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Synthèse(en français)

Introduction

L’une des branches les plus importantes de la recherche opérationnelle et le sujet principal de cette

thèse est l’étude des problèmes de localisation, en particulier les problèmes de localisation discrète.

Ces problèmes de localisation sont présents dans une grande variété d’applications, telles que le

clustering, le districting, le routage des transports, et la localisation d’installations telles que les

entrepôts, les usines industrielles, les stations-service, les commissariats de police ou les centrales

électriques. L’étude de ces problèmes contribue à améliorer l’allocation des ressources, à réduire

les coûts et à améliorer les prestations de services dans diverses communautés et industries. De

plus, l’inclusion de l’incertitude dans la modélisation de ces problèmes permet d’anticiper la prise

de décision face à différents scénarios défavorables. C’est le cas dans le contexte de catastrophes

naturelles telles que les tremblements de terre ou les ouragans, pour lesquelles ces problèmes

peuvent aider à identifier les emplacements optimaux pour les abris temporaires, les centres

médicaux et les points de distribution des fournitures essentielles.

La résolution des problèmes de localisation discrète peut se révéler difficile en raison de leur taille

et de la complexité de calcul inhérente à leur structure combinatoire exponentielle, la plupart

d’entre eux étant des problèmes NP-Difficiles. Bien qu’il existe plusieurs solveurs génériques, tels

que CPLEX ou Gurobi, capables de résoudre bon nombre de ces problèmes, le temps de calcul

devient rapidement trop grand à mesure que la taille de l’instance augmente. Dans ce contexte,

plusieurs méthodes de résolution ont été développées pour faire face à ces limitations, mais la

plupart d’entre elles sont des méthodes d’approximation. Ainsi, proposer de nouvelles méthodes

exactes de résolution pour les instances à grande échelle est un défi permanent.

Problèmes de localisation discrète de p installations

Chaque problème de localisation comporte quatre éléments : (1) les clients, généralement déjà

localisés, (2) les installations à localiser, (3) un espace où les installations et les clients sont

situés, et (4) une métrique qui indique le coût, le temps ou la distance entre les installations et les

clients (ReVelle and Eiselt (2005)). Parmi les problèmes fondamentaux de localisation discrète

figurent le Facility Location Problem (FLP), l’Uncapacitated Facility Location Problem (UFLP)

et le Capacitated Facility Location Problem (CFLP) (Laporte et al. (2019b)). Le (FLP ) consiste

à sélectionner les emplacements optimaux d’un nombre prédéfini d’installations afin de satisfaire

la demande des clients. L’objectif est de minimiser la somme des coûts de transport et de mise en



place. La (CFLP ) est une variante de la (FLP ) dans laquelle les installations ont des capacités

limitées pour satisfaire les clients. Enfin, dans le (UFLP ), ni les capacités des installations ni les

demandes des clients ne sont prises en compte.

Cette recherche étudie les "problems de p-installations" dans lesquels il existe un nombre

fixe de p installations à localiser, généralement sans tenir compte des coûts d’ouverture ou de

fonctionnement. Nous exploitons cette structure particulière pour la solution exacte d’instances à

grande échelle du problème p-median (PMP) et du problème p-centre (PCP). Ces deux problèmes

ne diffèrent que par leur fonction objective. Le (PMP ) consiste à localiser p installations de telle

sorte que la somme des distances d’allocation de tous les clients à leur installation la plus proche

soit minimisée. En revanche, le (PCP ) cherche à minimiser la plus grande distance d’allocation.

La Figure 1 illustre les solutions optimales de ces deux problèmes pour une instance avec 40 clients

et sites candidats, et p égal à 6. Cette instance est dite symétrique puisque les sites candidats

et les emplacements des clients sont identiques. Notez que dans la solution (PCP ) (Figure 1c)

une installation est allouée à seulement 2 clients isolés afin de réduire la distance maximale

d’allocation (la ligne rouge) de 33 à 24. En revanche, la somme des distances d’allocation passe de

530 à 586. Le (PCP ) est considéré comme plus équitable car il réduit la disparité des distances

d’allocation. D’autre part, le (PMP ) est considéré comme plus efficace puisque la distance

moyenne d’allocation est minimisée.

(a) Instance symétrique avec 40 nœuds d’un carré de
100 × 100.

(b) Solution du p-median (c) Solution du p-center

Figure 1: Comparaison des solutions optimales du (P MP ) et du (P CP ) pour la même instance (a) avec p = 6.



Portée et cadre théorique de la thèse

Dans cette thèse, nous proposons des modèles mathématiques et mettons en œuvre différentes

méthodes de solutions exactes pour trois problèmes p-facilities. Le cadre théorique principal de

cette recherche est l’optimisation combinatoire. Dans ce contexte, notre recherche se concentre

sur l’étude de différentes formulations de problèmes de localisation discrète à l’aide de la

programmation linéaire en nombres entiers mixtes (problèmes MILP).

Ce qui suit est une brève description des méthodes fondamentales de résolution des problèmes

MILP, utilisées dans la littérature et que nous prenons également en compte.

• Branch-and-Bound (B&B) : Partitionner l’espace des solutions réalisables en

sous-espaces plus petits (branches d’un arbre de recherche) et résoudre la relaxation

linéaire à chaque nœud. Des solutions réalisables en nombres entiers sont progressivement

trouvées au fur et à mesure du parcours de l’arbre de recherche. (B&B) incorpore des

stratégies d’élagage pour éviter d’explorer des branches inutiles.

• Méthodes de plans coupants : Raffinement itératif de l’espace de solution à l’aide

d’inégalités linéaires, appelées coupes.

• Branch-and-Cut (B&C) : Une amélioration de l’approche (B&B) qui incorpore des plans

coupants pour renforcer les relaxations linéaires à chaque nœud.

• Génération de colonnes : Résoudre d’abord le problème avec seulement un sous-ensemble

de ses variables. Puis, de manière itérative, les variables susceptibles d’améliorer la fonction

objective sont ajoutées au programme jusqu’à ce qu’aucune autre amélioration ne soit

possible.

• Branch-and-Price (B&P ) : Incorpore une génération de colonnes dans l’arbre de

recherche branch-and-bound. À chaque nœud, la solution fractionnaire est évaluée pour

déterminer si une nouvelle variable doit être ajoutée au problème.

• Décomposition de Benders : Divise le problème en un problème principal et un ou

plusieurs sous-problèmes. Le problème principal est une relaxation du problème original,

dans lequel certaines contraintes sont omises, ce qui le rend plus facile à résoudre. Les

sous-problèmes tentent de fixer la valeur des variables omises en fonction de la solution

du problème principal. Si cette solution n’est pas optimale, ils génèrent des coupes et le

problème principal est à nouveau résolu.



Dans notre recherche, nous considérons également l’optimisation dans l’incertitude. Parmi les

approches possibles, nous utilisons l’optimisation robuste. Cette approche considère que chaque

paramètre incertain peut appartenir individuellement à un ensemble d’incertitude, puisqu’on ne

dispose pas d’informations sur la distribution de probabilité. On vise à minimiser le coût du pire

cas. En particulier, nous considérons une approche en deux étapes dans laquelle les décisions sont

prises avant et après la révélation de l’incertitude.

Structure du manuscrit

La thèse est organisée comme suit. Tout d’abord, dans le Chapitre 2, nous présentons le cadre

théorique de cette recherche avec les définitions et les méthodologies les plus importantes utilisées

dans les autres chapitres. Dans le Chapitre 3, nous étudions une décomposition de Benders

du problème p-median. Ce travail a été publié dans la revue European Journal of Operational

Research (Duran-Mateluna et al. (2023a)). Le Chapitre 4 porte sur le problème p-center pour

lequel la décomposition de Benders et une procédure de regroupement des clients sont étudiées.

Dans le chapitre 5, nous étudions un problème robuste du p-center en deux étapes avec une

incertitude sur les demandes et les distances des nœuds. Ce travail a été publié dans le numéro

spécial de Recent Advances in Location Science de la revue Computers & Operations Research

(Duran-Mateluna et al. (2023b)). Enfin, le Chapitre 6 présente une conclusion générale et examine

certaines orientations pour la poursuite de la recherche.

L’introduction et les contributions avec les conclusions de chaque chapitre principal sont

présentées ci-dessous.



Méthode de décomposition de Benders efficace pour le problème

du p-median

Parmi les problèmes de localisation discrète, le problème p-median (PMP ) est l’un des problèmes

fondamentaux (Laporte et al. (2019b)). Dans le (PMP ), les p sites doivent être choisis parmi

l’ensemble des sites candidats sans tenir compte des coûts d’installation. Plus formellement, étant

donné un ensemble de N clients, un ensemble de M centres potentiels à ouvrir, et leur ensemble

d’indices correspondant N = {1, ..., N} et M = {1, ..., M}, respectivement. Soit dij la distance

entre le client i ∈ N et le site j ∈M et p ∈ N le nombre de sites à ouvrir. L’objectif est de trouver

un ensemble S de p sites tel que la somme des distances entre chaque client et son site le plus

proche dans S soit minimisée.

La Figure 2 illustre une comparaison des solutions (PMP ) pour différentes valeurs de p en

considérant la même instance symétrique que celle utilisée dans la Figure 1.1a. On peut voir

comment différents groupes sont identifiés. Au fur et à mesure que p augmente, chaque groupe

comporte moins de nœuds et la distance moyenne d’allocation diminue par conséquent.

Figure 2: Comparaison des solutions optimales du (P MP ) pour une instance symétrique de 40 nœuds.

Le (PMP ) est un problème NP-hard (Kariv and Hakimi (1979)) et conduit à des applications où

les sites correspondent à des entrepôts, des usines, des abris, etc. Cela inclut les contextes de la



logistique d’urgence et de l’aide humanitaire (An et al. (2014); Mu and Tong (2020); Takedomi

et al. (2022)). Une autre application importante est un problème particulier de regroupement,

généralement appelé k-medoids problem lorsque l’ensemble des clients et des sites sont identiques.

Dans ce problème, des sous-groupes d’objets, de variables, de personnes, etc. sont identifiés en

fonction de critères définis de proximité ou de similarité (Klastorin (1985); Park and Jun (2009);

Marín and Pelegrín (2019); Ushakov and Vasilyev (2021); Voevodski (2021)).

Un grand intérêt pour la résolution des problèmes de localisation de grande taille a conduit au

développement de diverses heuristiques et méta-heuristiques dans la littérature. Toutefois, la

solution exacte des instances de grande taille reste un défi. Certains problèmes de localisation

ont récemment été résolus efficacement à l’aide de la méthode de décomposition de Benders dans

le cadre d’une approche branch-and-cut (voir par exemple Fischetti et al. (2017); Cordeau et al.

(2019); Gaar and Sinnl (2022)). Parmi eux, le problème (UFL), dans lequel le nombre de sites

à ouvrir n’est pas fixé, mais un coût d’ouverture est associé à chaque site. Par conséquent, nous

explorons une décomposition de Benders pour le (PMP ).

Contributions et conclusions

Une décomposition de Benders est effectuée sur la formulation la plus efficace du problème

p-median. L’efficacité de la décomposition proposée provient d’un algorithme rapide pour la

solution des sous-problèmes avec des améliorations dans la mise en œuvre d’une solution en deux

étapes. Dans la première étape, les contraintes d’intégrité sont relâchées et dans la seconde étape,

le problème est résolu par une approche efficace de type branch-and-cut. Notre approche est plus

performante que les méthodes de l’état de l’art. Pour la première fois, des instances sont résolues

avec jusqu’à 89600 et 238025 clients et sites des bibliothèques BIRCH et TSP, respectivement.

L’algorithme de décomposition proposé est testé sur d’autres instances p-median : Les instances

RW qui ne satisfont pas l’inégalité triangulaire et les instances ODM dans lesquelles il y a des

allocations qui ne sont pas autorisées entre certains clients et sites. Pour les instances RW, il

a été possible de résoudre des instances comptant jusqu’à 1000 clients avec une grande valeur

de p. Pour les instances ODM avec 3773 clients, les instances précédemment non résolues ont

été résolues en 10 heures. L’approche proposée a également été adaptée pour être testée sur les

instances KG difficiles du problème (UFL), ce qui a permis d’obtenir des écarts d’optimalité

relativement faibles.

Une des perspectives de cette recherche est d’exploiter ces résultats sur d’autres familles de

problèmes de localisation. Il est également prévu d’utiliser d’autres stratégies de branchement

qui permettent une plus grande efficacité lors du développement de l’algorithme branch-and-cut.



Algorithmes pour une nouvelle décomposition de Benders et un

algorithme basé sur le clustering des clients pour le problème du

p-centre.

Le problème du p-centre (PCP ) est aussi un problème fondamental dans la science de la

localisation Laporte et al. (2019b). Il consiste à choisir les p emplacements pour minimiser la

distance maximale entre un client et l’établissement le plus proche. Les installations ouvertes

p sont appelées centres. Formellement, le problème est défini comme suit. Étant donné un

ensemble de N clients, un ensemble de M centres potentiels à ouvrir et leur ensemble d’indices

correspondant N = {1, ..., N} et M = {1, ..., M}, respectivement. Soit dij la distance entre

le client i et le centre j. Soit p un entier. L’objectif est de trouver un ensemble S ⊆ M tel

que |S| ≤ p et la valeur z = max
i∈N

min
j∈S

dij est minimisée. Cette distance z est appelée rayon.

La Figure 3 illustre une comparaison des solutions (PCP) pour différentes valeurs de p en

considérant la même instance symétrique que celle utilisée dans l’introduction ci-dessus. On

peut noter que le rayon correspondant, indiqué en rouge, diminue à mesure que p augmente.

Figure 3: Comparaison des solutions du (P CP ) optimales pour une instance symétrique de 40 nœuds.



Le problème du p-centre a des applications dans divers contextes, notamment la localisation

des installations, la planification des services d’urgence, la conception des réseaux de

télécommunications, la planification des soins de santé et la gestion de la chaîne d’approvisionnement.

Il permet de décider des meilleurs emplacements pour les centres, tels que les entrepôts ou les

hôpitaux, afin de minimiser les distances ou les temps de réponse (Çalık et al. (2019a)).

Il existe une variété de méthodes exactes et approximatives pour le problème classique et ses

variantes. Ces dernières années, des progrès importants ont été réalisés dans la résolution

d’instances à grande échelle. À notre connaissance, les meilleures méthodes exactes sont celles

de Contardo et al. (2019) et de Gaar and Sinnl (2022). La première considère initialement un

sous-ensemble de clients, résout le PCP associé à ce sous-ensemble, et ajoute de nouveaux clients

jusqu’à l’obtention d’une solution optimale. La seconde méthode est basée sur une procédure

spécialisée de branch-and-cut pour une décomposition de Benders. Les deux méthodes peuvent

résoudre des instances à très grande échelle, car elles prennent en compte la propriété selon

laquelle (PCP ) peut être résolu en considérant un sous-ensemble de clients et en déterminant

ensuite si la solution résultante est optimale pour les clients restants.

Contibution et conclusions

Il existe cinq formulations principales pour le (PCP ), chacune ayant des performances différentes

qui peuvent varier considérablement en fonction des paramètres du solveur, tels que le presolve.

Parmi les formulations, (F4) et (F2) apparaissent être les meilleures options. Cependant, (F2)

est plus performant que (F4) lorsque le presolve est désactivé, car il a moins de contraintes

redondantes

Deux décompositions de Benders ont été étudiées pour la formulation (F2) en fonction de

l’ensemble des variables à relaxer. Lorsque les variables de décision associées à la localisation

des installations sont relâchées, nous obtenons une décomposition qui conduit à des problèmes de

couverture d’ensemble comme sous-problème primaux et à des problèmes de cliques maximales

comme sous-problèmes duaux. Cela montre une relation étroite avec l’une des méthodes classiques

de solution exacte de (PCP ), qui est la recherche binaire du rayon induisant la distance en

résolvant les problèmes de recouvrement d’ensembles associés. Comme le problème maître est

facile à résoudre, la décomposition de Benders peut être considérée comme une recherche linéaire

de cette même distance, puisque pour chaque valeur de distance évaluée, nous vérifions s’il existe

une solution réalisable de p sites. Notre implémentation permet d’obtenir des performances

similaires pour les deux méthodes.



D’autre part, lorsque les variables associées à l’allocation des clients aux installations ouvertes

sont relâchées, le sous-problème est facile à résoudre, ce qui permet une solution rapide. Nous

montrons que la décomposition sur (F2) permet d’avoir deux approches de séparation par une

coupe unique, qui en variables continues conduisent à des valeurs différentes de relaxation linéaire

pour le problème original. D’autre part, la relation entre cette décomposition de Benders (F1)

et l’approche multi-coupes présentée dans Gaar and Sinnl (2022) est également mise en évidence.

Toutes les approches ont été testées, et bien que notre décomposition de Benders nous permette

d’obtenir de meilleures bornes inférieures de relaxation linéaire, avec notre implémentation

actuelle, elle prend plus de temps que l’approche multi-coupe.

Enfin, une méthode exacte basée sur un regroupement des clients a été proposée, afin de résoudre

le (PCP ) itérativement pour l’ensemble des représentants associés et de les mettre à jour si

nécessaire. Une première étape du problème (PCP ) relaché a été considérée avant de passer à

une seconde étape pour résoudre le (PCP ) entier avec de bonnes bornes inférieures et supérieures.

De plus, pour réduire le nombre de valeurs de distance différentes, nous considérons également une

procédure itérative d’arrondis de la distance avec la fonction modulo. Toutes ces améliorations

de l’implémentation permettent de dépasser l’état de l’art de Gaar and Sinnl (2022) et Contardo

et al. (2019) sur les instances TSP de grande taille.

La Figure 4a montre la même instance de 40 nœuds précedente avec une répartition des clients

en 8 groupes dans lesquels les représentants sont marqués par des étoiles. En appliquant notre

algorithme, les clients sont retirés séquentiellement de ces groupes lorsque cela est nécessaire.

La Figure 4b montre l’ensemble final des groupes. Par conséquent, avec l’ensemble final de

représentants, nous pouvons trouver une solution optimale présentée dans la Figure 4c.

La perspective principale de la décomposition de Benders du (PCP ) sur (F2) est d’améliorer

notre implémentation pour tirer parti de la force des coupes uniques en termes de borne inférieure,

contrairement à l’approche multi-coupes. Parallèlement, les très bons résultats de l’algorithme

de clustering suggèrent qu’il peut être appliqué à d’autres problèmes de localisation discrète ou

à d’autres types d’instances.



(a) Ensemble initial de clusters (b) Ensemble final de clusters

(c) Solution du 6-centre avec les clusters

Figure 4: Illustration de la procédure de clustering pour le (P CP ) sur l’instance de 40 nœuds avec p = 6

Formulations MILP et algorithmes exacts pour le problème

robuste du p-centre en deux étapes

Le problème p-center (PCP ) sous incertitude est bien étudié dans la littérature (Çalık et al.

(2019b)). Ce problème se pose lorsque des paramètres, tels que les demandes ou les distances

entre les nœuds de demande et les sites disponibles, varient dans le temps ou lorsque leur valeur

exacte est incertaine. Dans l’optimisation robuste, l’incertitude est généralement représentée

par des paramètres qui peuvent prendre n’importe quelle valeur dans un ensemble d’incertitude.

Chaque réalisation de l’ensemble d’incertitude est appelée "scénario". Les ensembles les plus

classiques sont la boîte, l’ellipsoïde et les ensembles d’incertitude budgétisés (voir, par exemple,

Ben-Tal et al. (2009); Bertsimas and Sim (2004); Du and Zhou (2018); Paul and Wang (2019)).

Une fonction objective classique dans l’optimisation robuste est le regret que l’on a pour la décision

initiale une fois que l’incertitude est révélée. La Figure 5 illustre comment la solution optimale

d’un problème peut changer en fonction des valeurs de ses paramètres. Dans cet exemple, nous

considérons un problème de p-centre dans lequel chaque client a une demande incertaine. La

valeur de la demande est représentée par la taille des cercles. La Figure 5a 1a représente la valeur

des paramètres initiaux et la solution optimale correspondante qui consiste à ouvrir les sites 1 et

2. Une fois l’incertitude révélée, les paramètres prennent la valeur représentée sur la Figure 5b.



On constate que cela modifie la solution optimale qui consiste désormais à ouvrir les sites 2 et

3. Dans ce contexte, le regret correspond à la différence entre les valeurs objectives des deux

solutions lorsque les paramètres prennent les valeurs représentées dans la Figure 5b.

(a) La solution avant l’incertitude (b) La solution après l’incertitude

Figure 5: Exemple de regret des solutions optimales (RPCP) avant et après l’incertitude

L’incorporation de l’incertitude dans (PCP ) a des applications importantes dans les problèmes

de logistique d’urgence, où une réponse rapide au besoin urgent de secours est nécessaire dans

les zones touchées immédiatement après une catastrophe (comme les tremblements de terre,

les tsunamis, les glissements de terrain, entre autres). En raison des conséquences de ces

catastrophes, il est difficile d’estimer avec précision la demande de matériel de secours ou les

temps de déplacement entre les centres de secours et les zones sinistrées (Sheu (2007)).

Deux approches peuvent être envisagées selon que les allocations des nœuds de demande aux

centres sont effectuées avant (voir par exemple Averbakh and Berman (1997), Lu (2013)) ou

après (voir par exemple Du et al. (2020); Demange et al. (2020)) la révélation de l’incertitude. Le

premier cas correspond à des problèmes à une étape, tandis que le second conduit à des problèmes

à deux étapes dans lesquels les allocations des nœuds de demande sont des variables de recours.

Dans ce contexte, la plupart des travaux se sont concentrés sur l’étude de la modélisation de la

programmation en nombres entiers et des approches heuristiques de résolution (voir par exemple,

Baron et al. (2011); Hasani and Mokhtari (2018); Paul and Wang (2015); Trivedi and Singh (2017,

2019)).



A notre connaissance, ce travail est le premier à étudier la solution exacte du problème robuste en

deux étapes du p-centre pondéré (RPCP2), avec p > 1, dans lequel l’incertitude sur les distance

et les demandes des nœuds est modélisée par des ensembles d’incertitude par intervales.

Contributions et conclusions

Nous étudions la solution d’un problème robuste du p-centre, en tenant compte de l’incertitude

dans les demandes de nœuds et les longueurs d’arêtes avec des ensembles d’intervalles

d’incertitude. Deux variantes de ce problème sont possibles selon que les allocations des nœuds

de demande aux centres sont effectuées après que l’incertitude a été révélée (RPCP2) ou non

(RPCP1).

De même que pour (RPCP1), il est prouvé que pour (RPCP2) un sous-ensemble fini de scénarios

de l’ensemble d’incertitude de la boîte peut être pris en compte sans perdre l’optimalité. Ce

résultat est utilisé pour proposer cinq reformulations robustes basées sur différentes formulations

MILP du problème du p-centre déterministe. Pour résoudre ces reformulations de manière

optimale, un algorithme de génération de colonnes et de contraintes et un algorithme de

branch-and-cut sont introduits. De plus, on identifie une borne inférieure sur la valeur optimale

du problème déterministe du centre p associé au sous-ensemble fini de scénarios considérés. Ce

résultat est utilisé pour réduire de manière significative le temps de résolution des algorithmes

proposés. Enfin, il est souligné comment les méthodes proposées peuvent être adaptées pour

résoudre de manière optimale (RPCP1).

Une étude numérique est présentée pour comparer les performances des algorithmes sur une étude

de cas, sur des instances générées aléatoirement, et sur quelques instances de l’ORLIB. Il a été

possible de résoudre de manière optimale les 68 instances considérées. L’algorithme génération

de colonnes et de contraintes basé sur les formulations (RF3) et (RF5) est plus efficace que celui

basé sur (RF1), (RF2) et (RF4). En effet, l’ajout d’un scénario ne nécessite pas l’ajout d’une

variable. Cette formulation permet la mise en œuvre d’un algorithme de type branch-and-cut qui

réduit considérablement le temps de résolution.

Dans les travaux futurs, l’analyse d’instances plus importantes avec d’autres ensembles

d’incertitude de boîtes aléatoires pourrait être envisagée. Pour améliorer encore les performances

de l’algorithme branch-and-cut, d’autres stratégies de branchement pourraient être évaluées et

des coupes d’intégralité (UserCuts) pourraient être générées dynamiquement. Les algorithmes

pourraient également être améliorés en résolvant le (PCP ) déterministe à chaque itération avec

une autre méthode exacte telle que celle de Contardo et al. (2019) ou Gaar and Sinnl (2022).
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Chapter 1

Introduction

One of the most important branches of operations research and the main topic of this thesis

is the study of location problems, specifically discrete location problems. These problems are

present in a wide variety of applications, such as clustering, districting, routing, and the location

of facilities such as warehouses, industrial plants, gas stations, police stations, or power plants.

The study of these problems contributes to improve resource allocation, reduce costs and improve

service provisions in various communities and industries. Moreover, including uncertainty in the

modeling of these problems allows to anticipate decision making to face various adverse scenarios.

That is the case in the context of natural disasters like earthquakes or hurricanes for which these

problems can assist identifying optimal locations for temporary shelters, medical centers, and

distribution points for essential supplies.

Solving discrete location problems can be challenging due to their size and computational

complexity inherent to their exponential combinatorial structure, most of them are NP-Hard

problems. Although there are several generic solvers such as CPLEX or Gurobi that can solve

many of these problems, the computational complexity quickly becomes intractable as the

instance size increases. In this context, several solution methods have been developed to deal

with these limitations, but most of them are approximation methods. Thus, proposing new or

improving existing exact solution methods for large-scale instances is constantly a challenge.

In this chapter, we present the discrete location problems studied in this research, the main

contributions, and the outline of this thesis.

21
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1.1 The discrete p-facility location problems

There are four elements that describe every location problem: (1) clients, that presumably are

previously located, (2) facilities to be located, (3) a space where facilities and clients are located,

and (4) a metric that indicates cost, time or distance between facilities and clients (ReVelle and

Eiselt (2005)). Among the fundamental discrete location problems are the Facility Location

Problem (FLP), the Uncapacitated Facility Location Problem (UFLP), and the Capacitated

Facility Location Problem (CFLP) (Laporte et al. (2019b)). (FLP ) involves selecting the optimal

locations of a predefined number of facilities to satisfy the demand of the clients. The objective

is to minimize the sum of transportation and set-up costs. (CFLP ) is a variant of (FLP ) in

which facilities have limited capacities to satisfy clients. Finally, in the (UFLP ), neither facility

capacities nor client demands are considered.

This research studies "p-facility problems" in which there is a fixed number of p facilities to be

located usually without taking into account opening or operating costs. We exploit this particular

structure for the exact solution of large-scale instances of the p-median problem (PMP) and the

p-center problem (PCP). These two problems only differ in their objective function. The (PMP )

consists in locating p facilities such that the sum of the allocation distances of all demand points

to their closest facility is minimized. Instead, the (PCP ) seeks to minimize the largest allocation

distance.

Figure 1.1 illustrates optimal solutions of both problems for a single instance with 40 clients and

candidate sites, and p equal to 6. This instance is said to be symmetric since the candidate sites

and the clients locations are identical. Note that in the (PCP ) solution (Figure 1.1c) a facility

is allocated to only 2 isolated clients to reduce the maximum allocation distance (the red line) of

33 to 24. In contrast, the sum of the allocation distances increases from 530 to 586. The (PCP )

is said to be more equitable as it will reduce the disparity in allocation distances. On the other

hand, (PMP ) is said to be more efficient since the average allocation distance is minimized.
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(a) Symmetric instance with 40 nodes from a 100 × 100 square

(b) p-median solution (c) p-center solution

Figure 1.1: Comparison of optimal (P MP ) and (P CP ) solutions for same instance (a) with p = 6

1.2 Contributions and structure of the manuscript

In this thesis, we propose mathematical models and implement different exact solution methods

for three p-facility problems. We have devoted a chapter to each of these problems, which are

organized as follows.

Firstly in Chapter 2, we present theoretical framework of this research with the most important

definitions and methodologies used throughout the other chapters. We provide a brief description

of the most relevant concepts of Mixed-Integer Linear Programming (MILP), MILP solution

methods, and optimization under uncertainty.

In Chapter 3, we study the p-median problem. We focus on the most efficient MILP

formulation. We develop an algorithm based on the Benders decomposition that outperforms

the state-of-the-art exact methods. Our method considers a two-stage approach and an efficient

algorithm for the separation of the Benders cuts. The computational results are presented on

more than 230 benchmark instances with up to 238025 clients and sites. Many instances are

solved optimally for the first time or their best known values are improved. We show that our
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implementation can also easily be applied to the (UFL). This work has been published in the

journal European Journal of Operational Research (Duran-Mateluna et al. (2023a)).

The p-center problem is considered in Chapter 4. We first compare the five main MILP

formulations from the literature. We study two Benders decompositions on one of the most

efficient formulations. We show that a new Benders reformulations with more general cuts can

be derived from this decomposition. We also propose an alternative exact algorithm based on

a clustering procedure using a feature relying on the structure of the problem. All proposed

and state-of-the-art methods are compared in benchmark instances. The obtained results are

analyzed, highlighting the advantages and disadvantages of each method.

In Chapter 5, we study a two-stage robust p-center problem with uncertainty on the node demands

and distances. We introduce the robust reformulation of the p-center problem based on the five

main deterministic MILP formulations introduced in Chapter 4. We prove that only a finite subset

of scenarios from the infinite box uncertainty set can be considered without losing optimality. We

also propose a column-and-constraint generation algorithm and a branch-and-cut algorithm to

efficiently solve this problem. We highlight how these algorithms can also be adapted to solve

the robust single-stage problem. The different proposed formulations are tested on randomly

generated instances and on a case study from the literature. This work has been published in

the special issue on Recent Advances in Location Science of the journal Computers & Operations

Research (Duran-Mateluna et al. (2023b)).

Finally, Chapter 6 provides a general conclusion and discusses some directions for further research.



Chapter 2

Theoretical background

The main theoretical framework of this research is Combinatorial Optimization. This chapter

presents the necessary background on the solution techniques and approaches used throughout

this thesis.

2.1 MILP problems

Our research focuses on the study of different formulations of discrete location problems using

Mixed-Integer Linear Programming (MILP problems). The following are some basic definitions.

• Polyhedron: A polyhedron P is a set of points in Rn satisfying a finite number of linear

inequalities, i.e., P = {x ∈ Rn : Ax ≥ b}.

• Polytope: A polytope is a bounded polyhedron.

• Valid Inequality: Given a polyhedron P in Rn. An inequality aT x ≥ α is valid for P if it

is verified by every point of P , i.e., P ⊆ {x ∈ Rn : aT x ≥ α}.

• Convex combination: Given a set of points S = {x1, ...xk} in Rn. A point x ∈ Rn can be

obtained by convex combination of points of S if there exist positive scalars λ1, ..., λk such

that

x =
k∑

i=1
λixi

k∑
i=1

λi =1

λi ≥0 i = 1, ..., k

• Convex set: A set of points in Rn is convex if it contains all convex combinations of its

points.

25
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• Convex hull: Given a set of points S = {x1, ...xk} in Rn. The convex hull of the points of

S noted by conv(S) is the smallest convex set that includes S.

• Affine independence: Given a set of points S = {x1, ...xk} in Rn. These k points are

said to be affinely independent if the following system

k∑
i=1

λixi =0

k∑
i=1

λi =0

has as its unique solution λi = 0 for i = 1, ..., k.

• Dimension: A polyhedron P in Rn is of dimension k, denoted dim(P ) = k, if the maximum

number of affinely independent points of P is k + 1.

• Face: Given a polyhedron P = {x ∈ Rn : Ax ≥ B} in Rn and aT x ≥ α a valid inequality

for P . The set F = {x ∈ P : aT x = α} is said to be a face of P .

• Facet: A face F of a polyhedron P is a facet of P if dim(F ) = dim(P )− 1.

• Extreme Point: Given a polyhedron P . A point x ∈ P is an extreme point of P if it

cannot be obtained as a convex combination of other points in P , x is a facet of P of

dimension 0.

• Separation problem: The separation problem associated with a linear system Ax ≤ b

and a vector y consists in verifying whether y is a solution of Ax ≤ b and if not in finding

a constraint of this system violated by y.

2.2 MILP solution methods

The following are the fundamental methods for solving MILP problems, which are used in the

literature and that we also consider.

• Branch-and-Bound (B&B): Partition the feasible solution space into smaller sub-spaces

(branches in a search tree) and solve the linear relaxation at each node. Integer feasible

solutions are progressively found as the search tree is narrowed down. (B&B) incorporates

pruning strategies to avoid exploring unnecessary branches.

• Cutting Plane Methods: Iteratively refine the solution space with linear inequalities,

called cuts.
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• Branch-and-Cut (B&C): An enhancement of the (B&B) approach that incorporates

cutting planes to strengthen the linear relaxations at each node.

• Column generation: First solve the problem with only a subset of its variables. Then

iteratively, variables that have the potential to improve the objective function are added to

the program until no further improvement is possible.

• Branch-and-Price (B&P ): Embeds a column generation in the branch-and-bound search

tree. At each node the fractional solution is evaluated to determine whether a new variable

must be added to the problem.

2.2.1 Benders decomposition method

Another classical exact method is the Benders Decomposition. Introduced by Benders (1962), it

is particularly valuable for tackling complex problems involving a mix of integer and continuous

variables. We explore the Benders decomposition in Chapters 3 and 4 for the p-median and

p-center problems, respectively.

