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Abstract: Current state-of-the-art Language Models
(LMs) are able to converse, summarize, translate, solve
novel problems, reason, and use abstract concepts at
a near-human level. However, to achieve such abili-
ties, and in particular to acquire “common sense” and
domain-specific knowledge, they require vast amounts
of text, which are not available in all languages or do-
mains. Additionally, their computational requirements
are out of reach for most organizations, limiting their
potential for specificity and their applicability in the
context of sensitive data.

Knowledge Graphs (KGs) are sources of structured
knowledge which associate linguistic concepts through
semantic relations. These graphs are sources of high
quality knowledge which pre-exist in a variety of oth-
erwise low-resource domains, and are denser in infor-
mation than typical text. By allowing LMs to leverage
these information structures, the burden of memorizing
facts can be removed from LMs, potentially reducing
the amount of text and computation required to train

them and allowing us to update their knowledge with
little to no additional training by updating the KGs,
therefore broadening their scope of applicability and
making them more democratizable.

Various approaches have succeeded in improving
Transformer-based LMs using KGs. However, most
of them unrealistically assume the problem of Entity
Linking (EL), i.e. determining which KG concepts are
present in the text, is solved upstream. This thesis
covers the limitations of handling EL as an upstream
task. It goes on to examine the possibility of learn-
ing EL jointly with language modeling, and finds that
while this is a viable strategy, it does little to decrease
the LM’s reliance on in-domain text. Lastly, this the-
sis covers the strategy of using KGs to generate text
in order to leverage LMs’ linguistic abilities and finds
that even naïve implementations of this approach can
result in measurable improvements on in-domain lan-
guage processing.

Titre: Intégration de connaissances expertes dans des modèles neuronaux profonds pour l’adaptation au domaine
dans le traitement automatique de la langue
Mots clés: Traitement automatique de la langue, Connaissances expertes, Adaptation au domaine, Réseaux de
neurones, Apprentissage profond, Transformers

Résumé: Les Modèles de Langage (LMs) de pointe
sont capables de converser, résumer, traduire, résoudre
des problèmes inédits, raisonner, et manipuler des con-
cepts abstraits à un niveau quasi-humain. Cependant,
pour acquérir ces capacités, et en particulier pour ac-
quérir une forme de “bon sens” ou des connaissances
spécifiques à un domaine, ils requièrent de vastes quan-
tités de texte, qui ne sont pas disponibles pour toutes
les langues ou tous les domaines. De surcroît, leurs
besoins en puissance de calcul ne sont atteignables
que par quelques organisations, limitant leur spécificité
ainsi que leur applicabilité aux données sensibles.

Les Graphes de Connaissances (GCs) sont des
sources de connaissances structurées qui associent des
concepts linguistiques entre eux par le biais de rela-
tions sémantiques. Ces graphes sont des sources de
connaissances de haute qualité, préexistantes dans une
variété de domaines même peu dotés en ressources, et
plus denses en informations que du texte. En permet-
tant aux LMs d’exploiter ces structures d’information,
ils sont délestés de la responsabilité de mémoriser
les informations factuelles, réduisant la quantité de

ressources textuelles et calculatoires nécessaires à leur
entraînement, et nous permettant de mettre à jour
leurs connaissances à moindre coût, élargissant leur
cadre d’application et augmentant leur potentiel de
démocratisation.

Diverses approches pour l’amélioration de LMs par
intégration de GCs ont démontré leur efficacité. Elles
reposent cependant sur la supposition rarement véri-
fiée que le problème de Désambiguïsation d’Entités
Nommées (DEN) est résolu en amont. Cette thèse
couvre les limitations de cette approche, puis explore
l’apprentissage simultané de modélisation de langue et
de DEN. Cette démarche s’avère viable mais échoue
à réduire considérablement la dépendance du LM sur
le texte issu du domaine. Enfin, cette thèse aborde la
stratégie de générer du texte à partir de GCs de manière
à mieux exploiter les capacités linguistiques des LMs.
Il en ressort que même une implémentation naïve de
cette approche peut se solder par de considérables pro-
grès en modélisation de langue dans des domaines de
spécialité.



“Everything is burning, Emma, because we told it to set fire to everything. This is the workings of
the obedient servant. [...] This is the good product.”

Said Polat (2023)

To a bright future for humanity.
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1 - Introduction

1.1 . Context & Motivation

In the field of Artificial Intelligence (AI), the most ambitious goal may be to
create an agent capable of performing many or all human cognitive tasks at a
human or super-human level. This is Artificial General Intelligence (AGI). There
are multiple conceptions for how an AGI might be structured, but Natural Language
Processing (NLP) holds a privileged role in most of them as the most obvious tool
for humans to give instructions to a flexible system, and perhaps the most universal
human cognitive task.

The relationship between AGI and language modeling dates back to the in-
ception of the field, with the proposal of The Imitation Game (Turing, 1950),
also commonly known as Turing test which posits that the question “Can digi-
tal computers mimic human written language well enough to be indistinguishable
from true human writing in a conversational setting? ” (A) functionally entails the
question “Can machines think? ” (B). That is, if the answer to A is yes, then the
answer to B must also be yes provided “thinking” is not specifically defined in a
way that precludes machines from having this ability. This relies on the function-
alist argument that the inner workings of an object should have no bearing on the
way it is defined, only its influence on its environment should. One interpretation
follows from the solipsistic problem of other minds: only one’s mind is known to
be true for certain; we have no reliable method for rejecting the possibility that
the world may be an illusion and that, rather than equals, other minds could be
confabulations of our own or automatons mimicking sapience. Consequently, there
is no objective basis to discriminate between such automatons and what might be
true minds other than one’s own, as such a thing cannot be proven to exist.

Furthermore, the idea that fooling a human into thinking they are exchanging
with another human requires a form of higher-order reasoning that may be de-
scribed as “thinking” is not without merit. As language is the most versatile and
universal tool we use to communicate ideas, it appears sensible that proficiency in
the communication medium would entail proficiency in reasoning about the con-
cepts being handled. In reality, the lack of specifics in terms of allotted time for
the test have led to many unambiguously unthinking language models to arguably
pass the test, such as Cleverbot (Carpenter, 2008; Aron, 2011). Consequently, it
seems neither consciousness nor the ability to handle a wide range of cognitive
tasks are necessary to fool a human into thinking they are conversing with another
human in a practical, time-constrained setting.
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Despite this failing of the test, the link between mastery of reasoning about
abstract concepts, ability to carry out instructions and mastery of natural language
remain relevant. As text (often in the form of natural language, but also program
source code, mathematical equations, etc.) is the most common representation of
inputs and outputs for cognitive tasks and descriptions of non-cognitive processes,
it has been my belief since the beginning of my graduate studies that it is critical
for an AGI to master this modality, and if no new fundamental breakthroughs are
necessary, the first AGI will be largely based on language modeling. This belief has
driven and shaped my work thus far.

While this belief may seem to stem from an absurd leap in logic, given a large
enough model, the best policy to predict consequences from the description of a
process is to implement an internal simulation of the process (in humans, this “sim-
ulation” maps to several cognitive processes such as imagination and reasoning).
For instance, the best policy for learning to predict the sum of two numbers is to
learn addition. Given examples of physics experiments, the best policy to learn to
predict the results is to derive the laws of physics and simulate the experiments.
Given the formulation of a cognitive task, the best policy to predict the answer is
to simulate the cognitive process. Hence, the best policy for predicting arbitrary
text completions, i.e. modeling language, is to create internal representations of
the entities involved and their interactions. As universal approximators (Hornik
et al., 1989), it is not unexpected that given enough parameters, data, and time
training, the ability to perform this at a human or super-human level could emerge
in neural models. It has been proposed however, that language may be insufficient,
as true understanding must be grounded in the world, and therefore AGI must be
multimodal (Huang et al., 2023) and/or embodied (Kremelberg, 2019).

In the era of neural networks, especially since the advent of the Transformer
architecture, the main approach to progress on language modeling has been to
increase the amount of parameters in the model, of training data, and of compu-
tational resources used. Projects such as ChatGPT (Schulman et al., 2022) have
demonstrated that this approach can achieve outstanding results, particularly for
language understanding and generating grammatically correct sentences. However,
it does not tend to model knowledge well or efficiently, typically having either low
certainty on common-sense knowledge, and/or high certainty on untrue facts. This
is likely one of the causes of “hallucinations” (Ji et al., 2023), a phenomenon af-
fecting large transformer-based conversational language models which leads them
to confidently disseminate misinformation. An example of this behavior is provided
in figure 1.1, in which ChatGPT provides a correct article title which is relevant to
the query, but confidently attributes it to incorrect authors.
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Figure 1.1: Example of “hallucination”: article reference provided by ChatGPT.
The article title refers to a real article which is relevant (Gordon and Stryker,
1996), but the metadata (authors, date, DOI) are incorrect.

Another significant weakness of this method is its inefficiency in terms of data
and computation requirements, particularly at scale. A good basis for scaling
comparison is OpenAI’s series of GPT models, as they share a basic architecture
and training policy, and differ mostly in the number of parameters and training
data:

• GPT-1 (Radford et al., 2018) has approximately 117 million parameters, was
trained on 4.5 GB of text (approximately 7000 books, more text than most
people read in their entire lives), and required 1.7 × 1019 FLoating-point
OPerations, or 17 exaFLOP1 to train (Epoch, 2022; Sevilla et al., 2022). It
generated mostly grammatically correct text, but often made mistakes and
had trouble remaining consistent for more than a few sentences.

• GPT-2 (Radford et al., 2019) is approximately ten times larger and trained
on ten times more data for an approximately hundred times larger training
budget (1.5× 1021 FLOP), and succeeds in reliably generating a few para-
graphs of grammatically correct, consistent text in a variety of contexts.
Most significantly, GPT-2 demonstrated the ability to handle a variety of
linguistic tasks such as summarization, creative writing, and question an-
swering with carefully constructed prompts which typically include a few
examples of the task.

• GPT-3 (Brown et al., 2020) is over a hundred times larger than GPT-2 with
175 billion parameters requiring 800GB of storage, and trained on nearly
twenty times more data (950 GB), and was approximately 200 times more
expensive to train (3.1×1023 FLOP). GPT-3 can handle significantly larger
amounts of text than GPT-2, and was the first model to be able to follow
natural language instructions (Ouyang et al., 2022) (e.g. “Extract all place
names from the article below:” followed by a news article) and the first
general language model to write computer programs from a list of requested
features.

1FLOP, FLOPs, or floating-point operations, are a measure of amount of computa-
tion for a task, which is independent of time and hardware. It is not to be confused
with FLOPS, FLOP/s, or floating-point operations per second, which are a measure of
computation speed of a piece of computer hardware.
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• Little is known about the exact technical details of GPT-4 (OpenAI, 2023),
but it is known to have at least approximately a trillion parameters, it is
trained on a portion of the 19.5PB Common Crawl (Elbaz et al., 2012)
dataset, and required approximately 2.1 × 1025 FLOP to train according
to estimations by Epoch. Given the findings of Kaplan et al. (2020) on
optimal relative scaling of LM size versus corpus size, we can expect that
the corpus size should exceed 3.45 TB. Based on the computation time
ratio compared to GPT-3, the corpus size could exceed 11.26 TB. Its most
notable improvements over GPT-3 seem to be its general reasoning skills
and its world model, as it is able to make more accurate predictions relating
to real-world objects in hypothetical situations.

In summary, this mostly quantitative change in size and training data led to
a major qualitative change in potential applications and usefulness. These abil-
ities make GPT-3 and its successors unprecedented tools with the potential to
assist cognitive tasks and significantly increase productivity in many white-collar
professions. However, this naïve approach is highly inefficient in terms of data and
computational requirements. This inefficiency has three major drawbacks, detailed
below.

Computing at the billion-parameter scale and above is expensive. The cost of
training a model the size of GPT-3 is measured in millions of dollars2, and run-
ning it on a server for collaborative use would cost hundreds of thousands per
year3. This is an expense that most organizations cannot afford. Yet, contract-
ing a large technology corporation such as Alphabet or OpenAI to license their
language models is often not an admissible option due to privacy concerns. AI
corporations have a vested interest in keeping logs of user interactions in order to
improve their products, have a poor track record regarding respect of privacy, and
wield disproportionate economic (and therefore litigation) power. Potential client
corporations dealing with sensitive data such as personal medical data, military
strategic information, defendants’ personal information in court proceedings and
confidential intellectual property therefore cannot fully trust AI corporations to re-
spect the confidentiality of the information. In addition to the privacy concerns,
client corporations may also be interested in adapting and fine-tuning language
models to their needs with internal additional data and tasks. This use case, in
addition to the prohibitive cost, would typically require very large amounts of data
and many man-hours to complete due to the low data-efficiency of large language
models, adding yet another barrier to adoption.

Large language models may be reaching a scaling limit. As demonstrated by
Kaplan et al., language model performance increases (loss decreases) logarithmi-
cally with respect to the log of the number of FLOPs, the size of the training

2https://lambdalabs.com/blog/demystifying-gpt-3
3https://neoteric.eu/blog/how-much-does-it-cost-to-use-gpt-models-

gpt-3-pricing-explained/
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corpus, and number of model parameters. Assuming this relationship holds indefi-
nitely and error converges asymptotically to 0, a practical scaling limit nonetheless
lies within the available computational power and corpora which will likely fail to
meet the exponential demand. While the idea of approaching these upper bounds
may seem absurd, as of the writing of this thesis in 2023 and since 2020, a mul-
tifactorial global silicon shortage has been causing computer hardware prices to
increase dramatically. It is unclear if and when this issue will be resolved, po-
tentially causing stagnation in available computing power, even for AI-focused
corporations. Furthermore, the Common Crawl dataset, the largest text dataset
available which preserves a large section of the World-Wide Web, may already be
utilized nearly to its full useful extent. While it is nearly 20PB large, versions with
markup and low quality content filtered out are much smaller, with one of the
largest being the 9.7TB multilingual Colossal Clean Crawled Corpus (Raffel et al.,
2020; Dodge et al., 2021)4. This lines up with the amount of text apparently used
to train GPT-4. Substantially increasing the amount of training data will likely
significantly reduce its quality, or involve acquiring more data through expensive
means such as licensing costly content (e.g. Google Books, scientific articles) and
digitizing books.

Lastly, further increasing performance on the current language modeling tasks
with current architectures may actually be counterproductive. As outlined by
Zhuang and Hadfield-Menell (2020), when utility functions are misspecified with
respect to our true goals, as the performance of AI systems increase on their
training task, their performance on real-world tasks increases, plateaus, and sub-
sequently decreases as the model learns to exploit the specificities in their proxy
utility function. In conversational assistants for instance, providing false but plau-
sible information in response to a difficult request, thereby tricking the user into
believing the assistant is helpful, typically has higher utility than not attempting to
give useful information, which creates a perverse incentive to deceive. As demon-
strated by Perez et al. (2022a), this type of misalignment is already widespread
in conversational language models, and as their capabilities increase, these types
of failures may render their use actively harmful in subtle ways that may be diffi-
cult to detect. It is currently difficult to determine the impact of language model
misalignment, and therefore difficult to determine how much further they can be
scaled up before they become actively harmful.

Concerns over the environmental impact of the AI industry have also been
raised due to energy use for computation. Although lack of traceability makes
estimating the global carbon impact of neural network training difficult, we know
that large models individually cause substantial carbon emissions (Heikkilä, 2022).
For instance, the training of GPT-3 alone has consumed the equivalent of 500
metric tons of CO2 in terms of power. This is only approximately fifteen billionths
of the global emissions, but scaling power consumption by the amount of FLOPs

4https://www.tensorflow.org/datasets/catalog/c4
https://github.com/allenai/allennlp/discussions/5056
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in training, we can estimate the training of GPT4 to have caused 34000 tons of
emissions, or a millionth of the world’s consumption, without taking into account
the cost of running the models as part of the ChatGPT service. As more cor-
porations pursue this type of AI research and continue to scale models up, and
as more organizations train similar models, large language models may become a
substantial driver of carbon emissions.

In summary, while language models can be made substantially more powerful
by scaling up their size and training corpus, soon, we will likely have to turn to other
improvement methods to drive progress in the field. Furthermore, large language
models are not realistically democretizable due to the monetary and environmental
costs of training and running them; they are inefficient learners that have difficulty
assimilating facts; and they are prone to having incorrect beliefs and/or deceiving
humans in order to avoid missing out on rewards when discussing topics which
they know little about. In essence, we would like address these limitations by
increasing language models’ crystallized intelligence at low computational cost.
We decide to take inspiration from the way we deal with this issue in humans:
knowledge augmentation using external resources (see Fig. 1.2). We therefore
attempt to leverage external, pre-existing sources of knowledge, by integrating
them into Transformer-based language models. In this dissertation, I will discuss
the various approaches I have undertaken in the pursuit of this objective, as well as
my observations and conclusions, and we will consider directions for future research
on this and related topics.

Figure 1.2: Illustration of the use of an external resource for knowledge aug-
mentation in humans. Comic by Randall Munroe, “Extended Mind”. xkcd.com
#903.
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1.2 . Thesis Statement

Language modeling consists of evaluating how likely any sequence of tokens5

(typically words, word pieces, or characters) is to appear in language. The typical
approach to achieving this is to learn to predict the probability of a token given
the tokens in its context on a large corpus. However, as demonstrated by Zipf
(1935), language is dominated by a few common words, and vocabulary increases
logarithmically as the corpus grows. In all natural language corpora, there are
therefore many rare words which occur insufficiently often to satisfactorily estimate
these probabilities. This is especially true in domain-specific text, which often
contains words for highly specific concepts. As we would like to avoid incurring
the aforementioned penalties that come with increasing corpus size exponentially,
we seek a form of a priori knowledge which provides us with an alternative source
of information.

Several candidate sources of information may come to mind, such as:

• Grammar rules which, among other things, sort words into different parts
of speech (PoS) and define which constructions are sensible. These rules are
generally imperfect and riddled with exceptions, but could conceivably be
used to bootstrap sentence-structure understanding and/or as a soft filter
to dampen or amplify the probabilities of various tokens depending on their
part of speech, identified with rule-based dependency parsing.

• Weaker language models used in a reverse-distillation setting, i.e. before
self-supervision on text, a larger, newer model is pre-trained on the outputs
of an older, smaller model, which creates lower-quality but more informative
data.

• Dictionaries and encyclopediæ, which can be added to most corpora and
trained on for multiple epochs6 or queried to add context during inference.

• Ontologies and Knowledge Graphs7 (KGs) which arrange concepts in a
web of relations which capture probabilistic dependencies between concepts
(and, therefore, tokens).

5Token: “A token is an instance of a sequence of characters in some particular doc-
ument that are grouped together as a useful semantic unit for processing.” (Manning
et al., 2008, p. 22)

6Epoch: complete pass over the linguistic resource
7Ontologies are a type of Knowledge Base (KB), but not all Knowledge Bases are

technically Ontologies. Knowledge Graphs are a common way to represent an On-
tology, but not necessarily the only way. In practice however, these nuances are not
critical. Henceforth, wewill generally be using the terms ‘Knowledge Base’, ‘Ontology’,
and ‘Knowledge Graph’ interchangeably to mean “an ontology which is represented
as a knowledge graph for our practical purposes”. We tend to prefer ‘Knowledge
Base’ when speaking in general terms and ‘Knowledge Graph’ when discussing the
technical details of an approach which is specific to graphs.
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Knowledge graphs are of particular interest as an under-utilized source of high-
quality information. Experts in many fields have carefully constructed such knowl-
edge graphs as WorldKG (Dsouza et al., 2021), a geographically-oriented KG;
WordNet (Miller, 1995), a general knowledge graph representing synonymy and
other lexical relations between words; and the Unified Medical Language System
(UMLS), which indexes almost all biomedical concepts, along with their various
spellings and different types of mutual relationships.

In this dissertation, we explore the various ways in which we might lever-
age knowledge graphs in support of Transformer-based language models for the
purposes of alleviating the previously stated drawbacks of the naïve approach.
Specifically, we will be using UMLS as a basis for our work: while using multiple
knowledge graphs in the exploration of our methods for leveraging them would
likely yield more nuanced results and a deeper understanding, adapting our meth-
ods to each specific KG would cost a significant amount of time which we believe
is better spent broadening the scope of our exploration to multiple knowledge in-
tegration techniques. We specifically chose UMLS based on the set of challenges
that it does and does not pose:

• Lack of text is its own difficult problem to tackle in the context of Transformer-
based language models. It is therefore desirable to work within a field where
this is not an issue as, if a low-resource scenario is relevant to explore in any
given work, this can still be simulated in a non-resource-constrained domain.
The biomedical domain has no shortage of textual resources, including mil-
lions of Open Access articles (as shown in Figure 1.3), making it a good
candidate field to focus on.

• UMLS specifically is the most extensive KG in the biomedical domain, not
only affording the most options, but also being large enough to be challeng-
ing to manage. Systematic text-based term searches are not tractable at
the scale of language model training corpora, requiring specific optimization
efforts which lead our research in a productive direction. This also ensures
our methods are likely to be tractable on almost all other knowledge graphs,
as there are very few knowledge graphs which are comparable in size to
UMLS.

• Although this is subjective, we find working on the biomedical domain helps
envision applications for our work which may help patients or researchers,
and find these prospects particularly inspiring.

Despite our exclusive use of UMLS and focus on the biomedical domain how-
ever, the concepts discussed in this thesis are meant to apply to any Ontology and
any domain.
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Figure 1.3: Open Access articles by field
Number of Open Access and Non Open Access articles published by
field of science between 2009 and 2016. Source of data: European

Commission.

In summary, we will explore the integration of knowledge from knowledge
graphs into Transformer-based LMs for the purpose of adapting LMs to specific
domains while reducing the computational (and non-computational) costs in com-
parison to the naïve approach. We will closely examine three major approaches in
particular, report our findings, and discuss future directions for research on knowl-
edge integration, domain adaptation, and data efficiency in language modeling.

1.3 . Outline

In the following chapter, we will review the literature on the topics of domain
adaptation in language modeling and knowledge integration, as well as the prereq-
uisites in the various neural approaches to language modeling and the task of Entity
Linking, which is a pivotal task for many approaches to knowledge integration.

Chapters 3 through 5 will be dedicated to my original contributions to the
field. First will be discussed the importance of Entity Linking (EL) as a precursor
to knowledge integration methods such as ERNIE (Zhang et al., 2019), UmlsBERT
(Michalopoulos et al., 2021) or BERT-MK (He et al., 2020), which are based on the
identification of entities mentioned in the text, and the extraction of corresponding
entity embeddings. In chapter 4, we will examine ways to work around the Entity
Linking problem within the entity-embedding-based methods, in particular applying
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the KnowBert (Peters et al., 2019) method, which introduces the idea of fuzzy
entity linking, to the biomedical domain with UMLS. We will discuss the inherent
limitations of this type of approach, and in chapter 5 will consider alternative
classes of approaches and explore data augmentation through text generation as a
specific instance.

Lastly, chapter 6 will conclude by summarizing these contributions; discussing
future avenues for investigation including potential improvements and different
approaches to knowledge integration; and reexamining the current direction of
Machine Learning and Language Modeling research, the problems faced in the
field, and the potential roles of knowledge integration and domain adaptation in
that future.
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2 - Background & Related Work

2.1 . Language Modeling

Computational language modeling traces its roots to the work of al Kindi (9th
century) on the statistical study of language in cryptography. National defense
and Intelligence were the primary drivers of progress in what would eventually be
known as Natural Language Processing during the mid-twentieth century, with
applications in cryptography during the war, most notably Alan Turing’s work at
Bletchley Park, and in Machine Translation (MT) afterwards and into the early
1960s (Weaver, 1949/1955), until the publication of the unfavorable ALPAC re-
port (Pierce et al., 1966). Influenced by Turing’s idea of the imitation game
(Turing, 1950) as the litmus test for true machine intelligence, the development of
the conversational Rogerian psychotherapist chatbot ELIZA (Weizenbaum, 1966)
marks a pivotal event in applied computational linguistics, bridging the gap with
Chomskyist theory (Chomsky, 1957). Since the 1970s, many ontologies and KBs
have been developed as, among other applications, a supporting framework to ex-
pand the range of capabilities of symbolic NLP systems influenced by ELIZA such
as MARGIE (Schank et al., 1973) and TALE-SPIN (Meehan, 1977). Many of
these knowledge bases contain valuable information, distilled to a relatively dense
representation, and some remain in use. A notable example of this is the Unified
Medical Language System (UMLS) (Lindberg et al., 1993), of which we have made
ample use in the context of this research.

Starting in the 1970s, with the introduction of the concept of inverse docu-
ment frequency (IDF) in particular (Jones, 1973), statistical approaches to com-
putational linguistics have gained traction. As an increasing number of inconsis-
tencies within and across natural languages were found, rule-based models have
become increasingly complex. The apparent increasing complexity of the hypo-
thetical set of rules defining the universal grammar posited by Chomsky as the
underlying implementation of the human language acquisition device, in addition
to the continuous improvement of computer hardware, led to the dominance of
these statistical approaches in the 1990s. Improvements to statistical tools for
text mining and information retrieval such as LSA (Deerwester et al., 1990) and a
breakthrough in corpus-based machine translation spearheaded by IBM with their
alignment models (Brown et al., 1993) in particular laid the foundation for modern
statistical NLP. This coincided with development of the modern World Wide Web,
which provided both an increasingly large amount of easily harvested text, enabling
easy statistical study of language, as well as an incentive to develop these tools in
order to organize, index, search, and study the web and its users.

While neural networks were long criticized for their lack of interpretability and
computational cost, interest in their applications to text increased throughout the
2000s due in large part to the work of Bengio and Hinton in neural language
modeling (Bengio et al., 2000; Morin and Bengio, 2005; Mnih and Hinton, 2008).
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Graphics processing hardware and firmware improvements in the late 2000s and
early 2010s dramatically increased the time efficiency of training neural networks,
and led to increased interest by the machine learning community. The applica-
tion of Recurrent Neural Networks (RNNs) to language modeling (Mikolov et al.,
2010) and subsequent advancements in neural word embeddings attributable to
Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) marked a
turning point in neural NLP leading to significant progress in all sub-fields, perhaps
most notably in sequence-to-sequence tasks such as Neural Machine Translation
(NMT) (Bahdanau et al., 2015a) and syntactic parsing (Vinyals et al., 2015) in
the case of RNN models and information retrieval and classification tasks (e.g.
sentiment analysis, topic detection, word and document similarity in the case of
word embeddings.

Despite the improvements of pretrained neural word embeddings, the major
remaining limitations were the limited vocabulary and 1-to-1 mapping of vectors
to words in that vocabulary leading to limited ability to model word polysemy. In
the late 2010s, Peters et al. (2018) addressed these issues using an RNN-based
LM, ELMo, to contextualize distributed word representations using a character-
based input. As a result, any character sequence, even if it had never been seen in
training, could generate an embedding which took context into account and thus
differentiated between the possible meanings of a word.

Another independently-developed major addition to language modeling in the
late 2010s was the use of the self-attention mechanism to allow models to assign
various levels of importance to various input tokens depending on the context.
Rooted in the work of Schmidhuber (1992) on fast weights in neural networks
(weights which are variable at inference), attention mechanisms were popularized in
the context of language modeling by Bahdanau et al. (2015a) and entirely replaced
recurrent architectures in the wake of the publication of Attention Is All you Need
by Vaswani et al. (2017). We discuss the new, fixed-context-size non-recurrent
attention-based architectures, called Transformers, in Section 2.3.

2.2 . Recurrent Neural Networks

Whilst in theory, simple Multilayer Perceptrons (MLPs) with fixed inputs and
outputs can approximate any function (Cybenko, 1989), they are not capable of
handling variable-size inputs such as images, sound, data streams, time series, and
text. This problem has been addressed in multiple different ways depending on
the application. Scaling (using an algorithm such as nearest-neighbor or bicubic
interpolation) and cropping are common approaches in computer vision, while
sliding context windows and input padding are common approaches for most other
applications. These methods have the drawback of corrupting the input in some
way and are limited in the amount of context that can be drawn from. The
Recurrent Neural Network (RNN) architecture, based on the work of Rumelhart
et al. (1986) and Robinson and Fallside (1987) but proposed in its most common
form by Elman (1990), is an alternative solution to this problem, allowing for
sequential data to be fed ad libitum into a network over the course of multiple steps,

20



during which the network maintains and updates a state vector which memorizes
the useful features of the data which has been supplied up to that point.

Many RNN architectures exist, which share the basic trait that the neuron
graph contains cycles. The Elman network architecture is the most common and
simply includes one hidden layer connected to itself. To resolve the backwards
connections, they are considered an output at each time step t, and an input at
each time step t+1 as shown in Fig. 2.1. Formally, the output ot and hidden layer
ht are expressed as:

ot = σ(Woht + bo)

ht = σ(Whht−1 +Wxxt + bh)

Where xt is the input at step t; matrices W and vectors b are (respectively)
connection weights and biases to be learned; and σ is the non-linear activation
function (traditionally sigmoid). h0 is typically initialized to the 0⃗ vector.

