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Résumé :
Les outils de calcul scienti�que jouent un rôle

déterminant dans la modélisation du comporte-
ment des réacteurs nucléaires. La simulation nu-
mérique permet de pallier la pénurie de résul-
tats expérimentaux, en particulier en régime non
stationnaire (ou cinétique). Traditionnellement,
la caractérisation du comportement des c÷urs
de réacteurs nucléaires s'appuie sur l'utilisation
d'outils de simulation déterministes. Ces codes se
fondent sur la résolution numérique de systèmes
d'équations discrétisées. Ils permettent d'obtenir
rapidement des résultats approchés, dont la vali-
dité doit être établie en les comparant à des ré-
sultats de référence. La simulation Monte-Carlo,
quant à elle, n'introduit quasiment aucune erreur
de modélisation et joue ainsi le rôle de méthode
de référence.

Une simulation Monte-Carlo consiste à
échantillonner un grand nombre de trajectoires
aléatoires de neutrons dans le réacteur, suivant
des lois de probabilité qui dépendent des lois phy-
siques sous-jacentes. La méthode de Monte-Carlo
permet un traitement exact, mais � lent � du sys-
tème étudié, car l'incertitude statistique sur les
résultats est inversement proportionnelle à la ra-
cine carrée du nombre d'histoires simulées. L'in-
certitude peut être réduite en modi�ant les lois
d'échantillonnage, de manière à en préserver le
comportement moyen tout en modi�ant la va-
riance. On parle alors de méthodes de réduction
de variance.

Jusqu'à très récemment, la simulation
Monte-Carlo était appliquée uniquement aux pro-
blèmes stationnaires, à cause du coût numé-
rique de son application à la cinétique. En ef-
fet, la séparation entre l'échelle de temps des
neutrons, dont la durée de vie est très courte,
et celle des précurseurs (produits de �ssion qui
peuvent émettre des neutrons par décroissance),
pose un dé� considérable. De récentes avan-
cées techniques et algorithmiques permettent ce-
pendant d'étendre l'utilisation des simulations
Monte-Carlo au domaine des calculs cinétiques.

Les méthodes de réduction de variance af-
fectent tous les moments statistiques d'ordre su-
périeur ou égal à deux. De récents travaux ont
mis en avant di�érents phénomènes apparaissant
dans les simulations cinétiques et trouvant leur
origine dans les corrélations spatio-temporelles
qui existent entre neutrons appartenant à la
même chaîne de �ssion. Par exemple, le phéno-
mène du � clustering � décrit l'existence de col-
lections de neutrons spatialement corrélées for-
mant des � amas spontanés � à courte distance.

L'objectif de ce travail de thèse est de ca-
ractériser l'interaction entre les méthodes de ré-
duction de variance et les corrélations spatio-
temporelles, et l'e�et de cette interaction sur la
�abilité des incertitudes des simulations Monte-
Carlo cinétiques.

Pour ce faire, cette thèse est articulée sui-
vant deux axes. Dans une première partie, nous
considérons un modèle simpli�é de réacteur nu-
cléaire, décrit à l'aide de la théorie de la di�u-
sion. Nous obtenons une caractérisation analy-
tique de la fonction de corrélations à deux points,
décrivant les corrélations entre paires de parti-
cules, mais également d'autres observables d'in-
térêt, telles que la distribution des � familles �
des neutrons dans les chaînes de �ssion. Notre
étude couvre à la fois le cas de l'évolution de
la population neutronique sans contrainte exté-
rieure, et celui de l'évolution sous contrainte, qui
représente un modèle simpli�é de contrôle de la
population sur la cinétique des neutrons.

Dans un second temps, nous sortons du cadre
de la théorie de la di�usion. Un nouveau modèle,
représentatif du comportement des simulations
Monte-Carlo cinétiques telles que réalisées dans
le code de référence TRIPOLI-4®, développé au
CEA, permet d'évaluer l'impact de di�érents al-
gorithmes Monte-Carlo sur les corrélations entre
neutrons, dans l'optique de faciliter la détermi-
nation d'une stratégie de simulation optimale au
sens de la réduction des corrélations, autant dans
le cas cinétique que stationnaire.
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Abstract:
Numerical simulation tools play a crucial role

in modelling the behaviour of nuclear reactors.
Numerical simulations mitigate the lack of exper-
imental data, in particular in non-stationary (or
kinetic) regime. The characterization of the be-
haviour of nuclear reactors customarily relies on
deterministic simulation tools. These codes nu-
merically solve systems of discretized equations.
Approximate results can be rapidly obtained, but
their validity must be veri�ed against reference
calculations. Monte Carlo simulations, on the
other hand, introduce almost no modelling er-
rors, and thus play the role of references.

Monte Carlo simulations consist in sampling
a large number of random trajectories of neutrons
following probability laws derived from the un-
derlying physical laws. Monte Carlo methods are
�exact� but slow, because the statistical uncer-
tainty is inversely proportional to the square root
of the number of simulated histories. The statis-
tical uncertainties can be reduced by modifying
the sampling laws so that the average behaviour
is preserved while the variance is modi�ed. We
thus speak of variance-reduction methods. Un-
til recently, Monte Carlo simulations have only
been applied only to stationary problems, due to
their extremely high computational cost for non-
stationary problems. In fact, the time-scale sep-
aration between the neutron lifetime (which is
very short) and the precursor decay time (lead-
ing to further neutrons that are crucial for the re-
actor dynamics) represents a hard challenge for
numerical simulation. However, recent techni-
cal and algorithmic advances have changed the
status quo, enabling the use of Monte Carlo sim-
ulation for kinetics.

Variance-reduction methods a�ect all higher
order statistical moments. Recent work has high-

lighted peculiar phenomena in kinetic simula-
tions, originating from space-time correlations
between neutrons belonging to the same �ssion
chain. For instance, the �clustering� phenomenon
describes the emergence of spontaneous �neutron
aggregation� mechanisms, which are ultimately
responsible for the appearance of a wild patchi-
ness in the spatial neutron density.

In this thesis, we characterize the interaction
between variance reduction methods and space-
time correlations in kinetic Monte Carlo methods,
as well as the e�ects of this interaction on the re-
liability of uncertainty estimation for this class of
simulations.

For this purpose, this thesis is divided in two
parts. First, we consider a simpli�ed model of
a nuclear reactor, described by di�usion theory.
We obtain analytical solutions for the pair cor-
relation function describing correlations between
pairs of particles, as well as for other observables
of interest, such as the distribution of neutron
�families� within �ssion chains. Our investigation
covers both the case of the free evolution of the
neutron population, and the case of the evolu-
tion under constraint, which mimics the e�ect of
population control on the neutron and precursor
dynamics.

In the second part of the manuscript, we in-
troduce a more realistic model, representative of
the behaviour of kinetic Monte Carlo simulations
realized in reference particle-transport codes such
as TRIPOLI-4®, developed at CEA. This inves-
tigation helps to evaluate the e�ects of several
Monte Carlo variance-reduction and population-
control algorithms on neutron correlations, with
the aim of devising an optimal simulation strat-
egy for quenching correlations, in stationary and
non-stationary simulations.
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1 -Introduction

In the context of nuclear reactor safety, the development of predictive, reliable and fast simulation
tools for multi-physics simulations coupling neutron �ux solvers with thermal-hydraulics and thermo-
mechanics codes, under stationary and transient conditions, is the subject of very extensive research
programs in several leading institutions1.

The neutron density, i.e. the average number of particles in phase space2, obeys the Boltzmann
equation [2]. Analytical solutions for this equation are beyond reach, except for highly simpli�ed con�-
gurations ; numerical simulations are thus mandatory. Thanks to the linearity of the Boltzmann equation
and to the intermediate dimension of the phase space (neither too high nor too low), deterministic
and Monte Carlo methods can be both successfully used to obtain numerical solutions, each presenting
speci�c advantages and drawbacks.

The Boltzmann equation in non-stationary conditions is traditionally solved using deterministic me-

thods, which rely on the discretization of the phase space. Because of the extremely large number of
unknowns (of the order of ∼ 1014) that would result from a reasonably �ne discretization of space, direc-
tion and time variables, most state-of-the-art deterministic simulation codes adopt the so-called two-step
approach, whereupon the results of a �nely-discretized calculation at the scale of a fuel assembly (or a
collection of fuel assemblies) in stationary conditions is used to prepare the homogenized and condensed
nuclear data that are then injected into time-dependent simpli�ed transport solvers with coarse energy
discretization for simulations at the full-core scale [3�5]. Often, a factorization of the phase space is
introduced, separating time with respect to the classical phase-space variables [4, 6, 7].

Deterministic solvers are computationally fast, but they achieve their speed at the expense of introdu-
cing discretization biases and reactor-dependent models (e.g., self-shielding) that call for the validation
of this class of numerical tools against high-�delity simulations and experimental measurements [8].
Experimental data concerning nuclear reactors in the stationary state are generally available, although
somewhat scarce since in most cases they belong to plant operators and are thus not directly accessible.
In this respect, remarkable initiatives aimed at establishing international benchmarks for code validation
(including depletion and multi-physics coupling) have been recently promoted, such as VERA (Virtual
Environment for Reactor Applications)3, BEAVRS (Benchmark for Evaluation And Validation of Reac-
tor Simulations)4, and Watts Bar (TVA Watts Bar Unit 1 Multi-Physics Benchmark)5. The situation is
de�nitely worse for data pertaining to non-stationary regimes, such as operational transients following
the insertion of control rods, or experimental campaigns aimed at probing the reactor behaviour under
external solicitations, which are seldom available. Extreme cases, such as accidental transients which
might lead to fuel degradation, are dangerous and not directly accessible by experimental means, in spite
of their relevance for the validation of simulation codes [9].

In view of these considerations, Monte Carlo simulations play a special role, in that they do not su�er
from discretization errors [10] and can thus provide a high-�delity `golden standard' for the validation of
deterministic solvers ; furthermore, they become de facto mandatory to assess the biases of deterministic
solvers in non-stationary reactor regimes.

1See for instance the initiatives promoted in the USA, such as the CESAR project (cesar.mcs.anl.gov) or theCASL consortium (www.casl.gov), and the European projects FP7 HPMC and McSAFE (cordis.europa.eu/
projects).2The (classical) phase space includes position (three variables) and velocity (three variables). Velocity can beequivalently expressed using direction (two variables) and energy (one variable).3https://world-nuclear-news.org/Articles/Federal-funding-for-reactor-modelling-initiative.4http://crpg.mit.edu/sites/default/files/css_injector_images_image/BEAVRS_2.0.2_spec.pdf.5https://www.oecd-nea.org/jcms/pl_32202/tva-watts-bar-unit-1-multi-physics-benchmark.
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1.1 . Monte Carlo simulations : from stationary to time-dependent

Monte Carlo simulations for particle transport problems are based on the random sampling of the
particles' trajectories in the phase space. For the applications of interest in reactor physics, particles
are primarily neutrons, delayed-neutron precursors and photons. In this thesis, we will focus on neutrons
and precursors. Their random interactions with the surrounding media are sampled in accordance with
the probability laws given in the nuclear data libraries ; particle tracking is determined by computing
the intersections of their �ights between collisions with the cells of the geometrical model. Trajectories
are followed until particles disappear, either by capture events or by leaking from the boundaries of
the system. Along each trajectory, physical observables such as reaction rates are estimated by setting
appropriate `tallies' and collecting statistics (mean and variance) over a su�ciently large ensemble of
sampled trajectories. The sample average over particle histories yields unbiased estimates of the expected
value of the sought observables, from the law of large numbers ; the sample variance yields the associated
statistical uncertainty of the sample average, from the central limit theorem [10]. The variance of the
sample average is inversely proportional to the number of sampled histories, which makes Monte Carlo
simulations typically (much) slower than deterministic solvers. However, this limitation is compensated
by the unbiasedness of the obtained estimates : deterministic and Monte Carlo codes complement each
other and are equally necessary.

Mainly due to considerations related to the required simulation time, combined with limited computer
power, in reactor physics Monte Carlo codes have been long applied almost exclusively to the solution of
stationary problems in isothermal conditions. Recent advances in both algorithms and computer power
have however paved the way towards a whole range of new applications for Monte Carlo simulations,
speci�cally aimed at extending the perimeter of applicability of these methods to multi-physics problems.
Enormous progress has been achieved e.g. in the �eld of depletion calculations, where the behaviour
of the neutron density is coupled to the transmutation of the media under irradiation, whose evolution
is ruled by the generalized Bateman equations : Monte Carlo codes have been e�ciently coupled with
(deterministic) solvers for the Bateman equations, and the stability of the resulting simulation schemes
has been thoroughly investigated [11�16].

Over the last ten years, there has been a growing interest in the development of a novel class of
Monte Carlo methods devoted to kinetic (i.e., time-dependent) simulations, whose computing time was
prohibitively high until quite recently. Prompted by the pioneering work by Sjenitzer and Hoogenboom [17,
18], ingenuous variance-reduction and population-control methods targeted at e�ciently handling time-
dependent problems have been �rst tested on simpli�ed con�gurations, and then successfully extended
to realistic reactor models with thermal-hydraulics feedback e�ects [19�26].

1.2 . Correlations and �uctuations in kinetic Monte Carlo simulations

Due to the still relatively recent appearance of these breakthroughs, a comprehensive framework for
the investigation of time-dependent Monte Carlo simulations for reactor physics applications is yet to
be established, despite many promising early investigations. The accuracy and precision of Monte Carlo
methods is crucial, because they are intended as a golden standard with respect to which simpli�ed
approaches are to be compared. In particular, the reliability of the sought results is only as good as
the one of the associated con�dence intervals, which are customarily estimated by inference techniques,
i.e. collecting the sample variance over Monte Carlo histories. The sample variance captures the �uctua-
tions in the tallies due to the inherently stochastic nature of particle histories. If the particle histories
are independent, and the �uctuations are well-behaved, then the quanti�cation of the sample variance is
straightforward. However, kinetic simulations pose peculiar challenges in this respect.

To begin with, the initial neutron and precursor source for kinetic problems often corresponds to the
equilibrium (stationary) reactor condition, which means that the particles beginning the time-dependent
simulation inherit the correlations that are known to a�ect the eigenvalue calculations needed to sample
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Figure 1.1 : Snapshots of the spatial positions of neutrons at equilibrium in eigenvalueMonte Carlo simulations. Left : correlations are strong, and neutrons are clustered ; right :correlations are weak, and neutrons are uniformly distributed in space.

the equilibrium particle con�guration [10]. When the number of simulated particles is low, these cor-
relations are enhanced, and manifest themselves in the form of spontaneous aggregation of particles
(`clustering'), resulting in patchy spatial distributions [27] such as those illustrated in Fig. 1.1. Further-
more, kinetic Monte Carlo simulations come with their own sets of problems : particle histories may
`branch' because of �ssion events inducing secondary neutrons, which increases the overall variance and
is responsible for correlations in time and in space, even when the reactor is critical. These e�ects
might in some extreme cases lead to an unbounded growth of the variance over time, dubbed critical

catastrophe [28].

In the following, we provide a concise overview of the state-of-the-art knowledge on these issues, the
key open questions and their relevance for applications.

1.2.1 . Correlations in eigenvalue Monte Carlo simulations

As illustrated in the following chapters, the equilibrium neutron and precursor population can be
sampled by Monte Carlo methods simulating �ssion chains over several generations (a generation being
de�ned as the neutron history between birth by �ssion and death by leakage or absorption), until the
stationary regime is attained [10]. At each generation, the genealogy of any neutron can be thus traced
back to an ancestor, and the set of neutrons sharing a common ancestor forms a family : events pertaining
to the same family will be correlated. Such correlations a�ect both the statistics of a tally over generations
at a given spatial cell, and the statistics of tallies at distinct spatial cells within a generation : these two
points of view are intimately related.

The assessment of generational correlations is a long-lasting problem. In eigenvalue Monte Carlo
simulations, the average and the variance are typically estimated over successive generations by assuming
that tallies collected in each generation are identically and independently distributed. This corresponds to
an ergodic averaging procedure, by analogy with the ergodic assumption in equilibrium statistical physics.
While the tallies are indeed identically distributed (after convergence has been reached), they are also
correlated, in view of the previous considerations, and this a�ects the estimation of their uncertainty.

Brissenden and Garlick �rst noted that neglecting generational correlations when estimating the
variance using ergodic averaging leads to an underestimation of the variance of the tallies [29] : one has
thus to distinguish between the (underestimated) apparent variance obtained through ergodic averaging
and the true variance that would have been obtained through ensemble averaging over a set of fully
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independent replicas6. Ueki et al. [30] showed that the discrepancy between apparent and true variance
may be signi�cant for local (i.e., spatially distributed) tallies. They also showed that the convergence
rate of the apparent variance with respect to the number of simulated particles deviated from the
scaling expected for independent histories, although later Herman demonstrated that the usual scaling
is asymptotically recovered for large population sizes [31]. Min-Jae et al. found that the ratio of the
apparent-to-true variance is not uniform in space [32].

Methods aiming at predicting the true variance based on the apparent variance have been proposed,
most often relying on simplifying assumptions : Yamamoto et al. modelled the underestimation of the
variance of local tallies and its dependency on space and tallying bin size [33]. Sutton applied a discretized
phase-space approach to understand the spatial non-uniformity of the apparent-to-true variance ratio [34].
Miao et al. computed the auto-correlation coe�cients between spatial tallies to analyse the behaviour of
generational correlations [35�37].

The impact of spatial correlations in eigenvalue Monte Carlo simulations was recently highlighted
by Dumonteil et al., who �rst pointed out the emergence of neutron clustering [27] ; diagnostic tools to
detect spatial correlations were later developed by Nowak et al. [38] building upon previous �ndings [28].
Although such spatial correlations are not supposed to alter the average tallies, Cosgrove et al. have
shown that a potentially more problematic situation arises when Monte Carlo simulations are coupled to
a fuel depletion solver, which might amplify existing numerical instabilities [12, 39] and induce biases on
the average observables [40]. Sutton has proposed to relate the behaviour of neutron clustering to the
statistics of the families, observing that a smaller number of independent families (or a larger family size)
induces stronger correlations [41, 42]. This research �eld is still unsettled, and somewhat contradictory
statements may be found in the literature. Some authors have suggested that clustering might have
an impact also on the average tallies, beside a�ecting the estimation of the variance [43, 44]. In stark
contrast, other authors have suggested that spatial correlations have no e�ect on the estimation of
statistical uncertainty [45].

1.2.2 . Correlations in time-dependent Monte Carlo simulations

Time-dependent Monte Carlo simulations for reactor physics applications have only recently been
introduced, which explains why the analysis of the behaviour of correlations in this class of problems is
still in its infancy. Furthermore, despite e�ective advances in variance-reduction methods, the computing
cost of kinetic problems is still very high, so that the investigation of correlations is most often carried
out in simpli�ed models with varying degrees of approximations.

Dumonteil et al. initially assessed spatial correlations at a given observation time by disregarding
the contributions of precursors and assuming unbounded media [27]. The e�ects of bounded media on
space-time correlations were later taken into account [46, 47], leading to the development of a more
re�ned model where the neutron population is kept constant to mimic the impact of population-control
methods [28]. An interesting feature of these models is that most of their �ndings carry over also to
generation-based eigenvalue problems, if one replaces time by the discrete generation index [38] : this
also means that the open questions concerning the latter translate into open questions concerning the
former. Unsurprisingly, the main �nding is that clustering occurs due to �ssion events, similarly as in
the case of eigenvalue problems. If no population control is applied, the variance of a critical system
will grow unbounded, eventually leading to an abnormal termination of the kinetic simulations (critical
catastrophe) ; population control averts the critical catastrophe. The impact of precursors (in unbounded
media, and in the absence of population control) has been examined by Houchmandzadeh et al. [48],
who have shown that the amplitude of the correlations was dramatically quenched and their evolution in
time considerably slowed down for systems close to criticality.

6There is no formal restriction preventing from using independent replicas in the context of power iteration.The main reason that led Monte Carlo practitioners to rely on ergodic averaging stems from considerationsof computational cost : independent replicas would involve a total cost much higher than ergodic averaging,and this was prohibitive in the early history of Monte Carlo methods.
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All these investigations are restricted to spatially homogeneous media and simpli�ed transport models,
which hinders the immediate applicability of these �ndings to more realistic applications, although some
relevant general tendencies can be successfully extracted. An even more serious limitation is that the
models mentioned above rely on the hypotheses of analog Monte Carlo simulations, excluding variance-
reduction techniques. In view of its utmost importance for production Monte Carlo codes, the interference
between non-analog Monte Carlo methods, variance-reduction and population-control techniques and
the behaviour of correlations in kinetic problems calls for a deeper understanding, as witnessed by recent
contributions [49].

1.3 . Goal and structure of the thesis

Based on these considerations, in this thesis we set out to establish a uni�ed and coherent framework

for the analysis of �uctuations and correlations in kinetic Monte Carlo simulations, with the goal of
ensuring the reliability of the statistical uncertainty estimates in such calculations. In particular, we
will focus on the non-trivial interplay between the behaviour of �uctuations and correlations and the
application of variance-reduction and population-control techniques, as well as sampling strategies used
for non-analog Monte Carlo simulations. Our investigation will cover both algorithms devoted speci�cally
to time-dependent problems and algorithms devoted to (stationary) eigenvalue problems, by virtue of
their central role for the sampling of the equilibrium neutron and precursor population. The results of our
analysis and the novel approaches that we have chosen in order to achieve our goals will be presented in
details in the remainder of this manuscript.

This work is structured as follows :

• First, in Chapter 2, we present the general background on Monte Carlo simulations in reactor
physics, with special emphasis on the methods used for kinetic problems.

• In Part I (Chapters 3 and 4), we shall present our results in a simpli�ed di�usion-based analog
kinetic Monte Carlo simulation, where a population of neutrons and precursors evolves in time
following a Branching Brownian Motion. We will characterize �ssion-induced correlations in such a
system and derive characteristic quantities in order to facilitate the analysis of more realistic simu-
lations. A focus on the e�ects of an idealized population-control mechanism in analog simulations
will be introduced.

• In Part II (Chapters 5 and 6), we shall present our results regarding non-analog kinetic Monte
Carlo simulations, making use of a broad range of variance-reduction and population-control tech-
niques. We will propose suitable estimators for the analysis of correlations in such systems, and we
will discuss the e�ects of variance-reduction and population-control methods on �uctuations and
correlations.

In Chapter 2 we will brie�y recall the main concepts of neutron transport in reactor physics, in a
general time-dependent setting of the Boltzmann equation, including the contributions of the delayed-
neutron precursors. Simpli�ed formulations of the Boltzmann equations, encompassing the multi-group
and di�usion approximations, will be illustrated. Next, we will introduce the basic principles of Monte
Carlo simulations, both analog and non-analog, to estimate the solution of the time-dependent Boltzmann
equation ; we will in particular discuss the most important variance-reduction and population-control
techniques that will be used in the remainder of the manuscript. Special cases of Monte Carlo algorithms
to solve the multi-group and di�usion versions of the Boltzmann equations will be detailed.

Chapter 3 will introduce a di�usion-based simpli�ed kinetic Monte Carlo simulation scheme based
on Branching Brownian Motion that includes delayed events in order to account for precursors. We
will analyze �ssion-induced spatial correlations between particles using the space-dependent moment
equations, based on the Pál-Bell backward formalism. Within the framework of this simpli�ed transport
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model, we will derive exact expressions for the typical length and time scales of the correlations in this
class of simulations.

A step toward the characterization of population-control algorithms will be provided in Chapter 4 by
enforcing idealized constraints on neutrons and precursors, still within the framework of di�usion-based
simpli�ed kinetic Monte Carlo simulations. Relying on the forward formulation of the master equation,
we will establish moment equations whenever possible for the particle statistics, and derive analytical (or
semi-analytical) expressions for the key observables. Such quantities will be compared to Monte Carlo
simulations, used as a reference, and to the results obtained without population control. In addition, we
shall complement the analysis of the moment equations by a discussion on the statistical behaviour of
neutron `families' de�ned over �ssion chains.

In Chapter 5, we will turn to the more realistic case of non-analog Monte Carlo simulations in
the framework of the multi-group Boltzmann equation. The �rst step of our analysis will consist in
examining the initial particle source corresponding to a critical reactor, which is often required in time-
dependent problems. This source depends on a preliminary stationary Monte Carlo simulation to solve
the k-eigenvalue problem and access the fundamental eigenstate. The power iteration algorithm used to
converge towards the fundamental mode is itself prone to non-trivial e�ects due to inter-generation and
intra-generation correlations, which we will investigate extensively in view of their impact on the source
for kinetic simulations. For this purpose, we will use a few benchmark con�gurations including spatially
homogeneous and heterogeneous systems. We will assess the impact of various variance-reduction and
population-control techniques on correlations in stationary Monte Carlo methods, relying on usual and
novel tallies.

In Chapter 6, we will �nally examine the case of non-analog kinetic Monte Carlo simulations, still
within the framework of the multi-group Boltzmann equation. We will �rst consider a simpli�ed bench-
mark con�guration that will allow extracting the key tendencies of correlations : in particular, we will
examine the impact of precursors, which will be shown to play a key role in determining the amplitude
and the spatial behaviour of the correlations. Then, we will revisit the more realistic benchmark con�gu-
rations introduced in Chapter 5. We will assess the correlations of the equilibrium neutron and precursor
populations, as determined by running the power iteration described in the previous chapter, and then
analyze time-dependent simulations. Three di�erent regimes will be explored : critical, subcritical and
supercritical.

Conclusions will be �nally drawn in Chapter 7, where we will also present the main perspectives for
future work.

1.4 . Published works

Part of the material presented in this thesis has previously appeared in the following publications :

• T. Bonnet, D. Mancusi, and A. Zoia, "Space and time correlations for di�usion models with prompt
and delayed birth-and-death events", Phys. Rev. E, vol. 105, no. 6, p. 064105, Jun. 2022.[Online].
Available : https://link.aps.org/doi/10.1103/PhysRevE.105.064105

• T. Bonnet, D. Mancusi, and A. Zoia, �The Statistics of Family Histories in Kinetic Monte Carlo
Simulations,� in Proceedings of M&C 2023 International Conference on Mathematics and Com-
putational Methods Applied to Nuclear Science and Engineering, Niagara Falls, Canada, Aug.
13-17th, 2023.

• H. Belanger, T. Bonnet, D. Mancusi, and A. Zoia, �The E�ects of Branchless Collisions on Neutron
Clustering� in Proceedings of M&C 2023 International Conference on Mathematics and Computa-
tional Methods Applied to Nuclear Science and Engineering, Niagara Falls, Canada, Aug. 13-17th,
2023.
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• T. Bonnet, H. Belanger, D. Mancusi, and A. Zoia, "The e�ect of branchless collisions and popu-
lation control on correlations in Monte Carlo power iteration", submitted to Nuclear Science and
Engineering. Preprint avalaible : https://arxiv.org/abs/2309.03767

Furthermore, some of the results have been or will be presented (oral talks) at the following international
conferences and workshops :

• International Conference on Transport Theory (ICTT), Bertinoro, Italy, Jul. 10-16th, 2022.

• M&C 2023 International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering, Niagara Falls, Canada, Aug. 13-17th, 2023.

• Fourth annual workshop "Mathématiques pour la neutronique", GdR MaNu, INSTN/Saclay, France,
Dec. 7th, 2022.

• Invited talk at the Inaugural meeting, GdR Branchement, Institut de Mathématiques de Toulouse,
France, Nov. 8-10th, 2023.

25

https://arxiv.org/abs/2309.03767




2 -Time-dependent Monte Carlo simulation for reactor

physics applications

In this chapter, we introduce the question of correlations in time-dependent neutron-transport Monte
Carlo simulations. We start by recalling the basic features of the time-dependent Boltzmann equation,
which governs neutron transport in the kinetic regime, and introducing notations and concepts that will
be useful in the following. Then, we illustrate how Monte Carlo methods can be used in order to solve
the time-dependent Boltzmann equation, and brie�y review the key variance-reduction and population-
control strategies that have been recently proposed to cope with the distinct challenges of kinetic Monte
Carlo simulations.

2.1 . A brief introduction to neutron-transport problems

2.1.1 . Neutron-matter interactions

Neutrons are neutral particles that interact with matter only through collisions with the surrounding
nuclei, and otherwise stream freely. Although the neutron is unstable, and spontaneously decays to a
proton, the typical decay time in void is of the order of ten minutes, a timescale which is much longer than
the typical neutron life-time within nuclear systems, i.e., shorter than 10−2 s for the longest-lived particles.
For this reason, the spontaneous decay can be safely neglected for the applications to reactor physics that
we will examine in the following. Since the energy range of interest for reactor physics is conventionally
assumed to lie between 20 MeV and 10−5 eV, relativistic e�ects at high energy can be neglected in most
applications. Neutron-matter interactions should in principle be described using quantum mechanics,
since the de Broglie wavelength of the neutron ranges between 10−13 cm for neutrons at high energy
(say at 20 MeV) and 10−8 cm for neutrons that are in thermal equilibrium with the traversed medium
(say at 0.025 meV) : these scales are comparable, respectively, with the typical radius of nuclei and
with the typical distance over which molecular bonds develop. However, the common practice in reactor
physics is that the quantum-physics aspects required for collision events are pre-computed by nuclear
physics specialists and condensed in tabulated data that can be accessed and interpolated as needed,
including interaction probabilities and the probability of selecting a speci�c reaction channel (e.g., elastic
or inelastic scattering, capture or �ssion), energy-angle distributions for the outgoing neutrons, and the
associated yields. Thus, it can be safely assumed that neutrons evolve in a classical phase space with
coordinates P = {r,Ω, E, t}, where r is the position vector, Ω is the direction vector, E is the energy,
and t is time.

Within this framework, the probability that an incident neutron interacts with a nucleus i in the
medium via reaction channel k is assigned by introducing the notion of partial microscopic cross sections
σi,k(E), that carry units of an area (and are usually measured in units of barns, where 1 b = 10−24 cm2).
The microscopic cross sections have a highly intricate dependence on the energy E, which basically stems
from the fact that they condense all the complex quantum-physics interaction laws, as mentioned earlier.
The sum over all the reaction channels k yields the total microscopic cross section for a given nuclide,
namely,

σi,t(E) =
∑
k

σi,k(E), (2.1)
so that pi,k(E) = σi,k(E)/σi,t(E) expresses the probability of choosing the reaction channel k, condi-
tioned on the event of having a collision with the nuclide i.

The allowed reactions channels are often grouped into three categories : scattering, sterile absorption,
and �ssion [2] :

• Scattering can be either elastic or inelastic, and most often leads to a unit yield ; reactions of the
class (n, xn), with x = 2, 3 or even 4 are possible, albeit rarer in the energy range of interest
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for reactor physics. The energy-angle spectrum of the emerging neutrons is in most cases rather
involved, and strongly depends on the nature of the collided nuclide. In the remainder of the
manuscript, we will mainly focus on the simple case of isotropic scattering with unit yield.

• A neutron undergoing a capture (i.e., sterile absorption) stays within the collided nuclide and
thus disappears with respect to the transport process : the neutron history is terminated. Other
particles might be emitted, such as photons or charged particles, but here we will exclusively focus
on neutrons, and such events will be neglected.

• Upon �ssion, the incident neutron is absorbed and splits the target nucleus into (most often) two
`fragments'. Contrary to sterile absorption, �ssion leads to the emission of secondary neutrons. The
number of emitted neutrons is random. On average, νp so-called `prompt' neutrons of high energy
(e.g. around 2 MeV for Uranium 235) are emitted almost immediately after the �ssion event. It is
reasonable to assume that the angular distribution of the prompt neutrons is isotropic. The shape
of the energy spectrum χp(E) can be approximated with simple analytical forms, such as the one
proposed by Watt [50]. The �ssion fragments are left in excited states, which generally de-excite
via β− decay. In some cases, additional neutrons may be emitted along the decay chain : since
these neutrons are emitted over the timescale of β− decay (1�10 s for Uranium 235), they are
dubbed `delayed neutrons'. Correspondingly, due to their role, such excited states take the name
of delayed-neutron precursors. The number of created precursors per �ssion event is random, with
average νd. The �ssion fragments are heavy and lose almost all their kinetic energy within microns
with respect to the �ssion event : for this reason, it is assumed that delayed neutrons are emitted
at the same location as the prompt neutrons originating from the same �ssion event. The energy
spectrum χd(E) of delayed neutrons has a shape that is qualitatively similar to the one of prompt
neutrons, but with a sensibly smaller average energy, of the order of 400 keV for Uranium 235.
The angular distribution can again be taken as isotropic. The total number of possible precursors
is about 300 : for the sake of simplicity, in nuclear data libraries they have been grouped into a
small number of `families' (6 or 8), each family j having spectrum χjd(E), decay constant λj and
yield νjd, with νd =

∑
j ν

j
d. The ratio β = νd/(νp+ νd) is small, of the order of 0.6% for Uranium

235.

In general, a medium is composed of many di�erent nuclides, each having a total microscopic cross
section σi,t(E) and a concentration Ni(r) (usually in units of nuclides per cubic centimeter). The pro-
bability of selecting a given nuclide upon a collision at r induced by a neutron of energy E is thus given
by

pi(r, E) =
Ni(r)σi,t(E)∑
j Nj(r)σj,t(E)

. (2.2)
The interaction probability with the medium per unit �ight length for a reaction k is then given by the
partial macroscopic cross section Σk, carrying units of inverse length (usually, cm−1), i.e.,

Σk(r, E) =
∑
i

Ni(r)σi,k(E). (2.3)
Finally, the total interaction probability per unit �ight length within a medium is given by the total
macroscopic cross section

Σt(r, E) =
∑
k

Σk(r, E). (2.4)
It is assumed that the media of interest for reactor physics applications are su�ciently isotropic at the
spatial scales seen by the neutrons, so that in practice the cross sections do not depend on the direction
of �ight Ω.

Since neutrons freely stream within the medium and only interact with nuclides upon collision, with
Poisson probability Σt(r, E)ds for a �ight of in�nitesimal length ds at position r, in direction Ω and
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Figure 2.1 : Example of a fission chain as a succession of scattering, capture and fissionevents, including the precursor decay and the emission of delayed neutrons. The chainis renewed at each fission event, upon which a new branch of the chain is created. Blackdots denote neutrons, red dots denote precursors, and connecting lines denote particleflights between collision events.
with energy E, it follows that the �ight lengths s between collision events are distributed according to a
non-homogeneous exponential probability density f(s) with parameter Σt(r, E), namely,

f(s) = Σt(r+ sΩ, E)e
−
∫ s

0
Σt(r+ s′Ω, E)ds′

. (2.5)
When the material properties of the medium are spatially homogeneous, Eq. (2.5) becomes a simple
exponential probability density function.

The overall picture of the physical mechanisms recalled here shows that the succession of �ights and
collisions forms a chain of stochastic events, with �ssion playing a special role in that new `branches'
might appear. For illustration, the stochastic dynamics of a representative �ssion chain is provided in
Fig. 2.1. The evolution of the �ssion chains depends on the balance between the loss and production
events, which is quanti�ed using the multiplication factor

k =
production

absorption+ leakage
. (2.6)

If k > 1 the system is said to be supercritical and the average number of neutrons will grow in time ;
if k < 1 the system is said to be subcritical and the average number of neutrons will decrease in time ;
�nally, if k = 1 the system is said to be critical and the average number of neutrons will be stationary
in time.

2.1.2 . The time-dependent Boltzmann equation

In order to characterize the stochastic evolution of the �ssion chains, equations can be established for
the statistical moments of neutron and precursor populations. In particular, the conservation law (expres-
sing the net change as the balance between creations and losses) for the neutron density n(r,Ω, E, t),
i.e., the average number of neutrons in an elementary volume in phase space, and the precursor density
cj(r, t) for each family j = 1, 2, · · · ,Mf , Mf being the number of families, leads to the time-dependent
Boltzmann equation. The product of n(r,Ω, E, t) with the neutron speed v, which often occurs in the
equation, is called angular �ux and is denoted by

φ(r,Ω, E, t) = vn(r,Ω, E, t). (2.7)
The Boltzmann equation, expressed as a function of the angular �ux, reads

1

v

∂

∂t
φ(r,Ω, E, t) + Lφ(r,Ω, E, t) = Fpφ(r,Ω, E, t) +

∑
j

χjd(r, E)

4π
λjcj(r, t) + S(r,Ω, E, t), (2.8)

where we have introduced the net disappearance operator

Lφ = Ω · ∇φ+Σt(r, E)φ−
∫∫

νs(r, E
′)Σs(r,Ω

′ −→ Ω, E′ −→ E)φ(r,Ω′, E′, t)dE′dΩ′, (2.9)
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and the prompt �ssion operator

Fpφ =
χp(r, E)

4π

∫∫
νp(r, E

′)Σf (r, E
′)φ(r,Ω′, E′, t)dE′dΩ′. (2.10)

Here Σt is the total macroscopic cross section, Σf is the macroscopic �ssion cross section, Σs is the
di�erential scattering cross section, χp is the prompt �ssion emission energy spectrum, χjd is the delayed
emission energy spectrum for precursor family j, νp is the average prompt �ssion yield, νjd is the average
delayed neutron yield for precursor family j, λj is the exponential decay constant for family j, and
νs(r, E

′) is the particle yield due to scattering. The term S denotes an external source [2].
The net disappearance operator is the sum of the streaming term Ω · ∇φ, expressing the �ow out

of the elementary volume in the phase space, the collision rate Σtφ, describing the loss of neutrons by
interaction with the medium, minus the scattering term νs(r, E

′)Σs(r,Ω
′ −→ Ω, E′ −→ E)φ(r,Ω′, E′, t),

describing the rate of transfer of neutrons with energy E′ and direction Ω′ to neutrons with energy E
and direction Ω. The prompt �ssion operator Fpφ denotes the production rate of prompt neutrons.

Equation (2.8) is coupled to the evolution equations for the precursor densities cj , which read

∂cj(r, t)

∂t
=

∫∫
νjd(r, E

′)Σf (r, E
′)φ(r,Ω′, E′, t) dE′ dΩ′ − λjcj(r, t), (2.11)

The term νjd(r, E
′)Σf (r, E

′)φ(r,Ω′, E′, t) expresses the production rate of precursors due to �ssion
events. On physical grounds, we can neglect any external precursor source.

The system of Eqs. (2.8) and (2.11) is closed by applying initial and boundary conditions to φ and the
cj 's. The solution of Eqs. (2.8) and (2.11) fully characterizes the time evolution of the average neutron
density and the average precursor density in the phase space.

2.1.3 . Timescale separation between neutrons and precursors

It is important to note that the typical timescales of neutrons and precursors in nuclear reactors are
vastly di�erent. The average neutron generation time Λ, i.e., the average time between the birth of a
neutron by �ssion and its disappearance by the subsequent �ssion event, is about Λ ≃ 0.1 µs for fast
reactors, and Λ ≃ 20 µs for light-water-moderated reactors. The delayed neutron fraction is β ≃ 0.003

for fast reactors, and β ≃ 0.006 for light-water-moderated reactors. The family-averaged precursor decay
time is about λ−1 ≃ 10 s for both systems. Thus, �ssion chains at equilibrium (i.e., for a critical reactor)
generally take the form of short outbursts of prompt neutrons that die out rapidly, over a few Λ (the
system is subcritical without the contribution of the delayed neutrons) ; at each �ssion event, a small
fraction of the �ssion neutrons is produced in the form of precursors, which much later emit additional
delayed neutrons that are responsible for the chain to be critical and thus stationary. Due to the values
of the physical constants involved, the number of neutrons circulating in the reactor at equilibrium is
much smaller than the number of precursors : this can be quanti�ed by the dimensionless parameter
θ = (λΛ/β), which expresses the ratio between the population sizes of neutrons and precursors. For fast
reactors, θ ∼ 10−6, and for light-water-moderated reactors θ ∼ 10−4.

The unbalance between the two timescales is actually highly bene�cial for reactor control : thanks
to the presence of the delayed neutrons, the kinetics of the neutron population is slowed down by a
factor θ compared to the case where precursors are neglected. However, on the computational side,
this also means that the system of Eqs. (2.8) and (2.11) is sti�, which poses distinct challenges to both
deterministic and Monte Carlo solvers, calling for speci�c numerical methods and clever modi�cations of
the algorithms conceived for stationary problems. In particular, the strategies required for kinetic Monte
Carlo simulation will be illustrated in Sec. 2.3.
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2.1.4 . Determination of the equilibrium source

Most often, the initial condition for the system of Eqs. (2.8) and (2.11) corresponds to the reactor being
critical. The stationary initial state of the neutron and precursor density is then determined by formulating
an eigenvalue problem for the Boltzmann equation and solving for the associated fundamental eigenmode.
More precisely, this condition is obtained by setting the time derivatives to zero in Eqs. (2.8) and (2.11),
neglecting the external source, and then plugging the resulting stationary Eqs. (2.11) for the precursor
population into the stationary Boltzmann Eq. (2.8). This leads to

Lφ(r,Ω, E) = Fφ(r,Ω, E), (2.12)
where F is the stationary �ssion operator de�ned by

Fφ(r,Ω, E) = Fpφ(r,Ω, E) +
∑
j

χjd(r, E)

4π

∫∫
νjd(r, E

′)Σf (r, E
′)φ(r,Ω′, E′)dE′dΩ′ (2.13)

and φ(r,Ω, E) is the stationary neutron angular �ux.
In general, Eq. (2.12) does not necessarily admit a non-null solution φ(r,Ω, E). To ensure the existence

of a stationary state, the �ssion terms are rescaled by suitable constants ki, yielding an eigenvalue problem
for the discrete spectrum of eigenpairs {ki, φki} :

Lφki(r,Ω, E) =
1

ki
Fφki(r,Ω, E), (2.14)

where φki are the eigenstates associated to the ki-eigenvalues [2]. It is assumed that the eigenvalues ki
can be ordered, with · · · ≤ ki ≤ ki−1 ≤ · · · ≤ k2 ≤ k1 < k0, where k0 > 0 is the fundamental eigenvalue,
with multiplicity one. The question of the completeness of the spectrum of k-eigenfunctions as a basis
to expand the stationary angular �ux φ(r,Ω, E) is non-trivial and problem-dependent [2]. Among these
eigenpairs, the fundamental eigenstate φk0 ≥ 0 is associated to the largest eigenvalue k0 and is the only
eigenstate that is everywhere non-negative. It is endowed with special interest as it corresponds to the
equilibrium state of the reactor. The parameter R = k1/k0 < 1, i.e. the ratio between the eigenvalue
k1 associated with the �rst excited eigenstate and the fundamental eigenvalue k0, takes the name of
dominance ratio and characterizes the relaxation of higher-order eigenmodes towards the fundamental
eigenmode [2]. The fundamental eigenvalue is sometimes noted ke�, and physically corresponds to the
multiplication factor, i.e. the ratio of the size of two successive �ssion generations.

Once the fundamental eigenstate of the angular �ux is known, the distribution of neutrons at t = t0
corresponding to a critical reactor is obtained from [18]

neq(r,Ω, E, t = t0) =
φk0(r,Ω, E)

v
. (2.15)

Observe that the neutron source includes contributions from all kinds of collisions, and not just �ssion
events. The initial distribution of precursors can be correspondingly deduced from Eq. 2.11 in the steady
state, yielding

ceqj (r, t = t0) =
1

λj

∫∫
νjd(r, E

′)Σf (r, E
′)φk0(r,Ω

′, E′)dΩ′dE′. (2.16)
Equations (2.15) and (2.16) de�ne the equilibrium source for kinetic problems.
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2.2 . A review of Monte Carlo methods for particle-transport problems

In this section, we present an overview of general Monte Carlo methods for particle-transport pro-
blems, before addressing the special case of time-dependent transport problems obeying the system of
Eqs. (2.8) and (2.11).

Monte Carlo simulations rely on the stochastic sampling of particle histories : for the applications
considered here, particles can be either neutrons or precursors. Sampling is based on pseudo-random
number generators, which generate sequences of numbers `behaving as they were random' using deter-
ministic algorithms starting from an initial `seed'. By de�nition, such sequences are not truly random, and
after a given period they repeat themselves ; furthermore, the numbers of the series are correlated. While
sophisticated statistical tests and theorems from number theory can provide a sound basis for choosing
an appropriate generator for Monte Carlo simulations, in practice the goodness of the pseudo-random
number generators must be judged by the quality of the obtained results. Modern pseudo-random gene-
rators have very large periods (e.g. ∼ 2128 for the PCG64 random generator [51], or ∼ 219937 for the
Mersenne Twister [52]) and su�ciently weak correlations ; we shall thus assume that the samples of the
generators behave as if they were independently and identically distributed.

There exist two main families of Monte Carlo methods : in analog simulations, the rules of the
Monte Carlo game follow closely the physical laws of the underlying transport process ; on the contrary,
in non-analog simulations the sampling rules are suitably modi�ed in order to achieve a smaller statistical
uncertainty on the estimated observables. In the latter case, the average of the observables is preserved by
correspondingly modifying the statistical weight of the particles : this ensures that the non-analog game
will yield a fair (unbiased) result with respect to the analog game. The choice of the non-analog games
should be guided by considerations related to reducing the statistical uncertainty for a given amount of
computer cost involved in the sampling procedure : the arsenal of non-analog sampling techniques goes
under the name of variance-reduction methods.

The statistical weights encode the fact that, in non-analog games, particles do not contribute equally
to the estimation of the statistical moments of the simulated population. To �x the ideas, consider a
very simple example : a neutron with initial statistical weight of w = 1 undergoes a collision event ;
upon collision, the absorption probability is pa and the survival probability ps = 1 − pa. The analog
simulation of this process would be to sample ξ ∼ U [0, 1[, i.e. ξ is sampled uniformly in [0, 1[, and to
kill the neutron if ξ < pa : either the neutron survives the collision event, or it dies ; with this algorithm,
the statistical weight of the neutron is preserved. An equivalent non-analog scheme is to enforce the
survival of the neutron by modifying the statistical weight w of the neutron exiting the collision ; the
neutron always survives and its statistical weight is multiplied by the survival probability ps at each
collision. In both situations, the average statistical weight of the surviving neutrons after k collisions is
E[w] = pks . The variance of the number of surviving neutrons after k collisions in the analog game will
be Var[w] = kps(1− ps), while it will be 0 for the non-analog game.

Often, variance-reduction methods are used in combination with population-control methods, whose
aim is to prevent the population (or the statistical weights) from shrinking or exploding. These issues
will be discussed extensively in the following.
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2.2.1 . Tallying in Monte Carlo simulations

The ultimate goal of Monte Carlo simulations is to provide an unbiased estimate of the average value
of the observables of interest, such as the �ux, reaction rates, particle current, etc. The Monte Carlo
estimation of the sought physical observable is called a score or tally, which is in general a functional
of the random walks of the sampled particle histories. Since the evolution of the particle histories is a
stochastic process, the tallies are random variables, with unknown distributions. For each history, each
sampled event in the Monte Carlo simulation has a (possibly zero) contribution to the score, and the
average is computed by taking the sample mean over all the related contributions brought by all particle
histories. Contributions to the Monte Carlo score are gathered using estimators. To �x the idea, let

φV,∆E =

∫
V

∫ EM

Em

∫
φ(r,Ω, E)dΩdEdr (2.17)

be the stationary scalar neutron �ux integrated over a volume V and over the energy interval ∆E =

[Em, EM ]. It is assumed that the material properties are constant in the region V . It can be shown that
the corresponding Monte Carlo score can be estimated using the collision estimator

h(r, E, w) =
w

ΣVt (E)
, (2.18)

with h(r, E, w) = 0 for r /∈ V or E /∈ ∆E. Here w is the statistical weight of the incident neutron,
ΣVt (E) is the total cross section value within the region V , and E is the energy of the incident neutron.
The estimator h is a deterministic function evaluated at the random collision points with the random
coordinates of the incident neutron, and is non-vanishing only when the collision coordinates fall within
the integration region V and ∆E. For each neutron, upon collision h is added to the Monte Carlo score,
and the mean value of the score is computed over a large ensemble of Monte Carlo histories :

µ[h(r, E)] =
∑
i

∑
j

h(ri,j , Ei,j , wi,j), (2.19)
where i is the index over histories, and j the index over collisions for a given history.

Each simulated history yields an estimate of the sought observables, and is called a replica. Con�dence
intervals for the mean value of the scores can be obtained relying on the Central Limit Theorem by
estimating the variance of the scores. Ideally, samples are assumed to be statistically independent, in
which case estimating the variance is straightforward. In literature, the variance associated to the ensemble
average de�nes the true variance [29]. In some situations (as discussed in Sec. 1.2.1), independence is
not veri�ed and more complex inference techniques are necessary. A thorough and rigorous introduction
to estimators and tallies can be found in Ref. 10.

