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Abstract

Centralizing data is impractical or undesirable in many scenarios, especially when sens-
itive information is involved. In such cases, the need for alternative methods becomes
evident. As large datasets are known to facilitate the learning of efficient models, dis-
tributed methods have emerged as a powerful tool to overcome the challenges posed by
centralized data. Consequently, this thesis introduces innovative approaches to tackle
large-scale Bayesian inference and uncertainty quantification, aiming to provide effect-
ive solutions in the context of distributed data environments. The federated Monte
Carlo (MC) approaches allow multiple agents/nodes to conduct computations locally
and securely, with a central server combining the results to obtain samples from the
global posterior distribution. Bayesian posterior sampling techniques benefit from the
incorporation of prior knowledge, leading to improved results. Additionally, the un-
certainty associated with the parameters and the predictions are naturally quantified,
which is crucial for decision-making. Especially with limited or noisy data, the ability
to quantify uncertainty becomes even more essential.

The first part of this manuscript focuses on MC via Markov chains (MCMC) methods.
In particular, we introduce two procedures, named DG-LMC and FALD, designed to target
a global posterior distribution while ensuring scalability. Local agents are associated
with a central server that aggregates information from each agent to generate samples
from the posterior distribution. This approach minimizes the need to transmit large
amounts of data across participating agents, making it especially advantageous in fed-
erated environments with limited bandwidth or low computational power. Considering
the distributed nature of today’s datasets, concerns about trust and confidence arise
when transferring information to a central server. The proposed methods not only ad-
dress practical applications but also extend existing learning algorithms to Bayesian
inference problems. The proposed approach contributes to the development of more
robust and efficient machine learning algorithms, and holds potential applications in
various domains, including epidemiology and finance, where large-scale inference and
data privacy are significant concerns. To demonstrate the effectiveness of the approach,
real-world datasets are employed, and the results show the performance of federated
MCMC simulation.

The second part of the thesis focuses on uncertainty management. Initially, we present
the Bayesian approach, which involves defining a prior and a likelihood. To address
bandwidth bottlenecks while efficiently generating samples, our proposed approach
leverages compression operators. In the final part of this thesis, we introduce a novel fre-
quentist FL method based on conformal predictions. Unlike other methods, our model-
agnostic approach does not rely on specific model assumptions and can be applied to any
underlying prediction model. Referred to as DP-FedCP, this method leverages quantile
regression techniques to generate personalized prediction sets while maintaining robust-
ness to outliers. The label shift between agents is addressed by determining quantiles
based on importance weights. One crucial aspect of our approach is the preservation
of differential privacy, it allows users to assess the confidence level of predictions and
make informed decisions based on the associated level of uncertainty. By incorporating
this privacy measure, we ensure safeguarding the user’s sensitive information.



Résumé

Centraliser les données est indésirable dans de nombreux scénarios, notamment lorsque
des informations sensibles sont traitées. Dans de tels cas, la nécessité de méthodes al-
ternatives devient évidente. Puisqu’un grand nombre de données facilite ’apprentissage
de modéles efficaces, les méthodes distribuées se sont imposées comme un outil puis-
sant pour surmonter les défis de la centralisation des données. Cette thése présente des
approches innovantes dans les secteurs de 'inférence bayésienne a grande échelle et la
quantification des incertitudes, avec pour but de fournir des solutions & la centralisation
des données. Les approches de Monte Carlo fédéré permettent a plusieurs agents/noeuds
d’effectuer des calculs localement et en toute sécurité, tandis qu’un serveur central com-
bine les résultats obtenus pour échantillonner selon la posteriori globale. Ces techniques
d’échantillonnage a posteriori bayésiennes bénéficient de l'incorporation des connais-
sances a travers la priori, ce qui conduit & des résultats améliorés. De plus, 'incertitude
associée aux paramétres et aux prédictions est naturellement quantifiée, cette capacité
étant d’autant plus nécessaire en présence d’un petit nombre de données ou de données
bruitées.

La premiére partie de ce manuscrit se concentre sur les méthodes de Monte Carlo via
les chaines de Markov. En particulier, nous introduisons deux procédures, appelées
DG-LMC et FALD, congues pour cibler une distribution a posteriori tout en assurant la
scalabilité. Chacune de ces méthodes reposent sur un serveur central pour orchestrer
plusieurs entités locales. Celui-ci agrége 'information provenant de chaque agent afin de
produire des solutions statistiques tout en limitant la quantité de données transférées.
Cette approche réduit le nombre de communications entre participants, ce qui la rend
particuliérement avantageuse dans les environnements fédérés avec une bande passante
limitée. Etant donné la nature distribuée des ensembles de données d’aujourd’hui, des
préoccupations concernant la confiance et la confidentialité se posent lors du transfert
d’informations vers le serveur central. Les méthodes proposées non seulement abordent
des applications pratiques, mais étendent également les algorithmes d’apprentissage
existants aux problémes d’inférence bayésienne. Les approches développées présentent
des applications potentielles dans divers domaines, notamment 1’épidémiologie et la
finance, ot 'inférence & grande échelle et la confidentialité des données sont des préoc-
cupations majeures.

La deuxiéme partie de la thése se concentre sur la gestion de l'incertitude. Initiale-
ment, nous présentons ’approche bayésienne, qui consiste & définir une a priori et une
vraisemblance. Cette premiére méthode se base sur des opérateurs de compression afin
de résoudre les problémes de bande passante. Dans la derniére partie, nous introduis-
ons une méthode fréquentiste basée sur les prédictions conformelles. Contrairement
aux méthodes précédentes, cette approche fonctionne avec n’importe quel modéle pré-
dictif. Nommée DP-FedCP, cette méthode utilise la technique de régression quantile pour
générer des ensembles de prédictions personnalisés et robustes. En outre, elle aborde
efficacement 1’hétérogénéité entre agents via la détermination de quantiles basés sur
des pondérations d’importance. Un aspect crucial de notre approche reste la préserva-
tion de la confidentialité, nous veillons & protéger les informations sensibles de chaque
utilisateur.



Thesis outline and reading guide

Outline

This section provides an overview of the structure and content of the thesis, as well
as the reading guide for a comprehensive understanding of the research. The thesis
consists of an introductory part (Part I) followed by two main parts. Part II comprises
two chapters that explore various distributed Monte Carlo sampling methods based on
Markov Chain. Part III consists of two chapters that investigate the use of federated
learning approaches for uncertainty quantification. Precisely, the thesis is organized
into the following chapters:

Part I introduces the problem of federated learning and uncertainty quantification.

e Chapter 1 introduces the problem of federated learning and uncertainty quan-
tification, outlining the main contributions of the thesis. This chapter presents
the research questions, highlighting the significance of the study. It outlines the
objectives, scope, and methodology of the research, providing a clear context for
the subsequent chapters. The literature is reviewed critically, and we examine
existing frameworks relevant to our topics. This chapter identifies gaps in the
current knowledge and recalls the theoretical foundations upon which this study
is built.

Part I presents the distributed Markov Chain Monte Carlo (MCMC) sampling methods.
Both chapters proposed a distributed method based on local agents performing multiple
local updates with a central server computing the consensus step.

e Chapter 2 investigates reliable large-scale Bayesian using distributed MCMC al-
gorithms. The proposed methodology is designed to handle partitioned datasets
stored within a master/slaves architecture. The scalability in high-dimensional
settings through both synthetic and real data experiments is also demonstrated.
This chapter is based on the conference paper Plassier et al. (2021).

e Chapter 3 develops one key direction of the thesis, addressing Bayesian inference in
the context of federated learning. It introduces the Federated Averaging Langevin
Dynamics (FALD) algorithm and proposes VR-FALD*, an enhanced version that
utilizes control variates to correct client drift caused by statistical heterogeneity.
Non-asymptotic bounds are established to showcase the effectiveness of VR-FALD*
in mitigating the impact of statistical heterogeneity in federated learning bench-
marks. This chapter is based on the conference paper Plassier et al. (2023Db)

Part III highlights the proposed methodology for federated uncertainty quantification.
Both chapters proposed a federated learning method that provides uncertainty quanti-
fication.

e Chapter 4 focuses on Bayesian inference in federated learning and introduces
the Quantized Langevin Stochastic Dynamics algorithm, which addresses con-
straints such as privacy, communication overhead, and statistical heterogeneity.
Variance reduction techniques are incorporated, leading to improved versions of



THESIS OUTLINE 9

the algorithm. Both non-asymptotic and asymptotic convergence guarantees are
provided, and the performance is demonstrated through various Bayesian Feder-

ated Learning benchmarks. This chapter is based on the conference paper Vono
et al. (2022b).

e Chapter 5 addresses uncertainty quantification within the Federated Learning

framework relying on conformal predictions. A novel federated conformal predic-
tion method based on quantile regression is developed, taking into account privacy
constraints and effectively handling the label shift between agents. The method
provides theoretical guarantees for valid coverage of prediction sets while ensuring
differential privacy, outperforming current competitors in extensive experimental
studies. This chapter is based on the conference paper Plassier et al. (2023a).

Reading guide

Each chapter begins with a concise introduction, providing the necessary contextual
information. For a quick overview of the contributions, readers are encouraged to fo-
cus on the summary of contributions in Chapter 1. While each chapter corresponds to
an accepted conference article, some modifications have been made to improve read-
ability and clarity. A chronological order has been established to facilitate the natural
progression, but it is important to note that each chapter can be read independently.

Certain technical proofs have been omitted from the verbatim articles, and for a thor-
ough grasp of all the details and proofs, please refer to the original articles. In any case,
the main results are still presented, and most details, outcomes and primary proofs are
included.
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Notation

N,R
Rd
(z,y)

Hpr

1A]]

Rnxd

Sa(R)

5§ (R).SH(R)
Iy

AT

Tr(A), det(A)
)\min(A>a )\max(A)
A® B

vec(A)

B(X)

Equal by definition

Sets of natural and real numbers

Set of d-dimensional real-valued vectors

Inner product of vectors z,y € R?

,-norm of vector z € R?

Matrix norm induced ||A|| = sup{||Aul| : v € RP, ||u|| = 1}
Set of real matrices of size n x d

Set of real symmetric matrices of size d x d

Set of real symmetric positive (semi)-definite matrices of size d x d
Identity matrix of size d X d

Transpose of matrix A

Trace and Determinant of matrix A

Smallest and Largest eigenvalue of matrix A

Kronecker product of A and B

Vectorization of matrix A by stacking its columns

Borel o-field on X

Characteristic function of set E

Complementary set of set A

Probability of an event

Expectation of a random variable

Independent and Identically Distributed

Set of square integrable functions with respect to measure m
Random variable X has distribution m

Gaussian distribution with mean p and covariance matrix 3
Gradient function of f: R — R

Hessian matrix of f : R — R



Part 1

Introduction & Preliminaries

“Uncertainty is not a sign of weakness but a path to possibility.”

13



General Introduction, Motivations
and Contributions

Contents
1.1 Bayesian Inference in a nutshell . . . . . ... .. ... 14
1.2 Distributed /Federated Learning . . . . . . . ... ... . ... ...... 18
1.3 Federated Uncertainty Quantification . . . . . . . .. . . ... ... ... 21
1.4 Summary of the contributions . . . . . . . . ... ... L. 24

Machine learning and artificial intelligence (AI) have made great strides in the last
two decades. These advances have been driven by the exponential growth of data and
computational capabilities, benefitting from centralization to aggregate data in a single
location with immense computational resources.

However, this fully centralized machine learning paradigm is increasingly at odds with
real-world use cases due to both technological and societal reasons. On the technological
side, centralized machine learning poses several challenges including (1) data processing
bottlenecks, (2) inefficient utilization of communication resources, (3) coordination and
synchronization issues that can lead to biased and incoherent models. At the societal
level, transmitting data to centralized entities raises concerns about (1) privacy and
exposure of individuals’ private information, (2) ownership dilemmas, (3) centralization
of power, and (4) objective disparities between individual agents at the network’s edge
and those of the centralized entity.

Recognizing these challenges, the machine learning community is now addressing the
problems raised by networked agents. Depending on the context, an agent can either
refer to an autonomous device equipped with local sensors and actuators, or an indi-
vidual operating within a localized context supported by personal storage and comput-
ing facilities. Generally, this can be a company, a hospital, or a government agency. In
any case, the technological trend is evident: as storage and computing capacity contin-
ues to increase at the agent level (referred to as the “edge” of the network), decentralizing
computing tasks becomes increasingly appealing. It is crucial for the machine learning
field to embrace this trend and adapt accordingly. Consequently, one of the significant
challenges of our time is achieving learning in decentralized environments, accounting
for distributed data sources, local computing resources, and heterogeneous goals.

1.1 Bayesian Inference in a nutshell

The Bayesian inference paradigm operates on the principle of treating parameters as
random variables. Instead of “learning” parameters through the minimization of a loss
function, the Bayesian approach infers a distribution, called the “posterior”, over the
parameters by applying the Bayes’ rule. To obtain this posterior distribution, a “prior”
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distribution that is independent of the data observations needs to be specified. While
this may appear as an inconvenience, Bayesian inference treats all sources of uncer-
tainty in the modeling process in a unified and consistent manner, requiring explicit
assumptions and constraints. This in itself, is arguably an appealing feature of the
paradigm. However, the most compelling aspect of the Bayesian approach is the auto-
matic implementation of the “Occam’s Razor”. Within the Bayesian framework, there
is a natural preference for simple models that sufficiently explain the data without
unnecessary complexity.

The choice of the prior distribution p(#) is the starting point of Bayesian learning. After
observing (z(V), ..., 2(N)), this prior distribution is updated to a posterior distribution
using Bayes’ rule:

p(O)p(z", ..., 2N | )

p(] 20,2 0) = == Ty — o pO) L (02, =)

The posterior distribution combines two components: (1) the likelihood, denoted as
L(6; 2 W )), which encapsulates the information about the parameter 6 derived
from observations, and (2) the prior, which contains the information about 6 derived
from our background knowledge. Assuming independent observations, the likelihood
can be expressed as follows:

N

L(0; 21, ... V) = Hp(z(i); 0)
i=1

where p(z(");0) is the probability distribution function (pdf) of the observation for
a given value of the parameter 6. To predict the value of a new observation z, a
Bayesian approach integrates the predictive distribution over the different parameters
with respect to the posterior distribution:

ply [ 2,20, 2) = /p(y | 2,0)p(0 ] 21, ...,z do. (1.1)

The resulting predictive distribution, denoted as p(y | z, 21, ..., 2")), is the outcome
of Bayesian inference and serves various purposes based on user requirements. The
ability to generate such a distribution is a fundamental advantage of the Bayesian
approach. Computing the predictive distribution, as expressed in (1.1), lies at the
core of Bayesian inference. Despite its apparent simplicity, it often poses significant
computational challenges.

In the supervised learning setting, where z(9) = (x(i),y(i)), y® represents the response
(or the dependent variable) while (") denotes the covariate (observation or features),
and the likelihood function can be written as

N
L(6; M,y D), .., @@,y ™)) = [T o | 2, 0).

=1

1.1.1 Approximate Bayesian inference and MCMC

The Bayesian learning objective is to estimate label probabilities of new covariates.
This involves finding predictive probabilities or making single-valued guesses. Both
tasks require evaluating a function expressed as an expectation with respect to the
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posterior distribution over the model’s parameters. Writing the posterior probability
density for the parameters as p(f|D), with D = {(z*),y*)}V | the expectation of
f(0) can be computed as follows:

)| D] = [ £6)p(6 | D)

Such expectations can be approximated by the Monte Carlo method, using samples
drawn (approximately) from p(6|D), the previous integral is approximated as:

1k
E[f( %Z

7=0

While sampling directly from the posterior distribution p(:|D) is often computation-
ally infeasible, it is still possible to generate an ergodic Markov chain with stationary
distribution p(- | D).

Notably, while p(6, D) has an explicit expression, the marginal distribution of the obser-
vations p(D) is intractable. Let K : (©,8(0)) — [0, 1] be a Markov kernel (Douc et al.,
2018) and 7(+|D) the posterior distribution (with probability density function p(0|D)).
Assuming K admits 7(-|D) as its unique invariant distribution, i.e., 7(-|D)K = = (:|D),
where m(A|D) = [ K(0,A)x(df|D), for A € B(0). It is known that in such a case,
K is ergodic; see e.g. Douc et al. (2018, Chapter 5). Consequently, sampling the new
parameter 611 at iteration k > 0 according to K (fy,-) would generate samples tar-
geting the posterior distribution 7(:|D). In modern machine learning area, there is a
demand for algorithms that perform well with high-dimensional parameters and scaled
even for very large number of observations N. The computation of the likelihood poses
a computational bottleneck. This challenge has led to significant research efforts over
the past decade (see Welling and Teh (2011); Bardenet et al. (2017)). One possibility
is the Euler-Maruyama approximation of the Langevin diffusion (Roberts and Tweedie,
1996) given by

Ori1 = O + 7V 1og p(Ok|D) + /272111, (1.2)

where (Zy)i>0 represents i.i.d. standard Gaussian noises, and v > 0 denotes the time
discretization step-size. The Langevin Monte Carlo technique defines a Markov chain
with a transition kernel given by K. (6,B) for (9,B) € R? x B(R?), as follows:

1 1 1% 2\ .

At iteration k € N, the new parameter 65 is sampled according to K (6y, -), which is
equivalent to updating 6 following (1.2). Under certain conditions on the step-size 7
and the potential U(0) = log p(0|D) (refer to Dalalyan (2017b); Durmus and Moulines
(2017) for further details), the distribution of (6 )ren converges to the stationary distri-
bution 7y (dependent on the step-size ) as k goes to infinity. Additionally, note that
7, approaches the target distribution 7 as the step-size v tends to zero. Non-asymptotic
bounds have been derived (in terms of total variation distance or Wasserstein distance)
to analyze the impact of different parameters, such as the step-size v, the number of
samples N, the dimension of the parameter space d, and properties of the potential
(e.g., log-concavity in the tails).



CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND
CONTRIBUTIONS 17

However, these methods require calculating the gradient of the log posterior at each it-
eration, which is computationally intensive—O(NV) operations. When the dataset size is
large, estimating the gradient over the entire dataset can be prohibitively expensive. To
mitigate this computational cost, an unbiased estimate of the gradient can be computed
using a subset Sky1 C [N] of observations, known as a minibatch. This class of meth-
ods, which employ minibatches, is called Stochastic Gradient MCMC (SGMCMC). The
cost per iteration for SGMCMC algorithms is O(b), where b is the minibatch size. In
the SGLD method introduced by Welling and Teh (2011), the full gradient is replaced,
for any k£ > 0, by

— N
VL(0k, D) :=—Vlogp (0k) — 5 Z Vlog p(yi| i, Or).

lESk+1

The convergence of this algorithm has been studied in terms of total variation and
Wasserstein convergence bounds (see Dalalyan (2017b); Durmus and Moulines (2019);
Durmus et al. (2019); Dalalyan and Karagulyan (2019)). Under certain assumptions of
strong convexity and Lipschitz continuity on the potential and its Hessian, the number
of iterations required to obtain a distribution that is e-close to the target (in terms of
total variation or Wasserstein distance) is shown to be O(d/e).

Research Question #1

How can we draw inspiration from optimization methods to design sampling
algorithms? And how can we introduce control variates to improve accuracy?

While stochastic gradients are unbiased, they introduce additional noise to the Langevin
scheme, which can negatively impact convergence speed. To address this issue, control
variates are employed to reduce the variance of the SGMCMC gradient estimate. The
Wasserstein bounds provided in Chatterji et al. (2018) illustrate a O(y/7) improve-
ment in asymptotic bias achieved. Furthermore, as demonstrated in Nagapetyan et al.
(2017); Baker et al. (2019), the standard SGLD requires a minibatch size of b = O(N),
whereas control variates only require a minibatch size of order O(1) to achieve similar
performance. Numerous control variate-based algorithms have been proposed. One
such algorithm is the fixed-point method by Brosse et al. (2018), which relies on control
variates utilizing the minimum 6, = argmin £(-, D) of the loss function. At iteration
k € N, the parameters 6 are updated using the following estimator:

—_—~—

VL(0, D) =Vlogp (Gk) — Vlog p(6*)

N
+5 > {Vlogp(,yzm, Or) — Vlog p(, yi|1, 9*)} -

lESk_H

This new gradient estimate leads to improvements in the strongly convex case (Dubey
et al., 2016) and Brosse et al. (2018) derive an upper bound in Wasserstein distance
of order 2 between the distribution of the iterates (0)ren+ and the Langevin diffusion.
However, these control variates require the determination of the minimum 6, of the
loss function, which is challenging to obtain in practice. Thus, Chatterji et al. (2018)
propose an SVRG-Langevin variance reduction scheme based on the SVRG method
(Johnson and Zhang, 2013). This method involves updating a reference point 0, with
a probability ¢ € (0, 1]. The gradient is then estimated using 5k, and the resulting
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stochastic gradient is given by:

—
—

VL0, D) = VL(0),D) — VL(Oy, D) + VL(Ox, D).

To reduce the variance of the stochastic gradient, we need to ensure that Var’* (VL (6, D)) <

Var”*(VL(0y, D)), where Var’* represents the variance conditioned on the random vari-
ables used up to the k-th iteration.

1.2 Distributed /Federated Learning

Training very high-dimensional models via loss minimization in a distrib-
uted /federated manner involves significant communication costs, which can
become a major bottleneck and slow down training. Reducing communica-
tion costs has been identified as one of the major challenges of FL (Kairouz
et al., 2021).

Two promising approaches have been proposed to address this challenge. The first ap-
proach is to have agents perform multiple optimization iterations locally before sending
a model update to the central node. The second approach involves compressing the
exchanged messages. While local updates have been used with some success in prac-
tice, they raise practical issues. Due to statistical heterogeneity, performing multiple
steps can hinder convergence, as model updates target each agent’s local minimizer
(Li et al., 2019; Ro et al., 2021). This results in a tradeoff between communication
cost and convergence (Wang et al., 2020b; Woodworth et al., 2020), and necessitates
new algorithms to limit “client drift” (Karimireddy et al., 2020; Li et al., 2020b) (e.g.,
SCAFFOLD, FED—PROX).

Despite recent progress, developing new algorithms with theoretical guarantees in these
domains remains a major challenge. These new algorithms significantly improve conver-
gence when the target function is strongly convex and many local updates are performed.
However, in the non-convex case (e.g., deep learning, latent-variable models), theoret-
ical guarantees are essentially missing. Existing approaches often rely on Euclidean
averaging of the model weights, which becomes inefficient when agents’ models deviate
significantly from the central model (Frankle et al., 2020). Initial attempts to improve
the aggregation technique have been proposed, with two main approaches investigated:
modifying the averaging scheme using optimal transport (Singh and Jaggi, 2020) or
weight matching (Yurochkin et al., 2018; Wang et al., 2020a), which require significant
computational effort, or using distillation (Lin et al., 2020; Sattler et al., 2020), but re-
quires an additional public dataset, increased training overhead, but without theoretical
guarantees.

Research Question #2

Can we leverage gradient compression schemes to sample from the posterior
distribution?

Another approach to reduce communication costs is to decrease the number of bits
in each message exchanged between agents and the central node. This is achieved
through randomized lossy compression, often a mixture of sparsification and quantiza-
tion. Biased compressors (e.g., Top-k) typically achieve higher compression ratios than
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unbiased ones but can lead the algorithm to converge to spurious minima if directly
applied (Karimireddy et al., 2019). The effect of bias can be mitigated by using error
feedback methods, as advocated in Stich and Karimireddy (2019); Koneény et al. (2016);
Gorbunov et al. (2021); Hanzely and Richtéarik (2020); Wang et al. (2021); Horvath and
Richtarik (2020).

Random independent unbiased compressors perform better with increasing numbers
of agents and are less sensitive to statistical heterogeneity. Several techniques have
been proposed to develop such compression operators. However, for high-dimensional
complex models, there is still a need for novel compression techniques. Specifically,
the interactions between the distribution and structure of the compressed messages is
still not clear; and the compression operator needs to be reconsidered for efficient high-
dimensional compression methods. Additionally, the abundance of new compression
techniques calls for more rigorous evaluation frameworks. These measures can be based
on interpretable metrics, or small-scale. However, quantifying the impact of elementary
algorithmic blocks on the overall performance of deep learning models is challenging.

1.2.1 Distributed /Federated Bayesian Learning

Distributed Monte Carlo methods aims to generate samples from the posterior distribu-
tion p(@|D), but without exchanging observations between the workers and the central
node. Each node has only access to its local dataset D;, and communicates with the
central server to generate samples targeting the global posterior given by

n

Vo € RY, 0~ p(0]D) o p(f przlxz, H[p( 6)"/"p( DIG} sz 0|D).

=1

The interest in distributed Bayesian inference has significantly grown over the past dec-
ade. In an early paper, Zinkevich et al. (2010) proposed running independent chains on
each subset of the data, while periodically averaging the learned parameters. However,
no clear theoretical convergence guarantee could be provided. Subsequently, sophistic-
ated methods have been proposed to recombine local samples to approximate the desired
global posterior (Neiswanger et al., 2014; Wang and Dunson, 2013; Minsker et al., 2014).
Due to statistical heterogeneity, data imbalance, and noise, the local posteriors can differ
significantly from each other. Better agents with more data might possess more accur-
ate information on the parameter. Several alternative techniques have been proposed,
they utilize the values from workers’ chains to approximate the posterior distribution,
each with its own benefits and drawbacks. Alternative techniques utilize the values
from each chain and approximate posterior expectations, each with its own benefits
and drawbacks. For instance, Neiswanger et al. (2014) propose Gaussian kernel density
estimation (KDE), Wang and Dunson (2013) suggest Gaussian aggregation techniques
based on local samples drawn from the Weierstrass transformation of the subposteriors
(convolution of the subposteriors with Gaussian kernels), Minsker et al. (2014) develop
a median posterior in a reproducing kernel Hilbert space (RKHS), and recombination
of the samples using random partition trees (Wang et al., 2015).

In their seminal work, Scott et al. (2016) propose an exact algorithm for Gaussian
subposteriors. They leverage the Bernstein-von Mises theorem (Van der Vaart, 2000)
which states that under some conditions, if a unique parameter 6, = argmaxL(:|D)
exists, then the posterior tends to a normal distribution centered around 6, as the
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number of observations increases. When p;(+|D;) is the density of a Gaussian distribution
N (i, 3;), the posterior distribution p(-|D) o [[;, pi(:|D;) is also Gaussian. It has a
covariance ¥ = (3,_; £;71)7! and a mean p = 231" | %7 ;. Furthermore, if we draw
n independent random variables 6; ~ N (u;, 3;), the weighted combination satisfies

2(2 2;%) ~N (1, 3). (1.3)

Thus, combining these local draws (6;)?_; according to (1.3) produces a sample distrib-
uted according to the target posterior distribution. However, it should be noted that
this method lacks theoretical guarantees and performs well only for Gaussian or nearly

Gaussian target distributions.

An alternative approach is to approximate the true posterior density using an estimate
of the kernel density of the subposterior densities; see for example White et al. (2015).
Neiswanger et al. (2014) propose an algorithm to sample according to p1 X - -+ X pas
instead of Hie[n] p;. Each worker i independently samples parameters 0}, . ,GiT from
the subposterior p;(-|D;), and the resulting samples are combined to derive the proxy
p; given by

T
5i0) = = SN (9165, 11a) .
t=1

Here, N'(-|-,hlg) : R? x R4 — RT denotes the Gaussian kernel with bandwidth para-
meter h > 0. Since the approximate subposterior p; is a Gaussian mixture, the product
Hie[n] p; is also a Gaussian mixture contrary to Hie[n} p;. Therefore, the second part
of the algorithm involves sampling § € R¢ according to this Gaussian mixture. This
method replaces the posterior sampling, from which it is difficult to sample, by mixture
Gaussian sampling. However, this method has several drawbacks. Firstly, the paramet-
ric estimator can be asymptotically biased. Secondly, the number of samples required
to achieve the same level of accuracy, exponentially depends on the dimension d due to
the curse of dimensionality of the kernel density estimators. Moreover, for a multimodal
posterior, the effect of averaging is not clear and can lead to mode collapse.

1.2.2 Bayesian inference methods using local steps on each client

Research Question #3

How to design efficient distributed sampling algorithms for high-dimensional
models?

To address the question of designing efficient distributed sampling algorithms for high-
dimensional models, Vono et al. (2022a); Rendell et al. (2020) have introduced a hier-
archical Bayesian model that enables separate MCMC chains on each agent, client, or
worker. As in the “embarrassingly parallel” approaches, the Global consensus Monte
Carlo objective is to reduce the costs of communication latency. They employ a para-
meter relaxation method, which bears resemblance to the splitting technique used in
optimization, such as the alternating direction method of multipliers (ADMM) (Boyd
et al., 2011). In their approach, an auxiliary parameter z; is associated with each
agent /client /worker, which are assumed to be conditionally independent given the mas-
ter’s parameter 0. The algorithm targets an extended distribution 7,(0) that depends
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on a tolerance parameter p > 0. This distribution is defined as:

n

7(0) () | [Kff”(& (D)
=1

For i € [n], if lir% KZ-(p)(G,zi) = 1¢(z), then Scheffé’s lemma (Scheffé, 1947) demon-
p—

strates that (m,),>0 converges to 7 in total variation as p — 0. The authors develop a
Metropolis-within-Gibbs scheme that alternates between sampling the agent/client /worker
parameters given the master’s parameter, and sampling the master’s parameter given
the agent/client /worker parameters.

There exists a tradeoff between the bias, which requires p < 1, and the mixing time,
which typically improves as the tolerance parameter increases. To obtain samples 6
drawn according to m,, the authors propose sampling the marginals separately. Each
node independently samples z; in parallel according to 7,(2;|6), while the central server
samples 6 ~ m,(6|z1, ..., 2,). In this procedure, communication is only necessary during
aggregation steps, where an approximation of the full posterior is obtained using samples
from the n chains. When exact sampling is not feasible in practice, Rendell et al. (2020)
consider a Metropolis-Hastings scheme to sample from 7,(2;|6), while Vono et al. (2022a)
suggest the use of a rejection sampling mechanism. Both approaches provide theoretical
guarantees for their proposed schemes and prove that they admit 7, as a stationary
distribution under mild assumptions.

Research Question #4

Can we provide theoretical guarantees for distributed sampling algorithms?

1.3 Federated Uncertainty Quantification

In the machine learning field, uncertainty quantification plays a critical role in decision-
making processes. Traditional prediction models often provide point estimates without
explicitly addressing the associated uncertainty, leaving decision-makers with limited
insight into the reliability of the predictions. However, in many real-world applications,
having an understanding of the uncertainty is essential for making informed decisions.

1.3.1 Bayesian uncertainty quantification and calibration

Over-parameterized deep models have shown the ability to memorize datasets even when
the labels are completely randomized (Zhang et al., 2021). However, in many applic-
ations, especially those involving decision-making processes, overconfident predictions
can be problematic (Amodei et al., 2016; Del Grosso et al., 2022). Therefore, uncertainty
quantification is necessary to make reliable decisions (autonomous cars, health-related
systems).

The importance of well-calibrated decisions is often emphasized as a means to mitig-
ate the impact of rare but significant errors caused by poorly calibrated models; see
Guo et al. (2017) for detailed calibration measures and Rahaman and Thiery (2021)
for methods leading to better calibration. Deep learning methods are known to suf-
fer from calibration issues, often producing overconfident estimates. These problems
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become more pronounced in scenarios with limited data availability. While the calib-
ration of probabilistic models has been extensively studied, calibrating extremely over-
parameterized models in low-data regimes poses unique challenges. Frequentist learning
proves effective in large data sets when the primary focus is accuracy but falls short in
quantifying epistemic uncertainty due to limited data availability (Lakshminarayanan
et al., 2017). Bayesian learning offers an alternative framework in which optimization
is conducted on the distribution of model parameters, rather than a single vector of
parameters as in frequentist learning.

Many Bayesian methods involve sampling weights to target specific distributions. How-
ever, assessing the quality of predictive uncertainty obtained through these methods
presents a significant challenge. Metrics commonly used in the optimization community,
such as accuracy or loss evaluation, are not well-suited to reflect how effectively an al-
gorithm samples according to the posterior distribution. To evaluate the quality of pre-
dictive distributions obtained through classical methods, Wilson et al. (2021) compare
various predictive distributions with a Hamiltonian ground truth distribution, which
is known to be asymptotically accurate but computationally expensive for large neural
network models.

1.3.2 Conformal predictions for uncertainty quantification

Conformal prediction experienced relatively recent developments in machine learning
and statistics. These methods offer an attractive framework for uncertainty quantifica-
tion. Unlike traditional approaches, conformal methods provide theoretical guarantees
without any assumption except for exchangeability (Lei et al., 2013; Fontana et al.,
2023). Conformal prediction leverages the concept of nonconformity scores to construct
prediction intervals that capture the uncertainty associated to each prediction (Vovk
et al., 1999; Shafer and Vovk, 2008; Balasubramanian et al., 2014). One of the key
advantages is its model-agnostic nature. This flexibility allows practitioners to utilize
conformal prediction as a powerful tool for uncertainty quantification in a wide range of
applications. It can be applied to any underlying prediction model, including regression,
classification, and more advanced machine learning algorithms. We will only detail here
the main derivations of conformal split-prediction methods. As in the classical optim-
ization framework, the training dataset D" is used to learn the predictor f while the
calibration dataset D! is reserved for the confidence interval constructions.

At its core, conformal prediction introduces a notion of valid prediction sets by analyz-
ing the distribution of non-conformity measures. These measures quantify the deviation
between a new non-conformity score and the available non-conformity distribution es-
timate on the training data. Larger scores meaning worse agreement between z and
y. These scores are often based on the predictor f and can be therefore considered
as post-processing; for specific choices of non-conformity functions we refer to Angelo-
poulos and Bates (2021) and references therein. As by hypothesis the data are i.i.d.,
the non-conformity scores must have the same distribution — which we note P(V) —
meaning that:

V(z,y) €D, Vi(a,y) K PV).

Given a confidence threshold o € (0,1), the conformal prediction constructs a predic-
tion set C,(x) for a new instance x by aggregating the non-conformity scores of the
calibration data. From these non-conformity scores, a quantile is calculated. Denote
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by N the number of calibration data and ¢ = [(1 — a)(N + 1)]|/(N + 1), the (1 — a)-
quantile corresponds to the gth largest value of {V (z, y)}(xyy)epcal. The prediction set is
ensured to contain the true label Y1 at the predefined confidence level 1 — « € [0, 1].
Specifically, the prediction set is determined Vx € X, by

N

Cax)=QyeY: V(z,y) <Qi-a Z

k=1

5V(Xk,Yk) 6V(XN+17YN+1)
N+1 N+1

Under the exchangeability assumption on { (X, Yx)}re[n+1), it is known (Papadopoulos
et al., 2002; Tibshirani et al., 2019) that:

~ 1
1—a<IP’<Y € Cu(X D(tram))<1—a —
< N+1 o(Xny1) | < +N+1
Thus, the increase of the number of data allows the refinement of the prediction set.
Indeed, the upper bound shows that this set becomes more and more informative when
N increases. Note that C,(Xn41) cannot include too many possible outputs otherwise
the upper bound would be relatively close to 1.

Research Question #5

How to adapt and customize these prediction sets to the federated case, and
how can we keep theoretical guarantees despite shifts between local
distributions?

Many research gaps remain in the federated conformal prediction framework, notably
(1) regarding results on the quantiles federated computation, (2) ensuring valid cover-
age guarantees while (3) preserving privacy. However, only a few solutions have been
proposed to address these challenges.

Research Question #6

How to efficiently calculate quantiles in a federated environment?

A natural approach to performing federated conformal prediction is to aggregate the
quantiles of different agents. This is studied in Lu and Kalpathy-Cramer (2021); the
authors suggest deriving prediction sets by averaging the local quantiles. However, this
approach is not robust when dealing with heterogeneous data since global quantiles may
not be suitable when at least one agent has limited data. For instance, if the threshold
a € (0,1) is taken such that o < (N®+ 1)7!, then, the quantile for agent i becomes
Q1_o{(N'+1)7! (Zé\zl Oy (xi,vi) +000)} = 0o. This demonstrates the lack of robustness
of the quantile averaging approach, which results in problematic aggregations.

Research Question #7

How to generate prediction sets while preserving data confidentiality?

A more robust approach is developed by Humbert et al. (2023). The authors investigate
the validity of a quantile of quantiles approach instead of using the average quantile.
The theoretical study demonstrates its effectiveness for homogeneous datasets, however
the study lacks mechanisms to handle data heterogeneity.
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1.4 Summary of the contributions

Motivated by the research questions (RQ) previously mentioned, this thesis makes sev-
eral contributions, which are outlined in detail in the following section. Each chapter
focuses on a specific research direction, addressing the following key areas:

4 Development of advanced distributed sampling methods targeting a global pos-
terior distribution.

4 Construction of efficient simulation methods for potentially high dimensional dis-
tributions, known up to some normalizing constant.

4 Application of approximate inference methods for Bayesian deep learning.

4 Derivation of federated uncertainty management methods based on conformal
predictions.

Part II: Distributed Sampling & Langevin MC

e Chapter 2: DG-LMC: A turn-key and scalable synchronous distributed MCMC
algorithm via Langevin Monte Carlo within Gibbs (RQ#3-RQ#4)

In this work, we propose an efficient sampling algorithm tailored for master/slave archi-
tectures. Our method specifically focuses on Bayesian inference from shared datasets
{D;}?_, observed on n workers. We develop a procedure for approximating posterior
distributions admitting a density given by

n
(0] D1n) o [ [ exp(~Ui(0)), (1.4)
i=1
where the potential function U;: R%* — R depends on the training set D;. The key
idea of our novel methodology, called Distributed Gibbs using Langevin Monte Carlo
(DG-LMC), consists in designing a joint distribution II, with auxiliary variables z; €
R% ... 2, € R% satisfying
n n
I, (Diin|21:m, 0) o [ [ T,(Dil20), o(21:00) = an (2i0), (1.5)
i=1
where p > 0 is a tolerance parameter such that lim,_,oIl,(0|D) = w(6|D). Working
with II, has a significant advantage: the auxiliary variables {z;}?_; are conditionally
mdependent given 0. Consequently, utilizing (1.5) enables the followmg decomposition:

Hp(6|D1:n) = /Hp(euzlzn‘pl:n) dz1:p
1

= ———— [ 1,(0, 21.0)11,(Drn|0, 21:0) d21.
HP(Dln)/ p(0, 21:0)11,(D1:n|0, 21:) d21

1 n
- %/ ]_;[1 [ D |zz (Z@|9) le;n.

By leveraging the Gibbs sampler, the distribution II,(6, 21.n|DP1:n) can be efficiently
sampled in parallel without the need to transmit any data.

Contributions. The main contributions can be summarized as follows:
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(1) We introduce a novel methodology called Distributed Gibbs using Langevin Monte
Carlo (DG-LMC) in Section 2.2. This algorithm requires each worker to sample z;
from the conditional distribution II,(2;|D;,6) and to communicate this sample to
the master node. Then, the central node sample 6 according to II,(0|z1.,) and
sends back this parameter to every worker.

(2) Importantly, we present a comprehensive quantitative analysis of the induced
bias and demonstrate explicit convergence results in Section 2.3. This represents
our main contribution, and to the best of the authors’ knowledge, this theoret-
ical study is one of the most comprehensive among existing works that focus on
distributed Bayesian machine learning with a master/slaves architecture. Specific-
ally, we discuss the algorithm’s complexity, the selection of hyperparameters, and
offer practitioners simple guidelines for tuning them. Additionally, we conduct a
thorough comparison of our method with existing approaches in Section 2.4.

(3) Finally, in Section 2.5, we demonstrate the advantages of the proposed sampler
over popular and recent distributed MCMC algorithms through various numerical
experiments.

Two main challenges remain: efficiently sampling from the conditional distribution
I1,(2]0,D;) for i € [n], and reducing frequent communication rounds with the mas-
ter node. We address both issues using the Langevin Monte Carlo (LMC) algorithm
to approximate sampling from II,(z;|0, D;) (Rossky et al., 1978; Roberts and Tweedie,
1996). For i € [n], we introduce II, whose conditional densities given as follows:

1 (122, o exp (Ui = [ = 0 /209

p(0]21) = A (1(e10). Q")

where the precision matrix Q = (3.1, p; "1)Iq and the mean p(21.,) = Q7130 2i/pi.
When the tolerance parameter p — 0, using (Scheffé, 1947) shows that this data aug-
mentation scheme satisfies

li T1,(01D) = ling / TL,(6, 21.0)dz1m = 7(6]D).

Based on the overdamped Langevin stochastic differential equation, at iteration k, we
update the parameters as follows:

A = <1 - %>z§k) + 200 VUL + Vel

Pi

(

gk+1) — M(ZIZ)L) + Q‘”%é’“’ during communication rounds else Q(k),

where 7; > 0 is a fixed step-size and {§§k): i € [n],k € N} is an i.i.d. sequence of stand-
ard Gaussian random variables. To mitigate communication costs, we allow each worker
to perform N; > 1 local LMC steps (Dieuleveut and Patel, 2019). Varying N; across
workers prevents DG-LMC from experiencing significant delays due to imbalanced worker
response times (Ahn et al., 2014). We provide a detailed quantitative analysis of the bias
and establish explicit non-asymptotic convergence results. Our analysis encompasses
the complexity of DG-LMC, the selection of hyperparameters, and offers practitioners
simple guidelines for tuning them. To the best of our knowledge, this theoretical study
is one of the most comprehensive works on distributed Bayesian machine learning with
a master /slave architecture.
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Theorem 1.1 (Informal). Under some assumptions described in Chapter 2, there exist
k€ (0,1), v, p,Co, C1,Co > 0 such that for k > 0, the distribution uy of the sample 0y
satisfies

Wa (s (1D1)) < Coll = w0+ o/ F 7777 + Cadlp.

e Chapter 3: FALD: Federated Averaging Langevin Dynamics (RQ#1)

In this chapter, we are interested in sampling from a target distribution = whose dens-
ity can be decomposed as in (1.4). To address these issue, we propose an MCMC
algorithm coined FALD, which combines the ideas of Stochastic Langevin Gradient Dy-
namics (SGLD) and Federated Averaging.

Contributions. The main contributions can be summarized as follows:

(1) We study a random loop version of the FALD algorithm proposed in Deng et al.
(2021), and we establish non-asymptotic upper bounds in Wasserstein distance for
strongly convex potentials U. An analysis of FALD was conducted in Deng et al.
(2021, Theorem 5.7), however, the proof is plagued by an error; see Section 3.3.1.

(2) We give matching lower bounds to show that even with full batch gradients, FALD
can be slower than SGLD due to client-drift.

(3) We propose a new method (VR-FALD*) that circumvents the shortcomings of FALD.
This algorithm extends the Shifted Local-SVRG method of Gorbunov et al. (2021)
to the Bayesian context. VR-FALD* combines the Stochastic Variance Reduced
Gradient Langevin Dynamics (SVRG-LD) (Dubey et al., 2016) and adapts the
bias reduction techniques from SCAFFOLD (Karimireddy et al., 2020).

(4) We derive theoretical guarantees for VR-FALD* which highlight its gradient variance
reduction effect and ability to deal with data heterogeneity.

(5) The results are based on a general framework developed in the supplement, that
encompasses a broad family of federated Bayes algorithms based on Langevin
dynamics. This is the first unifying study among existing works on federated
Bayesian inference.

(6) Finally, Section 3.4 illustrates our findings on classical FL benchmarks and provides
a thorough comparison with existing FL. Bayesian methods.

FALD algorithm samples from 7 while respecting a major constraint: each potential Uj;
and its gradient VU; can only be computed by the i-th client. In this method, each
client has a parameter ‘92 which is updated locally while the global parameters 6} is
updated on the central server. At every round, the clients execute SGLD steps to update
their local parameters

é;ﬁﬂ = 92 - ’YVUi(Q}‘c) + v 2'7Z]i+17

where Z,i 41 is a d-dimension Gaussian possibly correlated between clients. Each client

sends 0}; 41 to the central server with probability p. € (O, 1] corresponding to the real-
ization of a Bernoulli By,1. During communication rounds, the central server averages
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the received parameters

0ip1 = (Bit1/n) D Oy + (1= Bier)6}

i€[n]

Then, this server parameter 67 ; is returned to the local clients which update their
local parameters ¢} following

0is1 = Brs105q + (1 — Bey1)0p 1.

As stated in Theorem 1.2, the samples {6} }ren generated by the central server target
the posterior distribution 7. Further explanations on the convergence bounds of FALD
are provided in Chapter 3. Although being theoretically sound, this method may suffer
from high variance due to the stochastic gradients used during the local SGLD and the
heterogeneity of the data, which hinders the convergence. More specifically, we show
the impossibility for an algorithm not tackling heterogeneity to provide an asymptotic
Wasserstein error below the discretization step-size O(y). To solve this problem, we
propose one alternative: VR-FALD* based on a combination of control variates and bias
reduction techniques. Theoretical improvements are derived and experimental behaviors
of our algorithms are provided.

Theorem 1.2 (Informal). Under assumptions described in Chapter /J, there exist v, >
0, such that for v € (0,7), there are k € (0,1), Cp,C1,Ca,Cs > 0 such that for k >0,
the distribution py, of the sample 0y satisfies

W (1, 7(-1D1) ) < (1= 0)Co +4CiE (L, Ti(04))

20 n
+ 7p22 STIVU; (8)]1% +°Cs.
¢ =1

Part III: Federated Uncertainty Quantification via Bayesian & Fre-
quentist approaches

o Chapter 4: QLSD: Quantized Langevin stochastic dynamics for Bayesian feder-
ated learning (RQ#2)

Several works attempted to improve the efficiency of distributed /federated learning by
reducing the communication cost. Some methods focused on quantizing each coordinate
of the computed gradients (Alistarh et al.; 2017), so that much fewer bits are needed
to be transmitted. Aggressive quantization, such as the binary or ternary representa-
tion, has also been investigated. Other methods imposed sparsity onto gradients during
communication, where only a small fraction of gradients gets exchanged across nodes in
each iteration. The underlying ideas of these methods are basically to compress gradi-
ents, where each entry can be represented by much fewer bits than the original 32-bit
floating-point number. Such compression introduces extra stochastic noises, i.e. quant-
ization error, into the optimization process, and will slow down the convergence or even
leads to divergence (Alistarh et al., 2017). The performance of these approaches relies
on the tradeoff between the number of bits communicated per iteration and the quality
of this information. Thus, aggressive schemes may only send one bit per coordinate
(Bernstein et al., 2018; Tang et al., 2021) or used vector quantization (Leconte et al.,
2021).

Contributions. The main contributions can be summarized as follows:



CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND
CONTRIBUTIONS 28

(1) We propose QLSD, a general MCMC algorithm specifically designed for Bayesian
inference under the FL paradigm and two variance-reduced alternatives, especially
tackling heterogeneity, communication overhead and partial participation.

(2) We provide a non-asymptotic convergence analysis of the proposed algorithms.
The theoretical part highlights the impact of statistical heterogeneity measured
by the discrepancy between local posterior distributions.

(3) We propose efficient mechanisms to mitigate the impact of statistical heterogeneity
on convergence, either by using biased stochastic gradients or by introducing a
memory mechanism that extends Horvath et al. (2022) to the Bayesian setting.
In particular, we find that variance reduction indeed allows the proposed MCMC
algorithm to converge towards the desired target posterior distribution when the
number of observations becomes large.

(4) We illustrate the advantages of the proposed methods using several FL bench-
marks. We show that the proposed methodology performs well compared to
state-of-the-art Bayesian FL methods.

In this work, we extend these ideas to the Bayesian setting. We develop a novel federated
Bayesian inference algorithm, called Quantized Langevin Stochastic Dynamics (QLSD)
to address the communication bottleneck of distributed/federated algorithms. This
framework incorporates the case of n clients, each owing a local potential U; : R* — R
computed based on its local dataset D;. The agents perform Bayesian inference to
target the posterior distribution proportional to exp(—Y ", U;) while respecting the
federated learning constraints. Using an unbiased sequence {Cy}r>1 of compression
operators (Alistarh et al., 2017), these agents only communicate a quantized version
of their stochastic gradient V/\UZ at each aggregation round. Then, the central server
performs a Langevin dynamics step based on the received compressed gradients. The
parameter 0y is updated using the information of the participating clients Ay 1:

mn —
Op+1 =0k — A Y Cur(VU(OR) + /27 Zkp, (1.6)

1€AL 1

where Zj 1 is a standard Gaussian noise. Under assumptions stated in Theorem 4.5, the
samples {0} generated by (1.6) are approximately distributed according to Hie[n] exp(U;).
However, we illustrate theoretically and experimentally that this method suffers from
heterogeneity and the use of a stochastic gradient V/\UZ To improve performance,
we therefore introduce mechanisms leading to improved versions denoted QLSD* and
QLSD**. In the first version QLSD*, the stochastic gradient VU; in (1.6) is replaced
by the oracle VA/UI(G) = §\U1(9) - ﬁ(e*), where 0, = argmin ), U;; for more de-
tails, see the Langevin Fixed Point algorithm (Brosse et al., 2018). Interestingly, note
that VA/UI is a biased estimate of VU; since the expectation E[VNUZ] % VU; in spite
of B[}, VA/UZ] = >, VU;. In Theorem 4.7, we derive asymptotic and non-asymptotic
convergence guarantees for the proposed algorithm. However, obtaining the minim-
izer 0, is complicated in practical case scenario. Hence, we develop a last alternative
coined QLSD™™ relying on the well-known SVRG technique (Johnson and Zhang, 2013)
to reduce the noise introduced by the variance of the stochastic gradient combined
with a memory mechanism to break down the heterogeneity problem (Horvath et al.,
2022; Philippenko and Dieuleveut, 2020). Finally, we illustrate the performance of
the proposed approach compared to various Bayesian federated learning benchmarks.
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Furthermore, we numerically emphasize the compression benefits by achieving similar
precision than classical methods with fewer bits.

Theorem 1.3 (Informal). Under assumptions described in Chapter J, there exist vy, >
0, such that for v € (0,7), there are k € (0,1), Co,C1 > 0 such that for k > 0, the
distribution py, of the sample 0y satisfies

W2 (uk, Tr(-mm)) < (1— k)" Cy + 0.

e Chapter 5: Conformal Prediction for Federated Uncertainty Quantification Un-
der Label Shift (RQ#5-RQ#6-RQ#7)

Accurate uncertainty quantification is crucial in modern machine learning applications.
This is essential to develop reliable methods guaranteeing the validity of predictions.
However, estimating valid prediction sets can be challenging in distributed settings, and
this challenge is further exacerbated under label shift.

Contributions. The main contributions can be summarized as follows:

(1) We introduce a new method, DP-FedCP, to construct conformal prediction sets
in a federated learning context that addresses label shift between agents; see
Section 5.2. DP-FedCP is a federated learning algorithm based on federated com-
putation of weighted quantiles of agent’s non-conformity scores, where the weights
reflect the label shift of each client with respect to the population. The quantiles
are obtained by regularizing the pinball loss using Moreau-Yosida inf-convolution
and a version of federated averaging procedure; see Section 5.3.

(2) We establish conformal prediction guarantees, ensuring the validity of the result-
ing prediction sets. Additionally, we provide differential private guarantees for
DP-FedCP; see Section 5.4.

(3) We show that DP-FedCP provides valid confidence sets and outperforms standard
approaches in a series of experiments on simulated data and image classification
datasets; see Section 5.5.

Contrary to usual conformal methods, the DP-FedCP algorithm only computes the non-
conformity scores on a subset of N calibration data. For example, N = |N/2| when
half of the calibration datapoints are used. One key mechanism of DP-FedCP consists
in evaluating the discrepancy between the calibration and test distributions (P! and
P*). Based on a Radon-Nikodym estimate of the likelihood ratio @} = dPy/dPg, a
valid prediction set can be obtained by weighting the non-conformity scores. Denote by
{(Xk, Yi) tren the calibration samples used to construct the prediction sets. For any
y € Y, we construct a family of weights {p} , }ycy given by

Sk
Py = -
y7y - Aok N Ay :
w + _ W
Y3 Ze_l Y,

Then using these weights, DP-FedCP leverages local non-conformity scores to derive
personalized prediction sets for new datapoint (X3._, Y3+, ,) ~ P*, following

_ N
iy =Py y01 + k=1 ﬁik/k,y(svk’

Ca,ﬂ* (thf*-i-l) = {y € y5 V(XX[*.HQ’) < Qlfa(ﬂ;)} . (1'7)
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Non-asymptotic bounds ensuring the validiy of these prediction sets are provided in
Section 5.4. In particular, when the likelihood ratios are known, then the following
result holds.

6 36+6logN
o+ T 2
141log N
+ N Zj:%<logN

‘P (YKHH € Ca,p* (XJ*V*+1)> —l+a <

VN7,

where N* corresponds to the calibration data owned by agent i € [n]. The prediction set
Ca,i* (X}« 1) 1s generally intractable because determining the exact quantile Q1-q(f15,)
in a federated way is far from being straightforward. Actually, we develop a method
solving this problem while ensuring that no attacker can determine with high confidence
whether a particular individual’s data is included in the dataset or not.
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Distributed Sampling & Langevin
MC

“The concrete is the abstract made familiar by use.”

(Paul Langevin, La pensée et I’action, 1950)
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Performing reliable Bayesian inference on a big data scale is becoming a keystone in
the modern era of machine learning. A workhorse class of methods to achieve this
task are Markov chain Monte Carlo (MCMC) algorithms and their design to handle
distributed datasets has been the subject of many works. However, existing methods are
not completely either reliable or computationally efficient. In this chapter, we propose to
fill this gap in the case where the dataset is partitioned and stored on computing nodes
within a cluster under a master /slaves architecture. We derive a user-friendly centralized
distributed MCMC algorithm with provable scaling in high-dimensional settings. We
illustrate the relevance of the proposed methodology on both synthetic and real data
experiments.

2.1 Introduction

In the current machine learning era, data acquisition has seen significant progress due
to rapid technological advances which now allow for more accurate, cheaper and faster
data storage and collection. This data quest is motivated by modern machine learning
techniques and algorithms which are now well-proven and have become common tools
for data analysis. In most cases, the empirical success of these methods are based on a
very large sample size (Bardenet et al., 2017; Bottou et al., 2018). This need for data
is also theoretically justified by data probabilistic modelling which asserts that under
appropriate conditions, the more data can be processed, the more accurate the inference
can be performed. However, in recent years, several challenges have emerged regarding
the use and access to data in mainstream machine learning methods. Indeed, first the
amount of data is now so large that it has outpaced the increase in computation power of
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computing resources (Verbraeken et al.; 2020). Second, in many modern applications,
data storage and/or use are not on a single machine but shared across several units
(Raicu et al., 2006; Bernstein and Newcomer, 2009). Third, life privacy is becoming a
prime concern for many users of machine learning applications who are therefore asking
for methods preserving data anonymity (Shokri and Shmatikov, 2015; Abadi et al.,
2016). Distributed machine learning aims at tackling these issues. One of its popular
paradigms, referred to as data-parallel approach, is to consider that the training data
are divided across multiple machines. Each of these units constitutes a worker node
of a computing network and can perform a local inference based on the data it has
access. Regarding the choice of the network, several options and frameworks have been
considered. We focus here on the master/slaves architecture where the worker nodes
communicate with each other through a device called the master node.

Under this framework, we are interested in carrying Bayesian inference about a para-
meter § € R? based on observed data {y;}?_, € Y" (Robert, 2001). The dataset is
assumed to be partitioned into S shards and stored on S machines among a collection
of n worker nodes. The subset of observations associated to worker i € [n] is denoted
by y;, with potentially y; = {0} if i € [S+1:n], n > S. The posterior distribution
of interest is assumed to admit a density w.r.t. the d-dimensional Lebesgue measure
which factorizes across workers, i.e.,
n
7Oy 1) = 271 [ e Vn A, (2.1)
i=1

where Z, = fRd H?zl e Uvi(Aif) 49 is a normalization constant and A; € REGxd g
matrices that might act on the parameter of interest. For i € [n], the potential function
Uy, : R% — R is assumed to depend only on the subset of observations y,. Note that
fori € [S+1:n], n> S, Uy, does not depend on the data but only on the prior. For
the sake of brevity, the dependency of m w.r.t. the observations {y,}!_; is notationally
omitted and for i € [n], Uy, is simply denoted by U;.

To sample from 7 given by (2.1) in a distributed fashion, a large number of approximate
methods have been proposed in the past ten years (Neiswanger et al., 2014; Ahn et al.,
2014; Rabinovich et al., 2015; Scott et al., 2016; Nemeth and Sherlock, 2018; Chowdhury
and Jermaine, 2018; Rendell et al., 2020). Despite multiple research lines, to the best
of authors’ knowledge, none of these proposals has been proven to be satisfactory.
Indeed, the latter are not completely either computationally efficient in high-dimensional
settings, reliable or theoretically grounded (Jordan et al., 2019).

This work is an attempt to fill this gap. To this purpose, we follow the data aug-
mentation approach introduced in Vono et al. (2020) and referred to as asymptotically
exact data augmentation (AXDA). Given a tolerance parameter p, the main idea be-
hind this methodology is to consider a joint distribution II, on the extended state
space R? x I, R% such that II, has a density w.r.t. the Lebesgue measure of the
form (0, z1.n) — [Tiz; 15(0, i), with 6 € RY and z; € R%, i € [n]. 1I, is carefully
designed so that its marginal w.r.t. 6, denoted by ,, is a proxy of (2.1) for which
quantitative approximation bounds can be derived and are controlled by p. In addi-
tion, for any i € [n], HZ(Q, z;) only depends on the data y;, and therefore plays a role
similar to the local posterior 7¢(f) o e Vi(Aif) in popular embarrassingly parallel ap-
proaches (Neiswanger et al., 2014; Scott et al., 2016). However, compared to this class
of methods, AXDA does not seek for each worker to sample from Hi,. Following a data
augmentation strategy based on Gibbs sampling, AXDA instead requires each worker to
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sample from the conditional distribution II,(2;|f) and to communicate its sample to the
master. II, is generally chosen such that sampling from II,(6|z1.,) is easy and does not
require to access to the data. However, two main challenges remain: one has to sample
efficiently from the conditional distribution II,(2;|@) for ¢ € [n] and avoid too frequent
communication rounds on the master. Existing AXDA-based approaches unfortunately
do not fulfill these important requirements (Vono et al., 2022a; Rendell et al., 2020). In
this work, we leverage these issues by considering the use of the Langevin Monte Carlo
(LMC) algorithm to approximately sample from II,(z;|0) (Rossky et al., 1978; Roberts
and Tweedie, 1996).

Our contributions are summarized in what follows.

(1) We introduce in Section 2.2 a new methodology called Distributed Gibbs using
Langevin Monte Carlo (DG-LMC).

(2) Importantly, we provide in Section 2.3 a detailed quantitative analysis of the
induced bias and show explicit convergence results. This stands for our main con-
tribution and to the best of authors’ knowledge, this theoretical study is one of
the most complete among existing works which focused on distributed Bayesian
machine learning with a master/slaves architecture. In particular, we discuss the
complexity of our algorithm, the choice of hyperparameters, and provide practi-
tioners with simple prescriptions to tune them. Further, we provide a thorough
comparison of our method with existing approaches in Section 2.4.

(3) Finally, in Section 2.5, we show the benefits of the proposed sampler over popular
and recent distributed MCMC algorithms on several numerical experiments.

Notations and conventions. The Euclidean norm on R? is denoted by || - ||. For
¢ > 1, we refer to {1,...,n} with the notation [n| and for i1,i2 € N, i1 <o, {i1,...,i2}
with the notation [¢; : is]. For 0 < i < jand (ug; k € {3,---,j}), we use the notation w;.;
to refer to the vector [u, - - ,u}—]T. We denote by N (m, X) the Gaussian distribution
with mean vector m and covariance matrix . For a given matrix M € R%*¢_ we denote
its smallest eigenvalue by Amin(M). We denote by B(R?) the Borel o-field of R?. We
define the Wasserstein distance of order 2 for any probability measures j, v on R? with
finite 2-moment by Wa(p, v) = (infeer(uu) frasga 16 — 0'[17dC(6, 0'))'/2, where T (i, v)
is the set of transference plans of y and v.

2.2 Distributed Gibbs using Langevin Monte Carlo
(DG-LMC)

In this section, we present the proposed methodology which is based on the AXDA
statistical framework and the popular LMC algorithm.

AXDA relies on the decomposition of the target distribution 7 given in (2.1) to introduce
an extended distribution which enjoys favorable properties for distributed computations.
This distribution is defined on the state space R? x Z, where Z = | R% and admits
a density w.r.t. the Lebesgue measure given, for any § € R?, z;., € Z, by

T, (0, 21) o [ [TI5(6, 2), (2.2)
=1
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where 1:[2,(0, zi) = exp(—U;(z;) — ’\Zi*AiHUQ/zpi) and p = {p;}j=; € R is a sequence of
positive tolerance parameters. Note that I, is not necessarily a probability density func-

tion. Actually, for II, to define a proper probability density, .e. fRdXZ | 1:[2,(9, z;)dfdz1.y, <
00, some conditions are required.

Assumption 2.1. There exists n' € [n — 1] such that the following conditions hold:
min; e[, inf, cga, Ui(2i) > —00, maX;cpi1:m] Jpa; e Vilz)dz; < o0, and Z?:n,ﬂ A;—Aj
is 1nvertible.

The next result shows that these mild assumptions are sufficient to guarantee that the
extended model (2.2) is well-defined.

Proposition 2.2. Assume Assumption 2.1. Then, for any p € R}, I, in (2.2) is a
proper density.

The data augmentation scheme (2.2) is approximate in the sense that the #-marginal
defined by

ﬂp(a):/znp(evzlzn>dzlzn; (23)

coincides with (2.1) only in the limiting case max;c|, p; | 0 (Scheffé, 1947). For a fixed
p, quantitative results on the induced bias in total variation distance can be found in
Vono et al. (2022a). The main benefit of working with (2.2) is that conditionally upon 6,
auxiliary variables {z;}; are independent. Therefore, they can be sampled in parallel
within a Gibbs sampler. For i € [n], the conditional density of z; given 6 writes

zi—A0|
I1,(2i]0) o exp < —Ui(z) — %) (2.4)

On the other hand, the conditional distribution of 6 given z1., is a Gaussian distribution

,(0]21:0) = N (1 (21:0), Q_1)7 (2.5)

with precision matrix Q = .7, A A;/p; and mean vector p(21.,) = Q1Y 0 | Al 2/ pi.
Under H2.1, note that Q is invertible and therefore this conditional Gaussian distribu-
tion is well-defined. Since sampling from high-dimensional Gaussian distributions can
be performed efficiently, this Gibbs sampling scheme is interesting as long as sampling
from (2.4) is cheap. Vono et al. (2022a) proposed the use of a rejection sampling step
requiring to set p; = O(1/d;). When d; > 1, this condition unfortunately leads to pro-
hibitive computational costs and hence prevents its practical use for general Bayesian
inference problems. Instead of sampling exactly from (2.4), Rendell et al. (2020) rather
proposed to use Metropolis-Hastings algorithms. However, it is not clear whether this
choice indeed leads to efficient sampling schemes.

To tackle these issues, we propose to build upon LMC to end up with a distributed
MCMC algorithm which is both simple to implement, efficient and amenable to a the-
oretical study. LMC stands for a popular way to approximately generate samples from
a given distribution based on the Fuler-Maruyama discretization scheme of the over-
damped Langevin stochastic differential equation (Roberts and Tweedie, 1996). At
iteration ¢ of the considered Gibbs sampling scheme and given a current parameter ()
LMC applied to (2.4) considers, for i € [n], the recursion
Zi(t+1) _ (1 _ %>Zi(t) + %Aie(t) VU <Zi(t)) + \/2—%52@

K3
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Algorithm 2.1 Distributed Gibbs using LMC (DG-LMC)

Input: burn-in Tjy;; for ¢ € [n], tolerance parameters p; > 0, step-sizes v; € (0, p;/(1+
piM;)], local LMC steps N; > 1.

Initialize 8 and z%?)
fort=0toT —1do

// Sampling from II,(21.,|0)

fori=1ton // In parallel on the n workers do
NONING
fork=0to NV, -1 // N; local LMC steps do

e ~ N (Odi, Idi)
gi = (1 — %)ugk) + %Azﬂ(t) — v VU; (uz(k)>

u{F = g 4+ et // See (2.4)
Zi(t—H) _ ul( i)
// Sampling from HP(G\ZL,,/)
8D~ N (=), Q) // See (2.5)

Output: samples {H(t)}f:Tbi_l.

