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RÉSUMÉ EN FRANÇAIS

Introduction

La télévision ultra-haute définition (UHDTV) [1] est un format numérique de vidéo basé sur

de nouvelles caractéristiques immersives telles qu’une plage de dynamique étendue, un gamut

de couleur plus large et une résolution temporelle et spatiale plus importante. L’introduction de

ce nouveau format a pour but d’améliorer la qualité d’expérience (QoE) de l’utilisateur final

par rapport au précédent format standard : la télévision haute définition (HDTV) [2]. Parmi

ces nouvelles caractéristiques se trouve la résolution vidéo 8K, correspondant à une résolution

spatiale de 7680 × 4320 pixels, soit 4 fois plus de pixels que la résolution 4K (3840 × 2160) et

16 fois plus que la résolution HD (1920 × 1080), comme illustré dans la Figure 2.3. Une telle

résolution permet d’accroître la sensation de réalisme perçue par l’utilisateur en augmentant

la quantité de détails restitués depuis la scène capturée. Cette résolution d’image a récemment

connu beaucoup d’engouement dans la communauté de la vidéo avec l’apparition de nouveaux

capteurs et écran TV 8K, mais aussi au travers d’expérimentations réalisées par des diffuseurs,

e.g. au Japon avec la NHK. Néanmoins, cet afflux d’information spatiale nécessite d’importantes

ressources en débit pour garantir une bonne qualité de vidéo, imposant de nouveaux challenges

aux diffuseurs de contenus.
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Figure 1 – Illustration des résolutions spatiale high-definition (HD), 4K et 8K.

Ainsi, sous la pression des différents acteurs industriels, de nouveaux standards de compres-

sion ont émergé, comme versatile video coding [3], ou VVC/H.266, finalisé en juillet 2020. Cette

norme est née d’un travail collaboratif mené par le joint video exploration team (JVET) constitué
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d’experts de l’ITU et de l’ISO/IEC respectivement représentés par les groupes VCEG et MPEG.

L’objectif du standard VVC est de réduire le débit nécessaire pour une même qualité perçue

d’environ 40% par rapport à son prédécesseur high efficiency video coding (HEVC) [4]. Comme

ce dernier l’a permis pour l’introduction de la 4K, le déploiement de VVC devrait permettre

l’introduction de nouveaux services plus lourds tels que la 8K ou la vidéo 360°.

En France, le conseil supérieur de l’audiovisuel (CSA), nouvellemment autorité de régulation

de la communication audiovisuelle et numérique (ARCOM), a lancé des travaux techniques

préparant une bascule technologique sur la télévision numérique terrestre (TNT) à l’horizon 2024,

tablant sur un format de diffusion 4K délivré en DVB-T2/HEVC accompagnés de services TV

enrichis (replay, VOD, push). Dans ce contexte, l’introduction de nouveaux formats multimédia

n’est envisageable qu’en assurant la compatibilité avec le parc d’équipement existant. Ainsi,

des tests ont été réalisés pour une transmission de 2 à 3 programmes avec des débits allant de

10 à 17Mbps pou la 4K et 3 à 17Mbps pour la HD avec HEVC [5]. Cependant, dû aux fortes

contraintes de débit imposées par le format de résolution vidéo 8K, il est aujourd’hui impossible

d’envisager une diffusion 8K sur la TNT française avec rétro compatibilité 4K via simulcast, i.e.,

les signaux 8K et 4K encodés indépendamment et multiplexés.

D’une part, différentes alternatives au simulcast existent aujourd’hui, tel que la compression

scalable, proposée par example par les extensions de codecs SVC et SHVC. Néanmoins, dû à

un gain en débit trop faible par rapport aux contraintes matérielles imposées, ces architectures

n’ont pas été adoptées dans l’industrie. D’autre part, les technologies de compression et de post-

traitement basées IA ont récemment démontré des performances très compétitives par rapport

aux algorithmes conventionnels. Le potentiel de ces techniques pour la compression vidéo est

déjà bien connu dans la littérature, avec par exemple l’application de super-résolution après

décodage ou encore la compression d’image bout-en-bout [6, 7]. Ces algorithmes pourraient

ainsi permettre de retrouver un signal 8K via un suréchantillonnage spatial du signal 4K guidé

ou non par des métadonnées, e.g. LCEVC [8].

L’objectif de cette thèse a été d’explorer et de développer des algorithmes innovants et perfor-

mants permettant la reconstruction d’un flux 8K à partir d’un flux 4K. Dans un premier volet, Une

étude subjective à permis d’évaluer la qualité offerte par la résolution 8K et les performances de

différentes méthodes de compression, tel que VVC, HEVC et des méthodes de codage offrant la

rétrocompatibilité avec un signal 4K. Deuxièmement, de nouvelles méthodes de super-résolution

basées sur un apprentissage multitâche adaptées à des images compressées ont été proposées.

Dernièrement, une nouvelle méthode de compression de résidu de suréchantillonnage, appelée

CAESR, a été développée et protégée par un brevet.
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Etat de l’art

Nouvelles méthodes de codage vidéo

Le Chapitre 2 de la thèse présente les nouveaux formats vidéo et les dernières avancées dans

les standards de compression. L’arrivée de ces nouveaux formats et l’évolution des supports de

visionnage ont considérablement bouleversé notre manière de consommer les données vidéo.

Pour répondre à cela, la communauté scientifique travaille sans relâche depuis des décennies sur

le développement de standards de compression toujours plus efficaces. Une frise chronologique

du développement des différents standards de compression dans le temps est donnée dans la

Figure 2.7. Chaque standard de compression a contribué à améliorer les performances de son

prédécesseur. Aujourd’hui, VVC offre environ 40% de gains pour la même QoE par rapport

à HEVC, grâce à l’amélioration d’outils existant, tels qu’une taille de bloc supérieure et un

algorithme CABAC amélioré, mais aussi à l’intégration de nouveaux outils de codage.
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Figure 2 – Frise chronologique des standards de compression vidéo.

Comme mentionné dans l’introduction, une façon de réduire le débit requis par le simulcast est

d’utiliser un codec scalable, tel que scalable high efficiency video coding (SHVC) [9], l’extension

scalable de HEVC. Ainsi, dans un contexte de transmission rétro compatible 4K/8K, le signal

4K est encodé sous la forme d’une couche de base exploitée par une couche d’amélioration et

d’un module de traitement inter-couche, permettant de réduire le débit du signal 8K. Cependant,

la complexité apportée par la scalabilité et une introduction tardive dans le standard n’ont pas

permis à SHVC d’atteindre les objectifs d’adoption visés. Récemment, un nouveau standard

appelé low complexity enhancement video coding (LCEVC) a été publié à MPEG [8]. L’objectif

vii



de ce standard est d’encoder une version sous-échantillonnée du signal d’entrée avec n’importe

quel codec de base et de transmettre des métadonnées visant à améliorer le flux suréchantillonné

côté récepteur. Ainsi, cette approche offre également la rétrocompatibilité spatiale de manière

agnostique au codec de base avec une complexité supplémentaire moindre.

Algorithmes basés IA pour la compression d’image et de vidéo

Le Chapitre 3 présente les différentes applications de l’IA dans le domaine de compression

d’image et de vidéo. Le principe de l’apprentissage automatique est d’estimer une fonction

f permettant de réaliser la tâche souhaitée, i.e., prédire la ou les sorties y par rapport à des

données d’entrées x. Les paramètres θ de cette fonction f sont appris par rapport à un jeu

de données représentatif de la tâche à effectuer, appelé la vérité de terrain. Récemment, les

réseaux de neurones artificiels, directement inspirés des neurones biologiques, se sont démarqués

dans ce domaine. Cet outil mathématique permet d’estimer n’importe quelle fonction f sous la

forme d’une suite d’opérations linéaire et non-linéaire représentées par des couches de neurones

successives. Dans un premier temps, le réseau prédit une sortie ŷ par rapport à une entrée x. Une

fonction de coût L est ensuite calculée entre l’échantillon prédit ŷ et sa valeur correspondante

y dans la vérité de terrain. Les paramètres θ du réseau f sont finalement ajustés grâce à un

algorithme de rétro propagation du gradient dans le but de minimiser la fonction de coût L.
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Figure 3 – Architecture de SRCNN [10].

Ces dernières années, les réseaux de neurones profonds, et plus particulièrement les réseaux

de neurones convolutifs, ont conduit à de grandes avancées dans le domaine de la compression

d’image et de vidéo. En effet, de nombreux problèmes inverses complexes sont rencontrés dans

ce domaine, comme la restauration de dégradations spatiales ou de quantification contenues dans

l’image décodée. Ainsi, les réseaux de neurones profonds peuvent être utilisés pour estimer une

image de haute résolution par rapport à une ou plusieurs images de basse résolution ou alors pour

améliorer l’image reconstruite après décodage pour corriger certains artefacts de compression.
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Une représentation de l’architecture de SRCNN [10], le premier réseau de neurones convolutif

dédié à la super-résolution, est illustrée dans la Figure 4.12.

Figure 4 – Description de la compression d’image bout-en-bout [7].

Par ailleurs, les réseaux de neurones ont permis de directement rivaliser avec les codecs

conventionnels. L’objectif de la compression d’image et de vidéo avec perte est de réduire le

nombre de bits requis pour représenter le signal tout en préservant l’information visuelle la plus

importante. Cet objectif peut être interprété comme un problème d’optimisation débit distorsion,

où le modèle cherche à minimiser la distorsion dans l’image reconstruite sous une certaine

contrainte de débit. Les systèmes de compression conventionnels sont composés de différents

modules, i.e., modes de codages, ne pouvant pas être optimisés de façon conjointe. En d’autres

mots, l’amélioration d’un mode de codage n’améliore pas forcément les performances globales

du système. De plus, ils sont généralement basés sur un schéma de codage en bloc, générant

des artéfacts le long des frontières de bloc. En 2017, Ballé et. al ont proposé un réseau de

neurones auto-encodeur pour la compression d’image bout-en-bout, atteignant les performances

de JPEG [7]. Contrairement aux méthodes de codage d’images et de vidéos classiques, la

compression bout-en-bout remplace le codec par un auto-encodeur. L’auto-encodeur est composé

de deux fonctions, une fonction d’analyse et une fonction de synthèse. Une illustration de

ce système de codage est donnée dans la Figure 3.10. L’avantage de ce système est qu’il est

complètement dérivable, ce qui permet d’optimiser tous les paramètres du système de codage

par rapport à une fonction de coût débit distorsion, définie par:

L(λ) = D + λR, (1)

avec D la distortion, R le débit et λ un multiplicteur Lagrangien. De plus, n’importe quel

système dérivable peut être entraîné conjointement à ce schéma de compression, maximisant les

performances du système global. Les auto-encodeurs sont aujourd’hui au niveau de VVC pour

la compression d’image et au niveau de HEVC pour la compression de vidéo.

ix



Contributions

Evaluation d’algorithmes et de standards pour la compression de vidéo 8K

Le Chapitre 4 présente différentes évaluations objectives et subjectives d’algorithmes de

codage appliqués à des contenus vidéo 8K. La première partie de ce chapitre présente une étude

subjective évaluant les performances des deux derniers standards de compression MPEG, i.e.,

VVC et HEVC, par le biais de leurs logiciels de référence respectifs : HM-16.20 et VTM-11.

Cette étude mesure également l’apport subjectif de la 8K par rapport à la 4K non compressée.

La qualité subjective est mesurée grâce à la méthodologie de test double stimulus quality scale

(DSCQS) standardisée par l’ITU dans la recommandation BT.500 [11]. Cette étude a démontré

que VVC offre environ 40% de gain en débit pour la même qualité perçue par rapport à HEVC.

Le débit de transparence, correspondant au débit pour lequel aucune différence n’est perçue par

rapport à la source, a été déterminé et varie de 11Mbps à 180Mbps selon la séquence utilisée.

Nous avons par ailleurs confirmé que l’observateur moyen distingue une différence entre la

8K et la 4K pour certaines séquences et avons mesuré cette différence. Plusieurs métriques

objectives ont été comparées par rapport aux scores subjectifs collectés. Les résultats ont montré

que les métriques MS-SSIM [12] et VMAF [13] proposent les meilleures performances selon

l’indicateur de corrélation utilisé.

Figure 5 – Illustration de la configuration .

La seconde partie de ce chapitre présente une étude objective comparant différents algo-

rithmes de compression permettant la transmission d’un flux 8K avec rétrocompatibilité 4K. Les

méthodes testées sont le simulcast, la scalabilité spatiale avec SHVC et le suréchantillonnage

spatial appliqué après décodage, tel qu’illustré dans la Figure 4.11. Deux méthodes de suréchan-

tillonnage ont été comparées : un filtre Lanczos [14] et EDSR [15], un algorithme état-de-l’art

de la super-résolution basé IA. Cette étude a montré que SHVC permet d’obtenir environ 19%

de gain moyen par rapport à un simulcast HEVC. Cependant, le coût de la scalabilité pour
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SHVC est d’approximativement 14% par rapport à un codage HEVC à pleine résolution. Nous

avons également démontré que l’approche de suréchantillonnage spatiale offre de meilleures

performances en débit par rapport à un simulcast sur toute la plage de débit testée. De plus, à

bas débit, de meilleures performances sont obtenues par la configuration de suréchantillonnage

spatial par rapport au codage pleine résolution pour certaines séquences. Les résultats ont aussi

montré que les performances de EDSR sont supérieures à celle d’un filtre d’interpolation Lanc-

zos. En revanche, les performances de EDSR se rapprochent de celle d’un filtre d’interpolation

Lanczos à mesure que le débit baisse. La première hypothèse explorée dans cette thèse est qu’un

algorithme de super-résolution adapté aux images compressé doit être considéré pour améliorer

les performances sur ce type de contenus.

Apprentissage multitâche pour la super-résolution de vidéos compressées

Dans le Chapitre 5, l’apprentissage multitâche [16] a été exploré pour l’amélioration de la

super-résolution appliquée à des images compressées. Dans un premier axe, un modèle appelé

MTL-EDSR a été développé. Ce réseau génère à la fois une image haute résolution et une

image basse résolution à partir d’une image basse résolution compressée avec VVC. Ainsi, deux

tâches sont réalisées avec un seul et même réseau : la super-résolution de l’image d’entrée et la

réduction des artéfacts de codage. Le coeur de l’architecture de ce modèle est basée sur EDSR et

la partie multitâche est réalisée par un partage dur des paramètres. Une illustration du modèle

proposé est représentée dans la Figure 5.2.
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Cette architecture multitâche permet d’obtenir des performances similaires à des réseaux

spécialisés. En effet, les tâches de super-résolution et d’amélioration de la qualité apprennent

des caractéristiques très semblables qui sont partagées par le modèle multitâche. Cependant,

cette mutualisation de paramètres permet de réduire le nombre de paramètres d’un facteur deux

lorsque les deux tâches doivent être réalisées. Plusieurs stratégies d’apprentissage destinées à

améliorer les performances d’algorithmes de restauration d’images compressées ont également

été appliquées afin d’améliorer les performances du modèle, comme l’utilisation du QP en entrée

du réseau et une technique de pré-entraînement.

Dans le deuxième axe, un autre modèle multitâche, appelé MTL-Unet, a été développé

afin de réaliser des tâches de vision par ordinateur haut niveau en plus de la tâche principale

de super-résolution, i.e., estimation de la qualité sans référence et segmentation sémantique.

Contrairement à MTL-EDSR, ce modèle est basé sur l’architecture de Unet [17], un réseau

état-de-l’art de la segmentation sémantique. Les résultats montrent que MTL-Unet réalise les

différentes tâches de traitement d’images haut niveau et de super-résolution avec succès. Ainsi,

en plus de la tâche de super-résolution, le réseau peut réaliser des tâches d’analyse d’images

supplémentaire pouvant être intégrées dans la boucle de codage pour améliorer les performances.

Malgré cette observation, l’objectif initial d’améliorer les performances de la super-résolution

seule n’a pas été permis par l’élaboration de ces deux modèles.

Autoencodeur conditionel et super-résolution pour un codage scalable effi-

cace

La dernière partie de la thèse vise à résoudre la problématique de dépendance au contenu

de la compression basée sous-échantillonnage observé dans le Chapitre 3. En effet, bien que

permettant une rétrocompatibilité agnostique au codec de base, certaines hautes fréquences ne

peuvent pas être retrouvées par un simple suréchantillonnage sans information supplémentaire.

LCEVC, récemment publié comme nouveau standard MPEG, propose une solution à ce problème.

Ce codec transmet le résidu entre l’image suréchantillonnée et la source sous la forme de

métadonnées, permettant de retrouver les détails perdus lors du sous-échantillonnage côté

récepteur. Cependant, l’architecture de LCEVC est basée sur des modules de compression

conventionnels, i.e., transformée d’Hadamard, décomposition en bloc, limitant les performances

de codage. Dans ce chapitre, nous proposons un nouveau modèle de compression entièrement

différentiable appelé CAESR, permettant de transmettre les informations spatiales manquantes

du côté du récepteur après suréchantillonnage.
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Figure 7 – Architecture de CAESR.

L’architecture de CAESR est illustrée dans la Figure 7. Cette approche est basée sur le

principe de codage conditionnel permettant d’apprendre une combinaison non-linéaire de la

source et du signal de la couche de base suréchantillonné, offrant de meilleures performances

que le codage résidual classique. Premièrement, l’image source x et la reconstruction de la

couche de base suréchantillonnée x̃c sont concaténées. Le tenseur résultant de cette combinaison

(x̃c, x) ∈ R
W ×H×6 est alors encodé par la partie d’analyse de fθ en un vecteur latent y. Ce

vecteur latent est ensuite quantifié et encodé comme décrit dans le Chapitre 2. Côté décodeur,

le signal résiduel r est reconstruit par la partie de synthèse de fθ et concaténé avec l’image

suréchantillonnée de la couche de base pour former l’entrée du réseau de super-résolution sφ.

Enfin, l’image de sortie x̂c est reconstruite par le réseau sφ.

Les résultats montrent que l’ajout de ces métadonnées permet de stabiliser les perfor-

mances du suréchantillonnage spatial pour une configuration All Intra. Les performances

de l’algorithme ont également été comparées à LCEVC et SHVC pour la configuration Random

Access. L’algorithme proposé offre de meilleures performances que LCEVC pour toutes les

séquences. En revanche, pour certaines séquences, il est impossible d’améliorer les performances

débit distorsion de la base suréchantillonnée sans métadonnées. Cela peut s’expliquer par la

présence de corrélation temporelle dans les résidus, correctement exploitée par le codage hiérar-

chique de la couche de base. Un test à été réalisé montrant qu’une couche temporelle simple peut

améliorer les performances pour ces séquences. Cependant, la propagation de l’erreur limitant le

traitement temporel à des GOP de taille très réduites pose de nouvelles limitations.
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Dans le contexte du cas d’usage de la thèse, l’ajout de ces métadonnées peut être intéressant

pour apporter de la flexibilité de débit entre la couche de base et la couche d’amélioration. Ainsi,

il est possible d’imaginer transmettre le signal 4K via cannal terrestre, et fournir les données

d’amélioration 8K via un autre canal de transmission. Plusieurs débits ont donc été sélectionnées

pour encoder la couche de base relativement aux débits utilisés sur la TNT française : 2.5Mpbs,

5Mpbs, 7.5Mpbs et 10Mpbs. Les résultats ont montré que pour une allocation plus importante de

métadonnées que ce qui est permis pour l’amélioration du codec, les performances de CAESR

sont supérieures à LCEVC. À la suite de ces résultats, une démonstration a été réalisée sur un

dispositif d’affichage 8K afin de mettre en avant les performances de l’algorithme.

Conclusion

Dans cette thèse, plusieurs méthodes innovantes ont été proposées pour permettre de recon-

struire un signal 8K à partir d’un signal 4K. L’étude proposée dans le Chapitre 3 à tout d’abord

permis de poser les bases de la thèse en évaluant différents algorithmes de l’état-de-l’art pour

répondre au cas d’usage posé. Cette étude a permis de définir deux axes de recherches. Dans un

premier axe, nous avons développé deux algorithmes de super-résolution dédiés aux images et

vidéos compressés. Ce premier axe a permis de démontrer que même avec un modèle adapté,

certaines hautes fréquences ne peuvent pas être restituées sans information complémentaire

côté récepteur, rendant les performances d’un schéma de codage basé sur un suréchantillonnage

spatial dépendant du contenu. Ainsi, une méthode basée sur l’apprentissage de métadonnées

spatiales a été développée dans le Chapitre 6. Ces approches originales ont permis d’apporter

des gains par rapport à l’état-de-l’art et de dresser des perceptives d’amélioration par rapport

au cas d’usage initialement défini. De plus, ces travaux de recherches ont été valorisés par des

publications dans des conférences internationales, une revue scientifique internationale, un dépôt

de brevet et des contributions en normalisation.

Le Chapitre 5 aborde des pistes d’amélioration pour la tâche de super-résolution, notamment

l’aspect temporal pour retrouver des détails manquants dans les sous-pixels des images voisines.

Les performances pourraient aussi être améliorées en utilisant l’information contenue dans le

flux compressé de manière plus approfondie. En effet, certains travaux considèrent l’utilisation

d’information de partitionnement ou de prédiction dans le calcul de l’image haute résolution

courante. Pour finir, de nouvelles architectures multitâches plus avancées pourraient être dévelop-

pées afin de consolider les conclusions. Ces pistes n’ont pas été abordées dans le cadre de cette

thèse.
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Le point d’amélioration majeur du Chapitre 6 est l’extension de CAESR vers une méthode à

débit variable. En effet, chaque point de codage obtenu par l’approche proposée est issu d’un

entraînement propre. Cependant, il est nécessaire en pratique d’avoir la possibilité d’allouer

dynamiquement le débit en fonction du contenu et de la bande passante disponible. De plus,

toutes ces opérations étant réalisées côté décodeur, une attention particulière doit être apportée à

la complexité de ces algorithmes afin de limiter la consommation d’énergie dans un récepteur.

Enfin, des tests subjectifs devront être réalisés pour valider les performances de l’algorithme

proposé.

Pour conclure, cette thèse nous a permis de constater que les récentes méthodes de compres-

sion basées IA permettent d’améliorer la reconstruction d’un signal vidéo 8K par rapport à un

signal 4K. Ainsi, des algorithmes innovants exploitant les corrélations entre les deux résolutions

de signal ont été développés. Là où une diffusion 8K sur la TNT française n’est absolument

pas envisageable due aux contraintes de débit et de rétrocompatibilité, il est possible d’imaginer

de transmettre un flux complémentaire via un autre canal de transmission, e.g. via IP, afin de

retrouver les détails 8K dans un récepteur hybride.
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CHAPTER 1

INTRODUCTION

1.1 Preamble

With the latest UHDTV system deployment [24], the quality of experience (QoE) of users is

expected to improve by introducing new features to the existing HDTV system [25], including

high dynamic range (HDR), wide color gamut (WCG), high frame rate (HFR), and higher

spatial resolutions. Among those new features is the 8K video resolution, a spatial resolution of

7680×4320 pixels, corresponding to four times more pixels than 4K (3840×2160) and 16 times

more pixels than HD (1920 × 1080). Such a spatial resolution allows expending the sensation of

realness perceived by the observer by increasing the pixel count and thus the amount of detail

reproduced from the captured scene. 8K video resolution has attracted a lot of interest from the

industry with new 8K sensors, TV screens, and experimental tests performed by broadcasters,

e.g. in Japan with the NHK. Nevertheless, this large amount of spatial information requires

high resources in terms of bandwidth to ensure good video quality, bringing new challenges to

broadcasters.

Thus, new video coding standards emerged under the pressure of the different industrial

actors, like VVC/H.266 [3], finalized in July 2020. This standard is born from a collaborative

work carried out by the joint video exploration team (JVET) composed of experts from the

international telecommunication union (ITU) and the ISO/IEC represented by the video coding

expert group (VCEG) and the moving picture expert group (MPEG), respectively. The objective

of VVC was to reduce the bitrate required by high-efficiency video coding HEVC [4] by 40%

for the same visual quality. Like its predecessor did for introducing 4K services, VVC should

allow the deployment of new immersive services like 360° videos and 8K.
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1.2 Use case and motivations

In France, technical experiments have been launched to prepare a technological switch on

the French digital terrestrial television (DTT) by 2024. This work aims to deploy 4K services in

DVB-T2/HEVC coupled with new TV services, e.g. replay, video on demand (VOD), push. For

instance, experimental tests have been performed using bitrates from 10 to 17Mbps (4K) and 3

to 17Mbps (HD) for 2 to 3 program delivery with HEVC. In this context, the introduction of new

video formats has to consider backward compatibility with legacy receivers to keep the audience’s

reach. However, the high bitrate requirements of 8K prevent the deployment of this technology

on terrestrial networks with 4K simulcast, i.e., both 8K and 4K are encoded independently and

muxed. On the one hand, several alternatives to simulcast exist, like scalable video coding,

proposed by scalable extension of codecs like scalable video coding (SVC) and SHVC. However,

due to a bitrate gain being too low compared to the practical constraints imposed by scalability,

this type of architecture is not adopted in the industry. On the other hand, AI-based video coding

and post-processing technologies have recently shown outstanding performance compared to

traditional algorithms. The potential of these technics for video compression is already well-

known in the literature, with, for instance, super-resolution applied as post-processing [6] or

end-to-end video coding [7]. These algorithms could recover 8K resolution from a 4K signal

upscaling with or without metadata, e.g. LCEVC [8].

This work aims to explore and develop efficient and innovative algorithms allowing the

reconstruction of an 8K signal from a 4K one. In a first step, a subjective study evaluates the

performance of different compression methods and post-processing algorithms for 8K video

coding. Then, new super-resolution methods based on multitask learning has been proposed to

improve performance on compressed videos. Finally, a new layered compression scheme, called

CAESR, has been proposed. This coding scheme is based on a conditional autoencoder that

encodes the residual between the upscaled BL signal and the source video.

1.3 Outlines

Chapter 2 defines the state-of-the-art next-generation video formats and coding algorithms.

This chapter first describes the video signal’s characteristics and introduces the standardized

UHDTV video formats, focusing on 8K video resolution. Then, the hybrid compression model

and the single-layer HEVC and VVC standards are then briefly detailed. Finally, layered-coding

architectures, including SHVC of codecs and LCEVC, are presented.
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Chapter 3 provides the state-of-the-art AI-based algorithms for video compression, including

deep learning-based models replacing conventioanl pre and post-processing systems to the

coding algorithm itself. This section first gives a brief overview of neural networks. Then, we

discuss how artificial intelligence (AI)-based restoration algorithms can be integrated as pre

and post-processing into a coding pipeline. Finally, this chapter reviews the recent promising

approaches proposed to replace traditional image and video codecs.

Chapter 4 provides objective and subjective evaluations of standards and algorithms using

a dedicated 8K resolution video dataset. First, this chapter describes our 8K video test dataset.

Then, the objective and subjective quality of HEVC and VVC for 8K video coding are assessed.

This section also evaluates the perceptual gain offered by 8K over 4K for each tested scene.

Finally, this chapter also considers algorithms enabling 8K video delivery with 4K backward

compatibility, including SHVC and spatial upscaling using super-resolution and a Lanc zos filter.

Chapter 5 explores multitask-based architectures for super-resolution on compressed contents.

This process allows performing multiple tasks with a single shared network, reducing the total

number of parameters. Advanced training strategies, such as prior information using qpmap and

network pre-training, are also investigated to improve the network’s performance on compressed

low-resolution inputs. First, this chapter presents the principle of multitask learning and different

possible architectures. Then, we introduce MTL-EDSR, a multitask network that performs

super-resolution and quality enhancement using a single shared network. Finally, we presents

MTL-Unet, an extension of MTL-EDSR dedicated to super-resolution and high-level vision

tasks, namely, no-reference image quality assessment (NR-IQA) and semantic segmentation.

Chapter 6 presents CAESR. This learning-based layered approach uses a conditional au-

toencoder as an EL model and a conventional single-layer codec as a BL model. The presented

method is trained to encode the residual between the upscaled reconstructed image and the

source. First, this chapter presents the overall pipeline of the proposed solution. Then, we

evaluate our algorithm as a codec enhancer based on the HM-16.20. We first provide an ablation

study that validates the efficiency of our method. Then, we compare it against state-of-the-art

layered approaches, including LCEVC and SHVC, for single-layer codec enhancement. Finally,

our algorithm is assessed to deploy of new services by considering 4K video delivery on top of

an HD signal regarding typical bitrates used for DTT broadcast.
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CHAPTER 2

NEXT-GENERATION VIDEO CODING

2.1 Preamble

With the emergence of new digital video formats, the consumer’s demand for more immersive

video services, such as higher spatial and temporal resolutions, increases. However, high bitrate

requirements are needed for this kind of service, challenging their deployment on broadcast

infrastructures. To tackle this, video coding technologies have been standardized over the

years to provide efficient compression algorithms and enable the deployment of new immersive

video services. For instance, contributions to video coding standards like HEVC [4, 26] or its

successor VVC, finalized in July 2020 as ITU-T H.266 | MPEG-I - Part 3 (ISO/IEC 23090-3)

standard [3, 27], enable video signal compression to be continuously improved through the

standardization bodies.

