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Summary

Introduction (Français)

Les problèmes de contrôle optimal stochastique sont très souvent rencontrés dans plusieurs
applications pratiques: de mathématique financière [35, 77] à l’ingénierie [12]. Récemment,
ils ont reçu une nouvelle attention et les nouvelles perspectives trouvé en apprentissage
par renforcement (Reinforcement Learning, RL), qui est dans un certain sens se présente
comme l’intersection de contrôle optimal, statistiques et l’apprentissage automatique [70].

Cette classe des problèmes peut être définie comme suit. Soit (Ω,F ,P, (Ft)t≥0) un
espace de probabilité filtré avec la filtration (Ft)t≥0. Supposons quelque ensemble U de
processus stochastiques mesuré U : R≥0×Ω → R

n qui s’appellent contrôles et l’ensemble
de processus contrôlés

X =
{
XU

t : U ∈ U
}

où pour chaque contrôle U l’élément (XU
t )t≥0 a sa valeurs dans R

d et est un processus
stochastique (Ft)t≥0-adapté. On définissons le fonctionnel J : X → R et le nommons le
fonctionnel de gain.

Definition 1. Le problème de trouver U∗ ∈ Arg maxU∈U J(XU) est appelé le problème de
contrôle optimal stochastique.

Également, dans les applications pratiques (spécifiquement dans le domaine de l’appren-
tissage par renforcement [70]) nous avons besoin d’évaluation de la règle de décisions
donnée. Par exemple, dans les algorithmes d’itération de politique, où l’évaluation est le
composant crucial.

Definition 2. Le problème d’évaluation de J(XU) avec le contrôle U donné est appelé le
problème d’évaluation du contrôle.

Certainement, ce n’est pas possible de faire plus avec une telle formulation très ab-
straite. Par exemple, nous ne pouvons pas prouver l’existence des solutions ou leur
qualités. La question est plus simple quand nous considérons les formulations plus
spécifiques. Dans cette thèse les deux problèmes sont considérés: le problème d’arrêt
optimal pour un équation différentielle stochastique (EDS) et le problème de processus
décisionnel de Markov (Markov Decision Problem, MDP).

Problem 1. (L’arrêt optimal pour EDS, [77, 35] ) Soit T > 0 et le processus Xt est défini
par l’EDS d’Ito pour t ∈ [0, T )

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (1)

6



avec XU
0 = x0 ∈ R

d, où les fonctions

b : [0, T ) ×R
d × U → R

d, σ : [0, T ) ×R
d × U → R

d×n

sont continues et de Lipschitz dans le deuxième argument est de croissance linéaire avec
quelque constante K:

∥b(t, x, u)∥2 + ∥σ(t, x, u)∥2 ≤ K(1 + ∥x∥2 + ∥u∥2)

où ∥·∥2 note la 2-norme euclidienne. Avec ces suppositions, nous avons maintenant la
possibilité de prouver l’existence et unicité de la solution. Soit gt : R → R pour t ∈ [0, T ]
est quelque fonction nommé payoff. Considérons l’agent qui observe le processus, à t′ ∈
[0, T ] il connait les valeurs de Xt pour les temps t ≤ t′. Son objectif est choisir le temps
τ pour exécuter quelque action (arrêter le processus) que lui donnera un payoff gτ (Xτ ).
Autrement dit, nous sommes intéressés à la choix de temps d’arrêt τ avec valeurs dans
[0, T ] de l’ensemble des temps d’arrêt admissibles T qui maximisera l’espérance de payoff:

τ∗ = arg max
τ∈T

E [gτ (Xτ )] .

Les méthodes plus populaires en pratiques sont inventées avec les idées des algorithmes
de Longstaff-Schwarz(LS)[53] et Tsitsiklis-Van Roy [80]. Ils utilisent le principe de la
programmation dynamique et approchent l’espérance conditionnelle via régression linéaire
et la méthode des moindres carrés avec une base des fonction fixé en chaque étape de la
récursion. Longstaff et Schwarz ont démontré l’efficacité de leur approche par nombreux
expériences numériques et en [22] et [89] les propriétés générales de la convergence des
méthodes étaient établis.

Problem 2. (Le processus décisionnel de Markov, MDP, [70]) Considérons S,A nommés
les espaces d’état et d’action (ils doit être les espaces mesurable) et on définissons la
châıne de Markov St à la manière suivant. Soit Π est l’ensemble des règles de décision
stochastiques (autrement dit, la politique) π : S → P(A), i.e. chaque politique trans-
forme l’état s ∈ S et donne la distribution de probabilité dans l’espace des actions noté
comme π(·|s). Supposons la fonction de transition P (·|s, a), une distribution de prob-
abilité dans l’espace d’états avec condition d’état et d’action en cours fixé. On défini
S0 = s0 presque sûrement et après l’état se changera de St à St+1 par l’utilisation de la
formule des itérations suivant:

At ∼ π(·|St),

St+1 ∼ P (·|St, At).

Considérons la fonction des récompenses R : S×A → R déterministe et uniformément
borné. L’illustration naturel de MDP est ce que nous avons l’agent dans l’environnement
avec les états décrits par les éléments de S; l’agent à chaque temps t doit exécuter certaine
décision At par utilisation de sa politique, après il reçoit une récompense R(St, At) et
l’environnement se change a la manière décrite. Le problème de contrôle optimal consiste
en maximisation de la somme des récompenses dévaluée

J(π) = E

[
T∑

t=0

γtR(St, At)

]
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par rapport à la politique, où γ ∈ (0, 1) fonctionne comme le facteur de dévaluation et
l’horizon T peut être fini (le problème d’horizon fini) ou infini (le problème d’horizon
infini), ou stochastique (le problème épisodique). MDP se présente comme le modèle
fondamental dans l’apprentissage par renforcement(Reinforcement Learning, RL), que est
maintenant fortement en développement avec les résultats prometteurs et nombreux appli-
cations en plusieurs activités de la société: à partir de l’intelligence artificielle pour les jeux
d’ordinateur [82, 11, 66] à systèmes de gestion de l’énergie[49, 32], fabrication et robots [2]
pour n’en nommer que quelques-uns. Naturellement, RL donne aux ingénieurs les nou-
velles ensembles des outils de contrôle pour un utilisation en tout type d’automatisation
[33].

L’évaluation de la politique est une parte vitale des algorithmes model-free basé sur
l’itération de politique et normalement utilise les schémas d’Approximation Stochastique
(Stochastic Approximation, SA), inventés par [62]. SA elle-même est maintenant devenu
une belle technique [10, 47, 15], mais RL donne les problèmes et les suppositions nou-
velles. Entre les autres, les schémas SA linéaires sont populaires dans l’apprentissage par
renforcement car ils mènent à méthodes d’évaluation de politique avec une approximation
linéaire de la fonction des valeurs, les méthodes de Temporal Difference (TD) learning
[69], pour lesquels les analyses à temps fini sont rapportés en [68, 48, 13, 25], sont partic-
ulièrement importants.

Les objectifs de la recherche

L’objectif principal de notre recherche est étudier les problèmes mentionnés.

1. Concernant le problème d’arrêt optimal décrit en Section 1, nous présentons l’analyse
de la complexité de la méthode de maillage stochastique (Weighted Stochastic Mesh,
WSM) similaire à la méthode de [17] pour les problèmes d’arret optimal en temps
discret et continu, et nous comparons WSM avec les autres méthodes populaires par
introduction de la mesure de la complexité nouvelle car par rapport à la mesure de
la complexité classique tous les algorithmes pour le problème d’arrêt optimal sont
intraitable et il n’y a pas des possibilités de les comparer par rapport à la complexité.

2. Dans Section 2 notre objectif est obtenir l’analyse de la convergence à temps fini
pour le schéma d’approximation stochastique linéaire aux deux échelles de temps
sous l’hypothèse du bruit de Markov. Avec cet hypothèse c’est exactement le cas
des algorithmes d’évaluation de politique pour MDP: Temporal Difference learning
(TD(0) de [69]) et les algorithmes de Gradient Temporal Différence (GTD[72],GTD2
et TDC [73]). Le problème avec l’analyse que existe est que la nature de Markov de
data n’était pas considéré (malgré que les praticiens travaillent avec MDP, où c’est
le cas naturel) ou les suppositions sont plus restrictif.

3. Enfin, dans Section 3 nous proposons la méthode nouvelle, construit pour la réduction
de la variance et basé sur la minimisation de la variance empirique présenté en [8], en
cas des algorithmes de Policy-Gradient. L’objectif est, d’abord, obtenir l’algorithme
que peux rendre l’amélioration de performance supplémentaire à comparaison avec
l’objectif classique pour les variables de contrôle présentés en algorithme A2C (Ad-
vantage Actor-Critic) [74] et, deuxièmement, présenter quelques garanties théoriques
de la réduction.
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Les résultats clés

1. Dans la première direction, nous présentons pour la première fois l’analyse de la
complexité d’algorithme WSM basé sur [17] et considérons aussi le cas de densité
de probabilité p(x|y) inconnue mais que peut être approché. Nous proposons la
mesure nouvelle pour la comparaison des algorithmes d’arrêt optimal qui s’appelle
l’indice de semitraitabilité (semitractability index, ST) et nous lui utilisons pour la
comparaison des algorithmes de Longstaff et Schwartz [53] et la méthode QTM [7].

2. Nous obtient les taux de convergences améliorés pour SA linéaire aux deux échelles
de temps en cas du bruit martingale et de Markov. Notre analyse nous permet
l’utilisation des pas de temps plus générales, particulièrement, les pas constants,
constants par morceaux, et décroissantes étudiés dans les articles précédentes [40,
24, 88, 27]. Contrairement aux articles antérieurs [51, 24, 88], nos résultats de
convergence sont obtenus sans l’inclusion de la projection dans les itérations de
SA. Enfin, avec les suppositions supplémentaires pour les pas de temps, nous avons
calculé l’expansion asymptotique des erreurs quadratique attendues et montré que
nos bornes sont supérieures.

3. Nous construisons des nouvelles méthodes de policy-gradient (méthodes EV) basé
sur la critère de la variance empirique et nous montrons que ces méthodes fonc-
tionnent bien dans quelque problèmes pratiques en comparaison avec la critère
d’A2C. Aussi, nous proposons les bornes théoriques de la variance de l’estimation
de gradient pour les méthodes d’EV par l’utilisation des techniques de [8]; c’est le
première résultat que se concerne des bornes de la variance probabilistes, obtenu
avec les outils de l’apprentissage statistique dans le domaine de RL. Les mesures de
la variance d’estimation de gradient nous montre quelque observations. D’abord,
les méthodes d’EV peux réduire la variance mieux que A2C. Deuxièmement, nous
avons vu quelque confirmations de la hypothèse de [81]: la réduction de la variance a
les effets mais quelques environnements ne sont pas si réactifs à la. Nous présentons
les études premières de la critère d’EV pour les méthodes de policy-gradient dans les
exemples classiques et nous avons présenté pour la première fois l’implémentation
de ces méthodes basé sur PyTorch.

La contribution de l’Auteur. Quelques partes de l’analyse en cas de temps discret,
le transfert de temps discret à temps continu, les implémentations et les expériences
numériques de l’article 1 sont faites par l’Auteur. Dans article 2 l’Auteur a fait un travail
conséquent de préparation de la revue de la littérature et contribué aux résultats pour
le case martingale; il aussi a présenté les résultats et les illustrations numériques. Dans
l’article 3 l’Auteur a fait les démonstrations des théoremes concernant les bornes proba-
bilistes, vérification des suppositions, la revu de littérature, et participé à l’implémentation
des algorithmes et contribué à la concept des expériences.
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Introduction

Stochastic optimal control problems are very often encountered in various practical ar-
eas: from finance [35, 77] to engineering [12]. Recently they have got a new attention
and new challenges in the light of developing Reinforcement Learning (RL), in some sense
presenting itself as the intersection of optimal control, statistics and machine learning [70].

Such class of problems can be defined as follows. Let (Ω,F ,P, (Ft)t≥0) be a filtered
probability space with filtration (Ft)t≥0. Assume some set U of progressively measurable
stochastic processes U : R≥0 × Ω → R

n called controls and set of controlled processes

X =
{
XU

t : U ∈ U
}

where for every control U each (XU
t )t≥0 is an R

d-valued (Ft)t≥0-adapted stochastic process.
We also set functional J : X → R and call it gain functional.

Definition 3. The problem of searching U∗ ∈ Arg maxU∈U J(XU) is called stochastic
optimal control problem.

Also in practice (especially in reinforcement learning, see [70]) as a technical module
of some algorithms it is needed to evaluate the given decision rule and so one gets an
evaluation problem.

Definition 4. The problem of evaluating J(XU) given a control U in some form is called
control evaluation problem.

Of course, with such abstract formulation we cannot claim anything about the exis-
tence of the solutions or their qualities. The question becomes much more clear when
we consider more specific formulations. In the thesis the two more specific problems
are considered: optimal stopping for a stochastic differential equation(SDE) and Markov
Decision Problem (MDP).

Problem 3. (Optimal stopping problem for an SDE, [77, 35] ) Assume T > 0 and let
process Xt be set with an Ito SDE for t ∈ [0, T )

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (2)

with initial condition XU
0 = x0 ∈ R

d, where functions

b : [0, T ) ×R
d × U → R

d, σ : [0, T ) ×R
d × U → R

d×n

are two continuous functions satisfying Lipschitz condition in the second argument and
linear growth condition with constant K:

∥b(t, x, u)∥2 + ∥σ(t, x, u)∥2 ≤ K(1 + ∥x∥2 + ∥u∥2)

with ∥·∥2 denoting the appropriate Euclidean 2-norm. With such assumption we may
ensure that the unique strong solution exists. Let gt : R → R for every t ∈ [0, T ] be some
function called payoff. Consider an agent observing the process, at time t′ ∈ [0, T ] he
knows the values of Xt for all t ≤ t′. His goal is to choose the time τ when to take one
particular decision (stop the process, as it is often called) which gives him payoff gτ (Xτ ).
Formally, we are interested in choosing a stopping time τ taking values in [0, T ] from the
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set of admissible stopping times T maximizing the expected discounted reward of the
agent:

τ∗ = arg max
τ∈T

E [gτ (Xτ )] .

The most adopted by practitioners methods are invented with the ideas of Longstaff-
Schwarz(LS)[53] and Tsitsiklis-Van Roy [80] algorithms in mind. They exploit dynamic
programming principle and approximate conditional expectations using least-squares re-
gression on a given basis of functions on each backward induction step. Longstaff and
Schwarz demonstrated the efficiency of their approach through a number of numerical
examples and in [22] and [89] general convergence properties of the method were estab-
lished.

Problem 4. (Markov Decision Process, MDP, [70]) Assume some sets S,A called state
and action spaces (they have to be measurable spaces) and define discrete-time time-
homogenuous Markov chain St as follows. Let there be Π, the set of stochastic decision
rules (also called policies) π : S → P(A), i.e. each policy takes the state s ∈ S and returns
probability distribution over the action space denoted as π(·|s). Let us set transition
kernel P (·|s, a) as a probability distribution over the state space given the current state
and action. Set S0 = s0 almost surely and then iteratively update St to St+1 using the
following scheme:

At ∼ π(·|St),

St+1 ∼ P (·|St, At).

Consider a deterministic uniformly bounded reward function R : S × A → R. The
natural illustration of MDP is that we have an agent in the environment with state
descriptions from S; the agent at each time t must make a decision At using his policy,
after that he receives a reward R(St, At) and the environment changes its state as shown
above. The optimal control problem is to maximize with respect to policy the expected
sum of discounted rewards

J(π) = E

[
T∑

t=0

γtR(St, At)

]
,

where γ ∈ (0, 1) plays the role of the discounting factor and horizon T can be finite
(finite-horizon problem) or infinite (infinite-horizon problem), or even random (episodic
problem). MDP is a fundamental model in Reinforcement Learning(RL) being currently
a fast-developing area with promising and existing applications in numerous innovative
areas of the society: starting from AI for games [82, 11, 66] and going to energy manage-
ment systems [49, 32], manufacturing and robotics [2] to name a few. Naturally, RL gives
the practitioners new sets of control tools for any kind of automatization [33].

Policy evaluation is a vital part of the model-free algorithms based on policy iter-
ation and it is normally based on Stochastic Approximation(SA) schemes, invented in
[62]. SA itself currently became a well-studied technique [10, 47, 15], however RL gives
new challenges and new assumptions. Among others, linear SA schemes are popular in
reinforcement learning (RL) as they lead to policy evaluation methods with linear func-
tion approximation, of particular importance is temporal difference (TD) learning [69] for
which finite time analysis has been reported in [68, 48, 13, 25].
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Aim of the Work

The aim of our research is to investigate the problems above in several ways.

1. Regarding the optimal stopping problem discussed in Section 1, we are aiming at
presenting the complexity analysis of Weighted Stochastic Mesh(WSM) algorithm
similar to the method of [17] for discrete- and continuous-time optimal stopping
problem and compare it to other popular methods via new complexity metric since
with respect to classic complexity metric all algorithms for optimal stopping are
intractable and there is no way to compare them taking the complexity into account.

2. In Section 2 we aimed at obtaining finite-time convergence analysis for two-timescale
linear Stochastic Approximation(SA) scheme under Markov noise assumptions. Such
setting is exactly the setting of classic policy evaluation algorithms for MDP: tem-
poral difference learning (TD(0) of [69]) and gradient temporal difference algorithms
(GTD[72],GTD2 and TDC [73]). The problem with existing analysis is that it does
not consider the Markov nature of the data (which is a natural thing since practi-
tioners work in MDP setting) or the assumptions are too restrictive.

3. Finally, in Section 3 we set up to propose a new method for variance reduction
based on empirical variance minimization of [8] in policy-gradient algorithms. The
goal is, firstly, to obtain an algorithm able to give the improvement over the clas-
sic optimization goal for control variates in Advantage Actor-Critic(A2C) schemes
[74] and, secondly, give some theoretical guarantees regarding the actual variance
reduction.

Key Results

1. To address the first aim, we present for the first time the complexity analysis of WSM
algorithm based on [17] and consider also the case when the transition density p(x|y)
is not known but can be approximated. We propose a new metric for comparison
of the algorithms for optimal stopping problems called semitractability index and
compare with it several algorithms popular in the community of practitioners: LS-
algorithm [53] and QTM [7].

2. We provide improved convergence rates for the linear two-timescale SA in both
martingale and Markovian noise settings. Our analysis allow for general step sizes
schedules, including constant, piecewise constant, and diminishing step sizes ex-
plored in the prior works [40, 24, 88, 27]. Unlike the prior works [51, 24, 88], our
convergence results are obtained without requiring a projection step throughout the
SA iterations. Finally, with an additional assumption on the step size, we compute
an exact asymptotic expansion of the expected squared error to show the tightness
of our upper bounds.

3. We provide two new policy-gradient methods (EV-methods) based on EV-criterion
and show that they perform well in several practical problems in comparison to
A2C-criterion. Also theoretical variance bounds for EV-methods are provided us-
ing the ideas of [8], this the first result concerning the variance bounds with high
probability with the help of the tools of statistical learning in the setting of RL.
Measurements of the variance of the gradient estimates present several somewhat
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surprising observations. Firstly, EV-methods are able to solve variance reduction
problem considerably better than A2C. Secondly, we see some confirmations of the
hypothesis of [81]: variance reduction has its effect but some environments are not so
responsive to this. We present the first experimental investigation of EV-criterion of
policy-gradient methods in classic benchmark problems and the first implementation
of it in the framework of PyTorch.

Author contribution. Some part of the analysis for discrete-time case, transfer from
discrete to continuous case, implementations and numerical experiments in paper 1 are
done by the Author. In paper 2 the Author has done substantial work in preparing the
literature review and writing the proofs for the martingale case and presented numerical
results and illustrations. In the last direction the Author has done the main steps of the
proof of the probabilistic bound, verification of the assumptions, literature review and has
taken part in the implementation of the algorithms and experiment design.
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0.1 Contents

0.1.1 Semitractability of Optimal Stopping Problem via Weighted
Stochastic Mesh Algorithm

The results of this section are published in [9].

Introduction

Optimal stopping problem consists in constructing a decision rule saying when to take one
particular decision ("stop" the process). Being a classic problem in mathematical finance,
it is in the core of pricing various types of options, the most popular are American and
European [35]. We consider two types of problems.

1. (Continuous-time optimal stopping) Assume set of stopping opportunities [0, T ] and
let (Xt)t∈[0,T ] be, as set in Problem 1, an Ito diffusion process set by (35) The problem
is the same as above but with gt being a payoff function for each t ∈ [0, T ] and T
being the set of stopping times taking values in range [0, T ].

2. (Discrete-time optimal stopping) Assume a time-discretized version of the problem
above with some finite set of stopping opportunities L = {0, .., L} for some L ∈ Z>0

and let (Zl)l∈L be a Markov chain in R
d obtained after the discretization. The

problem is to find stopping time τ ∗ giving

E [gτ∗(Zτ∗) | Z0] = sup
τ∈T

E [gτ (Zτ ) | Z0] ,

where gl are payoff functions Rd → R≥0 at times l ∈ L and T is set of stopping times
taking values in L. For simplicity and without loss of generality we assume that
Markov chain (Zl)l∈L is time-homogeneous with one-step transition density denoted
by p(y|x) so that

P (Zk+1 ∈ dy | Zk = x) = p(y|x)dy

for all x, y ∈ R
d.

Despite existing convergence results, it turns out that comparing different algorithms
for optimal stopping problem based solely on their convergence rates is not possible since
these algorithms may be significantly different from a computational standpoint. The
core approaches to complexity analysis in numerical algorithms can be found in [58] and
the references therein. The main problem studied in this literature is the computation of
integrals via deterministic and stochastic algorithms. Optimal stopping problems, in fact,
present computations of several nested integrals since the dynamic programming principle
is used. Hence, the existing results from standard complexity theory cannot be directly
transferred to the complexity analysis of optimal stopping problem. In particular, for LS
algorithm [89, Cor. 3.10] results in costs

CL(ε, d) ∼ κ1
L5(κ2+L)(2+3d/α)

ε2+3d/α

with κ1, κ2 being certain constants. If the problem is in continuous time, then by tuning
time discretization we arrive at complexity of LS algorithm possibly growing even faster
than exp(ε−1/β) for some β > 0. The similar bound holds for other simulation based
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regression algorithms, including the one by Tsitsiklis and Van Roy [80]. In [29] the more
general regression scheme is considered with similar type of results. The main problem
with these complexity estimates is that the dimensionality of the process d enters the de-
gree of ε resulting in so-called curse of dimensionality still appearing even in such Monte
Carlo schemes. There exists, however, work of [36] where the novel Monte-Carlo-type
scheme is developed with complexity independent of d but, unfortunately, it is exponen-
tial in ε−1.

Tractability is an important notion in the analysis of numerical algorithms and one
of the ways to define it is as follows. A d-dimensional numerical problem, for example,
computation of an integral like

∫
[0,1]d

f(x)dx, is called tractable [58], if there is an algorithm

to solve it with complexity C(ε, d) satisfying

lim
d+ε−1→∞

ln C(ε, d)

d+ ε−1
= 0. (3)

In the case of optimal stopping problems, however, such a definition is not very meaningful:
in all regression-type algorithms already in the case of discrete-time problem one has

lim sup
d+ε→∞

ln C(ε, d)

d+ ε−1
= ∞

due to the exponential dependence of the complexity on d (based on the convergence
rates known in the literature). Thus, even for a discrete-time optimal stopping problem
regression-type algorithms are intractable with respect to this definition. For example,
with the results of [78] it can be shown that the error of the estimation of the value
function in this case has the form

5L

(√
md

N
+ e−θm

)
, θ > 0.

However, this observation also applies to Weighted Stochastic Mesh(WSM) algorithm of
Broadie and Glasserman [17], making almost all algorithms intractable. This motivates
the development of more flexible complexity metric for the comparison of the algorithms
for optimal stopping problems.

In turns out that not much is known about the convergence properties of WSM method
except some preliminary results in discrete case [1]. The authors, however, do not give
the dependence of the errors on the underlying dimension and the number of stopping
times and their analysis is based on a rather restrictive assumption of compact state
space. Similar type of algorithm we present here was also analyzed in the work of Rust
[63] presenting a Monte Carlo scheme which has no exponential dependence on d but just
O(1/ε4). The setting of discrete-time Markov Decision Process and the techniques used,
however, make the transfer to optimal stopping non-trivial. Also the paper considers
very restrictive assumptions of compact state space and Lipschitz continuity of transition
densities with Lipschitz constant independent on the dimension d.

