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Summary

Introduction (Frangais)

Les probléemes de controéle optimal stochastique sont trés souvent rencontrés dans plusieurs
applications pratiques: de mathématique financiere [35, 77| a l'ingénierie [12]. Récemment,
ils ont recu une nouvelle attention et les nouvelles perspectives trouvé en apprentissage
par renforcement (Reinforcement Learning, RL), qui est dans un certain sens se présente
comme 'intersection de controle optimal, statistiques et 'apprentissage automatique [70].

Cette classe des problemes peut étre définie comme suit. Soit (2, F, P, (F¢)i>0) un
espace de probabilité filtré avec la filtration (F;):>o. Supposons quelque ensemble U de
processus stochastiques mesuré U : R x €2 — R" qui s’appellent contréles et ’ensemble
de processus contrélés

xX={x/:Ueu}

ot pour chaque controle U I'élément (X);>o a sa valeurs dans R? et est un processus
stochastique (F;)i>o-adapté. On définissons le fonctionnel J : X — R et le nommons le
fonctionnel de gain.

Definition 1. Le probleme de trouver U, € Argmax; o, J(XY) est appelé le probleme de
controle optimal stochastique.

Egalement, dans les applications pratiques (spécifiquement dans le domaine de I’appren-
tissage par renforcement [70]) nous avons besoin d’évaluation de la regle de décisions
donnée. Par exemple, dans les algorithmes d’itération de politique, out I’'évaluation est le
composant crucial.

Definition 2. Le probléeme d’évaluation de J(XV) avec le contréle U donné est appelé le
probléme d’évaluation du controle.

Certainement, ce n’est pas possible de faire plus avec une telle formulation tres ab-
straite. Par exemple, nous ne pouvons pas prouver l'existence des solutions ou leur
qualités. La question est plus simple quand nous considérons les formulations plus
spécifiques. Dans cette these les deux problemes sont considérés: le probleme d’arrét
optimal pour un équation différentielle stochastique (EDS) et le probleme de processus
décisionnel de Markov (Markov Decision Problem, MDP).

Problem 1. (L’arrét optimal pour EDS, |77, 35] ) Soit T > 0 et le processus X; est défini
par 'EDS d’Ito pour t € [0, 7))

dXt = b(t,Xt)dt+U(t,Xt)th, (1)



avec X = zo € RY, ot les fonctions
b:[0,T) xRI¥xU—=RY ¢:[0,T) x R x U— R>"

sont continues et de Lipschitz dans le deuxiéme argument est de croissance linéaire avec
quelque constante K:

16, 2, w)lly + lo(t, 2, w)ll, < K+ [zl + [lull,)

olt |||, note la 2-norme euclidienne. Avec ces suppositions, nous avons maintenant la
possibilité de prouver I'existence et unicité de la solution. Soit g, : R — R pour ¢ € [0, 7]
est quelque fonction nommé payoff. Considérons ’agent qui observe le processus, a t' €
[0,77] il connait les valeurs de X; pour les temps ¢t < t’. Son objectif est choisir le temps
T pour exécuter quelque action (arréter le processus) que lui donnera un payoff g, (X,).
Autrement dit, nous sommes intéressés a la choix de temps d’arrét 7 avec valeurs dans
[0, 7] de 'ensemble des temps d’arrét admissibles 7~ qui maximisera I’espérance de payoft:

7, = argmax IE [, (X,)].
T€T

Les méthodes plus populaires en pratiques sont inventées avec les idées des algorithmes
de Longstaff-Schwarz(LS)[53] et Tsitsiklis-Van Roy [80]. Ils utilisent le principe de la
programmation dynamique et approchent ’espérance conditionnelle via régression linéaire
et la méthode des moindres carrés avec une base des fonction fixé en chaque étape de la
récursion. Longstaff et Schwarz ont démontré 'efficacité de leur approche par nombreux
expériences numériques et en [22] et [89] les propriétés générales de la convergence des
méthodes étaient établis.

Problem 2. (Le processus décisionnel de Markov, MDP, [70]) Considérons S, .A nommés
les espaces d’état et d’action (ils doit étre les espaces mesurable) et on définissons la
chaine de Markov S; & la maniere suivant. Soit II est l’ensemble des regles de décision
stochastiques (autrement dit, la politique) m : S — P(A), i.e. chaque politique trans-
forme l'état s € S et donne la distribution de probabilité dans ’espace des actions noté
comme 7(+|s). Supposons la fonction de transition P(-|s,a), une distribution de prob-
abilité dans 'espace d’états avec condition d’état et d’action en cours fixé. On défini
So = sg presque stirement et apres I'état se changera de S; & S;y1 par l'utilisation de la
formule des itérations suivant:

Ay ~7(+]Sh),
St1 ~ P('|St7At)-

Considérons la fonction des récompenses R : S X A — R déterministe et uniformément
borné. L’illustration naturel de MDP est ce que nous avons 1’agent dans ’environnement
avec les états décrits par les éléments de S; 'agent & chaque temps ¢ doit exécuter certaine
décision A; par utilisation de sa politique, apres il regoit une récompense R(S;, A;) et
I’environnement se change a la maniere décrite. Le probleme de controle optimal consiste
en maximisation de la somme des récompenses dévaluée

T

> AR(S, A

t=0

J(r)=E




par rapport a la politique, ott v € (0, 1) fonctionne comme le facteur de dévaluation et
I'horizon T' peut étre fini (le probleme d’horizon fini) ou infini (le probleme d’horizon
infini), ou stochastique (le probleme épisodique). MDP se présente comme le modele
fondamental dans 'apprentissage par renforcement(Reinforcement Learning, RL), que est
maintenant fortement en développement avec les résultats prometteurs et nombreux appli-
cations en plusieurs activités de la société: a partir de l'intelligence artificielle pour les jeux
d’ordinateur [82, 11, 66| & systemes de gestion de ’énergie[49, 32], fabrication et robots 2]
pour n’en nommer que quelques-uns. Naturellement, RL donne aux ingénieurs les nou-
velles ensembles des outils de controle pour un utilisation en tout type d’automatisation
[33].

[’évaluation de la politique est une parte vitale des algorithmes model-free basé sur
I'itération de politique et normalement utilise les schémas d’Approximation Stochastique
(Stochastic Approximation, SA), inventés par [62]. SA elle-méme est maintenant devenu
une belle technique [10, 47, 15|, mais RL donne les problemes et les suppositions nou-
velles. Entre les autres, les schémas SA linéaires sont populaires dans I"apprentissage par
renforcement car ils ménent & méthodes d’évaluation de politique avec une approximation
linéaire de la fonction des valeurs, les méthodes de Temporal Difference (TD) learning
[69], pour lesquels les analyses & temps fini sont rapportés en |68, 48, 13, 25|, sont partic-
ulierement importants.

Les objectifs de la recherche
L’objectif principal de notre recherche est étudier les problemes mentionnés.

1. Concernant le probleme d’arrét optimal décrit en Section 1, nous présentons I’analyse
de la complexité de la méthode de maillage stochastique (Weighted Stochastic Mesh,
WSM) similaire a la méthode de [17] pour les problemes d’arret optimal en temps
discret et continu, et nous comparons WSM avec les autres méthodes populaires par
introduction de la mesure de la complexité nouvelle car par rapport a la mesure de
la complexité classique tous les algorithmes pour le probleme d’arrét optimal sont
intraitable et il n’y a pas des possibilités de les comparer par rapport a la complexité.

2. Dans Section 2 notre objectif est obtenir I'analyse de la convergence a temps fini
pour le schéma d’approximation stochastique linéaire aux deux échelles de temps
sous I’hypothese du bruit de Markov. Avec cet hypothese c’est exactement le cas
des algorithmes d’évaluation de politique pour MDP: Temporal Difference learning
(TD(0) de [69]) et les algorithmes de Gradient Temporal Différence (GTD|[72],GTD2
et TDC |73]). Le probleme avec 'analyse que existe est que la nature de Markov de
data n’était pas considéré (malgré que les praticiens travaillent avec MDP, ol c’est
le cas naturel) ou les suppositions sont plus restrictif.

3. Enfin, dans Section 3 nous proposons la méthode nouvelle, construit pour la réduction
de la variance et basé sur la minimisation de la variance empirique présenté en [8], en
cas des algorithmes de Policy-Gradient. L’objectif est, d’abord, obtenir I’algorithme
que peux rendre I'amélioration de performance supplémentaire & comparaison avec
I'objectif classique pour les variables de controle présentés en algorithme A2C (Ad-
vantage Actor-Critic) [74] et, deuxiemement, présenter quelques garanties théoriques
de la réduction.



Les résultats clés

1. Dans la premiere direction, nous présentons pour la premiere fois ’analyse de la
complexité d’algorithme WSM basé sur [17] et considérons aussi le cas de densité
de probabilité p(x|y) inconnue mais que peut étre approché. Nous proposons la
mesure nouvelle pour la comparaison des algorithmes d’arrét optimal qui s’appelle
Uindice de semitraitabilité (semitractability indez, ST) et nous lui utilisons pour la
comparaison des algorithmes de Longstaff et Schwartz [53] et la méthode QTM |[7].

2. Nous obtient les taux de convergences améliorés pour SA linéaire aux deux échelles
de temps en cas du bruit martingale et de Markov. Notre analyse nous permet
I'utilisation des pas de temps plus générales, particulierement, les pas constants,
constants par morceaux, et décroissantes étudiés dans les articles précédentes [40,
24, 88, 27|. Contrairement aux articles antérieurs [51, 24, 88|, nos résultats de
convergence sont obtenus sans l'inclusion de la projection dans les itérations de
SA. Enfin, avec les suppositions supplémentaires pour les pas de temps, nous avons
calculé I'expansion asymptotique des erreurs quadratique attendues et montré que
nos bornes sont supérieures.

3. Nous construisons des nouvelles méthodes de policy-gradient (méthodes EV) basé
sur la critere de la variance empirique et nous montrons que ces méthodes fonc-
tionnent bien dans quelque problemes pratiques en comparaison avec la critere
d’A2C. Aussi, nous proposons les bornes théoriques de la variance de I'estimation
de gradient pour les méthodes d’EV par l'utilisation des techniques de [8]; c’est le
premiere résultat que se concerne des bornes de la variance probabilistes, obtenu
avec les outils de 'apprentissage statistique dans le domaine de RL. Les mesures de
la variance d’estimation de gradient nous montre quelque observations. D’abord,
les méthodes d’EV peux réduire la variance mieux que A2C. Deuxiémement, nous
avons vu quelque confirmations de la hypothese de [81]: la réduction de la variance a
les effets mais quelques environnements ne sont pas si réactifs a la. Nous présentons
les études premieres de la critere d’EV pour les méthodes de policy-gradient dans les
exemples classiques et nous avons présenté pour la premiere fois I'implémentation
de ces méthodes basé sur PyTorch.

La contribution de I’Auteur. Quelques partes de ’analyse en cas de temps discret,
le transfert de temps discret a temps continu, les implémentations et les expériences
numériques de 'article 1 sont faites par I’Auteur. Dans article 2 I’Auteur a fait un travail
conséquent de préparation de la revue de la littérature et contribué aux résultats pour
le case martingale; il aussi a présenté les résultats et les illustrations numériques. Dans
Particle 3 ’Auteur a fait les démonstrations des théoremes concernant les bornes proba-
bilistes, vérification des suppositions, la revu de littérature, et participé a I'implémentation
des algorithmes et contribué a la concept des expériences.



Introduction

Stochastic optimal control problems are very often encountered in various practical ar-
eas: from finance [35, 77| to engineering [12]. Recently they have got a new attention
and new challenges in the light of developing Reinforcement Learning (RL), in some sense
presenting itself as the intersection of optimal control, statistics and machine learning [70].

Such class of problems can be defined as follows. Let (Q, F, P, (F;):>0) be a filtered
probability space with filtration (F;);>0. Assume some set U of progressively measurable
stochastic processes U : R>¢ x £ — R" called controls and set of controlled processes

xX={x/:Ueu}

where for every control U each (X );> is an R%valued (F;)s>o-adapted stochastic process.
We also set functional J : X — R and call it gain functional.

Definition 3. The problem of searching U, € Argmax .y, J(XY) is called stochastic
optimal control problem.

Also in practice (especially in reinforcement learning, see [70]) as a technical module
of some algorithms it is needed to evaluate the given decision rule and so one gets an
evaluation problem.

Definition 4. The problem of evaluating J(XV) given a control U in some form is called
control evaluation problem.

Of course, with such abstract formulation we cannot claim anything about the exis-
tence of the solutions or their qualities. The question becomes much more clear when
we consider more specific formulations. In the thesis the two more specific problems
are considered: optimal stopping for a stochastic differential equation(SDE) and Markov
Decision Problem (MDP).

Problem 3. (Optimal stopping problem for an SDE, |77, 35] ) Assume T > 0 and let
process X; be set with an Ito SDE for t € [0,7')

dXt = b(t, Xt)dt + O'(t, Xt)th, (2)
with initial condition X! = xy, € R?, where functions
b:[0,T) xRIxU—=RY ¢:[0,T) x R x U— R>"

are two continuous functions satisfying Lipschitz condition in the second argument and
linear growth condition with constant K:

16Ct, 2, w)lly + ot 2, u)lly < K+ ]l + [Jull,y)

with ||-||, denoting the appropriate Euclidean 2-norm. With such assumption we may
ensure that the unique strong solution exists. Let g, : R — R for every t € [0, T] be some
function called payoff. Consider an agent observing the process, at time ¢’ € [0,7] he
knows the values of X; for all ¢ < ¢'. His goal is to choose the time 7 when to take one
particular decision (stop the process, as it is often called) which gives him payoff g,(X,).
Formally, we are interested in choosing a stopping time 7 taking values in [0, 7| from the

10



set of admissible stopping times 7 maximizing the expected discounted reward of the
agent:

T, = argmax IE [g-(X;)].
TET

The most adopted by practitioners methods are invented with the ideas of Longstaff-
Schwarz(LS)[53] and Tsitsiklis-Van Roy [80] algorithms in mind. They exploit dynamic
programming principle and approximate conditional expectations using least-squares re-
gression on a given basis of functions on each backward induction step. Longstaff and
Schwarz demonstrated the efficiency of their approach through a number of numerical
examples and in [22] and [89] general convergence properties of the method were estab-
lished.

Problem 4. (Markov Decision Process, MDP, [70]) Assume some sets S,.A called state
and action spaces (they have to be measurable spaces) and define discrete-time time-
homogenuous Markov chain S; as follows. Let there be II, the set of stochastic decision
rules (also called policies) m: S — P(A), i.e. each policy takes the state s € S and returns
probability distribution over the action space denoted as 7(-|s). Let us set transition
kernel P(-|s,a) as a probability distribution over the state space given the current state
and action. Set Sy = sp almost surely and then iteratively update S; to S;i1 using the
following scheme:

At ~ 7T('|St)7
Str1 ~ P(‘|St7At)-

Consider a deterministic uniformly bounded reward function R : S x A — R. The
natural illustration of MDP is that we have an agent in the environment with state
descriptions from §; the agent at each time ¢ must make a decision A; using his policy,
after that he receives a reward R(S;, A;) and the environment changes its state as shown
above. The optimal control problem is to maximize with respect to policy the expected
sum of discounted rewards

T

> RS Ar)

t=0

J(r)=E

Y

where v € (0,1) plays the role of the discounting factor and horizon T can be finite
(finite-horizon problem) or infinite (infinite-horizon problem), or even random (episodic
problem). MDP is a fundamental model in Reinforcement Learning(RL) being currently
a fast-developing area with promising and existing applications in numerous innovative
areas of the society: starting from Al for games [82, 11, 66| and going to energy manage-
ment systems [49, 32|, manufacturing and robotics [2] to name a few. Naturally, RL gives
the practitioners new sets of control tools for any kind of automatization [33].

Policy evaluation is a vital part of the model-free algorithms based on policy iter-
ation and it is normally based on Stochastic Approximation(SA) schemes, invented in
[62]. SA itself currently became a well-studied technique [10, 47, 15|, however RL gives
new challenges and new assumptions. Among others, linear SA schemes are popular in
reinforcement learning (RL) as they lead to policy evaluation methods with linear func-
tion approximation, of particular importance is temporal difference (TD) learning [69] for
which finite time analysis has been reported in |68, 48, 13, 25].
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Aim of the Work

The aim of our research is to investigate the problems above in several ways.

1. Regarding the optimal stopping problem discussed in Section 1, we are aiming at
presenting the complexity analysis of Weighted Stochastic Mesh(WSM) algorithm
similar to the method of [17] for discrete- and continuous-time optimal stopping
problem and compare it to other popular methods via new complexity metric since
with respect to classic complexity metric all algorithms for optimal stopping are
intractable and there is no way to compare them taking the complexity into account.

2. In Section 2 we aimed at obtaining finite-time convergence analysis for two-timescale
linear Stochastic Approximation(SA) scheme under Markov noise assumptions. Such
setting is exactly the setting of classic policy evaluation algorithms for MDP: tem-
poral difference learning (TD(0) of [69]) and gradient temporal difference algorithms
(GTD|72],GTD2 and TDC [73]). The problem with existing analysis is that it does
not consider the Markov nature of the data (which is a natural thing since practi-
tioners work in MDP setting) or the assumptions are too restrictive.

3. Finally, in Section 3 we set up to propose a new method for variance reduction
based on empirical variance minimization of [8] in policy-gradient algorithms. The
goal is, firstly, to obtain an algorithm able to give the improvement over the clas-
sic optimization goal for control variates in Advantage Actor-Critic(A2C) schemes
[74] and, secondly, give some theoretical guarantees regarding the actual variance
reduction.

Key Results

1. To address the first aim, we present for the first time the complexity analysis of WSM
algorithm based on [17] and consider also the case when the transition density p(z|y)
is not known but can be approximated. We propose a new metric for comparison
of the algorithms for optimal stopping problems called semitractability index and
compare with it several algorithms popular in the community of practitioners: LS-
algorithm [53] and QTM [7].

2. We provide improved convergence rates for the linear two-timescale SA in both
martingale and Markovian noise settings. Our analysis allow for general step sizes
schedules, including constant, piecewise constant, and diminishing step sizes ex-
plored in the prior works [40, 24, 88, 27]. Unlike the prior works [51, 24, 88|, our
convergence results are obtained without requiring a projection step throughout the
SA iterations. Finally, with an additional assumption on the step size, we compute
an exact asymptotic expansion of the expected squared error to show the tightness
of our upper bounds.

3. We provide two new policy-gradient methods (EV-methods) based on EV-criterion
and show that they perform well in several practical problems in comparison to
A2C-criterion. Also theoretical variance bounds for EV-methods are provided us-
ing the ideas of [8], this the first result concerning the variance bounds with high
probability with the help of the tools of statistical learning in the setting of RL.
Measurements of the variance of the gradient estimates present several somewhat
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surprising observations. Firstly, EV-methods are able to solve variance reduction
problem considerably better than A2C. Secondly, we see some confirmations of the
hypothesis of [81]: variance reduction has its effect but some environments are not so
responsive to this. We present the first experimental investigation of EV-criterion of
policy-gradient methods in classic benchmark problems and the first implementation
of it in the framework of PyTorch.

Author contribution. Some part of the analysis for discrete-time case, transfer from
discrete to continuous case, implementations and numerical experiments in paper 1 are
done by the Author. In paper 2 the Author has done substantial work in preparing the
literature review and writing the proofs for the martingale case and presented numerical
results and illustrations. In the last direction the Author has done the main steps of the
proof of the probabilistic bound, verification of the assumptions, literature review and has
taken part in the implementation of the algorithms and experiment design.
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0.1 Contents

0.1.1 Semitractability of Optimal Stopping Problem via Weighted
Stochastic Mesh Algorithm

The results of this section are published in [9].

Introduction

Optimal stopping problem consists in constructing a decision rule saying when to take one
particular decision ("stop" the process). Being a classic problem in mathematical finance,
it is in the core of pricing various types of options, the most popular are American and
European [35]. We consider two types of problems.

1. (Continuous-time optimal stopping) Assume set of stopping opportunities [0, 7] and
let (X)scp,m be, as set in Problem 1, an Ito diffusion process set by (35) The problem
is the same as above but with g; being a payoff function for each ¢ € [0,7] and T
being the set of stopping times taking values in range [0, 7.

2. (Discrete-time optimal stopping) Assume a time-discretized version of the problem
above with some finite set of stopping opportunities £ = {0, .., L} for some L € Z.-
and let (Z;);ez be a Markov chain in R? obtained after the discretization. The
problem is to find stopping time 7* giving

E [g’r* (Z’T*) | ZO] - ?_EQE [gT(ZT) ’ ZO} )

where g; are payoff functions R? — Rx¢ at times [ € £ and T is set of stopping times
taking values in £. For simplicity and without loss of generality we assume that
Markov chain (7)), is time-homogeneous with one-step transition density denoted
by p(y|x) so that

P (Ze1 € dy | Zk = x) = p(ylz)dy

for all z,y € R%.

Despite existing convergence results, it turns out that comparing different algorithms
for optimal stopping problem based solely on their convergence rates is not possible since
these algorithms may be significantly different from a computational standpoint. The
core approaches to complexity analysis in numerical algorithms can be found in [58] and
the references therein. The main problem studied in this literature is the computation of
integrals via deterministic and stochastic algorithms. Optimal stopping problems, in fact,
present computations of several nested integrals since the dynamic programming principle
is used. Hence, the existing results from standard complexity theory cannot be directly
transferred to the complexity analysis of optimal stopping problem. In particular, for LS
algorithm [89, Cor. 3.10] results in costs

L5(52+L)(2+3d/o¢)
CL (87 d) ~ K1

g2+3d/a

with k1, ko being certain constants. If the problem is in continuous time, then by tuning
time discretization we arrive at complexity of LS algorithm possibly growing even faster
than exp(e~1/#) for some 8 > 0. The similar bound holds for other simulation based
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regression algorithms, including the one by Tsitsiklis and Van Roy [80]. In [29] the more
general regression scheme is considered with similar type of results. The main problem
with these complexity estimates is that the dimensionality of the process d enters the de-
gree of € resulting in so-called curse of dimensionality still appearing even in such Monte
Carlo schemes. There exists, however, work of [36] where the novel Monte-Carlo-type
scheme is developed with complexity independent of d but, unfortunately, it is exponen-
tial in 7L

Tractability is an important notion in the analysis of numerical algorithms and one
of the ways to define it is as follows. A d-dimensional numerical problem, for example,
computation of an integral like f[071} o f(x)dz, is called tractable [58], if there is an algorithm

to solve it with complexity C(e, d) satisfying

InC(e,d
—< ) =0. (3)

dte1—oo d 471
In the case of optimal stopping problems, however, such a definition is not very meaningful:
in all regression-type algorithms already in the case of discrete-time problem one has

. InC(e, d)

limsup ————> = 00

d+e—00 d+ e
due to the exponential dependence of the complexity on d (based on the convergence
rates known in the literature). Thus, even for a discrete-time optimal stopping problem
regression-type algorithms are intractable with respect to this definition. For example,
with the results of [78] it can be shown that the error of the estimation of the value
function in this case has the form

d
5L (\/%4—69’”), 0> 0.

However, this observation also applies to Weighted Stochastic Mesh(WSM) algorithm of
Broadie and Glasserman [17], making almost all algorithms intractable. This motivates
the development of more flexible complexity metric for the comparison of the algorithms
for optimal stopping problems.

In turns out that not much is known about the convergence properties of WSM method
except some preliminary results in discrete case [1]. The authors, however, do not give
the dependence of the errors on the underlying dimension and the number of stopping
times and their analysis is based on a rather restrictive assumption of compact state
space. Similar type of algorithm we present here was also analyzed in the work of Rust
[63] presenting a Monte Carlo scheme which has no exponential dependence on d but just
O(1/e*). The setting of discrete-time Markov Decision Process and the techniques used,
however, make the transfer to optimal stopping non-trivial. Also the paper considers
very restrictive assumptions of compact state space and Lipschitz continuity of transition
densities with Lipschitz constant independent on the dimension d.

Complexity Metrics

It turns out that the criterion (1.3) puts too much importance on the dimension d on
the one hand and on the other hand is too relaxed in dependence on . With such
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definition the algorithm with complexity d?exp (¢7'/Inln...Ine™!) is tractable while one
with complexity 2%/¢ is not despite that running an algorithm with the former complexity
seems to be practically impossible even with d = 1. Therefore, we proposed another
approach to tractability.

Definition 5. For an algorithm with computational complexity C(e,d) the number
InC(e, d)
I'c := limsup lim sup ———=.
¢ PR dn(1/e)
18 called semitractability index.

Definition 6. The problem is called semitractable if there exists an algorithm solving it
with Fc = 0.

Note that this definition nicely processes the dependencies of the complexities like
1/eP°w(d) making possible the comparison of various Monte Carlo algorithms for solving
optimal stopping and optimal control problems.

WSM Algorithm

Let us present a Weighted Stochastic Mesh (WSM) algorithm for a discrete-time optimal
stopping problem. The algorithm is inspired by [17] but it differs in special choice of
weights and truncation level. First, let us define the discrete Snell envelope process:

Ul = Ul(Zl) = Sup E [gT(ZT) | E] s l = O, ..L,

TeﬂyL

where 7, 1, is the set of stopping times taking values in the set {l,.., L}. Snell envelope
satisfies dynamic programming principle, therefore, we can compute U; using backward
induction:

UL(Zr) = 9u(Z1),
Ul(Zl) = max {91(21)7 E [Ul+1<Zl+1) ’ Zl]}, [l = 0, ..,L — 1.

For technical purposes of the analysis we set truncation level R > 0 and define the
truncated version of this backward induction:

UL(Z1) = gu(Z1), (4)
Ui(2) = max {gi(Z), B [Uin(Z1) | 2|} UpuZ), 1=0,.,L=1,  (5)
where 1, is the indicator function of the O-centered euclidean ball of radius R in R
Thus, the values vanish when the process is out of Br. We sample N independent

trajectories (Zl("))le]L with Zén) = x9,n = 1,..,N with the help of transition density
p(y|z). To estimate the conditional expectations, we use the following approximation:

p (Zz(ﬂ | x)
N n m )
S (281 27)

N
E\Uin(Zi) | 20 = 35] ~ Y U (Zz(ﬂ) (6)
n=1

To sum up, WSM algorithm is as follows:
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1. Simulate N independent trajectories (Zl(l))leﬁ, o (ZZ(N))IGL’;
2. Set UL(Z") = g (Z) forn =1,..,N;

3. For Il = L —1,..,1 compute Ul(Zl(n)) for all n = 1,.., N using (1.6) and (1.8) for
approximation of the conditional expectation;

4. Compute
- L) (o
Uo(xo) = max < go(zo) , N nz::l U, (Zln > )

One more thing to notice is that one step of backward induction with (1.6) and (1.8)
takes N2c, with ¢, being the price of multiplication. Thus, the total computational cost
of the algorithms is ¢,/N?L and given that ¢, < cgcd), the cost of one computation of

transition density, it is bounded from above by cgcd)N L.

Main Results

Using the bounds from the literature we have computed I'c for two popular in prac-
tice methods (Longstaff-Schwarz[53] and Quantization Tree |7], see the table below) in
discrete-time and continuous-time optimal stopping. For WSM algorithm we have two
core results presented below.

Theorem 1. (Proposition 2.5 in [9]) Suppose that the following conditions are satisfied:
1.

< d.
max gi(7) < o1+ Jlzfly), @ €RY

E|max |Zv| | Z1=2| <cz(1+]2,), z€R%
I<U<L
3. There exist k,a« > 0 such that for alll =1, .., L the l-step transition density satisfies

K ll=—yl13
(2wal)?/? ©

0 <p(ylr) <

Then the complexity of WSM algorithm is bounded from above by

egval
L(1+cz+ cz||lzolly) ez +ezT=l 28/4 (c iV 1)
£

C(e,d) = cla2c;}/i20;d)cg[/d+7€_4 x In4+?

Corollary 2. (Corollary 2.6 in [9]) Discrete-time optimal stopping under the assumptions
of Theorem 1 is semitractable if the complexity of the computation of the transition density
at one point cgcd) 18 at most polynomaial in d.
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One minor result we have obtained is that if the transition density itself cannot be
computed but we have an approximation which is good enough, then the same result
holds with slightly different constants. In particular, we get finite tractability index if
approximating sequence p" satisfies

) yquBRn

P (ylz2) —pWl2)| o L+ lly — zolly” + Iz — woll5)"
" (y]2) ~ n!

for some m € Z-o and appropriate sequence R, — oo as n — 0o.

Considering continuous-time optimal stopping, we first build a discretization scheme
based on Euler-Maruyama method with uniform time discretization having step h (for
details see |9]). This essentially gives a discrete-time problem. In fact, the theorem is
proven for more general approximation scheme and Euler-Maruyama scheme is just one
example of the method which works.

Theorem 3. (Proposition 3.4 in [9]) Assume the following conditions:

1.

d.
fax gi(2) < ¢o(1+ [lafly), @ € RY

E | max ‘yl’h | ylh =X S Cy(l + ||IH2), T € Rd;

I<V<L

3. There exist K,a > 0 such that for all Il = 1,.., L the l-step transition density of
(Xun)ier satisfies

- 2
R ==y}
2alh

0 <P, (ylr) < (2malh)2*

Then the cost of computing the solution of obtained discrete-time optimal stopping problem
15 is bounded from above by

e VaT
a2 | (T/D) (L ex + ex aolly) e X XT0R 25 (e v 1)
pdrsc -

Td+7

Cle,d) = 016203#0551)03

and the cost of computing the solution of continuous-time optimal stopping problem is
bounded from above by

CY\/aT
d+7 _ Tfesptexllzglly 93/4 =
2429 (d) 4 T d+2 T(1+cx+cx ||x0||2) e XX 2 (Cg"f V1)
C*(e,d) = i@ c R cy € parir % In .

Corollary 4. In the setting of continuous optimal stopping problem, the WSM algorithm
with time discretization satisfying the assumptions of Theorem 3 has semitractability index
FC* - 2

The comparison table with semitractability indices we obtained is reported in our
paper [9] and is placed below.
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| Setting \ Algorithm | LS | WSM | QTM |
Discr. time 3/ 0 2
Cont. time 00 2 6

Table 1: Semitractability indices for Longstaff-Schwarz(LS), Weighted Stochastic
Mesh(WSM) and Quantization Tree Method(QTM) computed in the paper.

Numerical Experiments

In the following experiments we illustrate the WSM algorithm in the case of continuous-
time optimal stopping problems. A lower bound for the value function in WSM method is
obtained using a suboptimal stopping rule computed on an independent set of trajectories
(test set). This stopping rule can be constructed using any interpolation algorithm based
on the observations from the training trajectories. The fastest and the simplest way giving
good results is the nearest neighbor interpolation, in our experiments we have chosen the
number of nearest neighbors to be 500.

American put option on a single asset

To illustrate the performance of the WSM algorithm in continuous time, we consider
a problem of pricing American put option on a single asset driven by geometric Brownian

motion
X, = XoezJ'WtJr(rfa/Q)t

with r denoting the riskless rate of interest, assumed to be constant, and ¢ being the
constant volatility. The payoff function is given by

g(z) = max(K — z,0).
The fair price of an option is defined as

Up= sup E [B_TTQ(XT)}

7€ 70,11

for which there is no closed form solution but there exist numerical methods giving accu-
rate approximations to Uy. We used parameters r = 0.08,0 = 0.20, K = Xy, = 100,7 = 3.
An accurate estimate of Uy in this particular case is obtained and reported in [44] to be
6.9320. In Fig. 1.1 we show the lower bounds obtained by WSM, LS and VF (value func-
tion regression method of [80]) in dependence of the number of stopping opportunities L
setting uniform time discretization on [0, 7] (the larger L the more dense is the grid). As
can be seen, WSM lower bound is much more stable when L increases and LS and VF
needs to use more complex regression basis to compensate for this effect.

American max-call option on five assets

The model with d = 5 assets is considered where each underlying asset has dividend
yield §. The dynamics is set by

dXF = (r — O)XFdt + o XFaW}, k=1,..d,

where W} are independent one-dimensional Brownian motions. The parameters are set
to be r = 0.05,0 = 0.1,0 = 0.2. As before, the holder may exercise the option at any
time ¢ € [0,7] with 7' = 3 and receive the payoff

9(X;) = maz (max (X;,.., X]) — K, 0).
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Prices of the option, N = 1,000 Prices of the option, N = 2,000
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Figure 1: Lower bounds for the price of one-dimensional American put option approxi-
mated using different methods and uniform time discretization t, = kT/L,k =0, .., L of
exercise dates. The numbers of training paths are Ny.q;;, = 1000(a) and Nyyqin = 2000(b)
and the number of test trajectories used for constructing the lower bounds Ny, = 20000
and is the same in both cases. In LS and VF a polynomial basis of degrees 2 and 4 is
used (mentioned in the legend).

We apply WSM and LS (with a basis of degree-2 polynomials) techniques to construct a
lower bound. The results for different L are presented in Fig. 1.2. The option price must
increase when the number of stopping opportunities increases, therefore LS-algorithm has
clearly deteriorating estimate. WSM, on the other hand has increasing lower bound which
shows that it performs considerably better than LS.

Prices of the option, N= 5,000
26.2 —— WSMLow

26.0

25.8

25.6

254

(] 100 200 300 400 500
L

Figure 2: Lower bounds for the price of a five-dimensional American put option approx-
imated using a uniform grid ¢, = kT/L,k = 0,.., L of exercise dates. The number of
training paths is Ny.q;m = 2000 and the number of test trajectories is Ny = 5000.
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0.1.2 Finite Time Analysis of Linear Two-Timescale Stochastic
Approximation with Markovian Noise

The results of this section are published in [43].

Introduction

The TD-learning scheme based on classical (linear) SA is known to be inadequate for
the off-policy learning paradigms in RL (data samples are drawn from a behavior policy
different from the policy being evaluated [5, 79]). To circumvent this problem, [72, 73]
have suggested gradient TD (GTD) method and the TD with gradient correction (TDC)
method. These methods are represented as linear two-timescale SA scheme introduced
by [14]:

Orr1 = O + ﬂk{gl(Xk—f—l) — /~111(Xk;+1)9k — 212(Xk+1)wk:}a (7)
Wiy1 = Wi+ Yr{02(Xpy1) — A21 (Xiy1) 0k — Aza(Xpy1)wy}. (8)

The above recursion involves two iterates, ), € R, w;, € R%, whose updates are coupled
with each other. In the above, b;(x), A;j(x) are measurable vector/matrix valued func-
tions on X and the random sequence (Xj)g>0, Xx € X forms an ergodic Markov chain.
The scalars g, Br > 0 are step sizes. The above SA scheme is said to have two timescales
as the step sizes satisfy limg_,o Or/7k < 1 such that wy is updated at a faster timescale.
In fact, wy, is a ‘tracking’ term which seeks solution to a linear system characterized by 6.

Our goal is to characterize the finite-time expected error bound with improved con-
vergence rate for the two-timescale SA (2.1),(2.2). The almost-sure convergence of two
timescale SA has been established in [14, 75, 76, 15|, among others and [46, 57| character-
ized the asymptotic convergence rates. However, finite-time risk bounds for two timescale
SA have not been analyzed until recently. With martingale samples, [51] provided the first
finite time analysis of GTD method, [26, 24| provided improved finite time error bounds.
Unlike our analysis, they analyzed modified two timescale SA with projection and their
bounds hold with high probability. With Markovian noise, [40] studied the finite time
expected error bound with constant step sizes; [88] and [27] provided similar analysis for
general step sizes. It is important to notice that with homogeneous martingale noise, the
asymptotic rate of (2.1), (2.2) without a projection step, as shown in [46, Theorem 2.6],

is in the order E [|0y — Q*m = O(bk), E [‘wk — Ay (by — A210k)|2] = O(yx), where 6*
is a stationary point of the SA scheme. However, the latter rate is not achieved in the
finite-time error bounds analyzed by the above works except for [24]. It had been an open

problem whether this error bound holds for the Markovian noise setting and for linear
two time-scale SA scheme without projection.