This chapter includes background on video coding technologies, from video signal character-

istics and formats to the recently developed coding standards, including single-layer and layered

technologies.

2.2 Background on video signal

This section first defines the characteristics of a video signal. Then, the standardized UHDTV

video formats are presented, focusing on 8K video resolution.

2.2.1 Video signal characteristics

A video signal corresponds to a sequence of pictures, also called frames, characterized by a

spatial resolution W ×H representing the number of pixels in each row and column, respectively.

The video frames are presented sequentially at a given temporal frequency, called framerate or

temporal resolution, expressed in Hertz (Hz) or frame per second (fps). An example of a video

sequence is given in Figure 2.1, with f denoting the framerate.
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time

Figure 2.1 – Illustration of the temporal and spatial resolution of a video sequence.

The pixels are composed of different channels (usually 3), which contain the value of

the given component. For instance, when the pixels are represented in the RGB space, each

component defines a color sample (red, green, and blue). However, since the human visual

system (HVS) is more sensitive to the luminance component of an image, pixels are more

commonly represented in the YUV (YCbCr) color space, where Y corresponds to the luma

component and UV the chroma components. Moreover, it decorrelates the signal as the more

significant visual information is concentrated into one channel. Thus, chroma subsampling can

be performed to reduce the amount of information in the raw representation of the sequence

with a limited impact on the visual quality. The three YUV subsampling types are illustrated

in Figure 2.2. In 4:4:4 sampling, YUV components are fully and equally sampled. In 4:2:2

sampling, U and V components are downscaled horizontally by a factor of 2. In 4:2:0 sampling,

both U and V channels are downscaled by a factor of 2.
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Figure 2.2 – YUV subsampling.

The maximum value of pixels depends on the number of bits used to represent the signal

components. Typically, raw video frames are encoded from 8-bits to 16-bits per pixel per

channel. Thus, the maximum possible values per channel of a pixel for a frame sampled in
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Table 2.1 – HDTV and UHDTV standards parameters.

Parameter HDTV UHDTV

Spatial resolution 1920 × 1080 3840 × 2160, 7680 × 4320

Aspect ratio 16:9 16:9

Frame frequency (Hz)
60, 60/1.001, 50, 30, 30/1.001,

25, 24, 24/1.001
120, 60, 60/1.001, 50, 30,
30/1.001, 25, 24, 24/1.001

Standard viewing angle 30° 100°

Scanning Interlaced, Progressive Progressive

Sampling lattice Orthogonal Orthogonal

Color gamut BT.709 [2] BT.2020 [1]

Dynamic range SDR SDR, HDR

Pixel aspect ratio 1:1 (square pixels) 1:1 (square pixels)

8-bits is 28 = 256 and 210 = 1028 in 10-bits. Therefore, given a 60fps 7680 × 4320 raw video

sequence sampled in YUV4:2:0 10 bits, the total amount of bits is computed as:

60 images
1 second

× 7680 × 4320 pixels
1 image

× 1.5 channels × 10 bits
1 pixel

≈ 29.86 Gbits/s (2.1)

2.2.2 UHDTV video formats

The type of delivered video formats highly influence the end-user QoE. For instance, ultra

high definition (UHD) videos increase the degree of immersion by providing more spatial

information. In contrast, higher framerates reduce the motion blur in the scene, which makes the

video looks more realistic. Other features contribute to the QoE. For instance, expanding the

color gamut, defined as limiting the range of colors represented in a particular framework [28],

allows rendering richer colors, providing more realness to the user. Furthermore, increasing the

Dynamic Range, which defines the ratio of the maximum light intensity to the minimum light

intensity [29], allows reproducing more natural luminance variations on the screen.

In order to ensure uniformity between industrial actors and consumers, digital video formats

have been standardized by the ITU. The latest UHDTV system [24] introduced new features to

the existing HDTV system [25]. In addition to HFR and higher spatial resolutions, including 4K

(3840x2160) and 8K (7680x4320), UHDTV consider the integration of other immersive video

formats, including HDR and WCG, i.e., BT.2020 [24]. The parameters of UHDTV and HDTV

systems are given in Table 2.1.
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The digital video broadcasting (DVB) consortium [30] defined three phases for introducing

these formats on broadcast infrastructures, including UHD-1 Phase 1, UHD-1 Phase 2, and

UHD-2 [31]. The delivery deployment of such video services broadcast infrastructures is a real

challenge and requires efficient compression methods to reach the available throughput while

ensuring high video quality. This manuscript addresses the problem of 8K video signal delivery

over terrestrial broadcast (DTT). More details about this video format are given in the following.

2.2.3 8K resolution video

8K resolution videos (7680 × 4320) contain four times more pixels than 4K (3840 × 2160)

and 16 times more than HD (1920 × 1080). An illustration of these three spatial resolutions is

given in Figure 2.3. As mentioned, increasing the pixel count in videos significantly contributes

to the user’s sensation of realness.

4320

7680

8K

1920

1080
HD

2160

3840

4K

Figure 2.3 – Illustration of HD, 4K and 8K spatial resolution.

Appropriate viewing distance has to be defined to take maximum advantage of this resolution.

Thus, the ITU-R provides guidelines on the viewing distance based on the screen’s height [24].

For instance, the optimal viewing distance is 0.8H for 8K video and 1.5H for 4K. These values

are selected based on the relationship between the angular resolution and the horizontal field of

view (FOV), also called viewing angle. An illustration of the viewing distance and the viewing

angle is given in Figure 2.4. Indeed, the standard viewing distance is set so that the horizontal

FOV of one pixel corresponds to one arc per minute, which leads to a critical pattern frequency of

30 cycles per degree (cpd). In other words, it corresponds to the distance a viewer can distinguish

between two pixels. As mentioned in [32], 8K resolution allows increasing the FOV up to 100

FOV while maintaining the angular resolution limit. Thus, as shown in Table 2.1, in addition

to the introduction of UHD video formats, the FOV is increased to 100°. Moreover, increasing

angular resolution improves visual fidelity while increasing the FOV and impacts the realness

and the sensation of "being there" [32].
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Figure 2.4 – Illustration of viewing distance and viewing angle.

Several perceptual studies have demonstrated the perceptual gain of 8K resolution. For

instance, the QoE of 8K contents have been evaluated regarding different use-cases by using

specific contents [33], e.g. food, people. It demonstrated that viewers experience high-order

psychological effects when watching 8K videos, such as the impression of freshness and deli-

ciousness in the content. In 2013, a subjective experiment was conducted to assess the image

quality of the world’s first 8K 60-Hz HEVC real-time encoder. Several studies have shown that

the bitrate required for 8K applications is approximately 80Mbps using HEVC [34, 35, 36]. In

2019, a demonstration at the international broadcast convention (IBC) presented 8K video en-

coding using HEVC with context-aware encoding (CAE) and demonstrated that the bitrate could

be lowered to around 14Mbps [37]. More recently, a demonstration proposed by the Fraunhofer

Fraunhofer Heinrich-Hertz-Institut (HHI) compared their open-source VVC video codec, called

Vvenc 1 [38], with x265 2 (HEVC) for 8K video coding [39]. The results demonstrated that 8K

video encoded at 25Mbps using VVC could reach the same quality that 8K encoded at 50 Mbps

using HEVC.

In practice, an 8K 120Hz HEVC codec [40, 41] has been used for Japan’s satellite broad-

casting by using DVBS2X [42]. In that case, the use of a complete transponder or multiple

bonded transponders can reach bandwidth in the range 70-80Mbps. Also, experiments in several

1. https://github.com/fraunhoferhhi/vvenc

2. https://trac.ffmpeg.org/wiki/Encode/H.265
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Table 2.2 – Summary of 8K (7680 × 4320) trials on terrestrial television networks [5].

Country DTT system
Channel

bandwidth
Multiplex

capabilities
Signal
bitrate

Compression
standard

framerate

Japan ISDB-T 6 MHz 91.8 Mbps 91 Mbps AVC 59.94Hz

Spain DVB-T2 8 MHz 36.72 Mbps 32 Mbps HEVC 50Hz

Brazil ISDB-T 6 MHz 91.8 Mbps 85 Mbps HEVC 59.94Hz

China DTMB-A 8 MHz × 4 200 Mbps 120 Mbps AVS3 50Hz

countries have been conducted regarding 8K service deployment on DTT networks [5]. An

overview of these experiments settings is given in Table 2.2.

2.3 Overview of video coding

This section presents the different coding blocks of the well-known hybrid compression

model. Then, details on the performance evaluation of compression algorithms are given.

2.3.1 Hybrid compression model

Since H.261 [43], the hybrid compression model has been widely integrated into codecs. The

principle of this coding framework is to integrate a decoder inside the encoder, which performs

spatial and temporal predictions regarding the already decoded samples. Thus, the residual

error can be sent along with the prediction information, such as the motion vectors and the intra

prediction mode, to reduce the temporal and spatial redundancy in the transmitted signal. The

basic steps of hybrid compression systems are partitioning, prediction, transform, quantization,

and entropy coding. An overview of the hybrid compression model is given in Figure 2.5.

The first step of the hybrid compression model is to represent the frames into blocks by

recursively splitting them into partitions. The partition granularity offers flexibility with flat and

complex spatial areas in the input signal. Each block is then processed individually for intra and

inter prediction. The former mode exploits the spatial redundancy between blocks by using the

spatially adjacent blocks to predict the current samples. The second type of prediction relies

on the temporal correlation among frames by predicting samples from the previously decoded

frames. The residual error, i.e., the difference between the predicted and original samples, is then

computed and transformed using 2D separable linear transforms, such as the DCT. This step is

crucial in hybrid compression systems as it performs energy compaction and signal separation

13
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Figure 2.5 – Hybrid compresion model architecture (encoder).

into frequency components. The transformed residual signal is next quantized to a discrete set

of values. This process corresponds to the lossy step of the hybrid compression framework.

Uniform quantization is usually applied with a quantization step parametrized by a quantization

parameter (QP) to adjust the quantization level. As the signal is transformed, quantization can be

performed on the higher frequency components using adapted scanning approaches, resulting in

a lower perceptual loss. The last step of the hybrid coding system is to represent the quantized

and transform signal into a sequence of bits. It is generally performed by entropy coding, which

allocates bitrate regarding the probability of the signal, i.e., more bits are assigned to the less

common sources. In addition, the side information related to prediction modes, including motion

vectors and intra prediction mode, is also transmitted to allow performing the prediction at the

decoder side.
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2.3.2 Evaluation of coding performance

Performance evaluation

The performance of compression algorithms can be evaluated based on multiple factors,

including their RD performance and their complexity. The RD performance assesses the degrada-

tion introduced on the signal at a given compression ratio due to the lossy nature of compression

systems. Thus, RD curves can be plotted to illustrate this relationship for different operating

points, as shown in Figure 2.6. The more the curve related to "Algorithm 1" is above the curve

associated with "Algorithm 2", the better the performances of "Algorithm 1" are compared to

"Algorithm 2".
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Figure 2.6 – Illustration of the BD assessment method.

The BD [44] method allows quantifying the RD performance of the "Algorithm 1" compared

to the "Algorithm 2", called the anchor. A minimum of four operating points for both algorithms

are required for this method. This metric calculates the area between the two curves, indicating

how superior "Algorithm 1" is over "Algorithm 2". It can be computed to quantify either

the average proportion of bitrate saved regarding the same quality or the average quality gain

regarding the same bitrate. First, the curves are interpolated to be defined as a log-based

third-order polynomial as:

f(Q) = a + b · Q + c · Q2 + d · Q3, (2.2)

15



Next-Generation Video Coding

where Q denotes the quality, f(Q) the bitrate as the function of the quality, and a, b, c, and d

are the fitting parameters. Then, the difference between the intervals of the interpolated curves is

computed to obtain the quantities in the grey areas represented in 2.6.

As mentioned, the complexity of compression algorithms can also be used as a performance

indicator. This measure is typically assessed by the encoding/decoding times and the memory

consumption required by the evaluated compression system.

Video quality assessment

Evaluating the distortion between a source signal and its representation reconstructed by lossy

compression algorithms is a very active field of research. As mentioned, it allows assessing the

performance of compression algorithms, which is critical for their benchmark and to contribute

to their improvement. However, evaluating perceptual quality is challenging as the degradations

introduced during compression are not equally processed by the HVS.

Subjective evaluation with human observers is the most accurate way to assess the quality

of videos. Thus, the international telecommunication union (ITU-T) continuously standard-

izes subjective test methodologies to facilitate the analysis and reproducibility of perceptual

studies [45, 11]. Although optimal to assess the performance of compression algorithms, these

methods are time-consuming and not adapted to video signal evaluation inside the coding pipeline.

Hence, objective quality metrics are developed to simplify the assessment of the reconstructed

signal’s quality. For instance, the PSNR, which is a prevalent objective metric emanated from

the mean squared error (MSE), is computed as:

PSNR = 10 × log10

d2

MSE
, (2.3)

where d is the maximal pixel value and the MSE is the difference between the square of two

frames pixel by pixel. The MSE is a straightforward way to assess the quality of a compressed

frame y compared to uncompressed frames x:

MSE =
1

M × N

M
∑

i=1

N
∑

j=1

|| x(i, j) − y(i, j) ||2 . (2.4)

The PSNR is ubiquitous in the compression research field and the industry due to its low

complexity. However, this objective metric is known to be a poor indicator of the actual quality

perceived by the HVS, i.e., the end-user.

SSIM [46] is another popular objective quality metric. It assesses the structure similarity
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between images rather than a pixel by pixel difference. As the HVS is sensitive to structural

variations inside images, the SSIM offers closer performance to subjective observations than

the PSNR [46]. This metric is commonly computed on the luma component only by applying

a window (generally 8x8) on the degraded and original images. The key idea is to combine

different components of the images to assess the degradation: the luminance l, the contrast c ,

and the structure s. The SSIM score is computed as follows:

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y) =
(2µxµy + c1)(covxy + c2)

(µ2
x + µ2

y + c1)(µ2
x + µ2

y + c2)
, (2.5)

with x and y denoting the degraded image and the source image, respectively, and µ, σ and

cov their mean, variance and covariance, respectively. The MS-SSIM [47] can be computed

by applying the SSIM on different scale representations of the images to further improve the

performance. Thus, the final score is computed as follows:

MS-SSIM(X, Y ) =
1

M

M
∑

i=1

SSIM(xi, yi) (2.6)

with X and Y , the source and reconstructed images, respectively, and xi and yi their

representations at different scales with i the scale index. This objective quality metric offers high

correlation scores with subjective test ratings [47].

Recently, Netflix developed an objective quality metric based on machine learning (ML).

This metric, called VMAF [13], is trained to produce a score computed from different other

metrics, including spatial quality indicators with visual information fidelity (VIF) [48], detail

loss metric (DLM) [49] and temporal quality indicators with temporal information (TI). These

simple objective metrics are given as input to a support vector machine (SVM) trained to match

with mean opinion score (MOS) scores.

2.4 Standardization

This section depicted the process over the last decades. The single-layer HEVC and VVC

standards are then briefly detailed. Finally, layered-coding architectures, including SHVC of

codecs and LCEVC, are presented.
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Figure 2.7 – Timeline of video coding technology and standards.

2.4.1 History of video compression standards

Video coding standards specify the bitstream syntax to unify the coding tools and ensure

interoperability between industrial actors. It also allows promoting the mass adoption of codecs

in the ecosystem. An overview of the video coding standardization timeline is given in Figure 2.7.

In 1990, the VCEG developed H.261 [43], the first video compression standard adopting the

hybrid coding scheme presented in Section 2.3.1. Standardized coding tools fulfill the roles of

the different steps, such as the DCT for transform, motion compensation for inter prediction, and

variable-length coding (VLC) for entropy coding. In 1993, MPEG, which started in 1988 as the

result of collaborative work between the international organization for standardization (ISO) and

the international electrotechnical commission (IEC), developed MPEG-1 [50]. This standard

is mainly based on H.261 while including new tools like bi-directional motion prediction and

slice structure coding. Later, MPEG-2 [51, 52] was standardized as another joint contribution

between MPEG and ISO/IEC by incorporating new coding technologies to the existing MPEG-1

standard, e.g. interlaced frames and spatial and signal-to-noise ratio (SNR) scalability. This

standard has been widely adopted and is still used in the broadcast ecosystem. Then, both groups

continued developing their standards. The ITU developed H.263 [53] (1995), introducing P

and B frames and arithmetic coding, and MPEG-4 Visual [54]–or ISO/IEC 14496-2– has been

developed in parallel by MPEG allowing coding 10-bits and 12-bits raw videos. The subsequent

success in video coding standards history came from H.264 [55], also known as AVC [56]. This

standard has been developed from a collaborative work between MPEG and VCEG through the

joint video team (JVT). It introduced new features to the existing MPEG-2 standard, such as
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the deblocking in-loop filter (ILF). This standard encountered a high success for HD definition

services deployment on broadcast infrastructures. In 2013, HEVC was born as Recommendation

H.265 [4] or ISO/IEC 23008-2 [57] and offered 50% of video quality gain over AVC [58]. This

standard has been mainly developed for UHD services broadcast. More recently, VVC has

been developed by the JVET to meet the high bandwidth requirements of new immersive video

formats, such as 8K. It has been demonstrated to offer 30-50% of subjective gains depending on

the content [59]. More details about the two latest MPEG standards are given in the following

sections.

To compete with those royalty-based standards, some organizations proposed developing

their own. For instance, in 2010, Google developed VP8 [60] and later VP9 [61] (2012) to

serve as the main encoder for Youtube. Based on this principle, the alliance for open media

(AOM) was subsequently formed by Amazon, Cisco, Google, Intel, and Netflix to collaborate on

a royalty-free codec, AOMedia Video 1 (AV1) [62]. Subjective quality assessment of AV1 has

been performed for 4K video resolution and shown that, at the same video bitrate level, AV1 and

HEVC are not significantly different in terms of perceived quality [63]. However, a patent pool

has been finally established for AV1 [64], lowering the interest of the standard.

In parallel, MPEG specified another standard, called essential video coding (EVC) [65],

based on two profiles, a baseline profile which contains public H.264 patents (royalty-free) and a

main profile.

2.4.2 HEVC standard

Coding structure

As in previous MPEG standards, HEVC allows different types of frames, namely, intra (I),

predictive (P), and bi-predictive (B). The I frames only consider the intra prediction for the

processed samples. In addition to intra prediction, P and B frames allow unidirectional and

bidirectional temporal prediction, respectively. The video frames are organized in a fixed and

repetitive pattern called a group of pictures (GOP). The GOP size fits the maximum temporal

distance of inter-prediction. In other words, the last frame of a GOP is either an I or a P frame.

The Intra period defines the number of the frame before introducing an I frame, which provides

random access points and stops error propagation.
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Partitioning

In AVC, the maximum block size is set to 16 × 16 and can be further split until 4 × 4 blocks.

To improve the coding performance for higher resolutions, HEVC defines the maximum block

size as 64 × 64. Moreover, a CTU partitioning strategy is adopted to provide a recursive split of

blocks. This partitioning allows a flexible and efficient way to match spatial variations in the

input image. Larger blocks are efficient in compression flat areas, whereas smaller blocks are

efficient to match with more complex textures. The partitions are proper to each YUV channel

of the input image. An example of the HEVC CTU split is given in Figure 2.8.
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(a) CTU representation

CTU

CU
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CU CU

CU CUCU
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Figure 2.8 – Illustration of HEVC CTU quadtree partitioning.

Each coding unit (CU) is used for the prediction and the transform/quantization steps, denoted

as prediction unit (PU) and transform unit (TU), respectively. The CU can be split following

several granularity levels depending on the block type (skipped, intra, or inter). The partition

decisions are then transmitted to the decoder in the bitstream using the syntax specified by the

standard.

Intra prediction

Intra prediction is designed to predict block samples to encode by exploiting the spatial

redundancy with previously decoded samples in the left and upper edges of the current block.

As described in Figure 2.9, the available reference samples for HEVC are the 2N vertical and

horizontal rows from the upper left corner samples. Three intra prediction modes are available

in HEVC: the planar mode, the DC mode, and the angular mode [66]. The samples predicted

using the DC mode use the constant average value of available collocated reference samples.
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The planar intra prediction mode takes the mean of the horizontal and vertical variations of the

reference samples to predict the current samples. It allows fitting with the boundary edges from

the reference samples and preserves the continuity across the picture’s spatial boundaries. Finally,

the angular mode interpolates the reference samples from an angular prediction projection in a

specific direction. This mode has been extended to 33 angles in HEVC compared to only 8 in

AVC to increase flexibility and further improve prediction accuracy.

(a) Predicted and reference samples (b) Intra coding modes

Figure 2.9 – Illsutration of intra prediction in HEVC.

Inter prediction

Inter prediction exploits the temporal redundancy between frames to predict the current

samples. This mode uses samples areas localized in the neighboring frames as a current samples

reference. The block’s temporal motion is computed by block matching algorithms applied on

the reference frames from the previously coded reference pictures in both past and future. HEVC

introduces several tools to reduce the signaling of motion information in the bitstream, namely

advanced motion vector prediction (AMVP) and merge mode [67]. AMVP proposes to identify

several prediction candidates and compete with them. Then, only the candidate’s index and the

residual motion vector (MV) between the current samples and the candidate. In addition, the

merge mode was introduced where the current PU share and duplicate the spatial or temporal

neighboring of the current block of the selected candidate.
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Transform and quatization

After the appropriate prediction has been performed, the residual between the predicted and

original samples is computed and transformed. As mentioned in Section 2.3.1, the transform

step allows decorrelating the signal by applying 2D separable linear transforms. This principle

enables separating the signal in the frequency region and compacting the signal’s energy. In

HEVC, the TU size can vary from 4x4 to 32x32. HEVC transform is an approximation of the

DCT for inter and intra coded blocks. It also includes the possibility to perform discrete sine

transform (DST) on 4x4 luma intra blocks. An illustration of the frequential bases of the DCT-II

is given in Figure 2.10. Alternatively, the residual samples can be directly encoded without

transform. Once transformed, the coefficients are quantized using different scanning approaches

to mainly affect high-frequency components, reducing the perceptual loss. The quantization step

is similar to AVC, with a QP ranging from 0 to 51 in HEVC. QPs values were selected so that

an increase of 6 corresponds to a quantization step multiplied by a factor of two. Compared to

AVC, HEVC include refined and new tools like additional scanning order, significance maps,

sign coding, and coefficient level [68].

Figure 2.10 – Illustration of the frequential bases of the DCT-II for a 8 × 8 signal.

In loop filters

Since H.264, ILFs are introduced in the coding pipeline to improve the quality of the

reconstructed frame that can be used as a reference for other frames. In addition a the deblocking

filter [69], also used in AVC, HEVC introduced the sample adaptative offset (SAO) [70]. This

filter is dedicated to reduce the ringing artifact. First, samples are classified, and an offset
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is computed and applied to the reconstructed sample depending on the category. The SAO

information is encoded in the bitstream at the CTU level.

Entropy coding

The final block of the coding chain corresponds to entropy coding. In HEVC, high-level

syntax (HLS) elements are encoded using VLC and CU, PU, TU, and SAO information using

context-adaptive binary arithmetic coding (CABAC) [71]. The CABAC algorithm has been

improved in HEVC and follows three steps. First, the signal is binarized to produce binary

symbols from the quantized representations. Then, context modeling is applied to better model

the probability of the binary symbols. Finally, arithmetic coding is performed to losslessly

compress the signal either on estimated probability or using equal probability.

Reference softwares

The HM-16.20 [72] is a reference implementation of the HEVC standard designed by joint

collaborative team on video coding (JCT-VC) experts to evaluate its upper-bound performance.

This software allows four possible types of configurations. The AI configuration considers

intra-prediction only, where each frame is an instantaneous decoding refresh (IDR). The Low

Delay configurations, i.e., low-delay P (LDP) and low-delay B (LDB), enable both intra and

inter predictions. The frames are encoded in the same order as the display order. Thus, these

configurations are adapted to applications requiring low latency, like live applications or video

conferencing. Finally, the RA mode considers a hierarchical prediction scheme of frames. The

frames are then reordered to the appropriate display order. This configuration provides the best

performance while introducing delay corresponding to the size of the GOP. An illustration of a

GOP in RA configuration is given in Figure 2.11.

Unlike industrial and open-source implementations of the standard, like x265, the HM

extensively evaluates all coding modes through a rate-distortion optimization (RDO) [73]. The

frame is first partitioned in CTU. Then each CTU is processed independently, and all coding

modes, including split decisions and intra/inter predictions, are compared regarding an RD cost

based on a Lagrangian function:

J = D + λR (2.7)

Where D represents the distortion and R the rate. Finally, the mode combination which

minimizes that loss is selected for the given CTU.
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Figure 2.11 – Illustration of a RA coding configuration with GOP size of 8.

2.4.3 VVC standard

In answer to the growing interest in new immersive video services, such as 8K, HDR, and

360° videos, MPEG and ITU-T decided to develop a new video coding standard to succeed

HEVC. This standard, called VVC, was published by JVET in July 2020 as VVC/H.266. The

objective was to reach significant coding gains (around 40% in PSNR) compared to HEVC.

Figure 2.12 – Comparison of the available partitioning options in HEVC and VVC.

VVC follows the same hybrid coding scheme as previous AVC and HEVC standards. This

standard includes several novel and refined coding tools at different levels of the coding chain.

For instance, new split possibilities have been added to increase the partitioning flexibility. In

addition, the maximum size of a CTU has been set to 128x128 to reduce the signal cost for

higher resolution videos. An illustration of the different splits available in HEVC and VVC
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is given in Figure 2.12. VVC provides a multiple transform selection MTS algorithm for the

transform step, selecting the best transform among three different transforms: DCT-II, DCT-

VIII, and DST-VII. In terms of intra prediction, VVC can select among 65 different modes,

whereas HEVC proposed only 33 different modes as described in Section 2.4.2. Regarding the

inter prediction, improvement of existing HEVC tools has been provided with SbTMVP and

Bi-Directional Optical Flow. Also, some changes have been provided in entropy coding with a

new advanced CABAC system. Moreover, a new ILF has been integrated with adaptative loop

filtering (ALF) [74]. Finally, reference picture resampling (RPR) has been added as a new feature

in VVC, allowing adaptive resolution coding to be performed independently from reference

pictures.

A recent subjective test has been conducted using the VVC test model (VTM) and validated

that VVC offers around 40% of bitrate reduction over HEVC for the same perceived quality

targeting 4K and HD contents [59]. However, all those new coding decision possibilities

introduce complexity in both the encoding and decoding processes. A comparative evaluation

demonstrated that VVC is 34× more complex than HEVC for AI coding configuration and

around 9× more complex for RA coding configuration [75]. On the decoder side, the complexity

overhead of VVC is 1.8× compared to HEVC.

2.4.4 Layered video coding

Delivering the same program in different formats is a current practice to target different

types of receivers. The most straightforward way is to perform simulcast, where all the signal

representations are encoded independently by single-layer codecs. In that case, the correlation

between the different signal versions is not exploited, resulting in a bitrate overhead. The purpose

of layered video coding is to deliver multiple layers consisting of a BL containing the most

meaningful information and one or more ELs. It allows flexibility regarding the network’s

capabilities and simplifies the deployment of new services on top of legacy receivers. For

instance, configurations based on different spatial resolution, framerate, bit-depth, color gamut,

dynamic range, quality, or codec can be transmitted as separate layers. An example of spatial

and temporal layered configurations is given in Figure 2.13. The following focuses on the former

configuration.
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Figure 2.13 – Examples of layered configurations.

Scalable video coding

Scalability has been introduced in several video standards, namely, MPEG-3, H.263, MPEG-

4, AVC. For instance, SVC has been developed as the scalable extension of MPEG-4 Part 10.

However, due to late integration and a significant implementation shift between the scalable

extension and the single-layer version, it failed to be adopted in the industry.