The core idea of Benders decomposition is to split the problem into a master problem and one or

several sub-problems. The master problem is a relaxation of the original problem, where certain

constraints are omitted, making it easier to solve. The sub-problem tries to set the value of the

omitted variables according to the solution of the master problem. If this solution is not optimal,

they generate cuts and the master problem is solved again. Several improvements have been

developed to accelerate the efficiency of this classical algorithm. A detailed literature review is

presented in Rahmaniani et al. (2017).

The Benders decomposition showed good results on discrete location problems. It was already

studied on the Uncapacitated Facility Location Problem (UFL) in Cornuejols et al. (1980)

and Magnanti and Wong (1981). Most recently, Fischetti et al. (2017) propose a Benders

decomposition method within a branch-and-cut approach to efficiently solve very large size

instances of the (UFL). Cordeau et al. (2019) described Benders decomposition for two

problems: the Maximal Covering Location Problem (MCLP ), which requires finding a subset

of facilities that maximizes the amount of client demands covered while respecting a budget

constraint on the cost of the facilities; and the Partial Set Covering Location Problem (PSCLP ),

which minimizes the cost of the opened facilities while forcing a certain amount of client

demand to be covered. They study a decomposition approach of the two problems based on

a branch-and-Benders-cut reformulation. Their approach is more efficient when the number of

clients is much larger than the number of potential facility locations. Gaar and Sinnl (2022)
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also perform a Benders decomposition on the p-center problem (PCP ) combined with other

theoretical results that allow to solve large instances which up to 744,710 nodes. This approach

is highly efficient for small values of p.

The following is a brief formal presentation of the method. Let us consider a MILP problem (P )

with n integer variables and m continuous variables of the following generic form.

(P )



min fT y + cT x

s.t. By ≥ b

Wy + Tx ≥ h

y ∈ Zn
+

x ∈ Rm
+

where f ∈ Rn, B ∈ Rk×n, b ∈ Rk, c ∈ Rm, W ∈ Rl×n, h ∈ Rl, T ∈ Rl×m. To solve (P) with the

Benders decomposition method, it is necessary to introduce an auxiliary variable θ to formulate

the following master problem (MP).

(MP )



min
(y,θ)

fT y + θ

s.t. By ≥ b

θ ≥ θ̄

y ∈ Zn
+

θ ∈ R

where θ̄ is a lower bound on θ to ensure that the problem is bounded. The problem (MP ) is less

restricted than (P ), henceforth its objective value defines lower bounds for (P ).

Let ȳ be a solution of (MP ). We can define the following sub-problem (SP ):

(SP )


min

x
cT x

s.t. Wx ≥ h− T ȳ

x ∈ Rm
+

which its dual problem is:

(DSP )


max

v
(h− T ȳ)T v

s.t. W T v ≤ c

v ∈ Rl
+
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If the sub-problem is feasible for ȳ, its dual sub-problem is also feasible. Thus, the solution ȳ is a

feasible solution to (P ) and we can deduce an upper bound of the original problem (P ). Moreover,

since the feasible region of the dual sub-problem does not depend on ȳ. For any extreme points

v∗ of the polyhedron of (DSP ), the following optimality cut is: valid for the (MP ).

θ ≥ (h− Ty)T v∗ (2.1)

If the sub-problem is infeasible, its associated dual problem is unbounded. Therefore, there exists

an extreme ray r∗ of the polyhedron of (DSP ), along which the objective function can always be

improved. In this case, the following feasibility cut can be added to the (MP ).

0 ≥ (h− Ty)T r∗ (2.2)

Using the above optimality and feasibility cuts, the original problem (P ) can be reformulated as:

(RP )



min fT y + θ

s.t. By ≥ b

θ ≥ (h− Ty)T v∗ ∀ v∗ ∈ P ⊆ U

0 ≥ (h− Ty)T r∗ ∀ r∗ ∈ R ⊆ U

y ∈ Y

where P and R are respectively, the subsets of the extreme points and the extreme rays of

polyhedron U of (DSP ).

Generally there is an exponential number of extreme points and rays. So a direct solution of the

(RP ) is impractical. The classic Benders decomposition algorithm to solve (P ) is presented in

Algorithm 1. A solution of the master problem gives us a lower bound (LB), while a solution

of the sub-problem gives us an upper bound (UB) on the optimal value of (P ). Once the upper

bound and the lower bound are close enough, the algorithm ends.
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Algorithm 1: Clasic Benders decomposition algorithm
input: A MILP problem (P )

1 (LB, UB)← (−∞,∞)

2 while UB − LB > ϵ do

3 ȳ ← Solve (MP )

4 if (MP) is infeasible then

5 return Infeasible

6 LB ← min(LB, (MP ) solution value)

7 Solve (DSP ) with the (MP ) solution ȳ

8 if (DSP) is unbounded then

9 Find a ray r∗

10 Add a feasibility cut with r∗ to the (MP )

11 else

12 Find an extreme point v∗ (the solution of the dual sub-problem)

13 Add an optimality cut with v∗ to the (MP )

14 UB ← min(UB, (SP ) solution value)

15 return x̂ and ȳ

2.3 Optimization under uncertainty

The study of location problems under uncertainty is an important area of research (see e.g. An

et al. (2014), Laporte et al. (2019a), and Cheng et al. (2021)). In Chapter 5, we study the p-center

problem under uncertainty in two sets of parameters.

We refer to the work Bertsimas and Sim (2004), and Ben-Tal et al. (2009) for more details on

the approaches, methods and algorithms for optimization under uncertainty. The following is

a brief description of the most important modeling approaches. Let us consider the following

deterministic linear problem.

min cT x

s.t Ax ≤ b

x ∈ Rn

where (A, b, c) are the parameters of the problem.
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The first aspect to consider in modeling uncertainty is whether the probability distribution of

the uncertain parameters is available or can be estimated. If this is the case, the problem can be

formulated through Stochastic Optimization by optimizing an expected objective value.

min Ew∈W[Q(x, w)]

s.t Ax ≤ b

x ∈ Rn

where Q(x, w) corresponds to the cost of solution x under scenario w, which is the realization

of the uncertain parameters from a given uncertainty set W . Stochastic programming allows

decision-makers to explicitly consider the probabilities of various scenarios and make decisions

that balance potential risks and rewards.

Another approach when the probability distribution is known is named the Chance-Constrained

Programming. In this approach, optimization is performed subject to constraints that ensure a

certain probability of meeting specified criteria.

min cT x

s.t P{ai(w)x ≤ bi(w) ∀i = 1, ..., m} ≥ α

x ∈ Rn

here m is the number of linear constraints, and α is the desired probability of occurrence. It is

appropriate when the decision-makers want to avoid undesirable events or impose that a desirable

event occurs with high probability, but it is usually difficult to solve.

When there is a set of possible probability distributions for the uncertain parameters, it is possible

to consider the Distributionally Robust Optimization using the following formulation.

min max
P∈P

EP
w∈W[Q(x, w)]

s.t Ax ≤ b

x ∈ Rn

where P is a family of probability distributions. This approach seeks solutions that perform well

across all distributions within P.
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Finally, when information on the probability distribution is not available or the decision makers

are risk-averse, we can consider the Robust Optimization. Here, it is only known that each

uncertain parameter can belong to an uncertainty set that can be modeled in different ways such

as boxes, polyhedral, ellipsoidal, among others. In the case of individual uncertainty sets, the

following model can be considered.

min max
c∈Uc

cT x

s.t ai(w)x ≤ bi(w) ∀ ai ∈ Uai ,∀ bi ∈ Ubi
,∀ i = 1, ..., m

x ∈ Rn

where Uai , Ubi
, Uc are given uncertainty sets. The approach aims to minimize the cost of the

worst-case scenario. Therefore, it is highly relevant in situations where the lives of people are at

stake, for example.

An important aspect to the formulation of these optimization approaches is the moment at which

decisions are taken concerning the occurrence of uncertainty. There exists three main approaches.

In the single-stage optimization approach all decisions are taken before the uncertainty is revealed

("here-and-now" decisions). In the two-stage approach decisions are made before and after the

uncertainty is revealed. The decision variables of the second stage are called "wait-and-see"

decisions, associated to recourse variables. Lastly, the multi-stage approach is the generalization

of the two-stage approach where the decision variables can be taken in more than two phases.

This framework can address problems in which the uncertainty is progressively revealed in

more than one step. The choice of the approach to be used depends on factors such as the

complexity of the problem, the availability of information about the uncertainty, the risk attitude

of decision-makers, and the desired trade-off between optimality and robustness.



Chapter 3

Efficient Benders decomposition

method for the p-median problem

3.1 Introduction

The p-median problem (PMP ) is one of the fundamental problems in Location Science (Laporte

et al. (2019b)). In the (PMP ), the p sites have to be chosen from the set of candidate sites

without considering set-up costs. The allocation costs are usually equal to the distance or travel

time between clients and sites. Figure 3.1 illustrates an optimal solution of (PMP ) for different

values of p considering the symmetric instance presented in Figure 1.1a. This shows how different

clusters are being identified. As p increases, each cluster has fewer nodes, and thus the average

allocation distance decreases.

More formally, we consider a set of N clients, a set of M potential centers to open, and their

corresponding index set N = {1, ..., N}, and M = {1, ..., M}. Let dij be the distance between

client i ∈ N and site j ∈ M, and let p ∈ N be the number of sites to open. The objective is to

find a set S of p sites such that the sum of the distances between each client and its closest site

in S is minimized. The (PMP ) is an NP-hard problem (Kariv and Hakimi (1979)) and leads

to applications where the sites correspond to warehouses, plants, shelters, etc. This problem

occurs in the contexts of emergency logistics and humanitarian relief (An et al. (2014); Mu and

Tong (2020); Takedomi et al. (2022)). A well-known clustering problem called k-medoids problem

is also a special case of the (PMP ) in which the set of clients and sites are identical. In this

problem, sub-groups of objects, variables, persons, etc. are identified according to defined criteria

of proximity or similarity (Klastorin (1985); Park and Jun (2009); Marín and Pelegrín (2019);

Ushakov and Vasilyev (2021); Voevodski (2021)).

33
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Figure 3.1: (PMP) solutions with different p values for a symmetric instance of 40 nodes.

A great interest in solving large location problems has led to the development of various

heuristics and meta-heuristics in the literature. However, the exact solution of large instances

remains a challenge. As detailed in Section 2.2.1, some location problems have recently been

efficiently solved using the Benders decomposition method within a branch-and-cut approach

(see e.g., Fischetti et al. (2017); Cordeau et al. (2019); Gaar and Sinnl (2022)). Among them,

the Uncapacitated Facility Location Problem (UFL). In the (UFL) the number of sites to be

opened is not fixed, but an opening cost is associated with each site.

Contribution

This chapter explores a Benders decomposition for the (PMP ). We propose an efficient algorithm

for the separation of its Benders cuts. We implement a two-phase Benders decomposition

algorithm which provides better results than the best exact solution method in the literature

Zebra (García et al. (2011)). We present the computational results on about 230 benchmark

(PMP ) instances of different sizes (up to 238,025 clients and sites) satisfying or not the triangle

inequality. Finally, our solution method is extended to solve the (UFL).

The rest of the chapter is organized as follows: Section 3.2 presents the literature review of the

(PMP ). Section 3.3 describes our Benders decomposition method. Section 3.4 presents the

computational results. In Section 3.5 some conclusions and research perspectives are draw.
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3.2 Literature review

The (PMP ) was introduced by Hakimi (1964) where the problem was defined on a graph such

that a client can only be allocated to an open neighbor site. Since then, exact and approximation

methods have been developed to solve the problem, as well as a wide variety of variants and

extensions. We refer to Marín and Pelegrín (2019) for more details and references. The following

is a summary of the main formulations of this problem and its state-of-the-art exact solution

methods.

3.2.1 MILP formulations

The classical mathematical programming formulation for the (PMP ) was proposed by ReVelle

and Swain (1970) who formulated the problem with a binary variable yj for each site j ∈M that

takes value of 1, if the site is open, and 0 otherwise; and a binary variable xij that takes value of

1 if client i ∈ N is allocated to site j ∈M and 0 otherwise.

(F1)



min
∑
i∈N

∑
j∈M

dijxij

s.t.
∑
j∈M

yj = p

∑
j∈M

xij = 1 i ∈ N

xij ≤ yj i ∈ N, j ∈M

xij ≥ 0 i ∈ N, j ∈M

yj ∈ {0, 1} j ∈M

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

Constraint (3.2) fixes the number of open sites to p. Constraints (3.3) ensure that each client is

allocated to exactly one site, and Constraints (3.4) ensure that no client is allocated to a closed

site. The binary variables xij can actually be relaxed as in Constraints (3.5).

An alternative formulation (F2) was proposed by Cornuejols et al. (1980) which orders for each

client all its distinct distances to the sites. More formally, for any client i ∈ N, let Ki ≤ M be

the number of different distances from i to any site. Let D1
i < D2

i < ... < DKi
i be these distances

sorted, and Ki the corresponding index set. Formulation (F2) uses the same y variables as in

formulation (F1) and introduces new binary variables z. For any client i ∈ N and k ∈ Ki, zk
i = 0

if and only if there is an open site at distance at most Dk
i from client i.
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(F2)



min
∑
i∈N

(
D1

i +
Ki−1∑
k=1

(Dk+1
i −Dk

i )zk
i

)
s.t.

∑
j∈M

yj = p

zk
i +

∑
j:dij≤Dk

i

yj ≥ 1 i ∈ N, k ∈ Ki

zk
i ≥ 0 i ∈ N, k ∈ Ki

yj ∈ {0, 1} j ∈M

(3.6)

(3.7)

(3.8)

(3.9)

Objective (3.6) minimizes the sum of the allocation distances over all clients. Constraints (3.8)

ensure that variable zk
i takes the value 1 if there is no site at a distance less than or equal to Dk

i

of client i ∈ N. In that case (Dk+1
i −Dk

i ) is added to the objective. Otherwise, given the positive

coefficients in the objective function, zk
i takes the value 0. Here again, the binary variables zk

i

can be relaxed as in Constraints (3.9).

Formulation (F2) can be much smaller than (F1) and both have the same linear relaxation

value (Cornuejols et al. (1980)). Formulation (F1) contains N×M variables x and 1+N +N×M

constraints while (F2) contains K =
∑
i∈N

Ki variables z and K +1 constraints. As K ≤ N ×M , it

follows that (F2) has at most as many variables and constraints as (F1). Usually K is significantly

smaller than N ×M .

Elloumi (2010) introduced another formulation based on (F2). Given that, by definition, zk−1
i

equal to 0 implies that zk
i is also equal to 0, Constraints (3.8) can be replaced by (3.12) and (3.13).

(F3)



min
∑
i∈N

(
D1

i +
Ki−1∑
k=1

(Dk+1
i −Dk

i )zk
i

)
s.t.

∑
j∈M

yj = p

z1
i +

∑
j:dij=D1

i

yj ≥ 1 i ∈ N

zk
i +

∑
j:dij=Dk

i

yj ≥ zk−1
i i ∈ N, k = 2, ..., Ki

zk
i ≥ 0 i ∈ N, k ∈ Ki

yj ∈ {0, 1} j ∈M

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Constraints (3.12) correspond to Constraints (3.8) for k = 1. Constraints (3.13) ensure that zk
i

takes the value 1, if zk−1
i = 1 and there is no open site at distance Dk

i exactly from i. Formulations

(F2) and (F3) use the same set of variables y and z, have exactly the same objective function,

and have the same linear relaxation bound (Elloumi (2010)). However, (F3) has much more
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zeros in the constraint coefficient matrix, which makes it perform significantly better than (F2).

Therefore, (F3) is considered for our Benders decomposition.

3.2.2 Solution methods

The literature contains many solution methods for the (PMP ). The main heuristics are presented

in the following surveys: Reese (2006); Mladenović et al. (2007); Basu et al. (2015); Irawan and

Salhi (2015a). In the following, only the most relevant exact solution methods are mentioned.

Galvão (1980) solved the (PMP ) within a branch-and-bound framework solving many linear

relaxations of sub-problems of size N = 30 using formulation (F1). He then devised a method

to efficiently obtain good lower bounds instead of optimally solving the relaxed continuous

sub-problems.

Avella et al. (2007) designed a branch-and-cut-and-price algorithm also based on (F1) that was

able to solve instances with up to N = 5535. Cuts were added based on valid inequalities called

lifted odd hole and cycle inequalities. Pricing was carried out by solving a master problem to

optimality and using dual variables to price out the variables of the initial problem that were not

considered in the master, adding new variables if necessary. In this approach, Constraints (3.3)

were also relaxed and incorporated to the master problem when the corresponding column was.

García et al. (2011) considered a cut and column generation algorithm based on formulation

(F2). The main idea, also presented in Elloumi (2010) on formulation (F3) and implemented

in Elloumi and Plateau (2010), relies on the property that the z variables satisfy zk
i ≥ zk+1

i in

any optimal solution of (F2) or its LP relaxation. Therefore, it is enough to solve these problems

on a reduced subset of variables z, keep enlarging this subset, and stop as soon as one is sure that

the remaining z variables can be set to zero to get an optimal solution. This idea is implemented

within a branch-and-cut-and-price method that the authors name Zebra. It starts with a very

small set of z variables and constraints, and adds more when necessary. Zebra is an exact solution

method that performed well on instances with up to N = 85, 900 with large values of p.
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3.3 Benders decomposition for the (PMP)

In this section, we present a Benders decomposition for the (PMP) based on formulation (F3).

More details and references to this method are presented in the Section 2.2.1. We show that there

is a finite number of Benders cuts and that they can be separated using an efficient algorithm.

3.3.1 Formulation

For a fixed solution y, the problem decomposes into N sub-problems. Each one computes the

allocation distance of a client. In the master problem, the z variables are removed and a new set

of continuous variables θi representing the allocation distance of each client i ∈ N is introduced:

(MP )



min
∑
i∈N

θi

s.t.
∑
j∈M

yj = p

θi satisfies BDi i ∈ N

yj ∈ {0, 1} j ∈M

where BDi is the set of Benders cuts associated to client i ∈ N. This set is initially empty and

grows through the iterations.

The sub-problem for each client i ∈ N associated to a feasible solution ȳ of (MP ) is defined by:

(SPi(ȳ))



min D1
i +

Ki−1∑
k=1

(Dk+1
i −Dk

i )zk
i

s.t. z1
i ≥ 1−

∑
j:dij=D1

i

ȳj

zk
i − zk−1

i ≥ −
∑

j:dij=Dk
i

ȳj k ∈ {2, ..., Ki}

zk
i ≥ 0 k ∈ Ki

and its corresponding dual sub-problem is:

(DSPi(ȳ))



max D1
i + v1

i (1−
∑

j:dij=D1
i

ȳj)−
Ki∑

k=2
vk

i

∑
j:dij=Dk

i

ȳj

s.t. vk
i − vk+1

i ≤ Dk+1
i −Dk

i k ∈ {1, ..., Ki − 1}

vk
i ≥ 0 k ∈ Ki
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Note that (SPi(ȳ)) and (DSPi(ȳ)) are feasible for any ȳ. From an extreme point v̄ of (DSPi(ȳ)),

the following optimality Benders cut is obtained:

θi ≥ D1
i + v̄1

i (1−
∑

j:dij=D1
i

yj)−
Ki∑

k=2
v̄k

i

∑
j:dij=Dk

i

yj i ∈ N (3.16)

3.3.2 Separation problem

The performance of Benders decomposition relies on the resolution of the master problem and

the sub-problems. In our decomposition, we can have a large number of sub-problems to solve

since it is equal to the number of clients at each iteration. Below, we show that the sub-problems

can be solved efficiently.

Lemma 3.3.1. Given a solution ȳ of the master problem (MP ) or of its LP-relaxation, the

following solution z̄i is optimal for (SPi(ȳ)):

z̄k
i = max

(
0, 1−

∑
j:dij≤Dk

i

ȳj
)

i ∈ N, k ∈ Ki

Proof. We can rewrite the constraints of (SPi(ȳ)) for each i ∈ N as follows:

• z1
i ≥ 1− ∑

j:dij=D1
i

ȳj ;

• z2
i ≥ z1

i −
∑

j:dij=D2
i

ȳj ≥ 1− ∑
j:dij=D1

i

ȳj −
∑

j:dij=D2
i

ȳj = 1− ∑
j:dij≤D2

i

ȳj ;

• ...

• zk
i ≥ zk−1

i −
∑

j:dij=Dk
i

ȳj ≥ 1− ∑
j:dij=Dk−1

i

ȳj −
∑

j:dij=Dk
i

ȳj = 1− ∑
j:dij≤Dk

i

ȳj .

Since we minimize an objective function with non-negative coefficients, the z̄k
i variables are as

small as possible in an optimal solution. Thus, setting z̄k
i to the value max

(
0, 1 −

∑
j:dij≤Dk

i

ȳj
)

leads to a feasible and optimal solution. □

From Lemma 3.3.1 we observe that the optimal values of variables zk
i in (SPi(ȳ)) are decreasing

when k increases. In order to obtain a dual solution, we identify the last strictly positive term of

this sequence.



Chapter 3. Efficient Benders decomposition method for the p-median problem 40

Definition 3.3.1. Given a solution ȳ of the master problem (MP ) or of its LP-relaxation, let k̃i

be the following index:

k̃i =


0 if

∑
j:dij=D1

i

ȳj ≥ 1

max{k ∈ Ki : 1−
∑

j:dij≤Dk
i

ȳj > 0} otherwise
i ∈ N

Note that, if ȳ is binary, then the corresponding allocation distance of client i ∈ N is Dk̃i+1
i .

Lemma 3.3.2. Given a solution ȳ of the master problem (MP ) or of its LP-relaxation and the

corresponding indices k̃i, the optimal value of SPi(ȳ) for i ∈ N is:

OPT (SPi(ȳ)) =



D1
i if k̃i = 0

Dk̃i+1
i −

∑
j:dij≤D

k̃i
i

(Dk̃i+1
i − dij)ȳj otherwise

(3.17)

Proof. If k̃i = 0, then using Lemma 3.3.1 and Definition 3.3.1, then all the values z̄k
i are equal

to 0 and OPT (SPi(ȳ)) = 0. Otherwise, when k̃i ≥ 1, we have the following:

OPT (SPi(ȳ)) = D1
i +

k̃i∑
k=1

(Dk+1
i −Dk

i )(1−
∑

j:dij≤Dk
i

ȳj)

= D1
i + Dk̃i+1

i (1−
∑

j:dij≤D
k̃i
i

ȳj)−D1
i (1−

∑
j:dij≤D1

i

ȳj)+

k̃i∑
k=2

Dk
i ((1−

∑
j:dij≤Dk−1

i

ȳj)− (1−
∑

j:dij≤Dk
i

ȳj))

= Dk̃i+1
i (1−

∑
j:dij≤D

k̃i
i

ȳj) +
k̃i∑

k=1

∑
j:dij=Dk

i

dij ȳj

= Dk̃i+1
i −

∑
j:dij≤D

k̃i
i

(Dk̃i+1
i − dij)ȳj

□
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Proposition 3.3.1. Given a solution ȳ of the master problem (MP ) or of its LP-relaxation and

the corresponding indices k̃i, the following solution v̄i is optimal for DSPi(ȳ):

v̄k
i =


Dk̃i+1

i −Dk
i , if k ≤ k̃i

0, otherwise
i ∈ N, k ∈ Ki

Proof. From the theorem of complementary slackness, for i ∈ N we have:

v̄k
i − v̄k+1

i = Dk+1
i −Dk

i k ≤ k̃i (3.18)

because for k ≤ k̃i, the primal variables values z̄k
i are strictly positive. Moreover, if we sum

Equations (3.18) from k′ = k to k′ = k̃i, we obtain

v̄k
i = vk̃i+1

i + (Dk̃i+1
i −Dk

i ) k ≤ k̃i (3.19)

We build a feasible solution of (DSPi(ȳ)) by setting v̄k
i = 0 for k > k̃i and v̄k

i = (Dk̃i+1
i −Dk

i ) for

k ≤ k̃i. The objective value V(v̄) of this solution is:

V(v̄) = D1
i + (Dk̃i+1

i −D1
i )(1−

∑
j:dij=D1

i

ȳj)−
k̃i∑

k=2
(Dk̃i+1

i −Dk
i )

∑
j:dij=Dk

i

ȳj

= Dk̃i+1
i −

k̃i∑
k=1

(Dk̃i+1
i −Dk

i )
∑

j:dij=Dk
i

ȳj

= Dk̃i+1
i −

k̃i∑
k=1

∑
j:dij=Dk

i

(Dk+1
i −Dk

i )ȳj

= Dk̃i+1
i −

∑
j:dij≤D

k̃i
i

(Dk̃i+1
i − dij)ȳj = OPT (SPi(ȳ))

Hence, this dual solution is feasible and it has the same objective value as the optimal value of

the primal solution. Thus, this solution v̄ is optimal for (DSPi(ȳ)). □

Corollary 1 The Benders cuts (3.16) can be written as follows:



θi ≥ D1
i if k̃i = 0

θi ≥ Dk̃i+1
i −

∑
j:dij≤D

k̃i
i

(Dk̃i+1
i − dij)yj otherwise

(3.20)
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We observe that these inequalities are the same as those obtained in Cornuejols et al. (1980)

and Magnanti and Wong (1981) for (PMP ) on formulation (F1). This was quite unexpected,

since we use the formulation (F3), even though the master problems are the same in the two

decompositions, the sub-problems are different. This class of Benders cuts were also presented in

Fischetti et al. (2017) for the (UFL) on a similar formulation to (F1).

3.3.3 Efficient separation algorithm

Corollary 3.16 highlights that the Benders cuts can be obtained in polynomial time by computing

k̃i. We use Algorithm 2 to separate Constraints (3.20). For each client i ∈ N, we first compute

k̃i and OPT (SPi(ȳ)) from the current (MP ) solution (ȳ, θ̄) (Steps 3 and 4) thus updating the

upper bound UB of (MP ) (Step 5). Then, if the value of the allocation distance in the current

(MP ) solution is underestimated (Step 6), the corresponding Benders cuts (3.20) are directly

built (Step 7).

Algorithm 2: Separation algorithm
input :

• Instance data (N, M, Ki, distances D1
i , ..., DKi

i and dij for each i ∈ N, j ∈M)

• Current (MP ) solution (ȳ, θ̄)

output:

• Upper bound of (MP).

1 UB ← 0

2 for i ∈ N do

3 Compute k̃i with Algorithm 3

4 Compute OPT (SPi(ȳ)) through Lemma 3.3.2

5 UB ← UB + OPT (SPi(ȳ))

6 if θ̄i < OPT (SPi(ȳ)) then

7 Add the corresponding cut (3.20) to (MP)

8 return UB

The memory management of the distances between the clients and the sites can be challenging

for large-scale instances. For example, in the work of Cornuejols et al. (1980); Magnanti and

Wong (1981); Fischetti et al. (2017), the increasingly ordered distances {dij}j∈M of each client

i ∈ N are considered as an input.
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In our approach, the complexity of Algorithm 2 is determined by the computation of index k̃i. It

can be computed in O(M) by Algorithm 3. This algorithm takes as an input a vector Si ∈MM

such that Sir is the rth closest site to client i ∈ N. Hence, diSir
is the distance between i and

its rth closest site. Afterwards, given index k̃i, Steps 4 and 5 of Algorithm 2 can be computed

in O(M) and O(1), respectively. Then, considering the N clients, a complexity in O(NM) is

obtained for Algorithm 2. As in García et al. (2011), the distances {dij}j∈M of each client i ∈ N

are calculated as they are needed.

Consequently, the N ×M matrix S is built only once in a preprocessing step in O(NMlog(M))

using the QuickSort algorithm. The computation time of this matrix may be longer than the

runtime of the solution method depending on the size of the instances. For example, for instances

with 5000, 13,000, 27,000, and 85,000 clients and sites, the computer described below in Section 3.4

builds the matrix on average in 5, 25, 90 and 1100 seconds, respectively. Furthermore, to reduce

the memory requirements for storing this matrix S, we consider the fact that a client will never

be allocated to one of its furthest p sites. Therefore, the size of the matrix S is reduced to

N × (M − p).

Algorithm 3: Computing k̃i

input :

• Instance data (N, M, Ki, S matrix, and distances dij for i ∈ N, j ∈M)

• Current (MP ) solution ȳ

• i ∈ N

output:

• The index k̃i associated to ȳ

1 k̃i ← 0

2 r ← 1

3 val← 1− ȳSir

4 while val > 0 and r < M do

5 if di(Si(r+1)) > diSir
then

6 k̃i ← k̃i + 1

7 r ← (r + 1)

8 val← val − ȳSir

9 return k̃i
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3.3.4 Benders reformulation

The Benders cuts (3.20) lead to the following formulation for (PMP ):

(F4)



min
∑
i∈N

θi

s.t.
∑
j∈M

yj = p

θi ≥ D1
i i ∈ N

θi ≥ Dk+1
i −

∑
j:dij≤Dk

i

(Dk+1
i − dij)yj i ∈ N, k ∈ {1, ..., Ki − 1}

yj ∈ {0, 1} j ∈M

(3.21)

(3.22)

Constraints (3.22) indicate that each allocation distance θi is Dk+1
i unless a site is opened at a

distance less than or equal to Dk
i from i. This formulation (F4) has (N + M) variables which is

less than (F2) and (F3) but it has the same number of constraints. Nevertheless, the constraint

matrix is roughly as dense as (F2) and it has the same continuous relaxation value.

Table 3.1 presents the results of four formulations of the (PMP ) on five instances from OR-Library

described in Section 3.4.1. A time limit of 600 seconds is considered. For each formulation, we

present the relative optimality gap (gap) and the runtime in seconds (t[s]).

INSTANCE F1 F2 F3 F4
name N = M p OPT gap t[s] gap t[s] gap t[s] gap t[s]

pmed26 600 5 9917 0% 228 0% 40 0% 8 0% 57
pmed31 700 5 10,086 0% 282 0% 36 0% 7 0% 58
pmed35 800 5 10,400 0% 527 0% 104 0% 9 0% 95
pmed38 900 5 11,060 74.1% 600 0% 75 0% 19 0% 115
pmed39 900 5 11,069 10.7% 600 0% 66 0% 19 0% 105
pmed40 900 5 12,305 0% 579 0% 60 0% 10 0% 104

Table 3.1: Comparison between different (PMP) formulations with a time limit of 600 seconds.

Results in Table 3.1 confirm the expected performance between formulations (F1), (F2) and (F3)

already described in Section 3.2.1. Moreover, (F4) takes more time than (F2) and (F3).
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3.3.5 Decomposition algorithm implementation

To improve the performance of the Benders decomposition, a two-phase algorithm is implemented.

Let (MP ) be the master problem without the integrality constraints. The Benders decomposition

is first solved for (MP ) (Phase 1 ). Then, the integrality constraints are added to the obtained

master problem to solve it through a branch-and-cut algorithm (Phase 2 ).

Phase 1: Solving the linear relaxation of the master problem

Phase 1 is summarized in Algorithm 4. The current master problem MP is solved at Step 4

through a linear programming solver and provides a candidate solution (ȳ, θ) while the

sub-problems are solved at Steps 2 and 6 using Algorithm 2. To enhance the performance this

phase includes the following improvements:

• Initial solution: Providing a good candidate solution to the initial (MP ) can significantly

reduce the number of iterations. Consequently, as García et al. (2011), a first solution is

computed using the PopStar heuristic (Resende and Werneck (2004)) which, to the best

of our knowledge, is the best heuristic for the (PMP ). PopStar is a hybrid heuristic that

combines elements of several metaheuristics. It uses a multi-start method in which a solution

is built at each iteration as in a GRASP algorithm. It is followed by an intensification

strategy, with a tabu search and a scatter search. And in a post-optimization phase, they

use the concept of multiple generations, a characteristic of genetic algorithms. The solution

yh provided by this heuristic and its objective value UBh are inputs of Algorithm 4. The

latter is used to initialize UB1 at Step 1.

• Rounding heuristic: Since in Phase 1 most of the solutions provided by (MP ) are

fractional, we use a primal heuristic to try to improve the upper bound of the problem.

At each iteration, the sites associated to the p largest values of ȳ are opened (Steps 7 to 11

in Algorithm 4).

The objective value of (MP ) and the sub-problem optimal value OPT (SP ) allow us to update

the optimality bounds on the value of the linear relaxation of the problem. In each iteration

the rounding heuristic tries the improve UB1. The iterative algorithm is terminated when no

more violated Benders cuts are found for the current solution y and hence the value of the linear

relaxation of the problem is obtained.
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Algorithm 4: Phase 1 - Solving (MP )
input :

• Instance data (N , M , p , Distances D1
i , ..., DKi

i and dij with i ∈ N, j ∈M)

• Heuristic (PMP ) solution yh with value UBh

output:

• Lower bound LB1 and a feasible integer solution y1 with value UB1

1 (y1, UB1)← (yh, UBh)

2 Use Algorithm 1 to generate violated Benders cuts associated with yh to (MP )

3 while violated cut has been found do

4 (ȳ, θ)← Solve (MP )

5 LB1 ←
N∑

i=1
θi

6 Use Algorithm 1 to generate violated Benders cuts associated with ȳ to (MP )

7 if ȳ is fractional then

8 (yr, UBr)← Get a rounded heuristic solution from ȳ

9 if UBr < UB1 then

10 UB1 ← UBr

11 y1 ← yr

12 return LB1, y1, UB1

Phase 2: Solving the master problem with branch-and-Benders-cut approach

Once the continuous relaxation of (MP ) is solved by Phase 1, the integrality constraints on

variables y are added and a branch-and-cut algorithm is used to solve the problem. The

sub-problems are solved at each node which provides an integer solution in order to generate

Benders cuts. The solution of the sub-problems is performed through callbacks which is a

feature provided by mixed integer programming solvers. In order to enhance the performance of

Phase 2, the following improvements are inplemented:

• Constraint reduction: At the end of Phase 1, most of the generated Benders cuts are

not saturated by the current fractional solution. Most of them are removed to reduce the

problem size. The cuts of a client i ∈ N are related to indexes k̃i obtained at different

iterations. Let k̂ be the highest of these indexes associated with a saturated constraint.