Complexity Metrics

It turns out that the criterion (1.3) puts too much importance on the dimension d on
the one hand and on the other hand is too relaxed in dependence on ε. With such
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definition the algorithm with complexity d2exp (ε−1/ ln ln ... ln ε−1) is tractable while one
with complexity 2d/ε is not despite that running an algorithm with the former complexity
seems to be practically impossible even with d = 1. Therefore, we proposed another
approach to tractability.

Definition 5. For an algorithm with computational complexity C(ε, d) the number

ΓC := lim sup
d→∞

lim sup
ε→0

ln C(ε, d)

d ln(1/ε)
.

is called semitractability index.

Definition 6. The problem is called semitractable if there exists an algorithm solving it
with ΓC = 0.

Note that this definition nicely processes the dependencies of the complexities like
1/εpoly(d) making possible the comparison of various Monte Carlo algorithms for solving
optimal stopping and optimal control problems.

WSM Algorithm

Let us present a Weighted Stochastic Mesh (WSM) algorithm for a discrete-time optimal
stopping problem. The algorithm is inspired by [17] but it differs in special choice of
weights and truncation level. First, let us define the discrete Snell envelope process:

Ul = Ul(Zl) := sup
τ∈Tl,L

E [gτ (Zτ ) | Fl] , l = 0, ..L,

where Tl,L is the set of stopping times taking values in the set {l, .., L}. Snell envelope
satisfies dynamic programming principle, therefore, we can compute Ul using backward
induction:

UL(ZL) = gL(ZL),

Ul(Zl) = max {gl(Zl), E [Ul+1(Zl+1) | Zl]} , l = 0, .., L− 1.

For technical purposes of the analysis we set truncation level R > 0 and define the
truncated version of this backward induction:

ŨL(ZL) = gL(ZL), (4)

Ũl(Zl) = max
{
gl(Zl), E

[
Ũl+1(Zl+1) | Zl

]}
· 1BR

(Zl), l = 0, .., L− 1, (5)

where 1BR
is the indicator function of the 0-centered euclidean ball of radius R in R

d.
Thus, the values vanish when the process is out of BR. We sample N independent
trajectories (Z

(n)
l )l∈L with Z

(n)
0 = x0, n = 1, .., N with the help of transition density

p(y|x). To estimate the conditional expectations, we use the following approximation:

E

[
Ũl+1(Zl+1) | Zl = x

]
≈

N∑

n=1

Ũl+1

(
Z

(n)
l+1

) p
(
Z

(n)
l+1 | x

)

∑N
m=1 p

(
Z

(n)
l+1 | Z(m)

l

) . (6)

To sum up, WSM algorithm is as follows:
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1. Simulate N independent trajectories (Z
(1)
l )l∈L, .., (Z

(N)
l )l∈L;

2. Set UL(Z
(n)
L ) = gL(Z

(n)
L ) for n = 1, .., N ;

3. For l = L − 1, .., 1 compute U l(Z
(n)
l ) for all n = 1, .., N using (1.6) and (1.8) for

approximation of the conditional expectation;

4. Compute

U0(x0) = max

{
g0(x0) ,

1

N

N∑

n=1

U
(n)

1

(
Z

(n)
1

)}
.

One more thing to notice is that one step of backward induction with (1.6) and (1.8)
takes N2c∗ with c∗ being the price of multiplication. Thus, the total computational cost
of the algorithms is c∗N

2L and given that c∗ ≪ c
(d)
f , the cost of one computation of

transition density, it is bounded from above by c
(d)
f N2L.

Main Results

Using the bounds from the literature we have computed ΓC for two popular in prac-
tice methods (Longstaff-Schwarz[53] and Quantization Tree [7], see the table below) in
discrete-time and continuous-time optimal stopping. For WSM algorithm we have two
core results presented below.

Theorem 1. (Proposition 2.5 in [9]) Suppose that the following conditions are satisfied:

1.
max
0≤l≤L

gl(x) ≤ cg(1 + ∥x∥2), x ∈ R
d;

2.

E

[
max
l≤l′≤L

|Zl′ | | Zl = x

]
≤ cZ(1 + ∥x∥2), x ∈ R

d;

3. There exist κ, α > 0 such that for all l = 1, .., L the l-step transition density satisfies

0 < pl (y|x) ≤ κ

(2παL)d/2
e−

∥x−y∥22
2αl .

Then the complexity of WSM algorithm is bounded from above by

C(ε, d) = c1α
2c4gκ

2c
(d)
f cd2L

d+7ε−4 × lnd+2


L (1 + cZ + cZ ∥x0∥2) e

cZ

√
αL

1+cZ+cZ∥x0∥2 23/4 (cgκ ∨ 1)

ε


 .

Corollary 2. (Corollary 2.6 in [9]) Discrete-time optimal stopping under the assumptions
of Theorem 1 is semitractable if the complexity of the computation of the transition density
at one point c

(d)
f is at most polynomial in d.

18



One minor result we have obtained is that if the transition density itself cannot be
computed but we have an approximation which is good enough, then the same result
holds with slightly different constants. In particular, we get finite tractability index if
approximating sequence pn satisfies

∣∣∣∣
pn (y|z) − p (y|z)

pn (y|z)

∣∣∣∣ ≲
(1 + ∥y − x0∥m2 + ∥z − x0∥m2 )

n

n!
, y, z ∈ BRn

for some m ∈ Z>0 and appropriate sequence Rn → ∞ as n→ ∞.

Considering continuous-time optimal stopping, we first build a discretization scheme
based on Euler-Maruyama method with uniform time discretization having step h (for
details see [9]). This essentially gives a discrete-time problem. In fact, the theorem is
proven for more general approximation scheme and Euler-Maruyama scheme is just one
example of the method which works.

Theorem 3. (Proposition 3.4 in [9]) Assume the following conditions:

1.
max
0≤t≤T

gt(x) ≤ cg(1 + ∥x∥2), x ∈ R
d;

2.

E

[
max
l≤l′≤L

∣∣X l′h

∣∣ | X lh = x

]
≤ cX(1 + ∥x∥2), x ∈ R

d;

3. There exist κ, α > 0 such that for all l = 1, .., L the l-step transition density of
(X lh)l∈L satisfies

0 < plh (y|x) ≤ κ

(2παlh)d/2
e−

∥x−y∥22
2αlh .

Then the cost of computing the solution of obtained discrete-time optimal stopping problem
is is bounded from above by

C(ε, d) = c1α
2c4gκ

2c
(d)
f cd2

T d+7

hd+5
ε−4 × lnd+2




(T/h) (1 + cX + cX ∥x0∥2) e
c
X

√
αT

1+c
X

+c
X

∥x0∥2 23/4 (cgκ ∨ 1)

ε




and the cost of computing the solution of continuous-time optimal stopping problem is
bounded from above by

C⋆(ε, d) = c1α
2c4gκ

2c
(d)
f cd2

T d+7

ε2d+14
× lnd+2



T (1 + cX + cX ∥x0∥2) e

c
X

√
αT

1+c
X

+c
X

∥x0∥2 23/4 (cgκ ∨ 1)

ε


 .

Corollary 4. In the setting of continuous optimal stopping problem, the WSM algorithm
with time discretization satisfying the assumptions of Theorem 3 has semitractability index
ΓC⋆ = 2.

The comparison table with semitractability indices we obtained is reported in our
paper [9] and is placed below.
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Setting \ Algorithm LS WSM QTM

Discr. time 3/α 0 2
Cont. time ∞ 2 6

Table 1: Semitractability indices for Longstaff-Schwarz(LS), Weighted Stochastic
Mesh(WSM) and Quantization Tree Method(QTM) computed in the paper.

Numerical Experiments

In the following experiments we illustrate the WSM algorithm in the case of continuous-
time optimal stopping problems. A lower bound for the value function in WSM method is
obtained using a suboptimal stopping rule computed on an independent set of trajectories
(test set). This stopping rule can be constructed using any interpolation algorithm based
on the observations from the training trajectories. The fastest and the simplest way giving
good results is the nearest neighbor interpolation, in our experiments we have chosen the
number of nearest neighbors to be 500.

American put option on a single asset
To illustrate the performance of the WSM algorithm in continuous time, we consider

a problem of pricing American put option on a single asset driven by geometric Brownian
motion

Xt = X0e
σWt+(r−σ/2)t

with r denoting the riskless rate of interest, assumed to be constant, and σ being the
constant volatility. The payoff function is given by

g(x) = max(K − x, 0).

The fair price of an option is defined as

U0 = sup
τ∈T[0,T ]

E
[
e−rτg(Xτ )

]

for which there is no closed form solution but there exist numerical methods giving accu-
rate approximations to U0. We used parameters r = 0.08, σ = 0.20, K = X0 = 100, T = 3.
An accurate estimate of U0 in this particular case is obtained and reported in [44] to be
6.9320. In Fig. 1.1 we show the lower bounds obtained by WSM, LS and VF (value func-
tion regression method of [80]) in dependence of the number of stopping opportunities L
setting uniform time discretization on [0, T ] (the larger L the more dense is the grid). As
can be seen, WSM lower bound is much more stable when L increases and LS and VF
needs to use more complex regression basis to compensate for this effect.

American max-call option on five assets
The model with d = 5 assets is considered where each underlying asset has dividend

yield δ. The dynamics is set by

dXk
t = (r − δ)Xk

t dt+ σXk
t dW

k
t , k = 1, .., d,

where W k
t are independent one-dimensional Brownian motions. The parameters are set

to be r = 0.05, δ = 0.1, σ = 0.2. As before, the holder may exercise the option at any
time t ∈ [0, T ] with T = 3 and receive the payoff

g(Xt) = max
(
max

(
X1

t , .., X
d
t

)
−K, 0

)
.
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Figure 1: Lower bounds for the price of one-dimensional American put option approxi-
mated using different methods and uniform time discretization tk = kT/L, k = 0, .., L of
exercise dates. The numbers of training paths are Ntrain = 1000(a) and Ntrain = 2000(b)
and the number of test trajectories used for constructing the lower bounds Ntest = 20000
and is the same in both cases. In LS and VF a polynomial basis of degrees 2 and 4 is
used (mentioned in the legend).

We apply WSM and LS (with a basis of degree-2 polynomials) techniques to construct a
lower bound. The results for different L are presented in Fig. 1.2. The option price must
increase when the number of stopping opportunities increases, therefore LS-algorithm has
clearly deteriorating estimate. WSM, on the other hand has increasing lower bound which
shows that it performs considerably better than LS.

Figure 2: Lower bounds for the price of a five-dimensional American put option approx-
imated using a uniform grid tk = kT/L, k = 0, .., L of exercise dates. The number of
training paths is Ntrain = 2000 and the number of test trajectories is Ntest = 5000.
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0.1.2 Finite Time Analysis of Linear Two-Timescale Stochastic
Approximation with Markovian Noise

The results of this section are published in [43].

Introduction

The TD-learning scheme based on classical (linear) SA is known to be inadequate for
the off-policy learning paradigms in RL (data samples are drawn from a behavior policy
different from the policy being evaluated [5, 79]). To circumvent this problem, [72, 73]
have suggested gradient TD (GTD) method and the TD with gradient correction (TDC)
method. These methods are represented as linear two-timescale SA scheme introduced
by [14]:

θk+1 = θk + βk{b̃1(Xk+1) − Ã11(Xk+1)θk − Ã12(Xk+1)wk}, (7)

wk+1 = wk + γk{b̃2(Xk+1) − Ã21(Xk+1)θk − Ã22(Xk+1)wk}. (8)

The above recursion involves two iterates, θk ∈ R
dθ , wk ∈ R

dw , whose updates are coupled
with each other. In the above, b̃i(x), Ãij(x) are measurable vector/matrix valued func-
tions on X and the random sequence (Xk)k≥0, Xk ∈ X forms an ergodic Markov chain.
The scalars γk, βk > 0 are step sizes. The above SA scheme is said to have two timescales
as the step sizes satisfy limk→∞ βk/γk < 1 such that wk is updated at a faster timescale.
In fact, wk is a ‘tracking’ term which seeks solution to a linear system characterized by θk.

Our goal is to characterize the finite-time expected error bound with improved con-
vergence rate for the two-timescale SA (2.1),(2.2). The almost-sure convergence of two
timescale SA has been established in [14, 75, 76, 15], among others and [46, 57] character-
ized the asymptotic convergence rates. However, finite-time risk bounds for two timescale
SA have not been analyzed until recently. With martingale samples, [51] provided the first
finite time analysis of GTD method, [26, 24] provided improved finite time error bounds.
Unlike our analysis, they analyzed modified two timescale SA with projection and their
bounds hold with high probability. With Markovian noise, [40] studied the finite time
expected error bound with constant step sizes; [88] and [27] provided similar analysis for
general step sizes. It is important to notice that with homogeneous martingale noise, the
asymptotic rate of (2.1), (2.2) without a projection step, as shown in [46, Theorem 2.6],

is in the order E
[
|θk − θ⋆|2

]
= O(βk),E

[∣∣wk − A−1
22 (b2 − A21θk)

∣∣2
]

= O(γk), where θ⋆

is a stationary point of the SA scheme. However, the latter rate is not achieved in the
finite-time error bounds analyzed by the above works except for [24]. It had been an open
problem whether this error bound holds for the Markovian noise setting and for linear
two time-scale SA scheme without projection.

Main Results

We investigate the linear two timescale SA given by the following equivalent form of (2.1),
(2.2):

θk+1 = θk + βk(b1 − A11θk − A12wk + Vk+1), (9)

wk+1 = wk + γk(b2 − A21θk − A22wk +Wk+1), (10)
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where the mean fields are defined as bi := limk→∞ E

[
b̃i(Xk)

]
, Aij := limk→∞ E

[
Ãij(Xk)

]

(these limits exist as we recall that (Xk)k≥0 is an ergodic Markov chain). The noise terms
Vk+1,Wk+1 are given by:

Vk+1 := b̃1(Xk+1) − b1 − (Ã11(Xk+1) − A11)θk − (Ã12(Xk+1) − A12)wk,

Wk+1 := b̃2(Xk+1) − b2 − (Ã21(Xk+1) − A21)θk − (Ã22(Xk+1) − A22)wk.
(11)

The goal of the recursion (2.3), (2.4) is to find a stationary solution pair (θ⋆, w⋆) that
solves the system of linear equations:

A11θ + A12w = b1, A21θ + A22w = b2. (12)

We are interested in the scenario when the solution pair (θ⋆, w⋆) is unique and is given by

θ⋆ = ∆−1(b1 − A12A
−1
22 b2), w⋆ = A−1

22 (b2 − A21θ
⋆). (13)

where ∆ := A11 − A12A
−1
22 A21.

To analyze the convergence of (θk, wk)k≥0 in (2.3), (2.4) to (θ⋆, w⋆), we require several
assumptions which are common for linear two time-scale SA, see [46].

A 1. Matrices −A22 and −∆ = −
(
A11 − A12A

−1
22 A21

)
are Hurwitz.

A 2. (γk)k≥0, (βk)k≥0 are nonincreasing sequences of positive numbers that satisfy the
following.

1. There exist constant κ such that for all k ∈ N, we have βk/γk ≤ κ.

2. For all k ∈ N, it holds

γk/γk+1 ≤ 1+(a22/8)γk+1, βk/βk+1 ≤ 1+(a∆/16)βk+1, γk/γk+1 ≤ 1+(a∆/16)βk+1.
(14)

Our conditions on step sizes are similar to [46, Assumption 2.3, 2.5]. These condi-
tions encompass diminishing, piecewise constant and constant step sizes schedules which
are common in the literature. For instance, a popular choice of diminishing step sizes
satisfying A10 is

βk = cβ/(k + kβ0 ), γk = cγ/(k + kγ0 )2/3 (15)

with some constants cβ, cγ, kγ0 , k
β
0 , e.g., as suggested in [26, Remark 9]; or a constant step

size of βk = β, γk = γ; or a piecewise constant step size, e.g., [40].
We present new results on the convergence rate of (2.3), (2.4) depending on the types

of noise with Vk+1,Wk+1. To discuss these cases, let us define the σ-field generated by the
two timescale SA scheme and the initial error made by the SA scheme, respectively as:

Fk := σ
{
θ0, w0, X1, X2, ..., Xk

}
, V0 := E

[
∥θ0 − θ⋆∥2 + ∥w0 − w⋆∥2

]
. (16)

Our main results are presented for two sets of noise assumptions.
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Martingale Noise We consider a simple setting where the random elements Xk are
drawn i.i.d. from the distribution such that bi, Aij are the expected values of random vari-

ables b̃i(Xk), Ãij(Xk) which are assumed to have bounded second moment. This implies
that the sequences (Vk+1)k∈N, (Wk+1)k∈N are martingale difference sequences.

A3. The noise terms are zero-mean conditioned on Fk, i.e., EFk [Vk+1] = E
Fk [Wk+1] = 0.

A 4. There exist constants mW ,mV such that

∥E
[
Vk+1V

⊤
k+1

]
∥ ≤ mV (1 + ∥E

[
θkθ

⊤
k

]
∥ + ∥E

[
wkw

⊤
k

]
∥), (17)

∥E
[
Wk+1W

⊤
k+1

]
∥ ≤ mW (1 + ∥E

[
θkθ

⊤
k

]
∥ + ∥E

[
wkw

⊤
k

]
∥) .

Theorem 5. Assume A9–12 and for all k ∈ N, we have γk ∈ [0, γmtg
∞ ], βk ∈ [0, βmtg

∞ ] and
κ ∈ [0, κ∞], where γmtg

∞ , βmtg
∞ , κ∞ are defined constants. Then

E
[
∥θk − θ∗∥2

]
≤ dθ

{
Cθ̃,mtg

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
4

)
V0 + Cθ̃,mtg

1 βk

}
(18)

E

[∥∥wk − A−1
22 (b2 − A21θk)

∥∥2
]
≤ dw

{
Cŵ,mtg

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
4

)
V0 + Cŵ,mtg

1 γk

}
(19)

The exact constants are provided in the paper.

Markovian Noise Consider the sequence (Xk)k≥0 to be samples from an exogenous
Markov chain on X with the transition kernel P : X × X → R+. For any measurable
function f , we have

E
Fk [f(Xk+1)] = P f(Xk) =

∫

X

f(x) P(Xk, dx)

B 1. The Markov kernel P has a unique invariant distribution µ : X → R+. Moreover, it
is irreducible and aperiodic.

Observe that

bi =

∫

X

b̃i(x)µ(dx), Aij =

∫

X

Ãij(x)µ(dx), i, j = 1, 2.

We show that the linear two time-scale SA (2.1), (2.2) converges to a unique fixed point
defined by the above mean field vectors/matrices, see (2.7). An important condition that
enables our analysis is the existence of solutions to the following Poisson equations:

B 2. For any i, j = 1, 2, consider b̃i(x), Ãij(x), there exists vector/matrix valued measur-

able functions b̂i(x), Âij(x) which satisfy

b̃i(x) − bi = b̂i(x) − P b̂i(x), Ãij(x) − Aij = Âij(x) − P Âij(x) (20)

for any x ∈ X and bi, Aij are the mean fields of b̃i(x), Ãij(x) with the stationary distribution
µ.

The above assumption can be guaranteed under B5 together with some regularity
conditions, see [28, Section 21.2]. Moreover,
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B 3. Under B6, the vector/matrix valued functions b̂i(x), Âij(x) are uniformly bounded:
for any i, j = 1, 2, x ∈ X,

∥b̂i(x)∥ ≤ b, ∥Âij(x)∥ ≤ A. (21)

B 4. There exists constant ρ0 such that for any k ≥ 1, we have γ2k−1 ≤ ρ0βk.

To satisfy B7, we observe that the bounds b,A depend on the mixing time of the chain
(Xk)k≥0 and a uniform bound on b̃i(·), Ãij(·). In the context of reinforcement learning,
the latter can be satisfied when the feature vectors and reward are bounded. In fact, B7
implies A12. Meanwhile, B8 imposes further restriction on the step size. The latter can
also be satisfied by (2.11). The challenges of analysis with Markovian noise lie in the
biasedness of the noise term as E

Fk [Vk+1] ̸= 0, EFk [Wk+1] ̸= 0.

Theorem 6. Assume A9–10, B5–8 hold and for all k ∈ N, we have βk ∈ (0, βmark
∞ ],

γk ∈ (0, γmark
∞ ], κ ≤ κ∞, where βmark

∞ , γmark
∞ , κ∞ are defined constants. Then

E
[
∥θk − θ⋆∥2

]
≤ dθ

{
Cθ̃,mark

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
8

)
(1 + V0) + Cθ̃,mark

1 βk

}
, (22)

E
[
∥wk − A−1

22 (b2 − A21θk)∥2
]
≤ dw

{
Cŵ,mark

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
8

)
(1 + V0) + Cŵ,mark

1 γk

}
. (23)

The exact constants are given in the paper.

While Theorem 13 relaxes the martingale difference assumption A12 in Theorem 12,
we remark that the results here do not generalize that in Theorem 12 due to the additional
B7, B8. Particularly, with martingale noise, the convergence of linear two timescale SA
only requires the noise to have bounded second order moment, yet the Markovian noise
needs to be uniformly bounded.

The upper bounds in Theorem 12 and 13 consist of two terms – the first term is a
‘transient’ error with product such as

∏k−1
i=0 (1−βia∆/8) decays to zero at the rate o(1/kc)

for some c > 1 under an appropriate choice of step sizes such as (2.11); the second term is a
‘steady-state’ error. We observe that the ‘steady-state’ error of the iterates θk, wk exhibit
different behaviors. Taking the step size choices in (2.11) as an example, the steady-state
error of the slow-update iterates θk is O(1/k) while the error of fast-update iterates wk is

O(1/k
2
3 ). Furthermore, similar bounds hold for both martingale and Markovian noise.

Comparison to Related Works Our results improve the convergence rate analysis
of linear two timescale SA in a number of recent works. In the martingale noise setting
(Theorem 12), the closest work to ours is [24] which analyzed the linear two timescale SA
with martingale samples and diminishing step sizes. The authors improved on [26] and
obtained the same convergence rate (in high probability) as our Theorem 12, furthermore
it is demonstrated that the obtained rates are tight. Their bounds also exhibit a sublin-
ear dependence on the dimensions dθ, dw. However, their algorithm involves a sparsely
executed projection step and the error bound holds only for a sufficiently large k. These
restrictions are lifted in our analysis.

In the Markovian noise setting (Theorem 13), the closest works to ours are [27, 40, 88].
In particular, [40] analyzed the linear two timescale SA with constant step sizes and
showed that the steady-state error for both θk, wk is O(γ2/β). [88] analyzed the TDC al-

gorithm with a projection step and showed that the steady-state error for θk is O(1/k
2
3 ) if
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the step sizes in (2.11) is used. [27] analyzed the linear two timescale SA with diminishing

step size and showed that the steady state error for both θk, wk is O(1/k
2
3 ). Interestingly,

the above works do not obtain the fast rate in Theorem 13, i.e., E [∥θk − θ⋆∥2] = O(1/k).
One of the reasons for the sub-optimality in their rates is that their analysis are based on
building a single Lyapunov function that controls both errors in θk and wk. In contrast,
our analysis relies on a set of coupled inequalities to obtain tight bounds for each of the
iterates θk, wk.

Our last result is the lower bound constructed to demonstrate the tightness of our
analysis in Theorem 12, 13 writing the explicit expression for squared error E [∥θk − θ⋆∥2].
We consider the following technical assumption:

A 5. There exist matrices Σ11,Σ12,Σ22, and a constant mexp
VW ≥ 0 such that for all j ∈ N,

it holds

∥E
[
VjV

⊤
j

]
− Σ11∥ ∨ ∥E

[
WjW

⊤
j

]
− Σ22∥ ∨ ∥E

[
VjW

⊤
j

]
− Σ12∥ ≤ mexp

VW (∥E
[
θ̃kθ̃

⊤
k

]
∥ + ∥E

[
w̃kw̃

⊤
k

]
∥).

