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Foreword 
 

Cancer continues to be a significant hurdle in medical research, stemming from cellular 

imbalances that result in abnormal growth behaviors. At the cellular level, the onset of cancer 

can be viewed as a failure of the intrinsic mechanisms of the body. Each cell, guided by its 

genetic instructions, follows strict rules governing its growth, division, and function. 

Maintaining these rules is crucial. Yet, when genetic mutations occur, whether due to external 

factors like environmental toxins, radiation, and certain pathogens, or internal reasons such as 

genetic errors or inherited tendencies, they can create conditions conducive to cancer 

development. 

These mutations disrupt vital cellular pathways that control growth, programmed cell 

death, and DNA repair. As cells bypass these checkpoints, they gather more mutations, enabling 

the unchecked proliferation of cancerous cells. The variety of these mutated cells within a tumor 

suggests that cancer is not a singular disease but a collection of related disorders, each defined 

by its molecular features and clinical outcomes. Recent strides in molecular oncology have 

revealed the complex origins of cancer. It is clear that its roots go beyond just genetic changes. 

Alterations in DNA methylation, irregularities in non-coding RNA sequences, and shifts in cell 

metabolism, along with changes in the surrounding environment of the tumor, play pivotal roles 

in cancer development and growth. This complex origin highlights the importance of a holistic 

approach to cancer research, drawing knowledge from genomics, cell biology, biochemistry, 

and other fields. 

This thesis will focus on glioblastoma, the most aggressive tumor of the central nervous 

system. Its persistent resistance to conventional treatments emphasizes the pressing need for 

innovative therapeutic strategies. Specifically, glioblastoma exhibits a high level of 

radioresistance, which contributes to its inevitable recurrence. Subsequent chapters will explore 

the emerging field of targeted radionuclide therapy, which seeks to apply internal radiation in 

a targeted and tumor-specific manner, with the aim of bypassing this resistance and offering a 

more effective treatment. 

Chapter I provides a general introduction that outlines the brain, the characteristics of 

glioblastoma, its therapeutic management, and the limitations of the standard of care 

approaches. It also offers an overview of radionuclide therapy. Chapter II sets out the general 

scope and objectives of this research project.  



 xx 

Chapter III is a comprehensive review of scientific literature on targeted radionuclide 

therapy, with an emphasis on the use of a radionuclides. The aim of this section is to 

contextualize the strategies currently under preclinical and clinical investigation, considering 

the unique features of glioblastoma in terms of its location, microenvironment, and resistance 

mechanisms to therapies. The goal is to learn from past advancements to pinpoint future 

challenges in this field.  

Chapter IV details the design and in vivo application of a targeted radionuclide therapy 

using the radionuclide astatine-211, aiming to propose a more effective and non-harmful 

treatment for glioblastoma. Experimental data are presented and discussed in this section, which 

is currently under review for publication. Chapter V is a general discussion that juxtaposes our 

experimental findings with the limitations and challenges identified in the scientific literature. 

It offers medium and long-term prospects for this therapeutic approach. 
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I. The central nervous system 
 

1. The meninges 
 

The central nervous system (CNS) comprises the brain and the spinal cord. It oversees 

the nervous system and processes data from the peripheral nervous system. Additionally, it 

orchestrates signals originating from the body's peripheral organs. The brain resides within the 

cranial cavity and is safeguarded by the skull. The spinal cord, positioned caudally relative to 

the brain, is located within the vertebral canal and is shielded by the vertebrae1. The brain is 

enveloped by four layers designated as “meninges”. These membranes serve a protective 

function for the brain, ensuring its secure positioning within the cranial vault and acting as 

shock absorbers. This functionality hinges on the dynamics of cerebrospinal fluid (CSF), 

generated by the choroid plexuses situated in the cerebral ventricles. The modulation of CSF is 

intricately managed by the blood-CSF interface at the choroid plexuses and the arachnoid 

layer2. The meninges modulate the homeostasis of the CNS by overseeing the blood, lymphatic, 

and CSF systems (Fig. 1)3. 

Recent research has unveiled the role of the meninges in the immune regulation of the 

CNS at the boundaries of the brain. This revelation challenges the longstanding notion of 

"immune privilege", which posits the brain as an entity isolated from the immune system. This 

historical concept stems from initial observations regarding the presence of the blood-brain 

barrier (BBB), which maintains a restrictive vasculature within the CNS, thereby limiting the 

entry of peripheral immune cells into the cerebral tissue4. Similarly, the observed lack of 

lymphatic circulation within the parenchyma has further reinforced this paradigm. The validity 

of this concept is increasingly debated in light of recent findings. Whether it is the observed 

breach of the BBB in certain brain disorders, allowing peripheral immune cells to access the 

cerebral tissue5, the discovery of the glymphatic system managing the circulation of CSF6, or 

the mobilization of immune cells from the bone marrow in response to cerebral tissue damage7, 

the traditional understanding of brain immune regulation is being re-evaluated. 

 

Dura mater. The dura mater is the outermost of the meninges. It is a thick, dense, and 

fibrous membrane anchored to the skull on one side and to the arachnoid mater on the other. 

This layer contains a vasculature and a lymphatic network which facilitates the exit of blood 

from the brain and the return of CSF to circulation8. It also serves as a residency for a multitude 
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of cells from the innate and adaptive immunity9. The dura mater engages with the adjacent bone 

marrow of the skull via the connection between the diploic vein and dural vessels10. 

 

Arachnoid mater. The arachnoid mater is an intermediate thin layer of the meninges, 

situated beneath the dura mater. This membrane is not vascularized and exhibits tissue 

extensions toward the pia mater, resembling a spiderweb-like structure. The subarachnoid 

space, positioned between the arachnoid mater and the pia mater, facilitates the flow of CSF. 

The main roles of the CSF are to protect the brain and spinal cord and to provide them with 

nutrients while taking away waste. Along with the CSF, the brain's main arteries are located in 

the subarachnoid space3. 

 

 
Fig. 1 | The four cranial meninges. A schematic representation of the four layers that constitute the meninges. Notably, 
the subarachnoid lymphatic-like membrane (SLYM) compartmentalizes the subarachnoid space. It contains a leukocyte 
population equivalent to that of the dura mater, suggesting a role in CNS immune responses. (From Møllgård et al. 2023)11 
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Subarachnoid lymphatic-like membrane. The subarachnoid lymphatic-like membrane 

(SLYM) is a recently identified meningeal layer that compartmentalizes the subarachnoid 

space. It facilitates direct exchanges between the CSF and venous blood. This membrane is rich 

in myeloid cells and could hold significant implications in response to inflammation11.  

 

Pia mater. The pia mater is the innermost layer of the meninges and directly adheres to 

the surface of the brain and the spinal cord. Along with the arachnoid mater, they are referred 

to as the leptomeninges. This region is highly vascularized to supply nutrients to the brain. 

Within the spinal cord, it contributes to maintaining its structural rigidity12.  

 

2. Cell populations within the brain parenchyma 

 

The cerebral parenchyma represents the functional tissue of the brain. It encompasses 

neurons and glial cells, which include astrocytes, oligodendrocytes, microglia, and 

oligodendrocyte precursor cells (OPC; Fig. 2). During developmental stages, all these cell types 

derive from neural stem cells (NSCs)13,14. In mature organisms, two primary stem cell reservoirs 

can be identified within the CNS: the subventricular zone (SVZ) and the subgranular zone 

(SGZ) of the dentate gyrus in the hippocampus15,16. 

 

Neurons. Neurons are the functional units of the nervous system. They are electrically 

excitable cells transmitting signals throughout the body via both chemical and electrical 

mechanisms. They consist of a soma, axons, and dendrites. The axon facilitates the transmission 

of efferent signals, while the dendrites receive afferent signals. The axonal terminals release 

neurotransmitters, converting an electrical signal into a chemical one. This transmission is 

regulated by ion movements, primarily potassium, sodium, and chloride, through voltage-

dependent ion channels17. The majority of neuron cell bodies are housed in the gray matter, 

which accounts for 10% of the cerebral parenchyma. It forms the cerebral cortex and 

encompasses the basal ganglia. The white matter constitutes 90% of the parenchyma and is 

composed of axons and dendrites that convey neural information between neurons and to 

peripheral organs18,19. The white matter also houses supportive glial cells20. 
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Fig. 2 | Interactions between glial cell and neurons within the CNS. Composition of neural cells in the mature brain. 
Within the mammalian CNS, glial cells are typically categorized into astrocytes, activated microglia, oligodendrocytes, and 
oligodendrocyte progenitor cells (often referred to as NG2 glia). (From Liu et al., 2023)21 

 

Astrocytes. Astrocytes constitute the majority of glial cells. They play a pivotal role in 

the homeostasis of the CNS by recycling neurotransmitters, regulating the ionic balances, 

modulating synaptogenesis and synaptic transmission, and maintaining the integrity of the 

blood-brain barrier (BBB) that separates the brain from systemic circulation22–24. A vast array 

of astrocyte subsets exists, with functions that remain largely uncharted. Recent technological 

advancements have enabled the identification of some of these subsets using single-cell RNA 

sequencing (scRNA-seq) techniques25. Broadly, astrocytes are modulated either by 

neurodevelopmental transcriptional programs or by stimuli such as neurotransmitters, 

cytokines, ions, and microbial metabolites26. For instance, a recent study highlighted the 

existence of a specialized subpopulation equipped with a glutamate release machinery similar 

to that found in synapses. These astrocytes play a role in the functioning of the cortico-

hippocampal circuit27. Current research is particularly focused on the plasticity of these subsets 

and their interconvertibility. 
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Oligodendrocytes. Oligodendrocytes provide the myelin that surrounds the axons of 

neurons. Myelin is an extension of their plasma membrane that wraps around axons 

concentrically to ensure rapid nerve conduction. On the axon, there are domains interspersed 

between myelin segments, called nodes of Ranvier, which concentrate sodium and potassium 

channels essential for the transmission of action potentials. Axons are myelinated along almost  

their entire length, isolating them from the cerebral parenchyma. Thus, oligodendrocytes 

release extracellular vesicles from the myelin layer, facilitating the exchange of small 

metabolites to maintain axonal integrity28. They can also release cytokines to regulate immune 

responses. A recent study further emphasized their capacity to modulate the microglia 

phenotype, suggesting a role in influencing microglia's response during inflammation29. 

Oligodendrocytes originate from oligodendrocyte precursor cells (OPC), a highly proliferative 

cell population. These OPCs also perform various other functions, such as inducing 

angiogenesis, presenting antigens, and forming synapses with neurons30–32. 

 

Microglia. Microglia consist of the resident tissue macrophages of the CNS. They are 

the first cells to respond in the event of brain injury, due to their receptors for damage-associated 

molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). They can 

interact with other cell types in the CNS, including neurons and oligodendrocytes. As such, 

they regulate a significant number of CNS functions, including synaptogenesis, adult 

neurogenesis, and neuroinflammation33. Traditionally, microglia is artificially categorized into 

two phenotypic classes: M1 and M2. The M1 phenotype is associated with pro-inflammatory 

and neurotoxic activity, while the M2 phenotype is linked to anti-inflammatory and 

neuroprotective functions34. However, single-cell technologies have revealed a significant 

spatial and temporal heterogeneity in microglia, which deviates considerably from this binary 

classification35. 

 

3. The cerebral barriers 
 

The blood-CSF barrier (BCB). The BCB is an epithelio-endothelial structure located in 

the choroid plexus of the ventricles. This barrier is composed of a vascularized stroma 

enveloped by epithelial cells, with the stroma itself containing fenestrated capillaries 

surrounded by connective tissue and immune cells36. The ventricular side of this stroma is lined 

by cuboidal epithelial cells, to which epiplexus cells with phagocytic capabilities adhere. These 

cells function as scavengers within the brain's ventricular system37. Morphologically, the 
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choroid plexus varies across different ventricles, being thin in the lateral ventricle, lobulated in 

the fourth, and with an intermediate size in the third. Beyond its primary role in CSF production 

and forming the BCB, the choroid plexus could be involved in the circadian regulatory 

system38. Furthermore, the BCB has been shown to possess chemosensory receptors, potentially 

playing a role in monitoring and regulating brain fluid composition39. 

Fig. 3 | Structure of the blood-brain barrier. The BBB consists of epithelial cells, connected by tight junctions, which are 
surrounded by pericytes within the basal membrane. Astrocytic endfeet form an interface with the basal membrane. Neurons 
extend projections to the astrocytic endfeet. This entire structure is referred to as the neurovascular unit. (From Barisano et 
al. 2022)40 

 

The blood-brain barrier (BBB). The BBB is a multifaceted structure that separates the 

CNS from the systemic circulation and thus ensures an optimal environment for neuronal 

functions. It is composed of a capillary basement membrane and three cellular components: 

endothelial cells, pericytes, and astrocytic end-feet (Fig. 3). The primary roles of the BBB are 

to maintain neural homeostasis, protect against harmful agents, facilitate communication 

between the CNS and peripheral systems, and supply essential nutrients to the brain. This is 

accomplished through several mechanisms: restricting the paracellular diffusion of hydrophilic 

entities, overseeing the active transport of essential nutrients, managing the efflux transport of 

hydrophobic molecules, and controlling the transendothelial migration of blood cells and 

potential pathogens4. In the BBB, endothelial cells exhibit unique characteristics compared to 

their counterparts elsewhere in the organism. They lack fenestrations, possess more robust tight 

junctions, and demonstrate limited pinocytic vesicular transport, ensuring a restricted 

Junctions 
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paracellular movement of hydrophilic entities41. Tight junctions are situated between cerebral 

endothelial cells and establish a selective barrier that restricts the entry of most substances from 

the bloodstream. Pericytes, situated within the capillary basement membrane, are essential for 

angiogenesis, microvessel integrity and differentiation, and the establishment of endothelial 

tight junctions42. Astrocyte end-feet, which envelop the vessel wall, are pivotal in initiating and 

sustaining the tight junctions and allow interactions between neurons and the vascular system43.  

 

II. Glioblastoma 
 

1. Epidemiology 
 

GB remains the most aggressive tumor of the CNS44. Its annual incidence ranges 

between 3.26 and 5.02 cases per 100,000 population44–46.  GB constitutes 14.2% of all primary 

tumors of the brain and other CNS structures and accounts for 50.1% of primary malignant 

brain tumors. The incidence of GB exhibits a marked age-related trend. While the tumor 

predominantly manifests in the elderly population, its incidence is considerably rarer in the 

pediatric demographic, representing only 2.7% of all brain and other CNS tumors in individuals 

aged 0-19 years. This age-related predilection becomes even more accentuated with the highest 

incidence rates observed among individuals within the age range of 75 to 84 years. Furthermore, 

gender-based disparities in GB incidence are evident, with the male population exhibiting a 1.6-

fold increased risk compared to its female counterpart. Only 6.9% of diagnosed patients can 

expect a survival duration beyond five years post-diagnosis44. 

 

2. Gliomas classification 
 

The World Health Organization (WHO) has been classifying gliomas since 1979, 

initially basing their categorization on histopathological criteria. In 2007, Louis et al. classified 

GB as a grade 4 diffuse astrocytoma, the highest grade among brain tumors. This classification 

emphasized the predominantly astrocytic composition of GB and its aggressive nature. This 

aggressiveness was evident from its high mitotic activity, significant endothelial proliferation, 

and the presence of necrotic foci as a consequence of rapid tumor growth, leading to hypoxic 

niches within the tumor47. This classification soon revealed its shortcomings, leading to  

discrepancies in diagnoses and varied tumor progressions among patients. Advances in 

molecular biology facilitated the identification of genetic characteristics of brain tumors.  
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 Fig. 4 | The 2021 WHO classification of the major diffuse gliomas in adult. GBs are classified as grade 4 IDH wild-
type gliomas, exhibiting necrosis and microvascular proliferation (MVP) and/or a mutation in the TERT gene, amplification of 
the EGFR gene, and/or a gain of chromosome 7 and a loss of chromosome 10. They are also characterized by methylation of 
the MGMT gene promoter. WHO: World Health Organization; IDH: isocitrate dehydrogenase; ATRX: alpha-thalassemia X-
linked intellectual disability; CDKN2A/B: cyclin-dependent kinase inhibitor 2A/B, EGFR: epidermal growth factor receptor, 
TERT: telomerase reverse transcriptase, MGMT: O6-methylguanine-DNA methyltransferase. (From Weller et al., 2021)48 
 

Consequently, in 2016, the updated classification of brain tumors incorporated these 

genetic and epigenetic criteria. The primary genetic criterion was the mutation of the gene 

encoding for isocitrate dehydrogenase 1 (IDH1). This mutation was found in 10% of GBs and 

served as a marker for poor prognosis. GBs with wild-type IDH were categorized into three 

morphological subtypes: giant cell, epithelioid, and gliosarcoma. The "not otherwise specified" 

(NOS) category encompassed GBs for which the IDH status has not been investigated49. 

 The 5th edition of the CNS classification by WHO continues the integration of both 

molecular and histological criteria (Fig. 4). However, significant modifications are evident. 

GBs now only encompass IDH wild-type gliomas. Consequently, certain diffuse astrocytomas 

and anaplastic astrocytomas are now classified under the "glioblastoma" label. Conversely, 

previous IDH-mutant GB are now categorized as grade 4 astrocytomas. The molecular 

Integrated histomolecular classification
Intraoperative assessment of cytological specimens or 
frozen sections ensures that sufficient tumour tissue is 
obtained to establish a diagnosis. Tumour tissue is for-
malin fixed and embedded in paraffin for histological 
and immunohistochemical staining as well as for molec-
ular genetic and cytogenetic studies. If possible, some 
tumour tissue should be cryopreserved for molecular 
assessments that require high- quality DNA and RNA 

samples. The diagnostic process should follow the WHO 
classification of 2016 (REF.1) and the subsequent recom-
mendations from cIMPACT- NOW2–4. Accordingly, gli-
oma classification integrates histological tumour typing 
and grading as well as analyses of molecular markers 
(FIG. 1). The term ‘not otherwise specified’ was intro-
duced to refer to gliomas that were not tested for mark-
ers relevant to the diagnosis of specific subtypes or for 
which testing was inconclusive1.

Diffuse astrocytic or oligodendroglial glioma

IDH-mutant

Histology

IDH

ATRX

1p/19q

H3.3 G34R/V

H3 K27M
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diagnosis
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Fig. 1 | Diagnostic algorithm for the integrated classification of the major diffuse gliomas in adults. Tissue specimens 
obtained through biopsy sampling in patients with diffuse gliomas are routinely assessed by immunohistochemistry for 
the presence of R132H- mutant IDH1 and loss of nuclear ATRX. In patients aged >55 years with a histologically typical 
glioblastoma, without a pre- existing lower grade glioma, with a non- midline tumour location and with retained nuclear 
ATRX expression, immunohistochemical negativity for IDH1 R132H suffices for the classification as IDH- wild- type 
glioblastoma1. In all other instances of diffuse gliomas, a lack of IDH1 R132H immunopositivity should be followed by  
IDH1 and IDH2 DNA sequencing to detect or exclude the presence of non- canonical mutations. IDH- wild- type diffuse 
astrocytic gliomas without microvascular proliferation or necrosis should be tested for EGFR amplification, TERT promoter 
mutation and a +7/–10 cytogenetic signature as molecular characteristics of IDH- wild- type glioblastomas2. In addition, 
the presence of histone H3.3 G34R/V mutations should be assessed by immunohistochemistry or DNA sequencing to 
identify H3.3 G34- mutant diffuse hemispheric gliomas, in particular in young patients with IDH- wild- type gliomas (such  
as those <50 years of age with nuclear ATRX loss in tumour cells). Diffuse gliomas of the thalamus, brainstem or spinal  
cord should be evaluated for histone H3 K27M mutations and loss of nuclear K27- trimethylated histone H3 (H3K27me3) 
to identify H3 K27M- mutant diffuse midline gliomas. The presence and absence of the diagnostically most relevant 
molecular alterations for each tumour type are highlighted with red and green boxes. MVP, microvascular proliferation.
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signature for GB diagnosis has evolved to specifically identify the absence of IDH gene 

mutation, coupled with the presence of a telomerase reverse transcriptase (TERT) promoter 

mutation, gene amplification of epidermal growth factor receptor (EGFR), or a change in the 

copy number of chromosomes 7 and 10 (+7/-10)50. 

 

3. Key mutations 

 
TERT promoter. Mutations in the promoter of TERT are observed in approximately 70-

80% of GB51. TERT is the catalytic component of the telomerase enzyme, which is a specialized 

reverse transcriptase responsible for maintaining telomere length. Telomeres are nucleoprotein 

structures situated at chromosome ends, essential for maintaining chromosomal stability. With 

each cell division, telomeres undergo reduction in length, ultimately resulting in cellular 

senescence or apoptosis52. However, the relationship between TERT mutations and specific 

features of GB remains a matter of debate. Recent studies suggest that such mutations do not 

influence the prognosis of GB patients, nor do they affect the methylation status of the MGMT 

gene promoter53. 

  

EGFR. Genomic alterations in EGFR are among the most prevalent in GB, occurring in 

approximately 50% of cases54. EGFR, a receptor tyrosine kinase, undergoes physiological 

activation upon ligand binding, leading to dimerization and subsequent phosphorylation of its 

C-terminal tail55. This receptor plays pivotal roles in various physiological and pathological 

pathways. The EGFR variant III (EGFRvIII) stands out as the predominant EGFR mutation, 

found in half of the GB cases that express EGFR. This variant is notably associated with 

unfavorable patient outcomes and resistance to chemoradiotherapy. More specifically, 

EGFRvIII stimulates the phosphoinositide 3-kinase (PI3K) / Akt / mammalian target of 

rapamycin (mTOR) pathway and mitogen-activated protein kinases (MAPKs) signaling 

pathways, orchestrating the regulation of tumor growth, survival, angiogenesis, and 

metabolism56–58. EGFR impacts the tumor microenvironment (TME) by attracting 

immunosuppressive cells while also inhibiting T cell and natural killer cell activation. 

Additionally, changes in EGFR elevate the levels of immunosuppressive molecules and 

cytokines59. 

 

MGMT. The methylation of the O6-methylguanine-DNA methyltransferase (MGMT) 

gene promoter stands as a significant biomarker for GB and serves as a predictive factor for the 
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response to temozolomide (TMZ) chemotherapy. MGMT, a DNA-repair protein, is crucial in 

removing alkyl groups from the O6 position of guanine, a key site for DNA alkylation. 

Interestingly, the DNA methylation induced by TMZ specifically targets this O6 position, 

making it a primary contributor to its cytotoxic effect. The MGMT protein counteracts the 

effects of alkylating therapeutic agents by rectifying alkylated guanine residues at the DNA 

level. Thus, methylation of CpG islands within the MGMT promoter region suppresses its 

transcription, potentially serving as a predictive biomarker for resistance to TMZ60. 

 

4. Molecular subtypes 
 

Genome-wide transcriptomic analyses have facilitated the classification of GB based on 

distinct molecular signatures. As a result, Wang et al. GB categorized GBs into three primary 

subtypes: proneural (PN), classical (CL), and mesenchymal (ME)62,63. It is worth noting that 

this classification predates the recent updates by the WHO and thus encompasses IDH-mutant 

gliomas. The classical subtype is characterized by amplifications or mutations in EGFR. The 

proneural subtype, more prevalent in younger patients, is marked by amplifications or 

mutations in platelet-derived growth factor receptor a (PDGFRA) and homozygous deletions 

in cyclin dependent kinase inhibitor 2A (CDKN2A). The mesenchymal subtype, rooted in the  

 

 
Fig. 5 | Diversity of transcriptomic states of GB cells and compositions of GB subtypes. a GB cells reflect the 
transcriptomic patterns of oligodendrocyte precursors (OPC-like), neural progenitors (NPC-like), astrocytes (AC-like), and 
mesenchymal cells (MES-like). The populations of NPC-, AC-, OPC-, and MES-like cells are in a dynamic balance, transitioning 
among the four transcriptomic profiles. b The proneural, classical, and mesenchymal tumor subtypes consist of varying 
proportions of NPC-, AC-, OPC-, and MES-like cells. The predominant subtype is determined by the most abundant cell 
population within the tumor. Tumors with a mixed profile contain roughly equal parts of two or more cell populations. (From 
De Silva et al. 2023)61 

TrendsTrends inin CancerCancer
(See figure legend at the bottom of the next page.)
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astroglial lineage, exhibits mutations in neurofibromin 1 (NF1) and deletions in phosphatase 

and tensin homolog (PTEN). It seems likely that most GB tumors exhibit features spanning 

multiple subtypes, underscoring the pronounced intra- and intertumoral heterogeneity, with 

individual cells displaying diverse gene expression patterns64. 

Therefore, GB cells exhibit transcriptomic signatures that closely resemble various cell 

types, including neural progenitor cells (NPCs), oligodendrocyte precursor cells (OPCs), 

astrocytes (ACs), and mesenchymal cells (MES). This has led to the categorization of GB into 

distinct subtypes such as NPC-like, OPC-like, AC-like, and MES-like. Specifically, classical 

GB predominantly consists of AC-like and MES-like cells. Proneural GB is primarily 

characterized by NPC-like and OPC-like cells. Mesenchymal GB is mainly composed of MES-

like and OPC-like cells. Additionally, "mixed tumors" display equivalent proportions of two or 

more cellular populations64 (Fig. 5). 

Other transcriptomic approaches, including studies by Phillips et al. in 200665 and 

Garofano et al. in 2021, have suggested alternative classifications (Fig. 6). These findings 

underscore the inherent plasticity and heterogeneity of GB. Phillips et al.’s approach aligns 

with the already discussed classification of Wang et al., discussed earlier in this section, in 

which the "classical" subtype corresponds to the "proliferative" subtype in Phillips's 

classification. Notably, Garofano et al. introduced a fourth subtype termed "mitochondrial" 

which is associated with the most favorable patient outcomes66 (Fig. 6).  

Fig. 6 | Main propositions of transcriptomic classification for GB. Garofano et al. conducted pathway-based analysis 
of single glioma cells and established four distinct clusters for GBs, including glycolytic/plurimetabolic (GPM), mitochondrial 
(MTC), neuronal (NEU) and proliferative/progenitor (PPR). Mes: mesenchymal, Prolif: proliferative, Pron: proneural, Cl: 
classical. (From Garofano et al., 2021)66 
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coherent pathway activation (Extended Data Fig. 9a) and expression 
of specific marker genes (Extended Data Fig. 9a). We used MTC 
and GPM GBM PDCs to experimentally test the metabolic state of 
these cells using multiple metabolic metrics. MTC PDCs exhibited 

higher basal, ATP-linked and maximal oxygen consumption rate 
(OCR) compared with GPM PDCs (Fig. 5a and Extended Data 
Fig. 9b). Conversely, basal glycolysis, as indicated by the extracel-
lular acidification rate (ECAR) after glucose addition, was 2.5-fold 
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The studies underscore the profound heterogeneity and plasticity of GB cells. However, 

these cells progress along known neurodevelopmental differentiation pathways. Despite their 

ability to change lineage during development, they originate from a limited number of attractor 

states67. De Silva et al. underlined that halting GB dedifferentiation, which leads to the 

generation of GSLCs, requires terminal differentiation of the cells61. Thus, the induction of 

neurogenic differentiation has been explored and has demonstrated its potential to reduce the 

tumorigenicity of GSLCs by inhibiting Notch, a receptor promoting proliferation during 

neurogenesis, and overexpressing achaete-scute family bHLH transcription factor 1 (ASCL1), 

a transcription factor involved in neural differentiation68. 

 

5. The glioblastoma niches 

 

The heterogeneity and plasticity observed through these transcriptomic studies 

contribute to the development of various tumor microenvironments (TME) depending on the 

GB subtype. Distinct regions of the TME display diverse morphological and metabolic traits, 

which influence tumor heterogeneity and its survival prospects69. The TME relies on the 

interaction of tumor cells, comprising GB stem-like cells (GSLCs), with the extracellular matrix 

and with a variety of non-cancerous cells. GSLCs have the ability to self-renew and differentiate 

into various cell types, and therefore play a significant role in tumor invasion and resistance to 

therapies. In GB, they reside within three main niches which directly influence distinct cellular 

behaviors (Fig. 7). 

 

Perivascular niche. The perivascular niche is characterized by an expansion of 

microvascular structures. It serves as a maintenance site for GSLCs, which are in direct contact 

with the vascular epithelium. The perivascular niche is a heterogeneous construct with various 

types of microvessels. Four distinct patterns have been described. The "microvascular 

sprouting" refers to healthy capillary vessels produced by physiological angiogenesis. 

"Vascular clusters" are aggregates of blood vessels whose bodies are not interconnected. 

"Vascular garlands" describe an aberrant spiral arrangement of vessels. Lastly, "glomeruloid 

vascular proliferation" refers to the aggregation of multiple vessels with their bodies 

connected70.  

In GB, oxygen deprivation stimulates the release of pro-angiogenic factors such as 

vascular endothelial growth factor (VEGF), transforming growth factor b (TGF-β), FGFs, 
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angiopoietin-1, and EGF. These factors interact with endothelial cell receptors, leading to vessel 

wall dissolution and endothelial cell basement membrane degradation. Subsequent ECM 

remodeling by matrix metalloproteinases (MMPs) facilitates endothelial cell migration and 

proliferation, forming an endothelial tube-like structure. This structure is eventually stabilized 

by a mature vascular basement membrane and surrounding mural cells, resulting in a new 

vessel71. The swift expansion of the vasculature results in the emergence of inadequately 

functional vessels and a varied disruption of the BBB, leading to the infiltration of peripheral 

immune cells, including monocytes/macrophages, neutrophils, and myeloid-derived suppressor 

cells (MDSCs), which further drive tumor progression72,73. 

In addition to angiogenesis, several mechanisms of vessel formation are involved in 

GB74. Vasculogenesis refers to the formation of blood vessels from bone marrow-derived 

endothelial progenitor cells, predominantly observed in the late stages of GB development 75 

Vascular mimicry, on the other hand, describes vessels that lack epithelial cells, with tubular 

walls primarily composed of extracellular matrix components76. Another phenomenon is GB-

endothelial cell transdifferentiation, where GSLCs undergo transdifferentiation into 

endothelial-like cells77. Additionally, during vascular co-option, tumor cells navigate along the 

basolateral surface of existing vessels, eventually integrating these intact vessels into the tumor 

mass. This process predominantly occurs at the invasive front during the early oncogenic phase 

and operates independently of VEGF signaling78. 

 The perivascular niche exhibits elevated levels of pro-inflammatory cytokines such as 

tumor necrosis factor a (TNF-α), interleukine 6 (IL-6), and IL-8. TNF-α plays an essential role 

in tumor development and angiogenesis79. IL-6, secreted within the GB TME by neurons, 

microglia, astrocytes, TAMs, and peripheral monocytes, is instrumental in promoting 

angiogenesis and cellular proliferation80,81. IL-8 stands out as a primary inducer of angiogenesis 

and also governs the maintenance and proliferation of GSLCs82,83. 

 

Hypoxic niche. The formation of inconsistent blood vessels, as previously discussed, 

produces collapsed vessels in some areas of the tumor and results in reduced oxygen tension 

within tissues. This oxygen deprivation, called hypoxia, subsequently leads to the formation of 

a necrotic foci surrounded by pseudopalisading cells, which is a peripherally migrating wave 

of cells escaping the hypoxic region84.  
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Hypoxic signaling is orchestrated by hypoxia-inducible factors (HIFs). HIFs are 

heterodimer constituted of an a and a b subunit. HIFb is constitutively expressed in cells while 

HIFa exhibits an unstable expression due to its rapid degradation in the presence of oxygen. 

Under hypoxic conditions, the HIFα subunit stabilizes and undergoes nuclear translocation to 

bind HIFb and recognize the Hypoxia Response Element (HRE) located on the promoter 

regions of its target genes. This binding modulates various cellular processes, including 

survival, glycolysis, pH regulation, migration, and invasion85. It also regulates pluripotency-

associated transcription factors such as Oct3/4, Nanog, and Sox2, molecules associated with 

epithelial-to-mesenchymal transition (EMT) like chemokine receptor 4 (CXCR4), Snail, and 

Twist, and angiogenic factors, notably VEGF86. A recent study also indicated the capacity of 

the hypoxic niche to attract TAMs and cytotoxic T cells through the release of the chemokine 

CCL8 and the cytokine IL-1b, to reprogram them towards an immunosuppressive phenotype87. 

 

Invasive niche. In addition to its migratory capacity to escape hypoxic regions, GB can 

invade healthy brain tissue but do not metastasize to peripheral organs through blood or 

lymphatic pathways. Infiltration is led by individual cells that have to detach from the tumor 

mass to engage into invasive behavior. The invasive front progresses following the pathways 

of anatomical structures such as those of perivascular space and white matter. They can also 

reach distant sites in the brain parenchyma and the leptomeningeal space88.  

Invasion is performed through a mesenchymal invasion mechanism, which relies on 

interactions with the ECM and progression driven by the contractility of the actin 

cytoskeleton89. Consequently, the composition of the ECM directly influences the invasive 

properties of GB90. ECM is physiologically composed of hyaluronic acid, proteoglycans, and 

glycoproteins to structure the extracellular space. Therefore, GB cells are able to influence the 

ECM composition by producing their own basement membrane components such as laminin, 

vitronectin, fibronectin, tenascin C, and collagen91.  

The progression operates through an attachment-detachment phenomenon. During this 

process, GB cells advance by contracting their cytoskeleton, establish strong adhesion to the 

ECM through the expression of integrins, and subsequently secrete MMPs to degrade the ECM 

behind them92. This mechanism is further modulated by communication between the tumor core 

and the invasive fronts93. 
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Located at the border between the tumor and healthy parenchyma, the invasive niche 

has access to functional blood vessels and interacts with a larger number of cells from the TME. 

However, its progression leads to alterations in the BBB, particularly by disrupting the 

interactions maintained by astrocytic end-feet with the basal membrane94. Thus, 

communication with the vascular endothelial cells contribute to the self-renewal of GSLCs, as 

they release of Jagged 1/2, ligands for Notch receptors, and nitric oxide (NO) which activate 

Notch signaling95. Similarly, angiopoietin activates the Tie2 receptor, leading to the expression 

of extracellular adhesion molecules like N-cadherin and integrin b1, potentially enhancing 

GSLC invasion96. 

During tumor progression, invasive niches can be submerged by cellular proliferation, 

subsequently leading to the formation of a hypoxic niche. This hypoxic environment then 

prompts neovascularization, transitioning into a perivascular niche configuration. This 

structural evolution is both spatial and temporal, resulting in the successive development of 

specific TMEs97.  

 

Fig. 7 | Illustration of the glioblastoma niches. (From Praguer et al., 2020)67 
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III. The standard of care for glioblastoma 
 
1. Diagnosis 
 

The emergence of GB produces diverse symptoms depending on the cerebral region 

affected by the tumor. Thus, GB most commonly develops in the frontal lobe (40%), followed 

by the temporal lobe (29%), the parietal lobe (14%), and the occipital lobe (3%)98. It has been 

demonstrated that tumors affecting the temporal lobe are associated with a decreased overall 

survival compared to other tumors99. The most frequently observed symptoms are: drowsiness 

(87%), progressive neurological (51%) and cognitive (33%) deficits, seizures (45%), 

incontinence (40%), and headaches (33%). Increased intracranial pressure is the predominant 

cause of these symptoms and is responsible for the majority of related deaths. During 

monitoring, the age and neurological functions of the patient are considered. Functional 

impairment is assessed using the Karnofsky Performance Score (KPS). The KPS is a 11-point 

scale correlating to percentage ranging from 100% to 0%, where 100% indicates a patient 

capable of normal activity and work without the need for special care, and 0% means death100.  

Fig. 8 | MR imaging of a patient with glioblastoma. From left to right: pre-contrast T1-weighted, post-contrast T1 
weighted, T2-weighted FLARI images. The T1-weighted sequence typically displays soft tissues in isointensity or hypointensity 
and water in hypointensity. The addition of gadolinium, a contrast agent, allows to enhance the quality of the image by 
shortening the relaxation time of protons within tissues. The T2-weighted FLAIR sequence shows soft tissues in hyperintensity 
and water also in hyperintensity. In addition, it suppresses the signal from the CSF, making it useful for detecting lesions near 
the cerebral ventricles. (From Hirschler et al., 2023) 
 

Magnetic resonance imaging (MRI) is essential for the diagnosis of brain tumors. The 

European Association of Neuro-Oncology (EANO) guidelines advocate for the use of MRI 

sequences T1, T2, and T2-weighted fluid attenuated inversion recovery (FLAIR) both pre- and 

(i.e., lower perfusion),63,64 and appears to be correlated with
tumor microvascular density65 and VEGF expression.66

Nonetheless, more studies related to the specific classification
of gliomas with ASL are needed.59 Finally, ASL can be used
for prognosis prediction of patients with glioblastoma, as low-
perfused gliomas appear to be associated with longer event-
free and OS.64 Moreover, malignant progression in patients
with grade 2 glioma can be predicted using ASL.67

VALIDATION. The 2015 ISMRM Perfusion Study Group
ASL recommendations resulted from a major effort to stan-
dardize ASL for clinical applications in the brain.57 The
suggested 3D pseudo-continuous sequence with background
suppression has been adopted by all major scanner vendors
and is still considered optimal for ASL in glioma. Labeling
duration of 1800 msec, post-labeling delay 2000 msec, basic
subtraction calculation, and normalization to contralateral
GM values are recommended (Lindner et al MRM 2022, in
revision, reference will be added during this manuscript’s revi-
sion). More research is needed to confirm the added value of
multiple post-labeling delays.68

Although ASL images suffer from a lower signal-to-
noise ratio than the DSC counterpart, a high correlation was
found between ASL-derived CBF and DSC-measured rCBV
in gliomas,69 with velocity-selective ASL presenting even
better results than normal pseudo-continuous ASL.70 A com-
parison is shown in Fig. 4. The lack of expertise in reading
ASL images by the radiologist is one of the major hurdles,14

and more training and tools, together with a more solid
validation of ASL, are needed to demonstrate its ability to
provide a valid alternative for DSC.

SUMMARY. Absolute measures of tumor blood flow can be
obtained with ASL in the absence of exogenous intravenous con-
trast agents and the sequence is technically ready for clinical use.
There is a correlation between ASL-calculated CBF with tumor

histology, grade, and microvascular density and no confusion
with BBB leakage as in the post-contrast T1-weighted images.
However, the added value to the conventional protocol and with
respect to DSC still has to be proven in large multi-center stud-
ies and diagnostic criteria need to be defined.

Diffusion

OVERVIEW. Diffusion MRI is a technique based on motion-
sensitizing magnetic field gradients (b-values), which attenuate
the signal according to the motion direction and magnitude.
Specifically, diffusion models are designed to mathematically
estimate the attenuation that originates from the Brownian
motion guided by the tissue’s microstructure. The quantification
of diffusion can then be used as a marker of pathology since the
movement of water is dependent on parameters that affect the
microstructure, such as cellularity, viscosity, or tortuosity of the
extracellular space.

The most frequent method for measuring diffusion is
the diffusion-weighted EPI pulse sequence due to its speed
and availability, but non-EPI techniques (eg, turbo SE imag-
ing or steady-state free precession) can overcome some of the
EPI limitations (eg, geometric warping in areas of susceptibil-
ity changes, such as bone/tissue interfaces).

The impedance of water molecule diffusion can be quan-
titatively assessed using the apparent diffusion coefficient
(ADC) by eliminating the T2-weighting that reduces the
multi-directional diffusivity at each point into a single number.
In current clinical practice, diffusion tensor imaging (DTI) is
also commonly used, enabling extraction of quantitative mea-
sures, such as fractional anisotropy (FA), or mean diffusivity
(MD). FA is a measure of the dispersion of diffusion direction-
ality, which is theoretically 0 in locations where water can
freely diffuse in all directions and approaching 1 in highly
anisotropic conditions where water diffuses along a single main
axis (eg, in densely packed WM fibers). MD is mathematically

FIGURE 4: MRI results from a 48-year-old patient with a biopsy-proven grade 4 glioblastoma. (Left-to-right) pre-contrast
T1-weighted; post-contrast T1-weighted; T2-weighted FLAIR images; relative cerebral blood volume (rCBV) map derived from
dynamic susceptibility contrast (DSC) sequence; and cerebral blood flow (CBF) map derived from arterial spin labeling (ASL) are
shown for a representative image slice. This example illustrates that the ASL CBF map is comparable to DSC rCBV imaging, showing
high perfusion values at the periphery of the lesion. Note the partial volume effect on the central portion of the lesion on the CBF
map that underestimates the necrotic area.
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post-administration of a gadolinium-based contrast agent (Fig. 8). Pseudoprogression, defined 

as the enlargement of the primary tumor or the emergence of a new lesion, must be taken into 

account if an anomaly is observed in the first month after a localized therapeutic intervention48. 

 

2. The Stupp protocol 
 

Until the 1970s, surgical resection was the only treatment option for patients diagnosed 

with GB. The advent of radiotherapy in the late 1970s demonstrated enhanced treatment 

efficacy, and the combination of surgery and radiotherapy quickly became the standard of 

care101,102. In 2005, Stupp et al. incorporated chemotherapy into the standard treatment regimen 

using TMZ, an alkylating agent103,104. 

Fig. 9 | Schedule of the Stupp protocol. TMZ: temozolomide, RT: radiotherapy, Gy: Gray. (From Batistella et al., 2021)106 

 

Following a GB diagnosis, a combined approach of radiotherapy and chemotherapy is 

initiated approximately five weeks post-diagnosis. The patient undergoes focal, megavoltage 

X-ray radiation, receiving a dose of 2 Gy for each session. This focal irradiation, targeting only 

the resection bed, is distinct from whole-brain irradiation. Focal irradiation is generally 
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considered safer as it spares the non-tumor-affected parts of the brain from radiation exposure. 

The patient undergoes 30 of these sessions, administered five days per week during six weeks, 

resulting in a cumulative dose of 60 Gy. Concurrently, the patient is prescribed an oral dose of 

TMZ, at a daily dosage of 75 mg/m2 of body surface area. After this phase, there is a four-week 

break where neither radiotherapy nor TMZ is administered. Subsequently, the adjuvant 

chemotherapy phase begins. During this phase, The dosage for each cycle ranges from 150 to 

200 mg/m2 of TMZ over a 5-day period. This is followed by a 21-day break without the drug. 

Depending on the tolerance of the patient, up to six of these cycles may be conducted (Fig. 9). 

Despite the intensive therapeutic regimen, the median survival for patients does not 

exceed 15 months103. In 2017, Perry et al. conducted a randomized clinical trial with patients 

over the age of 65 to evaluate the added benefit of TMZ chemotherapy in conjunction with a 

short-course radiotherapy (40 Gy in 15 fractions). This combination resulted in an extended 

overall survival105. Consequently, this protocol has become the standard prescription for elderly 

patients diagnosed with GB. 

 

3. Surgical approaches  

 

In the case of GB, overall survival is closely linked to the extent of resection (EOR). 

Achieving a resection greater than 98% of the tumor mass can significantly improve the 

prognosis of patients107,108. Due to the invasive characteristics of GB and the existence of 

scattered tumor cells that remain undetected by MRI, the challenge of expanding the resection 

beyond the boundaries defined by contrast-enhanced MRI, while maintaining surgical safety, 

persists. 

 

Fluorescence-guided resection. Fluorescence techniques have been used to enable a 

more targeted and safer tumor resection. The synthetic 5-aminolevulinic acid (5-ALA), when 

metabolized, produces a fluorescent metabolite, protoporphyrin IX, which accumulates in high 

concentrations in cancer cells109. Its application in glioma surgery has been shown to enhance 

the EOR and improve progression-free survival (PFS)110. The fluorescence from 5-ALA helps 

distinguish between the tumor core, healthy tissue, and areas of cancer infiltration, helping in 

more precise removal. However, not all GB uptake 5-ALA, and the intensity of fluorescence 

can vary based on the tumor subtype111. Fluorescein, a fluorescent compound, accumulate in 

brain regions with abnormal cellularity and vascularization due to its binding with blood 
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proteins and subsequent exclusion from normal tissue by the BBB. This allows for real-time 

imaging of tumors, particularly their margins112. However, some GBs maintain BBB integrity, 

leading to potential false negatives. Additionally, fluorescein can accumulate in non-tumor 

areas, especially post-surgical sites. Despite these problems, the use of fluorescein in GB 

microsurgical resection has been linked to increased gross total resection rates and overall 

survival113. Combination with 5-ALA is also possible to maximize EOR and thus improve the 

outcome of patients114.  

 

Neuronavigation and mapping. Neuronavigation is a standard tool applied during 

surgery to ensure the safety of resection. It encompasses a set of imaging techniques including 

intraoperative MRI, intraoperative ultrasound, confocal intraoperative microscopy, and 

intraoperative mass spectrometry, all of which provide real-time information during surgery115. 

Brain mapping further facilitates extended resection by pinpointing anatomical areas 

responsible for critical functions, such as motor and language, ensuring their preservation 

during the procedure. Preoperative mapping can be achieved using navigated transcranial 

magnetic stimulations, functional MRI, magnetoencephalography, or diffusion tensor imaging 

fiber tracking. Conversely, intraoperative mapping uses direct cortical or subcortical 

stimulations116. In some cases, awake surgery may be required to conduct intraoperative 

language mapping117,118. 

 

 Regrettably, recurrence is inevitable, even after resection of all radiographic 

abnormalities detected on T1-weighted and T2-weighted FLAIR images. This perspective has 

led to the view of GB as a whole-brain tumor, not solely curable by surgical intervention119. 

Furthermore, a recent study has shown that surgical resection triggers the self-renewal of 

GSLCs through pleiotrophin, thereby contributing to tumor recurrence120. 

 

4. Chemotherapy  
 

GB chemotherapy is conducted using the TMZ alkylating agent. As previously 

mentioned, its use has been approved by the FDA in 2005. In 2023, the FDA extended its use 

for newly diagnosed and refractory anaplastic astrocytomas. This molecule is inactive and 

stable at acidic pH. At physiological pH, the hydrolysis of TMZ results in the formation of 5-

(3-methyltriazol-1-yl)imidazole-4-carboxamide (MITC). Then, MITC is hydrolyzed in 5-

amino-imidazole-4-carboxamide (AIC) and methyldiazoliumn which reacts with DNA and 
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releases its methyl groups. Consequently, it can add methyl groups to the nitrogen (N7) and 

oxygen (O6) of guanine and the oxygen (O3) of adenine in the DNA molecule. N7 methyl-

guanine accounts for 70% of the adducts generated by TMZ. These additions cause base 

mismatches as well as single and double-strand breaks in DNA. The non-repair of these breaks 

results in a cell cycle arrest in the G2/M phase and cell death through apoptosis. 

Fig. 10 | Mechanism of action of temozolomide. At physiological pH, the hydrolysis of TMZ results in the formation of 
5-(3-methyltriazol-1-yl)imidazole-4-carboxamide (MITC). Then, MITC is hydrolyzed in 5-amino-imidazole-4-carboxamide (AIC) 
and methyldiazoliumn (CH2N2+) which reacts with DNA and releases its methyl groups.  (From Martinho et al., 2015)125 

 

Unfortunately, TMZ represents a significant factor in GB resistance. Due to the high 

mutational load and heterogeneity of GB, only 50% of patients respond to TMZ121. The only 

predictive marker for TMZ response to date is the MGMT promoter methylation status122. 

Furthermore, the heterogeneity of the BBB permeability limits the accumulation of TMZ within 

the tumor123. Metabolically, the acidosis generated by tumor hypoxia would prevent the proper 

metabolism of TMZ, thereby reducing its efficacy124. 

 

5. Radiotherapy 

 
a. Biological effects 
 

ROS production. In the extracellular environment, ionization of water molecules by 

radiation leads to its radiolysis and the generation of reactive oxygen species (ROS). ROS 

include the superoxide anion O2-, hydroxyl radicals OH∙, and hydrogen peroxide H2O2. These 

species are toxic for tumor cells and cerebral parenchyma126. Ionizing radiation also amplifies 

the endogenous ROS levels within mitochondria127, compromising their membrane integrity, 

which in turn becomes more permeable and releases an increased amount of ROS128. This 
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elevated ROS concentration disrupts the mitochondrial electron transport chain, inducing a 

redox imbalance129. Cellular antioxidant systems can counteract this oxidative stress. For 

instance, superoxide dismutase can convert OH∙ to H2O2, which is subsequently transformed 

by catalases and peroxidases into H2O and O2130,131. If oxidative stress persists, it can lead to 

lipid peroxidation, protein misfolding in the endoplasmic reticulum, and DNA breaks. 

 

DNA Damage. Irradiation induces DNA damage, either directly or indirectly, 

manifesting as base damage, single-strand breaks (SSBs) or double-strand breaks (DSBs). 

Additionally, radiation can cause complex DNA damage with multiple non-DSB lesions, called 

clustered DNA damage. Such complex damages necessitate prolonged activation of the repair 

system, potentially resulting in incomplete repair and mutation induction132. The type of DNA 

damage and the repair mechanisms involved vary based on the type of particle and the energy 

level they emit. For instance, a recent study demonstrated that high-energy particles generate 

apurinic/apyrimidinic sites and thymine glycol near DSBs. This triggers the initiation of a 

specific repair pathway, notably involving DNA polymerase θ133 

Upon the formation of classical DSBs, DNA damage repair sensors such as ataxia-

telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA-

dependent protein kinase (DNA-PK) are activated and recruit downstream DNA repair pathway 

proteins134. The phosphorylation of ATR, DNA-PK, and γH2AX, and the recruitment of 

mediator of DNA damage checkpoint protein 1 (MDC1) to DNA damage foci facilitates the 

assembly of DNA repair proteins, including breast cancer type 1 susceptibility protein 1 

(BRCA1), BRCA2, and p53-binding protein 1 (53BP1)135. The phosphorylation of checkpoint 

kinases, Chk1 and Chk2, also contributes to this pathway. Collectively, these events stabilize 

and activate p53, which in turn activates p21, inducing cell cycle arrest136. This sets the stage 

for DSB repair mechanisms. The non-homologous end joining (NHEJ) pathway is initiated by 

the Ku70/Ku80 heterodimer, while the homologous recombination (HR) pathway is 

orchestrated by the MRN complex (Mre11/Rad50/Nbs1). Alternative DSB-repair pathways, 

such as alternative end joining (alt-EJ) and single-strand annealing (SSA), can also be initiated 

(Fig. 11). Depending on the nature of the lesion, repair mechanisms differ. For instance, SSBs 

are predominantly repaired via nucleotide excision repair (NER) or base excision repair (BER) 

pathways. The outcome of an irradiated tumor cell is contingent upon its inherent genomic 

instability and the status of its DNA repair machinery. In instances of incomplete DNA repair, 

p53 promotes apoptosis through the pro-apoptotic factors Puma, Noxa, and Bax137. 
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Fig. 11 | Primary repair mechanisms for DSBs induced by ionizing radiations. When DNA is damaged by ionizing 
radiation (IR), creating double-strand breaks (DSBs) with either blunt ends or short single-strand ends, the classical 
nonhomologous end joining (c-NHEJ) repair process begins. This is initiated by the attachment of the Ku70/80 heterodimer, 
followed by the involvement of DNA-PKcs and polymerase. If the DNA is resected, other repair pathways like homologous 
recombination (HR), alternative end joining (alt-EJ), and single-strand annealing (SSA) are activated, each requiring different 
proteins for the repair process. These major repair pathways for IR-induced DNA DSBs are dependent on the cell cycle stage. 
(From Zhao et al., 2020)138 
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Figure 1: (a) Major repair pathways for DNA double-strand breaks (DSBs) generated by ionising radiation (IR). When IR-induced DNA
DSBs have blunt double-strand DNA ends or contain short single-strand DNA ends, the classical nonhomologous end joining (c-NHEJ)
is initiated by the binding of the Ku70/80 heterodimer followed by the recruitment of DNA-PKcs and polymerase. When DNA resection
occurs, the pathways of homologous recombination (HR), alternative end joining (alt-EJ), and single-strand annealing (SSA) can be
activated to repair the IR-induced DNA DSBs by the recruitments of different proteins. (b–e) The major repair pathways ((b) c-NHEJ, (c)
HR, (d) SSA, and (e) alt-EJ) for processing IR-induced DNA DSBs have a distinct cell-cycle dependence.
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Bystander and abscopal effects. Beyond their direct action on irradiated cells, ionizing 

radiations produce distant effects impacting neighboring non-irradiated cells. The outcomes of 

these effects are diverse, including a reduced clonogenic survival, increase in genomic 

instability, a heightened frequency of sister chromatid exchange, augmented micronuclei, 

chromosomal aberrations, accumulation of γH2AX foci, and induction of apoptosis139. 

Bystander effects can be conveyed through direct contact with irradiated cells via intercellular 

gap junctions, transmitting Ca2+, nucleotides, and peptides. Moreover, release of cytokines and 

chemokines, such as IL-6, IL-8, TGF-b, TNFa, NO, and ROS, contribute to a more distant 

communication140. Macrophages are involved in the bystander signaling by releasing factors 

like TNFa, NO, and superoxide nitrogen139. Furthermore, radiotherapy may promote T cell 

trafficking towards the tumor through local inflammation141 Irradiated cells also communicate 

through the release of exosomes to propagate either cytotoxic or cytoprotective signals, 

depending on the context142,143.  Lastly, bystander cells can also impact irradiated cells, 

particularly their response to radiation144. 

Fig. 12 | Bystander and abscopal effects triggered by tumor irradiation. Within the primary irradiated lesion, two 
local effects are observed: bystander effects between high-dose or low-dose targeted cells and non-irradiated cells, and 
cohort effects between high and low-dose targeted cells. Irradiation causes cancer cells to undergo immunogenic cell death, 
releasing tumor-associated antigens (TAAs), which activate the immune system, particularly antigen-presenting cells (APCs) 
and macrophages. APCs present these TAAs to T cells, leading to a systemic immune response against tumors both within 
and outside the irradiated area, the latter being termed the abscopal effect. Exosomes are believed to play a role in these 
non-targeted effects both locally and distantly. (From Daguenet et al., 2020)145 
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mediated cell–cell communication via ions such as calcium and
small molecules such as nitric oxide, although other factors such
as transforming growth factor-β (TGF-β), cytokines and chemo-
kines can also be released in the extracellular compartment,
triggering local immune activation (Fig. 1, left panel). Interest-
ingly, a systemic long-distance abscopal effect arises if this non-
specific inflammatory-type response reaches distant locations,12

although the abscopal effect is generally thought to be mediated
by T-cell activation. In addition to the direct secretion of
cytokines and chemokines, exosomes have been identified as
novel systemic mediators of communication between irradiated
and non-irradiated cells or tissues, and might therefore be
involved in the bystander, abscopal and cohort effects. The
nature of their cargo is a matter of intensive research, but might
include microRNAs, long non-coding RNAs, protein mediators,
immune players, etc.21 With regard to the abscopal effect, the
involvement of the immune response in this phenomenon can
be outlined by a simplified scenario (Fig. 1, right panel). Tumour
cells undergoing immunogenic forms of cell death in response to
ionising radiation are known to release danger signals and
damage-associated molecular patterns (DAMPs), and to expose
tumour-associated antigens (TAAs), which can attract or activate
immune-related cells.16,22–25 Radiotherapy is known to modulate
several aspects of a variety of immune-related components from
the tumour ecosystem: the expression of TAAs on tumour
cells,26,27 the expression on endothelial cells of adhesion
molecules for leukocyte recruitment,28–30 the nature of antigen-
presenting cells (APCs) (e.g. the maturation of dendritic cells,
increased expression of major histocompatibility complex class I
molecules, increased peptide repertoire and cross-presentation
and increased expression of co-stimulating molecules),27,31 the

behaviour of cytotoxic T lymphocytes (CTLs) (e.g. priming and
activation of T cells, cell death of suppressor T cells),32,33 and the
secretion of cytokines and chemokines as signalling orchestrators
for adequate systemic activation of the immune system.34,35

Hence, irradiated tumours are often referred to as ‘in situ
vaccinations’ that supply TAAs to APCs, which then cross-present
these species to T cells. As a result, the migration of effector
T cells from lymph nodes to distant tumour sites to mediate
tumour-cell destruction is stimulated36,37 (Fig. 1). Consequently, it
is well accepted that immune mechanisms are the driving forces
of such responses.
Early reports of the abscopal effect in response to radiation

alone were rare, however. Because of its low incidence (46 clinical
cases from 1969 to 2014), not only did the radiotherapy-related
abscopal effect arouse great interest, but also scepticism, as it
remained sporadic.38 This rare occurrence can be explained by the
radiotherapy-mediated attraction of immunosuppressive cells into
the tumour microenvironment as a self-protective mechanism of
radioresistance, which thereby inhibits T-cell priming. A combined
approach with immunotherapy, however, has led to an increase in
the occurrence of the abscopal effect,39,40 and appears important
in overcoming the barriers and synergising the efficacy of each
intervention alone.41,42

Although several preclinical studies have helped to understand
how the combined approach of immunoradiotherapy might
potentiate the systemic control of tumorigenesis, there is still
much work to do in order to increase our knowledge about
radiobiology and investigate the discrepancies between preclini-
cal models and clinical experiences. The aim of this review is to
propose research perspectives that might be relevant to narrow
the translational bridge from bench to bedside.
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Fig. 1 Schematic overview of local and distant effects triggered by tumour irradiation. At the heart of the primary lesion that is irradiated
(panel on the left), two local effects can be distinguished: first, bystander effects occur between high-dose-targeted cells (dark orange) or low-
dose-targeted cells (light orange) and non-irradiated cells (blue); second, cohort effects occur between high-dose-targeted cells and low-dose-
targeted cells. Whether/how non-irradiated cells can influence the outcome of irradiated cells (depicted with a question mark) remains to be
determined. Irradiation induces immunogenic cell death in cancer cells and the subsequent release of tumour-associated antigens (TAAs)
(pink dots), thereby activating the immune system, especially antigen-presenting cells (APC, in purple) and macrophages (in pink). APCs then
cross-present TAAs to T cells in draining lymph nodes. As a result, polyclonal antigen-specific T cells are primed to attack tumours located
within the irradiated field as well as those in distant locations. This distant radiation-induced effect is termed an abscopal effect (panel on the
right). Exosomes (in green) are novel mediators thought to participate in these non-targeted effects locally and at distant sites.
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The abscopal effect denotes the systemic response following tumor irradiation. It is 

based on the release of tumor-associated antigens (TAAs) and danger-associated molecular 

patterns (DAMPs) due to radiotherapy, which are then recognized by the immune system. 

Crucially, antigen-presenting cells cross-present the TAAs to T cells in lymph nodes. These T 

cells subsequently undergo clonal proliferation, targeting not only the primary lesion but also 

distant tumor sites within the body. This model is supported by evidence that radiotherapy can 

modulate the expression of TAAs on tumor surfaces146, expression of adhesion molecules on 

epithelial cells for leukocytes recruitment, maturation of dendritic cells147, and the behavior of 

cytotoxic T cells148. 

 

b. Clinical practice for external radiotherapy 

 

The standard treatment for GB also relies on external beam radiation therapy (EBRT) 

as described in the Stupp protocol. This method involves directing X-ray beams through the 

skin and tissues to target and eliminate tumor cells, while trying to minimize damage to the 

healthy brain parenchyma.  

 

Target delineation strategy. The primary challenge in treating GB is defining the 

tumoral volume to target. The volume to be treated, called the clinical target volume (CTV), is 

determined by MRI with a T2/FLAIR sequence. Abnormalities on T2/FLAIR suspected to be 

edema are not included in the CTV. Current guidelines from the European Society for 

Therapeutic Radiology and Oncology (ESTRO) and the EANO recommend to apply a 1.5 cm 

margin to the gross tumor volume (GTV) to define the CTV. This was previously recommended 

at 2 cm, as studies indicated that 80% of GB recurrences occurred within 2cm of the GTV. 

However, recent studies have reported similar outcomes with margins ranging from 0.5 to 1.5 

cm149. 

 

Pre-treatment imaging. The primary imaging modalities applied are contrast-enhanced 

3D T1-weighted and T2/FLAIR sequences. While these MRI protocols offer high-quality 

spatial resolution, the T2/FLAIR sequences present challenges as their signals can indicate 

oedema, inflammation, post-operative changes, or gliosis. Thus, they are not always specific to 

tumor infiltration. However, T2/FLAIR can be instrumental in identifying suspected tumor 

infiltration areas, especially when discerning between tumor and oedema150,151. 
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Fig. 13 | FET and FDOPA as amino acid tracers for PET in GB. Comparison of T1-weighted and T2-weighted MR imaging 
with L-3,4-dihydroxy-6-[18F]fluorophenylalanine (FDOPA  and [18F]fluoro-ethyl-l-tyrosine (FET) PET. Both tracer uptakes rely 
on L-type amino acid transporter to specifically accumulate within the tumor mass. (From Galldiks et al., 2019)156 

 

In addition, imaging using computed tomography (CT), positron emission tomography 

(PET), or PET-CT can be implemented to obtain supplementary information. CT scan employs 

X-rays and electronic detectors to capture multiple projections from various angles. These 

projections are then processed to produce detailed cross-sectional images, of the body's internal 

tissues and structures152. In a PET scan, the patient is injected with a radiopharmaceutical 

containing a positron-emitting radionuclide. This radionuclide distributes within tissues based 

on its carrier molecule and emits positrons. When a positron encounters a free electron, they 

annihilate, producing two photons emitted in opposite directions. External detectors capture 

these photons, and their origin is localized, allowing for the visualization of the distribution of 

the radiopharmaceutical within the body. This provides insights into physiological processes at 

the cellular level153. Regarding PET imaging, the most effective amino acid tracers for detecting 

metabolically active GB are suggested to be L-[methyl-11C]-methionine (MET), [18F]fluoro-

ethyl-l-tyrosine (FET), and L-3,4-dihydroxy-6-[18F]fluorophenylalanine (FDOPA). These 



CHAPTER I 

 28 

radiolabeled amino acids demonstrate selective uptake in brain tumors through their transport 

by L-type amino acid transporter 1 (LAT1), which is overexpressed in malignant tumors154–157. 
 

Dose fractionation. Although the Stupp protocol is based on a fractionation of a total 

dose of 60 Gy, other protocols have tested different dose fractionation approaches. 

Hyperfractionation involves a reduction of the emitted dose combined with an increase of the 

irradiation frequency. However, a retrospective study highlighted the absence of significant 

added value with a protocol of 1.8 Gy / 2x per day in 30 fractions, for a total of 54 Gy158. 

Hypofractionation has also been explored in clinical settings. The Perry protocol, as previously 

discussed, is now routinely adopted for elderly patients. However, the biologically effective 

dose (BED) for 40 Gy in 15 fractions is lower than that of 60 Gy in 30 fractions, indicating that 

these patients might be receiving suboptimal dosing. In fact, Perlow et al. recently reported a 

better overall survival with a hypofractionated regimen of 52.5 Gy in 15 fractions (BED 

equivalent to the Stupp protocol) compared to Perry's protocol159. Another study reported 

equivalent outcomes between hypofractionated radiotherapy and the classical radiotherapy 

protocol, but underlined a reduced lymphopenia during treatment160.  

 

Advancements for EBRT. Three-dimensional conformal radiation therapy (3D-CRT) is 

a radiotherapy technique that integrates imaging methods like CT, MRI, PET, or PET-CT to 

create a 3D image of the patient's tumor. This allows the delivery of a focused dose while 

minimizing exposure to healthy tissues. This approach has become a standard in radiotherapy 

treatment. Advancements in 3D-CRT have been developed to refine the precision of the 

irradiating beams161. 

Intensity-modulated radiation therapy (IMRT) is an advanced form of 3D-CRT that 

offers enhanced dose distribution to target volumes, especially for concave and irregular shapes. 

Unlike traditional radiotherapy, IMRT uses a multi-leaf collimator (MLC) to modulate the 

intensity of radiation beams by computer optimization. After the definition of the CTV and 

dose parameters, the movement of the MLC is computer-optimized to minimize exposure to 

adjacent normal tissue and organs at risk. IMRT can also simultaneously deliver specific 

radiation doses to different targets162. 

With volumetric modulated arc therapy (VMAT), the radiation dose is consistently 

administered as the gantry of the linear accelerator (LINAC) revolves around the patient, either 

in a single or multiple arcs. This method refines the dose distribution to the tumor by adjusting 
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the intensity of the radiation beam, dose rate, and the speed of rotation. VMAT reduces 

treatment duration and the number of monitor units used162.  

Stereotactic radiosurgery (SRS) applies several beams of high-energy X-rays, g-rays, or 

protons that converge on a specific, visually-identified area. This radiation delivery is very 

precise. By intersecting multiple beams, the targeted area receives a high therapeutic dose, 

while nearby healthy brain tissue gets a minimal dose. This method can be adjusted accurately, 

ensuring quick energy dissipation outside the targeted area and saving healthy tissue. The sharp 

decrease in radiation in adjacent tissues ensures minimal side effects. Some techniques allow a 

submillimeter precision and the application of fractionated doses163.  

Photodynamic radiotherapy (PDT) uses photosensitive agents that preferentially 

accumulate in tumor tissues. These agents are activated when exposed to intense, non-thermal 

visible light of a particular wavelength. This activation triggers a photodynamic response driven 

by ROS, causing damage to macromolecules like DNA, RNA, lipids, and proteins, ultimately 

leading to the death of cancer cells164. 5-ALA presents notable benefits compared to other 

photosensitizers. Multiple research efforts have underscored the effectiveness of 5-ALA-driven 

PDT in treating GBM, showing in vitro cytotoxicity rates reaching up to 80% and substantial 

tumor tissue necrosis in rat studies165,166. 

FLASH radiotherapy (FLASH-RT) is a technique that enables the emission of an ultra-

high dose electron beam, on the order of 106 Gy/s. This allows for irradiation over exposure 

times in the microsecond range167. A study showed that FLASH-RT fractionated regimen was 

able to control glioma growth in a mouse model while preserving neurocognitive functions. 

This benefit is partly attributed to a lower production of ROS compared to conventional 

radiotherapy168. 

 

Internal radiotherapy. Brachytherapy is a technique wherein radionuclides are 

internally positioned close to or within the treatment site, emitting high-energy particles. The 

radiation dose depends on the selected radionuclide. GammaTileâ represents a novel 

brachytherapy approach, incorporating four cesium-131 spheres embedded within a collagen 

matrix. Recently endorsed by the FDA, this surgically-targeted radiation therapy is implanted 

immediately post-surgical resection in patients. It's a permanent, biocompatible implant 

operating based on the decay of cesium-131. This radionuclide undergoes electron capture, 

emitting characteristic low-energy X-ray photons and electrons169. 
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6. Mechanisms of radioresistance 
 

Despite the achieved advancements in external radiotherapy, GB remains significant 

radioresistant because of its its genomic heterogeneity and its microenvironment, involving 

hypoxic niches, metabolic alterations, GSLCs, microRNAs or regulations of cell cycle and 

DNA-damage responses (Fig. 14).  

Fig. 14 | General mechanisms of radioresistance in GB. (From Burko et al., 2023)174 

 

Hypoxia. DNA damage caused by X-rays in conventional radiotherapy is largely due to 

the production of ROS within cells, rather than direct irradiation of the DNA molecule itself. 

Consequently, the efficacy of radiotherapy is significantly oxygen-dependent, and is therefore 

reduced in hypoxic niches where ROS cannot be generated. Furthermore, in hypoxic conditions, 

HIF-α is able to activate the transcription of the Oct4 gene, responsible for GSLCs self-

renewal170. Chronic hypoxia can activate the NHEJ protein DNA-PK to efficiently repair 

radiation-induced DNA damage, and downregulates the HR protein Rad51, resulting in less HR 

pathway repair171–173.  

 

Metabolic alterations. GB cells exhibit elevated glycolytic activity and a dominance of 

the pentose phosphate pathway, which results in an excessive production of nicotinamide 

adenine dinucleotide phosphate (NADPH)175. NADPH plays a crucial role in redox homeostasis 

and the cellular antioxidant system, thereby shielding cells from oxidative stress. Radiation 

therapy increases this glucose utilization in GB cells, and the M2 isoform of pyruvate kinase 

(PKM2) have been shown to participate to the rewiring of glucose metabolism to enhance 
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2. Adaptation Mechanisms in Glioblastoma’s Resistance to Radiotherapy
Radiotherapy is the most effective treatment method for most primary tumors of the

central nervous system. However, its efficacy is limited by the phenomenon of tolerance to
radiation therapy, characterized by uninterrupted tumor growth after radiation exposure
and being a risk factor for metastatic disease, which requires a change in the standard
patient management protocol [53]. Radioresistance is a process in which the tumor cells
or tissues adapt to the radiotherapy-induced changes and develop resistance to the radio-
therapy [54]. The factors involved in this phenomenon include cancer stem cells (CSCs),
the chaperone system, tumor cell plasticity and heterogeneity, microenvironment, hypoxia,
metabolic reprogramming, gene regulation, microRNAs (miRNAs), DNA repair, and the
cell cycle (Figure 1), which are discussed in the following subsections.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 26 
 

 

levels of the following parameters: replication protein A, single-stranded DNA binding 
protein, and DNA damage markers [48,49]. 