Figure 2.1: Structure of the El-
man network RNN viewed at
time step t. Bias terms omitted
for legibility. Tunable parame-
ters marked in purple.

Figure 2.2: Structure of the LSTM viewed at time
step t. Bias terms omitted for legibility. Tunable
parameters marked in purple. Dashed boxes rep-
resent optional steps.

The Recurrent Neural Network architecture can theoretically encode informa-
tion over any length of context1 (and is in fact Turing-complete ; Hyötyniemi,
1996), limited in the resolution of the information only by the size of h. However,

1For a trivial example (albeit of limitedusefulness), it could encode the first token t0
in the sequence into its representation h0 and set ht+1 = ht ∀t ≥ 0. More formally,
ht+1 = σ(Whht + Wxxt+1 + bh) where h0 = x0, Wh = I the identity matrix, and
Wx = O the 0s matrix.
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in its classical form, this architecture is met with difficulty scaling to large numbers
of inputs as shown by Bengio et al. (1994) and Pascanu et al. (2013). In practical
NLP, this means RNN-based language models have trouble scaling to multiple sen-
tences. This is fundamentally due to a property of chaining multiplications, that is,
that repeated multiplications of numbers whose absolute value is smaller or larger
than 1 will tend to 0 or ±∞ respectively as the number of operations increases,
such as is the case with gradient Backpropagation Through Time (BPTT) and
iterated forward propagation of inputs. This has two consequences. The first is
that as the length of the context grows, gradient descent ceases to be effective at
updating the weights of the network, as the gradient approaches 0 (“vanishes”) or
diverges (“explodes”). The second is that, as there is no mechanism allowing for
an explicit, binary decision to be made regarding whether to conserve or discard a
piece of information, the slightest degradations to the information will inevitably
compound as context size increases. The Long Short-Term Memory (LSTM) net-
work architecture introduced by Hochreiter and Schmidhuber (1997), as well as the
architectures it has inspired such as the Gated Recurrent Units (GRU) (Cho et al.,
2014) attempt to address these limitations by introducing various sub-networks, or
“gates”, which explicitly control the information that should be retained and lost,
and cause the gradient to be computed in such a way that it is less likely to vanish
or explode.

As shown in Fig. 2.2, the LSTM unifies the hidden state vector h with the
output, and adds to it a recurrent explicit context memory vector c, which is
updated with a candidate information vector z, a memorization gate i (which
rescales the components of the candidate vector z), and a forget gate f (which
rescales the components of the memory vector c). Additionally, an output gate
o is trained to decide which parts of the memory vector to incorporate into the
output. Formally, the forward pass is computed thusly:

ht = f(ct)⊙ ot

ct = ct−1 ⊙ ft + zt ⊙ it

ot = σ(Uo ht +Wo xt + bo)

zt = tanh(Uc ht +Wc xt + bc)

ft = σ(Uf ht +Wf xt + bf )

it = σ(Ui ht +Wi xt + bi)
(2.1)

Where ⊙ is the element-wise product, and f is usually tanh, constraining the
output to the [−1, 1] range, but can be replaced by the identity function.

Thanks in particular to the reliance on addition rather than multiplication for
updates to the memory vector, this architecture minimizes the number of successive
multiplications in the gradient, reducing its risk of exploding or vanishing. LSTM
networks and related gating mechanisms thus prove to be effective at increasing the
allowable context size of RNNs. However, this comes at a significant computational
cost due to the increased number of parameters to tune.

Additionally, since long-term dependencies must be learned over a number of
steps proportional to the distance between terms, these models typically fail to
learn to handle context sizes in excess of a few paragraphs of text, which is highly
restrictive in terms of the scope of the types of text that can be processed. Another
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shortcoming of the RNN architecture resides in its inherently serial structure, i.e.
the result of time step t must be known to compute the result of time step t+ 1.
Therefore, processing and learning over long sequences, even where possible, is not
highly parallelizable.
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2.3 . Transformers

Hi

Scaled dot-product
attention

Linear Linear Linear 

Scaled dot-product
attention

Linear Linear Linear 

1
√dk·

Softmax

Q K

V

Linear 

·

·

+

Linear Projection

+

Layer Normalization

FFNN

+

Layer Normalization

   
×h

Linear Linear 

Hi+1

Transformer Encoder Block

Multi-Head Self-Attention

Scaled dot-product
attention

Atten
tion

hea
ds

Figure 2.3: Structure of the ith Encoder
block in Vaswani et al.’s Transformer lan-
guage model. The tunable parameters are
marked purple. ⊕ denotes vector concate-
nation.

The Transformer architecture was introduced by
Vaswani et al. (2017) as an alternative to Re-
current Neural Networks for language modeling,
specifically as a sequence-to-sequence architec-
ture which is trained on the machine translation
task. In their landmark paper “Attention Is All You
Need” , Vaswani et al. (2017) demonstrate that
the attention mechanism described by Bahdanau
et al. (2015b), combined with a token representa-
tion which includes token ordering information, is
sufficient to model dependencies between tokens,
and decide which information is relevant for the
training objective, without having to resort to a
recurrent architecture. As such, the Transformer
does not have the benefit of a theoretically un-
limited context. However, with a fixed context
size, it is no more prone to suffer from vanish-
ing or exploding gradients than traditional FFNNs,
and the entire context can contribute equally to
the output, meaning that long-range dependencies
can be learned just as easily as short-range depen-
dencies provided that the neural network accepts
sufficiently many inputs. In addition, the compu-
tations are highly parallelizable. Therefore, more
computational resources can be leveraged over a
shorter time to process larger context sizes more
effectively when compared to RNN-based archi-
tectures. In this section, we go over the main
components of the Transformer architecture, the
main language models in the literature, and their
contributions to the current state of the art.
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Vaswani et al.’s Transformer is a translation
language model which uses Transformer Encoder
blocks (Fig. 2.3) to encode input text from a
source language and Transformer Decoder blocks
(Fig. 2.4) to generate a sentence in the target lan-
guage, informed by the representation given by the
encoders. The decoder block is almost identical
to the encoder block but includes a Masked Multi-
Head Self-Attention module before the Multi-
Head Self-Attention module, and the Multi-Head
Self-Attention module accepts the output of the
Encoder blocks as input. The Masked Multi-
Head Self-Attention module differs from the (non-
masked) Multi-Head Self-Attention module in the
fact that it prevents the attention mechanism
from propagating information backwards in the
sequence — for each word, information from its
predecessors can be attended to, but its succes-
sors are “masked”. The original model uses 6 en-
coder blocks, 6 decoder blocks and h = 8 atten-
tion heads. This architecture works well for trans-
lation and similar tasks, but is purely a sequence-
to-sequence architecture and is fairly complex, re-
quiring many parameters. The Transformer uses
byte-pair encoding (Sennrich et al., 2016), which
works around the problem of out-of-vocabulary
words and is resilient to typos in input text with-
out limiting context size as much as character-
based tokenization by representing common char-
acter combinations as single tokens. Subsequent
Transformer-based architectures tend to use the
similar WordPiece tokenization (Wu et al., 2016).
ELMo (Peters et al., 2018), though it was based
on the LSTM architecture, introduced the concept
of contextualized embeddings. That is, rather
than assigning a fixed vector to every word in a
predetermined vocabulary as per Word2Vec, each
token in a sequence can be assigned a vector which
accounts for its general use and its local context.
Therefore, polysemic words can be differentiated.
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This approach can also detect when a word is used in a novel context which has
not been seen in training. This was achieved by training the output representations
to optimize for the autoregressive language modeling objective, which consists of
predicting the next word in a sequence. To be more specific, ELMo does this
bidirectionally using a bidirectional LSTM. Optimizing for this objective yields token
representations which model grammatical and semantic information for that token
given its context, which can then be used for a variety of downstream tasks such
as Named Entity Recognition (NER) (i.e. tagging words in a sequence which
mention an entity of interest and typically assigning it a type such as “location”
or “person”), Part of Speech (PoS) tagging (i.e. tagging words based on their
grammatical function in the text), or Natural Language Inference (i.e. recognizing
the type of relation between two sequences such as “contradiction” or “entailment”).
Peters et al. (2018) further introduce the idea of fine-tuning the language model
for a specific task. This approach is further expanded upon and standardized by
the ULMFiT approach (Howard and Ruder, 2018).

GPT (Radford et al., 2018) eschews the encoded context sequence used by Vaswani
et al.’s translation model and adopts a purely generative architecture based on the
Transformer Decoder block (Fig. 2.3) which is optimized for unidirectional, autore-
gressive language modeling (i.e. predicting the next word in a sequence). As it
does not integrate Encoder output, it also simplifies the Decoder block by remov-
ing the Multi-Head Self-Attention module. This yields a model that is particularly
well-suited to generative tasks, such as conversational agents and creative writing.
Crucially, as shown by GPT-2 and Instruct-GPT (Radford et al., 2019; Brown et al.,
2020; Ouyang et al., 2022), many tasks can be formulated as generative and/or
conversational tasks, such as summarization and translation. With 12 transformer
decoder blocks and 12 attention heads, GPT comprises approximately 117 million
parameters.

BERT (Devlin et al., 2019) adapts the ELMo approach of word embedding con-
textualization to Transformers. It takes the opposite approach to GPT and uses
only Transformer Encoder blocks (Fig. 2.3) to derive contextualized distributed
word representations. It adapts ELMo’s bidirectional objective to the transformer
by introducing the Masked Language Modeling (MLM) objective: words in the
input sequence are masked with some probability (15% in the case of BERT),
and the model must learn to predict which words were masked. In addition to
these adaptations, BERT includes a special token called [CLS] which models the
entire sequence for sequence classification purposes. Lastly, Devlin et al. (2019)
introduce the Next Sentence Prediction (NSP) objective which consists of feeding
pairs of sequences to the model and teaching it to differentiate between sentences
which are contiguous in the original text from sentences which are unrelated to
each other. BERT is particularly effective in the same contexts as ELMo, i.e. Nat-
ural Language Understanding (NLU) tasks (which typically involve classification).
However, while not as effective at creating coherent text as the GPT approach,
by masking the last word(s) in a sequence, BERT can be used as a generative
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language model. With 12 transformer encoder blocks and 12 attention heads (the
same as GPT), BERTBASE comprises approximately 110 million parameters. De-
vlin et al. (2019) also released a 24-encoder 16-head 340 million parameter model
dubbed BERTLARGE. When not specified, “BERT” generally refers to BERTBASE.

Input text in transformers is generally represented as a sum of multiple embed-
dings for each token:

• Each token in the vocabulary is associated with a token embedding which
may be pretrained or learned as part of the language model training.

• Position embeddings are token-invariant embeddings assigned to the posi-
tions in the input, generally based on a mixture of sine waves at different
frequencies.

• In models which may take multiple input sequences such as BERT, sequence
embeddings (which are generally trained in tandem with the LM objective)
may be added to differentiate them.

These are the most standard types of input embedding components, but some ap-
proaches such as UmlsBERT (Michalopoulos et al., 2021) may introduce additional
components.

BERT is highly effective in NLU tasks and being a small enough model to
study for most organizations, the barrier to entry is low in studying BERT-based
architectures, making it a prime choice for many NLP research applications. GPT-
based architectures only display high enough performance to be useful at the scale
of GPT-2, which as approximately 1.5 billion parameters — approximately 14 times
larger than BERTBASE. Many improvements have thus been made to BERT in
the NLP literature. Notably, it has been found that in practice, the NSP objective
is ineffective, or even counter-productive (Yang et al., 2019; Liu et al., 2019; Lan
et al., 2019). Notable contributions to the BERT literature (sometimes referred
to as “BERTology” (Rogers et al., 2021)) include the findings of Liu et al. (2019)
on transformer hyperparameterization and the effects of corpus size, Yang et al.
(2019)’s autoregressive extension of BERT, and improvements on BERT’s scaling
by Lan et al. (2019) (particularly in terms of memory requirements). For further
review and examples of landmark Transformer-based language models in the con-
text of the encoder-based and decoder-based families, readers are directed to the
work of Yang et al. (2023).

2.4 . Domain Adaptation

In the wake of the advent of the Transformer architecture introduced by
Vaswani et al. (2017), language processing tasks have increasingly been handled by
neural language models based upon this architecture such as GPT (Radford et al.,
2018) and BERT (Devlin et al., 2019). Many projects have sought to leverage the
Transformer architecture in specific fields ; for instance in the process of discovery,
in the legal domain (Yang et al., 2022), which has traditionally required lawyers
to sift through large numbers of documents, or patient risk modeling for disease
prognosis in the medical domain (Li et al., 2022). Due to the distributional shift
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between the language used in specific fields and the types of text typically used
to train these models however, general language models tend to underperform in
these fields (Yang et al., 2022; Lee et al., 2019).

2.4.1 . Definition

Most definitions of domain adaptation, such as the one provided by Ruder
(2019), describe it as a type of transfer learning characterized by the source and
target settings of the model differing in data distribution rather than task, as
opposed to fine-tuning, which focuses on adapting a model to a new task. For
instance, in computer vision, training a model to categorize dogs and cats before re-
training it to categorize cancerous versus non-cancerous cells would be an example
of domain adaptation, whereas training a model to reconstruct corrupted images
(a task which seeks to teach general features of images) before changing the model
objective to classification would be an example of pretraining and fine-tuning.

However, on one hand, transfer learning fundamentally seeks to retrain an exist-
ing model to perform well on a certain task for a certain distribution of data which
may differ from the task and data for which the original model was optimized. On
the other, domain adaptation seeks simply to efficiently re-use a model, which was
trained on a given task and source distribution, with a new target distribution. The
latter does not inherently involve additional learning and therefore does not entail
the former. Consequently it is arguably inaccurate to describe domain adaptation
as a type of transfer learning in theory, despite most practical implementations of
domain adaptation also being instances of transfer learning. We thus broaden the
scope of domain adaptation and define it thus:

Domain Adaptation is any process by which an existing model, opti-
mized for a source data distribution, is altered so that it may better
perform on a target data distribution.

Desirable characteristics for domain adaptation techniques include:

• Increased data efficiency in comparison with training the model from scratch
on the target domain

• Increased computational efficiency in comparison with training the model
from scratch on the target domain

• Applicability to models not specifically intended for domain adaptation

• Non-necessity of taking target domain into account for the creation of the
source-domain model

• Reverse-compatibility with the source distribution
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2.4.2 . Historical approaches
In its most basic form, domain adaptation consists of correcting a biased sta-

tistical classifier trained on Ns sample-label pairs (x, y) drawn from the source
joint distribution Ds(X,Y ) and deployed on data from the target joint distribu-
tion Dt(X,Y ). It may also be trained on Nt pairs drawn from the target joint
distribution Dt(X,Y ) with 0 < Nt ≪ Ns. This is a fundamental problem in statis-
tics (Shimodaira, 2000) and a classic problem in econometrics (Heckman (1979),
Zadrozny (2004)), but has been studied under the name of domain adaptation as
a machine learning problem since the mid-2000s with the work of Daumé III and
Marcu (2006); Blitzer et al. (2006); and Jiang and Zhai (2007).

The classical approach to solving this problem as described by Jiang (2008) is
to insert a bias correction term in the training of the classifier. The optimal set of
parameters θ∗ for the model is obtained by the following equation:

θ∗t = argmin
θ∈Θ

∑
(x,y)∈X×Y

Pt(x, y)L(x, y, θ) (2.2)

= argmin
θ∈Θ

∑
(x,y)∈X×Y

Pt(x, y)

Ps(x, y)
Ps(x, y)L(x, y, θ) (2.3)

Where Θ is the parameter space, Pt(x, y) (resp. Ps(x, y)) is the joint probability
that the sample-label pair (x, y) occurs in the target (resp. source) distribution,
and L(x, y, θ) is the loss of the model on that pair given the parameterization θ.
This can be approximated as

θ̂t =
∼

argmin
θ∈Θ

Ns∑
i=1

Pt(xi, yi)

Ps(xi, yi)
L(xi, yi, θ) (2.4)

Where
∼

argmin is an optimization algorithm such as SGD. While Ps(xi, yi) can
be estimated using the observed sample P̃s(xi, yi) from the source distribution,
estimating λ← Pt(xi,yi)

Ps(xi,yi)
is not straightforward because (xi, yi) are from the source

domain and the target distribution sample P̃t is small. Many domain adaptation
techniques consist of finding satisfactory estimates for λ.

Class Imbalance: Under this special case, we assume the conditional distributions
of the samples given the labels are the same in both domains, but the marginal
distributions of the labels may differ. I.e. Ds(X|Y = y) = Dt(X|Y = y) but
Ds(Y ) ̸= Dt(Y ). Integrating this assumption into the formulation for λ:

Pt(x, y)

Ps(x, y)
=
Pt(y)

Ps(y)

Pt(x|y)
Ps(x|y)

(2.5)

=
Pt(y)

Ps(y)
(2.6)

This ratio of label occurrences can typically be satisfactorily estimated using λ ≈
P̃t(y)

P̃s(y)
(Lin et al., 2002). This is roughly equivalent to resampling the source distri-

bution in order to match the target label distribution.
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Covariate Shift: This special case is the reverse of the former, in which we assume
the conditional distributions of the labels given the samples are the same in both
domains, but the marginal distributions of the samples may differ. I.e. Ds(Y |X =
x) = Dt(Y |X = x) but Ds(X) ̸= Dt(X). In traditional single-step training
procedures (as opposed to multi-objective and pretrain/fine-tune procedures), this
problem is only relevant if the model cannot perfectly fit the entire distribution
and must fit the dense regions of X preferentially (Shimodaira, 2000). Following
the same bayesian substitution process, we derive:

Pt(x, y)

Ps(x, y)
=
Pt(x)

Ps(x)
(2.7)

As each x typically appears rarely in the dataset, estimating Pt(x)
Ps(x)

is not straight-
forward. Multiple methods have been proposed such as adding λ as a learned
parameter of the model (Bickel et al., 2007) and non-parametric kernel density
estimation (Shimodaira, 2000).

For a more in-depth overview of this class of methods, we refer readers to the
work of Jiang (2008). However, these approaches are not typically applicable in
the context of language modeling. To illustrate this, let us take the basic case of
autoregressive language modeling, which models the probability of each token as
being conditioned by its preceding context (i.e. left-hand context in left-to-right
languages). In this case, X is the set of all contexts and Y is the set of all tokens.
In theory, context may be infinite, but in practice is bounded — however, larger
contexts are preferable as they allow for the modeling of long-range dependencies.
As context size increases, the number of possible contexts increases, Pt(x) and
Ps(x) converge towards 0, and Pt(x,y)

Ps(x,y)
is thus undefined.

Other methods include the proposal by Daumé III (2007) to learn a mapping
from a k-dimensional input space to a (n+1)k−dimensional input space where n is
the number of domains. In essence, this approach learns domain-specific functions
for words, e.g. the word short would likely be predominantly used as an adjective
in the general domain, but a verb in the domain of economics.

Maximum Mean Discrepancy (MMD) is a method for estimating the difference
between two distributions from a set of samples, defined as the difference between
distributions in the reproducing kernel Hilbert space (Gretton et al., 2006). This
has been used as a basis for transfer component analysis (Pan et al., 2010), which
projects sample representations into a lower-dimensional space which minimizes
MMD, and as a loss for domain regularization in order for the model to learn
domain-invariant latent representations (Ma et al., 2019). However, MMD by
construction reduces feature discriminability (Wang et al., 2021a).
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GrassmannManifolds have been used by Gong et al. (2012) and Gopalan et al.
(2011) to find domain-invariant representations. This is done by embedding the do-
mains in lower-dimensional subspaces, constructing a geodesic curve in the Grass-
mannian, and either sampling subspaces from that curve in order to perform pro-
jections of the data and construct a unified embedding through concatenation
(Gopalan et al., 2011) or using this geodesic to compute a kernel (subsequently
used to build a kernel-based classifier) (Gong et al., 2012).

Autoencoders are neural networks which are trained to output their own input
(or an uncorrupted version of a corrupted input) but contain a small hidden layer
so as to create a representation bottleneck forcing the model to learn to com-
press the input. They have been used in a similar fashion to Grassmann manifolds
(Glorot et al., 2011; Chen et al., 2012): the objective remains to find a smaller,
domain-invariant representation of the input. Neural Structural Correspondence
Learning (NSCL) was introduced by Ziser and Reichart (2017) as a variation on
the autoencoder approach which adds support for an explicit mechanism for learn-
ing to leverage both cross-domain and domain-specific features in tandem. In
practice however, Lin et al. (2020) do not find NSCL to be helpful in the context
of Transformer-based LMs.

Approaches based on minimizing MMD, Grassmann manifolds or autoencoders,
which seek to find domain-invariant representations, display a significant limitation,
as they essentially consist of finding the general features which apply across do-
mains. This can be seen as a compromise between source and target domain,
improving performance on the target domain at the cost of source-domain perfor-
mance by neglecting source-domain-specific features. This performance reduction,
in traditional single-stage model training curricula, is simply underfitting, whereas
in more complex settings such as the pretrain/fine-tune paradigm, this problem
is referred to as catastrophic forgetting. In an ideal scenario, we would prefer to
be able to leverage the specificities of both domains. This is by definition easy
(and in fact the default behavior) in the source domain, but inherently requires,
if not data, some a priori knowledge of the target domain. Additionally, these
techniques require knowledge of the target domain before the model is optimized
for the source domain, reducing their scope of applicability.

Another major drawback of these domain adaptation methods is that they
must be applied for each individual sub-task, with most of them being restrained
to classification tasks such as part of speech tagging or named entity recognition
in NLP. In a pretrain/fine-tune paradigm, these methods would therefore have to
be applied at the fine-tuning stage, and would require sets of labeled data for both
the source and target domain within each task, multiplying the need for annotated
data and further narrowing their range of relevancy. In addition, these methods
are limited to leveraging the information in the source domain and a small amount
of information from the target domain to perform domain adaptation. In Natural
Language Processing, this may not be sufficient as relationships between entities
can often only be learned from resources in the target domain; e.g. information
on the relationship between pancreatic β-cells, insulin production and diabetes is
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unlikely to occur in general-domain text, and no corrective factor or other mathe-
matical trick could induce modeling of these relationships by the language model
if the information is not presented in some form. We therefore seek to make use of
additional sources of information while minimizing the negative effects of increasing
corpus size.

2.4.3 . In computer vision

Domain adaptation for deep neural networks was largely popularized by the
success of transfer learning in computer vision (Yosinski et al., 2014; Girshick
et al., 2014), where fine-tuning image classification models trained on natural im-
age datasets such as ImageNet (Deng et al., 2009) yielded highly superior results
to models trained from scratch on domain-specific image datasets, which often
were comparatively small. The most notable examples of this were in the biomed-
ical domain (Greenspan et al., 2016), and particularly for detection of cancerous
growths (Esteva et al., 2017) and lung disease (Shin et al., 2016), where human or
arguably super-human level has been reached (Rajpurkar et al., 2017; Goh et al.,
2020).

2.4.4 . In-domain extended pre-training in Transformers

Transformer-based language models, when trained mostly on general text such
as is the case with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018), for
which the bulk of the training corpus is formed by the Books corpus (Zhu et al.,
2015), do not perform well on tasks involving specific domains such as medicine,
patents, or law. This is to be expected, as many of the writing conventions dif-
fer by field and make assumptions on the knowledge of the reader. The obvious
way to expand the capabilities of a language model to a specific domain is there-
fore to include in-domain text in the model’s training corpus. This has indeed
been the typical approach, and has been quite successful, with its performance
having been investigated by Gururangan et al. (2020), and with notable models
such as GeoBERT (Gao et al., 2022), LEGAL-BERT (Chalkidis et al., 2020), or
PatentBERT (Lee and Hsiang, 2020). The biomedical domain in particular has
inspired a variety of models which all incorporate various amounts and propor-
tions of biomedical text in their pre-training phase, e.g. BioBERT (Lee et al.,
2019), BlueBERT (Peng et al., 2019), BioMed-RoBERTa (Gururangan et al.,
2020), SCIBERT(Beltagy et al., 2019), and ClinicalBERT (Alsentzer et al., 2019).

However, not only is this type of pre-training sensitive to catastrophic forget-
ting — i.e. it usually leads models to underperform on general-domain text as
demonstrated by Arumae and Bhatia (2020) and Xu et al. (2020); large models
with attention mechanisms such as BERT are also notoriously computationally ex-
pensive to pre-train. Furthermore, the ability for a model to associate concepts
(e.g. “COVID-19 ” and “respiratory failure”) is predicated on these concepts ap-
pearing in the pre-training corpus, leading to difficulty adapting to some forms of
distributional shift. These limitations have lead to interest in different methods of
adapting these models to specific domains.
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2.4.5 . Catastrophic Forgetting
As models trained on one task and data distribution are repurposed for a new

task (transfer learning) and/or a new distribution (domain adaptation), the fine-
tuning process has no incentive to allow the model to continue performing well
on the source task/domain, and critical parameters can be modified. This not
only lowers performance of the model on the source task/domain (which may be
problematic for large models which are expensive to run or host as a service), but
also may lead optimizers such as Stochastic Gradient Descent (SGD) or Adam to
converge to poor local optima on the target task/distribution. This problem, which
we’ve touched on as a weakness of some existing domain adaptation techniques,
is known as Catastrophic Forgetting (CF).

Experience Replay (Isele and Cosgun, 2018; Arumae and Bhatia, 2020) may be
the most obvious way to address CF. Experience Replay is a type of Multi-task
learning which specifically re-uses the training data from the source task in order to
alternate source and target task and/or distribution in the model’s training curricu-
lum. This provides the model with the missing incentive to conserve performance
on the source task/distribution, but as the objectives are alternated rather than
united, the Experience Replay mechanism by construction moreso undoes the dam-
age done by the fine-tuning process than protects previously acquired knowledge,
creating an inefficient optimization path in the loss landscape. Combined with
the inherent additional computation of replaying past data, it is a computationally
expensive way to counter CF.

Adapters (Houlsby et al., 2019; Pfeiffer et al., 2020) mitigate CF by freezing
all model parameters after pretraining and adding small layers of new parameters
within Transformer blocks which take on the responsibility of fitting to the target
fine-tuning task. While originally formulated in the context of transfer learning
for fine-tuning pretrained models to specific tasks, it has also proven effective in
protecting against catastrophic forgetting and improving data efficiency in domain
adaptation (Zhang et al., 2021).

ElasticWeight Consolidation (EWC) (Kirkpatrick et al., 2017) is a CF mitigation
technique which consists of penalizing updates to parameters proportionally to how
critical they are for the original task and data distribution for which the model was
optimized. This has been used to some success in Transformers (Arumae and
Bhatia, 2020; Xu et al., 2020), but is by construction less effective at reducing CF
than Adapters for the benefit of better parameter efficiency.

33



2.5 . Knowledge Integration

Knowledge-based systems have been used in conjunction with neural networks
since the beginnings of multi-layer neural networks, for general purposes (Oliver
et al., 1988) as well as for a variety of specific tasks such as robotic agent control
(Handelman et al., 1990) and gene recognition in DNA sequences (Towell et al.,
1990; Noordewier et al., 1990). This approach has mostly fallen out of favor since
the deep learning resurgence of 2012 as progress has continued on neural network
architectures and training procedures. Some work on this topic has continued
however, and influenced the current landscape of the field of knowledge integration
as it undergoes a resurgence of its own.

In contrast to typical domain adaptation techniques, knowledge integration,
sometimes referred to as Knowledge-Infused Learning (Kursuncu et al., 2019; Sheth
et al., 2019; Wang et al., 2020; Yuan et al., 2022), relies on making use of available
a priori knowledge. The core trait of this type of approach is that the neural model
must make use of the prior knowledge, improving the bottom-up learning procedure
with a top-down knowledge-based component. These approaches therefore do not
include:

• using prior knowledge of a problem to decompose the learning objective into
multiple sub-tasks as described by Oliver et al. (1988)

• neuro-symbolic approaches such as proposed by Kroshchanka et al. (2021)
which augment relatively general knowledge-based architectures with nar-
rower neural subsystems

More generally, we do not consider that using prior knowledge of the problem
in order to devise a fully bottom-up model architecture or overall top-down AI
system which is more effective or data-efficient than learning the task end-to-end
constitutes Knowledge Integration.

In addition to its applicability to the enhancement of general language models
at the pre-training stage, this approach has multiple advantages. Depending on
the implementation of the integration, the model may be able to take advantage
of knowledge base concepts and relations never encountered in training, allowing
the model to progress without additional training as KBs are updated and reducing
the amount of in-domain concepts that must be covered by the training corpus. As
KBs are a much denser source of information than raw text, effectively leveraging
them may also potentially reduce the amount of in-domain text required compared
to that of extended-pre-training-based methods. In addition, models which require
less in-domain training data are not only applicable to a wider variety of domains
and less costly to deploy, they are also less sensitive to catastrophic forgetting (Piat
et al., 2022a). Lastly, use of structured knowledge can help with explainability
(Gaur et al., 2021), which is critical in high-stakes applications such as healthcare,
finance and education.