Note that A13 implies A12 and therefore poses a stronger assumption. We have

Theorem 7. Assume A9–11, A13 and for all k ∈ N, we have γk ∈ [0, γmtg
∞ ], βk ∈ [0, βexp

∞ ]
and κ ∈ [0, κexp∞ ], where γmtg

∞ , βexp
∞ , κexp∞ are constants defined in the paper. Then for any

k ≥ kexp0 := min{ℓ :
∑ℓ−1

j=0 βj ≥ log(2)/(2∥∆∥)}, the following expansion holds

E
[
∥θk − θ⋆∥2

]
= Ik + Jk. (24)

The leading term Ik is given by the following explicit formula

Ik :=
∑k

j=0 β
2
j Tr

(∏k
ℓ=j+1(I−βℓ∆) Σ

{∏k
ℓ=j+1(I−βℓ∆)

}⊤
)
,

where Σ := Σ11+A12A
−1
22 Σ22A−⊤

22 A
⊤
12+Σ12A−⊤

22 A
⊤
12+A12A

−1
22 Σ21. Meanwhile, the following

two-sided inequality holds

Cexp
3 Tr(Σ) ≤ Ik

βk
≤ Cexp

4 Tr(Σ), (25)

and Jk is bounded by

|Jk| ≤ Cexp
0

k−1∏

ℓ=0

(
1 − a∆

4
βℓ

)
V0 + Cexp

1 βk

(
γk +

βk
γk

)
, (26)

where V0 was defined in (2.12). All constants Cexp
0 ,Cexp

1 ,Cexp
3 , Cexp

4 are given in the paper
and they are independent of βk, γk.

Observe that from (2.41), the dominant term for Jk is given by O(βkγk +
β2
k

γk
). As such,

using (2.40), we observe that

|Jk|/Ik = O (γk + βk/γk)

If limk→∞ βk/γk = 0, we have limk→∞ |Jk|/Ik = 0. Combining (2.39), (2.40) shows that
the expected error E [∥θk − θ⋆∥2] is lower bounded by Ω(βk).

We note that the assumptions A9–11, A13 imposed by the theorem imply A9–A12
required by Theorem 12. Hence, together with (2.14) in Theorem 12, the above observa-
tions constitute a matching lower bound on the convergence rate of linear two timescale
SA with martingale noise.
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0.1.3 Variance Reduction for Policy-Gradient Methods via Em-
pirical Variance Minimization

The results of this section are published in [42].

Introduction

In RL policy-gradient methods constitute the family of gradient algorithms directly mod-
elling the policy and exploiting various formulas to approximate the gradient of expected
reward with respect to the policy parameters [84, 74]. The straightforward way to tackle
gradient estimation is Monte Carlo scheme resulting in the algorithm called REINFORCE
[84]. Assume a Markov Decision Problem (MDP) (S,A, R,P,Π, µ0, γ) with a finite
horizon T and given a class of policies Π = {πθ : S → P(A) | θ ∈ Θ} parametrized by
θ ∈ Θ ⊂ R

D where P(A) is the set of probability distributions over the action set A.
We will omit the subscript in πθ wherever possible for shorter notation, in all occurrences
π ∈ Π. The optimization problem for MDP reads as

maximize J(θ) = E

[
T−1∑

t=0

γtR(St, At)

]
w.r.t. θ ∈ Θ,

where we have assumed that the horizon T is fixed. Note that any sequence of states,
actions, and rewards can be represented as an element X of the product space

(S ×A×R)T .

Let ∇̃J |θ′ : (S × A × R)T → R
D be an unbiased estimator of the gradient ∇θJ at point

θ = θ′. With this notation the gradient descent algorithm for maxmization of J(θ) using

the estimate ∇̃J reads as follows:

θn+1 = θn + ηn
1

K

K∑

k=1

∇̃J |θn(X(k)
n ), n = 1, 2, . . . (27)

with ηn being a positive sequence of step sizes. We will omit the subscript θn in the
gradient estimate if it is clear from the context at which point the gradient is computed.
REINFORCE [84] is one example of this estimator:

∇̃reinfJ : X 7→
T−1∑

t=0

γtGt(X)∇θ log π(At|St)

with

Gt(X) :=
T−1∑

t′=t

γt
′−tRt,

where Rt = R(St, At) and

X = [(S0, A0, R0), .., (ST−1, AT−1, RT−1)]
⊤ .

Unavoidably, there is the variance emerging from the estimation of the high-dimensional
gradient [83]. This makes the problem of gradient estimation quite challenging. Variance
reduction is necessarily required to construct modifications with gradient estimates of
lower variance and lower computational cost than increasing the sample size.
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The main developments in this direction include actor-critic by [45] and advantage
actor-critic: A2C [74] and asynchronous version of it, A3C [55]. Generally, it can be
considered as a modification of REINFORCE with additional use of control variate set
by state-action-dependent baseline bϕ : S × A → R (SA-baselines) or state-dependent
baselines bϕ : S → R (S-baselines) parametrized by ϕ. The estimator becomes

∇̃bϕ
θ J : X 7→

T−1∑

t=0

γt(Gt − bϕ(St, At))∇θ log π(At|St),

the gradient scheme becomes two-timescale and baseline parameters are tuned so that the
baseline models the state value function:

θn+1 = θn + αn
1

K

K∑

k=1

∇̃bϕJ(X(k)
n ), (28)

ϕn+1 = ϕn − βn∇ϕV
A2C
K,n (ϕ)|ϕn

, (29)

where

V A2C
K,n (ϕ) :=

1

K

K∑

k=1

T−1∑

t=0

(Gt(X
(k)
n ) − bϕ(S

(k)
t ))2 (30)

is A2C goal reflecting our desire to approximate the corresponding value function from
its noisy estimates (Gt(X

(k)
n )) via least squares. The motivation behind it is that if one

chooses the value function as baseline, the variance will be minimized. This strategy
works well in practical problems [55].

Recently a new interest in such methods has emerged due to the introduction of deep
reinforcement learning [56], a very comprehensive review is done in [33]. During several
decades a large number of new variance reduction methods were proposed, including sub-
sampling methods like SVRPG [60, 86] and various control variate approaches of [64], [39],
[52], [81], [85]. There are also approaches of a bit different nature: trajectory-wise control
variates [19] using the control variate based on future rewards and variance reduction in
input-driven environments [54]. Apart from that, in ergodic case there were both theoretic
[38] and also some practical advancements [21]. The importance of the criteria for variance
reduction is well-known in Monte-Carlo and MCMC [65] and recently was also addressed
in RL by [30], where the Actor with Variance Estimated Critic (AVEC) was proposed.

Going to theory, it remains unclear how the procedure used in A2C is related to the
variance of the gradient estimator. Moreover, the empirical studies of the variance of the
gradient estimator are still very rare and available mostly for artificial problems. In the
community there is still an ongoing discussion about the actual role of the variance of
the gradient in the performance of the algorithms [81]. In our study we try to answer
some of these questions and suggest a more direct approach inspired by the Empirical
Variance(EV) Minimization recently studied by [8]. We show that the proposed EV-
algorithm is not only theoretically justifiable but can also perform better than the classic
A2C algorithm. It should be noted that the idea of using some kind of empirical variance
functional is not new: some hints appeared, for instance, in [52]. Despite that, the
implementation and theoretical studies of this approach are still missing in the literature.
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Main Theoretical Results

The main object of our study is the use of empirical variance instead of A2C goal. Starting
from this we could formulate two optimization goals for baseline tuning:

V EV v
n,K (θ, ϕ) :=

1

K

K∑

k=1

∥∥∥∇̃bϕJ(X(k)
n )|θ

∥∥∥
2

2
− 1

K2

∥∥∥∥∥

K∑

k=1

∇̃bϕJ(X(k)
n )|θ

∥∥∥∥∥

2

2

, (31)

V EVm
K (θ, ϕ) :=

1

K

K∑

k=1

∥∥∥∇̃bϕJ(X(k)
n )|θ

∥∥∥
2

2
; (32)

both can be shown to be an unbiased estimate of the true variance of the gradient estimator
and true variance is defined for a random vector Y as

V (Y ) := E
[
∥Y − E [Y ]∥22

]
.

The corresponding gradient algorithms can be described as

θn+1 = θn + αn
1

K

K∑

k=1

∇̃bϕJ(X(k)
n ), (33)

ϕn+1 = ϕn − βn∇ϕV
EV
K (ϕ, θ)|ϕn,θn . (34)

We got two methods. The first one uses the full variance V EV v
K and is called EVv, the sec-

ond one is titled EVm and exploits V EVm
K , the same variance functional but without the

second term. The important fact to note is that EVv routine would work only if K ≥ 2,
otherwise we try to estimate the variance with one observation. We can note several quick
facts about these methods. Firstly, it turns out that under some technical assumptions
A2C goal is an upper bound (up to a constant) of EV goals (Prop.5 in [42]). Secondly,
we show that if the scheme converges to a local optimum, then EVm and EVv methods
are asymptotically equivalent since the second term of the variance is the squared norm
of the true gradient which converges to 0.

The main theoretical result is high-probability bound for excess risk on step n of the
algorithm. For this we first simplify the notation for more clarity. Let us further notate
the gradient estimator as h : R

d → R
D, fix some set of such estimators H and define

E = E[h(X)] = ∇θJ since the estimate is assumed to be unbiased. In order to reduce the
variance in the gradient estimator we would like to pick on each epoch n the best possible
estimator

h∗ = arg min
h∈H

V (h)

where variance functional V is defined for any h ∈ H via

V (h) := E
[
∥h(X) − E∥2

]

where X is random vector of concatenated states, actions and rewards described before.
To solve the above optimization problem, we use empirical analogue of the variance and
define

ĥ := arg min
h∈H

VK(h)
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with the empirical variance functional of the form:

VK(h) :=
1

K − 1

K∑

k=1

∥h(X(k)) − PKh∥2

with PK being the empirical measure, so with the given sample we could notate sample
mean as

PKh :=
1

K

K∑

k=1

h(X(k)).

Let us pose several key assumptions.

A 6. Class H consists of bounded functions:

sup
x∈X

∥h(x)∥ ≤ b, ∀h ∈ H.

A 7. The solution h∗ is unique and H is star-shaped around h∗:

αh+ (1 − α)h∗ ∈ H, ∀h ∈ H, α ∈ [0, 1].

A 8. The class H has covering of polynomial size: there are α ≥ 2 and c > 0 such that
for all u ∈ (0, b],

N (H, ∥ · ∥L2(PK), u) ≤
( c
u

)α
a.s.

where

∥h∥L2(PK) =
√
PK∥h∥22

The following result holds.

Theorem 8. Under Assumptions 14-16 it holds with probability at least 1 − 4e−t,

V (hK) − V (h∗) ≤ max
j=1,...,4

βj(t)

with

β1 ≤ C1
logK

K
, β2 ≤ C2

logK

K
,

β3(t) =
C3(t+ 1)

3K
, β4(t) =

C4t

K
,

where C1, C2, C3, C4 are constants not depending on the dimension D or the sample size
K and are defined in the paper.

This allows to conclude that as sample size K grows, the variance reduces to that
of h∗. From practical perspective, Theorem 24 firstly gives some reliability guarantee.
Secondly, it also shows that if we have K large enough, we can reduce the variance even
more.
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Numerical Experiments

We empirically investigate the behavior of EV-algorithms on several benchmark problems:

• Gym Minigrid [20] (Unlock-v0, GoToDoor-5x5-v0);

• Gym Classic Control [18] (CartPole-v1, LunarLander-v2, Acrobot-v1).

For each of these we provide charts with mean rewards illustrating the training process,
the study of gradient variance and reward variance and time complexity discussions. Here
because of small amount of space we present the most important results but the reader is
welcome in the Supplementary materials where more experiments and investigations are
presented together with all the implementation details. The code and config-files can be
found on GitHub page [37].

Overview. Below we show the discussions about several key indicators of the algo-
rithms.

1. Mean rewards. They are computed at each epoch based on the rewards obtained
during the training in 40 runs and characterize how good is the algorithm in inter-
action with the environment.

2. Standard deviation of the rewards. These are computed in the same way but
standard deviation is computed instead of mean. This values show how stable the
training goes: high values indicate that there are frequent drops or increases in
rewards.

3. Gradient variance. It is measured every 200 epochs using (3.9) with separate
set of 50 sampled trajectories with relevant policy. This is the key indicator in the
discussion of variance reduction. Surprisingly, as far as we know, we are the first
in the RL community presenting such results for classic benchmarks. The resulting
curves are averaged over 40 runs.

4. Variance Reduction Ratio. Together with Gradient Variance itself we also mea-
sure reduction ratio computed as sample variance of the estimator with baseline
divided by the sample variance without baseline (assuming bϕ = 0) in the compu-
tations of Gradient Variance. The reduction ratio is the main value of interest in
variance reduction research in Monte Carlo and MCMC.

Algorithm Performance. While observing mean rewards during the training we may
notice immediately that EV-algorithms are at least as good as A2C. In CartPole en-
vironment (Fig. 3.1 ) we conducted several experiments and present here two policy
configurations: one with simpler neural network (config5, see Fig. 3.1(a,b,c) ) and one
with more complex network (config8, see Fig. 3.1(d,e,f) ). In the first case both A2C and
EV have very similar performance but in the second case the agent learns considerably
faster with EV-based variance reduction and we get approximately 50% improvement over
A2C agent and 75% over Reinforce agent in the end and even more during the training.
The phenomenon of better performance of EV in CartPole with more complex policies
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Figure 3: The charts representing the results for CartPole environment: (a,b,c) represent
mean rewards, standard deviation of the rewards and gradient variance reduction ratio
for config5 and (d,e,f) show the same information about config8.

is observed often, more detailed discussion is placed in Supplementary. As to Acrobot

(see Fig. 3.2(a)), we see EV-algorithms giving better speed-up in the training. In the
beginning EVm allows to learn faster but in the end the performance is the same as A2C.
One of the reasons of such behavior can be the fact that learning rate becomes small and
the agent already reaches the ceiling. Unlock (Fig. 3.3(a)) is the example of the environ-
ments where all algorithms work similarly: in terms of rewards we cannot see significant
improvement even over Reinforce.
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Figure 4: The charts representing the results for Acrobot environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c) displays the gradient
variance reduction ratios.

Stability of Training. When we study the charts for standard deviation of the rewards
(Fig. 3.1(b,e),3.2(b),3.3(b)), we can see that EV-methods are better in terms of stability
of the training, the algorithm more rarely has drops than that of A2C. This is greatly
illustrated by CartPole in Fig. 3.1(b,e) where the standard deviation is about 2 times
less than in case of A2C. This holds for both configurations. Fig. 3.2 illustrating the
experiments with Acrobot show that until the ceiling is reached EV methods still can
have lower variance. In Unlock presented in Fig. 3.3(b) we have not observed a significant
difference in reward variance.
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Figure 5: The charts representing the results for Unlock environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c) displays the gradient
variance reduction ratios.

Gradient Variance and its Influence. The first thing we can notice reviewing the
gradient variance is that A2C and EV reduce the variance similarly in Unlock. CartPole
(see Fig. 3.1(c,f)), however, gives an example of the case where EV works completely
differently to A2C, it reduces the variance almost 100-1000 times in both policy configu-
rations. Similar picture we can observe in all CartPole experiments. We can see that in
Unlock shown in Fig. 3.3 the variance can also be reduced approximately 10-100 times,
however, we see very little gain in rewards. It shows that in some environments train-
ing does not respond to the variance reduction; as a reason, it can be just not enough
to give the improvement. The last thing we would like to note is that reward variance
measured in previous sub-section is not an indicator of variance reduction since we have
shown gradient variance reduction in all cases. Reward variance is decreased in relation to
Reinforce, however, only in CartPole environement. Therefore, it cannot be used as a key
metric for studying variance reduction in RL. The connection between reward variance
and gradient variance seems to be an unanswered question in the literature.

Conclusion

Considering the first goal, for discrete-time optimal stopping problems we have established
semitractability for the proposed WSM algorithm under weak assumption of Markov chain
with transition kernel possessing a density. In the most common case of infinitely smooth
continuation functions many regression based algorithms, including LS, are also semi-
tractable for discrete-time optimal stopping problems. However, as we have shown, when
going to continuous optimal stopping problem, regression method gives infinite semi-
tractability index while WSM’s index remains bounded, the experiments have clearly
shown the practical consequences of it.

In the second direction we have achieved an improved finite time convergence analysis
of the linear two timescale SA on both martingale and Markovian noises with relaxed con-
ditions. Our analysis show that a tight analysis is possible through deriving and solving
a sequence of recursive error bounds.

As to the third goal, we suggested to use empirical variance which in turn resulted in
EV-methods. The motivation of EV-algorithms is more about actual variance reduction
than in case of A2C and their performance is at least as good as A2C in terms of variance
reduction and rewards. For them we also have suggested the first in the literature prob-
abilistic bound for the variance of the gradient estimate under some mild assumptions.
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EV-algorithms can be more stable in training which can allow to make sudden drops
during the training less frequent. We also have for the first time presented the study
of actual gradient variance reduction in classic benchmark problems. Our results have
shown that variance reduction can help in the training but sometimes the environment’s
specific features do not allow to achieve gain in rewards. Therefore, variance reduction
technique needs to be used during the training but the exact circumstances in which it
helps are yet to be discovered.
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Introduction

Stochastic optimal control problems are very often encountered in various practical ar-
eas: from finance [35, 77] to engineering [12]. Recently they have got a new attention
and new challenges in the light of developing Reinforcement Learning (RL), in some sense
presenting itself as the intersection of optimal control, statistics and machine learning [70].

Such class of problems can be defined as follows. Let (Ω,F ,P, (Ft)t≥0) be a filtered
probability space with filtration (Ft)t≥0. Assume some set U of progressively measurable
stochastic processes U : R≥0 × Ω → R

n called controls and set of controlled processes

X =
{
XU

t : U ∈ U
}

where for every control U each (XU
t )t≥0 is an R

d-valued (Ft)t≥0-adapted stochastic process.
We also set functional J : X → R and call it gain functional.

Definition 1. The problem of searching U∗ ∈ Arg maxU∈U J(XU) is called stochastic
optimal control problem.

Also in practice (especially in reinforcement learning, see [70]) as a technical module
of some algorithms it is needed to evaluate the given decision rule and so one gets an
evaluation problem.

Definition 2. The problem of evaluating J(XU) given a control U in some form is called
control evaluation problem.

Of course, with such abstract formulation we cannot claim anything about the exis-
tence of the solutions or their qualities. The question becomes much more clear when
we consider more specific formulations. In the thesis the two more specific problems
are considered: optimal stopping for a stochastic differential equation(SDE) and Markov
Decision Problem (MDP).

Problem 1. (Optimal stopping problem for an SDE, [77, 35] ) Assume T > 0 and let
process Xt be set with an Ito SDE for t ∈ [0, T )

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (35)

with initial condition XU
0 = x0 ∈ R

d, where functions

b : [0, T ) ×R
d × U → R

d, σ : [0, T ) ×R
d × U → R

d×n

are two continuous functions satisfying Lipschitz condition in the second argument and
linear growth condition with constant K:

∥b(t, x, u)∥2 + ∥σ(t, x, u)∥2 ≤ K(1 + ∥x∥2 + ∥u∥2)

35



with ∥·∥2 denoting the appropriate Euclidean 2-norm. With such assumption we may
ensure that the unique strong solution exists. Let gt : R → R for every t ∈ [0, T ] be some
function called payoff. Consider an agent observing the process, at time t′ ∈ [0, T ] he
knows the values of Xt for all t ≤ t′. His goal is to choose the time τ when to take one
particular decision (stop the process, as it is often called) which gives him payoff gτ (Xτ ).
Formally, we are interested in choosing a stopping time τ taking values in [0, T ] from the
set of admissible stopping times T maximizing the expected discounted reward of the
agent:

τ∗ = arg max
τ∈T

E [gτ (Xτ )] .

The most adopted by practitioners methods are invented with the ideas of Longstaff-
Schwarz(LS)[53] and Tsitsiklis-Van Roy [80] algorithms in mind. They exploit dynamic
programming principle and approximate conditional expectations using least-squares re-
gression on a given basis of functions on each backward induction step. Longstaff and
Schwarz demonstrated the efficiency of their approach through a number of numerical
examples and in [22] and [89] general convergence properties of the method were estab-
lished.

Problem 2. (Markov Decision Process, MDP, [70]) Assume some sets S,A called state
and action spaces (they have to be measurable spaces) and define discrete-time time-
homogenuous Markov chain St as follows. Let there be Π, the set of stochastic decision
rules (also called policies) π : S → P(A), i.e. each policy takes the state s ∈ S and returns
probability distribution over the action space denoted as π(·|s). Let us set transition
kernel P (·|s, a) as a probability distribution over the state space given the current state
and action. Set S0 = s0 almost surely and then iteratively update St to St+1 using the
following scheme:

At ∼ π(·|St),

St+1 ∼ P (·|St, At).

Consider a deterministic uniformly bounded reward function R : S × A → R. The
natural illustration of MDP is that we have an agent in the environment with state
descriptions from S; the agent at each time t must make a decision At using his policy,
after that he receives a reward R(St, At) and the environment changes its state as shown
above. The optimal control problem is to maximize with respect to policy the expected
sum of discounted rewards

J(π) = E

[
T∑

t=0

γtR(St, At)

]
,

where γ ∈ (0, 1) plays the role of the discounting factor and horizon T can be finite
(finite-horizon problem) or infinite (infinite-horizon problem), or even random (episodic
problem). MDP is a fundamental model in Reinforcement Learning(RL) being currently
a fast-developing area with promising and existing applications in numerous innovative
areas of the society: starting from AI for games [82, 11, 66] and going to energy manage-
ment systems [49, 32], manufacturing and robotics [2] to name a few. Naturally, RL gives
the practitioners new sets of control tools for any kind of automatization [33].

Policy evaluation is a vital part of the model-free algorithms based on policy iter-
ation and it is normally based on Stochastic Approximation(SA) schemes, invented in
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[62]. SA itself currently became a well-studied technique [10, 47, 15], however RL gives
new challenges and new assumptions. Among others, linear SA schemes are popular in
reinforcement learning (RL) as they lead to policy evaluation methods with linear func-
tion approximation, of particular importance is temporal difference (TD) learning [69] for
which finite time analysis has been reported in [68, 48, 13, 25].

Aim of the Work

The aim of our research is to investigate the problems above in several ways.

1. Regarding the optimal stopping problem discussed in Section 1, we are aiming at
presenting the complexity analysis of Weighted Stochastic Mesh(WSM) algorithm
similar to the method of [17] for discrete- and continuous-time optimal stopping
problem and compare it to other popular methods via new complexity metric since
with respect to classic complexity metric all algorithms for optimal stopping are
intractable and there is no way to compare them taking the complexity into account.

2. In Section 2 we aimed at obtaining finite-time convergence analysis for two-timescale
linear Stochastic Approximation(SA) scheme under Markov noise assumptions. Such
setting is exactly the setting of classic policy evaluation algorithms for MDP: tem-
poral difference learning (TD(0) of [69]) and gradient temporal difference algorithms
(GTD[72],GTD2 and TDC [73]). The problem with existing analysis is that it does
not consider the Markov nature of the data (which is a natural thing since practi-
tioners work in MDP setting) or the assumptions are too restrictive.

3. Finally, in Section 3 we set up to propose a new method for variance reduction
based on empirical variance minimization of [8] in policy-gradient algorithms. The
goal is, firstly, to obtain an algorithm able to give the improvement over the clas-
sic optimization goal for control variates in Advantage Actor-Critic(A2C) schemes
[74] and, secondly, give some theoretical guarantees regarding the actual variance
reduction.

Key Results

1. To address the first aim, we present for the first time the complexity analysis of WSM
algorithm based on [17] and consider also the case when the transition density p(x|y)
is not known but can be approximated. We propose a new metric for comparison
of the algorithms for optimal stopping problems called semitractability index and
compare with it several algorithms popular in the community of practitioners: LS-
algorithm [53] and QTM [7].

2. We provide improved convergence rates for the linear two-timescale SA in both
martingale and Markovian noise settings. Our analysis allow for general step sizes
schedules, including constant, piecewise-constant, and diminishing step sizes ex-
plored in the prior works [40, 24, 88, 27]. Unlike the prior works [51, 24, 88], our
convergence results are obtained without requiring a projection step throughout the
SA iterations. Finally, with an additional assumption on the step size, we compute
an exact asymptotic expansion of the expected squared error to show the tightness
of our upper bounds.
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3. We provide two new policy-gradient methods (EV-methods) based on EV-criterion
and show that they perform well in several practical problems in comparison to
A2C-criterion. Also theoretical variance bounds for EV-methods are provided us-
ing the ideas of [8], this the first result concerning the variance bounds with high
probability with the help of the tools of statistical learning in the setting of RL.
Measurements of the variance of the gradient estimates present several somewhat
surprising observations. Firstly, EV-methods are able to solve variance reduction
problem considerably better than A2C. Secondly, we see some confirmations of the
hypothesis of [81]: variance reduction has its effect but some environments are not so
responsive to this. We present the first experimental investigation of EV-criterion of
policy-gradient methods in classic benchmark problems and the first implementation
of it in the framework of PyTorch.