Main Results

We investigate the linear two timescale SA given by the following equivalent form of (2.1),
(2.2):

Or1 = Ok + Bre(by — A0 — Appwy, + Viey), 9)
Wet1 = W + Yi(ba — A0k — Asgwy, + Wiy), (10)
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where the mean fields are defined as b; := limy_,oo IE [E(Xk)} ;A= limy o E [ZZ] (Xk)]
(these limits exist as we recall that (Xj)g>o is an ergodic Markov chain). The noise terms

Vir1, Wia1 are given by:

Vi1 3251(Xk+1) — b — (le(Xk+1) — A11)bi — (gu(XkH) — Ap)wy, (11)
Wit = ba(Xpy1) — b2 — (1121(Xk+1) — A6y, — (/~122(Xk+1) — Ago)wy,.

The goal of the recursion (2.3), (2.4) is to find a stationary solution pair (6*,w*) that
solves the system of linear equations:

A119 + Algw = bl, A219 + A22w = bz. (12)
We are interested in the scenario when the solution pair (6*, w*) is unique and is given by
9* = A_l(bl — A12A2_21b2), w* = A2_21 (b2 — A219*). (13)

where A := All - A12A2_21A21.
To analyze the convergence of (0, wg)r>0 in (2.3), (2.4) to (6%, w*), we require several
assumptions which are common for linear two time-scale SA, see [46].

A 1. Matrices —Ayy and —A = — (A11 — A12A2_21A21) are Hurwitz.
A 2. (Vk)k>0, (Br)k>0 are nonincreasing sequences of positive numbers that satisfy the
following.

1. There exist constant x such that for all £ € N, we have fi /v, < k.

2. For all £ € N; it holds

Yo/ Vo1 < 14 (a22/8) Vi1, Br/Brt1 < 14+(an/16)Br+1, Yo/ Ver1 < 14+(an/16)Bxkt1.
(14)

Our conditions on step sizes are similar to [46, Assumption 2.3, 2.5]. These condi-
tions encompass diminishing, piecewise constant and constant step sizes schedules which
are common in the literature. For instance, a popular choice of diminishing step sizes
satisfying A10 is

Br=J(k+ky), =/ (k+ k) (15)

with some constants ¢?, ¢7, k, k:g , €.g., as suggested in |26, Remark 9|; or a constant step
size of By = B, = 1; or a piecewise constant step size, e.g., [40].

We present new results on the convergence rate of (2.3), (2.4) depending on the types
of noise with Vi1, Wri1. To discuss these cases, let us define the o-field generated by the
two timescale SA scheme and the initial error made by the SA scheme, respectively as:

fk = 0{60>w07X17X27”'7Xk}7 VO = [||90_6*H2+ Hwo_w*||2j| : (16)

Our main results are presented for two sets of noise assumptions.
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Martingale Noise We consider a simple setting where the random elements X are
drawn i.i.d. from the distribution such that b;, A;; are the expected values of random vari-

ables b;(Xy), A;;(X)) which are assumed to have bounded second moment. This implies
that the sequences (Vii1)ren, (Wii1)ren are martingale difference sequences.

A 3. The noise terms are zero-mean conditioned on Fy, i.e., E** [V, 1] = E7* [Wy 4] = 0.

A 4. There exist constants myy, my such that

B [Vie Vi ]| < mv (1 + B [0:60 ]| + 1 [wrawf ] 1], (17)
IE [Wia W ]| < muw (14 1B [6:60] ] 1| + |E [wrawy ]1]) -

Theorem 5. Assume A9-12 and for all k € N, we have v, € [0,7™¢], B € [0, BT and

o

K € [0, Koo, where Y18, B8 Kk, are defined constants. Then
~ kil a ~
* m A m
E [I6x — 6%7] < de{Cg’ =T (1 - @I)VO +c? tgﬁk} (18)
- k-1

E [Hwk — AR by — Amek)\ﬂ < dw{cgﬁmtg I1 (1 - @%)Vo + c?’mtg%} (19)

The exact constants are provided in the paper.

Markovian Noise Consider the sequence (Xj)g>o to be samples from an exogenous
Markov chain on X with the transition kernel P : X x X — R,. For any measurable
function f, we have

E7 [f(Xpn)] = P £(Xy) = / f(2) P(Xy. dz)

B 1. The Markov kernel P has a unique invariant distribution p : X — R, . Moreover, it
is irreducible and aperiodic.

Observe that
b= [ Ba)alda), Ay = [ Ay@on(do). i =12
X X

We show that the linear two time-scale SA (2.1), (2.2) converges to a unique fixed point
defined by the above mean field vectors/matrices, see (2.7). An important condition that
enables our analysis is the existence of solutions to the following Poisson equations:

B 2. For any 4, j = 1,2, consider b;(z), /Lj (x), there exists vector/matrix valued measur-
able functions b;(z), A;;(x) which satisfy

bi(z) — by = bi(x) — Phi(x), Ay(x) — Ay = Ay(z) — P Ay(x) (20)

for any = € X and b;, A;; are the mean fields of gz(ac), g@j(x) with the stationary distribution
L.
The above assumption can be guaranteed under B5 together with some regularity

conditions, see [28, Section 21.2]. Moreover,
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B 3. Under B6, the vector/matrix valued functions /b\l(a:), g”(:v) are uniformly bounded:
forany 7,7 = 1,2, x € X, R L -
i ()| < b, [[Ai ()] <A (21)

B 4. There exists constant pg such that for any k£ > 1, we have 72| < poSs.

To satisfy B7, we observe that the bounds b, A depend on the mixing time of the chain
(Xi)i=0 and a uniform bound on b;(-), A;;(). In the context of reinforcement learning,
the latter can be satisfied when the feature vectors and reward are bounded. In fact, B7
implies A12. Meanwhile, B8 imposes further restriction on the step size. The latter can
also be satisfied by (2.11). The challenges of analysis with Markovian noise lie in the
biasedness of the noise term as E** [V, 4] # 0, E7* [W,,,] # 0.

Theorem 6. Assume A9-10, B5-8 hold and for all k € N, we have B, € (0, 3™ ],
e € (0,9m K] ) < Koo, where BT Amark g are defined constants. Then

~ kil ~
B [l16x — 7] < de{c(’;’”‘afk [T (1-852) 0+ Vo) +cim ﬁk}, (22)

(=0
E [[lwy — Az (b2 — Any)|I”] < dw{C"” e H (1 - ﬁé_) 1+ Vo) + C?’mark%}' (23)

The exact constants are given in the paper.

While Theorem 13 relaxes the martingale difference assumption A12 in Theorem 12,
we remark that the results here do not generalize that in Theorem 12 due to the additional
B7, B8. Particularly, with martingale noise, the convergence of linear two timescale SA
only requires the noise to have bounded second order moment, yet the Markovian noise
needs to be uniformly bounded.

The upper bounds in Theorem 12 and 13 consist of two terms — the first term is a
‘transient’ error with product such as Hf:_ol (1—p;an/8) decays to zero at the rate o(1/k°)
for some ¢ > 1 under an appropriate choice of step sizes such as (2.11); the second term is a
‘steady-state’ error. We observe that the ‘steady-state’ error of the iterates 0y, wy exhibit
different behaviors. Taking the step size choices in (2.11) as an example, the steady-state
error of the slow-update iterates 0y is O(1/k) while the error of fast-update iterates wy, is
o(1/ /{%) Furthermore, similar bounds hold for both martingale and Markovian noise.

Comparison to Related Works Our results improve the convergence rate analysis
of linear two timescale SA in a number of recent works. In the martingale noise setting
(Theorem 12), the closest work to ours is [24] which analyzed the linear two timescale SA
with martingale samples and diminishing step sizes. The authors improved on [26] and
obtained the same convergence rate (in high probability) as our Theorem 12, furthermore
it is demonstrated that the obtained rates are tight. Their bounds also exhibit a sublin-
ear dependence on the dimensions dy,d,,. However, their algorithm involves a sparsely
executed projection step and the error bound holds only for a sufficiently large k. These
restrictions are lifted in our analysis.

In the Markovian noise setting (Theorem 13), the closest works to ours are |27, 40, 88.
In particular, [40] analyzed the linear two timescale SA with constant step sizes and
showed that the steady-state error for both 6y, wy, is O(7?/3). |88] analyzed the TDC al-
gorithm with a projection step and showed that the steady-state error for 6y is O(1/k3) if
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the step sizes in (2.11) is used. [27] analyzed the linear two timescale SA with diminishing
step size and showed that the steady state error for both 6, wy, is O(1/k3). Interestingly,
the above works do not obtain the fast rate in Theorem 13, i.e., E[||6, — 6*|]*] = O(1/k).
One of the reasons for the sub-optimality in their rates is that their analysis are based on
building a single Lyapunov function that controls both errors in 6, and wy. In contrast,
our analysis relies on a set of coupled inequalities to obtain tight bounds for each of the
iterates 0., wy.

Our last result is the lower bound constructed to demonstrate the tightness of our
analysis in Theorem 12, 13 writing the explicit expression for squared error E [||0), — 6*?].
We consider the following technical assumption:

A 5. There exist matrices X', 312 322 and a constant m{, > 0 such that for all j € N,
it holds

[ [V;V;T] = S v B (W W] = £2) v B VW] - 2 < m3% (1B [0:6] || + IE [@a]] ).
Note that A13 implies A12 and therefore poses a stronger assumption. We have

Theorem 7. Assume A9-11, A13 and for all k € N, we have v € [0,7™€], B € [0, 52P]

(o)
and k € [0, kP], where Y8 P kP are constants defined in the paper. Then for any

o0 oo ? o0

k> kg® := min{¢ : Zﬁ;[l) B; >1og(2)/(2||Al])}, the following expansion holds
E [||0x — 6*]1] = I + J. (24)
The leading term Iy is given by the following explicit formula
-
foi= S 0T (T (1000 {1 -0} ),

where ¥ = S+ A AR S22 ALT AL+ S2ALT AL+ A A S? . Meanwhile, the following
two-sided inequality holds

I
CZP Ty (%) < ﬁ—’“ < CTP Ty (D), (25)
k
and Jy, is bounded by
k—1 a 8
ex A ex| k
| Jk| SCOPH<1—IB£> Vo + CT* B, (%‘l‘%>, (26)

where Vo was defined in (2.12). All constants Cg®, CT®, CT®, CT™® are given in the paper
and they are independent of B, V.

Observe that from (2.41), the dominant term for Jy is given by O(Brvk + f—f) As such,
using (2.40), we observe that

|kl /I = O (v + Br/r)

If limg 00 Bk /v = 0, we have limg_,o0 |Ji|/Ir = 0. Combining (2.39), (2.40) shows that
the expected error E [||0 — 6*]|?] is lower bounded by Q(fs).

We note that the assumptions A9-11, A13 imposed by the theorem imply A9-A12
required by Theorem 12. Hence, together with (2.14) in Theorem 12, the above observa-
tions constitute a matching lower bound on the convergence rate of linear two timescale
SA with martingale noise.
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0.1.3 Variance Reduction for Policy-Gradient Methods via Em-
pirical Variance Minimization

The results of this section are published in [42].

Introduction

In RL policy-gradient methods constitute the family of gradient algorithms directly mod-
elling the policy and exploiting various formulas to approximate the gradient of expected
reward with respect to the policy parameters [84, 74]. The straightforward way to tackle
gradient estimation is Monte Carlo scheme resulting in the algorithm called REINFORCE
[84]. Assume a Markov Decision Problem (MDP) (S,A, R, P, 11, 19,7y) with a finite
horizon T and given a class of policies IT = {my: S — P(A) | § € ©} parametrized by
6 € © C RP where P(A) is the set of probability distributions over the action set A.
We will omit the subscript in my wherever possible for shorter notation, in all occurrences
7 € II. The optimization problem for MDP reads as

T-1

> A'R(S:, A

t=0

maximize J(0) = E wrt. 0€0,

where we have assumed that the horizon T' is fixed. Note that any sequence of states,
actions, and rewards can be represented as an element X of the product space

(S x AxR).

Let VJ|p : (S x Ax R)T — R? be an unbiased estimator of the gradient V4. at point
0 = ¢'. With this notation the gradient descent algorithm for maxmization of J(#) using
the estimate V.J reads as follows:

K
1 ~
i1 = 0, + 2 § Vo, (X)), n=12,... (27)
k=1

with 7, being a positive sequence of step sizes. We will omit the subscript 6,, in the
gradient estimate if it is clear from the context at which point the gradient is computed.
REINFORCE [84] is one example of this estimator:

-1
Treinf 7 .Y nyth(X)Vg log 7(A¢|St)

t=0

with -
G(X):=> "R,
t'=t
where R, = R(S;, A;) and
X =[(So, Ao, Ro), ., (Sp_1, Ar_1, Rr_1)] .

Unavoidably, there is the variance emerging from the estimation of the high-dimensional
gradient [83]. This makes the problem of gradient estimation quite challenging. Variance
reduction is necessarily required to construct modifications with gradient estimates of
lower variance and lower computational cost than increasing the sample size.

27



The main developments in this direction include actor-critic by [45] and advantage
actor-critic: A2C [74] and asynchronous version of it, A3C [55]. Generally, it can be
considered as a modification of REINFORCE with additional use of control variate set
by state-action-dependent baseline b, : S x A — R (SA-baselines) or state-dependent
baselines by : S — R (S-baselines) parametrized by ¢. The estimator becomes

T—1
Vo't X 53 41 (Gr = by(Sh, Ar)) Ve log m(AdSy),

t=0

the gradient scheme becomes two-timescale and baseline parameters are tuned so that the
baseline models the state value function:

K
1 —~

9n+1 - 971 + O‘n} Z Vb¢J(X7(1k))7 (28>

k=1
D1 = On — BuVVirl (0)]4,., (29)

where
1 K T-1 k) )
Vi (0) = 22 D Y (GuXP) = by(5,7) (30)
k=1 t=0

is A2C goal reflecting our desire to approximate the corresponding value function from
its noisy estimates (Gt(Xék))) via least squares. The motivation behind it is that if one
chooses the value function as baseline, the variance will be minimized. This strategy
works well in practical problems [55].

Recently a new interest in such methods has emerged due to the introduction of deep
reinforcement learning [56], a very comprehensive review is done in [33]. During several
decades a large number of new variance reduction methods were proposed, including sub-
sampling methods like SVRPG [60, 86| and various control variate approaches of [64], [39],
[52], [81], [85]. There are also approaches of a bit different nature: trajectory-wise control
variates [19] using the control variate based on future rewards and variance reduction in
input-driven environments [54]. Apart from that, in ergodic case there were both theoretic
[38] and also some practical advancements [21]. The importance of the criteria for variance
reduction is well-known in Monte-Carlo and MCMC [65] and recently was also addressed
in RL by [30], where the Actor with Variance Estimated Critic (AVEC) was proposed.

Going to theory, it remains unclear how the procedure used in A2C is related to the
variance of the gradient estimator. Moreover, the empirical studies of the variance of the
gradient estimator are still very rare and available mostly for artificial problems. In the
community there is still an ongoing discussion about the actual role of the variance of
the gradient in the performance of the algorithms [81]. In our study we try to answer
some of these questions and suggest a more direct approach inspired by the Empirical
Variance(EV) Minimization recently studied by [8]. We show that the proposed EV-
algorithm is not only theoretically justifiable but can also perform better than the classic
A2C algorithm. It should be noted that the idea of using some kind of empirical variance
functional is not new: some hints appeared, for instance, in [52|. Despite that, the
implementation and theoretical studies of this approach are still missing in the literature.
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Main Theoretical Results

The main object of our study is the use of empirical variance instead of A2C goal. Starting
from this we could formulate two optimization goals for baseline tuning:

K 2

K
VEE0,0) = = SO[[F s - g [ I e
k=1 k=1 2
1 <= 2
GRUDES S LarEeRl (32)
k=1

both can be shown to be an unbiased estimate of the true variance of the gradient estimator
and true variance is defined for a random vector Y as

VY)=E[lY -E[Y]|3].

The corresponding gradient algorithms can be described as

K
1 b (k)
s = b+ ;1 The J(X ), (33)
¢n+1 = (bn - ﬁnvqﬁvlgv((ﬁa 9)|¢n79n' (34>

We got two methods. The first one uses the full variance V;FV¥ and is called EVv, the sec-

ond one is titled EVm and exploits V;£Y™ the same variance functional but without the
second term. The important fact to note is that EVv routine would work only if K > 2,
otherwise we try to estimate the variance with one observation. We can note several quick
facts about these methods. Firstly, it turns out that under some technical assumptions
A2C goal is an upper bound (up to a constant) of EV goals (Prop.5 in [42]). Secondly,
we show that if the scheme converges to a local optimum, then EVm and EVv methods
are asymptotically equivalent since the second term of the variance is the squared norm
of the true gradient which converges to 0.

The main theoretical result is high-probability bound for excess risk on step n of the
algorithm. For this we first simplify the notation for more clarity. Let us further notate
the gradient estimator as h : R? — RP, fix some set of such estimators H and define
€ = E[h(X)] = Vi J since the estimate is assumed to be unbiased. In order to reduce the
variance in the gradient estimator we would like to pick on each epoch n the best possible
estimator

h* = argmin V' (h)
heH

where variance functional V' is defined for any h € H via
V(h):==E[[[n(X) - &[]

where X is random vector of concatenated states, actions and rewards described before.

To solve the above optimization problem, we use empirical analogue of the variance and
define

~

h := arg min Vi (h)
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with the empirical variance functional of the form:

K
1
Vie(h) = 77— D (X W) = Pihl?
k=1

with Pg being the empirical measure, so with the given sample we could notate sample
mean as

K
1
N (k)
Pch = KZh(X ).
k=1
Let us pose several key assumptions.

A 6. Class H consists of bounded functions:

sup [[h(2)|| < b, VheH.

rzeX

A 7. The solution h, is unique and H is star-shaped around h,:

ah+ (1 —a)h, € H, VYheH, aec]|0,1].

A 8. The class H has covering of polynomial size: there are a > 2 and ¢ > 0 such that
for all u € (0, b],

NH - ez, w) < <£>a a.s.

U
where

1Pl z2piey = ) Prcllo]l3

The following result holds.

Theorem 8. Under Assumptions 14-16 it holds with probability at least 1 — 4e™t,

with
log K log K
B < Oy i , Ba < Oy i ;
B Cs(t+1) _ Cyt
Bs(t) = S—K’B4(t) =K

where C1,Cy, C3,Cy are constants not depending on the dimension D or the sample size
K and are defined in the paper.

This allows to conclude that as sample size K grows, the variance reduces to that
of h,. From practical perspective, Theorem 24 firstly gives some reliability guarantee.
Secondly, it also shows that if we have K large enough, we can reduce the variance even
more.
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Numerical Experiments

We empirically investigate the behavior of EV-algorithms on several benchmark problems:

e Gym Minigrid [20] (Unlock-v0, GoToDoor-5x5-v0);

e Gym Classic Control [18| (CartPole-v1, LunarLander-v2, Acrobot-v1).

For each of these we provide charts with mean rewards illustrating the training process,
the study of gradient variance and reward variance and time complexity discussions. Here
because of small amount of space we present the most important results but the reader is
welcome in the Supplementary materials where more experiments and investigations are
presented together with all the implementation details. The code and config-files can be
found on GitHub page [37].

Overview. Below we show the discussions about several key indicators of the algo-
rithms.

1. Mean rewards. They are computed at each epoch based on the rewards obtained
during the training in 40 runs and characterize how good is the algorithm in inter-
action with the environment.

2. Standard deviation of the rewards. These are computed in the same way but
standard deviation is computed instead of mean. This values show how stable the
training goes: high values indicate that there are frequent drops or increases in
rewards.

3. Gradient variance. It is measured every 200 epochs using (3.9) with separate
set of 50 sampled trajectories with relevant policy. This is the key indicator in the
discussion of variance reduction. Surprisingly, as far as we know, we are the first
in the RL community presenting such results for classic benchmarks. The resulting
curves are averaged over 40 runs.

4. Variance Reduction Ratio. Together with Gradient Variance itself we also mea-
sure reduction ratio computed as sample variance of the estimator with baseline
divided by the sample variance without baseline (assuming b, = 0) in the compu-
tations of Gradient Variance. The reduction ratio is the main value of interest in
variance reduction research in Monte Carlo and MCMC.

Algorithm Performance. While observing mean rewards during the training we may
notice immediately that EV-algorithms are at least as good as A2C. In CartPole en-
vironment (Fig. 3.1 ) we conducted several experiments and present here two policy
configurations: one with simpler neural network (configh, see Fig. 3.1(a,b,c) ) and one
with more complex network (config8, see Fig. 3.1(d,e,f) ). In the first case both A2C and
EV have very similar performance but in the second case the agent learns considerably
faster with EV-based variance reduction and we get approximately 50% improvement over
A2C agent and 75% over Reinforce agent in the end and even more during the training.
The phenomenon of better performance of EV in CartPole with more complex policies
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Figure 3: The charts representing the results for CartPole environment: (a,b,c) represent
mean rewards, standard deviation of the rewards and gradient variance reduction ratio
for configh and (d,e,f) show the same information about config8.

is observed often, more detailed discussion is placed in Supplementary. As to Acrobot
(see Fig. 3.2(a)), we see EV-algorithms giving better speed-up in the training. In the
beginning EVm allows to learn faster but in the end the performance is the same as A2C.
One of the reasons of such behavior can be the fact that learning rate becomes small and
the agent already reaches the ceiling. Unlock (Fig. 3.3(a)) is the example of the environ-
ments where all algorithms work similarly: in terms of rewards we cannot see significant
improvement even over Reinforce.
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Figure 4: The charts representing the results for Acrobot environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c¢) displays the gradient
variance reduction ratios.

Stability of Training. When we study the charts for standard deviation of the rewards
(Fig. 3.1(b,e),3.2(b),3.3(b)), we can see that EV-methods are better in terms of stability
of the training, the algorithm more rarely has drops than that of A2C. This is greatly
illustrated by CartPole in Fig. 3.1(b,e) where the standard deviation is about 2 times
less than in case of A2C. This holds for both configurations. Fig. 3.2 illustrating the
experiments with Acrobot show that until the ceiling is reached EV methods still can
have lower variance. In Unlock presented in Fig. 3.3(b) we have not observed a significant
difference in reward variance.
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Figure 5: The charts representing the results for Unlock environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c¢) displays the gradient
variance reduction ratios.

Gradient Variance and its Influence. The first thing we can notice reviewing the
gradient variance is that A2C and EV reduce the variance similarly in Unlock. CartPole
(see Fig. 3.1(c,f)), however, gives an example of the case where EV works completely
differently to A2C, it reduces the variance almost 100-1000 times in both policy configu-
rations. Similar picture we can observe in all CartPole experiments. We can see that in
Unlock shown in Fig. 3.3 the variance can also be reduced approximately 10-100 times,
however, we see very little gain in rewards. It shows that in some environments train-
ing does not respond to the variance reduction; as a reason, it can be just not enough
to give the improvement. The last thing we would like to note is that reward variance
measured in previous sub-section is not an indicator of variance reduction since we have
shown gradient variance reduction in all cases. Reward variance is decreased in relation to
Reinforce, however, only in CartPole environement. Therefore, it cannot be used as a key
metric for studying variance reduction in RL. The connection between reward variance
and gradient variance seems to be an unanswered question in the literature.

Conclusion

Considering the first goal, for discrete-time optimal stopping problems we have established
semitractability for the proposed WSM algorithm under weak assumption of Markov chain
with transition kernel possessing a density. In the most common case of infinitely smooth
continuation functions many regression based algorithms, including LS, are also semi-
tractable for discrete-time optimal stopping problems. However, as we have shown, when
going to continuous optimal stopping problem, regression method gives infinite semi-
tractability index while WSM’s index remains bounded, the experiments have clearly
shown the practical consequences of it.

In the second direction we have achieved an improved finite time convergence analysis
of the linear two timescale SA on both martingale and Markovian noises with relaxed con-
ditions. Our analysis show that a tight analysis is possible through deriving and solving
a sequence of recursive error bounds.

As to the third goal, we suggested to use empirical variance which in turn resulted in
EV-methods. The motivation of EV-algorithms is more about actual variance reduction
than in case of A2C and their performance is at least as good as A2C in terms of variance
reduction and rewards. For them we also have suggested the first in the literature prob-
abilistic bound for the variance of the gradient estimate under some mild assumptions.
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EV-algorithms can be more stable in training which can allow to make sudden drops
during the training less frequent. We also have for the first time presented the study
of actual gradient variance reduction in classic benchmark problems. Our results have
shown that variance reduction can help in the training but sometimes the environment’s
specific features do not allow to achieve gain in rewards. Therefore, variance reduction
technique needs to be used during the training but the exact circumstances in which it
helps are yet to be discovered.
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Introduction

Stochastic optimal control problems are very often encountered in various practical ar-
eas: from finance |35, 77| to engineering [12]. Recently they have got a new attention
and new challenges in the light of developing Reinforcement Learning (RL), in some sense
presenting itself as the intersection of optimal control, statistics and machine learning [70].

Such class of problems can be defined as follows. Let (Q, F, P, (F;):>0) be a filtered
probability space with filtration (F;);>0. Assume some set U of progressively measurable
stochastic processes U : R>¢ x 2 — R" called controls and set of controlled processes

xX={x/:Ueu}

where for every control U each (X[);> is an R%valued (F;);>o-adapted stochastic process.
We also set functional J : X — R and call it gain functional.

Definition 1. The problem of searching U, € Argmaxy, J(XY) is called stochastic
optimal control problem.

Also in practice (especially in reinforcement learning, see [70]) as a technical module
of some algorithms it is needed to evaluate the given decision rule and so one gets an
evaluation problem.

Definition 2. The problem of evaluating J(XV) given a control U in some form is called
control evaluation problem.

Of course, with such abstract formulation we cannot claim anything about the exis-
tence of the solutions or their qualities. The question becomes much more clear when
we consider more specific formulations. In the thesis the two more specific problems
are considered: optimal stopping for a stochastic differential equation(SDE) and Markov
Decision Problem (MDP).

Problem 1. (Optimal stopping problem for an SDE, |77, 35] ) Assume T > 0 and let
process X; be set with an Ito SDE for t € [0,7)

dXt = b(t, Xt)dt + U(t, Xt)th, (35)
with initial condition XY = xy € R?, where functions
b:[0,T) xRIxU—=RY ¢:[0,T) x R x U — R™"

are two continuous functions satisfying Lipschitz condition in the second argument and
linear growth condition with constant K:

16, 2, u)lly + ot 2, u)lly < KL+ 2], + [lull)
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with ||-||, denoting the appropriate Euclidean 2-norm. With such assumption we may
ensure that the unique strong solution exists. Let g, : R — R for every t € [0, 7] be some
function called payoff. Consider an agent observing the process, at time ¢’ € [0,7] he
knows the values of X; for all ¢ < ¢. His goal is to choose the time 7 when to take one
particular decision (stop the process, as it is often called) which gives him payoff ¢, (X,).
Formally, we are interested in choosing a stopping time 7 taking values in [0, 7| from the
set of admissible stopping times 7 maximizing the expected discounted reward of the
agent:

T, = argmax IE [g,(X,)].
TET

The most adopted by practitioners methods are invented with the ideas of Longstaff-
Schwarz(LS)[53] and Tsitsiklis-Van Roy [80] algorithms in mind. They exploit dynamic
programming principle and approximate conditional expectations using least-squares re-
gression on a given basis of functions on each backward induction step. Longstaff and
Schwarz demonstrated the efficiency of their approach through a number of numerical
examples and in [22| and [89] general convergence properties of the method were estab-
lished.

Problem 2. (Markov Decision Process, MDP, [70]) Assume some sets S, A called state
and action spaces (they have to be measurable spaces) and define discrete-time time-
homogenuous Markov chain S; as follows. Let there be II, the set of stochastic decision
rules (also called policies) m: S — P(A), i.e. each policy takes the state s € S and returns
probability distribution over the action space denoted as 7(-|s). Let us set transition
kernel P(:|s,a) as a probability distribution over the state space given the current state
and action. Set Sy = sp almost surely and then iteratively update S; to S;11 using the
following scheme:

Ay ~7(+]Sh),
St1 ~ P('|St7At)-

Consider a deterministic uniformly bounded reward function R : S x A — R. The
natural illustration of MDP is that we have an agent in the environment with state
descriptions from §; the agent at each time ¢ must make a decision A; using his policy,
after that he receives a reward R(S;, A;) and the environment changes its state as shown
above. The optimal control problem is to maximize with respect to policy the expected
sum of discounted rewards

T

> RS, Ay)

t=0

J(m)=E

Y

where v € (0,1) plays the role of the discounting factor and horizon 7' can be finite
(finite-horizon problem) or infinite (infinite-horizon problem), or even random (episodic
problem). MDP is a fundamental model in Reinforcement Learning(RL) being currently
a fast-developing area with promising and existing applications in numerous innovative
areas of the society: starting from Al for games [82, 11, 66| and going to energy manage-
ment systems [49, 32|, manufacturing and robotics [2] to name a few. Naturally, RL gives
the practitioners new sets of control tools for any kind of automatization [33].

Policy evaluation is a vital part of the model-free algorithms based on policy iter-
ation and it is normally based on Stochastic Approximation(SA) schemes, invented in
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[62]. SA itself currently became a well-studied technique [10, 47, 15|, however RL gives
new challenges and new assumptions. Among others, linear SA schemes are popular in
reinforcement learning (RL) as they lead to policy evaluation methods with linear func-
tion approximation, of particular importance is temporal difference (TD) learning [69] for
which finite time analysis has been reported in [68, 48, 13, 25].

Aim of the Work

The aim of our research is to investigate the problems above in several ways.

1. Regarding the optimal stopping problem discussed in Section 1, we are aiming at
presenting the complexity analysis of Weighted Stochastic Mesh(WSM) algorithm
similar to the method of [17]| for discrete- and continuous-time optimal stopping
problem and compare it to other popular methods via new complexity metric since
with respect to classic complexity metric all algorithms for optimal stopping are
intractable and there is no way to compare them taking the complexity into account.

2. In Section 2 we aimed at obtaining finite-time convergence analysis for two-timescale
linear Stochastic Approximation(SA) scheme under Markov noise assumptions. Such
setting is exactly the setting of classic policy evaluation algorithms for MDP: tem-
poral difference learning (TD(0) of [69]) and gradient temporal difference algorithms
(GTDI72|,GTD2 and TDC [73]). The problem with existing analysis is that it does
not consider the Markov nature of the data (which is a natural thing since practi-
tioners work in MDP setting) or the assumptions are too restrictive.

3. Finally, in Section 3 we set up to propose a new method for variance reduction
based on empirical variance minimization of [8| in policy-gradient algorithms. The
goal is, firstly, to obtain an algorithm able to give the improvement over the clas-
sic optimization goal for control variates in Advantage Actor-Critic(A2C) schemes
[74] and, secondly, give some theoretical guarantees regarding the actual variance
reduction.

Key Results

1. To address the first aim, we present for the first time the complexity analysis of WSM
algorithm based on [17] and consider also the case when the transition density p(z|y)
is not known but can be approximated. We propose a new metric for comparison
of the algorithms for optimal stopping problems called semitractability index and
compare with it several algorithms popular in the community of practitioners: LS-

algorithm [53] and QTM [7].

2. We provide improved convergence rates for the linear two-timescale SA in both
martingale and Markovian noise settings. Our analysis allow for general step sizes
schedules, including constant, piecewise-constant, and diminishing step sizes ex-
plored in the prior works [40, 24, 88, 27|. Unlike the prior works [51, 24, 88|, our
convergence results are obtained without requiring a projection step throughout the
SA iterations. Finally, with an additional assumption on the step size, we compute
an exact asymptotic expansion of the expected squared error to show the tightness
of our upper bounds.
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3. We provide two new policy-gradient methods (EV-methods) based on EV-criterion
and show that they perform well in several practical problems in comparison to
A2C-criterion. Also theoretical variance bounds for EV-methods are provided us-
ing the ideas of [8], this the first result concerning the variance bounds with high
probability with the help of the tools of statistical learning in the setting of RL.
Measurements of the variance of the gradient estimates present several somewhat
surprising observations. Firstly, EV-methods are able to solve variance reduction
problem considerably better than A2C. Secondly, we see some confirmations of the
hypothesis of [81]: variance reduction has its effect but some environments are not so
responsive to this. We present the first experimental investigation of EV-criterion of
policy-gradient methods in classic benchmark problems and the first implementation
of it in the framework of PyTorch.

Author contribution. Some part of the analysis for discrete-time case, transfer from
discrete to continuous case, implementations and numerical experiments in paper 1 are
done by the Author. In paper 2 the Author has done substantial work in preparing the
literature review and writing the proofs for the martingale case and presented numerical
results and illustrations. In the last direction the Author has done the main steps of the
proof of the probabilistic bound, verification of the assumptions, literature review and has
taken part in the implementation of the algorithms and experiment design.
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Chapter 1

Semitractability of Optimal Stopping
Problem via Weighted Stochastic Mesh
Algorithm

The results of this chapter are published in [9].

1.1 Introduction

Optimal stopping problem consists in constructing a decision rule saying when to take one
particular decision ("stop" the process). Being a classic problem in mathematical finance,
it is in the core of pricing various types of options, the most popular are American and
European [35]. We consider two types of problems.

1. (Continuous-time optimal stopping) Assume set of stopping opportunities [0, 7' and
let (X)icp,m be, as set in Problem 1, an Ito diffusion process set by (35) The problem
is the same as above but with ¢; being a payoff function for each ¢t € [0,7] and T
being the set of stopping times taking values in range [0, 7.

2. (Discrete-time optimal stopping) Assume a time-discretized version of the problem
above with some finite set of stopping opportunities £ = {0, .., L} for some L € Z,
and let (Z;);ez be a Markov chain in R? obtained after the discretization. The
problem is to find stopping time 7* giving

E[QT*(ZT*> | ZO]:?}E]'?]E[QT(ZT> ’ ZO};

where g; are payoff functions R — R at times [ € £ and 7T is set of stopping times
taking values in £. For simplicity and without loss of generality we assume that
Markov chain (Z;),c. is time-homogeneous with one-step transition density denoted
by p(y|z) so that

P(Zyy €dy | Zx = x) = ply|z)dy

for all z,y € R%.
Despite existing convergence results, it turns out that comparing different algorithms

for optimal stopping problem based solely on their convergence rates is not possible since
these algorithms may be significantly different from a computational standpoint. The
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core approaches to complexity analysis in numerical algorithms can be found in [58| and
the references therein. The main problem studied in this literature is the computation of
integrals via deterministic and stochastic algorithms. Optimal stopping problems; in fact,
present computations of several nested integrals since the dynamic programming principle
is used. Hence, the existing results from standard complexity theory cannot be directly
transferred to the complexity analysis of optimal stopping problem. In particular, for LS
algorithm [89, Cor. 3.10] implies that for a fixed number L of stopping opportunities and
a popular choice of polynomial basis functions of degree less or equal to m, the error of
estimating the corresponding value function at one point is bounded by

md 1
5F —_— 1.1
g ( v+ ma) : (1.1)

therefore,

Proposition 1. For L stopping opportunities and underlying dimension d, the computa-
tional work for achieving an accuracy € by the LS algorithm is bounded by

L 5(/{2 +L)(24+3d/ )

(1.2)

with K1, ke being certain constants.

If the problem is in continuous time, then by tuning time discretization we arrive at
complexity of LS algorithm possibly growing even faster than exp(e~/#) for some 8 > 0.
The similar bound holds for other simulation based regression algorithms, including the
one by Tsitsiklis and Van Roy [80]. In [29] the more general regression scheme is con-
sidered with similar type of results. It is important also to mention [36] where the novel
Monte-Carlo-type scheme is developed with complexity independent of d but, unfortu-

nately, exponential in e1.

Tractability is an important notion in the analysis of numerical algorithms and one
of the ways to define it is as follows. A d-dimensional numerical problem, for example,
computation of an integral like f[o 1 f(z)dz, is called tractable |58], if there is an algorithm
to solve it with complexity C(e, d) satisfying

InC(e,d)
lim —————==0. 1.3
d+e— 1200 d—|-€71 ( )
In the case of optimal stopping problems, however, such a definition is not very meaningful:
in all regression-type algorithms already in the case of discrete-time problem one has
. InC(e, d)
limsup ————> = 00
dte—oo A+ €
(based on the convergence rates known in the literature). Thus, even for a discrete-time
optimal stopping problem regression-type algorithms are intractable with respect to this
definition. For example, with the results of |78] it can be shown that the error of the
estimation of the value function in this case has the form

d
5L (y/%ﬂ"m), 0> 0.
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However, this observation also applies to Weighted Stochastic Mesh(WSM) algorithm of
Broadie and Glasserman [17], making almost all algorithms intractable. This motivates
the development of more flexible complexity metric for the comparison of the algorithms
for optimal stopping problems.