To avoid these issues, SHVC [9], published in October 2014 by the JCT-VC, focused on

simple implementation and integration. The main objective of this standard is to minimize these

compatibility issues by offering scalability with any HEVC single-layer core with an ILP module

and minor syntax changes. Thus, all layers are based on HEVC using only additional HLS

syntax, whereas SVC requires block-level syntax modifications. The HLS syntax is dedicated to

high-level layer parameters, like the layer ID, the layer dependence, and the enabled interlayer

coding tools. The ILP generates inter-layer reference (ILR) pictures that higher enhancement

layers can use as a reference. Unlike single-layer codecs, which can only predict temporal and

spatial, ILP exploits the redundancy in the reference layers to predict the EL. Thus, ILR pictures

indices are included in the decoded picture buffer of the EL with other temporal reference

pictures during EL prediction. An overview of an SHVC encoder for spatial scalability of 4K

and 8K is given in Figure 2.14.

Two interlayer processing tools are included for spatial scalability in SHVC, namely inter-

layer motion vector scaling and inter-layer texture resampling. The former tool allows adjusting

the scale of the lower-resolution layers to higher-resolution layers. Thus, using dedicated
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Figure 2.14 – ILP for spatial scalability in SHVC.

upscaling filters, ILR pictures are produced by rescaling reference layer (RL) pictures. The most

common scaling ratios in SHVC are 1.5 and 2. In addition to the spatial redundancies between

layers, SHVC allows motion vector mapping between layers. Thus, ILR motion parameters can

be used in the temporal motion vector predictor (TMVP). In the case of spatial scalability, as the

layers have different spatial resolutions, motion field mapping (MFM) is applied to perform the

ILR inter-layer motion vector scaling. SHVC offers gains from 50% to 60% compared to SVC,

depending on the type of scalability

MPEG-5 Part 2 LCEVC

Generally, scalability stands for codecs where each EL uses the same architecture (or similar)

as the one performed by the single-layer BL. Thus, the encoder of each layer takes video signal

as input, which allows the standard coding tools to be used for each layer. Although simplicity

efforts have been made for SHVC, the complexity of inter-layer processing and the relatively low

gain offered compared to simulcast prevented scalable technologies from reaching their expected

success.

In 2021, a new codec called LCEVC was published in ISO/IEC 23094-2 [8] as MPEG-5

Part 2 [76], motivated by the drawbacks of traditional scalable approaches, e.g. SHVC or SVC.

Instead of processing video signals for the enhancement layers, LCEVC encodes the residual

information between the source and the subsequent layers. In addition to bringing more flexibility

and reducing the complexity, it allows the enhancement layers to be compliant with any BL

codec. However, the sparse characteristic of this residual makes it not suited to tools included

in common video coding standards, such as the HEVC block-based scheme. Thus, a set of
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dedicated coding tools are provided by LCEVC, e.g. small block sizes (4 × 4 and 2 × 2) and

specific transform, to efficiently encode the residual signal.

An overview of the LCEVC standard architecture is given in Figure 2.15. The BL codec

processes a downscaled representation of the input video, either by a factor of 2 or 4. Thus,

it reduces the bit per pixel ratio and complexity, which tackles the increasing coding and

decoding run times of emergent standards, e.g. VVC. In addition, post-processing tools like

deblocking filters and dithering are provided to further enhance the quality of the reconstructed

high-resolution (HR) signal.

input seq. output seq.

L-1 outputL-1 Dec.L-1 input L-1 Enc.

BL outputBL Dec.BL input BL Enc.

L-2 Dec.L-2 Enc.

Bistream

Bistream

Bistream

Base-Layer (BL)

Enhancement Sub-Layer 1

Enhancement Sub-Layer 2

-

-

Figure 2.15 – Architecture of LCEVC.

First, the input video sequence is downscaled to the desired resolution using non-normative

downscaling filters. Both downscaling steps can be performed in either both vertical and

horizontal directions, horizontal direction only, or bypassed. Then, the BL codec encodes the

downscaled video to produce the base-layer bitstream. The first enhancement sub-layer encodes

the differential residual between the reconstructed BL and the first-order downscaled input

sequence. The output of the enhancement sub-layer 1 is then reconstructed to feed the input of

the enhancement sub-layer 2. Similarly, this EL encodes the residual between the reconstructed

EL-1 and the input video sequence.

As mentioned, the sparsity of residual makes it not suited to traditional coding tools im-

plemented in most MPEG standards. Indeed, as the residual contains a high proportion of

close-to-zero values, processing large blocks followed by a DCT would result in an important
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loss of information during quantization. Thus, the enhancement layers process small blocks of

size 2x2 or 4x4, i.e., CU. It allows efficiently transform edges and textures in the residual while

proving a high flexibility. Once the residual is computed, residual mode selection is applied

to determine which residual blocks should be encoded and transmitted. First, each block is

classified over ten classes regarding its spatial and temporal features. Then, a weight in the

range of 0 to 1 is associated with each CU. CUs (or group of CUs) assigned with a 0 weight

associate are not transmitted. Depending on their class, the non-zero CUs are processed by

either the EL-1 or the EL-2. In addition to the residual mode selection, a vector-free temporal

prediction can be performed on the reconstructed signal. Indeed, as residual signals contain a

lower temporal correlation than video signals, motion compensation is not adapted. This simple

temporal layer allows fixed and sharps elements, like logos, to be propagated along with the

GOP. This processing is applied at the CU level, enabling parallel processing.

Each selected CU is then transformed using a Hadamard filter. This transform has the

advantage of containing orthogonal rows and being self-inverse, meaning that the inverse

transform is the same as the forward transform. Quantization and entropy coding are then applied

to both ELs. A linear quantizer with a dedicated quantification parameter for both ELs is used

for quantization. In LCEVC, entropy coding is based on Run-Length Encoder and Prefix Coding

encoder as implemented in AVC.

An overview of the performance of LCEVC is given in [77]. This study demonstrates that

LCEVC brings gains compared to full-resolution coding, especially at a low bitrate. However,

the performances in terms of PSNR are slightly better than the upscaling filter without metadata.

Regarding VMAF, the gain is lower than the upscaling filter used without metadata. It can be

explained by the weights used for VMAF that are not trained for the tested type of degradation.

In contrast, high gains have been observed for logos and fixed elements sequences. The temporal

layer which successfully propagates these residuals along the GOP can explain this observation.

Also, the more recent the codec, the less the gains are compared to full-resolution coding, the

less the gains are compared to full-resolution coding. In the industry, LCEVC has been selected

as a layered approach in the Brazilian television system (SBTVD) [78] to enable 8K over the top

(OTT) signal delivery using over a 4K over the air (OTA) BL. However, it is not planned to be

introduced in the DVB toolbox yet.
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2.5 Conclusion

Given the amount of information contained in new immersive video signals, highly efficient

compression technologies are needed to compress and transmit this type of video. This section

presented different video formats, focusing on spatial resolution, especially 8K. Although modern

coding technologies offer coding gains, it is still challenging to consider delivering these new

formats on broadcast infrastructures.

The following chapters will present different AI-based algorithms for video coding. We

demonstrate how they can be integrated into a compression pipeline and facilitate deploying

these new video services on broadcast infrastructures.
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CHAPTER 3

AI-BASED ALGORITHMS FOR IMAGE AND

VIDEO COMPRESSION

3.1 Preamble

Recently, deep neural networks (DNNs) have been widely explored in most scientific research

fields, including image and video processing. The idea behind neural networks is to optimize a

set of trainable parameters with respect to a loss function. Thus, a non-linear mapping between

the input and the desired output, i.e., the ground truth, is learned. The ability of DNNs to

model complex non-linear functions makes them suited to solve ill-posed problems like image

restoration tasks. This chapter demonstrates that every block of a video compression pipeline,

ranging from pre and post-processing models to the coding algorithm itself, can be replaced by

DNNs to further improve the performance.

This chapter is organized as follows. Section 3.2 first gives a brief overview of neural

networks. Then, Section 3.3 discusses how AI-based restoration algorithms can be integrated as

pre and post-processing into a coding pipeline. Finally, Section 3.4 reviews the recent promising

approaches proposed to replace traditional image and video codecs.

3.2 Neural network overview

Any ML algorithm can be represented as a function fθ with parameters θ, which learns to

map inputs x to outputs y. First, a ground truth containing representative inputs x and associated

labels y is designed. Then, the ML model tunes its parameters θ during the training phase to

solve y = fθ(x). Generally, the dataset is divided into training and testing sets to ensure that the

model generalizes well on unknown data. This section gives an overview of the building and

training phases of a neural network.
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3.2.1 Basics of neural networks

Artificial neural networks (ANNs), or neural networks (NNs), are machine learning systems

deriving from the biological neural network that constitutes the human brain. These networks

are composed of multiple neurons connected by synapses that transmit a signal, i.e., a real

number, through the network. A neural network fθ of parameters θ is composed of weights W

and bias B stacked into layers fθi
. These linear layer are generally followed by a non-linear

activation function. For instance, the output of a layer fθi
followed by a rectified linear unit

(ReLU) activation is computed as:

fθi
(yi) = max(0, Wi ∗ yi + Bi), (3.1)

with i ∈ 1, ..., L the index of the layer and L the number of layers. Other examples of

non-linear activation functions are given in Figure 3.1.

Figure 3.1 – Non-linear activation functions.

The training process is divided into two steps: the forward-pass and the backward-pass.

During the forward-pass, the network’s output ŷ is predicted from the input x by successively

passing through each layer of the network fθ as:

ŷ = fθL
◦ fθL−1 ◦ ... ◦ fθ0

(x). (3.2)

Then the predicted output ŷ is compared with the associated ground truth label y using a

loss function L.

During the backward-pass, the network parameters θ are learned using optimization tech-

niques, such as stochastic gradient descent (SGD) [79] or ADAM [80]. These methods minimize

the loss function L by backpropagating the gradients from the deeper to the shallower layers of

the network fθ. At each training iteration, a batch of sample is extracted from the dataset and is

used to optimize the network’s parameters θ as follows:
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θ̂ = arg min
θ

1

N

N
∑

n=1

L(y, ŷ), (3.3)

with θ̂ denoting the updated parameters, N the batch-size and n = 1, ..., N the sample index.

DNNs have been investigated by stacking more layers to increase the number of learned

parameters. Outstanding performance has been recently observed and demonstrated that DNNs

can learn rich representations of the input y. These models have been widely used for various

tasks, from classification to complex restoration tasks such as image denoising and super-

resolution (SR).

3.2.2 Convolutional neural networks

CNNs are a specific type of neural network where the weights W are represented by convolu-

tional kernels. This architecture allows large-scale images to be processed with fewer operations

than fully connected (FC) neural networks. Generally, the training images are cropped into

patches to form fixed-size batches and accelerate the training process. The features learned

by a CNN are called features maps and correspond to sub-images with increasing abstraction.

CNNs are characterized by a receptive field, representing the extent of the scope of input data to

which a neuron or unit within a layer can be exposed. This principle is illustrated in Figure 3.2.

Several techniques allow increasing the receptive field, including using a deeper network, larger

convolutional kernels or downscaling and upscaling layers.

Layer 1 Layer 2 Layer 3

Figure 3.2 – Illustration of the receptive field of a three-layers (3 × 3 kernels) CNN.

Advanced architectures have been investigated to improve the performance of CNNs. Intu-

itively, increasing the number of layers would result in better performance as more parameters

are provided to learn the objective function. However, the non-linear activations can lead to

gradient vanishing during backpropagation, which degrades the performance. To tackle this,

residual network (ResNet) [81] proposes adding skip connection represented by element-wise

sum between layers. Thus, the network can learn the identity function to bypass some layers
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during the backward step and it also makes the feature maps more sparse and leads to better

performance. More recently, attention layers have been investigated for CNNs [82]. Inspired by

the human brain’s attention, these layers learn masks that indicate areas of interest to the network

regarding the task.

3.3 Pre and post-processing methods

The latest video coding standard, called VVC, includes several novel and refined coding tools

at different levels of the coding chain. These tools bring significant coding gains with respect to

the previous standard, HEVC. However, the encoder may still introduce visible coding artifacts,

mainly caused by coding decisions applied to adjust the bitrate to the available bandwidth. Thus,

CNN-based quality enhancement (QE) models have been investigated as post-post processing to

improve the decoded signal quality. Furthermore, downscaling-based compression methods have

been explored to increase the image’s bit-per-pixel ratio, which mitigates coding artifacts at the

cost of a high-frequency loss. It also appears as an efficient solution for backward compatibility

with legacy receivers by allowing higher resolutions to be reconstructed without additional

bitstream. This approach requires efficient pre and post- processing modules to recover details

from low-resolution (LR) compressed images. This section reviews different state-of-the-art SR

and QE approaches and presents how they are used for downscaling-based video compression.

3.3.1 Super-resolution

A simple way to upsample (or upscale) an image is by using linear interpolation filters. These

filters consider neighboring pixels and weigh them linearly regarding the location of the pixel

to generate. The most straightforward approach is the nearest neighbor kernel, which fills the

missing pixels with their closest values in the original image. However, this filter generates

undesirable artifacts in the reconstructed HR image, which can be solved by more sophisticated

interpolation methods, e.g. bilinear, bicubic [83], or Lanczos [14]. The interpolation of a 1-D

signal is illustrated in Figure 3.3 for different filters. Although low complex, these filters fail

to reconstruct high-frequencies and model the signal’s discontinuities, e.g. edges, resulting in

blurry images. In addition to increasing images’ spatial dimension, SR algorithms address all

unpleasant effects of linear interpolators, including edge-smoothing, blur, and noise. These

algorithms can be divided into two distinct groups: single image super-resolution (SISR) and

multi-frame super-resolution (MFSR).
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Figure 3.3 – Non-linear activation functions.

SISR methods aim at reconstructing an HR image from a single LR observation. This

problem is considered ill-posed, as an infinity of HR images can solve a given LR image ILR.

Learning-based SISR methods have recently shown outstanding performance to reconstruct

HR images. Dictionary-based approaches relying on neighbor embedding [84, 85] and sparse

coding [86] techniques have been first explored. In 2014, the first CNN-based SR model,

called SRCNN, was proposed [87]. This simple CNN, composed of three convolutional layers,

allows learning the non-linear mapping between LR and HR feature maps. An overview of this

architecture is given in Figure 3.4. First, the network fθSR
estimates the HR output image ÎHR

from the LR input image ILR as:

ÎHR = fθSR
(ILR), (3.4)

Then, the learned parameters θ̂SR are obtained by solving the following optimization problem:

θ̂SR = arg min
θSR

1

N

N
∑

n=1

L(IHR, ÎHR), (3.5)

with N the number of training samples, n = 1, ..., N the sample index, and L the loss
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Figure 3.4 – SRCNN Architecture [10].

function computed as:

L(IHR, ÎHR) =|| IHR − ÎHR ||2 . (3.6)

This approach performs a bicubic upscale on the LR input image ILR before processing

to match with the output resolution. However, achieving the upscaling phase at the end of

the network reduces the complexity as convolutions are performed in the LR space. A sub-

pixel upscaling layer has been developed in [88] to prevent checkerboard artifacts generated by

convolution layers [89]. ResNets have later been investigated for SR with long [90], short [91],

and dense connections [92] to further improve the performance. EDSR proposes removing the

batch normalization layers that impose less flexible ranges for feature maps [18]. The authors

also suggest replacing the MSE with the L1-loss, which improves the PSNR performance. An

overview of this architecture is given in Figure 3.5. Examples of reconstructed images are given

in Figure 3.6.
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Figure 3.5 – EDSR Architecture [18].

Deep-back projection layers have been introduced into an SR network [93, 94]. This principle

performs successive downscaling and upscaling on feature maps to increase the receptive field.

The attention mechanism described in Section 3.2 has been investigated for SR based on first-
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Figure 3.6 – Visualization of images from kodak reconstructed using a Lanczos filter and EDSR.

order feature statistics with RCAN [95] and second-order feature statistics with SAN [96].

Attention masks are learned in both pixel and channel spaces in these approaches.

These presented learning-based methods use pixel-wise loss functions, e.g. MSE and L1-loss,

during the model optimization. Although these metrics are simple to compute and directly

related to the PSNR, their fidelity with the HVS is limited. The MS-SSIM loss has been

investigated in [97] and coupled with the L1-loss to improve reconstruction quality. Moreover,

perceptual metrics [98] and generative adversarial networks (GANs) [99] have been explored as

loss functions for SISR [91]. These approaches allow more realistic HR images to be produced

by hallucinating spatial textures. Some improvements have been proposed in [100], including

residual-in-residual dense blocks without batch normalization. However, GAN-based approaches

can cause deviation from the source content, which is undesirable in a broadcast context.

MFSR methods leverage temporal information to recover missing subpixels in the adjacent

frames. Kappeler et al. proposed a CNN-based MFSR solution called VSRnet [101]. Here, up

to two previous frames are aligned with the current one as input to the network fθ using adaptive

motion compensation with optical flow [102] as:

ÎHR = fθSR
(ILR

t−k, ..., ILR
t , ..., ILR

t+k), (3.7)
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Table 3.1 – State-of-the-art super-resolution models overview.

SISR model #Parameters PSNR (dB) SSIM

bicubic - 33.66 0.9299

SRCNN [10] 57K 36.66 0.9542

VDSR [90] 665K 37.53 0.9590

EDSR [18] 43M 38.20 0.9606

RCAN [95] 16M 38.33 0.9617

with fθSR
the MFSR model, t the temporal index and k the number of neighboring frames

considered is the reconstruction process. The sub-pixel upscaling has been introduced in

vESPCN [103], the spatiotemporal extension of ESPCN [88]. A recurrent neural network

(RNN) dedicated to MFSR has been developed where previously inferred HR frames are used to

reconstruct the current frame [104]. This solution mitigates temporal inconsistency and reduces

complexity. Wang et al. proposed an additional neural network to rescale the optical flow maps in

HR space for motion compensation [105], increasing the accuracy of final HR reconstruction and

run-time. These methods rely on external architectures to compute the optical flow maps, which

is suboptimal. Jointly training the optical flow model with the SR network has been first proposed

in [106], where two terms are optimized in the loss function: one for the HR reconstruction error

and one for the motion estimation error. Unlike in multitask learning appraoches, both models

have distinct parameters. In [107], the authors proposed jointly training the overall system by

optimizing the SR task only. Thus, the reconstructed motion maps look degraded for the generic

motion estimation task but provide more powerful representations for the SR task. Instead of

implicitly learning an optical flow for each neighboring frame, authors in [108] proposed RBPN,

a recurrent approach that performs motion compensation in the feature space. Thus, features are

extracted from the neighboring frames and introduced at different stages into the network by

concatenation using a recurrent back-projection mechanism.

Although MFSR approaches improve temporal consistency and global performance, the

complexity is highly increased due to complex additional modules performing motion estimation

and compensation steps.

3.3.2 Quality enhancement

ILFs are widely used in hybrid coding architectures to improve the quality of reference

images propagated into the GOP. For instance, a deblocking filter [109] and a SAO [110] can
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be activated into the coding loop of HEVC to reduce blocking and ringing artifacts in decoded

frames. More recently, ALF [74] has been introduced in VVC and provides significant gains in

the global performance of this standard [111]. Although CNNs have been investigated to enhance

the quality of codecs directly in the coding loop [112, 113, 113, 114, 115], the main issue resides

in training them during the RDO process because of their high complexity. Moreover, their

integration requires tuning of the host codec.

Unlike ILF, post-processing QE methods aim at reducing compression artifacts outside the

coding loop without any modification in the host encoder/decoder. CNN-based models have been

investigated to match degraded and uncompressed images similarly to SR approaches described

in Section 2. Authors of SRCNN [87] proposed AR-CNN, a CNN-based architecture without

upscaling for coding artifact removal in JPEG images [19]. An overview of this architecture

is given in Figure 3.7. With fθQE
denoting the QE neural network, the output image Î is first

estimated from the compressed degraded input image Ĩ as:

Î = fθQE
(Ĩ). (3.8)

Then, the parameters θ̂QE are obtained by solving the following optimization problem:

θ̂QE = arg min
θQE

1

N

N
∑

n=1

L(I, Î), (3.9)

with N the number of training samples, n = 1, ..., N the sample index, and L the loss

function computed as:

L(I, Î) =|| I − Î ||2 . (3.10)
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Figure 3.7 – AR-CNN Architecture [19].

This approach has been extended in real-time using downscaling and upscaling layers to
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reduce the computational complexity [19]. Based on this principle, Li et al. proposed a ResNet

architecture [116] to enhance the quality of HEVC intra-coded frames. Authors in [117] proposed

an early exit architecture where the reconstruction is performed in multiple stages, allowing to

stop enhancing if the processing resources are insufficient. Some approaches recently proposed

enhancing VVC intra coded frames using a very deep residual network [118] or a multi-scale

grouped dense network [12]. Inter-coded frame post-processing has been performed by authors

in [119] and [120] by jointly training one model for I frames and one for P and B frames. A

recurrent architecture has been proposed in [121] to process successive frames recursively.

Image and video analysis are performed during encoding to perform the RDO. Thus, the

bitstream contains rich information about the signal that can guide the QE process. For instance,

Lam et al. use the QP as a qpmap in addition to the degraded image as input of the network [122].

This map is expressed as follows:

qpmap(i, j) =
QP

QP max

, i = 1, ..., W ; j = 1, ..., H, (3.11)

with (i, j) are the vertical and horizontal pixel coordinates and QP max = 63 in VVC.

In [123], the authors proposed combining the coded prediction residual with the prediction frame

before passing through the network. The CTU partitioning has been used as prior information for

HEVC post-processing in [124], providing knowledge about the spatial structure of the image.

In extension to this idea, the mode selected for each CTU [125] and the predicted signal [126]

further increased the reconstruction quality.

Similarly to MFSR, adjacent frames can help recover missing information in the current

degraded image. Inspired by VSRnet [101], a multi-frame QE as a post-processing approach

has been proposed for HEVC [127] and VVC [128]. Architectures based on RNN [129, 121]

and long short-term memory (LSTM) [130] have been proposed to restore decoded frames

recursively. Yang et al. [131, 132] observe that adjacent frames are sometimes more degraded

than the current frame due to the hierarchical structure of video codecs. Thus, they proposed to

use the peak-quality frames (PQFs) only in the current frame QE process. These approaches use

a SVM [131] or a neural network [132] to detect the PQFs, which introduces additional latency.

The above approaches efficiently improve performance by reducing compression artifacts in

decoded pictures without any modifications in the host encoder. Moreover, these works can be

integrated into downscaling-based compression systems, where the LR images are degraded.
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3.3.3 Downscaling-based compression

Downscaling-based compression systems downscale the signal before encoding and rescale

it to the original resolution after decoding. It allows increasing the bit-per-pixel ratio at the

cost of high-frequency loss, which is valuable at low bitrate, as illustrated in Figure 3.8. These

approaches are divided into two distinct groups: downscaling as mode selection and downscaling

as pre-processing.

The former has been first investigated by providing additional tools for processed 16 × 16

macroblocks of MPEG-2 [133] and AVC [134] standards. Several approaches have explored new

downscaling modes for HEVC using CNNs for CTUs upscaling [135] or frame upscaling [136,

137]. Although improving the RD performance, these approaches require tuning the decoder,

thus renouncing to syntax confirmation with video coding standards. RPR has been recently

integrated as a new feature in the latest MPEG video coding standard, VVC [111]. This feature

improves the flexibility of rate control algorithms and allows adaptive resolution coding by

enabling the ability to adaptively change the coded picture resolution. A recent work improves

VVC’s RPR performance with some modifications, such as increasing the number of references

and using HR references instead of LR ones [138].

Figure 3.8 – Visual comparison of downscaling-based coding when downscale is activated and
not for the sequence CatRobot1 (5Mbps).

Downscaling as pre-processing method considers the entire downscaling of frames before

encoding. An overview of this compression method is given in Figure 3.9. This principle has

been first introduced for still image coding with joint photographic expert group (JPEG) [139].

The authors demonstrate that, given a bit-budget, full-resolution coding can be outperformed
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by applying the optimal scale factor to the input image before encoding. Zhang et al. [140]

proposed to apply it to JPEG2000 using custom downscaling and upscaling filters. This principle

has been later explored for video coding with the well-known bitrate ladder submitted by

Netflix [141], where the optimal resolution is selected regarding the available bandwidth. Some

approaches suggested separating coding and scaling degradation to find the optimal scale ratio

regarding an RD-cost [142, 143]. This method assumes that both degradations are independent.

However, these methods require precoding, resulting in high complexity and latency, which

is not adapted for live applications. In [144], the authors proposed downscaling inter-frame

only and performed dictionary-based SR to reconstruct the HR signal. Afonso et al. determine

the relationship between the downsampling quality and the QP used for compression with a

resolution quantization optimization (RQO) module [145]. A solution for dynamic adaptation of

both spatial resolution and bit-depth has been investigated in [146] and [6]. In this approach, a

simple neural network is employed as an RQO module to determine if the current frame has to

be downscaled or not based on spatial features. Some approaches proposed using GANs and

perceptual losses to hallucinate the details lost during scaling and quantization [147, 148]. These

approaches produce better-looking images but are challenging to train and produce unpleasant

artifacts.

Figure 3.9 – Description of downscaling as pre-processing pipeline.

Finally, learned downscaling methods, also called compact-resolution (CR), have been

investigated to improve overall performance. In [149], two CNNs: one for CR and one for SR,

are jointly optimized regarding the loss function. The authors demonstrated that the proposed

solution improves the performance compared to classical downscaling-based approaches, even

using a Lanczos filter as an upscaling method. Li et al. developed a dynamic framework that
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selects the appropriate downscaling method, i.e., traditional or CNN-based, depending on the

content [150]. In [151], authors trained a CNN-based CR model to maintain the source’s fidelity

in the downscaled signal without additional terms in the loss function. In [152], a CR network is

trained jointly with a semantic segmentation network to help recover textures at the receiver side.

An end-to-end image codec has been jointly trained with CR and SR models [153]. Thus, the

whole downscaling framework is optimized regarding the objective loss function. More details

about learned compression models are given in Section 3.4.

Downscaling as post-processing also appears as an efficient solution for backward compati-

bility with legacy receivers. However, these approaches appear content-dependent, which must

be carefully considered when deploying next-generation services, such as 8K.

3.4 End-to-end image and video coding

Lossy image and video coding aim at reducing the number of bits required to represent the

signal while preserving the most important visual information. This objective can be interpreted

as a RD optimization problem [154], where the model tries to minimize the distortion of the

reconstructed image under a rate constraint. Traditional compression systems are composed of

highly dependent modules that cannot be jointly optimized. In other words, improvement in a

module does not necessarily lead to a better RD performance of the overall system. Moreover,

they are generally based on a block partition scheme, resulting in blocking artifacts on the

block boundaries of the reconstructed image. Recently, learned image and video compression

techniques have shown outstanding performance by jointly optimizing the whole compression

framework regarding a RD loss function. First, we develop the general idea behind learned

compression and introduce the first end-to-end image compression system based on a variational

autoencoder (VAE). Then, we present advanced entropy models and learned video coding systems.

Finally, layered end-to-end coding approaches are presented, including hybrid approaches based

on traditional codecs.

3.4.1 General principle

As mentioned in the previous chapter, most compression standards adopt the principle of

transform-coding to compress the signal. This paradigm is based on Shannon’s separation

principle [155] and follows three distinct steps: transform, quantization, and lossless coding.

Given an input image x, the signal is first compacted and decorrelated by a spatial transform
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into a representation y. Then, the transformed signal y is reduced to a discrete set of symbols ŷ

corresponding to discrete quantization levels. This quantized representation ŷ is then losslessly

coded into a sequence of bits using entropy coding to reduce the remaining redundancies.

Finally, the output signal x̂ is reconstructed from ŷ by the decoder. Based on this system, RD

optimization techniques, such as the well-known Lagrangian optimization method [156], can be

used to obtain specific operating points of the compression framework.

Autoencoders are a type of CNN based on an encoder-decoder architecture. First, the analysis

part of the encoder denoted as ga generates compact and meaningful representations y of the

input image x, called latent variables:

y = ga(x). (3.12)

Then, the synthesis part of the decoder denoted as gs, uses this latent representation to

reconstruct the output image x̂ as:

x̂ = gs(y). (3.13)

Unlike traditional compression algorithms, autoencoders are fully differentiable systems.

Thus, the overall model’s components can be optimized together regarding the objective loss

function.

In 2017, Ballé et al. proposed the first learned compression model based on a VAE [7].