Author contribution. Some part of the analysis for discrete-time case, transfer from
discrete to continuous case, implementations and numerical experiments in paper 1 are
done by the Author. In paper 2 the Author has done substantial work in preparing the
literature review and writing the proofs for the martingale case and presented numerical
results and illustrations. In the last direction the Author has done the main steps of the
proof of the probabilistic bound, verification of the assumptions, literature review and has
taken part in the implementation of the algorithms and experiment design.
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Chapter 1

Semitractability of Optimal Stopping

Problem via Weighted Stochastic Mesh

Algorithm

The results of this chapter are published in [9].

1.1 Introduction

Optimal stopping problem consists in constructing a decision rule saying when to take one
particular decision ("stop" the process). Being a classic problem in mathematical finance,
it is in the core of pricing various types of options, the most popular are American and
European [35]. We consider two types of problems.

1. (Continuous-time optimal stopping) Assume set of stopping opportunities [0, T ] and
let (Xt)t∈[0,T ] be, as set in Problem 1, an Ito diffusion process set by (35) The problem
is the same as above but with gt being a payoff function for each t ∈ [0, T ] and T
being the set of stopping times taking values in range [0, T ].

2. (Discrete-time optimal stopping) Assume a time-discretized version of the problem
above with some finite set of stopping opportunities L = {0, .., L} for some L ∈ Z>0

and let (Zl)l∈L be a Markov chain in R
d obtained after the discretization. The

problem is to find stopping time τ ∗ giving

E [gτ∗(Zτ∗) | Z0] = sup
τ∈T

E [gτ (Zτ ) | Z0] ,

where gl are payoff functions Rd → R≥0 at times l ∈ L and T is set of stopping times
taking values in L. For simplicity and without loss of generality we assume that
Markov chain (Zl)l∈L is time-homogeneous with one-step transition density denoted
by p(y|x) so that

P (Zk+1 ∈ dy | Zk = x) = p(y|x)dy

for all x, y ∈ R
d.

Despite existing convergence results, it turns out that comparing different algorithms
for optimal stopping problem based solely on their convergence rates is not possible since
these algorithms may be significantly different from a computational standpoint. The
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core approaches to complexity analysis in numerical algorithms can be found in [58] and
the references therein. The main problem studied in this literature is the computation of
integrals via deterministic and stochastic algorithms. Optimal stopping problems, in fact,
present computations of several nested integrals since the dynamic programming principle
is used. Hence, the existing results from standard complexity theory cannot be directly
transferred to the complexity analysis of optimal stopping problem. In particular, for LS
algorithm [89, Cor. 3.10] implies that for a fixed number L of stopping opportunities and
a popular choice of polynomial basis functions of degree less or equal to m, the error of
estimating the corresponding value function at one point is bounded by

κ 5L

(√
md

N
+

1

mα

)
, (1.1)

therefore,

Proposition 1. For L stopping opportunities and underlying dimension d, the computa-
tional work for achieving an accuracy ε by the LS algorithm is bounded by

CL (ε, d) = κ1
L 5(κ2+L)(2+3d/α)

ε2+3d/α
(1.2)

with κ1, κ2 being certain constants.

If the problem is in continuous time, then by tuning time discretization we arrive at
complexity of LS algorithm possibly growing even faster than exp(ε−1/β) for some β > 0.
The similar bound holds for other simulation based regression algorithms, including the
one by Tsitsiklis and Van Roy [80]. In [29] the more general regression scheme is con-
sidered with similar type of results. It is important also to mention [36] where the novel
Monte-Carlo-type scheme is developed with complexity independent of d but, unfortu-
nately, exponential in ε−1.

Tractability is an important notion in the analysis of numerical algorithms and one
of the ways to define it is as follows. A d-dimensional numerical problem, for example,
computation of an integral like

∫
[0,1]d

f(x)dx, is called tractable [58], if there is an algorithm

to solve it with complexity C(ε, d) satisfying

lim
d+ε−1→∞

ln C(ε, d)

d+ ε−1
= 0. (1.3)

In the case of optimal stopping problems, however, such a definition is not very meaningful:
in all regression-type algorithms already in the case of discrete-time problem one has

lim sup
d+ε→∞

ln C(ε, d)

d+ ε−1
= ∞

(based on the convergence rates known in the literature). Thus, even for a discrete-time
optimal stopping problem regression-type algorithms are intractable with respect to this
definition. For example, with the results of [78] it can be shown that the error of the
estimation of the value function in this case has the form

5L

(√
md

N
+ e−θm

)
, θ > 0.
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However, this observation also applies to Weighted Stochastic Mesh(WSM) algorithm of
Broadie and Glasserman [17], making almost all algorithms intractable. This motivates
the development of more flexible complexity metric for the comparison of the algorithms
for optimal stopping problems.

In turns out that not much is known about the convergence properties of WSM method
except some preliminary results in discrete case [1]. The authors, however, do not give the
dependence of the errors on the underlying dimension and the number of stopping times
and their analysis is based on a rather restrictive assumption of compact state space.
Similar type of algorithm we present here was also analyzed in the work of Rust [63], but
there the setting of discrete-time Markov Decision Process was considered and therefore,
the analysis does not directly transfer to optimal stopping. Also the paper considers very
restrictive assumptions of compact state space and Lipschitz continuity of transition den-
sities with Lipschitz constant not depending on the dimension d.

1.2 Complexity Metrics

It turns out that the criterion (1.3) puts too much importance on the dimension d on
the one hand and on the other hand is too relaxed in dependence on ε. With such
definition the algorithm with complexity d2exp (ε−1/ ln ln ... ln ε−1) is tractable while one
with complexity 2d/ε is not despite that running an algorithm with the former complexity
seems to be practically impossible even with d = 1. Therefore, we proposed another
approach to tractability.

Definition 3. For an algorithm with computational complexity C(ε, d) the number

ΓC := lim sup
d→∞

lim sup
ε→0

ln C(ε, d)

d ln(1/ε)
. (1.4)

is called semitractability index.

Definition 4. The problem is called semitractable if there exists an algorithm solving it
with ΓC = 0.

1.3 WSM Algorithm

Let us present a Weighted Stochastic Mesh (WSM) algorithm for a discrete-time optimal
stopping problem. The algorithm is inspired by [17] but it differs in special choice of
weights and truncation level. First, let us define the discrete Snell envelope process:

Ul = Ul(Zl) := sup
τ∈Tl,L

E [gτ (Zτ ) | Fl] , l = 0, ..L,

where Tl,L is the set of stopping times taking values in the set {l, .., L}. Snell envelope
satisfies dynamic programming principle, therefore, we can compute Ul using backward
induction:

UL(ZL) = gL(ZL),

Ul(Zl) = max {gl(Zl), E [Ul+1(Zl+1) | Zl]} , l = 0, .., L− 1.
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For technical purposes of the analysis we set truncation level R > 0 and define the
truncated version of this backward induction:

ŨL(ZL) = gL(ZL), (1.5)

Ũl(Zl) = max
{
gl(Zl), E

[
Ũl+1(Zl+1) | Zl

]}
· 1BR

(Zl), l = 0, .., L− 1, (1.6)

where 1BR
is the indicator function of the 0-centered euclidean ball of radius R in R

d.
Thus, the values vanish when the process is out of BR. Also by construction it holds that

∥Ũl∥∞ ≤ GR
def
= max

0≤l≤L
sup
z∈BR

gl(z), (1.7)

We sample N independent trajectories (Z
(n)
l )l∈L with Z

(n)
0 = x0, n = 1, .., N with the

help of transition density p(y|x). To estimate the conditional expectations, we use the
following approximation:

E

[
Ũl+1(Zl+1) | Zl = x

]
≈

N∑

n=1

Ũl+1

(
Z

(n)
l+1

) p
(
Z

(n)
l+1 | x

)

∑N
m=1 p

(
Z

(n)
l+1 | Z(m)

l

) . (1.8)

We start by setting UL(Z
(n)
L ) = gL(Z

(n)
L ) for n = 1, .., N . Once U l+1 is constructed on the

grid for 0 < l + 1 ≤ L, we proceed via dynamic programming and set

U l(Z
(r)
l )

def
= max

{
gl(Z

(r)
l ),

N∑

n=1

U
(n)

l+1(Z
(n)
l+1)

p(Z
(n)
l+1|Z

(r)
l )

∑N
m=1 p(Z

(n)
l+1|Z

(m)
l )

}
✶
Z

(r)
l

∈BR
, (1.9)

To sum up, WSM algorithm is as follows:

1. Simulate N independent trajectories (Z
(1)
l )l∈L, .., (Z

(N)
l )l∈L;

2. Set UL(Z
(n)
L ) = gL(Z

(n)
L ) for n = 1, .., N ;

3. For l = L − 1, .., 1 compute U l(Z
(n)
l ) for all n = 1, .., N using (1.6) and (1.8) for

approximation of the conditional expectation;

4. Compute

U0(x0) = max

{
g0(x0) ,

1

N

N∑

n=1

U
(n)

1

(
Z

(n)
1

)}
.

One more thing to notice is that one step of backward induction with (1.6) and (1.8)
takes N2c∗ with c∗ being the price of multiplication. Thus, the total computational cost
of the algorithms is c∗N

2L and given that c∗ ≪ c
(d)
f , the cost of one computation of

transition density, it is bounded from above by c
(d)
f N2L.

1.4 Error and complexity analysis in discrete time

In this section we analyze convergence of the WSM estimate to the solution of the discrete
optimal stopping problem for l = 0 and a fixed x0 ∈ R

d as N → ∞. Let us first bound a
distance between Ul and Ũl, l = 0, . . . , L.
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Proposition 2. With

εl,R
def
=

∫

|x−x0|>R

Ul(x)pl(x|x0) dx

l = 0, . . . , L, it holds that

∫ ∣∣Ul(x) − Ũl(x)
∣∣pl(x|x0) dx ≤

L∑

j=l

εj,R. (1.10)

Proposition 3. Suppose that

max
0≤l≤L

gl(x) ≤ cg(1 + |x|), x ∈ R
d (1.11)

and that

E

[
max
l≤l′≤L

|Zl′ |
∣∣∣∣Zl = x

]
≤ cZ(1 + |x|), x ∈ R

d. (1.12)

Suppose further that for some κ, α > 0, and l = 1, . . . , L,

0 < pl(y|x) ≤ κ

(2παl)d/2
e−

|x−y|2
2αl (1.13)

for all x, y ∈ R
d. One then has

∫ ∣∣Ul(x) − Ũl(x)
∣∣pl(x|x0) dx

≤ Lcgκ
(

1 + cZ + cZ |x0| + cZ
√
dαL

)
2d/4e−

R2

8αL . (1.14)

Next we control the discrepancy between U0 and Ũ0.

Proposition 4. With

F 2
R

def
= max

1≤l≤L

∫ ∫

|y−x0|≤R

p2(y|x)

pl+1(y|x0)
pl(x|x0) dxdy, (1.15)

and N such that (1 + FR) /
√
N < 1, it holds that

E

[∣∣U0 − Ũ0

∣∣
]
≤
(

3 +
√

2
)
LGR

1 + FR√
N

.

Corollary 5. Under the assumptions of Proposition 3, we have for (1.15) the estimate

F 2
R ≤ κ

(2πα)d/2
Vol(BR) =

κRd

(2α)d/2Γ (1 + d/2)
≤ κ (e/α)d/2Rdd−d/2,

where the last inequality follows from Γ (1 + a) ≥ aae−a for any a ≥ 1/2. Then by com-
bining (1.14) with Proposition 4 we obtain the error estimate,

E
[∣∣U0 − U0

∣∣] ≤ Lcgκ
(

1 + cZ + cZ |x0| + cZ
√
dαL

)
2d/4e−

R2

8αL

+
(

3 +
√

2
)
Lcg(1 +R)

1 + κ
1/2 (e/α)d/4Rd/2d−d/4

√
N

. (1.16)
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LS WSM QTM
3/α 0 2

Table 1.1: Tractability index Γ of different algorithms for discrete time optimal stopping
problems

Theorem 6. Under the assumptions of Proposition 3 the complexity of the WSM algo-
rithm is bounded from above by

C(ε, d) = c1α
2c4gκ

2c
(d)
f cd2L

d+7ε−4

× logd+2


L (1 + cZ + cZ |x0|) e

cZ

√
αL

1+cZ+cZ |x0| 23/4 (cgκ ∨ 1)

ε


 , (1.17)

where c1 > 0 and c2 > 1 are natural constants and c
(d)
f stands for the cost of computing

the transition density pl(y|x) at one point (x, y).

Corollary 7. For a fixed L > 0 the discrete-time optimal stopping problem with g and
(Zl)l≥0 satisfying (1.11), (1.12) and (1.13) is semi-tractable, provided that the complexity
of computing the transition density pl(y|x) at one point (x, y) is at most polynomial in
d. Different approximation algorithms for discrete time optimal stopping problems can be
compared using the tractability index (1.4). For example, it follows from (1.2) that the
tractability index of the LS approach is equal to 3/α. If the continuation functions are
analytic, then the tractability index for the LS approach becomes zero. Moreover from
inspection of Theorem 2.4 in [6], we see that the Quantization Tree Method (QTM) has
tractability index 2.

1.4.1 Approximation of the transition density

A crucial condition for semi-tractability in the discrete exercise case is the availability
of the transition density p(y|x) of the chain (Zl)l≥0 in a closed (or cheaply computable)
form. However, we can show that if the sequence of approximating densities pn(y|x),
n ∈ N converging to p(y|x) can be constructed in such a way that

∣∣∣∣
pn(y|z) − p(y|z)

pn(y|z)

∣∣∣∣ ≲
(1 + |y − x0|m + |z − x0|m)n

n!
, y, z ∈ BRn

(1.18)

for some m ∈ N and a sequence Rn ↗ ∞, n ↗ ∞, then under proper assumptions on
the growth of Rn and the cost of computing pn (in fact it should be at most polynomial
in d), one can derive a complexity bound C(ε, d) satisfying

lim
ε↘0

log C(ε, d)

log 1
ε

is finite and does not depend on d .

The proof involves a (rather straightforward) extension of the present one based on exact
transition densities. But, on the one hand, one of the main results in this paper, tractabil-
ity index 2 of the continuous time stopping problem, does not rely on transition density
approximation, and on the other hand, such a proof would entail a notational blow up
and might detract the reader from the main lines, therefore the details are omitted.
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To construct a sequence of approximations pn(y|z) satisfying the assumption (1.18),
one can use various small-time expansions for transition densities of stochastic processes,
see, for example, [4] and [50]. Let us exemplify this type of approximation in the case of
one-dimensional diffusion processes of the form:

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x0,

where b is a bounded function, twice continuously differentiable, with bounded derivatives
and σ is a function with three continuous and bounded derivatives such that there exist two
positive constants σ◦, σ

◦ with σ◦ ≤ σ(x) ≤ σ◦. Consider a Markov chain (Zl)l≥0 defined as

a time discretization of (Xt)t≥0, that is, Zl
def
= X∆l, l = 0, 1, 2, . . . for some ∆ > 0. Under

the above conditions the following representation for the (one-step) transition density p
of the chain Z is proven in [31] (see also [23] for more general setting):

p(y|x) =
1√

2π∆

1

σ(y)
exp

(
−(s(x) − s(y))2

2∆

)
U∆(s(x), s(y)), x, y ∈ R,

with U∆(x, y) = R∆(x, y) exp
[∫ x

0
b̄(z) dz −

∫ y

0
b̄(z) dz

]
,

R∆(x, y) = E

[
exp

(
−∆

∫ 1

0

ρ̄(x+ z(y − x) +
√

∆Bz) dz

)]
, (1.19)

where Bz is a standard Brownian bridge, s(x) =
∫ x

0
dy
σ(y)

, g = s−1 and

ρ̄ = (b̄2 + b̄′)/2 with b̄ = (b/σ) ◦ g − σ′ ◦ g/2.

Note that the expectation in (1.19) is taken with respect to the known distribution of the
Brownian bridge Bz. By expanding the exponent in (1.19) into Taylor series, we get for
∆ small enough

p(x|y) =
1√

2π∆

1

σ(y)
exp

(
−(s(x) − s(y))2

2∆

)

× exp

[∫ x

0

b̄(z) dz −
∫ y

0

b̄(z) dz

] ∞∑

k=0

∆k

k!
ck(x, y)

with

ck(x, y) = (−1)kE

[(∫ 1

0

ρ̄(x+ z(y − x) +
√

∆Bz) dz

)k
]
.

If ρ̄ is uniformly bounded by a constant D > 0, then the above series converges uniformly
in x and y for all ∆ small enough. Set

pn(x|y) =
1√

2π∆

1

σ(y)
exp

(
−(s(x) − s(y))2

2∆

)

× exp

[∫ x

0

b̄(z) dz −
∫ y

0

b̄(z) dz

]{ n∑

k=0

∆k

k!
ck(x, y)

}
.
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It obviously holds pn(y|x) > 0 for ∆ < ∆0(D) and
∣∣∣∣
pn(y|z) − p(y|z)

pn(y|z)

∣∣∣∣ ≤
(∆D)n

(1 − ∆D exp(∆D))
(1.20)

uniformly for all x, y ∈ R. Hence the assumption (1.18) is satisfied with m = 0, provided
that ∆ < ∆0 for some ∆0 depending only on D. Similarly if ρ̄ ≤ 0, then (1.18) holds. To
sample from pn we can use the well-known acceptance rejection method which does not
require the exact knowledge of a scaling factor

∫
pn(y|x) dy.

1.5 Continuous time optimal stopping for diffusions

In this section we consider diffusion processes of the form

dX i
s = bi(Xs) ds+

m∑

j=1

σij(Xs) dW
j
s , X i

0 = xi0, i = 1, . . . , d, (1.21)

where b : Rd → R
d and σ : Rd → R

d×m, are Lipschitz continuous and W = (W 1, . . . ,Wm)
is a m-dimensional standard Wiener process on a probability space (Ω,F , P ). As usual,
the (augmented) filtration generated by (Ws)s≥0 is denoted by (Fs)s≥0. We are interested
in solving optimal stopping problems of the form:

U⋆
t = esssup

τ∈Tt,T

E[e−r(τ−t)f(Xτ )|Ft], (1.22)

where f is a given real valued function on R
d, r ≥ 0, and Tt,T stands for the set of

stopping times τ taking values in [t, T ]. The problem (1.22) is related to the so-called free
boundary problem for the corresponding partial differential equation. Let us introduce
the differential operator Lt :

Ltu(t, x) =
1

2

d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(t, x) +

d∑

i=1

bi(x)
∂u

∂xi
(t, x),

where

aij(x) =
d∑

k=1

σik(x)σjk(x).

We denote by X t,x
s (or X t,x(s)), s ≥ T, the solution of (1.21) starting at moment t from

x : X t,x
t = x. Denote by u(t, x) a regular solution of the following system of partial

differential inequalities:

∂u

∂t
+ Ltu− ru ≤ 0, u ≥ f, (t, x) ∈ [0, T ) × R

d, (1.23)
(
∂u

∂t
+ Ltu− ru

)
(f − u) = 0, (t, x) ∈ [0, T ) × R

d,

u(T, x) = f(x), x ∈ R
d,

then under some mild conditions (see, e.g. [41])

u(t, x) = sup
τ∈Tt,T

E[e−r(τ−t)f(X t,x
τ )] , (t, x) ∈ [0, T ] × R

d, (1.24)
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that is, u(t, x) = U⋆
t (x).

With this notation established, it is worth discussing the main issue that we are going
to address in this section. Our goal is to estimate u(t, x) at a given point (t0, x0) with
accuracy less than ε by an algorithm with complexity C⋆(ε, d) which is polynomial in
1/ε. As already mentioned in the introduction some well known algorithms such as the
regression ones fail to achieve this goal (at least according to the existing complexity
bounds in the literature).

Let us introduce the Snell envelope process:

U⋆
t

def
= esssupτ∈Tt,T

EFt
[g(τ,Xτ )] , (1.25)

where (somewhat more general than in (1.22)) g is a given nonnegative function on R≥0×
R

d. In the first step we perform a time discretization by introducing a finite set of stopping
dates tl = lh, l = 1, . . . , L, with h = T/L and L some natural number, and next consider
the discretized Snell envelope process:

U◦
tl
(Xtl)

def
= esssup

τ∈Tl,L

EFtl
[g(τ,Xτ )] ,

where Tl,L stands for the set of stopping times with values in the set {tl, . . . , tL}. Note that
the measurable functions U◦

tl
(·) exist due to Markovianity of the process X. The error due

to the time discretization is well studied in the literature. We will rely on the following
result which is implied by Thm. 2.1 in [6] for instance.

Proposition 8. Let g : [0, T ]×R
d → R be Lipschitz continuous and p ≥ 1. Then one has

that

max
l=0,...,L

∥∥U⋆
tl
(Xtl) − U◦

tl
(Xtl)

∥∥
p
≤ c◦e

C◦T (1 + |x0|)
L

,

where the constants c◦, C◦ > 0 depend on the Lipschitz constants for b, σ, and g, respec-
tively.

In order to achieve an acceptable discretization error we choose a sufficiently large L,
and then concentrate on the computation of U◦.

In the next step we approximate the underlying process X using some strong dis-
cretization scheme on the time grid ti = iT/L, i = 0, . . . , L, yielding an approximation X.
It is assumed that the one step transition densities of this scheme are explicitly known.
The simplest and the most popular scheme is the Euler scheme,

X
i

tl+1
= X

i

tl
+ bi(X tl)h+

m∑

j=1

σij(X tl)
(
W j

tl+1
−W j

tl

)
, X

i

0 = xi0, (1.26)

i = 1, . . . , d, which in general has strong convergence order 1/2, and the one-step transition
density of the chain (X tl+1

)l≥0 is given by

p̄h(y|x)
def
=

1√
(2πh)d |Σ|

exp

[
−1

2
h−1(y − x− b(x)h)⊤Σ−1(y − x− b(x)h)

]
(1.27)

with Σ = σσ⊤ ∈ R
d×d and h = T/L. Now we will turn to the discrete time optimal

stopping problem with possible stopping times {tl = lh, l = 0, . . . , L}. To this end we

introduce the discrete time Markov chain Zl
def
= X tl adapted to the filtration (Fl)

def
= (Ftl),
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and gl(x)
def
= g(tl, x) (while abusing notation slightly) and consider the discretized Snell

envelope process

Utl(X tl)
def
= esssup

τ∈Tl,L

EFtl

[
g(τ,Xτ )

]
= esssup

ι∈Il,L

EFl
[gι(Zι)]

def
= Ul(Zl), (1.28)

where Il,L stands for the set of stopping indices with values in {l, . . . , L}, and the mea-
surable functions Utl(·) (or Ul(·)) exist due to Markovianity of the process X (or Z). The
distance between U and U◦ is controlled by the next proposition.

Proposition 9. There exists a constant CEuler > 0 depending on the Lipschitz constants
of b, σ, and g, such that

max
l=0,...,L

E
[∣∣U◦

tl
(Xtl) − Utl(X tl)

∣∣] ≤ CEuler
√
h.

Thus, combining Proposition 8 and Proposition 9 yields:

Corollary 10. If X is constructed by the Euler scheme with time step size h = T/L,
where L is the number of discretization steps, then under the conditions of Proposition 8
and Proposition 9 we have that

E [|U⋆
0 (x0) − U0(x0)|] ≲ CEuler

√
h for h→ 0, (1.29)

where ≲ stands for inequality up to constant depending on c◦, C◦ and CEuler.

Since the transition densities of the Euler scheme are explicitly known (see (1.27)),
the WSM algorithm can be directly used for constructing an approximation U0(x0) based
on the paths of the Markov chain (Zl). To derive the complexity bounds of the resulting
estimate, we shall make the following assumptions.