In turns out that not much is known about the convergence properties of WSM method
except some preliminary results in discrete case [1]. The authors, however, do not give the
dependence of the errors on the underlying dimension and the number of stopping times
and their analysis is based on a rather restrictive assumption of compact state space.
Similar type of algorithm we present here was also analyzed in the work of Rust [63], but
there the setting of discrete-time Markov Decision Process was considered and therefore,
the analysis does not directly transfer to optimal stopping. Also the paper considers very
restrictive assumptions of compact state space and Lipschitz continuity of transition den-
sities with Lipschitz constant not depending on the dimension d.

1.2 Complexity Metrics

It turns out that the criterion (1.3) puts too much importance on the dimension d on
the one hand and on the other hand is too relaxed in dependence on . With such
definition the algorithm with complexity d?exp (¢7!/Inln...Ine™!) is tractable while one
with complexity 2¢/¢ is not despite that running an algorithm with the former complexity
seems to be practically impossible even with d = 1. Therefore, we proposed another
approach to tractability.

Definition 3. For an algorithm with computational complexity C(e,d) the number

. _ InC(e, d)
I'c := lim sup lim sup ———=. 1.4
¢ d%oop c—0 P dIn(1/e) (L4)

15 called semitractability index.

Definition 4. The problem is called semitractable if there exists an algorithm solving it
with Fc =0.

1.3 WSM Algorithm

Let us present a Weighted Stochastic Mesh (WSM) algorithm for a discrete-time optimal
stopping problem. The algorithm is inspired by [17] but it differs in special choice of
weights and truncation level. First, let us define the discrete Snell envelope process:

Ul = Ul(Zl) ‘= Sup E[gT(ZT) | E]’ [ = 07 "L7

T€T, L

where 7,1, is the set of stopping times taking values in the set {l,.., L}. Snell envelope
satisfies dynamic programming principle, therefore, we can compute U; using backward
induction:

UL(Zr) = 9u(Z1),
Ul(Zl) = max {91(21)7 E [Ul+1<Zl+1) ’ Zl]}, l = 0, .oy L—1.
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For technical purposes of the analysis we set truncation level R > 0 and define the
truncated version of this backward induction:

ﬁL(ZL) = gL(ZL)a (1-5)
U,(Z) = max {gl(Zl), E [ﬁm(zm) | Zl} } Ap,(Z), 1=0,.,L—1,  (L6)

where 1p,, is the indicator function of the O-centered euclidean ball of radius R in R¢.
Thus, the values vanish when the process is out of Bg. Also by construction it holds that

1Ullos < Gr & max sup a(z), (1.7)

zEBR

We sample N independent trajectories (Zl("))lgL with Z" = 2g,n = 1,..,N with the
help of transition density p(y|x). To estimate the conditional expectations, we use the
following approximation:

(n)
B [0 | =] = 3o (44) zgfﬁ?ill x)z<m> -

We start by setting UL(ZI(:TZ )= gL( ) forn =1,..,N. Once U, is constructed on the
grid for 0 <[+ 1 < L, we proceed via dynamic programming and set

— (r)y def (r) Z n) ( l(—T-L)1|Z(T))
Ui(Z") = max < g(Z)" Ul+1 z+1) n) | (m
= S PZHIZ™)

To sum up, WSM algorithm is as follows:

} 1,0, (1.9)

1. Simulate N independent trajectories (Zl(l))leﬁ, o (ZZ(N))IE,C;
2. Set UL(Z2™) = g (Z) for n=1,..,N;

3. For | = L —1,..,1 compute Ul(Zl(n)) for all n = 1,.., N using (1.6) and (1.8) for
approximation of the conditional expectation;

4. Compute
- L) ()
Uo(zo) = max < go(zo) , NE;Ul <Z1 > )

One more thing to notice is that one step of backward induction with (1.6) and (1.8)
takes N2c, with ¢, being the price of multiplication. Thus, the total computational cost
of the algorithms is ¢,N?L and given that ¢, < cgcd), the cost of one computation of

transition density, it is bounded from above by c;d)N 2L.

1.4 Error and complexity analysis in discrete time

In this section we analyze convergence of the WSM estimate to the solution of the discrete
optimal stopping problem for [ = 0 and a fixed xo € R? as N — oo. Let us first bound a
distance between U; and U, [ =0,..., L.
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Proposition 2. With
def

SR = / Ui(x)pi(x|xo) dz
|z—zo|>R
1=0,...,L, it holds that

L
/!UZ(I) — Uy(2)|pi(z|zo) d < Zaj,R. (1.10)
j=l
Proposition 3. Suppose that
d
max gi(r) < ¢(L+|z]), z€R (1.11)

and that

E {max | Zv|
I<U<L

7 = x] <cz(1+|z]), xe€R%L (1.12)

Suppose further that for some », « >0, and l =1,...,L,

4 _le—y?
0 <p(ylz) < We 2o (1.13)

for all x,y € R%. One then has

/‘Ul(x) - l?l(x)‘pl(x]xo) dx

Next we control the discrepancy between U, and [70.

2
< Leys <1 + ¢y 4 ez |xo| + czV daL) 24/4¢ ™ Sar (1.14)

Proposition 4. With

F2 / / pylz)
max x|zo) drdy, 1.15
1<i<L ly—zo|<R DPl+1 ?J|950) i) (1.15)

and N such that (14 Fg) /v/N < 1, it holds that

E ([T - o] < (3+v2) LGle;%:R

Corollary 5. Under the assumptions of Proposition 3, we have for (1.15) the estimate

xR?
(2c)4/2T (1 + d/2)

F2 < Vol(Bg) = s (e/a)? RAd—?,

VA
(2ma)ir2

where the last inequality follows from ' (14 a) > a%e~* for any a > 1/2. Then by com-
bining (1.14) with Proposition 4 we obtain the error estimate,

Z/ 2
B HUO - OH < Legr (1 +cz +cz x| +czV daL) 9d/4¢=5aT
1+ 52 (e/a)d/4 R2q—d/4

VN

+ (3+v2) Le,(1+ R) (1.16)
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LS [WSM | QTM
3/ 0 2

Table 1.1: Tractability index I' of different algorithms for discrete time optimal stopping
problems

Theorem 6. Under the assumptions of Proposition 3 the complexity of the WSM algo-
rithm is bounded from above by

C(e,d) = C1a20§%2c§cd) chd+76—4

cgVaol 3/4
> logd+2 L (1 +Cz + ¢z ’xU’) elteztezlzal2 (CQ%\/ 1) : (117)
9

where ¢ > 0 and ¢y > 1 are natural constants and cgpd) stands for the cost of computing
the transition density p;(y|z) at one point (x,y).

Corollary 7. For a fized L > 0 the discrete-time optimal stopping problem with g and
(Z1)i1>0 satisfying (1.11), (1.12) and (1.13) is semi-tractable, provided that the complexity
of computing the transition density p;(y|x) at one point (z,y) is at most polynomial in
d. Different approzimation algorithms for discrete time optimal stopping problems can be
compared using the tractability index (1.4). For example, it follows from (1.2) that the
tractability index of the LS approach is equal to 3/a. If the continuation functions are
analytic, then the tractability index for the LS approach becomes zero. Moreover from
inspection of Theorem 2.4 in [6], we see that the Quantization Tree Method (QTM) has
tractability index 2.

1.4.1 Approximation of the transition density

A crucial condition for semi-tractability in the discrete exercise case is the availability
of the transition density p(y|x) of the chain (Z;);>¢ in a closed (or cheaply computable)
form. However, we can show that if the sequence of approximating densities p"(y|x),
n € N converging to p(y|z) can be constructed in such a way that

(I+ly —zo™ + |2 — zo|™)"
n!

P"(ylz) — p(ylz)
P (yl2)

< , Y,z € Bp, (118)

for some m € N and a sequence R, " oo, n " oo, then under proper assumptions on
the growth of R, and the cost of computing p™ (in fact it should be at most polynomial
in d), one can derive a complexity bound C(e, d) satisfying

1
i 108 C(e, d)

;— 1is finite and does not depend on d .
=0 log -

The proof involves a (rather straightforward) extension of the present one based on exact
transition densities. But, on the one hand, one of the main results in this paper, tractabil-
ity index 2 of the continuous time stopping problem, does not rely on transition density
approximation, and on the other hand, such a proof would entail a notational blow up
and might detract the reader from the main lines, therefore the details are omitted.

45



To construct a sequence of approximations p™(y|z) satisfying the assumption (1.18),
one can use various small-time expansions for transition densities of stochastic processes,
see, for example, [4] and [50]. Let us exemplify this type of approximation in the case of
one-dimensional diffusion processes of the form:

dXt = b(Xt) dt + U(Xt) th, X() = Xy,

where b is a bounded function, twice continuously differentiable, with bounded derivatives
and o is a function with three continuous and bounded derivatives such that there exist two
positive constants o,, 0° with o, < o(z) < ¢°. Consider a Markov chain (Z;);>¢ defined as
a time discretization of (X))o, that is, Z; def Xa,, 1=0,1,2,... for some A > 0. Under
the above conditions the following representation for the (one-step) transition density p
of the chain Z is proven in [31] (see also [23| for more general setting):

L Lo (-l st

p(ylz) = /—%A@ oA

with Ua(z,y) = Ra(z,y)exp [ [, b(z) dz — [ b(z) dz]

) Ua(s(z), 5(y)), 2,y €R,

Ra(z,y)=E [eXp (—A/Ol p(x + 2(y — ) + VAB,) dzﬂ : (1.19)

where B, is a standard Brownian bridge, s(z) = [ %, g=s"1and

p=0*+0)/2 with b= (b/o)og—0c'0g/2.

Note that the expectation in (1.19) is taken with respect to the known distribution of the
Brownian bridge B,. By expanding the exponent in (1.19) into Taylor series, we get for
A small enough

I BN AN C O ()
p(zly) = SR o () p( 5A )

with

cx(w,y) = (=1)'E

(/Olﬁ(x+z(y—a:)+\/ZBz)dz)k] .

If p is uniformly bounded by a constant D > 0, then the above series converges uniformly
in z and y for all A small enough. Set

n _ 1 (s(x) = s(y)®
p"(zly) = 5o o)) p( —ar )
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It obviously holds p"(y|z) > 0 for A < Ay(D) and

P"(ylz) — pyl2)
p"(yl2)
uniformly for all z,y € R. Hence the assumption (1.18) is satisfied with m = 0, provided
that A < Ay for some Ay depending only on D. Similarly if p < 0, then (1.18) holds. To

sample from p" we can use the well-known acceptance rejection method which does not
require the exact knowledge of a scaling factor [ p"(y|z) dy.

(AD)"
~ (1 -ADexp(AD))

(1.20)

1.5 Continuous time optimal stopping for diffusions

In this section we consider diffusion processes of the form

dX! = b (X ds—l—Zaw YdWI, Xi=ual i=1,....d, (1.21)

where b : R — R? and ¢ : R? — R¥™ are Lipschitz continuous and W = (W?!,... Wm)
is a m-dimensional standard Wiener process on a probability space (€2, F, P). As usual,
the (augmented) filtration generated by (Wj)s>¢ is denoted by (Fs)s>0. We are interested
in solving optimal stopping problems of the form:

U = esssup Ele " Y £(X )| F, (1.22)

T€T,T

where f is a given real valued function on RY r > 0, and 7,7 stands for the set of
stopping times 7 taking values in [t, T']. The problem (1.22) is related to the so-called free
boundary problem for the corresponding partial differential equation. Let us introduce
the differential operator L; :

d d
1 0%u ou
Ltu t I = §Z§1a 8[)’;18373 JJ) + ZEI bz(l’)%Of,l');

where

az] E Uzk ij

We denote by Xb¥ (or X%(s)), s > T, the solution of (1.21) starting at moment ¢ from
z : X" = x. Denote by u(t,z) a regular solution of the following system of partial
differential inequalities:

%+Ltu—ru<0 u>f, (t,z) €[0,T) xR (1.23)
(5 +Lu-re) (F=0) =0, (to)e0.1) <

u(T,z) = f(z), ©ERY,
then under some mild conditions (see, e.g. [41])

u(t,z) = sup Ele "I fF(XE0)] | (t,x) € [0,T] x RY, (1.24)

T€7—t_’T
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that is, u(t,z) = U (x).

With this notation established, it is worth discussing the main issue that we are going
to address in this section. Our goal is to estimate u(t,x) at a given point (to,zo) with
accuracy less than ¢ by an algorithm with complexity C*(e,d) which is polynomial in
1/e. As already mentioned in the introduction some well known algorithms such as the
regression ones fail to achieve this goal (at least according to the existing complexity
bounds in the literature).

Let us introduce the Snell envelope process:

% def
Uf = esssup,cr, Ex [g(7, X7)], (1.25)

where (somewhat more general than in (1.22)) ¢ is a given nonnegative function on R x
R?. In the first step we perform a time discretization by introducing a finite set of stopping
dates t; =lh,l=1,..., L, with h = T/L and L some natural number, and next consider
the discretized Snell envelope process:

Ut(; (th) dIEf €sssup E]‘—tl [g(T7 XT)] )

T€TI,L

where 7; 1, stands for the set of stopping times with values in the set {¢;,...,¢.}. Note that
the measurable functions Uy (-) exist due to Markovianity of the process X. The error due
to the time discretization is well studied in the literature. We will rely on the following
result which is implied by Thm. 2.1 in [6] for instance.

Proposition 8. Let g : [0,T] x RY — R be Lipschitz continuous and p > 1. Then one has

that
o T (1 + |z0])

L Y
where the constants c,,Cos > 0 depend on the Lipschitz constants for b, o, and g, respec-
tively.

L U5 (Xe) - U(Xa)], <

1=0,...

In order to achieve an acceptable discretization error we choose a sufficiently large L,
and then concentrate on the computation of U°.

In the next step we approximate the underlying process X using some strong dis-
cretization scheme on the time grid t; = iT//L,i =0, ..., L, yielding an approximation X.
It is assumed that the one step transition densities of this scheme are explicitly known.
The simplest and the most popular scheme is the Euler scheme,

X, =X, +b:(Xy) h+ Z 0 (Xy) (Wi, —Wi), X,=ai, (1.26)
j=1
i =1,...,d, which in general has strong convergence order 1/2, and the one-step transition

density of the chain (X, )0 is given by

def 1

pn(ylx) = exp {—%h_l(y -z — b(a:)h)TZ_l(y —x — b(x)h) (1.27)
(2wh)* (|

with ¥ = 00" € R™ and h = T/L. Now we will turn to the discrete time optimal
stopping problem with possible stopping times {t;, = lh, [ = 0,...,L}. To this end we

introduce the discrete time Markov chain Z; & X, adapted to the filtration (F;) oo (F)s
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and g;(z) o g(t;, x) (while abusing notation slightly) and consider the discretized Snell

envelope process

def

Uy, (X4, & esssup Er, [9(1,X,)] = esssup Ef, [9.(Z,)] = Ui(Z)), (1.28)

T€TiL ASIAN S

where 7, ;, stands for the set of stopping indices with values in {[, ..., L},_and the mea-
surable functions Uy, (+) (or Ui(+)) exist due to Markovianity of the process X (or Z). The
distance between U and U° is controlled by the next proposition.

Proposition 9. There erists a constant C*Ue" > 0 depending on the Lipschitz constants
of b,o, and g, such that

li{)lz.l.?cLE HUZ (Xy,) — Uy (th)u < OEuler\/E

Thus, combining Proposition 8 and Proposition 9 yields:

Corollary 10. If X is constructed by the Euler scheme with time step size h = T/L,
where L is the number of discretization steps, then under the conditions of Proposition 8
and Proposition 9 we have that

E[|Uf (z0) — Us(0)]] S CPVh  for h — 0, (1.29)
where < stands for inequality up to constant depending on c,, Cy and CFuler,

Since the transition densities of the Euler scheme are explicitly known (see (1.27)),
the WSM algorithm can be directly used for constructing an approximation Uy (z) based
on the paths of the Markov chain (Z;). To derive the complexity bounds of the resulting
estimate, we shall make the following assumptions.

(AG) Suppose that ¢, > 0 is such that
gt,x) <c,(1+|z|) forall0<t<T, v €R% (1.30)
(AX) Assume that there exists a constant cg > 0 such that for all 0 <1 < L,

Er, [ sup | Xy

I<U<L

)Ym = a:] <cg(L+]z]), zeR (1.31)

uniformly in L (hence h). This assumption is satisfied under Lipschitz conditions on
the coefficients of the SDE (1.21), and can be proved using the Burkholder-Davis-
Gundy inequality and the Gronwall lemma.

(AP) Assume furthermore that (ylh, [=0,... ,L) is time homogeneous with transi-
tion densities Py, (y|z) that satisfy the Aronson type inequality: there exist positive
constants 7 and @ such that for any z,y € R? and any [ > 0, it holds that

_ x _lz—yl?
0 < pplylz) < W‘f

This assumption holds if the coefficients in (1.21) are bounded and o is uniformly
elliptic.
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The next proposition provides complexity bounds for the WSM algorithm in the case
of continuous time optimal stopping problems.

Proposition 11. Assume that the assumptions (AG), (AX) and (AP) hold, then

e the cost of computing Uy(xo) in (1.28) for a fixzed L > 0 with precision € > 0 via the
WSM algorithm is bounded from above by

Td+7
_ d
C(e,d) = clofc‘;%chc )ed aTE
T N L 3/4
= (14 cx +cx |zo|) et textexlzol2 cox V1
% 5—4 1Ogd+2 h ( X X| 0|) ( g ) (132)
€

e the cost of computing Uj(xg) with an accuracy € > 0 via the WSM algorithm is
bounded from above by

Ta+7
* — d
C*(e,d) = cloﬂc‘;%%; )cg€2d+14
cg VAT
« log+2 T (1+cx +cx|wol) 61;’?“’”0 284 (g2 V 1) (1.33)

The first statement follows directly from Proposition 6 by taking in (1.17), a = @h,
cz = cg, and L = T'/h. Then by setting h < €% we obtain (1.33) (with possibly modified
natural constants ¢y, ¢3).

Discussion. As can be seen from (1.33),

*
and this shows the efficiency of the proposed algorithm as compared to the existing algo-
rithms for continuous time optimal stopping problems at least as far as the tractability
index is concerned. Indeed, the only algorithm available in the literature with a prov-
ably finite limit of type (1.34) is the quantization tree method (QTM) of Bally, Pages,
and Printems [6]. Indeed, by tending the number of stopping times and the quantization
number to infinity such that the corresponding errors in Thm. 2.4-b in [6] are balanced,

we derive the following complexity upper bound

N 1

Hence I'qrm = 6.

Summarizing. For discrete time optimal stopping problems we have established semi-
tractability for the proposed WSM algorithm with respect to rather general Markov chains
governed by certain transition kernels. Note that in the most common case of infinitely
smooth continuation functions, many regression algorithms including the LS and TV
algorithms lead to semi-tractable in discrete time optimal stopping problems. But when
passing to continuous stopping problems, the tractability index of the WSM method
remains bounded (equal to two) while the tractability index of the regression methods
tends to infinity.
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LS [ WSM | QTM

Table 1.2: Tractability index I' of different algorithms for continuous time optimal stop-
ping problems.

1.6 Numerical Experiments

In the following experiments we illustrate the WSM algorithm in the case of continuous-
time optimal stopping problems. A lower bound for the value function in WSM method is
obtained using a suboptimal stopping rule computed on an independent set of trajectories
(test set). This stopping rule can be constructed using any interpolation algorithm based
on the observations from the training trajectories. The fastest and the simplest way giving
good results is the nearest neighbor interpolation, in our experiments we have chosen the
number of nearest neighbors to be 500.

American put option on a single asset

To illustrate the performance of the WSM algorithm in continuous time, we consider
a problem of pricing American put option on a single asset driven by geometric Brownian
motion

X, = XOGUWH-(T—U/Q)t

with 7 denoting the riskless rate of interest, assumed to be constant, and ¢ being the
constant volatility. The payoff function is given by

g(x) = max(K — x,0).
The fair price of an option is defined as

Uy= sup E [e_TTg(XT)}

7'67’[0’7"]

for which there is no closed form solution but there exist numerical methods giving accu-
rate approximations to Uy. We used parameters r = 0.08,0 = 0.20, K = Xy = 100,7 = 3.
An accurate estimate of Uy in this particular case is obtained and reported in [44] to be
6.9320. In Fig. 1.1 we show the lower bounds obtained by WSM, LS and VF (value func-
tion regression method of [80]) in dependence of the number of stopping opportunities L
setting uniform time discretization on [0, 7] (the larger L the more dense is the grid). As
can be seen, WSM lower bound is much more stable when L increases and LS and VF
needs to use more complex regression basis to compensate for this effect.

American max-call option on five assets

The model with d = 5 assets is considered where each underlying asset has dividend
yield 0. The dynamics is set by

dXF = (r— & XFdt +oXFaw}l, k=1,..4d,

where W} are independent one-dimensional Brownian motions. The parameters are set
to be r = 0.05,0 = 0.1,0 = 0.2. As before, the holder may exercise the option at any
time ¢ € [0,7] with 7' = 3 and receive the payoff

9(X;) = maz (max (X;,.., X]) — K, 0).
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Prices of the option, N = 1,000 Prices of the option, N = 2,000
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Figure 1.1: Lower bounds for the price of one-dimensional American put option approxi-
mated using different methods and uniform time discretization t, = kT/L,k =0, .., L of
exercise dates. The numbers of training paths are Ny.q;;, = 1000(a) and Nyyqin = 2000(b)
and the number of test trajectories used for constructing the lower bounds Ny, = 20000
and is the same in both cases. In LS and VF a polynomial basis of degrees 2 and 4 is
used (mentioned in the legend).

We apply WSM and LS (with a basis of degree-2 polynomials) techniques to construct a
lower bound. The results for different L are presented in Fig. 1.2. The option price must
increase when the number of stopping opportunities increases, therefore LS-algorithm has
clearly deteriorating estimate. WSM, on the other hand has increasing lower bound which
shows that it performs considerably better than LS.

Prices of the option, N= 5,000
26.2 —— WSMLow

26.0

25.8

25.6

254

(] 100 200 300 400 500
L

Figure 1.2: Lower bounds for the price of a five-dimensional American put option ap-
proximated using a uniform grid ¢, = kT/L,k = 0, .., L of exercise dates. The number of
training paths is Ny.q;, = 2000 and the number of test trajectories is Ny = 5000.
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1.7 Conclusions

In our work we have presented the complexity analysis of weighted stochastic mesh al-
gorithm for solving optimal stopping problem. We also have analyzed the qualities of
the algorithm not only in discrete time but also in continuous time by using sufficient
degree of time discretization. Our theoretical results regarding semitractability demon-
strate that the algorithm is the best in regard to this metric having semitractability index
0 in discrete-time problem and 2 in continuous one. Semitractability of continuous-time
optimal stopping problem, therefore, remains to be an open question. Nevertheless, we
have seen the superior performance of WSM algorithm in continuous-time problem. It
turns out that the quality of the estimate in regression methods degrades very fast when
making the time discretization more dense and one needs to compensate with introducing
new basis functions which leads to even more computational effort. Such thing is not
observed in WSM method: the estimate remains stable with all fixed parameters and
varying time discretization.
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Chapter 2

Finite Time Analysis of Linear
Two-Timescale Stochastic
Approximation with Markovian Noise

The results of this section are published in [43].

2.1 Introduction

Since its introduction close to 70 years ago, the stochastic approximation (SA) scheme [62]
has been a powerful tool for root finding when only noisy samples are available. During
the past two decades, considerable progresses in the practical and theoretical research of
SA have been made, see [10, 47, 15] for an overview. Among others, linear SA schemes
are popular in reinforcement learning (RL) as they lead to policy evaluation methods
with linear function approximation, of particular importance is temporal difference (TD)
learning [69] for which finite time analysis has been reported in [68, 48, 13, 25].

The TD learning scheme based on classical (linear) SA is known to be inadequate for
the off-policy learning paradigms in RL, where data samples are drawn from a behavior
policy different from the policy being evaluated [5, 79]. To circumvent this problem,
[72, 73] have suggested to replace TD learning with the gradient TD (GTD) method or
the TD with gradient correction (TDC) method. These methods fall within the scope of
linear two-timescale SA scheme introduced by [14]:

Orir = O + Bilbi(Xip1) — Ai(Xp1)0 — Ara(Xir1)wr}, (2.1)
W1 = Wi + V{2 (Xit1) — Ao1 (Xig1)0k — Aga(Xir1)wy }- (2.2)

The above recursion involves two iterates, 0 € R%  w, € R%  whose updates are coupled
with each other. In the above, b;(x), A;;(z) are measurable vector /matrix valued functions
on X and the random sequence (Xj)r>0, Xx € X forms an ergodic Markov chain. The
scalars vy, B, > 0 are step sizes. The above SA scheme is said to have two timescales as
the step sizes satisfy limy_, Ox/7% < 1 such that wy, is updated at a faster timescale. In
fact, wy is a ‘tracking’ term which seeks solution to a linear system characterized by 6.

The goal of this research was to characterize the finite time expected error bound with
improved convergence rate for the two timescale SA (2.1),(2.2).

The almost sure convergence of two timescale SA have been established in [14, 75,
76, 15|, among others; the asymptotic convergence rates have been characterized in [46,
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57]. However, finite-time risk bounds for two timescale SA have not been analyzed until
recently. With martingale samples, [51] provided the first finite time analysis of GTD
method, [26, 24| provided improved finite time error bounds. Unlike our analysis, they
analyzed modified two timescale SA with projection and their bounds hold with high
probability. With Markovian noise, [40] studied the finite time expected error bound
with constant step sizes; [88| and [27]| provided similar analysis for general step sizes.
It is important to notice that with homogeneous martingale noise, the asymptotic rate
of (2.1), (2.2) without a projection step, as shown in [46, Theorem 2.6], is in the order
E[|6x — 6*]])] = O(B), E [|Jwr — A3y (ba — A2160;)[[*] = O(7), where 6% is a stationary
point of the SA scheme. However, the latter rate is not achieved in the finite-time error
bounds analyzed by the above works except for [24]. It remains an open problem whether
this error bound holds for the Markovian noise setting and for linear two time-scale SA
scheme without projection.

Contributions This chapter presents the following contributions:

o Improved Convergence Rate — We perform finite-time expected error bound analysis
of the linear two timescale SA in both martingale and Markovian noise settings, in
Theorems 12 & 13. Our analysis allow for general step sizes schedules [cf. A10, B],
including constant, piecewise constant, and diminishing step sizes explored in the
prior works [40, 24, 88, 27|. We show that the error bound consists of a transient and
a steady-state term, and the asymptotic rate is obtained from the latter. We show
that this asymptotic rate matches those in [46, Theorem 2.6], i.e., E[||0x — 0*|%] =
O(Br), E [|lwe — Azy (b2 — An63)]|*] = O(y). In particular, the fastest achievable
rate for IE [||0;, — 6*]|?] will be O(1/k) when we set By = O(1/k), v = O(1/k") with
v < 1.

e Novel Analysis without A-priori Stability Assumption — Unlike the prior works [51,
24, 88|, our convergence results are obtained without requiring a projection step
throughout the SA iterations. In fact, [24] have pointed out that the projection
step is merely included to ensure a-prior: stability of the algorithm, and is often not
used in practice. Our relaxation and the ability to achieve the optimal convergence
rate are obtained through a tight analysis of the recursive inequalities of the (cross-
)Jvariances of 6y, wy, see Section 2.3.

o Asymptotic Expansion — With an additional assumption on the step size, we compute
an exact asymptotic expansion of the expected error E[||0), — 6*||?], see Theorem
22. With an appropriate diminishing step sizes schedule, we show that the expected
error cannot be smaller than (fy), which matches our upper bound results in
Theorem 12 & 13.

The rest of this paper is organized as follows. In Section 2.2, we present the detailed
conditions for two timescale linear SA, and the main results on finite-time performance
bounds. In Section 2.3, we provide an outline of the proof, illustrating the insights behind
the main steps. In Section 2.4, we show that the finite-time error bounds are tight by
quantifying an exact expansion of the covariance of iterates. In Section 2.5, we illustrate
the theoretical findings using numerical experiments.

Notations Let n € N and ) be a symmetric definite n x n matrix. For z € R", we
denote ||z, = {27Qx}1/2. For brevity, we set ||z|| = ||z||;. Let m € N, P be a symmetric
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definite m x m matrix, A be an n X m matrix. A matrix A is said to be Hurwitz if the
real parts of its eigenvalues are strictly negative. We denote ||Al|pq = max)z =1 [[Az[,.
If Ais an x n matrix, we denote ||Allg = ||Al|g.q- Lastly, we give a number of auxiliary
lemmas in Appendix B.4 that are instrumental to our analysis.

2.2 Linear Two Time-scale Stochastic Approximation
(SA) Scheme

We investigate the linear two timescale SA given by the following equivalent form of (2.1),
(2.2):

Or+1 = Ok + Bre(by — A110r — Appwy, + Viey), (2.3)
We1 = W + Y (ba — A0 — Asgwy, + Wiy), (2.4)

where the mean fields are defined as b; := limy_,o IE [ZZ(Xk)} ;A= limy o E [gw (Xk)]
(these limits exist as we recall that (X} )g>o is an ergodic Markov chain). The noise terms
Vir1, Wia1 are given by:

Vk+1 3251(Xk+1) — by — (AVH(XIH-I) - A11)9k - (glz(XkH) - A12)wk7

? i . (2.5)
Wii1 = bo(Xgr1) — b — (A1 (Xpy1) — Ao1)0k — (Asa(Xpi1) — Ago)wy.

The goal of the recursion (2.3), (2.4) is to find a stationary solution pair (6*,w*) that
solves the system of linear equations:

A119 + A12U) = bl, Agle + AQQU} = bg. (26)
We are interested in the scenario when the solution pair (6*,w*) is unique and is given by
9* = A_l(bl — A12A2_21b2), w* == A2_21 (bg — A210*). (27)

where A 1= Ay — Ajp Ay, Ay To analyze the convergence of (0, wi)r>o in (2.3), (2.4) to
(0*, w*), we require the following assumptions:

A 9. Matrices —Ayy and —A = — (AH — A12A521A21) are Hurwitz.

The above assumption is common for linear two time-scale SA, see [46]. As a conse-
quence, using the Lyapunov lemma (stated in Lemma 32 in the appendix for complete-
ness), there exist positive definite matrices Qgy = Q2o = 0, QX = Qa = 0 satisfying

A3Qn + QnAn =1, QaA+ATQa=1. (2.8)

This ensures the contraction (see Lemma 33 in the appendix):

IT=vkAnllg, <1 —axnvk, [[1-5llos <1 —aab, (2.9)

provided that 7. € [0,1/(2/ Azl 1@1)], B € 0,1/(2]Aaly, Qall]. Moreover, we
have set ag := 1/(4||Q2]|), aa := 1/(4]|Qa||). We consider the following conditions on
the step sizes:

A 10. (7)k>0, (Br)k>0 are nonincreasing sequences of positive numbers that satisfy the
following.
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1. There exist constants s such that for all k¥ € N| we have f; /v, < k.

2. For all £ € N; it holds

Yo/ Vo1 < 14 (a22/8) Vi1, Br/Brt1 < 14+(an/16)Brt+1, Yo/ Ver1 < 14(an/16)Bxk11.
(2.10)

As a consequence, we can define ¢ := 1+ {ypa22/8 V foaa/16} such that v /11 <,
Br/Br+1 < <. Our conditions on step sizes are similar to [46, Assumption 2.3, 2.5]. These
conditions encompass diminishing, piecewise constant and constant step sizes schedules
which are common in the literature. For instance, a popular choice of diminishing step
sizes satisfying A10 is

B =)k +ky), m=c")(k+k)Y? (2.11)

with some constants ¢?, ¢7, kg, k:g , €.g., as suggested in |26, Remark 9|; or a constant step
size of By = [, = ; or a piecewise constant step size, e.g., [40].

We present new results on the convergence rate of (2.3), (2.4) depending on the types
of noise with Vi1, Wr,1. To discuss these cases, let us define the o-field generated by the
two timescale SA scheme and the initial error made by the SA scheme, respectively as:

Fi =0 {00, wo, X1, Xo, ... X}, Vo :=E[||6° = 6*[]* + [|w® — w*|?] . (2.12)

Our main results are presented as follows.

Martingale Noise We consider a simple setting where the random elements X, are
drawn i.i.d. from the stationary distribution such that b;, A;; are the expected values
of gi(Xk),Avij(Xk). Furthermore, the random variables Ei(Xk),/Tij(Xk) have bounded
second order moment. Note that this implies E™* [V}, = E* [Wiy4] = 0, ie., the
sequences (Vii1)gen, (Wkt1)ren are martingale difference sequences. Formally, we describe
this setting as the following conditions on Vi1, Wy 1:

A 11. The noise terms are zero-mean conditioned on Fy, i.e., E** [V, 1] = EZ* [W, 4] = 0.

A 12. There exist constants myy, my such that

1B [Virr Vil ]I < mw (1 + B[00 ]| + B [wrawy ]1), (2.13)
1B [Wesa Wi || < mw (14 [[E [0:6) ]| + B [wrwg ]])-

Theorem 12. Assume A9-12 and for all k € N, we have v, € [0,72%€], B, € [0, f7r]
and K € [0, Koo), where Y28 M€ k. are defined constants. Then

o0

~ k_l ~
E [0 - 0°]] < de{cﬁ‘“g [T (1 =5 ) vor C?’"‘%} (2.14)

k—1

E [Hwk — A (b — A219k>\\2} < dw{cgﬁvmtg I1 (1 - m%)vo n C?mtg%} (2.15)

The exact constants are provided in the appendiz, see (B.37), (B.41).
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Markovian Noise Consider the sequence (Xj)i>o to be samples from an exogenous
Markov chain on X with the transition kernel P : X x X — R,. For any measurable
function f, we have

7 [f(Xper)] = P F(Xy) = / f(2) P(Xy, dz)

We state the following assumptions:

B 5. The Markov kernel P has a unique invariant distribution p : X — R,. Moreover, it
is irreducible and aperiodic.

Observe that
b, = /gz(fU)N(dx)a Ajj I/;{z‘j(?ﬂ) p(de), 4,7 =1,2.
X X

We show that the linear two time-scale SA (2.1), (2.2) converges to a unique fixed point
defined by the above mean field vectors/matrices, see (2.7). An important condition that
enables our analysis is the existence of solutions to the following Poisson equations:

B 6. For any i,j = 1,2, consider bi(z), gij (x), there exists vector/matrix valued measur-
able functions b;(z), Al]( ) which satisfy

for any x € X and b;, A;; are the mean fields of bi(x), Z,J(I) with the stationary distribution
L.

The above assumption can be guaranteed under B5 together with some regularity
conditions, see [28, Section 21.2]. Moreover,

B 7. Under B6, the vector/matrix valued functions Zl(a:), A\U(x) are uniformly bounded:
forany 7,7 =1,2, x € X, R L -
1b:(2)[] < b, [[Ai(2)]] < A. (2.17)

B 8. There exists constant pg such that for any k£ > 1, we have 72 | < poSs.

To satisfy B7, we observe that the bounds b, A depend on the mixing time of the chain
(Xk)r>o and a uniform bound on bi(-), Aw( ). In the context of reinforcement learning,
the latter can be satisfied when the feature vectors and reward are bounded. Note that
B7 implies A12, see Section 2.3.2. Meanwhile, B8 imposes further restriction on the step
size. The latter can also be satisfied by (2.11).