Tyrosine kinase MET is involved in the signaling cascade of DNA damage repair 
under ionizing radiation and is required for proper cell migration during embryonic 
development [50]. It enhances cell survival, angiogenesis, invasion, and metastasis in 
cancer [51]. The main mechanisms induced by MET are (1) activation of AKT kinase and 
the subsequent downstream DNA repair effectors; and (2) phosphorylation and 
cytoplasmic retention of the p21 protein, which has an anti-apoptotic impact. 

Radioresistance is much more than a handful of surviving cells; it is a crucial 
mechanism in establishing the therapy resistance of the whole tumor. Remarkably, 
isolated glioblastoma cell lines do not show as much resistance due to the lack of cell 
interactions required for the development of radioresistance [52]. 

2. Adaptation Mechanisms in Glioblastoma’s Resistance to Radiotherapy 
Radiotherapy is the most effective treatment method for most primary tumors of the 

central nervous system. However, its efficacy is limited by the phenomenon of tolerance 
to radiation therapy, characterized by uninterrupted tumor growth after radiation 
exposure and being a risk factor for metastatic disease, which requires a change in the 
standard patient management protocol [53]. Radioresistance is a process in which the 
tumor cells or tissues adapt to the radiotherapy-induced changes and develop resistance 
to the radiotherapy [54]. The factors involved in this phenomenon include cancer stem 
cells (CSCs), the chaperone system, tumor cell plasticity and heterogeneity, 
microenvironment, hypoxia, metabolic reprogramming, gene regulation, microRNAs 
(miRNAs), DNA repair, and the cell cycle (Figure 1), which are discussed in the following 
subsections. 

 
Figure 1. Schematic representation of factors and pathways involved in glioblastoma resistance to 
radiotherapy. 

2.1. Glioblastoma Stem Cells 
The tumor tissue consists of two types of cells: cancer stem cells (CSCs) (0.01–5%) and 

non-CSCs (99.9–95%). The former have the capabilities of proliferation, differentiation, 
and self-renewal and constitute the source of cancer persistence. The non-CSCs constitute 
the bulk of the tumor mass, along with the differentiated and death-committed cells [55]. 
The presence of CSCs in the tumor mass partially explains the phenomenon of cell 
resistance to ionizing radiation [56]. 

CSCs are a tumor cell population with properties that distinguish them from other 
malignant cells, namely the ability to initiate carcinogenesis, sustain tumor proliferation, 
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2.1. Glioblastoma Stem Cells
The tumor tissue consists of two types of cells: cancer stem cells (CSCs) (0.01–5%) and

non-CSCs (99.9–95%). The former have the capabilities of proliferation, differentiation, and
self-renewal and constitute the source of cancer persistence. The non-CSCs constitute the
bulk of the tumor mass, along with the differentiated and death-committed cells [55]. The
presence of CSCs in the tumor mass partially explains the phenomenon of cell resistance to
ionizing radiation [56].

CSCs are a tumor cell population with properties that distinguish them from other
malignant cells, namely the ability to initiate carcinogenesis, sustain tumor proliferation,
differentiate into all cellular subpopulations present in the primary tumor, and engage in
unlimited self-renewal [57,58].

There are two main ways to explain the origin of CSCs. One postulates their establish-
ment from postnatal stem cells, whereas the other proposes that CSCs originate by reprogram-
ming differentiated tumor cells [59]. In addition, epigenetic reprogramming mechanisms, like
those in embryonic stem cells, also play a role in the formation of CSCs [57].

Some reports describe the existence of self-renewing tumor-forming cells in glioblas-
toma and other types of gliomas capable of multilinear differentiation with stem cell-typical
markers, according to which they are considered GSCs [60–65]. These may be critical
factors in treatment failure and poor patient outcomes [66]. These GSCs, along with other
indicators, express the special marker CD133 (prominin-1) that participates in the differenti-
ation of GSCs and their self-renewal, which has a key role in carcinogenesis [55] and in the
development of resistance to radiotherapy [67]. CD133-positive cells can survive high-dose
radiotherapy and favor tumor relapse, despite the concomitant damage to tumor blood
vessels [68], which increases after radiation exposure [67]. CD133 antigen expression is
considerably higher in regrowing glioma tissue than in primary tumor tissue obtained from
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antioxidant responses176. In response to radiation, IDH1 wild-type promotes NADPH 

production, contributing to radioresistance177. In addition, a high GB expression of ATPase 

family AAA domain-containing 3A (ATADA3A), a mitochondrial protein regulating 

communication with the endoplasmic reticulum, is associated with radioresistance of GB178. 

Radiations also upregulate autophagy which increases production of tricarboxylic acid (TCA) 

cycle metabolites such as citrate, succinate, fumarate, and malate, leading to an increase of 

adenosine triphosphate (ATP) production and high oxygen consumption rate179. 

 

GSLCs. GSLCs are known to enhance GBM radioresistance by amplifying the 

activation of DNA damage checkpoint pathways and inherently overactivating the PI3K/Akt 

and PTEN pathways. In particular, CD133+ GSLCs, when exposed to radiation, predominantly 

activate DNA damage checkpoint proteins like Chk1 and Chk2. This allows them to repair 

radiation-induced DNA damage more efficiently than CD133- cells180,181. The increased 

production of ROS scavengers in GSLCs, via genes like superoxide dismutase, superoxide 

reductase, glutathione peroxidase, and catalase, protects them from damage caused by ROS, 

potentially enhancing tumor resistance to radiation182. 

 

IV. Radionuclide therapy 
 

The advancement of radionuclide therapy (RNT) emerges as a promising avenue to 

address the inability of standard treatments, especially EBRT, to achieve complete eradication 

of GB. This modality capitalizes on the vectorization of high-energy particles for internalized 

tumor targeting and eradication. The methodology can encompass passive vectors, like 

nanoparticles, for localized intratumoral delivery, or active, precision-guided vectors suitable 

for both systemic and localized injections. In this context, we refer to it as targeted radionuclide 

therapy (TRT). RNT employs radionuclides characterized by their low penetration and high 

energy, leading to more ionizing emissions (such as β-, α, or Auger e- emitters) (Fig. 15). 

Notably, some radionuclides also emit g or β+ radiations, which are advantageous for the 

diagnostic imaging of GB. These radionuclides, due to their dual capability of both diagnosis 

and therapy, are termed theranostic radiopharmaceuticals. Theranostic pairs can also be 

established with a radiopharmaceutical dedicated to therapy and another to diagnostic, with the 

same vectorization strategy. This synergistic approach optimizes treatment personalization, 

ensuring interventions are precisely aimed at the affected cells or tissues183. This section briefly 
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introduces RNT. The design of therapeutic strategies for GB, including the choice of 

radionuclides, vectors and targets will be discussed in Chapter III.  

 

1. Particles used in radionuclide therapy 
 

The physicochemical properties of high-energy particles provide the opportunity to 

develop diverse strategies, considering both the emitted energy and the path taken within tissue 

(Fig. 15). Linear energy transfer (LET) refers to the amount of energy deposited by an ionizing 

particle as it travels through matter. It is expressed in keV/µm. Particles with a low LET, have 

a long ionization path and deposit little energy along their route. Conversely, particles with a 

high LET, like α particles, release much more energy but over a shorter distance. LET indicates 

the biological damage a radiation can cause and therefore influences the type of DNA damage 

it can produce184.  

 

b--emitters. β- radionuclides such as iodine-131 (131I), yttrium-90 (90Y), and lutetium-

177 (177Lu) were the first ones to be clinically investigated for GB treatment185–189. They have 

shorter tissue penetration (1-10 mm) than X-rays, their emission energy is ranging between 0.1 

and 2.3 MeV, and their LET is 0.2 keV/µm. Clinically, β-emitters have been used in approved 

treatments for non-Hodgkin lymphoma, neuroendocrine tumors, and metastatic castration-

resistant prostate cancer, with drugs like Zevalinâ, Bexxarâ, Lutatheraâ, and Pluvictoâ190-192. 

 

a-emitters. α-emitters are characterized by a limited tissue penetration (50-100 µm), a 

high energy emission (2-10 MeV), and a high linear energy transfer (100 keV/µm)193. They 

also retain efficacy under hypoxic conditions194. In 2013, the FDA approved the use of radium-

223 (223Ra) dichloride (Xofigoâ) for treating mCRPC195. In the context of GB, α-emitters are 

seen as optimal for addressing both primary tumors and post-surgical remnants, minimizing 

damage to healthy tissues. Recent clinical investigations have affirmed the safety and 

effectiveness of targeted-α therapies (TATs) using radionuclides like astatine-211 (211At), 

bismuth-213 (213Bi), and actinium-225 (225Ac) in GB treatments196–201. 

 

Auger electrons (AEs). The majority of AEs exhibit extremely low energy (< 1 keV), 

even if some AEs exhibit high peak energies, such as 78.2 keV with a maximum range of 87 

mm for platinum-195m (195mPt). This energy is released over a span of less than 500 nm in 

tissues, which is considerably shorter than the range of a particles202. 
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Fig. 15 | Characteristics of β particles, α particles and Auger electrons. LET: Linear energy transfer, RBE: relative 
biological effectiveness, SA: specific activity. (From Bolcaen et al., 2021)183 
 

The choice of an appropriate radionuclide for GB RNT is influenced by multiple factors. 

Foremost, its availability and the scale of its production are essential. Key considerations 

include its physicochemical characteristics, half-life, tissue range, and the potential toxicity of 

daughter radionuclides during decay. The vectorization approach, whether passive or active, 

the feasibility of radiolabeling the vector, and the vector biological half-life are crucial. The 

choice of the biological target is also significant regarding its expression levels in GB cells and 

surrounding healthy tissues. Intracellular target expression might favor a strategy based on 

Auger electrons, whose limited tissue range requires internalization by target cells. 

Additionally, the mode of administration plays a decisive role in the comprehensive selection 

framework. 

Theranostics 2021, Vol. 11, Issue 16 
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to a single tumour cell per receptor-recognition event 
and may cause a lack of essential crossfire effects 
[155]. Although preclinical studies have shown 
substantial therapeutic efficacy of AE-emitters, the 
small number of human investigations have generally 
not reported clinical efficacy with the exception of 
some positive results with [125I]iodo-deoxyuridine 
([125I]iodo-UdR) [164,165] and [111In]In-DTPA- 
octreotide [160,167]. Treating GB patients with a 
[125I]iodo mAb 425/TMZ combination resulted in 
improvements of survival with minimal normal tissue 
toxicity, which subsequently led to the registration of 
a Phase III clinical trial (NCT01317888) [166,167]. 

4.2 Optimal radionuclide half-life for 
therapeutic application 

The physical half-life of the therapeutic 

radionuclide should match the biological half-life of 
the targeted compound in order to obtain an optimal 
effective half-life for therapy. However, the 
administration route is important. When injected into 
the GB tumour, matching the physical and biological 
half-life that may be less crucial but the locoregional 
distribution time of the compound taken to reach the 
GB cells is particularly relevant. The residence-time of 
a radiopharmaceutical in vivo can be typically several 
days (especially with intact mAbs) or merely a few 
minutes for small molecules. In case of IV 
administration, a fast (or moderate) blood clearance 
capability might be more suitable as this allows for 
the use of radionuclides with shorter physical 
half-lives and minimal hematologic toxicities 
[111,122]. However, a very short physical half-life 
places limits in terms of radiopharmaceutical 

preparation time and supply chain 
between preparation and injection. 

Both the target location and the 
mechanism of tumoural cell uptake 
should match the selected radio-
nuclide for therapy. If the target is 
expressed on the cell membrane, a 
β-emitter and a half-live of 45 min 
could suffice, with the prerequisite 
that the compound reaches the 
target in an appropriate time frame 
(to avoid multiple treatment cycles). 
Short-lived radionuclides might 
influence the uptake by infiltrating 
GB cells negatively, which plays a 
major role in GB progression and 
recurrence (Figure 7) [168]. Given a 
compound is internalised 
post-binding without leakage from 
the target site, an AE- or α-particle 
emitter, providing a longer half-life 
e.g. up to 10 days should be 
considered. Negligible toxicity can 
only be expected if it is proven that 
the radionuclide is fully entrapped 
within intracellular macromolecular 
structures. In a situation where 
permeation out of the tumor cell can 
not be excluded, a high-energy, 
short-lived radionuclide (e.g. 
bismuth-213) may be recommended. 
In the case of AE-emitters, a longer 
half-life is required to provide the 
necessary time for its internalisation 
into the nucleus. 

 

 
Figure 6. Characteristics of β-emitting radionuclides versus α particle- and Auger 
electron-emitting radionuclides. Abbreviations: Linear energy transfer (LET), relative biological effectiveness 
(RBE), specific activity (SA) [130,147,155,156]. 
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2. Administration route 
 

Systemic approach. Intravenous delivery of RNT is ideal when aiming to target multiple 

tumor sites concurrently. This approach is particularly effective for circulating tumor cells, as 

in leukemia or multiple myeloma, or metastases that arise from the vascular dissemination of 

tumor cells. For instance, Kratochwil et al. showcased the efficacy of the a-emitter 225Ac using 

this method in patients with metastatic castration-resistant prostate cancer with a complete 

response in imaging PET/CT. This study also highlighted the superiority of the 225Ac over the 

b--emitter 177Lu, which had been previously administered to the patient (Fig. 16)203. 

 

Fig. 16 | PET/CT scans of an mCRPC patient treated with 225Ac-PSMA-617. Gallium-68-PSMA-11 PET/CT. The patient 
underwent two cycles of 177Lu-PSMA-617 and three cycles of 225Ac-PSMA-617. a Initial tumor spread. b Tumor progression 
after second cycle of 177Lu-PSMA-617. c,d Complete response after 3 cycles of 225Ac-PSMA-617. (From Kratochwil et al., 
2016)203 

 

In the management of GB, RNT can be delivered intravenously. This method requires 

targeted vectorization, possibly using an antibody or peptide, to ensure the specific distribution 

of radioactivity within the tumor. While this strategy offers the advantage of minimally invasive 

administration, it relies on blood circulation, the vascularization of the tumor, and also the BBB, 

which remains intact in certain tumoral regions. This challenge can be partially mitigated by 

the judicious selection of the radionuclide. Optimal tissue penetration can assist in targeting 

distant hypoxic niches from blood vessels. However, this might also elevate the potential harm 

to surrounding healthy tissues. 

a b c d 
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Locoregional approach. The locoregional approach provides an alternative for GB 

treatment, allowing for the direct intratumoral administration of the radioconjugate of interest. 

To ensure homogeneous distribution, convection-enhanced delivery (CED) has proven 

effective. This method employs stereotactic insertion of catheters either directly into the tumor 

or the post-operative cavity (Fig. 17). These catheters are linked to pumps that provide a steady, 

positive-pressure micro-infusion of the chosen agent into the target area using bulk flow 

principle, typically at rates between 0.1 to 10 μl/min, as opposed to a single bolus 

injection204,205. By leveraging a pressure gradient instead of a concentration gradient, concerns 

regarding the molecular weight and diffusivity of the therapeutic agent are sidestepped. This 

ensures a homogeneous delivery of drugs in low concentrations to a designated brain area, 

enhancing its intratumoral volume of distribution. CED can impact areas spanning centimeters 

in brain tissue, while diffusion-reliant methods are limited to a millimeter scale206. 

Fig. 17 | T1-weighted MRI of intratumoral CED injection of gadolinium-labeled chemotherapy. The injection 
volume is indicated in red. The distribution volume is indicated in green. Blue arrow indicates back flow in the subarachnoid 
space. (From D’Amico et al., 2021) 
 
3. Vectors and therapeutic targets 
 

Passive approach. A passive vectorization strategy can be used for locoregional 

delivery in RNT. In this context, the vector serves to shield the radionuclide, thereby enhancing 

its intratumoral retention time. For instance, our research group has previously evaluated the 

therapeutic potential of lipid nanocapsules loaded with rhenium-188 (188Re), a b--emitter, 

administered via CED in an orthotopic rodent model of GB. This approach yielded a therapeutic 

efficacy of 83%. Numerous vectors are suitable for passive targeting strategies, including 

liposomes, micelles, magnetic nanoparticles, and gold nanoparticles. Notably, gold 

nanoparticles are appealing due to their ability to enhance the efficacy of radiotherapy. When 

Fig. 2. 
T1-weighted non-enhanced image demonstrating intratumoral infusion of chemotherapy 
with gadolinium tracer. The tumor volume has been segmented out and highlighted in pink. 
The gadolinium tracer correlating to the volume of distribution of infusate is segmented and 
highlighted in green. Analysis of the Vd demonstrates an irregular shaped Vd conforming to 
structural restrictions to flow such as pial boundaries. Infusing 15cm3 of drug resulted in a 
Vd of 30cm3 with an associated Vd/Vi ratio of 2. In this case, the Vd/tumor volume ratio is 
20. Interestingly, a large Vd was achievable despite evidence of back flow into the 
subarachnoid space (blue arrow)

D’Amico et al. Page 19
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exposed to radiation, these particles can emit secondary low-energy electrons that increase the 

nearby delivered radiation dose, thereby amplifying the cytotoxic effect on tumor cells. 

 

Targeted approach. Targeted radionuclide therapy for GB focuses on directing 

radionuclides precisely to tumor cells, minimizing impact on adjacent healthy tissues. Several 

vectors have been developed for this purpose. Among these, monoclonal antibodies and their 

derivates are designed to identify and bind to specific antigens prevalent on GB cells. 

Radiolabeled peptides, targeting overexpressed tumor receptors, offer another promising 

approach. Additionally, nanoparticles like gold or liposomes can be functionalized with ligands 

or antibodies to hone in on GB cells specifically. The great challenge of this approach is the 

relevant choice of the target, as GB exhibits a strong intratumoral heterogeneity and an 

evolutive TME directly influencing its expression of potential biomarkers.  

Fig. 18 | Current clinical and preclinical studies on targeted radionuclide therapy for GB. GB: glioblastoma, TRT: 
targeted radionuclide therapy, EGFR: epidermal growth factor, SSTR2: somatostatin receptor 2, MMP: matrix 
metalloproteinase, NK1R: neurokinin receptor, PSMA: prostate-specific membrane antigen, CAXII: carbonic anhydrase XII, LDL: 
low density liprotein, CXCR4: chemokine receptor 4, PARP: EPH: ephrin, IL13R: inerleukine-13 receptor, CTR1: copper 
transporter 1. (Created with Biorender - biorender.com, adapted from Bolcaen et al., 2021)183 
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New therapeutic targets. Numerous therapeutic targets have been explored both 

preclinically and clinically for GB therapy (Fig. 18) and some of them will be discussed in 

Chapter III. Various components of GB have been addressed, such as the ECM, DNA damage, 

or hypoxia.  

Fig. 19 | Roles of syndecans in ECM alterations during cancer development. Syndecan (SDC) influences the structure 
and properties of the extracellular matrix (ECM), including its stiffness, which is vital for cancer functions. SDC controls 
enzymes like matrix metalloproteinases (MMPs) that regulate the turnover of the ECM. It also attaches MMPs to the cell 
surface, activating them to break down the ECM and cell receptors. Additionally, released SDC affects cancer cell actions and 
processes like angiogenesis. (From Jang et al., 2020)220 

 

One emerging target of particular interest within the GB landscape is the syndecan 

proteoglycan family, especially syndecan-1 (SDC1). SDC1 is a transmembrane heparan sulfate 

proteoglycan, characterized by its external domain adorned with heparan-sulfate and 

chondroitin-sulfate glycosaminoglycans. Serving as a co-receptor for an array of growth 

factors, chemokines, and cytokines, SDC1 is instrumental in modulating cellular processes like  

 growth, proliferation, adhesion, and migration.207. In the brain, SDC1 is predominantly 

expressed in the choroid plexus and is involved adult neurogenesis by fostering the proliferation 

of NSCs in the SVZ208. Furthermore, SDC1 plays a crucial role in maintaining the integrity of 

the ECM. It directly orchestrates the expression and secretion of ECM components, thereby 

influencing its overall structure209–211. Specifically, SDC1 facilitates the fibronectin 

fibrillogenesis in ECM via integrin, and therefore regulates ECM fiber orientation212 (Fig. 19).  

864 Jang et al.

and release of ECM components and modulate the 
organization of the ECM.8–10 Therefore, cancer cells 
can actively reshape the ECM through cell surface 
adhesion receptors, such as syndecans. Several struc-
tural features of syndecan are well suited for reshaping 
the cancer ECM; these include having a strong poten-
tial to interact with diverse extracellular ligands in the 
ECM; playing regulatory roles in both the ECM and 
cytoskeletal organization; and exhibiting cooperativity 
between the core protein and GAG chains.11–14 In this 
review, we will summarize how syndecans regulate the 
remodeling of ECM in the context of cancer (Fig. 1).

Syndecans Regulate the Composition 
of the ECM as Adhesion Receptors
During the progression of various types of cancer, 
the major structural ECM components, including 
!bronectin and collagen, show constant expressional 
changes. The expression levels of type I and IV col-
lagens are well known to be associated with the 
development of a number of human cancers, includ-
ing ovarian, pancreatic, melanoma, prostate, and 

breast cancer,15–19 and !bronectin is reportedly over-
expressed in gastric, ovarian, breast, and colon can-
cers.20–23 Moreover, the content and distribution of 
collagen is modi!ed to coordinate the functions of 
colon and breast cancer cells17,24,25 and alter the 
!bronectin distribution pattern as seen in human solid 
tumors.26 Together with the altered expression of 
ECM components, alterations in the organization of 
the ECM change its rigidity in tumor tissues.27–29 
Increased ECM rigidity induces Rho-generated  
cytoskeletal tension and activates extracellular  
signal-regulated kinase (ERK)-dependent growth, 
and subsequent increases in cytoskeletal tension 
promote growth and the formation of focal adhe-
sions,30 which are the sites at which cancer cells con-
nect to the ECM. Given these cancer-related changes 
in the ECM, it becomes clear that cancer cells must 
properly modulate the ECM components.

As an adhesion receptor, syndecans regulate the 
expression and secretion of ECM components that 
have different functions in modulating cancer progres-
sion. Syndecan-1 plays antimigratory and pro-adhe-
sion roles in several types of cancer cells. For example, 

Figure 1. The regulatory functions of SDCs in ECM remodeling during cancer progression. SDC can activate the expression of struc-
tural components of the ECM to alter the organization and physical properties of the ECM, including its stiffness, which is crucial for 
various cancer functions. SDC also regulates the expression of regulatory enzymes, such as MMPs, to modulate turnover of the ECM. 
In addition, SDC anchors MMPs on the cell surface and induces their processing into active MMP to induce the breakdown of the ECM 
and cell surface receptors, including SDCs. Shed SDC further regulates cancer cell activity and other cancer progression activities, such 
as angiogenesis. Abbreviations: SDC, syndecan; ECM, extracellular matrix; MMP, matrix metalloproteinase.
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Additionally, as a docking receptor, SDC1 has been identified in several studies to offer 

binding sites for MMP-2, -7, -9, and 13 on the cell surface213. Notably, in cancers like breast, 

colon, and pancreatic, SDC1 is recognized to bind MMP-7 on the cellular surface214–216. During 

the invasive progression of cancer, as MMPs degrade the ECM, they also cleave SDC1217, 

which subsequently can bind to VEGFR2, promoting cellular invasion218 (Fig. 19). 

Additionally, in breast cancer contexts, SDC1 plays a role in immune evasion by connecting 

VEGFR2 to VLA-4, thereby hindering LFA-1 mediated T cell migration219. 

In GB, elevated SDC1 expression is associated with a poor prognosis in GB221. SDC1 

is a crucial bridge between tumor cells and their microenvironment, facilitating interactions 

with the ECM and a range of growth factors and cytokines. Therefore, it influences tumor 

proliferation222, invasion222,223,  and angiogenesis224. In its shed form, SDC1 induces 

radioresistance of GB by promoting interactions between lysosomes and autophagosomes, thus 

ensuring a sustained autophagic activity in irradiated cells225. SDC1 may also modulate the 

EMT in GB, akin to its function in other malignancies, given its regulation by NF-κB226 and its 

pronounced expression in the mesenchymal phenotype of GB227. Its translocation to the nucleus 

could inhibit the activation of pro-EMT genes, including NF-κB and TGF-β228 . In addition to 

its multiple roles in the development of GB, its position at the interface between tumor cells 

and the ECM makes it an ideal target to disrupt the tumoral ecosystem of GB.  
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Scope and aims 
 

GB remains a major public health challenge. With no cure available and current 

treatments only offering limited life extension, there is a clear need to explore new therapeutic 

strategies. Targeted radionuclide therapy (TRT) shows potential as a method to deliver a 

vectorized radionuclide targeting tumor cells, aiming to destroy them. Clinical advancements 

in TRT with b--emitters, such as the introduction of treatments like Zevalinâ and Bexxarâ for 

non-Hodgkin's lymphoma, and more recently, 177Lu-based Lutatheraâ and Pluvictoâ for the 

treatment of NET and mCRPC, highlighted the progress achieved in this field. In 2013, the first 

targeted-a-therapy (TAT) based on 223Ra dichloride (Xofigoâ) was approved by the FDA for 

the treatment of mCRPC. In this context, this thesis aims to develop a TAT for GB, capable to 

address two distinct clinical situations by eliminating: i) the tumor in patients who are 

inoperable surgically, ii) the residual cells that are inaccessible after resection surgery. The a-

emitting radionuclide 211At presents interesting prospects due to its physicochemical properties 

to develop a targeted therapy. SDC1, described as a poor prognosis factor in many cancers, is 

emerging as a key biomarker in the development of GB. Targeting SDC1 with the 9E7.4 rat 

mAb thus seems relevant for the delivery of TAT (211At-9E7.4) via intracranial administration. 

 

The objectives of this thesis are as follows: 

 

• Evaluate the global and cerebral distribution of 211At-9E7.4 TAT to determine its in vivo 

stability and estimate potential toxicity risks. 

• Assess the efficacy and toxicity of TAT in an orthotopic and syngeneic mouse model. 

• Determine both short and long-term effects on microenvironment at the immune level 

 

The core of thesis is divided into the two next chapters. Chapter III provides a 

comprehensive review of the advancements made by TAT in treating GB. It focuses on how 

TAT has been employed, considering the specific characteristics of GB. The primary aim of 

this chapter is to identify challenges, benefits, and potential areas of improvement. Chapter IV 

introduces our development and application of the 211At-9E7.4 TAT. This study explores the 

efficacy of this therapy in a syngeneic, orthotopic murine model of GB. The results we delivered 

could offer valuable insights into how this particular form of TAT might be used in treating GB 

in the future.  
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Abstract 
 

Despite two decades of intensive research, conventional therapeutic protocols failed to provide 

a definitive solution to treat glioblastoma (GB). Therefore, it remains the most aggressive 

malignancy of the central nervous system, and emerging strategies have yet to produce 

consistent satisfactory outcomes. Because of its specific localization and intricate 

characteristics, GB is as a uniquely regulated solid tumor with a strong resistance to therapy. 

Recent advances in targeted radionuclide therapy (TRT), particularly with the introduction of 

a-emitting radionuclides, have unveiled potential avenues for GB management. Recent 

preclinical and clinical studies underscored promising advancements for targeted-a-therapy 

(TAT), but these therapeutic approaches exhibit a vast design heterogeneity, encompassing 

diverse radionuclides, vectors, target molecules, and administration modalities. This Review 

seeks to critically assess the therapeutic landscape of GB through the perspective of TAT. In 

doing so, we hope to identify existing challenges and draw insights that might pave the way 

towards a more effective therapeutic approach. 

 

  

Key points 
 

• Glioblastoma is a whole brain disease with distinct features when compared to other 

solid tumors 

• Emerging targets, vectors and a radionuclides hold promise towards therapeutic success 

in GB 

• Preclinical models should prioritize standardization through fidelity to human GB and 

standard-of-care protocol 

• TAT is compatible with targeted therapeutic combinations  
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Introduction 
 

Glioblastoma (GB) remains the most aggressive form of brain tumors. Since 2005, the 

therapeutic landscape has been largely shaped by the Stupp regimen, which consists, when 

feasible, in a surgical resection, followed by a combination of radiotherapy and temozolomide 

chemotherapy. However, this approach is limited by a 15-month median survival of patients1. 

Despite two decades of therapeutic exploration, advancements which mainly rely on the 

standard protocol and remain insufficient. During this time, bevacizumab, an anti-angiogenic 

monoclonal antibody approved by the Food and Drug Administration (FDA), has improved 

patients' quality of life but fails to prolong survival2. Meanwhile, Tumor Treating Fields (TTFs), 

using low-intensity, intermediate-frequency electric fields aimed at the tumor, have marked a 

noteworthy addition to GB treatment but still lack curative potential3,4. Lastly, the advent of 

immunotherapy, despite showing preclinical promise, has not produced substantial phase III 

clinical trial success5,6. 

The resistance of GB to treatments results from its multifaceted heterogeneity7–9. This 

diverse landscape is driven by factors such as genomic instability10, the presence of hypoxic 

niches11, and the pivotal role of glioblastoma stem-like cells (GSLCs)12, which establish a pro-

tumoral microenvironment strengthening immunosuppression13 and tumor infiltration14. In 

addition, the blood-brain barrier (BBB) exacerbates treatment challenges, preventing nearly all 

small-molecule drugs from brain entry15. 

Targeted radionuclide therapy (TRT) offers potential breakthroughs. This modality, 

compatible with systemic and locoregional administrations, permits various vectorization 

methods, promoting high-energy radionuclide combinations that may annihilate tumors. This 

strategy is based on exposure of cells to radiation, which results in both direct and indirect 

cellular impacts. The direct effects arise from energy transfer, leading to phenomena such as 

DNA damage and cross-fire effects. On the other hand, indirect effects stem from the generation 

of reactive oxygen species (ROS) via H2O radiolysis and radiation-induced bystander effects. 

These bystander effects involve signal propagation from radiated to neighboring cells, 

triggering apoptosis in cells not immediately exposed to ionizing radiation. This phenomenon 

could potentially elicit immune response, known as “abscopal effect”. 

Initial investigations prioritized β- radioisotopes, like iodine-131 (131I), yttrium-90 (90Y), 

or lutetium-177 (177Lu), due to their shorter tissue penetration (1-10 mm) compared to X-rays 



CHAPTER III 

 64 

used in external beam radiation16–21. These radioisotopes exhibit an average emission energy 

ranging from 0.1 to 2.3 MeV and a linear energy transfer (LET, which describes the amount of 

energy deposited per length unit) of 0.2 keV/µm. In the early 2000s, successful clinical trials 

involving β--emitters resulted in the approval and subsequent market introduction of two 

treatments for non-Hodgkin lymphoma based on an anti-CD20 monoclonal antibody (mAb) 

labeled with 90Y (90Y-ibritumomab tiuxetan, Zevalinâ)22, or with 131I (131I-tositumomab, 

Bexxarâ)23. In 2018, the FDA has approved the combination of the somatostatin analog 

DOTATE with 177Lu (177Lu-DOTATATE, Lutatheraâ) for the treatment of neuroendocrine 

tumors24. Additionally, 177Lu-labeled PSMA-617 (177Lu vipivotide tetraxetan, Pluvictoâ) has 

been greenlit in 2022 for treating adult patients with prostate-specific membrane antigen 

(PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC)25.   

However, the tissue penetration of b--emitters remains substantial and does not always 

guarantee the preservation of healthy tissue surrounding the irradiated areas26. The emergence 

of a-emitters in nuclear medicine has the potential to bring about a paradigm shift. Outclassing 

β- emitters, α emitters present shorter tissue penetration (50-100 µm), higher energy emissions 

(2-10 MeV), higher linear energy transfer (100 keV/µm)27, and a maintained efficacy in 

hypoxic conditions28. Significant clinical outcomes have already been demonstrated, leading to 

the FDA's approval in 2013 of the a radionuclide radium-223 (223Ra) dichloride (Xofigoâ) for 

the treatment of mCRPC29, which lacked effective therapeutic options at the time. In the case 

of GB, α-emitters may represent ideal candidates for eliminating both the primary tumor masses 

and residual tumor post-surgery, while preserving healthy tissues. Recent clinical studies have 

validated both the safety and efficacy of targeted-α therapies (TATs) leveraging astatine-211 

(211At), bismuth-213 (213Bi), and actinium-225 (225Ac) in GB scenarios, with supportive 

findings regarding survival of GB rodent models. 

This Review aims to trace the ascent of TAT in GB treatment. Here, we discuss previous 

preclinical and clinical studies involving TAT strategies to treat GB, from radioelement 

selection to vectorization strategies and administration considerations. Considering the 

distinctive characteristics of GB as a whole-brain tumor, this comprehensive assessment intends 

to streamline future TAT endeavors, and to unveil potential successful therapeutic 

combinations.  
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I. Glioblastoma: a confined solid tumor 
 

GB represents a distinctive solid tumor due to its location within the brain. The brain 

benefits from a unique regulation with specific biological interfaces: the BBB, the blood-

cerebrospinal fluid (CSF) barrier (BCB), and the meningeal barrier30. The BCB is located 

between the blood and the cerebral cisterns containing the CSF. It is formed by endothelial and 

epithelial cells of the choroid plexuses and subarachnoid spaces. The meningeal barrier is 

formed of four distinct layers called meninges which provide physical protection of the brain 

parenchyma as well as local immune regulation31,32. Both BCB and meninges are involved in 

the clearance of the CNS fluids. Furthermore, the brain features a specialized immune control 

system, with its own immune cells called microglia, and interaction with peripheral immune 

cells33. The presence of neural stem cell (NSC) niches in areas such as the subventricular zone34 

and the dentate gyrus of the hippocampus35 contribute to further increase this complexity. These 

niches contribute to the intricacy of the regulatory mechanisms of the brain. In the case of GB, 

various niches within the tumor microenvironment (TME) play a role in regulating tumor 

development and providing protection against the immune system. Recent investigations have 

revealed that GB is synaptically incorporated into neural circuits, subsequently affecting 

neuronal operations and compromising cognitive functions. These perturbations reciprocally 

facilitate tumoral proliferation36–38. The interplay of all these factors collectively contributes to 

the inaccessibility of the tumor and its resistance to conventional therapies. 

 

1. The blood-brain barrier (BBB) 
 

The BBB is a highly regulated and selective interface that separates the central nervous 

system from the systemic circulation. This critical barrier plays a pivotal role in governing 

various physiological functions, such as regulation of cerebral hemodynamics, maintenance of 

ionic homeostasis, provision of cerebral nutrition, and control of neurotransmitter 

concentrations. Simultaneously, it acts as a guardian by restricting the passage of plasma-

derived molecules and by shielding the brain from potential neurotoxic agents39.  

 

Structure and functions. The BBB primarily consists of specialized endothelial cells in 

cerebral blood vessels. These cells exhibit distinct properties and functions compared to their 

counterparts in peripheral tissues. Notable features include the presence of inter-endothelial 

adherens and tight junctions40 as well as an enriched population of mitochondria41. Tight 
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junctions effectively reduce paracellular transport across the endothelium and create a clear 

separation between the luminal and basolateral compartments. As a result, only small molecules 

like oxygen (O2), carbon dioxide (CO2), and small lipophilic compounds, weighing less than 

400 Da, can freely pass through, while others require receptor-mediated transport or endocytic 

mechanisms. Adherens junctions also play a crucial role in maintaining BBB integrity by 

regulating paracellular diffusion between endothelial cells. These molecular complexes 

establish intercellular adhesion by linking with the actin cytoskeleton through catenin proteins.  

Pericytes are the second cellular component involved in BBB function. They envelop 

nearly 100% of the cerebral endothelium. Pericytes are situated along the walls of blood 

capillaries and are embedded in the basement membrane, allowing for close communication 

with endothelial cells. They control various functions, including cerebral blood flow and 

regulation of neuroinflammation42. Additionally, they have a direct influence on the regulation 

of tight junctions among endothelial cells43. Lastly, astrocytes, the most abundant glial cell 

population, cover the basal membrane of the BBB with their end-feet, bridging connections 

between neurons and the vascular system44. While some of their specific functions within the 

BBB remain the subject of debate, it is well-established that their presence is crucial for 

orchestrating key checkpoints in brain metabolism45.  

Collectively, this assembly is referred to as the neurovascular unit (NVU) when 

associated with neurons. It is worth noting that the BBB is absent in certain regions of the brain, 

such as the circumventricular organs and the choroid plexus. Furthermore, the protection 

provided to cerebral vasculature is heterogeneous, depending on the type of blood vessel and is 

regulated by various forms of neurovascular complexes46. 

 

Disruption of the BBB in GB. While it was once widely accepted that the BBB was 

uniformly breached in GB-bearing patients, recent clinical data have questioned this 

assumption47,48. In the context of GB, the disruption of the BBB occurs due to hypoxia-driven 

expression of vascular endothelial growth factor (VEGF), which leads to disorganized 

angiogenesis and the formation of immature and more permeable blood vessels within the 

tumor mass49,50. Clinical detection of brain tumors typically involves magnetic resonance 

imaging (MRI) via T1-weighted contrast-enhanced sequences and T2-weighted Fluid 

Attenuated Inversion Recovery (FLAIR) volumes51. T1-weighted imaging can grossly detect 

BBB disruption but does not provide insights into the variability of this rupture, which can 

differ among patients and even within the same tumor. 
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To address this issue, dynamic contrast-enhanced MRI (DCE-MRI) is used to 

quantitatively measure the transport of contrast agents across different contrast-enhancing 

regions. This technique employs pharmacokinetic modeling and dynamic imaging acquisition 

to estimate vascular permeability52,53. Other studies using alternative MRI techniques and 

positron-emission tomography (PET) have also revealed tumor regions extending beyond the 

contrast-enhanced areas seen in MRI scans. These findings, combined with the analysis of 

surgically removed tissue, support the concept of an intact BBB in these regions. Consequently, 

areas of BBB disruption give rise to a distinct pathology-specific interface known as the blood-

tumor barrier (BTB) or blood-brain tumor barrier (BBTB). The BTB is characterized by an 

abnormal distribution of pericytes and a loss of connection to astrocytic end-feet and neurons, 

which are displaced by GB cells during tumor growth. A decrease in the expression of 

junctional proteins is also observed. Despite being termed "hyper-permeable", this interface 

remains heterogeneous and retains some characteristics of the BBB54. In this context, the 

challenge of drug administration through the bloodstream and thus the passage through both 

the BBB and BTB are crucial considerations for achieving uniform and effective treatment of 

GB with TAT. 

  

Strategies to cross the BBB. To overcome the challenges posed by the heterogeneity of 

BBB and BTB disruptions in GB, various invasive and non-invasive strategies have been 

developed to facilitate drug delivery to the tumor site (Fig. 1). This section aims to highlight 

some of these approaches, while a comprehensive review has been published by Wu et al.15.  

Transcytosis represents an initial non-invasive approach to cross the BBB. It can occur 

through paracellular mechanisms, involving the modulation of tight junction protein expression 

to facilitate the passage of molecules between endothelial cells. For example, minoxidil sulfate 

is an activator of the adenosine 50-triphosphate-sensitive potassium channel (KATP channel) 

able to increase the BBB permeability by attenuating the tight junction proteins55. Alternatively, 

transcellular transcytosis allows for the transport of molecules through various mechanisms, 

including passive diffusion of small hydrophobic molecules, carrier-mediated transcytosis 

(CTM) for small molecules mimicking endogenous substrates, receptor-mediated transport 

(RTM) for macromolecules, and adsorptive-mediated transcytosis (AMT) for cationic 

macromolecules or mAb56. For example, in a recent study, Tylawsky et al. performed an intact-
BBB crossing with a caveolin-1-mediated transcytosis of fucoidan nanoparticles targeting P-selectin. 

The use of this vector led to an extended survival with reduced bone and healthy tissue toxicity 
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in a murine medulloblastoma model57. In TATs designed for GB, CTM is commonly used for 

the delivery of radiopharmaceuticals, using peptides like substance P or phenylalanine (Phe) 

to facilitate BBB penetration58,59, as well as mAb targeting tenascin60,61. 

  Thus, modifying the pharmacokinetics of radiopharmaceuticals can also facilitate the 

transportation of drugs that are typically impermeable to the BBB. Consequently, conjugates 

combining drugs with carriers or ligands have been investigated. The engineering of vectors 

such as liposomes62–65, lipidic nanocapsules66–68 or polymers69,70 has indeed demonstrated an 

effective penetration of the BBB. Gold nanoparticles show promising results as well to target 

the GB71,72.  

Fig. 1 | Strategies to cross the BBB and BTB for systemic treatments of GB. The BBB has a finely regulated structure, 
maintained by endothelial cells of blood vessels, bound by tight junctions, the presence of pericytes, and astrocytic endfeet, 
ensuring a restrictive passage of blood elements to the brain. In the context of GB, the integrity of the BBB is heterogeneously 
compromised. Tumor growth weakens the BBB, creating a unique interface known as the brain-tumor barrier, devoid of 
astrocytic endfeet. Other tumor areas can disrupt the BBB due to rapid growth of tumor cells. In both scenarios, excessive 
angiogenesis in response to tumor hypoxia contributes to the development of a non-functional configuration of the BBB. 
However, given the heterogeneity of the disruption, bypassing or breaching the BBB remains a preferred strategy to ensure 
uniform administration of blood-borne therapies. Various vector types have been developed based on the therapy type to 
be administered (chemotherapy, mAbs, immunotherapy, oligonucleotides, radionuclides) to ensure their passage. Physical 
disruption, whether permanent or transient, of the BBB is also a means to ensure the effective distribution of the desired 
therapy. (Created with Biorender - biorender.com) 
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Intranasal (i.n.) administration is also a potential route that has yet to be explored in the 

context of radiopharmaceuticals. The nasal route has several advantages for drug delivery: it is 

easy to access, well irrigated with blood vessels, and can require lower medication doses 

because it avoids extensive first-pass metabolism73. However, nasal irritation, mucociliary 

clearance, and metabolic regulation inside the nose must be considered. For instance, Sukumar 

et al. developed nanoparticles loaded with microRNA (miRNA) therapy to improve 

temozolomide therapy for GB. These nanoparticles carrying miRNA accumulated in the 

targeted brain area, and resulted in a significant 42% reduction in tumor size. They exclusively 

accumulated in the brain region, leading to a significant increase in mice survival70. Other 

examples have demonstrated their potential for the administration of chemotherapy74,75 or 

bevacizumab76 via the i.n. route.  

Coating drug carriers with a biological membrane also presents unexplored promising 

prospects for TRT in GB. Thus, therapeutic carriers like nanoparticles can be coated with 

membranes from red blood cells, white blood cells, platelets, tumor cells, stem cells, or 

bacteria77. Due to their inherent biocompatibility, this coating extends in vivo residence time 

by being recognized as self by the immune system. For example, the membranes of brain tumor 

cells, with their ability to cross the BBB, serve as an attractive vector to facilitate the homing 

of nanoparticles within the tumor78. Another example involves a hybrid membrane derived 

from cancer cells and mitochondria, as tested by Zou et al., for coating Gboxin-loaded 

nanoparticles. This led to increased tumor accumulation and significantly improved survival in 

a murine model of GB79. 

External stimulation strategies also provide a potential avenue to breach the BBB. These 

strategies expand the range of possibilities for targeting radiopharmaceuticals, as the ability to 

cross the barrier is no longer a prerequisite for the vector. Light has been shown to be capable 

of reversibly disrupting the BBB, notably through the use of laser beams. Among light-based 

methods, near-infrared (NIR) light can penetrate deep into tissues to modulate BBB 

permeability in a transient way80. Recently, Cai et al. treated GB-bearing mice using a pulsed 

laser stimulation of gold nanoparticles targeting tight junctions on the blood vessels to induce 

a transient disruption of the BBB. This disruption subsequently increased the efficacy of 

paclitaxel chemotherapy. This protocol led to a reduction in tumor growth, with a significant 

increase in median survival, up to 50% in a mouse model of GB81. 
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Focused ultrasound (FUS) methods have also attracted significant attention for BBB 

modulation, with recent clinical trials demonstrating the safety of this approach. In a recent 

phase I clinical trial, Sonabend et al. assessed an implantable device emitting low-intensity 

ultrasound for the delivery of albumin-bound chemotherapy agent (paclitaxel) in GB patients. 

Their method involved the administration of low-intensity pulsed ultrasound with simultaneous 

intravenous (i.v.) microbubble injection82. While the feasibility of this approach has been 

demonstrated, it should be noted that, in this context, the timeline for the restoration of the BBB 

depends on the technology employed and the molecular characteristics of the administered 

drug. Future pharmacokinetic data regarding drug accumulation and clearance will need to be 

addressed in subsequent research. 

 

Strategies to bypass the BBB. Systemic approaches hold great promise but face 

persistent challenges: the heterogeneity of BBB and BTB disruptions, the high infiltrative 

behavior of tumor cells and the hard-to-reach hypoxic tumor foci. In this regard, we also must 

keep in mind that while there is a BBB from the periphery to the brain tissue, the BCB and the 

meningo-encephalic barrier that also play roles in the clearance of active molecules and further 

add to the complexity of drug administration. For instance, in multiple sclerosis, the 

immunoglobulins present in the CSF are distinct from those present in the blood, thus 

demonstrating their locoregional production, and not the result of the blood ultrafiltration83.  

In the case of a systemic injection, TRT itself has a variable range of action to reach 

tumoral margins and disseminated cells, depending on the radionuclide used, but a greater tissue 

penetration increases the risk of causing damage to healthy tissues. Intratumoral (i.t.) or 

intracavitary locoregional approaches can bypass these constraints by directly targeting the 

tumor mass (Fig. 2)84. Thus, they appear to be more compatible with a radionuclides with short 

half-lives (e.g., 211At: 7.2 h), as their first decays could occur directly in the tumor site. To 

achieve this objective, convection-enhanced delivery (CED) represents a promising option. It 

involves the stereotactic placement of catheters intratumorally or into the post-surgical cavity. 

These catheters are connected to pumps that ensure a continuous, positive-pressure micro-

infusion of the desired agents through the target tissues via principles of bulk flow, typically 

ranging from 0.1 to 10 μl/min, rather than a bolus injection85,86. Thus, by applying a pressure 

gradient in place of a concentration gradient, considerations about the molecular weight and 

diffusivity of the therapeutic agent are bypassed. This facilitates the homogeneous 

administration of low concentrations of drug to treat a specific brain region, while optimizing 
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its i.t. volume distribution. CED achieves a range of action on the order of centimeters in brain 

tissue, whereas diffusion-based methods are restricted to a few millimeters87. 

The administration of chemotherapy via CED is still under investigation, despite 

implementation challenges88. Similarly, the study of conjugated toxins or drugs encapsulated 

in liposomes is also explored. Phase I clinical trials have been completed to test liposomes 

loaded with irinotecan (NCT03086616) or Panobinostat nanoparticles (NCT03566199). The 

use of CED for radiopharmaceutical administration has shown promise in preclinical studies in 

GB-bearing rodents, including the use of lipid nanocapsules loaded with rhenium-188 (188Re), 

a b--emitter, which notably resulted in high cure rates after treatment67,68,89. This approach 

effectively treats large brain volumes, encompassing both radiographically defined tumor 

regions and the surrounding infiltrated brain tissues, while minimizing systemic toxicity, 

enabling safe and effective drug delivery. 

Other localized treatment modalities are also available, such as implantable reservoirs 

(e.g., Ommaya or Rickham reservoirs), which are conventionally used in GB therapy90. 

Radionuclides with short half-lives could be suitable for use of reservoirs to administer single 

or fractionated doses of TAT to the resected cavity. In 2008, Zalutsky et al. showcased the 

viability of this method for TAT by administering 211At conjugated with an anti-tenascin 

antibody in patients with GB91.  

Implants within resection cavities have also been explored. While chemotherapy wafers 

of carmustin (Gliadelâ) have indicated slight improvements in patient survival, they soon 

revealed limitations92. Beyond these limited additional benefits, retrospective studies have 

highlighted an elevated risk of adverse effects93,94. The issue with carmustine wafers arises the 

lack of information interactions they create between the healthy brain tissue cells and the tumor 

cells in the cavity walls. The recent proposition to use locoregional tumor traps represents a 

significant advancement. Here, the concept is to offer implants that are integrated with the tissue 

being treated. This strategy aims to lure disseminated cells to a well-defined region, which can 

serve multiple purposes: it can possess antitumor properties through the release of active 

substances, act as a convergence point for cancer cells and local immune cells via 

chemoattraction, or allow local colonization to designate an easily accessible area for targeted 

antitumor drug administration or TRT95,96. Thus, biocompatible scaffolds using collagen-based 

hydrogels97 and bacterial cellulose98 to attract tumor cells validated their capability to trap 

tumor cells. Their combination with TAT could potentially minimize the risk of recurrence. 
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2. Hypoxic niches 
 

O2 is a fundamental component of cellular metabolism. A deficiency in O2 initiates a 

condition known as hypoxia, which is prevalent in many cancers and contributes to tumor 

progression99. While often essential for proper organ function, physiological hypoxia can vary 

across different niches due to organ anatomy or rapid cellular expansion. For example, the bone 

marrow, a notably hypoxic organ, requires this condition to maintain hematopoietic stem cell 

homeostasis100. Similarly, germinal centers, reproductive organs, and the intestinal mucosa also 

exhibit physiological hypoxia, which can impact immune function, cell differentiation, and 

barrier function101–103. The brain accounts for 20% of the body's O2 consumption104. 

Oxygenation levels in the brain vary across regions, ranging from 0.5 % to 8 %. For reference, 

brain tumors typically exhibit an average oxygenation rate of 1.25 %, but comprise areas with 

highly heterogeneous oxygen supply105.  

Fig. 2 | Locoregional strategies for the treatment of GB. The current management of GB in patients includes surgical 
resection followed by the Stupp regimen. However, depending on the location of the tumor, surgery is not always feasible. 
Resection does not eliminate all residual cells, even when removing with a significant margin. The search for suitable therapies 
to prevent recurrence thus addresses two distinct clinical scenarios. Inoperable tumors can be locally targeted through 
convection-enhanced delivery (CED) using an intratumoral catheter. The establishment of Ommaya or Rickham reservoirs is 
another method for catheter-based treatment administration and allow a repetitive access to the intrathecal space. The 
placement of the catheter is crucial for effective therapy delivery. Within the resection cavity, the same approaches can be 
applied. Additionally, a method that uses the cavity, such as a biocompatible implant or hydrogel, might be considered. These 
could be loaded with chemokines to attract residual tumor cells or infused with a therapeutic agent. (Created with Biorender 
- biorender.com) 
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Hypoxia in GB. In GB, hypoxia arises due to VEGF overexpression, which causes 

irregular vasculature, subsequently hindering the delivery of O2, therapeutic agents, and 

immune cells. Moreover, the expansion of GB rapidly outstrips the existing blood supply. 

Regions of hypoxia are characterized by the presence of dense cellular zones around the 

necrotic foci of GB, called pseudopalisades. Studies indicate that these pseudopalisades 

represent the invasive front of tumors by gathering GB cells that migrate away from oxygen-

deprived areas. The excessive secretion of proangiogenic factors by these cells results in an 

amplified angiogenic response termed microvascular hyperplasia106.  Genetic alterations can 

also activate hypoxia-inducible factor 1a (HIF-1α) independently of hypoxia. This is evident 

in the case of epidermal growth factor receptor (EGFR), where the mutant EGFRvIII is 

constitutively activated and upregulates HIF-1α via the PI3K-AKT-mTOR pathway107. 

Similarly, inactivation or loss of p53 expression downregulates mdm2 expression, thereby 

stabilizing HIF-1α108. At the cellular level, the hypoxic environment is sensed through the HIF 

pathway, wherein HIF-1α and HIF-2α transcription factors play pivotal roles. Consequently, 

transcription driven by HIF modulates a multitude of genes which enhance processes such as 

angiogenesis, erythropoiesis, cell movement, survival, proliferation, epithelial-mesenchymal 

transition (EMT), inflammatory cell recruitment, invasion, metastasis, and metabolic 

adaptation109–111. 

 

Hypoxia and radioresistance in GB. Hypoxia is known to induce radioresistance, 

notably in GB. The extent of DNA damage caused by external beam radiation with X-rays 

directly correlates with the O2 levels in the irradiated tissues. Under hypoxic conditions, the 

severity of DNA damage is attenuated due to reduced levels of ROS generated by ionizing 

radiation. This leads to indirect DNA strand breaks with an absence of oxygen-mediated 

fixation of DNA damage99. In addition, radiation itself can induce hypoxic pathways, leading 

to the overexpression of HIF-1α112. This overexpression fosters radioresistance through a range 

of mechanisms including modulation of ATP metabolism, p53 activation113,114, mitigation of 

radiation-induced DNA damage 115, activation of angiogenesis, repair of double-strand DNA 

breaks, cell cycle arrest, suppression of apoptosis, and initiation of autophagy. Within the 

context of GB, it has been recently shown that hypoxia stimulates autophagy through the 

mediation of the Beclin-1 protein. In their study, Wei et al. demonstrated that the depletion of 

Beclin-1 markedly downregulated autophagy, enhanced the function of DNA-Dependent 

Protein Kinase (DNA-PK), and heightened radiosensitivity in C6 rat glioma cells116.  
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Targeting hypoxic niches to overcome treatment resistance. Hypoxia plays a pivotal 

role in many features of GB and its microenvironment. Given that it is exacerbated in response 

to radiotherapy, concurrent detection and targeting of hypoxia alongside novel therapeutic 

approaches appear crucial. Detection can be achieved using PET/SPECT as detailed in Bolcaen 

et al.’s comprehensive review56. Specifically, the association of Diacetyl-bis(N4-

methylthiosemicarbazone) (ATSM) with either copper-62 (62Cu) or 64Cu for PET imaging can 

help pinpoint hypoxic regions in GB patients117–119. In the case of radiotherapy, tumor 

radiosensitization remains a significant research focus. For instance, the temporary exposure of 

hypoxic GB tumor cells to normoxic conditions has been shown to make these cells susceptible 

to radiation for a specified duration120. Furthermore, since hypoxic regions have diminished 

blood supply, they undermine the efficacy of systemic approaches to ensure uniform 

distribution of TRT. However, a locoregional approach could be a viable strategy to target these 

remote and resistant tumor zones. Moreover, the use of a particles might offer a solution as 

Wulbrand et al. have shown that TAT maintain its efficacy in hypoxic regions, a feature that b-

-emitters could not achieve28. 

 

3. Glioblastoma stem-like cells (GSLCs) 
 

Neural stem-cells (NSCs). During the development of the CNS, NSCs are localized 

within the cerebral ventricles. In adulthood, only two NSC niches remain in the brain, located 

in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the 

hippocampus121,122. NSCs give rise to glial cells populating the brain, including astrocytes, 

oligodendrocytes, and neurons123,124. At the end of development, progenitor cells undergo 

terminal differentiation. The only exception is the oligodendrocyte precursor cells (OPCs), 

which retain the ability to proliferate in the adult brain125. Similarly, astrocytes maintain a 

proliferative capacity in response to brain injury126. Since GB originates from astrocytes, these 

cells must undergo dedifferentiation and acquire tumorigenic characteristics. NSCs are the 

primary suspects in inducing these phenomena in these cells, leading to the generation of GB. 

 

Glioma stem-like cells. GSLCs, more commonly and somewhat inaccurately referred to 

as glioma stem cells, were first pinpointed by Singh et al. as a cell population with the ability 

to initiate in vivo tumor growth127. These cells exhibit self-renewal capabilities, differentiation 

potential, and a heightened resistance to therapies, enabling them to drive tumor development 

through invasion and angiogenesis. They are characterized by a plethora of markers, with the 
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primary ones being CD133, CD15, A2B5, L1CAM, integrin a6, CD44, ALDH, and ABCG2128. 

While this list of markers facilitates studies on stem-like phenotypes, it quickly reaches a 

threshold in accurately representing the true nature of GSLCs. In reality, GSLCs form a much 

broader and intricate mosaic, influenced by interactions within their microenvironment that 

impact their phenotype129. Recent findings have indicated that stem-like subclones derived from 

single cells clinical samples exhibited distinct profiles in therapy resistance, underscoring that 

different GSLC populations contribute to the progression of GBM130. 

 

Targeting NSCs in GB. Recent data accumulation has highlighted the involvement of 

NSCs in GB development, especially in their interaction with GSLCs. Consequently, GBs that 

develop near the SVZ have demonstrated increased resistance to chemotherapy and 

radiotherapy, leading to a reduced overall survival in patients131,132. In addition to functional 

overlap, the shared molecular programming between NSCs and GSLCs is underscored by the 

similar expression patterns of genes such as CD133, Sox10, Nestin, Musashi, Glial fibrillary 

acidic protein (GFAP), and Olig1/2133. This highlights the potential significance of the SVZ, as 

a reservoir of NSCs, in GB recurrence and treatment resistance. Consequently, the potential of 

targeting the SVZ for GBM treatment has attracted research interest. Several studies have 

demonstrated that external beam radiation of ipsilateral SVZ and even contralateral SVZ could 

significantly improve progression-free survival and overall survival of patients134,135. 

Therefore, targeting the NSCs in the SVZ as part of locoregional TAT therapeutic strategies 

could be advantageous to inhibit gliomagenesis. 

 

4. Cancer-associated fibroblasts (CAFs) 
 

CAFs also form a component of the TME in cancer. However, they were long 

considered absent in the GB TME, given the lack of fibroblasts in the brain136. A recent study 

led by Jain et al. revealed the presence of these CAFs in GB using single-cell RNA sequencing 

(scRNA-seq) and spatial transcriptomics techniques. It was demonstrated that CAFs in GB 

originate from various sources, such as fibroblasts137, endothelial cells138, and pericytes139. The 

study indicated that CAFs are chemoattracted by GSLCs via platelet-derived growth factor 

(PDGF) and transforming growth factor b (TGF-b). In return, they can facilitate GSLC 

enrichment modulated by osteopontin (OPN) and hepatocyte growth factor (HGF). In vivo, this 

results in enhanced tumor growth. CAFs have the capacity to polarize TAMs toward an M2 
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phenotype through the production of an extra-domain-A splice variant of fibronectin that binds 

toll-like receptor 4 (TLR4) on TAMs140. 

 CAFs are known for their overexpression of fibroblast activation protein (FAP), a 

protease that is absent in fibroblasts under physiological conditions. In GB, before the discovery 

of CAFs in the TME, this marker was detected within GB cells and on non-malignant stromal 

cells. It is associated with a mesenchymal GB phenotype, a phenotype linked with enhanced 

migratory capacity, invasion, and resistance to apoptosis. In vivo, FAP is expressed in GB 

subgroups that do not express the astrocytic marker GFAP141.  

 

5. The immune landscape of GB 
 

While it shares similarities with other solid tumors in terms of resident immune cell 

presence, GB distinctively activates immunosuppressive factors over stimulatory ones. This 

bias not only helps the tumor in evading immune detection but also poses challenges for 

therapeutic interventions. 

 

Immunosuppression in GB. Tumor-associated macrophages (TAMs) are key 

components within the GB microenvironment, constituting up to 50% of the total tumor 

mass142. They encompass both the resident tissue macrophages of the brain, called microglia, 

and the peripheral infiltrating macrophages. These macrophages play a significant role in both 

immunosuppression and tumor progression143. Historically, TAMs have been categorized into 

two primary phenotypes: M1 and M2144. The M1 TAMs, activated by pro-inflammatory 

cytokines, exert anti-tumor effects by secreting inflammatory factors such as ROS, TNF-α, IL-

1β, IL-6, IL-12, and IL-23, leading to the elimination of tumor cells. In contrast, M2 TAMs are 

less cytotoxic to the tumor and release anti-inflammatory cytokines like IL-4, IL-10, and IL-

13145. It is worth noting that this initial classification, primarily based on in vitro observations, 

appears to be oversimplified. Recent evidence suggests that the TAM phenotype is more of a 

dynamic continuum within the tumor microenvironment, with macrophages displaying 

characteristics of both M1 and M2 markers being identified146. 
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Fig. 3 | Main characteristics of the TME to consider for the design of future TAT in GB. GB is characterized by a 
strong immunosuppression, primarily through the increased expression of PD-L1 on tumor cells, allowing them to evade T 
cells detection, the modulation of microglia towards a pro-inflammatory and cytotoxic phenotype (M2), and the inactivation 
of natural killer cells (NK cells). Hypoxia resulting from rapid tumor growth activates signaling pathways, notably the HIF-1α 
pathway, which triggers excessive angiogenesis through the expression of VEGF. As previously mentioned, these newly 
formed vessels exhibit a disorganized BBB, and their immaturity restricts the supply of oxygen and nutrients to tumor cells. 
The heterogeneous populations of neural stem cells (NSCs), especially those residing in the subventricular zone (SVZ), 
interact with GB stem cells (GSLCs), which are also marked by significant heterogeneity. This interaction enhances the 
aggressiveness of GB and contributes to its chemoresistance and radioresistance. More recently, the presence of cancer-
associated fibroblasts has been identified within GB. These are induced by platelet-derived growth factor (PDGF) and 
transforming growth factor β (TGF-β) signaling. They are involved in an interplay with GSLCs, facilitating their enrichment 
through the secretion of osteopontin (OPN) and hepatocyte growth factor (HGF). (Created with Biorender - biorender.com) 
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During tumor development, tumor-infiltrating T lymphocytes (TILs) are also present 

within the GB TME. GB tumors have a reduced expression of MHC on their cells, thereby 

hindering antigen presentation and recognition by dendritic cells, effectively evading T cell 

intervention147. Additionally, tumor cells overexpress programmed death-ligand 1 (PD-L1), 

which binds to the PD-1 receptor on T cells, resulting in the inhibition of their proliferation, 

cytokine production, and cytolytic function148. Regulatory T cells (Tregs) also contribute to this 

immunosuppressive microenvironment. These cells are a subset of T helper cells that express 

FOXP3, essential for their immunosuppressive activity. They promote immune system 

tolerance towards GB cells through the secretion of TGF-b and IL-10149. They also modulate 

immunosuppression via another immune checkpoint called cytotoxic T-Lymphocyte Antigen-

4 (CTLA-4). CTLA-4 is a negative regulator of T cell costimulation. It is expressed on the 

surface of Tregs to compete with CD28 to bind CD80 and CD86 at the surface of antigen-

presenting cells (APCs), and therefore inhibits T-cell expansion and activation in lymph 

nodes150. 

Natural killer (NK) cells are components of the innate immune system. They represent 

one of the least abundant immune cells within the GB TME. NK cells are equipped with 

granules rich in perforin and granzyme. When these granules are released in proximity to a 

target cell, perforin creates pores in the cell membrane, facilitating the entry of granzyme, which 

subsequently induces apoptosis. The activation of these cells is contingent upon the local 

secretion of interferons or cytokines151. NK cells are responsive to various receptors that either 

activate or inhibit their function. They have the capability to target cancer cells regardless of 

the reduced expression of MHC on these cells. However, studies have shown that NK cells 

identified within lesions exhibit increased expression of CXCR3, essential for their infiltration, 

and a decreased expression of interferon gamma, rendering them non-cytolytic152. 

 

Immunogenicity of a-emitting radionuclides. Numerous preclinical investigations have 

highlighted the potential of α emitters to elicit an immune response, and despite the limited 

extensive research on α-emitter TRT, emerging evidences indicate that α-radiation can induce 

immunogenic cell death. In vitro studies revealed that 223Ra dichloride (Xofigoâ) enhances T 

cell-mediated tumor cell lysis, elevates protein expression of MHC-I and calreticulin in human 

prostate, breast, and lung carcinoma cells153. in cell line and patient-derived xenograft models 

of breast, colorectal, lung, ovarian, and pancreatic cancer, thorium-227 (227Th) conjugates 

aimed at mesothelin measured an increase in damage-associated molecular patterns 
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(DAMPs)154. In vivo, the same radioconjugate demonstrated a DAMP release as well as DCs 

activation and CD8+ T cells infiltration in a colorectal cancer model155. The same results were 

obtained in an adenocarcinoma mouse model with bismuth-213 (213Bi) bound to albumin. In 

this model, administration of cancer cells irradiated with 213Bi-albumin conferred protection 

against tumor proliferation in immunocompetent mice for two months156. In a murine model of 

multiple myeloma treated with 213Bi in conjunction with anti-SDC1 mAb, an upregulation was 

detected in the production of IL-2, CCL-5, and IFNγ157. Protective outcomes were also 

documented with lead-212 (212Pb) directed at the melanocortin 1 receptor in a melanoma model 

with an augmentation of the presence of tumor-infiltrating lymphocytes158. 

Clinical data have underscored the ability of a-emitters to modulate immune responses. 

In patients with prostate cancer, treatment with 223Ra led to changes in circulating immune cells 

and the modulation of immune checkpoint expression. Specifically, 223Ra treatment resulted in 

a reduction of PD-1 expressing CD8+ T cells159. An abscopal effect, characterized by the 

elimination of distant and untreated lesions, was also observed in a patient with cutaneous 

squamous cell carcinoma following treatment with 224Ra160.  

 

II. Primary a-emitters for targeted-a-therapy of glioblastoma  
 

Considering the inherent physical, cellular, molecular, and microenvironmental 

constraints of GB, the challenge for a emitters to outperform b- emitters, and thus achieve a 

curative effect with a lower toxicity, is substantial (Fig. 4). In this section, the a-emitting 

radionuclides employed in preclinical in vivo studies and clinical trials for the treatment of GB 

are introduced. Their availability, production and chemistry have been recently addressed in 

detail161,162 and will be briefly discussed here.  

 

1. Astatine-211 
 

211At is characterized by a branching decay, with each pathway involving in the release 

of an a particle, making it as a 100% a-emitter. In this decay scheme, 211At directly contributes 

to 42% of a emission with an energy of 5.9 MeV, and subsequently decays to bismuth-207 

(207Bi). The remaining a particles (7.5 MeV) are emitted by its second daughter radionuclide, 

polonium-211 (211Po). The entire decay sequence of 211At ultimately concludes in the formation 

of the stable isotope lead-207 (207Pb) (Fig. 5a). This single a emission reduces potential 
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complications associated with uncontrolled dissemination, given the fact that daughter nuclides 

typically dissociate from the intended vector during decay. Moreover, the daughter nuclides 

stemming from 211At decay exhibit a markedly reduced radiotoxic profile. Thus, 211Po possesses 

an exceedingly transient half-life of 0.52 s, while the generation of 207Bi remains insubstantial. 

Furthermore, with its limited tissue penetration range of 50-90 μm and a half-life of 7.21 h, 
211At is ideally suited for patient application as residual radioactivity is less than 1% after 48 h. 

Nonetheless, the half-life duration of 211At is sufficient for radiolabeling operations involving 

multiple steps. It is also worth noting that 211At emits X-rays in the range of 72-92 keV, 

facilitating detection via Single Photon Emission Computed Tomography (SPECT) imaging 

modalities163.  

 

The standard method to produce 211At relies on the nuclear reaction 209Bi(α,2n)²¹¹At, 

which takes place when a natural bismuth target is bombarded with an a particle beam. A 

cyclotron capable of delivering over 20 MeV of incident energy is required for this reaction. 

Depending on the incident energy level, this process can also generate astatine-210 (210At). 
210At carries a significant risk of toxicity due to its decay into polonium-210 (210Po). As an a-

emitter with a half-life of 138 days, the toxicity of 210Po, even at low doses, is well-

Fig. 4 | Energy, Linear energy transfer (LET) and tissue range of b- and a-emitters. (Created with Biorender - 
biorender.com) 
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established164.  Thus, the optimal window of incident energy ranges from 28 to 29 MeV to 

minimize 210At production and achieve a satisfactory yield of 211At165. Currently, 13 cyclotrons 

across the USA, Europe, and Asia (mainly in Japan) meet the necessary criteria to perform this 

reaction. Projections indicate up to 30 operational cyclotrons in the coming years166. While the 

present supply is yet to match a steadily rising demand due to upcoming clinical needs, 

governmental initiatives have been addressing this disparity for several years. The recent 

formation of the World Astatine Community emerging from the European, American, and 

Japanese networks, aims to unify these efforts on a global scale by sharing 211At production 

technology.  

 

Preclinical studies. Discovered in 1940167, 211At experienced a resurgence in interest in 

the 1980s for the development of cancer targeted therapies, including GB. Following promising 

clinical outcomes achieved with 131I radiopharmaceuticals168–170, efforts shifted to 211At in order 

to design less toxic therapies, primarily through the radiolabeling of mAb directed against 

tenascin-C (81C6 mAb) and epidermal growth factor vIII (EGFRvIII) (L8A4 mAb). Tenascin-

C is a component of the extracellular matrix and is overexpressed in 90% of GBs, correlating 

with an unfavorable GB prognosis171,172. Concurrently, the active mutant EGFRvIII was 

identified as a key target, owing to its overexpression in GB and its involvement in processes 

such as angiogenesis, cellular migration, and proliferation173,174. A substantial challenge in this 
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endeavor was addressing the deastatination of the in vitro synthesized conjugates. However, in 

1989, Zalutsky et al. proposed a technique that not only curtailed this deastatination but also 

preserved the in vitro immunoreactivity of labeled mAb or F(ab’)2 fragments175. The 

accumulation of preclinical data has enabled the determination of the lethal dose for 10% of 

animals (LD10) to be 46 kBq/g for female mice and 102 kBq/g for males at 360 days after 

injection of 211At-labeled 81C6 mAb (211At-81C6)176–181. These studies showed that the primary 

toxicity risks are based on the potential deastatination of the mAb in vivo, with the 

[211At]astatide then possibly accumulating in the stomach, spleen, thyroid, and lungs, in that 

order182. These results subsequently paved the way for the initiation of the first clinical trial in 

2008, to assess safety and feasibility of intracranial (i.c.) injection of 211At-81C6 in GB 

patients183 (detailed in the next section). 