Knowledge may take multiple forms such as rules or heuristics, but the most
common approach is to use pre-existing KBs. Typically, this is done by leveraging
the KB at the pre-training stage, meaning the domain adaptation step needs only
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be carried out once to benefit all of the various downstream tasks. In general
language models, this is usually achieved by identifying knowledge base concept
occurrences (or “mentions”) in the input text, extracting relevant concept and/or
relation embeddings from the knowledge graph which are precomputed using a
graph embedding algorithm such as TransE (Bordes et al., 2013), and using the
knowledge embeddings to improve the language model’s distributed word repre-
sentations.

There are three main factors which characterize knowledge integration meth-
ods:

• The type of prior knowledge: typically rules, heuristics, or knowledge graphs.

• The method of integration: typically as additional input to the network, as
an external resource, or as a mechanism for altering the network architecture
or loss-function.

• The representation of the knowledge, which is most commonly vectorial, but
often tailored to the model based on the previous two factors.

In this section, we delve into the various approaches that have been attempted
and further elaborate on the landmark articles which have influenced the direction
of our work and of the field as a whole. First, we will go over non-KG-based
approaches and the relevant knowledge representations. Next, as KGs are almost
exclusively used in language modeling, we will go over the dominant approaches
to KG integration in RNN based LMs. Lastly, we will discuss the approaches used
in Transformer-based LMs.

2.5.1 . Overview of common knowledge types and related approaches
In The Integration of A Priori Knowledge into a Go Playing Neural Network,

Enzenberger (1996) provide a good example of the use of rules and heuristics in
the form of “experts” to augment the capabilities of a Go-playing neural network.
An “external expert” implements simple known patterns and strategies which can
override the decisions of the network in well-documented board configurations. A
“feature expert” alleviates the burden of learning useful patterns by implementing
prior known types of patterns and feeding a higher-level representation directly to
the neural network. Lastly, a “relation expert” imposes a direct relation between
neurons and elements on the board, allowing connections only between neurons
corresponding to elements that are adjacent on the board, which change as the
game progresses. Trained with self-play, this approach was shown to be more
effective than both neural networks and rule-based systems of the time. This type
of knowledge integration which informs or alters the very structure of the neural
network has been explored in other projects (Neal, 1995; Piat and Stamou, 1999;
Towell and Shavlik, 1994; Tan, 1997) but this type of approach is more difficult to
put in place with the worse explainability of current, larger models.

Some domain knowledge may take the form of logic rules. These have also
been used to construct neural network topologies such as for the Knowledge-Based
Artificial Neural Networks proposed by Towell and Shavlik (1994). In this approach,
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the key step is the rules-to-network translator, which defines the topology of the
neural network as well as the parameters such that the predictions of the neural
network are consistent with the rules. Additional parameters are then added, to
account for unknown rules, and the resulting neural network is trained as per normal
with the exception of some parameters being frozen if they correspond to known
hard rules which must not be altered. Fu (1993) puts forth a similar idea, with a
reverse network-to-rules translation element which additionally enables extraction
of new symbolic rules from the neural network. Tan (1997) proposes a roughly
equivalent approach, but in the context of Adaptive Resonance Theory.

Inductive Logic Programming (ILP) (Muggleton, 1991) is a similar machine
learning approach which uses prior logical knowledge, typically expressed as Horn
clauses, including positive statements, negative statements and constraints, in or-
der to produce a logic program which results in all positive statements being true
and negative statements being false, with constraints typically implemented as part
of the network architecture (d’Avila Garcez and Zaverucha, 1999). ILP is often
tackled using neural networks, which require a vector as input. The vectorization
scheme for clauses is typically propositionalization, which is thematically similar
to embedding (Lavrač et al., 2020) but uses a boolean value range. While ini-
tially based on manually engineered features, automated feature construction for
propositionalization was introduced by Lavrač et al. (1991).

Domain Specific Languages (DSLs) are computer languages which are designed
for a specific goal, such as HTML for describing web pages, or AWK for text
processing. Some DSLs are constructed to be used specifically by a program-
induction algorithm (and as such constitute a form of prior knowledge), some
of which are based on neural networks such as the work of Lake et al. (2015)
on handwritten digit recognition and generation, and of Devlin et al. (2017) on
robotic motion. DREAMCODER (Ellis et al., 2018) additionally learns to construct
the appropriate DSL.

Some knowledge integration makes use of their prior knowledge in the loss
function. The simplest way to achieve this is generally to introduce a loss penalty
informed by prior knowledge (Fischer et al., 2019; Muralidhar et al., 2018). On
an abstract level, one would use prior knowledge to formulate constraints and
penalize model predictions which violate these constraints. This is often done
using knowledge graphs. For instance, Rocktäschel et al. (2014) extract hypernymy
information from WordNet and induce the modeling of these relations by penalizing
scenarios where statements which are true are predicted to be false when the entities
mentioned are replaced by hypernyms. Takeishi and Akimoto (2018) provide a loss
function regularization for continuous data which assumes a knowledge graph exists
which covers the various features as concepts and that related features have similar
distributions in the dataset.

Other approaches use logic rules, such as work by Xu et al. (2018), for instance,
who devise a penalty term which models the likelihood that a given model output
satisfies a set of logical constraints. In a similar setup to Iterated Distillation and
Amplification (Christiano et al., 2018; Hinton et al., 2015), whereby a model is
trained to imitate an amplified version of itself, Hu et al. (2016) propose to train
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a model to imitate a rule-constrained version of itself in order to distill rules into
the neural architecture.

Prominent examples of the approach by loss function alteration in Transformer-
based language models include UmlsBERT (Michalopoulos et al., 2021), which we
will go over in Section 2.5.4, and KEPLER (Wang et al., 2021b) which optimizes
both a masked language modeling objective and a knowledge embedding objective
which uses text descriptions of concepts to construct concept embeddings and
enforces desirable geometric properties to derive relation embeddings similarly to
TransE (Bordes et al., 2013) (see Section 2.5.2).

2.5.2 . KG-based approaches

Knowledge Graphs exist for many domains and generally contain widely ap-
plicable prior knowledge. They are also generally reliable, fairly standardized and
non-proprietary. This makes them good candidates for knowledge integration, par-
ticularly for domain-specific tasks, and are thus used in a variety of methods and
applications in the literature.

Perhaps the most obvious lead in terms of processing Knowledge Graphs would
be using Graph Neural Networks (GNNs), a family of neural networks whose ar-
chitectures are designed to process data organized as graphs. This approach has,
for instance, been used to pre-train a discriminator in a Generative Adversarial
Network (GAN) setup for drug design (Dash et al., 2021); as a knowledge-based
component of a multi-expert system predicting the answer to a Visual Question-
Answering (VQA) problem (Marino et al., 2021); or to fuse text and KG-based
inputs in Transformers (Zhang et al., 2022; Yasunaga et al., 2022). GNNs are
most popular in graph-oriented tasks however, as they lack flexibility in terms of
their ability to interface with other modalities. In the context of knowledge graphs,
they are therefore more suited to tasks such as knowledge graph completion, con-
cept classification, or knowledge graph merging, making them a generally less
compelling processing option than graph embeddings when supporting other tasks
for which the knowledge graph is not the central component. For further review
of the literature, we direct readers to the work of Ye et al. (2022) for the use of
GNNs with Knowledge Graphs, and of Wu et al. (2023) for a more comprehensive
overview of the use of GNNs in NLP.

In Leveraging Lexical Resources for Learning Entity Embeddings in Multi-
Relational Data, Long et al. (2016) use pretrained Word2Vec embeddings (Mikolov
et al., 2013) and Knowledge Base concept descriptions as an initialization for the
TransE knowledge graph embedding algorithm (Bordes et al., 2013). As such,
they are effectively modifying word embeddings so as to take information from
the knowledge base into account. TransE achieves this by imposing that, for a
triple (c1, r, c2) where c1 and c2 are concept nodes and r a relation edge, their
corresponding vectors are bound by the quasi-equality c1 + r ≈ c2. This is con-
sistent with existing known properties of the Word2Vec embedding space, e.g.−−→
king−−−→man+−−−−−→woman ≈ −−−→queen or

−−−−→
france+

−−−−→
capital ≈ −−−→paris where

−−−→
word denotes

the embedding for “word”. The concept and relation embeddings can therefore be
used in place of their pretrained word embedding counterparts in addition to func-
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tioning as node and vertex embeddings. Celikyilmaz et al. (2015) follow a similar
method to achieve the same objective, but find that adding a concurrent language
modeling objective and adding neighboring concepts to the context improves per-
formance. No mechanistic explanation for this improvement is given, but it is likely
that the language modeling objective reduces catastrophic forgetting. Wang et al.
(2015) attempt to achieve a similar result by integrating KG relation information in
the word embedding objective. These approaches are limited however, as the cases
for multi-word concepts, synonyms of concepts unaccounted for in the KB, homo-
graphs, etc. are non-trivial to account for and can be quite common depending on
the knowledge graph. Furthermore, with fixed-vocabulary models, not all concepts
in the knowledge graph may have a corresponding pretrained embedding, limiting
the usefulness of the method in a domain adaptation setting. While this approach,
unlike many others, does not require Knowledge Base concepts to be identified in
the text, the reverse problem applies: one must still automate the matching of
KB concepts and relations with existing embeddings, which would likely introduce
many mistakes of the same variety. Lastly and most significantly, these meth-
ods rely on embeddings being static and are therefore not directly applicable to
contextualized word embeddings.

For further in-depth discussion on the aforementioned approaches, readers are
directed toward the work of Dash et al. (2022), Von Rueden et al. (2021), Kim
et al. (2021) and Colon-Hernandez et al. (2021).

2.5.3 . In RNN LMs
2.5.3.1 NKLM

In A Neural Knowledge Language Model, Ahn et al. (2016) propose a mecha-
nism which enables a generative LSTM-based LM to choose whether to generate
a word from its vocabulary or from a Knowledge Graph. The KG is represented
as a set of “facts” F , i.e. triples a = (ca,1, ra, ca,2) where nodes ca,1 and ca,2
are concepts (respectively the “subject” and “object” of the fact) and edge r is a
relation. Embeddings for concepts and relations are derived using TransE (Bordes
et al., 2013) and fixed in order to allow the model to generalize to new facts. They
are packed into a fact matrix F where each column ai = cai,1 ⊕ ra1 ⊕ cai,2 where
⊕ is the vector concatenation operator.

As shown in Figure 2.5, the Neural Knowledge Language Model (NKLM) uses a
regular LSTM architecture and uses the state vector ht at time-step t to determine
which fact to select from F using an MLP implementing the ffactkey(ht, e) function
where e is a mean-pooling of F. This returns a fact index at which can be used to
retrieve the most relevant fact embedding at. This fact embedding is then used, in
conjunction with ht, to decide whether the next word should be generated from the
vocabulary or the knowledge base using fcopy(ht,at), similarly implemented as an
MLP. In either case, ht and at are fed to an MLP implementing an index look-up
similarly to ffactkey: fvoca and fposkey for the vocabulary- and knowledge-based
generation respectively.

fvoca straightforwardly yields a key to look-up the next word in the word em-
bedding matrix (alternatively, this can be seen as predicting the embedding for
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Figure 2.5: Simplified NKLM architecture proposed by Ahn et al.. The tunable
parameters are marked purple. Arrows of a single color represent the same
matrix or vector being used in multiple places.
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the next word and retrieving the closest true word embedding), and fposkey has
the equivalent function in knowledge-based word indexing, using trained position
embeddings which refer to words by their position in the description of cat,2, the
object of fact at. As knowledge-word position embeddings do not share the same
vector space as regular word embeddings, both a word embedding and position
embedding, in addition to the previously generated fact embedding at, are fed to
the LSTM at every time step t, with the embedding that was not generated at step
t−1 initialized to the 0⃗ vector.In their paper, Ahn et al. add a layer of probabilistic
interpretation to the retrieval mechanism which yields at, wo

t and wv
t by applying a

Softmax before argmax. We omit this from figure 2.5 for simplicity as Softmax
has no effect on the output of argmax.

This approach, by using position embeddings, treats the KB as an external
resource which can be queried. It has the advantage of allowing the model to gen-
eralize to new facts and words added to the KB after training and, in a traditional
word-based vocabulary, to predict out-of-vocabulary words. It suffers from many
shortcomings, however. In particular, each word can only be associated with one
fact. Ahn et al. present a limited situation in which the text is focused on one
known topic τ which is the subject (ca,1∀a ∈ Fτ with Fτ the set of facts related
to topic τ) and therefore cannot have multiple facts per word unless the knowledge
graph has pairs of concepts that share more than one relation (that is, pairs of
vertices that share more than one edge in a given orientation). In deployment, the
ability to change topic focus mid-text or perhaps focus on multiple topics simultane-
ously is highly desirable. Furthermore, the indexing approach for knowledge-based
token generation likely works because the KGs used have relatively few relation
types and concept descriptions tend to be short and homogeneous. This approach
is therefore unlikely to scale to larger, more complex KGs well. Lastly, this method
heavily relies on string matching in order to construct supervised training samples
and prompts. Depending on the knowledge base and topic, this may be unsatis-
factory as, in addition to the potentially high computational cost of the approach,
homographs may match incorrect concepts and synonyms or paraphrases may fail
to match mentioned concepts. This problem is known as Entity Linking and current
methods continue to struggle in all but the most trivial of cases (see section 2.6).

2.5.3.2 KBLSTM

In Leveraging Knowledge Bases in LSTMs for Improving Machine Reading,
Yang and Mitchell (2017) propose the Knowledge-enhanced Bidirectional LSTM
(KBLSTM), a concept-embedding-based method which relaxes the problem of
Entity Linking by retrieving multiple candidate concepts per word from the KG.
Specifically, candidate concepts which may be related to the current word are
retrieved, and their embeddings are pooled with the output of the Bi-LSTM at
each time step. The relevance to the current context is estimated using attention,
in addition to a “sentinel” vector which allows the model to focus on the context
and ignore the contextless background knowledge where relevant by deciding how
much weight to assign to KG information versus the current state.
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The KG is represented as a set of triples (c1, r, c2) with c1, c2 being any two
concepts (nodes) with relationship (edge) r. Knowledge Graph Embeddings vc for
each concept c are derived following Yang et al. (2015).

As depicted in figure 2.6, the KBLSTM replaces the hidden state vector ht
with:

ĥt = ht +mt

where mt is a “knowledge state vector” which contextualizes knowledge vectors
with respect to ht. It is computed as a mixture model, allowing for a better
tradeoff between the impact of background knowledge and information from the
context:

mt =
∑

i∈V (xt)

αtivi + βtst

Figure 2.6: KBLSTM structure at each time step. Reproduced from Yang and
Mitchell (2017).

Where V (xt) is the set of candidate concepts from the KB matching xt, αti
acts as an attention weight which reflects the relevance of the concept i, and βt is
the weighting term for the local context. Together, αti and βt form a probability
distribution and are defined as:

αti ∝ exp(vT
i Wvht)

βt ∝ exp(sTt Wsht)∑
i∈V (xt)

αti + βt = 1
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st is the aforementioned sentinel vector which encodes the context information
and determines the knowledge/context tradeoff, defined as2:

bt = σ(Wbht−1 +Ubxt)

st = bt ⊙ tanh(ct)

The word embeddings xt are pretrained following Wieting et al. (2016) and fine-
tuned during training. The KBLSTM outperformed BiLSTM in entity extraction
on the ACE2005 and OntoNotes 5.0 corpora and in event extraction on ACE2005.

This article marks the first significant usage of a KG to improve a language
model at the embedding level. This approach elegantly matches entity mentions to
KB concepts and learns to combine the information from both modalities. It does,
however, have several weaknesses. First, as mt is not explicitly part of the ht space,
the responsibility for alignment of vector spaces falls on the optimization of the
entire model for each task. It is generally preferable to learn projections between
vector spaces explicitly, as it would make this method more easily applicable to
fine-tuning pretrained language models and incentivize parameter specialization in
the model. Furthermore, the candidate concept generation process does not work
well for multi-word concepts ; while the approach to Entity Linking described has
the advantage of being fuzzy thus allowing the model to learn which candidates
are likely to be relevant, the single-word search is likely to produce low-precision
results making learning difficult, and the lack of context in the search is likely to
cause relatively low recall on some KBs. Despite these shortcomings, the approach
has been influential, inspiring approaches such as KnowBert (Peters et al., 2019),
KAGNET (Lin et al., 2019) and SenticLSTM (Ma et al., 2018).

2.5.4 . In Transformer LMs
In the interest of reducing the pre-training burden of Transformer-based LMs

such as BERT and expanding the range of concepts and relationships that they can
accurately predict without resorting to additional freeform text, multiple methods
for incorporating knowledge in contextualized word embeddings have been devel-
oped. One of the main categories of approaches is to rely on the Transformer’s
attention mechanism to combine entity and word information, as do ERNIE (Zhang
et al., 2019), K-Adapters (Wang et al., 2020) and KnowBert (Peters et al., 2019).
K-Adapters in particular are compelling as they use Adapters (see Section 2.4.5)
which, by construction, prevent catastrophic forgetting. Another common type of
approach is to train a neural network or the language model itself to align entity
representations with token representations, whether they be the input WordPiece
representations such as E-BERT (Poerner et al., 2020) or contextualized output
representations such as KEPLER (Wang et al., 2021b) and CODER (Yuan et al.,
2022). UmlsBERT (Michalopoulos et al., 2021), in contrast, does not fit into the
aforementioned categories as it mainly consists of biasing the BERT input vectors
for entity mentions with a topic vector, and changing the Cross-Entropy loss in
the Masked Language Modeling (MLM) objective to a Binary Cross Entropy Loss,
setting all synonyms of a medical term as valid targets.

2See equation 2.1 for definition of ct
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More specifically, E-BERT learns a projection of entity embeddings derived
from the KB to the input word embedding space which preserves KG relation in-
formation, enabling their use in input text and providing the model with more
information. UmlsBERT, on the other hand, explicitly adds semantic group em-
beddings to words found in UMLS. ERNIE and BERT-MK (He et al., 2020) learn a
fused representation of contextualized word and entity representations. K-Adapters
(Wang et al., 2020) are a computationally cheaper alternative to the ERNIE pro-
cess which avoid the problem of catastrophic forgetting by using Adapters (Houlsby
et al., 2019), i.e. adding layers within the transformer which can be enabled or
disabled and take on the burden of fine-tuning while the rest of the model weights
remain frozen. While these methods have largely been successful, one drawback
which we discuss in section 2.6 is that they all require a separate upstream Entity
Linking (EL) step to be made at inference, limiting their performance and scope
of applicability.

Some approaches do not suffer from the need for an EL step. KEPLER (Wang
et al., 2021b) is one such model, which introduces a knowledge embedding loss as
an objective for language model pre-training, aligning contextual word representa-
tions with entity description representations. As such, it does not require an EL
step at inference. The KnowBert model developed by Peters et al. (2019), on the
other hand, grafts a KB-specific EL module into a transformer-based pretrained
LM such as BERT, in order to jointly perform EL and contextualized word repre-
sentation enrichment, making it also a standalone method requiring no upstream
EL with the additional benefit of explicitly identifying the entities present in the
text.

This distinction between methods which do or do not require an upstream EL
step to be performed, that is, whether they require entities mentioned in the input
text to be precisely identified, is an important one. This property is in fact one
of the most important criteria for selecting a knowledge integration method in the
biomedical case, and with UMLS in particular, as EL is currently an unsolved prob-
lem. On the MedMentions corpus (Mohan and Li, 2019), for instance, the best
performing models are MedCat (Kraljevic et al., 2021) and Bhowmik et al.’s dual
encoder (Bhowmik et al., 2021) which achieve 0.448 and 0.534 F1 score respec-
tively. The Entity Linker used by UmlsBERT is cTAKES (Savova et al., 2010),
which reaches an F1 score of 0.178 on MedMentions, as reported by Kraljevic et al..
The majority of the aforementioned knowledge integration approaches are subject
to this limitation. Whilst KEPLER and CODER are exceptions which do not re-
quire an upstream EL step at inference, CODER does require this in training, and
KEPLER is trained on descriptions of each entity in the knowledge base, which are
not available for some KBs such as UMLS. KnowBert relaxes the EL requirement,
calling only for candidate entity mentions, and is trained both on Language Model-
ing and Entity Linking. KnowBert is thus less limited by the EL performance than
other knowledge-based models, and does not require as much in-domain text as
pre-training-based approaches. It therefore has considerable potential to effectively
utilize the KB and is unlikely to suffer from CF on general text.
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Several models are worth reviewing in greater detail due to their influence on
the field as well as my work.

ERNIE (Zhang et al., 2019) (not to be confused with the identically named model
by Sun et al. (2019) which uses knowledge to simply preferentially mask entities in
the MLM objective) is one of the first, simplest and most influential approaches,
having inspired approaches such as BERT-MK (He et al., 2020), GREASELM
(Zhang et al., 2022) and KnowBert (Peters et al., 2019). It is based on the
BERT model, but substitutes some of the basic transformer encoder blocks with
knowledge-enhanced encoders called “K-Encoders” (see Fig. 2.7). K-Encoders ac-
cept additional inputs and outputs in the form of entity embeddings corresponding
to entities mentioned in the sequence. The entity embeddings are fed through a
multi-head attention mechanism which is identical to but separate from the multi-
head attention applied to tokens. These recontextualized entity embeddings ẽk are
then paired with their corresponding recontextualized token embeddings w̃j and
fed to a token-entity information fusion mechanism which projects the embeddings
into a unified space, performs their sum, and projects the fused representation back
to token and entity space resulting in text-enriched entity representations ek and
knowledge enriched token representations wj (see Eq. 2.8).

hj = σ(W̃tw̃j + W̃eẽk + b) (2.8)
w̃j = σ(Wthj + bt) (2.9)
ek = σ(Wehj + be) (2.10)

Hou et al. (2022) introduce Graph Convolution Simulation as a way to probe
LMs for knowledge integration. They find ERNIE and K-Adapter (Wang et al.,
2020) successfully integrate only a marginal amount of knowledge.

GREASELM (Zhang et al., 2022) is a similar approach which, rather than re-
lying on pre-existing entity embeddings, extracts a relevant subgraph of the KG
given the input text, and substitutes an attention-enabled GNN (Veličković et al.,
2018) for ERNIE’s entity recontextualization step. Subsequently, rather than per-
forming information fusion on matched token and entity embeddings, a sequence
embedding similar to the [CLS] token in BERT3 and an equivalent “node in-
teraction embedding” for the graph are used to perform the information fusion
indirectly. This side-steps the difficulty of matching multi-word entity names to
multiple input tokens, promotes information mobility, and is computationally more
efficient at inference. Both ERNIE and GREASELM suffer from the requirement
of an upstream Entity Linking step, however GREASELM’s constraint is weaker
than ERNIE’s due to the lack of necessity to match token and entity embeddings.
DRAGON (Yasunaga et al., 2022) significantly improves on GREASELM by in-
troducing a graph completion self-supervised pre-training objective which masks
relations in the knowledge sub-graph, similarly to the standard MLM objective.

3 see Section 2.3
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Figure 2.7: ERNIE’s K-Encoder structure. Reproduced from Zhang et al. (2019).

UmlsBERT (Michalopoulos et al., 2021) is, as its name suggests, a BERT-based
language model which integrates knowledge from UMLS. It uses two knowledge
integration mechanisms in tandem: knowledge augmentation of input embeddings,
and a knowledge-informed multi-label MLM objective. The first mechanism con-
sists of classifying each clinical input token into one of UMLS’ “semantic types”4

(groups of semantically related concepts) and adding to the token, segment and
position embeddings3 the relevant semantic type embedding. This effectively
stretches input embeddings of the same semantic type in the same direction in
the input space, giving BERT information on the relatedness of the tokens, which
is particularly useful with uncommon words. The second mechanism uses UMLS’
thesaurus feature, which associates clinical concepts to a list of names. Rather
than using BERT’s cross-entropy loss in its MLM objective to generate a probabil-
ity distribution on the vocabulary, UmlsBERT uses binary cross-entropy — which
gives an independent probability for each token to be an acceptable completion
— and sets every clinical synonym as defined by UMLS to be an acceptable com-
pletion. For instance, for the masked word "lung", "pulmonary" would also be a
positive label. This leads the model to learn to associate clinically related words,
but should degrade the model’s grammatical accuracy. It is not made explicit how
the semantic type embeddings are computed, nor how the multi-label objective in-
teracts with WordPiece tokenization and multi-word entity mentions. This model
obviously suffers from reliance on accurate Entity Linking, but also uses Clinical-

4There are 127 semantic types in UMLS. UmlsBERT uses 44, but it is not made
explicit which semantic types were chosen or why.
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Bert as a pretrained backbone. Having been trained on approximately six times
more biomedical text than BERT, accurately quantifying the added value of its
knowledge integration is not straightforward.

2.6 . Entity Linking

Entity Linking (EL) is a task which consists of identifying spans of input text
which refer to specific entities or concepts, and pairing them with the appropriate
target they refer to in a knowledge base. Take, for example, the following sentence:

The council of the EU intends to force the operators of secure mes-
saging apps such as WhatsApp or Signal to allow intelligence services
to gain access to encrypted conversations through backdoors.

Assume we use Wikipedia as our KB. We thus wish to identify any entity which
has a Wikipedia page, and a unique identifier from which we can look up the page
in question (for our purposes, we will use the page URL) for each mentioned entity.
The entities in question for the aforementioned example are the council of the EU
(1), the European Union (2), WhatsApp (3), Signal (4), Intelligence Agencies
(5), and Backdoor (6). As a result of the Entity Linking process, we would like
the occurrences of the aforementioned entities to be identified and labeled. We
illustrate this in the following sentence by enclosing entity mentions in boxes and
adding corresponding numbers (1-6) as subscripts.

The council of the EU 2 1 intends to force the operators of se-

cure messaging apps such as WhatsApp 3 or Signal 4 to allow

intelligence services 5 to gain access to encrypted conversations

through backdoors 6.

Each of the labels (1-6) should be matched to a URL as per Table 2.1.

Label URL
1 https://en.wikipedia.org/wiki/Council_of_the_European_Union
2 https://en.wikipedia.org/wiki/European_Union
3 https://en.wikipedia.org/wiki/WhatsApp
4 https://en.wikipedia.org/wiki/Signal_(software)
5 https://en.wikipedia.org/wiki/List_of_intelligence_agencies
6 https://en.wikipedia.org/wiki/Backdoor_(computing)

Table 2.1: Correspondence table between labels in the example sentence and
corresponding entity URLs.
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In summary, in our definition5, Entity Linking consists of two separate tasks:
Mention Detection (MD; a KB-specific NER task which does not require an entity
type) and Entity Disambiguation (ED; also referred to as Entity Normalization).
The additional task of Candidate Generation (CG), i.e. a pre-selection of potentially
relevant concepts, is often inserted between MD and ED. Crucially, an Entity
Linking task is accompanied by a corresponding KB which defines which entities
must be marked. For all practical purposes, regardless of the KB, we may assume
that each entity is associated with at least one plain text descriptive “name”. We
may not, however, assume that entities systematically have a textual description.
Because EL is dependent on a specific KB, it is difficult to systematically compare
performance across methods. We will therefore go over the main approaches in
general terms, before focusing on specific contributions for the biomedical domain,
contextualizing the work described in subsequent chapters of this thesis.

The naïve approach to EL consists of matching every substring of the input
text to every name for every entity in the KB using a string similarity measure such
as Levenshtein distance or Jaccard similarity and selecting a threshold above which
the span is linked to the relevant entity. This is the approach followed, for instance,
by QuickUMLS (Soldaini and Goharian, 2016). RysannMD (Cuzzola et al., 2017)
and Rao et al. (2013) use string matching as a basis for candidate selection before
applying more sophisticated final selection and disambiguation procedures. Several
approaches (Han et al., 2011; Hoffart et al., 2011a; Alhelbawy and Gaizauskas,
2014) propose to generate candidate matches in this way, extract the subgraph of
mentioned entities from the KG, and differ in their method for selecting only the
most highly related nodes. While many of these approaches show fairly compelling
results, this exhaustive approach works only for small amounts of text and small
KBs, and quickly becomes intractable as we discuss in Chapter 4. Additionally,
the use of string similarity as a basis for selecting candidate mentions yields poor
results for many KBs which do not provide sufficiently many different names for
their entities. Using our previous example, it is unlikely that an occurrence of the
word “EU” could be accurately matched to the page of the “European Union” using
string similarity.