The challenges of analysis with Markovian noise lie in the biasedness of the noise term
as E7*x [Vi 4] # 0, E7x [W;11] # 0. With a careful analysis, we obtain:

Theorem 13. Assume A9-10, B5-8 hold and for all k € N, we have B, € (0,372,
Y € (0,77K] | K < Koo, where BT ymark o are defined in (2.34), (2.21). Then

~ ki ~
B [|l6 — 6*]7] < de{c(’;’"““k [T(r-a%) @+ v +cim ﬁk}, (2.18)

=0

E [[lwy — A (by — Asibi)|”] < dw{cw mark H <1 - Be—> (1+ Vo) + C?’mark%}.
(2.19)
The exact constants are given in the appendiz, see (B.106), (B.109).
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While Theorem 13 relaxes the martingale difference assumption A12 in Theorem 12,
we remark that the results here do not generalize that in Theorem 12 due to the additional
B7, B8. Particularly, with martingale noise, the convergence of linear two timescale SA
only requires the noise to have bounded second order moment, yet the Markovian noise
needs to be uniformly bounded.

Convergence Rate of Linear Two Timescale SA The upper bounds in Theorem 12
and 13 consist of two terms — the first term is a ‘transient” error with product such as
Hi:ol (1 — Bian/8) decays to zero at the rate o(1/k°) for some ¢ > 1 under an appropriate
choice of step sizes such as (2.11); the second term is a ‘steady-state’ error. We observe
that the ‘steady-state’ error of the iterates 6y, wy exhibit different behaviors. Taking the
step size choices in (2.11) as an example, the steady-state error of the slow-update iterates
0y is O(1/k) while the error of fast-update iterates wy is O(1/k3). Furthermore, similar
bounds hold for both martingale and Markovian noise. In Section 2.4 we show that the
obtained rates are also tight.

Comparison to Related Works Our results improve the convergence rate analysis
of linear two timescale SA in a number of recent works. In the martingale noise setting
(Theorem 12), the closest work to ours is [24] which analyzed the linear two timescale SA
with martingale samples and diminishing step sizes. The authors improved on [26] and
obtained the same convergence rate (in high probability) as our Theorem 12, furthermore
it is demonstrated that the obtained rates are tight. Their bounds also exhibit a sublin-
ear dependence on the dimensions dy,d,,. However, their algorithm involves a sparsely
executed projection step and the error bound holds only for a sufficiently large k. These
restrictions are lifted in our analysis.

In the Markovian noise setting (Theorem 13), the closest works to ours are |27, 40, 88|.
In particular, [40] analyzed the linear two timescale SA with constant step sizes and
showed that the steady-state error for both 6, wy, is O(v%/3). [88] analyzed the TDC
algorithm with a projection step and showed that the steady-state error for 6 is O(1/ kg) if
the step sizes in (2.11) is used. [27] analyzed the linear two timescale SA with diminishing
step size and showed that the steady state error for both 6, wy is O(1/ kg) Interestingly,
the above works do not obtain the fast rate in Theorem 13, i.e., E[||0x — 6*|]*] = O(1/k).
One of the reasons for the sub-optimality in their rates is that their analysis are based on
building a single Lyapunov function that controls both errors in 6, and wy. In contrast,
our analysis relies on a set of coupled inequalities to obtain tight bounds for each of the
iterates 0, wy.

2.3 Convergence Analysis

While much of the technical details and the complete constants of non-asymptotic bounds
will be postponed to the appendix, this section offers insights into our main theoretical
results through sketching the major steps involved in proving Theorem 12 & 13. Through-
out, we shall consider the following bounds on the step sizes and step size ratio:

8O . 1 1 oF 1

- A ;A0 = , 2.20
QAR " 21Alon + aa 2 Quall [ A3, (220)

99



2 2
Roo ‘= GE?/ an {1 AN L%} A % (221)
HA12||Q227QA||A22 A21||QA7Q22 + DR HAHQA + 2 dan

To begin with, let us present the reformulation of the two time-scale SA scheme (2.3),
(2.4) that is borrowed from [46]. Define:

Ly = (L — WALy + BrAzy Aot (A — AyaLy)) (T—Br(A - A12Lk>)_17 Ly:=0,

and Lo, = aa/(2||A12]|Qss,0s). As shown in Lemma 34 of the appendix, with the step

sizes Y, < 793), br < ﬁég), Kk < Koo, the above recursion on L is well defined where it

holds that || Lg||ga.0. < Lo for any k& > 0. In addition, define the matrices:
Bkz (

BF :=A—-A,L,, B =2
Tk

Lk+1 + A2_21A21)A12 + AQQ, Ok = Lk+1 + A2_21A21.

In a similar vein as performing Gaussian elimination, we obtain a simplified two timescale
SA recursions (proof in Appendix B.1):

Proposition 14. Consider the following change-of-variables:
0 :=0p — 0", Wy, = wy, — w* + Cr_16y. (2.22)
The two time-scale SA (2.3), (2.4) is equivalent to the following iterations:
Ori1 = (1—Bp By 0 — BrAraty — BiViss. (2.23)
W1 = (L= B3)wk — BeCiVirr — Wit (2.24)

Observe that 6, = 0,%; = 0 is equivalent to having 0, = 0*,w, = w*, i.e., the two
timescale SA solves the linear system of equations (2.6). The simplified recursion (2.23),
(2.24) decouples the update of wy from 0,. This allows one to treat the @, update as a
one timescale linear SA, and therefore provides a shortcut to perform a tight analysis.
We focus on estimating the following operator norms of covariances:

P B [@mal ], ML= B [GT ]Il M= B |G|l (225)

which are respectively the covariance for wy, 65 and the cross-variance between wy, 6.

2.3.1 Proof Outline of Theorem 12
For this theorem, we assume the step sizes and their ratio are chosen such that

i < Yoo® =50 A - ~ — N —,
922 4 2 pos (Mmy + K2) 4CY

a22

B < B =50, (2.26)

where pgs = )\;iln(Qgg)/\max(Qgg) and CY is defined in (B.37) in the appendix.

While the property which the noise terms satisfy E** [V,1] = 0, E"* [W;, 1] = 0 has
greatly simplified the analysis, the challenge with our analysis lies in the coupling between
slow and fast updating iterates whose convergence rates must be carefully characterized
in order to obtain the desired rate in Theorem 12. To summarize, our proof consists of
three steps in order: (i) we bound MY with an inequality that is coupled with M?; then
(ii) we bound the cross term M} using an inequality coupled with M?; lastly, (iii) these
bounds are combined to bound MY.
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Step 1: Bounding M} Upon applying the variable transformation in Observation 14,
(2.24) can be treated as a one-timescale SA which updates w; independently, and the
contributions from 6, are only found in the noise term, as seen from (B.4). This leads to:

Proposition 15. Assume A9-12 and the step sizes satisfy (2.26). For any k € N, it
holds

w k a Ama>< w w W k k [¢] g
i1 < Ilimo (1_’”722)% Mg + Gy a1 +Co ijo 712 HE:j—H (1_7@_22) M§> (2.27)

where the constants CY,CY can be found in (B.19) in the appendiz.

The right hand side of (2.27) consists of three components: (i) a fast decaying term
relying on the product ngzo(l — Yea22/2), (ii) an O(7) term, and (iii) a convolutive term

between MZ and the fast decaying term depending on the step size sequence (7x)r>0. In
the above, the second term can be viewed as a ‘steady-state’ term.

Step 2: Bounding MZ’w Observe that MZ"I’ refers to the cross variance between wy
and ;. We show that utilizing (2.23), (2.24), (2.27) allows us to derive:

Proposition 16. Assume A9-12 and the step sizes satisfy (2.26). For any k € N, it
holds

6,5 6,5 7Tk a0 0,1 0,15 ~—~k k a2 )
Mk+1 < Gy Hz:o (1 B %) + C(i Br1 + Cg Zj:o 72 Hz:j+1 (1 B %) M?> (228)

where the constants Cg’ﬁ’, Cf’ﬁ), Cg’m can be found in (B.31) in the appendiz.

The above bound is a crucial step in obtaining the O(fy) rate for Mi. To better

appreciate it, note that as M0 < (v/dad,/2){M% + M¥} (see Lemma 39 in the appendix),
one can derive a similar result to (2.28) by merely applying Proposition 15. However,
doing so results in an overestimated ‘steady-state’ error of O(~;) which is worse than the
O(B) error in (2.28). On the other hand, we take care of the two timescale nature of the
algorithm to obtain (2.28) with the fast rate.

Step 3: Bounding Mi Having equipped ourselves with Proposition 15 and 16, we can
analyze M? using (2.23) and the derived bounds on MY, M{®, this leads to

Proposition 17. Assume A9-12 and the step sizes satisfy (2.26). For any k € N, it
holds

j ) 1Tk a 7 )~k k a 7
Mg—i—l < Cg He:o (1 B WTA) + C(i Br+1 + Cg Zj:o %ﬂj He:j+1 (1 B mTA) M§7 (2-29)
where the constants Cg, Cf, Cg are giwen in (B.37) in the appendiz.

Besides that the middle term is now O(f3), we also observe that the convolution term
with (M?)jzo depends on the product of step sizes [3;7;. This bound is obtained using

Proposition 16 and the fact that the cross variance MZ”D has a steady-state error of O(y).
Eq. (2.29) is a recursive inequality as MY are found on both sides. In the appendix,
we show that there exists a sequence (Uy)x>o satisfying Mi < U and

Ut < (1 — Bran/4) U+ C(an /2) 32 (2.30)

for some constant Cf. This immediately leads to (2.14), followed by (2.15) similarly.

61



2.3.2 Proof Outline of Theorem 13

While our proof has largely followed the same strategy as in the martingale noise case,
now that the main challenge in handling the Markovian noise case is that the noise terms
Vi1, W1 are no longer (conditionally) zero-mean. To circumvent this difficulty, we recall
B6 and define the following using the solution of the Poisson equation: for any ¢,j = 1,2,

Y= Ph(Xy), UL =P A(X),

b ~ -~ v—~Ai' -~ o~ <231)
& = bi( X)) = Pbi(Xy), =7 = A (X)) — P A;(Xy),

i

—A; L .
where £k ,E,." are zero mean when conditioned on Fi. The noise terms (2.5) can be

rewritten as

Vier = €+ 2000+ S+ (0 — o)+ (U — Wili)0+ (U — Wil
) )

Wis = € + 5000 + 5w + (0 — 0t + (U — U0 + (3 — Wiy
—w ), —w

(2.32)

We observe that E7 [Vk(iﬂ =0, E7* [W,SF)I] = 0 and therefore (2.32) separates the noise

terms into their martingale (Vk(o), Wk(o)) and Markovian (Vk(l), W,gl)) components. Under
B7, the second order moment of these noise components satisfy Al12. Accordingly, we
define 9(()0) = 0y, 9(()1) =0, and u?éo) = Wy, 12)(()1) = 0 and the recursions:

0, = (1—pBE)GY — ﬁkAuw 8V, i=0,1,

~ (@)

(2.33)
Wyyy = (1 ”Yszz)wk — BCrV, k+1 ’}/ka+1, 1=0,1,

where it holds that 9k = 91(60) + é,gl) , Wy = w( ) + wk followmg from Observation 14.
Clearly, H,E ),w,i) (resp. é}j’,w,ﬁ”) are iterates of the two timescale SA driven by mar-
tingale (resp. Markovian) noise. The two sets of recursions are independent except the
second order moments of noise are bounded by M?, MY containing the contributions from
59, 39 and 40 G0
A :

+(0)

In the sequel, we shovv the martingale noise driven terms || [wk (u?,(co))q Il [|1E [w,i (0,

| [ééo)(é,go)f} || can be estimated using similar procedures as in Proposition 15-17 from

the previous subsection. Meanwhile the Markovian noise driven terms ||IE [w,ﬁ})(w,ﬁl)f I

vanish at a faster rate than the former. Throughout this subsection, we set the step sizes
to satisfy:

< mark 1/ \% d@ Vv d (122/4 mark (0) 1 an
Te = Vo _fYoo 6 E ~ 6k_ﬁ B A ~(11)/\ ~0’
P22 Co + C3 \/6C;4 8C,
(2.34)

where poy = )‘;iln(Qﬂ))‘nlaX(Q??)v Co, Cs, EYY are defined in (B.46), (B.57), (B.51),
respectively, and 6;1’1), 62 are defined in (B.103), (B.106), respectively, in the appendix.
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Step 1: Bounding M} We first show that the martingale and Markov noise driven
iterates converge with different rates as follows:

Lemma 18. Assume A9-10, B5-8 and the step sizes satisfy (2.34). For any k € N, it
holds

~(0 k a 2)\ma>< w
1B [ )] I < T, (1 — 242)"5=t8e g

C (2.35)
+ CO ZJ O’Yj HZ 741 (1 - 74(122) (1 + Mw +M9)
B @), (@) T < CrlTi, (1 — 222)” + ConZ (MY, + ME,,) + Can
(2.36)

+ C3’yk+1 Z] 0,-}/] Hl =j+1 ( (Za2 ) (Me +Mw)
where Cy, Cy, Ca, C3,Cy are constants defined in (B.46), (B.57) in the appendiz.

Let us compare the ‘steady-state’ error on the right hand side of both inequalities:
second term of (2.35) and the second to fourth term of (2.36). We observe those in
the Markovian noise driven iterates @D,il) are O(7x) times smaller than the martingale
noise driven counterparts, indicating a faster convergence. This is roughly due to the
special structure of the Markovian noise in Vk(l), I/Vk(1 , where each term can be written
as successive differences of a bounded sequence, e.g., %(1) ~ & — &k+1. When the linear
SA (2.33) is run over a long time horizon, the noise terms from consecutive iterations
(roughly) cancels each other, leading to a significantly a smaller ‘steady-state’” error.

Using wy = w,i )+ w,(gl) together with the above lemma give the following estimate for
My
Proposition 19. Assume A9-10, B5-8 and the step sizes satisfy (2.34). For any k € N,
it holds

k k
i %a22 YeQ22
k+1 = H +C1 Vk+1 +C E 7] H (1 4 ) MG +C3 o Mk+17 (2.37)
=0 7=0 l=j+1

where éz)u, éqf, 6;}, 6130 are defined in (B.66) in the appendiz.
We note in passing that by considering a special case with MZ = 0 for all k, the above
proposition generalizes |68, Theorem 7| for linear one timescale SA with Markovian noise.

In a similar vein to the proof of Theorem 12, we bound the cross term || [é’,(f) (uv,(j’))T] [
as:

Lemma 20. Assume A9-10, B5-8 and the step sizes satisfy (2.34). For any k € N, it
holds

5(0) / ~(0 9117 Ye@22 ~0,0 ~0.0 Ye22 j
| [Ql(w)l(wl(wz ) } | <C H 1 T ) +Cy Brpr + G, Z%Q H (1 T )M?’
=0 j=0  f=j+1

@ ~0,0 ~0w

~é7 . . .
where the constants C, ,C, ,C, are defined in (B.78) in the appendiz.

However, we observe that it is unnecessary to derive a similar (tight) bound for
|| [é,(j)(w,g”)q || as in the above lemma. The reason is that as observed in Lemma 18,

the Markovian noise driven terms are anticipated to be sufficiently small compared to
the martingale noise driven terms. In particular, a crude bound suffices to obtain the

desirable convergence rate of MY, as we observe next.
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Step 2: Bounding Mi Again we consider the bounds on ||E [é,igzl(é,i(fl)q || and

E [Hé,gle?] separately. As we show in the appendix, both bounds are comparable as
the Markovian noise term admits a successive difference structure. Using the decomposi-
con g — a0 g .
tion 6, = 0, + 0, ’, we obtain:

Proposition 21. Assume A9-10, B5-8 and the step sizes satisfy (2.34). For any k € N,
it holds

- ~§ ~0 ~0
My, < Collpy (1—282) + Cy B + Cy b o B2 T Ty (1— 222) MY, (2.38)

~0 ~0 ~0
where the constants C,, C,, C, are defined in (B.106) in the appendiz.

Equipped with Proposition 21, we can repeat the same steps as in (2.30) to derive an

upper bound for Mi through solving the recursive inequality (2.38). Similar steps also
apply for yielding (2.19).

2.4 Tightness of the Finite-time Error Bounds

This section examines the tightness of our finite time error bounds in Theorem 12, 13
through characterizing the squared error E [||0;, — 6*||?] with expansion. We consider the
assumption:

A 13. There exist matrices ¥, ¥12 322 and a constant m{5, > 0 such that for all j € N,
it holds

I8 [V;V,T] = SV B W] = 2 v e (VW] - S22 < mgh (I8 (060 ]| + I [ 1),
Note that A13 implies A12 and therefore poses a stronger assumption. We have
Theorem 22. Assume A9-11, A13 and for all k € N, we have v € [0,72€], fi € [0, BP]

o0

and K € [0, KEP], where Y&, fEP kP are constants defined in (2.26), (B.115), (B.114) in

the appendiz. Then for any k > ky™® := min{¢ : Zj;é B; >1og(2)/(2||All)}, the following
expansion holds

E [|6x — 0°[|2] = I + Ji. (2.39)

The leading term Iy is given by the following explicit formula
ko 52 k k T
o= Yo 8T (T ,0 (1=B8) 2 {TTE L (1 =52) ) )

where ¥ = S 4 A A SR ALT AL+ X2 AL AL+ A A Y2 Meanwhile, the following
two-sided inequality holds

I
C?mmgﬁgmwmm (2.40)
k
and Jj 1s bounded by
k-1 a 3
ex| A ex k
| Ji| < Cg° H (1 - Iﬁe) Vo + C7P Bk (% + %) ; (2.41)

where Vo was defined in (2.12). All constants C5™®, CT®, CSP, CT*® are given in (B.147),
(B.123) and (B.125) in the appendiz, respectively, and they are independent of Py, Vi
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The proof is skipped in the interest of space, and it can be found in Appendix B.3.
2
Observe that from (2.41), the dominant term for J; is given by O(Bxyx + f—:) As such,
using (2.40), we observe that

| Jel/ Ik = O (v + B/ )

If limy o0 Bi /v = 0, we have limy_ o |Ji|/Ix = 0. Combining (2.39), (2.40) shows that
the expected error E [||0), — 6*]|] is lower bounded by Q(f},).

We note that the assumptions A9-11, A13 imposed by the theorem imply A9-A12
required by Theorem 12. Hence, together with (2.14) in Theorem 12, the above observa-
tions constitute a matching lower bound on the convergence rate of linear two timescale
SA with martingale noise. For the Markovian noise setting, we observe that if we impose
the assumption that the random elements (Xj)x>o are i.i.d., and bi(x), A; ;(z) are bounded
above for any 7,7 = 1,2 and x € X, then A13, B6-B7 can be satlsﬁed. Therefore, the
lower bound on the convergence rate also holds.

2.5 Numerical Experiments, Conclusions

We present numerical experiments to support our theoretical claims. We consider (a)
a toy example with a randomly generated problem parameters b;, A;; and i.i.d. samples

(Xk)ken such that E [E(Xk)] = b, E [EU(X;C)} = A;j, (b) the Garnet problem [34]

with the GTD algorithm [72| using X}, from a simulated Markov chain. For example
(a), we compute the stationary point 0*, w* exactly using (2.7); for example (b), while
it is known that w* = 0, the solution 6* is computed using Monte Carlo simulation of
the matrices b;(X},), A;;(Xy) with 2 - 10° iterations. The step sizes are chosen as (), =
)k 4+ k), v = ¢ /(KD + k)7 with o € {0.5,0.67,0.75}. In the toy example (a), we have
dy = dy = 10,k = 10* k) = 107, ¢? = 140, = 300; while for the Garnet problem (b),
we have kg =8-10% kg =2-10% ¢ = 2300, ¢” = 120. Garnet problem is generated from
family ng = 30,n4 = 2,b = 2, p = 8, see [34]. Further details about both experiments are
described in Appendix B.5.

We illustrate the convergence rates of the linear two timescale SA on the two prob-
lems in Figure 2.1. Note that the plots show the (normalized) steady state errors are
E[||6x — 0*]1?] = O(Br), E[||wx — w*||*] = O(qx), which hold for both examples on mar-
tingale and Markovian noise. In addition, they are independent of the choice of . These
observations agree with our main results.

2.6 Conclusions

We have provided an improved finite time convergence analysis of the linear two timescale
SA on both martingale and Markovian noises with relaxed conditions. Our analysis show
that a tight analysis is possible through deriving and solving a sequence of recursive error
bounds. Future works include the finite time analysis of nonlinear two timescale SA.
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Figure 2.1: Deviations from stationary point (6*,w*) normalized by step sizes B, Vi
(a,b) the toy example, note we also show I using the exact formula in Theorem 22
(unnormalized plot also available in the Appendix); (c,d) the Garnet problem.
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Chapter 3

Variance Reduction for Policy-Gradient
Methods via Empirical Variance
Minimization

The results of this section are published in [42].

3.1 Introduction

Reinforcement learning (RL) is a framework of stochastic control problems where one
needs to derive a decision rule (policy) for an agent performing in some stochastic envi-
ronment giving him rewards or penalties for taking actions. The decision rule is naturally
desired to be optimal with respect to some criterion; commonly, expected sum of dis-
counted rewards is used as such criterion|71|. Reinforcement learning is currently a fast-
developing area with promising and existing applications in numerous innovative areas
of the society: starting from Al for games [82, 11, 66] and going to energy management
systems [49, 32|, manufacturing and robotics 2] to name a few. Naturally, RL gives the
practitioners new sets of control tools for any kind of automatization [33].

Policy-gradient methods constitute the family of gradient algorithms which directly
model the policy and exploit various formulas to approximate the gradient of expected
reward with respect to the policy parameters [84, 74|. One of the main drawbacks of
these approaches is the variance emerging from the estimation of the gradient [83], which
typically is high-dimensional. Apart from that, the total sum of rewards is itself a random
variable with high variance. Both facts imply that the problem of gradient estimation
might be quite challenging. The straightforward way to tackle gradient estimation is
Monte Carlo scheme resulting in the algorithm called REINFORCE [84]. In REINFORCE
increasing the number of trajectories for gradient estimation naturally reduces the variance
but costs a lot of time spent on simulation. Therefore, variance reduction is necessarily
required to construct procedures with gradient estimates of lower variance and lower
computational cost than increasing the sample size.

The main developments in this direction include actor-critic by [45] and advantage
actor-critic: A2C [74] and asynchronous version of it, A3C [55]. Recently a new interest
in such methods has emerged due to the introduction of deep reinforcement learning [56|
and the frameworks for training nonlinear models like a neural network in RL setting, a
very comprehensive review of this area is done by [33]. During several decades a large
number of new variance reduction methods were proposed, including sub-sampling meth-
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ods like SVRPG [60, 86| and various control variate approaches of [64], [39], [52], [81],
[85]. There are also approaches of a bit different nature: trajectory-wise control variates
[19] using the control variate based on future rewards and variance reduction in input-
driven environments [54]. Apart from that, in ergodic case there were both theoretic [38]
and also some practical advancements [21]. The importance of the criteria for variance
reduction is well-known in Monte-Carlo and MCMC [65] and recently was also addressed
in RL by [30], where the Actor with Variance Estimated Critic (AVEC) was proposed.

Being successful in practice, A2C method is difficult to analyze theoretically. In par-
ticular, it remains unclear how the goal functional used in A2C is related to the variance
of the gradient estimator. Moreover, the empirical studies of the variance of the gradient
estimator are still very rare and available mostly for artificial problems. In the commu-
nity there is still an ongoing discussion, whether the variance of the gradient really plays
main role in the performance of the developed algorithms, according to [81]. In our paper
we try to answer some of these questions and suggest a more direct approach inspired
by the Empirical Variance(EV) Minimization recently studied by [8]. We show that the
proposed EV-algorithm is not only theoretically justifiable but can also perform better
than the classic A2C algorithm. It should be noted that the idea of using some kind
of empirical variance functional is not new: some hints appeared, for instance, in [52].
Despite that, the implementation and theoretical studies of this approach are still missing
in the literature.

3.1.1 Main Contributions

e We provide two new policy-gradient methods (EV-methods) based on EV-criterion
and show that they perform well in several practical problems in comparison to A2C-
criterion. We have deliberately chosen A2C and Reinforce as baseline algorithms to
be less design-specific and have fair comparison of the two criteria. We show that in
terms of training and mean rewards EV-methods perform at least as good as A2C
but are considerably better in cases with complex policies.

e Theoretical variance bounds are proven for EV-methods. Also we show that EV-
criterion addresses the stability of the gradient scheme directly while A2C-criterion
is in fact an upper bound for EV. As far as we know, we are the first in the setting
of RL who formulates the variance bounds with high probability with the help of
the tools of statistical learning.

e We also provide the measurements of the variance of the gradient estimates which
present several somewhat surprising observations. Firstly, EV-methods are able to
solve this task much better allowing for reduction ratios of 10% times . Secondly, in
general we see another confirmation the hypothesis of [81]: variance reduction has
its effect but some environments are not so responsive to this.

e To our knowledge, we are the first who provide an experimental investigation of
EV-criterion of policy-gradient methods in classic benchmark problems and the
first implementation of it in the framework of PyTorch. Despite the idea is not new
(it is mentioned, for example, by [52]), so far EV-criterion was out of sight mainly
because of A2C-criterion is computationally cheaper and is simpler to implement in
the current deep learning frameworks since it does not need any complex operations
with the gradient.

68



3.2 EV-Algorithms

3.2.1 Preliminaries

Let us assume a Markov Decision Problem (MDP) (S, A, R, P, 11, i, y) with a finite hori-
zon T, an arbitrary state space S, an action space A, a reward function R: S x A — R,
Markov transition kernel P. We are also given a class of policies Il = {7y : S — P(A) | § € ©}
parametrized by # € © C RP where P(A) is the set of probability distributions over the
action set A. We will omit the subscript in 7y wherever possible for shorter notation, in
all occurrences m € II. Additionally we are provided with an initial distribution pg, so
that Sy ~ po, and a discounting factor v € (0, 1). The optimization problem reads as

T-1

> RS Ar)

t=0

maximize J(0) = E wrt. 0 €0,

where we have assumed that the horizon T is fixed. Let us note that any sequence of
states, actions, and rewards can be represented as an element X of the product space

(S x AxR).

A generalization to the cases of infinite horizon and episodes is straightforward: we need
to consider the space of sequences

(S x AxR)>

for infinite horizon or
o0

J(S x AxR)

L=1
for the episodes, where the union is the set of all finite sequences. It turns out that the
gradient scheme described below still works for these two cases, so we will focus on the
finite horizon case only to simplify the exposition.

3.2.2 General Policy Gradient Scheme and REINFORCE

Let VJ|p : (S x Ax R)T — R” be an unbiased estimator of the gradient V4.J at point
¢ = #'. With this notation the gradient descent algorithm for minimization of J(#) using
the estimate VJ reads as follows:

K
1 ~
Opi1 = O + 7 § Vo, (X)), n=12,... (3.1)
k=1

with 7, being a positive sequence of step sizes. We will omit the subscript ,, in the
gradient estimate if it is clear from the context at which point the gradient is computed.
A simple example of the estimator V.J is the one called REINFORCE [84]:

-1
Treinf 7 .Y nyth(X)Vg log 7(A¢|St)

t=0

with
T-1
Gt(X) = Z’)/t 7th,
t'=t
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where R; = R(S;, A;) and
X = [(SO7 A07 R0)7 s (STfly AT*l) RT*l)}T .
This form is obtained with the help of the following policy gradient theorem.

Proposition 23. (Policy gradient theorem [84]) If X € (S x A x R)*> is sampled from
the MDP, then under mild reqularity conditions on m, P,

Vol =E | ) 7'Gi(X)Vylogm(A,lS))
t=0
Note that the above proposition is formulated for the infinite horizon case, but similar
statement also holds for the finite-horizon and episodic cases. To see that, one can rewrite
the problem as the one with infinite horizon giving zero reward after the end of the
trajectory and almost sure transition from the end state to itself.
The baseline approach modifies the above Monte Carlo estimate by incorporating
a family of state-action-dependent baselines by : S x A — R (SA-baselines) or state-
dependent baselines by : S — R (S-baselines) parametrized by ¢. The resulting gradient
estimate reads as
N T-1
VT X Y AN (GX) = by(Sh, Ar)) Vg log m(Ai|Sy). (3.2)
t=0
In order to keep this estimate unbiased, we need to additionally require that for all § € ©,
T—1

E | ) y'bs(Si, Ar)Volog m(Ai]Sy) | = 0.
t=0

It is known that every S-baseline by : S — R will satisfy this requirement (we have
placed the proof in Supplementary Materials, Prop. 50). Such baselines, in particular,
are often used in A2C algorithms [33]. When action dependence is presented, special care
is required. In fact, the SA-baselines keeping the gradient estimate unbiased are known
only in the case of continuous action spaces, see [39, 52, 81, 85]. The main drawback of
these methods is that they often are problem-specific. For example, QProp and SteinCV
algorithms require the actions to be from continuous set so that one could differentiate the
policy with respect to them. QProp additionally needs a notion of mean action. In the
case of factorized baselines we need to require the policy to be factorized in coordinates
and to construct a vector representation for each action which is not trivial in practice.
In this paper we experiment with S-baselines since these allow us fair comparison of
the variance reduction procedures with the same models for baseline and policy but the
algorithm is applicable generally: it could be used in the gradient routines in place of
A2C least-squares criterion.

3.2.3 Two-Timescale Gradient Algorithm with Variance Reduc-
tion

If we consider A2C algorithm, we might notice that it can be written as a two-timescale
scheme with two step sizes a,, 3,

K
_ Lo (k)
Ons1 = O+ 0 ; Vo J(X W), (3.3)
gbn-l—l = On — /an¢viégzc(¢)|¢n (34)
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where

K T-
VA (¢) = ZZ (X0 — by (5H)))2 (3.5)
KD
is A2C goal reflecting our desire to approximate the corresponding value function from
its noisy estimates (Gt(XT(Lk))) via least squares. The motivation behind it is that if one
chooses the value function as baseline, the variance will be minimized. This strategy
works well in practical problems [55].

If one would like to improve the baseline method there are two ways. One can either
construct better baseline families (in which much effort was already invested) or change
variance functional in the second timescale. In this work we address the variance of
the gradient estimate directly via empirical variance (EV). Since a gradient estimate at

iteration n, V% J(X,)|s,, is a random vector, we could define its variance as

Vo(0,6) == Tr (E [(ﬁbd»J(Xnﬂ@ _E [%%J(Xn)b]) : (@ban(Xn)b - [V%J D D
(3.6)

or, what is the same, as
2

Vo(0,0) = E {H%’)M(Xn)bm . H]E [ﬁbw(xn)b} H . (3.7)

2

Therefore, its empirical analogue is
VEVU(Q ¢> = (3.8)

2
bo 7 (X ) ( i ba (X )]
KZHV |92 ZV ,

It can be noticed also, that the second term in the variance (3.7) does not depend on ¢
if the baseline does not add any bias. In this case we could safely discard it before going
to sample estimates and use instead

(3.9)

K
1 ~ 2
VEm0.0) = g 3-[[F 0]

The corresponding gradient descent algorithms can be described as
K

1 b (k)
Ons1 = O + an ; Vb J(XW), (3.10)
¢n+1 = (bn - ﬁnvqﬁvlgv((ﬁa 9)|¢>n On - (311>

So we have constructed two methods. The first one uses the full variance V£V and is
called EVv, the second one is titled EVm and exploits V;£V™, the same variance functional
but without the second term. The important fact to note is that EVv routine would work
only if K > 2, otherwise we try to estimate the variance with one observation.

As was pointed out in [52], the methods addressing the minimization of empirical
variance would be computationally very demanding. This though strongly depends on
the implementation. EV-methods are indeed more time-consuming than A2C, partially
because of PyTorch which is not made for parallel computing of the gradients: the larger
K we want, the more time is needed. We are inclined to think that our implementation
can be significantly optimized. The main complexity discussion with charts is placed in
Supplementary.
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3.3 Theoretical Guarantees

The main advantage of using empirical variance is that we have the machinery of statistical
learning to prove the upper bounds for the variance of the gradient estimator. Our main
theoretical result is concerned about one step of the update of 6, with the best possible
baseline chosen from the class of control variates. In this section we give some background
and problem formulation and in the end discuss how the results are applied to our initial
problem and give theoretical guarantees for EV-methods.

3.3.1 Variance Reduction

Classic problem for variance reduction is formulated for Monte Carlo estimation of some
expectation. Let X be random variable and X7, .., Xk be a sample from the same distribu-
tion. Given a function i : R — R we want to evaluate E[h(X)] = £ using & S h(Xe).
This estimate, however, may possess large variance V (h) := E[(h(X) — £)?], one could
avoid that using other function A’ such that E[A/(X)] = £ but V(R') < V(h). Such
estimate would be more reliable since there is less uncertainty:.

This leads us to the following formulation. Given a class H of functions h : R* = R
find function h, € H with the least possible variance V(h,) < V(h) Vh € H. Such
problem is well-investigated in the literature and many methods have been suggested for
variance reduction both for Monte Carlo and MCMC settings, for examples see |59, 67].

3.3.2 Variance Reduction in Multivariate Case

Let us consider scheme (3.1), the variance of the gradient estimate affects the convergence
properties of the scheme so one is interested in reducing it, as can be seen in (90, 87| .
We also provide a discussion about it in Supplementary. Note that now we are in setting
different from the one above: it is needed to construct a vector estimate.

Let X1,..., Xx ~ P be a sample of random vectors taking values in X C R? and let
H be a class of functions h : R? — R such that E[h(X)] = €. Later we will also need
the corresponding empirical measure Px based on X1, ..., Xx. Define the variance

V(h) = E[|h(X) — &

with || - || being Euclidean 2-norm. Our goal is to find a function h, € H such that
V(he) < V(h) for all h € H. Then we have a variance reduced Monte Carlo estimate

% ZkK:1 he (Xk)
3.3.3 Variance Representation in Terms of Excess Risk

It is obvious that the exact solution hA* cannot be computed meaning that we are left
always with some suboptimal solution i € H given by a particular method of ours. The
quantity V' (h) — V(h.) where h, is defined with

V(hy) == ﬁxequ{V(h)

is usually called excess risk in statistics and represents optimality gap, i.e. it shows how
far the current solution h is from the optimal one. We can always write the variance of h
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as

V(h) = {vu}) — inf V(h)} + inf V(h) (3.12)

from which we can clearly see the excess risk (the first term) and the second term rep-
resenting approximation richness of the class H: generally speaking, the better this class
is, the lower the infimum can be. As more concrete example, consider variance reduction
using the method of control variates. In this setting the goal is to estimate E[f(X)] for
a fixed f: R? — RP. To reduce the variance of the Monte Carlo sample mean one adds
some control variate g € G with zero expectation giving us the class of unbiased estimates

H={f-9: g€g, E[g(X)]=0}.

The excess risk is now of the form
V(f—9)—infV(f-g)|,
geg
sometimes called stochastic error and the second term

inf V(f —g)

geEH

is known as approximation error. So, the way to analyze variance reduction is to estimate
the excess risk and the approximation error.

In our analysis we consider a class of estimators with control variates implemented as
baselines. Specifically, the class of estimators is

M= {%‘w | by € B¢} , (3.13)
where
" T—1
Vo' T X 53 4'(Gr = by(Sh, Ar)) Vi log (A4 Sy)
t=0

and b, € By is a map § x A — R. The set of baselines By is a parametric class
parametrized by ¢ € ®. We require that for each by € By and for all policies 7 € II

T-1

D 3'0s(Si, A1) Vo log w( Al Sy)

t=0

E —0,

requiring therefore that the estimator V% J is unbiased for all by € Bg. For example, any
set of maps b, : S — R will satisfy the above condition leading to S-baselines.

We start with one-step analysis, showing how well the variance behaves when variance
reduction with EV is applied at nth iteration. Let us further notate the estimator as
h: R? — RP and note that E[h(X)] = £ with constant & = V,J since the estimate is
assumed to be unbiased. In order to reduce the variance in the gradient estimator we
would like to pick on each epoch n the best possible estimator

h* = argmin V' (h)
heH
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where variance functional V' is defined for any h € H via
V(h) == E[[|h(X) - &|’]

where X is random vector of concatenated states, actions and rewards described before.
To solve the above optimization problem, we use empirical analogue of the variance and

define

h := arg min Vi (h)

with the empirical variance functional of the form:

K
1
Vic(h) = 2= > _ IM(X ") = Pehl?
k=1

with Pg being the empirical measure, so with the given sample we could notate sample
mean as

K
1
— (k)
Pich := KZh(X ).
k=1
Let us pose several key assumptions.