(AG) Suppose that cg > 0 is such that

g(t, x) ≤ cg (1 + |x|) for all 0 ≤ t ≤ T, x ∈ R
d. (1.30)

(AX) Assume that there exists a constant cX̄ > 0 such that for all 0 ≤ l ≤ L,

EFtl

[
sup

l≤l′≤L

∣∣X l′h

∣∣
∣∣∣X lh = x

]
≤ cX̄ (1 + |x|) , x ∈ R

d, (1.31)

uniformly in L (hence h). This assumption is satisfied under Lipschitz conditions on
the coefficients of the SDE (1.21), and can be proved using the Burkholder-Davis-
Gundy inequality and the Gronwall lemma.

(AP) Assume furthermore that
(
X lh, l = 0, . . . , L

)
is time homogeneous with transi-

tion densities plh(y|x) that satisfy the Aronson type inequality: there exist positive
constants κ and α such that for any x, y ∈ R

d and any l > 0, it holds that

0 < plh(y|x) ≤ κ

(2παlh)d/2
e−

|x−y|2
2αlh .

This assumption holds if the coefficients in (1.21) are bounded and σ is uniformly
elliptic.
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The next proposition provides complexity bounds for the WSM algorithm in the case
of continuous time optimal stopping problems.

Proposition 11. Assume that the assumptions (AG), (AX) and (AP) hold, then

• the cost of computing U0(x0) in (1.28) for a fixed L > 0 with precision ε > 0 via the
WSM algorithm is bounded from above by

C(ε, d) = c1α
2c4gκ

2c
(d)
f cd2

T d+7

hd+5

× ε−4 logd+2




T
h

(1 + cX̄ + cX̄ |x0|) e
c
X̄

√
αT

1+c
X̄

+c
X̄

|x0| 23/4 (cgκ ∨ 1)

ε


 . (1.32)

• the cost of computing U⋆
0 (x0) with an accuracy ε > 0 via the WSM algorithm is

bounded from above by

C⋆(ε, d) = c1α
2c4gκ

2c
(d)
f cd2

T d+7

ε2d+14

× logd+2


T (1 + cX̄ + cX̄ |x0|) e

c
X̄

√
αT

1+c
X̄

+c
X̄

|x0| 23/4 (cgκ ∨ 1)

ε


 . (1.33)

The first statement follows directly from Proposition 6 by taking in (1.17), α = αh,
cZ = cX̄ , and L = T/h. Then by setting h ≍ ε2 we obtain (1.33) (with possibly modified
natural constants c1, c2).

Discussion. As can be seen from (1.33),

ΓWSM = lim
d↗∞

lim
ε↘0

log C⋆(ε, d)

d log ε−1
= 2 (1.34)

and this shows the efficiency of the proposed algorithm as compared to the existing algo-
rithms for continuous time optimal stopping problems at least as far as the tractability
index is concerned. Indeed, the only algorithm available in the literature with a prov-
ably finite limit of type (1.34) is the quantization tree method (QTM) of Bally, Pagès,
and Printems [6]. Indeed, by tending the number of stopping times and the quantization
number to infinity such that the corresponding errors in Thm. 2.4-b in [6] are balanced,
we derive the following complexity upper bound

C⋆
QTM (ε, d) = O

(
1

ε6d+6

)
(1.35)

Hence ΓQTM = 6.

Summarizing. For discrete time optimal stopping problems we have established semi-
tractability for the proposed WSM algorithm with respect to rather general Markov chains
governed by certain transition kernels. Note that in the most common case of infinitely
smooth continuation functions, many regression algorithms including the LS and TV
algorithms lead to semi-tractable in discrete time optimal stopping problems. But when
passing to continuous stopping problems, the tractability index of the WSM method
remains bounded (equal to two) while the tractability index of the regression methods
tends to infinity.
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LS WSM QTM
∞ 2 6

Table 1.2: Tractability index Γ of different algorithms for continuous time optimal stop-
ping problems.

1.6 Numerical Experiments

In the following experiments we illustrate the WSM algorithm in the case of continuous-
time optimal stopping problems. A lower bound for the value function in WSM method is
obtained using a suboptimal stopping rule computed on an independent set of trajectories
(test set). This stopping rule can be constructed using any interpolation algorithm based
on the observations from the training trajectories. The fastest and the simplest way giving
good results is the nearest neighbor interpolation, in our experiments we have chosen the
number of nearest neighbors to be 500.

American put option on a single asset
To illustrate the performance of the WSM algorithm in continuous time, we consider

a problem of pricing American put option on a single asset driven by geometric Brownian
motion

Xt = X0e
σWt+(r−σ/2)t

with r denoting the riskless rate of interest, assumed to be constant, and σ being the
constant volatility. The payoff function is given by

g(x) = max(K − x, 0).

The fair price of an option is defined as

U0 = sup
τ∈T[0,T ]

E
[
e−rτg(Xτ )

]

for which there is no closed form solution but there exist numerical methods giving accu-
rate approximations to U0. We used parameters r = 0.08, σ = 0.20, K = X0 = 100, T = 3.
An accurate estimate of U0 in this particular case is obtained and reported in [44] to be
6.9320. In Fig. 1.1 we show the lower bounds obtained by WSM, LS and VF (value func-
tion regression method of [80]) in dependence of the number of stopping opportunities L
setting uniform time discretization on [0, T ] (the larger L the more dense is the grid). As
can be seen, WSM lower bound is much more stable when L increases and LS and VF
needs to use more complex regression basis to compensate for this effect.

American max-call option on five assets
The model with d = 5 assets is considered where each underlying asset has dividend

yield δ. The dynamics is set by

dXk
t = (r − δ)Xk

t dt+ σXk
t dW

k
t , k = 1, .., d,

where W k
t are independent one-dimensional Brownian motions. The parameters are set

to be r = 0.05, δ = 0.1, σ = 0.2. As before, the holder may exercise the option at any
time t ∈ [0, T ] with T = 3 and receive the payoff

g(Xt) = max
(
max

(
X1

t , .., X
d
t

)
−K, 0

)
.
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Figure 1.1: Lower bounds for the price of one-dimensional American put option approxi-
mated using different methods and uniform time discretization tk = kT/L, k = 0, .., L of
exercise dates. The numbers of training paths are Ntrain = 1000(a) and Ntrain = 2000(b)
and the number of test trajectories used for constructing the lower bounds Ntest = 20000
and is the same in both cases. In LS and VF a polynomial basis of degrees 2 and 4 is
used (mentioned in the legend).

We apply WSM and LS (with a basis of degree-2 polynomials) techniques to construct a
lower bound. The results for different L are presented in Fig. 1.2. The option price must
increase when the number of stopping opportunities increases, therefore LS-algorithm has
clearly deteriorating estimate. WSM, on the other hand has increasing lower bound which
shows that it performs considerably better than LS.

Figure 1.2: Lower bounds for the price of a five-dimensional American put option ap-
proximated using a uniform grid tk = kT/L, k = 0, .., L of exercise dates. The number of
training paths is Ntrain = 2000 and the number of test trajectories is Ntest = 5000.
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1.7 Conclusions

In our work we have presented the complexity analysis of weighted stochastic mesh al-
gorithm for solving optimal stopping problem. We also have analyzed the qualities of
the algorithm not only in discrete time but also in continuous time by using sufficient
degree of time discretization. Our theoretical results regarding semitractability demon-
strate that the algorithm is the best in regard to this metric having semitractability index
0 in discrete-time problem and 2 in continuous one. Semitractability of continuous-time
optimal stopping problem, therefore, remains to be an open question. Nevertheless, we
have seen the superior performance of WSM algorithm in continuous-time problem. It
turns out that the quality of the estimate in regression methods degrades very fast when
making the time discretization more dense and one needs to compensate with introducing
new basis functions which leads to even more computational effort. Such thing is not
observed in WSM method: the estimate remains stable with all fixed parameters and
varying time discretization.

53



Chapter 2

Finite Time Analysis of Linear

Two-Timescale Stochastic

Approximation with Markovian Noise

The results of this section are published in [43].

2.1 Introduction

Since its introduction close to 70 years ago, the stochastic approximation (SA) scheme [62]
has been a powerful tool for root finding when only noisy samples are available. During
the past two decades, considerable progresses in the practical and theoretical research of
SA have been made, see [10, 47, 15] for an overview. Among others, linear SA schemes
are popular in reinforcement learning (RL) as they lead to policy evaluation methods
with linear function approximation, of particular importance is temporal difference (TD)
learning [69] for which finite time analysis has been reported in [68, 48, 13, 25].

The TD learning scheme based on classical (linear) SA is known to be inadequate for
the off-policy learning paradigms in RL, where data samples are drawn from a behavior
policy different from the policy being evaluated [5, 79]. To circumvent this problem,
[72, 73] have suggested to replace TD learning with the gradient TD (GTD) method or
the TD with gradient correction (TDC) method. These methods fall within the scope of
linear two-timescale SA scheme introduced by [14]:

θk+1 = θk + βk{b̃1(Xk+1) − Ã11(Xk+1)θk − Ã12(Xk+1)wk}, (2.1)

wk+1 = wk + γk{b̃2(Xk+1) − Ã21(Xk+1)θk − Ã22(Xk+1)wk}. (2.2)

The above recursion involves two iterates, θk ∈ R
dθ , wk ∈ R

dw , whose updates are coupled
with each other. In the above, b̃i(x), Ãij(x) are measurable vector/matrix valued functions
on X and the random sequence (Xk)k≥0, Xk ∈ X forms an ergodic Markov chain. The
scalars γk, βk > 0 are step sizes. The above SA scheme is said to have two timescales as
the step sizes satisfy limk→∞ βk/γk < 1 such that wk is updated at a faster timescale. In
fact, wk is a ‘tracking’ term which seeks solution to a linear system characterized by θk.

The goal of this research was to characterize the finite time expected error bound with
improved convergence rate for the two timescale SA (2.1),(2.2).

The almost sure convergence of two timescale SA have been established in [14, 75,
76, 15], among others; the asymptotic convergence rates have been characterized in [46,
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57]. However, finite-time risk bounds for two timescale SA have not been analyzed until
recently. With martingale samples, [51] provided the first finite time analysis of GTD
method, [26, 24] provided improved finite time error bounds. Unlike our analysis, they
analyzed modified two timescale SA with projection and their bounds hold with high
probability. With Markovian noise, [40] studied the finite time expected error bound
with constant step sizes; [88] and [27] provided similar analysis for general step sizes.
It is important to notice that with homogeneous martingale noise, the asymptotic rate
of (2.1), (2.2) without a projection step, as shown in [46, Theorem 2.6], is in the order
E [∥θk − θ⋆∥2] = O(βk),E

[
∥wk − A−1

22 (b2 − A21θk)∥2
]

= O(γk), where θ⋆ is a stationary
point of the SA scheme. However, the latter rate is not achieved in the finite-time error
bounds analyzed by the above works except for [24]. It remains an open problem whether
this error bound holds for the Markovian noise setting and for linear two time-scale SA
scheme without projection.

Contributions This chapter presents the following contributions:

• Improved Convergence Rate – We perform finite-time expected error bound analysis
of the linear two timescale SA in both martingale and Markovian noise settings, in
Theorems 12 & 13. Our analysis allow for general step sizes schedules [cf. A10, B8],
including constant, piecewise constant, and diminishing step sizes explored in the
prior works [40, 24, 88, 27]. We show that the error bound consists of a transient and
a steady-state term, and the asymptotic rate is obtained from the latter. We show
that this asymptotic rate matches those in [46, Theorem 2.6], i.e., E [∥θk − θ⋆∥2] =
O(βk),E

[
∥wk − A−1

22 (b2 − A21θk)∥2
]

= O(γk). In particular, the fastest achievable
rate for E [∥θk − θ⋆∥2] will be O(1/k) when we set βk = O(1/k), γk = O(1/kυ) with
υ < 1.

• Novel Analysis without A-priori Stability Assumption – Unlike the prior works [51,
24, 88], our convergence results are obtained without requiring a projection step
throughout the SA iterations. In fact, [24] have pointed out that the projection
step is merely included to ensure a-priori stability of the algorithm, and is often not
used in practice. Our relaxation and the ability to achieve the optimal convergence
rate are obtained through a tight analysis of the recursive inequalities of the (cross-
)variances of θk, wk, see Section 2.3.

• Asymptotic Expansion – With an additional assumption on the step size, we compute
an exact asymptotic expansion of the expected error E [∥θk − θ⋆∥2], see Theorem
22. With an appropriate diminishing step sizes schedule, we show that the expected
error cannot be smaller than Ω(βk), which matches our upper bound results in
Theorem 12 & 13.

The rest of this paper is organized as follows. In Section 2.2, we present the detailed
conditions for two timescale linear SA, and the main results on finite-time performance
bounds. In Section 2.3, we provide an outline of the proof, illustrating the insights behind
the main steps. In Section 2.4, we show that the finite-time error bounds are tight by
quantifying an exact expansion of the covariance of iterates. In Section 2.5, we illustrate
the theoretical findings using numerical experiments.

Notations Let n ∈ N and Q be a symmetric definite n × n matrix. For x ∈ R
n, we

denote ∥x∥Q = {x⊤Qx}1/2. For brevity, we set ∥x∥ = ∥x∥I. Let m ∈ N, P be a symmetric
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definite m ×m matrix, A be an n ×m matrix. A matrix A is said to be Hurwitz if the
real parts of its eigenvalues are strictly negative. We denote ∥A∥P,Q = max∥x∥P=1 ∥Ax∥Q.
If A is a n× n matrix, we denote ∥A∥Q = ∥A∥Q,Q. Lastly, we give a number of auxiliary
lemmas in Appendix B.4 that are instrumental to our analysis.

2.2 Linear Two Time-scale Stochastic Approximation

(SA) Scheme

We investigate the linear two timescale SA given by the following equivalent form of (2.1),
(2.2):

θk+1 = θk + βk(b1 − A11θk − A12wk + Vk+1), (2.3)

wk+1 = wk + γk(b2 − A21θk − A22wk +Wk+1), (2.4)

where the mean fields are defined as bi := limk→∞ E

[
b̃i(Xk)

]
, Aij := limk→∞ E

[
Ãij(Xk)

]

(these limits exist as we recall that (Xk)k≥0 is an ergodic Markov chain). The noise terms
Vk+1,Wk+1 are given by:

Vk+1 := b̃1(Xk+1) − b1 − (Ã11(Xk+1) − A11)θk − (Ã12(Xk+1) − A12)wk,

Wk+1 := b̃2(Xk+1) − b2 − (Ã21(Xk+1) − A21)θk − (Ã22(Xk+1) − A22)wk.
(2.5)

The goal of the recursion (2.3), (2.4) is to find a stationary solution pair (θ⋆, w⋆) that
solves the system of linear equations:

A11θ + A12w = b1, A21θ + A22w = b2. (2.6)

We are interested in the scenario when the solution pair (θ⋆, w⋆) is unique and is given by

θ⋆ = ∆−1(b1 − A12A
−1
22 b2), w⋆ = A−1

22 (b2 − A21θ
⋆). (2.7)

where ∆ := A11 −A12A
−1
22 A21. To analyze the convergence of (θk, wk)k≥0 in (2.3), (2.4) to

(θ⋆, w⋆), we require the following assumptions:

A 9. Matrices −A22 and −∆ = −
(
A11 − A12A

−1
22 A21

)
are Hurwitz.

The above assumption is common for linear two time-scale SA, see [46]. As a conse-
quence, using the Lyapunov lemma (stated in Lemma 32 in the appendix for complete-
ness), there exist positive definite matrices Q⊤

22 = Q22 ≻ 0, Q⊤
∆ = Q∆ ≻ 0 satisfying

A⊤
22Q22 +Q22A22 = I, Q∆∆ + ∆⊤Q∆ = I . (2.8)

This ensures the contraction (see Lemma 33 in the appendix):

∥I−γkA22∥Q22 ≤ 1 − a22γk, ∥I−βk∆∥Q∆
≤ 1 − a∆βk, (2.9)

provided that γk ∈ [0, 1/(2∥A22∥2Q22
∥Q22∥)], βk ∈ [0, 1/(2∥A∆∥2Q∆

∥Q∆∥)]. Moreover, we
have set a22 := 1/(4∥Q22∥), a∆ := 1/(4∥Q∆∥). We consider the following conditions on
the step sizes:

A 10. (γk)k≥0, (βk)k≥0 are nonincreasing sequences of positive numbers that satisfy the
following.
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1. There exist constants κ such that for all k ∈ N, we have βk/γk ≤ κ.

2. For all k ∈ N, it holds

γk/γk+1 ≤ 1+(a22/8)γk+1, βk/βk+1 ≤ 1+(a∆/16)βk+1, γk/γk+1 ≤ 1+(a∆/16)βk+1.
(2.10)

As a consequence, we can define ς := 1 + {γ0a22/8 ∨ β0a∆/16} such that γk/γk+1 ≤ ς,
βk/βk+1 ≤ ς. Our conditions on step sizes are similar to [46, Assumption 2.3, 2.5]. These
conditions encompass diminishing, piecewise constant and constant step sizes schedules
which are common in the literature. For instance, a popular choice of diminishing step
sizes satisfying A10 is

βk = cβ/(k + kβ0 ), γk = cγ/(k + kγ0 )2/3 (2.11)

with some constants cβ, cγ, kγ0 , k
β
0 , e.g., as suggested in [26, Remark 9]; or a constant step

size of βk = β, γk = γ; or a piecewise constant step size, e.g., [40].
We present new results on the convergence rate of (2.3), (2.4) depending on the types

of noise with Vk+1,Wk+1. To discuss these cases, let us define the σ-field generated by the
two timescale SA scheme and the initial error made by the SA scheme, respectively as:

Fk := σ
{
θ0, w0, X1, X2, ..., Xk

}
, V0 := E

[
∥θ0 − θ⋆∥2 + ∥w0 − w⋆∥2

]
. (2.12)

Our main results are presented as follows.

Martingale Noise We consider a simple setting where the random elements Xk are
drawn i.i.d. from the stationary distribution such that bi, Aij are the expected values

of b̃i(Xk), Ãij(Xk). Furthermore, the random variables b̃i(Xk), Ãij(Xk) have bounded
second order moment. Note that this implies E

Fk [Vk+1] = E
Fk [Wk+1] = 0, i.e., the

sequences (Vk+1)k∈N, (Wk+1)k∈N are martingale difference sequences. Formally, we describe
this setting as the following conditions on Vk+1,Wk+1:

A11. The noise terms are zero-mean conditioned on Fk, i.e., EFk [Vk+1] = E
Fk [Wk+1] = 0.

A 12. There exist constants mW ,mV such that

∥E
[
Vk+1V

⊤
k+1

]
∥ ≤ mV (1 + ∥E

[
θkθ

⊤
k

]
∥ + ∥E

[
wkw

⊤
k

]
∥), (2.13)

∥E
[
Wk+1W

⊤
k+1

]
∥ ≤ mW (1 + ∥E

[
θkθ

⊤
k

]
∥ + ∥E

[
wkw

⊤
k

]
∥) .

Theorem 12. Assume A9–12 and for all k ∈ N, we have γk ∈ [0, γmtg
∞ ], βk ∈ [0, βmtg

∞ ]
and κ ∈ [0, κ∞], where γmtg

∞ , βmtg
∞ , κ∞ are defined constants. Then

E
[
∥θk − θ∗∥2

]
≤ dθ

{
Cθ̃,mtg

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
4

)
V0 + Cθ̃,mtg

1 βk

}
(2.14)

E

[∥∥wk − A−1
22 (b2 − A21θk)

∥∥2
]
≤ dw

{
Cŵ,mtg

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
4

)
V0 + Cŵ,mtg

1 γk

}
(2.15)

The exact constants are provided in the appendix, see (B.37), (B.41).
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Markovian Noise Consider the sequence (Xk)k≥0 to be samples from an exogenous
Markov chain on X with the transition kernel P : X × X → R+. For any measurable
function f , we have

E
Fk [f(Xk+1)] = P f(Xk) =

∫

X

f(x) P(Xk, dx)

We state the following assumptions:

B 5. The Markov kernel P has a unique invariant distribution µ : X → R+. Moreover, it
is irreducible and aperiodic.

Observe that

bi =

∫

X

b̃i(x)µ(dx), Aij =

∫

X

Ãij(x)µ(dx), i, j = 1, 2.

We show that the linear two time-scale SA (2.1), (2.2) converges to a unique fixed point
defined by the above mean field vectors/matrices, see (2.7). An important condition that
enables our analysis is the existence of solutions to the following Poisson equations:

B 6. For any i, j = 1, 2, consider b̃i(x), Ãij(x), there exists vector/matrix valued measur-

able functions b̂i(x), Âij(x) which satisfy

b̃i(x) − bi = b̂i(x) − P b̂i(x), Ãij(x) − Aij = Âij(x) − P Âij(x) (2.16)

for any x ∈ X and bi, Aij are the mean fields of b̃i(x), Ãij(x) with the stationary distribution
µ.

The above assumption can be guaranteed under B5 together with some regularity
conditions, see [28, Section 21.2]. Moreover,

B 7. Under B6, the vector/matrix valued functions b̂i(x), Âij(x) are uniformly bounded:
for any i, j = 1, 2, x ∈ X,

∥b̂i(x)∥ ≤ b, ∥Âij(x)∥ ≤ A. (2.17)

B 8. There exists constant ρ0 such that for any k ≥ 1, we have γ2k−1 ≤ ρ0βk.

To satisfy B7, we observe that the bounds b,A depend on the mixing time of the chain
(Xk)k≥0 and a uniform bound on b̃i(·), Ãij(·). In the context of reinforcement learning,
the latter can be satisfied when the feature vectors and reward are bounded. Note that
B7 implies A12, see Section 2.3.2. Meanwhile, B8 imposes further restriction on the step
size. The latter can also be satisfied by (2.11).

The challenges of analysis with Markovian noise lie in the biasedness of the noise term
as E

Fk [Vk+1] ̸= 0, EFk [Wk+1] ̸= 0. With a careful analysis, we obtain:

Theorem 13. Assume A9–10, B5–8 hold and for all k ∈ N, we have βk ∈ (0, βmark
∞ ],

γk ∈ (0, γmark
∞ ], κ ≤ κ∞, where βmark

∞ , γmark
∞ , κ∞ are defined in (2.34), (2.21). Then

E
[
∥θk − θ⋆∥2

]
≤ dθ

{
Cθ̃,mark

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
8

)
(1 + V0) + Cθ̃,mark

1 βk

}
, (2.18)

E
[
∥wk − A−1

22 (b2 − A21θk)∥2
]
≤ dw

{
Cŵ,mark

0

k−1∏

ℓ=0

(
1 − βℓ

a∆
8

)
(1 + V0) + Cŵ,mark

1 γk

}
.

(2.19)

The exact constants are given in the appendix, see (B.106), (B.109).
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While Theorem 13 relaxes the martingale difference assumption A12 in Theorem 12,
we remark that the results here do not generalize that in Theorem 12 due to the additional
B7, B8. Particularly, with martingale noise, the convergence of linear two timescale SA
only requires the noise to have bounded second order moment, yet the Markovian noise
needs to be uniformly bounded.

Convergence Rate of Linear Two Timescale SA The upper bounds in Theorem 12
and 13 consist of two terms – the first term is a ‘transient’ error with product such as∏k−1

i=0 (1− βia∆/8) decays to zero at the rate o(1/kc) for some c > 1 under an appropriate
choice of step sizes such as (2.11); the second term is a ‘steady-state’ error. We observe
that the ‘steady-state’ error of the iterates θk, wk exhibit different behaviors. Taking the
step size choices in (2.11) as an example, the steady-state error of the slow-update iterates

θk is O(1/k) while the error of fast-update iterates wk is O(1/k
2
3 ). Furthermore, similar

bounds hold for both martingale and Markovian noise. In Section 2.4 we show that the
obtained rates are also tight.

Comparison to Related Works Our results improve the convergence rate analysis
of linear two timescale SA in a number of recent works. In the martingale noise setting
(Theorem 12), the closest work to ours is [24] which analyzed the linear two timescale SA
with martingale samples and diminishing step sizes. The authors improved on [26] and
obtained the same convergence rate (in high probability) as our Theorem 12, furthermore
it is demonstrated that the obtained rates are tight. Their bounds also exhibit a sublin-
ear dependence on the dimensions dθ, dw. However, their algorithm involves a sparsely
executed projection step and the error bound holds only for a sufficiently large k. These
restrictions are lifted in our analysis.