2.2.2 . Example of a typical analog Monte Carlo simulation

In the simplest analog framework, neutron histories are simulated by closely following the elementary
physical laws that describe neutron-matter interactions, which can be retrieved from the nuclear data
libraries. For instance, a neutron moving in a homogeneous medium would sample �ight lengths from an
exponential distribution of parameter Σt(E), once the emission direction Ω and energy E are known :

f(s) = Σt(E)e−Σt(E)s. (2.20)
Using the inverse transform method, the �ight length can be sampled from

s = − 1

Σt(E)
ln(1− ξ), (2.21)

where ξ ∼ U [0, 1[.
If the spatial position of the particle after the �ight falls within the system (i.e., if the particle is

not lost upon leaving the boundaries), the particle will undergo a collision event. The collided nuclide is
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selected by drawing ξ ∼ U [0, 1[ and comparing ξ to the probability pi(E) de�ned in Eq. (2.2). Once the
nuclide is sampled, the reaction channel k is determined by drawing again ξ ∼ U [0, 1[ and comparing ξ
to the probability pi,k(E) de�ned by

pi,k =
σi,k(E)

σi,t(E)
, (2.22)

with
∑

k pi,k = 1.
If the event is scattering or �ssion, the number and features of the secondary particles are sampled

according respectively to the yield and energy-angle distribution of the chosen reaction channel. For
instance, for isotropic elastic scattering (with unit yield νs = 1) one would �rst sample the scattering
cosine µC in the center-of-mass frame, uniformly in the interval −1 ≤ µC ≤ 1, and the outgoing energy
E′ would be determined by the collision kinematics as

E′ = E
A2 + 2µCA+ 1

(A+ 1)2
≤ E, (2.23)

where A is the ratio of the mass of the collided nuclide with respect to the mass of the neutron, and
E is the energy of the incident neutron. Since µC is random, E′ is also random, and is correlated to
µC . The azimuthal angle is taken to be uniformly distributed in [0, 2π]. For �ssion, the energy of the
secondary neutrons would be sampled from the �ssion spectra χp(E) and χjd(E), which are in most
cases only weakly dependent on the energy of the incident neutron. In order to sample the number nf of
secondary neutrons, one would need the full distribution p(nf ) of the �ssion yield : in practice, it turns
out that in most nuclear data libraries the full distribution is not provided, and the only available piece of
information is the average prompt and delayed neutron yield. Thus, a full analog sampling of the number
nf of secondary neutrons is not possible, and for historical reasons the most commonly adopted choice
for Monte Carlo neutron-transport codes is to sample the integer numbers surrounding the value of the
average yield ; the probability of drawing either one is determined so that the average number of sampled
neutrons is precisely equal to the average �ssion yield. For the prompt neutrons, for instance, we have

nf = ⌊ξ + νp⌋ , (2.24)
with ξ ∼ U [0, 1[. Note that, for the purpose of solving for the average neutron density or neutron �ux,
as described by the Boltzmann equation, only the average �ssion yields are required, and the sampling
procedure for the multiplicity only a�ects the variance of the tallies.

2.2.3 . Overview of basic non-analog methods

The simple example discussed in Sec. 2.2 shows that introducing non-analog sampling strategies can
be e�ective in reducing the variance associated to the scores. In this section, we provide a brief overview
of the most common variance-reduction and population-control techniques that will be used throughout
this work. For the sake of conciseness, we only sketch their basic features, and implementation details
are left for discussion when they are used in speci�c applications.

Implicit capture and forced �ssion

Implicit capture is perhaps one of the best-known non-analog collision sampling strategies. First, we
assume a non-�ssile medium, so that neutrons undergo either sterile absorption or scattering. To prevent
neutron histories from being terminated by sterile capture without contributing to scores, one can resort
to implicit capture : upon collision, the neutron is forced to survive (i.e., to undergo scattering), and its
statistical weight is multiplied by the survival probability

w′ = w
Σs
Σt
, (2.25)

where w′ is the weight of the outgoing neutron and w is the weight of the incident neutron. The ratio of
scattering to total cross section is evaluated at the incident neutron coordinates. With implicit capture,
neutron histories can only be terminated by leakage, which suggests that the use of Russian roulette (see
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Sec. 2.2.3) can be bene�cial to remove particles whose statistical weight has become insigni�cant for the
simulation.

When �ssion is taken into account, implicit capture can be combined with forced �ssion, whose
aim is to promote the birth of secondary neutrons and thus the sampling of additional �ssion chains.
In this case, at each collision site the incident neutron is forced to undergo scattering, as above. The
statistical weight of the emitted neutron is corrected as in Eq. (2.25). Furthermore, provided that the
collided nuclide is �ssile, a �ssion event is systematically sampled, and the prompt and delayed �ssion
yields are adjusted as νpΣf/Σt or νdΣf/Σt, respectively, in order to ensure a fair game. This means that
np,f prompt �ssion neutrons are sampled following

np,f =

⌊
ξ +

νpΣf
Σt

⌋
, (2.26)

where ξ ∼ U [0, 1[, and are assigned the statistical weight w of their parent neutron. Furthermore, νd,f
delayed neutrons (or, in the case of kinetic simulations, precursors : see Sec. 2.3) are also sampled
following

nd,f =

⌊
ξ +

νdΣf
Σt

⌋
, (2.27)

and are assigned the statistical weight of their parent neutron. This is the technique used e.g. in the
Monte Carlo code TRIPOLI-4®, developed at CEA [53]. Other implementations of the forced �ssion
algorithm exist [10, 54], but they will not be discussed here.

Branchless collisions

Branchless collisions have been popularized by Lux and Koblinger [10] and applied with success �rst
to �xed source stationary simulations in Ref. 55, and then to kinetic simulations [18, 56]. The main idea
of branchless collisions is that each collision leads to a single outgoing particle that is assigned the same
statistical weight multiplier, regardless of the chosen reaction channel :

w′ = w

∑
νkΣk
Σt

, (2.28)
where νk is the yield associated to reaction channel k. For instance, if k is the scattering reaction as
de�ned in Sec. 2.1.1, its yield is νs. If it is the prompt �ssion channel, then νk = νp, and if it is the
delayed �ssion channel, then νk = νd, and so on. The reaction channel k is sampled with probability

Pk =
νkΣk∑
νkΣk

, (2.29)
and the corresponding interaction leads to the production of exactly one particle for the sampled channel.
The features (direction, energy, etc.) of the outgoing particle are sampled as in Sec. 2.2.2. Note that, in
time-dependent Monte Carlo simulations, choosing the delayed �ssion channel leads to the `replacement'
of the incoming neutron by a precursor particle, as discussed later. Branchless collisions are actually
a generalization of implicit capture, and reduce to implicit capture in non-multiplying media. Note in
particular that neutron histories can only be terminated by leakage, encouraging the use of additional
population-control algorithms.

Russian roulette and splitting

When particles are assigned statistical weights, it is legitimate to consider the trade-o� between
increased calculation time and the statistical signi�cance of simulated particles. It may be then advisable
to control the distribution of the statistical weights to avoid needlessly spending calculation time on
particles that do no matter much for the estimation of scores. Such `population control' methods must
be unbiased in order to preserve the average scores.

Russian roulette is one the simplest ways to ensure that the statistical weight do not become too
low [10]. When the statistical weight w of a particle falls below a threshold wR, the particle plays Russian
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Figure 2.2 : Diagram illustrating the effects of Russian roulette and splitting

Figure 2.3 : Example of use of weight combing for an initial population of N = 6 particlescombed toM = 4 ; particles 2, 3, 4, 5 are copied once, and particle 1 and 6 are ignored. Thefinal tooth falls outside the particle bank.
roulette ; its weight is updated in the following way :{

w′ = wsurv with probability w/wsurv

w′ = 0 otherwise,
(2.30)

i.e. the particle is either assigned the survival weight wsurv > wR, or killed (and thus removed from the
Monte Carlo simulation). Note that the particle weight is conserved on average.

Another common variance reduction technique is splitting. When the statistical weight w of the
particle becomes higher than a threshold wS , the particle is split in ns = ⌊w/wS⌋ identical copies, and
each copy is assigned a statistical weight w′ = w/ns. Again, the particle weight is conserved on average.

One should note that these two algorithms can be applied at any stage of the simulation ; in particular,
they can be applied after collisions or before collisions. The e�ects of the combination of Russian roulette
and splitting is illustrated in Fig. 2.2.

Weight combing

Assume a population of N particles of total statistical weight W =
∑

nwn, where the wn might
have a large statistical dispersion. We want to comb this population into a new population ofM particles
sharing the same weight wav =W/M and having the same total weight M × (W/M) =W as the initial
population. Furthermore, we require combing to be unbiased, in the sense that the average weight of
individual particles should be preserved [57].

The combing procedure is better explained by a scheme, and one can refer to Fig. 2.3 for illustration.
Essentially, each `tooth' of the comb corresponds to a copy of a particle in the initial population : if the
weight of a particle is large and several teeth fall on the same particle, it will be copied several times
and each copy will be assigned the statistical weight wav. Conversely, if the weight of a particle is small,
then so is the probability that a tooth falls on it and the particle might not be copied at all. It can be
shown that the unbiasedness of the combing scheme is ensured by selecting the �rst tooth randomly, at
position ξ ×W/M , with ξ ∼ U [0, 1] ; the subsequent teeth are identically spaced by W/M .

Several variants of combing exist, as summarized by Variansyah and McLarren in Ref. 49, such as
importance-based combing and uniform combing. Nonetheless, weight combing is more commonly used
than these variants.
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2.3 . Monte Carlo methods for kinetic simulations

The Monte Carlo simulation of time-dependent particle transport is relatively straightforward in
principle, and is guided by the idea that each particle is assigned a time label, which is updated based
on the ratio of the travelled length over the particle speed. In practice, based on the considerations
mentioned in Sec. 2.1.3 concerning the separation of the timescales of neutrons and precursors, and in
Sec. 2.1.4 concerning the necessity of estimating the fundamental eigenmode of the Boltzmann equation
in order to sample the initial condition for reactors in a critical con�guration, the Monte Carlo simulation
of reactor physics problems in the kinetic regime poses distinct challenges. The separation of timescales
calls for special variance-reduction techniques capable of simultaneously dealing with the fast timescale
of neutrons and the long timescale of precursors ; furthermore, the size of the precursor population is
expected to be much larger than the size of the neutron population, but only neutrons contribute directly
to tallies. Finally, in most applications, the fundamental eigenmode φk0(r,Ω, E) must be sampled before
being able to run a kinetic simulation.

Although time-dependent transport problems have been among the very �rst Monte Carlo calculations
run on computers1, the challenges recalled here have de facto hindered the use of time-dependent Monte
Carlo methods for reactor physics applications, where the role of precursors cannot be neglected, until the
pioneering work of Sjenitzer and Hoogenboom [17, 18, 58]. These authors have paved the way towards an
e�cient implementation of kinetic Monte Carlo schemes fully taking into account precursors. Although
their results stem from a great amount of ingenuity in conceiving and re�ning algorithms, it must be also
acknowledged that these methodological advances have greatly bene�ted from the considerable increase
in available computer power over the last ten years.

One of the key point of the scheme proposed by Sjenitzer and Hoogenboom is the use of ad hoc

variance-reduction methods targeting the time variable. The introduction of a collapsed precursor par-
ticle, coupled with a forced decay scheme, allows considerably reducing the statistical dispersion due
to the timescale of precursors, while preserving the unbiasedness of the scores [59]. The introduction
of branchless collisions, including a special modi�cation to account for precursors, allows mitigating the
statistical dispersion due to the appearance of branches in neutron histories at each �ssion event [18].
The introduction of population-control mechanisms such as Russian roulette, splitting and weight com-
bing ensures that the population size does not diverge nor vanish in the course of the kinetic simulation
[17, 18].

The strategy of Sjenitzer and Hoogenboom has been implemented over the last few years in several
production-level Monte Carlo codes, sometimes with algorithmic improvements, variants and modi�-
cations [23, 60�62]. Intense research e�orts have been devoted to kinetic Monte Carlo methods, as
witnessed by the European H2020 McSAFE project (2017-2020), which was devoted to the industrializa-
tion of such methods in view of enhancing their reliability and ease of use for real-world applications [63].
Within this framework, kinetic Monte Carlo simulations have been validated against the experimental
data of the reactivity insertion accident (RIA) test campaign carried out in the 1960s on the SPERT
III E-core [25, 64]. Extensive veri�cation based on code-to-code comparisons on reactor benchmarks has
allowed singling out possible performance issues and identifying future research paths concerning algo-
rithmic and implementation improvements [21, 22]. Among current research trends concerning kinetic
Monte Carlo methods, a special role is played by GUARDYAN, the only production-level Monte Carlo
code designed speci�cally for time-dependent Monte Carlo simulations and entirely based on GPUs [56].
The GPU architecture implies massive changes in the way Monte Carlo simulation is performed, but has
shown potential for excellent performances [26].

In the next section, we review the most frequently used Monte Carlo methods for kinetic Monte
Carlo simulations, including the sampling of the equilibrium source distribution. The general concepts
are recalled here, whereas the details of the more complex algorithms are introduced in Chapters 5-6,
where they are speci�cally needed. The overall simulation scheme is illustrated in Algorithm 1 and will

1In these simulations, precursors were neglected.
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Algorithm 1: Kinetic Monte Carlo scheme
1 Choose tentative source Q;
2 for each replicam do
3 Inject Q into power iteration calculation;
4 Iterate until convergence to the stationary state;
5 Sample the kinetic source Sm;
6 Normalize Sm to desired total weight;
7 for each time-step do
8 Transport particles;
9 Apply population control;
10 Save surviving particles for next time-step;
11 Accumulate statistics;

be detailed in the following.

2.4 . Determining the fundamental eigenpair : the power iteration method

Often, the source for time-dependent problems corresponds to the reactor being in a critical state,
which amounts to being able to sample from Eqs. (2.15) and (2.16) at equilibrium. As such, it is necessary
to determine the dominant eigenpair {k0, φk0} of Eq. (2.14), which can be estimated by Monte Carlo
methods using the well-known power iteration method [10]. Starting from an arbitrary tentative �ssion
source Q, a `neutron generation' is sampled : each history of the initial particle population consists
of a succession of �ights and collisions, whereupon neutrons undergo scattering, �ssion, or capture.
The neutrons are followed until they are absorbed (by �ssion or capture) or leak out of the system.
Upon �ssion, on average, ν descendant neutrons are sampled and stored in a `�ssion bank' (using for
instance forced �ssion), and are not further followed during the current generation. When all the histories
of a given generation have been sampled, the neutrons in the �ssion bank are tested (if required)
for population control, and neutrons surviving population control are promoted to source neutrons for
the next generation. In addition, before starting the next generation, the weight of each neutron is
divided by the generation-wise estimate of the multiplication factor, so that all generations start with
the same total weight. It can be shown that, after a su�ciently large number of generations, the �ssion
source distribution reaches a statistical equilibrium, and subsequent generations will be identically but

not independently distributed. The lack of independence is due to the fact that successive generations
are by construction correlated, the �ssion source for a given generation stemming from the �ssion sites
of the previous generation. The �ssion source converges towards its fundamental eigenmode, and the
ratio between the statistical weights of two successive �ssion sources converges towards the fundamental
eigenvalue k0. The rate of convergence of the power iteration from an arbitrary initial condition to the
stationary state is primarily driven by the dominance ratio R, i.e. the ratio k1/k0 [30]. The generations
that are needed to reach equilibrium are usually called inactive, and are discarded for the purpose of
collecting tally statistics, since during this phase of the power iteration the particle distribution has not
yet reached its asymptotic stationary behaviour.

For historical reasons, mainly motivated by considerations of computation cost, the sought averages
are estimated by running the power iteration for a su�cient number of generations after convergence
has been reached, and collecting the required statistics over these so-called active generations. Thus,
the approach used by Monte Carlo practitioners for power iteration is basically an ergodic average, in
analogy with equilibrium statistical mechanics. This is to be compared with the standard approach that
one would apply to estimate ensemble averages over independent replicas, in which case a collection of
power iteration simulations would be needed, each starting from a tentative �ssion source and having
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Figure 2.4 : Power iteration scheme when using ergodic average, with D inactive genera-tions and G scoring generations

Figure 2.5 : Power iteration scheme when using ensemble average, with D inactive gene-rations and 1 scoring generations.
a su�cient number of inactive generations until convergence, plus a �nal generation to collect tallies.
The ergodic approach to power iteration has been preferred because the involved computer cost is much
lower, although this comes at the expense of introducing correlations in the estimated observables. In the
literature, the variance obtained using ergodic averages is dubbed `apparent', in contrast with the true
variance that would be obtained running independent replicas [29]. The ergodic and ensemble average
approaches for power iteration are illustrated Fig. 2.4 and 2.5, respectively.

2.4.1 . Sampling the stationary source for kinetic problems

Let us assume that the neutron population is distributed according to the fundamental eigenmode
φk0(r,Ω, E) : we have recalled in Sec. 2.2.1 that an unbiased estimator for the angular �ux consists
in tallying the quantity w/Σt(r, E) at each collision. Based on Eq. (2.15), the estimator for the initial
neutron density at position r and energy E is thus

hn =
w

vΣt(r, E)
. (2.31)

The precursor density for a family j can be simultaneously sampled, provided that the current material
is �ssile, using the estimator

hjc =
w νjd
λj

Σf (r, E)

Σt(r, E)
.

The statistical dispersion due to the large variation of the decay constants λj can be considerably
reduced by introducing the combined (or collapsed) precursor particle, as de�ned by Sjenitzer and Hoo-
genboom [17], a representative particle whose statistical weight depends on the decay rate for each
family. The combined precursor density at equilibrium can be estimated using

hc =
wνd
λ̄

Σf (r, E)

Σt(r, E)
, (2.32)

where

λ̄ =
β∑
j
βj
λj
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is the family-averaged decay rate of the combined precursor. It is important to stress that the collapsed
precursor sampling scheme is unbiased.

Because the number of collisions, their positions, etc. are random variables, the total statistical weight
of the kinetic source is a random variable, which has to be normalized to a known value at the start of the
kinetic simulation. It is customary to start the time-dependent simulations with the same total weight as
in the calculation leading to the estimation of the fundamental eigenmode φk0(r,Ω, E) (see Sec. 2.4),
although it is possible to choose a di�erent value. In addition, population control can be applied on the
kinetic source.

2.4.2 . Sampling the time-dependent process

Let us assume now that the neutron and precursor source needed for time-dependent transport has
been sampled, e.g. following the procedure in Sec. 2.4.1. Starting from the source, particle histories are
followed through time as described in Algorithm 1. Particles beginning their life at t = t0 are assigned
a time label, in addition to the space, direction and energy coordinates that are required for stationary
problems.

The tracking of particles over time [t0, T ] is decomposed in discrete (and not necessarily evenly
spaced) time intervals [ti, ti+1] : particles are simulated until the end of each time-step, whereupon
a population control algorithm such as combing, Russian roulette, and splitting is possibly applied to
neutrons and precursors, in order to control the dispersion of statistical weights as well as to keep the
total number of simulated particles within acceptable limits. Since neutron and precursor transport is a
Markov process, particles can be stopped at arbitrary times without incurring any bias. Thus, the time
mesh for kinetic Monte Carlo simulations has to be contrasted with the time mesh used in deterministic
calculations, which e�ectively induces discretization errors in the obtained results.

In addition, a time-grid has to be de�ned to allow scoring time-dependent tallies. This time-grid does
not need to coincide with the time-grid for population control, although it is often the case. Some tallies
are based on snapshots of the neutron and/or precursor population at the end of the time bin ; however,
most tallies, such as neutron �ux or reaction rates, are integrated over each time-window, which means
that all contributions falling within the current time bin are summed in the estimator. This procedure is
again unbiased.

The life of a neutron during a time-step is simulated as described in Sec. 2.2.2. At each travelled
�ight length l at speed v is associated a displacement in time by the amount δt = l/v. The neutron
is followed until it undergoes a termination event (leakage, capture in the case of analog simulations,
Russian roulette, etc.) or it reaches the end of the current time-step. If the �ight duration takes the
neutron after the end of the time-step, the neutron is transported until the end of the time-step, and
then added to the bank of neutrons that collectively undergo population control before beginning the
following time-step. Secondary neutrons and precursors originating from �ssion events within a time
step are stored in a bank of secondary particles whose histories are simulated once the history of the
primary particle has been terminated. Due to �ssion, the typical history will have `branches', which
generally increase both the statistical dispersion and the computer time. Observe in particular that the
presence of branches induces non-trivial correlations between particles being present at distinct sites and
distinct times, since they might stem from a common ancestor. To cope with the increased variance and
computational cost inherent to kinetic simulations, the collision sampling strategy is generally non-analog
and encompasses techniques such as branchless collisions (see Sec. 2.2.3).

In an analog decay strategy, precursors are sampled at �ssion events and emit delayed neutrons
following their exponential decay law with parameter λj . The analog emission time of the delayed neutron
is sampled as

τ = tb −
1

λj
ln(1− ξ), (2.33)

where tb is the birth time of the precursor and ξ ∼ U [0, 1[. Upon emission, the delayed neutron behaves
as any other neutron would.
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However, due to the large separation between the timescale of neutrons and the one of precursors,
as mentioned earlier, the number of neutrons at a given time is much smaller than the number of
precursors when using analog sampling, which motivated the introduction of the `forced precursor decay'
strategy [18, 59]. The idea is to introduce a third time-grid for the simulation, which generally coincides
with the tallying time-grid, and enforce precursor decay in each time-step : a fraction of the precursor's
statistical weight always survives, related to the probability that the precursor does not decay during the
time-step. The forced decay time is generally chosen uniformly in each time-step, and precursors are not
eliminated upon decay.

After the decay time is sampled, the statistical weight for precursors and for the subsequent delayed
neutrons is determined as follows. For a precursor originating from the equilibrium source distribution,
the statistical weight reads

Weq
c (t|t0) = wc

∑
j

λ̄

λj

βj
β
e−λj(t−t0), (2.34)

where wc it the precursor weight at production time and t0 is the initial time of the equilibrium source.
The remaining fraction of statistical weight leads to the production of a delayed neutron at time t with
adjusted statistical weight. Correspondingly, the statistical weight of the delayed neutron is

Weq
delayed(t|t0) = wc(ti+1 − ti)

∑
j

λ̄
βj
β
e−λj(t−t0), (2.35)

where wc is the parent precursor weight at the production time of the parent precursor.
The statistical weight for a precursor produced in the course of the kinetic simulation reads

Wc(t|t0) = wc
∑
j

βj
β
e−λj(t−t0), (2.36)

where here t0 denotes the production time (i.e., the time of the �ssion event) and wc the associated
statistical weight. The corresponding statistical weight of the delayed neutron reads

Wdelayed(t|t0) = wc(ti+1 − ti)
∑
j

λj
βj
β
e−λj(t−t0). (2.37)

Upon decay, the actual family of the combined precursor has to be sampled in order to determine
the energy of the delayed neutron. The probability for the delayed neutron to originate from family j is
given by

p(j, t|t0) =
λj

βj
β e

−λj(t−t0)∑
k λk

βk
β e

−λk(t−t0)
. (2.38)

When using this sampling strategy, the population size of precursors can only increase : precursors are
not eliminated by decay anymore, and their number increases due to �ssion. This suggests the use of
population control algorithms to keep the population size manageable. For a thorough discussion, see
e.g. Ref. 62.

2.5 . Simpli�ed formulations of the transport equations

The system of Eqs. (2.8) and (2.11) provides a complete description of reactor kinetics. For some
applications, if one is interested in trading accuracy for computer time, these equations can be simpli�ed
introducing suitable hypotheses. The main interest of such strategy is for deterministic solvers, which
in any case must rely on a discretized, and thus approximated, version of the Boltzmann and precursor
equations. Nonetheless, simpli�ed formulations of Eqs. (2.8) and (2.11) may also be interesting to obtain
closed-form solutions to be compared with Monte Carlo simulation results, or to considerably reduce the
computation cost of Monte Carlo simulations. In the following we will brie�y examine some of these
approaches, detail the resulting equations, and for each propose a Monte Carlo counterpart.
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2.5.1 . The multi-group approximation

The multi-group formulation of the transport equation consists in integrating the continuous energy
variable E over a �nite number G of energy intervals [Eg, Eg−1], g = 1, · · · , G, which are called groups.
Correspondingly, the multi-group angular �ux is de�ned by

φg(r,Ω, t) =

∫ Eg−1

Eg

φ(r,Ω, E, t)dE. (2.39)
Integrating Eqs. (2.8) and (2.11) over the energy intervals [Eg, Eg−1] yields the system of discretized
equations

1

vg

∂

∂t
φg + LGφg = FGp φg +

∑
j

χjd,g
4π

λjcj(r, t) + Sg, (2.40)
and

∂cj(r, t)

∂t
=
∑
g′

∫
νjd,g′Σf,gφg′(r,Ω

′, t) dΩ′ − λjcj(r, t). (2.41)
The stationary formulation can be expressed similarly. In order to establish Eqs. (2.40) and (2.41), We
have made use of the following de�nitions : the multi-group net loss operator reads

LGφg = Ω · ∇φg +Σt,gφg −
∑
g′

∫
νs,g′Σs,g′→g(r,Ω

′ → Ω)φg′(r,Ω
′, t)dΩ′, (2.42)

and the multi-group prompt �ssion operator reads

FGp φg =
χp,g
4π

∑
g′

∫
νp,g′(r)Σf,g′φ(r,Ω

′, t)dΩ′. (2.43)

By inspection, it is apparent that the multi-group constants (cross sections, spectra, etc.) that occur in
Eqs. (2.40) and (2.41) must be of the form

Σk,g(r,Ω) =

∫ Eg−1

Eg
Σk(r, E)φ(r,Ω, E, t)dE

φg(r,Ω, t)
(2.44)

for the cross sections of reaction k, and

Σs,g′→g(r,Ω) =

∫ Eg−1

Eg

∫ Eg′−1

Eg′
Σs(r,Ω

′ → Ω, E′ → E)φ(r,Ω, E, t)dE dE′

φg′(r,Ω′, t)
, (2.45)

for the scattering di�erential cross section. The other constants of the multi-group equations have similar
angular-�ux-weighted expressions.

Observe that the weighting factor appearing in the multi-group constants is precisely the angular �ux
φ(r,Ω, E, t), which is the unknown solution of the original system of Eqs. (2.8) and (2.11). Therefore,
in order to achieve a rigorous derivation of the parameters of the multi-group equations one should
have already solved the continuous-energy problem, which is what we wanted to avoid in the �rst place.
Furthermore, observe that now the multi-group cross sections depend also on the particle direction Ω,
contrary to the regular continuous-energy cross section, due to the dependence on φ(r,Ω, E, t). The
problem of computing reliable multi-group constants has attracted enormous research e�orts, since the
beginning of the era of computational methods for reactor physics problems, and goes well beyond the
scope of this manuscript. In the context of the numerical methods developed for deterministic solvers,
it is common practice to inject into the de�nitions of the multi-group constants a tentative �ux shape,
derived by carefully taking into account self-shielding e�ects using state-of-the-art models (see e.g. [65�
69]). More recently, Monte Carlo codes have been successfully used in order to estimate the multi-group
constants [70�73].
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The analysis of �uctuations and correlations in kinetic Monte Carlo problems carried out in Chapter 6
will be based on Eqs. (2.40) and (2.41), in order to keep the computation cost within reasonable limits.
For the benchmark calculations performed in this context, the multi-group constants are given in the
literature. This means that the Monte Carlo sampling procedures outlined in Sec. 2.2 and in Sec. 2.3 for
continuous-energy particle transport can be immediately transposed to the multi-group case. Each particle
is assigned an index g for the group, instead of the continuous energy variable E. The particle speed is
also replaced by the group speed vg. Cross sections are dealt with exactly as in the continuous-energy
case ; the scattering transfer kernel is now a matrix, and the outgoing group g′ can be straightforwardly
sampled (conditioned to the incident energy group g) once the matrix elements have been properly
normalized. Position and direction are not discretized.

2.5.2 . The di�usion approximation

In Chapter 3-4, we will derive analytical results for the statistical moments of the �uctuations and
correlations in kinetic Monte Carlo methods, which will pave the way towards a sound and reliable
framework for the interpretation of the simulation results. For this purpose, we will need closed-form
expressions for the �rst few moments (and other related observables) of the neutron and precursor
populations. The multi-group Eqs. (2.40) and (2.41) are in general not amenable to exact solutions, which
is why we will further simplify the underlying equations by introducing the di�usion approximation.

There exist several ways of introducing the di�usion equation based on the Boltzmann equation [2].
In one approach, the derivation of the di�usion equation relies on the so-called PN expansion : the
Boltzmann equation is integrated over the direction Ω and one tries to single out terms depending on
the scalar �ux

φ(r, E, t) =

∫
φ(r,Ω, E, t)dΩ (2.46)

alone. Usually, the derivation is done by neglecting energy, and then rephrasing the resulting equation
into a multi-group formalism. The key idea is that the equation for φ(r, t) obtained integrating the
Boltzmann equation over the direction is not closed, since it depends on the current

J(r, t) =

∫
Ωφ(r,Ω, t)dΩ. (2.47)

The P0 equation reads

1

v

∂φ

∂t
+∇ · J+Σa(r)φ = νpΣf (r)φ+

∑
j

λjcj(r) +Q (2.48)

and is basically a conservation law, with Σa(r) = Σt(r) − Σs(r) and Q the angle-integrated external
source. The equations for the precursor concentrations cj(r, t) follow from

∂cj
∂t

= νjdΣf (r)φ− λjcj(r). (2.49)
Observe that no approximations have been introduced so far : the P0 Eqs. (2.48) and (2.49) are exact (in
a single-speed framework), albeit not closed, since Eq. (2.48) depends on the unknown quantity J(r, t),
whose equation must be determined.

The P1 equation for J(r, t) can be then written down multiplying the Boltzmann equation by Ω and
integrating again over directions, in order to single out terms depending on J(r, t) and on φ(r, t) alone.
It turns out that the equation for J(r, t) is not closed either, since it involves higher-order moments. We
obtain a hierarchy of PN equations, each being exact (up to the fact that we have neglected the energy
dependence) but not solvable, as the hierarchy is in�nite.

The di�usion approximation is obtained by truncating the hierarchy at the order P1, assuming that
the current and the scalar �ux are related by

J(r, t) = −D(r)∇φ(r, t), (2.50)
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which takes the name of Fick's law, by analogy with the similar relation occurring in the equation
describing the transport of mass. In Eq. (2.50), the quantity

D(r) =
1

3Σtr(r)
(2.51)

is the di�usion coe�cient, with Σtr(r) = Σt(r) − µ̄Σs(r) the so-called transport cross section, and µ̄
the average scattering angle. For isotropic scattering, for example, µ̄ = 0. Injecting Fick's law into the
P0 equation, we �nally obtain the di�usion equation for single-speed particles, namely,

1

v

∂φ

∂t
−∇ · (D(r)∇φ) + Σa(r)φ = νpΣf (r)φ+

∑
j

λjcj(r) +Q(r), (2.52)
to be coupled with the precursor Eq. (2.49). We have assumed that the source is isotropic.

For the special case where the material properties are spatially homogeneous, we have∇·D∇ = D∇2,
and the di�usion equation takes the form

1

v

∂φ

∂t
−D∇2φ+Σa(r)φ = νpΣf (r)φ+

∑
j

λjcj(r) +Q(r), (2.53)
Once the single-speed di�usion equation has been introduced, a multi-group version can be obtained

based on the analogy with the multi-group formalism for the Boltzmann equation, although a rigorous
derivation is much more involved than in the single-speed case. This would read

1

vg

∂φg
∂t

−∇ · (Dg∇φg) + Σt,gφg =
∑
g′

Σs,g′→gφg′ + χp,g
∑
g′

νp,g′Σf,g′φg′ +
∑
j

λjcj +Qg, (2.54)
coupled with

∂cj
∂t

= χjd,g

∑
g′

νjd,g′Σf,g′φg′ − λjcj . (2.55)
The di�usion equation can be solved using Monte Carlo simulation (assuming again that all the

constants occurring in the equation are known). However, contrary to the multi-group version of the
Boltzmann equation, the di�usion equation calls for an entirely di�erent distribution for the particle
displacements. The di�usion equation for neutrons has the same functional form as the well-known
di�usion equation related to e.g. the heat equation, for which a rigorous mapping based on the Feynman-
Kac formalism allows phrasing the solution of the equation in terms of a Wiener stochastic process, better
known as Brownian motion [74]. For the case of the neutron di�usion equation, the �ssion term (which
has no analogue in the heat equation) can be dealt with by endowing the Brownian motion with the
possibility of branching [75].

For the sake of conciseness, we will detail here the simpler case of the single-speed di�usion equation
in homogeneous materials, with a single precursor family. Suppose that, at a given time, N(t) neutrons
andM(t) precursors are present in the system. Neutrons undergo regular Brownian motion with di�usion
coe�cient D, until an event occurs. For each neutron, the �ssion rate is vΣf , and the capture rate is
vΣc : the distribution of these events being exponential in time, the time to the �rst neutron interaction
is sampled as

δti = − 1

v(Σc +Σf )N(t)
log(1− ξ), (2.56)

with ξ ∼ U [0, 1[. For precursors, the only event is decay, which happens at rate λ : the time to the �rst
precursor decay is sampled as

δtd = − 1

λM(t)
log(1− ξ), (2.57)

with ξ ∼ U [0, 1[. We take then the time increment to the next event as δt = min(δtd, δti). The motion
of individual neutrons is sampled from

δx ∼ N (0, 2dD δt), (2.58)
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where N (µ, σ2) is the normal law of mean µ and variance σ2, and d is the dimension. If required,
boundary conditions are applied. When all new neutron positions have been sampled, the stopping event
is treated : upon �ssion, νp prompt neutrons and νd precursors are produced on average, as customary ;
upon capture, the neutron is removed from the simulation ; and upon decay a precursor is transformed
into a delayed neutron. If δt is larger than the duration of the time interval that is used for tallying the
physical observables of interest, the population is stopped at the end of the time step and then restarted
without memory, which does not introduce any bias because of the Markov nature of the underlying
stochastic process.

2.6 . Beyond the average : �uctuations and correlations

Throughout this Chapter, we have been concerned with establishing the neutron and precursor trans-
port equations in the kinetic regime, either in their exact formulation or under some simplifying hypo-
theses, and we have shown how these equations can be solved by Monte Carlo methods sampling the
random walks of neutrons and precursors in the phase space.

Thanks to the increasing computer power, it becomes possible today to address non-stationary
problems by Monte Carlo simulation, which allows for an `exact' treatment of the geometry and of the
physics of the simulated system, introducing virtually no approximations nor discretization e�ects. Monte
Carlo simulations therefore produce unbiased estimates of the �rst moments of the sought observables,
which are precisely the solutions of the kinetic equations.

However, as detailed in the previous sections and in Chapter 1, such estimates come with a statistical
uncertainty that is (asymptotically) inversely proportional to the square root of the number of sampled
histories. The almost complete absence of approximations is thus thwarted by the very high calculation
cost required to achieve the target accuracy, especially in kinetic simulations. Furthermore, the behaviour
of the statistical uncertainty is made more complex by the fact that the simulated particle histories are
correlated, the correlations stemming ultimately from �ssion events.

Since in most cases Monte Carlo simulations involve some forms of variance-reduction and population-
control techniques, the behaviour of �uctuations and correlations in kinetic Monte Carlo simulations
depends on the non-trivial interplay between the way the sampling strategies are conceived, and the
e�ects inherent to the physics-inspired underlying stochastic processes. In the following Chapters, we will
attempt at establishing a rigorous framework that enables to quantify such �uctuations and correlations,
and thus enhance the reliability of the uncertainty estimation in kinetic Monte Carlo simulation.

2.7 . Simulation tools developed for this work

The investigation of correlations occurring in Monte Carlo methods, either in stationary problems
over generations or in time-dependent problems over time, could hardly be carried out entirely based on
a theoretical framework, and the support of simulations is of course compulsory, especially in the case of
complex systems including energy e�ects and spatial heterogeneity. On the other hand, it turns out that
the use of production-level Monte Carlo codes is not an appropriate choice, since correlation functions and
related quantities are typically very expensive to compute ; the memory footprint is especially large. On
top of that, for our investigation we often need to extensively modify the traditional sampling strategies
and implement unusual scores (as discussed in the following chapters), which is in most cases cumbersome
due to the complexity of production-level codes.

For these reasons, we have decided to develop our own simulations codes from scratch.
First, we focused on correlations in time-dependent branching Brownian motion, a convenient sto-

chastic representation for di�usion-based models. For this purpose, we developed JOFFREY, a Monte
Carlo mini-app performing analog simulations of time-dependent branching Brownian motion of a popu-
lation of neutrons and precursors in a one-dimensional homogeneous, multiplicative medium.

Next, as we focused on more realistic systems, we implemented COYOTE, a Monte Carlo simulation
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mini-app coupling a traditional power iteration module with a time-dependent transport module, in a
multi-group framework. Coyote supports slab geometries, with an arbitrary number of slabs associated to
possibly di�erent materials. Each material is de�ned by its energy-dependent macroscopic cross-sections
and kinetic parameters. The boundary conditions can be periodic, re�ection, or vacuum. Coyote comes
with a set of variance-reduction methods that can be freely and independently activated : Russian roulette
and splitting, several versions of branchless collisions, forced �ssion, implicit capture, forced decay of
precursors, combined precursor, and importance ratios. Population control can be enforced by weight
combing and sampling without replacement (in the power iteration module). The tallies are numerous
and range from usual �ux-based quantities to correlation functions, pair distance functions, Feynman
moments of the �ssion sites distribution, etc., as detailed in the following. Ensemble or ergodic averages
can be computed, which is particularly useful for the analysis of correlations.
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Correlations in time-dependent
diffusion problems solved by analog

Monte Carlo methods
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3 -Space-time correlations in simpli�ed kinetic simula-

tions with neutrons and precursors

Kinetic Monte Carlo simulation lends itself quite naturally to the investigation of the statistical
behaviour of stochastic neutron and precursor populations around their average. However, in order to
establish a clear framework for our investigations, it is convenient to start our analysis from a model
that is simple enough to obtain exact results, and yet su�ciently non-trivial to retain all the basic
ingredients of realistic multiplying systems. This allows extracting the main trends, the scaling laws and
the key guidelines that will be used in the following chapter for the interpretation of more complex
time-dependent Monte Carlo simulations, including some elementary population-control mechanisms.

The aim of this chapter is thus to characterize the behaviour of space-time correlations and �uc-
tuations in a simpli�ed model of nuclear reactor. For this purpose, instead of considering the (generally
non-analog) Monte Carlo solution of the Boltzmann equation, we will introduce a di�usion-based set of
stochastic rules mimicking the neutron and precursors dynamics that can be sampled by analog Monte
Carlo methods. The well known Galton-Watson birth-and-death stochastic process will be modi�ed to
account for precursors, which yields a two-species model with di�erent transition rates for each spe-
cies [76]. The modi�ed Galton-Watson stochastic process will be coupled with a model of random spatial
displacements within the di�usion approximation, which under suitable assumptions can be derived from
the exact neutron transport theory, as mentioned in Sec. 2.5.2. The combination of these two stochastic
processes results in a Branching Brownian Motion (BBM), whose statistical moments will be shown to
be attainable by analytical means. This is to be contrasted with the stochastic process underlying the
Boltzmann equation, which is seldom amenable to closed-form solutions for its statistical moments. In
the di�usion framework, and relying mainly on the Pál-Bell backward formalism, we will be able to derive
exact expressions for the characteristic quantities describing the behaviour of space-time correlations of
neutrons and precursors in a nuclear reactor, and we will compare them to analog Monte Carlo simulation
results obtained by directly sampling the BBM model, which will be used as a reference.

While our focus here is on the investigation of neutron �uctuations in kinetic simulations, the use of
analog Monte Carlo methods (where the sampling laws are directly inspired by the underlying physical
process occurring in multiplying systems) allows immediately transposing the results obtained in this
Chapter to the analysis of neutron �uctuations occurring in the real systems, up to a scaling factor due
to the fact that the number of sampled particles in Monte Carlo simulations is usually much lower than
the number of particles that are present in a nuclear reactor1.

Most of the material presented in this chapter is taken from our published work in Ref. 77.

3.1 . A simple stochastic model for nuclear reactor physics

In the simplest incarnation of our nuclear reactor model [48], we represent the random movement of
neutrons as a Brownian motion with a di�usion coe�cient D, and we use a Galton-Watson birth-death
process to describe �ssion and capture. Each neutron undergoes sterile capture at a rate γ = 1/vΣc and
�ssion events at a rate β = 1/vΣf . Captured neutrons are simply killed. When �ssion occurs, a random
number of new neutrons are emitted at the position of the incident neutron, which is killed [78]. The
probability to emit instantaneously k prompt neutrons is denoted as pk. Delayed neutrons may further
appear at the spatial site of a �ssion event after a random, exponentially distributed time with rate λ,
corresponding to the decay of the delayed neutron precursors [78]. We denote by qk the probability that
k delayed neutron precursors are created at a �ssion event. For illustration, some representative neutron
and precursor histories are shown in Fig. 3.1. In nuclear reactors, the average precursor decay time 1/λ is

1With the only possible exception of start-up or shut-down regimes, where the reactor is operated at verylow power.
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Figure 3.1 : Schematic illustration of the evolution of neutrons and precursors in the sim-plest model (anarchic model). At time t = 0, 4 neutrons and 1 precursor are present. Neu-trons (red solid lines) diffuse and undergo fission and capture ; precursors (dashed blacklines) do not diffuse. When they decay, they are replaced by a neutron at the same po-sition. Because of the birth-death process, the total number of neutrons and the totalnumber of precursors fluctuate.
typically much larger than the average neutron lifetime 1/(γ+β). Furthermore, denoting respectively by
νp,1 =

∑
k kpk and νd,1 =

∑
k kqk the average number of prompt and delayed neutrons resulting from

�ssion, we typically have νp,1 ≫ νd,1 [78]. For reasons that will become clear in the following, we are
using the notation νp,l and νd,l to indicate the l-th falling factorial moments of the number of neutrons
and precursors produced from �ssion, respectively, with

νp,l =
∞∑
k=0

k(k − 1) . . . (k − l + 1) pk (3.1)
and

νd,l =

∞∑
k=0

k(k − 1) . . . (k − l + 1) qk. (3.2)
For the sake of simplicity, our model neglects the energy dependence of the neutron-matter interac-

tion rates. Furthermore, the spatial structure of the reactor core will be simpli�ed by assuming that all
the material properties (di�usion coe�cient, �ssion and capture rates) are homogeneous. All the physical
parameters are taken to be uniform in space and constant in time. Contrary to Ref. 48, which considered
unbounded systems, here the reactor will be modeled as a �nite-size box with re�ection (Neumann)
boundary conditions, mimicking the fact that in nuclear reactors neutron leakage from the core is delibe-
rately kept small. To simplify matters even further, we will focus on one-dimensional systems, which are
more easily amenable to analytical solutions : in what follows, we will thus consider a one-dimensional
reactor of half-size L, i.e. the [−L,L] segment. This model captures the key physical mechanisms that
are responsible for the �uctuations of the �ssion chains.

Throughout this chapter, we will use the parameter values given in Tab. 3.1, whose units are arbitrary.

3.1.1 . The critical regime

Nuclear reactors are operated at the critical regime, where the equilibrium between births by �ssion
and deaths by capture allows the neutron population and hence the heat production to be stationary on
average [78]. In our model, criticality is imposed by requiring that

β(νp,1 + νd,1 − 1) = γ, (3.3)
which is equivalent to equating the production and disappearance rates. The criticality condition does
not depend on the number of neutrons present in the system : indeed, nuclear reactors can be operated at
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θ = 1 θ = 10−1 θ = 10−3

N 102 102 102

M 102 103 105

L 1 1 1
D 10−2 10−2 10−2

β 0.2 0.2 0.2
γ 0.3 0.3 0.3
λ 10−1 10−2 10−4

νp,1 2 2 2
νd,1 0.5 0.5 0.5
νp,2 2 2 2
νd,2 0 0 0

Table 3.1 : Different sets of parameters used in this work. Here N is the initial (average)number of neutrons,M is the initial (average) number of precursors,L is the box half-size,
D is the diffusion coefficient, β is the fission rate, γ is the capture rate, λ is the decay rateof precursors, νp,l and νd,l are the l-th falling factorial moments of the number of neutronsand precursors produced from fission, respectively, and θ = λ/(βνd,1). Units are arbitrary.

steady-state at virtually any power level, the power being proportional to the average number of neutrons
in the core. Due to its inherently stochastic nature, the neutron population density at a spatial site will
display �uctuations (often dubbed `neutron noise' [78]) because of random displacements in and out
the spatial cell and because of random changes in the number of particles following �ssion and capture
events within the cell.

3.1.2 . Observables of interest

Fluctuations are characterized by the statistical moments of the neutron and precursor population
as a function of position and time. Let V1 and V2 be two non-overlapping `detectors'2 located within
the reactor. We are interested in computing the average number of neutrons E[ni](ti) and precursors
E[mi](ti) present at time ti in detector i ∈ {1, 2}, and the two-point correlations between particles
detected in V1 at time t1 and particles detected in V2 at time t2, which stem from the cross-moments
E[n1n2](t1, t2), E[n1m2](t1, t2), and E[m1m2](t1, t2). Often, it is preferable to work with continuous
observables : we therefore de�ne the neutron and precursor densities by taking the limits

n(xi, ti) = lim
Vi→0

E[ni](ti)
Vi

(3.4)
m(xi, ti) = lim

Vi→0

E[mi](ti)

Vi
, (3.5)

where xi is the center of the detector location, i ∈ {1, 2}. The average population sizes are then obtained
by integrating the particle densities over the entire system :

n(t) =

∫
n(x, t) dx (3.6)

m(t) =

∫
m(x, t) dx. (3.7)

2Weassume for the sake of simplicity a perfect detection process : in ourmodel, all the neutrons falling withina given region Vi, i ∈ {1, 2}, are counted.
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Similarly, we de�ne the pair correlation functions by taking the limits

u(x1, t1, x2, t2) = lim
V1,V2→0

E[n1n2](t1, t2)
V1V2

(3.8a)
v(x1, t1, x2, t2) = lim

V1,V2→0

E[n1m2](t1, t2)

V1V2
(3.8b)

w(x1, t1, x2, t2) = lim
V1,V2→0

E[m1m2](t1, t2)

V1V2
. (3.8c)

The function u(x1, t1, x2, t2) fully characterizes the behavior of �uctuations and correlations of the
neutron population, and in this respect is key to the investigation of neutron noise. Similarly as for the
case of the average densities, integral quantities can be obtained by integrating the previous equations
over the whole spatial domain : for the two-point neutron correlation function, e.g., we would have

u(t1, t2) =

∫∫
u(x, t1, y, t2) dx dy. (3.9)

The information content of the two-point correlation function can be conveniently condensed in the
mean-squared neutron pair distance ⟨r2⟩(t), which is de�ned as

⟨r2⟩(t) =

∫∫
(x1 − x2)

2u(x1, t, x2, t) dx1 dx2

u(t, t)
, (3.10)

which is also helpful in assessing the behaviour of neutron noise [28, 79].

3.2 . A theoretical framework for correlations analysis in the anarchic model

We begin our analysis by assuming that the neutron and precursor populations are free to evolve
according to the stochastic rules described in Sec. 3.1, without any constraint. This system, which we will
call the anarchic model (for illustration, see Fig. 3.1), is representative of an analog kinetic Monte Carlo
simulation where no population control is imposed on the particle histories. The equations for the particle
density and for the two-point correlation functions can be conveniently established using the backward
master equation approach proposed by Pál and Bell (which is a special case of the Feynman-Kac backward
formalism) [78, 80]. The idea is to �rst derive the equations for the moments n′i(x0, t0) = n(xi, ti|x0, t0),
with i ∈ {1, 2}, and u′1,2(x0, t0) = u(x1, t1, x2, t2|x0, t0), conditioned to having a single initial neutron

starting from position x0 at time t0, treating x1, x2, t1 and t2 as parameters, and x0 and t0 as variables.
While the method is general, the derivation proposed below is original.