AQ(% Master \0(”
Worlfer 1 Worker b
Ny ! Ny

Figure 2.1 — Illustration of one global iteration of Algorithm 2.1. For each worker, the
width of the green box represents the amount of time required to perform one LMC
step.

where 7; > 0 is a fixed step-size and {£§k): k € N}icp a sequence of independent
and identically distributed (i.i.d.) d-dimensional standard Gaussian random variables.
Only using a single step of LMC on each worker might incur important communication
costs. To mitigate the latter while increasing the proportion of time spent on exploring
the state-space, we instead allow each worker to perform N; (N; > 1) LMC steps
(Dieuleveut and Patel, 2019; Rendell et al., 2020). Letting N; varies across workers
prevents Algorithm 2.1 to suffer from a significant block-by-the-slowest delay in cases
where the response times of the workers are unbalanced (Ahn et al., 2014). The proposed
algorithm, coined Distributed Gibbs using Langevin Monte Carlo (DG-LMC), is depicted
in Algorithm 2.1 and illustrated in Figure 2.1.
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2.3 Detailed analysis of DG-LMC

In this section, we derive quantitative bias and convergence results for DG-LMC and show
that its mixing time only scales quadratically w.r.t. the dimension d. We also discuss
the choice of hyperparameters and provide guidelines to tune them.

2.3.1 Non-Asymptotic Analysis

The scope of our analysis will focus on smooth and strongly log-concave target posterior
distributions 7. While these assumptions may be restrictive in practice, they allow for
a detailed theoretical study of the proposed algorithm.

Assumption 2.3. (i) For any i € [n], U; is twice continuously differentiable and

sup HVQUZ-(ZZ-)H < M;.
ZiERdi

(ii) For any i € [n], U; is m;-strongly convex: there exists m; > 0 such that

mily, < V2U;.

Under these assumptions, it is shown in Lemma 2.24 in the Appendix that —logm is
strongly convex with constant

my = Amin(> i MiA] A;). (2.6)

Behind the use of LMC, the main motivation is to end up with a simple hybrid Gibbs
sampler amenable to a non-asymptotic theoretical analysis based on previous works
(Durmus and Moulines, 2019; Dalalyan and Karagulyan, 2019). In the following, this
study is carried out using the Wasserstein distance of order 2.

Convergence Results

DG-LMC introduced in Algorithm 2.1 defines a homogeneous Markov chain (V})ieny =
(01, Zt)ten with realizations (Q(t),zgzz)teN. We denote by P,~ n the Markov kernel
associated with (V;)¢en. Since no Metropolis-Hastings step is used in combination with
LMC, the proposed algorithm does not fall into the class of Metropolis-within-Gibbs
samplers (Roberts and Rosenthal, 2006). Therefore, a first step is to show that P, n
admits a unique invariant distribution and is geometrically ergodic. We proceed via
an appropriate synchronous coupling which reduces the convergence analysis of (V})en
to that of the marginal process (Z;)ien. While the proof of the convergence of (Z;)en
shares some similarities with LMC (Durmus and Moulines, 2019), the analysis of (Z;)en
is much more involved and especially in the case max;c[,) N; > 1. We believe that the
proof techniques we developed to show the next result can be useful to the study of
other MCMC approaches based on LMC.

Proposition 2.4. Assume Assumption 2.1-Assumption 2.5 and let ¢ > 0 and v =

{viticy N = {N;}L, satisfying maxicp, vi < 7, minge {Nivi}/ max;ep {Nivi} > ¢ ,
and max;e, { Nivi} < C1 where 5, Cy are explicit constants only depending on (m;, M;, pi)l-e[n]l’Q.

"When N = 1,, C1 =7 = 1/ max;c({M; + p; '}
2When maX;c[n) Ni > 1, C1 is of order min;c(y p? when max;c(n) pi — 0, see Lemma 2.20 in the
Appendix.
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Then, there exists a probability measure I, 5 N such that 11, o N is invariant for P, o N,
there exists Cy > 0 such that for any integer t > 0 and v = (0,2) € R? x Z, we have

t
Wa(dv Py~ N> pqyn) < Co - (1 - erel[lﬁ{Nz%mz}ﬂ) -Wa(dv, Iy N).

Explicit expressions for C1 and Cy are given in Proposition 2.21 in the Appendiz. Fi-
nally, if N = N1,, for N > 1, then Il, , N =1l 1,.

We now discuss Proposition 2.4. If we set, for any ¢ € [n], N; = 1, the convergence
rate in Proposition 2.4 becomes equal to 1 — min;ep, {7vim;}/2. In this specific case,
we show in Proposition 2.13 that DG-LMC actually admits the tighter convergence rate
1 —min;epy{vim;} which simply corresponds to the rate at which the slowest LMC con-
ditional kernel converges. On the other hand, when max;cp,) N; > 1, the convergence of
P, ~ towards II, 4 n only holds if maxie[n]{Nmi} is sufficiently small. This condition
is necessary to ensure a contraction in W5 and can be understood intuitively as follows
in the case where N = N1,, and v = 71,. Given two vectors (0, ;) and an appropri-
ate coupling (Zgy1, Z,’c_H), we can show that Z,1— Z,’H_1 involves two competing terms:
one keeping Zj41 — Z; ., close to Z — Z; and another one driving Zy 1 — Z;_ | away
from 6), — 0. (and therefore of Z — Z;) as N increases. This implies that N stands
for a tradeoff and the product N+ cannot be arbitrarily chosen. Finally, it is worth
mentioning that the tolerance parameters { Pi}z‘e[n} implicitly drive the convergence rate
of DG-LMC. In the case N; = 1, a sufficient condition on the step-sizes to ensure a con-
traction is v; < 2/(M; +m; + 1/p;). We can denote that the smaller p;, the smaller ~;
and the slower the convergence.

Starting from the results of Proposition 2.4, we can analyze the convergence properties
of DG-LMC. We specify our result to the case where we take for the specific initial
distribution

i = 5 ® Tp(27), (2.7)

where z* = ([A16%]7,--- | [A,0%]T)T, 6 = argmin{—log 7} and II,(-|2*) is defined in
(2.5). Note that sampling from uj, is straightforward and simply consists in setting
20 = 2* and drawing 0(*) from II,(- | 2*). For ¢ > 1, we consider the marginal law of
0; initialized at v* with distribution pj and denote it I't.. As mentioned previously,
the proposed approach relies on two approximations which both come with some bias
we need to control. This naturally brings us to consider the following inequality based
on the triangular inequality and the definition of the Wasserstein distance:

W2(Ff/*a77('|D)) < WZ(MZPE,%Na HpmN) + WQ(HP,%Na Hp) + W2(7Tp, 7(-[D)), (2.8)

where I, 4 N, II, and 7, are defined in Proposition 2.4, (2.2) and (2.3), respectively. In
Proposition 2.22 in the Appendix, we provide an upper bound on the first term on the
right-hand side based on Proposition 2.4. In the next section, we focus on controlling
the last two terms on the right-hand side.

Quantitative Bounds on the Bias

The error term Wa(mp, 7(-|D)) in (2.8) is related to the underlying AXDA framework
which induces an approximate posterior representation m,. It can be controlled by
the sequence of positive tolerance parameters {p;}!' ;. By denoting p = max;ey] Pis
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Table 2.1 — For the specific initialization v* with distribution uj, given in (2.7), depend-
encies w.r.t. d and ¢ of the parameters involved in Algorithm 2.1 and of tyix(; v*) to
get a Wa-error of at most €.

Assumptions De Ve N, tmix(€;V*) Gradient evaluations
Assumption 2.1 d  O(d™') O(d@™3) 0O(d) O(d*log(d)) O(d®log(d))
At 2% e () O(E') 0 O *log)) Ol [log(e))
A%%umpt}on 2.1 d O(dil) O(d—2) O(l) (d2 log( )) O(dZ log(d))
Assumption 2.7

Agsumption 2.3 & O(e) 0(g?) 0(1)  O(e?|log(e)|) O(e72|log(e)|)

Proposition 2.5 shows that this error can be quantitatively assessed and is of order
O(p) for sufficiently small values of this parameter.

Proposition 2.5. Assume Assumption 2.1, Assumption 2.3. In addition, let A =
[A],...,All" and denote o3 = ||[ATA|| maxie[n]{Miz}/mU, where my is defined in
(2.6). Then, for any p < o? /12,

Wa(mp, n(-|D)) < /2/my max(Ap, Bp),

where A, = dO(p) and B, = d'20(p) for p | 0. Explicit expressions for Ay, B, are
given in Section 2.C in the Appendiz.

In the case where 7 is Gaussian, the approximate distribution 7, admits an explicit
expression and is Gaussian as well (e.g. when n = 1, the mean is the same and the
covariance matrix is inflated by a factor ply), see for instance Rendell et al. (2020,
Section S2) and Vono et al. (2020, Section 5.1). Hence, an explicit expression for
Wy (mp, 7(-|D)) can be derived. Based on this result, we can check that the upper bound
provided by Proposition 2.5 matches the same asymptotics as p — 0 and d — oc.

The second source of approximation error is induced by the use of LMC within Al-
gorithm 2.1 to target the conditional distribution II,(21.,|0) in (2.4). The stationary
distribution of P, ., n whose existence is ensured in Proposition 2.4 differs from II,.
The associated bias is assessed quantitatively in Proposition 2.6.

Proposition 2.6. Assume Assumption 2.1-Assumption 2.5. For any i € [n], define
M; = M; +1/p; and let v € (R)", N € (N*)" such that for any i € [n],

m; ~ ~
; i/ M;)? i/ M;)?, 29
vi < 002 fg[lgj( m;/M;) /gg%(m/ ) (2.9)
N; = Lmz m[lr}{mi/Mi}z/@O%M? mﬁ{mi/Mz‘}Q)J (2.10)
€n S

Then, we have
n
W3 (Mpry,n,Tp) < Cs > diyi M7,
i=1
where C3 > 0 only depends on (m;, M;, A;, pi)ly and is explicitly given in Proposi-
tion 2.37 in the Appendizx.
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With the notation 5 = max;c|, i, Proposition 2.6 implies that Wa(Il,, 4 N) <
O(FY2) (321, d;)'/? for 4 | 0. Note that this result is in line with Durmus and Moulines
(2019, Corollary 7) and can be improved under further regularity assumptions on U, as
shown below.

Assumption 2.7. U is three times continuously differentiable and there exists L; > 0
such that for all z;, z, € R%, ||V2U;(z) — V2U;(2)|| < Li|lzi — 2.

Proposition 2.8. Assume Assumption 2.1-Assumption 2.5-Assumption 2.7. For any
i € [n], define My = M;+1/p; and let v € (R%)", N € (N*)" such that for any i € [n],
(2.9) and (2.10) hold. Then, we have

VVQ2 (ILp,n,1Ip) < Cy Z di'Vi(l/Mz‘Q + %Mf)a

1€[n]

where Cy > 0 only depends on (m;, M;, L, A;, pi)i—, and is explicitly given in Proposi-
tion 2.41 in the Appendiz.

Mixing Time with Explicit Dependencies

Based on explicit non-asymptotic bounds shown in Propositions 2.4, 2.5 and 2.6 and
the decomposition (2.8), we are now able to analyze the scaling of Algorithm 2.1 in
high dimension. Given a prescribed precision € > 0 and an initial condition v* with
distribution w7, given in (2.7), we define the e-mixing time associated to I'y» by

tmix(g; V") = min {t € N: Wy(I's, w(-|D)) < E}.

This quantity stands for the minimum number of DG-LMC iterations such that the 6-
marginal distribution is at most at an € Ws-distance from the initial target #. Under the
condition that nmax;e|, d; = O(d) and by assuming for simplicity that for any i € [n],
m; =m,M; = M,L; = L,p; = p,v; =~ and N; = N, Table 2.1 gathers the depend-
encies w.r.t. d and ¢ of the parameters involved in Algorithm 2.1 and of tyix(e; v*) to
get a Wa-error of at most €. Note that the mixing time of Algorithm 2.1 scales at most
quadratically (up to polylogarithmic factors) in the dimension. When Assumption 2.7
holds, we can see that the number of local iterations becomes independent of d and ¢
which leads to a total number of gradient evaluations with better dependencies w.r.t.
to these quantities. Up to the authors’ knowledge, these explicit results are the first
among the centralized distributed MCMC literature and in particular give the depend-
ency w.r.t. d and € of the number of local LMC iterations on each worker. Overall, the
proposed approach appears as a scalable and reliable alternative for high-dimensional
and distributed Bayesian inference.

2.3.2 DG-LMC in Practice: Guidelines for Practitioners

We now discuss practical guidelines for setting the values of hyperparameters involved
in Algorithm 2.1. Based on Proposition 2.4, we theoretically show an optimal choice of
order N;v; =< mipg /(piM; + 1)%. Ideally, within the considered distributed setting, the
optimal value for (Nj,¥i);e[,) Would boil down to optimize the value of max;e,{ Ni7:}
under the constraints derived in Proposition 2.4 combined with communication consid-
erations. In particular, this would imply a comprehensive modelling of the communica-
tion costs including I/O bandwidths constraints. These optimization tasks fall outside
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the scope of the present chapter, and therefore we let the search of optimal values for
future works. Since our aim here is to provide practitioners with simple prescriptions,
we rather focus on general rules involving tractable quantities.

Selection of v and p

From Durmus and Moulines (2017) and references therein, a simple sufficient condition
on step-sizes v = {v;}7_; to guarantee the stability of LMC is v; < p;/(p;M; + 1) for
i € [n]. Both the values of v; and p; are subject to a bias-variance tradeoff. More
precisely, large values yield a Markov chain with small estimation variance but high
asymptotic bias. Conversely, small values produce a Markov chain with small asymp-
totic bias but which requires many iterations to obtain a stable estimator. We propose
to mitigate this tradeoff by setting v; to a reasonably large value, that is for i € [n],
vi € [0.1p;/(piM; + 1),0.5p;/(piM; + 1)]. Since ~y; saturates to 1/M; when p; — oo,
there is no computational advantage to choose very large values for p;. Based on several
numerical studies, we found that setting p; of the order of 1/M; was a good compromise

between computational efficiency and asymptotic bias.

N: A Trade-Off between Asymptotic Bias and Communication Overhead

In a similar vein, the choice of N = {N;}?_; also stands for a tradeoff but here between
asymptotic accuracy and communication costs. Indeed, many local LMC iterations
reduces the communication overhead but at the expense of a larger asymptotic bias
since the master parameter is not updated enough. Ahn et al. (2014) proposed to
tune the number of local iterations IV; on a given worker based on the amount of time
needed to perform one local iteration, denoted here by t;. Given an average number
of local iterations Ny, the authors set N; = ¢inNaye with ¢ = ’tl-_l /> hy T,gl S0
that n~! Z?Zl N; = Navg. As mentioned by the aforementioned authors, this choice
allows to keep the block-by-the-slowest delay small by letting fast workers perform
more iterations in the same wall-clock time. Although they showed how to tune NV;
w.r.t. communication considerations, they let the choice of N, to the practitioner.
Here, we propose a simple guideline to set N,y such that IV; stands for a good com-
promise between the amount of time spent on exploring the state-space and commu-
nication overhead. As highlighted in the discussion after Proposition 2.4, as -; be-
comes smaller, more local LMC iterations are required to sufficiently explore the latent
space before the global consensus round on the master. Assuming for any ¢ € [n]
that +; has been chosen following our guidelines in Section 2.3.2, this suggests to set

Navg = [(1/1) 2iefn) pi/ (vilpiMi + 1])].

2.4 Related work

As already mentioned in Section 2.1, hosts of contributions have focused on deriving dis-
tributed MCMC algorithms to sample from (2.1). This section briefly reviews the main
existing research lines and draws a detailed comparison with the proposed methodology.
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Table 2.2 — Synthetic overview of the main existing distributed MCMC methods under
a master-slave architecture. The column Fzact means that the Markov chain defined by
the MCMC sampler admits (2.1) as invariant distribution. The column Comm. reports
the communication frequency. A value of 1 means that the sampler communicates
after every iteration. T stands for the total number of iterations and N < T is a
tunable parameter to mitigate communication costs. The acronym D-SGLD stands for
distributed stochastic gradient Langevin dynamics.

Method Type Exact Comm. Bias bounds Scaling
Wang and Dunson (2013) one-shot X 1/T vV O(e?)
Neiswanger et al. (2014) one-shot X 1/T X 0O(e?)
Minsker et al. (2014) one-shot X 1/T Vv unknown
Srivastava et al. (2015) one-shot X 1/T X unknown
Wang et al. (2015) one-shot X 1/T Vv O(e?)
Scott et al. (2016) one-shot X 1/T X unknown
Nemeth and Sherlock (2018) one-shot X 1/T X unknown
Jordan et al. (2019) one-shot X 1/T Vv unknown
Ahn et al. (2014) D-SGLD X 1/N X unknown
Chen et al. (2016) D-SGLD X 1 vV unknown
El Mekkaoui et al. (2021) D-SGLD X 1/N Vv unknown
Rabinovich et al. (2015) g. consensus X 1/N X unknown
Chowdhury and Jermaine (2018) g. consensus Vv 1 N/A unknown
Rendell et al. (2020) g. consensus X 1/N Vv unknown
This chapter g. consensus X 1/N Vv O(d?log(d))

2.4.1 Existing distributed MCMC methods

Existing methodologies are mostly approximate and can be loosely speaking divided into
three groups: one-shot, distributed stochastic gradient MCMC and global consensus ap-
proaches. To ease the understanding, a synthetic overview of their main characteristics
is presented in Table 2.2.

One-shot approaches stand for communication-efficient schemes where workers and mas-
ter only exchange information at the very beginning and the end of the sampling task;
similarly to MapReduce schemes (Dean and Ghemawat, 2004). Most of these meth-
ods assume that the posterior density factorizes into a product of local posteriors and
launch independent Markov chains across workers to target them. The local posterior
samples are then combined through the master node using a single final aggregation
step. This step turns to be the milestone of one-shot approaches and was the topic
of multiple contributions Wang and Dunson (2013); Neiswanger et al. (2014); Minsker
et al. (2014); Srivastava et al. (2015); Scott et al. (2016); Nemeth and Sherlock (2018).
Unfortunately, the latter are either infeasible in high-dimensional settings or have been
shown to yield inaccurate posterior representations empirically, if the posterior is not
near-Gaussian, or if the local posteriors differ significantly Wang et al. (2015); Dai et al.
(2019); Rendell et al. (2020). Alternative schemes have been recently proposed to tackle
these issues but their theoretical scaling w.r.t. the dimension d is currently unknown
(Jordan et al., 2019; Mesquita et al., 2020).
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Albeit popular in the machine learning community, distributed stochastic gradient
MCMC methods (Ahn et al., 2014) suffer from high variance when the dataset is large
because of the use of stochastic gradients (Brosse et al., 2018). Some surrogates have
been recently proposed to reduce this variance such as the use of stale or conducive
gradients (Chen et al., 2016; El Mekkaoui et al., 2021). However, these variance re-
duction methods require an increasing number of workers for the former and come at
the price of a prohibitive pre-processing step for the latter. In addition, it is currently
unclear whether these methods are able to generate efficiently accurate samples from a
given target distribution.

Contrary to aforementioned distributed MCMC approaches, global consensus meth-
ods periodically share information between workers by performing a consensus round
between the master and the workers (Rabinovich et al.; 2015; Chowdhury and Jermaine,
2018; Vono et al., 2019; Rendell et al., 2020). Again, they have been shown to perform
well in practice, but their theoretical understanding is currently limited.

2.4.2 Comparison with the proposed methodology

Table 2.2 compares Algorithm 2.1 with existing approaches detailed previously. In
addition to having a simple implementation and guidelines, it is worth noticing that
DG-LMC appears to benefit from favorable convergence properties compared to the other
considered methodologies.

We complement this comparison with an informal discussion on the computational and
communication complexities of Algorithm 2.1. Recall that the dataset is assumed to be
partitioned into S shards and stored on S workers among a collection of n computing
nodes. Suppose that the s-th shard has size ng, and let T be the number of total
MCMC iterations and ccop the communication cost. In addition, denote by Cé?al the
approximate wall-clock time required to evaluate U; or its gradient. For the ease of
exposition, we do not discuss the additional overhead due to bandwidth restrictions
and assume similar computation costs, i.e., NCoyal =~ Nic&)al, to perform each local
LMC step at each iteration of Algorithm 2.1. Under these assumptions, the total
complexity of Algorithm 2.1 is O(T'[2¢com + Nceval]). Following the same reasoning,
distributed stochastic gradient Langevin dynamics (D-SGLD) and one-shot approaches
admit complexities of the order O(T'[2¢com + N Cevaitmp/ns]) and O(Tcoval + 2¢com),
respectively. The integer np stands for the minibatch size used in D-SGLD. Despite
their very low communication overhead, existing one-shot approaches are rarely reliable
and therefore not necessarily efficient to sample from 7 given a prescribed computational
budget, see Rendell et al. (2020) for a recent overview. D-SGLD seems to enjoy a lower
complexity than Algorithm 2.1 when n.y, is small. Unfortunately, this choice comes
with two main shortcomings: (i) a larger number of iterations T' to achieve the same
precision because of higher variance of gradient estimators, and (ii) a smaller amount
of time spent on exploration compared to communication latency. By falling into the
global consensus class of methods, the proposed methodology hence appears as a good
compromise between one-shot and D-SGLD algorithms in terms of both computational
complexity and accuracy. Section 2.5 will enhance the benefits of Algorithm 2.1 by
showing experimentally better convergence properties and posterior approximation.
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2.5 Experiments

This section compares numerically DG-LMC with the most popular and recent centralized
distributed MCMC approaches namely D-SGLD and the global consensus Monte Carlo
(GCMC) algorithm proposed in Rendell et al. (2020). Since all these approaches share
the same communication latency, this feature is not discussed here.

’
’
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w 067 . 06
S‘): O
0.41 <041
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0.0 0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
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Figure 2.2 — Toy Gaussian experiment. (left) N = 1 local iterations and (right) N = 10.
(top) DG-LMC, (middle) D-SGLD and (bottom) ACF comparison between DG-LMC and
D-SGLD.

2.5.1 Toy Gaussian Example

In this toy example, we first illustrate the behavior of DG-LMC w.r.t. the number of
local iterations which drives the communication overhead. We consider the conjug-
ate Gaussian model 7(0|y1.n) o< N (0|04, o) [} N (yil0,X1), with positive definite
matrices g, X1. We set d = 2, allocate b = 20,000 observations to a cluster made
of n = 10 workers and compare DG-LMC with D-SGLD. Both MCMC algorithms have
been run using the same number of local iterations N per worker and for a fixed budget
of T" = 100, 000 iterations including a burn-in period equal to T; = 10,000. Regard-
ing DG-LMC, we follow the guidelines in Section 2.3.2 and set for all i € [n], A; = I,
pi = 1/(5M;) and ~; = 0.25p;/(piM; + 1). On the other hand, D-SGLD has been run
with batch-size b/(10n) and a step-size chosen such that the resulting posterior approx-
imation is similar to that of DG-LMC for NV = 1. Figure 2.2 depicts the results for N = 1
and N = 10 on the left and right columns, respectively. The top row (resp. middle row)



CHAPTER 2. DG-LMC: DISTRIBUTED GRADIENT LANGEVIN MONTE CARL@5

3x10* 1.04
5 2% 10* 084
a [, 0.6
& 104 O
s =04
E 6x10°
g 0.2
4x10*
, 0.0
0 o 102 0 1ot 100 0 200 400 600 800 1000
Number of communication rounds Lag
1.6% 1 i
_ —— GCMC
S 1.4% 5
= —— D-SGLD :
= 1.2% & 10°4
°] =—— DG-LMC =
o7 | ‘95
= 1014 —— DG-LMC
—— GCMC
=]
4 —— D-SGLD
} } } } } } 1072
0.0 0.2 0.4 0.6 0.8 1.0 10! 102 103 10* 10°
l-—a Number of communication rounds

Figure 2.3 — Logistic regression. From left to right: negative log-posterior, ACF, HPD
relative error after and during the sampling procedure.
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Figure 2.4 — Bayesian neural network. (left) probability of the most probable label for
8 examples and (right) probability of each label for a single example.

shows the contours of the n local posteriors in dashed gray, the contours of the target
posterior in red and the 2D histogram built with DG-LMC (resp. D-SGLD) samples in
blue (resp. green). When required, a zoomed version of these figures is depicted in the
top right corner. It can be noted that DG-LMC exhibits better mixing properties while
achieving similar performances as shown by the autocorrelation function (ACF) on the
bottom row. Furthermore, its posterior approximation is robust to the choice of IV in
contrast to D-SGLD, which needs further tuning of its step-size to yield an accurate
posterior representation. This feature is particularly important for distributed com-
putations since N is directly related to communication costs and might often change
depending upon the hardware architecture.
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2.5.2 Bayesian Logistic Regression

This second experiment considers a more challenging problem namely Bayesian logistic
regression. We use the covtype® dataset with d = 54 and containing b = 581,012
observations partitioned into n = 16 shards. We set N = 10, T' = 200, 000, Ty,; = T7'/10
for all approaches, and again used the guidelines in Section 2.3.2 to tune DG-LMC. Under
the Bayesian paradigm, we are interested in performing uncertainty quantification by
estimating the highest posterior density (HPD) regions. For any « € (0, 1), define C,, =
{60 € RY; —log (0|y1:n) < Mo} where 1, € R is chosen such that fCa m(0]y1.,)d0 = 1—au.
For the three approximate MCMC approaches, we computed the relative HPD error
based on the scalar summary 75, i.e. |, — 78| /ntre where n"¢ has been estimated
using the Metropolis adjusted Langevin algorithm. The parameters of GCMC and D-
SGLD have been chosen such that all MCMC algorithms achieve similar HPD error.
Figure 2.3 shows that this error is reasonable and of the order of 1%. Nonetheless,
one can denote that DG-LMC achieves this precision level faster than GCMC and D-
SGLD due to better mixing properties. This confirms that the proposed methodology is
indeed efficient and reliable to perform Bayesian analyzes compared to existing popular
methodologies.

2.5.3 Bayesian Neural Network

Up to now, both our theoretical and experimental results focused on the strongly log-
concave scenario and showed that even in this case, DG-LMC appeared as a competitive
alternative. In this last experiment, we propose to end the study of DG-LMC on an open
note without ground truth by tackling the challenging sampling problem associated
to Bayesian neural networks. We consider the MNIST training dataset consisting of
n = 60, 000 observations partitioned into n = 50 shards and such that for any i € [n] and
k € [10], P(y; = k|0,x;) = By where By, is the k-th element of (o (x;] W1 +n;)Wa-+ny),
o(+) is the sigmoid function, x; are covariates, and W1, Wo, n; and ny are matrices of
size 784 %128, 128 x 10, 1x128 and 1x10, respectively. We set normal priors for each
weight matrix and bias vector, N = 10 and ran DG-LMC with constant hyperparameters
across workers (p,v) = (0.02,0.005) and D-SGLD using a step-size of 107°. Exact
MCMC approaches are too computationally costly to launch for this experiment and
therefore no ground truth about the true posterior distribution is available. To this
purpose, Figure 2.4 only compares the credibility regions associated to the posterior
predictive distribution. Similarly to previous experiments, we found that D-SGLD was
highly sensitive to hyperparameters choices (step-size and minibatch size). Except for a
few testing examples, most of conclusions given by DG-LMC and D-SGLD regarding the
predictive uncertainty coincide. In addition, posterior accuracies on the test set given
by both algorithms are similar.

2.6 Conclusion

In this chapter, a simple algorithm coined DG-LMC has been introduced for distributed
MCMC sampling. In addition, it has been established that this method inherits favor-
able convergence properties and numerical illustrations support our claims.

3uww.csie.ntu.edu. tw/"cjlin/libsvmtools/datasets
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2.A Proof of Proposition 2.2

Let n' € [n—1], p' ="/, di and consider
T T 1/2 T dxp/
Bn’ = [An’+1/pn{+1 T An /p%/2] eR P ’

s T - T dxd (2.11)
B, =B By = Y {A/Ai/p}ecR

i=n'+1

Note that under Assumption 2.1, B, is invertible. Indeed, it is a symmetric positive
definite matrix since for any 6 € RY, (B,0,60) > [min;e p;1}<2?:n/+1 ATA6,0) >0

using that > 1 | A A; is invertible. Define the orthogonal projection onto the range
of B, and the diagonal matrix:

P, =B.B,'B), Dy =diagy, /pu+1.---Ta,/pn)- (2.12)

2.A.1 Technical lemma

Lemma 2.9. Assume Assumption 2.1. For any (0, zp41.m) € RY x RY, setting z =
Zn/4+1:m, We have

n

> {llz - AbIP/0i} = (D7) {1, — Pu}(D)/2)
i=n'+1

+(0-B'B] DY) B, (0 — B'B]DY).

Proof Setting b = B:L—,]‘ji/zz and using the fact that B,, is symmetric, we have

> {llzi - AbIP/oi} =0"Buo-20"b+ > =]
i=n/+1 i=n'+1

= Y |lz)*/pi-b"B'b+ (0 —B,'b) ' B,(0 - B
i=n/+1

~'b).

n

Using that b'B_'b = (f)qllpz)TPn/(f)lﬂz) and P, is a projection, P2, = P,/ com-

n/

pletes the proof. [ ]

2.A.2 Proof of Proposition 2.2

Proposition 2.10. Assume Assumption 2.1. Then, the function

i (0,210) = [ [ exp{=Ui(z:) — Iz — AbI*/(20:)}

=1

is integrable on RY x RP, where p = Yo ds.
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Proof Using Assumption 2.1 and the Fubini theorem, there exists Cy > 0 such that:

e el e NCR]
/Rd l_Il/Rdie A H/Rd J de dé
1= n'+1
el e A
<01/Rd H/Rd H/RJ () dzj| do
1= j=n'+1

n

< Cl ﬁ(?npi)dz‘/Q/ H /d e_Uj(Zj) exp (— HZJ — AjQHZ/(ij)) de dé
R%

Rd

i=1 Jj=n’/+1
2
s - oar]
~eflem [ | T e [T )
1
i=1 R+ Retn j:n’ RY

(2.13)

Using Lemma 2.9 and the fact that I, — P, is positive definite, we obtain

/Rdjljﬂexp (—\\zj—Aj0]12/<2pj>> 0= exp (=B} (1, ~ P}/ 2)

></ exp< 6-B.'B.DY*2) B, (6 — BB D> )/2> de
Rd
_ —1/2
< det (Bn/) /(27'[)d/2.

Then, the proof is completed by plugging this expression into (2.13) and using from
Assumption 2.1 that z,/11., — H?:nurl e Ui(%) ig integrable. |

2.B Proof of Proposition 2.4

This section aims at proving Proposition 2.4 in the main chapter. To ease the under-
standing, we dissociate the scenarios where max;c,) V; = 1 and max;c,) N; > 1. In
addition, in all this section p € (R%)" is assumed to be fixed.

2.B.1 Single local LMC iteration

In this section, we assume that a single LMC step is performed locally on each worker,

that is max;cp,) N; = 1. For this, we introduce the conditional Markov transition kernel

defined for any v = (y1,...,7), 0 € R%, 2z = (21,--+,2,) € R x ... x R% and for
€ [n], B; € B(R%), by

n

QPW(Z? Bix - xByl0) = HRPim(ziv B:16),

i=1
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where
2

Ry (2, B]0) /e L T A IV N N v/ YO
i (Zis Bil0) = Xp — —— | z— A iVUi(zi .
P . Py T, pi pi k (47rry; )4/
(2.14)
Recall that p = > ; d;. The considered Gibbs sampler in Algmithm 2.1 defines a
homogeneous Markov chain X,/ = (0, Z, )¢>1 where Z, = ([Z]]T,--- ,[Z1"). Indeed,

it is easy to show that for any ¢ € N and measurable bounded functlon f R - R,
Elf(Zer1)1Xe) = Jgo [(2)Qpn Zg,dz|0g) and therefore (Xy)een is associated with the
Markov kernel defined, for any x" = (§",27) € R¢ x R? and A € B(R?), B € B(RP), by

P,~(x,A x B) :/BQM(z,dzye)/AHp(déyz), (2.15)

where II,(-|z) is defined in (2.5). Let (&)¢>1 be a sequence of i.i.d. d-dimensional
standard Gaussian random variables independent of the family of independent random
variables {(n})¢>1 : i € [n]} where for any i € [n] and £ > 1, n} is a d;-dimensional
standard Gaussian random variable. We define the stochastic processes (Xp, X ¢)e>0 on
R? x RP starting from (Xo, Xo) = (x,%) = ((#7,27)7,(07,27)T) and following the
recursion for £ > 0,

Xf-‘rl = (OET—H’ le—l)Ta Xf-‘rl = (éﬂT—f—la ZKT—H)Tﬂ (2'16)
where Zpi1 = ((Z0)7, . (28007 Zeyr = ((ZE4)T -, 1Z84]T) T are defined, for
any i € [n], by

Zpoy = (1= i/p) Z) + (i) pi) Aibr — vV U(Z)) + /2741 (2.17)

Ziy = (1= %/p) Zi + (i) pi) Aibe — viVU(ZE) + /27imjs 1,

and 0y11,0.41 by

Opp1 = BalBoTﬁ(l)/QZEH + Bal/Z@H, Ops1 = BEIBJB(I)/QZEH + Bal/QﬁéH,
(2.18)
where By, By and Dy are given in (2.11) and (2.12), respectively. Note that X, and
X, are distributed according to dx PZ and 0x Ppe,y, respectively. Hence, by definition
of the Wasserstein distance of order 2 1t follows that

¢ ¢ o 12]?
Wa(8xP.,,85P..) <E [HXg—XgH } . (2.19)
Thus, in this section we focus on upper bounding the squared norm || X, — X/|| from
which we get an explicit bound on the Wasserstein distance thanks to the previous
inequality.

Supporting lemmata

Note that Assumption 2.1 implies the invertibility of the matrix By defined in (2.11)
since we have the existence of n’ € [n — 1], such that Y1, Amin(A] Ay)/p; > 0
and by the semi-positiveness of the symmetric matrices {A;rAi},-e[n], we get that
Amin(Bo) = Yo7 Amin (A A;)/p;i > Y1 Amin(A; A;)/p;i. To prove Proposition 2.4
in the case max;c[,) N; = 1, we first upper bound (2.19) by building upon the following
two technical lemmas.
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Lemma 2.11. Assume Assumption 2.1 and consider (Xy, X¢)sen defined in (2.16).
Then, for any £ € N, it holds almost surely that
. _ - 1/9 -
1Xer1 — Kot 2 < (1+ By B{DYID Zess — Zen

Proof Let ¢ > 0. By (2.18), we have 6,1 — 041 = BalB(—)rf)é/Q(ZgH — Zy41) which
implies that

1 Xer1 = Xew1l? = 11001 — Oeea I + | Zea — Zesa|)?

< (14 |IBy ' By DY *I2)1 Zes1 — Zera|l.

|
For any v € R", define the block diagonal matrix
D, = diag (vl S PR Idn) € RPXP (2.20)
and consider the following contraction factor:
oy = maxiepuy {11 = 3mil V [1 = %(M; +1/p0)| } (2.21)

Using this notation, the next result holds.

Lemma 2.12. Assume Assumption 2.1-Assumption 2.3 and let v € (R%)". Then for
anyx = (27,01, x= (27,017, with (0,0) € (R)? and (z, 2) € (RP)?, for any £ > 1,
we have

Wo (55 P’

Y vy

min,ep, {7}

1/2
_ — ~1/2 max; n{%}
8xPL.) < KL ((1 + 1By 'B{Dy*[I?) - e”)

% [llz = 2l + Dy 5 Bol16 = 61

where D, /5 is defined as in (2.20) with v/\/p = ('yl/piﬂ, e ,vn/p}/Q), Bo, Bo, Pp~
and K~ are given in (2.11), (2.15), (2.21), respectively.

Proof Consider ng,Xk)keN defined in (2.16). By (2.19) and Lemma 2.11, we need
to bound (||Zx — Zi||)ken. Let £ € N*. For any i € [n], we have by (2.17), that

i i Vi i i Vi ~ i =
Zpp1 — Zyyy = <1 - p) (Zy — Zp) + ;Ai(eé —0) — i (VUi(Ze) - VUi(Ze)> .
(2.22)

Since U; is twice differentiable, we have
1
VUNZ)) - VUAZ) = | VPUAZi+t(Zi - Bt (2 - 7).
0

Using 6, — 0, = BalBgﬁé/Q(Zg — Zg), it follows that

Pi

1
i Zi i i i i i i
Zogr — Zpp = ({1 - ] Iy, — ’Yz’/o VU Zy +1(Z) — Z7)) dt) (Zi — Zy)
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+ %AiBngOTf)é/z(Zg — 7).
Consider the p x p block diagonal matrix defined by
1 ~ ~ 1 ~ ~
Dy = ding (1 [ VHULZH + (2= ZD) b [ VUL U2 - )t ).
0 0

With the projection matrix Py defined in (2.12), the difference Zy,1 — Zy41 can be
rewritten as

1/2

Zos1 — Zpyy = <Ip — Dy — D'ly/QD,Y/p

(I — Po)ﬁé/2> (Zo — Zy),

where D/, is defined as in (2.20) withv/p = (v1/p1, - - -, n/pn)- Since Dy commutes
with Dy and Py is an orthogonal projection matrix, using Assumption 2.3-(i)-(ii), we
get

| Zoy1 — Zé+1||13;1

—1/2 1/2y—1/2 1/2 —1/2 1/21/2 1/2 —1/2 4
= |D5'2(Dy/?D5"? - DY/?Dy, D5 - DY?D/Z (1, — Po)DL D5 %) (2, - Zy)|

1/2 1/2 5
< ||, - Dy -~ DY) (Ip - PO) D212 - Zelp-+.

Note that Assumption 2.1 and Assumption 2.3 and the fact that Pg is an orthogonal
projector, so 0, < I, — Py, imply that
diag({1 — 1 (M1 +1/p1)Hay, -+ ;{1 = y(Mn + 1/pn) Ha,)

B N1/ B 1/2
<I, =Dye—D, (Ip PO) Do

< diag ({1 = 9mi }ay, o {1 = a1, ) -

Therefore, we get

12601 = Zenalipgs < maoc {mas((1 = imil, 1= (Ms +1/p0)]) } 122 = Zelp»
1<cn

=ty Ze = Zillp1- (2.23)
An immediate induction shows, for any ¢ > 1,
1 Ze — Z[”D;l < I{f;_IHZl — ZlHD;l. (2.24)

In addition, by (2.22), we have for any i € [n],
i i Vi ~ Vi ~ N
Zl — Zl = <1 — p> (Zi — Zi) + ;AZ(Q — 6) — "}/Z(VUZ(ZQ) — VUZ(ZZ))
(2 (2
It follows that Z, — Z; = (I, — D, /, —Duyo)(z — 2) + D,y/p]‘jal/2
triangle inequality and Assumption 2.3 gives

Bo(# — 6). Using the

121 = Zillpzr < (mineguy{3:1) 2L, = Dy = Duo)(z = 2) + (Dsy5Bo(6 — O)]

< (mingep {7:}) "2 {Hlp — Dy, — Duollllz — 2| + D, /5Bollll6 — 6|
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< il {2e1) 7| e {11 = 2o + 1/l |1 = 208+ 1/p) Yz — 21
+ 1Dy 5Ballo - 0]
< e {312 s = 11+ 1Dy B0 — 01
Combining (2.24) and the previous inequality and using Lemma 2.11, we get for ¢ > 1,

maX;e {7}

¢ £-1) -1 T 1/2)2
Xy Xg2<1€2( <1+B B, D > -
| | o By "By Dy mingep, {7i}

2
x [m\lz — 2]+ 1Dy Bol6 — 8]l

The proof is concluded by (2.19). [ ]

Specific case of Proposition 2.4

Based on the previous lemmata, we provide in what follows a specific instance of Pro-
position 2.4 in the scenario where max;c, IV; = 1.

Proposition 2.13. Assume Assumption 2.1-Assumption 2.3 and let v € (R} )" such
that, for any i € [n], v < 2(m; + M; + 1/p;)~L. Then, P,~ defined in (2.15) admits a
unique stationary distribution Il, ~ and for any x = (z7,0M)T with 0 € R, z € RP and
any ¢ € N*, we have

. 2(6-1) LT maxic (s {7}
W3 (8xPh oy o) < (1= gﬁ{%mi}) ((1 + 1By By DY) - mm:ﬁ{ﬂ)

2
X 1 —min{v;m; ||z — Z|| + D+, Boll 16 — ||| dII,~ (%),
/]RdX]RP [( fg[lﬁ{vm})uz 2l + 1D /5 Bolll ‘] pry(X)

where By, By, Dy, Py~ are defined in (2.11) and (2.12).

Proof For any i € [n], note that the condition 0 < v; < 2(m; + M; + 1/p;) " ensures
that ry = 1 —minep, {7im;} € (0,1) and the proof follows from Lemma 2.12 combined
with Douc et al. (2018, Lemma 20.3.2, Theorem 20.3.4). |

2.B.2 Multiple local LMC iterations

In this section, we consider the general case max;c, N; > 1. For this, we intro-
duce the conditional Markov transition kernel defined for any v = (y1,...,7v,), N =
(N1,...,Np), 0 € R 2= (21, ,2,) € RU x ... x R¥_ for i € [n] and B; € B(R%),
by

Qo (2B1 %+ x Bal8) = [ BY, (24, Bilo), (2.25)
=1
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where R, -, is defined by (2.14). Then, as in the case max;c[,) N; = 1, the Gibbs sampler
presented in Algorithm 2.1 defines a homogeneous Markov chain X l;r = (Hz, Z(;r )e>1
where Z, = ([Z}]",--+,[Z]"). Indeed, it is easy to show that for any £ € N and
measurable function f : R? — Ry, E[f(Zi11)|Xe] = [po [(2)Qp~.N(Zs, dz|6g). There-
fore, (Xy)een is associated with the Markov kernel defined, for any x' = (7,2T) and
A € B(RY), B € B(RP), by

Py~ N(%,A x B) :/BQP,%N(z,dZ\Q)/AHp(dé\i), (2.26)

where II,(-|z) is defined in (2.5). We now define a coupling between 6xP ,7 N and

0z vaN for any £ > 1 and x,% € R? x RP. Let (&0)e>1 be a sequence of iid. d-
dimensional standard Gaussian random variables independent of the family of inde-
pendent random variables {(n})¢>1 : i € [n]} where for any i € [n] and £ > 1, 1} is a
d;-dimensional standard Gaussian random variable. Define by induction the synchron-
ous coupling (0, Z¢) >0, (ég, Zg)gzo, for any i € [n] starting from (6y, Zp) = x = (0, 2),
(00, Zo) = % = (6, 2) and for any £ > 0 by

~ . ~ (il ~ _ ~ ~ _

Ziy =YY, B =By'BIDY Z + By e, (2.27)
. ; Z — ~ — *

Zip = YJSfZ e =By'BIDY Zey + By e,

where By, By, Dy are given by (2.11)-(2.12) and f/o(i’é) = Zi, Yb(i’e) = Z}, and for any
keN . ‘
Y4 = V0 VT ) + (el i) Adde + 2%77,232,
(3,0) _ -(i,0) (3,0) (228)
YO =y i wviv ) + (i) o) Al + /2y

where, for any z; € R%, V; is defined by
_ 2
VZ(ZZ) = Ui(zi) + (2/)1‘) 1 HZZH . (2.29)

For any ¢,k € N consider the p x p matrices defined by
; ' 1,¢ (1,0
H{)), = diag vl/ V20, (1 - )Y, 4 570 as,
7 0

1
Yo / V20U, ((1 — s) v, +s§~/,§"’£))ds>,

0
I(k) = diag (D, (k+ 1) Tay, o T (R +1) Ty, ) (2.30)
L L
Cy) = J(k) (D, + H)), (2.31)
£)\— £)\— . {4
M), =1, - ci) @, - ) with M{? = T,. (2.32)

Under Assumption 2.3, we have ||C,(f)\| < max;e(u{Vi(Mi + 1/p;)}, thus if we suppose
that for any i € [n],0 < v; < (M; + 1/p;)~1, the matrix (I, — C,(f)) is invertible. In
addition, for any £ € N,k > max;c(, {Vi}, C O = = 0pxp, hence the sequence (M;(f))keN

is stationary, and we denote its limit by MC()O) which is equal to anlx (Vi
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Technical lemmata

Similarly to Lemma 2.11, the following result shows that it is enough to consider the
marginal process (Zy, Zy)s>o to control

4 4 v 112 1/2
Wa(8x Pl N+ 85P n) < E [||X[—Xg|| ] . (2.33)

Lemma 2.14. Assume Assumption 2.1 and let N € (N*)", v € (R})". Then, for any
¢ € N, the random variables X, = (6], ZZT)T,X'K =9, Z;)T defined in (2.27) satisfy

. oo =
| Xt = Xepal? < (1 + 1By By Dy * 1)1 Zes1 = Zena |,

where By, Bo, Dy are defined in (2.11)-(2.12).

Proof The proof is similar to the proof of Lemma 2.11 and is omitted. |

To ease notation, for any i € [n], we consider all along this section the quantities
mi =m; +1/pi, M; = M; +1/p;. (2.34)

The following lemma provides an explicit expression for | Zg1 — Zoy1|| with respect to
1Z¢ — Zi|.

Lemma 2.15. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)", v € (R%)"
such that, for any i € [n],~v; < Mi_ . Then, for any £ > 1, we have

oo
> -1 —1/21/2 1/2 1 1/2
1Zer1 = Zerllpy < H MO+ MY kHJ(k)D D/ PoD/ Dy
k=0

X | Ze — ZZHDI—\;W, (2.35)

where (M](f))keN is defined in (2.32), (Zi, Zi)wen in (2.27), Ny = (11N1, ..., 7aNn)
and y/p = (/p1, -7/ Pn)-

Proof Let ¢ > 1. By (2.28), for any i € [n], k € N, we obtain

1
= (3,6 il il = (3,0 = (3,6 i
v -yl = (I % / V(1= )Y 4 57, >>ds) B = vt)
+ (vi/ pi)Ai (B0 — 0p).

5) Y(l o " 1 )ken with values in RP x RP defined

Consider the process ((Y,gg), Y ) {Y
for any ¢ € [n], k > 0, by

T(4,0) _ xr(i,0) (3,0) _ -(i,0)
Yk len(k N;)? Yk - Ymin(k,Ni)' (236)
By (2.27), we have A;(0; — 6;) = AiBalBgf)(l)/z(Zg — Zy). Since

BJ = [A]/p/? - AT /pY/?)
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and Py = BOBalB(—)r is the orthogonal projection matrix defined in (2.12), it follows
that

(£ 4 ¥at4 L 4 4
Y =i =(1, - ) (V) = Vi) + 30D, 5PeDy A - ). (237)

Since D, commutes with C,(f) and J(k), multiplying (2.37) by M,g_?_lD;Vl,éQ, yields

M(e) Dfl/Q(?(e) Y( )

/ —1/2 , (0 /
VDN Y ) =MODAEY - YY)

V4 —1/2_{1/2 ~1/2 /(¢ V4
+ M I(k)D DY PeDy A (V) — v (). (2.38)

By definition of the processes in (2.27)-(2.28) and (2.36), we have for k > max;e[,, { Ni},

(Yl(f), Y,(f)) = (Zi41, Zo11) and J(k) = Opyxp. Therefore, summing the previous equality
(2.38) yields

MUD NI (Zeys = Zepr) = (M + 332, M{], J(k)D°DY PoD /2 D
x D22 (Y8 - Y1),

Multiplying this last equality by [Mg@]*l and applying the norm || - Hval concludes
ad

the proof. |

The three following lemmata aim at providing an explicit upper bound on (2.35). To

this end, for ¢,k € N and i € [n], consider C](j’[) corresponding to the i-th diagonal
block of C\¥) defined in (2.31), i.e

Ci =1y (k+ 1)y {pz 'L, +/ VAUi((1 - s) ;fi’e)ﬂ?zfi’@)ds} € R, (239)

where, for any ¢ € N and i € [n], (ch(z‘,ﬂ)’};k(z‘,Z))keN is defined in (2.28). Thus, using

the definition (2.32) of M,(f), we can write [M(ozo)]_lMl(f) as a block-diagonal matrix

diag(MY]1 M)t (MY M)y where for any i € [n], (MY]1M)i =
N1y, — Y € Reixds,

Lemma 2.16. Assume Assumption 2.1-Assumption 2.3 and let N € (R} )", v € (R%)"

such that, for any i € [n], vi < Mi_l. Then, for any i € [n], £ € N and k € [N;], we
have

(MY M)~ 1, - 3, C

where , ~i are defined in (2.32), (2.34) respectively, an o> 5 the limit of the
here M, NI; are defined in (2.32), (2.34 ly, and MY is the I f th
0)

stationnary sequence (M} )ren.

(Ni = k)yiMi} =1 — (Ni — k)yiM;,

Proof Let £ € N, i € [n] and k € [N;]. The approximation error between [[;°, (I, —

CZ(M)) and its linear approximation can be upper bounded as

ﬁ(Id - ZC” i(—nm D SRR e
=k m=2 k<li<-<lm
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> (i,¢ (3,0 s il (¥4
<> 3 et eE = TIa+ et - 1= et

m=2k<l1<--<lm =k 1>k
o |1 (i) o | (i)
< exp ZHC; I _1—Z||Cz B
=k =k
(0 _

where the products and the sums are well-defined since for any [ > NN;, we have C,
0,4,. Finally, the proof is concluded using that x — exp(x) — 1 — z is increasing on R

and for [ € N, ||Cl(i’€)|| < ’yl-Mi]I[Ni](l + 1) from Assumption 2.3-(i). [ |
For any N = (Ny,...,N,) € (N*)", v = (71,-..,7) € (R)", define the p x p block
matrices

S = diag({l - Nli}Idl, o L= Ny M g,),

Se =1, - ZJ — (DND,,/,)2(I, — Po)(DND,,,) "2, (2.40)

S5 = diag ({1 = Neyma} Lo {1 = Novama} 1, )

where for any i € [n], M; is defined in (2.34) and PO,J(Z),H% are defined in (2.12),
(2.87), (2.88), respectively.

Lemma 2.17. Assume Assumption 2.1-Assumption 2.3. Then, for any N € (N*)" v €
(R%)™, we have

S1 < S2 < 8Ss.
As a result, under the additional assumption, for anyi € [n], viN; < 2/(mi+M;+1/p;),
we get
[|S2|| <1 — min{Nyyim;}. (2.41)
i€[n]

Proof Since Py is an orthogonal projection defined in (2.12), we have Py < I,,, therefore
we easily get

Opxp < (DND'V//J)I/Q(IP —Po)(DNDyp) V2 < DND,/p

and Assumption 2.3-(i)-(ii) imply
o0

diag(Niyimala,, -+, Noymala,) < > J( < diag(Nyy Milg,, - Nyya Moy,).
=0

Substracting these previous inequalities and adding I, complete the first part of the
proof. The additional condition, for any ¢ € [n], v;N; < 2/(m; + M; + 1/p;), ensures
that Sp is definite-positive. Since S; < Ss, we deduce that S, is symmetric positive-
definite as well. H is equal to the largest eigenvalue of So. The inequality
So = S3 concludes the second part of the proof. |

For any N = (Ny,...,N,) € (N)", v = (71,...,7) € (R})", define

Ty p.N = max{N;y;/p;} max{Nyy; M;} (1/2 + maX{Ni%Mi}>
i€[n] i€[n] i€[n]

+ 4max{N;y; M;}?, (2.42)
i€[n]

where M; is defined in (2.34).
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Lemma 2.18. Assume Assumption 2.1-Assumption 2.5. Let N € (N*)*, v € (R})"
such that, for any i € [n], Nyy; < 2/(mi+ M;) and ~; < M[l. Then, for any £ € N, we
have
0) Ing(® D-l/2pl/2 1/2 (11/2
M1 + 55 MY MY 3 (kDD PoDY2 DY
<1- mln{Nz%ml} +ry.p. N,
i€[n
where Py, Dy, J(k:),l\/[l(f) and 1 p N are defined in (2.12), (2.30), (2.32) and (2.42),
respectively.

Proof Let £ € N. For any k € N, define

V4 > V4 - Y4
Ré) :H(Ip_cg)) —Ip""ZCZ( )7
=t = (2.43)
RO — (1, — ) —1 c0
k' H( dz d; + Z 7 7
=k =k

where (Cl(i’f))leN is defined in (2.39) and remark that the products and the sums are well
defined since for any [ > N;, we have Cl(i’g) = 04,. By noting, for any k € [max;c[,) Nil,
that [MY] 1M = [T, (1, — CY), it follows that [MY]'M) =1, - 7, ¢ +
R,(f). Since for any i € [n|,l > Nj, R(Z O = 0g4,, thus we have J(k)R](Q_l = R,(Q_l.
In addition, using that M(()Z) =1, Cl(z) = J()(Dy/p + H(Z)) Dn = Y o, J(k),
DNCZ(K) = C(Z)DN, we get

0 1/211/2 1/2 1 1/2
MY~ ZM( M\ J(k)Dy D)/ P¢D/ Dy

14 —
=1, - Z cl + ZJ(k) ~/’DY2PD 2 DY’

_Z Z Ik —1/2 )D1/2P D/ D1/2

v/p v/p
k=01l=k+1
0 - 0) —1/2.1/2 1/2 1~1/2
+Ry +kZORk+1J(k)D D)/ P\D) Dy
~1, _ZJ ZJ 1/2 1/2 (I, - P )D1/2D1/2
7/p /P

[e. 9]

B Z <ZJ ) _1/2C(e)D1//2P D1//2 D1/2
— Pt Y/P /P

L - -
+R{) + Y J(kDy*R{], D2 PD.2 DY
k=0

00 -1
1 (L
=8z - Z (ZJ(k))DNlCl( )(DNDv/p)I/QPO(Dv/pDN)I/z

=1 “k=0
+ Ry + > DYR(DND, ) 2Po(D,,,Dn)"?, (2.44)

k=1
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where Sg is defined in (2.40). We now bound the different terms of (2.44) separately.
First, using (2.41), we have

i€[n]
By recalling R(()) defined in (2.43), Lemma 2.16 shows that
o .
Id _ )) — 14 — Z Cl(lve)
=0

) ey |c§m||} (2.46)
=0

IRG | < max R = max{ (2.45)

<max{exp ZHCM

{ exp{(Ny = )b} =1 — (N = D)ylli ) (247)
< nel?] — 1)y, M;)2eNimD%idliy o (2.48)
< 4max{( — 1)y M;}?, (2.49)

1€[n]

where, in the penultimate line, we used for any ¢ > 0, that exp(t) — 1 —t < t? exp(t)/2.
Regarding the second term of (2.44), using that Py is an orthogonal projector, we get

o

Z(ZJ ) Dy C(DND,,,)/*Py(DND, )"/

=1 =

Combining the following upper bound

00 -1
3 (ZJ(k))D;\}cl“) < max{ ZZHCW y}

I=1 Nk=0

with the fact, for any i € [n], that HCZ(M)H < fyiMi]l[Ni](l + 1), we get that

(e}

(£
Z(ZJ ) 1C )(D D’Y/P)1/2P0(DND’7/;J)1/2

=1 =
< max (Ni%) max { Niyidi } (2.50)
i€[n] Pi i€[n] 2

To upper bound the last term of (2.44), we start from the following inequality

ZD R <max{ N Z IR }

k=1
Lemma 2.16 shows that for any k € [N; —1] and i € [n], HR(M | < exp{(N; —k)yiM;} —
1 — (N; — k)y;M;. Then, for any i € [n], we have
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-1

N, Z IR < Z [exp{(N; — k)yiM;} — 1 — (N; — k)y; M;)

Ni k=1
~ Nz%Mi N: M
< (Nz’YzMZ)l/ (et 11— t) dt < W( NiviM; + 1)
0

<£r€1%1x{( viM;)?},  (2.51)

where we have used e + 1 < 12. Plugging (2.51), (2.50), (2.49) into (2.41), we get

-1 01 M 3 (kDD DY/ DY/
H[Mgg] +> MOV I (kDR “DY PoD. Dy
keN

<1 —min{N;vim;} +ry p N,
i€[n]

where 7 , v is defined in (2.42). [ |

Lemma 2.19. Assume Assumption 2.1-Assumption 2.5. Let N € (N*)",~v € (R})"
such that, for any i € [n], Nyyi < 2/(m; + M;) and ~v; < Mi_l. Then, for any x =
(10N x=(27,0")"T € RPT4 with (0,0) € (RY)?,(z,2) € (RP)? and any £ > 1 we
have
: _ o ~1/2
W3 (85 Ppy. s SxPpey.v) < (1= min{ Neimmi} + 72,80 2(1+ B By Dy )

2
IV 112 = 21 + (S iep 1Al /010 — 0]

max;e ) { NVivi}
mine ) {NVivi}

where Bo, Bo, Do, Py, MY, 1y o are defined in (2.11), (2.12), (2.26), (2.32), (2.42),
respectively.

Proof Combining Lemma 2.15 and Lemma 2.18, we have for £ > 1,
1 Ze41 — Z£+1||D;V17 <(1- lfg[lﬁ{Nz%mz} + 7y.0.N)1Z0 — ZéH});\j{y-

Thereby, for any ¢ > 1, we obtain by induction
- ) P
”ZK - ZfHD;Vl’Y < (1 - fg[lrﬂ{Nz’Yzmz} + T77p7N) HZI - ZlHD;\Il»y. (2-52)
Define the process ((i"l(c ),Y(O)) = {Y 10) Y(z 0) ' 1)ken with values in RP x RP defined
for any i € [n], k > 0 by

F(4,0) _ x-(3,0) (4,0) _ +-(4,0)
Yk len(k N;)? Yk - Ymin(k,Ni)'

By (2.27), it follows that for any i € [n], (Z{, 7 = (f/]%’o), Y]S,i’o)) where (f/o(i’o), YO(’"O)) =
(Z%, Z%). We get by (2.28) for k > 0,

=(0 0)\ /(0 0 ~

Yok = Y =@ = ¢ (v = Y{) + 3(K)D,, B0 (8o — bo):

Hence, for k > 0, we obtain
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0 —-1/2 ,7(0
M) Dy (V0 = Vi)

=MDV - V) + M3 (kD * DL Bo(f — 60).

Summing the previous equality gives
1/2 0
MS?}DN,{ (Y( ) _ vyt ))

1/2 0) —1/21/2 A
=MD AT - Y +ZMk+1 I(k)D N * D2 By (6o — o).
k=0

Multiplying by [M)]~! and using the fact that (6o, Y) = (6, 2), (60, Y") = (4, 2),

we get
D22 - Z1) =MD P (E - 2) + i 2L I(k)D D2 Bo (0 - 6).
k=0
Plugging the result in (2.52) implies for any ¢ > 1,
1Z, — ZEHD;\]{Y < (1 = minge ) {Niyims} + r4,p,n8)
x [[Mg?]lzzDN; + ki)m(“)] lMi(RlJ(k)DN”?D;//iBoée] :

(2.53)

By Assumption 2.3-(ii) and the definitions of Cgo), Mg)) given in (2.31), (2.32), we have

IILq, — Cl(i’0)|| <1 —m;. As a result and since ([Mf,g)]—lM,(f))i = fz_ol (Ig, — Cl(i’o)),
the triangle inequality implies

[e's] N,
N 0
Z 1M§£rl (k)DN1/2D.1,//2,,BO < Z \/W(”Ai”/pl ZH M(o 1M( )) [
k=0 i) pa
< > V/NilllAi o) S (1 =
i€[n] k=0
<> ANV N/ pi
i€[n]

Plugging this result in (2.53), we get

. {—1
12~ Zilg, < (1= min{Nms) + 7.
N~ 1€[n]

x| Iz = 2o + (X 1Al Nev/ i )10 =)

i€[n]

Finally, Lemma 2.14 gives

1 = XellP < (1 = yin{ N} + .9 )2-2(1 + ||By 'By D% |1?)
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2
maxX;e [ { NVivi} MO 2 ~
—— o [IIM]IIZ = 2l + [A4[[/pi | 10 —=0[[| -
min;e ) {Nivi} > g[;] e
Plugging this result into (2.33) concludes the proof. [ |

The following result gives a condition on maxie[n]{Ni*yi} to simplify the contrating term
in Lemma 2.19 to 1 — min;epn, { Niyim;}/2. To this end, define

Ag = max{M;} max{1/p;}/2 + 4 max{M;}?,
i€[n] i€[n] 1€[n]
Ay = max{M;}? max{1/p;}.
1€[n] i€[n]
Lemma 2.20. Assume Assumption 2.1-Assumption 2.3 and let c € R%, N € (N*)" v €
(RX)™ such that
min{Nyy;}/ max{N;y;} > c,
i€[n] i€[n]

emingep, {m;} 2 (2.54)
max{N;v;} < )
i€n] 240 + \/2A10mini€[n] {ml} max;e(n] {ml + M; + 1/Pi}

Then, 1 — min;ep{ Nivimi} + rypN < 1 — minge {Niyimi}/2 < 1, where ry p N is
defined in (2.42).

Proof The proof is straighthQrward solving a second order polynomial inequality and
usingforanya,beR*,a—i-%erﬁ a?+ b2 [ |

Proof of Proposition 2.4

The next proposition quantifies the convergence of (6XP£ ~ N )een to a stationnary dis-

tribution I, N in (P2(R%), Ws). Further, in the case Ny = ... = N, we show the
stationnary distribution II, 5 v is equal to 11, - derived in Proposition 2.13.

Proposition 2.21. Assume Assumption 2.1-Assumption 2.3 and let ¢ > 0 and v =
{yitier, N € (N*)" such that (2.54) is satisfied, for anyi € [n], Niy; < 2/ max;e(, {mi+
M;} and ~; < ]\Zfi_l. Then, Py~ N defined in (2.26) admits a unique invariant probab-
ility measure U, ~ . In addition, for any x = (27,07)T with (0,z) € R? x RP, any

integer £ > 1, we have
_ - max;er,1{ Nivi }
W2(6x P! a1l o) < (1—min{Nivsmi}/2)22-(14 || BB, DY?|2) — el Vi)
5 (Ox PN pfv) <( ie[n]{ iYimi}/2) (1+]] o Poo | )minie[n]{Ni%}

2
></ [H[Mé?]_llHE—ZHJr S NAll/pi [ 16— 61l| dTT, (%),
R2xRP

i€[n]

where By, By, Mf)g) are defined in (2.11), (2.32), respectively. Finally, if N = N(1,...,1) =
N1, for N > 1, then I, v N = Ip~1,,.
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Proof Note that under the conditions on v and N stated in Proposition 2.21, Lemma 2.20
ensures that 1—min;ep, { Niyimi}/2 < 1. Then, from Lemma 2.19 and Douc et al. (2018,
Lemma 20.3.2, Theorem 20.3.4), we deduce the existence and uniquness of a stationary
distribution II, 4 N for P, o n. The proof is concluded by using the upper bound given
in Lemma 2.19.

We now show the last statement and assume that N = N1,, for N > 1. By Pro-
position 2.13, we have the existence and uniquness of a stationary distribution II, 1,
which is invariant for P, defined in (2.15). For ease of notation, we simply denote
II,~.1, by I, We now show that II,  is also invariant for P, n defined in (2.26).
Using the fact that P, defined in (2.15) leaves Il, 5 invariant from Proposition 2.13
and Fubini’s theorem, we get for any A € B(RY) and B € B(RP),

Mp~Poryn(A X B)

= / / M, ~(d0,d2) P, N((6, 2), (0, d2))
AxB JRIXRP

— [ [ 11 (@6,42)@pn G 2l (0]
AxB JRIxRP

/ / ,(d6,dz) HR (%:,d210) | T1,(d6]2)
AxB RdeP

+(d0 dZ/ Ry, (71,2116 RY1(ZY, dz10) | T1,(d6)2
/A><B/Rd><RP RP ZI_I piri 6) H 0) | H,(do|z)

n

<L a2 | T] Rz | (i)
AxB JRIXRP [ JRIXRP .

=1

_ 1 ~
HR;YV} 2 dz|0) | T,(d6)2)

/ / I, (dfW, 4z HRN—1 (29, dz M) | T1,(d6)z).
AxB JRIxRP

Using a straightforward induction, we finally get

/ / (df, d2) p,,N((é,z),(de,dz)):/ 1, (46, dz),
AxB R‘iXRP AxB

which shows that P, n leaves Il, . invariant. Since this stationary distribution is
unique, we conclude that I, v = Il . |

We specify our result to the case where we take a specific initial distribution. To define
it, consider

= ([6"]7,[2]") ", where #* = argmin{—logn} and z* = ([A10*]",--- ,[A.6*]")T.
We define the probability measure

pp = 8zr @ Tp(:|27).
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Note that sampling from p7, is straightforward and simply consists in setting zo = 2* and

Oy = Ba 1Bg ]5(1)/ 220 + ]_38 1 25 , where £ is a d-dimensional standard Gaussian random
variable. We now specify our result when using p7 as an initial distribution. Define the
z-marginal under II, 4 N by

W;:‘YvN = \/Rd Hpa‘YvN(d97 Z)? (255)

and the transition kernel of the Markov chain {Z;}s>¢, for all z € R? and B € B(RP),
by

P (:B) = [ Qpon (= BIOL(a6]2), (2.56)
where IT,(-|-) and Qp~,~ are defined in (2.5) and (2.25), respectively.