A 14. Class H consists of bounded functions:
sup ||h(z)|| < b, VheH.
rEX

A 15. The solution A, is unique and H is star-shaped around h,:
ah+(1—-a)h, e H, VheH, aecl0,1].

A 16. The class ‘H has covering of polynomial size: there are @ > 2 and ¢ > 0 such that
for all u € (0, b],

NH - Nz2(pey, u) < (E)a a.s.

u

17l L2y = A/ Prllbl3

where

The following result holds.
Theorem 24. Under Assumptions 14-16 it holds with probability at least 1 — 4e™?,

V(i) = V(h) € max (1)

.....

with
log K log K
B < Cy i752§02 ‘%{7
8(400°%t + T2b%) 9216b°t
3(4) — 404 —

where C1,Cy are constants not depending on the dimension D or the sample size K.

This allows to conclude from the variance decomposition (3.12) that as sample size K
grows, the variance reduces to that of h,. From practical perspective, Theorem 24 firstly
gives some reliability guarantee. Secondly, it also shows that if we have K large enough,
we can reduce the variance even more.
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3.3.4 Verifying the Assumptions in Policy-Gradient Setting

Let us now discuss how we can satisfy the assumptions in our policy-gradient scheme
(3.11).

As to Assumption 14, we can prove

Proposition 25. (see Supplementary) If there exist constants C, > 0 and Cr > 0 such
that

V€O, ac A,seS |Vylogm(als)| < Cr,
‘R(S,CLH < CR7

then Assumption 1 is satisfied.

In order to satisfy Assumption 15 in the context of policy gradient estimators H defined
in (3.13), one might notice that

V(hgk) —argmin V' (h) < V(hg) — argmin V' (h).
heH he€conv(H)

Indeed, Assumption 2 is a weaker notion than convexity.

Proposition 26. (see Supplementary) If Assumption 3 holds for By, under the conditions
of Proposition 25 Assumption 8 holds also for H with other constants c, c.

Let us also note that we could use the more realistic As. 16 stating the same for
log N (therefore considering more complex classes of baselines) and get weaker bounds
with weaker rates, see [§].

3.3.5 Asymptotic Equivalence of EVv and EVm

Let us have a closer look on the variance functional with fixed baseline by,
V(VPJ (X0) = BV (X)) = B[V T (X))

Note that the right term equals ||V4.J||? since the estimate is unbiased. Therefore, if the
gradient scheme converges to local optimum, i.e. 8, — 6, with Vy_J = 0 and the baseline
parameters ¢, — ¢, as n — oo a.s., then we can define the limiting variance as

Vo975 7) = B[ "%+ o |

which will strongly depend on the baseline we have chosen. This fact, firstly, implies
that EVm and EVv algorithms are asymptotically equivalent because they differ in the
second term converging to 0 and the first term is dominating by Jensen’s inequality.
Indeed, in our experiments we see that EVm and EVv behave similarly, so one would
accept EVm as computationally cheaper version which works with K > 1. Secondly, EV-
methods give additional stability guarantees for large n because they are directly related
to the asymptotic gradient variance. It is an open question though to characterize the
convergence of the presented two-timescale scheme to (6., ¢.) more precisely.
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3.3.6 Relation to A2C

Proposition 27. (see Supplementary) If the conditions of Proposition 25 are satisfied,
then for all K > 2 A2C goal function ViA2°(¢) is an upper bound (up to a constant) for
EV goal functions:

Ve ™ (9) < 207V (0), VeV (9) < 207V (9).

So, A2C is more computationally friendly method which exploits the upper bound on
empirical variance for baseline training. This, in a sense, explains the success of A2C and
different performance of A2C and EV-methods.

3.4 Experimental Results

We empirically investigate the behavior of EV-algorithms on several benchmark problems:

e Gym Minigrid [20] (Unlock-v0, GoToDoor-5x5-v0);

e Gym Classic Control [18| (CartPole-v1, LunarLander-v2, Acrobot-v1).

For each of these we provide charts with mean rewards illustrating the training process,
the study of gradient variance and reward variance and time complexity discussions. Here
because of small amount of space we present the most important results but the reader is
welcome in the Supplementary materials where more experiments and investigations are
presented together with all the implementation details. The code and config-files can be
found on GitHub page [37].

3.4.1 Overview

Below we show the discussions about several key indicators of the algorithms.

1. Mean rewards. They are computed at each epoch based on the rewards obtained
during the training in 40 runs and characterize how good is the algorithm in inter-
action with the environment.

2. Standard deviation of the rewards. These are computed in the same way but
standard deviation is computed instead of mean. This values show how stable the
training goes: high values indicate that there are frequent drops or increases in
rewards.

3. Gradient variance. It is measured every 200 epochs using (3.9) with separate
set of 50 sampled trajectories with relevant policy. This is the key indicator in the
discussion of variance reduction. Surprisingly, as far as we know, we are the first
in the RL community presenting such results for classic benchmarks. The resulting
curves are averaged over 40 runs.
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4. Variance Reduction Ratio. Together with Gradient Variance itself we also mea-
sure reduction ratio computed as sample variance of the estimator with baseline
divided by the sample variance without baseline (assuming by = 0) in the compu-
tations of Gradient Variance. The reduction ratio is the main value of interest in
variance reduction research in Monte Carlo and MCMC.
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Figure 3.1: The charts representing the results for CartPole environment: (a,b,c) rep-
resent mean rewards, standard deviation of the rewards and gradient variance reduction
ratio for configh and (d,e,f) show the same information about config8.

3.4.2 Algorithm Performance

While observing mean rewards during the training we may notice immediately that EV-
algorithms are at least as good as A2C.

In CartPole environment (Fig. 3.1 ) we conducted several experiments and present
here two policy configurations: one with simpler neural network (configh, see Fig. 3.1(a,b,c)
) and one with more complex network (config8, see Fig. 3.1(d,e,f) ). In the first case both
A2C and EV have very similar performance but in the second case the agent learns
considerably faster with EV-based variance reduction and we get approximately 50% im-
provement over A2C agent and 75% over Reinforce agent in the end and even more during
the training. The phenomenon of better performance of EV in CartPole with more com-
plex policies is observed often, more detailed discussion is placed in Supplementary.

Experiments in Acrobot (see Fig. 3.2(a)) show that EV-algorithms can give better
speed-up in the training. In the beginning EVm allows to learn faster but in the end the
performance is the same as A2C. One of the reasons of such behavior can be the fact that
learning rate becomes small and the agent already reaches the ceiling.

Unlock (Fig. 3.3(a)) is the example of the environments where all algorithms work

similarly: in terms of rewards we cannot see significant improvement even over Reinforce.
In Unlock, however, there is a difference presented but very small.
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Figure 3.3: The charts representing the results for Unlock environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c) displays the gradient
variance reduction ratios.

3.4.3 Stability of Training

When we study the charts for standard deviation of the rewards (Fig. 3.1(b,e),3.2(b),3.3(b)),
we can see that EV-methods are better in terms of stability of the training, the algorithm
more rarely has drops than that of A2C. This is greatly illustrated by CartPole in Fig.
3.1(b,e) where the standard deviation is about 2 times less than in case of A2C. This
holds for both configurations.

Fig. 3.2 illustrating the experiments with Acrobot show that until the ceiling is
reached EV methods still can have lower variance. In Unlock presented in Fig. 3.3(b) we
have not observed a significant difference in reward variance.

3.4.4 Gradient Variance and its Influence

The first thing we can notice reviewing the gradient variance is that A2C and EV reduce
the variance similarly in Unlock. CartPole (see Fig. 3.1(c,f)), however, gives an exam-
ple of the case where EV works completely differently to A2C, it reduces the variance
almost 100-1000 times in both policy configurations. Similar picture we can observe in
all CartPole experiments.

We can see that in Unlock showed in Fig. 3.3 the variance can also be reduced ap-
proximately 10-100 times, however, we see very little gain in rewards. It shows that in
some environments training does not respond to the variance reduction; as a reason, it

can be just not enough to give the improvement.

As answer to the discussion [81] about whether variance reduction helps in training we
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would note the following phenomenon. In all cases we have confirmed variance reduction
but not everywhere we have seen different performance of A2C, Reinforce and EV. Note
that we designed our experiment in such a way that the only thing differentiating the
agents is the goal function for baseline training. Some environments due to their specific
setting and structure just do not respond to this variance reduction. In some cases (like
in Acrobot) we can see that there are moments in training where variance reduction helps
and where it does not change anything or even make training slower. It is natural to sup-
pose that all these specific features should be addressed by some training algorithm which
would combine in a clever way several variance reduction techniques or would decide that
variance reduction is not needed at all. The last thing can be vital for exploration proper-
ties. Hence, we would conclude that variance reduction is the technique for improvement
but how and when to apply it during the training is an interesting open question.

The last thing we would like to note is that reward variance measured in previous sub-
section is not an indicator of variance reduction since we have shown gradient variance
reduction in all cases. Reward variance is decreased in relation to Reinforce, however,
only in CartPole environement. Therefore, it cannot be used as a key metric for studying
variance reduction in RL. The connection between reward variance and gradient variance
seems to be an unanswered question in the literature.

3.5 Conclusions

In conclusion, we would like to state that sometimes the desired effect from variance
reduction cannot be reached due to the specific nature of the environment. However, as
we have seen above, it has the potential to influence the training process in a good way.
As a new method for constructing variance reduction goals we suggested to use empirical
variance which in turn resulted in EV-methods. Their motivation is more about actual
variance reduction than in case of A2C and their performance is at least as good as A2C in
terms of variance reduction and rewards. For them we also have suggested a probabilistic
bound for the variance of the gradient estimate under some mild assumptions. Finally,
EV-algorithms can be more stable in training which can allow to make sudden drops
during the training less frequent. We also have for the first time presented the study
of actual gradient variance reduction in classic benchmark problems. Our results have
shown that variance reduction can help in the training but sometimes the environment’s
specific features do not allow to achieve gain in rewards. Therefore, variance reduction
technique needs to be used during the training but the exact circumstances in which it
helps are yet to be discovered.
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Conclusion

In our work we have addressed two settings: optimal stopping for SDE and reinforcement
learning in MDP setting.

Regarding the first direction we have presented the complexity analysis of WSM-
algorithm and have suggested a new methodology for comparison of the algorithms for
optimal stopping problem which includes the computational complexity. Our results have
demonstrated superior qualities of the WSM algorithm and its robustness when trying to
approximate the solution of continuous-time problem with a discrete-time one.

Regarding the second direction, we have contributed in several areas. Firstly, we
have proven finite-time convergence analysis of linear stochastic approximation scheme
which serves numerous policy evaluation algorithms. The analysis is shown to be tight
by constructing an exact expansion of the error giving a lower bound. Secondly, in the
last chapter we have designed a new method for variance reduction in policy-gradient
algorithms based on empirical variance. The algorithm shows an inprovement over A2C
least-squares criterion and can be used in various modifications of A2C schemes encorpo-
rating a variance reduction component.

Overall, our contribution demonstrated itself to be not in the sole direction but rather
in the several areas: mathematical finance and reinforcement learning. Obtained ideas can
be incorporated in many possible future research directions including stochastic algorithms
and their analysis in stochastic optimal control and reinforcement learning.
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Appendix A

A.1 Proofs

A.1.1 Proof of Proposition 1

For achieving a target accuracy of order ¢ it is reasonable to divide the error equally over
the variance and the bias part of (1.1). One thus chooses m such that x51/m® ~ ¢/2,
that is, m ~ (2k5%/¢)"/*, and then takes N such that xk5*m¥2?/N'/? ~ /2, ie. N ~
(2K)25%Em? /&2 yielding a computational work load Cy, (g,d) = k1 Nm??L as stated.

A.1.2 Proof of Proposition 2

For | = L the statement reads
/ ‘UL(ZU) — ﬁL(iﬂ)‘pL(!ﬂﬁo)dﬂ? = /1|zxo>R g(z)pr(x|xg)dr = e, g,

so then it is true. Suppose (1.10) is true for 0 < I+1 < L. Then, by using |max(a, b) — max(a, ¢)| <

|b — | and the fact that U;(z) vanishes for |x — x¢| > R,
‘Uz(l“) - [71(37)) < Ljo—ao<r (max [g(z), E [Upp1(Xig1)| Xi = 2]
— max [9(5‘3)7 i) [ﬁl+1<Xl+1) X = 55” ‘ + 1|:s—xo\>RUl(l’)

< liz—ao|<rlE HUZ+1(X1+1> — Uip1(Xin1)

)Xl - x} + 1oy o U (2).
Hence we have by induction,

[ Vi@ = G| mtaan) o

< /1xaco|>RE HUl—i-l(Xl—s-l) - (71+1(Xz+1)HXz = JC} pi(z|zo)dzr + 1R

< / ‘Ul+1(y) — ﬁl+1(y)’pl+1(y|$o)dy +ELR

L L
= § ejrtELR= § £k
=l

j=l+1
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A.1.3 Proof of Proposition 3
Combining the assumptions (1.11) and (1.12) yields

Ul(x) = esssup E[g.(Z,)| Z = a]

T€T,L

<c,E {1 + max |Zy|

I<U'<L

Zl—l':|

<, (14 cz) + cyez |z

By the estimate

|lz—x \2 2
/ e Gy < B (4/3)" (2mad) 2,
|x—zo|>R

and (using Cauchy-Schwarz) the estimate

|I*z0‘2 |;vfzo\2 2 |I,zo‘2
|r — xo|e” 22t dx < e~ 2l dx |x — xo|" €™ 2at dx
le—z0|>R le—zo|>R

2
< e’%Zd/‘*(%mzl)d/2 dal,

we get (note that (4/3)"% < 21/4)

» |o—aq|?
eiLr < (2mad)i? /w on (cg(L+cz)+chez|z]) e 200 do

scy (1 +cz + czlol) / |T2;?\ i
N (27Tal)d/2 |z :1?0|>R

2#CyCy lomagl?
— — P d
t et [ e mle
< ey (1 +cz+cy |5E0| + chda\/Z> 2d/4e_%
2
= (A + B\ﬁ) cg%e_%,
for I > 1 (g9 = 0 for R > 0). Now by (1.10), i.e. Proposition 2, we get
/‘Ul(z) - ﬁl(m)}pl(ﬂxo) dx <L (A + B\/E) Cyrce” Rl

whence the estimate (1.14).

A.1.4 Proof of Proposition 4

Let us write the sample based backward dynamic program (1.9) for step | < L in the form

N
Ul (Zl(l)> — HIZZ(Z)—Z‘()’SR max Z U+1 l+1 ’LU”] (Al)

by defining the weights

— p(Zz(i)ﬂZl(i)) (A.2)

SN oz |7
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where [ is fixed and suppressed. Let us further abbreviate

@) = E[F(Zen)| Z =] = [ F)plole)dy

for a generic Borel function f > 0. Using
U, <Zl(i)> = ]l‘Zl(ion‘SRmax [gl(Z ), 5[Ul+1](Z ))] :

(A.1) and |max(a,b) — max(a,c)| < |b— c|, we thus get

N
77 7 1 77 i 7 i
)UZ_UZ)N::N ‘Ul<Zl())_Ul(Zl()) <
N ~ .
~ Z \Z@ "y Z Zyhwy — E[0n(Z)
Uiy L Rup (A.3)

with
N

> Uir(ZD) Ywiy — E[Ui)(2)")
j=1

’

LN
Rip1 =+ Z H‘Zl(i)—mo’SR
=1

where we have used the fact that the weights in (A.2) sum up to one. One thus gets by
iterating (A.3)

L-1
’Uk - Uk‘N < ;Rm, (A.4)
since U} — ﬁL = (. Let us now introduce
1 (212"

N g (22 )

and consider the generic term

N
Z Upir (Z ) wi; — E[011)(27)

L
Riy1 = N Z ﬂ‘zl(i)fxo‘gph
Z]l]z“>—xo]<RZUl+1 l+1 |w” Wi

N
1 1 ~ ;
TN Z e (w3822 - Bl z)) ‘

i= Jj=
=: Term; + Terms.

We have
E[Ri31] < E[Term;] + E [Terms] .
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While the first term Term; is small as (w;;) are close to (wy;), the second one Terms tends
to 0 as N — oo by the law of large numbers. Indeed, due to (1.7) one has

Y

Term; < —ZZH 20— ‘<R Z(a) _I0)<R }wij - wfj

i=1 j=1

and due to (A.2) and (A.5) we may write

‘ l+1|Z ) 1 p( l+1|Z )

Zm 1 P l+1’Z )) NPIH( l+1|x0>

_ (Z(]1|Z ) o sz:ﬂ?( l+1|Z(m)
Zm:lp( l+1‘Zl )> Pra( l+1‘x0)

| Wij — Z]

to obtain N
%Zm:l ( l+1’Z )
pren (22 |xo)

The expectation of the random variable inside of the above sum is independent of j. So
by taking j = 1 and splitting off the with Z() correlating term due to m = 1, one gets

N m
m= pl+1( l+1\5€0)
1 m
Z 1 1— p(Zl(+)1|Zl( ))
‘zl 1—J:0 1)
* pl+1(Zz+1‘x0)

1 1
p(z)2Y)

1
e (Zy}) |wo)

I+1

G
Tormy < S5 101 -
j=1

G
[E [Term;| < WR]E

l+1_x

‘<R

Gr
<—D —]E
N Rl T

with

DRJ Z:E ]1‘ (1)

H»l 1‘0’<R

Now consider the i.i.d. random variables,

(1) | 7(m)
nglj»l) 1_% , m:27_._7N_ (A6)
‘Zl+1—a:o’<R pl+1(Zl(_A,1_)1|x0)

It can be verified by conditioning on Zl that these have zero mean. Then by applying
Jensen’s inequality to the square-root, using the independence of the random variables
(A.6), and that the latter variables are identically distributed with zero mean, we derive

N N 2
Z (1-+1) (Z l+1>> — EriV'N
with
1 2)\ |2
Rl = ’Zl(i)l z0’<R 1)
Pt (24 |o)

Finally we get for Term,
GrDg, n GrER,
N VN
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Concerning Terms, let us write

0)

p(y|Z

Di+1 (y|-’B0)
p(Z)012)

Prea(2) |o)

£l (2) = / T (y)

=K )

[71+1(Zz0irx10)

where Z%%¢ is an independent dummy trajectory. We thus have

et = .o s )|

1 |2V ~ao| <R

N
Z C(z+1)
J

=2

+E

|

where for j = 2, ..., N, the random variables

! o 77 ‘ L o7
G = Lk (wuwﬂ(z}ib - Newm](z;”))

Mz —ao|<r (f%z}” 127) - (21 2)

pra( 2 o)

N 2o Un(Z0) — B | Ui (Z0)

)

pria(Z2)|wo)

are i.i.d. with zero mean. We so have by the Jensen’s inequality again,

N
E ZCJGH)] < 4/ NVar (CQ(ZH)) < FriGr/VN,
=2
where
@) |,y |? 2
(2412, z
F%:EIWMIFRJJ##J- ://‘ iiﬂLﬂM%Mmy
T pr (2, |0) =zl Pri1(¥[%0)

Secondly, by (A.5) one has

oTT 1 1 1
I [1’2l<1>x0’<3 (w11Ul+1(ZZ+1) - 5[U1+1](Zl )))H
1) | (1)
1 p(Zl+1|Zl ) ~ (1)
<<E Lo, ————U1(Z))
N ‘Zz O‘SRpl+1(Zl(_|l_)1|«T0) +
0| r7(1)
1 - 0,z p(ZlO+1O|Zl )
+=E |1 a E\Un (20—
1 1
CGngly o pEbAY)
=N | A el<r (20 (z0)
T 1
Y P PERNZD) | Gap
NSt (B | N
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where the latter inequality follows from (1.7) and the fact that (7l+1 vanishes outside the
ball Bpg.
Combining the above estimates, we get for Terms,
FriGr n Gr
vN N

Thus we have expressed our bounds for IE [Term;| and IE [Terms| in terms of the quantities
Dry, Ery, Fry, Hry, and Gg. Furthermore, it is easy to see that using (1.15)

E[Term,] <

HR,l-

1 1
p(Z D ZY)
1
pre(Z)}) o)

= 1+/pl(x]a:0) da:/| Mdy

y—zo|<R Pl+1 (y’.ﬁCo)

Dpi<1+E

+1

ﬂ‘z(” —xo(gR

<1+ Fp.
Similarly, it follows that Ef%yl <2+ 2F% and that Hg; <1+ F% due to

T 1
P27 Z0)

I 0,z0
pi1(Z37 o)

Yz -l =1

By now taking the expectation in (A.4) and gathering all together we obtain,

~ / 2 2
E [}Uk - Uk\N} <(L—k)Gg ( QHZZ\’;JFFR 42 +2FR> : (A7)

JN N

By next taking k = 0 and assuming that N is taken such that (1 + Fg)/VN < 1,
Proposition 4 follows.

A.1.5 Proof of Proposition 6

In order to achieve a required accuracy € > 0, let us take R and N large enough such that
both error terms in (1.16) are equal to /2. Hence, we first take

LCg% <1 +cz +cz |.T}0‘ +czV dOéL) 21+d/4

Y

R. .= (8alL) 1/2 log!/?

9

that is R * oo when d 4+ e~! 7 co. Then take, with =< denoting asymptotic equivalence
for R /oo up to some natural constant,

N. =< L*clx (e/a)™? d=?RH2e72 < ack (8¢/d)™/? LY/*+3

1+ cz +cz ol + cZ\/daL> 21/ 5

€

L
x 72 1og??+!

Thus, the computational work load (complexity) is given by

cgcd)NfL < cloz2cf;%2c§cd) (8e/d)* L7
L (1 + ¢z + cz|ro| + cZ\/daL> 21 /4, 5

£

x e loght? (A.8)

94



where ¢; is a natural constant. Now let us write

L <1 +cz +cz \xol +czV dOéL) 21+d/4cg%
£
1/d 1
L4 (1 + ez 4 ez lxo| + czV daL) QH/A+L/4 (¢, 3¢)

c1/d

d—d logd-i-Q

_ d2 logd-‘rQ

1/d
Then, using the elementary estimate (a—i—b\/E) < ae¥®, for a,b > 0, d > 1, and
assuming that ¢ < 1, (A.8) implies (1.17).

A.1.6 Proof of Proposition 9

On the one hand one has

Us (Xy) — Uy (Xy,) = esssup Eg, [g(1, X;)] — esssup Bz, [g(T, X7)]

7'677,[, FE'E,L

S esssup E]:tl [g(Ta XT) - g<7—7 7T>:|
TE'TLL

S esssup E]‘—tl [|g(7—7 XT) - g(T7 77’) i| )
T€TI,L

and on the other one has similarly

Uy(Xy) = Ug(Xy,) = esssup B, [9(7, X7)] — esssup Ex, [g(7, X))

7€T,L T€Ti,L
< esssup ]E]'—tl [g (?7 7?) - 9(7—7 X‘r)]
?E'nyL

< esssup E]—'tl [|g(7‘, X:) —g(r, XT)H :
T€T, L

Hence we get

E[|U2 (X)) — Un(X0)]] < E { sup [g(s, X.) g(s,m@

0<s<T

< LyE { sup | X, — 74} < CPulery/p,

0<s<T

due to the strong order of the Euler scheme, with L, being some Lipschitz constant for
g.
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Appendix B

B.1 Proof of Proposition 14

The following derivation is largely borrowed from [46] and is repeated here for complete-
ness. We begin by substituting ¢ into (2.3) to obtain

Ors1 = (I —=BrA11)0k — BrArpwy, — 0 + Biby — Br Vit

=(I _BkAll)ék — BrAnb* — A (W + w* — quék) + Brb1 — BV

= (I—-Br(A11 — A12A5y Agy — A12Ly))0), — BrArny — Br(Apw* + A1160% — by) — B Vi
Notice that

Algw* + A119* — bl = (All — A12A2_21A21)9* + A12A2_21b2 — b1 = O
The above yields 3 3
Ori1 = (1—BuBE)0k — BrAraWy, — B Vis1. (B.1)
Next, we observe that
Wit — w* = (I =y Ag)wy — ViAo — w* + by — Wi

= (I —ypAa)(wp — w*) — AW — Ve An Ok + Vb2 — Wit
= (I —ypAg)(wr, — w*) — VA2 (O — 0*) — v Wiia

Substitute wy, into (2.4) and using (2.23) yield:
W1 = (=7 Az) (W — w*) = Y An O + Cibrsr — Wi

= (I =k Ao2)wr — ((I =y A2)Cr1 + %Azl)ék + Ci((1 — BB 0, — BrA12y,)
= BeCrVirr — Wi

= (I -y BS,)wy, — (Ck—l — Yk (AxpCr1 — Agy) — Ci(1 —5ka1)>9~k = BkCiVit1 — Wit

We observe that
Cro1 — ’Yk(AQQCkfl - A21) - Ck(I —ﬁkal)
= Ly + Ay Aoy — (Liy1 + Az Ao )T =B BY) — 1(A2Chy — Agy)
= Ly — (Lx — Ao Ly + 5k;A2_21A21Bf1> - 5kA2_21A213f1 — Yk (A2Ck_1 — Ag)
= Y Ao Ly, — V(A2 (Ly, + Az Azy) — Azy) = 0.

The above yields
W1 = (1 —VkBgz)@k — BiCiVis1 — Wit (B.2)
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B.2 Detailed Proofs for Section 2.3

Before we proceed to proving the main results of Section 2.3, we first study a few properties
of the two timescale linear SA scheme.
To facilitate our discussions next, we define the constant:

Coo = v/ Amin(Qa) 7 Amax(Q22) Lo +[| Azy Aan [, (B.3)
where ||Cy|| < Coo for any k > 0. Then, as we have 6,6, =< 26,0 + 26%(6*)7, it holds

IE [6:60 11 < 2{ ME+]07(6) 7|1}, |IE [wiw] ]| < 3{ MP + M C2 +[lw*(w?) ||}

The noise terms Vj, Wj can then be estimated in terms of the transformed variables ék, Wy
and their variances MZ, M}f In particular, combining with A12 yields

1B [Vt Vil ] IF < i (1 4+ Mg+ M), B [Wia Wi ]I < i (1 + M+ M) (BA)
1B [V Wil ]I < iiww (1 + My + M)

where
MW (14 24(69) T + Bl (w) T V (24 3CL) v 3
my - mw (B.6)
~ Vdedy . -
myw = 29 (mw + my)

We also define a few constants related to the matrices Qa, Q22 associated with the Hur-

witz matrices A’AQQ n (28> Set A = )\,;iln(QA>/\max(QA)u P22 = /\;iln(Q22>>\max(Q22)u
D22.A 1= 1/P22pA. Moreover, for any a > 0, we set

0" = gg max{1, asn/(4an)} V % (5)°. (B.7)

Next, we study the contraction properties of I —3,BY, and I —+,B%, that appear in the
transformed two timescale SA (2.23),(2.24). Using (2.9), we observe that

IT=B1Brilloa = IT—=BeA + BrAraLillos < IT=Brlloa + Bull Ar2llQm.ea | Lilloa.cz
< (1 - BkaA) + ﬁkHA12HQ227QA”Lk||QA7Q22 :
Recalling that || Lg||g..0: < Loo, the above inequality yields
IT=BeBrilla <1 (1/2)Bran - (B-8)

Since ||[T =7, B5% |0y < 11—k A2l0s + Brl|CrAi2llg,, We obtain the contraction:

||I _/YkBgQ“QQQ <1l- ViQ22 + ﬁk(LOO +||A2_21A21||QA7Q22)||A12||Q227QA
<1 —(1/2)yag.

The last inequality is due to & < (a22/2){(Loo +1| 452 A21 [l0n.022) || A12| Qeaa } - Lastly,
the following quantities will be used throughout the analysis:

(B.9)

n

¢=T1 (1= /2)8as). 62, =TT (1 - (1/2man).

i=m

I
3
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As a convention, we define Fq(%)n = S?n =T if m > n. In particular, for any n,m > 0, we

observe the following bound on the operator norm of Fg?n,
TSl = vPallilles < voa [T I11-6iBlilles < VPGl (B.10)

Similarly, we have ||F£Pn|| < /PG, Lastly, we define
whose operator norms correspond to Mkﬁ’, Mi’w, MZ, respectively.

B.2.1 Detailed Proof of Theorem 12

This subsection provides proofs to the propositions stated in Section 2.3.1, as well as
providing detailed steps in establishing Theorem 12.

Bounding M} (Proof of Proposition 15) Using (2.24), as the noise terms are mar-
tingale, we get

E7 [wkﬂw;l} = (I—wBsy) gy (1= B3,) " + 7B [WkHWlLJ
+ BROWET [V Vil ] CF + By (B (Wi Vil CF + GE™ [VieaW,L4]) . (B.11)

Repeatedly applying (B.11) and taking the total expectation on both sides show

Ykl = FE) kEO Tt Z F]—‘rl k J+1 ]+1 k)T7 (B-12>

where

D1 = RE W Wl | + BICE [V VL] CE 8 (B Wi VL] CF + GUE [V W] ).

Using Lemma 39, we observe that

Viydy
2

WBHIE [Wesi Vil ] G | € === Coc (V1B (Wi a Wil ] 1+ BRIE [V Vi) 1), (B-13)

Let K¢ := max{C?%,1} + v/dpd,,Cs, we have
|Disal] < 321+ Coo Vg ) | [Wiea W] |+ B2Cse (Coc + Vo ) B [Viaa Vil ] |

< Ko (33 {iw + i M{ o M} + B2 {siw -+ oy M{ 17 M } )
(B.14)

where the last inequality is due to (B.4). Taking the operator norm on both sides of
(B.12) yields

Mg’ﬂgpgg{(G Mw+KZ @ (i + i) {1+M9+Mw}}. (B.15)
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Using that f; < k7, one writes

k k
w @I 2)\ 2 II)/ 2 ~ 1I)/ 9 2 B
M,y < CF'(GEL)° + el Y7 (GR) (L M) + €5 Y3 (G)° MY (B.16)
3=0 j=0
where ¢y = my + K2y, Cg’, = P99 Mg”, Cf/ = pea K¢, and Cg’, = p9acy. Define:

k—1 k-1
fjk - CE)D/(G[()?I)c—l)2 + Coc?/ Z’Y? (Gﬁzlzk—l) (1+ M9> + Cw Z 2(G§?1 tk— 1)2ﬂj7
§=0 j=0

It is easily seen that the sequence (Uy)x>o is given by the following recursion
Gk+1 = (1 - a227k/2)2ﬁk + CQC?,’Y]z(l + MZ) + Cg)/ﬁ/zﬁk, Uo Cw

Since the step size was chosen such that v, (C¥ + (a2,/4)) < 222 [cf. (2.26)], we have

ﬁk—i-l S (1 — CLQQ’yk/Q)ﬁk + CIID/’}/,%(CQ +c1 MZ)
which implies

Uk+1 < CO G 0:k + C()Cw Z’YJ 1 + MO)GJ_H ke (Bl?)

7=0

Observe that MY < Ux. Applying Corollary 30 shows that Z i=07; G] T S 0%22/ 2y 1y
we get

k
w w W 2 7]
MP 1 < CF Gop+ CF e + G > %205'421;1@ M, (B.18)

J=0

where we recall K¢ := max{C?%,1} + \/dpd,C, and
Cg} = P22 Mg], Cllb = pgg(ﬁlv + H2Thw)cha22/2, Cg} = p22KC(mV + /€2?7~”Lw>. (B19)

This concludes the proof for Proposition 15.

Bounding M (Proof of Proposition 16) We proceed by observing the following
recursion of Qk

Qi1 = 1 =B BY) (I =7 BY) T — BrAnZi(I—B5,)

(B.20)
+ BB [Via Wi ] + BB [V Vil ] G-
Repeatedly applying the recursion gives
Q1 = F Q0 <F((]2k> Zﬂg A1 (Fﬁ) (B.21)
T
1 (2) 2
+ Z 5J’YJF§+)1 k WJTJFJ (Fj+1 k) + Z BJQF]—FI k [V Vj:—l} C <F§J21;k) :
(B.22)
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The contraction properties (B.9), (B.8) result in

MEE, < i a{ GRIGEME™ 4 A Z 56 G MY ) (B.23)

+paf Z 875G Gyl B Vi W Il + Coe Z B G E [V Vi I
7=0

(B.24)
Applying (B.18), we bound the third last term of (B.23) as

k
w ) w (2) 7]
Zﬁﬂ LG, <5 GG (CF GR) . + CF y + C Z’VQGMJ 1 MY)

7=0

7—1
0k+CwZﬁJ kfy]—l—C“’Zﬁj ]+1k ;kZ”YGzHJ 1

7=0 =0

2C“’G
an

(B.25)

where we have used Lemma 29 and G{") it1 < 1in the last inequality. Applying Corollary 30
and Lemma 31, A10 to the second and the last term on the right hand side, respectively,
we obtain the following upper bound:

k
200 G2 208 ;
E:@Gﬁlk GAMY < 22070k 0f ga2/2p, ) . Y 2GE ML (B.26)

a
A =0

Applymg (B.5), we bound the second last term of (B.23) as

Zﬁj% J+1k ]+1kHE[ J+1 J+1]H < mVWZﬁJ'YJ J+1: kG§+)1k(1+M9+Mw)
j=0 §=0

k s
(2) 6 (1) (2) w
{ Z BJ’VJ ]+1 kT Z BiviG e M + Z BiviG i1k G e M }

7=0 7=0 7=0

IN

my { 0" By1 + “Z j+1kM9+Zﬁj7j JESE kGE—zlka}
(B.27)
where the last inequality applied Corollary 30 again We observe

(1) (2) M? (1) 2) W
Z@%Gﬁmcﬂﬂk ;< WZBJGJ—HIC 1G1 M (B.28)

Thirdly, we repeat the calculations above and explmt Br < Ky, to bound

2 2 5 i
ZBZG]M G2 LE Vi Vi <mv2620]+1k G (1 + M)+ MP)

k
e 35 M+Zﬁ?Gﬁ?MM?+Zﬁ?G§2MG§im My | (B.29)

7=0 7=0

< ﬁly{/ﬁ@azz/zﬁ 1tk Z ]+1 k Me tK Z BJ’YJ g+1 ng‘?l:k M;I) }

7=0
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Combining (B.26), (B.27), (B.28), (B.29), we conclude that

k
MJT < O GO+ CI By + CH7 S 4260 MY (B.30)
=0
where
- - 20w . . 270 Cy
O . (Me,w A 0 Co 0 )
0 P22.A o A in + (Mmyw + K mv)aA(l —oa)2)

77 = o a0™(CF (JAp |l + 1= (ww + Coshiiny)) + vy + Cochiiiy ).
1— 70&22/2

(mVW + COOI{ﬁ’Lv)) + I{(mvw + Coolimv)> .
(B.31)

0, 2Cy Yo
57 = pa (S 2 (Al + —

This concludes the proof of Proposition 16.