In the Markovian noise setting (Theorem 13), the closest works to ours are [27, 40, 88].
In particular, [40] analyzed the linear two timescale SA with constant step sizes and
showed that the steady-state error for both θk, wk is O(γ2/β). [88] analyzed the TDC

algorithm with a projection step and showed that the steady-state error for θk is O(1/k
2
3 ) if

the step sizes in (2.11) is used. [27] analyzed the linear two timescale SA with diminishing

step size and showed that the steady state error for both θk, wk is O(1/k
2
3 ). Interestingly,

the above works do not obtain the fast rate in Theorem 13, i.e., E [∥θk − θ⋆∥2] = O(1/k).
One of the reasons for the sub-optimality in their rates is that their analysis are based on
building a single Lyapunov function that controls both errors in θk and wk. In contrast,
our analysis relies on a set of coupled inequalities to obtain tight bounds for each of the
iterates θk, wk.

2.3 Convergence Analysis

While much of the technical details and the complete constants of non-asymptotic bounds
will be postponed to the appendix, this section offers insights into our main theoretical
results through sketching the major steps involved in proving Theorem 12 & 13. Through-
out, we shall consider the following bounds on the step sizes and step size ratio:

β(0)
∞ :=

1

2∥Q∆∥∥∆∥2Q∆

∧ 1

2∥∆∥Q∆
+ a∆

, γ(0)∞ :=
1

2∥Q22∥∥A22∥2Q22

, (2.20)
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κ∞ :=

(
a22/2

∥A12∥Q22,Q∆
∥A−1

22 A21∥Q∆,Q22 + a∆
2

{
1 ∧ a∆/2

∥∆∥Q∆
+ a∆

2

})
∧ a22

4a∆
. (2.21)

To begin with, let us present the reformulation of the two time-scale SA scheme (2.3),
(2.4) that is borrowed from [46]. Define:

Lk+1 :=
(
Lk − γkA22Lk + βkA

−1
22 A21(∆ − A12Lk)

)(
I−βk(∆ − A12Lk)

)−1
, L0 := 0,

and L∞ := a∆/(2∥A12∥Q22,Q∆
). As shown in Lemma 34 of the appendix, with the step

sizes γk ≤ γ
(0)
∞ , βk ≤ β

(0)
∞ , κ ≤ κ∞, the above recursion on Lk is well defined where it

holds that ∥Lk∥Q∆,Q22 ≤ L∞ for any k ≥ 0. In addition, define the matrices:

Bk
11 := ∆ − A12Lk, Bk

22 :=
βk
γk

(
Lk+1 + A−1

22 A21

)
A12 + A22, Ck := Lk+1 + A−1

22 A21.

In a similar vein as performing Gaussian elimination, we obtain a simplified two timescale
SA recursions (proof in Appendix B.1):

Proposition 14. Consider the following change-of-variables:

θ̃k := θk − θ⋆, w̃k = wk − w⋆ + Ck−1θ̃k. (2.22)

The two time-scale SA (2.3), (2.4) is equivalent to the following iterations:

θ̃k+1 = (I−βkBk
11)θ̃k − βkA12w̃k − βkVk+1. (2.23)

w̃k+1 = (I−γkBk
22)w̃k − βkCkVk+1 − γkWk+1. (2.24)

Observe that θ̃k = 0, w̃k = 0 is equivalent to having θk = θ⋆, wk = w⋆, i.e., the two
timescale SA solves the linear system of equations (2.6). The simplified recursion (2.23),
(2.24) decouples the update of w̃k from θ̃k. This allows one to treat the w̃k update as a
one timescale linear SA, and therefore provides a shortcut to perform a tight analysis.
We focus on estimating the following operator norms of covariances:

Mw̃
k := ∥E

[
w̃kw̃

⊤
k

]
∥, Mθ̃

k := ∥E
[
θ̃kθ̃

⊤
k

]
∥, Mθ̃,w̃

k := ∥E
[
θ̃kw̃

⊤
k

]
∥, (2.25)

which are respectively the covariance for wk, θk and the cross-variance between wk, θk.

2.3.1 Proof Outline of Theorem 12

For this theorem, we assume the step sizes and their ratio are chosen such that

γk ≤ γmtg
∞ := γ(0)∞ ∧ 1

a22
2

+ 2
a22
p22(m̃V + κ2m̃W )

∧ a∆

4 Cθ̃
2

, βk ≤ βmtg
∞ := β(0)

∞ , (2.26)

where p22 = λ−1
min(Q22)λmax(Q22) and Cθ̃

2 is defined in (B.37) in the appendix.
While the property which the noise terms satisfy E

Fk [Vk+1] = 0, EFk [Wk+1] = 0 has
greatly simplified the analysis, the challenge with our analysis lies in the coupling between
slow and fast updating iterates whose convergence rates must be carefully characterized
in order to obtain the desired rate in Theorem 12. To summarize, our proof consists of

three steps in order: (i) we bound Mw̃
k with an inequality that is coupled with Mθ̃

k; then

(ii) we bound the cross term Mθ̃,w̃
k using an inequality coupled with Mθ̃

k; lastly, (iii) these

bounds are combined to bound Mθ̃
k.
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Step 1: Bounding Mw̃
k Upon applying the variable transformation in Observation 14,

(2.24) can be treated as a one-timescale SA which updates w̃k independently, and the
contributions from θ̃k are only found in the noise term, as seen from (B.4). This leads to:

Proposition 15. Assume A9–12 and the step sizes satisfy (2.26). For any k ∈ N, it
holds

Mw̃
k+1 ≤

∏k
ℓ=0

(
1− γℓa22

2

)
λmax(Q22)
λmin(Q22)

Mw̃
0 + Cw̃

1 γk+1+Cw̃
2

∑k
j=0 γ

2
j

∏k
ℓ=j+1

(
1− γℓa22

2

)
Mθ̃

j , (2.27)

where the constants Cw̃
1 ,C

w̃
2 can be found in (B.19) in the appendix.

The right hand side of (2.27) consists of three components: (i) a fast decaying term
relying on the product

∏k
ℓ=0(1− γℓa22/2), (ii) an O(γk) term, and (iii) a convolutive term

between Mθ̃
k and the fast decaying term depending on the step size sequence (γk)k≥0. In

the above, the second term can be viewed as a ‘steady-state’ term.

Step 2: Bounding Mθ̃,w̃
k Observe that Mθ̃,w̃

k refers to the cross variance between w̃k

and θ̃k. We show that utilizing (2.23), (2.24), (2.27) allows us to derive:

Proposition 16. Assume A9–12 and the step sizes satisfy (2.26). For any k ∈ N, it
holds

Mθ̃,w̃
k+1 ≤ Cθ̃,w̃

0

∏k
ℓ=0

(
1 − γℓa22

2

)
+ Cθ̃,w̃

1 βk+1 + Cθ̃,w̃
2

∑k
j=0 γ

2
j

∏k
ℓ=j+1

(
1 − γℓa22

2

)
Mθ̃

j , (2.28)

where the constants Cθ̃,w̃
0 ,Cθ̃,w̃

1 ,Cθ̃,w̃
2 can be found in (B.31) in the appendix.

The above bound is a crucial step in obtaining the O(βk) rate for Mθ̃
k. To better

appreciate it, note that as Mθ̃,w̃
k ≤ (

√
dθdw/2){Mθ̃

k + Mw̃
k } (see Lemma 39 in the appendix),

one can derive a similar result to (2.28) by merely applying Proposition 15. However,
doing so results in an overestimated ‘steady-state’ error of O(γk) which is worse than the
O(βk) error in (2.28). On the other hand, we take care of the two timescale nature of the
algorithm to obtain (2.28) with the fast rate.

Step 3: Bounding Mθ̃
k Having equipped ourselves with Proposition 15 and 16, we can

analyze Mθ̃
k using (2.23) and the derived bounds on Mw̃

k ,M
θ̃,w̃
k , this leads to

Proposition 17. Assume A9–12 and the step sizes satisfy (2.26). For any k ∈ N, it
holds

Mθ̃
k+1 ≤ Cθ̃

0

∏k
ℓ=0

(
1 − βℓa∆

2

)
+ Cθ̃

1 βk+1 + Cθ̃
2

∑k
j=0 γjβj

∏k
ℓ=j+1

(
1 − βℓa∆

2

)
Mθ̃

j , (2.29)

where the constants Cθ̃
0,C

θ̃
1,C

θ̃
2 are given in (B.37) in the appendix.

Besides that the middle term is now O(βk), we also observe that the convolution term

with (Mθ̃
j)j≥0 depends on the product of step sizes βjγj. This bound is obtained using

Proposition 16 and the fact that the cross variance Mθ̃,w̃
k has a steady-state error of O(βk).

Eq. (2.29) is a recursive inequality as Mθ̃
k are found on both sides. In the appendix,

we show that there exists a sequence (Uk)k≥0 satisfying Mθ̃
k ≤ Uk and

Uk+1 ≤ (1 − βka∆/4) Uk + Cθ̃
1(a∆/2)β2

k (2.30)

for some constant Cθ̃
1. This immediately leads to (2.14), followed by (2.15) similarly.
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2.3.2 Proof Outline of Theorem 13

While our proof has largely followed the same strategy as in the martingale noise case,
now that the main challenge in handling the Markovian noise case is that the noise terms
Vk+1,Wk+1 are no longer (conditionally) zero-mean. To circumvent this difficulty, we recall
B6 and define the following using the solution of the Poisson equation: for any i, j = 1, 2,

ψbi
k := P b̂i(Xk), Ψ

Aij

k := P Âij(Xk),

ξbik := b̂i(Xk+1) − P b̂i(Xk), Ξ
Aij

k := Âij(Xk+1) − P Âij(Xk),
(2.31)

where ξbik ,Ξ
Aij

k are zero mean when conditioned on Fk. The noise terms (2.5) can be
rewritten as

Vk+1 = ξb1k + ΞA11
k θk + ΞA12

k wk︸ ︷︷ ︸
=:V

(0)
k+1

+ (ψb1
k − ψb1

k+1) + (ΨA11
k − ΨA11

k+1)θk + (ΨA12
k − ΨA12

k+1)wk︸ ︷︷ ︸
=:V

(1)
k+1

Wk+1 = ξb2k + ΞA21
k θk + ΞA22

k wk︸ ︷︷ ︸
=:W

(0)
k+1

+ (ψb2
k − ψb2

k+1) + (ΨA21
k − ΨA21

k+1)θk + (ΨA22
k − ΨA22

k+1)wk︸ ︷︷ ︸
=:W

(1)
k+1

.

(2.32)

We observe that EFk

[
V

(0)
k+1

]
= 0,EFk

[
W

(0)
k+1

]
= 0 and therefore (2.32) separates the noise

terms into their martingale (V
(0)
k ,W

(0)
k ) and Markovian (V

(1)
k ,W

(1)
k ) components. Under

B7, the second order moment of these noise components satisfy A12. Accordingly, we
define θ̃

(0)
0 = θ̃0, θ̃

(1)
0 = 0, and w̃

(0)
0 = w̃0, w̃

(1)
0 = 0 and the recursions:

θ̃
(i)
k+1 = (I−βkBk

11)θ̃
(i)
k − βkA12w̃

(i)
k − βkV

(i)
k+1, i = 0, 1,

w̃
(i)
k+1 = (I−γkBk

22)w̃
(i)
k − βkCkV

(i)
k+1 − γkW

(i)
k+1, i = 0, 1,

(2.33)

where it holds that θ̃k = θ̃
(0)
k + θ̃

(1)
k , w̃k = w̃

(0)
k + w̃

(1)
k following from Observation 14.

Clearly, θ̃
(0)
k , w̃

(0)
k (resp. θ̃

(1)
k , w̃

(1)
k ) are iterates of the two timescale SA driven by mar-

tingale (resp. Markovian) noise. The two sets of recursions are independent except the

second order moments of noise are bounded by Mθ̃
k,M

w̃
k , containing the contributions from

θ̃
(0)
k , w̃

(0)
k and θ̃

(1)
k , w̃

(1)
k .

In the sequel, we show the martingale noise driven terms ∥E
[
w̃

(0)
k (w̃

(0)
k )⊤

]
∥, ∥E

[
w̃

(0)
k (θ̃

(0)
k )⊤

]
∥,

∥E
[
θ̃
(0)
k (θ̃

(0)
k )⊤

]
∥ can be estimated using similar procedures as in Proposition 15–17 from

the previous subsection. Meanwhile the Markovian noise driven terms ∥E
[
w̃

(1)
k (w̃

(1)
k )⊤

]
∥

vanish at a faster rate than the former. Throughout this subsection, we set the step sizes
to satisfy:

γk ≤ γmark
∞ := γ(0)∞ ∧ 1/

√
dθ ∨ dw

6p22 EWV
0

∧ a22/4

C̃0 + C̃3

, βk ≤ βmark
∞ := β(0)

∞ ∧ 1√
6C̃

(1,1)

3

∧ a∆

8C̃
θ̃

2

,

(2.34)

where p22 = λ−1
min(Q22)λmax(Q22), C̃0, C̃3, EWV

0 are defined in (B.46), (B.57), (B.51),

respectively, and C̃
(1,1)

3 , C̃
θ̃

2 are defined in (B.103), (B.106), respectively, in the appendix.
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Step 1: Bounding Mw̃
k We first show that the martingale and Markov noise driven

iterates converge with different rates as follows:

Lemma 18. Assume A9–10, B5–8 and the step sizes satisfy (2.34). For any k ∈ N, it
holds

∥E
[
w̃

(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤∏k

ℓ=0

(
1 − γℓa22

2

)2 λmax(Q22)
λmin(Q22)

Mw̃
0

+ C̃0

∑k
j=0 γ

2
j

∏k
ℓ=j+1

(
1 − γℓa22

2

)2
(1 + Mw̃

j + Mθ̃
j),

(2.35)

∥E
[
w̃

(1)
k+1(w̃

(1)
k+1)

⊤
]
∥ ≤ C̃1

∏k
ℓ=0

(
1 − γℓa22

2

)2
+ C̃2γ

2
k(Mθ̃

k+1 + Mw̃
k+1) + C̃4γ

2
k

+ C̃3γk+1

∑k
j=0 γ

2
j

∏k
ℓ=j+1

(
1 − γℓa22

2

)2
(Mθ̃

j + Mw̃
j ),

(2.36)

where C̃0, C̃1, C̃2, C̃3, C̃4 are constants defined in (B.46), (B.57) in the appendix.

Let us compare the ‘steady-state’ error on the right hand side of both inequalities:
second term of (2.35) and the second to fourth term of (2.36). We observe those in

the Markovian noise driven iterates w̃
(1)
k are O(γk) times smaller than the martingale

noise driven counterparts, indicating a faster convergence. This is roughly due to the
special structure of the Markovian noise in V

(1)
k ,W

(1)
k , where each term can be written

as successive differences of a bounded sequence, e.g., V
(1)
k ≈ ξk − ξk+1. When the linear

SA (2.33) is run over a long time horizon, the noise terms from consecutive iterations
(roughly) cancels each other, leading to a significantly a smaller ‘steady-state’ error.

Using w̃k = w̃
(0)
k + w̃

(1)
k together with the above lemma give the following estimate for

Mw̃
k :

Proposition 19. Assume A9–10, B5–8 and the step sizes satisfy (2.34). For any k ∈ N,
it holds

Mw̃
k+1 ≤

k∏

ℓ=0

(
1− γℓa22

4

)
C̃

w̃

0 +C̃
w̃

1 γk+1+C̃
w̃

2

k∑

j=0

γ2j

k∏

ℓ=j+1

(
1− γℓa22

4

)
Mθ̃

j +C̃
w̃

3 γ
2
k Mθ̃

k+1, (2.37)

where C̃
w̃

0 , C̃
w̃

1 , C̃
w̃

2 , C̃
w̃

3 are defined in (B.66) in the appendix.

We note in passing that by considering a special case with Mθ̃
k = 0 for all k, the above

proposition generalizes [68, Theorem 7] for linear one timescale SA with Markovian noise.

In a similar vein to the proof of Theorem 12, we bound the cross term ∥E
[
θ̃
(0)
k (w̃

(0)
k )⊤

]
∥

as:

Lemma 20. Assume A9–10, B5–8 and the step sizes satisfy (2.34). For any k ∈ N, it
holds

∥E
[
θ̃
(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ C̃

θ̃,w̃

0

k∏

ℓ=0

(
1 − γℓa22

4

)
+ C̃

θ̃,w̃

1 βk+1 + C̃
θ̃,w̃

2

k∑

j=0

γ2j

k∏

ℓ=j+1

(
1 − γℓa22

4

)
Mθ̃

j ,

where the constants C̃
θ̃,w̃

0 , C̃
θ̃,w̃

1 , C̃
θ̃,w̃

2 are defined in (B.78) in the appendix.

However, we observe that it is unnecessary to derive a similar (tight) bound for

∥E
[
θ̃
(1)
k (w̃

(1)
k )⊤

]
∥ as in the above lemma. The reason is that as observed in Lemma 18,

the Markovian noise driven terms are anticipated to be sufficiently small compared to
the martingale noise driven terms. In particular, a crude bound suffices to obtain the

desirable convergence rate of Mθ̃
k, as we observe next.
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Step 2: Bounding Mθ̃
k Again we consider the bounds on ∥E

[
θ̃
(0)
k+1(θ̃

(0)
k+1)

⊤
]
∥ and

E

[
∥θ̃(1)k+1∥2

]
separately. As we show in the appendix, both bounds are comparable as

the Markovian noise term admits a successive difference structure. Using the decomposi-
tion θ̃k = θ̃

(0)
k + θ̃

(1)
k , we obtain:

Proposition 21. Assume A9–10, B5–8 and the step sizes satisfy (2.34). For any k ∈ N,
it holds

Mθ̃
k+1 ≤ C̃

θ̃

0

∏k
ℓ=0

(
1 − βℓa∆

4

)
+ C̃

θ̃

1βk+1 + C̃
θ̃

2

∑k
i=0 β

2
i

∏k
ℓ=j+1

(
1 − βℓa∆

4

)
Mθ̃

i , (2.38)

where the constants C̃
θ̃

0, C̃
θ̃

1, C̃
θ̃

2 are defined in (B.106) in the appendix.

Equipped with Proposition 21, we can repeat the same steps as in (2.30) to derive an

upper bound for Mθ̃
k through solving the recursive inequality (2.38). Similar steps also

apply for yielding (2.19).

2.4 Tightness of the Finite-time Error Bounds

This section examines the tightness of our finite time error bounds in Theorem 12, 13
through characterizing the squared error E [∥θk − θ⋆∥2] with expansion. We consider the
assumption:

A13. There exist matrices Σ11,Σ12,Σ22, and a constant mexp
VW ≥ 0 such that for all j ∈ N,

it holds

∥E
[
VjV

⊤
j

]
− Σ11∥ ∨ ∥E

[
WjW

⊤
j

]
− Σ22∥ ∨ ∥E

[
VjW

⊤
j

]
− Σ12∥ ≤ mexp

VW (∥E
[
θ̃kθ̃

⊤
k

]
∥ + ∥E

[
w̃kw̃

⊤
k

]
∥).

Note that A13 implies A12 and therefore poses a stronger assumption. We have

Theorem 22. Assume A9–11, A13 and for all k ∈ N, we have γk ∈ [0, γmtg
∞ ], βk ∈ [0, βexp

∞ ]
and κ ∈ [0, κexp∞ ], where γmtg

∞ , βexp
∞ , κexp∞ are constants defined in (2.26), (B.115), (B.114) in

the appendix. Then for any k ≥ kexp0 := min{ℓ :
∑ℓ−1

j=0 βj ≥ log(2)/(2∥∆∥)}, the following
expansion holds

E
[
∥θk − θ⋆∥2

]
= Ik + Jk. (2.39)

The leading term Ik is given by the following explicit formula

Ik :=
∑k

j=0 β
2
j Tr

(∏k
ℓ=j+1(I−βℓ∆) Σ

{∏k
ℓ=j+1(I−βℓ∆)

}⊤
)
,

where Σ := Σ11+A12A
−1
22 Σ22A−⊤

22 A
⊤
12+Σ12A−⊤

22 A
⊤
12+A12A

−1
22 Σ21. Meanwhile, the following

two-sided inequality holds

Cexp
3 Tr(Σ) ≤ Ik

βk
≤ Cexp

4 Tr(Σ), (2.40)

and Jk is bounded by

|Jk| ≤ Cexp
0

k−1∏

ℓ=0

(
1 − a∆

4
βℓ

)
V0 + Cexp

1 βk

(
γk +

βk
γk

)
, (2.41)

where V0 was defined in (2.12). All constants Cexp
0 ,Cexp

1 ,Cexp
3 , Cexp

4 are given in (B.147),
(B.123) and (B.125) in the appendix, respectively, and they are independent of βk, γk.
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The proof is skipped in the interest of space, and it can be found in Appendix B.3.

Observe that from (2.41), the dominant term for Jk is given by O(βkγk +
β2
k

γk
). As such,

using (2.40), we observe that

|Jk|/Ik = O (γk + βk/γk)

If limk→∞ βk/γk = 0, we have limk→∞ |Jk|/Ik = 0. Combining (2.39), (2.40) shows that
the expected error E [∥θk − θ⋆∥2] is lower bounded by Ω(βk).

We note that the assumptions A9–11, A13 imposed by the theorem imply A9–A12
required by Theorem 12. Hence, together with (2.14) in Theorem 12, the above observa-
tions constitute a matching lower bound on the convergence rate of linear two timescale
SA with martingale noise. For the Markovian noise setting, we observe that if we impose
the assumption that the random elements (Xk)k≥0 are i.i.d., and b̃i(x), Ãij(x) are bounded
above for any i, j = 1, 2 and x ∈ X, then A13, B6–B7 can be satisfied. Therefore, the
lower bound on the convergence rate also holds.

2.5 Numerical Experiments, Conclusions

We present numerical experiments to support our theoretical claims. We consider (a)
a toy example with a randomly generated problem parameters bi, Aij and i.i.d. samples

(Xk)k∈N such that E

[
b̃i(Xk)

]
= bi, E

[
Ãij(Xk)

]
= Aij, (b) the Garnet problem [34]

with the GTD algorithm [72] using Xk from a simulated Markov chain. For example
(a), we compute the stationary point θ⋆, w⋆ exactly using (2.7); for example (b), while
it is known that w⋆ = 0, the solution θ⋆ is computed using Monte Carlo simulation of
the matrices b̃i(Xk), Ãij(Xk) with 2 · 109 iterations. The step sizes are chosen as βk =

cβ/(kβ0 + k), γk = cγ/(kβ0 + k)σ with σ ∈ {0.5, 0.67, 0.75}. In the toy example (a), we have
dθ = dw = 10, kβ0 = 104, kγ0 = 107, cβ = 140, cγ = 300; while for the Garnet problem (b),
we have kβ0 = 8 · 105, kγ0 = 2 · 105, cβ = 2300, cγ = 120. Garnet problem is generated from
family nS = 30, nA = 2, b = 2, p = 8, see [34]. Further details about both experiments are
described in Appendix B.5.

We illustrate the convergence rates of the linear two timescale SA on the two prob-
lems in Figure 2.1. Note that the plots show the (normalized) steady state errors are
E [∥θk − θ⋆∥2] = O(βk), E [∥wk − w⋆∥2] = O(γk), which hold for both examples on mar-
tingale and Markovian noise. In addition, they are independent of the choice of σ. These
observations agree with our main results.

2.6 Conclusions

We have provided an improved finite time convergence analysis of the linear two timescale
SA on both martingale and Markovian noises with relaxed conditions. Our analysis show
that a tight analysis is possible through deriving and solving a sequence of recursive error
bounds. Future works include the finite time analysis of nonlinear two timescale SA.
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Figure 2.1: Deviations from stationary point (θ⋆, w⋆) normalized by step sizes βk, γk:
(a,b) the toy example, note we also show Ik using the exact formula in Theorem 22
(unnormalized plot also available in the Appendix); (c,d) the Garnet problem.
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Chapter 3

Variance Reduction for Policy-Gradient

Methods via Empirical Variance

Minimization

The results of this section are published in [42].

3.1 Introduction

Reinforcement learning (RL) is a framework of stochastic control problems where one
needs to derive a decision rule (policy) for an agent performing in some stochastic envi-
ronment giving him rewards or penalties for taking actions. The decision rule is naturally
desired to be optimal with respect to some criterion; commonly, expected sum of dis-
counted rewards is used as such criterion[71]. Reinforcement learning is currently a fast-
developing area with promising and existing applications in numerous innovative areas
of the society: starting from AI for games [82, 11, 66] and going to energy management
systems [49, 32], manufacturing and robotics [2] to name a few. Naturally, RL gives the
practitioners new sets of control tools for any kind of automatization [33].