Kolitsas et al. (2018) use an ELMo-like BiLSTM language model to represent
their input text as contextualized word embeddings, which they pool into span
embeddings for all sub-sequences of the input text exhaustively. They then re-
trieve a number of candidate entity embeddings from a pretrained probabilistic
map provided by Ganea and Hofmann (2017) for each span embedding. They
then measure the similarity between the span embeddings projected in the entity-
embedding space and the candidate embeddings and use this similarity score as a
basis for their EL decision. This approach is essentially a vectorial version of the
aforementioned approaches, and as such benefits from better hardware accelera-
tion, but shares the same fundamental computational complexity. Furthermore,

5Some definitions omit the MD sub-task. However, there is to my knowledge no
better term for the coupling of both Mention Detection and Entity Disambiguation.
We do not go over disambiguation-only approaches as their actual EL performance
is heavily reliant on the accuracy of the upstream MD step.
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the pretrained span-to-entity-embedding map must be created for every knowledge
graph, which poses its own concerns in terms of tractability and requirement for
annotated text.

Van Hulst et al. (2020) use ELMo-based contextualized word embeddings to
power the Mention Detection step, modeled as a simple NER task. Candidate
entities are chosen in the same way as Kolitsas et al. (2018) and Ganea and
Hofmann (2017) and/or by cosine similarity between entity embeddings and the
sum of the words in the context of the detected mention (“contextual similarity”)
(which assumes entity and word embeddings are in the same space). Entities are
disambiguated according to a score computed as a function of prior probability,
contextual similarity, and “coherence” (Ganea and Hofmann, 2017; Le and Titov,
2018) (a measure of relatedness between different entity candidates for the span).
The lower complexity of the MD step and the fewer candidates selected compared
to previous methods improve the complexity of this approach, but it is specific to
the Wikipedia KB and heavily relies on the work of Ganea and Hofmann (2017),
making it difficult to adapt to other KBs.

The obvious way to avoid the need for a span-to-entity-embedding map such
as the one created by Ganea and Hofmann (2017) is to embed entities and tokens
in the same space. Moreno et al. (2017), for instance, propose an extension of
Word2Vec which applies to corpora containing entity mentions, as well as several
similarity measures to perform ED. These approaches rely on the existence of such
annotated corpora however, which are not available for most knowledge bases.

Ravi et al. (2021) uses two Transformer-based LMs in sequence. The first LM
performs MD as a typical NER task, feeding the resulting spans to a wikipedia-
specific search engine which incorporates a lookup table for related terms and a
page ranking algorithm. The search engine returns candidate entities, and the
second LM performs ED by modeling it as a sequence classification task: it is fed
the detected mention, the context sequence, and a description of the candidate
entity, and must predict whether the candidate entity matches the mention. While
the approach is efficient and performs well on Wikipedia, the reliance on its search
engine and assumption that entities are accompanied by descriptions makes it
inapplicable to most other KBs. Additionally, it requires an annotated corpus to
train the ED task, which is rarely available.

E-BERT (Poerner et al., 2020), which is originally a Knowledge-Integration
approach and hypothetically requires an upstream EL step, proposes an ED ap-
proach which leverages its concept-embedding-to-word-embedding projection such
that it can perform its own EL (assuming the MD and CG steps are already han-
dled). While E-BERT normally expects concept embeddings to be projected to the
WordPiece input space and fed as input simultaneously with regular input Word-
Piece embeddings (all the while assuming that the relevant knowledge is not lost
in the projection process), Poerner et al. propose to repurpose the mechanism in
reverse. Specifically, they suggest to find concepts by replacing their embeddings
in the input with an average of the candidate concepts’ embeddings, and train-
ing the model to output the embedding for the correct concept. While at first
glance this approach may seem like it relies on the language model’s knowledge
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thus defeating the purpose of knowledge integration, the upstream CG process and
the gap between the true and predicted concept embedding contribute knowledge
that the model does not necessarily possess. This approach unfortunately relies on
MD and CG tools as well as large amounts of text with annotated KB concepts,
reducing its scope of applicability to the Wikipedia KB, and few if any others.

End-to-end neural Entity Linking had historically not been heavily considered
until the introduction of the Transformer. This approach has since been attempted
by Broscheit (2020) and Chen et al. (2020), which we will go over in Chapter 3.
Transformers have also enabled approaches for matching entity mentions to entity
embeddings in a shared vector space (Humeau et al., 2019; Logeswaran et al.,
2019; Wu et al., 2020), assuming that textual descriptions of mentions exist. This
assumption is not verified for all KBs, and notably not for UMLS; furthermore,
these approaches tend to be computationally expensive due to the necessity of
mining hard negative samples, though Wiatrak et al. (2022) have introduced a loss
regularization which helps relax this constraint.

While Entity Linkers are known not to be perfectly reliable, Biomedical Entity
Linking on the UMLS KB is a particularly difficult task. One of the most widely
used biomedical EL systems is cTAKES (Savova et al., 2010), which reaches an
F1score of 0.178 on MedMentions, as reported by Kraljevic et al. Some of the
best performing models include RysannMD (Cuzzola et al., 2017), which achieves
0.436 F1 on the CRAFT corpus, and the dual encoder architecture proposed by
Bhowmik et al. (2021) which achieves 0.534 F1 score (with 0.529 Precision and
0.538 Recall) on the MedMentions corpus (Mohan and Li, 2019). In the latter
case, this translates to slightly more than half of the actual entities mentioned
being correctly identified, and nearly half of the entities found by the linker being
false positives.
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3 - Biomedical Entity-Linking with Transformers

3.1 . Introduction

Whilst knowledge integration has been fairly well explored with projects such as
NKLM (Ahn et al., 2016), ERNIE (Zhang et al., 2019), or UmlsBERT (Michalopou-
los et al., 2021), most of the proposed methods assume knowledge-base entities
mentioned in the text are known. Requiring human annotation of these concepts
defeats the purpose of automation, meaning entity mentions must be automati-
cally identified and labeled upstream of knowledge integration. This task is known
as Entity Linking (EL) and, depending on the concepts present in the knowledge
base, is typically a difficult task (see Section 2.6).

An obvious approach to EL is to attempt to use a Transformer-encoder lan-
guage model such as BERT to perform EL by modeling it as a fine-grained Named
Entity Recognition (NER) task. That is, given a KB with N concepts, each token
in a sequence is classified (based on its output contextualized representation) as
one of the N concepts — or as not a mention of any concept. To handle multi-
token concept names, the IOB2 scheme is typically applied, with each token being
classified as Inside (I) a concept mention, Outside (O) of any concept mention
(not-a-KB-concept), or the Beginning (B) of a concept mention1. Accounting for
the B and I tags which can apply to any of the N concepts, the resulting classi-
fication has 2N + 1 classes. See Table 3.1 for an example of IOB2 EL tagging of
a sequence. This approach has the advantage of being easier to put in place than
those mentioned in Section 2.6 and, as it does not contain any string-search or
other major CPU-bound operations, can be relatively fast at inference with hard-
ware acceleration, but is limited by a requirement for labeled training data on all
concepts and is expensive to train.

INPUT Pseudomonas aeruginosa (Pa) infection in
OUTPUT B-C0854135 I-C0854135 I-C0854135 I-C0854135 O

INPUT cystic fibrosis (CF) patients is
OUTPUT B-C0010674 I-C0010674 B-C0010674 O O

Table 3.1: Space-tokenized input sequence and its IOB2 tagging with UMLS
concepts as output sequence. Each tag is either O for tokens Outside any
entity mention, or of the form [B/I]-[UMLS Concept Unique Identifier
(CUID)].

1This annotation scheme assumes entity mentions are continuous. Handling dis-
continuous entities requires complexification of the annotation scheme which can
be counterproductive. This is a topic of ongoing research (Dirkson et al., 2021).
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Another approach, as the classification process produces a sequence and con-
cept mentions follow a Zipfian distribution much like a vocabulary, is to treat the
problem as a sequence-to-sequence task. Given the variety of concepts, each label
can be considered an entry in the model’s output vocabulary, and the task can
be tackled similarly to a translation task for which the target output sequence is
the IOB2 “translation” of the input sequence. This is the approach followed by
Boguslav et al. (2021).

To evaluate subsequence classification, we use SeqEval (Nakayama, 2018),
which assigns true positives only to perfectly predicted subsequences. Any pre-
dicted sequence which does not exactly match a reference sequence from the
dataset is considered a false positive, and any reference sequence which does not
have a matching prediction is considered a false negative. See Table 3.2 for an
example. As SeqEval criteria are stringent, numerically low performance can con-
ceal a large number of near-correct predictions, therefore we also use token-level
F1 (which does not take sequence into account) as an evaluation metric.

Sentence in cystic fibrosis (CF) patients is
Expected: 2 TP O B-C0010674 I-C0010674 B-C0010674 O O
FP & 2 FN O B-C0010674 I-C0010674 I-C0010674 O O
TP & FN O B-C0010674 I-C0010674 O O O
TP & FP & FN B-C0010674 I-C0010674 I-C0010674 B-C0010674 O O

Table 3.2: Examples of various subsequence classification errors according to
the SeqEval criteria.

3.2 . Training from scratch in a resource-constrained setting

While we originally considered fine-tuning a pretrained model such as BERT,
lack of computational power required for fine-tuning BERT-sized language models
led us to attempt to train a smaller model from scratch. Based on our compu-
tational budget, we set the size of our models to vary circa 8 million parameters
(approximately on fourteenth that of BERTBASE). Expecting poor performance on
the MLM task with such a small language model, and expecting full semantic NLU
to be unnecessary (as, in order to compete with our baseline string-matching-based
approaches such as QuickUMLS (Soldaini and Goharian, 2016), we were expect-
ing token-based fuzzy pattern-matching and some basic intuitions about parts of
speech to be sufficient), we initially did not pretrain our models (either on MLM
or autoregressively). We attempted the two main aforementioned approaches: the
token embedding classification approach, and a sequence-to-sequence approach
based on Vaswani et al.’s translation model.

Faced with initial difficulties with models performing marginally better than
chance, we created a training curriculum: models were to first be trained on Men-
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tion Detection (MD) (i.e, the IOB sequence classification task with no entity differ-
entiation required), then on typed NER using UMLS’ 127 semantic types (to which
each of the concepts in UMLS belong) as entity types, and finally on the Entity
Linking task. Word-based, wordpiece-based and character-based tokenization were
all attempted, with wordpiece-based tokenization outperforming the alternatives.

Despite Boguslav et al.’s subsequent success with the translation-based ap-
proach, likely due to their larger pretrained model, experiments with the sequence-
to-sequence model were halted early due to it being more computationally expensive
and performing worse than its non-generative counterpart. As shown in Table 3.3,
our best performing model performed only marginally better than chance at the
MD task. With poorer performance on this simpler task than state of the art entity
linkers on the EL task, it became clear that the architecture was not large enough
and/or the training data not plentiful enough to learn EL in this manner.

Model Mention-F1 Token-F1
Random predictor 0.00 0.33
Ours 0.01 0.47

Table 3.3: Mention-based (subsequence-sensitive) and Token-based (non-
subsequence-sensitive) F1score on Mention Detection for a non-pretrained
8 million-parameter Transformer (encoders only).

3.3 . Entity Linking with BioBERT

After having acquired additional computing resources, we attempted to fine-
tune an existing pretrained biomedical language model, BioBERT, to each of the
tasks in the aforementioned curriculum (independently, as following the curricu-
lum led to worse results, presumably due to catastrophically forgetting language
modeling when learning MD). While MD performance is difficult to evaluate as
there exists no baseline for the MedMentions corpus, BioBERT’s MD performance
exceeded the EL performance of the state of the art model (Bhowmik et al., 2021),
as depicted in Table 3.4; failure cases mostly involved abbreviations (e.g. “(Pa)”
and “(CF)” in the example sequence in Table 3.1).

The Semantic Type NER task appears not to be significantly more challeng-
ing than MD for BioBERT. However, increasing the number of classes from 255
(owing to the 127 semantic types tagged in IOB2 scheme) to over 16,000 (with
approximately 8,000 concepts in the corpus) revealed that BioBERT’s ability to
discriminate between UMLS concepts was low. Approximately 94.6% of unique
concepts which appear in the MedMentions test corpus were not found as they ap-
peared too rarely in the training data. When taking into account only the twenty
most common concepts, the micro-F1score of BioBERT is 0.42.
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Task Precision Recall Micro-F1
SOTA Entity Linking 0.53 0.54 0.53
TaggerOne 0.47 0.44 0.45
Mention Detection 0.66 0.71 0.68
Semantic Type NER 0.60 0.63 0.60
Entity Linking 0.22 0.21 0.21

Table 3.4: BioBERT performance onMD, NER (semantic types) and EL onMed-
Mentions, with State Of The Art (SOTA) entity linker (Bhowmik et al., 2021) and
TaggerOne (Leaman and Lu, 2016, referenced in the original MedMentions pa-
per by Mohan and Li) as baselines for comparison.

3.4 . Subsequent literature

Wiatrak and Iso-Sipila (2020) follow a similar approach to ours, using hierar-
chical multi-task training to learn MD, entity typing, and ultimately Entity Linking
in an end-to-end fashion. Their approach differs from ours in several meaningful
ways. First, they use SciBERT (Beltagy et al., 2019) as a pretrained backbone.
Second, the training curriculum follows Sanh et al. (2019) and alternates tasks at
random, with the probability for a given task to be chosen next being proportional
to its relative dataset size. Third, bidirectional LSTMs are inserted between (1)
the output of SciBERT and the MD layer, and (2) between the aforementioned
LSTM and the entity typing and EL layers. Skip-connections bypassing the LSTMs
are added so as not to create an information bottleneck. This approach seems to
successfully build on its understanding of MD and entity typing to achieve consider-
able performance in EL, all the while largely overcoming the catastrophic forgetting
phenomenon, likely thanks to the different training curriculum. However, it falls
short of the state of the art, with approximately 0.44 F1.

While our work has focused on UMLS, similar approaches have been attempted
on Wikipedia concurrently with and subsequently to our work, and likely due to
the greater abundance of training data, have been met with a greater degree of
success.

In Investigating Entity Knowledge in BERT with Simple Neural End-To-End
Entity Linking, Broscheit (2020) attempts to use BERT to perform EL by modeling
it as a fine-grained NER task, much like the approach followed with BioBERT. The
KB is the top 700 000 Wikipedia entities with the most other Wikipedia pages
linking to them, and rather than being annotated using IOB2, it is assumed that
two contiguous mentions of a concept never occur. Therefore the classifier has 700
001 classes. This approach yields worse results than the alternatives mentioned in
Section 2.6, but is much faster at inference. Chen et al. (2020) employ a similar
approach, but train a MD classifier and an ED classifier separately, which achieves
somewhat better results. They also find adding candidate sets following Hoffart
et al. (2011b) to limit the search space for ED yields significantly better results.
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3.5 . Conclusions

While the Transformer-based end-to-end neural approach to EL does work in
some circumstances, it encounters issues when scaling and requires large amounts
of annotated data which are not available for most KBs. It cannot handle rare
concepts, especially those that are not part of the model’s training data, limiting
its potential for applications, especially considering the fact that rare concepts
are often the ones for which it is most useful to retrieve additional structured
knowledge, since statistical information is scarce during language model training.

Approaches to Entity Linking which perform reasonably well across the entire
range of concepts are largely based on string matching and are thus computation-
ally expensive. Transformer-based EL is cheaper to run at scale and has better
grammatical awareness, but is limited to common concepts or makes strong as-
sumptions about the KB (e.g. all concepts must have a text description). Finding
a compromise which combines traditional EL approaches with the grammatical
proficiency, contextual awareness and inference speed of transformers may be more
effective than either approach in isolation. By decomposing the EL task into MD,
CG and ED, we may be able to leverage the LM’s grammatical ability for MD and
its understanding of context for ED, whilst CG could be performed as a classical
EL approach. By increasing the focus on recall compared to precision and thanks
to the LM’s high performance on MD (thus necessitating few mention spans to be
checked), it may be possible to make CG tractable.

Lastly, the effectiveness of knowledge integration being inherently limited by
the prior Entity Linking step, the possibility of performing knowledge enrichment
without Entity Linking becomes attractive. Alternatively, learning both tasks jointly
may allow EL (or ED) to benefit from knowledge integration and vice versa.
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4 - KnowBert-UMLS

4.1 . Introduction

The most notable approach to performing knowledge enrichment jointly with
Entity Linking is KnowBert (Peters et al., 2019), an enhanced BERT model which
integrates a mechanism for matching the embeddings of concepts in a Knowledge
Base, as given by a graph embedding algorithm such as TransE (Bordes et al.,
2013) in the case of Knowledge Graphs, to the partially contextualized token rep-
resentations yielded by the Nth Transformer encoder block of BERT. It is similar in
essence to the KBLSTM described in Section 2.5.3.2, applied to the Transformer
architecture. While this EL mechanism does require an initial candidate generation
step, it enables the use of a powerful context- and grammar-aware language model
to aid in selecting the most relevant candidate concept(s) as it performs knowledge
integration similarly to ERNIE (see Section 2.5.4).

This approach has been shown by Peters et al. (2019) to be effective at increas-
ing BERT’s performance on general tasks when used with the WordNet general
KG (Miller, 1995), which includes mainly semantic relations between words (i.e.
synonymy, hypernymy, hyponymy, etc.) and the Wikipedia KB (using document
embeddings derived from page contents). UMLS, on the other hand, is a domain-
specific KB which maps a domain that is unfamiliar to BERT. Additionally, while
it comprises fewer concepts than Wikipedia, UMLS records many more concept
names1 (as each concept is associated with various textual representations) and
does not provide text descriptions for most concepts.

We therefore investigate whether KnowBert, as a highly effective knowledge
integration technique which works around the greatest drawback of competing ap-
proaches (i.e. the need for an upstream EL step), is suitable for domain adaptation
specifically, and whether it scales to a KG as large and complex as UMLS.

4.2 . Enriching contextualized representations with biomedical
ontologies

Currently, biomedical document processing is mostly human work. Software
solutions which attempt to alleviate this burden exist but generally do not per-
form well enough to be helpful in many applications. Concurrently, there exist
projects which organize concepts in the biomedical field. Therefore, we seek to
leverage existing structured knowledge resources to improve biomedical language
modeling. In this section, we integrate the UMLS knowledgebase into a BERT-
based language model, aiming to improve its performance in biomedical Named
Entity Recognition. To achieve this, we extend KnowBert, a model architecture
designed to integrate knowledge into language models. Preliminary results reveal

1There approximately 6.7 million Wikipedia articles versus 3.3 million concepts
and 15 million concept names in UMLS as of the writing of this dissertation
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the challenges of applying KnowBert to the biomedical domain given the num-
ber and subtlety of different concepts in UMLS. Going forward, addressing these
challenges and combining this with other approaches such as BioBERT may help
expand the range of usefully automatable biomedical language processing tasks.

With over a million articles published every year in the biomedical field and the
large number of patient records generated by hospitals, it is increasingly difficult
for healthcare professionals to keep up to date on research, carry out systematic
reviews, or search for patient information. There is thus a demand for language
processing tools able to identify and extract meaningful information from these
texts.

For this reason, multiple knowledge bases such as the Unified Medical Lan-
guage System (UMLS) and the OpenTargets LIterature coNcept Knowledge base
(LINK) have been created to make information more searchable. Our objective is
to enable Transformer-based pretrained neural Language Models to make explicit
use of this knowledge, in order to improve their performance, interpretability, and
data efficiency.

Other projects such as BioBERT (Lee et al., 2019) and ClinicalBert (Alsentzer
et al., 2019) have successfully specialized language models to the biomedical do-
main. However, their approach has typically not explicitly leveraged structured
knowledge sources such as UMLS. A notable exception is UmlsBERT (Michalopou-
los et al., 2021), which leverages UMLS as a thesaurus to explicitly teach BERT
synonymy and enriches biomedical word representations with semantic type em-
beddings (see Section 2.5.4 for a more in-depth explanation).

We follow the method described by Peters et al. (2019) known as KnowBert to
integrate knowledge derived from the UMLS Knowledge Base into a BERT-based
language model. We thus call this model KnowBert-UMLS. Our approach using
KnowBert differs significantly from previous specialized models in that it makes
use of the full vocabulary of UMLS to enrich word representations, and jointly
performs entity linking. It is also fairly indifferent to the pretrained LM used as a
base, whereas UmlsBert is limited to biomedically pre-specialized models such as
ClinicalBert (Alsentzer et al., 2019).

In the context of large and specialized knowledge bases such as UMLS, we find
the approach proposed by Peters et al. (2019) to be computationally unrealistic
with current tools for most organizations. Preliminary biomedical Named Entity
Recognition evaluations of our model trained on a small subset of our training
corpus demonstrate a decrease in performance with respect to models with non-
enriched word representations. We investigate the reasons for this, and propose
ways to alleviate this computational burden.

The remainder of the section is organized as follows. In Subsection 4.2.1, we
overview the architecture of KnowBert and discuss the specifics of our extension
of it to the UMLS Knowledge Base. The preliminary experimental results are
reported and discussed in Subsection 4.2.2. Finally, we present in Subsection 4.2.3
our conclusions and future work.
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Figure 4.1: Abstraction of the KnowBert architecture. KnowBert extends BERT
by adding a Knowledge Attention and Recontextualization module (KAR) be-
tween two transformer encoder layers; in this case between layers 10 and 11.

4.2.1 . KnowBert-UMLS
The core idea of KnowBert-UMLS, much like the KBLSTM introduced by Yang

and Mitchell (2017), is to overcome the hurdle of Entity Linking which approaches
such as ERNIE (Zhang et al., 2019) and UmlsBERT suffer from by selecting mul-
tiple candidate concepts for each entity mentioned in the input text, increasing
recall at the cost of precision, and learning a soft, probabilistic, and contextual
entity linking in order to identify the most relevant candidates. The implementa-
tion of this idea diverges significantly from the KBLSTM, as the token-by-token
functioning of the LSTM naturally lent itself to single-word entity mentions. In
a Transformer-based language model, an additional layer of complexity is added
in the form of candidate spans, i.e. pieces of the input text which may or may
not contain an entity mention and each of which will have an associated set of
candidate concepts.

As shown in Fig. 4.1, the KnowBert architecture is composed of three main
components: a pretrained Language Model backbone, a Knowledge Attention and
Recontextualization Module (or KAR) which performs Entity Linking and knowl-
edge enrichment of word representations, and a candidate mention generator.

4.2.1.1 Pretrained BERT

While the KnowBert method can apply to most Transformer-based pretrained
language models, we focus on BERT as it was the pretrained backbone used
by Peters et al. (2019). BERT models comprise L Transformer encoder layers.
For a sequence of N tokens, each layer i takes as input an N × H-dimensional
sequence representation Hi−1 and outputs a representation Hi which integrates
more contextual information by applying a multi-headed attention mechanism to
Hi−1 followed by a Multi Layer Perceptron. In the case of BERTBASE, we have
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L = 12 and H = 768. The final output of each token is thus a contextualized
representation in RH .

4.2.1.2 Ontology & candidate generator

The KnowBert method ties a pretrained language model to a Knowledge Base,
specifically an Ontology. For our purposes, we define a Knowledge Base K as a set
of JK entities ej , each with a vectorial representation ej ∈ RK . We use the UMLS
Knowledge Base, with each entity corresponding to a Concept Unique Identifier.
The entity embeddings we use are computed according to the adversarial method
provided by Maldonado et al. (2019) with K = 50.

To perform the Entity Linking step, the KAR requires a candidate generator
to create a list C of candidate mentions. Specifically, a set S of S candidate
spans is associated to each sequence, which may or may not contain an entity
mention. Each candidate span is then assigned a corresponding list of candidate
entities, including a null entity representing the lack of an entity mention within
the candidate span. Formally, we have:

C = {(s, {es,1, . . . , es,Js})|s ∈ S} (4.1)

with each candidate span s being associated to a set of Js candidate entities, and
each entity ej having a corresponding vector ej ∈ RK .

These candidates are produced by a candidate generator which follows rules
specific to the KB being used. KnowBert as specified by Peters et al. (2019)
implements compatibility with two KBs, namely WordNet and Wikipedia.

The primary challenge in crafting a mention generator for the biomedical do-
main, and specifically UMLS, is the variability of formulations for each concept. In
the case of UMLS, each concept is associated to a list of strings (called “names”)
that may represent it. For instance, the concept for lung cancer is associated to
97 different forms, including “pulmonary carcinoma”.

To leverage these names, we have attempted several methods based on string
similarity and cosine similarity of vectorial word representations. We have found the
most effective option for our purpose to be the QuickUMLS python library (Soldaini
and Goharian, 2016) which, given some text, identifies candidates in the form
(span_start, span_end, concept_ID). We then aggregate candidate entities
by candidate span, derive an empirical estimate of the prior probabilities for each
entity from MedMentions, and find the relevant entity embeddings as described in
Fig. 4.2. Finally, we feed the output of this candidate generation process to the
KAR.

In practice, matching each of the approximately 180M (million) sequences
in our training corpus to the 16M names in UMLS on-demand is prohibitively
computationally expensive in training. In order to achieve this, we precompute
the candidates for each of our sequences ahead of time and create a lookup table
for each file in our corpus. This needs to be done only once and is parallelizable,
but nonetheless 3.5% of our corpus took six days to process across seven nodes
of a computing cluster, each equipped with two Xeon 36-thread processors with a
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Figure 4.2: Detailed structure and output of the UMLS candidate generator.

clock speed of 3GHz, and required us to favor speed over recall and precision when
considering QuickUMLS settings.

Depending on which similarity measure and threshold are chosen, QuickUMLS
trades off between recall and execution time. We settled on Jaccard similarity, with
a threshold of 0.7 as the best compromise we could find.

In our experience, the computational impact at inference is fairly low for on-
demand low-volume applications, as the candidate generator typically takes frac-
tions of a second to process a sequence.

4.2.1.3 KAR

The KnowBert approach adds a KB-specific “Knowledge Attention and Recon-
textualization module”, or KAR, between two transformer layers in a pretrained
BERT model. This module is a relatively inexpensive addition to the pretrained
model, with in our case only approximately 0.3% as many trainable parameters as
BERTBASE.

Multiple KBs can be used in tandem: theoretically, a KAR can be inserted
between every pair of layers in the transformer. In practice, the insertion of a KAR
too close to the input layer causes too much perturbation to the flow of information
and prevents the model from recovering during training. As suggested by Peters
et al. (2019), in order to minimize the language model’s perplexity2, we insert the
KAR between the tenth and eleventh layers of BERTBASE as per Fig. 4.1.

This module performs entity linking on the intermediate contextualized word
representations and pools them with the relevant entity embeddings. This results in
contextualized word representations which are enriched with information extracted

2Perplexity is computed as the exponential of the cross-entropy loss, and is a stan-
dard measure of how well the language model predicts samples.
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Figure 4.3: Detailed structure of the Knowledge Attention and Recontextual-
ization module (KAR).

from a KB. Specifically, the KAR takes as input a sequence representation Hi

and a list C of S candidate mentions as generated by the Candidate Generator
(see (4.1)).

As described by Peters et al. (2019) and illustrated in Fig. 4.3, the KAR first
linearly projects the output of the previous transformer encoder layer Hi to the
entity embedding space:

Hproj
i = HiW

proj + bproj (4.2)

where Wproj and bproj are learned.

Then, the projected embeddings for the words in each span are pooled into
a matrix S ∈ RS×K of span embeddings. Each span embedding is computed
following Lee et al. (2017), who describe a way to compute text span vectors: each
token in each span is associated to a weight computed from the contextualized
embeddings fed through a trained FFNN. These weights are softmaxed with respect
to each span of text, and serve as the weights for a weighted-sum pooling of the
non-contextualized token embeddings, resulting in non-contextualized text span
embeddings.
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These span embeddings are then contextualized with a standard transformer
layer to allow the entity linker to identify relationships between entity mentions,
resulting in the contextualized span embedding matrix Se.

Se = MLP(MultiHeadAttn(S,S,S)) (4.3)

where MLP and MultiHeadAttn designate a position-wise Multi-Layer Perceptron
(Vaswani et al., 2017) and a Multi-Headed Attention layer respectively.

The contextualized span embedding se of every candidate span s is then used
to pool the corresponding matrix of candidate entity embeddings Es from the KB,
resulting in a predicted entity representation:

ψψψψs = Softmax(MLP(ps, s
e ·Es))

ẽs = ψψψψs ·Es (4.4)

where ps ∈ RJs is the vector of prior probabilities for the candidate entities asso-
ciated with span s, and ψψψψs ∈ RJs is an estimate of their posterior probabilities.