Bounding Mi (Proof of Proposition 17) We observe the following recursion:
E% 0L, | = (1=BeBR)EP (0407 | (1-3uBL)T + B ALE™ [ ] AL
R (Vo] (B0 BE ] AT, + A [T 088

Taking total expectations and evaluating the recursion gives
.
Or1 = FO k@(’ Z 21—‘]21 #(AX;AlL + E [‘/}"‘1‘/]11})(1—‘;21:]4)
- T
1 j 1
- Z ﬁjrgur)lzk((l —5jB{1)QjA1TQ + A12QJT(I —53'3{1) )<F§+)1 k)
The above implies

ML < pa{ (GELPME +2) ] Zﬁj (G0 Gas/M |

. (B.32)
+pa ZﬁQ(G]H )2 (A2l MY +[E [V Vi ] )
§=0
Applying (B.4) and Corollary 30 yield
~ ~ k ~
My < pa{ (GO MG+ @2 + iy 3 (G0 MY |
=0 . (B.33)
+ 2pa| A ZBJ GG MG 4pa (| Awel + i) D BH(G 0 MY,
=0
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Applying (B.30), we can bound the second last term in (B.33) as

k k j—1
1) ~(1 éw 1) ~(1 6,5 ~(2 6,% 0, 2 7]
Y BGRGE M < Z@G};Gélm(% G+ O 85+ €37 3026, MY )
i=0 j=0 i=0
205@ 1 5 P 1) ~(1 — 2 7
0% a 8w
= ai Gé:l)c + O 0™ 2B + Cf ZBJGE':;GQM Z%?Gz(ﬂr)l:j—l M;

7=0 =0

where the second inequality is derived using Corollary 30. To bound the last term in the
above we start from the following observation. Indeed, taking into account definition of
B in (2.26), we get (1 — Bran/2)"' < 1+ Braa. This inequality and assumption A10-2
yield that

Ye—11— ’Yﬁa22/2
Yo 1—Bean/2 ~

< (1 + e70) (1 = yease/2)(1 + Bran)

(B.34)
<1-— fyg{agg/Q — apk — e} + 6773{/-%% — a22/2} <1—(1/8)aseye,
since Koo < (1/4)aga/an, see (2.21). We observe the following chain
k— k
1) ~(1 2) é 1) ~(1 2
Z /BJG( G )1 -k Z 77,2G§+1 - 1 = Z % Z GE IngJr)lskGl(Jr)ltjfl
i=0 i=0 j=it+1
(1) (i1 1 @ - TYe-1 1G(31 1
2 0 2 7] [
Z’yszJrlkM Z BJGJ+1’€ = Z l+1]fM Z i1 H (1) —a
=i+l GH—l] 1 =0 j=itl =i 6 Gl
j—1 © 8( k—1 ) _
< Zﬁz% H_lkMe Z Yi-1 H 1 - (1/8)'7/5&22) < _Zﬁl 1G5+1kM?.
Q22 <
j=i+1 f=i+1 =0
(B.35)

where (a) is due to 5; < 3; and Gﬁzl:k <1, (b) is due to (B.34), (c) is due to A10-1 and

Ef i+1 Vi Hz 1+1( — @) < (8/asz) for any i, k.
Moreover, applying (B.18), we can bound the last term of (B.33) as

k
DG MY < 308G (chojﬁcleWZv DMl
7=0

k j—1

: 1 w w 1 o
S#(M/?Z@Gﬁ””r%clzﬁ?d i+ G 252 GﬁﬁleZ WGy M
= Jj=0 1=0
_(—1_5a /2+%c) 02 By + CF 252 W) Z G2 M
00A =0 =0

where the last inequality is due to Corollary 30. In addition, similar to (B.35), we can
derive the bound

k
j 8¢)/age
G(l) 0< ( 2 ; MG
jzz(; j—l—lk Z’Y z+1j 1 z_—ﬁoaAﬂZﬁ’Y H—lk
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Substituting the above inequalities into (B.33) leads to

Miﬂ <G 0k+C Ber1 + C3 Z%ﬁj EBM M (B.36)
where
. - Al A €O
Cg ZPA(MS-F I 1;” 0 )7
A

) ~ a )b a ~ w Cw a
cf ::m{mvg 24 2 Al €7 62 4 (L Awal + ) (20 CF 41— /}

1 — 130&A/2
16¢|| A Cé’ﬁ’ N N 8Cw§ a
pA{ || 12” 2 (H 412H2 ) 2 / 22 }

CJ
22 1-— BOGA/Z

N

(B.37)

This completes the proof for Proposition 17.

Completing the Proof of Theorem 12 We complete the proof by analyzing the
convergence rate of Mk using (B.36). Consider the following recursion which upper bounds
MY:

Upy1 = CQG((]lk—I-C Br+1 + C8 Z jﬁj ]+1k Uj,

where we have set Uy = C Observe that

Upy1 —(1 = Bran/2) Uy = C?(ﬁk+l — (1 — Bran/2)Bx) + Cg ek Up
= Upy1 = (1 — Bilaa/2 — Co 1)) Up + CY(Brs1 — Br + Braa/2)

Since v, < v < T we have

Ut < (1 — Bran/4) Uy +Cf BRan /2

Evaluating the recursion gives
k k k
Uit < [J(1 = Braa/4) U+ Cl(an/2) Y 82 T[ (1 - Biaa/4)
=0 j=0  l=j+1

Applying Corollary 30 shows Z?:o 5? H?: (1= Baa/4) < 0%2/*B)11. Lastly, observing
that Mz < Uy gives

_ _ k
Miy < 31_[(1—64—) +Cf grarila 5 B, (B.38)

=0

To finish the proof of (2.14), we observe (i) the constant Cg < Cg’mthO for some con-
stant Co™€ | (ii) the inequality that E[[|6; — 0*||%] < dy MY, and (iii) setting the constant

Co™eE = Cf g"a/4(an /2).
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Our last endeavor is to prove (2.15). Observe that the tracking error wy := wy —
A5y (by — Ag16;) may be represented as

’&J\k = Wk — w* + w* — A;;(bg — A219k>
= by — C10), + Ay ((by — A210%) — (by — A10)) = Wy, — Ly

using the definitions in (2.22). This leads to the following estimate of MY := ||E (@@, ]|:

M1];E+1 S 2 M,]Lii,l +2”Lk+1H2 MZ~+1 S 2 Mi)+1 +2 L<2>o max(QQQ)
)\mm(QA)

In particular, substituting (B.38) into (B.18), we obtain:

MY, (B.39)

k Jj—1
i i ; i j an a
M, < CF Gin + CF i + €5 :ﬁcﬁlzk{ I (-6 ) +clomsris @}
=0 £=0

. Co Ch g/ a
< Cy G +vk+1{ Cf +C g2t O gl 4 208 ﬁoofm/4 IT(1-5%)
=0

where the last inequality is due to the observation Gﬁzl:k < Hf: i1 (1 —=7ia92/4)? and the

application of Corollary 30. Furthermore using G((f,l < H?:o(l — Bean/4) and applying
(B.39) gives

k
My, < Co TJ(1 = Bean/4) + CF ™y, (B.40)
£=0
where
- a22/2 Cﬂ} (:19~ ~
Qv .—9 Lc2>o max(QZQ) CQ—FQ 2 ~0 +Cw
’ { Amin(Qa) " 1= Boan/d " } (B.41)
C@,mtg — 9 L2 max(QZQ) aA/4 CO+Cw+ aA/4 Cw asz /2 Cg
! { > )\mln(QA) Amin(@a) ¢ }

We conclude the proof for Theorem 12 by observing that Cj < Cw ™eV, for some constant
Cw mtg

B.2.2 Detailed Proofs of Theorem 13

To facilitate our discussions next, define a few additional constants as:

é%)n = H(l - 6@'aA/4>7 ég)n = H<1 - 710]22/4)
Bll,oo = ||A|| + \//\min(QA)_lAmax(Qﬂ) Lo ||A12“7 B22100 =1 O HA12|| T ||A22||

(B.42)

Before we begin the proof, notice by observing the form of (2.32) that that A12 is satisfied
by the Markovian noise through setting

my = B\/ (3K), mw = B\/ (3K),
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and furthermore (B.4) is satisfied with my, my, myw defined in (B.6) and the above
my, my. Moreover, for i = 0,1, the second order moments of the decomposed noise
satisfy:

1B VLMD TN < A (1 M), (B [ W) ]I < 1+ Mg+ ),
(B.43)
1B VW) < iy (1 4+ M+ M), (B.44)

for some constants m(;l), mg};, m@W, i = 1,2. We proceed with the proof for Theorem 13
as follows.

Bounding M~ (Proof of Lemma 18 and Proposition 19) Repeating the analysis
that leaded to (B.16) and using the martingale property of Vk 1 Wy +)1 shows that

I [@ (00 T] I < (GE)*paa MG oS G M), (B
7=0

where

Co = p [{C'ﬁo V14 \/dydy Coo iy + K2l Vi, + ,&m(;y}] v [+ k2my)]. (B.46)

Our next endeavor is to bound E [||1I),$21||2] Evaluating the recursion in (2.33) gives
(1 1 1
o, =T + Z DLW+ v (B.47)

Set 7;;’ = w;’ + \IJ?“Q* + \Iffﬂw* for 1 = 1,2. Using the definitions, the combined noise
has the following expression

Wi+ ViR = @ =) + G =) + {u)2 —wE + o (e — ) b,

i w (O G U - ) - G - A
(B.48)

Upon some algebra manipulations that are detailed in Appendix B.2.2, we deduce that

the combined noise may be decomposed as:

I/[/‘]+1 + O, V;_t,_l wWV w]Jrl + \IJWV,Hé + {\I}WV,u?wj

(TWVQQ . T‘K‘{90]+1) (TWV’LU ~ T]+‘{w@]+1) (B49)
+ CDWV’G (6j+1 — 9]) + (I)WV,w (U)j+1 — U)j),

where it holds that

ey IV IV VMRl < BNV e < ng %')a
B.50
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with
EYY = max{b(1 + Cs),A(1+2Cs +C%),ACY 0"22(1 4+ C..)(1 +¢)}.  (B.51)

Let us bound the second term in (B.47) one by one as follows. Using Lemma 28, we
obtain

k
2 WVl 5 wWV,0 WV o WV, ~
Z%'Fgﬂr)l:k (%WV o ;/E/r‘{ + (T 0; — Ta+1 ‘91+1) (T T Tg+1 w3+1))
§=0
= VOF(Q)( Tgvv’eéo + TEJ/VV’II]ZDO) Yk (¢k+1 + Tkmfigek—&-l + TkWH wwk—i—l)

- Z B%Q g+1 vt (= 75— 1) )(@/)WV Tywméj + TJWV@“?J‘)’
Secondly,

Z ;L g+1 k(bwva(efrl - ‘9 Z P)/]ﬁ] g+1 k(DWV (A12wj+1 + V7+1)

j=0 Jj=0

k k
Y AT (@0 — ) = = > T (Wi + CiVin)
=0

J=0

As a consequence of (B.43)—(B.44), we have

E [[| Azt + Viaa|P] < g (14MF +M7), B [[[Wiir + O3V 7] < iaa (14M] +M7)
(B.52)

where
mag = 2{||A|® + My},  has = 20w + Coo miay).

Noting that 7];(()1) = 0, taking Euclidean norm on both sides of (B.47) yields

[ < vam{ BV (G0l + 1ol + G0l + (1 + ksl + ks )]}
k

VPR { G} + 1Bt (5 =)A= BRID -+ 151+ 191) }

+ /P By Z VGV (Bl Argtbyn + Via | + W1 + C3Viall)
(B.53)

Note that for any sequence (b,);>¢, the following inequality holds:

k k
2
(308620 = (o680 L6l < w2 o328, (B30
=0 =0

where the first inequality is due to Jensen’s inequality and the second inequality is due
to Corollary 30. Using || Bj,|| < Baa oo, |75 — vj-1] < %297 [cf. it is a direct consequence
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of A10-2 and the fact 7; < ,_1| and applying the above inequality to (B.53) yields
~(1 2 ~ ~ ~ ~
1012 < OpaaER 12 (GED2AL + [oll + Woll)? + 520+ Wit |2 + s |2))

a2

+ (B P (Baaoe + 2 4+ 1207 2 {Z%Gﬁlk1+||wj||2+||éj||2>}

k
a 2 -~
+ 9o (B V)20 210 D 2GS (Kl Avaty + Vi |2 + (Wi + OVl
j=0

(B.55)

Using the fact I [[[iy]|2] < dy||B [ iy ] ||, B [HékH?] < do||E [éké,j] | (ct. Corollary 38),
taking the expectation on both sides yields

B |0 1] < 0paa(EE V)2 {(GED2R + o + 10l + 721+ do M7, -+ M) |

k
+ 9p22(Eg")?(Baz.oo + ? + 1)2Qa22/2’7k+1{ Z%ZGg‘?m(l +dg M} +d,, Méﬂ)}
=0

k
+ oo (BY V)2 (ki a5 + has) 0% * e Z ’YJZGﬁ)Lk(l + M? + M;U)

=0
The above simplifies to
B |a )] < CuGED? + ConME, + ME,) + Comes Z VG M+ M) + Canf
7=0
(B.56)
where we have used v, < 7 and defined
Cy = 9paa (B¢ )2(1 + [[ado]| + [160])* (vo/ (1 — 70a22/2))?,
CQ = 9p22(E(I)/VV)2(d9 V dw), (B 57)

~ a - ~
Cs = 9paa(E¢"Y)?0/*[(dy V duy) (Bazoo + % +1)% + (Writag + Maw)],
Cy = Cy + 0*2/2Cs.

Notice that the intermediate results (B.45), (B.56) lead to Lemma 18.
Compared to (B.45), an important feature of the bound (B.56) is that the latter

contains an extra 7, factor. This indicates that the iterate w,(c 421 driven by Markovian
noise decays at a faster rate. As we will demonstrate below, the effect of the additional
Markov noise is thus negligible compared to the martingale noise driven terms.

As the operator norm || - || is convex, applying Jensen’s inequality yields

@ ~ (1 ~(1) 0
M < 2B [af (@) 1428 [l @) 7] 1| < 2B e, 12) +20E o, (@0) ]|
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Substituting (B.45) and (B.56) gives

My, < 2{61<G )2+ Cof (M, + Mk+1) + C3Yis1 Z Vj Gfil R(MY +M7) + 64%3}
7=0

+2{p22(G( )2 ME 4+Cog2/2 ’yk+1+COZ +1k(Mw+M9)}

7=0

(B.58)

The assumption on step size in (2.34) guarantees 2627,% < (1/2), which further implies

k
My, < 4{CI(G(()?12;)2 + Comi My +Cavana Z VJZGg‘?lzk(M}D + Mje) + 04713}
- (B.59)
+ 4{1722(@ )2 Mg +Co0" * 441 + Co Z G LM+ Me)}

7=0

Like in the proof of Theorem 12, we set
Uss1 = Gop(Cr + po2 MY) + Cog™/ 91 + Z G 1 (Ca; + Co) (U + M) (B.60)
7=0

with Uy = 61 + poa M. Through evaluating the recursion, we observe that for any k > 0,
it holds

k1 o
MP < 4{ Ukt + Y72, GO(Co MY +c4)}
j=1

(B.61)
< 4{ Up1 +72(Co Mk—i—l +Cy) + Z 2G§2+)1 k(c2 M +(~34)}

where the last inequality is due to A10-2 which guarantees that 732—1G§‘?11 < ’y‘]sz_l’_l:k.
Moreover, the sequence Uy, can be expressed as follows:

Upr1 —(1 = a22/2) Uy, = Coo®2/* (711 — (1 — 1a2e/2)) + 7 (63% + 60)(Uk + MZ)
< Co0®2/*(aze/2)72 + 72 (Cae + Co) (Ug + MJ)

(B.62)
As the step size satisfies 7, (Cg’}/g + C()) < 42, we get
Uky1 < (1 = yraz/4) Uk +7i (03’)’0 + Co) MZ +Co0™2/*(a22/2) 7}
T (B.63)
= U1 < G Uo + Z y+1 k{ (Cs70 + Co) M7 +(Coo™ (a22/2))}-
7=0
Substituting the above into (B.61) yields
w 2 ~ 0 N a22/2
Miy < 4{ 0tk L Up + Z VG +1 k{ Cao + Co) M7 +(Coo (a22/2))}}
(B.64)

FA{ACME, ) + 3226, G M+ )

Jj=1
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Finally, using the fact that v < ¢y yields

My, < Go kC + C1 Ve+1 + C Z ]+1 k Me +C3 Yk MZH : (B.65)
7=0
where
68) = 4(61 +p22 Mg}), 611” = 4(64(§ + Qa22/2) + 60(@a22/2)2(&22/2)) (B66)

6;] = 4(63’}/0 -+ 62 -+ 60), 6;0 = 462
This concludes the proof for Proposition 19.

Before we proceed, we need to bound ||E [w,(gll(w,(ﬂl) ] and [Hw,&leQ] as well.
Substituting (B.65) into (B.45) yields

k

~(0 ~(0 2 W 2 i

1 [ @00 T] | < (G ME +Co Y- 22(GI0R (1 + M)
=0

(B.67)
+C Z’VJ J+1k (éwééQJ) 1"'01%"‘C 27 z+1] 1M9+C3 V- 1M6>

We observe

k j—1
2) 2 6 (2)
ZV G(+1k22 2Gz(+)13 1 Z%M Z % (G +1k Gitrj
=0 1=0 J=i+1
k—1

(a) 1 a22/27k: L
< 2 M@ < + 2 M9 G
o DAL 3 o S G

where (a) is due toGHk <G
terms in (B.67) yields:

11, and (b) is due to Corollary 30. As such, combining

k
~ ~(0 ~ ~ 2 ~ ~' ~(9 ~
[T wl(cgzl(wl(cllf] <Gy Gé:l)c +Cy Y1 + Gy Z%?Ggur)m M?, (B.683)
j=0
where , i , _ L
Co =puM)  C; =Cuo?(1+Cy +C,) (B.69)

w' Yo
Cy = Co(14+ Ty + Tyt — 1)

Similarly, we can compute the bound for [||@D,(€£21||2] as follows. Using (B.56):

B |l[)?) < Cu(GR)? + Cni ML s 322G M

7=0

(B.70)

+ Conf My +Cayien Z G M
7=0
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Notice that

k
M? 2
Z ]+1k M SZVJQG]Hk(C Gé]) 1+Cl%‘|'C ZV z+1] 1M0+C3% 1M9>

J=0

S Qa22/2(c —|— Cl ’7/0)’7/]{‘._;’_1 + C Z ]+1 k Me +C Z ’Yz MQ Z ]+1 k l+1] 1

J=0 J=i+1

(B.71)
Since (1 — yag/2) < (1 — yage/4)? for any v > 0, we have Gﬁzl:k < (é’ﬁzl:k)Q, therefore
together with Corollary 30 it yields

a22/4

Z%MQZ j+1k z+1] 1_1_

j=1+1

V41 2 9
70G22/4Z MiG Hlk (B.72)

Collecting terms and substituting them in (B.70) yield

k
(1 ~p! ~ 9 ~" ~! ~(9 ~ ~" ~
E |:||wl(c—£1H2i| < Gy G(():ii +C Vgﬂ +Cy Vr1 ZV?G§'J21:1§ M? +Cs T MZ+17 (B.73)

J=0

where we use again the fact that 77 < ¢34 and

~ﬂ// ~ ~ ~0 ~"

Co =C1+7%CC,y, Cp = 63@@2/2(68’ + GT’YO) + §62611”

/!

W - a22/4
X ;zog( +Cy 0y 20

S o~
e _70&22/4> +6CoCy, €y = Ca(14+2Cy),

Bounding the Cross Term (Proof of Lemma 20) Our next endeavor is to bound the
cross variance between the martingale noise drlven terms w,(€ +)1 and 9,(321 Here, the steps

involved are similar to those in bounding Mk in the proof of Theorem 12. Particularly,
in a similar vein as the derivation of (B.23), we obtain

I |00 (i) }||<p22A{G0kM”+||AuHZ@ QGaNE [a® @) 11}

(B.74)

k k
+pna{ 3 GG ELIE VAW T+ C 3 82680, GELIE [V V)T I}
j=0 j=0

(B.75)

By observing that G 2 G; ,Z, we have

[ |60 ()T ]||<p22AGOkM9w+p22A||A12\|Zﬁg e (@ @) |

7=0

k
1 2) /-~ (0 - (0) 5 @
+ P22, Z 5jG§'+)1;kG§'+)1;k (mg/r)/v% ( Coo B5) (1 + Mf‘ +M7)
=0

(B.76)
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When combined with (B.65), (B.68), it can be verified using similar steps as in deriving
(B.26) that:

/

) 20 G2 . 20, &

ZBJ j—l—lk ji GIE [wg(o)( J(O))T} | < % C Q 2B 0+ —A Z Gz—Hk
1=0
(2) ég)é(()zl)c /4 2

ZBJ ]+1kG]ka T‘FC 0" By 1+<—+C )Z%Gzﬂk
Substltutlng the above into (B.76) gives:
0 ~0, ~ (9 ~0, w ~ 0,40
1 02 @00 T I < 6 GE + T B + Ty vaaﬁlk (B.77)

where

~ 0, b4 A +‘C + C

Cg = Pag A < Mg’ Co ” o (TZ/V;% mV 50) >

OV = ™ (€ Al + C iy + 7 Coc ) (B.75)
~0. 2C 20

Cz = P22 A{—||A12|| <— +C >(mv1)4,70 +m§9) Coo ﬂo)}

Notice that this concludes the proof of Lemma 20.

Bounding Mg,; (Proof of Proposition 21) Like in the proof of Theorem 12, we begin

© (w,(C )T} || as follows. Evaluating the recursion in (2.33) and following

the derivations that lead to (B.32), we obtain

by bounding || [w

IE 0000 T] I < pad (G502 ME +2) v Z@Gﬁl G |00 @) 1}

+pA{Zk:5(G§1+1k) (s 21 [ @) "] 11+ 18 (VO] 1§
" (B.79)

We apply (B.77) and note that

1 0), ~(0
G GRIE 00 @™)T] |

<
Il
o

'Mw

k -~

~0,% ~ 0,0
> G G+ O S, )
J=0

IN

- (1) 5 j —

~o0 Gy,  ~bo , P 2 MY

Cy —Uk 4 C " g8y 11 + Cy E B;G! ]+1k E:VEGL)LH :
=0

—
INe

GA/Z

111



where (a) is due to the observation that 1 — 7y;a2/4 <1 — f;aa/2 and the application of
Lemma 29. Moreover, by a slight modification of (B.35), we have

J-1 ~ 16¢ -1
0
ZBJ j+1k jsz}/ ’L+1j 1 ’LS
1=0

22

M

Il
o

ﬁz‘%Gﬁ)Lk MY (B.80)

Therefore,

Z B LGB |07 @) |

W (B.81)
~0.0 Gy, u 9 w 166 g
R OL NP SR

Similarly, we apply (B.68), (B.80) and note that

k
> BAG L IE [0 @™)T] |

.

<. e
ES

<
=0

UG C) G+ Ty + ) Z’y DM} (B.82)

=0

a ~w 16¢/a
(C + 01 ’70) A28+ C 60(—/:/22 Z ﬁz% z-l—l k Ma

Finally, we obtain that

k k
> BAGELPIE [V I < m > 7 BHG02(1+ ME M)
= = (B.83)
sm{%%m+zquW+zw@&kw}
Using the bound in (B.65) and the derivations in (B.82), we have
k
ME a ~w (166 /a
> DN < €+ G s+ RIS S i) g
=0
~ 1D k n
+ G575 Z ﬁz’%GgBm M
=0
Combining the above results, we obtain that
IE B4 00 T] Il < T 68+ T B + G Zﬁj G M, (B.84)
7=0
where » e 4
~(0 @
Co' =pa(M+C" /4||Am||), (B.85)



~(0) a 0,1 ~@ o~ - (0), =W =W
CY = pao™>2 (240" + A4Sy + T 7o) + (€5 + Tl) ).

~0 .,
~(0) C
Gy = paf2ldnl 22

22

Bo(166/az) (o) (z@bo(165/az) & ~w
- [| AP R (02 T + G 7050)}

To bound the term E [Hé,&zl\ﬂ, we proceed by considering the following decomposition:

51 1) 501 1
gl(c+)1 = Fé 119 - Z /Bg +1 kA12w + Z @ ]H kVJ(Jr)l (B.86)
- D

As é(()l) = 0, we observe that

k
5(1,0 1 ~ (1
1571 < voallAwll > BGY L lle| (B.87)
j=0

Taking square on both sides and applying the Jensen’s inequality (B.54) yields
k
(1,0 pba HA12 H2 1 ~
[||9k+1)’| } < T/QZBJG§J21k [H dl } (B.88)
j=0

Applying (B.73) gives

(1,0 pA||A12|| ) (=0 i 5 i
[||‘9k+1)“ } ZBJ §+)1:k(co G(();g)'—1 + G, 73271 M? +C4 7]2)
(B.89)

pAHAuH ~w 1 2)
t N ZﬁJ%G( )114;272G£+1] 1

Let us bound the right hand side one by one, we observe

o &) (4/a2)Gy
ZBJ 16 G0 1<ZBJ J+1k DJ 1—1—B0aA/226J ST a2 50%/2

k

k k
1 j j 1 a
Z BJG§'421:k7]2—1 MJQ < Po Z BZG]-H k ?? Z 5jG§‘421;k’Y]2 < poo A/25k+1

J=0 j=0 §j=0
where the last two inequalities are due to %2_1 < poBj, see B8. In addition, using the fact
GOl < (67(711)“)2, we have

Zﬁﬂj g+1k27 H—lj M Z% Me Z Bﬂ] j+1k H—lj 1

Jj=i+1

0 ey ~(2) 9
<pOZBlM Zﬁ]/y] J+1k Gz+lj 1_1_BOQA/4ZBZM z+lkzﬁ]’yj j+1k

Jj=i+1 j=i+1

aA/4

6 ~(1)
1_ 0&A/4Zﬁ M G'L+1k

113



Substituting these back into (B.89) yields

k
~(1,0) ~ ~(1,0) ~(1,0) i~
E Y1 <G Ve + T A + 6V #MIG,, (B.90)

where 8pall s [ Asel?
~(10) ~ua"”  3Spa|lAi2 ~(10)  ~u" pal|A12 2
C =C , C =, =20 QGA/ 7
0 O a2 (1 — Boan/2) ! L oaa/2 po
=00 pallApl|?® e e gt
C, =——"— (C C —>
2 anj2 PO\8 T2 TG aa )
Next, we bound E [Hé,(:l)HQ] Set ng = wgl + \I!?UH* + \I/?”w*, upon some algebraic

manipulations (details in Appendix B.2.2) we observe the following decomposition

b 3 .
VJ(+)1 ¢§1 - ¢J+1 (\IJAHG - \Ilf—il-1193+1) (\ijlzwﬂ' - \Iffﬁij)

A (B.91)
W (00— 0;) + U2 (@40 — ),
and from B7 we have
[V g v g2 < By o= AV (b 4+ A(67]) + [[w*]])). (B.92)
Applying Lemma 28, we can show
ZBJ j+1: k( ¢g+1 (\IIAUG - \IIJAHHJH) (\113412@3' B \113&21@]‘4-1))
= AL 0+ ) BT+ N+ W) (B
+ Z 52311 ]+1 T (Bj - 5j—1)F§:1;3) (%71 + \ijnéj + \Pflzwj)'
Moreover,
Zﬁyrﬁﬁl U (0540 — 6;) = Zﬁ T (A + Wyi) (B.94)
7=0
k k
D BT e (g — ) = =Y BT U (Wi + CjVi) (B.95)
5=0 §=0

The above inequalities allow us to upper bound ||0~,glJrll)|| Note that as |8; — ;1| < 9% ]2
[cf. A10], we have

(1)
F(L1) G
100 < VB B { 5 (L ol + Aol + 541+ [l + i)}
k
1 A ~
+v/Pa By (Brioo +aa/16) D BG )y (14 16511 + [l (B.96)

J=0

k
+v/Pa 3 GV (B2 Avy + Wil + By | Wisa + CiViall),

Jj=0
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Applying the Jensen’s inequality (B.54) and taking square on both sides give

1+ [|aol| + ||9~0||)2 2 3 2 ~ 2
1 0 }
= s/ B+ Bl + s

195512 < Toa B R{ (G2 (

+ 7pa(EY )2 (Brroo + aa/16)20°/ 26y ZBQGﬁlk(l 812 + sl }

k
+ 7PAQM/2{5k+ Z B Arotdy + Wi 1 + Y Z GV Bl Wig + GV |1 }

=0 7=0

(B.97)

Note the subtle difference that the last term takes ;.. Taking expectation on both sides
leads to

1+ [l + 602 ; ;
B (1) 1] < mma{ G0 (T s ) AR oM M) |

k
+ A (BY )2 Birco + an/16)20°% By 14 Z 5]2G§‘21:k(1 +do M? tdw M%}

J=0

k
+ Tpao™”? Z Gﬁhk(ﬁoﬁ?ﬁlm + Byviman) (1+Mj+ M),
=0

(B.98)

where we have used Bi+1 < By and 41 < 7;. Again, using the bound 7]2 < pof; from
B8, we can simplify the above inequality into

14 ||wol| + |0
B [1005Y17] < moa{ (G002 ( i;‘o‘%/“;“) B+ dg M+ ME, ) )

+ Tpa(EY )2 (Buise + aa/16)20%/2 Zﬁ G (14 do MGy, M) §

7=0

k
+ Tpao™(Bomas + porias) Z 5]2G§-21:k(1 + M? + M;U)

=0
k
(RS ~(1,1) ~(1,1) 5 o AL
<Gy (Go.l)f) +C B+ M b1 M) + Gy Z BJZGEBM(M? +M) +C5 Br,
=0
(B.99)
where

~(1,1) 1+ ||@ol| + |16o]\2  ~@D)
CO = 7pA< 1 [ ;(L|QA/||2OH> ) Cl = 7pA(d0 \ dw)

(1) . ) i
Cy, " =Tpao A/Q{(da \ dw)(Eg)Q(Bn,oo + aa/16)* By + (Bommag + pomaw)}

~(1D) . i y
Cy " = Tpa(e™)* (B )*(Bi1eo + an/16)* + Boming + poritas)
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Observe that

k
Zﬂ?GSEIkM;DSZﬁQG]«Hk{C G 1+CI’YJ+C 27 Z+1] 1M0+C3 ] IMG}

N j—1 )
S (CO + C ) pa/? ﬂk""l + C3 Yo Z BQG]—H :k MG +C Z B2G]+1 :k /yi2Gz(-2i-)1:j—1 Mzg .
=0
(B.100)
Furthermore, usin G < G2 and ¢¥ <GW h
8 Gy < (Gi)” and Gy < Gilyyoy, we have
ZBQG3+1k27 z+1j M Z% Me 252 J+1k z+1] 1
= = (B.101)
S aA/ ﬁk+1 Mg
Z Zﬁ J+1k 1+1] 1—1_ OCEA/4Z z+1k
1=0 Jj=1+1

Moreover, through applying ég?hjfl < G

ir1j-1 and By < B; for any j < k, we have

xaM&4<ﬁ¢3GM+«%GM%H+Cym§jﬁGﬁumﬁ+cyﬁMap
7=0

where we have used 7 < ¢f;11. The above results simplify (B.99) into

(1

~(1,1) ~ ~(1,1)
B |1650 1] < Co G+ T B + EjWGﬁmMﬂmrxxMap<Bmm

7=0
where
~(1,1) A1) ~(1,1) =1
Co  =Cy  +BC COa
SO0 _ gat AL AL =B =B
G C, (1+§”YOC )+C3 +C, (G +C1’YO)QA/2
g ~ B.103)
~(1,1)  ~(1,1) ~ C, 02/ 3, ~(1,1) = (
G, =0 (1@22—)0 G2,
2 2 + 370+1_50aA/4 +0 G
~(1,1) A1) ~1
Cy =G (1 +Cyp).
Finally, combining (B.84), (B.90), (B.102) gives
0 1
MadssnE[mikH }H+E[RL>}+EDWLH@)
~(1 0) ~(1,1) (171)
~(0)  ~(1,0)  ~(1,1) =~ j o =11 j
+ 3{ (Co+C +GC7) Z BRGL L M +Cy B2 }
i=0
~(1,1) 2
As we have 3C; 'S, < 1/2, we have
- I SO S NLES -
M,y < CoGl + CiBrr +Cy Y B2 MY, (B.105)
i=0

116



where

~(L1)

P M), =@y a™ el
Ch=6(Cy + 0y + Ty,

This concludes the proof of Proposition 21.

)

(B.106)

Completing the Proof of Theorem 13 From (2.38) we can derive a bound for Mi

- ~0
as follows. Let Uy = C,, observe the following equivalent forms of the recursion

) ok

- i ~ ~ ~d ~1) =

U1 = G GE)?I)c + C1Br+1 + Gy Z B?Gz(}k)l:kUl
i=0

5 . -F -
< Ups1 = (1 = Bran/4) Uk + C;(Bes1 — B + Braa/4) + Co8; Uy,
- g
< (1 = Bran/8) Uy + C,B2an/4

~0
where the last inequality is due to the fact BkCQ < aa /8. Subsequently, we have

Uk < H (1 - Biaa/8)Uo + 1% Z H (1— Bian/9)

7=0 i=j+1

k

(1— Biaa/8)Uo +
=0

ClCZA an

/8516—%17

Observing that MZ n < ﬁkﬂ, we obtain

ok ~
7] ~0 ~0a
MZH < C, H(l — Biaa/8) + leQaA/gﬁk_A'_l, (B.107)

1=0

~ ~é ~é ~
We obtain (2.18) by setting C™"™ = 2AC, /% and observing C, < Cy™™(1 + Vo) for

9~,mark
some constant Cy" .
Finally, we bound the tracking error wy, := wy, — Ay (b — Ag10},) as follows. Similarly
to the martingale noise case, we set My := ||E [@,@] ||| and observe:

] W 9 D maxQ 7]
ME, < 2MP,, 2 L P ML, < 2MF,, 4212, Amel@2)

> Amm(QA)
Substituting (B.107) into (B.65) gives
i e CU A2 M T 9 an /8
MY, < GGy + Oy + Gy MY, +C, Z GG (1- 652 ) + T2 s,
i=0
(@) <oy~  ~b ~ @ 5 ~ @ CG az/8 ~da
< GlCy + Cy i + Gy MY, +C ’Yk+1{ H <1 ) +C,— aA/80a22/4}
1— OCLA/S im0
i k
e X NPT ~o  C, C‘9 a22/8
< {01 +CQCIZQ a/8p 22/4}7k+1+{co + 1 oaA/8}H< > +C37kMZ+1

1=
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where we have used égm < (Hf:jﬂ(l — %agg/8))2 in (a). As such, together with
(B.107) this gives

k
W =W a ,mar
My, <G H <1 - 5Z—A> + Cy” k’7k+1, (B.108)
£=0 8
where

~iD ~i 6 Ce QCL22/8 i
C =9 C 2 0 1 C max C

0 { 0 * ]-_BOGA/8 ( N ) o /\mm 0

(B.109)

Cvi/u\,mark — 2{6~ C CQ@A an/8 a22/4 + /{(1 +ng) Lgo ))‘\max(gm)) éea;f aA/g}
min A

Similarly, as Cy, < CP™™(1+ V) for some constant C2"™™  the above yields (2.19). We
conclude the proof of Theorem 13.