Policy-gradient methods constitute the family of gradient algorithms which directly
model the policy and exploit various formulas to approximate the gradient of expected
reward with respect to the policy parameters [84, 74]. One of the main drawbacks of
these approaches is the variance emerging from the estimation of the gradient [83], which
typically is high-dimensional. Apart from that, the total sum of rewards is itself a random
variable with high variance. Both facts imply that the problem of gradient estimation
might be quite challenging. The straightforward way to tackle gradient estimation is
Monte Carlo scheme resulting in the algorithm called REINFORCE [84]. In REINFORCE
increasing the number of trajectories for gradient estimation naturally reduces the variance
but costs a lot of time spent on simulation. Therefore, variance reduction is necessarily
required to construct procedures with gradient estimates of lower variance and lower
computational cost than increasing the sample size.

The main developments in this direction include actor-critic by [45] and advantage
actor-critic: A2C [74] and asynchronous version of it, A3C [55]. Recently a new interest
in such methods has emerged due to the introduction of deep reinforcement learning [56]
and the frameworks for training nonlinear models like a neural network in RL setting, a
very comprehensive review of this area is done by [33]. During several decades a large
number of new variance reduction methods were proposed, including sub-sampling meth-
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ods like SVRPG [60, 86] and various control variate approaches of [64], [39], [52], [81],
[85]. There are also approaches of a bit different nature: trajectory-wise control variates
[19] using the control variate based on future rewards and variance reduction in input-
driven environments [54]. Apart from that, in ergodic case there were both theoretic [38]
and also some practical advancements [21]. The importance of the criteria for variance
reduction is well-known in Monte-Carlo and MCMC [65] and recently was also addressed
in RL by [30], where the Actor with Variance Estimated Critic (AVEC) was proposed.

Being successful in practice, A2C method is difficult to analyze theoretically. In par-
ticular, it remains unclear how the goal functional used in A2C is related to the variance
of the gradient estimator. Moreover, the empirical studies of the variance of the gradient
estimator are still very rare and available mostly for artificial problems. In the commu-
nity there is still an ongoing discussion, whether the variance of the gradient really plays
main role in the performance of the developed algorithms, according to [81]. In our paper
we try to answer some of these questions and suggest a more direct approach inspired
by the Empirical Variance(EV) Minimization recently studied by [8]. We show that the
proposed EV-algorithm is not only theoretically justifiable but can also perform better
than the classic A2C algorithm. It should be noted that the idea of using some kind
of empirical variance functional is not new: some hints appeared, for instance, in [52].
Despite that, the implementation and theoretical studies of this approach are still missing
in the literature.

3.1.1 Main Contributions

• We provide two new policy-gradient methods (EV-methods) based on EV-criterion
and show that they perform well in several practical problems in comparison to A2C-
criterion. We have deliberately chosen A2C and Reinforce as baseline algorithms to
be less design-specific and have fair comparison of the two criteria. We show that in
terms of training and mean rewards EV-methods perform at least as good as A2C
but are considerably better in cases with complex policies.

• Theoretical variance bounds are proven for EV-methods. Also we show that EV-
criterion addresses the stability of the gradient scheme directly while A2C-criterion
is in fact an upper bound for EV. As far as we know, we are the first in the setting
of RL who formulates the variance bounds with high probability with the help of
the tools of statistical learning.

• We also provide the measurements of the variance of the gradient estimates which
present several somewhat surprising observations. Firstly, EV-methods are able to
solve this task much better allowing for reduction ratios of 103 times . Secondly, in
general we see another confirmation the hypothesis of [81]: variance reduction has
its effect but some environments are not so responsive to this.

• To our knowledge, we are the first who provide an experimental investigation of
EV-criterion of policy-gradient methods in classic benchmark problems and the
first implementation of it in the framework of PyTorch. Despite the idea is not new
(it is mentioned, for example, by [52]), so far EV-criterion was out of sight mainly
because of A2C-criterion is computationally cheaper and is simpler to implement in
the current deep learning frameworks since it does not need any complex operations
with the gradient.
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3.2 EV-Algorithms

3.2.1 Preliminaries

Let us assume a Markov Decision Problem (MDP) (S,A, R,P,Π, µ0, γ) with a finite hori-
zon T , an arbitrary state space S, an action space A, a reward function R : S ×A → R,
Markov transition kernel P. We are also given a class of policies Π = {πθ : S → P(A) | θ ∈ Θ}
parametrized by θ ∈ Θ ⊂ R

D where P(A) is the set of probability distributions over the
action set A. We will omit the subscript in πθ wherever possible for shorter notation, in
all occurrences π ∈ Π. Additionally we are provided with an initial distribution µ0, so
that S0 ∼ µ0, and a discounting factor γ ∈ (0, 1). The optimization problem reads as

maximize J(θ) = E

[
T−1∑

t=0

γtR(St, At)

]
w.r.t. θ ∈ Θ,

where we have assumed that the horizon T is fixed. Let us note that any sequence of
states, actions, and rewards can be represented as an element X of the product space

(S ×A×R)T .

A generalization to the cases of infinite horizon and episodes is straightforward: we need
to consider the space of sequences

(S ×A×R)∞

for infinite horizon or
∞⋃

L=1

(S ×A×R)L

for the episodes, where the union is the set of all finite sequences. It turns out that the
gradient scheme described below still works for these two cases, so we will focus on the
finite horizon case only to simplify the exposition.

3.2.2 General Policy Gradient Scheme and REINFORCE

Let ∇̃J |θ′ : (S × A × R)T → R
D be an unbiased estimator of the gradient ∇θJ at point

θ = θ′. With this notation the gradient descent algorithm for minimization of J(θ) using

the estimate ∇̃J reads as follows:

θn+1 = θn + ηn
1

K

K∑

k=1

∇̃J |θn(X(k)
n ), n = 1, 2, . . . (3.1)

with ηn being a positive sequence of step sizes. We will omit the subscript θn in the
gradient estimate if it is clear from the context at which point the gradient is computed.
A simple example of the estimator ∇̃J is the one called REINFORCE [84]:

∇̃reinfJ : X 7→
T−1∑

t=0

γtGt(X)∇θ log π(At|St)

with

Gt(X) :=
T−1∑

t′=t

γt
′−tRt,
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where Rt = R(St, At) and

X = [(S0, A0, R0), .., (ST−1, AT−1, RT−1)]
⊤ .

This form is obtained with the help of the following policy gradient theorem.

Proposition 23. (Policy gradient theorem [84]) If X ∈ (S × A × R)∞ is sampled from
the MDP, then under mild regularity conditions on π,P,

∇θJ = E

[
∞∑

t=0

γtGt(X)∇θ log π(At|St)

]
.

Note that the above proposition is formulated for the infinite horizon case, but similar
statement also holds for the finite-horizon and episodic cases. To see that, one can rewrite
the problem as the one with infinite horizon giving zero reward after the end of the
trajectory and almost sure transition from the end state to itself.

The baseline approach modifies the above Monte Carlo estimate by incorporating
a family of state-action-dependent baselines bϕ : S × A → R (SA-baselines) or state-
dependent baselines bϕ : S → R (S-baselines) parametrized by ϕ. The resulting gradient
estimate reads as

∇̃bϕJ : X 7→
T−1∑

t=0

γt(Gt(X) − bϕ(St, At))∇θ log π(At|St). (3.2)

In order to keep this estimate unbiased, we need to additionally require that for all θ ∈ Θ,

E

[
T−1∑

t=0

γtbϕ(St, At)∇θ log π(At|St)

]
= 0.

It is known that every S-baseline bϕ : S → R will satisfy this requirement (we have
placed the proof in Supplementary Materials, Prop. 50). Such baselines, in particular,
are often used in A2C algorithms [33]. When action dependence is presented, special care
is required. In fact, the SA-baselines keeping the gradient estimate unbiased are known
only in the case of continuous action spaces, see [39, 52, 81, 85]. The main drawback of
these methods is that they often are problem-specific. For example, QProp and SteinCV
algorithms require the actions to be from continuous set so that one could differentiate the
policy with respect to them. QProp additionally needs a notion of mean action. In the
case of factorized baselines we need to require the policy to be factorized in coordinates
and to construct a vector representation for each action which is not trivial in practice.
In this paper we experiment with S-baselines since these allow us fair comparison of
the variance reduction procedures with the same models for baseline and policy but the
algorithm is applicable generally: it could be used in the gradient routines in place of
A2C least-squares criterion.

3.2.3 Two-Timescale Gradient Algorithm with Variance Reduc-
tion

If we consider A2C algorithm, we might notice that it can be written as a two-timescale
scheme with two step sizes αn, βn

θn+1 = θn + αn
1

K

K∑

k=1

∇̃bϕJ(X(k)
n ), (3.3)

ϕn+1 = ϕn − βn∇ϕV
A2C
K,n (ϕ)|ϕn

(3.4)
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where

V A2C
K,n (ϕ) :=

1

K

K∑

k=1

T−1∑

t=0

(Gt(X
(k)
n ) − bϕ(S

(k)
t ))2 (3.5)

is A2C goal reflecting our desire to approximate the corresponding value function from
its noisy estimates (Gt(X

(k)
n )) via least squares. The motivation behind it is that if one

chooses the value function as baseline, the variance will be minimized. This strategy
works well in practical problems [55].

If one would like to improve the baseline method there are two ways. One can either
construct better baseline families (in which much effort was already invested) or change
variance functional in the second timescale. In this work we address the variance of
the gradient estimate directly via empirical variance (EV). Since a gradient estimate at

iteration n, ∇̃bϕJ(Xn)|θn , is a random vector, we could define its variance as

Vn(θ, ϕ) := Tr
(
E

[(
∇̃bϕJ(Xn)|θ − E

[
∇̃bϕJ(Xn)|θ

])
·
(
∇̃bϕJ(Xn)|θ − E

[
∇̃bϕJ(Xn)|θ

])∗])
,

(3.6)

or, what is the same, as

Vn(θ, ϕ) = E

[∥∥∥∇̃bϕJ(Xn)|θ
∥∥∥
2

2

]
−
∥∥∥E
[
∇̃bϕJ(Xn)|θ

]∥∥∥
2

2
. (3.7)

Therefore, its empirical analogue is

V EV v
n,K (θ, ϕ) := (3.8)

=
1

K

K∑

k=1

∥∥∥∇̃bϕJ(X(k)
n )|θ

∥∥∥
2

2
− 1

K2

∥∥∥∥∥

K∑

k=1

∇̃bϕJ(X(k)
n )|θ

∥∥∥∥∥

2

2

. (3.9)

It can be noticed also, that the second term in the variance (3.7) does not depend on ϕ
if the baseline does not add any bias. In this case we could safely discard it before going
to sample estimates and use instead

V EVm
K (θ, ϕ) :=

1

K

K∑

k=1

∥∥∥∇̃bϕJ(X(k)
n )|θ

∥∥∥
2

2
.

The corresponding gradient descent algorithms can be described as

θn+1 = θn + αn
1

K

K∑

k=1

∇̃bϕJ(X(k)
n ), (3.10)

ϕn+1 = ϕn − βn∇ϕV
EV
K (ϕ, θ)|ϕn,θn . (3.11)

So we have constructed two methods. The first one uses the full variance V EV v
K and is

called EVv, the second one is titled EVm and exploits V EVm
K , the same variance functional

but without the second term. The important fact to note is that EVv routine would work
only if K ≥ 2, otherwise we try to estimate the variance with one observation.

As was pointed out in [52], the methods addressing the minimization of empirical
variance would be computationally very demanding. This though strongly depends on
the implementation. EV-methods are indeed more time-consuming than A2C, partially
because of PyTorch which is not made for parallel computing of the gradients: the larger
K we want, the more time is needed. We are inclined to think that our implementation
can be significantly optimized. The main complexity discussion with charts is placed in
Supplementary.
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3.3 Theoretical Guarantees

The main advantage of using empirical variance is that we have the machinery of statistical
learning to prove the upper bounds for the variance of the gradient estimator. Our main
theoretical result is concerned about one step of the update of θn with the best possible
baseline chosen from the class of control variates. In this section we give some background
and problem formulation and in the end discuss how the results are applied to our initial
problem and give theoretical guarantees for EV-methods.

3.3.1 Variance Reduction

Classic problem for variance reduction is formulated for Monte Carlo estimation of some
expectation. LetX be random variable andX1, .., XK be a sample from the same distribu-
tion. Given a function h : R → R we want to evaluate E[h(X)] = E using 1

K

∑K
k=1 h(Xk).

This estimate, however, may possess large variance V (h) := E [(h(X) − E)2], one could
avoid that using other function h′ such that E[h′(X)] = E but V (h′) < V (h). Such
estimate would be more reliable since there is less uncertainty.

This leads us to the following formulation. Given a class H of functions h : Rd → R

find function h∗ ∈ H with the least possible variance V (h∗) ≤ V (h) ∀h ∈ H. Such
problem is well-investigated in the literature and many methods have been suggested for
variance reduction both for Monte Carlo and MCMC settings, for examples see [59, 67].

3.3.2 Variance Reduction in Multivariate Case

Let us consider scheme (3.1), the variance of the gradient estimate affects the convergence
properties of the scheme so one is interested in reducing it, as can be seen in [90, 87] .
We also provide a discussion about it in Supplementary. Note that now we are in setting
different from the one above: it is needed to construct a vector estimate.

Let X1, ..., XK ∼ P be a sample of random vectors taking values in X ⊂ R
d and let

H be a class of functions h : Rd → R
D such that E[h(X)] = E . Later we will also need

the corresponding empirical measure PK based on X1, ..., XK . Define the variance

V (h) := E[∥h(X) − E∥2]

with ∥ · ∥ being Euclidean 2-norm. Our goal is to find a function h∗ ∈ H such that
V (h∗) ≤ V (h) for all h ∈ H. Then we have a variance reduced Monte Carlo estimate
1
K

∑K
k=1 h∗(Xk).

3.3.3 Variance Representation in Terms of Excess Risk

It is obvious that the exact solution h∗ cannot be computed meaning that we are left
always with some suboptimal solution ĥ ∈ H given by a particular method of ours. The
quantity V (ĥ) − V (h∗) where h∗ is defined with

V (h∗) := inf
h∈H

V (h)

is usually called excess risk in statistics and represents optimality gap, i.e. it shows how
far the current solution h is from the optimal one. We can always write the variance of ĥ
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as

V (ĥ) =

[
V (ĥ) − inf

h∈H
V (h)

]
+ inf

h∈H
V (h) (3.12)

from which we can clearly see the excess risk (the first term) and the second term rep-
resenting approximation richness of the class H: generally speaking, the better this class
is, the lower the infimum can be. As more concrete example, consider variance reduction
using the method of control variates. In this setting the goal is to estimate E[f(X)] for
a fixed f : Rd → R

D. To reduce the variance of the Monte Carlo sample mean one adds
some control variate g ∈ G with zero expectation giving us the class of unbiased estimates

H = {f − g : g ∈ G, E[g(X)] = 0} .

The excess risk is now of the form
[
V (f − ĝ) − inf

g∈G
V (f − g)

]
,

sometimes called stochastic error and the second term

inf
g∈H

V (f − g)

is known as approximation error. So, the way to analyze variance reduction is to estimate
the excess risk and the approximation error.

In our analysis we consider a class of estimators with control variates implemented as
baselines. Specifically, the class of estimators is

H :=
{
∇̃bϕJ | bϕ ∈ BΦ

}
, (3.13)

where

∇̃bϕ
θ J : X 7→

T−1∑

t=0

γt(Gt − bϕ(St, At))∇θ log π(At|St)

and bϕ ∈ BΦ is a map S × A → R. The set of baselines BΦ is a parametric class
parametrized by ϕ ∈ Φ. We require that for each bϕ ∈ BΦ and for all policies π ∈ Π

E

[
T−1∑

t=0

γtbϕ(St, At)∇θ log π(At|St)

]
= 0,

requiring therefore that the estimator ∇̃bϕJ is unbiased for all bϕ ∈ BΦ. For example, any
set of maps bϕ : S → R will satisfy the above condition leading to S-baselines.

We start with one-step analysis, showing how well the variance behaves when variance
reduction with EV is applied at nth iteration. Let us further notate the estimator as
h : Rd → R

D and note that E[h(X)] = E with constant E = ∇θJ since the estimate is
assumed to be unbiased. In order to reduce the variance in the gradient estimator we
would like to pick on each epoch n the best possible estimator

h∗ = arg min
h∈H

V (h)
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where variance functional V is defined for any h ∈ H via

V (h) := E
[
∥h(X) − E∥2

]

where X is random vector of concatenated states, actions and rewards described before.
To solve the above optimization problem, we use empirical analogue of the variance and
define

ĥ := arg min
h∈H

VK(h)

with the empirical variance functional of the form:

VK(h) :=
1

K − 1

K∑

k=1

∥h(X(k)) − PKh∥2

with PK being the empirical measure, so with the given sample we could notate sample
mean as

PKh :=
1

K

K∑

k=1

h(X(k)).

Let us pose several key assumptions.

A 14. Class H consists of bounded functions:

sup
x∈X

∥h(x)∥ ≤ b, ∀h ∈ H.

A 15. The solution h∗ is unique and H is star-shaped around h∗:

αh+ (1 − α)h∗ ∈ H, ∀h ∈ H, α ∈ [0, 1].

A 16. The class H has covering of polynomial size: there are α ≥ 2 and c > 0 such that
for all u ∈ (0, b],

N (H, ∥ · ∥L2(PK), u) ≤
( c
u

)α
a.s.

where

∥h∥L2(PK) =
√
PK∥h∥22

The following result holds.

Theorem 24. Under Assumptions 14-16 it holds with probability at least 1 − 4e−t,

V (hK) − V (h∗) ≤ max
j=1,...,4

βj(t)

with

β1 ≤ C1
logK

K
, β2 ≤ C2

logK

K
,

β3(t) =
8(40b2t+ 72b2)

3K
, β4(t) =

9216b2t

K
,

where C1, C2 are constants not depending on the dimension D or the sample size K.

This allows to conclude from the variance decomposition (3.12) that as sample size K
grows, the variance reduces to that of h∗. From practical perspective, Theorem 24 firstly
gives some reliability guarantee. Secondly, it also shows that if we have K large enough,
we can reduce the variance even more.
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3.3.4 Verifying the Assumptions in Policy-Gradient Setting

Let us now discuss how we can satisfy the assumptions in our policy-gradient scheme
(3.11).

As to Assumption 14, we can prove

Proposition 25. (see Supplementary) If there exist constants CL > 0 and CR > 0 such
that

∀θ ∈ Θ, a ∈ A, s ∈ S ∥∇θ log π(a|s)∥ ≤ CL,

|R(s, a)| ≤ CR,

then Assumption 1 is satisfied.

In order to satisfy Assumption 15 in the context of policy gradient estimators H defined
in (3.13), one might notice that

V (hK) − arg min
h∈H

V (h) ≤ V (hK) − arg min
h∈conv(H)

V (h).

Indeed, Assumption 2 is a weaker notion than convexity.

Proposition 26. (see Supplementary) If Assumption 3 holds for Bϕ, under the conditions
of Proposition 25 Assumption 3 holds also for H with other constants c, α.

Let us also note that we could use the more realistic As. 16 stating the same for
logN (therefore considering more complex classes of baselines) and get weaker bounds
with weaker rates, see [8].

3.3.5 Asymptotic Equivalence of EVv and EVm

Let us have a closer look on the variance functional with fixed baseline bϕ,

V (∇̃bϕJ(Xn)) = E[∥∇̃bϕJ(Xn)∥2] − ∥E[∇̃bϕJ(Xn)]∥2.

Note that the right term equals ∥∇θJ∥2 since the estimate is unbiased. Therefore, if the
gradient scheme converges to local optimum, i.e. θn → θ∗ with ∇θ∗J = 0 and the baseline
parameters ϕn → ϕ∗ as n→ ∞ a.s., then we can define the limiting variance as

V∞(∇̃bϕ∗J) = E[∥∇̃bϕ∗J |θ=θ∗∥2]

which will strongly depend on the baseline we have chosen. This fact, firstly, implies
that EVm and EVv algorithms are asymptotically equivalent because they differ in the
second term converging to 0 and the first term is dominating by Jensen’s inequality.
Indeed, in our experiments we see that EVm and EVv behave similarly, so one would
accept EVm as computationally cheaper version which works with K ≥ 1. Secondly, EV-
methods give additional stability guarantees for large n because they are directly related
to the asymptotic gradient variance. It is an open question though to characterize the
convergence of the presented two-timescale scheme to (θ∗, ϕ∗) more precisely.
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3.3.6 Relation to A2C

Proposition 27. (see Supplementary) If the conditions of Proposition 25 are satisfied,
then for all K ≥ 2 A2C goal function V A2C

K (ϕ) is an upper bound (up to a constant) for
EV goal functions:

V EVm
K (ϕ) ≤ 2C2

LV
A2C
K (ϕ), V EV v

K (ϕ) ≤ 2C2
LV

A2C
K (ϕ).

So, A2C is more computationally friendly method which exploits the upper bound on
empirical variance for baseline training. This, in a sense, explains the success of A2C and
different performance of A2C and EV-methods.

3.4 Experimental Results

We empirically investigate the behavior of EV-algorithms on several benchmark problems:

• Gym Minigrid [20] (Unlock-v0, GoToDoor-5x5-v0);

• Gym Classic Control [18] (CartPole-v1, LunarLander-v2, Acrobot-v1).

For each of these we provide charts with mean rewards illustrating the training process,
the study of gradient variance and reward variance and time complexity discussions. Here
because of small amount of space we present the most important results but the reader is
welcome in the Supplementary materials where more experiments and investigations are
presented together with all the implementation details. The code and config-files can be
found on GitHub page [37].

3.4.1 Overview

Below we show the discussions about several key indicators of the algorithms.

1. Mean rewards. They are computed at each epoch based on the rewards obtained
during the training in 40 runs and characterize how good is the algorithm in inter-
action with the environment.

2. Standard deviation of the rewards. These are computed in the same way but
standard deviation is computed instead of mean. This values show how stable the
training goes: high values indicate that there are frequent drops or increases in
rewards.

3. Gradient variance. It is measured every 200 epochs using (3.9) with separate
set of 50 sampled trajectories with relevant policy. This is the key indicator in the
discussion of variance reduction. Surprisingly, as far as we know, we are the first
in the RL community presenting such results for classic benchmarks. The resulting
curves are averaged over 40 runs.
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4. Variance Reduction Ratio. Together with Gradient Variance itself we also mea-
sure reduction ratio computed as sample variance of the estimator with baseline
divided by the sample variance without baseline (assuming bϕ = 0) in the compu-
tations of Gradient Variance. The reduction ratio is the main value of interest in
variance reduction research in Monte Carlo and MCMC.
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Figure 3.1: The charts representing the results for CartPole environment: (a,b,c) rep-
resent mean rewards, standard deviation of the rewards and gradient variance reduction
ratio for config5 and (d,e,f) show the same information about config8.

3.4.2 Algorithm Performance

While observing mean rewards during the training we may notice immediately that EV-
algorithms are at least as good as A2C.

In CartPole environment (Fig. 3.1 ) we conducted several experiments and present
here two policy configurations: one with simpler neural network (config5, see Fig. 3.1(a,b,c)
) and one with more complex network (config8, see Fig. 3.1(d,e,f) ). In the first case both
A2C and EV have very similar performance but in the second case the agent learns
considerably faster with EV-based variance reduction and we get approximately 50% im-
provement over A2C agent and 75% over Reinforce agent in the end and even more during
the training. The phenomenon of better performance of EV in CartPole with more com-
plex policies is observed often, more detailed discussion is placed in Supplementary.

Experiments in Acrobot (see Fig. 3.2(a)) show that EV-algorithms can give better
speed-up in the training. In the beginning EVm allows to learn faster but in the end the
performance is the same as A2C. One of the reasons of such behavior can be the fact that
learning rate becomes small and the agent already reaches the ceiling.

Unlock (Fig. 3.3(a)) is the example of the environments where all algorithms work
similarly: in terms of rewards we cannot see significant improvement even over Reinforce.
In Unlock, however, there is a difference presented but very small.
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Figure 3.2: The charts representing the results for Acrobot environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c) displays the gradient
variance reduction ratios.
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Figure 3.3: The charts representing the results for Unlock environment: (a) depicts mean
rewards, (b) shows the standard deviations of the rewards and (c) displays the gradient
variance reduction ratios.