Proposition 2.22. Assume Assumption 2.1-Assumption 2.8 and let ¢ > 0 and v =
{yitiei, N € (N*)" such that (2.54) is satisfied, for anyi € [n], Ni7y; < 2/ max;ep, {mi+
]\;IZ} and v; < Mifl. Then, for any integer £ > 1, we have

W2(M;P£,7,N’ o)
< 221 = min{Noyomi}/2)" - (1+ B B DY )2 max{ Nioy 2
€N i€ln

1/2
2 2
: { [ o= s mataz + [l = 21 P;,y,w*ﬂdzo} 7
where By, Bg, Do are defined in (2.11)-(2.12).

Proof Consider for ¢ € N*, X, = (HE,ZJ)T,X} = (0],2])7 defined in (2.27) with
Xy distributed according to ujy and Xy distributed according to I, ~ n. Combining
Lemma 2.15, Lemma 2.18 and Lemma 2.20, we have for £ > 1,

[ Ze+1 — Z£+1”D&17 <(1- ggﬁ{]\fﬂimi}/mHZﬁ - ZzHlevlv-
Thereby, for any £ > 1, we obtain by induction

_ . s
| Z¢ — ZeHDval7 <(1- gg[lrﬂ{Ni%mz’}/Q)n 121 — ZIHD;\}V-

Using || Z1 — Z1 |21 < 2||Z1 — 2*|? 12+ 2|21 — 2*||2._,,, combined with the defini-
DN’Y DN'y Dy
tion of the Wasserstein distance and Lemma 2.14 give

Wo(us Pt ,-)<E X—X21/2
Q(Mp p,v,IN» Pﬁ’)— H l f“

1/2
< (1+ 1By By Dy/?|%)"/2 max{ Ny} E || Z, - zu;_m]
le[’n] N~

< 2201~ min{Niyomi} /2)'7 (1 + [ By BT DG 7)Y max{Nii} /2
icn 1em

XE|Z1 = 252 1o + 120 = 27|
N~

DL

1/2
21/2] . (2.57)
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Since X is distributed according to the stationnary distribution Iy~ N, X, also and
therefore 77 is distributed according to ﬂf,m n- Finally, by definition Z; has distribu-

* .

tion P;_ n (2%, ), therefore (2.57) completes the proof. [ |

2.C Proof of Proposition 2.5

The proof of Proposition 3 stands for a generalization of Vono et al. (2022a, Propos-
ition 6) which only considered the specific case p; = p? for i € [n]. This section is
divided into two parts, the first gathers lemmas which allow us to upper bound the
£2-divergence between mp and 7. Then, in the second subsection, we combine these
results to control the Wasserstein distance Wa(m,, 7(:|D)) by showing that it is smaller
than x%(mp|7(:|D)). For any 6 € R? and p € (R* )™, define

U (Af) = ~log ( [ el I~ A0/ 200} dzi/@m)di“),

B(0) =) pil VUi(A:0)]*/2 (2.58)
=1

B()=>)_ {pi||VUi(Ai0)H2/[2(1 + piM;)] — d;log(1 + piMi)/2}
=1

and consider

U0) =Y Ui(A0), UP(0) =) U(A0).

i€[n] i€[n]

2.C.1 Technical lemmata

We start this subsection by Lemma 2.23 which allow us to bound the ratio between the
integrals defined by [paexp{—3",c(, Uf"(Ai0)} and [paexp{—3",c(, Ui(Aif)} do.

Lemma 2.23. Assume Assumption 2.1-Assumption 2.5-(i) and let p € (R%)". Then,
we have B(0) < U(0) — UP(0), for any 6 € Rd.i If we assume in addition that for any
i € [n], U is convex, we have U(0) — UP(0) < B(0), for any 6 € R?.

Proof The proof follows from the same lines as in Vono et al. (2022a, Lemma 14). In
what follows, we give it for the sake of completeness. First, note for any # € R¢ and
i € [n],

exp {Ui(AiG) - Ufi(Aie)}

= /Rdi exp (Ui(Az‘Q) = Ui(zi) — ||z — Ai@”Q/(Qpi)) dz;

)i (2.59)

Using Assumption 2.3-(i), and a second order Taylor expansion, for any 6 € R%, i €
[n], 2z € R% we have

Ui(Ai0) — Ui(z) > VU (A0) T (A0 — z) — M;|| A0 — 2] /2.
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Hence, using (2.59), we have for any # € R? and i € [n],

=1

> Z’ljlexp (2(1—|—plleZ) HVUi(Aig)H2> (1+ piMi)—di/z _ exp(B(9)).

Similarly, under the assumption that for any i € [n], U; is convex, the proof for the
upper bound follows from the same lines using, for any i € [n], § € R? and z; € R%,
that

Ui(Ai0) — Ui(z) < VU;(A0) T (A0 — ).

Lemma 2.24. Assume Assumption 2.1-Assumption 2.5. Then, U is my-strongly con-
vex with

n
.
My = Amin § m;A; A;
i—1

Proof Using by Assumption 2.3-(i) that for any i € [n], U; is twice differentiable and
by Assumption 2.3-(ii) the fact that for any i € [n], U; is m;-strongly convex, we have
for any 6 € R?

VU®0) =Y ATVU(AO)A; = > miA] Ai = Ain (Z miA] Ai> I; = myly.
=1 =1 i=1

2\ 1/2
) . (2.60)

For any 6 € R?, define

VUi (A;0)

B(o) = <Z i

i=1

Lemma 2.25. Assume Assumption 2.5-(i) and let p € (R)". Then (8 is a Lipschitz

function w.r.t. ||-||, with Lipschitz constant
n 1/2
Lg = Amax (Z piMfAZTAi) : (2.61)
i=1

Proof For any 6;,60, € R?, we have using |(3°7_, a?)/2 — (300, b)V? < (X0, (a; —
bi)%)'/2, that

n 1/2
|B(61) — B(62)] < (Z pill VUi (A61) — VUz‘(Azﬁz)HQ)

=1
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. 1/2
< (Z piM}||Ai(6: — 92)H2> )

i=1
which completes the proof. |

Suppose Assumption 2.3-(ii) and for any i € [n], denote 6} a minimizer of 6 — U;(A;0).

Lemma 2.26. Assume Assumption 2.1-Assumption 2.3 and let p € (R%)". Then for
any s < mU/(12L%), where Lg is defined in (2.61), we have

log [es{ﬁZ_”W]}} < SSQL%/sz + 482{7T[B]}2L%/m(]. (2.62)
In addition,
m(6%) < 2dLE/my +2) ) pidE| Ai(6* — 67)||*. (2.63)
i=1

Proof Using the decomposition

B2(0) — {=[B1}* = (B(9) — w[B)* + 27 [B)(B(6) — 7[8])
and the Cauchy-Schwarz inequality imply, for any s > 0,

W[es{gz,{ﬂ[m}z}} < {ﬂ[e2s{g4m}z]}1/2 , {W[ez;sw[ﬁ]{ﬁfn[ﬁ]}]}l/ ’ (2.64)

The proof consists in bounding the two terms in the right-hand sided. Since §: RY — R
is Lg-Lipschitz by Lemma 2.25, for any 0 < s < mU/(12L%), using Vono et al. (2022a,
Lemma 16) and Lemma 2.24 gives setting 3 = 3 — n[3], that

7r [exp{28(32 — 7|7 )}} < exp(165° L% /m3). (2.65)

In addition, using Bakry et al. (2013, Proposition 5.4.1), Lemma 2.25 and Lemma 2.24,
we get for any s > 0,

- {em[mw—wwn} < S LE/mu
Plugging this result and (2.65) into (2.64), we get
T [68{527{ﬂ[6}}2}} < exp(sm(B?) + SSZL%/m?] + 432{7r[5]}2L%/mU).

The proof of (2.62) follows using 7(3%) = 7(3?) — [7(8)]? and rearranging terms.
Using the Young inequality, Assumption 2.3-(1),VU;(A;07) = 0, VU (0*) = 0, we have

2y — - ) (ANN? |7
(8 )—/Rd (;pZIIVUZ(Aﬂ)H ) (6) do
< 2/ (f:pianAi(e—0*)||2>7r(0)d9+2§n:piM3||Ai(9*_9;)”2
R \i=1 i=1

< D (Z pMZA] Az-) [ o= Pr@)do 423" pda?accer - 01) P
R

i=1 i=1
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< 2013 i+ 23" pME|AO — 01,
=1

where we have used 7|6 — 6*||?] < d/my by Durmus and Moulines (2019, Proposition
1 (ii)) and Lemma 2.24. [ |

Proposition 2.2 shows that m,(-) = [p, II5(+, 2)dz is well-defined and as such admits a
finite normalizing constant. Thebe two quantltles are defined by

L, = / exp{ ZU’”AH} Tp(- —exp{ ZU’” } o (2.66)
i€ln] 1€[n]

Finally, note that the following quantity Z, is a normalizing constant of 7 associated
with the potential U, i.e. 7 = e~ Y /Z,,

sz/exp{ > U Ae} (2.67)

i€[n]

Lemma 2.27. Assume Assumption 2.1-Assumption 2.3 and let p € (R)™. Suppose in
addition that 6L2 < my where Lg is given in (2.61). Then, we have

n
log (Zﬂp/zﬂ) < {dL%/mU + ) M7 Ay (6" — 9;)”2}(1 +2L3/my) + 2L5/mi.
=1

Proof From the definitions (2.66) and (2.67), we have Zr, /Zr = [pa 7(0) exp{>_;", U;(A:0)—
U (A;0)}df. By Lemma 2.23, we obtain

Ly ln < /Rd 7(0) exp(B(0)) d6.

Note that B = 82/2 by (2.58)-(2.60), hence using that 6L% < my, Lemma 2.26 applied
with s = 1/2 shows that

log </Rd (0) exp(B ) /2+2L4/mU + {~7[p ]}QLI@/mU

Using Lemma 2.26-(2.63) and 73] < 7[5?%] concludes the proof. [

2.C.2 Proof of Proposition 2.5

Based on the technical lemmas derived in Section 2.C.1, we are now ready to bound the
Wasserstein distance of order 2 between 7 and 7.

Proof [Proof of Proposition Proposition 2.5] Let p € (R%)" such that max;cp, p; =
p < 03 /12, where o, = [|AT Al max;e, {M?}/my. Then, by definition of Lg (2.61),
we get

12105 < my. (2.68)
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and Lemma 2.26 can be applied for s = 1 and Lemma 2.27 too. By Lemma 2.24,
U = —logm is my-strongly convex therefore 7 satisfies a log-Sobolev inequality with
constant my (Ledoux, 2001, Theorem 5.2). Finally, Otto and Villani (2000, Theorem
1) shows that 7 satisfies for any v € Po(R?):

Wa (v, 7(-|D)) < v/ (2/mu)KL(v|r (D)) < v/ (2/mu)x2(v|x (D)), (2.69)

where x? is the chi-square divergence and where we have used for the last inequality
that KL(v|7(:|D)) < x%(v|n(-|D)) since for any ¢t > 0, log(t) < t — 1. We now bound
X2(mp|7(:|D)). By (2.66) and (2.67), for any § € R?, consider the decomposition given
by

7p(0)/7(0) = 1 = (Z/Z) exp (Z (UZ-(AzH) - U[’%Aﬂ))) ~1. (2.70)

i=1

In the sequel, we will both lower and upper bound (2.70) in order to upper bound
|1 — m,(0)/7(0)|. Using the fact that for all € R,exp(z) — 1 > x, Lemmas 2.23 and
2.27 yield

7(0)/7(0) — 1 > log ( W/zﬂp) + Z ( — UP (A, a)) (2.71)

—{cu:%/mv 3 piM2 A"~ ezw}(l 203 /my) — 2LY m¥ + B(0) > —Av,
=1

where

Al = {dL%/mU + ZpiMiQHAi(H* — e;)||2}(1 +2L3/my)

i=1

+2L%/m} + Z (di/2)log(1 + p;i M),
i=1

where we have used in the last inequality that B(0) > —>"" | (d1/2)log(1 + p;M;) by
(2.58). In addition, by (2.66) and (2.67) we have

L, |7 = /R x-S UL (AB)} 40/ /R w(B) exp{~ D" Ui(A0)) a6,

i=1

which implies by Lemma 2.23 and Jensen inequality

Loy 2> [ 7(6) exp(B(0)) 6 > expl(n(E)).

It follows by (2.70) that 7,(6)/m(0) — 1 < exp(B(6) — 7 (B)) — 1. Combining this result
and (2.71), it follows that the Pearson x2-divergence between m and 7, can be upper
bounded as where

X2(7Tp|7T(-|D)) < maX(A%, Ag), Ay = / (GXP(E(G) - (E)) _ 1)271'(9) dé.
Rd
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We now provide an explicit bound for As. First by Jensen inequality, we have w(exp(B)) >
exp(r(B)) which implies that exp(—n(B))rlexp(B)] > [Ty (1 + p:M)%/2 by (2.55).
Therefore, using that B = £$%/2 by (2.58)-(2.60) and Lemma 2.26 with s = 1 since
(2.68) holds, we get by (2.58),

N -
:exp< 2r (B ) [exp(QB)}—2exp( (3))7r[exp(§)}+1

n

< TIO+ Py - exp(=m{> " (ps/ (1 + piMi))IVUs(Air) |2 [exp(5%)|
i=1 1=1

—2[ [+ pidy)®/? +1
=1

H 1+ piM;)®% - exp W{Z (1+ piM:) VUi (Ai)[*})

X exp <8L;§ /mi; + 4{2d L3 /my + 2 Z piM7 || A (6 — 67)[1°} L3 /mU>
=1

le—[ + piM;) /2 41, (2.72)

where we have used for the last inequality that for 6 € R p(6)% — S0 (pi/(1 +

M))IVU(AO)? = Y01 (piMi/ (1 + pidi)) [ VUi (A)|?, 7[B]* < w[B%] by the
Cauchy-Schwartz inequality and Lemma 2.26-(2.63). Similarly to the proof of Lemma 2.26-
(2.63), by Assumption 2.3-(i), VU;(A;0F) = 0, VU(6*) = 0, Durmus and Moulines
(2019, Proposition 1 (ii)) and Lemma 2.24, we have

n

T D (0FMi/(1+ p M) VU(A) 1P| <7 | pf Ml VU (A1

=1 i=1

< 2 (Z PAMPAT Ai) Jmu 23 M| A — 67)]1
=1 =1

Therefore, we get by (2.72)

Ay < A

= [[(+ piMi)® exp <2d)‘max (Z prE’AiT&) fmu +2 " pF MY Ay (0% — 9Z)|2>
i=1 i=1 i=1

n

exp <8L?a/m?] +8 {dL%/mU + > piMP|| A (0" — 9;)”2} L%/mU> S RS

=1 i=1
(2.73)
It follows by (2.72) and (2.69) that
Wa(mp, (-1D)) < \/(2/my) max(42, 43), (2.74)

where A; and As are given by (2.71) and (2.73) respectively. Using that L% = O(p)
and an expansion of the bound as p — 0 completes the proof.
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2.D Proof of Proposition 2.6 and Proposition 2.8

As in Section 2.B, we assume in all this section that p € (R%)" is fixed. For any
Y= (71,---,7) € (R})", we establish in this section explicit bounds on Wa(my 4, n, 7p)
where 7, is given in (2.1) and 7, 4 N is the marginal distribution defined by

7Tp777N(A) = HPFY:N(A X Rp)? A E B(Rd)?

of the stationary probability measure I1, o, n associated with the Markov chain (Z, ¢),>0
defined in Algorithm 2.1. Note that in the case N = N(1,...,1), this distribution is
independent of N, see Proposition 2.21. To this purpose, we define an “ideal” dynam-
ics from which we cannot sample but which converges geometrically towards II, under
appropriate conditions. The corresponding ideal process will play the same role as the
Langevin dynamics for the study of the unadjusted Langevin algorithm (Durmus and
Moulines, 2019). This dynamics is defined as follows. Consider first for any § € R?
i € [n], the stochastic differential equation (SDE) defined by

ay;? = —wVi(Y ) dt — p7 A0 + V2dB, (2.75)

where (Bf);>o is a d;-dimensional Brownian motion and V; is defined in (2.29). Note
that under Assumption 2.3-(i), this SDE admits a unique strong solution (Revuz and
Yor, 2013, Theorem (2.1) in Chapter IX). Denote for any i € [n], the Markov semigroup
associated to (2.75) by (Rzi,t)tZO defined for any yi € R%, ¢ >0 and B; € B(R%) by

~ . . ~ '797~i
R}, (30, Bil0) =P(Y,"" € By),

where (ffti’e’%)tzo is a solution of (2.75) with }707;’9’% = yi. For any bounded measurable
function f; : R% — R, Lemma 2.28 shows the measurability of the function (6,¥?)

E[ fi(ﬁi’a’yé)] on R? x R% and therefore RZi,t is a conditional Markov kernel.

Lemma 2.28. For any bounded measurable function f; : R% — Ry and function f;

satisfying Assumption 2.3-(i), the mapping (50,576) — E[fi(f/ti’eo’%)] is Borel measur-
able.

Proof Consider the following stochastic differential equation

df; = 0y,
dYy = —VVi(Y)) dt — p; ' Aif; + v2dB;.

Using Revuz and Yor (2013, Theorem (2.4) in Chapter IX), since U; satisfies Assump-
tion 2.3-(i), there exists a unique solution (XX);>0 = (63, Y}!);>0 with initial condition
% = (0g,(F)7)" € RP. Then, the proof follows from Revuz and Yor (2013, Theorem
(1.9) in Chapter IX) and the fact that Y} is the unique solution of (2.75) with 6 = 6.

Define for any § € RY, z = (2{,--- ,2])" € RP, and for i € [n], B; € B(R%),

Qory (2:B1x -+ x Bul6) = T R, i, (211 BilO),
i=1
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and consider the Markov kernel defined, for any x" = (A", 2") and A € B(R?), B ¢
B(R?), by

P,~(x,A x B) :/E;Qp,.,(z,dae)/ﬁ\np(déﬁ), (2.76)

where II,(-|z) is defined in (2.5). Note that P, n can be interpreted as a discretized
version of P, - using the Euler-Maruyama scheme.

In the sequel, we first derive technical lemmata in Section 2.D.1 that are used to prove
both Proposition 2.6 and Proposition 2.8. Based on these lemmata, we then prove each
proposition in a dedicated section, namely Section 2.D.2 and Section 2.D.3.

2.D.1 Synchronous coupling and a first estimate

The main idea to prove Proposition 2.6 and Proposition 2. 8 is to define (Xg,Xg)geN
such that for any ¢ € N, (X,, X;) is a coupling between y P 'r N defined in (2.26) and

E .
8z P, -, and satisfies

E [HXZ - Xé”z] <c(x,x)e” minge ) {yimi} 4 37,
where cg,¢c3 > 0 and « € {1,2} depending if Assumption 2.7 holds or not. Condi-

tioning with respect to (Xp, Xo) with distribution 04 ® II,, using the definition of the
Wasserstein distance of order 2 and taking n — co, we obtain

Wa(mp, Tpy) < Wa(llp, Il ) < 377,
where ¢3 > 0. We now provide the rigorous construction of (Xp, X ¢)eeN-

Let {(Bgi’e) )0 : ¢ € [n],£ € N} be independent random variables such that for any
(Z7£))
t2

i € [n], the sequences {(B; 0 : ¢ € N} are i.i.d. d;-dimensional Brownian motions
and let (§¢)¢>0 be a sequence of i.i.d. standard d-dimensional Gaussian random variables

independent of {(B M)),5>0 € [n],£ € N}. Consider the stochastic process (X;)g>0 on
R? x R? starting from X distributed according to II, and defined by the recursion: for
teN,ie€[n],

~ ~ ~ ~ . ~ (il ~ _ ~ ~ _
Xew1 = 041,200)", Zi, = Yz(vlfy)a Orr1 = By IBJD(l)/QZHl +B, 1/2§£+1, (2.77)

where (}Nﬁ(i’é))tzg, is a solution of (2.75) starting from Zé with parameter 6 < 6,.
Similarly to the process (Xy)sen defined in Algorithm 2.1, the process (Xg)geN defines a
homogeneous Markov chain. Indeed, it is easy to show that for any ¢ € N and measurable
function f : R? — R, E[f(Ze11)|X(] = Jro f( £)Qp~(Zs,dz|0y) and therefore (X;)sen
is associated with (2.76).

Proposition 2.29. Assume Assumption 2.1-Assumption 2.5-(i), and let N € (N*)", v €
(R%)™. Then, the Markov kernel P, ~ defined in (2.76) admits I1,, as an invariant prob-
ability measure.

Proof By property of the Langevin diffusion defined in (2.75), for all 6y € R, the

Markov kernel Q,~(-|60) admits TI,(-|fp) as invariant measure, see e.g. Roberts and
Tweedie (1996) or Kent (1978). Thus, for any 6y € R? and B € B(RP), we have

/ Hp(21|90) d21 = / Qpﬁ(Zo, B|90)Hp(2’0‘90) dZo. (278)
B zoERP
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Denote by 71'2, 7y, the marginals under Il,: Wf,(A) =II,(A x RP), m5(B) = I1,(RY x B),

for A € B(R?) and B € B(RP), and consider the Markov chain (X;)¢en defined in (2.77).
For any measurable function f : R“? — R_, the Fubini-Tonelli theorem gives

E[f(X1)] = /RHP i F(x1)p(01]21) d61Q p~ (20, d21|60) (8o, 20) b d2o
:/ f(Xl)Hp(ellzl)/ [/ Qp77(20,d21|90)ﬂp(20‘90) dZo] WZ(GQ)deodel
Rd JRP R4 RP

= / f(xl)Hp(Gllzl) [/ Hp(zlleo)ﬂ’f)(e()) d@o] d21 d@l (2.79)
Rd JRP OoERY

_ / O (01275 (1) dz1 6y
Rd JRP

= f(x)Ip(61, 21) dz1dfy = E[f(Xo)],

Rd+p

where we have used (2.78) in (2.79). Therefore, X; has distribution II, and the Markov
kernel P, admits II, as a stationary distribution, which completes the proof. |

Define by induction the synchronous coupling (X¢ = (00, Z0)) >0, (Xg = (ég, Zg))gzo,
starting from (6o, Zo) = (0, 2), (6o, Zo) distributed according to II,, for any i € [n] and

£>0, as
~ . ~ (i.d ~ _ ~ ~ —_
Zip = stfzv)’ Orr1 =By 1BgDé/2ZIZ+1 + By 1/2&+17 (2.80)
Zpy = YJS;W), 01 = By 1BJD5/224+1 + By Y2,

where we consider for any i € [n|,k € N, for ¢t € [kv;, (k+ 1)vi)

. s t y N ) .
v =80 — [ Vi) Al (= k) (o) T A+ 22(B) — BED),

ki i kv
Vi
00 i i _ 00 00
Y = V8D — (¢ k) VUGS + (0= k) (o) it + 2 (B~ BE).
L (2.81)
Let Gy = O’(Z(], Zy, 0y, 90), for any £ € N*, let
G = o{(Zo, Zo,00,00), (B8 )iz i € [n], k < ¢}, (2.82)
and for any ¢ > 0, let Hg) = J({(Bgi’e))sgt 4 € [n]}), and
]_-t(Z) the o-field generated by Hg) and Gy_1. (2.83)

Note that X, and Xg are distributed according to Hpﬁ’f; and SgPﬁ

Hence, by definition of the Wasserstein distance of order 2, it follows since HpPﬁ =11,
by Proposition 2.29 that

~N respectively.

0 > 2]/?
Wa(lly, 8xPpn) < E [[1X0— X2

(2.84)
We start this section by a first estimate on E[|| X, — X/||?]'/? and some technical results
needed for the proof of Proposition 2.6 and Proposition 2.8. The following result holds
regarding the process (Y/t(zyg)>teR+ defined, for any i € [n] and £ € N, in (2.81).
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Lemma 2.30. Assume Assumption 2.1-Assumption 2.5. For i € [n],¢ € N, denote
by zi, the unique minimizer of z; € R% w— Uj(z;) + ||2i — Aibel|/(2p;). Then, for any
€ [n],keNandleN,
E |95 = 24.17| < difs, (2:85)
where my; is defined in (2.34).

Proof Let ¢ € N. By Durmus and Moulines (2019, Proposition 1), for i € [n] and
k € N, we have

&) - . ~ . . . -
E b [VEO — 2 12 < 1ZF — 2176720 4 (difimg) (1 — e %W (2.86)

By (2 81), using Proposition 2.29 we get that X, has distribution II,, therefore given
0, Zy has distribution T1,(-|6s). Then, using (2.86), Durmus and Moulines (2019, Pro-
position 1(ii)) combined with Assumption 2.3, and since (Z}, ..., Z}) are independent
given 6y, we get the stated result. |

Lemma 2.31. Assume Assumption 2.1 and let N € (N*)",~v € (R%)". Then, for any
¢ € N, the random variable X, = (0, 2] )7, X, = (0] ,Z])7 defined in (2.80) satisfies

1 Xep1 = Xl < (1+ By By D22 Zes1 — Zeya |2,
where By, Bg, Do are defined in (2.11)-(2.12).

Proof The proof is similar to the proof of Lemma 2.11 and is omitted. |
For any k,¢ € N, s € R, consider the p x p matrices defined by

I(k, 5) = diag (]1%(1{: + D)W () Ty, Ty (b + Do (5) - Idn) : (2.87)
1
H(U)k = diag <71/0 V32U ((1 - s)Ykgl’e) + Yk(1 Y ds, (2.88)

o / V20, ((1 - s)y, 0 + sy 0y ds),
0

4 l
cy) = J(k,0)(D,,, + HY)), (2.89)
MY, =@, -ci) @ - with MY =1, (2.90)

Similarly to (2.28), for £,k € N and i € [n], consider Cg’,z) corresponding to the i-th
diagonal block of C,(f) defined in (2.89), i.e

C = Ly (k+ 1) {pl ,, +/ VAU (1 s)Y + Yk(zg))dé‘} e R4, (2.91)

where, for any ¢ € N and i € [n], (Yk(i’f), ffk(;f))keN is defined in (2.81).
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Lemma 2.32. Assume Assumption 2.1-Assumption 2.3 and let v € (R%)"™ such that,
for any i € [n],v; < 1/M;. Then, for any £,k € N, the matriz (I, — C,(f)) is invertible
and in addition, for any i € [n|, we have

. )
Iy, — CVO) <1 =y,

where CS’Z) is defined in (2.91).

Proof Let i € [n],¢,k € N. By Assumption 2.3, we have ||V2U;| < M; which implies
by (2.91) that ||C M)H < v M;. Since v; < 1/M;, the matrix I, — C( ) i invertible and
sois I, — Cé). In addition, following the same lines as the proof of Lemma 2.17 implies
T4, — CP ) < max{|1 — qiriig, |1 — 3 i} = 1 — yorias. |
For any £,k € N,i € [n], if 35 € (0,1/M;), Lemma 2.32 shows the invertibility of the
matrices I, — C( ), Therefore, M(o? is invertible, and we can define

Tge) — Me) 1+ZMe) k+1 J(k,0)D 1/2D’1Y//2PP Di//2PD1/2 (2.92)
k=0
o +o0
¢ 0 - ¢
T _Z{[M(ﬁ)] ML Dy /0 Ik DIVV VL) - YV, ())]dl} (2.93)
k=0

Using these matrices, we have the following result.

Lemma 2.33. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)",~v € (R%)"
such that, for any i € [n],v; < 1/M;. Then, for any ¢ > 1,

D_l/Q(ZE—H Zen) = T2y — 20) - T,
where (Zg, Zy)gen is defined in (2.80) and Dny = diag(Nimi1g,, ..., Noalg,) € RPXP.

Proof Let i € [n] and £ > 1. Recall that V; is defined in (2.29) and for z € RP, denote
V(z) =31, Vi(z). For any k € N, we have

AL AR IR A A ) / V2V, YD 4 sy as| (700 - v 0.

For k > 0, it follows from (2.81) that
o (1,0) (i,0) 2y (l @) (i,0) v @) (i,€)
}/(k'i'l)% Yv(k'f‘l)'y ( / V7V + Y ) dS) ( Yk"Yz )
_ [ [0, = IViTE | di + (i 0) A —
) ( ks +l) i( ks ) + (/i) Ai(0¢ 0)-

Consider the process (?t(e)’ Yt(z))teR . valued in R” x RP and defined for any ¢ > 0 by

() _ 50 0 _
Yt Ymm(t Nivi)’ Yt o Ymin(t,Ni'yi)' (294)

The process (2.94) is continuous with respect to ¢t and defined so that its component
(?(7’ 4 Y(Z e)) equals (Y}, Y}) for t < Nyy; and is constant for ¢ > Nyy;. For [ > 0, we

write (Y,(f) H,Y,(Q )= (Y(Z W 4 5e0 Jieln) € RP x RP. Using the matrices defined in

kyi+0 = kry;+l
(2.90), for k € N, we obtain
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() (0) _ (ONaU) ()
Y(k+1) _Y(k+1) =~ Gy )(Yk"/ fo (k. 1 [VV(Y

) -V (Y ()) dl

+ J(k:,O) LvaPaDy (V) =Y, (2.95)
where Py is defined in (2.12). Recall the matrix M\ defined in (2.90) with MY =T,

and for k > 1, M) = (1, - c")~1... (1, — ¢ )=, By multiplying (2.95) by

Ml(ﬁ)rlDI_Vl,éz, we have

M(Z) D_1/2 (Y(Z)

[ O~—1/2 ¢ [
k41 Y() ):M;)DN'{ (Y( ) —Y()

(k+1)~ (k+1)y Kk k'v)
0 - > ¢ o (¢
~M{) Dy /0 30 [TV (TS, = V)] @

{4 —1/2~1/2 ~1/2 (¢ l
+ My, 3 (k, 0D *DY PoDG (V) - V().

By (2.94) and (2.80), we have for t > max;e[, {7:Vi}, (Zos1, Zos1) = (Y4, Yy). There-
fore, summing the previous expression over k, we get

MUD 1/2(Z4+1 Zpy1) = ZMkJrl 1/2/0 J(k,DIVV( k()Jrl) VV(Yk(f;))]dl

0 = L (f 1/2+1/2 1/2 1/2 | ~-1/2 /5
+ M(()) +ZM2—)HJ(I‘%O)D / D’y//pP D’Y//PD / ]D / (2= 20,
k=0

By Lemma 2.32, Mg@ is invertible, and the proof is concluded by multiplying the pre-
vious equality by [Mg@]*l. [ |

Based on Lemma 2.33, we have the following relation between | Zes1 — Zosa||> and
1Ze — Zi||>.

Lemma 2.34. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)",~v € (R} )"
such that, for any i € [n],v < 1/M;. Then, for any e >0 and £ > 1,

E Y4
1Ze1 = Zenlg < (1426 TP Ze - Zel3,- (L 1/{2e1)|I T2,
where (Zy, Zp)en is defined in (2.80) and Dy~ = diag(N1y1lay, - - -, Noynla,) € RPXP.

Proof The proof follows from Lemma 2.33 and by using the fact that for a,b € RP, e > 0
we have 2(a,b) < 2¢llal|? + (1/{2¢})||b]|*. [ |

Similarly to Lemma 2.18, we have the following result regarding the contracting term.

Lemma 2.35. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)", v € (R%)"
such that, for any i € [n], v < 1/M; and Nyy; < 2/(m; + M;). Then, for any £ > 0,
we have

{4 .
ITE) <1 = min{Niimi} + 7.1

(0

where T} and ry p N are defined in (2.92) and (2.42), respectively.
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Proof The proof is similar to the proof of Lemma 2.18 and therefore is omitted. H

In the next lemma, we upper bound the coefficient r. , v defined in (2.42). For this,
we explicit a choice of N that we denote N* = (Nf(y1),..., Nj (7)) € (N*)™ defined
for any ¢ € [n], any ; > 0, by

Ni(vi) = {mz ?El[i%{mi/Mi}Q/<2o%Mi2 ?é%f]({mi/Mi}Q)J7 (2.96)

where M; = M; + 1/pi.

Lemma 2.36. Assume Assumption 2.1-Assumption 2.5 and let v € (R%)™ such that,

for any i € [n],
2

< min; e, {m/M;}
‘e 40]\%2 maxie[n]{mi/Mi}

Then, for any i € [n], we have N(v;) € N* and
Ty N < NG (i) yimi} /2,
where 1 p N+ 15 defined in (2.42).

Proof The assumption on 7; combined with the definition (2.96) of N}(v;) imply
N (i) = 2, using in addition m; < M;, max;e, {N; (7:)%iMilns(r,)>1} < 1/20 and

) <\ 2 - . N -
L[ mingep{ma/Mi} \ - NF(i)yME 1 minie{mi/Mi} |\ -y M]
20 maxie[n]{mi/]\%} m; 20 \ max;c[y {mi/M;} m;

-\ 2
in, Wave
2 i mlnlE[n]{m / _ } ) (297)
40\ max;ep {mi/M;}

Using the definition (2.42) of r , N+, we have 7., , N+ < Smax;efy {Ni*(’yi)'yiMi]lN; (%)>1}2.
Thus, plugging (2.97) in the previous inequality gives

Ty pN* < Izrel%z}]{{ml/Ml}Q max { (2.98)

i€[n]

N ()i M? - min;ep, {mi/Mi~}4
m; 80 maxie[n]{mi/Mi}Q

In addition, (2.97) also shows that

. "~ 2 2
1 mmie[n]{mi/ﬂﬁ'} R N (i) yim. (2.99)
40 maX;en {mi/M;} M)

Therefore, combining (2.98) and (2.99) completes the proof. [ |
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2.D.2 Proof of Proposition 2.6

We first give the formal statement of Proposition 2.6. For this, consider for any v €
(R3)"™, @ € [n],

N7 () = |y min{mi/ M3}/ (20908 masc{mi/ V1 }2) |, (2.100)
i€n] i€[n]

and denote N* = (N7 (1), ..., NX(n))-
Proposition 2.37. Assume Assumption 2.1-Assumption 2.3 and let v € (R%)" such
that for any i € [n], v < m;/40MZ (mingep, {mi/M;}/ max;e {mi/M;})?. Then, we
have
4(1 4 By "By Dy?|?) maxicp, {mi/ M7}

5mine ) {mi/M;}? maXie[n] {mi/M;}?

W22 (Hp77:N* ? Hp) S

X Z diyimi (14 v2 M2 /12 4+ v M2 /(2iy)),
1=1

where Bo, Bg, Dy are defined in (2.11)-(2.12), and for any i € [n], m;, M; are defined
n (2.34).

By Lemma 2.31 and Lemma 2.34, we can note that the proof of Proposition 2.37 boils

down to derive an upper bound on HTg)H2 defined in (2.93) for £ € N. The following
lemma provides such a bound.

Lemma 2.38. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)",~v € (R%)"
such that, for any i € [n], vi < 1/M;. Then, for any ¢ € N, we have

B T12| < SN2 (142082 /12 4 a2 2]

where mi,Mi,Ty) are defined in (2.34) and (2.93), respectively.

Proof Let ¢ € N. Using (2.87), we can write, for any [ € Ry and k € N, J(k,[) as a
block-diagonal matrix diag(J'(k,1),...,J"(k,1)) with J*(k, 1) = Ljn, (k+1)1 4, (s) - Ig,

for any ¢ € [n]. By (2.90) and using for any k£ € N, that [M MY )] 1Ml(f~)H [12 (T, —
Cl(i’e)) is finite by (2.89), we have

00 2
TR = | om0 DR [ s [TV - o)) al
k=0

2
Z . ST @ - ) ) [ o) TS - o) le-

= k=0Il=k+1

(2.101)

Since for any i € [n], k > N; we have J¢(k,0) = CEM) = 04, xd;, (2.101) can be rewritten
as

Y4
ITS)2 = Z

=1

Z H (I, — ) /%Ji(k,c))[vw v - VY, W)] al
0

k=0 l=k+1

Z
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and the Cauchy-Schwarz inequality gives

y n 1 N;—1,, N;—1 (i.d 2 i 2 ”
T2 <>S = S| I e - ) / [VV( v - vV )} le
=1 0\ o ik 0
) (2.102)

Since, for any i € [n], v;M; < 1, we get using Lemma 2.32,

N;—1 ' 2

[T (o =G| < {1 — a2 b,

I=k+1

By combining (2.102) with the previous result and the Jensen inequality, we have

n

i_l 2
l ~ ke il (1,0
TR <30 3 1= ) [T oviii) - eS| an 2o
i k=0

For i € [n], using Durmus and Moulines (2019, Lemma 21) applied to the potential
VI yt e Uiy') + lly' — Aifl|?/(2p:) yields

e f“ (i,0 i\0) v O ik 0
| EEIRES ) - oI = [ RS - e s

< 2017 [d AN 12 4 (2 /2) |70 z;é,*nﬂ |

(2.104)
where 22’* = argmin_ g, Vié"(zi).
By (2.104), (2.85), Lemma 2.30 and since max;e[, i1 < 1, we get
n N;—1
>3 e [ EIOveS) - vuE)Pa
i=1 k=0 0
< Zd Ny ME[1+ 4} M? 12 + 5 M7 [ (207;)].
Combining this result with (2.103) completes the proof. [ ]

We can now combine Lemma 2.38 and Lemma 2.35 with Lemma 2.34 to get the following
bound.

Lemma 2.39. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)", v € (R%)"
such that, for any i € [n], v < 1/M;, Nyy; < 2/(m; + M;). Suppose in addition
Ky,p,N = minie[n]{Ni%mi} — Typ,N € (O, 1), where 14 p N is defined in (2.42). Then,
for £ > 1, we have

4 2 2 2(0—1 ~ 2
(12~ 2, | < 0= oo + G /DHVE 12 - 21l |
2012 12
d N: 2M2 ’Y’L 7 127
‘Y,p, Z i ( 12 + 2, ’

where, for any i € [n], M; and 7; are defined in (2.34).
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Proof Taking expectation in Lemma 2.34, we get for any £ € N, e > 0 that
~ ¢ ~ l
E 12611 - Zenallyy | < G420 |ITO1P2 - Zildyy | + 017002 [ITPR)

where T(e) and T(é) are defined in (2.92) and (2.93), respectively. To ease notation,
denote B = leld N2 M2(1 + v2M?/12 + v M2/ (2/;)). Using Lemma 2.38, we
obtain for any £ € N;e > 0

B 1Ze11 - Zenalyy | < (4 208 [ITPP1Z0 - 2y | + 1+ 1/026)B. (2109

In addition, Lemma 2.35 implies that HT(Z H2 (1 — Ky,p,~v)? almost surely. Therefore,
taking € = (1 — [1 — ky.p,N]?)/(4[1 — Ky.p.N]?), (2.105) yields for any £ > 0,

_ 2 14+(1— 2
HZz—Z@H L aall KW”N)QB.
DN‘)’ 1 - (1 - K77P7N)

I+ (1 K%p,N)zE
2

IN

~ 2
Zor— 7 H
[z - 2|

An easy induction implies for any £ > 1,

/—1
od 1—|—(1—K N)2 ~
E[Z—Z2,}< 7. E[Z—ZZ,}
H £ Z”Dva _< 9 H 1 1HDN17

1+ (1 K'mo,N)2

+2
(1= (1 = kypn)?)?

B. (2.106)

Since K?ﬁp}N = (min;ep { Niyimi } + T~.p.N)? and using K‘QY:FLN < 1, we obtain
(1+Q01- K‘y,p,N)2)/2 =1—KypnN+ '<»2y,oN/2
(14 (1= ky o)D) /(1= (1 = Ky pn)?)? < K»y N

Combining these inequalities with (2.106) and (2.105) completes the proof. |

Lemma 2.40. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)", v € (R%)"
such that, for anyi € [n], v < 1/M;, Niv; < 2/(mi+M;) and Ky, p N = mingep, { Niyvimi }—
T~.p,N € (0, 1), where 14 p N is defined in (2.42). Then, for any x € R™P gnd £ > 1,
we have

W22(6XP£,7,N? HP)
S (1 _ K‘y,p,N _|_ K;-277P’N/2)2(£_1)(1 + HBalBgﬁé/QHQ) ?éa;lX{NZ’yl}E ||Zl - Zl||]2)1_vl-yj|

1+ B 'B{DY?)?) ma N; N 3
20+ 1B, (; I maxep {Nivi} Zd Ny M2 (L + 42 M2 /12 + v M2 [ (21)],
Ko N

where By, B, Doy are defined in (2.11)-(2.12), Pp~ N is defined in (2.26), (Z, Z1)ven
is defined in (2.80) and for any i € [n], M;, m; are defined in (2.34).

Proof By Lemma 2.39, we have the following upper bound for £ > 1,
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E(Ze— Zil3- | < (1 - 2 NI2MEVENZy - 20|12 -
12~ Zullyy | < (1= iy + 2 2P VE| 121 - 2l
2NI2 BT
20712 1
%pNZdNﬂ M; < 2121 + 2771; '

Using (2.80), Lemma 2.31, combined with the previous inequality, we get for any ¢ >
1,x € R¥HP,

1/2 >
W3y, xPh ) < (14 B3 ' BIDY*PIE 12 — 2]
< (1+ 1By BT DY) max(Nin |1 20 - 2l |
<cn ~

< (1= Ky + K2 /2)2ED (4 IB; ‘B D22 )néﬁl)]({Nm}E{HZl - lelsz_vlj

2(1 + By "By Dy *|2) maxic {Nivi} n | oo (1 M 3T
3 > N} M (1 + ot 2m>
~¥.0,N i=1 E
Hence, the stated result. |

Proof of Proposition 2.6/Proposition 2.37. Proof Since for any i € [n], we
know that 3 3 }
vi < mi/40MF (min{m;/M;}/ max{m;/M;})?,
i€n] i€[n]

setting
N} (vi) = {mz min{mi/Mi}z/(20%Mi2 max{mi/Mi}QM
i€[n] i€[n]

implies Kk, , n+ € (0,1) by Lemma 2.36. Thereby, letting n tend towards infinity in
Lemma 2.40 and using Proposition 2.21 conclude the proof. |

2.D.3 Proof of Proposition 2.8

We first give the formal statement of Proposition 2.8.

Proposition 2.41. Assume Assumption 2.1-Assumption 2.3-Assumption 2.7 and let
pe Ry v e (RL)" such that for any i € [n],

9 < i/ (40NEF) (min{my / M1} fmmax {m / 13}
1€n S
Then, we have

max;cp, {mi/ M2}
mine f,, {mi/M;}2

= ~1/2
W21, N+, 1) < 4(1+ | By B Dy/* () R* (),

where setting f; = mi/(QOMi),

) ]
-5 divi M} -
S amzirz ¢ BT (g MO g b
=1 M; myg
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Bo,Bo, Dy are defined in (2.11)-(2.12), and for any i € [n], s, M; are defined in

(2.34).

We provide the proof of Proposition 2.8 in what follows. Similarly to Lemma 2.34 for
the proof of Proposition 2.6, we derive an explicit relation between || Zp+1 — Zp41|| and
1Z2e = Z])-

Lemma 2.42. Assume Assumption 2.1-Assumption 2.3—Ass~umptz'0n 2.7 anc{ let N €
(N*)™, v € (R%)™ such that for any i € [n], Niyy; <2/(m; + M;) and v; < 1/M;. Then,
for £ > 1, we have
- 1/2
E[Zes1 - Zenall3y s |
N~
< —m3 A~ - 7 2 1/2 R 1/2
- 1 mln{Nl’yZmZ} + T‘Y:va E ||Z€ ZZ”D_1 + (’Y? N) )
ze[n] N~

where
R(v, N) = 3 diNiy? (diL? + M} fring) + 3 (dz% M2 + d; N3y M4)
i=1 =1
+ Z d;i N2 MP (1 + NyyiMy), (2.107)

(Zo, Zi)een is defined in (2.80), 7 p N in (2.42) and for any i € [n], ;, M; are defined
n (2.34).

Proof Let ¢ € N. For any k € N, recall that Ml(f) is defined in (2.90) and invertible
by Lemma 2.32. Define

we = Dt (Z — Z).
Under this notation, the result given in Lemma 2.33 can be rewritten as
4 ¢
Wet1 = Tg Jwy — Té ),

where Tg@) and Tg) are defined in (2.92) and (2.93), respectively. By the Minkowsky
inequality and using (2.82), we have

1/2 1/2 1/2
9 [me\ﬂ < E9 [HT&Z)WH?} +EY [HT&‘Z)W] : (2.108)
Since by Lemma 2.35,

1T <1 - mm{Nmmz} + Ty p.N (2.109)

it remains to bound ng[HTg)HQ] to complete the proof.

For any i € [n], recall the function Vio‘ : R% — R defined for any y* € R% by Viof (y!) =
Us(y) + 1y — Aibe||?/(2p;). Let k € N, using the It6 formula, we have for [ € [kv;, (k+
1)’71)7
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e kit o - . .
VETS) - VI = [ {TVEEOTVIT) + ATVIOTE0)  du
ki
kyi+l . )
+v2 V2Vl (v 0y dBi. (2.110)
ki

For any i € [n], k € N, define
ol — (-1 ) R, 00 (F 0y 10 (700
a ) ]I[N](k—i—l)[l\/[ Mk+1 A\ )VVZ (Y,;"") dudl,
ki

—»

( 0 Vi kvt P

ay;) = Iy (ke + 1)[MEY) 'my) / AWV YD) dudl,
Vi kyi+l . )

ays) = V21 (k+ )M 1M,§f1 /k V2V (V0) dBL dl.

With these notations and by (2.110), we have

l
T2 = Z

(3,0 i,0)
Z{ 1k)+agk +a3k }H

i€[n ] keN
< E1+ E> + Ej5, (2.111)
where for any j € [3], Ej =33 ;1 | 205 '61 a% 12/(Niyi). We now bound {Ej} e

. —1 .
Upper bound on E;. For any i € [n],k € N, recall that we have [Méﬁ;‘f)] M](;f% =

I12 1 (Xg, + Cl(i’e) ) where Cl(i’é) is defined in (2.89). In addition, since we suppose for
any i € [n], that v;M; < 1, Lemma 2.32 implies

N;—1

2
H (Lg, — CI(M))H <{1- %mi}Q(ka—l) .
I=k+1

Combining this result with the Cauchy-Schwarz inequality, we obtain

1 Ni—1 (Z f Vi kyi+l 91,0 . 0, /< (id 2
¥ > a V2Vl (v EOyw vl (v G0y dud (2.112)
I k=0 ki

For i € [n], using the definition of 2} , = arg mingicgd, Vig" (y') € R% we have VVZQ’Z (zf,) =
04,. Therefore, for i € [n],k € N, conditioning with respect to f,g?i defined in (2.83)
and using the M;-Lipschitz property of Vie" by Assumption 2.3 gives

() - ~
BT [IV2V TV (T0) 2] < ST [V (7) = OV (e, ]
< N (769 — 24,)7).

For any i € [n], k € N, combining this result with the Jensen inequality yields

2
kvyi+l

(£) i .
E” VI (Vv (VD) dudl

kg

ki
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<o f i) e TR Iy 0T FEO) ] dudi
< 3 NI / " / g ’5?1 V.00 = 2, )] dudl. (2.113)
ki
By Lemma 2.30, we have for any i € [n], u € Ry,
B9 17400 — 24, ] < i
Injecting this result in (2.113) yields
[/% /:%H EF v, [ 17,60 *HZ] dudl] < diy? ) (3ma).
Finally, this inequality, (2.113) and (2.112), we get

n
Bl 3 diNa T} i (2.114)

Upper bound on FE>. Using the Cauchy-Schwarz inequality, we have

N;—1 2
1 ( Vi kyi+l _‘ P .
— as AV YD) dudl
N; kzo ki

By Assumption 2.7, we have for any z; € R%, ||A(VV?)(2)||2 < d2L2. Therefore, we

obtain
Vi kryi+l _’ Vi kit ~ [
(VVE)(Y9) dudl <%/ / IA(VVI)(YE9)12 du di
ki ki
Thus, we get
Zdz S L2, (2.115)

Upper bound on E3. For any i € [n], k € N, define

Vi kryi+l 0 .
/ / V2Vl (v 0) dBE dl.
ki

Using for any i € [n],k € N, [M&9]- IMgf} — 32, CY L RUY where R{™
is defined in (2.43), we have, for any i € [n],k € N
N I 60 60|
ayy) fz H{ CZ}A;,C
k=0 k=0 I=k+1

N;—1
2 i0 il a0
=2 Z k1 3 k‘l R/(€2 )Aé k)> +2 Z <Ag»k’1)’ Ai(”7k2)>
k1,k2=0 k1,k2=0
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N;—1 N;
+9 Z < Z Czﬁ)A:())szl Z CzE)A:())zkEQ

kl,kg—o l—k1+1 I=ko+1
\ (,6) » (i,6) uf) (i,0) A (3,0)
—4 Z Z Ci Al Al +4 Z Az gy gy
k‘1,k2 0 l=k1+1 k1,k2=0
' (i) A
—4 Z o 3k1 Z CZ 3k2 (2.116)
k1,k2=0 I=ko+1

We now control the quantities which appear in (2.116). First, by Assumption 2.3, for
any i € [n],x’,y* € R%, note that we have

0, i i -

V2V (x)y' (| < Milly*||-
By the Jensen inequality and the [t6 isometry, for any k € N, we get
2]

dl = di} M2 )2. (2.117)

kyi+l . .
V2V (v 0) dBY di

ki +l )
/ dB!
ki

In addition, since for i € [n], (fot V2V;€‘()~@(i72))d35)t20 is a (ft(g))tzo—martingale, for
(k1,k2) € {0,..., N; — 1}? such that k; < ks, we obtain

Vi

) )
B [lagore] - 27

ky;

o [ 0 2
< i MzQ / E}—k%
0

sl

N i il
Ece“Ag,kg] A;kg] Egz[E SN Agk;H 0.

Therefore,
N;—1
> 50l a| = anatiz e
k1,ka=0

)

Second, since for any i € [n],l € N, Cl(i’e € R%*4i is symmetric positive semi-definite,

we have
N;—1
(4,0) zZ (zf
Z Z C 3k1 A3k2 < ch ZA3k1aZA3k2>_
k1,ka=0 l=k1+1 k1=0 k1=0

Third, using for any ¢ € [n],l € N, using ||Cl(i’£)|| < ~;M; by definition (2.89) and
Assumption 2.3 and combining the Cauchy-Schwarz inequality with (2.117), for any
€ [n], (k1,k2) € {0,...,N; — 1}2, we get

N;—1 N;
3 ng[< S oealy), Z ci" Ay ]<dN475M4/8.
kl,kgzo I=k1+1 l=ko+1

Using (2.117) again and Lemma 2.16, for i € [n], we obtain

@0 i0 i0 12 z@
Y ES [< R{OAG) RY >A§,k’>] < (d?i2/2) Y E[HR( IR ﬂ
k1,k2=0 k1,k2=0
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2
N;—1

< (diyfM7/2) S D (exp[(N; — k)yidy) — 1 = [(Ni — k)i M))
k=0
2

- Niy; M;
< (i M} /2) § (M) ™! / {e! — 1 —t}dt
0

Z’Y’L I3
_ (Nt 412
- 288

Similarly, we get Moreover, using the Cauchy-Schwarz inequality, for any i € [n] we get

Z E|[ A(zf zf Z E[HA H”Asz

k17k2 0 k1 k‘2
32
< lel’)/Z Mz (
- 24

Nivi M;
~ € +1
< diNfl’Y?MfT-

diN{y/ MY,

eNi%Mi + 1>Ni37i2Mi2

In addition, for any ¢ € [n], we have also

Nil Ni oNivi M; +1
i) A (il i) A (il ~
> E|®EIAL DD OMAl) | < N
k17k2:0 l=ko+1

For any i € [n], k € N, regrouping the previous results and using that Ny M; < 2 give

E[E5] < Z{d N172M2+dN3%4M4}+Zd Ni'y) M (1 + NiviM;). (2.118)
i=1 =1

Combination of our previous results. Injecting the three upper bounds (2.114),
(2.115), (2.118) in (2.111), we get

E [HTQM’H < AN (R + NI i) + S {dn A2 + di NP AT

i=1 =1

- Z d; N} MP (1 + Ny M), (2.119)

Using the recursion defined in (2.108), and combining the upper bounds derived in
(2.109) and (2.119) completes the proof. [ |

Lemma 2.43. Assume Assumption 2.1-Assumption 2.53-Assumption 2.7 and let N €
(N*)", v € (RL)™ such that for any i € [n], Niy; < 2/(m; + M;), v < 1/M; and
Ky,p,N = Milep {Nivimi} — ry .8 € (0,1), where ry p N is defined in (2.42). Then,
for £ > 1, we have

1/2

. - 1/2
E[HZZH - Z£+1H]23;V1 < (I—KMAN)Z_lE{”Zl - ZIH123;11 +{K77P7N}_1R(7’N)7
vy

where R(vy, N) is given in (2.107).
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Proof The proof follows from Lemma 2.42 combined with a straightforward induction.
|

Proof of Proposition 2.8 /Proposition 2.41. Proof |Proof of Proposition 2.8 /Pro-
position 2.41.] By Proposition 2.21 and Lemma 2.36, P, n+ converges in Wy to
I, ~n+. Therefore, using (2.84), Lemma 2.31 and Lemma 2.43 and taking £ — +o00,
we obtain

maxe ) {2V (i)}
minge ) { IV (i) vimi }

= — ~1/2
WE(IT, o N+, TT,) < 4(1+ || By "By D |1?) R(v,N*), (2.120)

where N* is defined in (2.100). By definition of N7 (v;), we have i M;NF (i) < fi =
m;/(20M;) which completes the proof upon using it in (2.120). [ |

2.E Explicit mixing times

This section aims at providing mixing times for DG-LMC with explicit dependencies w.r.t.
the dimension d and the prescribed precision €. We specify our result to the case where
for any i € [n], m; = m, M; = M, p; = p, vi = v, N; = N and for the specific initial

distribution
pp = dzr @ 1p(|27),
where
x* = ([0*]",[z*]") ", where #* = argmin{—logn} and z* = ([A16*]", - ,[A.6*]")".

Note that sampling from pj, is straightforward and simply consists in setting zp =
z* and 0y = Ba 1B8— ]5(1)/ 220 + Bg 1/ 25 , where ¢ is a d-dimensional standard Gaussian
random variable. Starting from this initialization, we consider the marginal law of 6,
for £ > 1 and denote it I'... By Proposition 2.21, since for any i € [n], N; = N,
the stationary distribution associated to P, o n is I, 5 = II, 4 1,,. We build upon the
natural decomposition of the bias:

W (T, m(-[D)) < WZ(Hzpﬁ,q,Nv pn) + Wa(llpy, p) + Wa(mp, 7(-[D)),

where II, 4, II, and 7, are defined in Proposition 2.4, (2.2) and (2.3), respectively.
The following subsections focus on deriving conditions on 4., 7., N. and p. to satisfy
Wa(T'i&, m(-|D)) < e, where £ > 0.

X*

2.E.1 Lower bound on the number of iterations /.

In this section, we derive a lower bound on /. such that Wg(u;Pﬁiy Nop~y) < €/3
following the result provided in Proposition 2.22. Recall that we define the z-marginal
under II, 4 by

Thmy = /]Rd II,~(0,2)do,
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and the transition kernel of the Markov chain {Z;}¢>¢, for all z € R? and B € B(RP),
by

- (2B) = /R Qg (= BIOI, (0]2) 0,

where II,(:|2) and Qp,~, N are defined in (2.5) and (2.25), respectively. In the case
N = 1,, we simply denote P} _ n by P; .. We need to bound in Proposition 2.22 the
factor

1/2
2 2
{ L= mataan) + [ s =1 P;,%Nw,dzl)} .
Our next results provide such bounds.

Lemma 2.44. Assume Assumption 2.1. Then, the transition kernel Ps ., leaves 7,

Py
; y ; z z z z y =44
invariant, that is m,  P; . =, , where m;, . is defined by (2.55).

Proof We have for any B € B(RP)

/B w2 (dz) = /B /R Tlp(d6,d2) = /B w5 (d2) /R Tl (d0]2).

Therefore, using the fact that P, . leaves II, - invariant from Proposition 2.13 and
Fubini’s theorem, we get

/B w5 (dz) = /B /R Ty (d0,d2) = /B /R d /R o Tl (d0.02) Py ((6.2), 00,2)
_ /B /R d /R Tl (d8.49)Qp (2, d21A)T15(612) 40

= / / M, (d6,d2)Qp (2, dz|0) / 11,(|2) do
B JR4xRP R4

- /R RASCOTANEN )

For any ¢ € [n], let 6F a minimizer of § — U;(A;0), and define
ut = ([A(0" = D], [AR (0" = 07)]T) "

Lemma 2.45. Assume Assumption 2.1-Assumption 2.3 and let N € (N*)" v, p €
(R%)™ such that, for anyi € [n], v; < 2/(mi+M;+1/p;) and denote z* = ([A10*]", -+, [A,,0°]T)T.
Then, for any z € RP and ¢ > 0,

- ) ~ . —11.,.2 2
/RP 1= 1 Piyl2009) < ming N~ 31+ 20) = = ="

+ (14 1/(22) max{ M2 |+ oDy Po) + 23 dz} 7
reln i=1

where the transition kernel Pj ., is defined in (2.56) with N = 1,,.
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Proof Let y; <2/(m;+ M;+1/p;) for any i € [n], and £ be a d-dimensional Gaussian
random variable independent of {1’ : i € [n]} where for any i € [n], " is a d;-dimensional
Gaussian random variable. Take z € RP and let Z be the random variable distributed
according to 0, PZ., and defined by

Py
0 =B;'BiD/%: + B, "¢
and for any i € [n],
Zt = (1 - ’Yi/ﬂz') zi — % VUi(2) + %Azﬂ + /2’
- (1 - %-/pl-) 2 — % VUi(z) + %AiBnggﬁé”z + %AiBgl/Zg + /2y
= (1 - %/pz‘) zi = %[VUi(z1) = VUi(Ai07)] = 7[VUi(Ai0") — VU (A0])]
+ %AiBnggﬁéﬂz + %A,Bgl/zg + /27
Let
1 1
D} = diag(vl / V32U, (21 + t(A10% — 1)) dt, - - - ,fyn/ V22U, (20 + (A" — 2,)) dt),
0 0
1 1
D}, = diag(vl/ VU (A10% + t(A107 — A16%))dt, - - - ,%/ VU, (AL0% +t(A,0) — Ane*))dt).
0 0

Since POD;UQZ* = D;l/zz*, it follows that

Z— 2= [Ip - D} - DY*DYE (1, - Py)D, 1/2] (z — 2*) — Dju*

+D1/2D1/2B B, 1/2£—|—D1/2

v/p
With the notation H = I, — D}, — D1/2D1//2 (I, — P())D_l/2 (2.23), and using the fact
that for any € > 0, a,b € R, |(a,b)| < ¢|lal|? + (4¢)71|b||?, it follows, for any z € RP,

that

JREEE N

“Jo Ll

= HH(Z —2*) — Dju*

(2 — ") — Djyu* + DY’DL? BB 1/2§+D1/2nH ba(€) dsdy(n) dn

+ Tr(Dy/pPo) +2> d;
=1

<R3z = 210 = 2(H(z - %), Diputpos + Hf);]u* o+ TrHDsyPo) + ZZdi

1
K2 (1+2e)]z — z*uf);l - <1 + 26) max{%M2}Hu*||2 + Tr(D,,,Po) + QZd
i=1
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Proposition 2.46. Assume Assumption 2.1-Assumption 2.5 and let N € (N*)" v, p €
(RX)™ such that, for any i € [n], v < 2/(m; + M; +1/p;). Then, we have

/1‘@1 Hzl — Z*H]z:);vl‘yﬂf)’,y(d21)

2 14 K2 n
. -1 Y Af2 *|2 .
< w0 g | T MM T R 23 )

with Kk~ defined in (2.21).

Proof With the choice ¢ = (1 — /{,27)/(4/£,27) in Lemma 2.45 and using Lemma 2.44, we
have

K,Qy—l—l

7 — 23 _i7md L (d2) < / z— 23 _im? . (dz
LN (@) < T [ = 1 g (4)

L+ ”’27 2 2 =
T M+ D P 23

Rearranging terms concludes the proof. |

Lemma 2.47. Assume Assumption 2.1-Assumption 2.3 and let N € (N*)" v, p €
(R*)™ such that, for any i € [n], Nyyi < 2/(m; + M; + 1/p;),viM; < 1 and denote
2 = ([A10%]7, -+, [A,0*]T)T. Then, we have

n n
/ (= Z*”fa# Pi, n(25,d2) <23 %N (1 + Tr(Po)/pi) +4) d;,
R 7 i=1 i=1
where the transition kernel P;_ n is defined in (2.56).
Proof Let {(n})k>1 : i € [n]} be independent random variables such that for any
i € [n], the sequences {(n})x>1} are i.i.d. d;-dimensional Brownian motions and let &
a d-dimensional standard Gaussian random variable independent of {(n})r>1 : i € [n]}.

Consider the stochastic process (Yy)gen initialized for any i € [n] at Y = A;6* and
defined, for any i € [n], k € N, by

Vi =Y = vVVi(YE) + (i) pi) Aib + /27imjsa,s (2.121)

where the potential V; = y' — U;(y*) + ||y*||*/(2p;) and

0 =B;'B] D)% + B, /’¢. (2.122)
In addition, we define the random variable Z = (Z!,...,Z"), for any i € [n], as
Z' =Y.

By definition, note that Z is distributed according to P;m N (2%,+). Define the process
(Yr, = {YL}" | )ken valued in R? x RP defined for any i € [n], k > 0 by

lec = Yéin(l@N,-)’
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and consider the following matrices defined, for any k € N, by

1
Hy, = diag (71/ VUL ((1 — s)Yy + s2%) ds,
0

1
’yn/ VU, ((1 = s)Y; + s2%) ds),
0

J(k‘) = diag (]l[Nl}(k + 1) : Id17 s v]l[Nn}(k; + 1) : Idn) ,
Ci = J(k)(Dy/p + Hyp), (2.123)
M = (I, —Co)~'... (I, - Cp) !, with Mg = I,.

Using these notations and (2.121), for any k € N, we get
Yisr = #* =(T, = CO(¥i— ) + 300 (D yBat ~ D,V + DY )
Multiplying the previous equality by MkHDI_\%Q, we obtain, for k£ > 0,

Mk+1Dz_vl42(Yk+1 —2") = MkD_l/ (Yr —2%)
+ M1 J(B)D 2 <D7 JypBob — Do VV (2*) + D%fnkﬂ) .
Summing the previous equality over k € N gives
MoDy 2 (Yo — 2%) = MoD (Yo — 2%)
+ ZMkHJ(]{;)D;Vlf ( o/ ypBof — Do VV () + D,/ nm)
k=0
Multiplying the last equality by [Mu] ™! and using the fact that Yo = 2*, we get
D22~ =)

o0

=3 [Mao) ' M1 ()DL (D7 /vsBol — Dy VV (2*) + D;fnm) . (2.124)
k=0

Recall that Py = BOBEIBJ. Hence, by (2.122) and using POD;l/Qz* = D;l/gz*, we
get

D, /sBof — D, VV(z*) = D, ;BB /*¢ — D,VU(2").
Plugging this equality into (2.124) yields

D227 = 2) = = > [Mao] " M1 J ()DL VU (2)
k=0

BOB 1/25

WE

+ ) [Moc]"Myy1 I (k)D

1/2
v/(Np)

e
o

+V2 Y Moo M1 I (k)D R Pi1. (2.125)
k=0
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Recall that [Moo] " "Mpi1 = (([Moo] 'Mpi1), . . -, ([Moo] "' My 1)") is a block-diagonal
matrix where, for any i € [n], ((Moo] "My 1)’ = [172441 (I, — C}) where C; is defined

n (2.123). In addition, since we suppose for any i € [n], that ;M; < 1, Lemma 2.32

implies

N;—1

H (Idi - C;)

I=k+1

2
<(1- %mi)Z(Ni_k_l) .