This compression framework, illustrated in Figure 3.10, follows the transform-coding principle

previously discussed by applying quantization and entropy coding to non-linearly transformed

representations y. However, one limitation of such a system relies on the non-differentiability

of the quantization function. Thus, the authors propose relaxing the quantization function by

applying a uniform noise U(−1
2
, +1

2
) on latents to emulate the quantization errors during training

while enabling backpropagation, resulting in ỹ. During inference, the latent variables y are

quantized using the round function to produce ŷ. To simplify, we use ȳ and z̄ to denote both

actual and emulated quantized latents.

Unlike traditionnal autoencoders, this VAE aims at jointly minimizing the distortion D and

the rate R regarding a given RD trade-off. Thus, the RD cost can be directly optimized as a loss

function L based on a Lagrangian multiplier λ:

L(λ) = D + λR. (3.14)

The term D represents the distortion between the reconstructed image x̂ and the original
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Figure 3.10 – Description of end-to-end compression using a VAE [7].

image x. The value of D is computed using the MSE as:

D = Ex∼px
[|| x − x̂ ||2]. (3.15)

The term R corresponds to the rate of the quantized latents ŷ, which is bounded by the

signal’s entropy. As the true probability m of latents ŷ is unknown, the rate is formulated as the

cross-entropy of the distribution m and a selected probability model py as:

R = H(m, py) = Eỹ∼m[− log2(py(ỹ))], (3.16)

We can re-write this equation as follows:

R = H(m) + DKL(m || py), (3.17)

with DKL denoting the Kullback-Leibler divergence assessing the mismatch between the

actual distribution of latents m and the selected probability model py. Thus, minimizing the

cross-entropy of ŷ regarding a given probability model py is equivalent to make m matches the

distribution py while lowering its entropy H(m).

In [7], the learned image compression proposed better performance than JPEG in terms of

visual quality regarding the same bitrate. However, this framework used a relatively simple

network based on generalized divisive normalization (GDN) activations and a fully-factorized

probability model. An overview of this network’s architecture is given in Figure 3.11. Recent

works using more sophisticated entropy models are discussed in Section 3.4.2.

3.4.2 Advanced entropy models

Entropy estimation models play an essential role in the performance of the overall learned

compression system. As discussed previously, a low practical rate relies on both a low entropy
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Figure 3.11 – Ballé et al. Architecture [7].

of latents regarding their actual distribution and a low mismatch with the entropy model py

known at the decoder side. In the pioneering work of Ballé et al., latents are assumed to be

independent and a fully-factorized entropy model based on a Gaussian distribution is used in

the cross-entropy rate loss function. However, this approach is suboptimal as a simple Gaussian

model cannot efficiently represent all the image space. Moreover, this entropy model is fixed for

all processed images, but it is clear that latents have different statistical properties regarding the

spatial characteristics of the input image.

In extension to their work, the authors proposed the use of an hyperprior model to enhance

the entropy estimation in the loss function [157]. This complementary neural network is trained

jointly with the main encoder-decoder system to dynamically learn the appropriate parameters of

the entropy model. This principle has been extended for prediction of the mean µ and the scale

σ2 of a parametric Gaussian entropy model [158, 20] defined by:

py(ȳ|z̄) ∼ N (µ, σ2). (3.18)
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First, the analysis part of the hyper-encoder denoted as ha, generates additional latent

variables z from the latents y as:

z = ha(y). (3.19)

This latent z is then quantized and entropy coded with respect to pz using the same strategy

as in Section 3.4.1 to produce z̄. Finally, the entropy model’s parameters, e.g. the mean µ and

the scale σ2 are estimated from z by the synthesis part of the hyper-decoder hs, as:

{µ, σ2} = hs(z̄). (3.20)

Thanks to the hyperprior, a more accurate entropy model is estimated, reducing the spatial

redundancy in the latent y. This hyperprior provide around 30% of coding gain for still image

coding [159].

Autoregressive models have also been investigated [20] to further reduce the redundancy of

latents. This approach proposes introducing the already decoded pixels in the hyperprior entropy

model’s parameter estimation. This approach is based on Pixel-CNN [160] and typically uses a

5 × 5 mask to process the causal context of latents. An overview of this approach is provided in

Figure 3.12. However, the images are decoded sequentially, which results in a higher processing

time.

Figure 3.12 – Description of end-to-end compression using a VAE with hyperprior and autore-
gressive model [20].

Recently, the performance of VVC All-Intra configuration was reached by a learned image

compression model [21], demonstrating all the potential of these methods. In this work, the
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latent variables are entropy coded regarding a gaussian mixture model (GMM) parameterized by

the output of the hyper-decoder hs as:

py(ȳ|z̄) ∼
K

∑

k=1

w(k)N (µ(k), σ2(k)), (3.21)

with k the index of mixtures defined by w(k), µ(k) and σ2(k), denoting weights, means

and scales, respectively. The authors proposed using residual blocks and attention modules

in the architecture of the network, which further improved the performance compared to the

state-of-the-art. The overall architecture is given in Figure 3.13 and 3.14.

Figure 3.13 – Cheng et al. Architecture [21].

Figure 3.14 – Building blocks of Cheng et al. Architecture [21].
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3.4.3 Learned video coding

While the first learning-based approaches focused on still image coding, a huge interest in

applying this promising concept on video signals recently emerged. Indeed, video signals contain

temporal redundancies that are not exploited by the aforementioned systems, making them not

competitive compared to video coding modes of traditional codecs, such as low delay (LD) or

RA. Although the traditional hybrid coding architecture has limitations, i.e., block partitioning

and hand-crafted suboptimal system, the motion prediction scheme is highly efficient to compress

videos by transmitting the temporal prediction error only to be sent through the network.

The first work that applies this principle is presented in [161]. The authors proposed using

scalar quantization and Huffman coding on fixed 32×32 prediction and residual blocks. However,

this approach does not benefit from the power of representation of autoencoders and falls in the

same limitations of traditional systems by operating on blocks. The first fully-learned video

codec, called deep video coding (DVC), was proposed in [162]. This system is inspired by the

traditional MPEG hybrid coding architecture. The system operates on GOP, where a reference

picture, called I-frames, is used to predict the following frames. Here, the optical flow is sent

through the network to produce the predicted image to compensate at the decoder side. Thus,

two networks are trained in an end-to-end fashion: one for residual compression and one for

motion information compression. The two networks are trained jointly with the RD loss function.

Thus, the network minimizes the RD loss function L by balancing the motion vectors and the

residual prediction rates as:

L(λ) = D + λ(Ry + Rv) (3.22)

With D the distortion as defined in equation 3.15, Ry the rate of latents and Rv the rate of

motion vectors as defined in equation 3.16.

Authors in [163] proposed computing the optical flow in multiple resolutions. Then, the

network selects the appropriate flow resolution regarding the RDO, i.e., low-resolution for

smooth areas and high-resolution for complex spatial areas. More advanced motion estimation

methods have been later investigated. For instance, Djelouah et al. proposed computing the

residual in the latent space instead of pixel space [164]. Thus, richer information is collected

about the residual to reconstruct. Based on this work, authors in [165] proposed performing

the motion compensation directly in the feature space. Deformable convolutions have later

been investigated to further improve the performance [166]. When all the above works consider

temporal information in the 2D pixel-space, authors in [167] consider each GOP as a 3D tensor
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processed by a single network. While being low complex, this approach cannot handle high

motion in the scene.

All the presented approach works for unidirectional prediction in a low-delay configuration.

However, it is well known that a hierarchical structure provides better performance by taking

advantage of the redundancy that occurs in different stages of a GOP. In extension to DVC [162],

Lin et al. proposed using multiple reference frames to predict the current one. In their approach,

authors in [168] proposed a hierarchical learned video coding scheme coupled with a QE network

at the end of the coding pipeline. More recently, a deep video coding framework that holds all

coding modes of a traditional video codec, i.e., all-intra, low-delay, and random access, has been

developed [169]. This approach is based on conditional coding and allows disabling B or P

predictions by setting connections to zero during inference.

The best learned video coding appraoches are now on par with HEVC for HD video sequences.

However, it is still unclear how they behave on very high-resolution videos. Indeed, the motion

estimation is generally performed on 256 × 256 images during training. However, the motion is

usually represented in larger spatial areas for UHD scenes.

3.4.4 Layered approaches

Layered systems exploit the redundancies between different versions of a signal, to deliver

multiple spatial resolution or level of quality in the same bitstream. Toderici et al. [170, 171]

proposed a binary RNN to iteratively reconstruct the image by encoding the residual between

the reconstructed image and the source. A layered-scalable multiscale autoencoder has been

developed in [172]. Here both the BL and the multiple EL models are jointly encoded in an

end-to-end fashion.

Some works proposed using hybrid coding architecture as a BL model enhanced by an

autoencoder used an EL model. An overview of this method is given in Figure 3.15. Tsai et

al. proposed transmitting the residual between a video encoded using AVC the source video as

side information using a binary autoencoder [173]. The binary codes are then entropy-coded

using a Huffman coding compression method [174]. The particularity of this work is that the

network is overfitted regarding specific domains of applications, e.g. specific video games or

natural image datasets. Thus, the Huffman coding tree can be stored at the receiver side to save

bandwidth. Lee et al. proposed a hybrid architecture based on the VVC all-intra mode, which

encodes the residual between the reconstructed image and the source using a VAE, as described

in Section 3.4.1. This method provides higher subjective quality than the BL signal.
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Figure 3.15 – Description of a layered system using a traditional codec as a BL and an autoencoder
as an EL.

3.5 Conclusion

AI-based video compression is a recent and highly innovative field of research whose state-

of-the-art, presented in this chapter, is getting richer day by day. The overview on restoration

algorithms, i.e., SR and compression artifact reduction, demonstrated that the feed-forward

neural network efficiently maps degraded images to non-degraded ones. Moreover, we see that

modifications can be integrated into a downscaling-based compression scheme to improve the

quality of HR reconstruction. In addition to these methods, end-to-end compression algorithms

proposed promising performance as a codec or to enhance existing codecs with a layered

architecture.

The following chapters will focus on integrating these approaches to answer the use-case of

this manuscript described in the previous chapter.
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CHAPTER 4

EVALUATION OF ALGORITHMS AND

STANDARDS FOR 8K VIDEO DELIVERY

4.1 Preamble

As mentioned in the state-of-the-art, 8K resolution video (7680x4320) has attracted a lot

of interest from the industry. This media format dedicated to immersive video applications

aims to improve the end user’s QoE by increasing the amount of spatial information from

the scene. On one hand, several studies have demonstrated that high bitrate requirements are

needed for 8K services using HEVC [34, 35, 36], preventing their deployment over the DTT. To

tackle this, contributions to compression standards like VVC [175, 27], released in June 2020,

would make the delivery of 8K video contents more affordable. On the other hand, backward

compatibility with 4K legacy receiver has to be considered for a successful deployment of 8K

services on broadcast infrastructures. However, scalable coding approaches, such as SHVC [9],

are difficult to consider because of their dependence on the BL codec. Recently, AI-based

up-scalers [10, 176, 15] have shown outstanding performance over classical interpolation filters

like Lanczos [14] or bicubic [177]. These algorithms may reconstruct an 8K signal through the

transmission of a single 4K bitstream, enabling codec agnostic backward-compatibility with any

UHD-1 receivers.

This chapter provides objective and subjective evaluations of standards and algorithms using

a dedicated 8K resolution video dataset. First, Section 4.2 describes our 8K video test dataset.

Section 4.3 assesses the objective and subjective quality of HEVC and VVC for 8K video

coding. This section also evaluates the perceptual gain offered by 8K over 4K for each of the

tested scenes. Section 4.4 evaluates algorithms enabling 8K video delivery with 4K backward

compatibiltiy, including SHVC and spatial upscaling using super-resolution and a Lanczos filter.

Finally, Section 6.5 concludes this chapter.
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(a) LayeredKimono (b) BodeMuseum (c) OberbaumSpree

(d) Festival2 (e) JapaneseMaple (f) SteelPlant

Figure 4.1 – Snapshots of the selected 8K test video sequences.

4.2 8K Video Dataset

This section presents our proposed 8K resolution video dataset. First, a description of the

scenes is provided. Then the parameters of the sequences and their characteristics are given.

4.2.1 Description of the dataset

To fairly evaluate compression algorithms, CTCs video sequences have been defined by

working groups like JVET. For instance, the dataset described in [23] comprises short video clips

ranging from 480p to 2160p organized into six resolution classes (from E to A). The selected

sequences generally last 10 seconds and have various spatial and temporal characteristics,

and also show different contents (sport, video surveillance, TV news) in order to evaluate

the compression algorithms regarding different scenarios. However, no 4320p sequences are

represented in CTCs which prevents the evaluation of compression algorithms on 8K contents.

Moreover, the limited availability of high-quality, uncompressed 8K video sequences motivates

the construction of this 8K video dataset.

It is acknowledged that the higher the spatial resolution is, the more challenging the task of

sampling for sensors is. Thus, high-quality hardwares must be considered to produce premium 8K

contents. Although the amount of 8K video contents is increasing 1, high-quality, uncompressed

1. https://www.youtube.com/c/8KAssociation/playlists/
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Table 4.1 – Description of the 8K test video sequences.

Video title Description

LayeredKimono

Shows a woman wearing traditional Japanese clothes. The camera performs a very
small traveling from the left to the right. There are details on the costume and the
face of the woman.

BodeMuseum

Shows the Bode-Museum of Berlin. The camera is fixed. There are text and details on
the architecture of the monument. There are reflections in the water in the foreground.
A logo is represented in the top right of the scene.

OberbaumSpree

Shows the Spree river in Berlin. The camera makes a traveling from left to right.
There are some boats moving in the front and buildings in the scene’s background.
A logo is represented in the top right of the scene.

Festival2
Shows people celebrating during a traditional Japanese festival. The camera is fixed,
but there is high motion in the scene.

JapaneseMaple
Shows trees in fall. The camera is fixed, and the focus is done in the scene’s center.
The leaves are moving with the wind.

SteelPlant
Shows a foundry. The camera is fixed. There are sparkles and smoke, which represent
most of the motion in the scene.

8K videos are still limited. We identified two 8K raw video sources: the Institute of Image

Information and Television Engineers (ITE) 2 and the HHI [178] 8K video databases.

First, we selected multiple videos from those two sources resulting in 16 different video

clips. All the sequences were evaluated by experts on an 8K TV screen to choose the contents

based on video features like color, movement, texture, and homogeneous content, leading to

different behaviors of the compression algorithms. We also considered the relevance of the 8K

resolution in the scene selection. From this evaluation session, six video sequences were chosen.

Screenshots of the selected scenes are given in Figure 4.1. Table 4.1 enumerates the selected

video clips and their characteristics.

4.2.2 Sequence parameters

The details of the 8K test sequences are reported in Table 4.2. To ensure homogeneity over

video sequences, we performed a color space conversion from BT.709 [2] to BT.2020 [1] for

BodeMuseum and OberbaumSpree scenes. Also, as the sequences LayeredKimono, Festival2,

and JapaneseMaple contain fewer frames than the others, we played them back in mirror mode

2. https://www.ite.or.jp/content/test-materials/
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Table 4.2 – Parameters of the 8K test video sequences. All sequences are in 4:2:0 color sub-
sampling format.

Sequence
Resolution
(W × H)

Frame-
rate

Frames
Color
space

Bitdepth Source

BodeMuseum 7680×4320 60fps 600 BT.709 10 HHI

OberbaumSpree 7680×4320 60fps 600 BT.709 10 HHI

LayeredKimono 7680×4320 60fps 300 BT.2020 10 ITE

Festival2 7680×4320 60fps 300 BT.2020 10 ITE

JapaneseMaple 7680×4320 60fps 300 BT.2020 10 ITE

SteelPlant 7680×4320 60fps 600 BT.2020 10 ITE
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Figure 4.2 – SI-TI graph of the tested 8K video sequences.

after 5 seconds to get 10 seconds videos while preserving the motion continuity of the scene. For

those sequences, the motion direction change was coherent with the initial content.

4.2.3 Statistical study

The SI-TI [11] graph of the selected sequences is plotted in Figure 4.2. This 2D plan shows

that the selected contents are diverse regarding spatio-temporal features. Those criterias provide

guidelines about the diversity across the dataset in terms of spatiotemporal variations. In addition

to the nature itself of the contents, test video datasets must take into account that diversity in

order to generalize the obtained results.

58



Evaluation of Algorithms and Standards for 8K Video Delivery

4.3 Single layer coding standards for 8K video

This section provides both objective and subjective quality assessments of the two latest

MPEG video coding standards for 8K video coding. Compression points for each 8K video

scene presented in 4.2 have been generated using the random access (RA) mode of the VVC and

HEVC reference software models, called VTM-11 and HM-16.20, respectively. For subjective

quality assessment, we used the double stimulus continuous quality scale (DSCQS) method.

This study includes RD curves, BD bitrate evaluation, and a Student’s t-test, offering a robust

statistical analysis.

The contributions of this work are the following:

— Assess the compression gain offered by VVC over HEVC standards for 8K video contents.

This gain represents approximately 41% of bitrate saving for the same visual quality,

— Determine the required bitrate for transparency, i.e., no visual difference is perceived

between the source and decoded video,

— Confirm that non-expert viewers can see the difference between 4K and 8K resolutions

and measure that difference,

— Evaluate several objective quality metrics based on the subjective test statistics collected

on the 8K video dataset.

This section is organized as follows. Section 4.3.1 describes the subjective test materials,

including the test sequences, the codecs configuration, and the subjective test methodology. The

results of both the objective and the subjective experiments are given in Section 5.3.3. Finally,

Section 6.3.3 concludes this section.

4.3.1 Experimental settings

Test video sequences

For this experiment, we used the 8K video dataset described in Section 4.2. Based on these

six uncompressed (raw) selected 8K video sequences (scenes), ten processed video sequences

(PVSs) are generated per scene:

— one 8K (7680×4320) hidden reference uncompressed video.

— one 4K (4320×2160) uncompressed video. In that case, the source signal is first down-

scaled to 4K and then rescaled to 8K by using the Lanczos3 [14] filter provided by

ffmpeg 3 for both operations.

3. https://www.ffmpeg.org/
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Table 4.3 – Selected QP and corresponding bitrates (Mbps), for both VTM-11 and HM-16.20
codecs, according to the test sequence.

Sequence Codec
R1

(QP/Mbps)
R2

(QP/Mbps)
R3

(QP/Mbps)
R4

(QP/Mbps)

LayeredKimono
HEVC 38/1.9 34/3.2 29/6.3 26/11.4

VVC 37/1.8 32/3.4 27/6.5 24/10.8

BodeMuseum
HEVC 38/4.7 33/9.8 28/22.5 25/45.4

VVC 37/4.8 32/10.1 27/22.6 24/42.9

OberbaumSpree
HEVC 38/3.3 33/7.4 28/17.5 24/40.5

VVC 37/3.6 32/8.1 27/18.6 23/43.9

Festival2
HEVC 39/17.5 34/32.1 29/59.5 24/130.4

VVC 37/17.4 32/32.2 27/61.1 22/135.5

JapaneseMaple
HEVC 43/15.2 38/34.9 33/76.1 28/168

VVC 42/15.9 37/35.7 32/79.8 27/174.9

SteelPlant
HEVC 42/19.6 38/40.5 33/86.9 28/175.5

VVC 42/18.0 37/42.9 32/91.1 27/180.5

— 8K video encoded at four bitrates with HEVC.

— 8K video encoded at four bitrates with VVC.

In total, 60 video sequences are evaluated in this study.

The CTCs for VTM-11 [179] and HM-16.20 [72] in RA coding mode for main10 profile

were used to perform a fair rate/distortion evaluation. These software models provide a ref-

erence implementation of the compression standards, representing their upper-bound coding

performance with a moderate optimization level. For both codec, a GOP size of 16 and an Intra

Period of 64 frames were used. For each scene, the test points are obtained using different fixed

quantization parameter (QP) values. To cover a wide range of visual quality, we determined

the highest bitrate value considering the transparency, i.e., the bitrate for which degradation

starts to appear, as the highest bitrate point for each sequence. Also, the bitrates were carefully

selected so that each bitrate Ri is approximately half of the next bitrate Ri+1 and each VVC

bitrate RV V C
i is equal to the corresponding HEVC bitrate RHEV C

i for i ∈ {1, 2, 3, 4}. The used

QPs and bitrates for each sequence are given in Table 4.3. We can note that the bitrate selected

for transparency varies from 11Mbps to 180Mbps, depending on the test sequence.
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Seq n A

A

BVideo A

BVideo A

Video B

Video B Vote

Time
2s 1s 10s 1s 10s

1s 10s 10s1s 5s

Figure 4.3 – Subjective basic test cell (BTC) structure according to the DSCQS evaluation
methodology.

Experimental environment and testing procedure

In this study, we used the method described in the ITU-R Rec BT500-14 [11], called double

stimulus continuous quality scale (DSCQS), to collect the video quality scores from participants.

This testing method requires a prior pseudo-random sequencing of the testing videos, as the

observer has no interactivity with the player. Thus, each test session of the DSCQS method

consists of different random series of basic test cells (BTCs) presentations. This method presents

the test videos by pairs ("video A" and "video B") separated with annotated mid-greys. For each

BTC, both "video A" and "video B" are repeated twice. An example of BTC used for evaluation

is illustrated in Figure 4.3. Each presented pair contains the implicit 8K uncompressed reference

and one random PVS over all the ten configurations, i.e., the same scene encoded with HEVC or

VVC at four bitrates or the uncompressed sequence in 4K or 8K resolution. Moreover, to prevent

visual fatigue, the test is divided into three sessions of 20 minutes each. Before each experiment,

participants receive clear explanations about the evaluation procedures.

After the first "video A/video B" pair presentation, the participant could report his opinion

about the perceived video quality on two vertical lines with the corresponding sequence index

for both "video A" and "video B". For this testing method, the vertical rating lines are divided

into five segments of the same height and scaled from the lower to the higher quality with the

labels Bad, Poor, Fair, Good, and Excellent. After each video pair visualization, participants can

vote by annotating both videos along the continuous quality scale. The scores are then collected

by converting the annotations into a value between 0 and 100.

This subjective study has been conducted in a controlled laboratory environment that follows

the ITU-R Rec. BT500-13 [180]. The objective is to offer visualization comfort to participants

and ensure the reproducibility of the test. All the experimental setup details are reported in

Table 4.4. An illustration of the vizualisation workflow is given in Figure 4.4, and a picture

illustrating the test conditions in Figure 4.5. A total of 22 non-expert observers aged from 22

to 53 years have taken part in this experiment. All participants have been screened for normal
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Figure 4.4 – Vizualisation workflow.

Table 4.4 – Test logistics.

Monitor SONY 85” KD-85ZG

Player Zaxel’s Zaxtar 5 8K

Peak luminance 120 cd/m2

Video Format 7680x4320/60p/YUV4:2:0/10bits

Viewing distance 0.75H (approximtely 0.8m)

Background color D65 mid-grey

Background luminance 15% of the screen maximum luminance

visual acuity and color blindness using the Ishihara and Snellen vision tests, as described in the

ITU-R Rec BT500-14 Recommendation [11]. To detect outliers, the rejection method based on

the Kurtosis coefficient from this same recommendation has been applied and has validated the

overall participant’s reported votes.

4.3.2 Subjective quality assessment

At the end of the subjective test sessions, the results for each scene are assessed by the

DMOS, corresponding to the average of the difference between the hidden reference and the

corresponding PVS scores computed by:

x̄a =
1

n

n
∑

i=1

xi,a, (4.1)
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Figure 4.5 – Subjective test conditions.

where n is the total number of valid participants, x̄a is the DMOS value of the tested

configuration a, a ∈ {Rm
j , 4K, 8K (ref)} for j ∈ {1, 2, 3, 4} and m ∈ {V V C, HEV C} and xi,a

is the differential score computed as:

xi,a = 100 − (yi,ref − yi,a), (4.2)

with the pair (yi,ref , yi,a) representing the scores attributed by the participant i, i ∈ {1, . . . , n},

to respectively the hidden reference (8K) and the tested configuration a, i.e. both videos of a

given BTC.

To ensure that the vote distributions are normal, the bias reduction technique described in the

ITU-T P.913 Recommendation [181] has been applied. Thus, from each resulting DMOS x̄a, the

associated confidence intervals at 95% (x̄a − ca, x̄a + ca) can be computed as follows:

ca = 1.96
sa√

n
, (4.3)

where sa is the standard deviation of the tested configuration a computed as:

sa =

√

√

√

√

n
∑

i=1

(xi,a − x̄a)2

(n − 1)
, (4.4)

with xi,a and x̄a corresponding to the differential score of the observer i, i ∈ {1, . . . , n}, and

the DMOS score of the tested configuration a, respectively.

In addition, a Student’s t-test with a two-tailed distribution is performed to provide a more

rigorous analysis. More details are given in the following section.
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4.3.3 Experimental results

Objective quality assessment

In this experiment, objective quality metrics, incuding PSNR, MS-SSIM [47], and VMAF

[13], are used to measure the distortion between the 8K reconstructed signal and the source video.

VMAF is an objective metric with reference, based on ML which evaluates the quality between

the source and the tested content by giving a score between 0 and 100. This metric is trained

to produce a score computed from different features (motion, spatial, texture) that maximize

the correlation with MOS scores. In this experiment, the VMAF scores are computed with the

provided set of parameters vmaf_v0.6.1.pkl 4. Although the selected VMAF model is optimized

for visual quality estimation of 4K contents, we have integrated it into the study as it achieves a

high correlation with subjective scores. The PSNR is assessed on the luma component only.

The RD curves are depicted in Figure 4.6. It can be noted that the bitrates selected for

transparency lead to quite different PSNR values depending on the sequence. In contrast, for

more perceptually correlated objective metrics like MS-SSIM or VMAF, the predicted quality

converges to the maximum value for all 8K sequences. Also, those curves confirm the observation

made on the scene complexity with the SI-TI graph in Figure 4.2. Three categories of sequences

can be distinguished by scene complexity: Group 1 includes LayeredKimono, OberbaumSpree,

BodeMuseum sequences, Group 2: Festival2, and Group 3: JapaneseMaple, SteelPlants.

We use the Bjontegaard-Delta (BD) computation method described in [44] to quantify the

average gain in bitrate and visual quality offered by the VTM-11 over the HM-16.20 codec. The

results are summarized in Table 4.5. In average, the VTM-11 codec enables around 31%, 26%

and 35% of bitrate saving over the HM-16.20 codec, regarding PSNR, MS-SSIM and VMAF,

respectively. However, the area between the interpolated curves covered using the BD-BR

approach is limited as the selected bitrates are the same for both VVC and HEVC standards.

Thus, to bring more details on the performance and consider a wider area between the curves,

we compute the gain in quality of the VTM-11 over the HM-16.20 for the same bitrate using the

BD method. The results are reported in Table 4.6 By considering this approach, 0.91dB, 0.005

and 5.48 of quality improvement is offered by the VTM-11 over the HM-16.20 codec for the

same bitrate, regarding PSNR, MS-SSIM and VMAF quality metrics, respectively.

4. https://github.com/Netflix/vmaf
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Figure 4.6 – Objective quality comparison, using PSNR, MS-SSIM, and VMAF quality metrics
for selected 8K video sequences.

Subjective quality assessment

For the subjective quality evaluation, the rectified DMOS scores and their associated 95%

confidence interval are collected following the method described in Section 4.3.2. The resulting

RD curves are depicted in Figure 4.7 for all 8K sequences. These curves also display the scores

obtained for the 8K hidden reference videos and the 4K sequences, with their associated 95%

confidence interval represented by transparent areas.

In order to confidently evaluate the statistical significance of the similarity (or not) between

different tested sequences, we also performed a two-sample unequal variance Student’s t-test
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Table 4.5 – BD-BR scores of the VTM-11 codec compared to the anchor HM-16.20.

Sequence BD-BR
(PSNR)

BD-BR
(MSSSIM)

BD-BR
(VMAF)

BD-BR
(DMOS upper and lower limits)

LayeredKimono -29.77% -21.05% -33.30% -44.99% [-60.92%, -20.04%]
BodeMuseum -32.75% -25.05% -34.70% -36.43% [-74.71%, +21.12%]
OberbaumSpree -32.07% -27.00% -33.41% -55.59% [-87.15%, +28.59%]
Festival2 -36.40% -33.36% -28.24% -28.89% [-59.43%, +37.28%]
JapaneseMaple -28.33% -23.37% -30.86% -43.36% [-64.42%, -6.69%]
SteelPlant -28.30% -24.40% -27.57% -37.41% [-67.61%, +13.31%]

Average -31.27% -25.7% -35.30% -41.11% [-69.04%, +12.26%]

Table 4.6 – BD scores of the VTM-11 codec compared to the anchor HM-16.20.