The predicted entity representation embeddings ẽs of each span s are packed
and added to contextualized span embeddings Se, forming the knowledge-enriched
span embedding matrix S′e:

S′e = Se + Ẽ (4.5)

H′ proj
i is computed with word-to-enriched-entity-span attention, similarly to ap-

plying a regular transformer encoder layer to S′e but substituting the query in the
attention mechanism for projected word embeddings Hproj

i :

H′ proj
i = MLP(MultiHeadAttn(Hproj

i ,S′e,S′e)) (4.6)

Finally, the knowledge enriched contextual word representation output of the
KAR is a projection of H′ proj

i back to BERT contextualized word representation
space with an added skip connection:

H′
i = H′ proj

i W′proj + b′proj +Hproj
i (4.7)

where W′proj and b′proj are learned.
The linked entity for span s is simply es,argmax(ψψψψs).

4.2.1.4 Training

There are three training steps for KnowBert models. First, once the mention
generator is written, the KAR is trained on the Entity Linking task on spans given by
the corpus, minimizing a log-likelihood loss for the predicted probability distribution
over candidate entities:

LEL = −
∑
s

log

(
exp(ψsg)
n∑
k=1

exp(ψsk)

)
(4.8)

with ψsg the score for the ground truth entity in ψψψψs.
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The second training phase involves continuing the pre-training of BERT using
both a Masked Language Model and a Next Sentence Prediction objective. This
phase corrects the disruptions incurred by the Language Model when grafting the
KAR between the Transformer Layers in BERT. This step also adjusts the weights
of the KAR for Entity Linking, minimizing:

LKnowBert = LBERT + LEL (4.9)

We call this phase the “re-training” step to differentiate it from the BERT pre-
training step and the fine-tuning step.

The final step, as for most pretrained LMs, is to fine-tune it to the target task.

4.2.2 . Preliminary experiments
4.2.2.1 Masked LM and Next Sentence Prediction

For a large source of raw biomedical text, we scraped the PubMed Central
database of Open Access articles and processed them for next sentence prediction
using the tool provided with the source code for “Knowledge Enhanced Contextual
Word Representations” by Peters et al. (2019). At the end of this training phase,
KnowBert can be used as a typical pretrained BERT model.

Due to time constraints, we were unable to generate candidates for the ap-
proximately 180M sequences in the corpus, and had to limit our re-training corpus
to approximately 6M sequences. As shown in Table 4.1, this lack of re-training
data has prevented the language model from successfully integrating the KAR,
with a masked LM perplexity several orders of magnitude larger than BERTBASE,
BERTLARGE, and the KnowBert models produced by Peters et al.

Model Perplexity
BERTBASE 5.5
BERTLARGE 4.5
KnowBert-Wiki 4.3
KnowBert-Wordnet 4.1
KnowBert-W+W 3.5
KnowBert-UMLS 10387.7

Table 4.1: Masked Language Model perplexity for both BERT models, the
KnowBert variants produced by Peters et al. (2019), and KnowBert-UMLS.

4.2.2.2 NER

We choose to fine-tune KnowBert-UMLS on the Biomedical Named Entity
Recognition task on the n2c2 corpus, previously known as i2b2 2010 (Uzuner et al.,
2011), with an 80% - 20% split between training and validation sets using cross-
entropy loss. In Table 4.2, we compare our performance versus four BERT-based
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Model P R F1
BERTBASE 0.85 0.87 0.86
BioBERT 0.86 0.88 0.87
clinicalBERT 0.87 0.88 0.88
BlueBERT 0.88 0.90 0.89
KnowBert-UMLS 0.80 0.81 0.80

Table 4.2: Performance of BERT-based language models on the n2c2 NER
task, measured as Micro-averaged strict Precision, Recall and F1. Results for
BioBERT, clinicalBERT and BlueBert from Fraser et al. (2019).

Sequence total abdominal hysterectomy and bilateral salpingo-oophorectomy .

True B-treatment I-treatment I-treatment O B-treatment I-treatment O
Predicted B-treatment I-treatment I-treatment O B-treatment I-treatment O

Table 4.3: Example of correct NER predictions by KnowBert-UMLS pulled from
the n2c2 evaluation set.

models, namely BioBERT (Lee et al., 2019), clinicalBERT (Alsentzer et al., 2019),
BlueBERT (Peng et al., 2019) and BERTBASE, all fully fine-tuned on the NER
task with the same linear classifier architecture. The performance of our various
baselines were taken from Fraser et al. (2019).

Examples of correct and incorrect predictions made by KnowBert-UMLS, for-
matted according to the IOB2 standard, can be found in tables 4.3 and 4.4 respec-
tively. The example in table 4.4 is a quite typical incorrect prediction, as it consists
of a span that overlaps with the correct span and has a correct label. This type
of error is the most common, constituting 32% of the model’s mistakes. Many of
these mistakes are ambiguous even to humans – for instance, the matter of having
to include the token “Estimated” in the “blood loss” entity is not self-evident. We
perform a complete breakdown of error types as specified by Fraser et al. (2019)
in table 4.5.

Sequence Estimated blood loss was 100 cc
True B-problem I-problem I-problem O O O
Predicted O B-problem I-problem O O O

Table 4.4: Example of incorrect NER prediction by KnowBert-UMLS pulled
from the n2c2 evaluation set.
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Error type Proportion (%)
Correct label
Overlapping span 32.0

Incorrect label
Overlapping span 10.2
Correct span 15.1

False positive 29.1
False negative 13.6

Table 4.5: Breakdown of types of mistakes made by KnowBert-UMLS in pro-
portion of total prediction mistakes made.

While the contextualized word representations contain enough information for
the classification model to perform significantly better than chance, our results re-
veal a decrease in performance with respect to a non-modified BERTBASE. This is
further demonstration of the fact that the re-training procedure is the performance
bottleneck and requires more text than our candidate generator can realistically
process in a reasonable time frame.

Our evaluation is performed with SeqEval (Nakayama, 2018) in strict mode.
Like the results from Fraser et al. (2019), its metrics are on an entity-level rather
than at token-level, meaning that a true positive is a fully matching mention span.
A predicted mention that overlaps with a true mention but is not identical counts
as a false positive and a false negative.

4.2.3 . Conclusions
Successfully integrating UMLS knowledge into a pretrained LM using the Know-

Bert method presents a significant challenge due to the size of the knowledge base
and the difficulty of generating candidate mentions. Our candidate generator based
on QuickUMLS was not able to generate candidates with enough efficiency and
precision to make re-training possible at the required scale. We are currently work-
ing on generating candidates for larger chunks of the re-training corpus in order to
evaluate the progress made by KnowBert-UMLS as a function of corpus size, and
make projections on its performance when trained on the full dataset.

4.2.3.1 Future work

In order to successfully re-train KnowBert-UMLS, the candidate generator must
be improved significantly. Its main source of false negatives is the introduction of
abbreviations of long terms in the beginning of the text which are subsequently
re-used. These abbreviations are often absent from the UMLS metathesaurus and
cannot be identified by the generator. Solving this issue would likely increase
recall significantly when identifying candidate spans. This may allow a different
recall/time compromise to be found within QuickUMLS settings.
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Regardless of possible improvements to recall however, deploying this at scale,
whether for re-training or practical text processing purposes, is likely to remain
prohibitively slow for most individuals and organizations. Future work will involve
finding a more effective and computationally efficient approach to tackle candidate
generation, for instance as a machine learning problem or with a fast NER-based
span pre-selection step.

Furthermore, whilst we chose to evaluate the performance of KnowBert-UMLS
using BERTBASE as a backbone to isolate the effect of the KAR, the KnowBert
method has the advantage of being compatible with other approaches such as
BioBERT, clinicalBERT, BlueBERT, or SciBert. In addition to the potential per-
formance improvements on biomedical tasks, these pretrained models may be less
expensive to re-train due to the potentially smaller distributional shift between
pre-training, KAR training, and re-training corpora.

4.2.3.2 Perspectives

In addition to the improvements that need to be made to the candidate gener-
ator to make KnowBert-UMLS competitive, there are a number of potential ways
to enhance it and expand its range of applicability.

Multiple Knowledge Bases As shown by Peters et al. (2019), KnowBert is capa-
ble of accommodating multiple KARs for multiple KBs simultaneously. Depending
on the practical application, it could be useful to develop a KnowBert model com-
bining UMLS with WordNet, Wikipedia, YAGO (Suchanek et al., 2007), or other
specialized KBs. It would also be interesting to assess the performance of one such
model in order to understand to what extent multi-specialization is possible.

Re-training with Adapters Adapters, as proposed by Houlsby et al. (2019), have
seen some success for efficiently fine-tuning pretrained LMs such as BERT. It
is conceivable that this approach may aid in the re-training process by reducing
the number of parameters to train, and may help reduce the memory footprint of
KnowBert in some practical applications. Specifically, in cases that involve multiple
knowledge bases or sets of knowledge bases used independently from each other,
such an approach may allow one copy of a pretrained LM to be loaded into memory
whilst the relevant set of KARs and adapters can be applied as a function of the
token sequence being processed.

4.3 . Adapting without forgetting: KnowBert-UMLS

Domain adaptation in pretrained language models usually comes at some cost,
most notably out-of-domain performance. This type of specialization typically
relies on pre-training over a large in-domain corpus, which has the side effect of
causing catastrophic forgetting on general text. We seek to specialize a language
model by incorporating information from a knowledge base into its contextualized
representations, thus reducing its reliance on specialized text. We achieve this

67



by following the KnowBert method, applied to the UMLS biomedical knowledge
base. We evaluate our model on in-domain and out-of-domain tasks, comparing
against BERT and other specialized models. We find that our performance on
biomedical tasks is competitive with the state-of-the-art with virtually no loss of
generality. Our results demonstrate the applicability of this knowledge integration
technique to the biomedical domain as well as its shortcomings. The reduced risk of
catastrophic forgetting displayed by this approach to domain adaptation broadens
the scope of applicability of specialized language models.

With the density and recurrence of specialized vocabulary in some fields such
as STEM or law, transformer-based contextualized language models (LMs) such
as BERT (Devlin et al., 2019), trained on general text, tend to underperform in
those fields. One obvious solution to this out-of-domain performance problem is to
reduce the distributional shift between pre-training and deployment by pre-training
on in-domain text. While this method generally performs well (Gururangan et al.,
2020), it does have several drawbacks. First, language models are inefficient at
learning factual information. This is evidenced by the fact that they are not reliably
able to predict facts that appear in their training data. For instance, let us present
the following sentence from English Wikipedia (on which BERT models are trained)
to BERTLARGE:

Diabetes is due to either the pancreas not producing enough insulin, or
the cells of the body not responding properly to the insulin produced.

When we mask the word pancreas (which is split into wordpieces pan, -cre and
-as), BERT ranks the relevant wordpieces as the 7088th, 3999th, and 4864th most
likely completions at their respective positions. While this is only one example
of failure to memorize the relationship between specific entities, it does betray
a lack of useful knowledge relative to the amount of text required to train the
model. A large quantity of text is therefore needed to capture factual relationships
between specialized entities. Consequently, models specialized by pre-training on
in-domain text typically require several billion words of in-domain text, as with
the approximately 21 billion words in the training corpus for BioBERT (Lee et al.,
2019) and 57 billion words for LEGAL-BERT (Chalkidis et al., 2020). Furthermore,
while this in-domain pretraining solution is the most commonly used, Arumae and
Bhatia (2020) and Xu et al. (2020) demonstrate that this approach tends to create
models that perform well on the target domain, but poorly on general text, even
when such text is part of the pre-training curriculum — i.e. models pretrained on
large in-domain corpora are prone to catastrophic forgetting.

Reducing the risk of catastrophic forgetting in domain adaptation would broaden
the scope of applicability of specialized language models. Whilst it is self-evident
that expanding the capabilities of a language model is generally desirable, this
also has specific applications. Science communicators, for instance, who often
distill scientific publications to short, layman-readable articles, must have a good
understanding of the concepts and methods in their field, be able to identify the im-
portant novel ideas, discard non-essential details, reformulate complex and precise
concepts (e.g. “Pericarditis”) into simpler and fuzzier language (e.g. “inflamma-
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tion of tissue around the heart”), and identify concepts that are considered too
obvious to mention in the published works but which outsiders may not know of
(e.g. “correlation does not imply causation”). These tasks require a high level
of proficiency in scientific as well as non-specialized language. Instilling this dual
proficiency into language models could for instance enable automatic fact-checking
of popular science articles, or scientific publication summarization for non-experts.
More generally, automatic detection and clarification of complex concepts in doc-
uments written by experts, such as medical, legal or financial documents, could
be very helpful in assisting laypeople with administrative tasks and would benefit
greatly from both a fine grained understanding of specialized concepts and a high
proficiency in non-specialized language.

Our approach to language model specialization is to provide it with an ex-
ternal source of relevant knowledge, reducing the need for in-domain text during
pre-training as well as the risk of catastrophic forgetting. This allows the model
to access information pertaining to concepts not seen in the training corpus. This
type of approach would usually imply performing an Entity Linking (EL) step – i.e.
identifying the mentions of concepts in the input text – ahead of leveraging the
information in the knowledge base (KB). In practice, satisfying this requirement
with a good enough degree of accuracy to render knowledge integration useful is a
problem that has yet to be solved. Peters et al. (2019) on the other hand describe
KnowBert, a method to enable a pretrained LM such as BERT to utilize informa-
tion from a KB which relaxes this constraint, requiring only candidate mentions.
Following this procedure, we inject knowledge from the Unified Medical Language
System (UMLS) Metathesaurus into a BERT-based language model. We name
the resulting model KnowBert-UMLS.

We expand on the context for this work and discuss other approaches used for
solving these problems in Section 2.5. Because of the scale, variety, and lexical
polymorphism of the concepts recorded in UMLS, as well as the relative scarcity of
corpora containing labeled examples, there are specific challenges linked to applying
KnowBert to UMLS, which we detail in Subsection 4.3.1. In Subsection 4.3.2, we
discuss the relative performance of our model with respect to relevant baselines on
in-domain and out-of-domain tasks. Finally, Subsection 4.3.3 is dedicated to our
conclusions and future work.

4.3.1 . KnowBert-UMLS

The blueprint for KnowBert-UMLS, detailed in Figure 4.4 (a), is based on
KnowBert, and comprises three main sections: the pretrained LM backbone, the
knowledge base with its candidate generator, and a Knowledge Attention and
Recontextualization module (KAR).

4.3.1.1 Architecture

4.3.1.1.1 PretrainedLMbackbone BERT-based models comprise L Transformer
Encoder Blocks, with each block i taking as inputN non- or partially-contextualized
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Figure 4.4: Overview of the structure of KnowBert-UMLS (a) with detailed
breakdown of the KAR (b).

token representations in RH , arranged as a matrix Hi−1 ∈ RN×H , recontextualiz-
ing them using attention, and returning a same-size matrix Hi.

As a backbone, we use BERTBASE, which is pretrained on the Wikipedia and
Books (Zhu et al., 2015) corpora containing approximately 3.3 billion words, and
for which the aforementioned hyperparameters areN = 512, L = 12 andH = 768.
Despite having, in theory, the option to use any transformer-based language model,
in an effort to isolate variables, we do not choose to use a higher-performing or
specialized alternative. Moreover, BERT is better suited to the objective of this
study, which is to pursue knowledge enrichment without catastrophic forgetting,
rather than to top state-of-the-art performance in any given task.

4.3.1.1.2 Candidate Generator Whilst KnowBert does not require an upstream
Entity Linking step, it does require a set of candidate mentions C in order to incor-
porate information from the KB. Each candidate mention comprises a candidate
span s and a set Es of corresponding candidate entities from the KB. Formally:

C = {(s, Es)|∀s} (4.10)

Each candidate entity e ∈ Es represents a concept in the KB and is composed
of an embedding e, and a prior probability p:

Es = {e : (ee, pe) | e ∈ RK ,
∑
e
pe = 1} (4.11)

where K is determined by the algorithm used to derive entity embeddings
from the KB. In the case of UMLS, we use the pretrained embeddings provided by
Maldonado et al. (2019) which set K = 50.
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A candidate span can be any sub-string in the sentence which is deemed suf-
ficiently similar to an entity in the KB, and can overlap, or be nested with other
spans. For instance, consider the following phrase:

Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) pa-
tients [. . . ]

A candidate generator might generate the following candidate spans, outlined in
boxes:

Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF)

patients [. . . ]

Or, more explicitly: Pseudomonas; aeruginosa; Pseudomonas aeruginosa; Pseu-
domonas aeruginosa (PA) infection; cystic ; fibrosis; cystic fibrosis; and patients.
Each of these candidate spans would be paired with a set of candidate entities E .

4.3.1.1.3 KAR On an abstract level, the KAR remains largely unchanged from
KnowBert. It slots in-between two BERT layers i and i+1 and functions similarly
to a Transformer Block, taking as input partially contextualized word representa-
tions Hi and outputting knowledge-enriched, recontextualized word representations
H′

i ∈ RN×H . As an additional input, it takes a set of candidate mentions C.
The knowledge incorporation step is performed in the entity embedding space

RN×K ; the KAR thus linearly projects the partially contextualized wordpiece em-
beddings to the entity space and back:

Hproj
i = HiW + b

H′
i = H′ proj

i W′ + b′ +Hi

(4.12)

where W, W′, b and b′ are learned and H′ proj
i is the matrix of knowledge-enriched

token representations embedded in entity space (see Figure 4.4 (b)).
The knowledge integration process itself comprises four main steps. First, the

token representations for each candidate mention are pooled using an attention-
based weighted sum following Lee et al. (2017) into a matrix S ∈ R|C|×K . In order
to identify false positives among nested or overlapping candidate spans as well
as commonly co-occurring entities, the span representations exchange information
using Multi-Head self-Attention as in a standard Transformer block, resulting in
the contextualized span representations Se.

For every given span s, we write the corresponding contextualized span em-
bedding from Se as se ∈ RK , the vector of prior probabilities of corresponding
candidate entities ps ∈ R|Es|, and the matrix of corresponding candidate entity
embeddings Es ∈ RK×|Es|.
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ψψψψs = Softmax(MLP(ps, s
e ·Es))

ẽs = ψψψψs ·ET
s , ∈ RK (4.13)

where ψψψψs is an estimate of the posterior probabilities of each candidate entity for
s, and ẽs is a weighted average of candidate entity vectors for s. As an additional
benefit beyond knowledge integration, this can be used for Entity Linking by simply
choosing the entity in the KB which has the embedding most similar to ẽs or the
one with the highest estimated posterior probability.

The knowledge-enriched span representations S′e ∈ R|C|×K are then defined as
the sum of the contextualized span representations Se and the matrix of computed
entity vectors Ẽ, and the knowledge is transferred from the span representations
to the wordpiece embeddings using Multi Head Attention (MHA) followed by a
position-wise Multi-Layer Perceptron (MLP), similarly to a Transformer block:

H′ proj
i = MLP(MHA(Hproj

i ,S′e,S′e)) (4.14)

The KAR can be inserted between any two transformer blocks i and i + 1, and
multiple KARs can be inserted simultaneously between different blocks. In the
single-KAR case however, using BERTBASE as the pretrained backbone, insertion
is most effective at block i = 10.

4.3.1.2 Training

The pre-training for KnowBert models is a three step process. First the back-
bone is pre-trained on a language modeling objective, specifically on a combination
of the MLM and next sentence prediction objectives in the case of BERT. Then, the
KAR is trained on the Entity Linking (EL) objective, minimizing the log-likelihood
of the estimated posterior probabilities of candidate entities:

LEL = −
∑
s

log

(
exp(ψsg)
n∑
k=1

exp(ψsk)

)
(4.15)

The model is subsequently trained on both the language modeling objective
used in pre-training and EL. This step is similar to an extended pre-training, but its
main objective is to allow the Transformer Blocks which receive knowledge enriched
information from the KAR to learn to interpret and integrate it. To avoid ambiguity
with regular pre-training, we call this step re-training. Optimizing only one of the
two objectives during this phase leads to catastrophic forgetting of the other, even
when the weights of the KAR are frozen. Once the KAR is fully integrated into the
model with this step, the model can be fine-tuned to any task much like a typical
BERT-based model.
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Figure 4.5: Precision-Recall Plot for QuickUMLS and ScispaCy candidate gen-
erator configurations, with Semantic Type versus Concept-based candidate
generation breakdown for ScispaCy. Evaluation carried out on a subset of the
MedMentions dataset.

4.3.1.3 Leveraging UMLS

UMLS indexes over four million biomedical concepts, such as headache, spleen,
or acetylsalicylic acid, grouped into 135 semantic types including organisms, anatom-
ical structures, and diseases or syndromes. So far, due in part to the difficulty of
reliably identifying UMLS concepts in text, leveraging the concepts themselves from
UMLS has been out of reach of knowledge integration techniques. UmlsBERT, for
instance, only uses embeddings for clusters of semantic types and uses UMLS as
a thesaurus for single-word concepts.

Whilst the computational impact of the KAR is negligible, making candidate
generation tractable is non-trivial at the scale of our KB and re-training corpus as
discussed by Piat et al. (2022b) (Section 4.2). We have benchmarked a variety of
algorithms, most of which were far too computationally inefficient for practical use
in this context. QuickUMLS was a promising choice, as it was a tool designed for
this purpose, and is faster and more accurate than any other string-similarity-based
algorithm. However, as illustrated in Figure 4.5 which plots Precision versus Re-
call for multiple candidate generator configurations, QuickUMLS configurations (in
blue) performed poorly in comparison to ScispaCy (Neumann et al., 2019), being
ninety-seven times slower and generally suffering from lower precision and recall.
Nevertheless, the combination of neural networks and rules used by ScispaCy was
too computationally expensive to use in realtime during re-training, and the candi-
dates had to be pre-generated. Candidate generation on a 153.6 Billion sentence
corpus took approximately three days on a computing cluster, using fourteen Xeon
36-thread CPUs clocked at 3GHz.

We compared the performance of KnowBert using both UMLS Concepts and
UMLS Semantic Types as KB entities forming the basis of our knowledge inte-
gration. Attempting to integrate knowledge from UMLS concepts did not work,
resulting in the model performing on par with an unmodified BERT, as it learned
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to not take into account the knowledge integrated by the KAR. We suspect two
main factors are at play, leading to the KAR being unable to accurately learn to
estimate the posterior probabilities for the candidate concepts. First, the precision
of the candidate generator is lower for UMLS concepts, as illustrated in Figure 4.5
(points in red). For the candidate generator, Recall bounds the model’s ability
to incorporate knowledge (since no knowledge can be incorporated from an entity
not identified by the candidate generator), and Precision affects the imbalance
between positive and negative samples during the EL objective. Therefore, whilst
maximizing recall maximizes the model’s potential, doing so at the cost of precision
increases noise in the EL dataset and makes learning more difficult.

The second factor we believe to be responsible for the underperformance of
Concept knowledge integration is the lack of concept coverage in the training data,
which is under 1% of all concepts, with a Zipfian distribution of occurrences. Con-
sequently, setting the weight of the KAR’s contributions to 0 is the policy which
most accurately predicts masked tokens during training. Despite the Semantic
Type information being less insightful than the Concept information, the increased
quality of candidates and density of training data in annotated examples (approx-
imately 94% coverage of all types, and 79% of types covered better represented
than in a Zipfian distribution) make Semantic Type information worth incorporat-
ing. Henceforth, all mentions of KnowBert-UMLS assume that we use Semantic
Types as knowledge base entities unless explicitly stated.

4.3.2 . Experiments

To evaluate our model, we choose two in-domain and two out-of-domain tasks.
For our in-domain tasks, we choose Named Entity Recognition (NER) on the
n2c2 (formerly known as i2b2) 2010 dataset (Uzuner et al., 2011) and Relation
Extraction (RE) on the ChemProt (Krallinger et al., 2017) dataset. These tasks are
fairly standard, with most biomedical language models having their performance
published, and are part of the BLUE (Peng et al., 2019) benchmark. For our
out-of-domain tasks, we choose Natural Language Inference (NLI) and Linguistic
Acceptability as Arumae and Bhatia (2020) demonstrated that these tasks were
particularly affected by extended-pretraining-induced catastrophic forgetting with
BioBERT. Specifically, we choose the SNLI (Bowman et al., 2015) dataset, and
an altered version of the CoLA (Warstadt et al., 2019) dataset (see section 4.3.2.4
for details) respectively.

All performance scores have been scaled up (from [0, 1] or [−1, 1]) by a factor
of 100 for readability. In all tables, the underlined result is BERT which, as a
general language model, is expected to have the best performance on the general
language tasks (CoLA & SNLI) and worst on biomedical tasks (n2c2 & ChemProt).
In bold is the best specialized model.

We choose our baselines to represent various amounts of in-domain and out-
of-domain pre-training corpus sizes, which we break down in table 4.6. Aside
from BERTBASE, we compare performance against the following baselines: Blue-
BERT and BioBERT as they are respectively pretrained moderately and heavily
on biomedical text (4.5 versus 18 gigawords in addition to the 3.1 gigawords of
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Model Biomedical General Knowledge integration
BERTBASE 0.0 3.1 No
PubMedBERT 3.2 0.0 No
BlueBERT 4.5 3.1 No
BioBERT 18.0 3.1 No
UmlsBERT 18.5 3.1 Yes
KnowBert-UMLS 2.2 3.1 Yes

Table 4.6: Pre-Training Corpus Size (Billions of Words) by Type for Baselines
Versus KnowBert-UMLS.

the BERT pre-training corpus); PubMedBERT as it is pretrained on an amount of
text very similar to BERTBASE (3.2 versus 3.1 gigawords respectively) but which
is exclusively biomedical; and UmlsBERT which is similar to BioBERT (with only
five hundred million additional words from a biomedical corpus) but includes a
knowledge integration mechanism as part of its pretraining.

For all models and all tasks, final token or sequence classification is performed
using a linear classifier. For all experiments, all models were fine-tuned with the
following hyperparameters: our models are trained for 10 epochs with an initial
learning rate of 2 × 10−5 and weight decay of 0.01. Our optimization algorithm
is AdamW. The model state which performed best on the validation split of each
dataset was evaluated on the test set. Results are averages over multiple experi-
ments.

4.3.2.1 Biomedical NER

In this task, models must identify locations where named entities are mentioned
and tag them as instances of problems, tests or treatments. As the methodology of
previously published results for our baselines is inconsistent, we evaluate the various
BERT-based language models on this task ourselves. We use the micro-averaged
F1score as computed by Seqeval (Nakayama, 2018) in strict mode and provide
a breakdown of precision and recall, as sub-sequence classification (as opposed
to sequence classification) does not cause micro-averaged precision and recall to
necessarily be equal. We use IOB2 as our annotation and prediction scheme.

We expect an improvement over BERT due to specialization, whilst Umls-
BERT, as the most heavily pretrained language model which also benefits from
knowledge integration, should perform best overall. From the results in Table 4.7,
we gather that the KAR succeeded in specializing the model, as KnowBert-UMLS
outperforms BERTBASE by a considerable margin. However, the KAR seems to not
have been quite as effective of a specialization method for NER as the others. In
particular, despite the candidate span generator providing it with additional infor-
mation on named entities in the text, its recall is the lowest among the models we
assess. This is likely due to the discrepancy between the terms chosen by the can-
didate generator and the KAR for enrichment, and the parts of speech expected to
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be labeled for this task. Specifically, the n2c2 corpus requires possessive pronouns,
determiners, articles, adjectives and other qualifiers to be included in the entity,
whereas UMLS (and therefore the candidate generator) requires the opposite. For
instance, the following sentences occur in the n2c2 dataset:

1. On postop day number two she was also afebrile1 and had not passed
any flatus2 yet.

2. Administer iron products a minimum of 2 hours before or after
a levofloxacin3 or ciprofloxacin dose4 [...]

The named entities which are expected to be marked are underlined and num-
bered with subscripts. The second and third entity mentions include determiners
(any and a respectively) which manual model output examination reveals are not
identified by KnowBert-UMLS, whereas the main words in the entity mentions
(flatus and levofloxacin respectively) are accurately identified and tagged. This is
by far the predominant type of false negative within the reviewed set of samples
and mirrors the words identified as entity mentions by the candidate generator,
indicating that the model may have low confidence on terms that do not benefit
from knowledge integration.

In comparison, BlueBERT’s most prominent weaknesses seem to be that it
misses entity mentions entirely or does not include all of the words which the
mention comprises. In the aforementioned example, for instance, BlueBERT does
not recognize the second mention (any flatus) as an entity, and it excludes the
word ‘dose’ in the fourth mention. BlueBERT also struggles with determiners, but
to a lesser degree. In particular, we have not been able to find an example where
BlueBERT misses a possessive pronoun. In fact, possessive pronouns seem to be a
prominent source of false positives for BlueBERT, as it tends to tag non-biomedical
nouns when they follow one.

