

mink,x

{
8

ε2mx
log

(
c0

ε2(1−c1x−c̃2x2)

)}
Subject to 0 < x and 1− c1x− c̃2x

2 > 0

. (3.161)

Consider µ = −c1/(2c̃2), σ =
√
c2

1/(4c̃
2
2) + 1/c̃2, and denote z = (x− µ)/σ. Since

x = µ + zσ, we can verify that 1 − c1x − c̃2x
2 = c̃2σ

2(1 − z2). Hence, (3.161) is
equivalent to 

mink,γ

{
8

ε2m(µ+zσ)
log

(
c0

ε2c̃2σ2(1−z2)

)}
Subject to − µ/σ < z < 1

.

According to the intermediate value theorem, we have the existence of zε (not necessarily
unique, but we can consider one of the solutions) such that

zε = arg max
−µ/σ<z<1

{
log(1− z2)

µ+ zσ

}
.

Thus, the solution is

γε = ε2 × z2
ε + (4ε2c2)−1(z2

ε − 1)c2
1

c1/2 + zε
√

4−1 c2
1 + ε2c2

,

Kε =
8
(
c1/2 + zε

√
4−1 c2

1 + ε2c2

)
ε2m

(
z2
ε + (4ε2c2)−1(z2

ε − 1)c2
1

) log

(
c0

ε2(c2
1/4 + ε2c2)1/2(1− z2

ε )

)
.

FALD. According to the Theorem 3.1, we have
c0 = I(µ0)

c1 = Vπ +
(
1− 1HX1

)
J/n+ (1− τ)(1− n−1)d/pc

c2 = 1HX1J/n+ (1− pc)
{
H + pcVε + d/n

}
/p2

c

.
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If c1 > 0, define w = ε2c2/c
2
1. For ε ∈ (0, c1/

√
2c2], we have 0 < w ≤ 1/2. Consider

z = 1− w, we get that(
µ

σ

)2

=
1

1 + 4ε2c2/c2
1

<
1

1 + 2w
≤ 1− w ≤ 1− 2w + w2 = z2 < 1.

Hence, the previous inequalities show that −µ/σ < z < 1, and for this choice

c1/2 + z
√

4−1c2
1 + ε2c2

z2 + (4ε2c2)−1(z2 − 1)c2
1

≤ c1 + ε(1− w)
√
c2

7/8 + (w − 2 + 1/64)w
.

Thus, for any ε ∈ (0, c1(2
√
c2)−1], we deduce that w < 1/4. Therefore, we have shown

that Kε = Õ((ε2m)−1(c1 + ε
√
c2)). Moreover, this result is immediately valid when

c1 = 0 since zε = arg max0<z<1{z−1 log(1− z2)}. Furthermore, when pc,ε ↓ 0+, pc,εKε =

Õ((εm)−1
√
n−1J) as stressed in the main chapter.

VR-FALD?. Using Theorem 3.3, we obtain
c0 = IVr?(µ0)

c1 =
(
1− 1HX1

)
J/n+ (1− τ)(1− n−1)d/pc

c2 = 1HX1J/n+ (1− pc)
{
pcVε + d/n

}
/p2

c

.

When assumingHX1 and τ = 1, we have c1 = 0. Hence, zε = arg max0<z<1{z−1 log(1− z2)}
and therefore

Kε =
8
√
c2

εmzε
log

(
c0

ε3
√
c2(1− z2

ε )

)
.

When pc,ε ↓ 0+, the minimum number of communications becomes pc,εKε = Õ(ε−1
√
n−1d).

Finally, setting pc,ε = 1 gives Kε = Õ(ε−1
√
n−1J + n−1ωd).

Table 3.5 – Complexity and communication settings of Figure 3.1.

Parameter d m ω H J Vπ V?

Value 10 1 10 100 20 10 30

3.E Numerical experiments

3.E.1 Gaussian example

In this first experiment, we consider n = 100 clients associated with potentials: ∀i ∈ [n],
U i : x ∈ Rd 7→ (1/2)(x− µi)>Σ−1

i (x− µi) in dimension d = 20. In this particular case,
we know, that the posterior distribution π ∝ exp(−∑n

i=1 U
i) is Gaussian with mean

x? =
∑n

i=1(Σ?Σ
−1
i µi) and covariance Σ? = (

∑n
i=1 Σ−1

i )−1. Also, we have a close formula
to calculate

∫ ∥∥x− x?∥∥2
dπ(x), since this quantity is equal to Trace(Σ?). To speed up

the calculations, we initialize all chains at x?, we discard the first 10% of the samples and
keep all others. Moreover, we consider the step-size γ̄ = 2[λmin(Σ−1

? ) + λmax(Σ−1
? )]−1

for Langevin Monte Carlo (Dalalyan and Karagulyan, 2019; Durmus and Moulines,
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2019), and we run the algorithms for the step-sizes γ ∈ {pcγ̄
2 , pcγ̄

5 , pcγ̄
10 } associated with

pc ∈ {1
5 ,

1
10 ,

1
20}. We set the probability of updating the control variates qc = pc so as not

to increase the communication cost too much. We also consider the two extreme values
of the parameter τ ∈ {0, 1} to determine whether it is preferable to have independent
Gaussian noise on each client or if it is better to have a common one.

3.E.2 Bayesian Logistic Regression

The second experiment is performed on the Titanic dataset, which is in the public
domain and licensed under the Commons Public Domain Dedication License (PDDL-
1.0). We distribute this dataset heterogeneously across n = 10 clients by drawing
a Dirichlet random variable for each label on the standard n − 1 simplex. Since the
sum of the coordinates of these random variables equals 1, each coordinate indicates the
fraction of labels to be distributed to each client. To have access to ground truth, we also
implement Langevin Stochastic Dynamics (LSD). We compute K = 250000 iterations,
each time considering a burn-in period of length 10% initialized with a warm start
provided by SGD. The ith client uses its local dataset {(zij , oij) ∈ R4×{0, 1} : j ∈ [Ni]}
to calculate the local potential U i(x) =

∑Ni
j=1[oij log(1 + exp(−zTijx)) + (1− oij) log(1 +

exp(zTijx))] + λ ‖x‖2, where λ = 1 is associated with the Gaussian prior. Denote Ztrain

the matrix whose lines are the covariates zTij , and write Σ = ZTtrainZtrain. We run the
algorithms with minibatches of size bi = 1; a step-size γ = 2[λmin(Σ) + λmax(Σ)]−1

for FALD, VR-FALD? and equal to γ/n for LSD with thinning inversely proportional to
the step-size. Moreover, we consider a communication probability of pc = 1/20 and
clients update their control variates with probability qc = pc. Finally, to evaluate the
obtained results, we consider the accuracy, agreement, and total variation, as well as
the calibration results such as ECE, BS, and NLL, which are described below.

Accuracy. Based on samples from the approximate posterior distribution, we com-
pute the minimum mean squared estimator (i.e., which corresponds to the posterior
mean) and use it to make predictions for the test dataset. The Accuracy metric corres-
ponds to the percentage of well-predicted labels.

Agreement. Let pref and p denote the predictive densities associated with HMC
and an approximate simulation-based algorithm, respectively. Similar to Izmailov et al.
(2021), we define the agreement between pref and p as the proportion of test data points
for which the top-1 predictions of pref and p, i.e.

agreement(pref , p) =
1

|Dtest|
∑

x∈Dtest

1

arg max
y′

pref(y
′ | x) = arg max

y′
p(y′ | x)

 .
Total variation (TV). By denoting Y as the set of possible labels, we consider the
total variation metric between pref and p, i.e.

TV(pref , p) =
1

2|Dtest|
∑

x∈Dtest

∑
y′∈Y

∣∣∣pref(y
′ | x)− p(y′ | x)

∣∣∣ .
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Expected Calibration Error (ECE). To measure the difference between the ac-
curacy and confidence of the predictions, we group the data intoM ≥ 1 buckets defined
for each m ∈ [M ] by Bm = {(x, y) ∈ Dtest : p(ypred(x)|x) ∈

]
(m− 1)/M,m/M

]
}. As in

the previous work of Ovadia et al. (2019), we denote the model accuracy on Bm by

acc
(
Bm

)
=

1∣∣Bm

∣∣ ∑
(x,y)∈Bm

1ypred(x)=y

and define the confidence on Bm by

conf
(
Bm

)
=

1∣∣Bm

∣∣ ∑
(x,y)∈Bm

p(ypred(x)|x).

As emphasized in Guo et al. (2017), for any m ∈ [M ] the accuracy acc
(
Bm

)
is an un-

biased and consistent estimator of P
(
ypred(x) = y | (m− 1)/M < p(ypred(x)|x) ≤ m/M

)
.

Therefore, the ECE is defined by

ECE =
M∑
m=1

∣∣Bm

∣∣∣∣Dtest

∣∣ ∣∣∣acc
(
Bm

)
− conf

(
Bm

)∣∣∣
and is an estimator of

E(x,y)

[∣∣∣ PP (ypred(x) = y | p(ypred(x)|x)
)
− p(ypred(x)|x)

∣∣∣].
Thus, the ECE measures the absolute difference between the confidence level of a pre-
diction and its accuracy.

Brier Score (BS). The BS is a proper scoring rule (see for example Dawid and
Musio (2014)) that can only evaluate random variables taking a finite number of values.
Denote by Y the finite set of possible labels, the BS measures the confidence of the
model in its predictions and is defined by

BS =
1

|Dtest|
∑

(x,y)∈Dtest

∑
c∈Y

(p(y = c|x)− 1y=c)
2.

Normalized Negative Log Likelihood (nNLL). This classical score defined by

nNLL = − 1

|Dtest|
∑

(x,y)∈Dtest

log p(y|x)

measures the ability of the model to predict good labels with high probability.

Highest posterior density (HPD). Under the Bayesian paradigm, we are inter-
ested in quantifying uncertainty by estimating the regions of high probability. For all
α ∈ (0, 1), we run each algorithm to estimate ηalgo

α > 0 such that
∫
Rα
π(x)dx = 1 − α,

where Rα = {x ∈ Rd : π(x) ≥ exp(−ηalgo
α )}. Then we define the relative HPD error as

|ηalgo
α /ηLSD

α − 1|, where ηLSD
α is estimated based on the samples drawn with the Langevin

Stochastic Dynamics method.



CHAPTER 3. FALD: FEDERATED AVERAGING LANGEVIN DYNAMICS 167

Method SGLD pSGLD FALD VR-FALD? FSGLD

Accuracy 99.1± 0.1 99.2± 0.1 99.1± 0.1 99.2± 0.1 98.5± 0.2
103×ECE 6.88± 27.07 21.6± 11.1 4.07± 0.80 4.34± 1.26 6.34± 1.90
102×BS 1.66± 1.76 1.45± 0.12 1.47± 0.45 1.39± 0.07 2.39± 1.72
102×nNLL 3.53± 5.08 4.24± 1.14 3.06± 0.43 3.43± 0.37 4.87± 0.51
Weight Decay 5 5 5 5 5
Batch Size 64 64 8 8 64
Learning rate 1e-07 1e-08 1e-07 1e-07 1e-08
Local steps N/A N/A 20 20 20
Burn-in 100epch. 100epch. 1e04 1e04 1e04
Thinning 1 1 1e03 1e03 1e03
Training 1e03epch. 1e03epch. 1e05it. 1e05it. 1e05it.

Table 3.6 – Performance of Bayesian FL algorithms on MNIST.

3.E.3 Bayesian Neural Network: MNIST

To investigate the behavior of the proposed algorithms in a highly non-convex setting,
we perform a first Deep Learning experiment on the MNIST dataset (Deng, 2012),
which can be publicly downloaded using the torchvision package and is available under
the Creative Commons Attribution-Share Alike 3.0 license. To this end, we distribute
the entire dataset across n = 20 clients in a highly heterogeneous manner to train the
LeNet5 neural network (LeCun et al., 1998). The MNIST real-world dataset consists
of 70000 grayscale images of size 28× 28 associated with the 10 digits. This dataset is
divided into two subsets: the training set, which contains 60000 images, and the test
set, which consists of the remaining 10000 images. We report the median of the scores
with their associated hyperparameters in Table 3.6. The burn-in corresponds to the
number of steps performed before we start storing the samples, and the thinning is the
frequency with which we keep the samples. We also consider a Gaussian prior which
corresponds to a squared norm regularizer with weight decay. We initialized FSGLD
(El Mekkaoui et al., 2021) with a global SGD warm start combined with local SWAG
(Maddox et al., 2019) to learn Gaussian conducive gradients.

3.E.4 Bayesian Neural Network: CIFAR10

In this last experiment, we consider the more challenging dataset CIFAR10 (Krizhevsky
et al., 2009), which is available under license MIT and contains images of size (3, 32, 32).
We used different approaches to sample the weights for the ResNet-20 model (He et al.,
2016), which is publicly available in the pytorchcv library. We initialized the algorithms
with 10 different parameters using SGD (400 epochs) trained with a OneCycleLR sched-
uler (Smith and Topin, 2019), and we also use data augmentation with a minibatch of
size 128 and a learning rate of 2e-7. Based on these initializations, we ran 10 chains in
parallel for SGLD, FALD, and VR-FALD? with step-sizes of 1e-7, 2e-8, 1e-8. We considered
1e4 iterations with only one stored sample every 1e3 iterations (we did not keep the
initial weights obtained by SGD to make the predictions). For each chain, we can see
that Bayesian model averaging increases the accuracy. To compare the behavior of the
mentioned algorithms, we compute the accuracy, the agreement, i.e., the percentage
of time the top-1 prediction of an algorithm matches that given by the HMC, and the
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Method HMC SGD Deep Ens. SGLD FALD VR-FALD?

Accuracy 89.6± 0.25 91.57± 0.34 91.68± 0.17 89.96± 0.72 92.54± 0.04 92.03± 0.09
Agreement 94.0± 0.25 90.99± 0.35 91.03± 0.43 92.43± 0.03 91.53± 0.39 91.12± 0.39
10× TV 0.74± 0.03 1.45± 0.05 1.49± 0.05 1.03± 0.03 1.42± 0.01 1.39± 0.01
102×ECE 5.9±NA 4.71± 1.35 5.44± 0.67 4.41± 0.37 3.79± 0.11 3.26± 0.09
10×BS 1.4±NA 1.69± 0.11 1.45± 0.10 1.53± 0.10 1.16± 0.03 1.20± 0.03
10×nNLL 3.07±NA 3.35± 0.70 3.81± 0.51 3.15± 0.21 2.75± 0.04 2.63± 0.04

Table 3.7 – Performance of Bayesian FL algorithms on CIFAR10.

total variation (TV) between the predictive distribution given by an algorithm with the
one associated with the HMC sampler. We also give some classical calibration scores
(Guo et al., 2017), such as the expected calibration error (ECE), the Brier score (BS),
and the negative log-likelihood (nNLL).
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The objective of Federated Learning (FL) is to perform statistical inference for data
which are decentralized and stored locally on networked clients. FL raises many con-
straints which include privacy and data ownership, communication overhead, statistical
heterogeneity, and partial client participation. In this chapter, we address these prob-
lems in the framework of the Bayesian paradigm. To this end, we propose a novel
federated Markov Chain Monte Carlo algorithm, referred to as Quantized Langevin
Stochastic Dynamics which may be seen as an extension to the FL setting of Stochastic
Gradient Langevin Dynamics, which handles the communication bottleneck using gradi-
ent compression. To improve performance, we then introduce variance reduction tech-
niques, which lead to two improved versions coined QLSD? and QLSD++. We give both
non-asymptotic and asymptotic convergence guarantees for the proposed algorithms.
We illustrate their performances using various Bayesian Federated Learning bench-
marks.

4.1 Introduction

A paradigm shift has occurred with Federated Learning (FL) (McMahan et al., 2017;
Kairouz et al., 2021). In FL, multiple entities (called clients) which own locally stored
data collaborate in learning a “global” model which can then be “adapted” to each client.
In the canonical FL, this task is coordinated by a central server. The initial focus of
FL was on mobile and edge device applications, but recently there has been a surge of
interest in applying the FL framework to other scenarios; in particular, those involving
a small number of trusted clients (e.g. multiple organisations, enterprises, or other
stakeholders).
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Table 4.1 – Overview of the main existing distributed/federated approximate Bayesian
approaches. Column Comm. overhead gives the scheme employed to address the
communication bottleneck. Column Heterogeneity means that the proposed approach
tackles the impact of data heterogeneity on convergence while column Bounds highlights
available non-asymptotic convergence guarantees.

Method Comm. overhead Heterogeneity Partial participation Bounds

Hasenclever et al. (2017) local steps 7 7 7

Nemeth and Sherlock (2018) one-shot 7 7 7

Bui et al. (2018) local steps 7 3 7

Jordan et al. (2019) one-shot 7 7 3

Corinzia et al. (2019) local steps 7 3 7

Kassab and Simeone (2022) local steps 7 3 7

El Mekkaoui et al. (2021) local steps 7 7 3

Plassier et al. (2021) local steps 7 7 3

Chen and Chao (2021) local steps 3 3 7

Liu and Simeone (2021a) one-shot 7 7 7

This work compression 3 3 3

FL has become one of the most active areas of artificial intelligence research over the past
5 years. FL differs significantly from the classical (distributed) ML setup (McMahan
et al., 2017): the storage, computational, and communication capacities of each client
vary amongst each other. This poses considerable challenges to successfully deal with
many constraints raised by (i) partial client participation (e.g. in mobile applications, a
client is not always active); (ii) communication bottleneck (clients are communication-
constrained with limited bandwidth usage); (iii) model update synchronization and
merging.

Many methods derived from stochastic gradient descent techniques have been proposed
in the literature to meet the specific FL constraints (McMahan et al., 2017; Alistarh
et al., 2017; Horváth et al., 2022; Karimireddy et al., 2020; Li et al., 2020b; Philippenko
and Dieuleveut, 2020), see Wang et al. (2021) for a recent comprehensive overview.
Whilst these approaches have successfully solved important issues associated to FL,
they are unfortunately unable to capture and quantify epistemic predictive uncertainty
which is essential in many applications such as autonomous driving or precision medicine
(Hunter, 2016; Franchi et al., 2020). Indeed, these methods only provide a point estimate
being a minimizer of a target empirical risk function. In contrast, the Bayesian paradigm
(Robert, 2001) stands for a natural candidate to quantify uncertainty by providing a
full description of the posterior distribution of the parameter of interest, and as such has
become ubiquitous in the machine learning community (Andrieu et al., 2003; Hoffman
et al., 2013; Izmailov et al., 2020, 2021).

In the last decade, many research efforts have been made to adapt serial workhorses of
Bayesian computational methods such as variational inference, expectation-propagation,
and Markov chain Monte Carlo (MCMC) algorithms to massively distributed architec-
tures (Wang and Dunson, 2013; Ahn et al., 2014; Wang et al., 2015; Hasenclever et al.,
2017; Bui et al., 2018; Jordan et al., 2019; Rendell et al., 2020; Vono et al., 2022a).
Since the main bottleneck in distributed computing is the communication overhead,
these approaches mainly focus on deriving efficient algorithms specifically designed to
meet such a constraint, requiring only periodic or few rounds of communication between
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a central server and clients; see Plassier et al. (2021, Section 4) for a recent overview.
As highlighted in Table 4.1, most current Bayesian FL methods adapt these approaches
and focus almost exclusively on Federated Averaging type updates (McMahan et al.,
2017), performing multiple local steps on each client. This is in contrast with predictive
FL algorithms (which are not estimating predictive uncertainty), for which a variety of
schemes have been explored, e.g. via gradient compression or client subsampling (Wang
et al., 2021, Section 3.1.2). Moreover, very few Bayesian FL works have attempted to
address the challenges raised by partial device participation or the impact of statist-
ical heterogeneity; see Liu and Simeone (2021b); Chen and Chao (2021). Convergence
results in Bayesian FL lag far behind “canonical” FL.

In this chapter, we attempt to fill this gap, by proposing novel MCMC methods that
extend Stochastic Langevin Dynamics to the FL context. It is assumed that the clients’
data are independent and that the global posterior density is therefore the product of the
non-identical local posterior densities of each client. To meet the specificity of Bayesian
FL, each iteration of the proposed approaches only requires that a subset of active clients
compute a stochastic gradient oracle for their associated negative log posterior density
and send a lossy compression of these stochastic gradient oracles to the central server.
The first scheme we derive, referred to as Quantized Langevin Stochastic Dynamics
(QLSD), can interestingly be seen as the MCMC counterpart of the QSGD approach in
FL (Alistarh et al., 2017), just as the Stochastic Gradient Langevin Dynamics (SGLD)
(Welling and Teh, 2011) extends the Stochastic Gradient Descent (SGD). However, QLSD
has the same drawbacks as SGLD: in particular, the invariant distribution of QLSD may
deviate from the target distribution and become similar to the invariant measure of
SGD when the number of observations is large (Brosse et al., 2018). We overcome this
problem by deriving two variance-reduced versions QLSD? and QLSD++ that both include
control variates.

Contributions. (1) We propose a general MCMC algorithm called QLSD specifically
designed for Bayesian inference under the FL paradigm and two variance-reduced altern-
atives, especially tackling heterogeneity, communication overhead and partial participa-
tion. (2) We provide a non-asymptotic convergence analysis of the proposed algorithms.
The theoretical analysis highlights the impact of statistical heterogeneity measured by
the discrepancy between local posterior distributions. (3) We propose efficient mechan-
isms to mitigate the impact of statistical heterogeneity on convergence, either by using
biased stochastic gradients or by introducing a memory mechanism that extends Hor-
váth et al. (2022) to the Bayesian setting. In particular, we find that variance reduction
indeed allows the proposed MCMC algorithm to converge towards the desired target
posterior distribution when the number of observations becomes large. (4) We illus-
trate the advantages of the proposed methods using several FL benchmarks. We show
that the proposed methodology performs well compared to state-of-the-art Bayesian FL
methods.

Notations and Conventions. The Euclidean norm on Rd is denoted by ‖ · ‖, and
we set N∗ = N \ {0}. For n ∈ N∗, we refer to {1, . . . , n} with the notation [n]. For
N ∈ N∗, we use ℘N to denote the power set of [N ] and define ℘N,n = {x ∈ ℘N :
Card(x) = n} for any n ∈ [N ]. We denote by N(m,Σ) the Gaussian distribution
with mean vector m and covariance matrix Σ. We define the sign function, for any
x ∈ R, as sign(x) = 1{x ≥ 0} − 1{x < 0}, and define the Wasserstein distance of
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order 2 for any probability measures µ, ν on Rd with finite 2-moment by W2(µ, ν) =
(infζ∈T (µ,ν)

∫
Rd×Rd ‖θ − θ′‖2Dζ(θ, θ′))1/2, where T (µ, ν) is the set of transference plans

of µ and ν.

4.2 Quantized Langevin Stochastic Dynamics

In this section, we present the Bayesian FL framework and introduce the proposed
methodology called QLSD along with two variance-reduced instances.

Problem Statement. We are interested in performing Bayesian inference on a para-
meter θ ∈ Rd based on a training dataset D. We assume that the posterior distribution
admits a product-form density with respect to the d-dimensional Lebesgue measure, i.e.

π(θ | D) = Z−1
π

∏n
i=1 e−Ui(θ), (4.1)

where n ∈ N? and Zπ =
∫
Rd
∏n
i=1 e−Ui(θ) dθ is a normalization constant. This framework

naturally encompasses the considered Bayesian FL problem. In this context, {e−Ui}i∈[n]

stand for the unnormalized local posterior density functions associated to n clients,
where each client i ∈ [n] is assumed to own a local datasetDi such thatD = tni=1Di. The
dependency of Ui on the local dataset Di is omitted for brevity. A real-world illustration
of the considered Bayesian problem is “multi-site fMRI classification” where each site
(or client) owns a dataset coming from a local distribution because the methods of data
generation and collection differ between sites. This results in different local likelihood
functions, which combined with a local prior distribution, lead to heterogeneous local
posteriors.

As in embarrassingly parallel MCMC approaches (Neiswanger et al., 2014), (4.1) im-
plicitly assumes that the prior can be factorized across clients, which can always be
done although the choice of this factorization is an open question. This product-form
formulation can be alleviated by considering a global prior on θ and only calculating its
gradient contribution to the central server during computations, see Algorithm 4.5.

A popular approach to sample from a target distribution with density π defined in (4.1)
is based on Langevin dynamics with stochastic gradient which, starting from an initial
point θ0, defines a Markov chain (θk)k∈N by recursion:

∀k ∈ N, θk+1 = θk − γHk+1(θk) +
√

2γZk+1, (4.2)

where γ ∈
(
0, γ̄
]
, for some γ̄ > 0, is a discretization time step, (Zk)k∈N∗ is a sequence of

i.i.d. standard Gaussian random variables and (Hk)k∈N? stand for unbiased estimators of
∇U with U =

∑n
i=1 Ui (Parisi, 1981; Grenander and Miller, 1994; Roberts and Tweedie,

1996). In a serial setting involving a single client which owns a dataset of size N ∈ N?,
the potential U writes U = U1 =

∑N
j=1 U1,j for some functions U1,j : Rd → R, and a

popular instance of this framework is SGLD (Welling and Teh, 2011). This algorithm con-
sists in the recursion (4.2) with the specific choice Hk+1(θ) = (N/n)

∑
j∈Sk+1

∇U1,j(θ),
where (Sk)k∈N∗ is a sequence of i.i.d. uniform random subsets of [N ] of cardinal n.

In the FL framework, we assume that at each iteration k, the i-th client has access to
an oracle H(i)

k+1 based on its local negative log posterior density Ui, depending only on
Di, so that Hk+1 =

∑n
i=1H

(i)
k+1 is a stochastic gradient oracle of U . Note that we do
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not assume that H(i)
k+1 is an unbiased estimator of ∇Ui, but only assume that Hk+1 is

unbiased. This allows us to consider biased local stochastic gradient oracles with better
convergence guarantees, see Section 4.3 for more details. A simple adaptation of SGLD
to the FL framework under consideration is given by recursion:

θk+1 = θk − γ
∑n

i=1H
(i)
k+1(θk) +

√
2γZk+1, k ∈ N. (4.3)

If for any i ∈ [n], every potential function Ui also admits a finite-sum expression i.e.
Ui =

∑Ni
j=1 Ui,j , similar to SGLD, we can for example use the local stochastic gradient

oracles H(i)
k+1(θ) = (Ni/bi)

∑
j∈S(i)

k+1

∇Ui,j(θ), where (S(i)
k+1)k∈N∗, i∈[n] stand for i.i.d. uni-

form random subsets of [Ni] of cardinal bi. However, considering the MCMC algorithm
associated with the recursion (4.3) is not adapted to the FL context. Indeed, this al-
gorithm would assume that each client is reliable and suffers from the same issues as SGD
in a risk-based minimization context, especially a prohibitive communication overhead
(Girgis et al., 2020).

Proposed Methodology. To address this problem, we propose to both account for
the partial participation of clients and reduce the number of bits transmitted during the
upload period by performing a lossy compression of a subset of {H(i)

k+1}i∈[n],k∈N? . This
method has been used extensively in the “canonical” FL literature (Alistarh et al., 2017;
Lin et al., 2018; Haddadpour et al., 2021; Sattler et al., 2020), but interestingly has
never been considered in Bayesian FL; see Table 4.1.

To this end, we introduce a compression operator C : Rd → Rd that is unbiased, i.e. for
any v ∈ Rd, E[C(v)] = v. In recent years, numerous compression operators have been
proposed (Seide et al., 2014; Aji and Heafield, 2017; Stich et al., 2018). For example, the
QSGD approach proposed in Alistarh et al. (2017) is based on stochastic quantization.

QSGD considers for C a component-wise quantization operator parameterized by a num-
ber of quantization levels s ≥ 1, which for each j ∈ [d] and v = (v1, . . . , vd) ∈ Rd are
given by

C(s,j)(v) =
‖v‖ sign(vj)

s

lj + 1

[
ξj ≤

s|vj |
‖v‖ − lj

] , (4.4)

where lj =
⌊
s|vj |/ ‖v‖

⌋
and {ξj}j∈[d] is a sequence of i.i.d. uniform random variables

on [0, 1]. In this particular case, we will denote the quantization of v via (4.4) by
C(s)(v) = {C(s,j)(v)}j∈[d].

The proposed general methodology, called Quantized Langevin Stochastic Dynamics
(QLSD) stands for a compressed and FL version of the specific instance of SGLD defined
in (4.3). More precisely, QLSD is an MCMC algorithm associated with the Markov chain
(θk)k∈N starting from θ0 and defined for k ∈ N as

θk+1 = θk − γ
n

|Ak+1|
∑

i∈Ak+1

Ck+1

[
H

(i)
k+1(θk)

]
+
√

2γZk+1,

where (Ak)k∈N? denotes the subset of active (i.e. available) clients at iteration k, pos-
sibly random. Note that we indexed C by k + 1 to emphasize that this compression
operator is a stochastic operator and hence varies across iterations, see e.g. (4.4). The
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derivation of QLSD in the considered Bayesian FL context is described in details in Al-
gorithm 4.5. A generalization of QLSD taking into account heterogeneous communication
constraints between clients by considering different compression operators {C(i)}i∈[n] is
available in Section 4.A. In the particular case of the finite-sum setting where each client
owns a dataset of size Ni, i.e. for the choice H(i)

k+1(θ) = (Ni/bi)
∑

j∈S(i)
k+1

∇Ui,j(θ) for

θ ∈ Rd, S(i)
k+1 ∈ ℘Ni,bi , we denote the corresponding instance of QLSD as QLSD#.

In this chapter, we have decided to focus only on a non-adjusted sampling algorithm
(QLSD) since the derivations of non-asymptotic results are already consequent. Moreover,
up to authors’knowledge, a consensus on the choice between Metropolis-adjusted al-
gorithms and their unadjusted counterparts has not been achieved yet.

Algorithm 4.5 Quantized Langevin Stochastic Dynamics (QLSD)

Input: number of iterations K, compression operators {Ck+1}k∈N, stochastic gradi-
ents {H(i)

k+1}i∈[n],k∈N, step-size γ ∈ (0, γ̄] and initial point θ0.
for k = 0 to K − 1 do

for i ∈ Ak+1 do // On active clients Ak+1

Compute gi,k+1 = Ck+1[H
(i)
k+1(θk)].

Send gi,k+1 to the central server.

// On the central server
Compute gk+1 = n

|Ak+1|
∑

i∈Ak+1
gi,k+1.

Draw Zk+1 ∼ N(0d, Id)
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the n clients.
Output: samples {θk}Kk=0.

Variance-Reduced Alternatives. Consider the finite-sum setting i.e. for any i ∈
[n], Ui =

∑Ni
j=1 Ui,j where Ni is the size of the local dataset Di. As highlighted in

Section 4.1, SGLD-based approaches, including Algorithm 4.5, involve an invariant dis-
tribution that may deviate from the target posterior distribution when mini∈bNi goes to
infinity, as stochastic gradients with large variance are used (Brosse et al., 2018; Baker
et al., 2019). We deal with this problem by proposing two variance-reduced alternatives
of QLSD# that use control variates. The simplest variance-reduced approach, referred
to as QLSD? (see Algorithm 4.7) and discussed in more details in Section 4.B, considers
a fixed-point approach that uses a minimizer θ? of the potential U (Brosse et al., 2018;
Baker et al., 2019) defined as

θ? ∈ arg min
θ∈Rd

n∑
i=1

Ui(θ). (4.5)

In this scenario, the stochastic gradient oracles write for each i ∈ [n], k ∈ N?, θ ∈
Rd and S(i)

k+1 ∈ ℘Ni,bi , H
(i)
k+1(θ) = (Ni/bi)

∑
j∈S(i)

k+1

[∇Ui,j(θ) − ∇Ui,j(θ?)]. Although

E[Hk+1] = ∇U , note that for each i ∈ [n], E[H
(i)
k+1] 6= ∇Ui so H

(i)
k+1 is not an un-

biased estimate of ∇Ui. We show in Section 4.3 that introducing this bias improves
the convergence properties of QLSD# with respect to the discrepancy between local
posterior distributions. Since estimating θ? in a FL context might impose an addi-
tional computational burden on the sampling procedure, we propose another variance-
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reduced alternative referred to as QLSD++ (see Algorithm 4.6). This method builds
on the Stochastic Variance Reduced Gradient (SVRG): it uses control variates (ζk)k∈N
that are updated every l ∈ N? iterations (Johnson and Zhang, 2013) and at each it-
eration k ∈ N and for any client i ∈ [n], the stochastic gradient oracle H(i)

k+1 defined
by H

(i)
k+1(θ) = (Ni/bi)

∑
j∈S(i)

k+1

[∇Ui,j(θ) − ∇Ui,j(ζk)] + ∇Ui(ζk). To reduce the im-
pact of local posterior discrepancy on convergence, we take inspiration from the “ca-
nonical” FL literature and consider a memory term (η

(i)
k )k∈N on each client i ∈ [n]

(Horváth et al., 2022; Dieuleveut et al., 2020). At each iteration k, instead of dir-
ectly compressing H(i)

k+1, we compress the difference H(i)
k+1 − η

(i)
k , store it in gi,k+1, and

then compute the global stochastic gradient gk+1 = n
|Ak+1|

∑
i∈Ak+1

gi,k+1 +
∑n

i=1 η
(i)
k .

The memory term (η
(i)
k )k∈N is then updated on each client i ∈ [n], by the recursion

η
(i)
k+1 = η

(i)
k + α1Ak+1

(i)gi,k+1. The benefits of using this memory mechanism will be
assessed theoretically in Section 4.3 and illustrated numerically in Figure 4.5.

Algorithm 4.6 Variance-reduced Quantized Langevin Stochastic Dynamics (QLSD++)

Input: minibatch sizes {bi}i∈[n], number of iterations K, compression operators
{Ck+1}k∈N? , step-size γ ∈ (0, γ̄] with γ̄ > 0, initial point θ0 and α ∈ (0, ᾱ] with
ᾱ > 0.
// Memory mechanism initialization
Initialize {η(1)

0 , . . . , η
(n)
0 } and η0 =

∑n
i=1 η

(i)
0 .

for k = 0 to K − 1 do
// Update of the control variates
if k ≡ 0 (modl) then

Set ζk = θk.
else

Set ζk = ζk−1

for i ∈ Ak+1 do // On active clients
Draw S(i)

k+1 ∼ Uniform(℘Ni,bi).
Set H(i)

k+1(θk) = (Ni/bi)
∑
j∈S(i)

k+1

[∇Ui,j(θk)−∇Ui,j(ζk)] +∇Ui(ζk).

Compute gi,k+1 = Ck+1(H
(i)
k+1(θk)− η(i)

k ).
Send gi,k+1 to the central server.
Set η(i)

k+1 = η
(i)
k + αgi,k+1.

// On the central server
Compute gk+1 = ηk + n

|Ak+1|
∑

i∈Ak+1
gi,k+1.

Set ηk+1 = ηk + α
∑n

i∈Ak+1
gi,k+1.

Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the n clients.
Output: samples {θk}Kk=0.
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4.3 Theoretical analysis

This section provides a detailed theoretical analysis of the proposed methodology. In
particular, we will show the impact of using stochastic gradients, partial participation
and compression by deriving quantitative convergence bounds for QLSD, which is detailed
in Algorithm 4.5. We then derive non-asymptotic convergence bounds for QLSD? and
QLSD++, and explicitly show that these variance-reduced algorithms indeed succeed
in reducing both the variance caused by stochastic gradients and the effects of local
posterior discrepancy in the bounds we obtain for QLSD#. We consider the following
assumptions on the potential U .

Assumption 4.1. For any i ∈ [n], Ui is continuously differentiable. In addition,
suppose that the following hold.

(i) U is m-strongly convex, i.e. for any θ1, θ2 ∈ Rd, 〈∇U(θ1)−∇U(θ2), θ1 − θ2〉 ≥
m
∥∥θ1 − θ2

∥∥2.
(ii) U is L-Lipschitz, i.e. for any θ1, θ2 ∈ Rd, ‖∇U

(
θ1

)
−∇U

(
θ2

)
‖ ≤ L‖θ1 − θ2‖.

Note that Assumption 4.1-(i) implies that U admits a unique minimizer denoted by
θ? ∈ Rd.

The compression operators {Ck+1}k∈N are assumed to satisfy the following assumption.

Assumption 4.2. The compression operators {Ck+1}k∈N are independent and satisfy
the following conditions.

(i) For any k ∈ N?, v ∈ Rd, E[Ck(v)] = v.
(ii) There exists ω ≥ 1, such that for any k ∈ N?, v ∈ Rd, E[‖Ck(v)− v‖2] ≤ ω‖v‖2.

As an example, the assumption on the variance of the compression operator detailed in
Assumption 4.2-(ii) is verified for the quantization operator C(s) defined in (4.4) with
ω = min(d/s2,

√
d/s) (Alistarh et al., 2017, Lemma 3.1).

Non-Asymptotic Analysis for Algorithm 4.5. We consider the following assump-
tions on the stochastic gradient oracles used in QLSD.

Assumption 4.3. The random fields {H(i)
k+1 : Rd → Rd}i∈[n],k∈N are independent and

satisfy the following conditions.

(i) For any θ ∈ Rd and k ∈ N,
∑n

i=1 E[H
(i)
k+1(θ)] = ∇U

(
θ
)
.

(ii) There exist {Mi > 0}i∈[n], such that for any i ∈ [n], k ∈ N, θ1, θ2 ∈ Rd,

E

∥∥∥∥H(i)
k+1(θ1)−H(i)

k+1(θ2)

∥∥∥∥2
 ≤ Mi

〈
θ1 − θ2,∇Ui

(
θ1

)
−∇Ui

(
θ2

)〉
.

(iii) There exist σ?, B? ∈ R+ such that for any θ ∈ Rd, k ∈ N, we have E[‖H(i)
k+1(θ?)‖]2 ≤

B?/n, and E[‖∑n
i=1H

(i)
k+1(θ?)‖2] ≤ σ2

?, where θ? is defined in (4.5).
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Table 4.2 – Order of the asymptotic biases {Bγ̄ , B©? ,γ̄ , B⊕,γ̄}, associated to the three pro-
posed MCMC algorithms, in squared 2-Wasserstein distance for two types of asymp-
totic. Red dependencies prevent from (quick) convergence while green dependencies
ensure convergence of associated MCMC algorithms. θ? is defined in (4.5).

Algo. Bias
Dependencies of the

asymptotic bias when γ̄ ↓ 0
Dependencies of the

asymptotic bias as Ni →∞
d H

(i)
k+1 B? partial particip. ω

QLSD Bγ̄ d σ2
? B? (1− p)/p ω O(Ni)

QLSD# Bγ̄ d N2
i

∑n
i=1

∥∥∥∇Ui(θ?)∥∥∥2
(1− p)/p ω O(Ni)

QLSD? B©? ,γ̄ d Ni - (1− p)/p ω dO
(
1
)

QLSD++ B⊕,γ̄ d Ni - (1− p)/p ω dO
(
1
)

We can notice that Assumption 4.3-(ii) implies that ∇Ui is Mi-Lipschitz continuous since
by the Cauchy-Schwarz inequality, for any i ∈ [n] and any θ1, θ2 ∈ Rd, we have that
‖∇Ui

(
θ1

)
−∇Ui

(
θ2

)
‖2 ≤ Mi〈θ1 − θ2,∇Ui

(
θ1

)
−∇Ui

(
θ2

)
〉. Conversely, in the finite-

sum setting, Assumption 4.3-(ii) is satisfied by QLSD# with Mi = NiM̄ if for any i ∈ [n]
and j ∈ [Ni], Ui,j is convex and ∇Ui,j is M̄-Lipschitz continuous, for M̄ ≥ 0 by Nesterov
(2003, Theorem 2.1.5).

In addition, it is worth mentioning that the first inequality in Assumption 4.3-(iii) is
also required for our derivation in the deterministic case where H(i)

k+1 = ∇Ui due to
the compression operator. In this particular case, B? stands for an upper-bound on∑n

i=1 ‖∇Ui(θ?)‖2 and corresponds to some discrepancy between local posterior density
functions meaning that ∇Ui 6= ∇U for i ∈ [n]. This phenomenon, referred to as data
heterogeneity in the risk-based literature (Horváth et al., 2022; Karimireddy et al.,
2020), is ubiquitous in the FL context.

Finally, we assume for simplicity that clients’ partial participation is realized by each
client having probability p ∈ (0, 1] of being active in each communication round.

Assumption 4.4. For any k ∈ N?, Ak = {i ∈ [n] : Bi,k = 1} where {Bi,k : i ∈
[n] , k ∈ N∗} is a family of i.i.d. Bernoulli random variables with success probability
p ∈

(
0, 1
]
.

A generalization of this scheme considering different probabilities pi per client can be
found in Section 4.A.1. Under the above assumptions and by denoting Qγ the Markov
kernel associated to Algorithm 4.5, the following convergence result holds.

Theorem 4.5. Assume Assumption 4.1, Assumption 4.2, Assumption 4.3 and Assump-
tion 4.4. Then, there exists γ̄∞ such that for γ̄ < γ̄∞, there exist Aγ̄ , Bγ̄ > 0, explicitly
given in Section 4.A, satisfying for any probability measure µ ∈ P2(Rd), any step-size
γ ∈

(
0, γ̄
]
and k ∈ N,

W 2
2

(
µQkγ , π

)
≤ (1− γm/2)k ·W 2

2

(
µ, π

)
+ γBγ̄

+ γ2Aγ̄(1− mγ/2)k−1k ·
∫
Rd
‖θ − θ?‖2µ(dθ),

where θ? is defined in (4.5).



CHAPTER 4. QLSD: QUANTIZED LANGEVIN STOCHASTIC DYNAMICS 179

Similar to ULA (Dalalyan, 2017b; Durmus and Moulines, 2019) and SGLD (Dalalyan and
Karagulyan, 2019; Durmus et al., 2019), the upper bound given in Theorem 4.5 includes
a contracting term that depends on the initialization and a bias term γBγ̄ that does not
vanish with k → ∞ due to the use of a fixed step-size γ. In the asymptotic scenario,
i.e. γ̄ ↓ 0, Table 4.1 gives the dependencies of Bγ̄ for QLSD and its particular instance
QLSD#, in terms of key quantities associated with the setting we consider. Similar to
SGLD, we can observe that the use of stochastic gradients entails a bias term of order
σ2
? O(γ). On the other hand, the use of partial participation and compression compared

to SGLD introduces an additional bias of order (ω/p)(mB? + LMd) O(γ), which grows
with in particular B?, corresponding to the impact of the local posterior discrepancy on
convergence.