3.2.1 . Derivation of the (backward) moment equations for a single initial particle

Let P(n1, t1, n2, t2|x0, t0) be the probability to �nd n1 particles at time t1 in detector V1 and n2
particles at time t2 in detector V2, for a single particle starting in x0 at time t0, with t2 > t1 ; the
results for t2 < t1 are recovered by arguments of symmetry. Pál and Bell have independently derived
a backward formalism yielding the (adjoint) master equation for P. The manipulation of the resulting
equation is rather cumbersome, and in most cases neutron noise can be characterized using the lowest-
order moments of n1 and n2. We will be in particular interested in the average number of neutrons in
detector V1 at time t1, namely,

E[n1](t1|x0, t0) =
∑
n1,n2

n1P(n1, t1, n2, t2|x0, t0) (3.11)
and in the two-point correlation function between particles detected in V1 at time t1 and particles detected
in V2 at time t2, namely,

E[n1n2](t1, t2|x0, t0) =
∑
n1,n2

n1 n2 P(n1, t1, n2, t2|x0, t0). (3.12)
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By virtue of these considerations, it is therefore more convenient to introduce the probability-generating
function associated to P, namely,

W (z1, z2, x0, t0) =
∑
n1

∑
n2

zn1
1 zn2

2 P (n1, n2, t1, t2|x0, t0), (3.13)

where zi is the conjugate variable of ni, i ∈ {1, 2}, and hence derive the equations for the (falling
factorial) moments, which follow from

E[n1(n1−1) . . . (n1−k+1)n2(n2−1) . . . (n2−l+1)](t1, t2|x0, t0) =
∂k+l

∂zk1∂z
l
2

W (z1, z2, x0, t0)|z1=1,z2=1,

(3.14)
with k, l ≥ 0 and the normalization W (1, 1, x0, t0) = 1. It can be shown that W (z1, z2, x0, t0) satis�es
the non-linear backward evolution equation

− ∂

∂t0
W = D∇2

x0W − (γ + β)W + βGp(W )Gd(Wd) + γ, (3.15)
whereGp(z) =

∑
k z

kpk is the probability-generating function associated to the prompt �ssion probability
distribution pk and Gd(z) =

∑
k z

kqk is the probability-generating function for the precursor probability
distribution qk [80]. The quantity Wd in Eq. (3.15) is the probability-generating function associated to
the creation of a precursor at (x0, t0), namely,

Wd(z1, z2|x0, t0) = λ

∫ ∞

t0

e−λ(t
′−t0)W (z1, z2|x0, t′)dt′. (3.16)

Taking the derivative of Eq. (3.15) once with respect to z1 and using the de�nition in Eq. (3.14), we obtain
the evolution equation for the average neutron number in V1, for a single starting particle in (x0, t0) :

L†E[n1](t1|x0, t0) = 0, (3.17)
where L† is a backward linear operator de�ned by

L†f(x0, t0) =
∂f

∂t0
+D∇2

x0f + αp f + βνd,1λ

∫ ∞

t0

f(x0, t
′) e−λ(t

′−t0) dt′, (3.18)
with the shorthand

αp = β (νp,1 − 1)− γ. (3.19)
Equation (3.17) is to be solved with the �nal condition

E[n1](t1|x0, t0 = t1) =

{
1 if x0 ∈ V1
0 otherwise.

(3.20)
Letting G(x, t, x0, t0) be the Green's function associated to the operator L†, the solution to Eq. (3.17)
reads

E[n1](t1|x0, t0) =
∫
dx′χV1(x

′)G(x′, t1, x0, t0), (3.21)
where χV (x) is the characteristic function of a domain V .

Taking the mixed derivative of Eq. (3.15) with respect to z1 and z2, and using again the de�nition in
Eq. (3.14), we obtain the evolution equation for the two-point correlation function, for a single particle
starting in (x0, t0) :

L†E[n1n2](t1, t2|x0, t0) = −fcorr(t1, t2|x0, t0), (3.22)
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where we have de�ned

fcorr(t1, t2|x0, t0) = βνp,2E[n1]E[n2] + βνp,1νd,1E[n1]λ
∫ t2

t0

e−λ(t
′−t0)E[n2](t′)dt′

+ βνp,1νd,1E[n2]λ
∫ t1

t0

e−λ(t
′−t0)E[n1](t′)dt′

+ βνd,2λ
2

∫ t1

t0

e−λ(t
′−t0)E[n1](t′)dt′

∫ t2

t0

e−λ(t
′−t0)E[n2](t′)dt′ (3.23)

with the shorthand notation E[ni] = E[ni](t1|x0, t0), i ∈ {1, 2}. Equation (3.22) is to be solved with the
�nal condition

E[n1n2](t0 = t1) =

{
E[n2](t2|x0, t0 = t1) if x0 ∈ V1
0 otherwise.

(3.24)
Using the Green's function associated to the operator L†, the solution to Eq. (3.22) can be expressed as

E[n1n2](t1, t2|x0, t0) =∫
dx′χV1(x

′)E[n2](t2|x′, t1)G(x′, t1, x0, t0) +
∫ t1

t0

dt′
∫
dx′fcorr(t1, t2|x′, t′)G(x′, t′, x0, t0). (3.25)

The continuous version of Eqs. (3.21) and (3.25) can be obtained by centering the detector regions
V1 and V2 around x1 and x2, respectively, de�ning

n(x1, t1|x0, t0) = lim
V1→0

E[n1](t1|x0, t0)
V1

u(x1, t1, x2, t2|x0, t0) = lim
V1,V2→0

E[n1n2](t1, t2|x0, t0)
V1V2

and letting the detector sizes shrink to zero.

3.2.2 . Analysis of the Green's function of L†

By separation of variables, the Green's function G(x, t|x0, t0) associated to L† can be expressed as

G(x, t, x0, t0) =
+∞∑
k=0

φk(x)φ
†
k(x0)Tk(t|t0), (3.26)

where the time-eigenfunctions Tk(t|t0) read

Tk(t|t0) =
(
ω+
k − ω−

k

)−1 ×
[
eω

+
k (t−t0)(ω+

k + λ)− eω
−
k (t−t0)(ω−

k + λ)
]
, (3.27)

with two associated families of eigenvalues

ω±
k =

αk + αp − λ±
√

(αk + αp + λ)2 + 4λβνd,1
2

. (3.28)
The quantities αk are the eigenvalues associated to operator D∇2

x, with the corresponding eigenfunctions
φk(x). For re�ection boundary conditions, we have αk = −D(kπ/2L)2 and

φk(x) = cos

(
kπx

2L

)
(3.29)

for k ≥ 0. The functions φ†
k(x0) are obtained from the orthonormality condition of the eigenfunctions,

and for re�ection boundary conditions read

φ†
k(x0) =


1

2L
if k = 0

1

L
cos

(
kπx0
2L

)
if k ≥ 1.

(3.30)

In nuclear reactors, the two families ω±
k are widely separated because of the typical values of λ, αp and

βνd,1. Loosely speaking, the ω+
k family is associated to the dynamics of precursors, while ω−

k describes
prompt neutron dynamics.
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3.2.3 . Generalization to a collection of particles

Once the single-particle moments are known, it is then straightforward to generalize the framework
to describe a collection of N independent and identically distributed neutrons whose initial coordinates
are distributed according to a given source Q(x0, t0). Observe that the resulting probability-generating
function WQ(z1, z2) is related to the single-particle probability-generating function W (z1, z2, , x0, t0) by

WQN (z1, z2) =

[∫ t1

−∞
dt0

∫
dx0W (z1, z2, x0, t0)Q(x0, t0)

]N
. (3.31)

Then, by taking the derivative of Eq. (3.31) once with respect to z1 we obtain the average number of
particles in V1 for a collection of N source particles :

E[n1](t1|QN ) = N
∫ t1

−∞
dt0

∫
dx0E[n1](t1|x0, t0)Q(x0, t0). (3.32)

Similarly, by taking the mixed derivative of Eq. (3.31) with respect to z1 and z2 we obtain the pair
correlation between detector V1 and V2 for a collection of N source particles :

E[n1n2](t1, t2|QN ) =
(N − 1)

N
E[n1](t1|QN )E[n2](t2|QN )

+N
∫ t1

−∞
dt0

∫
dx0E[n1n2](t1, t2|x0, t0)Q(x0, t0). (3.33)

In particular, if we denote the single-particle source distribution as Q(x0, t0), the density n(x, t) reads

n(x, t) = N
∫∫ t

−∞
Q(x0, t0)G(x, t|x0, t0) dx0 dt0, (3.34)

which expresses a linear superposition principle. The pair correlation function can be also explicitly
computed based on the Green's function, and reads

u(x1, t1, x2, t2) =
N − 1

N
n(xa, ta)n(xb, tb) + G(xb, tb|xa, ta)n(xa, ta)

+ βνp,2

∫ ta

0

∫
G(xa, ta|x, t)G(xb, tb|x, t)n(x, t)dxdt

+ βνp,1νd,1

∫ ta

0

∫
G(xa, ta|x, t) c(xb, tb|x, t)n(x, t)dxdt

+ βνp,1νd,1

∫ ta

0

∫
G(xb, tb|x, t) c(xa, ta|x, t)n(x, t)dxdt

+ βνd,2

∫ ta

0

∫
c(xa, ta|x, t) c(xb, tb|x, t)n(x, t)dxdt , (3.35)

where ta = min{t1, t2}, tb = max{t1, t2},

xa =

{
x1 if ta = t1

x2 if ta = t2
, (3.36)

and

xb =

{
x1 if tb = t1

x2 if tb = t2
. (3.37)

The quantity

c(xa, ta|x, t) = λ

∫ ta

t
G(xa, ta|x, t′)e−λ(t

′−ta) dt′ (3.38)
represents the expected number of neutrons detected at (xa, ta) produced by a precursor at (x, t), with
ta > t.
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The terms appearing in the correlation function in Eq. (3.35) can be given a physical interpretation.
The �rst term describes the contribution of the detection of uncorrelated particles, i.e. particles that do
not share any common ancestor. The second term describes self-correlations, i.e. the detection of the
same particle history at (xa, ta) and later at (xb, tb). The four remaining terms represent the possible
contributions due to �ssion events : the �rst one corresponds to the correlations induced by detection
at (xa, ta) and (xb, tb) of neutrons stemming from di�erent prompt neutrons produced by a common
�ssion event at (x, t) ; the following two terms are symmetrical and correspond to correlations induced by
detection at (xa, ta) and (xb, tb) of neutrons stemming from a prompt neutron and a precursor produced
by a common �ssion event at (x, t) ; �nally, the remaining term corresponds to correlations induced by
detection at (xa, ta) and (xb, tb) of neutrons stemming from di�erent precursors produced by a common
�ssion event at (x, t).

3.2.4 . The source corresponding to the critical regime

If the reactor is assumed to be in the critical regime, it is then possible to choose the single-particle
source Q(x0, t0) so that the average neutron density n(x, t) is stationary at any time t > 0 : this is for
instance achieved by taking Q(x0, t0) = Qc(x0, t0), with

Qc(x0, t0) =
1

2L

[
θ

1 + θ
δ(t0) +

1

1 + θ
λ exp(−λt0)

]
, (3.39)

where t0 > 0 and θ = λ/(βνd,1). This particular choice of Q(x0, t0) will be called the critical source.
The �rst term in Eq. (3.39) corresponds to neutrons appearing at t0 = 0 with probability θ/(1+θ), while
the second term corresponds to delayed neutrons appearing at exponentially distributed times from the
decay of the precursors initially present at t0 = 0, with complementary probability 1/(1 + θ). For our
simple homogeneous one-dimensional reactor with re�ection boundary conditions, the spatial distribution
1/(2L) is �at over the domain (Eq. (3.29)).

3.2.5 . Further generalizations of the Pál and Bell backward formalism

The Pál and Bell backward formalism lends itself to many possible generalizations. For instance, if we
were to start our system with a collection of (independently distributed) N prompt neutrons, each having
a source distribution Qn(x0, t0), and M delayed neutrons, each having a source distribution Qm(x0, t0),
then Eq. (3.31) would be replaced by

WQn+m(z1, z2) =

[∫ t1

−∞
dt0

∫
dx0W (z1, z2, x0, t0)Qn(x0, t0)

]N
×
[∫ t1

−∞
dt0

∫
dx0W (z1, z2, x0, t0)Qm(x0, t0)

]M
. (3.40)

Correspondingly, setting N = N +M and denoting

Qn+m(x0, t0) =
N

N +M
Qn(x0, t0) +

M

N +M
Qm(x0, t0), (3.41)

for the average number of particles we would have

E[n1](t1|Qn+m) = N
∫ t1

−∞
dt0

∫
dx0 E[n1](t1|x0, t0)Qn+m(x0, t0), (3.42)

and for the pair correlation we would have

E[n1n2](t1, t2|Qn+m) = N 2E[n1](t1|Qn+m)E[n2](t2|Qn+m)

−NE[n1](t1|Qn)E[n2](t2|Qn)−ME[n1](t1|Qm)E[n2](t2|Qm)

+N
∫ t1

−∞
dt0

∫
dx0E[n1n2](t1, t2|x0, t0)Qn+m(x0, t0). (3.43)

Furthermore, the Pál and Bell backward formalism can be easily extended to include more general
detectors (for instance, an array V = (V1, . . . , VK) of K non-overlapping regions), and to more general
sources (for instance, N and M can be themselves random variables with Poisson distributions).
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3.2.6 . Exact solutions for the anarchic model with a critical source

For the critical anarchic model with a critical source, the solution of the pair correlation function
in Eq. (3.35) can be derived explicitly. For t1 < t2, the pair correlation function u(x1, t1, x2, t2) can be
decomposed as follows :

u(x1, t1, x2, t2) =
N (N − 1)θ2

4L2(1 + θ)2
+

N θ

2L(1 + θ)
G(x2, t2, x1, t1)

+
N θ

2L(1 + θ)
[upp(x1, t1, x2, t2) + upd(x1, t1, x2, t2) + udp(x1, t1, x2, t2) + udd(x1, t1, x2, t2)] .

(3.44)
Each component is de�ned in terms of the respective eigenmode expansion, namely,

upp =
∑
k

φk(x1)φ
†
k(x2)u

k
pp (3.45)

upd =
∑
k

φk(x1)φ
†
k(x2)u

k
pd (3.46)

udp =
∑
k

φk(x1)φ
†
k(x2)u

k
dp (3.47)

udd =
∑
k

φk(x1)φ
†
k(x2)u

k
dd. (3.48)

For the prompt-prompt component ukpp we have :

u0pp(t1, t2) =
βνp,2

(1 + θ)2

[
θ2t1 + θ

(
eωdt1 − 1

ωd
+
eωdt2 − eωd(t2−t1)

ωd

)
+
eωd(t1+t2) − eωd(t2−t1)

2ωd

]
, (3.49)

where we have introduced ωd = −τ−1
2 = −βνd,1 − λ, and

ukpp(t1, t2) =
βνp,2

(ω+
k − ω−

k )
2

[
(ω+
k + λ)2

2ω+
k

(
eω

+
k (t1+t2) − eω

+
k (t2−t1)

)
+

(ω−
k + λ)2

2ω−
k

(
eω

−
k (t1+t2) − eω

−
k (t2−t1)

)
+
(ω+
k + λ)(ω−

k + λ)

ω+
k + ω−

k

(
eω

+
k (t2−t1) + eω

−
k (t2−t1) − (eω

+
k t1+ω

−
k t2 + eω

+
k t2+ω

−
k t1)

)]
,

for k ≥ 1. For the prompt-delayed component ukpd we have

u0pd(t1, t2) =
βνd,1νp,1θ

(1 + θ)2

[
θt1 +

eωdt1 − 1

ωd
+
θ(eωd(t2−t1) − eωdt2)

ωd
+
eωd(t2−t1) − eωd(t1+t2)

2ωd

]
(3.50)

and

ukpd(t1, t2) =
βλνd,1νp,1

(ω+
k − ω−

k )
2

[
(ω+
k + λ)

(
eω

+
k (t1+t2) − eω

+
k (t2−t1)

2ω+
k

+
eω

−
k (t2−t1) − eω

+
k t1+ω

−
k t2

ω+
k + ω−

k

)

+ (ω−
k + λ)

(
eω

+
k (t2−t1) − eω

+
k t2+ω

−
k t1

ω+
k + ω−

k

+
eω

−
k (t1+t2) − eω

−
k (t2−t1)

2ω−
k

)]
(3.51)

for k ≥ 1. For the delayed-prompt component ukdp we have

u0dp(t1, t2) =
βνd,1νp,1θ

(1 + θ)2

[
θt1 + θ

(
1− eωdt1

ωd

)
+
eωdt2 − eωd(t2−t1)

ωd
+
eωd(t1−t2) − eωd(t2+t1)

2ωd

]
(3.52)
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and

ukdp(t1, t2) =
βλνd,1νp,1

(ω+
k − ω−

k )
2

[
(ω+
k + λ)

(
eω

+
k (t1+t2) − eω

+
k (t2−t1)

2ω+
k

+
eω

+
k (t2−t1) − eω

+
k t2+ω

−
k t1

ω+
k + ω−

k

)

+ (ω−
k + λ)

(
eω

−
k (t2−t1) − eω

+
k t1+ω

−
k t2

ω+
k + ω−

k

+
eω

−
k (t1+t2) − eω

−
k (t2−t1)

2ω−
k

)]
(3.53)

for k ≥ 1. Finally, for the delayed-delayed component ukdd we have

u0dd(t1, t2) =
βνd,2θ

2

(1 + θ)2

[
t1 +

1 + eωd(t1−t2) − eωdt1 − eωdt2

ωd
+
eωd(t1+t2) − eωd(t2−t1)

2ωd

]
(3.54)

and

ukdd(t1, t2) =
βλ2νd,2

(ω+
k − ω−

k )
2

[
eω

+
k (t1+t2) − eω

+
k (t2−t1)

2ω+
k

+
eω

−
k (t1+t2) − eω

−
k (t2−t1)

2ω−
k

+
eω

+
k (t2−t1) + eω

−
k (t2−t1) − eω

+
k t1+ω

−
k t2 − eω

−
k t1+ω

+
k t2

ω+
k + ω−

k

]
(3.55)

for k ≥ 1. Note that Eq. (3.35), which is applicable to generic values of t1 and t2, is recovered by
operating the substitutions t1 → min{t1, t2} and t2 → max{t1, t2} in Eq. (3.44).

Taking t1 = t2 = t, we can obtain an expression for the mean-squared pair distance ⟨r2⟩(t). For our
case (re�ection boundary conditions, νd,2 = 0), the expression reads :

⟨r2⟩(t) =

∫∫
(x− y)2u(x, y, t) dx dy

u(t, t)

=
2L2

3

(
1− 1

N + upp0 (t) + udp0 (t) + u0pd(t)

)

− 64L2

N + u0pp(t) + u0dp(t) + u0pd(t)

+∞∑
k=1
k odd

ukpp(t) + ukdp(t) + ukpd(t)

(kπ)4
(3.56)

3.3 . Analysis of the pair correlation function

Inspection of Eq. (3.34) shows that the average neutron density in a critical reactor starting form
the critical source in Eq. (3.39) is trivially constant, as expected, and reads n(x, t) = N/(2L). This
value depends on the number N of neutrons emitted from the source and on the reactor size 2L.
Correspondingly, the average total number of neutrons n(t) will be constant and equal to N , and it can
be shown that the average total number of precursors m(t) will be also constant and equal toM = N/θ.

The correlation function in Eq. (3.35), on the contrary, is not stationary for a critical system. While
Eq. (3.35) is exact, the evaluation of G requires the numerical computation of an in�nite series. In
the following, the semi-analytical solution is henceforth obtained using Eqs. (3.44-3.54) by summing
the series up to order k = 1000. The resulting correlation function has been carefully veri�ed against
Monte Carlo simulations, as shown in Figs. 3.2a and 3.2b. It is more convenient to plot the corrected

pair correlation function ũ(x1, t1, x2, t2) = u(x1, t1, x2, t2) − δ(x1 − x2)n(x1, t1), which is equivalent
to ignoring the singular term δ(x1 − x2) due to the self-correlations occurring in the system at t1 = t2.
Note that this does not remove all of the self-correlation contributions, as self-correlations also include
contributions from points x1 ̸= x2. By abuse of language, and when it does not impede understanding,
in the following we shall call ũ the `pair correlation function' nonetheless. Since the function has four
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(a) On the graph we plot u(x1, t1, x2, t) for
x1 = x2 = 0 and t1 = T/2. The bottomgraph shows u(x1, t1, x, t2) the spatial shapewhen t1 = t2 = T/2 and x1 = 0.

(b) Same as Fig. 3.2a, except that the topgraph gives the time dependency for x1 = 0and x2 = −0.02. The bottom graph showsspatial correlations with t1 = T/2 = 500 and
t2 = 490.

Figure 3.2 : Pair correlation function for a critical population starting with, on average,
N = 100 prompt neutrons and M = 103 precursors, for a deterministic total populationsize N = N + M . Parameters are taken as in Table 3.1 for θ = 10−1. Blue solid line :analytical results from Eq. (3.35). Black circles : Monte Carlo simulations result with 106replicas.
independent variables, for the sake of simplicity we present one-dimensional cuts for �xed values of the
other variables.

Figure 3.2a shows the time shape of the correlation function when particles are detected at the same
spatial position x1 = x2 (top panel), and the spatial shape when the detection times t1 = t2 are the same
(bottom panel). The detection positions chosen for Fig. 3.2a are far from the boundaries of the reactor.
Figure 3.2b illustrates the time shape of the correlation function for two di�erent detection positions
(top), and its spatial shape for two di�erent detection times (bottom).

Figures 3.2a (top panel) and 3.2b (top panel) show that, after an initial transient, t ≲ 50, the
time pro�le of the pair correlation function exhibits a linear build-up. For t1 > t2, correlations saturate.
Indeed, the linear build-up describes �ssions happening at time t1 that may contribute to further �ssions
occurring at a �xed t2, meaning that obviously �ssions occurring at t1 > t2 cannot contribute.

The analysis of u(x1, t1, x2, t2) shows that the correlation function displays several typical time
scales. First, the spatial boundedness of the system introduces timescales that are related to di�usion.
The prompt time scales accumulate around and are asymptotically dominated by the mixing time, which
is related to the time a neutron needs in order to explore the whole con�guration space [46]. With the
introduction of precursors, additional remarkable timescales appear. As shown in Eq. (3.35), the two-
point, two-time correlation function involves products of the Green's function, Eq. (3.26), which has the
structure of an in�nite sum of exponential modes with characteristic time constants ω+

k and ω−
k . The

correlation function can then be expressed as an in�nite sum of exponential modes with characteristic
time constants 2ω+

k , 2ω
−
k , ω

+
k +ω−

k and ω+
k −ω−

k (see Sec. 3.2.2 for details). If we restrict our attention
to the one-time, two-point correlation function, u(x1, x2, t) = u(x1, t, x2, t), then the ω+

k − ω−
k modes

disappear. The �rst few characteristic time constants for each family are represented in Fig. 3.3. We can
identify four di�erent interesting timescales :

• the separation of the �rst two characteristic time constants of the ω+
k + ω−

k family is given by
(ω+

0 + ω−
0 ) − (ω+

1 + ω−
1 ) = −α1 = 4L2/Dπ2 = τ−1

D . This is exactly the inverse of the mixing
time for a system without delayed neutrons, as studied in Ref. 46. For the parameter values of
Figs. 3.2a and 3.2b, the prompt mixing time would be τD ≃ 41.
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Figure 3.3 : Scatter plot of the characteristic time constants of the Green’s function (top)and of the one-time, two-point correlation function (bottom), for the anarchic system, upto order k = 5. Top : blue right-pointing triangles represent |ω+
k | ; red left-pointing trianglesrepresent |ω−

k |. Bottom : blue right-pointing triangles represent |2ω+
k | ; black down-pointingtriangles represent |ω+

k +ω−
k | ; red left-pointing triangles represent |2ω−

k |. Note that ω−
0 = 0and 2ω−

0 = 0 cannot be represented in either plot (the system is critical). The dominantmode for each family (k = 0) is the leftmost one. The parameter values are the same asin Fig. 3.2a.
• on a timescale of the order of τ2 = |ω+

0 +ω−
0 |−1 = (βνd,1+λ)

−1, the correlation function reaches
a quasi-stationary regime, after prompt dynamics has stabilized but before delayed dynamics comes
into play. Note that the expression of τ2 is independent of the spatial characteristics of the sys-
tem, such as its spatial extent or the di�usion coe�cient. Therefore, this time scale corresponds
to a collective behaviour. For times of the order of a few τ2, the prompt modes contribute a
time-independent term to the correlation function. The delayed modes, on the other hand, have
timescales that are much longer than τ2 ; therefore, the remaining exponentials terms exp(2ω+

k t)

can be replaced with their �rst-order Maclaurin development, yielding a linear dependency on time.
This explains the presence of linear build-up regimes in Figs. 3.2a and 3.2b. For the parameters of
these �gures, we have τ2 ≃ 9.

• on a timescale of the order of τ1 = |2ω+
1 |−1, the correlation function acquires its asymptotic spatial

shape. In this sense, this timescale is analogous to the mixing time of prompt systems ; however,
given the expression of Eq. (3.28), it involves the precursor decay constant λ and is therefore
generally much longer than the prompt mixing time, which is given by τD. For the parameter
values of Figs. 3.2a and 3.2b, we have τ1 ≃ 269.

• for times much longer than τ1, all the exponential terms in the correlation function have died out.
The spatial shape of the correlation function is frozen, but the overall scale factor increases linearly
with t. It has been previously shown by Houchmandzadeh et al. [48] (and our calculations con�rm
this) that the slope of this eventual linear regime is τ−1

E , where

τE =
N(1 + θ)2

βν2θ2
, (3.57)

where
ν2 = νp,2 + 2νd,1νp,1 + νd,2,

and N = N θ/(1 + θ) is the average number of neutrons in the system. After a time of the order
of τE , the standard deviation of the total population size becomes equal to the mean population
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size. This is the regime of the critical catastrophe : because of the unbounded �uctuations, the
population will almost surely go eventually extinct, despite the fact that the average population size
is constant [78, 80]. This apparently paradoxical behaviour is a well-known characteristic of critical
birth-and-death processes. The quantity τE thus physically represents the typical extinction time of
the system. For the parameter values of Figs. 3.2a and 3.2b, the extinction time is τE ≃ 1.5×104 ;
therefore, this regime is not observable in the �gures above.

The space pro�le of the correlation function, shown in Fig. 3.2a (bottom panel), has the tent-like
shape that is typical of clustering behaviour. Despite the fact that the mean population density is uniform
and constant, speci�c histories can exhibit strong patchiness (clusters) where pairs of particles will tend
to be located at short distances from each other. This is coherent with previous �ndings for a reactor
model neglecting delayed neutrons [27, 46, 47]. Figure 3.2b (bottom) suggests a relaxation toward a
�at distribution for t1 and t2 su�ciently far from each another. Further analyses (not shown here for
conciseness) con�rm this conjecture.

It is tempting to characterize the importance of neutron clustering by de�ning a dimensionless para-
meter η = τ1/τE , i.e. the ratio of the two longest timescales in the system. When η ≫ 1, clustering will
relax slowly over a time of the order of the extinction time, and therefore it will be observable over the
whole lifetime of the system. It is interesting to consider how the dimensionless parameter η scales with
θ for small θ, which is the regime of interest for nuclear reactors. By replacing λ = θβνd,1 in Eq. (3.28)
and developing in Maclaurin series in θ, we obtain

ω+
1 ≃ θ

α−1
1 + α−1

p
. (3.58)

Hence,

τ1 ≃
α−1
1 + α−1

p

2θ
. (3.59)

This should be contrasted with the mixing time for a system without delayed neutrons, which is τD =

1/α1. Even in the regime where di�usion dominates (α1 ≪ αp), we can see that the presence of delayed
neutrons slows down mixing by a factor of 1/θ. Unsurprisingly, this is the factor that is introduced by
delayed neutrons in the characteristic response times of the mean reactor populations around criticality
[48]. Thus, mixing is essentially a phenomenon that characterizes the behaviour of the average neutron
and precursor densities.

When Eq. (3.59) is replaced in the de�nition of the clustering parameter η, we �nd

η =
τ1
τE

≃
α−1
1 + α−1

p

2N
βν2θ. (3.60)

This goes to show that the presence of delayed neutrons is very e�ective in quenching clustering, because
of the di�erent scaling of τ1 and τE with θ. It is worth remarking in passing that the fact that the extinction
time scales as θ−2 for small values of θ is not a coincidence, but it is due to the fact that τE is a purely
stochastic quantity, which can only be de�ned in terms of the second-order moments of the populations.

3.4 . Analysis of the mean-squared pair distance

The quantity ⟨r2⟩(t) yields the average square distance between pairs of particles (observed at the
same time), and in this respect provides information on their tendency toward clustering [28, 79]. At
time t0 = 0, we have

⟨r2⟩(0) = ⟨r2⟩iid =
2L2

3
, (3.61)

since the neutrons are independently and uniformly distributed within the reactor. At later times, neutrons
exhibit correlations induced by �ssion events and correspondingly ⟨r2⟩(t) < ⟨r2⟩iid, which is a signature
of the spatial clustering regime. For the anarchic model, we can obtain semi-analytical formulas for ⟨r2⟩(t)
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Figure 3.4 : Mean-squared pair distance in a one-dimensional box [−L,L] for critical po-pulations using two sets of parameters taken from Table 3.1. Blue (gray) circles for MonteCarlo simulation with θ = 10−2 ; blue (gray) solid line for analytical integration of Eq. (3.35) ;black triangles for Monte Carlo simulation with θ = 1 ; black pointed-line for the analyticalintegration of Eq. (3.10). Error bars are shown but are barely visible.
in the form of a series, whose expression can be found in Eq. (3.56), generalizing previous �ndings for
the model without delayed neutrons [28].

Figure 3.4 shows the time evolution of the mean-squared pair distance for a choice of model pa-
rameters. The formula from Eq. (3.56) is compared to the result of the Monte Carlo simulation. Pair
distance in Monte Carlo is estimated by taking the ensemble average of the squared distances of all the
neutron pairs present in the system at a given time, normalized by the ensemble average of the square
of the number of particles at a given time. For times of the order of the extinction time, the quantity
⟨r2⟩(t) asymptotically reverts to the uncorrelated value ⟨r2⟩iid, with a convergence speed that depends
on the model parameters. This is explained by the fact that for t ≫ τE the population in a critical
regime almost certainly dies out and correlations become spatially �at over the entire reactor. This result
is again coherent with previous �ndings for the case where precursors were neglected [28].

3.5 . Conclusions

We considered a simpli�ed one-dimensional stochastic model of a nuclear reactor including neutrons
and precursors. We derived the moment equations characterizing the time and space correlations of the
particles present in the system.

Our main tool was the two-point, two-time neutron-neutron second-order moment (the pair corre-
lation function), which characterizes the joint observation of neutrons at (x1, t1) and at (x2, t2). By
using the Pál-Bell backward formalism, we derived the exact pair correlation function for the anarchic
model, where all the populations are left free to evolve, starting from a distributed source composed of
a collection of initial particles (neutrons, precursors or both).

We identi�ed two typical timescales, namely the time τ2 necessary for the prompt correlation dynamics
to relax, and the time τ1 necessary for correlations to achieve their asymptotic spatial shape. The latter
generalizes the concept of mixing time (initially introduced for purely prompt stochastic models, without
precursors) to a system with delayed neutrons. For typical values of the physical parameters, τ1 is actually
much longer than the mixing time of a critical system without delayed neutrons.

The system is further characterized by its extinction time τE , which represents the typical time
required to observe catastrophic �uctuations of the total population size. Similarly to the mixing time,
the extinction time for a system with delayed neutrons is much longer than the extinction time for a
critical system without delayed neutrons, for typical values of the physical parameters.
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This framework sets the bases to fully characterize the stochastic evolution of a collection of neutron
and precursors when no external constraints are imposed. In the next chapter, we will focus on the space
and time correlations in the presence of idealized population control algorithms.
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4 -Space-Time Correlations in simpli�ed kinetic simula-

tions with idealized population control

So far, we have considered the case of kinetic simulations using freely evolving particle populations.
In practice, some forms of population control will be generally used, in order to prevent fatal numerical
instabilities such as the `critical catastrophe' discussed in the previous chapter.

In the following, we will introduce and thoroughly examine a class of stochastic models coupling the
branching Brownian model presented in Chapter 3 with an idealized mechanism of population control that
mimics more realistic strategies, but is simple enough to allow for analytical solutions for the observables
of interest.

For this purpose, we will suitably generalize an approach originally conceived for the case where
precursors are neglected [28]. For this model, a control mechanism has been introduced as follows :
whenever a neutron is created by �ssion, another neutron is randomly chosen and eliminated [28, 47].
This sampling strategy was inspired by heuristic arguments proposed in the context of theoretical ecology
[79, 81] : it preserves exactly the total number of individuals in the system and has a deep impact on the
behaviour of the correlations. In particular, it has been shown to induce an upper bound on the amplitude
of neutron noise and thus prevent the occurrence of the critical catastrophe [28, 47].

The enforcement of control mechanisms, which correlate birth and death events, breaks the inde-
pendence of particle histories, so that the backward formalism can no longer be used [82]. We will resort
to a forward master equation approach instead, which is slightly more involved. Thus, for the sake of
simplicity we will focus exclusively on the case of binary �ssion and on the production of at most one
delayed neutron precursor, although our �ndings can be straightforwardly extended to general neutron
and precursor production distributions, at the expense of more cumbersome formulas. For the same rea-
son, contrary to Chapter 3, we shall only consider spatial correlations with both particles observed at the
same time.

The analysis of spatial moments will be complemented by the investigation of the statistical behaviour
of neutron genealogical trees. The main idea behind this approach is that �ssion progeny originating from
the same �ssion event are correlated and share a common ancestor. Neutrons sharing at least one common
ancestor form a genealogical tree of correlated particles, which we call family by analogy with population
dynamics. We will show that, in the course of the stochastic evolution of the population dynamics obeying
the rules of the Galton-Watson birth-and-death process with population control, all the families but one
will eventually become extinct [83]. The relationship between the evolution of the statistics of the neutron
families and spatial correlations is encoded in the competition between birth, death, and di�usion. In this
chapter, we will provide a formal framework to derive analytically the moments of the distribution of the
extinction time for all the families but one, for a collection of neutrons and precursors evolving in time
under di�erent population control mechanisms.

Population control has a clear physical counterpart in real systems. In nuclear reactors, various feed-
back mechanisms act against the excursions of the neutron population. An example of utmost importance
is provided by the Doppler e�ect. The probability of neutron-matter interaction depends on the tempera-
ture of the medium ; in nominal conditions, the probability of sterile absorption increases with increasing
temperature [2]. Since the temperature of the reactor is driven by the number of neutrons in the system,
the overall result of the Doppler e�ect is that deviations from the mean in the number of neutrons in
the reactor tend to be quenched. The typical timescale of the Doppler e�ect is shorter than the neutron
lifetime, so that the feedback acts almost instantaneously on the behaviour of the �ssion chains [2]. In
this respect, the analysis of analog kinetic Monte Carlo simulations with population control can be trans-
posed to the analysis of neutron �uctuations occurring in the real systems when feedback mechanisms
are taken into account.

Most of the work presented in this chapter has been previously published in Ref. 77 and Ref. 84.
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4.1 . Application of population control to a collection of neutrons alone

An extensive characterization of the correlations for a collection of di�using and multiplying particles
where the number of individuals is kept exactly constant has been derived in the literature [28], building
upon previous results from theoretical ecology [79]. In these works, precursors were neglected. Moreover,
the approach presented in Ref. 28 does not lend itself to a straightforward generalization to the broader
case of a collection of neutrons and precursors.

To overcome this issue, we introduce here a novel strategy that allows deriving a rigorous analytical
framework based on forward master equations. For pedagogical reasons, we begin our investigation by
considering the simpler case of a collection of neutrons alone, where our approach recovers the results
of Ref. 28, albeit in a more general setting that can be then extended to take into account the presence
of precursors. This new model will be discussed in Sec. 4.2 and following.

If precursors are neglected, a stochastic model with a population control constraint that preserves
exactly the number of neutrons in the system can be obtained by setting the rules de�ned in Ref. 28.
Each neutron induces �ssion with rate β, producing exactly two prompt neutrons. Capture is conditioned
to �ssion : upon �ssion, another neutron randomly chosen in the remaining population is eliminated.
Between �ssion events, neutrons undergo di�usion. This ensures that the number of neutrons N is
constant, which corresponds to a critical reactor with strict population control.

4.1.1 . Derivation of the space-dependent master equation

We assume again that the viable space is the one-dimensional domain [−L,L]. Following the strategy
introduced in Ref. 48, we derive the forward space-dependent master equation by partitioning the domain
into a set of K segments of equal length δx = 2L/K, which we denote as Vk with k ∈ {1, . . . ,K}.
Correspondingly, we write n = (n1, . . . , nK). Let P(n, t) be the joint probability observing nk neutrons
in each of the K detectors, with k ∈ {1, . . . ,K}, given an initial condition at t0 = 0 of N neutrons
uniformly distributed in space. We have

∑
i ni = N . In addition, for conceptual ease, di�usion will be

�rst modelled as a discrete random walk by de�ning the rate ξ at which a neutron jumps from Vk to
Vk±1. The evolution equations for P(n, t) can be written more concisely introducing the annihilation ak
and creation a†k operators, whose action on a state vector v = (v1, . . . , vK) is de�ned by

akv = (. . . , vk−1, vk − 1, vk+1, . . . )

a†kv = (. . . , vk−1, vk + 1, vk+1, . . . ).

The stochastic rules allow for the following transitions

• a transition n → aia
†
i±1n with rate per neutron ξ, corresponding to di�usion from site i to

neighbouring sites.

• a transition n → a†iajn with rate per neutron β and probability

p =
ni − 1

N

nj + 1

N − 1
, (4.1)

corresponding to �ssion in bin i and capture in bin j.

Based on these rules, the discrete master equation reads

∂

∂t
P(n, t) =

∑
i

ξ(ni+1 + 1)P(a†i+1ain, t) + ξ(ni−1 + 1)P(a†i−1ain, t)− 2ξniP(n, t)

+ βN
∑
j ̸=i

(
ni + 1

N

nj − 1

N − 1
P(a†iajn, t)−

ni
N

nj
N − 1

P(n, t)

) . (4.2)
Equation (4.2) is hardly amenable to analytical solutions, but insights about the statistical behaviour of
the neutron population can nonetheless be gained by investigating the statistical moments of the neutron
population.
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4.1.2 . Derivation of the spatial moments

Equation (4.31) describes the evolution of the discrete occupation probability. Correspondingly, we
can derive the average number of neutrons in Vi at time t from

E[ni](t) =
∑
n

niP(n, t). (4.3)
The two-point correlation between neutrons detected in Vi and neutrons detected in Vj at time t is
similarly derived from

E[ninj ](t) =
∑
n

ninjP(n, t). (4.4)
The equation for the spatial moment of order l can be obtained by multiplying Eq. (4.2) by nlk and

summing over all possible states. For the �rst moment, this procedure yields

∂

∂t
E[nk](t) = γ∆kE[nk](t), (4.5)

where ∆k denotes the discrete Laplace operator, such that ∆kfk = fk+1 − 2fk + fk−1. Taking the limit
Vi → 0 leads to the one-dimensional di�usion equation

∂

∂t
n(x, t) = D∇2n(x, t), (4.6)

with Vi centered around x. The di�usion rate ξ is assumed to scale as 1/
√
δx, so that the di�usion

coe�cient is recovered as
lim
δx→0

ξδx2 = D. (4.7)
With re�ection boundary conditions, the solution of Eq. (4.6) is simply the spatially uniform density

n(x, t) =
N

2L
. (4.8)

Similarly, for the second moment we obtain

∂

∂t
E[nknl](t) = γ (∆lE[nknl](t) + ∆kE[nlnk](t))−

2β

N0 − 1
E[nknl](t) + δk,l

2N0β

N0 − 1
E[nk](t)

+ δi,jξ (E[ni+1](t) + E[ni−1](t) + 2E[ni](t))− δi+1,jξ (E[ni+1](t) + E[ni](t))
− δi−1,jξ (E[ni](t) + E[ni−1](t)) , (4.9)

where δi,j denotes the Kronecker symbol. Taking again the limit Vi → 0 leads to

∂

∂t
ũ(x, y, t) = D(∇2

x +∇2
y)ũ(x, y, t)−

2β

N − 1
ũ(x, y, t) + 2βn(x, t)δ(x− y), (4.10)

where, for the sake of conciseness, we have introduced the modi�ed pair correlation function ũ(x, y, t) =
u(x, y, t)− δ(x− y)n(x, t). Here δ denotes the Dirac distribution. The detectors Vi and Vj are centered
around x and y, respectively. Finally, we assume

lim
Vi,Vj→0

δi,j = δ(x− y). (4.11)
When taking the limit Vi → 0, the last two lines of Eq. (4.9) lead to higher-order derivatives of the Dirac
distribution, that disappear when using ũ instead of u.

Equation (4.10) is a linear equation that can be solved in terms of the Green's function

G(x, y, t|x′, y′, t′) = G(x, t|x′, t′)G(y, t|y′, t′)e−
2β

N−1
(t−t′), (4.12)

where G is the Green's function associated to Eq. (4.6), i.e. the Gaussian propagator, which read
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G(x, t|x′, t′) = 1√
4πD(t− t′)

e
(x−x′)2
4D(t−t′) . (4.13)

The formal solution of Eq. (4.10) then reads

ũ(x, y, t) = 2β

∫∫
dx′dt′G(x, t|x′, t′)G(y, t|x′, t′)e−

2β
N−1

(t−t′)n(x′, t′)

+
N(N − 1)

N2
n(x, t)n(y, t)e−

2β
N−1

t. (4.14)
The exponential term in Eq. (4.14) indicates that correlations saturate exponentially fast, with a typical
timescale τM = (N − 1)/2β, instead of diverging linearly as in the anarchic model, and the critical
catastrophe is consequently averted. Spatial clustering is therefore mitigated because correlations now
admit a maximum value. These results are consistent with the �ndings previously derived using the
heuristic arguments of Ref. 28 (see also Ref. 47). In addition, contrary to the backward formalism which
relies on the assumption of statistical independence between particles, the forward formalism developed
here can take into account the particle correlations arising due to mass conservation.

4.1.3 . Analysis of the statistics of neutron families

The two-point function ũ(x, y, t) encodes the spatial correlations of a collection of neutrons, under the
constraint that the total population N is kept constant. A complementary investigation of the statistical
behaviour of the individuals in birth-and-death models can be carried out by determining the distribution
of the number of neutron `families' as a function of time : this approach has been �rst suggested in
the context of theoretical biology [81, 85�87], then applied to reactor physics by de Mulatier et al. [28],
and further investigated by Sutton and Mittal for the analysis of clustering phenomena in Monte Carlo
simulations [41, 42].

Consider again the time-dependent Galton-Watson birth-and-death process in which neutrons re-
produce upon �ssion, and die upon capture, in the one-dimensional re�ected system introduced in the
previous section.

Source neutrons are assigned an identi�er in {1, . . . , F}, which they transmit to their descendants.
Let ni be the number of neutrons with identi�er i. Neutrons sharing the same identi�er form a family. The
simulation starts with F initial families. The size of a family increases by one when one of its members
induces �ssion ; it decreases by one when a neutron is the family is killed by capture. A family becomes
extinct when the last of its members is captured. Some families will thus disappear over time, while others
will proliferate, inducing a large number of descendants. If no additional families are introduced, which
in reactor physics is equivalent to the absence of either an external source or spontaneous �ssion, all the
families but one will eventually become extinct, leading to the �xation of the neutron population [83].
The time to �xation is called �xation time : we will show that this quantity may be related to the
timescale driving the growth and saturation of correlations. The �xation time in mass-preserving models
somehow plays the role of the extinction time in the anarchic model, with a signi�cant di�erence : the
moments of the extinction time are not �nite, whereas those of the �xation time are �nite, and will be
investigated in the remainder of this section.

In order to shed light on the evolution of neutron families, we will derive the equations governing
the �rst few moments of the family statistics. Here, we present the derivation of the �xation time for a
population of prompt neutrons in a homogeneous medium, in a continuous-time context and neglecting
precursors, and show that we can obtain closed-form expressions for these quantities.

First, we remark that, for a homogeneous medium with mass preserving boundary conditions, each
neutron has an equal probability of fathering the surviving family, implying a �xation probability of
f(n) = n/N for a family of size n in a total population of N neutrons. To compute the �xation time τp
of the population, we �rst examine the family-wise conditional �xation time. Let A be a family identi�er ;
the other families are ignored. We denote by E[τp|A](n) the average �xation time conditioned to the
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Figure 4.1 : Average fixation time E[τp|A](n) (left) and standard deviation σ[τp|A](n) of thefixation time (right) for N = 100 and β = 0.2 in the prompt case. Dashed lines : analyticalsolution ; circles : Monte Carlo. The Monte Carlo estimates are within 3σ of the analyticalresults
event that family A achieves �xation. From the law of total expectation [88], we can deduce a recurrence
relation for E[τp|A](n) as follows

fp(n)E [τp|A] (n) = p+fp(n+ 1)E [(τp + δτ(n))|A] (n+ 1)

+p−fp(n− 1)E [(τp + δτ(n))|A] (n− 1), (4.15)
where p± are the probabilities that transition n → n ± 1 happens. In this context, we simply have
p+ = p− = 1/2, while δτ(n) = (N − 1)/(βn(N − n)) is the inverse of the total rate of `useful'
transitions, i.e., transitions that change the number of neutrons in A.

Equation (4.15) can be recast in a concise form by de�ning τ̃p,1(n) = nE[τp|A](n) if n > 0 and
τ̃p,1(0) = 0, yielding

τ̃p,1(n+ 1)− 2τ̃p,1(n) + τ̃p,1(n− 1) = − N − 1

β(N − n)
, (4.16)

which is to be solved with the boundary condition τ̃p,1(N) = 0 (i.e., the population is already �xed if
n = N), and τ̃p,1(0) = 0 by construction. We obtain the explicit solution

E[τp|A](n) =
N − 1

βn
[1− n+ (N − n)(HN−1 −HN−n)] +

(N − 1)2

βN
, (4.17)

where Hn is the n-th harmonic number. We �nd that, taking N ≫ 1, E[τp|A](1) ∼ N/β. Comparison
with Monte Carlo simulations shows perfect statistical agreement, as shown in Fig. 4.1.

The expression for E[τp|A](n) yields the conditional average �xation time for a family of initial size
n. We de�ne then τp(n1, . . . , nF ) as the average �xation time for a population consisting of competing
families with initial sizes n1, . . . , nF , which is given by the average of the family-wise conditional �xation
time :

τp(n1, . . . , nF ) =
∑

i=1,...,F

f(ni)E[τp|A](ni). (4.18)

In particular, when N = F and ni = 1 ∀i, then τp(1, . . . , 1) = E[τp|A](1) = (N − 1)2/(βN).
Let us now examine the variance of the �xation time, using the law of total expectation on E[τ2p |A](n).

After de�ning τ̃p,2(n) = nE[τ2p |A](n) for n > 0 and τ̃p,2(0) = 0, we �nd that τ̃p,2(n) satis�es the equation

τ̃p,2(n+ 1)− 2τ̃p,2(n) + τ̃p,2(n− 1) =
(N − 1)

β(N − n)

(
1

βN
− 2E[τp|A](n)

)
, (4.19)
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Figure 4.2 : Ratio R = σ[τp](n)/E[τp](n) of the standard deviation to the average of thefixation time, as a function of the family size, in the prompt case, with β = 0.2 andN = 100.
Applying boundary conditions τ̃p,2(N) = 0 and using again τ̃p,2(0) = 0 by construction, we can explicitly
solve Eq. (4.19), which yields the second moment of the family-wise conditional �xation time

E[τ2p |A](n) = τSp,2(n)− E[τp|A](n) + CN , (4.20)
where τS2 (n) and CN are given by

τSp,2(n) = 2N

(
N − 1

βN

)2
N
n

n−1∑
j=1

HN−j(n− j)

j
− [1 +NHN−1] (Hn − 1)


CN =

(
N − 1

βN

)2
2N

(HN − 1)(1 +NHN−1)−
N−1∑
j=1

HN−j(N − j)

j

− 1

 .

It is worth noting that the standard deviation σ[τp](n) =
√
Var[τp|A] of the �xation time is of the

same order of magnitude as the average �xation time : in some cases, �xation might happen relatively
early in the simulation. In particular, the ratio of σ[τp](n) over E[τp](n) in Fig. 4.2 shows that the latter
is of the same order of magnitude as the former, even for n≪ N .