All constraints of client i ∈ N which associated index is higher than k̂ are removed. This

reduction performs better than removing all unsaturated constraints.



47 3.4. Computational study

• Reduced cost fixing: At the end of Phase 1, given the bounds LB1 and UB1, it is possible

to perform an analysis of the reduced costs rc of the last fractional solution y provided by

Algorithm 4. For any site j ∈M such that LB1 + rcj > UB1, yj can be set to 0. Similarly,

for any site j ∈M such that LB1 − rcj > UB1, yj can be fixed to 1. It is computationally

observed that that these rules are efficient in instances where p is small, i.e., when the ratio

p/M is less than 20%. At higher values of p, there may exist many equivalent solutions.

Therefore, opening or closing a site often does not have a strong impact on the objective.

3.4 Computational study

In this section, the results of the Benders decomposition method with those of the state-of-the-art

exact methods described in Section 3.2.2 are compared.

3.4.1 Benchmark instances

We study the same instances used in García et al. (2011) that is the p-median instances from

OR-Library (Beasley (1990)) and TSP-Library (Reinelt (1991)). In all these instances, the sites

are at the same location as the clients and thus N = M . The set of OR-Library contains instances

with 100 to 900 clients, and the value of p is between 5 and 500. The set of TSP-Library selected

contains between 1304 and 238,025 clients. Following previous works such as García et al. (2011),

all client points are given as two-dimensional coordinates, and the Euclidean distance rounded

down to the nearest integer is used as distance.

Another set of symmetric instances that satisfy triangle inequality are the BIRCH instances,

usually solved by heuristics algorithms (see e.g Hansen et al. (2009); Avella et al. (2012); Irawan

et al. (2014)). These instances consist of p clusters of two-dimensional data points generated

in a square. We consider instances with sizes from 10,000 to 20,000 points and from 25,000 to

89,600 points for two types of instances, named Type I and Type III. These instances were kindly

provided by the authors of Avella et al. (2012). For the comparison, we consider the results

presented in Avella et al. (2012), in which an aggregation heuristic is proposed. This heuristic is

denoted as AvellaHeu. The results presented in Irawan and Salhi (2015b) are considered for large

BIRCH instances, in which a hybrid heuristic combining aggregation and variable neighborhood

search is proposed. This heuristic is denoted as IrawanHeu.

We also consider the RW instances originally proposed by Resende and Werneck (2004) with

the PopStar heuristic. They correspond to completely random distance matrices. The distance

between each center and each customer is an integer value taken uniformly between the values 1
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to 1000. Moreover, the distance between client i and site j is not necessarily equal to the distance

between site j and client i. Four different values of N = M are considered: 100, 250, 500, and

1000.

Finally, we include in the experimentation the ODM instances which were introduced by Briant

and Naddef (2004) and are used in Avella et al. (2007) with a branch-and-cut-and-price algorithm.

This algorithm is denoted as AvellaB&C. These instances correspond to the optimal diversity

management problem which can be treated as a p-median problem in which certain allocations

between clients and sites are not allowed. For this problem there exist instances with N equal to

1284, 3773, and 5335. However, we only consider the hardest instances with N = 3773.

3.4.2 Technical specifications

Our study was carried out on an Intel XEON W-2145 processor 3.7 GHz, with 16 threads, but

only 1 was used, and 256 GB of RAM. IBM ILOG CPLEX 20.1 was used as branch-and-cut

framework. The described separation algorithm is applied in the GenericCallback of CPLEX,

which gets called whenever a feasible integer solution is found. The absolute tolerance to the best

integer objective (EpGap) has been set to 10−10, and the tolerance to the best remaining node,

also called absolute MIP gap (EpAGap), to 0.9999.

Considering that the Benders decomposition can easily find feasible solutions, the MIP emphasis

switch has been set to BestBound in order to prove the optimality as fast as possible. The

branch-up-first parameter BRDIR has been set to 1, since this tends to produce branching trees

with fewer nodes. It used a time limit of 10 hours for Phase 2, indicated by TL in the tables

when this is reached.

We run the Zebra and PopStar methods on our computer. Zebra code was provided by the

authors of García et al. (2011) and PopStar code is available online1. On the other hand, we

do not report an updated time for the heuristic algorithms: AvellaB&C was originally carried

out on a Compaq EVO W4000 Personal Computer with Pentium IV-1.8 GHz processor with 1

GB of RAM using the LP solver IBM ILOG CPLEX 8.0 with a time limit of 100 hours per

instance (indicated by TL2 in the corresponding table), AvellaHeu was carried out on an Intel

Core 2 Quad CPU 2.6 GHz workstation with 4 GB of RAM with a single core, and IrawanHeu

was carried out on a PC Intel Core i5 CPU 650@ 3.20 GHz of processor with 4 GB of RAM. In

order to compare more objectively the computation times of our method with the ones of these

approaches, we consider the benchmark score of each computer from the geekbench website2. To
1http://mauricio.resende.info/popstar/
2https://browser.geekbench.com



49 3.4. Computational study

obtain a solution time for these three methods closer to the one that would have been obtained if

we had executed them, one can multiply the time reported in their articles by the ratio between

the score of the used computer and the score of the computer on which they were obtained (i.e.,

3 for AvellaHeu, 2.5 for IrawanHeu, and 6 for AvellaB&C).

3.4.3 Performance analysis

The results for the different instances are presented below. The information in the tables is

organized as follows:

• Instance data:

– name: name of the instance.

– N = M : size of the instance (number of clients equal to the number of sites).

– p: number of sites to open.

– OPT/BKN : optimal value of the instance (in bold) if it is known or the best-known

solution value obtained given the time limit, otherwise. If the value is underlined, it

means that it is the first time the instance is solved to optimality or that the best-known

value was improved.

• Our Phase 1 results:

– LB1: lower bound of the (PMP ) obtained at the end of Phase 1.

– UB1: upper bound of the (PMP ) obtained at the end of Phase 1.

– t1[s]: CPU time in seconds required to complete Phase 1.

• Our Phase 1 + Phase 2 results:

– gap: relative optimality gap between the lower and upper bound obtained in Phase 2.

– iter: number of total iterations required for the Benders decomposition, i.e., the

number of times a fractional solution or an integer solution was separated in Phase 1

and Phase 2, respectively.

– nodes: number of the explored nodes of the branch-and-cut.

– ttot[s]: the total CPU time in seconds required to exactly solve the instance.

• Zebra, AvellaHeu, IrawanHeu, PopStar, and AvellaB&C results:

– gap / UBh: relative optimality gap when available or the solution value obtained at

the end of the corresponding method.
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– t[s]: total CPU time time in seconds required to complete the algorithms of García

et al. (2011), Avella et al. (2012), Irawan and Salhi (2015b), Resende and Werneck

(2004) or Avella et al. (2007) respectively. A diamond (♦) means that the computer

ran out of memory while solving the problem.

• Average total time:

– the average total time by our method and Zebra is presented in the corresponding

tables. This average is calculated considering only the instances where both methods

solve the instances to optimality.

OR-Library and TSP-Library instances

We present the results on OR-Library in Table 3.2 and on TSP-Library instances in Tables 3.3, 3.4,

3.5, and 3.6 for small, medium, large, and huge instances, respectively. Similarly to Zebra, the

optimal value of all the OR-Library instances is reached in few seconds. For the TSP instances,

our method reaches the optimal solution in most instances. Very good LB1 and UB1 bounds are

quickly found at the end of Phase 1.

In Tables 3.3 and 3.4, it is possible to observe that 10 small and medium instances are not solved

optimally by Zebra due to a lack of memory or for reaching the time limit. However, our method

does not face any memory problem and only 2 small and 2 medium instances reach the time limit

of 10 hours with an optimality gap lower than 0, 1%.
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INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter ttot[s] gap t[s]

pmed26 600 5 9917 9854 9917 0.14 0% 15 1.12 0% 5.58
pmed27 600 10 8306 8302 8307 0.18 0% 19 0.63 0% 0.91
pmed28 600 60 4498 4498 4498 0.12 0% 7 0.16 0% 0.12
pmed29 600 120 3033 3033 3033 0.08 0% 8 0.11 0% 0.05
pmed30 600 200 1989 1989 1989 0.04 0% 9 0.04 0% 0.04
pmed31 700 5 10,086 10,026 10,086 0.16 0% 13 0.93 0% 4.23
pmed32 700 10 9297 9293 9297 0.27 0% 9 0.91 0% 1.29
pmed33 700 70 4700 4700 4700 0.18 0% 8 0.24 0% 0.17
pmed34 700 140 3013 3013 3013 0.08 0% 7 0.08 0% 0.07
pmed35 800 5 10,400 10,302 10,400 0.17 0% 9 1.24 0% 5.32
pmed36 800 10 9934 9834 9934 0.25 0% 18 27.2 0% 26.7
pmed37 800 80 5057 5057 5057 0.22 0% 6 0.29 0% 0.15
pmed38 900 5 11,060 10,948 11,060 0.23 0% 15 4.42 0% 10.1
pmed38 900 10 9431 9362 9431 0.31 0% 20 4.17 0% 10.3
pmed38 900 20 7839 7832 7839 0.32 0% 11 1.03 0% 2.87
pmed38 900 50 5892 5889 5892 0.26 0% 11 0.86 0% 1.19
pmed38 900 100 4450 4450 4450 0.22 0% 8 0.31 0% 0.15
pmed38 900 200 2905 2905 2905 0.09 0% 8 0.09 0% 0.08
pmed38 900 300 1972 1972 1972 0.07 0% 8 0.07 0% 0.06
pmed38 900 400 1305 1305 1305 0.07 0% 10 0.07 0% 0.06
pmed38 900 500 836 836 836 0.05 0% 8 0.08 0% 0.05
pmed39 900 5 11,069 10,938 11,069 0.29 0% 22 3.66 0% 8.61
pmed39 900 10 9423 9365 9423 0.31 0% 18 6.27 0% 8.01
pmed39 900 20 7894 7894 7894 0.34 0% 9 0.52 0% 0.72
pmed39 900 50 5941 5937 5941 0.33 0% 12 0.95 0% 1.21
pmed39 900 100 4461 4461 4462 0.24 0% 9 0.33 0% 0.36
pmed39 900 200 2918 2918 2918 0.09 0% 7 0.14 0% 0.08
pmed39 900 300 1968 1968 1968 0.07 0% 7 0.11 0% 0.06
pmed39 900 400 1303 1303 1303 0.08 0% 10 0.08 0% 0.06
pmed39 900 500 821 821 821 0.05 0% 8 0.08 0% 0.05
pmed40 900 5 12,305 12,246 12,305 0.27 0% 11 1.41 0% 3.87
pmed40 900 10 10,491 10,439 10,491 0.33 0% 27 2.77 0% 5.54
pmed40 900 20 8717 8711 8717 0.39 0% 13 1.27 0% 2.39
pmed40 900 50 6518 6505 6518 0.33 0% 11 2.94 0% 4.15
pmed40 900 90 5128 5128 5128 0.23 0% 8 0.23 0% 0.24
pmed40 900 200 3132 3132 3132 0.11 0% 8 0.11 0% 0.09
pmed40 900 300 2106 2106 2106 0.09 0% 11 0.09 0% 0.07
pmed40 900 400 1398 1398 1398 0.06 0% 9 0.06 0% 0.06
pmed40 900 500 900 900 900 0.04 0% 7 0.07 0% 0.05

Average total time 1.67 2.69

Table 3.2: Results on ORLIB instances for our method and Zebra on our computer.
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INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter nodes ttot[s] gap t[s]

rl1304 1304 5 3,099,073 3,099,073 3,099,073 2.70 0% 9 0 2.8 0% 1233
10 2,134,295 2,131,788 2,134,295 2.90 0% 12 160 15.4 0% 1060
20 1,412,108 1,412,108 1,412,108 2.25 0% 8 0 2.3 0% 61
50 795,012 795,012 795,012 1.46 0% 9 0 1.5 0% 8.3
100 491,639 491,507 491,788 0.90 0% 19 37 2.4 0% 3.6
200 268,573 268,573 268,573 0.35 0% 11 0 0.5 0% 0.9
300 177,326 177,318 177,339 0.31 0% 12 0 0.5 0% 0.5
400 128,332 128,332 128,332 0.23 0% 10 0 0.2 0% 0.1
500 97,024 97,018 97,034 0.27 0% 14 0 0.4 0% 0.2

fl1400 1400 5 174,877 174,877 174,877 0.82 0% 7 0 0.9 0% 245
10 100,601 100,601 100,601 0.40 0% 6 0 0.4 0% 72
20 57,191 57,191 57,191 0.38 0% 8 0 0.4 0% 10
50 28,486 28,486 28,486 0.36 0% 8 0 0.4 0% 2.5
100 15,962 15,961 15,962 0.82 0% 12 5 2.1 0% 5.0
200 8806 8793 8815 0.66 0% 20 570 26.9 0% 305
300 6109 6092 6157 0.76 0% 28 12,599 385 9% TL
400 4648 4636 4659 0.56 0% 51 6,716,041 32,655 8% TL
500 3764 3756 3773 0.53 0.09% 44 4,987,858 TL 8% TL

u1432 1432 5 1,210,126 1,210,126 1210126 1.65 0% 7 0 1.8 0% 324
10 849,759 849,759 849,759 3.47 0% 7 0 3.5 0% 71
20 588,766 588,720 588,767 3.86 0% 12 3 5.8 0% 18
50 362,072 361,724 362,072 4.28 0% 25 1493 161 0% 128
100 243,793 243,758 243,850 1.86 0% 12 0 3.0 0% 7.3
200 159,887 159,867 160,084 0.72 0% 13 8 2.0 0% 1.9
300 123,689 123,674 123,876 0.63 0% 15 0 1.0 0% 2.2
400 103,979 103,411 104,102 0.91 0.11% 29 5,806,518 TL 0% TL
500 93,200 93,200 93,200 0.16 0% 8 0 0.3 0% 0.1

vm1748 1748 5 4,479,421 4,479,421 4,479,421 2.36 0% 7 0 2.5 0% 4955
10 2,983,645 2,983,048 2,983,645 4.67 0% 14 11 10.9 0% 1364
20 1,899,680 1,899,588 1,899,681 4.76 0% 15 5 9.5 0% 309
50 1,004,331 1,004,325 1,004,339 2.23 0% 12 0 2.8 0% 21
100 636,515 636,418 636,541 1.57 0% 15 3 3.2 0% 13
200 390,350 390,350 390,350 0.79 0% 11 0 0.8 0% 1.6
300 286,039 286,037 286,080 0.63 0% 13 0 1.0 0% 1.0
400 221,526 221,523 221,545 0.53 0% 13 0 0.8 0% 1.0
500 176,986 176,977 177,103 0.54 0% 14 0 0.8 0% 0.5

Average total time 9 320

Table 3.3: Results on small TSP instances for our method and Zebra on our computer. TL=36,000 seconds. The
average total time is computed on the instances solved to optimality by both approaches.
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INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter nodes ttot[s] gap t[s]

d2103 2103 5 1,005,136 1,005,136 1,005,136 4 0% 8 0 4 0% 4268
10 687,321 687,264 687,321 8 0% 11 7 12 0% 1085
20 482,926 482,798 482,926 9 0% 12 71 18 0% 448
50 302,219 301,592 302,219 18 0.04% 34 149,711 TL 0% 7203
100 194,664 194,408 194,994 17 0% 39 95,993 10,363 0% 16,022
200 117,753 117,736 117,778 2 0% 16 3 5 0% 5
300 90,471 90,424 90,510 2 0% 21 0 3 0% 29
400 75,324 75,291 75,425 1 0% 19 2 4 0% 6209
500 64,006 63,952 64,315 1 0% 27 477 8 0% 2568

pcb3038 3038 5 1,777,835 1,777,665 1,777,835 29 0% 12 13 55 0% TL
10 1,211,704 1,211,704 1,211,704 18 0% 8 0 18 0% 19,526
20 839,494 839,233 839,499 50 0% 18 188 146 0% 7329
50 506,339 506,205 506,339 24 0% 12 194 85 0% 1134
100 351,500 351,404 351,648 28 0% 22 390 96 0% 346
150 280,128 280,058 280,423 16 0% 24 640 269 0% 148
200 237,399 237,328 237,578 11 0% 13 734 84 0% 130
300 186,833 186,793 186,906 6 0% 19 73 17 0% 60
400 156,276 156,268 156,307 3 0% 10 0 6 0% 22
500 134,798 134,774 134,866 2 0% 17 0 4 0% 17

fl3795 3795 5 1,052,627 1,052,627 1,052,627 14 0% 7 0 14 ∞ ♦
10 520,940 520,940 520,940 8 0% 8 0 8 0% 4410
20 319,722 319,722 319,722 6 0% 11 0 6 0% 2671
50 150,940 150,940 150,940 5 0% 13 0 5 0% 193
100 88,299 88,299 88,299 6 0% 12 0 6 0% 45
150 65,868 65,840 65,904 14 0% 52 1833 221 0% 1825
200 53,928 53,913 54,013 11 0% 68 46,730 2633 0% 2501
300 39,586 39,578 39,661 6 0% 47 127,800 2548 0% 3061
400 31,354 31,348 31,472 5 0% 57 14,566 559 0% 527
500 25,976 25,976 25,976 6 0% 15 0 6 0% 2

rl5934 5934 10 9,792,218 9,786,688 9,792,218 405 0% 17 329 1864 ∞ ♦
20 6,716,215 6,713,214 6,716,228 437 0% 27 1381 14,725 ∞ ♦
50 4,029,999 4,026,936 4,029,999 362 0.03% 32 8068 TL 0% TL
200 1,805,530 1,805,030 1,807,763 67 0% 27 1353 967 0% 3816
300 1,392,419 1,392,304 1,392,709 38 0% 15 25 58 0% 235
400 1,143,940 1,143,649 1,145,342 20 0% 33 1809 303 0% 1110
500 972,799 972,741 973,712 17 0% 20 117 44 0% 70
600 847,301 847,233 847,769 12 0% 16 0 18 0% 77
700 751,131 751,054 751,569 7 0% 15 0 14 0% 88
800 675,958 675,884 676,248 7 0% 20 175 21 0% 58
900 612,629 612,574 612,879 7 0% 17 35 14 0% 33
1000 558,167 558,088 558,311 7 0% 28 603 45 0% 731
1100 511,192 511,138 511,453 7 0% 22 43 15 0% 20
1200 469,747 469,712 469,943 8 0% 18 0 11 0% 11
1300 433,060 433,015 433,300 7 0% 19 5 12 0% 27
1400 401,370 401,356 401,597 7 0% 15 0 9 0% 6
1500 373,566 373,566 373,566 7 0% 17 0 7 0% 2

Average total time 467 2022

Table 3.4: Results on medium TSP instances for our method and Zebra on our computer. TL=36,000 seconds.
♦ means that the computer ran out of memory. The average total time is computed on the instances solved to
optimality by both approaches.
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Regarding the large and huge instances in Tables 3.5 and 3.6, 57 of the 68 instances are solved,

whereas Zebra only solves 16 instances due to a lack of memory. For the huge instances, the

rounding heuristic step of Phase 1, the reduced cost fixing step, and the constraint reduction

step of Phase 2 are not used as they take too much time. Nevertheless, the rounding heuristic is

used once at the end of Phase 1 to update UB1. Moreover, for the huge instances, a randomly

generated solution is used instead of PopStar which takes a long time. For the first time the

optimal values for 7 instances with N = M = 115, 455 and 10 instances with N = M = 238, 025

are provided.

INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter nodes ttot[s] gap t[s]

usa13509 13,509 10 398,561,730 398,561,600 398,561,730 288 0% 10 0 755 ∞ ♦
25 234,600,221 234,600,221 234,600,221 455 0% 10 0 455 ∞ ♦
50 157,819,849 157,815,657 157,819,849 431 0% 11 45 646 ∞ ♦
100 108,002,205 107,983,102 108,002,411 523 0% 23 605 4043 ∞ ♦
200 74,220,726 74,213,328 74,229,411 426 0% 25 969 2269 ∞ ♦
300 59,340,915 59,334,913 59,346,783 473 0% 23 984 1744 0% 18,760
400 50,538,905 50,533,013 50,575,463 319 0% 24 874 2556 0% 23,677
500 44,469,860 44,463,038 44,499,566 278 0% 36 2883 3945 0% 25,105
600 39,952,138 39,944,049 39,991,088 295 0% 34 49,175 23,712 0% TL
700 36,469,603 36,463,603 36,512,930 202 0% 24 6060 2551 0% TL
800 33,635,127 33,631,192 33,672,848 210 0% 21 796 1215 0% 6007
900 31,275,114 31,269,089 31,299,760 182 0% 31 27,272 11,851 0% TL
1000 29,268,216 29,262,339 29,309,009 154 0% 31 942 1382 0% TL
2000 18,230,856 18,229,432 18,238,229 47 0% 21 202 125 0% 584
3000 13,098,935 13,097,929 13,101,469 49 0% 28 9 72 0% 1674
4000 9,905,715 9,905,071 9,910,848 37 0% 17 0 50 0% 166
5000 7,608,605 7,608,242 7,611,958 45 0% 22 0 61 0% 86

sw24978 24,978 10 22,670,073 22,670,073 22,670,073 1037 0% 12 0 1037 ∞ ♦
25 14,085,626 1,4085,352 14,085,626 6651 0% 11 15 9447 ∞ ♦
50 9,652,817 9,652,817 9,652,817 4136 0% 10 0 4136 ∞ ♦
75 7,766,486 7,765,106 7,766,486 6310 0.010% 12 457 TL ∞ ♦
100 6,660,424 6,657,806 6,660,424 9634 0.031% 14 228 TL ∞ ♦
250 4,034,554 4,034,055 4,036,558 2413 0.003% 14 699 TL ∞ ♦
500 2,747,215 2,746,498 2,751,695 1866 0.015% 20 2621 TL ∞ ♦
1000 1,841,723 1,841,613 1,844,801 621 0% 23 1061 3814 0% 30,796
2000 1,197,278 1,197,231 1,198,464 208 0% 17 132 476 0% TL
3000 911,361 911,308 911,988 145 0% 17 16 344 0% 3614
4000 737,645 737,602 738,045 92 0% 15 0 190 0% TL
5000 617,637 617,593 618,096 76 0% 18 0 127 0% TL
6000 527,336 527,307 527,716 72 0% 17 0 112 0% 5188
7000 455,716 455,696 456,074 63 0% 16 0 99 0% 3973
8000 397,217 397,153 397,540 44 0% 20 0 97 0% TL
9000 347,376 347,322 347,621 44 0% 20 13 92 0% TL

10,000 305,998 305,932 306,094 33 0% 17 0 60 0% TL
Average total time 1178 9969

Table 3.5: Results on large TSP instances for our method and Zebra on our computer. TL=36,000 seconds.
♦ means that the computer ran out of memory. The average total time is computed on the instances solved to
optimality by both approaches.



55 3.4. Computational study

INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter nodes ttot[s] gap t[s]

ch71009 71,009 10,000 4,274,662 4,273,680 4,424,131 6326 0.006% 36 18,585 TL ∞ ♦
20,000 2,377,760 2,377,409 2,419,539 681 0% 40 474 3581 ∞ ♦
30,000 1,464,151 1,464,015 1,473,517 431 0% 27 0 819 ∞ ♦
40,000 879,336 879,272 881,997 220 0% 17 0 465 ∞ ♦
50,000 463,553 463,544 463,904 133 0% 24 0 258 0% 653
60,000 167,565 167,558 167,789 49 0% 31 0 135 0% 331

pla85900 85,900 10,000 166,853,134 166,627,292 182,428,500 2841 0.12% 30 2113 TL ∞ ♦
20,000 109,007,210 107,246,411 120,645,337 3975 1.58% 27 618 TL ∞ ♦
30,000 86,944,862 86,944,715 87,547,287 1411 0.0002% 84 28,033 TL ∞ ♦
40,000 69,944,715 69,944,715 69,965,668 1006 0% 12 0 1006 ∞ ♦
50,000 52,944,715 52,944,715 52,945,623 921 0% 12 0 921 ∞ ♦
60,000 35,944,715 35,944,715 35,945,105 858 0% 11 0 858 ∞ ♦
70,000 18,977,475 18,977,475 18,977,475 73 0% 13 0 73 0% 122
80,000 4,512,752 4,512,752 4,512,752 12 0% 20 0 13 0% 97

usa115475 115,474 20,000 5,287,343 5,286,659 5,383,798 3366 0.001% 36 11102 TL ∞ ♦
30,000 3,815,620 3,815,143 3,861,590 1494 0% 41 589 11,581 ∞ ♦
40,000 2,876,909 2,876,603 290,4492 1353 0% 32 459 4431 ∞ ♦
50,000 2,189,144 2,188,903 2,200,969 1122 0% 28 480 3189 ∞ ♦
60,000 1,651,400 1,651,234 1,657,118 795 0% 25 0 1588 ∞ ♦
70,000 1,214,299 1,214,177 1,217,251 612 0% 17 0 1045 ∞ ♦
80,000 851,481 851,422 852,851 435 0% 24 0 788 ∞ ♦
90,000 548,097 548,076 548,560 270 0% 18 0 544 ∞ ♦

ara238025 238,025 10,000 1354,335 1,345,698 1,446,100 5197 0.64% 19 0 TL ∞ ♦
20,000 857,553 857,453 878,372 5582 0.004% 42 696 TL ∞ ♦
30,000 630,969 630,872 643,171 5123 0% 33 663 33,687 ∞ ♦
40,000 494,842 494,804 498,378 4135 0% 18 0 10,028 ∞ ♦
50,000 401,835 401,795 404,218 2675 0% 19 0 8327 ∞ ♦
60,000 334,279 334,236 335,807 2969 0% 17 0 7240 ∞ ♦
70,000 283,627 283,592 286,065 3058 0% 28 509 19,298 ∞ ♦
80,000 244,233 243,936 248,742 2578 0% 36 378 14,615 ∞ ♦
90,000 214,233 213,936 219673 1548 0% 27 507 28391 ∞ ♦
1000,00 184,233 184,069 188,556 1973 0% 44 613 18,473 ∞ ♦
150,000 88,025 88,025 88,334 1532 0% 27 0 6057 ∞ ♦
200,000 38,025 38,025 38,025 319 0% 11 0 319 ∞ ♦

Average total time 120 300

Table 3.6: Results on huge TSP instances for our method and Zebra on our computer. TL=36,000 seconds. ♦ means
that the computer ran out of memory. The average total time is computed on the instances solved to optimality
by both approaches.

BIRCH instances

The results on BIRCH instances are summarized in Tables 3.7 and 3.8. Almost all of these

instances were solved in the first phase either by finding an integer solution directly or by the

rounding heuristic. Consequently, optimal values are quickly obtained for all these instances.

Even when multiplying the solution time of AvellaHeu and IrawanHeu by their benchmark

ratio (2.5 and 3, respectively), our approach remains the best for most instances.
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INSTANCE PHASE 1 PHASE 1 + 2 AvellaHeu

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter nodes ttot[s] UBh t[s]

ds1x1 10,000 100 12,428.5 12,428.5 12,428.5 9 0% 6 0 9 12,428.5 47
ds1x2 15,000 100 18,639.3 18,639.3 18,639.3 29 0% 7 0 29 18,639.3 101
ds1x3 20,000 100 24,840.3 24,840.3 24,840.3 38 0% 7 0 38 24,840.3 210
ds1x4 9600 64 11,934.8 11,934.8 11,934.8 13 0% 6 0 13 11,934.8 56
ds1x5 12,800 64 15,863.8 15,863.8 15,863.8 25 0% 7 0 25 15,863.8 84
ds1x6 16,000 64 20,004.5 20,004.5 20,004.5 31 0% 6 0 31 20,004.6 129
ds1x7 19,200 64 24,018.3 24,018.3 24,018.3 55 0% 6 0 55 24,018.3 219
ds1x8 10,000 25 12,455.7 12,455.7 12,455.7 28 0% 6 0 28 12,455.7 82
ds1x9 12,500 25 15,597.1 15,597.1 15,597.1 43 0% 6 0 43 15,597.1 115
ds1x0 15,000 25 18,949.3 18,949.3 18,949.3 67 0% 7 0 67 18,949.3 175
ds1xA 17,500 25 21,937.4 21,937.4 21,937.4 116 0% 6 0 116 21,937.4 241
ds1xB 20,000 25 25,096.8 25,096.8 25,096.8 108 0% 6 0 108 25,096.8 365
ds3x1 10,000 100 9624.8 9624.8 9624.8 16 0% 9 0 16 9624.8 60
ds3x2 15,000 100 15,898.2 15,895.9 15,899.1 39 0% 10 88 142 15,904.1 121
ds3x3 20,000 100 19,976.2 19,974.6 19,977.6 97 0% 10 13 260 19,989.0 222
ds3x4 9600 64 8225.6 8224.1 8225.7 24 0% 12 5 65 8225.6 57
ds3x5 12,800 64 10,210.4 10,210.4 10,210.4 36 0% 10 0 36 10,210.4 98
ds3x6 16,000 64 13,335.4 13,335.4 13,335.4 62 0% 10 0 62 13,340.5 170
ds3x7 19,200 64 15,207.6 15,207.1 15,207.6 176 0% 18 0 400 15,207.6 229
ds3x8 10,000 25 7203.4 7203.4 7203.4 61 0% 11 0 61 7203.4 94
ds3x9 12,500 25 8576.1 8576.1 8576.1 68 0% 7 0 68 8576.1 144
ds3x0 15,000 25 9513.6 9513.6 9513.6 135 0% 13 0 136 9513.6 192
ds3xA 17,500 25 12,535.7 12,535.7 12,535.7 224 0% 16 0 224 12,535.7 250
ds3xB 20,000 25 13,022.2 13,022.2 13,022.2 244 0% 11 0 244 13,052.8 364

Table 3.7: Results on BIRCH instances for our method and the results of AvellaHeu reported in Avella et al.
(2012).

INSTANCE PHASE 1 PHASE 1 + 2 IrawanHeu

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter nodes ttot[s] UBh t[s]

ds1n01 25,000 25 31,229.4 31,229.4 31,229.4 153 0% 7 0 153 31,282.6 447
ds1n02 36,000 36 45,115.6 45,115.6 45,115.6 311 0% 7 0 311 45,115.6 780
ds1n03 49,000 49 61,384.1 61,384.1 61,384.1 388 0% 7 0 388 61,569.7 1216
ds1n04 64,000 64 80,053.9 80,053.9 80,053.9 675 0% 7 0 675 80,377.4 2258
ds1n05 30,000 25 37,563.6 37,563.6 37,563.6 305 0% 7 0 305 37,617.1 559
ds1n06 43,200 36 54,191.4 54,191.4 54,191.4 320 0% 7 0 320 54,305.8 1003
ds1n07 58,800 49 73,626.8 73,626.8 73,626.8 683 0% 7 0 683 73,854.7 1691
ds1n08 76,800 64 96,039.4 96,039.4 96,039.4 949 0% 7 0 949 96,393.4 2834
ds1n09 35,000 25 43,902.1 43,902.1 43,902.1 385 0% 7 0 386 42,972.1 758
ds1n10 50,400 36 63,169.2 63,169.2 63,169.2 533 0% 7 0 533 63,329.2 1472
ds1n11 68,600 49 85,833.5 85,833.5 85,833.5 910 0% 8 0 910 86,082.0 2441
ds1n12 89,600 64 112,059.2 112,059.2 112,059.2 1332 0% 7 0 1332 112,485.2 4501
ds3n01 25,000 25 17,696.2 17,696.2 17,696.2 112 0% 6 0 112 17,718.6 527
ds3n02 36,000 36 27,423.0 27,423.0 27,423.0 237 0% 7 0 237 27,476.1 913
ds3n03 49,000 49 44,149.0 44,149.0 44,149.0 294 0% 10 0 295 44,282.5 1760
ds3n04 64,000 64 58,832.6 58,832.6 58,832.6 807 0% 11 0 807 58,991.5 2624
ds3n05 30,000 25 21,829.9 21,829.9 21,829.9 258 0% 7 0 258 21,865.1 832
ds3n06 43,200 36 32,339.4 32,339.4 32,339.4 337 0% 9 0 337 32,391.6 1873
ds3n07 58,800 49 50,857.9 50,857.9 50,857.9 831 0% 12 0 831 50,857.9 2692
ds3n08 76,800 64 66,561.4 66,561.0 66,655.7 1490 0% 17 9 4587 66,944.7 4393
ds3n09 35,000 25 24,810.9 24,810.9 24,810.9 869 0% 10 0 869 24,833.7 972
ds3n10 50,400 36 38,102.6 38,102.6 38,102.6 504 0% 8 0 504 38,162.3 2297
ds3n11 68,600 49 61,850.6 61,850.6 61,850.6 1065 0% 14 0 1065 62,007.4 2556
ds3n12 89,600 64 78,777.0 78,777.0 78,777.0 1548 0% 19 0 1548 79,245.3 5779

Table 3.8: Results on large BIRCH instances for our method and the results of IrawanHeu reported in Irawan and
Salhi (2015b).
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RW instances

The results on RW instances are summarized in Table 3.9. Even small RW instances can be very

difficult to solve as previously observed by Elloumi and Plateau (2010). This would be mainly

due to the fact that the instances are not Euclidean. Furthermore, the total number of distances

K is closer to N ×M , leading to more variables and constraints in Formulations (F2) and (F3).