Since then, successful astatination of new vectors has been achieved to test several 

targets in GB, including the L-type amino acid transporter 1 receptor (LAT1R)59,184, poly(ADP-

ribose) polymerase (PARP)185, FAP186, VEGF, and certain integrins187. 211At encapsulation into 

gold nanoparticles has also been investigated. These nanoparticles provide the flexibility to be 

subsequently decorated with a targeting vector, such as a mAb or a peptide71,72. The majority 

of these investigations were conducted on mouse models bearing subcutaneous GB grafts, 

either as xenografts or allografts, with the TAT being administered via the tail vein. An 

exception is the study by Borrmann et al. published in 2013, which involved an orthotopic GB 

model treated with an i.c. injection of TAT184 (Table 1). 

Overall, the various preclinical approaches proposed over the past decade have 

demonstrated satisfactory stability of 211At conjugates both in vitro and in vivo. Thus, these 

strategies are capable of inhibiting tumor growth and significantly enhancing survival in certain 

scenarios184,186,187, all while maintaining reduced systemic toxicity. However, none of these 

methods have shown curative effects on the proposed in vivo models. Furthermore, the critical 

issue of tumor retention of radioactivity, which is paramount for ensuring therapeutic 

efficiency, was not always addressed in these studies. When considered, low percentages of the 

injected dose were observed following either i.v. or i.t. administration (with maximal retention 

ranging from ~0.4 to 4 %ID/g)184,187. As expected, i.t. administration displayed superior 

retention into the tumor mass. Ma et al. have reported the highest i.t. retention to date with the 

injection of 211At-labeled FAP inhibitor (FAPi), exceeding 130 %ID/g after 30 min. However, 

rapid elimination was evident as it fell below 20% after just 2 h186.  Despite the above discussed 

advances, no single strategy distinctly emerges. Almost all of these studies were based on 
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subcutaneous GB models, and future research should be conducted and replicated in orthotopic 

models to validate the relevance of these approaches and to investigate TAT efficacy.  

 

Clinical studies. To date, the only clinical trial for the treatment of GB with 211At was 

conducted by Zalutsky et al. and completed in 2005 (NCT00003461). This study enrolled 18 

patients with recurrent brain tumors. All participants had previously undergone resection 

surgery and external beam radiation treatment, and 44% of them had received prior 

chemotherapy. Following surgical resection, these patients were administered a single dose of 

71-347 MBq of 211At-81C6 via a Rickham reservoir connected to a catheter placed in the 

resection cavity. After TAT injection, 14 patients (78%) received chemotherapy. Initially, 96.7 

± 3.6% of 211At decays occurred within the resection cavity, with an estimated total residence 

time of 10.05 ± 0.4 h. The procedure was well-tolerated, with no observed grade 3 or higher 

neurotoxicity. Six patients experienced grade 2 neurotoxicity, which resolved within six weeks 

for five of them. The maximum tolerated dose (MTD) was not reached in this study. 

Encouraging median survival rates were reported: 13.5 months for all patients, 13 months for 

the 14 GB patients, and 29 months for astrocytoma or oligodendroglioma patients91. These 

median survival times were similar to those from a previous clinical study with 131I-81C6168, 

showing equivalent efficacy of 211At (Table 2). 

Currently, there are no ongoing clinical trial for the treatment of GB using 211At. 

However, another clinical trial has also been completed with 211At-labeled antibody for ovarian 

cancer (NCT04461457)188–190 and several trials are ongoing or planned to investigate safety, 

feasibility and dose escalation in multiple myeloma (NCT04466475, NCT04579523), acute 

leukemia (NCT03670966, NCT03128034) and thyroid cancer (NCT05275946). Thus, in the 

upcoming years, it will be essential to initiate comprehensive, randomized clinical trials with 

broader patient cohorts. 

 

2. Actinium-225 
 

The nuclear properties of 225Ac present promising potential to devise effective TAT 

strategies for GB. 225Ac emits four a particles during its decay, as well as two b- particles. The 

first three a particles exhibit radiation energies of 5.8, 6.3, and 7.1 MeV with 225Ac successively 

decaying into francium-217 (217Fr), 217At and 213Bi. At this point, a branched decay occurs. In 

the first branch, 97.1 % of 213Bi decays into 213Po by emitting a b- particle (1.4 MeV), and 213Po 
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decays into 209Pb by emitting an a particle (8.4 MeV). In the second branch (2.1%), 213Bi emits 

an a particle (5.9 MeV) to decay into thallium-209 (209Tl), which emits a b- particle (3.9 MeV) 

to decay into 209Pb. The final b- particle is emitted by 209Pb, decaying to stable 209Bi (Fig. 5b)161. 

These six emissions represent a pertinent tool to design efficient TAT. However, they also 

introduce risks and challenges, especially concerning dose control. During decay, the 

decoupling of the vector can lead to the uncontrolled dissemination of high-energy particles by 

the daughter nuclides and lead to toxicity in non-targeted tissues191. Unlabeled 225Ac would thus 

preferentially accumulate into liver and bones192. Therefore, chelating 225Ac, meaning binding 

to a vector, is crucial to mitigate this risk and ensure effective targeting. 225Ac has a half-life of 

9.9 days, which makes it compatible with macromolecular vectors, such as mAb or peptides 

with extended in vivo lifespans. This half-life also simplifies its logistical handling and clinical 

site distribution but could be too long depending on the treated pathology. 

 Similar to 211At, current 225Ac production falls short of clinical demands, and primarily 

relies on 229thorium (229Th)/225Ac generators, with 229Th originating from uranium-233 (233U) 

decay. To date, 225Ac used in all clinical studies was produced with this method. Direct 

production alternatives exist via cyclotron-mediated radium-226 (226Ra) bombarding or 232Th 

irradiation with high energy protons, but challenges arise from the availability and manipulation 

of 226Ra, and the production of long half-life radionuclides during 232Th decay requires heavy 

logistics193–195. However, global investments have been made to scale up the production of 
225Ac. Over the next decade, the worldwide supply of 225Ac is expected to significantly increase, 

aligning with the rising clinical demands. 

 

Preclinical studies. The use of 225Ac in cancer treatment has attracted significant 

attention, particularly through its straightforward complexation with 1‐,4‐,7‐,10‐tetraazcy-

clododecane‐1,4‐,7‐,10‐tetra acetic acid (DOTA), which has become the current gold standard 

for 225Ac chelators196,197, and is a key component of the FDA-approved agents [177Lu]Lu-

DOTATATE and [68Ga]Ga-DOTATOC for the treatment and diagnosis of neuroendocrine 

tumors198,199. Consequently, advancements have been made in treating acute myeloid leukemia 

(AML), prostate cancer, neuroendocrine tumors, and cancers of the bladder, ovary, breast, and 

colon200. However, strides concerning GB are more recent and in a limited number. Among the 

six related studies presented here, four of them used an orthotopic GB model to assess 

biodistribution, toxicity or therapeutic efficacy.  
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Reference Investigation Model 

Tumor model TAT agent 
Cell line Injection 

site 
Initial cell nb 

or treated 
vol. 

Activity 
per animal 

(MBq) 
Vector Target 

Vector 
quantity 

per animal 
(mg) 

Injection 
route, 

injected 
vol. per 

animal (µL) 
Astatine-211 

Zalutsky 
et al., 1989175 

Biodistribution BALB/c D54MG s.c. 300 mm
3 0.296 RPC 5 

F(ab')2 n/a 5 i.v. 
Biodistribution BALB/c D54MG s.c. 300 mm

3 0.259 Mel-14 
F(ab')2 

Chondroitin 
sulfate 5 i.v. 

Zalutky 
et al., 1997176 Biodistribution Athymic 

mouse D54MG s.c. n/a 0.074 ch81C6 
mAb Tenascin-C 2 i.v. or i.th. 

Reist 
et al., 1999179 Biodistribution Athymic 

mouse 
U87MG 
ΔEGFR s.c. 150-250 mm

3 0.148 L8A4 mAb EGFRvIII 2.5 i.v. 
McLendon 

et al., 1999180 Toxicity B6C3F1 n/a n/a n/a m: 0.317 - 1.710 
f: 0.301 - 1.560 

ch81C6 
mAb Tenascin-C m: 8 - 43 

f: 7.5 - 39 i.v. 
Vaidyanathan 
et al., 2003181 Biodistribution BALB/c U87MG 

ΔEGFR s.c. n/a 0.037 L84A mAb EGFRvIII 0.5 - 1 i.v. 
100 

Borrmann 
et al., 2013184 

Biodistribution BDIX/Ztm 
rat BT4Ca i.c. 1.10

4 2 Phe LAT1R n/a i.v. 
300 

Survival BDIX/Ztm 
rat BT4Ca i.c. 1.10

4 1.6 - 3 
(1 - 2 cycles) Phe LAT1R n/a i.v. 

320 - 600 
Watabe 

et al., 202059 
Biodistribution ICR mouse n/a n/a n/a 0.53 ± 0.04 Phe LAT1R n/a i.v. 

Efficacy Nude mouse C6 s.c. 5.10
6 0.3 - 1 Phe LAT1R n/a i.v. 

Efficacy C57BL/6J GL261 s.c. 1.10
7 1 Phe LAT1R n/a i.v. 

Dabagian 
et al., 2021185 

Survival 
(anti-PD-L1 

combination) 
C57BL/6J GL261 s.c. 1.10

6 
200 mm

3 0.24 – 0.72 MM4 PARP1 n/a i.p. 
Kato 

et al., 202171 Efficacy Nude rat C6 s.c. 
(x 2) 0.9.10

7 1.4 ± 0.4 / tumor Gold np n/a n/a i.t. 
100 

Liu 
et al., 202172 

Biodsitribution Nude mouse n/a n/a n/a 0.185 Gold np n/a 100 i.v. 
100 

Efficacy Nude mouse U87MG s.c. 3.10
6 

100 mm
3 1.11 Gold np n/a n/a i.t. 

30 
Ma 

et al., 2022186 
Biodistribution BALB/c U87MG s.c. 3.10

6 0.3 FAPi FAP n/a i.v. or i.t. 
Survival BALB/c U87MG s.c. 3.10

6 0.18 - 0.55 FAPi FAP n/a i.t. 
Liu 

et al., 2022187 
Biodistribution Nude mouse U87MG s.c. 5.10

6 3.5 ± 0,2 iRGD-C6-lys 
-C6-DA7R 

VEGFR 
+ integrins n/a i.v. 

Survival Nude mouse U87MG s.c. 5.10
6 0.18 - 0.74 iRGD-C6-lys 

-C6-DA7R 
VEGFR 

+ integrins n/a i.v. 
Actinium-225 

Pandya 
et al., 2016201 

Biodistribution BALB/c U87MG s.c. 1.10
6 0.7 RGDyK avb3 

integrin 0.04 i.v. 
150 

Toxicity, efficacy BALB/c U87MG s.c. 1.10
6 0.010 - 0.16 RGDyK avb3 

integrin n/a i.v. 
Behling 

et al., 2016a202 
Biodistribution Ink4a-Arf

-/- 
mouse DF-1 i.c. 2.10

5 0.0111 E4G10 mAb VE-cadh n/a i.v. 
100 

Efficacy, 
BBB remodeling Ink4a-Arf

-/- 
mouse DF-1 i.c. 2.10

5 0.0074 E4G10 mAb VE-cadh n/a i.v. 
100 

Behling 
et al., 2016b203 

Efficacy, 
BBB remodeling 

Ink4a-Arf
-/- 

mouse DF-1 i.c. 2.10
5 0.0074 E4G10 mAb VE-cadh n/a i.v. 

100 
Sattiraju 

et al., 2017a204 
Efficacy, 

BBB remodeling 
Athymic 

nude 
mouse 

U87MG i.c. 1.10
5 0.037 Liposome avb3 

integrin n/a i.c. 
5 

Sattiraju 
et al., 2017b205 

Safety, 
efficacy 

Athymic 
nude 

mouse 
U251-
fLuc 

i.c. 
5 mL 1.10

5 0.037 Pep-1L IL13RA2 n/a i.c. 
5 

Salvanou 
et al., 2020206 Biodistribution SCID 

mouse U87MG s.c. 300 mm
3 0.005 Gold np n/a n/a i.v. or i.t. 

Radium-224 
Nishri 

et al., 2022207 
Safety, efficacy 
(TMZ and BEV 
combination) 

Athymic 
nude 

mouse 
U87MG s.c. 

100 mL 5.10
6 0.075 - 0.110 

Coated 
steel 
seed 

n/a n/a i.t. 

Table 1 | Preclinical studies of targeted-a-therapy in GB in vivo models 

s.c.: subcutaneous, i.v.: intraveinous, i.c.: intracranial, i.t.: intratumoral, mAb: monoclonal antibody, m: male, f: female, Phe: phenylalanine, 
np: nanoparticle, VE-cadh: vascular endothelial cadherin, BTB: brain-tumor barrier, BBB: brain-blood barrier, TMZ: temozolomide, BEV: 
bevacizumab. 
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The targeting of proangiogenic integrin avb3, overexpressed in high-grade gliomas208–

210, was investigated by Pandya et al. in a subcutaneous murine GB model using the RGDyK 

peptide vector. The study evaluated the biodistribution and longitudinal imaging of 225Ac 

distribution. This imaging approach was not reliant on the g emission of 213Bi from the decay 

chain, but on the Cerenkov luminescence emitted by various 225Ac daughter nuclides201. 

Cerenkov Luminescence Imaging (CLI) captures the ultraviolet light emission when specific 

charged particles surpass the phase velocity of light in a given medium211. This approach 

allowed for effective detection, but could not anticipate some toxic effects observed in animals. 

Notable nephrotoxicity was observed at high doses, although the treatment was generally well-

tolerated. MTD was determined at 0.04 MBq in this model. With all three tested doses, a 

significant regression in tumor growth was observed after 14 days at doses of 0.01, 0.02, and 

0.04 MBq201. In 2017, Sattiraju et al. also explored avb3 targeting in an orthotopic GB model, 

via an i.t. injection. Here, avb3-targeted liposomes demonstrated an induction of 

permeabilization of the BBB and BTB, locally but also distantly from the injection site, in areas 

unaffected by the DNA double-strand breaks (DSB), suggesting a modification of the BBB 

independent from 225Ac radiation204. 

Monomeric vascular endothelial cadherin (VE-cadherin or cadherin 5), is expressed on 

tumor neovasculature and progenitor endothelial cells and represent a promising target for 

altering the vascular microenvironment of GB212,213. Its targeting was examined in two in vivo 

studies using the 225Ac-labeled E4G10 mAb for i.v. injection in a subcutaneous GB model202,203. 

A notable modification of the BBB was observed, especially a reduction in the number of 

epithelial and perivascular cells at a 0.074 MBq dose. This approach also led to the reduction 

of tumor-related edema and necrosis zones, and depleted Tregs, which are known for their 

immunosuppressive role in GB203. This method significantly increased the survival of the 

treated animals, either as a standalone treatment or in combination with temozolomide202.  

Targeting Interleukine-13 receptor subunit a2 (IL13RA2), a highly studied GB 

biomarker due to its involvement in tumor progression214, with 225Ac has also been explored. 

Locoregional CED administration in an orthotopic GB model using a peptide targeting 

IL13RA2 (Pep-1L) labeled with actinium showed significant progress. A dose of 0.037 MBq 

enabled optimal brain retention, substantially reducing tumor growth without noticeable toxic 

effects. Survival was significantly improved, with a median survival of 41 days compared to 

23 days for mice injected with a saline solution205. 
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Gold nanoparticles loaded with 225Ac have also demonstrated their utility as potential 

platforms for association with targeting antibodies or peptides. In an orthotopic murine model 

of GB, these nanoparticles showed strong local uptake after i.t. injection and slow clearance 

over 12 days. The efficacy was notable since these nanoparticles were not associated with a 

targeting vector. A previous study with gold nanoparticles labeled with 177Lu has already 

demonstrated strong tumor uptake both with and without targeting215. However, over the same 

period, the gradual uptake in the liver, kidneys, and spleen, though moderate, needs 

consideration in terms of toxicity. This could be attributed to the clearance of the nanoparticles 

through the hepatobiliary pathway or the partial release of 225Ac from the chelator. A delay in 

tumor growth over 22 days was achieved after three injections of treatment, with a total activity 

of 0.015 MBq, underscoring the benefits of dose fractionation in minimizing adverse effects206 

(Table 1).  

 

 Clinical studies. 225Ac has only been the subject of one pilot study for the treatment of 

patients with GB. Following two pilot studies centered on treating GB patients with 213Bi, which 

will be detailed later, Krolicki et al. sought to explore the clinical potential of 225Ac. They 

hypothesized enhanced efficacy due to the four a particles emitted by this radionuclide, 

combined with its considerably longer half-life compared to that of 13Bi (46 min)216. This study, 

therefore, introduced a TAT using 225Ac-labeled substance P (225Ac-DOTA-SP) to target 

neurokinin type 1 receptors (NK1R)216. These receptors are overexpressed in GB, where they 

contribute to the proliferation, invasion, and survival of cancer cells217–219. 21 patients with 

recurrent primary (15) and secondary glioblastoma (6) were selected for this study. All these 

patients had previously undergone the standard therapeutic protocol (Stupp regimen: surgery, 

radiotherapy, chemotherapy). The dose for this study was determined based on previous human 

trials. Thus, treating prostate cancer patients with 3 doses of 8 MBq of 225Ac-PSMA-617 was 

shown to be safe and effectiveCliquez ou appuyez ici pour entrer du texte.. Additionally, 3 cycles 

of 18.5 MBq of 225Ac-DOTATOC were demonstrated to be safe and effective in patients with 

neuroendocrine tumors221. TAT was delivered directly into the resection cavity using one or 

two catheters. Patients received doses ranging from 10 MBq to 30 MBq over 1 to 6 cycles, with 

the total activity varying between 10 and 120 MBq. This dose escalation approach was 

generally well tolerated. Some patients experienced temporary side effects like edema, seizures, 

aphasia, and hemiparesis. Importantly, no adverse effects related to kidney, liver, or blood were 

linked to the TAT. While the primary tumor often showed signs of stabilization, prognosis 

sometimes deteriorated due to the emergence of satellite tumors not initially identified by MRI. 
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Interestingly, patients with secondary GB had a notably extended survival post-diagnosis 

compared to those with recurrent primary GB. Yet, both groups showed similar progression-

free survival (PFS) and overall survival durations. While there were positive effects on survival, 

the therapeutic benefit did not directly correlate with the dose administered, and survival 

medians were less significant than results from preliminary studies using 213Bi (Table 2). 

 

3. Bismuth-213 
 

As previously described, 213Bi originates from the decay chain of 225Ac, and emits one 

a particle and two b- particles (Fig. 5b). Additionally, its g emission of 435 keV provides a 

valuable avenue for longitudinal tracking via SPECT imaging161. Its brief half-life of 45.6 min 

dictates the selection of biological vectors with a compatible in vivo half-life, but also 

introduces constraints given the extended reaction times inherent to radiolabeling chemistry. 

The presence of a stable isotope of bismuth facilitated the swift development of suitable 

chelators. Consequently, the CHX-A′′-DTPA ligand has been identified as an optimal choice 

for 213Bi chelation, and DOTA also proved to be suitable, forming robustly stable complexes 

with high kinetic stability, thus limiting the well-described accumulation of unlabeled 213Bi in 

kidneys and urine192. 

The production of 213Bi relies on its parent radionuclide, 225Ac, which can be loaded into 

a radionuclide generator. This setup allows for the production of 213Bi with high specific activity 

and purity. Moreover, the 225Ac required for this process doesn't need to be pure, as the co-

production of 227Ac is not problematic. These 225Ac / 213Bi generators typically use cation and 

anion exchange or extraction chromatography techniques222,223. In clinical studies, the main 

production route relies on AG MP-50 organic resin support, designed for cation exchange, on 

which is deposited 225Ac. This device allows production for several weeks, with up to six 

therapeutic doses of radionuclide per day224. 

 

Preclinical Studies. To date, no preclinical studies involving 213Bi have been conducted 

specifically for GB. However, in vitro investigations have been conducted on the LN18 cell 

line of GB to examine the impacts of 213Bi-labeled anti-EGFR mAb on cellular metabolism. In 

this context, the cellular conversion of hyperpolarized [1-13C]pyruvate to [1-13C]lactate was 

assessed using magnetic resonance spectroscopy (MRS). Significant increase in 

lactate/pyruvate ratio, suggesting an increased metabolic activity, and cell death by induction 
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of DNA DSB were demonstrated after treatment221,222. Several preclinical studies have also 

demonstrated the in vivo stability of 213Bi conjugates223. Additionally, biodistribution and 

efficacy studies have been conducted, primarily using mAb vectors, on models such as 

melanoma224, multiple myeloma225, ovarian cancer226, or metastatic breast cancer227. 

 

Clinical studies. The first pilot study involving 213Bi for the treatment of GB was carried 

out by Kneifel et al. on a very limited cohort232. The use of 213Bi was introduced as an alternative 

to 90Y-DOTAGA-SP for some patients to circumvent the crossfire effect on critically located 

brain tumors. Accordingly, one patient with GB and another with grade II oligodendroglioma 

received injections of 213Bi-DOTAGA-SP. The GB patient was previously treated with the 

standard protocol (surgery, radiotherapy and chemotherapy) and was administered a dose of 

375 MBq. The oligodendroglioma patient underwent two surgical interventions before injection 

of a dose of 825 MBq. The treatment was well-tolerated by both patients. However, evaluating 

the GB progress was challenging due to the presence of a residual tumor. For the 

oligodendroglioma patient, the resection of a tumor lesion after 33 months revealed 

radionecrosis and the absence of viable tumor cells, with an additional 34 months passing 

without recurrence232. 

 Another trial on a small cohort was led by Cordier et al., to assess 213Bi efficacy as a 

primary therapeutic modality in patients bearing critically located GB. Depending on the size 

and configuration of the tumor, one or more catheters were placed intratumorally for the 

administration of the treatment. Thus, two GB patients and three grade III astrocytoma patients 

received doses ranging from 1.07 to 29.44 GBq over 1 to 4 cycles. Patients showing tumor 

progression or recurrence subsequently received chemotherapy and/or radiotherapy. Once 

again, the safety and feasibility of the treatment were confirmed. The therapy induced 

radionecrosis and allowed for the delineation of the tumor as observed through MRI. High 

retention of the radioisotope at the injection site was verified by SPECT233. 

Krolicki et al. conducted two similar studies on GB patients to assess the administration 

of 213Bi-DOTA-SP. In both studies, patients had a catheter placed either in the resection cavity 

or intratumorally. In the first one, nine patients were treated with one to six cycles over two 

months, receiving a total injected activity ranging from 1.4 to 9.7 GBq of 213Bi-DOTA-SP. The 

treatment was well-tolerated, with observed symptoms being primarily mild transient adverse 
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reactions, most notably headaches due to temporary perifocal edema. FLAIR imaging indicated 

the presence of an edema or a non-enhancing tumor. Median PFS was 5.8 months, median OS- 
t was 16.4 months, and median OS-d was 52.3 months234. 

 

In the second study, 20 patients received 1-7 cycles of 213Bi-DOTA-SP treatment, which 

was largely well-tolerated. Side effects included facial flushing in two patients and ventricular 

enhancement in one. Ten patients had epileptic seizures post-injection but had prior seizure 

histories. One had a brief paresis increase. No severe side effects were noted. The median OS-

d was 23.6 months, while median OS-r was 10.9 months, with a median PFS of 2.7 months.  

These findings suggest that localized treatment with high radioisotope doses is a promising 

approach for recurrent GB, offering survival rates that compared favorably to conventional 

treatments, as median survival after Stupp regimen ranges from 9.7 to 15.9 months235 (Table 2). 

Reference 
Clinical  

situation 
Number of  

patients 
Investigation Vector Target 

Injection 
route 

Total 
activity 
(GBq) 

Median 
PFS 

(months) 

Median 
OS-t 

(months) 

Median 
OS-d 

(months) 
Conclusion 

Astatine-211 

Zalutsky 
et al., 200891  

(NCT00003461) 
GB 

18 -  
GB (14),  

O (3), A (1) 

Feasibity, 
safety 

SAB-
ch81C6 

mAb 
Tenascin-C i.c. 

0.071 - 
0.347 

n/a n/a 
All: 13.5 
GB: 13 

A+O: 29 

Feasible, safe,  
MTD not 
reached, 

small cohort 

Bismuth-213 

Kneifel 
et al., 2006232 

GB, 
glioma 

2 - GB (1),  
OII (1) 

Feasibility,  
biodistribution,  

safety 

DOTAGA-
SP 

NK1R i.t. / i.c 
0.375 - 
0.825 

n/a n/a n/a 
Feasible, 

very small 
cohort 

Cordier 
et al., 2010233 

GB, 
glioma 

5 - GB (2),  
AII-III (3) 

Feasibity, 
safety 

DOTA-SP NK1R i.t. 
1.07 - 29.44 

(1 - 4 
cycles) 

n/a n/a n/a 

Feasible, safe, 
radiation-
induced  

necrosis, tumor  
demarcation, 

very 
small cohort 

Krolicki 
et al., 2018234 

GB 9 
Feasibity, 

safety 
DOTA-SP NK1R i.t. / i.c. 

1.4 - 9.7 
(1 - 6 

cycles) 
5.8 16.4 52.3 

Feasible, 
safe 

Krolicki 
et al., 2019235 

GB 20 
Feasibity, 

safety 
DOTA-SP NK1R i.t. / i.c. 

1.6 - 11.2 
(1 - 7 

cycles) 
2.7 7.5 23.6 

Feasible, 
safe, longer 
PFS/OS with 

dose 
repetition 

Actinium-225 

Krolicki 
et al., 2021216 

GB 21 
Dose 

escalation,  
safety 

DOTA-SP NK1R i.c. 

0.0116 - 
0.1495 
(1 - 6 

cycles) 

2.4 9 35 

Feasible, 
safe, no dose-

dependent 
effect 

Table 2 | Completed pilot studies and clinical trials in high-grade glioma treated with TAT 

GB: glioblastoma, A: astrocytoma, O: oligodendroglioma, SP: substance P, i.c.: intracavitary, i.t.: intratumoral, PFS: progression-
free survival, OS-t: overall survival from treatment injection, OS-d: overall survival from diagnosis, MTD: maximal tolerated dose  
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4. Promising a-emitters for the treatment of GB 
 

Significant progress has been made in TAT for GB using 211At, 225Ac, and 213Bi, yet 

much of this domain remains uncharted. As previously mentioned, other a-emitters such as 
223Ra or 212Pb have shown promises in both preclinical and clinical settings for the treatment of 

various cancers, as previously mentioned, and are pending comprehensive preclinical 

assessment for GB therapy. Each a radionuclide has its set of advantages and drawbacks. 

Understandably, those that are readily available and easier to manipulate tend to be more 

extensively studied. Similarly, the presence of a stable isotope for these radionuclides, as is the 

case for 213Bi, considerably simplifies radiochemical processes for producing new stable 

vectors. However, evolution in the global supply of a-emitters and advancements in 

radiochemistry foster hope for a shift towards these less studied nuclides for GB treatment. 

Here, we suggest a few potential directions regarding upcoming a-emitters for GB therapy. 

For example, a 223Ra-based therapy (half-life of 11.43 days, emitting four a and two b- 

particles) has been assessed in vitro using a nanozeolite-SP conjugate. This study demonstrated 

robust retention of TAT and pronounced affinity for NK1R, resulting in significant cytotoxicity 

in the T98G cell line236. Furthermore, the potential of 224Ra-loaded seeds as implantable sources 

was explored via a subcutaneous GB xenograft in an athymic mouse model, in combination 

with temozolomide or bevacizumab (Table 1). 224Ra has a half-life of 3.66 days and emits four 

a and two b- particles. 224Ra treatment considerably impeded tumor growth in this model. The 

most effective strategy seemed to involve the administration of bevacizumab prior to TAT207. 
212Pb is also an a-emitter of interest, with a half-life of 10.6 h and emission of one a and two 

b- particles. Its combination with DOTAMTATE to target somatostatin receptor (SSTR) has 

shown positive outcomes in preclinical models237 and holds promise in clinical trials for 

neuroendocrine tumors (NCT03466216)238. Given the expression of SSTR as markers for GB, 

the stability of this conjugate may offer a seamless transition for GB testing. 

Other prospective a-emitters, including thorium-227 (227Th), terbium-149 (149Tb), and 

bismuth-212 (212Bi), could be future potential candidates yet to be examined for GB. Currently, 

the former two face challenges in terms of production, while 212Bi, with its relatively short half-

life of 60.6 min, is frequently overlooked in favor of its parent nuclide 212Pb in therapeutic 

strategies161. Essential parameters such as radiochemical yield, purity, daughter element safety, 

and in vivo stability must be considered for a transfer to clinical application. 
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III. Preclinical challenges and prospects 
 

Before addressing some future prospects of TAT in terms of new avenues to explore or 

therapeutic combinations, it is imperative to emphasize the importance of employing 

appropriate preclinical GB models to obtain meaningful results and facilitate the transition to 

clinical trials. The pursuit of the ideal therapeutic combination, integrating radionuclide, vector, 

and target, should continue and will undeniably benefit from new GB models that more closely 

mirror the clinical reality (Fig. 6).  

 

1. In vivo models  
 

GB cell lines. The GB models explored herein for TAT primarily rely on human GB 

cell lines for xenograft models, such as U87MG, U251, DF-1, D54MG, or rodent cell lines for 

syngeneic models, including GL261 in mice and C6 and BT4Ca in rats. It is a prevalent practice 

to maintain cell lines through in vitro culture in two-dimensional environments, employing non-

physiological culture media and often involving enzymatic dissociation. Such methodologies 

increase the propensity for clonal selection and genetic drift during cultivation, potentially 

influencing drug response outcomes239,240. Furthermore, extended in vitro culture exacerbates 

this issue, with noted gradual deterioration of the GB signature accompanied by the 

accumulation of genomic duplications and depletions over time210.  

 

Xenograft models. For xenograft models, U87MG and U251 cell lines are among the 

most frequently used in research. Although genetically similar to human GB241, U87MG cells 

exhibit a limited i.t. heterogeneity and a moderate invasive profile242. Similarly, U251 cells also 

show limited heterogeneity and are responsive to both chemotherapy and external beam 

radiotherapy in contrast to human GB243. Each cell line presents its own set of advantages and 

drawbacks. Given that classical GB cell lines do not accurately replicate GB features, the ideal 

approach would involve the use of patient-derived xenografts (PDX), which closely reflect the 

heterogeneity and histology of human GB244,245. These allow for the creation of a single cell 

suspension derived directly from a patient's tumor sample, which can then be injected into a 

mouse. Culturing in serum-free media supplemented with fibroblast growth factor b (bFGF) 

and EGF is also a viable option, especially considering the genomic stability of GB cells under 

such conditions246. However, several challenges persist. Firstly, accessing patient samples and 

challenges associated with establishing these models in culture makes the procedures more 
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intricate. Moreover, there is a pronounced variability between patients, leading to significant 

variability between models, which in turn complicates the production of reproducible data. 

Additionally, using PDX to investigate immune responses invariably necessitates the use of 

humanized mice247,248. 

 

Syngeneic models. The radiobiological effects of α particles on GB cells, particularly in 

terms of their immunogenicity, remain largely unexplored. Syngeneic murine models serve as 

pertinent tools to probe these in vivo dynamics. Within murine studies, the GL261 cell line is 

predominantly employed, being a well-characterized cell line that retains an infiltrative profile 

as well as higher tumorogenicity in serum free media249. Nonetheless, this cell line displays a 

high mutational load and strong immunogenicity through high major histocompatibility 

complex I (MCH-I) expression compared to human GB250, potentially leading to a stronger 

adaptive immune response following TAT. Mouse cell lines exhibiting a diminished 

immunogenicity closer to human GB, such as the SB28 line, appear more apt for investigating 

immune repercussions post-TAT application250. Moreover, the SB28 cell line manifests 

therapeutic responses mirroring those seen in human GB251,252. Yet, it is worth noting that this 

particular cell line is conspicuously homogeneous and is underrepresented in literature, 

especially in the context of its histological attributes and microenvironment. 

 

Tumor site. In both scenarios, the tumor injection site is of paramount importance. For 

GB, orthotopic cerebral grafting is vastly preferable as it recapitulates the authentic GB 

microenvironment. Indeed, subcutaneous GB models lack both BBB and BTB, and they often 

display a more robust anti-tumoral immunity. Additionally, these models do not present certain 

GB features like single-cell invasion, tumor necrosis, and microvascular proliferation. In 

essence, the TME of subcutaneous models does not reflect the actual clinical scenario. The 

TME plays a key role in treatment response, especially to radiotherapy253. So far, most 

preclinical investigations addressing TAT for GB so far have predominantly relied on 

subcutaneous GB models. Despite their limitations, subcutaneous GB models remain widely 

used due to their ease of execution and visual follow-up of the induced tumors. Among the 19 

preclinical GB studies examining TAT approaches, 13 conducted their experiments with such 

ectopic models. Despite the promising results described in this Review, it remains challenging 

to assess the actual efficacy of treatment on a subcutaneous GB. Similarly, tumor retention of 

TAT is inevitably different, whether the treatment is administered systemically or 

intratumorally. 
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TAT administration route. The preclinical studies discussed herein predominantly 

employed i.v. delivery of TAT, with less frequent use of direct i.c. injection. Success hinges 

upon the precise interplay between radionuclide, vector, and target. The administration route, 

whether i.v. or i.c., is pivotal for the success of this combination. 

The i.v. delivery necessitates the injection of a high activity of a-emitter associated with 

a high concentration of vector and poses an elevated risk of off-target toxicity due to its prior 

circulation in the bloodstream. Achieving specific targeting and ensuring predominant tumor 

retention are imperative with this method. This approach is less invasive as it does not demand 

additional surgery, making it particularly appealing for GB patients for whom surgical resection 

is not viable. The primary challenges lie in addressing the BBB and BTB, which exhibit 

significant heterogeneity in patients. Additionally, since this method relies on blood-mediated 

distribution, poorly vascularized tumor regions and isolated infiltrating cells stand a higher 

chance of escaping the radiations emitted by TAT. 

The i.c. administration, on the other hand, bypasses the constraints of the BBB/BTB. 

This procedure can be integrated with surgical resection in patients, taking advantage of the 

resultant resection cavity for TAT administration, or it can be directly injected intratumorally. 

Cordier et al. observed that this latter approach as a primary therapeutic intention was feasible 

and the demarcation of the tumor post-TAT could aid in potential resection233. Intratumoral 

retention is also a primary determinant of success for this method, and it depends as much on 

the inherent properties of the vector as on the choice of a therapeutic target exclusive to GB. 

Thus, it is conceivable that using a mAb for i.t. administration allows for extended retention 

due to its size (~150 kDa) and its prolonged biological half-life in tissues. 

Joining both methods is also a possibility. α particles appear capable of permeabilizing 

the BBB following i.c. administration202–204. An initial i.c. treatment might not only manage the 

BBB while retaining therapeutic efficacy but could also potentially aid in the permeabilization 

of both the BBB and BTB, optimizing TAT distribution for subsequent i.v. injections. 

 

Model Standardization. In addition to the aspects previously discussed, the introduction 

of BBB integrity monitoring through DCE-MRI in orthotopic models treated with i.v. TAT 

could assist the evaluations of the limitations of certain approaches and help determining which 

radioconjugates are best suited to penetrate the BBB and target the tumor254. In orthotopic 

models, ensuring accurate tumor injection coordinates is crucial due to the diverse risks of cell 
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infiltration and migration, especially when injecting near the ventricles255,256. Future directions 

should encompass greater explorations towards these types of approaches and the use of CED, 

given the advantages it offers. Incorporating the Stupp regimen would also be of great interest. 

Le Reste et al. have developed a murine GB model that emulates the Stupp regimen, 

encompassing resection surgery, chemotherapy, and radiotherapy. Incorporating TAT during 

the surgical stage of this protocol, as opposed to using it as a standalone primary treatment, 

would enable an assessment of the positioning of TAT within the context of the standard of 

care protocol257. As we have observed, locoregional i.c. treatments have demonstrated their 

safety and feasibility in clinical settings, yet they are significantly underrepresented in the 

preclinical landscape of TAT for GB.  

 

2. Targeting innovations and emerging vectors 
 

The predominant challenge in GB is the intratumoral heterogeneity, which complicates 

the determination of an appropriate therapeutic target. The objective of targeted therapy is the 

complete eradication of tumor cells. The therapeutic administration window is critically 

important to effectively target cells with invasive potential before they become inaccessible. 

Today, preclinical studies of TAT for GB rely on the use of mAbs, peptides, non-peptidic small 

molecules, and gold nanoparticles. Thus, many promising vector types remain unexplored. A 

recent review by Lepareur et al. delved into these issues in detail258.  

 

Antibodies and derivates. The use of mAb for TRT in GB has demonstrated clinical 

efficacy with both b- and a-emitting radionuclides. Some FDA-approved TRT treatments are 

indeed based on anti-CD20 mAb, such as Zevalin® and Bexxar®22,23. Monoclonal antibodies 

have a significant molecular weight, leading to low tissue diffusivity, which results in slow 

clearance. These properties can be advantageous for locoregional administration of TRT 

combined with a short-lived radionuclide, allowing prolonged retention of the radionuclide 

throughout its decay within the tumor. However, these characteristics can pose challenges for 

the systemic administration of TRT, especially if the radionuclide has a long half-life, 

increasing the risk of off-target toxicity. 
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Fig. 6 | Overview of current preclinical models and strategies for TAT in GB. The majority of studies focusing on TAT 
in rodent models of GB have been conducted using xenograft models, most commonly with subcutaneous tumor grafts. 
Intravenous administration of TAT is the most explored route in vivo, with isotopes like ²¹¹At or ²²⁵Ac, and ²²⁴Ra in one study. 
Syngeneic models are still underused, and no study has investigated locoregional administration of TAT in such models. Only 
²¹¹At has been studied in a syngeneic via intravenous and intraperitoneal routes. For further details, please refer to Table 1. 
CS: chondroitin sulfate, mAb: monoclonal antibody Phe: phenylalanine. (Created with Biorender - biorender.com) 

 

Fig. 5 | Current alpha radiopharmaceutical designs and administration routes
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When it comes to TAT based on mAb, only the targeting of tenascin-C91,176,180, 

EGFRvIII179,181, and VE-cadherin202,203 have undergone testing. Historical targets addressed by 

TRT might offer promising avenues given some satisfactory results achieved. For instance, 

DNA-Histone H1 is an intracellular antigen expressed in the necrotic core of tumor cells259. Its 

targeting has shown encouraging overall survival in patients when labeled with 131I260,261. C-X-

C chemokine receptor type 4 (CXCR4) is a G-protein coupled chemokine receptor involved in 

tumor survival, proliferation and migration262–264. A TRT based on lipid nanocapsules loaded 

with 188Re and targeting CXCR4 demonstrated an improved survival in a GB mouse model68.  

Reducing the vector size may provide several benefits in terms of diffusivity, clearance, 

and access to hard-to-reach epitopes. Hence, mAb derivatives of varying sizes have been 

developed. Among these, F(ab) and F(ab’)2 retain one and two variable fragments of the mAb, 

respectively, maintaining their affinity while being depleted of their constant region (Fc). 

Monobodies, nanobodies, affibodies, anticalins, and designed ankyrin repeat proteins 

(DARPins) are examples of non-immunoglobulin synthetic scaffolds out of the approximately 

20 existing today that possess affinity and selectivity comparable to mAbs for a given target. 

They generally weigh less than 10 kDa. Unlike mAbs, their modular nature allows for the 

creation of bispecific molecules, an advantageous feature when considering pretargeting for 

TAT265. 

 

Pretargeting. Pretargeting helps minimize off-target radiation exposure by first 

targeting the tumor and subsequently injecting the radionuclide of interest. This method 

involves the administration of a bispecific antibody that recognizes the therapeutic target, 

followed by the introduction of a radiolabeled bivalent hapten peptide266. In the case of GB, 

pre-targeting strategies based on the biotin-streptavidin interaction267, or initial targeting of 

fibronectin268 have been conducted with 131I. The limitations of this approach, however, include 

poor mAb uptake, dose-limiting toxicities, and the secretion of antidrug antibodies in patients. 

Pretargeting might also be relevant for TAT considering the high energy levels of a-emitters. 

Recently, a three-step pretargeting approach based on 225Ac was evaluated for targeting human 

epidermal growth factor receptor 2 (HER2) in a murine model of ovarian cancer. Mice received 

an intraperitoneal injection of a bispecific antibody targeting both HER2 and DOTA. This was 

followed by an i.v. administration of a clearing agent, prior to the injection of the 225Ac-labeled 

hapten. The results demonstrated extended survival with minimal observed toxicity269. 
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Aptamers. Often termed "chemical antibodies”, aptamers are short RNA or DNA 

oligonucleotides capable of binding targets with notable affinity and selectivity. These 

molecules form specific three-dimensional structures that recognize their targets similarly to 

antibodies. Aptamers are produced using the SELEX process, which iteratively refines an 

oligonucleotide library for optimal target binding. This method enhances the specificity and 

selectivity of the resultant aptamers. Unlike antibodies, aptamers have superior stability, 

reduced batch variation, and are generally non-toxic and non-immunogenic. Their smaller size 

allows for better tissue penetration and the ability to access epitopes inaccessible to larger 

antibodies, making them promising for diagnostic imaging270.  

The first radiolabeled aptamer, TTA1, was synthetized in 2006 and targets the tenascin-

C. This aptamer uptake relies on the presence of human tenascin-C protein found in various 

solid tumors. The aptamer was detected in GB models, showing rapid tumor uptake after i.v. 

administration, with notable tumor diffusion at 3 h and effective clearance from the kidneys 

and liver271. A DNA aptamer named U2 was developed to target U87-EGFRvIII cells. The 

study found that U2 can bind effectively to U87-EGFRvIII cells, inhibiting their proliferation, 

migration, invasion, and affecting downstream signaling. Additionally, the U2 aptamer 

enhanced the radiosensitivity of these cells in vitro and showed improved antitumor effects 

when combined with 188Re in vivo272. 

 

Peptides. Peptides, typically classified as molecules containing fewer than 50 amino 

acids, are small biomolecules. As vectors for TRT, they offer numerous advantages, such as 

non-immunogenicity, favorable pharmacokinetics, and simple production. Natural peptides 

have high affinity for their receptors, but their rapid degradation makes them unsuitable for 

targeting in imaging or therapy. However, peptides can be modified to improve their stability, 

receptor affinity, and facilitate the grafting of radiolabels. Challenges arise when modifications 

to improve stability and labeling disturb their properties due to modifications of essential amino 

acids or to steric hindrance from the chelating agent. Regulatory peptide receptors, many of 

which belong to the G protein-coupled receptors (GPCRs) superfamily, are overexpressed in 

many human tumors273. 

Peptide receptor radionuclide therapies (PRRT) have exhibited significant clinical 

promise. Somatostatin is one of the earliest clinically investigated peptides. This peptide has a 

role in regulating the endocrine system, influencing neurotransmission, and modulating cell 

proliferation, primarily through its binding to the SSTR receptor family (SSTR 1-5). Notably, 
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these SSTRs are overexpressed in gastroentero-pancreatic neuroendocrine tumors (GEP-NET) 

and several other tumor types, including GB274. The most renowned therapeutic success is 

illustrated by the NETTER-1 clinical trial for the treatment of neuroendocrine tumors. 177Lu-

DOTATE (Lutathera) has demonstrated its efficacy in targeting SSTRs in patients and is now 

approved both in the USA and Europe275,276. The safety and efficacy of this treatment were 

further corroborated in the recent NETTER-2 phase III clinical trial (NCT03972488). 

This success has paved the way for the exploration of additional peptide vectors for 

cancer therapy, and targeting SSTRs in GB appears particularly promising. To date, PRRT 

preclinical developments concerning a-emitters encompass targeting IL13RA2 with 225Ac-

labeled Pep-1L peptide205, and avb3 with 225Ac or 211At-labeled RGD peptides187,204. The 

encouraging clinical outcomes of 211At-DOTA-SP to target NK1R motivates an intensification 

of research with this peptide216,234,235. Another promising target for PRRT could be CXCR4. A 
177Lu-labeled binding peptide, known as FC231, is currently under investigation in clinical 

trials, demonstrating potential for both radiopharmaceutical imaging and therapy. This therapy 

known as 177Lu-Pentixather could hold promise for GB treatment277,278.  Finally, gastrin-

releasing peptide receptors (GRPR) are overexpressed in numerous cancer types, including 

GB279. Current clinical investigation in targeting GRPR with 212Pb-labeled bombesin analogs 

(NCT05283330) could be adapted to GB treatment as well.  

 

Small molecules. Small molecules offer several benefits over antibody-based 

radiopharmaceuticals, such as lower cost, faster pharmacokinetics, and the ability to be 

radiolabeled under varied conditions.  

Given the discovery of CAFS in GB TME and the expression of FAP in GB cells and 

non-malignant stromal cells in its TME, FAP is an appealing target for radiopharmaceuticals. 

FAP-specific agents have exhibited encouraging results in preliminary studies, underscoring 

the need for more extensive clinical evaluations. Ma et al. addressed the investigation of 211At-

labeled FAPi. The study illustrated favorable intratumoral retention in a murine GB model and 

displayed a significant impact on tumor volume reduction and in vivo survival extension186.  

Another compelling therapeutic target is the PARP enzymes family, known for its 

overexpression in various tumor cells. PARPs are involved in transferring ADP-ribose to 

proteins, impacting processes like chromatin modulation, transcription, and DNA repair. 

PARPs are overexpressed in cancer, and tumors with defective homologous recombination may 
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depend on PARP-mediated DNA repair, making them vulnerable to PARP inhibition280. PARP 

inhibitors (PARPi) have unveiled therapeutic potential in preclinical studies in GB mouse 

models281. Dabagian et al. explored this avenue using 211At-labeled MM4 targeting PARP in a 

GB mouse model, showing an extended progression-free survival185.  

Other promising small molecules, effective for diverse cancer types, might be 

repurposed for TAT in GB. The prostate-specific membrane antigen (PSMA), an antigenic 

glycoprotein initially linked to prostate cancer, is found to be overexpressed in GB, establishing 

it as a promising therapeutic target282. Indeed, PSMA targeting has already achieved market 

approval with Pluvictoâ for the treatment of mCRPC25 and has demonstrated efficacy with 
177Lu in GB283,284. Moreover, PSMA radiolabeling with 211At has been explored and could be 

beneficial for GB as well285,286.  

 

3. Therapeutic combinations 
 

Current TRT methods have seen some clinical success, but improvements are still 

needed. Challenges arise from tumor heterogeneity and the difficulty to deliver radioactive 

drugs to all tumor cells and tumor heterogeneity. As addressed by Obata et al., three potential 

strategies to enhance TRT's effectiveness should be addressed: i) Amplifying the difference in 

cytotoxicity between normal and cancer cells, ii) Boosting the radiation sensitivity of resistant 

cancer cells, iii) Using inflammatory/immune responses to target non-irradiated cells. 

Combining TAT with other therapeutic approaches could help to resolve these issues287.  

 

BBB disruption. In the context of i.v. administration, selecting a vector for TAT 

inherently tackles the challenge of crossing the BBB. Until now, only 225Ac has been 

demonstrated to permeabilize the BBB with avb3-targeted liposomes204  and an anti-VE-cadh 

mAb203 while other a radionuclides have not yet been investigated regarding this aspect. 

Integrating TAT with active techniques to permeabilize or breach the BBB could allow an 

extension of the vectorization possibilities to molecules that cannot naturally cross the BBB. 

For example, using FUS might ensure a more homogeneous distribution of TAT within the 

tumor and promote prolonged retention. This could potentially enhance therapeutic efficacy 

while minimizing systemic toxicity. This concept was recently addressed upon a review by 

Sharma et al., discussing the use of ultrasound-stimulated microbubbles (USMB) to optimize 

radiation effects at various sites, even eliciting an anti-tumoral response288. 
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Immunotherapy. Given the immunogenic properties of α-particles, their combination 

with immune checkpoint inhibitors (ICIs) could enhance therapeutic outcomes by exploiting a 

potential abscopal effect. In the sole example related to GB, Dabagian et al. demonstrated the 

benefits of combining 211At-MM4 targeting PARP with an anti-PD-1 antibody. A significantly 

extended survival compared to monotherapy was reported with a significant neutrophil increase 

four weeks post-administration185. TATs tested in other tumor models have yielded mixed 

results. In a murine melanoma model, the combination of melanocortin 1 receptor (MC1R)-

targeted radiopeptide 212Pb-VMT01 with the ICIs anti-CTLA-4 and anti-PD-1 was superior in 

inhibiting tumor growth than either treatment in isolation. Mice exhibiting a complete response 

showed minimal to no tumor regrowth upon rechallenge, indicative of adaptive antitumor 

immunity289. Some studies also reported T-cell activation with combination treatments 

involving 227Th and 223Ra in colorectal cancer and bone metastatic prostate cancer mouse 

models respectively290,291. 

Conversely, certain combinations, such as melanin-targeted or PD-L1-targeted 225Ac-

TRT-ICI, did not surpass the efficacy of monotherapies in a melanoma mouse model292. 

Another study suggests that the success of such combination depends on the treatment 

scheduling. In a murine melanoma model treated with 213Bi-anti-melanin and anti–PD-1, the 

highest survival rate was achieved when ICI administration was interspersed between two TAT 

injections293. Future research should focus on this aspect, especially since a radiations can also 

exert detrimental effects on local immune responses. Premature stimulation of the immune 

system might thus be counterproductive. 

 

Radiosensitizers. Radiosensitization of GB is an evolving area of research. As vectors, 

gold and iron oxide nanoparticles augment the radiosensitization of GB cells in vitro294. 

Interestingly, gold nanoparticles have been investigated for TAT with 211At62,72 and 225Ac206, 

though they have not yet shown superior progress compared to other strategies. To enhance the 

radiosensitivity of tumor cells, targeting the DNA damage response (DDR) is a viable strategy. 

The DDR encompasses pathways that rectify DNA damage, ensuring genomic stability. 

However, many cancers exhibit defects in DDR machinery, leading to genome instability - a 

hallmark of cancer. This instability, resulting from DDR deficiencies, elevates the mutational 

burden, potentially activating oncogenes and deactivating tumor suppressor genes, thus 

promoting tumorigenesis. DDR mechanisms are nevertheless vital for tumor cell survival, 

especially when exposed to genotoxic agents like chemotherapy and radiotherapy, which 
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induce DNA breaks. Overexpression of DDR regulatory proteins facilitates DNA repair, 

ensuring cell survival. Consequently, inhibiting these mechanisms is a promising approach to 

increase tumor cell sensitivity to genotoxic agents. In TAT, combination with DDR inhibitors 

could amplify radiation effects, promoting tumor eradication. 

Central DDR kinases, such as ataxia telangiectasia mutated (ATM), ataxia telangiectasia 

and rad3-related (ATR), DNA-dependent protein kinase (DNA-PK), and PARP have 

significant roles in DDR. Specifically, ATM is integral for DDR and cell cycle regulation post 

DNA damage, predominantly double-strand breaks (DSBs). ATR, a serine/threonine-specific 

kinase, is involved in sensing DNA damage, especially single-strand breaks (SSBs). For SSBs, 

repair mechanisms include base excision repair (BER), nucleotide excision repair (NER), and 

mismatch repair (MMR). On the other hand, DSBs are primarily repaired through homologous 

recombination (HR) and non-homologous end joining (NHEJ). Aberrant activation of the DDR 

kinases is linked to resistance to genotoxic cancer treatments, making them prime targets to 

enhance tumor cell sensitivity to these agents295. 

Clinical trials on DDR inhibitor (DDRi) therapy in glioma patients have been 

extensively reviewed. In the context of TRT, most DDRi have been labeled with isotopes like 
123I, 131I, 18F, and 211At296. Notably, Makvandi et al. labeled a PARPi with 211At, showing its 

efficacy in a neuroblastoma mouse model. This labeled PARPi was considerably more potent 

than the PARPi talazoparib alone, suggesting that cell lethality was primarily due to a particle-

induced DNA damage rather than pharmacological PARP inhibition297. In their review, Everix 

et al. proposed that the ATM inhibitor AZD1390, the DNA-PK inhibitor Nedisertib (M3814), 

and the checkpoint-kinase 1 (Chk1) inhibitors SAR-020106 and MK8776 might be potential 

candidates for combination with TRT. Indeed, their molecular structures feature a halogen in 

an aryl position, rendering them suitable for radiohalogenation with radionuclides like 125I, 131I, 

or 211At296. 

Epigenetic regulation of DNA, which governs gene activation or silencing, could also 

be targeted in combination with TRT by focusing on (DNMT) and histone deacetylases 

(HDAC). Indeed, epigenetic modifications play a role in aberrant gene expression that 

facilitates cancer progression. Given that numerous inhibitors of DNMT and HDAC have 

already received FDA approval, they present promising candidates for combination with 

TRT287. 
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Conclusion 
 

In the endeavor to transpose potent radiopharmaceuticals and therapeutic combinations 

into clinical practice, to date, one mAb (81C6 anti-tenascin-C) and one peptide (substance P) 

have reached the clinical phase. The a-emitters under scrutiny are 211At, 225Ac, and 213Bi which 

have yielded promising yet not entirely satisfactory results. While clinical investigations lean 

towards locoregional strategies, the emphasis is predominantly on systemic interventions in 

preclinical studies. 

To enhance relevance, preclinical model standardization is crucial. A direct benchmark 

against the Stupp regimen is imperative to determine the position of TAT in the therapeutic 

arsenal against GB. The prevailing dependence on subcutaneous GB models should evolve 

towards the adoption of orthotopic models, ideally derived from genetically pertinent GB cell 

lines or, optimally, from PDXs. Similarly, incorporating a monitoring of the BBB integrity in 

future models could contribute to informed decisions regarding TAT design for systemic 

strategies. 

The growing production of a-emitters, in tandem with progress in radiochemistry and 

the development of compact vectors, indicates a bright horizon. However, mAbs should not be 

prematurely sidelined; their intrinsic properties may enhance the efficacy of locoregional 

strategies in suitable TAT configurations. Presently, no distinct leader emerges in the TAT 

arena for GB. Each vector, radionuclide, and target offers unique prospects for clinical 

progression. Given the intricate nature of GB, crafting approaches that holistically address 

every aspect of the TME, including GSLCs and immunosuppressive mechanisms, remains a 

daunting task. Targeting pivotal components within this microenvironment through pertinent 

TAT designs and therapeutic combinations has the potential to destabilize the entire GB 

ecosystem, paving the way for its complete elimination. 
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Abstract 
 

Glioblastoma (GB), the most devastating form of brain cancer, remains a critical clinical 

challenge due to its aggressiveness and resistance to conventional treatments. Here, we 

introduce a locoregional therapy with a rat monoclonal antibody targeting murine syndecan-1 

(SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4). This targeted-a-

therapy (TAT) demonstrates robust efficacy to eliminate orthotopic tumors and achieve 

improved cure rates in a syngeneic mouse model. Targeting SDC1 ensures brain retention of 

the treatment over an optimal time window and consequently enables a low-activity 

administration with a minimal toxicity profile. Moreover, 211At-9E7.4 TAT substantially 

reduces secondary tumor occurrence and provides resistance to new tumor formation through 

the activation of central and effector memory T cells. This study is the first exploration of 

locoregional 211At therapy in an orthotopic mouse model of GB, underscoring 211At-9E7.4 TAT 

as a promising advancement to improve the treatment and quality of life of GB patients. 

 

Key points 
 

• The mAb-mediated targeting of SDC1 is decisive for maximal cerebral distribution and 

animal survival 

• The 100 kBq activity provides low systemic toxicity and major brain retention in the 

hemisphere of interest 

• A single infusion of locoregional TAT eliminates the tumor locally and reduces 

secondary tumor occurrence 

• Locoregional TAT elicits a memory immune response involving CD4+ and CD8+ 

memory T cells 
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Introduction 
 

Glioblastoma (GB) is the most aggressive form of brain cancer. Classified as a grade 4 

astrocytoma by the World Health Organization1, its annual incidence is 3.27 cases per 100,000 

people2. After a maximum safe resection, when feasible, the conventional treatment protocol, 

known as the “Stupp regimen”, consists of external radiotherapy and concomitant 

temozolomide chemotherapy. Despite this intensive therapeutic approach, the median overall 

survival of patients does not exceed 15 months3. The failure of conventional treatments is 

attributed to the radioresistance4 and chemoresistance5 of the remaining tumor cells following 

surgical resection. Intratumoral heterogeneity6 and genomic instability7 foster a tumor 

microenvironment that maintains immunosuppression8, along with a high infiltrative potential9. 

Another key obstacle to therapeutic success is the blood-brain barrier (BBB), which shields the 

brain from systemic circulation and consequently hampers the intravenous administration of 

therapeutic agents10. As a result, phase III clinical trials over the past 20 years have culminated 

in failures, leaving the clinical need for GB unmet11.  

Locoregional vectorized radiotherapy represents a promising approach to overcome 

these specific constraints and improve tumor targeting. b--emitting radionuclides were the first 

to be investigated, conferring an optimal range in tissues (1-2 mm), high energy emission (0.1-

2.3 MeV), and low linear energy transfer (LET, 0.2 keV/μm). In this context, we previously 

demonstrated the efficacy of lipid nanocapsules loaded with rhenium-188 (188Re) in a syngeneic 

rat model of GB12. To achieve an adapted distribution volume from a small injection volume, 

the radiotherapy was locally administered by convection-enhanced delivery (CED), allowing 

the safe and homogeneous distribution of highly concentrated agents independently of their 

molecular weight or diffusivity13,14. This approach was then applied to other in vivo GB models 

and succeeded in extending the survival of treated animals15,16. 

a emitters have significant advantages over b- emitters: a shorter range in tissues (50-

100 µm), higher energy emission (2-10 MeV), higher linear energy transfer (LET; 

approximately 100 keV/µm)17, and better efficacy in hypoxic conditions18. Thus, they represent 

ideal candidates to eliminate tumors burdens and potential isolated tumor cells with limited 

toxicity on healthy tissues. Over the past decade, clinical trials and pilot studies have 

demonstrated the feasibility and low toxicity of intracranial administration of tenascin-targeted 

monoclonal antibody (mAb) labeled with astatine-211 (211At)19, and substance P labeled with 

bismuth-213 (213Bi)20,21 or actinium-225 (225Ac)22 in GB patients. For the treatment of GB, 211At 
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shows optimal characteristics. Its increasing worldwide supply, coupled with advancements in 

its chemistry make it a prime candidate to develop new targeted-a-therapies (TATs)23,24. Based 

on a branching decay, 211At generates one a particle of 5.9 MeV or 7.5 MeV with a LET of 99 

keV/µm. Its half-life of 7.21 h is convenient for multistep-radiolabeling and suitable for 

injection to patients. Recent preclinical studies have demonstrated the ability of 211At to reduce 

tumor growth using various vectorization approaches, such as peptides and gold nanoparticles, 

through intravenous25–27, intraperitoneal28 or intratumoral administration29–31. These studies 

were primarily conducted on subcutaneous rodent models of GB. While some significant 

improvements in survival were observed25,27,31, no curative effect was found. 

In this context, we aimed to develop a locoregional therapeutic weapon capable of 

directly targeting the tumor burden and disseminated cells. Thus, the vectorization strategy is 

an essential factor for the optimal exploitation of 211At attributes. MAbs appear to be ideal 

vectors for locoregional treatment due to their high affinity and specificity for their target and 

extensive biological half-life. In this study, we selected the 9E7.4 rat mAb directed against the 

murine cell surface proteoglycan syndecan-1 (SDC1, also known as CD138) to target GB. The 

labeling of the 9E7.4 mAb with 211At previously demonstrated efficient systemic targeting and 

elimination of disseminated cells in a multiple myeloma model, without altering its specific 

binding to SDC132. 

SDC1 establishes a critical interface between tumor cells and their microenvironment 

by engaging them with the extracellular matrix and with numerous growth factors and 

cytokines33, thus influencing tumoral anchoring, invasion, immunosuppression, and 

radioresistance34–36. Its overexpression is associated with a poor prognosis in numerous tumor 

types, including GB, and it is thus an optimal target given the challenging variability of GB37. 

Targeting SDC1, apart from its recognition as a GB biomarker, could ensure extended retention 

of radioactivity and potentially enable the disruption of the entire tumor ecosystem. 

In this study, we developed an orthotopic and syngeneic mouse model of GB to assess 

the efficacy of 211At TAT when coupled to the 9E7.4 mAb (211At-9E7.4). Therapeutic efficacy 

and toxicity were assessed by magnetic resonance imaging (MRI) and weekly blood sampling. 

Importantly, we carefully tracked tumor regression and the emergence of potential secondary 

tumors within brain parenchyma, while measuring the effects of the TAT in the induction of 

possible antitumor immune responses. 
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Results 
 

1. In vivo GL261 tumors as a relevant model to target SDC1 in GB 
 

The interest in targeting SDC1 in GB treatment arises primarily from its correlation with 

a poor prognosis in patients. Using the information provided by the REMBRANDT database 

(Repository for Molecular Brain Neoplasia Data) accessible via the GlioVis portal 

(http://gliovis.bioinfo.cnio.es), we observed that SDC1HIGH patients have a significantly lower 

median overall survival (12.1 months) than SDC1LOW patients (17 months) (Fig. 1a). We 

established a preclinical model using the murine GB cells GL261, which were stereotactically 

injected into immunocompetent C57BL/6JRj mice. We assessed the relevance of SDC1 

targeting with the 9E7.4 mAb in our model by quantifying the level of in vitro expression of 

SDC1 by flow cytometry in the GL261 cell line (n = 6). The ratio of the median fluorescence 

intensity (MFI) between the 9E7.4 mAb and the IgG2a, k isotype control was > 3.19. As the 

MFI ratio > 2, we estimated that SDC1 is expressed in a majority of the cell population (Fig. 

1b, Supplementary Table 1). 

We confirmed the expression of SDC1 by tumor cells in vivo in C57BL/6JRj mice that 

received a stereotactic intra-striatal graft of 50,000 GL261 cells (n = 4). Mice were sacrificed 

after a weight loss > 20% at d32, d38, d38 and d44, respectively, and the brains were harvested. 

The analysis of frozen brain sections by immunofluorescence showed SDC1 to be significantly 

expressed at higher levels in the developed tumor than in the healthy parenchyma (*p = 0.029) 

(Fig. 1c, d). In our study, the 211At-9E7.4 TAT was injected on day 11 (d11) at the same 

stereotactic coordinates via CED after confirming tumor growth by MRI the same day. The 

global efficacy of the treatment was evaluated by weekly MRI and blood sampling (Fig. 1e). 

The 211At-labeling experiments were performed using five distinct productions of 211At 

characterized by a 210At/211At ratio < 10-3 (0.002 ± 0.001). The resulting astatinated antibody 

was prepared with a radiochemical purity of 98 ± 1%, hence, above the minimum requirement 

of 95% for in vivo experiments (Supplementary Table 2).  
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Fig. 1 | In vivo GL261 tumors as a relevant model to target SDC1 in GB.  a Kaplan-Meier survival curves in GB patients 
according to their level of SDC1 expression. SDC1HIGH patients: n = 93, SDC1LOW patients: n = 88. A Log-rank test was performed 
to assess significance between the two groups. **p < 0.01. The GlioVis data portal was used for visualization and analysis of 
SDC1 expression in GB patients from the Rembrandt dataset. b Expression level of SDC1 in the murine GB cell line GL261 by 
flow cytometry (n = 6). SDC1 was detected with the 9E7.4 mAb as primary antibody. Data are presented as mean ± standard 
deviation (sd). A Mann-Whitney test was used to assess significance between the two groups. **p < 0.01. c 
Immunofluorescence staining showing in vivo expression of SDC1 in orthotopic GL261 tumors. C57BL/6JRj mice were injected 
with 50,000 GL261 cells and sacrificed after a weight loss > 20%. SDC1 was detected with the 9E7.4 mAb as primary antibody. 
P: parenchyma, IT: intratumoral. Scale bar = 100mm (n = 4). d SDC1 positive cells counting in intratumoral and peritumoral 
areas. Data are presented as mean ± sd. A Mann-Whitney test was used to assess significance between the two groups (n = 
4). *p < 0.05. e Schematic overview of the application of locoregional 211At TAT targeting SDC1. C57BL/6JRj mice received an 
orthotopic graft of 50,000 GL261 cells in the right striatum by stereotaxis. After MRI confirmation of tumor uptake, the 9E7.4 
mAb labeled with 211At was injected on d11 at the same coordinates by CED. Mice were subsequently monitored weekly by 
MRI. Blood toxicity was assessed on a weekly basis. Renal and hepatic toxicity were monitored monthly. Illustration was made 
with the online Mouse Brain Atlas from labs.gaidi.ca/mouse-brain-atlas and BioRender (biorender.com). 

Fig. 1 | In vivo GL261 tumors as a relevant model to target SDC1 in GB. a Kaplan-Meier survival curves in GB patients according to their level of SDC1
expression. SDC1HIGH patients: n = 93, SDC1LOW patients: n = 88. A Log-rank test was performed to assess significance between the two groups. **p < 0.01.

The GlioVis data portal was used for visualization and analysis of SDC1 expression in GB patients from the Rembrandt dataset. b Expression level of SDC1 in
the murine GB cell line GL261 by flow cytometry (n = 6). SDC1 was detected with the 9E7.4 mAb as primary antibody. Data are presented as mean ± standard

deviation (sd). A Mann-Whitney test was used to assess significance between the two groups. **p < 0.01. c Immunofluorescence staining showing in vivo
expression of SDC1 in orthotopic GL261 tumors. C57BL/6JRj mice were injected with 50,000 GL261 cells and sacrificed after a weight loss > 20%. SDC1 was

detected with the 9E7.4 mAb as primary antibody. P: parenchyma, IT: intratumoral. Scale bar = 100µm (n = 4). d SDC1 positive cells counting in intratumoral
and peritumoral areas. Data are presented as mean ± sd. A Mann-Whitney test was used to assess significance between the two groups (n = 4). *p < 0.05. e
Schematic overview of the application of locoregional 211At TAT targeting SDC1. C57BL/6JRj mice received an orthotopic graft of 50,000 GL261 cells in the

right striatum by stereotaxis. After MRI confirmation of tumor uptake, the 9E7.4 mAb labeled with 211At was injected on d11 at the same coordinates by CED.

Mice were subsequently monitored weekly by MRI. Blood toxicity was assessed on a weekly basis. Renal and hepatic toxicity were monitored monthly.

Illustration was made with the online Mouse Brain Atlas from labs.gaidi.ca/mouse-brain-atlas and BioRender (biorender.com).
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2. The 9E7.4 mAb enables a prolonged and localized cerebral retention of 125I in 
tumor-bearing mice 

 

We assessed the relevance of a locoregional therapeutic approach by evaluating the 

duration of cerebral retention of the radiolabeled 9E7.4 mAb. Due to limited availability and 

short half-life of 211At, 9E7.4 and its isotype control (IgG2a, k) were labeled with iodine-125 

(125I) to mimic the fate of 211At in the biodistribution study, as these two radiohalogens share 

close physicochemical properties and similar biodistribution profiles38. 

Tumor-bearing C57BL/6JRj mice underwent a striatal CED administration of 125I-9E7.4 

or 125I-IgG2a, k on d11. Mice were sacrificed and organs were harvested 2, 7, 21, and 72 h post-

injection (n = 3 for each). The radioactivity in each organ was measured in a gamma counter. 

CED administration of both radiolabeled 9E7.4 and IgG2a, k demonstrated predominant 

cerebral retention (Fig. 2a, Supplementary Fig. 1a, b). A comparison of the biodistribution of 

the two radioconjugates revealed a significantly higher cerebral retention of 125I-9E7.4 than 

IgG2a, k (**p = 0.0079) throughout the 2 to 72 h period (Fig. 2a). This retention profile was, 

thus, consistent with the 7.2-hour half-life of 211At. A moderate retention of 125I-9E7.4 was also 

observed in the spleen, small intestine, and liver. The complete biodistribution study is available 

in Supplementary Fig. 1. 

 
 

 
Fig. 2 | The 9E7.4 mAb enables a prolonged and localized cerebral retention of 125I in tumor-bearing mice. a 
Comparative biodistribution of 125I-IgG2a, k and 125I-9E7.4 in the brain between 2h and 72 h after locoregional CED injection 
in GB-bearing C57BL/6JRj mice (n = 3 for each time point). Radioconjugates were injected 11 days after tumor graft. Data are 
shown as a percentage of injected dose per gram (%ID/g) and presented as mean ± sd. Statistical significance was determined 
using multiple t-tests based on the AUC of each group. **p < 0.01. b Digital autoradiography performed on mouse brains at 
2 h, 7 h or 21 h after 125I-9E7.4 injection in GB-bearing C57BL/6JRj mice. n = 3 for each time point. Scale bar = 1 mm. 
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Fig. 2 | The 9E7.4 mAb enables a prolonged and localized cerebral retention of 125I in tumor-bearing mice. a Comparative biodistribution of 125I-IgG2a, k
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were injected 11 days after tumor graft. Data are shown as a percentage of injected dose per gram (%ID/g) and presented as mean ± sd. Statistical significance
was determined using multiple t-tests based on the AUC of each group. **p < 0.01. b Digital autoradiography performed on mouse brains at 2 h, 7 h or 21 h after
125I-9E7.4 injection in GB-bearing C57BL/6JRj mice. n = 3 for each time point. Scale bar = 1mm.
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We visualized the brain distribution of 125I-9E7.4 by digital autoradiography of brain 

cryosections produced under the same experimental conditions (n = 3 for each time point). 