It is interesting to remark that, due to our choice of mass-preserving boundary conditions, the statistics
of families for the bounded box reactor is insensitive to spatial e�ects : the moments of the �xation time
do not depend on the typical spatial scale of the problem at hand. This is in stark contrast with the
two-point correlation function for the same system, and thus with the squared pair distance ⟨r2(t)⟩. For
the case of particles evolving with population control in unbounded homogeneous media, Meyer et al.
showed that ⟨r2(t)⟩ reads

⟨r2(t)⟩ = 4DτR,p
(
1− e

− t
τR,p

)
, (4.21)

indicating that the saturation occurs over a characteristic timescale τR,p = (N − 1)/(2β) [79]. It follows
that for N ≫ 1 we have τR,p ∼ E[τp|A](1)/2, i.e., the average �xation time is equal to twice the
renewal time, which suggests a close relation between the statistical behaviour of families and the one of
spatial clustering [79]. However, for particles evolving with population control in bounded homogeneous
media having re�ective boundary conditions, the exponential relaxation of ⟨r2(t)⟩ towards an asymptotic
value does depend on the spatial scale of the system (i.e. the mixing time) [28], whereas the moments
of the �xation time do not, as shown here. The identi�cation of �xation and clustering timescales
appears thus to be fully meaningful for in�nite and homogeneous media alone. Indeed, the emergence of
clustering in con�ned geometries results from the competition between �xation and spatial mixing due
to di�usion [46] : the �xation time cannot be identi�ed with the clustering timescale anymore.
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Figure 4.3 : A typical history for a system of 4 neutrons and 1 precursor in the N -controlmodel. Neutrons diffuse (in red line) until they branchor are destroyedby another neutronbeing produced in the system (these correlated event are shown in vertical blue dashedlines), and precursor lifetime is shown by horizontal black dashed lines.

4.2 . Control of neutrons in a system of neutrons and precursors

We will now revisit the stochastic model introduced in Sec. 4.1 by introducing precursors : we will
show that the e�ects of population control become more cumbersome to take into account ; nonetheless,
we will be able to derive a class of models that allow for analytical or semi-analytical solutions that can
be benchmarked against Monte Carlo simulations.

Let us consider a population of neutrons and precursors, evolving based on the stochastic rules
described in Sec. 3.2. Since neutrons are responsible for the Monte Carlo tallies, it seems natural to
enforce population control on neutrons alone, which can be achieved as follows.

Each neutron induces �ssion with a rate of β ; the �ssion event produces exactly two prompt neutrons
(with probability p2 = 1). Additionally, �ssion events produce a precursor with probability q1, and no
precursor with the complementary probability q0 = 1− q1. Upon decay, with rate λ, the precursor yields
a delayed neutron. In this speci�c case, we have q1 = νd,1, which is not true in general. In order to ensure
a constant number N of neutrons in the system, whenever a neutron is produced, either from �ssion
or from a decaying precursor, another neutron is randomly chosen and eliminated (for illustration, see
Fig. 4.3). Observe that the total number of precursors is left free to �uctuate. We will call this scheme
the N -control algorithm.

4.2.1 . Analysis of the moments of the total populations

We begin our analysis by addressing the behaviour of the population sizes. First, we denote by N and
M the (arbitrary) initial number of neutrons and precursors. The master equation for the total population
sizes is easily derived, and because of population control it has a dependency on n only through the initial
condition. It reads

∂

∂t
P(n,m, t) = βNνd,1P(n,m− 1, t)− βNνd,1P(n,m, t) + (m+ 1)λP(n,m+ 1, t)−mλP(n,m, t).

(4.22)
We deduce the equation for the precursor population sizes by multiplying Eq. (4.22) by m (resp m) and
summing over all possible realizations, which leads to

∂

∂t
n(t) = 0 (4.23a)

∂

∂t
m(t) = βνd,1N − λm(t). (4.23b)
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These equations can be readily solved, together with the initial conditions, and yield

n(t) = N

m(t) =
βνd,1
λ

N
(
1− e−λt

)
+Me−λt.

For the N -control model, the average total precursor number m(t) exponentially relaxes to the same
equilibrium solution as for the anarchic model, i.e., m∞ = N βνd,1/λ = N/θ. If the initial condition
satis�es N =Mθ, we simply obtain m(t) =M for any t. The equations for the second-order moments
of the total population can be also derived, and read

∂

∂t
u(t) = 0 (4.24a)

∂

∂t
v(t) = βνd,1 u(t)− λ v(t) (4.24b)

∂

∂t
w(t) = βνd,1N (2m(t) + 1)− λ(2w(t)−m(t)). (4.24c)

The solutions to these equations are

u(t) = N2 (4.25)
v(t) = Nm(t) (4.26)
w(t) = m(t)2 +m(t)−Me−2λt, (4.27)

where u, v, and w are as de�ned in Sec. 3.1.2. In the N -control model, the variance of the neutron
population size is zero, as expected, which means in particular that the critical catastrophe is averted. The
variance of the precursor population size converges exponentially to m∞. It is actually easy to show that
if the distribution of the precursor population size is Poissonian at the initial time, then it is Poissonian
at all times. First we remind the shape of the Poisson distribution

Poissµ(m) =
µm

m!
e−µ, (4.28)

where µ is a function of time. We make the following ansatz :

P(n,m, t) = δnNPoissµ(t)(m). (4.29)
Plugging this into Eq. (4.22) and simplifying leads to

∂

∂t
µ = λ(m∞ − µ). (4.30)

Since this equation holds for any m, we can conclude that P(n,m, t) has the assumed shape provided
that the ansatz also holds at t = 0 and that µ(0) = m∞

4.2.2 . Derivation of the spatial master equation

In order to derive equations for the spatial moments of the neutron and precursor densities, we use
again the strategy proposed in Ref. 48 : we partition the viable one-dimensional domain into a set of K
equal segments of length δx = 2L/K, which we denote as Vk, with k ∈ {1, . . . ,K}. Correspondingly,
we write n = (n1, . . . , nK), m = (m1, . . . ,mK), and we denote by P(n,m, t) the joint probability of
observing nk neutrons and mk precursors in each of the K detectors at time t, for 1 ≤ k ≤ K, given
an initial condition with N neutrons and M precursors at time t0 = 0, independently and uniformly
distributed in space. The stochastic rules are those de�ned in Sec. 4.2 and the transition rates are
speci�ed below.

In addition to di�usion, which applies only to neutrons and thus behaves the same as in a reactor
without precursors, the system has the following transitions :
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• A �ssion in bin i and a capture in a di�erent bin j (i ̸= j), without precursor production. The
corresponding transition is (a†iajn,m) → (n,m), with rate

β1 = β
(ni + 1)(nj − 1)(1− νd,1)

N(N − 1)
.

• A �ssion and capture in the same bin but with production of one additional precursor. The cor-
responding transition is (n, aim) → (n,m) with rate

β2 = β
ni(ni − 1)νd,1
N(N − 1)

• A capture in bin i and a �ssion in a di�erent bin j (i ̸= j) with precursor production. The
corresponding transition is (a†iajn, ajm) → (n,m) with rate

β3 = β
(ni + 1)(nj − 1)νd,1

N(N − 1)

• A precursor decay in bin i and neutron capture in bin j (i ̸= j). The corresponding transition is
(aia

†
jn, a

†
im) → (n,m) with rate

β4 = λ
(mi + 1)(nj + 1)

mN

• A precursor decay and neutron capture in the same bin. The corresponding transition is (n, a†im) →
(n,m) with rate

β5 = λ
(mi + 1)ni

mN

Other transitions are possible, but they do not modify the state of the system, and as such do not appear
in the master equation (for example, �ssion and capture in the same bin i, without precursor production).

Probability balance then yields the master equation

∂

∂t
P(n,m, t) =

∑
i

ξ(ni+1 + 1)P(a†i+1ain,m, t) + ξ(ni−1 + 1)P(a†i−1ain,m, t)− 2ξniP(n,m, t)


+ β(1− νd,1)N

∑
i,j ̸=i

(
ni + 1

N

nj − 1

N − 1
P(a†iajn,m, t)−

ni
N

nj
N − 1

P(n,m, t)

)

+ βνd,1N
∑
i,j ̸=i

(
ni + 1

N

nj − 1

N − 1
P(a†iajn, ajm, t)−

ni
N

nj
N − 1

P(n,m, t)

)

+ βνd,1N
∑
i

(
ni
N

ni − 1

N − 1
P(n, aim, t)−

ni
N

ni − 1

N − 1
P(n,m, t)

)
+ λm

∑
i,j ̸=i

(
mi + 1

m

nj + 1

N
P(aia

†
jn, a

†
im, t)−

mi

m

nj
N

P(n,m, t)

)

+ λm
∑
i

(
mi + 1

m

ni
N

P(n, a†im, t)−
mi

m

ni
N

P(n,m, t)

)
. (4.31)

where ξ is the di�usion rate of a neutron from a site to a neighbouring one, m =
∑

imi is the total
number of precursors, and the total number of neutrons is n =

∑
i ni = N because of population

control. Once we have the space-dependent master equation, we can derive the equations for the spatial
moments.
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4.2.3 . Derivation and analysis of the spatial moments

We de�ne the discrete spatial moments of the neutron and precursor populations by

E[ni](t) =
∑
n,m

ni P(n,m, t) (4.32a)
E[mi](t) =

∑
n,m

mi P(n,m, t), (4.32b)
for i ∈ {1, . . . ,K}. The two-point correlations between particles detected in Vi and particles detected in
Vj at time t are similarly obtained from

E[ninj ](t) =
∑
n,m

ni nj P(n,m, t) (4.33a)
E[nimj ](t) =

∑
n,m

nimj P(n,m, t) (4.33b)
E[mimj ](t) =

∑
n,m

mimj P(n,m, t), (4.33c)
for i, j ∈ {1, . . . ,K}. The associated moment equations can be obtained from Eq. (4.31) by summation
over all possible states, and for the average they read

∂

∂t
E[ni](t) = ξ∆iE[ni](t) + λ

(
E[mi](t)−

E[nim](t)

N

)
(4.34a)

∂

∂t
E[mi](t) = βνd,1E[ni](t)− λE[mi](t), (4.34b)

where ∆ifi = fi+1 − 2fi + fi−1 is the discrete Laplace operator. Taking the continuous limit Vi −→ 0

yields

∂

∂t
n(x, t) = D∇2

xn(x, t) + λ

(
m(x, t)− 1

N
Hn(x, t)

)
(4.35a)

∂

∂t
m(x, t) = βνd,1 n(x, t)− λm(x, t), (4.35b)

where we have de�ned the cross-moment

Hn(x, t) = lim
Vi→0

1

Vi
E[ni(t)m(t)], (4.36)

with Vi centered around x, and the di�usion coe�cient

D = lim
δx→0

(ξ δx2). (4.37)
A somewhat surprising fact is that the term Hn(x, t) appearing in the equation for the average is

actually a second-order moment : this means that unfortunately the hierarchy of the spatial moment
equations is not closed, and analytical solutions are therefore out of reach for this model. This is to be
contrasted with the case of the moments of the integral quantities, Eqs. (4.23) and (4.24), which are
closed. On the other hand, Monte Carlo simulations heuristically indicate that, taking M = N/θ and a
uniform spatial distribution, the �rst moments seem to verify

n(x, t) =
N

2L
(4.38)

m(x, t) =
M

2L
, (4.39)

which coincides with the solutions of the case without population control.
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Similarly, the equations for the discrete pair correlation functions read

∂

∂t
E[ninj ](t) = ξ (E[∆ininj ](t) + E[∆jninj ](t))−

2β

N0 − 1
E[ninj ](t) + λCN (E[nimj ](t) + E[minj ](t))

− 2λ

N
E[ninjm](t) +

2β

N0 − 1
δi,jN0E[ni](t) + λδi,j

(
E[mi](t) +

E[nim](t)

N

)
+ δi,jξ (E[ni+1](t) + E[ni−1](t) + 2E[ni](t))− δi+1,jξ (E[ni+1](t) + E[ni](t))
− δi−1,jξ (E[ni](t) + E[ni−1](t)) (4.40)

∂

∂t
E[nimj ](t) = ξE[∆inimj ](t)− λ

N − 1

N
E[nimj ](t)− λ

E[nimjm](t)

N

+ βνd,1CN−1E[ninj ](t) + λE[mimj ](t) + δi,j

(
βνd,1N

N − 1
E[ni](t)− λE[mi](t)

)
(4.41)

∂

∂t
E[mimj ](t) = βνd,1 (E[minj ](t) + E[nimj ](t))− 2λE[mimj ](t) + δi,j (βνd,1E[ni](t) + λE[mi](t)) .

(4.42)
When taking the continuous limit it is easier to write the equations for the modi�ed pair correlations

functions

ũ(x, y, t) = u(x, t, y, t)− n(x, t)δ(x− y) (4.43)
v(x, y, t) = v(x, t, y, t) (4.44)
w̃(x, y, t) = w(x, t, y, t)−m(x, t)δ(x− y), (4.45)

which involve third-order moments :

∂

∂t
ũ(x, y, t) = D

(
∇2
x +∇2

y

)
ũ(x, y, t)− 2β

N − 1
ũ(x, y, t) + λCN (v(x, y, t) + v(y, x, t))− 2λ

N
Hnn(x, y, t)

+ δ(x− y)

(
2βn(x, t) +

2λ

N
Hn(x, t)

)
(4.46a)

∂

∂t
v(x, y, t) = D∇2

xv(x, y, t)− λCNv(x, y, t)−
λ

N
Hnm(x, y, t) + βνd,1CN−1ũ(x, y, t) + λw̃(x, y, t)

+ δ(x− y)
βνd,1N

N − 1
n(x, t)

(4.46b)
∂

∂t
w̃(x, y, t) = βνd,1 (v(x, y, t) + v(y, x, t))− 2λw̃(x, y, t). (4.46c)

For the sake of conciseness, we have de�ned the two third-order cross-moments

Hnn(x, y, t) = lim
Vi,Vj→0

1

Vi Vj
E[ni(t)nj(t)m(t)] (4.47)

Hnm(x, y, t) = lim
Vi,Vj→0

1

Vi Vj
E[ni(t)mj(t)m(t)]. (4.48)

and the shorthand CN = (N − 1)/N . The detection volumes Vi and Vj are assumed to be centered
around x and y, respectively. It is interesting to note that we can recognize in Eq. (4.46a) the renewal time

(or, equivalently, the �xation time [41]) τR,0 = (N − 1)/(2β) for a population of prompt neutrons under
population control without precursors [79]. Although this de�nition can be extended to a population of
neutrons and precursors, we obviously expect the associated renewal time to di�er from τR,0.

On a side note, Monte Carlo simulations of the N -control model for θ ≪ 1 seem to show that the
relative spatial dependence of the pair correlation function is almost exactly the same as in the anarchic
model for t1 = t2. This is illustrated in Fig. 4.4, where we plot the shape of the correlation function for
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Figure 4.4 : Spatial dependence of the difference between the pair correlation functionevaluated in (x, y = −0.5) and (x = −L = −1, y = −0.5). Black circles : Monte Carlosimulation of the N -control scheme; blue solid line : analytical solution of the anarchicmodel. Here, θ = 10−3. Parameters are taken from Table 3.1.

Figure 4.5 : A typical history for a system of 2 neutrons and 1 precursor in theNM -controlmodel. Neutrons diffuse (in red solid lines) until they branch or are destroyed by anotherneutron being produced in the system (these correlated event are shown in vertical bluedashed lines), and precursor lifetime is shown by horizontal black dashed-lines.
both models, for a �xed value of y = −0.5 and relative to its value in x = −L = −1. This remark does
not hold true for θ ∼ 1.

Note that, although the hierarchy of the moment equations is not closed, the underlying stochastic
process can be straightforwardly simulated using the Monte Carlo method. In the following, we shall
make extensive use of this fact to compare the N -control model, which plays the role of a reference
for population control, with other models enforcing similar constraints on the population. Indeed, the
occurrence of Hnn(x, y, t) and Hnm(x, y, t) suggests that the lack of closure originates from the fact
that the N -control model correlates the size of the precursor population with the local neutron and
precursor densities. It is tempting to suggest the use of the approximation

Hn(x, t) ≃ n(x, t)m(t) (4.49)
in order to close Eqs. (4.35), and of similar approximations for Hnn(x, y, t) and Hnm(x, y, t). Doing so in
the general case yields equations with time-dependent coe�cients in the moment equations. However, we
do not know how to construct a Monte Carlo game associated to these approximate moment equations.
This e�ectively prevents us from validating the analytical results by comparing them with an equivalent
Monte Carlo simulation, but the goodness of the approximation could be assessed by comparing the
analytical results against the Monte Carlo simulations for the N -control model.

Another way to close the hierarchy of moment equations is to apply population control to both
populations, so that the size of the precursor population is not a random variable. By doing so, we
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sacri�ce some physical relevance of the N -control model, but we gain the ability to derive analytical
solutions. We henceforth propose two alternative models, and we discuss under which conditions they
may approximate the N -control model.

4.3 . Control of neutrons and precursors

The �rst alternative model consist in considering a process in which the total number of neutrons
N and the total number of precursors M are kept under constraint. Conservation of N is enforced as
previously described. Conservation of M is enforced as follows : when a neutron undergoes �ssion and
produces a precursor, another randomly chosen precursor is destroyed. When a precursor emits a delayed
neutron, the precursor is not destroyed. In this way, we ensure that N and M are kept constant at any
time (see Fig. 4.5). We call this algorithm the NM -control scheme. For the total population statistics,
NM -control trivially yields one possible state, given by the initial condition (N,M), with vanishing
variance.

4.3.1 . Derivation of the spatial master equation

The spatial behaviour of the neutron and precursor populations is nonetheless non-trivial. The possible
transitions (in addition to di�usion) are listed below :

• A neutron capture in bin i and �ssion in a di�erent bin j (i ̸= j) without precursor production.
The corresponding transition is (a†iajn,m) → (n,m) with rate

β1 = β
(ni + 1)(nj − 1)(1− νd,1)

N(N − 1)
,

• A neutron capture in bin i, �ssion in bin j with precursor production, and destruction of another
precursor in bin k, where i ̸= j ̸= k. The corresponding transition is (a†iajn, aja

†
km) → (n,m)

with rate

β2 = β
νd,1(ni + 1)(nj − 1)(mk + 1)

N(N − 1)M
,

• A �ssion with precursor production and a neutron capture in bin i, and precursor destruction in
bin k (i ̸= k). The corresponding transition is (n, aia

†
km) → (n,m) with rate

β3 = β
ni(ni − 1)(mk + 1)νd,1

N(N − 1)M
,

• A neutron capture and precursor destruction in bin i, and a �ssion with precursor production in
bin j (i ̸= j). The corresponding transition is (a†iajn, a

†
iajm) → (n,m) with rate

β4 = β
(ni + 1)(nj − 1)(mi + 1)νd,1

N(N − 1)M
,

• A neutron capture in bin i, a �ssion with precursor production and a precursor destruction in bin
j (i ̸= j). The corresponding transition is (a†iajn,m) → (n,m) with rate

β5 = β
(ni + 1)(nj − 1)mjνd,1

N(N − 1)M
,

• A precursor decay in bin i and a neutron capture in a di�erent bin j (i ̸= j). The corresponding
transition is (aia

†
jn,m) → (n,m) with rate

β6 = λ
mi(nj + 1)

NM
,
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By using the de�nitions in Section 4.2.2, we use probability balance to write the master equation

∂

∂t
P(n,m, t) =

∑
i

ξ(ni+1 + 1)P(a†i+1ain,m, t) + ξ(ni−1 + 1)P(a†i−1ain,m, t)− 2ξniP(n,m, t)

+
∑
j ̸=i

(
β(1− νd,1)

N − 1
(ni + 1)(nj − 1)P(a†iajn,m, t)−

β(1− νd,1)

N − 1
ninjP(n,m, t)

)

+
βνd,1

(N − 1)M

 ∑
i,j,k
i ̸=j ̸=k

(
(ni + 1)(nj − 1)(mk + 1)P(a†iajn, aja

†
km, t)− ninjmkP(n,m, t)

)
∑
i,k
i ̸=k

(
ni(ni − 1)(mk + 1)P(n, aia

†
km, t)− ni(ni − 1)mkP(n,m, t)

)
∑
i,j
i ̸=j

(
(ni + 1)(nj − 1)(mi + 1)P(a†iajn, a

†
iajm, t)− ninjmiP(n,m, t)

)

∑
i,j
i ̸=j

(
(ni + 1)(nj − 1)mjP(a†iajn,m, t)− ninjmjP(n,m, t)

)
+
λ

N

∑
i,j
i ̸=j

(
mi(nj + 1)P(aia

†
jn,m, t)−minjP(n,m, t)

)
, (4.50)

where n = N and m =M at all times.

4.3.2 . Derivation and analysis of the spatial moments

By multiplying by ni (respmi) the neutron (resp precursor) population in spatial cell i and summation
over all possible states, the equations for the �rst spatial moments are given by

∂

∂t
E[ni](t) = ξ∆iE[ni](t) + λ

(
E[mi](t)− E[ni](t)

M

N

)
(4.51)

∂

∂t
E[mi](t) = βνd,1

(
E[ni](t)− E[mi](t)

N

M

)
, (4.52)

showing that the constraint of �xed (N,M) indeed sidesteps the closure issues of the N -control model.
The equations for the �rst-order moments are now closed and, taking the continuous limit, they read :

∂

∂t
n(x, t) = D∇2

xn(x, t) + λ

(
m(x, t)− n(x, t)

M

N

)
(4.53a)

∂

∂t
m(x, t) = βνd,1

(
n(x, t)−m(x, t)

N

M

)
. (4.53b)

If N and M are in the equilibrium ratio N/M = θ = λ/(βνd,1), then Eqs. (4.53) reduce to the usual
forward equations for the �rst moments of freely evolving populations of neutrons and precursors [48].
This has two consequences. First, we can conclude that the mixing time for the NM -control model is
the same as for the anarchic model, τ1. Second, Eqs. (4.53) admit uniform and constant asymptotic
solutions

n(x, t) → n∞(x) =
N

2L
(4.54a)

m(x, t) → m∞(x) =
M

2L
. (4.54b)
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For the second-order moments we obtain once again a closed system of equations, �rst in its discrete
formulation :

∂

∂t
E[ninj ](t) = ξ (E[∆ininj ](t) + E[∆jninj ](t))

−
(

2β

N − 1
+

2λM

N

)
E[ninj ](t) + λCN (E[minj ](t) + E[nimj ](t))

+
2Nβ

N − 1
δi,jE[ni](t) + λδi,j

(
E[mi](t) + E[ni](t)

M

N

)
+ δi,jξ (E[ni+1](t) + E[ni−1](t) + 2E[ni](t))− δi+1,jξ (E[ni+1](t) + E[ni](t))
− δi−1,jξ (E[ni](t) + E[ni−1](t)) (4.55)

∂

∂t
E[nimj ](t) = ξE[∆inimj ](t)−

(
βνd,1N

M
+ λ

M

N

)
E[nimj ](t) + βνd,1

N − 2

N − 1
E[ninj ](t)

+ λE[mimj ](t) +
βνd,1N

(N − 1)
δi,jE[ni](t) (4.56)

∂

∂t
E[mimj ](t) = βνd,1CM (E[minj ](t) + E[nimj ](t)) (4.57)

−
2βνd,1N

M
E[mimj ](t) + βνd,1δi,j

(
E[ni](t) + E[mi](t)

N

M

)
.

Taking the continuous limit, we have then :

∂

∂t
ũ(x, y, t) = D

(
∇2
x +∇2

y

)
ũ(x, y, t)− τ−1

n ũ(x, y, t) + λCN (v(x, y, t) + v(y, x, t))

+ 2βδ(x− y)n(x, t)
(4.58a)

∂

∂t
v(x, y, t) = D∇2

xv(x, y, t)− τ−1
c v(x, y, t) + βνd,1CN−1ũ(x, y, t) + λw̃(x, y, t)

+ δ(x− y) (2βνd,1n(x, t) + λm(x, t))
(4.58b)

∂

∂t
w̃(x, y, t) = βνd,1CM (v(x, y, t) + v(y, x, t))− τ−1

p w̃(x, y, t), (4.58c)
with CM = (M − 1)/M and where we de�ned the time constants

τn =

(
2β

N − 1
+

2λM

N

)−1 (4.59a)
τc =

(
βνd,1N

M
+ λ

M

N

)−1 (4.59b)
τp =

M

2βνd,1N
, (4.59c)

Equations (4.58) are a linear system of equations for (ũ, v, w̃). Following the heuristic arguments of
Zhang et al. [81], we should expect the renewal time for our system to be determined by the dominant time
constant of the correlation functions. In the NM -control model, the collective modes of the correlation
functions are associated to the eigenvalues of the matrix of the coe�cients of (ũ, v, w̃) in Eqs. (4.58),
which reads

R =

 −τ−1
n 2λCN 0

βνd,1CN−1 −τ−1
c λ

0 2βνd,1CM −τ−1
p

 . (4.60)

Assuming that N andM are chosen in the equilibrium ratio N = θM and that N is large, we can extract
the scaling behaviour of the eigenvalues of R with respect to θ, for small θ. The eigenvalues {r1, r2, r3}
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read

r1 ≃ −2βνd,1 (4.61)
r2 ≃ −βνd,1 (4.62)
r3 ≃ −

2βθ2(1 + 3νd,1)

N(1 + θ)2
, (4.63)

with r1 < r2 < r3. The time constant associated to the dominant eigenvalue, r3, is the renewal time for
the NM -control model, and reads

τNMR ≃ N(1 + θ)2

2βθ2(1 + 3νd,1)
. (4.64)

This expression is very similar to the extinction time for the anarchic scheme, Eq. (3.57). However, the
renewal time τNMR is not related to the extinction time for the system, because no critical catastrophe
is possible in the NM -control model.

Similarly to how we did for the anarchic scheme, we can then de�ne a dimensionless clustering
parameter ηNM = τ1/τ

NM
R . However, given that the mixing time of the NM -control scheme is the

same as the mixing time of the anarchic scheme, and that the renewal time τNMR is very similar to the
extinction time of the anarchic scheme, the clustering parameter also results in a 1/θ scaling for small
θ, and the remarks made about the anarchic scheme apply verbatim to the NM -control scheme.

The full solution for Eqs. (4.58) is cumbersome. However, we can obtain asymptotic solutions in the
form of Fourier series. Let ũ∞(x, y), v∞(x, y) and w̃∞(x, y) be the asymptotic shapes of the correlation
functions for long times :

ũ∞(x, y) = lim
t→∞

ũ(x, y, t) (4.65)
v∞(x, y) = lim

t→∞
v(x, y, t) (4.66)

w̃∞(x, y) = lim
t→∞

w̃(x, y, t). (4.67)
We use the following Fourier decomposition :

f(x, y) =
+∞∑

kx,ky=−∞
fkx,ky exp (iκkx (L− x)) exp

(
iκky (L− y)

)
. (4.68)

Here κk = kπ/(2L) are the characteristic wave numbers for re�ection boundary conditions and f(x, y)
stands for any of ũ∞(x, y), v∞(x, y) or w̃∞(x, y). The coe�cients satisfy the relation

fkx,ky =
1

2π

∫∫
exp (−iκkx (L− x)) exp

(
−iκky (L− y)

)
f(x, y) dx dy. (4.69)

The linear system of equations solved by the Fourier coe�cients can be obtained from Eqs. (4.58) by
setting the time derivative terms to zero, multiplying by exp(−iκkx) exp(−iκkyy)/(2π), integrating over
dx dy and using Eq. (4.69) and Eqs. (4.53). Using the Neumann boundary conditions on f∞, the Fourier
decomposition then reduces to

f∞ =
+∞∑

k=−∞
fk,k cos

(
kπ

2L
(L− x)

)
cos

(
kπ

2L
(L− y)

)
. (4.70)
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(a) Asymptotic pair correlation function for
θ = 10−3 and y = 0. (b) Asymptotic pair correlation function for

θ = 1 and y = 0.
Figure 4.6 : Asymptotic pair distance for different value of θ. The parameters are takenfrom Table 3.1. Black triangles : Monte Carlo simulations for the N -control scheme. Bluecircles : Monte Carlo simulations of the NM -control scheme, both with 106 replicas. Bluesolid line : analytical solution of the NM -control scheme Eqs. (4.58).
Indeed, in this case all the coe�cients with kx ̸= ky are zero. The terms fk,k thus read

ũk,k =
m(N − 1)λ2 + nβ

(
N(α1 + k̃2D) + 2(N − 1)νd,1λ

)
LN

(
α1 + k̃2D

)(
τn + 2k̃2D

)
− 2L(N − 2)βνd,1λ

(4.71)

vk,k =
2nNβ

(
(N − 1)τn + (N − 2)β + 2k̃2(N − 1)D

)
νd,1 +m(N − 1)N

(
τn + 2k̃2D

)
λ

2L(N − 1)
(
N(α1 + k̃2D)(τn + 2k̃2D

)
− 2(N − 2)βνd,1λ)

(4.72)

w̃k,k =
M − 1

N
ṽk,−k (4.73)

where τn, τc are given by Eqs. (4.59), and n, m and k̃ are respectively given by

n =
N

2L
, m =

M

2L
, k̃ =

kπ

2L
.

The asymptotic two-point neutron-neutron correlation function for the NM -control model was nu-
merically computed by truncating the Fourier series after 1000 terms. It is compared with Monte Carlo
simulations for the N -control and the NM -control scheme, for two sets of physical parameters, in
Figs. 4.6a and 4.6b.

For θ = 0.001 (Fig. 4.6a), the NM -control scheme provides a good approximation of the N -control
scheme, and all the curves representing neutron correlations are very similar. This means that, when
θ ≪ 1, which is the case in nuclear reactors, a system where neutrons and precursors are both kept under
control has similar correlation functions as a system where population control acts on neutrons alone.
On the other hand, when θ = 1 (Fig. 4.6b), the N -control and NM -control models yield similar, but
di�erent correlation functions. Indeed, we observe that the NM -control scheme results in stronger spatial
short-range correlations compared to the N -control scheme, while long-range correlations are weaker in
the NM -control scheme. This can be easily explained : in the N -control scheme, when a precursor
decays, it is destroyed and replaced by a neutron that immediately starts di�using. This mechanism can
be seen as a kind of delayed di�usion ; when a neutron induces a �ssion event and produces a precursor,
it e�ectively suspends di�usion for a time of the order of 1/λ. On the other hand, in the NM -control
model, a precursor does not die when it decays, and thus plays the role of a source at a �xed position until
it is replaced by another precursor. The precursor density can then undergo signi�cant local �uctuations
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favouring short-range correlations by inducing overproduction of neutrons in a small volume, at the
expense of long-range correlations.

Some insight about the similarity between the N -control and NM -control schemes for θ ≪ 1 can be
gained by comparing Eqs. (4.46) and Eqs. (4.58). Indeed, remember that θ ≪ 1 means that the number
of precursors is much larger than the number of neutrons. If m(t) is su�ciently large, which is the case
here, its �uctuations will be negligible compared to its mean value. This allows us to consider m(t) as a
deterministic observable. If we then assume that

E[ni(t)nj(t)m(t)] ≃ E[ni(t)nj(t)]E[m(t)],

then Eq. (4.46a) reduces to Eq. (4.58a). Thus, in this limit, neutron-neutron correlations follow the
same dynamics in both schemes. It is worth remarking however that, under the same approximation,
the equations for v and w̃ in the N -control model do not reduce to the corresponding equations in the
NM -control model. Similarly to the prompt system, we can complement the analysis of spatial moments
by investigating the statistical behaviour of neutron families.

4.3.3 . Analysis of the statistics of neutron families

The analysis of the time and space correlations of the NM -control can be usefully complemented
by the investigation of the statistics of neutron families, which relies on a generalization of the approach
discussed in Sec. 4.1.3 for the simpler case of the constrained model without precursors.

For the NM -control model, both source neutrons and precursors are assigned an identi�er (an
integer in {1, . . . , F}), which they transmit to their descendants. Let ni (mi) be the number of neutrons
(precursors) with identi�er i. Particles sharing the same identi�er form a family, so that the simulation
starts with F initial families. The size of a family increases by one when one of its members induces
�ssion without precursor production, and by two if it is a �ssion with precursor production. The size
decreases by one when a neutron or precursor is killed.

To the best of our knowledge, the e�ect of introducing delayed events in a time-dependent Galton-
Watson process has not been investigated in the context of family �xation. We focus on the case where
the number of neutrons and precursors satis�es the ratio M = N/θ, with θ = λ/βνd, which corresponds
to the equilibrium initial condition.

To write the recurrence equations describing the conditional moments of the �xation time τ we need
to consider all the `useful' transitions, i.e. those that change the number of neutrons or precursors in
family A, and the corresponding rates and probabilities. There are 6 such transitions that can be deduced
from Section 4.3 :

• (n,m) → (n+ 1,m) with rate β(+1,0) =
β(N−n)n
N−1

[
(1− νd) +

νdm
M

]
+ λ

Nm(N − n).

• (n,m) → (n− 1,m) with rate β(−1,0) =
β(N−n)n
N−1

[
(1− νd) +

νd(M−m)
M

]
+ λ

N n(M −m).

• (n,m) → (n,m+ 1) with rate β(0,+1) =
βνd

(N−1)M n(n− 1)(M −m).

• (n,m) → (n,m− 1) with rate β(0,−1) =
βνd

(N−1)M (N − n)(N − n− 1)m.

• (n,m) → (n+ 1,m+ 1) with rate β(+1,+1) =
βνd

(N−1)M n(N − n)(M −m).

• (n,m) → (n− 1,m− 1) with rate β(−1,−1) =
βνd

(N−1)M (N − n)nm.

We also de�ne the rate of useful transitions

βu(n,m) =
∑
v∈T

βv(n,m),

where T = {(±1, 0), (0,±1),±(1, 1)}. Observe that βu ≤ βt, where βt = βN+λM represents the total
transition rate, since not all transitions contribute to �xation. Subsequently, one can de�ne the probability
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that a transition v happens, conditioned to the fact that the transition is useful : pv(n,m) = βv/βt(n,m).
One might equivalently consider all transitions (instead of only useful transitions), in which case βu and
βt coincide, and the transition (n,m) → (n,m) should be explicitly taken into account.

Fixation probability

In this situation, we do not know a priori the �xation probability f(n,m). However, from the law of
total expectation we write

f(n,m) =
∑
v∈T

pv(n,m)f(n+ v1,m+ v2), (4.74)

with boundary conditions f(N,M) = 1 and f(0, 0) = 0. Equation (4.74) admits the solution

f(n,m) =
Nn+Mθm

N2 + θM2
. (4.75)

For M = N/θ, Eq. (4.75) reduces to (n+m)/(N +M) : regardless of their nature, all individuals have
the same probability of fathering the �xating family. Moreover, the linearity of the �xation probability f
suggests that neutrons and precursors behave like two independent populations with respect to �xation.
The solution in Eq. (4.75) has been carefully veri�ed against Monte Carlo simulations (not shown here for
conciseness). Knowledge of f will now allow us to apply our methodology to the problem of the �xation
time.

Moments of the �xation time

We investigate the statistical moments of the �xation time. Let us �rst consider the average (conditio-
nal) �xation time E[τ |A](n,m). Using the law of total expectation and de�ning an intermediary function
g1(n,m) = f(n,m)E[τ |A](n,m) for (n,m) ̸= (0, 0) and g1(0, 0) = 0, we obtain

∑
v∈T

pv(n,m)g1(n+ v1,m+ v2)− g1(n,m) = −
∑
v∈T

pv(n,m)f(n+ v1,m+ v2)

βt(n,m)
. (4.76)

The presence of non-constant coe�cients and the shape of the source term make Eq. (4.76) harder to solve
analytically. However, Eq. (4.76) is formally a multi-dimensional di�erence equation ; it can be thus solved
numerically by regarding it as a system of non-homogeneous linear equations for the (N + 1)(M + 1)

unknowns g(n,m), with (0 ≤ n ≤ N , 0 ≤ m ≤ M). The equations provided by Eq. (4.76) are
complemented with equations stemming from boundary conditions imposing that g1(n,m) = 0 outside
of the domain. The linear system is then solved numerically, and results are successfully compared to
Monte Carlo simulations in Fig. 4.7.

The variance of the �xation time can be obtained from the second moment, which, after using
the law of total expectation and de�ning an intermediate function g2(n,m) = f(n,m)E[τ2](n,m) for
(n,m) ̸= (0, 0) and E[τ2](0, 0) = 0, is determined by∑

v∈T
pv(n,m)g2(n+ v1,m+ v2)− g2(n,m) =

∑
v∈T

[
2pv(n,m)g1(n+ v1,m+ v2)

βu(n,m)
+
pv(n,m)f(n+ v1,m+ v2)

βu(n,m)2

]
. (4.77)

Again, Eq. (4.77) is solved numerically by using the boundary condition g2(N,M) = 0. Results are
veri�ed against Monte Carlo simulation in Fig. 4.7, with good agreement. Remark also that there is very
little di�erence between the average �xation time for a family initially starting with one precursor or with
one neutron, as expected from the shape of f .

The standard deviation σ[τ ](n,m) =
√

Var[τ ](n,m) can be shown to behave similarly to the prompt
case, in the sense that it has the same order of magnitude as the average �xation time : this means that
�xation can happen early in the simulation, compared to the average �xation time.
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Figure 4.7 : One-dimensional slices of the average fixation time E[τ |A](n,m) (left) and ofthe standard deviation of the fixation time σ[τ |A](n,m) (right), for N = 100, M = 100,
β = 0.2, νd = 0.5, and λ = 0.1. Solid and dashed lines : numerical results obtained bysolving Eqs.(4.76)-(4.77) ; markers : Monte Carlo results are within 3σ of the deterministicsolution.

We conclude by revisiting the relation between family statistics and spatial clustering. Again, due
to the choice of mass-preserving boundary conditions, the statistics of families is insensitive to spatial
e�ects. Due to the numerical nature of our solution, we can only provide empirical scaling relations for the
�xation time τ1 = E[1, 0] (or equivalently E[0, 1]). Assuming N ≫ 1, we can show that τ1 ∼ N/βνdθ

2

when θ ≪ 1 (numerical investigations not detailed here for conciseness) ; conversely, τ1 ∼ N/βνd when
θ ≫ 1). Given that the equilibrium ratio M = N/θ is enforced, M does not appear explicitly in this
expression. For the case of particles evolving in unbounded homogeneous systems, the time evolution of
⟨r2(t)⟩ is characterized by a single timescale, i.e, the renewal time τR, whose leading-order term reads

τR ∼ N(1 + θ)2

2βθ2(1 + 3νd)
, (4.78)

provided that N is large. Thus, the �xation time and the renewal time have a very similar scaling, similarly
as in the prompt case. For an illustration of the relation between �xation and clustering, Fig. 4.8 displays
the pair distance ⟨r2(t)⟩ and the number of surviving families ; the �xation time and the renewal time
are also represented. The time evolution of the number of families and that of the pair distance are of
the same order of magnitude. As explained in Sec. 4.1.3, the identi�cation between the �xation time and
the clustering timescale only holds for unbounded systems.

4.4 . Immigration model

We have observed that the precursor population exhibits only weak �uctuations in the θ ≪ 1 limit.
This suggests another alternative model where precursors are modeled as a �xed external source, with
the aim of obtaining a time-dependent solution that, in this limit, successfully approximates the N -
control model. Thus, we model the system as a collection of neutrons under population control, with an
external, time-independent source term modelling precursor decay. Formally, this model is equivalent to
an immigration model with a time-independent, Poissonian immigration source describing the asymptotic
precursor decay density, given by

QI(x) = λm∞(x) =
λ

θ
n∞(x), (4.79)

where θ is the parameter of the equivalent NM -control scheme. Population control is enforced by
requiring that each time a new neutron enters the system, whether by �ssion or from the external source,
we destroy another randomly chosen neutron, as illustrated in Fig. 4.9.
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Figure 4.8 : Pair distance (left) and number of surviving families (right), as calculated byMonte Carlo simulation ; the average fixation time is represented by red dashed lines, andthe estimated renewal time is represented by blue dashed lines. Parameters are those ofFig. 4.7.

Figure 4.9 : A typical history for a systemwith 3 neutrons at t = 0, in the immigrationmodel.Neutrons diffuse (in red) until they branch or are killed by another neutron branchingsomewhere else (vertical blue dashed lines show these correlated events). They can alsobe produced by the source, thus killing another randomly chosen neutron.

4.4.1 . Derivation of the spatial master equation

In addition to di�usion, the transitions involved in this model are

• A neutron capture in bin i and a �ssion in bin j (i ̸= j). The corresponding transition is a†iajn → n

with rate

β1 =
β(ni + 1)(nj − 1)

N(N − 1)
,

• A neutron capture in bin i and an emission by the Poisson source in a di�erent bin j (i ̸= j). The
corresponding transition is a†iajn → n with rate

β2 =
λMQj(ni + 1)

N
,

where Qj is the probability that the emission happens in bin j.
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Following the usual derivation method, we obtain �rst the master equation associated to this stochastic
process

∂

∂t
P(n, t) =

∑
i

ξ(ni+1 + 1)P(a†i+1ain, t) + ξ(ni−1 + 1)P(a†i−1ain, t)− 2ξniP(n, t)

+
β

N − 1

∑
j ̸=i

(
(ni + 1)(nj − 1)P(a†iajn, t)− ninjP(n, t)

)

+
λM

N

∑
j ̸=i

Qj

(
(ni + 1)P(a†iajn, t)− niP(n, t)

) . (4.80)

4.4.2 . Derivation and analysis of spatial moments

The equation for the discrete average neutron density is again obtained by summation from Eq. (4.80),
namely

∂

∂t
E[ni](t) = ξ∆E[ni](t)−

λM

N
E[ni](t) + λMQi, (4.81)

which, by taking the continuous limit, becomes

∂

∂t
n(x, t) = D∇2n(x, t)− λ

θ
n(x, t) +QI(x). (4.82)

Taking QI(x) as given by Eq. (4.79), the last two terms asymptotically cancel out and the dynamics of
the average is driven only by di�usion, similarly to what happens in the anarchic model when the system
is critical.

The equation for the discrete pair correlation function reads

∂

∂t
E[ninj ](t) = ξ (E[ni∆nj ](t) + E[∆ninj ](t))−

(
2β

N − 1
+

2λM

N

)
E[ninj ](t) + δi,j

2Nβ

N − 1
E[ni](t)

+ λMδi,j

(
Qi +

E[ni](t)
N

)
+ λM

N − 1

N
(QjE[ni](t) +QiE[nj ](t))

+ δi,jξ (E[ni+1](t) + E[ni−1](t) + 2E[ni](t))− δi+1,jξ (E[ni+1](t) + E[ni](t))
− δi−1,jξ (E[ni](t) + E[ni−1](t)) . (4.83)

which, under the continuous limit and after de�ning ũ(x, y, t) = u(x, y, t)− δ(x− y)n(x, t), becomes

∂

∂t
ũ(x, y, t) = D

(
∇2
x +∇2

y

)
ũ(x, y, t)− τ−1

n ũ(x, y, t) + CN (n(x, t)QI(y) + n(y, t)QI(x))

+ 2βδ(x− y)n(x, t), (4.84)
where we recognize τn from Eq. (4.59a). Thus, in this model, neutron pair correlations relax with a time
constant governed by τn.

Equations (4.82) and (4.84) have the same form as Eqs. (4.53a) and (4.58a), provided that one
replaces QI(x) by its expression, Eq. (4.79). These equations can be solved analytically. In particular,
taking a uniform initial condition for n(x, t), we obtain

n(x, t) =
N

2L
(4.85)

for the average neutron density, and

ũ(x, y, t) =
N(N − 1)

4L2
exp

(
− t

τn

)
+

2τnλM(N − 1)

4L2

[
1− exp

(
− t

τn

)]
+

2βN

2L

∫
dx′
∫ t

0
dt′G′(x, t|x′, t′)G′(y, t|x′, t′) exp

(
− t− t′

τn

)
(4.86)
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(a) Asymptotic pair correlation function for
θ = 0.001 and y = 0. (b) Asymptotic pair correlation function for

θ = 1 and y = 0.
Figure 4.10 : Asymptotic pair correlation function for different values of θ, with parameterstaken from Table 3.1. Red solid line : analytical solution of the immigration model. Redsquares : Monte Carlo simulations of the immigration model. For reference, the results ofthe N -control scheme are plotted in black triangles.
for the pair correlation function, where G′ is the Green's function associated to Eq. (4.82). As a side note,
taking the λ → 0 limit in this equation we recover the pair correlation function for a system of prompt
neutrons under population control [46, 47, 79].

Comparison with Monte Carlo simulations (see Fig. 4.10a) shows that, for systems where θ ≪ 1, the
immigration model closely matches the N -control model ; the remarks made about Fig. 4.4 also apply
to the immigration model. Figure 4.10b provides the same comparison for a larger value of θ. Comparing
Fig. 4.10b and Fig. 4.6b, it is clear that the N -control model is better approximated by the NM -control
model than by the immigration model. This is unsurprising, in view of the crudeness of the treatment of
neutron-precursor correlations in the immigration model.

4.5 . Mean squared pair distance functions

We now discuss the mean-squared pair distance for our population control models, and we compare
it to the case of an anarchic population.

For the N -control scheme, we do not have access to an analytical expression for the mean-squared
pair distance, because the moment equations, Eqs. (4.46), are not closed. However, we do have an
asymptotic correlation function for the NM -control scheme, given by Eqs. (4.73), from which we can
deduce an asymptotic mean-squared pair distance. For re�ection boundary conditions, it is given by

⟨r2NM ⟩ = 8L4ũ0,0
3N2

−
(
16L2

π2N

)2 +∞∑
k=1

ũk,k
k4

, (4.87)
where ũk,k is the Fourier coe�cient for the neutron-neutron correlations asymptotic solution of Eq. (4.58a).
On physical grounds, we expect the asymptotic pair distance in the NM -control scheme to be always
smaller than the uncorrelated value, Eq. (3.61).

As for the immigration model, an analytical expression for the mean-squared pair distance can be
obtained by applying the de�nition of the mean-squared pair distance function, Eq. (3.10), to the solution,
Eq. (4.86). For re�ection boundary conditions, straightforward calculations hence yield

⟨r2I ⟩(t) = CN
2L2

3
− 128L2β

N

+∞∑
k=1

1− e−(τ
−1
n −2αk)t

(kπ)4
(
τ−1
n − 2αk

) (4.88)
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(a)Mean-squared pair distance for θ = 10−3. (b) Mean-squared pair distance for θ = 1.
Figure 4.11 : Mean-squared pair distance for different values of θ, with parameters takenfrom Table 3.1. Blue dashed line : NM -control model analytical asymptotic value ; bluesquares : Monte Carlo result ; red solid line : immigration model analytical solution ; redcircles : immigration model Monte Carlo result ; black triangles : N -control model MonteCarlo result. All simulation results are obtained with 106 replicas. Error bars are plottedbut barely visible.
The sum can be computed analytically in the asymptotic limit and reads

⟨r2I ⟩∞ = CN
2L2

3
+

16βτn
N

×

((
Dτn
L

)2

− 2Dτn
3

− 4L2

45
−

√
2(Dτn)

3
2

L
cot

√
2τn
D
L

)
(4.89)

If we take the mean-squared pair distance as an indicator of clustering, Fig. 4.11a clearly illustrates that
the three models have very similar clustering behaviour for θ ≪ 1, even for very long times. For θ ∼ 1,
on the other hand, the models behave di�erently, as shown in Fig. 4.11b. In particular, we note that the
immigration model yields the largest mean-squared pair distance of all the considered control schemes.
This is easily explained by the fact that the `decay source' of the immigration model is assumed to
be uniformly distributed in space and completely uncorrelated with the neutrons, an assumption that is
bound to reduce clustering. The NM -control scheme yields a smaller mean-squared pair distance than
the N -control scheme, indicating that clustering is more prominent in the former. This behavior can be
explained by observing that a precursor may in fact produce several neutrons at the same position before
being destroyed, which tends to increase clustering. It is interesting to note that for all control models
the squared pair distance asymptotically converges to ⟨r2⟩∞ < ⟨r2⟩iid, because the critical catastrophe
is avoided, contrary to what happens in the anarchic case. However, Eqs. (4.87) and (4.89) show that
⟨r2⟩∞ tends to the uncorrelated value as N tends to in�nity.

4.6 . Conclusions and perspectives

In an attempt to take into account population control e�ects, we introduced several idealized sampling
strategies. These models break the statistical independence of the neutron �ssion chains, which forced
us to abandon the Pál and Bell backward formalism in favour of the forward formalism. We derived the
master equations for four di�erent population-control models :

• in the prompt model without precursors, the neutron population is kept constant. We provided a
formal derivation for the spatial moment equations instead of the previous derivation relying on
heuristic arguments ;

• in the N -control model, the neutron population is kept constant, but no constraint is applied to
the precursor population. This model yields a non-closed hierarchy of moment equations ;
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• in the NM -control model, both the neutron and precursor populations are controlled. This model
yields a closed hierarchy of moment equations. We identi�ed the dominant timescales of the model
and presented asymptotic solutions for the �rst two spatial moments.

• in the immigration model, precursors are modelled as a uniform Poisson neutron source whose
intensity is equal to the asymptotic precursor decay rate at equilibrium.