For large values of p, our decomposition can quickly solve the instances to optimality. These

instances were not considered by either Avella et al. (2007) or García et al. (2011). Moreover,

the code of Zebra cannot handle non-symmetric instances. Consequently, it is only reported the

computation time and value UBh of the solution computed by the heuristic PopStar.

INSTANCE PHASE 1 PHASE 1 + 2 PopStar
name N = M p OPT LB1 UB1 t1[s] gap iter nodes ttot[s] UBh t[s]

rw100_10 100 10 530 475 530 0.02 0% 46 4817 6.82 530 0.05
rw100_20 100 20 277 274 277 0.01 0% 9 0 0.20 277 0.03
rw100_30 100 30 213 213 213 0.01 0% 9 0 0.01 213 0.02
rw100_40 100 40 187 187 187 0.01 0% 7 0 0.01 187 0.03
rw100_50 100 50 172 172 172 0.01 0% 7 0 0.01 172 0.02
rw250_10 250 10 3691 2811 3698 0.26 0% 71 4,072,666 31,099 3698 0.31
rw250_25 250 25 1360 1216 1364 0.14 0.4% 64 5,003,894 TL 1364 0.34
rw250_50 250 50 713 699 713 0.07 0% 23 2050 7.31 713 0.15
rw250_75 250 75 523 523 523 0.02 0% 11 0 0.02 524 0.09
rw250_100 250 100 444 444 444 0.02 0% 9 0 0.02 444 0.08
rw250_125 250 125 411 411 411 0.02 0% 8 0 0.02 411 0.07
rw500_10 500 10 16,108 11,012 16,144 1.35 21.5% 81 211,046 TL 16,144 2.53
rw500_25 500 25 5683 4403 5716 0.85 16.3% 73 506,777 TL 5716 1.80
rw500_50 500 50 2627 2321 2627 0.52 6.5% 44 1,290,135 TL 2627 1.03
rw500_75 500 75 1757 1672 1757 0.36 1.1% 31 2,436,992 TL 1757 0.84
rw500_100 500 100 1379 1353 1382 0.25 0% 45 20,9745 1482 1382 0.47
rw500_150 500 150 1024 1024 1024 0.05 0% 8 0 0.05 1024 0.30
rw500_250 500 250 833 833 833 0.03 0% 9 0 0.03 833 0.25
rw1000_10 1000 10 68,136 44,697 68,136 10.35 36.2% 61 19,577 TL 68,136 8.65
rw1000_25 1000 25 24,964 17,387 25,042 6.22 34.1% 77 32,697 TL 25,042 7.60
rw1000_50 1000 50 11,328 8760 11,328 5.18 23.2% 65 94,037 TL 11.328 7.09
rw1000_75 1000 75 7207 5998 7223 4.20 16.2% 70 151,511 TL 7223 3.15
rw1000_100 1000 100 5233 4631 5233 3.22 9.7% 42 285,579 TL 5233 4.45
rw1000_200 1000 200 2710 2664 2710 0.94 0.5% 31 1,310,025 TL 2710 3.27
rw1000_300 1000 300 2018 2017 2018 0.20 0% 12 0 0.28 2018 1.99
rw1000_400 1000 400 1734 1734 1734 0.08 0% 9 0 0.09 1734 1.68
rw1000_500 1000 500 1614 1614 1614 0.07 0% 8 0 0.08 1614 1.35

Table 3.9: Results on RW instances for our exact method and PopStar heuristic in our computer. TL=36,000
seconds.
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ODM instances

The results on ODM instances are summarized in Table 3.10. To solve these instances, N

constraints have to be added to ensure that each client is allocated to one of its non-forbidden

neighbors. This generates a more complex master problem to solve. The rounding heuristic could

not be used directly with these instances, so in order to save computation time, it was not used.

Obtaining a solution for these instances is hard since PopStar does not support their format and

since random solutions may not be feasible due to the sparsity of the graphs. Consequently, to

obtain an initial solution, its corresponding formulation (F3) by CPLEX is solved and stopped it

once it has found 3 feasible solutions. This approach empirically proved to be a good compromise

between computation time and optimality gap. It was not possible to be able to use Zebra for

these instances. All these instances were solved to optimality. Our results remains the best on

all instances even after multiplying AvellaB&C solution times by its benchmark ratio of value 6.

INSTANCE PHASE 1 PHASE 1 + 2 AvellaB&C
name N = M p OPT LB1 UB1 t1[s] gap iter nodes ttot[s] gap t[s]

BD3773 3773 5 726,954,998.4 715,785,543.5 748,669,824.0 6 0% 123 59 58 0% 1540
6 685,812,258.0 673,317,265.9 720,632,505.6 10 0% 318 221 158 0% 41,551
7 651,930,471.0 636,565,701.5 727,428,978.0 11 0% 1165 627 589 0% 216,851
8 620,886,605.4 606,599,816.1 1,157,543,276.4 20 0% 2520 1153 1434 1.7% 329,053
9 595,955,799.0 581,022,150.3 649,313,415.0 18 0% 4028 1981 2385 2.6% TL2
10 574,634,206.8 559,096,162.3 633,383,307.0 24 0% 8229 4848 4372 2.8% TL2
11 554,972,029.2 539,810,124.3 603,741,870.0 29 0% 10,139 5940 5832 2.9% TL2
12 536,700,087.0 522,614,063.7 605,415,767.4 30 0% 13,951 5898 8083 3.1% TL2
13 521,375,065.2 507,136,693.1 581,851,884.6 31 0% 22,500 9471 12,581 3.2% TL2
14 507,756,740.4 493,051,932.7 550,267,457.4 35 0% 52,705 30,275 31,651 3.1% TL2

Table 3.10: Results on ODM instances for our method and the results of AvellaB&C reported in Avella et al. (2007).
TL2=360000 seconds.

3.4.4 Adaptation for the Uncapacitaded Facility Location problem

Given the closeness of the (PMP ) and the (UFL), we compare our two-phase decomposition

algorithm with the approach proposed in Fischetti et al. (2017) for the (UFL). They solve the

problem in a branch-and-cut approach in which they search for violated Benders cuts for both the

integer solutions and the fractional solutions of the linear relaxations with a ad-hoc algorithm.

This approach is also known as branch-and-Benders-cut. They also consider some stabilization

techniques and heuristics for the cut loop at the root and at the branching nodes. Their method

is denoted as BBC.
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We consider the same set of KG instances from UFLLIB3 to compare the performance on the linear

formulation. These instances can be divided into three groups, with N = M ∈ {250, 500, 750}.

Within each KG group, there are two classes of instances, symmetric and asymmetric ones,

denoted by “gs” and “ga”, respectively. Additionally, each class contains three sub-classes, “a”,

“b,” and “c,” representing different cost settings: in subclass a, allocation costs are an order of

magnitude higher than the facility opening costs; in subclass b, these costs are of the same order;

and in subclass c, facility opening costs are an order of magnitude higher than the allocation

costs.

The computational study in Fischetti et al. (2017) was conducted on a cluster of identical machines

each consisting of an Intel Xeon E3-1220V2 CPU running at 3.10 GHz, with 16 GB of RAM each.

They reported the wall-clock times and referred to four-thread runs with a time limit of 2 hours

per instance (indicated by TL3 in the corresponding table).

KG Instances

The results on KG instances are summarized in 3.11. To solve these instances, the master problem

needs to be modified to consider the open cost of sites and remove the constraint of limiting the

number of open sites to p. This generates a harder master problem to solve. Let cj be the cost

of to open the site j ∈M.

(MPUF L)



min
∑
i∈N

θi +
∑
j∈M

cjyj

s.t.
∑
j∈M

yj = p

θi satisfies BDi i ∈ N

yj ∈ {0, 1} j ∈M

The heuristic used in Phase 1 must also be modified, since PopStar does not take into account

site opening costs and the p parameter is not available. A greedy heuristic is considered to obtain

the initial solution. As a rounding heuristic, all the sites which yj > 0.4 for j ∈M are set to 1.

The obtained results are consistent with those presented in Fischetti et al. (2017) since within

the 2-hour limit it is also not possible to optimally solve the considered instances. Fischetti et al.

(2017) do not report lower bounds on the optimal value. It is observed here that the final gap

is relatively small, as its maximum value is 1.7%. However, Fischetti et al. (2017) have a better

upper bound for all instances which is probably due to the stabilization technique and its primal

heuristic used at each node.

3https://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/index.html
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INSTANCE PHASE 1 PHASE 1 + 2 BBC
name N = M BKN LB1 UB1 t1[s] UB2 gap iter nodes ttot[s] UBh t[s]

ga500a-1 500 511,383 510,589.0 514,040 2.0 511,474 0.11% 65 227,655 TL3 511,383 TL3
ga500a-2 500 511,255 510,472.2 514,397 1.8 511,367 0.11% 69 217,453 TL3 511,255 TL3
ga500a-3 500 510,810 510,139.0 513,356 1.9 510,965 0.09% 78 264,644 TL3 510,810 TL3
ga500a-4 500 511,008 510,382.6 512,694 1.7 511,082 0.08% 35 369,649 TL3 511,008 TL3
ga500a-5 500 511,239 510,487.7 513,475 2.0 511,425 0.11% 74 237,491 TL3 511,239 TL3
ga500b-1 500 538,060 533,338.6 545,628 1.6 538,452 0.49% 66 119,621 TL3 538,060 TL3
ga500b-2 500 537,850 533,087.6 619,389 1.6 538,457 0.60% 84 87,311 TL3 537,850 TL3
ga500b-3 500 537,924 532,735.7 626,127 1.7 538,264 0.63% 77 76,708 TL3 537,924 TL3
ga500b-4 500 537,925 532,841.9 670,237 1.5 538,385 0.58% 90 86,797 TL3 537,925 TL3
ga500b-5 500 537,482 532,968.8 597,360 1.5 537,662 0.44% 71 124,594 TL3 537,482 TL3
gs500a-1 500 511,188 510,409.9 513,472 3.4 511,314 0.10% 95 233,059 TL3 511,188 TL3
gs500a-2 500 511,179 510,448.7 514,006 1.9 511,354 0.11% 82 165,089 TL3 511,179 TL3
gs500a-3 500 511,112 510,321.4 513,779 2.3 511,287 0.12% 85 141,758 TL3 511,112 TL3
gs500a-4 500 511,137 510,369.6 513,787 2.2 511,278 0.11% 66 159,787 TL3 511,137 TL3
gs500a-5 500 511,293 510,494.5 513,990 2.0 511,532 0.13% 83 145,791 TL3 511,293 TL3
gs500b-1 500 537,931 533,026.7 659,721 1.4 538,418 0.57% 76 84,363 TL3 537,931 TL3
gs500b-2 500 537,763 533,096.1 662,841 1.4 538,160 0.51% 67 113,638 TL3 537,763 TL3
gs500b-3 500 537,854 532,832.2 678,990 1.7 538,457 0.63% 91 76,097 TL3 537,854 TL3
gs500b-4 500 537,742 532,717.2 664,753 1.5 538,422 0.66% 97 74,407 TL3 537,742 TL3
gs500b-5 500 538,270 533,098.2 669,016 1.6 538,618 0.59% 80 83,721 TL3 538,270 TL3
ga750a-1 750 763,528 762,464.5 766,540 5.8 763,869 0.15% 93 50,507 TL3 763,528 TL3
ga750a-2 750 762,653 762,520.2 767,067 9.2 763,973 0.15% 89 46,602 TL3 762,653 TL3
ga750a-3 750 763,697 762,568.5 766,608 6.2 763,930 0.14% 79 43,302 TL3 763,697 TL3
ga750a-4 750 763,945 762,738.5 767,839 6.6 764,240 0.16% 77 36,036 TL3 763,945 TL3
ga750a-5 750 763,786 762,637.0 767,096 7.3 764,159 0.16% 75 40,176 TL3 763,786 TL3
ga750b-1 750 796,454 790,121.9 897,053 4.6 797,090 0.62% 66 26,275 TL3 796,454 TL3
ga750b-2 750 795,963 789,512.4 938,670 4.5 796,498 0.62% 82 25,485 TL3 795,963 TL3
ga750b-3 750 796,130 789,618.5 929,140 4.6 796,640 0.63% 79 23,499 TL3 796,359 TL3
ga750b-4 750 797,013 790,345.1 926,574 4.7 797,935 0.69% 90 22,494 TL3 797,013 TL3
ga750b-5 750 796,387 789,647.3 930,851 4.0 796,934 0.66% 89 23,036 TL3 796,549 TL3
ga750c-1 750 902,026 875,624.7 1,018,182 2.2 903,292 1.59% 87 23,967 TL3 902,026 TL3
ga750c-2 750 899,651 873,946.7 1,017,899 2.8 902,368 1.70% 84 22,481 TL3 899,651 TL3
ga750c-3 750 900,010 874,108.9 1,012,861 3.1 902,099 1.66% 82 24,265 TL3 900,019 TL3
ga750c-4 750 900,044 875,565.9 1,028,964 2.4 901,809 1.42% 76 23,248 TL3 900,044 TL3
ga750c-5 750 899,235 873,191.5 1,028,543 2.6 900,541 1.55% 87 24,812 TL3 899,235 TL3
gs750a-1 750 763,671 762,564.9 767,232 6.5 763,925 0.14% 84 43,430 TL3 763,671 TL3
gs750a-2 750 763,548 762,529.4 766,414 6.1 763,666 0.11% 90 57,546 TL3 763,548 TL3
gs750a-3 750 763,727 762,568.1 765,552 6.6 764,031 0.16% 82 41,309 TL3 763,727 TL3
gs750a-4 750 763,887 762,788.3 766,768 7.5 764,208 0.15% 81 36,651 TL3 763,922 TL3
gs750a-5 750 763,614 762,528.9 766,741 6.4 763,947 0.15% 92 44,013 TL3 763,614 TL3
gs750b-1 750 797,026 790,349.4 994,689 4.7 797,713 0.68% 82 20,525 TL3 797,329 TL3
gs750b-2 750 796,170 789,669.9 895,766 4.1 796,843 0.66% 80 26,652 TL3 796,170 TL3
gs750b-3 750 796,589 789,935.6 996,019 4.5 797,357 0.69% 84 22,153 TL3 796,589 TL3
gs750b-4 750 796,734 790,080.8 997,279 4.2 797,176 0.65% 69 26,574 TL3 797,020 TL3
gs750b-5 750 796,365 789,902.8 930,041 4.6 797,026 0.63% 63 23,510 TL3 796,365 TL3
gs750c-1 750 900,363 875,363.9 1,020,684 2.9 903,801 1.64% 80 22,196 TL3 900,363 TL3
gs750c-2 750 897,886 874,186.6 1,004,896 2.5 900,668 1.49% 70 27,230 TL3 897,886 TL3
gs750c-3 750 901,656 874,762.5 1,019,498 2.5 902,767 1.61% 89 21,335 TL3 901,656 TL3
gs750c-4 750 901,239 875,410.6 1,007,402 2.6 902,591 1.61% 81 24,195 TL3 901,239 TL3
gs750c-5 750 900,216 875,956.4 1,017,315 3.4 903,719 1.65% 78 20,022 TL3 900,216 TL3

Table 3.11: Results on KG instances for our method and the results of BBC reported in Fischetti et al. (2017)
TL3=72,000 seconds.
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3.5 Conclusions

We define a Benders decomposition based on the most efficient formulation of the p-median

problem. The efficiency of our decomposition comes from a fast algorithm for the solution of the

sub-problems in conjunction with additional improvements in a two-phase method. In the first

phase, the integrality constraints are relaxed and in the second phase, the problem is solved in

an efficient branch-and-cut approach.

Our approach outperforms other state-of-the-art methods. For the first time, instances are solved

having up to 89,600 and 238,025 clients and sites from the BIRCH and TSP libraries, respectively.

Our decomposition method is tested on other p-median instances: RW instances which do not

satisfy triangle inequality and ODM instances in which there are allocations that are not allowed

between certain clients and sites. For the RW instances, we solve instances of up to 1000 clients

with a large value of p. For ODM instances, we solve previously unsolved instances with 3773

nodes within 10 hours. Our approach was also adapted to test it on the difficult KG instances of

the (UFL) problem obtaining relatively small optimality gaps.

One of the perspectives of this research is to exploit these results on other families of location

problems. It is also expected to use other branching strategies that allow a greater efficiency

during the development of the branch-and-cut algorithm.



Chapter 4

New Benders decomposition and

Clustering algorithm for the

p-Center Problem

4.1 Introduction

The p-center problem (PCP ) is also a fundamental problem in location science (Laporte et al.

(2019b)). It consists of choosing the p locations to minimize the maximum distance from a client

to its nearest facility. The p open facilities are called centers. Formally the problem is defined

as follows. We consider a set of N clients, a set of M potential facilities to open, and their

corresponding index set N = {1, ..., N} and M = {1, ..., M}. Let dij be the distance between

client i and center j, and p be an integer. The objective is to find a set S ⊆ M such that

|S| ≤ p and the value z = max
i∈N

(min
j∈S

dij) is minimized. This distance z is called the radius.

Figure 4.1 illustrates a comparison of (PCP ) solutions for different values of p considering the

same symmetric instance used in the introduction (Chapter 1). Note how the corresponding

radius, shown in red, decreases as p increases.

The p-center problem in operations research is applied in various contexts, including facility

location, emergency service planning, telecommunications network design, healthcare planning,

and supply chain management. It allows to decide the best places for centers, such as warehouses

or hospitals, to minimize distances or response times (Çalık et al. (2019a)).

There are a variety of exact and approximate methods for this classical problem and its variants.

In recent years, important advances have been made in the solution of large-scale instances. To

the best of our knowledge, the best methods are those of Contardo et al. (2019) and Gaar and

62
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Figure 4.1: Comparison of optimal PCP solutions for a symmetric instance of 40 nodes.

Sinnl (2022). The former initially considers a subset of clients, solves the (PCP ) associated to

this subset, and adds new clients until an optimal solution is obtained. The latter method is

based on a specialized branch-and-cut procedure for a Benders decomposition. Both methods

can solve very large-scale instances.

Contribution

Firstly, we explore two new Benders decompositions for the (PCP ). Secondly, we introduce an

exact algorithm based on a clustering procedure. Finally, we present the comparative results with

the state-of-the-art exact methods for the (PCP ) on benchmark instances.

The rest of the chapter is organized as follows: Section 4.2 presents the literature review of the

(PCP ). In Section 4.3, we present a comparison of performances of the main MILP formulations.

In Section 4.4 and Section 4.5, two new Benders decomposition of the same (PCP ) formulation

are studied. Section 4.6 presents our new exact solution method based on a clustering of the

clients. The results of the computational study are presented in Section 4.7. Finally, some

conclusions together with research perspectives are drawn in Section 4.8.
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4.2 Literature review

The p-center problem was introduced by Hakimi (1965), who presented and solved the absolute

1-center problem on a graph. In the absolute p-center problem, the centers can be located either

on the edges or the vertices of the graph. Later, Minieka (1970) extended the problem to the

case p > 1 and proposed a method to restrict the continuous set of candidate centers to a discrete

set of points, without losing optimality. Since then, the problem was commonly referred to as

the vertex p-center problem or directly as the p-center problem. Several formulations, solution

methods, and variants of this problem have been presented. We refer to Çalık et al. (2019b) for

a more exhaustive review of applications and solution methods for the p-center problem. The

following is a summary of the main MILP formulations and the state-of-the-art exact solution

methods.

4.2.1 Mathematical formulations

The problem can be formulated with a binary variable yj for each center j which is 1 if center j

is opened, 0 otherwise; and another binary variable xij which is 1 if client i is allocated to center

j, 0 otherwise.

(F0)



min max
i∈N

∑
j∈M

dijxij

s.t.
∑
j∈M

yj = p

∑
j∈M

xij = 1 i ∈ N

xij ≤ yj i ∈ N, j ∈M

xij , yj ∈ {0, 1} i ∈ N, j ∈M

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Constraint (4.2) limits the number of open facilities to p. Constraints (4.3) ensures that each

client is allocated to only one center and Constraints (4.4) ensures that no client is allocated to

a center that is not open.

The formulation proposed in Daskin (1996) is considered as the classical formulation, which treats

the objective min-max function by introducing a new real variable z representing the maximum

distance between a client and its nearest center, the radius.
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(F1)



min z

s.t.
∑
j∈M

yj = p

∑
j∈M

xij = 1 i ∈N

xij ≤ yj i ∈N, j ∈M∑
j∈M

dijxij ≤ z i ∈N

xij , yj ∈ {0, 1} i ∈N, j ∈M

z ∈ R

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

Constraints (4.7), (4.8), and (4.9) come from the first model. Then the objective function is

reformulated and Constraints (4.10) are added to indicate that the distances between each client

and its nearest center are less than the radius.

Elloumi et al. (2004) proposed an alternative formulation which orders all distinct values of the

distances between each pair of clients and centers. Let D0 < D1 < ... < DK be the distinct

values of dij for all i ∈ N and j ∈ M. Let K = {1, ..., K} be the respective distance index set

without considering the smallest distance. The radius variable z and the allocation variables x

are replaced by variables zk with k ∈ K equal to 1 if the radius is greater than or equal to Dk.

The initial formulation they obtain is as follows:

(F2init)



min D0 +
∑
k∈K

(Dk−Dk−1)zk

s.t.
∑
j∈M

yj = p

zk +
∑

j:dij<Dk

yj ≥ 1 i ∈ N, k ∈ K

yj ∈ {0, 1} j ∈M

zk ∈ {0, 1} k ∈ K

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

Constraint (4.14) limit the number of open facilities to p. Constraints (4.15) indicates that a

client is covered by a center at a distance less than Dk, or that the radius is greater than or equal

to Dk. Thus, if zk = 1, (Dk −Dk−1) is then added in Objective (4.13).

Both formulations are polynomial in size but have different structures. The classical model has

(N + 1)×M binary variables, 1 continuous variable, and N × (M + 2) + 1 constraints. (F2) has

(M + K) binary variables and (K × N + 1) constraints. In the worst case where K is close to
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(N ×M), the two problems have almost the same number of variables, but (F2init) has about

N times as many constraints. Elloumi et al. (2004) show that (F2init) provides a continuous

relaxation bound that dominates that of (F1).

Later, Ales and Elloumi (2018) present a formulation that improves the resolution performance

of the previous formulation (F2init). They add the following family of valid inequalities:

zk ≥ zk+1 k ∈ {1, ..., K − 1}

and they also identify the following sub-set of indices:

Ki = {k ∈ K : ∃ j ∈M such that dij = Dk} i ∈ N

Consequently, they propose the following formulation:

(F2)



min D0 +
∑
k∈K

(Dk −Dk−1)zk

s.t. zk +
∑

j:dij<Dk

yj ≥ 1 i ∈ N, k ∈ Ki

zk ≥ zk+1 k ∈ {1, 2, . . . , K − 1}∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

zk ∈ {0, 1} k ∈ K

(4.18)

(4.19)

Constraints (4.19) allow to remove a significant number of Constraints (4.15). Constraints (4.18)

represent the subset of (4.15) that are not redundant. Indeed, when there is no site j such that

dij = Dk, Constraint (4.15) for i and k is dominated by Constraint (4.15) for i and k + 1 and can

therefore be omitted. It is proved in Ales and Elloumi (2018) that even if (F2) is much lighter

than (F2init), it has the same continuous relaxation bound.

Ales and Elloumi (2018) also presented another compact formulation, which contains less variables

and constraints than (F2). They replace the K binary variables zk with a unique integer variable

r which represents the index of the optimal radius:
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(F3)



min r

s.t. r ≥ k − k
∑

j:dij<Dk

yj i ∈ N, k ∈ Ki

∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

r ≥ 0

(4.20)

(4.21)

Constraints (4.21) play a similar role to that of Constraints (4.18). This formulation (F3) provides

a weaker linear relaxation than the previous formulations.

Calik and Tansel (2013) introduce two mathematical formulations. Here we consider the tightest

one and denote it as (F4). They consider the same binary variables yj of (F1) and a binary

variable uk for all k ∈ {0, ..., K} which is equal to 1 if and only if the optimal radius is equal

to Dk. Thus, exactly one of these new binary variables is equal to one. The solutions of these

formulations can be mapped to those of (F2init) by setting u0 = 1 − z1, uk = zk − zk+1, and

zk = 1−
K∑

k=0
uk.

(F4)



min
K∑

k=0
Dkuk

s.t.
∑

j∈M : dij≤Dk

yj ≥
k∑

q=0
uq i ∈ N, k ∈ {0, ..., K}

K∑
k=0

uk = 1

∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

uk ∈ {0, 1} k ∈ {0, ..., K}

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Finally, Gaar and Sinnl (2022) recently presented a formulation obtained from a Benders

decomposition of (F1) which is closely related to a formulation of the uncapacitated facility

location problem (UFL) from Cornuejols et al. (1980) and Magnanti and Wong (1981). This

formulation of (UFL) also considers binary variables x from (F1) and a single continuous

variable θ to represent the radius which is minimized in the objective.
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(F5)



min θ

s.t.
∑
j∈M

yj = p

θ ≥ dij −
∑

j′:dij′ <dij

(dij − dij′)yj′ i ∈ N, j ∈M

yj ∈ {0, 1} j ∈M

θ ∈ R

(4.28)

(4.29)

Constraints (4.29) ensure that the radius is at least the distance to the nearest center for each

demand node. These constraints can be seen as a reinforcement of the Constraints (4.21) in (F3).

4.2.2 Solutions methods

Several heuristic and exact methods have been proposed for (PCP ). In this research we are

interested in the exact solution methods. We refer to the survey Garcia-Diaz et al. (2019) for

approximation algorithms and heuristics. The following is a summary of the main exact solution

methods since the introduction of (PCP ).

The first exact solution method was presented in Minieka (1970), it is proposed an iterative

algorithm in which at each step, a set cover problem is solved to determine if there exists a

solution of radius at most equal to a distance in D = {D0, D1, ..., DK}. Garfinkel et al. (1977)

introduce an heuristic as initial solution and a binary search for the remaining distances in D.

T. Ilhan (2002) adopt the approach of Minieka (1970) proposing a first phase to obtain the bounds

and thus to reduce the size of D to the second stage with the set cover problems.

Later, Al-Khedhairi (2005) improve the second stage with a sequential search in order to reduce

the number of iterations. Caruso et al. (2003) have proposed exact and heuristic algorithms based

on the idea of strong and weak dominance rules. Daskin (1996) adopted the same binary search

idea, but solved maximum coverage problems instead of set cover problems. Elloumi et al. (2004)

proposes some modifications to the algorithm of Daskin (1996) calculating a continuous solution

of the set-cover problems at each iteration instead of one optimal solution based in their proposed

formulation (F2init). R. Chen (1987) and Chen and Chen (2009) presented iterative algorithms

based on relaxation that consider only subsets of clients. If the greatest dissimilarity between a

client that is not in the subset and its nearest center in the solution of the relaxed problem is

less than or equal to the value of the solution, then this solution is also feasible (and therefore

optimal) for the original instance. If this is not the case, the subset is updated by adding a

constant number of clients.
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More recently, Calik and Tansel (2013) developed a search that solves a restricted model

containing only two blocks of coverage constraints based in their proposed formulation (F4).

Contardo et al. (2019) have proposed to solve the problem considering only a sub-set of clients

and updating this set when it is needed. It also considers an improved binary search with the

set cover problems. Finally, Gaar and Sinnl (2022) proposed a scalable method based on a

specialized branch-and-cut procedure for the Benders decomposition on (F1).

Several variants of the PCP have been introduced and investigated in the literature, such as the

incorporation of capacities, demands or uncertainty in the parameters. We refer to Çalık et al.

(2019a) for more details. Since the most efficient methods use decomposition algorithms that take

advantage of lower bounds. In Sections 4.4 and 4.5, we introduce two new Benders decompositions.

Moreover, we present an efficient algorithm based on client clustering in Section 4.6.

4.3 Performance comparison of the MILP formulations

In this section we compare the efficiency of the direct solution of the five formulations presented

in Section 4.2.1 by a standard MILP solver. For this, we use the default setting of CPLEX 20.1

with a time limit of 2 hours. We solve the 40 symmetric ORLIB instances (Beasley (1990)) of 100

to 900 nodes. The optimal values and their corresponding CPU times are presented in Table 4.1.

We observe that (F1) is the only formulation that cannot solve all instances reaching the time

limit. (F4) is the fastest formulation on average followed by (F2) and (F5). Nevertheless, the

best results are almost always obtained either by (F2) or (F4).

However, the performance of the formulations can be influenced by the different parameters of

the MILP solver, among these an important one is the pre-solve parameter. In Table 4.2 we

present the results obtained on the same instances but without CPLEX pre-solve and with a time

limit of 30 minutes. (F2) is now the only formulation able to solve all the instances. (F4) is the

second best which only reaches the time limit for 5 instances. These performance differences are

mainly due to the fact that the pre-solve can eliminate many redundant constraints.
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Instance t[s]
name N = M p OPT F1 F2 F3 F4 F5

pmed01 100 5 127 13 3 10 25 15
pmed02 100 10 98 8 2 16 25 15
pmed03 100 10 93 7 3 18 26 19
pmed04 100 20 74 4 2 194 25 20
pmed05 100 33 48 2 2 11 21 16
pmed06 200 5 84 106 18 68 64 61
pmed07 200 10 64 81 20 56 64 65
pmed08 200 20 55 51 11 421 83 108
pmed09 200 40 37 27 21 72 73 108
pmed10 200 67 20 12 12 57 49 60
pmed11 300 5 59 282 19 134 61 45
pmed12 300 10 51 248 25 117 75 142
pmed13 300 30 36 218 104 513 97 217
pmed14 300 60 26 127 101 429 117 390
pmed15 300 100 18 54 55 127 82 139
pmed16 400 5 47 875 17 194 63 141
pmed17 400 10 39 4652 113 298 64 224
pmed18 400 40 28 965 688 3601 243 445
pmed19 400 80 18 679 255 780 173 292
pmed20 400 133 13 165 44 194 29 238
pmed21 500 5 40 3001 29 65 69 68
pmed22 500 10 38 TL 381 770 106 775
pmed23 500 50 22 2729 456 1768 310 759
pmed24 500 100 15 1538 322 906 130 384
pmed25 500 167 11 574 70 378 54 687
pmed26 600 5 38 10,426 514 105 508 333
pmed27 600 10 32 TL 41 1140 86 138
pmed28 600 60 18 10,298 550 2906 129 883
pmed29 600 120 13 5195 134 1373 545 602
pmed30 600 200 9 1234 87 544 60 426
pmed31 700 5 30 TL 34 93 78 180
pmed32 700 10 29 TL 1007 4285 1514 1600
pmed33 700 70 15 TL 1086 3894 397 857
pmed34 700 140 11 8794 761 1026 171 818
pmed35 800 5 30 TL 2116 262 129 201
pmed36 800 10 27 TL 4243 4889 1875 314
pmed37 800 80 15 TL 1681 3922 1595 3251
pmed38 900 5 29 TL 89 1235 183 609
pmed39 900 10 23 TL 1932 521 1687 1932
pmed40 900 90 13 TL 1419 6397 1570 2341

Average - 462 1095 316 498

Table 4.1: Performance comparison of (P CP ) formulations. TL=7200s.
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Instance t[s]
name n=m p OPT F1 F2 F3 F4 F5

pmed01 100 5 127 35 8 TL2 86 821
pmed02 100 10 98 29 5 TL2 70 TL2
pmed03 100 10 93 35 4 TL2 146 1677
pmed04 100 20 74 6 7 TL2 82 TL2
pmed05 100 33 48 4 5 TL2 50 TL2
pmed06 200 5 84 172 44 TL2 209 TL2
pmed07 200 10 64 1017 25 TL2 85 TL2
pmed08 200 20 55 1082 32 TL2 262 TL2
pmed09 200 40 37 568 48 TL2 285 TL2
pmed10 200 67 20 13 20 TL2 96 TL2
pmed11 300 5 59 TL2 30 TL2 99 TL2
pmed12 300 10 51 TL2 72 TL2 260 TL2
pmed13 300 30 36 TL2 124 TL2 474 TL2
pmed14 300 60 26 TL2 101 TL2 406 TL2
pmed15 300 100 18 TL2 74 TL2 215 TL2
pmed16 400 5 47 711 27 TL2 108 TL2
pmed17 400 10 39 TL2 76 TL2 588 TL2
pmed18 400 40 28 TL2 163 TL2 469 TL2
pmed19 400 80 18 TL2 160 TL2 589 TL2
pmed20 400 133 13 TL2 109 TL2 214 TL2
pmed21 500 5 40 TL2 73 TL2 122 TL2
pmed22 500 10 38 TL2 596 TL2 574 TL2
pmed23 500 50 22 TL2 379 TL2 1731 TL2
pmed24 500 100 15 TL2 358 TL2 1650 TL2
pmed25 500 167 11 TL2 164 TL2 208 TL2
pmed26 600 5 38 TL2 132 TL2 213 TL2
pmed27 600 10 32 TL2 974 TL2 212 TL2
pmed28 600 60 18 TL2 1045 TL2 TL2 TL2
pmed29 600 120 13 TL2 177 TL2 370 TL2
pmed30 600 200 9 TL2 283 TL2 255 TL2
pmed31 700 5 30 TL2 64 TL2 177 TL2
pmed32 700 10 29 TL2 1013 TL2 TL2 TL2
pmed33 700 70 15 TL2 1443 TL2 TL2 TL2
pmed34 700 140 11 TL2 563 TL2 998 TL2
pmed35 800 5 30 TL2 82 TL2 148 TL2
pmed36 800 10 27 TL2 335 TL2 905 TL2
pmed37 800 80 15 TL2 1806 TL2 TL2 TL2
pmed38 900 5 29 TL2 86 TL2 220 TL2
pmed39 900 10 23 TL2 260 TL2 696 TL2
pmed40 900 90 13 TL2 1610 TL2 TL2 TL2

Average - 314 - - -

Table 4.2: Performance comparison of (P CP ) formulations without pre-solve. TL2=1800s.
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4.4 Benders decomposition for a relaxation of (PCP )

Since decomposition algorithms are the state-of-the-art methods for solving the p-center problem

and the formulation (F2) has been shown to be efficient in the previous section, we focus on the

Benders decomposition of (F2). More details and references to the general Benders decomposition

method are presented in the Section 2.2.1.