Non-Asymptotic Analysis for Variance-Reduced Alternatives. We assume in
the sequel that the potential functions {Ui}i∈[n] admit the finite-sum decomposition
Ui =

∑Ni
j=1 Ui,j for each i ∈ [n] and consider the following assumptions.

Assumption 4.6. For any i ∈ [n], j ∈ [Ni], Ui,j is continuously differentiable and the
following holds.

(i) There exists Mi > 0 such that, for any θ1, θ2 ∈ Rd,∥∥∥∇Ui(θ2)−∇Ui(θ1)
∥∥∥2
≤ M

〈
θ2 − θ1,∇Ui(θ2)−∇Ui(θ1)

〉
.

(ii) There exists M̄ ≥ 0 such that, for any θ1, θ2 ∈ Rd,∥∥∥∇Ui,j(θ2)−∇Ui,j(θ1)
∥∥∥2
≤ M̄

〈
∇Ui,j(θ2)−∇Ui,j(θ1), θ2 − θ1

〉
.

As mentioned earlier, Assumption 4.6 is satisfied if for every i ∈ [n] and j ∈ [Ni], Ui,j
is convex and ∇Ui,j is M̄-Lipschitz continuous. Under these additional conditions, the
following non-asymptotic convergence results hold for the two reduced-variance MCMC
algorithms described in Section 4.2. Denote by Q©? ,γ the Markov kernel associated to
QLSD? with a step-size γ ∈

(
0, γ̄
]
.

Theorem 4.7. Assume Assumption 4.1, Assumption 4.2, Assumption 4.4 and Assump-
tion 4.6. Then, there exists γ̄©? ,∞ such that for γ̄ < γ̄©? ,∞, there exist A©? ,γ̄ , B©? ,γ̄ > 0,
explicitly given in Section 4.B, satisfying for any probability measure µ ∈ P2(Rd), any
step-size γ ∈

(
0, γ̄
]
and k ∈ N,

W 2
2

(
µQk©? ,γ , π

)
≤ (1− γm/2)k ·W 2

2

(
µ, π

)
+ γB©? ,γ̄

+ γ2A©? ,γ̄(1− mγ/2)k−1k ·
∫
Rd
‖θ − θ?‖2µ(dθ),

where θ? is defined in (4.5).

Compared to QLSD and QLSD?, QLSD++ only defines an inhomogeneous Markov chain,
see Section 4.C.3 for more details. For a step-size γ ∈

(
0, γ̄
]
and an iteration k ∈ N,

we denote by µQ
(k)
⊕,γ the distribution of θk defined by QLSD++ starting from θ0 with

distribution µ.
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Theorem 4.8. Assume Assumption 4.1, Assumption 4.2, Assumption 4.4 and Assump-
tion 4.6, and let l ∈ N? and α ∈ (0, 1/(ω + 1)]. Then, there exists γ̄⊕,∞ such that for
γ̄ < γ̄⊕,∞, there exist A⊕,γ̄ , B⊕,γ̄ , C⊕,γ̄ > 0, explicitly given in Section 4.C, satisfying
for any probability measure µ ∈ P2(Rd), any step-size γ ∈

(
0, γ̄
]
and k ∈ N,

W 2
2 (µQ

(k)
©+,γ , π) ≤ (1− γm/2)k ·W 2

2

(
µ, π

)
+ γ2A⊕,γ̄(1− γm/2)bk/lc ·

∫
Rd
‖θ− θ?‖2µ(dθ)

+ γB⊕,γ̄ + γC⊕,γ̄ [(1− α)k ∧ (1− γm/2)bk/lc]
n∑
i=1

‖∇Ui(θ?)‖2,

where θ? is defined in (4.5).

Table 4.2 provides the dependencies of the asymptotic bias terms B©? ,γ̄ , B⊕,γ̄ as γ̄ ↓ 0
with respect to key quantities associated to the problem we consider. For comparison,
we do the same regarding the specific instance of Algorithm 4.5, QLSD#. Remarkably,
thanks to biased local stochastic gradients for QLSD? and the memory mechanism for
QLSD++, we can notice that their associated asymptotic biases do not depend on local
posterior discrepancy in contrast to QLSD#. This is in line with non-asymptotic conver-
gence results in risk-based FL which also show that the impact of data heterogeneity
can be alleviated using such a memory mechanism (Philippenko and Dieuleveut, 2020).
The impact of stochastic gradients is discussed in further details in the next paragraph.

Consistency Analysis in the Big Data Regime. In Brosse et al. (2018), it was
shown that ULA and SGLD define homogeneous Markov chains, each of which admits a
unique stationary distribution. However, while the invariant distribution of ULA gets
closer to π as Ni increases, conversely the invariant measure of SGLD never approaches π
and is in fact very similar to the invariant measure of SGD. Moreover, the non-compressed
counterpart of QLSD? has been shown not to suffer from this problem, and it has been
theoretically proven to be a viable alternative to ULA in the Big Data environment.
Since QLSD is a generalization of SGLD, the conclusions of Brosse et al. (2018) hold.
On the other hand, we show that the reduced-variance alternatives to QLSD that we
introduced provide more accurate estimates of π as Ni increases, see the last column in
Table 4.2. Detailed calculations are deferred to Section 4.D.

4.4 Numerical experiments

This section illustrates our methodology with three numerical experiments that include
both synthetic and real datasets. For all experiments, we consider the finite-sum setting
and use the stochastic quantization operator C(s) for s ≥ 1 defined in (4.4) to perform the
compression step. In this case Assumption 4.2-(ii) is verified with ω = min(d/s2,

√
d/s).

Further experimental results are provided in Section 4.E.

Toy Gaussian Example. This first experiment aims at illustrating the general be-
havior of Algorithm 4.5 with respect to the use of stochastic gradients and compression
scheme. To this purpose, we set n = 20 and d = 50 and consider a Gaussian pos-
terior distribution with density defined in (4.1) where, for any i ∈ [n] and θ ∈ Rd,
Ui(θ) =

∑Ni
j=1 ‖θ − yi,j‖2/2, {yi,j}i∈[n],j∈[Ni] being a set of synthetic independent but
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Figure 4.1 – Toy Gaussian example. (top) 2D projection of the heterogeneous synthetic
dataset where each color refers to a client and each dot is an observation yi,j . (bottom)
Estimation performances of the considered Bayesian FL algorithms.

not identically distributed observations across clients and Ni ∈ [10, 200], see Figure 4.1
(top row). Note that in this specific case, θ? admits a closed form expression. For
all the algorithms, we choose the (optimized) step-size γ = 4.9 × 10−4 and choose a
minibatch size bi = bNi/10c. Instances of QLSD# and QLSD? using s = 2p are referred to
as p-bits instances of these MCMC algorithms. We compare these algorithms with the
non-compressed counterpart of QLSD? referred to as LSD?, see Algorithm 4.8. Figure 4.1
shows the behavior of the mean squared error (MSE) associated to the test function
f : θ 7→

∥∥θ∥∥, computed using 30 independent runs of each algorithm, with respect to the
number of bits transmitted. We can notice that QLSD? always outperforms QLSD#and
that decreasing the value of ω does not significantly reduce the bias associated to QLSD?.
This illustrates the impact of the variance of the stochastic gradients and supports our
theoretical analysis summarized in Table 4.2. On the other hand, QLSD? with s = 216

achieves a similar MSE as LSD? while requiring roughly 2.5 times less number of bits.

Bayesian Logistic Regression. In this experiment, we compare the proposed meth-
odology based on gradient compression with two existing FedAvg-type MCMC algorithms.
Since θ? defined in (4.5) is not easily available, we implement QLSD++ detailed in Al-
gorithm 4.6. We adopt a zero-mean Gaussian prior with covariance matrix 2·10−2Id and
use the FEMNIST dataset (Caldas et al., 2018). We set n = 50, l = 100, α = 1/(ω+1)
and γ = 10−5. We launch QLSD++ for s ∈ {24, 28, 216} and compare its performances
with DG-SGLD (Plassier et al., 2021) and FSGLD (El Mekkaoui et al., 2021) which use
multiple local steps to address the communication bottleneck. We are interested in
performing uncertainty quantification by estimating highest posterior density (HPD)
regions. For any α ∈ (0, 1), we define Cα = {θ ∈ Rd;− log π(θ|D) ≤ ηα} where ηα ∈ R
is chosen such that

∫
Cα π(θ|D)dθ = 1−α. We compute the relative HPD error based on

the scalar summary ηα, i.e. |ηα − ηLSDα |/ηLSDα where ηLSDα has been estimated using the
non-compressed counterpart of QLSD++, referred to as LSD++ and standing for a serial
variance-reduced SGLD, see Algorithm 4.9. Table 4.3 gives this relative HPD error for
α = 0.01 and provides the relative efficiency of QLSD++ and competitors corresponding
to the savings in terms of transmitted bits per iteration. One can notice that the pro-
posed approach provides similar results as its non-compressed counterpart while being
3 to 7 times more efficient. In addition, we show that QLSD++ provides similar perform-
ances as DG-SGLD and FSGLD which highlight that gradient compression and periodic
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Table 4.3 – Bayesian Logistic Regression.

Algorithm 99% HPD error Rel. efficiency

FSGLD 5.4e-3 6.2
DG-SGLD 5.2e-3 6.4

QLSD++ 4 bits 6.1e-3 7.6
QLSD++ 8 bits 4.3e-3 6.7
QLSD++ 16 bits 6.9e-4 3.1

Table 4.4 – Performances of Bayesian FL algorithms on the considered Bayesian neural
networks problem.

Method HMC SGLD QLSD++ QLSD++ PP FedBe-Dirichlet FedBe-Gauss. DG-SGLD FSGLD

Accuracy 89.6 88.8 88.1 86.6 90.7 90.2 92.2 87.5
Agreement 0.94 0.91 0.90 0.90 0.90 0.89 0.91 0.91

TV 0.07 0.11 0.12 0.12 0.16 0.16 0.13 0.13

communication are competing approaches.

Bayesian Neural Networks. In our third experiment, we go beyond the scope of
our theoretical analysis by performing posterior inference in Bayesian neural networks.
We use the ResNet-20 model (He et al., 2016), choose a zero-mean Gaussian prior dis-
tribution with variance 1/5 and consider the classification problem associated with the
CIFAR-10 dataset (Krizhevsky et al., 2009). We run QLSD++ with s = 2, l = 20,
α = 1/(ω + 1), and with either p = 1 (full participation) or p = 0.25 (partial participa-
tion). We compare the proposed methodology with a long-run Hamiltonian Monte Carlo
(HMC) considered as a “ground truth” (Izmailov et al., 2021) and SGLD. For completeness,
we also implement four other distributed/federated approximate sampling approaches,
namely two instances of FedBe (Chen and Chao, 2021), DG-SGLD and FSGLD. Following
Wilson et al. (2021), we compare the aforementioned algorithms through three metrics:
classification accuracy on the test dataset using the minimum mean-square estimator,
agreement between the top-1 prediction given by each algorithm and the one given by
HMC and total variation between approximate and “true” (associated with HMC) predictive
distributions. More details about algorithms’ hyperparameters and considered metrics
are given in Section 4.E.3. The results we obtain are gathered in Table 4.4. In terms
of agreement and total variation, QLSD++ (even with partial participation) gives similar
results as SGLD and competes favorably with other existing federated approaches. Fig-
ure 4.2 complements this empirical analysis by showing calibration curves of posterior
predictive distributions.
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Figure 4.2 – Bayesian Neural Networks.

4.5 Conclusion

In this chapter, we presented a general methodology based on Langevin stochastic dy-
namics for Bayesian FL. In particular, we addressed the challenges associated with this
new ML paradigm by assuming that a subset of clients sends compressed versions of its
local stochastic gradient oracles to the central server. Moreover, the proposed method
was found to have favorable convergence properties, as evidenced by numerical illus-
trations. In particular, it compares favorably to FedAvg-type Bayesian FL algorithms.
A limitation of this work is that the proposed method does not target the initial pos-
terior distribution due to the use of a fixed discretization time step. Therefore, this
work paves the way for more advanced Bayesian FL approaches based, for example,
on Metropolis-Hastings schemes to remove asymptotic biases. In addition, although
the data ownership issue is implicitly tackled by the FL paradigm by not sharing data,
stronger privacy guarantees can be ensured, typically by combining differential privacy,
secure multi-party computation and homomorphic encryption methods. Proposing a
differentially private version of our methodology is a possible extension of our work,
that is left for further work. This work has no direct societal impact.
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4.A Proof of Theorem 4.5

This section aims at proving Theorem 4.5 in the main chapter.

4.A.1 Generalized quantized Langevin stochastic dynamics

We show that QLSD defined in Algorithm 4.5 in the main chapter can be cast into a
more general framework that we refer to as generalized quantized Langevin stochastic
dynamics. Then, the guarantees for QLSD will be a simple consequence of the ones that
we will establish for generalized QLSD. For ease of reading, we recall first the setting and
the assumptions that we consider all along the chapter. Recall that the dataset D is
assumed to be partitioned into n shards {Di}ni=1 such that tni=1Di = D and the posterior
distribution of interest is assumed to admit a density with respect to the d-dimensional
Lebesgue measure which factorizes across clients, i.e. for any θ ∈ Rd,

π(θ) = exp{−U(θ)}/
∫
Rd

exp{−U(θ)} dθ, U(θ) =

n∑
i=1

Ui(θ).

We consider the following assumptions on the potential U .

Assumption 4.9. For any i ∈ [n], Ui is continuously differentiable. In addition,
suppose that the following conditions hold.

(i) U is m-strongly convex, i.e. for any θ1, θ2 ∈ Rd,

U(θ1) ≥ U(θ2) +
〈
θ1 − θ2,∇U(θ2)

〉
+ m

∥∥θ1 − θ2

∥∥2
/2.

(ii) U is L-Lipschitz, i.e. for any θ1, θ2 ∈ Rd,∥∥∥∇U(θ1)−∇U(θ2)
∥∥∥ ≤ L

∥∥θ1 − θ2

∥∥ .
Note that Assumption 4.9-(i) implies that U admits a unique minimizer denoted by θ? ∈
Rd. Moreover, for any (θ1, θ1) ∈ Rd, Assumption 4.9-(i)-(ii) combined with Nesterov
(2003, Equation 2.1.24) shows that〈
∇U(θ2)−∇U(θ1), θ2 − θ1

〉
≥ mL

m + L

∥∥θ2 − θ1

∥∥2
+

1

m + L

∥∥∥∇U(θ2)−∇U(θ1)
∥∥∥2
. (4.6)

We consider the following assumptions on the family {Hi : Rd × X1 → Rd}i∈[n] and C.

Assumption 4.10. There exists a probability measure ν2 on a measurable space (X2,X2)
and a family of measurable functions {Ci : Rd × X2 → Rd}i∈[n] such that the following
conditions hold.

(i) For any θ ∈ Rd and any i ∈ [n],
∫
X2

Ci(θ, x
(2)) ν2(dx(2)) = θ.

(ii) There exist {ωi ∈ R+}i∈[n], such that for any θ ∈ Rd and any i ∈ [n],∫
X2

∥∥∥Ci(θ, x(2))− θ
∥∥∥2

ν2(dx(2)) ≤ ωi
∥∥θ∥∥2

.

Assumption 4.11. There exist a family of probability measures {ν(i)
1 }i∈[n] defined on

measurable spaces {(X(i)
1 ,X (i)

1 )}i∈[n] and a family of measurable functions {Hi : Rd ×
X

(i)
1 → Rd}i∈[n] such that the following conditions hold.
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(i) For any θ ∈ Rd,
n∑
i=1

∫
X

(i)
1

Hi(θ, x
(1,i))ν

(i)
1 (dx(1,i)) = ∇U(θ).

(ii) There exist {Mi > 0}i∈[n], such that for any i ∈ [n], θ1, θ2 ∈ Rd,∫
X

(i)
1

∥∥∥Hi(θ2, x
(1,i))−Hi(θ1, x

(1,i))
∥∥∥2
ν

(i)
1 (dx(1,i)) ≤ Mi

〈
θ2 − θ1,∇Ui(θ2)−∇Ui(θ1)

〉
.

(iii) There exists σ?, B? ∈ R+ such that for any i ∈ [n], θ ∈ Rd, we have∫
X

(i)
1

∥∥∥Hi(θ
?, x(1))

∥∥∥2
ν

(i)
1 (dx(1)) ≤ B?/n, (4.7)

∫
X

(1)
1 ×···×X

(n)
1

∥∥∥∥∥∥
n∑
i=1

Hi(θ
?, x(1,i))

∥∥∥∥∥∥
2

⊗ni=1 ν
(i)
1 (dx(1,i)) ≤ σ2

?.

We can notice that Assumption 4.11-(ii) implies that ∇Ui is Mi-Lipschitz continuous
since by the Cauchy Schwarz inequality, for any i ∈ [n] and any θ1, θ2 ∈ Rd,∥∥∥∇Ui(θ1)−∇Ui(θ2)

∥∥∥2
≤ Mi

〈
θ1 − θ2,∇Ui(θ1)−∇Ui(θ2)

〉
.

In addition, it is worth mentioning that the first inequality in (4.7) is also required for
our derivation in the deterministic case where Hi = ∇Ui for any i ∈ [n] due to the com-
pression step. For k ≥ 1, consider (X

(1,1)
k , . . . , X

(1,n)
k )k∈N and (X

(2,1)
k , . . . , X

(2,n)
k )k∈N

two independent sequences of random variables distributed according to ν(1:n)
1 = ν

(1)
1 ⊗

· · · ⊗ ν(n)
1 and ν⊗n2 , respectively.

In addition, we consider the partial device participation context where at each com-
munication round k ≥ 1, each client has a probability pi ∈ (0, 1] of participating,
independently of other clients.

Assumption 4.12. For any k ∈ N?, Ak = {i ∈ [n] : Bi,k = 1} where for any i ∈ [n],
{Bi,k : , k ∈ N∗} is a family of i.i.d. Bernoulli random variables with success probability
pi ∈

(
0, 1
]
.

In other words, there exists a sequence (X
(3,1)
k , · · · , X(3,n)

k )k∈N of i.i.d. random variables
distributed according ν3 = Uniform((0, 1]), such that for any k ≥ 1 and i ∈ [n], client
i is active at step k if X(3,i)

k ≤ pi. We denote Ak+1 = {i ∈ [n];X
(3,i)
k+1 ≤ pi} the set of

active clients at round k. Given a step-size γ ∈ (0, γ̄] for some γ̄ > 0 and starting from
θ0 ∈ Rd, QLSD recursively defines (θk)k∈N, for any k ∈ N, as

θk+1 = θk − γ
∑

i∈Ak+1
(1/pi)Ci(Hi(θk, X

(1,i)
k+1 ), X

(2,i)
k+1 ) +

√
2γZk+1, (4.8)

where (Zk+1)k∈N is a sequence of standard Gaussian random variables. Let X3 = [0, 1].
For any i ∈ [n], consider the unbiased partial participation operator Si : Rd × X3 → Rd
defined, for any θ ∈ Rd and x(3) ∈ X3 by

Si(θ, x
(3)) =

1{x(3) ≤ pi}
pi

θ. (4.9)
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Then, (4.8) can be written of the form

θk+1 = θk − γ
n∑
i=1

H̃i(θk, X
(i)
k+1) +

√
2γZk+1, k ∈ N, (4.10)

where for any i ∈ [n], we denote X
(i)
k+1 = (X

(1,i)
k+1 , X

(2,i)
k+1 , X

(3,i)
k+1 ) and for any θ ∈

Rd, x(1,i) ∈ X
(i)
1 , x(2) ∈ X2 and x(3) ∈ X3,

H̃i

(
θ, (x(1,i), x(2), x(3))

)
= Si

(
Ci

(
Hi(θ, x

(1,i)), x(2)
)
, x(3)

)
. (4.11)

With this notation and setting for any i ∈ [n], X̃(i) = X
(i)
1 × X2 × X3 and ν̃(i) =

ν
(i)
1 ⊗ν2⊗ν3, the Markov kernel associated with (4.8) is given for any (θ,A) ∈ Rd×B(Rd)
by

Qγ(θ,A) =

∫
A×X̃(1)×···×X̃(n)

exp

−‖θ − θ + γ

n∑
i=1

H̃i(θ, x
(i))‖2/(4γ)


dθ̃ ν̃(1)(dx(1))⊗ · · · ⊗ ν̃(n)(dx(n))

(4πγ)d/2
. (4.12)

The following result establishes an essential property of {H̃i}i∈[n] under Assumption 4.10
and Assumption 4.11.

Lemma 4.13. Assume Assumption 4.10, Assumption 4.11 and Assumption 4.12. Then,
for any θ ∈ Rd, we have

n∑
i=1

∫
X̃(i)

H̃i(θ, x
(i)) dν̃(i)(x(i)) = ∇U(θ), (4.13)

∫
X̃(1:n)

∥∥∥∥∥∥
n∑
i=1

H̃i(θ, x
(i))−∇U(θ)

∥∥∥∥∥∥
2

⊗ni=1 ν̃
(i)(dx(i))

≤ 2 max
i∈[n]

{
Mi(ωi + 1)

pi

}〈
θ − θ?,∇U(θ)

〉
+ 2

σ2
? +

B?

n

n∑
i=1

1− pi + ωi
pi

 , (4.14)

where for any i ∈ [n], H̃i is defined in (4.11).

Proof The first identity (4.13) is straightforward using Assumption 4.11-(i) and As-
sumption 4.10-(i). We now show the inequality (4.14). Let θ ∈ Rd. Using Assump-
tion 4.10-(i) or Assumption 4.11-(i), we get∫

X̃(1:n)

∥∥∥∑n
i=1 H̃i(θ, x

(i))−∇U(θ)
∥∥∥2
⊗ni=1 ν̃

(i)(dx(i))

=

∫
X̃(1:n)

∥∥∥∥∥∥
n∑
i=1

[
H̃i(θ, x

(i))− Ci

(
Hi(θ, x

(1,i)), x(2,i)
)]∥∥∥∥∥∥

2

⊗ni=1 ν̃
(i)(dx(i))
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+

∫
X

(1:n)
1 ×Xn2

∥∥∥∥∥∥
n∑
i=1

Ci

(
Hi(θ, x

(1,i)), x(2,i)
)
−∇U(θ)

∥∥∥∥∥∥
2

ν⊗n2 (dx(2,1:n))⊗ni=1 ν
(i)
1 (dx(1,i)).

(4.15)

In addition, by Assumption 4.10-(i) and Assumption 4.10-(ii), we obtain

∫
X̃(1:n)

∥∥∥∥∥∥
n∑
i=1

[
H̃i(θ, x

(i)
)− Ci

(
Hi(θ, x

(1,i)
), x

(2,i)

)]∥∥∥∥∥∥
2

⊗ni=1 ν̃
(i)

(dx
(i)

)

=
n∑
i=1

∫
X̃(i)

∥∥∥∥∥H̃i(θ, x(i)
)− Ci

(
Hi(θ, x

(1,i)
), x

(2,i)

)∥∥∥∥∥
2

ν
(i)
1 (dx

(1,i)
)ν2(dx

(2,i)
)ν3(dx

(3,i)
)

≤
n∑
i=1

(
1− pi
pi

)∫
X
(i)
1 ×X2

∥∥∥∥∥Ci
(
Hi(θ, x

(1,i)
), x

(2,i)

)∥∥∥∥∥
2

ν
(i)
1 (dx

(1,i)
)ν2(dx

(2,i)
)

=

n∑
i=1

(
1− pi
pi

)∫
X
(i)
1 ×X2

∥∥∥∥∥Ci
(
Hi(θ, x

(1,i)
), x

(2,i)

)
−Hi(θ, x(1,i)

) +Hi(θ, x
(1,i)

)

∥∥∥∥∥
2

ν
(i)
1 (dx

(1,i)
)ν2(dx

(2,i)
)

=
n∑
i=1

(
1− pi
pi

)∫
X
(i)
1 ×X2

∥∥∥∥∥Ci
(
Hi(θ, x

(1,i)
), x

(2,i)

)
−Hi(θ, x(1,i)

)

∥∥∥∥∥
2

ν
(i)
1 (dx

(1,i)
)ν2(dx

(2,i)
)

+

n∑
i=1

(
1− pi
pi

)∫
X
(i)
1

∥∥∥∥Hi(θ, x(1,i)
)

∥∥∥∥2 ν(i)
1 (dx

(1,i)
)

≤
n∑
i=1

( 1− pi
pi

)
(ωi + 1)

∫
X
(i)
1

∥∥∥∥Hi(θ, x(1,i)
)

∥∥∥∥2 ν(i)
1 (dx

(1,i)
). (4.16)

Using ‖a‖2 ≤ 2‖a− b‖2 + 2‖b‖2 and Assumption 4.11-(ii)-(iii), for any i ∈ [n], we
obtain∫

X
(i)
1

∥∥∥Hi(θ, x
(1,i))

∥∥∥2
ν

(i)
1 (dx(1,i)) ≤ 2Mi

〈
θ − θ?,∇Ui(θ)−∇Ui(θ?)

〉
+ 2

∫
X

(i)
1

∥∥∥Hi(θ
?, x(1,i))

∥∥∥2
ν

(i)
1 (dx(1,i))

≤ 2Mi

〈
θ − θ?,∇Ui(θ)−∇Ui(θ?)

〉
+ 2B?/n.

Therefore, combining this result and (4.16) gives

∫
X̃(1:n)

∥∥∥∥∥∥
n∑
i=1

[
H̃i(θ, x

(i))− Ci

(
Hi(θ, x

(1,i)), x(2,i)
)]∥∥∥∥∥∥

2

⊗ni=1 ν̃
(i)(dx(i)) (4.17)

≤ 2

n∑
i=1

Mi

(
1− pi
pi

)
(ωi + 1)

〈
θ − θ?,∇Ui(θ)−∇Ui(θ?)

〉
+

2B?

n

n∑
i=1

(
1− pi
pi

)
(ωi + 1).

(4.18)

Similarly, by Assumption 4.10-(i) and Assumption 4.10-(ii), we have

∫
X

(1:n)
1 ×Xn2

∥∥∥∥∥∥
n∑
i=1

Ci

(
Hi(θ, x

(1,i)), x(2,i)
)
−∇U(θ)

∥∥∥∥∥∥
2

ν⊗n2 (dx(2,1:n))⊗ni=1 ν
(i)
1 (dx(1,i))

=

∫
X

(1:n)
1 ×Xn2

∥∥∥∥ n∑
i=1

[
Ci

(
Hi(θ, x

(1,i)), x(2,i)
)
−Hi(θ, x

(1,i))

]

+
n∑
i=1

{Hi(θ, x
(1,i))} − ∇U(θ)

∥∥∥∥2

ν⊗n2 (dx(2,1:n))⊗ni=1 ν
(i)
1 (dx(1,i))
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=

n∑
i=1

∫
X

(i)
1 ×X2

∥∥∥∥Ci (Hi(θ, x
(1,i)), x(2)

)
−Hi(θ, x

(1,i))

∥∥∥∥2

ν2(dx(2))ν
(i)
1 (dx(1,i))

+

∫
X

(1:n)
1

∥∥∥∥∥∥
n∑
i=1

Hi(θ, x
(1,i))−∇U(θ)

∥∥∥∥∥∥
2

⊗ni=1 ν
(i)
1 (dx(1,i))

≤
n∑
i=1

ωi

∫
X

(i)
1

∥∥∥Hi(θ, x
(1,i))

∥∥∥2
ν

(i)
1 (dx(1,i))

+

∫
X

(1:n)
1

∥∥∥∥∥∥
n∑
i=1

Hi(θ, x
(1,i))−∇U(θ)

∥∥∥∥∥∥
2

⊗ni=1 ν
(i)
1 (dx(1,i)).

Since for any a, b ∈ Rd,
∥∥a+ b

∥∥2 ≤ 2 ‖a‖2 + 2‖b‖2, we have by Assumption 4.11-(i)

∫
X
(1:n)
1

∥∥∥∥∥∥
n∑
i=1

Hi(θ, x
(1,i))−∇U(θ)

∥∥∥∥∥∥
2

⊗ni=1 ν
(i)
1 (dx(1,i)) (4.19)

=

∫
X
(1:n)
1

∥∥∥∥∥∥∥
n∑
i=1

Hi(θ, x
(1,i))−

∫
X
(i)
1

Hi(θ, x
(1))ν

(i)
1 (dx(1))


∥∥∥∥∥∥∥
2

⊗ni=1 ν
(i)
1 (dx(1,i))

=

n∑
i=1

∫
X
(i)
1

∥∥∥∥∥∥Hi(θ, x
(1,i))−

∫
X
(i)
1

Hi(θ, x
(1))ν

(i)
1 (dx(1))

∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

≤ 2

n∑
i=1

∫
X
(i)
1

∥∥∥∥∥∥∥Hi(θ, x
(1,i))−Hi(θ

?, x(1,i))−

∫
X
(i)
1

(Hi(θ, x
(1))−Hi(θ

?, x(1)))ν
(i)
1 (dx(1))


∥∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

+ 2

n∑
i=1

∫
X
(i)
1

∥∥∥∥∥∥Hi(θ?, x
(1,i))−

∫
X
(i)
1

Hi(θ?, x
(1))ν

(i)
1 (dx(1))

∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

≤ 2σ2
? + 2

n∑
i=1

Mi

〈
∇Ui(θ)−∇Ui(θ?), θ − θ?

〉
. (4.20)

By combining (4.17), (4.19) and (4.20), we obtain

∫
X

(1:n)
1

∥∥∥∥∥∥
n∑
i=1

Ci

(
Hi(θ, x

(1,i)), x(2,i)
)
−∇U(θ)

∥∥∥∥∥∥
2

ν⊗n2 (dx(2,1:n))⊗ni=1 ν
(i)
1 (dx(1,i))

≤ 2
n∑
i=1

Mi(ωi + 1)
〈
∇Ui(θ)−∇Ui(θ?), θ − θ?

〉
+ 2

σ2
? +

2B?

n

n∑
i=1

ωi

 .

Finally, the last inequality combined with (4.15) and (4.18) completes the proof.

In view of Lemma 4.13, it suffices to study the recursion specified in (4.10) under the
following assumption on (H̃i)i∈[n] gathered in Assumption 4.14. Indeed, Lemma 4.13
shows that Condition Assumption 4.14 below holds with X(i) = X̃(i) = X

(i)
1 × X2 × X3,

X (i) = X̃ (i) = X (i)
1 ⊗X2 ⊗X3, ν̃(i) = ν

(i)
1 ⊗ ν2 ⊗ ν3, {H̃i}ni=1 = {Fi}ni=1,

M̃ = 2 max
i∈[n]
{Mi(1 + ωi)/pi},
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B̃? = 2[σ2
? + (B?/n)

n∑
i=1

(1− pi + ωi)/pi].

Assumption 4.14. There exists a family of probability measure {ν(i)}i∈[n] on a measur-
able space {(X̃(i), X̃ (i))}i∈[n] and a family of measurable functions {Fi : Rd × X(i) → Rd}i∈[n]

such that the following conditions hold.

(i) For any θ ∈ Rd, we have

n∑
i=1

∫
X̃(i)

Fi(θ, x
(i))ν(i)(dx(i)) = ∇U(θ).

(ii) There exists (M̃, B̃?) ∈ R2
+ such that for any θ ∈ Rd, we have

∫
X̃(1:n)

∥∥∥∥∥∥
n∑
i=1

Fi(θ, x
(i))−∇U(θ)

∥∥∥∥∥∥
2

⊗ni=1 ν
(i)(dx(i)) ≤ M̃

〈
θ − θ?,∇U(θ)−∇U(θ?)

〉
+ B̃?.

Then under Assumption 4.14, consider (X
(1)
k , . . . , X

(n)
k )k∈N? an independent sequence

distributed according to ⊗ni=1ν
(i). Define the general recursion

θ̃k+1 = θ̃k − γ
n∑
i=1

Fi(θ̃k, X
(i)
k+1) +

√
2γZk+1, k ∈ N.

and the corresponding the Markov kernel given for any γ ∈ R∗+, θ ∈ Rd,A ∈ B(Rd) by

Q̃γ(θ,A) = (4πγ)−d/2
∫
A×X̃(1:n)

exp(−(4γ)−1

∥∥∥∥θ̄ − θ + γ

n∑
i=1

Fi(θ, x
(i))

∥∥∥∥2

) dθ̄ d⊗ni=1ν
(i)(x(i)).

(4.21)
We refer to this Markov kernel as the generalized QLSD kernel. In our next section, we
establish quantitative bounds between the iterates of this kernel and π in W2. We then
apply this result to QLSD and QLSD? as particular cases.

4.A.2 Quantitative bounds for the generalized QLSD kernel

Define

γ̄ = γ̄1 ∧ γ̄2 ∧ γ̄3, γ̄1 = 2/[5(m + L)], γ̄2 = (m + L + M̃)−1, γ̄3 = (10m)−1.

Theorem 4.15. Assume Assumption 4.9 and Assumption 4.14. Then, for any probab-
ility measure µ ∈ P2(Rd), any step-size γ ∈

(
0, γ̄
]
, any k ∈ N, we have

W 2
2 (µQ̃kγ , π) ≤ (1− γm/2)kW 2

2 (µ, π) + γB̃γ̄ + γ2Ãγ̄(1− mγ/2)k−1k

∫
Rd
‖θ − θ?‖2µ(dθ),

where Q̃γ is defined in (4.21) and

B̃γ̄ = (2dL2/m)(1/m + 5γ̄)
[
1 + γ̄L2/(2m) + γ̄2L2/12

]
+ 2B̃?/m + 2LM̃(2d+ γ̄B̃?)/m2

Ãγ̄ = LM̃.
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Let ξ ∈ P2(R2d) be a probability measure on (R2d,B(R2d)) with marginals ξ1 and ξ2,
i.e. ξ(A × Rd) = ξ1(A) and ξ(A × Rd) = ξ2(A) for any A ∈ B(Rd). Note that under
Assumption 4.9, the Langevin diffusion defines a Markov semigroup (Pt)t≥0 satisfying
πPt = π for any t ≥ 0, see e.g. Roberts and Tweedie (1996, Theorem 2.1). We introduce
a synchronous coupling (ϑkγ , θk) between ξ1Pkγ and ξ2Q̃

k
γ for any k ∈ N based on

a d-dimensional standard Brownian motion (Bt)t≥0 and a couple of random variables
(θ0, ϑ0) with distribution ξ independent of (Bt)t≥0. Consider (ϑt)t≥0 the strong solution
of the Langevin stochastic differential equation (SDE)

dϑt = −∇U(ϑt)dt+
√

2 dBt, (4.22)

starting from ϑ0. Note that under Assumption 4.9-(i), this SDE admits a unique strong
solution (Revuz and Yor, 2013, Theorem (2.1) in Chapter IX). In addition, define
(θk)k∈N starting from θ0 and satisfying the recursion: for k ≥ 0,

θk+1 = θk − γ
n∑
i=1

Fi(θk, x
(i)
k+1) +

√
2(Bγ(k+1) −Bγk), (4.23)

where (x
(1)
j , . . . , x

(n)
j )j∈N? is an independent sequence of random variables with distri-

bution ⊗ni=1ν
(i). Then, by definition, (ϑkγ , θk) is a coupling between ξ1Pkγ and ξ2Q̃

k
γ

for any k ∈ N and therefore

W2(ξ1Pkγ , ξ2Q̃
k
γ) ≤ E

[
‖ϑγk − θk‖2

]1/2
. (4.24)

We can now give the proof of Theorem 4.15.

Proof By Villani (2008, Theorem 4.1), for any couple of probability measures on Rd,
there exists an optimal transference plan ξ? between ν and π since π ∈ P2(Rd) by
the strong convexity assumption Assumption 4.9-(i). Let (ϑ0, θ0) be a correspond-
ing coupling which therefore satisfies W2(µ, π) = E1/2[

∥∥ϑ0 − θ0

∥∥2
]. Consider then

(ϑk)k∈N, (θk)k∈N defined in (4.22)-(4.23) starting from (ϑ0, θ0). Note that since πPt = π
by Roberts and Tweedie (1996, Theorem 2.1) for any t ≥ 0 and θ0 has distribu-
tion π, we get by Durmus and Moulines (2019, Proposition 1) that for any k ∈ N,
E[‖ϑkγ − θ?‖2] ≤ d/m and then Lemma 4.17 below shows that for any k ∈ N,

E[‖ϑ(k+1)γ − θk+1‖2] ≤ κγE[‖ϑkγ − θk‖2] + γ2LM̃E
[
‖θ0 − θ?‖2

]
κ̃kγ + γ2Dγ ,

where we have set

κγ = 1− γm(1− 5γm), κ̃γ = 1− γm
[
2− γ(m + M̃)

]
, Dγ = D0,γ + (1/m + 5γ)(γdL4/2m).

A straightforward induction shows that

E[‖ϑkγ − θk‖2] ≤ κkγW 2
2 (µ, π(·|D)) + γ2LM̃E

[
‖θ0 − θ?‖2

] k−1∑
l=0

κlγ κ̃
k−1−l
γ +

γ2Dγ

1− κγ
.

Using κγ ∧ κ̃γ ≤ 1− mγ/2 since γ ≤ γ̄, (4.24) and πPt = π for any t ≥ 0 completes the
proof.
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Supporting Lemmata

In this subsection, we derived two lemmas. Taking (θk)k∈N defined by the recursion
(4.23), Lemma 4.16 aims to upper bound the squared deviation between θk and the
minimizer of U denoted θ?, for any k ∈ N.

Lemma 4.16. Assume Assumption 4.9 and Assumption 4.14. Let γ ∈
(

0, 2/(m + L + M̃)
]
.

Then, for any k ∈ N, θ0 ∈ Rd, we have∫
Rd
‖θ − θ?‖2Q̃kγ(θ0, dθ) ≤ (1− γm

[
2− γ(m + M̃)

]
)k‖θ0 − θ?‖2 +

2d+ γB̃?

m
[
2− γ(m + M̃)

] ,
where Q̃γ is defined in (4.21).

Proof For any θ0 ∈ Rd, by definition (4.21) of Q̃γ and using Assumption 4.14-(i), we
obtain∫

Rd
‖θ − θ?‖2Q̃γ(θ0, dθ) = ‖θ0 − θ?‖2 − 2γ

〈
θ0 − θ?,∇U(θ0)

〉
+ γ2

∫
X̃(1:n)

∥∥∥∑n
i=1 Fi(θ0, x

(i))
∥∥∥2
⊗ni=1 ν

(i)(dx(i)) + 2γd. (4.25)

Moreover, using Assumption 4.9, Assumption 4.14 and (4.6), it follows that∫
X̃(1:n)

∥∥∥∑n
i=1 Fi(θ0, x

(i))
∥∥∥2
⊗ni=1 ν

(i)(dx(i))

=

∫
X̃(1:n)

∥∥∥∑n
i=1 Fi(θ0, x

(i))−∇U(θ0)
∥∥∥2
⊗ni=1 ν

(i)(dx(i)) +
∥∥∥∇U(θ0)

∥∥∥2

≤ M̃
〈
θ0 − θ?,∇U(θ0)

〉
+ B̃? +

∥∥∥∇U(θ0)−∇U(θ?)
∥∥∥2

≤ [m + L + M̃]
〈
θ0 − θ?,∇U(θ0)

〉
+ B̃? − Lm

∥∥∥θ0 − θ?
∥∥∥2
. (4.26)

Plugging (4.26) in (4.25) implies∫
Rd
‖θ − θ?‖2Q̃γ(θ0,dθ) ≤ (1− γ2mL)‖θ0 − θ?‖2

− γ{2− γ[m + L + M̃]}
〈
θ0 − θ?,∇U(θ0)

〉
+ γ2B̃? + 2γd.

Using Assumption 4.9-(i), we have 〈θ0 − θ?,∇U(θ0)〉 ≥ m‖θ0 − θ?‖2 which, combined
with the condition γ ≤ 1/(m + L + M̃), gives∫

Rd
‖θ − θ?‖2Q̃γ(θ0,dθ) ≤ (1− γm[2− γ(m + M̃)])‖θ0 − θ?‖2 + γ(2d+ γB̃?).

Using 0 < γ < 2/(m + M̃) and the Markov property combined with a straightforward
induction completes the proof.

For any k ∈ N, the following lemma gives an explicit upper bound on the expected
squared norm between ϑk+1 and θk+1 in function of ϑk, θk. The purpose of this lemma
is to derive a contraction property involving a contracting term and a bias term which
is easy to control.
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Lemma 4.17. Assume Assumption 4.9 and Assumption 4.14. Consider (ϑt)t≥0 and
(θk)k∈N defined in (4.22) and (4.23), respectively, for some initial distribution ξ ∈
P2(R2d). For any k ∈ N and γ ∈

(
0, 2/[(5(m + L)) ∨ (m + M̃ + L)]

)
, we have

E

[∥∥∥ϑγ(k+1) − θk+1

∥∥∥2
]
≤ {1− γm(1− 5γm)}E

[
‖ϑk − θk‖2

]
+ γ2D0,γ

+ γ2LM̃(1− γm
[
2− γ(m + M̃)

]
)kE[‖θ0 − θ?‖2]

+ γ3(1/m + 5γ)L4E
[
‖ϑkγ − θ?‖2

]
/2,

where

D0,γ = dL2(1/m + 5γ)
[
1 + γ2L2/12

]
+ B̃? +

LM̃(2d+ γB̃?)

m
[
2− γ(m + M̃)

] .
Proof Let k ∈ N. By (4.22) and (4.23), we have

ϑγ(k+1) − θk+1 = ϑγk − θk − γ
[
∇U(ϑγk)−∇U(θk)

]
−
∫ γ

0

[
∇U(ϑγk+s)−∇U(ϑγk)

]
ds+ γ

n∑
i=1

[
Fi(θk, X

(i)
k+1)−∇Ui(θk)

]
.

Define the filtration (Fk̃)k̃∈N as F0 = σ(ϑ0, θ0) and for k̃ ∈ N?,

Fk̃ = σ(ϑ0, θ0, (X
(1)
l , . . . , X

(n)
l )1≤l≤k̃, (Bt)0≤t≤γk̃).