Sequence BD-BR
(PSNR)

BD-BR
(MSSSIM)

BD-BR
(VMAF)

BD-BR
(DMOS upper and lower limits)

LayeredKimono +0.61dB +0.003 +4.63 +10.76 [+19.3, +2.22]
BodeMuseum +0.88dB +0.002 +3.06 +5.79 [+15.21, -3.63]
OberbaumSpree +0.81dB +0.003 +4.09 +7.87 [+18.44, -3.35]
Festival2 +1.22dB +0.006 +7.37 +5.13 [+12.98, -2.72]
JapaneseMaple +1.04dB +0.009 +6.63 +9.79 [+18.27, +1.31]
SteelPlant +0.91dB +0.007 +7.10 +8.83 [+20.40, -2.74]

Average +0.91dB +0.005 +5.48 +8.03 [+17.43, -1.49]

with a two-tailed distribution. This study allows us to determine, for each scene, if the perceived

quality between each pair of tested configurations is significantly different or not.

In this experiment, regarding two different tested configurations a1 and a2 for a given scene,

the null hypothesis, H0, corresponds to the case that a1 and a2 have the same perceived quality.

On the contrary, the alternate hypothesis, Ha, would be that a difference between the tested

configurations a1 and a2 is noted.

The t-statistic can be estimated to quantify the degree of significance of the alternate hypoth-

esis Ha. By considering the sample populations xa1
and xa2

from attributed scores for the tested

configuration a1 and a2, respectively, the t-statistic can be computed as follows:

ta1,a2
=

x̄a1
− x̄a2

√

s2
a1

na1

+
s2

a2

na2

, (4.5)
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Figure 4.7 – DMOS-based comparison, with associated 95% confidence interval, for the selected
8K video sequences.

with x̄aj
, s2

aj
and naj

denoting the mean, the variance and the size of the sample population

xaj
, with j ∈ {1, 2}.
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Table 4.7 – p-value probabilities resulting from two-sample unequal variance bilateral Student’s
t-test on DMOS values for each pair of tested configurations and each selected 8K video sequence.

(a) LayeredKimono

HEVC

VVC
R1 R2 R3 R4 4K REF

R1 0.01 0.00 0.00 0.00 0.00 0.00

R2 0.15 0.00 0.00 0.00 0.00 0.00

R3 0.00 0.44 0.00 0.00 0.00 0.00

R4 0.00 0.00 0.79 0.70 0.65 0.01

4K 0.00 0.00 0.88 0.47 1.00 0.01

REF 0.00 0.00 0.02 0.10 0.01 1.00

(b) BodeMuseum

HEVC

VVC
R1 R2 R3 R4 4K REF

R1 0.04 0.00 0.00 0.00 0.00 0.00

R2 0.00 0.06 0.00 0.01 0.90 0.00

R3 0.00 0.44 0.13 0.21 0.28 0.07

R4 0.00 0.56 0.98 0.86 0.00 0.62

4K 0.00 0.05 0.00 0.01 1.00 0.00

REF 0.00 0.32 0.58 0.53 0.00 1.00

(c) OberbaumSpree

HEVC

VVC
R1 R2 R3 R4 4K REF

R1 0.00 0.00 0.00 0.00 0.00 0.00

R2 0.61 0.04 0.00 0.00 0.04 0.01

R3 0.06 0.74 0.09 0.02 0.16 0.07

R4 0.00 0.23 0.71 0.31 0.85 0.71

4K 0.00 0.23 0.55 0.18 1.00 0.52

REF 0.00 0.10 0.98 0.47 0.52 1.00

(d) Festival2

HEVC

VVC
R1 R2 R3 R4 4K REF

R1 0.00 0.00 0.00 0.00 0.00 0.00

R2 0.41 0.00 0.00 0.00 0.00 0.00

R3 0.00 0.34 0.55 0.70 0.73 0.26

R4 0.00 0.42 0.68 0.44 0.53 0.11

4K 0.00 0.21 0.37 0.98 1.00 0.48

REF 0.00 0.02 0.09 0.36 0.48 1.00

(e) JapaneseMaple

HEVC

VVC
R1 R2 R3 R4 4K REF

R1 0.00 0.00 0.00 0.00 0.00 0.00

R2 0.33 0.04 0.00 0.00 0.00 0.00

R3 0.00 0.13 0.00 0.00 0.12 0.00

R4 0.00 0.00 0.24 0.00 0.18 0.00

4K 0.00 0.00 0.04 0.00 1.00 0.00

REF 0.00 0.00 0.00 0.14 0.00 1.00

(f) SteelPlant

HEVC

VVC
R1 R2 R3 R4 4K REF

R1 0.00 0.00 0.00 0.00 0.00 0.00

R2 0.00 0.11 0.00 0.00 0.00 0.00

R3 0.00 0.55 0.01 0.00 0.00 0.0

R4 0.00 0.00 0.91 0.50 0.07 0.00

4K 0.00 0.00 0.11 0.24 1.00 0.00

REF 0.00 0.00 0.00 0.00 0.00 1.00

Then, by approximating the t-statistic with a Student’s t-distribution, a value p, which

indicates the degree of correlation between the means of the two sample populations, can be

computed from the t-statistic. The higher the p-value is, the more significant the similarity

between the distributions of the two populations is. A p-value lower than 0.05 indicates that

there is a statistical significance that the two sample populations xa1
and xa2

have a different

perceived quality. Indeed, there is a low probability of committing a type-I error, i.e., rejecting

the null hypothesis when it is true, meaning that the null hypothesis can be confidently rejected.

On the contrary, if the p-value is greater than or equal to 0.05, the null hypothesis cannot be

safely rejected and both sample populations xa1
and xa2

can be considered to have the same

perceived quality. The results for all scenes are given in Table 4.7.

The results demonstrate that the perceived quality between uncompressed 8K and 4K formats

depends on the scene content. Thus, for the sequences JapaneseMaple, SteelPlant, BodeMuseum,

and LayeredKimono, the visual quality between both resolutions is significantly different. As
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the p-value between the configurations 4K and REF is lower than 0.05. For those sequences,

the global motion in the scene is low, which facilitate the sampling of 8K details by sensors. In

contrast, for the sequences with non-significant visual difference between 8K and 4K resolutions

(Festival2 and OberbaumSpree), the motion in the scene can explain the 8K definition loss at

60fps. Indeed, the global motion in Festival2 video sequence prevents from perceiving the details.

For the OberbaumSpree motion blur appears on the scene due to a continuous horizontal camera

traveling. It shows that higher framerates, e.g. 100/120fps, must be considered to fully benefit

from the 8K resolution.

In complement to the objective study, we observe that the bitrate required to obtain trans-

parency with the uncompressed 8K videos is highly content-dependent. Using VVC, the bitrates

needed to reach the reference’s quality are between 10Mbps to 80Mbps depending on the se-

quence, except for SteelPlant and JapaneseMaples, which are the most complex contents as

pointed in Section 4.2. For these scenes, the quality degradation with the source is always

perceived on the selected bitrate range. Indeed, the p-values obtained between all RV V C
i and

REF configurations are lower than 0.05 for this sequence. It can be explained by the smoke in

the scene, which is hard to compress and causes blocking artifacts. In comparison, the 8K source

quality is obtained only for three scenes using HEVC: BodeMuseum, Festival2, OberbaumSpree.

However, two of them are not critical (Festival2, OberbaumSpree), as no significant difference

between 8K and 4K is perceived (p > 0.05).

In addition, we can notice that, at the same bitrate, VVC offers perceived quality closer to the

8K reference video comparing to HEVC. For both JapaneseMaple and LayeredKimono scenes, a

bitrate reduction of 50% is reached for the same level of visual quality. Indeed, we can observe in

Table 4.7 that, for those two scenes, each VVC test point of bitrate RV V C
i is statistically similar

or better in terms of visual quality with respect to its corresponding HEVC test point at bitrate

RHEV C
i+1 and significantly better at bitrate RHEV C

i . Nevertheless, the results obtained with the

rest of the 8K sequences with lower spatial textures do not follow this observation.

Finally, we applied the BD-BR method to the DMOS scores. Inspired by [58], we also

compute the upper and lower limits for the BD-BR based on the confidence intervals. These

scores are computed by comparing DV V C
max with DHEV C

min and DV V C
min with DHEV C

max , respectively,

where [Dmin, Dmax] represents the 95% confidence interval. All the results are reported in

Table 4.5 and Table 4.6. These results demonstrate that VVC offers a compression gain over

HEVC for the same perceived quality from 28.89% to 55.59% with an average of 41.11% over

the whole 8K test dataset.
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Table 4.8 – Logistic model coefficients regarding each tested objective metric.

Objective metric β1 β2 β3 β4

MS-SSIM 316145.66 32.03 1.5 0.06

SSIM 202.32 -5828.93 -0.88 0.46

VMAF 164.66, -34309.47 -544.33 103.13

PSNR 135.79 -41584.66 -99.69 20.57

Correlation consistency

In this section, the consistency of objective quality metrics with subjective scores is evaluated.

Figure 4.8 illustrates scatter plots with nonlinear logistic fitted curves f(x) and corresponding

standard deviations intervals f(x)±2σ for PSNR, SSIM, MS-SSIM , and VMAF quality metrics

versus DMOS scores.The interpolated curves f(x) are computed using the following logistic

model:

f(x) = β2 +
β1 − β2

1 + e
−

x−β3

|β4|

. (4.6)

The coefficient of this logistic model are given in Table 4.8 for each tested objective metric.

The more the standard deviation intervals are close to the logistic fitted curve, the more the metric

is correlated to the DMOS score. In order to quantify the correlation of the objective metrics

with the subjective scores, we use the Spearman’s rank ordered correlation (SROCC), Pearson’s

linear correlation coefficient (PLCC), Kendall’s rank-order correlation coefficient (KROCC), and

root mean-squared error (RMSE). The results are reported in Table 4.9. As expected, it shows

that MS-SSIM and VMAF are more correlated to subjective test ratings than PSNR, which gets

the lowest performance regarding all indicators. In addition to the three considered objective

quality metrics, we provide correlation scores with the SSIM metric. This latter shows slightly

higher correlation with DMOS compared to PSNR, while it is outperformed by both MS-SSIM

and VMAF. Finally, we can notice that VMAF is a relevant quality metric for 8K resolution

evaluation although being optimized for 4K resolution.

4.3.4 Analysis and discussion

In this section, objective results have demonstrated that the VTM-11 codec enables 31%,

26%, and 35% of bitrate saving over the HM-16.20 codec for PSNR, MS-SSIM, and VMAF

quality metrics, respectively. On the subjective side, VVC offers around 41% of bitrate reduction
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Figure 4.8 – Scatter plots and nonlinear logistic fitted curves of PSNR, SSIM, MS-SSIM and
VMAF quality metrics versus DMOS scores of the considered 8K video sequences.

over HEVC for the same visual quality regarding the BD-BR method. Regarding the Student’s

t-test results, a bitrate reduction of about 50% is reached for two of the overall tested scenes.

We have also demonstrated that the bitrate required to obtain transparency with the 8K source

is highly content-dependent. Indeed, for VVC, a bitrate from 11Mbps to 180Mbps is needed,

depending on the scene’s complexity. In addition, we demonstrated that the participants had

noted a difference between uncompressed 4K and 8K for most of the tested sequences. However,

high-motion video scenes do not benefit from the 8K definition at 60fps. Finally, a higher

correlation consistency between subjective and objective results can be noticed, particularly for

the VMAF and MS-SSIM quality metrics.
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Table 4.9 – SROCC, PLCC, KROCC and RMSE performance of the objective quality metrics
MS-SSIM, SSIM, VMAF and PSNR on the considered 8K video sequences.

Objective metric SROCC PLCC KROCC RMSE

MS-SSIM 0.887 0.871 0.725 7.409

SSIM 0.767 0.777 0.599 9.499

VMAF 0.806 0.873 0.603 7.375

PSNR 0.754 0.747 0.564 10.042

4.4 8K video delivery with 4K backward-compatibility

In the previous section, we have shown that VVC can reduce the bitrate cost of 8K of

around 41% regarding the same perceived quality compared to HEVC. Although this bandwidth

reduction would make the delivery of 8K services easier, backward compatibility with UHD-1

receivers is not considered. This section assesses the performance of different coding approaches

that allow the delivery of an 8K video signal with 4K backward compatibility. Presented

approaches include:

— simulcast of 8K and 4K single-layer signals encoded using both HEVC and VVC stan-

dards,

— spatial scalability using SHVC with a 4K BL and an 8K EL,

— spatial upscaling applied on a 4K decoded signal using both HEVC and VVC standards.

We evaluate both a lightweight version of EDSR [15] and the Lanczos [14] filter.

The remainder of this section is organized as follows. Section 4.4.1 presents the different

assessed backward compatible approaches. Section 4.4.2 gives the test conditions, including

the coding standards and super-resolution settings. Results are then presented and analyzed in

Section 6.4.2. Finally, Section 6.4.3 concludes this section.

4.4.1 Tested approaches

Simulcast

Simulcast is the process of transmitting several versions of an input signal encoded with

single-layer coding approaches, e.g. HEVC or VVC, to cover different target outputs. The

principle of simulcast is illustrated in Figure 4.9. In this coding scheme, each signal is encoded

independently without considering any correlation between the different resolutions. Simulcast

allows defining the lower bound of the performance of scalability. Although being easy to set up
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Figure 4.9 – Illustration of simulcast for 8K and 4K video delivery.

Figure 4.10 – Illustration of spatial scalability for 8K and 4K video delivery.

because of the independence of the selected codec, this approach results in a high bitrate.

Spatial scalability

Using a spatially-scalable codec might increase the efficiency by taking advantage of the

existing correlations between the 4K and 8K signals. This solution is described in Figure 4.10.

In the case of SHVC for spatial scalability, a BL signal (low resolution) encoded with HEVC is

used as a reference by an inter-layer processing module to encode the EL signal (high resolution).

The EL signal is described by using additional HLS and needs a scalable-compliant decoder to

be decoded. Several standardization bodies such as the advanced television systems committee

(ATSC) [182] or the DVB [30] consider SHVC as a candidate for solving compatibility issues

brought by new formats introduction. However, due to a late integration in HEVC and additional

complexity and latency brought by inter-layer processing, spatial scalability is not much present

in the current broadcast ecosystem.
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Figure 4.11 – Illustration of the downscaling/upscaling solution for 8K and 4K video delivery.

Spatial upscaling

Applying downscaling and upscaling operations to the signal outside the coding pipeline

allows covering a wide range of compatible UHD-1 or UHD-2 receivers without additional bit-

stream. Thus, the bandwidth is limited to 4K only, while the receiver can display both resolutions.

Also, this solution allows different resolutions to be provided without being dependent on the

base codec. Figure 4.11 illustrates this coding configuration. In the image processing field, the

process of estimating a HR version of a LR content is referred to as super-resolution. In the last

past few years, learning-based super-resolution approaches have outperformed state-of-the-art

methods through the last progress in the AI field. The objective of these methods is to learn the

non-linearity between LR images and their HR version by analyzing local statistics of images.

For our study, we have used a lightweight version of EDSR described in [15] for super-resolution.

This approach is based on an end-to-end CNN optimized to recover details from LR images

by minimizing the L1 loss between the reconstructed HR images and their corresponding HR

ground truth. In this experiment, we evaluate this approach based on both HEVC and VVC. The

models are trained using the 4K sequences from the BVI-DVC dataset [183]. More details on

the training process are provided in Section 4.4.2

4.4.2 Experimental settings

For this study, the CTCs for VTM-11 [179], HM-16.20 [72], and SHVC test model (SHM-

9.0) [184] are used to provide a fair rate-distortion assessment. For spatial scalability evaluation,

we compare SHVC with HEVC simulcast encoded with the SHM-9.0 BL mode, denoted as

HEVC*. All coding configurations are summarized in Table 4.10. The 4K sequences are

generated by a Lanczos downscale for simulcast and spatial upscaling approaches. The SHVC

EL model being sensitive to the downscaling operator used to create the BL, we used the
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Table 4.10 – Standard verification models specifications.

Standard Reference Software Cfg Profile GOP Size Intra Period

VVC VTM-11.0 RA main10 16 64

HEVC HM-16.20 RA main10 16 64

HEVC* SHM-9.0 (BL) RA main10 16 64

SHVC SHM-9.0 RA main10 16 64

B
R

eL
U

R
eL

U

u
p

sc
al

in
g

 ↑
2

R
eL

U

co
n

v
 n

-3
x

3

co
n

v
 n

-3
x

3

co
n

v
 n

-3
x

3

co
n

v
 n

-3
x

3

co
n

v
 n

-3
x

3

co
n

v
 n

-3
x

3

co
n

v
 n

-3
x

3

co
n

v
 n

-3
x

3

Figure 4.12 – Architecture of EDSR [15].

downscaling filter described in [9] to generate the 4K BL sequences. All 8K videos are encoded

with QP values of 27, 32, 37, and 42. For spatial upscaling, the 4K sequences are encoded with

QP values of 22, 27, 32, and 37 to cover a similar bitrate range. We used objective metrics,

including PSNR, MS-SSIM, and VMAF, to measure the distortion between the reconstructed 8K

signal and the original one. We used the BD method described in [44] to quantify the average

bitrate gain between configurations. The assessed bitrate corresponds to both the 8K and 4K

rates for simulcast and spatial scalability. For spatial upscaling, we assessed the bandwidth on

4K only.

The super-resolution network EDSR, provided by the authors in [15], is trained to recover the

HR version of uncompressed LR data. The architecture of this CNN is illustrated in Figure 4.12.

In our case, we focus on assessing this method on video compressed using both HEVC and VVC.

As learning-based super-resolution is sensitive to the training data, we trained the network using

a compressed version of the LR images. For this study, we selected 200 clips from the BVI-DVC

dataset [183] which contains 4K 10bits videos. First, we generated pairs of LR/HR videos by

applying a Lanczos downscaling filter with a scale factor of 2. Then, each LR video clip has

been encoded using the RA configuration of the VTM-11 with four QP values, including 22, 27,

32, and 37, to cover a large panel of distortions. After decoding, we generated YUV4:4:4 tensors

by duplicating the chroma components for both reconstructed and original images. Finally, we
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Figure 4.13 – Average RD curves over the selected 8K video sequences (SHVC).

extracted all the reconstructed and original frames and cropped them into patches of size 48 × 48,

denoted as ĨLR and IHR , respectively. For super-resolution, We used a lightweight version

of EDSR for our study, denoted as EDSR*, by setting n = 64 and B = 16. To evaluate the

performance of EDSR*, we also compared results obtained with a Lanczos filter applied on the

LR sequences.

4.4.3 Experimental results

In this section, we present and analyze the results of the experiments described in Sec-

tion 4.4.2. First, we compare simulcast and spatial scalability using SHM-9.0. Then, we evaluate

the spatial upscaling approach over 4K/8K simulcast and 8K full-resolution coding based on

both VTM-11 and HM-16.20.

Spatial scalability

In this experiment we assess spatial scalability with a 4K BL signal and an 8K EL signal

over simulcast. Figure 4.13 illustrates the RD curves for each objective quality metric. The

curves represented in dashed lines correspond to the configurations enabling 8K delivery with

4K backward compatibility. Table 4.11 gives the BD-rate results of SHVC with respect to the

HEVC simulcast configuration for the six 8K video sequences. Inter-layer predictions enable

-18.43%, -18.58%, and -18.47% of average BD-rate savings over simulcast for PSNR, MS-SSIM,

and VMAF, respectively. We see that spatial scalability performs better for the sequence with

the less 8K (HR) information regarding the results in Section 4.3. Indeed, for those sequences

the 8K and 4K resolutions are highly correlated which is exploited by the inter-layer processing

76



Evaluation of Algorithms and Standards for 8K Video Delivery

Table 4.11 – BD-rate (%) for SHVC compared to HEVC* simulcast. The values in bracket
indicate the BD-rate assessed with HEVC* 8K coding as anchor.

PSNR MS-SSIM VMAF

LayeredKimono -15,77 [+25,67] -16,12 [+22,44] -16,53 [+23,26]

BodeMuseum -16,91 [+20,86] -17,85 [+20,13] -18,64 [+18,72]

OberbaumSpree -21,09 [+8,84] -21,16 [+8,43] -21,40 [+8,31]

Festival2 -22,39 [+5,49] -21,49 [+4.00] -21,47 [+6,08]

JapaneseMaple -17,10 [+11,48] -18,21 [+9,90] -17,94 [+10,32]

SteelPlant -17,29 [+10,80] -16,64 [+10,24] -14,88 [+13,20]

Average -18,43 [+13,86] -18,58 [+12,52] -18,47 [+13,32]

module. However, the performance of spatial scalability worst than HEVC full-resolution coding

on the whole range of bitrate and for all sequences.

Spatial upscaling

This experiment evaluates the spatial upscaling approach over simulcast based on both

VVC and HEVC standards. We also compare the performance of 8K full-resolution coding

to assess the cost of backward compatibility. A rate-distortion evaluation has been conducted

using objective visual quality metrics, including PSNR, MS-SSIM, and VMAF. The average

performance based on HM-16.20 and VTM-11 overall the tested sequences is illustrated in

Figure 4.14 and Figure 4.15, respectively. The per-sequence interpolated RD curves are depicted

in Figures 4.16, 4.17, 4.18, 4.19, 4.20, and 4.21. BD-rate performance compared to both 8K

full-resolution coding and 4K/8K simulcast are represented in Table 4.12.

First, we can notice that EDSR* proposes better average performance than the Lanczos

filter for HM-16.20 and VTM-11 regarding all objective quality metrics. The results show

that the reconstruction gain is higher based on HEVC than VVC. In addition, the performance

gap between those two methods is lower regarding MS-SSIM than the two other metrics. The

results also demonstrate that the gain offered by EDSR* is content-dependent. For the sequences

Festival2 and OberbaumSpree, a negligible gain is assessed for EDSR* compared to Lanczos.

As mentioned in the analysis of the subjective study conducted in Section 6.3.2, those two

scenes contain few high-resolution details. Generally, the more spatial information the 8K

source contains, the more the EDSR* super-resolution network outperforms the Lanczos filter.

Concerning the compression level, the RD-curves show that the performance gap between the
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Figure 4.14 – Average RD curves over the selected 8K video sequences (HEVC).
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Figure 4.15 – Average RD curves over the selected 8K video sequences (VVC).

EDSR* network and Lanczos increases proportionally with the bitrate increase.

Compared to simulcast, spatial upscaling offers BD-rate gains on the overall dataset and for

all objective quality metrics. Regarding EDSR* based on HM-16.20, average bitrate reduction of

-34.05%, -38.06%, and -40.40% over HEVC simulcast are assessed for the same level of PSNR,

MS-SSIM, and VMAF, respectively. Those gains are lower in the VVC context with -26.32%,

-34.23%, and -30.38% of BD-rate gain regarding PSNR, MS-SSIM, and VMAF, respectively.

Generally, we notice that spatial upscaling based on VTM-11 is less performant than on HM-

16.20 compared to simulcast and full-resolution. It can be explained by the introduction of new

coding modes into VVC, including new partitioning options and larger CTUs, which improve

the 8K single-layer coding.

Compared to 8K full-resolution coding with HEVC, spatial upscaling provides bitrate gains

of -9.33% for the same level of PSNR while offering backward compatibility with 4K receivers.

Concerning VVC, a loss of 2.37% of bitrate is observed for the same PSNR. Regarding MS-SSIM

and VMAF, spatial upscaling is preferred from both full-resolution coding and simulcast in the
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Table 4.12 – BD-rate (%) of spatial upscaling compared to simulcast regarding HEVC and VVC.
The values in bracket indicate the BD-rate assessed with full-resolution coding as anchor.

Codec HM-16.20

Upscaling method Lanczos EDSR*

Metric PSNR MS-SSIM VMAF PSNR MS-SSIM VMAF

LayeredKimono -27.43 [+2.49] -39.02 [-14.06] -30.25 [-1.59] -35.57 [-8.99] -40.66 [-16.37] -42.30 [-18.66]

BodeMuseum -17.87 [+13.96] -31.25 [-4.77] -24.24 [+5.02] -30.42 [-3.55] -36.42 [-11.98] -40.24 [-17.32]

OberbaumSpree -34.11 [-11.21] -35.61 [-13.64] -34.18 [-11.48] -36.54 [-14.50] -38.03 [-16.89] -43.51 [-24.00]

Festival2 -35.25 [-6.68] -40.33 [-14.25] -36.53 [-8.56] -39.89 [-13.35] -43.54 [-18.86] -42.74 [-17.50]

JapaneseMaple -18.24 [+9.18] -31.44 [-8.91] -25.11 [+0.01] -29.25 [-5.24] -33.96 [-12.22] -37.12 [-15.87]

SteelPlant -22.04 [+3.12] -32.86 [-11.63] -23.47 [+1.09] -32.62 [-10.36] -35.76 [-15.39] -36.51 [-15.73]

Average -25.82 [+1.81] -35.09 [-11.21] -28.96 [-2.59] -34.05 [-9.33] -38.06 [-15.29] -40.40 [-18.18]

Codec VTM-11

Upscaling method Lanczos EDSR*

PSNR MS-SSIM VMAF PSNR MS-SSIM VMAF

LayeredKimono -22.68 [+10.61] -36.65 [-9.37] -23.95 [+8.74] -25.80 [+6.20] -37.76 [-10.96] -29.94 [+0.24]

BodeMuseum -13.27 [+21.61] -28.86 [-0.36] -21.64 [+9.80] -24.01 [+6.56] -32.80 [-5.91] -28.04 [+0.80]

OberbaumSpree -31.48 [-6.22] -32.76 [-8.42] -32.43 [-7.71] -29.14 [-3.10] -34.08 [-10.20] -34.08 [-9.96]

Festival2 -31.20 [+0.02] -36.57 [-8.02] -34.54 [-4.88] -32.37 [-1.68] -37.97 [-10.04] -36.78 [-8.12]

JapaneseMaple -8.21 [+23.71] -27.28 [-2.34] -18.68 [+9.67] -20.56 [+7.44] -29.82 [-5.70] -26.38 [-0.53]

SteelPlant -16.04 [+11.42] -30.79 [-8.25] -15.93 [+11.65] -26.01 [-1.19] -32.96 [-11.05] -27.08 [-2.74]

Average -20.48 [+10.19] -32.15 [-6.12] -24.53 [+4.54] -26.31 [+2.37] -34.23 [-8.98] -30.38 [-3.39]

whole range of selected bitrates. It can be explained by the pyramidal quality computation aspect

of those two metrics. Indeed, MS-SSIM and VMAF (with the contribution of the VIF quality

metric [48] in the final score computation) assess the quality based on several spatial versions

of the input image. As the 4K stream is encoded using a lower QP for the spatial upscaling

configuration, the quality is preferred from 8K single-layer coding. We can notice that the

performance of spatial upscaling compared to both simulcast and full-resolution coding are also

content-dependent. For the sequences with a low amount of high-resolution details, i.e., Festival2

and OberbaumSpree, 4K spatial upscaling performance is on-par with 8K full resolution coding.

The EDSR* super-resolution network proposes the best performance compared to all tested

configurations for the most complex video sequences (JapaneseMaple and SteelPlant).
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4.4.4 Analysis and discussion

In this study, three approaches allowing the transmission of both 8K and 4K signals have

been assessed, including simulcast, spatial scalability, and spatial upscaling. First, an experiment

evaluating HEVC and its scalable extension SHVC was conducted. Experimental results have

shown that spatial scalability achieves -18.43% BD-rate savings compared to simulcast regarding

PSNR. However, the performance of spatial scalability is always worst than HEVC full-resolution

coding, with an average bitrate overhead of around +14%. Moreover, scalable-compliant decoders

will still be required to decode the EL bitstream.

Then, we have demonstrated that the super-resolution network proposes better performance

than the Lanczos filter for all sequences encoded using HM-16.20 and VTM-11. We have also

shown that spatial upscaling offers BD-rate gains over simulcast on the overall dataset regarding

both codecs. Moreover, we demonstrated that 4K spatial upscaling proposes better performance

than 8K full-resolution coding for some sequences, especially at low bitrate, while providing

both 8K and 4K resolution at the receiver side. However, EDSR* performance is close to the

Lanczos filter in this bitrate range due to degradations introduced in the LR signal. Future works

will consider subjective evaluation to consolidate the objective results.

4.5 Conclusion

Several compression algorithms have been assessed for 8K resolution video in this chapter.

The tested approaches include the single-layer coding standards HEVC and VVC and scalable

methods, namely simulcast, spatial scalability with SHVC and spatial upscaling using learning-

based super-resolution and a Lanczos filter.