It is possible to perform two decompositions of Benders depending on which set of the two sets of

variables from (F2) are relaxed. In this Section 4.4 variables y are relaxed while in Section 4.5,

we relax variables z.

The following formulation corresponds to (F2) when the variables y are relaxed:

(F21)



min D0 +
∑
k∈K

(
Dk −Dk−1)

zk

s.t. zk +
∑

j:dij<Dk

yj ≥ 1 i ∈ N, k ∈ Ki

zk ≥ zk+1 k ∈ {1, 2, . . . , K − 1}∑
j∈M

yj = p

yj ≥ 0 j ∈M

zk ∈ {0, 1} k ∈ K

Consequently, the master problem associated with the variables zk is:

(MP1)



min D0 +
∑
k∈K

(Dk −Dk−1)zk

s.t. zk ≥ zk+1 k ∈ {1, ..., K − 1}

z satisfies BD

zk ∈ {0, 1} k ∈ K

(4.30)

The sub-problem associated with a feasible solution z̄k of (MP1) is:

(SP1)



min 0

s.t.
∑
j∈M

yj = p

∑
j:dij<Dk

yj ≥ (1− z̄k) i ∈ N, k ∈ Ki

yj ≥ 0 j ∈M

(4.31)
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Consequently, the associated dual sub-problem is defined by:

(DSP1)



max
∑
i∈N

∑
k∈Ki

vk
i (1− z̄k) + c ∗ p

s.t.
∑
i∈N

∑
k∈Ki:dij<Dk

vk
i + c ≤ 0 j ∈M

vk
i ≥ 0 i ∈ N, k ∈ Ki

c ∈ R

(4.32)

(4.33)

As (SP1) is a feasibility problem, with an extreme ray (v̄, c̄) of (DSP1), we can only add to (MP1)

the following Benders feasibility cuts:

∑
i∈N

∑
k∈Ki

v̄k
i (1− zk) + c̄ ∗ p ≤ 0 (4.34)

This decomposition provides a lower bound that corresponds to the solution of (F2) (or (F2init))

in which the integrality of the y variables is removed. This lower bound is the a well-know tight

lower bound of the p-center problem. It was introduced in Elloumi et al. (2004) and named LB∗.

4.4.1 Improved sub-problem formulation

The feasibility of (SP1) depends on whether it is possible to find a solution in which the number
of open sites is equal to p. It is then possible to remove the cardinality constraints on the number
of sites and check afterwards if the number of sites required is equal to p or not. This leads to
the following sub-problem:

(SP ′
1)



min
∑
j∈M

yj

s.t.
∑

j:dij<Dk

yj ≥ (1− z̄k) i ∈ N, k ∈ Ki (vk
i )

yj ≥ 0 j ∈M

The corresponding dual sub-problem is defined by:

(DSP ′
1)



max
∑
i∈N

∑
k∈Ki

vk
i (1− z̄k)

s.t.
∑
i∈N

∑
k∈Ki:dij<Dk

vk
i ≤ 1 j ∈M

vk
i ≥ 0 i ∈ N, k ∈ Ki

(4.35)

(4.36)

The advantage of this reformulation is that the variable c is not required anymore. Consequently,

the sub-problem is feasible for any solution of the master problem. Nevertheless, the objective
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value of the primal or dual sub-problem must be equal to p to be a feasible solution of the

original problem. If this condition is not satisfied, we can then add the following cut to the

master problem: ∑
i∈N

∑
k∈Ki

v̄k
i (1− zk) ≤ p (4.37)

This is also known as a normalization of the feasibility cuts, when a constraint of c = 1 is added

to (DSP1). We can solve (DSP1′) more quickly thanks to the following proposition.

Proposition 4.4.1. There exists an optimal solution v̄ of the sub-problem (DSP1′) with at most

one k ∈ Ki such that v̄k
i > 0 for all i ∈ N.

Proof :

Given i ∈ N and k ∈ K, if (1 − z̄k) ≤ 0 and k ∈ Ki, then there exists necessarily an optimal

solution of (DSP1′) in which v̄k
i = 0. Similarly, in an optimal solution solution vk

i > 0 implies

(1− z̄k) > 0 which is possible only if z̄k = 0.

Let us assume that there exists an optimal solution v̄, such that v̄k1
i > 0 and v̄k2

i > 0, with

k1 < k2. Then, there exists j1 and j2, such that exists dij1 = Dk1 , dij2 = Dk2 and dij1 < dij2 .

Note that if variable vk1
i appears in a given constraint of (DSP1′), so does vk2

i with the same

coefficients. Since they have the same coefficient in the objective, it is possible to build a solution

v∗ equal to v̄ except that v∗k1
i = v̄k1

i + v̄k2
i and v∗k2

i = 0. Thus, v∗ satisfies Constraints (4.36) and

it has the same optimal objective value. This process can be repeated until for each index i, at

most one variable vk
i is greater than 0. □

Proposition 4.4.1 allows us to obtain an optimal solution of (DSP1′) by solving a sub-problem

with fewer variables where for each client i ∈ N a single variable v
k
i is considered, where k is the

smallest distance index k ∈ K such that z̄k = 0:

(DSP ∗
1 )



max
∑
i∈N

vik

s.t.
∑

i∈N:dij<Dk

vik ≤ 1 j ∈M

vik ≥ 0 i ∈ N

(4.38)

(4.39)

with k = min{k ∈ K : z̄k = 0} for all i ∈ N. Note (DSP ∗
1 ) is the linear relaxation of the maximal

stable set problem in the graph where the nodes are the clients and an edge links two clients that

can be covered by the same site at a distance lower than Dk.
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Consequently, the Benders cut associated with the optimal solution of (DSP1′) v̄
k
i can be

rewritten as follows: ∑
i∈N

v̄
k
i (1− zk) ≤ p (4.40)

4.4.2 Efficient master problem resolution algorithm

Usually, at each step of the Benders algorithm, the master problem and a sub-problem need to

be solved. (MP1) is an easy problem to solve since it is a minimization problem with positive

coefficients in the objective, therefore the variables take the value 0 unless there is a constraint

that does not allow it. Thus, the optimal solution is the smallest distance allowed by the cut

added in the last iteration. Note that the cut (4.40) can be written as follows:

∑
i∈N

v̄
k
i zk ≥

∑
i∈N

v̄
k
i − p

Consequently, given Constraints (4.30), the optimal solution of (DPS1′) can be computed by

successively setting the value of zk = 1 from the smallest index k that appear in the cut until

the inequality is satisfied. Moreover, this decomposition can be implemented as a linear search of

the distance Dk until a feasible solution is found. Indeed distance D0 is initially returned and at

each iteration k, distance Dk is obtained until the optimal radius is reached. In the next section

we will show the relation of this to a classical solving algorithm of using a binary search.

4.4.3 Binary search algorithm

As mentioned in the literature review, a classical method to solve the p-center problem is using

the relation with the Set Cover Problem (SCP ) (Toregas et al. (1971)). The (SCP ) associated

with a distance Dk is formulated as follows:

(
SCP(Dk)

)


min
∑
j∈M

yj

s.t.
∑

j:dij≤Dk

yj ≥ 1 i ∈ N

yj ∈ {0, 1} j ∈M

The radius of (PCP ) is at most Dk, if and only if the solution value of (SCP(Dk)) is at most p.

The smallest distance Dk that needs at most p centers is the optimal solution of the corresponding

(PCP ). To find this minimum distance Dk, a binary search is used so that at most log2(K + 1)

set cover problems need to be solved. Elloumi et al. (2004) proposes a two-step solution, in which
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first the variables yj are relaxed and together with heuristics to obtain good lower and upper

bounds, and thus reduce the number of distances for solution in integer variables in the second

stage.

Algorithm 5: General binary search algorithm
input : (PCP ) instance data (N, M, p, D1, ..., DK)

output: An optimal solution with centers y∗ of cardinality p and radius θ∗

1 l← 1, r ← K

2 while l < r do

3 h← ⌊(l + r)/2⌋

4 θ ← Dh

5 y ← SCP (Dh) // Solving the corresponding set cover problem

6 if |y| > p then

7 l← h + 1

8 else

9 r ← h

10 (θ∗, y∗)← (θ, y)

11 return (θ∗, y∗)

We observe experimentally that this first Benders decomposition on (F2) is slower than this

general binary search method with the set cover sub-problems. The performance of this

implementation may be improved in the future by using specialized techniques in the solution of

maximal stable set problems, for example. In the following section we detail a second Benders

decomposition in which variables zk are relaxed in the sub-problems instead of variables yj .
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4.5 Benders decomposition for an exact relaxation of (PCP)

In this section we present the second Benders decomposition on formulation (F2). Gaar and Sinnl

(2022) consider a Benders decomposition of (F1) which leads to formulation (F5). We show that

(F5) is also related to this decomposition. We first relax variables zk in (F2).

(F 22)



min D0 +
∑
k∈K

(Dk−Dk−1)zk

s.t. zk +
∑

j:dij <Dk

yj ≥ 1 i ∈ N, k ∈ Ki

zk ≥ zk+1 k ∈ {1, 2, . . . , K − 1}∑
j∈M

yj = p

yj ∈ {0, 1} j ∈ M

zk ≥ 0 k ∈ K

The master problem associated with variables yj is:

(MP2)


min θ

s.t.
∑
j∈M

yj = p

yj ∈ {0, 1} j ∈ M

Given a solution ȳ of (MP2), the sub-problem is defined by:

(SP2)



min D0 +
∑
k∈K

(Dk − Dk−1)zk

s.t. zk − zk+1 ≥ 0 k ∈ {1, ..., K − 1} (bk)

zk ≥ 1 −
∑

j:dij <Dk

ȳj i ∈ N, k ∈ Ki (vk
i )

zk ≥ 0 k ∈ K

(4.41)

(4.42)

and its associated dual problem is:

(DSP2)



max D0 +
∑
i∈N

∑
k∈Ki

vk
i (1 −

∑
j:dij <Dk

ȳj)

s.t. b1 +
∑

i∈N :1∈Ki

v1
i ≤ D1 − D0 k = 1

bk − bk−1 +
∑

i∈N :k∈Ki

vk
i ≤ Dk − Dk−1 k = 2, ..., K − 1

−bK−1 +
∑

i∈N :K∈Ki

vK
i ≤ DK − DK−1 k = K

bk ≥ 0 k ∈ {1, ..., K − 1}

vk
i ≥ 0 i ∈ N, k ∈ Ki

(4.43)

(4.44)

(4.45)

(4.46)
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The optimality cut associated with an optimal solution v̄k
i of (DSP2) is:

θ ≥ D0 +
∑
i∈N

∑
k∈Ki

v̄k
i (1 −

∑
j:dij <Dk

yj) (4.47)

The resolution of this Benders decomposition gives us the optimal solution of (F2), since the

integrality of variables zk are ensured by that of variables yj .

4.5.1 Efficient sub-problem resolution algorithm

We show that the sub-problem of this decomposition can be solved quickly.

Lemma 4.5.1. Given a solution ȳ of the master problem (MP2) or of its LP-relaxation, the

following solution z̄ is feasible for (SP2):

z̄k = max
(
0, max

i∈N

(
1−

∑
j:dij<Dk

ȳj
))

k ∈ K (4.48)

Proof. All Ki indices are included in K for at least one client, and it holds that

(
1−

∑
j:dij<Dk

ȳj
)
≥

(
1−

∑
j:dij<Dk+1

ȳj
)

k ∈ {1, ..., K − 1}

Therefore, the solution z̄ satisfies Constraints (4.41) and (4.42) of (SP1). □

Note that in this solution, the value of variables z̄k are not increasing when k increases. In order

to obtain a complementary dual solution, we will see that it is relevant to identify the last strictly

positive term of this sequence.

Definition 4.5.1. Given a solution ȳ of the master problem (MP2) or of its LP-relaxation, let

k̃ be the following index:

k̃ = max
{

k ∈ K :
(

max
i∈N

(1−
∑

j:dij<Dk

ȳj)
)

> 0
}

(4.49)

Note that, if ȳ is binary, then distance Dk̃ corresponds to the radius of the feasible solution ȳ.

For each index k ≤ k̃, we are also interested in identifying a client that limits the reduction of z̄k.
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Definition 4.5.2. Given a solution ȳ of the master problem (MP2) or of its LP-relaxation, and

the associated index k̃ for each k ∈ {1, ..., k̃}, we define i∗
(k) as:

i∗
(k) ∈ arg max

i∈N

(1−
∑

j:dij<Dk

ȳj) (4.50)

Client i∗
(k) is a client that will be covered at least at the distance Dk given solution ȳ. Considering

these definitions, we can express the optimal value of solution z̄.

Lemma 4.5.2. Given a solution ȳ of the master problem (MP2) or of its LP-relaxation, and a

corresponding client i∗
(k) for k ∈ {1, ..., k̃}, the objective value of solution z̄ is:

θSP2
(ȳ) = Dk̃ −

k̃∑
k=1

(Dk −Dk−1)
∑

j:di∗
(k)j<Dk

ȳj (4.51)

Proof. For k > k̃, we have that z̄k = 0 and z̄k > 0 for k ≤ k̃. Consequently, the objective value

of z̄ can be written as:

θSP2
(ȳ) = D0 +

∑
k∈K

(Dk −Dk−1)
(

max
(
0, max

i∈N

(
1−

∑
j:dij<Dk

ȳj
))

= D0 +
k̃∑

k=1
(Dk −Dk−1)

(
max
i∈N

(
1−

∑
j:dij<Dk

ȳj
))

= D0 +
k̃∑

k=1
(Dk −Dk−1)(1−

∑
j:di∗

(k)j<Dk

ȳj)

= Dk̃ −
k̃∑

k=1
(Dk −Dk−1)

∑
j:di∗

(k)j<Dk

ȳj

□

The following proposition allows us to define an optimal solution of (DSP2).

Proposition 4.5.1. Given a solution ȳ of the master problem (MP2) or of its LP-relaxation,

and its corresponding indices i∗
(k) for k ∈ {1, ..., k̃}, the solution z̄ is optimal for (SP2) and the

following solution (v̄, b̄) is optimal for (DSP2) for k ∈ K:

b̄k = 0 v̄k
i =


Dk −Dk−1 if k ≤ k̃ and i = i∗

(k)

0 otherwise
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Proof. By definition of k̃, client i∗
(k) exists for each k ≤ k̃. It is thus easy to check that the

solution (v̄, b̄) is feasible. The objective value of this solution is:

D0 +
∑
i∈N

∑
k∈Ki

v̄k
i (1−

∑
j:dij<Dk

ȳj) =D0 +
∑
i∈N

k̃∑
k=1

v̄k
i (1−

∑
j:dij<Dk

ȳj)

=D0 +
k̃∑

k=1
(Dk −Dk−1)(1−

∑
j:di∗

(k)
j<Dk

ȳj)

=Dk̃ −
k̃∑

k=1
(Dk −Dk−1)

∑
j:di∗

(k)
j<Dk

ȳj

=θSP2
(ȳ)

Hence, this dual solution is feasible and it has the same objective value as the primal solution z̄.

Therefore, the solutions z̄ and (v̄, b̄) are optimal for (SP2) and (DSP2), respectively. □

Corollary 1. The Benders cuts (4.47) can be written as follows:

θ ≥ Dk̃ −
k̃∑

k=1
(Dk −Dk−1)(

∑
j:di∗

(k)j<Dk

yj) (4.52)

where k̃ and i∗
(k) are defined by Definitions 4.5.1 and 4.5.2. Note that the coefficients of these

cuts are integers even if the master problem is solved in continuous variables.

4.5.2 Representation of the cuts

Note that for a given k ≤ k̃ diferent clients can be chosen as i∗
(k). Moreover, if i can be chosen as

i∗
(k), it can also be chosen as i∗

(k−1), for all k ∈ {2, ..., k̃}, if ȳ is integer. This allows us to define

the following corollary.

Corollary 2. In the case where i∗
(k) = i∗

(k̃) for each k ≤ k̃, the cuts (4.52) can be rewritten as
follows.

θ ≥Dk̃ −
k̃∑

k=1
(Dk̃ −Dk)(

∑
j:di∗

(k̃)
j=Dk

yj)

θ ≥Dk̃ −
∑

j:di∗
(k̃)

j<Dk̃

(Dk̃ − di∗
(k̃)

j)yj (4.53)

The cuts (4.53) indicate that the radius is at least Dk̃ unless a site j such that di∗
(k̃)

j < Dk̃ is

opened, since client i∗
(k̃) is the one inducing this current maximal allocation distance. In that

case, the allocation distance of client i∗
(k̃) could be reduced to di∗

(k̃)
j .
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Moreover, the cuts (4.53) are included in the formulation (F5), introduced in Gaar and Sinnl

(2022) for the (PCP ). To see this relation directly, we write as (F5′) the (PCP ) formulation

obtained with cuts (4.53).

(F5′)



min θ

s.t. θ ≥ Dk −
∑

j:dij<Dk

(Dk − dij)yj i ∈ N, k ∈ Ki

∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

(4.54)

It is important to note that formulation (F5′) has the same linear relaxation value as (F1).

Moreover, if in our Benders decomposition we relax the master problem and separate only the

cuts (4.53), this same lower bound from (F1) would be obtained. However, if the cuts (4.52) are

separated, we obtain the linear relaxation bound of (F2), which is better than (F1) (Elloumi

et al. (2004); Ales and Elloumi (2018)).

To illustrate the differences between the approaches to generating the cuts, let us consider the

following instance of 6 clients and sites:

dij =



526 202 399 699 383 629

156 397 743 748 292 652

741 465 55 427 446 396

966 913 656 280 681 322

350 213 688 915 448 828

1003 761 264 361 678 404


(4.55)

All distances are different, therefore we have the following 36 distinct distance values:

{Dk} ={55, 156, 202, 213, 264, 280, 292, 322, 350, 361, 383, 396,

397, 399, 404, 427, 446, 448, 465, 526, 629, 652, 656, 678,

681, 688, 699, 741, 743, 748, 761, 828, 913, 915, 966, 1003}

For p = 3 this instance has an optimal value of D12 = 397, a linear relaxation value of D5 = 280

and 319.666 (close to D7) from formulations (F1) and (F2), respectively.
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If we use our Benders decomposition with cuts (4.52), we obtain the following 7 cuts:

1. i∗
(k∈{1,...,2}) = 1, i∗

(k∈{3,...,k̃=22}) = 4 : θ + 376y4 + 334y6 ≥ 656

2. i∗
(k∈{1,...,2}) = 1, i∗

(k∈{3,...,k̃=12}) = 2 : θ + 195y1 + 105y5 ≥ 397

3. i∗
(k∈{1,...,k̃=19}) = 1 : θ + 324y2 + 127y3 + 143y5 ≥ 526

4. i∗
(k∈{1,...,2}) = 1, i∗

(k∈{3,...,k̃=15}) = 3 : θ + 225y3 + 31y6 ≥ 427

5. i∗
(k∈{1,...,10}) = 1, i∗

(k∈{11,...,k̃=17}) = 5 : θ + 65y1 + 246y2 ≥ 448

6. i∗
(k∈{1,...,10}) = 1, i∗

(k=11) = 3, i∗
(k∈{12,...,k̃=14}) = 6 : θ + 181y2 + 21y3 + 8y4 ≥ 404

7. i∗
(k∈{1,...,2}) = 1, i∗

(k∈{3,...,11}) = 3, i∗
(k∈{12,...,k̃=14}) = 6 : θ + 202y3 + 8y4 ≥ 404

If we now use cuts (4.53), we obtain the following 6 cuts:

1. i∗
(k∈{1,...,k̃=22}) = 4 : θ + 376y4 + 334y6 ≥ 656

2. i∗
(k∈{1,...,k̃=12}) = 2 : θ + 241y1 + 105y5 ≥ 397

3. i∗
(k∈{1,...,k̃=19}) = 1 : θ + 324y2 + 127y3 + 143y5 ≥ 526

4. i∗
(k∈{1,...,k̃=15}) = 3 : θ + 372y3 + 31y6 ≥ 427

5. i∗
(k∈{1,...,k̃=17}) = 5 : θ + 98y1 + 235y2 ≥ 448

6. i∗
(k∈{1,...,k̃=14}) = 6 : θ + 140y3 + 43y4 ≥ 404

We can note the difference in the coefficients in most the constraints. For example, at iteration 5

ȳ = (0, 0, 1, 1, 1, 0), i.e., the sites 3, 4 and 5 are opened. For this solution the radius is D16 = 448.

For the first approach, the cut (4.52) considers i∗
(k) = 1 for 1 ≤ k ≤ 10 and i∗

(k) = 5 for 11 ≤ k ≤ 17.

Meanwhile, for the cut (4.53) we consider i∗
(k) = i∗

(k̃=17) = 5 for all k ≤ k̃, which leads to different

linear relaxation values for the master problem.

In this example, due to the choices of i∗
(k) for all k ≤ k̃ at each iteration, the Benders decomposition

based on cuts (4.52) leads to more iterations that the one based on cuts (4.53). However,

since cuts (4.53) are included in (4.52), there necessarily exist choices of i∗
(k) that enable to

obtain the same number of iterations (and potentially fewer). Moreover, (4.52) are included in

Constraints (4.54) of formulation (F5′). However, note that the cuts (4.52) depend on a feasible

solution ȳ, which is not the case of the constraints in (F5′).

Now, if we relax the integrality of y in the master problem, we obtain 15 cuts (4.52) and 8

cuts (4.53). For example, in the corresponding second iteration both consider the fractional

solution ȳ = (0.1617, 1.0, 0.0, 1.0, 0.0, 0.8383), i.e., to open (fractionally) sites 1, 2, 4, and 6.

The first cut (4.52) is:

θ + y1 + 224y3 + y5 + 30y6 ≥ 427
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With a sub-problem solution value of 401.6886, this cut considers:

i∗
(k) =



1 1 ≤ k ≤ 2

3 3 ≤ k ≤ 11

2 k = 12

3 13 ≤ k ≤ 15

While if only i∗
(k̃=15) = 3 is considered, the following cut (4.53) is obtained

θ + 372y3 + 31y6 ≥ 427

with a sub-problem solution value of 401.0120. Although more cuts are needed for the first

approach, an objective value of 319.666 is obtained while in the second one we obtain a value

of 280. These values correspond to the relaxation bound of (F2) and (F1), respectively. The

following section shows how to strengthen these different cuts.

4.5.3 Lifting procedure

In the PCP, if a lower bound LB of the optimal radius is known, all distances that are lower than
LB can be replaced by LB. This is presented and exploited in the lifting procedure proposed by
Gaar and Sinnl (2022). Consequently, formulation (F5′) can be strengthened as follows.

(F5′)



min θ

s.t. θ ≥ Dk −
∑

j:dij<Dk

(Dk −max{dij , LB})yj i ∈ N, k ∈ K : Dk > LB

θ ≥ LB∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

(4.56)

(4.57)

Gaar and Sinnl (2022) update the lower bound LB with the value of the master problem solution

at each iteration of the cut separation step in a branch-and-cut approach. We can also use this

procedure to strengthen our Benders cuts (4.52) as follows:

θ ≥ Dk̃ −
k̃∑

k=1
(max{Dk, LB} −max{Dk−1, LB})(

∑
j:di∗

(k)j<max{Dk, LB}
yj) (4.58)
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Similarly, the lifted version of cuts (4.53) is:

θ ≥Dk̃ −
∑

j:di∗
(k̃)

j<Dk̃

(Dk̃ −max{di∗
(k̃)

j , LB})ȳj (4.59)

In order to illustrate the impact of the lifting on the Benders decomposition, we now consider them

in a Benders decomposition with an integer y on instance (4.55) with strengthened cuts (4.58)

we obtain:

1. i∗
(k∈{1,...,2}) = 1, i∗

(k∈{3,...,k̃=22}) = 4, LB = 0 : θ + 376y(3) + 334y(5) ≥ 656

2. i∗
(k∈{1,...,2}) = 1, i∗

(k∈{3,...,k̃=12}) = 2, LB = D0 = 55 : θ + 195y(0) + 105y(4) ≥ 397

3. i∗
(k∈{2,...,k̃=19}) = 1, LB = D2 = 202 : θ + 324y(1) + 127y(2) + 143y(4) ≥ 526

4. i∗
(k∈{5,...,k̃=15}) = 3, LB = D5 = 280 : θ + 147y(2) + 31y(5) ≥ 427

5. i∗
(k∈{6,...,10}) = 1, i∗

(k∈{11,...,k̃=17}) = 5, LB = D6 = 292 : θ + 65y(0) + 156y(1) ≥ 448

6. i∗
(k∈{11,...,k̃=14}) = 6, LB = D11 = 396 : θ + 8y(2) + 8y(3) ≥ 404

with the strengthened cuts (4.59) are:

1. i∗
(k∈{1,...,k̃=22}) = 4, LB = 0 : θ + 376y(3) + 334y(5) ≥ 656

2. i∗
(k∈{1,...,k̃=12}) = 2, LB = D0 = 55 : θ + 241y(0) + 105y(4) ≥ 397

3. i∗
(k∈{1,...,k̃=19}) = 1, LB = D1 = 156 : θ + 324y(1) + 127y(2) + 143y(4) ≥ 526

4. i∗
(k∈{5,...,k̃=15}) = 3, LB = D5 = 280 : θ + 147y(2) + 31y(5) ≥ 427

5. i∗
(k∈{6,...,k̃=17}) = 5, LB = D6 = 292 : θ + 98y(0) + 156y(1) ≥ 448

6. i∗
(k∈{11,...,k̃=14}) = 6, LB = D11 = 396 : θ + 8y(2) + 8y(3) ≥ 404

We see how the LB value increases to 396 in both cases. This value corresponds to LB∗ introduced

in Elloumi et al. (2004) and also presented in Gaar and Sinnl (2022) as the best known lower

bound for the (PCP ). Note that as LB increases, the coefficients of the variables yj in the cuts

decrease. The strengthening of cuts (4.52) enables to reduce by one the number of iterations.

This lifting procedure can also be used for fractional solutions, the values of 361 and 350 are

obtained as relaxations bound of the master problem for both approaches instead of 319,666 and

280, respectively. In general, this procedure considerably reduces the number of iterations and

thus the total computation time.
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4.5.4 Separation algorithms

In the following, we present our algorithms to obtain the different Benders cuts introduced

previously. Algorithm 6 presents our separation algorithm for the strengthened cuts (4.58) and

Algorithm 7 for the strengthened cuts (4.59). Moreover, Algorithm 8 presents how to separate

one strengthened Benders cut (4.59) for each client i ∈ N .

In Algorithm 6, for each value of k from the distance index kLB of the lower bound LB = D(kLB),

the value βk = max
i∈N

(
1 −

∑
j:dij<Dk

ȳj
)

and an associated client i∗
(k) are calculated (Steps 3 to 8).

Then, we sequentially compute the sub-problem objective value θ(SP ) and construct the

corresponding Benders cut θ ≥ w(y) (Steps 9 to 17). If the cut is violated by the solution of the

master problem (i.e., θ(SP ) > LB), then the cut is added to the (MP ) (Step 18 to 19).

Algorithm 6: Separation algorithm for a lifted single cut (4.58)
input :

• Instance data
(
N, M, K, distances D0, ..., DK and dij for each i ∈ {1...N}, j ∈ {1...M}

)
• Current (MP ) solution ȳ and a lower bound (LB, kLB)

output:
• k̃ index and the sub-problem objective value θ(SP )

1 θ(SP ) ← LB
2 for k ∈ {kLB + 1, ...,K} do
3 βk ← 0 // Compute i∗

(k) and the βk = max
i∈N

(
1−

∑
j:dij<Dk

ȳj
)

4 for i ∈ N do
5 βik ← 1−

∑
j:dij<Dk

yj

6 if βik > βk then
7 βk ← βik

8 i∗
(k) ← i

9 if βk > 0 then
10 k̃ ← k // Compute θ(SP ) and generate the cut θ ≥ w(y)
11 vk

i ← max{Dk, LB} −max{Dk−1, LB}
12 θ(SP ) ← θ(SP ) + βkvk

i

13 for j ∈M do
14 if di∗

(k)j < max{Dk, LB} then
15 w(y)← w(y) + vk

i yj

16 else
17 break

18 if θ(SP ) > LB then
19 Add θ ≥ Dk̃ − w(y) to (MP)
20 return (k̃, θ(SP ))



Chapter 4. New Benders decomposition and Clustering algorithm for the p-Center
Problem 86

In Algorithm 7, for each client i ∈ N, we compute the value βik = max
(
0, (1 −

∑
j:dij<Dk

ȳj)
)

for

k ∈ K calculating the client allocation distance θi (Step 3 to 10). We then update the sub-problem

objective value θ(SP ) and the client i∗
k̃

(Steps 11 to 13). If the cut is violated by the solution of

the master problem, then the Benders cut associated to i∗
k̃

is added to the (MP ) (Step 14 to 15).

Algorithm 7: Separation algorithm for a lifted single cut (4.59)
input :

• Instance data
(
N, M, K, distances D0, ..., DK and dij for each i ∈ {1...N}, j ∈ {1...M}

)
• Current (MP ) solution ȳ and a lower bound (LB, kLB)

output:
• k̃ index, client i∗

(k̃) index and the sub-problem objective value θ(SP )

1 θ(SP ) ← LB
2 for i ∈ N do
3 θi ← LB
4 βik ← 1
5 k = kLB

6 while βik > 0 do
7 k ← k + 1
8 βik ← βik −

∑
j:dij=Dk−1

ȳj

9 θi ← θi + (Dk −Dk−1) max(0, βik)
10 k̃ ← k

11 if θi > θ(SP ) then
12 θ(SP ) ← θi

13 i∗
k̃
← i

14 if θ(SP ) > LB then
15 Add θ ≥ Dk̃ −

∑
j:di∗

(k̃)
j<Dk̃

(Dk̃ −max{di∗
(k̃)

j , LB})yj to (MP)

16 return (k̃, θ(SP ))
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Algorithm 8, is similar to Algorithm 7, we compute the value βik = max
(
0, (1 −

∑
j:dij<Dk

ȳj)
)

for each client i ∈ N and k ∈ K (Steps 3 to 12). Nevertheless, we evaluate directly if the client

allocation distance θi is greater than LB. If it is the case, the corresponding Benders cut for the

client i is added to the master problem and the sub-problem objective value θ(SP ) is updated

(Steps 14 to 16).

Algorithm 8: Separation algorithm with multi-cut approach for the lifted cuts (4.59)
input :

• Instance data
(
N, M, K, distances D0, ..., DK and dij for each i ∈ {1...N}, j ∈ {1...M}

)
• Current (MP ) solution ȳ and a lower bound (LB, kLB)

output:
• k̃ index and the sub-problem objective value θ(SP )

1 θ(SP ) ← 0
2 for i ∈ N do
3 θi ← LB
4 βik ← 1
5 k = kLB

6 while βik > 0 do
7 k ← k + 1
8 βik ← βik −

∑
j:dij=Dk−1

ȳj

9 θi ← θi + (Dk −Dk−1) max(0, βik)
10 if (βik > 0) then
11 θi ← θi + (Dk −Dk−1)βik

12 k̃ ← k

13 if θi > LB then
14 Add θ ≥ Dk̃ −

∑
j:dij<Dk̃

(Dk̃ −max{dij , LB})yj to (MP)

15 if θi > θ(SP ) then
16 θ(SP ) ← θi

17 return (k̃, θ(SP ))
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4.6 Clustering decomposition algorithm

We now propose a new exact solution method that takes advantage of the specific characteristics

of the (PCP ). As exploited by both Contardo et al. (2019) and Gaar and Sinnl (2022), the (PCP )

can be solved by considering a subset of clients, and increasing this subset until the optimality is

reached.

4.6.1 Clustering Procedure

The main idea of our clustering procedure is to efficiently solve the (PCP ) by considering only

the representatives of a set of the clusters of a partition of the clients. Once a solution of (PCP )

is obtained, we check if it is optimal for the initial set of clients i ∈ N. If not, the number of

clusters considered is increased. To that end, we remove relevant clients from the clusters, each

of them becoming a new cluster of size one.

Figure 4.2a shows the instance of 40 nodes considered in Chapter 1 with a partition of the

clients into 8 clusters in which the representatives are marked as stars. Applying our algorithm,

clients are sequentially removed from these clusters until the partition in Figure 4.2b is obtained.

Consequently, only considering the associated representatives is sufficient to obtain the optimal

solution presented in Figure 4.2c.

(a) Initial set of clusters (b) Final set of clusters

(c) 6-center solution with clusters

Figure 4.2: Illustration of our clustering algorithm
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More formally, let C = {C1, ..., CT } be the partition of the clients into T clusters and let rt be

the representative of cluster Ct. Let yC be the set of sites opened in an optimal solution of the

(PCP ) on the set of representatives I = {rt}Tt=1 and let vC be its objective value. Indeed, for

each solution of a (PCP ), a lower and an upper bound can be identified. The value vC is a lower

bound of the original problem since considering a subset of clients can only reduce the objective

value. Moreover, the solution yr can be evaluated on all the clients i ∈ N, thus providing an

upper bound.