We now upper bound separately each term on the right-hand side of (2.125). First,
using the Cauchy-Schwarz inequality, we have

2
D 2 - iTi
S Mo M1 J(R)DY || < Z 7i/Ni) || D (Mao] ™ M1) T ()
k=0 k=0
n N;—1 N;—1 . 2
<> (n/N) (12 - i)
i=1 k=0 l=k+1
n Ni—l Ni—l ) 2
<> > | 11 (1<)
i=1 k=0 ||l=k+1
Ni—1 Nk
2(N;—k—1
SZ%Z(I_’YZ z)( )
i=1 k=0
<> Nivi. (2.126)
Second, using the same techniques as for the above inequality, we obtain
= 1/2 =1 2 —_1/2
kz 7'My 3 (DY BoB, || < Z BB, /g (2.127)
Finally, the third term can be upper-bounded as
oo 2 n
E{|v2Y Ma] "My J()D N || | <23 ds. (2.128)
k=0 i=

Combining (2.125), (2.126), (2.127) and (2.128), we get

/RHz—z 12 o (25 d2) <Z% ,(1+Tr(P0)/pi)+22di.
=1

i=1

Given € > 0, we are now ready to provide a condition on the number of iterations ¢ to

achieve Wg(,u;;Pﬁ7 N> 1lp~) < €/3 in the case where for any i € [n], m; =m, M; = M,

pi = p, vi = and N; = N. Define
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T Ta1/2 2 1455 201, %12
E2 = 18N~(1 + By 'By Dy ") NI )\ T2 -y M |[u]|
Y Y

+(v/p)Tx(Po) +2 di) + 2byN (1 + Tr(Po)/p) +4) d;
=1 i=1

Theorem 2.48. Assume Assumption 2.1-Assumption 2.5 and let N = Nlp,v =
Ylp,p = pln, p > 0,4 > 0,N > 1, such that v < 1/M, Ny < 2/(m + M), and
(2.54) is satisfied. Then, for any e >0, any

0. > 2log(Eg/e)/(Nym),

we have, WQ(MZPPE,YN, o) < €/3.

Proof By some algebra and using 1/log(1/(1 — z)) < 1/x for 0 < = < 1, the proof
directly follows from Proposition 2.22 combined with Proposition 2.46 and Lemma 2.47.
|

2.E.2 Upper bound on the tolerance parameter p.

Define
Ro = 202 (do% 3 M2 A0 - 9:)\\2) 20l
=1

Ry =dofy + Y M7||A (0" - 67)]* + ZdiMi/2
=1 7

Ry = deaX{M Yob + 2ZM3HA (0% — 0)||> + 80,
i=1

n
+ 807 | 2dofy +2) M| Ai(6" - 67)]
=1

Recall that p = max;cp,{pi}. Then, the following result holds.

Lemma 2.49. Assume Assumption 2.1-Assumption 2.5. For any e > 0, let p. € (R%)"

such that
o —Ry + \/R% + 4R06m1/2/(3f) e/my
Pe >
2Ro 3\/5\/32 + [Ra/(1202) + Y1 di M)
1 —ledM~|—\/ S diM;)? 4 6Ry
120U 2R, '

Then, Wa(m,_,7(-|D)) < e/3.
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Proof Lete > 0. From (2.74), for any p < 1/(120%), Wa(7p, 7(-|D)) < ,/mlU max(Aj, Aéﬂ),

where Ay, A3 are defined in (2.71) and (2.73) respectively. This implies that Wy (7, 7(-|D)) <
/3 is verified if maX(Al,Aé/Q) < eymu/(3v/?2). First, Ay < e/my/(3v/2) holds if

Ry + /B3 + 4Ro=mi[?/(3v2) N

2Ry 1203
We now focus on As. Using the fact that for any z € R,e” > z+ 1, we have 2[[;_, (1 +
piM;)% > 2 4 o, dilog(1 + p;M;) and therefore

p< (2.129)

Az < exp (p% +) dilog(1 + piMz»>> — 1= dilog(1+ p;M;).
i=1 i=1

Since Y 7", dilog(1 + piM;) < p>_7 d;iM;, p°Ry + o dilog(1 4 piM;) < 3/2 holds

for
=S diM; 1 diM;)? +6R
/3 < Zz—l + \/(Zz—l ) + 2' (2130)
2Ry
Since for any < 3/2,e% < 1+ x + 22 and using the fact that p < 1/(120), it follows
that
As < p*Ry+ (p°Ra+p Y diMy) | <p° |Bi+ | 5 d;M;
3P 2+<P 2+P; )> Sp b1t 120_[2]+;
Hence, A;)/Q < e/my/(3v/2) holds under (2.130) and
5< A . (2.131)
3\/5\/ Ry + (15(?5 + 2 dz‘Mz‘>

The proof is concluded by combining (2.129), (2.130) and (2.131). [ |

2.E.3 Upper bound on the step-size v, and number of local iteration
N.

Based on Proposition 2.37 or Proposition 2.41, we now determine an upper bound on
v. to ensure Wa(Il,,Il,4 ) < €/3 in the case N = N1,,7 = v1,,p = pl, where
p > 0,7y > 0,N > 1. The following results hold depending if Assumption 2.7 is
considered. Define

_ 4MP(1+||By "By DY)
N om

Co

I

Co = (M?/2) [M/m + 1/6} Zn:di, C, = Zn:d,-, Cy =£2/(9C,).
=1

=1
Lemma 2.50. Assume Assumption 2.1-Assumption 2.3 and let p,v > 0 and N > 1.
In addition, set p = ply, ¥. = Yeln, N = N1, and € > 0 such that

—C1 + +/ 012 + 4CyCy m
. < A ——. 2.132
2C0 40M2 ( )

Then Wa(Ilp, ) < £/3.
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Proof Let ¢ > 0. By Proposition 2.37, note that W2 (Il,, Oy N.) < £2/9 is satisfied
if
Co? + C17e < Cs.

Since this inequality is satisfied under the choice (2.132), we have Wa(Il,, I, ~_ N.) <

e/3. Eventually, using Proposition 2.21 shows that I, 4 n. = Iy~ _. |

In addition to the assumptions of Lemma 2.50, under Assumption 2.7 we get a more
interesting mixing-time for v. For any € € R% , p € R?, define

4(1 + BB DY? |2

m

_ 9 62 6@ m

Ye = —~ A = A = A Yok
BM[Cp S icpmdi 18CoMF ey di 3\/0,,f i di(diL3 + M4 fm) - A0M?
(2.134)

where § = m/(20M).

Lemma 2.51. Assume Assumption 2.1-Assumption 2.3-Assumption 2.7. Then, for
any N € N*,e e R* ,p € R |y € (0,7:], we have

Wo(llpy,1Lp) < /3,
where v = y1,, p = pl,.
Proof For any € € R, p € R%,~ € (0,7:] applying Proposition 2.41, we get

D — ~1/2
41+ By 'BIDG ) .

W3 (I, 11,) < N ().
where
* - 22 div’f 2 M re3 2
() —;{dw M +M<dz»Li + ) Ay NP1+ 4 )}.

Since v < 7., we have R*(y) < R*(7,) where we denoted 4, = (7¢,...,7:). Thus, we
get Wo(Il, 4, 101,) < e/3. [ |

2.E.4 Discussion

Let p. = pc1, such that Wa(m,_,7(-|D)) < €/3. From Lemma 2.49, we can take
pe = O(e/d) when ¢ — 0 and d — oo. Similarly, under Assumption 2.1-Assumption 2.3,
in the asymptotic regime ¢ — oo and d — oo, we obtain by Lemma 2.50 that 4. =
O(e*/d?), N. = O(d/£?) is enough to ensure that Wo(Il;_,II;_5.) < £/3. On the
other hand, when As_‘sumption 2.7 is additionally assumed, we only need to suppose
5. = O(e2/d?) and N. = O(1). For these step-sizes choices, Theorem 2.48 shows the
number of iterations ¢. = O(d?log(d/c)/c?) ensures that Wg(éx*Pﬁf%N, II,~) <e/3.
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This chapter focuses on Bayesian inference in a federated learning context (FL). While
several distributed MCMC algorithms have been proposed, few consider the specific
limitations of FL such as communication bottlenecks and statistical heterogeneity. Re-
cently, Federated Averaging Langevin Dynamics (FALD) was introduced, which extends
the Federated Averaging algorithm to Bayesian inference. We obtain a novel tight
non-asymptotic upper bound on the Wasserstein distance to the global posterior for
FALD. This bound highlights the effects of statistical heterogeneity, which causes a
drift in the local updates that negatively impacts convergence. We propose a new
algorithm VR-FALD* that uses control variates to correct the client drift. We establish
non-asymptotic bounds showing that VR-FALD* is not affected by statistical heterogen-
eity. Finally, we illustrate our results on several FL. benchmarks for Bayesian inference.

3.1 Introduction

The paradigm of fully centralized machine learning is increasingly at odds with real-
world use cases. Centralized machine learning leads to (a) data processing bottlenecks,
(b) inefficient use of communication resources and (c) risks exposing individuals’ private
data. As storage and computational capacity increases at the agent level, it becomes
increasingly attractive to decentralize computational tasks whenever possible. The term
federated learning (FL) was recently coined to capture some aspects of this grand chal-
lenge (McMahan et al., 2017; Kairouz et al., 2021; Yang et al., 2019; Alistarh et al.,
2017; Horvath et al., 2022; Wang et al., 2021).

Reducing communication costs has been identified as one of the major challenges of
FL (Kairouz et al., 2021). Two main approaches have been proposed to achieve this
goal. In the former, agents perform multiple local optimization steps before sending
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a model update to the central node (McMahan et al., 2017). The latter consists in
compressing the messages exchanged (Alistarh et al., 2017; Horvath et al., 2022). In
this chapter, we focus on the first approach which is widely used in practice. However,
due to statistical heterogeneity, performing multiple steps can hinder convergence, as
model updates target each agent’s local minimizer (Li et al., 2019; Ro et al., 2021). This
results in a tradeoff between communication cost and convergence (Wang et al., 2020b)
and a need for algorithms that mitigate client drift (Karimireddy et al., 2020).

Most of existing FL algorithms minimize a training loss. However, their results do
not provide reliable uncertainty quantification, a strong requirement in safety-critical
applications (Coglianese and Lehr, 2016; Fatima et al., 2017). We address this problem
by considering the federated version of Bayesian inference (Welling and Teh, 2011;
Yurochkin et al., 2019; Chen and Chao, 2021; Izmailov et al., 2021; Wilson et al.,
2021). The objective is to compute the predictive distribution, the highest posterior
density regions (HPD). To this end, it is required to sample the posterior distribution
7 o exp(—U) associated with the model at hand. This target posterior decomposes into
the product of local posteriors 7 = Hie[n} 7. Tt is well known that sampling according to
product distributions (Neiswanger et al., 2014; Hoffman et al., 2013; Minsker et al., 2014;
Wang et al., 2015; Al-Shedivat et al., 2021; Dai et al., 2021) raises serious computational
challenges even when sampling from each local posterior 7* is reasonably easy. We tackle
this question in our contributions which can be summarized as follows.

Contributions.

e We study a random loop version of the FALD algorithm proposed in Deng et al.
(2021), and we establish non-asymptotic upper bounds in Wasserstein distance for
strongly convex potentials U. An analysis of FALD was conducted in (Deng et al.,
2021, Theorem 5.7). However, the proof is plagued by an error; see Section 3.B.1.

e We give matching lower bounds to show that even with full batch gradients, FALD
can be slower than Stochastic Gradient Langevin Dynamics (SGLD) due to client-
drift.

e We propose a new method VR-FALD* that circumvents the shortcomings of FALD.
This algorithm extends the Shifted Local-SVRG of Gorbunov et al. (2021) to the
Bayesian context. It combines Stochastic Variance Reduced Gradient (SVRG)
Langevin Dynamics (LD) (Dubey et al.,, 2016) and adapts the bias reduction
techniques from SCAFFOLD (Karimireddy et al., 2020).

e We derive theoretical guarantees for VR-FALD* which highlight its gradient variance
reduction effect and its ability to deal with data heterogeneity.

e The results are based on a general framework developed in the supplement, that
encompasses a broad family of federated Bayes algorithms based on Langevin
dynamics. This is the first unifying study among existing works on federated
Bayesian inference.

e Finally, in Section 3.4 we illustrate our results using classical FL. benchmarks and
provide a thorough comparison with existing FL. Bayesian methods.
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Related works. Many distributed MCMC algorithms have been proposed in the last
decade, and it is difficult to credit all the references. The first significant contributions
in this direction are the Consensus Monte Carlo (CMC) approach and “embarrass-
ingly paralle]” MCMC algorithms; see, e.g. Neiswanger et al. (2014); Wang and Dunson
(2013); Scott et al. (2016). These methods require running separate MCMC chains on
each client/computational node, with each chain targeting the local posterior 7%. In
the final stage, the algorithms recombine the samples from these chains to generate
samples from the desired global posterior = (Minsker et al., 2014). The local posteriors
may differ significantly from each other due to statistical heterogeneity, data imbalance,
and / or inaccurate approximation. The effectiveness of the final combinations is either
based on stringent assumptions on the local likelihoods (Liu and Ihler, 2014; Nemeth
and Sherlock, 2018; Mesquita et al., 2020; Chittoor and Simeone, 2021) or on “fusion”
algorithms that are exact but scale badly with the dimension; see, e.g. Dai et al. (2021);
De Souza et al. (2022).

Vono et al. (2020); Rendell et al. (2020); Plassier et al. (2021); Vono et al. (2022a)
introduced hierarchical Bayesian models to simulate separate MCMC chains on each
machine. Inspired by the alternating direction method of multipliers (Boyd et al.,
2011), each client is assigned an auxiliary parameter that is conditionally independent
given the server parameter. These authors developed MCMC schemes which alternate
between sampling the clients parameters given the server parameter, and sampling the
server parameter given the clients parameters. However, these approaches require tuning
an additional hyperparameter to control the dispersion of the “local parameters”. This
parameter characterizes the tradeoff between computational tractability and closeness
to the original target distribution.

A competing approach to Federated Averaging, the quantized-SGD scheme, has been
proposed in (Alistarh et al., 2017) for non-Bayesian FL. In this framework, the agents
do not adapt parameters locally, but a random subset of the agents compute at each
iteration a new gradient estimator and transmit a compressed form—see Haddadpour
et al. (2021), among many others, (Bernstein et al., 2018; Tang et al., 2021) for scalar
quantization or (Shlezinger et al., 2020), for vector quantization. These approaches
have been extended to the Bayesian inference context in Lee et al. (2020); Zhang et al.
(2022); Vono et al. (2022b). Performance analysis is given in Vono et al. (2022b); Sun
et al. (2022).

The Federated Gradient Stochastic Langevin Dynamics (FSGLD) algorithm introduced
by El Mekkaoui et al. (2021) extends the distributed-SGLD (DSGLD) (Ahn et al.,
2014) to the FL setting. Specifically, FSGLD operates passing a Markov chain between
computing nodes and using only local data to estimate gradients at each step.

Methods with multiple local steps have been considered by several authors. Deng et al.
(2021) designed FALD as a Bayesian version of FEDAVG. Al-Shedivat et al. (2021)
proposed FEDPA as a generalization of FEDAVG. This method performs several local
steps to infer Gaussian approximations of the clients local parameters. These local
parameters are then reweighed using the estimated local means and covariance matrices
before being aggregated on the central server.

Notation and Convention. The Euclidean norm on R? is denoted by || - ||, and we
set N* = N\ {0}. For n € N*, we refer to {1,...,n} with the notation [n]. We denote
by P2(R%) the set of probability measures on R? with finite 2-moment. For any random
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variable ¢ with values in RY, we define Var(¢) = E[||¢ — E£||?]. Let p, v be in Po(R%),
we define the Wasserstein distance of order 2 by Wa(u,v) = (infeerr(up) Jpayga 17 —

2’ ||2d¢(z, 2'))Y/2, where II(u, v) is the set of transference plans of y and v.

3.2 Algorithm derivation

We aim to sample a target probability density function 7 defined for € R¢ by
m(z) o [[iLy 7 (2) m'(z) oc exp(~U'(x)), (3.1)
where n is the number of clients and the potential U? is a finite sum expressed by
U'(z) = ='U° () + 3050 U (),

with {wi}ie[n] € [O, 1]" and Eie[n} @' = 1. This setting encompasses the Bayesian
federated learning as a particular case, in which 7 stands for the global posterior dis-
tribution and {ﬂ'i}ie[n] are referred to as local posteriors (Wu and Robert, 2017; Dai
et al., 2021). In this case UV is the global negative log-prior, N; denotes the number of
observations of client i, U%J is the negative log-likelihood of the j-th data of client 7,
and w'UY is the fraction of the negative log-prior allocated to this client (Rendell et al.,
2020).

Federated Averaging Langevin Dynamics (FALD). FALD, proposed in Deng et al.
(2021), is an extension to the Bayesian setting of FEDAVG (McMahan et al., 2017).
The updates performed on the ith client define a sequence of local parameters (X}C) kEN
which are transmitted according to some preset schedule (which is deterministic in Deng
et al. (2021) and is random in this work) to a central server. The central server averages
the local parameters to update the global parameter. This global parameter is finally
transmitted back to each client, and is used as a starting point of a new round of local
iterations. Hence, each iteration £ > 0 of FALD can be decomposed into two steps:

(1) Local iteration on each client. Each client i performs one step of the Langevin
Monte Carlo algorithm (Grenander and Miller, 1994; Roberts and Tweedie, 1996) with
a stochastic gradient associated with its local potential:

1 = @Uli—i-l(Xli)v
Xir1 = X = VGhi1 + V27 Zg 115

where v > 0 and for = € R, @U};_H(x) is an unbiased estimator of VU*(z) given by
(see Welling and Teh (2011) — general updates are considered in the supplement)

(3.2)

VUL =@ VU + (Ni/bs) 35 si,, VU, (3.3)

where (5% )ren+ is a sequence of i.i.d. uniform random subsets of [N;] of cardinal number
bi. Moreover, (Zi)ren+, i € [n] are sequence of i.i.d Gaussian random variables which
might be correlated across the agents and the central server. More precisely, given
independent sequences, (Z})en+, i € [n] and (Zg)ken+ of ii.d. d-dimensional standard
Gaussian random variables, for 7 € [O, 1] we set

Zi =T Zy + N1 -7 ZL. (3.4)
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(2) A local update. With probability p. € (0, 1], the ith client communicates its
fr1s
broadcasts the average Xy = n! >

parameter X resulting from the first step, to the central server which in turns

icln] X}C 41- Finally, each client updates its para-

meter as X,i 41 = Xk+1. When no communication is performed, each client updates its
i _ i
parameter as X; | = X} ;.

The local recursions defined by FALD can be written for i € [n] and k > 0 as

Xipr = (1= Ber)) Xj g + (Bra1/n) X jep) Xions (3.5)
where (By)ken+ is a sequence of i.i.d. Bernoulli random variables with parameter p.

For k > 1, denote by ,u,(]) the distribution of the average parameter

X = (1/n) i Xi- (3.6)
Non-asymptotic Wasserstein bounds between ul(j) and the target distribution 7 are

established in Theorem 3.1 under the following assumptions.

A1. For anyi € [n], U' is continuously differentiable. In addition, there exist m, L > 0
such that for any i € [n], the function U' is L-smooth and m-strongly convez, i.e., for
any x, ' € RY,

(m/2)||z’ — z|* S U'(2') = U'(z) = (VU'(2),2" — 2) < (L/2)||]2" — ||
A 2. For any i € [n], ({@Ui}ie[n})keN are i.i.d. unbiased estimates of {VU"};cpy). In
addition, there exists L > 0 such that for any x,x’ € R? we have

E[IVUi@) - VUL@)I?] < £’ - 3.

In the minibatch scenario (3.3), A2 is satisfied if for i € [n], j € [IV;] there exists L; >0
such that for any z, 2’ € R?, |[VU (2') — VU (2)|| < Li||lz" — z|.
Finally, we also consider the following optional smoothness condition on the poten-

tials {Ui}ie[n]' This additional assumption, often satisfied in applications have been
considered e.g. in Durmus and Moulines (2019); Dalalyan and Karagulyan (2019).

HX 1. There exists L > 0, such that for any i € [n], the function U* is three times
continuously differentiable and for any x, 2’ € RY, |V2U(x) — V2U (2| < L||z — 2'|].

We introduce some key quantities appearing in the theoretical derivations below. Denote
by x4 the minimizer of Zie[n] U* which exists and is unique under A1l. We define

Vi = Jpa Var{n™ '3, VU ()} (dz),

Il (3.7)
V* = Var{n_lzie[n] VU{ (.’E*)},

the average of the stochastic gradient variance under the stationary distribution 7 and
at the minimum z,, respectively. Finally, the statistical heterogeneity between the
clients is quantified by (see, e.g. Stich et al. (2018))

H=n""3 i VU (20) 2.
< by if

For ease of presentation, for two sequences (a)reny and (bg)ren we write ap <
there exists C' > 0 only depending on the constants introduced in A1, A2 and HX1
such that ay < Cby, for any k € N.
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Theorem 3.1 (Simplified). Assume A1, A2 and suppose for any i € [n], X} = Xo.
Then, there exist ¥ > 0, such that for any v € (O,"y], k€N, Xg~ pg € Po(RY), we
have

W3 7 (1D)) S (1= ym/8)* 1(u0) + -3 + Vi

(1 - d 1-7)1—-n"")d
et 2pc){H+pCV*+}+’Y( N —n7)d
P n Pe

where J = d, e = 1 and (py) < o0 is a function of the initial condition py. If HX1
holds, then e =2 and J = d(1+d/n).

Elements of proof are provided in Section 3.3; a precise statement is given in The-
orem 3.22 with detailed proofs. Note the step-size upper bound # is proportional to p..
In the single user case (n = p. = 7 = 1), we recover up to numerical constants the results
stated in Durmus and Moulines (2019); Dalalyan and Karagulyan (2019). Note that,
under HX1 the leading term in the step-size «y is proportional to the stochastic gradient
variance V., in accordance with the bounds obtained for SGLD by e.g. , Dalalyan and
Karagulyan (2019). More discussions on these bounds are postponed after the statement
of Theorem 3.3.

Lower bounding the effect of heterogeneity. Similar to FEDAVG, the convergence
of FALD is impaired by data heterogeneity. Multiple local SGLD steps described in (3.2)
cause X! to target the local posteriors 7' o exp(U’). We now provide lower bound
on the Wasserstein distance between the distribution of the samples generated by FALD
and the target distribution 7 which is proportional to the heterogeneity v2H.

Proposition 3.2. There exist 4 > 0, potentials {U'}7_; on R satisfying A1, HX1 and
an instance of FALD satisfying A2 such that for any v € (O, ’ﬂ , we have

lim inf W3 (", 7(-[D)) 2 7°H.
—00

This proposition extends Karimireddy et al. (2020, Theorem II) to the Bayesian context
and underlines the same limitation as FEDAVG. To circumvent this, various bias reduc-
tion techniques have been suggested in the stochastic optimization literature (Horvath
et al., 2022; Gorbunov et al., 2021). In the next section, we adapt similar mechanisms
to derive an alternative to FALD satisfying better finite bounds.

FALD with control variates and bias reduction. To mitigate the impact of local
stochastic gradients, we adapt variance-reduction techniques (Wang et al., 2013; Kovalev
et al., 2020) and bias-reduction techniques (Horvath et al., 2022; Gorbunov et al., 2021).
This new approach introduces a different recursion rule in step (1) of FALD, while keeping
step (2) unchanged. The local update rule is based on a reference point Y; € R?
common to all clients. This common point is updated with probability g. € (0, 1] and
allows the inclusion of a local shift Cj to recenter the local gradients. This mechanism
eliminates the “infamous non-stationarity of the local methods” (paraphrasing Gorbunov
et al. (2021)) and therefore avoids extra bias. At each iteration k, the first step of the
VR-FALD* algorithm is divided into two parts:
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(1.1) Update of the reference parameter and control variate. The variance re-
duced gradient requires a sporadic computation of the full local gradient. Let (B,lf/) EEN*
be a sequence of i.i.d. Bernoulli random variables with parameter g. € (0, 1}. If
B}C/_H = 1, then thg client reference point Yj is updated: the clients transmit their
local parameter {X }ic[, to the central server which computes their average Y41 =
n1 Zie[n] X}; which is sent back to the clients. The clients then compute the full
gradients {VU"(Yi41)}iepn) and transmit them to the central server which updates the
shift Cpyq = n~t Yicn VU “(Ygs1). To summarize, the reference point and the shift
are updated according to

Vi1 =01~ BZH)YI@ + (Bfﬂ/n) Zie[n] X

y Y i (3.8)
Cra1= (1= By )Ch + (Byy1 /1) X icn) VU (Yig1)-

(1.2) Local iteration on each client. This step is similar to FALD, upon replacing
the local updates (2) by the variance-reduced version

Gip1 = VUi (X)) = VUL (Vi) + Ch, (3.9)

The VR-FALD* analysis relies on the following additional assumption.

A 3. There exists w > 0 such that for any i € [n], k € N* and z,y € RY, the following
nequality holds

E

|VUi(@) - vUiw) - vUi(@) +VUi<y>H2] < wlla =yl

Under Al and A2, A3 is satisfied with w = 2L% + 212 However, using this result leads
to some discrepancy in previous existing analysis, since w = 0 in the non-stochastic
gradient case while 2L2 4+ 212 # 0 in general. Finally, in the minibatch scenario (3.3),
if {VU"};¢[n,] are Li-Lipschitz, then A3 holds with w = max;e,{N;L?/b;}; see Re-
mark 3.17.

For k > 0, denote by /,LIEVR*”Y) the distribution of the average X = n~! Zie[n] X,i where

Xj, is defined as in (3.5) with X} given in (3.10). With these notations, we obtain the
following theoretical guarantee on VR-FALD*.

Theorem 3.3 (Simplified). Assume A1, A2, A3 and suppose fori € [n], X} =Yy =
Xo. Then, there exist 7V®* > 0, such that for any q. < pe, v € (0,7V®], k € N,
Xo ~ po € P2(RY), we have

e 2
VRx, v vy v4d
WE G ™7 ) S (0= ) 1Y o) 0
1—7)(1=n"1YHd 2(1 — pe d
LA =n)@=nT)d % QP){,YV*JF}’
Dc Pe n

where J = d, e = 1, V, is defined in (3.7), 1IY"™*(ug) < oo is a function of the initial
condition po. If HX1 holds, then e =2 and J = d(1+d/n).
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The proof is postponed to Section 3.B.2. Compared to Theorem 3.1, the client-drift
term does no longer appear, highlighting the advantage of VR-FALD* in dealing with
data heterogeneity between agents.

Further, the variance of the stochastic gradients of VR-FALD* only appear in the factor
7v2w. This result agrees with Chatterji et al. (2018) for SVRG-LD, which might be
seen as a particular instance of VR-FALD* with n = 1, p. = 1. Nevertheless, a close
inspection of the proof in Chatterji et al. (2018) reveals a gap—see Remark 3.33, which
is corrected in the proof of Theorem 3.32.

Complexity and Communication costs. We now discuss the complexity and com-
munication costs of FALD and VR-FALD*. We study two extreme cases: (A) the local
computation cost is negligible and only the communication cost matters, which is typ-
ical in cross-device applications. (B) the communication cost is negligible and only the
local computation cost (complexity) matters. More general scenarios are discussed in
the supplement Section 3.D. In this discussion, it is assumed that HX1 is satisfied and
7 = 1. In both cases, for a target precision € > 0, we optimize the hyperparameters

(number of iterations K, learning rate ., probability of communication p. ) to ensure

Wg(,u%),ﬂ') < € (FALD) or WQ(M&XR*”Y),W) < € (VR-FALD*). The values of the parameters

d, m, w, H, J, V; and V, are reported in Table 3.5.

(Scenario A) The objective is to minimize the number of communications pecKc. As
~ can be arbitrarily small, we set K, = vy~ 1), Dee = peY, Where A¢, pe > 0. Hence,
the optimization problem becomes min{\.p.} subject to (o) exp(—Aem/8) + p-2(H +
d/b) < €. As e | 0", the minimum number of communications DecKe scales as
O(e~'v/H + n=1d) for FALD and O(e~*v/n—1d) for VR-FALD*.

(Scenario B) We take p. = 1 and seek to minimize the total number of iterations K.
As e | 01, K, scales as O(e 2(Vy + ev/n=1J)) for FALD and O(e 'v/n=1J + n—Lwd) for
VR-FALD*.

In Figures 3.1a-3.1b, we display the optimal number of communications p; K. as a
function of e (left panels Figures 3.1a-3.1b). We also exhibit the physical time which
corresponds to the time of the Langevin diffusion. The total physical times — A for (A)
and v K, for (B) — are displayed in the middle panels Figures 3.1a-3.1b. Finally, the right
panels Figures 3.1a-3.1b represent the average physical time between two consecutive
communications — p_ ! for (A) and «y/pc. for (B). Note that, the total physical time is
(almost) the same for FALD, VR-FALD*, in scenarios (A) and (B). VR-FALD* significantly
reduces the number of communications p K¢ in scenario (A) (top panel) and number
of rounds K, (B) (bottom panel) w.r.t. FALD.

Figures 3.1a-3.1b also illustrate that the “embarrassingly parallel” approach of (Neiswanger
et al., 2014) is far from optimal. Indeed, our results show the importance of making
multiple interactions (rather than a single consensus step) and using correlated noises
between clients. In scenario (A), the optimal number of communications scales inversely
proportional to 1/e which improve the bounds O(1/€?) derived in Deng et al. (2021,
Section 5.3.1). For scenario (B), FALD has the same complexity as QLSD Vono et al.
(2022b) under similar assumptions; see also Sun et al. (2022). VR-FALD* has the lowest
complexity (O(1/€)) among the Bayesian Federated algorithms reported earlier. This
bound matches the one obtained by Chatterji et al. (2018) for the fully centralized
SVRG-LD (corresponding to n = 1).
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(Scenario A) Numerical results optimizing pc . K.
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Figure 3.1 — Complexity and Communication costs.

3.3 Proofs outline

We briefly outline the main steps of the proof of Theorems 3.1 and 3.3. Details of
the proofs can be found in the supplementary chapter, where we analyze the two al-
gorithms under a common unifying framework. For both algorithms, the local paramet-
ers (X} )iem), k > 0, are given by (3.5), where (X,i)ie[n] stands for local iterations, which
are given in (3.2) for FALD and (3.9) for VR-FALD*. Then, we bound the Wasserstein
distance between the target distribution 7 and the distribution of Xj, = n=! " ] X!

which is denoted by (,u,(:))keN. The Wasserstein distance is defined as the infimum over

the coupling. We use below the synchronous coupling construction used in (Durmus and
Moulines, 2019; Dalalyan and Karagulyan, 2019) for the analysis of Stochastic Gradient
Langevin algorithms.

i€[n

Synchronous coupling. We first construct a Brownian motion (Wi)i>0 by Wy =
VTWet /(1 =7)/n 3 e W:, starting from b+ 1 independent d-dimensional standard

Brownian motions (W:)¢>q, i € [n], and (V~\/t)t29. Second, we define the following stand-

ard Gaussian random variables Zli+1 = 7_1/2(Wfk_~_1)7 —W%W), Zjr1 = 7_1/2(\/~V(k_~_1)7 —

Wy, ), and we set Z}, as in (3.4). For k € N, it holds that V7 2ieln] Zj oy = V(W 1)y —
Wi ). Finally, we consider (X;);>0 the strong solution of the Langevin diffusion associ-
ated with 7 and starting from Xo ~ 7 (see (3.1)) and driven by (W¢)>o:

dX; = —(1/n) Ysepy VU (Xe) dt + /2/n dW,. (3.11)
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Under Al and A2, 7 is the unique stationary distribution for the Langevin diffusion,

hence the distribution of X; is 7 for all ¢ > 0; see e.g. Roberts and Tweedie (1996).

)

Hence, (X}, Xy,) defines a coupling between j,” and m, thus for any k € N we get

WE (), m) < B [[| X = X

The rest of the proof then consists in bounding the right-hand side. It is worth noting
that in contrast to most analysis on Langevin dynamics, we consider a Langevin diffusion
(3.11) we scale the gradient term by n~! and the Brownian motion by n~1/2. This
scaling is adapted to the averaging procedure defining (Xj)ren.

Decomposition of E[|| Xy — Xg,||?]. Denote by Fj, the filtration generated by Xo, (Wy) 1<~
and ({X/}™ | )i<k. Using the definition (3.6) of (Xj)ren combined with A1, we show in
Proposition 3.5 that for any v < 1

7 ([ Xy — Xesa 2] S (1= 1m/2) Xy = X2 + By + 92 + Vi, (3.12)

where V, = n=tY |Xi — X||* and

S = VarTs (01 Y1, G,
By, =y [E L2 + B (152,

with Iy = ' Y ST (VU (XS) = VU (X, )ds.
Bounding Ej;. The term Ej accounts for the difference between the diffusion and its

discretization; the bound is the same for FALD and VR-FALD*. By adapting Durmus and
Moulines (2019, Lemma 21), we establish in Lemma 3.8 that

E [Ex] < v%d/n. (3.13)
Under HX1, for v < 1 the bound can be sharpened in
E [Ex] £ (v*d/n)(1 + d/n). (3.14)

The right-hand side of (3.13) has a higher order with respect to the step-size v in
comparison to (3.14). This step is the reason why we consider the more restrictive as-
sumption HX1, which leads to different guarantees depending on whether this condition
is met or not.

Bounding Si. Sj is the conditional variance of the stochastic gradient. This is the
main difference between the two algorithms. For FALD, we show in Lemma 3.21 that

B[Sk S B [IXe = Xes 2] + B [Vi] + Vi (3.15)

On the other hand, under A3, we establish in Lemma 3.29 that for VR-FALD*, it holds
that

ywd

E[S] S WE [I1Xk = X4 |I?] + wE [Vi] +
k—1

+wge Y (1 - qo)E [|;le . Xl\ﬂ .
=0
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Compared to the inequality (3.15), which holds for FALD, the variance term V, for
VR-FALD* is replaced by ywd/ng., which can be made arbitrarily small with v — 0.
Note that this term is inversely proportional to the update probability . of the control
variate. Interestingly, the term Sy vanishes when w = 0, i.e., when each client uses its
full local gradient at each iteration.

Bounding Vi. We show in Lemma 3.20 (FALD) and Lemma 3.28 (VR-FALD*), there
exist ag, a1 > 0 satisfying

E[Vi] < (1 —ym/8)ag + a;.
To establish this result, we consider the sequence (fi)ren With general term given by
fo=Vie+ Ozddz + CKUU,%,

where ag,a, > 0 are given in (3.101); d = || X — z4|| denotes the distance between
the average parameter X and the minimizer z, of the global potential U; o5 = 0 for
FALD and of = n~' 30,01,  EP*[|IVUL(Y2) — VU (2,)||?] for VR-FALD* with Y} defined in
(3.8). The weights ag4, a, are tailored to prove a contraction; more precisely, we show
the existence of as > 0 whose expression is given in Lemma 3.14, such that

fert < (L= m/4)fi +72as +2vd (1= 7) (1= n 7). (3.16)

An immediate induction combines with Vj, < fi yields a first bound for E[Vj] of the
form (3.3) with a; of order . In a final step Lemma 3.12, we refine this bound to obtain
a term aj of order v2.

Gathering all the bounds. The proof is concluded by plugging the upper bounds
derived for Ej, Sk, Vi into (3.12).

3.4 Numerical experiments

To illustrate our findings, we perform three numerical experiments on both synthetic
toy-examples and real datasets. We compare FALD, VR-FALD* with Bayesian federated
learning benchmarks: DG-LMC (Plassier et al., 2021), the Federated Stochastic Langevin
Dynamics FSGLD (EI Mekkaoui et al., 2021), the Quantized Langevin Stochastic Dy-
namic (QLSD) and its variance-reduced version QLSDT (Vono et al., 2022b). We also in-
clude in our benchmark state of the art (centralized MCMC) algorithms: HMC (Brooks
et al., 2011), the Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh,
2011) and the preconditioned SGLD (pSGLD) (Li et al., 2016).

Gaussian posterior. We consider n = 100 clients associated to local Gaussian poten-
tials with mean {1;};cp,) and covariance {E;}icqy), ie., Ul(z) = (1/2)(z — i) T2 (2 —
w;). For different values of the hyperparameters (pc,v,7), we run 100 chains with
ki = 107 iterations: (Xk)l/,zl:1 and discard 10% of the samples (more details are re-
ported in Section 3.E.1). For each chain, we estimate the posterior variance o2 =
[ ||z — z,||*dw(z|D) using FALD and VR-FALD*, where 7(-|D) o< exp(— 2 icln] U?) and

T, = arg max,cga (/D). We compute a Monte-Carlo estimates (over 10? independent
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PROBABILITY p. | pe=1/5 pe = 1/10 pe =1/20
STEPSIZE 7y %pc;}/ %pc:)/ %pc:)/ %pcfy %pc:}/ Tlopc:y %pcfy %pc;/ %pcfy
FALD (7 = 0) 2.5E+01 9.5E-01 3.9E-02 | 3.6E+01 1.1E+00 8.2E-02 | 4.2E+01 2.0E400 1.1E-01
VR-FALD* (7 = 0) | 4.8E-02 2.6E-02 14E-02 | 5.0E-02 4.9E-02 3.7E-02 | 9.8E-02 5.3E-02 3.9E-02
VR-FALD* (7 = 1) | 2.8E-02 2.0E-02 1.3E-02 | 4.1E-02 3.7E-02 1.4E-02 | 8.6E-02 4.3E-02 2.1E-02

Table 3.1 — Asymptotic bias in function of 7, p. and .
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Figure 3.2 — MSE comparison with p. = 1/5 and v = 7/3.

replications) of the Mean Squared Error (MSE) given by {(k; — ko)~! le?:koﬂ |1 Xk —
2, ||? — 02}? where k; is the total number of samples and kg is the burn-in period. The
values of the hyperparameters are reported in Section 3.E.1. From Table 3.1, VR-FALD*
always outperforms FALD for any choices of p.,y. This illustrates the impact of the
heterogeneity and supports the theoretical findings given in Theorems 3.1 and 3.3. Fur-
thermore, the asymptotic bias for VR-FALD* improves when 7 = 1 as derived in the
theoretical analysis.

Bayesian Logistic Regression. We assess the performance of FALD and VR-FALD*
using calibration metrics—the expected calibration error (ECE), the Brier score (BS), and
the negative log likelihood (nNLL); see Guo et al. (2017)—and predictive accuracy. We
consider Bayesian logistic regression applied to the Titanic dataset, which consists of p =
2 classes with NV = 2201 samples in dimension d = 4. This dataset is allocated between
n = 10 clients in a very heterogeneous manner, as displayed in Figure 3.3. We use an
isotropic Gaussian prior with a mean of zero and variance 1. We also report the total
variation distance between the predictive distribution obtained for FALD and VR-FALD*
to the predictive distribution approximated by 100 long runs of Langevin Stochastic
Dynamics (LSD). These metrics are evaluated on a test data sets of 441 samples, and
the mean and standard deviation are reported in Table 3.2. Moreover, we illustrate the
quality improvement of VR-FALD* over FALD in Figure 3.4. We compared the Wasserstein
distance using POT (Flamary et al., 2021) between the empirical distributions generated
by FALD, VR-FALD* to the estimated target distribution. Based on the same samples,
we compute the relative highest posterior density (HPD) error; see Section 3.E.2 for
details.
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METHOD  Accuracy Agreement 104 x TV 10xECE 10xBS 10xnNLL
LSD 724+01 999 =£0.1 5.53 £2.00 1.20+0.01 3.444+0.00 5.30 % 0.00
FALD 770+ 08 91.3£09 533.32£813 1.06£0.09 337+0.01 5.19 % 0.00

VR-FALD* 749 +0.1 93.6+0.1 287.81+2.04 1.00£0.05 3.51+0.00 5.35=+0.00

Table 3.2 — Bayesian Logistic Regression on Titanic.
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Figure 3.3 — Logistic regression — dataset distribution (Log Scale) and negative log-
posterior (right).
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Figure 3.4 — Logistic regression — HPD relative error (left) and Wasserstein distance
(right).

Bayesian Neural Network: MNIST. To illustrate the behavior of FALD and VR-FALD*
in a non-convex setting, we perform Bayesian Neural Network (BNN) inference on the
MNIST dataset (Deng, 2012). To this end, we distribute the dataset to n = 20 clients as
follows: 80% of the data labeled y € {0,...,9} are equally allocated to clients i =y + 1
and ¢ = y + 10; the remaining data are evenly distributed among the n clients. The
likelihood of the observations is computed using LeNet5 neural network (LeCun et al.,
1998) with an isotropic Gaussian prior. Finally, we implement FALD and its variants
with p. = 1/n and ¢. = N,,/Ny, where N,, is the batch size used in the experiments
and Ny is the total number of data. All standard deviations and the values of the other
parameters are reported in Section 3.E.3.

In Table 3.3 we can observe that the best results are obtained by VR-FALD*: it achieves
similar performance to the (fully centralized) SGLD and pSGLD. Alleviating client drift
using control variates is still effective even in the highly non-convex BNN setting.



CHAPTER 3. FALD: FEDERATED AVERAGING LANGEVIN DYNAMICS 108

METHOD SGLD pSGLD FALD VR-FALD* FSGLD

Accuracy 99.1 99.2 99.1 99.2 98.5
103xECE  6.88 21.6 4.07 4.34 6.34
10%xBS 1.66 1.45 1.47 1.39 2.39
10?xnNLL 3.53 4.24 3.06 3.43 4.87

Table 3.3 — Performance of Bayesian FL algorithms on MNIST.

Bayesian Neural Network: CIFAR10. We consider the CIFAR10 dataset (K-
izhevsky et al., 2009) and the ResNet-20 model (He et al.; 2016). We split the data
across 20 clients, similar to the previous example. Denote by Y = {y1,...,y10} the set
of labels. Then 80% of the data associated with a label y; € Y, j € [10], is distributed
among clients j and j+ 10, while the rest of the data is evenly distributed among clients.
We assess the performance of FALD and VR-FALD* against HMC, Deep Ensemble, and
SGLD. We follow Izmailov et al. (2021) by computing the accuracy, agreement, and
total deviation distance between the predictive distribution. All of these quantities are
defined in the Appendix; see Section 3.E.4. We also report the calibration results and
all resulting scores in Table 3.4; the results for HMC and SGLD are from Izmailov et al.
(2021, Table 6). Details on the implementation and choice of hyperparameters can be
found in Section 3.E.4. We can see that VR-FALD* gives very similar results to SGLD
and performs favorably in terms of agreement. Finally, FALD and VR-FALD* outperform
Deep Ensembles.

Mernop HMC SGD Deep ENs. SGLD FALD VR-FALD*

Accuracy  89.6 91.57 91.68 89.96 92.54  92.03
Agreement 94.0 90.99 91.03 92.43 91.53 91.12

10x TV 0.74 1.45 1.49 1.03 1.42 1.39
102 XECE 5.9 4.71 5.44 4.41 3.79 3.26
10xBS 1.4 1.69 1.45 1.53 1.16 1.20
10XnNLL 3.07 3.35 3.81 3.15 2.75 2.63

Table 3.4 — Performance of Bayesian FL algo. on CIFARI10.

3.5 Conclusion

In this work, we propose VR-FALD* which extends the FALD Deng et al. (2021) algorithm
by introducing control variates to mitigate client drift and reducing stochastic gradient
variance. We develop a unifying framework for Bayesian FL combining ideas from
Langevin Monte Carlo and Federated Averaging schemes. The theory covers a wide
range of local stochastic gradient algorithms; connections can even be made with the
global consensus Monte Carlo method (Rendell et al., 2020; Vono et al., 2022a). Using
this theoretical framework, we develop non-asymptotic bounds for the algorithms FALD
and VR-FALD*, and discuss the choice of hyperparameters (learning rate, communication
probability, control variate update probability) to obtain optimal tradeoffs. Our analysis
allows to correct some errors in the results obtained previously for FALD. The results we
obtain on both toy examples and applications to BNNs clearly show the importance of
variance reduction and heterogeneity, even when the potential is non-convex.
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Theoretical road map. The derivations leading to Theorem 3.1 and Theorem 3.3
are split on two sections:

e Section 3.A consists of general results under mild assumptions. In this section,
we derive an upper bound on Vj — see Section 3.A.3, and provide a Wasserstein
upper bound holding for numerous federated averaging Langevin schemes in The-
orem 3.10.

e Section 3.B is subdivided between the results on FALD (Section 3.B.1) and VR-FALD*
(Section 3.B.2). In both subsections, we prove intermediate results showing that
results of Section 3.A.3 hold, and finally we apply Theorem 3.10 to provide the
final theoretical guarantees on FALD and VR-FALD*.

3.A General scheme and technical results

Problem statement. We consider a general recursion that includes both FALD and
VR-FALD*. This general scheme is based on i.i.d. random variables { }ren taking values
in a measurable space (E, &) and whose joint distribution is denoted by v¢. Moreover,
we introduce a family of measurable functions {SZ T REXxY2x C2XxE — Rd, yi .
RIXY2XxE—Y,C :RIXY xC2xE— C}2,, where (Y,)) and (C,C) are measurable
spaces. For each i € [n], the functions (G, Y%, €%) correspond to the update of the local
parameter and control variate by the ith agent. To define the global control variate
update, we consider the function D : Y x C**! x (RY)"*! x E — Y x C. Starting
from {Gh)y, {Xg}, € (RN, (Co, {CiFy) € €, (Yo, {YiYiy) € Y™ and set
Xog=n""! > X{. For each k € N the random variables are updated according to

b = 9 (XL Y0, 0L O ) (3.17)
Xipr = X = 1Ghn + V2 (VI Zia +VT=7 20 ),
Yig=Y (Xliaykiaykagk+1> ; (3.18)
C/i‘-}—l = el (Xlzc’ Yk?a Clz;a Ck:a gk—l-l) P (319)
Xli—l—l = Bri1 Z XZ;H + (1 - Bk+1)X£+1, (3.20)
J=1
(Yit1, Cr1) = DYk, Cr, {CL 1 {XE Y1, €, (3.21)

where 7 € [0, 1}; v € (0,'7] is the step-size; {(Bk,@,zk,Z,}:,...,Zg) : ke N}isa
set of independent sequences of i.i.d. random variables such that for any k& € N* By,
is a Bernoulli random variable with parameter p. € (0, 1]; and (Zk, Z,%, ..., Z}) are
d-dimensional standard Gaussian random variables. Recall that (§;)>1 is a set of i.i.d.
random variables distributed according to v¢ such that Assumption 3.4 holds to ensure
that the combination of functions {G'};c(, provides an unbiased estimate of VU.

In iteration k > 0, the local parameter of the ith client is denoted by X?, and G}:C stands
for its local gradient. If By = 1 (communication round), the local parameter X,i is set
to the value of the global server parameter X. If By =0, X,i is set to the local update
X’}C Moreover, we write Yki the reference point used to compute the control variate C,i.
The first step (3.17) corresponds to the computation of a stochastic estimate of VU®
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by the ith client. Then, the client updates the reference point Yki (3.18) at which the
local control variate is computed. The client also update its own local control variate
C,i in (3.19). If Bpyq = 1, then the server averages the parameter of each client, and
broadcasts this average. If Bpy1 = 0, then each client keeps X,i 41 as its new local
parameter. Finally, the server updates the reference point Y3 and the global control
variate C according to (3.21). Denote the filtration {F }ren defined for any k > 0, by

Algorithm 3.2 Stochastic Averaging Langevin Dynamics - FALD and its variants

Input: initial vectors (Xé),-e[n], noise parameter 7 € [0, 1], number of communica-
tion rounds K, probability p. € (0, 1] of communication, probability ¢. € [0, 1] to
update the control variates, and step-size v
Initialize: Yy = (1/n) Y1, X¢ and Co = (1/n)VU (Yy)
for k=0to K —1do
Draw Byy1 ~ B(pe), L1 ~ N (0g,14) // On every client
for i =1ton do // In parallel on the n clients
Draw &, | ~ v, Z} oy~ N(0g,1q)
Compute G, following (3.17)
Set X,iﬂ = X} — G + 2y (\/T/n Zpr + VI — TZ£+1)
if Byy1 =1 then

Broadcast X,iﬂ to the server // Communication round
else

Update X; | « X // Local step
if Byy1 =1 then // Control variate update round

Broadcast the necessary information to the server in order to update

(Ykza C]Zga Yka Ck)

else
Set (YkZ_H, CIZH—I’ Yit1, Ck—i—l) — (Ykl, C]i, Y, Ck) // No update
if Byy1 =1 then // During communication round
Update then broadcast Xj4q < (1/n) > 1, X',fH_I // On the central

server

Update the local parameter X}i+1 — Xp11 // On every client
if B, =1 then // During control variate update round
If needed, update then broadcast Yy + (1/n) > 1 | X} // On the

central server

'Update(}Z,C%)lhﬁngthelxwanumens(Xé,Yﬁ,}%,Y%+1,C%) // On every
client

Update then broadcast Cqy < (1/n) > 7, Chy // On the central
server
Output: samples { X;}se(k]: B,=1}-

fk =0 XOa (Blaclvyz’Zl7§la (CZZ7 ;7X;7X;7}/227Z;> 1 > (322)
i=1,..,n
0<i<k
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and consider the conditional expectation and variance denoted by E7*, Var” k(o) =
E7%[||- — EZ*[]||?] respectively. For k € N, we introduce X} the average of the local
parameters given by

1o .
X, = — v )
b= Z X}, (3.23)
=1
and we set "
1 .
Vi= D IXG - X (3:2)
i=1

Finally, to control the distance between the average parameter X and the minimizer
zy = argmin U, we consider the parameter dj, which for k£ > 0 is given by

dr, = || Xk — o« (3.25)

For each k¥ € N and v € (0,"7], we denote by ,u,(j) the distribution of X} defined
by (3.23). To ensure the quality of the samples generated by Algorithm 3.2, we con-
trol the Wasserstein distance Wa(7(-|D), u,(:)). Recall that the Wasserstein distance
is the infimum of E[||Xy, — Xj||?] over all couplings (Xi,, X)) such that X, is dis-
tributed according to m(:|D). Thus, to study the convergence of (MS))kzeNy we intro-
duce a synchronous coupling (Xg, Xg)k>0 with values in (R%)? between (:|D) and
,u,(g), starting from the couple (X, Xo) distributed according to ¢ € Pa(R? x RY),
i.e., ((RY,.) = ,u(()w € P2(R%) and ¢(-,R%) = 7n(-|D). Since logn(-|D) is supposed
m-strongly concave by A1, note that m(-|D) belongs in P»(R?). Based on independ-
ent d-dimensional standard Brownian motions ({W;, {Wi}" ,})i>0, we define W; =
VW, + /(1 —71)/n 30 Wi, For k € N*, we introduce Z; = v~ 1/2(Wp,, — W(k,l)v),

and for i € [n], we consider Z}, = 7_1/2(V~V§W - Wék_l)v). Therefore, for all k € N* we

can verify that Wy, — W_1), = T2+ /(L= 1)/n 3, Z,i Moreover, consider
(X¢)¢>0 the strong solution of the Langevin stochastic differential equation (SDE) given
by

1 2
dXe = VU (X;) dt + \/;dwt. (3.26)

The Langevin diffusion defines a Markov semigroup (P,);>o satisfying 7 (-|D) P; = n(:|D)
for any ¢ > 0, see for example Roberts and Tweedie (1996, Theorem 2.1). Note that X;

and X}, are distributed according to 7(-|D) and #,(J), respectively. From the definition

of the Wasserstein distance of order 2 it follows that
Wo(r(1D). 1) < E [1Xe — X, 12]"
(w(1D), 1) < B [Xey — Xell?]

So the proof consists mainly of upper bounding the squared norm |[|Xp, — X||, from
which we derive an explicit bound on the Wasserstein distance by the previous inequal-

ity.

First upper bound on E7*[[[X( 1), — Xi4+1/*].  Under mild assumptions, we derive
a first bound in Proposition 3.5 to control ||X(x41)y — Xi+1]|? based on [ Xpy — X |?,
(1/n)>°% | Gi and Vi. This decomposition highlights the different approximations
brought by the discretization of the Langevin diffusion (3.26) between the averaged



CHAPTER 3. FALD: FEDERATED AVERAGING LANGEVIN DYNAMICS 112

parameter (Xj)ien defined in (3.23) and {Xgy }xen. Recall that z, = arg min U and for
all kK € N, consider I the approximation error defined by

(k+1) 3 _
I = /zw (VU(XS) - VU(X,W)> ds. (3.27)

For 4 > 0 small enough and k € N, for all v € (O, 'ﬂ and under the following assumption
()

Assumption 3.4 we control the distance between the target distribution 7(-|D) and " .

Assumption 3.4. For any {(z%,y%,c")}", € R3¢, we have

E:;/ES ({(xj,yj,cj)}j: >du5 &) = ZVUZ

Proposition 3.5. Assume A1, Assumption 5./ hold and let v < 2(3L)~'. Then, for
any k € N, we have

217
7 [ Xy = Xea ] < [1=m (1= 39L)] X4y = Xl + 9 (m + 37L2> Vi

2 ||mF 2 F 2 SR B
+<WHEk[Ik]H +3Ek[HIkH]>+'y Var’ n;Gk ,
where Vi, Fi, dy; are defined in (3.24), (3.22) and (3.25).

Proof Let kbein Nand v in (0, 2(3L)_1} . Recall the stochastic processes Xg11, X(441)y
are defined in (3.23) and (3.26) by

X (k17 = Koy = YVO Kay) = T+ /270 (Wek1yy = Wis )

Xis1= 5 2y [Xli — Gy +V2y (\/ T/n Zyr + \/ﬁZ;iJrl)] ;

with Ij defined in (3.27). Substracting the two above equations gives
(k+1)y
Xihr1)y = X1 = Xiy — Xp) — / s)ds — Z e
kv

Taking the conditional expectation of the above equation and developing the squared
norm, we obtain

E7* [IX 1y = X I?] = E™* [ Xy = Xill?] ~27 <><zw = Xi, VU (%) = VU(X1))

—9 <Xm Xi, B [In] + VU (Xy) — ZEH [ Z}>

+ET* ||| Iy + VT (Xey) — 7ZG@ . (3.28)
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Using that for all a > 0, (a,b) € (R%)?, 2(a,b) < alla||®> + (1/a)|[b||> combined with
Assumption 3.4, for any € > 0 we have

—2<Xm X, B7* (1] + VU (Xy) - 'VZEH[ "]><eHXm—XkH2
2

+%HEF’€ H +— VU (Xp) ——ZVUZ xHll . (3.29)

In addition, the unbiased property Assumption 3.4 implies that

1~
R+ Ik+nyUXk7——ZG’ = 42 Var’k EZG;

2

FER |y (VU(X,W) - VU(Xk)) VI AV (X) — L ZVU’ xHll . (3.30
The Young inequality shows that

E5 ||l (VU(X;W) - VU(Xk)) VI AV () — 2 Z VUi(X})

(3.31)
2

_ _ 2 _ 1 & o
< 342 HVU(XM) - VU(Xk)]] + 3BT [ka\\?] 397 | VO (Xp) = = " VU(X])
=1

By Al we know that U is L-smooth and convex which imply the co-coercivity of
_ _ _ 2
U (Nesterov, 2003, Theorem 2.1.5), that is for all 2,y € R% ’VU(y) — VU(HZ)’ <

L <VU(y) —VU(x),y — x> Hence, we deduce that

|90 - vz‘J(Xk)H2 < L (Xiy — X5, VO (%) — VO (X5)). (3.32)

Setting € = ym, we have 0 < ¢ < 1 and 1 + 1/e < 2(ym)~!. Therefore, (3.29), (3.30)
and (3.32) associated with (3.28) show that

2 2
B [\\x(k+m . X,m\ﬂ < (14 ym) [ Xy — X2+ <'vm HEFk [7,] H + 3R [HIkHQD

— 5 (2= 3yL) <Xm = X VU (X)) VmX’“)>
2

2 _ 1 @ —_— 1~
2 7 7 2 F 7
v (3 + ) VU (Xy) — - ;1 VU"(X.)|| +~* Var’® - ;1 Gp |- (3.33)

ym
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For any i € [n], by A1, the m-convexity of U gives that
<xk,y — Xp, VU (Xis) — VU(Xk)> > m[ Xy — Xi|? (3.34)

In addition, under A1 the Jensen inequality implies
2

_ 1 & L
VU(Xp) -~ > VUIX])| < LPVi, (3.35)
=1

where Vj, is defined in (3.24). Therefore, using the assumption on v and plugging (3.34)
and (3.35) in (3.33) yields the expected inequality. [ |

3.A.1 General supporting lemmas
In this subsection, we consider the stochastic processes (Xi)ren, (Xiy)ren defined in

(3.23) and (3.26). We derive several lemmas which allow us to derive a recursion on
E[[|Xey — X1?].

Lemma 3.6. Assume A1 holds. Then, for any k € N and v > 0 we have

372 2 212
B ()] < 22F (MLN L )

2m 12

Proof Let k£ be in N. Using the Jensen inequality, we have

2
E {ka}lﬂ =E /:HM (VO(X,) = VO (X)) ds

(k+1)y
<7 / E
ky

[voex.) - V(_](X;W)HQI ds

) (k+1)y )
<2y [ B[ X ] s (3.36)
Y

Further, for any s € R, using Durmus and Moulines (2019, Lemma 21) applied to
(Xnt)ter, we obtain

d(s—k L? 3
E}-’” |:||X3 - XkryHQ] § (nw <2 + (8 — k7)23> + 5(8 — k7)2L2||X;W — ZE*H2.

Integrating the previous inequality on [k, (k + 1)7], it implies

(k+1)y 2 1.2 dL2~2
_ 2 < nLmy a2 ) _
/k’y E [ IXe =X |?] ds < = <d+ R [IXey — ] + (3.37)
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Plugging (3.37) in (3.36) gives

L2 3 L2 dL2 2
E [HI,CHQ] < T” (d+ n . Tg [||><,W —x*||2] + 127 > . (3.38)

Applying Durmus and Moulines (2019, Proposition 1) to (Xp¢)ier, , we get

d
2
— < — .
E [kav | } ~ nclientsm (3.39)
Thus, combining (3.38) with (3.39) completes the proof. [ |

Lemma 3.7. Assume Al and HX1 hold. Then, for any k € N and v > 0 we have

2| 294d dL?
e | < 22 (24 22,

where Iy, is defined in (3.27).

Proof Denote A the Laplacian defined, for all z € RY, by AU (z) = {30 (82U;) (x )/ 022 }4 G-t
moreover let k € N be a fixed integer and v > 0. Using the It6 formula, we have for

s € [k% (k+ 1)7}
_ _ S 1 _ _ _ 2 S _
VU (Xs)—=VU (X)) = A(VU)(xu)—v2U(xu)VU(xu)du+\f / V2U (X,)dB,.
n ky

ky T
(3.40)
We will upper bound separately the three terms of the previous equality. First, the
L-Lipschitz property of VU given by Al implies for any u € R that

Hv%(xu)vﬁ(xu) (Xo) — VU ()

(3.41)

In addition, since for u € R, the random variable X, is distributed according to the
stationary distribution 7(-|D) o« exp(—U), we know from Dalalyan (2017a, Lemma 2)

that
_ _ 2 dL
HVU(XU) - VU@ [ <5 (3.42)
Therefore, we deduce from (3.41) and (3.42) the following bound
— — 2 dL3
HV2U(XU)VU(XU) <= (3.43)

Denote (e;)%_; the canonical basis of R%; using that U is three times continuously differ-
entiable we can apply the Schwarz’s theorem which combined with HX1, immediately
yield that

0,0°0 ‘

Jawo| =3 S e2a0w gdii

=1 [j=1
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d d
2
dS lim d ST B20( tee) 820
_di_lg% e Z_:l)c')jU(x—l—e &) GJU(x)‘
S i e (Eyy(x+e-e-)—x”—1)2 <(d£)2 (3.44)
- P e—0 ¢ - ' '

Lastly, we upper bound the third term derived in (3.40). Since the potentials {U"};c[y)
are supposed L-smooth and U twice continuously differentiable, for s € [k:'y, (k + l)fy}
we know that f]:,y V2U(X,)dB, is a Fs-martingale. Thus, for k£ > 0 we deduce that

(k+1)
E* / V2U (Xy) du| = 0. (3.45)
kv

Eventually, combining (3.40), (3.43), (3.44) and (3.45) with the Jensen and Young
inequalities give
2

HE}'k [Ik]f] _ g / S g [VU(XS) — VU (Xpy) | ds
Y k

X
k’+1)7 [ - 7 2
< / £ VU(XS)—VU(X,W)] ds
[ i 2
(k+1)y s 1 B B B
_ / E7¢ A(VU)(xu)—v2U(xu)VU(xu)du] ds
ky

(k+1)y s 1 s B
< 2/ (s — k:’y)/ E|— A(VU)(Xy)du
kvy kv n kv

(k+1)y dL?  (dL)? 2+3d dL?
§2/ (5 — kv)? ( +< 2) ds= 234+ 2 ).
k n n 3n n

Y

2
+ HV2U(XU)VU(Xu)duH2 ds

Multiplying this last inequality by v > 0 proves the expected result. |

Lemma 3.8. Assume A1 hold. Then, for any k € N and v € (O, (3m)_1} we have

3y2dL? 194 L2
nm 1+ 36m

+3E [kau ] "
<5L3 4dL > if HX1 holds and v < L™1.

e |[&™

’ym

Proof Let k bein N and v € (O, (3m)_1], using Lemma 3.6 we have

3 2 2 2
y3dL? ~vL L
E {ka}lﬂ <= <1+2m+ > >
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Therefore, we deduce

e |l |

2 2 2 212
+3E[HI;€H} SrdL (1+7L NL).

vm nm 2m 12

Moreover, if we additionally suppose the regularity of the Hessian of the potentials
(UH_, as stated in HX1, we sharpen the upper bound on E[||E7*[I}]||?]. Indeed, we

show in Lemma 3.7 that
o ] = 24 (174 22).
n
Hence, we deduce that

3y3dL? L? 212 4~3d dL?
+3E ||| L)) < 2 1+ ) T S (e
n 2m 12 3nm n

A3dL3 (3 4 197L> 4y3d2 L2

’ym

gl

<

3+ 36

nm 3n2m

3.A.2 Derivation of the central theorem

Assumption 3.9. There exist o, € (O, 1) and (vi,ve) € (Ry)? such that for any k € N,
Vi satisfies
E [Vk] < vlozf + va,

where Vi, is defined in (3.24).

HX2. There exist q. € (0,1) and ap, a1, ag, as, ay € Ry satisfying

(1 —qo)(1+ a4+ (ag — 1)2 +4ay) < 2

such that for k > 0 the following inequality holds

k—1
(1=0) "' [ X qe1yy = Ko 1] < a0 | Xy = Xil2] + 12 (1= "E [0y = X
k—
+ ok [Vi] +as Z(l —¢)F'E [VI] + ou.

=0

With the notation introduced in HX?2, consider

—1—ap+ (o —1)2 + 4oy
5 :

§= (3.46)

At iteration k£ > 0, recall that ,u,(g) denotes the distribution of the average parameter Xy
(")

(3.23). The next result controls the Wasserstein distance between ;" and the posterior
distribution .
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Theorem 3.10. Assume HX2 and Assumption 3.9 hold. Then, for any probability

measure ,u(()w € P2(RY), k € N, we have

W2 (W07) < (L a0+ 0)* (1) W3 (1) )

s )af—(1+@0+5)k(1—qc)k

1- C
+ (1= g)un (O‘2+a0+5 = (a0t o) (1=a)

+ 1= ast+ -3 oyt au
qc—(l—qc)(a0+5) ag+ 0

Proof For any k € N, define

k
—k
we = (1= a0) B [IXi - Xl Sk =2,
=0
) o1 (3.47)
vp = (1—qc)” (aQE (Vi] + a4> +az Y (1-q) 'E[V].
1=0
With the above notations, HX2 becomes
k—1
Up+1 < au + Qg Z u + Vg,
1=0
which can be rewritten as
Sk+1— Sk < g (Sk - Sk,1> 4+ a1Sk_1 + V. (3.48)

Since § is solution of 6(1 + ag +§) + g — aq = 0, adding (1 + 9)Sy in (3.48) gives that

g — 01
Sk41+ 05k < (14 ap +6) (Sk: - W&:ﬂ) + v

= (1+ag+9) (Sk + 5Sk—1) + V.

Using the fact that ap < 1+ /(ap — 1)2 +4a;, we obtain 2(1 +6) = 1 — ag +
V/(ap —1)2 +4a; > 0. Hence 1+ 6 > 0, which leads to the following upper bound

k
Up+1 < upt1 + (14 0) Zul = Sk41 + 65k.
1=0

Thus, we obtain that

1
up < Sk +0S5_1 < (1 + ag + (5)k71 <u1 +(1+ 5)uk> + (1 +ag+0
=1

e

)k*l*l .