Auxiliary Results for the Markovian Noise Case

Lemma 28. Let (a;);>0 be a sequence of dg-dimensional vectors. The following equality

holds:
Z?:o 5J‘F§‘21 k(@ — aji1)

— BTNy — Branss + Zj (82Bl, le ot (B — BTy 1), (B.110)
Similarly, for (bj);j>0 being a sequence of d,,-dimensional vectors, it holds:
Z?:o ergi)l:k(bj —bjt1) (B.111)
= %Pfllbo = Yibry1 + Z?:l ( 2B%QF§+)1 &t (7 Yi- 1)F§112)bj- '
Proof. We only prove (B.110). Observe the following chain
k
Z BJP§21 rla; —aj) Z BJ ]+1 k@ Z 6jrg‘21:kaj+1
=0 (B.112)
= Bl )ao — Braws1 + Z <6jr§‘21:k - 5j—1F§':113)%
j=1
Using 5; j+1 w — Bi- 11“] 0= 5233 F(Jr)l »+ (B — B 1) k ) concludes the proof. O
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Derivation of Eq. (B.49) The decomposition is obtained through repeatedly adding/subtracting
terms. Particularly, we observe that the individual terms can be expressed as:

CZW? —A¢?1+1) = Cizﬁ?l - Cj—jd’? + Ca‘—lffl — Ciia
(W2 — W)y = Wi, — Wil + W22 ()4 — )
Ci(¥7 —Wit)w; = (C; — Co) Wiy + Cya W2 (i — ;1)

+Cjo1 ¥ w1 — Oy,
(W = W), = W0, — W0, + U (000 — 0;)
Ci (T =)0, = (Cj = Ci) U0, + Gy W (0 — 6;4)
+C U0,y — Cy WG,
(U5 = W32) €y = 07 (Cor = Cja)ly + 0522 Chn(0; — 0;01)
07200l — VI Ci6)

Ci(U2 — )10, = (Cy — Ciq) 720540, + ijlfp?”(cjfl — Cj2)0;

+Cj1;12C (0 — 01)
+C W20y 00,1 — C;U2C5 40,

Collecting terms on the right hand side of the above equations yields (B.49). Moreover,
we the vectors/matrices that appear in (B.49) can be bounded as

[PVl < B+ Co), T S B +2C0+CL), 17 <A1+ Cu)

[OWVI <A1 +2C0 +C2), [V <A(1 4 Cy)
IOV < ACY 0/ (1 + Co) (1 + 6)y, UV < ACY go2/%;,

where the last inequality is due to Lemma 36 and we have used v, < ¢7; [cf. A10-1].
Consequently, we can establish the bounds on the matrix/vector norms by setting

EYY = max{b(1 + Cs), A(1 +2Co + C%),ACY 0*2/2(1 + C..)(1 +¢)}.  (B.113)
Derivation of Eq. (B.91) Setting {/;;’1 = 1/1?1 + \1134“(9* + \If;‘”w*, we observe

VI = (@0 = o) + (B — w0, + (0792 — Ui w,

= O — P (U = U, + (U - U,

Similar to the previous paragraph, the decomposition is obtained through repeatedly
adding/subtracting terms. We observe

(U = Wil =00 — U050 + W (050 — 0)

A1z A12,~ _ JA27 Ao ~ A1z [~ ~
(W52 = Wi w; = Wity — Wi m + Vi (04 — w;)

B.3 Detailed Proof of Theorem 22

Throughout this section we will use additional notations. We denote

_ B
Ve

Ry .
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Let
KEP = Koo A (1/2)(]| Ara]] Coo 0°22) 71 (B.114)

o0

and
BP = BREAL/(4]A]) (B.115)

We assume [ < BSP v < /08 gy < k < kZP. Furthermore, let us define
n
= [[a-54).

j=m

o, =[] —v42).
j=m

Using standard arguments we may bound operator norm of these matrices

TS50 < v [T = aaB)), ITDI < v [T (1 = an)) (B.116)
j=m j=m
We set quantities my, my from the assumption 12 to be equal to

my = my = max(myy,, SV 15 1Z])

All conditions of Theorem 12 are satisfied. We will use this theorem in the following form

< Cop H (an/4)Be)Vo + C2 B, (B.117)
My < Con H (1~ (an/4)B)Vo + CT0m, (B.118)
(=0

where C7y, CTy, Cgs, and CT denote corresponding constants from Theorem 12. Simi-

larly to (B.4) and (B 5) we can define myryy- Hence, the following inequality holds
1B [V Y IE [W W1V B [VW T < mgh (14 MY+ M)

Applying (2.23) and (2.24) (compare with [46|[Formula 4.4]) we may write down the
following expansion for € :

Opir =S 4+ + S (B.119)
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where

st = Tl
Slgr)l = Z Bjrﬁr)l kAle(()?J)'uN]O;

Sl(jr)l = Z B]Fﬁr)l kéj(l)’

Sl(ci)l = Z 5JF§21 k J+1 + A12A22 Wj+1)
x&—zmﬁwxzwmglﬁ
Sl(jr)l - Z 5] ]—i—l kA (Z 5€Fz+1 ]CEVEH)

6 ~(1 . (2 ~(1 _
Sziﬁl = Z ﬁjrgur)mAu Z WFEJBLJ'qWéH - Z ﬁeF§421:kA12A221W4+17
=0 0=0 £=0

where .
(551) = Ang@g, ééz) = —CkAlglbg.

We will group all terms in the expansion into 5 blocks, S,S:L)l —i—S,Sr)l, S,(jzl +S,Sr)1, S,ﬁ)l, S,(;i)l

and S,(ci)l. It is easy to see that S ,2221 +S ,&21 is uncorrelated with S ,(gi)l, S,(ci)l (moreover it is

- 2 -
Ort1 } =K |:Tr(6k+191—|€—+1)]

uncorrelated with S,gi)l, but we ignore this fact). Since | U

and by the linearity of trace using expansion we show

IE [Hékﬂ

where for J; ; we will use the following crude estimate

2
] =B | T(SEASE) )] + T (B.120)

] < 3E [Tr({s,m + SELHSEL + S8

+ 5k Tr({ k+1 + 5(5)1}{512221 + Sk+1}T) + 5k [ T(Sl(c(jzl(sl(ﬁr)ﬁT)H

+ 2B | T(SEA (S0 )| + 2B [ Te(sEh {S 3 + SP41T)]
(

+ 58 | Te(S{2 (S0 1) + 2B [ (s (20 T)]

Using martingale property and definition of ¥ we rewrite the term [Tr(S,E, Jr)l(Sgl)T)]

as follows
k

B[S = 3 8 sl )

jzo

+ 252 Te(TV, (2 - )T,

(B.121)
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where
S =E[V;V]'] + ARARE [WW,'] ART Al + E[ViW,'] ART Ay + A AR E WV

Leading term in (B.121) For lower bound of the first term in (B.121) we will use the
following fact. Since for any s € [j + 1, k]

I=BA)TI=B,A) =T—-B,(A+ AT) + BZATA = (125, AT,

we obtain using Lemma 29 (and remark after this lemma)

k k
> BTS00 T > B TrEZBJ [T (=280A0) > 5By Tr S
j=0 7=0 l=j+1
(B.122)
where
C5® = 1/(8]A) (B.123)

and we used /&P < 1/(4||Al|) and & > ki™®. To obtain upper bound we apply von
Neumann trace inequality (ie. Tr(AB) < 377 a;bj, where {a;} and {b;} are non-
increasing sequences of eigenvalues of Hermitian matrices A and B resp.) and Lemma 30

k k

k
S BT, S0 <pa ()08 [] (1-0aB)? < CTPTe(S)Besr (B.124)
Jj=0 j=0  t=j+1
where
Cy® :=pap™ (B.125)

Inequalities (B.122) and (B.124) together imply (2.40).

Remainder term in (B.121) The second term in (B.121), which we denote by Ry
may be estimated as follows

\Rist| < padem (1 + | Az AL Zﬂ? H (1 — anfe)>(M? +M?)

l=75+1
Applying (B.117) and (B.118) and Lemma 30
k
|Ria| < C50 T = (aa/9)B)VoBrsr + C5PBrr1ir, (B.126)
=0

where

C3P = padem, (1+ || 41245 ) %( CE 4 CE®) /(1 — anfo),
C5T = pademyfy (1 + || A2 A D20 ( eXPCeXP +C2P)
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Estimation of J;,, To finish the proof of the theorem it remains to estimate Jj ;.
Applying (B.116) it is easy to check that

(B[] S (50T = TEE 607 | [TET) H L—asf)’E MQOH]

Similarly7 recalling that £5P < (1/4)az/aa and using Hi:o(l — a9Ys)(1 — anBs)™t <
I _o(1 = (a22/2)vs) we obtain

k. k T ~
Tr(E [S,(Cil k+1 } = Z Z BiBe TT +1 kA12F0]E [wowo HF(()QZ] A1T2[F§21:k]T)

=0 (=

.

< CYP (1 = anBe)’E [[ldoll”] .

£=0

where
CTP := (4/a3y)paopa || Ara||* (KEP)?

Hence, we may conclude from the previous two inequalities that

k

E [Tr({S\% + SELHSE + S }T)} < CoP [ — anBe)*Vo . (B.127)
=0

where
Coth = 2pa +4CT(1 + CL)
For the next term in the expansion we have
k
T(E [SE ST 3D B8E || T (T AnLsfif) 1] AT,
7=0 ¢=0
We apply Cauchy-Schwartz inequality twice, first | Tr(ABT)| < Tr'/2(AAT) TvV/?(BBT)

and then for expectation. We obtain

2
s ~ 1/2
Tr(]E [H Slgr)l k+1 (ZBJ Tr +1;kAl2Lj]E [HJHJ.T] LjTAsz[Fﬁl;k]T)) / )

From Lemma 35 we conclude that [|L;|lg..0. < C‘ZXpﬁj’yj_l, where C7® := Cp(Leo)0™2.
This inequality and Jensen’s inequality imply
2
)

k k
Tr(E [52?1(52?1)?) < (CT*)pallAiz]d,s.04 (Z Biry [] (1= aapo){B {

=0 =j+1

k k
< dp(C3®)’paap |Anlld,, 0. Y Bix: ] (1—aap)M

=0 0=j+1

Applying (B.117) and Lemma 30 we get

k
Te(B[] S24 (ST < C58 TT(L — (an/4)Be)Vors oy + C5Brrri )
=0
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where

C30 = dpar (CT®)*pall Aralldy,, 0. COF 077 /(1 — anBZP),
C3T = doap' (CT7)’pallAral[G,, 0. CT 0"

To estimate the next term we rewrite it as follows

k
S;ii)l = Z 5@Ne+1,k55§2),

£=0
where
(1)
N£+1k - E 5] J+1L: kA12F£+1g 1
j=f+1

It is straightforward to check

k k j—1
INerill < vompallAwllse [T 1 —aaBe) D v [ (1= (az/2)7)

s={+1 Jj=0+1 s={+1

- (B.128)
< CRPro(1 = anfe®) ™ ] (1 - anfBy).
s=/+1

where C{P := (2/ag2)/Pazpa || A12]] (1 — aaEP) ™1 and we used (compare with Lemma 29)

Z Y 1:[ (1 — (ag2/2)vs) = %22{1 - JJ] - (a22/2)fys)} < 2/ag,. (B.129)

s=0+1 s=(+1

Applying (B.131), Jensen’s inequality and observation

|| oo |14, II°
E H&E < C°E Hez , (B.130)
E |5 < corE (12
) < C5FE [|Jae||7] (B.131)
where
O := C2_ || Apz||?, we obtain
k ~
Tr(E {5100 T]) < duaz'C5P(CS?) oS ot T (1 anf M.
=0 s=0+1
Applying (B.118) and Lemma 30 we get
k
(B | S{ASEDT]) < SRR TI0 = (aa/0)B)Vo + CFBusrnsn, (B.132)
s=0

where

1 aA/2(1 . aAﬁgép)fll%Z

[oop)

Zx[;)) = d Cexp Cexp<Cexp) ( )
Cexp = d Cexp Cexp(cexp)Qa Q
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To estimate the next term we proceed similarly. Using martingale property we obtain

k k
Te(E S (ST ]) < dogh O 140l 2(C39)2 Y 8262 TT (1= anB)?(By )20+ M+ M)
=0 s=0+1

Hence, due to Corollary
k
Te(E [SE (S0 T]) < O3 TTA ~ (aa/0)80)VoBusint . + C5FBrrint
=0

where

CoF = darigh C, [[Anl (O30 (C55 + CE9)/(1 - as P2,
CoP i= oy C2 | AualP(CFF)2(1 + GRS + CT2029)

It follows from the previous inequalities that

k

B | Te({SE + SEAHSE + 52T < €580 TT0 — (@a/4)B)Vorty + O35 Bk
£=0

(B.133)
where
C¥s0 1= 2C50 B +2C34,
CS’fE, 1= QCeXp + QCeXp

For the term E [Tr( ,H_I{SkJrl + SkH}T)] we write

1/2 1/2
B | T(sE s + S0 < BT B s + S HSE + S0

k
<{C5% H(l — (aa/4)Be)VoPrsr + C5F Brg1Vrr1 + pag™ TT(E)ﬁkH}I/Q
=0
ex ex 1/2
X {C2f5 0 H (1— aA/4)B€)VOKJk+1 + G5, 15k+1“k+1}
=0

We obtain

D [Tr(Szgl{Szgl + SISA}T } < Cexg+5 0 H aA/4 ﬁtf)vo + Cexg+5 15k+1f€k+17

(B.134)
where

Cyarso = (Cofs o+ C50 + C55C55,0) /2,
Cyorsn = Fae /24 C355 187K 2 + (C5T70 8 + pao™ Tr(X)) kP /2

(C;ﬁ% 1(03 f%motg +pao™ TY(E)))1/2
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Let us consider the term

B Tr(Sk—H k+1 } Zﬂj Z BETY ]—Hk Zj1w ZA1T2C;N£+1 k) (B.135)

7=0 l=j+1

where Z;11 = Vi1 + A12A2_21VV]-+1. For w, we can use the following expansion

-1
2) ~(2 -
()g L Wo + Z%FEH w—1Zir1 + Z @'FEJF)MAOZ'AHW?
i=0
where Z’H = Wiy + k;C;Vi11 Substituting this expansion into r.h.s of (B.135) and
repeating this procedure until [ [Z]le } = E [Zj“Z]TH(fﬁ)LErl)T we come to the
following expansion of (B.135)

~T AT ~T
§ : ﬁfTr j+1k Zjpwy AjpCy Nz+1 k)
= ]+1
l1—1

2
Z Bfl Z sz Tr ]+1I<: J+1 egAszczz( 22)+1£1—1)TA1T20 NZ1+1k)

li=j+1 lo=j+1

k
=(1 =2
""'Yj Z 561 Tr(Fng)l:ijHZ;rl(Fgﬁl:zl—l)TAszceTlNleH,k)

fl*j-i-l
fl 1 s 1— 1
Z Z Bod B Y B
s=1 l1=j+1 la=1 Ls=j+1
(1 2 (2 2
X T (T Zint 2] (T, ) TALCL (T e, 0) ARG, - (T 1) ARG N )

where () := k + 1. Using iteratively Corollary and estimate (B.128) for Ny, 41 we obtain
the following bound

Z Pe Tr (T ]k 1 J+1wTAT CZTNE+1 k)

l=j+1
k 1/2 _ 91 1/2 k—j
< Coo ™2C5 G5 [ (1= anBOE [[1Zj4 U Zi } > (ill A Coe 022
{=j+1 s=1

Since k&P < (1/2)(||A12]| Coo 0%22)~! and

_ 2 1/2
E[||Zj+1||2}”2EUZmH] < 2WZR (L4 A AZ (1 + VAP Coo)(1+ M7+ M?)

we obtain that

Z @ZTT ]+1k J+17UTATC NZTH,kfl)

l=j+1

< Coo C2P2mE% (1 4 || A A3 (1 + VP Coo ) Bs5; H (1 — aaBy)(1+ M +M?)

s=j+1
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This inequality and (B.135) together imply
3) o4
|IE [Tr(Slijlsl(ch)l)T} ‘

k k
< Coo CRP2MYT, (14 A1 AR 1) (1 + VAP Coo) Y B3k [ (1= anfe)(1+ M +MY)
=0

s=j+1

Finally, the standard arguments will lead to

k

I [Tr(S,i?lslg‘fgl)T] | <con, (aa/4)Be)Vo + CZ8 o Brsrhinsn, (B.136)
4:0

where

0 = Coo ORP2MTR (14 [ As2 Az )1+ VRSP Coo) 0"/ A(CFE + CF5)/ (1 — an B3P) BZPREP,
1 = Coo ORP2MPR- (14 [ As2 A ) (1 + VASF Coo)” 1572“Jg+ce”’6“">

Finally, we estimate all terms involving S,(fgl. We rewrite S,(Ci)l as follows

S Z@MMWM

where we defined

k
_ (1 T~ (2 (1 _
Mf,k = Wﬁe ' Z 6jr§421:kA12Fé+)1:j—1 - Fé—&-)l:kA12A221
j=t+1

Using martingale property we obtain

k
Te(E (S (S0 T]) < D2 B2IMesPE [1Wesa ]
=0

We rewrite M, as follows
k By k
1 1 =( 2 =1 ~(2 _
My, = Z {5] I F§—i-)1 ;] F;+1 kAl?F(—l-)lzj—l + Fz(z+)1;kAl2< Z ’YjFEJr)lzjq - A221>
j=0+1 73 j=l+1

Since,

k
2 _ ~(2
Z %‘nglzjq = 14221 (I_F§+)1:k)

j=l+1

this equation leads to

k

Bin =1 —17(2

M&k = Z [BJ I Fé+)1] FJ+1 kA12F£+1J 1 Fé—i—)lzkAuAQ;Fé—&—)l:k
Vi
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We rewrite the term in the square brackets as follows
Py 50 T S Tl a-sa)= S i IR
By -'_H,{ _H(_ﬁs)_z {Bt + (ke/ke1 — 1) }t+1sj
173 s=0+1 571 s=0+1 =41 M
Using assumption 10 we may show that
|[Ke/ke1 — 1] < (aa/16)5;

Taking norm of the both sides of the previous equation we obtain
By 5w

/+1
‘5l’7] +hg

Finally we arrive at the following bound for M

< VBa(|All + (an/16))k Z Bk [] (1 - aaBs)

t=0+1 s=t+1

HMKkH < \/p22pAHA12A H H 1 - flAﬁs H (1 —&2275)
s=0+1 s={+1
) . . (B.137)
A _
+ szz(rmu - 1—6)m 1 Z % Z Burer [] (1 —anB) T (1 - az)
j=l+1 t=0+1 s=t+1 s=0+1
This bound will yield
k k k
Te(E [SI% (SI0)T]) < 2pawall A AZ 1P Y0 62 TT (1= asBy) T (1= azo) B [IWera )
(=0  s=(+1 s=0+1
k k
+ 2pap2a (Al + (aa/16))* Y4B [[We |IP] T (1 - aaB)
(=0 s=0+1

J

X { Z Vj 1:[ (1 = (ag2/2)vs) Z Bikit—1 H (1 _GAQS)}

t=0+1 s=t+1

j=b+1  s=l+1
The estimate of A; follows from Lemma 30
k
Ay < CE0, [ = (an/9)Be) Vo + CEF 1 Bt (B.139)
=0

where
Cod 1 = 2y poapa | A2 Az 0" (C5% + C5F) PRSP /(1 — aa B2P),
(1 + CT2nms + PP

~ exp

Cot1 = 2dumyyypeopa || A12Ay,
Inequality (B.129) and Jensen’s inequality together imply

k k
Ay < 2(2/an)’papn(|All + (aa/16)* > WE[[Wen ] T] (1 — aaBs)
/=0 s=f+1
j 2 j—1
Z {Zﬁmtln 1—%&} H (1 — (a22/2)7s)
t=0+1 s=t+1 s={+1

j=0l+1

128



Similarly, applying Jensen’s inequality for the second time we come to the following in-
equality

k k
Ay < 22/a)*(1/anVpapn(IA] + (0s/16))* S 2E [[Wera] T[ (1 - asf)
=0 s=0+1
k J J Jj—1
< Y, Bt [T (0 —aaps) JT (1 (az/2)7)
J=041 =041 s=t+1 s=0+1
Changing the order of summation we obtain
k k j j
Ay <2(2/a)*(1/an)*pape(|A] + (aa/16))*Y "y T[] (1 —aaB) D Bsiy T (1 - (az/2)7)
=0  s=j+1 =0 s=t+1
t—1
X Z’Yz H (1 — (as2/2)7s)E [||Wz+1H2]
=0 s=/+1
Finally, estimating E [|| W H2] by (B.117) and (B.118) and applying Lemma 30 we obtain
k
Ay < CE, [ = (aa/9B) Vo + CEPoBrs1intr, (B.140)
=0

where
Cooz = dumyfy (0/")?0"/*2(2/ax)*(1/an)*papa (| All + (aa/16))?
(G52 + CED(R20) /(1 — s 27"
Cota = dumiy (02/%)0%2(2/as)* (1/an)*papaa(| Al + (aa/16))*(1 + CTEA5E + CTF6ZP)
We conclude from (B.139) and (B.140) that

k
Te(E [S{% (120 7]) < Cag TT = (aa/0)80Vo + CEFBrsarnsn, (B.141)
/=0

where

Cop = Cap, + CEE,,

Gt = Cor1+ Cara (B.142)
It remains to consider |E [Tr(S ,gi)l(S gi)l)T)] . We proceed similarly and use (B.137) to get

B | Te(SE (8120 T) M<ZMMMH 1 (1~ as8E [1Zeal?] B 1o )

s=l+1

= A} + A

The following estimate holds for A}
k k

A1 < V/Poapal| A Az || max(dy, du) (2 + 2] A4z )72 087 T (1= aaBs)
k

x [T (1= azeya) (1 + M7+ M)

s=0+1
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Applying standard arguments we get

k
AL <O on [T = (aa/9B)Vo + C52 1 1 Besakini, (B.143)
£=0
where
C5 0.1 1= Myt v/Poaba | A1 Ay || max(dy, du) (2 + 2[| A1 Az [|)'/?
% (Cexp exp) aggﬂexpﬁexp ( aAﬁexp)

O3 11 = 2mySyy/Poapal| A A Hl max(dg, dy) (2 + 2[| A12 Az [|)/2(1 + CHoymE + CTPBIP) 0"

For Al we write the following bound

k k
Ay < /papn(|All + (aa/16)) max(dy, du) (2 + 2] AAz V2 S 20+ M+ ME) T] (1 - assy)

=0 s={+1
k j—1 J J
X { Z Vi H (1 — azs) Z Bikit—1 H (1 _aAﬁs)}

j=0+1 s=0+1 t=0+1 s=t+1

Changing the order of summation and applying arguments from the estimation of A, we
come to the following bound

k
Ay < Cg);zoz H(l — (aa/4)Be)Vo + C:?;Z,laﬁkJrl/ikJrl; (B.144)
=0
where
C5toa = VPapa([A]l + (aa/16)) max(dy, d,)(2 + 2(| A2 A5 [|)'/?
< (O30 + O (00" e (62 (1 — aa B,
Citio = VPapn([All + (aa/16)) max(dy, dy)(2 + 2[| A1 Az [|) /(1 + CTE AT+
(B.145)
+ Cexp exp)(gagg/Q)QQaA
We conclude from (B.143) and (B.144)
k
T8 [SELSED ] < O3t TTA — (aa /D80 Vo + C3f Brsaknrn,|  (B.146)
=0
where
C?f/éo ' 037201 C?;zow
ng/Fél = C?;[()ill ng/%lz

Final estimate of the remainder term J,.; Collecting (B.126), (B.127),(B.132),
(B.133), (B.134), (B.136), (B.141), (?7) we obtain the estimate of Jy1 := Ryy1 + J5 4y

k

[ Tesa] < CEP T (1 = (aa/9)B0)Vo + C5®Brsr (Vogs + Fis1),
=0
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where

C(e)xp = Cexp exp + 3087; + 5Cexp + 50;:?5 0( exP) + QCZ);ZJr&O + 20;’;2’0 (B.147)
+5C58 + 2055 . (B.148)
CY® = C57 + 5CYT + 5C5 51 +2C55 5, +2C5) , +5C6T +2C50% (B.149)

Hence, we obtained (2.41).

B.4 Auxiliary Lemmas

Lemma 29. Let a > 0 and (v)k>0 be a nonincreasing sequence such that vy < 1/a.
Then, for any integer k > 1,

k—1 k—1 1 k—1
Z%’ H (1 —ma) = p {1 - H(l —Wl)}
J=0  I=j+1 1=0

Remark 1. If kg is such that Zfigl v > log(2)/a then the r.h.s. of the previous equation
is lower bounded by 1/(2a) for any k > ky.

Proof. Let us denote uj.x—1 = H (1 — ma). Then, for j € {0,...,k — 1}, uji14-1 —
Uj.k—1 = ayju;41. Hence,

?r
,_.

k-1 k-1 1
Z%’ H (1 —ma) = a (Uj+1:k—1 — Ujpo1) = Cl_l(l — Ugek—1) -

=0 I=j+1 J=0
[
Lemma 30. Assume A10 and set
2 4
0" = “¢max{l,as/(4ar)} V - ¢>. (B.150)
a a
The following holds
1. For any a € [axn/4,7 "] and k € N, if in addition, we have k < azy/(4an), then
k=1 k-1 k—1 k—1 k=1 k-1
S I G=vwa) < 0w Y By [] A—wa) < 08e. D87 [ (1—a) < 08s
J=0  I=j+1 j=0 I=j+1 J=0 =i+l

2. For any a € [an/8, 3] and k € N,

k—1 k—1 k—1
Zm [T @=aB) <on, D 87 [] (1—aB) < o8
l=j+1 j=0  f=j+1
3. For any a € [an/4, 3, "] and k € N,
k—1 k—1
Zﬁ% H (L—aB) < o*Bi/w. > B/ v I (1 —aB) < "B/,
f=j+1 =0 (=j+1
k—1
252% [T (1 —aBy) < "B
l=j+1
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4. For any a € |ag/4,7;"] and k € N,

k—1 k—1 b1 1
Zﬁ] [T O =ma) <eB/ms D87 T (1= ma) < 0B/
j=0 l=j+1 =0 =it

k—1
ZBS/% 1T = a) <o"Bi/7

l=5+1

Proof. Part i) of the corollary, consider the first inequality and observe that

k-1 k-1 k=1 k—1
Ye-1 75 Yi-1
Z'y] H 1 — ya) %Z o T @ =ma) <emd v [ — (1 —a)
=0  I=j+1 =0 Ve Ve— 1 =11 pr S g ol
Note that as a > agy/4, we have
a
%7 H(1=ma) < (1+ )1 —ma) <1 —an/2
1
Substituting into the above inequality yields
k=1 k-1 k=1 k-1 9
Zvj [T =ma) <omd v [T =ma/2) <o
I=j+1 J=0  I=j+1

where we have applied Lemma 29 in the last inequality. Next and applying similar steps
as before, we observe that

k—1 k—
Zﬁm IT 0 =~a) <<Bk2% H Blll (I —ma)

l=j+1 7=0 l=j+1

As we have

B

5 —— (1 =ma) <1—y(a—kran/16) <1 —y(a—axw/64) <1—ya/2

we obtain
k-1 9
Zﬁﬂg Hrl (1 —ma) < §aﬁk
I=j

Similarly, using 5; < kv; < asq/(4aa)y;, we obtain

k-1

k—1
2 22
>3 TJ (1= < 5

j=0  I=j+1

B

For part ii) of the corollary, we observe that the first inequality can be proven by:

k—1 k—1
V-1 V5
Zm IT (1 —ap) vkzﬁj - T (1= aBy)
t=j+1 im0 Tk k=12 j+1
k—1
Vi Te-1
<wk2ﬁj : H (1-aBy) <m2ﬁj H ~(1—af)
L—it1 1=j+1
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Note that as a > aa/8, we have

7;1 (1—apfy) < (1 +egB)(1—aBy) <1—afy/2

Using Lemma 29, this yields

k-1 k-1 k-1
2
Zﬂﬂg H (1 —aB) §§’7k25j H (1—aB/2) < ~S
(=j+1 J=0  f=j+1
Similarly, the second inequality is:
k-1 k-1 k-1 kel
252 [T t=aB) <spd 872 [] (1—aB)
=0 l=jt1 =0 k=125
k-1 B, y k-1 ® 9
<<ﬁk25j€111 (1— afy) )¢ gﬁkzﬁqul 1= afe/2) < ~<fi
=0 j =0 j

where (a) is due to the fact that we have 5/‘3;1 (1 —aBy) <1—ap/2, and (b) is obtained
by applying Lemma 29.

For the proof of part iii) we proceed similarly. We prove the second inequality only.
The proof of the remaining follows the same lines. Denote r; := 3;/7,. Clearly, ky_1/rs <

Be-1/Be <. Then

k—1 k—1 ﬁ Ko 2 k-1
Z 11 1—aﬂe>S<3ﬁmiZﬂjﬂf( =) I a-af)
= ot f—j+1

Rl_
zg+1 k—1

k—1 k—1 k—1
<&t Y B8 ] (5‘—) (1—ap) < <36kﬁkZBJ I1 ¢ (1—afif2) <€ —c3ﬁmk

=0 0=j+1 Pe =0 l=j+1

where (a) is due to the fact that we have (Bgel) (1—apy) <1—ap/4, and (b) is obtained

by applying Lemma 29. Part iv) may be proved in the similar way. O

Lemma 31. Let a > 0, p > 0, (7);>0, (Kj)j>0 and (u;)j>0 be nonnegative sequences.
Then, for all integers k,

k—1 k—1 J—1 j—1 k—1 k—1
Tl =m0 3t T1 0 -amn= ot (3 ) T 0o
7=0 l=j i= n=i+1 j=i+1 {=i+1

Lemma 32 (Lyapunov Lemma). A matriz A is Hurwitz if and only if for any positive
symmetric matriv P = PT = 0 there is Q = Q' = 0 that satisfies the Lyapunov equation

ATQ+QA=-P
In addition, () is unique.

Proof. See |61, Lemma 9.1, p. 140]. O
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Lemma 33. Assume that —A is a Hurwitz matriz. Let ) be the unique solution of the
Lyapunov equation

ATQ+QA=1.
Then, for any ¢ € [0,(al], where

Ca = (1/2)Allg" QI (B.151)

we get
IT—CAllG < (1 —ad) with a=(1/2)[lQ|".
If in addition ¢ < ||Q|| then

1—al>1/2.
Proof. For any = € R, we get
T (I—A) QI—A)x B | z||” , T ATQAx
T Qx n T Qx T Qx

Hence, we get that for all v € [0, (1/2)||A||g?2||Q||*1]7

o] ,2TATQAx
T Qx 7 T Qx

<1-9QI™" +lIAl3
<1-(1/2)[Ql™"y
The proof follows. O

Lemma 34. Assume that ||L||g. .., < € for some e >0 and

0< 8 < (1/2){[Allgs + el Azl umea}™ (B.152)
0<7 < (1/2)[1Qul""IAllgs, (B.153)

Set By1(L) = A — AL, Then, the equation
L'{1—BBi(L)} = (I—yAs)L + BA5; Aoy Bi1 (L) (B.154)
has a unique solution satisfying
1L a0z < (1 = va22) |1l Qa2 + B Cp(e)

where
Cp(e) = 2{llA% A2 llga,u + eHIA Qs + el A2l Qra } - (B.155)

[fﬁ//y < Ea22/ CD(E)f then ||L ||QA7Q22 <e.

Proof. Since ||L||QA,Q22 < ¢, we get that ||B11(L)||QA < ||A||QA + 8HAlQHQm,QA' Hence,
using (B.152) and the triangular inequality, we get that || B11(L)||g, < 1/2 and thus

II—5B11(L)|lg. > 1/2. (B.156)
Hence, I =3 B;1(L) is invertible and (B.154) has a unique solution given by

{ —yAg)L + BAS Ay By ( )}{I —5311([/)}71
—( —vAz)L + BD(L)
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where

D(L) = { Ay At + (I =y A) L} Bu(L){I =8B (L)} .
Using (B.156) and ||L||g,.0. < &, we get that [[D(L)|lgr.0. < Cp(e). Hence, for v
satisfying (B.153), we get that
p
1Ll @a@e < (1= 7ya2)l|LllQsqe. +BCp(e) <€+ 7(; Cp(e) — ane) <e,

where the last inequality is due to g < eage/ Cp(e). O

Lemma 35. Let Ly = 0. Assume that ||L|lgx 00 < Lo and
0< fo < (1/2){lAllgs + Loo[lAr2ll@aa} ™
0 <70 < (1/2)|Q22l " [|All s,

Then for any k € N
||Lkl|QA:Q22 < CD(LOO>Qa226k/7k7

where
Cp(Loo) := 2{|| A% A1l ga, @20 + Loo HIIAllQa + Looll A12llgasoa }

Proof. Similarly to Lemma 34 we may show that
Liy1 = (I=yAgn) Ly, + B D(Ly)

where ||D(Lg)|loa.02 < Cp(Ls). Hence,

k k

||Lk||QA,Q22 < CD(LOO) ZBJ H (1 - a2278)

Application of Lemma 30 to the right hand side of the above completes the proof. n

Lemma 36. Let Ly := Ly := 0. Assume that || Li||ga.00 < Lo and

0<Bo < (1/2){[[Allga + Looll Arall@aea}
0 <70 < (1/2)]1Qall 1 AllG3,

Br-1 — Br < psBis -1 — T < P17

Br/w < (1/(2C7))ass

with
CF = 2([|Allgs + 145 A2t llos @22 [ Ar2ll @220 + 2Loo ]| Ar2]l@z.04)-
Then
||Lk+1 - LkHQA,Qm < C2Uga22/2'7k+17
where

O3 =20y Loo|| Aza|Quz + 205 (Loc + [[ 435 A2t 0a.020) (18]l Qs + Looll Ar2ll@22.0)
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Proof. Recall that By (L) = A — AjpL. It follows from Lemma 34 that I —£;By1(Ly) is
invertible matrix with bounded norm. Equation

Li(I—pr—1B11(Lk—1)) = {(I —Vi—1A29) Lj—1 + Bk—lAg_glAQan(Lkl)}

may be rewritten as follows
Li(I =B B11(Lk)) = (I =1 Az2) L1 + BeBii(Li) + Ej, (B.157)

where Ej, = (v — Yr—1)A22 L1 + (L + Asy A1) Dy, Dy := —BrA1a(Ly — Li—1) + (B —
ﬁk—l)Bll(Lk—l)' Let Uk = Lk - Lk:—l- Then

U1 (I =BkBi1(Ly)) = (I =y, A22) Uy — Ej.

Then

Us1 = (1= Ao2) U + Bi(I —v5Ag2)Up Byy (Li) (1 =B B11 (Ly)) ™" — Ex(1 =B B11 (Ly)) "

It is easy to check that

1T = A22) U Bia (L) (1 =55 Bua (L)l @a.@ae < 2 Ukll@a.e {1 ANlQs + Lol Ar2ll@ue.s }

Moreover,

1 Ex(1 =Bk B11 (L) " loa@ee < 2047 Looll A2l o
+ 2(LOO + ”A2_21A21||QA,Q22){pﬁ6£(||AHQA + L00||A12HQ22,QA) + ﬁkHAlQHQZ%QA”UkHQA,Qm}

Applying previous inequalities we obtain

||Uk+1||QA:Q22 < (1 — VkQ22 + Ofﬁ’ﬂ)HUk‘”QQO + Cg%%

Since B1,/vk < (1/(2CY))ag we obtain

1Uk+1ll@a,0s < CF 0™ ypa
]

Lemma 37. Let (Q be a symmetric definite positive n X n matriz and 3 be a n X n matriz.
Then
Tr(Q%) < [|Z]le Tr(Q) -

), an orthonomal basis of eigenvectors of @, Qe; = \;(Q)e;, @ =

Proof. Denote by (e;
=5,

L,....n, (e;,e€j) ;, where ¢, ; is the Kronecker symbol. We get that
TI'(QE) = Z<€i, QE€Z> = Z(ei, 2€1>Q
i=1 i=1

<=l X lledll @F = [Elle Tr @
i=1
where we have used [|¢;[|| @] = A; and Tr @ = Yo h(Q) . O
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Corollary 38. If X is an x 1 random vector such that E[[| X[ 2]] < co. Then,
E[J1X11,QP < Te(@IE [ XX llq -

Proof. Note that E[] | X[ Q7] = T{(QE[] XX)) < |E[] XX ] T Q 0

Lemma 39. Let m and n be two integers, P and ) be m X m and n X n symmetric
positive definite matrices. Let X and Y be m x 1 and n X 1 random vectors such that
E[| X||°] < oo and E[||Y||"] < co. Then,

IELXY g < Auin(Q) " H{Tr(Q)}/2{Te(P) Y2 EX X ]| L E[Y Y T]]|g°
Proof. Note that HE[XYT]HQ,p < E[HXYTHQ’p] and

XY lgp = sup [ X(Y.y)ql = X[ P] sup (Q7'Y.y)q

lyllg=1 lyllg=1

= XI5 |Q7Y | = 1XIlp Yo < Anu (@ IXNp 1Yl -

By applying the Cauchy-Schwarz inequality, we obtain

EXY Tlop < Aah(@ {EIXIEY {EOVIE}

The proof follows from Corollary 38. m

B.5 Details on Numerical Experiments

This section provides details about the numerical experiments and verification that the
convergence conditions are satisfied.

B.5.1 Toy Example

In this toy example, we consider randomly generated instances of linear two timescale
SA in the form (2.1), (2.2) with i.i.d. samples (and thus the martingale noise setting).
In particular, we let the iterates 6y, w;, € R? be d-dimensional and construct a problem
instance as follows:

1. Sample a random matrix 7" whose entries are drawn i.i.d. from the uniform distri-
bution U[—1, 1]; Compute the @ R-decomposition as T' = QR.

2. Set Ao = Q and Ay = QTAyQ, where Ag is a diagonal matrix with i.i.d. entries
from U[—1,1].

3. Sample a random matrix R whose entries are drawn i.i.d. from the uniform distri-
bution U[—1,1].

4. Set Ay = RR" + I and Ay = QTAy, where A, is a diagonal matrix with i.i.d.
entries from U[—1, 1].

5. Sample a stationary solution pair 0*, w* with i.i.d. entries from U[—1,1].
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6. Compute by, by using the generated matrices and stationary points, i.e.,

bl = A119* + Algw*, b2 = A219* + Agg’w*.