To significantly reduce the computation time, we extend the notion of dominated sites introduced

in Church (1984).

Definition 4.6.1. A site j1 ∈M is dominated by another site j2 ∈M if dij1 ≥ dij2 for all clients

i ∈ I ⊂ N.

Proposition 4.6.1. There necessarily exists an optimal solution in which the opened sites are

all non dominated.

Proof. If a site j1 dominated by j2 is opened, then j1 can be replaced by j2 without deteriorating

the value of the solution. □

Algorithm 9 outlines the general structure of our algorithm. To obtain an initial set of clusters

(Step 1), we consider the well-known clustering heuristic K-means. It aims to minimize the sum

of squared distances between data points and their designated cluster centers. The algorithm

begins by randomly placing cluster centers, then assigning data points based on their proximity

to these centers. After that, the centers are recalculated according to the assigned points, and

the process is repeated until the stabilization of centers is achieved. The algorithm is run from

different initializations and the best solution obtained is kept. K-means requires specifying the

number of clusters beforehand. We consider p + 2 as the value of K.

For each cluster Ct, the client whose coordinates are the closest to the barycenter of all clients

in the cluster is selected as the representative rt. The advantage of this approach is that we do

not need to compute the distances between all clients and all sites which would be prohibitive for

large instances. Instead, we only compute the distances between the cluster representatives and

the sites (Steps 2 and 3), and then identify the non-dominated sites (Step 4).

To improve the efficiency of the algorithm, we consider a two stage implementation. In the

first stage, the linear relaxation of (PCP ) is solved (Steps 8 to 12) while in the second stage

we solve the integer (PCP ). More precisely, in the first stage, a fractional solution yc with an

objective value of LB is obtained (Step 8). From yc, we obtain an integer solution yi by opening

the sites associated with the p highest components of yc (Step 9). To obtain more interesting
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integer solutions, we apply the local search heuristic from Contardo et al. (2019) to solution yi

(Step 10 and 13). This enables to find a set of solutions S that cover within the same radius

LB more non-representative clients and can potentially improve the upper bound UB. For each

solution in S, we then try to identify non-representative clients whose allocation distance is greater

than UB to create new clusters (Steps 11 and 14). This procedure for updating the clusters is

summarized in Algorithm 10.

Algorithm 9: Clustering decomposition algorithm for (PCP )
input :

• Instance data
(
N, M, p

)
• A lower bound LB and an upper bound UB

output:
• An optimal (PCP ) solution yUB and its value UB

1 Create the initial clusters C = {C1, ..., CT } and a set I = {rt}Tt=1 of their representatives
2 Compute the distances drtj between all representatives rt ∈ I and all the sites j ∈M

3 Compute the ordered distances D0, ..., DKC between representatives I and all sites in M

4 Identify the set J of non-dominated sites for the representatives I

5 (LB, UB)← (−∞, +∞)
6 while LB < UB do
7 while the size of |C| increases do
8 (yc, LB)← SolveContinousPCP (I, J) // First stage
9 (yi, θ)← getFeasibleSolution(yc)

10 S ← findAlternativeSolutions(yi, θ)
11 (C, I, J, UB)← updateClusters(C, I, J, θ, S, UB)

12 (yi, θ, LB)← SolveIntegerPCP (I, J) // Second stage
13 S ← findAlternativeSolutions(yi, θ)
14 (C, I, J, UB)← updateClusters(C, I, J, θ, S, UB)

15 return yUB, UB
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The clients in each cluster Ct are divided into four quadrants depending on whether they are

located above, under, on the left or on the right of their representative rt. For each solution

ys ∈ S and each quadrant we remove from the cluster the client furthest from rt that is not

covered at distance UB by ys. The use of quadrants enables to both limit the number of new

clusters created and to add ones which positions are as diverse as possible. At this step, the

optimal radius over all clients i ∈ N is also computed and the distances and non-dominated sites

are updated.

Algorithm 10: updateClusters(C, I, J, θ, S, UB)

1 for ys ∈ S do

2 for Ct ∈ C do

3 for quadrants of Ct do

4 for i ∈ Ct in decreasing order of distance to rt do

5 if ∃j ∈ ys such that dij > θ then

6 C← C∪ {i}, I ← I ∪ {i} // Update of clusters and representatives sets

7 break // Only 1 client removed form the cluster per quadrant

8 θs ← radius of solution ys over all clients i ∈ N

9 if θs < UB then

10 UB ← θs

11 if UB has been updated then

12 Update the distances drtj , D0, ..., DKC , and the non-dominated sites J .

4.6.2 Solving the corresponding (PCP)

Algorithm 9 requires the solution of continuous and integer (PCP ) (Steps 8 and 12) associated

with the set of representatives I and non-dominated sites J . In the computational experiments

(Section 4.7), we have considered two approaches. The first one is based on our Benders

decomposition presented in Section 4.5. The second one is based on a binary search of an

associated set cover problem from Elloumi et al. (2004) and Contardo et al. (2019) previously

described in Section 4.4.3. This latter approach also inspired the two stages of our Algorithm 9

and is also considered in Contardo et al. (2019).
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4.6.3 Rounding the distances

The solution time of the (PCP ) generally significantly depends on K, the number of distinct

distances between the clients and the sites. To improve the performances, we propose the iterative

Algorithm 11 in which the distances are rounded down less and less coarsely until an optimal

solution is obtained.

Algorithm 11: solveByModuloClusters()
input :

• Instance data
(
N, M, p

)
• A lower bound LB and an upper bound UB

output:

• An optimal (PCP ) solution y and its value UB

1 C← Partition of the clients

2 α← Average number of digits in the distances between sites and representatives

3 while α ≥ 0 do

4 (LB, y,C)← Use Algorithm 9 to solve the (PCP ) in which each distance dij is

replaced by 10α⌊ dij

10α ⌋ and C is used as the initial partition

5 θ ← Radius of solution y without rounding the distances

6 UB ← min(UB, θ)

7 α← α− 1

8 return (y, UB)

Note that since all the distances are rounded down at Step 4, the value LB obtained constitute a

lower bound on the optimal solution. Moreover, the evaluation of the solution on all clients with

the original distances provides an upper bound of at most LB +10α (Steps 5 and 6). This enables

to further reduce the number of distinct distances considered at the next iteration of Step 4.

Finally, since the clients removed from their cluster at a given iteration are likely to be relevant

for the subsequent iterations we only cluster the clients once at the beginning of Algorithm 11.

The same partition C is then both used as the initial partition and updated within Algorithm 9

(Step 4).
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4.7 Computational experiments

In this section we present the experimental results of the Benders decomposition and of the

clustering algorithm. Our study was carried out on an Intel XEON W-2145 processor 3,7 GHz,

with 16 threads, but only 1 was used, and 256 GB of RAM. IBM ILOG CPLEX 20.1 was used

as MILP solver for all the methods. Particularly, the Benders decomposition method presented

in Section 4.5 was implemented in C++ while the clustering and rounding methods presented in

Section 4.6 were implemented in Julia.

4.7.1 Second Benders decomposition performance

As the p-median problem in Section 3.3.5, we consider a two-phase Benders decomposition

implementation. In the first phase, the master problem is relaxed, and in the second one, the

integrality of variables of the master problem are restored and it is solved in a branch-and-cut

framework. To illustrate the impact of the different Benders cuts, we have noted each of the

separation approaches as follows:

• sck: separation of a single cut involving different i∗
(k) indexes depending on k (i.e., use of

Algorithm 6 with the non-lifted inequalities (4.52)).

• sckL: separation of a lifted single cut involving different i∗
(k) indexes depending on k (i.e.,

use of Algorithm 6 with the lifted inequalities (4.58)).

• sck̃: separation of a single cut involving only the index i∗
(k̃) (i.e., use of Algorithm 7 with

the non-lifted inequalities (4.53)).

• sck̃L: separation of a lifted single cut involving only the index i∗
(k̃) (i.e., use of Algorithm 7

with the lifted inequalities (4.59)).

• mck̃ : separation of a cut involving an index i∗
(k̃) for each client i ∈ N (i.e., use of Algorithm 8

with the non-lifted inequalities (4.53).

• mck̃L: separation of a lifted cut involving an index i∗
(k̃) for each client i ∈ N (i.e., use of

Algorithm 8 with the lifted inequalities (4.59)).

Table 4.3 presents the results obtained in five ORLIB instances. For both phases, we present the

optimality gap at the end of the phase to the best feasible solution (gap), the number of iterations

(iters), the number of cuts added (cuts) and the cpu time (t[s]). For the first phase, we present

the corresponding lower bound (LB), while for the second phase we present the upper bound

(UB). A time limit (TL3) of 500 seconds has been considered. The last column shows the total

cpu time of both phases.
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Firstly, we can note the great effect of the lifting procedure of Gaar and Sinnl (2022) adapted

to our Benders decomposition, which allows to increase the lower bounds in the first phase,

thus reducing the iterations and cuts on both phases in most instances for the three approaches.

Although Algorithm 6 leads to higher LB, it is less efficient in terms of computational time. This

approach without the lifting cannot solve to optimality the instances within the time limit. The

same applied to Algorithm 7 even though it is better in most instances. In contrast, the multi-cut

approach of Algorithm 8 is much faster than the others without the lifting. Although this

multi-cut implementation does not present the best total time, this approach in Gaar and Sinnl

(2022) can be much faster for the same instances. Consequently, implementation improvements

are required in Algorithm 6 in order to take better advantage of the strength of its relaxation equal

to that of (F2) as opposed to the other which relaxation is equal to that of (F1), as discussed in

the Section 4.5.2.

Instance Algorithm Phase 1 Phase 2 Total
time[s]name N = M p LB gap iters cuts t[s] UB gap iters cuts t[s]

pmed03 100 10 sck 81 34% 1260 1260 19.96 96 8% 73 73 TL3 TL3
sck̃ 62 63% 99 99 0.26 93 0% 6973 6973 5.70 5.96
mck̃ 62 95% 7 247 0.02 93 0% 40 1065 2.41 2.43
sckL 93 2% 651 651 5.07 93 0% 1 1 0.12 5.19
sck̃L 86 20% 109 109 0.12 93 0% 62 62 0.43 0.54
mck̃L 46 168% 2 90 0.01 93 0% 32 588 0.60 0.61

pmed06 200 5 sck 75 22% 669 669 11.20 84 2% 90 90 TL3 TL3
sck̃ 63 45% 71 71 0.21 84 0% 5670 5670 16.14 16.36
mck̃ 63 53% 5 324 0.03 84 0% 5 285 1.16 1.19
sckL 82 7% 161 161 0.40 84 0% 2 2 7.07 7.47
sck̃L 79 15% 72 72 0.07 84 0% 11 11 0.34 0.41
mck̃L 56 72% 2 195 0.02 84 0% 30 529 1.13 1.15

pmed11 300 5 sck 53 15% 379 379 4.75 59 2% 105 105 TL3 TL3
sck̃ 46 33% 47 47 0.12 59 0% 5074 5074 6.45 6.56
mck̃ 46 44% 5 412 0.04 59 0% 8 690 1.68 1.72
sckL 58 3% 101 101 0.20 59 0% 3 3 0.60 0.80
sck̃L 56 7% 60 60 0.05 59 0% 121 121 0.23 0.28
mck̃L 41 62% 2 295 0.02 59 0% 16 246 1.76 1.79

pmed22 500 10 sck 34 23% 1004 1004 39.93 39 10% 89 89 TL3 TL3
sck̃ 29 44% 111 111 0.56 39 12% 3530 3530 TL3 TL3
mck̃ 29 53% 4 675 0.06 39 7% 44 2513 TL3 TL3
sckL 37 5% 399 399 10.15 38 0% 16 16 128.09 138.24
sck̃L 35 17% 102 102 0.18 38 0% 89 89 27.55 27.73
mck̃L 26 66% 2 490 0.03 38 0% 29 664 31.81 31.84

pmed26 600 5 sck 34 14% 334 334 5.83 38 4% 15 15 TL3 TL3
sck̃ 30 36% 60 60 0.23 38 0% 3296 3296 113.42 113.65
mck̃ 30 42% 4 704 0.09 38 0% 15 835 246.68 246.77
sckL 37 3% 112 112 0.32 38 0% 6 6 9.49 9.81
sck̃L 36 6% 54 54 0.08 38 0% 168 168 0.52 0.60
mck̃L 28 56% 2 595 0.07 38 0% 16 179 7.71 7.78

Table 4.3: Results on ORLIB instance of the performance between Benders decompositions according to the cut
separation approach. TL3=500s.
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4.7.2 Clustering performance

Different methods can be considered to solve the (PCP ) encountered in our clustering method

presented in Algorithm 10. The binary search algorithm from Elloumi et al. (2004), while not

being the most efficient to solve large (PCP ) problems by itself, appeared to be the most efficient

within our clustering approach. Indeed, this approach provided better results than when our

clustering algorithms was combined with the branch-and-cut algorithm from Gaar and Sinnl

(2022). Consequently, in the following, all the (PCP ) problems of our clustering approach are

solved using the binary search algorithm.

To enable a fair comparison, we were able to run the methods from Gaar and Sinnl (2022) and

Contardo et al. (2019) with CPLEX on the same computer as for our clustering algorithm. In

particular, the code of Gaar and Sinnl (2022) was provided to us as an executable program with

a defined time limit of 1800 seconds (TL4). Therefore, we have set the same time limit for the

two other methods. The results are summarized in the Tables 4.4 and 4.5. We present the lower

bound (LB), the value (UB) of the best solution found (in bold if it is optimal), the relative gap

between these bound (gap), and the cpu-time in seconds (t[s]).

Our method outperforms Gaar and Sinnl (2022) and Contardo et al. (2019) on most TSP instances

in Table 4.4, only Gaar and Sinnl (2022) have better solution times for small values of p. On

the other hand, Contardo et al. (2019) outperform Gaar and Sinnl (2022) in certain instances, as

already presented Gaar and Sinnl (2022). For large TSP instances in Table 4.5, both methods

can be faster than us for small values of p. However, when the time limit is reached, better

optimality gaps are obtained in most instances. The scalability of our method is based on

the iterative rounding of the distances which could generate larger optimality gap in the first

iterations. Consequently, our method could obtain better comparison results with a longer time

limit.
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Instance UB LB gap t[s]
name p Clus. Gaar Cont. Clus. Gaar Cont. Clus. Gaar Cont. Clus. Gaar Cont.
fl1400 2 1193 1193 1193 1193 1193 1193 0% 0% 0% 0.1 0.1 5.7

3 909 909 909 909 909 909 0% 0% 0% 0.1 0.1 0.5
5 662 662 662 662 662 662 0% 0% 0% 0.1 0.1 0.6
10 389 389 389 389 389 389 0% 0% 0% 0.1 0.1 0.8
15 312 312 312 312 312 312 0% 0% 0% 0.2 0.1 0.9
20 246 246 246 246 246 246 0% 0% 0% 0.2 0.2 1.5
50 87 87 87 87 87 87 0% 0% 0% 0.4 0.3 3.7

u1817 2 1061 1061 1061 1061 1061 1061 0% 0% 0% 0.2 0.1 1.2
3 895 895 895 895 895 895 0% 0% 0% 0.2 0.1 0.6
5 715 715 715 715 715 715 0% 0% 0% 0.2 0.7 2.8
10 458 458 458 458 458 458 0% 0% 0% 4 20 19
15 359 359 359 359 359 359 0% 0% 0% 13 837 110
20 309 310 309 309 306 309 0% 1% 0% 92 TL4 916
50 185 198 203 185 180 180 0% 10% 13% 1001 TL4 TL4

d2103 2 1787 1787 1787 1787 1787 1787 0% 0% 0% 0.4 0.1 0.9
3 1420 1420 1420 1420 1420 1420 0% 0% 0% 0.2 0.1 1.3
5 1032 1032 1032 1032 1032 1032 0% 0% 0% 0.2 0.3 1.6
10 668 668 668 668 668 668 0% 0% 0% 1 4 8
15 532 532 532 532 528 532 0% 1% 0% 12 TL4 54
20 434 434 434 434 434 434 0% 0% 0% 15 20 50
50 254 257 277 254 243 243 0% 6% 14% 556 TL4 TL4

fl3795 2 1147 1147 1147 1147 1147 1147 0% 0% 0% 0.1 0.1 0.5
3 938 938 938 938 938 938 0% 0% 0% 0.3 0.2 0.7
5 587 587 587 587 587 587 0% 0% 0% 0.3 0.4 1.0
10 413 413 413 413 413 413 0% 0% 0% 0.5 0.8 2.5
15 312 312 312 312 312 312 0% 0% 0% 0.6 0.5 3.6
20 269 269 269 269 269 269 0% 0% 0% 0.9 1.5 7.1
50 101 101 101 101 101 101 0% 0% 0% 3 4 37

usa13509 2 175,750 175,750 175,750 175,750 175,750 175,750 0% 0% 0% 1 1 8
3 134,489 134,489 134,489 134,489 134,489 134,489 0% 0% 0% 2 1 3
5 103,671 103,671 103,671 103,671 103,671 103,671 0% 0% 0% 3 4 14
10 67,075 67,075 67,075 67,075 67,075 67,075 0% 0% 0% 26 185 133
15 52,178 58,306 56,372 52,178 51,484 52,095 0% 13% 8% 165 TL4 TL4
20 44,994 55,373 55,375 44,500 43,724 43,506 1% 27% 27% TL4 TL4 TL4
50 30,000 35,363 29,770 20,000 25,424 24,282 50% 39% 23% TL4 TL4 TL4

sw24978 2 4960 4960 4960 4960 4960 4960 0% 0% 0% 4 1 4
3 4120 4120 4120 4120 4120 4120 0% 0% 0% 5 2 4
5 3022 3022 3022 3022 3022 3022 0% 0% 0% 6 6 13
10 2061 2061 2061 2061 2061 2061 0% 0% 0% 19 50 96
15 1637 1747 1637 1637 1629 1637 0% 7% 0% 250 TL4 655
20 1421 1683 1471 1421 1406 1409 0% 20% 4% 1135 TL4 TL4
50 998 1114 1026 800 812 767 25% 37% 34% TL4 TL4 TL4

ch71009 2 19,988 19,988 19,988 19,988 19,988 19,988 0% 0% 0% 29 3 6
3 13,292 13,292 13,292 13,292 13,292 13,292 0% 0% 0% 27 8 17
5 10,944 10,944 10,944 10,944 10,944 10,944 0% 0% 0% 42 110 100
10 7183 7183 7183 7183 7183 7183 0% 0% 0% 176 1180 744
15 5699 6099 6091 5650 5592 5588 1% 9% 9% TL4 TL4 TL4
20 5000 6016 5223 4000 4678 4613 25% 29% 13% TL4 TL4 TL4
50 3000 3740 3936 2000 2653 2441 50% 41% 61% TL4 TL4 TL4

Table 4.4: Results in TSP instances of the performance between the algorithms based on the clustering approach.
TL4=1800s.



97 4.7. Computational experiments

Instance UB LB gap t[s]
name p Clus. Gaar Cont. Clus. Gaar Cont. Clus. Gaar Cont. Clus. Gaar Cont.

pla85900 2 436,008 436,008 436,008 436,008 436,008 436,008 0% 0% 0% 41.3 11.7 40.9
3 399,677 399,677 399,677 399,677 399,677 399,677 0% 0% 0% 56.8 67.0 267.7
5 269,544 269,544 287,961 269,544 269,544 268308 0% 0% 7% 123 631 TL4
10 180,496 201,814 197,009 180,496 177,841 173,506 0% 13% 14% 622 TL4 TL4
15 160,000 178,702 179,921 140,000 138,323 132,202 14% 29% 36% TL4 TL4 TL4
20 130,000 163,483 150,621 120,000 116,355 109,026 8% 41% 38% TL4 TL4 TL4

sra104815 2 908 908 908 908 908 908 0% 0% 0% 37 8 24
3 688 688 688 688 688 688 0% 0% 0% 48 15 46
5 508 508 508 508 508 508 0% 0% 0% 64 61 143
10 354 410 384 354 349 352 0% 17% 9% 575 TL4 TL4
15 277 351 312 277 274 274 0% 29% 14% 1645 TL4 TL4
20 240 293 272 230 229 225 4% 28% 21% TL4 TL4 TL4

usa115475 2 17,745 17,745 17,745 17,745 17,745 17,745 0% 0% 0% 74 6 16
3 13,530 13,530 13,530 13,530 13,530 13,530 0% 0% 0% 82 10 29
5 10,414 10,414 10,414 10,414 10,414 10,414 0% 0% 0% 172 125 301
10 6736 6811 6824 6736 6726 6735 0% 1% 1% 459 TL4 TL4
15 5600 6363 5681 5200 5140 5044 8% 24% 13% TL4 TL4 TL4
20 4998 5639 5223 4000 4275 4058 25% 32% 29% TL4 TL4 TL4

ara238025 2 1484 1484 1484 1484 1484 1484 0% 0% 0% 187 23 52
3 1166 1166 1166 1166 1166 1166 0% 0% 0% 193 31 72
5 855 855 855 855 855 855 0% 0% 0% 443 178 378
10 552 561 569 552 550 549 0% 2% 4% 1491 1843 1835
15 499 508 474 410 435 423 22% 17% 12% TL4 TL4 TL4
20 400 479 450 300 360 348 33% 33% 29% TL4 TL4 TL4

lra498378 2 5888 5888 5888 5888 5888 5888 0% 0% 0% 1099 104 195
3 4995 4995 4995 4995 4995 4995 0% 0% 0% 847 171 234
5 3259 3259 3259 3259 3259 3259 0% 0% 0% 1439 317 785
10 2299 2315 2362 2200 2199 2119 5% 5% 11% TL4 TL4 TL4
15 1998 2078 2076 1000 1682 1592 100% 24% 30% TL4 TL4 TL4
20 1500 1714 1761 1400 1353 1216 7% 27% 45% TL4 TL4 TL4

lrb744710 2 1950 1930 1930 1900 1930 1930 3% 0% 0% TL4 78 80
3 1702 1702 1702 1702 1702 1702 0% 0% 0% 1780 189 298
5 1199 1170 1175 1100 1170 1168 9% 0% 1% TL4 1790 TL4
10 800 916 980 700 760 741 14% 21% 32% TL4 TL4 TL4
15 700 697 762 600 602 558 17% 14% 37% TL4 TL4 TL4
20 600 638 647 500 493 451 20% 29% 43% TL4 TL4 TL4

Table 4.5: Results in large TSP instances of the performance between the algorithms based on the clustering
approach. TL4=1800s.
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4.8 Conclusions

The five main (PCP ) formulations lead to performances that can vary significantly depending on

the solver parameters, such as the presolve. Among them, formulations (F4) and (F2) appear to

be the most efficient. However, (F2) performs better than (F4) when the presolve is deactivated,

as it has fewer redundant constraints.

Two Benders decompositions have been studied for formulation (F2) depending on the set of

variables to be relaxed. When the decision variables associated with the location of the facilities

are relaxed, we obtain the set cover problem as primal sub-problems and the maximal stable

set problem as dual sub-problems. This highlights a close relationship with one of the classical

exact solution methods of (PCP ), in which set cover sub-problems are also considered within in

a binary search. Since the master problem is easy to solve, the Benders decomposition can be

seen as a linear search on the distances. Indeed, for each evaluated distance, we check if there

is a feasible solution of p sites and we go to the next distance at the next iteration. However,

this implementation has no better results than this classical binary search. On the other hand,

when the variables associated with the allocation of the clients to the open facilities are relaxed,

the sub-problem is easy to solve. We show that the decomposition on (F2) allows to have new

Benders cuts that are stronger than the previously known ones. We also highlight the relation

with the Benders decomposition from formulation (F1) in Gaar and Sinnl (2022). All approaches

have been tested, and although our Benders decomposition from (F2) allows us to obtain better

linear relaxation bounds, with our current implementation, it takes more computation time than

the multi-cut approach from (F1) implemented in Gaar and Sinnl (2022).

Finally, an exact method based on a clustering of the clients has been proposed. It solves the

(PCP ) iteratively for a set of representative clients of the clusters that is updated when necessary.

A first stage of the relaxed (PCP ) problem is considered followed by a second stage to solve the

integer (PCP ). Moreover, to reduce the number of distinct distances values, we also consider

an exact iterative distance rounding procedure. All these implementation improvements lead to

competitive results with state-of-the-art methods of Gaar and Sinnl (2022) and Contardo et al.

(2019) on TSP instances.

The main perspective of the Benders Decomposition of (PCP ) on (F2) is to improve our

implementation to take advantage of the strength of the new cuts in terms of lower bound in

contrast to multi-cut approach. Meanwhile, the results of our clustering algorithm suggest that

it can be applied to other discrete location problems or other types of instances. Likewise, to

achieve a good implementation that combines both approaches.



Chapter 5

MILP formulations and exact

algorithms for the robust two-stage

p-center problem

5.1 Introduction

The p-center problem (PCP ) under uncertainty is well studied in the literature (Çalık et al.

(2019b)). This problem arises when parameters, such as demands or distances between the

demand nodes and the available sites, vary across time or when their exact value is uncertain.

In robust optimization uncertainty is generally represented by parameters which can take any

value in an uncertainty set. Each realization of the uncertainty set is called a scenario. The most

classical sets are the box, the ellipsoidal and the budgeted uncertainty sets (see e.g., Ben-Tal et al.

(2009); Bertsimas and Sim (2004); Du and Zhou (2018); Paul and Wang (2019)).

A classical objective function in robust optimization is the regret one have for initial decision

once the uncertainty is revealed. Figure 5.1 illustrates how the optimal solution of a problem can

change with the values of its parameters. In this example, we consider a p-center problem in which

each client has an uncertain demand. The demand value is represented by the size of the circles.

Figure 5.1a represents the value of the initial parameters and the corresponding optimal solution

which consists in opening sites 1 and 2. Once the uncertainty is revealed, the parameters take

the value represented in Figure 5.1b. We can see that this modifies the optimal solution which

is now to open sites 2 and 3. In this context, the regret corresponds to the difference between

the objective values of the two solutions when the parameters take their real values represented

in Figure 5.1b.
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(a) Solution before uncertainty (b) Solution after uncertainty

Figure 5.1: Example of the regret of optimal (RPCP) solutions before and after uncertainty

The incorporation of uncertainty in (PCP ) has important applications in emergency logistics

problems, where a prompt response to the urgent need for relief is required in affected areas

immediately following a disaster (such as earthquakes, tsunamis, landslides, among others). The

consequences of these disasters make it challenging to precisely estimate the demand for relief

materials or the travel times between relief centers and affected locations (Sheu (2007)).

Two approaches can be considered depending on whether the demand node allocations to the

centers are made before (see e.g, Averbakh and Berman (1997), Lu (2013)) or after (see e.g, Du

et al. (2020); Demange et al. (2020)) the uncertainty is revealed. The first case corresponds to

single-stage problems while the second case leads to two-stage problems in which the demand

node allocations are recourse variables. In this context, most of the works have been focused

on the investigation of integer programming modeling and heuristic resolution approaches (see

e.g., Baron et al. (2011); Hasani and Mokhtari (2018); Paul and Wang (2015); Trivedi and Singh

(2017, 2019)).

Contribution

To the best of our knowledge this work is the first one to study the exact solution of the two-stage

robust weighted vertex p-center problem (RPCP2), with p > 1, in which the uncertainty on

the node demands and distances are modeled by box uncertainty sets. We present the robust

reformulation of this problem based on five MILP formulations of the (PCP ) from the literature.
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We prove that a finite subset of scenarios from the infinite box uncertainty set can be considered

without losing optimality. We use this result to propose a column-and-constraint generation

algorithm (C&CG) and a branch-and-cut algorithm (B&C) for the exact solution of (RPCP2).

We highlight how these algorithms can be adapted to the single-stage problem (RPCP1). Finally,

we show their efficiency on randomly generated instances. To illustrate the usefulness of the

proposal, we consider the case study presented in Lu (2013) which is based on an earthquake that

hit central Taiwan in 1999.

The rest of the chapter is organized as follows: Section 5.2 presents the literature review of

the deterministic and robust versions of the (PCP ). Section 5.3 describes the robust two-stage

problem (RPCP2), proves how to reduce the number of considered scenarios, and introduces the

five MILP formulations as well as the (C&CG) and (B&C) algorithms. Section 5.4 presents the

computational results. Finally, conclusions and research perspectives are drawn in Section 5.6.

5.2 Literature review

The p-center problem was introduced by Hakimi (1965), who presented and solved the absolute

1-center problem on a graph. In the absolute p-center problem, the centers can be located either

on the edges or the vertices of the graph. Later, Minieka (1970) extended the problem to the case

p > 1 and proposed a method to restrict the continuous set of candidate centers to a discrete set of

points, without losing optimality. Since then, the problem was commonly referred to as the vertex

p-center problem or directly as the p-center problem. Several formulations, solution methods, and

variants of this problem have been presented. A comprehensive review of the applications and

solution methods of the p-center problem can be found in Çalık et al. (2019b). This section

focuses on the deterministic p-center problem formulations and then on its robust counterparts.

5.2.1 MILP formulations of the deterministic weighted p-center

Let M be the set of available sites, and N be the set of demand nodes. We denote here as tij the

distance (or travel time) between any possible pair of demand node i ∈ N and site j ∈M. Each

demand node i ∈ N faces a demand di and must be allocated to a single center j.

All the deterministic formulations of the p-center problem have already been presented in

Section 4.2.1. These are the classic formulation (F1) of Daskin (1996) with the (x, y) variables,

the alternative one (F2init) of Elloumi et al. (2004) with (y, z) variables, the improvement of

this last one (F2) and the compact one (F3) with (y, r) variables both introduced in Ales and

Elloumi (2018), formulation (F4) presented Calik and Tansel (2013) with the (y, u) variables,
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and formulation (F5) of Gaar and Sinnl (2022) with (y, θ) variables. To model the weighted

vertex p-center, the original parameter of distances dij in these formulations can be replaced

here by the product of demand di and distance tij .

As also mentioned in Section 4.2.1, (F4) is the fastest formulation on average closely followed by

(F2). Nevertheless, as will be seen in Section 5.4 that the best formulations for the deterministic

problem are not necessarily the best for the robust problem.

5.2.2 Uncertainty representation and solution methods

The location of facilities is a long-term decision which takes into account parameters such as

demands or distances between demand nodes and facilities. Since these parameters are likely to

vary, several models have been developed to study facility location problems under uncertainty.

Stochastic optimization and robust optimization are the two main approaches to address

uncertainty. The Section 2.3 presents a general introduction and references to optimization

under uncertainty. Snyder (2006) and Laporte et al. (2019a) present a review of the literature

on stochastic and robust facility location problems.

In robust optimization, box, budgeted, ellipsoidal and discrete uncertainty sets are commonly

considered (see e.g. Ben-Tal et al. (2009); Baron et al. (2011); Du and Zhou (2018); Paul and

Wang (2019, 2015); Snyder (2006)). Since most robust facility location problems are generally

harder to solve than their deterministic counterparts, heuristic approaches have taken precedence

over exact solution methods (Laporte et al. (2019a)). Most robust facility location problems

based on discrete uncertainty sets deal with generalizations of the p-median problem, focusing

exclusively on analytical results or approximated polynomial-time algorithms (see e.g. Serra and

Marianov (1998); Hasani and Mokhtari (2018)).

The presence or absence of recourse variables, the variables which are fixed once the uncertainty

is revealed, has a great influence on the mathematical formulation of the problem. A single-stage

problem can be considered when there is no recourse variables while a two-stage is required

otherwise. Two-stage models are usually very difficult to solve (Ben-Tal et al. (2009)). When the

second stage problem is a linear program, Benders decomposition method can be used to seek

optimal solutions (Bertsimas et al. (2013); Rahmaniani et al. (2017)).

Zeng and Zhao (2013) develop another exact solution method, the column-and-constraint

generation (C&CG) algorithm (also called row-and-column or scenario generation), which has

performed better on different problems including facility location problems (see e.g. An et al.

(2014); Chan et al. (2018)).
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Several robust variants of (PCP ) with either a single stage or two stages have been considered.

For example, Averbakh and Berman (1997) consider the weighted p-center problem on a

transportation network with uncertain node weights. They minimize the regret of the worst-case

scenario and show that the problem can be solved through a number of particular weighted

p-center problems. Averbakh and Berman (2000) consider a box uncertainty set for the weighted

1-center problem on a network with uncertainty node weights and edge lengths. Each uncertain

parameter is assumed to be random with an unknown distribution. They present a polynomial

algorithm to find the robust solution for the problem on a tree. Lu and Sheu (2013) consider

the single-stage weighted vertex p-center with uncertain edge lengths using box uncertainty

sets. They consider the single-stage robust problem (RPCP1), and prove that it is sufficient to

consider a discrete subset of scenarios, and propose a simulated annealing heuristic to solve the

problem. In Lu (2013), they extend this research to the weighted vertex p-center with uncertain

nodal weights and edge lengths using also box uncertainty sets. Du and Zhou (2018) apply a

single-stage approach to a p-center problem based on a multiple allocation strategy (i.e., it is

allowed the allocation of a client to several sites), and three types of symmetric uncertainty sets

over units costs: box uncertainty, ellipsoidal uncertainty, and cardinality-constrained uncertainty,

where a symmetric interval is defined as an interval where the lower and upper bounds are

equidistant from the center. Du et al. (2020) propose a two-stage robust model for a reliable

facility location problem, i.e., when some facilities can be disrupted and the demand nodes can

be reallocated to another available facility. They consider uncertain demand and cost, and

propose three solution methods: a linear reformulation, a Benders dual cutting planes method,

and a column-and-constraint generation method. Demange et al. (2020) introduce the robust

p-center problem under pressure motivated by the context of locating shelters for evacuation in

case of wildfires, where the uncertainty is in the available network connections. They present a

MILP formulation and a decomposition scheme to solve it.