Plugging the definition (3.47) of u; and v; inside the previous inequality, we get

(1= a)) " E |1}, — Xi)?]
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< (14ag+0)"" ((1 —a0) "E[IXy = Xal?] + (14 O X0 XOHQD

k—1 -1
+ Z (1+ ap+9) Rt (1- qC)_l (aQIE Vi] + a4) + a3 Z(l —q.)'E [VJ]
=1 Jj=0
(3.49)
Moreover, using HX2 we obtain that
E (X, = X1]2] < (1= ao)aok [[Xo = Xol2] + (1 - ge)asE [Vg] + a1, (3.50)

combining (3.49) with (3.50) yield
2 k k 2
E [[Xi = XelP] < (140 +0)" (1 - o) B [[X — Xol’]

k—1
22 (1+ao+6)"" (1-q) "BV
=

k—2 k-1
+ ag Z(l — )" R [VJ} Z (1+ao0+ 5)k_l_1
j=0 =11

k—1
+(1-g)ary (T+ag+6) (1-q) . (3.51)
=0

Consider the function f : a € R — R defined by f(a) = a(l + ap + a) + ap — 1. Using
the definition (3.46) of § combined with the increasing property of f, we deduce from
f(0) =0> f(—ap) = —a; that 6 > —ay, and thus we get 1+ a9+ > 1 which implies

that
k-1 k— ] 2 k—i—1
il 1 9)F—I
S (ttag+) < 1+a0+5’””§( + a0 +9) . (3.52)
- oo + 1)
I=j+1 1=0
Therefore, plugging (3.52) in (3.51) gives
k—2 k—1 k—2 k—1—1
: (1-— (1 +ap+9)
i ' k -1 _ qC 0
> (14l E[Vi] 30 (1+ a0 +9) P B[V,
=0 I=j+1 1=0
(3.53)
In addition, since HX2 ensures that (1 —¢c)(1 + ap + §) < 1, we have
k-1 l . 1
1+ap+6) (1—¢q) < . 3.54
2 (oot o) (1=a) < i a7 9) (354

The last inequality combined with (3.51) and (3.53) show that

E [ Xy — Xkuﬂ < (1+0a0+6)" (1- )" E [|X0 — Xo|?]

aGe

k-1
k—l—1 k—1 (1 —gqc)ou
+ g +5 1—q E |V + .
)l() ( Q) [ l] QC_(l_QC)(OZO+5)

(3.55)
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Further, since we assume Assumption 3.9, we have

N

(1 T+ 5)k‘—l—1 (1 . qc)k—l]E [W] < oy (1 +ag+ 5)]{:—[—1 (1 _ qc)k—l al

v
1=

k—1
oY (T+ag+0)" " (1—q)"". (3.56)
=0

—
Bl
—

T
[e=]
[en]

A calculation gives that

- (L a0+8)* (1- 40
- _ Q oo + qc

1+ao+0) " 1-g)"al < (1—g)= (3.57)

l:o( ) ( ) —(1+a0+6)(1-q)
and combining (3.54), (3.56) with (3.57), we find that
k—1
S (+a+d) T (1 -q) T EV]
=0
k_ (1 5)* (1 q)" -
< (1 - go)vr = (1ao+9) (1-a) (1= gc)es (3.58)

+ .
oy — (1+a+6)(1—¢q)  ge—(1—gc)(ao+9)
Therefore, plugging (3.58) inside (3.55) shows that

 [[IXey — Xell?] < (1+a0+6)" (1= ge) " E[IXo - X0l

o3 045— (1+a0—|—5)k (1—qc)k
a0+6) a,—(1+ag+6)(1—q)

+ (1 —qo)n (ag +

1 —qc a3
s . (359
— (1= q)(ao +9) <a2+a0+5> v2toa . (3.59)

()

Eventually, since the Wasserstein distance Wa(7, p1;,”) is the infimum over all couplings,
we obtain that W2(r, MI(J)) < E[||Xky — Xg*]. Moreover, it follows from the strongly
convex assumption Al that 7 € Po(R?). Thus, we can apply Villani (2008, Theorem
4.1) to prove the existence of an optimal coupling ¢ such that taking (Xg, X) distrib-
uted according to ¢ implies that E[||[Xo — Xo||?]'/? = Wa(r, u(()w). Substituting these
results into (3.59) completes the proof. [ |

3.A.3 Upper bound on V,

The goal of this subsection is to prove the upper bound derived in Lemma 3.13 for
(E [Vk] )ken to ensure that Assumption 3.9 holds. Recall that for k£ > 0, Vj is defined in
(3.24), dy in (3.25), G in (3.17) and we introduce G = E7*[G1]. To prove the central
lemma of this subsection, we also consider the assumptions HX3 and HX4 given below.

HX 3. There exist Ag, A, € (O, 1) ,Bi,Bs,Cyq,Cys,Dg, Dy € Ry, such that for any
k € N, we have

E [dz H} < (1-Ag)E [d,ﬂ + BJE [ag] + C4E [Vi] + Dy,
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Efof,] < (1-4,)E [a,ﬂ + BoE |&}| + CE [Vi] + D,

HX4. There exist A, A, B,B,C,C,D,D >0 such that for any i € [n],k € N, we have
—E:EH@ VH+BEFﬂ+CEPJ +D,
ﬁENEW%—GZ < AE [Vi] + BE [@}] + CE [o?] + D.

i=1

With the notation considered in HX3 and HX4, for any v > 0 we also introduce the
following quantities:

— 2 _ _
7 = 4(1 —pe)y B+2+pCB+ Bo <C+2+pcc) ,

pc_4Ad Pec AO'_Ad Pc
o = N (1=pe) G c+ 2P Lo (o4 Bl
T pe— 44y Pe T A — Ag
4(1_pc) + De ~ 3
7:7 "B 240 =
Co pe — 4Ay <C+ Pc ¢)+CBa +A0—Ad ’ (3.60)

€ =7C7, C}=1+207Cy,

_ 2 _ _ 2 B
Cg:4(1 Pe)y D;f <C+2+pcc>+4(1 Pe)y (D+2+pcD>

AO’ (pc - 4Ad Pe DPe DPe
cy 2B4B, ByD, 8(1—7)(n—1)vd
+— |1+ ——""— | [ Dg+ + .
Ag ( Aa(As — Ad)> ( A > npe

If Ay < Ay/2 and A4A, > 8By4B,, we also introduce a convergence rate (proved later
in Lemma 3.12) defined by

2(AJ — Ad)_leBg
1+ \/1 + 4(1 — Ad)fl(Ag — Ad)leng .

a=Ay— (3.61)

Lemma 3.11. Assume HXS3 and also that Aq < Ay/2, AgAs > 8ByB, hold. Then,
we have

Ad/2 <a< Ay

Proof First, introduce §, € Ry the unique non-negative solution of

ByB,
(1 - Ag)(As — Ag)

85 + 6o =

Since we suppose Ag < A, /2, thus we have 4; < 1/2 which implies that (1—A4,)(A4%/4 + A4/2) >
Ag/4. In addition, using AgA, > 8ByB,, we get that

A2 A A 2B,B,
(LA@<;+;>_;_ j u-%%ﬁ+@)
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Hence, the increasing property of the function € Ry +— x? + 2 combined with the
fact that é, > 0 prove that Ay > 2d0,. Moreover, a calculation shows that « satisfies

a=1—-(1-A3)(1+d,). Thus, using 0 < 2§, < A, implies that o € (Ad/Q, Ad] [ |

The random variable Vi given in (3.24) measures the averaged distance between the
global parameter X}, and the local ones (X} );e,). The first lines of the proof of the
next lemma are based on Gorbunov et al. (2021, Lemma E.3), however their purpose
was to upper bound ), w;EV] for some weights w; > 0, while we prefer to control EVj, to
combine this bound with that of Proposition 3.5. Moreover, the assumptions considered
in this work are different, so the proof requires the development of other techniques

Lemma 3.12. Assume HXS3, HX/ hold with Aq < min(A,/2,p./4), AjA, > 8ByB,
and consider v < pi/Q(Q —2p) V2 A4 (1 +2/p.)A]7V2. Then, for any k € N, we
have

Eﬂﬂg(L—@kcﬂEﬂﬂ+C%Ewa+Cﬂﬂﬁ}+ﬂ%>

where Vi, is defined in (3.24).

Proof Let k € N*, using for i € [n] the definitions (3.20), (3.23) of X} and X
Xjy1 = X =G+ V2y (VT/nZk—I—l + vl _TZ]i+1) ;
n n
o L 2T V2(1—T1)y :
XkH:Xk_nZ;G}“—F nZk:+1+nZ;ZIZc+1-
j= i=

First upper bound on E [Vk] . Substracting the two above equations combined with
the Jensen inequality give

ﬂﬂmﬂ}:iﬁiE
=1

= PSR | g — X0) —2(Gh- 6F) + VRl
=1

. 2
- ]

n

= P e || ok - x0) - (G —G’“)HQI
=1

n

2
: |~ — @~ | +20 - mnE || Zin - -3 2| |
j=1

_ 2
+(1 pc)’Y ZE
i=1

where the inner product is eliminated using that E7*[GE — G¥] = G{ — GF (with Fy
defined in (3.22)). Recall that, for any ug,u; € R? and € > 0, it holds |Jug 4+ u1||? <
(1+€)|Juoll? + (1 4+ € 1) |lur||?>. In addition, denoting I ~ Unif([n]) and using the Jensen
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inequality, we obtain that

”ZEH (Gi = G}) = (G* = GM)| = E[ll(Gk - Gx) = (G* = GH)|]
< E[|Gk - Gill?)-

Setting ug = X} — Xy, u1 = v(G% — G¥) and € = 2/p., we get

AT PR o [H(X; X1~ (G - @’“>H2]
=1

(1 —pe)7?
LTPIY NTR
Uy

o

2(1=7)(1—1/n)vd

(1 _pc)72 -
—_— E
X

et -

< (1 —=pc)(1 +pc/2) zn:E
=1

- n

bt o

+ +2(1-7)(1-1/n)vd

(1 = pe)(1 +2/pc)y? z":E
=1

n

Using (1—pc)(1+pe/2) < 1-pe/2and ™" 3L EH{||G), — G|°] = B7+[|IGY — GH|) <
E7*[||GL|?], we finally obtain that

E [Vkﬂ} < (1 —pc/2) E[Vi] + (1= pc)(2 +pe)y? iE

DPcn

=i 2
o

+2(1=17)(1=1/n)yd

) E [Vi]+(1=pe)y? <D 12 ;pCD>

+(1—pe)y? <B+ Tl ) [dﬂ (1=pe)y <C+ “’CC)E[o£]+2(1_r)(1—1/n)7d

+(1—pc7 ZE

|Gi - Gi

Combining the last inequality with HX4, it shows

2+ pe

C

A+ A

EVia| < (1 ~ 5 (- poy?

Dc Pe

1/2
Since v < Le —75, the above inequality implies that
2(1_176)1/2 [A+(1+2/pc)A]

E [Vkﬂ} < (1— %)E [Vi] + (1 = pe)y? <D+ 2+pCD> +2(1-7)(1—1/n)vd

Dc

+ (1= pe)y? (B + ;Cpc ) [dﬂ (1= pe)y? (C+ 2 ;CPCC> E [(ﬂ :

Using by convention that Zz;lo = 0, an induction shows that

E[Vi] < (1—ZC> E[%}+M<D+2+PCD> L8(=7)(n-1)yd

DPc yzd npc
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(%) el

=0

(1= ) <C+ 2 —;ch> kz_‘i <1 - Z‘:)k_HE [012] . (3.62)

¢ 1=0

C

2+ pe -
+ (1 = pe)y? <B+ ppcB>

Moreover, for any [ € N* the assumption HX3 implies that
E[d] < (1- A0 E [d7,] + BE [oF,] + CE [Via] + Da,
and unrolling the recursion gives that

! D
E [dl} (1- Ay’ { ] +37(1- 49" (BdIE [0]2-_1} +CO4E [leD +A—j. (3.63)
Jj=1

Similarly, we also have

Do

E[of] < (1- 4, [ao]+jzl; (1-4A ”<BUE[d§1}+CUE[Vj_1D+A.
(

(o
3.64)
Hence, by plugging (3.64) in (3.62) we obtain that

E 1] < (1_@)’“E[%}+4<1—W(D+2+p@> L 8(1=7) (1=

Pc

l
+By(1—poy? [0+ 2P S Lr) T e 2
o pc)’y + D Z 4 ( O‘) i jfl}

=0 j=1
E—1 1
C,(1 2 (¢4 2T P 1 Pe o 1—4,) 7 E|v;
+ Co (1 = pe)y + D Z vy ( - 0) g—l}
¢ 1=0 j=1 -
4(1 = pe)¥v* Do 2+ pe ~
4+ — | C+ Cl. (3.65
Ao(pc_4Ad) Pc ( )

In addition, interchanging the summations gives

S (-2 <1—Ao>l*jE{Vf-4

E[V;].

k—i—2—1 .
Thus, using that Zk =2 < — pc/4> (1 — Aa)l <4 (1 — Ad)kﬂ*1 (pc — 4Ad)71,
we can simplify the upper bound of E [Vk] derived in (3.65). Indeed, we can write
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O\ 4(1 = p)y? (1 — Ag)F :
E[Vk]§<1—i> E [vp] + 2 ZC)LL(Ad ) <C+2;CPC>E[US]

4(1 = pe)? 2+ pe = 8(1— —vd  4(1 = p)V2D, 2+ Pe =
LA =p? (L 24 (1-7)(n vd 401 = pe)y 04 2tPes
Dec Dc Npc Ay (pc - 4Ad) Dc

k—1 k—1—1
2+ C C
F(1—p)? B+ Z(1-p> E[d?]
De P 4
+ -1 k—1—11-1

k .
+ By (1 - pe)y” <C+ & pcpcé> > <1 - ]jf) jz_:o (1-4,)""E [dﬂ

=0

k—2
L A= p*Cy (C PEES c) > (1-4) B V] (360

Upper bound on E [di] . For 1 > 1, plugging (3.64) into (3.63) yields the following
upper bound

E[a}] < (1-40)'E @] + Cdzl: (1-4) 7 E[Via] + %

j=1 ¢
l

18,3 (1- Ay [ (1 - A)7E [of]

J=1

j—1
s D
1= A (BoE [d2| + G [Via | ) + 2.
+ ;1 ( ) ( + C,E | Vi 1
The above inequality leads to the next inequality

l

E [dﬂ <(1-A4y)'E [d%] +Bay (1-4)7 (1-A4,)'E {‘73]

=1
l ! j—1 )
+CaY (1 4) RV 1}+Bdcgzz (1-4,)"" (1= 4) 7 E Vi
7=1 Jj=11=1
! j—1
—ie1 Dy | ByD,
+Bng;; (1— 40" (1 A4,)7" E[d§,1}+Id+AdAa. (3.67)

By interchanging the double summations in (3.67), we obtain
j—1 -

S5 (- a) - Ay e[

j=1i=1

-1

I
(-
—~

—
|
8N
~—

~
<
—~
—_
|
0N
~—
<
N
—
=
|
Y
=D
—_
[Eni—

i=1 | j=i+1

~
|
N
—
|
S
|
N
~
|
N

Il
—~
—
|
b
S—
~
iS
[\
o
—~
—
|
b
S—
<
L |
=N
Do
—_
N
q
| | =
N
Q
i
—~
—
|
N
QL
SN—
S
—
| —
=N
o
—_

I
=)
.
I
)
I
=)
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Similarly, we can also get that

_1 -2

> 'm—&y%wﬁw]l4i%ZU—MYHEWT

=141 1

<.

Plugging back (3.68) and (3.69) in (3.67) shows

E [dﬂ <(1-4)'E [dg] n WE {03] n Afd_B;d g (1-4,)""'E [df}

-1

I—i—1 BiCs l—i—1 Dy  BgDs
+Cd§(1_Ad) E[W]—{—AU_Ad;(l—Ad) E[W]—i_fd_‘_AdAg.
(3.70)

Now, we want to control Zij) (1- Ad)l_i_l E [dﬂ For this, for any [ € N define

Dy(1—Ag)"" BaD, (1—A4)~"

_wlp Ba >
Ui = [df] + A A o8] + A, + A4,
-1 - B.C. L2 .
ﬁ%hE:@—A@ﬂ_Eﬁﬂ+v4i2d§:Q—A@ﬂ_Eﬁﬂ (3.71)
i=0 7 i=0
and consider l
Si=3 (1-A40) 'E[a2].
i=0
With the above notation, (3.70) can be rewritten as
S —5_1< BaB, Si_o + Uj. (3.72)

(1 - Ad) (AO' - Ad)
For [ > 2, using the upper bound derived in (3.72) gives

-1
E@ﬂ:@—@Y@rﬂm>s&&€[f1)&”+Q—MYW (3.73)

Finally, we define

14 /1+4(1—Ay) (A, — A)-1ByB,
00 = V/ ( dl ( 4) " Ba (3.74)

such that d, is solution of the equation
ByB,
(1-A44) (As — Ag)

Thus for | > 2, the definition of J, combined with (3.72) show

52 + 60 =

(3.75)

Sp 4 0aSi-1 < (14 64) (Sl—l + 5a51—2) +U.

Unrolling this recursion gives

k
S+ 0aS-1 < (1402)" 71 (S1+8a50) + > (1+38.)" " . (3.76)
=2
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Upper bound on Z (1 - )l a=t [dQ] Let consider a ﬁxed a € {p./4, Az}, by
assumptlon we have Ag < & < 1. Since we want to control Z L(1 = pe/4)E—l= IE[d?]
and Z (1 —pc/4)k =1 Z ( Aa)l i [d?} involved in the inequality (3.66),
we first study Z =0 ( a)k=t= 1E[d2]. From (3.73), we deduce that

T
AR
o

B,B, !

k—1— 1
(-8Bl < g =

(1-4) (1-a)""" 5,

(]

l

Il
=)

l

=
=
—

+S (-4 1-&)" "o 377
=0

~

Since we suppose HX3 and A; < A,/2, A4A, > 8ByB, we can apply Lemma 3.11
which shows that 1 —a = (1 — Ag)(1 + d,) € (0,1 — &) and leads to

ko
=
o

(1-A4)' (1—a)"" (146) " <(146)°Y (1-a) (1—a)*"!

(1-a)

—_

N
Il

=)

o

< . 3.78
T (@—a)(1+464)3 (378)
Moreover, for [ > 2 applying the result given by (3.76), we have
; -2 -
Siia < (1432) 72 (S1+6a5) + > (1+6.) 77U (3.79)
j=2
Using the definition of U; given by (3.71), we can write the following equality
— ! b1 e I—j—2
(1-40) 1-a)"" ) (1+6) 77U,
1=0 j=2
2 By 2 g ! k—1-1 I—j—2
= (E[a] + E |of] (1- 42" (1=a) " (14 64)
As — Ag =0 j—2

B,C, el ! - k;—l—l -2 ]_1
(3.80)

We now upper bound each quantity separately. Regarding the first double sum, since
(1-A4)(1+da) =1—a we get

k—11-2
(1-A) (1—a)"" (1+46,)77
1=0 j=2
k—3 k—1
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N
—_

1 B e (1-4) (1)
S i . (1-4.) (1-0a)7 < A —a)G_a) (3.81)

T
W~

Using (1 — Ag)(14+04) = 1 — o combined with Zl ]+2(1 — )21 —a)kit <
(@ —a) (1 — )72 give

k—11-2
(1-A)7 (1—a)" (146,)77
1=0 j=2
g e 2 1—j—2 k—i-1
=(1-42)") > (1) "7 (1-a)"
1=0 j=2
k—3 k—1
_ (1—Ad)2z Z (1 )l—]—? (1 )k -1
J=21=5+2
2 k-3
. (15:4;) (1—a)t 2 < (1 —;()&(i;)Ad) (3.82)
j=2
The same arguments show that
g I k—l—1 I zjil 1
~\ k— j i—
d i
YD (1-44) (1-4a) (1+6a) (1-Aq) " E[V]
1=0 j=2 i=0
=29 ! k—i-1 1—j—2
<> (1—4q) (1-a)" (1+0) " (1-Ag) [Vi]
i=0 j=i+11=j+2
k—4 k—3 k-1
SYEM Y (-4 Y (-a) T 1)
=0 j=i+1 l=j5+2
1 = = +1 k—j—2
, _ J—i —j—
< LY EM Y -4 (1-a)
=0 Jj=1+1
B (1—0[) 1—Ad)2 k—4 k—3 i 1 k_]—,?)
S 0l S e ) Y (-4 (- )
=0 j=i+1
1 —a) b (1 A,)? ket e
< ( (A, z a)((d — a)) (1 — a) E [V;] . (3.83)

(1-40) (1-a)"" (14+0.) 705

1—a)(1-A44)° (Dy = BuD, (1—Ad)( )"~ B
S T ala—a) (AZJFAZAU)JF (Aa— )@ —a) <E[d3}+Ag—dAdE[”3D

. (1—a)™' (1- 4, ( B4C, )’“ 2 it

(Ad—a)(d—a) A —Ad
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In addition, by definition of U; provides in (3.71) we have
k—1 k—1
l \k—I—1 Dd BiDs it
> (140 (-9 Uz=( AdA)Zl—
2 By 2 _ Ui~ k=il
+ <E GE o AE [UOD ; (1- 42" (1-a)

+<Cd+ BaCy )g(l—Ad)l(l— 12 1—A4y) "BV,

Ao = Aa ) 15

Thus, a calculation yields that

k—1 k
k—i—1 (1—Aq) By
; (1- Ay (1-a) U< e (E [dg}JrAU_AdE[ag})

k—2
1 Dd BdDU 1 Bng' k—i—1 :
= (Ad + AdAg> ey (C’d+ ) § (1—Aq) E[V;]. (3.85)

Plugging (3.79) in (3.77) shows

k—1

Z (1—A4) (1—a)" " (146,

ol
—

k==l [ o BgB, (51 + 0aS0)

(1-a)" el < (1= A)(A, — Ay)
k—11-2

ByB, \k—1—1 1—j—2

T A A)A, - Ay ZZ (1-4) (1-8)" (1 440)

l

I
=)

0 j=

ol
—

+3 (1-4) 1-&)" U (3.86)
l

Il
o

Hence, by combining (3.78), (3.84), (3.85) and (3.86) we obtain for A4 > «, that

1 BaBy (81 + 6450) (1—a)"
(1-a)" e < (1= A)(Ay — Ag)(@ — a)(1 4+ 00)°

(1—A4,)" ByB, (1 —a)" By
+( G- A, A, = A)(A;— )@ —a) E |dj] A A ]
BB, Dy ByD,
" < T ala—a)(A, - Ad)) (Ad " AdAg>

B,C, k—2 (1 _Ad)k—i—l ByB, (1 _a)k’—z 1 |
+<Cd+AUAd>Z( a— A, +(A0—Ad)(Ad—a)(d—a) E [Vi] .

=0
(3.87)

ol
—

l

Il
o

O

In addition, the above bound holds even if A; = a by considering that (Ag—a) ' ByB, =

0.
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Upper bound on Z (1 — po /4R {d ] Applying (3.87) with & = p./4 gives

k—1

k—I—1 Nk
(1 B ZZf) o [dﬂ < ( 4B;B, (Sl + (SQS()) (1 Oé)

=0 1—Ag)(As — Ag)(pe — 4a)(1 + 04)3

4(1-A4,)" 4B4B, (1 —a)" By
" ( e vl vy vy Tyl AL R ey )
4 4B4B, D; BygD,
(p T ol —20)(4, = Ad)> (Ad " AdAg>
k—

B4C, (-4 BB, (1—a) !
4<Cd+Ad_Ad> ( PV FR v i1 e e R AR

=0
(3.88)

.

Upper bound on ¥ o (1= pe/4)kt= 12 o (1— Aa)lfjflE[d?]. Recall that we
consider that (Ag — )™ BdB = 0 in the spe(nﬁc case where A; = «. This time,
setting & = A, in (3.87) shows that

-1

g M ( BaBy (51 + 6450) (1 —a)’

l
=0 1-— Ad)(A — Ad)(A — Oé)( + 5a)3

(1— Ay’ BaB, (1-a)’ By
* ( A, Ay A A (A—a) (A —a) ) " 4] + A, A ot]
1 B;B, Dy ByD,
" (A a{A, — a)(4, —Ad>) (AdeAU)

B.C, \ 2 (1-4)""" BB, (1—a) "
+ (Cd+Aa_Ad> > ( 1A Ay, o | B

=0
(3.89)
Moreover, we have the two following bounds
k-1 k—l-1 k
_ Pe a4 (1—Ag)
lz(; (1 4> (1=4) < pe—4Aq
b1 - . (3.90)
Z 1— Pe (1 _ a)l < M
4 T pe—4da

=0

Therefore, permuting the summations implies

> (1 - f)k_l_l S a) TR <SRN Y (1 _ 1})’“‘“ (1 Ay

=0 =0 1=0 I=i4+2
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In a similar way, we obtain

k—1 )k—l—l -2 k— 3

3 (1 - % S (t-a) " TEW 4 VTRV . (3.92)

X (0%
=0 =0 1=0

Hence, the combination of (3.89) with (3.90), (3.91), (3.92) yields

5 (1-5) S ag sl

=0
4B4B, (Sl + 5o¢SO) (1 - a)k
T (pe —4a)(1 — Ag)(As — Ag)(As — @)(1 4+ 64)3

4 (1 — Ad)k BB, (1 — Oé)k 2 By 9
Ly ( pe—dA; (e —do)(Ag—a)(A, —a) | | E 48] + A, = A, 3]
+ i i + BaB, & + BqD,

Pc AO’ a<A0' - a)(Aa - Ad) Ad AdAO'

k—3 k—i—1 k—i—1
4 ByCy (1-A ByB, (1 -«
42 oy 4 Bdbe d d) + d ( ) E [Vz]
A, — Ay A, — Ag pe — 444 (pc — 4a)(Aq — @) (45 — a)

i=

(3.93)
Upper bound on E [V;]. Plugging (3.88) and (3.93) in (3.66), we obtain
ke 2 k
Pe 4(1 = pe)y® (1 — Ag) 2+ pe )
<|1-—-=
E[Vk]_< 4> E [Vo] + PRy C+ = FC E of]
2 - — pe)y? 8(1— —1)vd
LA =P Do [ 24 pe ) A0 =Py () 24 pe ) 8(1=7)(n-1)y
Ay (pc - 4Ad) Pc Pc c nPc

4(1-Ay)" 4B4B, (1—a)" By
+ ( pe—dA, (A, = Ag)(Ay—a)(pe —da) | \® ] + A, — Ay ]
NEN 4B,B, Dy, BaDy
pe  alpc—4a)(As — Ag) ) \ Aa  AdAs
BiCy N2 (1-a)" ByB, (1—a) ! |
! <Cd - Ad> ; ( p—dA, (A = Ag)(Ay —a)pe —da) | BV

2 + pe ~
+4(1 —pc)’y2Bg (C-i— tr C')

Pc

1 (1—A4g)" ByB, (1 —a)" B
A, ( pe—44g T (pe—da)(Ay—a)(A, —a) | | F 48]+ o ~E 3]

n (1 _p )72 <B n 2 +pCB> ! 4B4B, (Sl + 5a50) (1 — a)k
: (

1-— Ad)(AG - Ad)(pc - 4@)(1 + 5&)3

ByB, (S1 + 6450) (1—a)"
(pe — 40)(1 — Ag)(As — Ag)(As — @)(1 + 00)’
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+ i L + BdB‘T & + BdDO'
Pc AU OZ(AU — Oz)(Ag — Ad) Ad AdAU

k—3 k—i—1 k—i—1
1 BqC, (1—Ay) ByB, (1— )
+— | Ca+ — + E [Vi

Aa—Ad< d AU—Ad>§ pe — 44y (pe — 40)(Aq — ) (A, — @) i)

2

4(1 — pe)y?Cy 24 pe L) k—I—1
+—-— | C+ C 1-A E|V;|. (3.94
Dc — 4Ad ( Pc ) ; ( d) [ l] ( )

For any negative number j < 0, using the convention that Z{:o = 0 and simplifying
the calculations provided by (3.94), we find that

ya k
JE[Vk]g(l—%)klE[Vo]—Fél(lipCh (1 Ad> <C+2+pCC>E[03]

pe — 4A4 Pc
k
4(1_pc)szdB”<Sl+6aSO) (1-9) B+2+pCB+ Bo C+2+pc(7
(Pc —4a)(1 = Ag)(As — Ag)(1 +6a)3 Pc As — Do

4(1 — p)v2 Do 2+ pe ~ 4(1 — p)y? 24 pe = 8(1—7)(n—1)vd
L A0 =po)y oy 2tpen) A mp? () 24 ) (1-=7)(n—1)y
Ay (pe —4Aq) Pe Pe Pe npe

1 ByBs 2+ pe -
+4(L—p)V? | | = + B+-~—"°B
( ) {(pc a(pc4a)(AoAd)>< Pe )
B, 1 ByBs 2+ pe ~ Dy ByDo
— C c —d
T <Aa+a(Aga)(AgAd)>< L )] <Ad+AdAg>
k
4% (1=pc) (1 - Aq 2 _ B 2 _ B
+ (=) ( ) By 2tPep, Do <C+ +p°c) <1E[d3]+ d E[a§]>

pc — 4Aq Pe As — Ag Dc Ao — Ag
44* (1= pc) BaBs (1 — )" i i
( ) ) By 2treg, B <C+2+pcc> <E[d3]+ Ba E[USD
(pe — 40) (Aa — @) (As = Aq) pe o pe As — Ag

49 (1 - pe 2 _ B 2 _ B 2 _
+¥ o (c+2tPee) 1 (o, 4 Bae py2itPep, Do (o, 21Peq
pe — 444 Pe As — Ag Pe Ay — Aq4 De
k—2 .

k—i—1
x;%(l—Ad) 11«:[\4]

442 (1 = pc ) B4Bo B 2 _ B 2 _
+ < ) (Cd"r aCo ) B+ +pCB+ (4 (C—I— -‘rPcC)
(pe — 4av) (Ad - a) (Ao — Ayg) As — Ag Pe As —a e

+

.S (1-a)* " 'E[Vi]. (3.99)

i

w

Il
<}

As explained in (3.75), recall that

ByB,
(1—Aq) (A; — Ag)’

62 4 0y = a=Ag—da(1 — Ay).

Thus, when ByB, # 0 then d§, # 0, which implies that Ay # « and gives

ByB,
(A — o) (A — Ag)

=14 4.

In addition, in the proof of Lemma 3.11 we saw that 2d, < Ay < 1/2 and also that
Ag/2 < a < A, Therefore, we can regroup several terms in (3.95) and write
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O\ F 4(1 — pe)7? (1 — Ag)" . ,
E[vk]§<1—%> E[v] + 2 ZC)LI(Ad ) (C+MC>E[UO]

4(1 = pe)7?0u (S1 4+ 6aS0) (1 —a)” ) )
( ( )( ) pil2tPep, Bo <C+2+pcc>

* P — A7) (1 + 0.2

972 (1 —pc> (1- oz)]v

+ — 44,

Pec Ao - Ad

B+2+p°]§+ B, <C+2+pcc—,>

)2 _ A2 \ 8(1-— —1)vd
LA =p) Do (24 pe 5\ L AL =p)r® () 24pe ) (1-7)(n—1)y
Ao (pc - 4Ad) yue Pc

1 ZBng 2+pc =
+4(1 —p)y’ | | =+ B+=—=—B
(=2 [(p Ad(pc—4Ad)(Aa—Ad))< Pe )
Bg‘ 1 2Bng 2+ Pc Dd Bchr
* De (Aa * Aa(As —Ad)2> <C+ Pe C) <Ad * AdAa>
2+ pe = ByC, 2+ pe 5 B, 2+ pe ~
CJ <C+ DPe C>+<Cd+Aa—Ad> <B+ Pe B+A0'_Ad C+ Pe C

k—2
x> (1-a) " TIE[Vi]. (3.96)

Recall that we defined C7 in (3.60) by

2 _ B 2 _
B+ +MB+ g C+ t P
Dc Acr - Ad DPc

A(1 — pe)y?

Cr =
Pc — 4Ad

Hence, using (3.96) we get that

Pe 4(1 — pc)y? Dy 2+4pc~\ 401 —p)y? 2+ pe -
EV,] <(1-% Vol4+ o e/l Zo oy C |+ D+ 2Trp
[ k] < 4 > [ 0] Ags (pc - 4Ad) Pc Dc Dc

(ogl 2B,B, ByD, 8(1—7)(n—1)yd
— |14+ —— D
+Ad< +Ad(Aa—Ad>>< T4, )* npe

(o (o ) oo

pe — 44Aq Pe 4 (Ay — Ag)

+ ch (1-a) E [df] + 0" (1-0)" " (4a—a) (1 - 49) <51+ Ad _a5>

1— A,

972 (1 —Pp ) Cs 2+pe A B;Cs =2 k—i—1
+|: pc_4£d C+ C "—307 Cd+m Z(l—a) E[V;]

Pe i=0

Finally, we conclude the proof remarking that
¢ (1-a) (4 —a) [(1 — AQ)S1 + (Ag — a)so]
< (1) (Ag—a) {(2 — Aq = 0)E | @] + B4 03] + C4E [Vo] + Dd}

<O (1-a) <4IE (@3] + 2B 03] + 2C.E [Vi] + 2Dd> . (3.97)
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In order to ease notation, with the definitions used in HX4 and (3.60), consider for any
v € Ry the variable C! € R, defined by

CY = CYE [Vo] + C)LE [d(ﬂ +CIE [a{ﬂ + 2Dy (3.98)
In addition, with the previous notations consider
-1
2 (1 _yy /2) o

5=
1+\/1+4(1—Ad/2)1cz

and define
1/2
DPc

172"
(2-200)12 [A+ (1+2/p) 4]

W=

Lemma 3.13. Assume HX3, HX/ hold with 4C} < Ay < min(A,/2,pc/4), AgAs >
8ByB, and let v € (0,7{/}, Then, for any k > 1, we have

k
Ay 4CCY
< I Y TS g
]E[Vk]_<1 4) (206+ 1, +Cj,

where Vj, is defined in (3.24), C!,C},C] in (3.60) and (3.98).

Proof Let k in N be fixed. Since the assumptions of Lemma 3.12 are satisfied, we
know that

N
[\

EW]<(-a)*cr+Y (1-a)"""EM] + ], (3.99)

l

where « is defined in (3.61). In addition, Lemma 3.11 shows that A;/2 < «. Hence,
multiplying the last inequality by the weight wy defined for any [ € N, by

Il
=)

—
wy = (1 —Ad/2) ,
we obtain the following inequality
=
E[Vp] <C)+ ——r E [Vi] + Cluwy.
Wk [ k} < €+1—Ad/2§wl [ l]-i— s Wk

Applying the sharp Gronwall inequality (Holte, 2009), we get
k—1

E[Vi] <C?+ g+ Z(er CV) T o
Wk k] = Ve Wi ]—_Ad/2 — € Wi 1_Ad/2 :

Therefore, a calculation shows that

, a \" o a \7
E < Tl . a 1 -
Wk [Vk] =~ CE —I—wkC5 +CE + 1_ Ad/2 +1 — Ad/2 lz_%wl + s
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and simplifying the previous inequality gives the following upper bound:

k Bl k—l—1
A A
E [Vi] < O 4wy 1CI+CY (1 - 751 + CZ) +C1C7 (1 - 761 + CZ) . (3.100)
=0

In addition, using 4C} < Ay < p./4 implies 0 < 1 — A4/2 + C} < 1 which combined
with (3.100) gives

k k
A C;Cy A

Eventually, combining the last inequality with the assumption 4C; < A4 completes the
proof. |

With the notation of the assumptions HX3 and HX4, we define

9 4~? (pCC + 3@)

PeAs

ag (3.101)

Ao

4B, _
= max {pcB + 3B, <ch + 3C) } y Qg =
DPcAd

The following lemma is used in the convergence proof of VR-FALD* (see Lemma 3.28).

Lemma 3.14. Assume HXS3, HX/ hold with

A
2 )

Ay < min (Ag, ]Zf) . agCy+ agCy < %, agBg + 2 <C+ ;’C) <

and consider v < pi/2(2 —2p¢) " V2[A+ (14 2/pc)A]"V/2. Then, for any k € N, we

have

E [Vi] + a4E [dﬂ + a,E [o,%} < (1 _ z‘;z)k <E [Vo] + aqE [dg] + a,E [agD

Ay Aq nAq ’

Dc

n 2(1 — pe)y? (D N 2 +pCD> n 204Dy + 205D, N 4 (1 — 7') (n—1)vd

where Vi is defined in (3.24).

Proof Let k € N*, using for i € [n] the definitions (3.20), (3.23) of X} and Xy
Xi =X} =Gl + /2y (\/ T/n Zky1 + V1 — TZ;i+1> )
YN~ i L 2T V20— 7)Y i
Xk+1—Xk_nz:1Gk+ nZkH—i-nZ;ZkH.
J= 1=

Substracting the two above equations combined with the Jensen inequality give

1< , 2
£ [tr] = 1 528 [~ e
=1
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2

1—pc = i i i V 2(1 - 7)7 - j
= D E | |[(Xk = Xk) = (G = G + V2N =2y — D 2,
i=1 j=1

n

2

= PSR ||| oxi - %0 - (@ - o)
=1

n

i 1~
+2(0=NE ||| Zjr =~ D Zh
j=1

! |~ iy - @ —am|”

1—p)7? &
_I_( p)’Y ZE
i=1

Hence, we get

E[lin] < 23 [H(x,@ - X0~ (G - mﬂ
=1
|

< (L=p)(1 +pc/2) zn:E

n

. _ .12
Gj, — Gy,

+(1_56)72§:E +2(1—7)(1—1/n)d
i=1

G, — G,

. 2
i -

|

1— p)v? —
+( P)7 ZE
=1

n

+2(1—7)(1—1/n)vd.

1

=1

-

n

+ (1 — pc)(l + 2/pc)72 Zn:E
=1

We finally obtain

2

B [Vin] < (1-pe/2) B ] + 2G40 EZ:IE e
+(1_7€ng ‘G;’C—G;; 20 <1—i> .
Combining the last inequality with HX4 shows
E [Vkﬂ} < (1 - % L —p? A 2+CPCA ) E V]
+ (1= pe)y” (D + 2;;IOCD> + (1= pe)y? (B 12 ZCPCB) E [di}

DPc n

+ (1 — pe)y? <C’—|—2+pCC’> E |:O']%:| +2(1-7) <1 — 1) vd.

1/2
pc/

Since v < -
2(1-pe)/2 [A+(142/pe) A]

177, the above inequality implies that

2“%[)) +2(1—7)(1—1/n)yd

Pc

E Vi | < (1 - Z) E [Vi] + (1 — po)y? <D +
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Dc Pc

+ (1= pe)y? <B+ 2+pCB>IE |+ (1= po (C+ 2+p€c> E|of].

The previous bound combined with HX3 gives that

E [Visr| + g |df] + aoF |02, | < <1 = > +aqCy + agCy | E [VA]

2 ¢ p
+ | ag(l = Ag) + a0 By + (1 — pe)y ( +p )E[dﬂ

+ (1 = pe)y <D+ +pCD>+2(1—T)( )7d+adDd+agDa. (3.102)

Pc

By assumption, we have

aqgCq + a,Cy < %,
~ A (3.103)
Oded-l—’)/Q C—FEC Saa Ua
Pe 2

and by definition of oy, a, given in (3.101), we know that a, B, + v*(B + 3B/p.) <
agAg/2. In addition, since we suppose that A; < min(p./4, As), the last inequalities
combined with (3.103) imply

A
1—&+adCd+ongg§1——d
4 2

87 (1 p) 2+ pe Aq

1-A —B ~— = (B+—=—=B|<1-=2

(6% 0% Pc

1—pe)y? 2+ pe = A
1_AU+%Bd+<M<C++pC>§1_d_

Thus, by taking up (3.102) and using (3.104), we get

E [Vkﬂ} + agE [di H} + oK [a,i H} < (1 - ?) <IE [Vi] + g [dﬂ +a,E [agD

2+ pe - 1
+ (1 — pe)? <D+ pcD) +2(1-71) (1—) vd + agDg + oy Dy

Pc

Finally, the stated result follows by induction. |

3.B Main results

Section 3.B is divided into four subsections in which we prove theoretical results for
the FALD and VR-FALD* algorithms. These analyses are presented in Theorem 3.22 and
Theorem 3.30. The proofs are based on Lemma 3.13 proved in Section 3.A.3 to ensure
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that the local parameters {Xli}ie[n] do not deviate too much from X, then we apply

the general result given in Section 3.A to obtain explicit upper bounds for Wa(, ,LL,SY)).

Until the end of this chapter, we consider a family of independent random variables
(€9, distributed according to V?", and we denote (H%)"_; a family of functions defined

on R? x E — RY such that for each i € [n],z € R? H(z,£(+)) is measurable on (E, &)
and satisfies the following condition:

A 4. Assume there exists L > 0, such that for any i € [n],z,y € R, we have
E[H'(z,)] = VU (2),

E [HH@@,&Z’) 1 )| < 22y - o

The assumption A4 is equivalent to A2 written in the main chapter, though for clarity
we prefer to replace the stochastic gradient VU] by H i(-, &Y. To simplify the notation,
in what follows we consider the random variable & = (¢!,...,£"), and we denote

7. R? x E" — R4
' (z,2) — >0 Hi(z,2")
Thus, for each x € R?, with this notation we have H(z,&) = Y1 | Hi(x,£&Y). We also

introduce the averaged versions U, H of the local potentials {Ui}z-e[n] and the stochastic
gradients {H'};c},) defined by

0(z) = %ZU@‘(Q;), Az, 2) = %ZHi(x,zi).
] =1

Remark 3.15. In the minibatch scenario without replacement, the ith client draws a
minibatch J; C [N;] of size b; = |J;| € [N;] among N; data and computes its stochastic
gradient, which for x € R is given by H'(x,£') = > iel; VU (x). Using the result
provided in Vono et al. (2022b, Lemma S4), we know that

2]

E

i) — w6 | = |[vUi) - VUi @) |+ var (Hi(w€) - i)

bZ(Nl — bl) Inax;y:il L;

< |1 L2 |y — .
Sl S Ay o ==
Therefore, A/ is satisfied for a choice off/ > 0 such that
L<L|1+ m%fi {bi(Ni = bi) [Ni(N; — 1)]_1(m]\gf<L§)L_l}-
= j=

A5. Fori € [n], j € [N;], assume that U is continuously differentiable, convexr and
there exists L > 0 such that for any x,y € R?,

U (y) < U™ (z) + <VU”(90),y - 5L‘> + 73 |y — xH2
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A 6. Assume there exists & > 0 such that for any x € R,

E|||H o~ H, 0 - VU@

< on? Hx — CL‘*HQ.

Al combined with A4 implies A6 with & = 2L% + 2L2. However, this new assump-
tion AG is interesting because without stochastic gradient we obtain @ = 0, which allows
us to recover the classical Langevin bounds.

Remark 3.16. Consider the same scenario as detailed in Remark 3.15 and define

n bz(Nz — bz) maxjvil Lz

D= = L.
“ ; n2N;(N; — 1)

Applying Vono et al. (2022b, Lemma S4) we have the following lines

& |70 .- V00

= Var (I:I(ac,ﬁ) — ﬁ(m*,f))

= 3 > Var (Hi(a,€) — Hi(w, €)) <ol — o
=1

Therefore, A0 is satisfied and in the deterministic case where all data are used to cal-
culate the gradient, we have & = 0.

To deal with variance reduction based algorithms, we consider the following assump-
tion A7, which is also implied by A1-A4, however the constant w vanishes with exact
gradient computation.

AT. Assume there exists w > 0 such that for any i € [n] and x,y € R?,

E

| (@) - H'(y,6) - VU (@) +W@>H1 <wlz—ylf.

Remark 3.17. In the minibatch scenario without replacement detailed in Remark 3.15,
the use of Vono et al. (2022b, Lemma S4) implies that

= Var (Hl(w,fz) — Hz(yafz))

< bi(IN; — b;)
- NZ(NZ — 1)

- [HHZ‘(:U,@) — H'(y,&") = VU () + W@W

N; 2
Lmdx L ||z — y|"-
Thus, A7 is satisfied by setting

_.n bl(Nz—bZ) N; i
v Taf{zw_m%‘af‘% -

In the deterministic case, we obtain w = 0. Similarly, in the minibatch scenario with

replacement it is sufficient to set

N;
(L5)?

j=1

N; — b;
b;

w =

to ensure that A7 holds.
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3.B.1 Study of FALD

Remark on the theoretical analysis of Deng et al. (2021)

FALD has been proposed in Deng et al. (2021), the authors develop an MCMC algorithm
targeting the distribution proportional to exp(—n~t>""  U?) and also establish non-
asymptotic bounds. They introduce (Deng et al., 2021, Lemma B.2) the stochastic pro-
cesses {(éﬁ)tzo}ie[n] satisfying the Langevin stochastic differential equations for ¢ > 0,
dfi = —~VU(0}) + v2bdW; where {(W})¢0}ie[n] are independent d-dimensional stand-
ard Brownian motion and define §; = n=! S 0i. Then, it is asserted (Deng et al.,
2021, Lemma B.5) that (6;) is solution of the Langevin stochastic differential equa-
tion dfy = —n~1 30 VU (6;) + v2dW,, where W, = n~1/23°" Wi, However, this
statement cannot hold in all generalities, and we give a counter-example. For instance,
consider the Gaussian potentials {U? : z € R? E;l(xfmi)}ie[n] where {(m’, £) }iepn)
are the mean and the covariance parameters; if for ¢ € [n], 6 is distributed ac-
cording to exp(—U?), then n=t 3" | 0 follows N (n™t 3" mi,n™23"" | %;) whereas
exp(—n~' 31, U?) corresponds to the density of the Gaussian N/ (37, (2%, H)m?, bY2)
where ¥ = (327, B, 1), Therefore, for any ¢ > 0, in this case 6; is distributed ac-
cording to M(n~ 13" ;mé,n=2>"" | %) and thus cannot be distributed according to
exp(—n~1 Y " | U?) as crucially used in the proof of Deng et al. (2021, Lemma B.5).

Theoretical analysis

In this section, we prove the first theoretical guarantee on FALD stated in Theorem 3.22.
Similar to McMahan et al. (2017), the clients update their local parameters {X} }icpn
several times before transmitting them to the server with probability p. € (O, 1] . Then,
the server aggregates the local parameters to update its own parameter Xy as in (3.23).
For all i € [n], k € N, consider the stochastic gradients defined by

= HY(X} &), (3.105)
o= VU (X}). (3.106)

Lemma 3.18. Assume A1, AJ and A6 hold. Then for any k € N, we have
1 « i 3 < :
- E[ Gi 2] < 3L%E [V] + 3L°E [dﬂ s Uiz,
n; IGLIIP| < [Vi] + k|t R;HV ()]

Tllizn;nz 1G}, = GiI1?| < 312 [Ve] + 32 || + 3E

Jac.off |

For any i € [n], k € N, recall the stochastic gradients Gi,G% are defined in (3.105) and
(3.106), respectively

Proof Using the Young inequality combined with the Lipschitz property Al of the
gradients (U%)?, for k > 0 we get

1 ¢ ~i 1 ¢ iy i i i i
=S E[IGHE] = - Y [IVU) - VUXG) + VUG = VU (@) + VU ()|
=1 =1
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Algorithm 3.3 Stochastic Averaging Langevin Dynamics - FALD

Input: initial vectors (Xé)ie[n}, noise parameter 7 € [0, 1], number of communication
rounds K, probability p. of communication, step-size .
for k=0to K —1do
// On each client
Draw Byi1 ~ B(pe), Zi+1 ~ N (04, 14)
// In parallel on the n clients
for:=1tondo
Draw & 4 ~ ve and Zj ; ~ N(0g,14)
Compute Gy, = H'(X}, &)
Set Xi., =X} —Gi+ V27 (\/T/nZypr + VI =7 Z} )
if Byy1 =1 then
Broadcast X}C 41 to the server
else
Update X}, « Xi,,
if Bry1 =1 then
// On the central server
Update then broadcast the global parameter X3, = % Yoy X',iﬂ
// On each client
Update the local parameter Xli+1 — Xit1

Output: samples { X/} sc(x]: B,=1}-

3 — ,
< 3L2E [V;] + 3L°E [di] +> Z; VU ()]
1=
In addition, since the random variables (G}g — G};)?Zl are centered and independent, the
Young and the Jensen inequality imply that

2

-2 |53 (6 - )

1=

foi.- il

1 n

=K

Lm i oi i _ _ _
- > H (X i) — H( X, Grr) + H(Xp, Erar) — H (2w, Ger)
=1

n 2
b H (e €501) — VO (Xp) + VU (X)) — % S vUi(x;)

=1
n n 2
<38 || ST HX Gy — 0 VUHK]) — H (X 4) + VO(X)
=1 =1
+ 3E Hﬁ(chafkﬂ) - VU(Xy) — Fl(x*yfk—&-l)‘)? +3E Hff(l‘*,f)”z]

< 3L [Vi] + 30E || + 3E

Jac.of |
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|
Lemma 3.19. Assume A1 and A/ hold. Then, for any v € (0,m(6L?)~!], we have
2vL? . 2vd
E |d}] < (1 - ”;”) E|d] + 2 CE W] +37°E [ A (., ) 2] + =1,
where Vi, dy, are defined in (3.24) and (3.25).
Proof Let k be in N. Rewriting the expression of X1 defined in (3.23), we obtain
) 2
E [dkﬂ} —E HX,M —
[ 2
Y . ivio el fon T 5 V-7 - i
=K Xk—l’*_ﬁZH(Xk?gk—O—l)—i_ 2’}/ \/;Zk+1+nzzk+1
i=1 =1
[ 9 |
=E ||| Xk — —29E | ( X —xw, — Y H'(X}, &
[EERI R ICERNE SELCR )
2
LS gy gi 2yd
B ([~ H (X &)| |+~ (3.107)
i=1

Further, the Young inequality combined with A4 give

1S~ . ’ 3
B[S mgg| | <23k
i=1 =1

| F i g - HZ’(Xk,s,iH)HQ]

+3E [||FI(:B*, £)||2} +3E

Jac e - o]
< 3L°E [W] + 3L%E [dz} +3E [HH(@«*, §)||2} . (3.108)

In addition, using the fact that for any vectors a,b € R?, 2|(a,b)| < m||a||* + ||b]|?/m
we can upper bound the inner product derived in (3.107) as follows

_E <Xk a2 S Hi(x}, g,§+1)> - E [<Xk — ., vU(x@}]
=1

+E <Xk: — T, % Z [HZ(Xkaéllf—i—l) - Hl(XIlmfllf—l—l)] >]
i=1

<-F [<Xk _ ., V(_](Xk)ﬂ +mE [di] /2 + L°E [Vi] /(2m)

< —mE [dﬂ /2 + L2E [Vi] /(2m). (3.10)
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Therefore, plugging (3.108) and (3.109) in (3.107) shows

E[d,] < <1 —|m- ?WﬁD E |d}] +~ (?wﬁ? + IZ) E [Vi]

_ 2 2~vd
roe | fac. o | + 2

Eventually, the assumption v < m(6IA/2)*1 completes the proof. |

For any v € (0,m(6L2)~!], under A1, A4 and A6 using Lemma 3.18 and Lemma 3.19
we have shown that HX3 and HX4 hold with the following quantities

. _ 2
A=3[2 B=30 C=0, D =3E !HH(:U*,f)H
A=3L?  B=3L% (=0, D= (3/n) 31, VU ()|,
_ 2
Ag=ymf2, Ba=0, Co=2L*m, Dy=3yE||H@.&) | +21d/n,
A, =1, B,=0, C,=0, D, =0.
(3.110)
For any ~ > 0, consider the following variables
4(1 - pc) 2+ pe
T=— 2 | B Ay > Y — Y Y =14+2 Y
C e — 1A, < + e , Cl =3C"CY, CV + 2C,C7,
cz::c@E[va-+7CVE[dﬂ-+2LM, (3.111)
Y 8(1— —1)vd
o = A=pr? <D+2+%D>+Cl%+ (L-7)(n—1pd
Pc Pc Aqg NPc
We also introduce «; and I, which are defined for any v > 0 by
1/2 m
"= Pe p %, (3.112)

1/2 T2
(2-2p)Y2 [A+ (14 opp)a] T B2 Fmom

L={y€(0m) : ym>8C;}.
Based on Lemma 3.13, we derive the following result.

Lemma 3.20. Assume A1, A/ and A6 hold. Then, for any vy € I, and k > 1, we have

k
A 4CCy
E[Vi] < (1 - 4d> <2C’Y+ 1 ) +CY, (3.113)
d

where Vi, is defined in (3.24) and CI,CJ,C] in (3.111).

Proof For any v € I,, we have 4C] < A, and moreover it is easy to check that
Ag < min(Ay/2,p./4), AgAs > 8ByB, = 0. In addition, since A1, A4 and AG are
satisfied we can apply Lemma 3.18 and Lemma 3.19 which show that HX3, HX4 hold
with the variables introduced in (3.110). Therefore, we can use Lemma 3.13 to complete
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the proof. |

Based on the results presented in this section, we can rewrite the upper bound on
(E [Vk]) ken given in Lemma 3.20 into the format of Assumption 3.9. We consider for
v >0,

4C]Cy

v =200+ — vy = CJ. (3.114)

Lemma 3.21. Assume A1, Assumption 3./, A4 hold and let v < 2(3L)~*. Then for
any k € N, we have

B (X gernyy = Xns1l?] < [1—3m (1= 39L) + 392 L] B [ Xy — X

212 . ) 2
+ ( F3y(L2 + L2)> E[Vi] + | —E HEfk (1] H
m ym

3B [H[kﬂ

3 0
Nl RdVarf (H(x,g)) r(dz).

n2

Proof For any k € N, recall that Fy, is defined in (3.22) and using Proposition 3.5 we
obtain

212
E7 [Hx(kﬂ)v - Xk+1\|2} < {1 —ym (1 - 3%)} Xy = Xkl 4+ <m + 37L2> Vi

2 2 9 1 n .
+ (m HEFk [Ik]H + 3ET* [HIkH D 442 VarT* n;Gk . (3.115)

Since the stochastic gradients (H'(-, ;1)) are unbiased, A4 with the Young inequal-
ity imply that

2
n

Var’* ;ZG}C = E7* Z [HZ Xka§k+1 VUi(X,i)}

LS gy g 7 Ly i(X? J
=E7 |0 D B (X €n) — H (X Gen) = Z; VU (X)) + VU (Xy)

+ H(Xp, Epr1) — HXpys Ee1) — VU (Xp) + VU (Xy) + H (X}, Eot1) — VU (Xiy)

< 312V, + 312 X5, — Xpoy|I? + 3 Var” (H(x,w,gkﬂ)) .
Taking the expectation and using that X, has distribution 7 combined with (3.115)
complete the proof. [ ]
For notational convenience, we also introduce the time step-size 7o defined by
1
fo A - A D T
G Em) 581 - /2 (pe+312) L

Y2 =
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Theorem 3.22. Assume A1, AJ and A0 hold and let v € (0,71 Ay2). Then, for any

tnatial probability measure ,u(()w € Pg(Rd), k € N, we have

k 2 k 2
ym 8L ym 6L 6vd
i <“53)’ ) = (1 - 2> Wi <“5”v”) Tz (1 - s> Tz
+ —— [ Var®(H (z,&))r(dz),

where v1, vy are defined in (3.114) and K = L?(1+~L?/m). If in addition we suppose
HX1, set k; = 2y(L? + dL?/n).

Proof We know that Assumption 3.4 is satisfied since for any i € [n],z € R?
the stochastic gradient H(wx, &%) is unbiased. The constraint v < 4; combined with
Lemma 3.19 implies HX3 and plugging the expression of Ag, Ay, By, C,C, Cy, C,, provided
in (3.110) into C defined in (3.111) gives that

729°(1 — pe) L*(@ + (1 + 2/pe) L)
(pe — 2ym)m '

Y =

For any v € (0,72], we have (pc — 2ym)m? > 576(1 — pc)y*L*(@ + (1 + 2/pc)L?) which
shows that v € I,. Thus, we can apply Lemma 3.20 which proves that Assumption 3.9
holds with ¢. = ym and «, = 1 — A;/4 and vy, vy defined in (3.114). Since the assump-
tions of Lemma 3.21 are satisfied, HX2 holds, and therefore we can apply Theorem 3.10
with

(1 - QC)OCO =1—ym (1 — 3’yL) + 3*}/2IA/27 a1 =0,

2L? 9 29
(1 —qo)ag =7 W—i—?:’y(L +L%) |, a3=0,

N )

+3E[HI’€H] +/ Varfo H(zx, 51)) m(dz).

7m

Furthermore, using Lemma 3.8 we have

2dL? 19vL2
E |||E7 (1 H 3R ||| < 2 L (3.116)
7m nm 36m
Moreover, if we suppose HX1, we obtain
2 3d 4dL?
|E7 (|| +3E [H&Hz] L= <5L3 ) . (3.117)
nm 3n

Finally, with the notation of Theorem 3.10 we obtain 1 + ¢ = 0, and using v <
(6(L +m~1L?))~! combined with (3.116) or (3.117) if we suppose HX1 give the expec-
ted result. |

Now, consider the time step-sizes v3 and -, defined by

Dcm

< =71 Ay2 A 3. 3.118
317 4 o Y =71 A2 A3 ( )

73 =

From the previous result, the next corollary controls the asymptotic bias obtained by
Algorithm 3.3.
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Corollary 3.23. Assume Al, AJ and A0 hold and let v € (0,7), 7 = 1. Then, for
any initial probability measure u((ﬂ) € Po(RY), k € N, we have

-4 Fo(H d P
O sup W2 (W7 ) < Jpa Var2(H (2,61))m(dz) | &r
vd koo ndm m?
(1 —peyL? i 2| L*+pew
el EPY L o]+ =2 ).
where ;= L? and if we suppose HX1, iy = y(L® + dL?/n).
Proof Using Theorem 3.22 combined with v < 1 A 2 gives that
. 6y 6vd 6L°
llzrisip 1% (M,(J), > < a2 » Var’(H (z,&))n(dz) + prvees 100 (e e o2 (3.119)
Further, recall that Ay, B, B, D, D, Dy are provided in (3.110) and C] is defined in
(3.111) by
4(1 — pe)y? 2 "Dy 8(1-— —1)vd
C:;Y _ ( pC) (D + +PCD> + C d + ( T) (Tl )7
Pc Pc Ag NPc
12(1 — pe)y? 12 3 _ 2| 8(1—7)(n—1)d
_ 20 =p)y 1+7< N L2> HH(“S*’@H ]+ (1-7)(n—1)y
DPc m c ze
36(1 — pe)7? : 2 96(1 — po)y3d 3
+ ( p )’Y Z HVUl(.T*) + ( b ) o+ L2
pin = penm Pe
156(1 — pe)v? - 2 17 .
< 13m0y [, ) ] WD S v
1 —pe)y? 8(1— —1)vd
4 960 = po)yd <w+ 3L2> + ( T) (n = Drd (3.120)
penm Pe npe

Finally, setting 7 = 1 combined with (3.119) and (3.120) show that

d
lim sup W3 (ué”’m) < o [ Vo (H (e, €0))(de) + Ly
nm

k—o0 n2m R4
8(1 — p )2 L2 156 36 — . 2 96d 3
+ ( D )’}/ Z"VUZ(Jf*) ( pL2>
C Z'Il C

npem?2

e ||eel| +

3.B.2 Study of VR-FALD*

In this alternative of FALD derived in Section 3.B.1, we introduce control variates to
cope with both heterogeneity and variance in local gradients. Instead of using H(X?)
to update the local parameter X}, this time the ith client uses the proxy H'(X}, & 1) —
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HY (Y, §li+1)—|—VUi(Yk) based on an analog of the SVRG algorithm (Johnson and Zhang,

2013; Karimireddy et al., 2020) and where Y} is a global reference point updated with

probability g. € (0, 1]. We derive an explicit upper bound on the Wasserstein distance

between the distribution of the server parameter X, and the target distribution 7. We

also show how this new global control variate mitigates the effect of heterogeneity in

the convergence rate. To do so, we consider the stochastic gradients defined for any
€ [n],k e N, by

= H'(X},&1) — H' (Y, §yr) + Ch, (3.121)
= VU (X)) — VU (Y3) + Cy (3.122)

and denote
1/2

| i, €i) - H )| (3123)

ln
o= | — E7*

Lemma 3.24. Assume A1, A/ and A6 hold. Then for any k € N, we have
% Zn:IE [||G§g||2] < 3L°E [Vi] + 3L°E [di} + 3K [a,ﬂ ,
- Z E [ G — } < 3L°E [Vi] + 3GE [dﬂ +3E [ak}

For any i € [n], k € N, recall the stochastic gradients Gi,, G%, are defined in (3.121) and
(3.122), respectively

Proof For k > 0, Lipschitz property of {VU i}ie[n} supposed in A1 gives that

fZE[HG E ZE[HVUZ(X,C) VU (Vi) + VU (%) ]

<23 E [HW X) - VU x| + 2 S E[IVUi) - VUi
=1 i=1
3

E ||[VU(Xy) = VU () 2]
=1
< 3I°E [Vk] +3L°E || + 3E [ o7
and the proof is concluded by noting that A4 gives
! ZH:EHGi —Gi|? =E | Var’* 1 zn: G,
n & ko Tk n ="

2

1 & ) ) [7
<E - > H(X} &) — H(Xg, Gkp1)
i=1
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Algorithm 3.4 VR-FALD*

Input: initial vectors (Xé)ie[n}, noise parameter 7 € [0, 1], number of communication
rounds K, probability p. of communication, probability g. to update the control
variates, step-size v and batch size 7.
Initialize Yy = (1/n) Y"1, X¢ and Cy = (1/n)VU(Yp)
for k=0to K —1do
// On each client
Draw Byi1 ~ B(pe), Zi+1 ~ N (04,14)
// In parallel on the n clients
for i =1tondo
Draw §,i+1 N Vg, Z,lf:-i—l, ~ N(Od, Id)' ‘
Compute G = H’(X}g,f}ﬁl) — H’(Yk,fiﬂ) + C},
Set X,iﬂ = X} —GL 4+ 2y (\/T/n Zppr + VI — TZ,iJrl)
if Bry1 =1 then
Broadcast X}C 41 to the server
else
Update X,iﬂ — )N(,iﬂ
if By, =1 then
Broadcast X,i to the server
else
Update Yy 1 < Y and Cyqq < Ci
if Bk+1 =1 then
// On the central server
Update then broadcast the global parameter Xy < (1/n) > 1, X};H
// On each client
Update the local parameter X,iJrl — Xkt

if By, 1 =1 then
// On the central server
Update then broadcast Yy + (1/n) > 1, X}
// On each client
Compute and broadcast VU*(Yy11)
// On the central server

Update then broadcast Cyy1 < (1/n)VU (Yi41)
Output: samples { X/} sec(x]: B,=1}-
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2

1< _ _ _ 2
<3E ||| -7 B0 ) — H(Xes )| | + 3 (|| H (Vi €ern) = Hows )| ]
i=1

+ 3E

HFI(Xk,SkH) — H(wy, &t1) — VU(Xk)H2] :

Lemma 3.25. Assume A1 and A/ hold. Then, for any v € (0,m(6L2?)~], we have

B[4} < (1 - T) E |d}] + 27;21@ [Vi] +49°E [0F] +109°E | H (2, )I?] + QLnd,

where Vi, di, o, are defined in (3.24), (3.25) and (3.123).