In the first study, we have demonstrated that VVC offers around 41% bitrate reduction over

HEVC for the same visual quality. In addition, we showed that the participants had noted a

difference between uncompressed 4K and 8K for most of the tested sequences. Then, we have

deducted that super-resolution is a good candidate for 8K delivery from 4K stream. It allows a

codec agnostic reconstruction of 8K resolution from 4K without any side information. In addition,

it outperforms simulcast and proposes performance close to 8K full resolution coding for some

of the tested sequences. Altough being trained using a PSNR-related loss function, subjective

assessment of AI-based super-resolution algorithms might be considered to consolidate those

observations.

Nevertheless, several tracks remain for improving CNN-based super-resolution applied on
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compressed video contents. First, we have seen that spatial upscaling proposes better performance

at a low bitrate. However, the super-resolution and the Lanczos filter performance converge as

the bitrate decreases. Two hypotheses can be formulated:

— Coding artifacts introduced during the compression process have a high impact on the

super-resolution network.

— High-frequencies lost during downscaling and quantization cannot be recovered without

side information.

Moreover, the performance of spatial upscaling using super-resolution compared to simulcast

and full resolution coding is content-dependent. Those items are investigated in the next two

chapters.

81



2.5 5.0 7.5 10.0
rate [Mb/s]

37

38

39

40

41

PS
N

R
 [d

B
]

LayeredKimono

full_res_HEVC
EDSR*_HEVC
lanczos_HEVC
simulcast_HEVC

10 20 30
rate [Mb/s]

36

38

40

42

PS
N

R
 [d

B
]

BodeMuseum

full_res_HEVC
EDSR*_HEVC
lanczos_HEVC
simulcast_HEVC

0 10 20
rate [Mb/s]

38

39

40

41

42

43

44

PS
N

R
 [d

B
]

OberbaumSpree

full_res_HEVC
EDSR*_HEVC
lanczos_HEVC
simulcast_HEVC

25 50 75 100
rate [Mb/s]

34

35

36

37

38

39

40

PS
N

R
 [d

B
]

Festival2

full_res_HEVC
EDSR*_HEVC
lanczos_HEVC
simulcast_HEVC

0 100 200
rate [Mb/s]

30

32

34

36

PS
N

R
 [d

B
]

JapaneseMaple

full_res_HEVC
EDSR*_HEVC
lanczos_HEVC
simulcast_HEVC

100 200
rate [Mb/s]

32

33

34

35

36

37

38

PS
N

R
 [d

B
]

SteelPlant

full_res_HEVC
EDSR*_HEVC
lanczos_HEVC
simulcast_HEVC

Figure 4.16 – PSNR-based comparison for the selected 8K video sequences (HEVC).
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Figure 4.17 – PSNR-based comparison for the selected 8K video sequences (VVC).
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Figure 4.18 – MS-SSIM-based comparison for the selected 8K video sequences (HEVC).
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Figure 4.19 – MS-SSIM-based comparison for the selected 8K video sequences (VVC).
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Figure 4.20 – VMAF-based comparison for the selected 8K video sequences (HEVC).
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Figure 4.21 – VMAF-based comparison for the selected 8K video sequences (VVC).



CHAPTER 5

MULTITASK LEARNING FOR

SUPER-RESOLUTION OF COMPRESSED

VIDEOS

5.1 Preamble

In the previous chapter, we evaluated several compression algorithms for 8K video delivery.

We subjectively assessed 8K uncompressed video contents and concluded that regular viewers

perceive the difference between 8K and 4K resolutions. We also demonstrated that spatial

upscaling using super-resolution is suitable for ensuring backward compatibility with UHD-1

receivers. However, learning-based super-resolution offers performance similar to a Lanczos filter

at low bitrate due to spatial information loss generated by quantization. Previous works proposed

using perceptual loss and GANs [185, 186] to hallucinate details in the upscaled compressed

image. However, those algorithms are hard to control and suffer from source signal fidelity loss,

which is unpractical in a broadcast context. Thus, dedicated models based on pixel-wise loss

must be considered to improve those algorithms’ performance without affecting the signal’s

fidelity. This chapter explores multitask-based architectures for super-resolution on compressed

contents. This process allows performing multiple tasks with a single shared network, reducing

the total number of parameters. Advanced training strategies, such as prior information using

qpmap and network pre-training, are also investigated to improve the performance of the network

on compressed LR inputs.

This chapter is organized as follows. First, Section 5.2 presents the principle of multitask

learning and different possible architectures. Then, Section 5.3 introduces MTL-EDSR, a

multitask network that performs super-resolution and quality enhancement using a single shared

network. Section 5.4 presents MTL-Unet, an extension of MTL-EDSR dedicated to super-

resolution and high-level vision tasks, namely, no-reference image quality assessment (NR-IQA)

and semantic segmentation. Finally, Section 6.5 concludes this chapter.
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Figure 5.1 – Parameter sharing.

5.2 Multitask learning

Recently, DNNs based on multitask learning (MTL) [16] have been proposed to perform

multiple tasks using a single shared network. Therefore, all the tasks can access the learned

representations to exploit redundant features and improve performance. Compared to single-task

learning, training a model to perform multiple tasks simultaneously poses two key challenges:

sharing the parameters and balancing the tasks, i.e., computing the multitask loss.

5.2.1 Multitask loss

Selecting the appropriate loss function is an essential step for training a DNN. In the context of

multitask learning, the way the task-related losses are combined is crucial to design such a model.

By considering a multitask neural network that performs two tasks, the most straightforward way

to compute the multitask loss Lmtl is by summing the two task-related losses, denoted as L1 and

L2, weighted by a parameter α:

Lweighted = α L1 + (1 − α) L2. (5.1)

However, wrong tuning of the weight parameter would make the easier task dominant.

Moreover, manually searching for the best α parameter is hard in practice and time-consuming.

Thus, some solutions have been proposed to automatically compute the multitask loss Lmtl

during training [187, 188].
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In [187], Kendall et al. proposed to learn the task-related weights directly during training

by considering the uncertainty of each task. Thus, both task-related losses L1 and L2 are

weighted by a learned uncertainty term, denoted as σi with i ∈ (1, 2). Those weigthing terms are

computed by deriving a multi-task loss function based on maximizing the Gaussian likelihood

with task-dependent uncertainty. The multitask loss function can be expressed as follows:

Luncertainty =
1

2σ2
1

L1 +
1

2σ2
2

L2 + log σ1 + log σ2. (5.2)

The authors have successfully applied this approach to a multitask model that performs three

tasks: per-pixel depth regression, semantic and instance segmentation.

Another solution called dynamic weight average (DWA) have been developed in [188]. This

approach consists on weighting the tasks specific losses regarding their rate of change for each

task. By considering k ∈ (1, 2), The final multitask loss LDW A can be expressed as follows:

LDW A =
∑

k

λkLk. (5.3)

The weighting parameters λk are computed regarding the loss values of the previous iterations

as:

λk(t) =
K exp(ωk(t − 1)/T )
∑

i exp(ωi(i − 1)/T )
, (5.4)

with T is the temperature, t an iteration index, k the task index and ωk the relative descending

rate of the task k computed as:

ωk(t − 1) =
Lk(t − 1)

Lk(t − 2)
. (5.5)

Here, the temperature T is a parameter used to control the softness of task weighting [189].

This parameter allows to balance the distribution across the different tasks. A large enough value

of T results in an equal weighting of the tasks, as λ1 ≈ 1.

5.2.2 Parameter sharing

When designing a multitask model, the second challenge is to share the learned represen-

tations across the tasks. The sharing of parameters can be performed by either hard parameter

sharing or soft parameter sharing.

By considering hard parameter sharing, the representations learned by the multitask network
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are either totally shared between tasks or task-specific. Multitask architectures based on this

principle are composed of a "trunk", i.e., shared layers, and multiple task-specific "branches",

i.e., task-specific layers. An illustration is provided in Fig 5.1 (a). In a context where the tasks

are close, the learned representations can globally be mutualized without interfering. However,

bypassing or weighting some unrelated feature maps might be helpful for specific tasks to learn

correctly.

The process of allowing the multitask model to partially share representations across the

tasks is called soft parameter sharing. This principle is illustrated in Fig 5.1 (b). In [22],

authors developed a soft sharing architecture based on cross-stitch units applied between multiple

task-specific architectures. In this approach, the cross-stitch units learn the optimal linear

combinations between the layers of several task-specific networks that minimize the multitask

loss function. Given two activation maps xa and xb, and a cross-stitch unit composed of

parameters α, the output maps of the cross stitch unit x̃A and x̃B are computed at pixel position

(i, j) as follows:







x̃ij
A

x̃ij
B





 =







αAA αAB

αBA αBB













xij
A

xij
B.





 (5.6)

Thus, the multitask network can dynamically set the layers to shared or task-specific by

varying alpha to zero from one during training.

5.3 Quality enhancement

In this section we present MTL-EDSR, a learning-based post-processing solution dedicated

to images and videos encoded with VVC AI mode. Our method relies on multitask learning and

performs quality enhancement and super-resolution using a single shared network optimized for

multiple degradation levels. The proposed solution enables a good performance in mitigating

coding artifacts and super-resolution with fewer network parameters than traditional specialized

architectures. We investigate advanced multitask architecture such as automatic multitask loss

computation and soft parameter sharing.

5.3.1 Proposed solution

Our approach aims to exploit the similarity between two tasks: SR and QE. We propose to

use hard parameter sharing using a shared network fθ and two task-specific modules gφSR
and
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Figure 5.2 – Architecture of the proposed MTL-EDSR network.

gφQE
. This approach allows the model to fully benefit from the feature redundancy between

both tasks. Consequently, the number of parameters can be reduced while maintaining a good

reconstruction quality compared to specialized architectures.

To make the model capable of generalizing across several input QP, we use qpmap [190] as

prior information to the network. This prior input corresponds to a uniform normalized map

computed as:

qpmap(i, j) =
QP

QP max

, i = 1, ..., W ; j = 1, ..., H, (5.7)

with (i, j) are the vertical and horizontal pixel coordinates. The value of QP max is equal to

63 in VVC.

In the following, let ILR denotes a low-resolution image of size W × H and ĨLR its recon-

structed version that may include coding artifacts. We first extract the shared features y from

the input image ĨLR concatenated with its corresponding qpmap using the shared network fθ as

follows:

y = fθ(Ĩ
LR, qpmap), (5.8)

The output images ÎHR and ÎLR are then estimated from the shared features y using the
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Figure 5.3 – Pre-training methodology.

task-specific modules gφSR
and gφQE

according to the following equations:

ÎHR = gφSR
(y). (5.9)

ÎLR = gφQE
(y). (5.10)

We selected L1-loss [191] to compute the task-specific losses LSR and LQE between the

estimated images ÎHR and ÎLR, and the original images IHR and ILR.

As our architecture is mainly inspired by [15], we first pre-train the network to perform

super-resolution on uncompressed images. The pre-trained parameters θ̂ and φ̂SR are obtained

by solving the following optimization problem:

(θ̂; φ̂SR) = arg min
(θ;φSR)

1

N

N
∑

n=1

LSR(gφSR
(fθ(I

LR
n )), IHR

n ), (5.11)

with IHR
n the high-resolution training images, ILR

n the corresponding low-resolution versions,

N the number of training samples and n = 1, ..., N the sample index. The pre-training process

is illustrated in Fig 5.3.

Finally, we optimize the overall multitask network by combining both task-specific losses in
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the multitask loss function Lmtl with a weighting parameter α as follows:

Lmtl = α LSR(ÎHR, IHR) + (1 − α) LQE(ÎLR, ILR). (5.12)

The schematic in Fig.5.2 illustrates the structure of the different components of MTL-EDSR.

The shared network fθ mainly consists of B RB with short and long skip connections. These

operations allow the network to learn the identity function, improving the gradient flow from

the deep to the shallow layers during the back-propagation step. It also leads to more sparse

feature maps, and thus, better performance. For each convolutional layer, we use 256 filters of

size 3 × 3. We introduce the non-linearity with the activation function ReLU between layers at

different stages of the network. This structure is directly inspired by the EDSR network [15],

which proposes state-of-the-art performance for super-resolution. We split the network at a

very deep stage of the architecture to maximize the parameter sharing between tasks. For the

super-resolution module gφSR
, we use the Pixel-Shuffle upscaling layer [176] at the end of the

network. The same structure is used for the quality enhancement module gφQE
, without the

upscaling layer.

5.3.2 Training procedure and dataset

Dataset

For the whole experiments, we train the networks with the DIV2K image dataset [192].

This later consists of 900 HD PNG pictures with a high diversity of spatial characteristics. To

prevent network overfitting, we evaluate the performance on the Set5 image dataset [85]. The

low-resolution images ILR are generated by a bicubic downscale applied on the high-resolution

images IHR. To generate the reconstructed versions ĨLR of the uncompressed images ILR,

we use the VTM-11 in all-intra configuration with QP ∈ {22, 27, 32, 37} in order to simulate

different levels of coding artifacts. We first convert the images from PNG to YUV4:2:0 format.

Then, we collect the reconstructed images and convert them back to RGB. For training, we

use 64 × 64 patches extracted from the training set to reduce GPU memory usage. To test the

performance of our network on video sequences, we also generate data from the ClassB and

ClassA of the JVET CTC [23] using VVC all-intra, as described above. We also include two

8K videos, selected from the dataset given in [178]. For the whole experiments, the quality is

assessed on the luma component using PSNR and SSIM [193] image quality metrics computed

between the estimated and original images. We also compute ∆-PSNR and ∆-SSIM that indicate

the gain compared to the decoded images prior post-processing. For Super-Resolution, we use
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Figure 5.4 – Soft parameter sharing (cross-stitch [22]).

bicubic interpolation as anchor.

Baselines

Single-task architectures derive from the proposed MTL-EDSR by setting α to 0 and 1 in the

multitask loss Lmtl, defined in (5.12), for quality enhancement and super-resolution, respectively.

We also include a sequential configuration based on these two single-task networks. For an input

image ĨLR, the sequential configuration can be expressed as:

ÎHR = gφ̂SR
(fθ̂(gφQE

(fθ̂(Ĩ
LR ⊕ qpmap)))). (5.13)

In that case, quality enhancement is applied to the input image before passing through the

super-resolution specialized network. For this experiment, we set the number of RB for each

specialized network in both sequential and single-task configurations to B = 4, leading to

approximately 7.7 million parameters per network. We also include single-task models with

B = 8 to match the performance with the multitask configuration.

Regarding the tested multitask architectures, we compare our approach with a soft parameter

sharing architecture based on cross-stitch [22]. The soft sharing architecture is illustrated in

Fig 5.4. We also include the multitask loss computation described in Section 5.2.1, including

uncertainty-based [187] and DWA [188].
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Training

We train our model over 250 epochs, with a learning rate of 10−4 for from-scratch training

and 10−5 for fine-tuning. For fine-tuning, the pre-trained weights are obtained by training the

network for super-resolution on uncompressed image pairs during 1000 epochs with a learning-

rate of 10−4. We apply a learning rate decay with a gamma of 0.5 every 75 epochs to improve

the convergence. We use a batch size of 8 and optimize the model with ADAM [80] by setting

β1 = 0.9, β2 = 0.999 and ǫ = 10−8. The parameter α in (5.7) was tuned and fixed to 0.9 after a

grid search on different values. All the experiments are performed on an NVIDIA Telsa V100

GPU using PyTorch.

5.3.3 Experimental results

Multi-QP optimization

In the first experiment, we want to evaluate the ability of our multitask model to generalize

across several QPs through an ablation study. The tested configurations include multi-QPs

training, fine-tuning and qpmap, as described in Section 5.3.1. Since less data are available for

the training of the QP-specific networks than for a single multi-QPs network, we multiply the

number of epochs by the number of tested QPs, i.e., 4, for these QP-specific configurations.

We also adjust the learning rate decay to be applied every 4 × 75 epochs in this case. Thus, all

the presented models are trained with the same number of parameter updates allowing a fair

evaluation. The qpmap is computed for each tested QP by (5.7). We set the number of RB to

B = 8 for all the tested models, leading to around 13 million parameters per network.

Table 5.1 shows the performance of our model on Set5 dataset for different input QP in terms

of PSNR (dB) and ∆-PSNR (dB) for both super-resolution and quality enhancement. We perform

an ablation study to evaluate the contribution of each component of our multi-QP model in the

global performance of the network. We observe that a fine-tuning of the network pre-trained

with uncompressed images leads to 0.08dB and 0.06dB of gain for SR and QE, respectively. We

notice that even using parameters pre-trained for super-resolution, quality enhancement performs

better as well. We also see that the qpmap contributes to the performance of our multi-QP model

by increasing the quality of reconstruction by 0.06dB for SR and 0.05dB for QE. It can be noted

that the models based on QP-specific training perform slighly better in terms of quality than our

multi-QP model. However, training one network per QP requires four times more training time

and parameters than a multi-QPs network to reach this level of performance.

Fig. 5.5 visualizes the convergence of each multi-QP configuration by assessing the PSNR on
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Table 5.1 – Ablation study of our model on Set5 for both tasks in terms of PSNR (dB) and
∆-PSNR (dB).

Multi-QPs ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

qpmap ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Fine-tuning ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Task SR QE SR QE SR QE SR QE

QP22
35.80

[+2.66]
43.07

[+0.43]
35.85

[+2.71]

43.19

[+0.55]

35.69
[+2.55]

42.92
[+0.28]

35.67
[+2.53]

42.98
[+0.34]

QP27
34.17

[+1.91]
39.18

[+0.39]
34.18

[+1.92]

39.24

[+0.45]

34.16
[+1.90]

39.21
[+0.42]

34.09
[+1.83]

39.13
[+0.34]

QP32
32.16

[+1.22]

35.62
[+0.40]

32.16

[+1.22]

35.67

[+0.45]

32.14
[+1.20]

35.63
[+0.41]

32.10
[+1.16]

35.58
[+0.36]

QP37
29.85

[+0.70]
32.20

[+0.35]
29.89

[+0.74]

32.27

[+0.42]

29.78
[+0.63]

32.13
[+0.28]

29.81
[+0.66]

32.16
[+0.31]

Average
33.00

[+1.63]
37.52

[+0.39]
33.02

[+1.65]

37.59

[+0.46]

32.94
[+1.57]

37.47
[+0.34]

32.92
[+1.55]

37.46
[+0.33]

the validation set at each training epoch for both tasks. We clearly notice that fine-tuning offers a

more stable training with a faster convergence than from-scratch training for super-resolution. It

is not surprising as the network starts to learn with weights that are already tuned for a related

task. Although this configuration also leads to better results for quality enhancement, this

observation is less pronounced in that case. Moreover, the training is globally less stable for this

task. It can be explained by the fact that the loss related to super-resolution is more weighted

in the proposed multitask loss Lmtl. However, we notice that the use of qpmap leads to a better

convergence for both tasks.

Multitask learning

Table 5.2 gives the performance in terms of PSNR, SSIM, ∆-PSNR and ∆-SSIM for

both tasks regarding the different baselines described in Section 6.3.1. In this experiment,

all the models are trained without fine-tuning and qpmap. Firstly, we notice that the sequential

configuration does not perform significantly better than the single-task by considering the same

total number of parameters. Moreover, super-resolution with B = 8 enables better performance

than the sequential model regarding this task. Similarly, we notice that a hard parameter sharing

with B = 8 proposes better results than a soft parameter sharing with B = 4, while the number of

parameter is the same. For our multitask approach MTL-EDSR, we notice that the performance of

single-task is reached with half parameters. In addition, the multitask performs better in terms of
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Figure 5.5 – Convergence analysis of MTL-EDSR regarding different training configurations.

quality than single-task considering the same total number of parameters. It can be explained by

the fact that a large number of features are computed twice between the specialized architectures.

Thus, a deeper multitask model allows new representations to be learned, increasing the quality

of reconstruction for both tasks. Regarding, the multitask loss, all tested solutions provide similar

performances for both tasks.

In Fig.5.6, we display the average feature maps for different convolutional layers of the

single-task and multitask architectures. As shown in this figure, the features are globally similar

and become more complex and specialized in the deeper layers. For Conv17, the average

feature map of multitask is more similar to super-resolution than quality enhancement, mostly

because α = 0.9 in the multitask loss Lmtl of the proposed model. This demonstrates that a

high correlation exists between the presented single-task models which can be exploited in the

multitask architecture.

Coding performance

In the last experiment, we investigated the performance of our multitask model applied

as post-processing for video delivery against single-task networks. The input signal is first

downscaled and encoded. Then, both post-processing tasks are performed on the decoded signal

outside the coding loop, as presented in [194] for super-resolution. The bit-rate is assessed on the

low-resolution signal. For this experiment, we consider the same total number of parameters for

both tested configurations, i.e., B = 8 for our multitask network and B = 4 for each single-task

network. We use the BD-Rate method described in [44] to evaluate our approach. Table 5.3
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Table 5.2 – Average performance (images, QPs) of the different Baselines in (∆-)PSNR (dB)
and (∆-)SSIM computed on the Set5 dataset. The value of B corresponds to the number of RB
used in the shared network fθ for Baseline-B.

Method Baseline-B Multitask loss
Super-Resolution Quality Enhancement

PSNR SSIM PSNR SSIM

Naive
w/o Enh - - - 37.12 0.9532

Bicubic - 31.37 0.8714 - -

Single-task SR
SR-4 - 32.80 0.8874 - -
SR-8 - 32.87 0.8884 - -

Single-task QE
QE-4 - - - 37.33 0.9542
QE-8 - - - 37.38 0.9847

Sequential QE-4;SR-4 - 32.81 0.8873 37.33 0.9542

Multitask

Hard sharing-8
α = 0.9 32.90 0.8885 37.40 0.9548

uncertainty [187] 32.87 0.8881 37.41 0.9547

DWA [188] 32.89 0.8884 37.40 0.9548

Soft sharing-4
α = 0.9 32.80 0.8873 37.36 0.9544

uncertainty [187] 32.80 0.8874 37.34 0.9542

DWA [188] 32.80 0.8871 37.22 0.9544

presents the results for both super-resolution and quality enhancement.

We can notice that, in average, our multitask model allows 2.8%/2.1% and 2.3%/1.1% of

bit-rate savings over specialized networks for the same objective quality, using PSNR and SSIM,

regarding super-resolution and quality enhancement, respectively. We can also notice that these

gains are higher for the sequences where our method performs well against naive anchors. These

video sequences including BQTerrace and SubwayTree contain more spatial information and

need more powerful models to be accurately reconstructed.

5.3.4 Analysis and discussion

In this section, we presented MTL-EDSR, a multitask learning-based approach that performs

both super-resolution and quality enhancement of VVC intra-coded LR frames. We used a

multi-QPs training strategy based on fine-tuning and prior information. We demonstrated that

our method allows a significant reduction of parameters, while maintaining a good quality of

reconstruction compared to specialized solutions. We also showed that our approach offers

quality enhancements compared to single-task models when the same total number of parameters

is considered.
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Figure 5.6 – Feature analysis.

5.4 High-level vision tasks

High-level vision tasks can be helpful for video coding algorithms by analyzing the scene

content on the server or client-side. In the previous section, we introduced MTL-EDSR, a

multitask CNN that performs simultaneously super-resolution and quality enhancement using

hard parameter sharing. In extension to this work, we present MTL-Unet, a multitask network

dedicated to super-resolution and high-level vision tasks, namely, semantic segmentation and

no-reference image quality assessment (NR-IQA). Similarly to MTL-EDSR, we show that

the proposed model can perform the different tasks with a low impact on the super-resolution

reconstruction error, reducing the number of parameters compared to specialized architectures.

5.4.1 High-level vision tasks in video coding

In contrast to low-level image processing tasks, e.g. super-resolution and quality enhance-

ment, high-level vision tasks aim at understanding the scenes beyond local statistics. A higher

level of abstraction is required for those tasks, e.g. semantic segmentation, depth estimation,

NR-IQA, widely achieved in the literature using DNN [17, 195, 196, 197].
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Table 5.3 – BD-rate (%) of MTL-EDSR computed over single-task baselines regarding PSNR
and SSIM for different resolution classes. The values in bracket indicate the gain compared to
naive anchors, i.e., bicubic upscale and input quality.

Dataset Sequence
Super-Resolution Quality Enhancement

PSNR SSIM PSNR SSIM

8K
(7680x4320)

SubwayTree -3.55 [-17.17] -1.15 [-9.12] -2.19 [-5.85] -0.90 [-3.39]
TiergartenParkway -0.88 [-7.90] -0.93 [-5.46] -1.64 [-3.26] -0.80 [-1.99]

ClassA1
(3840x2160)

Campfire -1.19 [-9.51] -0.78 [-6.16] -1.30 [-2.92] -0.58 [-1.53]
FoodMarket4 -1.97 [-15.97] -1.55 [-9.66] -2.19 [-5.13] -0.97 [-2.67]
Tango2 -1.47 [-8.41] -1.40 [-5.61] -3.91 [-6.04] -1.19 [-3.23]

ClassA2
(3840x2160)

CatRobot1 -2.47 [-16.75] -2.53 [-15.87] -2.41 [-5.62] -1.47 [-3.87]
DaylightRoad2 -1.37 [-10.28] -1.31 [-7.30] -1.89 [-4.77] -0.94 [-2.44]
ParkRunning3 -1.44 [-12.45] -1.34 [-10.15] -1.46 [-3.18] -0.84 [-2.34]

ClassB
(1920x1080)

BasketballDrive -5.44 [-53.94] -4.22 [-40.42] -1.92 [-4.29] -1.68 [-3.59]
BQTerrace -7.99 [-55.00] -5.43 [-34.09] -2.64 [-4.97] -1.58 [-2.82]
Cactus -3.01 [-33.17] -2.35 [-22.93] -2.16 [-4.55] -1.37 [-3.24]
MarketPlace -3.52 [-28.84] -1.63 [-18.10] -3.10 [-5.25] -0.78 [-2.64]
RitualDance -2.54 [-17.50] -2.55 [-12.82] -3.61 [-7.10] -1.66 [-5.08]

Average -2.83 [-22.07] -2.09 [-15.21] -2.34 [-4.84] -1.14 [-2.99]

Semantic segmentation

Semantic segmentation of images is a supervised learning task with two objectives: segment-

ing objects in the input image and assigning a label to the segmented areas.

This field has been investigated in MPEG-4 standard [198] with object-based video cod-

ing [199, 200, 201, 202]. This approach allows controlling the degree of compression of video

objects based on their semantical relevance, which is helpful for rate control algorithms. Con-

necting learned low-level image processing models with semantic segmentation has already been

investigated in the literature. Recently, semantic segmentation has been proposed in learned video

coding to enhance the quality of reconstruction compared to traditional approaches [203, 204].

Authors in [205] have extended this approach by applying semantic segmentation to the upscaled

image on both encoder and decoder sides, avoiding transmitting semantic maps through the

network.

Regarding image post-processing, authors in [206] proposed a model that combines denoising

and semantic segmentation CNNs to improve both tasks’ performance. A multitask learning-

based model has been developed to perform super-resolution and semantic segmentation in [207].

However, those approaches are based on GANs and perceptual loss, which is hard to control and

inappropriate in a broadcast context.
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No-reference image quality assessment

Real-time communication and streaming services require quality adaptations using objective

quality assessment methods to collect the delivered quality statistics. Image quality assessment

(IQA) is a fundamental problem in the image processing field and requires efficient algorithms

to accurately model the HVS. There are three types of IQA approaches:

— full-reference image quality assessment (FR-IQA) which require both the source and

degraded images,

— reduced-reference image quality assessment (RR-IQA) which require both a description

of the source and degraded images,

— NR-IQA which only require the degraded image

In a broadcast context, NR-IQA methods are the more suited to assess services at the receiver-

side, as transmitting additional information about the source through the network cannot is

sometimes unrealistic. However, this latter is the more challenging as no-reference are used in

the quality evaluation process. Traditional NR-IQA approaches predict a score or a map from

features that relate to a specific kind of distortion, such as the amount of noise or block boundaries

detector. As a significant part of inverse problems, some recent works have investigated NR-IQA

using DNN [208, 209, 210, 211] and have outperformed traditional approaches by learning the

appropriate features that map the reconstructed degradation map from a single image and the

FR-IQA ground truth.