These images displayed a high concentration of radioactivity 2 h post-injection, confined to the 

area of tumor cell injection. Within 7 h following the administration of 125I-9E7.4, the area of 

distribution had expanded within the ipsilateral cerebral hemisphere without complete coverage 

and never reached the contralateral hemisphere. After 21 h, equivalent to three 211At half-lives, 

measurable activity persisted within the same extended area (Fig. 2b). 

 

3. Locoregional treatment of GB with 211At-9E7.4 TAT leads to improved survival 
and minimal toxicity 

 

We investigated the preclinical effects of 211At locoregional therapy for GB by exploring 

the hypothesis of the targeting of SDC1. The lethal dose for 10% of animals (LD10) was 

previously established by McLendon et al. at 46 MBq/g for an intravenous (i.v.) injection of 
211At-labeled mAb in female mice39, equivalent to 920 kBq for a 20 g mouse. As we were 

conducting the first study of intracranial administration of 211At in mice, we hypothesized that 

the treatment could be effective with a significantly lower activity than i.v. preclinical tests25–

27, leading us to set the highest injected activity at 470 kBq in our study. After confirming GB 

presence by MRI on d11, three groups of mice received a single injection of 211At-9E7.4 via 

CED: 470 kBq (n = 5), 200 kBq (n = 16), or 100 kBq (n = 10). As a control, injection of 100 

kBq of 211At-IgG2a, k (n = 4), 100 kBq of unlabeled 211At ([211At]NaAt) (n = 5), and 2.8 µg of 

unlabeled 9E7.4 mAb (n = 6), were tested. Untreated mice received an injection of saline 

solution (0.9% NaCl; n = 15). Mice were euthanized upon weight loss exceeding 20% of initial 

weight, combined with the deterioration of general condition and the appearance of significant 

pain symptoms like reduced activity, reduced food and drink intake, orbital tightening, 

abnormal ear position, aggression and vocalization (Fig. 1e). 

All three tested activities showed striking efficacy in contrast to a median overall 

survival of 34 days for untreated animals. After 162 days, the survival rate of mice that received 

470 kBq was 60% (3/5, *p = 0.0225), the survival rate of those that received a 200 kBq injection 

was 43.75% (7/16, ***p = 0.0003), and the survival rate of those that received a 100 kBq 

injection was 70% (7/10, ****p < 0.0001). None of the control conditions had a significant 

impact on the survival of the animals relative to the untreated group (Fig. 3a, Table 1, 

Supplementary Table 3). 
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Fig. 3 | Locoregional treatment of GB with 211At-9E7.4 TAT leads to improved survival and minimal toxicity. a 
Kaplan-Meier survival curves. C57BL/6JRj mice were injected at d0 with 50,000 GL261 cells into the right striatum by 
stereotaxis. Mice received at d11 a 5 µL CED injection of 211At-9E7.4 (470, 200 or 100 kBq), 211At-IgG2a, k (100 kBq), 
[211At]NaAt (100 kBq), unlabeled 9E7.4 mAb (2.8 µg) or saline solution (0.9% NaCl). A log-rank test was used to establish 
statistical significance in comparison with the control group: *p < 0.05, ***p < 0.001, ****p < 0.0001. b-d Weight curves of 
the different groups: control (0.9% NaCl) (b), non-targeting groups (211At-IgG2a, k, [211At]NaAt, unlabeled 9E7.4 mAb) (c), and 
groups treated with 470, 200 or 100 kBq of 211At-9E7.4 (d). Data are presented as mean ± sd. e-j Erythrocytes (e), leukocytes 
(f), platelets (g), alanine aminotransferase (ALAT) (h), alkaline phosphatase (ALP) (i) and creatinine levels (j) were measured 
to assess blood, hepatic, and renal toxicity. Data are presented as mean ± sd. Dotted green lines indicate toxicity thresholds 
provided by the device for C57BL/6JRj mice.  

Fig. 3 | Locoregional treatment of GB with 211At-9E7.4 TAT leads to improved survival and minimal toxicity. a Kaplan-Meier survival curves.
C57BL/6JRj mice were injected at d0 with 50,000 GL261 cells into the right striatum by stereotaxis. After validation of tumor uptake by MRI, mice received at
d11, at the same coordinates, a CED injection of 211At-9E7.4 (470, 200 or 100 kBq), 211At-IgG2a, k (100 kBq), [211At]NaAt (100 kBq), unlabeled 9E7.4 mAb
(2,8 µg) or saline solution (0.9% NaCl) in a volume of 5µL. A log-rank test was used to establish statistical significance in comparison with the control group:
*p < 0.05, ***p < 0.001, ****p < 0.0001. Detailed statistical analysis is available in Supplementary Table 3. b-d Weight curves of the control group injected
with saline solution (0.9% NaCl) (b), non-targeting groups (211At-IgG2a, k, [211At]NaAt, unlabeled 9E7.4 mAb) (c), and groups treated with 470, 200 or 100 kBq
of 211At-9E7.4 (d). Data are presented as mean ± sd. e-g Erythrocytes (e), leukocytes (f), and platelets (g) were analyzed using a quantitative hematology
analyzer. Data are presented as mean ± sd. Dotted green lines indicate toxicity tresholds provided by the device for C57BL/6JRj mice. h-j Alanine
aminotransferase (ALAT) (h), alkaline phosphatase (ALP) (i) and creatinine levels (j) were measured to assess hepatic and renal toxicity. Data are presented as
mean ± sd. Dotted green lines indicate toxicity tresholds provided by the device for C57BL/6JRj mice.
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Weight loss was monitored on a weekly basis to evaluate treatment-induced toxicity. 

With the exception of a minor transient decline post-treatment, the therapy did not affect the 

weight (Fig. 3 b-d). Individual data of weight monitoring is available in Supplementary Fig. 2. 

In long-term survivors treated with 200kBq and 100 kBq, we observed no significant 

hematological impairment in the long-term surviving animals, as evidenced by stable 

erythrocytes (Fig. 3e), leukocytes (Fig. 3f), and platelets (Fig. 3g) levels up to the end of the 

study. The 470 kBq activity exhibited a transient decrease in erythrocytes and platelets at d42-

47, below toxicity threshold provided by our hematology analyzer (Fig. 3 e, g). Blood levels of 

lymphocytes, monocytes, neutrophils, eosinophils, basophils and hemoglobin were also 

monitored and did not exhibit any significant variation associated with toxicity (Supplementary 

Fig. 3), except for a transient hemoglobin decrease at d42-47 in mice treated with 470 kBq 

(Supplementary Fig. 3f). Decreasing trends in erythrocyte counts and hemoglobin levels were 

observed on day 11 in groups treated with 211At alone and with IgG2a, k (Supplementary Figure 

4). Individual hematology follow-up for TAT-injected mice sacrificed during the survival study 

is available in Supplementary Figure 5. 

Table 1 | Summary of the survival study. Data from 5 independent experiments.  

 

Regarding the hepatic enzymes alanine aminotransferase (ALT) and alkaline 

phosphatase (ALP), no significant increase associated with toxicity was detected for the three 

activities (Fig. 3h, i). Creatinine level, indicating kidney status, did not show any variation (Fig. 

3j). We also assessed blood levels of glucose, phosphate, total proteins, albumin, globulin, 

Cause of sacrifice

Protocol
211At 

activity
(kBq)

mAb
quantity

(µg)
n Surviving

mice
Dead 
mice

Median
survival

time (days)

Striatal
tumor

Secondary
tumor Radionecrosis

Untreated

(saline 

solution 

(0.9% NaCl)

- - 15 0 15 34 6 9 0

9E7.4 mAb - 2.8 6 0 6 40 6 0 0

[211At]NaAt 100 - 4 0 4 39.5 2 2 0

211At-IgG2a, 

k 100 0.56 5 1 4 57 3 1 0

211At-9E7.4

100 0.56 10 7 3
not reached at 

d162
1 2 0

200 1.12 16 7 9 86.5 2 7 0

470 2.8 5 3 2
not reached at 

d162
0 1 1

Table 1 | Summary of the survival study. Data issued from 5 independent experiments.
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bilirubin, and calcium. The values remained below the thresholds associated with systemic 

toxicity (Supplementary Fig. 6). Individual data for the control groups and for TAT-injected 

mice sacrificed during the survival study are available in Supplementary Figures 7 and 8.  

 

4. Activity-dependent radionecrosis resolves over time only in the case of a 100 
kBq injection of TAT 

 

We monitored tumor growth and studied the direct effects of a emissions on the brain 

tissue by MRI. The T2-weighted axial MRI images showed growing tumors in control groups 

after d11 (Fig. 4a), whereas mice treated with 211At-9E7.4 TAT exhibited an activity-related 

hypersignal similar to that of radionecrosis (Fig. 4b). This result was confirmed by the 

simultaneous acquisition of T1-weighted MRI images which validated the presence of free 

water in the injection area (Supplementary Fig. 9a, b). These areas were initially diffuse and 

then decreased over time until stabilizing. Interestingly, it only occurred with the association of 
211At with the 9E7.4 mAb. Despite its efficacy, the 470 kBq activity was subsequently 

discontinued in the ensuing series due to the severity of the radionecrosis induced by the 

treatment. 

Reduced tumor growth in the 211At-IgG2a, k condition was also observed, even though 

4 out of 5 mice eventually succumbed to their tumor (Fig. 4c, Supplementary Fig. 9f). Tumor 

volumes also confirmed a strong inhibition of tumor growth in TAT conditions (Fig. 4d, 

Supplementary Fig. 9g, h, i). The calculation of radionecrosis volumes in long-term survivors 

confirmed their evolution towards a stable dimension and their proportionality to the injected 

activities previously observed by MRI. At the end of the follow-up, mice treated with 470 kBq 

had an average volume of radionecrosis of 16 ± 5.5 mm3, and those treated with 200 kBq had 

an average volume of necrosis of 4 ± 3.8 mm3, whereas it was no longer detectable in survivors 

treated with 100 kBq (Fig. 4e). The survival study is resumed in Table 1.  

  
5. Locoregional 211At-9E7.4 TAT decreases the occurrence of secondary tumors 
 

In an independent cohort of mice, we studied the direct effects of TAT on locoregional 

tumor expansion by histology and MRI. We followed the same protocol as for the survival 

study with a single CED injection at d11 of 211At-9E7.4 (200 kBq, n = 4; 100 kBq, n = 4) or 

saline solution (0.9% NaCl, n = 4). Mice were sacrificed at d18, seven days after injection of 

the TAT.  
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Fig. 4 | Activity-dependent radionecrosis resolves over time only in the case of a 100 kBq injection of TAT. a-b 
Axial T2-weighted MRI brain images of C57BL6/JRj mice from the survival study. Tumor-bearing mice were injected at d11 
with saline solution (0.9% NaCl) (control group, n = 15), 100 kBq of 211At-IgG2a, k (n = 4), 100 kBq of [211At]NaAt (n = 5), 
unlabeled 9E7.4 mAb (n = 6) (a), 470 kBq (n = 5), 200 kBq (n = 16), or 100 kBq (n = 10) of 211At-9E7.4 (b). White arrows indicate 
tumor uptake at d11. Left and right sides are indicated by the corresponding initials at the bottom of the image set. Scale bar 
= 1 mm. c-d Mean tumor volumes measured from MRI images in non-targeting groups (211At-IgG2a, k, [211At]NaAt, unlabeled 
9E7.4 mAb; c), and groups treated with 470, 200 or 100 kBq of 211At-9E7.4 of the survival study (d). Data are presented as 
mean ± sd. e Mean radionecrosis areas volumes measured from MRI images in long-term survivors treated with 470 kBq (n 
= 3), 200 kBq (n = 7) or 100 kBq (n = 7) of 211At-9E7.4. Data are presented as mean ± sd. A one-way ANOVA test followed by a 
Tukey’s multiple comparison test were performed on the AUC of each group. *p < 0.05, ****p < 0.0001. 
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Fig. 4 | Activity-dependent radionecrosis resolves over time only in the case of a 100 kBq injection of TAT. a-b Axial T2-weighted MRI brain images of
C57BL6/JRj mice from the survival study. Tumor-bearing mice were injected at d11 with saline solution (0.9% NaCl) (control group, n = 15), 100 kBq of 211At-
IgG2a, k (n = 4), 100 kBq of [211At]NaAt (n = 5), unlabeled 9E7.4 mAb (n = 6) (a), 470 kBq (n = 5), 200 kBq (n = 16), or 100 kBq (n = 10) of 211At-9E7.4 (b).
White arrows indicate tumor uptake at d11. Left and right sides are indicated by the corresponding initials at the bottom of the image set. Scale bar = 1mm. c-d
Mean tumor volumes measured from MRI images in non-targeting groups (211At-IgG2a, k, [211At]NaAt, unlabeled 9E7.4 mAb; c), and groups treated with 470,
200 or 100 kBq of 211At-9E7.4 of the survival study (d). Data are presented as mean ± sd. e Mean radionecrosis areas volumes measured from MRI images in
long-term survivors treated with 470 kBq (n = 3), 200 kBq (n = 7) or 100 kBq (n = 7) of 211At-9E7.4. Data are presented as mean ± sd. A one-way ANOVA test
followed by a Tukey’s multiple comparison test were performed on the AUC of each group. *p < 0.05, ****p < 0.0001.
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Histopathological analyses carried out on brain cryosections revealed the presence of 

tumor cell foci in both ventricles at d18 in 100% of control mice and 87.5% of treated mice, 

although each group showed strong heterogeneity (Table 2). In control mice, we detected 

substantial proliferation of tumor cells in the striatum, with the presence of large and atypical 

glial cells. In addition, tumor cells were identified within the right (RV) and left (LV) 

ventricular regions (tumor cells in RV: 3/4, in LV: 4/4). In mice treated with 200 kBq, necrotic 

material at the site of injection was observed, corroborating the radionecrosis previously 

detected in MRI scans (Fig. 4b). Tumor cells were also discerned in both ventricular zones 

(tumor cells in RV: 4/4, in LV: 1/4). Mice injected with 100 kBq showed moderate chronic 

lymphocytic infiltrates and very few radionecrosis. They also exhibited tumor foci in both 

ventricles, excepted in one case (tumor cells in RV: 2/4, in LV: 3/4) (Fig. 5a, Table 2).  

 
Table 2 | Histopathological analysis of brain sections 7 days after locoregional injection of the 211At–9E7.4 TAT. 
 

In the survival study, the resolution of the MRI images was insufficient to distinguish 

such foci at d18. We identified the development of a secondary tumor located next to the 

hypothalamus from d25 in some mice within each group of the survival study (Fig. 5b). The 

census of these secondary tumors indicated that 60% of the untreated mice died due to this type 

of tumor mass. However, the proportion of animals that died due to this reason was reduced 

when they were treated with TAT: 20% (1/5) for the 470 kBq activity, 43.75% (7/16) for the 

200 kBq activity, and 20% (2/10) for the 100 kBq activity (Fig. 5c). 

 

 

Tumor infiltrate Radionecrosis Inflammation

Group Mouse Injection 
site

Right 
ventricle

Left
ventricle

Injection 
site

Injection 
site

Control
(Saline solution, 

0.9% NaCl)

1 + + + - +
2 + + + - +
3 + - + - +
4 + + + - +

200 kBq

1 - + - +++ +
2 + + - ++ +
3 + + - +++ +
4 - + + ++ +

100 kBq

1 + + + + +
2 - - + + +
3 + + + + +
4 - - - + +

Table 2 | Histopathological analysis of brain sections 7 days after locoregional injection of the 211At–9E7.4 TAT.
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Fig. 5 | Locoregional 211At-9E7.4 TAT decreases the occurrence of secondary tumors. a Histological analysis of 
tumor-bearing mouse brains treated with 200 kBq or 100 kBq of 211At-9E7.4, or injected with saline solution (0.9% NaCl; n = 
4 for each group). C57BL/6JRj mice were injected at d0 with 50,000 GL261 cells into the right striatum by stereotaxis. They 
received at d11 at the same coordinates a CED injection of TAT or saline solution (0.9% NaCl). Mice were euthanized 18 days 
post-tumor grafting, specifically 7 days following the administration of TAT. Tumor cells are delineated with a red line. Black 
circles indicate inflammation zones. LV: left ventricle, RV: right ventricle, S: striatum, GB: glioblastoma, ChP: choroid plexus. 
Scale bar = 100 µm. b T2-weighted images of a control mouse brain from the survival study displaying a secondary tumor 
indicated by the white arrow. Scale bar = 2 mm. c Overview of the survival/death proportions and types of induced tumors 
(striatal or secondary tumors) during the survival study in relation to the injected dose of 211At-9E7.4 (470, 200 or 100 kBq). 

Fig. 5 | Locoregional 211At-9E7.4 TAT decreases the occurrence of secondary tumors. a Histological analysis of tumor-bearing mouse brains treated with
200 kBq or 100 kBq of 211At-9E7.4, or injected with saline solution (0.9% NaCl; n = 4 for each group). C57BL/6JRj mice were injected at d0 with 50,000
GL261 cells into the right striatum by stereotaxis. They received at d11 at the same coordinates a CED injection of TAT or saline solution (0.9% NaCl). Mice
were euthanized 18 days post-tumor grafting, specifically 7 days following the administration of TAT. Tumor cells are delineated with a red line. Black circles
indicate inflammation zones. LV: left ventricle, RV: right ventricle, S: striatum, GB: glioblastoma, ChP: choroid plexus. Scale bar = 100 µm. b T2-weighted
images of a control mouse brain from the survival study displaying a secondary tumor indicated by the white arrow. Scale bar = 2mm. c Overview of the
survival/death proportions and types of induced tumors (striatal or secondary tumors) during the survival study in relation to the injected dose of 211At-9E7.4
(470, 200 or 100 kBq).
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6. Locoregional 211At-9E7.4 TAT elicits vascular remodeling and local 
inflammation after 7 days 

 

We studied the responses of the tumor environment by immunofluorescence analysis on 

brain sections. The same protocol as for the survival study was used. At d11, mice received a 

single CED injection of 200 kBq of TAT (n = 4) or saline solution (0.9% NaCl, n = 4), and 

were sacrificed at d18. We studied two areas of the brain: the injection area in the striatum (S) 

and the area adjacent to the right ventricle (V). Here, our aim was to assess responses of three 

components of the GB microenvironment: vasculature, inflammation, and adaptative immunity. 

Given the known effects of radiation on blood vessels, we performed CD31 labeling. Markers 

of innate immunity were also investigated: CD45 for all leukocytes, and CD11b for 

monocytes/macrophages, granulocytes, and NK cells. T cells were detected by CD3, CD4, and 

CD8 staining. 

Immunofluorescence staining revealed a size increase of CD31+ blood vessels in mice 

treated with TAT, suggesting functional alterations (Fig. 6a). Quantification of the fluorescence 

indicated a superior CD31+ expression in these vessels compared to brain sections of control 

mice. This observation was significant in the injection area and followed the same trend in the 

area adjacent to the right ventricle (Fig. 6b). In addition, the number of vessels was significantly 

lower in these two areas for mice treated with TAT (Fig. 6c).  

High expression of CD45 and CD11b indicated an increase in the local inflammatory 

infiltrate (Fig. 6d). In treated mice, CD11b quantification showed a significantly higher 

expression at the injection site but not in the area adjacent to the right ventricle. Very few T 

cells were detected in the brain tissue and no significant difference was observed regarding the 

fluorescence levels of CD3, CD4 and CD8 measured in both areas (Fig. 6e). 

 

7. Locoregional 211At-9E7.4 TAT protects the brain from contralateral tumor 
injection 

 

Given the extensive research on immune responses induced by ionizing radiation, we 

investigated if antitumor immunity was operational in long-term survivors. Immune responses 

could indeed contribute to reduce the development of secondary tumors by eliminating cells 

migrating from the primary implantation site. 
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Fig. 6 | Locoregional 211At-9E7.4 TAT elicits vascular remodeling and local inflammation after 7 days. a 
Immunofluorescence labeling of CD31 in mouse brain cryosections. Mice received a tumor graft of 50,000 GL261 cells at d0, 
followed by 200 kBq of 211At-9E7.4 (n = 4) or saline solution (0.9% NaCl, n = 4) at d11. Mice were sacrificed at d18 (7 days 
post-TAT). S: striatum area. V: right ventricle area. Scale bar = 100 µm. b Fluorescence quantification of the CD31 staining. 
Data are expressed in percentage of immunostained area and presented as mean ± sd. A Mann-Whitney test was performed 
to assess significance between groups. *p < 0.05. c CD31+ blood vessels counting. Data are expressed in number of CD31+ 
vessels per mm2 of tissue and presented as mean ± sd. A Mann-Whitney test was performed to assess significance between 
groups. *p < 0.05. d Immunofluorescence labeling of CD45, CD11b, CD3, CD4 and CD8 in mouse brain cryosections. Mice 
received a tumor graft of 50,000 GL261 cells at d0, followed by a CED injection of 200 kBq of 211At-9E7.4 (n = 4) or saline 
solution (0.9% NaCl, n = 4) at d11. Mice were then sacrificed at d18 (7 days post-TAT). S: striatum area. V: right ventricle area. 
Scale bar = 100 µm. e Fluorescence quantification. Data are expressed in percentage of immunostained area and presented 
as mean ± sd. A Mann-Whitney test was performed to assess significance between groups. *p < 0.05. Illustration made with 
BioRender (biorender.com). 
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 15 of the 17 long-surviving mice were rechallenged on d162 with a contralateral graft 

of 50,000 GL261 cells, divided into the following groups according to their previous treatment: 

470 kBq, n = 3; 200 kBq, n = 6, and 100 kBq, n = 6. The new graft was placed in the striatum 

of the contralateral hemisphere, which had not been previously exposed to 211At radiations as 

demonstrated in Fig. 2b. Follow-up was performed by weekly MRI scans. 

Remarkably, 93% (14/15) of the rechallenged mice survived for 100 more days (Fig. 

7a). Weight tracking indicated that the long-term survivors, which were 31-week-old at the time 

of rechallenge, tolerated the surgical intervention and were still able to gain weight (Fig. 7b and 

Supplementary Fig. 10 a-d). In all rechallenged mice, no tumor was detectable by MRI (Fig. 

7c, d). The previously observed zones of radionecrosis (Fig. 4b) were still visible in mice treated 

with 470 and 200 kBq and remained undetectable in the 100 kBq group (Fig. 7d, Supplementary 

Fig. 10e). To detect tumor growth, positron emission tomography (PET) was used to assess the 

cerebral uptake of [18F]fluorodeoxyglucose ([18F]FDG) in an untreated mouse and two long-

term survivors previously treated with 200 or 100 kBq of TAT. In the control mouse, a strong 

[18F]FDG accumulation confirmed the presence of a tumor that was detected in T2-weighted 

images (Fig. 7e). In the rechallenged mice, no [18F]FDG fixation was detected at d34 in the 

injection site nor in the radionecrosis area (Fig. 7f). This study is summarized in the 

Supplementary Table 4.  

 

8. Locoregional 211At-9E7.4 TAT elicits the activation of immune memory 
 

With the aim of detecting memory T cells associated with this long-term protection, 

whole blood cytometry was assessed in a fraction of rechallenged mice (n = 5) and control mice 

(n = 6) at three time points (d4, d7, and d10 after the contralateral tumor graft). The rechallenged 

subset included mice treated with 200 kBq (n = 3) and 100 kBq (n = 2) of TAT, given that they 

met the shared criterion of surviving beyond 162 days post-initial transplantation. From the 

CD45+/CD3+ blood population, we investigated the CD4+ and CD8+ central memory T 

phenotypes (CD44+/CD62L+; TCM) and effector phenotypes (CD44+/CD62L-; TEM).  

At d4, a larger number of CD3+ TCM was detected in rechallenged mice compared to the 

control group. This phenomenon only relied on CD8+ TCM and not on CD4+ TCM. By d7, in 

rechallenged mice, CD4+ TCM significantly increased in number while CD8+ TCM declined. In 

control mice, CD4+ TCM level remained stable over time and CD8+ TCM increased by d7 (Fig.8a). 
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Fig. 7 | Locoregional 211At-9E7.4 TAT protects the brain from contralateral tumor injection. a Kaplan-Meier 
survival curves. After 162 days of survival, long-term survivors and a control group of C57BL/6JRj mice were injected with 
50,000 GL261 cells into the left striatum by stereotaxis. 15 mice were rechallenged in total (TAT injection at d11: 470 kBq n = 
3, 200 kBq n = 6, 100 kBq n = 6) and 12 control mice. Data come from three independent experiments. Log-rank test was used 
to establish statistical significance in comparison with the control group. **p < 0.01, ***p < 0.001. b Weight monitoring 
(percentage of initial weight variation). Data are expressed as mean ± sd. c Mean tumor volumes measured from MRI images 
for each group. Data are presented as mean ± sd. d Axial T2-weighted MRI brain images of C57BL6/JRj mice from the 
rechallenge study. White arrows indicate tumor uptake at d13. Left and right sides are indicated by the corresponding initials 
at the bottom of the image set. Scale bar = 1 mm. e-f T2-weighted MRI and [18F]fluorodeoxyglucose ([18F]FDG) PET/CT images 
of brain from a control mouse (saline solution, 0.9% NaCl as initial treatment)  and two rechallenged mice (200 or 100 kBq of 
211At-9E7.4 as initial treatment) 34 days after the contralateral rechallenge. Images were acquired 90 min after [18F]FDG 
injection and additionally after 275 min for the control mouse. Scale bar = 1 mm. SUVMAX = Maximal Standardized Uptake 
Value.  

Fig. 7 | Locoregional 211At-9E7.4 TAT protects the brain from contralateral tumor injection. a Kaplan-Meier survival curves. After 162 days of survival,
long-term survivors and a control group of C57BL/6JRj mice were injected with 50,000 GL261 cells into the left striatum by stereotaxis. 15 mice were
rechallenged in total (TAT injection at d11: 470 kBq n = 3, 200 kBq n = 6, 100 kBq n = 6) and 12 control mice. Data come from three independent experiments.
Log-rank test was used to establish statistical significance in comparison with the control group. **p < 0.01, ***p < 0.001. b Weight monitoring (percentage of
initial weight variation). Data are expressed as mean ± sd. c Mean tumor volumes measured from MRI images for each group. Data are presented as mean ± sd.
d Axial T2-weighted MRI brain images of C57BL6/JRj mice from the rechallenge study. White arrows indicate tumor uptake at d13. Left and right sides are
indicated by the corresponding initials at the bottom of the image set. Scale bar = 1mm. e-f T2-weighted MRI and [18F]fluorodeoxyglucose ([18F]FDG) PET/CT
images of brain from a control mouse (saline solution, 0.9% NaCl as initial treatment) and two rechallenged mice (200 or 100 kBq of 211At-9E7.4 as initial
treatment) 34 days after the contralateral rechallenge. Images were acquired 90 min after [18F]FDG injection and additionally after 275 min for the control
mouse. Scale bar = 1mm. SUVMAX = Maximal Standardized Uptake Value.
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We also detected a larger number of CD3+ TEM at d4 in the rechallenged mice than in the 

controls. In this case, both CD4+ and CD8+ TEM phenotypes were responsible for this 

observation; by d7, both phenotypes started to decline. In control mice, only a slight yet 

significant increase of CD4+ TEM was detected by d10 (Fig. 8b). For this study, additional 

information about the monitoring of CD44-/CD62L+ naïve and CD44-/CD62L- T cells is 

available in Supplementary Fig. 11. 

 

Discussion 
 

In the GB clinical landscape, TAT is typically explored after surgical resection and 

application of the Stupp regimen19,21,22, although chemotherapy and external radiotherapy 

promote radioresistance in residual GB cells4,5. To bypass these constraints, we aimed to 

evaluate the efficacy of locoregional 211At-9E7.4 TAT on an unresected and untreated GB 

mouse model. In addition, the presence of the tumor could enhance the retention of TAT and 

help to reach infiltrative cells typically spared by surgery. The feasibility and safety of this kind 

of approach was previously demonstrated by Cordier et al. in a pilot study involving five GB-

bearing patients20.  

A single injection of 211At-9E7.4 TAT was able to generate long-term survivors, with 

the 100 kBq activity achieving the best cure rate of 70%. This is the first study to achieve a 

curative effect using TAT in an in vivo GB model. In contrast, the recapitulation of a Stupp-

like regimen in the orthotopic C57BL/6JRj-GL261 model reaches a survival median of 60 

days40, underlying the strong benefit of TAT as a first-line approach. The activities of 200 kBq 

and 100 kBq were well-tolerated without any observable toxicity in blood, liver, or kidneys. 

Only the 470 kBq activity resulted in a temporary blood toxicity after 42 days which normalized 

after 20 days. The activity-dependent radionecrosis induced by TAT was resolved in the 100 

kBq group, likely due to the compensation by the surrounding healthy tissues. Nevertheless, 

further exploration of cerebral toxicity through behavioral experiments should be conducted. 

Thus, the 100 kBq activity displays both the highest cure rate and the lowest toxicity. This also 

represents the lowest activity ever tested for 211At in vivo in a GB model. Conversely, prior 

preclinical investigations used activities ranging from 180 kBq to 1.11 MBq of 211At in 

subcutaneous GB mouse models, yet without a curative outcome26–28,30,31. 
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Fig. 8 | Locoregional 211At-9E7.4 TAT elicits the activation of immune memory. a Flow cytometry analysis of the 
central memory phenotype CD44+/CD62L+ among circulating T lymphocytes 4, 7, and 10 days after rechallenge. Central CD4+ 
and CD8+ phenotypes were also investigated. Data are expressed as mean ± sd. Multiple Mann-Whitney tests were performed 
to assess significance between groups for each time point. *p < 0.05. A two-way ANOVA test followed by a Tukey’s multiple 
comparison test were performed to assess significance between time points for each group. *p < 0.05, **p < 0.01. b Flow 
cytometry analysis of the effector memory phenotype CD44+/CD62L- among circulating T lymphocytes 4, 7, and 10 days after 
rechallenge. Effector CD4+ and CD8+ phenotypes were also investigated. Data are expressed as mean ± sd. Multiple Mann-
Whitney tests were performed to assess significance between groups for each time point. *p < 0.05. A two-way ANOVA test 
followed by a Tukey’s multiple comparison test were performed to assess significance between time points for each group. 
*p < 0.05. 
 

Despite the complete eradication of orthotopic tumors in long-term survivors, 

ventricular tumor foci were detected on d18 in distinct cohorts of treated mice (Table 2). This 

raises questions regarding their fate in these long-survivors, as they remained undetected by 

MRI during the monitoring period. Conversely, hypothalamic tumors developed from d25 in 

some mice of each group of the survival study (Fig. 5b). This observation is consistent with the 

ability of the GL261 cell line to produce secondary tumors after an intra-striatal injection41, 

thereby mirroring multifocal GBs observed in 17.2% of patients42. The presence of 

Fig. 8 | Locoregional 211At-9E7.4 TAT elicits the activation of immune memory. a Flow cytometry analysis of the central memory phenotype
CD44+/CD62L+ among circulating T lymphocytes 4, 7, and 10 days after rechallenge. Central CD4+ and CD8+ phenotypes were also investigated. Data are

expressed as mean ± sd. Multiple Mann-Whitney tests were performed to assess significance between groups for each time point. *p < 0.05. A two-way ANOVA

test followed by a Tukey’s multiple comparison test were performed to assess significance between time points for each group. *p < 0.05, **p < 0.01. b Flow
cytometry analysis of the effector memory phenotype CD44+/CD62L- among circulating T lymphocytes 4, 7, and 10 days after rechallenge. Effector CD4+ and

CD8+ phenotypes were also investigated. Data are expressed as mean ± sd. Multiple Mann-Whitney tests were performed to assess significance between groups
for each time point. *p < 0.05. A two-way ANOVA test followed by a Tukey’s multiple comparison test were performed to assess significance between time

points for each group. *p < 0.05.
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hypothalamic tumors in our model supports the hypothesis of GB cell migration through the 

cerebrospinal fluid after contact with the ventricles and the subventricular zone (SVZ) during 

the growth of the primary tumor. Indeed, in patients, neural stem cells (NSCs) of the SVZ 

facilitate the migration of GB stem-like cells (GSLCs)43. Therefore, the ventricular tumor foci 

observed at d18 could be the origin of these hypothalamic tumors. In our study, these tumors 

accounted for the mortality of 60% of the control group. In treated mice, this death rate dropped 

to 20% in the 470 kBq and 100 kBq groups, and to 43.75% in the 200 kBq group, highlighting 

an inhibitory effect of TAT on secondary tumor occurrence (Fig. 5c). In our protocol, the SVZ 

in the right hemisphere was subjected to TAT irradiation, which could directly impact the 

influence of NSCs on GB development. Indeed, it has been demonstrated that irradiating them 

can suppress their pro-tumoral capacity43. On the other hand, the left ventricle and the 

hypothalamic region were not subjected to ionizing radiation (Fig. 2b). As TAT is not capable 

of suppressing ventricular foci, the subsequent reduction in hypothalamic tumor occurrence 

post-TAT could arise from a bystander effect, either by modulating the immune response or by 

inducing modifications in the brain parenchyma, which in turn restricts the anchoring of tumor 

cells44.  

  The tumor retention of TAT is essential to obtain the direct and indirect effects of a 

particles, as insufficient exposure may fail to eliminate tumor cells45. Locoregional CED 

administration of radiolabeled 9E7.4 mAb demonstrated a prolonged and localized cerebral 

retention of radioactivity over 72 h, superior to that obtained with the control isotype (Fig. 2a, 

b). This SDC1-dependent retention proved to be essential for tumor eradication, as only mice 

treated with 211At-9E7.4 TAT became long-survivors (Fig. 3a). Additionally, this resulted in a 

reduced distribution in peripheral organs compared to intravenous injection previously assessed 

with 211At-9E7.432. A specific binding was observed in the liver, spleen, and small intestine, 

organs that exhibit substantial expression of SDC146–48, but no related toxicity was detected 

during the survival study (Fig. 3 e-i, Supplementary Fig. 3 and 6). In this context, the SDC1-

targeted TAT is revealed as a highly sensitive system, requiring a minimal amount of 9E7.4 

mAb (down to 0.56 µg per mouse, equivalent to 28 µg/kg) to retain 211At within the tumor. By 

comparison, efficient mAb concentrations in systemic and intracranial approaches for GB vary 

from 5 to 10 mg/kg49,50. Contrary to current systemic modalities that require low molecular 

weight vectors with short biological half-lives to overcome the BBB and minimize systemic 

toxicity, the elevated molecular weight (~150 kDa) and extended half-life of mAbs stand as 

favorable properties to achieve therapeutic efficacy in a locoregional context. 
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In addition to ensuring intratumoral retention of TAT, targeting SDC1 could also play 

a role in mediating biological effects within GB. SDC1 performs distinct functions depending 

on its location: membrane-bound, nucleus-translocated, or present in a soluble form after 

proteolytic shedding33. In GB, SDC1 may have a role in modulating the epithelial-to-

mesenchymal transition (EMT), as in other cancers51, given its regulation by NF-kB52 and its 

overexpression in the GB mesenchymal phenotype53. The 9E7.4 mAb might promote its 

internalization and thus its nuclear translocation, consequently repressing the activation of pro-

EMT genes such as NF-κB and TGF-β54. Furthermore, the potential reduction of its shedding 

by 9E7.4 could prevent its interaction with several partners in pro-invasive signaling 

pathways55. These hypotheses are strengthened by the fact that we observed no secondary 

tumors in the six mice treated with the 9E7.4 mAb alone, in addition to their reduced occurrence 

in response to 211At-9E7.4 TAT (Table 1). In the brain, SDC1 is primarily expressed in the 

choroid plexus56 and plays a crucial role in stimulating adult neurogenesis by increasing the 

proliferation of NSCs in the SVZ57. Thus, its targeting could also reduce the stimulation of 

GSLCs, as previously mentioned. In its shed form, SDC1 is involved in the radioresistance of 

GB cells through the formation of a copolymer enabling the interaction of lysosomes and 

autophagosomes, thus maintaining an autophagic flux in irradiated cells36. In breast cancer, it 

also contributes to immune evasion by mediating the coupling of VEGFR2 to VLA-4, which 

blocks the T cell migration mediated by LFA-158. The potential interference of 9E7.4 might 

contribute to reducing radiation resistance and to reactivating T cell migration in GB, thereby 

enhancing the efficacy of TAT. 

These effects might enable the full exploitation of the immunogenic power of TAT. 

Indeed, several in vivo studies reported the ability of a particles to trigger an immune response, 

such as the release of damage-associated molecular patterns (DAMPs) in an adenocarcinoma 

model59, increased production of IL-2, CCL-5, and IFNg in a multiple myeloma model60 or 

migration of dendritic cells and tumor infiltration of CD8+ T cells in a colorectal carcinoma 

model61. In patients, a decrease of PD-L1-expressing CD8+ T cells after irradiation62 and an 

abscopal effect by the eradication of distant and untreated lesions, have also been reported63. In 

our research, we noted vascular hypertrophy and significant CD11b+ cell infiltration at d18 in 

treated mice. This hypertrophy suggests a disruption of the BBB, which could account for the 

heightened infiltration by peripheral CD11b+ cells. These observations stand in contrast to the 

findings of Behling et al., who documented BBB remodeling accompanied by a reduction in 

CD31 expression in blood vessels after i.v. administration of TAT in a mouse model64. Our 
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findings were limited by the analysis of the response at a single time point, and likely missed 

events occurring earlier. Consequently, we observed no significant response from the adaptive 

immune system at d18 (Fig. 6d, e). However, the 93% long-term survival rate after contralateral 

rechallenge (Fig. 7) and the induction of memory immunity (Fig. 8) proves that adaptive 

immunity was indeed activated post-TAT. Four days post-rechallenge, a significant increase in 

CD8+ TCM and both CD4+ and CD8+ TEM was measured in the blood of mice previously treated 

with TAT (Fig. 8). Control mice exhibited a delayed increase in blood TCM, also indicating a 

potential antigenic presentation following tumor graft, but no change in the number of TEM was 

observed. Although both naïve T cells and TCM are known to interact with antigens65, the 

significant increase in blood TCM suggests that they predominantly facilitated antigen 

presentation. Furthermore, TEM are known to be redirected from the blood towards non-

lymphoid organs following the cleavage of L-selectin (CD62L) on their surface. Thus, the 

decline in blood TEM in rechallenged mice on d7 suggests a blood-to-tissue flow towards the 

newly grafted tumor cells. It should be noted that the GL261 cell line is highly immunogenic66. 

Taking this into account, future studies should use less immunogenic GB cell lines, such as 

SB28, to thoroughly evaluate the immunogenicity induced by 211At. Nevertheless, the 

widespread use and invasive capacity of GL261 maintains it as a relevant model. A longitudinal 

assessment of adaptive immune responses, including DAMPs release and cytokines secretion 

following treatment with 211At-9E7.4 TAT, should also be conducted. 

To take into account the tumor microenvironment, especially the immunological aspects 

of GB after the standard-of-care, the inclusion of 211At-9E7.4 TAT in a protocol that combines 

tumor resection with the Stupp regimen would be instrumental to pinpoint the optimal 

therapeutic timeframe for its efficacy. In addition, exploring therapeutic combinations could 

further enhance outcomes in both inoperable tumor and resection cavity. Specifically, when 

used in conjunction with immune checkpoint inhibitors, early immune responses could be 

amplified and further reduce the formation of secondary tumor foci, as shown in breast and 

colon cancer models by association of 211At with anti-PD-L167. Combination to chimeric 

antigen receptor T cells (CAR-T cells) or dendritic cell vaccine could also contribute to 

eradicate distant foci of tumor cells68,69. Finally, association of TAT with DNA repair inhibitors 

has recently been suggested to be an efficient way to improve therapeutic efficacy70. 

Currently, both preclinical and clinical therapeutic studies on GB are focused on 

improving surgical resection and using both systemic and local approaches with chemotherapy, 

radiotherapy, and immunotherapy71, but the outcomes have not been satisfactory yet. Regarding 
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TAT, the remarkable results observed in other models have not been replicated for GB72, 

remaining non-curative even though delay in tumor growth was observed in some studies25,27,31. 
211At-9E7.4 is therefore one of the most effective TAT in the GB preclinical landscape. By 

optimizing the radioligand/vector/target association, we were able to significantly reduce the 

amount of vector and activity needed for robust therapeutic efficacy. This places mAb back at 

the forefront of potential TAT strategies and validates SDC1 as a relevant GB target. Reflecting 

on the initiative of Cordier et al. who investigated TAT as a first intention treatment, and the 

clinical trial of Zalutsky et al. underscoring the feasibility and minimal toxicity of locoregional 
211At19, forthcoming studies should explore the potential of a humanized SDC1 antibody. This 

direction promises a clinical adaptation of our strategy to address both established tumors and 

post-operative residual cells. In future perspectives, the brief half-life of 211At also seems 

compatible with CED implant systems, facilitating treatment delivery without additional 

surgical procedures. 

 
Methods 
 

1. Ethical statement 
 

This project was conducted with the authorization of the French Ministry of Higher 

Education and Research, in accordance with the stipulations of European Directive 2010/63/EU 

dated September 22, 2010. All surgical procedures were performed under Ketamine/Xylazine 

anesthesia and all measures were taken to minimize the discomfort and pain endured by the 

animals. The preclinical studies were conducted on the UTE platform (SFR François Bonamy, 

IRS-UN, University of Nantes, France, authorisation D44-278). The authorisation for the 

animal experimentation project (APAFIS #34964 for biodistributions, APAFIS #22777 for 

survival and rechallenge studies) was delivered by the Ministry of Higher Education and 

Research, after a favorable review from the local animal experimentation ethics committee 

“Pays de Loire (CEEA-06)”. 

 

2. Mice 
 

Specific Pathogen Free (SPF) 7-weeks female C57BL/6JRj mice were procured from 

Janvier Labs and used for experimentation one week after delivery. Mice were accommodated 

in polycarbonate cages within a specific pathogen-free environment with regulated conditions 



CHAPTER IV 

 157 

including a temperature of 22 °C, humidity within the range of 50-70%, and a 12-hour light/dark 

cycle. The room ambient air was frequently refreshed at a rate of 10 volume/h. Mice were 

provided with ad libitum access to tap water and food. 

 

3. Cell line 
 

The GL261 cell line was produced and kindly provided by Corinne Griguer and G. 

Yancey Gillepsie of the University of Alabama at Birmingham, AL, USA. GL261 cells were 

detached from culture dishes using accutase (A6964, Sigma-Aldrich) for 5 min at 37 °C, and 

then suspended in Dulbecco’s Modified Eagle’s Medium (DMEM) (D6429, Sigma-Aldrich) 

supplemented with 10% fetal bovine serum (FBS) (CVFSVF00-01, Eurobio Scientific) and 1% 

antibiotic solution (A5955, Sigma-Aldrich). Cells were then centrifuged at 120 x g and counted. 

Subsequently, the cells were cultured in a humidified incubator containing 21% O2, 5% CO2 at 

37 °C and used when 80-90% confluence was reached. 

 

4. 9E7.4 mAb production 
 

The 9E7.4 mAb was produced by immunization of a rat with a 40-amino-acid peptide, 

derived from the murine SDC1 protein (amino acid sequence 90-130, GenBank: CAA80254.1), 

which was procured from GeneCust. The isotype of the rat used in generating 9E7.4 was 

determined by utilizing a RMT1 Rat Isotyping Kit (Bio-Rad) in strict adherence to the protocols 

provided by the manufacturer. The specificity and affinity of 9E7.4 mAb towards SDC1 was 

previously demonstrated by flow cytometry32. 

 

5. 125I or 211At-labeling of 9E7.4 and IgG2a, k mAb 
 

[125I]NaI was obtained commercially from PerkinElmer in 10-5 M NaOH solution with 

a volumic activity of 3.70 MBq/µL (2 mCi/mL). [211At]NaAt was produced at the Arronax 

cyclotron facility (Saint-Herblain, France) using the 209Bi(α,2n)211At reaction and recovered 

from the irradiated target in chloroform using a dry distillation protocol adapted from the 

procedure previously reported by Lindegren et al.73. [211At]NaAt was then obtained by reducing 

to dryness the chloroformic astatine solution under a gentle stream of nitrogen to obtain dry 

astatine, followed by dissolution in an appropriate volume of 10 mg/mL dithiothreitol aqueous 

solution. The isotype control used for experiments was a rat IgG2a, k purchased from R&D 
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Systems. Radioiodination or astatination of 9E7.4 and IgG2a, k mAb were performed using a 

two-step process, from a biaryliodonium salt precursor of N-succinimidyl-3-[125I]-iodobenzoate 

([125I]SIB) or N-succinimidyl-3-[211At]-astatobenzoate ([211At]SAB) and adapted from a 

previous work74. 3-(succinimidyloxycarbonyl)phenyl(4-methoxyphenyl)iodonium triflate (for 

astatination) or  3-(succinimidyloxycarbonyl)phenyl(2-thienyl)iodonium triflate for 

radioiodination (2.5 mM in CH3CN, 190 μL) was incubated  with [125I]NaI or [211At]NaAt 

solution for 30 min at 100 °C and 60 °C respectiverly. The crude reaction solution was then 

deposited on a dry disposable Sep-Pak C18 Plus Long cartridge (Waters), washed with 45 mL 

of CH3CN 20% in H2O and 2 mL of CH3CN 100% to dissolve the expected product. CH3CN 

fraction was diluted with 10 mL of H2O, concentrated on a Sep-Pak C18 Plus Light (Waters) 

and recovered with 600 µL of MeCN. After evaporation under a stream of nitrogen, the 

resulting dry [125I]SIB or [211At]SAB was dissolved in 10 μL DMSO, followed by the addition 

of 60µL of either the 9E7.4 mAb or the isotype control IgG2a, k (concentration of 5 mg/mL in 

0.3M borate buffer at pH 8.6 using a disposable Amicon Ultra-4 centrifugal unit (Millipore)). 

The solution was incubated for 30 min at 20 °C, and conjugation yields were assessed by ITLC-

SG analysis of a sample aliquot (methanol as eluent) and scanned with a Cyclone 

phosphorimaging scanner (Perkin Elmer). Unbound [125I]SIB or [211At]SAB was removed 

using a NAP-5 size exclusion chromatography column (Sephadex G25, Cytiva) with saline 

solution (0.9 %NaCl) as eluent. 200µL fractions were collected and only the fraction with most 

activity was kept in order to isolate the highest volumic activity. Ultimately, the radiochemical 

purity was evaluated by ITLC-SG analysis. The 211At-labeling experiments were performed 

using five distinct 211At productions (Supplementary Table 2). 

 

6. Orthotopic tumor grafts 
 

GL261 cells were detached with accutase (A6964, Sigma-Aldrich), counted and 

measured for viability by eosin exclusion. Animals were anesthetized intraperitoneally with 

ketamin 0.8 mL/kg (Imalgene 1000, Mérial) and xylazin 0.62 mL/kg (Rompun 2%, Bayer). The 

mouse skull was pierced with a burr (Microtorque II) following these coordinates from the 

bregma (= 0 mm): lateral: - 2.1 mm, anteroposterior: + 0.5 mm, depth: - 3 mm. C57BL/6JRj 

mice received a tumor graft of 50,000 GL261 cells in the right striatum using a stereotaxis 

frame (Stoelting) with a 32G syringe (1702N, Hamilton Company), in a 5µL volume of DMEM 

medium (D6429, Sigma-Aldrich) without FBS nor antibiotic. For the rechallenge grafts, 50,000 

GL261 cells were injected into the left striatum with the same procedure at the following 
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coordinates from the bregma (= 0 mm): lateral: + 2.1 mm, anteroposterior: + 0.5 mm, depth: - 

3 mm. 

 

7. MRI 
 

For each MRI procedure, mice were anesthetized with 5% isoflurane and then 

maintained at 2% isoflurane. MRI follow-up was conducted using a 3T magnetic field RS2D 

device to assess tumor development and detect potential oedema/necrotic areas. Two types of 

sequences were employed to obtain axial sections. T2-weighted parameters were: field of view 

(FOV): 78 mm / 32 mm / 27.9 mm, echo time (TE): 64.48 ms, repetition time (TR): 5000 ms, 

flip angle: 90 °, acquisition matrix: 450 / 144 / 31 / 1, acquisition voxel size: 173.4 μm / 177.8 

μm / 800 μm, bandwidth: 110.1 kHz, duration: 6 min 10 s. T1-weighted parameters were: FOV: 

80 mm / 40 mm / 31mm, TE: 12,07 ms, TR: 769 ms, flip angle: 90 °, acquisition matrix:  450 / 

144 / 31 / 1, acquisition voxel size: 178.8 μm / 277.8 μm / 800 μm, bandwidth: 50.09 kHz, 

duration: 9 min 21 s. Due to a technical maintenance issue with the RS2D device, the group 

treated with unlabeled 9E7.4 mAb in the survival study was imaged with a Bruker Biospec 

70/20 device equipped with a 1H cryoprobe and which operates at a magnetic field of 7T 

(Bruker). T2-weighted sequence: FOV: 2 cm x 2 cm, TE: 14 ms, TR: 2000 ms, acquisition 

matrix: 256 x 256, slice thickness: 0.5 mm (separated from 0.1 mm), 2 averages, rare factor = 

4, fat saturation. T1-weighted sequence: FOV: 2 cm x 2 cm, TE: 2.6 ms, TR: 2000 ms, 

acquisition matrix: 256 x 256, slice thickness: 0.5 mm (separated from 0.1 mm), 2 averages, 

flip angle = 80 °, fat saturation. Images were analysed using OsiriX MD software.  

 

8. Radioconjugates locoregional injection 
 

11 days after the GL261 cells inoculation, tumor growth was firstly evaluated by MRI. 

The radioconjugates and their controls were injected into the striatum at the same coordinates 

as the tumor graft, using a stereotaxic frame (Stoelting) equipped with a 32G syringe (1702N, 

Hamilton Company) connected to a convective infusion pump (Pump 11 Elite, Harvard 

Apparatus) delivering at a rate of 1 μL/min. The 125I-labeled conjugates were prepared to obtain 

2.8 μg of labeled antibodies (9E7.4 mAb or IgG2a, k) with 30 kBq of 125I in a volume of 5 μL 

of saline solution (0.9% NaCl). 211At-labeled conjugates were injected at three different 

activities in a single injection of 5 μL. In one experiment (n = 5), the 470 kBq group received 

473.7 ± 17.7 kBq (2.8 μg of antibody). In 3 independent experiments (n = 16), the 200 kBq 
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group received 206.4 ± 9.3 kBq (1.12 μg of antibody). In 2 independent experiments (n = 10), 

the 100 kBq group received 99.7 ± 9 kBq (0.56 μg of antibody). Additionally, four mice 

received 93.5 ± 3.5 kBq of 211At-IgG2a, κ (0.56 μg of antibody), 5 mice received 98.2 ± 4.2 

kBq of [211At]NaAt and 6 mice received 2.8 µg of unlabeled 9E7.4 mAb. The activities were 

obtained by diluting the stock solutions with saline solution (0.9% NaCl), taking into account 

the decay of 211At. All untreated mice (n = 15) received an injection of 5 µL of saline solution 

(0.9% NaCl) under the same conditions. 

 

9. Biodistribution 
 

C57BL/6JRj mice received a tumor graft of 50,000 GL261 cells in the right striatum. 

After a striatal injection of 125I-9E7.4 or IgG2a, k at d11, blood, thyroid, skin, muscle, spleen, 

stomach, small intestine, kidneys, liver, heart, lungs, salivary glands, and brain were collected 

and weighed (except for the thyroid due to difficulty in sampling alone) at 2 h, 7 h, 21 h, and 

72 h after injection. The radioactivity was then counted for each sample with a Hidex automatic 

gamma counter (calibrated and normalized). The measured radioactivity values were decay-

corrected to be normalized over the given sacrifice time. 

 

10.  Digital autoradiography 
 

C57BL/6JRj mice received a tumor graft of 50,000 GL261 cells in the right striatum. 

After a striatal injection of 125I-9E7.4 at d11, the brain was harvested after 2 h, 7 h, and 21 h 

post-injection, and quickly frozen in 2-methyl-butane at -25 °C for 1 min 30 s. 10 µm coronal 

brain cryosections were obtained using a cryostat (CM3050S, Leica) and were placed on 

SuperFrost Plus slides (VWR). Digital autoradiography was performed using a BeaQuant 

digital autoradiography instrument with the Beavacq software (Ai4R) for an acquisition time 

of 8 h, following the supplier's instructions.  

 

11.  Survival and rechallenge studies 
 

In the survival study, C57BL/6JRj mice received a tumor graft of 50,000 GL261 cells 

in the right striatum. On d11, tumor presence was validated by MRI and a CED injection of the 

radioconjugates or their corresponding control condition was carried out at the same 

coordinates. Mice were weighed and monitored by MRI on a weekly basis. A retro-orbital blood 
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sampling was conducted once a week to measure hematological toxicity using a hematology 

analyzer (Element HT5, Scil). Once a month, a retro-orbital blood sample was taken to measure 

biochemical parameters (Element RC, Scil). In the rechallenge study, mice were weighed and 

monitored by MRI on a weekly basis. Animals were euthanized upon weight loss exceeding 

20% of initial weight, combined with the deterioration of general condition and the appearance 

of significant pain symptoms (reduced activity, reduced food and drink intake, orbital 

tightening, abnormal ear position, aggression and vocalization). 

 

12.  Histopathological analysis 
 

C57BL/6JRj mice received a tumor graft of 50,000 GL261 cells in the right striatum. 

After striatal injection of 211At-9E7.4 mAb at d11, mice were sacrificed at d18 and brains were 

harvested and quickly frozen in 2-methyl-butane that had been chilled to -25 °C for 1 min 30 s. 

10 µm coronal brain cryosections were obtained using a cryostat (CM3050S, Leica) and were 

placed on SuperFrost Plus slides (VWR). They were stained with hematoxylin and eosin (HE) 

and scanned using a Nanozoomzer slide scanner (Hamamatsu). Histopathological analyses 

were carried out at the Department of Cellular and Tissue Pathology of the University Hospital 

Center of Angers (CHU-Angers, France). Images were analysed with the NPD.view 2 software.  

 

13.  Immunofluorescence 
 

C57BL/6JRj mice received a tumor graft of 50,000 GL261 cells in the right striatum. 

Following the injection of 211At-9E7.4 TAT into the striatum on day 11, mice were sacrificed 

on day 18. The brains were collected and rapidly frozen in 2-methyl-butane at -25 °C for 1 min 

30 s, and then stored at -80 °C. Coronal brain cryosections of 10 μm thickness were obtained 

using a cryostat (CM3050S Leica) and placed on SuperFrost Plus slides (VWR). The sections 

were fixed with acetone for 10 s, rehydrated with PBS for 5 min, and then fixed with 4% 

paraformaldehyde (PFA) for 15 min at -20 °C. To minimize nonspecific binding, saturation 

with 10% normal goat serum (NGS) was conducted at room temperature (RT) for 45 min, 

followed by three PBS washes (5 min each). The sections were incubated overnight at 4 °C 

with primary antibodies diluted in PBS/4% Bovine Serum Albumin (BSA) to a final 

concentration of 5 μg/mL. The primary mAbs used were anti-CD31 (550274, BD Biosciences), 

anti-CD45 (14-0451-82, eBioscience), anti-CD11b (14-0112-82, eBioscience), anti-CD3 (14-

0032-82, eBioscience), anti-CD4 (14-0041-82, eBioscience), anti-CD8 (14-0081-82, 
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eBioscience) and control isotypes rat IgG2a, k (553927, BD Pharmingen) and rat IgG2b, k 

(559478, BD Pharmingen). Following a PBS wash (3 x 5 min), biotinylated anti-rat, anti-rabbit, 

or anti-mouse IgG secondary antibodies (1:100, Vector Laboratories) diluted in PBS/4% BSA 

were used for detection of the primary antibodies. After 1 h at RT, the sections were washed 

with PBS (3 x 5 min). Subsequently, the sections were developed using FITC-conjugated 

streptavidin (1:500, Dako) diluted in PBS for 45 min at RT, followed by a PBS wash (3 x 5 

min). DAPI was added to the slides (1:1000) for 1 min, followed by another PBS wash (3 x 5 

min). Finally, the slides were mounted using Dako Fluorescent Mounting Medium. The labeled 

cryosections were analyzed under an epifluorescence microscope (Axioscope 2 MOT, Zeiss) 

equipped with a camera (Axiocam 305, Zeiss). Images were acquired using the ZEN Blue 3.2 

software (Zeiss). Quantitative analysis was performed using FIJI software. 

 

14.  PET/CT 
 

[18F]FDG was provided by the Nuclear Medicine service of the University Hospital 

Center of Nantes, France. PET/CT acquisitions were obtained at d34 after the rechallenge graft 

using an Iris PET/CT (Inviscan imaging system) scanner following the injection into the caudal 

vein of 4.725 ± 0.05 MBq of [18F]FDG in a volume of 100 µL. For the control mouse, two 

acquisition times were implemented, at 90 min and 285 min post-injection. For the long-

surviving mice, only one time point at 90 min post-injection was carried out. Images were 

reconstructed using the OsiriX MD software. 

 

15.  Flow cytometry 
 

After a PBS/BSA 1% wash, cells were saturated in a PBS/BSA 5% solution for 30 min 

at 4 °C. They were subsequently incubated with the primary antibody 9E7.4 or its isotype 

control rat IgG2a, κ (553927, BD Pharmingen) for 30 min at RT, shielded from light. The 

secondary antibody anti-rat IgG conjugated with Alexa Fluor 546 (A11081, Invitrogen), was 

added for a 30 min incubation at 4 °C, also protected from light. After two washes with PBS / 

1% BSA, the cells were resuspended in PBS for analysis on a CytoFLEX LX cytometer 

(Beckman Coulter). For post-rechallenge blood sample analysis, 100µL of blood were sampled 

for each mouse into EDTA tubes (control group: n = 6, rechallenge group: n = 5). An 

erythrocytes lysis step was performed using a BD Pharm Lyse lysis buffer and cells were then 

incubated for 15 min at RT, protected from light. After a PBS/BSA 1% wash, cells were 
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saturated in a PBS/BSA 5% solution complemented with Purified Rat Anti-Mouse CD16/CD32 

(Mouse BD Fc Block, BD Biosciences) for 30 min at 4 °C. Cells were then incubated with 

coupled primary antibodies during 30 min at RT, protected from light: anti-CD45 (130-110-

803, Miltenyi), anti-CD3 (11-0031-82, Invitrogen), anti-CD4 (552775, BD Pharmingen), anti-

CD8 (47-0081-82, Invitrogen), anti-CD44 (563114, BD Horizon), anti-CD62L (553152, BD 

Pharmingen). The samples were analyzed on an Attune NxT cytometer (Invitrogen). All 

cytometry data were processed using FlowJo software (v10.8.2). 

 

16.  Statistical analysis 
 

All data are presented as mean ± sd. Statistical tests, n and significance are indicated in 

the figures and legends. All p-values are indicated in the Source Data. For biodistribution, 

multiple t-tests were conducted based on the AUCs determined for each group to assess 

significance between the two groups. Regarding volumes of necrotic areas, a one-way ANOVA 

was used, using the AUCs determined for each group to evaluate significance between the three 

groups. A log-rank test was used on survival curves (survival and rechallenge studies). For 

cytometry assays, a Mann-Whitney test was used to determine significance between two groups 

at each time point, and a two-way ANOVA was used to compare data of each time point (Three 

time points). The tests were considered significant when p-values were < 0.05. GraphPad Prism 

Version 9.5.0 was used for data analysis.  

 

Data Availability 
 

The data corresponding to Fig. 1a can be accessed at http://gliovis.bioinfo.cnio.es. 

Comprehensive data are contained within the Article, Supplementary Information, and Source 

Data. Requests for additional information should be directed to Emmanuel Garcion 

(emmanuel.garcion@univ-angers.fr) and Michel Chérel (michel.cherel@univ-nantes.fr). 
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 n IgG2a, k MFI 9E7.4 MFI Fluorescence intensity ratio

1 340 2213 6.51

2 273 1125 4.12

3 196 625 3.19

4 230 1130 4.91

5 324 2240 6.91

6 644 2163 3.36

Supplementary Table 1 | Median fluorescence intensity ratios from Flow cytometry analysis between IgG2a, k and mAb 9E7.4. Median fluorescence
intensity (MFI) was measured for each group. The fluorescence intensity ratio (FIR) was then calculted from these values. When this ratio is > 2, the entire cell
population is considered positive for the marker of interest.

Production 210At  / 211At ratio Radiolabeled mAb Radiolabeling yield (%) mAb RCP (%)

1 3.2.10-3 9E7.4 34 96

2 3.10-3 9E7.4 26 99

4 2.1.10-3 IgG2a, k 31 98

3 < 2.10-5 9E7.4 23 99

5 1.2.10-3 9E7.4 44 98

Supplementary Table 2 | 211At purity and radiochemical purity of the 211At-9E7.4 and 211At-IgG2a, k conjugates. The production of 211At generates a
fraction of astatine-210 (210At). The purity of 211At is thus represented here in the form of the ratio 210At / 211At. The purity of the radiolabeling of 9E7.4 and
IgG2a, k mAbs is represented in the form of a radiochemical purity (RCP) percentage. In vivo experiments require a minimum RCP value of 95%.

Protocol
Untreated

(saline solution, 
0.9% NaCl)

9E7.4 mAb
2,8µg

[211At]NaAt
100 kBq

211At-IgG2a, k
100 kBq

211At-9E7.4 
470 kBq

211At-9E7.4 200 
kBq

211At-9E7.4 100 
kBq

Untreated
(saline solution, 

0.9% NaCl)
- 0.6145 0.3599 0.0948 0.0225* 0.0003*** < 0.0001****

9E7.4 mAb
2,8µg 0.6145 - 0.3953 0.1846 0.1410 0.0080** 0.0005***

[211At]NaAt
100 kBq

0.3599 0.3953 - 0.4694 0.1635 0.0183* 0.044*

211At-IgG2a, k
100 kBq 0.0948 0.1846 0.4694 - 0.3892 0.3028 0.0445*

211At-9E7.4 
470 kBq 0.0225* 0.1410 0.1635 0.3892 - 0.7214 0.5866

211At-9E7.4 
200 kBq 0.0003*** 0.0080** 0.0183* 0.3028 0.7214 - 0.2021

211At-9E7.4 
100 kBq < 0.0001**** 0.0005*** 0.044* 0.0445* 0.5866 0.2021 -

Supplementary Table 3 | Detailed statistical analysis of the survival study. Presentation of the corresponding p-values from the log-rank tests performed
between each group in the survival study.



CHAPTER IV 

 174 

 

Supplementary Fig. 1 | Biodistribution study of 125I-9E7.4 and 125I-IgG2a, k conjugates in GB-bearing C57BL/6JRj mice. a-b Biodistribution analysis
conducted on 125I-IgG2a, k and 125I-9E7.4, conjugates where 2.8 µg of mAb were labeled with 30 kBq of 125I. C57BL/6JRj mice were stereotactically injected
with 50,000 GL261 cells into the right striatum on d0. On d11, mice were administered a CED injection of the radioconjugates at the same coordinates and
sacrificed after 2 h, 7 h, 21 h or 72 h. n = 3 for each time point. Data are expressed as a percentage of injected dose per gram (%ID/g) and presented as mean ±
sd. c-n Detailed biodistribution in blood, skin, muscle, spleen, stomach, small intestine, kidneys, liver, heart, lungs, salivary glands and thyroid. Mice were
injected with 2,8µg of mAb 9E7.4 or isotype control IgG2a, k labeled with 30 kBq of 125I and sacrificed after 2, 7, 21 or 72h (three mice per time point). Data are
expressed in percentage of injected dose per gram (%ID/g) and presented as mean ± sd. Because thyroid is difficult to extract alone, samples were not weighted
and data are expressed in percentage of injected dose (%ID). Statistical significance was determined with multiple t tests from area under the curve (AUC). ns =
p > 0.05, *p < 0.05, **p <0.01, ***p <0.001.
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Supplementary Fig. 2 | Individual weight monitoring of C57BL/6JRj mice during the survival study. a-g Individual weight curves of the different groups.
C57BL/6JRj mice were injected at d0 with 50,000 GL261 cells into the right striatum by stereotaxis. After validation of tumor uptake by MRI, mice received at
d11, at the same coordinates, a CED injection of saline solution (0.9% NaCl; a), 2.8 µg of unlabeled 9E7.4 mAb (b), 100 kBq of [211At]NaAt (c), 100 kBq of
211At-IgG2a, k (d), or 100 kBq (e), 200 kBq (f) or 470 kBq (g) of 211At-9E7.4 in a volume of 5µL.
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Supplementary Fig. 3 | Long-term monitoring of hematological toxicity in surviving mice. a-e C57BL/6JRj mice were injected at d0 with 50,000 GL261
cells into the right striatum by stereotaxis. After validation of tumor uptake by MRI, mice received at d11, at the same coordinates, a CED injection of 211At-
9E7.4 (470, 200 or 100 kBq) in a volume of 5µL. Blood levels of lymphocytes (a), monocytes (b), neutrophils (c), eosinophils (d), basophils (e), and
hemoglobin (f) were analysed using a quantitative hematology analyzer. Data are presented as mean ± sd. Dotted green lines indicate toxicity tresholds provided
by the device (Element HT5, Scil) for C57BL/6JRj mice.
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Supplementary Fig. 4 | Individual monitoring of hematological toxicity in control groups of the survival study. a-c Individual curves within each group of
mice injected with saline solution (0.9% NaCl; a), 100kBq of [211At]NaAt (b), or 100 kBq of 211At-IgG2a, k (c). Blood levels of erythrocytes, leukocytes,
platelets, lymphocytes, monocytes, neutrophils, eosinophils, basophils, and hemoglobin were analysed using a quantitative hematology analyzer. Dotted green
lines indicate toxicity tresholds provided by the device (Element HT5, Scil) for C57BL/6JRj mice.
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Control group n=15

[211At]NaAt n=4

211At-IgG2a, k 100kBq n=5
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Supplementary Fig. 5 | Individual monitoring of hematological toxicity in sacrificed mice treated with TAT during the survival study. a-c Individual
curves within each group of mice injected with 470 kBq (a), 200 kBq (b) or 100kBq of 211At-9E7.4 (c). Blood levels of erythrocytes, leukocytes, platelets,
lymphocytes, monocytes, neutrophils, eosinophils, basophils, and hemoglobin were analysed using a quantitative hematology analyzer. Dotted green lines
indicate toxicity tresholds provided by the device (Element HT5, Scil) for C57BL/6JRj mice.

a

c

b

211At-9E7.4 100kBq (sacrificed; n=3)

211At-9E7.4 200kBq (sacrificed; n=9)

211At-9E7.4 470kBq (sacrificed; n=2)
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Supplementary Fig. 6 | Long-term monitoring of toxicity in surviving mice. a-h C57BL/6JRj mice were injected at d0 with 50,000 GL261 cells into the right
striatum by stereotaxis. After validation of tumor uptake by MRI, mice received at d11, at the same coordinates, a CED injection of 211At-9E7.4 (470, 200 or 100
kBq) in a volume of 5µL. Blood levels of glucose (a), phosphate (b), total protein (c), albumin (d), globulin (e), albumin/globulin ratio (f), total bilirubin (g), and
calcium (h) were measured to assess hepatic and renal toxicity. Data are presented as mean ± sd. Dotted green lines indicate toxicity tresholds provided by the
device (Element RC, Scil) for C57BL/6JRj mice.
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Supplementary Fig. 7 | Individual monitoring of toxicity in control groups of the survival study. a-c Individual curves within each group of mice injected
with saline solution (0.9% NaCl; a), 100kBq of [211At]NaAt (b), and 100 kBq of 211At-IgG2a, k (c). Blood levels of alanine aminotransferase (ALAT), alkaline
phosphatase (ALP), creatinine, glucose, phosphate, total protein, albumin, globulin, albumin/globulin ratio, total bilirubin and calcium were measured to assess
hepatic and renal toxicity. Dotted green lines indicate toxicity tresholds provided by the device (Element RC, Scil) for C57BL/6JRj mice.
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Supplementary Fig. 8 | Individual monitoring of toxicity in sacrificed mice treated with TAT during the survival study. a-c Individual curves within each
group of mice injected with 470 kBq (a), 200 kBq (b) or 100kBq of 211At-9E7.4 (c). Blood levels of alanine aminotransferase (ALAT), alkaline phosphatase
(ALP), creatinine, glucose, phosphate, total protein, albumin, globulin, albumin/globulin ratio, total bilirubin and calcium were measured to assess hepatic and
renal toxicity. Dotted green lines indicate toxicity tresholds provided by the device (Element RC, Scil) for C57BL/6JRj mice.
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211At-9E7.4 100kBq (sacrificed; n=3)

211At-9E7.4 200kBq (sacrificed; n=9)

211At-9E7.4 470kBq (sacrificed; n=2)
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Supplementary Fig. 9 | T1-weighted MRI images and individual tumor growth follow-up during the survival study. a, bAxial T1-weighted MRI images
of the brains of mice within each group. c-i Tumor-bearing mice were injected at d11 with saline solution (0.9% NaCl) (control group, n = 15; c), 2.8 µg of
unlabeled 9E7.4 mAb (n = 6; d), 100 kBq of [211At]NaAt (n = 5; e), 100 kBq of 211At-IgG2a, k (n = 4; f), 100 kBq (n = 10; g) , 200 kBq (n = 16; h), or 470 kBq
(n = 5) of 211At-9E7.4 (i).
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Supplementary Fig. 10 | T1-weighted MRI images and individual weight follow-up during the rechallenge study. a-d Invidual weight curves. After 162
days of survival, 15 long-term survivors and 12 C57BL/6JRj control mice were injected with 50,000 GL261 cells into the left striatum by stereotaxis. Control

mice were injected with a saline solution (0.9% NaCl; a). Rechallenged mice were previously treated at d11 with TAT : 100 kBq n = 6 (b), 200 kBq n = 6 (c), or
470 kBq n = 3 (d). Data come from three independent experiments. e Axial T1-weighted MRI images of the brains of mice within each group.
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d11 TAT injection

Protocol
211At 

activity (kBq)
mAb

quantity (µg) n Surviving
mice

Dead 
mice

Median survival
time (days)

Log-rank p-value to untreated
group

untreated - - 12 0 12 35 -

211At-9E7.4

100 0.56 6 5 1 undefined 0.0001***

200 1.12 6 6 0 undefined 0.0001***

470 2.8 3 3 0 undefined 0.0042**

Supplementary Table 4 | Summary of the rechallenge study. Data issued from 3 independent experiments.
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Supplementary Fig. 11 | Investigation of naïve and CD44-/CD62L- T cell phenotypes in the blood of rechallenged animals. a Comprehensive overview of
the investigated T cell phenotypes and their levels assessed by flow cytometry after rechallenge. b Flow cytometry analysis of the CD44-/CD62L- phenotype
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General discussion 
 

In view of the current limitations of conventional therapies applied to GB, this work has 

been focused on the development of a new therapeutic strategy based on the association of the 

a-emitting radionuclide 211At with the rat monoclonal antibody 9E7.4 targeting murine SDC1. 