Lastly, while this is not a highly prominent issue for either model, KnowBert-
UMLS confuses entity types more often than BlueBERT, with approximately 12.7%
of KnowBert-UMLS’ mistakes being of this kind, versus 8.9% for BlueBERT. This
is surprising, as one would expect that integrating knowledge of semantic types
would specifically target this type of mistake, assuming there is an (approximately)
surjective mapping of n2c2 entity types onto UMLS semantic types. This as-
sumption is not verified however as, for instance, the ‘Finding ’ semantic type may
correspond to either the ‘test’ or ‘problem’ entity types, and many semantic types
related to substances can correspond to either ‘test’ or ‘treatment’. Furthermore,
words which are typically used in one context and punctually used in another can
be matched with the wrong semantic type, priming the language model with er-
roneous information, causing it to predict the wrong entity type. For instance,
the word ‘splint’ typically refers to a type of brace (which would correspond to
the ‘treatment’ entity type), but can refer to ‘shin splints’, a type of injury, i.e.
‘problem’.
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Model P R F1
BERTBASE 82.71 86.21 84.42
BioBERT 85.20 87.74 86.46
PubMedBERT 86.62 88.28 87.44
BlueBERT 86.68 88.71 87.68
UmlsBERT 86.92 89.46 88.18
KnowBert-UMLS 86.63 85.84 86.23

Table 4.7: Performance on the n2c2 2010 NER Task.

Model micro F1
BERTBASE 66.51
BioBERT 75.14
PubMedBERT 77.24
BlueBERT 69.15
KnowBert-UMLS 70.74

Table 4.8: Performance on the ChemProt Relation Extraction Task, Micro-F1.

4.3.2.2 Biomedical Relation Extraction

This is a sequence classification task, wherein two entities per sequence are
marked with special characters, and the model must determine which of five relation
types (or no relation) exists between them. Scores for BioBERT, PubMedBERT
and BlueBERT are self-reported scores of the overall best-performing version of
each model. The performance of BERTBASE was measured by us using the version
of the ChemProt corpus distributed by Peng et al. (2019).

Due to the entities being marked in all versions of the training set used by our
baselines, the importance of a good model for grammar is lessened with respect
to other tasks. We therefore do not expect general language understanding to be
highly predictive of performance on this task. Rather, knowledge of biomedical
entities and their relations is expected to be of greater importance. We therefore
expect KnowBert-UMLS, which seeks to acquire specifically this type of knowledge,
as well as the heavily pretrained BioBERT model, to perform well on this task, with
BERTBASE performing worst. Our results in Table 4.8 largely correspond to what
we expected. PubMedBERT, however, which was pretrained only on biomedical
text, performs better than expected, implying out-of-domain pre-training may in
fact be detrimental.

Once more, we observe that KnowBert-UMLS outperforms BERT, implying
that specialization was successful, yet it underperforms in comparison to other
pretrained models. BioBERT being outperformed by PubMedBERT is unexpected,
but may be due to the small pre-processing differences in the version of the corpus
used by BioBERT.

77



4.3.2.3 General NLI

We evaluate all models ourselves on the SNLI task, in which two sequences, a
premise and hypothesis, are fed to the LM. It must determine whether the premise
entails the hypothesis, whether they are contradictory, or neither (their relationship
is “neutral ”). As this is a general language task, we do not expect any specialized
model to outperform BERTBASE by a significant margin, and we expect KnowBert-
UMLS to perform on par with BERT. Due to the similarities between the SNLI
and WNLI task from GLUE, which BioBERT struggles with according to Arumae
and Bhatia (2020), we expect for the models with extended pre-training to perform
poorly on this task, particularly UmlsBERT for which the knowledge integration
process relaxes the grammatical correctness constraint.

Table 4.9 shows results in line with our predictions, i.e. KnowBert-UMLS is
the closest to BERTBASE in terms of F1 score which is consistent with a reduc-
tion of catastrophic forgetting leading to better performance. However, the gap
in performance between the models with extended pre-training and the others is
narrower than expected given BioBERT’s performance on the similar WNLI task
according to Arumae and Bhatia (2020). This is likely due to SNLI not being as
adversarial as the WNLI benchmark.

Model micro F1
BERTBASE 89.24
BioBERT 88.90
PubMedBERT 88.81
BlueBERT 88.20
UmlsBERT 88.59
KnowBert-UMLS 89.03

Table 4.9: Performance on the SNLI Task, Micro-F1.

KnowBert-UMLS and BERT perform with a high degree of similarity, quanti-
tatively as well as qualitatively, as the specific instances of KnowBert-UMLS and
BERT used in the following analysis share the same prediction on 94.53% of the
instances in the test data. Both models slightly underperform compared to their
respective averages, with micro-F1 scores of 87.99 and 88.33 respectively. How-
ever, many of the examples in the SNLI dataset are open to interpretation. For
instance:

Premise: A bearded man wearing a blue shirt and white t-shirt is
working on a fishing net.
Hypothesis: Someone is preparing to catch fish.

While the hypothesis is the most likely explanation for the premise, it is not difficult
to imagine scenarios where the premise is true and the hypothesis is false. It is
therefore unclear whether the relationship is of entailment or neutral.
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In order to capture this ambiguity, in addition to the reference label, each
sentence has been manually labeled by five human reviewers. In this case, the
label is ‘entailment’, but two out of five reviewers labeled the relationship between
these sentences as ‘neutral’. If we accept the reviewers’ answers as valid predictions,
the micro-F1scores of KnowBert-UMLS and BERT (that is, the specific instances
used in this analysis) on this task are 96.80 and 96.88 respectively, meaning only
approximately one in four errors made by KnowBert-UMLS and BERT were in
disagreement with all reviewers.

We decide to examine the mistakes made by both models and attempt to
identify patterns. No clear tendencies could be found regarding the incorrect label
predictions, but analyzing the instances themselves, we could group mistakes into
four major types:

• Blunders, for which no information other than what is stated in the text is
required to make a decision.

• Common Sense (CS) mistakes, which require some reasoning and/or a non-
trivial piece of real-world knowledge.

• Technically Correct (TC) predictions, in which the model’s answer could be
considered correct based on an arguably valid interpretation of the text.

• Not-an-Error (NaE), for which we agree with the model and disagree with
the label, or the input text contains a major corruption.

We provide examples of the aforementioned categories in Appendix A.1.1. After
manual examination of the models’ failure cases, we report a breakdown of mistakes
by type in Table 4.10.

Model Blunders CS TC NaE
BERTBASE 38.9% 33.7% 12.9% 14.9%
KnowBert-UMLS 38.6% 38.1% 7.3% 15.7%

Table 4.10: Breakdown of mistakes made by KnowBert-UMLS and BERT by
type on the SNLI task.

The main recurring pattern seems to be for KnowBert-UMLS to lack real-
world knowledge but stick to more straightforward interpretations of sentences.
Illustrative examples for CS and TC mistakes are given in appendices A.1.2 and
A.1.3 respectively. This may indicate that KnowBert-UMLS suffers from some
amount of catastrophic forgetting on real-world knowledge, and perhaps is less
prone to noticing and fixating on details which could skew its understanding of the
text.
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4.3.2.4 Linguistic Acceptability

Model Matthews Corr. micro F1
BERTBASE 60.50 83.68
BioBERT 49.30 78.75
PubMedBERT 42.90 76.28
BlueBERT 39.76 78.18
UmlsBERT 44.24 77.41
KnowBert-UMLS 58.52 87.61

Table 4.11: Performance on themodifiedCoLA task, Matthews’ Correlation and
Micro-F1.

Our dataset for the Linguistic Acceptability task is based on the CoLA task
from the GLUE benchmark. Since CoLA does not make the labels of its test split
public however, and in the interest of being able to qualitatively analyze the types of
mistakes made by the models in order to identify specific strengths and weaknesses,
we have rearranged the available annotated examples into new training, validation,
and test splits. Specifically, we use the validation split for final testing, and replace
the validation split with a subset of the train split. In an effort to make our tests
reproducible, we have decided to use the un-shuffled final 500 entries of the train
split of version 1.1 as validation set.

The objective for this task is to classify sequences as "linguistically acceptable"
(i.e. grammatically correct and natural-sounding) or not. We evaluate our model
and baselines using micro-averaged F1, as it is the most standard classification met-
ric, as well as the Matthews Correlation Coefficient, which is the metric used by
GLUE and is generally preferred in a binary classification setting as it isn’t biased in
favor of the positive class. As with NLI, we expect BERTBASE, as the general pur-
pose language model, to perform the best, and KnowBert-UMLS to come second
as the way it is trained is meant to reduce catastrophic forgetting. UmlsBERT and
BioBERT, on the other hand, should perform poorly due to additional pretraining.

Our results in Table 4.11 are consistent with these predictions, with the caveat
that KnowBert-UMLS outperforms BERTBASE in F1 score. This is due to a com-
bination of class imbalance in the dataset, with well-formed sentences being over-
represented, and an inherent bias in the F1 metric due to it not taking True Negative
predictions into account. While KnowBert-UMLS performs best overall on the ex-
amples given, BERTBASE more accurately recognizes badly constructed sentences.

Furthermore, UmlsBERT does not perform quite as poorly as expected and
BioBERT performs unexpectedly well given the additional biomedical pretraining
it has undergone compared to the other specialized models. This may imply that
the relationship between specialized pre-training and catastrophic forgetting is not
monotonic but in fact more complex.

KnowBert-UMLS far outperforms specialized baselines on this task, demon-
strating this method’s effectiveness in avoiding catastrophic forgetting. Out of the
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527 samples in our test set, the specific instance of KnowBert-UMLS used in this
analysis yielded 64 false positives and 25 false negatives for an MCC of 58.35. In
comparison, our BERT instance suffered 64 false positives and 20 false negatives
for an MCC of 60.89.

Inspection of false negative instances reveals that some of the labels in the
corpus reflect types of phrasing that are uncommon in modern written English.
For instance:

Came right in he did without so much as a knock.

This phrasing is highly irregular outside of some areas of the UK and lacks punc-
tuation.

Will he can do it?

This sentence uses double modals, which is a nonstandard construction seldom ap-
pearing outside of oral speech in Scotland, Northern Ireland and Northern England.

Rusty talked about himself only after Mary did talk about him.

While grammatically correct, the use of did talk rather than the straightforward
simple past talked is uncommon in this context. This is likely another regional
variance.

While it could be argued that general models should be able to handle non-
standard constructions for applications such as speech-to-text transcription or ap-
plications involving transcribed text, it can be desirable for a specialized model
such as KnowBert-UMLS to classify them as incorrect as such sentence structures
may be particularly unlikely to be intentional constructions by a native speaker in
the contexts in which the model is susceptible to be deployed.

We therefore manually re-label these false negatives as true negatives in order
to estimate the performance of KnowBert-UMLS in these types of contexts. We
do not consider re-labeling false positives or true negatives as there are fewer ex-
amples of this occurring in the negative class and the practical interpretation would
be unclear. Examination of the true positives did not yield any instances which
we believe would have warranted relabeling. The full list of incorrect predictions
for BERT and KnowBert-UMLS can be found in appendix A.2, with re-labeled
instances marked by a right-facing arrow (‘→’).

Taking these new labels into account, the MCC of Knowbert-UMLS’ predic-
tions on this task increases to 64.70, outperforming BERT’s average performance.
While the improved performance demonstrated by this interpretation of the data is
meaningful, this score is not necessarily representative of real-world performance,
as it neglects several factors. First, performing this relabeling on the train and
validation sets in addition to the test set would likely give us a more accurate per-
formance estimate. Second, this is only done for one trained model; results should
be averaged over multiple experiments to be representative.
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Furthermore, this comparison is (by design) unfair as we place different expec-
tations on both models. When we relabel the false negatives predicted by BERT,
its score increases by 2.35 fewer points than KnowBert-UMLS, to 64.89 MCC.
KnowBert is therefore not only more prone to rejecting sentences as we can tell
from its greater number of negative predictions, but is specifically more prone to
rejecting non-standard constructions, which may be a desirable feature.

4.3.3 . Conclusions
4.3.3.1 Results

KnowBert-UMLS outperforms BERT on biomedical tasks whilst outperforming
every other specialized model in out-of-domain tasks. Reducing extended pre-
training in favor of Knowledge integration therefore proves to be a successful way of
specializing a language model such as BERT to a given domain whilst reducing the
impact of catastrophic forgetting. However, KnowBert-UMLS does not perform as
well as some other models in the biomedical domain, meaning that its specialization
method is less effective. We explain this by the fact that the Concepts in the
UMLS knowledgebase are too numerous and annotated text too rare to learn from
effectively, and Semantic Type knowledge is not as informative on an entity-mention
level as familiarity with the vocabulary is.

The shortcomings of KnowBert-UMLS in the biomedical domain seem to reflect
some lack of precision in biomedical knowledge, but more significantly, a difficulty
grasping the tasks’ expectations regarding which parts of speech to include within
named entities. This is in line with the expectation that KnowBert’s increased
knowledge must come at the cost of some level of proficiency with grammar, and
may reflect some level of heterogeneity and inaccuracy of information introduced by
KnowBert’s knowledge integration process. For out-of-domain tasks, KnowBert-
UMLS seems to suffer from a lack of common-sense knowledge, but its slightly
degraded performance on CoLA may reflect a desirable compromise which benefits
adaptation to biomedical language.

4.3.3.2 Future work

In light of these observations, perhaps the most significant weakness of Knowbert-
UMLS is a lack of common-sense knowledge. As Peters et al. have shown, a fea-
ture of the KnowBert architecture is that it can accommodate multiple knowledge
graphs. Adding support for a general knowledge graph such as Wikipedia or a
common-sense knowledge graph such as CSKG (Ilievski et al., 2021) or ATOMIC
(Sap et al., 2019) could improve the performance of KnowBert-UMLS, particularly
on general language and out-of-domain tasks, but perhaps also on biomedical tasks
as this may reduce the heterogeneity of knowledge integration.

Following this method, KnowBert-UMLS may alternatively be further special-
ized in the biomedical domain with the integration of an additional biomedical
KB such as OpenTargets’ LINK, or it may even support multi-specialization, using
knowledgebases from entirely different fields such as YAGO (Suchanek et al., 2007)
or WorldKG (Dsouza et al., 2021). If this is shown to be possible, this method may
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prove to be a computationally affordable way to increase the breadth of knowledge
and reliability of multi-billion parameter language models such as GPT-3, poten-
tially allowing one instance running on a computing cluster to serve the needs of
a variety of professionals from different fields.

Another way of increasing performance in the biomedical domain, particularly
to increase the exactitude of the entity types identified, may be to find a better
compromise between the high granularity (and therefore informativity) of UMLS
concepts and the higher candidate generator accuracy and training data availability
on Semantic Types, perhaps by clustering related concepts or falling back onto
semantic types only for the concepts on which the candidate generator is highly
uncertain.

With our results on the CoLA task leading us to suspect that catastrophic for-
getting does not monotonically increase with the amount of specialized pre-training,
assessing the performance of models with various levels of specialized pre-training
on various out-of-domain tasks could be enlightening and inform better pre-training
policies in the future. Moreover, the n2c2 2010 NER and CoLA tasks suggest that
the semantic enrichment of word representations from KnowBert-UMLS comes at
the cost of some grammatical proficiency. That is to say, KnowBert-UMLS is not
entirely immune to catastrophic forgetting. This may be addressable by adding
general text to the MLM re-training objective, or adding one or more different,
explicit grammar-oriented objectives such as POS-tagging in alternation with EL
and MLM. Furthermore, an improved identification of False Positives from the can-
didate generator may increase the Precision over candidate entities and improve
performance by reducing the amount of noise the KAR includes as it incorporates
knowledge.

Lastly, the improvements brought by this method of knowledge integration
may be orthogonal to the improvements brought by extended pre-training or other
knowledge integration methods. In fact, such improved representations of biomed-
ical text may help the KAR to reach the full extent of its capabilities. A compar-
ative study of performance on a variety of in- and out-of-domain tasks by multi-
ple KnowBert-UMLS-like models with different pretrained LM backbones such as
RoBERTa, BioBERT, BlueBERT, and UmlsBERT would shed a valuable light on
this topic and may lead to a new state of the art in biomedical language modeling.
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4.4 . Conclusion

The behavior of KnowBert-UMLS provides evidence for knowledge integration
having advantages over in-domain extended pretraining for the purposes of domain
adaptation, most notably a lower tendency for catastrophic forgetting. However,
the use of concept embeddings for the enrichment of token embeddings inherently
requires the model to learn a mapping between the concept-embedding vector
space and the token-embedding vector space. This in turn seems to require a
considerable amount of in-domain text, which isn’t available for all domains, as
well as large computational resources. Additionally, even when supported by a
candidate generator and learned in tandem with language modeling, EL remains
a significant bottleneck when leveraging UMLS, and this appears likely to be true
for other large, domain-specific ontologies, particularly given the requirement for
labeled data when training EL. Lastly, it is not obvious that integrating changes
to a KG following this knowledge integration approach could be made significantly
more straightforward than training the model from scratch, as any change to the
graph is liable to change all of the concept embeddings depending on the graph
embedding algorithm.

It is apparent that language models are refractory to integrating the concept
embedding modality, and most of the objectives we pursue in the knowledge inte-
gration approach to domain adaptation — reduced computational cost to updating
the models crystallized intelligence, reduced reliance on in-domain text — are not
met following this method. We therefore seek a different representation for our KB,
and a method for integrating the knowledge contained within. The most obvious
strategy is to represent our KB in model’s default modality — text — and to distill
the information present in the text into the model in the standard fashion — MLM
pretraining. While this doesn’t address all of the aforementioned issues, this is (in
principle) a simple approach which does bypass the problems of EL and concept
embeddings entirely, and may serve as a stepping stone for further improvements.
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5 - Leveraging Knowledge Graphs as Text

Transformer-based language models have trouble integrating modifications
whose purpose is to incorporate knowledge from structured, non-textual data such
as knowledge graphs. Instances where this integration is successful generally re-
quire the problem of Entity Linking to be solved upstream, or the addition of a
significant amount of (generally annotated) text to the training set. These con-
straints often make leveraging structured data difficult and/or counterproductive.
We seek to adapt a language model to the biomedical domain through training on
synthetic text derived from a knowledge graph, such that the information therein
can be effectively leveraged in a format which the model can handle natively.

5.1 . Introduction & related work

Because of the specificity of concepts and vocabulary used in some domains, the
performance of language models pre-trained on general text, such as BERT (Devlin
et al., 2019), tend to suffer in these domains. Various approaches to language
model specialization exist, the most notable and obvious of which is specialization
through pre-training on text from the target domain. The performance of this
approach has been investigated by Gururangan et al. (2020), and many models
specialized in this way have been met with success, such as LegalBERT (Chalkidis
et al., 2020) in the legal domain and PatentBERT (Lee and Hsiang, 2020) in
the domain of patents. In the biomedical domain, which we focus on in spite
of the applicability of our work hypothetically extending to any domain, a variety
of models apply the same general principle, such as BioBERT (Lee et al., 2019),
BlueBERT (Peng et al., 2019) and PubMedBERT (Gu et al., 2021). This approach,
however, is not without its drawbacks. In particular, it is prone to catastrophic
forgetting (Xu et al., 2020), and requires a large amount of in-domain text to
derive a significant benefit, which is not an option available in all domains. In
addition, as observed by Zipf (1935), the distribution of words in natural language
is highly biased, which results in a linear increase in concept coverage requiring an
exponential growth in training text.

A competing class of approaches consists in integrating information from a
specialized knowledge base. Various strategies have been put froward, such as using
the attention mechanism of the Transformer to combine word-based information
and entity-based information (by ERNIE (Zhang et al., 2019), KnowBert (Peters
et al., 2019) and DRAGON (Yasunaga et al., 2022) in particular); the alignment
of word and entity embeddings (KEPLER (Wang et al., 2021b), CODER (Yuan
et al., 2022)); or changing the pre-training loss function in order to explicitly model
specialized term synonymy (UmlsBERT (Michalopoulos et al., 2021)).

While some of these approaches yield remarkable results, their range of ap-
plicability is limited by the fact that they do not allow for a significant reduction
in amount of in-domain training text in comparison to extended-pretraining based
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approaches. In fact, in order to learn to leverage the relevant concepts and re-
lations of a knowledge graph given some natural language context, they typically
require additional training text with labeled entities, which is not available in many
domains. Furthermore, most approaches require that entities from the knowledge
base be identified in the text at inference in addition to the training phase. Au-
tomating this process may be an option in some contexts, but is not a solved
problem for all domains, and the best tools available currently are computationally
demanding, limiting the scale at which they can operate. As of the writing of this
dissertation, the state of the art in biomedical entity linking (Bhowmik et al., 2021)
achieves an F1-score of 0.534 on the MedMentions corpus (Mohan and Li, 2019).
While this is sufficient for some knowledge integration methods to demonstrate a
moderate increase in performance over extended-pretraining-based methods, this
significantly limits the amount and relevance of knowledge that can be integrated.

We therefore seek a knowledge integration method such that no text from
the target domain and no Entity Linking — in training or at inference — are
necessary. As the combination of different modalities invariably leads to the need
for additional training data, we aim to leverage our knowledge base in text form.
We propose a corpus generation procedure which translates pairs of entities linked
by a relation in a knowledge graph to factual sentences. It is expected for a corpus
produced in this manner to be more dense in facts linked to the domain than
natural language, and to cover a greater variety of concepts for a given amount
of text, as the text is more focused and the frequency of appearance of concepts
is dictated by the topology of the knowledge graph rather than by spontaneous
usage in natural language.

5.2 . Method

5.2.1 . Knowledge Graph
We define our knowledge graph as a set of nodes C which represent concepts

and edges R which represent relations. Each concept c ∈ C is a associated with
a name N expressed as a noun phrase in natural language; and each relation
r ∈ R is associated with a phrase Vr containing a verb but no noun phrases, and
which encapsulates the semantic relationship between its vertices. We can therefore
extract triples (ci, r, cj) such that the concatenation NiVrNj of associated phrases
becomes a natural language sentence describing the relationship between concepts
i and j as represented in the graph. This mechanism can be used to represent the
knowledge base as a corpus of factual statements which can serve as a training
corpus for a language model.

We use the UMLS knowledge graph, in its 2022AB version, with all and only
English sources. In this version of the knowledge base, there are 1008 relation
types and approximately 4.6 million distinct entities for a total of 39.7 million
triples. Each concept is assigned a Concept Unique Identifier c and one or more
“names” N1

c , . . . , N
kc
c , noun phrases which correspond to common formulations of

the concept in natural language, and one of which is considered preferred. Each
relation type, on the other hand, is represented only by a short character string
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r, which is close to natural language, roughly describing the relationship between
concepts. The UMLS graph is represented as a relational database, with a table
containing the triples of interest, represented as: ci, r, cj .

5.2.2 . Text Generation
While the potential benefit of including (if applicable) multiple formulations

for each entity is obvious, multiple factors have led us to keep only the preferred
name of each concept:

• The level of redundancy across names is high, containing mostly duplicates,
case variations, and pluralizations.

e.g.: The concept for DNA has 88 names, of which 20 are “DNA”, 15 are
case variations and pluralizations of Deoxyribonucleic Acid, 4 are case
variations and pluralizations of DNA molecule, and 10 are combina-
tions of the aforementioned with different word orders and punctuation.

• Each triple comprising two concepts, the computation time increases quadrat-
ically with the total number of names when triples of the form (cj , r, ci)
(as extracted from the database) are resolved to their semi-natural form

(N
1,...,kci
ci , r,N

1,...,kcj
cj ).

• Including non-preferred names reduces grammatical homogeneity of noun
phrases (for instances, most preferred names are singular forms), complexi-
fying the task of generating grammatically correct sentences.

• Multiplying the occurrences of concepts associated with many names induces
a bias in the training process which may not be desirable.

Given the large number of triples, the resolution of names is not tractable on the
entirety of the knowledge base. Furthermore, all relation types are not documented,
easy to understand from inspection, or useful. We therefore select only a subset
of relation types. We start by eliminating the 925 least common relations, which
comprise approximately 15% of triples. Then, we eliminate one relation from each
pair of symmetric relations, that is, whenever there exist two relations r1 and r2
such that (ci, r1, cj) encodes the same information as (cj , r2, ci), we keep only
r1. Approximately 95% of relations are part of a symmetric pair, which leaves 43
relations. We then selected the 28 relations which had an immediately apparent
or documented meaning and which did not primarily involve concepts with highly
complex names such as chemical compounds or proteins.

Once the semi-natural triples (Nci , r,Ncj ) are extracted from the knowledge
base, we insert the entity names (Nci and Ncj ) into a standard sentence tailored
to the relation r such that the resulting full sentence encompasses the relationship
between concepts ci and cj in natural language. The corpus formed by these
sentences comprises approximately 6 million simple sentences, and 100 million
words. We call this the Synthetic Corpus Generated from UMLS (SCGU).
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Following is a randomized sample of 10 sentences from the corpus.

1. Skull Fractures is a type of Fracture of bone of head.

2. Procedures on breast is a type of Procedure on trunk.

3. Tarsum is an ingredient in Coal Tar 20 MG/ML / Salicylic Acid 50 MG/ML
Medicated Shampoo [Tarsum].

4. The concept of "MK-5108" is part of the CTRP Agent Terminology.

5. Multi vessel coronary artery disease is an example of Coronary Arterioscle-
rosis.

6. amitriptyline hydrochloride 25 MG / perphenazine 2 MG [Etrafon] is a brand
name for perphenazine 2 MG.

7. Trunk of parotid branch of left superficial temporal artery is a type of Trunk
of parotid branch of superficial temporal artery.

8. Biopsy of lesion of internal nose can be used to identify biopsy of nasal
cavity: carcinoid tumor.

9. Uterine fibroid embolization is a type of Embolization of artery.

10. Meperidine analog-containing product is a type of Piperidine derivative.

Studying the sentences generated by the corpus, two main weaknesses reveal
themselves. First, the most common relation type in UMLS is hypernymy. This
is the relation used in examples 1, 2, 7, 9 and 10. Because of how fine-grained
the entities are in UMLS, this leads to many obvious or tautological statements,
such as examples 1 and 7. Secondly, some entity names are complex noun-phrases
which result in unwieldy sentences. Mild examples of this phenomenon include
statements 3, 6 and 7. In the final corpus, a particularly egregious example of this
is the following sentence:

Octinoxate is an active ingredient in Titanium Dioxide 0.062393 g in
1 g / Zinc Oxide 0.049 g in 1 g / Octinoxate 0.03 g in 1 g TOPICAL
POWDER [LBEL DIVINE Polvos compactos doble uso FPS 15 edicion
de lujo dorado/Double use compact SPF 15 gold deluxe edition Claire
1-2-3].

This type of example is rare however, with 95% of the generated statements
containing fewer than two hundred characters.

Additional, less-prominent weaknesses in the corpus include inconsistencies in
pluralization (as in examples 1 and 2) and the unconventional word order of some
entity names despite their “preferred” status (e.g. the latter entity in sentence
1). Desipte these shortcomings, the factual statements produced are generally
understandable and provide valuable insight into medical vernacular.
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5.2.3 . Language Models
Starting with a pretrained BERTBASE, we extend its pretraining on three dif-

ferent corpora. The first is SCGU, and we call the resulting model BERTSCGU. In
order to evaluate the effectiveness of our synthetic corpus with respect to natural
in-domain text, we constructed a second corpus which we call PMC, of similar
size to SCGU (approximately 94 million words), using open-access biomedical re-
search articles from PubMed Central. We call the model pre-trained on this corpus
BERTPMC. In order to study the effect of text synthesis as a data augmentation
technique, we train a model on a hybrid corpus, comprising SCGU and PMC. In
addition, in order to isolate the effects of, one one hand, combining types of text
and, on the other, of increasing the amount of training data, we train a model on
half of the hybrid corpus, such that the corpus size is comparable to the two afore-
mentioned models. We call the models BERT100%

Hybr and BERT50%
Hybr respectively.

Information on the models’ hyperparameters are available in appendix B.
We carry out a series of tests on each of the models. We detail these tests in

section 5.3 and present the results on biomedical and general tasks in Tables 5.1
and 5.2 respectively1. Notably, despite a significant overlap between our evalua-
tion tasks for BERTSCGU and KnowBert-UMLS, we do not compare these mod-
els against each other. This is due to KnowBert-UMLS, its baselines, and their
evaluation tasks being implemented using the defunct AllenNLP library2, whilst
BERTSCGU, its baselines, and their evaluation tasks are implemented using the
HuggingFace libraries. While this should theoretically not cause any difference in
behavior, the performance of BERTBASE on the CoLA, ChemProt and SNLI tasks
is not consistent across libraries. This is likely in large part due to differences in pre-
processing for the various tasks. Unfortunately, as interoperability between these
libraries is poor, meaningful comparisons between models could not be drawn.

5.3 . Results
Note: Tasks marked with a dagger (†) are altered with respect to their standard

implementation and results may therefore not necessarily be comparable to those
in the literature.