Proof Let k be in N. Writing the expression of X} defined in (3.23) and developing
the expectation of the squared norm give

1

Xp — oy — %Z Hi(XliafiiJrl) + vH (Y, &pr1) — VU (V)
i=1

E [diﬂ} —E [HX,M — 2

=K

2

T = VI=T &
+ V2 ﬁZk‘-l-l"*'TZZIZH—l
i=1

T~ .
=, [HXk —Mf] —29E <Xk —x*,nZHZ(X,g,g,gH)>
=1
2

1« iy i T 5 2
+°E || =D H (XL )| | +97E || A o) - VO
=1

1 T _ _ 2~d
—2’}/2E <nZHZ(X127€]Z€+1)1H(Y]€7§]€+1) _PYVU(Y]C)> +%
=1

2

2] - | (3 n 2 S ) 2 |5 ki
1=1 i=1

2vd
+ 22 (3.124)

n

_ _ 2
+29°E ||| B (Y §e41) - VO

Using the Young inequality combined with A4 show
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2

1< 3
E EZHZ(XEH&Z—H) SEZE
=1 ‘

=1

|E g - H"(Xk,si;,H)Hz]

3|05 €0n) — G )

+ 38 [| H (2., )|
< 3L°E [V] + 3L%E [dﬂ +3E [HH(@«*, g)\ﬂ . (3.125)

We also have that

E HFI(Yk,ﬁkﬂ) - VU(Yk)H2

<2E

“ﬁ(yka§k+1) - ﬁ($*7§k+1)H2 +2E [Hf_[(th)ﬂz}

<9E [a,ﬂ +2E [HH(:[:*,g)H?} . (3.126)

In addition, using the fact that for any vectors a,b € R?, 2 ‘(a, b>’ <m|al®+|n|? /m,

we can upper bound the inner product derived in (3.124) as follows

i=1

_E <Xk — 7, % iVUi(X,i)> =-E [<Xk - 1’*7VU(X1<)>}

+E <Xk — Ty, % Z |:Hi(Xk7€li:+1) - Hi(XIiw flzﬂ—l)] >

i=1

< E [<Xk — 2, VU(Xk)ﬂ +mE [dz] /2 + L2E [Vi] /(2m)

< —mE [dﬂ /2 + L°E [Vi] /(2m). (3.127)
Hence, combining (3.124), (3.125), (3.126) and (3.127) implies that

E [diﬂ] < (1 —ym+ 67%2) E [dﬂ + (f + 672ﬁ2> E [Vi] + 49°E [J,%}
+107%E [, 9] + 22
Using the assumption on v completes the proof. |
Lemma 3.26. Assume the L-smoothness of the potentials {Ui}ie[n] and A/ hold. Then,
for any k € N, we have
E0f,1] < (1 q)E |o}] +2¢1%E [@2] +2412E [],

where Vi, dy, oy are defined in (3.24), (3.25) and (3.123).
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Proof Let’s consider k > 0, using A4 implies that
1 n
E [ag +1] =~ E
i=1
1—gq -
= 2E
" i=1
n
+ &3k
n
=1

= - of] + 31 a5 ) - 1 )|

"Hi(ylci+17§li+1) - Hi(x*,fli_,_l)’r]

v ) - H%x*,g,ul))f]

| i i - Hi<x*,s;;+1>H2]

2

g - ||
< (1-qo)E [oF] +2qL%E [d| +24L%E [VA] .

Which shows the expected result. |

For any v € (0,m(6L%)~'], under A1, A4 and A6 we have shown that Lemma 3.24 and
Lemma 3.25 imply HX3 and HX4 with

A=cy=3L% B=c;=30, C=c,=3, D=c=0,
A=3L% B =3L? C =3, D=0,
_ 2
Ag=am[2,  Ba=4?,  Ca=29L*/m, Da=(0y)E || A, &) | +29d/n,
Ay =gq, B, = 2q£2, Co = 2qﬁ27 Dy =0.
(3.128)
For any ~ > 0, consider the following variables
) _
4,)/2 _ 4B, B 4'7 (pCC—l-?)C)
ag = max B+3B,—< C+3C) = 3.129
d DAy {pc A, Pc } o DA, ( )
Lemma 3.27. Assume A1, A/ and A6 hold with
. y4d DPc 2 3 = aaAa
Ay < min Aa,z , O‘dcd‘i'aacagga agBg+v" | C+ —=C| < 5
Pc

and consider v < m(6L%)~" A p(l;/2(2 — 2p) " V2A+ (1 +2/p.)A]"V2. Then, for any
k € N, we have

B[] < (1 - Ad)k (B0 + e 8] + 0o o] ) 4 20D 1027 0 1,

B 2 Ay nAy
where Vi, is defined in (3.24).

Proof Applying Lemma 3.14 with the variables provided in (3.128) gives the result. B
Let’s introduce 1 > 0 such that
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m m 2q , Pe Pe
) AN DA —
1281 8max (SL2 + pe, 24L2> m.ooam [2(1 —pe)(peA + 314)}

Pe
816 (rfj; max (3L2 + pe@, 24i2>> +2

Under A1, A4 and AG, for all v € (0, 'yl] the assumptions of Lemma 3.27 are satisfied.
The upper bound on (E [Vk})keN derived in Lemma 3.27 can be rewritten into the
format of Assumption 3.9 by considering

1/2°

204Dy  4(1—7)(n—1)vd
~ 2 2 ~ d/d
B =E [Vo] + 0B &3] + a0 [f], 5 = o vy . (3.130)
In addition, for any v > 0, consider the following variables
4(1 _pc)’y2 2+pe 5 B, 2+pe ~
Cl'=———"|B+ B+ C+ cl,
pe — 4Aq Pc As — Ag Dc
97?2 (l — pc) C, 2+ pe = B,C,
v gl
C) PRy C+ e C|+3C C'd+AU_Ad ;
4(1 _pc)’72 2+pc = 3
1= "Bg|24+ ——+ 3.131
(034 o aA, C+ o C|+C'By T (3.131)
Cgo =7C7, Cl =1+2C"Cy,
= CDa [ 2B,B, 8(1—7)(n—1)yd
b A Ad(Ay — Aag) npe ’

C? = CYE [Vo] + CL,E |d3] + CJE |oF| + 2Dy,
Based on Lemma 3.12, we derive the following result.

Lemma 3.28. Assume A1, A/ and A6 hold and consider v € (0,71]. Then, for any
k € N, we have

k

Ad 4C;~Yf11 2C;~Yf12
< S —— Y 7
E[Vk]_<1 4> <06+ p >+ p + Cj,

where V, is defined in (3.24) and C!,C},C] in (3.131).

Proof Since we suppose Al, A4 and A6 hold with v < =1, the assumptions of
Lemma 3.27 are satisfied. Therefore, for any [ € N, we obtain

l
A
E[V]] < (1 - ;) Ty + . (3.132)

Moreover, the condition v < m/128ﬁ2 ensures that AjA, = ¢ym/2 > 8ByB, =
64gv?L?, hence we can apply Lemma 3.12. Then, plugging (3.132) in the bound derived
in Lemma 3.12 gives

EVi]<(1-a)" 7+ (1-a) " 'E[Vi] +CJ, (3.133)

i

ko
[\

I
o
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where « is defined in (3.61) by

2(Ay — Ag) ' BqB,
1++/1T+4(1 - Ay) YA, — Ay)~1B4B,

(3.134)

a=A,;—

Using Lemma 3.11, we know that A;/2 < o < A; and combining this bound with
(3.132) and (3.133) leads to

Ad 4C?1~)1 20?'/172
< _ e Y '7'
E [[/k] (1 ) (Ce + P ) + P + C(;

In order to rewrite the upper bound on (E [Vk] )ken given in Lemma 3.28 in the format
of Assumption 3.9, we consider for v > 0

407« ’Ul 202’172

2 =
=C]+ —— A, ) A,

+Q. (3.135)

Lemma 3.29. Assume A1, A7, Assumption 5./ and hold and let v < (6L)~1. Using
the convention that Zal =0, then for any k € N, we have

E [ IXes1yy = Xisal?] < [1=m +92 (3mL + 4w) | E [[X4, - X?]
k—1 2L2
+ 472wq. Z(l —q)F IR [HXZ7 — Xl||2] + <m +3yL% + 47&)) E [Vi]

1=0
3
+3E [HIkH ] 1 107 <1+ VL) .
ngc dc

+

e |[e” )]

*ym

Proof For k € N, using the independence of (£} +1)i€[n] combined with Assumption 3.4
and A7, we obtain

Var't | =376 | =B § [ VU(X]) = VU (Vi) = H' (X €hy) + H' (Ve €|
= =1

HvU%Xf;) — VU (Yy) = H (X}, i) + Hi(kaff’m)HQ

1
==Y E*

n
. 2
<253 HX,Q—YkH . (3.136)
n
i=1

Denote t; € N the time when the reference point of the control variate is updated,
therefore we have

0, ifk=0

tr = .
g max{le{o,...,k—l}:Yk:n*IZ?:lX}C}, ifh>1

(3.137)
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Hence, for any ¢ € [n], k > 0, we have
Xi = Y = (Xi = Xp) + (Xp — Xpy) + Ky = Xayy) + Kiyy — Y2).

Thus, for £ > 0, combining the previous line with Young’s inequality, it yields that

1 <& , 2
S B || X Y| | < 4B [ViJ+4E [1X = X 2] H4E [[Xer — Xigo 2] +4E X — Vil
i=1
(3.138)
For k > 1, by definition of t;, we have
k—1
E[Vi] =Y Pt=0)E V}—qz ge)F IR [V].
=0
Moreover, for k > 1 we get
ol - et o
2
= 2
N 2 _
Z (1-qc) E [ X,)ds + \/;(W,w Wl'y)
2d
<2’yqz (1 - go)h / HVU ds+ = | (3.139)

Using Dalalyan (2017a, Lemma 2) with s € Ry, we obtain
E [||vU(xS)H2] < dL/n.

Using by convention that Z?:l =0, for any k € N and x # 1 we have

k
ZZle_l =(1-2)73 (1 +z— 2" [2x+km(1 —z)+(k+ 1)1+ k(1 —2))(1 —:v)}) .

=1

Thus, setting x = 1 — ¢ inside the last shows that

Zl2 )7 <2/q.

Hence, the above line combined with Zle I(1—q)" ! =q2 [1 —(1+kg)(1— qc)k}
and (3.139) yield the following upper bound

\2] L e Gt

IN

kav — Xty

IN
\V]
2
)
| —
—
™
|
o~
~—
—~
N~—
ol
=
/N
[\
_l’_
—~
™
|
o~
~—
2
~
N—
—_
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4 L
< (1 + 7) . (3.140)
Ngc qc

In addition, by definition (3.137) of t;, we immediately get for any k > 1, that

k—1
2
E me ~ X, ] =Y P(t=0))E [me - XZHQ]
=0

k—1
=q¢» (1-¢)""'E [HXM - XIHQ] :
=0

Combining (3.136), (3.138) with (3.140), for any k > 1 we obtain

1<~
E |Var's | =37 G | | < 4B [||Xk—X;W||2}
=1

k—1

16ywd L
+dwge 3 (1 - go)F IR [I\Xw _ Xz||2] +4wE [Vi] + Jq (1 + Z]) . (3.141)
=0 ¢ c

Since Yy =n"1 3, , X§, we have Var’®(n=13°7 | G%) < wV}, and therefore the above
inequality also holds for k = 0. Lastly, using Proposition 3.5 gives

27
7 [ Xy — Xesa ] < [1=m (1= 39L)] X4y = Xl + 9 (m + 3vL2> Vi

2 o7 2 Fi 2 2 Fo [ LN i
+<7m [E7 [m]||+ 2 k[HIkH ])—i—’y Var’ n;Gk

Hence, plugging (3.141) in the above inequality yields the expected result. |

Based on Lemma 3.29, for any v > 0 introduce the following notations

4y2wq

o = (1 — qc)fl [1 —ym + 2 (3mL + 4w)} , ap = ———3, (3.142)
(1 —g)
2
Qg = i <2L+3WL2+4%0>, az =0,
1—qg. \ m

(1 _ qc)fl 2supl€NE
ym

= dull

3
+3supE [Hh\ﬂ 4 1677wd (1 + 7L>
leN ngc qc

For ease of reading, we also introduce the time step-size vo defined by

qc dc 1
< = A N 3.143
=T Moy 6(L+4m~1w) ( )

Theorem 3.30. Assume A1, Aj, A6, A7 and lety € (0,71 A7y2). Then, for any initial

probability measure /LE)VR*”Y) € P2(RY), k € N, we have
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2 (VRx7) ym g 2 [ (VRx) ym k32
WQ /,Lk , T S 1—7 WQ /“LO , T -+ 1—? WU
612 6vd 32v%wd

v + FRI + ,
nm nmq

_l’_

m2

where vy, vy are defined in (3.135) and Kk = L2(1 +~L?/m). If in addition we suppose
HX1, set k; = 2y(L3? + dL?/n).

Proof We know that Assumption 3.4 is satisfied since for any i € [n],z € R? the
stochastic gradient H'(z, £%) is unbiased. Lemma 3.28 proves that Assumption 3.9 holds
with a, = 1 — Ag/4 and vy, ve defined in (3.135). Lemma 3.29 implies that HX2 holds
with the choice of (a;)}, detailed in (3.142). Finally, since HX2 and Assumption 3.9
hold, we can apply Theorem 3.10 to show that

W3 (MI(CVRM)77T> < (I+ao+ 5)k (1- qc)k 1% <,u(()VR*’7), 71')

o3 ol — (1+a0+5)k (1—qc)k
ag+0) ay—(1+ag+0)(1-q)

+ (1 —qc)n (ag +

1—qc ag
+ + — + , (3.144
dc — (1 _QC)(aO+5) (OQ a0+5) vz ( )

where § = 271(y/(ap — 1)2 + 4a1 — 1 — ap) is defined in (3.46). Using for any a >
0,b >0, that va+b < y/a+b/(2v/a), we obtain

ao+\/(ao—1)2+4a1:1+(a0—1) 1+ 1+A2
(00— 1)
aq . o 20&1
§1+2(OZO_1) ].‘l—m —20[0 1+O&0—1'

Since v < 72 < q(2m) "t A {6(L + 4m~1w)} L, the previous line implies that

2(1—qe) (1+a0+0) =(1—q) (1—|—ao+\/(a0—1)2+4a1>
<2(1 - ge) <ao+a0“i1>

4qw
=2(1—ym+~*3mL + 4w +
7 7 < qC—7m+v2(3mL+4w))

< 2(1 —~ym/2). (3.145)
This upper bound gives that
(I—go)ap+0)=(1—q) (L+ap+0) +q—1<q—ym/2.
Thus, we deduce that . )

o —(—g)a+d) = (3.146)

ym’
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Further, using v < 2 combined with the definitions of «ag, as, a3, o, and § show that

of (Lo +8)" (1-a)" _ s (1)

1o 7
Qy — (1 + ag + (5) (1 — qc)2 — 3ym 8 2 (3.147)
%+mﬁ@=1f%(ﬁi+%ﬁ+4W)§u?iwa
Lastly, plugging (3.145), (3.146) and (3.147) in (3.144) yields
w2 <ul(€VR*,’Y)7ﬂ_> < <1 _ “Y;n>k W2 (MéVR*,’Y)77T> i (1 _ 7;”>k ?;522”
+ ?fj v+ 20 ;:;)O“*. (3.148)

In addition, following the lines provided in the proof of Theorem 3.22, we deduce

2(1 — gy _ 6ydL? (1 N 197L2> | 32 wd

(3.149)

ym nm? 36m nmgq

If in addition we suppose HX1, then we obtain

2(1 — L?  A2L2 4 dL? 3272wd
(7‘16)“43me2 <1+7 +7 >+7<L3+ + 20 (3.150)
n

ym 2m 12 nmq
Finally, plugging (3.149) or (3.150) if HX1 holds inside (3.148) combined with v < gL ™!
lead to the expected result. |
Now, consider the time step-sizes v3 and ~, defined by

_ Dcm
3L2 + 1612 + pew’

3 Yo« =71 A2 A 3.
From the previous result, the next corollary controls the asymptotic bias obtained by
Algorithm 3.4.

Corollary 3.31. Assume A1, Aj, A6, A7 and let vy € (0,7,) with T = 1. Then, for

any initial probability measure ,uéVR*ﬁ) € Po(RY), k € N, we have

9%
lim sup W22 <,LL§€VR*77),7T> < L + Skt
7d k—o0
(1 —pc)yL?
pEm?

N 2
(L2 + 12 +pcw) 1+ %E HH(x*,ﬁ)H

Pc

where iy = L2(1 4+ yL?>m~"Y) and if we suppose HX1, iy = v(L? + dL*n™").
Proof Applying Theorem 3.30 with v € (0,1 A v2) shows that

6L> 6vd 32v%wd
lim sup W3 ,u,(CVR*’V), ) < vy + L/ﬁ}[ p Y
00 m2 nm? nmgq

- 6L2C] N 12L2C)0y  67d N 3272wd.

3.151
m2 Agm? A nmq ( )
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Plugging the definitions of o1, 0 provided in (3.130) combined with the previous in-
equality, we obtain

6L2C]  24L2ClagDy 48L*CY (1 — 7') (n—1)vd
li W2 (VRx,v) < ) r
liisogp 2 (Mk TS T e + A2m? nA2m?
6vd 32v2wd
+ ) K1
nm nmq

Further, recall that A4, B, B, D, D, Dy are provided in (3.128) and ay is defined in

(3.129) by
4~? _ 4B, _
g = max ¢ pcB + 3B, —— (pCC + 3C>
pcAd Ay
24 A 768 -
= ) max {SL2 + pe@, 8(pe + 3)L2} < 0o <L2 + L2 +pC(Z;) .
DPcm DPcm

Moreover, CJ, C} are defined in (3.131) by

~ C'Dy ) 2B,B, 8(1—7)(n—1)d
Ad<Acr - Ad) npc

10C7 64qL?
= 1+ _o%ar 5vIE
m (2¢ — ym)m

8(1—7)(n—1)vd
NPc

d
+- |+
n

Jae. o

< 360(1 — pc)vy?

- 2
mpe¢

+8(1—T)(n—1)’yd

NPc

992 (1= pc) Co 2+ po A ByC,
v = - i _
C) e dA; C+ o C|+3C Cd+A(,—Ad

d
+ —
n

~ _ 2
(3L2+11L2+pco§) 5vE HH(:L‘*7£)H

(3.152)

)

144~2(1 — A L? . .

< M 312 + ~ ( + SWLQ) (pca) 1302+ 16L2)
m
C

4329%(1 — .

< B =p) (neL? +qi?)
Pe

Eventually, for the specific choice 7 = 1 combined with (3.151) and (3.152), it yields
that

6~vd 32~v2wd 18432~ C) DyL?
lim sup W2 (M;vm,v)’ﬂ> < 72%&1+ ywa TorLd
nm

k—o0

L2+ 12 )
nmgq A2mBp. ( LT P

2160(1 — pc)y2L?
+ p2m3
C

. _ o 4
(312 4+ 1122 + pes) [ 59E HH(Q;*,g)H +2]. (3.153)

Therefore, using (3.152) and (3.153) we can finally conclude that

d 2wd
9 lim sup W22 (,U,ECVR*’,Y),W) < Lzm + T
PRI nm nmq
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d -
+= <L2 + qL2> .
n Dc

<L2 + 2 +pcw) VE [HH(a:*,ﬁ)Hz

The single client case corresponds to n = p. = 1 and leads for K > 0 to V3 = 0.
Moreover, the assumption Assumption 3.9 holds with v; = vo = 0. Thus, we obtain a
convergence bound for SVRG-LD from Theorem 3.30.

Theorem 3.32. Assume A1, Aj, A6, A7 and lety € (0,71 A7y2). Then, for any initial
probability measure MSVR*’V) € Po(RY), k € N, we have

k 2
v ym \ vd 274 wd
”22 (,ué R*W),ﬂ') < (1 — 5 > W22 (M(() Rﬂw,ﬂ) + 0 sk1 + k )

where Ky = L2(1 + ~vL?/2m + 42L%/12). If in addition we suppose HX1, set k; =
3v(L3 +dL?/n).

Remark 3.33.

e The constants obtained in this result can be refined by directly using that E[Vi] =0
in the proof of Lemma 3.29 and by simplifying the calculations detailed in The-
orem 3.30.

e The proof given in Chatterji et al. (2018, Theorem 4.2-Option 2) on the conver-
gence of SVRG-LD seems to have some gaps since the authors use Grénwall’s
inequality (Clark, 1987) as if & = 72(85d + 4M§?d + 46> M) were constant,
which is not the case because 0 = <Vf(yk) —Vf(zk), yr — xk> depends on the
iteration k. If we denote #y, instead of & and adopt their other notation (we also
correct a typography in the right-hand term), we obtain

k—1
E [ka — gzug] <#p+ ) E [||xj - :zu%} . (3.154)

J=Ts

Then, it is claimed in the proof of Chatterji et al. (2018, Theorem 4.2-Option
2) that (3.154) implies E[||x, — Xi||?] < @ exp(Tp). But this inequality cannot
hold in all generalities, for example if we consider : 7s =0, for j < k, #; =1,
i =7+ \/2/d-1 and &, =0, 21, = ¥ + 1/V/d, then (3.154) holds for j € [k]
but Ef|zr — Xg||?] = 1 whereas #y, exp(7p) = 0.

3.C Lower bound on the heterogeneity in a Gaussian case

In this section, we want to illustrate the heterogeneity problem by lower bounding the
Wasserstein distance W5 in a simple case. To simplify the calculations, we assume that
each client performs 2 local iterations following the FALD update before communicat-
ing its local parameter to the central server. More specifically, take (u1, po,01,02) €

R? x (R%)? and define the potentials U' : z € R? 0;2(1“ - ,LL1)2, U?:2 e R
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oy 2 (x — ,u2)2. Thus, the global posterior distribution 7 is Gaussian with mean m and
variance 2 given by

02 + 1902 1 1 ~/2
m = 172 T 201 o= (2 + 2) . (3.155)
o1+ 05 o1 op

The objective is to illustrate the problem of heterogeneity in the basic version of FALD.
To do so, we first show that this algorithm generates samples targeting a distribution
Ty € Po(RY) where the distance Wy(mr, m,) is lower bounded by a heterogeneity term.
To this end, we introduce the Markov kernel, which for each v > 0,B € B(R?) is given

by
- (1-ge 3 (Fea))e- w3 (4 n)
1 2 1 2 ,
dx
4 \2 (2m)d/2’
2y 1+(17ﬁ)

and we define the stochastic processes (A, Ak)kzo on R? x R? starting from (Xo, Xo) =
(x,Z) and following the recursion for k > 0,

P,(z,B) :/exp
B

)

2
Y - Y Ag — Ag — 2
Appr = A —_2(Ak—m)+2< o )+ﬁ

~
1-— 1% Z
( 252) k+1 + Zk42

~
<1 - 202) Zit1+ Zit2

(3.156)

L N
=y (N Y [ A A — e
AkH—Ak‘gz(Ak—m)*z( R )*W

It is possible to verify that (Ay, Ay) is distributed according to ((5fo , (55P7k).

Lemma 3.34. Let v € (0, 2(0102)4 02 (0f + Jg)]*1>. Then, there exists T, € Pa(R?)

such that for any distribution ™ € Py(RY), the sequence (WOP,’Y“)keN converges to .y in
Po(RY).

Proof Let k € N and consider the stochastic processes (A;, Al)leN defined in (3.156),
subtracting the two recursions we obtain

2
~ vy 0% 1 1 ~
A=Ay = (1= 4+ T (S ) ) (A= A4).
o2 2 \of o3

Since 0 < v < 2(0102)*[6%(0f + 03)]7!, taking the norm in the previous inequality
implies that

2
i Sl B i
Ay = A = (1= Z+ 5 (54— ) | [Jan - 4 3.157

H ko b a2 + 2 <O’il + U%) b F ( )
Finally, combining (3.157) with Douc et al. (2018, Lemma 20.3.2), we deduce that the c-
Dobrushin coefficient of P, is upper bounded by 1 —~/52+~%/2 (1/0‘1L + 1/03) . Hence,
applying Douc et al. (2018, Theorem 20.3.4) we deduce the existence and uniqueness of
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a stationary distribution 7, € Py(R?) for the Markov Kernel P, such that

k
WQ(WOP,f,W) < (1 — /5% 4+ +2/2 (1/UiL + 1/03)) Wo (7%, 7).
[ |
Lemma 3.34 shows the existence of an invariant distribution ., € Po(RY) for P, and
the next lemma specifies this distribution of ..

Lemma 3.35. Assume v € (O,2(c‘f1cr2)4[6'2(o"1L + U%)}_l). Then, the stationarity dis-
tribution my is Gaussian with parameters given by

Proof First, let £k € N be fixed and introduce

2 ~ 2
v, 1 ymo T | pe2
=1l-=+-—=5+= == -—|=+=
@ 62+ 2 <a%+aé>’ B o2 2 <a%+a§)’
5 Y
Zk—<1—2_2)22k—1+z2k-
g

Moreover, consider (A;);en the stochastic process following (3.156) and initialized at
7. By induction, we know that

k—1 k—1
Ap=a A0+ 8Y o' +\7) a2, (3.158)
=0 =0

Since Ay, is distributed according to WWP,;C , we have that Aj, follows 7. Denote yfj the
distribution of \ﬁzfz_ol b1z, — ﬁZ;:Ol o!, combining (3.158) with the definition
of the Wasserstein, we have

2

W3 (777, 1/13) <E |||A; — \Fyz of =z — BZal = o’*E [HAOHQ} . (3.159)

Since Ay is distributed according to 7, belonging to P2 (R?), we deduce that E[|| 4g||?] <
oo. Consequently, (3.159) implies that (V,];;)keN converges to 7y, but using the fact
that (V,’j)keN converges to a Gaussian distribution, we obtain by uniqueness of the
limit in metric space (Pa(R?), Ws) that 7., is a Gaussian distribution. Recalling that
m,) denotes the expectation of the random variable distributed according to 7, using
(3.156) at stationarity yields

Y _ Y M(y) — K1 My) — K2
m(v):m(v)_(m(v)_m>+2< P >

01 )
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Thus, we deduce that

i — (702/2) (m /ot + pa/o3)

1— (152/2) (1/ot + 1/03)

M) =

In addition, we can obtain the standard deviation o, of 7, since we have

k-1 k-1 k=1 (1 — a2¥)
! k—l-17 | _ k—1-17 | _ - 5
Var BZ@ —I—\ﬁZa Z; | =~ Var Za Z —ﬁVar(Zo)
1=0 1=0 1=0
7 Var(Z)
k—o0 1—0a2
2
v(2- %+ 7)
2
1- (1—;+722 <01%+;4>>
2
_ 1 - 555 + gt
= 2
1 1,1 1 1,1
52—3<0§+Ug> —3 c-f?—g((,;lJFag))

Theorem 3.36. Assumey € (0, 2(0y09) 452 (0 + a%)]_l). Then, the Wasserstein dis-
tance between the stationnary distribution 7, and the target m of FALD is lower bounded
as

52

o
g Rl B
o1 03

Ws (mw) > % }ul —,u2}

Proof Based on Lemma 3.35, we know that 7, is Gaussian with parameters (m,), 0(27))

and using that 7 is Gaussian too with parameters (i, 52) given in (3.155), we have that

2
2 2 254 1 1
2 - _ o _ M1 M2
W3 (mom) = (mey = m) + (o0 =) = 25 <ﬁ*ug>m‘af‘ﬁ

_ %t (11 — o)’ (1 1>2

2 2
4 o] 0
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3.D Analysis of the complexity and communication cost

In this section, we study the optimal choices of k,~ when p. is fixed. For ¢g,c1,co >0
fixed, we consider the following optimization problem:

mingens 450 { K}

Subject to {co exp (—81{:7/771) +e1y+ey? < 62} '

Using that the constraint must be saturated at the optimum (which can be proved), we
can write k as a function of . Hence, the problem becomes

. 8 c
ming - {m log <52—01’70—62’Y2> } . (3.160)

Subject to 0 < v and €2 — ¢1y — 2y > 0

Let us introduce z € RY,, defined by z = €2y and let & = e?co. We can rewrite (3.160)

as
. 8
ming , {esz log <€2(1—C1C§2—621:2)> } ) (3161)

Subject to 0 < z and 1 — ¢jz — é22 > 0

Consider p = —c1/(2¢2), 0 = +/c}/(4¢3) + 1/, and denote z = (z — p)/o. Since
T = p+ zo, we can verify that 1 — cjx — é&2? = &0?(1 — 22). Hence, (3.161) is

equivalent to
. 8
Mg ~ {62m(u+za) log <5252020(()1—22)> } .

Subject to — /o <z <1

According to the intermediate value theorem, we have the existence of z. (not necessarily
unique, but we can consider one of the solutions) such that

log(1 — 22)
Ze = argmax { ———= 5.
—pfo<z<1 M+ zo
Thus, the solution is
N e i
c1/2 + ze/471 &3 + €2co
B 8(01/2—1—26\/4_1 C%+€202) ( co )

T ém (262 + (4€2co) 71 (22 — l)c%) 2(ci/4+ )2 (1 - 22)

FALD. According to the Theorem 3.1, we have

co = I(o)
c1 =V, + (1 — 1HX]) Jn+ 1 —-71)(1—-n"Yd/p. .
¢ = lrxiJ/n+ (1= po) {H+peVe + d/n} /o
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If ¢; > 0, define w = e?cy/c?. For e € (0,c¢1/+/2¢3], we have 0 < w < 1/2. Consider
z=1—w, we get that
1

2
1 1
[l < <l-w<1-2 2= <.
<O’) 1+4€e2co/c? ~ 142w — w= W w &

Hence, the previous inequalities show that —u/o < z < 1, and for this choice

c1/2 + 2y/471¢2 + ¢y < c1 +€(1 —w)/cz
22 4 (4€2c9) 1 (22— 1)e? ~ T/8+ (w—2+1/64)w’

Thus, for any € € (0, ¢1(2y/c2) '], we deduce that w < 1/4. Therefore, we have shown
that K. = O((e2m)~!(c1 + €,/c2)). Moreover, this result is immediately valid when
c1 = O since z, = arg maxg, {2 'log(1 — 22)}. Furthermore, when pc | 07, pe (K. =
O((em)~'v/n=1J) as stressed in the main chapter.

VR-FALD*. Using Theorem 3.3, we obtain

co = " (po)
cr=(1—-1uxi)d/n+ 1 -7)1-n"1)d/p .
Co = 1HX1J/n + (1 - pc) {pcve + d/n} /pg

When assuming HX 1 and 7 = 1, we have ¢; = 0. Hence, z. = arg max,_,, {271 log(1 — 2z2)}

and therefore
8, /CQ Co
K, = 1 _— .
T emz ©8 <€3‘/02(1 - z?))

When pe . | 07, the minimum number of communications becomes pe K = O(efl n=1d).
Finally, setting pe. = 1 gives K. = O(e " 'vn=1J + n~1wd).

Table 3.5 — Complexity and communication settings of Figure 3.1.

PARAMETER d m w H J V. V.,
VALUE 10 1 10 100 20 10 30

3.E Numerical experiments

3.E.1 Gaussian example

In this first experiment, we consider n = 100 clients associated with potentials: Vi € [n],
Uiz eRTw (1/2)(x — pi) TS (x — p4) in dimension d = 20. In this particular case,
we know, that the posterior distribution m o exp(— > i, U*) is Gaussian with mean
z, = 31 (3.3, ;) and covariance ¥, = (327, X7 1)~ Also, we have a close formula
to calculate [ Hx - iL‘*HQ dm(z), since this quantity is equal to Trace(X,). To speed up
the calculations, we initialize all chains at z,, we discard the first 10% of the samples and
keep all others. Moreover, we consider the step-size ¥ = 2[Amin(X5 1) + Amax (S5 )] 71
for Langevin Monte Carlo (Dalalyan and Karagulyan, 2019; Durmus and Moulines,
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2019), and we run the algorithms for the step-sizes v € {pf, p?, pfg} associated with

Pe € {%, %, 2—10} We set the probability of updating the control variates g. = p¢ so as not
to increase the communication cost too much. We also consider the two extreme values
of the parameter 7 € {0,1} to determine whether it is preferable to have independent
Gaussian noise on each client or if it is better to have a common one.

3.E.2 Bayesian Logistic Regression

The second experiment is performed on the Titanic dataset, which is in the public
domain and licensed under the Commons Public Domain Dedication License (PDDL-
1.0). We distribute this dataset heterogeneously across n = 10 clients by drawing
a Dirichlet random variable for each label on the standard n — 1 simplex. Since the
sum of the coordinates of these random variables equals 1, each coordinate indicates the
fraction of labels to be distributed to each client. To have access to ground truth, we also
implement Langevin Stochastic Dynamics (LSD). We compute K = 250000 iterations,
each time considering a burn-in period of length 10% initialized with a warm start
provided by SGD. The ith client uses its local dataset {(z;;, ozj) E R*x{0,1} : j € [Ny]}
to calculate the local potential U'(z) = Zj ' [0 log(1 +exp(—=z )) + (1 —045) log(1+
exp(z;; Tx))] + A|z||?, where A = 1 is associated with the Ganblan prior. Denote Ziyain

the matrlx whose lines are the covariates z~, and write ¥ = ZtmmZtraLln We run the

-1

i
algorithms with minibatches of size b; = 1J a step-size ¥ = 2[Amin(Z) + Amax(2)]
for FALD, VR-FALD* and equal to v/n for LSD with thinning inversely proportional to
the step-size. Moreover, we consider a communication probability of p. = 1/20 and
clients update their control variates with probability g. = p.. Finally, to evaluate the
obtained results, we consider the accuracy, agreement, and total variation, as well as
the calibration results such as ECE, BS, and NLL, which are described below.

Accuracy. Based on samples from the approximate posterior distribution, we com-
pute the minimum mean squared estimator (i.e., which corresponds to the posterior
mean) and use it to make predictions for the test dataset. The Accuracy metric corres-
ponds to the percentage of well-predicted labels.

Agreement. Let p.s and p denote the predictive densities associated with HMC
and an approximate simulation-based algorithm, respectively. Similar to [zmailov et al.
(2021), we define the agreement between p,of and p as the proportion of test data points
for which the top-1 predictions of p.. and p, i.e.

Z 1 |argmax pyer(y' | #) = argmaxp(y’ | x)
2EDtest y, y’

agreement (pref, p) = | |
test

Total variation (TV). By denoting ) as the set of possible labels, we consider the
total variation metric between p.o¢ and p, i.e.

TV(prefa p 2|Dtest| Z Z

-’EGDteit Yy E)’

prefy ‘JJ (y,’x) .
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Expected Calibration Error (ECE). To measure the difference between the ac-
curacy and confidence of the predictions, we group the data into M > 1 buckets defined

for each m € [M] by B, = {(2,¥) € Diest : P(Yprea(2)|T) € } (m—1)/M,m/M|}. Asin

the previous work of Ovadia et al. (2019), we denote the model accuracy on By, by

1
ace (Bm) =T 7 Z Ly ea(@)=y
[Bun|
(2,y)€EBm
and define the confidence on By, by
1
conf (Bm) = 7‘B { Z p(ypred($)|$)'

" (z,y)€Bm

As emphasized in Guo et al. (2017), for any m € [M] the accuracy acc (By,) is an un-
biased and consistent estimator of P (ypred(x) =y | (m—1)/M < p(Ypred(x)|z) < m/M)
Therefore, the ECE is defined by
- |
ECE =

2 |Dt:;t“ ’acc (Bm) — conf (Bm)‘

and is an estimator of

E(z.y) “ PP (ypred(x) =y | p(ypred($)|$)> —p(ypred(:c)|x)”.

Thus, the ECE measures the absolute difference between the confidence level of a pre-
diction and its accuracy.

Brier Score (BS). The BS is a proper scoring rule (see for example Dawid and
Musio (2014)) that can only evaluate random variables taking a finite number of values.
Denote by Y the finite set of possible labels, the BS measures the confidence of the
model in its predictions and is defined by

Bsz,pj, S S (oly = clr) — 1,202
est (

xvy)eptest CE:)/

Normalized Negative Log Likelihood (nINLL). This classical score defined by

1
nNLL = ———— Z log p(y|x)
(x»y)EDtest

measures the ability of the model to predict good labels with high probability.

Highest posterior density (HPD). Under the Bayesian paradigm, we are inter-
ested in quantifying uncertainty by estimating the regions of high probability. For all

a € (0,1), we run each algorithm to estimate 728 > 0 such that fRa n(r)dz =1 - q,
where Ry = {z € R%: 71(2) > exp(—712%°)}. Then we define the relative HPD error as
ng}go /nESP — 1], where ntSP is estimated based on the samples drawn with the Langevin
Stochastic Dynamics method.
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METHOD SGLD pSGLD FALD VR-FALD* FSGLD
Accuracy 99.1+0.1 99.2+0.1 99.14+£01 99.2+0.1 985=£0.2
103 XECE 6.88+27.07 21.6+£11.1 4.07+0.80 4.34+1.26 6.34+1.90
10%2xBS 1.66+1.76 1.45+0.12 1474+045 1.394+0.07 2.39+1.72
10% xnNLL 3.53+£5.08 424+1.14 3.06£043 3.43+£0.37 4.87+0.51
Weight Decay 5 5 5 5 5
Batch Size 64 64 8 8 64
Learning rate le-07 1e-08 1e-07 1e-07 1e-08
Local steps N/A N/A 20 20 20
Burn-in 100epch. 100epch. 1le04 le04 le04
Thinning 1 1 1e03 1e03 1e03
Training 1leO3epch. 1leO3epch. 1e05it. 1e05it. 1e05it.

Table 3.6 — Performance of Bayesian FL algorithms on MNIST.

3.E.3 Bayesian Neural Network: MNIST

To investigate the behavior of the proposed algorithms in a highly non-convex setting,
we perform a first Deep Learning experiment on the MNIST dataset (Deng, 2012),
which can be publicly downloaded using the torchvision package and is available under
the Creative Commons Attribution-Share Alike 3.0 license. To this end, we distribute
the entire dataset across n = 20 clients in a highly heterogeneous manner to train the
LeNet5 neural network (LeCun et al., 1998). The MNIST real-world dataset consists
of 70000 grayscale images of size 28 x 28 associated with the 10 digits. This dataset is
divided into two subsets: the training set, which contains 60000 images, and the test
set, which consists of the remaining 10000 images. We report the median of the scores
with their associated hyperparameters in Table 3.6. The burn-in corresponds to the
number of steps performed before we start storing the samples, and the thinning is the
frequency with which we keep the samples. We also consider a Gaussian prior which
corresponds to a squared norm regularizer with weight decay. We initialized FSGLD
(El Mekkaoui et al., 2021) with a global SGD warm start combined with local SWAG
(Maddox et al., 2019) to learn Gaussian conducive gradients.

3.E.4 Bayesian Neural Network: CIFAR10

In this last experiment, we consider the more challenging dataset CIFAR10 (Krizhevsky
et al., 2009), which is available under license MIT and contains images of size (3, 32, 32).
We used different approaches to sample the weights for the ResNet-20 model (He et al.,
2016), which is publicly available in the pytorchev library. We initialized the algorithms
with 10 different parameters using SGD (400 epochs) trained with a OneCycleLR sched-
uler (Smith and Topin, 2019), and we also use data augmentation with a minibatch of
size 128 and a learning rate of 2e-7. Based on these initializations, we ran 10 chains in
parallel for SGLD, FALD, and VR-FALD* with step-sizes of 1le-7, 2e-8, 1e-8. We considered
le4 iterations with only one stored sample every le3 iterations (we did not keep the
initial weights obtained by SGD to make the predictions). For each chain, we can see
that Bayesian model averaging increases the accuracy. To compare the behavior of the
mentioned algorithms, we compute the accuracy, the agreement, i.e., the percentage
of time the top-1 prediction of an algorithm matches that given by the HMC, and the
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METHOD HMC SGD DEEP ENs. SGLD FALD VR-FALD*
Accuracy 89.6+0.25 91.574+0.34 91.68+0.17 89.96+0.72 92.544+0.04 92.03 £0.09
Agreement 94.0+0.25 90.99+0.35 91.03+£0.43 92.43+0.03 91.53+0.39 91.12+0.39
10x TV 0.744+0.03 1.454+0.05 1.494+0.05 1.03+0.03 1.42+0.01 1.39+0.01
102 xECE 5.94+NA 4,71 +1.35 5.44 4+ 0.67 4.41 +0.37 3.794+0.11 3.26 £ 0.09
10xBS 1.44+NA 1.694+0.11 1.45+0.10 1.534+£0.10 1.16 £=0.03 1.20£0.03
10xnNLL 3.07NA 3.35£0.70 3.814+0.51 3.15+£0.21 2.75+£0.04 2.63+0.04

Table 3.7 — Performance of Bayesian FL algorithms on CIFAR10.

total variation (TV) between the predictive distribution given by an algorithm with the
one associated with the HMC sampler. We also give some classical calibration scores
(Guo et al., 2017), such as the expected calibration error (ECE), the Brier score (BS),
and the negative log-likelihood (nNLL).



Part 111

Federated Uncertainty
Quantification via Bayesian &
Frequentist approaches

“Uncertainty is the fuel of curiosity and the foundation of exploration.”

169



QLSD: Quantized Langevin
Stochastic Dynamics

Contents
4.1 Introduction . . . . . . . . . . .. 170
4.2 Quantized Langevin Stochastic Dynamics . . . ... .. ... ... ... 173
4.3 Theoretical analysis . . . . . . . .. ... 177
4.4 Numerical experiments . . . . . . . . .. ... o 180
4.5 Conclusion . . . . . . . . e e 183
4.A Proof of Theorem 4.5 . . . . . . . . . . . . .. .. ... .. 184
4.B Proof of Theorem 4.7 . . . . . . . . . . . . .. .. . . . 194
4.C Proof of Theorem 4.8 . . . . . . . . . . . . . . ... .. .. 199
4.D Consistency analysis in the big data regime . . . .. .. ... ... ... 211
4. E Experimental details . . . . . . ... ... 0000000 213

The objective of Federated Learning (FL) is to perform statistical inference for data
which are decentralized and stored locally on networked clients. FL raises many con-
straints which include privacy and data ownership, communication overhead, statistical
heterogeneity, and partial client participation. In this chapter, we address these prob-
lems in the framework of the Bayesian paradigm. To this end, we propose a novel
federated Markov Chain Monte Carlo algorithm, referred to as Quantized Langevin
Stochastic Dynamics which may be seen as an extension to the FL setting of Stochastic
Gradient Langevin Dynamics, which handles the communication bottleneck using gradi-
ent compression. To improve performance, we then introduce variance reduction tech-
niques, which lead to two improved versions coined QLSD* and QLSD™. We give both
non-asymptotic and asymptotic convergence guarantees for the proposed algorithms.
We illustrate their performances using various Bayesian Federated Learning bench-
marks.

4.1 Introduction

A paradigm shift has occurred with Federated Learning (FL) (McMahan et al., 2017,
Kairouz et al., 2021). In FL, multiple entities (called clients) which own locally stored
data collaborate in learning a “global” model which can then be “adapted” to each client.
In the canonical FL, this task is coordinated by a central server. The initial focus of
FL was on mobile and edge device applications, but recently there has been a surge of
interest in applying the FL framework to other scenarios; in particular, those involving
a small number of trusted clients (e.g. multiple organisations, enterprises, or other
stakeholders).
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Table 4.1 — Overview of the main existing distributed /federated approximate Bayesian
approaches. Column Comm. overhead gives the scheme employed to address the
communication bottleneck. Column Heterogeneity means that the proposed approach
tackles the impact of data heterogeneity on convergence while column Bounds highlights
available non-asymptotic convergence guarantees.

Method Comm. overhead Heterogeneity Partial participation Bounds
Hasenclever et al. (2017) local steps X X X
Nemeth and Sherlock (2018) one-shot X X X
Bui et al. (2018) local steps X v X
Jordan et al. (2019) one-shot X X v
Corinzia et al. (2019) local steps X v X
Kassab and Simeone (2022) local steps X 4 X
El Mekkaoui et al. (2021) local steps X X v
Plassier et al. (2021) local steps X X v
Chen and Chao (2021) local steps v v X
Liu and Simeone (2021a) one-shot X X X
This work compression v v v

FL has become one of the most active areas of artificial intelligence research over the past
5 years. FL differs significantly from the classical (distributed) ML setup (McMahan
et al., 2017): the storage, computational, and communication capacities of each client
vary amongst each other. This poses considerable challenges to successfully deal with
many constraints raised by (i) partial client participation (e.g. in mobile applications, a
client is not always active); (ii) communication bottleneck (clients are communication-
constrained with limited bandwidth usage); (iii) model update synchronization and
merging.

Many methods derived from stochastic gradient descent techniques have been proposed
in the literature to meet the specific FL constraints (McMahan et al., 2017; Alistarh
et al., 2017; Horvath et al., 2022; Karimireddy et al., 2020; Li et al., 2020b; Philippenko
and Dieuleveut, 2020), see Wang et al. (2021) for a recent comprehensive overview.
Whilst these approaches have successfully solved important issues associated to FL,
they are unfortunately unable to capture and quantify epistemic predictive uncertainty
which is essential in many applications such as autonomous driving or precision medicine
(Hunter, 2016; Franchi et al., 2020). Indeed, these methods only provide a point estimate
being a minimizer of a target empirical risk function. In contrast, the Bayesian paradigm
(Robert, 2001) stands for a natural candidate to quantify uncertainty by providing a
full description of the posterior distribution of the parameter of interest, and as such has
become ubiquitous in the machine learning community (Andrieu et al., 2003; Hoffman
et al., 2013; Izmailov et al., 2020, 2021).

In the last decade, many research efforts have been made to adapt serial workhorses of
Bayesian computational methods such as variational inference, expectation-propagation,
and Markov chain Monte Carlo (MCMC) algorithms to massively distributed architec-
tures (Wang and Dunson, 2013; Ahn et al., 2014; Wang et al., 2015; Hasenclever et al.,
2017; Bui et al., 2018; Jordan et al., 2019; Rendell et al., 2020; Vono et al., 2022a).
Since the main bottleneck in distributed computing is the communication overhead,
these approaches mainly focus on deriving efficient algorithms specifically designed to
meet such a constraint, requiring only periodic or few rounds of communication between
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a central server and clients; see Plassier et al. (2021, Section 4) for a recent overview.
As highlighted in Table 4.1, most current Bayesian FL methods adapt these approaches
and focus almost exclusively on Federated Averaging type updates (McMahan et al.,
2017), performing multiple local steps on each client. This is in contrast with predictive
FL algorithms (which are not estimating predictive uncertainty), for which a variety of
schemes have been explored, e.g. via gradient compression or client subsampling (Wang
et al., 2021, Section 3.1.2). Moreover, very few Bayesian FL works have attempted to
address the challenges raised by partial device participation or the impact of statist-
ical heterogeneity; see Liu and Simeone (2021b); Chen and Chao (2021). Convergence
results in Bayesian FL lag far behind “canonical” FL.

In this chapter, we attempt to fill this gap, by proposing novel MCMC methods that
extend Stochastic Langevin Dynamics to the FL context. It is assumed that the clients’
data are independent and that the global posterior density is therefore the product of the
non-identical local posterior densities of each client. To meet the specificity of Bayesian
FL, each iteration of the proposed approaches only requires that a subset of active clients
compute a stochastic gradient oracle for their associated negative log posterior density
and send a lossy compression of these stochastic gradient oracles to the central server.
The first scheme we derive, referred to as Quantized Langevin Stochastic Dynamics
(QLSD), can interestingly be seen as the MCMC counterpart of the QSGD approach in
FL (Alistarh et al., 2017), just as the Stochastic Gradient Langevin Dynamics (SGLD)
(Welling and Teh, 2011) extends the Stochastic Gradient Descent (SGD). However, QLSD
has the same drawbacks as SGLD: in particular, the invariant distribution of QLSD may
deviate from the target distribution and become similar to the invariant measure of
SGD when the number of observations is large (Brosse et al., 2018). We overcome this
problem by deriving two variance-reduced versions QLSD* and QLSD' that both include
control variates.

Contributions. (1) We propose a general MCMC algorithm called QLSD specifically
designed for Bayesian inference under the FL paradigm and two variance-reduced altern-
atives, especially tackling heterogeneity, communication overhead and partial participa-
tion. (2) We provide a non-asymptotic convergence analysis of the proposed algorithms.
The theoretical analysis highlights the impact of statistical heterogeneity measured by
the discrepancy between local posterior distributions. (3) We propose efficient mechan-
isms to mitigate the impact of statistical heterogeneity on convergence, either by using
biased stochastic gradients or by introducing a memory mechanism that extends Hor-
vath et al. (2022) to the Bayesian setting. In particular, we find that variance reduction
indeed allows the proposed MCMC algorithm to converge towards the desired target
posterior distribution when the number of observations becomes large. (4) We illus-
trate the advantages of the proposed methods using several FL. benchmarks. We show
that the proposed methodology performs well compared to state-of-the-art Bayesian FL
methods.

Notations and Conventions. The Euclidean norm on R? is denoted by || - ||, and
we set N* = N\ {0}. For n € N*, we refer to {1,...,n} with the notation [n]. For
N € N*, we use pn to denote the power set of [N] and define pn, = {z € pn :
Card(xz) = n} for any n € [N]. We denote by N(m,X) the Gaussian distribution
with mean vector m and covariance matrix X. We define the sign function, for any
z € R, as sign(z) = 1{z > 0} — 1{z < 0}, and define the Wasserstein distance of
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order 2 for any probability measures i, on R? with finite 2-moment by Wa(u,v) =
(infeer () Jpaxga 10— 0'1°DC(0, 0'))'/2, where T (u,v) is the set of transference plans
of p and v.

4.2 Quantized Langevin Stochastic Dynamics

In this section, we present the Bayesian FL framework and introduce the proposed
methodology called QLSD along with two variance-reduced instances.

Problem Statement. We are interested in performing Bayesian inference on a para-
meter § € R? based on a training dataset D. We assume that the posterior distribution
admits a product-form density with respect to the d-dimensional Lebesgue measure, i.e.

(0| D) =27 T[], e Vi), (4.1)

where n € N*and Zr = [pa [T, eUi9) 46 is a normalization constant. This framework
naturally encompasses the considered Bayesian FL problem. In this context, {e_Ui}iE[n]
stand for the unnormalized local posterior density functions associated to n clients,
where each client i € [n] is assumed to own a local dataset D; such that D = U ;D;. The
dependency of U; on the local dataset D; is omitted for brevity. A real-world illustration
of the considered Bayesian problem is “multi-site fMRI classification” where each site
(or client) owns a dataset coming from a local distribution because the methods of data
generation and collection differ between sites. This results in different local likelihood
functions, which combined with a local prior distribution, lead to heterogeneous local
posteriors.

As in embarrassingly parallel MCMC approaches (Neiswanger et al., 2014), (4.1) im-
plicitly assumes that the prior can be factorized across clients, which can always be
done although the choice of this factorization is an open question. This product-form
formulation can be alleviated by considering a global prior on 6 and only calculating its
gradient contribution to the central server during computations, see Algorithm 4.5.

A popular approach to sample from a target distribution with density 7 defined in (4.1)
is based on Langevin dynamics with stochastic gradient which, starting from an initial
point 6y, defines a Markov chain (fx)ken by recursion:

Vk e N, Ok1 = Ok — YHy41(0k) + /27 Zj11, (4.2)

where v € (0, '_y] , for some 4 > 0, is a discretization time step, (Zx)ren~ is a sequence of
i.i.d. standard Gaussian random variables and (Hy)xen stand for unbiased estimators of
VU with U = Y7 | U; (Parisi, 1981; Grenander and Miller, 1994; Roberts and Tweedie,
1996). In a serial setting involving a single client which owns a dataset of size N € N*,
the potential U writes U = U; = Zjvzl Us,j for some functions Uy ; : R 5 R, and a
popular instance of this framework is SGLD (Welling and Teh, 2011). This algorithm con-
sists in the recursion (4.2) with the specific choice Hy11(0) = (N/n) > ¢, ,, VU;(0),
where (Sg)ren+ is a sequence of i.i.d. uniform random subsets of [N] of cardinal n.

In the FL framework, we assume that at each iteration k, the i-th client has access to

(4)

an oracle H; /|, based on its local negative log posterior density U;, depending only on

D;, so that Hyyq = Y iy ngl is a stochastic gradient oracle of U. Note that we do
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not assume that H 1521 is an unbiased estimator of VU;, but only assume that Hyyq is
unbiased. This allows us to consider biased local stochastic gradient oracles with better
convergence guarantees, see Section 4.3 for more details. A simple adaptation of SGLD

to the FL framework under consideration is given by recursion:

Ok+1 = Ok — 'YZZ 1 k+1(‘9k) + V2V Zj 41, keN. (4.3)

If for any ¢ € [n], every potential function U; also admits a finite-sum expression i.e.
U; = Z;Vll Ui j, similar to SGLD, we can for example use the local stochastic gradient

oracles H,gll(e) = (N;/b;) Z.Es(i) VU; ;(0), where (SIE::)-l)k‘EN* ic[n) stand for i.i.d. uni-

form random subsets of [IV;] of Cardlnal b;. However, considering the MCMC algorithm
associated with the recursion (4.3) is not adapted to the FL context. Indeed, this al-
gorithm would assume that each client is reliable and suffers from the same issues as SGD
in a risk-based minimization context, especially a prohibitive communication overhead
(Girgis et al., 2020).

Proposed Methodology. To address this problem, we propose to both account for
the partial participation of clients and reduce the number of bits transmitted during the
upload period by performing a lossy compression of a subset of {H 15:21}ie[n},keN*- This
method has been used extensively in the “canonical” FL literature (Alistarh et al., 2017,
Lin et al., 2018; Haddadpour et al., 2021; Sattler et al., 2020), but interestingly has
never been considered in Bayesian FL; see Table 4.1.

To this end, we introduce a compression operator C : R? — R? that is unbiased, i.e. for
any v € RY, E[C(v)] = v. In recent years, numerous compression operators have been
proposed (Seide et al., 2014; Aji and Heafield, 2017; Stich et al., 2018). For example, the
QSGD approach proposed in Alistarh et al. (2017) is based on stochastic quantization.

QSGD considers for C a component-wise quantization operator parameterized by a num-
ber of quantization levels s > 1, which for each j € [d] and v = (v1,...,vq) € R? are

given by
S|V,
&< T4l - ljD 7 (4.4

where [; = [s]vj]/ H’UHJ and {&;}e[q is a sequence of i.i.d. uniform random variables

et ) = Dlsents) (lj .

on [0,1]. In this particular case, we will denote the quantization of v via (4.4) by
e (v) = {€07)(v)} e

The proposed general methodology, called Quantized Langevin Stochastic Dynamics
(QLSD) stands for a compressed and FL version of the specific instance of SGLD defined

n (4.3). More precisely, QLSD is an MCMC algorithm associated with the Markov chain
(0k)ken starting from 6y and defined for k € N as

Ory1 = O — Z Cry1 | H, k+1 (Ok) | + V27241,
\Akﬂ’ A

where (Ag)ren+ denotes the subset of active (i.e. available) clients at iteration k, pos-
sibly random. Note that we indexed € by k + 1 to emphasize that this compression
operator is a stochastic operator and hence varies across iterations, see e.g. (4.4). The
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derivation of QLSD in the considered Bayesian FL context is described in details in Al-
gorithm 4.5. A generalization of QLSD taking into account heterogeneous communication
constraints between clients by considering different compression operators {G(i)}ie[n] is
available in Section 4.A. In the particular case of the finite-sum setting where each client
owns a dataset of size Nj, i.e. for the choice H,(izl(e) = (Ni/b;) Ejes(“l VU, ;(0) for

k+
6 € R?, 8,521 € PN, b;» We denote the corresponding instance of QLSD as QLSD.

In this chapter, we have decided to focus only on a non-adjusted sampling algorithm
(QLSD) since the derivations of non-asymptotic results are already consequent. Moreover,
up to authors’knowledge, a consensus on the choice between Metropolis-adjusted al-
gorithms and their unadjusted counterparts has not been achieved yet.

Algorithm 4.5 Quantized Langevin Stochastic Dynamics (QLSD)

Input: number of iterations K, compression operators {Cg41 }xen, stochastic gradi-
ents {H;gﬁie[n},kel\h step-size v € (0,%] and initial point 6p.
for k=0to K —1do

for i € A1 do // On active clients Ay

Compute g 1 = Cror [H](0h)]

Send g; 1,41 to the central server.
// On the central server
Compute gy 1 = ﬁm EieAkH 8ik+1-
Draw Zj4+1 ~ N(0g4,14)

Compute 011 = O — V811 + V27 Zk41-
Send 01 to the n clients.

Output: samples {0 }5 .

Variance-Reduced Alternatives. Consider the finite-sum setting i.e. for any ¢ €
n], U; = Z;V:zl U;; where N; is the size of the local dataset D;. As highlighted in
Section 4.1, SGLD-based approaches, including Algorithm 4.5, involve an invariant dis-
tribution that may deviate from the target posterior distribution when min;c, N; goes to
infinity, as stochastic gradients with large variance are used (Brosse et al., 2018; Baker
et al., 2019). We deal with this problem by proposing two variance-reduced alternatives
of QLSD# that use control variates. The simplest variance-reduced approach, referred
to as QLSD* (see Algorithm 4.7) and discussed in more details in Section 4.8, considers
a fixed-point approach that uses a minimizer 6* of the potential U (Brosse et al., 2018,
Baker et al., 2019) defined as

0" € arg minz Ui(0). (4.5)
0cRd i=1

In this scenario, the stochastic gradient oracles write for each i € [n], k € N*, 0 €
RY and S}y € pnp, HYL(0) = (Ni/bi) ¥ 5, [VU35(6) = VU;;(6)]. Although

E[Hig+1]) = VU, note that for each i € [n], E[H,g?_l] # VU, so ngl—i)-l is not an un-
biased estimate of VU;. We show in Section 4.3 that introducing this bias improves
the convergence properties of QLSD# with respect to the discrepancy between local
posterior distributions. Since estimating 6* in a FL context might impose an addi-
tional computational burden on the sampling procedure, we propose another variance-
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reduced alternative referred to as QLSD™' (see Algorithm 4.6). This method builds
on the Stochastic Variance Reduced Gradient (SVRG): it uses control variates ((x)ken
that are updated every [ € N* iterations (Johnson and Zhang, 2013) and at each it-

eration k € N and for any client ¢ € [n], the stochastic gradient oracle H Ig:)-l defined
by H,gl(G) = (N;/b;) Zjeé‘;i"ll[vm’j(g) — VU, ;(Ck)] + VUi(¢k). To reduce the im-

pact of local posterior discrepancy on convergence, we take inspiration from the “ca-
nonical” FL literature and consider a memory term (77;(;))14;61\1 on each client ¢ € [n]
(Horvath et al., 2022; Dieuleveut et al., 2020). At each iteration k, instead of dir-
ectly compressing H ,g:)_l, we compress the difference H ,glll — n,(;), store it in g; 41, and

then compute the global stochastic gradient g, = ﬁ DicAp Bikr1 Yo 77,?).
The memory term (n,(:))keN is then updated on each client i € [n], by the recursion
n,(f)rl = 77,(:) + aly,,,(i)g; +1- The benefits of using this memory mechanism will be
assessed theoretically in Section 4.3 and illustrated numerically in Figure 4.5.

Algorithm 4.6 Variance-reduced Quantized Langevin Stochastic Dynamics (QLSD™™)

Input: minibatch sizes {b;}c[,, number of iterations K, compression operators
{Ck11}ren+, step-size v € (0,7] with 4 > 0, initial point 6y and o € (0,&] with
a > 0.
// Memory mechanism initialization
Initialize {77((31), . ,n(()n)} and no = > 77(()1).
for k=0to K —1do

// Update of the control variates

if £ =0 (mod!) then

Set (i = 0.
else
Set (k= k-1
for i € A4 do // On active clients

Draw 51221 ~ Uniform(pn, p,)-

Set H{') | (6x) = (Ni/b;) 3 jes, (VUi (0k) = VU5 (G)] + VU (Ge).

Compute g; 11 = @k+1(H1§21(9k) — ng)).
Send g; 41 to the central server.
Set 771(3-1 = ”/E;Z) +ag; ki1

// On the central server

Compute g, =K + ﬁ ZieAk+1 8ik+1-

Set N41 = Mk + Z?eAkH 8ik+1

Draw Zk+1 ~ N(Od, Id).

Compute 11 = O — V811 + V27 Zk41-
Send 011 to the n clients.

Output: samples {0 }5 .
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4.3 Theoretical analysis

This section provides a detailed theoretical analysis of the proposed methodology. In
particular, we will show the impact of using stochastic gradients, partial participation
and compression by deriving quantitative convergence bounds for QLSD, which is detailed
in Algorithm 4.5. We then derive non-asymptotic convergence bounds for QLSD* and
QLSDTT, and explicitly show that these variance-reduced algorithms indeed succeed
in reducing both the variance caused by stochastic gradients and the effects of local
posterior discrepancy in the bounds we obtain for QLSD#. We consider the following
assumptions on the potential U.

Assumption 4.1. For any i € [n], U; is continuously differentiable. In addition,
suppose that the following hold.

(i) U is m-strongly convez, i.e.  for any 01,02 € RY, (VU(61) — VU(02),601 — 02) >
m H01 — 92“2.

(it) U is L-Lipschitz, i.e. for any 61,02 € RY, |VU (61) — VU (62)]| < L||61 — 62]|.

Note that Assumption 4.1-(i) implies that U admits a unique minimizer denoted by
6* € R%.

The compression operators {Cx1 }ren are assumed to satisfy the following assumption.

Assumption 4.2. The compression operators {Cii1}ren are independent and satisfy
the following conditions.

(i) For any k € N*, v € R?, E[Cr(v)] = v.

(i) There exists w > 1, such that for any k € N*, v € R, E[||Cx(v) — v[|?] < w||v]?.

As an example, the assumption on the variance of the compression operator detailed in
Assumption 4.2-(ii) is verified for the quantization operator C®) defined in (4.4) with
w = min(d/s?,v/d/s) (Alistarh et al., 2017, Lemma 3.1).

Non-Asymptotic Analysis for Algorithm 4.5. We consider the following assump-
tions on the stochastic gradient oracles used in QLSD.

Assumption 4.3. The random fields {H,gz)rl ‘RE— Rd}ie[n},keN are independent and
satisfy the following conditions.

(i) For any @ € R and k € N, S, E[H,(ﬁl(ﬁ)] = VU (9).
(ii) There exist {M; > O}icpn), such that for anyi € [n], k € N, 01,02 € R?,

. . 2
E HHIEZ-l)-l(el) - HIE;Z—&)-I(HQ)

<M <(91 — 05, VU; (91) — VU, (92)> .

(i4i) There exist o,,B* € Ry such that for any 6 € R, k € N, we have E[||H,gil(9*)||]2 <

B*/n, and E[||>_7, H,g?rl(ﬁ*)ﬂz] < 02, where 0* is defined in (4.5).
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Table 4.2 — Order of the asymptotic biases { By, Bg 5, Ba,5 }, associated to the three pro-
posed MCMC algorithms, in squared 2-Wasserstein distance for two types of asymp-
totic. Red dependencies prevent from (quick) convergence while green dependencies
ensure convergence of associated MCMC algorithms. 6* is defined in (4.5).

Dependencies of the Dependencies of the
Algo. Bias asymptotic bias when 4 | 0 asymptotic bias as N; — oo
d H,Ei)rl B* partial particip. w
QLSD Bs d o2 B* , (1—p)/p w O(N;)
aso¥ By 4 NPOXL, VU 1-p)fp  w o(N)
QLSD*  Bgs d ] - (1-p)/p w do (1)
QLSD™t  Bgs d N; . (1-p)/p w dO (1)

We can notice that Assumption 4.3-(ii) implies that VU; is M;-Lipschitz continuous since
by the Cauchy-Schwarz inequality, for any i € [n] and any 61,60 € R? we have that
HVUz (91) —VU; ((92) ||2 < Mi<91 — 05, VU; (91) —VU; ((92)> Conversely, in the finite-
sum setting, Assumption 4.3-(ii) is satisfied by QLSD# with M; = N;M if for any i € [n]
and j € [N;], U;; is convex and VU ; is M-Lipschitz continuous, for M > 0 by Nesterov
(2003, Theorem 2.1.5).

In addition, it is worth mentioning that the first inequality in Assumption 4.3-(iii) is
also required for our derivation in the deterministic case where H ,i:)_l = VU; due to
the compression operator. In this particular case, B* stands for an upper-bound on
S IVU:(6%)|? and corresponds to some discrepancy between local posterior density
functions meaning that VU; # VU for i € [n|. This phenomenon, referred to as data
heterogeneity in the risk-based literature (Horvath et al., 2022; Karimireddy et al.,
2020), is ubiquitous in the FL context.

Finally, we assume for simplicity that clients’ partial participation is realized by each
client having probability p € (0, 1] of being active in each communication round.

Assumption 4.4. For any k € N*, Ay, = {i € [n] : B;y, = 1} where {B;}, : i €
[n], k € N*} is a family of i.i.d. Bernoulli random variables with success probability
pe (0,1].

A generalization of this scheme considering different probabilities p; per client can be
found in Section 4.A.1. Under the above assumptions and by denoting @), the Markov
kernel associated to Algorithm 4.5, the following convergence result holds.