This study was carried out in an orthotopic, syngeneic mouse model to study early and long-

term immune responses after TAT locoregional injection. We demonstrated the therapeutic 

potential of brain locoregional 211At-9E7.4 TAT with a significantly improved survival rate in 

vivo, a strong reduction in the development of secondary tumors, and the establishment of an 

effective memory immune response in 93% of rechallenged animals. Our results were discussed 

in the previous section (Chapter IV, Discussion). This general discussion aims to more 

specifically position our strategy within the preclinical therapeutic landscape of TAT described 

in Chapter III, and to draw possible perspectives for the future development of this approach. 

 

I. Therapeutic strategy 
 

1. Locoregional TAT as first-line treatment 
 

The therapeutic context for GB in patients primarily relies on the feasibility of surgical 

resection. Subsequently, two clinical scenarios must be taken into account: i) a diffuse GB that 

is inoperable, ii) a post-operative cavity created by the resection surgery, with a varying amount 

of residual tumor cells depending on the operated area. Only about 20 to 30 % of patients are 

actually considered suitable for surgery1. The Stupp regimen is then implemented, which 

combines radiotherapy with concomitant temozolomide chemotherapy2. Variations of this 

protocol exist, such as the adapted protocol by Perry et al. for older patients3, but the core 

clinical approach remains the same.  

GB is known for its strong resistance to conventional therapies. Firstly, genetic 

heterogeneity leads to the elimination of GB cells that are sensitive to treatment, resulting in a 

selection of more resistant and aggressive cells. Temozolomide chemotherapy has been shown 

to induce mechanisms such as autophagy and senescence which could be implicated in tumor 

recurrence and resistance to therapy4,5. Radiotherapy also contributes to induce radioresistance 

via several molecular pathways such as PI3K/Akt6,7. In addition, Knudson et al. recently 

indicated that surgical tumor resection was a driver for self-renewal of GSLCs8. These problems 

have triggered a reevaluation of the therapeutic positioning for new strategies, and especially 
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for TAT. In 2010, Cordier et al. demonstrated the clinical feasibility and safety of TAT 

administration as neoadjuvant treatment, using 213Bi-labeled substance P to target NK1R 

receptors in the tumor9. As a next step, we aimed to explore if TAT could address GB with a 

single injection, without any preceding treatment in a murine model, in order to bypass the 

radioresistance commonly induced by the post-treatment microenvironment. 

 

2. Selecting 211At for the treatment of GB 
 

211At is one of the three primary a-emitting radionuclides studied for TAT in GB, in 

both preclinical and clinical settings10. 211At combines an optimal therapeutic duration in a 

context of future clinical considerations, with the formation of short-lived daughter 

radionuclides easy to manage. Zalutsky et al. showed that an 211At-labeled anti-tenascin mAb 

locoregional administration was safe and feasible in GB-bearing patients11. To date, it is the 

only clinical trial based on the vectorization of a mAb for GB treatment (see Chapter III). 

It should be noted that the maximum volume that can be injected intravenously in mice 

is 200 µL, while it should not surpass 5 µL for locoregional administration, given that the brain 

volume of a mouse is approximately 500 mm3(12). This raised the question of the feasibility of 

concentrating the activity of 211At in a small volume after radiolabeling of the mAb. For this 

study, we managed to reach 100 kBq/µL as a starting concentration to prepare the different 

doses in a final volume of 5 µL. 

 

3. Vectorization with the 9E7.4 mAb targeting SDC1 
 

The choice of the mAb as a vector for TAT goes against the trend of newer, smaller 

synthetic vectors. This is due to the fact that current preclinical and clinical research for TAT 

in GB mainly focus on i.v. administration, for which small vectors might be superior to mAb 

(Chapter III). Nevertheless, mAb remain pertinent in a locoregional context. Their size and 

slow diffusion rate in tissue are advantageous for retention and thus prolonged exposure of 

tumor cells to radiation. Additionally, administration via CED allows for a homogeneous 

distribution within the tissues. Our previous study with the 211At-9E7.4 targeting SDC1 

provided positive results in a mouse model of multiple myeloma following an i.v. injection. It 

halted tumor development with an optimal dose of 740 kBq13.  
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4. SDC1 as a therapeutic target for GB 
 

Choosing a specific therapeutic target for GB is a challenging matter. GB is often 

viewed as a moving target. This perception primarily stems from the cellular heterogeneity of 

the tumor, leading to varied expression of biomarkers. Moreover, these epitopes or tumor 

antigens change their expression over time, leading to an evolutive heterogeneity14. Targeting 

a protein that represents both the GB and its TME increases the probability of detecting it at 

different stages of tumor progression. In the case of locoregional TAT, it is not essential for 

100% of the tumor cells to express the target, as the primary efficacy criterion for radiotherapy 

is its local retention. Simultaneously targeting the TME, especially the ECM, can reach the 

invasive tumor front cells, potentially reducing recurrence rates. Indeed, beyond its structural 

role, the ECM maintains an active dialogue with the inflammatory and stem components of the 

TME15. 

SDC1 is overexpressed in GB and plays a frontline role in modulating the GB 

microenvironment through its interaction with the ECM. As previously discussed, SDC1 is an 

indicator of poor prognosis in GB16,17, primarily linked to proliferation, invasion, and 

migration18,19. More recent studies have highlighted its role in modulating the immune 

response20 and its contribution to radioresistance21. Furthermore, SDC1 operates at various 

cellular regulation levels. Initially at the membrane level, it has the ability to internalize and 

undergo nuclear translocation to induce EMT genes transcription, and also undergoes shedding 

to form various complexes22. Therefore, our hypothesis was that the targeting of SDC1 could 

help to disrupt the whole GB ecosystem.  

 

II. Evaluation of the TAT distribution in vivo 
 

1. Cerebral distribution 
 

Targeting SDC1 notably extended the cerebral retention of TAT compared to its 

radiolabeled control isotype. it is interesting to compare our results with other preclinical 

studies using 211At. Only one study by Borrmann et al. in 2013 used an orthotopic model but 

treated it with an i.v. injection of 211At TAT23. However, this study did not mention the 

peripheral distribution of TAT. Despite their frequent use in preclinical studies, subcutaneous 

GB grafts for biodistribution experiments do not accurately represent tumor accessibility since 

this model lacks a BBB/BTB. Ma et al., reported the best intratumoral retention observed in 
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preclinical studies, exceeding 130% ID/g, 30 min after injection in a subcutaneous murine GB. 

Yet, a swift elimination was with a drop to less than 20% in 2 h24. In our case, retention was 

still above 150% ID/g after 2 h, dropping below 20% after 21 h. Locoregional administration 

of 9E7.4 thus appears to be highly advantageous for extended TAT retention. 

Digital autoradiography showed that the radioconjugate was distributed locally around 

the injection site in the brain. In our approach, the striatum, right ventricle, and SVZ are exposed 

to 211At radiation. The NSCs from the SVZ are known to influence GSLCs, especially 

increasing their growth and spread25. Thus, their irradiation could potentially boost the efficacy 

of TAT. On the other hand, the hemisphere on the same side remained unaffected by radiation 

during the entire decay period of 211At.  
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tissue (%ID/g). Means and SD are depicted. (b) Biodistribution data of 211At-9E7.4 mAb in thyroid.
Three animals were sacrificed at each time point. As it is di�cult to collect the thyroid, the neck was
collected, counted and the data are expressed at the percentages of injected dose (%ID). Means and SD
are depicted. (c) Immunofluorescence analysis of liver section with 9E7.4 or isotype control IgG2a, 
labeling with Alexa Fluor 647(pink). Nuclei are visualized with DAPI (blue). Scans were performed
using a slide-scanner Nanozoomer (Hamamatsu®).

2.3. 211At-anti-mCD138 TAT in a Disseminated Murine MM

We have assessed the e�cacy of 211At-9E7.4 in a mouse model of MRD in MM. The experimental
model was obtained 10 days after intravenous injection of 106 5T33 MM cells in C57BL/KaLwRij mice.
At this time point, secreted immunoglobulins were undetectable and intramedullary lesions were
not yet detectable with PET imaging [21,24]. Then 370, 555, 740 or 1110 kBq of 211At-9E7.4 mAb was
injected intravenously into 16, 10, 17 and 6 mice, respectively. A group of 10 mice was injected with
isotype control IgG2a,  with an activity of 555 kBq (Figure 3). Sixteen mice received no treatment
and showed a median survival of 45 days. Mice were euthanized when they became moribund, when
a weight loss of more than 20% was measured, when signs of paraplegia were observed or when
extramedullary lesions were visible. Death causes are listed in Table 1. Studies demonstrated a highly
statistically significant survival benefit for the mice treated with 211At-9E7.4 at 555 kBq (p = 0.0006)
and 740 kBq (p < 0.0001). At 555 kBq, the median survival was increased by 34 days and at 740 kBq
11/17 mice survived for 160 days after engraftment. For treatments with 211At-9E7.4 at 370 kBq or
211At-isotype control at 555 kBq no significant benefit was observed. The highest activity with 1110
kBq of 211At-9E7.4 was clearly radiotoxic. All mice were euthanized after a drastic weight loss superior
to 20% or initial weight 14 days after radiopharmaceutical injection. Except for this weight loss, no
other macroscopic signs of toxicity have been revealed during the autopsy.
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using a slide-scanner Nanozoomer (Hamamatsu®).

2.3. 211At-anti-mCD138 TAT in a Disseminated Murine MM

We have assessed the e�cacy of 211At-9E7.4 in a mouse model of MRD in MM. The experimental
model was obtained 10 days after intravenous injection of 106 5T33 MM cells in C57BL/KaLwRij mice.
At this time point, secreted immunoglobulins were undetectable and intramedullary lesions were
not yet detectable with PET imaging [21,24]. Then 370, 555, 740 or 1110 kBq of 211At-9E7.4 mAb was
injected intravenously into 16, 10, 17 and 6 mice, respectively. A group of 10 mice was injected with
isotype control IgG2a,  with an activity of 555 kBq (Figure 3). Sixteen mice received no treatment
and showed a median survival of 45 days. Mice were euthanized when they became moribund, when
a weight loss of more than 20% was measured, when signs of paraplegia were observed or when
extramedullary lesions were visible. Death causes are listed in Table 1. Studies demonstrated a highly
statistically significant survival benefit for the mice treated with 211At-9E7.4 at 555 kBq (p = 0.0006)
and 740 kBq (p < 0.0001). At 555 kBq, the median survival was increased by 34 days and at 740 kBq
11/17 mice survived for 160 days after engraftment. For treatments with 211At-9E7.4 at 370 kBq or
211At-isotype control at 555 kBq no significant benefit was observed. The highest activity with 1110
kBq of 211At-9E7.4 was clearly radiotoxic. All mice were euthanized after a drastic weight loss superior
to 20% or initial weight 14 days after radiopharmaceutical injection. Except for this weight loss, no
other macroscopic signs of toxicity have been revealed during the autopsy.
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Fig. 1 | Intravenous versus intracranial biodistribution of radiolabeled 9E7.4. a Biodistribution of 211At-9E7.4 after 
an i.v. injection of 370kBq in a mouse model of multiple myeloma, from Gouard et al. 2020. b Biodistribution of 125I-9E7.4 
after brain intratumoral injection of 30kBq. 125I was used to mimic 211At behavior (from Chapter IV, Supplementary Fig. 1b). 
MM: multiple myeloma, GB: glioblastoma.  
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2. Global distribution 
 

The predominant cerebral retention observed in our study logically results in a less 

pronounced fixation of radioactivity in peripheral organs. For context, the biodistribution from 

an i.v. administration of 211At-9E7.4 in a mouse model of multiple myeloma (MM) showed a 

significantly higher binding in peripheral organs (Fig. 1). However, it is worth noting that this 

protocol did not present any notable systemic toxicity13. 

This comparison, of course, has its limitations due to the inherent nature of the two 

models. As SDC1 is expressed on the surface of MM cells26, an i.v. injection would naturally 

result in significant blood retention. Yet, this comparison provides insight into the potential off-

target organs of 211At, which are evidently more exposed in i.v. administration than in 

intracranial. In our study, the peripheral binding we observed suggests a compromised BBB in 

the C57BL/6JRj - GL261 tumor model. Notably, no related toxicity was observed during the 

survival study with the 200 and 100 kBq injections. This underscores the potential safety and 

specificity of our approach, even in the presence of a disrupted BBB. 

 

III. Therapeutic efficacy of the TAT 
 

1. Impact on the tumor 
 

McLendon et al. determined the lethal dose to 10% of animals (LD10) to be 46 MBq/g 

upon intravenous (IV) injection of 211At-labeled mAb in female mice27. This translates to 920 

kBq for a mouse weighing 20 g. Since our work represents the first study of intracranial delivery 

of 211At in mice, we postulated that a considerably reduced dose might still prove efficient 

compared to the doses used in preclinical studies, reaching until 1 MBq for i.v. injections, and 

1,11 MBq for i.t. injection, in subcutaneous GB models in mice (see Chapter III)24,28–31. We 

also needed an activity compatible with a 5 µL volume of injection as mentioned earlier. 

Consequently, we capped the maximum activity for our injections at 470 kBq and decided to 

test efficacy of 200 and 100 kBq. The latter is the lowest activity assessed in a survival study 

for 211At TAT.  

The 100 kBq allowed to reach a 70% survival rate. To the best of our knowledge, this 

is the first TAT study to produce long-term survivors. The only toxicity factor observed was 

dose-dependent radionecrosis, a response observed in 25% of patients after radiosurgery32. In 
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this regard, a comprehensive behavioral study should be undertaken to assess the impact of this 

radionecrosis and overall treatment on the motor and cognitive functions. The inherent 

variability in the lethality of different preclinical models makes direct efficacy comparisons 

delicate. Our model demonstrates a median survival of 34 days in the untreated group - 

consistent with the literature on GL261 cells33. In contrast, TAT studies in the literature report 

shorter median survival times (sometimes inferior to 15 days), often attributed to the use of 

subcutaneous GB models.  

The doubling of survival with TAT must be discussed taking into account the specific 

characteristics of the model, particularly the growth rate, and the invasive and infiltrative 

capacities of the GB cells. The GL261 model is far from being perfect to mirror human GB, but 

it recapitulates the main features of GB regarding its pro-tumoral microenvironment and 

infiltrative behavior.  

 

2. Effect on tumor dissemination 
 

Several studies have reported the emergence of secondary tumors when using the 

GL261 cell line, an observation consistent with our model34,35. The occurrence of secondary 

tumors in orthotopic GL261 grafts mirrors the multifocal nature of GB observed in patients, 

with some reports suggesting this occurrence in up to 20% of cases36. This observation in 

patients aligns with the concept of "whole brain tumor" regarding GB, where a subset of 

undetectable disseminated cells eventually triggers a recurrence. Surprisingly, aside from 

technical studies focused on stereotaxis, this phenomenon has never been addressed before in 

TRT preclinical studies. In our model, TAT appears to decrease the occurrence of these 

secondary tumors. The mechanisms involved in this reduction process clearly deserves further 

exploration. 

 

IV. Microenvironmental responses to TAT 
 
1. The vascular component 
 

In response to TAT, we observed vascular hypertrophy in the striatum 7 days post-

treatment injection. Currently, no data exists regarding the effects of 211At in this context. It 

remains uncertain whether these are pre-existing vessels that underwent morphological changes 

due to the treatment or if this is a result of angiogenesis. Similarly, it is ambiguous whether this 



CHAPTER V 

 195 

is a direct effect of a particles or a response of the TME to irradiation. While hypertrophy might 

suggest an adaptive or reactive change in response to the treatment, its direct impact on BBB 

permeability and function remains unclear. 

Studies examining the integrity of the BBB following 225Ac-based TAT have been 

previously conducted. As shown by Behling et al., the targeting of Ve-cadherin with a mAb 

reduces the number of epithelial cells and pericytes around blood vessels37. A general decrease 

in vascularity was also demonstrated using the same protocol38. Sattiraju et al. highlighted an 

increased BBB permeability when using 225Ac-labeled liposomes targeting integrin avb339. This 

increased permeability was evidenced by the areas of extravasation of injected Evans Blue dye 

following intravenous injection. Intriguingly, the extravasation also occurred in areas devoid of 

DNA DSBs induced by 225Ac, suggesting a bystander effect of a particles towards blood 

vessels. These properties need to be confirmed with 211At but could provide an efficient way to 

permeabilize BBB beforehand in view of systemic administration of repeated doses of TAT, or 

to facilitate the delivery of active therapeutic agents in the context of combination therapies. 

 

2. The immune component 
 

Our study stands out as the first to generate long-term survivors with TAT, pioneering 

the exploration of memory immune responses post-treatment. From the entire population of 

CD45+/CD3+ T cells, we observed an increase in CD4+ TCM and both CD4+ and CD8+ TEM in 

the blood of mice 4 days post-rechallenge. Interestingly, a similar increase in TCM was noted at 

d10 in control mice, but without the associated rise in TEM. These findings hint at antigenic 

recognition by APCs following TAT injection in both scenarios. However, only the mice treated 

with TAT were shielded against tumor growth upon regrafting. This suggests that the presence 

of TEM is a key factor to provide an efficient immune response. Exploring the presence of 

resident memory T cells (TRM) in the brain could represent a first step to understand the 

differential response of TEM between control and treated mice. On the other hand, the 

characterization of tumor-associated antigen (TAA) and a comparison with other murine lines 

with lower immunogenicity are essential to assess the role of adaptive immunity in the response 

to TAT and overall survival outcomes. Notably, the GL261 cells maintain a high expression of 

MHC-I, which likely enhances the adaptive immune response33. 
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V. Conclusions and perspectives 
 

 Locoregional 211At-9E7.4 TAT provides the advantage of tumor eradication by treating 

with minimal 211At activity and a low concentration of 9E7.4, with optimized retention of the 

therapeutic agent within the target site. However, several points need further investigations. 

Only a few data regarding adaptative immunity were obtained as immune reponses were 

recorded only 7 days after TAT injection.  

 Very few CD4+ and CD8+ T cells were detected locally, and only an increase in the 

infiltration of CD11b+ myeloid cells was observed in the striatum. Consequently, a 

comprehensive study of the post-TAT microenvironment appears essential. It would be 

particularly insightful to focus on the kinetics of the early local recruitment of immune 

populations, including APCs and T cells. Additionally, the roles of macrophages/microglia and 

neutrophils should be explored on a kinetic scale within a short timeframe after TAT 

administration. Moreover, the dynamics of DAMP release, cytokines and chemokines has been 

shown to be influenced by a emitters, notably in adenocarcinoma and MM mouse models, and 

should be addressed here as well40,41. The potential of scRNA-seq in different stages of GB 

progression should be considered in this context to assess the impact of 211At of the kinetics of 

GB and its TME.  

 Another crucial aspect is the preclinical evaluation of the post-TAT effect on the 

integrity of BBB. Mirroring studies achieved with 225Ac, A specific emphasis on pericytes, 

epithelial cells, and astrocytes should provide insights into BBB permeability and about the 

compatibility of locoregional TAT with the optimization of a systemic approach. 

 Lastly, the efficacy experiments conducted should be replicated using a less 

immunogenic mouse cell GB model. This would offer a clearer perspective on the impact on 

adaptive immunity and the establishment of immune memory with TAT. Then, extending the 

study to a xenograft model, preferably patient-derived orthotopic xenograft (PDOX), would be 

beneficial to evaluating the effects on human GB. To go even further, using a humanized mouse 

model would enable further characterization of immune responses, and allow to identify the 

TAAs recognized by adaptive immunity42,43. These models can be generated with peripheral 

blood mononuclear cells (PBMCs) derived from the same patient as the PDX to recapitulate a 

specific GB-immune interface44.  
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In the future, therapeutic combinations should be explored. Given the increasing 

evidence of the ability of a particles to induce an antitumoral immune response, TAT could 

potentially leverage the benefits of immunotherapy, which, to date, has not been successful in 

clinical settings for GB45. Dabagian et al. highlighted the advantages of combining 211At-MM4, 

which targets PARP, with an anti-PD-1 antibody. They demonstrated a notably prolonged 

survival when compared to monotherapy. Additionally, a significant increase in neutrophils 

was observed four weeks after administration29. As discussed in Chapter III, association with 

radiosensitizers through the targeting of DDR is also a promising avenue46. 

We should also explore new locoregional delivery methods to enhance retention, target 

all remaining cells, and prevent recurrence. Stereotaxic CED administration has proven to be 

efficient and offers several advantages over systemic injection. However, the challenge of 

accurately determining the real diffusion area of GB, whether surgically removed or not, 

remains. This issue is a significant cause of recurrence, making GB a tumor affecting the entire 

brain. Using hydrogels might be more adaptable to the two existing clinical scenarios, 

especially concerning the resection cavity (Fig. 2). These strategies are currently addressed to 

deliver molecules with chemoattractive properties or with the ability to induce differentiation 

of cancer stem-like cells47–49 Some studies have investigated loading radionuclides into 

hydrogels, with b--emitters like 131I, 188Re and 125I. To do so, a promising concept is the 

development of a system in which gelation of the polymer matrix is triggered by a NIR laser 

Numerous attempts (such as high-dose radiation, utilization of
radiosensitizers, chemoradiotherapy and immunoradiotherapy) have
been made to address the pitfalls of surgery and postoperative
radiotherapy (6–9). Unfortunately, it has been proved that high-
dose radiation can cause irreversible damages to the peritumoral
normal tissues and further cause various adverse side effect in patients
(10). Traditional radiosensitizers or chemotherapeutics could not
effectively penetrate into tumor tissues, which limits their
radiosensitization effects after systemic administration. In addition,
the systemic toxicity, gastrointestinal side effects, myelosuppression
and some other side effects can also be caused by such systemic
administration (11, 12). Immunoradiotherapy has attracted great
research interests in recent years. Tumor-associated antigens
(TAAs) can be released from radiation-induced apoptotic cancer
cells, which further cause antitumor immune responses (13). But
immune-related adverse events (irAEs), which produced by an
overactive immune response against healthy organs, can seriously
affect the therapeutic efficacy of immunoradiotherapy (14, 15). The
nonspecific distribution of conventional antitumor drugs inhibits the
effectiveness of postoperative radiotherapy, and the repeated systemic
administration make antitumor therapy more complicated. As a
result, local drug delivery systems, especially hydrogels, have been
explored to address these constraints, with the potential to
simultaneously improve antitumor efficacy and minimize systemic
side effects.

With the fast development of material engineering and molecular
biology, hydrogel has opened up new avenues for the treatment of
cancer. Hydrogel refers to a three-dimensional network gel
constituted with hydrophilic polymers, which has good
permeability and excellent biocompatibility. It can be directly
applied to the pathological tissue and has a wide range of
applications prospects in the field of biological medicine (16–22).
Hydrogel can be injected or sprayed into postoperative cavities, in situ
gel and circumvent the biological barrier, such as blood brain barrier
(23). Before reaching the tumor cells, the agents can be protected by
hydrogel from being affected by severe surroundings. And the plasma

half-life can be prolonged (24). To optimize therapy effectiveness and
minimize systemic drug distribution, hydrogel can be designed to
delivery drug to specific cells or tissues (25). In addition, the unique
porous structure of the hydrogel can optimize drug sustained release
properties. The controlled release properties can also be obtained by
utilizing an elaborated stimuli-responsive hydrogel delivery system
(26). The strategy of coadministration of different pharmaceuticals
can similarly be achieved by hydrogel delivery systems, which can
overcome drug resistance and boost therapeutic efficacy (27). From
the above information, we can see that the hydrogel-based drug
delivery systems have their unique advantages in postoperative
radiotherapy. Traditional drugs formulations (such as radioisotopes,
radiosensitizers, chemotherapeutic agents or immunomodulators)
were recorded by encapsulating into hydrogels and combing with
postoperative radiotherapy to inhibit tumor recurrence (Figure 1).
This local drug delivery method can avoid the nonspecific distribution
of traditional drugs, sensitize radiotherapy and achieve the
combination of multiple treatment modalities.

In this review, we first introduced the classification and biological
characteristics of hydrogels. Next, the applications of hydrogel-based
local drug delivery systems for postoperative radiotherapy were
further systematically investigated. Lastly, the prospects and
challenges of hydrogel-based local drug delivery systems in
postoperative radiotherapy were discussed.

2 The classification and
biocompatibility of hydrogels

2.1 Classifications of hydrogels

According to different standards, hydrogels are divided into
different classifications (Table 1).

a) Based on the original materials, it can be divided into natural
hydrogels and synthetic hydrogels (28). The former includes

FIGURE 1

Schematic illumination of the application of hydrogel-based local drug delivery systems for postoperative radiotherapy.

Xie et al. 10.3389/fonc.2023.1027254

Frontiers in Oncology frontiersin.org02

Fig. 2 | Hydrogel-based local drug delivery systems for post-operative radiotherapy. (From Xie et al., 2023)49 
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beam, allowing a prolonged retention time of the radionuclide. Additionally, hyperthermia 

generated by NIR-responsive photothermal hydrogels might enhance blood flow and 

subsequently mitigate the hypoxic environment within the tumor50,51. These strategies have 

been validated in preclinical models of breast cancer and have yet to be tested in a GB model. 

The question arises whether the higher energy emitted by a particles is compatible with this 

approach, especially when combined with another active molecule. The idea of a device that 

combines the chemoattractive capabilities for residual GB cells with targeted eradication by a 

radiation, all while enhancing adaptive immunity, could offer promising prospects for the future 

of GB therapy. 
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Glioblastoma (GB) is the most common and devastating form of brain cancer. Despite
conventional treatments, progression or recurrences are systematic. In recent years,
immunotherapies have emerged as an effective treatment in a number of cancers, leaving
the question of their usefulness also faced with the particular case of brain tumors. The
challenge here is major not only because the brain is the seat of our consciousness but
also because of its isolation by the blood-brain barrier and the presence of a unique
microenvironment that constitutes the central nervous system (CNS) with very specific
constituent or patrolling cells. Much of the microenvironment is made up of immune cells
or inflammation. Among these, tumor-associated macrophages (TAMs) are of significant
interest as they are often involved in facilitating tumor progression as well as the
development of resistance to standard therapies. In this review, the ubiquity of TAMs in
GB will be discussed while the specific case of microglia resident in the brain will be also
emphasized. In addition, the roles of TAMs as accomplices in the progression of GB and
resistance to treatment will be presented. Finally, clinical trials targeting TAMs as a means
of treating cancer will be discussed.

Keywords: glioblastoma, macrophages, microglia, resistance, radiation, crosstalks, tumor-associated macrophage

INTRODUCTION

Glioblastoma (GB) is the most frequent and malignant form of brain tumors. It is associated with a poor
prognosis and the median overall survival of GB patients is about 15 months after standard of care
(Stupp et al., 2009). Conventional treatments consist of maximal safe resection followed by external
radiotherapy and concomitant chemotherapy based on the use of the alkylating agent temozolomide
(TMZ) (Stupp et al., 2005). However, recurrence inevitably occurs. Currently, no therapy can completely
cure GB; current treatments can only marginally improve the overall survival of patients. The current
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strategy focuses mostly on targeting the tumor cells, failing to
account for other cellular constituents present in the tumor.
Hence, to cure and achieve a complete resection of GB tumors,
new therapeutic strategies are in great demand.

GB is a highly heterogeneous tumor, with diverse co-existing
cell types that include tumor cells, endothelial cells, fibroblasts
and different cell types from the immune system (Charles et al.,
2011; Quail and Joyce, 2017). A particular emphasis has been
placed on the immune system and especially on tumor-
associated macrophages (TAMs) as they are the dominant
infiltrating immune cell population in GB. These cells interact
with tumor cells to promote tumor growth and progression
(Feng et al., 2015). The host defense is composed of both innate
and adaptative immune cells and they are both involved in
cancer immune surveillance in early stages of the disease.
However, the tumor is able to escape this immune surveillance
during its development. At that point, the tumor can recruit
immune cells and change their original function to be one of its
accomplices (Brown et al., 2018; Finn, 2018). Tumor cells can
inhibit the cytotoxic function of the immune system by secreting
immunosuppressive factors or recruiting immunosuppressive
inflammatory cells. In relation to this, macrophages appear to
be a promising target to improve the effectiveness of actual
therapy as more and more information on their physiological
and pathological roles in the brain is being uncovered.

Macrophages are the most abundant infiltrating immune cells
in GB. Their function is different from their homolog in healthy
tissues (Nishie et al., 1999; Hussain et al., 2006). They are able to
discriminate the components of the self from the non-self
(microbes) but also the altered components of the self. When
recognizing the non-self or altered self-components, they can
begin their process of elimination. Macrophages located in the
tumor microenvironment are called tumor-associated
macrophages. Under normal physiological conditions,
macrophages are implicated in different processes such as
organ development, tissue homeostasis, host defense against
infections. These cells can also participate in metabolic
disorders, immune diseases and cancer development (Sica
et al., 2015). Normally, the myeloid population is the major
player of the innate immune system and represents up to 30% of
the tumor mass (Rossi et al., 1987; Graeber et al., 2002). Both the
activation status and the number of TAMs present in the tumor
microenvironment seem to influence GB prognosis (Komohara
et al., 2008; Lu-Emerson et al., 2013; Pyonteck et al., 2013).

Macrophages are characterized by their plasticity and
heterogeneity. They can be activated by different types of
stimuli (growth factors, cytokines, microbial products,
nucleotides) which in turn will affect macrophages differently
(Poh and Ernst, 2018). In vitro, the stimulation of macrophages
by interferon-g (IFN–g) and/or lipopolysaccharides (LPS)
induces the classical (M1) macrophage polarization (Nielsen
and Schmid, 2017). M1 macrophages favor the generation of T
helper Type 1 (Th1) lymphocytes. Classically activated
macrophages are good effectors to fight malignant tumors and

are associated with chronic inflammation (Atri et al., 2018).
Those macrophages are characterized by a high expression of IL-
12, IL-23, and a low expression of IL-10. They can also produce
high levels of pro-inflammatory cytokines IL-1b, tumor necrosis
factor a (TNF-a), and IL-6, and increase the expression of
inducible nitric oxide synthase (iNOS, NOSII) and reactive
oxygen species (ROS). Another known stimulus for M1
macrophages is GM-CSF (Granulocyte Macrophage Colony-
Stimulating Factor). It activates STAT5, which leads to the
activation of the PI3K-AKT pathway (Jeannin et al., 2018).

On the contrary, macrophages stimulated in vitro by IL-4
and/or IL-13 are called alternatively activated (M2) macrophages
(Murray et al., 2014). They are known effectors for promoting
Th2 lymphocytes. They are involved in angiogenesis and tumor
progression (Martinez and Gordon, 2014). This phenotype is
associated with a low expression of IL-12, IL-23, and a high
expression of IL-10 and TGF-b. Furthermore, M2 macrophages
also have high levels of arginase 1 (Arg1), mannose receptors and
scavenger receptors. M-CSF (Macrophage Colony-Stimulating
Factor) and IL-34 also induce a M2 phenotype. M-CSF and IL-34
express the same receptor named CD115 and activate the MAP
kinases signaling pathway (Jeannin et al., 2018).

Although the traditional M1/M2 dichotomy is useful for
understanding the functionality of TAMs, recent analyzes, in
particular of single-cell, revealed a spectrum of activation states
much more complex than these traditional polarizations (Locati
et al., 2020). Hence, macrophages in cancer are double-edged
swords exerting pro- and antitumor functions. More than a real
opposition, the M1/M2 signature crystallize a continuum of two
extremes capable of specific adaptations (eg., chromatin remodeling,
epigenetic marks, trained immunity, metabolic reprogramming,…)
to various loco-regional cues (eg., cytokines, chemokines, miRNA,
or immune checkpoints). In addition, proliferatingmonocytes could
persist in a state of self-renewal within tumor tissues, rather than
immediately differentiate into macrophages indicating a much
higher complexity (Lin et al., 2019). It should again be
emphasized that the M1 and M2 markers are distinct across
species and in particular between humans and mice (eg., in
human NOSII and Arg1 do not account for M1 and M2
macrophages, respectively) (Thomas and Mattila, 2014). In this
regard, there are no specific surface markers in humans except a
privileged panel of produced cytokines.

TAMs that are described in the tumor have in most cases pro-
tumorigenic functions that promote tumor growth, invasion,
angiogenesis, and tumor metastasis. In the GB microenvironment,
both TAMs derive from blood monocytes; some originate from
resident macrophages called microglia. Hence, macrophages appear
to be an attractive target for new therapeutic strategies (Noy and
Pollard, 2014).

The goal of this review is to discuss whether macrophages are
worth considering as therapeutic targets in GB and to summarize
the existing drugs targeting macrophages. In the second part of
this review, the presence of microglia in brain tumor will be
discussed. Then, the roles of TAMs in regulating the tumor
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development, progression, and the response to conventional
therapy will be reviewed. Finally, a survey of clinical trials
testing drugs against macrophages in cancer will be presented.

THE PRESENCE OF TAMS IN GB:
REALITY OR NOT?

The World Health Organization (WHO) classification of Central
Nervous System (CNS) tumors was restructured in 2016. Diagnoses
are based on bothmolecular alterations and histopathologic features
(integrated diagnosis) in contrast to the 2007 WHO classification
that only included histopathologic features (Louis et al., 2007; Louis
et al., 2016). The tumor is essentially defined by the characteristics of
the tumor cells that compose it, independently of the ecosystem in
which they evolve and which they could themselves modify. GB also
consists of many different noncancerous cells. The following cells
are known to define the tumor microenvironment: endothelial cells,
pericytes, fibroblasts, and immune cells in addition to cancer cells
(Quail and Joyce, 2013).

The tumor microenvironment is now emerging as an important
regulator of cancer progression (Quail and Joyce, 2017). Data from
the literature seem to suggest that distinct molecular profiles in GB
are correlated with differences in their microenvironment
(Zhernakova et al., 2018). Even if the WHO classification now
includes molecular data, no information on the tumor
microenvironment has been integrated so far. Despite the fact
that a solid tumor has never been seen without infiltrating
immune cells, current diagnostic guidelines often forget
voluntarily to take this into account. Although this does not
necessarily modify the diagnosis as it is perceived today, it could
be useful as regards the consideration of patient management and
escape or not to new well identified therapies. The presence of
TAMs has already been well described in GB (Saha et al., 2017;
Séhédic et al., 2017; Roesch et al., 2018). In a mouse model, TAMs
were observed in perivascular areas in the tumor and seem to be
implicated in gliomagenesis Feng et al., 2015. Interestingly, their
localization in the tumor appears to depend on their phenotypes
Schiffer et al., 2018. In 2012, a meta-analysis showed that a high
density of TAMs appeared to be associated with a poor prognosis in
head and neck, ovarian and breast cancer and with a better
prognosis in colorectal cancer (Zhang et al., 2012; Yuan et al.,
2017; Zhao et al., 2017). Further evidence revealed that human GB
display a mixed population of M1/M2 macrophages, and the ratio
M1:M2 correlated with survival in IDH1 R132H wild type GB
(Zeiner et al., 2018). In high-grade gliomas, M2 macrophages were
correlated with an unfavorable prognostic (Sørensen et al., 2018).
Caponegro et al. also described a correlation between the presence
of TAMs and a poorest prognosis in GB (Caponegro et al., 2018).
Furthermore, a study based on magnetic resonance imaging in GB
showed that highly aggressive tumors were also correlated with the
presence of TAMs (Zhou et al., 2018). Taking into account these
findings, the presence of TAMs in GB has been well proven.
Macrophages are important for the progression of GB and
assessing them may give more information on the prognosis.

MICROGLIA: THE RESIDENT
MACROPHAGES OF THE CNS

Microglia are the resident macrophages of the CNS and a healthy
CNS macrophage population consists only of resident microglia.
The blood brain barrier is impaired in neuropathological diseases,
thus allowing an infiltration of monocytes form peripheral blood. In
GB, both resident microglia and peripheral macrophages can be
detected (Lisi et al., 2017). It is crucial to understand their molecular
differences and their specific roles in the tumor. Resident microglia
and newly recruitedmacrophages, hereafter referred to as peripheral
macrophages have a distinct origin, as microglia arise from the yolk
sac primitive macrophages (Ginhoux et al., 2013; Ginhoux and
Guilliams, 2016). Although their origin differs, they share common
histologic characteristics. Differentiating between microglia and
peripheral macrophages is a difficult task, since they share
common surface markers. The name TAM may very well include
both resident microglia and monocyte-derived macrophages
(Szulzewsky et al., 2015; Kloepper et al., 2016). In order to
separate macrophages of hematopoietic origin from resident
microglia, CD45 was used in flow cytometry analysis (Badie et al.,
2000). However, resident microglia can upregulate their CD45
expression, making them indistinguishable from peripheral
macrophages (Müller et al., 2015). Using a genetically engineered
mouse, it was demonstrated that peripheral macrophages represent
the majority of TAMs in the tumor, and resident microglia form a
minor TAM population (Chen et al., 2017). Moreover, resident
microglia and peripheral macrophages have different preferential
localizations. Peripheral macrophages mostly appear in perivascular
areas while resident macrophages are usually located in the
peritumoral zone. A recent study showed that only a small batch
of common genes toward species (rat, mice, human) differentiates
GB-induced polarization of resident microglia (Walentynowicz
et al., 2018). Although many studies tried to decipher the origin
of TAMs in the tumor, no clear answer has yet been obtained.

Resident microglia are described to be involved in many
processes including tumor growth and progression
(Bryukhovetskiy et al., 2016; Matias et al., 2018). Microglia
were shown to contribute to the invasiveness of GB by
upregulating serpin family A member 3 (SERPINA3)
expression in GB stem cells (GSCs), that is implicated in the
remodeling of the extracellular matrix (Li et al., 2018). Resident
microglia were also shown to mediate GB progression and
stemness through the activation of interferon regulatory factor
7 (IRF7) that generates an inflammatory environment (Li Z.
et al., 2017). Resident microglia are also involved in antitumor
immunity processes through the expression of toll-like receptor 2
(TLR2) that down regulates their major histocompatibility
complex class II (MHCII) expression (Qian et al., 2018). In a
murine model, enhancer of zeste homolog 2 (EZH2) expression
in GB was shown to be involved in the polarization of TAMs
toward the M2 phenotype, creating an immune deficient
environment (Yin et al., 2017). A 6 cytokine-related gene
signature in resident microglia was shown to be sufficient to
predict survival and identify M2 cells in GB (Cai et al., 2015).
Both resident and peripheral macrophages are uniquely involved
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in supporting GB growth and progression. Hence, if we wish to
target TAMs as a mean to treat GB, we must first characterize
this population as peripheral macrophages and/or resident
microglia and counter their exact roles in GB initiation
and maintenance.

TUMOR-ASSOCIATED MACROPHAGES: A
PARTNER IN CRIME FOR TUMOR CELLS

A tumor can influence its microenvironment, and inversely. Thus,
the interactions between the tumor cells and the nearby non-tumor
cells are crucial to promote tumor angiogenesis, peripheral immune
tolerance, and tumor growth. As previously said, TAMs are highly
represented inside the tumor microenvironment. They are known
for their heterogeneous phenotype, which by simplification can be
with either anti-tumor (M1-like) or pro-tumor functions (M2-like).
As TAMs are highly plastic cells, they can program themselves into
both subpopulations. This gives them the ability to have different
functions in different tumor areas and at different times during the
tumor development.

Biology of the Tumor
Tumor Cells
The effect of TAMs on tumor cells is dependent on their type of
activation. The reprogrammed M1 TAMs suppress the growth of
GB cells (Li T. et al., 2017) meanwhile the M2 macrophages are
described to favor tumor growth and resistance to therapy (Xue
et al., 2017).

A macrophage with pro-tumor function in the tumor
microenvironment is a macrophage that enhances tumor
initiation and growth. TAMs and tumor cells actively
communicate with each other leading to tumor progression. Their
communication is mediated by interleukins IL-6 and IL-10 and
transforming growth factor-b1 (TGF-b1) (Wagner et al., 1999; Ye
et al., 2012). These cytokines activate signaling pathways in the
tumor cells that boost processes such as proliferation, invasion and
vascularization (Figure 1). TGF-b1 secretion by TAMs is
responsible for the recruitment of cancer stem-like cells (CSCs)
expressing CD133. Another consequence of TGF-b1 secretion is the
production of metalloproteinase 9 (MMP-9) by CSCs rendering
them highly invasive (Ye et al., 2012). TAMs are able to secrete
pleiotrophin (PTN); CSCs express the PTN receptor PTPRZ1 on
their cell surface. Once PTN is recognized by its receptor, it
stimulates CSCs maintenance and tumorigenic potential, and
therefore promotes GB growth (Shi et al., 2017). PTN- expressing
TAMs also express CD163 which is an M2 lineage marker. Wang
et al. showed that macrophages support GB invasiveness through
the CCL4-CCR5 axis that enhances MMP-9 expression (Wang
et al., 2016). Hypoxia was also shown to positively contribute to this
mechanism by enhancing CCL4 and CCR5 expression. An increase
of TAMs in a mouse model was shown to decrease the survival of
the mice associated with a reduction of CD8+ T cells (Chae et al.,
2015). On top of that, EGFR activation level correlates with TAM
infiltration. Consequently, EGF can induce an upregulation of
vascular cell adhesion molecule-1 (VCAM-1) that favors the

interaction between TAMs and tumor cells, which in turn
promoted tumor cell invasion (Zheng et al., 2013). MerTK
(Myeloid-Epithelial-Reproductive Tyrosine Kinase) is a tyrosine
kinase expressed by macrophages that suppresses the innate
immune response. Its expression was shown to be higher in
tumor recurrences. TAMs that express MerTK are also associated
with tumor growth and resistance to treatment, making MerTK a
potential therapeutic target (Wu et al., 2018). The molecular
crosstalk between tumor cells and macrophages appears to be
important for tumor growth and malignant progression.
Therefore, modulating the exchange between those two cell
populations may be therapeutically relevant.

Angiogenesis
GB is a highly hypoxic tumor with prominent necrotic regions due
to the rapid proliferation of GB cells. The cell composition of the
tumor core is quite different from that of the peritumoral area. The
tumor core is more hypoxic, contains more CD163+ TAMs and has
a higher expression of VEGF-A (Tamura et al., 2018) (a major
factor for vascularization). A downstream effect of hypoxia and
necrosis is an increase in vascular proliferation. In the tumor
microenvironment, TAMs are located near blood vessels. In mice,
endothelial cells produce IL-6 that induces the expression of Arg1
and thus the alternative phenotype in TAMs (Wang et al., 2018).
This alternative activation is mediated by the hypoxia-inducible
factor-2a (HIF-2a).Wang et al. targeted IL-6 expression in amouse
model and improved the survival of GB-bearing mice. VEGF was
shown to be implicated in promoting pro-angiogenic functions of
TAMs in a GB rodent model (Turkowski et al., 2018). Gliomas
overexpressing VEGF were correlated with an increase in the
expression of MHCI and MHCII on macrophages. Endothelial
cells and TAMs interaction leads to angiogenesis through the
expression of TGF-b1 and integrin avb3, which induces the
activation of the SRC-PI3K-YAP signaling (Cui et al., 2018)
(Figure 1). The pro-angiogenic properties of TAMs are mediated
by the protein CRCR1. This protein activates the PDGFB–PDGFRb
pathways and promotes pericytes recruitment, migration, and
tumor angiogenesis (Zhu C. et al., 2017). In sum, TAMs have a
proangiogenic function in GB. Thus, targeting macrophages may
improve the response to anti-angiogenic therapies (Deng et al.,
2017; Gagner et al., 2017). Indeed, blocking the macrophages
recruitment by combining the chemokine SDF-1 and VEGF
inhibitors was more effective and decreased tumor invasiveness
and vascular density.

Immune Environment
Each tumor is characterized by an immune suppressive
environment that forms one hallmark of cancer (Hanahan
et al., 2011). This is in part due to the presence of TAMs in
tumors but also to a complex regulation of the expression of
immune and inflammatory genes by the global tumor ecosystem.
It was found that IKKb levels were reduced in GB; consequently,
the NF-kB expression was decreased leading to defective
immune and inflammatory gene expression in macrophages
(Mieczkowski et al., 2015). NF-kB signaling is required for
macrophage polarization and immune suppression in GB,
making NF-kB a suitable target to improve overall survival in
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GB (Achyut et al., 2017). TAMs strongly inhibit the proliferation
of antitumor T cells in the tumor microenvironment (Kumar
et al., 2017). It was shown that an inhibition of transcription
factors such as NF-kB, a mediator of M2 macrophages
polarization, led to slower tumor growth and prolonged
survival in a mouse model. It also decreased T cell induction
which made the tumor less immunosuppressive (Barberi et al.,
2018). Targeting NF-kB may improve the effectiveness of the
current standard therapies.

TAMs express IL-4Ra that promotes immunosuppression. In
mice, they also express Arg1 that is critical for T cell inhibition
(Kohanbash et al., 2013). Chemokine ligand 22 (CCL22) is
produced by TAMs and its expression is associated with a low

survival rate and CD4+ T cell activation (Zhou et al., 2015). One
of the key regulators of the immunosuppressive environment in
GB is fibrinogen-like protein 2 (FGL2). Its expression was
correlated with a higher number of CD4+ T cells and M2
macrophages (Latha et al., 2018). The colony stimulating factor
receptor (CSF1R) is required for the recruitment of TAMs in the
tumor microenvironment. It is also involved in promoting the
polarization of macrophages toward the M2 phenotype.
Inhibition of CSF1R attenuates the recruitment of TAMs and
also increases the CD8+ T cell infiltration (Strachan et al., 2013)
(Figure 1). Another regulator of the immune microenvironment
is the receptor tyrosine kinase AXL that is expressed in TAMs
(Sadahiro et al., 2018). Its inhibition in a GB mouse model was

FIGURE 1 | Tumor-associated macrophage activities in glioblastoma progression. This figure shows the pro-tumoral (angiogenesis, invasion, proliferation and
immunosuppressive properties) and anti-tumor (Tumor cell killing, Th1 response and anti-tumor activity) activities of tumor-associated macrophages (TAMs) in brain
tumors. (1) Monocytes are recruited to the tumor where they differentiate into macrophages. The tumor is involved in their programming as it sends different signals
to induce a specific phenotype in favor of the tumor. (2) TAMs that are recruited can either polarize into a continuum of macrophage states that are described with
two extremes: an M1 (2a) or an M2 (2b) phenotype depending on the signal they receive (IFNg/LPS/GM-CSF for M1 and IL-4/IL-13/M-CSF for M2) Pyonteck et al.,
2013; Kast et al., 2017; Roesch et al., 2018. (3) M1-like TAMs are macrophages with anti-tumor properties such as tumor cell kill abilities mediated by the
production of NO, ROS, IFNg Kennedy et al., 2013; Leblond et al., 2017. They also mediate the Th1 response in the tumor through the activation of Th helper cells
by secreting CXCL9, CXCL10, IL-12 Poon et al., 2017. Finally, they also display an anti-tumor activity by activating cytotoxic T cells via TNFa and IL1b. (4) M2-like
TAMs have pro tumoral properties such as enhancing the invasive and proliferative ability of GB cells by secreting CSF-1, MMPs, Pyk2, TGFbIIR, TGFb, IL-6, IL-10,
and EGF. They can also mediate the immunosuppressive environment through the expression of IL-6, MIC-1, MIF, STAT3, and TGFb. Finally, TAMs also regulate
angiogenesis through the following factors: IL-6, MIC-1, MIF, STAT3, and TGFb. (5) The tumor controls the polarization of TAMs through the production of soluble
factors (CCL2/CCL7/SDF-1/CX3CL1/VEGF/POSTN/Ecrg4) Feng et al., 2015; Hambardzumyan et al., 2015; Lee et al., 2015; Zhou et al., 2015; Chang et al., 2016;
Chen and Hambardzumyan, 2018; Turkowski et al., 2018 and microvesicle factors (EGFRvIII, miR451, miR21) Van Der Vos et al., 2016; Manda et al., 2018. (6) The
tumor is also able to send signals to recruit new peripherical macrophages. (7) Environmental cues including radiotherapy, chemotherapy, O2 level, pH are involved in
the programing and functions of macrophages Hardee et al., 2012. (8) Healthy brain cells and TAMs probably interact and are involved in the programming of TAMs.
Their interaction has yet to be studied. CCL2, C-C motif chemokine ligand 2; CCL7, C-C motif chemokine ligand 7; CSF-1, colony stimulating factor 1; CXCL2, C-
X3-C motif chemokine ligand 2; CX3CL1, C-X3- C motif chemokine ligand 1; Ecrg4, esophageal cancer-related gene 4; EGF, endothelial growth fact; IGFBP1,
insulin-like growth factor-binding protein 1; IL-1b, interleukin-1 beta; IL-10, interleukin-10; IL-6, interleukin-6; MIC-1, macrophage inhibitory cytokine 1; MIF,
macrophage migration inhibitory factor; MMPs, matrix metalloproteinases; POSTN, periostin; Pyk2, proline rich tyrosine kinase 2; SDF-1, stromal cell-derived factor
1; STAT3, signal transducer and activator of transcription3; TGF-b, transforming growth factor-beta; TGFbIIR, TGF-beta type II receptor; VEGF, vascular endothelial
growth factor; bFGF, basic fibroblast growth factor.
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associated with prolonged survival. Furthermore, myeloid
derived suppressor cells (MDSC) such as TAMs have been
described to be activated by GB CSCs through MIF expression,
having then an immunosuppressive activity on CD8+ T cells,
notably through the Arg1 expression in mice models (Flavahan
et al., 2016). Overall, targeting TAMs may disturb the
immunosuppressive environment of the tumor, allowing the
immune cells to function more effectively.

Loco-Regional Cues for Metabolic Reprogramming
A peculiarity of GB is that it affects the seat of our consciousness, the
CNS, whose immune status remains privileged due notably to the
presence of the blood-brain barrier (BBB) and of unique resident
cells (microglia, astrocytes, endothelial cells) (cf. Box 1). Although a
precise control of the inflammatory or immune infiltrate is realized,
the physiological and anatomical characteristics of the CNS is fed by
the field of new recent knowledge, such as the identification of direct
vascular channels connecting skull bone marrow to the brain
surface enabling myeloid cell migration (Herisson et al., 2018),
and make evolve our representation of its immune status. It should
be stressed, however, that depending on the therapeutic strategy
envisaged, the drug used can have a distinct impact when used
according to a peripheral or loco-regional mode of administration
(cf. Tables 1–3). Hence, if TAMs influence immune and adaptive
signaling, reciprocally, loco-regional metabolic signals produced in
tumor environments (glucose, glutamine, cystéine, lactate, IDO,
adenosine, itaconic acid, acidic pH) impacted the polarization fate
and immunosuppressive functions of TAMs, thus possibly resulting
in immune tolerance and treatment resistance in GB (for review, see
Won et al., 2019). Hence, tolerance can be reversed at both the
promoters and enhancers of tolerized genes involved in metabolism
and lipid biosynthesis, leading to transcriptional programs that
rewired the intracellular signaling of innate immune cells thus
increasing the capability of macrophages to respond to
stimulation (for review see, Locati et al., 2020). In line with this, it
has been observed that inhibition of fatty acid synthase (FAS), which
catalyzes the synthesis of long-chain fatty acids, prevents the pro-
inflammatory response in macrophages (Carroll et al., 2018).
Interestingly, using metabolic profiling, it was found that exposure
to b-amyloid triggers acute reactive microglial inflammation
accompanied by metabolic reprogramming from oxidative
phosphorylation to glycolysis while metabolic boosting with

recombinant interferon-g treatment reversed the defective
glycolytic metabolism and inflammatory functions of microglia
(Baik et al., 2019). Such microglial metabolic switch may also
have a strong impact on GB development.

TAMs and Therapeutics
TAMs and Surgical Resection
Surgical resection is the current standard treatment for GB.
However, limited data on the biological consequences of
surgical resection have been published so far. It was reported
that surgical resection increases proliferation and angiogenesis
(Kong et al., 2010). After surgical resection, TAMs were shown to
express higher levels of CD163, a M2 macrophage marker, and
their localization was close to the site of recurrence (Zhu H. et al.,
2017). Both TAMs and oligodendrocyte progenitor cells are
localized near the tumor periphery. They enhance the stemness
and chemo-radioresistance in GB cells (Hide et al., 2018). It was
shown that tumor phenotypes associated with telomerase
overexpression and TAMs infiltration were more complicated
to resect, probably due to improvement of GB cell migratory
capabilities (Hung et al., 2016). The inability to surgically remove
the whole tumor contributes to the poor prognosis and
recurrence of GB.

TAMs and Radiotherapy
Macrophages inside the tumor mass are involved in multiple
phenomena that include radiation resistance. Radiation therapy
itself induces changes in the tumor microenvironment and renders
the tumor more aggressive. In fact, recurrence mostly appears near
the irradiated area (Gupta and Burns, 2018). Radiotherapy induces a
rapid inflammatory response leading to TAMs recruitment. This
inflammatory response is correlated with a short survival time
(Tabatabaei et al., 2017). TAMs participate in the induction of GB
cell differentiation to a mesenchymal state through NF-kB
production, an event that correlated with radiation resistance
(Bhat et al., 2013). Recently, Leblond et al. showed that M1
macrophages are more sensitive to radiation than M2
macrophages (Leblond et al., 2017). The proportion of M2
macrophages in irradiated tissues is thus increased. Moreover, M2
macrophages were described to contribute to relapses in oral cancer
by promoting vascularization after radiation treatment (Okubo

BOX 1 | Non-cancerous brain cells alter macrophages polarization and functions.

Tumor cells cooperate with its surroundings such as the tumor microenvironment. The brain is also the home of specific cell types with their own characteristics and
functions; although those cells are not part of the tumor, they can also interact with it. The interaction between cells residing in the brain and TAMs are very poorly
understood in cancer but has been studied in depth in other pathologies, which will be quickly reviewed in this box. Both neurons and astrocytes can produce CX3CL1R,
the receptor for CX3CL1 found on microglia Matias et al., 2018. CX3CL1 promotes TAM recruitment and increases the expression of MMPs and thus invasive properties.
When an ischaemic stroke happens, ischaemic neurons are able to prime microglia toward an M1 phenotype during an injury Hu et al., 2012. Another cell type is
oligodendrocyte which accounts for the formation of the myelin sheath in the CNS. It was found that macrophages and oligodendrocyte progenitor cells colocalized near
the tumor border. At this site of colocalization, those cells induced stemness and resistance to therapy in GB cells Hide et al., 2018. In the peripheral nervous system,
Schwann cells are the cells responsible for myelin sheath formation. Schwann cells were shown to promote cancer invasion by direct contact with tumor cells Deborde
et al., 2016. The mechanism involved in this process remains unclear. In neurofibromas (peripheral nerve sheath tumors due to NF1 loss in Schwann cells), macrophages
were shown to be abundant Stratton et al., 2018. In this case, Schwann cells and macrophages communicate with each other and are involved in the regulation of
inflammatory gene expression. As Schwann cells and oligodendrocytes share a common function in normal tissue, it may be interesting to further study the involvement of
oligodendrocytes in GB. Non-cancerous cells of the CNS and peripheral nervous system interact with macrophages and lead them to polarize toward a specific
phenotype.
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et al., 2016). In a radioresistant GB model, the total RNA was
sequenced and it was found that there was a positive regulation of
macrophage chemotaxis following radiation (Doan et al., 2018).
Also, in a murine gliomamodel, an increase in SDF-1a at the tumor
invasion front after radiotherapy was correlated with the
recruitment of TAMs and radioresistance (Wang et al., 2013).
Irradiation of the tumor leads to the alteration of multiple
pathways. In particular, it modifies the macrophage activation
type, rendering them more supportive of tumor growth.

TAMs and Chemotherapy
The standard treatment of GB affects the molecular profiles of
the tumor. Temozolomide (TMZ) is commonly used to treat GB.
TAMs that express CD74 were described to be involved in TMZ
resistance by inducing AKT and Erk1/2 activation in tumor cells
(Kitange et al., 2010). Gene expression profiling showed that the
tumor that recurred after treatment did not match the primary
treatment-naïve tumor. After treatment, the polarization toward
the M2 phenotype was upregulated (Hudson et al., 2018). Tumor
protein 53 (p53) is involved in promoting the development of the
tumor. GB with the p53 isoform D133p53b had increased
CD163+ macrophages (Kazantseva et al., 2018). Moreover,
D133p53b supports cancer stemness (Arsic et al., 2015). In
addition, it is correlated with resistance to TMZ (Kazantseva
et al., 2018). GB is able to evade the toxic effects of chemotherapy,
but it can equally evade the action of the immune system. Hence,
a cocktail of multiple drugs targeting different pathways may

provide the most effective therapy for GB and improve
overall survival.

CURRENT THERAPIES TARGETING
TUMOR-ASSOCIATED MACROPHAGES IN
CANCER

Targeting the Recruitment of TAMs
One strategy to target TAMs is to block their recruitment to the
tumor site. It can be achieved by targeting the chemokine ligand
2 (CCL2) - chemokine receptor 2 (CCR2) axis. CCL2 is an
inflammatory chemokine that can recruit macrophages and Treg
lymphocytes leading to an immunosuppressive environment
(Chang et al., 2016). To achieve this, a human IgG1k mAb
called Carlumab was developed. A survey of clinical trials
involving the CCL2-CCR2 axis is provided in Table 1.

A phase 2 study showed that this antibody was well-tolerated.
However, it did not block the CCL2-CCR2 axis or have any
antitumor activity as a single agent in metastatic prostate cancer
(Pienta et al., 2013) (NCT00992186). When Carlumab was
combined with four other chemotherapies, the treatment was
still well tolerated but the suppression of CCL2-CCR2 axis
remained elusive (Brana et al., 2015) (NCT01204996). In other
studies, Carlumab was shown to transiently suppress CCL2 and
had a preliminary antitumor activity (Sandhu et al., 2013)
(NCT00537368, 2007). PF-04136309 combined with

TABLE 1 | Clinical trials targeting the recruitment of macrophages.

Target Drugs Inhibitor
type

Clinical trial Tumor type Benefit

CCL2-CCR2
axis

Carlumab mAb NCT00992186 (2009) (completed,
has results)
NCT01204996 (2010) (Completed)
NCT00537368 (2007) (Completed)

Metastatic Castrate-Resistant Prostate
Cancer
Solid Tumors
Solid Tumors

Information about the disease’s
progression

PF-04136309 Small
molecule

NCT02732938 (2016) (Terminated) Metastatic Pancreatic Cancer Unknown

MLN1202 mAb NCT01015560 (2009) (Completed
with results)

Bone Metastases Well tolerated

CCX872-B Small
molecule

NCT03778879 (2018) (Not yet
recruiting)

Pancreatic Adenocarcinoma Unknown

BMS-813160 Small
molecule

NCT03496662 (2018) (Recruiting) Pancreatic Ductal Adenocarcinoma
(PDAC)

Unknown

CD47 Hu5F9-G4 mAb NCT02953509 (2016) (Recruiting)
NCT03248479 (2017) (Recruiting)
NCT02216409 (2014) (Active, not
recruiting)
NCT02678338 (2016) (Recruiting)
NCT02953782 (2016) (Recruiting)

B-cell Non-Hodgkin’s Lymphoma
Haematological Malignancies
Haematological Malignancies

Haematological Malignancies
Colorectal Cancer

Unknown

TTI-621 Small
molecule

NCT03530683 (2018) (Recruiting)
NCT02663518 (2016) (Recruiting)

Refractory Lymphoma, Myeloma
Hematologic Malignancies and Selected
Solid Tumors

Unknown

ALX148 Small
molecule

NCT03013218 (2017) (Recruiting) Solid Tumors and Lymphoma Unknown

SRF231 mAb NCT03512340 (2018) (Recruiting) Solid and Hematologic Cancers Unknown
CC-90002 mAb NCT02367196 (2015) (Recruiting) Solid and Hematologic Cancers Unknown
IBI188 mAb NCT03763149 (2018) (Not yet

recruiting)
NCT03717103 (2018) (Recruiting)

Malignant Tumors and Lymphomas
Advanced Malignancies

Unknown
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chemotherapy was also shown to be well-tolerated and led to a
tumor response (Nywening et al., 2016).

Reprogramming of TAMs Toward an
Antitumoral Phenotype
As mentioned previously, TAMs can exist in different functional
states between the M1 and M2 phenotypes, making them highly
heterogeneous and plastic cells (Biswas and Mantovani, 2010).
Thus, they can be either pro- or anti-tumoral (Wynn et al., 2013).

Reprogramming the TAMs toward a tumoricidal or a tumor-
inhibition state may be a plausible therapeutic strategy. Different
strategies are being studied in the clinic. These are reported in
Table 2 (please refer also to Box 2).

Inhibition of CD47
Inhibition of CD47 is a strategy that can facilitate phagocytosis of
tumor cells by macrophages. Indeed, CD47 expressed by cancer
cells inhibits phagocytosis through its interaction with signal

TABLE 2 | Clinical trials with toll-like receptor (TLR) agonists for macrophages reprogramming.

Target Drugs Inhibitor
type

Clinical trial Tumor type Benefit

CD40 APX005M mAb NCT03502330 (2018) (Recruiting)
NCT02482168 (2015) (Active, not
recruiting)
NCT03123783 (2017) (Recruiting)
NCT03389802 (2018) (Recruiting)
NCT03165994 (2017) (Recruiting)

Non-small Cell Lung Cancer, Renal Cell Carcinoma
Solid tumors
Non-small Cell Lung Cancer or Metastatic Melanoma
Pediatric CNS Tumors
Resectable Esophageal and Gastroesophageal Junction Cancers

Unknown

Selicrelumab mAb NCT02304393 (2014) (Recruiting) Locally Advanced and/or Metastatic Solid Tumors Unknown
ChiLob 7/4 mAb NCT01561911 (2012) (Completed) Non-Hodgkin Lymphoma Unknown
CP-870,893 mAb NCT00607048 (Completed) Non-Hodgkin Lymphoma Unknown
CDX-1140 Small

molecule
NCT03329950 (Recruiting) Advanced Malignancies Unknown

TLR7 LHC165 Small
molecule

NCT03301896 (2017) (Recruiting) Advanced Malignancies Unknown

Imiquimod Small
molecule

NCT01421017 (2011) (Completed)
NCT00899574 (2009) (Completed with
results)

Breast Cancer With Skin Metastases
Chest Wall Recurrence or Skin Metastases

Well tolerated.
Partial response:
tumor
regression and
immune
response

NKTR-262 Small
molecule

NCT03435640 (2018) (Recruiting) Locally Advanced or Metastatic Solid Tumor Malignancies Unknown

IMO-8400 Small
molecule

NCT02252146, (Completed with
results)

Diffuse Large B Cell Lymphoma (DLBCL) Lack of efficacy

Resiquimod Small
molecule

NCT00821652 (2009) (Completed) Surgically resected Stage IIB, IIC, Stage III or Stage IV (AJCC criteria)
Melanoma

Unknown

DSP-0509 Small
molecule

NCT03416335 (2018) (Recruiting) Advanced Solid Tumors Unknown

TLR8 VTX-2337 Small
molecule

NCT02431559 (2015) (Completed)
NCT01294293, (Completed)
NCT01334177, (Completed)
NCT02452697 (2015) (Recruiting)

Platinum-Resistant Ovarian Cancer
Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer
Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer
Myeloid and Lymphoid Malignancies

Unknown

TLR9 EMD
1201081

Small
molecule

NCT01040832 (2009) (Completed with
results)

Recurrent or Metastatic Squamous Cell Carcinoma of the Head and
Neck

EMD 1201081
was well
tolerated in
combination
with cetuximab,
but no clinical
efficacy was
observed Ruzsa
et al., 2014

DUK-CPG-
001

Small
molecule

NCT02452697 (2015) (Recruiting) Myeloid and Lymphoid Malignancies Unknown

IMO-2055 Small
molecule

NCT00719199 (2008) (Completed)
NCT00633529 (2008) (Completed)

Colorectal Cancer
NSCLC

Unknown

CMP-001 Small
molecule

NCT03618641 (2018) (Recruiting)

NCT03507699 (2018) (Recruiting)

Stage IIIB/C/D Melanoma Patients With Clinically Apparent Lymph
Node Disease
Metastatic Colorectal Cancer

Unknown

SD-101 Small
molecule

NCT03007732 (2017) (Recruiting)
NCT03410901 (Recruiting)
NCT02927964 (2016) (Recruiting)
NCT02254772 (2014) (Completed with
results)

Hormone-Naïve Oligometastatic Prostate Cancer
Low-Grade B-Cell Non-Hodgkin Lymphoma
Refractory Grade 1-3A Follicular Lymphoma
Recurrent Low-Grade B-Cell Lymphoma

Well tolerated
but progression
of the tumor
was observed
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regulatory protein-a (SIRPa) expressed by macrophages thus
sending out a “do not eat me” signal. Alternatively, CD47 can
serve as a receptor for thrombospondin 1 (TSP1) to trigger
specific signaling. Many tumors are described to overexpress
CD47 (Zhang et al., 2015; Zhao et al., 2016). Inhibition of CD47
in a preclinical model showed a modification of microglia
phenotypes in GB that was correlated with better survival
(Hutter et al., 2019). Furthermore, in vivo, the anti-CD47
treatment is able to shift the macrophage phenotype toward an
M1 type (Zhang et al., 2016) and induces anti-tumor effects (Li F.
et al., 2017). The preclinical study of Hu5F9-G4 in pediatric
malignant primary brain model demonstrated that this CD47
inhibitor is a safe and effective therapeutic agent (Gholamin
et al., 2017). Hu5F9-G4 was also shown to be well tolerated in a

clinical trial (Sikic et al., 2018) (NCT02216409, Table 2). TTI-
621, a small molecule inhibiting CD47, is being investigated in an
ongoing clinical trial. Interestingly, however, it has recently been
observed that CD47 inhibition may result in cancer cell
resistance to chemotherapy through escape to senescence
(Guillon et al., 2019).

Activation of CD40
CD40 is expressed on monocytes, macrophages, dendritic cells,
and B cells. It is a receptor that belongs to the TNF receptor
superfamily. Many clinical trials targeting CD40 notably through
agonistic or activating antibodies are ongoing (Table 3). In a
mouse model, targeting CD40 was useful in producing antitumor
effects that greatly improved the overall survival (Shoji et al.,

TABLE 3 | Clinical trials using drugs to deplete macrophages from the tumor’s microenvironment.