For each model, we obtained two-point, one-time pair correlation functions by analytical means when
possible, and compared them to analog kinetic Monte Carlo simulations. Such comparisons showed that
all the models including precursors yield very close results when θ ≪ 1, which is the main regime of
interest for nuclear reactors. We also showed that the introduction of population control prevents the
occurrence of the critical catastrophe and thus quenches clustering.

Within the same theoretical framework, we also investigated family �xation, i.e. the eventual survival
of a single particle family. In the case where precursors are neglected, we derived and analytically solved
the equations for the �rst two moments of the �xation time starting with any number of neutrons. In
particular, when there is a single initial neutron in each family, we showed that the average �xation
time is given by E[τp|A](1) = (N − 1)2/βN . Furthermore, we discussed the relation between �xation
and clustering. For the case of unbounded media, ⟨r2(t)⟩ has an exponential saturation with a typical
timescale τR,p = N/2β, which suggests that clustering and �xation are intimately related, their respective
timescales being similar when N ≫ 1.

In the NM -control model, which includes precursors, we derived the equations for the �rst two
moments of the �xation time, and we solved them numerically. We determined that, in this case, the
average �xation time scales as τ1 ∼ N/βνdθ

2 when θ = N/M ≪ 1. The solutions were veri�ed against
Monte Carlo simulations. Similarly as in the prompt case, we found that for the case of unbounded media
the typical saturation time of the square pair distance ⟨r2(t)⟩ has almost the same scaling as the average
�xation time τ1 when N ≫ 1.

In Part I we investigated the behaviour of space-time correlations in analog Monte Carlo simulations
of di�usion-based stochastic models including neutrons and precursors. We developed an analytical fra-
mework for the characterization of space-time correlations by making several assumptions : the energy
dependency was neglected ; particle displacements were replaced with Brownian Motion ; the system
was assumed to be spatially homogeneous with mass-preserving boundary conditions ; only the following
events were considered : �ssion, capture, and precursor decay. This model can be treated analytically, at
the expense of being considerably simpli�ed.

The results obtained in Part I provide a clear setting for the investigation of kinetic Monte Carlo simu-
lations, but are by construction restricted to the case of analog sampling, without any variance-reduction
method, and only apply to single-speed di�usion in spatially homogeneous systems. To overcome these
imitations, and broaden the domain of validity of our �ndings, in Part II, we will relax many of the
assumptions we made so far. In particular, while some simpli�cations will be retained for the ease of
computation (use of multi-group formalism, with a set of collision events including only �ssion, sterile
capture, isotropic scattering and precursor decay), we will now move to fully non-analog Monte Carlo
simulations, covering a large spectrum of variance-reduction and population-control strategies. Our main
goal for Part II will be to assess the impact of such techniques on the behaviour of the �uctuations and
correlations in kinetic simulations.
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Deuxième partie

Correlations in time-dependent
transport problems solved by

non-analog Monte Carlo methods
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5 -Spatial and generational correlations in Monte Carlo

eigenvalue calculations

As shown in Chapter 2, the critical source for kinetic problems depends on the fundamental eigen-
mode of the k-eigenvalue formulation of the Boltzmann equation. Within the framework of Monte Carlo
simulation, the fundamental eigenmode and the associated dominant eigenvalue can be obtained using
the well-known power iteration method, which relies on the iteration of the �ssion source : neutrons
starting a given `generation' are chosen amongst the neutrons born from �ssion in the previous gene-
ration [2, 10]. After a su�cient number of generations, the phase-space distribution of �ssion neutrons
eventually becomes stationary, and so do the related tallies, such as neutron �ux and reaction rates.

Once the �ssion source has converged to a stationary state, the sought tallies are averaged using an
ergodic average over successive generations in order to reduce the statistical uncertainty on the estima-
ted values. For the purpose of estimating con�dence intervals on the ergodic averages, for the sake of
simplicity most production-level Monte Carlo codes ignore correlations between successive generations,
although some statistical tests are becoming progressively available [89], fostered by the increased aware-
ness of Monte Carlo practitioners. Ground-breaking investigations concerning the impact of correlations
on the estimation of variance in Monte Carlo power iteration have been carried out by Brissenden and
Garlick, who noted that inference techniques based on an assumption of independent and identically
distributed samples led to an underestimation of the sample variance of the average multiplication factor
ke� [29]. The severity of the underestimation was later related to the value of the dominance ratio (i.e.
the ratio of the second over the �rst eigenvalue of the Boltzmann equation) by Ueki et al. [30], and since
then several authors have tried to predict and correct the estimates of the variance [31, 34�37].

More recently, Dumonteil et al. have pointed out that �ssion-induced correlations may lead to a strong
spatial patchiness (i.e. non-Poisson spatial �uctuations) in the �ssion source, which was dubbed neutron

clustering [27]. A characterization of spatial correlations relying on moment equations was derived in
a time-dependent context in simpli�ed nuclear reactor models [28, 46, 47, 77], and the key �ndings
were shown to apply also to power iteration [38, 41] and to production-level Monte Carlo simulations
of realistic con�gurations [90]. Several methods have been proposed in order to detect and possibly
quench the e�ects of clustering. Nowak et al. suggested to use Shannon entropy for neutron clustering
detection [38], by pointing out that entropy is systematically decreased by the presence of neutron
clustering. Inspired by pioneering work in population dynamics by Zhang et al. [81], Sutton introduced
the concept of neutron lineage in power iteration and outlined the relation between neutron clustering
and �xation (i.e. the number of generations at which all neutrons in the Monte Carlo simulation share the
same common ancestor) [41, 42]. Equations for the moments of the �xation time in kinetic simulations
have been derived by us in Ref. 84, which might be used to establish a more rigorous theoretical framework
for �xation in power iteration.

Over the last few years, the issue of spatial correlations has led to a collection of novel, albeit
partially contradictory, results. Cosgrove et al. pointed out the impact of clustering, suggesting that it
might induce spurious xenon oscillations in depletion calculations coupling Monte Carlo neutronics solvers
and Bateman solvers [40]. Fröhlicher et al. suggested that neutron clustering could lead to an apparent
bias on the average Monte Carlo tallies, in addition to a�ecting the estimation of the variance [44]. In
contrast, Mickus and Dufek stated that neutron clustering should not be detrimental to criticality Monte
Carlo simulations, in that the estimate of the variance is asymptotically not altered [45].

Given the lack of consensus on these matters, which are highly relevant for both conceptual and
practical questions related to power iteration, we have decided to explore in more depth the emergence
of spatial correlations and how they are a�ected by the key mechanisms at play in Monte Carlo simulations,
namely the collision sampling strategies and the population-control and variance-reduction methods. Since
the statistical behaviour of the Monte Carlo estimate of the fundamental mode has a direct impact on the
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sampling of the critical source for kinetic problems, the quanti�cation of the correlations a�ecting particle
transport in the course of the power iteration algorithm is of utmost importance for the investigations
carried out in this thesis work. In the following we will therefore brie�y recall the main ideas behind the
Monte Carlo power iteration, provide a thorough examination of the interplay between generational and
spatial correlations, and show how they are a�ected by several variance-reduction and population-control
techniques. We will focus in particular on the use of branchless collisions, which has been independently
introduced in the context of power iteration calculations by Fröhlicher et al. in Ref. 44 and Belanger et
al. in Ref. 91. Our analysis will rely on a broad class of global (i.e., integrated) and local (i.e., space-
dependent) tallies, encompassing the Shannon entropy, the pair distance, the normalized variance and
the Feynman moments, aimed at detecting the presence of correlations, whose advantages, drawbacks
and relative performances will be assessed by resorting to a set of benchmark problems.

The material presented here is taken mostly from Ref. 92 and from the joint work with H. Belanger
in Ref. 91.

5.1 . Power iteration in Monte Carlo simulation

As recalled in Sec. 2.1.4, the k-eigenvalue formulation of the Boltzmann equation is :

Ω · ∇φk(r,Ω, E) + Σt(r, E)φk(r,Ω, E) =

∫∫
Σs(r,Ω

′ → Ω, E′ → E)φk(r,Ω
′, E′)dΩ′dE′

+
1

k

χp(r, E)

4π

∫∫
4π
νp(r, E

′)Σf (r, E
′)φk(r,Ω

′, E′) dΩ′ dE′, (5.1)
+

1

k

∑
j

χjd(r, E)

4π

∫∫
νjd(r, E

′)Σf (r, E
′)φk(r,Ω

′, E′)dΩ′dE′ (5.2)

where k is the eigenvalue and φk the corresponding eigenfunction. Notation is the same as in Sec. 2.1.4.
The dominant eigenpair {k0, φk0} of Eq. (5.2) can be estimated using a stochastic equivalent of the
power iteration method, as described in Sec. 2.1.4. In the following, we shall present the speci�c aspects
of our implementation.

5.1.1 . Variance reduction and population control methods

In order to prevent the population size from growing out of control or dying out over the course
of many generations, the total statistical weight of the �ssion source is kept constant. Fixing the total
statistical weight of the source is also crucial for normalizing the scores to one �ssion neutron. The
statistical dispersion of neutron weights can be further reduced by using optional population control
algorithms : i) local population control may be applied in the course of a generation on individual
neutrons (e.g. Russian roulette and splitting are applied to neutrons emerging from collision events [10]),
and ii) global population control can be applied to the �ssion bank, before neutrons are promoted to
source neutrons for the following generation (e.g. weight combing is applied to �ssion neutrons in order
to select source neutrons [57]).

The sampling of neutron histories can be either analog or non-analog ; in the latter case, neutrons
are assigned weight correction factors to keep the Monte Carlo game unbiased. Here, the sampling of the
�ight kernel will always be analog, whereas for collisions we will use various non-analog sampling methods,
in order to probe their e�ectiveness as variance-reduction techniques. We shall use implicit capture and
forced �ssion (see Sec. 2.2.3), which are customary in most production Monte Carlo codes [53, 93�95].
For convenience, we remind the formula to sample the number of �ssion neutrons :

nf =

⌊
ξ +

ν(r, E)Σf (r, E)

Σt(r, E)

⌋
(5.3)

where ξ ∼ U [0, 1] and ⌊·⌋ denotes the integer part. This formula is used twice, to sample the number of
prompt neutrons (with ν = νp), and the number of delayed neutrons (with ν = νd) ; the family of each
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delayed neutron is then sampled in an analog manner, with probabilities νjd/νd. The energy of the �ssion
neutrons are sampled from the corresponding spectra (χp or χjd) ; the direction is sampled isotropically.
Fission neutrons are assigned the weight w of their parent, regardless of their nature. Finally, the parent
neutron is forced to undergo scattering, and the e�ect of absorption is taken into account by correcting
the statistical weight by the survival probability, namely,

w′ = w
Σs(r, E)

Σt(r, E)
. (5.4)

In this non-analog scheme, particles never disappear by absorption ; histories can be terminated by either
leakage or Russian roulette after collision events [10].

The sampling strategy described so far belongs to the class of `branching' algorithms, in the sense
that new particles (hence new branches of the particle histories) can be created at collision events through
the sampling of �ssion progeny. In what follows, we shall also use branchless collisions, that ensure that
exactly one single neutron is sampled at collisions [10]. The idea and basic implementation of branchless
collisions are exposed in Sec 2.2.3. Here, we shall recall the expression for the weight modi�er :

w′ = w
Σs + νΣf

Σt
. (5.5)

The probabilities to select scattering or �ssion then read

Ps =
Σs

νΣf +Σs
and Pf =

νΣf
νΣf +Σs

, (5.6)
respectively. The use of branchless collisions in power iteration calculation was proposed independently
by us in Ref. 91 and by Frohlicher et al. in Ref. 44, and requires some adjustments compared to its usual
application in kinetic simulations : if scattering is chosen, energy and direction are sampled as customary,
and the emitted neutron performs a new �ight within the same history. Otherwise, if �ssion is chosen, the
emitted neutron is sent to the �ssion bank and the current history is terminated : each neutron undergoes
at most one �ssion event during a generation, producing at most one descendant per generation1.

With the branchless sampling strategy, population control is mandatory : the number of neutrons
would otherwise decrease over generations, since neutrons disappearing by leakage or Russian roulette
would not be replaced. In practice, applying splitting to particles emerging from collision events su�ces
to counteract this limitation, provided that the number of particles per generation is su�ciently large.
Note that splitting may reintroduce correlations between neutrons, which suggests that a trade-o� must
be found between keeping the population size large enough, and reducing the number of splitting events.

In this chapter, we will compare the performance of branchless collisions with a method proposed in
Ref. 42, which relies on a last-event estimator for the �ssion source [96]. The sampling of the collision
channel is kept analog (i.e. the statistical weight w of a given neutron is constant throughout a gene-
ration), although the statistical weight may vary from one neutron to another, and from one generation
to the next generation. Upon sampling absorption (capture or �ssion), the neutron history is terminated,
and an average weight of wf �ssion neutrons is sent to the �ssion bank, where

wf = w
ν(−→r , E)Σf (

−→r , E)

Σa(
−→r , E)

. (5.7)
We chose to implement an unweighted strategy for populating the �ssion bank : nf = ⌊ξ+wf⌋ neutrons
of unit statistical weight are sent to the �ssion bank ("U method" ; here ξ ∼ U([0, 1]))[42]. This method
for populating the �ssion bank may be also applied to branching and branchless collisions, with an
adequate choice of wf : for branchless collisions, we simply have wf = w, while for branching collisions
we have

wf = w
ν(−→r , E)Σf (

−→r , E)

Σt(
−→r , E)

. (5.8)
1Observe that branchless collisions reduce to branching collisions with implicit capture in regions withoutfission.
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Other population control mechanisms can be applied to power iteration. One such method is combing,
originally proposed by Booth [57] and recently explored at length in the context of time-dependent
simulations [49, 62] ; one can also refer to Section 2.2.3 above. As a reminder, the idea behind combing
is essentially to enforce a constant number of particles in the source bank of each generation, while at
the same time preserving the total weight. The source particles are sampled using a constant weight
interval over the total weight, starting with a random o�set that guarantees unbiasedness.

An alternative to combing relies on the sampling without replacement (WOR) method, proposed
by Sutton [42], which is an improved version of the Duplicate-Discard strategy presented by Variansyah
et McLarren [49]. In this method, N source neutrons for the next generation are sampled without
replacement from the list of the N ′ �ssion sites that stem from the previous generation. In addition,
when the size of the �ssion bank is smaller than the sought �ssion source size (i.e. N ′ < N), Sutton
suggests a two-step procedure : �rst, each neutron in the �ssion bank is copied ⌊N/N ′⌋ times (with
statistical weight), and the remaining N − N ′⌊N/N ′⌋ are then sampled without replacement. Thus,
although this method is "without replacement", the same �ssion site can nonetheless be selected more
than once when N ′ < N . This ensures that the number of neutrons at the beginning of each generation
is constant.

The implementation of sampling WOR described in Ref. 42 applies to a simpli�ed quasi-analog model
where all particles share the same statistical weight, and the generalization to a more realistic framework
including non-analog particle transport is straightforward : neutrons are sampled uniformly and without
replacement from the list of (unweighted) �ssion sites, and are assigned the statistical weight of the
�ssion site they originate from, which in our case is one. Finally, using the U method always leads to the
same total weight, and all source neutrons will have a unit weight.

5.1.2 . Estimating the correlations of the sought observables

Most production simulation codes perform ergodic averages of the sought observables over successive
`active' generations, after convergence has been attained, and compute an apparent variance assuming
(for ease of computation) that successive generations are independent. In practice, generational correla-
tions cause the apparent variance to underestimate the real variance of the stochastic process. Several
methods have been developed to recover the real variance from the apparent variance, for instance by
block-averaging tallies over several generations in order to wash out correlations, or by modeling genera-
tional correlations in the system and applying suitable corrections to the apparent variance [34�36, 97].
Alternatively, one might take ensemble averages over fully independent power iteration replicas : in this
case, the real variance of the stochastic process would be estimated, but this would come at the cost of
an often intolerable increase in simulation time.

By construction, the collision sampling strategies and the variance-reduction and population-control
methods described in Sec. 5.1.1 do not a�ect the estimate of the average, since these algorithms are
precisely chosen to ensure a fair (i.e. unbiased) Monte Carlo game. Although Fröhlicher et al. suggested
that spatial clustering may induce a bias in the estimation of the neutron �ux, the number of inactive
generations they had chosen for their system appears to be insu�cient to ensure proper convergence
to the fundamental eigenstate [44]. In spite of the unbiasedness of the variance-reduction techniques,
the estimates of the critical �ux and e�ective multiplication value in power-iteration calculations are
a�ected by a well-known statistical bias, which is due to weight normalization at the beginning of
each generation [29]. To �rst order, the bias is inversely proportional to the number of particles per
generation. In Fröhlicher et al.'s case, the number of particles is arguably so small (N = 103) that the
normalization bias cannot be excluded. Moreover, the bias does not necessarily manifest itself in the same
way for branchless or branching collisions. Therefore, the bias observed in Ref. 44 cannot be con�dently
attributed to spatial clustering.

In any case, the non-analog methods presented above do have an impact on the generational and
spatial correlations of the resulting simulation scheme, and therefore the apparent variance of the sought
observables. Our goal is to characterize the e�ects of collision sampling strategies, variance reduction
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and population control on correlations, using several kinds of ad hoc estimators, encompassing those
that are commonly met for power iterations and some new ones that are hopefully more useful for the
interpretation of the simulation results.

5.1.3 . De�nition of estimators for correlation diagnostics

We introduce a few relevant estimators for correlation diagnostics. We require all such estimators to
be `non-Boltzmann', i.e. they must not be invariant under variance-reduction techniques, otherwise they
would not be sensitive to correlations. Their signi�cance in detecting correlations at the global or local
spatial scale will be discussed in the following.

Shannon entropy

The Shannon entropy S of the �ssion source is commonly used as a tool for assessing the convergence
of power iteration : the power iteration is assumed to have reached the stationary state when S reaches an
asymptotic value S∞. In view of the fact that the rate of convergence of the Shannon entropy depends on
the dominance ratio, and that the dominance ratio also a�ects the behavior of correlations, the relation
between the Shannon entropy of the �ssion source and the correlation-induced neutron clustering has
been examined by Nowak et al. [38]. For this purpose, a Cartesian spatial mesh with B cells is superposed
over the system geometry and the Shannon entropy S at generation g is computed as customary :

S(g) = −
B∑
i=1

pi(g) log2(pi(g)), (5.9)
where pi(g) is the fraction of the total weight of the �ssion source particles in the spatial cell i at
generation g. In our work, we compute pi(g) as the ratio of the weight of the �ssion source particles in
cell i over the total weight after normalization. The spatial size of the cells follows from δ = L/B, where
L is the linear size of the system. In the simpli�ed homogeneous reactor model tested in Ref. 38, the
occurrence of spatial clustering was shown to lead to lower values of the asymptotic Shannon entropy S∞
compared to the expected ideal value Sid that corresponds to the ideal assumption of N independently
distributed particles of unit weight. The extended analysis performed in Ref. 91 shows that these �ndings
also apply to continuous-energy transport.

Observe that entropy is just a single scalar for each generation : while it does convey information
about the presence of spatial clustering, the �ne details of the spatial distribution are lost through the
coarse-graining in Eq. (5.9) : only the collective occupation statistics of the cells matters in computing
S(g).

Generally speaking, the ideal asymptotic value Sid of the entropy function is not known : thus,
since the discrepancy between Sid and the asymptotic value S∞ cannot be assessed in practice, the
value S(g) resulting from the power iteration cannot be directly used to detect the existence of spatial
clustering 2. Nonetheless, the values of Shannon entropy originating from di�erent collision sampling
strategies, variance-reduction and population-control methods can be compared relative to each other,
which allows assessing the e�ectiveness of each technique.

Pair distance function

The pair correlation function C(ri, rj , ti, tj) is a measure of the covariance between the occupation
statistics of two spatial sites at positions ri and rj , at time ti and tj , which may coincide. It reads

C(ri, rj , ti, tj) = E[ni(ti)nj(tj)] (5.10)
where E[·] denotes the ensemble average, and ni(ti) is the occupation number in space bin i at time
ti, that may be non-integer due to the use of statistical weights. Time can be either continuous (in

2To partially overcome this limitation, Nowak et al. have proposed to use the spatial moments of the Shan-non entropy, weighted by Legendre polynomials along the Cartesian axes [38] : using spatial symmetriesoccurring in the simulated system, deviations of themoments of the Shannon entropymay help in revealingthe emergence of clustering.
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a time-dependent context) or discrete (i.e. generations). In the context of time-dependent di�usion-
reproduction stochastic processes in in�nite homogeneous media, Meyer et al. have shown that the
pair correlation function of two spatial sites at a given time characterizes the evolution of particle
clusters [79]. Similar conclusions have been later reached for generalized versions of Meyer's model,
encompassing �nite-size systems and two observation times [28, 47, 77], and also hold true with minor
modi�cations for power iteration, where time t is replaced by discrete generations g [27, 41]. While being
highly informative, the pair correlation function may be prohibitively expensive to compute for realistic
three-dimensional con�gurations. A convenient alternative consists in collapsing the information content
of the pair correlation function into the mean squared pair distance function (often shortened to pair
distance function),

⟨r2⟩(g) ∝
∫∫

|ri − rj |2C(ri, rj , g)dridrj ,

where C(ri, rj , g) expresses the correlation function for particle pairs at two positions in the same
generation, which provides a tool to estimate the typical cluster size [79]. The pair distance function
is basically the mean squared distance between any two particles, and can be thus straightforwardly
computed in Monte Carlo power iteration, e.g., at the beginning of each generation. Since the number
of particle pairs scales quadratically with the number of particles present in the generation, the required
computational cost might become an issue ; however, this problem can be mitigated (without incurring
any bias) by estimating the mean squared distance from a maximum number of randomly sampled pairs.
Similarly to Shannon entropy, the pair distance function converges towards an asymptotic value ⟨r2⟩∞ for
a su�ciently large number of generations, even in the presence of clustering. Departures of ⟨r2⟩∞ from
the ideal value, corresponding to a simulation with no clustering, would suggest the presence of spatial
clustering. If the distribution is uniform and the particles are independent, then it is easy to estimate the
ideal value. In general, however, it is impossible to do so. Similarly to the case of the entropy function,
the relative values of the mean squared distance can nonetheless be used to compare the e�ectiveness of
di�erent variance reduction and population control techniques in quenching the e�ects of correlations.

The statistics of neutron families

In the initial population at the beginning of the power iteration, one starts with N independent
neutrons, each of which is assigned a di�erent arbitrary numerical identi�er. Each identi�er represents an
independent `family' ; the identi�ers are transmitted to the descendant neutrons at �ssion events. Two
neutrons sharing the same identi�er are correlated because they share a common ancestor. During power
iteration, the number of neutron families decreases along the generations, because neutrons die and family
go extinct by capture or leakage. The intrinsic relationship between di�usion-reproduction processes
and particle lineages has been explored by Zhang et al. [81] in the context of in�nite, homogeneous,
multiplying media : they showed that all the neutron histories become correlated after a characteristic
time proportional to the population size, and they attributed the emergence of neutron clustering to this
phenomenon. The e�ects of neutron lineage statistics on the average size and number of clusters has
been recently revisited by Sutton et al. [41, 42] in the framework of a simpli�ed power iteration model
using the WOR sampling method, and in a more realistic multi-group and continuous-energy framework
by Belanger et al. [91] and Frohlicher et al. [44].

For each independent realization of power iteration, there exists a �xation generation at which all
the families but one have gone extinct : at the �xation generation, all the neutrons are correlated and
the population is said to have reached �xation. All neutrons now share the same ancestor in the initial
source. We derived an exact expression for the average �xation time in in�nite, single-speed homogeneous
media in Ref. 84 in the context of kinetic simulations ; these �ndings can be straightforwardly extended
to processes evolving in discrete generations. We de�ne η(g) to be the average number of surviving
independent neutron families at generation g : the likeliness of occurrence of neutron clustering increases
as η becomes much smaller than the initial number of families N .

While the statistics of neutron families does provide interesting insights about correlations, and for
this reason it has been proposed as an estimator for clustering [41, 42, 91], it does not carry information
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about the spatial and boundary e�ects (see the discussion in Chapter 4), and this may limit its usefulness,
as shown in the following.

Feynman moments

The three previous estimators, although sensitive to correlations, are global and do not provide any
information about the local distribution of the correlations within the system. As such, their application
to the analysis of correlations occurring in systems exhibiting strong spatial heterogeneity is fraught with
conceptual di�culties. Ideally, we would like indicators of spatial correlations to be i) local, i.e. space-
dependent, and ii) having a known ideal behavior in the absence of correlations, which would make their
interpretation easier. For this purpose, we introduce the ensemble Feynman moment

YOi =
V[Oi]

E[Oi]
, (5.11)

where Oi is the value of observable O in spatial cell i. Here E[·] denotes the ensemble average over M
independent replicas of a given observable O :

E[Oi] =
1

M

M∑
m=1

Oi,m, (5.12)
Oi,m being the value of the estimator in cell i for replica m. The ensemble unbiased estimator of the
variance of O is de�ned as

V[Oi] =
1

M − 1

M∑
m=1

(Oi,m − E[Oi])
2, (5.13)

We stress that V[Oi] is the variance of the estimator and not the variance of the mean of the estimator.
The variance of the mean is obtained by dividing the variance of the estimator by the number of reali-
zations M over which the mean is performed. The Feynman moment has been originally conceived for
the detection of �ssion-induced correlations in the time series of multiplying systems [80] : to the best of
our knowledge, its application to the analysis of correlations occurring in power iteration has not been
attempted before.

As mentioned in Sec. 5.1, to reduce the cost of power iteration, one generally uses ergodic averages
over successive neutron generations. We therefore introduce the ergodic estimator of the expectation of
O over G active generations, namely,

E [Oi] =
1

G

G∑
g=1

Oi,g, (5.14)
where Oi,g is the value of the estimator in cell i at active generation g. Similarly, one can de�ne the
ergodic estimator of the variance of O by

V[Oi] =
1

G− 1

G∑
g=1

(Oi,g − E [Oi])
2. (5.15)

Because of positive correlations, we expect V[Oi] < V[Oi] when the two estimators are taken over
samples of the same size (G =M), i.e. when the number of active neutron histories in the single power
iteration calculation used to compute the ergodic variance is the same as the sum of active neutron
histories simulated throughout all power iteration replicas when computing the ensemble variance [29].
In order to have a better estimate of Eqs. (5.14) and (5.15), it is possible to perform ensemble averages
over M independent replicas on E [·] and V[·]. Finally, we de�ne the ergodic Feynman moment of O by

Y G
Oi

=
E[V[Oi]]

E[E [Oi]]
, (5.16)

which reduces to the ensemble Feynman moment de�ned in Eq. (5.11) when G = 1.
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Since the Feynman moment for Poisson variates is equal to 1, it is possible to interpret its value
as the deviation of a given observable (in a spatial cell) from a Poisson-like behavior. A process that
generates Poisson-distributed counts is the following : consider N particles, independently and identically
distributed into K bins following the probability distribution p. If pk is the probability that a particle falls
within bin k, then if ∀k, pk ≪ 1, the particle counts are approximately Poisson distributed in each cell,
and the Feynman moment Yk for cell k is approximately equal to 1, for all the bins and independently
of the probability distribution p. However, when there are very few populated bins, then pk ∼ 1 for
some k (i.e. the probability that a particle falls within bin k is large) ; in this situation, the counts
actually follow a binomial distribution, and we expect Y < 1. Finally, suppose that the number of bins
is high enough so that the number of particles in each bin is Poisson distributed. The particles are
divided into groups of size α, and each group is independently tossed into a bin. In this situation, it is
easy to check that the Feynman moment is equal to α, again for all the bins and independently of the
probability distribution. This suggests that the value of the Feynman moment for a counting variable
can be interpreted as the typical `weight' of a particle cluster. This example also suggests that Feynman
moments are most naturally applied to quantities that are akin to counts. Indeed, for counting variables,
the Feynman moment is dimensionless and has a natural reference value to which it can be compared.
It is less naturally applicable to commonly used quantities such as �uxes, which is why such quantities
are not considered in the present work.

In this work, we apply the Feynman moments to the collision counts ψ, i.e. the average number
of neutrons entering a collision in a space bin3, and to the �ssion emission counts F , i.e. the average
number of �ssion neutrons being emitted in a space bin. We will focus exclusively on energy-integrated
Feynman moments.

Normalized variance

Another local estimator for correlations can be introduced using the ensemble estimator for the
normalized variance

gOi =
V[Oi]

E[Oi]2
, (5.17)

where E[Oi] and V[Oi] are de�ned as above. The normalized variance describes the amplitude of �uctua-
tions relative to the average and is a simpli�ed form of the centered normalized pair correlation function
that is widely used in the context of spatial clustering analysis [47, 48, 79]. Observe that the normalized
variance di�ers from the Feynman moment only in the normalization terms appearing at the denominator.
However, this di�erence is crucial and conveys a distinct information content with respect to correlations,
as illustrated in Sec. 5.4. The ergodic normalized variance gGOi

can be de�ned similarly to that of the
Feynman moments, namely

gGOi
=

E[V[Oi]]

E[E [Oi]]2
. (5.18)

In this work, we apply the normalized variance to the same observables as for the Feynman moments,
i.e. the energy-integrated collision counts and �ssion emission counts.

5.2 . Analysis of a simple benchmark with single-speed particle transport

A previous study by Nowak et al. looked at the e�ects of particle clustering on the Shannon entropy
of the �ssion source [38]. For a simple benchmark model of single-speed neutron transport in a uniform
cubic reactor, with re�ective boundary conditions, the fundamental eigenmode of the �ssion source is
spatially uniform. In an analog simulation without clustering, the positions of the N �ssion neutrons at
equilibrium would all be independent and uniformly distributed. Thus, we can decompose the cube into
B elements of equal volume and measure the degree of clustering by comparing the entropy of the �ssion

3Given that reaction rates are akin to partial collision counts, one could also analyze their Feynmanmoments,which will not attempted here, for the sake of conciseness.
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Figure 5.1 : Shannon entropy of the fission source, and the number of distinct families for acritical single-speed box, for both the branching and branchless simulation methods. Theideal value of the entropy for N = 103 and B = 83 is also provided.
source to the ideal entropy of a multinomial distribution of N particles into B categories, which reads

Sid = log2(N)− B

N

(
B − 1

B

)N N∑
k=1

(B − 1)−k
(
N

k

)
k log2(k). (5.19)

From this comparison, Nowak et al. have demonstrated that clustering leads to a lower entropy in the
�ssion source than the value of Eq. (5.19) [38]4.

To evaluate the possible bene�ts of using branchless collisions over the more traditional branching
algorithm, we have replicated the study performed by Nowak et al., performing k-eigenvalue power
iteration for single-speed neutron transport in a re�ected, critical cubical reactor, with side lengths of
400 cm, and cross sections of Σs = 0.27 cm−1, Σc = 0.02 cm−1, νf = 2.5, and Σf = Σc

νf−1 . The

total weight of the particles at the beginning of each generation is N = 103, and the initial source
distribution is a point located at the center of the cube, with source particles having unit weight. The
aim of this simulation is to provide a �rst indication of whether the branchless collision method can
reduce the clustering of the particles in the simulation, compared to traditional branching transport. The
simulations of three-dimensional con�gurations presented in this section were performed using Chenille,
a mini-app also developed at CEA [98]. In Chenille, the formula used to determine the number of �ssion
progeny when using branching collision is

nf =

⌊
w

k
(g−1)
e�

·
ν(E)Σf (E)

Σt(E)
+ ξ

⌋
, (5.20)

where kg−1
e� denotes the estimate of the multiplication factor stemming from the previous generation ; in

this scheme, �ssion particles are born with unit weight. For the remainder of the present section and for
Sec. 5.5, we shall use this formula instead of Eq. (5.3).

The entropy of the �ssion source for single-speed transport in the critical cube is plotted in Fig. 5.1,
as a function of the �ssion generations, for both branching and branchless simulations, along with the
theoretical value for the ideal case of perfectly independent and homogeneously distributed particles.
Clustering in the branching simulation leads to a �ssion source entropy which is much lower than the
value associated with independent neutron histories, for the given number of particles, and entropy
mesh. Using branchless collisions, however, the entropy of the �ssion source converges to the ideal value,
and experiences much smaller �uctuations. This benchmark con�guration is unique for several reasons.

4The derivation of Eq. (5.19) byNowak et al. assumed analog transport ; its use for predicting the fission sourceentropy in a weighted game is perhaps inappropriate, but we use it here nonetheless, as an approximation.
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Figure 5.2 : Shannon entropy of the fission source, and the number of distinct familiesfor single-speed transport in a subcritical reactor, for both the branching and branchlesssimulation methods. The ideal value of the entropy forN = 103 andB = 83 is given by thedashed line.
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Figure 5.3 : Shannon entropy of the fission source, and the number of distinct families forsingle-speed transport in a supercritical reactor, for both the branching and branchlesssimulation methods. The ideal value of the entropy forN = 103 andB = 83 is given by thedashed line.
Single-speed transport in the critical cube leads to a branchless weight modi�er of 1 ; thus, the weight
of particles will never change, so no splitting or roulette will ever occur. This fact, combined with the
re�ective boundary conditions, means that no particles will ever be removed from the system, so the
number of independent particle families will remain constant instead of decreasing as it would be the
case otherwise. The decrease in the number of particle families has been shown to be one of the main
causes of clustering in Monte Carlo simulations [42], and the fact that the number of families is constant,
when using branchless collisions, explains the absence of clustering.

Thus, single-speed transport in a critical reactor is a somewhat pathological case that does not
need any population control mechanism when using branchless collisions. We chose to also examine a
subcritical and supercritical version of the reactor, where the �ssion yield was used to control ke�. The
respective parameters were ν = 2, ke� = 0.8 and ν = 3, ke� = 1.2. For these cases, we considered the use
of combing, splitting, and sampling without replacement (WOR) with splitting. The entropy and number
of families are presented in Fig. 5.2 for the subcritical case, and Fig. 5.3 for the supercritical case. In both
the subcritical and supercritical con�gurations, all branchless collision variants yield larger numbers of
families, larger values of the entropy and therefore seem to be much more e�ective at reducing clustering
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Number Type Inactive Lengths Dominance keffgenerations (cm) ratio1 Homogeneous 100 50 0.9832 1.00003± 1 pcm2 Homogeneous 200 100 0.9957 0.99986± 1 pcm3 Heterogeneous 20 20/2/20 0.7908 0.99999± 3 pcm4 Heterogeneous 1000 20/20/20 0.9971 0.99987± 5 pcm

Table 5.1 : Parameters for the four benchmark configurations. The dominance ratio andthe value of the capture cross-sections are taken from Vitali et al. [1].
compared to the traditional branching algorithm. In contrast with the behaviour observed for the critical
system, the source entropy of the branchless collision does not reach the ideal entropy (cf. Fig. 5.1).
The reason for this is that, once the system is no longer exactly critical, population control mechanisms
are required, which always causes the number of particle families in the simulation to decrease to 1
(�xation). The number of generations to �xation for the branching algorithm is much smaller than for
branchless algorithms. Furthermore, for both the subcritical and supercritical cases, branchless collisions
with splitting for population control and a low roulette threshold seem to give the longest �xation time.
With branching transport, the �xation time is generally comparable to the time required for the �ssion
source to converge, while the �xation time for the branchless algorithms is much longer than the time
required for entropy convergence. Surprisingly, sampling WOR on its own had very poor performance
when used with branchless collisions, in apparent contradiction with Sutton [42]. This discrepancy is
likely attributed to the fact that, in Sutton's algorithm, each absorption site may contribute to populate
the �ssion bank, which potentially induces less variation in the particle weights. Sampling WOR in
conjunction with splitting had reasonable performance, but was still not as e�cient as using splitting
alone.

5.3 . Speci�cations for more complex benchmark problems

In order to gain a deeper insight, we have extended the simple system investigated in the previous
section by introducing a set of benchmark problems, of which we provide the key speci�cations.

5.3.1 . Description of the chosen con�gurations

For the purpose of our analysis, we have chosen a total of four one-dimensional critical slab geometries
taken from Vitali et al. [1]. The selected con�gurations have di�erent values of dominance ratio R, and
cover both homogeneous and heterogeneous systems, which are known to behave di�erently with respect
to the parameter R. The geometrical data are listed in Tab. 5.1. All con�gurations have leakage boundary
conditions at both sides of the slab. The �rst two con�gurations (1 and 2 in Tab. 5.1) are homogeneous,
with di�erent lengths. The material is a mixture of UO2 and H2O, whose parameters are provided in
Tab. 5.2. Con�gurations 3 and 4 are heterogeneous, with a UO2-H2O-UO2 sandwich structure, with
lengths given in Tab. 5.1. The respective nuclear data are given in Tab. 5.3 for the fuel and in Tab. 5.4
for the moderator. The nuclear data for all the materials are intended to be realistic, and are represented
using a three-group formalism, with thermal, epi-thermal and fast energy groups. In Ref. 1, prompt χp
and delayed χjd spectra for each precursor family j were provided separately. Here we collapsed them into
an average �ssion spectrum χ, with χ = (νpχp +

∑
j ν

j
dχ

j
d)/ν.

Following Vitali et al., for all con�gurations we modify the capture cross section of the homogeneous
material (for cases 1 and 2) and of UO2 (for cases 3 and 4) so that the systems are critical. The system-
dependent capture cross-sections are given in Table 5.5. The dominance ratios for each con�guration
have been computed by Vitali et al. and are also recalled in Tab. 5.1.
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Parameters g = 1 (fast) g = 2 (epithermal) g = 3 (thermal)
Σf,g [cm

−1] 3.0586× 10−3 2.1579× 10−3 5.6928× 10−2

Σs,1→g [cm
−1] 4.48187× 10−1 1.78483× 10−1 0

Σs,2→g [cm
−1] 0 1.8058111 1.41764× 10−1

Σs,3→g [cm
−1] 0 0 4.31567

νg [−] 2.4 2.4 2.4
χg [−] 0.876304 0.123696 0

Table 5.2 : Nuclear data of the homogeneous fuel-moderator material. The three energygroups are indexed by g.
Parameters g = 1 (fast) g = 2 (epithermal) g = 3 (thermal)
Σf,g [cm

−1] 3.0586× 10−3 2.1579× 10−3 5.6928× 10−2

Σs,1→g [cm
−1] 2.21062× 10−1 7.3843× 10−2 0

Σs,2→g [cm
−1] 0 7.77642× 10−1 4.3803× 10−2

Σs,3→g [cm
−1] 0 0 1.55272

νg [−] 2.4 2.4 2.4
χg [−] 0.876304 0.123696 0

Table 5.3 : Nuclear data of the UO2 material. The three energy groups are indexed by g.

5.3.2 . Description of the sampling strategies

Five algorithms (i.e. combinations of collision sampling strategies and population control algorithms)
will be considered for each geometry : i) branching collisions ; ii) last-event estimator with sampling
WOR ; iii) branchless collisions ; iv) branchless collisions with weight combing ; v) branchless collisions
with sampling WOR. Russian roulette and splitting are always applied to the particles emerging from
collision events, with roulette threshold wR = 0.8 and unit target weight, and splitting threshold wS = 2.
A neutron of statistical weight w is split into nS = ⌊w/wS⌋ particles with equal statistical weight w/nS .
The choice of these (somewhat arbitrary) thresholds is inspired by those used in the TRIPOLI-4® code
developed at CEA [53]. It should be noted in particular that the choice of wS can have a signi�cant e�ect
on the neutron correlations, especially if wS is too small. Finally, when no population control algorithm
is speci�ed, the �ssion bank is wholly transmitted to the next generation ; in particular, no sampling with
replacement is applied.

5.4 . Simulation results

In the following, we present numerical results for the benchmark con�gurations described in Sec. 5.3
and the �ve algorithms presented in Sec. 5.1, �rst for the global tallies (entropy, pair distance and family
number), and then for the local tallies (Feynman moment and normalized variance). The aim of this
investigation is to assess the impact of each algorithm on correlations, with the help of the diagnostics
tools introduced in Sec. 5.1.3. All the power iteration simulations carried out here start with an initial
neutron source belonging to the fast group and uniformly distributed in space (non-�ssile media included).
The number of inactive generations for each con�guration is given in Tab. 5.1 and has been determined
on the basis of Fig. 5.4, while the number of neutrons per generation will be detailed for each case
separately.
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Parameters g = 1 (fast) g = 2 (epithermal) g = 3 (thermal)
Σc,g [cm

−1] 3.05× 10−4 3.699× 10−4 1.825× 10−2

Σs,1→g [cm
−1] 2.27125× 10−1 1.0464× 10−1 0

Σs,2→g [cm
−1] 0 1.02817 9.7961× 10−2

Σs,3→g [cm
−1] 0 0 2.76295

Table 5.4 : Nuclear data for the H2O material. The three energy groups are indexed by g.
System Number Σc,1[cm

−1] Σc,2[cm
−1] Σc,3[cm

−1]1 9.3888852× 10−4 1.5003548× 10−2 6.9125769× 10−2

2 9.3920991× 10−4 1.5034394× 10−2 7.0670812× 10−2

3 3.8396068× 10−4 1.1656103× 10−2 4.8808556× 10−2

4 3.8089301× 10−4 1.1361681× 10−2 3.4061203× 10−2

Table 5.5 : Capture sections Σc,g for each configuration. The three energy groups are in-dexed by g.

5.4.1 . Analysis of global estimators

We begin our analysis by considering global tallies. The evolution of the Shannon entropy S(g)
as a function of the generations in each of the benchmark con�gurations is illustrated in Fig. 5.4. As
expected, all entropy curves converge towards an asymptotic value for a large number of generations.
The asymptotic value of the entropy depends on the algorithm and the system, whereas the convergence
rate (i.e. the number of generations needed to attain convergence) only depends on the system. For
systems 1, 2, and 4, the asymptotic value of the entropy is smaller for the branching algorithm than
for any of the other algorithms, suggesting stronger spatial correlations when using branching collisions.
The method relying on the last-event estimator taken from Ref. 42 leads to an entropy lying between
that of the branchless algorithms with and without population control. The typical spatial patchiness
induced by spatial correlations is illustrated in Fig. 1.1 for the case of system 2 (homogeneous reactor
with large dominance ratio). It is interesting to note that in system 3 all algorithms lead to similar
asymptotic entropy ; additionally, the branching algorithm appears to lead to the higher entropy, and is
thus expected to induce less spatial correlations. The behavior of system 3 can be probably explained by
its small dominance ratio, cf. Tab. 5.1. Spatial clustering is the result of a competition between di�usion
and multiplication : correlated branches induce spatial correlations when the neutrons cannot explore the
whole system. When using branchless collisions, the only way for correlated branches to appear is through
splitting or population control. In systems close to criticality such as ours, the weight correction factor
in branchless algorithms is close to unity, which means that splitting seldom occurs during a generation.
However, as stated previously, the number of neutrons decreases from one �ssion bank to the next. Thus,
weight normalization increases the average weight of neutrons, ultimately leading to additional splitting.
Alternatively, if population control such as combing or sampling WOR is applied, then the same neutron
in the �ssion bank may be copied several times, introducing additional correlated branches.

Careful inspection of Fig. 5.4 will reveal that the di�erence between the asymptotic entropy of the
branching algorithm, and of the four other algorithms increases with the dominance ratio. Conversely, if
the dominance ratio is small enough, the entropy for branching collisions becomes slightly higher than for
branchless collisions, as illustrated by Fig. 5.4c for system 3. In this case, correlated branches explore the
whole viable phase space, and the e�ects of spatial clustering will be quenched. Said di�erently, neutrons
produce more �ssion neutrons (i.e. correlated branches) when using branching collisions than branchless
collisions, meaning that more random walkers are available to explore the phase space. Given that spatial
correlations are weak, the increasing number of events leads to better estimates of scores. This behavior
is not speci�c to heterogeneous systems (such as con�guration 3) : we have found similar results for
a homogeneous con�guration with a dominance ratio close to that of system 3. Note however that, in
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(a) System 1 (b) System 2

(c) System 3 (d) System 4
Figure 5.4 : Shannon entropy as a function of the generations in power iteration, computedfor N = 103, B = 102, and for different systems, and averaged over 103 independentreplicas.

systems with small dominance ratios, the di�erence among the asymptotic entropy values for the �ve
algorithms is rather small, translating the fact that systems with small dominance ratio are anyway only
weakly a�ected by spatial correlations and, thus, by clustering.

We conclude our analysis of Shannon entropy with a discussion on the dependence of the asymptotic
entropy (i.e. the entropy reached after the inactive generations) on the spatial cell size, shown in Figs. 5.5.
The dependence of S∞ on the bin size is similar in both homogeneous and heterogeneous systems. As
suggested by Fig. 5.4c, the Shannon entropy for the branching algorithm exceeds that of the other
algorithms when the cell size is very small, while it is lower or equal for larger cell sizes. In addition, these
trends appear to be strengthened in systems with large dominance ratio, suggesting that the e�ect of
spatial correlations becomes irrelevant when the bin size becomes small enough. In this case, only the
number of available random walkers matters, and using branching collisions might become advantageous.
In any cases, the impact of the bin size on the value of the entropy is much stronger than the impact of
the algorithm.

The indications that can be drawn from Fig. 5.6 for the pair distance function are consistent with
those stemming from the entropy tally, with one signi�cant exception : contrary to entropy, population
control seems to have a weak in�uence on the pair correlation function. Moreover, Fig. 5.6c shows that
the pair distance for the branching algorithm in system 3 is the lowest amongst the �ve algorithms
considered here (the di�erences are nonetheless small). This is in contrast with the intuition that lower
entropy values are the signature of enhanced spatial clustering. We showed above that, for system 3,
the highest entropy (and thus, the situation with the smallest impact of neutron clustering) was also
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(a) System 1 (b) System 2

(c) System 3 (d) System 4
Figure 5.5 : Asymptotic Shannon entropy S∞ as a function of the bin size δ after discar-ding an adequate number of generations (cf. 5.1). The values are averaged over 104 inde-pendent replicas.

achieved for the branching algorithm. Consequently, we would have expected that the largest pair distance
function would be attained for the branching algorithm. Nonetheless, system 3 will not exhibit signi�cant
clustering for any reasonable number of particles, mostly because of its low dominance ratio.

For systems exhibiting strong heterogeneity, such as system 4, the use of the average pair distance
tally to assess the impact of spatial correlations in the �ssion source becomes questionable, since the
moderator region does not contain �ssion neutrons : if the pair distance is comparable to the linear size
of the moderator region, then it is unclear whether the pair distance simply encodes the distance between
the two �ssile regions.

Figure 5.7 shows the average number of surviving families as a function of generations. At the
�xation generation, all neutrons in the population are correlated : a larger �xation generation should imply
weaker correlations. Figures 5.7a and 5.7b contradict this statement : in homogeneous media, branchless
collisions without population control lead to the largest �xation generation, whereas the highest entropy
and pair distance function (hence the weakest spatial correlations) are reached for branchless collisions
with combing. Similarly, Fig. 5.7c shows that branching collisions lead to the smallest �xation generation,
although the associated entropy is the highest amongst the algorithms considered here. This surprising
�nding is coherent with previous work : the statistics of families are unsuitable to detect correlations
in systems of �nite size [84]. In in�nite media, the dynamics of spatial correlations is driven by the
statistics of families, due to the lack of a spatial scale. On the contrary, in systems of �nite size, the
emergence of spatial clustering depends on the competition between the number of generations required
to reach �xation and the number of generations required to reach mixing, i.e. to explore the whole
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(a) System 1 (b) System 2

(c) System 3 (d) System 4
Figure 5.6 : Square root of pair distance as a function of the generations, computed for
N = 103, for different systems, with 103 independent replicas.
space [28, 47, 77]. In this context, the statistics of families alone becomes insu�cient to provide the full
picture.

5.4.2 . Analysis of the �ssion source : Feynman moment

In view of the shortcomings of global tallies, we move now to the analysis of local tallies : the
Feynman moment and the normalized variance. These tallies will be applied to the �ssion source and to
the collision counts. We will investigate both the spatial shape of the local tallies and their dependence
on the mesh cell size δ. Indeed, coarse-graining over a length δ in�uences the impact of correlations on
the sought observables.