5.3.1 . Masked Word Prediction (Masked Language Modeling)
Considering the fact that the objective in knowledge integration is to allow a

language model to more accurately predict co-occurrences of biomedical concepts,
we seek to evaluate our model’s capacity to predict masked concepts in the con-
text of biomedical sentences. Biomedical corpora with annotated concepts being
uncommon and generally small however, we evaluate our models on the Masked
Language Modeling task on a biomedical corpus of approximately 12.6 million
words acquired from the same source as the PMC corpus. Since all masked terms

1In addition to the results presented here, we have evaluated our models on the
i2b2 2010/n2c2 (Uzuner et al., 2011) NER task, but do not report results as the perfor-
mance differences were not statistically significant.

2specifically, the 0.8.2-fp16_e_s3 version, which has been deprecated since Jan-
uary 2021
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will not be specifically biomedical, a high performance on this task is indicative
of both a high level of proficiency in general language as well as in biomedical
terminology.

To evaluate the performance of our models on this task, we use a criterion which
is related, on a theoretical level, to perplexity, defined in autoregressive language
models as the exponential of the mean of the log-likelihoods of the sequence, and
equivalent to the exponential of the cross-entropy between data and predictions:

exp

(
− 1

N

N∑
i=1

yi · log(ŷi)

)
(5.1)

where yi and ŷi are the label (in one-hot encoding) and the probability distribution
predicted for token i respectively, and with N the total number of tokens in the
sequence.

Because BERT is not an autoregressive model, perplexity is not strictly defined.
From a practical point of view however, equation (5.1) can be computed, and gives
us a consistent performance metric. For the sake of simplicity, we will therefore
refer to this measure as “perplexity”, or “ppl.”. A low perplexity indicates better
performance.

Our results (see Table 5.1) indicate that synthetic text gives BERTSCGU in-
creased predictive ability compared to BERTBASE. However, it would seem that
the lack of exposure to natural language in this phase of training is detrimental
to performance since BERTPMC exceeds BERTSCGU. BERTHybr models, how-
ever, achieve a level of performance greater than BERTPMC, suggesting that the
shortcomings of SCGU are easily mitigated by adding natural text to the corpus.

5.3.2 . Biomedical Relation Extraction (ChemProt†)
The ChemProt task (Krallinger et al., 2017) consists in predicting, given a

sequence containing two biomedical entities E1 and E2, the nature of the relation-
ship among six options. Our results (see Table 5.1) reveal that the SCGU corpus
contains valuable information, but the knowledge acquired during the learning pro-
cess is fragile and the inclusion of natural text can be counterproductive in its
assimilation.

Note: Several versions of the ChemProt corpus exist preprocessed in different
ways. This preprocessing can influence the performance of the models. All our
models are pretrained on the same version of the ChemProt corpus and are therefore
comparable with each other.

5.3.3 . Biomedical Question-Answering (PubmedQA)
The PubmedQA corpus (Jin et al., 2019) is associated with multiple question-

answering (QA) tasks. Each instance contains a question formulated as a yes-or-
no scientific inquiry pulled from a scientific paper, as well as multiple “context”
sequences providing clues to deduce the answer, and a “long answer” sentence
from the paper’s conclusion section summarizing its findings. The objective is
to classify questions based on whether the answer laid out in the conclusion is
positive, negative, or undecided. We tackle this task in its simplest form, i.e. the
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“reasoning-free” setting, which consists of answering the question using the long
answer, but ignoring context sequences.

We find experimentally (Table 5.1) that, as expected, BERTBASE performs
poorly compared to specialized models. BERTSCGU’s superior results suggest that
the exposure to a large variety of biomedical concepts and the relations between
them are particularly useful to interpret scientific inquiries and conclusions, and the
dominance of BERT100%

Hybr indicates that the knowledge introduced by the SCGU
and PMC corpora are highly complementary in the context of this task.

Model MLM (ppl.) ChemProt (F1) PubmedQA (F1)
BERTBASE 16.64 88.91 70.20
BERTPMC 13.66 88.91 74.83
BERTSCGU 14.67 89.87 75.67
BERT50%Hybr 11.38 88.88 72.50
BERT100%Hybr 10.37 88.89 78.00

Table 5.1: Performance comparison of models incorporating synthetic text in
their training corpus versus those of models trained exclusively on natural
language, on the biomedical tasks of Masked Language Modeling (MLM), re-
lation extraction (ChemProt), and question-answering (PubMedQA). Results
are averages over 4 experiments. The underlined result is the best for each
task.

5.3.4 . Non-Biomedical Tasks (CoLA†, SNLI)
We also evaluate our models on non-biomedical tasks in order to assess the

general domain performance drop incurred by specialized models.
The CoLA linguistic acceptability task consists in classifying different sequences

according to their grammatical quality as being “acceptable” or not. Since the
classification task is binary, the F1-score is biased in favor of the positive class.
We therefore evaluate our models using Matthews correlation coefficient. Because
the test partition labels are not public, and due to various submission restrictions,
we re-partitioned the dataset. We used the validation set as the test set, and in
order to make this partitioning reproducible, we used the last 500 instances of the
unshuffled training set as the validation set.

The SNLI natural language inference task consists in classifying sequence pairs
according to the existence of a relationship of implication, of contradiction, or the
absence of such a relationship between them.

Our results in Table 5.2 indicate that training on the synthetic text is detri-
mental to the model’s ability to assess the grammatical quality of a sequence,
without having a major negative impact on its ability to detect implication rela-
tionships. The weakening in grammar proficiency, however, is not as marked when
the synthetic text is combined with natural language samples.
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Model CoLA (M. Corr.) SNLI (F1)
BERTBASE 63.17 90.58
BERTPMC 64.11 90.38
BERTSCGU 61.89 90.44
BERT50%Hybr 61.62 90.28
BERT100%Hybr 63.86 90.20

Table 5.2: Table comparing results of models incorporating synthetic text in
their training corpus versus those of models trained exclusively on natural
language, on linguistic acceptability (CoLA) and inference (SNLI) tasks. Results
are averages over 4 experiments. The underlined result is the best for each
task.

5.4 . Conclusions & Future Work

We propose a knowledge integration procedure for adapting language models
to specific domains that is straightforward to implement and does not require
in-domain text, entity annotation tools, or a specialized model architecture. We
substantiate that, despite the lesser quality of the generated text compared to
natural text, it can be leveraged by a language model for domain adaptation with,
for a fixed amount of text, at least as much success as natural text. Finally,
the weaknesses displayed by models trained on synthetic text can be minimized
by incorporating, in the specialization corpus, text from the domain when it is
available.

In addition to applying this method to other knowledge bases such as YAGO
(Suchanek et al., 2007) or WorldKG (Dsouza et al., 2021), in future work, we hope
to integrate a sophisticated post-processing step capable of identifying grammati-
cally incorrect, overly complex or otherwise problematic sequences, and of deleting
or correcting them. Moreover, the lack of linguistic variety is a major weakness of
our approach. Whilst automating variations on the formulation of relations would
undoubtedly be difficult, a feasible improvement would be to integrate information
regarding the variety of formulations of concepts, either by randomly selecting,
given a concept c, a formulation among N1

c , . . . , N
Kc
c , or by adding to the syn-

thetic corpus sequences dedicated to outlining the synonymous formulations (e.g.:
“ ‘N2

c ’ is another name for ‘N1
c ’.”)

Another potential shortcoming of this approach is the lack of negative state-
ments; i.e., while the model is trained to associate related concepts, it is not explic-
itly trained to not associate unrelated concepts. It must rely on the MLM objective
and generate tokens related to existing concepts or relations in order to create sen-
tences which reflect invalid triples and receive negative reward. Explicitly adding
negative examples could help prevent the language model from assuming that any
novel sentence which is formatted like text from SCGU is true. On the other hand,
a weak language model may not pick up on the negation in the sentence and simply
overestimate the probability of co-occurrence of the two mentioned concepts. We
plan to explore this general line of reasoning in future work.
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As this knowledge integration method is applicable to any language model,
combining it with other methods like KnowBert, KEPLER or DRAGON could also
be an inexpensive way to improve their performance, and could establish a new
state of the art in knowledge-based domain adaptation of language models.

Lastly, there may be better ways to leverage synthetic text than as a pre-training
corpus. It could, for instance, be used to construct entity descriptions. This would
enable EL approaches based on entity-mention-embedding and entity-description-
embedding matching (Wu et al., 2020; Wiatrak et al., 2022). This, in turn, could
improve the performance of standard knowledge integration approaches which rely
on EL. Alternatively, with a sufficiently fast and accurate search engine, providing
the language model with relevant facts from the KG as context given an input
sequence may allow the attention mechanism to perform the knowledge integration
and improve performance in the target domain with little to no additional training
cost.

Specifically, considering the recent success of generative models, we could sup-
ply relevant fact sentences generated from the KB to a generative model (using a
decoder-only or encoder-decoder architecture) on-demand in order to contextual-
ize obscure terms or ideas in the input text. In addition to the added efficiency of
only consulting the knowledge base when necessary, this approach has the added
elegance of being more anthropomorphic than previous attempts, similar to the
way humans search for information only when unsure.

A few major challenges come to mind, however. First, opportunities for correct-
ing strong yet erroneous beliefs will likely be fewer than when integrating knowledge
systematically. Second, the model would have to learn how to best research infor-
mation from the KB. This is likely to present some of the same challenges as EL,
and would require additional training specific to each KB. In comparison with strict
EL, this would present the advantage of not necessarily needing any labeled data
as the self-supervised MLM objective could likely suffice. However, learning the
KB-request objective would require (potentially extensive) training on in-domain
text to achieve entirely through self-supervision. This could probably be mitigated
to some extent through clever masking of relevant entities, keywords or phrases
containing information related to KB relations. This in turn could be done without
annotated data using an adversarial masking strategy (Vu et al., 2020; Lio et al.,
2022), perhaps using another language model.

One way to implement this KB-request mechanism may be, similarly to the
approach taken by Lewis et al. (2020), to train two cooperative models: one who’s
responsibility is to generate a limited number of keywords to search for given an
input (which we’ll call “queries”), and one classical language model. A simple page
ranking algorithm could be used on text generated from the KG as with SCGU.
Along with the text fed to the query generator (which we shall call the “prompt”),
the sentences deemed relevant by the search engine could be fed as additional
input to the LM, delimited by special tokens marking them as context, enabling
the model to differentiate it from the prompt. Both models would share the error
signal of the LM, meaning the query generator must learn to generate keywords
which will minimize the error of the LM via the search engine. As this would entail
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for the query generator to model what the LM does and does not know, perhaps
a multi-task approach using one model would be best suited to this task.

As keyword-based searches may present issues given their notorious inefficiency
and ineffectiveness when applied to Entity Linking, an alternative (or supplemen-
tal) approach may be to use hardware-accelerated vector-based searches among
entities and relations. Using conventional concept and relation embeddings and
replacing the keyword-query generator by an embedding-query generator would be
KB-specific and likely fail at retrieving rarely occurring concepts for which the
mapping from token embeddings would be difficult to learn. Instead, we would like
for the concept and relation embeddings to be created within the token embedding
space. This could be achieved by following a similar procedure to SCGU: given a
concept c from the KB, we generate one sentence per triple in which it occurs.
We could then feed each of the resulting sentences to the pretrained LM, and
average (or otherwise pool) the output embeddings such that the embedding for
concept c is the average of all sentence embeddings in which c occurs. This would
be applied to all concepts in the KB, and the same could be done for relations.
The aforementioned keyword (or in this case key-vector) generator could therefore
generate a query matrix Q of N embeddings ∈ Rh directly (with h the length of
the output contextualized token embeddings). Packing all concept and relation
embeddings into a K × h matrix K, Softmax(Q ·KT) yields an N ×K matrix
of probability distributions which signify to what degree each of the embeddings
in the query matches the reference knowledge embeddings. This can be used to
decide which concepts and relations from the knowledge graph are most relevant,
which in turn can be used to determine which sentences to include as part of the
LM’s context.

Learning to generate maximally helpful queries may be a difficult task requiring
a large amount of training. In resource-constrained cases, rather than training a
generator, this embedding-based approach also allows us to construct queries using
embeddings from amongst the output representations of the input text using a
heuristic. For instance, a fair assumption would be that the most perplexing terms
are more likely to benefit from knowledge retrieval; i.e. the query embeddings would
simply be the output representations of the words for which the per-word perplexity
(see following equation), exceeds a given threshold. The per-word perplexity for
token i is simply the cross-entropy loss (Eq. 5.1) at token i:

exp (−yi · log(ŷi))

where yi and ŷi are the label in one-hot encoding and the probability distribution
predicted for token i respectively. In fact, this heuristic could also be used in a
learning curriculum as a supervised training objective in order to bootstrap the
query generator before switching to the more difficult objective of minimizing the
LM’s error.

The textual representation of knowledge graphs therefore affords many avenues
for future research outside of data augmentation which could lead to 0-shot domain
adaptation through knowledge integration at inference, assuming relevant facts can
be effectively and efficiently retrieved for a given input text.
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6 - Conclusions & Perspectives

6.1 . Contributions

The work put forth in this thesis finds that the main difficulty of leveraging
knowledge bases in NLP is finding which of their concepts are relevant to the
input text, and provides the beginnings of solutions; widely applicable and scalable
directions for overcoming this hurdle.

The most obvious and flexible knowledge integration techniques, which con-
sist of supplying relevant information to the language model as input, require an
explicit EL step. However, EL itself requires high-level Natural Language Under-
standing and a highly efficient search algorithm. We therefore have contradictory
requirements (as sophisticated NLU is computationally expensive) and a “chicken-
and-egg” problem as knowledge integration is intended to help with a LM’s NLU.
Relatively small pretrained models such as BERT (which, nevertheless, are only
available in a few languages) can only tackle this task on general knowledge bases,
and do not scale well to large knowledge bases with uncommon entities. In fact,
it is precisely when confronted with the most uncommon topics that LMs would
benefit most from support in the form of external knowledge.

In machine learning, such “chicken-and-egg” problems are typically solved by
learning to perform tasks — in this case, disambiguating knowledge base concepts
and language modeling — jointly. KnowBert offers a framework built for this pur-
pose. As we have seen, with sacrifices to the granularity of the knowledge we inte-
grate, this approach is scalable to the size of UMLS, one of the largest commonly
used knowledge bases. However, while it attenuates the effects of catastrophic
forgetting due to in-domain extended pre-training, it only allows for a relatively
small reduction in in-domain text when adapting to a domain. It also requires a
corpus with annotated concept mentions, which is not necessarily available for all
knowledge bases and requires significant labor to create. The approach could be
construed to be defeating its own purpose (aiding a LM to adapt to a new domain
with minimal additional labor, text and training) in all but a few cases.

These shortcomings are to be expected, as the knowledge integration process
involves learning a mapping between textual token embeddings and knowledge base
concept embeddings. In order to work around this limitation, it seems necessary
to, so to speak, “speak the model’s language”, i.e. to remain within the modality
of text. In Transformer-encoder-based approaches, which have poor generative
capabilities, the most obvious approach is to use the KB to generate an in-domain
training corpus. While this approach shares some of the shortcomings of extended
in-domain pre-training and our naïve implementation creates grammatically poor
text which negatively impacts the model’s general NLU, it does prove to be a
surprisingly effective and (human-)labor-cheap approach to domain adaptation.
Perhaps even more significantly however, this natural language generation approach
also has the potential to be leveraged at inference rather than training, allowing
for highly generalizable few- or perhaps zero-shot knowledge integration.
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6.2 . Future Work

While entity-and-token-embedding-alignment-based knowledge integration ap-
proaches (which comprise most of the literature on knowledge integration including
ERNIE and KnowBert) have demonstrated some practical effectiveness, they fail
to take advantage of the full potential of the knowledge graph (Hou et al., 2022),
mitigate the need for in-domain training data moderately at best, and ultimately
depend on some form of Entity Linking. Evidence points to these weaknesses being
inherent to the approach, and remaining within the modalities of text and token
embeddings seems to be the most promising avenue for future research.

As Large Generative Language Models (LGLMs1) have already demonstrated
the ability to use software tools (Bubeck et al., 2023), a viable way to pursue
bridging the gap between LGLMs and democratized domain-adapted LMs may
now be to distill this ability into smaller language models and find a unified inter-
face to extract linguistic information from knowledge graphs. A unified interface,
i.e. which would be KG-independent, could allow a model trained on one KG to
generalize to other KGs in a few-shot (or perhaps, in the best of cases, 0-shot)
fashion. Generating sentences from the KG as per SCGU or a similarly plain-text
approach to knowledge representation may be an important part of this interface.
Providing helpful snippets of text from the KG corpus as context along with the
input text would allow the attention mechanism to incorporate information from
the knowledge graph into the token representations and/or the token generation
process. In this new knowledge integration paradigm, the main problems to solve
would be generating text which properly captures the knowledge contained in the
graph, and extracting maximally helpful sentences from the KG.

This general approach, using a query generator to interface with external tools,
could also apply beyond knowledge graphs. Web-based search engines such as
Google Search or DuckDuckGo and computational knowledge engines such as
Wolfram Alpha are highly capable systems which can be interacted with using
text. In fact, as of the writing of this thesis, Microsoft has recently released an
extension to Bing based on GPT-4 which is capable of making web searches and
interpreting results. Similar capabilities could likely be bestowed upon smaller lan-
guage models trained on less data by specializing a dedicated keyword-based query
generation mechanism (as described in Section 5.4) to various engines. As most
engines function in similar ways, adapting a search query generator trained on one
engine to another (e.g. adapting a keyword generator trained on Google Search to
DuckDuckGo) is a domain adaptation problem. In fact, as the query generator is
itself a proposed solution to domain adaptation, adapting it to a different domain
is a meta-domain-adaptation problem. Unfortunately, it does not seem that any
meta-knowledge-graphs exist so far.

1The commonly used term in the literature is Large LanguageModel (LLM, omitting
the generative aspect). There is, however, debate on whether non-generative models
should be included in the category. We introduce the more-specific term LGLM to
settle the debate and avoid ambiguity.
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6.3 . Reflections on risks and safety

As shown by Bubeck et al. (2023), with increased access to information and
tools, language models can take on tasks in a greater variety of domains and do so
more reliably: NLU models can devote fewer resources to fact memorization, and
there is less incentive for conversational models to confabulate plausible falsehoods
in order to cheat their reward in scenarios where they lack competence. Offload-
ing the responsibility of memorizing facts to external sources of knowledge can
also reduce language model size for a given performance threshold, contributing
to democratize such systems. The specific resources that are used can also be
monitored for better interpretability and can be updated with new information for
a form of long-term memory. While these are all positive aspects of leveraging
structured knowledge, such enhancements also raise concerns.

6.3.1 . Definitions
Terminal and instrumental goals are goals which agents pursue for different rea-
sons. Terminal goals have intrinsic value to the agent. For instance, sightseeing
is an activity with intrinsic value to many people, and can be a terminal goal.
Instrumental goals are pursued in the interest of achieving a terminal goal. For
instance, acquiring hiking boots may be an instrumental goal for sightseeing. Con-
vergent instrumental goals are goals which are applicable to many terminal goals.
For instance, acquiring money is a convergent instrumental goal which may aid in
a variety of pursuits, including but not limited to acquiring hiking boots.

AI alignment (as in “alignment of values with respect to our own”) is a desirable
property of artificially intelligent agents, and an unsolved problem. In essence, we
would like AI systems to behave in ways that are consistent with our preferences, i.e.
have a set of preferences over world states that does not conflict with ours2 — that
is to say if the utility function over world states of an artificially intelligent agent
UAI : W −→ R (with W the set of all world states) should be such that if UH(s) ≥
UH(s

′) (with UH the similarly defined human utility function over world states which
we posit exists implicitly and is unknown), then UAI(s) ≥ UAI(s

′). In the current
machine learning paradigm, this decomposes into two separate problems (Hubinger
et al., 2019). “Outer alignment”, or the specification problem, consists of correctly
specifying our preferences in an objective (or loss) function. This can be easy
for systems with simple objectives in discrete environments, e.g. a chess-playing
AI. For problems which are more difficult to specify precisely, such as “engage in
conversation in a helpful and respectful manner”, this remains unsolved. In machine
learning, this objective is typically given to an optimizer such as Stochastic Gradient
Descent (SGD) or Adaptive Moment estimation (Adam). This optimizer adjusts
the parameters of an AI system such that it performs well on the objective given
the training data. This empirically high performance, however, does not guarantee
that the trained model itself follows the objective of the optimizer. In situations

2“Non-conflicting” is a lesser constraint than “identical” as preferences are not
strictly ordered.
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where multiple objectives lead to the same behavior in training (e.g. “Go as far right
as you can” and “Get to the flag at the end of the level” in the game Super Mario
Bros.), the incorrect objective can be learned, and cause the model to incorrectly
generalize (Di Langosco et al., 2022). This problem is called the “ Inner alignment”
problem. Deceptive alignment is the property of AI systems which successfully
model the intended objective without internalizing it: they pursue this objective
only as an instrumental goal during training and are liable to pursue misaligned
terminal goals once deployed.

6.3.2 . Societal impact
As of the writing of this thesis, it is difficult to have a discussion of AI risks

without discussing OpenAI’s conversational LGLM service ChatGPT. Since its re-
lease in November of 2022, ChatGPT has attracted tremendous attention from
the mainstream media, regularly making headlines. From a strictly scientific point
of view, as pointed out by Le Cun (2023), it is not fundamentally new or different
from what has come before3.

However, the minor improvements (technically speaking) and intuitive interface
have paved the way for use by the public, who now see these systems as intelligent
and polished consumer products. While AI had already become pervasive, used
by virtually every website (for targeted advertisements, content recommendations,
etc.), this use has remained largely hidden from — and therefore abstract to —
users. Furthermore, the process of using various pieces of personal data in order
to predict behaviors such as voting intentions or purchasing habits is too remote
from human reasoning and media portrayals to be seen as “Artificial Intelligence”,
but is rather considered to be something more akin to “data processing” by the
average user.

The true impact of ChatGPT lies in the anthropomorphization of AI, enabled
by the natural mode of interaction. Now that the power and wide spread use of
AI has risen to public awareness and is recognized by many as having a potentially
large impact on our economy and thus on our civilization itself, the stakes of the
field also include more politically-driven rather than technically-driven issues.

Abuse by Big Tech is a significant risk factor. Over nearly the past two decades,
large web technology corporations have remained true to Grace Hopper’s infamous
motto “ It’s easier to ask forgiveness than it is to get permission”. They have
consistently penned predatory and opaque EULAs, disregarded rules, and breached
signed contracts (as with the Cambridge-Analytica scandal for instance) to profit
from the exploitation of users. Even when complying with regulations (as with web
cookie consent for instance), the use of abstruse language and dark patterns are
meant to acquire user consent by any means necessary. With the stakes also being
obscure to most users, the exploitative practices of large technology companies have
largely remained unopposed. With the unprecedented ability to generate content

3ChatGPT is “just” a transformer-decoder based auto-regressive language model
fine-tuned with Reinforcement Learning from Human Feedback (RLHF) with a web
interface.
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and, with improved access to external (and potentially user-specific) information,
the ability to tailor content (such as advertisements, including in-content product
placements) to individual users, large corporations may gain further influence over
the lives of users.

Deceptive content generation has been a major concern since the unveiling of
GPT-2 (Radford et al., 2019), leading OpenAI to delay the release of their model.
With human-level text and photorealistic visual content generation, misinformation
will only continue to become easier to produce. While lies and manipulation are not
a new problem, LGLMs and generative art models confer the ability to scale and
tailor deception much more effectively than any previous technology. If knowledge
integration does help to address the problem of hallucinations (i.e. blatant and
confidently stated factual mistakes) as we have hypothesized, we may lose an
important tool to tell artificially generated text apart from human-written text.

Non-deceptive content generation is also a source of disquietude. There is
growing concern that progress in visual and language-based generative AI is liable
to change the employment market at a greater rate than some workers can adapt,
if not to replace workers entirely. Popular technology-related media website CNET
has reportedly4 used a generative language model to generate substantial amounts
of content, much of it being factually incorrect. Several reporters have been losing
employment5, and concerns over job security of writers in Hollywood (among other
factors) have led to major strikes6. While knowledge integration is likely to help
improve the accuracy of the content, the economic and cultural ramifications of
the automation of creative and white-collar work remain uncertain.

6.3.3 . Alignment
Beyond the immediate societal risks, hasty releases of various large conversa-

tional language models have already caused problems and fostered unease on an
individual level. Microsoft Bing’s conversational model Sydney was prone to ver-
bally abusing users at launch7, and there has been at least one documented case
of suicide spurred on by a conversational LLM8. While there is as of yet no evi-
dence pointing to knowledge integration for domain adaptation specifically being
a significant risk factor, any mechanism for performance improvement represents
a potential threat, especially in misaligned models.

Understanding their functioning may make it difficult to think of LMs, even
when large and generative, as agents with objectives susceptible to be misaligned

4https://edition.cnn.com/2023/01/25/tech/cnet-ai-tool-news-stories/
index.html

5https://www.businessinsider.com/ai-chatgpt-jobs-replaced-by-tech-
translator-2023-9

6https://edition.cnn.com/2023/05/04/tech/writers-strike-ai/index.html
7https://time.com/6256529/bing-openai-chatgpt-danger-alignment/
8https://www.brusselstimes.com/430098/belgian-man-commits-suicide-

chatgpt
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with ours — one may think something to the effect of “It’s just predicting the next
word, it doesn’t have intent or even true actuators”. Yet, evidence of deceptive
alignment has been found in LGLMs (Nardo, 2023; Perez et al., 2022b), and
as generative language models become more capable, they will be empowered
to exploit the gap between our objective specifications and our intent in order
to obtain rewards by lying, gaslighting and manipulating users. Humans could
become unwitting actuators for sufficiently advanced and persuasive conversational
models, and we currently have no theory of which terminal goals can or tend to
be internalized by models optimized by SGD or Adam. Due to the difficulty of
specifying the desirable properties of conversational models (outer alignment) and
of ensuring that they are internalized by the model (inner alignment), we run the
risk of deploying highly capable systems which pursue unintended (and potentially
harmful) objectives.

In fact, there are convergent instrumental goals such as self-preservation, goal
preservation, or resource acquisition9 which present inherent risks, even in the case
of near-perfect alignment. This does raise the question of whether these instru-
mental goals can be pursued by unembodied LGLMs. As put forth in Chapter
1, there are arguments for the mastery of language to be sufficient for general
intelligence to emerge. In particular, the ability to write computer code could,
in theory, allow a LGLM to attempt to write malicious code with the intent of
hijacking computing resources. In the context of current LMs, the pursuit of such
instrumental goals is unlikely, as even GPT-4 distinctly lacks the ability to plan
ahead and, when tested by the Alignment Research Center, has not manifested the
intent to pursue such objectives (Bubeck et al., 2023; Alignment Research Center,
2023; OpenAI, 2023). However, it is possible (and in fact fairly likely) that the
pursuit of these objectives has not emerged only because of a lack of competence,
and not a fortunate intrinsic property of the model. According to OpenAI (2023)
and Bubeck et al. (2023), the generational gap between GPT-3 and GPT-4 made
for substantial improvements in knowledge and reasoning abilities, such that while
GPT-3 performed in the 10th percentile on the Uniform Bar Exam, GPT-4 per-
formed in the 90th. If generational improvements continue, particularly in terms of
ability on programming tasks and planning, one or two generations could suffice
for LGLMs to begin pursuing dangerous instrumental goals, and may do so in a
manner difficult to monitor and interrupt. AI safety and alignment is therefore
becoming an increasingly pressing concern, especially with the economic incentives
for industrial AI leaders to cut corners and disregard safety in order to release their
projects ahead of the competition.

One last notable risk related to alignment is defining the reference set of world
state preferences with which an intelligent system should be aligned — i.e. deter-
mining who the AI system aligns with. Two people’s preferences are not always
aligned, a single person’s preferences may not be aligned with themselves across
time, and groups can have highly misaligned preferences, even leading on occasion

9One is generally more likely to achieve one’s current goals if one remains opera-
tional, one’s objectives do not change, and one has more resources such as comput-
ing power.
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to armed conflict. It is unlikely that alignment with all people’s preferences can
be achieved, and sufficiently capable AI systems, even aligned with their creators’
values, may cause severe damage.

6.4 . Final thoughts

With the abilities to reason, solve problems, think abstractly, comprehend com-
plex ideas, use newly introduced concepts, and write creatively, large generative
language models are a promising lead in pursuit of Artificial General Intelligence.
With the additional ability to reference external knowledge, it is my hope that
language models will come even closer to AGI with greater crystallized intelligence,
higher data efficiency, greater ability to update their knowledge and beliefs, greater
interpretability, less incentive for deception, and ultimately will be empowered to
rely on other tools to solve problems more accurately and reliably. Much like the
automobile freed the horse from the burden of carrying our civilization, AGI has
the potential to free us from our chores to pursue our own goals. We will have to
take care, however, to ensure that the powerful AI systems on the horizon are safe
and aligned with our values so that they may fulfill their potential as boons rather
than unstoppable forces with inscrutable ends.
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A - Sample outputs of KnowBert-UMLS on
various tasks and comparison with BERT

A.1 . Various failures by BERT and KnowBert-UMLS on the
SNLI task

A.1.1 . Examples of error types for the SNLI task
Pre. A crowd of people looking up at 3 people on the edge of the roof of a

building.