Target Drugs Inhibitor type Clinical trial Benefit

CSF1R Pexidartinib Small molecule NCT02777710 (2016) (Recruiting) Metastatic/Advanced Pancreatic or Colorectal Cancers Unknown
DCC-3014 Small molecule NCT03069469 (2017) (Recruiting) Advanced Malignancies Unknown
LY3022855 mAb NCT03153410 (2017) (Recruiting)

NCT02718911 (2016)
(Completed)
NCT03101254 (2017) (Recruiting)

Pancreas Adenocarcinoma
Advanced Solid Tumors
Melanoma

Unknown

PLX3397 Small molecule NCT01004861 (2009)
(Completed)
NCT02452424 (2015)
(Completed)
NCT01349036 (2011)
(Completed)
NCT02371369 (2015) (Active, not
recruiting)

Solid Tumors
Melanoma and Other Solid Tumors
Recurrent Glioblastoma
Pigmented Villonodular Synovitis (PVNS) or Giant Cell
Tumor of the Tendon Sheath (GCT-TS)

Unknown

MCS110 Small molecule NCT03694977 (2018) (Not yet
recruiting)

Gastric Cancer Unknown

IMC-CS4 Small molecule NCT01346358 (2011)
(Completed)

Advanced Solid Tumors Unknown

Cabiralizumab mAb NCT03697564 (2018) (Not yet
recruiting)
NCT02526017 (2015) (Active, not
recruiting)

Stage IV Pancreatic Cancer Unknown

SNDX-6352 mAb NCT03238027 (2017) (Recruiting) Solid Tumors Unknown
JNJ-
40346527

Small molecule NCT03557970 (2018) (Not yet
recruiting)

Acute Myeloid Leukemia Unknown

ARRY-382 Small molecule NCT02880371, (Recruiting)
NCT01316822 (2011)
(Completed)

Acute Myeloid Leukemia
Advanced or Metastatic Cancers

Unknown

BLZ945 Small molecule NCT02829723 (2016) (Recruiting) Advanced Solid Tumors Unknown
RO5509554 Small molecule NCT01494688 (2011)

(Completed)
Advanced Solid Tumors Unknown

NA Clodronate Bisphosphonate NCT01198457 (2010)
(Completed)
NCT00009945 (2010) (2003)
(Completed with results)
NCT00909142 (2009)
(Completed)
NCT00003232 (2004)
(Completed)
NCT00127205 (2005) (Active, not
recruiting)

Breast Neoplasms, Prostatic Neoplasms, Multiple Myeloma
Stage I or Stage II Breast Cancer

Bone neoplasms
Hormone Refractory Metastatic Prostate Cancer
Primary Breast Cancer

Treatment with clodronate
suggests a benefit in
recurrence rates for

postmenopausal women
with breast cancer

Paterson et al., 2012

Zoledronate Bisphosphonate NCT00301873 (2006)
(Completed, has results)
NCT00885326 (2009) (Active, not
recruiting)
NCT01345019 (2011), (Active,
not recruiting)

Primary Malignant Glioma

High-Risk Neuroblastoma

Multiple Myeloma
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2016). Targeting CD40 modulated the immune cell number and
led to an antitumor response (Vonderheide et al., 2013; Nowak
et al., 2015). In a mouse model, the combination of CSF1R
inhibition and CD40 activation induced the reprogramming of
TAMs (Hoves et al., 2018), thus allowing the protective response
of T cells (Perry et al., 2018).

TLR Agonist
Toll-like receptors (TLRs) are normally activated by microbial
moieties (including nucleic acids) allowing macrophages to
acquire a M1 phenotype. Using a TLR agonist to reprogram
macrophages was thus of interest in cancer treatment (Feng et al.,
2019). Numerous TLR7 ligands, TLR9 ligands, and one TLR8
ligand have been tested for their antitumoral properties in
clinical trials (Table 2). For example, the TLR7 agonist
Imiquimod has been tested. It was well tolerated and
associated to tumor regression and increased lymphocytic
infiltrate (Adams et al., 2013) (NCT00899574). The TLR7
agonist 852A was also well tolerated with reversible side effects
(Dudek et al., 2007). IMO-2055, a TLR9 agonist, demonstrated a
possible antitumor activity when combined with erlotinib and
bevacizumab (Smith et al., 2014) (NCT00633529).

Depletion of TAMs
The activation of TAMs is dependent on the CSF1R signaling
pathway. Therefore, CSF1R may be a way to target macrophages
specifically. Many small molecules and antibodies were
developed against CSF1R, and numerous clinical trials have
been completed or are ongoing (Table 3). PLX3397 is a small
molecule targeting CSF1R, it reduced the number of TAMs in a
preclinical GB model and showed an antitumor activity
(Coniglio and Segall, 2013; Yan et al., 2017). In clinical studies,
PLX3397 was also well tolerated and showed anti-tumor
responses after treatment (Tap et al., 2015) (NCT01004861).
PLX3397 was also well tolerated but showed no efficacy in GB
(Butowski et al., 2016) (NCT01349036). BLZ945, another small
molecule inhibitor of CSF1R, can alter the polarization of TAMs
in glioma (Pyonteck et al., 2013). It is currently being assessed in
a clinical trial.

Another way to deplete the number of TAMs in the tumor is
to use bisphosphonates. They are described for both direct and
indirect anti-tumor effects such as induction of tumor apoptosis
and inhibition of cell adhesion. More importantly, they alter the
behavior of TAMs (Van Acker et al., 2016). Bisphosphonates are

divided in two classes depending on their structure and
mechanism of action. Clodronate belongs to the first group
while zoledronate belongs to the second group. Both
zoledronate and clodronate are still being assessed in clinical
trials (Table 3).

CONCLUSION

In GB microenvironment, both resident and peripheral
macrophages are present and there is an urgent need to
understand their specific roles in tumor progression and
resistance to treatment. It is obvious that macrophages may be
a useful target to improve the outcome of cancer. Currently,
many drugs targeting macrophages are being tested in the clinic.
However, only a few are tested specifically in GB. The immune
landscape in GB, and in cancer in general, has to be investigated
further as there is a lack of efficacy in the clinic when only TAMs
are targeted. The targeting of TAMs must be implemented hand
in hand with the standard treatment to potentially improve the
overall effect. In summary, TAMs seem to be a promising target
to overcome resistance that arises in GB.
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BOX 2 | The content of exosomes as a therapeutic target to control TAMs phenotype.

Exosomes are microvesicles (30-120µm) that are secreted through exocytosis by various cells. They exert a variety of biological effects. GB cells can secrete exosomes
that carry proteins such as EGFR variant III (EGFRvIII) Manda et al., 2018. The content of exosomes was shown to be different depending on partial pressure in O2 as
cancer cells can adapt to their surroundings Zhang et al., 2017. Exosomes can mediate immunosuppressive properties in GB through their internalization in monocytes.
Once they are internalized, they cause a rearrangement of the monocyte cytoskeleton and induce an M2 phenotype Gabrusiewicz et al., 2018. Vos et al. visualized the
effect of GB-derived exosomes on TAMs and observed a shift of their cytokine profile to an immune-suppressive profile Van Der Vos et al., 2016. They also observed an
elevation of miR-21 expression in TAMs associated with a decrease in c-Myc mRNA levels. GB-derived exosomes were shown to modify the expression of cell surface
proteins and cytokines (IL-6 and VEGF), and to increase phagocytic activity in macrophages De Vrij et al., 2015. Also, blood samples from patients with GB were analyzed
and shown to harbor GB-derived exosomes containing immunoglobulin (Ig) G2 and IgG4 antibody isotypes Harshyne et al., 2016. Those exosomes were able to induce
the expression of CD163, associated with the M2 phenotype. Exosomes appear to be important for the communication between tumor cells and TAMs in GB. As key
players from the tumor ecosystem, targeting them may impair the regulatory effects of GB cells on TAM immunosuppressive properties.
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GliOblastoma treatment: from molecular programmation to preclinical
validation>>, (ii) to the MuMoFRaT project << Multi-scale Modeling
& simulation of the response to hypo-Fractionated Radiotherapy or
repeated molecular radiation Therapies>> supported by “La Région
Pays-de-la-Loire” and by the Cancéropôle Grand-Ouest (Vectorization,
imaging and radiotherapies network), (iii) the LabEX IGO and the

ANR through the investment of the future program ANR-11-LABX-
0016-01, (iv) the SIRIC ILIAD program supported by INCa, and (v)
the Ministry of Health and the Institute for Health and Medical
Research (Inserm) (contract INCa-DGOS-Inserm_12558). HG and
LR were PhD fellows funded by the LabEx IRON and by the LabEx
IRON-2 and the University of Angers, respectively.
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ABSTRACT
A major unresolved challenge in miRNA biology is the capacity to monitor the spatiotemporal activity of 
miRNAs expressed in animal disease models. We recently reported that the miRNA-ON monitoring 
system called RILES (RNAi-inducible expression Luciferase system) implanted in lentivirus expression 
system (LentiRILES) offers unique opportunity to decipher the kinetics of miRNA activity in vitro, in 
relation with their intracellular trafficking in glioblastoma cells. In this study, we describe in detail the 
method for the production of LentiRILES stable cell lines and employed it in several applications in the 
field of miRNA biology and therapy. We show that LentiRILES is a robust, highly specific and sensitive 
miRNA sensor system that can be used in vitro as a single-cell miRNA monitoring method, cell-based 
screening platform for miRNA therapeutics and as a tool to analyse the structure–function relationship 
of the miRNA duplex. Furthermore, we report the kinetics of miRNA activity upon the intracranial 
delivery of miRNA mimics in an orthotopic animal model of glioblastoma. This information is exploited 
to evaluate the tumour suppressive function of miRNA-200c as locoregional therapeutic modality to 
treat glioblastoma. Our data provide evidence that LentiRILES is a robust system, well suited to resolve 
the activity of endogenous and exogenously expressed miRNAs from basic research to gene and cell 
therapy.
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Introduction

MicroRNAs (miRNAs) are a large family of small, non-coding 
RNAs that play critical roles in the post-transcriptional reg-
ulation of gene expression. MiRNAs are predicted to regulate 
more than half of all mammalian protein-coding genes and 
are involved in almost all developmental and cellular pro-
cesses [1–3]. The canonical pathway of miRNA biogenesis in 
animals is initiated by transcription of long primary miRNAs 
(pri-miRNAs) by RNA polymerase II [4]. The pri-miRNAs 
are processed in the nucleus by the microprocessor complex 
into pre-miRNAs, hairpin intermediates of approx. 70 nucleo-
tides [5]. Pre-miRNAs are transported to the cytoplasm by 
exportin-5, where they are further cleaved by Dicer (RNase III 
enzyme) into approx. 22-bp duplex molecules with short 
3ʹoverhangs [6,7]. One strand of the duplex, the guide strand, 
is selectively incorporated into the RNA-induced silencing 
complex (RISC) containing the Argonaute (Ago) protein. 
The other strand, the passenger strand, is discarded. This 
class of non-coding RNAs bind to their target mRNAs by 
base pairing with partially complementary sequences in the 
3ʹ-untranslated region (3ʹUTR). Binding of miRNAs to target 
mRNAs results in translational repression and/or mRNA 
degradation [8–11]. Each miRNA is believed to regulate up 
to several hundred targets, making up extensive gene 

expression regulatory networks [12]. This evolutionarily con-
served type of interaction between miRNAs and mRNAs has 
attracted great attention in the field of RNA biology and 
therapeutics [13]. MiRNAs fulfil their biological function 
through a dynamic spatiotemporal expression pattern that 
fine-tunes the expression of multiple mRNA targets and col-
lectively orchestrates biological responses [14–17]. Beyond the 
well-illustrated spatiotemporal expression pattern of Lin 4 and 
let seven miRNAs during embryonic development [18–23], 
there are many other miRNAs that are dynamically regulated 
during disease progression [24–26]. For example, the miRNA- 
10b plays a role in the late stage of the metastatic process, 
whereas it has a negligible effect in the first stage of tumour 
development [27] In preclinical therapeutic studies, it was 
observed that the duration of gene silencing of therapeutic 
RNAi oligonucleotides is also variable and their biological 
activity depends on many parameters such as accessibility to 
the tumour site, diffusion through tumour-microenviron-
ment, proliferation rate of tumour cells and the half-life of 
mRNA targets [28–30]. A better understanding of the 
dynamic expression pattern of miRNAs as well as miRNA 
delivery kinetics would be an advantage to better understand 
the functionality of miRNA and to optimize the benefits of 
miRNA-based therapeutics.
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To resolve the spatiotemporal dynamics of miRNA- 
mediated gene regulation, it is necessary to assess the kinetics 
of miRNA expression in targeted cells or tissues. Expression 
levels of miRNA can be analysed by northern blotting, quan-
titative PCR, microarrays, and deep sequencing. However, 
kinetic analysis is laborious due to the need to collect samples 
at multiple time points. Furthermore, these methods fail to 
capture information on cell-to-cell variations in miRNA 
expression that occur within individual cells. Non-invasive 
molecular imaging modalities have the potential to fulfil 
these limitations. There are several miRNA molecular imaging 
methods developed to monitor the expression of miRNAs in 
real time and non-invasively. Molecular beacons which typi-
cally consist of stem-loop DNA oligonucleotides complemen-
tary to a miRNA strand, a fluorophore, and a quenchercan 
overcome some of these limitations [31–33]. However, signals 
of molecular beacons arise from hybridization of mature 
miRNA to stem-loop DNA, regardless of Ago2 loading. 
Thus, molecular beacons do not discriminate between Ago- 
loaded functional miRNA and free, non-functional miRNA. 
Because miRNA expression levels do not necessarily correlate 
with miRNA activity, the miRNA functionality cannot be 
inferred from expression analysis alone [34]. Moreover, the 
dilution of the probes over the cell division rate of the biolo-
gical systems studied is a limitation for the longitudinal ana-
lysis of miRNA expression. To directly measure miRNA 
activity, luciferase reporter gene with miRNA target sequences 
in their 3ʹUTR has been widely used as miR-OFF reporter 
assays, and are also successfully utilized for bioluminescent 
imaging in vivo [34,35]. Consequently, the expression of 
miRNA is negatively signed by the loss of optical signal, a 
readout that is somewhat constraining as the absence of signal 
in molecular imaging can have different causes such as cell 
death, low-resolution capacity or equipment dysfunction. The 
miR-ON gene reporter methods tackle some of these limita-
tions. These systems rely on engineering of genetic-switch 
expression systems to induce optical signal in cells when the 
miRNA of interest is expressed and, importantly, functionally 
processed by the RISC machinery. Pichard et al. [36], 
Amendola et al. [37], and more recently Rossetti et al. [38] 
engineered the Tetracycline-Inducible tTR-KRAB System and 
revealed the temporal dynamic expression pattern of miRNAs 
in several types of cells in vitro. However, the principle of 
regulation of this miR-ON system requires several hours to 
days for the tTR-KRAB regulator protein [39–41] to switch- 
ON the inducible expression cassette. Furthermore, KRAB- 
mediated silencing can act over several tens of kilobases and 
thus might affect the biology and behaviour of cells [42,43]. 
We previously designed the RILES system (RNAi-Inducible 
Luciferase Expression System) for spatiotemporal detection of 
miRNA activity in vivo by engineering the Cumate genetic- 
switch operon [44–46] and, more recently, the Tetracycline 
genetic-switch operon systems in the Tet R configuration [47]. 
We demonstrated that RILES switched ON the expression of 
luciferase and the hNIS reporter genes in a specific and dose- 
dependent manner and provided a temporal and spatial reso-
lution of miRNA regulation in vitro and in vivo, that conven-
tional detection methods can hardly achieve [45,46]. More 

recently [47], we demonstrated that subcloning the RILES in 
a lentiviral expression system provides the opportunity to 
monitor in real time the fate of miRNA activity in glioblas-
toma cells. We demonstrated that the time frame for the 
LentiRILES to be accurately switched ON in cells is indeed 
rapid, starting 3 hours after transfection. When combined 
with confocal microscopy studies, this miR-ON monitoring 
system enabled us to decipher the critical steps of miRNA 
internalization, processing and exocytosis in U87MG glioblas-
toma cells [47].

Here, we fully characterized the LentiRILES in cells by 
challenging the sensitivity, specificity and robustness of this 
miRNA-ON monitoring system using several cell types. We 
employed lentiRILES to visualize miRNA regulation in single- 
cells, as a cell-based miRNA screening platform and as ratio-
nale to perform structure-function analysis of the miRNA 
duplex. We report, for the first time to our knowledge, the 
kinetic of miRNA-mediated mRNA silencing activity in a 
preclinical animal model of glioblastoma after the locoregio-
nal infusion of synthetic miRNA by convection-enhanced 
delivery. We exploit the bioluminescence data generated by 
lentiRILES system to evaluate the tumour suppressive func-
tion of miRNA-200c as a locoregional treatment of 
glioblastoma.

Methods

Tissue culture and reagents

The U87MG, HEK 293 T, Hela, B16F10, 4T1 and C2C12 cell 
lines were purchased from ATCC (American Type Culture 
Collection) and maintained in culture according to standar-
dized conditions. Cells were mycoplasma-free as evidenced by 
the MycoAlert Mycoplasma Detection Kit (Lonza). The com-
mercial transfection reagents and synthetic miRNAs were 
purchased from several companies as indicated in the text. 
The polybrene (hexadimethrine bromide) used to increase 
lentiviral transduction efficiency and proteinase K was from 
Sigma. The Tet R (clone 17 795) and Argonaute 2 antibodies 
were from Abcam (Abcam, USA). The luciferin substrate for 
in vitro and in vivo use was from Promega. Our home-made 
lipopolyplexe transfection reagent, LPRi, was prepared as 
described recently [47].

Lentiriles Stable Cell Line Production and Selection

The LentiRILES harbouring the CMV-TetO regulatable cas-
sette encoding the luciferase reporter gene and the spleen 
focus-forming virus promoter driving the expression of the 
Tet R repressor gene originated from the Francisco Martin 
laboratory (Genyo, Pfizer/University of Granada, PTS 
Granada, Spain) and derived from a previous publication 
[48]. Procedures to place the Tet R transcriptional repressor 
under control of miRNA of interest as well as the protocol to 
produce the LentiRILES cell lines were the same as described 
recently [47] and according to conditions indicated in the 
text. The screening procedure to identify the LentiRILES cell 
lines that were the most responsive to miRNA of interest was 
carried out 7 days post-infection with the LentiRILES viral 
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particles and by transfecting the cells with miRNA mimic at a 
final concentration of 100 nM using our LPRi lipopolyplexes 
transfection reagent.

Mirna mimics transfections and luciferase assay

The transfection procedure to evaluate the potency of com-
mercially available synthetic miRNA mimic and transfection 
reagents was performed strictly according to manufacturer’s 
recommendations. At the indicated time point post transfec-
tion, the relative luciferase activity units (RLU) in wells were 
quantified using a luminometer equipped with automatic 
injectors and normalized to protein content (RLU/mg pro-
tein) as previously described [45]. Alternatively, tissue culture 
plates were scanned using an IVIS Lumina II imaging scanner 
(PerkinElmer) after renewing the tissue culture media with 
determined from a standard procedure as previously 
described PBS containing the luciferin substrate at a final 
concentration of 150 µg/ml. The plates were scanned for 
2 min. Light emission from regions of interest (ROI) was 
drawn manually and quantified as photons/second/pixel/sr 
using the living Image Software (PerkinElmer).

Quantitative Real-Time PCR

The relative expression of Tet R and Luciferase mRNA as well 
as miRNAs was determined from a standard procedure as 
previously described [45]. Briefly, short and long RNAs were 
collected simultaneously using the miRNAVANA isolation kit 
(ThermoFisher) then reverse-transcribed using the NCode 
VILO miRNA cDNA synthesis kit according to the manufac-
turer’s instructions (ThermoFisher). Real time quantitative 
PCR was performed with SYBR green dyes (QuantiFast 
SYBR Green master mix, Qiagen) using specific Tet R (for-
ward 5ʹ-GCCCAGAAGCTAGGTGTAGA and reverse 5ʹ- 
TGTACTTTTGCTCCATCGCG), luciferase (forward 5ʹ- 
TCATAGAACTGCCTGCGTGA and reverse 5ʹ- 
AGCAGCGCACTTTGAATCTT), E-caherin (forward 5ʹ- 
CGTACATGTCAGCCAGCTTC and reverse 5ʹ- 
TGGAGGAATTCTTGCTTTGC), Vimentin (forward 5ʹ- 
TGTCCAAATCGATGTGGATGTTTC and reverse 5ʹ- 
TTGTACCATTCTTCTGCCTCCTG), Zeb-1 (forward 5ʹ- 
TTTCTTGCCCTTCCTTTCTG and reverse 5ʹ- 
GGGAGGAGCAGTGAAAGAG) and Zeb-2 (forward 5ʹ- 
CCACACTCTGTGCATTTGAACT and reverse 5ʹ- 
AAGCCAGGGACAGATCAGC) primers and commercially 
available primers to miRNA-122, −133a, and −21.5 (Qiagen). 
The specificity of the PCR amplicon (size and product) and 
absence of primer-dimer were verified by melt-curve analysis 
using LightCycler 480 equipment and software (Roche). 
Samples were normalized to the GAPDH level for quantifica-
tion of the mRNA transcripts and to the snU6 level for 
quantification of miRNA. Finally, the relative levels of expres-
sion of mRNAs and miRNAs were determined using the 
2-ΔΔCt method. To quantify the number of lentivirus vector 
copies integrated per genome, genomic DNA was extracted by 
lysing 106 cells in the SNET buffer (20 mM Tris-HCl pH 8, 
5 mM EDTA pH 8, 400 mM NaCl, 1% SDS) containing 
proteinase K used at a final concentration of 100 mg/ml. 

After a phenol–chloroform extraction step to remove pro-
teins, the genomic DNA was ethanol precipitated and quanti-
fied by spectrophotometry. Then 50 ng of extracted genomic 
DNA samples were used in each quantitative PCR reaction 
performed in triplicate using the Tet R and luciferase primers. 
The vector copy number (v.g.c) per host-cell genome was 
determined by interpolation to a standard curve prepared 
from serial dilution of the Tet R and Tet-o-Luc plasmids. 
Data were finally expressed as v.g.c value by assuming that 
50 ng of genomic DNA is equivalent to 8 334 genomes as 
described previously [48].

Mirna labelling and confocal microscopy analysis

For confocal microscopy studies of the intracellular distri-
bution of transfected miRNAs in cells, miRNA mimics were 
labelled using the Label IT nucleic acid labelling kit accord-
ing to the manufacturer’s protocol (Mirus, USA) with some 
modification as described recently [47]. After plating, the 
cell monolayers were transfected with LPRi complexed with 
50 nM final concentration of Cyanine 3 (Cy-3)-labelled 
blunt or overhang miRNA-133a mimics for 6 h in tissue 
culture. The cells were thereafter fixed in 3% paraformal-
dehyde/PBS solution at room temperature, washed and 
stained with the Argonaute 2 antibody overnight at 4°C. 
Coverslips were collected, mounted in Vectashield medium 
for fluorescence (H-100, Vector Laboratories) and analysed 
using the Zeiss LSM 510 confocal laser scanning micro-
scope with an apochromat 63×/1.4 oil differential interfer-
ence contrast (DIC) objective (Carl Zeiss). Colocalization 
analysis was monitored using the ImageJ plug-in JACoP 
(Just Another Co-localization Plugin). Each coloured 
image was split into respective red and green channels. 
The Mander’s R coefficient was calculated based on the 
red and green channels. Final data were expressed as the 
co-localization coefficient, r2, from three independent 
experiments collected from a minimum of 50 independent 
cells per condition each time.

Cell viability assay, cell cycle and apoptosis flow 
cytometry analysis and In Vitro wound scratch assay

Cell viability upon transfection of miRNA-200c in U87MG 
cells was performed using the Alamar Blue assay following 
the manufacturer’s recommendations (Sigma-Aldrich). 
Briefly described, at the time of the assay, the Alamar 
Blue stock solution was directly loaded in the tissue culture 
plate at a final dilution of 1/10 and incubated for 90 min at 
37°C, 5% CO2. The plates were thereafter read using a 
fluorescence-based plate reader with a fluorescence excita-
tion wavelength of 540–560 nm and an emission wave-
length of 590–610 nm. The raw fluorescence values were 
corrected by subtracting the background fluorescence 
values detected in wells treated in the same condition but 
without cells. Fluorescence cell cycle analysis was per-
formed by incubating 106 cells in suspension with 3 mL 
of 70% ethanol followed by an incubation period of 1 h at 
−20°C. Ethanol was removed after centrifugation and total 
RNA discarded by treatment for 30 min at 37°C with 
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RNAse A solution (ThermoFisher) used at the final con-
centration of 500 U/ml. The pellets were washed twice in 
DPBS, resuspended in 300 μL of DPBS containing 0.2% 
Triton X-100 and analysed using Becton Dickinson 
FACSort (Becton Dickinson) after addition of propidium 
iodide solution used at the final concentration of 10 ng/μL. 
Fluorescence was collected from 30,000 events and analysed 
using the CellQuestTM Pro software (Becton Dickinson). 
Cell death and apoptosis analysis were performed after 
staining cells with a combination of Annexin V conjugated 
FITC and propidium iodide (ANNEX300F kit, Bio-Rad). 
Cells in suspension were first resuspended in binding buffer 
provided by the Annexin V:FITC Assay Kit before adding 
5 μL of Annexin V conjugated FITC solution to 3 105 cells 
for 10 min of incubation at room temperature in the dark. 
Then, propidium iodide was added to the cell suspension at 
a final concentration of 1 ng/ml before analysing the cell 
population by flow cytometry using the Becton Dickinson 
FACSort. A minimum of 30,000 events were acquired and 
analysed using CellQuestTM Pro software. In vitro wound 
scratch assays were performed by culturing the U87MG 
cells in 24-well plates to reach a nearly confluent cell 
monolayer the following day. The miRNA-200c mimics 
formulated with the LPRi transfection reagent were trans-
fected to cells according to the protocol described above. 
Then, 3 days later, vertical wounds were performed with 
sterile 20–200 μl plastic pipette tips. The plates were placed 
in a time lapse videomicroscope (Zeiss) placed in an envir-
onmental chamber at 37°C, 5% CO2. Pictures of the 
wounds were recorded automatically every 2 h for a total 
of 3 days. Wound areas at individual time points were 
measured using the ZEN LE Digital Imaging Software 
(Zeiss). Data were expressed as % of closure by normalizing 
the calculated area to 100% of wound area of untreated 
cells.

Orthotopic glioblastoma animal model and locoregional 
delivery of LPRi Mimic.

All mouse experiments were carried out in strict accordance 
with the rules of the French Ministry of Agriculture and the 
European Communities Council Directive (86/609/EEC). The 
experimental protocol used in this study was approved by the 
‘Pays de la Loire’ Ethics Committee of Animal Experiments 
(Permit No. CEEA. 2012.60; Authorization n°A 49–2012-04). 
Female CB-17/Icr-Prkdc scid/Rj mice (7 weeks old, Janvier 
Labs, France) were maintained in pathogen-free conditions 
with controlled temperature (20–22°C), humidity (50–70%), 
light (12 h light/dark cycles) and housed with unlimited access 
to food and water. Tumour implantations were done by 
stereotactic surgery according to detailed procedures recently 
described [47,49]. The miRNA mimics (2 µg miRNA mimic 
formulated in 7 µl of PBS using a 10-fold concentrated LPRi 
solution) were infused into solid tumours by the convection- 
enhanced delivery method (CED). The CED infusion was 
performed using syringes equipped with a 32-G needle con-
nected to the Harvard apparatus Pump and carried out auto-
matically at a constant flow rate of 0.5 μL/min over a period 
of time of 18 min. After injection, the needles were left in 

place for an additional 5 min and gradually removed over an 
additional period of 5 min. The mice were monitored daily for 
mobility, grooming and weight.

Bioluminescence imaging

Bioluminescence imaging was performed rigorously as pre-
viously described [45,47]. The Living Image Software 
(PerkinElmer, USA) was used to express the data as 
photons/second/pixel/sr monitored from region of interest 
covering the brain of mice after a 2 min integration time 
with the following acquisition parameters: relative aperture 
F/Stop = 1, binning of 4, field of View D. The sensitivity of the 
imaging scanner was tested monthly with commercially avail-
able positive sources of bioluminescence.

MRI imaging

MRI of mice was performed according to procedure described 
previously [49]. Briefly, mice were isoflurane-anesthetized and 
scanned using a Burker Biospec 70/20 device, operating at a 
magnetic field of 7 T (Bruker, Wissembourg, France), 
equipped with a 1 H cryoprobe. Anatomical proton images 
were generated using a acquisition with relaxation enhance-
ment (RARE) sequence [TR = 3200 ms; mean echo time 
(TE) = 21.3 ms; RARE factor = 4; FOV = 2 cm x 2 cm; matrix 
256 x 256; 11 contiguous slices of 0.5 mm, Nex = 1]. For 
monitoring tumour development overtime, a total of 8 MRI 
slices by brain were taken during the imaging session. Then, 
regions of interest covering visible tumours areas were drawn 
using Paravision 6.0.1 software, summed and multiplied by 
the slice thickness to obtain the tumour volume at each time 
point and for each group of mice.

Statistical analysis

The results were expressed as mean ± S.E.M. and all the 
experiments were performed at least in triplicate. Statistical 
evaluation was carried out by one-way analysis of variance 
between groups (ANOVA program of Origin, OriginLab, 
Northampton, MA) or Student’s t-test for comparisons 
between two groups. Statistical significance for survival 
experiments in animal was determined using the log rank 
test. Differences were considered to be statistically significant 
when p < 0.05.

Results and discussion

Strategy of production of LentiRILES cell lines

Recently, we engineered the Tet R-based lentiviral system 
developed by Benabdellah et al. [48] to produce a U87 MG 
stable cell line expressing the miR-ON RILES system consti-
tutively (LentiRILES, Figure 1a). The system is based on two 
lentiviral vectors, one expressing the Tet R through the spleen 
focus forming virus (SFFV) promoter (Lenti Tet R) and the 
other expressing the firefly luciferase (FLuc) driven by the 
regulatable inducible CMV-Tet O promoter (Lenti 
Tet_O_Luc). We subcloned a block of 4 complementary 
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sequences to a miRNA of interest (miR T cassette) down-
stream to the WPRE viral gene of the Lenti Tet R vector to 
place the expression of the Tet R repressor under control of 
the miRNA (Figure 1a). When the given miRNA is expressed 
in cells, it will bind to the miR T cassette, activating the RISC 
machinery and inhibiting the production of the Tet R protein. 
Consequently, in the absence of the Tet R protein bound on 

the Tet O operator, the inducible promoter is switched ON, 
resulting in the expression of the FLuc and emission of a 
positive bioluminescence signature in cells that can be easily 
collected using a bioluminescence imaging scanner 
(Figure 1a).

To achieve a high signal-to-noise ratio readout, we placed 
RILES under the control of miRNA-133a (LentiRILES/133 T), 

Figure 1. Schematic representation of the lentiRILES system and strategy to generate LentiRILES stable cell lines. a) Maps of the two lentiviral expression plasmids 
encoding for the RILES system. Left panel, Tet-O-Luc: lentivirus expression plasmid encoding for the firefly luciferase reporter gene driven by the inducible minimal 
CMV promoter containing 2 Tet O operators. Tet R: lentivirus expression plasmid encoding for the Tet R repressor protein controlled by the presence of a miRNA 
targeting sequence cassette (miR T) complementary to a miRNA sequence of interest. Right panel, Scheme showing luciferase induction upon miRNA activity. When 
expressed in cells, the miRNA of interest will bind to the miR T cassette located in the 3ʹUTR of the Tet R mRNA, inducing activation of the RISC machinery and 
transcriptional repression of the Tet R protein. In the absence of Tet R, the RNA polymerase transcribes the luciferase reporter gene, switching-ON the LentiRILES 
system. Bioluminescence signals emitted from the cells can be collected by bioluminescence imaging equipment. b) Quantitative RT-PCR analysis of miRNA-133a 
expression in several cancer cell lines and in the tibialis anterior skeletal muscles of mice used as positive control. c) Schematic representation of the procedure used 
to generate stable cell lines expressing the LentiRILES/133 T system. The cells are first transduced with a constant MOI value of the Lenti Tet R/133 T viral particles 
followed by the infection with different MOI values of lenti Tet-O-Luc viral particles to find the best balance between expression of the Tet R protein and the number 
of Tet O operators integrated in the host genome of cells. d-f) Production of different stable LentiRILES/133 T cancer cell lines. d) Permissiveness of U87MG, Hela, 
B16F10 and 4T1 cells to lentivirus infection evaluated by flow cytometry using lentivirus particles encoding for the eGFP reporter gene at various MOI. e) 
Responsiveness to miRNA-133a of different U87MG, Hela, B16F10 and 4T1 cells LentiRILES/133 T cell lines generated using different MOIs of TetR and Tet-O-Luc as 
indicated at the left of each lane of each wells of tissue culture plate. The LentiRILES/133 T cell lines were plated on 24 well plates and then transfected with miRNA- 
133a before scanning the plate 3 days later using a bioluminescence imaging scanner. f). Quantitative bioluminescence signals collected from region of interest from 
E. Data are expressed as mean ± SEM of one representative experiment performed at least 3 times. Statistics by the two-tailed t-test, *P < 0.05, **P < 0.01, compared 
to control cells transfected with a miRNA mimic control (CTL)
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a muscle-specific miRNA that is highly enriched in cells from 
cardiac and skeletal muscles lineages and undetectable in most 
other cell types derived from different organ sources (Figure 
1b). Therefore, as illustrated in Figure 1a, it is expected that 
the background level of the Luciferase reporter gene in the 
OFF configuration, i.e. in the absence of miRNA-133a, will be 
at lower levels, as being not expressed neither endogenously 
nor exogenously, this miRNA could not bind to the TET R 
mRNA repressor to switch ON the RILES. In contrast, when 
transfected in cells, the miRNA-133a mimic will bind to TET 
R mRNA resulting in RNAi activation and TET R mRNA 
degradation. As a consequence, the LentiRILES will be 
switched at the higher and maximal levels in the ON config-
uration in the presence of maximal dose of transfected 
miRNA.

We challenged the LentiRILES/133 T system by evaluating 
the responsiveness of the LentiRILES produced in several 
cancer cell lines, derived from different tissue origins, such 
as human cervical cancer (HeLa) cells, murine melanoma 
(B16F10) cells, mouse mammary carcinoma (4T1) cells and, 
for comparison, the human glioblastoma U87MG cell line 
(U87MG). We first developed and optimized the procedure 
to generate optimal-responsive LentiRILES/133 T stable cell 
lines to the miRNA-133a used as the inducer of the OFF-to- 
ON shift of the RILES configuration. The general procedure 
(Figure 1c) consists in the transduction of cells with first a 
MOI value of the Lenti Tet R/133 T viral particles to transfer 
expression of the Tet R protein in at least 80% of the whole- 
cell population. Then, 4 days later, cells were infected with 
different MOI values of the Lenti Tet_O_Luc viral particles to 
find an appropriate balance between expression of the Tet R 
protein and the number of Tet O operator sequences inte-
grated in the host genome of cells.

To rationalize the best MOI values of Lenti Tet R/133 and 
Lenti_o_Luc viral particles, we first evaluated the transduction 
efficiency of each cell line using a lentivirus encoding for the 
eGFP reporter gene. Flow cytometry analysis of cells trans-
duced at a MOI of 12.5 indicated (Figure 1d) that the most 
permissive cell line was the U87MG (80% of GFP positive 
cells), followed by the HeLa cells (63% of GFP positive cells), 
the B16F10 cells (35% of GFP positive cells) and finally the 
4T1 cells (35% of GFP positive cells). According to this result, 
we selected for each cell line an appropriate MOI value of 
Lenti Tet R/133 T viral particles to transfer expression of the 
Tet R protein in 70% of the whole-cell populations. We then 
infected the cells with increasing MOI values of Lenti 
Tet_O_Luc viral particles to find the best ratio of infection 
between the Lenti Tet R/133 and Lenti_o_Luc viral particles. 
We produced a total of 16 LentiRILES/133 T cell lines and 
evaluated their responsiveness to miRNA-133a transfected in 
96-well plates using a bioluminescence imaging scanner. The 
results demonstrate that all the LentiRILES/133 T stable cell 
lines generated were responsive to the miRNA-133a mimic 
with however different efficiency (Figure 1e). Quantification 
of bioluminescence signals emitted from the cells indicated 
that a Lenti Tet R 133 T to Lenti Tet_O_Luc MOI ratio of 2/1 
was the best ratio to generate optimal-responsive cells to 
miRNA-133a. As shown in Figure 1e, Hela cells transduced 
with a MOI ratio of 30/15 had a maximum 5.8-fold increase 

in luciferase activity in response to transfected miRNA-133a, 
while the B16F10 melanoma cells transduced with a MOI 
ratio of 50/25 had a maximum 3.1-fold increase of luciferase 
activity. The 4T1 breast cancer cells were found to be the less 
responsive LentiRILES/133 T cell line as a maximum 2.2-fold 
increase in luciferase activity was detected in these cells for a 
MOI ratio of 50/25. In contrast, the U87MG glioblastoma 
cells were the most responsive cell line to transfected 
miRNA-133a as a maximum of 7.7-fold increase in luciferase 
activity was detected at a MOI ratio of 10/5.

This first set of data indicates that an optimal balance 
between the Tet R protein and the Tet O operator sequence 
integrated in cells is a key determinant to generate responsive 
cell lines to miRNA mimic used as inducer to switch OFF-to- 
ON the RILES configuration. Accordingly, the permissiveness 
of cells to lentivirus infection has to be taken into account 
when generating LentiRILES stable cell lines and might 
require optimized transduction procedures to bypass the low 
rate of viral infection of some cell lines [50].

Characterization of the U87MG LentiRILES/133 T cell line

We next performed a systematic analysis to gain insight into 
the molecular mechanism of the OFF-to-ON shift of the 
RILES/133T stably integrated in the genome of the 
LentiRILES U87MG/133 T cell line (ratio 10/5). Results 
from qPCR analysis indicated that there were 2.1-times 
more viral integrated copies of Lenti TetR/133 T than of 
Lenti_o_Luc virus in the host genome of these cells leading 
to to 64.1-fold higher relative production of Tet R mRNA in 
cells than Luciferase mRNA (Figure 2b and 2c). In the ON- 
configuration, i.e. after transfection of miRNA-133a, the rela-
tive expression of Tet R mRNA was reduced by 77.4% (Figure 
2b) corresponding to a reduction by 68.2% of Tet R protein 
expression (Figure 2c). This downregulation process was cor-
related with the induction by 5.1-fold of the luciferase mRNA 
(Figure 2c) proving, as anticipated theoretically in Figure 1, 
that the mode of shifting OFF-to-ON of the RILES system is 
dependent on the transcriptional repression of Tet R mRNA 
that, in turn, induces the expression of the Firefly Luciferase 
protein. We then evaluated the sensitivity of U87MG 
LentiRILES/133 T cells. We found that the rate of luciferase 
fold induction was well correlated (R2 = 0.97) with the con-
centration of miRNA-133a transfected in cells ranging from 0 
to 3 nM (Figure 2e). However, above this concentration, the 
RILES read-out saturated. No statistically significant differ-
ence in terms of luciferase fold change was found between 
cells transfected with 3 nM and 100 nM of miRNA-133a 
(Figure 2e). The same trend was observed when the study 
was performed at the molecular level. The range of Tet R 
mRNA down-regulation was well correlated (R2 = 0.92) with 
the increasing concentrations of miRNA-133a transfected in 
cells up to 3 nM, and was, as expected, inversely correlated 
(R2 = 0.90) with the induction of luciferase reporter mRNA 
(Figure 2f). Again, above this miRNA concentration, the 
relative expression of both Tet R and luciferase mRNAs was 
not significantly different when 3 or 100 nM of miRNA-133a 
were transfected (Figure 2f). We finally assayed the specificity 
of the LentiRILES/133 T to several miRNA mimics transfected 
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in cells. As shown in Figure 2g, no leakage or non-specific 
induction of the luciferase reporter gene was detected when 
irrelevant or unspecific miRNA mimics were used attesting 
again the great specificity of the RILES system [45–47].

This second set of data demonstrates that the LentiRILES 
system is a reliable, specific, sensitive OFF-to-ON shift 
miRNA-ON reporter system, capable to monitor the func-
tionality of transfected miRNAs in several cancer cell lines. 
However, the saturation of RILES detected at intermediate 
concentrations of transfected miRNA mimics is perceptible 
and might be a limitation.

In Vitro monitoring of endogenous expressed Mirna Using 
the LentiRILES System

We then challenged a key aspect of miRNA biology that is 
related to the need for monitoring methods capable of resol-
ving the dynamic expression pattern of endogenously 
expressed miRNAs during the development of physiological 

and pathological processes. We evaluated this challenging 
aspect using the two different cell types, C2C12 myoblast 
cells that are known to express the miRNA-133a upon differ-
entiation in myotubes [51] (Figure 3a) and U87MG cells that 
are known to have opposite expression patterns of miRNA- 
122 and −21.5p [52]. To visualize the dynamic expression of 
these endogenously expressed miRNAs by fluorescence ima-
ging on live cells, we replaced the Firefly Luciferase with the 
GFP reporter gene. The generated system was then denoted 
RIFES system, standing for RNAi-Inducible Fluorescence 
Expression System.

C2C12 cells were transduced with an optimal Lenti Tet R/ 
133T to Lenti Tet_O_eGFP MOI ratio according to the pro-
cedure described in Figure 1. Then, the most responsive 
C2C12 LentiRIFES 133T stable cell line was differentiated in 
myotubes to induce expression of miRNA-133a [51]. 
Fluorescence microscopy analysis of cell monolayers revealed 
the presence of intense fluorescent signals in the differentiated 
myotubes formed, with stronger emitted fluorescence detected 

Figure 2. Functional characterization of the U87MG LentiRILES/133 T cell line. a) Absolute quantitative PCR quantification to determine the number of viral copies of 
Lenti Tet R/133 T and Lenti Tet-O-Luc expression plasmids integrated into the host genome of the U87MG LentiRILES/133 T cell line. Relative Tet R (b) and luciferase 
(c) expression detected by quantitative RT-PCR in the U87MG LentiRILES/133T cell line before and after transfection of miRNA. d) Relative protein expression of Tet R 
protein detected by western blot in the U87MG LentiRILES/133T cell line before and after transfection of miRNA. e) Dose response study of luciferase fold change 
induction detected in the U87MG LentiRILES/133 T cell line in response to increasing concentration of miRNA-133a mimic. Forty-eight hours after transfection, 
luciferase activity in cells was quantified and expressed as fold induction relative to control, not-transfected cells, and set to the arbitral value of 1. Inset: the same 
results but shown on a linear scale for miRNA concentration ranging from 0 to 3 nM. f) Relative Luciferase and Tet R fold change mRNA expression quantified by 
quantitative RT-PCR in U87MG LentiRILES/133T cells in response to increasing concentration of miRNA 133a. Data are expressed as mean ± SEM of one representative 
experiments performed at least 3 times. Statistics by the two-tailed t-test, *P < 0.05, **P < 0.01, ns (not significant), compared to control cells transfected with a 
miRNA mimic control (CTL, B, C, G) or not-transfected cells (A, E, F)
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in areas where myotubes were more apparent (Figure 3c, 
arrows). In contrast, lower fluorescence signal was detected 
in undifferentiated, myoblast cell monolayers (Figure 3c) with 
a uniform distribution pattern of the fluorescence detected 
among the cellular monolayer. Quantitative flow cytometry 
analysis of the cells collected by trypsinization indicated that 
the mean GFP intensity was 3.9-fold higher in differentiated 
C2C12/133T myotubes compared to undifferentiated C2C12/ 
133T myoblast cells (Figure 3d). Next, we monitored the 
endogenous expression pattern of miRNA-122 and −21.5p 
in U87MG cells, which were found to be, respectively, faintly 
and highly expressed by qRT-PCR (Figure 3e). We con-
structed two novel LentiRIFES expression plasmids by repla-
cing the miRNA-133T cassette with a miRNA- 122T or 21.5T 

cassettes to produce the corresponding U87MG LentiRIFES/ 
122 T and −21.5 T stable cell lines. We transfected these two 
cell lines with miRNA-122 mimic or with an inhibitor of 
miRNA-21.5 (AMO miRNA-21.5) (Figure 3f). Fluorescence 
microscopic analysis of cells monolayers in basal conditions 
revealed high fluorescence signal in the U87MG LentiRIFES/ 
21.5T cells and low-to-almost undetectable fluorescence signal 
in the U87MG LentiRIFES/122T (Figure 3g) that correlated 
well with the endogenous expression pattern of these miRNAs 
detected by qRT-PCR (Figure 3e). Remarkably, a clear posi-
tive shift of fluorescence intensity, from 94 to 4 755 MFI was 
quantified when the U87MG LentiRIFES/122T cells were 
transfected with miRNA-122 while, in contrast, a clear nega-
tive fluorescence shift from 7 547 to 3 231 MFI was detected 

Figure 3. Real time, fluorescence monitoring of endogenously expressed miRNA in cell lines. a) Quantitative RT-PCR analysis of miRNA-133a expression in C2C12 cells 
cultured in undifferentiated and differentiated media to induce differentiation of these cells in myotubes and the endogenous expression of miRNA-133a. b) 
Schematic representation of the procedure used to monitor expression of miRNA-133a in the myotubes using the RIFES/133T system and a fluorescence imaging 
microscope. The C2C12 cells were transduced with the Lenti Tet R/133T virus and then with Lenti_o_eGFF according to the procedure described in Figure 1c and 
then cultured in media containing 2% of horse serum to induce their differentiation in myotubes and expression of this miRNA. c) Upper quadrant, Live-cell 
fluorescence imaging of monolayers from undifferentiated and differentiated C2C12 LentiRIFES/133T cells performed at day 7. Lower quadrant superimposition of 
bright field and fluorescence images of the same field of view of cell monolayers to show the more pronounced localization of fluorescence signals in the myotubes 
(arrows). d) Flow cytometry quantification of eGFP expression in the same cells as C collected by trypsinization. e) Quantitative RT-PCR analysis of expression of 
miRNA-122 and −21.5 in U87MG cells. f) Schematic representation of the procedure to monitor expression of these two miRNAs in real-time by fluorescence imaging 
after transfection of miRNA-122 mimic or miRNA-21.5 inhibitor (AMO, antisense miRNA) in U87MG RIFES/122T and U87MG RIFES/21.5T cells respectively. g) Live-cell 
fluorescence imaging and h) flow cytometry analysis of the U87MG RIFES cells from F. Data are expressed as mean ± SEM of one representative experiments 
performed at least 3 times. Statistics by the two-tailed t-test, **P < 0.01 compared to control undifferentiated cells (C2C12 und)
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when the U87MG LentiRIFES/21.5 T cells were transfected 
with the miRNA-21.5 inhibitor.

This third set of data demonstrates that the LentiRILES 
system can not only monitor the expression of ectopic 
miRNA but also endogenously expressed miRNAs using two 
main optical molecular imaging modalities (e.g. biolumines-
cent and fluorescent imaging). The fluorescent reporter gene 
offers an additional advantage for RILES by providing a single 
and live-cell resolution of miRNA expression that can be 
exploited to cell-sort homogeneous populations of cells 
according to their miRNA expression pattern.

The lentiriles cell line can be used as a positive screening 
platform to identify optimal synthetic mirna mimics and 
transfection reagents

We next explored some applications of the LentiRILES 
system in the field of miRNA therapy. Having demon-
strated the good sensitivity and specificity of the U87MG 
LentiRILES/133T cell line, we then anticipated that this cell 
line could be used as a novel, positive cell-based screening 

platform to evaluate the performance of miRNA mimics 
and transfection reagents. We screened the efficacy of 
eight miRNA mimics and seven transfection reagents com-
mercially available. We included our homemade lipopoly-
plexes (LPRi) formulation, previously reported as a potent 
siRNA [53] and miRNA [47] transfection reagent as well as 
a synthetic homemade miRNA-133a mimic. Results of this 
screening procedure performed in 96-wells plate and mon-
itored using a bioluminescence scanner indicated (Figure 
5a) that the gold standard Lipofectamine RNAi max (7.24 x 
1010 RLU/mg) and LPRi (6.82 x 1010 RLU/mg) transfection 
reagents were the two most efficient miRNA transfection 
reagents. The transfection reagent Transit X2 (4.93 x 1010 

RLU/mg) and Hyperfect (4.63 x 1010 RLU/mg) exhibited a 
similar range of efficacy but were less efficient than the 
RNAi max and LPRi. The transfection reagents HappyFect 
(3.69 x 1010 RLU/mg), Viromer Blue (2.69 x 1010 RLU/mg), 
Fugene HD (2.63 x 1010 RLU/mg) and Fugene 6 (2.46 x 
1010 RLU/mg) were found the less efficient (Figure 4a, 
lower panel). Using a similar approach (Figure 5b), we 
found that the best miRNA mimic tested was the 
miRVANA mimic from ThermoFisher (7.59 x 1010 RLU/ 

Figure 4. Cell-based miRNA screening platform using the U87MG LentiRILES/133T cell line. The U87MG LentiRILES/133T cells were plated on 96-well plates and then 
transfected with commercially available a) transfection reagents and b) miRNA-133a mimics. A homemade miRNA-133 mimic (mimic HM) and lipopolyplexes 
transfection reagent (LPRi) were included. Upper panel: the plates were scanned 3 days later using a bioluminescence scanner. Lower panel: same experiment 
performed on 24-wells plate to normalize bioluminescence values to protein contents in each wells. The data were expressed as mean of RLU/mg ± SEM of one 
representative experiment performed at least 3 times. Statistics by the two-tailed t-test, *P < 0.05, **P < 0.01, compared to control cells transfected with a miRNA 
mimic control (miRNA CTL)
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mg) followed closely by the mimic produced by Qiagen 
(6.89 x 1010 RLU/mg). The miRNA mimics produced by 
Dharmacon (4.83 x 1010 RLU/mg), Active Motif (4.66 x 
1010 RLU/mg), by our laboratory (HM, 4.43 109 RLU/) 
and by Sigma (4.03 x 1010 RLU/mg) were less efficient. 
We also found that the first generation of miRNA mimic 
produced by ThermoFisher, called pre-miRNA, was less 
efficient (3.93 × 1010 RLU/mg) than miRVANA (7.24 x 
1010 RLU/mg) which is the latest generation of miRNA 
mimics produced by the company. According to this com-
pany, the difference between these two generations of syn-
thetic miRNAs can be attributed to proprietary-based 
chemical modifications of miRNA oligonucleotides. It is 
therefore interesting to point out that the LentiRILES mon-
itoring system is sensitive enough to discriminate by an 
almost twofold difference in sensitivity between these two 
generations of miRNA mimics.

We then examined another possible application of our 
LentiRILES system by exploring some key features of the 
relationship between the structure and function of miRNA 
duplexes [54–56]. We prepared two types of miRNA-133a 
mimic (Figure 5a): a blunt-end extremity of miRNA-133a 

duplex and a 3ʹ dinucleotide overhang miRNA-133a duplex 
identical to the double-stranded miRNA-133a duplex pro-
duced endogenously by the cells and annotated in the 
mirBAse data base. As impact of the miRNA structures on 
their intracellular fate in cells after transfection was not 
reported to our knowledge, we first investigated whether the 
change in the miRNA structure duplex from asymmetric 
3ʹoverhang structure to symmetric blunt structure would 
affect their intracellular distribution as well as their co-locali-
zation with the Argonaute 2 protein. Confocal fluorescence 
microscopy analysis in Figure 5b demonstrated that the intra-
cellular distribution of the two miRNA structures labelled 
with Cyanine 3 was similar and also equally co-localized 
with the Argonaute 2 protein as revealed by immunofluores-
cence labelling. The determination of the Pearson coefficient 
(PC) index confirmed this observation as no statistically sig-
nificant difference was found between the co-localization 
indices of Argonaute 2 with the overhang (PC = 0.225) and 
blunt (PC = 0.232) miRNA duplexes (Figure 5c). In contrast, 
the functionality of these two miRNA duplexes were different 
(Figure 5d). The overhang, asymmetric miRNA-133a duplex 
activated by 4.2-fold the RILES/133T system while the 

Figure 5. Structure and function relationship study of miRNA-133a duplexes using the U87MG LentiRILES/133 T cell line. a) Schematic representation of the structure 
of the two synthetic miRNA-133a duplexes produced in our laboratory that harbour either blunt-end or 3ʹ dinucleotide overhang extremities. b) Confocal microscopy 
analysis of U87MG cells transfected with Cy3-labelled miRNA-133a from A. c) Percentage of co-localization of Cy3-labelled miRNA-133a from B with Argonaute 2 
protein revealed by immunofluorescence staining. d) Luciferase activities normalized to protein content (RLU/mg) from U87MG LentiRILES/133T cells transfected with 
miRNA-133a from A. Data are expressed as mean ± SEM of representative experiments performed at least 3 times. Statistics by the two-tailed t-test, *P < 0.05; 
**P < 0.01, compared to control cells transfected with a miRNA mimic control (miRNA CTL)
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symmetric miRNA-133a duplex activated by only 2.4-fold. 
This demonstrates that the RISC machinery preferentially 
processed the overhang, asymmetric miRNA-133a duplex 
rather than the blunt, symmetric miRNA-133a duplex. These 
results are in line with previous studies indicating that 3ʹ 
nucleotide overhang asymmetric duplex miRNA is a key 
structural parameter that governs the incorporation and selec-
tion of one strand from the miRNA duplex by the RISC 
machinery, a phenomenon referred to as the thermodynamic 
asymmetry rule of RNAi duplex [57]. We therefore antici-
pated that the blunt-end miRNA duplex does not favour such 
a selection and thus that the RISC machinery might process 
equally the two strands of miRNA duplexes. The lower luci-
ferase induction monitored by RILES with the blunt-end 
miRNA duplex can be explained by a direct competition of 
the two strands of the miRNA-133a duplex for binding to the 
miR-133 T cassette in cells, which is specific to the mature 
strand sequence of miRNA 133a, not the passenger strand.

In Vivo bioluminescence monitoring of the kinetic of 
mirna activity upon delivery in an orthotopic animal 
model of glioblastoma

A key aspect that has not yet been fully achieved in the field of 
miRNA therapeutics is the ability to resolve the kinetic of 
miRNA functionality once delivered in the tumour mass. 
Better understanding of the long-term activity of synthetic 
miRNA mimics or inhibitors in targeted tissues would be an 
advantage to optimize an administration protocol to deliver 
maximal dose of therapeutic miRNA with minimal toxicity 
[58,59]. This point is particularly of interest when considering 
the locoregional treatment of tumour mass located in vulner-
able organs such as the brain furthermore isolated from the 
rest of the body by the blood-brain barrier. Recent advances 
into clinical practice indicated that the convection-enhanced 
delivery method is a reliable approach to deliver high drug 
content in specific areas of the brain, bypassing as such the 

Figure 6. In vivo bioluminescence monitoring of kinetic of miRNA-133a activity upon delivery in an orthotopic glioblastoma mouse model. a) Schematic 
representation of the procedure used to establish the kinetic of miRNA-133a in vivo. The U87MG LentiRILES/133T cells were implanted in the striatum of mice by 
stereotaxic surgery and then, 10 days later when the mice developed solid tumours, the miRNA-133a or miRNA control (CTL) were formulated with the LPRi 
lipopolyplexes and infused locally in tumour masses by convection-enhanced delivery. b) Quantitative bioluminescence signals emitted from the brain of mice 
infused with the LPRi_miRNA-133a and LPRi_miRNA CTL and collected in real time using an in vivo bioluminescence scanner. Data are expressed as luciferase activity 
fold change by normalizing bioluminescence values detected for each mouse at the indicated time point to the minimal value detected on the day of infusion and 
set to the arbitral value of 1. c) Representative bioluminescence images collected from one representative mouse from the LPRi_miRNA-133a and LPRi_miRNA CTL 
group of animals
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blood-brain barrier that prevents therapeutic drugs from 
reaching the central nervous system. The principle of this 
delivery method consists in applying a constant pressure 
gradient to an infusion tip in such way that the fluid flow 
driven by the convection force allows the drugs to diffuse over 
large distance and period of time [49,60–62]. However, as this 
locoregional procedure can be considered as invasive, optimal 
administration procedures are required to limit the repetition 
of surgical intervention to implant catheters into the brain 
without compromising the therapeutic outcome.

Using bioluminescence imaging, we attempted to resolve 
the dynamics of miRNA activity upon delivery in glioblas-
toma tumour mass by CED. We implanted the U87MG 
LentiRILES/133T cells into the striatum of SCID mice. Ten 
days later, the developed tumour mass was infused with the 
miRNA-133a complexed with our LPRi nanocarrier by CED 
(Figure 6a). The mice were thereafter scanned using a biolu-
minescence imaging scanner over a longitudinal study of 
2 weeks (Figure 6b). Typical bioluminescence images collected 
at several time points from one illustrative mouse per group 
are shown in Figure 6c.

Bioluminescence analysis of each mice followed over time 
revealed that the basal luciferase activity of RILES detected in 
the LPRi_miRNA control group of mice increased propor-
tionally with the tumour proliferation over time (Figure 6b, 
left panel). In contrast, upon CED infusion of miRNA-133a 
and thus switching lentiRILES in the ON-configuration, a 
different pattern of luciferase activity was detected in the 
LPRi_miRNA-133a group of mice (Figure 6b, right panel). 
Three of the five mice exhibited two peaks of luciferase 
activity detected either at day 4 (mouse 546) or day 6 (mice 
550 and 549), indicating that the delivery of miRNA-133a 
mimic was successful in these 3 tumours but also variable. 
As shown in the right panel of Figure 6b, the luciferase fold 
change values monitored in mouse #550 and #549 increased 
gradually over time, reached a maximum peak of activity at 
day 6 and then dropped, two days later, to the basal level, 
similar to that detected in the control group (LPRi_miRNA 
CTL mice, Figure 6b). In contrast, the luciferase activity 
monitored in mice #546 increased more rapidly in the first 
4 days, reached a maximum at this time point (e.g day 4) and 
decreased quickly thereafter to finally reaching the basal bio-
luminescence levels detected in the control group.

The factors contributing to the heterogeneity of miRNA 
delivery observed by RILES in these mice are currently not 
clear and several hypothesis can be inferred. The interaction 
with the extracellular matrix might allow the LPRi_miRNA- 
133a nanoparticles to be gradually released in the tumour 
microenvironment, thus serving as extra-cellular reservoirs 
[63]. Physical parameters, such as pH values, salt concentra-
tion, interstitial tumour fluid pressure can also impact the 
release rate of LPRi_miRNA-133a nanocarriers from infusion 
tips into the solid tumours [64–67]. Tumour cells intrinsic 
processing or recycling of transfected miRNAs through extra-
cellular vesicles can also be involved [68,69] resulting in a 
long-lasting activity of transfected miRNAs in solid tumour as 
we recently reported in U87MG cells [47]. While deciphering 
the exact mechanism of miRNAs diffusion into the brain was 
not the scope of this study, future experiments are planned to 

elucidate this process. This study is the first to our knowledge 
that reports in real time and as a positive readout the kinetic 
of miRNA delivery and activity in a preclinical animal model 
of brain tumour.

Taken together, in this first part of this study, we provide 
evidence that lentiRILES is a relevant miRNA sensor system 
with several advantages as compared to conventional miRNA 
monitoring methods such as: 1) detection of miRNA expres-
sion/delivery in live cells by real-time fluorescence imaging 
operating at the single cell level in dividing (cancer) cells; 2) 
positive readout signal, avoiding the potential confounding 
factors associated with negative readout such as such as cell 
death or low-resolution capacity; 3) exploitation as positive 
readout cell-based miRNA screening platform for screening of 
innovative miRNA oligonucleotides/transfection reagents and 
4) visualization of the kinetic of miRNA activity in a precli-
nical animal model of cancer that can be exploited to guide 
the development of more efficient miRNA-delivery systems 
with potential clinical application. Finally, 5) while miR-ON 
reporter systems such as tetR KRAB have been used to follow 
miRNAs regulation during cell fate differentiation over 
extended periods of time (weeks), the lentiRILES can be 
employed to follow the endogenous miRNA regulation during 
cell differentiation over less than one week (Figure 3a-d). 
Disadvantages of the lentiRILES miR-ON reporter may 
include the time needed to establish the stable cell line 
(Figure 1c) and the dependence on cell line permissiveness 
to lentivirus infection (Figure 1d).

Therapeutic Evaluation of Mirna-200 c in the Orthotopic 
Animal Model of Glioblastoma

Finally, we decided to evaluate the therapeutic relevancy of 
a locoregional RNAi treatment of glioblastoma by infusion 
of tumour beds with a tumour suppressor miRNA by CED 
guided by the RILES (Figure 6). Over the last decade, a 
growing number of tumour suppressor miRNAs have been 
discovered to play pivotal roles in tumorigenesis [70,71]. 
We decided to focus our experiments on the tumour sup-
pressor miRNA-200c [72,73]. Gain-of-function studies per-
formed in our laboratory indicated that transfection of 
miRNA-200c in U87MG cells impaired significantly the 
proliferation rate of these tumour cells (Figure 7a) by 
inducing cell cycle arrest in G1 phase (Figure 7b) but 
without inducing apoptosis (Figure 7c). We observed a 
drastic change in the morphology of U87MG cells after 
miRNA-200c transfection (data not shown) and investi-
gated whether the ectopic expression miRNA-200c in 
these cells might induce a reversal phenotype from the 
mesenchymal to the epithelial phenotype (MET). As 
shown in Figure 7d, significant reduction of relative 
mRNAs expression of mesenchymal markers, ZEB-1 
(38.2% reduction), ZEB-2 (49.4% reduction) and Vimentin 
(21% reduction) were detected after miRNA-200c transfec-
tion, which correlated with the de novo expression of 
epithelial E-Cadherin marker (16.3-fold increase). Based 
on these data, we evaluated the impact of this change in 
the cell morphology on the migratory behaviour of the 
U87MG cells. Wound-healing scratch assay in Figure 7e 
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Figure 7. Tumour suppressive function evaluation of miRNA-200c in U87MG cells in vitro. a) Alamar Blue cell proliferation assay, b) flow cytometry analysis of cell 
cycle and c) apoptosis assay of U87MG cells transfected with miRNA-200c or miRNA control (miRNA CTL). d) Upper panel: Agarose gel analysis of the RT-PCR products 
generated with specific primers to detect expression of the E-cadherin, vimentin, ZEB1 and ZEB2 EMT markers after transfection of U87MG cells with miRNA-200c or 
miRNA control (miRNA CTL). Lower panel: the same experiment analysed by quantitative RT-PCR. e) Wound healing assay of U87MG cells transfected with miRNA- 
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demonstrated that transfection of miRNA-200c significantly 
delayed (p = 0.028) the migratory capability of the U87MG 
cells, notably at the 22 hours time point, where the percen-
tage of wound closure was reduced by 51.3 %. Overall, 
these biological changes in U87MG cells are relevant for 
glioblastoma treatment as this tumour type is characterized 

by rapid growth and local invasion of surrounding tissue 
[74–76]. Furthermore, Quin et al. [77] demonstrated that 
the stable overexpression of miRNA-200c in glioblastoma 
reduced the proliferation and invasion rate of glioma cells 
in vitro and in vivo in a subcutaneous xenografts animal 
model of glioblastoma. Although this study has merit as it 

200c or miRNA control (miRNA CTL). Upper panel, representative pictures of cell monolayers collected 16 hours after wound scratch. Lower panel, left, time lapse of 
wound area closure measured by imaging software from pictures taken every 2 hours over a period of time of 24 hours. Lower panel, right, percentage of wound 
closure from U87MG cell transfected with miRNA-200c or miRNA control (miRNA CTL) normalized to the wound surface area detected at T0 and set to the arbitral 
value of 1. Data are expressed as mean ± SEM of one representative experiments performed at least 3 times. Statistics by the two-tailed t-test, *P < 0.05, **P < 0.01, 
compared to control cells transfected with miRNA mimic control (miRNA CTL)

Figure 8. Tumour suppressive evaluation of miRNA-200c in a preclinical animal model of glioblastoma. a) Schematic representation of the procedure used to 
evaluate the therapeutic potential of miRNA-200c. The U87MG cells were implanted in the brain of mice and then when the mice developed solid tumours, the 
miRNA-200c or miRNA control were formulated with the LPRi lipopolyplexes and infused locoregionally, twice, at days 9 and 13 by convection-enhanced delivery. b) 
Tumour growth in both treatment groups monitored by MRI imaging once a week. c) Statistical analysis of tumour volumes collected at day 14 from the two groups 
of animals (n = 5 for each). d) Representative MRI performed at day 14 after implantation of U87MG cells (arrows indicate tumour tissue). e) Kaplan Meier curve. Data 
are expressed as mean ± SEM of one representative experiment performed twice. Statistics by the two-tailed t-test, *P < 0.05 compared to control group of animal 
infused with the LPRi_miRNA CTL 
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provides novel insights into the mode of action of miRNA- 
200c in a glioblastoma context, it cannot objectively, as 
acknowledged by the authors, inquire into the therapeutic 
value of miRNA-200c to treat brain tumours.

We decided to address this point using a miRNA delivery 
approach to closely mimic a clinical intervention in which 
the miRNA-200c will be infused directly into the tumour 
mass using a miRNA-nanocarrier, the LPRi lipopolyplexes 
and the CED as delivery method. As the RILES system 
indicated that the delivered miRNAs are active for 4 to 
6 days upon delivery (Figure 6), we infused the U87MG 
solid tumours twice with the LPRi_miRNA-200c by CED, 
spaced by an interval of time of 4 days (Figure 8a). The 
therapeutic impact of this targeted miRNA-200c delivery 
approach in glioblastoma development was evaluated by 
magnetic resonance imaging (MRI) performed over a 
3 weeks period of time.

As shown in Figure 8b, the overall growth rate of tumour 
development was found similar between the LPRi_miRNA 
CTL and LPRi_miRNA-200c group of animals although a 
plateau of growth of tumour mass was visible between days 
11 to 14 in the LPRi_miRNA-200c group of animals. 
Statistical analysis performed at day 14 indicated that 
tumour volumes in the LPRi_miRNA-200c group of animals 
were significantly smaller (p = 0.03, Figure 8c) than those 
detected in the LPRi_miRNA CTL group of animals. 
Representative MRI of one representative tumour mass by 
group of animals is showed in Figure 8d. Smaller size of 
tumour mass is noticeably visible at this time point. 
However, beyond this time frame no other statistically sig-
nificant difference was found. These results indicate that the 
treatment of glioblastoma tumours twice with the 
LPRi_miRNA-200c can significantly delay the proliferation 
rate of tumour cells but this effect is transient and reversible. 
The Kaplan-Meier survival curves draw from this experience 
confirm the above statement. Although the median survival 
time of the two groups of animals differed by 2 days in 
beneficial of the miRNA-200c group of animals, no statisti-
cally significant difference was observed between these two 
groups of animals (Figure 8e).

Based on this data, it might be tempting to speculate that 
repeated administrations (i.e. more than twice) of the 
LPRi_miRNA-200c might be necessary to reach a better ther-
apeutic outcome. However, as we observed in vitro that 
miRNA-200c exerted a mild cytostatic effect in U87MG 
tumour cells, characterized by a cell cycle arrest of U87MG 
cells in G1 and S-phase without inducing apoptosis (Figure 
7a-c), locoregional therapeutic intervention of glioblastoma 
with miRNA-200c mimic needs to be addressed with caution. 
A combinatorial treatment with another therapeutic agent 
might be required to reach a better curative treatment. In 
the specific context of glioblastoma, a combined treatment 
of miRNA-200c with radiotherapy seems particularly suitable. 
External beam therapy has long been used as a keystone 
treatment in glioblastoma patients but results from clinical 
studies indicated that combinatory treatments are required for 
an optimal therapeutic outcome [78]. Interestingly, it was 
recently reported that overexpression of miRNA-200c in dif-
ferent cancer cells including glioblastoma inhibited invasion, 

migration, and vascular tube formation and increased the 
radiosensitivity of tumour cells by modulating the EGFR 
signalling pathway and favouring persistence of the γH2AX 
focus [79]. Exploiting the radio-sensitizing properties of 
miRNA-200c in combination with a radiotherapy protocol 
deserves to be addressed in vivo. Repeated administration of 
miRNA-200c, guided by RILES after radiotherapy, might pro-
vide a therapeutic advantage. We are currently assaying this 
point as well as investigating the radiosensitizing role of other 
miRNA candidates recently identified through a molecular 
screening procedure applied on biopsies of patients with 
radioresistant glioblastoma tumours.

Conclusion

Taken together, our work demonstrates that the genetic- 
switch RILES expression system integrated in a lentivirus is 
a relevant approach to monitor the endogenous and exogen-
ous dynamic expression of miRNAs in fast-dividing biology 
systems such as cancer cells. We performed a complete set of 
validation studies at the molecular and cellular level and 
demonstrated that LentiRILES is a robust, specific and sensi-
tive integrative miR-ON monitoring system that can be 
exploited to resolve the dynamic of miRNA activity over 
short [47] and, here, long periods of time. We explored 
several applications of LentiRILES in the field of miRNA 
biology and therapeutics in vitro and demonstrated the feasi-
bility of this novel system for in vivo monitoring of miRNA 
mimic delivery. Because of its relatively easy production and 
versatility, we anticipate that the LentiRILES system holds 
promise for multiple applications in the field of miRNA 
biology as well as gene and cellular therapy.
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Inhibition of the PI3K/Akt/mTOR signaling pathway represents a potential issue for

the treatment of cancer, including glioblastoma. As such, rapamycin that inhibits the

mechanistic target of rapamycin (mTOR), the downstream effector of this signaling

pathway, is of great interest. However, clinical development of rapamycin has floundered

due to the lack of a suitable formulation of delivery systems. In the present study, a

novel method for the formulation of safe rapamycin nanocarriers is investigated. A phase

inversion process was adapted to prepare lipid nanocapsules (LNCs) loaded with the

lipophilic and temperature sensitive rapamycin. Rapamycin-loaded LNCs (LNC-rapa) are

∼110 nm in diameter with a low polydispersity index (<0.05) and the zeta potential

of about −5mV. The encapsulation efficiency, determined by spectrophotometry

conjugated with filtration/exclusion, was found to be about 69%, which represents

0.6 wt% of loading capacity. Western blot analysis showed that LNC-rapa do not

act synergistically with X-ray beam radiation in U87MG glioblastoma model in vitro.