The Feynman moment of the �ssion source describes the correlations between �ssion neutrons.
Figure 5.8 shows the ensemble Feynman moments for the �ssion source after the inactive generations,
for each con�guration and algorithm considered. Let us initially focus on the homogeneous cases, i.e.
systems 1 and 2. In the ideal case where all particles are independent, we expect �ssion neutrons to
be Poisson distributed, which is equivalent to a spatially �at Feynman moment Y ≃ 1 everywhere.
Figures 5.8a and 5.8b show that the Feynman moment for the branching algorithm in a homogeneous
con�guration has a non-trivial shape, indicating that deviations from the ideal behavior do not develop
uniformly. The same �gures illustrate that for this particular choice of bin size δ, simulations using
branchless collisions without additional population control introduce smaller and more evenly distributed
�uctuations in the distribution of �ssion sites, as witnessed by the lower and spatially �atter Feynman
moment. The discrepancy in the Feynman moment for branchless and branching collisions increases
with increasing dominance ratio : for branching collisions Y increases with increasing dominance ratio,
whereas it is fairly constant for branchless collisions when increasing the dominance ratio. Introducing
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(a) System 1 (b) System 2

(c) System 3 (d) System 4
Figure 5.7 : Average number of surviving families as a function of the generations, com-puted for N = 103, for different systems, with 103 independent replicas.
combing or sampling WOR in branchless algorithms further lowers the Feynman moments and introduces
a slight spatial shape, which suggests that population control algorithms amplify the e�ects of leakage
boundary conditions on spatial correlations. This is reminiscent of what happens with re�ecting boundary
conditions [34]. The last-event algorithm shares the same spatial shape as the branchless collisions with
population control algorithms, with a slightly larger value, suggesting that it is slightly less e�ective in
quenching spatial correlations.

Insight can be gained by examining how Y scales with respect to the cell size δ. We de�ne lclust
as the typical size of the largest cluster in the system. In systems that are homogeneous or where
the e�ects of heterogeneity on particle transport are mild, the typical cluster size can be estimated
using lclust ∼

√
⟨r2⟩∞ ; this assumption fails for systems where the e�ects of heterogeneity are more

pronounced, such as con�guration 4. We thus have the following picture : if δ ≃ lclust, the observables
will be strongly a�ected by correlations ; on the contrary, if δ ≪ lclust, the probability that two particles
belonging to the same cluster fall into the same cell becomes small, and the e�ects of the correlations
will be milder. Figures 5.9a and 5.9b show the Feynman moment for the spatially-averaged �ssion source
de�ned by

Y av
F =

1

B′

B′∑
i=1

YFi , (5.21)
where B′ is the number of spatial cells with �ssile material. As we consider homogeneous systems,
lclust ∼

√
⟨r2⟩∞. The Feynman moment for branching collisions has a power law increase for δ ≲

√
⟨r2⟩∞

and saturates when δ ∼
√

⟨r2⟩∞. This translates the fact that there exists clusters at all spatial scales up
to
√

⟨r2⟩∞. More strikingly, the Feynman moment for branchless collisions without population control
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(a) YF in power iteration for system 1 with
105 independent replicas. (b) YF in power iteration for system 2 with

105 independent replicas.

(c) YF in power iteration for system 3 with
104 independent replicas. (d) YF in power iteration for system 4 with

104 independent replicas.
Figure 5.8 : Equilibrium Feynman moment for the fission source computed for N = 1000and δ = 0.5 for different systems.
is constant when δ ≲

√
⟨r2⟩∞ and decreases when δ ∼

√
⟨r2⟩∞, the latter being related to the counts

following a binomial law instead of a Poisson law when the number of bins is small, as mentioned earlier.
In this case, clustering is completely mitigated by the use of branchless collisions : if �ssion neutrons are
Poisson distributed, the variance and the average of the distribution of �ssion neutrons scale similarly with
respect to δ and the Feynman moment becomes constant. When adding combing or sampling WOR, the
Feynman moment stays constant for δ ≪

√
⟨r2⟩∞ and start increasing when approaching δ ∼

√
⟨r2⟩∞,

whereupon it saturates. We observe the same behaviour for the last-event algorithm, with larger values.
The shape of the curves in Fig. 5.9 can be given an interesting interpretation. When the average

Feynman moment is constant for small values of δ, as for all algorithms except the branching algorithm,
it translates the fact that clusters have some minimum spatial scale ; at scales �ner than the minimum
cluster size, clusters are essentially in�nitely large, and the neutrons occupation statistics behaves as if
the particles were independent. For very �ne meshes, branching collisions appear to be more e�cient
than branchless collisions in quenching correlations. This could be explained by the fact that, as the cell
size decreases, the probability that correlated particles fall within the same cell also decreases ; the fact
that neutrons are strongly correlated when using branching collisions becomes irrelevant, but the fact
that there are many more particles (thus, more sampling events) than when using branchless collisions or
the last-event algorithm holds true. At the opposite extreme, the Feynman moment saturates at scales
of the order of δ ∼

√
⟨r2⟩∞, which (at least in homogeneous systems) can be interpreted as the typical

size of the largest clusters. Between the minimum and maximum scales, the Feynman moment follows
a power law, which is the expected behavior for self-organized critical systems, as recently suggested by
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Dechenaux et al. on the basis of the application of techniques borrowed from the renormalization group
in particle physics [99]. The power-law exponents range between 0.5 and 1 for systems 1 and 2. The
occurrence of power laws in the scale dependence of Feynman spectra is suggestive, but more careful
analysis is required to con�rm the existence of a deeper connection. Finally, at scales coarser than the
typical cluster size, the occupation statistics of the space bins behaves as if the system were populated by
independent macro-particles. In the limit δ → L, the Feynman moment decreases, as the counts follow
binomial laws, and converges to zero because of the constraint on weight conservation of the �ssion
source.

We move now to the case of heterogeneous systems 3 and 4. Figure 5.8c shows the Feynman
moments for system 3, which has a small dominance ratio. For this case, all algorithms behave similarly.
The main di�erence lies at the fuel-moderator interfaces. Here, branchless collisions lead to a dip in the
Feynman moment near the material boundary, and a peak for branching collisions, while the last-event
algorithm leads to an almost �at spatial shape. Figure 5.8d shows that for case 4, which has a larger
dominance ratio, the Feynman moment is signi�cantly smaller when using branchless collisions than when
using branching collisions. In both systems the use of the last-event algorithm leads to a larger value of
Feynman moments than when using any of the branchless variants. In system 4, this value is nonetheless
much smaller than when using branching collisions. The spatial shape for all Feynman moments is similar
in system 4, suggesting that spatial correlations are always at play, although they are the weakest for
branchless collisions.

Again, interesting conclusions can be drawn from the dependence of the Feynman moment on δ.
First, due to heterogeneity, lclust cannot be identi�ed with the pair distance. However, we still use the pair
distance as a qualitative estimate of lclust. Figure 5.9c shows that the spatially-averaged Feynman moment
for all branchless variants in the heterogeneous con�guration with a small dominance ratio is roughly
constant for δ ≲

√
⟨r2⟩∞, and decreases for δ ≳

√
⟨r2⟩∞. This suggests the absence of strong spatial

correlations when using any of the �ve algorithms ; it also illustrates that the pair distance function is still
a good approximation of the typical cluster size for systems with mild heterogeneity. On the other hand,
Fig. 5.9d shows that Y av

F ∝ δ0.82 for δ ≲
√
⟨r2⟩∞ for all algorithms in the heterogeneous con�guration

with a large dominance ratio. Moreover, the power law scaling of the space-averaged Feynman moment
as a function of δ is the same for each algorithm. By analogy with the three other cases, we expect the
space-averaged Feynman moment in system 4 to reach a maximum for δ ≳ lclust ; a direct con�rmation
is not possible, because

√
⟨r2⟩∞ is essentially driven by the size of the moderator region, which means

that it is not a good approximation of the (unknown) typical cluster size.

So far, we have investigated ensemble Feynman moments, which are not directly accessible by power
iteration (unless one accepts to sample independent replicas). One may wonder how the ergodic Feynman
moment relates to the ensemble Feynman moment. We consider then the dependence of the Feynman
moment on the number of active generations G : based on Refs. 36 and 45, we expect that, when the
number of active generations is large enough, the apparent variance converges towards the real variance.
Therefore, we also expect the ergodic Feynman moments to converge towards the ensemble Feynman
moments. In what follows, we want to characterize the relationship between the value of the dominance
ratio and the ability of our algorithms to mitigate the bias on the variance induced by the use of ergodic
averages instead of ensemble averages. We stress this bias is not related to discarding an insu�cient
number of inactive generations before tallying the observables.

Figures 5.10a-5.10d show the convergence of the spatially-averaged Feynman moments Y G,av
F obtai-

ned by ergodic average over G generations towards the ensemble spatially-averaged Feynman moments
Y av
F . For this purpose, we compute the relative bias de�ned by |Y av

F − Y G,av
F |/Y av

F , as a function of the
number of active generations. In all cases, it is clear that the underestimation of errors due to ergodic
averages is signi�cantly smaller when using branchless collisions than when using branching collisions, by
about a factor 5 in homogeneous systems and up to a factor 3 in heterogeneous systems. Additionally,
the slope of the relative bias as a function of active generations only weakly depends on the details of
the sampling algorithm and population control, and is essentially driven by the value of the dominance
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(a) System 1 with 105 realizations. (b) System 2 with 105 realizations.

(c) System 3 with 105 realizations. (d) System 4 with 104 realizations.
Figure 5.9 : Space-averaged Feynman moment of the fission source, as a function of thecell size δ, for N = 103. Dashed black line : square root of ⟨r2⟩∞ for branching algorithm.Given that the ⟨r2⟩∞ are relatively close to each other for all five algorithms, we only showthe value for the branching algorithm.

ratio. However, the `initial o�set' depends on sampling and population control. This is reminiscent of the
fact that, in power iteration, the speed of convergence of the dominant eigenvalue of k0 only depends on
the dominance ratio, but the initial value of k0 (and so the number of inactive generations to discard)
depends on the initial condition. In addition, the e�ect of population control algorithms appears to be
milder compared to the e�ect of collision biasing.

We conclude our analysis by considering the e�ects of the neutron population size. Previous inves-
tigations have shown that the impact of spatial clustering becomes milder as the number of particles
per generation increases [28]. Figures 5.11a-5.11b show the space-averaged ensemble Feynman moments
for all �ve algorithms in system 2 (homogeneous case with higher dominance ratio), as a function of
the population size. We observe that the Feynman moment for the branching algorithm converges to-
wards an asymptotic value for large N . This scaling is consistent with similar �ndings in the context
of time-dependent Monte Carlo simulations, for the case of spatially homogeneous branching-di�usion
processes under population control [47]. Additionally, we veri�ed that the shape of the Feynman moment
also converges to an asymptotic shape for large N (not showed here for conciseness). We further ob-
serve that, using branchless collisions as well as using the last-event algorithm in systems 1-3, Feynman
moments appear to be almost independent of N (only shown for system 2 in Fig. 5.11a). This behavior
is presumably due to the absence of signi�cant spatial correlations with these algorithms. Conversely, in
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(a) System 1. (b) System 2.

(c) System 3. (d) System 4.
Figure 5.10 : Convergence of the space averaged Y G,av

F with respect to the number of activegenerationsG in terms of the relative bias |Y av
F −Y G,av

F |/Y av
F . The population size isN = 103and B = 102.

system 4, where strong spatial correlations exist for all algorithms, the Feynman moments depend on N
and converge towards an asymptotic value for large N . It should be noted that, even then, the Feynman
moment of branchless variants and of the last-event algorithm saturates at a smaller value of N than for
the branching algorithm.

5.4.3 . Analysis of the �ssion source : normalized variance

Additional insight can be obtained by assessing the behavior of the normalized variance gF of the
�ssion source. As discussed above, g ∼ 0 is a reasonable de�nition of `weak correlations', similarly as for
Y ∼ 1. However, in the following we will show that the two tallies are not equivalent, and convey di�erent
pieces of information. The amplitude of �ssion-induced spatial �uctuations depends on the population
size, and we will illustrate that this is captured by normalized variances.

All cases in Fig. 5.12 display a signi�cant increase of gF close to the leakage boundary conditions,
even when using branchless collisions. This peak is explained by inspecting Fig. 5.8 : although Feynman
moments are (almost) �at for branchless collisions, the average of the �ssion source is close to zero near
leakage boundary conditions. Since gF = YF /E[F ], this explains the shape of gF .

Let us analyze the homogeneous systems �rst. In Figs. 5.12a-5.12b we observe that the normalized
variances of all algorithms except the branching algorithm are rather similar, and close to zero in the bulk
of the geometry. On the other hand, the normalized variance using the branching algorithm can be close
to 1 even far from the boundaries, which suggests that large �uctuations will occur. We observe that
the shape of the normalized variance for all algorithms is almost independent of the dominance ratio. In
the case of the heterogeneous media, Fig. 5.12c for case 3 shows that all the algorithms behave similarly
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(a) For homogeneous configuration withlarge dominance ratio (system 2) (b) For heterogeneous configuration withlarge dominance ratio (system 4)
Figure 5.11 : Space-averaged ensemble Feynman moments of the fission source Y av

F as afunction of the population size N , with bin size δ = 0.5 cm.
in terms of normalized variances. Furthermore, Fig. 5.12d for case 4 con�rms the hierarchy between the
algorithms, and shows that, even in the bulk of the system, typical �uctuations are larger for the branching
algorithm than for the other algorithms. Similarly to the homogeneous cases, the normalized variance
is only weakly dependent on the dominance ratio when using branchless algorithms or the last-event
algorithm.

Next, we examine the dependence of normalized variances on the population sizeN and the cell size δ.
For the sake of conciseness, we will not consider the dependence on G, the number of active generations,
because these e�ects are very similar to those occurring for Feynman moments of Sec. 5.4.2. As for
the dependence on δ, previous �ndings suggest that gF ∼ 1/δ for small values of δ [47]. Figure 5.13
illustrates this scaling. We consider

gavF (B) =
1

B′

B′∑
i=1

gFi , (5.22)
where B′ is the number of cells with �ssile material. We note that gavF ∝ B for all algorithms, when
L/δ = B ≫ 1. For large cell sizes, the normalized variance is smaller for branchless collisions than
for branching collisions. The converse is true for small cell sizes. This can be explained by the fact
that spatial correlations are weakened by decreasing the cell size. Branching sampling typically results
in more �ssion neutrons than branchless sampling, because each collision site is a potential �ssion site
in branching sampling. Due to the excess of �ssion neutrons, when spatial correlations are weak, the
branching algorithm introduces less variance in the estimation of the �ssion source than branchless
algorithms. There are essentially two ways to obtain weak spatial correlations : either the dominance
ratio is small enough (cf. system 3) or the cell size is small enough (as clearly illustrated by Figs. 5.13b
and 5.13d). Finally, additional numerical �ndings (not shown here for the sake of conciseness) suggest
that the normalized variances scale as 1/N regardless of the algorithm, which is consistent with the
literature [28].

5.4.4 . Analysis of the collision counts : Feynman moment

Most of the tallies of interest for reactor physics (such as reaction rates or energy deposition) are
estimated by summing over all the collisions in a generation. In this respect, the Feynman moments of
the collision counts can help to interpret the behavior of spatial correlations for such observables.

The Feynman moments of the collision counts, shown in Fig. 5.14, are signi�cantly higher than those
of the �ssion source. Scattering now contributes to the tally and there are several scattering events
per generation ; in contrast, there is only one �ssion event per generation. Additionally, correlations
between collision sites are stronger than correlations between �ssion sites. Figures 5.14c and 5.14d for
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(a) System 1, with 105 independent replicas. (b) System 2, with 105 independent replicas.

(c) System 3, with 105 independent replicas (d) System 4, with 104 independent replicas.
Figure 5.12 : Equilibrium ensemble normalized variances for the fission source computedover 105 independent replicas. N = 1000 and δ = 0.5 for different systems.
the heterogeneous cases 3 and 4 indicate strong spatial correlations between collision sites near the fuel-
moderator interfaces. Similar peaks in the spatial pro�le of the correlations were already observed in the
�ssion source, but their amplitude is considerably ampli�ed in the Feynman moments of the collision
counts. Far from the �ssile regions, all algorithms behave similarly, due to the fact that they all reduce
to implicit capture in the moderator region. Note that sampling WOR has no signi�cant e�ect on the
Feynman moments of the collision counts.

Figures 5.15a and 5.15b show the dependence of the spatially-averaged Feynman moments of the
collision counts with respect to the bin size δ, in homogeneous and heterogeneous systems, respectively.
All the Feynman moments of the collision counts scale as a power law of δ, for δ ≲ lclust. Additionally,
Fig. 5.15a saturates around

√
⟨r2⟩∞, similarly to the Feynman moment of the �ssion source. The latter

remark does not hold for system 4 (see Fig. 5.15b), which is related to the discussion on Fig. 5.9d (in
Section 5.4.2), where we observed the same trend for the dependency on δ of the Feynman moments
for the �ssion source. In any case, branchless collisions lead to Feynman moments that are considerably
smaller than those of branching collisions, and all population control algorithms seem to have little e�ect
on the dependence on coarse-graining of the Feynman moments of the collision counts. The dependence
on N and G of the Feynman moment of the collision counts is similar to that of the �ssion source, and
for the sake of conciseness it will not be shown here.

5.4.5 . Analysis of the collision counts : normalized variance

In the homogeneous cases, the normalized variance of the collision counts behaves similarly to that
of the �ssion source (not shown here for conciseness). The two heterogeneous con�gurations are shown
in Fig. 5.16. In both cases 3 and 4, it is interesting to note that the peaks observed in the corresponding
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(a) System 1. (b) System 2.

(c) System 3. (d) System 4.
Figure 5.13 : Scaling of the space-averaged normalized variance gavF as a function of thenumber of cells L/δ = B, for all 4 systems and algorithms, N = 103, and with 104 inde-pendent replicas.

Feynman moments do not occur in the normalized variance. This illustrates clearly the di�erence between
Feynman moments and normalized variances.

Finally, we consider the dependence of normalized variance with the size of spatial cells, which is
expected to scale as 1/δ when δ is small enough [47] ; indeed, Fig. 5.17 shows that the normalized
variance behaves as 1/δ. When the dominance ratio is close to unity (see Fig. 5.17d), the normalized
variance for the branching algorithm is signi�cantly higher than for the other algorithms. Additionally,
although all algorithms except from the branching algorithm yield similar normalized variances, branchless
collisions in combination with either combing or sampling WOR appear to consistently yield the lowest
normalized variance in our systems.

116



(a) System 1 with 105 independent replicas. (b) System 2 with 105 independent replicas.

(c) System 3 with 104 independent replicas. (d) System 4 with 104 independent replicas.
Figure 5.14 : Equilibrium Feynmanmoments for the collision counts of neutrons computedfor N = 1000 and B = 100 for different systems.

5.5 . A digression on continuous-energy problems

Most investigations concerned with possible methods to reduce clustering typically consider simpli�ed
systems in a single-speed or multi-group framework [27, 42], such as those examined in Sec. 5.2 and 5.4. It
is indeed easier to draw conclusions on the performance of these systems and methods when disregarding
heterogeneity and continuous energy ; however, in realistic applications, the e�ects of these two aspects
cannot be neglected. In Sec. 5.4, we discussed the e�ect of heterogeneity on spatial correlations. Now, we
shall investigate how continuous energy a�ects the statistical behaviour of the neutron population. Inter-
action probabilities now depend on the isotopic concentration in materials, so one cannot indiscriminately
use microscopic or macroscopic cross sections. In the original formulation of the branchless collision, ho-
wever, it is somewhat ambiguous whether the cross sections are intended to be the macroscopic cross
sections for the material, or the microscopic cross sections for the sampled isotope [18]. There are in fact
several ways to sample branchless collisions. One can sample �rst the collision channel (�ssion, capture
or scattering), whereupon the weight multiplier is independent of the chosen isotope, or one can �rst
sample the collision isotope, whereupon the weight multiplier is independent of the collision channel.
Additionally, one can also choose whether to use the cross section or the yield-weighted cross section for
making the �rst sampling (be it for the isotope or channel). Here, we will brie�y outline two options for
this sampling procedure. Note that the distinction between these two methods only makes sense when
considering continuous energy. In a single-speed (or multi-group) system, where there is e�ectively just
one isotope per material, there is no di�erence between performing branchless collisions on the isotope,
or on the material.
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(a) System 2, with 104 replicas. (b) System 4, with 103 replicas.
Figure 5.15 : Space-averaged Feynman moments of the collision counts for all five algo-rithms, as a function of the cell size δ, forN = 103. Dashed black line : square root of ⟨r2⟩∞for the branching algorithm.

(a) System 3. (b) System 4.
Figure 5.16 : Equilibrium normalized variance for the collision counts of neutrons, compu-ted for N = 1000, δ = 0.5, and with 104 independent replicas, for the two heterogeneoussystems.

5.5.1 . Branchless collisions on the isotope

We begin by illustrating the branchless collision strategy applied to an isotope. In most continuous-
energy Monte Carlo codes, the collision event begins with the sampling of isotope i, whose probability is
given by

Pi(r, E) =
Ni(r) σi,t(E)

Σt(r, E)
, (5.23)

where Ni(r) is the concentration of isotope i at position r, σi,t(E) is the total microscopic cross section
for isotope i at incident energy E (see Chapter 2 for details). Due to this simple fact, developers interested
in adding branchless collisions to a pre-existing Monte Carlo code are likely to immediately consider this
algorithm, which avoids a potentially large refactoring of source code. It is possible to keep the methods
for sampling the isotope, and only change how the reaction channel is sampled. This is why the isotope-
based branchless collision method was implemented in TRIPOLI-4®, when the reactor kinetics simulation
was added to the code [62].

Isotope i is �rst sampled using Eq. (5.23). Knowing the isotope i, the scattering and �ssion proba-
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(a) System 1, with 105 independent replicas. (b) System 2, with 105 independent replicas.

(c) System 3, with 105 independent replicas. (d) System 4, with 104 independent replicas.
Figure 5.17 : Space-averaged equilibrium normalized variance for the collision counts ofneutrons as a function of bin size, computed for N = 1000 and B = 100 for differentsystems.
bilities follow from

Ps|i =
σi,s(E)

νi,f (E)σi,f (E) + σi,s(E)
and Pf |i =

νi,f (E)σi,f (E)

νi,f (E)σi,f (E) + σi,s(E)
. (5.24)

If scattering is chosen, the scattering channel α is then sampled in the standard manner, with probability

Psα|i =
σi,sα(E)

σi,s(E)
. (5.25)

After the �nal reaction state has been determined, the particle weight is modi�ed by

w′ = w
νi,f (E)σi,f (E) + σi,s(E)

σi,t(E)
. (5.26)

Note that this form implicitly assumes that the yield of all scattering reactions is exactly 1. Explicitly
considering the yields of reactions such as (n, xn), which are somewhat rare, would add to the compu-
tational complexity when computing the scattering and �ssion probabilities, and change how scattering
reaction channels are sampled. Instead, here we assume that the scattering yield is always 1 for the
probabilities and weight modi�er in Eqs. (5.24) and (5.26) ; if we sample a scattering reaction where
νi,sα(E) ̸= 1, we also multiply the neutron weight by νi,sα(E). It should also be noted that while our
weight modi�er in Eq. (5.26) is independent of the reaction channel, it is dependent on the sampled
isotope at the collisions site. Therefore, at the same position in phase space, this weight multiplier could
exhibit a large variance ; in the fuel for example, all the isotopes but one could have a null �ssion cross
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Isotope Concentration [b−1cm−1]
1H 6.6856 · 10−2

16O 8.21578701 · 10−2

17O 3.129604 · 10−5

18O 1.688339 · 10−4

235U 2.67228041 · 10−4

238U 2.4197772 · 10−2

Table 5.6 : Isotopic composition of the reflected continuous-energy cube reactor.
section. This variance in the weight multiplier will increase the variance in the length of �ssion chains,
which will also increase the variance of scores [55].

5.5.2 . Branchless collisions on the material

An alternative approach is to �rst sample whether the reaction channel will be scattering or �ssion,
and then sample the isotope given this information. The probability of scattering and �ssion are calcu-
lated following Eqs. (5.6) with the macroscopic material cross sections. If �ssion was sampled, then the
probability of sampling isotope i is

Pi|f =
Ni(r)νi,f (E)σi,f (E)

νf (r, E)Σf (r, E)
. (5.27)

If scattering was sampled, then the probability of sampling isotope i is

Pi|s =
Ni(r)σi,s(E)

Σs(r, E)
. (5.28)

The scattering channel α is then sampled with the same probability used in Eq. (5.25). The particle weight
is modi�ed using Eq. (5.5), using the macroscopic cross sections. Thus, in this sampling scheme, the
weight multiplier is independent of the reaction channel and of the selected isotope. Should the sampled
scattering channel not have a yield of 1, then we again multiply the particle weight by νi,sα(E). Compared
to the algorithm of the previous section, it is clear that this strategy requires larger modi�cations to the
algorithms already present in an existing Monte Carlo code.

5.5.3 . Numerical results

To illustrate the di�erences between the two alternatives presented above, we shall now examine the
case of a re�ected reactor �lled with a homogeneous mixture of light water and uranium, the isotopic
composition of which is provided in Table 5.6. This mixture is not intended to be realistic, but simply
provide a multiplying system which we can use for our clustering study. Using the ENDF/B-VIII.0 library
(with the thermal scattering law for light water), a 400 cm × 400 cm × 400 cm box of this composition
is nearly critical.

As the box remains completely homogeneous, we are able to continue using Eq. (5.19) to approximate
the ideal entropy for the box, given the number of particles and partitions. Figure 5.18 presents the
entropy and the number of families for simulations, using di�erent forms of branchless collisions, with
either combing or splitting. It is immediately evident that, despite the box being nearly critical, branchless
collisions do little to increase the saturation value of the entropy to the ideal value, unlike the case of
single-speed transport (Fig. 5.1). Branchless collisions do seem to lead to a slightly higher entropy, with
branchless collisions on the material faring only slightly better than branchless collisions on the isotope.
Looking at the number of particle families, we note that branchless collisions on the isotope lead to no
signi�cant change with respect to branching collisions. Branchless collisions on the material do however
seem to produce a slower decrease in the number of particle families.
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Figure 5.18 : Shannon entropy of the fission source, and the number of distinct familiesfor a critical continuous energy box, for both the branching and branchless simulationmethods. The ideal value of the entropy for N = 103 and = 83 is also provided.

As the weight modi�er for the single-speed critical con�guration is always equal to one, all the particles
are able to remain truly independent, eliminating the possibility of clustering. While the continuous-
energy case is nearly critical, the weight multiplier is never equal to one, and depends on the energy
of the incident particle (for both the isotopic and material variants). This causes the weights of the
particles to diverge from unity, and the use of population control mechanisms is then required. Combing
and splitting both lead to the e�ective duplication of particles at a phase-space coordinate, and therefore
contribute to clustering. Branchless collisions on the isotope can in fact exacerbate this situation, as the
weight multiplier could vary greatly between di�erent isotopes in a material. Branchless collisions on the
material reduce the variance of the weight multiplier, because the latter is independent of the isotope
and the reaction channel. Thus, the number of particle families decreases more slowly ; particle weights
are less dispersed, and therefore less population control is needed.

5.6 . Conclusions

In this chapter we have investigated the impact of sampling strategies, variance-reduction and
population-control methods on the correlations that occur in the Monte Carlo implementation of the
power iteration algorithm, which is key to the sampling of the critical source for kinetic simulations. For
this purpose, we have selected several distinct tallies : the Shannon entropy, the average pair distance
squared, the average number of surviving families, the Feynman moments and the normalized variance.
This analysis has been carried out on a set of simple, yet meaningful benchmark con�gurations encom-
passing homogeneous and heterogeneous geometries. In order to probe the e�ects of each technique, the
power iteration was run with di�erent combinations of branching and branchless collisions as well as the
last-event estimator for the �ssion source, and combing or sampling WOR.

All the proposed tallies help in some way to detect the presence of anomalous �uctuations in the
examined systems. However, each comes with speci�c advantages and drawbacks. Global (i.e., integrated)
tallies such as the entropy and the average square pair distance, while being easy to use and interpret, have
been shown to be inadequate for the investigation of heterogeneous systems, due to lack of information
on the spatial details. Conversely, local (i.e. space dependent) tallies such as the Feynman moments and
the normalized variance are inherently useful in extracting information on the spatial behavior of the
correlations, at the expense of an increased complexity.

Our main �nding is that, in all tested con�gurations, the use of branchless collisions (as opposed
to regular branching collisions) is very e�ective at quenching correlations and thus lowering the ratio
between the apparent (ergodic) and real (ensemble) variance. In addition, while population control is
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generally advantageous in terms of weakening the e�ects of correlations, the impact of these methods
is much milder than that of using branchless collisions. Using the last-event estimator in combination
with sampling WOR was shown to be slightly less e�cient than using branchless collisions for quenching
spatial correlations.

In addition, we presented an exploratory work on the e�ects of branchless collisions in continuous-
energy problems. Two di�erent branchless sampling strategies were introduced : the reacting isotope
is �rst sampled as usual, and the branchless algorithm is applied afterwards with the corresponding
microscopic cross sections ; or the reaction channel is sampled using macroscopic cross sections, and the
reacting isotope is then sampled with probability laws depending on the chosen collision channel. Using
branchless collisions on the material was found to better quench clustering in the system, although the
improvement in terms of entropy and average surviving independent families was less signi�cant than in
multi-group problems.
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6 -Space-time correlations in time-dependent Monte Carlo

simulations

In Chapter 5, we examined the correlations a�ecting the power iteration algorithm, in view of their
relevance for the sampling of the equilibrium source for the time-dependent problem. In the following, we
will focus on the space-time correlations a�ecting kinetic simulations, by relying on the insight gained in
Part I of the thesis (Chapters 3 and 4), and in Chapter 5.

For the purpose of the analysis carried out here, we will relax most of the simplifying hypotheses
introduced in the di�usion-based analog transport models of Chapters 3 and 4. In particular, we will
consider homogeneous con�gurations in a multi-group setting, similarly as in Chapter 5. Furthermore,
we will use non-analog Monte Carlo methods, with several variance-reduction and population-control
techniques : our main goal will be to assess their impact on correlations due to the interplay of these
strategies.

Our investigation will be based on the methods and diagnostic tools developed in Chapter 5 for
eigenvalue problems, with fairly minor modi�cations. Some of the �ndings related to power iteration,
such as the emergence of spatial correlations leading to a patchy neutron density, will be shown to
apply also to kinetic simulations. The role played by the �ssion source distribution in the power iteration
algorithm will be played by the neutron and precursor populations at the end of a time step in kinetic
simulations. Similarly, observables related to generation-wise tallies in power iteration have a counterpart
in tallies integrated over a time step in kinetic simulations. However, we will also illustrate some peculiar
phenomena that are speci�c to kinetic simulations, without a direct counterpart in eigenvalue problems.

We will begin by adapting and extending the estimators that we have introduced in Chapter 5 for
the correlations to the case of time-dependent problems. For this purpose, in Sec. 6.1 we will consider
in particular the Shannon entropy and the Feynman moment of the neutron and precursor populations.

As a �rst step towards the analysis of correlations in kinetic simulations, in Sec. 6.2 we will revisit the
homogeneous slab reactor benchmark introduced by Nowak et al. in Ref. 38, which we previously examined
in Sec. 5.2 in the context of power iteration. For kinetic simulations, we will initially neglect precursors,
we will model neutron transport as single-speed, and we will apply re�ective boundary conditions. In
order to probe the sensitivity of our results to these simplifying assumptions, we will introduce several
modi�cations and assess their impact on correlations. To begin with, we will vary the reactor size, and
we will also replace re�ective boundary conditions by leakage boundary conditions. The most relevant
change will be the introduction of precursors : unsurprisingly, we will show that they deeply a�ect the
amplitude and the spatial behaviour of the correlations.

Next, in Section 6.3, we will revisit the more realistic case of the multi-group homogeneous slab-
geometry benchmark con�gurations introduced in Chapter 5. We will assess the correlations of the
equilibrium neutron and precursor populations, as determined by running the power iteration described
in the previous chapter, and how the equilibrium source a�ects the spatial correlations within the time-
dependent Monte Carlo simulations. Three di�erent regimes will be explored : critical, subcritical and
supercritical.

Conclusions for this chapter will be �nally drawn in Sec. 6.4.

123



6.1 . Adapting the diagnostic tools to the time-dependent case

Based on the �ndings of Chapter 5, we are now aware of the limitations of the global diagnostic tools
for correlations. Nonetheless, such global observables still retain the advantage of being easy to interpret,
and easy to compute. In order to facilitate the investigation of space-time correlations performed in the
following sections, here we brie�y recall the de�nition of the main observables that we will use, namely
the Shannon entropy and on Feynman moments. We refer the reader to Sec. 5.1.3 for a more thorough
presentation.

6.1.1 . Neutron and precursor entropy

For time-dependent problems, we shall de�ne the Shannon entropy separately for neutrons and pre-
cursors, as the statistical behaviour of the two populations is expected to considerably di�er. The Shannon
entropy for neutrons reads

Sn(t) = −
B∑
i=1

pn,i(t) log2(pn,i(t)), (6.1)
where pn,i is the fraction of the total neutron statistical weight in the spatial cell i at time t. Similarly,
we de�ne the Shannon entropy for precursors as

Sc(t) = −
B∑
i=1

pc,i(t) log2(pc,i(t)), (6.2)

where pc,i is the fraction of the total precursor statistical weight in the spatial cell i at time t. Although
we may consider also the entropy of the total population, in realistic systems close to critical conditions
the precursor population is much larger than the neutron population, so that the total entropy is entirely
dominated by the precursor entropy. Therefore, we shall not include the total entropy in our investigation.

6.1.2 . Feynman moments

Contrary to Chapter 5, the question of ergodic vs. ensemble Feynman moment does not occur in
pure time-dependent simulations. Nonetheless, it can still arise from the calculation of the equilibrium
source using the power iteration. However, in the following we decided to simplify the study by looking
at genuinely independent replicas, which are easier to interpret. By analogy with the time-independent
case, we de�ne the time-dependent ensemble Feynman moment (or simply, Feynman moment) for an
observable O as

YO(ri, t) =
V[O](ri, t)

E[O](ri, t)
, (6.3)

where ri is the center of the i-th spatial cell, E[·] denotes the ensemble average over M independent
replicas of the time-dependent observable O, and V[O] is the ensemble unbiased estimator of the variance
of O. The interpretation of the Feynman moment presented in Chapter 5 still holds.

In this chapter, we apply the Feynman moments separately to the neutron and precursor spatial
distribution in the equilibrium source (namely, YS,n and YS,c), to the neutron and precursor spatial
distribution during the kinetic simulation (namely, Yn and Yc), and, when relevant, to the (neutron)
collision counts (i.e. Yψ). Sometimes, for con�gurations where precursors are neglected, we will drop the
n subscript.
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6.2 . Analysis of a simpli�ed homogeneous reactor benchmark

We begin our analysis by revisiting the simple benchmark problem proposed by Nowak et al. in Ref. 38
for the purpose of investigating particle clustering in power iteration, which we have previously introduced
in Sec. 5.2. We consider a model of single-speed particle transport within a spatially homogeneous,
re�ected slab of varying length L, with scattering cross section Σs = 0.27 cm−1, capture cross section
Σc = 0.002 cm−1, �ssion cross section Σf = 0.002 cm−1 ; the �ssion multiplicity νp will be adjusted
depending on the desired multiplication factor ke�. The neutron speed is v = 103 cm · s−1. Delayed
neutron precursors are initially neglected.

For the purpose of running time-dependent Monte Carlo simulations, we will assume that the time
interval [0, T ] is partitioned into KT = 100 equal time steps. We shall investigate a `large' system of
length L = 400 cm and a `small' system of length L = 100 cm. By large system, we mean that L≫

√
A,

i.e. the system size is large compared to the migration length ; conversely, in the small system we have
L ∼

√
A. With the parameters described in the previous paragraph, we have

√
A = 42.71 ± 0.02 cm for

the large system, and
√
A = 37.47 ± 0.01 cm . For spatial tallies, the slab is partitioned into B = 100

evenly spaced bins.
For a suitable choice of the �ssion multiplicity νp, the dominant eigenvalue of this con�guration can

be adjusted to any sought value ; the corresponding equilibrium distribution (i.e. the fundamental mode)
will be spatially uniform over the slab, independently of νp.

Neutron collisions are sampled using the branchless strategy, as described in Sec. 2.2.3. After collision
events, neutrons undergo either Russian roulette, with threshold wR = 0.8 and survival weight wsurv = 1,
or splitting, with threshold wS = 2. At �rst, no population control algorithm (such as combing) is applied
at the end of the time steps. The neutron �ights are sampled in an analog fashion.

In the following sections, this model will be made incrementally more complex by adding weight
combing, leakage boundary conditions, and a single delayed neutron precursor family with an analog or
forced-decay strategy, and we will assess the e�ect of each contribution on space-time correlations.

6.2.1 . Russian roulette and splitting as drivers of entropy steps

Our �rst goal is to investigate the space-time correlations occurring in the time-dependent simulation
of a critical, supercritical or subcritical con�guration. We will characterize these correlations using the
neutron and precursor Shannon entropy, and the Feynman moments. Occasionally, we will refer to other
observables introduced in Chapter 5, such as the number of surviving neutron genealogical trees.

For this simple benchmark con�guration, the equilibrium source can be sampled directly (the fun-
damental mode being spatially uniform), without resorting to the power iteration algorithm. The ideal
Shannon entropy for the equilibrium source is therefore given by the expression given in Sec. 5.2, which
is recalled here for convenience

Sid = log2(N)− B

N

(
B − 1

B

)N N∑
k=1

(B − 1)−k
(
N

k

)
k log2(k), (6.4)

where N is the number of particles (assuming unit statistical weights) and B is the number of spatial
cells for the entropy tally.

About the absence of spatial correlations in the critical case

In the critical state, obtained by taking νp = 2, the system presented in the previous section will lead to
the same conclusions as in Section 5.2 : no spatial correlations arise and the neutron population behaves
at any time like a collection of particles independently and identically distributed following a uniform
spatial distribution in [−L/2, L/2] (recall that here the source particles are sampled independently). The
neutron entropy will thus reach the ideal value given by Eq. 6.4. The reason for this behaviour is the
same as in the case of power iteration : i) there is no loss of neutrons, and ii) the weight multiplier for
branchless collision is of unity. Thus, the statistical weight of each individual neutron and the number
of neutrons in the simulation will be constant. It is worth stressing that this behaviour is somewhat
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(a) Subcritical configuration with keff = 0.875and νp = 1.75, with initial population size
N0 = 1000.

(b) Supercritical configuration with keff =
1.25 and νp = 2.5, with initial population size
N0 = 250

Figure 6.1 : Shannon entropy as a function of time. The solid lines represent Monte Carloresults, and dashed black lines the ideal Shannon entropy computed for different popu-lation sizes.
pathological, in the sense that it is due to the concurrence of several simplifying assumptions (branchless
collisions ; lack of leakage ; homogeneous system ; criticality). If only one of these simplifying assumption
is broken, non-trivial correlations will fatally develop.

Entropy steps in non-critical systems

More interesting situations arise when considering systems away from criticality. Non-stationary be-
haviour will be achieved by adjusting the �ssion multiplicity at t = 0 ; the supercritical state is achieved
by taking νp = 2.5, and the subcritical state is achieved by taking νp = 1.75. The time-evolution of
the neutron entropy is plotted in Figs. 6.1 for subcritical and supercritical systems. The step-like time-
evolution of these two observables can be explained by the interaction of the evolution of statistical
weights with either Russian roulette or splitting. Let us �rst analyze the supercritical case, and assume
that we start with an initial population size N0 = 250. In this case, the branchless weight multiplier
is larger than unity, and the particle weight is strictly increasing with time ; on average, neutrons from
the source will reach the splitting threshold at the same time, and consequently increase the number of
particles in the system. In Fig. 6.1b, the splitting threshold will be reached on average at

τth =
lnwS
ln f

1

vΣt
, (6.5)

where f is the branchless weight multiplier. For this one-speed supercritical system, we have τth ≃
0.6944 s, which roughly coincides with the time interval between successive entropy steps in Fig. 6.1b.
The number of Monte Carlo particles doubles upon reaching wS (we have set wS = 2), and the entropy
correspondingly jumps to a new value. If the e�ect of the spatial correlations induced by splitting is
negligible, the new value of the entropy coincides with the ideal Shannon entropy given by Eq. (6.4) and
computed for Nnew = 2N0, as illustrated in Fig. 6.1b for the small system with L = 100 ; otherwise, when
correlations have a stronger e�ect on the spatial distribution of neutrons, the entropy will temporarily
converge towards a value smaller than the ideal entropy, as illustrated in Fig. 6.1b for the large system
with L = 400. The subsequent entropy steps can be predicted in the same way, and the entropy converges
to the asymptotic value S∞ = log2(B) : for large time, spatial correlations are always quenched by the
increasingly large population size.

In general, there will be particles that will reach the splitting (or roulette) threshold earlier or later
than at time τth. Therefore, as such occurrences accumulate over time, the amplitude of the entropy
oscillations will be dampened over time as the occurrence of roulette and splitting become distributed
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(a) For the system with L = 100 (b) For the system with L = 400

Figure 6.2 : Feynman moment for the neutron positions in the supercritical one-speedconfiguration, with initial population size N0 = 250, at different times.
more uniformly over time : asymptotically, such oscillations disappear (not shown here for conciseness). In
multi-group and even more strikingly in continuous-energy systems, the multiple values of the branchless
weight modi�er (which is energy-dependent) may prevent the observation of entropy oscillations.

Remark that in this system the statistics of family trees is trivial : neutrons cannot be destroyed,
and the number of independent neutron trees is thus constant in time. This fact precisely illustrates
that the analysis of the statistics of neutron genealogical trees may fail to catch the behaviour of spatial
correlations. The neutron population in a non-analog Monte Carlo simulation may show spatial clustering
even though �xation is forbidden, although it may be arguable that the system is approaching �xation
because the number of families stays constant while the number of particles is increasing. However, we
take this observation as a con�rmation that the use of the statistics of family trees as a diagnostic tool
for spatial correlations is questionable, as previously suggested by our analysis in Chapter 5.

A similar behaviour is detected in subcritical systems, as illustrated by Fig. 6.1a, this time driven by
Russian roulette. The weight multiplier is now smaller than unity, and the statistical weight of neutrons is
strictly decreasing. On average, neutrons reach the roulette threshold around the same time ; if the weight
multiplier is su�ciently close to 1, on average fR = (wsurv − wR)/wsurv neutrons are eliminated, while
the rest is restored to unit weight. The new entropy then converges to the ideal value corresponding
to a number of particles Nnew = fRN0. In this case, the time step is again given by Eq. (6.5) with
wS replaced by wR, leading to τth ≃ 0.4458 s. The value of the entropy after each step is predicted
by Eq. (6.4). Thus, in both subcritical and supercritical conditions, the Shannon entropy for this very
simpli�ed model is essentially driven by the total number of particles in the simulation, since all the
particles have approximately the same weight (at least initially, for short times).

In the supercritical con�guration, it is legitimate to ask whether the peculiar time-evolution of entropy
leads to signi�cant spatial correlations. The slight di�erences between the the entropy values for L = 100

and L = 400 in Fig. 6.1b faintly suggest so. To better characterize the e�ect of splitting on the spatial
correlations, we rely on the Feynman moment of the neutron positions. The time evolution of the Feynman
moment is plotted in Fig. 6.2. Figure 6.2a illustrates the absence of signi�cant spatial correlations when
L = 100. To be more precise, around t = τth ≃ 0.6944 s, the average neutron weight approaches
wS for the �rst time, and the value of the Feynman moment simply encodes this fact. There are no
spatial correlations between neutrons, which is indicated by the fact that the Feynman moment is �at.
At t = 0.8 s, most neutrons just underwent splitting, and their average weight is close to one. Spatial
correlations are introduced by splitting, leading to an increase of the Feynman moment near the re�ective
boundary conditions, which is reminiscent of the behaviour of the apparent-to-real variance ratio in the
context of power iteration [34]. However, these correlations are washed away between each splitting event,
and the Feynman moment before the next entropy step (at t = 1.2 s, which is close to 2τth ≃ 1.4 s) is
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(a) For the system with L = 100 (b) For the system with L = 400

Figure 6.3 : Feynmanmoment for the neutron positions in the subcritical one-speed confi-guration, with initial population size N0 = 1000, at different times.
�at.

On the contrary, it clearly appears that the system with L = 400 is strongly a�ected by spatial
correlations. The convex shape arising from splitting events is ampli�ed over time, and does not have
time to relax between successive entropy steps. This behaviour can be further characterized by relying on
previous insight gained on Brownian motion. The mixing time, as de�ned in Chapter 3 for a population
of di�using neutrons in a one-dimensional system with mass-preserving boundary conditions, is given by
τp,D = 4L2/Dπ2. We can assume D = v/Σt to recast the di�usion-based parameters into a single-speed

transport setting. For the system with L = 100, the mixing time is thus τ (1)p,D = 1.2178 s, while it is

τ
(2)
p,D = 19.48 s for the system with L = 400. By analogy with the analysis performed in Chapter 3 and
4, the ratio η = τth/τp,D predicts the strength of spatial correlations in the system. When η ≳ 1, spatial
correlations will be washed between each entropy step (like in the L = 100 case), and the e�ect of
splitting will be negligible. Otherwise, when η ≪ 1, spatial correlations will grow over successive entropy
steps, and spatial clustering may occur (like in the L = 400 case).

In the subcritical system, the weight multiplier is smaller than one, and no splitting occurs. Spatial
correlations cannot appear, and the Feynman moment will be �at, with a value driven by the average
neutron weight which will decrease in time, as illustrated by Fig. 6.3. For long times, the value of the
Feynman moment will saturate at wR.

6.2.2 . The e�ect of combing on spatial correlations

Even in this simple system, the addition of weight combing has a drastic e�ect on the entropy, as
illustrated in Fig. 6.4. It should be noted that our implementation of combing ensures that the number of
Monte Carlo particles after combing is set to the integer closest to the total weight in the simulation, i.e.
if the total weight of neutrons is W = 10000, then weight combing will comb the Monte Carlo particle
population to N = 10000 neutrons of unit weight. Furthermore, neutron entropy and Feynman moments
are computed just before combing is applied, i.e. they are a�ected by the weight �uctuations within a
time step. The ideal entropy in Fig. 6.4 is computed for the total neutron weight at time t, rounded to
the closest integer. Combing is applied on the same time grid as the one used to score time-dependent
tallies, with δt = 0.02 s.

In the supercritical con�guration, the entropy steps disappear, but additional correlations occur in the
simulation, as illustrated by the discrepancy between the neutron entropy and the ideal entropy for the
corresponding (now strictly increasing) number of Monte Carlo particles. In the system with L = 100,
the Monte Carlo entropy appears to converge towards the ideal entropy for large times, whereas the
discrepancy between the Monte Carlo and ideal entropy remains for the system with L = 400 ; for longer
times, we checked that the discrepancy disappears even in the large system, albeit slowly. For both
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(a) Subcritical configuration with keff = 0.875and initial population size N0 = 1000. (b) Supercritical configuration with keff =
1.25 and initial population size N0 = 250

Figure 6.4 : Shannon entropy as a function of time when applying weight combing at eachtime step. The solid lines represent Monte Carlo results, and the pointed lines the idealShannon entropy computed for the total neutron population at a given time.

(a) For the system with L = 100 (b) For the system with L = 400

Figure 6.5 : Feynman moment for the neutron positions in the supercritical one-speedconfiguration, with initial population size N0 = 250, at different times.

systems, there is a small entropy dip after the �rst time step, corresponding to the �rst application of
combing on an otherwise uncorrelated neutron population.

The analysis of Feynman moments in Fig. 6.5 shows a spatial shape at all times for both small and
large systems, indicating the existence of spatial correlations. For the small system, the value of the
Feynman moment is close to unity everywhere, suggesting that the e�ect of spatial correlations is in fact
negligible. For the large system, however, the value of the Feynman moments signi�cantly di�ers from 1 ;
at this point, it is unclear whether it only encodes the average weight of the neutron population (recall
that the Feynman moment is sensitive to the weight increase within a time step) or if it is an indicator
of spatial correlations. The average weight after a single time step δt for a neutron of unit initial weight
is given by wδt = f δt vΣt , leading to wδt ≃ 1.02. After combing, the average particle weight goes back
to approximately 1. Therefore, the increase in weight during the time step is insu�cient to explain the
value of the Feynman moment in Fig. 6.5b, which suggests the occurrence of signi�cant non-Poisson
�uctuations in the spatial distribution.