5.4.2 Proposed solution

The proposed MTL-Unet network is based on hard parameter sharing using a shared network

fθ and two task-specific modules gφSR
and gφk

, with k ∈ {IQA, Seg} for the task of NR-IQA

and semantic segmentation, respectively. First we extract the shared features y from the input

reconstructed image ĨLR as:

y = fθ(Ĩ
LR). (5.14)

Then, the main and additional outputs are generated by the super-resolution module gφSR

and the additional task module gφk
following:

ÎHR = gφSR
(y), (5.15)
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and

Îk = gφk
(y), (5.16)

for k ∈ {IQA, Seg}, respectively. We selected DWA [188] loss function, detailed in

Section 5.2, to optimize our multitask network:

LDW A =
∑

k

λkLk. (5.17)

The proposed architecture, described in Figure 5.7, is based on Unet [17], commonly used

for semantic segmentation tasks. This encoder-decoder solution is composed of pooling and

upscaling layers, increasing the network’s receptive field and, thus, the level of abstraction.

However, unlike other encoder-decoder networks, Unet-based architectures allow preserving

spatial information of the input by transmitting the high-resolution feature maps to the decoder

side of the network. The learned representations are transferred from encoder to decoder by a

concatenation along the feature axis. Thus, a better fidelity with the input image can be obtained

for the reconstructed map. It is also valuable in our case for the super-resolution task, which

needs as much spatial information from the input as possible. The network comprises several

convolution layers composed of 64 kernels of size 3 × 3. For simplicity, we do not display

activations in the core of the shared network fθ.

5.4.3 Training procedure and dataset

Datasets

As in Section 6.3.1, we use the DIV2K image dataset [192] for super-resolution and NR-IQA

tasks. The low-resolution images ILR are generated by a bicubic downscale applied on the

high-resolution images IHR. To generate the reconstructed versions ĨLR of the uncompressed

images ILR, we use the VTM-11 in all-intra configuration with QP ∈ {22, 27, 32, 37}. We first

convert the images from PNG to YUV4:2:0 format. Then, we collect the reconstructed images

and convert them back to RGB. The ground truth degradation maps are generated using the

SSIM between the uncompressed and compressed images which outputs a spatial degradation

map. The output maps are denoted ISSIM . As the task of semantic segmentation requires labeled

images, we used another training dataset, called PASCAL-VOC dataset [212], which contains

3600 images and 459 classes. We restrict the number of classes to 10: Tree, Sky, Building,

Ground, Wall, Grass, Floor, Person, Water, and set None for the others in order to simplify the
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Figure 5.7 – Architecture of the proposed MTL-Unet network.

task. We use the cross-entropy as a loss function as described in Section 5.4.1.

Baselines

For the NR-IQA task, we selected the L1-loss between the true SSIM-map ISSIM and the

output of the network as a loss function ÎSSIM :

LIQA = ||ÎIQA − IIQA||1 (5.18)

For the semantic segmentation task, we used the cross-entropy loss function between ground-

truth ISeg and predicted labels ÎSeg as follows:

LSeg = −
C

∑

c=1

ISeg
c log(ÎSeg

c ), (5.19)
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Table 5.4 – Comparison of MTL-EDSR and MTL-Unet for super-resolution in single-task mode.

MTL-EDSR MTL-Unet

PSNR SSIM PSNR SSIM

QP22 35.62 0.9359 35.40 0.9347

QP27 34.05 0.9126 33.94 0.9118

QP32 32.06 0.8802 31.99 0.8794

QP37 29.74 0.8348 29.67 0.8337

Average 32.87 0.8884 32.75 0.8899

with C denoting the number of classes.

All the networks are trained from scratch in multi-QP training mode. DWA loss is evaluated

against weighted multitask loss with α = 0.5 and uncertainty-based multitask loss. For MTL-

EDSR, we set the number of residual blocks B = 8, providing a fair evaluation with MTL-Unet

regarding the number of parameters.

Training

For training, we use 64 × 64 patches extracted from the training set to reduce GPU memory

usage. For the whole experiments, the quality is assessed on the luma component using PSNR

and SSIM [193] image quality metrics computed between the estimated and original images. For

the task of semantic segmentation, we use two different datasets to train the multitask network:

one for super-resolution and one for semantic segmentation. Thus, the task-specific loss functions

are computed on the dataset related to the task.

We train the models over 250 epochs, with a learning rate of 10−4. We apply a learning rate

decay with a gamma of 0.5 every 75 epochs to improve the convergence. We use a batch size of

8 and optimize the model with ADAM [80] by setting β1 = 0.9, β2 = 0.999 and ǫ = 10−8. All

the experiments are performed on an NVIDIA Telsa V100 GPU using PyTorch.

5.4.4 Experimental results

Super-resolution

In this experiment, we evaluate the performance of the U-net compared to the EDSR-based

architecture described in Section 5.3 for super-resolution in single-task mode. Both networks

have a similar amount of trained parameters. The results are represented in Table 5.4.
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0.0520.0250.0440.0300.0450.017

Figure 5.8 – Visual comparison of MTL-EDSR and MTL-Unet for the task of NR-IQA.

We notice that MTL-EDSR outperforms the MTL-Unet for all QPs in both PSNR and SSIM.

Although the high-resolution feature maps are transferred at the decoder side by MTL-Unet,

the dimensionality reduction causes a loss in performance compared to MTL-EDSR. In this

latter, the dimensionality of features remains unchanged along with the network, making this

architecture more suited to super-resolution. Indeed, as many details from the input image as

possible are required to recover the missing high-resolution details.

High-level vision tasks

In this test, we visually compare the performance of both MTL-Unet and MTL-EDSR for the

tasks of semantic segmentation and NR-IQA. Visual reconstructions using both architectures on

Set5 dataset samples are represented in Figure 5.8 for the task of NR-IQA, and in Figure 5.9 for

the task of semantic segmentation. The networks are optimized with the DWA-based multitask

loss function, defined in Section 5.4.2. For the task of NR-IQA, we notice that MTL-Unet

reconstruction is closer to the target SSIM map than MTL-EDSR for which the degradation is

not detected. For semantic segmentation tasks, MTL-Unet reproduces better quality and more

dense maps than MTL-EDSR.
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Input
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0.9971.4121.0070.650

Figure 5.9 – Visual comparison of MTL-EDSR and MTL-Unet for the task of semantic segmen-
tation (QP = 22).

Multitask learning

This experiment evaluates MTL-Unet for super-resolution trained with semantic segmen-

tation or NR-IQA as an additional task. Results are reported in Table 5.5. We notice that the

performance of MTL-Unet is higher by considering NR-IQA as an additional task, which is

more related to the main task of super-resolution than semantic segmentation. We also show that

DWA outperforms weighted loss (α = 0.5) and uncertainty-based multitask loss for almost all

QPs, regarding PSNR and SSIM. However, the single-task Unet performs better than MTL-Unet

for the super-resolution task regarding all the tested multitask configurations. This observation

denotes a negative transfer between super-resolution and the high-level vision additional tasks.

Although the single-task Unet outperforms MTL-Unet for super-resolution, the proposed multi-

task architecture allows tasks useful for video coding algorithms to be performed in parallel with

super-resolution using a single shared network.

5.4.5 Analysis and discussion

In this section, we presented MTL-Unet, a multitask learning-based approach that performs

both super-resolution and high-level vision tasks from VVC intra-coded input frames. Similarly

to MTL-EDSR described in section 5.3, we demonstrated that the proposed method allows a
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Table 5.5 – Performance of MTL-Unet for the different tested additional tasks and multitask
losses. The values in bracket indicate the ∆-PSNR and ∆-SSIM compared to MTL-Unet in
single-task mode.

α = 0.5

k = Seg k = IQA

PSNR SSIM PSNR SSIM

QP22 35.04 [-0.36] 0,9296 [-0.0051] 35,24 [-0.16] 0,9314 [-0.0033]

QP27 33.70 [-0.24] 0,9072 [-0.0046] 33,80 [-0.14] 0,9086 [-0.0032]

QP32 31.85 [-0.14] 0,8751 [-0.0043] 31,92 [-0.07] 0,8763 [-0.0031]

QP37 29.62 [-0.05] 0,8298 [-0.0039] 29,70 [-0.03] 0,8314 [-0.0023]

Average 32,55 [-0.20] 0,8854 [-0.0045] 32,67 [-0.09] 0,8869 [-0.0030]

Uncertainty [187]

k = Seg k = IQA

PSNR SSIM PSNR SSIM

QP22 34.90 [-0.50] 0.9306 [-0.0041] 35.09 [-0.31] 0.9328 [-0.0019]

QP27 33.61 [-0.33] 0.9087 [-0.0031] 33.72 [-0.22] 0.9098 [-0.0020]

QP32 31.79 [-0.20] 0.8766 [-0.0028] 31.83 [-0.16] 0.8771 [-0.0023]

QP37 29.57 [-0.10] 0.8311 [-0.0026] 29.59 [-0.08] 0.8318 [-0.0019]

Average 32.47 [-0.28] 0.8868 [-0.0032] 32.56 [-0.19] 0.8878 [-0.0020]

DWA [188]

k = Seg k = IQA

PSNR SSIM PSNR SSIM

QP22 35.28 [-0.12] 0.9337 [-0.0010] 35.38 [-0.02] 0.9345 [-0.0002]

QP27 33.85 [-0.09] 0.9109 [-0.0009] 33.92 [-0.02] 0.9114 [-0.0004]

QP32 31.92 [-0.07] 0.8784 [-0.0010] 31.96 [-0.03] 0.8790 [-0.0004]

QP37 29.63 [-0.04] 0.8325 [-0.0012] 29.66 [-0.01] 0.8334 [-0.0003]

Average 32.67 [-0.08] 0.8889 [-0.0010] 32.73 [-0.02] 0.8896 [-0.0003]

significant reduction of parameters, while maintaining a good quality of reconstruction compared

to specialized solutions. Our approach also provides better quality of reconstruction compared to

single-task models when the same total number of parameters is considered.

5.5 Conclusion

In this chapter, we investigated different multitask learning approaches for super-resolution

on LR images encoded using VVC AI mode. Two multitask models have been designed:
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— MTL-EDSR, which is dedicated to super-resolution and VVC quality enhancement.

— MTL-Unet, which is dedicated to super-resolution and high-level vision tasks, i.e., NR-

IQA and semantic segmentation.

Although the developed architectures do not improve single-task super-resolution, we showed

that additional tasks of several natures could be performed simultaneously with a low impact on

the reconstruction error. On one hand, DNNs-based architectures recently achieved outstanding

performance in several domains impacting video coding, e.g. super-resolution, quality enhance-

ment, NR-IQA or semantic segmentation. On the other hand, one model for each task is trained

and deployed in practice, while some of the learned reresentations can be useful for other tasks.

To tackle this, the proposed multitask approaches could be considered to save storage space at

the receiver side while performing multiple tasks.

However, several tracks remain in this work. Regarding super-resolution applied on com-

pressed LR video, the temporal aspect can be considered to provide information about the

missing sub-pixel located in the neighboring frames [213, 214]. Also, the use of richer prior

information can be considered. For instance, a recent contribution [215] proposed using the

LR input’s prediction, which gives both spatial and temporal knowledge about the decoded LR

image. Moreover, some works considered providing the prior information at deeper stages of the

network to improve the performance [190]. Regarding multitask learning for super-resolution,

performing all the tested tasks together with a single network has not been investigated in this

work. Furthermore, assessing the other tasks would allow to know the impact of super-resolution

on higher-level tasks. Finally, as proposed by authors in [188], more sophisticated multitask ar-

chitectures can be considered to perform soft-parameter sharing without consequently increasing

the number of parameters.

This chapter demonstrated that dedicated architecture and training strategies do not signifi-

cantly improve super-resolution applied on compressed data, thus remaining content-dependent.

Consequently, we decided to stop the explorations on this topic for this work. In the following we

consider side information coupled with super-resolution to recover the lost details. As mentioned

in chapter 4, the BL codec’s dependence and the additional delay introduced by scalable codecs,

such as SHVC [26], make them difficult to set up in practice. Thus, low-complex and codec

agnostic approaches must be considered, such as metadata approaches like by LCEVC [216]

recently proposed as MPEG-5 Part 2 standard.
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CHAPTER 6

LEARNING-BASED VIDEO CODING FOR

EFFICIENT LAYERED COMPRESSION

6.1 Preamble

The previous chapters evaluate super-resolution algorithms for downscaling-based com-

pression. The results demonstrate that, at low bitrate, this type of framework can improve the

performance of single-layer coding by increasing the bit-per-pixel ratio. However, the degra-

dations generated by the quantization step reduce the performance of super-resolution models

compared to conventional interpolation methods. Moreover, the performances of this type of

framework are content-dependent due to some high-frequencies that cannot be recovered by

post-processing. A solution to this problem would be to transmit the lost spatial information

using an enhancement layered approach, like LCEVC. This codec encodes the residual between

the reconstructed BL signal and the source as side information. However, this solution is based

on handcrafted modules that are not jointly optimized, i.e., upscaling, partitioning, transform.

Recently, autoencoders have shown outstanding performance in compressing image and video

signals by training all modules together in an end-to-end fashion.

This chapter presents CAESR. This learning-based layered approach uses a conditional

autoencoder as an EL model and a conventional single-layer codec as a BL model. The presented

method is trained to encode the residual between the upscaled reconstructed image and the

source. Section 6.2 presents the overall pipeline of the proposed solution. Section 6.3 evaluates

our algorithm as a codec enhancer based on the HM-16.20. We first provide an ablation

study that validates the efficiency of our method. Then, we compare it against state-of-the-art

layered approaches, including LCEVC and SHVC, for single-layer codec enhancement. Finally,

Section 6.4 evaluates our algorithm for the deployment of new services by considering 4K video

delivery on top of an HD signal regarding typical bitrates used for DTT broadcast.
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6.2 Conditional autoencoder and super-resolution (CAESR)

This section presents the implementation details of the proposed model. Our approach relies

on conditional coding that allows a non-linear mixture of the source and the reconstructed signal

to be learned, thus improving the performance compared to residual coding [217]. The overall

pipeline of the proposed solution is described in Fig. 6.1.

Figure 6.1 – Description of CAESR.

6.2.1 Framework and formulation

Given an input image x ∈ R
W ×H×C of width W and height H represented by C channels,

we first apply a spatial downscale by a factor 2 to generate the input BL image xlr. This latter is

encoded with a BL encoder, e.g. HEVC or VVC. The decoded image xc is then rescaled to the

original resolution W × H to form the EL model’s input x̃c. To perform conditional coding, the

source image x and the upscaled base reconstruction x̃c are concatenated along the feature axis

to feed the autoencoder. The resulting tensor (x̃c, x) ∈ R
W ×H×2C is encoded by the encoder

part of fθ, denoted as ga, into a latent vector y. Additional latent variables z are produced by

the hyper-encoder ha to capture spatial dependencies among the element of y. Both latents

are quantized using the round function to produce ŷ and ẑ. At training, we apply a uniform

noise U(−1
2
, +1

2
) on latents to emulate the quantization errors while enabling backpropagation,

resulting in ỹ and z̃. To simplify, we use ȳ and z̄ to denote both actual and emulated quantized

latents. The latent variables are then entropy coded regarding a GMM parameterized by the
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output of the hyper-decoder hs as:

p(ȳ|z̄) ∼
K

∑

k=1

w(k)N (µ(k), σ2(k)), (6.1)

with k the index of mixtures defined by w(k), µ(k) and σ2(k), denoting weights, means and

scales, respectively.

At the decoder side, the latent residual signal r is reconstructed by the synthesis part of fθ,

denoted as gs, and concatenated with the upscaled based-layer image x̃c to form the input of the

super-resolution network sφ. Finally, the output image x̂c is reconstructed from the following

equation:

x̂c = sφ(x̃c, r). (6.2)

In this work, the upscaling operation is applied before feeding the super-resolution module

sφ using an interpolation filter to make the network performing both high-resolution details

recovering and conditional coding process inversion.

All components of the overall differentiable system are jointly trained to minimize the

following rate distortion loss function L based on a Lagrangian multiplier λ:

L(λ) = D(x̂c, x) + λR. (6.3)

The distortion D is measured using the MSE between x̂c and x. The term R corresponds to

the Shannon entropy of ỹ, computed as:

R = Eỹ∼m[− log2(p(ỹ|z̃))], (6.4)

with m the true distribution of latents.

6.2.2 Network architecture

The architecture of the proposed system, illustrated in Fig. 6.2, is described in this section.

Skip connections represent element-wise additions between features. Q, AE and AD stand for

quantization, arithmetic encoding, and arithmetic decoding steps, respectively. We fix n = 128.

The structure of fθ is based on the layered autoencoder with hyperprior (AE-HP) architecture

described in [218], that estimates the group of parameters {w(k), µ(k), σ2(k)}, with k = 3, for

the entropy model described in (6.1). We also use an autoregressive context model over latents
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(a) Architecture details of the conditional autoencoder fθ.

(b) Architecture details of the super-resolution network sφ.

Figure 6.2 – Architecture and details of CAESR.

[219], denoted as Cm, to improve the entropy model accuracy without increasing the rate. The

main analysis and synthesis transforms, ga and gs, respectively, are composed of successive

self-attention and residual blocks [218]. The non-linearity is integrated using the GDN activation

function [220] and LeakyReLU as described in [218]. For the hyper-encoder ha and hyper-

decoder hs, LeakyReLU activation function is used. Regarding dimensionality reduction and

expansion strided convolutional layers and sub-pixel upscaling layers [176] are implemented,

respectively.

Our super-resolution module is inspired by the EDSR architecture [15] which enables state-

of-the-art performance. This SR architecture mainly consists of B RBs with short and long skip

connections. In this work, we fix B = 8 and use 64 filters of size 3 × 3 for each convolutional

layer. We introduce the non-linearity with the ReLU activation, as described in Fig. 6.2b. We

removed the upscaling layer typically located at the end of the network and perform image

upscaling before passing the input picture through this module.
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6.3 Enhancing video codecs with CAESR

As mentioned, downscaling-based compression can enhance the performance of single-

layer codecs at low bitrate while ensuring backward compatibility with legacy receivers. This

section presents how CAESR can be applied as a codec enhancer by transmitting the lost spatial

information to stabilize the performance. First, details on the training process and dataset

are given. Second, an objective evaluation of our method is provided. We first perform an

ablation study using different configurations derived from the proposed conditional system.

Then, we compare our approach with layered coding methods from the state-of-the-art, including

LCEVC and SHVC. Finally, we investigate a simple temporal extension providing rate-distortion

performance improvement for small GOP sizes.

6.3.1 Training procedure and dataset

Dataset

We train our model using 200 4K resolution video clips collected from the BVI-DVC

dataset [183]. Each model is evaluated on several Class A videos (3840x2160) of the JVET CTC

tests dataset, selected regarding their high-resolution relevancy. First, the base-layer input images

xlr are generated by a spatial downscale of factor 2 using a Lanczos-3 filter. The reconstructed

versions x̃c of the low-resolution images xlr are then obtained using the HEVC test model

HM-16.20 for different QPs. All models only consider the luma component in the EL processing

to concentrate the bitrate on the most relevant visual information, i.e., xc and x ∈ R
W ×H×1. The

chroma components of the output image x̂c are obtained by a bicubic upscale applied on the

BL image x̃c. For training, we crop 256 × 256 high-resolution and corresponding 128 × 128

low-resolution patches from the training set, resulting in around 150K training pairs.

Training

Both the super-resolution and autoencoder networks are jointly trained to minimize the

rate-distortion loss defined in (6.3). We train one model per base-layer QP ∈ {37, 32, 27, 22}
and select specific λ values in (6.3). As the base quality is starting to saturate at higher bitrate, we

empirically decided to allocate more bitrate for the lower BL QPs. The models are trained over

20 epochs with a learning rate of 10−4. We apply a learning rate decay with a gamma of 0.5 for

the last 5 epochs to improve the convergence. We use a batch size of 4 and optimize the model

with ADAM [80] by setting β1 = 0.9, β2 = 0.999 and ǫ = 10−8. For the whole experiments, the
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Figure 6.3 – Visualization of the configurations tested during ablation using CatRobot1 encoded
with HM-16.20 AI (qp22).

quality is assessed on the luma component using PSNR full-reference objective image quality

metrics computed between the reconstructed images x̂c and original images x.

6.3.2 Experimental results

Ablation study

In this experiment, we demonstrate the effectiveness of the proposed system through an

ablation study. This test is performed using the all intra (AI) configuration of the HM-16.20. The

models that use our EL module fθ, including the proposed conditional coding system CAESR

and the residual-based configurations with and without super-resolution, represented by ressr

and resbic, respectively, are illustrated in Fig. 6.3. This experiment also considers configurations

based on our super-resolution module sφ and a bicubic interpolation filter used as post-processing

modules, represented by sr and bic, respectively. The whole learned models are optimized using

the training strategy described in Section 6.3.1.

The left part of Figure 6.3 represents residual prediction and image reconstruction steps for

the different configurations used for the ablation study. We display cumulative bitmaps obtained
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with the different tested models in the right part of Figure 6.3. We observe that the configurations

that include super-resolution, i.e., (a) and (b), produce more sparse latent variables that require

fewer bits for enhancement layer encoding. The joint training of the super-resolution module sφ

and the autoencoder fθ allows an optimal interaction between the two models. Therefore, the

autoencoder fθ omits high frequencies that the super-resolution module sφ can recover, allowing

the autoencoder fθ to focus on the most complex areas.
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Figure 6.4 – Average performance of the tested configurations on the Class A videos from the
JVET CTCs dataset [23].

The RD curves are represented in Fig. 6.4. We display incomplete systems for ablation study

in dashed lines. We also add a full-resolution single layer HEVC configuration, corresponding

to the high-resolution images encoded with HEVC HM-16.20 all-intra mode. We compute the

global rate for configurations that consider an EL signal by the bitrates of the BL and EL signals.

First, we notice that the configurations including both the autoencoder fθ and the SR module

sφ in the EL, are more efficient than the others, particularly at higher bitrates. Indeed, in this

bitrate range, the reconstructed residual information contains high-resolution details that cannot

be recovered using a single post-processing module. Although the residual bicubic configuration,

i.e., (c) in Fig. 6.3, offers lower performance, this experiment demonstrates that at a high bitrate,

transmitting the residual computed from a bicubic upscale with our system offers gains in PSNR

over super-resolution used as a post-processing module.
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Table 6.1 – Performance SHVC, LCEVC and CAESR regarding different sequences using
HM-16.20 full-resolution coding as anchor. The values in bracket indicates the BD-rate using
their respective upscaled BL as anchor.

Method SHVC LCEVC Ours

BD-rate (%) (PSNR) (VMAF) (PSNR) (VMAF) (PSNR) (VMAF)

Campfire
+16.31

-
+18.75

-
-14.48
[-1.12]

-24.05
[+0.82]

-23.87

[-2.63]

-27.85

[-1.05]

CatRobot1
+30.10

-
+28.63

-
+1.36

[+1.48]
-12.89
[+3.45]

-10.65

[+0.46]

-17.88

[+2.48]

ParkRunning3
+11.16

-
+11.40

-
-23.70
[+0.91]

-32.81
[+2.78]

-28.08

[-0.71]

-33.81

[+0.91]

DaylightRoad2
+30.53

-
+29.31

-
+6.02

[+1.91]
-7.80

[+3.39]
-5.66

[+0.64]

-14.67

[+2.06]

Average
+22.03

-
+22,02

-
-7.70

[+0.51]
-19.25
[+2.61]

-18.38

[-0.70]

-23.54

[+1.10]

Model performance

This experiment evaluates CAESR against state-of-the-art layered coding approaches, in-

cluding LCEVC and SHVC. All the tested methods are assessed using HEVC as a BL codec.

For both CAESR and LCEVC, the BL is encoded using the HM-16.20 in RA mode with

QP ∈ {22, 27, 32, 37}. For LCEVC, the EL is generated with the LCEVC test model (LTM-4.0)

using specific quantization parameters regarding the BL QPs given in [221]. As for CAESR, we

enable the luma restriction in the configuration of the LTM-4.0 1 to provide a fair comparison.

For SHVC, we use the SHM-9.0 in RA mode with QP ∈ {27, 32, 37, 42} to match the bitrate

with CAESR and LCEVC. All approaches are compared against HEVC full-resolution coding

using HM-16.20 as an anchor with QP ∈ {27, 32, 37, 42}.

The RD curves for both CAESR and LCEVC are depicted in Figure 6.5. For both algorithms,

we represent the performance of the upscaled BL without enhancement to highlight the EL

contribution to the global performance. We also compare both approaches with HEVC full-

resolution coding in terms of BD-rate performance regarding PSNR and VMAF. The results are

summarized in Table 6.1 for all the tested sequences. We notice that both LCEVC and CAESR

outperform SHVC on the assessed bitrate range. Indeed, as mentioned in the state-of-the-art,

scalability always generates bitrate overhead. Compared to full-resolution coding, the results

demontrates that CAESR and LCEVC allow a bitrate reduction of 18.38% and 7.7% regarding

1. num_processed_planes = 1
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Figure 6.5 – RD-curves for objective comparison with state-of-the-art.

the same PSNR, respectively, while offering backward compatibility.

However, we notice that the performance of LCEVC and CAESR compared to their respective

upscaled BL depends on the sequence. For instance, the EL of CAESR offers 2.63% of

bitrate gains regarding the sequence Campfire, against a loss of 0.64% regarding the sequence

DaylightRoad2. To better analyze these results, we display the bitrate allocation for both the

BL and the EL of CAESR in Figure 6.6. On the one hand, we see that P and B frames of the

BL have a low contribution to the global rate for the sequences CatRobot1 and DaylightRoad2,

while the EL bitrate remains constant for all frames. Indeed, these sequences contain temporal

redundancy that is exploited by the hierarchical structure of the BL encoder. Thus, by comparing

the performance of the tested approaches with their respective upscaled BL, we notice that no

gains are provided for the sequences CatRobot1 and DaylightRoad2. Although LCEVC provides
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Figure 6.6 – Per-frame rate allocation analysis.

temporal processing of the residual, it is not sufficient to efficiently exploit this redundancy

in the residual space. On the other hand, gains are offered for the sequence Campfire, where

P and B frames have a higher contribution to the global rate. Indeed, this sequence contains

random motion, which is hard to predict by the BL codec. Thus, a large part of the processed

samples of the BL is intra predicted. Although CAESR provides the best performance for all the

tested sequences, this observation limits the rate allocation for the EL and, thus, the performance

compared to upscaling applied as post-processing.

Temporal extension

In this experiment, we explore a simple temporal extension for CAESR to evaluate the

potential of temporal redundancy reduction in the residual space. As conditional coding can

provide more than one frame to the autoencoder, we feed both the autoencoder fθ and the

super-resolution model sφ with the previously decoded frame xt−1 without motion compensation,

as shown in Figure 6.7. Thus, we train two models to perform the inter configuration. The I

frame is encoded using a first model trained as described in Section 6.2.1 and the P frames using

another model trained as described in Figure 6.7. Each training iteration consists of encoding and

decoding one P frame based on the previously reconstructed I frame. During inference, we form

GOP containing one I frame and several P frames. An illustration of the bitmap for different GOP

sizes for the EL is given in Figure 6.9. It shows that fixed zones that are costly in bitrate (because
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the camera better captures no-motion zones) are well captured by the temporal extension. We

illustrate the evolution of the RD loss regarding different size of GOP in Figure 6.8. We notice

that the temporal extension lowers the RD loss for all sequences regarding small GOP sizes.

However, a GOP size superior to 4 generates error propagation as the RD loss increases.

Figure 6.7 – Illustration of the temporal extension of CAESR.
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Figure 6.8 – RD loss regarding different GOP sizes.

6.3.3 Analysis and discussion

This section evaluates CAESR as a codec enhancement method using HM-16.20 as a BL

codec. We demonstrated that the conditional coding process offers better average performance

than residual coding in AI mode. In RA mode, the performance of our approach depends on

the type of sequences. We show that the metadata can help stabilize the downscaling-based

compression method’s performance for sequences with low temporal redundancy. We show

that our approach outperforms both LCEVC and SHVC in terms of BD-rate performance for

all sequences. However, our approach cannot enhance the upscaled BL signal for low-motion

sequences. Finally, we show that a simple temporal layer can improve the performance of

CAESR for this type of scene. However, this temporal extension is limited to a small GOP size

due to error propagation.
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GOP 1

GOP 4

Figure 6.9 – Visualization of the bitmaps regarding different GOP sizes.

6.4 Deploying new video services with CAESR

The initial target of this manuscript was to deploy higher resolution services, e.g. 8K, from

already deployed services, e.g. 4K, while avoiding using simulcast. In this context, the layered

structure of CAESR can bring flexibility by allowing the delivery of the BL and the EL in

separate channels. For instance, the BL can be transmitted over broadcast DTT network, while

the EL can be distributed over broadband internet protocol (IP) network. This section evaluates

our approach compared to an HEVC simulcast (HD/4K) using typical DTT bitrates for HD with

HEVC: 2.5Mbps, 5Mbps, 7.5Mbps, and 10Mbps. We also compare the performance of our

method with LCEVC assessed in similar conditions.