Nevertheless, it demonstrated the selective inhibition of the phosphorylation of mTORC1

signaling pathway on Ser2448 at a concentration of 1µM rapamycin in serum-free

medium. Interestingly, cells cultivated in normoxia (21% O2) seem to be more sensitive

to mTOR inhibition by rapamycin than those cultivated in hypoxia (0.4% O2). Finally, we

also established that mTOR phosphorylation inhibition by LNC-rapa induced a negative

feedback through the activation of Akt phosphorylation. This phenomenon was more

noticeable after stabilization of HIF-1α in hypoxia.

Keywords: rapamycin, nanoparticles, radiation, hypoxia, mTOR, Akt, HIF-1α, cancer

INTRODUCTION

Glioblastoma (GB) is the most common and deadly primary brain tumor in adults (Ostrom
et al., 2017). Despite remarkable advances in surgical techniques and treatment options including
chemotherapy and radiotherapy, the prognosis of this disease remains very poor with a median
survival under 15 months (Stupp et al., 2005, 2009). Therefore, the understanding of the molecular
mechanisms that drive malignancy in glioblastoma is seriously needed for the development of
new agents specifically targeting tumor cells and the tumor microenvironment (Touat et al., 2017;
Najberg et al., 2019).
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The phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt)/mechanistic target of rapamycin (mTOR) intracellular
signaling pathway plays a central role in the regulation of
cell proliferation, growth, differentiation, and survival (Sonoda
et al., 2001; Bjornsti and Houghton, 2004; Knobbe et al., 2005;
Castellino and Durden, 2007; Jiang and Liu, 2009). Stimulation of
this pathway results in the activation of a receptor tyrosin kinase
(RTK) by a cytokine or a growth factor, which drive a sequential
phosphorylation of PI3K, Akt, and mTOR. mTOR regulates cell
growth and survival via two different multiprotein complexes,
mTORC1 and mTORC2. The complex mTORC1 is composed
of mTOR, regulatory-associated protein of mTOR (Raptor),
mammalian lethal with Sec13 protein 8 (mLST8), proline-rich
AKT substrate 40 kDa (PRAS40), and DEP-domain-containing
mTOR-interacting protein (Deptor) (Saxton and Sabatini, 2017).
mTORC1 activates the eukaryotic initiation factor 4E (eIF4E)-
binding protein, releasing the transcription factor eIF4E and
the p70 ribosomal S6 kinase 1 (S6K1 or p70S6K) implicated in
translation (Heimberger et al., 2005).

This pathway can be activated through numbers of
mechanisms, including growth factors, overexpression or
amplification of Akt family members, inactivation of the
inhibitory effects of PTEN (phosphatase and tensin homolog)
tumor suppressor or by non-canonicalWnt pathway (Saxton and
Sabatini, 2017). Furthermore, radiation can also activate mTOR
signaling in vascular endothelium and in glioblastoma cell lines
(Eshleman et al., 2002; Shinohara et al., 2005; Anandharaj et al.,
2011). Consequently, mutations in the PI3K or AKT genes, loss
of PTEN, epigenetic modifications, or constitutive activation of
upstream tyrosine kinase receptors will lead to dysregulation of
this pathway in a variety of tumors, including GB (Engelman,
2009; Bai et al., 2011; Wick et al., 2011; Mao et al., 2012). As
such, there are marked associations between alterations in
the PI3K/AKT/mTOR pathway and the poor clinical survival
(Engelman, 2009). Therefore, inhibition of the PI3K/Akt/mTOR
signaling pathway has been widely investigated as a potential
therapy for cancer including glioblastoma (Li et al., 2016).
Interestingly, tumor cells in which the PI3K/Akt/mTOR pathway
is dysregulated are more susceptible to the inhibition of mTOR,
the downstream effector of this signaling pathway, than normal
cells (Courtney et al., 2010). Hence, mTOR inhibitors such as
rapamycin and its derivatives provide a new class of active agents
and therapeutics for GB.

Rapamycin (Sirolimus) is a natural macrolide antibiotic
(firstly isolated from samples of Streptomyces hygroscopicus
found on Easter Island), which binds to FK506 binding protein
12 (FKBP12). The rapamycin-FKBP12 complex inhibits mTOR
and prevents further phosphorylation of proteins involved in
the transcription, translation, and cell cycle control (Heimberger
et al., 2005). Anandharaj et al. studied three PTEN-null GB
cell lines and demonstrated that rapamycin combined with
radiotherapy inhibited the inhibitor of apoptosis protein (IAP)
family protein surviving through repression of phospho-Akt.
Thus, targeting Akt through mTOR with rapamycin increased
the radiation sensitivity (Anandharaj et al., 2011). Preclinical
trials showed that PTEN deficient tumors and those dependent
on PI3K overexpression were most sensitive to rapamycin

(Bjornsti and Houghton, 2004). These results provide a strong
basis for investigation of mTOR inhibitors as potential tumor-
selective therapeutic agents. Rapamycin and its derivatives, CCI-
779 and RAD001, specifically inhibit the function of mTOR by
blocking the phosphorylation of downstream molecules, such
as p70S6 kinase (p70S6K) and eukaryotic initiation factor 4E-
binding protein 1 (4E-BP1), leading to G1-phase cell cycle arrest.
Accumulating evidence from preclinical and early clinical studies
suggests that these mTOR inhibitors, alone or in combination,
would be directly and indirectly effective as growth inhibitors
against a broad range of tumors including GB (Mecca et al., 2018;
Hsu et al., 2020; Wanigasooriya et al., 2020).

Despite the potency of rapamycin in preclinical studies,
clinical development of rapamycin floundered due to the
lack of suitable formulations. The low oral bioavailability
(<15%) (Yatscoff et al., 1995) precludes tablet formulation
except for low dosage treatments such as immunosuppression.
Rapamycin’s poor solubility in water, ca. 2.6µg/mL, and
common excipients make intravenous (i.v.) formulation difficult
(Simamora et al., 2001). In addition, pharmacokinetic studies
found that rapamycin strongly partition into the erythrocytes
(Kd ca. 20) from where it may not readily access to solid
tumors (Yatscoff et al., 1995). This led to the development of
ester derivatives, e.g., Temsirolimus or CCI-779, which were
more easily formulated. Despite the promise of CCI-779 for
mTOR inhibition, intravenous formulations required ethanol
that may cause hemolysis (Raymond et al., 2004). Furthermore,
phase I trials established that the CCI-779 prodrug was rapidly
hydrolyzed in the plasma back into rapamycin thus favoring
again potential partition into erythrocytes and unsupportive for
tumor accumulation. More recent evolutions with the derivative
Everolimus in phase II leads to increase treatment-related
toxicities (Chinnaiyan et al., 2018).

In order to improve rapamycine biodistribution,
nanovectorization strategies have been developed. They provide
a physical protection and allow freeing from solubility problems.
In this work, lipid nanocapsules loaded with rapamycin (LNC-
rapa) were developed as new nanocarriers for the treatment of
GB. We demonstrated that encapsulated rapamycin keeps its
biological effect and efficiently inhibits mTOR phosphorylation.
LNC-rapa were more cytotoxics than rapamycin alone but,
in association with 8Gy radiation, no synergistic effect were
observed. This result could be explained by the complexity of
the PI3k/Akt/mTOR in GB as demonstrated by activation of
phosphorylated Akt with mTOR inhibition and dependence
from oxic status.

MATERIALS AND METHODS

Materials
Lipoïd R© S75-3 (soybean lecithin at 69% of phosphatidylcholine)
and Solutol R© HS15 (a mixture of polyethylene glycol 660
and polyethylene glycol 660 hydroxystearate) were kindly
provided by LipoïdGmbh (Ludwigshafen, Germany) and
BASH (Ludwigshafen, Germany), respectively. NaCl and
DMSO were provided by Sigma Aldrich (St-Quentin, Fallavier,
France). Deionized water was obtained from a Milli-Q plus
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system (Millipore, Paris, France). Lipophilic Labrafac R© CC
(caprylic-capric acid triglycerides) was provided by Gattefosse
S.A. (Saint-Priest, France). Rapamycin was purchased from
Interchim (Montluçon, France).Captex R© 8000 (Triglyceride of
caprylic acid), Transcutol R© HP (Diethylene glycol monoethyl
ether), and Miglyol R© 812 (caprylic/capric triglyceride) were
purchased, respectively, from Abitec (Janesville, WI, USA),
Gattefosse S.A. (Saint-Priest, France) and Sasol Germany GmbH
(Marl, Germany).

Reagents and Antibodies
Rapamycin was dissolved in DMSO. The final concentration
of DMSO in the culture medium did not exceed 0.2%. Anti-
phospho-mTOR (ab109268, diluted 1:2,000) and anti-HIF-1α
(ab51608, diluted 1:2,000) were from Abcam (Cambridge,
UK). Anti-phospho-Akt (#4058, diluted 1:1,000) was from Cell
Signaling Technology (Beverly, MA, USA) and anti-HSC70
(sc7298, diluted 1:10,000) was from Santa Cruz biotechnology
(Dallas, TX, USA). Peroxidase-conjugated anti-mouse (#32430,
diluted 1:2,000) and anti-rabbit (#32460, diluted 1:2,000)
secondary antibody were from ThermoScientific (Waltham,
MA, USA). Lysis buffer: [50mM Hepes (pH 7.5), 150mM
sodium chloride, 1mM EDTA (pH 8), 2.5mM EGTA (pH 7.4),
0.1% Tween 20, 10% glycerol, 0.1mM sodium orthovanadate,
1mM sodium fluoride and 10mM β-glycerophosphate] plus
Protease inhibitor cocktail (#539134 Calbiochem, Darmstadt,
Germany), PMSF and Phosphatase inhibitor Cocktail Set II
(#524636 Calbiochem).

Solubility Assays
Rapamycin solubility assays were performed in different
oils: Captex R© 8000, Labrafac R© CC and Miglyol R© 812. Five
microgram of rapamycine were dissolved in 250mg of oil and
kept under magnetic stirring during 3 h at room temperature
(RT) or at 90◦C. Rapamycin concentration was determined
by reverse-phase high-performance liquid chromatography (RP-
HPLC) after 24 h settling at 4◦C, using µBondapack C18 column
(Waters Corporation, Milford, MA) with an ultraviolet detector
at 278 nm. The mixture of 90% acetonitrile and 10% water (v/v)
was used as a mobile phase, and delivered at a flow rate of 2.0
mL/min. The injection volume was 10 µL and the retention time
was about 2.3 min.

For spectral analysis of the stability of rapamycin in
Labrafac R©, rapamycin was solubilized at 1 mg/mL in Labrafac R©

under magnetic stirring before being submitted to 3 to 6
short cycles of heating (70◦C for <1min) and cooling (RT) or
incubated for 1 to 3 h at 70◦C in Labrafac. Spectral analysis was
then made by use of the CLARIOstar microplate reader (BMG
Labtech, Champigny-sur-Marne, France).

Formulation and Physico-Chemical
Characterization of Empty (LNCs) and
Rapamycin-Loaded Lipid Nanocapsules
(LNC-rapa)
LNCs were prepared according to a phase-inversion process
adapted from Heurtault et al. (2002). This process involves

the formation of an oil/water microemulsion containing an
oily/fatty phase (triglycerides: Labrafac R© WL 1349), a non-ionic
hydrophilic surfactant (polyethylene glycol hydroxystearate:
Solutol R© HS15), and a lipophilic surfactant (lecithin: Lipoïd R©

S75-3). Briefly, 21mg of Lipoïd R© S75-3, 138mg of Solutol R©

HS15, 345mg of Labrafac R©, 104mg of NaCl and 898mg of
deionized water were mixed by magnetic stirring. 5mg of
rapamycin were added to other reagents for a final concentration
of 1 mg/mL. Three cycles of progressive heating and cooling
between 30 and 70◦C were then carried out and followed by
an irreversible shock, induced by addition of 3.6mL of 0◦C
deionized water. Afterwards, slow magnetic stirring was applied
to the suspension for 5min. LNCs were filtered through a
Minisart R© 0.2µm filter (Sartorius, Goettingen, Germany) and
kept at 4◦C. The average diameter and polydispersity index were
determined using Malvern Zetasizer R© Nano Serie DTS 1060
(Malvern instruments S.A., Worcestershire, UK).

Encapsulation of drug: For determination of drug
encapsulation yield, three samples of filtrate were prepared
by dissolution of an exact quantity of LNC dispersion in a
96/4 (v/v) methanol/tetrahydrofurane solution. Free rapamycin
(non-soluble) was removed by the filtration performed through
the Minisart R© 0.2µm filter and its concentration measured by
spectrophotometry at 289 nm. Quantification was achieved by
comparison between observed peak area ratios of rapamycin of
the samples and a calibration curve performed using the same
conditions. Samples were performed in triplicate and the loading
capacity (LC) was calculated using the following equation:

Drug content (wt%) =

mass of encapsulated
drug

mass of encapsulated drug +mass of
LNC excipients

×100 (1)

The encapsulation efficiency (EE) of rapamycin was calculated
using the Equation (2):

Encapsulation efficiency (wt%) =
mass of encapsulated drug

mass of initial drug

×100 (2)

For electrical conductivity measurements, an electrical
conductivity meter (Cond 330i/SET, WTW, Germany) was used
in non-linear temperature compensation mode according to EN
27888. The conductivity variations were followed as a function
of temperature to determine the emulsion inversion zone.

Cell Culture and Exposure to Hypoxia
Humanmalignant glioma cell lines U87MGwere purchased from
American Tissue Culture Collection (Rockville, MD). Tumor
cells were cultured in Dulbecco’s modified Eagle’s medium
4.5 g/L glucose and L-glutamine (DMEM, Lonza, Verviers,
Belgium) supplemented with 10% of heat-inactivated fetal
bovine serum (FBS, Lonza) and 1% antibiotics suspension (10
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units/mL of penicillin, 10 mg/mL streptomycin and 25µg/mL
amphotericin B, Sigma-Aldrich, Saint-Louis, MO, USA). Tumor
cells were incubated at 37◦C in 5% CO2 and 21% (normoxia)
or 0.4% O2 (hypoxia). Hypoxia conditions were obtained by
use of an InVivO2 400 SCI-tive hypoxia workstation (Ruskinn
Technology, Ltd., Leeds, UK).

Irradiation Procedure
Irradiation was performed with the CP-160 cabinet x-ray system
(Faxitron, Edimex, Le Plessis Grammoire, Angers, France) which
delivers a dose of 1,5 grays by min. Irradiation was performed
during 5.33min in order to reach the dose of 8 grays. Irradiation
was performed with cells covered. Depending on the condition
considered, the cells were placed throughout the experiment in
a conventional 21% O2 incubator at 37◦C/5% CO2 (normoxia)
or 0.4% O2 (hypoxia) at 37◦C/5% CO2 in an InVivO2 400 SCI-
tive hypoxia workstation (Ruskinn); they are only placed in an
isolated flask for the duration of the irradiations.

Cytotoxicity Evaluation
Two assays were performed to determine the cytotoxicity
effect of LNC-rapa on the glioblastoma cell line U87MG:MTS
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium) (Promega, Charbonnières,
France) and clonogenic assay by crystal violet
coloration (Sigma-Aldrich).

For the MTS assay, U87MG cells (5× 104 cells/mL) harvested
in the exponential growth phase were seeded in a 24-well plate in
DMEM medium with 10% FBS, in humidified atmosphere (5%
CO2) at 37◦C. Once the cells incubated in the exponential growth
phase, serum-contained medium was removed and replaced by
serum-deprived DMEM supplemented with 1% N1 supplement
(Sigma-Aldrich). Free rapamycin dissolved in DMSO (1/10,000,
non-toxic) was applied at various concentrations (0.04; 0.2; 1;
5; 10; 20; 100; 200µM) for 4 h. 8Gy radiation was performed
6 h after the onset of initial treatment by Faxitron CP-160
(Faxitron X-rays, Lincolnshire, UK). Medium was changed every
day. Forty-eight hours following the treatment, MTS reagent
was diluted (1:5) in U87MG cell medium and incubated for
2 h at 37◦C. The absorbance was measured at 492 nm using
Multiskan R© microplate spectrophotometer (Thermo Scientific).

For the clonogenic assay, U87MG cells (103 cells/mL)
harvested in the exponential growth phase were seeded in a
6-well plate in DMEM medium with 10% FBS, in humidified
atmosphere (5% CO2) at 37◦C. Once the cells incubated in
the exponential growth phase, serum-contained medium was
removed and replaced by serum-deprived DMEM supplemented
with 1 % N1 supplement. Cells were treated for 4 h with
rapamycin, LNC-rapa at 1µM (IC50 LNC-rapa at 21% O2

corresponding to a 1/1,000 dilution from initial suspension) and
with empty LNCs at the same dilution than LNC-rapa. 8Gy
radiation was performed 6 h after the treatment by Faxitron CP-
160. Ten days after treatment, colonies were colorized by crystal
violet and their number was evaluated with ImageJ Software
version 1.43.

Depending on the condition considered, the cells were placed
throughout the experiment in a conventional 21% O2 incubator

at 37◦C/5% CO2 (normoxia) or 0.4% O2 (hypoxia) at 37◦C/5%
CO2 in an InVivO2 400 SCI-tive hypoxia workstation (Ruskinn);
they are only placed in isolated flasks for the duration of
the irradiations.

Western Blotting
U87MG cells (2.4 × 105 cells/mL) harvested in the exponential
growth phase were seeded in dishes in DMEMmedium with 10%
FBS, at 37◦C in humidified atmosphere containing 5% CO2 and
21 or 0.4%O2. Once the cells incubated in the exponential growth
phase, serum-contained medium was removed and replaced by
serum-deprived DMEM supplemented with 1% N1 supplement.
Cells were treated with rapamycin, LNC-rapa at 1µM and with
empty LNCs at the same dilution than LNC-rapa. 8Gy radiation
was performed 6 h after the treatment by Faxitron CP-160 (cf.
section Irradiation Procedure).

Sixteen hours after rapamycin initial treatment
(untreated, rapamycin, LNC, LNC-rapa), soluble proteins
for immunobloting were harvested from tumor cells lysed in
300 µL lysis buffer on ice. Cells were scrapped and lysed by
sonication for 10 s.

Equal amounts of protein from each sample, estimated by
the Bio-Rad Protein Assay (Richmond, CA), were separated by
electrophoresis through a 4–20% SDS-polyacrylamide gel (Mini-
protean R© TGXTM Ge, BioRad), transferred to PVDF membranes
(AmershamHybond, GE Healthcare, Buckinghamshire, UK) and
blocked with 4% non-fat dry milk in 1X TBS plus 0.1% Tween 20
at RT for 1 h. The membranes were washed and incubated with a
primary antibody diluted in 2% BSA in 1X TBS plus 0.1% Tween
20 overnight at 4◦C. The membranes were then washed and
incubated again for 1 h at RT with peroxidase-conjugated anti-
rabbit or anti-mouse secondary antibody. The bound antibody
was detected using the enhanced chemiluminescence reagent
kit SuperSignal West Femto (Thermo Scientific, Waltham, MA,
USA) and read with a bioluminescence detector Image Quant Las
4000 (GE Healthcare, USA).

Statistical Analysis
Three independent biological replicates were performed for all
experiments described in this manuscript. Statistical analyses
were performed with R software using two-way analysis of
variance (ANOVA) test. Differences were considered significant
if the p-value was ≤0.05.

RESULTS

Formulation and Physicochemical
Characterization of Rapamycin-Loaded
LNCs
As a lipophilic molecule with logP = 4.3, rapamycin can be
encapsulated in the lipophilic core of lipid nanocapsules. The
formulation of LNCs via a phase-inversion process described by
Heurtault et al. (2002) involves three cycles of heating/cooling
between 60 and 90◦C. However, rapamycin degrades at higher
temperatures as observed during the solubility assay. Three
different oils were tested for the dissolution of rapamycin at room
temperature (RT) and at 90◦C: Captex R© 8000, Miglyol R© 812
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TABLE 1 | Rapamycin solubility in different oils at RT and at 90◦C.

Oil Temperature Initial

rapamycin

(mg/mL)

Dissolved

rapamycin

(mg/mL)

Dissolution

rate (%)

Captex® 8000 RT 19.0 1.8 9.5

90◦C 16.8 0 0

Miglyol® 812 RT 19.2 1.4 7.3

90◦C 17.1 0 0

Labrafac® RT 24.0 1.5 6.3

90◦C 21.1 0 0

FIGURE 1 | Micro-emulsion conductivity. Micro-emulsion conductivity during

cycles of heating/cooling for LNCs formulation performed with 2M or 0.5M

NaCl aqueous solution.

and Labrafac R©. Rapamycin concentration in the supernatant was
determined by HPLC and the results are summarized in Table 1.
At 90◦C, rapamycin is completely degradedwhatever the oil used.
At RT, rapamycin has a comparable solubility in all three oils.

Finally, Labrafac R©, pharmaceutically acceptable and in which
the stability of rapamycin is confirmed during short cycles of
heating and cooling at 70◦C (Supplementary Figure 1), was
used for the formulation of empty and rapamycin-loaded LNCs.
Hence, a lower temperature (70◦C) was employed in order to
avoid rapamycin decomposition. To decrease the phase inversion
temperature from 90 to 70◦C, we increased the concentration
of NaCl aqueous solution. Electrical conductivity of the micro-
emulsion was measured as a function of temperature for the
“classical formulation” with 0.5M NaCl and for the formulation
with 2M NaCl (Figure 1). A steady state at a high conductivity
value indicates that the continuous phase of the emulsion is water,
whereas conductivity close to zero means that the continuous
phase is oil. The region where the conductivity gradually changes
with temperature represents the phase inversion from oil-in-
water emulsion to water-in-oil emulsion. Figure 1 shows that
the phase inversion occurs at lower temperature (70◦C) when
2M NaCl aqueous solution is used as compared to 0.5M
NaCl solution (90◦C). Thus, increasing NaCl concentration
allows us to perform rapamycin encapsulation in non-degrading
temperature range between 30 and 70◦C.

Empty and rapamycin-loaded LNCs were characterized in
terms of their average size and zeta potential. These values
are presented in Table 2. LNC-rapa have an average size of

112.6 ± 8.4 nm with a polydispersity index (PDI) of 0.044
± 0.011. The zeta potential is of −5.5 ± 0.4mV. Rapamycin
encapsulation efficiency and loading capacity were determined
using the equations 1 and 2, these values are also reported in
Table 2. The encapsulation efficiency is of 68.8 ± 7.1 wt% thus
representing a loading capacity of the nanoparticle of 0.6 ±

0.1 wt%. This encapsulation efficiency rate was considered in
the calculation of rapamycin concentration in biological assays.
Insofar as low temperature-made LNC can exhibit fluctuations
in their long-term stability with regard to preservation methods
not yet fully elucidated, the LNCs used throughout of this work
were prepared extemporaneously (Supplementary Table 1).

Effect of Rapamycin-Loaded LNCs
(LNC-rapa) on mTOR Phosphorylation in
U87MG Cells Depending on Oxic Condition
and Exposure to Radiation Treatment
Rapamycin binds FKBP12 and the complex FKBP12/rapamycin
inhibits mTOR phosphorylation that leads to 4E-BP1
dephosphorylation and inhibition of translation. To check
if rapamycin encapsulated within LNCs keeps its biological
proprieties, human U87MG glioblastoma cells, that are PTEN
negative and thus overactivate Akt/mTOR signals, were treated
with empty LNCs, LNC-rapa and free rapamycin dissolved
in DMSO. The cells were cultured in serum-free medium in
atmosphere containing either 21% O2 or 0.4% O2.

As cytotoxicity assay performed by MTS with free rapamycin
demonstrated a toxic effect only at high concentrations, with
more impact in normoxia than in hypoxia (IC50 of 20.54µM at
21% pO2 and 34.65µM at 21% pO2 and 0.4% pO2, respectively,
Supplementary Figure 2), the choice to use a relevant far much
lower concentration while using the LNC nanocarrier was made.
Hence a concentration of 1µM (corresponding to the IC50
LNC-rapa at 21% O2 and to a 1/1,000 dilution from the
initial suspension while using LNC) was applied all throughout
the work.

Western blot analysis was performed and relative
phosphorylation was determined by volumetric ratio of p-
mTOR/HSC70. The results presented in Figure 2A indicate that
rapamycin-encapsulated within LNCs effectively inhibits mTOR
phosphorylation (Ser2448) with modalities much more effective
in hypoxia than in normoxia.

This observation is consistent with the one made by
Brugarolas and coworkers who notably showed that
hypoxia induced mTOR inhibition through TSC1/TSC2
tumor suppressor complex and the hypoxia-inducible gene
REDD1/RTP801. They demonstrated that in contrast to energy
depletion, mTOR inhibition by hypoxia does not require AMPK
or LKB1 but depend on increased expression of the hypoxia
inducible REDD1 gene. They also showed that down-regulation
of S6K, an mTOR target, phophorylation by Redd1 requires Tsc2
and Redd1 probably acts up-stream of the Tsc1/Tsc2 complex
to down-regulate mTOR function in response to hypoxia
(Brugarolas et al., 2004). Thus, at 0.4% oxygenation, mTOR is
inhibited by rapamycin and hypoxia, with loaded-LNCs also
exerting a higher effect in these conditions (Figure 2A).
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TABLE 2 | Physicochemical parameters of LNC-rapa.

Inversion phase (◦C) Size (nm) PdI Zeta-potential (mV) Encapsulation efficiency (% w/w) Loading capacity (%w/w)

LNC-rapa 70 112.6 ± 8.4 0.04 ± 0.01 −5.5 ± 0.5 68.8 ± 7,1 0.6 ± 0.1

LNC 90 92.3 ± 2.6 0.05 ± 0.02 −8.6 ± 0.6 0 0

Average particle size, PDI, zeta potential, encapsulation efficiency (EE) and loading capacity (LC) of empty and rapamycin-loaded LNCs.

FIGURE 2 | Effects of LNC-rapa assessed on mTOR phosphorylation in U87MG cells depending on oxic condition and exposure to radiation treatment. U87MG cells

were treated with rapamycin, empty LNCs (LNC) or rapamycin-loaded LNCs (LNC-rapa), and maintained at two oxygenation conditions: 21 and 0.4% O2 before

proceeding to western blot analysis. Relative phosphorylation of one representative experiment was determined by volumetric ratio of p-mTOR/HSC70. (A) 0Gy. (B)

8Gy irradiation.

As various synergies have been tested and since the

conventional treatment of glioblastoma involves beam
radiation, the impact of LNC-rapa on mTOR phosphorylation

in U87MG cells was also tested after exposure to 8Gy

irradiation. Similar results to the non-irradiated condition are
obtained (Figure 2B).

Effect of LNC-rapa on U87MG Cell Growth
Depending on Oxic Condition and
Exposure to Radiation Treatment
To determine the effect of rapamycin encapsulated within LNCs
on cancer cell survival and growth depending on the oxygen
status and exposure to radiation treatment, a clonogenic assay
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was performed. Hence, U87MG cells were grown under two
oxygenation conditions (21 or 0.4% O2) and treaded with
either empty LNCs, LNC-rapa or free rapamycin at 1µM
before being exposed, 6 h later, to 0 or 8Gy irradiation. They
were then maintained in culture for 10 days and colorized
by crystal violet (Figure 3A). Under all the conditions tested,
a very clear effect of the irradiations, in normoxia (21%
pO2) as in hypoxia (0.4% O2), was observed (Figures 3B,C).
Rapamycin, nanovectorized or as free, exerts only moderate
effects, however significant at 0.4% O2, demonstrating the
similarity of action of encapsulated LNC-rapa vs. the free form
(Figure 3C). Interestingly, rapamycin and LNC-rapa do not exert
any synergistic effect related to radiation treatment and even
slight but significant inhibitory effects impacted radiation efficacy
at 0.4% O2 (Figure 3C).

Activation of Alternative Signaling
Pathways in Response to Exposure to
LNC-rapa in U87MG
The observed duality of the effects of rapamycin and LNC-
rapa associating a strong inhibition of mTOR phosphorylation
to a moderated cytotoxic effect whatever the environmental
conditions used (low/high oxygen or irradiating) led us to focus
on the mechanisms that control the PI3K/Akt/ mTOR pathway.
Since HIF exerts negative feedback on mTOR (Brugarolas
et al., 2004) and mTORC2 complex also exerts feedback
control while capable to phosphorylate Akt (Sarbassov et al.,
2005; O’Reilly et al., 2006), HIF-1α protein expression and
phosphorylation of Akt on Ser473 (Akt-p) were evaluated.
Western Blot presented in Figure 4A shows that HIF-1α
protein expression is reduced when cells are treated with
free rapamycin and LNC-rapa whatever oxygenation condition
considered. Inversely, these treatments enhance Akt-p protein
level. Figure 4B shows that at 8Gy, Akt-p protein expression
is reduced related to HSC70 in comparison with the 0Gy
control condition. Again the down regulation of HIF-1α
protein expression by free rapamycin and LNC-rapa is observed
concomitantly with the induction of phosphorylation of Akt,
thus emphasizing the possible double edge sword impact
of LNC-rapa due to the multiplicity of signals downstream
mTOR inhibition.

DISCUSSION

This work demonstrated that a new safe formulation of
rapamycin encapsulated in lipid nanocapsules at low temperature
and without the use of organic solvent, allows keeping its
activity while specifically inhibiting mTOR phosphorylation.
These observations also established that the mechanism of
action of rapamycin-loaded LNCs, to some extent like free
rapamycin, involve distinct modalities of responses at 0.4 vs.
21% oxygenation. Indeed, protein expression analysis shows
that, if mTOR phosphorylation inhibition is higher at 0.4%
O2, the up-stream effector of PI3k/Akt/mTOR pathway, Akt
phosphorylation, is higher too. Furthermore, free rapamycin and

LNC-rapa inhibit HIF-1α expression at 21% O2 and to a lesser
extent at 0.4%O2. This difference is linked toHIF-1α stabilization
under hypoxia.

LNC-rapa as a New Safe Nanocarrier of
Rapamycin
In the present study, we developed lipid nanocapsules capable
to efficiently encapsulate rapamycin with yield close to 70%. The
formulation was done between 30 and 70◦C, a temperature range
that protects rapamycin from thermal degradation. Capable to
cope with poor water solubility of rapamycin and bioavailability
due to their capability to effectively reached intracellular cell
compartment (Paillard et al., 2010), rapamycin-loaded LNCs
keep rapamycin biological proprieties with an effective inhibition
of mTOR phosphorylation. Although this tool fulfills its role
as a vector, it does not strengthen the activity of rapamycin or
one of its selective aspects in our in vitro model tested as well
as through multiple conditions (8Gy irradiation, 0.4% hypoxia,
21% normoxia).

In the plethora of new rapamycin nanovector formulations
currently available, the loading capacities of each of them, their
application methods and loco-regional bioavailability should
make it possible to resolve the problem of efficiency and
possibly synergy with conventional treatments. Thus a loading
capacity of 0.6% for LNC-rapa remains low compared to other
systems such as polysorbate 80-coated PLGA nanoparticles
(Escalona-Rayo et al., 2019), lipid-polyaniline nanoparticles
(Wang J. P. et al., 2016) or PEO/PDLLA electrospun nanofibers
(Wang B. L. et al., 2016). Comparative studies in particular
in vivo should make it possible to understand the rationale
which makes one of these vectors an appropriate tool
or not.

Forrest and coworkers have developed poly(ethylene
glycol)-b-poly(ε-caprolactone) (PEG-PCL) micelles loaded
with rapamycin and showed that this drug was efficiently
loaded within PEG-PCL up to 10 wt% (more than 1 mg/mL)
(Forrest et al., 2006). Other group also demonstrated that
rapamycin encapsulation within poly(ethylene glycol)-
Block-poly(2-methyl-2-benzoxycarbonyl-propylene carbonate)
(PEG-b-PBC) micelles reduced its toxicity (Lu et al., 2011).
Shi et al. (2013) developed elastin-based protein polymer
nanoparticles loaded with rapamycin and decorated with its
ligand FKBP. They showed that these objects slowed down
the drug release as compared to non-decorated nanoparticles.
Moreover, rapamycin elastin-like polypeptide nanoparticles
decreased the gross toxicity and enhanced the anti-cancer
activity on human breast cancer mice model (Dhandhukia
et al., 2017a,b; Peddi et al., 2020). Finally, Tyler and coworkers
incorporated rapamycin into biodegradable caprolactone-
glycolide (35:65) polymer beads (Tyler et al., 2011). In vitro,
rapamycin was cytotoxic toward 9L cells (rat glioma cells),
causing growth inhibition at a concentration of 0.01µg/mL.
No in vivo toxicity was observed at 0.3, 3, and 30% loading
doses implanted intracranially. Animals treated with the highest
dose of rapamycin beads (30%) consistently demonstrated
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FIGURE 3 | Effects of LNC-rapa assessed by clonogenic assay on U87MG cell growth depending on oxic condition and exposure to radiation treatment. (A)

Photography of 6-wells plates containing U87MG cells treated with LNCs, rapamycin or LNC-rapa, radiated at 0Gy (top row) or 8Gy (bottom row) at 21 and 0.4% p02
(Continued)
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FIGURE 3 | and stained with crystal violet. (B,C) Cell survival was determined by measuring crystal violet staining of wells exposed to 0 and 8Gy at 21% pO2 (B) or

0.4% pO2 (C). Data show the average values from a combination of three independent experiments and error bars display the standard deviation. Two-way ANOVA

test was performed between LNC-rapa condition compared to LNC condition (*p ≤ 0.05) or between rapamycin treatment condition and untreated control condition

(◦p ≤ 0.05) or between rapamycin treatment condition and untreated condition (#p ≤ 0.05).

FIGURE 4 | Activation of alternative signaling pathways in response to exposure to LNC-rapa in U87MG. (A,B) U87MG cells were treated with free rapamycin, empty

LNCs or LNC-rapa, radiated at 0Gy (A) or 8Gy (B) and maintained at two oxygenation conditions: 21 and 0.4% before proceeding to western blot analysis. Relative

phosphorylation of one representative experiment was measured by volumetry ratio of p-mTOR/HSC70.

significantly longer survival duration than the control and
placebo groups. They also showed that radiation therapy in
addition to the simultaneous treatment with 30% rapamycin
beads led to significantly longer survival duration than each
therapy alone.

Vectorized Rapamycin: A Double-Edge
Sword “Interactor” in Cancer Cells
The result we obtained on mTOR phosphorylation by rapamycin
and LNC-rapa associated with of HIF-1α down regulation and
Akt phosphorylation can be linked to the observation made
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FIGURE 5 | Rapamycin a likely double-edge sword molecular interactor in U87MG glioblastoma cells. Nanovectorized rapamycin (LNC-rapa) or rapamycin as free,

solubilized in DMSO, inhibits the stabilization and transcriptional activity of HIF1α which in turn inhibits the TSC1/TSC2 inhibitor and thus promotes the activation of

mTOR. On the other hand, rapamycin inhibits mTORC1 but not mTORC2, which in turn induces Akt phosphrylation. Finally, by inhibiting mTORC1, rapamycin lifts the

inhibition exerted by p70s6k on IRS-1, which stabilizes this protein and induces Akt phosphorylation via the IGF-1 receptor.

by Hudson et al. who reported that rapamycin inhibits both
stabilization of HIF-1α and the transcriptional activity of HIF-
1 in hypoxic cancer cells and mTOR dependent signals stimulate
HIF-1α accumulation and HIF-1 mediated transcription in cells
exposed to hypoxia or hypoxia-mimetic agent (Zhong et al.,
2000). Rapamycin-sensitive functions of mTOR are not essential
for the accumulation of HIF-1α but are needed for maximal
expression of this protein, as well as for optimal HIF-1-dependent
gene expression under hypoxic conditions. The notion that
mTOR is a nutrient sensor may be particularly relevant to HIF-
1 function, since decrease oxygen tensions are almost inevitable
accompanied by limited supplies of glucose and amino-acids in
mammalian tissues (Hudson et al., 2002). In vivo, rapamycin
enhance thrombosis and also an increase in the hypoxic zone
(Weppler et al., 2007). Hypoxia causes activation of the TSC1/2
complex, which functions to inhibit mTOR. This can occur
both via induction of the HIF-dependent gene REDD1, and/or
through activation of AMPK (Brugarolas et al., 2004; Liu et al.,
2006). Rapamycin may be less effective in hypoxic regions of
tumors since mTOR may already be at least partially inactivated
by TSC. Thus the amount of hypoxia present at the start of

treatmentmay play a part in determining sensitivity to rapamycin
in vivo (Weppler et al., 2007) (Figure 5).

The higher Akt phosphorylation at 0.4% could also explain
that cells are less sensitive to rapamycin than at 21%. Indeed,
U87MG cell line is PTEN null that drives to a constitutive
activation of the PI3K/Akt/mTOR pathway and could explains
its radioresistance. Thus, mTOR inhibition could restore
radiosensitivity but our results show that maximal cytotoxic
effect was observed with 8Gy radiation and rapamycin or LNC-
rapa were not sufficient to improve the cytotoxicity at the
concentration of 1µM. To well-understand this phenomenon,
it is important to remind that mTOR exist in two complexes:
mTORC1 and mTORC2. mTORC1 contains the mTOR, Raptor,
mLST8/GβL, and PRAS40 proteins and controls cell size
and protein translation via two major substrates, p70S6K
and 4E-BP1. Activated S6 kinase causes feedback inhibition
of insulin-like growth factor 1 (IGF-1)/insulin signaling by
phosphorylating insulin receptor substrate 1 (IRS-1) and causing
its degradation (Tremblay et al., 2007). mTORC2 has been
shown to phosphorylate Akt at the serine 473 site, which
enhances the catalytic activity of Akt already phosphorylated
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on threonine 308 (Sarbassov et al., 2005). Rapamycin binds
to FKBP-12 and this complex then binds to and causes the
allosteric inhibition of mTORC1. Rapamycin effectively blocks
S6K phosphorylation and also induces Akt S473 phosphorylation
and Akt activity (O’Reilly et al., 2006). Physiologic activation
of PI3k/Akt signaling is regulated by mTOR-dependent feed-
back inhibition of IRS expression and, consequently, IGF-1
receptor (IGF-1R)/insulin receptor signaling (Tremblay et al.,
2007). Rapamycin relieves this feedback and induces Akt S473
phosphorylation in an mTORC2-dependent manner, leading
to Akt activation, which may attenuate its therapeutic effects
(O’Reilly et al., 2006). Furthermore, mTOR inhibitory drug
rapamycin up-regulates IRS-1 protein levels and induces Akt
phosphorylation that increase IGF—IR/IRS-1/PI3K signaling to
Akt (O’Reilly et al., 2006) (Figure 5). In line with this, mTORC2,
not inhibited by LNC-rapa, has recently been described as a
downstream integrator of metabolic and epigenetic landscape
leading to tumor cell survival and cancer durg resistance (Masui
et al., 2019, 2020).

In response of those problems, Rodrik-Outmezguine
et al. (2011) used a selective ATP-competitive mTOR
kinase inhibitor AZD8055. This drug inhibits 4E-BP1
phosphorylation more effectively than rapamycin. It also
inhibits mTORC2 and Akt S473 phosphorylation, which
leads to Akt T308 dephosphorylation and suppression of Akt
activity and downstream signaling. Unfortunately, even though
mTORC2 inhibition is potent and persistent, inhibition of
Akt T308 and Akt substrate phosphorylation is only transient.
Authors demonstrated that this re-induction resulted from
hyperactivation of PI3K. In cells in which mTOR kinase
inhibitors relieve feedback inhibition of receptor tyrosine kinase,
leading to activation of PI3K, the result is a new steady state in
which mTORC1 is potently inhibited and Akt is phosphorylated
on T308 but not on the S473. This Akt species is activated and
able to phosphorylate key substrates in the cells. Induction of
PI3K activation depends also from cell directory of activated
tyrosine kinase receptors and from active ligands available
(Rodrik-Outmezguine et al., 2011).

Alternatively, Kahn and coworkers showed in vitro that
addition of AZD2014, another mTORC1/mTORC2 inhibitor, to
culturemedia 1 h before irradiation enhanced the radiosensitivity
of CD133+ and CD15+ glioblastoma stem-like cells (Kahn
et al., 2014). The combination of AZD2014 and radiation
delivered to mice bearing GSC-initiated orthotopic xenografts
significantly prolonged survival of these animals as compared to
individual treatments.

In parallel, dual PI3K/mTOR inhibitors were developed,
notably the NVP-BEZ235. It demonstrated suppression of
mTORC1 (S6K1, S6K, and 4E-BP1) and mTORC2 (AKT)
downstream components resulting in cell cycle arrest and
induced autophagy (Cerniglia et al., 2012). NVP-BEZ235 showed
inhibited in vivo glioma proliferation and improved anti-
tumor effects compared to rapamycin analogs. Mukherjee
et al. (2012) showed that NVP-BEZ235 can inhibit DNA
repair proteins ATM and DNA-PKC in GB that lead to a
radiosensitizing effect. Nevertheless, because of the induction
of autophagy that seems to be cytoprotective (Cerniglia et al.,

2012), combination therapies with NVP-BEZ235 have been
explored. One strategy utilized NVP-BEZ235 with autophagy
inhibitor chloroquine to show a synergistic effect in in vivo
tumor apoptosis (Fan et al., 2010). In line with this, Heinze
et al., underlined that under hypoxia and nutrient-poor
conditions, second generation mTORC1/C2 inhibitors displayed
even stronder cytoprotective effect by reducing oxygen and
glucose consumption (Heinzen et al., 2019).

However, those experiences were performed mainly in vitro
and could yield different results in vivo. Indeed, some groups
have reported that rapamycin sensitized U87MG xenografts
to fractionated radiation therapy. Eshleman and coworkers
also showed that there were no radiosensitizing effects of
rapamycin on U87MG in the radiation clonogenic survival
assays, nevertheless, they observed a great effect in the U87
xenograft and spheroids models (Eshleman et al., 2002). They
proposed that other factors could also be important for the
sensitizing effect of rapamycin. For example, rapamycin induces
significant changes in glucose and nitrogen metabolism, and
the starvation-like metabolic state induced by rapamycin could
potentially decrease oxygen consumption in solid tumors and
improve overall tumor oxygenation (Hardwick et al., 1999).
Any decrease in the proportion of radioresistant hypoxic cells
should significantly increase the efficacy of radiation. The authors
also suggested that rapamycin could inhibit host-dependent
processes that contribute to the profound sensitizing effect of
rapamycin in xenograft model. Furthermore, rapamycin is a
potent inhibitor of endothelial cell proliferation in vitro, therefore
its systemic administration can inhibit angiogenesis. It reduces
VEGF production by tumor cells and the inhibition of VEGF-
induced proliferation in endothelial cells (Guba et al., 2002).

In the same way, Weppler et al. (2007) investigated the
combination of rapamycin with short course of fractionated
radiotherapy to minimize the anti-proliferative effect of
rapamycin and thus evaluate its potential to contribute to the
direct cytotoxic effect of radiation. They found that rapamycin
did not significantly improve radiation response but increased
variability in tumor response to radiotherapy, with several
individual tumors showing large increases in growth delay.
Thus, they underlined the importance to determine the
biological factors that mediated this differential response in
order to potentially identify patients that may benefit from
combination treatment.

CONCLUSION

To conclude, rapamycin-loaded lipid nanocapsules for peripheral
or loco-regional administration developed in this study represent
a new safe nanocarrier of rapamycin capable to convey
rapamycin and preserves its biological activity on cancer cells.
We showed that activation of a negative feedback following
mTOR phosphorylation inhibition is a serious brake on
rapamycin cytotoxicity. The first solution could consist of
changing rapamycin for dual PI3K/mTOR inhibitors like the
NVP-BEZ235 which has demonstrated effectiveness in vivo
(Cerniglia et al., 2012), or mTORC1/mTORC2 inhibitor is
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AZD2014 which radiosensitizes glioma (Kahn et al., 2014).
Nevertheless, rapamycin radiosensitizer effect have been proved
in vivo or using fractionated radiation protocol (Eshleman
et al., 2002). Moreover, if patients are biologically screened
to select the most responsive ones, as underlined by Weppler
et al., LNC-rapa can potentially be effective with an adapted
radiation protocol.
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Supplementary Figure 1 | Spectral analysis of rapamycin stability in Labrafac®.

(A) Labrafac spectra at RT. (B) Labrafac spectra after 3 h heating at 70◦C. (C)

Rapamycin spectra after 3 h at RT in Labrafac. (D) Rapamycin spectra after six

short cycles of heating and cooling (70◦C to RT) in Labrafac. (E) Rapamycin

spectra after 1 h heating at 70◦C in Labrafac. (F) Rapamycin spectra after 3 h

heating at 70◦C in Labrafac. (G) Spectra of rapamycin, previously dissolved in

methanol (MeOH), after three short cycles of heating and cooling (70◦C to RT) in

Labrafac. (H) Spectra of rapamycin, previously dissolved in methanol (MeOH),

after 3 h heating at 70◦C in Labrafac. Each curve represents one representative

analysis of a triplicate.

Supplementary Figure 2 | Survival of U87MG cells in response of free-rapamycin

treatment assessed by use of MTS assay. (A) U87MG cells were treated with free

rapamycin at 21% (green curve) and 0.4% (red curve) oxygenation. (B) Calculated

IC50 at 21 and 0.4% oxygenation following rapamycin treatment.

Supplementary Table 1 | Stability of 50 nm blank and rapamycin loaded LNC

during storage at different temperatures. Note the modification of size and loss of

polydispersity after 7 days storage (boxes highlighted in gray).
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a b s t r a c t 
In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Deal- 
ing with the stromal-cell derived factor 1-alpha (SDF-1 α)/CXCR4 axis as a hallmark of infiltrative GB tu- 
mors and with the resection cavity situation, the present study described the effects and relevance of a 
new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic 
acid (HA) and heparin (Hep) and loaded with SDF-1 α, to interfere with the GB ecosystem and resid- 
ual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges 
were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain 
cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF- 
HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized 
by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor 
(U87MG-CXCR4 + ) and responding to SDF-1 α allowed demonstrating directional GB cell attraction and 
colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying 
global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4 + tumors in cavities in con- 
trast to random infiltrative growth in controls. Overall, those results support the interest of SF-HA-Hep 
sponges as modifiers of the GB ecosystem dynamics acting as “cell meeting rooms” and biocompatible 
niches whose properties deserve to be considered toward the development of new clinical procedures. 
Statement of Significance 
Brain tumor glioblastoma (GB) is one of the worst unmet clinical needs. To prevent the relapse in the 
resection cavity situation, new implantable biopolymer aerogel sponges loaded with a chemoattractant 
molecule were designed and preclinically tested as a prototype targeting the interaction between the 
initial tumor location and its attraction by the peritumoral environment. While not modifying global 
survival, biocompatible SDF1-loaded hyaluronic acid and silk fibroin sponges induce directional GB cell 
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attraction and colonization in vitro and in rats in vivo . Interestingly, they strongly shaped GB tumors in 
contrast to random infiltrative growth in controls. These results provide original findings on application 
of exogenous engineered niches that shape tumors and serve as cell meeting rooms for further clinical 
developments. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 
This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 
Glioblastoma (GB) is a lethal tumor with high recurrence rates. 

Most recurrences occur within 2 cm of the resection cavity due to 
the infiltration of GB cells into the brain parenchyma [1–3] . Tar- 
geting residual tumor cells is crucial to improve patient outcomes. 
New strategies are needed to selectively kill these cells while min- 
imizing damage to normal brain tissue. 

In contrast to direct targeting strategies that vectorize killing 
agents toward cancer cells, the reversal approach involves bring- 
ing the target toward a site of confinement by mimicking the pre- 
ferred environment of infiltrating tumor cells [ 4 , 5 ]. Then, direct 
loco-regional delivery of a cell death signal, such as focalized ra- 
diotherapy or local delivery of cytotoxic chemotherapeutic agents, 
could be applied for more effective treatment. 

The tumor cell trapping strategy has been applied by a few 
groups like De la Fuente et al. who designed a polyurethane scaf- 
fold coated with collagen that was able to confine metastatic ovar- 
ian cancer cells in mice peritonea showing an improvement in sur- 
vival [6] . Jain et al. designed aligned fibers of polycaprolactone to 
direct GB cells toward an extracortical killing sink [7] . Reduced tu- 
mor size was observed; however, the invasive behavior of GB cells 
did not allow for a complete recovery. More research in this area 
shall be beneficial for the development of more effective glioblas- 
toma treatment. 

For this purpose, biocompatible biomaterials that can support 
cell infiltration should be chosen [ 8 , 9 ]. The scaffold should be 
biomimetically functionalized to adapt its structure and compo- 
sition, including relevant extracellular matrix (ECM) components, 
such as hyaluronic acid (HA), which is a crucial element of the 
cerebral ECM [ 10 , 11 ]. Also, an active scaffold can contain specific 
cellular signals that respond to the desired application, such as a 
chemokine to increase the recruitment of cancer cells. 

In this regard, it has been observed that infiltrative GB cells ex- 
press the C-X-C chemokine receptor type 4 (CXCR4) [12–14] . This 
receptor binds the chemoattractant stromal cell-derived factor 1 α
(SDF-1 α), also known as CXCL12. A gradient of this chemokine in- 
duces the attraction of cells expressing the CXCR4 receptor [ 15 , 16 ]. 
Therefore, we hypothesize that implanting a scaffold containing 
SDF-1 α in the resection cavity can attract and confine infiltrative 
GB cells into a specific site. 

Previously, our group developed freeze-dried aerogel sponges 
for this purpose: a silk fibroin (SF) with Hyaluronic acid (HA) 
sponge (SF-HA), and a SF with HA and heparin (Hep) (SF-HA-Hep) 
sponge, where heparin acts as a complexation agent for SDF-1 α
[17] . This study aims to evaluate the capacity of this new scaffold 
to attract infiltrative GB cells in a rat model of the brain resection 
cavity. 

The biocompatibility and biodegradability of sponges were first 
evaluated. Direct placement of GB cells and glioma spheroids in 
contact with the scaffolds was used to evaluate cellular inter- 
actions and their cell hosting capacity. SF-HA-Hep sponges were 
selected for further application based on their degradation pro- 
file and enhanced cell adhesion. Our results showed that SDF-1 α- 
loaded sponges had a strong in vitro chemotactic response and 

enhanced colonization. In vivo assessment was conducted by the 
placement of sponges 1-mm away to human GB cells expressing 
the CXCR4 receptor. Sponges attracted GB cells and induced local- 
ized tumor development in the resection spaces, which can be po- 
tentially used for further focalized therapy in a concentrated area. 
The findings and limitations of this strategy are discussed for fur- 
ther development of a safer and more efficient GB cell confinement 
device. 
2. Materials and methods 
2.1. Materials 

Hepes, bovine serum albumin (BSA), resazurin, paraformalde- 
hyde (PFA), sucrose, low melting point low gelling tempera- 
ture agarose, Sudan Black, Giemsa stain, Crystal violet, Phosphate 
Buffered Saline (PBS, pH 7.4), Dulbecco ′ s Modified Eagle ′ s Medium 
(DMEM) with high glucose and Aphidicolin (ADC) were purchased 
from Sigma-Aldrich; glycerol (86–89 wt%) from Fluka and heparin 
sodium salt (Mw 15,0 0 0 ± 20 0 0 g/mol) from Calbiochem (Billerca 
MA, USA), N-(3-dimethylaminopropyl)-N ′ -ethylcarbodiimide hy- 
drochloride (EDC) and N-hydroxysulfosuccinimide sodium salt 
(NHS) from Acros Organics (New Jersey, USA). Hyaluronic acid 
(HA) (Mw 360,0 0 0 g/mol) was purchased from Guinama (Valen- 
cia, Spain). Silk fibroin (SF) 8 wt% in an aqueous solution was pro- 
vided by IMIDA (Murcia, Spain). SDF-1 α was purchased from Mil- 
tenyi Biotec (Paris, France). 
2.1.1. Sponges’ preparation and characterization 

SF (4 %) with HA (2 %) (SF-HA) and SF (4 %) with HA (2 %) 
and heparin (1 %) (SF-HA-hep) sponges were synthesized and 
physicochemically characterized as reported previously by Na- 
jberg et al. (2020) [17] . Briefly, HA was dissolved in Hepes buffer 
(C Hepes = 20.10 −3 M, C NaCl = 0.15 M, pH = 7.4) to obtain a final con- 
centration of 4% w/v. SF 8% w/v solution was gently mixed with 
an equivalent volume of HA 4 % solution in Hepes buffer with or 
without heparin sodium salt (C f = 1% w/v). The SF-HA mixture was 
crosslinked using 5 mg/mL EDC and 1.8 mg/mL NHS. For formula- 
tions with heparin, 15 mg/mL EDC and 5.5 mg/mL NHS were used. 
The solutions were poured into a 96-well plate, covered, and al- 
lowed to crosslink for 15 h at 4 °C. The gels were then frozen at 
−20 °C for 24 h and freeze-dried in a Telstar® LyoQuest at −70 °C 
and 0.01 mBar overnight. The stabilization occurred by annealing 
the sponges in ethanol vapors, followed by freeze-drying again. 

The porosity, thickness, and pore size of the sponges (n = 3) 
were evaluated by microcomputed tomography (microCT) using a 
Bruker SkyScan 1272 (Kontich, Belgium). Scans were acquired at a 
voltage of 50 kV and a current of 200 µA, with a rotation step of 
0.3 °, pixel size of 5 µm, and no filter. Reconstruction of the ob- 
tained tomograms was carried out using NRecon software (Bruker) 
and 3D rendered images of the samples were generated through 
original volumetric reconstructed images by CTVox (Bruker). The 
quantification of structure properties was evaluated using a cylin- 
dric volume of interest (VOI) of 30 mm 3 centered in the middle 
of the samples. Before the analysis, datasets were binarized using 
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a global threshold of 70–255 and a 3D despeckle process was ap- 
plied to reduce image noise. Finally, analysis was performed using 
CTAn software (Bruker). 

Sponges, measuring 2 mm - height and 3 mm - diameter, un- 
derwent sterilization under UV light for 30 min on each side prior 
to both in vitro and in vivo procedures. 
2.1.2. Cell lines and culture conditions 

NIH3T3 mouse fibroblast cells (CRL-1658 TM ) and U87-MG cells 
were acquired from ATCC (Rockville, Maryland, USA). U87-MG 
cells, transduced to express the CXCR4 receptor and red fluores- 
cent protein (RFP) as previously described [18] . Transduced cells 
were selected with Blasticidine treatment (10 µg/mL) followed by 
cell sorting of a pure subpopulation expressing RFP and the CXCR4 
receptor. These cells were called here as U87MG-CXCR4 + . All cell 
lines were cultured at 37 °C and 5 % CO 2 in DMEM supplemented 
with 10 % fetal bovine serum (FBS) and 1 % penicillin/streptomycin 
and subcultured every 3.5 days. 
2.2. In vitro methods 
2.2.1. Flow cytometry 

U87MG-CXCR4 + cells were dissociated with trypsin, washed 
and incubated with 10 µg/mL anti-CXCR4 primary antibody clone 
12G5, or IgG2a [18] in PBS containing 0.5 % BSA for 40 min at 4 °C. 
After washing with PBS/BSA, cells were incubated with 8 µg/mL 
secondary Ab (Polyclonal goat α-mouse IGs-FITC, Dako F0479) in 
PBS containing 0.5 % BSA for 30 min at 4 °C protected from light. 
After washing in PBS/BSA cells were analyzed in a MACSQuant®
Analyzer 10 Flow Cytometer (Miltenyi Biotec). 
2.2.2. Western blot 

Total proteins were isolated from U87MG-CXCR4 + cells by soni- 
cation in a lysis buffer composed of 50 mM HEPES, pH 7.5, 150 mM 
NaCl, 1 mM EDTA, pH 8, 2.5 mM EGTA, pH 7.4, 0.1 % Tween 20, 
10 % glycerol, 0.1 mM sodium orthovanadate, 1 mM sodium fluo- 
ride, 10 mM glycerophosphate and 0.1 mM phenylmethylsulphonyl 
fluoride (PMSF). After quantification by spectrophotometry using 
the Quick Start TM Bradford Protein Assay (Bio-rad), equal amounts 
of proteins (20 µg) were loaded onto 10 % polyacrylamide gels and 
transferred to an Amersham GE Healthcare nitrocellulose mem- 
brane (0.45 µm pore size; Fisher Scientific). The following antibod- 
ies were used according to the manufacturer’s instructions: rab- 
bit anti-human Akt (Cell Signaling, #9272), phosphor-Akt (Ser473; 
#9271), p44/42 MAPK Erk1/2 (#9102), phospho-p44/42 MAPK 
Erk1/2 (Thr202/Tyr204; #9101), paxillin (#2542), and phosphor- 
paxillin (Tyr118; #2541). A mouse anti-human actin (#MA5–11,869, 
Invitrogen) was used as a loading control. Anti-Rabbit IgG Sec- 
ondary Antibody, HRP conjugate (Fisher Scientific) was used at a 
dilution of 1:10,0 0 0. Detection was performed on SuperSignal TM 
West Femto Maximum Sensitivity Substrate (Fisher Scientific) with 
a ChemiCapt 30 0 0 imaging system (Vilber Lourmat, Marne-la- 
Vallée France). 
2.2.3. Viability assay 

The cytotoxicity of sponges on NIH3T3 and U87MG cells was 
evaluated by the indirect and direct contact methods, by ISO 
10,993–5:2009, at 24 h and 72 h intervals. 4 × 10 4 NIH3T3 cells 
were seeded per well (24-well plates) for the 24-h assay and 
1 × 10 4 cells/well for the 72-h assay. 8 × 10 4 U87MG cells were 
seeded per well for the 24-h assay and 2 × 10 4 cells/well for the 
72-h assay. Cells were kept at 37 °C and 5 % CO 2 for 24 h before 
adding the sponges. UV-sterilized 2 mm height and 3 mm diame- 
ter sponges were washed 3 times with PBS, for residual crosslinker 
removal, and equilibrated in complete medium before use. For the 
direct contact method, sponges were directly added on top of the 

cell monolayer. Wells without sponges were used as controls. 24 h 
or 72 h after, sponges were removed by aspiration, and the me- 
dia was replaced with 500 µL of 44 µM resazurin. After 2 h, cell 
viability was estimated by the fluorescence intensity of the re- 
sorufin (545–600 nm) using the ClarioStar microplate fluorometer 
(BMG Labtech GmbH, Ortenberg, Germany). For the indirect con- 
tact method, suspended culture inserts with the sponges inside 
(MilliCell, PET, 8 µm) were placed in the wells containing cells. In- 
serts without sponges were used as controls. 200 µL of media was 
added to completely cover the sponges. The viability of the cells 
was measured as described above. Triplicates were performed for 
all used conditions. 
2.2.4. Agarose drop assay 

The ability of SDF-1 α (Miltenyi Biotec) to induce the migration 
of U87MG-CXCR4 + cells was evaluated using an adapted agarose 
drop assay [19] . Briefly, a 24-well plate was coated with the extra- 
cellular matrix from U87MG cells. To do so, wells were first coated 
with poly-d-lysine (PDL, Sigma), then 5 × 10 4 U87MG cells were 
cultured for 48 h, lysed with deionized water, washed with PBS, 
and air-dried under sterile conditions before use. Then, a 2 µL drop 
of 1% w/v agarose in PBS containing 1 × 10 5 cells was placed in 
the center of a well. The agarose was allowed to solidify at 4 °C 
for 10 min. Then, 500 µL of serum-free DMEM with or without the 
chemokine (40 ng/mL of SDF-1 α), and with or without 20 µg/mL 
aphidicolin (ADC) acting as an inhibitor of proliferation, was added 
on top of the drops. Plates were incubated for 3 days at 37 °C and 
5 % CO 2 . The distance of migration was measured at 4 points of 
the drop between the edge of the drop and the front of migration 
with ImageJ. 
2.2.5. Boyden chamber assay 

U87MG-CXCR4 + cells were starved in serum-free DMEM (SFM) 
for 24 h. Then cells were collected with Acutase solution, washed 
with PBS and resuspended in SFM. 5 × 10 4 cells were deposited 
on top of 8-µm pore PET inserts (Corning 353,097) in 100 µL of 
SFM. Then, 650 µL of SF DMEM containing 0, 40 or 120 ng/mL SDF- 
1 α was deposited in the bottom well. After 18-h incubation cells 
were fixed with 4 % PFA for 15 min at room temperature (RT) and 
stained with 0.1 % crystal violet solution for 30 min. After wash- 
ing, images were obtained in a VHX-70 0 0 microscope (Keyence, 
France), and cells were counted with the QuPath software. 
2.2.6. U87MG cells interaction with sponges 

The cell response of U87MG cells when cultured into the 
sponges matrix was evaluated by direct seeding of cells into the 
sponges. SF-HA and SF-HA-Hep (1 % heparin) sponges were hy- 
drated and cut in 2-mm height cylinders. After washing in PBS, 
they were sterilized by 30-min UV cycles each side. Sponges were 
washed with PBS and equilibrated in complete DMEM medium 
(10 % FBS and 1 % antibiotics). The excess medium was blotted in 
sterile gauzes for 20 s on each side. The sponges were then trans- 
ferred to individual wells (24-well plate) and a drop containing 
5 × 10 4 cells in 20 µL of medium was slowly deposited on top of 
the sponges. Sponges with cells were left for 30 min in the incuba- 
tor to allow for cell adherence. Following this, 500 µL of complete 
DMEM was added and the sponges incubated for 2 days at 37 °C 
and 5 % CO 2 . Revelation of the cellular response was performed by 
replacing the medium with complete DMEM containing 44 mM re- 
sazurin followed by incubation for 3 h. Controls well consisted in 
the same number of cells cultured on plastic. 

The adherence and spreading of U87MG cells in SF-HA and 
SF-HA-Hep sponges were observed using a scanning electron mi- 
croscope (SEM) Evo LS15 (Zeiss, USA). 60 µL DMEM containing 
1 × 10 5 U87MG cells was deposited onto a 2-mm height sponge 
and cells were allowed to adhere for 1 h before the addition of 
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500 µL of complete DMEM in a 24-well plate. Constructs were 
cultured for 3 days at 37 °C and 5 % CO 2 . 2.5 % glutaraldehyde 
in 0.1 M phosphate buffer was used for fixation for 2 h. After 
PBS and distilled water rinsing (1x for 5 min), constructs were 
incubated in 1 % osmium tetroxide aqueous solution for 1 h at 
RT. The samples were cut in half then rinsed with distilled wa- 
ter (3x for 5 min), followed by dehydration performed in in- 
creasing concentrations of ethanol solutions 50, 70, and 95 % for 
20 min each, and 100 %, (3x for 30 min). Desiccation was per- 
formed in ethanol:hexamethyldisilazane (HDMS) 1:1 for 45 min, 
and HDMS overnight. A platinum coating was performed before 
the analysis of the surface and transverse sections of the different 
sponges. 
2.2.7. Under agarose cell migration assay 

The assay was adapted from Heit and Kubes, 2003 [20] . Agarose 
was dissolved in PBS by microwave heating and mixed with 
serum-free DMEM at 70 °C. The resulting mixture containing 1.2 % 
agarose in 75 % DMEM was sterile-filtered and equilibrated for 
15 min at 37 °C before depositing 3 mL into each well of a 6-well 
plate. Casted gels were left to solidify for 30 min at RT and 1 h 
at 4 °C. Three punches were made in each gel using a homemade 
template and a 4-mm biopsy punch. The cut agarose was aspirated 
to create three reservoirs separated by equal distances of 2 mm. 
5 × 10 4 U87MG-CXCR4 + cells previously treated with 1 µg/mL 
of ADC for 24 h in complete medium were seeded in 20 µL of 
DMEM containing either 1 % FBS or 10 % FBS, and 5 µg/mL of 
ADC, in the center well. Sterile sponges loaded with either 10 pmol 
or 100 pmol of SDF-1 α were deposited in the right chamber and 
covered with 15 uL of serum-free DMEM. PBS was put in the left 
compartment acting as a control. To assess the effect of sponges 
without SDF-1 α, the latter were evaluated against only PBS that 
was deposited in the left compartment. The comparison of the cell 
migration response to sponges loaded with SDF-1 α (100 pmol) vs 
sponges alone was also carried out by placement of the former 
in the right wells and the sponges alone in the left well. After 3 
days of incubation, the constructs were fixed with a mixture of 
methanol and acetic acid (3:1) and after removal of the gels, cells 
were stained with Giemsa stain (1:10), and washed 3x with dis- 
tilled water. Pictures were taken with a VHX-70 0 0 digital micro- 
scope (Keyence, France) and the areas of migration from the edge 
of the center well toward the left and right flanks were quantified 
with ImageJ. 
2.2.8. Glioma spheroids assay 

U87MG-CXCR4 + cells were cultured at a density of 60 0 0 
cells/cm 2 in defined medium consisting of a 1:1 mixture of low 
glucose DMEM and Ham’s F12 supplemented with 20 ng/mL EGF 
and FGF-2, 5 µg/mL heparin, 1x B27 supplement and 1 % v/v Peni- 
cillin/Streptomycin. Half of the medium was changed every 3.5 
days and spheroids were subcultured every 7 days. A single D7- 
neurospheroid of around 200 µm was collected and deposited on 
top of a 2-mm height and 6-mm diameter UV-sterilized sponge 
that was previously loaded with 60 µL serum-free DMEM contain- 
ing 100 pmol of SDF-1 α. Sponges without SDF-1 α were used as 
controls. After 1-h of incubation at 37 °C and 5 % CO 2 , 400 µL 
of DMEM supplemented with 1 % FBS, 1 % N1, and 1 % antibi- 
otics was added carefully into the well (24 well plate). The con- 
structs were left in culture for 6 days, fixed with 4 % PFA, perme- 
abilized, and stained with DAPI before incubation in 0.3 % Soudan 
Black solubilized in 70 % ethanol to reduce the autofluorescence 
of sponges. Confocal images were obtained from the top view and 
the cross-section of sliced constructs. The on-top cell area and 
the cross-section invaded area were analyzed with the QuPath 
software. 

2.3. In vivo studies 
2.3.1. Animals 

Fischer and nude athymic female rats aged 8–10 weeks were 
obtained from Janvier Labs (Le Genest-Saint-Isle, France). The pro- 
tocol was approved by the Ethical Committee for Animal Experi- 
mentation of Pays de la Loire region, France (authorization number 
APAFIS #25889-2020 032620 074335 v3). 
2.3.2. Evaluation of the biocompatibility of sponges 
2.3.2.1. Implantation of sponges. Fisher rats were anesthetized by 
intraperitoneal injection of a mixture of ketamine (80 mg/kg) and 
xylazine (10 mg/kg) with subcutaneous administration of ketopro- 
fen (5 mg/Kg) and positioned in a Kopf stereotaxic instrument. A 
10 mm-long incision was made along the midline to create access 
to the surface of the skull. Following this, a burr hole (stereotactic 
coordinates: P: + 0.8 mm; L: −3 mm (right from the bregma)) was 
drilled into the skull using a high-speed drill to expose the brain 
tissues underneath. A portion of the brain cortex was then care- 
fully cut using a biopsy punch device and subsequently removed 
using vacuum suction to create a cavity that was approximately 
3 mm wide and 2 mm deep. SF-HA and SF-HA-hep sponges were 
swollen in PBS, cut transversely to obtain 2 mm height cylinders, 
and sterilized under UV light for 1 hour. The sponges were then 
cut one by one before implantation with a 3 mm diameter biopsy 
punch with a push-button and, immediately after, implanted in the 
cavity with the biopsy punch. The wound was sutured, and the 
rats were allowed to wake without any further intervention. All 
rats became fully conscious within 2 h after surgery and did not 
display any sign of distress. In control rats, the same surgical pro- 
cedure was also performed, but no scaffold was implanted. Keto- 
profen was administered for 2 days after surgery. Two groups of 
rats were set up: one group consisted of 9 rats (3 implanted with 
SF-HA sponges, 3 implanted with SF-HA-hep sponges, and 3 cavity 
controls - with no implants), and was intended for the short-term 
study (euthanized after 7 days) while the other group, consisted 
of 12 rats (4 implanted with SF-HA sponges, 4 with SF-HA-hep 
sponges and 4 controls), was intended for the long-term follow- 
up (euthanized after 118 days). MRI follow-up was performed on 
days 6 and 76 post-implantation. 
2.3.2.2. Histology. After euthanasia, the brains were collected and 
subsequently fixed in formalin for a duration of 10 days, fol- 
lowed by paraffin embedding. Next, 5 µm thick sections were ob- 
tained using an HM340E Microm Microtech microtome (France) 
and stained with hematoxylin and eosin (HE) for analysis. The 
histopathological parameters considered included multinucleated 
giant cells, acute inflammatory cells, necrosis, chronic inflamma- 
tory cells, neoangiogenesis, hemorrhage, hemosiderin deposition, 
and mineralization. These parameters were evaluated in randomly 
selected fields under 40 × magnification in the tissue sections. The 
analyses were conducted at the Department of Cellular and Tissue 
Pathology, centre Hospitalier Universitaire d’Angers (CHU-Angers, 
France). Microscopic images were captured using an Olympus mi- 
croscope. 
2.3.3. Evaluation of SDF-1 α release in rat brains 

To study the potential release of SDF-1 α from the sponge to 
the brain, an SDF-1 α coupled with Alexa Fluor 647 (AF-SDF-1 α) at 
the C terminal (Almac, Scotland) was used. The SF-HA-Hep sponge 
was used for further in vivo experiments, as the SF-HA sponge 
was mostly degraded after 7 days. The same methods to prepare 
the sponges, including cutting and sterilization, were used as cited 
before. Afterward, the 3 mm diameter sponges were taken out 
of the biopsy punch, the PBS excess was taken out by blotting 
them on a gauze, producing slight dehydration, and rehydrated by 
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adding 3 µL of AF-SDF-1 α (150 ng) on the top of the sponge to 
finally implant them in the cavity of Fischer rats as described in 
Section 2.3.2.1 . With this process, the full volume of AF-SDF-1 α
was absorbed by the sponge, resulting in a theoretical 100 % load- 
ing. Rats were euthanized after 7 days, and the brains were snap- 
frozen in isopentane and stored at −80 °C right after collection. 
Tissues were cut coronally in the region of interest with a Cryostat 
Leica CM3050 S (Leica Biosystems, Nussloch, Germany) to obtain 
10 µm thick slices that were deposited on gelatinated Superfrost 
slides (Thermo Fisher Scientific, Braunschweig, Germany), and kept 
at −20 °C until immunolabeling. 
2.3.4. Evaluation of the sponge’s performance in vivo 

To assess the GB cell attractant capacity of sponges in vivo , two 
orthotopic models were tested in nude female rats, aged 8 to 10 
weeks. In the first model, 5 × 10 3 U87MG-CXCR4 + cells were in- 
jected into the striatum (P: + 0.8 mm; L: −3 mm (right from the 
bregma); D: −2.5 mm from the cortex surface). After 10 days of 
tumor development, a 3-mm diameter and ∼2-mm depth resec- 
tion cavity was performed in the same vertical axis of cell injection 
using a biopsy punch. The tissue was then aspirated, and SF-HA- 
Hep sponges (3-mm diameter and 2-mm height) were implanted 
loaded or not with 100 pmol of SDF-1 α. After 7 days, animals were 
euthanized, and brains were collected and snapfrozen at −80 °C 
until analysis. GB cell identification was performed by RFP, CXCR4 
and Ki67 analysis by IHC-IF. 