Note that since (ϑt)t≥0 is a strong solution of (4.22), then is easy to see that (ϑγk̃, θk̃)k̃∈N
is (Fk̃)k̃∈N-adapted. Taking the squared norm and the conditional expectation with
respect to Fk, we obtain using Assumption 4.14-(i) that

EFk
[∥∥∥ϑγ(k+1) − θk+1

∥∥∥2
]

=
∥∥∥ϑγk − θk∥∥∥2

− 2γ
〈
ϑγk − θk,∇U(ϑγk)−∇U(θk)

〉
+ 2γ

∫ γ

0

〈
∇U(ϑγk)−∇U(θk),EFk

[
∇U(ϑγk+s)−∇U(ϑγk)

]〉
ds

− 2

∫ γ

0

〈
ϑγk − θk,EFk

[
∇U(ϑγk+s)−∇U(ϑγk)

]〉
ds+ γ2

∥∥∥∇U(ϑγk)−∇U(θk)
∥∥∥2

+EFk

∥∥∥∥∥
∫ γ

0

[
∇U(ϑγk+s)−∇U(ϑγk)

]
ds

∥∥∥∥∥
2
+γ2EFk


∥∥∥∥∥∥

n∑
i=1

Fi(θk, X
(i)
k+1)−∇U(θk)

∥∥∥∥∥∥
2
 .

(4.27)

First, using Jensen inequality and the fact that for any a, b ∈ Rd, |〈a, b〉| ≤ 2 ‖a‖2+2‖b‖2,
we get∫ γ

0

〈
∇U(ϑγk)−∇U(θk),EFk

[
∇U(ϑγk+s)−∇U(ϑγk)

]〉
ds

≤ 2γ
∥∥∥∇U(ϑγk)−∇U(θk)

∥∥∥2
+ 2

∫ γ

0
EFk

[∥∥∥∇U(ϑγk+s)−∇U(ϑγk)
∥∥∥2
]

ds,

(4.28)
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EFk

∥∥∥∥∥
∫ γ

0

[
∇U(ϑγk+s)−∇U(ϑγk)

]
ds

∥∥∥∥∥
2
 ≤ γ ∫ γ

0
EFk

[∥∥∥∇U(ϑγk+s)−∇U(ϑγk)
∥∥∥2
]

ds.

In addition, given that for any ε > 0, a, b ∈ Rd, |〈a, b〉| ≤ ε ‖a‖2 + (4ε)−1‖b‖2, we get∣∣∣∣∣
∫ γ

0

〈
θk − ϑγk,EFk

[
∇U(ϑγk+s)−∇U(ϑγk)

]〉
ds

∣∣∣∣∣ ≤ γε∥∥∥ϑγk − θk∥∥∥2

+ (4ε)−1

∫ γ

0
EFk

[∥∥∥∇U(ϑγk+s)−∇U(ϑγk)
∥∥∥2
]

ds. (4.29)

By Assumption 4.9, for k ∈ N we get by (4.6)∥∥∥∇U(ϑγk)−∇U(θk)
∥∥∥2
≤ (m + L)

〈
ϑγk − θk,∇U(ϑγk)−∇U(θk)

〉
− mL

∥∥∥ϑγk − θk∥∥∥2
.

(4.30)
Lastly, Assumption 4.14-(ii) yields

EFk


∥∥∥∥∥∥

n∑
i=1

Fi(θk, X
(i)
k+1)−∇U(θk)

∥∥∥∥∥∥
2
 ≤ M̃

〈
θk − θ?,∇U(θk)−∇U(θ?)

〉
+ B̃?. (4.31)

Combining (4.28), (4.29), (4.30) and (4.31) into (4.27), for k ∈ N we get for any ε > 0,

EFk
[∥∥∥ϑγ(k+1) − θk+1

∥∥∥2
]
≤ (1 + 2γε− 5γ2mL)

∥∥∥ϑγk − θk∥∥∥2

− γ
[
2− 5γ(m + L)

] 〈
ϑγk − θk,∇U(ϑγk)−∇U(θk)

〉
+ (5γ + (2ε)−1)

∫ γ

0
EFk

[∥∥∥∇U(ϑγk+s)−∇U(ϑγk)
∥∥∥2
]

ds

+ γ2M̃
〈
θk − θ?,∇U(θk)−∇U(θ?)

〉
+ γ2B̃?.

Next, we use that under Assumption 4.9, 〈ϑγk − θk,∇U(ϑγk)−∇U(θk)〉 ≥ m‖ϑγk − θk‖2
and |〈θk − θ?,∇U(θk)−∇U(θ?)〉| ≤ L‖θk − θ?‖2, which implies taking ε = m/2 and
since 2− 5γ(m + L) ≥ 0,

EFk
[∥∥∥ϑγ(k+1) − θk+1

∥∥∥2
]
≤ (1− γm(1− 5γm))

∥∥∥ϑγk − θk∥∥∥2
+ γ2M̃L

∥∥∥θk − θ?∥∥∥2
+ γ2B̃?

+ (5γ + m−1)

∫ γ

0
EFk

[∥∥∥∇U(ϑγk+s)−∇U(ϑγk)
∥∥∥2
]

ds

. (4.32)

Further, for any s ∈ R+, using Durmus and Moulines (2019, Lemma 21) we have

L−2 EFk
[∥∥∥∇U(ϑγk+s)−∇U(ϑγk)

∥∥∥2
]
≤ ds

(
2 + s2L2/3

)
+ 3s2L2/2

∥∥∥ϑγk − θ?∥∥∥2
.
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Integrating the previous inequality on
[
0, γ
]
, for k ≥ 0 we obtain

L−2

∫ γ

0
EFk

[∥∥∥∇U(ϑγk+s)−∇U(ϑγk)
∥∥∥2
]

ds ≤ dγ2 + dγ4L2/12 + γ3L2/2
∥∥∥ϑγk − θ?∥∥∥2

.

Plugging this bounds in (4.32) and taking the expectation combined with Lemma 4.16
conclude the proof.

4.A.3 Proof of Theorem 4.5

Based on Theorem 4.15, the next corollary provides an upper bound in Wasserstein
distance between π and µQkγ , where we consider (θk)k∈N defined in (4.8) and starting
from θ following µ ∈ P2(Rd).

Theorem 4.18. Assume Assumption 4.9, Assumption 4.10, Assumption 4.11 and As-
sumption 4.12. Then, for any probability measure µ ∈ P2(Rd), any step-size γ ∈

(
0, γ̄
]

where γ̄ is defined in (4.A.2), any k ∈ N, we have

W 2
2 (µQkγ , π) ≤ (1− γm/2)kW 2

2 (µ, π) + γBγ̄ + γ2Aγ̄(1− mγ/2)k−1k

∫
Rd
‖θ − θ?‖2µ(dθ),

where Qγ is defined in (4.12) and

Bγ̄ =
2dL2

m

(
1

m
+ 5γ̄

)[
1 + γ̄L2/(2m) + γ̄2L2/12

]
+

4

m

σ2
? + (B?/n)

n∑
i=1

1− pi + ωi
pi


+

8L

m2
max
i∈[n]

{
Mi(1 + ωi)

pi

}d+ γ̄[σ2
? +

B?

n

n∑
i=1

1− pi + ωi
pi

]

 (4.33)

Aγ̄ = 2Lmax
i∈[n]

{
Mi(1 + ωi)

pi

}
.

Proof By Lemma 4.13, the assumption Assumption 4.14 is satified for a choice of
M̃ = 2 maxi∈[n]{Mi(1 +ωi)/pi}) and B̃? = 2[σ2

? + (B?/n)
∑n

i=1(1− pi +ωi)/pi]. Therefore,
applying Theorem 4.15 completes the proof.

4.B Proof of Theorem 4.7

We assume here that {Ui}i∈[n] are defined, for any i ∈ [n] and θ ∈ Rd, by

Ui(θ) =

Ni∑
j=1

Ui,j(θ), Ni ∈ N?.

We consider the following set of assumptions on {Ui}i∈[n] and {Ui,j : j ∈ [Ni]}i∈[n].
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Assumption 4.19. For any i ∈ [n], j ∈ [Ni], Ui,j is continuously differentiable and the
following conditions hold.

(i) There exist {Mi > 0}i∈[n], such that for any i ∈ [n], θ1, θ2 ∈ Rd,∥∥∥∇Ui(θ2)−∇Ui(θ2)
∥∥∥2
≤ Mi

〈
θ2 − θ1,∇Ui(θ2)−∇Ui(θ1)

〉
.

(ii) There exists M̄ ≥ 0 such that, for any θ1, θ2 ∈ Rd,∥∥∥∇Ui,j(θ2)−∇Ui,j(θ1)
∥∥∥2
≤ M̄

〈
∇Ui,j(θ2)−∇Ui,j(θ1), θ2 − θ1

〉
.

In all this section, we assume for any i ∈ [n] that bi ∈ N∗, bi ≤ Ni is fixed. For any
i ∈ [n], recall that ℘Ni denotes the power set of [Ni] and

℘Ni,bi = {x ∈ ℘Ni : Card(x) = bi}.

We set in this section ν(i)
1 as the uniform distribution on ℘Ni,bi . We consider the family of

measurable functions {H?
i : Rd × Rd × ℘Ni → Rd}i∈[n], defined for any i ∈ [n], θ ∈ Rd,

x ∈ ℘Ni,bi by

H?
i (θ, x) =

Ni

bi

Ni∑
j=1

1x(j)
[
∇Ui,j(θ)−∇Ui,j(θ?)

]
. (4.34)

Using this specific family of gradient estimators boils down to the QLSD? algorithm
detailed in Algorithm 4.7.

Algorithm 4.7 Variance-reduced Quantised Langevin Stochastic Dynamics (QLSD?)

Input: minibatch sizes {bi}i∈[n], number of iterations K, compression operators
{Ck+1}k∈N? , step-size γ ∈ (0, γ̄] with γ̄ > 0 and initial point θ0.
for k = 0 to K − 1 do

for i ∈ Ak+1 // On active clients do
Draw S(i)

k+1 ∼ Uniform(℘Ni,bi).
Set H(i)

k+1(θk) = (Ni/bi)
∑
j∈S(i)

k+1

[∇Ui,j(θk)−∇Ui,j(θ?)].

Compute gi,k+1 = Ck+1(H
(i)
k+1(θk)).

Send gi,k+1 to the central server.

// On the central server
Compute gk+1 = n

|Ak+1|
∑

i∈Ak+1
gi,k+1.

Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the n clients.
Output: samples {θk}Kk=0.

Let (X
(1,1)
k , . . . , X

(1,n)
k )k∈N∗ and (X

(2,1)
k , . . . , X

(2,n)
k )k∈N∗ be two independent i.i.d. se-

quences with distribution ⊗ni=1ν
(i)
1 and ν⊗n2 . Let (Zk)k∈N∗ be an i.i.d. sequence of d-

dimensional standard Gaussian random variables independent of (X
(1,1)
k , . . . , X

(1,n)
k )k∈N∗

and (X
(2,1)
k , . . . , X

(2,n)
k )k∈N∗ . Similarly, as before, we consider the partial device particip-

ation context where at each communication round k ≥ 1, each client has a probability
pi ∈ (0, 1] of participating, independently of other clients. In other words, there ex-
ists a sequence (X

(3,1)
k , · · · , X(3,n)

k )k∈N? of i.i.d. random variables distributed according
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ν3 = Uniform((0, 1]), such that for any k ≥ 1 and i ∈ [n], client i is active at step
k if X(3,i)

k ≤ pi. We denote Ak+1 = {i ∈ [n];X
(3,i)
k+1 ≤ pi} the set of active clients

at round k. For ease of notation, denote for any k ∈ N∗, X(1)
k = (X

(1,1)
k , . . . , X

(1,n)
k ),

X
(2)
k = (X

(2,1)
k , . . . , X

(2,n)
k ), X(3)

k = (X
(3,1)
k , . . . , X

(3,n)
k ) and Xk = (X

(1)
k , X

(2)
k , X

(3)
k ).

Note that with this notation and under Assumption 4.10, QLSD? can be cast into the
framework of the generalized QLSD scheme defined in (4.8) since the recursion associated
to QLSD? can be written as

θ̃k+1 = θ̃k−γ
n∑
i=1

Si

[
Ci

(
H?
i (θ̃k, X

(1,i)
k+1 ), X

(2,i)
k+1

)
, X

(3,i)
k+1

]
+
√

2γZk+1, k ∈ N, (4.35)

where, for any i ∈ [n], Si is defined in (4.9). Therefore, we only need to verify that
Assumption 4.14 is satisfied with X(i) = X̃(i) = X

(i)
1 × X2 × X3, X (i) = X̃ (i) = X (i)

1 ⊗
X2 ⊗ X3, ν̃(i) = ν

(i)
1 ⊗ ν2 ⊗ ν3 for i ∈ [n] and {Fi}ni=1 = {F ?i }ni=1 = {Si ◦ Ci ◦ H?

i }ni=1.
This is done in Section 4.B.2.

4.B.1 Proof of Theorem 4.7

The Markov kernel associated with (4.35) is given for any (θ,A) ∈ Rd × B(Rd) by

Q©? ,γ(θ,A) =

∫
A×X̃n

exp

−‖θ − θ + γ

n∑
i=1

F ?i (θ, x(i))‖2/(4γ)

 dθ̃ ⊗ni=1 ν̃
(i)(dx(i))

(4πγ)d/2
.

(4.36)
Then, the following non-asymptotic convergence result holds for QLSD?.

Theorem 4.20. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Then, for any probability measure µ ∈ P2(Rd), any step-size γ ∈

(
0, γ̄
]

where γ̄ is defined in (4.A.2), any k ∈ N, we have

W 2
2 (µQk©? ,γ , π) ≤ (1− γm/2)kW 2

2 (µ, π) + γB©? ,γ̄

+ γ2A©? ,γ̄(1− mγ/2)k−1k

∫
Rd
‖θ − θ?‖2µ(dθ),

where Q©? ,γ is defined in (4.36) and

B©? ,γ̄ = (2dL2/m)
(

1/m + 5γ̄
) [

1 + γ̄L2/(2m) + γ̄2L2/12
]

(4.37)

+ (4LdM̄/m2) max
i∈[n]

[
ωiNi + (ωi + 1)(Ni[1− pi]/pi +Abi,Ni)

]
A©? ,γ̄ = LM̄max

i∈[n]

[
ωiNi + (ωi + 1)(Ni[1− pi]/pi +Abi,Ni)

]
,

Abi,Ni being defined in (4.38) for any i ∈ [n].

Proof Using Lemma 4.22, Assumption 4.14 is satisfied and applying Theorem 4.15
completes the proof.
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4.B.2 Supporting Lemmata

In this subsection, we derive two key lemmata in order to prove Theorem 4.20.

Lemma 4.21. For any i ∈ [n] and any sequence {aj}Nij=1 ∈ (Rd)⊗Ni where Ni ≥ 2, we
have ∫

X
(i)
1

∥∥∥∥∥∥∥
Ni∑
j=1

[
1x(1)(j)− bi

Ni

]
aj

∥∥∥∥∥∥∥
2

ν
(i)
1 (dx(1)) ≤ bi(Ni − bi)

Ni(Ni − 1)

Ni∑
j=1

‖aj‖2.

Proof Let i ∈ [n] and X(1,i) distributed according to ν(i)
1 . Since

∑Ni
j=1 1X(1,i)(j) = bi,

we have
Ni∑
l=1

1X(1,i)(l) +
∑
j 6=j′

1X(1,i)(j)1X(1,i)(j′) = b2i .

Integrating this equality over X(i)
1 gives

Ni ×
bi
Ni

+Ni(Ni − 1)×
∫
X

(i)
1

[
1x(1,i)(1)1x(1,i)(2)

]
ν

(i)
1 (dx(1,i)) = b2i .

Thus, we deduce that
∫
X

(i)
1

[1x(1,i)(1)1x(1,i)(2)]ν
(i)
1 (dx(1,i)) = bi(bi − 1)[Ni(Ni − 1)]−1. In

addition, using that

∫
X

(i)
1

(
1x(1,i)(j)− bi

Ni

)(
1x(1,i)(j′)− bi

Ni

)
ν

(i)
1 (dx(1,i))

=

∫
X

(i)
1

[1x(1,i)(1)1x(1,i)(2)]ν
(i)
1 (dx(1,i))− b2i

N2
i

,

we obtain

∫
X

(i)
1

∥∥∥∥∥∥∥
Ni∑
j=1

[
1x(1,i)(j)− bi

Ni

]
aj

∥∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

=
bi(Ni − bi)

N2
i

 Ni∑
l=1

‖al‖2 −
∑
j 6=j′

〈
aj , aj′

〉
Ni − 1

 =
bi(Ni − bi)
N2
i (Ni − 1)

Ni

Ni∑
l=1

‖al‖2 −

∥∥∥∥∥∥
Ni∑
l=1

al

∥∥∥∥∥∥
2
 .

For any i ∈ [n], denote

Abi,Ni =
Ni(Ni − bi)
bi(Ni − 1)

. (4.38)

The next lemma aims at controlling the variance of the global stochastic gradient con-
sidered in QLSD?, required to apply Theorem 4.15.
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Lemma 4.22. Assume Assumption 4.10, Assumption 4.12 and Assumption 4.19. Then,
for any θ ∈ Rd, we have

∫
X(1:n)

∥∥∥∥∥∑n
i=1 Si

[
Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
, x(3,i)

]
−∇U(θ)

∥∥∥∥∥
2

⊗ni=1 ν
(i)(dx(i))

≤ M̄max
i∈[n]

[
ωiNi + (ωi + 1)(Ni[1− pi]/pi +Abi,Ni)

] 〈
θ − θ?,∇U(θ)−∇U(θ?)

〉
,

where {H?
i }i∈[n] and {Abi,Ni}i∈[n] are defined in (4.34) and (4.38), respectively. Hence,

Assumption 4.14 is satisfied with B̃? = 0 and

M̃ = M̄max
i∈[n]

[
ωiNi + (ωi + 1)(Ni[1− pi]/pi +Abi,Ni)

]
.

Proof Let θ ∈ Rd, using Assumption 4.10 gives

∫
X(1:n)

∥∥∥∥∥∑n
i=1 Si

[
Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
, x(3,i)

]
−∇U(θ)

∥∥∥∥∥
2

⊗ni=1 ν
(i)(dx(i))

=

∫
X(1:n)

∥∥∥∥∥∑n
i=1 Si

[
Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
, x(3,i)

]
− Ci

(
H?
i (θ, x(1,i)), x(2,i)

)∥∥∥∥∥
2

⊗ni=1 ν
(i)(dx(i))

+

∫
X
(1:n)
1 ×Xn2

∥∥∥∥∑n
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥∥2 ν⊗n2 (dx(2,1:b))⊗ni=1 ν
(i)
1 (dx(1,i))

≤
n∑
i=1

(
1− pi
pi

)
(ωi + 1)

∫
X
(i)
1

∥∥∥H?
i (θ, x(1,i))

∥∥∥2 ν(i)1 (dx(1,i))

+

∫
X
(1:n)
1 ×Xn2

∥∥∥∥∑n
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥∥2 ν⊗n2 (dx(2,1:b))⊗ni=1 ν
(i)
1 (dx(1,i))

≤ M̄

n∑
i=1

(
1− pi
pi

)
(ωi + 1)Ni

〈
θ − θ?,∇Ui(θ)−∇Ui(θ?)

〉
+

∫
X
(1:n)
1 ×Xn2

∥∥∥∥∑n
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥∥2 ν⊗n2 (dx(2,1:b))⊗ni=1 ν
(i)
1 (dx(1,i)).

(4.39)

Again using Assumption 4.10, it follows that∫
X

(1:n)
1 ×Xn2

∥∥∥∥∑n
i=1 Ci

(
H?
i (θ, x(1,i)), x(2,i)

)
−∇U(θ)

∥∥∥∥2

ν⊗n2 (dx(2,1:b))⊗ni=1 ν
(i)
1 (dx(1,i))

=

∫
X

(1:n)
1 ×Xn2

∥∥∥∥∥∥
n∑
i=1

Ci

Ni

bi

Ni∑
j=1

1x(1,i)(j)
[
∇Ui,j(θ)−∇Ui,j(θ?)

]
, x(2,i)


−

n∑
i=1

Ni

bi

Ni∑
j=1

1x(1,i)(j)
[
∇Ui,j(θ)−∇Ui,j(θ?)

] ∥∥∥∥∥∥
2

+

∫
X

(1:n)
1

∥∥∥∥∥∥∥
n∑
i=1

Ni

bi

Ni∑
j=1

(
1x(1,i)(j)− bi

Ni

)[
∇Ui,j(θ)−∇Ui,j(θ?)

]∥∥∥∥∥∥∥
2

⊗ni=1 ν
(i)
1 (dx(1,i))
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≤
n∑
i=1

ωi

(
Ni

bi

)2 ∫
X

(i)
1

∥∥∥∥∥∥∥
Ni∑
j=1

1x(1,i)(j)
[
∇Ui,j(θ)−∇Ui,j(θ?)

]∥∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

+
n∑
i=1

(
Ni

bi

)2 ∫
X

(i)
1

∥∥∥∥∥∥∥
N∑
j=1

(
1x(1,i)(j)− bi

Ni

)[
∇Ui,j(θ)−∇Ui,j(θ?)

]∥∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i))

=
n∑
i=1

ωi

∥∥∥∇Ui(θ)−∇Ui(θ?)∥∥∥2

+
n∑
i=1

(ωi + 1)

(
Ni

bi

)2 ∫
X

(i)
1

∥∥∥∥∥∥∥
Ni∑
j=1

(
1x(1,i)(j)− bi

Ni

)[
∇Ui,j(θ)−∇Ui,j(θ?)

]∥∥∥∥∥∥∥
2

ν
(i)
1 (dx(1,i)).

(4.40)

Using Lemma 4.21 combined with Assumption 4.19 yields, for any i ∈ [n],∫
X

(i)
1

∥∥∥∥∑Ni
j=1

(
1x(1,i)(j)− bi/Ni

) [
∇Ui,j(θ)−∇Ui,j(θ?)

]∥∥∥∥2

ν
(i)
1 (dx(1,i))

≤ bi(Ni − bi)
Ni(Ni − 1)

M̄
〈
θ − θ?,∇Ui(θ)−∇Ui(θ?)

〉
. (4.41)

In addition, Jensen inequality implies, for any i ∈ [n], that

‖∇Ui(θ)−∇Ui(θ?)‖2 ≤ Ni

Ni∑
j=1

∥∥∥∇Ui,j(θ)−∇Ui,j(θ?)∥∥∥2
,

and therefore, using Assumption 4.19, we have for any i ∈ [n],

‖∇Ui(θ)−∇Ui(θ?)‖2 ≤ M̄Ni

〈
∇Ui(θ)−∇Ui(θ?), θ − θ?

〉
. (4.42)

Injecting (4.41) and (4.42) into (4.40) and using (4.39) conclude the proof.

4.C Proof of Theorem 4.8

4.C.1 Problem formulation.

We assume here that U is still of the form (4.1) and that there exist {Ni ∈ N?}i∈[n]

such that for any i ∈ [n], there exist Ni functions {Ui,j : θ ∈ Rd → R}j∈[Ni] such that
for any θ ∈ Rd,

Ui(θ) =

Ni∑
j=1

Ui,j(θ).

In all this section, we assume for any i ∈ [n] that bi ∈ N∗, bi ≤ Ni is fixed. Recall that
℘N denotes the power set of [N ] and

℘N,n = {x ∈ ℘N : Card(x) = n}.
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In addition, we set in this section ν(i)
1 as the uniform distribution on ℘Ni,bi . We consider

the family of measurable functions {Gi : Rd × Rd × ℘Ni → Rd}i∈[n], defined for any i ∈
[n], θ ∈ Rd, ζ ∈ Rd, x ∈ ℘Ni,bi by

Gi(θ, ζ;x) =
Ni

bi

Ni∑
j=1

1x(j)
[
∇Ui,j(θ)−∇Ui,j(ζ)

]
+∇Ui(ζ). (4.43)

For ease of reading, we formalise more precisely the recursion associated with QLSD++

under Assumption 4.10. Let (X
(1,1)
k , . . . , X

(1,n)
k )k∈N∗ and (X

(2,1)
k , . . . , X

(2,n)
k )k∈N∗ be

two independent i.i.d. sequences with distribution ⊗ni=1ν
(i)
1 and ν⊗n2 . Let (Zk)k∈N∗ be

an i.i.d. sequence of d-dimensional standard Gaussian random variables independent
of (X

(1,1)
k , . . . , X

(1,n)
k )k∈N∗ and (X

(2,1)
k , . . . , X

(2,n)
k )k∈N∗ . Similarly as before, we consider

the partial device participation context where at each communication round k ≥ 1, each
client has a probability pi ∈ (0, 1] of participating, independently of other clients. In
other words, there exists a sequence (X

(3,1)
k , · · · , X(3,n)

k )k∈N? of i.i.d. random variables
distributed according ν3 = Uniform((0, 1]), such that for any k ≥ 1 and i ∈ [n], client
i is active at step k if X(3,i)

k ≤ pi. We denote Ak+1 = {i ∈ [n];X
(3,i)
k+1 ≤ pi} the set

of active clients at round k. For ease of notation, denote for any k ∈ N∗, X(1)
k =

(X
(1,1)
k , . . . , X

(1,n)
k ), X(2)

k = (X
(2,1)
k , . . . , X

(2,n)
k ), X(3)

k = (X
(3,1)
k , . . . , X

(3,n)
k ) and Xk =

(X
(1)
k , X

(2)
k , X

(3)
k ). Let l ∈ N?, γ ∈ (0, γ̄] and α ∈ (0, ᾱ] for γ̄, ᾱ > 0. Given Θ0 =

(θ0, ζ0, {η(i)
0 }i∈[n]) ∈ Rd × Rd × Rd×n, with ζ0 = θ0, we recursively define the sequence

(Θk)k∈N = (θk, ζk, {η(i)
k }i∈[n])k∈N, for any k ∈ N as

θk+1 = θk − γG̃(Θk;Xk+1) +
√

2γZk+1, (4.44)

where

G̃(Θk;Xk+1) =

n∑
i=1

Si
Ci

{
Gi

(
θk, ζk;X

(1,i)
k+1

)
− η(i)

k ;X
(2,i)
k+1

}
, X

(3,i)
k+1

+ η
(i)
k

 ,
(4.45)

ζk+1 =

θk+1, if k + 1 ≡ 0 (mod l),

ζk, otherwise,
(4.46)

and for any i ∈ [n],

η
(i)
k+1 = η

(i)
k + αSi

Ci

{
Gi

(
θk, ζk;X

(1,i)
k+1

)
− η(i)

k ;X
(2,i)
k+1

}
, X

(3,i)
k+1

 . (4.47)

Since QLSD++ involves auxiliary variables gathered with (θk)k∈N in (Θk)k∈N, we cannot
follow the same proof as for QLSD? by verifying Assumption 4.14 and then applying The-
orem 4.15. Instead, we will adapt the proof Theorem 4.15 and in particular Lemma 4.16
and bound the variance associated to the stochastic gradient defined in (4.45). Once
this variance term will be tackled, the proof of Theorem 4.8 will follow the same lines
as the proof of Theorem 4.15 upon using specific moment estimates for QLSD++. In the
next section, we focus on these two goals: we provide uniform bounds in the number
of iterations k on the variance of the sequence of stochastic gradients associated with
QLSD++, (E[‖G̃i(Θk, Xk+1)−∇U(θk)‖2])k∈N for any i ∈ [n], and (E[‖θk − θ?‖2])k∈N,
see Proposition 4.29 and Corollary 4.28. To this end, a key ingredient is the design of
an appropriate Lyapunov function defined in (4.59).
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4.C.2 Uniform bounds on the stochastic gradients and moment
estimates for QLSD++

Consider the filtration associated with (Θk)k∈N defined by G0 = σ(Θ0) and for k ∈ N∗,

Gk = σ(Θ0, (Xk̃)k̃≤k, (Zk̃)k̃≤k).

We denote for any i ∈ [n], θ, ζ ∈ Rd,

∆i(θ, ζ) = ∇Ui(θ)−∇Ui(ζ). (4.48)

Similarly, we consider, for any i ∈ [n], j ∈ [N ], θ, ζ ∈ Rd,

∆i,j(θ, ζ) = ∇Ui,j(θ)−∇Ui,j(ζ). (4.49)

The following lemma provides a first upper bound on the variance of the stochastic
gradients used in QLSD++.

Lemma 4.23. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19 and let γ ∈ (0, γ̄], α ∈ (0, ᾱ] for some γ̄, ᾱ > 0. Then, for any s ∈ N,
r ∈ {0, . . . , l − 1}, we have

EGsl+r
[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θsl+r)

∥∥∥2
]

≤

2
n∑
i=1

M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Abi,Ni M̄Mi

∥∥∥θsl+r − θ?∥∥∥2

+

2

n∑
i=1

ωi + 1− pi
pi

∥∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥∥2

+2M̄

n∑
i=1

(ωi + 1

pi

)
Abi,NiMi

∥∥∥θsl − θ?∥∥∥2
,

where (Θk̃)k̃∈N = (θk̃, ζk̃, {η
(i)

k̃
}i∈[n])k̃∈N, G̃ and Ab,N are defined in (4.44), (4.46), (4.47),

(4.45) and (4.38), respectively.

Proof Let s ∈ N and r ∈ {0, . . . , l− 1}. Using Assumption 4.10, (4.48) and (4.49), we
have

EGsl+r
[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θsl+r)

∥∥∥2]

=

n∑
i=1

EGsl+r
[∥∥∥Si

Ci

{
Gi

(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)sl+r;X

(2,i)
sl+r+1

}
, X

(3,i)
sl+r+1


− Ci

{
Gi

(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)sl+r;X

(2,i)
sl+r+1

}∥∥∥2]

+

n∑
i=1

EGsl+r


∥∥∥∥∥∥Ci

{
Gi

(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)sl+r;X

(2,i)
sl+r+1

}
+ η

(i)
sl+r −∇Ui(θsl+r)

∥∥∥∥∥∥
2


≤
n∑
i=1

(
1− pi
pi

)
EGsl+r


∥∥∥∥∥∥Ci

{
Gi

(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)sl+r;X

(2,i)
sl+r+1

}∥∥∥∥∥∥
2
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+

n∑
i=1

ωiEGsl+r

∥∥∥∥∥Gi
(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)sl+r

∥∥∥∥∥


+

n∑
i=1

EGsl+r

∥∥∥∥∥Gi
(
θsl+r, ζk;X

(1,i)
sl+r+1

)
−∇Ui(θsl+r)

∥∥∥∥∥
2


≤
n∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r

∥∥∥∥∥Gi
(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
− η(i)sl+r

∥∥∥∥∥
2


+

n∑
i=1

EGsl+r

∥∥∥∥∥Gi
(
θsl+r, ζsl+r;X

(1,i)
sl+r+1

)
−∇Ui(θsl+r)

∥∥∥∥∥
2


≤
n∑
i=1

(
ωi + 1

pi

)
EGsl+r


∥∥∥∥∥∥∥
Ni
bi

Ni∑
j=1

[
1
X

(1,i)
sl+r+1

(j)∆i,j(θsl+r, ζsl+r)

]
−∆i(θsl+r, ζsl+r)

∥∥∥∥∥∥∥
2


+

n∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r

∥∥∥∥∇Ui(θsl+r)− η(i)sl+r∥∥∥∥2


≤
n∑
i=1

(
ωi + 1

pi

)
Ni(Ni − bi)
bi(Ni − 1)

M̄〈θsl+r − ζsl+r,∇Ui(θsl+r)−∇Ui(ζsl+r)〉

+

n∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r

∥∥∥∥∇Ui(θsl+r)− η(i)sl+r∥∥∥∥2
 ,

where the last line follows from Assumption 4.19 and Lemma 4.21. The proof is
concluded by using the Cauchy-Schwarz inequality, Assumption 4.9 and ζsl+r = θsl.

The two following lemmas aim at controlling the terms that appear in Lemma 4.23.

Lemma 4.24. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19, and let γ ∈ (0, γ̄], α ∈ (0, ᾱ] for some γ̄, ᾱ > 0. Then, for any s ∈ N
and r ∈ [l], we have

EGsl+r−1

[∥∥∥θsl+r − θ?∥∥∥2
]
≤
(

1− 2γm+ γ2Bb,N

)∥∥∥θsl+r−1 − θ?
∥∥∥2

+ γ2

2
n∑
i=1

ωi + 1− pi
pi

∥∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥∥2

+ 2M̄γ2
n∑
i=1

(ωi + 1

pi

)
Abi,NiMi

∥∥∥θsl − θ?∥∥∥2
+ 2γd,

where

Bb,N = 2
n∑
i=1

M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Abi,Ni M̄Mi

+ L2, (4.50)

(Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[n])k̃∈N and Ab,N are defined in (4.44), (4.46), (4.47) and (4.38)
respectively.
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Proof Let s ∈ N and r ∈ [l]. Using (4.44) and Assumption 4.10, it follows

EGsl+r−1

[∥∥∥θsl+r − θ?∥∥∥2
]

=
∥∥∥θsl+r−1 − θ?

∥∥∥2
+ 2γd− 2γ〈∇U(θsl+r−1), θsl+r−1 − θ?〉

+ γ2EGsl+r−1

[∥∥∥G̃(Θsl+r−1;Xsl+r)
∥∥∥2
]
. (4.51)

Using Assumption 4.10 and (4.43)-(4.45), we have

EGsl+r−1

[∥∥∥G̃(Θsl+r−1;Xsl+r)
∥∥∥2
]

=

n∑
i=1

EGsl+r−1

∥∥∥∥∥∥Si
Ci

{
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1;X
(2,i)
sl+r

}
, X

(3,i)
sl+r


− Ci

{
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1;X
(2,i)
sl+r

}∥∥∥∥∥∥
2

+ EGsl+r−1


∥∥∥∥∥∥
n∑
i=1

Ci

{
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1;X
(2,i)
sl+r

}
+ η

(i)
sl+r−1

∥∥∥∥∥∥
2


≤
n∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r−1

∥∥∥∥∥Gi
(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1

∥∥∥∥∥
2


+

n∑
i=1

EGsl+r−1


∥∥∥∥∥∥∥
Ni
bi

Ni∑
j=1

[
1
X

(1,i)
sl+r

(j)∆i,j(θsl+r−1, ζsl+r−1)

]
−∆i(θsl+r−1, ζsl+r−1)

∥∥∥∥∥∥∥
2


+
∥∥∥∇U(θsl+r−1)

∥∥∥2

=

n∑
i=1

(
ωi + 1

pi

)
EGsl+r−1


∥∥∥∥∥∥∥
Ni
bi

Ni∑
j=1

[
1
X

(1,i)
sl+r

(j)∆i,j(θsl+r−1, ζsl+r−1)

]
−∆i(θsl+r−1, ζsl+r−1)

∥∥∥∥∥∥∥
2


+

n∑
i=1

(
ωi + 1− pi

pi

)
EGsl+r−1

∥∥∥∥∇Ui(θsl+r−1)− η(i)
sl+r−1

∥∥∥∥2
+

∥∥∥∇U(θsl+r−1)
∥∥∥2

≤
n∑
i=1

(
ωi + 1

pi

)
Ni(Ni − bi)
bi(Ni − 1)

M̄〈θsl+r−1 − ζsl+r−1,∇Ui(θsl+r−1)−∇Ui(ζsl+r−1)〉

+

n∑
i=1

(
ωi + 1− pi

pi

)∥∥∥∥∇Ui(θsl+r−1)− η(i)
sl+r−1

∥∥∥∥2

+
∥∥∥∇U(θsl+r−1)

∥∥∥2

, (4.52)

where the last line follows from Assumption 4.19 and Lemma 4.21. The proof is con-
cluded by injecting (4.52) into (4.51), using the Cauchy-Schwarz inequality, ∇U(θ?) = 0,
Assumption 4.9 and ζsl+r−1 = θsl.

Lemma 4.25. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Let γ ∈ (0, γ̄] for some γ̄ > 0 and α ∈ (0, 1/(maxi∈[n] ωi + 1)]. Then,
for any s ∈ N and r ∈ [l], we have
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n∑
i=1

EGsl+r−1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥∥2
 ≤ (1− α)

n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥∥2

+ αCb,N

∥∥∥θsl+r−1 − θ?
∥∥∥2

+ 2α

 n∑
i=1

Abi,Ni M̄Mi

∥∥∥θsl − θ?∥∥∥2
,

where

Cb,N = 2

n∑
i=1

[
Abi,Ni M̄Mi + M2

i

]
, (4.53)

(Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[n])k̃∈N and Ab,N are defined in (4.44), (4.46), (4.47) and
(4.38), respectively.

Proof Let s ∈ N and r ∈ [l]. Then, it follows

n∑
i=1

EGsl+r−1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥∥2
 =

n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥∥2

+
n∑
i=1

EGsl+r−1

∥∥∥∥η(i)
sl+r − η

(i)
sl+r−1

∥∥∥∥2
+ 2

n∑
i=1

〈
EGsl+r−1

[
η

(i)
sl+r − η

(i)
sl+r−1

]
, η

(i)
sl+r−1 −∇Ui(θ?)

〉
.

(4.54)

Using (4.47) and Assumption 4.10, we have for any i ∈ [n],

EGsl+r−1

∥∥∥∥η(i)
sl+r − η

(i)
sl+r−1

∥∥∥∥2


≤ α2(ωi + 1)EGsl+r−1

∥∥∥∥∥Gi
(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1

∥∥∥∥∥
2
 , (4.55)

EGsl+r−1

[
η

(i)
sl+r − η

(i)
sl+r−1

]
= αEGsl+r−1

[
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1

]
.

(4.56)

Plugging (4.55) and (4.56) into (4.54) yields

n∑
i=1

EGsl+r−1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥∥2
 ≤ n∑

i=1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥∥2

+ α2
n∑
i=1

(ωi + 1)EGsl+r−1

∥∥∥∥∥Gi
(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1

∥∥∥∥∥
2


+ 2α

n∑
i=1

〈EGsl+r−1

[
Gi

(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
− η(i)

sl+r−1

]
, η

(i)
sl+r−1 −∇Ui(θ?)〉.
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Using for any i ∈ [n] α(1 + ωi) ≤ 1 and the fact, for any a, b, c ∈ Rd, that ‖a− c‖2 +
2〈a− c, c− b〉 = ‖a− b‖2 − ‖c− b‖2, we have

n∑
i=1

EGsl+r−1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r

∥∥∥∥2
 ≤ (1− α)

n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥∥2

+ α
n∑
i=1

EGsl+r−1

∥∥∥∥∥Gi
(
θsl+r−1, ζsl+r;X

(1,i)
sl+r

)
−∇Ui(θ?)

∥∥∥∥∥
2
 . (4.57)

Using (4.43), Assumption 4.19 and Lemma 4.21, it follows

n∑
i=1

EGsl+r−1

∥∥∥∥∥Gi
(
θsl+r−1, ζsl+r−1;X

(1,i)
sl+r

)
−∇Ui(θ?)

∥∥∥∥∥
2


≤
n∑
i=1

Ni(Ni − bi)
bi(Ni − 1)

M̄〈θsl+r−1 − ζsl+r−1,∇Ui(θsl+r−1)−∇Ui(ζsl+r−1)〉

+

n∑
i=1

∥∥∥∇Ui(θsl+r−1)−∇Ui(θ?)
∥∥∥2
. (4.58)

The proof is concluded by plugging (4.58) into (4.57), using the Cauchy-Schwarz in-
equality, Assumption 4.9 and ζsl+r−1 = θsl.

Lemma 4.24 and Lemma 4.25 involve two dependent terms which prevents us from using
a straightforward induction. To cope with this issue, we consider a Lyapunov function
ψ : Rd × Rd×n → R defined, for any θ ∈ Rd and η = (η(1), . . . , η(n))> ∈ Rd×n by

ψ(θ, η) = ‖θ − θ?‖2 +
3γ2

α
max
i∈[n]

{
ωi + 1− pi

pi

}
n∑
i=1

∥∥∥∇Ui(θ?)− η(i)
∥∥∥2
. (4.59)

The following lemma provides an upper bound on this Lyapunov function. Define for
α > 0,

γ̄α,1 = {m(Bb,N + 3ωCb,N)−1} ∧ {α(3m)−1}, (4.60)

where Bb,N and Cb,N are defined in (4.50) and (4.53) respectively.

Lemma 4.26. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Let α ∈ (0, 1/(1 + maxi∈[n] ωi)], γ ∈ (0, γ̄α,1]. Then, for any s ∈ N and
r ∈ [l], we have

EGsl+r−1

[
ψ(θsl+r, ηsl+r)

]
≤
(
1− γm

)
ψ(θsl+r−1, ηsl+r−1)

+ 8M̄γ2 max
i∈[n]
{(ωi + 1)/pi}

n∑
i=1

Abi,NiMi

∥∥∥θsl − θ?∥∥∥2
+ 2γd,

where ψ is defined in (4.59) and (Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[n])k̃∈N and Ab,N are defined
in (4.44), (4.46), (4.47) and (4.38), respectively.



CHAPTER 4. QLSD: QUANTIZED LANGEVIN STOCHASTIC DYNAMICS 206

Proof Let s ∈ N and r ∈ [l]. Using Lemma 4.24 and Lemma 4.25, we have

EGsl+r−1

[
ψ(θsl+r, ηsl+r)

]
≤
(

1− 2γm + γ2
[
Bb,N + 3ωCb,N

])∥∥∥θsl+r−1 − θ?
∥∥∥2

+
[
(2/3)α+ (1− α)

]
(3γ2/α) max

i∈[n]
{(ωi + 1− pi)/pi}

n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
sl+r−1

∥∥∥∥2

+ 8M̄γ2 max
i∈[n]
{(ωi + 1)/pi}

n∑
i=1

Abi,NiMi

∥∥∥θsl − θ?∥∥∥2
+ 2γd.

Since γ ≤ γ̄α,1 with γ̄α,1 given in (4.60), it follows that

1− 2γm + γ2
[
Bb,N + 3ωCb,N

]
≤ 1− 2γm + γm = 1− γm.

Therefore, we have

EGsl+r−1

[
ψ(θsl+r, ηsl+r)

]
≤
(
1− γm

)
ψ(θsl+r−1, ηsl+r−1)

+ 8M̄γ2 max
i∈[n]
{(ωi + 1)/pi}

n∑
i=1

Abi,NiMi

∥∥∥θsl − θ?∥∥∥2
+ 2γd.

Lemma 4.27. Let j ∈ N? and fix γ > 0 such that

γ ≤ m

16jM̄γ2 maxi∈[n]{(ωi + 1)/pi}
∑n

i=1Abi,NiMi
∧ 1

m
.

Then, (
1− γm

)j
+ 8jγ2M̄max

i∈[n]
{(ωi + 1)/pi}

n∑
i=1

Abi,NiMi ≤ 1− γm/2,

where Ab,N is defined in (4.38).