6.4.1 Training procedure and dataset

Baseline

For this experiment, we use another training strategy to optimize our model. As mentioned in

the introduction, lowering the resolution leads to fewer compression artifacts in the reconstructed

low-resolution image due to an increased bit-per-pixel ratio. However, the downscaling step

generates a loss in high-resolution details, which degrades the quality. Thus, we separate the two

types of degradations by training our model to recover scaling residuals only. An illustration

of the training pipeline for this experiment is given in Figure 6.10. The reconstructed residuals

are then applied to the decoded BL during inference, as described in Section 6.3.1. It also

allows simpler control of the bitrate for the EL, as it does not depends on the BL quality. In

118



Learning-Based Video Coding for Efficient Layered Compression

Figure 6.10 – Description of the training phase of CAESR for scaling residuals.

this section, we train two versions of the proposed system, i.e., (a) and (c) in Figure 6.3. In

addition to CAESR based on conditional coding and super-resolution, it allows comparing our

approach with LCEVC using the same upscaling filter for the EL residual input. Each baseline is

trained for two different values of lambda, selected to cover bitrates in the range of 0 to 10Mbps

approximately. Regarding LCEVC, we tune the quantization parameter to cover a similar bitrate

range.

Dataset

As in Section 6.3, we use the 4K sequences from the BVI-DVC dataset to train our models.

Similarly, all systems are trained to recover the luma component only, and the chroma components

are upscaled using a bicubic filter. The base-layer input images xlr are generated by a spatial

downscale of factor 2 using a Lanczos-3 filter to match with the downscaling filter of LCEVC.

For training, we crop 256 × 256 high-resolution and corresponding 128 × 128 low-resolution

patches from the training set, resulting in around 150K training pairs. In this section, we used

a double-pass rate control algorithm of x265 to encode the HD base layer signal using typical

bitrates of DTT broadcast: 2.5Mbps, 5Mbps, 7.5Mbps, and 10Mbps.

Training

All models are trained over a total of 20 epochs with a learning rate of 10−4 . We apply a

learning rate decay with a gamma of 0.5 for the last 5 epochs to improve the convergence. For

the conditional coding model, we freeze the gradients of the autoencoder fθ and finetune the

super-resolution model sφ for 3 additional epochs by replacing the low-resolution images x̃lr in

Figure 6.10 with compressed low-resolution images x̃c. It allows training the super-resolution
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model sφ on compressed images to fit with the compressed low-resolution images x̃c during

inference. We use a batch size of 4 and optimize the model with adaptive moment estimation

(ADAM) [80] by setting β1 = 0.9, β2 = 0.999 and γ = 10−8 . For the whole experiment, the

quality is assessed on the luma component using the PSNR.

6.4.2 Experimental results

RD-comparison

The average performances of the tested configurations are represented in Figure 6.11. These

curves show the quality in PSNR of each method regarding different rate allocations for the EL.

Each graph represents the results obtained for different BL’s bitrate. The results validate that the

super-resolution and bicubic configurations provide similar performance at low-bitrate. As the

EL’s bitrate increases, both residual and conditional configurations converge. Compared with

LCEVC, our approach performs better for higher bitrates, where fewer degradations related to

compression are represented in the BL. Indeed, LCEVC includes the codec’s degradations in

the residual computed to enhance the upscaled BL. On the contrary, we only consider scaling

artifacts in this experiment for assessing our approach. Thus, for low rates, LCEVC provides

better PSNR.

In the following, a per-sequence analysis is provided. The performances are represented in

Figure 6.12 for BL bitrates of 5Mbps and 7.5Mbps. These graphs depict the performances of

the tested configurations for different EL rate allocations and different BL rates. We see that

our approach outperforms LCEVC for all sequences regarding the higher BL rate. Regarding

the CatRobot1 scene, we see that at low bitrate, LCEVC provides a slightly higher PSNR than

our approach. As the camera is fixed in CatRobot1, LCEVC can handle the no-motion details

present in the scene thanks to its simple temporal layer. This behavior is not observed for the

DaylightRoad2 and Campfire scenes, containing moving elements. Thus, the global motion is

high and cannot be handled by the no-motion vector temporal layer of LCEVC. At low bitrate,

e.g. BL=2.5Mbps, the observation LCEVC outperforms CAESR for the sequence Campfire.

Indeed, this sequence is harder to encode than the two other, and a large amount of coding

degradation is generated at 2.5Mbps, which are handled by LCEVC. Compared to simulcast, the

super-resolution filter provides better PSNR for all sequences and all bitrates.
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(a) BL=2.5Mbps.
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(b) BL=5Mbps.
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(c) BL=7.5Mbps.
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Figure 6.11 – Average RD curves over the selected 4K sequences.

Vizualisation

In this experiment, we visually compare the different tested methods. All approaches consider

the same bitrate for both the BL and the EL. For instance, in Figure 6.13 (a), all layered methods

are based on a BL (HD) encoded at 5Mbps, and an EL (4K) encoded at 5Mbps. For the super-

resolution configuration, i.e., SR in Figure 6.13, the bitrate is assessed on the BL (HD) only.

The objective is to demonstrate that coding artifacts occur, i;e., blocking, and ringing, when

deploying 4K using simulcast at certain bitrates. For instance, block artifacts are not present
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Figure 6.12 – RD curves over the selected 4K sequences.

at this bitrate in the sequence Campfire by lowering the resolution before encoding. However,

high frequencies are lost regarding the super-resolution used as a post-processing configuration.

The results show that high frequencies are recovered thanks to our approach, e.g. textures and

textures. We observe that LCEVC fails to reconstruct complex textures like the scarf in the

sequence CatRobot1 and the license plate of DaylightRoad, whereas CAESR succeeds.

6.4.3 Analysis and discussion

In this section, CAESR has been evaluated in the context of new video services deployment.

For this use case, we modified the initial training process of CAESR by restricting the training

for scaling residual recovering. We used a double-pass rate control algorithm for generating the

BL regarding different bitrates used for HD broadcast on DTT. We assessed two versions of our

approaches based on different upscaling methods, i.e., a bicubic filter and the super-resolution

model as defined in Section 6.3. Our approach outperforms LCEVC for most BL bitrate regarding

most sequences, even using a bicubic filter as BL upscaling method. Moreover, we show that

the bicubic-based configuration performs better than the super-resolution after a certain bitrate
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(a) CatRobot1 5Mbps .

(b) DaylightRoad2 7.5Mbps.

(c) Campfire 7.5Mbps.

Figure 6.13 – Visualisation of the reconstructed frame using different layered methods.
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reach. Finally, our approach outperforms simulcast by considering less bitrate regarding each BL

bitrates and for each tested sequence.

6.5 Conclusion

This chapter presents CAESR, a codec agnostic learning-based approach for layered video

coding. The proposed solution is based on the joint training of a conditional autoencoder

fθ and a CNN super-resolution module sφ. The deep autoencoder with hyperprior, learns to

represent the residual information that cannot be recovered by the super-resolution module used

as a post-processing step. This residual information is combined with the upscaled base-layer

reconstruction at the decoder side to form the high-resolution output signal. Our approach relies

on conditional coding that learns the optimal mixture of the source and the upscaled image,

enabling better performance than residual coding.

Two contexts of evaluation for the proposed solution have been considered in this chapter.

On the one hand, we assessed CAESR as a codec enhancement method. The results demonstrate

that, for some sequences, CAESR improves downscaling-based compression performance with

HEVC by transmitting additional metadata, allowing to recover high-resolution details on the

receiver side. We demonstrate that our approach offers better performance than the state-of-

the-art. However, we observe that our solution is restricted to a low proportion of the total

bitrate allocation, which limits the performance. On the other hand, CAESR has been evaluated

to deploy new video services. By transmitting additional information, the proposed solution

offers the potential to deploy new video services, e.g. 8K, from already deployed ones, e.g.

4K, by transmitting an additional stream on the same or different transmission channel. We

demonstrated that CAESR can be used recovers the scaling residuals at the receiver side and

offers better performance than LCEVC and HEVC simulcast.

However, several tracks remain in this work. First, each CAESR operating points are the

product of separate models trained with different λ in Equation 6.3. As the value of λ defines the

slope on the RD curve, bitrate is allocated depending on the sequences, which is not practical.

Thus, it is necessary to be able to perform variable bitrate with the selected models. Some

architectures propose to apply a gain value before quantization to expend or reduce the latent

vector values, varying the effect of the round quantization on latents [222]. However, the model

is not optimized for a given RD tradeoff, which reduce the interest of end-to-end compression.

Furthermore, a rate allocation strategy has to be defined to properly allocate the rate regarding a

given granularity, e.g. frame-level or GOP-level. Regarding the BL codec, we selected HEVC
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in this work due to the defined use case. However, our approach can be applied to any BL

codec, including learned systems. Using a learned system as a BL codec would enable the joint

training of both the BL and the EL regarding the loss function. Moreover, visualization of video

reconstructed with CAESR demonstrated that our approach suffers from temporal consistency

artifacts that can be annoying for the end-user. Advanced architectures or loss functions could be

considered to tackle this problem. Finally, although graphic processing unit (GPU) acceleration

allows an efficient parallelization of CNNs, our approach is highly complex. This aspect has

to be considered as the decoding, and super-resolution processes are performed on the decoder

side.
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CHAPTER 7

CONCLUSION

This thesis explores multiple post-processing and compression methods for 8K video services

deployment on terrestrial networks. First, we evaluated several compression scenarios for 8K

delivery with 4K backward compatibility and performed the world’s first subjective test of

VVC for 8K video coding. We demonstrated that spatial upscaling using super-resolution

enables 8K video reconstruction with 4K backward compatibility in a codec agnostic way and

without additional bitstream. Second, we designed super-resolution models based on multitask

learning and investigated adapted training strategies to improve the performance of super-

resolution applied to compressed videos. Finally, we developed a layered architecture where the

enhancement layer is jointly trained with a super-resolution model to recover missing spatial

information on the receiver side. The remainder of this section is as follows. First, Section 7.1

reminds the objectives of this thesis. Then, Section 7.2 highlights our work’s contributions and

contextualizes them regarding the initial targets. Finally, Section 7.3 draws the perspectives for

future works related to this manuscript.

7.1 Thesis objectives

8K video format has recently encountered a huge interest from the industry with advances in

hardwares (TV screens, captors) and experimental tests like in Japan with the NHK. From the

perspective of terrestrial broadcast, the delivery of 8K must consider backward compatibility with

legacy receivers to keep the audiance reach. However, simulcasting 8K with lower resolutions is

inconceivable due to the high bandwidth requirements of this media format. The initial target of

this thesis was to prepare the arrival of 8K resolution on the Hertzian transmission platforms by

investigating new compression and post-processing algorithms to recover an 8K video signal

from already deployed video services. Several tracks were possible such as contributions in

scalable standards such as SHVC or scalability in VVC. However, due to a shifted standardization

timeline and a late integration, spatial scalability is not much present in the current broadcast

ecosystem. As another option, spatial upscaling allows recovering higher-resolution from lower
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ones without additional bitstreams, which could offer 8K reconstruction on top of a 4K video

stream. Recently, super-resolution algorithms based on deep learning architectures have shown

outstanding performance compared to conventional state-of-the-art approach. Thus, we focused

on investigating and designing new super-resolution algorithms for compressed video upscaling.

7.2 Achived work

The first part of this thesis, described in Chapter 4, investigates several state-of-the-art

algorithms for 8K video delivery. First, we subjectively evaluated the two latest single-layer

MPEG standards for 8K video compression. The results demonstrated that VVC offers around

40% of bitrate reduction for the same perceived quality compared to HEVC. We have shown

that the bitrate required to reach transparency varies from 11 to 180Mbps, depending on the

content. Moreover, we observed that 8K provides QoE improvement over 4K for most tested

sequences. This test is the world’s first subjective assessment of VVC for 8K resolution videos

and has been published in a scientific journal [223] and presented in standardization bodies,

including DVB [224] and MPEG [225]. The second axis of this chapter was to evaluate different

compression scenarios for 8K video delivery with 4K backward compatibility. We observed that

delivering a downscaled representation of the 8K video stream and rescaling it after decoding

using super-resolution provides better performances than full resolution coding at low bitrate

while providing backward-compatibility. However, the performances of this kind of system are

content dependent as some high frequencies are lost during the downscaling operation performed

before encoding. Moreover, the performance of super-resolution is on par with a Lanczos filter

at low bitrate, which limits the interest in using such a complex approach. These results have

been published and presented at an international conference [194] and the IBC show 2020 [226].

Chapter 5 investigated new architecture and dedicated training strategies to improve super-

resolution models for compressed video upscaling. In the first part, we proposed MTL-EDSR,

a multitask network that simultaneously performs the tasks of super-resolution and quality-

enhancement of the compressed input image. This network also uses prior information from the

compressed bitstream and a pretraining strategy to further improve the performance of super-

resolution on compression input images. The results demonstrate that both tasks learn similar

features that can be mutualized to reduce the total number of learned parameters in a context

where both tasks are performed. For instance, such an architecutre could be integrated inside a

scalable codec to perform both upscaling for ILP and enhancement of the BL signal using a single

shared network. This work has been presented at an international conference [227]. In extension
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to this work, we couple super-resolution with high-level vision tasks, i.e., non-reference quality

assessment, and semantic segmentation, to force the network to learn non-explicit features. The

developed method, called MTL-Unet, is based Unet to enable the high abstraction required for

the additional high-level vision tasks. The results show that the different tasks can share their

representation with a low impact on the super-resolution performance. Although being helpful in

a compression framework, the features learned by the tested additional tasks do not improve the

main task of super-resolution.

The last part of this thesis, described in Chapter 6, investigates the transmission of additional

information to recover lost high-resolution details on the receiver side. The proposed solution,

called CAESR, is a layered approach based on a conditional autoencoder used as an enhancement

layer jointly trained with a super-resolution model. The deep autoencoder learns to represent

the residual information that cannot be recovered by the super-resolution module used as a

post-processing step. This residual information is combined with the upscaled base-layer

reconstruction at the decoder side to form the high-resolution output signal. In the first axis, we

have evaluated the proposed system for HEVC enhancement in a downscaling-based compression

system boosted by metadata. The results demonstrate that our approach outperforms LCEVC for

HEVC enhancement of around 10% of bitrate reduction regarding the same PSNR. However, the

performance of this approach is content-dependent, which limits the rate allocation for the EL.

This work has been published at an international conference [228] and is protected by a patent.

In addition, the layered architecture of the proposed system brings flexibility by splitting the

video information into different streams. Thus, both the enhancement and base layers signals can

be transmitted in separate channels. For instance, the base layer can be transmitted through DTT

and the enhancement layer using a broadband network such as IP. In a second axis, we evaluate

CAESR for 8K services deployment. The results demonstrated that for bitrates typically used in

french DTT broadcast, the proposed approach offers better performance than HEVC simulcast

and LCEVC evaluated in similar test conditions.

To summarize, this work successfully addresses the targets of this thesis by providing new

solutions to enable the initial use case. We first exhaustively studied existing algorithms for

8K video compression by conducting the world’s first 8K VVC subjective test. We provided

solid scientific contributions to international conferences and standardization bodies like DVB

and MPEG. We developed new approaches to improve the performance of super-resolution for

video compression, such as super-resolution based on multitask learning and jointly trained

with a learned enhancement layer. We developed a new innovative solution based on the joint

training of an autoencoder and a super-resolution network. We compared the proposed approach
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with state-of-the-art methods regarding several contexts, including the defined use case. All the

contributions provided during this thesis are detailed in appendix A.

7.3 Future works

7.3.1 Multitask Learning for Super-Resolution of Compressed Videos

Regarding the architecture of multitask models for super-resolution, several tracks remain for

improvement. The temporal aspect could be investigated to recover missing details in the already

enhanced frames, focusing on the additional complexity of such a method [213, 214]. The

multitask architecture could be considered to perform more than two tasks with a single shared

network. Also, soft-sharing has been investigated using a cross-stitch algorithm [22], which

increases the number of parameters proportionally to the number of performed tasks. Thus, the

performances are lower when compared to specialized algorithms using the same total number

of parameters. More recent approaches using attentions modules to select shared features could

allow soft-sharing without consequently increasing the total number of parameters [188]. Finally,

investigating richer information from the bitstream, such as the prediction information [215],

could further improve the contribution of prior information to global performance.

7.3.2 Learning-Based Video Coding for Efficient Layered Compression

The most promising contribution of this thesis is the transmission of high-resolution in-

formation in an additional stream of metadata. However, several tracks remain in this work.

First, variable bitrate must be considered to avoid training multiple networks to target different

bitrate targets. Furthermore, a rate allocation strategy must be defined to properly allocate

the rate regarding a given granularity, e.g., frame-level or GOP-level. In addition, the optimal

rate allocation between the BL and the EL has to be defined to optimize the overall system’s

perfomance. This work investigated a simple temporal layer for the EL and demonstrated that

it could improve the RD performance. However, there is room for improvement to avoid error

propagation which prevents the use of larger GOP sizes. Also, the optimal bitrate for the EL has

to be investigated regarding the BL rate must optimize the overall delivery. Moreover, using a

learned system as a BL codec would enable the joint training of the BL and the EL regarding the

loss function. Investigation on learned downscaling, i.e., CR, can also be considered to jointly

train the whole processing chain. Moreover, although GPU acceleration allows an efficient

parallelization of CNNs, our approach is highly complex. This aspect must be considered as
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the decoding and super-resolution processes are performed on the receiver. Finally, a subjective

evaluation has to be considered to validate the objective performance assessed in this work.
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APPENDIX A

PUBLICATIONS AND PATENTS

A.1 International Conferences

[C1] Bonnineau, C., Hamidouche, W., Travers, J. F., and Deforges, O. (2020, May). Ver-

satile video coding and super-resolution for efficient delivery of 8k video with 4k backward-

compatibility. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 2048-2052). IEEE.

Abstract - In this paper, we propose, through an objective study, to compare and eval-

uate the performance of different coding approaches allowing the delivery of an 8K video

signal with 4K backward-compatibility on broadcast networks. Presented approaches in-

clude simulcast of 8K and 4K single-layer signals encoded using High-Efficiency Video

Coding (HEVC) and Versatile Video Coding (VVC) standards, spatial scalability using

SHVC with 4K base layer (BL) and 8K enhancement-layer (EL), and super-resolution ap-

plied on 4K VVC signal after decoding to reach 8K resolution. For up-scaling, we selected

the deep-learning-based super-resolution method called Super-Resolution with Feedback

Network (SRFBN) and the Lanczos interpolation filter. We show that the deep-learning-

based approach achieves visual quality gain over simulcast, especially on bit-rates lower

than 30Mb/s with average gain of 0.77dB, 0.015, and 7.97 for PSNR, SSIM, and VMAF,

respectively and outperforms the Lanczos filter in average by 29% of BD-rate savings.

[C2] Bonnineau, C., Aubié, J., Hamidouche, W., Déforges, O., Travers, J., and Sidaty,

N. An objective evaluation of codecs and post-processing tools for 8K video compression In

International Broadcasting Convention IBC 2020, Amsterdam, September 2020.

Abstract - With the deployment of the latest Ultra High Definition Television (UHDTV)

system, it is projected to improve the Quality of Experience (QoE) of users through the in-

troduction of new features to the existing High Definition Television (HDTV) system, such
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as High Dynamic Range (HDR), wider color gamut, High Frame-Rate (HFR) and higher

spatial resolutions including 4K (3840x2160) and 8K (7680x4320). The delivery of such

video formats on current broadcast infrastructures is a real challenge and r equires effi-

cient compression methods to reach the available throughput while ensuring high video

quality. On the other hand, with the progress in Deep Learning for image processing,

learning-based spatial up-scalers have outperformed classical interpolation methods such

as bicubic or Lanczos filters allowing a high resolution to be more accurately recovered

from a lower resolution. These methods would allow the receiver to reconstruct the 8K

signal while a lower resolution signal is transmitted. In this paper we propose recommen-

dations about 8K video coding with VVC and HEVC and evaluate post-processing for this

use-case through an objective study. Tested configurations include: 8K source encoded

with HEVC, and 8K and 4K sources encoded with VVC and then upscaled with two meth-

ods: a Lanczos filter and a deep-learning-based Super-Resolution method called SRFBN.

All configurations are tested on a set of 8K sequences using the verification model of the

VVC and HEVC standard.

[C3] Bonnineau, C., Hamidouche, W., Travers, J. F., Sidaty, N., and Deforges, O. (2021,

June). Multitask learning for vvc quality enhancement and super-resolution. In 2021 Picture

Coding Symposium (PCS) (pp. 1-5). IEEE.

Abstract - The latest video coding standard, called versatile video coding (VVC), in-

cludes several novel and refined coding tools at different levels of the coding chain. These

tools bring significant coding gains with respect to the previous standard, high efficiency

video coding (HEVC). However, the encoder may still introduce visible coding artifacts,

mainly caused by coding decisions applied to adjust the bitrate to the available bandwidth.

Hence, pre and post-processing techniques are generally added to the coding pipeline to

improve the quality of the decoded video. These methods have recently shown outstanding

results compared to traditional approaches, thanks to the recent advances in deep learn-

ing. Generally, multiple neural networks are trained independently to perform different

tasks, thus omitting to benefit from the redundancy that exists between the models. In this

paper, we investigate a learning-based solution as a post-processing step to enhance the de-

coded VVC video quality. Our method relies on multitask learning to perform both quality

enhancement and super-resolution using a single shared network optimized for multiple

degradation levels. The proposed solution enables a good performance in both mitigating

138



coding artifacts and super-resolution with fewer network parameters compared to tradi-

tional specialized architectures.

[C4] Bonnineau, C., Hamidouche, W., Travers, J. F., Sidaty, N., Aubié, J. Y., and Déforges,

O. (2021, December). CAESR: Conditional Autoencoder and Super-Resolution for Learned

Spatial Scalability. In 2021 International Conference on Visual Communications and Image

Processing (VCIP) (pp. 1-5). IEEE.

Abstract - In this paper, we present CAESR, an hybrid learning-based coding ap-

proach for spatial scalability based on the versatile video coding (VVC) standard. Our

framework considers a low-resolution signal encoded with VVC intra-mode as a base-

layer (BL), and a deep conditional autoencoder with hyperprior (AE-HP) as an enhancement-

layer (EL) model. The EL encoder takes as inputs both the upscaled BL reconstruction

and the original image. Our approach relies on conditional coding that learns the opti-

mal mixture of the source and the upscaled BL image, enabling better performance than

residual coding. On the decoder side, a super-resolution (SR) module is used to recover

high-resolution details and invert the conditional coding process. Experimental results

have shown that our solution is competitive with the VVC full-resolution intra coding

while being scalable.

A.2 Scientific Journal

[J1] Bonnineau, C., Hamidouche, W., Fournier, J., Sidaty, N., Travers, J. F., and Déforges,

O. (2022). Perceptual Quality Assessment of HEVC and VVC Standards for 8K Video. IEEE

Transactions on Broadcasting.

Abstract - With the growing data consumption of emerging video applications and

users’ requirement for higher resolutions, up to 8K, a huge effort has been made in video

compression technologies. Recently, versatile video coding (VVC) has been standardized

by the moving picture expert group (MPEG), providing a significant improvement in com-

pression performance over its predecessor high efficiency video coding (HEVC). In this

paper, we provide a comparative subjective quality evaluation between VVC and HEVC

standards for 8K resolution videos. In addition, we evaluate the perceived quality improve-

ment offered by 8K over UHD 4K resolution. The compression performance of both VVC
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and HEVC standards has been conducted in random access (RA) coding configuration, us-

ing their respective reference software, VVC test model (VTM-11) and HEVC test model

(HM-16.20). Objective measurements, using PSNR, MS-SSIM and VMAF metrics have

shown that the bitrate gains offered by VVC over HEVC for 8K video content are around

31%, 26% and 35%, respectively. Subjectively, VVC offers an average of around 41%

of bitrate reduction over HEVC for the same visual quality. A compression gain of 50%

has been reached for some tested video sequences regarding a Student’s t-test analysis. In

addition, for most tested scenes, a significant visual difference between uncompressed 4K

and 8K has been noticed.

A.3 MPEG and DVB standardization contribution

[D1] Bonnineau, C., Hamidouche, W., Fournier, J., Sidaty, N., Travers, J. F., and Déforges,

O. "JVET-X0186 Subjective Quality Assessment of VVC and HEVC for 8K Video Resolution",

Oct, 2021.

Abstract - This contribution provides a comparative subjective quality evaluation be-

tween the VTM-11 reference software (VVC) and the HM-16.20 reference software (HEVC)

for 8K resolution videos. In addition, we evaluate the perceived quality improvement of-

fered by 8K over UHD 4K resolution. The compression performance of both VVC and

HEVC standards has been conducted in random access (RA) coding configuration. This

test was performed on six video scenes with various spatial and temporal characteristics

collected from two different sources: the Japanese organization ITE and Fraunhofer HHI.

Objective measurements using PSNR, MS-SSIM, and VMAF metrics are provided. Sub-

jectively, VVC offers an average of around 41% of bitrate reduction over HEVC for the

same visual quality. In addition, a significant visual difference between uncompressed 4K

and 8K has been noticed for most tested scenes.

[D2] Bonnineau, C., Hamidouche, W., Fournier, J., Sidaty, N., Travers, J. F., and Déforges,

O. "TM-AVC1256 Subjective Quality Assessment of VVC and HEVC for 8K Video Resolution",

DVB, Sept, 2021.
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A.4 Patents

[P1] Bonnineau, C., Hamidouche, W. and J-A. Aubié, "Procédés de décodage et de codage

d’une image, dispositifs et signal associés", France, Demande FR-2106859.
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Titre : Méthodes de codage et de post-traitement par apprentissage pour la reconstruction de

signaux vidéo 8K
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Résumé :
La résolution d’image 8K a récemment

connu un fort engouement dans la commu-
nauté de la vidéo. Du point de vue de la té-
lévision numérique terrestre (TNT), l’introduc-
tion de ce nouveau format multimédia n’est
envisageable qu’en assurant la compatibilité
avec le parc d’équipement existant. Cepen-
dant, dû aux fortes contraintes de débit im-
posées par ce format, une diffusion 8K rétro-
compatible sur la TNT n’est pas concevable
avec les méthodes de compression actuelles.
Cette thèse a pour objectif de proposer des
méthodes innovantes permettant la recons-
truction du signal 8K du côté des futurs ré-
cepteurs. Les dernières avancées proposées
dans le domaine des technologies par ap-
prentissage ont démontré des performances

prometteuses pour la compression et le post-
traitement (e.g., super-résolution) de données
vidéos. Dans un premier temps, une étude
évaluant les performances de différentes mé-
thodes de compression et de super-resolution
appliquées à des contenus 8K a permis de
définir deux axes de recherche. Dans un pre-
mier axe, deux modèles de super-résolution
multitâche dédiés au suréchantillonnage de
vidéos compressées ont été développés. Le
deuxième axe de la thèse a été dirigé vers le
développement d’un algorithme de compres-
sion par apprentissage guidant le suréchan-
tillonnage avec un flux de métadonnées. Les
résultats ont montré que l’approche proposée
offre de meilleures performances que l’état de
l’art pour le cas d’usage défini.

Title: Learning based coding and post-processing methods for 8K video reconstruction

Keywords: Video Compression, 8K, Super-Resolution, Autoencoders, Deep Learning

Abstract:
8K video resolution has attracted a lot of in-

terest from the industry as a media format for
immersive video applications enhancing the
end users’ quality of experience. However, de-
livering such a format on DTT, where back-
ward compatibility is essential, is impossible
due to the high bandwidth requirements of this
format. This thesis aims to propose innovative
compression and post-processing methods to
perform the reconstruction of this format on
the receiver side. The recent advances in
AI-based technologies have demonstrated out-
standing performances for the compression

or post-processing (e.g., super-resolution) of
video data. First, a study has been per-
formed to assess the performance of com-
pression methods and upcsaling algorithms
on 8K video. Then, two multitask super-
resolution models dedicated to upscaling com-
pressed videos have been developed. Finally,
a learned compression system has been de-
signed to guide a super-resolution model with
metadata containing the high frequencies lost
during downscaling. The results show that the
proposed solution offers better performance
than the state-of-the-art regarding the use-
case of this thesis.
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