Other robust facility location problems have been studied in the literature, mostly considering

uncertainty in customer demand and/or facility disruption. Their solution methods are carried out

by dualization techniques or column-and-constraint generation algorithms (Nikoofal and Sadjadi

(2010); An et al. (2014); Cheng et al. (2021)). A detailed literature review is presented in Snyder

(2006).

This research focuses on the exact solution of the two-stage weighted vertex p-center problem

(RPCP2), with p > 1, with uncertainty in both nodal weights and edge lengths, as shown in the

last row of Table 5.1. We also show how these algorithms can be adapted to solve the single-stage

problem (RPCP1).
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Allocation
level

Decision
level

Number of
centers Uncertainty Messure of

robustness
Solution
approach

Article Single Multiple Single-stage Two-stage p = 1 p > 1 Distance Demand Centers Regret Worst
Case Value Heuristic Exact

Averbakh and Berman (1997) x x x x x x
Averbakh and Berman (2000) x x x x x x x
Lu and Sheu (2013) x x x x x x
Lu (2013) x x x x x x x
Du and Zhou (2018) x x x x x x
Du et al. (2020) x x x x x x
Demange et al. (2020) x x x x x x
This proposal x x x x x x x

Table 5.1: A summary of related work.

5.3 Robust weighted vertex p-center problem

We first define the (RPCP2). We then prove that it is sufficient to consider a subset of the

infinite scenarios in the box uncertainty set to obtain an optimal solution of the problem. Finally,

the (C&CG) and (B&C) algorithms for the exact solution of both (RPCP2) and (RPCP1) are

presented.

5.3.1 Problem definition

Following Lu (2013), we consider that the node demands and distances can take any value in a

box uncertainty set. More precisely, the demand di of demand node i ∈ N is assumed to be in

[d−
i , d+

i ] where 0 ≤ d−
i ≤ d+

i , while the distance tij between station i ∈ N and site j ∈ M takes

its value in [t−
ij , t+

ij ] where 0 ≤ t−
ij ≤ t+

ij .

Let W ⊂ RN+M×N be the Cartesian product of intervals [d−
i , d+

i ] and [t−
ij , t+

ij ] for each i ∈ N

and j ∈ M. Let Ω = {y ∈ {0, 1}M | ∑
j∈M yj = p} be the set of vectors representing p located

facilities and let Jy = {j ∈ M | yj = 1} be the set of located facilities for vector y ∈ Ω. For a

given scenario w ∈ W let dw
i and tw

ij respectively be the demand of node i ∈ N and the distance

between demand node i and site j ∈M in scenario w.

In (RPCP2), the demand nodes are allocated after the uncertainty is revealed. This corresponds

to a two-stage approach in which the location of centers is fixed at the first stage and the

demand node allocations are the recourse decisions of the second stage. Consequently, the radius

associated with y ∈ Ω when scenario w ∈W occurs is:

Z(w, y) = max
i∈N

{
min
j∈Jy

dw
i tw

ij

}
(5.1)

which represents an optimal allocation of demand nodes in scenario w when sites Jy are located.
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Let y∗(w) ∈ Ω be a vector such that the location of Jy∗(w) leads to an optimal radius for the

deterministic p-center problem in which the uncertain data takes value w ∈ W. We define the

robust deviation of y ∈ Ω for scenario w as:

DEV (w, y) = Z(w, y)− Z(w, y∗(w)) (5.2)

It is a non-negative value corresponding to the increase in radius incurred when locating centers

Jy rather than Jy∗(w) in scenario w. The following lemma allows us to characterize situations

where the deviation is zero.

Lemma 5.3.1. Let y ∈ Ω and let w be a scenario. Let (i, j) ∈ N×Jy be such that Z(w, y) = dw
i tw

ij,

i.e., (i, j) allow to reach the optimal radius Z(w, y). Let j = arg min
j∈Jy∗(w)

tw
ij, i.e., node i is optimally

assigned to site j when sites set Jy∗(w) of solution y∗(w) are opened. It holds that if j ∈ Jy then

DEV (w, y) = 0.

Proof DEV (w, y) ≥ 0 by definition. Suppose DEV (w, y) > 0, i.e., Z(w, y) > Z(w, y∗(w)). As i

is assigned to j for solution y∗(w), Z(w, y∗(w)) ≥ dw
i tw

ij
. Therefore, Z(w, y) = dw

i tw
ij > dw

i tw
ij

and

then tw
ij > tw

ij
. This contradicts the fact that tw

ij ≤ tw
ij

that follows from j ∈ Jy. □

Following Lu (2013), the robustness cost of solution y ∈ Ω corresponds to the maximal possible

robust deviation if sites Jy are located:

RC(y) = max
w∈W

DEV (w, y) (5.3)

We denote by worst-case scenario a scenario which solves (5.3). The (RPCP2) aims to minimize

the regret in the worst-case scenario for all feasible solution y ∈ Ω:

(RPCP2) : min
y∈Ω

RC(y) (5.4)

We now show that it is not necessary to consider the whole uncertainty set W to optimally solve

(RPCP2).

5.3.2 Reducing the number of scenarios

Since a box-uncertainty set contains an infinite number of scenarios for a given solution y ∈ Ω,

the evaluation of the robustness cost (5.3) is a major challenge when solving (RPCP2). We prove

that it is sufficient to consider N scenarios per solution y ∈ Ω to optimally solve (RPCP2), i.e.,

N ·
(M

p

)
scenarios, instead of the pN ·N ·

(M
p

)
scenarios considered in Lu (2013) for (RPCP1).
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Definition 5.3.1. Let y ∈ Ω be a feasible solution and let i ∈ N be any demand node. We define

wi(y) as the following scenario:

• d
ω

i
(y)

i =

 d+
i if i = i

d−
i otherwise

• t
ω

i
(y)

ij =

 t+
ij if i = i and yj = 1

t−
ij otherwise

Hence, in scenario wi(y), node i is at its maximal demand value while the other nodes are at

their minimal demand value. Also, the traveling time of any node-site pair is set to its minimal

value except for node i for which they are maximal. We prove in the following that at least one

of the scenarios in {wi(y)}i∈N leads to a maximal deviation for y ∈ Ω.

Theorem 5.3.1. Let y ∈ Ω be a first-stage solution of (RPCP2). There exists i ∈ N such that

wi(y) is an optimal solution for RC(y).

Proof: Let w0 ∈ W be an optimal solution to RC(y) (i.e., RC(y) = DEV (w0, y)). We built a

sequence of three other optimal scenarios w1, w2, w3 and show that w3 is equal to wi(y) for some

i ∈ N.

Let us consider, for any k ∈ {0, 1, 2, 3}, the (node, site) pair (ik, jk) ∈ N × Jy such that

Z(wk, y) = dwk

ik
twk

ikjk
(i.e., (ik, jk) allow to reach the optimal radius Z(wk, y)).

Scenario w1

Let w1 be a scenario identical to w0 except for dw1
i0 which is equal to d+

i0
. This amounts to

multiplying any weighted travel time from i0 by the same constant
d+

i0
dw0

i0

. This ensures that an

optimal radius in w1 is still obtained for (i0, j0) and that one can set (i1, j1) = (i0, j0). We

demonstrate below that the deviation of w1 is not lower than that of w0.

DEV (w1, y)−DEV (w0, y) = Z(w1, y)− Z(w0, y)−
[
Z(w1, y∗(w1))− Z(w0, y∗(w0))

]
(5.5)

It holds that:

Z(w1, y)− Z(w0, y) = dw1
i1 tw1

i1j1 − dw0
i0 tw0

i0j0 = d+
i0

tw0
i0j0 − dw0

i0 tw0
i0j0 = (d+

i0
− dw0

i0 )tw0
i0j0 (5.6)
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Now, let j̃ = arg min
j∈Jy∗(w0)

tw0
i0j , i.e., node i0 is optimally assigned to site j̃ when sites set Jy∗(w0) of

solution y∗(w0) are opened. The aim is to prove the following inequality:

Z(w1, y∗(w1))− Z(w0, y∗(w0)) ≤ (d+
i0
− dw0

i0 ) tw0

i0j̃
(5.7)

First, Z(w1, y∗(w1)) ≤ Z(w1, y∗(w0)) holds from the definition of y∗(w). Second, let us consider

solution y∗(w0) and its opened sites set Jy∗(w0). In scenario w0, node i0 is assigned to site j̃ at

distance dw0
i0 tw0

i0j̃
. In scenario w1, node i0 is optimally assigned to the same site j̃, at distance d+

i0
tw0

i0j̃
.

All the other nodes are assigned in the same way in w0 and in w1. Therefore, Inequality (5.7) is

satisfied.

From (5.5), (5.6), and (5.7) we deduce the following inequality:

DEV (w1, y)−DEV (w0, y) ≥ (d+
i0
− dw0

i0 )(tw0
i0j0 − tw0

i0j̃
) (5.8)

It remains to prove that tw0
i0j0 − tw0

i0j̃
≥ 0. It comes from the definition of j̃ and Z that

dw0
i0 tw0

i0j̃
≤ Z(w0, y∗(w0)). It also comes from the definition of y∗(w) that Z(w0, y∗(w0)) ≤

Z(w0, y) = dw0
i0 tw0

i0j0 . Consequently, DEV (w1, y) is at least as large as DEV (w0, y), and scenario

w1 is optimal for RC(y).

Scenario w2

Let w2 be a scenario identical to w1 except for tw1
i1j which is equal to t+

i1j for all j ∈ Jy. This ensures

that an optimal radius in w2 is still obtained for (i1, j1) and that one can set (i2, j2) = (i1, j1),

since i1 was already leading to the largest weighted travel time in w1 and some of its travel times

have been increased in w2. Let j = arg min
j∈Jy∗(w1)

tw1
i1j , i.e., node i1 is optimally assigned to site j when

sites set Jy∗(w1) of solution y∗(w1) are opened. Two cases are discussed:

• Case 1: j ∈ Jy, i.e., site j is open in y. In this case, we can deduce from Lemma 5.3.1 that

DEV (w1, y) = 0. As w1 is an optimal scenario for RC(y), we deduce that DEV (w2, y) ≤ 0

and, as deviations are non-negative, DEV (w2, y) = 0. Scenario w2 is also optimal.

• Case 2: j /∈ Jy. Here, solution y∗(w1) is also optimal for scenario w2 since node i1 is

assigned to j ̸∈ Jy when sites Jy∗(w1) are located, and since the only difference between

w1 and w2 is an increase of the travel time between i1 and the sites in Jy. Consequently,

Z(w1, y∗(w1)) = Z(w2, y∗(w2)). Moreover, the increase of travel times leads to Z(w2, y) ≥

Z(w1, y) which ensures that DEV (w2, y) ≥ DEV (w1, y). Therefore, scenario w2 is optimal

for RC(y).
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Scenario w3

Let w3 be a scenario identical to w2 except for dw3
i which is equal to d−

i for all i ∈ N\{i2}

and tw3
ij which is equal to t−

ij for all i ∈ N\{i2} and j ∈ M. This ensures that it is possible to

have (i3, j3) = (i2, j2) since the demand and travel times of i2 are not modified and the others

are reduced. This also ensures that Z(w3, y) = Z(w2, y) and that Z(w3, y∗(w3)) is not greater

than Z(w2, y∗(w2)). Consequently, DEV (w3, y) is not lower than DEV (w2, y) which proves that

wi3(y) is an optimal scenario.

Finally, since i3 = i2 = i1 = i0, it is possible to sum up the changes that were progressively made

on w0 to reach w3, and observe that w3 is precisely wi0(y). Therefore, scenario wi0(y) is optimal

for RC(y). □

Since Ω is finite, Theorem 5.3.1 enables to only consider a finite set of scenarios

W = {wi(y) | y ∈ Ω, i ∈ N} without losing the optimality:

(RPCP2) : min
y∈Ω

{
max
w∈W

DEV (w, y)
}

(5.9)

5.3.3 MILP formulations of the robust weighted vertex p-center problem

We present how the five formulations presented in Section (5.2.1) can be adapted to solve

(RPCP2). Let Z∗
w be the optimal value of the (PCP ) problem when the uncertain parameters

take value w ∈ W (i.e., Z∗
w = Z(w, y∗(w))). Note that in the following formulations, the value

of Z∗
w is assumed to be known for all w ∈ W. Section 5.3.6 presents how these values can be

computed efficiently in the proposed algorithm when required.

The robust formulation based on (F1) uses one set of allocation variables xw
ij for each scenario

w ∈W to allow different demand node allocations depending on the scenario:

(RF1)



min RC

s.t. RC ≥
∑
j∈M

dw
i tw

ijxw
ij − Z∗

w i ∈ N, w ∈W

∑
j∈M

xw
ij = 1 i ∈ N, w ∈W

xw
ij ≤ yj i ∈ N, j ∈M, w ∈W∑

j∈M

yj = p

yj ∈ {0, 1} j ∈M

xw
ij ∈ {0, 1} i ∈ N, j ∈M, w ∈W

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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Constraints (5.11) set a lower bound on the value of the robustness cost (RC) for each scenario.

Objective (5.10) provides a solution with the lowest maximal deviation. This formulation contains

an exponential number of variables and constraints as the size of W is proportional to |Ω|.

Now, to adapt the other formulations to (RPCP2), let Kw be the number of different values

{dw
i tw

ij}i∈N,j∈M and let Kw be the set of indices {1, . . . , Kw} for each scenario w ∈ W . We need

also to sort these values in increasing order and obtain a set of distinct distances Dk
w for k ∈ Kw.

We can also identify the following sub-set of indices for each scenario w ∈ W and each client

i ∈ N:

Kw
i = {k ∈ Kw : ∃ j ∈M such that dij = Dk

w}

Consequently, regarding formulation (F2), considering a set of variables of radius zk
w, we obtain:

(RF2)



min RC

s.t. RC ≥ D1
w +

Kw∑
k=2

(
Dk

w −Dk−1
w

)
zk

w − Z∗
w w ∈W

zk
w +

∑
j:dw

i tw
ij<Dk

w

yj ≥ 1 w ∈W, i ∈ N, k ∈ Kw
i

zk
w ≥ zk+1

w w ∈W, k ∈ Kw \ {Kw}∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

zk
w ∈ {0, 1} w ∈W, k ∈ Kw

(5.15)

(5.16)

(5.17)

(5.18)

Formulation (F3) does not directly provide the value R of the optimal radius but its index r

instead, such that Dr = R. This raises a problem when considering the adaptation of (F3) to

the solution of (RPCP2) as a given index does not necessarily correspond to the same distance

in different scenarios. Consequently, (F3) is first modified so that it provides a distance rather

than its index. Constraints (4.23) are replaced by:

R ≥ Dk(1−
∑

j:ditij<Dk

yj) ∀ i ∈ N, k ∈ Ki (5.19)
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We can now obtain a reformulation of (RPCP2) based on (F3):

(RF3)



min RC

s.t. RC ≥Dk
w(1−

∑
j:dw

i
tw

ij
<Dk

w

yj)− Z∗
w w ∈W, i ∈ N, k ∈ Kw

i

∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

(5.20)

Similarly to (RF2), with the same set of distinct distances Dk
w, (F4) can be adapted to (RPCP2).

(RF4)



min RC

s.t. RC ≥
∑

k∈Kw

Dk
wuk

w − Z∗
w w ∈W

∑
j:dw

i
tw

ij
≤Dk

w

yj ≥
k∑

q=1
uq

w w ∈W, i ∈ N, k ∈ Kw

∑
k∈Kw

uk
w = 1 w ∈W

∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

uk
w ∈ {0, 1} w ∈W, k ∈ Kw

(5.21)

(5.22)

(5.23)

Finally, (F5) can also be directly adapted to (RPCP2).

(RF5)



min RC

s.t. RC ≥dw
i tw

ij −
∑

j′:dw
i

tw
ij′ <dw

i
tw

ij

(dw
i tw

ij − dw
i tw

ij′)yj′ − Z∗
w, w ∈W, i ∈ N, j ∈M

∑
j∈M

yj = p

yj ∈ {0, 1} j ∈M

RC ≥ 0

(5.24)

Note that both (RF3) and (RF5) do not require an exponential number of variables, which is a

significant advantage compared to (RF1), (RF2), and (RF4). However, the five reformulations

have an exponential number of constraints.
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5.3.4 Column-and-constraint generation algorithm

To solve these robust MILP formulations, we propose the column-and-constraint generation

algorithm (C&CG) represented in Algorithm 12 in which (RF ) can be any of the proposed

five robust formulations (RF1), (RF2), (RF3), (RF4), or (RF5) with W initially empty. At

each iteration, we generate a solution (y, RC) which satisfies all the scenarios currently in W by

solving (RF ) (Step 3). If the solution does not satisfy one of the scenarios {wi(y)}i∈N (Step 10),

the most violated scenario is added to W (Step 14). When no violated scenario is found, an

optimal solution is returned. The value of the optimal radius considering a scenario wi(y) can

be calculated by solving a deterministic (PCP ) (Step 7). Note that the radius associated with a

feasible solution y in a scenario wi can be obtained quickly as it only requires to determine the

distance between each demand node and its closest center in Jy (Step 8).

Algorithm 12: column-and-constraint generation algorithm
input :

• Instance data (N, M, p, [d−
i , d+

i ] and [t−
ij , t+

ij ] for each i ∈ N and j ∈M).

• A robust formulation (RF ) for the (PCP ).

output:

• An optimal solution y of (RF ) and its robustness cost RC.

1 RC ← 0, W← ∅, isOptimal ← false

2 while isOptimal = false do

3 (y, RC)← solve (RF ) with scenarios W

4 isOptimal ← true

5 w ← ∅

6 for i ∈ N do

7 Z∗ ← optimal radius of the deterministic (PCP ) for scenario wi(y)

8 Z ← radius for y in scenario wi(y)

9 DEV ← Z − Z∗

10 if DEV > RC then

11 isOptimal ← false

12 RC ← DEV

13 w ← wi(y)

14 W←W ∪ {w}

15 return y and RC
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5.3.5 Branch-and-cut algorithm

The main advantage of (RF3), and (RF5) over (RF1), (RF2), and (RF4) is that no new

variable is required when a scenario is added to W . Consequently, using (RF3) or (RF5), we

can define a branch-and-cut algorithm (B&C) which checks, at each node of the search tree, if

each obtained integer solution (y, RC) satisfies all the scenarios {wi(y)}i∈N. If it does not, the

corresponding violated inequalities are generated and the solution is ignored by the solver. This

can be performed through callbacks which is a feature provided by mixed integer programming

solvers. Consequently, Steps 4 to 14 of Algorithm 12 are performed within a callback. This

modification allows us to only generate a single search tree instead of solving (RF ) from scratch

at each iteration of the while loop.

5.3.6 Solving the deterministic p-center problems

One of the most time consuming steps in these two algorithms is solving the deterministic (PCP )

associated with the current feasible solution y ∈ Ω and scenario wi(y) in order to obtain Z∗
wi(y)

for each i ∈ N (Step 7 in Algorithm 12). Any of the formulations presented in Section 5.2.1 could

be considered to solve these deterministic problems. However, to improve the performances, the

two following improvements are considered.

Reducing the number of deterministic problems solved

For a given i ∈ N, if it is known in advance that a solution y satisfies scenario wi(y)

(i.e., that Z(wi(y), y) − Z∗
wi(y) ≤ RC), the solution of the associated deterministic (PCP ) can

be avoided. In particular, this is the case if it is known a lower bound Z∗i
lb on Z∗

wi(y) such that

Z(wi(y), y) − Z∗i
lb ≤ RC. Indeed, in that case Z(wi(y), y) − Z∗

wi(y) ≤ Z(wi(y), y) − Z∗i
lb ≤ RC

holds. Now, let us consider the scenarios defined as follows.

Definition 5.3.2. Let i ∈ N. We define wi
lb as the following scenario:

• d
wi

lb
i =

 d+
i if i = i

d−
i otherwise

• t
wi

lb
ij = t−

ij ∀j ∈M

The following lemma shows that the optimal value of the deterministic (PCP ) associated to wi
lb

provides a lower bound on Z∗
wi(y).
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Lemma 5.3.2. For any i ∈ N and y ∈ Ω, Z∗
wi

lb
≤ Z∗

wi(y).

Proof:

It is known that Z∗
wi

lb
≤ Z(wi

lb, y∗(wi(y))). Moreover, since the only difference between scenarios

wi(y) and wi
lb is a reduction of travel times Z(wi

lb, y∗(wi(y))) ≤ Z∗
wi(y). □

Note that scenarios {wi
lb}i∈N do not depend on any feasible solution y ∈ Ω and therefore the

N corresponding lower bounds can all be computed in a pre-processing step. This improvement

enables a significant reduction of the solution time.

Binary search

Solving deterministic (PCP ) through MILP solvers is not the most efficient approach. As

mentioned in the previous Chapter 4, the best methods are those of Contardo et al. (2019) and

Gaar and Sinnl (2022). The former initially considers a subset of clients, solves the (PCP )

associated to this subset, and adds new clients until an optimal solution is obtained. The latter

method is based on a branch-and-cut algorithm, considering Benders cuts strengthened with a

lifting procedure, and a specialized separation scheme. Both methods can solve very large-scale

instances. However, these methods are sophisticated enough to do our own implementation.

In order to reach a good compromise between performance and ease of implementation,

the deterministic (PCP ) is solved through a binary search algorithm well known in the

literature (Toregas et al. (1971)) which we have already presented in the Section 4.6.2.

5.3.7 Adaptation to the single-stage problem

In the single-stage problem (RPCP1), both the location of centers and the demand node

allocations are fixed before the uncertainty is revealed. Consequently, allocation variables x are

necessary to compute the radius. Given a feasible solution (x, y), let tw
i be the travel time in

scenario w ∈W between a demand node i ∈ N and its allocated center (i.e., tw
i = tw

ij with j ∈M

the only center such that xij = 1). Thus, the radius of solution (x, y) is max
i∈N

dw
i tw

i and (RPCP1)

can be defined as:

(RPCP1) : min
(x,y)

max
w∈W

{
max
i∈N

dw
i tw

i − Z∗
w

}
(5.25)

where Z∗
w is the optimal solution of the deterministic p-center problem in which the uncertain

parameters take value w.

The (C&CG) and (B&C) algorithms previously presented can be adapted to solve the (RPCP1)

using (RF1). For this purpose, one single set of allocation variables xij must be considered
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which ensures that the demand node allocations are the same regardless of the scenario. These

adaptations are not possible for the (C&CG) and (B&C) algorithms based on the others

formulations. Indeed, in these formulations it is not possible to ensure that the demand node

allocations are the same in all scenarios. Considering only one set of variables zk in (RF2) or uk

in (RF4) would only ensure that the distance index of the radius is the same in each scenario,

not that the demand node allocations are. For the algorithms based on (RF3) or (RF5) the

adaptation seems even less possible as these formulation do not contain scenario variables and

as the demand node allocations are determined implicitly in the corresponding constrains. Note

that for (RPCP1) the finite set of scenarios that a solution must satisfy to ensure its optimality

is different from {wi(y)}i∈N as proved in Theorem 1 of Lu (2013).

5.4 Computational study

To evaluate the efficiency of the proposed (C&CG) and (B&C) algorithms, a case study presented

in Lu (2013) and randomly generated instances are studied. It was not possible to make a direct

comparison with Lu (2013), because the solution values presented in Lu (2013) are not consistent

with the ones obtained by the proposed exact solution approach. This is detailed in Section 5.5.

This study was carried out on an Intel(R) Xeon(R) Gold 6144 processor 3.5 GHz, with 32 threads,

but only 1 was used, and 378 GB of RAM. IBM ILOG CPLEX 20.1 was used as solver. For the

(B&C) algorithm, the GenericCallback of CPLEX is used, which gets called whenever a feasible

integer solution is found. The absolute tolerance to the best integer objective (EpGap) is set to

10−10. All times presented in the tables are CPU times in seconds. All theses instances files are

available online1.

5.4.1 Case Study

Lu (2013) presents a case study on the location of urgent relief distribution centers (URDCs) in a

relief supply distribution network responding to the massive earthquake which hit central Taiwan

on September 21, 1999. Specifically, relief supplies were collected from six unaffected counties

transported to two URDCs, and then delivered to the 51 relief stations in the 11 townships.

Five other candidate sites for URDCs were considered. They divided the number of survivors by

the number of relief stations of each township to estimate the relief demand faced by each relief

station. They use the data collected in previous research for the travel time between a URDC

and a relief station.
1https://osf.io/87u6f/
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Following Lu (2013), we consider a distance uncertainty box [tij , tij(1 + α1)], and the demand

uncertainty box [di(1−α2), di(1 + α2)] with α1 ∈ {0.5, 1.5, 2.5} and α2 ∈ {0.2, 0.4, 0.6}. Thus,

we consider the 9 combinations of parameter values α1 and α2 considering 51 demand nodes, 7

possible sites, and the selection of 2 centers. Table 5.2 shows the results obtained when solving

(RPCP2) by applying the proposed algorithms to the case study.

Instance Iterations Time [s]

N M p α1 α2 RC C&CG B&C C&CG B&C
RF1 RF2 RF3 RF4 RF5 RF3 RF5 RF1 RF2 RF3 RF4 RF5 RF3 RF5

51 7 2 0.5 0.2 495,000 5 5 5 5 5 5 5 1.0 1.0 0.9 10.0 0.9 1.2 1.2
51 7 2 0.5 0.4 838,500 6 6 6 6 6 10 6 1.1 1.0 1.0 14.1 0.9 1.2 1.1
51 7 2 0.5 0.6 1,159,200 7 6 6 6 6 6 6 1.3 1.0 0.8 11.7 0.9 1.1 1.1
51 7 2 1.5 0.2 1,238,400 14 16 16 15 16 16 15 5.7 4.3 1.9 153.5 1.9 1.9 1.9
51 7 2 1.5 0.4 1,705,800 16 15 15 14 16 16 15 8.0 3.0 1.8 109.1 1.8 1.9 1.8
51 7 2 1.5 0.6 2,150,400 16 15 15 14 15 14 15 7.2 2.8 1.7 100.3 1.6 1.8 1.8
51 7 2 2.5 0.2 1,981,800 18 19 22 19 21 18 18 11.6 5.4 2.5 238.9 2.5 2.2 2.2
51 7 2 2.5 0.4 2,573,100 19 19 21 19 20 18 19 12.4 4.7 2.3 209.9 2.2 2.2 2.2
51 7 2 2.5 0.6 3,141,600 20 19 19 19 19 19 19 13.4 4.3 2.1 181.7 2.1 2.1 2.1

Average 13 13 14 13 14 14 13 6.9 3.0 1.6 114.3 1.6 1.7 1.7

Table 5.2: Results of C&CG and B&C algorithms for the (RP CP2) on the case study instances.

Note that the optimal value of (RPCP2) increases with α1 and α2 in Table 5.2. The fastest

algorithm is (C&CG) using the (RF3) and (RF5) formulations, closely followed by the two

(B&C). Unlike the deterministic problem, (RF2) and (RF4) are not the most efficient. Moreover,

(RF4) requires many more variables and constraints than the other formulations, resulting in a

much longer solving time per iteration of the (C&CG) algorithm.

We observe that the robust solution of all these instances also is the deterministic solution which

consists of opening sites 3 and 4. This may be due to the fact that the bounds of the uncertainty

boxes are all increased in the same proportion for all the nodes. To avoid this, random intervals

for all uncertain parameters are considered in the following.

5.4.2 Randomly generated instances

Following Lu (2013), two dimensional coordinates were uniformly drawn from [0, 100] × [40, 60]

for the two set of demand nodes and available sites. The distances tij between demand nodes and

sites were set to the nearest integer of their Euclidean distance. The demand di of each demand

node i ∈ N was uniformly drawn from the interval [1000, 2000]. Nevertheless, we do not consider

the same uncertainty sets as in Lu (2013). For all i ∈ N and j ∈M, tij and di can take any value

in [tij , tij(1+αij
1 )] and [di(1−αi

2), di(1+αi
2)]. Three cases are considered depending on whether

αij
1 and αi

2 are randomly generated in [0.1, 0.3], [0.4, 0.6], or [0.7, 0.9].
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Firstly, 18 instances are generated for (RPCP2) considering N = M ∈ {15, 25, 40}, and p = {2, 3}.

The results obtained for these instances are presented in Tables 5.3, and 5.4 respectively. The last

columns represent the robust solution and the deterministic solutions. Since both problems may

have several optimal solutions, we include in the tables the solutions that are the most frequent

among those of the seven methods considered. For theses instances, a time-limit of 600 seconds

(TL2) is considered.

Similarly to Table 5.2, both RC and the solving time increase with α1 and α2 in this first set of

instances. (RF3) and (RF5) are also the fastest (C&CG) algorithms. This could be explained by

the fact that the addition of a scenario does not lead to the addition of any variable. The (B&C)

algorithms are much faster even though they perform more iterations. The better performances

of (RF5) with the (B&C) algorithm is due to its smaller number of iterations.

We observe that the box uncertainty sets with random bounds lead to robust solutions which

are different from the deterministic one, in contrast to the case study. Note that the CPU time

increases with p. Indeed, none of the (C&CG) algorithms is able to solve all the instances for

p = 3. This could be explained by the number of feasible solutions which is proportional to
(M

p

)
.

Instance Iterations Time [s] Robust
Solution

Nominal
SolutionN M p (α1, α2) RC C&CG B&C C&CG B&C

RF1 RF2 RF3 RF4 RF5 RF3 RF5 RF1 RF2 RF3 RF4 RF5 RF3 RF5
15 15 2 [0.1, 0.3] 45,870 5 8 6 5 5 8 8 0.5 1.4 0.4 8.7 0.4 0.4 0.5 10 14

11 1415 15 2 [0.4, 0.6] 136,587 17 16 15 14 17 21 19 6.1 3.2 0.6 31.1 0.7 0.5 0.5 11 14
15 15 2 [0.7, 0.9] 228,429 34 28 33 33 33 37 35 26.4 3.4 1.3 144.5 2.0 1.6 1.1 11 14
25 25 2 [0.1, 0.3] 40,205 8 8 8 8 8 16 12 3.1 6.6 1.0 184.9 1.0 1.2 1.1 21 22

13 2125 25 2 [0.4, 0.6] 142,096 21 20 21 16 22 32 30 41.6 33.3 3.0 TL 3.7 2.1 1.7 7 22
25 25 2 [0.7, 0.9] 228,195 36 34 38 20 38 47 35 230.9 14.5 4.5 TL 5.3 2.2 1.9 13 15
40 40 2 [0.1, 0.3] 54,082 12 12 13 3 11 19 14 51.4 58.8 4.1 TL 7.4 8.0 6.9 10 26

8 2640 40 2 [0.4, 0.6] 143,310 23 23 34 3 33 45 36 TL TL 94.5 TL 63.0 18.0 14.7 25 26
40 40 2 [0.7, 0.9] 283,119 30 56 89 6 96 122 108 TL TL 67.6 TL 91.2 17.6 15.4 23 32

Average 29 29 39 33 19.7 19.4 5.7 4.9

Table 5.3: Results of C&CG and B&C algorithms on randomly generated (RP CP2) instances with N = M ∈
{15, 25, 40} and p = 2. TL2=600s.

Instance Iterations Time [s] Robust
Solution

Nominal
SolutionN M p (α1, α2) RC C&CG B&C C&CG B&C

RF1 RF2 RF3 RF4 RF5 RF3 RF5 RF1 RF2 RF3 RF4 RF5 RF3 RF5
15 15 3 [0.1, 0.3] 56,689 8 7 8 8 8 10 11 0.7 0.7 0.4 15.5 0.5 0.4 0.4 1 6 8

1 6 1215 15 3 [0.4, 0.6] 97,360 16 15 16 15 17 24 16 3.6 5.1 0.8 59.7 1.0 0.7 0.5 1 6 12
15 15 3 [0.7, 0.9] 166,252 33 36 35 37 36 44 43 19,6 14.4 1.5 200.3 2.0 1.0 1.0 1 6 12
25 25 3 [0.1, 0.3] 40,950 12 8 7 7 10 16 8 6.7 4.7 0.9 157.3 1.7 1.1 0.7 2 12 14

3 7 2525 25 3 [0.4, 0.6] 84,827 16 16 18 13 18 45 21 18.6 27.3 6.3 TL 5.5 3.2 2.0 2 14 50
25 25 3 [0.7, 0.9] 165,978 50 51 54 20 57 66 64 305.8 94.8 14.6 TL 17.9 3.9 4.1 6 7 17
40 40 3 [0.1, 0.3] 48,123 18 17 15 3 18 40 33 213.1 TL 20.6 TL 22.7 9.4 8.5 25 26 40

8 26 4040 40 3 [0.4, 0.6] 125,024 23 19 54 4 52 197 103 TL TL 389.7 TL 161.7 26.9 18.1 18 25 35
40 40 3 [0.7, 0.9] 236,529 33 44 152 6 132 537 589 TL TL TL TL TL 71.2 74.9 25 29 40

Average 109 99 13.1 12.2

Table 5.4: Results of C&CG and B&C algorithms on randomly generated (RP CP2) instances with N = M ∈
{15, 25, 40} and p = 3. TL2=600s.
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Since the limit of the (C&CG) algorithms is reached, the following will focus on the

(B&C) algorithms. We now consider a time limit of 9000 seconds and instances considering

N = M ∈ {60, 80, 100}, and p = {2, 3, 4, 5}. The results are presented in Tables 5.5, 5.6, 5.7, and 5.8.