Proof The proof is straightforward using (1− γm)j ≤ 1− γm.
We have the following corollary regarding the Lyapunov function defined in (4.59).

Denote for α > 0,

γ̄α,2 = γ̄α,1 ∧ [m/{16lM̄max
i∈[n]
{(ωi + 1)/pi}

∑n
i=1Abi,NiMi}]1/3, (4.61)

where γ̄α,1 is given in (4.60).

Corollary 4.28. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Let α ∈ (0, 1/(1 + maxi∈[n] ωi)] and γ ∈

(
0, γ̄α,2

]
. Then, for any s ∈ N

and r ∈ {0, . . . , l − 1} we have

EGsl
[
ψ(θ(s+1)l−r, η(s+1)l−r)

]
≤
(

1− γm/2
)
ψ(θsl, ηsl) + 2γ(l − r)d,

where ψ is defined in (4.59) and (Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[n])k̃∈N is defined in (4.44),
(4.46), (4.47).
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Proof The proof follows from a straightforward induction of Lemma 4.26 combined
with Lemma 4.27.

We are now ready to control explicitly the variance of the stochastic gradient defined
in (4.45).

Proposition 4.29. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and
Assumption 4.19. Let α ∈ (0, 1/(1 + maxi∈[n] ωi)] and γ ∈

(
0, γ̄α,2

]
, where γ̄α,2 is

defined in (4.61). Then, for any k = sl + r with s ∈ N, r ∈ {0, . . . , l − 1}, θ0 ∈ Rd and
η0 = (η

(1)
0 , . . . , η

(n)
0 )> ∈ Rd×n, we have

E

[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θk)
∥∥∥2
]
≤
(

1− γm

2

)s
Db,Nψ(θ0, η0) + 4ldDb,N/m

+

2
n∑
i=1

ωi + 1− pi
pi

 (1− α)k
n∑
i=1

E

∥∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥∥2
 ,

where

Db,N =

2
n∑
i=1

M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Abi,Ni M̄Mi


+ 2M̄

n∑
i=1

(ωi + 1

pi

)
Abi,NiMi

+ 4Cb,N

n∑
i=1

(ωi + 1− pi)/pi, (4.62)

Ab,N and Cn,N are defined in (4.38) and (4.53) respectively, ψ is defined in (4.59), and
(Θk̃)k̃∈N = (θk̃, ζk̃, {ηik̃}i∈[n])k̃∈N is defined in (4.44), (4.46), (4.47).

Proof Let k ∈ N and write k = sl + r with s ∈ N, r ∈ {0, . . . , l − 1} Then, using
Lemma 4.23, we have

E

[∥∥∥G̃(Θsl+r;Xsl+r+1)−∇U(θk)
∥∥∥2
]

≤

2
n∑
i=1

M2
i

pi
(ωi + 1− pi) +

(
ωi + 1

pi

)
Abi,Ni M̄Mi

E

[∥∥∥θk − θ?∥∥∥2
]

+

2

n∑
i=1

ωi + 1− pi
pi

E

∥∥∥∥∇Ui(θ?)− η(i)
k

∥∥∥∥2


+ 2M̄

n∑
i=1

(ωi + 1

pi

)
Abi,NiMi

E

[∥∥∥θsl − θ?∥∥∥2
]
. (4.63)

We now use our previous results to upper bound the three expectations at the right-hand
side of (4.63). First, using Corollary 4.28 and a straightforward induction gives

E

[∥∥∥θsl − θ?∥∥∥2
]
≤
(

1− γm

2

)s
ψ(θ0, η0) + 2γld

s−1∑
j=0

(
1− γm

2

)j
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≤
(

1− γm

2

)s
ψ(θ0, η0) +

4ld

m
. (4.64)

Similarly, we have

E

[∥∥∥θk − θ?∥∥∥2
]
≤
(

1− γm

2

)s+1

ψ(θ0, η0) + 2γld
s∑
j=0

(
1− γm

2

)j
≤
(

1− γm

2

)s
ψ(θ0, η0) +

4ld

m
. (4.65)

Finally, using Lemma 4.25 combined with (4.64) and (4.65), we obtain

n∑
i=1

E

∥∥∥∥∇Ui(θ?)− η(i)
k

∥∥∥∥2
 ≤ (1− α)

n∑
i=1

E

∥∥∥∥∇Ui(θ?)− η(i)
k−1

∥∥∥∥2


+ 2αCb,N

(
1− γm

2

)s
ψ(θ0, η0) +

8ldαCb,N

m
.

Then, a straightforward induction leads to

n∑
i=1

E

∥∥∥∥∇Ui(θ?)− η(i)
k

∥∥∥∥2
 ≤ (1− α)k

n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥∥2

+ 2Cb,N

(
1− γm

2

)s
ψ(θ0, η0) +

8ldCb,N

m
. (4.66)

Combining (4.64), (4.65) and (4.66) in (4.63) concludes the proof.

4.C.3 Proof of Theorem 4.8

Note that γ ∈
(
0, γ̄
]
, α ∈

(
0, ᾱ

]
and l ∈ N∗, (Θk̃)k̃∈N = (θk̃, ζk̃, {η

(i)

k̃
}i∈[n])k̃∈N defined in

(4.44), (4.46), (4.47) is an inhomogeneous Markov chain associated with the sequence of
Markov kernel (Q

(k)
γ,α,l)k∈N defined by as follows. Define for any (θ, ζ, η) ∈ Rd×Rd×Rd,

and x(1) ∈ ℘Ni,bi , x(2) ∈ X2 and x(3) ∈ X3,

Fi

(
(θ, ζ, η); (x(1), x(2), x(3))

)
= Si

(
Ci

{
Gi

(
θ, ζ;x(1)

)
− η;x(2)

}
;x(3)

)
Gi

(
(θ, ζ, η); (x(1), x(2), x(3))

)
= η + αFi

(
(θ, ζ, η); (x(1), x(2), x(3))

)
,

and for θ̃ ∈ Rd, {η(i)}ni=1 ∈ Rd×n, {x(1,i)}ni=1 ∈ ⊗ni=1℘Ni,bi , {x(2,i)}ni=1 ∈ Xn2 , {x(3,i)}ni=1 ∈
Xn3 , setting x(1:n) = {(x(1,i), x(2,i), x(3,i))}ni=1,

ϕγ

(
(θ̃, θ, ζ, {η(i)}ni=1);x(1:n)

)
= (4πγ)−d/2 exp

(
−(4γ)−1

∥∥∥∥θ − θ + γ

n∑
i=1

Fi

(
(θ, ζ, η(i));x(i)

)∥∥∥∥2
)
.
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Denote X̃(i) = ℘Ni,bi × X2 × X3 and ν̃(i) = ν
(i)
1 × ν2 × ν3. Set Q

(0)
γ,α,l = Id and for k ≥ 0,

k = ls+r, s ∈ N, r ∈ {0, . . . , l−1}, (θ, ζ, η) ∈ Rd×Rd×Rd×n and A ∈ B(Rd×Rd×Rd×n),

Q
(k+1)
γ,α,l ((θ, ζ, η),A) =

∫
⊗n
i=1

X̃(i)
1A(θ̃, ζ̃, η̃)ϕγ((θ̃, θ, ζ, {η(i)}ni=1); x

(1:n)){∏n
i=1 δ

Gi((θ,ζ,η);x
(i))

(dη̃(i))}δθ(dζ̃) dθ̃ ⊗ni=1 ν̃
(i)(dx(i)) if r = 0∫

⊗n
i=1

X̃(i)
1A(θ̃, ζ̃, η̃)ϕγ((θ̃, θ, ζ, {η(i)}ni=1); x

(1:n)){∏n
i=1 δ

Gi((θ,ζ,η);x
(i))

(dη̃(i))}δζ(dζ̃) dθ̃ ⊗ni=1 ν̃
(i)(dx(i)) otherwise.

.

Consider then, the Markov kernel on Rd × B(Rd),

R
(k)
γ,α,l,η0

(θ0,A) = Q
(k)
γ,α,l

(
(θ0, θ0, η0),A× Rd × Rd×n

)
. (4.67)

Define
γ̄α = γ̄α,2 ∧ γ̄4, γ̄4 = 1/(10m), (4.68)

where γ̄α,2 is defined in (4.61). The following theorem provides a non-asymptotic con-
vergence bound for the QLSD++ kernel.

Theorem 4.30. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Then, for any probability measure µ ∈ P2(Rd), l ∈ N?, η0 ∈ Rd×n, α ∈(

0, 1/(1 + maxi∈[n] ωi)
]
, γ ∈

(
0, γ̄α

]
, and k = sl+ r ∈ N with s ∈ N, r ∈ {0, . . . , l− 1},

we have

W 2
2

(
µR

(k)
γ,α,l,η0

, π(·|D)

)
≤
(

1− γm

2

)k
W 2

2 (µ, π(·|D)) +
2γDb,N

m

(
1− γm

2

)s ∫
Rd
ψ(θ0, η0)dµ(θ0)

+
4γ(1− α)k

m

 n∑
i=1

(ωi + 1− pi)/pi

 n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥∥2

+ γB⊕,γ̄α ,

where R(k)
γ,α,l,η0

is defined in (4.67), ψ is defined in (4.59), Dn,N in (4.62) and

B⊕,γ̄α =
2dL2

m
(1/m + 5γ̄α)

[
1 + γ̄αL

2/(2m) + γ̄2
αL

2/12
]

+
96ld

m2

 n∑
i=1

Mi

pi
(ωi + 1)(Mi + M̄Abi,Ni)

 . (4.69)

Proof Let k ∈ N. The proof follows from the same lines as Theorem 4.18. By (4.22)
and (4.44), we have

ϑγ(k+1) − θk+1 = ϑγk − θk − γ
[
∇U(ϑγk)−∇U(θk)

]
−
∫ γ

0

[
∇U(ϑγk+s)−∇U(ϑγk)

]
ds+ γ

[
G̃(Θk;Xk+1)−∇U(θk)

]
.

Define the filtration (Hk̃)k̃∈N as H0 = σ(ϑ0,Θ0) and for k̃ ∈ N?,

Hk̃ = σ(ϑ0,Θ0, (X
(1)
l , . . . , X

(n)
l )1≤l≤k̃, (Bt)0≤t≤γk̃).
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Note that since (ϑt)t≥0 is a strong solution of (4.22), then is easy to see that (ϑγk̃,Θk̃)k̃∈N
is (Hk̃)k̃∈N-adapted. Taking the squared norm and the conditional expectation with
respect to Hk, we obtain using Assumption 4.14-(i) that

EHk
[∥∥∥ϑγ(k+1) − θk+1

∥∥∥2
]

=
∥∥∥ϑγk − θk∥∥∥2

− 2γ
〈
ϑγk − θk,∇U(ϑγk)−∇U(θk)

〉
+ 2γ

∫ γ

0

〈
∇U(ϑγk)−∇U(θk),EHk

[
∇U(ϑγk+u)−∇U(ϑγk)

]〉
du

− 2

∫ γ

0

〈
ϑγk − θk,EHk

[
∇U(ϑγk+u)−∇U(ϑγk)

]〉
du

+ γ2
∥∥∥∇U(ϑγk)−∇U(θk)

∥∥∥2

+ EHk

∥∥∥∥∥
∫ γ

0

[
∇U(ϑγk+u)−∇U(ϑγk)

]
du

∥∥∥∥∥
2


+ γ2EHk
[∥∥∥G̃(Θk;Xk+1)−∇U(θk)

∥∥∥2
]
. (4.70)

Using Proposition 4.29, we obtain

E

[∥∥∥G̃(Θk;Xk+1)−∇U(θk)
∥∥∥2
]
≤
(

1− γm

2

)bk/lc
Db,Nψ(θ0, η0) + 4ldDb,N/m

+

2
n∑
i=1

ωi + 1− pi
pi

 (1− α)k
n∑
i=1

E

∥∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥∥2
 . (4.71)

Then, we control the remaining terms in (4.70) using (4.28), (4.29) and (4.30). Com-
bining these bounds and (4.71) into (4.70), for any ε > 0, yields

E

[∥∥∥ϑγ(k+1) − θk+1

∥∥∥2
]
≤ (1 + 2γε− 5γ2mL)E

[∥∥∥ϑγk − θk∥∥∥2
]

− γ
[
2− 5γ(m + L)

]
E
[〈
ϑγk − θk,∇U(ϑγk)−∇U(θk)

〉]
+ (5γ + (2ε)−1)

∫ γ

0
E

[∥∥∥∇U(ϑγk+u)−∇U(ϑγk)
∥∥∥2
]

du

+ γ2

(
1− γm

2

)⌊k/l⌋
Db,NE

[
ψ(θ0, η0)

]
+ 4ldDb,N/m

+ 2γ2

 n∑
i=1

(ωi + 1− pi)/pi

 (1− α)k
n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥∥2

.

Next, we use that under Assumption 4.9, 〈ϑγk − θk,∇U(ϑγk)−∇U(θk)〉 ≥ m‖ϑγk − θk‖2
and |〈θk − θ?,∇U(θk)−∇U(θ?)〉| ≤ L‖θk − θ?‖2, which implies taking ε = m/2 and
since 2− 5γ(m + L) ≥ 0,

E

[∥∥∥ϑγ(k+1) − θk+1

∥∥∥2
]
≤ (1− γm(1− 5γm))E

[∥∥∥ϑγk − θk∥∥∥2
]
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+ (5γ + m−1)

∫ γ

0
E

[∥∥∥∇U(ϑγk+u)−∇U(ϑγk)
∥∥∥2
]

du

+ γ2

(
1− γm

2

)⌊k/l⌋
Db,NE

[
ψ(θ0, η0)

]
+ 4ldDb,N/m

+ 2γ2

 n∑
i=1

(ωi + 1− pi)/pi

 (1− α)k
n∑
i=1

∥∥∥∥∇Ui(θ?)− η(i)
0

∥∥∥∥2

.

(4.72)

Further, for any u ∈ R+, using Durmus and Moulines (2019, Lemma 21) we have

L−2 E

[∥∥∥∇U(ϑγk+u)−∇U(ϑγk)
∥∥∥2
]
≤ du

(
2 + u2L2/3

)
+ 3u2L2/2E

[∥∥∥ϑγk − θ?∥∥∥2
]
.

Integrating the previous inequality on
[
0, γ
]
, we obtain

L−2

∫ γ

0
E

[∥∥∥∇U(ϑγk+u)−∇U(ϑγk)
∥∥∥2
]

du ≤ dγ2+dγ4L2/12+γ3L2/2E

[∥∥∥ϑγk − θ?∥∥∥2
]
.

Plugging this bounds in (4.72) and using Durmus and Moulines (2019, Proposition 1)
complete the proof.

4.D Consistency analysis in the big data regime

In this section, we assume that the number of observations on each client i ∈ [n] writes
Ni =

⌊
ciN

⌋
where {ci > 0}i∈[n], N ∈ N∗, and provide upper bounds on the asymptotic

bias associated to each algorithm when N tends towards infinity. For simplicity, we
assume for any i ∈ [n], that bi =

⌊
cib
⌋
with b ∈ [N ], Mi = M with M > 0, pi = 1 and

ωi = ω with ω > 0 but note that our conclusions also hold for the general setting
considered in this chapter.

4.D.1 Asymptotic analysis for Algorithm 4.5

The following corollary is associated with QLSD defined in Algorithm 4.5 in the main
chapter.

Corollary 4.31. Assume Assumption 4.9, Assumption 4.10 Assumption 4.11 and As-
sumption 4.12. In addition, assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N <
∞ for A ∈ {L, M, B?, σ?}. Then, we have γ̄ = η̄/N where η̄ > 0 and γ̄ is defined in
(4.A.2). In addition,

Bγ̄ = (ω + 1) O(N),

where Bγ̄ is defined in (4.33).

Proof Since we assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N < ∞ for
A ∈ {L, M, B?, σ?}, there exist Cm, CL, CM, CB? and Cσ? > 0 such that m ≥ CmN , L ≤ CLN ,
M ≤ CMN , B? ≤ CB?N and σ? ≤ Cσ?N . Under these assumptions, it is straightforward
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from (4.A.2) to see that there exists η̄ > 0 such that γ̄ = η̄/N . In addition, it follows
from (4.33) that

Bγ̄ ≤
2dC2

L

Cm

(
1

Cm
+ 5η̄

)[
1 +

η̄C2
L

2Cm
+
η̄2C2

L

12

]
+

4

Cm
(ωCB? + C2

σ?N)

+
8(ω + 1)CLCM

C2
m

[
d+ η̄

(
ωCB? + C2

σ?N
)]
.

The proof is concluded by letting N tend towards infinity.

Regarding the specific instance QLSD# of Algorithm 4.5 in the main chapter, a similar
result holds. Indeed, by using Lemma 4.21, we can notice that Assumption 4.11-(iii) is
verified with σ? = Cσ?N for some Cσ? > 0 and we can apply Corollary 4.31.

4.D.2 Asymptotic analysis for Algorithm 4.6

The following corollary is associated with QLSD? defined in Algorithm 4.6 in the main
chapter.

Corollary 4.32. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. In addition, assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N <
∞ for A ∈ {L, M}. Then, we have γ̄ = η̄/N where η̄ > 0 and γ̄ is defined in (4.A.2). In
addition,

B©? ,γ̄ = d(ω + 1) O(1),

where B©? ,γ̄ is defined in (4.37).

Proof Since we assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N < ∞ for
A ∈ {L, M}, there exist Cm, CL and CM > 0 such that m ≥ CmN , L ≤ CLN and M ≤ CMN .
Under these assumptions, it is straightforward from (4.A.2) to see that there exists
η̄ > 0 such that γ̄α = η̄/N . In addition, it follows from (4.27) that

B©? ,γ̄ ≤
2dC2

L

Cm

(
1

Cm
+ 5η̄

)[
1 +

η̄C2
L

2Cm
+
η̄2C2

L

12

]

+
4dM̄CL

C2
m

max
i∈[n]

{
ciω + (ω + 1) · N − b

b(
⌊
ciN

⌋
− 1)

}
.

The proof is concluded by letting N tend towards infinity.

Lastly, we have the following asymptotic convergence result regarding QLSD++ defined
in Algorithm 4.6 in the main chapter.

Corollary 4.33. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. In addition, assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N <
∞ for A ∈ {L, M}. Then, we have γ̄α = η̄/N where η̄ > 0 and γ̄α is defined in (4.68). In
addition,

B⊕,γ̄α = d(ω + 1) O(1),

where B⊕,γ̄α is defined in (4.69).
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Proof Since we assume that lim infN→∞ m/N > 0 and lim supN→∞ A/N < ∞ for
A ∈ {L, M}, there exist Cm, CL and CM > 0 such that m ≥ CmN , L ≤ CLN and M ≤ CMN .
Under these assumptions, it is straightforward from (4.68) to see that there exists η̄ > 0
such that γ̄α = η̄/N . In addition, it follows from (4.69) that

B⊕,γ̄α ≤
2dC2

L

Cm

(
1

Cm
+ 5η̄

)[
1 +

η̄C2
L

2Cm
+
η̄2C2

L

12

]

+
96(ω + 1)ldnCM

C2
m

 (N − b)M̄
b(mini∈[n]{

⌊
ciN

⌋
} − 1)

+ CM

 .

The proof is concluded by letting N tend towards infinity.

4.E Experimental details

In this section, we provide additional details regarding our numerical experiments. The
code, data and instructions to reproduce our experimental results can be downloaded
[here].

4.E.1 Toy Gaussian example

Pseudocode of LSD?. For completeness, we provide in Algorithm 4.8 the pseudocode
of the non-compressed counterpart of QLSD?, namely LSD?.

Algorithm 4.8 Variance-reduced Langevin Stochastic Dynamics (LSD?)

Input: minibatch sizes {bi}i∈[n], number of iterations K, step-size γ ∈ (0, γ̄] with
γ̄ > 0 and initial point θ0.
for k = 0 to K − 1 do

for i ∈ Ak+1 // On active clients do
Draw S(i)

k+1 ∼ Uniform(℘Ni,bi).
Set H(i)

k+1(θk) = (Ni/bi)
∑
j∈S(i)

k+1

[∇Ui,j(θk)−∇Ui,j(θ?)].

Compute gi,k+1 = H
(i)
k+1(θk).

Send gi,k+1 to the central server.

// On the central server
Compute gk+1 = n

|Ak+1|
∑

i∈Ak+1
gi,k+1.

Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the n clients.
Output: samples {θk}Kk=0.

Additional experimental details. As highlighted in Section 4.4 (Toy Gaussian ex-
ample paragraph) in the main chapter, the synthetic dataset has been generated so
that each client owns a heterogeneous and unbalanced dataset. An illustration of the

https://proceedings.mlr.press/v151/
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unbalancedness is given in Figure 4.3. The precise procedure to generate such a dataset
can be found in the aforementioned notebook.
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Figure 4.3 – Illustration of the unbalancedness of the synthetic dataset used in the Toy
Gaussian experiment.

To obtain the figure at the bottom row of Figure 1 in the main chapter, we launched
all the MCMC algorithms with K = 500, 000 outer iterations and considered a burn-in
period of 450, 000 iterations. Hence, only the last 50, 000 samples have been used to
compute the MSE associated to the test function f : θ 7→

∥∥θ∥∥. In order to compute
the expected number of bits transmitted during each upload period, we considered
the Elias encoding scheme and used the upper-bounds given in Alistarh et al. (2017,
Theorem 3.2 and Lemma A.2).

• License of the assets: No existing asset has been used for this experiment.

• Total amount of compute and type of resources used: This experiment has
been run on a laptop running Windows 10 and equipped with Intel(R) Core(TM)
i7_8565U CPU 1.80GHz with 16Go of RAM. The total amount of compute is
roughly 33 hours.

• Training details: All training details (here hyperparameters) are detailed in
Section 4.4 in the main chapter.

discretization step-size and compression tradeoff. We complement the analysis
made in the main chapter by showing on Figure 4.4 that the saving in terms of number
of transmitted bits can be further improved by decreasing the value of γ. This numer-
ical finding illustrates our theory which in particular shows that the asymptotic bias
associated to QLSD? is of the order ωO(γ), see Table 4.1 in the main chapter.

4.E.2 Bayesian logistic regression

Pseudo-code of LSD++. For completeness, we provide in Algorithm 4.9 the pseudo-
code of the non-compressed counterpart of QLSD++, namely LSD++.
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Figure 4.4 – Toy Gaussian example. tradeoff between step-size and compression para-
meter values.
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Figure 4.5 – Bayesian logistic regression on synthetic data.

Additional experimental details. For the Bayesian logistic regression experiment
detailed in the main chapter, we ran the MCMC algorithms with K = 500, 000 outer
iterations and considered a burn-in period of length 50, 000.

Benefits of the memory mechanism. We also run an additional experiment on
a low-dimensional synthetic dataset to highlight the benefits brought by the memory
mechanism involved in QLSD++ when the dataset is highly heterogeneous. To this end,
we consider the Synthetic(α, β) dataset (Li et al., 2020b) with α = β = 1, d = 2 and
n = 50. We run QLSD++ with and without memory terms using l = 100, α = 1/(ω+ 1),
γ = 10−5 and for huge compression parameters, namely s ∈ {21, 22}. We use K =
100, 000 outer iterations without considering a burn-in period. In order to have access
to some ground truth, we also implement the Metropolis-adjusted Langevin algorithm
(MALA) (Robert and Casella, 2004).

Figure 4.5 shows the Euclidean norm of the error between the true variance under π
estimated with MALA and the empirical variance computed using samples generated by
QLSD++. As expected, we can notice that the memory mechanism reduces the impact
of the compression on the asymptotic bias of QLSD++ when ω is large.
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Algorithm 4.9 Variance-reduced Langevin Stochastic Dynamics (LSD++)

Input: minibatch sizes {bi}i∈[n], number of iterations K, step-size γ ∈ (0, γ̄] with
γ̄ > 0, initial point θ0 and α ∈ (0, ᾱ] with ᾱ > 0.
// Memory mechanism initialization
Initialize {η(1)

0 , . . . , η
(n)
0 } and η0 =

∑n
i=1 η

(i)
0 .

for k = 0 to K − 1 do
// Update of the control variates
if k ≡ 0 (mod l) then

Set ζk = θk.
else

Set ζk = ζk−1

for i ∈ Ak+1 // On active clients do
Draw S(i)

k+1 ∼ Uniform
(
℘Ni,bi

)
.

Set H(i)
k+1(θk) = (Ni/bi)

∑
j∈S(i)

k+1

[∇Ui,j(θk)−∇Ui,j(ζk)] +∇Ui(ζk).

Compute gi,k+1 = H
(i)
k+1(θk)− η(i)

k .
Send gi,k+1 to the central server.
Set η(i)

k+1 = η
(i)
k + αgi,k+1.

// On the central server
Compute gk+1 = ηk + n

|Ak+1|
∑

i∈Ak+1
gi,k+1.

Set ηk+1 = ηk + α
∑n

i∈Ak+1
gi,k+1.

Draw Zk+1 ∼ N(0d, Id).
Compute θk+1 = θk − γgk+1 +

√
2γZk+1.

Send θk+1 to the n clients.
Output: samples {θk}Kk=0.

Table 4.5 – Bayesian Logistic Regression on covtype dataset.

Algorithm 99% HPD error

DG-SGLD 1.8e-2
QLSD++ 4 bits 2.2e-3
QLSD++ 8 bits 2.0e-2
QLSD++ 16 bits 1.9e-2

Results on a non-image dataset. In order to complement our results on an image
dataset (FEMNIST), we also implement our methodology and one competitor (DG-SGLD)
on the covtype1 dataset. Again, the ground truth has been obtained by implementing a
long-run Metropolis-adjusted Langevin algorithm. The results we obtained are gathered
in Table 4.5.

• License of the assets: We use the Synthetic dataset whose associated code
is under the MIT license, and the FEMNIST dataset whose data are publicy
available and associated code is under MIT license.

1https://archive.ics.uci.edu/ml/datasets/covertype
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• Total amount of compute and type of resources used: This experiment has
been run on a laptop running Windows 10 and equipped with Intel(R) Core(TM)
i7_8565U CPU 1.80GHz with 16Go of RAM. The total amount of compute is
roughly 30 hours.

• Training details: Hyperparameter values are detailed in Section 4.4 in the main
chapter. Regarding our experiment on real data, we use a random subset of the
initial training data (for computational reasons).

4.E.3 Bayesian neural networks

• License of the assets: We use the MNIST, FMNIST, CIFAR10 and SVHN
datasets which are publicly downloadable with the torchvision.datasets package.

• Total amount of compute and type of resources used: The total compu-
tational cost depends on the dataset, but is roughly 40 hours in the worst case.

• Training details: We consider the same hyperparameter values detailed in
Table 4.6 for both training on MNIST and CIFAR10 except for the initializa-
tion and the sampling period. For the MNIST dataset, we use the default random
weights given by pytorch whereas for CIFAR-10 we use the warm-start provided
by the pytorchcv library and consider a burn-in period of half the sampling period
(K = 104 iterations) with a thinning of 10.

In the following, we denote Dtest the test dataset and for any data (x, y) ∈ Dtest, we
define the preditive density by

p(y | x) =

∫
p(y | x, θ) π(θ | D) dθ, (4.73)

where p(y | x, θ) is the conditional likelihood. For any input x, the predicted label is
denoted by ypred(x) = arg maxy p(y | x).

Metrics used for the Bayesian neural network experiment in the main chapter.
In the main chapter, we consider three metrics to compare the different Bayesian FL
algorithms, namely Accuracy, Agreement and TV. They are defined in the following.

• Accuracy: Based on samples from the approximate posterior distribution, we
compute the minimum mean-square estimator (i.e. corresponding to the posterior
mean) and use it to make predictions on the test dataset. The Accuracy metric
corresponds to the percentage of well-predicted labels.

• Agreement: Let denote pref and p the predictive densities associated to HMC
and an approximate simulation-based algorithm, respectively. Similar to Izmailov
et al. (2021), we define the agreement between pref and p as the fraction of the
test datapoints for which the top-1 predictions of pref and p, i.e.

agreement(pref , p) =
1

|Dtest|
∑

x∈Dtest

1

arg max
y′

pref(y
′ | x) = arg max

y′
p(y′ | x)

 .
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• Total variation (TV): By denoting Y the set of possible labels, we consider the
total variation metric between pref and p, i.e.

TV(pref , p) =
1

2|Dtest|
∑

x∈Dtest

∑
y′∈Y

∣∣∣pref(y
′ | x)− p(y′ | x)

∣∣∣ .
Performance results on a highly heterogeneous dataset. We train LeNet5
(LeCun et al., 1998) architecture on the MNIST dataset (Deng, 2012), and we con-
sider the FMNIST (Xiao et al., 2017) as the out-of-distribution dataset. To obtain a
highly heterogeneous setting, we split the data among n = 20 clients so that each client
has a dominant label representing 40% of the total amount in the training set and 1%
of the other labels as described in Figure 4.6.
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Figure 4.6 – Number of labels owned by different clients.

Inspired by the scores defined in Guo et al. (2017), we measure the performance of the
different algorithms and report those results in Table 4.6. These statistics aim to better
understand the predictions in order to calibrate the models (Rahaman and Thiery,
2021).

Method SGLD pSGLD QLSD QLSD PP QLSD++ QLSD++ PP FedBe-Gauss. FedBe-Dirich. FSGLD

Accuracy 99.1 99.2 98.8 98.3 98.8 98.7 43.5 79.3 98.5
102× ECE 0.577 1.25 0.916 1.57 0.692 0.930 7.51 21.3 2.65
102× BS 1.38 1.39 1.98 2.23 1.91 2.18 66.6 36.1 2.64

102× nNLL 2.86 3.16 4.15 4.82 4.11 4.65 139 78.0 6.19
Weight Decay 5 5 5 5 5 5 0 0 5

Batch Size 64 64 64 64 64 64 64 64 64
Learning rate 1e-07 1e-08 1e-07 1e-07 1e-07 1e-07 1e-02 1e-02 1e-07
Local steps N/A N/A 1 1 1 1 250 250 16

Burn-in 100epch. 100epch. 1e04 1e04 1e04 1e04 N/A N/A 1e04
Thinning 1 1 500 500 500 500 N/A N/A 500
Training 1e03epch. 1e03epch. 1e05it. 1e05it. 1e05it. 1e05it. N/A N/A 1e05it.

Table 4.6 – Performance of Bayesian FL algorithms trained on the highly-heterogeneous
dataset.

Expected Calibration Error (ECE). To measure the difference between the ac-
curacy and confidence of the predictions, we group the data intoM ≥ 1 buckets defined
for any m ∈ [M ] by Bm = {(x, y) ∈ Dtest : p(ypred(x)|x) ∈

]
(m− 1)/M,m/M

]
}. As in
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the previous work of Ovadia et al. (2019), we denote the model accuracy on Bm by

acc
(
Bm

)
=

1∣∣Bm

∣∣ ∑
(x,y)∈Bm

1ypred(x)=y

and define the confidence on Bm by

conf
(
Bm

)
=

1∣∣Bm

∣∣ ∑
(x,y)∈Bm

p(ypred(x)|x).

As stressed in Guo et al. (2017), for any m ∈ [M ] the accuracy acc(Bm) is an unbiased
and consistent estimator of P

(
ypred(x) = y | (m− 1)/M < p(ypred(x)|x) ≤ m/M

)
. There-

fore, the ECE defined by

ECE =
M∑
m=1

∣∣Bm

∣∣∣∣Dtest

∣∣ ∣∣∣acc
(
Bm

)
− conf

(
Bm

)∣∣∣
is an estimator of

E(x,y)

[∣∣∣P(ypred(x) = y | p(ypred(x)|x)
)
− p(ypred(x)|x)

∣∣∣].
Thus, ECE measures the absolute difference between the confidence level of a prediction
and its accuracy.

Brier Score (BS). The BS is a proper scoring rule (see for example Dawid and
Musio (2014)) that can only evaluate random variables taking a finite number of values.
Denote by Y the finite set of possible labels, the BS measures the model’s confidence
in its predictions and is defined by

BS =
1

|Dtest|
∑

(x,y)∈Dtest

∑
c∈Y

(p(y = c|x)− 1y=c)
2.

Normalized negative log-likelihood (nNLL). This classical score defined by

nNLL = − 1

|Dtest|
∑

(x,y)∈Dtest

log p(y|x)

measures the model ability to predict good labels with high probability.

Out of distribution detection. Here we study the behavior of our proposed al-
gorithms in the out-of-distribution (OOD) framework, we consider the pairs MNIST/FMNIST
and CIFAR10/SVHN, comparing the densities of the predictive entropies on the ID vs
OOD data. These densities denoted by pin and pout respectively, are approximated us-
ing a kernel estimator based on of the histogram associated with {Ent(x) : x ∈ Dxtest}
for Dtest ∈ {MNIST,FMNIST} or {CIFAR10, SVHN}, where Ent(x) is the predictive
entropy defined by:

Ent(x) =
∑
y∈Y

p(y|x) log p(y|x),
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Figure 4.7 – Predictive entropies comparison between MNIST and FMNIST.

and p(y|x) is defined by (4.73) and estimated by the different methods that we consider.
The resulting densities from the different methods that we consider are displayed in
Figure 4.7.

A new data point x is then labeled in the original dataset (MNIST or CIFAR10) if
pin(Ent(x)) > pout(Ent(x)) and out-of-distribution otherwise.

Calibration results. Interpreting the predicted outputs as probabilities is only cor-
rect for well a calibrated model. Indeed, when a model is calibrated, the confidence is
closed to the accuracy of the predictions. In order to evaluate the calibration of the
models, we display the reliability diagram on the left-hand side of Figure 4.8. It repres-
ents the evolution of acc(Bm)− conf(Bm) in function of conf(Bm), closer the values are
to zero better the model is calibrated.

For the second sub-experiment, we consider for any τ ∈ [0, 1], the set D(τ)
pred = {x ∈

Dxtest : p(y|x) ≥ τ} of classified data with credibility greater than τ . We define the test
accuracy on D(τ)

pred by

Card
(
{x ∈ D(τ)

pred : ytrue(x) = ypred(x)}
)

Card(D(τ)
pred)

.

The right-hand side of Figure 4.8 shows the evolution of the test accuracy on D(τ)
pred with

respect to the credibility threshold τ . It can be noted that in both plots of Figure 4.8,
the accuracy tends to 100% for confident predictions.
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Figure 4.8 – Left: Calibration test from reliability diagrams – Right: Test accuracy on
D(τ)

pred with respect to the threshold τ .
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Federated Learning (FL) is a machine learning framework where many clients collab-
oratively train models while keeping the training data decentralized. Despite recent
advances in FL, the uncertainty quantification topic (UQ) remains partially addressed.
Among UQ methods, conformal prediction (CP) approaches provides distribution-free
guarantees under minimal assumptions. We develop a new federated conformal pre-
diction method based on quantile regression and take into account privacy constraints.
This method takes advantage of importance weighting to effectively address the label
shift between agents and provides theoretical guarantees for both valid coverage of the
prediction sets and differential privacy. Extensive experimental studies demonstrate
that this method outperforms current competitors.

5.1 Introduction

Federated learning is an increasingly important framework for large-scale learning.
FL allows many agents to train a model together under the coordination of a central
server without ever transmitting the agents’ data over the network, in an attempt to
preserve privacy. There has been a considerable amount of FL work over the past 5
years, see e.g. Bonawitz et al. (2019); Yang et al. (2019); Kairouz et al. (2021); Li et al.
(2020a). Compared to classical machine learning techniques, FL has two unique fea-
tures. First, the networked agents are massively distributed, communication bandwidth
is limited, and agents are not always available (system heterogeneity). Second, the data
distribution at different agents can vary greatly (statistical heterogeneity); see Huang
et al. (2022); Yoon et al. (2022). These features lead to serious challenges for both
training and inference in federated systems. The focus of this work is on federated
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inference procedures that allow to build prediction sets for each agent with a confidence
level that can be guaranteed.

Conformal Prediction, originally introduced in Vovk et al. (1999); Shafer and Vovk
(2008); Balasubramanian et al. (2014), has recently gained popularity. It generates
prediction sets with guaranteed error rates. Conformal algorithms are shown to be
always valid: the actual confidence level is the nominal one, without requiring any
specific assumption about the distribution of the data beyond exchangeability; see Lei
et al. (2013); Fontana et al. (2023) and references therein. With few exceptions, CP
methods were developed for centralized environments.

We consider below a supervised learning problem with features x taking values in X
and labels y taking values in Y. Let (Xk, Yk)

Ntrain+N
k=1 be an independent and identically

distributed (i.i.d.) dataset. We divide the data into a training and a calibration dataset.
Formally, let {Ktrain,Kcal} be a partition of {1, . . . , Ntrain + N}, and let N = |Kcal |.
Without loss of generality, we takeKcal = {1, . . . , N}. We learn a predictor f̂ : X → ∆|Y|
on the training set Ktrain, where |Y| is the number of classes and ∆|Y| is the |Y|-
dimensional probability simplex. For any covariate x ∈ X associated with a label
y ∈ Y, consider a classification score function S : Y×∆|Y| → [0, 1], independent of other
covariates and labels, which yields a non-conformity score given by V (x, y) = S(y, f̂(x)).
This non-conformity measure estimates how unusual an example looks. Based on these
non-conformity scores, standard CP procedure constructs, for each significance level
α ∈ [0, 1], a (measurable) set-valued predictor Cα(x) using {(Xk, Yk)}Nk=1 that satisfies
the following conditions

P
(
YN+1 ∈ Cα(XN+1)

)
≥ 1− α, (5.1)

where (XN+1, YN+1) is a test point that is independent of Ktrain and Kcal. The quantity
1 − α is called the confidence level. The guarantee (5.1) is set up in a centralized
environment – all data are available at a central node and usually assuming that the
distributions of calibration and test data satisfy P cal = P ?. If there is a mismatch
between the distributions P cal and P ?, then corrections should be made to ensure
an appropriate confidence level; see Tibshirani et al. (2019); Podkopaev and Ramdas
(2021a); Barber et al. (2022) and references therein.

Setup. In this work, we consider a federated learning system with n agents. We
assume that, instead of storing the entire dataset on a centralized node, each agent
i ∈ [n] owns a local calibration set Di = {(Xi

k, Y
i
k )}N i

k=1, where N
i is the number of

calibration samples for the agent i. We further assume that the calibration data are
i.i.d. and that the statistical heterogeneity is due to label shifts:

(Xi
k, Y

i
k ) ∼ P i = PX|Y × P iY ,

where PX|Y , the conditional distribution of the feature given the label, is assumed
identical among agents but P iY , the prior label distribution, may differ across agents. In
federated learning, statistical heterogeneity is the rule rather than the exception, and
it is essential to take into account the presence of label shift at the agent level. We
assume that a predictive model f̂ has been learned by federated learning. The results
we present are agnostic to the learning procedure.

For an agent ? ∈ [n], and each α ∈ (0, 1), we are willing to compute a set-valued
predictor, Cα with confidence level 1− α, which depends on the calibration data of all
the agents. The goal is to construct informative conformal prediction sets for each agent,
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even when its calibration set is limited in size, by using the calibration data of all the
agents participating in the FL; we stress that the calibration data must always remain
local to the networked agents. Most importantly, the resulting algorithm should attain
both conformal and theoretical privacy guarantees – matched to the privacy guarantees
that can be obtained in the FL training procedure.

Our main contributions to solving this challenging problem can be summarized as
follows.

• We introduce a new method, DP-FedCP, to construct conformal prediction sets in a
federated learning context that addresses label shift between agents; see Section 5.2.
DP-FedCP is a federated learning algorithm based on federated computation of weighted
quantiles of agent’s non-conformity scores, where the weights reflect the label shift of
each client with respect to the population. The quantiles are obtained by regulariz-
ing the pinball loss using Moreau-Yosida inf-convolution and a version of federated
averaging procedure; see Section 5.3.
• We establish conformal prediction guarantees, ensuring the validity of the resulting

prediction sets. Additionally, we provide differential private guarantees for DP-FedCP;
see Section 5.4.
• We show that DP-FedCP provides valid confidence sets and outperforms standard

approaches in a series of experiments on simulated data and image classification
datasets; see Section 5.5.

Related Works. The construction of predictions sets with confidence guarantees has
been the subject of much work, mostly in a centralized framework. The conformal
framework, introduced in the pioneering works of Vovk et al. (1999) is appealing in
its simplicity/flexibility; see e.g. (Angelopoulos et al., 2021; Fontana et al., 2023) and
the references therein. For exchangeable data, this framework provides a model-free
methodology for constructing prediction sets that satisfy the desired coverage (Shafer
and Vovk, 2008; Papadopoulos et al., 2002; Fannjiang et al., 2022; Angelopoulos et al.,
2022b).

These results can also be extended to non-exchangeable data. A method has been
developed for dealing with covariate shift (Tibshirani et al., 2019). This method is
based on evaluating the discrepancy between the distribution of the calibration data set
P cal and the test point distributed according to P ?. Using an estimate of the Radon-
Nikodym derivative dP ?/dP cal, a valid prediction set can be obtained by weighting
the non-conformity scores. The seminal work of (Tibshirani et al., 2019) led to several
improvements, either to form valid prediction sets as long as the f -divergence of the
discrepancy remains small (Cauchois et al., 2020), or to formulate hypothesis tests under
covariate shifts (Hu and Lei, 2020). In addition, Gibbs and Candes (2021) examine the
shift in an online environment; and Lei and Candès (2021) show the validity of the
prediction sets even when the distributional shift is only approximated. Since many
real-world data sets do not satisfy exchangeability, valid prediction sets are developed
in (Barber et al., 2022) that put more mass around the point of interest.

Conformal methods adapted to label shift are considered in (Podkopaev and Ramdas,
2021a,b) and have similar guarantees to those in (Tibshirani et al., 2019, Corollary 1).
Methods for detecting and quantifying label shift have been proposed in (Lipton et al.,
2018; Garg et al., 2020).
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Differentially private quantiles can be derived based either on the exponential or Gaus-
sian mechanisms (Gillenwater et al., 2021; Pillutla et al., 2022). Using the exponential
mechanism, valid prediction sets are generated in (Angelopoulos et al., 2022a). How-
ever, quantile computation in a federated learning environment remains a challenge. A
first federated approach based on quantile averaging was proposed in (Lu and Kalpathy-
Cramer, 2021). However, this work does not provide theoretical guarantees, and the
proposed method is vulnerable to distribution shifts. For federated deep learning, the
differentially private versions are based on various techniques combination like gradient
clipping and the addition of random noise Triastcyn and Faltings (2019); Wei et al.
(2020).