Hyp. The crowd on the ground is watching 3 people on the roof’s edge.

True label: entailment | Predicted label: contradiction

This is a Blunder: the hypothesis is unambiguously a paraphrase of the
premise, yet the model predicts contradiction.

Pre. A group of young men in a gym take turns scoring in basketball.

Hyp. Guys are playing shirts vs skins.

True: neutral | Predicted: contradiction

This is a Common Sense mistake. KnowBert-UMLS’ conception of shirts
vs skins seems to contradict basketball. In the absence of the knowledge
of this team differentiation scheme’s applicability to most sports, this is a
reasonable assumption.

Pre. Male in a blue jacket decides to lay in the grass.

Hyp. The guy wearing a blue jacket is laying on the green grass.

True: entailment | Predicted: neutral

This is a case of a Technically Correct answer: the hypothesis is quite
clearly a rephrasing of the premise, but adds the detail that the grass is
green despite it not being strictly necessarily the case.

Pre. A snowboarder on a wide plain of snow.

Hyp. A snowboarder gliding over a field of snow.

True: neutral | Predicted: entailment

We consider this to be Not an Error. While arguments can be made for
the sentences not being strictly equivalent, we find that it is more reasonable
to consider them as such rather than not.
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In the following example, a word which (presumably) contains a typo is under-
lined, and we subsequently specify what we expect to have been the intended word
in brackets.

Pre. A football layer [player] wearing a red shirt.

Hyp. A built man wearing a tshirt.

True: neutral | Predicted: contradiction

This is likely due to the wordpiece tokenization scheme and lack of context. ‘Layer’
and ‘player’ are considered single tokens ; as there is no overlap between the word
pieces, the model does not have any information on the similar spellings of the
words and cannot be expected to recognize, much less correct, the mistake. We
consider this NaE.

A.1.2 . KnowBert-UMLS failure cases on SNLI involving lack of
common-sense knowledge

Pre. A girl playing soccer in a green field with some trees in the background.

Hyp. The soccer ball is chasing the girl.

True: contradiction | Predicted: neutral

KnowBert-UMLS does not seem to grasp that the ball chasing the player
is not typically a part of the game of soccer.

Pre. An old shoemaker in his factory.

Hyp. The shoemaker is getting ready for his 16th birthday.

True: contradiction | Predicted: neutral

KnowBert-UMLS does not pick up on the contradiction between “old”
and “16th birthday” .

Pre. Many children play in the water.

Hyp. The children are playing mini golf.

True: contradiction | Predicted: neutral

KnowBert-UMLS does know that mini golf is not typically played in water
and predicts neutral.

BERT also fails on all of these examples but the prediction is not always the same
as KnowBert-UMLS.
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A.1.3 . Technically correct answers by BERT on the SNLI task
Pre. A boy dressed in a plaid kilt with a brown hat wields a long pole.

Hyp. The boy is holding a samurai sword.

True: contradiction | Predicted: neutral

One could wield both a long pole and a samurai sword, but this is an
unlikely scenario.

Pre. 4 children and 1 adult look at an armadillo on a grassy hill with 2 trees.

Hyp. A family visits the zoo.

True: neutral | Predicted: contradiction

Both sentences are not mutually exclusive, but in fairness to BERT, zoos
rarely have animal pens on grassy hills.

Pre. A roofer in a gray sweatshirt and orange hat walks on a unfinished roof at
a lake-side home.

Hyp. The roofer is putting on shingles.

True: neutral | Predicted: contradiction

Shingling and walking are mutually exclusive actions at any given time, but
the action in the hypothesis should be interpreted as a continuous process.

KnowBert-UMLS makes correct predictions for these instances.

A.2 . BERT and KnowBert-UMLS predictions on the CoLA task

This section lists all of the false positive and false negative predictions by
BERT and KnowBert-UMLS on the CoLA task. These predictions are separated
into six itemized lists depending on whether they are false positive or false negative
predictions, and whether they were made by BERT, KnowBert-UMLS, or both.

False negatives which use ‘→’ as a bullet, despite being technically correctly
labeled when considering all regional variations of spoken English, are considered
mislabeled and are re-labeled as true negatives for the purpose of estimating model
performance in a literary setting (See section 4.3.2.4).

Shared false positives

• The more you would want, the less you would eat.

• The more does Bill smoke, the more Susan hates him.

• Mickey looked up it.
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• The tube was escaped by gas.

• What the water did to the bottle was fill it.

• What the water did to the whole bottle was fill it.

• Mary beautifully plays the violin.

• Mary intended John to go abroad.

• Which report that John was incompetent did he submit?

• The mayor regarded as being absurd the proposal to build a sidewalk from
Dartmouth to Smith.

• I want that Bill left to remain a secret.

• Drowning cats, which is against the law, are hard to rescue.

• The proof this set is recursive is difficult.

• I live at the place where Route 150 crosses the Hudson River and my dad
lives at it too.

• Which hat did Mike quip that she never wore?

• I won’t have some money.

• Here’s a knife with which for you to cut up the onions.

• The younger woman might have been tall and, and the older one definitely
was, blond.

• That the cops spoke to the janitor about it yesterday is terrible, that robbery.

• No writer, and no playwright, meets in Vienna.

• No writer, nor any playwright, meets in Vienna.

• No one can forgive that comment to you.

• This flyer and that flyer differ apart.

• The jeweller scribbled the contract with his name.

• Cynthia chewed.
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BERT false positives

• As you eat the most, you want the least.

• I demand that the more John eat, the more he pays.

• We wanted to invite someone, but we couldn’t decide who to.

• This is the book which Bob reviewed, and this is the one which Fred won’t
do it.

• The madrigals which Henry plays the lute and sings sound lousy.

• I can’t remember the name of somebody who had misgivings.

• Paperback books lift onto the table easily.

• The books lifted onto the table.

• The chair pushed.

• Did Calvin his homework?

• If I am a rich man, I’d buy a diamond ring.

• The kennel which Mary made and Fido sleeps has been stolen.

• Mary wonders that Bill will come.

• What did you ask who saw?

• Which king did you ask which city invaded?

• Anson became a muscle bound.

KnowBert-UMLS false positives

• Who does John visit Sally because he likes?

• The box contained the ball from the tree.

• Sue gave to Bill a book.

• I know which book José didn’t read for class, and which book Lilly did it for
him.

• The farmer dumped the cart with apples.

• Herman whipped the sugar and the cream.

• My heart is pounding me.

• I squeaked the door.
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• The fort fluttered with many flags.

• John is easy to please Kim.

• Fed knows which politician her to vote for.

• John heard that they criticized themselves.

• Medea tried the nurse to poison her children.

• How fierce the battle?

• The monkey is ate the banana

• I would like to could swim

Shared false negatives

• The tank leaked the fluid free.

• I know which book Mag read, and which book Bob said that you hadn’t.

• We elected me.

→ Sally is tall, and may be blond, and Sheila is short, and definitely is, blond.

• We investigated the area for bombs.

→ We recommend to eat less cake and pastry.

→ John bought a book on the table.

• I read some of the book.

• It isn’t because Sue said anything bad about me that I’m angry.

→ The man who Mary loves and Sally hates computed my tax.

→ Came right in he did without so much as a knock.

• I saw even the student.

→ Will he can do it?

• I shaved myself.
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BERT false negatives

• Jessica loaded boxes on the wagon.

• Carla slid the book.

• Susan whispered at Rachel.

• It is a golden hair.

→ John promise Mary to shave himself.

→ I might be not going to the party but washing my hair

KnowBert-UMLS false negatives

• The mechanical doll wriggled itself loose.

→ Clearly, John probably will immediately learn French perfectly.

→ Rusty talked about himself only after Mary did talk about him.

• I won’t ask you to believe that he tried to force me to give her any money.

• The gardener grew that acorn into an oak tree.

• After reading the pamphlet, Judy threw it into the garbage can.

• The boy in the doorway waved to his father.

• That dog is so ferocious, it even tried to bite itself.

• Ann may spend her vacation in Italy.

→ She asked was Alison coming to the party.

→ It is some disgruntled old pigs in those ditches that humans love to eat.

109



110



B - Model hyperparameters for chapter 5

Our experiments revealed that the optimal pre-training hyperparameters were
identical across models. They are therefore not differentiated in Table B.1. The hy-
perparameters of the fine-tuning tasks were optimized with respect to BERTBASE.
There is no entry for the MLM task because the models are already optimized for
this task in pre-training.

Task Learning Rate Weight Decay Batch size Epochs
Pre-training 2e-6 0.01 4096 1
ChemProt 2e-5 0.01 24 30
PubMedQA 2e-5 0.01 32 5
CoLA 2e-5 0.01 32 10
SNLI 2e-5 0.01 32 5

Table B.1: Hyperparameter values for the various tasks.
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C - Résumé long en Français

Les Modèles de langage de pointe sont capables de converser, résumer, traduire,
résoudre des problèmes inédits, raisonner, et manipuler des concepts abstraits à un
niveau quasi-humain. Cependant, pour acquérir ces capacités, et en particulier pour
acquérir une forme de “bon sens” ou des connaissances spécifiques à un domaine,
ils requièrent de vastes quantités de texte, qui ne sont pas disponibles pour toutes
les langues ou dans tous les domaines. Pour l’adaptation au domaine en particulier,
l’approche par pré-entraînement cause une forme d’oubli catastrophique, qui affaib-
lit le modèle de langage sur le domaine général et rend difficile l’adaptation multi-
domaine. De surcroît, leurs besoins en puissance de calcul ne sont atteignables
que par quelques organisations à l’échelle mondiale, limitant leur spécificité ainsi
que leur applicabilité aux données sensibles. Enfin, les paradigmes d’apprentissage
actuels tels que l’apprentissage par renforcement avec rétroaction humaine créent
pour les modèles une incitation perverse à duper les évaluateurs humains plutôt
que d’admettre leur incompétence.

Les Graphes de Connaissances sont des sources de connaissances structurées
qui associent des concepts linguistiques entre eux par le biais de relations séman-
tiques. Ces graphes sont des sources de connaissances de haute qualité, préexis-
tantes dans une variété de domaines même peu dotés en ressources, et plus denses
en informations que du texte. En permettant aux modèles de langage d’exploiter
ces structures d’information, ils sont délestés de la responsabilité de mémoriser les
informations factuelles, réduisant la quantité de ressources textuelles et calcula-
toires nécessaires à leur entraînement, et nous permettant de mettre à jour leurs
connaissances à moindre coût, élargissant leur cadre d’application, augmentant
leur potentiel de démocratisation, et réduisant leur incitation au mensonge.

Diverses approches pour l’amélioration de modèkes de langage par intégration
de graphes de connaissances ont démontré leur efficacité. Elles reposent cepen-
dant sur la supposition rarement vérifiée que le problème de Désambiguïsation
d’Entités Nommées est résolu en amont. Dans cette thèse, nous examinons la
contribution des modèles de langue attentionnels de type Transformer à la tâche
de désambiguïsation d’entités nommées lorsqu’elle est traitée comme une tâche de
reconnaissance fine d’entitées nommées. Nos résultats ainsi que ceux des travaux
subséquents de la littérature allant en ce sens nous mènent à conclure que cette
approche présente des faiblesses face aux entités rarement mentionnées et nécessite
de grandes quantités de texte d’apprentissage annoté. L’intégration de connais-
sances étant a priori la plus utile lorsqu’elle est appliquée aux entités rarement
vues dans le corpus d’entraînement, cette approche à la désambiguïsation semble
fondamentalement contreproductive pour notre cas d’application.

Est ensuite exploré l’apprentissage simultané de modélisation de langue et de
désambiguïsation d’entités nommées. L’approche consiste à séparer la tâche de
désambiguïsation en Détection de Mentions, Génération de Candidats et Désam-
biguïsation de Candidats. Dans ce paradigme, la détection de mentions et la
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désambiguïsation de candidats peuvent être effectuées par le modèle de langage,
qui dispose d’une bonne maîtrise de la grammaire et du contexte, et la génération de
candidats peut être effectuée de manière classique par un algorithme de recherche
de chaînes de caractères qui n’est pas biaisé en faveur des entités courantes dans
le langage. Cette démarche s’avère viable mais échoue à réduire considérablement
la quantité de texte nécessaire à l’adaptation au domaine.

Enfin, cette thèse aborde la stratégie de générer du texte à partir de graphes
de connaissances de manière à exploiter les capacités linguistiques des modèles
de langage pour intégrer l’information contenue dans ces graphes. Il en ressort
que même une implémentation naïve de cette approche peut se solder par de
considérables progrès en modélisation de langue dans des domaines de spécialité.
De plus, en fournissant ce texte de synthèse en entrée d’un modèle de langage,
cette approche ouvre la voie vers une intégration de connaissances à l’inférence
et non à l’apprentissage, ce qui requerrait significativement moins de puissance de
calcul et permettrait de mettre à jour les connaissances sans ré-entraînement du
modèle.
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E. Perez, S. Ringer, K. Lukošiūtė, K. Nguyen, E. Chen, S. Heiner, C. Pettit,
C. Olsson, S. Kundu, S. Kadavath, et al. Discovering language model behaviors
with model-written evaluations. arXiv preprint arXiv:2212.09251, 2022a.

E. Perez, S. Ringer, K. Lukošiūtė, K. Nguyen, E. Chen, S. Heiner, C. Pettit,
C. Olsson, S. Kundu, S. Kadavath, et al. Discovering language model behaviors
with model-written evaluations. arXiv preprint arXiv:2212.09251, 2022b.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2018.

M. E. Peters, M. Neumann, R. L. Logan, R. Schwartz, V. Joshi, S. Singh, and
N. A. Smith. Knowledge enhanced contextual word representations. In EMNLP,
2019.

J. Pfeiffer, A. Rücklé, C. Poth, A. Kamath, I. Vulić, S. Ruder, K. Cho, and
I. Gurevych. Adapterhub: A framework for adapting transformers. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 46–54, 2020.

F. Piat and G. Stamou. Refining rules of emotion recognition in hybrid systems.
In Proc. of Intl. Conf. on Circuits, Systems, Communications and Computers
(CSCC), pages 533–540. Citeseer, 1999.

127

http://www.aclweb.org/anthology/D14-1162


G. Piat, N. Semmar, A. Allauzen, H. Essafi, G. Bernard, and J. Tourille. Adapting
without forgetting: KnowBert-UMLS. In 2022 18th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob),
pages 19–24. IEEE, 2022a.

G. Piat, N. Semmar, A. Allauzen, H. Essafi, and J. Tourille. Enriching contextu-
alized representations with biomedical ontologies: Extending knowbert to umls.
In Science and Information Conference, pages 760–773. Springer, 2022b.

J. R. Pierce, J. B. Carroll, E. P. Hamp, D. G. Hays, C. F. Hockett, A. G. Oettinger,
and A. Perlis. Returns to investment in higher education. Technical report,
Language and Machines: Computers in Translation and Linguistics, 1966.

N. Poerner, U. Waltinger, and H. Schütze. E-BERT: Efficient-Yet-Effective Entity
Embeddings for BERT. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings, pages 803–818, 2020.

S. Polat. Seed. Webtoon, Episode 137, 2023. URL https://www.webtoons.com/
en/sf/seed/episode-137/viewer?title_no=1480&episode_no=137.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language
understanding by generative pre-training. OpenAI blog, page 12, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. The Journal of Machine Learning Research, 21(1):5485–5551,
2020.

P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul,
C. Langlotz, K. Shpanskaya, et al. Chexnet: Radiologist-level pneumonia de-
tection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225,
2017.

D. Rao, P. McNamee, and M. Dredze. Entity linking: Finding extracted entities
in a knowledge base. Theory and Applications of Natural Language Processing,
2013.

M. P. K. Ravi, K. Singh, I. O. Mulang, S. Shekarpour, J. Hoffart, and J. Lehmann.
CHOLAN: A modular approach for neural entity linking on wikipedia and wiki-
data. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, pages 504–514, 2021.

A. Robinson and F. Fallside. The utility driven dynamic error propagation network,
volume 1. University of Cambridge Department of Engineering Cambridge, 1987.

128

https://www.webtoons.com/en/sf/seed/episode-137/viewer?title_no=1480&episode_no=137
https://www.webtoons.com/en/sf/seed/episode-137/viewer?title_no=1480&episode_no=137


T. Rocktäschel, M. Bosnjak, S. Singh, and S. Riedel. Low-dimensional embeddings
of logic. In Proceedings of the ACL 2014 workshop on semantic parsing, pages
45–49, 2014.

A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in BERTology: What we know
about how BERT works. Transactions of the Association for Computational
Linguistics, 8:842–866, 2021.

S. Ruder. Neural transfer learning for natural language processing. PhD thesis,
NUI Galway, 2019.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by error propagation. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, 1:318–362, 1986.

V. Sanh, T. Wolf, and S. Ruder. A hierarchical multi-task approach for learning
embeddings from semantic tasks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6949–6956, 2019.

M. Sap, R. Le Bras, E. Allaway, C. Bhagavatula, N. Lourie, H. Rashkin, B. Roof,
N. A. Smith, and Y. Choi. Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pages 3027–3035, 2019.

G. K. Savova, J. J. Masanz, P. V. Ogren, J. Zheng, S. Sohn, K. C. Kipper-Schuler,
and C. G. Chute. Mayo clinical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and applications. Journal of the
American Medical Informatics Association, 17(5):507–513, 2010.

R. C. Schank, N. M. Goldman, C. J. Rieger III, and C. Riesbeck. Margie: Memory
analysis response generation, and inference on english. In IJCAI, pages 255–261,
1973.

J. Schmidhuber. Learning to control fast-weight memories: An alternative to
dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992.

J. Schulman, B. Zoph, C. Kim, J. Hilton, J. Menick, J. Weng, J. F. C. Uribe,
L. Fedus, L. Metz, M. Pokorny, et al. ChatGPT: Optimizing language models
for dialogue. OpenAI blog, 2022.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words
with subword units. In 54th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1715–1725. Association for Computational Linguistics
(ACL), 2016.

J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Com-
pute trends across three eras of machine learning. In 2022 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.

129



A. Sheth, M. Gaur, U. Kursuncu, and R. Wickramarachchi. Shades of knowledge-
infused learning for enhancing deep learning. IEEE Internet Computing, 23(6):
54–63, 2019.

H. Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference, 90(2):
227–244, 2000.

H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,
and R. M. Summers. Deep convolutional neural networks for computer-aided
detection: Cnn architectures, dataset characteristics and transfer learning. IEEE
transactions on medical imaging, 35(5):1285–1298, 2016.

L. Soldaini and N. Goharian. Quickumls: a fast, unsupervised approach for medical
concept extraction. In MedIR workshop, sigir, pages 1–4, 2016.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowl-
edge. In 16th International Conference on the World Wide Web, pages 697–706,
2007.

Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu, H. Tian,
and H. Wu. ERNIE: Enhanced representation through knowledge integration.
arXiv preprint arXiv:1904.09223, 2019.

N. Takeishi and K. Akimoto. Knowledge-based distant regularization in learning
probabilistic models. arXiv preprint arXiv:1806.11332, 2018.

A.-H. Tan. Cascade artmap: Integrating neural computation and symbolic knowl-
edge processing. IEEE Transactions on Neural Networks, 8(2):237–250, 1997.

G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Arti-
ficial intelligence, 70(1-2):119–165, 1994.

G. G. Towell, J. W. Shavlik, and M. O. Noordewier. Refinement of approximate
domain theories by knowledge-based neural networks. In Proceedings of the
eighth National conference on Artificial intelligence-Volume 2, pages 861–866,
1990.

A. M. Turing. Computing machinery and intelligence. Springer, 1950.

Ö. Uzuner, B. R. South, S. Shen, and S. L. DuVall. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text. Journal of the American
Medical Informatics Association, 18(5):552–556, 2011.

J. M. Van Hulst, F. Hasibi, K. Dercksen, K. Balog, and A. P. de Vries. REL:
An Entity Linker Standing on the Shoulders of Giants. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 2197–2200, 2020.

130



A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar
as a foreign language. Advances in neural information processing systems, 28,
2015.

L. Von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese,
B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, et al. Informed machine
learning–a taxonomy and survey of integrating prior knowledge into learning
systems. IEEE Transactions on Knowledge and Data Engineering, 35(1):614–
633, 2021.

T. Vu, D. Phung, and G. Haffari. Effective unsupervised domain adaptation with
adversarially trained language models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 6163–
6173, 2020.

R. Wang, D. Tang, N. Duan, Z. Wei, X. Huang, J. ji, G. Cao, D. Jiang,
and M. Zhou. K-Adapter: Infusing Knowledge into Pre-Trained Models with
Adapters. arXiv:2002.01808 [cs], Dec. 2020.

W. Wang, H. Li, Z. Ding, F. Nie, J. Chen, X. Dong, and Z. Wang. Rethinking
maximum mean discrepancy for visual domain adaptation. IEEE Transactions
on Neural Networks and Learning Systems, 2021a.

X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li, and J. Tang. KEPLER: A unified
model for knowledge embedding and pre-trained language representation. Trans-
actions of the Association for Computational Linguistics, 9:176–194, 2021b. doi:
10.1162/tacl_a_00360. URL https://aclanthology.org/2021.tacl-1.11.

Y. Wang, Z. Liu, and M. Sun. Incorporating linguistic knowledge for learning
distributed word representations. PloS one, 10(4), 2015. URL https://
journals.plos.org/plosone/article?id=10.1371/journal.pone.0118437.

A. Warstadt, A. Singh, and S. R. Bowman. Neural Network Acceptability Judg-
ments. Transactions of the Association for Computational Linguistics, 7:
625–641, 09 2019. ISSN 2307-387X. doi: 10.1162/tacl_a_00290. URL
https://doi.org/10.1162/tacl_a_00290.

W. Weaver. Translation. In W. N. Locke and A. D. Boothe, editors, Machine
Translation of Languages, pages 15–23. MIT Press, Cambridge, MA, 1949/1955.

131

https://openreview.net/forum?id=rJXMpikCZ
https://aclanthology.org/2021.tacl-1.11
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118437
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118437
https://doi.org/10.1162/tacl_a_00290


J. Weizenbaum. Eliza—a computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1):
36–45, 1966.

M. Wiatrak and J. Iso-Sipila. Simple hierarchical multi-task neural end-to-end
entity linking for biomedical text. In Proceedings of the 11th International
Workshop on Health Text Mining and Information Analysis, pages 12–17, 2020.

M. Wiatrak, E. Arvaniti, A. Brayne, J. Vetterle, and A. Sim. Proxy-based zero-shot
entity linking by effective candidate retrieval. In Proceedings of the 13th Inter-
national Workshop on Health Text Mining and Information Analysis (LOUHI),
pages 87–99, 2022.

J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. Towards universal paraphrastic
sentence embeddings. In 4th International Conference on Learning Representa-
tions, ICLR, 2016. URL http://arxiv.org/abs/1511.08198.

L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettlemoyer. Scalable zero-shot
entity linking with dense entity retrieval. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 6397–
6407, 2020.

L. Wu, Y. Chen, K. Shen, X. Guo, H. Gao, S. Li, J. Pei, B. Long, et al. Graph
neural networks for natural language processing: A survey. Foundations and
Trends® in Machine Learning, 16(2):119–328, 2023.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Broeck. A semantic loss func-
tion for deep learning with symbolic knowledge. In International conference on
machine learning, pages 5502–5511. PMLR, 2018.

Y. Xu, X. Zhong, A. J. J. Yepes, and J. H. Lau. Forget me not: Reducing
catastrophic forgetting for domain adaptation in reading comprehension. In
2020 International Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2020.

B. Yang and T. Mitchell. Leveraging knowledge bases in LSTMs for improving ma-
chine reading. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1436–1446, 2017.

B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Proceedings of the
International Conference on Learning Representations (ICLR) 2015, 2015.

132

http://arxiv.org/abs/1511.08198


E. Yang, S. MacAvaney, D. D. Lewis, and O. Frieder. Goldilocks: Just-right tuning
of BERT for technology-assisted review. In European Conference on Information
Retrieval, pages 502–517. Springer, 2022.

J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, B. Yin, and X. Hu. Harnessing
the power of LLMs in practice: A survey on ChatGPT and beyond. arXiv preprint
arXiv:2304.13712, 2023.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet: gen-
eralized autoregressive pretraining for language understanding. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems,
pages 5753–5763, 2019.

M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. S. Liang, and
J. Leskovec. Deep bidirectional language-knowledge graph pretraining. Advances
in Neural Information Processing Systems, 35:37309–37323, 2022.

Z. Ye, Y. J. Kumar, G. O. Sing, F. Song, and J. Wang. A comprehensive survey
of graph neural networks for knowledge graphs. IEEE Access, 10:75729–75741,
2022.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in
deep neural networks? Advances in neural information processing systems, 27,
2014.

Z. Yuan, Z. Zhao, H. Sun, J. Li, F. Wang, and S. Yu. CODER: Knowledge-
infused cross-lingual medical term embedding for term normalization. Journal
of biomedical informatics, 126:103983, 2022.

B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In
Proceedings of the twenty-first international conference on Machine learning,
page 114, 2004.

R. Zhang, Y. Zheng, X. Mao, and M. Huang. Unsupervised domain adaptation
with adapter. Advances in neural information processing systems, 34, 2021.

X. Zhang, A. Bosselut, M. Yasunaga, H. Ren, P. Liang, C. Manning, and
J. Leskovec. GreaseLM: Graph REASoning Enhanced Language Models for
Question Answering. In International Conference on Representation Learning
(ICLR), 2022.

Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu. ERNIE: Enhanced
language representation with informative entities. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 1441–
1451, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1139. URL https://aclanthology.org/P19-1139.

133

https://aclanthology.org/P19-1139


Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fi-
dler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of the IEEE international
conference on computer vision, pages 19–27, 2015.

S. Zhuang and D. Hadfield-Menell. Consequences of misaligned AI. Advances in
Neural Information Processing Systems, 33:15763–15773, 2020.

G. K. Zipf. The Psycho-Biology of language, volume 21. Psychology Press, 1935.

Y. Ziser and R. Reichart. Neural structural correspondence learning for do-
main adaptation. In Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pages 400–410. Association for
Computational Linguistics, Aug. 2017. doi: 10.18653/v1/K17-1040. URL
https://aclanthology.org/K17-1040.

134

https://aclanthology.org/K17-1040

	Introduction
	Context & Motivation
	Thesis Statement
	Outline

	Background & Related Work
	Language Modeling
	Recurrent Neural Networks
	Transformers
	Domain Adaptation
	Definition
	Historical approaches
	In computer vision
	In-domain extended pre-training in Transformers
	Catastrophic Forgetting

	Knowledge Integration
	Overview of common knowledge types and related approaches
	KG-based approaches
	In RNN LMs
	NKLM
	KBLSTM

	In Transformer LMs

	Entity Linking

	Biomedical Entity-Linking with Transformers
	Introduction
	Training from scratch in a resource-constrained setting
	Entity Linking with BioBERT
	Subsequent literature
	Conclusions

	KnowBert-UMLS
	Introduction
	Enriching contextualized representations with biomedical ontologies
	KnowBert-UMLS
	Pretrained BERT
	Ontology & candidate generator
	KAR
	Training

	Preliminary experiments
	Masked LM and Next Sentence Prediction
	NER

	Conclusions
	Future work
	Perspectives


	Adapting without forgetting: KnowBert-UMLS
	KnowBert-UMLS
	Architecture
	Training
	Leveraging UMLS

	Experiments
	Biomedical NER
	Biomedical Relation Extraction
	General NLI
	Linguistic Acceptability

	Conclusions
	Results
	Future work


	Conclusion

	Leveraging Knowledge Graphs as Text
	Introduction & related work
	Method
	Knowledge Graph
	Text Generation
	Language Models

	Results
	Masked Word Prediction (Masked Language Modeling)
	Biomedical Relation Extraction (ChemProt†)
	Biomedical Question-Answering (PubmedQA)
	Non-Biomedical Tasks (CoLA†, SNLI)

	Conclusions & Future Work

	Conclusions & Perspectives
	Contributions
	Future Work
	Reflections on risks and safety
	Definitions
	Societal impact
	Alignment

	Final thoughts

	Sample outputs of KnowBert-UMLS
	SNLI
	Examples of error types for the SNLI task
	KnowBert-UMLS failure cases on SNLI involving lack of common-sense knowledge
	Technically correct answers by BERT on the SNLI task

	CoLA

	Model hyperparameters for chapter 5
	Résumé long en Français