In the second model, a resection cavity was created (P: 
+ 0.8 mm; L: −2.9mm (right from the bregma); D: ∼ −2 mm from 
the cortex surface). SF-HA-Hep sponges (3-mm diameter and 2- 
mm height) were implanted loaded or not with 100 pmol of SDF- 
1 α in 5 µL of PBS. Following this, 2.5 × 10 4 U87MG-CXCR4 + cells 
were injected at 1 mm posterior from the edge of the resection 
(Stereotactic coordinates: P: −1.7, L: −2.9, D: −2 mm from the sur- 
face of the brain). Excess blood was removed with sterile gauze, 
the cavities were closed with non-absorbable bone wax and the 
wound was sutured. 

The animals recovered after 2 h and did not show signs of 
distress. Animals were monitored daily, observing food and wa- 
ter intake, also weights were recorded. After 7 days, euthanasia 
was conducted, and all brains were extracted, snap-frozen and 
kept at −80 °C until analysis. The experimental design consisted of 
three groups: resection control, PBS swollen sponges, and sponges 
loaded with SDF-1 α ( n = 3). A survival experiment was performed 
using the same latter surgery procedures, but 1 × 10 3 U87MG- 
CXCR4 + cells were injected instead ( n = 6 per group). Animals 
were followed by MRI weekly and euthanized at defined endpoints. 
2.3.5. MRI analysis 

MRI scans were performed with a Bruker Biospec 70/20 
system operating at 7T, under isoflurane (0.5 % 1 L/min O 2 ) 
anesthesia, with the monitoring of respiratory parameters. T2- 
weighted images were acquired with a multi-spin echo sequence 
[FOV = 35 ×35 mm, slice thickness = 0.8 mm, spacing between 
slices = 1.1 mm, matrix 256 ×256, TR = 2.5 s, TE = 33 ms]. 
2.3.6. Immunohistochemistry and immunofluorescence 

For the SDF-1 α release study, 10 µm sections were fixed with 
PFA 4 % (w/v) at 4 °C for 20 min, permeabilized with 0.25 % (w/v) 
Triton X-100 in PBS for 10 min and saturated with NGS 10 % (w/v) 
in PBS for 2 h. They were then incubated overnight at 4 °C with 
polyclonal rabbit IgG anti-SDF-1 α (1:500) (Abcam, Cambridge) fol- 
lowed by 1 h incubation at RT with the secondary antibody goat 
anti-rabbit AF 488 (#4412 Cell Signaling). Cell nuclei were stained 
with DAPI (1:20 0 0, Thermo Fisher Scientific, Waltham, MA) before 
mounting sections with Dako fluorescence mounting media (Dako, 

CA, USA). Stained sections were visualized using a confocal micro- 
scope Leica TCS SP8 AOBS (Leica Microsystems, Wetzlar, Germany). 

For the sponge’s bioperformance study, 16 µm sections were 
fixed for 10 min in methanol at −20 °C and rehydrated in PBS 
(3 washes). After saturation in PBS/4 %BSA/10 %NGS/0.25 % Tri- 
tonX100 for 1 h, sections were probed with the primary antibodies 
as follows: anti-CXCR4 polyclonal (1:2500, #PA3–305-Invitrogen) 
which does not cross-react with rat tissue, or anti-Ki67 (1:200, 
ab16 6 67-ABCAM), both overnight at 4 °C in a humidified cham- 
ber. After washing (3x in PBS) the slices were incubated with 
a biotinylated secondary Ab (anti-mouse or anti-rabbit, 1:100 in 
PBS/4 %BSA, Vector Laboratories) for 1 h at RT. Slices were re- 
washed and incubated with Streptavidin-FITC (1:500, Interchim) 
or Streptevidin-AF647 (1:500, Life Technologies) in PBS for 45 min 
at RT. After washing, slices were incubated with DAPI, and finally 
with Sudan Black for 15 min before mounting slides. Fluorescence 
was analyzed in a Leyca confocal microscope. 
2.4. Statistical analysis 

Data are presented as mean ± SEM. Data were statistically ana- 
lyzed using an ANOVA test with Prism 7 software. Tukey’s multiple 
comparison test was used to compare individual groups. For analy- 
sis considering only two groups, a two-tailed t-test was performed. 
UACMA data was analyzed with a two-tailed paired t-test. In all 
statistical comparisons p < 0.05 was considered statistically signifi- 
cant. For the survival analysis, all and single groups were compared 
using the Log-rank (Mantel-Cox). 
3. Results 

In vitro studies 
3.1. U87MG-CXCR4 + cells are responsive to SDF-1 α

Human GB U87MG cells were transduced for the expression of 
the CXCR4 receptor (U87MG-CXCR4 + ) and the receptor expression 
was confirmed by flow cytometry ( Fig. 1A ). Then, their molecu- 
lar response was evaluated by incubation of cells with serum-free 
medium containing 40 ng/mL of SDF-1 α. Results showed an in- 
creased p-Akt/Akt ratio after 15 min, which was maintained at 1 h 
of incubation with SDF-1 α, whereas the p-Erk/Erk ratio was in- 
creased after 15 min of incubation but then reduced at 1 h. These 
results match early findings on patient de-novo- and recurrent- 
derived GB cell lines [ 14 , 21 ]. On the other hand, p-Paxillin/Paxillin 
ratio was gradually increased at 15 min and 1 h of evaluation 
( Fig. 1B ), suggesting a gradual formation of focal adhesions [22] . 

To assess the functional response of U87MG-CXCR4 + cells to 
SDF-1 α, first, their ability to migrate across an 8-µm porous mem- 
brane was evaluated in Boyden chambers. On average, a 3-fold in- 
crease in the number of migrating cells was observed after 18 h 
of incubation for both 40 and 120 ng/mL of SDF-1 α as compared 
to controls ( Fig. 1C ). Then, the ability of U87MG-CXCR4 + cells to 
leave a confined spot of agarose was measured by the length of 
the migrating cell halo surrounding the cell-laden agarose drop 
( Fig. 1D ). On average a 2-fold increase in the migrated distance 
was observed for cells treated with 40 ng/mL of SDF-1 α relative 
to controls. 

To discriminate against the effect of proliferation, the latter as- 
say was performed in the presence of the proliferation inhibitor 
Aphidicolin (ADC). Although a reduced cell hallo was observed as 
compared to non-ADC treated cells, approximately the same ra- 
tio of 2-fold increase in the migrated length for SDF-1 α treated 
drops was maintained relative to controls. This result suggests 
that the chemoattractant effect of SDF-1 α was independent of cell 
proliferation. Moreover, U87MG cells without receptor expression 
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Fig. 1. Cellular model and its response to SDF-1 α. A) Design of the cellular model: U87MG cells were transduced for constitutive expression of the CXCR4 receptor and 
red fluorescent protein (RFP). B) Molecular response: phosphorylation of Akt, Erk, and Paxillin shows the activation of the CXCR4/SDF-1 α pathway in U87MG-CXCR4 + cells 
in response to SDF-1 α ( n = 3). C) Transwell migration of U87MG-CXCR4 + cells: after 18-h incubation of cells deposited on top of the porous membranes, migrating cells 
were more abundant in wells containing both 40 and 120 ng/mL of SDF-1 α compared to controls ( n = 3–4 replicates, with three repetitions). D) Agarose drop assay. (i)(ii) 
Migration of U87MG-CXCR4 + from a confined spot of agarose was higher for cells treated with 40 ng/mL of SDF-1 α as compared to controls. Inhibition of cell proliferation 
by the addition of Aphidicolin ( + ADC) reduced the measured distance of migration but did not change the ratio of migration respective to controls. (iii) U87MG cells without 
expression of the CXCR4 receptor (U87MG-CXCR4 −) did not show a significative difference when treated with SDF-1 α compared to control drops ( n = 3 replicates, with two 
repetitions). Levels of significance are: ∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001. 
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Fig. 2. Aerogel sponges, synthesis, structure, and cellular response. A) Synthesis and structure of the silk fibroin (SF), hyaluronic acid (HA), and heparin (Hep) sponges. Dry 
SF-HA-Hep sponges (i) rapidly absorb PBS and maintain their shape (ii). Stereomicroscopic images [(iii) and (iv)], and scanning electron micrographs [(v), (vi), (vii) and 
(viii)] showing the superficial and cross-sectional porous structure of SF-HA-Hep sponges. B) Microcomputed tomography (µCT) images for the evaluation of the porosity of 
sponges, the size and wall thickness of their pores, and the percentage of their connected pores with troughs > 15 µm. Depicted are representative µCT images of superficial 
[(i) and (ii)], and cross sections [(iii) and (iv)] of sponges without heparin (SF-HA) and with 1 % Heparin (SF-HA-Hep). C) The cell response of NIH/3T3 and U87MG cells 
after incubation with leachables from sponges (indirect method) and after direct contact of sponges with a cell monolayer (direct method) was evaluated using the resazurin 
assay. Depicted in the graphs are the percentages of the relative fluorescent units (RFU) respective to control wells that contained no scaffolds ( n = 3 replicates, with three 
repetitions). D) The response of cells directly seeded into scaffolds. U87MG cells were directly deposited into scaffolds. After 2 days, the cellular response in SF-HA and 
SF-HA-Hep scaffolds was evaluated by incubation with media containing resazurin (i). The produced fluorescence in the media was normalized to control wells with cells 
seeded on plastic and is expressed as the percentages of RFU (ii) ( n = 5 replicates, with 2 repetitions). U87MG cells (red arrows) seen under scanning electron microscopy 
3 days after seeding in SF-HA sponges (iii) and SF-HA-Hep sponges (iv). Levels of significance are: ∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001. 
(U87MG-CXCR4-) did not respond to SDF-1 α, in terms of chemoat- 
traction, as observed by the equal distances of migration for both 
non-treated and treated cells ( Fig. 1D ). 
3.2. Sponges are highly porous, with interconnected pores and 
present shape memory 

Aerogel sponges presented similar structure and physical ap- 
pearance independently of heparin content ( Fig. 2A ). A porosity of 

∼ 93% was observed for both types of sponges SF-HA and SF-HA- 
Hep (1 % heparin). However, the pore size distribution was affected 
by the presence of heparin ( Fig. 2B ). A larger dispersion of pore 
sizes was observed in sponges without heparin 126.67 (90.84) µm, 
while sponges with heparin showed a narrower pore size distribu- 
tion of on average 69.01 (22.53) µm. This reduction in the average 
pore size correlates to the higher content of total solids due to the 
addition of heparin. 
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The thickness of the pore walls was consistent between all 

types of sponges. On average, a 9.6 µm wall thickness, which repre- 
sents a ∼9.6/69 = ∼14 % of the diameter of a pore including walls 
for sponges containing heparin, reflects the spongy nature of the 
scaffolds. Thirdly, all sponges showed open, interconnected pores. 
This can be observed by tracking the maximal length of the path 
with troughs larger than 15 µm that can be followed without in- 
terruption in both orthogonal axes of the cross sections of sponges. 
Finally, all the sponges presented shape memory as observed by 
their capacity to regain their original shape upon an external force 
was applied, and then released, over the sponges’ hydrated form 
( Video S1 ). 
3.3. SF-HA-Hep sponges present mild to moderate cytotoxicity in 
vitro 

The viability of NIH/3T3 mouse fibroblasts and U87MG glioblas- 
toma cells was evaluated via the indirect and direct contact meth- 
ods at 24 and 72 h incubation with SF-HA and SF-HA-Hep sponges 
( Fig. 2C ) . NIH/3T3 cells were chosen due their high sensitivity to 
chemical-induced toxicities (Xia et al., 2008). After 72 h of direct 
contact, SF-HA sponges significantly decreased the viability only 
for NIH/3T3 cells (71 ± 14 %). SF-HA-Hep sponges, however, pre- 
sented mild cytotoxicity after 72 h of indirect contact (63 ± 19 % 
viability), and moderate cytotoxicity after 72 h of direct contact 
with NIH/3T3 cells (39 ± 9 % viability). Mild cytotoxicity was seen 
on U87MG cells after direct contact with SF-HA-Hep sponges at 24 
(76 ± 9 % viability) and 72 h (64 ± 9 % viability). 

Different washing techniques were tested aiming to eliminate 
traces of crosslinkers to improve the cytocompatibility of SF-HA- 
Hep1 % sponges. The first consisted in a 24-h wash in PBS under 
agitation, and the second in 5 × 30 s sonication cycles followed by 
agitation for 1 h in PBS. However, after 72-h of direct incubation of 
washed sponges with NIH/3T3 cells, no improvement was observed 
( Fig. S1 ). To determine whether EDC and NHS or Heparin were re- 
sponsible for this cytotoxicity, two new sponges were produced. 
The first was composed of SF and HA crosslinked with the same 
concentration of crosslinkers as SF-HA-Hep (C EDC = 15 mg/mL, 
C NHS = 5.5 mg/mL) and was called SF-HA( + ). The second was com- 
posed of SF, HA and Hep crosslinked with the same concentration 
of crosslinkers as SF-HA (C EDC = 5 mg/mL, C NHS = 1.8 mg/mL) 
and was called SF-HA-Hep(-). Because of the lower concentration 
of crosslinkers in the SF-HA-Hep(-) sponge, its shape was lost in 
the media. 

Sponges with the same concentration of crosslinkers showed 
the same cytotoxicity, with a lower concentration of crosslinker 
leading to an increase in viability ( Fig. S1 ). A tradeoff between sta- 
bility and cytotoxicity had to be made, and therefore the original 
SF-HA-Hep1 % sponge was kept for further studies. Additional eval- 
uation of its 24-h cytotoxicity by the direct contact method on cells 
resemblant to resident cells of the normal brain parenchyma was 
performed. In this case, murine BV-2 and human HMC3 microglial 
cells showed a viability of 64.4 and 82.3 %, respectively ( Fig. S2 ). 
3.4. The matrix of SF-HA-Hep sponges allowed a better U87MG GB 
cell response 

To assess the response of cells in the scaffold’s matrix, U87MG 
cells were directly deposited into the sponges as a cell suspension 
and cultured for 2 days. The cell response was evaluated by the 
resazurin assay ( Fig. 2D - i ). Results showed that SF-HA-Hep sponges 
allowed a better response compared to SF-HA sponges ( Fig. 2D - 
ii ). After 3 days of culture, SEM images showed cell aggregates in 
SF-HA sponges with no or little spreading of their soma ( Fig. 2D - 
iii ), whereas cells in SF-HA-Hep1 % sponges attached, spread, and 

formed large protrusions, suggesting a better interaction with GB 
cells ( Fig. 2D - iv ). 
3.5. SDF-1 α-loaded sponges directionally attract U87MG-CXCR4 + 
cells in vitro 

To evaluate the chemoattractant capacity in vitro , sponges 
loaded with SDF-1 α (10 and/or 100 pmol) were added in the right 
well, contiguous to a well containing U87MG-CXCR4 + cells in an 
agarose gel ( Fig. 3 ). A well containing only PBS was also included 
to the left. After 3 days of culture with the addition of Aphidicolin 
as a proliferation inhibitor, results showed that there was a larger 
area of cells that migrated under the agarose towards the SDF-1 α- 
loaded sponges as compared to controls located in the wells left 
to the cells. The migrated area depended on the dose of SDF-1 α
and the percentage of FBS used for cell seeding. Indeed, FBS was 
necessary for cells to adhere. This effect corresponded to a 3-fold 
increase of the invaded area for the 10 pmol loading and an 11.3- 
fold increase for the 100 pmol loading as compared to controls, 
in the case of 1 % FBS seeded cells ( Fig. 3A - iii ). A larger area in 
both directions, towards the sponges and controls, was observed 
when cells were seeded with medium containing 10 % FBS. How- 
ever, increasing area ratios of 2.2-fold and 3-fold showed prefer- 
ential migration of cells towards the sponges loaded with 10 and 
100 pmol of SDF-1 α, respectively ( Fig. 3A - iii ). To evaluate if the 
sponges alone were able to attract GB cells in vitro , the experiment 
was repeated with sponges containing only PBS compared to wells 
filled with only PBS ( Fig. 3B - i ). Results showed no significant differ- 
ence in the areas of cell migration. When SDF-1 α-loaded sponges 
were compared to sponges containing only PBS, only the former 
were able to show cell attraction ( Fig. 3B - iii ), showing a similar 
pattern than agarose gels where only PBS was used as a negative 
control ( Fig. 3B - ii ). 
3.6. SDF-1 α in SF-HA-Hep sponges enhanced their colonization in 
vitro 

To assess the cell hosting capacity of sponges, single ∼ 200- 
µm U87MG-CXCR4 + spheroids were cultured on top of SF-HA- 
Hep sponges that were loaded or not with 100 pmol of SDF-1 α
( Fig. 4B ). Results showed that after 6 days of culture, there was a 
1.4-fold larger area of glioma spheroids attachment on the surface 
of the sponges loaded with SDF-1 α in relation to control sponges 
loaded with PBS ( Fig. 4B - iii ). In addition, a 1.6-fold larger infil- 
trated area and a 1.3-fold maximal infiltrated length in the sponges 
loaded with SDF-1 α were observed compared to controls. How- 
ever, cells remained within the contours of the glioma spheroids 
and did not spread out ubiquitously within the sponge in the 6- 
day time frame of the experiment. 

In vivo studies 
3.7. Sponges are biocompatible and biodegradable in vivo 

SF-HA and SF-HA-Hep sponges were implanted in the resec- 
tion cavities of Fisher rats to evaluate the foreign body reaction 
in the brain as well as their biodegradability ( Fig. 5 ). MRI images 
showed the presence of the sponges at D6 from implantation but 
completely degraded after 76 days as shown by the watery con- 
tent in the cavities ( Fig. 5A ). SF-HA sponges were mostly absorbed 
after one week of implantation, which was confirmed by histolog- 
ical analysis ( Fig. 5B ). The cellular response was characteristic of 
a foreign body reaction with an acute inflammatory response at 
week one post-implantation, with the presence of polymorphonu- 
clear (PMN) cells that was more important for SF-HA-Hep sponges 
compared to SF-HA sponges. 
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Fig. 3. In vitro cellular attraction. A) In vitro chemoattractant capacity of SDF-1 α-loaded sponges: (i) agarose gel showing the disposition of cells (center well), sponges (right 
well), and control wells containing PBS (left well) to assess the induction of directional migration. Top panel: images (10x objective) of a representative experiment on day 
three after cell seeding. The assembled image shows the pattern of cell migration under the agarose gel. Some cells were detected near the sponges loaded with SDF-1 α
(100 pmol) (black arrows), with some cells undergoing cell death (asterisks). Of note is the “squeezed” shape of cells under the agarose, whereas cells that invade the right 
agarose-gel-free well regain a “spindle-like” morphology. (ii) Giemsa staining of cells that migrated under the agarose after three days of incubation. Cells were seeded in 
media containing either 1 % or 10 % FBS and 5 µg/mL of Aphidicolin as a proliferation inhibitor. (iii) Quantification of the cell area of the binary images in the most proximal 
quarters (Q) to either control wells (Q1) or sponges (Q2) as depicted in the representative image in the center well of (i) ( n = 3 replicates, with three repetitions). B) The 
effect of the sponges alone containing only PBS (i) or of sponges loaded with 100 pmol of SDF-1 α (ii), as compared to wells loaded with only PBS (left wells). (iii) The effect 
of sponges containing 100 pmol of SDF-1 α vs. sponges loaded with only PBS. ( n = 3 replicates, with three repetitions). Levels of significance are: ∗: p < 0.05, ∗∗: p < 0.01, 
∗∗∗: p < 0.001. 
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Fig. 4. In vitro cellular colonization of sponges. (i) Representation of the spheroid culture assay for the evaluation of the capacity of SF-HA-Hep sponges to be colonized 
by GB cells coming from GB spheroids. A single U87MG-CXCR4 + gliomaspheroid was deposited on top of a SF-HA-Hep sponge loaded or not with SDF-1 α. After 6 days of 
culture, the on-top cell area, the infiltrated cross-sectional area, and the maximal infiltrated length were imaged (ii) and quantified (iii) ( n = 3; 2 experimental repetitions). 
Levels of significance are: ∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001. 

The presence of multinucleated giant cells was rare, but the 
concomitant presence of macrophages and lymphocytes show- 
ing up from the initial stages after implantation demonstrates a 
process of debridement and chronic inflammation that was pro- 
longed to up to the third month post-implantation. The forma- 
tion of new blood vessels was more evident on day 7 of eval- 
uation for all groups suggesting that the brain damage caused 
by the surgical resection and the consequent signals induced 
this neoangiogenic response. On the third month of evaluation, 
the acute inflammation was resolved, and the chronic inflamma- 
tion lessened. Interestingly, only the cavities of rats implanted 

with sponges kept some lymphocytes in the long term com- 
pared to cavity controls alone. The presence of hemosiderin-laden 
macrophages and calcification zones (mineralization) showed the 
late stages of cicatrization. Overall, the residual cavities were 
porencephalic, i.e., filled with resident cerebral cells but with 
the loss of brain matter, however no collagen deposition nor fi- 
brotic tissue was observed in the implantation zone, suggesting 
a good reabsorption of the sponges without the formation of a 
scar. As SF-HA sponges were mostly degraded within the first 
week of implantation, SF-HA-Hep sponges were chosen for further 
experiments. 
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Fig. 5. In vivo biocompatibility and biodegradability of sponges. A) MRI scans of brains with implanted sponges. B) Characterization of the in vivo cellular response to 
implanted sponges in the rat brain cortex. Histological (H&E) staining (nuclei: blue/purple; cytoplasm: pink). SF-HA sponges were completely degraded after 7 days, while 
SF-HA-Hep sponges were still present. A representative image is shown of a SF-HA-Hep sponge that came out of the cavity during the slicing process (bottom left panel). 
Left panels: H&E representative images 7 days post-implantation showed an acute inflammatory response in rats implanted with SF-HA-Hep sponges. The acute response 
was less marked in the other groups. There was a local chronic inflammatory response with the presence of lymphocytes that were more frequent in the cavity controls 
and in SF-HA implanted rats. At this 1-week time point, the formation of blood vessels (neoangiogenesis) was observed in all groups. Right panels: After 3 months, the 
acute inflammation was resolved, and the chronic inflammation lessened in the control cavity and SF-HA groups and remained in the SF-HA-Hep group. At this 3-month 
time point, mineralization and hemosiderin deposition were observed in all groups. Symbols are as follows: infiltrating polymorphonuclear (PMN) cells ( !), Necrosis ( ♦ ), 
macrophages ( → ), lymphocytes ( !), neoangiogenesis ( ♠ ), hemosiderin ( ∗), mineralization (#). Scores are as follows: ( −) = nil, (-/ + ) = rare, ( + ) = mild, ( ++ ) = moderate, 
and ( +++ ) = marked. Interrupted-line bordered images are magnifications of the smaller squares indicated in their respective left images. 
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3.8. SDF-1 α was retained in SF-HA-Hep sponges in vivo 

To evaluate the in vivo biodistribution of SDF-1 α in the brain 
after the sponge’s implantation, SF-HA-Hep sponges were loaded 
with 150 ng of AF-647 tagged SDF-1 α and implanted in the re- 
section cavities of Fisher rats. Results showed that 7 days post- 
implantation, AF647-SDF-1 α was detected inside the sponges, and 
in the margins of the resection cavity as bulges detaching from 
the edges of the sponges that were undergoing degradation; but 
was not detected in the brain tissues beyond the resection limits 
( Fig. 6A ). Interestingly, AF647-SDF-1 α was distributed as droplets 
of about 10–100 µm diameter which corresponded to the inter- 
nal structures observed in the sponges ( Fig. 6A -third panel). En- 
dogenous SDF-1 α was stained indirectly with an antibody cou- 
pled with FITC and was distinguished from the exogenous SDF-1 α
that was loaded into the sponges, as the latter was not recognized 
by the primary antibody ( Fig. 6B ). Endogenous SDF-1 α was found 
only scarcely expressed in small blood vessels surrounding the re- 
section cavity. Interestingly, more nuclei were observed inside the 
sponges containing SDF-1 α compared to the brain tissue. This cor- 
relates with the colonization of sponges by PMN cells as observed 
in Fig.5B . 
3.9. CXCR4 + GB cells interacted with SDF-1 α loaded sponges 7 days 
post-implantation 

To assess the GB cell attractant capacity of sponges in vivo , two 
orthotopic models were tested in nude rats. In the first model, 
5 × 10 3 U87MG-CXCR4 + cells were injected into the striatum. Af- 
ter 10 days of tumor development, a ∼2-mm depth resection cavity 
was performed in the same vertical axis of cell injection, and SF- 
HA-Hep sponges were implanted loaded or not with SDF-1 α. After 
7 days, animals were euthanized, and brains were collected and 
analyzed by IHC-IF. Cell tracking by RFP, CXCR4 and Ki67 expres- 
sion revealed colonization in only one implant loaded with SDF-1 α
(out of 3 animals) ( Fig. S3 ). Although this experiment showed that 
SDF-1 α-loaded sponges can be colonized by tumor cells after re- 
section, the main complication found here was the lack of a repro- 
ducible resection. For instance, the tumor was completely removed 
in some cases and the distances between the tumors and scaffolds 
were not reproducible. To overcome this limitation, the second ex- 
perimental set-up consisted in placing the implants and cells dis- 
tanced from ∼1 mm in the horizontal plane of the frontal brain 
cortex at the same time. First, SF-HA-Hep sponges with PBS or 
SDF-1 α were implanted in the frontal cortex, followed by stereo- 
tactic injection of 2.5 × 10 4 U87MG-CXCR4 + cells 1 mm backward 
from the cavity edges ( Fig. 7 ). Control rats were subjected to the 
same surgical and tumor cell injection procedures in the absence 
of sponges. After euthanasia, 7 days post-implantation, the brains 
were removed, snap-frozen and analyzed by IHC-IF. We observed a 
modification in the behavior of cells near the sponges compared to 
the cavity control alone. Cells constituting the anterior front of the 
tumor were able to interact with the surface of the sponges with a 
significant portion of CXCR4 + cells detaching from the main tumor 
mass towards the cavity containing the SDF-1 α-loaded sponges or 
PBS-loaded sponges as compared to and cavity controls ( Fig. 7 ). 
However, at this point, the interaction of cells with sponges was 
only observed at the intermediate zone between the tumor lead- 
ing edge and the edge of the sponges facing it. 
3.10. SF-HA-Hep sponges shaped the tumors and allowed their 
localized development 

To assess the effect of sponges in the long term, the same or- 
thotopic model used to evaluate the colonization of sponges was 
implemented, but this time 1 × 10 3 U87MG-CXCR4 + cells were 

injected. Animals were followed up until the defined endpoint, 
and tumor evolution was followed by MRI every week. All ani- 
mals recovered within 2 h after the procedure and did not show 
any signs of distress. Animals behaved normally and started to 
present symptoms from week 4 after surgery. Results showed that 
the survival of rats did not improve by sponge implantation in ei- 
ther case loaded or not with SDF-1 α ( Fig. 8A ) compared to cav- 
ity controls. We observed that SDF-1 α tended to reduce the me- 
dian of survival to 27.5 days as compared to controls (31 days), 
though non-significant statistically (the fact that there is one an- 
imal from the SDF-1 α group crossing the other survival curves 
makes this non-significant). This effect correlates with the average 
size of the tumor that tends to be larger (as a tendency as no sta- 
tistical difference was observed) for rats implanted with SDF-1 α- 
loaded sponges as shown in Fig. 8A right panel . Therefore, SDF-1 α
contained within the sponges may be exerting an effect on tumor 
evolution favoring its development. This result can be explained 
by the fact that no killing signal was included in the study. How- 
ever, we observed an effect of the sponges on the tumor shape 
and localization. Interestingly, the shape of the tumors fitted bet- 
ter to the projections’ shape of the cross sections of the sponges 
in the three axes imaged and they were more rounded compared 
to the tumors where sponges were not present ( Fig. 8B ). Indeed, 
the reduced tumoral areas outside the projection of sponges, sug- 
gest that the tumor is better confined in the volume behold by 
the sponge’s structure. This result highlights the relevance of the 
sponge implantation as a strategy to confine the tumor in a con- 
trollable area and confer a spherical shape that can facilitate their 
further treatment. 
4. Discussion 

The main problem facing glioblastoma therapy is the infiltra- 
tive nature of GB cells remaining after standard treatment. cDNA 
expression analysis revealed that CXCR4 is overexpressed in 57 % 
of primary glioblastoma (GB) tumors and in 88 % of GB cell lines 
that were analyzed [23] . CXCR4 expression is considered a prog- 
nostic marker in gliomas. Patients with CXCR4-positive GB had a 
reduced postoperative life expectancy [24] . CXCR4 was expressed 
in more than 50 % of astrocytomas and 100 % activated form 
(phosphorylated) in grades 2–4 astrocytomas and 76 % in grade 
1 astrocytomas [25] . Previously, it was shown that the CXCR4 re- 
ceptor confers to GB cells increased infiltrative capacity into the 
brain parenchyma [18] , and that the CXCR4/SDF-1 α axis is related 
to the chemotaxis attraction of GB cells in vitro [ 14 , 26 ] and of 
glioma stem cells (GSCs) to the tumor vasculature [27] . Here, a 
rupture concept was investigated. The strategy was to exploit the 
CXCR4/SDF-1 α axis to attract GB cells to a confining biodeposit 
consisting of a SF-HA-Hep sponge. This study aimed to investi- 
gate the preclinical feasibility and benefit of a new interventional 
approach using SDF-1 α-loaded SF-HA-Hep aerogel sponges as im- 
plantable scaffolds into the brain resection cavity. Fischer rats were 
used to assess the in vivo biocompatibility of scaffolds to observe 
the complete foreign body reaction. However, to evaluate the in 
vivo performance of sponges, athymic nude rats were chosen be- 
cause of the human cellular model that was used. The sponges are 
biodegradable. They were well tolerated for more than 3 months 
and reabsorbed after implantation into rat brains. The disappear- 
ance of the sponges is attributed to the inherent biodegradabil- 
ity of the scaffolds, primarily through hydrolysis and solubiliza- 
tion of the components. In vitro studies reported 85 % degrada- 
tion within 3 weeks [17] , under conditions mimicking in vivo en- 
zyme presence. This gradual degradation can facilitate temporary 
accommodation of cancer cells within the cavity, minimizing the 
risk of long-term adverse reactions or the need for surgical re- 
moval. Their shape memory permitted fitting into the resection 
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Fig. 6. In vivo distribution of SDF-1 α. A) Implantation of SF-HA-Hep sponges containing SDF-1 α tagged with AF-647, in the resection cavity in the frontal cortex of Fisher 
rats (Created with BioRender.com). Control sponges contained only PBS. Seven days after implantation, brains were collected and sliced. AF-647-SDF-1 α was localized within 
the structure of the sponge (red channel, third column). Degradation of sponges was observed at their edges in contact with the borders of the resection cavity, and the 
detaching bulges containing AF-647-SDF-1 α were located adjacent to the brain parenchyma (white asterisks). Further labeling with an anti-SDF-1 α antibody and revelation 
by the Strep-FITC amplification method did not show the presence of AF-647-SDF-1 α as the latter was not recognized by the anti-SDF-1 α, see (B). The presence of small 
blood vessels positive for the anti-SDF-1 α antibody was rarely observed in the margins of the resection (white arrows, second column, green channel). Scale bar = 100 µm. 
B) WB analysis for the immuno-detection of SDF-1 α and AF-647-SDF-1 α. The same anti-SDF-1 α antibody recognized only the non-tagged SDF-1 α but not the AF-647 tagged 
SDF-1 α, which is however revealed by excitation with an IR laser. 
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Fig. 7. In vivo response of GB cells to implantation of sponges. A model of the resection cavity in the brain cortex was developed in nude rats. U87MG-CXCR4 + cells 
were injected near the sponges loaded or not with SDF-1 α, or near the created cavity alone (i) (Created with BioRender.com). After seven days following implantation, 
cell detection was performed in cryosections by RFP expression and CXCR4 immunolabeling (yellow) (ii). Depicted are the composite images resulting from the merging 
of the different channels. An increased cell number of dissociated cells lying in the anterior/intermediate zone between the tumor and the sponges in rats bearing SF-HA- 
Hep sponges loaded with SDF-1 α (SF-HA-Hep + SDF-1 α) or sponges alone (SF-HA-Hep + PBS) was observed as compared to rats with the resection cavity alone with no 
implanted sponge (iii) ( n = 3; ∗: p < 0.05, ∗∗: p < 0.01). The right panel shows an example of images from single channels as follows: WF (white field), RFP (red fluorescent 
protein), CXCR4 (yellow), DAPI (cell nuclei), 488 (green autofluorescence of sponges) (iv). 
cavities and their highly interconnected pores supported cell in- 
filtration and growth. 

To assess the in vivo sponges’ bioperformence, a cavity resec- 
tion model was developed. Due to the difficulty of reproducibility 
of resected tumors by using a punch biopsy pen and an aspiration 
method, the developed rat model here shows that concomitant 
placement of implants and GB cells is feasible to investigate the 
functionality of interventional scaffolds in a model of the residual 
disease were infiltrating cells are situated adjacent to the cavities 
in the brain parenchyma. This strategy might be used to assess dif- 
ferent scenarios including the distance between cells and scaffolds, 
and the number of injected cells. Here, by 1-mm distant placement 
of GB cells relative to resected zones, it was revealed that GB cells 
interacted with the sponges 7 days post-implantation. Serving as 
a chemokine reservoir in the tissue, SDF-1 α remained within the 
sponges after 7 days of implantation. 

In vitro , sponges loaded with SDF-1 α directionally attracted 
U87MG-CXCR4 + GB cells and enhanced cell colonization within 
the scaffold. The function of SDF-1 α is observed in the under- 
agarose assay in vitro from a distance that is 2-fold larger than the 

sponge implanted in vivo . The sponges alone did not show a differ- 
ence relative to only wells containing PBS ( Fig. 3 B-i). And sponges 
loaded with SDF-1 α attracted cells vs sponges alone ( Fig. 3 B-iii). 
This means that the signaling provided by the released SDF-1 α is 
necessary to attract GB cells distantly placed in a semi-confined 
site. In this case, the agarose gel provides a layer between the 
plastic and the gel that cells can invade. Moreover, the in vitro as- 
say using tumor cells grown as spheroids demonstrated the im- 
portance of SDF-1 α for improving the sponge colonization. In vivo , 
cells were injected approximately 1 mm away from sponges. This 
nearer placement of sponges as compared to the in vitro exper- 
iment, can influence the interaction of cells growing from the 
main tumor as observed in the intermediate zones and edges of 
the sponges facing the tumors in Fig. 7 . Interestingly, SF-HA-Hep 
sponges were able to shape and locate the tumors inside the cavi- 
ties. The effect of shaping of the tumor by sponges alone ( Fig. 8D ) 
can be explained by the attraction of cells by mechanisms yet un- 
determined and independent from SDF-1 α. In vivo , on day 7 af- 
ter cell injection, there was no significant difference between the 
positive detections of cells in the intermediate zone located be- 
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Fig. 8. Evolution of tumor growth and survival analysis of implanted rats vs cavity controls. A) Survival Analysis. Although no significant statistical difference is observed 
between groups, the calculated smaller median survival (27.5 d) for sponges loaded with SDF-1 α correlates with a higher average tumor volume on day 27 (as a tendency 
as no statistical difference is observed, P = 0.059). B) The shape of the tumor is affected by the presence or absence of sponges. The area of the tumor out of the enclosed 
and shaped cross-sectional area projected from the sponge is depicted in the lower panels. The circularity is calculated as the area of the tumor cross-section divided by 
the area of the adjusted circle according to the tumor perimeter (4 πA/P 2 ). Three slices were analyzed for each projection plane for each animal ( n = 3 animals per group). 
Levels of significance are: ∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001. 
tween the tumor and sponges loaded with SDF-1 α or sponges 
alone ( Fig. 7 ). This can be linked to the effect of sponges loaded 
or not with SDF-1 α on tumor shaping. The MRI images provided 
on Fig. 8B corresponding to day 27 suggest a displacement of the 
tumor towards the cavities that contained sponges. Results did not 
reflect a survival improvement, but this was in part expected as no 
killing signal was introduced. The tumor-shaping and -sitting effect 
occurred regardless of SDF-1 α loading, suggesting it is associated 
with the properties of the SF-HA-Hep sponges. 

4.1. SF-HA-Hep sponges as a tool for intervention: instructing the 
tumor ecosystem 

The dynamic crosstalk between cancer cells and their environ- 
ment might be interfered to instruct the GB ecosystem and poten- 
tially improve treatment. Cancer cell behavior and fate are strongly 
associated with non-cellular components, such as the ECM. Thus, 
the unique composition and architecture of the brain ECM can of- 
fer opportunities, being implemented as a target and as an instru- 
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ment for various therapeutic strategies [28–30] . GB cell morphol- 
ogy, migration and proliferation can be influenced by the compo- 
sition of the biomaterial [31–33] . And parameters such as poros- 
ity, permeability and the stiffness of the scaffold can be crucial in 
terms of cell ingrowth, cell growth, migration, and scaffold colo- 
nization [34] . 

Previously, the physicochemical and mechanical similarities be- 
tween the brain ECM and SF-HA-Hep sponges were described [17] . 
Here, we demonstrated that the multiple interconnected 69µm- 
pore-channel networks of SF-HA-Hep sponges played a signifi- 
cant role in GB cells’ infiltration and spreading by providing ad- 
equate internal space and support for cell growth. Pore size is 
a fundamental factor implicated in the invasion and migration 
of GB cells [35] , which occur after matrix degradation when the 
cross-sectional area of the interfibrillar pore is less than 7 µm ²
[36] . Above this value, cells can undergo physical deformations to 
squeeze through the pores of the brain ECM and migrate [37] . The 
spatial arrangement of the matrix fibers near primary tumor sites 
can influence the motility of tumor cells, and aligned fibers of- 
fer tracks that are more conducive to migration [ 38 , 39 ]. With this 
regard, Jain et al. (2014) demonstrated that aligned fibers can be 
used as guidance elements to direct brain resident GB cells toward 
an extracortical zone. In contrast, SF-HA-Hep sponges presented 
here did not feature any structural alignment [7] . Other works us- 
ing non-aligned porous scaffolds made use of an attracting sig- 
naling strategy, trying to imitate metastatic niches. For example, 
De la Fuente et al. (2015) used extracellular vesicles to demon- 
strate the luring capacity of ovarian cancer cells when loaded into 
the scaffold’s matrix [6] . Moreover, Azarin et al. (2015) showed 
that the implantation of PLG microporous scaffolds in mice mam- 
mary fat pads induced the recruitment of immune cells by cy- 
tokines including CCL22, that in turn induced the recruitment of 
metastatic breast cancer cells [40] . In the context of glioblastoma, 
Gliadel wafers used for carmustine delivery are FDA approved, but 
no other porous scaffolds like sponges have been used for the trap- 
ping of GB cells. This paper hence describes a new system. Porous 
SF-HA-Hep sponges offer the possibility of covering a larger space 
and taking advantage of the resection cavity after implantation. 
These sponges are biodegradable, so a second surgery to remove 
the device would not be necessary. 

In the present work, we explored the effect of loading a 
chemoattractant into SF-HA-Hep sponges and found that SDF-1 α
-loaded sponges were able to attract GB cells in vitro . In vivo , clus- 
ters of tumor cells and individual cells were observed infiltrating 
the intermediate zone between the anterior tumor border and the 
sponges, which was promoted by the SDF-1 α load compared to the 
cavity controls. However, we also found that tumor shaping and lo- 
calization were favored to fit the resection cavities containing im- 
plants, and this occurred independently of SDF-1 α loading. Inter- 
estingly, the shape of the tumors matched the shape of the cross- 
sectional projections of the sponges in the three MRI axes imaged, 
being more rounded when compared to the tumors where sponges 
were absent. This suggests that the implants exerted an attraction 
force from the site of cell injection toward the resection cavity. In- 
deed, the sponge structure was not seen anymore during the 4th 
week of MRI imaging. This can be explained by 1) the total colo- 
nization of the sponges by U87MG-CXCR4 + cells during the exper- 
iment, hindering the sponges’ structure, 2) the complete sponge’s 
degradation favored by the tumoral environment, and 3) the ejec- 
tion of sponges by the tumor’s center of mass displacement and 
further elimination of the sponges. 

Despite not knowing the precise mechanism, the attraction of 
GB cells seen at the sponge-parenchyma intermediate zone after 
7 days of implantation, even in the absence of SDF-1 α, suggests 
that sponges alone may modulate GB cell behavior. Cancer cells 
can be guided towards laminin and hyaluronan molecules in the 

ECM by internal integrins and CD44 receptors respectively, and via 
haptotaxis by chemokines and growth factors immobilized along 
tracks [ 41 , 42 ]. In line with this, HA may have contributed to tumor 
cell presence inside SF-HA-Hep sponges, via CD44/HA axis [43] , 
as the majority of U87MG-CXCR4 + cells expressed the CD44 re- 
ceptor ( Fig. S4 ). In addition, in vitro U87MG cells responded bet- 
ter when directly seeded into SF-HA-Hep sponges as compared 
to SF-HA sponges ( Fig. 2D ), highlighting the effect of the matrix 
structure and composition. Heparin and other glycosaminoglycans 
(GAGs) can regulate glioma cell adhesion to ECM proteins lead- 
ing to cell proliferation or cell migration, according to the ECM 
composition, thus modulating tumor cell properties [44] . Heparin 
can be safely used when it is modified or covalently incorporated 
into scaffolds f or biomedical applications [45–47] offering cell con- 
tact sites by the recruitment of molecules promoting cell adhesion. 
Therefore, the enhanced in-vitro cell response observed here could 
be explained by the trapping of factors from the media contain- 
ing FBS such as fibronectin and vitronectin, both of which harbor 
heparin binding sites [ 4 8 , 4 9 ]. 

Furthermore, the strong heparin-chemokine complex was re- 
sponsible for SDF-1 α retention in SF-HA-Hep sponges [ 17 , 50 ]. As 
this chemokine can be rapidly turned over [51] and inactivated by 
nitration in vivo [52] , the SDF-1 α immobilization in the sponges 
combined with their slow degradation rate can offer an advantage 
as a reservoir reinforcing its role in haptotaxis versus chemotaxis, 
here pivotal for directional cell migration and colonization of the 
sponge. SDF-1 α linked to heparin-binding domains had similar ac- 
tivity to the free chemokine [53] . Here, fragments of SF-HA-Hep 
sponges as AF647-SDF-1 α bulges were seen in the edges of the 
brain cavities containing a high number of cell nuclei. These bulges 
might have induced a haptotaxis response [54] . 

The recruitment of immune cells in the site of scaffold im- 
plantation has been described as having a role in the creation of 
premetastatic niches for the capture of breast cancer cells. Leuko- 
cytes can be recruited into scaffolds reorganizing as a site of pre- 
metastasis in a murine breast cancer model. This is due in part to 
the secretion of soluble factors from recruited Gr1hiCD11b + cells 
that can attract cancer cells [ 40 , 55 ]. SDF-1 α is a cytokine that can 
be secreted by immune cells including neutrophils [56] . Despite 
PMN cells were recruited into the sponges, endogenous SDF-1 α in 
the site of implantation was not detected in both implanted and 
mock surgery resected rats. Besides, other soluble factors can at- 
tract cancer cells which do not exclude the possible effect of im- 
plantation of SF-HA-Hep sponges alone as a premetastatic niche. 
Further experiments need to consider the distant placement of 
sponges ( > 1 mm) from the primary tumor site to assess their 
premetastatic potential. 

Alternatively, the attraction driving force might have been phys- 
ical. Cells were injected after scaffold implantation, so the sponge 
was most probably not exerting any absorption of liquid, as they 
were already equilibrated with the liquids inside the cavity. By ex- 
clusion, this effect may be related to sponge stiffness, as stiffness 
gradients can induce cell migration [ 57 , 58 ]. Considering this, the 
young modulus of SF-HA-Hep sponges (13 KPa) [17] is larger than 
that of the human brain (1–10 KPa) [ 59 , 60 ], but may better suit 
the tumor microenvironment, where the altered ECM presents en- 
hanced matrix stiffness (11.4 to 33.1 KPa) [61] . Thus, SF-HA-Hep 
sponges may confer to cells a suitable substrate with stronger me- 
chanical forces than the brain ECM, allowing them to move up- 
gradient, in a durotaxis response. 

The reverse effect of the ECM on cancer cells and the progres- 
sion of tumors remains to be investigated [ 28 , 29 , 62 , 63 ]. Here, we 
showed that alteration of the tumor ecosystem can be done by the 
implantation of SF-HA-Hep sponges in the resection cavity. The ex- 
act underlying mechanisms of how SF-HA-Hep sponges helped to 
the resection cavity siting and shaping of the tumors remain to 
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be completely determined. Further studies including scaffold-to- 
tumor distance variation, the measuring of mechano-sensing mark- 
ers and the identification of immune cells can give more clarifica- 
tion in this matter. Overall, the biological and mechanical proper- 
ties of SF-HA-Hep sponges may allow the concentration of remain- 
ing GB cells in a controllable area for further elimination. 
4.2. Limits and perspectives 

Incorporating dynamic biological information into scaffolds to 
match the in vivo environment of the native tissue has gained great 
appreciation [64] . However, this design can be a colossal challenge 
considering the complexity of the aberrant cues and signaling of 
cancer. The increasing understanding of the pre-metastatic niches 
and their roles in welcoming metastatic dissemination [65–67] has 
inspired scientists to create different strategies to trap migrating 
cancer cells [ 6 , 68–70 ]. In our exploration of SDF-1 α as a bait to 
attract GB cells, we have encountered several challenges. 
4.2.1. Release and control of SDF-1 α into the brain parenchyma 

We were previously able to observe the capacity of SF-HA-Hep 
sponges to integrate SDF-1 α into their structure according to the 
loading methods used by simple dropping [17] . The distribution 
profile of the protein inside the sponge was visualized using SDF- 
1 α coupled to AlexaFluor 647 thus demonstrating a radial concen- 
tration gradient from the center (where the drop was deposited) 
toward the edges of the sponges [17] . The ability of heparin to bind 
SDF-1 α in polymer matrices is a proven fact thus facilitating the 
loading of chemokine [ 71 , 72 ]. Here, the SDF-1 α retention capacity 
displayed by the SF-HA-Hep sponge correlates with the presence 
of AF 647-SDF-1 α within the sponges in the brain parenchyma on 
day 7 of evaluation. 

For strategies envisaging to attract cancer cells from a distant 
site, chemoattraction is an attractive strategy. The first challenge is 
related to the design of the scaffold to provide a releasing signal 
so that it creates a gradient, perdures and gets to the site of can- 
cer cell residence. SF-HA-Hep sponges showed strong retention of 
SDF-1 α. The initial burst of SDF-1 α that occurred during the first 
day was about 4 % of the total load, quickly reaching a 5 % cumu- 
lative release plateau thereafter [17] . In vitro , this initial burst of 
SDF-1 α was enough to chemoattract U87MG-CXCR4 + cells. Indeed, 
the calculated concentration in 30 µL of liquid within the well of 
the agarose gel (1070 ng/mL) was sufficient to create a gradient of 
SDF-1 α. And, even if all the released SDF-1 α were diffused within 
the 3-mL gel, the final concentration (10.7 ng/mL) would still be 
active [14] . Nevertheless, these remarks may not apply to the in 
vivo scenario. In this case, 32 ng of SDF-1 α are released in a wa- 
tery volume of ∼20 µL corresponding to the resection cavity. As- 
suming a homogeneous distribution, the after-burst concentration 
of the soluble SDF-1 α within the resection would be 1600 ng/mL. 
However, the surgical procedure involves leakage from drained liq- 
uids, including blood; therefore, it seems difficult that this concen- 
tration remains within the cavity. Moreover, if we consider SDF-1 α
degradation by enzymes and the inflammatory environment, the 
calculated SDF-1 α initial concentration would be further reduced. 
In addition, SDF-1 α being a small cytokine is rapidly dispersed in 
a water environment but the diffusion coefficient in the brain may 
be different. 

Importantly, no AF647-SDF-1 α was detected by fluorescence in 
the brain parenchyma, apart from the signal present in the detach- 
ing bulges from the edges of the sponges corresponding to the 
heparin complexed form of SDF-1 α ( Fig. 6A ). Of note is that the 
levels of detection of the fluorescent protein by WB were only pos- 
sible at 100 ng of protein concentrated in a band ( Fig. 6B ). There- 
fore, it is possible that lower levels of AF-647 were not detected 

in the brain parenchyma. Further studies need to consider differ- 
ent time points to evaluate the in vivo releasing profile of SDF-1 α
from the sponges using a radiolabeled protein. Discerning between 
chemotaxis and haptotaxis can be addressed by varying the place- 
ment of cells relative to sponges. Here, the effect of SDF-1 α can 
be explained in part by a combination of chemotaxis and hapto- 
taxis signaling as cells were injected beside the sponges. Under the 
premise that if SDF-1 α is not released then chemoattraction can be 
limited, to improve the releasing profile of the chemokine, another 
strategy can be envisaged such as the incorporation of the protein 
into nanoparticles [ 73 , 74 ] for further integration into the sponges. 

The optimal concentration of SDF-1 α for GB-cell attraction may 
depend on several factors such as the stage of the disease, the type 
of cells involved, and the presence of other factors that may in- 
fluence the chemokine activity. The effects of SDF-1 α on cancer 
cell behavior can be concentration-dependent. Low concentrations 
of SDF-1 α can promote cancer cell migration and invasion, while 
high concentrations can inhibit these processes by causing recep- 
tor internalization and desensitization [75] . Pasquier et al. (2015) 
showed that low concentrations of SDF-1 α promote the migration 
of breast cancer cells through the activation of RhoA, while high 
concentrations increased adhesion through the activation of Rac1 
[76] . Therefore, the task involves the design of a releasing profile 
to reach a steady state biological concentration of the chemokine 
during the time required to reach the target, which implies further 
and in-depth knowledge of the system. 
4.2.2. Pleiotropic effects of SDF-1a 

The concept of tumor entrapment aims to confine and elimi- 
nate cancer cells within a controlled microenvironment. Two pri- 
mary strategies involve synergy with locoregional irradiation and 
the use of compounds to counteract tumor cell growth and re- 
sistance. SDF-1 α, a versatile signaling molecule, plays a pivotal 
role in various biological processes. Its initial advantages, such as 
chemoattraction and migration, can turn detrimental to inhibiting 
proliferation. Hence, the development of diverse SDF-1 α analogs 
offers promise for selectively modulating its functions [77] . Explor- 
ing distinct SDF-1 isoforms like SDF-1 γ , with unique biomatrix 
binding properties, can further optimize the balance between ben- 
eficial chemotaxis and reduced proliferation [78] . 

The SDF-1 α network is intrinsically connected with several ge- 
netic and molecular events in the tumor microenvironment [79] , 
reflecting in tumor growth and cell invasion. CXCR4-mediated 
chemotaxis can be mediated by the activation of PI3 kinase (PI3K) 
by both G βγ and G α subunits of the activated G-protein coupled 
receptor. PI3K activation results in the phosphorylation of several 
focal adhesion components, paxillin among them [80] . Tyr118, the 
main residue of paxillin phosphorylation by focal adhesion kinase 
(FAK) was found here in gradual phosphorylated levels according 
to the increasing time of exposure to SDF-1 α, suggesting a gradual 
formation of focal adhesions [22] . However, we also found activa- 
tion of Akt and Erk. Independent activation of Akt and ERK1/2 by 
SDF-1 α can support cell growth [81] , and exert a positive effect on 
the survival of GB cells [14] . 

Therefore, although the initial strategy of using SDF-1 α as a 
chemoattractant was coherent with the observed gradual increase 
in p-paxillin and the strong chemotactic in-vitro response, the uti- 
lization of SDF-1 α to attract infiltrative GB cells in vivo entails a 
risk of tumor progression and dissemination that must be eval- 
uated. Indeed, we found that the effect of SDF-1 α on migration 
was independent of cell proliferation in vitro . However, the reduced 
cell hallo observed in the ADC-treated agarose drops (prolifera- 
tion inhibited), also suggests a positive effect of SDF-1 α on sur- 
vival and/or proliferation. Moreover, the in vivo observations about 
the larger average tumor size and reduced median survival suggest 
that SDF-1 α contained within the sponges may favor the devel- 

17 



Appendices 

 280 

 

 

 

R. Molina-Peña, N.H. Ferreira, C. Roy et al. Acta Biomaterialia xxx (xxxx) xxx 
ARTICLE IN PRESS 

JID: ACTBIO [m5G; November 17, 2023;23:43 ] 
opment of the tumors. Therefore, this may lead to an increase in 
tumor aggressiveness if not controlled. 

A better understanding of SDF-1 α pathways’ activation after 
loading into SF-HA-Hep sponges might help to find an optimal 
condition. For instance, SDF-1 α forms oligomers upon binding to 
free GAGs in brain ECM, which implies the regulation of chemokine 
function [78] . Whether chemoattraction alone can be activated in 
the SDF1 α /CXCR4 axis is not known. However, evidence exists that 
the SDF-1 γ isoform did not induce robust cell motility unless it 
was bound to heparin [ 53 , 82 ]. Then, a modification of the scaffold- 
chemokine interaction or the use of a different isoform might favor 
chemotaxis against proliferation or survival. 
4.2.3. Tumor heterogeneity, the evolution of cancer cells and 
endogenous signals 

SDF-1 α has been shown to exert a chemoattractant effect in 
vitro on GB patient-derived cell lines expressing the CXCR4 recep- 
tor [14] . In addition, U87MG-CXCR4 + cells are infiltrative into the 
normal mouse brain parenchyma [18] . However, cell lines may not 
represent completely GB as a heterogeneous tumor. Even if the 
cell of origin might be a common neural stem cell or progeni- 
tor cell [83] , the evolution of the tumoral cell content is dictated 
by the tumoral ecosystem, and different glioma stem cells with 
their progeny may be present [84] . Therefore, the expression of the 
CXCR4 receptor might be variable, reducing the targeting efficiency. 

Furthermore, the expression of endogenous signals in the brain 
can represent competitional zones for cell attraction. For exam- 
ple, we observed SDF-1 α expression in blood vessels, which are 
sites of GB cell migration. Macrophage migration inhibitory factor 
(MIF) can also bind to the CXCR4 receptor, and it is expressed by 
U87MG cells ( Fig. S5 ), therefore the autologous/paracrine signaling 
from the tumor itself can also interfere with the efficiency of the 
chemoattraction strategy. 
4.2.4. Cellular/tissue barriers to migration 

Another consideration is related to the body’s reaction to the 
material itself. Fibrotic capsules are often formed in materials rec- 
ognized as strange bodies as implanted devices [85] . The cellular 
and tissue barriers formed around them, represent then an obsta- 
cle to cell colonization. For example, the M-Trap device showed in- 
creased mean survival of human ovarian cancer xenografted rats 
[6] , but has failed to demonstrate safety and efficacy in clinical 
trials. This was attributed to surgical complexity and the numer- 
ous intraperitoneal adhesions developed after implantation, pre- 
venting tumor cells from reaching the devices [86] . In the brain 
context, Autier et al. (2019), designed bacterial cellulose (BC) mem- 
branes for tumor bed implantation, as a system for trapping resid- 
ual GB cells. In vitro assessments showed that F98 tumor cells were 
trapped and unable to move onto the surface of the membranes. 
However, a fibrous capsule was observed around the material after 
brain implantation, which may prevent or decrease cell access [87] . 
This reaction was not observed for any of the implanted sponges as 
demonstrated by the histological analysis in rats, however the host 
reaction might be different as observed in humans for the M-trap 
device. 
4.2.5. Tumor microenvironment (TME)’s response 

SF-HA-Hep sponges caused an acute and chronic inflammatory 
response that was characteristic of a foreign body reaction with 
the recruitment of PMN cells, macrophages and lymphocytes. The 
presence of diverse cell types within the GB TME can influence the 
progression of the disease. For instance, GB cells are thought to in- 
duce an immunosuppressive environment by secretion of different 
factors. Among them, M-CSF, TGFb-1 and IL-10 skew macrophages 
to the immunosuppressive M2 phenotype [88] . The presence of 

M2-stage macrophages is correlated with vessel dilation and ma- 
lignancy in different human glioma samples [89] . Furthermore, 
normal monocytes exposed to glioma cells acquire properties like 
those of myeloid-derived suppressor cells (MDSCs) [90] . Secretion 
of VEGF induces neoangiogenesis, inhibits maturation of dendritic 
cells, hinders infiltration of effector T-cells and activates antigen- 
specific regulatory T cells [91] . In addition, reactive astrogliosis 
produces growth factors, cytokines and metabolites that promote 
gliomagenesis [92] . We observed the presence of PMN cells and 
chronic inflammatory cells in both SF-HA-Hep and control cavities 
without sponges. Although this observation was true in the im- 
munocompetent Fischer rats, nude rats (with 70 % Fischer back- 
ground, Janvier Labs) may have a similar response due to the pres- 
ence of most of these immune cells except for mature T-cells. In 
nude animals, SF-HA-Hep implantation alone did not influence sur- 
vival as compared to cavities, therefore the discrimination of a 
positive effect of the inflammatory response on tumor progression 
cannot be discerned. To explore the effect of the whole immune 
system, the complete immunocompetent model would have to be 
used. Whether these immune reactions could be exploited for tar- 
geting cancer cells remains to be explored, i.e., the reversion into 
a positive factor for GB treatment. 

Taken together, these listed factors should be considered in 
the design of a tumor cell trapping strategy, independently of the 
molecules used. Their adequate consideration may increase the ef- 
ficacy of the cell trapping capacity. 
4.3. The resection cavity as a part of the pathology and perspectives 
on sponges as “meeting rooms” to direct the GB ecosystem 

In operable GB, the resection cavity is part of the pathology. 
After tumor surgical resection, the brain parenchyma is extremely 
fragile, and the cavities present unpredictable shapes and sizes. 
These aspects hinder the local administration of post-operative 
treatments, resulting in a high probability of recurrence ( ∼90 % 
of the cases) [93] . Mainly, tumor cells present in the peritumoral 
brain zone are responsible for that, and today it is impossible 
to image and target them using the maximum tolerated dose 
of radiotherapy after surgery [87] . However, the resection space 
can also offer an opportunity for the treatment of recurrent GB. 
The two main limitations contributing to the failure of conven- 
tional therapy are i) treatment resistance and ii) sub-optimal de- 
livery of active principles. Different strategies have been inves- 
tigated for the local and enhanced delivery of chemotherapeutic 
agents. Convection-enhanced delivery (CED) allows direct delivery 
of chemotherapeutics via a catheter in the tissue surrounding the 
GB resection cavity, but this method results in unpredictable brain 
diffusion and requires the use of several surgical procedures, lead- 
ing to a high risk of infection or bleeding [94] . Other strategies in- 
clude the use of hydrogels and other implantable scaffolds [ 95 , 96 ] 
for the sustained and local delivery of chemotherapeutics. How- 
ever, only Gliadel wafers, consisting of an implantable copolymer 
that allows the controlled release of carmustine within the cav- 
ity, have reached the clinic. Recently, it was reported that adjuvant 
treatment with Gliadel may prolong the overall survival of malig- 
nant glioma patients [97] , but their association with a high rate of 
complications is still controversial [98–100] . 

Alteration of the GB ecosystem may offer a new perspective for 
the targeting of the residual disease. Luring of GB cells is now be- 
ing explored to concentrate GB cells for further elimination [ 7 , 87 ]. 
For this purpose, the use of an implantable support as means of di- 
rect contact with the brain parenchyma is fundamental for the tar- 
geting of residual GB cells. In this line, shape-memory lasting SF- 
HA-Hep sponges may allow the brain parenchyma to have better 
structural support, preventing a collapse of this tissue after surgery 
and lasting long enough to permit cell infiltration. 
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However, the limitations presented and discussed for the tumor 

cell trapping strategy may still impede the complete eradication 
of infiltrative GB cells. Combined approaches, such as the use of 
chemoattractants and killing agents [101] , local radiotherapy [18] , 
or the delivery of cellular components such as engineered tumori- 
cidal neural stem cells [102] may help a better outcome. 

Switching the focus from the cancer cell alone to one that 
includes the normal host environment offers new perspectives 
[ 28 , 103 ]. SF-HA-Hep sponges and other implants [ 6 , 87 ] caused a 
local inflammatory response. Moreover, the presence of CD11b/c- 
positive cells inside the sponges and GFAP-positive cells in the 
vicinity of the cavities seven days post-implantation ( Supp. Fig. 6 ) 
indicate that various cell types can interact with the implant, re- 
gardless of whether it is loaded with SDF-1 α or not. These interac- 
tions could potentially impact the TME. Integrin CD11b is primar- 
ily expressed in monocytes, macrophages, neutrophils, dendritic 
cells (DCs), NK cells, and a subset of B and T cells (absent in the 
case of nude rats). Conversely, CD11c is a widely used marker for 
defining DCs [104] . The Glial fibrillary acidic protein (GFAP), on 
the other hand, is specifically found in the astroglial cytoskele- 
ton [105] . Ideally, implantable materials should have a regenerat- 
ing anti-inflammatory and neuro-regenerative effect after surgical 
resection of the tumor [ 28 , 106 ]. However, the inflammatory cells 
observed in the cavities might be reeducated for the tackling of 
tumor cells. GB is known to create an immunosuppressive envi- 
ronment [107] . This is due to the crosstalk between glioma and 
immune cells, which opens the possibility of the immunomodu- 
lation of the TME. Therefore, the presence of macrophages and 
lymphocytes after implantation of SF-HA-Hep sponges could be 
reverted in a positive factor to improve the immune response 
against the tumor by loading other chemokines and immunos- 
timulatory molecules. Additionally, the chronic inflammatory cells 
can help to break down the ECM and increase blood flow to the 
tumor, improving drug penetration and increasing treatment ef- 
ficacy [108] . Further research is needed to fully understand the 
potential benefits of this approach as a “cell meeting room” im- 
plantable scaffold to remodel the GB ecosystem for better therapy 
outcomes. 
5. Conclusion 

The plethora of strategies investigated for GB treatment is im- 
pressive, but the reflection on patient survival is nowadays limited. 
This is due to the high infiltrative capacity of GB cells. Considering 
GB as an ecosystem disease may help in the designing of thera- 
peutic strategies that explore the alteration of its elements such 
as migratory niches. Here, SF-HA-Hep sponges were able to attract 
GB cells from the parenchyma surrounding the created brain cavity 
in rats, and sited and shaped the tumors in the resection spaces. 
Besides, the sponges demonstrated to have characteristics compat- 
ible with an implantable biomaterial, adequate for the brain tissue. 
This work has shown this scaffold is a potential tool for GB treat- 
ment, although there are yet some limitations regarding the use 
of SDF-1 α. The concentration of GB cells and the shaping of the 
tumor may improve cancer treatment by improving post-surgical 
outcomes, enhancing the effectiveness of chemotherapy and other 
targeted therapies, and improving the precision of radiation ther- 
apy. Still, limitations exist for the complete attraction of residual 
cells, therefore other combinatorial and immune-modulating ap- 
proaches can be considered. 
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Titre :  Développement d’une Radiothérapie Locorégionale à l’Astate-211 Ciblant Syndecan-1 
dans un Modèle Murin Syngénique de Glioblastome 

Mots clés : Glioblastome, Thérapie a Ciblée, Astate-211, Syndecan-1, Anticorps Monoclonal 

Résumé :  Le glioblastome (GB) est la tumeur 
la plus agressive du système nerveux central. 
Résistant aux approches thérapeutiques, 
conventionnelles ou novatrices, il constitue 
encore aujourd’hui un défi clinique urgent. Des 
avancées récentes dans la thérapie 
radionucléidique ciblée (targeted radionuclide 
therapy, TRT) ont mis en évidence des voies 
potentielles d'intervention pour le GB. Plus 
précisément, la thérapie α ciblée (targeted-α-
therapy, TAT) est une TRT qui utilise des 
particules α de courte portée et de haute 
énergie. La TAT a montré des résultats 
prometteurs dans différents scénarios 
précliniques et cliniques de cancer. Cependant, 
les résultats spécifiques au GB restent 
insatisfaisants. Cette thèse commence par 
évaluer le potentiel thérapeutique de la TAT 
pour le GB, visant à mettre en évidence à la fois 
les avancées et les défis à venir.  

Sur cette base, notre étude introduit une 
approche thérapeutique locorégionale utilisant 
un anticorps monoclonal ciblant le syndécan-1 
(SDC1), lié au radionucléide émetteur α astate-
211 (211At-9E7.4). Cette TAT démontre une 
efficacité accrue pour éradiquer les tumeurs 
orthotopiques dans un modèle murin 
syngénique de GB. Le ciblage stratégique de 
SDC1 assure une rétention optimale de l'agent 
thérapeutique dans le cerveau, permettant une 
administration à faible dose avec des effets 
secondaires minimes. De plus, la TAT réduit la 
formation de tumeurs secondaires et permet 
d’établir une résistance au développement de 
nouvelles tumeurs grâce à l'activation des 
lymphocytes T mémoire centraux et effecteurs. 
Ainsi, cette avancée significative offre le 
potentiel d'améliorer le traitement et la qualité 
de vie des patients atteints de GB. 

 

Title:  Development of a Locoregional Astatine-211 Radiotherapy Targeting Syndecan-1 in 
a Syngeneic Mouse Model of Glioblastoma  
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Abstract: Glioblastoma (GB) is the most 
aggressive tumor of the central nervous system. 
Having consistently resisted both conventional 
and novel therapeutic approaches, it remains a 
pressing clinical challenge. Some recent 
breakthroughs in targeted radionuclide therapy 
(TRT) have highlighted potential pathways for 
GB intervention. Specifically, targeted-α-therapy 
(TAT) is a TRT that employs short-range, high-
energy α particles. TAT has demonstrated 
promising outcomes in both preclinical and 
clinical cancer scenarios.  However, the results 
specific to GB remain less than satisfactory. 
This thesis begins by assessing the therapeutic 
potential of TAT for GB, aiming to highlight both 
breakthroughs and future challenges. 

Building on this foundation, our study 
introduces a locoregional therapeutic approach 
using a monoclonal antibody that targets 
syndecan-1 (SDC1), linked to the α-emitter 
radionuclide astatine-211 (211At-9E7.4). This 
TAT demonstrates enhanced efficacy in 
eradicating orthotopic tumors in a syngeneic 
mouse model of GB. The strategic targeting of 
SDC1 ensures optimal brain retention of the 
therapeutic agent, allowing low-dose 
administration with minimal side effects. 
Furthermore, TAT reduces the formation of 
secondary tumors and elicits resistance to new 
tumor development through the activation of 
central and effector memory T cells. Thus, this 
significant advancement holds the potential to 
improve treatment outcomes and quality of life 
of GB patients. 

 