Notation. Denote by [n] the set {1, . . . , n} and consider a finite number of labels,
i.e., |Y| <∞. Each agent i ∈ [n] has N i

y calibration samples of label y ∈ Y, and denote
Ny =

∑n
i=1N

i
y their total number over all the calibration examples. Recall that N i the

total number of calibration samples on agent i, i.e., N i =
∑

y∈Y N
i
y. Define the total

number of calibration data points N :=
∑n

i=1

∑
y∈Y N

i
y. For a cumulative distribution

function F and β ∈ [0, 1], define by Qβ(F ) := inf{z : F (z) ≥ β} the β-quantile. Finally,
for v ∈ R denote by δv the point-mass distribution.

5.2 Conformal Prediction for Federated Systems under
Label Shift

Non-exchangeable data. In this section, we explain how to take advantage of
calibration data to obtain a valid (1 − α)-prediction set. Consider the calibration
dataset {(Xi

k, Y
i
k ) : k ∈ [N i]}i∈[n] with data distributed according to {P i}i∈[n]. For

{πi}i∈[n] ∈ ∆n we define the mixture distribution of labels given for y ∈ Y by

P cal
Y (y) =

∑n
i=1 πiP

i
Y (y).

Our goal is to determine a set of likely outputs for a new data point (X?
N?+1, Y

?
N?+1)

drawn on agent ? ∈ C from the distribution P ?. The conformal approach relies on non-
conformity scores V i

k = V (Xi
k, Y

i
k ) ∈ [0, 1], i ∈ [n], k ∈ [N i] to determine the prediction

set – see (Shafer and Vovk, 2008). These non-conformity scores are uniformly weighted
to generate the conventional prediction set

Cα,µ̄(x) =
{

y ∈ Y : V (x,y) ≤ Q1−α
(
µ̄
)}
,

µ̄ = (N + 1)−1(
∑n

i=1

∑N i

k=1 δV ik
+ δ1).

(5.2)

However, this method can lead to significant under-coverage in the presence of label
shift (Podkopaev and Ramdas, 2021a). In fact, since the data {(Xi

k, Y
i
k ) : k ∈ N i}i∈[n]

are often not exchangeable, it is required to correct the quantile to account for label
shift to obtain valid prediction sets (Tibshirani et al., 2019). As proposed by Podkopaev
and Ramdas (2021a), we begin by assuming that, for all i ∈ [n] and y ∈ Y, we have
access to the likelihood ratios:

wiy = P iY (y)/P cal
Y (y). (5.3)
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Denote by I = {(i, k) : i ∈ [n], k ∈ [N i]}∪{(?,N? + 1)}. Using the weights {W i
k : (i, k) ∈

I} provided in (5.44), the non-exchangeability correction of Tibshirani et al. (2019) is
given for any y ∈ Y by

p?Y ik ,y
=

W i
k

W ?
N?+1 +

∑n
j=1

∑Nj

l=1W
j
l

, (5.4)

µ?y = p?y,yδ1 +
n∑
i=1

N i∑
k=1

p?Y ik ,y
δV ik

.

For any covariate x ∈ X , define the (1− α)-prediction set with oracle weights

Cα,µ?(x) =
{

y ∈ Y : V (x,y) ≤ Q1−α(µ?y)
}
.

In contrast to the exchangeable setting, the quantile is calculated based on a weighted
empirical distribution depending on y. The validity of the prediction set is based on the
concept of weighted exchangeability, which was introduced in (Tibshirani et al., 2019,
Definition 1); see also (Podkopaev and Ramdas, 2021a, Theorem 2). In the following,
we will suppose that the next assumption holds.

Assumption 5.1. The calibration data points {(Xi
k, Y

i
k ) : (i, k) ∈ I} are pairwise inde-

pendent, and there are no ties between {V i
k : (i, k) ∈ I} almost surely.

Theorem 5.2. If Assumption 5.1 holds, then for any α ∈ [0, 1), we have

1− α ≤ P
(
Y ?
N?+1 ∈ Cα,µ?(X?

N?+1)
)
≤ 1− α+ E

[
max

(i,k)∈I

{
p?Y ik ,Y

?
N?+1

}]
, (5.5)

where p?
Y ik ,Y

?
N?+1

is defined in (5.4).

This theorem is directly adapted from (Tibshirani et al., 2019, Corollary 1). For com-
pleteness, a formal proof is postponed to Section 5.C.1. It is important to note that
the lower bound in (5.5) holds even in the presence of ties between non-conformity
scores. Although Theorem 5.2 guarantees the validity of Cα,µ?(X?

N?+1), this prediction
set requires the challenging computation of the weights p?y,y. Indeed, the calculation of
Wy,y requires the summation over N ! elements. The first key contribution of our work
is given in Theorem 5.3, where we show that alternative weights, which are easier to
compute, can lead to valid prediction sets. Specifically, the new weights p̄?y,y are com-
puted on a smaller number of data points N̄ ≤ N , which are randomly selected based
on a multinomial random variable with parameter (N̄ , {πi}i∈[n]). Actually, we denote
by N̄ i the multinomial count associated with agent i. We take N̄ i∧N i calibration data
from agent i and denote V i

k = V (Xi
k, Y

i
k ). For any label y ∈ Y, the weight p̄?y,y is given

by:

p̄?y,y =
w?y

w?y +
∑n

i=1

∑N i∧N̄ i

k=1 w?
Y ik

. (5.6)

In addition, consider the following prediction set

µ̄?y = p̄?y,yδ1 +
∑n

i=1

∑N i∧N̄ i

k=1 p̄?
Y ik ,y

δV ik
,

Cα,µ̄?(x) =
{

y ∈ Y : V (x,y) ≤ Q1−α(µ̄?y)
}
.

(5.7)

Denote by ‖w?‖∞ = maxy∈Y{w?y}. Using the new prediction set Cα,µ̄? , we obtain the
following result.
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Theorem 5.3. Assume Assumption 5.1. Set N̄ = bN/2c and πi = N i/N , for any
i ∈ [n]. Then,∣∣∣∣P(Y ?

N?+1 ∈ Cα,µ̄?(X?
N?+1)

)
− 1 + α

∣∣∣∣ ≤ 6

N

+
36 + 6 logN

N
‖w?‖2∞ +

14 logN

N

∑
i : N

i

12
<logN

√
N i.

The preceding theorem shows that Cα,µ̄?(X?
N?+1) contains the true label Y ?

N?+1 with
probability close to 1 − α. If n = 1 and N ≥ 46, the set {i ∈ [n] : N i < 12 logN}
is empty. In this case, the convergence rate reduces to N−1 logN . More precisely, if
each agent has the same number of calibration data, the convergence rate N−1 logN
is ensured when N ≥ 12n logN . This is for example the case when N i = 200 and
n ≤ 86538. On the other hand, if n = N , each agent has only one data point, and in
this case the bound becomes N−1n(logN)3/2.

Approximate Weights. Ideally, we would like to use the weights defined in equa-
tion (5.6) to compute valid prediction sets. However, these weights depend on the
probability distribution of the labels for each agent, which in many scenarios must be
estimated (and therefore known up to an error). Based on empirical estimation of these
label probability distributions {P̂ iY }i∈[n], for each label y, define the likelihood ratio as
follows:

ŵ?y =
P̂ ?Y (y)∑n

i=1 πiP̂
i
Y (y)

, (5.8)

and denote by p̂?y,y the weight defined in (5.6) with w?y replaced by ŵ?y. We also consider
µ̂y defined as in (5.7) with p̄?y,y replaced by p̂?y,y. The prediction set becomes

Cα,µ̂(x) =

{
y ∈ Y : V (x,y) ≤ Q1−α

(
µ̂y

)}
. (5.9)

Since computing the exact weights p̄?y,y in (5.6) may not be feasible, we consider the
approximation p̂?y,y given in (5.8). We also construct a random variable (X̂?

N?+1, Ŷ
?
N?+1)

as in (Lei and Candès, 2021) such that P(Ŷ ?
N?+1 = y) = [

∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)]−1ŵ?yP

cal
Y (y),

where ŵ?y is defined in (5.8); and X̂?
N?+1|Ŷ ?

N?+1 is drawn according to PX|Y . The valid-
ity of the resulting prediction set is established in Lemma 5.4. Note that this approach
makes the weights’ computation feasible, at the cost of introducing one additional ap-
proximation.

Lemma 5.4. For any α ∈ (0, 1), we have∣∣∣P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1))− P(Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1))
∣∣∣

≤ 1

2

∑
y∈Y

∣∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ := R, (5.10)

where ŵ?y, Cα,µ̂ are defined in (5.8) and (5.9), respectively.

When ŵ?y is sufficiently close to w?y, Lemma 5.4 shows that the approximate weights
generate accurate prediction sets (as discussed in Section 5.C.1). The error disappears
entirely when ŵ?y = w?y for all y ∈ Y. Furthermore, using (Tibshirani et al., 2019,



CHAPTER 5. FEDERATED CONFORMAL PREDICTION UNDER LABEL
SHIFT 228

Corollary 1), we can establish that Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1) with probability nearly 1−α.
Finally, similar ideas that developed for Theorem 5.3 on Y ?

N?+1, in conjunction with
Lemma 5.4, give a more accurate bound on the coverage validity.

Theorem 5.5. Assume Assumption 5.1. For any i ∈ [n], set πi = N i/N and take
N̄ = bN/2c. Then,∣∣∣∣P(Y ?

N?+1 ∈ Cα,µ̂(X?
N?+1)

)
− 1 + α

∣∣∣∣ ≤ 36‖ŵ?‖2∞
N(Eŵ?

Y cal)2

+ R +
6

N
+

2 logN

N

(
3‖ŵ?‖2∞

(Eŵ?
Y cal)2

∨ 7
∑

i : N
i

12
<logN

√
N i

)
,

where ŵ?
Y ik
, R are defined in (5.8)-(5.10) and Y cal ∼ P cal

Y .

This theorem provides a lower bound on the probability of coverage that is independent
of the data distribution. A formal proof can be found in Section 5.C.5. This result
demonstrates that it is essential to include all agents with the most data. However, it
also highlights a counterproductive effect when incorporating agents with few data.

Maximum Likelihood Estimation Weights. Denote by Mi
y the number of train-

ing data on agent i associated to label y. Consider the total number of local data
M? =

∑
y∈Y M

i
y, the number of training data with label y written by My =

∑n
i=1 M

i
y,

and the total number of samples on all agents by M =
∑

y∈Y My. When each agent
independently learns its approximate label distribution based on counting the number
of label in its training datasets, the empirical counterpart of (5.8) is given for any labels
(y,y) ∈ Y2 by

ŵ?y =
MM?

y

M?My
1My≥1. (5.11)

All the results in this article are given conditionally to the training dataset, meaning
that they hold regardless of the specific training data. In order to determine the order of
magnitude of the bound of Theorem 5.5, we analyze the average value of R. Given the
number of training samples {Mi}i∈[n], if we assume that each training point (Xi

k, Y
i
k ) is

distributed according to P i, then taking the expectation over the training set yields:

E
[
R
]
≤ 6√

M?
+ 12

√
log |Y|+ logM?

Mminy∈Y P cal
Y (y)

. (5.12)

The proof is given in Section 5.C.3. Interestingly, if the previous upper bound is plugged
in Theorem 5.5 instead of Lemma 5.4, then the leading error of order O(M?−1/2 ∨
N−1 logN) is due to the weights’ estimates {p̂?y,y}y∈Y . This bound shows that we
should not attempt to estimate the likelihood ratios for a single agent, especially when
the square root number of local training data on agent ? is small compared to the number
of calibration data. Rather, we need to do this for a group of agents that have approx-
imately the same distribution, which will give us more stable estimators. The agent can
benefit from learning simultaneous tasks by exploiting common structures (Caruana,
1998).
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5.3 Privacy Preserving Federated CP

In the previous section, we constructed prediction sets that were valid in theory. How-
ever, their practical implementation in a federated environment posed challenges due
to the reliance on estimations that are difficult to evaluate. In particular, estimating
Q1−α

(
µ̂y

)
in order to derive the prediction set Cα,µ̂(x), defined in (5.9), is challenging

because it requires knowledge of the global distribution µ̂y. This section is divided into
two parts: (1) a new method is developed, called DP-FedCP, for estimating quantiles un-
der the federated constraints; (2) then, a method for computing probabilities {p̂?y,y}y,y∈Y
with differential privacy (DP) guarantees is presented.

Quantile Regression and Moreau-Yosida Regularization. Let α ∈ (0, 1), we
now propose to estimate the weighted (1− α)-quantile of µ̂y defined in (5.16). To this
end, we develop a federated optimization algorithm based on “pinball loss” minimization,
a quantile regression techniques with asymmetric penalties (Koenker and Hallock, 2001).
For v ∈ R and q ∈ R define the pinball loss as

Sα,v(q) = (1− α)(v − q)1v≥q + α(q − v)1q>v.

For any y ∈ Y, the (1− α)-quantile of µ̂y is given by

Q1−α

(
µ̂y

)
∈ arg min

q∈R

{
EV∼µ̂y

[
Sα,V (q)

]}
; (5.13)

e.g. see (Buhai, 2005). The pinball loss Sα,v is lower semi-continuous but not differ-
entiable on R. Hence, we consider the Moreau-Yosida inf-convolution (or envelope)
Sγα,v instead of Sα,v – where γ is the regularization parameter; see e.g. (Moreau, 1963)
and (Parikh et al., 2014, Chapter 3), whose expression is given by

Sγα,v(q) = min
q̃∈R

{
Sα,v(q̃) +

1

2γ
(q̃ − q)2

}
. (5.14)

The function Sγα,v(·) has an explicit expression given in (5.20). Note that the minima of
Sα,v and Sγα,v coincide. We obtain the weighted quantile by considering Sγα,v instead of
Sα,v. An important property is that the inf-convolution of a proper lower semicontinuous
convex function is a differentiable function whose derivative is Lipschitz; see (Rockafellar
and Wets, 2009, Theorem 2.26). The original optimization problem given in (5.13) is
replaced by a convex/smooth loss:

Qγ1−α

(
µ̂y

)
∈ arg min

R
{Sγα(q)}, (5.15)

where Sγα : R→ R+ is the function given by

Sγα : q 7→ EV∼µ̂y [Sγα,V (q)].

For almost every value of α ∈ (0, 1), there exists a unique minimizer of Sγα. This
minimizer Qγ1−α(µ̂y) of the regularized loss function deviates from the true quantile.
However, the error is controlled by the regularization parameter γ and is asymptotically
exact when γ → 0. More precisely (see Section 5.A.2 for a proof) it holds that:
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Algorithm 5.10 DP-FedAvgQE

Input: initial quantile q0, target significance level α, number of rounds T , learning
rate η, Moreau regularization parameter γ, local gradients {∇ Si,γα }i∈[n], local non-
conformity scores {V i

k}k∈[N i+1], mixture weights {λiy}i∈[n], standard deviation of
Gaussian mechanism noise σg, K number of local iteration.
for t = 0 to T − 1 do

St+1 ← random subset of [n] // Server side
for each agent i ∈ St+1 do // In parallel

Initialize quantile qit,0 ← qt
for k = 0 to K − 1 do

// Gradient with DP noise
git,k ← ∇Si,γα (qit,k) + zit,k, z

i
t,k ∼ N (0, σ2

g)
// Update local quantile
qit,k+1 ← qit,k − ηgit,k

(∆qit+1,∆q̄
i
t+1)← (qit,K − qit,0,

∑
k∈[K]

qit,k
K )

// On the central server
qt+1 ← qt + n

|St+1|
∑

i∈St+1
∆qit+1

q̄t+1 ← t
t+1 q̄t + n

|St+1|
∑

i∈St+1

λiy∆q̄it+1

t+1

Output: Q̂γ1−α,T (µ̂y)← q̄T .

Theorem 5.6. Let γ > 0 and α ∈ (0, 1). Assume that for all {y`}`∈[N+1] ∈ Y [N+1],
1 − α /∈ {Wk/WN+1}k∈[N+1], where Wk =

∑k
`=1 ŵ

?
y`
. Then, we have |Qγ1−α(µ̂y) −

Q1−α(µ̂y)| ≤ γ.

The condition on α assumed in Theorem 5.6 ensures the uniqueness of the minimizer
of Sγα.

Federated quantile computation. We now describe the Differentially Private Fed-
erated Average Quantile Estimation (DP-FedAvgQE) algorithm (see Algorithm 5.10), a
novel method to compute quantile in a federated learning setting, with DP guaran-
tees. We briefly described this method below. For each query y ∈ Y, we consider the
distributions µ̂y =

∑n
i=1 λ

i
yµ̂

i
y, where λiy and µ̂iy are given by

λiy = N i

N p̂?y,y +
∑N i∧N̄ i

k=1 p̂?
Y ik ,y

,

µ̂iy =
N ip̂?y,y
λiyN

δ1 +
∑N i∧N̄ i

k=1

p̂?
Y i
k
,y

λiy
δV ik

.

(5.16)

To simplify the notation, for any client i ∈ [n], we introduce the local loss function
Si,γα : q ∈ R 7→ EV∼µ̂iy [S

γ
α,V (q)]; see (5.22) for explicit expression.

At each iteration t ∈ [T ], the server subsamples the participating agents St+1 ⊆ [n]
independently of the past. Each selected agent i ∈ St+1 performs K local updates:
(1) they independently compute their local gradient; (2) a Gaussian noise is added as
in (5.17) to ensure the differential privacy. More precisely, for agent i ∈ St+1, at local
iteration k ∈ {0, . . . ,K − 1}, we define:

git,k = ∇ Si,γα (qit,k) + zit,k, (5.17)
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where {zit,k : (t, k) ∈ {0, . . . , T − 1} × [K]}i∈[n] are i.i.d. Gaussian random variables
with zero mean and variance σ2

g . For any agent i ∈ St+1, git,k is an unbiased estim-
ate of ∇ Si,γα (qit,k). (3) The participating agents update their local quantiles qit,k+1 ←
qit,k − ηgit,k, where η is a positive step-size; (4) then transmit (∆qit+1,∆q̄

i
t+1) = (qit,K −

qit,0,
∑

k∈[K] q
i
t,k/K) to the central server. The parameter ∆qit+1 is used to update the

common parameter qt, while ∆q̄it+1 is necessary to keep track of the average of the
sampled parameters denoted q̄t; see Nemirovski et al. (2009); Bubeck et al. (2015).
(5) Finally, the server performs an online average to update q̄t and computes the new
parameter following

qt+1 = qt + (n/|St+1|)
∑

i∈St+1
∆qit+1.

At the final stage, the central server output the quantile estimate is given by

Q̂γ1−α,T (µ̂y) =
∑T

t=1(n/|St|)
∑

i∈St λ
i
y∆q̄it/T. (5.18)

Algorithm 5.10 is a Federated Averaging procedure (McMahan et al., 2017) applied to
the Moreau envelope of the pinball loss. As we will see in Section 5.4, the addition of an
independent Gaussian noise on the parameter at each update round provides differential
privacy guarantees; see Theorem 5.13 for more details.

Remark 5.7. Privacy is also at risk when computing probabilities {p̂?y,y}y,y∈Y . To com-
pute the probabilities {p̂?y,y}y,y∈Y while preserving privacy, we need specific mechanisms
to transmit the number of training labels (Mi

y)y∈Y from each agent i to the server. For
this purpose, we use the method proposed in (Canonne et al., 2020). The idea is to
add a discrete noise to the counts {Mi

y : i ∈ [n]}y∈Y and then transmit these noisy prox-
ies. The resulting algorithm that combines the differentially-private count queries and
federated quantile computation is given in Algorithm 5.11.

Remark 5.8. Algorithm 5.11 is designed to build a confidence set for the single agent
?. By vectorizing all computations, the algorithm can be scaled to compute a confidence
set for each agent. This would result in an algorithm that remains linear in the number
of clients but would be more efficient than computing several independent runs. From a
practical perspective, complexity can be further improved by clustering clients into groups
based on their label distributions and performing conformal prediction on a group level.

Remark 5.9. The local loss functions Si,γα are expressed as the expectation of pinball
loss functions. Since the sensitivity of these pinball loss functions is 1, there is no
need to clip the gradient. It is sufficient adding Gaussian noise N (0, σ2

g) to guarantee
differential privacy. The value of σg is chosen to provide a suitable tradeoff between
privacy and utility, balancing the need for strong privacy protection with useful outputs.
For an explicit setting of σg, refer to Theorem 5.13.

5.4 Theoretical Guarantees

Convergence guarantee. We provide a convergence guarantee for DP-FedAvgQE. De-
tails of the proofs can be found in the supplementary chapter. We show the convergence
of {Q̂γ1−α,t(µ̂y)}t∈N to a minimizer which is unique under the assumptions discussed in
Section 5.A.2. We briefly sketch key steps from the theoretical derivations, since the
local loss functions {Si,γα }i∈[n] have different minimizers, this client drift/heterogeneity
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Algorithm 5.11 DP-FedCP

Input: calibration dataset {(Xi
k, Y

i
k ) : k ∈ [N i]}i∈[n], covariate x, communication

round number T , subsampling number N̄ , Gaussian noise parameters σg, σ̄ ≥ 0.
for each agent i ∈ [n] ∪ {?} do // In parallel

Set ∀y ∈ Y,Mi
y ← number train data with label y

Generate {ηiy}y∈Y i.i.d. according to NZ

(
0, σ̄2

)
Send ∀y ∈ Y, N̂ i

y ← max(1,Mi
y + ηiy)

Compute & Send {V (Xi
k, Y

i
k ) : k ∈ [N i]}i∈[n]

// On the central server
Aggregate N̂y ←

∑
i∈[n] N̂

i
y,∀y ∈ Y

Aggregate N̂ ←∑
y∈Y N̂y

for each query y ∈ Y do
Sample {N̄ i}i∈[n] ∼Multi(N̄ , {N i/N}i∈[n])
Compute p̂?y,y as in (5.6) with ŵ?y given in (5.11)
Compute Q̂γ1−α,T (µ̂y)←DP-FedAvgQE

Output: Ĉγα,µ̂(x)←
{

y : V (x,y) ≤ Q̂γ1−α,T (µ̂y)
}
.

may slow down the convergence (Li et al., 2019). This dissimilarity is evaluated by the
parameter ζ ≥ 0, which is given by

ζ = maxi∈[n] ‖∇ Si,γα −∇ Sγα‖1/2∞ .

The convergence analysis is performed for the estimate parameter Q̂γ1−α,T (µ̂y) given
in (5.18). We provide below the statements without subsampling, i.e. St = [n],
given in Section 5.B. Recall that Qγ1−α(µ̂y) is provided in (5.15) and denote ∆ =
Eq0‖q0 −Qγ1−α(µ̂y)‖2. The following results hold with fixed train/calibration datasets
(Dtrain,Dcal), and define their union by D = Dtrain ∪ Dcal.

Theorem 5.10. Let γ ∈ (0, 1], St = [n] and consider the step-size η ∈ (0, γ/10]. Then,
for t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

E
[
Sγα(Q̂γ1−α,T (µ̂y)) | D

]
− Sγα(Qγ1−α(µ̂y)) ≤ (ηKT )−1∆ + 14γ−1η2K(σ2

g +Kζ2).

The presence of heterogeneity among local datasets significantly influences convergence
dynamics, particularly when the number of targets K, is significantly larger than 1. In
such cases, the term K2ζ2 poses challenges by potentially hindering the effectiveness of
numerous local steps. Consider the step-size η? defined by

η? = min

 γ

10
,

(
γ∆

13K2T (σ2
g + ζ2K)

)1/3
 .

Setting η = η?, we obtain the following result.
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Corollary 5.11. Let γ ∈ (0, 1], St = [n] and consider the step-size η?. Then, for any
t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

ε
(γ)
optim = E

[
Sγα(Q̂γ1−α,T (µ̂y)) | D

]
− Sγα(Qγ1−α(µ̂y))

≤ 10∆

γKT
+

5
(
σ2
g + ζ2K

)1/3
∆2/3

(γKT 2)1/3
. (5.19)

As shown in Corollary 5.11, ε(γ)
optim increases inversely proportional to γ. The smaller

the regularization parameter γ, the smaller the step-size η must be, and the more
iterations are required to achieve the same accuracy. However, the error caused by the
Moreau envelope vanishes for γ ↓ 0+, i.e. Qγ1−α(µ̂y) approaches Q1−α(µ̂y). Thus, there
is a tradeoff between the accuracy of the quantile approximation Q̂γ1−α,T (µ̂y) and the
computational cost.

Conformal guarantees for DP-FedCP. We show that the confidence set Ĉγα,µ̂(X?
N?+1)

provided by DP-FedCP constitutes valid coverage of Y ?
N?+1. The theoretical derivations

and complete statements are given in Section 5.C. For all i ∈ [n], denote by P iV the
distribution of V (Xi, Y i) where (Xi, Yi) ∼ P i, and consider Y cal ∼ P cal

Y .

Theorem 5.12. Assume there exist m,M > 0 such that for any i ∈ [n], P iV admits a
density f iV with respect to the Lebesgue measure that satisfies m ≤ f iV ≤ M . For any
α ∈ [0, 1] \Q, it holds∣∣∣P(Y ?

N?+1 ∈ Ĉγα,µ̂(X?
N?+1))− P(Y ?

N?+1 ∈ Cα,µ̂(X?
N?+1))

∣∣∣
≤ 6M

√
log(N)

∑
y∈Y P

cal
Y (y)ŵ?y

mminy∈Y ŵ?y

(
E
[
ε
(γ)
optim|Dtrain

]
+ γ

)
+

2M logN

mN
+

4 Var(ŵ?
Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

+
m

2N logN
+

1

N2
,

where ε(γ)
optim is defined in (5.19).

This result illustrates an interesting tradeoff introduced by the regularization parameter
γ. As shown in Corollary 5.11, ε(γ)

optim increases inversely proportional to γ. Therefore,
setting γ ≈ T−1/2 ensures a convergence rate of order T−1/4 for the optimization pro-
cedure. In this case, the error term of order O(N−1 logN) is guaranteed by choosing the
number of iterations T ≈ N4. The condition α ∈ [0, 1] \Q is a strong but unnecessary
assumption. However, it provides a simple way to ensure that µ̂y has no jump at level
1−α. Interestingly, the same condition on α is used in (Podkopaev and Ramdas, 2021a,
Corollary 1), where the authors explain why this condition cannot be avoided to ensure
the consistency of the empirical quantile estimator.

Differential privacy guarantees. The (ε, δ)-differentially private nature of DP-FedAvgQE
relies on two components: the additional Gaussian noise, combined with the bounded
gradient which avoids extreme values/outliers. The parameter ε controls the level of
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privacy protection provided by a differentially private algorithm, by limiting the prob-
ability of inferring any information about an individual in a given dataset. However,
there is a small chance that the algorithm may leak some information, even though this
probability is kept under control by the parameter δ. Based on the Rényi differential
privacy (Mironov, 2017), joined to agent subsampling mechanism (Balle et al., 2018),
we establish the (ε, δ)-DP property following similar ideas to those of (Noble et al.,
2022, Theorem 4.1). Detailed proof and definitions are provided in Section 5.D.

Theorem 5.13. If there is a constant number S ∈ [n] of sampled agents, i.e., St = S,
for all t ∈ [T ]. Then, for all ε > 0 and δ ∈ (0, 1−(1+

√
ε)(1−S/n)T ), the Algorithm 5.10

is (ε, δ)-DP towards a third party when

σg ≥ 2

√√√√K maxi∈[n] λiy
ε

(
1 +

24S
√
T log(1/δ̄)

εn

)
,

where δ̄ =
n

S

1−
(

1− δ
1 +
√
ε

)1/T
 .

5.5 Numerical experiments

We conducted the experimental study of DP-FedCP using both synthetic toy examples
and real datasets. To perform a comprehensive evaluation, we compared our method
with relevant baselines, namely Unweighted Local and Unweighted Global (see Sec-
tion 5.E for details). The Unweighted Local method computes the quantile based on
the local validation data of the agent ? and derives the local unweighted prediction set
with (1− α) confidence level, given by

Cα,µ̄loc,?(x) =

{
y ∈ Y : V (x,y) ≤ Q1−α

(
µ̄loc,?

y

)}
,

where µ̄loc,?
y = 1

N?+1

∑N?

k=1 δV ?k + 1
N?+1δ1. This method is the adaptive classification

technique with split-conformal calibration applied to agent ?, as introduced in Romano
et al. (2020) and also described in Angelopoulos et al. (2021). On the other hand, the
Unweighted Globalmethod estimates the quantile based on aggregated non-conformity
scores from all the agents, without taking into account the shift between calibration and
target distributions. This method computes the (1 − α)-quantile in an analogous way
to the “classical” conformal method recalled in (5.2).

For our experiments, we apply split-conformal calibration on the entire dataset, which
requires all agents to report their non-conformity scores to a central server. We use
the same non-conformity score V (x, y) as considered in Romano et al. (2020); Angelo-
poulos et al. (2021). Given the covariate x, the predictor f̂ : X → ∆|Y| estimates the
probability of each class, and orders them from the most to the least likely label. The
non-conformity score is then computed as the sum of all the probabilities greater than
the true label y. Formally, the non-conformity scores are given by

ρ(Xi
k, Y

i
k ) =

∑
y∈Y f̂(Xi

k)[y]1f̂(Xi
k)[y] > f̂(Xi

k)[Y
i
k ],

V (Xi
k, Y

i
k ) = ρ(Xi

k, Y
i
k ) + U ik × f̂(Xi

k)[Y
i
k ],

where U ik ∈ [0, 1] is a uniform random variable.
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Figure 5.1 – Simulated data experiment with 2D data. Target confidence level (1−α) =
0.9.

Simulated Data Experiment. In the first experiment, we demonstrate that it is
necessary to consider label shifts between agents to obtain valid coverage of prediction
sets. We consider a simple classification problem with 3 labels. The conditional distri-
butions of the features given the class label are 3 two-dimensional Gaussian distributions
with means θ1 = [−1, 0],θ2 = [1, 0],θ3 = [1, 3] and with identity covariance matrices.
We consider n = 2 agents with the distribution of labels {P 1

Y (y)}y∈[3] = {0.8, 0.1, 0.1}
and {P 2

Y (y)}y∈[3] = {0.1, 0.1, 0.8}. We use the Bayes classifier and consider calibration
data with (N1, N2) = (1000, 50). The inference is performed for agent 2.

We run independently 1000 experiments with different splits and record the obtained
empirical coverage each time. Figure 5.1a shows the distribution of non-conformity
scores for the different labels, and Figure 5.1b shows the empirical coverage of (1− α)
prediction sets with α = 0.1 using the DP-FedCP method (Algorithm 5.11) compared to
Unweighted Local and Unweighted Global. We also included results obtained with
oracle-weights, in which the conformal prediction sets are obtained using (5.89), i.e.,
assuming that the exact ratios {w?y}y∈Y are known.

The quantiles calculated via the Unweighted Global method are mostly due to the
non-conformity scores from agent 1. This is due to the larger local dataset of agent 1,
whose label distribution is very different from that of the target; see Figure 5.1a. The
Unweighted Local method computes the quantiles based on the local data of agent
2, which has too little data to produce robust prediction sets. Therefore, DP-FedCP
yields much better conformal prediction sets (see Figure 5.1b), which are little different
from those obtained using the adaptive prediction set methods with oracle weights
of Podkopaev and Ramdas (2021b).

CIFAR-10 Experiments. We investigate the performance of DP-FedCP on the CIFAR-
10 dataset. We use a ResNet-56 (He et al., 2016) pre-trained on the CIFAR-10 training
dataset as the underlying classifier with temperature scaling T = 1.6. We also ran-
domly split the CIFAR-10 test dataset into a calibration dataset and a test dataset,
each containing 5000 points, and repeat the experiment 1000 times. The number of
agents is n = 10, and the prediction set is learned for the agent ? = 4 that has the
smallest number of data points. The distribution of labels for agent i is P iY (i) = 0.55
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Figure 5.2 – Empirical coverage on the CIFAR-10 data.
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Figure 5.3 – ImageNet experimental results: (a) Empirical coverage comparison of
DP-FedCP with unweighted baselines (b) Empirical coverage comparison of DP-FedCP
with non-DP version at different privacy parameter values (c) Effect of distribution
shifts on empirical coverage for DP-FedCP and unweighted baselines.

and P iY (y) = 0.05 for all y ∈ [10]\{i}. We set the validation size for agent ? to N? = 50,
and for agent 2 the validation size is N2 = 2150. The remaining agents have the same
validation size of N i = 350 for all i ∈ [10]\{2, 4}. The significance level α is set to
0.1. In this configuration, both Unweighted Local and Unweighted Global methods
perform significantly worse than DP-FedCP; see Figure 5.2.

ImageNet Experiments. We use a pre-trained ResNet-152 (He et al., 2016) as a
base model with temperature scaling T = 10. We perform 1000 runs with different
splits of the 50K ImageNet test dataset into calibration and test datasets of size 40K
and 10K samples, respectively. The calibration data is split into 11 agents. For agent
i ∈ [10], the size of the calibration dataset is N i = 3950, while we N11 = 500. For
ImageNet, the distribution of non-conformity scores V (f̂(X), Y ) varies significantly as
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a function of the given label Y = y. In this experiment, we distribute the data between
agents to ensure distinct non-conformity score distributions across agents, illustrated in
Figures 5.6a and 5.6b. For this, we compute the mean of the non-conformity scores in
function of the given label. We call G1 the set of the 500 labels with the lowest means
and G2 the set of the remaining 500 labels. Agents i ∈ [10] (low-score group) take
90% of their data from G1 and the remaining 10% from G2. Agent 11 takes 90% of its
calibration data from G2 and the remaining 10% from G1.

We construct a prediction set with significance level α = 0.1 for the distribution of
the 11-th agent. Figure 5.3a shows the empirical coverage of the prediction sets. In
contrast to unweighted alternatives, DP-FedCP achieves valid coverage. In Figure 5.3c,
we evaluate the sensitivity of the different methods to the shift between G1 and G2. We
repeat the previous experiment varying the shift parameter (90% in the first experiment)
with 100 runs for each coefficient and show the Violin plot of the obtained empirical
coverage. The experimental results show that DP-FedCP overcomes the challenge of
obtaining valid conformal predictions in the presence of label shifts at a federated level
compared to alternative methods.

Differential Privacy Experiments. We explore the tradeoff between privacy and
coverage quality. We conducted the ImageNet experiment with different values of σg in
the set {10, 30, 60, 100}. The results of the experiment are shown in Figure 5.3b, which
illustrates the tradeoff between the differential privacy parameter σg and the robustness
of the method. In particular, we observe that as σg increases, the robustness of the
method decreases.

5.6 Conclusion

We present a novel method called DP-FedCP, which is designed to construct personalized
conformal prediction sets in a federated learning scenario. Unlike existing algorithms,
the proposed method takes into account the label shifts between different agents, and
computes prediction sets with a prescribed confidence level. The resulting sets are
theoretically guaranteed to provide valid coverage, while ensuring differential privacy.
Finally, we illustrate the strong performance of DP-FedCP in a series of benchmarks.
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5.A Moreau Envelope for Quantile Computation

5.A.1 Federated quantile using the Moreau envelope

Lemma 5.14. Let α ∈ [0, 1] and (v, q) ∈ R2, the Moreau envelope of the pinball loss
with regularization parameter γ > 0 is given by

Sγα,v(q) =


(1− α)(v − q)− γ(1−α)2

2 ; v−qγ > 1− α,
(q−v)2

2γ ; 0 ≤ q−v
γ + 1− α ≤ 1,

α(q − v)− γα2

2 ; q−v
γ > α.

(5.20)

Moreover, its gradient is given by

∇Sγα,v(q) = −(1− α)1{q<v−γ(1−α)} + α1{q>v+γα} +
1

γ
(q − v)1{v−γ(1−α)<q<v+γα}.

Proof For all α ∈ [0, 1], (v, q) ∈ R2, recall that the pinball loss and its subgradient are
given by

Sα,v(q) = (1− α)(v − q)1{v≥q} + α(q − v)1{q>v}, (5.21)

∂Sα,v(q) =


−(1− α), q < v

[−(1− α), α], q = v

α, q > v

.

Note that, by construction

Sγα,v(q) = min
q̃∈R

{
Sα,v(q̃) +

1

2γ
(q̃ − q)2

}
= min

q̃∈R

{
(1− α)(v − q̃)1{v≥q̃} + α(q̃ − v)1{v<q̃} +

1

2γ
(q̃ − q)2

}
.

Denote q? = arg minq̃∈R{Sα,v(q̃) + 1
2γ (q̃ − q)2} which exists and is unique (the function

to be minimized is coercive and strongly convex). The stationary condition for the
Moreau envelope is given by:

0 ∈ ∂Sα,v(q?) +
1

γ
(q? − q), with ∂Sα,v(q) =


−(1− α), q < v

[−(1− α), α], q = v

α, q > v

.

Considering the 3 different cases, we find that:

q? =


q + γ(1− α), q < v − γ(1− α)

v, q ∈ [v − γ(1− α), v + γα]

q − γα, q > v + γα

.

We conclude the derivation by using the identity from Moreau envelope: Sγα,v(q) =

Sα,v
(
q?
)

+ 1
2γ

(
q? − q

)2 and plugging in q?.
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To simplify the manuscript presentation, we now provide the definition of the local loss
function Si,γα : q ∈ R 7→ EV∼µ̂iy [S

γ
α,V (q)] ∈ R+. Recall the weights p̂?y,y are given in (5.8),

and also that

λiy =
N i

N
p̂?y,y +

N i∑
k=1

p̂?Y ik ,y
.

Therefore, for q ∈ R, we have

Si,γα (q) =
N ip̂?y,y
λiyN

Sγα,1(q) +
N i∑
k=1

p̂?
Y ik ,y

λiy
Sγ
α,V ik

(q). (5.22)

5.A.2 Moreau’s approximation error

In this section, we consider fixed parameters α ∈ (0, 1), γ > 0, {vk}k∈[N ] and {pk}k∈[N ] ∈
[0, 1]N satisfying

∑
k pk = 1. We define F :=

∑N
k=1 pkSα,vk and Fγ :=

∑N
k=1 pkS

γ
α,vk ,

where Sα,vk and Sγα,vk are the pinball loss and its Moreau envelope defined for v, q ∈ R
by (5.21)-(5.20). Without loss of generality, it is assumed that {vk}k∈[N ] is increasing
since we can re-index {vk}k∈[N ] and if there exist (j, j′) ∈ [N ]2 such that j 6= j′ and
vj = vj′ , we have pjSα,vj + pj′Sα,vj′ = (pj + p′j)Sα,vj . Finally, for k ∈ [N ], denote

Ik =
[
vk − γ(1− α), vk + γα

]
. (5.23)

Lemma 5.15. If (1−α) /∈ {∑k
l=1 pl}k∈[n], then F admits a unique minimizer. Moreover,

this minimizer belongs to {vk}k∈[n] and we denote k? ∈ [n] its index, i.e., vk? =
arg minF . In addition, F is decreasing on (−∞, vk? ] and increasing on [vk? ,∞). The
function Fγ also admits a unique minimizer denoted Qγ1−α ∈ R, and Fγ is decreasing
on (−∞, Qγ1−α] and increasing on [Qγ1−α,∞).

Proof Note that F is differentiable on R \ {vk}k∈[N ], and for all q ∈ R \ {vk}k∈[N ], we
have

F ′(q) = α
∑

k : vk<q

pk − (1− α)
∑

k : vk≥q
pk =

∑
k : vk<q

pk − (1− α).

Since α ∈ (0, 1) with (1 − α) /∈ {∑k
l=1 pl}k∈[N ], we deduce that there exists a unique

vk? ∈ {vk}k∈[N ] such that, for q ∈ R,

∑
k : vk<q

pk − (1− α) is

< 0 if q < vk? ,
> 0 if q > vk? .

Thus, from the continuity of F it follows that F is decreasing on (−∞, vk? ] and increas-
ing on [vk? ,∞). Moreover, since F ′γ = F ′ on R\{∪k∈[N ]Ik}, its minimizer lies in ∪k∈[N ]Ik,
where Ik is defined in (5.23). Finally, the strong convexity of Fγ on ∪k∈[N ]Ik shows the
uniqueness of Qγ1−α = arg minFγ and also that Fγ is decreasing on (−∞, Qγ1−α] and
increasing on [Qγ1−α,∞).

Denote by ∂F subgradient of F . If F is differentiable at q ∈ R, then ∂F (q) = {F ′(q)}.
When ∂F (q) is a singleton, by an abuse of notation, we use the same notation for the
set and the unique element it contains.
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Theorem 5.16. Assume (1 − α) /∈ {∑k
l=1 pl}k∈[N ], then the unique minimizers (vk?,

Qγ1−α) resp. of (F , Fγ) resp. satisfy |Qγ1−α − vk? | ≤ γ.

Proof First, for any k ∈ [N ] such that vk? − γ(1− α) ∈ Ik, we obtain

vk? − vk − γ(1− α)

γ
≤

−(1− α) if vk ≥ vk? ,
α else vk < vk? .

(5.24)

Since Lemma 5.15 shows that F is decreasing on (−∞, vk? ] and increasing on [vk? ,∞)
where vk? is the unique minimizer of F (vk?), the convexity of F implies that:

∂F (q) ⊂

(−∞, 0) if q < vk? ,
(0,∞) if q > vk? .

(5.25)

Thus, (5.24) combined with (5.25) give that

F ′γ

(
vk? − γ(1− α)

)
=

∑
k : vk?−γ(1−α)/∈Ik

pkS
′
α,vk

(
vk? − γ(1− α)

)
+

∑
k : vk?−γ(1−α)∈Ik

pk

(
vk? − vk − γ(1− α)

)
γ

≤ α
∑

k : vk<vk?

pk − (1− α)
∑

k : vk≥vk?

pk = ∂F (vk? − ε) < 0,

where ε = 2−1 minN−1
k=1 {vk+1 − vk}. A similar reasoning shows that F ′γ(vk? + γα) ≥

∂F (vk? + ε) > 0. Since Fγ is decreasing on (−∞, Qγ1−α] and increasing on [Qγ1−α,∞)
by Lemma 5.15, we have F ′γ < 0 on (−∞, vk? − γ(1− α)] and F ′γ > 0 on [vk? − γα,∞).
Therefore, we deduce that Qγ1−α ∈ Ik? . Using that the interval Ik? is of length γ, this
implies that |Qγ1−α − vk? | ≤ γ.