During the linear two timescale SA iteration, the noise terms are generated as
Vi1 = Fy + AV g0 + AV ywn, Wi = Fly + Ajy 01 + Ajywi

where FY7, Ay 5, AV, are vectors/matrices with entries drawn iid. from the standard
normal distribution A'(0,0.1), and Fyj,, Aj, 4, Ajy,, are vectors /matrices with entries drawn
i.i.d. from the standard normal distribution N(0,0.5). With the above constructions, it
can be verified that the required assumptions A9, A11, A12 of the martingale noise setting
hold. It remains to verify that the step sizes chosen satisfy A10.

Below, we show the plots of deviations in 6, and wj, without normalization by the step
sizes (see Fig. B.1).

TOYExample,Errors of 6 TOYExample, Errors of wy
0

—— 0=0.50

0=0.67
&0l N 0=0.75 N;
S —= Ik 5
I I
X X
S -40 . El
g g
= —60 S

(a) (b)

Figure B.1: Unnormalized deviations from stationary point (6*, w*) and term I}, : the toy
example.

B.5.2 Garnet Problems

GTD Algorithm and Policy Evaluation Problem The specific form of linear two
timescale SA used in this example follows from that of the classical GTD algorithm |72, 73],
which is described below for completeness. Let S, A be some discrete state and action
spaces (for clarity we bound ourselves by discrete setting, but one could formulate it in
more general way), p € (0,1) and 7 : § — P(A) be a stochastic policy, i.e. mapping from
states to probability measures over actions. When in state s the agent performs action
a (distributed according to its policy 7), it transitions randomly to state s’ with proba-
bility p(s’|s,a) and obtains reward r(s,a). This induces a Markov chain with transition
probabilities pr(s'|s) := > . 7(als)p(s'|s, a).

The goal of policy evaluation is to estimate the average discounted cumulative re-
ward obtained with the policy 7. In detail, we evaluate the value function V. (s) :=
E [r(s,a) + Yy p*r(sk, ax)] with p being the discounting factor. As the state space
|S| is often large, we use the linear approximation V,(s) =~ Vjy(s) := (0, ¢(s)), where
¢ : S — R?%is a pre-defined feature map. Define also temporal difference at iteration
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k € Z. for transition s, — sg1 as O = r(Sg, ar) + pVo, (Sk+1) — Vo, (sk). For brevity,
denote the observation at iteration k € Z., namely, ¢(si), ¢(Sks1), 7(Sk, ax) as Gk, Ppr1,
rr respectively. The GTD algorithm iterations are described as:

Oct1 = Ok + Bi [0k — pOrs] (D, Wi), W1 = Wi + Vi [Pr0k — W] . (B.158)

The above is a special case of our linear two timescale SA in (2.3), (2.4) with the notations:

by =0, Ay =0, Ao = —E[(dr — pdrs1)dy | » ( )
by = [Cbkrk} ; Ay = —E [¢k(ﬂ¢k+1 - ¢k)T] , A =1y, ( )
Vier = (9 = pori1)dp — E [(8r — pors1)dr ] ) wi, (B.161)
Wier = brre — B [oera] + ((0r — pdrar)df — B [(dr — pdrsa)dg ]) bk, ( )

where the expectations above are taken with respect to the stationary distribution of the
MDP under policy n. Particularly, the noise terms Vj1, W1 follow the Markovian noise
setting.

Garnet Problem The Garnet problem refers to a set of policy evaluation problems
with randomly generated problem instances, originally proposed in [3|. Here, we consider
a simpler version of Garnet problems described in [34|. Particularly, we consider a finite-
state MDP with the parameters ng as the number of states, n4 as the number of possible
actions in each state, b as the branching factor, i.e., the number of transitions from
each state-action pair to a new state, p as the number of features in the linear function
approximation applied. For any pair (s,a) € S x A we choose b states S’ C S out of
|S| at random and then draw the probabilities of going from (s,a) to ' € §’. For the
features, for each state s € S the corresponding feature vector ¢(s) is generated from
(U[0,1])?. In our numerical example, we consider a particular problem from the family
ng =30,ny =8,0=2,p=_8.

By the above constructions, we observe that the assumptions A9, B5-B7 are all sat-
isfied. It remains to verify that the step sizes chosen satisfy A10, BS.

B.5.3 Step Size Parameters
We consider the family of step size schedules:

B = I +R), =0T+ R, (B.163)
with ¢ € [0.5,1] and the parameters ¢, ¢", k5, kJ. Note that

@265(k3+k)”<£(’f_3)a:%
Yo (kg +k) T \k ‘

since we have 0 < 1. This ensures A10-1. Furthermore, we observe that

Tt (14 I L gk
T o kj+k—1) = kl+k—1"" (k] —1)(kj+k)7 CV(k;g—l)%’
On the other hand, we also have
B B B
Vi—1 ok, c ok,
w S A -k e -
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Similar upper bound can be derived for By_1/Br. Setting ¢7,c? large enough ensures
A10-2. Lastly, B8 can be guaranteed by observing that o > 0.5.

The above discussions illustrate that the satisfaction of A10 hinge on setting a large
¢, c?. However, this requirement can be hard to satisfy since we also have requirements
such as v, < 4k B, < Mk, To this end, we have to set a large k:g, ky. As a result,
there are four inter-related hyper parameters to be tuned in order to ensure the desired
convergence of linear two timescale SA. We remark that tuning the step size parameters

for SA scheme is generally difficult.
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Appendix C

The code of EV-based variance reduction which was used is available on GitHub [37].

C.1 Proofs

C.1.1 Verification of the Assumptions
Proof of Proposition 25
Proposition 40. (Proposition 25) If there exist constants C, > 0 and Cr > 0 such that
V€O, ac AseS,bye By ||[Vologm(als)|| < Cp,
|R(s,a)| < Ch,
[bs(s,a)| < C,
then Assumption 1 is satisfied.

> Note that the class of estimators H in the gradient scheme consists of the maps

T-1

Vo' Tt X 53 4'(Gr = by(Si, Ar)) Ve log m(Ai] S)).
t=0
Therefore,
= -— 2CxC
IV5? J(X)I| < DA 1G(X) = by(Si, Al Ve log m(Ae|Sh) || < : f;
t=0

and in the case vy =1 N
IV J(X)|| < 2CRCLT.

O

Proof of Proposition 26
Proposition 41. (Proposition 26) Suppose that Assumption 3 holds for By, i.e.

Cc\ ¢

N (e, Bo, || - lz2(pi)) < (;)
for some c,a > 0. If there exist constant C, > 0 such that
VOeO, ac A,seS |Volognm(als)| < Cp,
then Assumption 3 holds also for H with the same constant o/ = « and constant ¢ =

cCry\/2/(1 —~2).
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> Let us fix ¢ > 0 and consider two estimators from H: V%. and V’'.J which is a
member of the ¢’-net of Bg, in other words, such that

166 — be [ L2(pre) 1= 1/ Pre(by — by ) < €.

HV”M vbw‘

Recall that

~ ~ 2
- el
2

L2(Pk)

and let us bound HV%J(XZ-) — Vb J(X;)

derive

for some arbitrary ¢ = 1,.., K. We could
2

T—
H%bu(xi) -V <

(S, A7) = by (S, 40|

and, thus, it leads to

K T-1
= = 2 1 i) 4G SEONE
Pic [ — ¥t 2§203E;;y2t bo(SP, ADY — by (S, AP <
i i in |2 _ 207€?
<2OLZW \bqs 517,40 = by (S, A0 < T

This allows us to use the €¢-net for Bg to construct e-net for H. Hence, Assumption 16 is
satisfied with o/ = a and ¢ = cCp\/2/(1 —~2). O

Let us briefly remark that the Proposition allows transferring any covering assumption
for baselines to the vector setting and so one could use the assumptions for baselines which
are much easier to check in practice.

C.1.2 Proof of Proposition 27: A2C as an Upper Bound for EV
Proposition 42. (Proposition 27) If there exist constant C, > 0 such that

V€O, acAseS ||Vylogn(als)|| < Cr,

then for all K > 2 A2C goal function Vi22©(¢) is an upper bound (up to a constant) for
EV goal functions:

Ve ™ (9) < 201V (9),  VEVU(9) < 207V (9).

> First, note that for all ¢, by Jensen’s inequality, V;EV?(¢) < VEV™(¢), so we could
work with the bound for EVm. Secondly, K = 1 simply does not allow using EVv-criterion,
but the bound for EVm remains valid. Via Young’s inequality we get

VEV(9) < = f: 7 (Gu(x ) —%(S@,Aﬁ’”))z |Votog (A§’“>|S§’“>)Hz < 202V (g).

O
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C.1.3 Proof of the Main Theorem

Suppose we are given sample X, X1, ..., Xx of random vectors taking values in X C R¢

and H = {h: X - R” s.t. E[h(X)]=£&}. Also denote || - || := || - ||2 for shorter no-
tation, when applied to function h : X — RP, ||h|| := sup,cy [|h(z)]| by default. The
brackets (-, -) denote the standard inner product.

Our goal is to find
h, € argmin,,, V' (h)

with variance functional defined as
V(h) = E [[[n(X) - &I3] -

In order to tackle this problem we consider the simpler one called Empirical Vari-
ance(EV) and calculate
hy € argming, 4, Vi (h)

with
1 K
A E 2

where P is the empirical measure based on X, .., Xk, so Pxh = % Zle h(Xy). In what
follows we will operate with several key assumptions about the problem at hand.

A 17. (Assumption 14) Class H consists of bounded functions:

Vh € H suplh(x)] <b.

zeX

A 18. (Assumption 15) The solution h, is unique and H is star-shaped around h,:
VheH, a€(0,1] ah+(1—a)h.€H.

Star-shape assumption replaces the assumption of the convexity of H which is stronger
and yet this replacement does not change much in the analysis.

A 19. (Assumption 16) Class H has covering of polynomial size: there are a@ > 2 and
¢ > 0 such that for all u € (0, b]

NH, |- ez pey, uw) < <E>a a.s.

u

where the norm is defined as

1Al z2prey = 1l ) := / PrclIRlI3

The basis of the analysis lies in usage of

Lemma 43. (Lemma 4.1 in [8]) Let {¢(d) : § > 0} be non-negative r.v. indexed by 6 > 0
such that a.s. ¢(5) < ¢(0") if 6 < &. Define {5(d,t) : § > 0,t > 0}, deterministic real
numbers such that

P(6(d) > B(d,1)) < e
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Set for all non-negative t

B(t) :—inf{7'>0 ; supw < %}

o>T

]f5 is a non-negative random variable which is a priori bounded and such that almost
surely 6 < ¢(9), then for allt >0

P <8 > B(t)) < 27,

We would like to stress out that the main idea of the proof remains the same but on
the way there must be done some changes to fit it into the setting of vector estimation
we consider.

Bound for Functions with /-Optimal Variance

The idea is to construct an upper bound with high probability for excess risk V (hg) —
V' (h.) under assumptions V' (h) — V(h,) < ¢ and use that as ¢ in Lemma 43. This will
give us the desired w.h.p. bound for excess risk in general. Let us start with the basic
bound from which we obtain all further results. Essentially, the sequence ¢(d) from the
Lemma appears in the left part.

Theorem 44. Assume A14, A15. If h € H(S) := {heH | V(h)—V(h,) <}, then
with probability at least 1 — et

+ 1204/ —

V(hie) = V(hs) < 2E6, (9) +4 (E sup (P — Px)h| T -

2
N 40b%t + 242 ot

heH(S)

with

6(8) == sup (P — Py)i(h).
heH(S)

> To begin with, add and subtract Vi (hg), Vi (hs) to get
V(hg) = V(hi) £ Vi(hg) £ Vi (he) < V(hg) = V(h) — (Vik(hg) — Vi (hs)).

the last terms can be represented as

Vie(h) = Pillh = E1 = gy 2 (10X ~£.0(X;) =)
i#j=1

giving us

V(hg) = V(hi) = (Vi (hg) — Vi (hi)) =
= (P — Px) ([l — E|I3 — [Ihe — EII3) +
1 K

T RE =) ;l (M(X;) = EMX,) = &) — (h(X)) — & ho(X,) =€) =

= Tx(hi) + Wk(hk)
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which introduces

T (hx) = (P = Px) (Ilhx = EI3 = [|he = €]I3) ,

Wic(hi) 1= () = w(l). w(h) = ey D (HX) = E.h(X;) = ).
i#j=1

Since h € H(0) it is true that

V(hg)—V(h) < sup Ti(h)+Wi(h) < sup Ti(h)+ sup Wi(h) = ¢'2(5)+ ¢ (8).
heH () heH () heH(5)

Bound for ¢§?. Firstly, let us introduce
1(h) = |h = €3 = he = E]3-

We can exploit the same Talagrand’s inequality as in [8, p.12]. Recall that functions
h € H are bounded, therefore |I(h)| < 4b* and, hence, with probability at least 1 — e™*

4b%t

2
b (9) < o (0) + \/ 2 (o20) + 8000 () + 5L

where

o?(8) :== sup PI(h)*.
heH(6)

Let us bound this quantity. In order to proceed, notice that for all hy, hy € H
[(h1) = U(h2) = (h1, h1) — (ha, ho) + 2(he — b1, &) = (ha — ha, ho — ha) + 2(hy — ha, hy — )
and so for all z € X

|[(h) (@) — U(h2)(x)| < 6D|[ha(x) — M ()] (C.1)
is obtained with Cauchy-Schwarz inequality. This results particularly in

PI(h)* < 36b*P||h — h.||3.

Since [(h) has very specific form involving square norms, we could state that

h 4+ h,

P||h — h.||3 = 2PI(h) — 4PI ( ) < 2PI(h)

implying
PI(h)* < 726> PI(h) < 72b%6

by definition of H(J).
With this and u + v < /u + /v, 2y/uv < u+ v the bound can be simplified to

2
W) (5) < 9msD ot | 1667
o (0) < 2By (6) + 120\ 2o + 5
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Bound for (/ﬁg). This is much simpler, observe that

wK<h>=m{Z<h< i)=& RX Zuh 5|\2}=

1,j=1

or, .
= %1 (Pg(h— &), Pk(h—&)) —

T Picllh = I3
So,

K
K—-1

Wk (hi) = wi(hx) — wi (he) < (Pre(h = &), Pg(h=&)) + Pyl — €l <

K—-1
where the first inequality is due to negative terms, applying bound for h now results in

K 4b*
K_l(PK(h_g)7PK<h_5))+K_1'

<

Finally,

2
o <2 sw (P - Ponl | +
heH(5) -

and after adding and subtracting the expectation of the supremum and exploiting 2ab <
a® + b? together with 1/(K — 1) < 2/K for K > 2 we arrive to

2 2
8b?
§4< sup [[(P — Pr)h| — E sup [[(P— PK)hH) (E sup ||(P—PK)hII> +toe
heH(5) REH(5) heH(5)

Apply now probabilistic inequality for bounded differences [16, Th. 6.2] to estimate the
first term, with probability > 1 — e™*

2
20%¢
(sup (P = Pg)h|| — E A (P — PK)hH> < =
heH(5)
Therefore, with such probability
8621 i L
0P <=4 4|E sup |(P— Px)h .
P < s P = Pal )+
The resulting bound is now
2
40b%t + 24b* ot
Vi(hi) — V() < 2BV (6) +4 [E sup (P = Poh| | + 222 4 195y /2L,
heH(s) 3K K

with probability > 1 — et O
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Bounding the Suprema

To proceed further we need now to bound the two suprema in Theorem 44. Lemma 5.3
in [8] gives us a tool, it is stated as follows.

Lemma 45. Assume X1, ..., Xk to be i.i.d. sample and Py be empirical measure. Let
H:={h: X — [-b,b]}
and suppose that for all u € (0, 0]

NH N Nze(pey,u) < <E>a a.s.,

u

Esup(P — P)h < A (/2% 10g & + 201
e GRS S

where constants are explicitly given.

Lemma 46. Let A1, A16 hold. Then

T2b%0 v c b
Est) < 95992 log
O = K 6b\/__ " 6bx/__

then Yo € [0y, b]

> Define
L(0) == {l(h) | h € H(0)}
and note that in our case it also holds that

NL() N Nz2(pieys ) S N(HE), N - 22y w),
therefore, we could apply Lemma 45 to L(§) and get the result. [J

The second supremum, fortunately, can be handled simpler.

Lemma 47. If A1 is satisfied, it holds that
2b
E sup |[(P— Pg)h|| < —

heH(5) \/E

> First note that by symmetrization
2
E sup [[(P~ Pahl < B sup B (X0
heM(5) H(0) —1

where & are i.i.d. Rademacher’s random variables. Expand the norm, apply Jensen’s
inequality to the square root and get

EEHZ& (Xp)|| = E Zum H2+2Z S an( X;) < (C.2)

d=1 1<i<j<K

< ||h X ||2+2E52 > GX)EAXG) = | DX < WK, (C.3)
k=1 k=1

d=1 1<i<j<K
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With Theorem 44, Lemma 46 and Lemma 47 we make a conclusion.

Theorem 48. Let A1, A15, A16 hold. If h € H(0) then

72b%20 c b
Vihg) —V(h,) <5184 lo
(hee) = V(he) (\/ K Covam K ° 6b\/_>

40b%t + 72b* [0t
T 19—
* 3K 120 K

t

with probability > 1 — e~

Proof of the Main Theorem
Finally, we apply Lemma 43. What remains is to carefully compute £(¢) and obtain
Theorem 49. (Theorem 2 in the main text) It holds that
V() ~ V(h) < max 69
with probability at least 1 — 4e™, BY)(t) are defined in the proof.
> We have bounded with probability > 1 — e™" the excess risk of H(0), so that

e c b 1 40b%t + 7202 ot
0,t) = C log + 12b4/ —.
Br(6,8) = Co (\/ v K g6b\/_> 3K K

Now compute for 7 > 0

2
Sup—ﬁK(é’té/ﬂ:CO( b—alo c +a—blog ‘ >+

5> o TK 8 6bv/2r TK 6b\/ 27
40b%t + 7202 ot
- +12b

+ 3KT KT

Finally, observe that

: 1
Pk (t) := inf {7’ >0 : ?SEET 5

where

= inf

2?2 | log K
7>0: 72\/3b0‘10g ¢ gg}golog ,

— inf { 0:2502- L 1og — ¢ <

1
K7 C4py/2r — 8

A0B2t + 7202 1) 8(40b2t + 720>

T>0: e < g} = ( hi )

3Kt 3K ’
t 1 9216b%t

4(t) = inf 1204 — < = % = .

BH(t) =inf ¢ 7> 0:12b =3 I

It holds with probability 1 — 4e~* [J
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C.1.4 Proposition: Unbiasedness of S-Baseline

S-baseline is known to result in unbiased estimate, here for the sake of completeness we
give a proof.

Proposition 50. For all b, : S — R the expected value

I Z”yt%(st)v(;logm;(/ltl&) =0.

t=0

> Let us consider one term of the sum and note that we can use tower property of
conditional expectation:

E [7'bs(S:) Vo log ma(A]Sy)] = 7' E{E [bs(S,) Vo log mo(Ae|S:) | Si]}-
Now note that b,(S;) is measurable in the inner expectation, so,
= V' E{by(S))E [Vglog me(As|Sy) | Si]}-
Finally, with the help of the log derivative we show that
E [Vglogmp(A]Se) | Si] =0

and the result follows. [

C.1.5 Why Variance Reduction Matters (for Local Convergence)

We base our proof on some techniques of [86] where SVRPG algorithm is considered but
the proof we need has the same structure with b = m = 1 and some adjustments.

Let VJ : (S x Ax R)T — RP be an unbiased gradient estimate (with baseline or just
REINFORCE). Our gradient algorithm reads as

K
1 ~
(k)
Oni1 =0, + a”K ,;1 VJ(X,),

where 6, € © C R” are policy parameters at iteration n and X € (S x AxR) is
the trajectory data at iteration n of which there are K independent samples. Let us for
shorter notation set VJE := % Zszl VJ(qu,k)). The Lemma below is the in the core of
non-convex smooth optimization.

Lemma 51. [fV0 € © [|[V2J(0)|, < L, then for all n € Zy

3oy,

V0 - VJE

J(Oni1) = J(0n) —

2 1 L 2, Qn 2
(= ) 160 = 0l + S 9O

(C.4)
where v, = o,
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> It can be obtained by applying lower quadratic bound:

L
J(en—i-l) > J(gn) + <VJ(0n)a en—i—l - 9n> - E Hen—f—l - 971”3 : (0’5)

Next, notice that an%Jf = 0,1 — 0, and add and subtract %Jf in the left entry of the
second term:
J(Onir) = J(0,) + (VJ(6,) — VIE 0, VIE) + a,

~ 2
v, i1 = Oull5. (C.6)

Now apply Young’s polarization inequality (ab > —(a? + b?)/2) to the same term and
arrive to
S(Oni1) = J(0n) — ==

~ 2 L )
(971) - ViJ, 9 5 9 H9n+1 - 9n”2' (C'7)

Observe that the second and the third term can be bounded further using

gy (C.8)

(Ons1) = V|,

~ 2
IV760a0) I < 2| V5|

which results in

3oy,

J(QN—H) Z J<9n) - 4

~ 2
vJ(0,) - VJE ,

1 L 2 Qp 2
(1 = 5 ) 160 = 05+ 52 19015,

(C.9)
U

With this Lemma we can prove a variety of different convergence results, we would
rather refer here to [86, 90]. And yet, to illustrate the need for the variance reduction,
consider the following theorem.

Theorem 52. There is a constant C'r > 0 such that for all k > 0 and N < k the following
bound holds assuming non-increasing step sizes o, < 2/L:

k
_H;NEHVJ( W2 < 1602R in;NEHVJ _ v (C.10)
In particular, when N =k — 1, one gets
lzk:]E V6|2 < B¢ | lzk:E HVJ(e -] (C.11)
kn:1 I kn:1 " "o

> Introduce quantity U(0) := J(0*) — J(). Let us use Lemma 51, divide both parts
by a, and sum them from n = k — N to k with k, N satisfying N < k, then take the
expectation:
2
2} '

Zk: E[|[VJ(,)]3] <8 zk: E[Hw(en)—ﬁff
- - (C.12)

1 k
CY_ n+1 +6 :zk:

n N n N " n N
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Notice that we used o, < 2/L to drop the term with [|6,,11 — ,||5. One could rewrite the
first sum on the right to get

I CAAELDS ( o ) BIUG) - Bk + B+
n=kN " (C.13)
46 Ek: E[HW(@H)—%? j (C.14)

n=k—N

Since the rewards are bounded, there is Cr such that for all 6 the difference U(6) < Cg;
secondly, the step sizes are non-increasing; finally, we can discard the second term which
is non-positive. Thus,

k k 1 1 k
NI HES (a——a )+ 46 )
T n n—1 Xk—N-1 i

N n=k—N n

E [Hw(en) _ VK

2
<
2

n N

(C.15)

80R+ Cr +6 Z {ij(en)—ﬁjf

j . (C.16)

We could again use the fact that a,, are non-increasing to simplify the first two terms,
then divide both parts by k:

k k
> B[O < 24T Y B |vae) -
=k—

« k
N n n=k—N

z] | (C.17)

| =

n

This result shows, that the convergence of the gradient to zero is influenced by the
variance of the gradient estimator. In practice, however, the variance reduction ratio is
very low and therefore it slightly but not dramatically improves the algorithm. Theory
of SVRPG [86], however, suggests that in terms of rates with the accurate design of the
step sizes the rate can be slightly improved. Despite all this, variance reduction provably
improves local convergence but as to global convergence (which is more tricky to specify),
the variance also may play a good role in avoiding local optima as shown by [90]. This, we
believe partially explains, why in practice the quality of the algorithms is not so strongly
influenced by the variance reduction, as one might have thought.
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C.2 Additional Experiments and Implementation De-
tails

Here we present additional experimental results. The detailed config-files can be found
on GitHub page [37].

C.2.1 Minigrid

Minimalistic Gridworld Environment (MiniGrid) provides gridworld Gym environments
that were designed to be simple and lightweight, therefore, ideally fitting for making ex-
periments. In particular, we considered GoToDoor and Unlock.

In both environments we have used 20 independent runs of the algorithms. All mea-
surements of mean rewards and variance of the gradient estimator (measured each 250
epochs on a newly generated pool of 100 trajectories) are averaged over these runs. Stan-
dard deviations of the rewards are obtained as the sample standard deviation of the ob-
served rewards reflecting the width of the confidence intervals of the mean reward curves.
The exact config-files used for experiments can be found on attached GitHub.

Go-To-Door-5x5

This environment is a room with four doors, one on each wall. The agent receives a textual
(mission) string as input, telling it which door to go to, (e.g: "go to the red door"). It
receives a positive reward for performing the done action next to the correct door, as
indicated in the mission string.

In GoToDoor environment we can clearly see that the EV-agent is at least as good
as A2C at lower number of samples (K = 5), and the more samples are available during
training, the better performance we can observe from EV-agents. We can see mean
rewards in absolute values in Fig. C.1 and in relative scale (normalized by the results
of REINFORCE) in Fig. C.2 to see improvements over the results of REINFORCE
algorithm.

We also address the effect of gradient variance reduction and its effect on the perfor-
mance of the algorithm. We can see that variance reduction depends on the number of
samples. It’s negligible, most of the time even an increase is presented, when number of
samples is small (K = 5 and K = 10). We see reduction happening with larger K = 15
and K = 20. It seems that variance reduction might speed-up the training process, but
it is clearly not a key contributor. Variance reduction also seems to be useless at the
start since EV-agents’ and A2C’s seem to have even higher variance than REINFORCE
and better performance. However, later reduction might allow to increase final rewards.
With K = 15,20 the algorithms are able to reduce REINFORCE gradient variance only
by 30%. We give charts demonstrating gradient variance in absolute values in Fig. C.3
and in relative scale (normalized by the gradient variance of REINFORCE) in Fig. C.4.
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Figure C.1: The charts representing mean rewards in GoToDoor environment, standing
for absolute values for cases K = 5(a), K = 10(b), K = 15(c), K = 20(d). The results
are averaged over 20 runs. The resulting curves are smoothed with sliding window of size
25.
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Figure C.2: The charts representing mean rewards in GoToDoor environment, the
curves normalized by the mean reward of the REINFORCE. for cases K=5(a), K=10(b),
K=15(c), K=20(d). The results are averaged over 20 runs. The resulting curves are
smoothed with sliding window of size 25
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Figure C.3: The charts representing the variance of the gradient estimator in
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over 20 runs. The resulting curves are smoothed with sliding window of size 5.
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Figure C.4: The charts representing the variance of the gradient estimator normalized by
the variance of REINFORCE for cases K = 5(a), K = 10(b), K = 15(c), K = 20(d).
The numbers < 1 indicate the relative reduction. The results are averaged over 20 runs.
The resulting curves are smoothed with sliding window of size 5.

One can also evaluate the algorithms by looking at the standard deviation of the
rewards. Between the methods no significant difference is observed when the sample size
is small (K = 5 or K = 10). It becomes considerable though in cases of K = 15 and
K = 20. EV-agents turn out to have the biggest reward standard deviation among the
algorithms. The standard deviation of the rewards is demonstrated in absolute values in
Fig. C.5 and in relative scale (normalized by the standard deviation of REINFORCE)
in Fig. C.6. We note that this standard deviation does not at all reflect the variance
reduction of the gradient estimator as follows from the comparison of the charts. In
fact, REINFORCE with no variance reduced is slightly better in this regard than other
methods.
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Figure C.5: The charts representing the standard deviation of the rewards for cases K =
5(a), K = 10(b), K = 15(c), K = 20(d). The results are averaged over 20 runs. The
resulting curves are smoothed with sliding window of size 25.
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Figure C.6: The charts representing the standard deviation of the rewards normalized by
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K = 20(d). The results are averaged over 20 runs. The resulting curves are smoothed
with sliding window of size 5.
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Unlock

The agent has to open a locked door. First, it has to find a key and then go to the door.

In this environment we considered two different sample sizes: K = 5 and K = 20.
Here EV agents and A2C seem to converge to the same policy (see Fig. C.7 and Fig. C.8).
The charts on Fig. C.9 indicate that the variance is reduced 10-100 times similarly for
A2C- and EV-algorithms. Considering mean rewards we clearly see that such reduction
results in considerable gain of about 10-20% and, what is important, it considerably adds
to the stability which is displayed on Fig. C.11 and C.12.
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Figure C.7: The charts representing mean rewards in Unlock environment, standing for
absolute values. The results are averaged over 20 runs. The resulting curves are smoothed
with sliding window of size 25.
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Figure C.8: The charts representing mean rewards in Unlock environment, normalized
by the mean reward of the REINFORCE. The results are averaged over 20 runs. The
resulting curves are smoothed with sliding window of size 25.

Important thing to notice is that in the beginning (before approximately 2000 Epochs
passed) we observe small gain of EV over A2C (especially in case of smaller sample
with K = 5) and it goes together with more stability which is indicated by the plots of
standard deviation. Hence, a clever use of EV method instead of A2C sometimes can

give an additional confident gain despite the fact that the gradient variance reduction is
almost the same.
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by the standard deviation of the REINFORCE. The results are averaged over 20 runs.
The resulting curves are smoothed with sliding window of size 25.

159



C.2.2 OpenAlI Gym: Cartpole-vl

CartPole is a Gym environment where a pole is attached by a joint to a cart, which moves
along x-axis. Agent can apply a force +1 or -1 to the cart making it move right or left.
The pole starts upright and the agent has to keep it as long as possible preventing from
falling. The agent receives +1 reward every timestamp that the pole remains upright.
The episode ends when the pole is more than 15 degrees from vertical, or the cart moves
more than 2.4 units from the center.

In this environment we demonstrate 5 configurations with different policy and baseline
architectures to look how algorithms behave with changing policy and baseline configu-
rations. The exact config-files can be found on GitHub [37|. The measurements of mean
rewards are averaged over 40 independent runs of the algorithms and reward variance is
measured as the sample variance of the observed rewards in each epoch. We provide the
charts relative to REINFORCE which are obtained by dividing the curves by the corre-
sponding values of REINFORCE. These allow to see the improvements over REINFORCE
more clearly.

Cartpole configl (see Fig.C.13) has two hidden layers in policy network with 128 neu-
rons each and 1 hidden layer in baseline network with 128 neurons. We assume, that is
a medium complexity setting for this environment. Both networks have RelLU activations.

We can observe here that even with simple configuration EV agents have similar
or slightly higher rewards, achieving about 500 points and decrease rewards variance
significantly showing that EV methods are more stable than A2C and do not have many
deep falls during the training as A2C or REINFORCE. It is clearly an effect of the gradient
variance which is reduced drastically: almost 100-1000 times.
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Figure C.13: The charts representing the results of the experiments in CartPole environ-
ment (configl): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

In configh (see Fig.C.14) we keep the architecture from configl, but change the ac-
tivation function with MISH. The results are almost the same: EV-agents show a little
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predominance over A2C, preserving the least reward variance and gradient variance re-
duction among all the algorithms.
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Figure C.14: The charts representing the results of the experiments in CartPole environ-
ment (configh): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

In config7 (see Fig.C.15) we move towards more complex architecture of baseline func-
tion: now it has 3 hidden layers of 128, 256, 128 neurons respectively. EV agents demon-
strate better performance but this increment is rather small. Nevertheless, reward vari-
ance and gradient variance again remain the best in EV-methods.
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Figure C.15: The charts representing the results of the experiments in CartPole environ-
ment (config7): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

In config8 (see Fig.C.16) we address more complex setting of policy, adding two layers.
The policy network has finally 3 hidden layers with MISH activation with 64, 128, 256
neurons respectively. This change greatly increases efficiency of EV algorithms enabling
to achieve more than 400 points of reward and demonstrating a big dominance over A2C

161



which is unable to train such a complex policy to have similar performance. At the same
time, reward variance of EVs remains at the level of REINFORCE while A2C level exceeds
it by almost 30-50%.
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Figure C.16: The charts representing the results of the experiments in CartPole environ-
ment (config8): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

If config9 we again preserve architecture settings changing only activation from MISH
to ReLU. We observe a small difference in mean rewards but another activation function
clearly helped in A2C training. Regardless, EV-methods are still predominant: more
stable, with less gradient variance and with higher rewards achieved.

In conclusion, our experiments show that EV methods are sometimes considerably
better in terms of mean rewards than A2C, or work at least as A2C. Study of the reward
variance shows that EV-methods in CartPole are considerably more stable and do not
have deep falls as in A2C or Reinforce. This study allows us to judge about the stability
of the training process in case of EV algorithms and claim that they are able to perform
better than A2C if more complex policies are used.
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Figure C.17: The charts representing the results of the experiments in CartPole environ-
ment (configd): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.
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C.2.3 OpenAl Gym: LunarLander-v2

LunarLander is a console-like game where the agent can observe the physical state of the
system and decide which engine to fire (the primary one at the bottom or one of the sec-
ondaries, the left or right). There are 8 state variables: two coordinates of the lander, its
linear velocities, its angle and angular velocity, and two boolean values that show whether
each leg is in contact with the ground.

LunarLander (see Fig. C.18) is the example of the case where all algorithms work
in the same way and there is no significant difference between A2C and EV. It happens
regardless to the policy type we choose; the final performances are different among the
configs but inside one config A2C and EV gave the same result. We see that all algorithms
behave similarly in variance reduction as well, showing that EV-methods are still good
but sometimes A2C works with the same result.
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Figure C.18: The charts representing the results of the experiments in LunarLander en-
vironment (configl): (a) displays mean rewards, (b) shows standard deviation of the
rewards, (c) depicts gradient variance, in (d) the difference between the algorithm and
REINFORCE is shown, (e) shows the standard deviation of the rewards relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.
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C.2.4 OpenAl Gym: Acrobot-vl

The system consists of two links forming a chain, with one end of the chain fixed. The
joint between the two links is actuated. The goal is to apply torques on the actuated
joint to swing the free end of the linear chain above a given height while starting from
the initial state of hanging downwards. The actions can be to apply 41 or 0 torque to
the joint and the goal is to have the free end reach a designated target height in as few
steps as possible, and as such all steps that do not reach the goal incur a reward of -1.

The config we show here and in the main text (see Fig. C.19) is an example where
EV can boost training sometimes and that a clever combination of EV and A2C may
result in even better algorithms than these three. We can clearly see that until the agent
reaches reward ceiling there is a clear predominance of EVm over EVv and A2C but in the
end they result in the same policy. It can be seen that standard deviation of the rewards
indicate positive effect in the same time. Still, it must be noted that variance reduction is
the best in EVm and EVv until the ceiling is reached. Hence, the environment itself does
not require so excessive variance reduction and there is still an open space for discussions
about whether the variance reduction needed in such environment.
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Figure C.19: The charts representing the results of the experiments in Acrobot environ-
ment (configl): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d) the difference between the algorithm and REIN-
FORCE is shown, (e) shows the standard deviation of the rewards relative to REIN-
FORCE and (f) shows gradient variance reduction ratio.
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C.2.5 Time Complexity Discussion

In Figures C.20 - C.27 we demonstrate how training time depends on processed transitions
for all environments. One can clearly see that EV algorithms are more time-consuming
and sensitive to the growth of the sample size K but its excessive training time mostly
can be explained by the implementation. PyTorch-compatibility requires that we have to
make K extra backpropagations in order to compute empirical variance. We believe that
this part of computations can be optimized and, therefore, accelerated in practice.

Scatter plots demonstrate how consumed time depends on the number of processed
data. This allows better understanding of the processing cost of one transition from the
simulated trajectory. We also provide the measured execution times per transition in box
plots to see the difference between all considered algorithms regardless of the trajectory
length. We used high-performance computing units with the same computation powers
for each run inside one environment, so that these measurements were accurate and com-

parable.

Summing up, considering all the advantages of EV algorithms, they have higher time
costs (see also Figures C.24 - C.27) and demand more specific implementation allowing
faster computation of many gradients which currently cannot be easily developed in the
framework of PyTorch. PyTorch allows great flexibility and very general models for the
approximations of policy and baseline; if these are more specific, our algorithm can be
implemented to be more effective.
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Figure C.23: The charts representing dependency of training time from number of the
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