In the subcritical con�guration (not shown here for conciseness), combing also suppresses the entropy
steps induced by Russian roulette and leads to a convex entropy function. However, contrary to the
supercritical case, the Monte Carlo entropy coincides with the ideal entropy, suggesting that, in this case,
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System νp keff Leakage probability τth[s]
L = 100 (sup) 3.2 1.25925± 8pcm 0.21291± 5pcm 0.2900
L = 100 (sub) 2.2 0.86576± 5pcm 0.21294± 5pcm 1.7341
L = 100 (crit) 2.54103 1.00007± 7pcm 0.21286± 5pcm 0.6418
L = 400 (sup) 2.5 1.22759± 13pcm 0.01795± 5pcm 0.6944
L = 400 (sub) 1.75 0.85932± 7pcm 0.01797± 5pcm 0.4458
L = 400 (crit) 2.03655 0.99993± 5pcm 0.01802± 5pcm 9.4834

Table 6.1 : Parameters for the one-speed problem with vacuum boundary conditions
combing does not introduce spatial correlations. This conclusion is further substantiated by remarking
that the Feynman moments of the neutron positions (not plotted here for conciseness) are �at, with a
value dictated by the average weight of the neutron population. This is coherent with the fact that, in
our implementation of combing, the length of the comb tooth is always very close to 1 (i.e. it is the
average weight after combing), whereas the weight of neutrons before combing is always smaller than
one (due to f < 1), and a single neutron cannot be selected twice by the combing procedure.

6.2.3 . The e�ect of vacuum boundary conditions on spatial correlations

If vacuum boundary conditions are used, the equilibrium source is not spatially uniform anymore, and
must be sampled via the procedure described in Sec. 2.4.1 based on power iteration. The advantage of
using combing in the power iteration is minimal : it increases the computation time without a signi�cant
improvement in the quenching of spatial correlations ; therefore we simply use branchless collisions in
the power iteration calculation. The size of the system now a�ects the multiplication factor ke�, which
complicates the comparison between systems of varying lengths : in order to ensure multiplication factors
similar to the ones encountered in the previous example, the multiplication factor will be modi�ed by
adjusting the �ssion multiplicity. The new parameters and multiplication factors are given by Tab. 6.1.
We also give the expected τth for each system. We checked that 100 inactive generations were enough
to reach statistical equilibrium in the preliminary power iteration calculation for each of these systems.

Analysis of correlations in the supercritical case

We �rst focus on the supercritical case. The Feynman moments of the equilibrium source before
and after combing are presented in Fig. 6.6. For both systems, the Feynman moment of the equilibrium
source before combing is lower than one, which is directly related to the average weight of neutrons
in the equilibrium source. In turn, this quantity is driven by the number of collisions in one generation
of the power iteration, which is typically larger than the number of neutrons introduced in the power
iteration (each neutron in the power iteration undergoes several collisions during one generation). After
the equilibrium source has been sampled, it is re-normalized so that new statistical weight of each particle
starting the kinetic simulation is given by

w′ =
N0

W
w, (6.6)

where W is the total weight of the equilibrium source before normalization, and w is the individual
weight of the particle before normalization. The total weight of the equilibrium source is thus set to N0,
which leads to an average weight signi�cantly smaller than 1. The fact that the shape of the Feynman
moment does not really change after combing suggests that here combing is not e�ective in quenching
spatial correlations. Only the value of the Feynman moment is changed. Given that the average neutron
weight after combing is very close to 1, the value of the Feynman moments in Fig. 6.6 indicates that
the spatial distribution of neutrons in the equilibrium source deviates from a locally Poisson distribution.
The spatial shape is close to the one of the Feynman moments of the �ssion source and collision counts
in Chapter 5, with two maxima near the vacuum boundaries.

The time evolution of the entropy is given by Fig. 6.7. In the simulations without combing, the
initial entropy jump stems from the fact that the average weight of neutrons in the equilibrium source
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(a) For the system with L = 100 (b) For the system with L = 400

Figure 6.6 : Feynman moment for the equilibrium source in the supercritical one-speedconfiguration, with L = 400, with initial population size N0 = 250, at different times.

(a) Entropy for the small system with N0 =
250

(b) Entropy for the large system with N0 =
250

Figure 6.7 : Entropy of the neutron positions as a function of time. Blue line : withoutcombing ; orange line : with combing at each time step and on the equilibrium source.

is considerably smaller than the Russian roulette threshold, as remarked in the previous paragraph, and
a signi�cant number of Monte Carlo particles are immediately killed upon starting the time-dependent
simulation ; the expected entropy of the neutron positions is consequently lower. For the small system,
entropy oscillations occur. This is explained by the large leakage rate of this system (see Tab. 6.1) :
leakage signi�cantly reduces the number of neutrons in the system, thus reducing the expected entropy.
After time τth ≃ 0.29 s, surviving neutrons reach the splitting threshold : the number of Monte Carlo
particles increases, and so does the entropy. Since the system is supercritical, the average number of
Monte Carlo particles created by splitting over a time step is larger than the average number of particles
lost by leakage, and the entropy will globally increase. As time goes on, the amplitude of oscillations
decreases. For the large system, the rate of leakage is small enough that it does not signi�cantly alter the
entropy, and the system behaves similarly as the case with re�ective boundary conditions ; however, it is
no longer possible to use Eq. (6.4) to interpret the values of the entropy at the intermediate steps, since
the number of surviving particles is not known. Applying combing to the system e�ectively suppresses
the initial jump, the entropy steps, and the entropy oscillations : the number of Monte Carlo particles
closely follows the total neutron weight, and so does the entropy.

Figure 6.8 shows the Feynman moment of the neutron positions for the small supercritical system.
The spatial shape of the Feynman moment without combing (see Fig. 6.8a) inherited from the shape
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(a) Feynman moments of the neutron posi-tions when not applying combing. (b) Feynman moments of the neutron posi-tions when applying combing.
Figure 6.8 : Feynman moment of the neutron positions in the supercritical small systemwith leakage, for different times.

of the Feynman moment for the equilibrium source is quickly forgotten, as illustrated by the curve for
t = 0.24 s, which corresponds approximately to the time of the �rst entropy oscillation. The spatial
Feynman moment is �at, indicating the absence of strong spatial correlations. At t = 0.36 s, the �rst
oscillation has just �nished, and the Feynman moment now takes a non-uniform spatial shape, indicating
that spatial correlations were introduced by splitting. The �nal time illustrates how spatial correlations
grow over successive entropy oscillations. For longer times, the Feynman moment of the neutron positions
then takes a single maximum at the centre of the system. The value of the Feynman moment is related to
the oscillations of the average neutron weight (and thus to the extrema of the entropy), and also increases
with time due to the build-up of spatial correlations. When combing is applied (see Fig. 6.8b) the spatial
shape inherited from the power iteration calculation of the equilibrium source survives longer, for the
small system, although for larger times the spatial shape of the Feynman moment has again a single
maximum at the centre of the system. The expected weight after a time step here is still wδt ≃ 1.02,
as in Sec. 6.2.2, which is smaller than the value of the Feynman moment and thus indicates slightly
non-Poisson �uctuations in the spatial distribution of neutrons. In addition, the analysis of the Feynman
moments clearly illustrates that the spatial correlations of the �ssion source in power iteration (see
e.g. Fig. 5.8a) are qualitatively di�erent from the spatial correlations arising from the time-dependent
simulations.

Figure 6.9 presents the Feynman moments for the large system with L = 400. The analysis of this
�gure raises some questions. First, it appears that the spatial shape of Feynman moment of the equilibrium
source deeply in�uences the shape of the Feynman moment of the neutron positions. Contrary to the
previous paragraph, the Feynman moment takes two maxima near the boundaries of the system, for all
times. This behaviour occurs both in the case with combing and the case without combing. Note that
the time evolution of entropy, especially when applying combing, is insu�cient to discriminate between
the case of the small system, whose spatial correlations have a peak at the centre, and the large system,
whose spatial correlations have a peak near the boundaries. Finally, the value of the Feynman moment
again overshoots the value of the average neutron weight, indicating non-Poisson �uctuations of the
spatial distribution.

132



(a) Feynman moments of the neutron posi-tions when not applying combing (b) Feynman moments of the neutron posi-tions when applying combing
Figure 6.9 : Feynman moment of the neutron positions in the supercritical large systemwith leakage, for different times

(a) Entropy for the small system. (b) Entropy for the large system.
Figure 6.10 : Entropy of the neutron positions as a function of time in the subcritical confi-gurations with leakage boundary conditions. N0 = 1000. Blue line : without combing ;orange line : with combing at each time step and on the equilibrium source.

Analysis of correlations in the subcritical case

The time evolution of the entropy for the subcritical case is given by Fig. 6.10. We observe again
entropy oscillations, which evolve as described in the supercritical case, with di�erent τth due to the
di�erent physical parameters. The system is however subcritical : the number of Monte Carlo particles
killed by Russian roulette or leakage exceeds the number of Monte Carlo particles created by splitting ; the
total number of Monte Carlo particles will on average decrease with time, and so will entropy. Applying
combing again removes the initial entropy jump and the oscillations. Analysis of the Feynman moments
for these subcritical systems (not shown here for conciseness) leads to the following conclusions : for the
small system, we have f > 1, thus the behaviour of the Feynman moment follows closely the one of
the supercritical con�guration investigated before ; for the large system, f < 1 and leakage is small, so
that the behaviour of the Feynman moment is close to the one in Fig. 6.3 ; however, the spatial shape
inherited from the equilibrium source survives for a time of the order of the mixing time τp,D.

Analysis of correlations in the critical case

To conclude, the critical case formally corresponds to a situation with f > 1 and the increase of
neutron weight exactly compensates the loss by leakage. Figure 6.11 shows the neutron entropy in the
small and large systems. For the large system, given that τth ≃ 9.4834s, we had to extend the time
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(a) Entropy for the small system. (b) Entropy for the large system.
Figure 6.11 : Entropy of the neutron positions as a function of time in the critical configura-tions with leakage boundary conditions. N0 = 1000. Blue line : without combing ; orangeline : with combing at each time step and on the equilibrium source.
boundary to T = 10 s (and δt = 0.1 s) in order to observe at least one oscillation. In the absence
of combing, we observe the usual jump at short times, as in the supercritical and subcritical cases ;
we also observe the oscillations, which suggests that the critical regime is not `special'. We veri�ed
that, for (very) long times, the entropy oscillations are dampened, and the entropy converges towards
an asymptotic value. When applying combing, the only di�erence with respect to the non-stationary
states is that the entropy converges more rapidly towards an asymptotic value. We also veri�ed that the
behaviour of the Feynman moments is qualitatively similar to the one of the supercritical system (not
shown here for conciseness).

6.2.4 . The e�ect of precursors on spatial correlations

We illustrate now the e�ect of adding precursors to the neutron model of the previous section on
spatial correlations, using either analog or forced decay, which are described in Sec. 2.4.2. For this
purpose, we introduce a delayed-neutron precursor family in the system with leakage, assuming that we
apply combing at each time step. Let the single precursor family be characterized by a delayed fraction
β = 0.1 and a decay constant λ = 0.01 s−1. The parameters of the precursor family are not realistic, but
they are chosen to speed up the simulation times, yet retaining a su�cient separation between the time
scales of neutrons and precursors. The introduction of the combined precursor (which requires several
precursor families) is left for Sec. 6.3.

When using forced decay, the weight of the delayed neutrons produced in each time step is proportional
to the time step size ; a small time step allows investigating the fast dynamics of prompt neutrons, but
leads to a large number of neutrons of small weight. In contrast, a larger time step makes it harder to
follow the time evolution of the prompt neutron population. Note that this last remark could be mitigated
using the relative importance introduced by Faucher et al., and increasing the importance of neutrons
compared to precursors [62]. If a neutron is produced through forced decay with a statistical weight
w < wR, it is immediately tested for Russian roulette (i.e. we do not wait for the �rst collision).

We will investigate supercritical, subcritical and critical con�gurations. We take the �nal time to be
T = 200 s, which is of the order of 1/λ ; with such a long �nal time, the simulations of the prompt-
supercritical systems of Tab. 6.1 would be prohibitively costly. Therefore, we use instead the �ssion yields
given in Tab. 6.2, which yield prompt-subcritical systems.

Analysis of correlations in the equilibrium source

The sampling of the equilibrium source is independent of the choice of the decay algorithm in the
time-dependent simulation. The Feynman moments of the equilibrium source, before and after combing,
are presented in Fig. 6.12 for the supercritical con�gurations. We notice that the Feynman moment of
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System ν keff Leakage probability
L = 100 (sup) 2.6 1.02310± 6 pcm 0.21302± 5 pcm
L = 100 (sub) 2.4 0.94446± 5 pcm 0.21292± 5 pcm
L = 100 (crit) 2.54103 1.00007± 7 pcm 0.21286± 5 pcm
L = 400 (sup) 2.1 1.03111± 2 pcm 0.01800± 2 pcm
L = 400 (sub) 1.9 0.93295± 2 pcm 0.01796± 2 pcm
L = 400 (crit) 2.03655 0.99993± 5 pcm 0.01802± 5 pcm

Table 6.2 : Fission yields for the configurations with delayed neutrons, and correspondingmultiplication factors and leakage probability.

(a) For the small system. (b) For the large system
Figure 6.12 : Feynmanmoment of the equilibrium source in the supercritical case, forN0 =
1000. Dotted lines gives the Feynman moments before combing, and the solid lines givesthe Feynman moments after combing. Red is for neutrons, and blue is for precursors.

neutrons is very small before combing, and �at with unit value after combing. Due to the ratio between
neutrons and precursors, the total weight for precursor is much larger than for neutrons ; when normalizing
the equilibrium source obtained at the end of the power iteration (as described in Sec. 2.4.1), neutrons
are therefore assigned much smaller weights than precursors, leading to small values of the Feynman
moment. This explains our �rst comment. Moreover, the number of neutrons in the equilibrium source is
much larger than the number of neutrons targeted by combing. This means that the spatial correlations
induced by power iteration are carried only by the precursor population, and will typically take a time
of the order of t ∼ 1/λ to relax, as it will be illustrated in the following paragraphs. This explains our
second comment. Note that this behaviour should qualitatively carry over to Monte Carlo simulations
with realistic parameters. In addition, the comments on the equilibrium source apply straightforwardly to
the subcritical and critical systems.

It may seem wasteful to sample a large number of neutrons for the equilibrium source and throw
away most of them in the combing phase. Actually, it is possible to control the number of particles in the
equilibrium source before combing by de�ning a probability pacc to accept a collision as a valid sampling
event of the equilibrium source. Upon a collision, particles for the equilibrium source are sampled the
usual way with probability pacc, or the collision is ignored with complementary probability. To keep the
sampling of the equilibrium source unbiased, the statistical weight w of any particle sampled following
this procedure is divided by pacc. The bene�t of this algorithm is that it gives control of the memory
footprint of the equilibrium source, and prevents sampling particles only to discard them immediately
afterwards. On the other hand, this procedure may have two negative e�ects. First, pacc ≪ 1 may lead
to very large weights. Second, if pacc is such that the number of particles in the equilibrium source
before combing is smaller than the number of particles targeted by combing, then the combing procedure
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Figure 6.13 : Example of the Feynman moment of the neutron source when pacc = 10−3.Dashed red line for YS,n before combing, solid red line for YS,n after combing. The dashedblack line simply illustrates the deviation from the flat spatial shape.

(a) Neutron entropy. (b) Precursor entropy
Figure 6.14 : Time evolution of the entropy for neutrons and precursors in the supercriticalsystems, with N0 = 103. Dashed lines : large system; solid lines : small system; blue foranalog decay and red for forced decay.
may introduce additional spatial correlations. This is illustrated in particular for the neutron population
in Fig. 6.13 for pacc = 10−3. Note that in our context (i.e. the dynamics of neutrons is much faster
than the dynamics of precursors), spatial correlations within the neutron population stemming from the
sampling of the equilibrium source quickly disappear during the time-dependent process, as illustrated in
the following section.

Analysis of correlations in the supercritical case

The time evolution of the entropy of the neutron and precursor populations in the supercritical case
is plotted in Fig. 6.14. The neutron entropy (in Fig. 6.14a) is una�ected by the decay strategy (forced or
analog). The initial jump in the neutron entropy translates the fact that the neutron population is initially
Poisson distributed (as mentioned in the previous paragraph), but some correlations quickly grow in the
initial neutron �ssion chains. The linear behaviour occurring after the �rst few seconds corresponds to the
exponential increase of the neutron population, due to the system being supercritical. This interpretation
is supported by the analysis of the Feynman moments for neutrons in Fig. 6.15a and 6.15b : after a
few seconds, the Feynman moment of neutrons saturates at an average value larger than one. To decide
whether this is an indicator of spatial clustering, we need to assess the expected weight of a neutron.
Within a time step, a neutron can increase its weight only through collisions ; if it is transformed in a
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(a) Feynman moment of the neutron popu-lation for the small system. (b) Feynmanmoments of the neutron popu-lation for the large system
Figure 6.15 : Feynmanmoment of the neutron population in the supercritical case forN0 =
1000, for different times. We use forced decay.

(a) For the small system. (b) For the large system
Figure 6.16 : Feynman moment of the precursor population in the supercritical case for
N0 = 1000, for different times. We use analog decay.

precursor, its statistical weight can only decrease (in the case of forced decay) or be constant (in the
case of analog decay). Thus, assuming that a neutron started with unit weight (i.e., from combing at the
end of the previous time step), the maximum expected weight for a neutron at the end of the time step
is again given by wδt = f δtvΣt ; this leads to wδt = 1.82 in the small system, and wδt = 1.11 in the large
system. The value observed in Figs. 6.15a and 6.15b are relatively close to the expected neutron weight
at the end of a time step, and we can conclude the spatial �uctuations of the neutron population are
close to being Poisson distributed. The Feynman moments for the neutron population behave similarly
when using either forced or analog decay ; therefore, we only show the Feynman moments with forced
decay. Note that, for long times, the spatial shape of the Feynman moment for neutrons becomes slightly
convex.

Figure 6.14b for the small system indicates a qualitatively di�erent behaviour for the precursor entropy
when using forced or analog decay. In the analog case, entropy �rst decreases, suggesting that spatial
correlations originating from the equilibrium source �rst favour spatial clustering in the time-dependent
process. However, when approaching t = 1/λ, most of the initial precursor population has decayed, and
the spatial correlations in the precursor population start to be driven by the time-dependent process.
The ensuing linear growth corresponds to the exponential increase of the precursor population. This
is illustrated by Fig. 6.16a representing the Feynman moment for the precursor population when using

137



(a) For the small system. (b) For the large system
Figure 6.17 : Feynman moment of the precursor population in the supercritical case for
N0 = 1000, for different times. We use forced decay.

analog decay : around t = 50 s, the Feynman moment forgets the spatial shape inherited from the
equilibrium source. On the other hand, it is less clear why we do not observe such behaviour when using
forced decay ; we conjecture that it is due to the entropy being related to the number of Monte Carlo
particles. With forced decay, the number of precursor particles is increasing within a time step. Since
we compute entropy before combing is applied, a higher number of precursors induces a higher entropy.
While the time needed for the precursor population to forget the correlations of the equilibrium source
is similar using forced decay or analog decay (as illustrated in Fig. 6.17a), the behaviour of the entropy
is mainly driven by the number of Monte Carlo particles. It is interesting to note that the value of the
Feynman moment appears to decrease with time when using forced decay. The decrease of the average
precursor weight within a time step is given by wδt ∼ e−λδt ≃ 0.995 for this system. This value does not
explain the ones observed in Fig. 6.17a, and we have not explanation of why the Feynman moment of
the precursor population decreases with time.

On the other hand, Fig 6.14b indicates that, in the large system, the precursor entropy behaves
similarly for forced and analog decay. The entropy when using forced decay is larger, due to the fact
that precursor particles are not destroyed upon decay. However, the analysis of the Feynman moment
of the precursor population in the large system indicates a signi�cant di�erence between using forced or
analog decay. Figure 6.16b shows that the value of the Feynman moment for analog decay is close to
the expected precursor weight at the end of the time step, indicating that spatial �uctuations are almost
Poisson distributed. However, Fig. 6.17b shows that the value of the Feynman moment steadily decreases
with time, until it cannot be related to the average precursor weight anymore ; this suggests that spatial
�uctuations in the precursor population are quenched over time. We did not �nd a plausible argument
to explain this behaviour.

Analysis of correlations in the subcritical case

The time-evolution of the entropy in the subcritical case is presented in Fig. 6.18. For the neutron
entropy, the comments in the supercritical cases hold true. The behaviour of the precursor entropy,
however, di�ers signi�cantly. When using analog decay, the precursor entropy decreases with time, which
encodes the fact that the neutron population is decreasing over time. However, when using forced decay,
the entropy �rst increases until around t ∼ 1/λ, before it starts decreasing, which is reminiscent of
Fig. 6.14b ; the reason is, again, that 1/λ is the typical time it takes for precursors stemming from the
equilibrium source to decay, and thus it is also the typical time it takes for precursors to forget the
correlations of the initial distribution.

Again, the Feynman moments of the neutron population are independent of the use of forced or
analog decay ; therefore, we only show those with forced decay. In the small system (see Fig. 6.19a), the
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(a) Neutron entropy. (b) Precursor entropy
Figure 6.18 : Time evolution of the entropy for neutrons and precursors in the subcriticalsystems, with N0 = 103. Dashed lines : large system; solid lines : small system; blue foranalog decay and red for forced decay.

(a) Case of the small system. (b) Case of the large system
Figure 6.19 : Feynman moment of the neutron population in the subcritical case for N0 =
1000, for different times. We use forced decay.
behaviour is qualitatively the same as for the supercritical case, because the weight multiplier f > 1 : the
value of the Feynman moment increases until it saturates around wδt ≃ 1.49, i.e. the expected weight
of a neutron of unit initial weight at the end of a time step. On the other hand, in the large system (see
Fig. 6.19b), we have f < 1 and the Feynman moment for neutrons is �at. The value of the Feynman
moment will decrease until it saturates at around wδt = 0.90.

The analysis of the Feynman moment of the precursor population is illustrated by Fig. 6.20 and
Fig. 6.21. When using forced decay, the Feynman moment of the precursor population decreases with
time in both systems, to a value that is much smaller than the expected precursor weight at the end of
a time step (which, assuming unit initial weight, is wδt = 0.995). This is to be related to Fig. 6.17, and
is similarly unexplained. When using analog decay, the Feynman moment becomes �at.

Analysis of correlations in the critical case

Finally, the time evolution of the entropy in the critical system is shown in Fig. 6.22. Again, the
neutron entropy has an initial jump, corresponding to the equilibrium source after combing being Poisson
distributed (as illustrated in Sec. 6.2.4), while the neutron distribution during the time-dependent process
is not. Once the jump ends, the entropy is constant for forced decay, and slightly decreasing for the analog
decay, suggesting that the latter has a weak tendency to spatial clustering. This can be explained by the
fact that forced decay leads to the production of more neutrons, which makes the neutron distribution
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(a) Case of the small system. (b) Case of the large system
Figure 6.20 : Feynmanmoment of the precursor population in the subcritical case forN0 =
1000, for different times. We use forced decay.

(a) Case of the small system. (b) Case of the large system
Figure 6.21 : Feynmanmoment of the precursor population in the subcritical case forN0 =
1000, for different times. We use analog decay.

slightly less sensitive to statistical �uctuations, and thus to clustering. On the other hand, Fig. 6.22b
resembles Fig. 6.14b for the supercritical case, where the linear increase for long times (which corresponds
to the exponential population growth) is replaced by an asymptotic convergence to a constant value
(which corresponds to the constant population).

The Feynman moments of the neutron population lead to the same conclusions as in the supercritical
case (see Fig. 6.15), and are not shown here for conciseness. The Feynman moment of the neutron
population is increasing with time and saturates at a value around wδt ≃ 1.72 for the small system, and
wδt ≃ 1.04 for the large system. The Feynman moment of the precursor population is given in Figs. 6.23
and 6.24, and qualitatively resembles that of the supercritical population in Figs. 6.16 and 6.17.
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(a) Neutron entropy. (b) Precursor entropy
Figure 6.22 : Time evolution of the entropy for neutrons and precursors in the critical sys-tems, withN0 = 103. Dashed lines : large system; solid lines : small system; blue for analogdecay and red for forced decay.

(a) Case of the small system. (b) Case of the large system
Figure 6.23 : Feynman moment of the precursor population in the critical case for N0 =
1000, for different times. We use forced decay.

6.3 . Analysis of space-time correlations in multi-group systems

Relying on the insights regarding the e�ect of non-analog methods and precursors on the space-time
correlations of the time-dependent simulations obtained for the simple system in Sec. 6.2, we shall now
revisit the slab benchmarks introduced in Chapter 5. Due to the large number of possible permutations
of variance-reduction techniques, simulation parameters and benchmark con�gurations, and in view of
the fact that each simulation involves an extremely high computational cost, we decided to restrict
our analysis to homogeneous media, with a single set of variance-reduction techniques and space-time
discretization.

The equilibrium source for the systems presented in Sec. 6.3.1 needs to be computed using a prelimi-
nary power iteration calculation, and we choose to use branchless collisions without combing, as detailed
in Chapter 5. In addition, in order to limit the memory occupation, we use the alternative sampling
procedure presented in Sec. 6.2.4, with an acceptance probability pacc = 10−3. The time-dependent
calculations adopt branchless collisions for neutrons ; a single comb is applied on the total population at
each time step, and on the equilibrium source. For precursors, we use the combined precursor particle
(presented in Sec. 2.4.2), and we apply forced decay. If a neutron is produced through forced decay with
a statistical weight w < wR, it is immediately tested for Russian roulette (i.e. we do not wait for the �rst
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(a) Case of the small system. (b) Case of the large system
Figure 6.24 : Feynman moment of the precursor population in the critical case for N0 =
1000, for different times. We use analog decay.
parameters family 1 family 2 family 3 family 4 family 5 family 6
βj[pcm] 2.275× 102 1.17455× 102 1.12138× 102 2.51407× 102 1.03077× 102 4.3173× 101

λ[s−1] 1.3336× 10−2 3.2739× 10−2 1.2078× 10−1 3.0278× 10−1 8.4949× 10−1 2.8530
ξd(1)[−] 0.52296 0.56487 0.54697 0.61504 0.59265 0.60533
ξd(2)[−] 0.47704 0.43513 0.45303 0.38496 0.40735 0.39467

Table 6.3 : Nuclear data for the precursors in the homogeneous material.
collision). Neutron �ights are sampled in an analog fashion. After a collision, neutrons undergo either
Russian roulette with threshold wR = 0.8 and survival weight wsurv = 1, or splitting with threshold
wS = 2.

The reactor is assumed to be critical at the initial state (t = 0) ; for the time-dependent simulations,
we will consider the case where the reactor stays critical, and the case where a certain amount of reactivity
is introduced at t = 0 : this latter con�guration is achieved by modifying the capture cross sections. The
behaviour of space-time correlations in the critical and non-critical regimes will be investigated by using
the Shannon entropy and the Feynman moments for the neutron and precursor populations as de�ned in
Sec. 6.1. We refer the reader to Chapter 5 for a thorough description of these observables.

6.3.1 . Simulation parameters for the homogeneous benchmark

We brie�y recall the features of the homogeneous benchmark introduced in Chapter 5. We consider
two system sizes, L = 50 (system 1) and L = 100 (system 2) of a homogeneous slab geometry with
leakage boundary conditions. The nuclear data are represented in a three-group formalism for neutrons,
as recalled in Tabs. 5.2 and 5.5. The nuclear data for the reactivity insertions and withdrawals is given in
Tabs. 6.4 and 6.5. The reactivity insertions δρ = 1/ke� − 1/kt≥0 are provided in Tab. 6.6, where ke� is
the multiplication factor in the critical cases1. Note that our choice of reactivity insertion does not make
the system prompt-supercritical. Since we now explicitly consider precursors, the �ssion spectrum given
in Tab. 5.2 needs to be adjusted, and is given in Tab. 6.4. The six-family nuclear data for precursors are
taken from Vitali et al. [1] (inspired by those of 235U), and are provided in Tab. 6.2. Space is partitioned
into intervals of equal length δx = 0.5 cm, and we chose a time step δt = 1ms. Note that the slowest
precursor decay typical time is 1/λ1 ∼ 100 s : transients on the space-time correlations within the
precursor population might thus last well beyond 100 s ; due to the involved computational burden, for
our simulations will nonetheless set a �nal time T = 10 s.

1The multiplication factor keff of the critical cases is as close as possible to 1, within 1σ uncertainties.
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Parameters g = 1 (fast) g = 2 (epithermal) g = 3 (thermal)
ξp(g)[−] 0.878198 0.121802 0

Σc,g (super) 9.300000× 10−4 1.490355× 10−2 6.906277× 10−2

Σc,g (sub) 9.460000× 10−4 1.510355× 10−2 6.919277× 10−2

Table 6.4 : Capture cross sections for the reactivity insertions in system 1, along with thenew prompt fission spectrum. The energy groups are indexed by g.
Parameters g = 1 (fast) g = 2 (epithermal) g = 3 (thermal)
Σc,g (super) 9.302099× 10−4 1.493439× 10−2 7.0600812× 10−2

Σc,g (sub) 9.4820991× 10−4 1.5134394× 10−2 7.0720812× 10−2

Table 6.5 : Capture cross sections for the reactivity insertions in system 2. The energygroups are indexed by g.
6.3.2 . Investigating the spatial correlations in the equilibrium source

We start our investigation by considering the kinetic source for system 1 and 2. Based on our
previous investigations in Sec. 6.2.4, we expect spatial correlations stemming from the equilibrium source
to be carried mostly by the precursor population. The Feynman moments of the neutron and precursor
populations after combing are shown in Fig. 6.25 for system 1 and in Fig. 6.26 for system 2. For the sake
of simplicity, in the following we refer to them as `neutron source' and `precursor source'.

As suggested in Sec. 6.2.4, the choice of the acceptance probability leads to �uctuations in the
Feynman moment for the neutron source, indicated by the noisy behaviour of the Feynman moment
of the (thermal) neutron source in Figs. 6.25a and 6.26a. Spatial correlations are induced by combing,
which manifests itself through the convex shape similar to the one observed in Fig. 6.13.

The behaviour of the Feynman moments of the precursor source is induced by the use of the combined
precursor particle ; the value of the Feynman moment for each family is driven by the fractional weight
for family j, which (for a particle stemming from the equilibrium source) is given by

weq
j =

λ̄

λj

βj
β
, (6.7)

with de�nitions as in Sec. 2.4.1. This distribution is a consequence of Eq. (2.34). The expected weight
after combing is very close to 1. Thus, the expected fractional weight for each precursor family in the
equilibrium source is only driven by the delayed nuclear data in Tab. 6.3 ; numerical values are given in
Tab. 6.7. The values of the Feynman moments are proportional to the values of the expected fractional
weights. However, the absolute values of the Feynman moments are di�erent from the expected fractional
weights, which indicates deviations from a locally Poisson distribution. Even in situations where the
dominance ratio is large (for system 2, we recall that the dominance ratio is R = 0.9957), the use of
branchless collisions in the power iteration e�ectively suppresses the spatial correlations that usually arise
from the sampling of the kinetic source. This is revealed by the absence of spatial shape for the Feynman
moment of the precursor populations (except close to the boundaries). Finally, because of the use of the
combined precursor particle, the shape of the spatial correlations in the precursor source is independent
of the precursor family.

6.3.3 . Analysis of space-time correlations in the critical case

The Shannon entropy for the neutron and precursor populations is represented in Fig. 6.27. The
neutron entropy follows the same trend as in the simpli�ed systems investigated in Sec. 6.2.4 : the initial
jump happens on a very short timescale, suggesting that the spatial correlations within the neutron source
are almost instantaneously forgotten. The long-time behaviour of the neutron entropy in system 1 appears
to converge to a constant value, whereas the neutron entropy in system 2 seems to decrease, suggesting
a build-up of spatial correlations within the neutron population. However, the decrease could also be
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System number keff δρ (super) δρ (sub)1 1.00003± 1pcm 1.08875× 10−3 −1.1219× 10−3

2 0.99986± 1pcm 1.13902× 10−3 −9.61192× 10−4

Table 6.6 : Amplitude of the reactivity insertions for each case.
family 1 family 2 family 3 family 4 family 5 family 6

weq
j 0.2373 0.4991 0.1292 0.1155 0.0169 0.0021

Table 6.7 : Expected fractional weight in the precursor source. The families are indexed by
j.
related to the value of the multiplication factor, which is slightly subcritical, and additional investigations
relying on the Feynman moments will be necessary. In system 1, the precursor entropy appears to reach
saturation for large times, whereas it reaches a maximum near t ≃ 8 s for system 2, before decreasing.
This last remark could be either an indicator of spatial clustering within the precursor population, or the
consequence of the slight subcriticality of system 2.

As for the Feynman moments, we �rst focus on the space-time correlations within the neutron
population. For neutrons, whose population is small at any given time, the Feynman moment of the
neutron positions is typically noisy, and a satisfactory statistical accuracy could not be achieved. This
makes the interpretation of the Feynman moments more di�cult : for illustration, Fig. 6.28 represents
the Feynman moment of the position of neutrons in the thermal group at di�erent times (the Feynman
moments for the epithermal and fast group were too noisy). Figure 6.28 suggests that the Feynman
moment saturates almost instantaneously in both systems. Note that with the current parameters, τth ≃
2.215 × 10−4 s for the thermal group, which is much smaller than a single time step. It is therefore
di�cult to compare the value of the Feynman moment to the expected neutron weight ; nonetheless, the
existence of spatial correlations within the neutron population are suggested by the large value of the
Feynman moment. A clearer picture can be obtained from the analysis of the Feynman moments of the
collision counts, which are integrated over a time step, as illustrated in Fig. 6.29 : after a short time (less
than 0.1 s), the Feynman moments saturate for each group, and are constant for long times, suggesting
that the critical catastrophe is successfully averted.

As suggested in Sec. 6.2.4, we expect that long-term correlations arise within the precursor population.
This is illustrated by Fig. 6.30 for the large system, at t = 0.1 s (i.e. when spatial correlations are still
a�ected by the kinetic source), and at t = T = 10 s (i.e. the �nal simulation time). Figure 6.30 clearly
illustrates that at t = T not all the precursor families have forgotten the source correlations and relaxed
to the time-dependent correlations : the families with the slowest decay (i.e. 1/λ1 ≫ T ) still exhibit the
(almost) �at shape inherited from the sampling of the kinetic source, while the spatial correlations within
families with faster decay are now peaked in the centre of the system. For families with faster decay,
the Feynman moment signi�cantly increases with time : at much longer times, we expect this remark to
extend also to the families with slower decay. The same conclusions would apply to system 1, which we
do not detail here for the sake of conciseness.

6.3.4 . Analysis of space-time correlations with reactivity insertions and withdrawals

We now consider the behavior of the clustering indicators in scenarios where the system is prepared
on the critical state, but an amount of reactivity is inserted or withdrawn at t = 0. The reactivity changes
are given in Tab. 6.6.

The corresponding Shannon entropy for the neutron and precursor populations is plotted in Fig. 6.31.
In both cases, the neutron entropy undergoes a prompt jump at short times, which is again explained by
the fact that spatial correlations within the kinetic source are somewhat di�erent from those of the time-
dependent process. In the supercritical case (i.e. reactivity insertion), the height of the jump is smaller
than in the critical or subcritical case (i.e. reactivity withdrawal). After the prompt jump, the neutron
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(a) Feynman moment of the neutron source. (b) Feynman moment of the precursor source
Figure 6.25 : Feynmanmoments of the equilibrium source for system 1, with a total popu-lation N = 104 andM = 104 independent replicas.

(a) Feynman moment of the neutron source. (b) Feynman moment of the precursor source
Figure 6.26 : Feynman moment of the equilibrium source for system 2, with a total popu-lation N = 104 andM = 104 independent replicas.
entropy increases in the supercritical case, which is related to the increasing population size. Conversely,
the neutron entropy decreases in the subcritical case, which is related to decreasing population size. In
this case, the long-time variations of the neutron entropy cannot be used to infer the emergence of spatial
correlations in these systems.

We turn to the precursor entropy in Fig. 6.31b. The behaviour of the precursor entropy in the
supercritical cases is very similar in both systems, with a monotonic increase with time. In the subcritical
case, although both systems still behave similarly, we observe that a maximum is attained near t ≃ 4.5 s,
and then the entropy decreases. The maximum can safely be associated to the fact that spatial correlations
stemming from the kinetic sources progressively relax, while the subsequent decreases can be associated
to the decreasing population size. In any case, the interpretation of the observed behaviour in terms of
spatial correlations is not apparent.

We shall now rely on the Feynman moments to clarify our previous discussion. The Feynman moments
of the neutron population lead to the same conclusions as in the critical case, and will therefore not be
shown here. Figure 6.32 indicates that the prompt jump has a strong in�uence on the Feynman moments
of the collision counts, which then saturate in the long-time behaviour. It is however unclear whether this
conclusion would still hold if the �nal time of the simulation were longer. This behaviour is reminiscent of
the fact that, in power iteration calculations, the Feynman moments are independent of the population
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(a) Entropy of the total neutron population. (b) Entropy of the total precursor population.
Figure 6.27 : Shannon entropy of the neutron and precursor populations, with a total po-pulation N = 104 andM = 104 independent replicas.

(a) Case of system 1. (b) Case of system 2.
Figure 6.28 : Feynman moment of the thermal neutron positions at different times, with atotal population N = 104 andM = 104 independent replicas.
size for large enough population sizes (see Sec. 5.4.2). Combined with the remark in Sec. 6.3.3 regarding
the saturation at large times of the Feynman moments in the critical con�guration, this suggests that, in
the supercritical case, the Feynman moment might also be independent of time. This reasoning should
also hold true for the subcritical case for intermediate times, i.e. as long as the population size does not
become too small. The Feynman moment in the subcritical case will eventually recover a time dependency
for large times, as the population size vanishes. For the sake of conciseness, in Fig. 6.32 we only provide
the curves for system 2, but the behaviour of system 1 is essentially the same.

To conclude, we present the Feynman moments of the precursor populations. The comparison of
Figs. 6.33 and 6.34 for the non-stationary con�gurations of system 2 with respect to Fig. 6.30 for the
stationary con�guration indicates that spatial correlations grow similarly. This suggests that reactivity
insertions and withdrawals only marginally a�ect the spatial correlations within the precursor population.
The same conclusions hold true for system 1, which is not presented here.
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(a) Case of system 1. (b) Case of system 2.
Figure 6.29 : Feynman moments of the collision density at different times, with a totalpopulation N = 104 and M = 104 independent replicas. Squares are for the fast group,circles for the epithermal group, and triangles for the thermal group. Blue is for t = 0.001s ; red is for t = 0.1 s ; orange is for t = 1 s, and green for t = 10 s.

6.4 . Conclusions

In this chapter, we investigated the e�ects of variance-reduction methods on the space-time corre-
lations in time-dependent Monte Carlo simulations. Based on our discussion in Chapter 5 on estimators
for spatial correlations, we focused on the analysis of the Shannon entropy (for an easy to compute,
global observable), and of Feynman moments (for a local observable, leading to a more detailed analysis
of spatial correlations). The impact of non-analog methods was �rst assessed in a simpli�ed benchmark
system, allowing for easier interpretation. We then revisited in a time-dependent setting the spatially
homogeneous benchmark problems introduced in Chapter 5.

Based on a simple one-speed transport problem without precursors, in a slab with re�ective boundary
conditions, we showed that the combination of Russian roulette or splitting with branchless collisions lead
to the occurrence of regularly spaced `steps' in the time evolution of the Shannon entropy. The amplitude
of the steps was shown to decrease with time. In supercritical systems, where splitting may occur, we
showed how spatial correlations grow over successive entropy steps, and we discussed the conditions
dictating whether signi�cant spatial correlations will emerge. In subcritical systems, the entropy steps
had no in�uence on spatial correlations. We have also shown that the use of weight combing suppresses
the entropy steps, regardless of the reactivity of the system. In supercritical system, combing introduces
additional spatial correlations ; in subcritical system, we showed that combing was again not e�ective
in quenching possible spatial correlations. Replacing re�ective by leakage boundary conditions led to a
shape of spatial correlations within the equilibrium source (computed using power iteration) that was
qualitatively di�erent from the shape of spatial correlations arising in the time-dependent process. We
showed that spatial correlations within the equilibrium source may have a long-lasting e�ect on the spatial
correlations of the time-dependent simulations. We also illustrated that the interaction of splitting with
leakage boundary conditions leads to oscillations in the neutron entropy, which are also related to the
build-up of spatial correlations. The introduction of `realistic' precursors shows that spatial correlations
within the equilibrium source carry over in the time-dependent simulation through precursors. The key
�ndings of the case without precursors extend to the case with precursors.

Finally, we investigated the space-time correlations emerging in the spatially homogeneous multi-
group transport benchmarks introduced in Chapter 5. In this case, precursors were taken into account.
Relying on the results obtained in Sec. 6.2, we characterized the evolution in time and in space of
the correlations. Our �ndings suggest that the e�ect of reactivity insertions or withdrawals on spatial
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(a) Feynman moments of the precursor posi-tions at t = 0.1 s. (b) Feynman moments of the precursor posi-tions at t = 10 s.
Figure 6.30 : Feynman moments of the precursor positions at different times for system 2in stationary conditions. The total population is N = 104 and the number of independentreplicas isM = 104.
correlations is marginal. Notably, the critical catastrophe is e�ectively averted by the use of non-analog
methods.

148



(a) Entropy of the total neutron population. (b) Entropy of the total precursor population.
Figure 6.31 : Shannon entropy of the neutron and precursor populations when changingreactivity at t = 0, with a total population N = 104 and M = 104 independent replicas.Blue for system 1 and red for system 2 ; solid lines for the reactivity removal, and crossmarkers for the reactivity insertion.

(a) Subcritical transient. (b) Supercritical transient.
Figure 6.32 : Feynman moments of the collision density at different times, with a totalpopulation N = 104 and M = 104 independent replicas. We consider system 2 for thesupercritical and for the subcritical transients. Squares are for the fast group, circles forthe epithermal group, and triangles for the thermal group. Blue is for t = 0.001 s ; red isfor t = 0.1 s ; orange is for t = 1 s, and green for t = 10 s.
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(a) Feynman moments of the precursor po-pulation at t = 1 s. (b) Feynman moments of the precursor po-pulation at t = 10 s.
Figure 6.33 : Feynman moments of the precursor population at different times, with atotal population N = 104 and M = 104 independent replicas. We consider system 2 forthe subcritical transient.

(a) Feynman moments of the precursor po-pulation at t = 1 s. (b) Feynman moments of the precursor po-pulation at t = 10 s.
Figure 6.34 : Feynman moments of the precursor population at different times, with atotal population N = 104 and M = 104 independent replicas. We consider system 2 forthe supercritical transient.

150



7 -Conclusions and perspectives

Thanks to the combined bene�ts of the improvements in the algorithms and of the increased computer
power, it becomes possible today to address non-stationary problems in reactor physics by Monte Carlo
simulation, which allows for an `exact' treatment of the geometry and of the nuclear data of the simulated
system, introducing virtually no approximation nor discretization e�ects. In view of the intrinsically
stochastic nature of the sampled events along each particle history, Monte Carlo tallies �uctuate, and the
estimates of the average quantities of interest come with a statistical uncertainty that is asymptotically
inversely proportional to the square root of the number of histories. The almost complete absence of
approximations is thus thwarted by the very high calculation cost required to achieve the target accuracy,
especially in kinetic (i.e. time-dependent) simulations. Furthermore, the simulated particle histories in
kinetic problems are correlated, due to �ssion events, which makes the behaviour of the statistical
uncertainty rather complex : the e�ects of correlations might for instance manifest themselves in the
form of particle clustering, the spatial distribution of the simulated particles being extremely `patchy',
instead of uniform as expected. Since in most cases Monte Carlo simulations involve some forms of non-
analog sampling, usually in combination with variance-reduction and population-control techniques, the
evolution of �uctuations and correlations in kinetic Monte Carlo simulations depends on the non-trivial
interplay between the way the sampling strategies are conceived, and the e�ects inherent to the physics-
inspired underlying stochastic processes. An overview of these issues has been presented in Chapter
1.

Prompted by these considerations, in this thesis we have developed a uni�ed and coherent framework
for the analysis of �uctuations and correlations in kinetic Monte Carlo simulations, for the purpose of
ensuring the reliability of the statistical uncertainty estimates in this class of calculations. In particular, we
have focused on the interplay between the behaviour of �uctuations and correlations and the application
of variance-reduction and population-control techniques, as well as sampling strategies used for non-
analog Monte Carlo simulations. Our investigation has covered both algorithms devoted speci�cally to
time-dependent problems and algorithms devoted to (stationary) eigenvalue problems, which are key for
the sampling of the equilibrium neutron and precursor population.

Before presenting our novel contributions, in Chapter 2 we have recalled the general framework for
both the eigenvalue and time-dependent formulation of the Boltzmann equation. For the time-dependent
formulation, we have emphasized the crucial role of the delayed neutron precursor contributions. Cor-
respondingly, we have then summarized the state-of-the-art of non-analog Monte Carlo strategies for
reactor physics problems, with special emphasis on the methods used for kinetic problems. Monte Carlo
simulations produce unbiased estimates of the �rst moments of the sought observables, which are pre-
cisely the solutions of the Boltzmann equation. We have discussed the main sampling algorithms for
particle transport, and illustrated a few estimators that can be used in order to estimate the observables
of interest. Furthermore, we have presented an overview of the most important variance-reduction and
population-control schemes that can help reduce the statistical uncertainty and prevent the size of the
particle population from becoming too large or too small. In addition, we have introduced simpli�ed
formulations of the Boltzmann equations, encompassing the multi-group formalism and the di�usion
approximation, and we have shown how these equations can be also solved by Monte Carlo methods, by
sampling the random walks of neutrons and precursors in the phase space.

For the investigations discussed in this thesis, we have developed two simpli�ed Monte Carlo mini-
apps, also presented in Chapter 2. The main argument behind this choice, as opposed to adding new
functionalities and estimators to TRIPOLI-4®, the production-level Monte Carlo code developed at CEA,
is that our analysis requires tools such as two-point correlation functions, which are typically very ex-
pensive to compute and memory-greedy. Furthermore, we often needed to extensively modify the tradi-
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tional sampling strategies and implement unusual scores, which is cumbersome due to the complexity
of production-level codes. The �rst Monte Carlo mini-app, named JOFFREY, is devoted to analog (i.e.,
without variance-reduction techniques) time-dependent transport simulations using the di�usion approxi-
mation, where particle displacements are sampled using Brownian motion, in one-dimensional geometries.
The second Monte Carlo mini-app, named COYOTE, handles more realistic systems in a multi-group
spatially heterogeneous framework, including power iteration to sample the stationary (critical) state of
neutrons and precursors, and time-dependent transport.

In the �rst part of the thesis (Chapters 3 and 4), we have examined the behaviour of �uctuations and
correlations in time-dependent Monte Carlo simulations for the simpler case where sampling is analog
(which means that no variance-reduction techniques are used) and the di�usion approximation is used.
These choices were made in order to set a framework amenable to exact solutions for the moment
equations describing the two-point correlation functions, against which Monte Carlo simulations can be
compared.

For this purpose, in Chapter 3 we have introduced a stochastic model where a collection of particles
undergo di�usive displacements obeying a Brownian motion, coupled with a Galton-Watson birth-and-
death process that mimics collision events where particles can be captured (and thus disappear) or
�ssion (and thus give rise to a random number of descendants). The system is one-dimensional, with
mass-preserving re�ecting boundary conditions. Precursors have been modelled using an exponentially
distributed delay between the �ssion events and the emission of further particles in the system at the
collision sites. Despite some extremely strong simpli�cations, this model preserves the key ingredients
of time-dependent particle transport in multiplying media, and provides thus meaningful insights on the
behaviour of �uctuations and correlations in analog Monte Carlo simulations. Within this framework,
using the Pál-Bell backward formalism we have derived the moment equations, which yield in particular
the average particle number and the two-point correlation function. We have analytically solved these
equations, and exact results have been compared to analog Monte Carlo simulations, used as a reference.
Special emphasis has been given to the critical case, where births by �ssion are compensated by deaths by
capture, which is crucial for reactor control. We identi�ed the typical timescales over which correlations
evolve : the time necessary for the prompt correlation dynamics to relax, the time necessary for correlations
to achieve their asymptotic spatial shape, and the time required to observe catastrophic �uctuations of
the total population size.

The model introduced in Chapter 3 has been re�ned in Chapter 4 by taking into account several
idealized sampling strategies mimicking the e�ects of population control. These schemes break the
statistical independence of the neutron �ssion chains, which forced us to abandon the Pál and Bell
backward formalism in favour of the forward formalism. After discussing the derivation of the master
equation for the simpli�ed, yet instructive, case where precursors are neglected, we have developed
three di�erent population-control schemes : the N -control model, where the neutron population is kept
constant, but no constraint is applied to the precursor population ; the NM -control model, both the
neutron and precursor populations are controlled ; and the (approximate) immigration model, where
precursors are described as a uniform Poisson neutron source whose intensity is equal to the asymptotic
precursor decay rate at equilibrium. We have shown that the master equation related to the N -control
model leads to an in�nite hierarchy of moment equations ; nonetheless, the behavior of the average
particle number and the pair correlation function can be determined using Monte Carlo simulation.
For the NM -control model, the hierarchy of moment equation is closed : we have derived asymptotic
solutions for the average particle number and the pair correlation function, and we have successfully
compared them against Monte Carlo simulations. Finally, we have shown that the third model, although
approximate, is in fairly good agreement with the N -control and NM -control model under reasonable
assumptions on the values of the physical constants. In all cases, we showed that the introduction of
population control prevents the occurrence of the critical catastrophe, and thus quenches clustering.