5.B FL convergence guarantee: proof of Theorem 5.10

In this section, we suppose that {St}t∈[T ] is a sequence of i.i.d. random variables,
such that, for any (i, i′) ∈ [n]2, i ∈ St and i′ ∈ St are independent if i 6= i′. For
any i ∈ [n], let {zit,k : k ∈ {0, . . . ,K}}Tt=0 be a sequence of i.i.d. standard Gaussian
variables. Moreover, consider the local loss function F i : R → R and denote, for
t ∈ {0, . . . , T}, k ∈ {0, . . . ,K}

F =
n∑
i=1

λiyF
i, git,k = ∇F i(qit,k) + zit,k.

In this section, we establish the convergence of the iterates given by Theorem 5.24 under
the following assumptions:

Assumption 5.17. The function
∑n

i=1 λ
i
yF

i admits at least a minimizer in R, we
denote q? one of them, i.e., q? ∈ arg min{∑n

i=1 λ
i
yF

i}.
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Assumption 5.18. For any i ∈ [n], F i is continuously differentiable and convex, i.e.,
for any q, q̃ ∈ R,

F i(q̃) ≤ F i(q) + 〈∇F i(q), q̃ − q〉.

Assumption 5.19. For any i ∈ [n], t ∈ {0, . . . , T},K ∈ {0, . . .K}, ∇F i is continuously
differentiable. In addition, there exist H i ≥ 0 such that the function ∇F i is H i-smooth,
i.e., for any q, q̃ ∈ R,

∇F i(q̃) ≤ ∇F i(q) +
〈
∇F i(q), q̃ − q

〉
+ (H i/2)

∥∥q̃ − q∥∥2
.

Moreover, denote H = maxi∈[n]{H i}.

We introduce the key assumptions appearing in the theoretical derivations below.

Assumption 5.20. For any i ∈ [n], the variance of the gradients is uniformly bounded,
for all q ∈ R, we have

E

∥∥∥∥∥ 1i∈St
P(i ∈ St)

∇F i(q)−∇F i(q)
∥∥∥∥∥

2
 ≤ ξ2,

E


∥∥∥∥∥∥
∑
i∈St

λiy
P(i ∈ St)

∇F i(q?)−∇F (q?)

∥∥∥∥∥∥
2
 ≤ ξ2

? .

Assumption 5.21. The heterogeneity denoted ζ is bounded everywhere

max
i∈[n]

{
‖∇F i −∇F‖∞

}
≤ ζ2.

We prove Theorem 5.24 using Lemma 5.22 and Lemma 5.23. Note that these results are
close to Woodworth et al. (2020, Appendix C). However, we treat partial participation,
i.e., St ⊆ [n] and consider an objective function defined by importance weights {λiy}i∈[n].
At time t ∈ {0, . . . , T}, denote

q̄t,k =

n∑
i=1

λiy(1St+1
(i)/P(i ∈ St+1))qit,k

the average of the local parameters defined in Algorithm 5.10. Finally, we introduce the
following step-size:

η0 =
1

10
min

 1

H
,

n
min
i=1

{
P(i ∈ St)
λiyH

i

} . (5.26)

Lemma 5.22. Assume Assumption 5.17-Assumption 5.18-Assumption 5.19-Assumption 5.20
and consider η ∈ (0, η0]. Then, for any t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

E
[
F
(
q̄t,k

)
− F (q?)

]
≤ 1

η
E
∥∥∥q̄t,k − q?∥∥∥2

−1

η
E
∥∥∥q̄t,k+1 − q?

∥∥∥2
+2H

n∑
i=1

λiyE
∥∥∥q̄t,k − qit,k∥∥∥2

+ 3ηξ2
? + η2σ2

n∑
i=1

(λiy)2

P(i ∈ St+1)
.
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Proof Developing the squared norm, we find

E
∥∥∥q̄t,k+1 − q?

∥∥∥2
= E

∥∥∥∥∥∥q̄t,k − η
n∑
i=1

λiy∇F i
(
qit,k

)
− q?

∥∥∥∥∥∥
2

+ η2E

∥∥∥∥∥∥∥
n∑
i=1

λiy

 1St+1
(i)

P(i ∈ St+1)
git,k −∇F i

(
qit,k

)
∥∥∥∥∥∥∥

2

. (5.27)

We start by upper bounding the first term, we have

E

∥∥∥∥∥∥q̄t,k − η
n∑
i=1

λiy∇F i
(
qit,k

)
− q?

∥∥∥∥∥∥
2

= E
∥∥∥q̄t,k − q?∥∥∥2

− 2η
n∑
i=1

λiyE
〈
q̄t,k − q?,∇F i

(
qit,k

)〉
+ η2E

∥∥∥∥∥∥
n∑
i=1

λiy∇F i
(
qit,k

)∥∥∥∥∥∥
2

. (5.28)

Using Assumption 5.19, we know that F i is H i-smooth and thus F =
∑n

i=1 λ
i
yF

i is
H̄-smooth, where H̄ =

∑n
i=1 λ

i
yH

i. Following (Nesterov, 2003), the smoothness and
convexity of F imply that∥∥∥∥∇F (q̄t,k)−∇F (q?)

∥∥∥∥2

≤ 2H̄

(
F
(
q̄t,k

)
− F (q?)

)
.

For any a, b ∈ R, using that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, the last term of (5.28) can be
upper bounded as follows:

E

∥∥∥∥∥∥
n∑
i=1

λiy∇F i
(
qit,k

)∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥
n∑
i=1

λiy

{
∇F i

(
qit,k

)
−∇F i

(
q̄t,k

)}∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
n∑
i=1

λiy

{
∇F i

(
q̄t,k

)
−∇F i

(
q?
)}∥∥∥∥∥∥

2

≤ 2
n∑
i=1

λiyE
∥∥∥∥∇F i (qit,k)−∇F i (q̄t,k)∥∥∥∥2

+ 2E
∥∥∥∥∇F (q̄t,k)−∇F (q?)∥∥∥∥2

≤ 2
n∑
i=1

(H i)2λiyE
∥∥∥qit,k − q̄t,k∥∥∥2

+ 4H̄E
[
F
(
q̄t,k

)
− F

(
q?
)]
. (5.29)

Regarding the inner product in (5.28), Assumption 5.18 and Assumption 5.19 show

−
n∑
i=1

λiyE
〈
q̄t,k − q?,∇F i

(
qit,k

)〉

= −
n∑
i=1

λiyE
〈
qit,k − q?,∇F i

(
qit,k

)〉
+

n∑
i=1

λiyE
〈
qit,k − q̄t,k,∇F i

(
qit,k

)〉

≤ −
n∑
i=1

λiyE
[
F i
(
qit,k

)
− F i

(
q?
)]

+
n∑
i=1

λiyE

[
F i
(
qit,k

)
− F i

(
q̄t,k

)
+
H i

2
E
∥∥∥qit,k − q̄t,k∥∥∥2

]
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≤ −E
[
F
(
q̄t,k

)
− F

(
q?
)]

+
1

2

n∑
i=1

H iλiy

∥∥∥qit,k − q̄t,k∥∥∥2
. (5.30)

Moreover, recall that the estimator (1St+1
(i)/P(i ∈ St+1))∇F i is unbiased, i.e.,

E

 1St+1
(i)

P(i ∈ St+1)
∇F i(qit,k)−∇F i

(
qit,k

) = 0, (5.31)

and we also have

1St+1
(i)

P(i ∈ St+1)
∇F i

(
qit,k

)
−∇F i

(
qit,k

)
=

 1St+1
(i)

P(i ∈ St+1)
∇F i

(
q?
)
−∇F i

(
q?
)

+

 1i∈St+1

P(i ∈ St+1)
∇F i

(
q̄t,k

)
−

1St+1
(i)

P(i ∈ St+1)
∇F i

(
q?
)
−∇F i

(
q̄t,k

)
+∇F i

(
q?
)

+

 1St+1
(i)

P(i ∈ St+1)
∇F i

(
qit,k

)
−

1St+1
(i)

P(i ∈ St+1)
∇F i

(
q̄t,k

)
−∇F i

(
qit,k

)
+∇F i

(
q̄t,k

) .

(5.32)

We now upper bound the second term of (5.27). Since for all random variable X,
E[‖X − EX‖2] ≤ E‖X‖2, combining (5.31) and (5.32) gives

E

∥∥∥∥∥∥∥
n∑
i=1

λiy

 1St+1
(i)

P(i ∈ St+1)
git,k −∇F i

(
qit,k

)
∥∥∥∥∥∥∥

2

=
n∑
i=1

(λiy)2E

∥∥∥∥∥∥ 1St+1
(i)

P(i ∈ St+1)
∇F i

(
qit,k

)
−∇F i

(
qit,k

)∥∥∥∥∥∥
2

+
n∑
i=1

(λiy)2E

∥∥∥∥∥∥ 1St+1
(i)

P(i ∈ St+1)
zit,k

∥∥∥∥∥∥
2

≤ 3
n∑
i=1

(λiy)2(1− P(i ∈ St+1))

P(i ∈ St+1)

E∥∥∥∥∇F i (qit,k)−∇F i (q̄t,k)∥∥∥∥2

+ E
∥∥∥∥∇F i (q̄t,k)−∇F i (q?)∥∥∥∥2


+ 3E

∥∥∥∥∥∥
n∑
i=1

λiy
1St+1

(i)

P(i ∈ St+1)
∇F i

(
q?
)
−∇F

(
q?
)∥∥∥∥∥∥

2

+
n∑
i=1

(λiy)2

P(i ∈ St+1)
E
∥∥∥zit,k∥∥∥2

≤ 3
n∑
i=1

(λiy)2

P(i ∈ St+1)

{
(H i)2E

∥∥∥qit,k − q̄t,k∥∥∥2
+ 2H iE

[
F i
(
q̄t,k

)
− F i

(
q?
)]}

+ 3ξ2
? +

n∑
i=1

(λiy)2

P(i ∈ St+1)
σ2

≤ 3
n∑
i=1

(λiy)2

P(i ∈ St+1)
(H i)2E

∥∥∥qit,k − q̄t,k∥∥∥2
+ 6

n∑
i=1

(λiy)2

P(i ∈ St+1)
H iE

[
F i
(
q̄t,k

)
− F i

(
q?
)]

+ 3ξ2
? + σ2

n∑
i=1

(λiy)2

P(i ∈ St+1)
. (5.33)
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Plugging (5.29)-(5.30)-(5.33) back into (5.27) with η ≤ η0, it holds

E
∥∥∥q̄t,k+1 − q?

∥∥∥2
≤ E

∥∥∥q̄t,k − q?∥∥∥2
+ η

n∑
i=1

1 + 2ηH i + 3η
λiyH

i

P(i ∈ St+1)

λiyH
iE
∥∥∥qit,k − q̄t,k∥∥∥2

+ η

4ηH̄ + 6η
n

max
i=1

 (λiy)2H i

P(i ∈ St+1)

− 2

E
[
F
(
q̄t,k

)
− F

(
q?
)]

+ 3η2ξ2
? + η2σ2

n∑
i=1

(λiy)2

P(i ∈ St+1)

≤ E
∥∥∥q̄t,k − q?∥∥∥2

+ 2Hη

n∑
i=1

λiyE
∥∥∥qit,k − q̄t,k∥∥∥2

− ηE
[
F
(
q̄t,k

)
− F

(
q?
)]

+ 3η2ξ2
? + η2σ2

n∑
i=1

(λiy)2

P(i ∈ St+1)
.

Lemma 5.23. Assume Assumption 5.17-Assumption 5.18-Assumption 5.19-Assumption 5.20-
Assumption 5.21, and for all t ∈ [T ], suppose that St = [n]. We consider η ∈
(0, 2/

∑n
i=1 λ

i
yH

i]. Then, for any t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

n∑
i=1

λiyE
∥∥∥qit,k − q̄t,k∥∥∥2

≤ 6Kη2
(
σ2 + ξ2 +Kζ2

)
.

Proof Let ε > 0, for any i, i′ ∈ [n] and any k ∈ [K],

E
∥∥∥qit,k − qi′t,k∥∥∥2

− 2η2(σ2 + ξ2) = E
∥∥∥∥qit,k−1 − qi

′
t,k−1 − η

(
git,k−1 − gi

′
t,k−1

)∥∥∥∥2

− 2η2(σ2 + ξ2)

= E
∥∥∥∥qit,k−1 − qi

′
t,k−1 − η

(
∇F i(qit,k−1)−∇F i′(qi′t,k−1)

)∥∥∥∥2

+ η2E
∥∥∥∥(∇F i(qit,k−1)−∇F i′(qi′t,k−1)

)
−
(
git,k−1 − gi

′
t,k−1

)∥∥∥∥2

− 2η2(σ2 + ξ2)

≤ E
∥∥∥∥qit−1 − qi

′
t−1 − η

(
∇F (qit−1)−∇F (qi

′
t−1)

)
+ η

(
∇F (qit−1)−∇F i(qit−1)−∇F (qi

′
t−1) +∇F i′(qi′t−1)

)∥∥∥∥2

≤
(

1 +
1

ε

)
E
∥∥∥∥qit−1 − qi

′
t−1 − η

(
∇F (qit−1)−∇F (qi

′
t−1)

)∥∥∥∥2

+ (1 + ε)η2E
∥∥∥∇F (qit−1)−∇F i(qit−1)−∇F (qi

′
t−1) +∇F i′(qi′t−1)

∥∥∥2

≤
(

1 +
1

ε

)
E
∥∥∥qit−1 − qi

′
t−1

∥∥∥2
+ (1 + ε)η2E

∥∥∥∇F (qit−1)−∇F i(qit−1)
∥∥∥2

+ (1 + ε)η2E
∥∥∥∇F (qi

′
t−1)−∇F i′(qi′t−1)

∥∥∥2
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− 2(1 + ε)η2E
〈
∇F (qit−1)−∇F i(qit−1),∇F (qi

′
t−1)−∇F i′(qi′t−1)

〉
. (5.34)

The third inequality is implied by the co-coercivity: η ∈ (0, 2/
∑n

i=1 λ
i
yH

i], ∀(q, q̃) ∈ R2,∥∥∥∥q − q̃ − η (∇F (q)−∇F (q̃)
)∥∥∥∥2

=
∥∥q̃ − q∥∥2 − η

[
2
〈
q − q̃,∇F (q)−∇F (q̃)

〉
+ η

∥∥∥∇F (q)−∇F (q̃)
∥∥∥2
]
≤
∥∥q̃ − q∥∥2

,

and we also have

n∑
i=1

n∑
i′=1

λiyλ
i′
yE
〈
∇F (qit−1)−∇F i(qit−1),∇F (qi

′
t−1)−∇F i′(qi′t−1)

〉

= E

∥∥∥∥∥∥
n∑
i=1

λiy

(
∇F (qit−1)−∇F i(qit−1)

)∥∥∥∥∥∥
2

≥ 0.

Therefore, summing (5.34) gives that

n∑
i=1

n∑
i′=1

λiyλ
i′
yE
∥∥∥qit,k − qi′t,k∥∥∥2

≤
(

1 +
1

ε

)
n∑
i=1

n∑
i′=1

λiyλ
i′
yE
∥∥∥qit−1 − qnt−1

∥∥∥2

+ 2η2
(
σ2 + ξ2 + (1 + ε)ζ2

)
.

Set ε = K − 1, since for any i, i′ ∈ [n], xit,0 = xi
′
t,0, we get

n∑
i=1

n∑
i′=1

λiyλ
i′
yE
∥∥∥qit,k − qi′t,k∥∥∥2

≤ 2η2
(
σ2 + ξ2 + (1 + ε)ζ2

)K−1∑
k′=0

(
1 +

1

ε

)k′
≤ 6Kη2

(
σ2 + ξ2 + (1 + ε)ζ2

)
.

Since
∑n

i=1 λ
i
y = 1, the Jensen’s inequality yields that

n∑
i=1

λiyE
∥∥∥qit,k − q̄t,k∥∥∥2

≤
n∑
i=1

n∑
i′=1

λiyλ
i′
yE
∥∥∥qit,k − qi′t,k∥∥∥2

,

which concludes the proof.

In addition, with the previous notations consider the step-size

η? = min

η0,

(
E
∥∥q̄0 − q?

∥∥2

14HK2T
[
σ2 +Kζ2

])1/3
 , (5.35)

and define the average parameter

q̂T =
1

T

T−1∑
t=0


n∑
i=1

λiy

 1

K

K−1∑
k=0

qit,k


 . (5.36)
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Theorem 5.24. Assume Assumption 5.17-Assumption 5.18-Assumption 5.19-Assumption 5.20-
Assumption 5.21. We consider η ∈ (0, η0] with St = [n], for all t ∈ [T ]. Then, for any
t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

EF
(
q̂T
)
− F (q?) ≤

E
∥∥q̄0 − q?

∥∥2

ηKT
+ 2η2

6H(Kζ)2 + σ2

(
6HK + max

i∈[n]
λiy

) ,
where η0, q̂T are given in (5.26) and (5.36). Moreover, for η = η? defined in (5.35) and
H ≥ K−1 maxi∈[n] λ

i
y, it follows

EF
(
q̂T
)
− F (q?) ≤

E
∥∥q̄0 − q?

∥∥2

η0KT
+

5(E
∥∥q̄0 − q?

∥∥2
)2/3

[
H
(
σ2 +Kζ2

)]1/3

(KT 2)1/3
.

Proof For any η ≤ η0, using Lemma 5.22 we have

E
[
F
(
q̄t,k

)]
− F (q?) ≤

1

η
E
∥∥∥q̄t,k − q?∥∥∥2

− 1

η
E
∥∥∥q̄t,k+1 − q?

∥∥∥2

+ 2H
n∑
i=1

λiyE
∥∥∥q̄t,k − qit,k∥∥∥2

+ 2η2σ2 max
i∈[n]
{λiy}. (5.37)

Moreover, by Lemma 5.23 it follows that

n∑
i=1

λiyE
∥∥∥qit,k − q̄t,k∥∥∥2

≤ 6Kη2(σ2 +Kζ2). (5.38)

Combining (5.37) and (5.38), we obtain

E
[
F
(
q̄t,k

)
− F (q?)

]
≤ 1

η
E
∥∥∥q̄t,k − q?∥∥∥2

− 1

η
E
∥∥∥q̄t,k+1 − q?

∥∥∥2
+ 12H(Kηζ)2

+ 2(ησ)2

(
6HK + max

i∈[n]
{λiy}

)
.

Moreover, telescoping proves that

T−1∑
t=0

K−1∑
k=0

[
E
∥∥∥q̄t,k − q?∥∥∥2

− E
∥∥∥q̄t,k+1 − q?

∥∥∥2
]
≤ E

∥∥q̄0 − q?
∥∥2
.

Therefore, the convexity Assumption 5.18 gives that

E

F
 1

KT

KT∑
t=1

q̄t,k

− F (q?)

 ≤ 1

KT

T−1∑
t=0

K−1∑
k=0

E
[
F
(
q̄t,k

)
− F (q?)

]

≤ E
∥∥q̄0 − q?

∥∥2

ηKT
+ 2η2

6H(Kζ)2 + σ2

(
6HK + max

i∈[n]
{λiy}

) .
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Finally, the choice of η provided in (5.35) ensures that

E
[
F
(
q̂T
)]
− F (q?) ≤

E
∥∥q̄0 − q?

∥∥2

η0KT
+

5(E
∥∥q̄0 − q?

∥∥2
)2/3

[
H
(
σ2 +Kζ2

)]1/3

(KT 2)1/3
.

Now, we denote α ∈ (0, 1) the confidence level, and consider the functions defined for
t ∈ {0, . . . , T}, k ∈ {0, . . . ,K} by

F = Sγα,µ̂y , F i = Sγ
α,µ̂iy

.

Denote by q? the minimizer of Sγα,µ̂y =
∑n

i=1 λ
i
yS

γ
α,µ̂iy

, which always exists. In addition,
note that Assumption 5.19 and Assumption 5.21 are satisfied with:

H i =
1

γ
, ζ = max

i∈[n]
‖∇ Si,γα −∇ Sγα‖1/2∞ . (5.39)

Corollary 5.25. Let γ ∈ (0, (maxi∈[n] λ
i
y)−1K] and consider the step-size η0 = γ/10.

Then, for any t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

ESγα,µ̂y
(
q̂T
)
− Sγα,µ̂y(q?) ≤

E
∥∥q̄0 − q?

∥∥2

η0KT
+

5(σ2 +Kζ2)1/3(E
∥∥q̄0 − q?

∥∥2
)2/3

(γKT 2)1/3
,

where q̂T is provided in (5.36).

Proof

Since Assumption 5.17-Assumption 5.18-Assumption 5.19-Assumption 5.20-Assumption 5.21
are satisfied with {H i}i∈[n], ζ provided in (5.39), applying Theorem 5.24 concludes the
proof.

5.C Theoretical Coverage Guarantee

5.C.1 General coverage guarantee

Consider an increasing sequence {vk}k∈[N+1] ∈ (R ∪ {+∞})N+1 and {pk}k∈[N+1] ∈
∆N+1. For any α ∈ [0, 1], recall that

Q1−α

(∑N+1
k=1 pkδvk

)
= inf

{
t ∈ [−∞,∞] : P

(
V ≤ t

)
≥ 1− α, where V ∼∑N+1

k=1 pkδvk

}
.

Lemma 5.26. Let {v`}`∈[N+1] be an increasing sequence and {p`}`∈[N+1] ∈ ∆N+1. If
V ∼∑N+1

l=1 plδvl , then, for all α ∈ [0, 1), we have

1− α ≤ P
(
V ≤ Q1−α

(∑N+1
k=1 pkδvk

))
< 1− α+ maxN+1

k=1

{
pk
}
.
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Proof Fix α ∈ [0, 1), and by convention set
∑0

k=1 pk = 0. There exists k ∈ [N + 1],
such that 1− α ∈ (

∑k−1
l=1 pl,

∑k
l=1 pl], hence Q1−α(

∑N+1
l=1 plδvl) = vk. This last identity

implies that

1− α ≤ P
(
V ≤ Q1−α

(∑N+1
l=1 plδvl

))
=
∑k

l=1 pl < 1− α+ maxN+1
k=1

{
pk
}
.

Denote {(Xk, Yk)}k∈[N+1] a set of pairwise independent random variables and for k ∈
[N+1], denote Zk = (Xk, Yk), Vk = V (Xk, Yk). Let SN+1 be the set of all permutations
of [N + 1] and consider Sk

N+1 = {σ ∈ SN+1 : σ(N + 1) = k}. Moreover, write f the
joint density of {Zk}k∈[N+1], and for all k ∈ [N + 1] define

p
z1:N+1

k =


1

N+1 if
∑

σ∈SN+1
f(zσ(1), . . . , zσ(N+1)) = 0∑

σ∈Sk
N+1

f(zσ(1),...,zσ(N+1))∑
σ∈SN+1

f(zσ(1),...,zσ(N+1))
otherwise

. (5.40)

Lemma 5.27. For any α ∈ [0, 1), we have∫
1
vN+1≤Q1−α

(∑N+1
k=1 p

z1:N+1
k δvk

)f(z1, . . . , zN+1)dz1 · · · dzN+1

=

∫ N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α

(∑N+1
k̄=1

p
z1:N+1
k̄

δvk̄

)

 ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!
.

Proof First, let’s show the invariance of σ ∈ SN+1 7→ Q1−α(
∑N+1

k=1 p
zσ(1):σ(N+1)

σ(k) δvσ(k)
) ∈

R. For that, fix σ̃ ∈ SN+1. The invariance is immediate when
∑

σ∈SN+1
f(zσ(1), . . . , zσ(N+1)) =

0. Therefore, assume that
∑

σ∈SN+1
f(zσ(1), . . . , zσ(N+1)) 6= 0. We get

N+1∑
k=1

p
zσ̃(1):σ̃(N+1)

σ̃(k) δvσ̃(k)
=

N+1∑
k=1

∑
σ∈Sσ̃(k)

N+1

f(zσ(1), . . . , zσ(N+1))∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))
δvσ̃(k)

=
N+1∑
k=1

∑
σ∈SkN+1

f(zσ(1), . . . , zσ(N+1))∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))
δvk =

N+1∑
k=1

p
z1:N+1

k δvk .

Moreover, we can write∫
1
vN+1≤Q1−α

(∑N+1
k=1 p

z1:N+1
k δvk

)f(z1, . . . , zN+1)dz1 · · · dzN+1

=
∑

σ∈SN+1

∫
1
vσ(N+1)≤Q1−α

(∑N+1
k̄=1

p
zσ(1):σ(N+1)

σ(k̄)
δvσ(k̄)

)f(zσ(1), . . . , zσ(N+1))
dzσ(1) · · · dzσ(N+1)

(N + 1)!

=
N+1∑
k=1

∑
σ∈SkN+1

∫
1
vσ(N+1)≤Q1−α

(∑N+1
k̄=1

p
zσ(1):σ(N+1)

σ(k̄)
δvσ(k̄)

)f(zσ(1), . . . , zσ(N+1))
dzσ(1) · · · dzσ(N+1)

(N + 1)!

=

N+1∑
k=1

∫
1
vk≤Q1−α

(∑N+1
k̄=1

p
z1:N+1
k̄

δvk̄

)
 ∑
σ∈SkN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!
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=
N+1∑
k=1

∫
1
vk≤Q1−α

(∑N+1
k̄=1

p
z1:N+1
k̄

δvk̄

)pz1:N+1

k

 ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!
.

Given z = (x,y) ∈ X × Y define

Dz
N =

(
z1, . . . , zN , z

)
, µNy = p

Dz
N

N+1δ1 +
N∑
k=1

p
Dz
N

k δVk ,

and consider the prediction set given by

Cα,µN (x) =
{

y ∈ Y : V (x,y) ≤ Q1−α(µNy )
}
.

Theorem 5.28. Assume there are no ties between {Vk}k∈[N+1] almost surely. Then,
for any α ∈ [0, 1), we have

1− α ≤ P
(
YN+1 ∈ Cα,µN (XN+1)

)
≤ 1− α+ E

[
N+1
max
k=1
{pZ1:N+1

k }
]
,

where pZ1:N+1

k is defined in (5.40).

Proof Let α be in [0, 1) and for any (xk, yk) ∈ X × Y, denote zk = (xk, yk), vk =
V (xk, yk). First, we can write

P
(
YN+1 ∈ Cα,µN (XN+1)

)
= P

(
YN+1 ∈

{
y ∈ Y : V (XN+1,y) ≤ Q1−α(µNy )

})
= P

(
V (XN+1, YN+1) ≤ Q1−α(µNYN+1

)
)

(?)
= P

(
V (XN+1, YN+1) ≤ Q1−α

(∑N+1
k=1 p

Z1:N+1

k δVk

))

=

∫
(X×Y)N+1

1
vN+1≤Q1−α

(∑N+1
k=1 p

z1:N+1
k δVk

)f(z1, . . . , zN+1)dz1 · · · dzN+1.

Where (?) holds since(
VN+1 ≤ Q1−α(µNYN+1

)
)

⇐⇒
(
p
D

(XN+1,YN+1)

N
N+1 δ1≤VN+1

+
∑N

k=1 p
D

(XN+1,YN+1)

N
k δVk≤VN+1

≤ α
)

⇐⇒
(
p
D

(XN+1,YN+1)

N
N+1 δVN+1≤VN+1

+
∑N

k=1 p
D

(XN+1,YN+1)

N
k δVk≤VN+1

≤ α
)

⇐⇒
(
V (XN+1, YN+1) ≤ Q1−α

(∑N+1
k=1 p

Z1:N+1

k δVk

))
.

Define the set E ⊂ (X × Y)N+1 of points such that the non-conformity scores are
pairwise distinct:

E = {(z1, . . . , zN+1) ∈ (X × Y)N+1 :
∏
k<`

(
v(xk, yk)− v(x`, y`)

)
6= 0},



CHAPTER 5. FEDERATED CONFORMAL PREDICTION UNDER LABEL
SHIFT 250

Ec = (X × Y)N+1 \ E,
F = {(z1, . . . , zN+1) ∈ (X × Y)N+1 :

∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1)) 6= 0}

In addition, combining Lemma 5.27 with the no-tie assumption on {Vk}k∈[N+1] gives
that∫

1
vN+1≤Q1−α

(∑N+1
k=1 p

z1:N+1
k δvk

)f(z1, . . . , zN+1)dz1 · · · dzN+1 (5.41)

=

∫
E∩F

N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α

(∑N+1
k̄=1

p
z1:N+1
k̄

δvk̄

)

 ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!
.

Consider the random variable V ∼∑N+1
k=1 p

z1:N+1

k δvk , we have

P

V ≤ Q1−α

N+1∑
k̄=1

p
z1:N+1

k̄
δvk̄


 =

N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α

(∑N+1
k̄=1

p
z1:N+1
k̄

δvk̄

).

Therefore, applying Lemma 5.26 on (z1, . . . , zN+1) ∈ E ∩ F implies that

1− α ≤
N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α

(∑N+1
k̄=1

p
z1:N+1
k̄

δvk̄

) ≤ 1− α+
N+1
max
k=1
{pz1:N+1

k }. (5.42)

Lastly, using that

∫
E∩F

 ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

dz1 · · · dzN+1

(N + 1)!

=

∫
E

 ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

dz1 · · · dzN+1

(N + 1)!
= 1, (5.43)

and combining the bounds (5.42)-(5.43) with (5.41) yields the result.

5.C.2 Proof of Theorem 5.2

First, recall that

I =
{

(?,N? + 1)
}
∪
{

(i, k) : i ∈ [n], k ∈ [N i]
}
.

For any {(xik, yik)}(i,k)∈I ∈ (X × Y)N+1, we define the set

D
(x?
N?+1

,y?
N?+1

)

N = {(xik, yik) : i ∈ [n], k ∈ [N i]} ∪ {(x?N?+1, y
?
N?+1)}.

We consider a bijection (φ, ϕ) between the set [N + 1] and I. This bijection is defined
for any k ∈ [N ] as follows:

(φ(k), ϕ(k)) =

(j, `) if 1 ≤ ` := k −∑j−1
i=1 N

i ≤∑j
i=1N

i

(?,N? + 1) otherwise
.
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Recall that ∀i ∈ [n] and y ∈ Y, the likelihood ratio is given by

wiy =
P iY (y)

P cal
Y (y)

,

and for all (i, k) ∈ I we write

Pi
k =

{
σ ∈ SN+1 : φ(σ(N + 1)) = i, ϕ(σ(N + 1)) = k

}
,

W i
k(D

(x?
N?+1

,y?
N?+1

)

N ) = w?yik

∑
σ∈Pik

N∏
`=1

w
φ(`)

y
φ(`)
ϕ(`)

.
(5.44)

Given the set of points D(x,y)
N , for all (i, k) ∈ I define

p?i,k =
W i
k(D

(x,y)
N )∑N+1

`=1 W
φ(`)
ϕ(`) (D

(x,y)
N )

. (5.45)

Finally, define the probability measure and the prediction set given by

µ?y = p??,N?+1δ1 +
n∑
i=1

N i∑
k=1

p?i,kδV ik
,

Cα,µ?(x) =
{

y ∈ Y : V (x,y) ≤ Q1−α(µ?y)
}
.

Theorem 5.29. If Assumption 5.1 holds, then for any α ∈ [0, 1), we have

1− α ≤ P
(
Y ?
N?+1 ∈ Cα,µ?(X?

N?+1)
)
≤ 1− α+ E

[
max

(i,k)∈I
{p?k,i}

]
,

where p?i,k is defined in (5.45).

Proof By independence, the joint density f of {(Xj
` , Y

j
` ) : (j, `) ∈ I} with respect to

(PX|Y × P cal
Y )⊗(N+1) is given for {(xik, yik) : (i, k) ∈ I} ∈ (X × Y)N+1 by

f
(

(x1
1, y

1
1), . . . , (x1

N1 , y
1
N1), . . . , (xn1 , y

n
1 ), . . . , (xnNn , ynNn), (x?N?+1, y

?
N?+1)

)
= w?y?

N?+1

n∏
j=1

Nj∏
`=1

wj
yj`
.

Using the definition of p?i,k (5.45), for all (i, k) ∈ I we have

p?i,k =
W i
k(DN+1)∑N+1

`=1 W
φ(`)
ϕ(`) (DN+1)

=

∑
σ∈Pik

f(z
φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))∑

σ∈SN+1
f(z

φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))

=

∑
σ∈SN+1 : σ(N+1)=(φ,ϕ)−1(i,k) f(z

φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))∑

σ∈SN+1
f(z

φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))

.

Therefore, applying Theorem 5.28 concludes the proof.
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5.C.3 Proof of Lemma 5.4 and Equation (5.12)

In this section, we consider a probability measure P cal
Y dominating P ?Y and suppose that

the likelihood ratios are given by w?y = P ?Y (y)/P cal
Y (y). Let {ŵ?y}y∈Y be fixed, and ∀y ∈

Y, define νy = [
∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)]−1ŵ?yP

cal
Y (y). Denote Ŷ ?

N?+1 a multinomial random

variable of parameter ν independent of the calibration dataset
{

(Xi
k, Y

i
k ) : k ∈ [N i]

}
i∈[n]

and write P(Y) the partition of the set Y. Moreover, denote P̂ ?Y the probability distri-
bution of Ŷ ?

N?+1, and consider X̂?
N?+1 such that (X̂?

N?+1, Ŷ
?
N?+1) ∼ PX|Y × P̂ ?Y .

Lemma 5.30. For any prediction set C : X → P(Y) independent of (X?
N?+1, Y

?
N?+1)

and (X̂?
N?+1, Ŷ

?
N?+1), we have

∣∣∣P(Y ?
N?+1 ∈ C(X?

N?+1))− P(Ŷ ?
N?+1 ∈ C(X̂?

N?+1))
∣∣∣ ≤ 1

2

∑
y∈Y

∣∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ .
Proof Developing the left-hand side as follows, we get∣∣∣∣P(Y ?

N?+1 ∈ C(X?
N?+1)

)
− P

(
Ŷ ?
N?+1 ∈ C(X̂?

N?+1)
)∣∣∣∣

=

∣∣∣∣∣E
[
1Y ?

N?+1
∈C(X?

N?+1
)

]
− E

[
1
Ŷ ?
N?+1

∈C(X̂?
N?+1

)

]∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
y∈Y

P cal
Y (y)

w?y − ŵ?y∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)

∫ E1y∈C(x)dPX|Y=y(x)

∣∣∣∣∣∣∣
≤ 1

2

∑
y∈Y

P cal
Y (y)

∣∣∣∣∣∣w?y − ŵ?y∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ .
Finally, using that P cal

Y (y)w?y = P ?Y (y) concludes the proof.

Remark 5.31. If for some probability atoms {mi}i∈[n] ∈ ∆n, we know good approxim-
ations ŵ?y of the likelihood ratios [(P cal

Y )−1(
∑n

i=1miP
i
Y )](y). Then, Lemma 5.30 implies

the following result:∣∣∣∣P(Y ?
N?+1 ∈ C(X?

N?+1)
)
− P

(
Ŷ ?
N?+1 ∈ C(X̂?

N?+1)
)∣∣∣∣

≤ dTV

P ?Y , n∑
i=1

miP
i
Y

+
1

2

∑
y∈Y

∣∣∣∣∣∣∣
 n∑
i=1

miP
i
Y

 (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣∣ .
Lemma 5.32. If |Y| ≥ 2 and M ∈ N?, then we have

|Y| exp

(
−Mmin

y∈Y
{P cal

Y (y)}
)
∧ 1 ≤

√
2 log |Y|

(log 2)Mminy∈Y{P cal
Y (y)} .
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Proof Introduce the set E = {2 log |Y| ≤ Mminy∈Y{P cal
Y (y)}}, we obtain

|Y| exp

(
−Mmin

y∈Y
{P cal

Y (y)}
)
∧ 1 ≤ 1E exp

(
−Mmin

y∈Y
{P cal

Y (y)}/2
)

+ 1Ec . (5.46)

We also have that for all x ≥ 0, that e−x ≤ 1/
√
x. Using this inequality on the first

right-side term implies that

exp

(
−Mmin

y∈Y
{P cal

Y (y)}/2
)
≤
√

2

Mminy∈Y{P cal
Y (y)} ≤

√
log |Y|
log 2

√
2

Mminy∈Y{P cal
Y (y)} .

Moreover, remark that

1Ec ≤ 1Ec

√
2 log |Y|

Mminy∈Y{P cal
Y (y)} .

Finally, plugging the two previous inequalities in (5.46) concludes the proof.

Recall that Mi
y denotes the number of training data on agent i associated to label y ∈ Y.

Consider the total number of local data M? =
∑

y∈Y M
i
y, the number of training data

with label y is given by My =
∑n

i=1 M
i
y, and the total number of samples on all agents

is written by M =
∑

y∈Y My. Recall that the likelihood ratios and the weights are given
for any labels (y,y) ∈ Y2 by

ŵ?y =


MM?

y

M?My
if My ≥ 1

0 otherwise
, p̂?y,y =

(M?
y/My) · 1My≥1

M? + (M?
y/My) · 1My≥1

.

For any y ∈ Y, we also consider ν ∈ ∆Q
|Y| = {p′ ∈ Q|Y|+ :

∑
y∈Y p

′
y = 1} defined by

νy =
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

.

For any parameter p ∈ ∆Q
|Y|, denote Mp a multinomial random variable independent

of the training/calibration datasets, and define Ŷ ?
N?+1 = Mν . For any set A in the

partition of Y, we haveM−1
ν (A) = ∪

p∈∆Q
|Y|
{ν−1({p})∩M−1

p (A)}. Therefore, Ŷ ?
N?+1 is a

valid random variable. Given the target coverage level 1− α, recall that the prediction
set is defined for any x ∈ X by

µ̂MLE

y = p̂?y,yδ1 +
∑n

i=1

∑N i∧N̄ i

k=1 p̂?
Y ik ,y

δV ik
, ,

Cα,µ̂MLE(x) =

{
y : V (x,y) ≤ Q1−α

(
µ̂MLE

y

)}
.

Since the considered likelihood ratios are now depending on the training dataset, it is
no longer possible to apply Lemma 5.30. However, conditioning by the training dataset,
a similar reasoning shows that∣∣∣P(Y ?

N?+1 ∈ Cα,µ̂MLE(X?
N?+1))− P(Ŷ ?

N?+1 ∈ Cα,µ̂MLE(X̂?
N?+1))

∣∣∣
≤ 1

2

∑
y∈Y

E

∣∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ . (5.47)
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By utilizing the following lemma combined with (5.47), we can control the differ-
ence between the probabilities of the events Y ?

N?+1 ∈ Cα,µ̂MLE(X?
N?+1) and Ŷ ?

N?+1 ∈
Cα,µ̂MLE(X̂?

N?+1).

Theorem 5.33. For any α ∈ (0, 1), we have

∑
y∈Y

E

∣∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ ≤ 6√
M?

+ 12

√
log |Y|+ logM?

Mminy∈Y{P cal
Y (y)} .

Proof For any y ∈ Y, introduce the following quantities: f̂?y = M?
y/M

?, f? =

{P ?Y (y)}y∈Y , f̂? = {f̂?y }y∈Y , and r̂ = {(P cal
Y (y)M/My)1My>0}y∈Y . We denote � the

Hadamard product, i.e., for any vectors a, b ∈ R|Y|, a�b is the vector of the component-
wise product between a and b. We now bound the quantity in the right-hand side of
the previous inequality, we obtain

∑
y∈Y

E

∣∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ =
∑
y∈Y

E

∣∣∣∣∣∣f?y − f̂?y + f̂?y −
f̂?y r̂y∑
ỹ∈Y f̂

?
ỹ r̂ỹ

∣∣∣∣∣∣
≤ E

∥∥∥∥∥∥f? − f̂? + f̂? − f̂? � r̂
1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥∥
1

≤ E‖f? − f̂?‖1 + E

∥∥∥∥∥∥ f̂
?〈f̂?, r̂ − 1〉 − f̂? � (r̂ − 1)

1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥∥
1

.

First, we establish the following equality that will be injected in the computation of
E‖f? − f̂?‖1.

‖f? − f̂?‖1 = max
u∈[−1/2,1/2]|Y|

〈f? − f̂?, u+ 1/2〉 = max
u∈[0,1]|Y|

〈f? − f̂?, u〉. (5.48)

Then, using the result provided by (Agrawal and Jia, 2017, Lemma C.2), for any δ ∈
(0, 1), we get

P

 max
u∈[0,1]|Y|

〈f? − f̂?, u〉 ≥
√
−2 log δ

M?

 ≤ δ. (5.49)

Looking back to E‖f? − f̂?‖1 and using the two previous identities, the following lines
hold

E‖f? − f̂?‖1 =

∫
t≥0

P
(
‖f? − f̂?‖1 ≥ t

)
dt

≤ δ +

∫
t≥δ

P
(
‖f? − f̂?‖1 ≥ t

)
dt

≤ δ +

∫
t≥δ

exp
(
−M?t2/2

)
dt using (5.48)-(5.49)

≤ δ +
1√
M?

∫
t≥δ
√
M?

exp
(
−t2/2

)
dt.

After optimizing for δ > 0, we can retrieve the following upper bound

E‖f? − f̂?‖1 ≤
1.4√
M?

.
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Let ε ∈ (0, 1/2], we have that∥∥∥∥∥∥ f̂
?〈f̂?, r̂ − 1〉 − f̂? � (r̂ − 1)

1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥∥
1

≤ 21‖r̂−1‖∞>ε +
2ε

1− ε .

Taking the expectation for both sides, it shows

E

∥∥∥∥∥∥ f̂
?〈f̂?, r̂ − 1〉 − f̂? � (r̂ − 1)

1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥∥
1

≤ 2P
(∥∥∥r̂ − 1∥∥∥

∞
> ε

)
+

2ε

1− ε .

We now upper bound the first term in the right-hand side of the inequality, we obtain

P
(∥∥∥r̂ − 1∥∥∥

∞
> ε

)
= P

max
y∈Y

∣∣∣∣∣∣P
cal
Y (y)1My>0

My/M
− 1

∣∣∣∣∣∣ > ε


≤
∑
y∈Y

P


∣∣∣∣∣∣P

cal
Y (y)1My>0

My/M
− 1

∣∣∣∣∣∣ > ε


≤
∑
y∈Y

P

My

M
<
P cal
Y (y)1My>0

1 + ε

+ P

(
My

M
>
P cal
Y (y)

1− ε

) .

(5.50)

Since the random variable My is the sum of independent Bernoulli random variables,
using the Chernoff bound it follows that

P
(
My/M < P cal

Y (y)/(1 + ε)
)
≤ exp

(
−2ε2NP cal

Y (y)/9
)
,

P
(
My/M > P cal

Y (y)/(1− ε)
)
≤ exp

(
−4ε2NP cal

Y (y)/3
)
.