Theorem 4.5. Assume Assumption 4.1, Assumption 4.2, Assumption 4.5 and Assump-
tion 4.4. Then, there exists Yoo such that for ¥ < 7, there exist Ay, By > 0, explicitly
given in Section 4.A, satisfying for any probability measure i € Pa(R?), any step-size
v E (0,*7] and k € N,

w3 (MQE,,TO < (1= m/2)" - W3 (n,m) + 7By
#2450 w2 [0 = 0°|P(a0),

where 0% is defined in (4.5).
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Similar to ULA (Dalalyan, 2017b; Durmus and Moulines, 2019) and SGLD (Dalalyan and
Karagulyan, 2019; Durmus et al., 2019), the upper bound given in Theorem 4.5 includes
a contracting term that depends on the initialization and a bias term vB5 that does not
vanish with & — oo due to the use of a fixed step-size . In the asymptotic scenario,
i.e. 4 1 0, Table 4.1 gives the dependencies of B for QLSD and its particular instance
QLSD#, in terms of key quantities associated with the setting we consider. Similar to
SGLD, we can observe that the use of stochastic gradients entails a bias term of order
02 O(7). On the other hand, the use of partial participation and compression compared
to SGLD introduces an additional bias of order (w/p)(mB* 4+ LMd) O(7y), which grows
with in particular B*, corresponding to the impact of the local posterior discrepancy on
convergence.

Non-Asymptotic Analysis for Variance-Reduced Alternatives. We assume in
the sequel that the potential functions {U;};c,) admit the finite-sum decomposition

U, = Zjvzll U, ; for each i € [n] and consider the following assumptions.

Assumption 4.6. For any i € [n],j € [N;], U;; is continuously differentiable and the
following holds.

(i) There exists M; > 0 such that, for any 61,0y € R?,
2
HVUZ(GQ) — VUZ(GI)H <M <92 — (91, VUz(GQ) — VUZ(91)> .
(ii) There exists M > 0 such that, for any 61,0y € R?,
2 _
HVUZ,J-(GQ) - VUi,j(el)H <# <VU1-J(92) — VU (61), 02 — 91> .

As mentioned earlier, Assumption 4.6 is satisfied if for every i € [n] and j € [N;], U; ;
is convex and VU, j is M-Lipschitz continuous. Under these additional conditions, the
following non-asymptotic convergence results hold for the two reduced-variance MCMC
algorithms described in Section 4.2. Denote by Qg the Markov kernel associated to
QLSD* with a step-size vy € (O,fy].

Theorem 4.7. Assume Assumption 4.1, Assumption 4.2, Assumption 4.4 and Assump-
tion 4.0. Then, there exists Yg oo such that for ¥ < Yg oo, there exvist Ag 5, Bg 5 > 0,
explicitly given in Section 4.B, satisfying for any probability measure u € Po(R?), any
step-size 7y € (O, 7] and k € N,

W3 (4Qho ) < (1= m/2)F - W3 (5, 7) + 7B
P e (Lm0 - 6 Putas),
Rd
where 0% is defined in (4.5).

Compared to QLSD and QLSD*, QLSD' " only defines an inhomogeneous Markov chain,
see Section 4.C.3 for more details. For a step-size v € (O,ﬂ and an iteration k € N,

we denote by ,qu,)w the distribution of 6, defined by QLSD™T starting from 6y with
distribution pu.
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Theorem 4.8. Assume Assumption 4.1, Assumption 4.2, Assumption 4.4 and Assump-
tion 4.6, and let 1 € N* and a € (0,1/(w + 1)]. Then, there ezists g oo such that for
vV < Vg,00, there exist Ag 5, Bg5,Cay > 0, explicitly given in Section 4.C, satisfying
for any probability measure p € Po(R?), any step-size y € (0, ’7] and k € N,

W2(nQSE)L 7)< (1 —m/2)F - W2 (1, 7) +~2As5(1 — m/2) W/ /Rd 10 — 6*||%1(d0)

+ 7B +1Ca5[(1 = a)* A (L —m/2)WU] Y | VUi(0M))%,
i=1

where 0% is defined in (4.5).

Table 4.2 provides the dependencies of the asymptotic bias terms Bg 5, Bgy as 7 | 0
with respect to key quantities associated to the problem we consider. For comparison,
we do the same regarding the specific instance of Algorithm 4.5, QLSD#. Remarkably,
thanks to biased local stochastic gradients for QLSD* and the memory mechanism for
QLSDT", we can notice that their associated asymptotic biases do not depend on local
posterior discrepancy in contrast to QLSD?. This is in line with non-asymptotic conver-
gence results in risk-based FL which also show that the impact of data heterogeneity
can be alleviated using such a memory mechanism (Philippenko and Dieuleveut, 2020).
The impact of stochastic gradients is discussed in further details in the next paragraph.

Consistency Analysis in the Big Data Regime. In Brosse et al. (2018), it was
shown that ULA and SGLD define homogeneous Markov chains, each of which admits a
unique stationary distribution. However, while the invariant distribution of ULA gets
closer to m as IN; increases, conversely the invariant measure of SGLD never approaches 7
and is in fact very similar to the invariant measure of SGD. Moreover, the non-compressed
counterpart of QLSD* has been shown not to suffer from this problem, and it has been
theoretically proven to be a viable alternative to ULA in the Big Data environment.
Since QLSD is a generalization of SGLD, the conclusions of Brosse et al. (2018) hold.
On the other hand, we show that the reduced-variance alternatives to QLSD that we
introduced provide more accurate estimates of 7w as IV; increases, see the last column in
Table 4.2. Detailed calculations are deferred to Section 4.D.

4.4 Numerical experiments

This section illustrates our methodology with three numerical experiments that include
both synthetic and real datasets. For all experiments, we consider the finite-sum setting
and use the stochastic quantization operator €(*) for s > 1 defined in (4.4) to perform the
compression step. In this case Assumption 4.2-(ii) is verified with w = min(d/s?,v/d/s).
Further experimental results are provided in Section 4.E.

Toy Gaussian Example. This first experiment aims at illustrating the general be-
havior of Algorithm 4.5 with respect to the use of stochastic gradients and compression
scheme. To this purpose, we set n = 20 and d = 50 and consider a Gaussian pos-
terior distribution with density defined in (4.1) where, for any i € [n] and § € R?
U;(0) = Z;V:ZI 10 — yi.311/2, {vij}tiem)jev, being a set of synthetic independent but
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Figure 4.1 — Toy Gaussian example. (top) 2D projection of the heterogeneous synthetic
dataset where each color refers to a client and each dot is an observation y; ;. (bottom)
Estimation performances of the considered Bayesian FL algorithms.

not identically distributed observations across clients and N; € [10,200], see Figure 4.1
(top row). Note that in this specific case, #* admits a closed form expression. For
all the algorithms, we choose the (optimized) step-size v = 4.9 x 10~* and choose a
minibatch size b; = | N;/10]. Instances of QLSD and QLSD* using s = 2P are referred to
as p-bits instances of these MCMC algorithms. We compare these algorithms with the
non-compressed counterpart of QLSD* referred to as LSD*, see Algorithm 4.8. Figure 4.1
shows the behavior of the mean squared error (MSE) associated to the test function
f:0— HH , computed using 30 independent runs of each algorithm, with respect to the
number of bits transmitted. We can notice that QLSD* always outperforms QLSD#and
that decreasing the value of w does not significantly reduce the bias associated to QLSD*.
This illustrates the impact of the variance of the stochastic gradients and supports our
theoretical analysis summarized in Table 4.2. On the other hand, QLSD* with s = 216
achieves a similar MSE as LSD* while requiring roughly 2.5 times less number of bits.

Bayesian Logistic Regression. In this experiment, we compare the proposed meth-
odology based on gradient compression with two existing FedAvg-type MCMC algorithms.
Since 6* defined in (4.5) is not easily available, we implement QLSD* " detailed in Al-
gorithm 4.6. We adopt a zero-mean Gaussian prior with covariance matrix 2-1072I; and
use the FEMNIST dataset (Caldas et al., 2018). We set n = 50,1 =100, « = 1/(w+1)
and v = 107°. We launch QLSD*™ for s € {2% 28 216} and compare its performances
with DG-SGLD (Plassier et al., 2021) and FSGLD (El Mekkaoui et al., 2021) which use
multiple local steps to address the communication bottleneck. We are interested in
performing uncertainty quantification by estimating highest posterior density (HPD)
regions. For any a € (0,1), we define C, = {0 € R%; —logw(0|D) < 14} where 1, € R
is chosen such that [, 7(¢|D)d¢ = 1—a. We compute the relative HPD error based on

the scalar summary 7, i.e. |17 — n=P|/nE? where nLSP

o o~ has been estimated using the
non-compressed counterpart of QLSD™, referred to as LSD™T and standing for a serial
variance-reduced SGLD, see Algorithm 4.9. Table 4.3 gives this relative HPD error for
a = 0.01 and provides the relative efficiency of QLSD™" and competitors corresponding
to the savings in terms of transmitted bits per iteration. One can notice that the pro-
posed approach provides similar results as its non-compressed counterpart while being
3 to 7 times more efficient. In addition, we show that QLSD™ provides similar perform-

ances as DG-SGLD and FSGLD which highlight that gradient compression and periodic
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Table 4.3 — Bayesian Logistic Regression.

Algorithm 99% HPD error Rel. efficiency

FSGLD 5.4e-3 6.2
DG-SGLD 5.2e-3 6.4
QLSDT* 4 bits 6.1e-3 7.6
QLSDT 8 bits 4.3e-3 6.7
QLSDT* 16 bits 6.9e-4 3.1

Table 4.4 — Performances of Bayesian FL algorithms on the considered Bayesian neural
networks problem.

Method HMC SGLD QLSD*™t QLSD*™ PP FedBe-Dirichlet FedBe-Gauss. DG-SGLD FSGLD

Accuracy 89.6 88.8 88.1 86.6 90.7 90.2 92.2 87.5
Agreement 0.94 0.91 0.90 0.90 0.90 0.89 0.91 0.91
TV 0.07 0.11 0.12 0.12 0.16 0.16 0.13 0.13

communication are competing approaches.

Bayesian Neural Networks. In our third experiment, we go beyond the scope of
our theoretical analysis by performing posterior inference in Bayesian neural networks.
We use the ResNet-20 model (He et al., 2016), choose a zero-mean Gaussian prior dis-
tribution with variance 1/5 and consider the classification problem associated with the
CIFAR-10 dataset (Krizhevsky et al.,; 2009). We run QLSD™* with s = 2, [ = 20,
a=1/(w+1), and with either p = 1 (full participation) or p = 0.25 (partial participa-
tion). We compare the proposed methodology with a long-run Hamiltonian Monte Carlo
(HMC) considered as a “ground truth” (Izmailov et al., 2021) and SGLD. For completeness,
we also implement four other distributed /federated approximate sampling approaches,
namely two instances of FedBe (Chen and Chao, 2021), DG-SGLD and FSGLD. Following
Wilson et al. (2021), we compare the aforementioned algorithms through three metrics:
classification accuracy on the test dataset using the minimum mean-square estimator,
agreement between the top-1 prediction given by each algorithm and the one given by
HMC and total variation between approximate and “true” (associated with HMC) predictive
distributions. More details about algorithms’ hyperparameters and considered metrics
are given in Section 4.F.3. The results we obtain are gathered in Table 4.4. In terms
of agreement and total variation, QLSD™" (even with partial participation) gives similar
results as SGLD and competes favorably with other existing federated approaches. Fig-
ure 4.2 complements this empirical analysis by showing calibration curves of posterior
predictive distributions.
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Figure 4.2 — Bayesian Neural Networks.

4.5 Conclusion

In this chapter, we presented a general methodology based on Langevin stochastic dy-
namics for Bayesian FL. In particular, we addressed the challenges associated with this
new ML paradigm by assuming that a subset of clients sends compressed versions of its
local stochastic gradient oracles to the central server. Moreover, the proposed method
was found to have favorable convergence properties, as evidenced by numerical illus-
trations. In particular, it compares favorably to FedAvg-type Bayesian FL algorithms.
A limitation of this work is that the proposed method does not target the initial pos-
terior distribution due to the use of a fixed discretization time step. Therefore, this
work paves the way for more advanced Bayesian FL approaches based, for example,
on Metropolis-Hastings schemes to remove asymptotic biases. In addition, although
the data ownership issue is implicitly tackled by the FL paradigm by not sharing data,
stronger privacy guarantees can be ensured, typically by combining differential privacy,
secure multi-party computation and homomorphic encryption methods. Proposing a
differentially private version of our methodology is a possible extension of our work,
that is left for further work. This work has no direct societal impact.
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4.A Proof of Theorem 4.5

This section aims at proving Theorem 4.5 in the main chapter.

4.A.1 Generalized quantized Langevin stochastic dynamics

We show that QLSD defined in Algorithm 4.5 in the main chapter can be cast into a
more general framework that we refer to as generalized quantized Langevin stochastic
dynamics. Then, the guarantees for QLSD will be a simple consequence of the ones that
we will establish for generalized QLSD. For ease of reading, we recall first the setting and
the assumptions that we consider all along the chapter. Recall that the dataset D is
assumed to be partitioned into n shards {D;}}"; such that U ;D; = D and the posterior
distribution of interest is assumed to admit a density with respect to the d-dimensional
Lebesgue measure which factorizes across clients, i.e. for any 6 € R?,

m(0) = exp{-U(0)}/ /Rd exp{—U(0)} do, U9) =Y Ui(9).
=1

We consider the following assumptions on the potential U.

Assumption 4.9. For any i € [n], U; is continuously differentiable. In addition,
suppose that the following conditions hold.

(i) U is m-strongly convez, i.e. for any 61,0y € RY,
U(Ql) > U(HQ) + <91 — 09, VU(92)> +m H01 — 92H2 /2.
(ii) U is L-Lipschitz, i.e. for any 01,0, € R?,

va(al) — VU (6)

<vlo 6.

Note that Assumption 4.9-(i) implies that U admits a unique minimizer denoted by 6* €
R<. Moreover, for any (01,6;) € R? Assumption 4.9-(i)-(ii) combined with Nesterov
(2003, Equation 2.1.24) shows that

(VU (62) ~ VU016, — 1) > % 162 - 91H2+m—1FL [vues) - VU(el)H2 - (4.6)

We consider the following assumptions on the family {H; : R? x X; — Rd}ie[n] and C.

Assumption 4.10. There exists a probability measure va on a measurable space (Xa, X2)
and a family of measurable functions {C; : R% x Xy — ]Rd}ie[n] such that the following
conditions hold.

(i) For any 0 € R? and any i € [n), fx2 Ci(0,23)) vy(dz®) = 6.
(ii) There exist {w; € Ry }iepn), such that for any 0 € R? and any i € [n],

J

Assumption 4.11. There exist a family of probability measures {Vfi)}ie[n] defined on

€i(0,2) — 0] 1a(dr®) < i o]

measurable spaces {(Xgi),)(l(i))}ie[n] and a family of measurable functions {H; : R% x
ng‘) — Rd}ie[n} such that the following conditions hold.
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(i) For any 0 € R,
. / o Hi0, 2P (d2M0) = U (6).
=1 X

(ii) There exist {M; > O};e[), such that for any i € [n], 61,0, € RY,

A@

(iii) There exists o,,B* € Ry such that for any i € [n], 0 € R, we have

A@
n

(OA* (l,i) n (’L) (171') < 2
/Xgl)xmxxgn) Z;Hz(e , L ) &i=1 12 (dﬂ? ) <og;.

. 2 .
’Hi(e% M) — Hi(0y, 96(1’1))” VY) (dz9) < m; <92 — 61, VU;(62) — VUi(91)> .

2 .
#6720 [ o9 (a2 0) < B, @7)

2

We can notice that Assumption 4.11-(ii) implies that VU; is M;-Lipschitz continuous
since by the Cauchy Schwarz inequality, for any i € [n] and any 61,6, € RY,

vawg—vmwgfgM&a-ﬂmvmwg—vmwg)

In addition, it is worth mentioning that the first inequality in (4.7) is also required for
our derivation in the deterministic case where H; = VU; for any i € [n] due to the com-

pression step. For k > 1, consider (X,il’l),...,Xlil’n))keN and (X,g2’1),...,X,£2’n))k€N
two independent sequences of random variables distributed according to V{lm) = Vfl) ®

(n)

- @v" and v§$™, respectively.

In addition, we consider the partial device participation context where at each com-
munication round k > 1, each client has a probability p; € (0,1] of participating,
independently of other clients.

Assumption 4.12. For any k € N*, Ay, = {i € [n] : B, = 1} where for any i € [n],
{Bir 1, k € N} is a family of i.i.d. Bernoulli random variables with success probability
p; € (O, 1] .

In other words, there exists a sequence (Xlig”l) . ,X,gS’n))keN of i.i.d. random variables
distributed according v3 = Uniform((0, 1]), such that for any £ > 1 and i € [n], client
i is active at step k if Xli?”l) < pi. We denote Ay = {i € [n];Xlii’Zl) < p;} the set of
active clients at round k. Given a step-size v € (0,7] for some 5 > 0 and starting from
o € RY, QLSD recursively defines (3 )ren, for any k € N, as

, o

Or1 =0k =7 D ica,,, (1/Pi) Ci(Hi (O, X;Sr’il))a X,Ei?) + V2721, (4.8)

where (Zp11)ren 18 a sequence of standard Gaussian random variables. Let X3 = [0, 1].
For any i € [n], consider the unbiased partial participation operator §; : R? x X3 — R
defined, for any 0 € R% and 2 e X3 by

1{z® < p;}

6. (4.9)
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Then, (4.8) can be written of the form

9k+1 zekaZﬁi(Hk,X,Ql)qL\/Z'kaH, keN, (4.10)
i=1
where for any ¢ € [n], we denote X,i:)_l = (X,ii?,X,gi?,X,gi?) and for any 6 €
RY, (1) ¢ Xgi), 22 e Xy and 23 € X3,

A,(6,(09 2 o)) =5, (ei (Hiw,xu:i)),x(m),xw)) . (411)

With this notation and setting for any i € [n], X = ng‘) X Xg x Xz and o0 =
1/§Z)®y2®y3, the Markov kernel associated with (4.8) is given for any (#,A) € R?x B(R?)

by
Q,(0,A) = / e [ —l6— 0> (0,22 (1)
Ax X1 x...xX(n) i1
dé 7D (deM) @ - - @ o™ (dz™)

(i) (4.12)

The following result establishes an essential property of {f[ i}ie[n] under Assumption 4.10
and Assumption 4.11.
Lemma 4.13. Assume Assumption 4.10, Assumption 4.11 and Assumption 4.12. Then,
for any 6 € R, we have

S| Hi(0,27)dr (D) = vU(9), (4.13)

2
/ > Hi(0,2) - vU(9)|| @, 7 (da)
<o { D Ly g Gp(e)) a2 By Iomb e gy
> icin] ) * . g i 5 .
where for any i € [n), H; is defined in (4.11).
Proof The first identity (4.13) is straightforward using Assumption 4.11-(i) and As-

sumption 4.10-(i). We now show the inequality (4.14). Let # € RY. Using Assump-
tion 4.10-(i) or Assumption 4.11-(i), we get

/X(l:n)

. . 2 . .
S #i(6.2) - VU )| @iy #0(a2)

2

n

i=1
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2
/ Z e ( H;(0,x lz)) (2,i)> —VU(6) (d$(2 1: n)) Q" I/§ )(dx(l’i)),
(1) xn i1
(4.15)
In addition, by Assumption 4.10-(i) and Assumption 4.10-(ii), we obtain

n

/.(1 ) Z[Hiw,x“’)—ei (Hi<9,a:“'”>,w<“>)}
X

2
@7, 7V (de)

D{i) (dx(l’i))ug(dm(Q’i))ug(d:c(s’”)

2
(0,29 —¢; (Hi((?,m(l’”),x@’i’))

i=1
~(Lopi LD V) (@) )
< Z T () x C; )@ (dz Jvz(dw )
i=1 B 1 XX2
n 1 —p; . . .
:Z( pvpl) /x<'i> ) (H 0,219y, 2 ) H;(0,259) + H;(0,21D) Vil)(dz(l’l))l/z(dx(z’l))
i=1 v 1 XX2
n 1—p; . . .
= Z ( pAp ) /);(i) § C; (H (0, paen l)) (2 1)) H;(0, paen l)) (‘L)(dm(lw))DQ(dz(?,l))
i=1 v 1 XX2
no o ) _
2> ( pvpl) /xm Hi(0, " ”Y)(dw(lﬂ))
i=1 4 1
S 1—pi aainll® @ qan
<> 2 ) @it 0| [ 02000 @), (4.16)
=1 K

Using ||a|? < 2|la — b||? + 2||b]|*> and Assumption 4.11-(ii)-(iii), for any i € [n], we
obtain

/xgw

(0, x(l’i))Hz A (da) < am; (9 — 0%, VUL(0) — VU(0") )

+ 2/ ‘
x{»

< oM <e — 0%, VU (0) — VUi(G*)> + 2B* /n.

‘Hi(e*, 3:(1,1'))H2 V%i)(dx(l,i))

Therefore, combining this result and (4.16) gives

2

/ 3 {ﬁi(a, 20 ¢, (Hl-(e, 2(10), g;W)ﬂ @, 70 (dz®) (4.17)
X(l:n) i

< zzani <1 ;p"> (wi +1) (8~ 6%, TUL(0) — VUL(6%)) + 2% zn: (1 _pi> (w; +1).

pi
(4.18)

Similarly, by Assumption 4.10-(i) and Assumption 4.10-(ii), we have

2
/ S, (Hi(6,219),520) — VU ()| 5" (@) i, o (aa1)
ln)XXn P
3 [ei (#7:(60,20:7), 220 — Hi(e,xﬂvi))}

:/ 1:
X x|l 4=

+ i{m(e, )} — vU(9)

2
®n(dx(21n)> " 1I/§)(dx(1’z))
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B Z /X(’ ) %X
2

Y , (Li)y _ n (D)5 (1)
+ /Xgm 3 H(0.a) = VU@)| &y (dat)

n
< .
< [,
i=1 1

2 ' '
V9 (dw(z))y§z) (da:(l’z))

Hy(0,20), 33(2)> — Hy(0,25)

.00 at)

2
3 < (19)y _ n ()1 (1)

Since for any a,b € R?, Ha + bH2 < 2|la))® + 2|b]|2, we have by Assumption 4.11-(i)

/);(llzn)
n

:/Xgm 2 [Hi“’vx“’“% " Hi<9,x“)>v£”<dx<l>)] oy 1 (dz 1)

N Z /Xm

<2Z / o ||He0 2 = zw*,x“’”)[/ | Hi(0,20) = Hy(0*, )i (de) | || 1y (de)
k2 Xl'L

2

@, i) (dz(9) (4.19)

> Hi(0,27) - VU (0)
=1

2

2

(0, 209) — Hi(ﬂ,x(l))uf)(dx(l))

| v (da")
x{9

2
JrQZ/W (0 20) - x@ Hi(a*’x(l))l/ii)(dﬂf(l)) Vfi)(dx(l’i))
<202 123" (VU(0) - VU0 - ). 120)
i—1
By combining (4.17), (4.19) and (4.20), we obtain
2
/X(l ) ZG ( 9 l‘ (1,8 ) 1‘(27i)> _ VU(Q) V?n(dx(Q,l:n)) ®121 . V%l)(dx(l’i))

=1

<2 zn:Mi(wi +1) <VUi(¢9) —VUi(67),6 — 0*>

2B*
— D Wi
=1

Finally, the last inequality combined with (4.15) and (4.18) completes the proof. |

In view of Lemma 4.13, it suffices to study the recursion specified in (4.10) under the
following assumption on (H;);c|,) gathered in Assumption 4.14. Indeed, Lemma 4.13
shows that Condition Assumption 4.14 below holds with X0 = X(@) = Xgi) X Xg X X3z,
X0 =20 =2 0 X0 X3, 00 = v @ vy @ vy, (i}, = {F}L,

M= 2mz[1)]<{Mi(1 + wi)/pits
1€|n
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n

B* =2[07 + (B/n) > (1 — pi +wi)/pi].
=1

Assumption 4.14. There exists a family of probability measure {I/(i)}ie[n] on a measur-
able space { (X, i’("))}ie[n] and a family of measurable functions {F; : R x X(®) — R} i)
such that the following conditions hold.

(i) For any 0 € R, we have
> / Fy(0, D)) (d2) = vU ().
i=1 JXO

(ii) There ezists (M,B*) € R? such that for any 6 € R, we have
2

[ " F(0.29) - VU@)| @iy vO(de®) < (0 - 0+, VU(0) - VU@ ) + B
x(1n) || =

Then under Assumption 4.14, consider (X,El), ... ,X,gn))keN* an independent sequence
distributed according to ®§‘:1V(i). Define the general recursion

Orpr = 0 — 7Y Fi(0k. X\ + V2V Zks1,  keEN
=1

and the corresponding the Markov kernel given for any v € R, 0 € R%, A € B(R?) by

2

Q+(0,A) = (47[7)_d/2/ exp(—(4y) ™! ydAder, v ().

A><)~((1!’IL)

0—60+~7> Fi(6,2")
=1

(4.21)
We refer to this Markov kernel as the generalized QLSD kernel. In our next section, we
establish quantitative bounds between the iterates of this kernel and 7 in W5. We then
apply this result to QLSD and QLSD* as particular cases.

4.A.2 Quantitative bounds for the generalized QLSD kernel
Define
T=NARAY, 1 =2/B@+L)], e=@+L+H)7 53=(10m)".

Theorem 4.15. Assume Assumption 4.9 and Assumption 4.14. Then, for any probab-
ility measure p € Po(RY), any step-size v € (O, *’y] , any k € N, we have

W3 (uQ5, ™) < (1 —ym/2) W3 (i, 7) +~B5 + 7" A5(1 ~ HW/?)k_lk/Rd 16— 6*[1*11(d0),
where Q- is defined in (4.21) and

By = (2dL% /m)(1/m + 57) |1 4+ FL?/(2m) + ’72L2/12} + 2B* /m 4 2LM(2d + 5B*) /m?

= LM.

o
2
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Let £ € Po(R??) be a probability measure on (R??, B(R??)) with marginals ¢; and &,
i.e. (A x RY) = & (A) and £(A x R?) = &(A) for any A € B(R?). Note that under
Assumption 4.9, the Langevin diffusion defines a Markov semigroup (F;)¢>o satisfying
wP; = 7 for any t > 0, see e.g. Roberts and Tweedie (1996, Theorem 2.1). We introduce
a synchronous coupling (Up,0r) between & Py, and 52(:25 for any £ € N based on
a d-dimensional standard Brownian motion (B;):>0 and a couple of random variables
(B0, Vo) with distribution £ independent of (By)>0. Consider (9¢):>0 the strong solution
of the Langevin stochastic differential equation (SDE)

dvy = —=VU(9,)dt + V2 dB;, (4.22)

starting from Jy. Note that under Assumption 4.9-(i), this SDE admits a unique strong
solution (Revuz and Yor, 2013, Theorem (2.1) in Chapter IX). In addition, define
(0k)ken starting from 6y and satisfying the recursion: for k& > 0,

n
Orer = Ok =7 > Fi(Ok, @) 1) + V2(Byopr) — Bo), (4.23)
i=1
§1)7 e ,xgn)) jen+ is an independent sequence of random variables with distri-
bution ®?:11/(i). Then, by definition, (1, 60) is a coupling between &; Py, and ngE/
for any k£ € N and therefore

where (z

1/2

Wa(€1Per, €2Q5) < B [l — 00| (4.24)

We can now give the proof of Theorem 4.15.

Proof By Villani (2008, Theorem 4.1), for any couple of probability measures on RY,
there exists an optimal transference plan £* between v and 7 since m € Po(R?) by
the strong convexity assumption Assumption 4.9-(i). Let (t9,6p) be a correspond-
ing coupling which therefore satisfies Wa(u,n) = E/ 2[H190 —90H2]. Consider then
(k) ken, (Ok ) ken defined in (4.22)-(4.23) starting from (Yo, 0p). Note that since 7P, = 7
by Roberts and Tweedie (1996, Theorem 2.1) for any ¢ > 0 and 6y has distribu-
tion 7, we get by Durmus and Moulines (2019, Proposition 1) that for any k € N,
E[||9g, — 0*]|?] < d/m and then Lemma 4.17 below shows that for any k € N,

B9 41yy — Or41]2) < Ay El[95, — Ocl1%] +LHE |8 — 67|2] & + 47D,
where we have set
ky =1—7m(l —5ym), Ay=1-—"m [2 —y(m+ 1\71)] , Dy, =Dg, + (1/m+ 57)(vdL*/2m).

A straightforward induction shows that

—_

k— 2
Y * ~k—1— Y D

Ell g, — 04l < W3 (1, w(-|D)) +7*LRE [|Ifg — 0*[12] D2 ks~ 4 LT

I= v

Using Ky A Ry <1 —my/2 since v <7, (4.24) and 7P, = 7 for any ¢ > 0 completes the
proof. |
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Supporting Lemmata

In this subsection, we derived two lemmas. Taking (0y)ren defined by the recursion
(4.23), Lemma 4.16 aims to upper bound the squared deviation between 6 and the
minimizer of U denoted 6*, for any k € N.

Lemma 4.16. Assume Assumption 4.9 and Assumption 4.14. Let~y € (O, 2/(m+ L+ 1‘71)} .
Then, for any k € N, 0y € R?, we have

2d + B*
m [2 —y(m+ 1\71)]

Y

/R 10— 6*12Q5 (B0, 46) < (1 —m [2 = y(m+ 1) |)¥160 — 0°]1* +

where Q., is defined in (4.21).

Proof For any 6 € RY, by definition (4.21) of Qq, and using Assumption 4.14-(i), we
obtain

[ 1661, 60, ) = 6 — 67| ~ 29 (80— 6, VU 60))
R
. 2 . }
+72/< ) HZ?:1 Fz‘(907$(’))H @ VD (dz®) + 2yd.  (4.25)
X(1:n
Moreover, using Assumption 4.9, Assumption 4.14 and (4.6), it follows that
. 2 . .
[ |5 Fin )| o 9aa9)
)~<(1:n)
. . 2 , . 2
= [ = Bt ) - vUe0)| sy 02 + [V
X 1in

<M <90 — 0, VU(90)> +B* + HVU(«%) = VU (o) ’

<L+ (8 — 6, VU(8)) + B~ Ln |65 — 07|

(4.26)

Plugging (4.26) in (4.25) implies

/Rd 16 — 6*11°Q- (6o, d6) < (1 — ¥*nL)||0 — 6"
— {2 —ym+L+M} <90 — 0%, VU(90)> + 2B* + 27d.

Using Assumption 4.9-(i), we have {6y — 0*, VU (6p)) > m||fy — 6*||*> which, combined
with the condition v < 1/(m 4 L + M), gives

/Rd 16 — 67 117Q+ (B, 48) < (1 —ym[2 — v(m +])])[|6p — 6> +7(2d +~B").

Using 0 < v < 2/(m+ M) and the Markov property combined with a straightforward
induction completes the proof. |

For any k£ € N, the following lemma gives an explicit upper bound on the expected
squared norm between 951 and 041 in function of 9y, 8. The purpose of this lemma
is to derive a contraction property involving a contracting term and a bias term which
is easy to control.
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Lemma 4.17. Assume Assumption /.9 and Assumption J.1/. Consider (V¢)i>0 and
(O )ken defined in (4.22) and (4.23), respectively, for some initial distribution & €

Po(R%4). For any k € N and ~ € <0, 2/[(B(m+ L))V (m+ M+ L)]), we have

E

2
[9:041) = 801 | ] < {1 = ym(1 = 5ym)}E |19 — 04/1%] ++Do,,
+9PLH(1 = m 2 = A(m -+ 1) )]0 — %1
+ 93 (1/m+ 5NLE [0k, — 0°11%] /2.

where _ _
LM(2d + ~B¥)

m{Q—fy(m—HVI)}'

Do, = dL2(1/m + 5) [1 + 72L2/12} YR 4

Proof Let k € N. By (4.22) and (4.23), we have
ﬁv(k—&-l) - 9k+1 = ﬁwk - Qk - [VU(ﬂ,yk) - VU(Q}C)}
[ NU(Dghr) — VU] d  [F00, X9, - w0
0 ( 'yk-‘rs) ( 'yk) S+VZ z( ks k+1) z( k:) .
i=1
Define the filtration (F); oy as Fo = o (o, ) and for k e N*,

Fi = a (Yo, o, (Xl(l)a e aXl(n))1§l§1}a (Bt)ogtgvfg)-

Note that since (¢)>0 is a strong solution of (4.22), then is easy to see that (J_z, 07 )z
is (F7)jen-adapted. Taking the squared norm and the conditional expectation with
respect to Fj, we obtain using Assumption 4.14-(i) that

E7*

Hﬁ,y(kﬂ) O HQ] _ HM _ ekHQ ' <q97k — 0, VU (D) — VU(Gk)>
+ 2y /0 ! <VU(197;€) VU (63). B [VU (02) — VU(M)D ds

Y 2
.y / <197k — O B [ VU (9h1) - VU(M)D ds + A2 HVU(M) . VU(Gk)‘
0

2

+E7* ‘

vy i j
| [90010) — vU@0] ds| {4287 (|3 Fion X0 - VU6
0 =1

(4.27)

First, using Jensen inequality and the fact that for any a, b € R?, [(a,b)| < 2 ||a|*+2]|b||2,
we get

/»y <vv<mk> = VU (00), B [VU (941.) = VU (0:)] > ds
0

<2y HVU(l%k) - VU(Hk)HQ + 2/07 B

[0 050.) - w(%)\f] s,

(4.28)



CHAPTER 4. QLSD: QUANTIZED LANGEVIN STOCHASTIC DYNAMICS 193

v
<'y/ E7*
0

In addition, given that for any e > 0,a,b € R, |(a,b)| < € ||la]|® + (42)~1[|b]|?, we get

2
B /0 ! (VU W4e) — VU (035)] ds

HVU(ﬁ,yHS) _ VU(Q%,C)HQI ds.

2
< e Hﬁyk - 9kH

/07 <9k - ﬁyk,E}—k [VU(I%IH-s) — VU(ﬁ,yk)} > ds

,
+ (4e)7! / E*
0

|90k —VU(q‘/k,k)Hzl ds. (4.29)

By Assumption 4.9, for k € N we get by (4.6)

HVU(ﬁvk) - VU(Hk)HQ < (m+1L) <197k — Ok, VU (9k) — VU(ek)> ol Hﬂwk B 019"2-
Lastly, Assumption 4.14-(ii) yields (4.30)

2

£ <M <9k — 0%, VU (0y) — VU(e*)> +BY. (4.31)

SN FOr, X))~ VU9
=1

Combining (4.28), (4.29), (4.30) and (4.31) into (4.27), for k € N we get for any € > 0,

E*®

[Eam 9k+1H2] < (14292 = 59°nL) 94 ekH2
—v [2 — 5y(m + L)} <197k = O, VU (D) — VU(ek)>

+ (57 + (2e)7H /(: E/*

2
HVU(z%,m) - VU(M)H ] ds
+ A2 <9k — 05, VU (0) — VU(e*)> 2B,
Next, we use that under Assumption 4.9, (9 — Ok, VU (V) — VU (0k)) > m||0x — Ok

and |(0 — 6%, VU (0) — VU (0*))| < L|6x — 6*]|?, which implies taking ¢ = m/2 and
since 2 — 5y(m+ L) > 0,

2 ~
E}—k + ’}/QB*

2 2 .
Hﬁv(kﬂ) - 9’““” ] < (1 - (1 - 5ym)) H197k . akH AL Hek _ o

.
+ (57+m1)/ E7*
0

2
HVU(MH) - VU(ﬁvk)H ] ds
(4.32)
Further, for any s € Ry, using Durmus and Moulines (2019, Lemma 21) we have

2
L 2R *

HVU(&YHS) - VU(ﬁyk)HQI < ds (2 + 5212 /3) +35202/2 Hﬂvk g
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Integrating the previous inequality on [0, 'y], for k > 0 we obtain

»
L2 / E*®
0

Plugging this bounds in (4.32) and taking the expectation combined with Lemma 4.16
conclude the proof. [ ]

HVU(Q?%H) . VU(M)HQI ds < dv? + dy'L2/12 + 4°L2)2 Hmk _ 9*“2 .

4.A.3 Proof of Theorem 4.5

Based on Theorem 4.15, the next corollary provides an upper bound in Wasserstein
distance between m and MQ,";, where we consider (0)ren defined in (4.8) and starting
from @ following u € Po(RY).

Theorem 4.18. Assume Assumption 4.9, Assumption 4.10, Assumption .11 and As-
sumption 4.12. Then, for any probability measure p € P2(RY), any step-size v € (0, ’7]
where 7 is defined in (4.A.2), any k € N, we have

W3 (uQE, 7) < (1 —ym/2)"W3 (p, 7) + 7By + 7*A5(1 — my/2)F 'k /Rd 16 — 0*|1%1(do),

where Q~ is defined in (4.12) and

2412 (1 4 1 —pi 4w
Bs=""1(Z+55 [1+§L2/(2m)+’?2L2/12} +- Uf—i-(B*/n)Zﬂ
m m m i—1 pi
8L Mi(l —|—w,-) 9 B* 1—p;i+w;
+ —max{ ——— d + o, +— —_— 433
e {0 ot + £ 3 Loy (43
M;(1 + w;
Ay = 2L max M .
i€(n] Di

Proof By Lemma 4.13, the assumption Assumption 4.14 is satified for a choice of
M = 2max;e,{Mi(1+w;)/pi}) and B* = 2[02 + (B*/n) Y1 (1 — p; +w;)/pi]. Therefore,
applying Theorem 4.15 completes the proof. |

4.B Proof of Theorem 4.7

We assume here that {U;}c[,) are defined, for any i € [n] and 6 € RY, by

N;
UZ(G) = Z Ui,j(é?), N; € N*.
j=1

We consider the following set of assumptions on {U;}cp,) and {Usj @ j € [Ni]}igpn)-
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Assumption 4.19. For any i € [n],j € [N;], U; j is continuously differentiable and the
following conditions hold.

(i) There exist {M; > 0};c[n), such that for any i € [n], 61,60, € RY,
2
|VU(02) = VU0 < i (02— 01, VUL(82) — VUL(6L) ).
(ii) There exists M > 0 such that, for any 61,0y € R,
2 _
“VUi,j(Hg) - VUi,j(el)H <# <VUM(92) — VU (61), 62 — 91> .

In all this section, we assume for any ¢ € [n] that b; € N*, b; < Nj is fixed. For any
i € [n], recall that gy, denotes the power set of [N;] and

N b = {x € pn, : Card(x) = b;}.
We set in this section l/ii) as the uniform distribution on py, 4,. We consider the family of
measurable functions {H} : R? x R? x pn, — R%},;c(,1, defined for any i € [n], § € RY,
T € PNb; by
N;

lelx [VUM (0) —VU;;(07)] - (4.34)

H (0,
x) b,

Using this specific family of gradlent estimators boils down to the QLSD* algorithm
detailed in Algorithm 4.7.

Algorithm 4.7 Variance-reduced Quantised Langevin Stochastic Dynamics (QLSD*)

Input: minibatch sizes {b;};c,), number of iterations K, compression operators
{Ck+1}ren+, step-size v € (0,7] with 4 > 0 and initial point 6.
for k=0to K —1do
for i € Ayy1 // On active clients do
Draw S,@H ~ Uniform(pn, p,)-
Set H'), (1) = (Ni/b;) Zjesgl[VUi,j(Hk) — VU, ;(67)].
Compute g 441 = Copr (H{, (0k)).
Send g; 1,41 to the central server.
// On the central server
Compute g1 = IATnH\ ZieAkH i kt1-
Draw Zk+1 ~ N(Od, Id).
Compute Opy1 = 0p — V8pt1 + V27 Zk+1-
Send 011 to the n clients.
Output: samples {0 }5 .

Let (X(l’l) ,Xlgl’n))keN* and (()X,EQ’D, e ,X]iQ’n))keN* be two independent i.i.d. se-

quences with distribution ®}* v, and V2®". Let (Zk)gen+ be an ii.d. sequence of d-

dimensional standard Gaussian random variables independent of (X ,gl’l), X ,gl’n)) LEN*
and (X ,9’1), o X ,£2’n)) ren+- Similarly, as before, we consider the partial device particip-

ation context where at each communication round k£ > 1, each client has a probability
€ (0,1] of participating, independently of other clients. In other words, there ex-

ists a sequence (X ,23’1), e, X ,gg’n)) ken+ of i.i.d. random variables distributed according
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v3 = Uniform((0, 1]), such that for any & > 1 and 7 € [n], client ¢ is active at step

k if X]ig’i) < p;. We denote Ap11 = {i € [n],X,S’er) < p;} the set of active clients

at round k. For ease of notation, denote for any k € N*, X,gl) = (X,gl’l), .. .,X,gl’n)),
X = (xV L x Py, x® = (x B x By and X5 = (x(V, x P, x P,
Note that with this notation and under Assumption 4.10, QLSD* can be cast into the

framework of the generalized QLSD scheme defined in (4.8) since the recursion associated
to QLSD* can be written as

Orrr =08 [ei (H;(ék,x,gﬁ),x,&?) X342y 2, kEN, (4.35)

=1

where, for any i € [n], 8; is defined in (4.9). Therefore, we only need to verify that
Assumption 4.14 is satisfied with X0 = X(@ = ng) X Xg x Xz, X = x(0 = Xl(z) ®
Xy @ Xy, 5D =1 @ vy @ s for i € [n] and {F}, = {F*}7, = {Si0Cio HF I,
This is done in Section 4.B.2.

4.B.1 Proof of Theorem 4.7

The Markov kernel associated with (4.35) is given for any (6,A) € R? x B(R?) by

- : do @7, 7O (dz®)
Qe.~(0,A :/ exp [ =0 =0+~ Fr(0,zD)|?/(4y i=1
®~(0,A) s I ; (0, 21)[|/(4v) (4772

(4.36)
Then, the following non-asymptotic convergence result holds for QLSD*.

Theorem 4.20. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Then, for any probability measure p € Po(RY), any step-size v € (0, ﬁ]
where 7 is defined in (4.A.2), any k € N, we have

W3 (uQk . m) < (1 — m/2)"W3(u, ) + vBg 5

#7205 =y /2 [ 166 |Pucao)

where Qg ~ is defined in (4.36) and

Be = (2dL%/m) (1 /m+ 57) [1 +AL2/(2m) + 72L2 /12} (4.37)
+ (/) ma [wiNi + (i + (N1 = pil /i + Ap, ;)]
Agy = LM HEI?D]( [WiNi + (wi + 1)(V;[1 = pi /pi + Abi,Ni)} )

Ay, N, being defined in (4.38) for any i € [n].

Proof Using Lemma 4.22, Assumption 4.14 is satisfied and applying Theorem 4.15
completes the proof. |
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4.B.2 Supporting Lemmata

In this subsection, we derive two key lemmata in order to prove Theorem 4.20.

Lemma 4.21. For any i € [n| and any sequence {aj};-vzil € (RH®Ni ywhere N; > 2, we

have
2
- N b oD (dzV = 2
o > Lo () =57 | @ (dz) < E [l *-
X1 lj=1 v j=1

Proof Let i € [n] and X (19 distributed according to Vfi). Since Z 1 1xai () = bs,
we have

N;
le(u) —l-ZlX(lz) 1)((“)(]) bzz'
=1

J#J’

Integrating this equality over ng') gives

b; i ;
N; X — 4+ N;(N; — 1) x / , [11(1,1-)(1)11(1,”(2)} (a1 = p2.
N; Q)

1

Thus, we deduce that [y 1,00 (1)1,00(2)]p” (dz) = bi(b; — 1)[N:(N; — 1)] "% In
1
addition, using that

/x“) <1m<1,z‘> () - M) (132(1,1') (4) = M) v (dalt0)
1
b2

= (@) q 5
- /X<1“ 1,5 (1)1,00(2)] (dm(l )) -

i
we obtain

2

N
1 =1 i

9 <aj,a] > bz( L — i ) N; 2
Z la® = %=1 | = e, 1y | Z laul = | a
=1

’L
J#3’

For any ¢ € [n], denote
Ay, = i Zbi)
o bZ(Nz — 1)
The next lemma aims at controlling the variance of the global stochastic gradient con-
sidered in QLSD*, required to apply Theorem 4.15.

(4.38)
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Lemma 4.22. Assume Assumption 4.10, Assumption 4.12 and Assumption 4.19. Then,
for any 6 € R, we have

A(l:n)

< Mg [wilV; + (i + (N1 = pil/pi + As,w) | (8- 67, VU(6) = VU (67)),

1€[n]

2
oy v (da?)

Yo 8 [Gi (H;(Q’x(l,i))jx@,i)) 733(3,1')] _vU(6)

where {H }icfn) and {Ap, N, }icjn) are defined in (4.34) and (4.38), respectively. Hence,
Assumption 4.1/ is satisfied with B* = 0 and

M= Mr,léé[ﬁ]( [WiNi + (wi + D)(N;[1 = pi] /pi + Abi,Ni)] :

Proof Let 6 € R?, using Assumption 4.10 gives

[((1=n) Z

= / S [ei (76,209, 229) ,M — € (H7(6,204), 22
X(1:n)

+/(1~ )
XXXy

si(lg

pi) @+ [ |Eeat)
% Xll

= (#7(0.201:9),22) — VU (0)

2

", {ei (8 (0.20), 20 ,xw)] _vu)|| o, v (da®)

2
", (@ (dx(i))

2
S € (117(6,200),020) = V0(0) | 15 (02219) iy 10t

2 .
|7 (@20

2
v (dr® ) oy vy (de )

7pi ) ) _p* . - (p*
. )(%H)Nl@ 0%, VU, (0) — VUi(0 )>

2

<.
X{H™) e xn
Again using Assumption 4.10, it follows that

/ 1: n
PURIRES'C:

/X(l in) XX Z C; Z lx(l 1) |:VU i,j (9) - VUz’](H*):| 7x(27i)

2

S e (H*(e PERN x@i)) —VU(6)

(dx(le)) z (d.’L‘(l 1))

(4.39)

2
V®n(dx(2,1:b)) ®;L L Vil) (dx(l’i))

S e <H*(9 2(0), x@i)) —VU(6)

n N;

- Z ];r Z Lo ( [Vwa) - VUi,j(e*)]

2
n

N,
Ni N b; * n (i) 1
o 325 (1 ) e ]| ol
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2

N; ) '
/X o 132 1awa ) [VUL(0) = VU 09)] || (7 (aa)
j=1

n 2
£

=1 1
2
(Y 2 3 b (4)
- (7)) — 2 .. _ o (n* i (1,i)

—i—; <b1> /ng) ; <1m(1,z) () Ni) [VUW(H) VU, ; (6 )} D (da D)

. 2
=" wi | VUi(0) — VU (6*)

i=1

2
n 2 N;
al Z ' b * (1) ( 3..(1,9)

+ Z(wz +1) b L Z 1.049() — N [VUM(‘Q) — VU (09| A7 (daD),

i=1 v i |=1 i

(4.40)

Using Lemma 4.21 combined with Assumption 4.19 yields, for any i € [n],

/x“) PO (135(1,1') (J) — bi/Nz'> [VUM(Q) _ VUZ.J.(Q*)] ‘ ’ oD (dz 00
< MM (60— 0", VU(9) - VU(6") ). (4.41)

In addition, Jensen inequality implies, for any i € [n], that

N; )
IVUi(0) - VU0")|> < N S ‘VUM(G) — UL
j=1
and therefore, using Assumption 4.19, we have for any i € [n],
IVU;(0) — VU (6%)|> < BN; <VUZ-(9) — VU (6%),0 — 9*> . (4.42)
Injecting (4.41) and (4.42) into (4.40) and using (4.39) conclude the proof. [ |

4.C Proof of Theorem 4.8

4.C.1 Problem formulation.

We assume here that U is still of the form (4.1) and that there exist {N; € N*};cp
such that for any i € [n], there exist N; functions {U;; : 6 € RY — R} jen;) such that
for any 0 € R,

In all this section, we assume for any i € [n] that b; € N*, b; < N; is fixed. Recall that
on denotes the power set of [N] and

onn = {x € py : Card(z) = n}.
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In addition, we set in this section Vfi) as the uniform distribution on py;, ;,. We consider
the family of measurable functions {G; : R x R? x oy, — Rd}ie[n], defined for any i €

[n], 0 € RY, € RY, € o, by
i(0, ;) Z L.(j) [ VUi (9) = VU (Q)] + VUI(©). (4.43)

For ease of reading, we formalise more precisely the recursion associated with QLSD™™
under Assumption 4.10. Let (X,gl’l), R Xlgl’n))keN* and (X,g2’1), o ,X,g’n))keN* be
two independent i.i.d. sequences with distribution ®?:1V£i) and V2®”. Let (Zk)gen= be
an i.i.d. sequence of d-dimensional standard Gaussian random variables independent
of (X,gl’l), el X]gl’n))keN* and (X,?’l), e ?XIS;Q’H))]{:EN*' Similarly as before, we consider
the partial device participation context where at each communication round k£ > 1, each
client has a probability p; € (0, 1] of participating, independently of other clients. In
other words, there exists a sequence (Xli?”l), “ee ,X,gg’n))keN* of i.i.d. random variables
distributed according v3 = Uniform((0, 1]), such that for any £ > 1 and i € [n], client
1 is active at step k if X,§3’i) < p;. We denote A1 = {i € [n];X,gi’il) < p;} the set
of active clients at round k. For ease of notation, denote for any k € N*, Xlil) =
<X,g1 1>,...,Xg1 My, x1 = (X,f’”,...,X‘2 My, X(3) (x3D L xB)Y and X, =
(X, XIEQ),X( )). Let | € N*, v € (0,7] and a € (0,a] for y,& > 0. Given Oy =
(90 Co, {770 }ieln)) € R? x R x RdX" with (g = 6y, we recursively define the sequence
(

O )ken = (O, Cks {nk }ie[n))ken, for any k € N as

Ors1 = Ok — YG(Ok; Xiy1) + V2vZj 1, (4.44)
where
i=1
(4.45)
Ori1, ifk+1=0 (mod ),
Guor=4 0 o0 (mod 1) (4.46)
Cy, otherwise,
and for any i € [n],
i =0 +asi | e { (ek s X +1)> — s X,ﬁ?} XE0 (4.47)

Since QLSD™T involves auxiliary variables gathered with (0 )ren in (©k)ren, We cannot
follow the same proof as for QLSD* by verifying Assumption 4.14 and then applying The-
orem 4.15. Instead, we will adapt the proof Theorem 4.15 and in particular Lemma 4.16
and bound the variance associated to the stochastic gradient defined in (4.45). Once
this variance term will be tackled, the proof of Theorem 4.8 will follow the same lines
as the proof of Theorem 4.15 upon using specific moment estimates for QLSD™. In the
next section, we focus on these two goals: we provide uniform bounds in the number
of iterations k on the variance of the sequence of stochastic gradients associated with
QLSD*, (B[ Gi(O, Xir1) — VU (O] )ken for any i € [n], and (E[|l9x — 0*2))sen,
see Proposition 4.29 and Corollary 4.28. To this end, a key ingredient is the design of
an appropriate Lyapunov function defined in (4.59).
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4.C.2 Uniform bounds on the stochastic gradients and moment
estimates for QLSD™™

Consider the filtration associated with (O)ken defined by Gy = 0(0g) and for k € N*,
Gr = 0(09, (X )k<k” (Zl})légk)‘
We denote for any i € [n], 0,( € R?,

Ai(0,¢) = VUi(0) — VUi(Q). (4.48)
Similarly, we consider, for any i € [n], j € [N], 0,( € R?,
Aij(0,¢) = VUi (0) — VU;;(C). (4.49)

The following lemma provides a first upper bound on the variance of the stochastic
gradients used in QLSD™ .

Lemma 4.23. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-

sumption 4.19 and let v € (0,7], a € (0,a] for some 7,& > 0. Then, for any s € N,
re€{0,...,1— 1}, we have

) 2
EYsi+r HG(@SI+T; Xsl+r+1) — VU(98l+T‘)
n a2
, w; +1 ?
< [2) Fwitl-p)+ ( o ) Ape N | |Gt — 9”
i=1 " b
n 2 "
wit+1—p; M witl
N QZZTPZ HVUz‘(H*) nglr 49N < Zp‘ ) Ap;, N M ‘ Os1 —
i=1 ’ =1 Z

where (O7)ien = (07, G {nk Vi) kens G and Ay N are defined in (4.44), (4.46), (4.47),
(4.45) and (4.38), respectively.

Proof Let s € Nandr € {0,...,l—1}. Using Assumption 4.10, (4.48) and (4.49), we
have
2‘|

1,2 7 2,1 3,1
‘S ( {Gi (831+T7<5l+T;Xs(l+7)’+1> _ngl)Jrr’XLgl+2’+l} Xs(l+7)"+1)

. 2
Ly (L) (1) (2,1)
Ositrs Colgrs ng_:7-+1) - 773;_”7 Xsl-:r-&-l} H }

EQSHT [“G(Gsl+r§ Xsl+r+1) - VU(051+T)

é B9 |
“efo

N3 7 2,1 7
e {Gi (9sl+r, Cotr XSJH) s X§l+2+1} 0y, — VU (Bser)

4 Zn:EQEHT
=1

n 1
< < — pi) EYsi+r
-\ P

2

1,0 4 2,4
¢ {Gi <esl+r’ Coltrs X§z+2+1) - ngllr; X§l+3+1}
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n
+ Z wiEger
=1

G; (95l+r7 Cslrs Xill_tr),_,’_l) - ngl-r

+ XH:EQSHT
=1

Gi (asm, Cr; Xi}j2+1> — VUi (0s14+)

2
- w; + 1 i ) %
< Z < p* P ) EYst+ G; <asl+ra Csl-&-r;Xs(ll_;_l_t,_l) - ngll_r
i=1 v
n 2
+ Z EgSH'T G1 (asl+r; Csl—&-r; XSll_,:Z+1) - VUz (esl+r)
=1
2
n N;
w;+1 N; — .
S — Egsl+r = 1X(1’i) (])AZ,J (93l+r7 Clerr) - Ai(elerra Clerr)
i1 pl bi j:l sl4r+1

HVUi(Hsl-H') - USL

2]
I‘7[<05l+7“ - Clerr, VUi(alerr) - VUi(Clerr»
n ) 1 ) 2
+z<&)z+ 4_pz>Egsl+,. ,

where the last line follows from Assumption 4.19 and Lemma 4.21. The proof is
concluded by using the Cauchy-Schwarz inequality, Assumption 4.9 and (g1, = 05. W

+ Z (wi +pli_pi> EYst+r
=1

bi(N; — 1)

va(ew) - niﬁr

The two following lemmas aim at controlling the terms that appear in Lemma 4.23.

Lemma 4.24. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19, and let v € (0,7], a € (0,a] for some ¥,& > 0. Then, for any s € N
and r € [l], we have

g |7 2 |
RYsi+r—1 ‘95l+r -0 H < (1 —2ym 47y Bb,N) Ositr—1 — 0 ’
"\ wi+1—p; ' ’
+a7 2 HVUz‘(9*) ~ ke
i=1 pi
i wi+1 _ 2
+2My? ) ( Zp‘ ) Ap;, N M; ‘ 051 — WH + 2d,
i=1 ’
where
ol M2 w; +1
Bpn=2) j(wi +1—pi)+ ( ) ) Ap, N1 | + L2, (4.50)
i=1 ’

Op)ien = (07, G {né}iG[n])l}eN and Ay N are defined in (4.44), (4.46), (4.47) and (4.38)
respectively.
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Proof Let s € Nand r € [l]. Using (4.44) and Assumption 4.10, it follows

2
@HWH]:

2
05[+T—1 - Q*H + 2’7d - 2’7<VU(95H—T—1), gsl—l-r—l - 0*>

EgsH»rfl [‘

+ 72Egsl+r71 Hé(@sH_r—l; XSH-T)

2

. (4.51)
Using Assumption 4.10 and (4.43)-(4.45), we have
2}
(0 o (et i i v

2
1,2 2
- ez {Gz <95l+7‘717 Csl«krfla Xiz*_l) - ni;:—r 19 XSH_Z,)«} ]

1,2 7 2,1 7
i {Gi (9sz+r—1,Csl+r 1,X§l+l) - niz)ﬂ 1aXs(z+r} + 7721)+r 1

EQSH»T?] |:Hé(63l+r—l; Xsl+r)

n
_ EYst+r—1
Fe|

+ ESst+r—1

2
Gi (031+r 1, Gsltr— 17Xs(z1+12> _WSLT 1

“fwi+1—p I
< ]E sl4+r—1
s ()|

2

- Az (93l+'r— 1, gsl-‘—r—l)

(3

n N;
+ ZEQSZ+T71 bz Z |: X(l 1) ’L (93l+r—17§sl+r—1)
=1 =1

2
+ HVU(GSZJF’I‘fl)H

2

N;
i+ 1
= E <w + )Egsl+7‘ ! E |: X(l z) 7, (esl+r1agsl+7‘l):| _Ai(eslerfl,gleﬂ‘fl)
b: =1

Di

. 2 2
VUZ(GSZ+T71) - né;:—r—l + HVU(HSZ+T71)H

i=1

Pi

(0973 + 1-— i (3
+Z( pi H sl+7‘ 1 nillﬁo 1

where the last line follows from Assumption 4.19 and Lemma 4.21. The proof is con-
cluded by injecting (4.52) into (4.51), using the Cauchy-Schwarz inequality, VU (6*) = 0,
Assumption 4.9 and (g1r—1 = Og. |

< ; <CU2 + 1> Z((]]\\Z )) < sl+r—1 — CsH»'r 17VU1(95l+r71) — VUi(CSl+r—l)>

L HVU(951+T_1)H2 , (4.52)

Lemma 4.25. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Let v € (0,%] for some ¥ > 0 and a € (0,1/(max;ep, w; + 1)]. Then,
for any s € N and r € [l], we have
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n ) 2 n ' 2
>oweers | VUt - ol ] < (- | VUi
i=1 =1
2 n _ ]
+ Osz7N 931+r_1 — Q*H + 2« ZAbi7NiMMi
i=1
where .
Cb,N =2 Z [Abi,NiMMi + MZQ} R (453)
(Opieny = (ek’ck’{n/%}ié[n])l%el\f and Ay n are defined in (4.44), (4.46), (4.47) and
(4.38), respectively.
Proof Let s € N and r € [l]. Then, it follows
3 o || = o |’
Z]Egsl+r71 HVU’L(H*) 775,;_’_71 — Z VUZ(G*) _ 775;+T_1
i=1 i=1

slr— (4) sipr— ) (4) (4)
+ ZEQ ir=1 5;+T - nsl+r 1 ] +2 Z <Eg et |: s;—l—r B nsl—f—’r 1:| ns;—l—r—l B VUZ(H*)> :
(4.54)
Using (4.47) and Assumption 4.10, we have for any i € [n],
o _ o |
gS rT— ? ?
EZst+rt Nsir = Msirr—1
2
< 052(001‘ + 1)EgSZ+T71 Gi (0sl+r—1’ Csltr—1; Xs(ll_;:)ﬂ) - T}SLT 1 ) (455)

Golr— (@) (@) — A TeGsir—
E¥star=t [ﬁer 775l+r—1:| = algstrt

Gi (‘95l+7‘—1a Csl+r—1; XS.;.?) - ng;l_r_ll :
(4.56)

Plugging (4.55) and (4.56) into (4.54) yields

VU 0* 77slzrr 1

n
Egsl+r—1

vaw*) o

n
+a? Z:(wZ + 1)IEQS’+T‘1 | G (‘95l+7‘—1> Csltr—1; Xé;ﬁ) - nﬁ?w_l
i=1

n
+ 20 ) (EGair
=1

G; (@HT 1 Cotr— 1,X§}j3) - nﬁﬁLM] = VU(6*)).
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Using for any i € [n] (1 + w;) < 1 and the fact, for any a,b,c € R?, that ||a — c||2 +

2{a —c,c —b) = ||a — b||*> — ||c — b||?, we have
- W | - o |
D G va(e*) — |l | S Q=)D VU0 =0y
i=1 i=1
n 2
+a) E%trt |G, <esz+r_1, Cotr XSjZ) — VU(6%) (4.57)
i=1
Using (4.43), Assumption 4.19 and Lemma 4.21, it follows
n 2
ZEQSHTA G; <93H_T_1, Cslr—1; Xéll_’:z) — VU;(6%)
i=1
" Ni(N; —b;) -
< — 1 -1 - i\Usl+r—1) — i\Gsl+r—
< ; b 1) (Ostrr—1 = Csir—1, VUi(Os14r—1) = VUi(Cstr-1))
n 2
+3 HVUi(HsHT,l) _VUi(6%) (4.58)
i=1

The proof is concluded by plugging (4.58) into (4.57), using the Cauchy-Schwarz in-
equality, Assumption 4.9 and (g4r—1 = 04. |

Lemma 4.24 and Lemma 4.25 involve two dependent terms which prevents us from using
a straightforward induction. To cope with this issue, we consider a Lyapunov function
Y : R% x R>*"™ — R defined, for any 6 € R? and n = (pM,..., ") T € R¥*" by

wi +1—p;
pi

2 n L2
w(0.m) = 110 — 07]* + ?’ngﬁ{ } |vuier) =5 (4.59)
i€n i—1

The following lemma provides an upper bound on this Lyapunov function. Define for
a >0,
Yo,1 = {m(Bb,N + SwC’b,N)*l} A {oz(3m)71}, (4.60)

where By, N and Cp, N are defined in (4.50) and (4.53) respectively.

Lemma 4.26. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Let o € (0,1/(1 + max;epm) wi)], ¥ € (0,5a,1]. Then, for any s € N and
r € [l], we have

Egs“ﬂ_l [¢(95l+1”7 n5l+T):| < (1 - ’}/III) dj(eSlJﬂ’_l’ USH_T_l)

2
0, — e*H + 29,

+ 8Ny I‘Iel?}]({(wi +1)/pi} > Ap, M
e |n 1:1

where v is defined in (4.59) and (Of)ien = (07, (s {n]%}ie[n])fqu and Ay N are defined
in (4.44), (4.46), (4.47) and (4.38), respectively.
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Proof Let s € N and r € [l]. Using Lemma 4.24 and Lemma 4.25, we have

EYst4r—1 [1/;(95[4_7» s Nsl+r )}

2
< <1 — 2ym + [Bb,N + 3OJC'b,ND Ostir—1 — G*H

vU(6*) 0,

@)+ (1= )] (397 /o) maxf(wi+ 1= p) i} 3

i=1

M2 g * 2
+ 8Mry Hel?,}]({(wl + 1)/]%} Z Abi,NiMi Oy — 0 H + 2’yd.
i€n P

Since v < Jo,1 With 44,1 given in (4.60), it follows that
1 — 2ym 4 ~2 [Bb,N + 3wC’b7N} <l-2m+ym=1-—m.
Therefore, we have

EYsttr—1 [1/1(9sz+m nsl-&-r)} < (1= m) (Ostsr—1, Mst+r—1)

2
0 — a*H + 2.

+ 81y meaoc{ (w; +1)/pi} > Ay N M;
=1

|
Lemma 4.27. Let j € N* and fiz v > 0 such that
< m A 1
7= 1650 maxep{(wi + U /Py Ly Api | w
Then,
. n
(L= m)” + 8j7*Mmaox{ (w; + 1) /pi} D Ap M <1—m/2,
1cn i=1
where Ap N is defined in (4.38).
Proof The proof is straightforward using (1 — ym)? < 1 — ~m. |
We have the following corollary regarding the Lyapunov function defined in (4.59).
Denote for a > 0,
o2 = Tt A/ (160 (s + 1)/ Ty A v} (461)
<c|n

where 7,1 is given in (4.60).

Corollary 4.28. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Let a € (0,1/(1 + max;ep,) wi)] and v € (0, ’_ya,g}. Then, for any s € N
and r € {0,...,l — 1} we have

EgSl [¢(9(5+1)l77‘7 n(s+1)lfr)] < (1 - P)/m/2> 7/1(9317 7731) + 2’7(l - T’)d,

where 1 is defined in (4.59) and (Of )iy = (Hé,(,;,{né}ie[n])éeN is defined in (4.44),
(4.46), (4.47).
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Proof The proof follows from a straightforward induction of Lemma 4.26 combined
with Lemma 4.27. [ ]

We are now ready to control explicitly the variance of the stochastic gradient defined
n (4.45).

Proposition 4.29. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and
Assumption 4.19. Let a € (0,1/(1 + max;cpyw;)] and v € (O,ﬁa,g}, where o2 18
defined in (4.61). Then, for any k = sl + 1 with s € N, r € {0,...,1 — 1}, 6y € R? and
no = (77(()1), .. .,n(()n))T € R we have

Hé(@slw; Xotre1) — VU(QI«)H2

m
(1 - 7) Dy N0 (00,m0) + 4ldDp N /m

2
2
wi +1—p; H ) — )
+ 12 —_— E [|[VU;(07) ,
; > Z
where
no2
M2 i+ 1 _
Db,N— 22 f(wi+1—pz)+ (wz . >Ab“NZMMi

i=1 v

& i1
+oMy <w+ )Ab“NM +4CbNZw,+1 pi)/pi, (4.62)

=1

Ay N and Cp N are defined in (4.38) and (4.53) respectively, 1 is defined in (4.59), and
(@k)keN (Hk,Ck,{nk},e[n])keN is defined in (4.44), (4.46), (4.47).