Within the same theoretical framework, we have also gained insight on the behaviour of kinetic
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Monte Carlo simulations by investigating family �xation, i.e. the eventual survival of a single particle
family, which provides a complementary point of view with respect to the pair correlation function. In
particular, we have addressed the distribution of the �xation time, i.e. the time at which all the particles
belong to the same family, and its relation to the typical time-scales leading to spatial clustering. We
have shown that these quantities, although intimately related, have subtle di�erences : the �xation time
is by construction insensitive to �nite-size e�ects, whereas the evolution of clustering is deeply a�ected
by the presence of boundaries.

The results obtained in the �rst part of the thesis provide a sound theoretical framework for the
investigation of kinetic Monte Carlo simulations, but come with several restrictions : they apply only to
the case of analog sampling, without any variance-reduction method, and to single-speed di�usion in
spatially homogeneous systems. Population control can be taken into account, but only through highly
simpli�ed models where the population size is kept exactly constant. Practically all production Monte
Carlo codes use some forms of non-analog sampling, involving variance-reduction and population-control
methods : understanding the impact of such techniques on the behaviour of space-time correlations is
thus crucial in order to increase the reliability of kinetic simulations.

To overcome the limitations of the models used in Chapters 3 and 4, in the second part of the thesis
(Chapters 5 and 6) we have therefore examined the behaviour of �uctuations and correlations in a more
realistic setting. The main generalizations have consisted in switching to fully non-analog Monte Carlo
sampling, and in relaxing the di�usion approximation by considering multi-group transport processes.

In Chapter 5 we have investigated the impact of non-analog collision sampling, variance-reduction
and population-control methods on the correlations that occur in the Monte Carlo implementation of the
power iteration algorithm. Power iteration is the standard approach used to estimate the fundamental
mode of the k-eigenvalue formulation of the Boltzmann equation, which are key to the sampling of the
critical source, i.e., the equilibrium reactor con�guration, for kinetic simulations. Our investigation has
been carried out on a set of simple, yet meaningful benchmark problems encompassing homogeneous and
heterogeneous geometries. Among the probed non-analog Monte Carlo methods, we have in particular
focused on branchless collisions, which force the emergence of a single neutron at each collision and
thus quench the correlations due to `branches' in particle histories coming from common ancestors.
Furthermore, we have focused on combing and sampling WOR (without replacement) as population-
control techniques.

For the purpose of detecting the presence of strong correlations and assessing the relative bene�ts
of various non-analog Monte Carlo methods in reducing their impact, we have selected several distinct
tallies : the Shannon entropy, the average pair distance squared, the average number of surviving families,
the Feynman moments and the normalized variance. We have shown that all the proposed tallies are
useful to detect the presence of anomalous �uctuations in the examined systems. However, global tallies
such as the entropy and the average square pair distance, while being easy to use and interpret, have
been shown to be inadequate for the investigation of heterogeneous systems, due to lack of information
on the spatial details. Conversely, local (i.e. space dependent) tallies such as the Feynman moments and
the normalized variance are inherently useful in extracting information on the spatial behavior of the
correlations, at the expense of an increased complexity.

Our main �nding was that, in all tested con�gurations, the use of branchless collisions (as opposed
to regular branching collisions) is very e�ective at quenching correlations. In addition, while population
control is generally (but not always) advantageous in terms of weakening the e�ects of correlations, the
impact of these methods is much milder than that of using branchless collisions.

After examining the case of power iteration, in Chapter 6 we have reverted to the case of time-
dependent Monte Carlo simulations. Based on the analysis of Chapter 5, we have primarily focused on
the Shannon entropy and on Feynman moments. The e�ect of non-analog methods was �rst characterized
in a simpli�ed system, allowing for easier interpretation. We have probed critical, sub-critical and super-
critical con�gurations, with various combinations of system sizes and boundary conditions. Oscillations in
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the neutron entropy were observed and related to the build-up of spatial correlations, whose shape depends
on the interplay between the reactivity of the system, the speci�c variance-reduction and population-
control method used, and the kind of boundary conditions. In some cases, the oscillations of the entropy
function were shown to be persistent over long times.

Finally, we investigated the space-time correlations emerging in the more realistic homogeneous
benchmarks introduced in Chapter 5. We detailed how spatial correlations grow over time. Our �ndings
suggest that the e�ect of reactivity insertions on spatial correlations is marginal, at least in the regime
where reactivity is small. Notably, the critical catastrophe is e�ectively averted by the use of non-analog
methods.

The work carried out in this thesis has shed some light on the behaviour of �uctuations and correla-
tions in time-dependent Monte Carlo simulations, starting from highly simpli�ed settings and progressively
making them more complex in order to broaden the domain of validity of our �ndings. In view of get-
ting a deeper grasp of the interplay between sampling methods and correlations, we have kept even our
most sophisticated benchmark problems much simpler than realistic applications that could be met in
production Monte Carlo codes. On one hand, this has allowed estimating and analyzing tallies that would
be generally out of reach due to computational issues, such as two-point correlation functions. On the
other hand, we are aware that the conclusions drawn in one-dimensional con�gurations using multi-group
nuclear data might not be representative of the behaviour observed in three-dimensional con�gurations
using continuous-energy nuclear data. Furthermore, it is important to stress that kinetic Monte Carlo
methods are a relatively young, thriving and still unsettled research �eld : novel variance-reduction or
population control algorithms might appear in the near future, either conceived from scratch for time-
dependent problems or adapted from strategies already existing for stationary problems. Such changes
might force us to reconsider the outcomes of the analysis presented here, especially for the case of kinetic
simulations discussed in Chapter 6.

Several paths for future work are quite naturally prompted by the �ndings of this thesis. As brie�y
illustrated in Chapter 5, replacing multi-group with continuous-energy nuclear data might have a signi-
�cant impact on the behaviour of the variance-reduction techniques with respect to �uctuations and
correlations. A more thorough investigation of realistic three-dimensional benchmarks with continuous-
energy nuclear data is thus mandatory, which would simultaneously call for the development of improved
diagnostic tools to detect correlations, in order to handle the increased computational complexity and
memory footprint.

Another hint concerns the analysis of the interplay between the spatial scale of correlations and

the spatial scale of the Monte Carlo tallies. Based on the Monte Carlo simulation results presented in
Chapters 5 and 6, it is apparent that the emergence of spatial correlations is intimately related to the
competition between the linear size of the particle clusters and the one of the regions over which the
tallies are estimated. A similar interplay might occur also with respect to the time scales : the one of
correlations and the one of the tallies in kinetic simulations ; this conjecture should be probed numerically.
It would be also interesting to develop a theoretical framework enabling to adapt the tallying mesh in
order to quench the e�ects of correlations.

Related to variance-reduction techniques, a further topic for future research would be the systematic
exploration of zero-variance schemes, along the lines proposed in Ref. 100, to achieve a coherent fra-
mework for a time-dependent Consistent Adjoint-Driven Importance Sampling (CADIS) strategy. These
methods would have the potential to become game-changers in kinetic Monte Carlo simulations, leading
to considerable improvements in the �gure of merit, similarly as what happens already for the case of
stationary shielding problems, where CADIS is nowadays customarily employed.

Finally, although in this thesis for the sake of simplicity we have focused on kinetic simulations alone,
in most applications the e�ects of physical feedback must be taken into account and deeply a�ects the
evolution of the neutron and precursor population. If the overall feedback coe�cient is negative, it will
basically act as an average-restoring mechanism, preventing large excursions around the mean value of the
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population density. Only the average values coming from the kinetic Monte Carlo simulations can be fed
to the coupling codes, which are deterministic. Statistical uncertainty can be propagated by performing
independent replicas, at the expense of an increased computational cost. In order to compensate for the
extra computer time, one might be tempted to reduce the number of simulated histories per replica, but
this would amplify the bias due to the fact of feeding a �uctuating quantity to the coupled solver, the
coupling being non-linear. Theoretical and practical issues make therefore these problems non-trivial : an
ambitious goal for future exploration would be the extension of the general framework presented in this
thesis to the case where kinetics is coupled to thermal-hydraulics.
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A -Résumé Détaillé en Français

A.1 . Introduction

Dans le contexte de la sureté des réacteurs nucléaires, le développement d'outils de simulations
rapides et e�caces pour le couplage entre les solveurs pour le �ux neutronique et les codes de thermo-
hydraulique et de thermo-mécanique, dans des conditions stationnaires et transitoires, est le sujet de
vastes programmes de recherche dans plusieurs institutions majeures1.

La densité de neutrons, c'est-à-dire le nombre moyen de particules dans un volume élémentaire de
l'espace des phases, obéit à l'équation de Boltzmann [2]. Les solutions analytiques de cette équation
sont généralement inatteignables, à l'exception du cas de certains systèmes simpli�és, et l'usage de la
simulation numérique est donc nécessaire. Grâce à la linéarité de l'équation de Boltzmann et à la dimension
intermédiaire de l'espace des phases (qui n'est ni trop grande, ni trop petite), les méthodes Monte-Carlo
et les méthodes déterministes sont toutes deux utilisables pour obtenir des solutions numériques, chacune
de ces méthodes béné�ciant d'avantages et d'inconvénients propres.

L'équation de Boltzmann en conditions non stationnaires est traditionnellement résolue en utilisant les
méthodes déterministes, dans lesquelles l'espace des phases est discrétisé. À cause du très grand nombre
d'inconnues (de l'ordre de ∼ 1014) qui résulterait d'une discrétisation su�samment �ne de l'espace, de
la direction et du temps, la plupart des codes déterministes modernes adoptent une approche en deux
temps, lors de laquelle le résultat d'une simulation �nement discrétisée à l'échelle d'un assemblage est
utilisé a�n de préparer les données nucléaires homogénéisées et condensées. Ces données sont ensuite
injectées dans un solveur temporel simpli�é, dont la discrétisation énergétique est assez grossière, a�n
d'e�ectuer une simulation à l'échelle du c÷ur complet [3�5]. De plus, il est courant de séparer la variable
temporelle du reste des variables de l'espace des phases classique [4, 6, 7].

Les solveurs déterministes sont rapides, mais cette rapidité vient au prix de biais dus à la discré-
tisation et à l'usage de modèles dépendants du type de réacteur (par exemple, l'auto-protection). Ces
biais impliquent que cette classe de méthodes numériques doit être validée par comparaison avec des
méthodes de simulation de haute-�délité ou bien avec des résultats expérimentaux [8]. Les données ex-
périmentales sur les réacteurs en régime stationnaire sont généralement plutôt accessibles, bien que leur
appartenance aux opérateurs exploitants des centrales nucléaires limitent cette accessibilité. Pour cette
dernière raison, plusieurs initiatives ont récemment été promues a�n d'établir des résultats de référence
internationaux pour la validation des codes de calcul (y compris en incluant la déplétion du combustible
et les couplages multi-physiques). On peut citer VERA (Virtual Environment for Reactor Applications)2,
BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations)3, et Watts Bar (TVA Watts
Bar Unit 1 Multi-Physics Benchmark)4. En revanche, dans les régimes non stationnaires tels que les tran-
sitoires opérationnels résultant de l'insertion des barres de contrôle ou bien les campagnes expérimentales
destinées à évaluer le comportement du réacteur lors de sollicitations extérieures, la situation est bien
plus problématique. De plus, les cas extrêmes, tels que les transitoires accidentels pouvant mener à la
dégradation du combustible, sont dangereux et ne peuvent être explorés par les moyens expérimentaux,
malgré leur importance pour la validation des codes de simulation numérique [9].

Dans le cadre de ces considérations, les simulations Monte-Carlo tiennent une place à part, car
elles ne sont pas sujettes aux erreurs de discrétisation [10] et peuvent ainsi jouer le rôle de référence
pour la validation des solveurs déterministes ; de plus, elles sont de fait inévitables pour évaluer les biais

1Voir par exemple les initiatives aux Etats-Unis, comme le projet CESAR (cesar.mcs.anl.gov),le consor-tium CASL (www.casl.gov), ou encore les projets européens FP7, HPMC, et McSAFE (cordis.europa.eu/
projects).2https://world-nuclear-news.org/Articles/Federal-funding-for-reactor-modelling-initiative.3http://crpg.mit.edu/sites/default/files/css_injector_images_image/BEAVRS_2.0.2_spec.pdf.4https://www.oecd-nea.org/jcms/pl_32202/tva-watts-bar-unit-1-multi-physics-benchmark.
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déterministes dans les régimes non stationnaires.

A.1.1 . Simulations Monte-Carlo : du stationnaire au transitoire

Les simulations Monte-Carlo pour le transport de particules se basent sur l'échantillonnage aléatoire
des trajectoires des particules dans l'espace des phases. Pour les applications intéressant la physique des
réacteurs, les particules sont principalement des neutrons, des précurseurs de neutrons retardés, et des
photons. Dans le cadre de cette thèse, nous nous concentrerons sur les neutrons et les précurseurs. Leurs
interactions aléatoires avec le milieu environnant sont échantillonnées en accord avec les lois de proba-
bilités données dans les librairies de données nucléaires ; le suivi des particules est e�ectué en calculant
l'intersection des vols entre chaque collision avec les cellules constituants le système géométrique. Les
trajectoires sont suivies jusqu'à ce que les particules disparaissent, par absorption ou bien en s'échappant
des limites du système. Le long de chaque trajectoire, des observables physiques telles que les taux de
réactions sont estimées en sélectionnant adéquatement des scores dont on calcule la moyenne et la va-
riance. Grâce à la loi des grands nombres, la moyenne sur l'échantillon donne une estimation non biaisée
de l'observable physique associée ; la variance de l'échantillon donne quant à elle une estimation de l'in-
certitude statistique sur la moyenne de l'échantillon, grâce au théorème central limite [10]. La variance
de la moyenne de l'échantillon est inversement proportionnelle au nombre d'histoires échantillonnées, ce
qui implique que les simulations Monte-Carlo sont généralement bien plus longues que les simulations
déterministes. Cependant, cette limitation est compensée par l'absence d'approximations dans résultats
ainsi obtenus : les codes Monte-Carlo et les codes déterministes se complètent les uns les autres et sont
également nécessaires.

Principalement en raison du temps de calcul nécessaire et des limitations en puissance de calcul,
en physique des réacteurs les codes Monte-Carlo ont longtemps été cantonnés exclusivement à l'étude
des problèmes stationnaires à température �xée. Cependant, les avancées récentes tant en termes d'al-
gorithmes qu'en termes de puissance de calcul ont permis de se diriger vers une nouvelle classe d'ap-
plications pour les simulations Monte-Carlo, et plus spéci�quement vers leur application aux problèmes
multi-physiques. D'énormes progrès ont par exemple été e�ectués dans le domaine de la déplétion du
combustible, lors de laquelle le comportement de la densité de neutrons est couplé avec la transmu-
tation du matériau irradié, dont l'évolution est dictée par les équations généralisées de Bateman ; des
codes Monte-Carlo ont été e�cacement couplés avec des solveurs déterministes pour les équations de
Bateman, et la stabilité des schémas de simulation correspondants a été largement étudiée [11�16].

Ces dernières années ont vu l'émergence d'un intérêt grandissant pour une nouvelle classe de méthodes
Monte-Carlo dévolues aux simulations cinétiques (i.e dépendant du temps), dont le temps de calcul était
bien trop élevé jusqu'à il y a peu. Encouragées par les travaux pionniers de Sjenitzer et Hoogenboom [17,
18], d'ingénieuses méthodes de réduction de variance et de contrôle de la population ont vu le jour,
destinées à traiter e�cacement les problèmes dépendant du temps. D'abord testées dans des modèles
simpli�és, ces méthodes ont ensuite été introduites avec succès dans la simulation de réacteurs nucléaires
réalistes prenant en compte l'e�et des contre-réactions thermo-hydrauliques [19�26].

A.1.2 . Corrélations et �uctuations dans les simulations Monte-Carlo cinétiques

Étant donné l'apparition relativement récente de ces nouvelles méthodes, un cadre complet pour
l'étude des simulations Monte-Carlo dépendantes du temps manque encore, malgré de prometteuses
investigations préliminaires. Comme les simulations Monte-Carlo doivent servir de références auxquelles
d'autres méthodes simpli�ées seront comparées, la précision et l'exactitude des simulations Monte-Carlo
sont cruciales. En particulier, la �abilité des résultats dépend directement de la �abilité des intervalles
de con�ance associés, qui sont typiquement estimés en utilisant des techniques d'inférence statistique
(en estimant la variance des échantillons Monte-Carlo). La variance d'échantillon capture les �uctuations
dans les scores dues à la nature stochastique des histoires. Si ces histoires sont indépendantes et si
les �uctuations ne sont pas pathologiques, la quanti�cation de la variance de l'échantillon est directe.
Cependant, les simulations cinétiques posent des dé�s bien particuliers.

La condition initiale pour la densité de neutrons et de précurseurs dans les problèmes dépendant du

158



Figure A.1 : Photos de la distribution spatiale typique des neutrons dans un calcul aux va-leurs propres Monte-Carlo. Gauche : les corrélations sont importantes, et les neutronssont regroupés. Droite : les corrélations sont faibles, et les neutrons sont répartis unifor-mément dans l’espace.

temps correspond souvent à la condition d'équilibre (ou stationnaire) du réacteur, ce qui signi�e que les
particules commençant la simulation cinétique héritent des corrélations a�ectant le calcul aux valeurs
propres nécessaire pour échantillonner la con�guration à l'équilibre des particules [10]. Quand le nombre de
particules est petit, l'e�et de ces corrélations est ampli�é, et se manifeste sous la forme de regroupements
spontanés de particules (`clustering'), aboutissant à des distributions spatiales irrégulières [27] telles
qu'illustré sur la Figure A.1. De plus, les simulations Monte-Carlo cinétiques sont a�ectées par des
problèmes qui leur sont plus spéci�ques : les histoires peuvent `brancher' à cause des évènements de
�ssion conduisant à l'apparition de neutrons secondaires, ce qui augmente la variance et se trouve être
à l'origine des corrélations spatio-temporelles, même lorsque le réacteur est critique (stationnaire). Dans
certains cas, ces e�ets peuvent mener à une croissance incontrôlée de la variance en fonction du temps,
appelée la catastrophe critique [28].

Dans ce qui suit, nous donnons un rapide tour d'horizon des connaissances actuelles sur l'e�et des
corrélations dans les simulations Monte-Carlo, ainsi que les questions encore ouvertes et leur importance
pour di�érentes applications.

Corrélations dans les calculs aux valeurs propres Monte-Carlo

Comme illustré dans cette thèse, la distribution à l'équilibre des neutrons et des précurseurs peut
être déterminée par des méthodes Monte-Carlo simulant les chaines de �ssion sur plusieurs générations
(une génération étant dé�nie comme l'histoire d'un neutron depuis sa naissance jusqu'à sa mort par
fuite ou par absorption), jusqu'à ce que le régime stationnaire soit atteint [10]. À chaque génération, la
généalogie de n'importe quel neutron peut être retracée jusqu'à un ancêtre, et l'ensemble des neutrons
partageant un même ancêtre commun forme une famille : des évènements issus d'une même famille
seront corrélés. Ces corrélations vont a�ecter à la fois le comportement statistique d'un score au sein
d'une même cellule spatiale au cours de générations successives, et le comportement des scores dans
di�érentes cellules spatiales à une génération donnée : ces deux points de vue sont intimement reliés.

L'évaluation des corrélations générationnelles est un problème de longue date. Dans les calculs aux
valeurs propres Monte-Carlo, la moyenne et la variance sont typiquement estimées au cours de générations
successives, en faisant l'hypothèse que les scores collectés lors de chaque génération sont indépendamment
et identiquement distribués. Cela correspond à une moyenne ergodique, par analogie avec l'hypothèse
ergodique en physique statistique à l'équilibre. Bien que les scores soient e�ectivement identiquement
distribués (une fois le système convergé vers l'état d'équilibre), ils sont aussi corrélés, comme discuté
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précédemment, et cela a�ecte l'estimation de l'incertitude sur leur valeur moyenne.
Brissenden et Garlick ont les premiers remarqué que négliger les corrélations générationnelles en

estimant la variance au moyen de la moyenne ergodique menait à une sous-estimation de la variance
des scores [29] : pour cette raison, il est nécessaire de faire la distinction entre la variance apparente

(sous-estimée) et la vraie variance obtenue par moyenne d'ensemble sur un ensemble de répliques to-
talement indépendantes5. Ueki et al. [30] ont montré que la di�érence entre la variance apparente et
la vraie variance peut-être considérable pour des scores dépendant de l'espace. Ils ont aussi montré que
le taux de convergence en fonction du nombre de particules simulées di�ère de celui attendu pour des
histoires indépendantes, bien que Herman ait montré plus tard que le comportement attendu est retrouvé
asymptotiquement pour des populations de grande taille [31]. Min-Jae et al. ont découvert que le ratio
de la variance apparente sur la vraie variance n'était pas uniforme dans l'espace [32].

Plusieurs méthodes visant à prédire la vraie variance en partant de la variance apparente ont été
proposées, le plus souvent avec des hypothèses simpli�catrices : Yamamoto et al. ont modélisé la sous-
estimation de la variance des scores locaux (ou dépendant de l'espace) ainsi que sa dépendance sur la
taille des cellules spatiales [33]. Sutton a appliqué une approche de discrétisation de l'espace des phases
a�n de comprendre l'hétérogénéité du ratio de la variance apparente sur la vraie variance [34]. Miao et al.
ont calculé les coe�cients d'auto-corrélation entre les cellules spatiales a�n d'analyser le comportement
des corrélations générationnelles [35�37].

L'impact des corrélations spatiales dans les calculs aux valeurs propres Monte-Carlo a été récem-
ment remarqué par Dumonteil et al., qui les premiers ont noté l'émergence des regroupements de neu-
trons [27] ; des outils de diagnostic ont été développés plus tard par Nowak et al. [38] en approfondissant
des recherches précédentes [28]. Bien que ces corrélations spatiales n'a�ectent pas a�ecter la moyenne
des scores Monte-Carlo en eux-mêmes, Cosgrove et al. ont montré qu'elle pourrait avoir une in�uence
lorsque des simulations Monte-Carlo sont couplées à un solveur pour la déplétion, et ainsi ampli�er des
instabilités numériques préexistantes [12, 39], aboutissant ainsi à l'apparition d'un biais sur la moyenne
des observables [40]. Sutton a proposé d'étudier le comportement spatial des neutrons au moyen du
comportement statistique des arbres généalogiques de neutrons, en notant que les corrélations étaient
ampli�ées lorsqu'il ne restait qu'un petit nombre de familles indépendantes (ou bien des familles plus
grandes) dans la population de neutrons [41, 42]. Concernant la question du `clustering', les résultats
présents dans la littérature sont assez contradictoires, et il ne semble pas exister de véritable consensus.
Certains auteurs ont suggéré que le `clustering' des neutrons pourraient avoir un impact sur la moyenne
des scores, en plus d'a�ecter l'estimation de la variance [43, 44]. Au contraire, d'autres ont suggéré que
les corrélations spatiales n'avaient pas d'e�ets notables sur l'estimation des incertitudes statistiques [45].

Corrélations dans les simulations Monte-Carlo cinétiques

Les simulations Monte-Carlo dépendant du temps ont été introduites assez récemment dans le
contexte de la physique des réacteurs, ce qui explique que l'étude du comportement des corrélations
dans cette classe de problèmes en soit encore à ses balbutiements. De plus, malgré des avancées signi-
�catives concernant les méthodes de réductions de variance, le coût en calcul des problèmes cinétiques
reste très élevé, et l'étude des corrélations est le plus souvent e�ectuée dans des modèles avec di�érents
niveaux de simpli�cation.

Dumonteil et al. ont évalué les corrélations spatiales à un temps d'observation donné en négligeant
la contribution des précurseurs et en supposant que le milieu était in�ni [27]. L'e�et du milieu �ni sur les
corrélations spatio-temporelles a plus tard été pris en compte [46, 47], menant �nalement au développe-
ment d'un modèle plus ra�né dans lequel la taille de la population des neutrons est conservée constante,
a�n d'imiter l'e�et des méthodes de contrôle de la population [28]. Une caractéristique intéressante de

5Il n’y a pas de restrictions de principe empêchant d’utiliser des répliques indépendantes dans l’itération de lapuissance. La principale raison qui a mené les pratiquants duMonte-Carlo à adopter la moyenne ergodiquevient du temps de calcul : utiliser des répliques indépendantes impliquerait un temps de calcul largementplus élevé qu’en utilisant la moyenne ergodique, ce qui était décourageant dans les premiers temps duMonte-Carlo.
160



ces modèles est que la plupart des résultats correspondants se généralisent aux problèmes aux valeurs
propres résolus par des méthodes Monte-Carlo basées sur les générations, en remplaçant le temps par
l'index discret de la génération [38] : cela signi�e aussi que les questions ouvertes pour les modèles en
temps continu ont leur contrepartie dans les modèles en générations discrètes. Le principal résultat de ces
études est que le `clustering' spatial émerge de la même manière pour les problèmes aux valeurs propres
que pour les problèmes cinétiques, à cause des évènements de �ssion. En l'absence de contrôle de la
population, la variance d'un système critique va diverger, menant possiblement à l'extinction prématurée
de la simulation cinétique (catastrophe critique) ; l'application du contrôle de la population empêche
l'arrivée de la catastrophe critique. L'impact des précurseurs (en milieu in�ni et sans contrôle de la popu-
lation) a été examiné par Houchmandzadeh et al. [48], qui ont montré que l'amplitude des corrélations
était largement réduite, et leur évolution temporelle ralentie pour des systèmes proches de la criticité.

Toutes ces investigations sont restreintes à des milieux homogènes et un modèle de transport simpli�é,
ce qui limite leur application à des systèmes plus réalistes, et ce bien que des tendances générales puissent
être dégagées. La plus grande de ces limitations vient du fait que ces modèles sont dé�nis pour des
simulations Monte-Carlo analogues, ce qui exclut les méthodes de réduction de variance. Or, la plupart
des calculs Monte-Carlo ont couramment recouru aux méthodes non-analogues ; il est donc nécessaire
de caractériser précisément l'interaction entre les méthodes de réduction de variance, les méthodes de
contrôle de la population et le comportement des corrélations dans les problèmes cinétiques.

A.1.3 . But et structure de la thèse

Inspirés par ces considérations, dans cette thèse nous avons développé un cadre cohérent et uni�é
pour l'analyse des �uctuations et des corrélations dans les simulations Monte-Carlo cinétiques, dans le
but d'assurer la �abilité des estimations de l'incertitude statistique dans cette classe de simulations. En
particulier, nous nous sommes concentrés sur l'interaction entre le comportement des �uctuations et
des corrélations, et l'application de méthodes de réduction de variance et de contrôle de la population,
ainsi qu'avec les stratégies d'échantillonnage spéci�quement dé�nies pour les problèmes cinétiques et
stationnaires (ou aux valeurs propres), ces derniers étant essentiels pour l'échantillonnage de la source
d'équilibre des neutrons et des précurseurs.

Ce travail est structuré de la manière suivante :

• Tout d'abord, dans les Chapitres 1 et 2, nous avons présenté l'état de l'art des simulations Monte-
Carlo pour le transport des neutrons, et nous avons porté une attention particulière aux méthodes
utilisées pour les simulations cinétiques.

• Dans la Partie I (Chapitres 3 et 4), nous avons présenté nos résultats dans le cadre d'un modèle
simpli�é de simulation Monte-Carlo analogue d'un processus de di�usion, dans lequel une popula-
tion de neutrons et de précurseurs évolue en temps en suivant un mouvement Brownien branchant.
Nous avons caractérisé les corrélations induites par la �ssion dans ce système, et nous avons dérivé
des grandeurs caractéristiques a�n de faciliter l'analyse de simulations plus réalistes. Nous avons
aussi étudié l'e�et d'un mécanisme idéalisé de contrôle de la population dans le cas de simulations
analogues.

• Dans la Partie II (Chapitres 5 et 6), nous avons présenté nos résultats concernant les simulations
Monte-Carlo cinétiques non-analogues, en utilisant un large panel de techniques de réduction de
variance et de contrôle de la population. Nous avons proposé des estimateurs adéquats pour
l'analyse des corrélations dans ces systèmes, et discuté de l'e�et des méthodes de réduction de
variance et de contrôle de la population sur les �uctuations et les corrélations.
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A.2 . Conclusions et perspectives

Grâce à l'e�et combiné des améliorations algorithmiques et de la puissance de calcul, il devient au-
jourd'hui possible d'aborder les problèmes non stationnaires en physique des réacteurs au moyen des
simulations Monte-Carlo, ce qui permet un traitement `exact' de la géométrie et des données nucléaires
du système simulé, sans introduire d'approximations ou de biais de discrétisation. Au vu de la nature
intrinsèquement stochastique des évènements échantillonnés le long de chaque trajectoire de particule,
les scores Monte-Carlo �uctuent, et l'estimation des valeurs moyennes désirées est associée à une incer-
titude statistique qui est asymptotiquement inversement proportionnelle à la racine carrée du nombre
d'histoires. L'absence presque totale d'approximations est ainsi contrebalancée par un coût de calcul
très élevé dès lors que l'on veut une précision acceptable, particulièrement dans le cas des simulations
cinétiques (dépendantes du temps). De plus, étant donné que les histoires simulées lors des simulations
cinétiques sont corrélées à cause des évènements de �ssion, le comportement de l'incertitude statistique
est complexe : par exemple, l'e�et des corrélations peut se manifester sous la forme du `clustering' spatial
(la distribution spatiale des particules devient très hétérogène, au lieu d'être uniforme comme attendu). La
plupart des simulations Monte-Carlo nécessitant l'usage de méthodes d'échantillonnage non-analogues,
généralement en combinaison avec des méthodes de réduction de variance et de contrôle de la popu-
lation, l'évolution des �uctuations et corrélations dans les simulations Monte-Carlo cinétiques dépend
de l'interaction non triviale entre les méthodes d'échantillonnage et les e�ets inhérents aux processus
stochastiques sous-jacents, qui sont inspirés par la physique. Nous avons donné une vue d'ensemble de
ces questions dans le Chapitre 1.

Avant de présenter nos nouvelles contributions, dans le Chapitre 2 nous avons rappelé le cadre général
des formulations de l'équation de Boltzmann dans le contexte dépendant du temps et dans le cas d'un
problème aux valeurs propres. Pour la formulation dépendante du temps, nous avons mis en avant le
rôle crucial joué par les contributions des précurseurs de neutrons retardés. Par la suite, nous avons
résumé l'état de l'art des méthodes non-analogues couramment utilisées en physique des réacteurs, en
particulier celles utilisées pour les problèmes dépendant du temps. Les simulations Monte-Carlo donnent
des estimations non biaisées des premiers moments des grandeurs d'intérêt, qui sont précisément les
solutions de l'équation de Boltzmann. Nous avons présenté les principaux algorithmes pour le transport
de particules, ainsi que quelques estimateurs pouvant être utilisés a�n d'estimer les observables d'intérêt.
De plus, nous avons donné une vue d'ensemble des méthodes de réduction de variance et de contrôle
de la population les plus importantes. Ces méthodes peuvent être utilisées a�n de réduire l'incertitude
statistique sur la moyenne et d'empêcher que la taille de la population ne devienne trop grande ou
trop petite. De plus, nous avons introduit des formulations simpli�ées de l'équation de Boltzmann,
comprenant le formalisme multi-groupe ainsi que l'approximation de la di�usion, et nous avons montré
que ces équations simpli�ées pouvaient être résolues grâce aux méthodes Monte-Carlo, en échantillonnant
les marches aléatoires des neutrons et des précurseurs dans l'espace des phases.

Pour les investigations discutées dans cette thèse, nous avons développé deux mini-applications
Monte-Carlo, aussi présentées dans le Chapitre 2. Le principal argument derrière ce choix (au lieu d'ajou-
ter de nouvelles fonctionnalités et estimateurs à TRIPOLI-4®, le code o�ciel du CEA), c'est que notre
analyse nécessite des outils tels que la fonction de corrélation à deux points, qui sont typiquement très
couteux à calculer et à stocker. De plus, nous avons souvent eu besoin de modi�er largement les méthodes
traditionnelles d'échantillonnage ou bien d'implémenter des scores inhabituels, ce qui est considérable-
ment complexi�é dans des codes industriels. La première mini-application, appelée JOFFREY, est dédiée
à la simulation analogue (c'est-à-dire, sans méthodes de réduction de variance) du transport dépendant
du temps en utilisant l'approximation de la di�usion, dans laquelle le déplacement des particules est
échantillonné en utilisant un mouvement Brownien unidimensionnel. La seconde mini-application, ap-
pelée COYOTE, permet de simuler des systèmes plus réalistes dans un cadre multi-groupe en milieu
hétérogène, incluant à la fois l'itération de la puissance pour l'échantillonnage de la source stationnaire
(critique) de neutrons et de précurseurs, et le transport dépendant du temps.
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Dans la première partie de la thèse (Chapitres 3 et 4), nous avons examiné le comportement des
�uctuations et des corrélations dans les simulations Monte-Carlo cinétiques dans le cas simpli�é où
l'échantillonnage est analogue (ce qui signi�e que nous n'utilisions pas de réduction de variance) et en
utilisant l'approximation de la di�usion. Ces choix ont été e�ectués de manière à proposer un cadre
permettant de calculer des solutions analytiques exactes pour les équations des moments décrivant la
fonction de corrélation à deux points, et de les comparer à des simulations Monte-Carlo.

Dans ce but, dans le Chapitre 3 nous avons introduit un modèle stochastique dans lequel une collection
de particules suit un mouvement Brownien couplé à un processus de vie et de mort de Galton-Watson
imitant les évènements de collisions. Lors de ces évènements, les particules peuvent être capturées (et
disparaissent), ou induire une �ssion (et donnent naissance à un nombre aléatoire de descendants). Le
système est unidimensionnel avec des conditions de bord de ré�exion préservant la masse. Les précurseurs
sont modélisés en utilisant un retard exponentiellement distribué entre l'évènement de �ssion dont ils sont
issus et l'émission de neutrons supplémentaires depuis le point de collision. Malgré ces approximations
extrêmement fortes, ce modèle préserve les éléments clés du transport dépendant du temps dans un
milieu multiplicatif, et o�re ainsi d'importantes informations sur le comportement des �uctuations et
des corrélations dans les simulations Monte-Carlo analogues. Dans ce contexte, nous avons utilisé le
formalisme rétrograde de Pál-Bell pour dériver les équations des moments, en particulier pour la densité
moyenne de particules et la fonction de corrélation à deux points. Nous avons résolu analytiquement ces
équations, et nous avons comparé ces résultats à des simulations Monte-Carlo analogues, utilisées comme
référence. Une attention particulière a été portée au cas critique, dans lequel les naissances par �ssion
sont compensées (en moyenne) par les morts dues à la capture, ce qui est crucial pour le contrôle des
réacteurs. Nous avons identi�é les échelles de temps typiques selon lesquelles évoluent les corrélations : le
temps pour que les corrélations issues de la dynamique prompte se stabilisent, le temps nécessaire pour
que les corrélations atteignent leur forme spatiale asymptotique, et le temps nécessaire pour observer des
�uctuations catastrophiques de la taille de la population.

Le modèle introduit dans le Chapitre 3 a été ra�né dans le Chapitre 4 en prenant en compte des
stratégies idéalisées de contrôle de la population imitant l'e�et du contrôle de la population dans les
simulations non-analogues. Ces schémas brisent l'indépendance statistique entre di�érentes chaînes de
�ssion, forçant l'abandon du formalisme de Pál-Bell au pro�t du formalisme direct. Après avoir présenté
la dérivation de l'équation maîtresse pour le cas simpli�é dans lequel les précurseurs sont négligés, nous
avons développé trois modèles di�érents de contrôle de la population : le modèle avec contrôle de N , dans
lequel la population de neutrons est maintenue constante tandis que les précurseurs évoluent librement ;
le contrôle de N et M , dans lequel une contrainte est appliquée séparément sur les neutrons et les
précurseurs ; et un modèle d'immigration dans lequel les précurseurs sont modélisés comme une source
Poissonnienne uniforme dont l'intensité est égale au taux asymptotique de décroissance des précurseurs
à l'équilibre. Nous avons montré que l'équation maîtresse du modèle de contrôle de N menait à une
hiérarchie in�nie d'équations des moments ; néanmoins, le comportement du nombre moyen de particules
et de la fonction de corrélation de paires peut toujours être déterminé en utilisant les simulations Monte-
Carlo. Pour le modèle de contrôle de N et M , la hiérarchie d'équations des moments est fermée :
nous avons déterminé des solutions asymptotiques pour la fonction de corrélation de paires, qui ont été
comparées avec succès aux simulations Monte-Carlo. Finalement, nous avons montré que le troisième
modèle, quoiqu'approché, est en relativement bon accord avec les deux autres modèles pour certaines
valeurs (raisonnables) des paramètres physiques. Dans tous les cas, nous avons montré que l'introduction
du contrôle de la population empêche la catastrophe critique, et donc limite l'apparition du `clustering'.

Dans le même cadre théorique, nous avons aussi caractérisé le comportement des simulations Monte-
Carlo en étudiant le processus de �xation, c'est-à-dire la survivance d'une seule famille de particules à
un temps donné, o�rant ainsi un point de vue complémentaire à la fonction de corrélation de paires. En
particulier, nous avons étudié la distribution du temps de �xation, c'est-à-dire le temps auquel toutes les
particules appartiennent à la même famille, et ses liens avec les grandeurs caractéristiques du `clustering'.
Nous avons montré que ces quantités, quoiqu'intimement connectées, ont de subtiles di�érences : le
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temps de �xation est par construction insensible aux e�ets de bord (en l'absence de fuites), tandis que
l'évolution du `clustering' est profondément a�ectée par la présence de conditions de bord.

Les résultats obtenus dans la première partie de la thèse o�rent un cadre théorique robuste pour
l'étude des simulations Monte-Carlo cinétiques, mais viennent avec plusieurs limitations : ils ne s'ap-
pliquent que pour l'échantillonnage analogue, sans aucune méthode de réduction de variance, et au cas
de la di�usion en milieu homogène. Le contrôle de la population peut être pris en compte, mais seulement
au moyen de modèles très simpli�és dans lesquels la taille de la population est �xée. Pratiquement tous
les codes Monte-Carlo industriels utilisent des échantillonnages non-analogues, impliquant des méthodes
de réduction de variance et de contrôle de la population : comprendre l'impact de ces techniques sur le
comportement des corrélations spatio-temporelles est crucial pour améliorer la �abilité des simulations
cinétiques.

Pour surpasser les limitations des modèles utilisés dans les Chapitres 3 et 4, dans la seconde partie de
la thèse (Chapitres 5 et 6), nous avons donc étudié le comportement des �uctuations et des corrélations
dans un contexte plus réaliste. Les principales généralisations ont consisté à utiliser un échantillonnage
non-analogue, et à passer de l'approximation de la di�usion au transport multi-groupe.

Dans le Chapitre 5, nous avons étudié l'e�et de la stratégie de collision, de la réduction de variance
et du contrôle de la population sur les corrélations apparaissant dans l'implémentation Monte-Carlo de
l'itération de la puissance. L'itération de la puissance est l'approche standard utilisée pour estimer l'état
fondamental de la formulation en problème aux valeurs propres k de l'équation de Boltzmann, ce qui est
capital pour bien échantillonner la source critique (à l'équilibre) du problème cinétique. Notre étude a
porté sur un ensemble de cas tests simples, mais physiquement intéressants comprenant des géométries
homogènes et hétérogènes. Parmi les méthodes non-analogues étudiées, nous nous sommes concentrés
en particulier sur les collisions non-branchantes, qui forcent l'émergence d'un seul neutron au sortir de
chaque collision et donc réduit les corrélations dues à la présence de �branches� dans les histoires. De plus,
nous avons considéré l'e�et sur les corrélations du `combing' et de l'échantillonnage sans remplacement
en tant que techniques de contrôle de la population.

Dans le but de détecter la présence de fortes corrélations, et d'évaluer les avantages respectifs de ces
di�érentes méthodes non-analogues, nous avons choisi di�érentes observables : l'entropie de Shannon,
la distance de paire moyenne (au carré), le nombre moyen de familles survivantes, les moments de
Feynman et la variance normalisée. Nous avons montré que toutes ces observables sont utiles pour
détecter la présence de �uctuations anormales dans les systèmes examinés. Cependant, les observables
globales telles que l'entropie et la distance de paire, bien qu'elles soient faciles à calculer et à interpréter,
ne sont pas adaptées à l'étude des systèmes hétérogènes, en raison du manque d'information sur la
distribution spatiale des corrélations. À l'inverse, les observables locales (dépendant de l'espace), telles
que les moments de Feynman et la variance normalisée, sont par construction utiles pour extraire de
l'information sur le comportement spatial des corrélations, au prix d'une complexité augmentée.

Notre résultat principal est que, dans toutes les con�gurations, l'utilisation de collisions non-branchantes
(en opposition avec les collisions branchantes habituelles) est très e�cace pour réduire les corrélations.
De plus, bien que les méthodes de contrôle de la population soient généralement (mais pas toujours)
e�caces pour réduire les corrélations, l'impact de ces dernières est bien plus limité que celui des collisions
non-branchantes.

Après avoir étudié le cas de l'itération de la puissance, dans le Chapitre 6 nous nous sommes tournés
vers le cas des simulations Monte-Carlo dépendantes du temps. En nous basant sur l'analyse e�ectuée
dans le Chapitre 5, nous nous sommes concentrés sur l'entropie de Shannon et sur les moments de
Feynman. Nous avons tout d'abord caractérisé l'e�et des méthodes non-analogues dans un système
simpli�é, a�n de faciliter l'interprétation des résultats. Nous avons considéré des con�gurations critiques,
sous-critiques et sur-critiques, pour di�érentes tailles de systèmes et conditions de bord. Des oscillations
de l'entropie ont été observées, et reliées à l'établissement des corrélations spatiales, dont la forme
dépendait de l'interaction entre la réactivité du système, les méthodes de réduction de variance et de
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contrôle de population utilisées, et la nature des conditions aux bords. Dans certains cas, les oscillations
de l'entropie pouvaient perdurer sur de longues échelles de temps.

En�n, nous avons étudié les corrélations spatio-temporelles apparaissant dans les cas tests homo-
gènes plus réalistes introduits dans le Chapitre 5. Nous avons détaillé comment les corrélations spatiales
se développent avec le temps. Nos résultats suggèrent que l'e�et des insertions de réactivité sur les corré-
lations spatiales est marginal, au moins dans le régime des petites perturbations. De plus, la catastrophe
critique est e�ectivement évitée grâce à l'usage de méthodes non-analogues.

Le travail e�ectué lors de cette thèse a permis de clari�er le comportement des �uctuations et des
corrélations dans les simulations Monte-Carlo dépendantes du temps, en commençant par des modèles
très simpli�és que nous avons progressivement rendu plus complexes a�n d'agrandir le domaine de vali-
dité de nos résultats. A�n d'obtenir une compréhension plus précise de l'interaction entre les méthodes
d'échantillonnage et les corrélations, nous avons conservé nos cas tests bien plus simples que pour des
applications réalistes typiquement traitées par des codes Monte-Carlo industriels. D'un côté, cela nous a
permis d'estimer et d'analyser des observables qui auraient autrement été hors de notre portée, en raison
du coût de calcul, telles que la fonction de corrélations à deux points. De l'autre côté, nous sommes
conscients que les conclusions obtenues à partir de con�gurations uni-dimensionnelles en utilisant des
sections multi-groupes peut ne pas être représentatif du comportement observé dans des systèmes tri-
dimensionnels utilisant des données nucléaires en énergie continue. De plus, il est important de noter
que les méthodes Monte-Carlo cinétiques sont encore relativement jeunes et incomprises : de nouvelles
méthodes de réduction de variance ou de contrôle de la population pourraient apparaître, soit spéci�que-
ment conçues pour les méthodes dépendantes du temps, soit adaptées des simulations stationnaires. De
tels changements pourraient nous obliger à réviser les conclusions présentées ici, particulièrement pour
le cas des simulations cinétiques discuté dans le Chapitre 6.

Plusieurs chemins sont naturellement ouverts par les résultats de cette thèse. Comme brièvement noté
dans le Chapitre 5, remplacer les sections multi-groupes par des données nucléaires en énergie continue
pourrait avoir un e�et signi�catif sur le comportement des méthodes de réduction de variance et les
corrélations et �uctuations induites par celles-ci. Une étude plus vaste en trois dimensions et en énergie
continue est donc nécessaire, ainsi que le développement d'outils de diagnostic adaptés à la détection
des corrélations, a�n de mieux contrôler l'augmentation du coût en temps de calcul et en mémoire.

Une autre possibilité concerne l'analyse de l'interaction entre l'échelle spatiale des corrélations et
l'échelle spatiale des observables Monte-Carlo. En se basant sur les résultats présentés dans les Chapitres 5
et 6, il apparaît que l'émergence des corrélations spatiales est intimement reliée à la compétition entre
la taille linéaire des regroupements de particules et celle des régions dans lesquelles les observables
sont estimées. Une interaction similaire pourrait aussi exister pour les échelles temporelles : celles des
corrélations et celles des observables dans les simulations cinétiques ; cette conjecture devrait être étudiée
numériquement. Il serait aussi intéressant de développer un cadre théorique permettant d'adapter la
taille des cellules (spatiales ou temporelles) pour les observables Monte-Carlo a�n de réduire l'e�et des
corrélations.

En rapport avec les méthodes de réduction de variance, il serait intéressant d'e�ectuer une étude
systématique des schémas à variance zéro telle que celle entamée dans la Ref. 100, a�n d'obtenir un cadre
cohérent pour une stratégie CADIS (Consistent Adjoint-Driven Importance Sampling). Ces méthodes
pourraient avoir un immense potentiel dans le cadre des simulations Monte-Carlo cinétiques, de la même
manière que pour les problèmes stationnaires de radioprotection, dans lesquels les méthodes CADIS sont
maintenant couramment utilisée.

En�n, bien que dans cette thèse nous nous soyons limités aux simulations cinétiques seules, dans
la plupart des applications il est important de prendre en compte l'e�et des contre-réactions physiques
qui a�ectent profondément l'évolution des populations de neutrons et de précurseurs. Si le coe�cient
global de contre-réaction est négatif, elles agiront essentiellement comme un mécanisme ramenant le
système vers la moyenne, et empêcheront de trop grandes �uctuations autour des moyennes. Seules les
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valeurs moyennes peuvent être injectées dans les codes de couplages, qui sont déterministes. L'incertitude
statistique peut être obtenue en e�ectuant des répliques indépendantes, au prix d'une augmentation du
coût de calcul. A�n de compenser celle-ci, il est tentant de réduire le nombre d'histoires par réplique,
mais cela viendrait augmenter le biais dû au fait de donner une quantité �uctuante au solveur couplé,
sachant que le couplage est non-linéaire. Des questions théoriques et pratiques rendent donc ces problèmes
complexes : un objectif ambitieux pour des explorations futures seraient d'étendre le cadre proposé dans
cette thèse au cas où la simulation cinétique serait couplée à la thermo-hydraulique.

A.3 . Travaux publiés

Une partie des résultats présentés dans cette thèse ont déjà été publiés ou acceptés pour publication
dans des journaux scienti�ques :

• T. Bonnet, D. Mancusi, and A. Zoia, "Space and time correlations for di�usion models with prompt
and delayed birth-and-death events", Phys. Rev. E, vol. 105, no. 6, p. 064105, Jun. 2022.[Online].
Disponible : https://link.aps.org/doi/10.1103/PhysRevE.105.064105

• T. Bonnet, D. Mancusi, and A. Zoia, �The Statistics of Family Histories in Kinetic Monte Carlo
Simulations,� in Proceedings of M&C 2023 International Conference on Mathematics and Com-
putational Methods Applied to Nuclear Science and Engineering, Niagara Falls, Canada, Aug.
13-17th, 2023.

• H. Belanger, T. Bonnet, D. Mancusi, and A. Zoia, �The E�ects of Branchless Collisions on Neutron
Clustering� in Proceedings of M&C 2023 International Conference on Mathematics and Computa-
tional Methods Applied to Nuclear Science and Engineering, Niagara Falls, Canada, Aug. 13-17th,
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