(5.51)

Therefore, combining (5.50) with (5.51) gives

P
(∥∥∥r̂ − 1∥∥∥

∞
> ε

)
≤
∑
y∈Y

[
P
(
My = 0

)
+ 2 exp

(
−ε2NP cal

Y (y)/5
)]
.

Putting all the previous results together, we obtain

∑
y∈Y

P cal
Y (y)E

∣∣∣∣∣∣w?y − ŵ?y∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ ≤ 1.4√
M?

+ 4ε

+ 4
∑
y∈Y

exp
(
−2ε2NP cal

Y (y)/9
)

+
∑
y∈Y

(1− P cal
Y (y))M. (5.52)

Consider the following quantity

ε =
3

2

√
2 log |Y|+ logM?

Mminy∈Y{P cal
Y (y)} .
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If ε ≤ 1/2, it yields that∑
y∈Y

exp
(
−2ε2NP cal

Y (y)/9
)
≤
∑
y∈Y

exp
(
− log |Y| − (1/2) logM?

)
=

1√
M?

.

Therefore, combining this last inequality with (5.47)-(5.52) implies that∣∣∣P(Y ?
N?+1 ∈ Cα,µ̂MLE(X?

N?+1))− P(Ŷ ∈ Cα,µ̂MLE(X?
N?+1))

∣∣∣ ≤ 3√
M?

+ 3

√
2 log |Y|+ logM?

Mminy∈Y{P cal
Y (y)} + |Y|

(
1−min

y∈Y
{P cal

Y (y)}
)M

∧ 1.

Otherwise, if ε > 1/2, then, the last inequality immediately holds since the right-hand
term is greater than 1. Lastly, applying Lemma 5.32 concludes the proof

5.C.4 Proof of Theorem 5.12

First, for all i ∈ [n], denote by F iV : u ∈ [0, 1] 7→ P(V (X,Y ) ≤ u) ∈ [0, 1] the cumulative
distribution function of V (Xi, Y i), where (Xi, Y i) ∼ P i. Recall that N =

∑n
i=1N

i, I =
(i, k) : i ∈ [n], k ∈ [N i]∪{(?,N?+1)}, and also that there is almost surely no ties between
the {V (Xi

k, Y
i
k )}(i,k)∈I . To simplify the notation, we re-index {(Xi

k, Y
i
k , V

i
k )}(i,k)∈I into

{Xk, Yk, Vk}k∈[N+1], sorted such that {Vk}k∈[N+1] is non-decreasing.

Now, we consider α ∈ [0, 1]\Q. Using Theorem 5.16, this condition ensures the existence

and uniqueness of kopt ∈ [N + 1] such that Vkopt = arg minq∈R

{
EV∼µ̂y

[
Sα,V (q)

]}
, and

this condition also proves the existence and uniqueness ofQγ1−α minimizing {EV∼µ̂y [Sγα,V (q)] : q ∈
R}. Moreover, for any k ∈ [N + 1] \ {kopt}, define

ρ̂kc =


∑

` : V`∈(Vkopt
,Vk] p̂

?
Y`,Y

?
N?+1

, if k > kopt∑
` : V`∈[Vk,Vkopt

) p̂
?
Y`,Y

?
N?+1

, if k < kopt

. (5.53)

Lemma 5.34. Let α ∈ [0, 1]\Q, for any Vk ∈ [min(Q̂γ1−α,T (µ̂y), Vkopt),max(Q̂γ1−α,T (µ̂y), Vkopt)],
we have

|Q̂γ1−α,T (µ̂y)− Vk| ≤ ρ̂−1
kc

(
Sγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y))

)
+ ρ̂−1

kc
γ,

where ρ̂kc is given in (5.53).

Proof First, suppose that Vkopt ≤ Vk < Q̂γ1−α,T (µ̂y). Since ∂Sα,µ̂y(Vk) = ρ̂kc +
∂Sα,µ̂y(Vkopt), the convexity of Sα,µ̂y implies that

Q̂γ1−α,T (µ̂y)− Vk ≤ ρ̂−1
kc

(
Sα,µ̂y(Q̂γ1−α,T (µ̂y))− Sα,µ̂y(Vk)

)
≤ ρ̂−1

kc

(
Sγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y))

)
+ ρ̂−1

kc
γ. (5.54)

The last inequality holds since ‖Sγα−Sα,µ̂y‖∞ ≤ γ/2. Moreover, (5.54) is immediately
satisfied when Vk = Q̂γ1−α,T (µ̂y). Therefore, (5.54) holds for all Vk ∈ [Vkopt , Q̂

γ
1−α,T (µ̂y)].

Finally, the same lines show that (5.54) is also satisfied when Q̂γ1−α,T (µ̂y) ≤ Vk ≤ Vkopt .
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For any γ > 0 and T ∈ N?, recall that Qγ1−α(µ̂y) and Q̂γ1−α,T (µ̂y) are defined in (5.14),
(5.18). Consider

CγT =
2N
∑

y∈Y P
cal
Y (y)ŵ?y

miny∈Y ŵ?y

[
ESγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y)) + γ

]
(5.55)

and define

kc =


kopt + Ent

(√
mNCγT
2 logN

)
if kopt + Ent

(√
mNCγT
2 logN

)
≤ N + 1

kopt − Ent

(√
mNCγT
2 logN

)
otherwise

. (5.56)

Lemma 5.35. Assume there exists m > 0 such that for any i ∈ [n], P iV admits a density
f iV with respect to the Lebesgue measure that satisfies m ≤ f iV . Fix α ∈ [0, 1] \ Q, and
suppose that CγT < 2m−1N logN . We have kc ∈ [N + 1], and with probability at least
m(2N logN)−1 +N−2 the next inequality holds

|Vkc − Vkopt | ≤
√

2CγT logN

mN
+

2 logN

mN
.

Proof Since we suppose α ∈ [0, 1]\Q, we can apply Theorem 5.16 to prove the existence
and uniqueness of kopt ∈ [N + 1] such that Q1−α(µ̂y) = Vkopt . Since by assumption we
have

mNCγT
2 logN

< (N + 1)2.

Therefore, it holds that

Ent


√
mNCγT
2 logN

 ≤ N.
Hence, we deduce that kc ∈ [N + 1]. Next, consider

LN =
2 logN

mN

and denote by PN the partitioned obtained by splitting the interval [0, 1] into intervals
of length LN . Finally, define

AN =
{
∀S ∈ PN ,∃(i, k) ∈ I, V i

k ∈ S
}
.

Note that |PN | = d1/LNe ≤ mN/(2 logN) + 1 and log(1−mLN ) ≤ −mLN , thus

P
(
AN
)
≤
∑
S∈PN

∏
(i,k)∈I

P
(
V i
k /∈ S

)

≤
∑
S∈PN

n∏
i=1

P
(
V i

1 /∈ S
)N i+1?(i)
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≤ |PN |(1−mLN )N+1

≤
(
mN/(2 logN) + 1

)
exp

(
−m(N + 1)LN

)
≤ m

2N logN
+

1

N2
.

Without loss of generality, we can assume that kopt < kc. Denote K = {kopt, . . . , kc}
the indices between kc and kopt. Consider S = {I ∈ PN : ∃k ∈ K,Vk ∈ I}, on the event
AN we get

|Vkc − Vkopt | ≤
∑
I∈S
|I|

≤ LN (|kc − kopt|+ 1)

≤ LN

√
mNCγT
2 logN

+ LN =
√
CγTLN + LN .

Lemma 5.36. For any (i, k) ∈ I, assume that (Xi
k, Y

i
k ) is distributed according to

PX|Y × P iY and suppose the random variables are pairwise independent. We have

P

min
y∈Y

p̂?y,Y ?
N?+1

<
miny∈Y ŵ

?
y

2N
∑

y∈Y P
cal
Y (y)ŵ?y

 ≤ 4 Var(ŵ?
Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

.

Proof First, recall that I = {(i, k) : i ∈ [n], k ∈ [N i]} ∪ {(?,N? + 1)}. We have

E

 ∑
(i,k)∈I

ŵ?Y ik

 =

n∑
i=1

∑
y∈Y

(
N i + 1?(i)

)
P iY (y)ŵ?y

=
∑
y∈Y

P ?Y (y)ŵ?y +N
∑
y∈Y

 n∑
i=1

πiP
i
Y (y)

 ŵ?y

=
∑
y∈Y

[
P ?Y (y) +NP cal

Y (y)
]
ŵ?y.

Therefore, using the Bienaymé-Tchebytchev inequality implies that

P

 min
(i,k)∈I

{p̂?Y ik ,Y ?N?+1
} <

miny∈Y ŵ
?
y

2N
∑

y∈Y P
cal
Y (y)ŵ?y


= P

 min
(i,k)∈I

{ŵ?Y ik} <
miny∈Y ŵ

?
y

2N
∑

y∈Y P
cal
Y (y)ŵ?y

∑
(i,k)∈I

ŵ?Y ik


≤ P

 ∑
(i,k)∈I

ŵ?Y ik
≥ 2N

∑
y∈Y

P cal
Y (y)ŵ?y
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≤ P

 n∑
i=1

N i∑
k=1

(
ŵ?Y ik
− Eŵ?Y ik

)
≥ N

2

∑
y∈Y

P cal
Y (y)ŵ?y

+ P

ŵ?Y ?
N?+1

≥ N

2

∑
y∈Y

P cal
Y (y)ŵ?y


≤

4 Var(ŵ?
Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

.

Theorem 5.37. Assume there exist m,M > 0 such that for any i ∈ [n], P iV admits
a density f iV with respect to the Lebesgue measure that satisfies m ≤ f iV ≤ M . Let
α ∈ [0, 1] \Q, and suppose that CγT < 2m−1N logN . It holds

∣∣∣P(Y ?
N?+1 ∈ Ĉγα,µ̂(X?

N?+1))− P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1))
∣∣∣ ≤ 3M

√
2CγT logN

mN

+
2M logN

mN
+

4 Var(ŵ?
Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

+
m

2N logN
+

1

N2
, (5.57)

where CγT is defined in (5.55).

Proof Using the definitions of Ĉγα,µ̂(X?
N?+1), Cα,µ̂(X?

N?+1) provided in Algorithm 5.11
and (5.9), we can write

P(Y ?
N?+1 ∈ Ĉγα,µ̂(X?

N?+1))− P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1))

= P
(
V (X?

N?+1, Y
?
N?+1) ≤ Q̂γ1−α,T (µ̂y)

)
− P

(
V (X?

N?+1, Y
?
N?+1) ≤ Q1−α(µ̂y)

)
.

(5.58)

Recall that kopt = arg mink∈[N+1] EV∼µ̂y [Sγα,V (Vk)] is a random variable and consider
the event

BN =

{
|Vkc − Vkopt | ≤

√
CγTLN + LN

}
∩

min
y∈Y

p̂?y,Y ?
N?+1

≥
miny∈Y ŵ

?
y

2N
∑

y∈Y P
cal
Y (y)ŵ?y


and denote byBc

N its complement. Since V (X?
N?+1, Y

?
N?+1) and {Q̂γ1−α,T (µ̂y), Q1−α(µ̂y)}

are independent, we have∣∣∣P(V (X?
N?+1, Y

?
N?+1) ≤ Q̂γ1−α,T (µ̂y))− P(V (X?

N?+1, Y
?
N?+1) ≤ Q1−α(µ̂y))

∣∣∣
=

∣∣∣∣∣E
[
1
V (X?

N?+1
,Y ?
N?+1

)≤Q̂γ1−α,T (µ̂y)
− 1V (X?

N?+1
,Y ?
N?+1

)≤Q1−α(µ̂y)

]∣∣∣∣∣
≤ P

(
Bc
N

)
+ E

[
1BN

∣∣∣FV ?(Q̂γ1−α,T (µ̂y))− FV ?(Q1−α(µ̂y))
∣∣∣] . (5.59)

The following inequality holds∣∣∣FV ?(Q̂γ1−α,T (µ̂y))− FV ?(Q1−α(µ̂y))
∣∣∣ ≤ ‖FV ?(·+ Q̂γ1−α,T (µ̂y)−Q1−α(µ̂y))− FV ?‖∞.
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Thus, using that FV ? is M -Lipschitz, we get

E
[
1BN ‖FV ?(·+ Q̂γ1−α,T (µ̂y)−Q1−α(µ̂y))− FV ?‖∞

]
≤ME

[
1BN |Q̂γ1−α,T (µ̂y)−Q1−α(µ̂y)|

]
.

(5.60)
Furthermore, we have

E
[
1BN |Q̂γ1−α,T (µ̂y)−Q1−α(µ̂y)|

]
≤ E

[
1BN

∣∣∣Vkc − Vkopt

∣∣∣]
+ E

[
1
Vkc∈[min(Q̂γ1−α,T (µ̂y),Vkopt

),max(Q̂γ1−α,T (µ̂y),Vkopt
)]
|Q̂γ1−α,T (µ̂y)− Vkc |

]
.

Applying Lemma 5.34, this implies that

1
Vkc∈[min(Q̂γ1−α,T (µ̂y),Vkopt

),max(Q̂γ1−α,T (µ̂y),Vkopt
)]
|Q̂γ1−α,T (µ̂y)− Vkc |

≤

ρ̂−1
kc

(
Sγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y))

)
+ ρ̂−1

kc
γ if kc 6= kopt

0 otherwise
,

where recall that ρ̂kc is defined in (5.53) and also that I = {(i, k) : i ∈ [n], k ∈ [N i]} ∪
{(?,N? + 1)}. Moreover, on the event BN , we immediately have that

ρ̂kc ≥ |kc − kopt| min
(i,k)∈I

{p̂?Y ik ,Y ?N?+1
} ≥
|kc − kopt|miny∈Y ŵ

?
y

2N
∑

y∈Y P
cal
Y (y)ŵ?y

.

Finally, recall that kc is given in (5.56) and suppose that CγT < 2m−1N logN . Therefore,
using the bound provided in Lemma 5.35 implies that

E
[
1BN |Q̂γ1−α,T (µ̂y)−Q1−α(µ̂y)|

]
≤ E

[
1BN

∣∣∣Vkc − Vkopt

∣∣∣]+ E


(
ESγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y)) + γ

)
1kc 6=kopt

(2N
∑

y∈Y P
cal
Y (y)ŵ?y)

−1|kc − kopt|miny∈Y ŵ?y


≤
√

2CγT logN

mN
+

2 logN

mN
+
CγT1mNCγT≥2 logN

Ent

(√
mNCγT
2 logN

) . (5.61)

Combining (5.58)-(5.59)-(5.60)-(5.61) shows that∣∣∣P(Y ?
N?+1 ∈ Ĉγα,µ̂(X?

N?+1))− P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1))
∣∣∣

≤ P
(
Bc
N

)
+M

3

√
2CγT logN

mN
+

2 logN

mN

 . (5.62)

Using Lemma 5.36 gives that

P
(
Bc
N

)
≤

4 Var(ŵ?
Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

+
m

2N logN
+

1

N2
. (5.63)

Lastly, plugging (5.63) into (5.62) concludes the proof when CγT < 2m−1N logN . How-
ever, if CγT ≥ 2m−1N logN then (5.57) immediately holds. Thus, (5.57) always holds.
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5.C.5 Proofs of Theorem 5.3 and Theorem 5.5

Recall that {πi}i∈[n] ∈ ∆n and P cal =
∑n

i=1 πiP
i. Moreover, draw (X̂?

N?+1, Ŷ
?
N?+1)

according to PX|Y × P̂ ?Y , where P̂ ?Y is defined in Section 5.C.3 and denote V̂N+1 =

V (X̂?
N?+1, Ŷ

?
N?+1). In the following paragraph, we explain how to construct a sequence

{Vk}k∈[N ] of i.i.d. random variables distributed according to P cal(V ) – see Lemma 5.38,
where P cal(V ) denotes the distribution of V (X,Y ) with (X,Y ) ∼ P cal. We also explain
the construction of a bijection ψ : {(i, k) : i ∈ [n], k ∈ [N i]} → [N ]. For all k ∈ [N ], draw
Mk according to a categorical random variable with parameter {πi}i∈[n] and define
N̄ i
k =

∑k
l=1 1{i}(Ml). If N̄Mk

k ≤ NMk then define (Xk, Yk) ← (XMk

N̄
Mk
k

, YMk

N̄
Mk
k

) and

ψ(Mk, N̄
Mk
k ) = k. Else N̄Mk

k > NMk , then draw (Xk, Yk) according to PMk – where
we recall that PMk is the distribution of calibration of agent Mk ∈ [n]. If there exists
k ∈ [N ] such that N̄Mk

k > NMk , consider

J0 =
{
k ∈ [N ] : N̄Mk

k > NMk

}
, J1 =

{
(i, k) ∈ [n]× N : N̄ i

N < k ≤ N i
}
.

Since the following inequalities hold:

Card(J0) +

n∑
i=1

min(N i, N̄ i
N ) = N, Card(J1) +

n∑
i=1

min(N i, N̄ i
N ) = N,

we deduce that Card(J0) = Card(J1). Moreover, using the existence of k ∈ [N ] such
that N̄Mk

k > NMk , we deduce that J0 6= ∅. Therefore, there exists a bijection ϕ : J0 →
J1. We have previously defined ψ on {(i, k) : i ∈ [n], k ∈ [N i]}\J1. For any k ∈ J0, define
ψ(ϕ(k)) = k. Remark, ψ is now correctly defined on {(i, k) : i ∈ [n], k ∈ [N i]} → [N ].

Lemma 5.38. Denote P cal(V ) the distribution of V (X,Y ) with (X,Y ) ∼ P cal. The
sequence {Vk}k∈[N ] is a sequence of i.i.d. random variables distributed according to
P cal(V ).

Proof Let h : RN → R be a continuous and bounded function, we have

E
[
h(V1, . . . , VN )

]
=

∑
i1,...,iN∈[n]

 N∏
k′=1

πik′

∫ h(v1, . . . , vN )
N∏
k=1

dP ik(vk)

=
∑

i1,...,iN−1∈[n]

N−1∏
k′=1

πik′

∫ h(v1, . . . , vN )
N−1∏
k=1

dP ik(vk)

 n∑
i=1

πidP
i

 (vN )

=
∑

i1,...,iN−1∈[n]

N−1∏
k′=1

πik′

∫ h(v1, . . . , vN )

N−1∏
k=1

dP ik(vk)dP
cal(vN )

= · · · =
∫
h(v1, . . . , vN )

N∏
k=1

dP cal(vk).

This last line concludes the proof.
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In the following, we consider general likelihood ratios {ŵ?y}y∈Y and recall that w?y =

P ?Y (y)/P cal
Y (y). In addition, let N̄ ∈ [N ], denote for any i ∈ [n], k ∈ [N i∧ N̄ i

N̄
], k′ ∈ [N̄ ],

Vk′ = V (Xk′ , Yk′) and define

D̄
Ŷ ?
N?+1

= {Ŷ ?
N?+1} ∪ {Yk : k ∈ [N̄ ]}, D̂

Ŷ ?
N?+1

= {Ŷ ?
N?+1} ∪ {Yk : i ∈ [n], k ∈ [N i ∧ N̄ i

N̄ ]}

p̄
D̄
Ŷ ?
N?+1

Yk′
=

ŵ?Yk′

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

, p̂
D̂
Ŷ ?
N?+1

Y ik
=

ŵ?
Y ik

ŵ?
Ŷ ?
N?+1

+
∑n

j=1

∑Nj∧N̄j

N̄
l=1 ŵ?

Y jl

.

(5.64)

Moreover, consider p̄
D̄
Ŷ ?
N?+1

Ŷ ?
N?+1

= ŵ?
Ŷ ?
N?+1

(ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

)−1 and p̂
D̂
Ŷ ?
N?+1

Ŷ ?
N?+1

= ŵ?
Ŷ ?
N?+1

(ŵ?
Ŷ ?
N?+1

+∑n
j=1

∑Nj∧N̄j

N̄
l=1 ŵ?

Y jl
)−1. Lastly, define

X =
N̄∑
k=1

p̄
D̄
Ŷ ?
N?+1

Yk
1
Vk<V̂N+1

,

δ =

n∑
i=1

N i∧N̄ i
N̄∑

k=1

p̂
D̂
Ŷ ?
N?+1

Y ik
1
V ik<V̂N+1

−
N̄∑
k=1

p̄
D̄
Ŷ ?
N?+1

Yk
1
Vk<V̂N+1

.

(5.65)

Lemma 5.39. For any {πi}i∈[n] ∈ ∆n, it holds

− ε− P
(
δ ≤ −ε

)
≤ P

V̂N+1 ≤ Q1−α

∑n
i=1

∑N i∧N̄ i
N̄

k=1 p̂
D̂
Ŷ ?
N?+1

Y ik
δV ik

+ p̂
D̂
Ŷ ?
N?+1

Ŷ ?
N?+1

δ1


− 1 + α

≤ E

N̄+1
max
k=1
{p̄
D̄
Ŷ ?
N?+1

Yk
}

+ ε+ P
(
δ ≥ ε

)
,

where p̄
D̄
Ŷ ?
N?+1

Yk
and p̂

D̂
Ŷ ?
N?+1

Y ik
are defined in (5.64).

Proof By the definition of the quantile combined with (5.65), we getV̂N+1 ≤ Q1−α

∑n
i=1

∑N i∧N̄ i
N̄

k=1 p̂
D̂
Ŷ ?
N?+1

Y ik
δV ik

+ p̂
D̂
Ŷ ?
N?+1

Ŷ ?
N?+1

δ1


 ⇐⇒ (

X + δ > α
)
.

Therefore, it holds that

P

V̂N+1 ≤ Q1−α

∑n
i=1

∑N i∧N̄ i
N̄

k=1 p̂
D̂
Ŷ ?
N?+1

Y ik
δV ik

+ p̂
D̂
Ŷ ?
N?+1

Ŷ ?
N?+1

δ1




= E
[
1X>α

]
+ E

[
1X+δ>α − 1X>α

]
. (5.66)

Remark that

1X>α+ε − 1X>α − 1δ≤−ε ≤ 1X+δ>α − 1X>α ≤ 1X>α−ε − 1X>α + 1δ≥ε. (5.67)
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Thus, combining (5.67) with (5.66) gives

P
(
X > α+ ε

)
− P

(
δ ≤ −ε

)
≤ P

V̂N+1 ≤ Q1−α

∑n
i=1

∑N i∧N̄ i
N̄

k=1 p̂
D̂
Ŷ ?
N?+1

Y ik
δV ik

+ p̂
D̂
Ŷ ?
N?+1

Ŷ ?
N?+1

δ1




≤ P
(
X > α− ε

)
+ P

(
δ ≥ ε

)
. (5.68)

Consider α̃ ∈ (0, 1),

(X > α̃) ⇐⇒

V̂N+1 ≤ Q1−α̃

p̄D̄Ŷ ?N?+1

Ŷ ?
N?+1

δ1 +
∑N̄

k=1 p̄
D̄
Ŷ ?
N?+1

Yk
δVk


 .

Hence P(X > α̃) = P(V̂N+1 ≤ Q1−α̃(p̄
D̄
Ŷ ?
N?+1

Ŷ ?
N?+1

δ1 +
∑N̄

k=1 p̄
D̄
Ŷ ?
N?+1

Yk
δVk)). Applying The-

orem 5.28 gives that

0 ≤ P

V̂N+1 ≤ Q1−α̃

p̄D̄Ŷ ?N?+1

Ŷ ?
N?+1

δ1 +
∑N̄

k=1 p̄
D̄
Ŷ ?
N?+1

Yk
δVk


−1+α̃ ≤ E

N̄+1
max
k=1
{p̄
D̄
Ŷ ?
N?+1

Yk
}

 .
Therefore, plugging the previous inequality into (5.68) concludes the proof.

Recall that (ŵ?Y1
− Eŵ?Y1

) is σ-sub Gaussian if for any s ∈ R, the following inequality
holds ∫

y∈Y
exp

s[ŵ?y − ∫
y′∈Y

ŵ?y′dP
cal
Y (y′)

] dP cal
Y (y) ≤ exp

(
σ2s2

2

)
.

Lemma 5.40. Assume the random variable (ŵ?Y1
−Eŵ?Y1

) is σ-sub Gaussian with para-
meter σ ≥ 0. For any ε ≥ 8σ2 logN/(N̄E[ŵ?Y1

]2) and {πi}i∈[n] ∈ ∆n, we have

P
(∣∣δ∣∣ > ε

)
≤ P

 n∑
i=1

(
N̄ i
N̄ −N i

)
+
>
Nε

4

+
4 Var

(
ŵ?Y1

)
N̄E

[
ŵ?Y1

]2 +
1

N
,

where δ is defined in (5.65).

Proof First, denote J0 = J0 ∩ [N̄ ] and remark that Card(J0) =
∑n

i=1(N̄ i
N̄
− N i)+.

Moreover, recall that δ is defined by

δ =

n∑
i=1

N i∧N̄ i
N̄∑

k=1

p̂D̂Ŷ ?N?+1

Y ik
− p̄

D̄
Ŷ ?
N?+1

Yψ(i,k)

1V ik<VN+1
−
∑
k∈J0

p̄
D̄
Ŷ ?
N?+1

Yk
1
Vk<V̂N+1

.

Using definition of the weighs p̄D̄ given in (5.64) and the definition of ψ provide at the
beginning of this section, note that∑

k∈J0

p̄
D̄
Ŷ ?
N?+1

Yψ(i,k)
1
Vk<V̂N+1

≤
∑

k∈J0
ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

. (5.69)
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From the definition of p̂
D̂
Ŷ ?
N?+1

Y ik
and p̄

D̄
Ŷ ?
N?+1

Yψ(i,k)
provided in (5.64), we obtain

n∑
i=1

N i∧N̄ i
N∑

k=1

p̂D̂Ŷ ?N?+1

Y ik
− p̄

D̄
Ŷ ?
N?+1

Yψ(i,k)

1V ik<VN+1

=

n∑
i=1

N i∧N̄ i
N∑

k=1

 ŵ?
Y ik
1V ik<VN+1

ŵ?
Ŷ ?
N?+1

+
∑n

j=1

∑
l∈Ji ŵ

?
Y jl

−
ŵ?
Y ik
1V ik<VN+1

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

 ,

=

 1∑
l∈[N̄+1]\J0

ŵ?Yl
− 1∑

l∈[N̄+1]\J0
ŵ?Yl +

∑
l∈J0

ŵ?Yl

 ∑
k∈[N̄ ]\J0

ŵ?Yk1V ik<VN+1
.

Therefore, we know that∣∣∣∣∣∣∣
n∑
i=1

N i∧N̄ i
N∑

k=1

p̂D̂Ŷ ?N?+1

Y ik
− p̄

D̄
Ŷ ?
N?+1

Yψ(i,k)

1V ik<VN+1

∣∣∣∣∣∣∣ ≤
∑

k∈J0
ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

.

Hence, plugging the previous line into (5.65) combined with (5.69) gives

∣∣δ∣∣ ≤ 2
∑

k∈J0
ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

. (5.70)

Moreover, define the following event:

EN =


n∑
i=1

(
N̄ i
N̄ −N i

)
+
≤ Nε

4

 .

Next, using the event EN , we decompose the following probability

P


∑

k∈J0
ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

≥ ε

2
;EN

 ≤ P

∑
k∈J0

ŵ?Yk ≥
εN̄E

[
ŵ?Y1

]
4

;EN



+ P

ŵ?
Ŷ ?
N?+1

+
N̄∑
l=1

ŵ?Yl <
N̄E

[
ŵ?Y1

]
2

 . (5.71)

Since the {ŵ?Yk}k∈[N ] are σ-sub Gaussian, the first term of the previous right-hand side
inequality is upper bounded thanks to Hoeffding’s inequality

P

∑
k∈J0

ŵ?Yk ≥
εN̄E

[
ŵ?Y1

]
4

;EN

 = E

P
∑
k∈J0

ŵ?Yk ≥
εN̄E

[
ŵ?Y1

]
4

∣∣∣∣Card(J0)

1EN


≤ exp

−(εN̄/4)2E[ŵ?Y1
]2

2Card(J0)σ2

 ≤ 1

N
, (5.72)



CHAPTER 5. FEDERATED CONFORMAL PREDICTION UNDER LABEL
SHIFT 265

where the last inequality holds by setting ε ≥ 8σ2 logN/(N̄E[ŵ?Y1
]2). Moreover, since

ŵ?Y1
≥ 0 almost surely, from the Chebyshev inequality we deduce that

P

ŵ?
Ŷ ?
N?+1

+

N̄∑
l=1

ŵ?Yl <
N̄E

[
ŵ?Y1

]
2

 ≤ 4 Var
(
ŵ?Y1

)
N̄E

[
ŵ?Y1

]2 . (5.73)

Therefore, combining (5.71), (5.72) and (5.73) shows

P


∑

k∈J0
ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

≥ ε

4
;EN

 ≤ 1

N
+

4 Var
(
ŵ?Y1

)
N̄E

[
ŵ?Y1

]2 . (5.74)

Lastly, using (5.70) we derive the next inequality:

P
(∣∣δ∣∣ > ε

)
≤ 1− P

(
EN
)

+ P


∑

k∈J0
ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄

l=1 ŵ
?
Yl

≥ ε

2
;EN

 .

Plugging (5.74) into the previous line completes the proof.

Lemma 5.41. For any i ∈ [n], consider πi = N i/N and 2N̄ ≤ N . We have

P

 n∑
i=1

(
N̄ i
N̄ −N i

)
+
>

7

4
log(nN)

∑
j : N

j

6
<log(nN)

√
N j

 ≤ 1

N
. (5.75)

Proof First, define ε = 7[log(nN)/N ]
∑

j∈A
√
N j where we consider the following set

A =
{
i ∈ [n] : N i < 6 log(nN)

}
.

If A 6= ∅, for all i ∈ A take

αi =

√
πi∑

j∈A
√
πj
.

Using the union bound, we get

P

 n∑
i=1

(
N̄ i
N̄ −N i

)
+
>
Nε

4

 ≤ ∑
i∈[n]\A

P
(
N̄ i
N̄ ≥ N i

)
+
∑
i∈A

P

(
N̄ i
N̄ ≥ N i +

αiNε

4

)
.

(5.76)
If i ∈ [n] \A, then applying the Chernoff bound gives

P
(
N̄ i
N̄ ≥ N i

)
≤ exp

(
− πi(N − N̄)

1 + 2N̄/(N − N̄)

)
≤ exp

(
−πiN

6

)
≤ 1

nN
. (5.77)

If i ∈ A, then applying the Bernstein inequality gives

P

(
N̄ i
N̄ ≥ N i +

αiNε

4

)
≤ exp

(
− (αiNε/4)2

2N̄πi(1− πi) + αiNε/6

)
. (5.78)
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Moreover, we can suppose that n ≥ 2 otherwise (5.75) immediately holds. Thus, nN ≥ 4
and using the fact that 2N̄ ≤ N we deduce that

4

2

3
+

√
2N̄

N log(nN)

 ≤ 7.

Therefore, it follows

Nε ≥ 4 log(nN)

2

3
+

√
2N̄

N log(nN)

∑
j∈A

√
N j .

The last inequality is enough to ensure that

(Nε)2/8

4(N̄/N)(
∑

j∈A
√
N j)2 +Nε

∑
j∈A
√
N j/3

≥ log(nN). (5.79)

Moreover, using the definition of αi implies

(αiNε/4)2

2N̄πi(1− πi) + αiNε/6
≥ (Nε)2/8

4(N̄/N)(
∑

j∈A
√
N j)2 +Nε

∑
j∈A
√
N j/3

.

Hence, combining (5.78) with (5.79) shows that

P

(
N̄ i
N̄ ≥ N i +

αiNε

4

)
≤ 1

nN
. (5.80)

Finally, plugging (5.77) and (5.80) into (5.76) yields the result.

Lemma 5.42. Recall that {p̄
D̄
Ŷ ?
N?+1

Yk
}k∈[N̄ ] is defined in (5.64) and for the sake of sim-

plicity define YN̄+1 = Ŷ ?
N?+1. If ‖ŵ‖∞ <∞, then

E

[
N̄+1
max
k=1

p̄
D̄YN̄+1

Yk

]
≤ 2‖ŵ‖∞
N̄EŵY1

+
4

N̄(EŵY1)2

(
Var(ŵY1) +

Var(ŵYN̄+1
)

N̄

)
.

Moreover, if the random variables (ŵYk − EŵYk)k∈[N̄+1] are σ-subGaussian with para-
meter σ ≥ 0, then

E

[
N̄+1
max
k=1

p̄
D̄YN̄+1

Yk

]
≤ σ

√
8 log(N̄ + 1)

N̄EŵY1

+
2

N̄

(
1 ∨

EŵYN̄+1

EŵY1

+
2 Var(ŵY1)

(EŵY1)2
+

2 Var(ŵYN̄+1
)

N̄(EŵY1)2

)
.

Proof By definition of the probabilities {p̄
D̄YN̄+1

Yk
}k∈[N̄+1], we have

E

[
N̄+1
max
k=1
{p̄
D̄YN̄+1

Yk
}
]

= E

maxN̄+1
k=1

{
ŵYk

}
∑N̄+1

l=1 ŵYl

 .
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The expectation is split by introducing AN+1 = {∑N̄+1
l=1 ŵYl ≤ (N̄EŵY1 + EŵYN̄+1

)/2},
we obtain

E

maxN̄+1
k=1

{
ŵYk

}
∑N̄+1

l=1 ŵYl

 ≤ 2

N̄EŵY1

E

[
1AcN+1

· N̄+1
max
k=1

{
ŵYk

}]
+ P

(
AN+1

)
. (5.81)

Using the Chebyshev’s inequality it follows that

P
(
AN+1

)
= P

2
N̄+1∑
k=1

ŵYk < N̄EŵY1 + EŵYN̄+1


≤ 4

N̄(EŵY1 + EŵYN̄+1
/N̄)2

(
Var(ŵY1) +

Var(ŵYN̄+1
)

N̄

)
. (5.82)

When ŵ is bounded, combining (5.81) with (5.82) gives

E

N̄+1
max
k=1
{p̄
D̄
Ŷ ?
N?+1

Yk
}

 ≤ 2‖ŵ‖∞
N̄EŵY1

+ P
(
AN+1

)

≤ 2‖ŵ‖∞
N̄EŵY1

+
4

N̄(EŵY1)2

(
Var(ŵY1) +

Var(ŵYN̄+1
)

N̄

)
.

Otherwise, if we suppose that the (ŵYk − EŵYk)k∈[N̄+1] are σ-sub-Gaussian, then ap-
plying the result given in (Boucheron et al., 2013, Section 2.5) combined with (5.81)-
(5.82) concludes the proof since it follows that E[maxN̄+1

k=1 {ŵYk}] ≤ maxN̄+1
k=1 {EŵYk} +

σ
√

2 log(N̄ + 1).

Finally, for any point (x,y) ∈ X × Y, define the following measure and prediction set

µ̂y = p̂
D̂y
y δ1 +

∑n
i=1

∑N i∧N̄ i
N̄

k=1 p̂
D̂y

Y ik
δV ik

Cα,µ̂(x) =
{

y ∈ Y : V (x,y) ≤ Q1−α(µ̂y)
}
.

Theorem 5.43. For any i ∈ [n], let πi = N i/N and consider N̄ = bN/2c. If ‖ŵ?‖∞ <
∞, then it holds

∣∣∣∣P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1)
)
− 1 + α

∣∣∣∣ ≤ 1

2

∑
y∈Y

∣∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣
+

6

N
+

36‖ŵ‖2∞
N(EŵY1)2

+
2 logN

N

(
3‖ŵ‖2∞
(Eŵ?Y1

)2
∨ 7
∑

j : N
j

12
<logN

√
N j

)
.

Proof Using Lemma 5.30 implies that∣∣∣∣P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1)
)
− P

(
Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1)
)∣∣∣∣
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≤ 1

2

∑
y∈Y

P cal
Y (y)

∣∣∣∣∣∣w?y − ŵ?y∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)

∣∣∣∣∣∣ . (5.83)

Since {ŵ?y}y∈Y are bounded, we deduce that ŵ?Y1
is σ-subGaussian with σ = 2−1(maxy∈Y{ŵ?y}−

miny∈Y{ŵ?y}). Therefore, the inequality derived in Lemma 5.41 combined with Lemma 5.40
provide an upper bound on P(|δ| > ε) with

ε =
8σ2 logN

N̄E[ŵ?Y1
]2
∨

7 log(nN)
∑

j : N
j

6
<log(nN)

√
N j

N
.

Plugging this result into the bound derived in Lemma 5.39 shows that∣∣∣∣P(Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1)
)
− 1 + α

∣∣∣∣ ≤ E

p̄D̄Ŷ ?N?+1

Ŷ ?
N?+1

∨ N̄
max
k=1
{p̄
D̄
Ŷ ?
N?+1

Yk
}

+
2

N

+
4 Var

(
ŵ?Y1

)
N̄(Eŵ?Y1

)2
+

8σ2 logN

N̄E[ŵ?Y1
]2
∨

7 log(nN)
∑

j : N
j

6
<log(nN)

√
N j

N
. (5.84)

Moreover, applying Lemma 5.42, we deduce that

E

p̄D̄Ŷ ?N?+1

Ŷ ?
N?+1

∨ N̄
max
k=1
{p̄
D̄
Ŷ ?
N?+1

Yk
}

 ≤ 2‖ŵ‖∞
N̄EŵY1

+
4

N̄(EŵY1)2

Var(ŵY1) +
Var(ŵ

Ŷ ?
N?+1

)

N̄

 .

(5.85)

Therefore, combining (5.84) with (5.85) implies that

∣∣∣∣P(Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1)
)
− 1 + α

∣∣∣∣ ≤ 2

N̄

N̄
N

+
‖ŵ‖∞
EŵY1

+
4 Var

(
ŵ?Y1

)
(Eŵ?Y1

)2
+

2 Var(ŵ
Ŷ ?
N?+1

)

N̄(EŵY1)2


+

8σ2 logN

N̄(Eŵ?Y1
)2
∨

14 logN
∑

j : N
j

6
<log(nN)

√
N j

N
.

If N ≥ 6, then remark that N/N̄ ≤ 3. Thus, we deduce that

∣∣∣∣P(Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1)
)
− 1 + α

∣∣∣∣ ≤ 6

N

1 +
‖ŵ‖∞
EŵY1

+
4 Var

(
ŵ?Y1

)
(Eŵ?Y1
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+

Var(ŵ
Ŷ ?
N?+1
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+

24σ2 logN

N(Eŵ?Y1
)2
∨

14 logN
∑

j : N
j

12
<logN

√
N j

N
. (5.86)

Finally, using the next inequality combined with (5.83) and (5.86) concludes the proof

P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1)) = P(Y ?
N?+1 ∈ Cα,µ̂(X?

N?+1))− P(Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1))

+ P(Ŷ ?
N?+1 ∈ Cα,µ̂(X̂?

N?+1)).

The proof of the following result is similar to that of Theorem 5.43.
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Theorem 5.44. For any i ∈ [n], let πi = N i/N and set N̄ = bN/2c. Moreover, for
y ∈ Y consider ŵ?y = w?y. If ‖w?‖∞ <∞, then it holds∣∣∣∣P(Y ?

N?+1 ∈ Cα,µ̂(X?
N?+1)

)
− 1 + α

∣∣∣∣ ≤ 6

N
+

36 + 6 logN

N
‖w?‖2∞

+
14 logN

N

∑
j : N

j

12
<logN

√
N j .

Proof First, for y ∈ Y recall that w?y = (P ?Y /P
cal
Y )(y). Thus, we remark that Ew?Y1

= 1.
Therefore, applying Theorem 5.43 concludes the proof.

5.D Differential privacy guarantee: proof of Theorem 5.13

In this section, we recall the definition of being (ε, δ)-DP (Dwork et al., 2014). The
idea behind differential privacy is to ensure that no attacker can determine with high
confidence whether a particular individual’s data is included in the dataset or not. Of-
ten, a controlled amount of random noise is added to the data, so that any individual
data point becomes indistinguishable from the noise. This ensures that the probabil-
ity distribution of an algorithm’s output does not change significantly when a single
individual’s data is added or removed.

Definition 5.45. For any ε > 0 and δ ∈ [0, 1), a randomized mechanism A is said to
be (ε, δ)-DP, if for all neighboring datasets D, D′, and for any event E:

P
(
A(D) ∈ E

)
≤ exp(ε)P

(
A(D′) ∈ E

)
+ δ.

The following result gives the noise level sufficient to ensure the (ε, δ)-DP regarding
the third-party attacker. This type of attacker is an external entity who does not have
access to the private data but can observe the algorithm outputs. This attacker tries to
infer sensitive information about individuals by analyzing the output.

Theorem 5.46. Assume there is a constant number S ∈ [n] of sampled agents, i.e.,
St = S, for all t ∈ [T ]. Then, for all ε > 0 and δ ∈ (0, 1 − (1 +

√
ε)(1 − S/n)T ), the

Algorithm 5.10 is (ε, δ)-DP towards a third party if

σg ≥ 2

√√√√K maxi∈[n] λiy
ε

(
1 +

24S
√
T log(1/δ̄)

εn

)
, δ̄ =

n

S

1−
(

1− δ
1 +
√
ε

)1/T
 .

Proof The loss function ∇Si,γα has a sensitivity of 1. Therefore, for any α̃ > 1, we know
that ∇Si,γα +N (0, σ2

g) is (α̃, α̃/2σ2
g)-RDP (Mironov, 2017, Corollary 3). By assumption,

note that δ̄ ∈ (0, 1) and for any t ∈ [T ], consider

εt =
nKα̃maxi∈[n] λ

i
y

2(t+ 1)Sσ2
g

− log δ̄

α̃− 1
,

α̃ = 1 + σg

√
2
√
TS log(1/δ̄)

nK maxi∈[n] λiy
.
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After K local iterations, using the RDP composition result, the mechanism becomes
(α̃,Kα̃/2σ2

g)-RDP. Using the aggregation step on the server, the mechanism is now
(α̃, nKα̃maxi∈[n] λ

i
y/2(t+ 1)Sσ2

g)-RDP. Based on the RDP to DP conversion, we know
that the mechanism is (εt, δ̄)-DP. Define f : x ∈ R 7→ log{1 + (S/n)(ex − 1)} ∈ R. For
any x ∈ R, we have

f ′(x) =
S

n+ 2x
(
n− S

) .
In addition, since the agents are subsampled, it yields the (ε̃t, δ̃t)-DP (Balle et al., 2018,
Theorem 9), where we denote

ε̃t = f
(
εt
)
, δ̃t =

Sδ̄

n
.