Proof Let k € N and write k = sl +r with s € N, r € {0,...,] — 1} Then, using
Lemma 4.23, we have

Hé(@sm«; Xotlre1) — VU(Hk)Hz

n 2
M: i+ 1 _
< |2 E —Z(wi+1—pi)+ wi t+ Abi,NiMMi E HGk—G*
—1 P Di

2]
wi+1-p; )17

T P - ' E HVUZ-(Q*)—U,(;)
i=1 ¢

+2MZ (“”H)Ab N E[‘

We now use our previous results to upper bound the three expectations at the right-hand
side of (4.63). First, using Corollary 4.28 and a straightforward induction gives

S s—1
2 m m
Os1 — 9*H ] < (1 - 72) W (0o,m0) +271d ) <1 - 72>
j=0

O — 0*

2] . (4.63)

E
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(1 - ”2“‘) (0 m) + . (4.61)

Similarly, we have

E [Hek—e*

2 +1 s
] (1-2) w00 + DY (-2
=

<(1-%) vom + 3 (4.65)

Finally, using Lemma 4.25 combined with (4.64) and (4.65), we obtain

2] (1—-« ZE 12]

m S
+2aCp N (1 - 72> (0o, m0) +

ZIE

HVU (6%) — n?

HVU (6%) —

8ldO(Cb7N

Then, a straightforward induction leads to

112 n 2
ZE [y ] < (1—a)* Y| VUi(e) —nf)
i=1
B 81dC,
+20bN (1 - Vzm) ¥(bo,m0) + mb’N. (4.66)
Combining (4.64), (4.65) and (4.66) in (4.63) concludes the proof. ]

4.C.3 Proof of Theorem 4.8

Note that v € (0,7], a € (0,a] and | € N*, (8})j.cny = (03 G {nk }ien) ien defined in
(4.44), (4.46), (4.47) is an inhomogeneous Markov chain associated with the sequence of

Markov kernel (Q(Vk; Jken defined by as follows. Define for any (6,¢,n) € R x R x RY,

and z(M) € N by 5 2 € Xy and 2 € X,

5, ((0,¢m); (@M,2@,2)) = 8, (ei {Gi (0.¢:2V) M} ;:c<3>>
G (0.¢,m; @0,2@,2)) =0+ aF, (0, ¢m); (2D, 2D,23)),

and for 0 € R?, {77 i)} G Rdm, {Jf(l’i)}?:l € @1 PN, b;» {x(li) i=1 € Xy, {z(s,z‘) i1 €
X2, setting 2 (ln) — = {(219), 220 2GNnn
2)

o (0,0.¢, DY) 2™
00 +vi% ((0,¢.n);2)

1=1

= (47ry) "% exp (—(47)‘1
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Denote X0 = PN b; X X2 X X3 and () = V%i) X Vg X V3. Set QS?LJ =1Id and for k£ > 0,
k=lst+r,s €N, r€{0,...,1-1},(0,(,n) € RIXRIXR™ and A € B(R?xRIxR¥*"),

QI (0, ¢,m,A) =

Ton 2 1a(0: € (0,0, ¢, DY y)s ™I 8, (g, (17)}00(A0) 40 @7, #19(dx™) ifr =0
= q F a 3 n n ) " ~(i N a0 ~ (i i . .
f®n LX) 146, C, Mo (8,0, ¢, {3 ); o™ T, 5%((9 c n)_wm)(dnu))}s{(dg) dé @7, 7D (dzD)  otherwise.
i= G ((0,¢,m);

Consider then, the Markov kernel on R% x B(R%),

RY) (00, A) = Q) ((90, 60, m0), A x R? x RdX”) : (4.67)
Define
Ya = Va2 N Va5 y1 = 1/(10m), (4.68)

where 7, 2 is defined in (4.61). The following theorem provides a non-asymptotic con-
vergence bound for the QLSD™™ kernel.

Theorem 4.30. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. Then, for any probability measure p € Po(RY), I € N*, ng € R>™ o €

(O,l/(l—i—maxie[n]wi)}, v E (O,f’ya], and k =sl+r € Nwiths e N, r€{0,...,1—1},
we have

k
3 (W, 1D )

< <1 - 72m>k W2(u, 7(-|D)) + M% <1 — 72m> /Rd ¥ (00, m0)dp(6o)

4y(1 — )k | & n . All?
+ M Z(wi +1—pi)/pi Z vU(0*) - 03| + YBa Ao
i=1 i=1
where Rg&lm is defined in (4.67), ¢ is defined in (4.59), Dp N in (4.62) and
2dL? - 12 2.2
B, = ———(1/m+57a) |1+ 7al?/(2m) +7212/12]
961d [ =M _
oz z; 7(%' + )M +MAp, n,) | - (4.69)

Proof Let k € N. The proof follows from the same lines as Theorem 4.18. By (4.22)
and (4.44), we have

iy = O = Vo = O =7 [ VU (00) = VU ()]
Y ~
— [ [TV = TU0] ds -+ GO0 Xurr) ~ TU@1)]
0
Define the filtration (H;)zoy as Ho = o(do, ©p) and for k e N*,

/H]} = 0'(1907 @07 (Xl(l)a cee 7Xl(n))1§l§]}’ (Bt)ogtgyfg)'
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Note that since (9¢)¢>0 is a strong solution of (4.22), then is easy to see that (J_;, O )z

is (H%)keN—adapted. Taking the squared norm and the conditional expectation with
respect to Hy, we obtain using Assumption 4.14-(i) that

Hﬁ'y(k—f—l) - ‘9k+1H2] = Hi%k - ‘9kH2 — 2y <19'yk — 0, VU (9y1) — VU(Qk)>
+ 2y /0 ! <VU(197;€) VU (0). B [VU (D) — VU )] > du

9 /0 k <197k Gy, B [VU(WM) - VU(W)D du

2
+42||VU@0) - VU4
2

/ ! [VU(MM) - VU(M)} du

+ EP
0

+ ,y2]E'Hk

|G©r Xin) - Vka)Hz] . (4.70)

Using Proposition 4.29, we obtain

) 2 N
|G X))~ VU@ | < (1 - 2) Dy, xt(60,m0) + 4ldDyp, e /m
= wi+1—p; * (Z) ?
+ 22197 ZE VUi (6*) . (4.71)
i=1 i

Then, we control the remaining terms in (4.70) using (4.28), (4.29) and (4.30). Com-
bining these bounds and (4.71) into (4.70), for any € > 0, yields

2 2
E Hﬂwcﬂ) - 9k+1H ] < (14 27e — 5y°nL)E [Hﬁvk - ‘9kH

_ [2 — 5y(n+ L)} E [<q9,yk — 04, VU (1) — VU(ek)>]

+ (57 + (26)71) /OPYE

HVU(&Y;M) - VU(M)HQI du

o
+y (1 — fy;) Dy nE [711(90,770)} + 4ldDy N /m

n

(1—a)*

=1

) 2
vUi(6%) —

i=1

+27° |:Z(Wi +1—pi)/pi

Next, we use that under Assumption 4.9, (9 — Ok, VU (V) — VU (0r)) > m||0x — Ok
and |(0y — 0%, VU (0) — VU (0*))| < L|6x — 6*]|?, which implies taking ¢ = m/2 and
since 2 — 5y(m+ L) > 0,
2
[ = 04]

E (|| 1) - ekHHQ] < (1 —m(1 — 5ym))E
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,
+ (57+m_1)/ E
0

|90 0510) - W@M)HQI du

(/1]
+ 42 (1 . m) Dp.NE [w(eo,no)} +4ldDy N /m

2
- - |
+29° | (Wit 1=pi)/pi| (L= )Y || V(%) =y
i=1 =1
(4.72)
Further, for any v € Ry, using Durmus and Moulines (2019, Lemma 21) we have
2 2
L2E HVU(mM) - VU(v“Wk)H < du (2+4?L2/3) + 3u°L2 /2K H197k o]
Integrating the previous inequality on [0, ’y}, we obtain
Y 2 2
L2/ E HVU(Q%M) - VU(M)H ] du < dy?+dvy*12/12443L2 /2E HM g ] .
0

Plugging this bounds in (4.72) and using Durmus and Moulines (2019, Proposition 1)
complete the proof. |

4.D Consistency analysis in the big data regime

In this section, we assume that the number of observations on each client i € [n] writes
N; = LciN J where {¢; > O}ie[n], N € N* and provide upper bounds on the asymptotic
bias associated to each algorithm when N tends towards infinity. For simplicity, we
assume for any i € [n], that b; = |¢;b] with b € [N], M; = M with M > 0, p; = 1 and
w; = w with w > 0 but note that our conclusions also hold for the general setting
considered in this chapter.

4.D.1 Asymptotic analysis for Algorithm 4.5

The following corollary is associated with QLSD defined in Algorithm 4.5 in the main
chapter.

Corollary 4.31. Assume Assumption 4.9, Assumption 4.10 Assumption 4.11 and As-
sumption 4.12. In addition, assume that liminfy_,oom/N > 0 and limsupy_,. A/N <
oo for A € {L,M,B*,0,}. Then, we have ¥ = 7j/N where 7 > 0 and 7 is defined in
(4.A.2). In addition,

By = (w+ 1) O(N),

where By is defined in (4.33).
Proof Since we assume that liminfy_,.om/N > 0 and limsupy_,., A/N < oo for

A € {L,M,B*, 0, }, there exist Cy, C, Cy, Cp« and C, > 0 such thatm > C, N, L < CLN,
M < CyN, B* < Cp+N and o, < C,, N. Under these assumptions, it is straightforward
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from (4.A.2) to see that there exists 7 > 0 such that ¥ = 77/N. In addition, it follows
from (4.33) that

2dCE [ 1 nCc?  [?C? 4
By < — L | —+5q]| |1 - Ll + —(wCg +C%2 N
eh (Cm+5’l7) +20m+ 19 +Cm(wCB —i—CU* )
8 1HCLC
W [dM (wCo +cg*N)] ,
The proof is concluded by letting N tend towards infinity. |

Regarding the specific instance QLSD# of Algorithm 4.5 in the main chapter, a similar
result holds. Indeed, by using Lemma 4.21, we can notice that Assumption 4.11-(iii) is
verified with o, = C,, N for some C,, > 0 and we can apply Corollary 4.31.

4.D.2 Asymptotic analysis for Algorithm 4.6

The following corollary is associated with QLSD* defined in Algorithm 4.6 in the main
chapter.

Corollary 4.32. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. In addition, assume that liminfy_,oom/N > 0 and limsupy_,. A/N <
oo for A € {L,M}. Then, we have ¥ = 7j/N where 7 > 0 and 7 is defined in (4.A.2). In
addition,

B@ﬁ = d<w + 1) O(1>7

where Bg 5 is defined in (4.37).

Proof Since we assume that liminfy_,,om/N > 0 and limsupy_,., A/N < oo for
A € {L,M}, there exist Cy, Cp and Cy > 0 such that m > Cy, N, L < Cy N and M < CyN.
Under these assumptions, it is straightforward from (4.A.2) to see that there exists
7 > 0 such that 7, = 7/N. In addition, it follows from (4.27) that

2dC? [ 1 nC%  p*C?
Bes < 2| —+57] |1 - L
©7="C, (Cm * 77) HETARET
+4dMCLma ciw~+ (w+1) N-b
X< G e .
C2 iem) | b(|eN| —1)
The proof is concluded by letting N tend towards infinity. |

Lastly, we have the following asymptotic convergence result regarding QLSD™T defined
in Algorithm 4.6 in the main chapter.

Corollary 4.33. Assume Assumption 4.9, Assumption 4.10, Assumption 4.12 and As-
sumption 4.19. In addition, assume that liminfy_,oom/N > 0 and limsupy_,. A/N <
oo for A € {L,M}. Then, we have J, = 7j/N where 7] > 0 and 7, is defined in (4.68). In
addition,

B@ﬁ’a - d(w + 1) 0(1)7

where Bg 5, is defined in (4.69).
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Proof Since we assume that liminfy_,oom/N > 0 and limsupy_,.A/N < oo for
A € {L, M}, there exist Cy, C1 and Cy > 0 such that m > C, N, L < CLN and M < CyN.
Under these assumptions, it is straightforward from (4.68) to see that there exists 77 > 0
such that 4, = 77/N. In addition, it follows from (4.69) that

2dC2 [ 1 nC¢  n*C?
Ba s, < L= +57] |1 L L
©ae =70, (Cm +5”> o0, T T
96(w + 1)ldnC; N —b)M
LC 2) nCy ' ( ) e
C: b(mmie[n]{tciNJ} -1)
The proof is concluded by letting N tend towards infinity. |

4.E Experimental details

In this section, we provide additional details regarding our numerical experiments. The
code, data and instructions to reproduce our experimental results can be downloaded
[here].

4.E.1 Toy Gaussian example

Pseudocode of LSD*. For completeness, we provide in Algorithm 4.8 the pseudocode
of the non-compressed counterpart of QLSD*, namely LSD*.

Algorithm 4.8 Variance-reduced Langevin Stochastic Dynamics (LSD*)

Input: minibatch sizes {b;};c[n), number of iterations K, step-size v € (0,%] with
4 > 0 and initial point 6.
for k=0to K —1do

for i € Agy1 // On active clients do

Draw S,gé)rl ~ Uniform(pn;, p,)-
Set H(')y (0) = (Ni/bi) ;00 (VUi (0r) = VU5 (6)].
Compute g; 11 = H,Sjl(ek)
Send g; 1,41 to the central server.

// On the central server

Compute g1 = 4|A:+1\ ZieAkH &ik+1

Draw Zj4+1 ~ N(0g4,14).

Compute 011 = O — v8r11 + V27 Zk41-

Send 01 to the n clients.

Output: samples {0;}5 .

Additional experimental details. As highlighted in Section 4.4 (Toy Gaussian ez-
ample paragraph) in the main chapter, the synthetic dataset has been generated so
that each client owns a heterogeneous and unbalanced dataset. An illustration of the


https://proceedings.mlr.press/v151/
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unbalancedness is given in Figure 4.3. The precise procedure to generate such a dataset
can be found in the aforementioned notebook.

N;
[\
o
(=]

—

-

ot
f

150 4
1254
100 1

(S |
S »
L f

[\
ot
L

Number of observations

o
I

0 3 6 9 12 15 18
Client 7

Figure 4.3 — Illustration of the unbalancedness of the synthetic dataset used in the Toy
Gaussian experiment.

To obtain the figure at the bottom row of Figure 1 in the main chapter, we launched
all the MCMC algorithms with K = 500,000 outer iterations and considered a burn-in
period of 450,000 iterations. Hence, only the last 50,000 samples have been used to
compute the MSE associated to the test function f : 6 — ||0H In order to compute
the expected number of bits transmitted during each upload period, we considered
the Elias encoding scheme and used the upper-bounds given in Alistarh et al. (2017,
Theorem 3.2 and Lemma A.2).

e License of the assets: No existing asset has been used for this experiment.

e Total amount of compute and type of resources used: This experiment has
been run on a laptop running Windows 10 and equipped with Intel(R) Core(TM)
i7_8565U CPU 1.80GHz with 16Go of RAM. The total amount of compute is
roughly 33 hours.

e Training details: All training details (here hyperparameters) are detailed in
Section 4.4 in the main chapter.

discretization step-size and compression tradeoff. We complement the analysis
made in the main chapter by showing on Figure 4.4 that the saving in terms of number
of transmitted bits can be further improved by decreasing the value of . This numer-
ical finding illustrates our theory which in particular shows that the asymptotic bias
associated to QLSD* is of the order w O(7), see Table 4.1 in the main chapter.

4.E.2 Bayesian logistic regression

Pseudo-code of LSD*T. For completeness, we provide in Algorithm 4.9 the pseudo-
code of the non-compressed counterpart of QLSD™T, namely LSD*T.
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Figure 4.4 — Toy Gaussian example. tradeoff between step-size and compression para-
meter values.
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Figure 4.5 — Bayesian logistic regression on synthetic data.

Additional experimental details. For the Bayesian logistic regression experiment
detailed in the main chapter, we ran the MCMC algorithms with K = 500,000 outer
iterations and considered a burn-in period of length 50, 000.

Benefits of the memory mechanism. We also run an additional experiment on
a low-dimensional synthetic dataset to highlight the benefits brought by the memory
mechanism involved in QLSDT™ when the dataset is highly heterogeneous. To this end,
we consider the SYNTHETIC(q, ) dataset (Li et al., 2020b) with « = =1, d = 2 and
n = 50. We run QLSD'™ with and without memory terms using [ = 100, o = 1/(w+1),
7 = 1075 and for huge compression parameters, namely s € {2',22}. We use K =
100, 000 outer iterations without considering a burn-in period. In order to have access
to some ground truth, we also implement the Metropolis-adjusted Langevin algorithm
(MALA) (Robert and Casella, 2004).

Figure 4.5 shows the Euclidean norm of the error between the true variance under w
estimated with MALA and the empirical variance computed using samples generated by
QLSDTT. As expected, we can notice that the memory mechanism reduces the impact
of the compression on the asymptotic bias of QLSD™ when w is large.
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Algorithm 4.9 Variance-reduced Langevin Stochastic Dynamics (LSD*)

Input: minibatch sizes {b;};c[,), number of iterations K, step-size v € (0,%] with
A > 0, initial point 0y and « € (0, @] with & > 0.
// Memory mechanism initialization
Initialize {7](()1), e ,n[()n)} and o = > 1", 77(()1).
for k=0to K —1do
// Update of the control variates
if £ =0 (mod /) then

Set Ck = Hk
else
Set (= Cr—1

for i € Ayy1 // On active clients do
Draw 8,221 ~ Uniform (@Ni,bi>~
Set )y (00) = (Ni/bi) =00 (VUi (0) = VUi 5 ()] + VU(G).
Compute g; 11 = H,g:)_l(ek) — ng).
Send g; 1,41 to the central server.
Set ?71(621 = 77/(:) + g g1
// On the central server
Compute gy1 = Mk + 77 2ie Ay, Sik+1:

Set Mg41 =Mk + Z?eAkH &ik+1-
Draw Zk+1 ~ N(Od, Id>

Compute 01 = O — V841 + V27241
Send 641 to the n clients.

Output: samples {0 }5 .

Table 4.5 — Bayesian Logistic Regression on covtype dataset.

Algorithm 99% HPD error

DG-SGLD 1.8e-2
QLSDTT 4 bits 2.2e-3
QLSDT* 8 bits 2.0e-2
QLSDTT 16 bits 1.9e-2

Results on a non-image dataset. In order to complement our results on an image
dataset (FEMNIST), we also implement our methodology and one competitor (DG-SGLD)
on the covtype' dataset. Again, the ground truth has been obtained by implementing a
long-run Metropolis-adjusted Langevin algorithm. The results we obtained are gathered
in Table 4.5.

e License of the assets: We use the Synthetic dataset whose associated code
is under the MIT license, and the FEMNIST dataset whose data are publicy
available and associated code is under MIT license.

"https://archive.ics.uci.edu/ml/datasets/covertype
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e Total amount of compute and type of resources used: This experiment has
been run on a laptop running Windows 10 and equipped with Intel(R) Core(TM)
i7_8565U CPU 1.80GHz with 16Go of RAM. The total amount of compute is
roughly 30 hours.

e Training details: Hyperparameter values are detailed in Section 4.4 in the main
chapter. Regarding our experiment on real data, we use a random subset of the
initial training data (for computational reasons).

4.E.3 Bayesian neural networks

e License of the assets: We use the MNIST, FMNIST, CIFAR10 and SVHN
datasets which are publicly downloadable with the torchvision.datasets package.

e Total amount of compute and type of resources used: The total compu-
tational cost depends on the dataset, but is roughly 40 hours in the worst case.

e Training details: We consider the same hyperparameter values detailed in
Table 4.6 for both training on MNIST and CIFARI10 except for the initializa-
tion and the sampling period. For the MNIST dataset, we use the default random
weights given by pytorch whereas for CIFAR-10 we use the warm-start provided
by the pytorchcv library and consider a burn-in period of half the sampling period
(K = 10* iterations) with a thinning of 10.

In the following, we denote Dyegt the test dataset and for any data (x,y) € Diest, We
define the preditive density by

Py | ) = / p(y | 2,0) ©(6| D) do, (4.73)

where p(y | x,0) is the conditional likelihood. For any input z, the predicted label is
denoted by ypred(z) = argmax, p(y | ).

Metrics used for the Bayesian neural network experiment in the main chapter.
In the main chapter, we consider three metrics to compare the different Bayesian FL
algorithms, namely Accuracy, Agreement and T'V. They are defined in the following.

e Accuracy: Based on samples from the approximate posterior distribution, we
compute the minimum mean-square estimator (i.e. corresponding to the posterior
mean) and use it to make predictions on the test dataset. The Accuracy metric
corresponds to the percentage of well-predicted labels.

e Agreement: Let denote p.f and p the predictive densities associated to HMC
and an approximate simulation-based algorithm, respectively. Similar to [zmailov
et al. (2021), we define the agreement between p.s and p as the fraction of the
test datapoints for which the top-1 predictions of p.f and p, i.e.

1
agreement(prer, p) = t5— Y 1 |argmaxpeer(y’ | #) = argmaxp(y’ | z)
DPrestl , e, | ¥ v
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e Total variation (TV): By denoting ) the set of possible labels, we consider the
total variation metric between p.er and p, i.e.

1
TV (pret, p) = m Z Z

TEDrest y’EJ’

pret(y' | ) —p(y' | )]

Performance results on a highly heterogeneous dataset. We train LeNetb
(LeCun et al., 1998) architecture on the MNIST dataset (Deng, 2012), and we con-
sider the FMNIST (Xiao et al., 2017) as the out-of-distribution dataset. To obtain a
highly heterogeneous setting, we split the data among n = 20 clients so that each client
has a dominant label representing 40% of the total amount in the training set and 1%
of the other labels as described in Figure 4.6.

2500

I Client 1
[ Client5
[ Client 20

2000

1500

Num. data

1000 -

500

Figure 4.6 — Number of labels owned by different clients.

Inspired by the scores defined in Guo et al. (2017), we measure the performance of the
different algorithms and report those results in Table 4.6. These statistics aim to better
understand the predictions in order to calibrate the models (Rahaman and Thiery,

2021).

Method SGLD pSGLD QLSD  QLSD PP  QLSDTT QLSDTT PP FedBe-Gauss. FedBe-Dirich.  FSGLD
Accuracy 99.1 99.2 98.8 98.3 98.8 98.7 43.5 79.3 98.5
102x ECE 0.577 1.25 0.916 1.57 0.692 0.930 7.51 21.3 2.65
102x BS 1.38 1.39 1.98 2.23 1.91 2.18 66.6 36.1 2.64

102 x nNLL 2.86 3.16 4.15 4.82 4.11 4.65 139 78.0 6.19
Weight Decay 5 5 5 5 5 5 0 0 5

Batch Size 64 64 64 64 64 64 64 64 64
Learning rate 1le-07 1e-08 le-07 1le-07 le-07 le-07 le-02 le-02 le-07

Local steps N/A N/A 1 1 1 1 250 250 16

Burn-in 100epch. 100epch. 1le04 1e04 1le04 1e04 N/A N/A 1le04
Thinning 1 1 500 500 500 500 N/A N/A 500
Training le03epch.  1e03epch.  1e05it. 1e05it. 1e05it. 1e05it. N/A N/A 1e05it.

Table 4.6 — Performance of Bayesian FL algorithms trained on the highly-heterogeneous
dataset.

Expected Calibration Error (ECE). To measure the difference between the ac-
curacy and confidence of the predictions, we group the data into M > 1 buckets defined

for any m € [M] by B, = {(2,¥) € Diest : P(Ypred(2)|2) € [(m —1)/M,m/M|}. As in
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the previous work of Ovadia et al. (2019), we denote the model accuracy on By, by
1
acc (Bm) = m Z 1ypred(x):y
and define the confidence on By, by

1
conf ( 7B Z ypred )

y)EB

As stressed in Guo et al. (2017), for any m € [M] the accuracy acc(By,) is an unbiased
and consistent estimator of P (ypred(x) =y | (m—1)/M < p(Yprea(x)|z) < m/M) There-
fore, the ECE defined by

L
ECE =

’acc B ) — conf (Bm)‘

m71| test‘

is an estimator of

E(ay) U P (ypred(rc) =y p(ypred(x)rx)) - p(ypred(x)\a?)” .

Thus, ECE measures the absolute difference between the confidence level of a prediction
and its accuracy.

Brier Score (BS). The BS is a proper scoring rule (see for example Dawid and
Musio (2014)) that can only evaluate random variables taking a finite number of values.
Denote by Y the finite set of possible labels, the BS measures the model’s confidence
in its predictions and is defined by

1
BS=—— =clx)—1 .
|,Dtest’ Z Z y | Yy= C)

2,Y) EDtest CEY

Normalized negative log-likelihood (nNLL). This classical score defined by

1
nNLL = —— lo T
D] > logp(ylz)
(Ivy)eptest

measures the model ability to predict good labels with high probability.

Out of distribution detection. Here we study the behavior of our proposed al-
gorithms in the out-of-distribution (OOD) framework, we consider the pairs MNIST /FMNIST
and CIFAR10/SVHN, comparing the densities of the predictive entropies on the ID vs
OOD data. These densities denoted by pi, and poyt respectively, are approximated us-

ing a kernel estimator based on of the histogram associated with {Ent(x) : x € D

for Diest € {MNIST, FMNIST} or {CIFAR10,SVHN}, where Ent(z) is the predictive
entropy defined by:

Ent(z) = Y p(y|z)log p(y|z),
yey
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Figure 4.7 — Predictive entropies comparison between MNIST and FMNIST.

and p(y|x) is defined by (4.73) and estimated by the different methods that we consider.
The resulting densities from the different methods that we consider are displayed in
Figure 4.7.

A new data point z is then labeled in the original dataset (MNIST or CIFARI10) if
Pin(Ent(z)) > pout(Ent(z)) and out-of-distribution otherwise.

Calibration results. Interpreting the predicted outputs as probabilities is only cor-
rect for well a calibrated model. Indeed, when a model is calibrated, the confidence is
closed to the accuracy of the predictions. In order to evaluate the calibration of the
models, we display the reliability diagram on the left-hand side of Figure 4.8. It repres-
ents the evolution of acc(By,) — conf(By,) in function of conf(By, ), closer the values are
to zero better the model is calibrated.

For the second sub-experiment, we consider for any 7 € [0,1], the set Dgid ={z €

D : p(y|lz) > 7} of classified data with credibility greater than 7. We define the test

accuracy on Dp:e q by

Card ({l‘ S Df;éd : ytrue(l') = ypred(l')})

Card(DI(; )

The right-hand side of Figure 4.8 shows the evolution of the test accuracy on Dggd with

respect to the credibility threshold 7. It can be noted that in both plots of Figure 4.8,
the accuracy tends to 100% for confident predictions.
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Federated Learning (FL) is a machine learning framework where many clients collab-
oratively train models while keeping the training data decentralized. Despite recent
advances in FL, the uncertainty quantification topic (UQ) remains partially addressed.
Among UQ methods, conformal prediction (CP) approaches provides distribution-free
guarantees under minimal assumptions. We develop a new federated conformal pre-
diction method based on quantile regression and take into account privacy constraints.
This method takes advantage of importance weighting to effectively address the label
shift between agents and provides theoretical guarantees for both valid coverage of the
prediction sets and differential privacy. Extensive experimental studies demonstrate
that this method outperforms current competitors.

5.1 Introduction

Federated learning is an increasingly important framework for large-scale learning.
FL allows many agents to train a model together under the coordination of a central
server without ever transmitting the agents’ data over the network, in an attempt to
preserve privacy. There has been a considerable amount of FL. work over the past 5
years, see e.g. Bonawitz et al. (2019); Yang et al. (2019); Kairouz et al. (2021); Li et al.
(2020a). Compared to classical machine learning techniques, FL has two unique fea-
tures. First, the networked agents are massively distributed, communication bandwidth
is limited, and agents are not always available (system heterogeneity). Second, the data
distribution at different agents can vary greatly (statistical heterogeneity); see Huang
et al. (2022); Yoon et al. (2022). These features lead to serious challenges for both
training and inference in federated systems. The focus of this work is on federated
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inference procedures that allow to build prediction sets for each agent with a confidence
level that can be guaranteed.

Conformal Prediction, originally introduced in Vovk et al. (1999); Shafer and Vovk
(2008); Balasubramanian et al. (2014), has recently gained popularity. It generates
prediction sets with guaranteed error rates. Conformal algorithms are shown to be
always valid: the actual confidence level is the nominal one, without requiring any
specific assumption about the distribution of the data beyond exchangeability; see Lei
et al. (2013); Fontana et al. (2023) and references therein. With few exceptions, CP
methods were developed for centralized environments.

We consider below a supervised learning problem with features x taking values in X
and labels y taking values in ). Let (X, Yk)kNgf‘“JrN be an independent and identically
distributed (i.i.d.) dataset. We divide the data into a training and a calibration dataset.
Formally, let {Kirain, Kcal} be a partition of {1,..., Niain + N}, and let N = |Kea |-
Without loss of generality, we take Ceap = {1,..., N}. We learn a predictor frx— Ay
on the training set Kirain, where |)| is the number of classes and Ay is the |V|-
dimensional probability simplex. For any covariate x € X associated with a label
y € Y, consider a classification score function §: Y X Ay — [0, 1], independent of other

A~

covariates and labels, which yields a non-conformity score given by V(z,y) = S(y, f(x)).
This non-conformity measure estimates how unusual an example looks. Based on these
non-conformity scores, standard CP procedure constructs, for each significance level
a € [0,1], a (measurable) set-valued predictor Co(x) using {(Xx, Yx) Y, that satisfies
the following conditions

P (YN—H € CQ(XN+1)> >1—aqa, (5.1)

where (X411, Yn+1) is a test point that is independent of Kipain and Keap. The quantity
1 — « is called the confidence level. The guarantee (5.1) is set up in a centralized
environment — all data are available at a central node and usually assuming that the
distributions of calibration and test data satisfy P = P*. If there is a mismatch
between the distributions P and P*, then corrections should be made to ensure
an appropriate confidence level; see Tibshirani et al. (2019); Podkopaev and Ramdas
(2021a); Barber et al. (2022) and references therein.

Setup. In this work, we consider a federated learning system with n agents. We
assume that, instead of storing the entire dataset on a centralized node, each agent
i € [n] owns a local calibration set D; = {(X},Y;)} |, where N is the number of
calibration samples for the agent i. We further assume that the calibration data are
i.i.d. and that the statistical heterogeneity is due to label shifts:

(X4, Y{) ~ P' = Py)y x Py,

where Px|y, the conditional distribution of the feature given the label, is assumed
identical among agents but Py, the prior label distribution, may differ across agents. In
federated learning, statistical heterogeneity is the rule rather than the exception, and
it is essential to take into account the presence of label shift at the agent level. We
assume that a predictive model f has been learned by federated learning. The results
we present are agnostic to the learning procedure.

For an agent x € [n], and each o € (0,1), we are willing to compute a set-valued
predictor, C, with confidence level 1 — o, which depends on the calibration data of all
the agents. The goal is to construct informative conformal prediction sets for each agent,



CHAPTER 5. FEDERATED CONFORMAL PREDICTION UNDER LABEL
SHIFT 224

even when its calibration set is limited in size, by using the calibration data of all the
agents participating in the FL; we stress that the calibration data must always remain
local to the networked agents. Most importantly, the resulting algorithm should attain
both conformal and theoretical privacy guarantees — matched to the privacy guarantees
that can be obtained in the FL training procedure.

Our main contributions to solving this challenging problem can be summarized as
follows.

e We introduce a new method, DP-FedCP, to construct conformal prediction sets in a
federated learning context that addresses label shift between agents; see Section 5.2.
DP-FedCP is a federated learning algorithm based on federated computation of weighted
quantiles of agent’s non-conformity scores, where the weights reflect the label shift of
each client with respect to the population. The quantiles are obtained by regulariz-
ing the pinball loss using Moreau-Yosida inf-convolution and a version of federated
averaging procedure; see Section 5.3.

e We establish conformal prediction guarantees, ensuring the validity of the resulting
prediction sets. Additionally, we provide differential private guarantees for DP-FedCP;
see Section 5.4.

e We show that DP-FedCP provides valid confidence sets and outperforms standard
approaches in a series of experiments on simulated data and image classification
datasets; see Section 5.5.

Related Works. The construction of predictions sets with confidence guarantees has
been the subject of much work, mostly in a centralized framework. The conformal
framework, introduced in the pioneering works of Vovk et al. (1999) is appealing in
its simplicity /flexibility; see e.g. (Angelopoulos et al., 2021; Fontana et al., 2023) and
the references therein. For exchangeable data, this framework provides a model-free
methodology for constructing prediction sets that satisfy the desired coverage (Shafer
and Vovk, 2008; Papadopoulos et al., 2002; Fannjiang et al., 2022; Angelopoulos et al.,
2022b).

These results can also be extended to non-exchangeable data. A method has been
developed for dealing with covariate shift (Tibshirani et al., 2019). This method is
based on evaluating the discrepancy between the distribution of the calibration data set
Pl and the test point distributed according to P*. Using an estimate of the Radon-
Nikodym derivative dP*/dP a valid prediction set can be obtained by weighting
the non-conformity scores. The seminal work of (Tibshirani et al., 2019) led to several
improvements, either to form valid prediction sets as long as the f-divergence of the
discrepancy remains small (Cauchois et al., 2020), or to formulate hypothesis tests under
covariate shifts (Hu and Lei, 2020). In addition, Gibbs and Candes (2021) examine the
shift in an online environment; and Lei and Candés (2021) show the validity of the
prediction sets even when the distributional shift is only approximated. Since many
real-world data sets do not satisfy exchangeability, valid prediction sets are developed
in (Barber et al., 2022) that put more mass around the point of interest.

Conformal methods adapted to label shift are considered in (Podkopaev and Ramdas,
2021a,b) and have similar guarantees to those in (Tibshirani et al., 2019, Corollary 1).
Methods for detecting and quantifying label shift have been proposed in (Lipton et al.,
2018; Garg et al., 2020).
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Differentially private quantiles can be derived based either on the exponential or Gaus-
sian mechanisms (Gillenwater et al., 2021; Pillutla et al., 2022). Using the exponential
mechanism, valid prediction sets are generated in (Angelopoulos et al., 2022a). How-
ever, quantile computation in a federated learning environment remains a challenge. A
first federated approach based on quantile averaging was proposed in (Lu and Kalpathy-
Cramer, 2021). However, this work does not provide theoretical guarantees, and the
proposed method is vulnerable to distribution shifts. For federated deep learning, the
differentially private versions are based on various techniques combination like gradient
clipping and the addition of random noise Triastcyn and Faltings (2019); Wei et al.
(2020).

Notation. Denote by [n] the set {1,...,n} and consider a finite number of labels,
ie., |Y| < oo. Each agent i € [n] has N}, calibration samples of label y € ), and denote
Ny=>1", N?j their total number over all the calibratiop examples. Recall that N the
total number of calibration samples on agent i, i.e., N* = Zyey Ny. Define the total
number of calibration data points N =371, 37 N;. For a cumulative distribution
function F and 3 € [0,1], define by Qg(F) := inf{z: F'(2) > B} the S-quantile. Finally,
for v € R denote by 6, the point-mass distribution.

5.2 Conformal Prediction for Federated Systems under
Label Shift

Non-exchangeable data. In this section, we explain how to take advantage of
calibration data to obtain a valid (1 — «)-prediction set. Consider the calibration
dataset {(X},Y}): k € [N"]}iepn) with data distributed according to {P'};c,. For
{miticm) € An we define the mixture distribution of labels given for y € J by

Pl (y) = o0, miPy (y)-

Our goal is to determine a set of likely outputs for a new data point (X 1, Y3eyq)
drawn on agent x € C from the distribution P*. The conformal approach relies on non-
conformity scores V! = V(X},Y}) € [0,1], i € [n], k € [N?] to determine the prediction
set — see (Shafer and Vovk, 2008). These non-conformity scores are uniformly weighted
to generate the conventional prediction set

Cat®) = {y €¥: V(x,3) < Q1a (1)}
fi= (N + 1)y S0 by + 0).

However, this method can lead to significant under-coverage in the presence of label
shift (Podkopaev and Ramdas, 2021a). In fact, since the data {(X},Y}): k € N'};cpy)
are often not exchangeable, it is required to correct the quantile to account for label
shift to obtain valid prediction sets (Tibshirani et al., 2019). As proposed by Podkopaev
and Ramdas (2021a), we begin by assuming that, for all ¢ € [n] and y € ), we have
access to the likelihood ratios:

(5.2)

wi = Py (y)/ Py (y). (5.3)
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Denote by Z = {(i,k): i € [n], k € [N|}U{(, N* + 1)}. Using the weights {W}: (i, k) €
7} provided in (5.44), the non-exchangeability correction of Tibshirani et al. (2019) is
given for any y € Y by

*

i
P, = Wi
Yoy n Ni 0
k> * J
Wi + 225212121 Wi

n N*
* % * .
[ty = Py yO1 + Z Zng,y(SVﬁ'
=1 k=1

(5.4)

For any covariate x € X, define the (1 — a)-prediction set with oracle weights

Coe ) = {y € V: V(x¥) < Quali)}

In contrast to the exchangeable setting, the quantile is calculated based on a weighted
empirical distribution depending on y. The validity of the prediction set is based on the
concept of weighted exchangeability, which was introduced in (Tibshirani et al., 2019,
Definition 1); see also (Podkopaev and Ramdas, 2021a, Theorem 2). In the following,
we will suppose that the next assumption holds.

Assumption 5.1. The calibration data points {(X},Y}!): (i,k) € I} are pairwise inde-
pendent, and there are no ties between {Vii: (i,k) € T} almost surely.

Theorem 5.2. If Assumption 5.1 holds, then for any o € [0,1), we have

l—a<P (YKI*H € Capr (XX/*H)) <l-a+E (ﬁ?gz{p;ﬁ’yﬁ*ﬂ }] ) (5.5)

where py; is defined in (5.4).
k

Yy
This theorem is directly adapted from (Tibshirani et al., 2019, Corollary 1). For com-
pleteness, a formal proof is postponed to Section 5.C.1. It is important to note that
the lower bound in (5.5) holds even in the presence of ties between non-conformity
scores. Although Theorem 5.2 guarantees the validity of Cq, (X3« ), this prediction
set requires the challenging computation of the weights pj ... Indeed, the calculation of
Wy y requires the summation over N! elements. The first key contribution of our work
is given in Theorem 5.3, where we show that alternative weights, which are easier to
compute, can lead to valid prediction sets. Specifically, the new weights Dy y are com-
puted on a smaller number of data points N < NN, which are randomly selected based
on a multinomial random variable with parameter (N, {m;};c[,)). Actually, we denote
by N* the multinomial count associated with agent i. We take N* A N* calibration data
from agent i and denote V; = V(X!,Y}'). For any label y € ), the weight Dy 1S given
by:

w*

Phy = Y : (5.6)

Y,y n NZAN'L
* *
W+ Yy D g Wy

In addition, consider the following prediction set
_ N’L N’L
[ = D% 61+ > r Dot @g,y%,g’
Cair () = {y € V: V() € Qualiiy) } -

Denote by [[w*[|c = max,ey{wy}. Using the new prediction set Co z+, We obtain the
following result.

(5.7)
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Theorem 5.3. Assume Assumption 5.1. Set N = |N/2| and m; = N*/N, for any
i € [n]. Then,

6

‘P <Yz§*+1 € Ca v (XJ*V*+1)> —ltals
36+6logN ., .o 1ldlogN —
+ N Hw ”OO + N Zz 11\[—;<10gN N*.

The preceding theorem shows that Cq j+ (X3, ;) contains the true label Y. ; with
probability close to 1 —a. If n =1 and N > 46, the set {i € [n]: N* < 12log N}
is empty. In this case, the convergence rate reduces to N~ 'log N. More precisely, if
each agent has the same number of calibration data, the convergence rate N~!log N
is ensured when N > 12nlog N. This is for example the case when N = 200 and
n < 86538. On the other hand, if n = IV, each agent has only one data point, and in
this case the bound becomes N~ 'n(log N)3/2.

Approximate Weights. Ideally, we would like to use the weights defined in equa-
tion (5.6) to compute valid prediction sets. However, these weights depend on the
probability distribution of the labels for each agent, which in many scenarios must be
estimated (and therefore known up to an error). Based on empirical estimation of these
label probability distributions {ﬁé}ie[n], for each label y, define the likelihood ratio as
follows: R
*
g 1) R 5
21:1 mi Py (y)
and denote by py . the weight defined in (5.6) with wj; replaced by w;,. We also consider
liy defined as in (5.7) with py  replaced by py ... The prediction set becomes

Cop(x) = {y eV V(x,y) <Qi-qn (ﬁy) } . (5.9)

Since computing the exact weights py . in (5.6) may not be feasible, we consider the
approximation py . given in (5.8). We also construct a random variable ()?}{,* 1) }7](,* +1)
as in (Lei and Candeés, 2021) suchAthat P£?§*+1 =y) =D jey @5P§al(yj)]’1@;P§al(y),
where @y, is defined in (5.8); and Xy, 1|Y+ is drawn according to Px|y. The valid-
ity of the resulting prediction set is established in Lemma 5.4. Note that this approach

makes the weights’ computation feasible, at the cost of introducing one additional ap-
proximation.

Lemma 5.4. For any o € (0,1), we have

PV 41 € Ca(Xiei)) = PV € Caa( X))

1 @*P}c/al(y)
< - Py (y) — Y ————|:=R, (5.10)
2 y%):; dey w;:PY l(y)

where Wy, Cop are defined in (5.8) and (5.9), respectively.

When @y, is sufficiently close to wj, Lemma 5.4 shows that the approximate weights
generate accurate prediction sets (as discussed in Section 5.C.1). The error disappears

entirely when w;; = wy for all y € ). Furthermore, using (Tibshirani et al., 2019,

Y
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Corollary 1), we can establish that YK,* 1 €Cq ( ~+41) With probability nearly 1 —
Finally, similar ideas that developed for Theolem 5.3 on Yy, ;, in conjunction w1th
Lemma 5.4, give a more accurate bound on the coverage validity.

Theorem 5.5. Assume Assumption 5.1. For any i € [n], set m; = N'/N and take
V = |N/2|. Then,

36| @™ |2,
IP’(Y** € Con(Xn« )—1+a‘<
‘ N —+1 a,,ll( N +1) N(E Ycal)

6 2logN [ 3||@*|2% :
— V i N*
+R+—+ ((E ) 72i:%<long :

N N

where W wY“ R are defined in (5.8)-(5.10) and Y ~ P{}al.

This theorem provides a lower bound on the probability of coverage that is independent
of the data distribution. A formal proof can be found in Section 5.C.5. This result
demonstrates that it is essential to include all agents with the most data. However, it
also highlights a counterproductive effect when incorporating agents with few data.

Maximum Likelihood Estimation Weights. Denote by M; the number of train-
ing data on agent ¢ associated to label y. Consider the total number of local data
M= > yey M, the number of training data with label y written by M, = YoM
and the total number of samples on all agents by M = Zyey M,. When each agent
independently learns its approximate label distribution based on counting the number
of label in its training datasets, the empirical counterpart of (5.8) is given for any labels
(y,y) € Y* by

MM
T MM,

Sk

IVl VISR (5.11)

All the results in this article are given conditionally to the training dataset, meaning
that they hold regardless of the specific training data. In order to determine the order of
magnitude of the bound of Theorem 5.5, we analyze the average value of R. Given the
number of training samples { Mi}ie[n], if we assume that each training point (X},Y}) is
distributed according to P*, then taking the expectation over the training set yields:

1 log M*
E[R]<—+1 08 | Y| +log M*_ (5.12)
M minyey Py (y)

The proof is given in Section 5.C.3. Interestingly, if the previous upper bound is plugged
in Theorem 5.5 instead of Lemma 5.4, then the leading error of order O(M*_l/ 2v
N~'logN) is due to the weights’ estimates {p}  }yey. This bound shows that we
should not attempt to estimate the likelihood ratios for a single agent, especially when
the square root number of local training data on agent  is small compared to the number
of calibration data. Rather, we need to do this for a group of agents that have approx-
imately the same distribution, which will give us more stable estimators. The agent can
benefit from learning simultaneous tasks by exploiting common structures (Caruana,

1998).
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5.3 Privacy Preserving Federated CP

In the previous section, we constructed prediction sets that were valid in theory. How-
ever, their practical implementation in a federated environment posed challenges due
to the reliance on estimations that are difficult to evaluate. In particular, estimating
Q1_a (ﬁy) in order to derive the prediction set C, 5 (x), defined in (5.9), is challenging
because it requires knowledge of the global distribution jz,. This section is divided into
two parts: (1) a new method is developed, called DP-FedCP, for estimating quantiles un-
der the federated constraints; (2) then, a method for computing probabilities {p; .}, yey
with differential privacy (DP) guarantees is presented.

Quantile Regression and Moreau-Yosida Regularization. Let a € (0,1), we
now propose to estimate the weighted (1 — a)-quantile of iy, defined in (5.16). To this
end, we develop a federated optimization algorithm based on “pinball loss” minimization,
a quantile regression techniques with asymmetric penalties (Koenker and Hallock, 2001).
For v € R and ¢ € R define the pinball loss as

Saw(@) = (1 —a)(v = @) ly>q + (g — v)Lg>0.

For any y € ), the (1 — a)-quantile of /iy is given by

Q1-« (fiy) € argmin {vaﬁy [Sav(0)] } ; (5.13)

qeR

e.g. see (Buhai, 2005). The pinball loss Sy, is lower semi-continuous but not differ-
entiable on R. Hence, we consider the Moreau-Yosida inf-convolution (or envelope)
Sa.v instead of Sy, — where 7 is the regularization parameter; see e.g. (Moreau, 1963)
and (Parikh et al., 2014, Chapter 3), whose expression is given by

Sala) = min {Sa,v(ci) + 217@ - q)z}. (5.14)

The function Sq 4 (+) has an explicit expression given in (5.20). Note that the minima of
Sav and S, coincide. We obtain the weighted quantile by considering S2 , instead of
Saw- An important property is that the inf-convolution of a proper lower semicontinuous
convex function is a differentiable function whose derivative is Lipschitz; see (Rockafellar
and Wets, 2009, Theorem 2.26). The original optimization problem given in (5.13) is
replaced by a convex/smooth loss:

Q4 (ﬁy> € arg min{S;(¢)} (5.15)
where S : R — R, is the function given by

Sa: g = Eygy, [S] v ()]

For almost every value of a« € (0,1), there exists a unique minimizer of S). This
minimizer Q]_, (fiy) of the regularized loss function deviates from the true quantile.
However, the error is controlled by the regularization parameter + and is asymptotically
exact when v — 0. More precisely (see Section 5.A.2 for a proof) it holds that:
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Algorithm 5.10 DP-FedAvgQE

Input: initial quantile qg, target significance level o, number of rounds 7', learning
rate 7, Moreau regularization parameter v, local gradients {V Siﬂ}ie[n], local non-
conformity scores {V'}reniq1), mixture weights {A }icp,), standard deviation of
Gaussian mechanism noise o4, K number of local iteration.
fort=0toT —1do
St41 < random subset of [n] // Server side
for each agent i € Siy1 do // In parallel
Initialize quantile qao —q
for k=0to K —1do
// Gradient with DP noise
g;k <V ng(qg,kz) + Zg,kv Zé,k: ~ N(0, 03)
// Update local quantile
g1 € Gk — 9
(Agiiy, AGLy) < (4 — G 2 _kelK] % )

// On the central server

n 7
Gt+1 < G + Seal ZiEStH Aqt-H
)\i Afi
_ t = n y 241
Qt+1 < gt + [Stt1] ZiESt+l t+1

Output: Q?—a,T(ﬁy) — qr.

Theorem 5.6. Let v > 0 and a € (0,1). Assume that for all {ye}sen+1) € YN+

1 —a & {Wi/Wnii}trens1), where Wy = 25:1 wy,. Then, we have |Q]_,(fiy) —
Q-a(ity)| <7

The condition on « assumed in Theorem 5.6 ensures the uniqueness of the minimizer

of 5.

Federated quantile computation. We now describe the Differentially Private Fed-

erated Average Quantile Estimation (DP-FedAvgQE) algorithm (see Algorithm 5.10), a

novel method to compute quantile in a federated learning setting, with DP guaran-

tees. We briefly described this method below. For each query y € ), we consider the
distributions iy = > | AL uy, where )\ and 1! uy are given by

; N’/\NZ

Ay = vyt 2=t Py

N ? _ (5.16)

fil, = pyy51+ZNAN iliy

To simplify the notation, for any client i € [n], we introduce the local loss function
Sy’ g eR— Ev.ai [ngv(q)]; see (5.22) for explicit expression.

At each iteration t € [T], the server subsamples the participating agents Si11 C [n]
independently of the past. Each selected agent ¢ € Si;1 performs K local updates:
(1) they independently compute their local gradient; (2) a Gaussian noise is added as
in (5.17) to ensure the differential privacy. More precisely, for agent i € Sy11, at local
iteration k € {0,..., K — 1}, we define:

i =V S&(@h) + 20k (5.17)
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where {z;k: (t,k) €{0,...,T =1} x [K]};g[ are iid. Gaussian random variables

2

with zero mean and variance o;. For any agent 7 € Si11, g;, is an unbiased estim-

ate of V Sg”(qzk) (3) The partgicipating agents update their local quantiles qi’kH —
4tk — M9 > Where 7 is a positive step-size; (4) then transmit (Agi,, Ag,,) = (qu —
qiyo, Zke[K] qzk/K) to the central server. The parameter Aq§+1 is used to update the
common parameter g;, while Ag,; is necessary to keep track of the average of the
sampled parameters denoted @; see Nemirovski et al. (2009); Bubeck et al. (2015).
(5) Finally, the server performs an online average to update ¢ and computes the new
parameter following

Q41 = q¢ + (n/]Si41]) ZzESH_l Aq§+1'

At the final stage, the central server output the quantile estimate is given by

QYo r(fiy) = X1 (0/18:]) Cies, Ny AGH/T. (5.18)

Algorithm 5.10 is a Federated Averaging procedure (McMahan et al., 2017) applied to
the Moreau envelope of the pinball loss. As we will see in Section 5.4, the addition of an
independent Gaussian noise on the parameter at each update round provides differential
privacy guarantees; see Theorem 5.13 for more details.

Remark 5.7. Privacy is also at risk when computing probabilities {py y }yyey. To com-
pute the probabilities {l/j\gj,y}y,yey while preserving privacy, we need specific mechanisms
to transmit the number of training labels (My))yey from each agent i to the server. For
this purpose, we use the method proposed in (Canonne et al., 2020). The idea is to
add a discrete noise to the counts {M},: i € [n]}yey and then transmit these noisy proa-
ies. The resulting algorithm that combines the differentially-private count queries and
federated quantile computation is given in Algorithm 5.11.

Remark 5.8. Algorithm 5.11 is designed to build a confidence set for the single agent
*. By vectorizing all computations, the algorithm can be scaled to compute a confidence
set for each agent. This would result in an algorithm that remains linear in the number
of clients but would be more efficient than computing several independent runs. From a
practical perspective, complexity can be further improved by clustering clients into groups
based on their label distributions and performing conformal prediction on a group level.

Remark 5.9. The local loss functions S5 are expressed as the expectation of pinball
loss functions. Since the sensitivity of these pinball loss functions is 1, there is no
need to clip the gradient. It is sufficient adding Gaussian noise ./\/(O,Ug) to guarantee
differential privacy. The value of o4 is chosen to provide a suitable tradeoff between
privacy and utility, balancing the need for strong privacy protection with useful outputs.
For an explicit setting of o4, refer to Theorem 5.13.

5.4 Theoretical Guarantees

Convergence guarantee. We provide a convergence guarantee for DP-FedAvgQE. De-
tails of the proofs can be found in the supplementary chapter. We show the convergence
of {@?_ ot(ly) }ten to a minimizer which is unique under the assumptions discussed in
Section 5.A.2. We briefly sketch key steps from the theoretical derivations, since the
local loss functions {S}"};c(, have different minimizers, this client drift/heterogeneity
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Algorithm 5.11 DP-FedCP

Input: calibration dataset {(X},Y}): ke [N i]}ie[n]a covariate x, communication

round number 7', subsampling number N, Gaussian noise parameters o4, > 0.

for each agent i € [n] U {x} do // In parallel
Set Yy € Y, M; < number train data with label y

Generate {n}, }ycy i.i.d. according to Nz (O, 62>
Send Yy € ), NZ — max(1, M} + ;)
Compute & Send {V(X,i,Y’) ke [NZ]} eln]

// On the central server

Aggregate N, Zle[n VY EY

Aggregate N <2 yey Ny
for each query y € Y do

Sample {]\_fi}ie[n] ~ Multi(N, {N"/N}ie[n})
Compute py o as in (5.6) with @y given in (5.11)
Compute Q]_,, 7(fly) +DP-FedAvgQE

Output: CAZﬁ(X) — {y: Vi(x,y) < Q\L%T(ﬁy)}.

may slow down the convergence (Li et al., 2019). This dissimilarity is evaluated by the
parameter ¢ > 0, which is given by

¢ = max;ep, |V S5 =V S|4

The convergence analysis is performed for the estimate parameter @Y_ o1 (fty) given
n (5.18). We provide below the statements without subsampling, ie. S; = [n],
given in Section 5.B. Recall that Q]_,(dy) is provided in (5.15) and denote A =
Eqllgo — Q7_,,(fiy)||>. The following results hold with fixed train/calibration datasets
(Dtrains Deal), and define their union by D = Diyain U Dea-

Theorem 5.10. Let v € (0,1], S; = [n] and consider the step-size n € (0,v/10]. Then,
forte€{0,..., T -1}, k€{0,..., K — 1}, we have

[SA/( | —ar(ly)) | D] = SUQT_,(fy)) < (nKT)™'A + 147_1772[((02 +K¢?).

The presence of heterogeneity among local datasets significantly influences convergence
dynamics, particularly when the number of targets K, is significantly larger than 1. In
such cases, the term K2¢? poses challenges by potentially hindering the effectiveness of
numerous local steps. Consider the step-size 7, defined by

1/3
7% = min e A
* 10" \ 13K?T (02 + (°K)

Setting 1 = n,, we obtain the following result.
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Corollary 5.11. Let v € (0,1], Sy = [n] and consider the step-size n,. Then, for any
te{0,...,T—1}, ke {0,...,K — 1}, we have

i = E[SUQT ()| D] — SUQL(By))

1/3
10A 5 <U§+C2K) A2/3
SOKT (yKT?)1/3

(5.19)

As shown in Corollary 5.11, 6£)p)tlm increases inversely proportional to . The smaller
the regularization parameter 7, the smaller the step-size 1 must be, and the more
iterations are required to achieve the same accuracy. However, the error caused by the
Moreau envelope vanishes for v | 0%, i.e. Q]_, (Hy) approaches Q1_q(fiy). Thus, there
is a tradeoff between the accuracy of the quantile approximation @Y_ a,T(ﬁy) and the

computational cost.

Conformal guarantees for DP-FedCP. We show that the confidence set éz ﬁ(X Neg1)
provided by DP-FedCP constitutes valid coverage of Y. ;. The theoretical derivations

and complete statements are given in Section 5.C. For all i € [n], denote by P‘i/ the
distribution of V(X Y?) where (X;,Y;) ~ P?, and consider Y ~ Pgal,

Theorem 5.12. Assume there exist m, M > 0 such that for any i € [n], P} admits a
density fv with respect to the Lebesque measure that satisfies m < fV < M. For any

a € 0,11\ Q, it holds

P(Vire i1 € C (X5 1)) = P(Viie i1 € Cai( X))

< o \/log(N ) ey PO ()@ (E[ opmmmtram] +fy>

*
mminyey wy

oOMlog N 4 Var(i..) 2Ewm+1 m__ 1
mN | N(Ed..)?  NE® INlog N | N?'

Ycal

where EC()p)tlm is defined in (5.19).
This result illustrates an interesting tradeoff introduced by the regularization parameter

~. As shown in Corollary 5.11, e increases inversely proportional to . Therefore,

optim
setting v ~ T~1/2 ensures a convergence rate of order T—1/* for the optimization pro-
cedure. In this case, the error term of order O(N ~!log V) is guaranteed by choosing the
number of iterations 7'~ N*. The condition « € [0,1] \ Q is a strong but unnecessary
assumption. However, it provides a simple way to ensure that [y has no jump at level
1—a. Interestingly, the same condition on « is used in (Podkopaev and Ramdas, 2021a,
Corollary 1), where the authors explain why this condition cannot be avoided to ensure
the consistency of the empirical quantile estimator.

Differential privacy guarantees. The (¢, §)-differentially private nature of DP-FedAvgQE
relies on two components: the additional Gaussian noise, combined with the bounded
gradient which avoids extreme values/outliers. The parameter € controls the level of
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privacy protection provided by a differentially private algorithm, by limiting the prob-
ability of inferring any information about an individual in a given dataset. However,
there is a small chance that the algorithm may leak some information, even though this
probability is kept under control by the parameter §. Based on the Rényi differential
privacy (Mironov, 2017), joined to agent subsampling mechanism (Balle et al., 2018),
we establish the (e,d)-DP property following similar ideas to those of (Noble et al.,
2022, Theorem 4.1). Detailed proof and definitions are provided in Section 5.D.

Theorem 5.13. If there is a constant number S € [n| of sampled agents, i.e., Sy = S,
for allt € [T]. Then, for alle >0 and § € (0,1—(1++/€)(1—S/n)T), the Algorithm 5.10
is (€,0)-DP towards a third party when

0g>2

15 1/T
where S:E 1—( _ )

en

K max;ep Al (1 . 24sﬁlog(1/5))
€ )

S 14 e

5.5 Numerical experiments

We conducted the experimental study of DP-FedCP using both synthetic toy examples
and real datasets. To perform a comprehensive evaluation, we compared our method
with relevant baselines, namely Unweighted Local and Unweighted Global (see Sec-
tion 5.E for details). The Unweighted Local method computes the quantile based on
the local validation data of the agent x and derives the local unweighted prediction set
with (1 — «) confidence level, given by

Co jilocs (%) = {y €V:V(x,y) <Qi-q (Hlfc’*>} ;

where ﬂlfc’* = ﬁ fcvz*l oy + ﬁél' This method is the adaptive classification
technique with split-conformal calibration applied to agent *, as introduced in Romano
et al. (2020) and also described in Angelopoulos et al. (2021). On the other hand, the
Unweighted Global method estimates the quantile based on aggregated non-conformity
scores from all the agents, without taking into account the shift between calibration and
target distributions. This method computes the (1 — a)-quantile in an analogous way
to the “classical” conformal method recalled in (5.2).

For our experiments, we apply split-conformal calibration on the entire dataset, which
requires all agents to report their non-conformity scores to a central server. We use
the same non-conformity score V' (z,y) as considered in Romano et al. (2020); Angelo-
poulos et al. (2021). Given the covariate x, the predictor f: X — A|y| estimates the
probability of each class, and orders them from the most to the least likely label. The
non-conformity score is then computed as the sum of all the probabilities greater than
the true label y. Formally, the non-conformity scores are given by

PG Y = 2y FXDII LA (XD > FXDY]L
VXL, YY) = p(X3 Y0) + U x f(XPIY,

where U} € [0,1] is a uniform random variable.
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[Unweighted Global Oracle Weights [ 1Unweighted Local = DP-FedCP ----- Nominal Value

le4

Class 1
Class 2
4 Class 3

[&]

0,
0.5 0.6 0.7 0.8 0.9 1.0 0.90
(a) Non-conformity scores (b) Empirical coverage
Figure 5.1 — Simulated data experiment with 2D data. Target confidence level (1—a«) =
0.9.

Simulated Data Experiment. In the first experiment, we demonstrate that it is
necessary to consider label shifts between agents to obtain valid coverage of prediction
sets. We consider a simple classification problem with 3 labels. The conditional distri-
butions of the features given the class label are 3 two-dimensional Gaussian distributions
with means 6; = [-1,0],02 = [1,0],03 = [1, 3] and with identity covariance matrices.
We consider n = 2 agents with the distribution of labels {P} (y)},e5 = {0.8,0.1,0.1}
and {PZ(y) byerz = 10.1,0.1,0.8}. We use the Bayes classifier and consider calibration
data with (N!, N?) = (1000, 50). The inference is performed for agent 2.

We run independently 1000 experiments with different splits and record the obtained
empirical coverage each time. Figure 5.1a shows the distribution of non-conformity
scores for the different labels, and Figure 5.1b shows the empirical coverage of (1 — )
prediction sets with a = 0.1 using the DP-FedCP method (Algorithm 5.11) compared to
Unweighted Local and Unweighted Global. We also included results obtained with
oracle-weights, in which the conformal prediction sets are obtained using (5.89), i.e.,
assuming that the exact ratios {wj},ey are known.

The quantiles calculated via the Unweighted Global method are mostly due to the
non-conformity scores from agent 1. This is due to the larger local dataset of agent 1,
whose label distribution is very different from that of the target; see Figure 5.1a. The
Unweighted Local method computes the quantiles based on the local data of agent
2, which has too little data to produce robust prediction sets. Therefore, DP-FedCP
yields much better conformal prediction sets (see Figure 5.1b), which are little different
from those obtained using the adaptive prediction set methods with oracle weights
of Podkopaev and Ramdas (2021b).

CIFAR-10 Experiments. We investigate the performance of DP-FedCP on the CIFAR-
10 dataset. We use a ResNet-56 (He et al., 2016) pre-trained on the CIFAR-10 training
dataset as the underlying classifier with temperature scaling " = 1.6. We also ran-
domly split the CIFAR-10 test dataset into a calibration dataset and a test dataset,
each containing 5000 points, and repeat the experiment 1000 times. The number of
agents is n = 10, and the prediction set is learned for the agent * = 4 that has the
smallest number of data points. The distribution of labels for agent i is P{(i) = 0.55
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Figure 5.2 — Empirical coverage on the CIFAR-10 data.
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(c) Distribution of the empirical coverage for the methods as a function of the shift

Figure 5.3 — ImageNet experimental results: (a) Empirical coverage comparison of
DP-FedCP with unweighted baselines (b) Empirical coverage comparison of DP-FedCP
with non-DP version at different privacy parameter values (c¢) Effect of distribution
shifts on empirical coverage for DP-FedCP and unweighted baselines.

and P{(y) = 0.05 for all y € [10]\{i}. We set the validation size for agent x to N* = 50,
and for agent 2 the validation size is N? = 2150. The remaining agents have the same
validation size of N* = 350 for all i € [10]\{2,4}. The significance level « is set to
0.1. In this configuration, both Unweighted Local and Unweighted Global methods
perform significantly worse than DP-FedCP; see Figure 5.2.

ImageNet Experiments. We use a pre-trained ResNet-152 (He et al., 2016) as a
base model with temperature scaling T = 10. We perform 1000 runs with different
splits of the 50K ImageNet test dataset into calibration and test datasets of size 40K
and 10K samples, respectively. The calibration data is split into 11 agents. For agent

€ [10], the size of the calibration dataset is N = 3950, while we N'! = 500. For
ImageNet, the distribution of non-conformity scores V(f(X),Y) varies significantly as
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a function of the given label Y = y. In this experiment, we distribute the data between
agents to ensure distinct non-conformity score distributions across agents, illustrated in
Figures 5.6a and 5.6b. For this, we compute the mean of the non-conformity scores in
function of the given label. We call G the set of the 500 labels with the lowest means
and G9 the set of the remaining 500 labels. Agents i € [10] (low-score group) take
90% of their data from G; and the remaining 10% from G5. Agent 11 takes 90% of its
calibration data from G and the remaining 10% from G.

We construct a prediction set with significance level « = 0.1 for the distribution of
the 11-th agent. Figure 5.3a shows the empirical coverage of the prediction sets. In
contrast to unweighted alternatives, DP-FedCP achieves valid coverage. In Figure 5.3c,
we evaluate the sensitivity of the different methods to the shift between G1 and G5. We
repeat the previous experiment varying the shift parameter (90% in the first experiment)
with 100 runs for each coefficient and show the Violin plot of the obtained empirical
coverage. The experimental results show that DP-FedCP overcomes the challenge of
obtaining valid conformal predictions in the presence of label shifts at a federated level
compared to alternative methods.

Differential Privacy Experiments. We explore the tradeoff between privacy and
coverage quality. We conducted the ImageNet experiment with different values of o, in
the set {10, 30,60, 100}. The results of the experiment are shown in Figure 5.3b, which
illustrates the tradeoff between t