Both algorithms were able to solve most instances. However, due to memory limitations, the

optimal solution is not obtained for all instances with 80 and 100 nodes in particular for those

with the largest uncertainty sets. The results of the two formulations are similar, with (RF3)

performing better on average for p = {3, 4, 5}, and worse for p = 2. Their solving time is still

closely related to the number of iterations even if for a few instances, (RF3) performs more

iterations but is faster.

Instance B&C Robust
Solution Nominal

Solution
N M p (α1, α2) RC Iterations Time [s] RF3 RF5RF3 RF5 RF3 RF5
60 60 2 [0.1, 0.3] 45,075 31 15 16 9 9 32 9 32
60 60 2 [0.4, 0.6] 112,704 81 38 37 21 31 32 31 32 4 32
60 60 2 [0.7, 0.9] 216,104 176 73 66 37 32 45 32 45
80 80 2 [0.1, 0.3] 37,245 21 18 25 26 2 61 2 61
80 80 2 [0.4, 0.6] 147,825 117 62 113 74 27 61 27 61 54 61
80 80 2 [0.7, 0.9] 243,722 338 296 251 275 25 27 25 27
100 100 2 [0.1, 0.3] 53,119 55 26 109 66 33 65 65 84
100 100 2 [0.4, 0.6] 146,640 183 154 265 241 9 64 33 64 33 64
100 100 2 [0.7, 0.9] 246,597 460 497 630 716 64 84 64 84

Average 162 131 168 163

Table 5.5: Results of B&C algorithm on randomly generated (RP CP2) instances with N = M ∈ {60, 80, 100} and
p = 2.

Instance B&C Robust
Solution Nominal

Solution
N M p (α1, α2) RC Iterations Time [s] RF3 RF5RF3 RF5 RF3 RF5
60 60 3 [0.1, 0.3] 45,430 92 79 29 27 24 32 36 24 32 56
60 60 3 [0.4, 0.6] 117,659 354 310 127 127 10 42 44 10 33 38 2 32 48
60 60 3 [0.7, 0.9] 209,352 1015 1024 444 507 20 31 42 14 31 42
80 80 3 [0.1, 0.3] 33,439 55 48 83 95 32 41 58 32 41 58
80 80 3 [0.4, 0.6] 128,900 386 332 399 336 32 63 74 32 63 74 9 71 73
80 80 3 [0.7, 0.9] 206,001 980 1033 1295 1647 10 58 61 10 58 61
100 100 3 [0.1, 0.3] 35,780 52 58 122 175 12 76 84 12 76 84 12 32 83100 100 3 [0.4, 0.6] 124,704 498 323 1403 1192 19 88 89 12 19 88

Average 429 401 488 513

Table 5.6: Results of B&C algorithm on randomly generated (RP CP2) instances with N = M ∈ {60, 80, 100} and
p = 3.
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Instance B&C Robust
Solution Nominal

Solution
N M p (α1, α2) RC Iterations Time [s] RF3 RF5RF3 RF5 RF3 RF5
60 60 4 [0.1, 0.3] 36,737 50 42 44 36 3 8 18 55 2 8 18 55
60 60 4 [0.4, 0.6] 99,544 326 293 379 408 2 8 26 32 2 26 32 35 2 8 32 43
60 60 4 [0.7, 0.9] 171,749 1684 1519 2918 3371 26 32 48 53 12 26 48 53
80 80 4 [0.1, 0.3] 31,788 92 58 482 325 3 32 58 69 21 32 58 60 1 3 32 5880 80 4 [0.4. 0.6] 108,312 736 633 2152 3259 1 32 48 55 17 32 39 55
100 100 4 [0.1, 0.3] 32,841 203 142 941 1816 12 14 35 44 12 14 35 73 1 4 12 35

Average 515 448 1153 1536

Table 5.7: Results of B&C algorithm on randomly generated (RP CP2) instances with N = M ∈ {60, 80, 100} and
p = 4.

Instance B&C Robust
Solution Nominal

Solution
N M p (α1, α2) RC /

BKV
Iterations Time [s] RF3 RF5RF3 RF5 RF3 RF5

60 60 5 [0.1, 0.3] 29,709 52 28 51 31 2 8 12 18 37 3 8 18 18 37
60 60 5 [0.4, 0.6] 86,466 386 185 970 774 2 8 18 28 38 2 8 28 28 38 2 8 12 18 40
60 60 5 [0.7, 0.9] 138,852 888 1323 5596 6461 2 8 21 38 39 2 21 38 38 39
80 80 5 [0.1, 0.3] 29,259 147 129 3086 2366 1 44 48 58 59 1 44 58 58 59 11 15 16 18 4080 80 5 [0.4, 0.6] 99,449 643 547 TL3 TL3 2 11 42 47 73 2 11 47 31 73
100 100 5 [0.1, 0.3] 31,107 142 133 803 6066 13 14 90 95 100 13 14 95 95 100 3 12 14 50 85

Average 372 395 2011 2747

Table 5.8: Results of B&C algorithm on randomly generated (RP CP2) instances with N = M ∈ {60, 80, 100} and
p = 5. TL3=9000s.

5.4.3 ORLIB instances

We consider the deterministic ORLIB instances (Beasley (1990)), which are symmetrical

instances, since the set of clients is also the set of candidate sites. In these instances the travel

times tij are provided. To create (RPCP2) instances, demand values in [1, 100] were randomly

generated and for the travel times the same box uncertainty set as in the previous section were

considered, with αi and αij randomly generated in [0.1, 0.9] and such that αij = αji for i ∈ N

and j ∈ M. The results are presented in Tables 5.9, 5.10, and 5.11. For theses instances, a

time-limit of 9000 seconds (TL3) was considered.

Starting from p = 2, we observe that the solving time increases rapidly with p. Particularly,

instance pmed3 is only solved for p = 2 and instance pmed1 could not be solved for p = 4 due to

memory issues. As for the random instances, the formulations have similar performances which

depend strongly on the number of iterations. It was not possible to solve larger ORLIB instances

with N ≥ 200 due to memory limitations.
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Instance B&C Robust
Solution Nominal

Solution
Name N = M p (α1, α2) RC Iterations Time [s] RF3 RF5RF3 RF5 RF3 RF5
pmed1 100 2 [0.1, 0.9] 14,706 392 494 511 663 8 57 8 57 60 95
pmed2 100 2 [0.1, 0.9] 16,138 595 626 672 738 23 64 23 64 7 21
pmed3 100 2 [0.1, 0.9] 25,443 717 633 825 758 15 88 15 88 89 99
pmed4 100 2 [0.1, 0.9] 19,293 761 778 1070 1134 32 100 32 99 2 98
pmed5 100 2 [0.1, 0.9] 13,336 267 186 274 193 52 68 52 68 15 52

Average 546 543 670 697

Table 5.9: Results of B&C algorithm on adapted ORLIB instances for the (RP CP2) with N = M = 100 and
p = 2.

Instance B&C Robust
Solution Nominal

Solution
Name N = M p (α1, α2) RC Iterations Time [s] RF3 RF5RF3 RF5 RF3 RF5
pmed1 100 3 [0.1, 0.9] 14,094 675 587 2876 2188 9 42 94 9 42 64 9 13 94
pmed2 100 3 [0.1, 0.9] 17,718 567 615 1137 1245 35 65 88 35 68 88 2 9 22
pmed4 100 3 [0.1, 0.9] 15,423 395 459 1303 1413 32 88 99 32 51 99 1 69 87
pmed5 100 3 [0.1, 0.9] 12,228 601 536 1348 1346 51 68 97 51 68 97 7 32 46

Average 560 549 1666 1548

Table 5.10: Results of B&C algorithm on adapted ORLIB instances for the (RP CP2) with N = M = 100 and
p = 3.

Instance B&C Robust
Solution Nominal

Solution
name N = M p (α1, α2) RC Iterations Time [s] RF3 RF5RF3 RF5 RF3 RF5
pmed2 100 4 [0.1, 0.9] 12,600 1032 1134 3457 4980 23 58 77 97 23 58 76 97 2 8 22 40
pmed4 100 4 [0.1, 0.9] 13,812 507 648 6299 4463 7 26 52 99 7 26 52 99 8 23 51 55
pmed5 100 4 [0.1, 0.9] 11,650 1150 - 5563 - 60 71 90 97 - - - - 23 51 69 97

Table 5.11: Results of B&C algorithm on adapted ORLIB instances for the (RP CP2) with N = M = 100 and
p = 4. TL3=9000s.
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5.5 Comparison of results with Lu (2013)

It was not possible to compare the performances of proposed exact algorithms and the one of the

heuristic in Lu (2013) as its results do not seem to be correct. We prove that several robustness

costs obtained with this heuristic and reported in Lu (2013) are undervalued.

In (RPCP1), the demand node allocations are fixed before the uncertainty is revealed. As defined

in Section 5.3.7, given a feasible solution (x, y), let tw
i be the distance (or travel time) in scenario

w ∈ W between a demand node i ∈ N and its allocated center (i.e., tw
i = tw

ij with j ∈ M the

only center such that xij = 1). Thus, the radius of solution (x, y) is max
i∈N

dw
i tw

i and its robustness

cost is RC(x, y) = max
w∈W

{
max
i∈N

dw
i tw

i − Z∗
w

}
, where Z∗

w is the optimal solution of the deterministic

p-center problem in which the uncertain parameters take value w.

A difficulty to evaluate the robustness costs reported in Lu (2013) is that for each solution only

one demand node allocation is provided. Let us consider the instance described in Section 5.4.1

in which p = 2, α1 = 0.5, and α2 = 0.2 and let (xh, yh) be its associated solution in Lu (2013).

The only information available on (xh, yh) is that centers 1 and 2 are located (xh
1 = xh

2 = 1)

and that demand node 21 is allocated to center 1 (xh
21,1 = 1). Nevertheless, this is sufficient

to obtain a lower bound on the robustness cost as for any scenario w ∈ W and any demand

node i ∈ N, the expression dw
i tw

i − Z∗
w constitutes a lower bound of RC(xh, yh). Let us consider

a scenario w21 in which the demand of node 21 is dw
21 = d+

21 = 34, 800 and its distance to

center 1 is tw
21,1 = t+

21,1 = 41. The optimal radius Z∗
w21 = 495, 600 is obtained by solving a

deterministic p-center problem. Consequently, a lower bound on the robustness cost of value

34, 800 × 41 − 495, 600 = 931, 200 is obtained, which is higher than the value 93, 619 reported

in Lu (2013).

Table 5.12 present similar results on nine instances. The third column contains the robustness

costs reported in Lu (2013) which are almost all undervalued. Indeed, they are significantly lower

than their associated lower bounds presented in Column 4. Column 5 contains the robustness

cost of optimal solutions obtained by the proposed (B&C) algorithm adapted to (RPCP1)

(see Section 5.3.7). Note that the branch-and-cut always returns a solution which robustness

cost is always lower than the lower bound of the heuristic solution.
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Instance Robustness cost
Heuristic solution from Lu (2013) Optimal solution

α1 α2 Results from Lu (2013) According to this article
0.5 0.2 = 93,619 ≥ 931,200 = 495,000
0.5 0.4 = 587,837 ≥ 1,292,900 = 838,500
0.5 0.6 = 1,477,709 ≥ 1,906,600 = 1,159,200
1.5 0.2 = 940,858 ≥ 1,870,800 = 1,238,400
1.5 0.4 = 1,859,069 ≥ 2,389,100 = 1,705,800
1.5 0.6 = 2,934,605 ≥ 3,362,600 = 2,150,400
2.5 0.2 = 1,883,309 ≥ 2,810,400 = 1,981,800
2.5 0.4 = 3400,291 ≥ 4,029,900 = 2,573,100
2.5 0.6 = 4,356,480 ≥ 4,129,600 = 3,141,600

Table 5.12: Comparison of the robustness cost of solutions obtained by the heuristic presented in Lu (2013) and
optimal solutions obtained by the branch-and-cut algorithm adapted for (RP CP1).

5.6 Conclusions

The solution of a robust weighted vertex p-center problem is studied, considering uncertain nodal

weights demand and edge lengths using box uncertainty sets. Two variants of this problem are

possible depending on whether the demand node allocations to the centers are made after the

uncertainty is revealed (RPCP2) or not (RPCP1).

We prove that for (RPCP2) a finite subset of scenarios from the box uncertainty set can be

considered without losing optimality. This result is used to propose five robust reformulations

based on different MILP formulations of the vertex p-center problem. To optimally solve these

reformulations, a column-and-constraint generation algorithm and a branch-and-cut algorithm

are introduced. Moreover, we identify a lower bound on the optimal value of the deterministic

p-center problem associated with the finite subset of scenarios. This result is used to significantly

reduce the solving time of proposed algorithms. Finally, we highlight how proposed methods can

be adapted to optimally solve (RPCP1).

We present a numerical study to compare the performances of the algorithms on a case study,

on randomly generated instances, and on a few instances from ORLIB. We were able to solve

optimally the 68 considered instances. The column-and-constraint generation algorithm based

on formulation (RF3) and (RF5) are more efficient than the one based on (RF1), (RF2), and

(RF4). This is because adding a scenario does not require the addition of any variable. This

formulation enables the implementation of a branch-and-cut algorithm which significantly reduces

the solving time.
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In future work, analysis of larger instances with other random box uncertainty sets could be

considered. To further improve the performances of the branch-and-cut algorithm, alternative

branching strategies could be evaluated and integrality cuts (UserCuts) could be dynamically

generated. The algorithms could also be improved by solving the deterministic (PCP ) at each

iteration with one of the state-of-the-art exact methods of Contardo et al. (2019) or Gaar and

Sinnl (2022).



Chapter 6

Conclusion

This chapter presents some discussion on the main results of this thesis. Furthermore, some

perspectives that motivate future work and new research directions are presented.

6.1 Conclusions

Discrete location problems have been well studied in the literature. Nevertheless, there are still

many studies that seek to improve or propose new solution methods. Furthermore, although

there is a great development of approximation methods, there are still major challenges for

the exact solution of large-scale problems. We have studied the p-center problem (PCP ) and

p-median problem (PMP ) which are fundamental problems in location science and therefore

have many applications in operations research. In these problems, the number p of installations

to be located is known in advance, and opening costs are not considered. We have focused on

how their corresponding MILP formulations impact their solution methods.

We have studied Benders decomposition for both p-center and p-median problems, which, along

with efficient cut separation algorithms and other enhancements, constitutes the current state of

the art in exact solution methods for large-scale instances. Specifically, for (PMP ) we have been

able to solve different types of instances with more than 238,000 sites, and clients. Improving the

results of the best approach presented in García et al. (2011). For (PCP ) we also studied the

Benders decomposition and found a class of new Benders cuts. These cuts can be implemented as

a generalization for the already known ones. Although our implementation cannot outperform the

work of Gaar and Sinnl (2022) in terms of execution time, our method gives good results in terms

of linear relaxation bounds. On the other hand, our proposed algorithm based on the clustering

123
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procedure can outperform the state-of-the-art methods of Gaar and Sinnl (2022) and Contardo

et al. (2019) for large values of p. We have been able to solve instances for more than 744,000 sites

and clients. The good performance of our algorithm is based on several improvements such as

the two-stage implementation, the efficient cluster update which identifies good lower and upper

bounds, and an exact iterative distance rounding procedure.

We have also studied the incorporation of uncertainty into the (PCP ) problem in order to study

some realistic problems. We were the first to consider uncertainty in distances and client demands

simultaneously for a robust two-stage problem. We have considered uncertainty intervals for each

parameter, for which we prove that it is sufficient to consider a finite subset of scenarios without

losing optimality. Our research has produced five new robust reformulations that minimize the

maximal regret in relation to the worst-case scenario. Furthermore, we propose the use of lower

bounds on the worst-case scenario that allow our exact algorithms to solve instances efficiently.

6.2 Perspectives

Regarding the (PMP ), we have considered only separating cuts for integer solutions in the

branch-and-cut, an implementation that also separate fractional solutions could be studied. In

addition, there are other branching strategies that could be designed.

In relation to (PCP ), we show that there are different approaches within the same principal

resolution method. The in-depth study of the new cuts may bring new theoretical and

implementation results. Moreover, the techniques of client clustering, dominated facilities, and

distance rounding have allowed us to have the best resolution performance, therefore we think

that each of these can be improved and used in other location problems.

We think that our work on the robust (PCP ) can be the basis for other solution methods as well

as for other variants of the (PCP ), and other uncertainty sets, or other objective functions of the

robust problem. Moreover, incorporating other techniques in our branch-and-cut should be able

to further improve the performance to solve instances of a larger size.



125 Bibliography

Bibliography

Al-Khedhairi, A., S. (2005). Enhancements to two exact algorithms for solving the vertex P-center

problem. Journal of Mathematical Modelling and AlgorithmsVolume, 4:129–147.

Ales, Z. and Elloumi, S. (2018). Compact milp formulations for the p-center problem. In

International Symposium on Combinatorial Optimization, pages 14–25. Springer.

An, Y., Zeng, B., Zhang, Y., and Zhao, L. (2014). Reliable p-median facility location problem:

two-stage robust models and algorithms. Transportation Research Part B: Methodological,

64:54–72.

Avella, P., Boccia, M., Salerno, S., and Vasilyev, I. (2012). An aggregation heuristic for large

scale p-median problem. Computers & Operations Research, 39(7):1625–1632.

Avella, P., Sassano, A., and Vasil’ev, I. (2007). Computational study of large-scale p-median

problems. Mathematical Programming, 109(1):89–114.

Averbakh, I. and Berman, O. (1997). Minimax regret p-center location on a network with demand

uncertainty. Location Science, 5(4):247–254.

Averbakh, I. and Berman, O. (2000). Algorithms for the robust 1-center problem on a tree.

European Journal of Operational Research, 123(2):292–302.

Baron, O., Milner, J., and Naseraldin, H. (2011). Facility location: A robust optimization

approach. Production and Operations Management, 20.

Basu, S., Sharma, M., and Ghosh, P. S. (2015). Metaheuristic applications on discrete facility

location problems: a survey. OPSEARCH, 52(3):530–561.

Beasley, J. E. (1990). Or-library: Distributing test problems by electronic mail. The Journal of

the Operational Research Society, 41(11):1069–1072.

Ben-Tal, A., Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization. Princeton Series in

Applied Mathematics. Princeton University Press.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik, 4(1):238–252.

Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., and Zheng, T. (2013). Adaptive robust

optimization for the security constrained unit commitment problem. IEEE Transactions on

Power Systems, 28(1):52–63.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52(1):35–53.

Briant, O. and Naddef, D. (2004). The optimal diversity management problem. Operations

research, 52(4):515–526.

Çalık, H., Labbé, M., and Yaman, H. (2019a). p-Center Problems, pages 51–65. Springer

International Publishing, Cham.



Chapter 6. Conclusion 126

Çalık, H., Labbé, M., and Yaman, H. (2019b). p-center problems. In Location science, pages

51–65. Springer.

Calik, H. and Tansel, B. C. (2013). Double bound method for solving the p-center location

problem. Computers and Operations Research, 40(12):2991–2999.

Caruso, C., Colorni, A., and Aloi, L. (2003). Dominant, an algorithm for the p-center problem.

European Journal of Operational Research, 149(1):53–64.

Chan, T. C. Y., Shen, Z.-J. M., and Siddiq, A. (2018). Robust defibrillator deployment under

cardiac arrest location uncertainty via row-and-column generation. Operations Research,

66(2):358–379.

Chen, D. and Chen, R. (2009). New relaxation-based algorithms for the optimal solution

of the continuous and discrete p-center problems. Computers and Operations Research,

36(5):1646–1655.

Cheng, C., Adulyasak, Y., and Rousseau, L.-M. (2021). Robust facility location under demand

uncertainty and facility disruptions. Omega, 103:102429.

Church, R. L. (1984). Symposium on location problems: In memory of leon cooper. Journal of

Regional Science, 24(2):185–201.

Contardo, C., Iori, M., and Kramer, R. (2019). A scalable exact algorithm for the vertex p-center

problem. Computers and Operations Research, 103:211–220.

Cordeau, J.-F., Furini, F., and Ljubić, I. (2019). Benders decomposition for very large scale

partial set covering and maximal covering location problems. European Journal of Operational

Research, 275(3):882 – 896.

Cornuejols, G., Nemhauser, G. L., and Wolsey, L. A. (1980). A canonical representation of simple

plant location problems and its applications. SIAM Journal on Algebraic Discrete Methods,

1(3):261–272.

Daskin, M. (1996). Network and discrete location: Models, algorithms and applications. Journal

of the Operational Research Society, 48.

Demange, M., Gabrel, V., Haddad, M. A., and Murat, C. (2020). A robust p-center problem under

pressure to locate shelters in wildfire context. EURO Journal on Computational Optimization,

8:103–139.

Du, B. and Zhou, H. (2018). A robust optimization approach to the multiple allocation p-center

facility location problem. Symmetry, 10(11):588.

Du, B., Zhou, H., and Leus, R. (2020). A two-stage robust model for a reliable p-center facility

location problem. Applied Mathematical Modelling, 77:99–114.

Duran-Mateluna, C., Ales, Z., and Elloumi, S. (2023a). An efficient Benders decomposition for

the p-median problem. European Journal of Operational Research, 308(1):84–96.



127 Bibliography

Duran-Mateluna, C., Ales, Z., Elloumi, S., and Jorquera-Bravo, N. (2023b). Robust MILP

formulations for the two-stage weighted vertex p-center problem. Computers & Operations

Research, 159:106334.

Elloumi, S. (2010). A tighter formulation of the p-median problem. Journal of Combinatorial

Optimization, 19(1):69–83.

Elloumi, S., Labbé, M., and Pochet, Y. (2004). A New Formulation and Resolution Method for

the p-Center Problem. INFORMS Journal on Computing, 16(1):84–94.

Elloumi, S. and Plateau, A. (2010). A computational study for the p-median problem. Electronic

Notes in Discrete Mathematics, 36:455–462.

Fischetti, M., Ljubic, I., and Sinnl, M. (2017). Redesigning benders decomposition for large-scale

facility location. Management Science, 63(7):2146–2162.

Gaar, E. and Sinnl, M. (2022). A scaleable projection-based branch-and-cut algorithm for the

p-center problem. European Journal of Operational Research.

Galvão, R. D. (1980). A dual-bounded algorithm for the p-median problem. Operations Research,

28(5):1112–1121.

García, S., Labbé, M., and Marín, A. (2011). Solving large p-median problems with a radius

formulation. INFORMS Journal on Computing, 23(4):546–556.

Garcia-Diaz, J., Menchaca-Mendez, R., Menchaca-Mendez, R., Pomares Hernández, S.,

Pérez-Sansalvador, J. C., and Lakouari, N. (2019). Approximation algorithms for the vertex

k-center problem: Survey and experimental evaluation. IEEE Access, 7:109228–109245.

Garfinkel, R. S., Neebe, A. W., and Rao, M. R. (1977). The m-Center Problem: Minimax Facility

Location. Management Science, 23(10):1133–1142.

Hakimi, S. (1964). Optimum locations of switching centers and the absolute centers and medians

of a graph. Operations Research, 12:450–459.

Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network

and some related graph theoretic problems. Operations research, 13(3):462–475.

Hansen, P., Brimberg, J., Urošević, D., and Mladenović, N. (2009). Solving large p-median

clustering problems by primal–dual variable neighborhood search. Data Mining and Knowledge

Discovery, 19(3):351–375.

Hasani, A. and Mokhtari, H. (2018). Redesign strategies of a comprehensive robust relief network

for disaster management. Socio-Economic Planning Sciences, 64:92–102.

Irawan, C. and Salhi, S. (2015a). Aggregation and non aggregation techniques for large facility

location problems: A survey. Yugoslav Journal of Operations Research, 25:1–1.

Irawan, C. A. and Salhi, S. (2015b). Solving large p-median problems by a multistage hybrid

approach using demand points aggregation and variable neighbourhood search. Journal of



Chapter 6. Conclusion 128

Global Optimization, 63(3):537–554.

Irawan, C. A., Salhi, S., and Scaparra, M. P. (2014). An adaptive multiphase approach for large

unconditional and conditional p-median problems. European Journal of Operational Research,

237(2):590–605.

Kariv, O. and Hakimi, S. L. (1979). An algorithmic approach to network location problems. ii:

The p-medians. SIAM Journal on Applied Mathematics, 37(3):539–560.

Klastorin, T. D. (1985). The p-Median Problem for Cluster Analysis: A Comparative Test Using

the Mixture Model Approach. Management Science, 31(1):84–95.

Laporte, G., Nickel, S., and da Gama, F. (2019a). Facility Location Under Uncertainty, pages

185–213. Springer International Publishing, Cham.

Laporte, G., Nickel, S., and Saldanha-da Gama, F. (2019b). Location Science (2nd ed). Springer

International Publishing.

Lu, C.-C. (2013). Robust weighted vertex p-center model considering uncertain data:

An application to emergency management. European Journal of Operational Research,

230(1):113–121.

Lu, C.-C. and Sheu, J.-B. (2013). Robust vertex p-center model for locating urgent relief

distribution centers. Computers & Operations Research, 40(8):2128–2137.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic

enhancement and model selection criteria. Operations Research, 29(3):464–484.

Marín and Pelegrín, M. (2019). The p-Median Problem, pages 25–50. Springer International

Publishing.

Minieka, E. (1970). The m-center problem. SIAM Review, 12(1):138–139.

Mladenović, N., Brimberg, J., Hansen, P., and Moreno-Pérez, J. A. (2007). The p-median

problem: A survey of metaheuristic approaches. European Journal of Operational Research.

Mu, W. and Tong, D. (2020). On solving large p-median problems. Environment and Planning

B: Urban Analytics and City Science, 47(6):981–996.

Nikoofal, M. E. and Sadjadi, S. J. (2010). A robust optimization model for p-median problem

with uncertain edge lengths. The International Journal of Advanced Manufacturing Technology,

50:391–397.

Park, H.-S. and Jun, C.-H. (2009). A simple and fast algorithm for K-medoids clustering. Expert

Systems with Applications, 36(2, Part 2):3336–3341.

Paul, J. A. and Wang, X. J. (2015). Robust optimization for united states department

of agriculture food aid bid allocations. Transportation Research Part E: Logistics and

Transportation Review, 82:129–146.

Paul, J. A. and Wang, X. J. (2019). Robust location-allocation network design for earthquake



129 Bibliography

preparedness. Transportation research part B: methodological, 119:139–155.

R. Chen, G. H. (1987). Relaxation method for the solution of the minimax location-allocation

problem in euclidean space. av. Res. Logist., 34:775–788.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The benders decomposition

algorithm: A literature review. European Journal of Operational Research, 259(3):801 – 817.

Reese, J. (2006). Solution methods for the p-median problem: An annotated bibliography.

Networks, 48(3):125–142.

Reinelt, G. (1991). TSPLIB—A Traveling Salesman Problem Library. ORSA Journal on

Computing, 3(4):376–384.

Resende, M. G. C. and Werneck, R. F. (2004). A Hybrid Heuristic for the p-Median Problem.

Journal of Heuristics, 10(1):59–88.

ReVelle, C. S. and Eiselt, H. A. (2005). Location analysis: A synthesis and survey. European

Journal of Operational Research, 165(1):1–19.

ReVelle, C. S. and Swain, R. W. (1970). Central facilities location. Geographical Analysis,

2(1):30–42.

Serra, D. and Marianov, V. (1998). The p-median problem in a changing network: the case of

barcelona. Location Science, 6(1-4):383–394.

Sheu, J.-B. (2007). An emergency logistics distribution approach for quick response to urgent relief

demand in disasters. Transportation Research Part E: Logistics and Transportation Review,

43(6):687–709.

Snyder, L. V. (2006). Facility location under uncertainty: a review. IIE transactions,

38(7):547–564.

T. Ilhan, F.A. Özsoy, M. P. (2002). An efficient exact algorithm for the vertex p-center problem

and computational experiments for different set covering subproblems . Technical Report.

Takedomi, S., Ishigaki, T., Hanatsuka, Y., and Mori, T. (2022). Facility location optimization

with pMP modeling incorporating waiting time prediction function for emergency road services.

Computers & Industrial Engineering, 164:107859.

Toregas, C., Swain, R., ReVelle, C., and Bergman, L. (1971). The location of emergency service

facilities. Operations research, 19(6):1363–1373.

Trivedi, A. and Singh, A. (2017). A hybrid multi-objective decision model for emergency shelter

location-relocation projects using fuzzy analytic hierarchy process and goal programming

approach. International Journal of Project Management, 35(5):827–840.

Trivedi, A. and Singh, A. (2019). Shelter planning for uncertain seismic hazards using multicriteria

decision approach: a case of nepal earthquake. Journal of Multi-Criteria Decision Analysis,

26(3-4):99–111.



Chapter 6. Conclusion 130

Ushakov, A. V. and Vasilyev, I. (2021). Near-optimal large-scale k-medoids clustering.

Information Sciences, 545:344–362.

Voevodski, K. (2021). Large Scale K-Median Clustering for Stable Clustering Instances. In

Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on

Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research,

pages 2890–2898. PMLR.

Zeng, B. and Zhao, L. (2013). Solving two-stage robust optimization problems using a

column-and-constraint generation method. Operations Research Letters, 41(5):457–461.



Titre : Méthodes de solutions exactes pour les problèmes de localisation discrète de p-installations à grande échelle.
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Résumé : Cette thèse porte sur la solution exacte des
problèmes NP-difficiles du p-median et du p-centre, des
problèmes d’optimisation combinatoire qui deviennent
rapidement difficiles à résoudre lorsque la taille de
l’instance augmente. Ces problèmes de localisation
discrète consistent à ouvrir un nombre défini p
d’installations, puis à leur affecter un ensemble de clients
selon une fonction objectif à minimiser.
Tout d’abord, nous étudions le problème du p-median
qui cherche à minimiser la somme des distances entre
les clients et les installations ouvertes auxquelles ils sont
affectés. Nous développons un algorithme basé sur la
décomposition de Benders qui surpasse les méthodes
exactes de l’état de l’art. L’algorithme considère une
approche en deux étapes et ainsi qu’un algorithme efficace
pour la séparation des coupes de Benders. Cette méthode
est évaluée sur plus de 230 instances de benchmark avec
jusqu’à 238,025 clients et sites. De nombreuses instances
sont résolues à l’optimalité pour la première fois ou ont
leur meilleure solution connue améliorée.
Deuxièmement, nous explorons le problème du p-centre
qui cherche à minimiser la plus grande distance entre un
client et l’installation ouverte qui en est la plus proche.
Nous comparons d’abord les cinq principales formulations
MILP de la littérature. Nous étudions la décomposition

de Benders et nous proposons également un algorithme
exact basé sur une procédure de partionnement des clients
reposant sur la structure du problème. Nous avons
été en mesure de résoudre des instances avec jusqu’à
744,710 clients et sites. Toutes les méthodes proposées
sont comparées à l’état de l’art dans des instances de
benchmark. Les résultats obtenus sont analysés, mettant
en évidence les avantages et les inconvénients de chaque
méthode.
Enfin, nous étudions un problème robuste du p-centre en
deux étapes avec une incertitude sur les demandes et les
distances des nœuds. Nous introduisons la reformulation
robuste du problème basée sur les cinq principales
formulations déterministes MILP de la littérature. Nous
prouvons que seul un sous-ensemble fini de scénarios de
l’ensemble d’incertitude infini peut être pris en compte
sans perdre l’optimalité. Nous proposons également un
algorithme de génération de colonnes et de contraintes et
ainsi qu’un algorithme de branch-and-cut pour résoudre
efficacement ce problème. Nous montrons comment
ces algorithmes peuvent également être adaptés pour
résoudre le problème robuste d’une seule étape. Les
différentes formulations proposées sont testées sur des
instances générées aléatoirement et sur un cas d’étude de
la littérature.

Title: Exact solution methods for large-scale discrete p-facility location problems.
Key words: Operations research, combinatorial optimisation, robust optimisation, discrete location, p-centre,
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Abstract: This thesis focuses on the exact solution of the
NP-hard problems p-median and p-center, combinatorial
optimization problems that quickly become difficult to
solve as the instance size increases. These discrete
location problems involve opening a defined number p
of facilities and then allocating to them a set of clients
according to an objective function to be minimized.
Firstly, we study the p-median problem, which seeks
to minimize the sum of distances between clients and
the open facilities to which they are allocated. We
develop an algorithm based on Benders decomposition
that outperforms state-of-the-art exact methods. The
algorithm considers a two-stage approach and an efficient
algorithm for separating Benders cuts. The method has
been evaluated on over 230 benchmark instances with up
to 238,025 clients and sites. Many instances are solved
to optimality for the first time or have their best known
solution improved.
Secondly, we explore the p-center problem, which seeks
to minimize the largest distance between a client and
its nearest open facility. We first compare the five
main MILP formulations in the literature. We study

the Benders decomposition and also propose an exact
algorithm based on a client clustering procedure based on
the structure of the problem. All the proposed methods
are compared with the state-of-the-art on benchmark
instances. We have been able to solve instances with
up to 744,710 clients and sites. The results obtained are
analyzed, highlighting the advantages and disadvantages
of each method.
Finally, we study a robust two-stage p-center problem
with uncertainty on node demands and distances. We
introduce the robust reformulation of the problem based
on the five main deterministic MILP formulations in the
literature. We prove that only a finite subset of scenarios
from the infinite uncertainty set can be considered without
losing optimality. We also propose a column and
constraint generation algorithm and a branch-and-cut
algorithm to efficiently solve this problem. We show how
these algorithms can also be adapted to solve the robust
single-stage problem. The different proposed formulations
are tested on randomly generated instances and on a case
study drawn from the literature.
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