Since f ′(x) ≤ S/n on R+, we deduce that

ε̃t ≤
Kα̃maxi∈[n] λ

i
y

2(t+ 1)σ2
g

− S log δ̄

n
(
α̃− 1

) .
For all a, b ∈ R, using that (a+ b)2 ≤ 2a2 + 2b2 gives that

T∑
t=1

ε̃2t ≤
2
(
Kα̃maxi∈[n] λ

i
y

)2

4σ4
g

T+1∑
t=2

1

t2
+

2TS2 log(1/δ̄)2

n2(α̃− 1)2
. (5.87)

Plugging the definition of α̃ into (5.87) combined with
∑T+1

t=2 t−2 ≤ 1 show that

T∑
t=1

ε̃2t ≤

(
K maxi∈[n] λ

i
y

)2

σ4
g

1 +
3σ2

g

√
TS log(1/δ̄)

nK maxi∈[n] λiy
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i
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+
3
√
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i
y
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. (5.88)

By assumption, recall that

σg ≥ 2

√
K maxi∈[n] λiy

ε

√
1 +

24
√
TS log(1/δ̄)

εn
.

Therefore, we obtain

σ4
gε

2

16
≥
(
K max

i∈[n]
λiy

)2

+
3σ2

g

√
TSK log(1/δ̄) maxi∈[n] λ

i
y

n
.

The previous inequality combined with (5.88) implies that

T∑
t=1

ε̃2t ≤ ε2/16.

Define the following quantity

δ̃ =
1− δ∏T

t=1(1− δ̃t)
− 1.



CHAPTER 5. FEDERATED CONFORMAL PREDICTION UNDER LABEL
SHIFT 271

Since 1 − (1 − δ)1/T ≤ δ̃t ≤ 1 − [(1 − δ)/2]1/T , we can verify that δ̃ ∈ [0, 1] and also
δ̃ =
√
ε. Using the assumption δ ≤ 1− (1 +

√
ε)(1− S/n)T , it yields

e + δ̃−1

√√√√ T∑
t=1

ε2t ≤ e + 1 ≤ e2.

Thus, we have

2

T∑
t=1

ε̃2t log

e + δ̃−1

√√√√ T∑
t=1

ε2t

 ≤ ε2

4
.

Since (exp(ε̃t)− 1)/(exp(ε̃t) + 1) ≤ ε̃t, we deduce that

T∑
t=1

exp(ε̃t)− 1

exp(ε̃t) + 1
≤

T∑
t=1

ε̃2t ≤
ε2

16
.

Finally, applying (Kairouz et al., 2015, Theorem 3.5) concludes the proof.

Note that the local loss function Si,γα : q ∈ R 7→ EV∼µ̂iy [S
γ
α,V (q)] ∈ R+ is expressed as the

expectation of pinball loss functions. Since the sensitivity of these pinball loss functions
is 1, we do not need to clip the gradient. It is sufficient to add additional Gaussian
noise N (0, σg) to guarantee differential privacy. The value of σg is chosen to provide
a suitable tradeoff between privacy and utility, balancing the need for strong privacy
protection with the requirement for useful output.

5.E Additional numerical results

5.E.1 Algorithm design

The objective is to generate valid federated prediction sets for the testset by lever-
aging the calibration datasets of the agents. In this section, we present four different
algorithms that were compared in our experiments. The first two are unweighted al-
gorithms (Unweighted Local and Unweighted Global), while the other two are weighted
benchmarks: Oracle Weights which uses true weights, and Estimated Weights which
employs estimated weights. Additionally, we propose the DP-FedCP method, available
in both basic and differentially private versions. The main differences between these
approaches lie in the way the resulting quantile is computed, such as the importance
given to the set of non-conformity scores and their corresponding weights. Moreover,
the approaches’ ability to maintain coverage and privacy guarantees varies.

Unweighted Local. The Unweighted method assigns equal weight to all non-conformity
scores, regardless of the agent or label. As a result, the resulting quantile and predic-
tion sets are only influenced by the local scores of the querying agent. Specifically,
the Unweighted Local approach only employs the local calibration dataset of Agent
? to compute the corresponding prediction set. This approach is easily computable
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because it does not involve any exchange of information between agents. Formally, the
confidence set can be expressed as follows:

µ̄loc,? =
1

N? + 1

N?∑
k=1

δV ?k +
1

N? + 1
δ1,

Cα,µ̄loc,?(x) =

{
y ∈ Y : V (x,y) ≤ Q1−α

(
µ̄loc,?

)}
.

Unweighted Global. The Unweighted Global approach calculates the quantile by
using all non-conformity scores gathered on the central server from all agents. This
approach violates FL constraints since all non-conformity scores are shared with the
central server. Furthermore, each collected score is given equal weight, without taking
into account any label shift. The corresponding prediction set is represented as follows:

µ̄ =
1

N + 1

n∑
i=1

N i∑
k=1

δV ik
+

1

N + 1
δ1,

Cα,µ̄(x) =
{

y ∈ Y : V (x,y) ≤ Q1−α
(
µ̄
)}
.

Oracle Weights. This approach utilize importance weights to compute the prediction
set. The Oracle Weights method has access to the true distribution of all the agents,
enabling it to calculate the exact likelihood ratios. For this method, a number of
N̄ = bN/2c data points of the calibration dataset is randomly selected — denoted
as (Xk, Yk)k∈[N̄ ]. This sumbsampling is based on a multinomial random variable with
parameter (N̄ , {N i/N}i∈[n]); more details are provided in Section 5.2 (see for example
Theorem 5.3). For any label y ∈ Y, the prediction set is determined by:

µ̄?y = p̄?y,yδ1 +
N̄∑
k=1

p̄?Yk,yδVk ,

Cα,µ̄?(x) =
{

y ∈ Y : V (x,y) ≤ Q1−α(µ̄?y)
}
.

(5.89)

Estimated Weights. The empirical equivalent of Oracle Weights based on cli-
ent label counts is Estimated Weights. However, two sources of error are intro-
duced: (1) the calibration subsampling and (2) the likelihood ratio estimations (refer
to (5.11)). Similar to Oracle Weights, we draw a multinomial distribution {N̄ i}i∈[n] ∼
M(N̄ , {N i/N}i∈[n]) and subsample N i ∧ N̄ i calibration data from each client i. The
resulting prediction set is represented by:

p̂?y,y =
(M?

y/My) · 1My≥1

(M?
y/My) · 1My≥1 +

∑
ỹ∈Y Card({(i, k) ∈ [n]× [N i] : k ≤ N̄ i, Y i

k = y})× (M?
ỹ/Mỹ) · 1Mỹ≥1

,

µ̂MLE

y = p̂?y,yδ1 +
n∑
i=1

N i∧N̄ i∑
k=1

p̂?Y ik ,y
δV ik

,

Cα,µ̂MLE(x) =

{
y : V (x,y) ≤ Q1−α

(
µ̂MLE

y

)}
.
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Figure 5.4 – Simulated data distribution: 3 two-dimensional Gaussians with means
θ1 = [−1, 0],θ2 = [1, 0],θ3 = [1, 3] and identity covariance matrices.

5.F.2 Additional Details on Numerical Experiments

To provide a comprehensive overview of our experimental methodology, we present ad-
ditional details about the federated optimization parameters, along with supplementary
figures to complement those presented in Section 5.5.

Optimization parameters. For all experiments, we split the initial dataset D across
the clients (Di)i∈[n] and the test dataset Dtest as detailed in Section 5.5. Label shift
is then simulated by resampling using the clients’ local distributions

{
P y
}
y∈Y . For

ImageNet experiments, we also assume that we have labels sampled from the target
client’s distribution for weights’ approximation. The optimization parameters taken
for DP-FedCP experiments are T = 200 iterations, γ = 1e−6 regularization parameter,
η = 1e−3 step-size, and K = 20 local iteration rounds. We sample all clients during
each communication round with the server.

Simulated Data Experiments. The generated data consists of 3 Gaussians, two
of which significantly overlap each other, see Figure 5.4. This data design is chosen
such that we obtain different distributions of non-conformity scores for different classes,
which is directly related to the different degrees of model confidence for different data
samples.

CIFAR-10 Experiments. Using the CIFAR-10 data, we demonstrate a comparison
of the empirical coverage for all considered methods: Unweighted Local, Unweighted
Global, Oracle Weights, Estimated Weights and the proposed DP-FedCP method ver-
sion with (σg = 0), see Figure 5.5a. DP-FedCP along with weighted baselines, shows
valid coverage results, unlike unweighted baselines. At the same time, both weighted al-
gorithms are extremely similar in performance to DP-FedCP. Unlike weighted baselines,
DP-FedCP is federated and privacy preserving.

ImageNet Experiments. The ImageNet experiment is designed to have very differ-
ent score distributions across agents. The grouping scheme of clients into a low-score
group (Figure 5.6a) and a high-score group that consists of the querying agent (Fig-
ure 5.6b) creates adversial heterogeneity, possible in real-life scenarios, under which
unweighted methods are more prone to perform very poorly. Comparing the DP-FedCP
method with weighted and unweighted baselines on ImageNet data, we note the same
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Figure 5.5 – Experimental results with all benchmarks. (a) CIFAR-10 empirical cover-
age. (b) ImageNet empirical coverage.

behavior as on CIFAR-10 dataset, see Figure 5.5b. Only algorithms that account for
shifts between agents’ data achieve the desired empirical coverage. There is an ad-
ditional violin plot for the ImageNet differential privacy study that demonstrates the
effect of the DP parameter σg on the resulting empirical coverage; see Figure 5.6c.
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Figure 5.6 – ImageNet complementary results. (a) Score distributions of the classes
with the lowest non-conformity scores. (b) Score distributions of the classes with the
highest non-conformity scores. (c) Violin plot of the empirical coverage distribution for
DP-FedCPwith different DP regimes.



Chapter 6
Conclusion and Perspectives

The final chapter summarizes the main findings of the research, highlighting the con-
tributions to address the research questions. It provides a throughout discussion about
limitations with some suggestions for future works.

6.1 Conclusion

We explored various machine learning aspects, with a particular focus on Bayesian
methods and uncertainty quantification within the FL framework. Throughout the
chapters, we identified key themes and proposed novel methodologies, aiming to improve
the reliability and efficiency of machine learning algorithms.

Chapters 2 and 3 on Bayesian FL, addressed the challenges of reliable Bayesian in-
ference with distributed datasets. In these chapters, we designed novel approaches to
overcome communication bottlenecks and statistical heterogeneity. Our methods in-
volved multiple local Langevin steps with a combination of global consensus updates
performed at the central node. In DG-LMC, we explored a general sampling consensus
step, while VR-FALD?’s specificity lied in its variance reduction scheme performed on the
local agents. These developed methods showcased favorable convergence properties,
establishing their efficiency. We also provided theoretical analyses and non-asymptotic
bounds to support their performance.

Chapters 4 and 5 presented methodologies to address the crucial uncertainty quantifica-
tion aspect. We focused on Bayesian approaches through QLSD. This algorithm provided
a comprehensive methodology based on Langevin stochastic dynamics for Bayesian FL
inference. It effectively handles communication bottlenecks through gradient compres-
sion and incorporates variance reduction techniques. However, (1) designing effective
prior distributions for deep learning remains challenging and (2) the validity of the
Bayesian model can be criticized. To complement uncertainty management, we also ex-
plored a frequentist method for constructing personalized prediction sets. We leveraged
conformal prediction approaches to provide distribution-free guarantees under minimal
assumptions. This methodology addresses the issue of distribution shift, which is crucial
when the underlying data distribution varies across agents.

Our works open up promising avenues for future research by addressing the distributed
sampling challenge. Furthermore, our research has provided comprehensive approaches
for uncertainty quantification in FL by investigating both Bayesian and frequentist
methodologies. Our research contributes to the development of methodologies to handle
uncertainty while addressing distribution shift. Overall, our work brings us closer to
reliable and efficient FL systems and promising avenues have been outlined for future
researches.



CHAPTER 6. CONCLUSION AND PERSPECTIVES 277

6.2 Perspectives and Future work

Some avenues for further research are presented for all the different chapter and associ-
ated research questions of this thesis.

Chapter 2. This chapter addressed the crucial task of performing reliable Bayesian
inference in the modern era of machine learning. Markov chain Monte Carlo (MCMC)
algorithms have proven to be invaluable in large scale sampling, but designing them
to handle distributed datasets has remained challenging. Existing methods often failed
in terms of reliability and sampling quality. To bridge this gap, we proposed a novel
approach called DG-LMC, specifically tailored for scenarios where datasets are partitioned
on computing nodes under a master/slaves architecture. The convergence properties of
DG-LMC have been rigorously analyzed, establishing its efficacy for reliable Bayesian
inference. With its favorable convergence properties and empirical validation, future
research directions may involve exploring extensions and refinement of the Gaussian
consensus step performed by the central server.

Chapter 3. We addressed the challenges of Bayesian FL inference, considering com-
munication bottlenecks and the statistical heterogeneity limitation. While distributed
MCMC algorithms have been extensively studied, they are badly designed to handle
FL-specifications. Our findings illustrated that statistical heterogeneity leads to a local
drift, negatively affecting convergence. To overcome this issue, we presented a novel
algorithm, VR-FALD?, which incorporates control variates to effectively mitigate the cli-
ent drift and reduce stochastic gradient variance. Our approach combines ideas from
Langevin Monte Carlo and Federated Averaging schemes. Importantly, our theoretical
analysis encompasses a unified framework for Bayesian FL, including connections with
the global consensus Monte Carlo method. Based on this theoretical framework, we have
derived non-asymptotic bounds for both FALD and VR-FALD?. We also demonstrated the
significance of variance reduction for statistical heterogeneity. Future research directions
may involve further results on non-convex potential landscapes with other control vari-
ate schemes and investigating practical guidelines to improve FL performance.

Chapter 4. In this chapter, we presented a comprehensive methodology based on
Langevin stochastic dynamics for Bayesian FL. We performed statistical inference on
locally stored data across multiple clients while considering FL constraints. To over-
come these challenges, we introduced a novel federated MCMC algorithm, named QLSD,
extending the SGLD algorithm to the FL setting. QLSD efficiently handles the com-
munication bottleneck through gradient compression. Furthermore, to enhance per-
formance, we incorporated variance reduction techniques, resulting in two improved
versions, namely QLSD? and QLSD++. Our proposed algorithms were supported by non-
asymptotic convergence guarantees, providing a solid foundation. Future research can
incorporate Metropolis-Hastings schemes to remove asymptotic biases. More efficient
communication can be pursued by alternative compression techniques such as biased or
vectorial compressions.
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Chapter 5. This chapter introduced a novel method called DP-FedCP for construct-
ing personalized conformal prediction sets within the FL setting. Our proposed method
leverages CP approaches to provide distribution-free guarantees under minimal assump-
tions. This work addresses the crucial aspect of uncertainty quantification, by incor-
porating importance weighting to effectively handle label shift, resulting in improved
prediction sets with prescribed confidence This method provides personalized conformal
prediction sets with valid coverage and differential privacy guarantees. To support our
methodology, we developed non-asymptotic bounds and discussed the parameters’ tun-
ing to achieve an optimal accuracy/privacy tradeoff. Future research directions may
involve further investigations into different types of distribution shifts and new meth-
ods for shift estimation.



Résumé des contributions

Motivée par les questions de recherche (RQ) mentionnées précédemment, cette thèse
apporte plusieurs contributions, qui sont détaillées dans la section suivante. Chaque
chapitre se concentre sur une direction de recherche spécifique et aborde les domaines
clés suivants :

F Développement de méthodes avancées d’échantillonnage distribué ciblant une dis-
tribution postérieure globale.

F Construction de méthodes de simulation efficaces en grande dimension, pour des
distributions connues à une constante de normalization près.

F Application de méthodes d’inférence approximative pour l’apprentissage profond.

F Développement de méthodes de gestion fédérée de l’incertitude, qui se basent sur
des prédictions conformelles.

Chaque chapitre examine en détail l’une de ces principales orientations de recherche.

Part II: Echantillonnage distribué & Langevin MC

• Chapter 2: DG-LMC: Un algorithme MCMC distribué synchrone clé en main et
scalable via l’échantillonnage de Langevin Monte Carlo dans le cadre de Gibbs
(RQ#3-RQ#4)

Dans ce travail, nous proposons un algorithme d’échantillonnage efficace, qui s’adapte
aux architectures centralisées. Notre méthode se concentre spécifiquement sur l’inférence
bayésienne à partir des ensembles de données {Di}ni=1 observés sur n nœuds. Nous
développons une procédure pour approcher les distributions a posteriori admettant une
densité donnée par

π(θ|D1:n) ∝
n∏
i=1

exp(−Ui(θ)), (6.1)

où la fonction potentielle Ui : Rdi → R dépend de l’ensemble d’apprentissage Di. L’idée
centrale de notre nouvelle méthodologie, appelée Distributed Gibbs using Langevin
Monte Carlo (DG-LMC), consiste à concevoir une distribution jointe Πρ avec des variables
auxiliaires z1 ∈ Rd1 , . . . , zn ∈ Rdn satisfaisant

Πρ(D1:n|z1:n, θ) ∝
n∏
i=1

Πρ(Di|zi), Πρ(z1:n|θ) =
n∏
i=1

Πρ(zi|θ), (6.2)

où ρ > 0 est un paramètre de tolérance tel que limρ→0 Πρ(θ|D) = π(θ|D). Travailler
avec Πρ présente un avantage significatif : les variables auxiliaires {zi}ni=1 sont con-
ditionnellement indépendantes étant donné θ. Par conséquent, en utilisant (6.2), on
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obtient la décomposition suivante :

Πρ(θ|D1:n) =

∫
Πρ(θ, z1:n|D1:n) dz1:n

=
1

Πρ(D1:n)

∫
Πρ(θ, z1:n)Πρ(D1:n|θ, z1:n) dz1:n

=
1

Πρ(D1:n)

∫
Πρ(θ)

n∏
i=1

[
Πρ(Di|zi)Πρ(zi|θ)

]
dz1:n.

En utilisant l’échantillonneur Gibbs, la distribution Πρ(θ, z1:n|D1:n) peut être échantil-
lonnée efficacement en parallèle sans avoir besoin de transmettre de donnée.

Contributions. Les principales contributions peuvent être résumées comme suit :

(1) Nous introduisons une nouvelle méthodologie appelée Distributed Gibbs using
Langevin Monte Carlo (DG-LMC) dans la Section 2.2. Cet algorithme demande
à chaque travailleur d’échantillonner zi à partir de la distribution conditionnelle
Πρ(zi|Di, θ) et de communiquer cet échantillon au nœud maître. Ensuite, le nœud
central échantillonne θ selon Πρ(θ|z1:n) et renvoie ce paramètre à chaque travail-
leur.

(2) Point important, nous présentons une analyse quantitative complète du biais in-
duit et démontrons des résultats de convergence explicites dans la Section 2.3.
Cela représente notre principale contribution, et il me semble que cette étude
théorique est l’une des plus complètes parmi les travaux existants en apprentis-
sage bayésien distribué avec une architecture centralisée. Plus précisément, nous
discutons de la complexité de l’algorithme, de la sélection des hyperparamètres
et offrons aux praticiens des lignes directrices simples pour les ajuster. De plus,
nous effectuons une comparaison approfondie de notre méthode avec des approches
existantes dans la Section 2.4.

(3) Enfin, dans la Section 2.5, nous démontrons les avantages de l’échantillonneur
proposé par rapport aux algorithmes MCMC distribués populaires et récents à
travers diverses expériences numériques.

Deux défis majeurs subsistent : l’échantillonnage efficace à partir de la distribution
conditionnelle Πρ(zi|θ,Di) pour i ∈ [n], et la réduction des cycles de communica-
tion fréquents avec le nœud maître. Nous abordons ces deux problèmes en utilisant
l’algorithme Langevin Monte Carlo (LMC) pour approcher l’échantillonnage à partir
de Πρ(zi|θ,Di) (Rossky et al., 1978; Roberts and Tweedie, 1996). Pour i ∈ [n], nous
introduisons Πρ dont les densités conditionnelles sont définies comme suit :

Πρ(zi|Di, θ) ∝ exp

(
−Ui(zi)−

∥∥zi − θ∥∥2
/(2ρi)

)
,

Πρ(θ|z1:n) = N
(
µ(z1:n),Q−1

)
où la matrice de précision Q = (

∑n
i=1 ρi

−1)Id et la moyenne µ(z1:n) = Q−1
∑n

i=1 zi/ρi.
Lorsque le paramètre de tolérance ρ→ 0, en utilisant (Scheffé, 1947), on montre que ce
schéma d’augmentation de données satisfait

lim
ρ→0

Πρ(θ|D) = lim
ρ→0

∫
Πρ(θ, z1:n)dz1:n = π(θ|D).
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Basé sur l’équation différentielle stochastique de Langevin sur-amortie, à l’itération k,
nous mettons à jour les paramètres comme suit :

z
(k+1)
i =

(
1− γi

ρi

)
z

(k)
i +

γi
ρi
θ(k) − γi∇Ui(z(k)

i ) +
√

2γiξ
(k)
i ,

θ(k+1) = µ(z
(k)
1:n) + Q−1/2ξ

(k)
0 pendant les tours de communcation, autrement θ(k),

où γi > 0 est une taille de pas fixe et {ξ(k)
i : i ∈ [n], k ∈ N} est une séquence i.i.d.

de variables aléatoires gaussiennes standard. Pour réduire les coûts de communication,
nous permettons à chaque travailleur d’effectuer Ni ≥ 1 étapes LMC locales (Dieuleveut
and Patel, 2019). La variation de Ni entre les travailleurs empêche DG-LMC de subir
des retards importants dus aux temps de réponse déséquilibrés des travailleurs (Ahn
et al., 2014). Nous fournissons une analyse quantitative détaillée du biais et établissons
des résultats de convergence explicites non asymptotiques. Notre analyse englobe la
complexité de DG-LMC, la sélection des hyperparamètres, et offre aux praticiens des
directives simples pour les ajuster. À notre connaissance, cette étude théorique est
l’une des études les plus complètes sur l’apprentissage machine bayésien distribué avec
une architecture maître/esclave.

Theorem 6.1 (Informel). Sous certaines hypothèses décrites dans le Chapter 2, il existe
κ ∈ (0, 1), γ, ρ, C0, C1, C2 > 0 tels que pour k ≥ 0, la distribution µk de l’échantillon θk
satisfait

W2

(
µk, π(·|D1:n)

)
≤ C0(1− κ)k + C1

√
dγ(ρ2 + γ/ρ2) + C2dρ.

• Chapter 3: FALD: Dynamique de Langevin avec moyenne fédérée (RQ#1)

Dans ce chapitre, nous nous intéressons à l’échantillonnage à partir d’une distribution
cible π dont la densité peut être décomposée comme dans l’équation (6.1). Pour résoudre
ces problèmes, nous proposons un algorithme MCMC appelé FALD, qui combine la dy-
namique stochastique de gradient de Langevin (SGLD) avec l’idée de la moyennisation
fédérée.

Contributions. Les principales contributions peuvent être résumées comme suit :

(1) Nous étudions une version en boucle aléatoire de l’algorithme FALD proposé dans
Deng et al. (2021), et nous établissons des bornes supérieures non asymptotiques
en distance de Wasserstein pour les potentiels fortement convexes U . Une analyse
de FALD a été réalisée dans Deng et al. (2021, Theorème 5.7), cependant, la preuve
est entachée d’une erreur ; voir Section 3.B.1.

(2) Nous donnons des bornes inférieures correspondantes pour montrer que même
avec des gradients exacts, FALD peut être plus lent que SGLD en raison de la dérive
des clients.

(3) Nous proposons une nouvelle méthode (VR-FALD?) qui contourne les limites de
FALD. Cet algorithme étend la méthode Shifted Local-SVRG de Gorbunov et al.
(2021) au contexte bayésien. VR-FALD? combine la méthode Stochastic Variance
Reduced Gradient Langevin Dynamics (SVRG-LD) (Dubey et al., 2016) et adapte
les techniques de réduction des biais de SCAFFOLD (Karimireddy et al., 2020).
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(4) Nous obtenons des garanties théoriques pour VR-FALD? qui mettent en évidence son
effet de réduction de la variance du gradient et sa capacité à traiter l’hétérogénéité
des données.

(5) Les résultats sont basés sur un cadre général développé dans le supplément, qui
englobe une large famille d’algorithmes bayésiens fédérés basés sur la dynamique
de Langevin. Il s’agit de la première étude unificatrice parmi les travaux existants
sur l’inférence bayésienne fédérée.

(6) Enfin, Section 3.4 illustre nos résultats sur des benchmarks classiques de FL et
fournit une comparaison approfondie avec les méthodes bayésiennes FL existantes.

L’algorithme FALD échantillonne à partir de π en respectant une contrainte majeure :
chaque potentiel Ui et son gradient ∇Ui ne peuvent être calculés que par le i-ème client.
Dans cette méthode, chaque client possède un paramètre θik qui est mis à jour localement
tandis que les paramètres globaux θsk sont mis à jour sur le serveur central. À chaque
tour, les clients exécutent des étapes de SGLD pour mettre à jour leurs paramètres locaux

θ̃ik+1 = θik − γ∇U i(θik) +
√

2γZik+1,

où Zik+1 est un vecteur gaussien de dimension d éventuellement corrélé entre les cli-
ents. Chaque client envoie θ̃ik+1 au serveur central avec une probabilité pc ∈

(
0, 1
]

correspondant à la réalisation d’une variable de Bernoulli Bk+1. Pendant les tours de
communication, le serveur central fait la moyenne des paramètres reçus

θsk+1 = (Bk+1/n)
∑
i∈[n]

θ̃ik+1 + (1−Bk+1)θsk.

Ensuite, ce paramètre du serveur θsk+1 est renvoyé aux clients locaux qui mettent à jour
leurs paramètres locaux θik de la manière suivante

θik+1 = Bk+1θ
s
k+1 + (1−Bk+1)θ̃ik+1.

Comme indiqué dans le Theorem 1.2, les échantillons {θsk}k∈N générés par le serveur
central ciblent la distribution a posteriori π. Des explications supplémentaires sur les
bornes de convergence de FALD sont fournies dans le Chapter 3. Bien que théorique-
ment solide, cette méthode peut souffrir d’une variance élevée en raison des gradients
stochastiques utilisés lors du SGLD local et de l’hétérogénéité des données, ce qui entrave
la convergence. Plus précisément, nous montrons l’impossibilité pour un algorithme
qui ne traite pas l’hétérogénéité de fournir une erreur asymptotique de Wasserstein in-
férieure à la taille de discrétisation O(γ). Pour résoudre ce problème, nous proposons
une alternative : VR-FALD? basée sur une combinaison de variables de contrôle et de
techniques de réduction des biais. Des améliorations théoriques sont déduites et les
comportements expérimentaux de nos algorithmes sont présentés.

Theorem 6.2 (Informel). Sous les hypothèses décrites dans le Chapter 4, il existe
γ? > 0, tel que pour γ ∈ (0, γ?), il existe κ ∈ (0, 1), C0, C1, C2, C3 > 0 tels que pour
k ≥ 0, la distribution µk de l’échantillon θk satisfait

W 2
2

(
µk, π(·|D1:n)

)
≤ (1− κ)kC0 + γC1E

(∑n
i=1 Ûi(θ?)

)
+
γ2C2

p2
c

n∑
i=1

‖∇Ui
(
θ?
)
‖2 + γ2C3.
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Part III: Apprentissage fédéré : Quantification de l’incertitude via des
approches bayésiennes et fréquentistes

• Chapter 4: QLSD: Dynamique stochastique quantifiée de Langevin pour l’appren-
tissage fédéré bayésien (RQ#2)

Plusieurs travaux ont tenté d’améliorer l’efficacité de l’apprentissage distribué/fédéré
en réduisant le coût de communication. Certaines méthodes se sont concentrées sur la
quantification de chaque coordonnée des gradients calculés (Alistarh et al., 2017), de
sorte qu’un nombre beaucoup plus faible de bits soit nécessaire pour la transmission.
Des quantifications agressives, telles que la représentation binaire ou ternaire, ont égale-
ment été étudiées. D’autres méthodes ont imposé la parcimonie aux gradients lors de
la communication, où seulement une petite fraction des gradients est échangée entre les
nœuds à chaque itération. Les idées sous-jacentes de ces méthodes consistent essentielle-
ment à compresser les gradients, où chaque entrée peut être représentée par beaucoup
moins de bits que le nombre flottant 32 bits d’origine. Une telle compression introduit
des bruits stochastiques supplémentaires, c’est-à-dire une erreur de quantification, dans
le processus d’optimisation, ce qui ralentit la convergence ou peut même conduire à
la divergence (Alistarh et al., 2017). Les performances de ces approches reposent sur
le compromis entre le nombre de bits communiqués par itération et la qualité de ces
informations. Ainsi, des schémas agressifs peuvent n’envoyer qu’un seul bit par coor-
donnée (Bernstein et al., 2018; Tang et al., 2021) ou utiliser la quantification vectorielle
(Leconte et al., 2021).

Contributions. Les principales contributions peuvent être résumées comme suit :

(1) Nous proposons QLSD, un algorithme de MCMC général spécifiquement conçu pour
l’inférence bayésienne dans le cadre du FL, ainsi que deux alternatives à variance
réduite, visant en particulier l’hétérogénéité, les surcoûts de communication et la
participation partielle.

(2) Nous fournissons une analyse de convergence non asymptotique des algorithmes
proposés. La partie théorique met en évidence l’impact de l’hétérogénéité stat-
istique mesurée par l’écart entre les distributions a posteriori locales.

(3) Nous proposons des mécanismes efficaces pour atténuer l’impact de l’hétérogénéité
statistique sur la convergence, soit en utilisant des gradients stochastiques biaisés,
soit en introduisant un mécanisme de mémoire qui étend Horváth et al. (2022)
au cadre bayésien. En particulier, nous constatons que la réduction de la variance
permet en effet à l’algorithme MCMC proposé de converger vers la distribution a
posteriori cible lorsque le nombre d’observations devient grand.

(4) Nous illustrons les avantages des méthodes proposées à l’aide de plusieurs bench-
marks FL. Nous montrons que la méthodologie proposée fonctionne bien par rap-
port aux méthodes bayésiennes FL de pointe.

Dans ce travail, nous étendons ces idées au cadre bayésien. Nous développons un nou-
vel algorithme d’inférence bayésienne fédérée, appelé Quantized Langevin Stochastic
Dynamics (QLSD), pour résoudre le goulot d’étranglement de communication des al-
gorithmes distribués/fédérés. Ce cadre intègre le cas de n clients, chacun possédant un
potentiel local Ui : Rd → R calculé en fonction de son ensemble de données local Di.
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Les agents effectuent une inférence bayésienne pour cibler la distribution a posteriori
proportionnelle à exp(−∑n

i=1 Ui) tout en respectant les contraintes de l’apprentissage
fédéré. En utilisant une séquence non biaisée {Ck}k≥1 d’opérateurs de compression
(Alistarh et al., 2017), ces agents ne communiquent qu’une version quantifiée de leur
gradient stochastique ∇̂Ui à chaque tour d’agrégation. Ensuite, le serveur central effec-
tue une étape de dynamique de Langevin basée sur les gradients compressés reçus. Le
paramètre θk est mis à jour en utilisant les informations des clients participants Ak+1 :

θk+1 = θk − γ
n

|Ak+1|
∑

i∈Ak+1

Ck+1(∇̂Ui(θk)) +
√

2γZk+1, (6.3)

où Zk+1 est un bruit gaussien standard. Sous les hypothèses énoncées dans le The-
orem 4.5, les échantillons θk générés par (6.3) sont approximativement distribués selon∏
i∈[n] exp(Ui). Cependant, nous démontrons théoriquement et expérimentalement que

cette méthode souffre d’hétérogénéité et de l’utilisation d’un gradient stochastique ∇̂Ui.
Pour améliorer les performances, nous introduisons donc des mécanismes conduisant à
des versions améliorées appelées QLSD? et QLSD++. Dans la première version QLSD?,
le gradient stochastique ∇̂Ui dans (6.3) est remplacé par l’oracle ∇̃Ui(θ) = ∇̂Ui(θ) −
∇̂Ui(θ?), où θ? = arg min

∑
i Ui ; pour plus de détails, voir l’algorithme du point fixe

de Langevin (Brosse et al., 2018). Il est intéressant de noter que ∇̃Ui est une estima-
tion biaisée de ∇Ui puisque l’espérance E[∇̃Ui] 6= ∇Ui malgré E[

∑
i ∇̃Ui] =

∑
i∇Ui.

Dans le Theorem 4.7, nous dérivons des garanties de convergence asymptotique et non
asymptotique pour l’algorithme proposé. Cependant, obtenir le minimiseur θ? est com-
pliqué en pratique. Nous développons donc une dernière alternative appelée QLSD++ qui
s’appuie sur la technique bien connue SVRG (Johnson and Zhang, 2013) pour réduire le
bruit introduit par la variance du gradient stochastique combiné avec un mécanisme de
mémoire pour résoudre le problème d’hétérogénéité (Horváth et al., 2022; Philippenko
and Dieuleveut, 2020). Enfin, nous illustrons les performances de l’approche proposée
par rapport à divers benchmarks d’apprentissage fédéré bayésien. De plus, nous mettons
en évidence numériquement les avantages de la compression en obtenant une précision
similaire aux méthodes classiques avec moins de bits.

Theorem 6.3 (Informel). Sous les hypothèses décrites dans le Chapter 4, il existe
γ? > 0 tel que pour γ ∈ (0, γ?), il existe κ ∈ (0, 1), C0, C1 > 0 tels que pour k ≥ 0, la
distribution µk de l’échantillon θk satisfait

W 2
2

(
µk, π(·|D1:n)

)
≤ (1− κ)kC0 + γC1.

• Chapter 5: Prédiction conforme pour la quantification de l’incertitude fédérée
avec des distributions locales différentes (RQ#5-RQ#6-RQ#7)

Une quantification précise de l’incertitude est essentielle dans les applications modernes
d’apprentissage automatique. Cela est crucial pour développer des méthodes fiables
garantissant la validité des prédictions. Cependant, estimer des ensembles de prédictions
valides peut être un défi dans des contextes distribués, et ce défi est encore exacerbé en
cas de distribution de sortie différentes.

Contributions. Les principales contributions peuvent être résumées comme suit :

(1) Nous introduisons une nouvelle méthode, DP-FedCP, pour construire des ensembles
de prédictions conformelles dans un contexte d’apprentissage fédéré qui prend en
compte les distributions de sortie différentes entre les agents ; voir la Section 5.2.
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DP-FedCP est un algorithme d’apprentissage fédéré basé sur le calcul fédéré des
quantiles pondérés des scores de non-conformité des agents, les poids reflétant le
décalage entre les distribtions de sortie de chaque client par rapport à la popu-
lation. Les quantiles sont obtenus en régularisant la perte de pinball à l’aide de
l’inf-convolution de Moreau-Yosida et d’une version de la procédure d’agrégation
fédérée ; voir la Section 5.3.

(2) Nous établissons des garanties de prédictions conformelles, garantissant la validité
des ensembles de prédictions obtenus. De plus, nous fournissons des garanties de
confidentialité différentielle pour DP-FedCP; voir la Section 5.4.

(3) Nous montrons que DP-FedCP fournit des ensembles de confiance valides et sur-
passe les approches standards dans une série d’expériences sur des données sim-
ulées et des ensembles de données de classification d’images ; voir la Section 5.5.

Contrairement aux méthodes conformes habituelles, l’algorithme DP-FedCP ne calcule
les scores de non-conformité que sur un sous-ensemble de N̄ données de calibration. Par
exemple, N̄ = bN/2c lorsque la moitié des points de calibration est utilisée. Un mécan-
isme clé de DP-FedCP consiste à évaluer la disparité entre les distributions de calibration
et de test (P cal et P ?). Sur la base d’une estimation du rapport de vraisemblance de
Radon-Nikodym ŵ?y = dP ?Y /dP

cal
Y , un ensemble de prédictions valide peut être obtenu

en pondérant les scores de non-conformité. Soit {(Xk, Yk)}k∈[N̄ ] les échantillons de cal-
ibration utilisés pour construire les ensembles de prédictions. Pour tout y ∈ Y, nous
construisons une famille de poids {p̂?y,y}y∈Y donnée par

p̂?y,y =
ŵ?y

ŵ?Y ?
N?+1

+
∑N̄

`=1 ŵ
?
Y`

.

Ensuite, en utilisant ces poids, DP-FedCP utilise les scores de non-conformité locaux pour
dériver des ensembles de prédictions personnalisés pour un nouveau point de données
(X?

N?+1, Y
?
N?+1) ∼ P ?, comme suit

µ̄?y = p̂?y,yδ1 +
∑N̄

k=1 p̂
?
Yk,y

δVk ,

Cα,µ̄?(X?
N?+1) =

{
y ∈ Y : V (X?

N?+1,y) ≤ Q1−α(µ̄?y)
}
.

Des bornes non asymptotiques garantissant la validité de ces ensembles de prédictions
sont fournies dans la Section 5.4. En particulier, lorsque les rapports de vraisemblance
sont connus, le résultat suivant est vérifié∣∣∣∣P(Y ?

N?+1 ∈ Cα,µ̄?(X?
N?+1)

)
− 1 + α

∣∣∣∣ ≤ 6

N
+

36 + 6 logN

N
‖ŵ?‖2∞

+
14 logN

N

∑
j : N

j

12
<logN

√
N j ,

où N i correspond aux données de calibration appartenant à l’agent i ∈ [n]. L’ensemble
de prédictions Cα,µ̄?(X?

N?+1) est généralement difficile à déterminer car calculer le quantile
exact Q1−α(µ̄?y) de manière fédérée est loin d’être évident. En fait, nous développons
une méthode résolvant ce problème tout en garantissant qu’aucun attaquant ne peut
déterminer avec une grande confiance si les données d’un individu particulier sont in-
cluses dans l’ensemble de données ou non.
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Titre : Simulation de Monte Carlo distribuée avec apprentissage statistique à grande échelle : Inférence
bayésienne et prédiction conformelle

Mots clés : Monte Carlo, Apprentissage Fédéré, Inférence Bayésienne, Prediction Conformelle

Résumé : Cette thèse dévelope des approches dans
les secteurs de l’inférence bayésienne et la quantifi-
cation des incertitudes. Les méthodes de Monte Carlo
fédéré permettent à plusieurs agents/nœuds d’effec-
tuer des calculs localement, tandis qu’un serveur cen-
tral agrège les résultats pour échantillonner selon la
posteriori globale. Ces techniques d’échantillonnage
bénéficient de l’incorporation de connaissances à
travers la priori, conduisant à l’amélioration des
résultats. Cette capacité est d’autant plus nécessaire
pour de petits jeux de données ou lorsque celles-
ci sont bruitées. De plus, l’incertitude associée aux
paramètres est naturellement quantifiée. Dans une
première partie, nous introduisons deux méthodes
basées sur les chaı̂nes de Markov. Chacunes de
ces méthodes reposent sur un serveur central or-
chestrant les entités locales. Celui-ci agrège l’infor-
mation provenant de chaque agent afin de produire
des paramètres adaptées tout en évitant le transfert
de données. Cette approche réduit la quantité d’infor-
mation transférée entre agents, ce qui la rend parti-
culièrement avantageuse lorsque les communications

sont limitées. En outre, les méthodes développées
abordent les enjeux de confidentialité et étendent des
algorithmes d’optimisation à l’inférence bayésienne.
La deuxième partie de la thèse se concentre sur la
gestion de l’incertitude. Initialement, nous présentons
l’approche bayésienne, basée sur des opérateurs
de compression afin de résoudre les problèmes de
bande passante. Dans la dernière partie de cette
thèse, nous introduisons une méthode fréquentiste
basée sur les prédictions conformelles. Contraire-
ment aux méthodes bayésiennes, aucune hypothèse
sur la distribution des paramètres n’est requise.
Nous développons une approche indépendante du
prédicteur entraı̂né. Plus précisément, cette méthode
utilise la technique de régression quantile pour
générer des ensembles de prédictions personna-
lisées. Celle-ci aborde efficacement l’hétérogénéité
entre agents pour déterminer des pondérations d’im-
portance. Un aspect crucial de notre approche est
la préservation des informations sensibles de chaque
utilisateur, et nous veillons à protéger la confidentia-
lité.

Title : Distributed Monte Carlo simulation with large-scale Machine Learning: Bayesian Inference and Confor-
mal Prediction

Keywords : Monte Carlo, Federated Learning, Bayesian Inference, Conformal Prediction

Abstract : Distributed methods have emerged as
powerful tools for addressing the data centraliza-
tion challenge. This thesis introduces innovative ap-
proaches to tackle large-scale Bayesian inference and
uncertainty quantification, aiming to provide effective
solutions in distributed data environments. Federa-
ted Monte Carlo methods allow multiple agents/nodes
to conduct computations locally and securely, with a
central server combining the results to obtain samples
from the global posterior distribution. These sam-
pling techniques benefit from the incorporation of prior
knowledge, leading to improved results. Additionally,
the uncertainty associated with the parameters and
the predictions are naturally quantified, which is cru-
cial for decision-making. Especially with limited or
noisy data, the ability to quantify uncertainty becomes
even more essential. In the first part, we introduce
two methods based on Markov chains. Both methods
are designed to target a global posterior and relied on
a central server to orchestrate multiple local entities.
The server aggregates information from each agent to
produce statistical solutions, while limiting the amount
of transferred data. This approach reduces the data

transfer between participating agents, making it parti-
cularly advantageous when communications are limi-
ted. These developed methods not only address data
privacy concerns but also extend existing learning al-
gorithms to Bayesian inference problems. This contri-
butes to the development of more robust and efficient
machine learning algorithms, and holds potential ap-
plications in various domains, including epidemiology
and finance. The second part of the thesis focuses
on uncertainty management. Initially, we present the
Bayesian approach, which employs compression ope-
rators to overcome bandwidth limitations. In the fi-
nal part, we introduce a frequentist method based on
conformal predictions. Unlike other methods, our ap-
proach is model-agnostic and can be applied to any
predictive model. Specifically, this method leverages
quantile regression techniques to generate persona-
lized prediction sets while maintaining robustness to
outliers. The label shift between agents is effectively
addressed by determining quantiles based on impor-
tance weights. A crucial aspect of our approach is the
preservation of privacy, as we ensure the protection of
sensitive user information.
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