3.4.3 Stability of Training

When we study the charts for standard deviation of the rewards (Fig. 3.1(b,e),3.2(b),3.3(b)),
we can see that EV-methods are better in terms of stability of the training, the algorithm
more rarely has drops than that of A2C. This is greatly illustrated by CartPole in Fig.
3.1(b,e) where the standard deviation is about 2 times less than in case of A2C. This
holds for both configurations.

Fig. 3.2 illustrating the experiments with Acrobot show that until the ceiling is
reached EV methods still can have lower variance. In Unlock presented in Fig. 3.3(b) we
have not observed a significant difference in reward variance.

3.4.4 Gradient Variance and its Influence

The first thing we can notice reviewing the gradient variance is that A2C and EV reduce
the variance similarly in Unlock. CartPole (see Fig. 3.1(c,f)), however, gives an exam-
ple of the case where EV works completely differently to A2C, it reduces the variance
almost 100-1000 times in both policy configurations. Similar picture we can observe in
all CartPole experiments.

We can see that in Unlock showed in Fig. 3.3 the variance can also be reduced ap-
proximately 10-100 times, however, we see very little gain in rewards. It shows that in
some environments training does not respond to the variance reduction; as a reason, it
can be just not enough to give the improvement.

As answer to the discussion [81] about whether variance reduction helps in training we
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would note the following phenomenon. In all cases we have confirmed variance reduction
but not everywhere we have seen different performance of A2C, Reinforce and EV. Note
that we designed our experiment in such a way that the only thing differentiating the
agents is the goal function for baseline training. Some environments due to their specific
setting and structure just do not respond to this variance reduction. In some cases (like
in Acrobot) we can see that there are moments in training where variance reduction helps
and where it does not change anything or even make training slower. It is natural to sup-
pose that all these specific features should be addressed by some training algorithm which
would combine in a clever way several variance reduction techniques or would decide that
variance reduction is not needed at all. The last thing can be vital for exploration proper-
ties. Hence, we would conclude that variance reduction is the technique for improvement
but how and when to apply it during the training is an interesting open question.

The last thing we would like to note is that reward variance measured in previous sub-
section is not an indicator of variance reduction since we have shown gradient variance
reduction in all cases. Reward variance is decreased in relation to Reinforce, however,
only in CartPole environement. Therefore, it cannot be used as a key metric for studying
variance reduction in RL. The connection between reward variance and gradient variance
seems to be an unanswered question in the literature.

3.5 Conclusions

In conclusion, we would like to state that sometimes the desired effect from variance
reduction cannot be reached due to the specific nature of the environment. However, as
we have seen above, it has the potential to influence the training process in a good way.
As a new method for constructing variance reduction goals we suggested to use empirical
variance which in turn resulted in EV-methods. Their motivation is more about actual
variance reduction than in case of A2C and their performance is at least as good as A2C in
terms of variance reduction and rewards. For them we also have suggested a probabilistic
bound for the variance of the gradient estimate under some mild assumptions. Finally,
EV-algorithms can be more stable in training which can allow to make sudden drops
during the training less frequent. We also have for the first time presented the study
of actual gradient variance reduction in classic benchmark problems. Our results have
shown that variance reduction can help in the training but sometimes the environment’s
specific features do not allow to achieve gain in rewards. Therefore, variance reduction
technique needs to be used during the training but the exact circumstances in which it
helps are yet to be discovered.
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Conclusion

In our work we have addressed two settings: optimal stopping for SDE and reinforcement
learning in MDP setting.

Regarding the first direction we have presented the complexity analysis of WSM-
algorithm and have suggested a new methodology for comparison of the algorithms for
optimal stopping problem which includes the computational complexity. Our results have
demonstrated superior qualities of the WSM algorithm and its robustness when trying to
approximate the solution of continuous-time problem with a discrete-time one.

Regarding the second direction, we have contributed in several areas. Firstly, we
have proven finite-time convergence analysis of linear stochastic approximation scheme
which serves numerous policy evaluation algorithms. The analysis is shown to be tight
by constructing an exact expansion of the error giving a lower bound. Secondly, in the
last chapter we have designed a new method for variance reduction in policy-gradient
algorithms based on empirical variance. The algorithm shows an inprovement over A2C
least-squares criterion and can be used in various modifications of A2C schemes encorpo-
rating a variance reduction component.

Overall, our contribution demonstrated itself to be not in the sole direction but rather
in the several areas: mathematical finance and reinforcement learning. Obtained ideas can
be incorporated in many possible future research directions including stochastic algorithms
and their analysis in stochastic optimal control and reinforcement learning.
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Silver, Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for
temporal-difference learning with linear function approximation. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, page
993–1000, New York, NY, USA, 2009. Association for Computing Machinery.

[74] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In S. Solla,
T. Leen, and K. Müller, editors, Advances in Neural Information Processing Systems,
volume 12. MIT Press, 2000.

[75] Vladislav Tadic. Almost sure convergence of two time-scale stochastic approximation
algorithms. Proceedings of the 2004 American Control Conference, 4:3802–3807 vol.4,
2004.

[76] Vladislav Tadic. Asymptotic analysis of temporal-difference learning algorithms with
constant step-sizes. Machine Learning, 63:107–133, 05 2006.

[77] Nizar Touzi. Optimal stochastic control, stochastic target problems, and backward
sde. Fields Institute Monographs, 29, 01 2013.

[78] Lloyd Trefethen. Multivariate polynomial approximation in the hypercube. Proceed-
ings of the American Mathematical Society, 145, 08 2016.

[79] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42(5):674–690,
May 1997.

[80] John Tsitsiklis and Benjamin Roy. Regression methods for pricing complex american
style options. IEEE transactions on neural networks / a publication of the IEEE
Neural Networks Council, 12:694–703, 02 2001.

[81] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard Turner, Zoubin Ghahra-
mani, and Sergey Levine. The mirage of action-dependent baselines in reinforcement
learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5015–5024. PMLR, 10–15 Jul 2018.

[82] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
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Appendix A

A.1 Proofs

A.1.1 Proof of Proposition 1

For achieving a target accuracy of order ε it is reasonable to divide the error equally over
the variance and the bias part of (1.1). One thus chooses m such that κ5L/mα ≈ ε/2,
that is, m ≈ (2κ5L/ε)1/α, and then takes N such that κ5Lmd/2/N1/2 ≈ ε/2, i.e. N ≈
(2κ)252Lmd/ε2, yielding a computational work load CL (ε, d) = κ1Nm

2dL as stated.

A.1.2 Proof of Proposition 2

For l = L the statement reads
∫ ∣∣∣UL(x) − ŨL(x)

∣∣∣ pL(x|x0)dx =

∫
1|x−x0|>R g(x)pL(x|x0)dx = εL,R,

so then it is true. Suppose (1.10) is true for 0 < l+1 ≤ L. Then, by using |max(a, b) − max(a, c)| ≤
|b− c| and the fact that Ũl(x) vanishes for |x− x0| > R,

∣∣∣Ul(x) − Ũl(x)
∣∣∣ ≤ 1|x−x0|≤R |max [g(x),E [Ul+1(Xl+1)|Xl = x]]

−max
[
g(x),E

[
Ũl+1(Xl+1)

∣∣∣Xl = x
]]∣∣∣+ 1|x−x0|>RUl(x)

≤ 1|x−x0|≤RE

[∣∣∣Ul+1(Xl+1) − Ũl+1(Xl+1)
∣∣∣
∣∣∣Xl = x

]
+ 1|x−x0|>RUl(x).

Hence we have by induction,

∫ ∣∣∣Ul(x) − Ũl(x)
∣∣∣ pl(x|x0)dx

≤
∫

1|x−x0|>RE

[∣∣∣Ul+1(Xl+1) − Ũl+1(Xl+1)
∣∣∣
∣∣∣Xl = x

]
pl(x|x0)dx+ εl,R

≤
∫ ∣∣∣Ul+1(y) − Ũl+1(y)

∣∣∣ pl+1(y|x0)dy + εl,R

=
L∑

j=l+1

εj,R + εl,R =
L∑

j=l

εj,R.
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A.1.3 Proof of Proposition 3

Combining the assumptions (1.11) and (1.12) yields

Ul(x) = esssup
τ∈Tl,L

E [gτ (Zτ )|Zl = x]

≤ cgE

[
1 + max

l≤l′≤L
|Zl′ |

∣∣∣∣Zl = x

]

≤ cg (1 + cZ) + cgcZ |x| .

By the estimate ∫

|x−x0|>R

e−
|x−x0|2

2αl dx ≤ e−
R2

8αl (4/3)d/2 (2παl)d/2,

and (using Cauchy-Schwarz) the estimate

∫

|x−x0|>R

|x− x0| e−
|x−x0|2

2αl dx ≤
√∫

|x−x0|>R

e−
|x−x0|2

2αl dx

√∫
|x− x0|2 e−

|x−x0|2
2αl dx

≤ e−
R2

8αl 2d/4(2παl)d/2
√
dαl,

we get (note that (4/3)1/2 < 21/4)

εl,R ≤ κ

(2παl)d/2

∫

|x−x0|>R

(cg (1 + cZ) + cgcZ |x|) e− |x−x0|2
2αl dx

≤ κcg (1 + cZ + cZ |x0|)
(2παl)d/2

∫

|x−x0|>R

e−
|x−x0|2

2αl dx

+
κcgcZ

(2παl)d/2

∫

|x−x0|>R

|x− x0| e−
|x−x0|2

2αl dx

≤ κcg

(
1 + cZ + cZ |x0| + cZ

√
dα

√
l
)

2d/4e−
R2

8αl

≡
(
A+B

√
l
)
cgκe

− R2

8αl ,

for l ≥ 1 (ε0,R = 0 for R > 0). Now by (1.10), i.e. Proposition 2, we get

∫ ∣∣Ul(x) − Ũl(x)
∣∣pl(x|x0) dx ≤ L

(
A+B

√
L
)
cgκe

− R2

8αL ,

whence the estimate (1.14).

A.1.4 Proof of Proposition 4

Let us write the sample based backward dynamic program (1.9) for step l < L in the form

U l

(
Z

(i)
l

)
= ✶

∣∣∣Z(i)
l

−x0

∣∣∣≤R
max

[
gl(Z

(i)
l ),

N∑

j=1

U l+1(Z
(j)
l+1)wij

]
(A.1)

by defining the weights

wij :=
p(Z

(j)
l+1|Z

(i)
l )

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

, (A.2)
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where l is fixed and suppressed. Let us further abbreviate

E [f ](x) = E [f(Zl+1)|Zl = x] =

∫
f(y)p(y|x)dy

for a generic Borel function f ≥ 0. Using

Ũl

(
Z

(i)
l

)
= ✶

∣∣∣Z(i)
l

−x0

∣∣∣≤R
max

[
gl(Z

(i)
l ), E [Ũl+1](Z

(i)
l )
]
,

(A.1) and |max(a, b) − max(a, c)| ≤ |b− c|, we thus get

∣∣∣U l − Ũl

∣∣∣
N

:=
1

N

N∑

i=1

∣∣∣U l(Z
(i)
l ) − Ũl(Z

(i)
l )
∣∣∣ ≤

1

N

N∑

i=1

✶
∣∣∣Z(i)

l
−x0

∣∣∣≤R

∣∣∣∣∣

N∑

j=1

U l+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣

≤
∣∣∣U l+1 − Ũl+1

∣∣∣
N

+ Rl+1 (A.3)

with

Rl+1 =
1

N

N∑

i=1

✶
∣∣∣Z(i)

l
−x0

∣∣∣≤R

∣∣∣∣∣

N∑

j=1

Ũl+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣ ,

where we have used the fact that the weights in (A.2) sum up to one. One thus gets by
iterating (A.3)

∣∣∣Uk − Ũk

∣∣∣
N
≤

L−1∑

l=k

Rl+1, (A.4)

since UL − ŨL = 0. Let us now introduce

w◦
ij :=

1

N

p(Z
(j)
l+1|Z

(i)
l )

pl+1(Z
(j)
l+1|x0)

, (A.5)

and consider the generic term

Rl+1 =
1

N

N∑

i=1

✶
∣∣∣Z(i)

l
−x0

∣∣∣≤R

∣∣∣∣∣

N∑

j=1

Ũl+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣

≤ 1

N

N∑

i=1

✶
∣∣∣Z(i)

l
−x0

∣∣∣≤R

N∑

j=1

Ũl+1(Z
(j)
l+1)

∣∣wij − w◦
ij

∣∣

+
1

N

N∑

i=1

✶
∣∣∣Z(i)

l
−x0

∣∣∣≤R

∣∣∣∣∣

N∑

j=1

(
w◦

ijŨl+1(Z
(j)
l+1) −

1

N
E [Ũl+1](Z

(i)
l )

)∣∣∣∣∣

=: Term1 + Term2.

We have
E [Rl+1] ≤ E [Term1] + E [Term2] .
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While the first term Term1 is small as (wij) are close to (w◦
ij), the second one Term2 tends

to 0 as N → ∞ by the law of large numbers. Indeed, due to (1.7) one has

Term1 ≤
GR

N

N∑

i=1

N∑

j=1

✶
∣∣∣Z(i)

l
−x0

∣∣∣≤R
✶
∣∣∣Z(j)

l+1−x0

∣∣∣≤R

∣∣wij − w◦
ij

∣∣ ,

and due to (A.2) and (A.5) we may write

∣∣wij − w◦
ij

∣∣ =

∣∣∣∣∣
p(Z

(j)
l+1|Z

(i)
l )

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

− 1

N

p(Z
(j)
l+1|Z

(i)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣

=
p(Z

(j)
l+1|Z

(i)
l )

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

∣∣∣∣∣1 −
1
N

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣

to obtain

Term1 ≤
GR

N

N∑

j=1

✶
∣∣∣Z(j)

l+1−x0

∣∣∣≤R

∣∣∣∣∣1 −
1
N

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣ .

The expectation of the random variable inside of the above sum is independent of j. So
by taking j = 1 and splitting off the with Z(1) correlating term due to m = 1, one gets

E [Term1] ≤
GR

N
E

[
✶
∣∣∣Z(1)

l+1−x0

∣∣∣≤R

∣∣∣∣∣

N∑

m=1

(
1 − p(Z

(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)∣∣∣∣∣

]

≤ GR

N
DR,l +

GR

N
E

[∣∣∣∣∣

N∑

m=2

✶
∣∣∣Z(1)

l+1−x0

∣∣∣≤R

(
1 − p(Z

(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)∣∣∣∣∣

]

with

DR,l := E

[
✶
∣∣∣Z(1)

l+1−x0

∣∣∣≤R

∣∣∣∣∣1 − p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

∣∣∣∣∣

]
.

Now consider the i.i.d. random variables,

η(l+1)
m := ✶

∣∣∣Z(1)
l+1−x0

∣∣∣≤R

(
1 − p(Z

(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)
, m = 2, ..., N. (A.6)

It can be verified by conditioning on Z
(1)
l+1 that these have zero mean. Then by applying

Jensen’s inequality to the square-root, using the independence of the random variables
(A.6), and that the latter variables are identically distributed with zero mean, we derive

E

∣∣∣∣∣

N∑

m=2

η(l+1)
m

∣∣∣∣∣ ≤

√√√√
E

(
N∑

m=2

η
(l+1)
m

)2

= ER,l

√
N

with

E2
R,l := E


✶∣∣∣Z(1)

l+1−x0

∣∣∣≤R

∣∣∣∣∣1 − p(Z
(1)
l+1|Z

(2)
l )

pl+1(Z
(1)
l+1|x0)

∣∣∣∣∣

2

 .

Finally we get for Term1,

E[Term1] ≤
GRDR,l

N
+
GRER,l√

N
.
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Concerning Term2, let us write

E [Ũl+1](Z
(i)
l ) =

∫
Ũl+1(y)

p(y|Z(i)
l )

pl+1(y|x0)
pl+1(y|x0)dy

= E

[
Ũl+1(Z

0,x0

l+1 )
p(Z0,x0

l+1 |Z
(i)
l )

pl+1(Z
0,x0

l+1 |x0)

]
,

where Z0,x0 is an independent dummy trajectory. We thus have

E [Term2] ≤ E

[
✶
∣∣∣Z(1)

l
−x0

∣∣∣≤R

∣∣∣∣
(
w◦

11Ũl+1(Z
(1)
l+1) −

1

N
E [Ũl+1](Z

(1)
l )

)∣∣∣∣
]

+ E

[∣∣∣∣∣

N∑

j=2

ζ
(l+1)
j

∣∣∣∣∣

]
,

where for j = 2, ..., N, the random variables

ζ
(l+1)
j := ✶

∣∣∣Z(1)
l

−x0

∣∣∣≤R

(
w◦

1jŨl+1(Z
(j)
l+1) −

1

N
E [Ũl+1](Z

(1)
l )

)

=
✶
∣∣∣Z(1)

l
−x0

∣∣∣≤R

N

(
p(Z

(j)
l+1|Z

(1)
l )

pl+1(Z
(j)
l+1|x0)

Ũl+1(Z
(j)
l+1) − E

[
Ũl+1(Z

0,x0

l+1 )
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z
0,x0

l+1 |x0)

])

are i.i.d. with zero mean. We so have by the Jensen’s inequality again,

E

[∣∣∣∣∣

N∑

j=2

ζ
(l+1)
j

∣∣∣∣∣

]
≤
√
NVar

(
ζ
(l+1)
2

)
≤ FR,lGR/

√
N,

where

F 2
R,l = E


✶∣∣∣Z(2)

l+1−x0

∣∣∣≤R

∣∣∣∣∣
p(Z

(2)
l+1|Z

(1)
l )

pl+1(Z
(2)
l+1|x0)

∣∣∣∣∣

2

 =

∫ ∫

|y−x0|≤R

p2(y|x)

pl+1(y|x0)
pl(x|x0) dxdy.

Secondly, by (A.5) one has

E

[
✶
∣∣∣Z(1)

l
−x0

∣∣∣≤R

∣∣∣∣
(
w◦

11Ũl+1(Z
(1)
l+1) −

1

N
E [Ũl+1](Z

(1)
l )

)∣∣∣∣
]

≤ 1

N
E

[
✶
∣∣∣Z(1)

l
−x0

∣∣∣≤R

p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

Ũl+1(Z
(1)
l+1)

]

+
1

N
E

[
✶
∣∣∣Z(1)

l
−x0

∣∣∣≤R
E

[
Ũl+1(Z

0,x0

l+1 )
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z
0,x0

l+1 |x0)

]]

≤ GR

N
E

[
✶
∣∣∣Z(1)

l+1−x0

∣∣∣≤R

p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

]

+
GR

N
E

[
✶|Z0,x0

l+1 −x0|≤R

p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z
0,x0

l+1 |x0)

]
=:

GR

N
HR,l,
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where the latter inequality follows from (1.7) and the fact that Ũl+1 vanishes outside the
ball BR.

Combining the above estimates, we get for Term2

E[Term2] ≤
FR,lGR√

N
+
GR

N
HR,l.

Thus we have expressed our bounds for E [Term1] and E [Term2] in terms of the quantities
DR,l, ER,l, FR,l, HR,l, and GR. Furthermore, it is easy to see that using (1.15)

DR,l ≤ 1 + E

[
✶
∣∣∣Z(1)

l+1−x0

∣∣∣≤R

p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

]

= 1 +

∫
pl(x|x0) dx

∫

|y−x0|≤R

p2(y|x)

pl+1(y|x0)
dy

≤ 1 + F 2
R.

Similarly, it follows that E2
R,l ≤ 2 + 2F 2

R, and that HR,l ≤ 1 + F 2
R due to

E

[
✶|Z0,x0

l+1 −x0|≤R

p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z
0,x0

l+1 |x0)

]
≤ 1.

By now taking the expectation in (A.4) and gathering all together we obtain,

E

[∣∣Uk − Ũk

∣∣
N

]
≤ (L− k)GR

(√
2 + 2F 2

R + FR√
N

+
2 + 2F 2

R

N

)
. (A.7)

By next taking k = 0 and assuming that N is taken such that (1 + FR)/
√
N < 1,

Proposition 4 follows.

A.1.5 Proof of Proposition 6

In order to achieve a required accuracy ε > 0, let us take R and N large enough such that
both error terms in (1.16) are equal to ε/2. Hence, we first take

Rε,d = (8αL)1/2 log1/2
Lcgκ

(
1 + cZ + cZ |x0| + cZ

√
dαL

)
21+d/4

ε
,

that is R ↗ ∞ when d + ε−1 ↗ ∞. Then take, with ≍ denoting asymptotic equivalence
for R ↗ ∞ up to some natural constant,

Nε ≍ L2c2gκ (e/α)d/2 d−d/2Rd+2
ε ε−2 ≍ αc2gκ (8e/d)d/2 Ld/2+3

× ε−2 logd/2+1
L
(

1 + cZ + cZ |x0| + cZ
√
dαL

)
21+d/4cgκ

ε
.

Thus, the computational work load (complexity) is given by

c
(d)
f N2

εL ≤ c1α
2c4gκ

2c
(d)
f (8e/d)d Ld+7

× ε−4 logd+2
L
(

1 + cZ + cZ |x0| + cZ
√
dαL

)
21+d/4cgκ

ε
(A.8)
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where c1 is a natural constant. Now let us write

d−d logd+2
L
(

1 + cZ + cZ |x0| + cZ
√
dαL

)
21+d/4cgκ

ε

= d2 logd+2



L1/d

(
1 + cZ + cZ |x0| + cZ

√
dαL

)1/d
21/d+1/4 (cgκ)1/d

ε1/d


 .

Then, using the elementary estimate
(
a+ b

√
d
)1/d

≤ aeb/a, for a, b > 0, d ≥ 1, and

assuming that ε < 1, (A.8) implies (1.17).

A.1.6 Proof of Proposition 9

On the one hand one has

U◦
tl
(Xtl) − Utl(X tl) = esssup

τ∈Tl,L

EFtl
[g(τ,Xτ )] − esssup

τ∈Tl,L

EFtl

[
g(τ ,Xτ )

]

≤ esssup
τ∈Tl,L

EFtl

[
g(τ,Xτ ) − g(τ,Xτ )

]

≤ esssup
τ∈Tl,L

EFtl

[∣∣g(τ,Xτ ) − g(τ,Xτ )
∣∣] ,

and on the other one has similarly

Utl(X tl) − U◦
tl
(Xtl) = esssup

τ∈Tl,L

EFtl

[
g(τ ,Xτ )

]
− esssup

τ∈Tl,L

EFtl
[g(τ,Xτ )]

≤ esssup
τ∈Tl,L

EFtl

[
g(τ ,Xτ ) − g(τ,Xτ )

]

≤ esssup
τ∈Tl,L

EFtl

[∣∣g(τ,Xτ ) − g(τ,Xτ )
∣∣] .

Hence we get

E
[∣∣U◦

tl
(Xtl) − Utl(X tl)

∣∣] ≤ E

[
sup

0≤s≤T

∣∣g(s,Xs) − g(s,Xs)
∣∣
]

≤ LgE

[
sup

0≤s≤T

∣∣Xs −Xs

∣∣
]
≤ CEuler

√
h,

due to the strong order of the Euler scheme, with Lg being some Lipschitz constant for
g.
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Appendix B

B.1 Proof of Proposition 14

The following derivation is largely borrowed from [46] and is repeated here for complete-
ness. We begin by substituting θ̃k into (2.3) to obtain

θ̃k+1 = (I−βkA11)θk − βkA12wk − θ⋆ + βkb1 − βkVk+1

= (I−βkA11)θ̃k − βkA11θ
⋆ − βkA12(w̃k + w⋆ − Ck−1θ̃k) + βkb1 − βkVk+1

= (I−βk(A11 − A12A
−1
22 A21 − A12Lk))θ̃k − βkA12w̃k − βk(A12w

⋆ + A11θ
⋆ − b1) − βkVk+1.

Notice that

A12w
⋆ + A11θ

⋆ − b1 = (A11 − A12A
−1
22 A21)θ

⋆ + A12A
−1
22 b2 − b1 = 0.

The above yields
θ̃k+1 = (I−βkBk

11)θ̃k − βkA12w̃k − βkVk+1. (B.1)

Next, we observe that

wk+1 − w⋆ = (I−γkA22)wk − γkA21θk − w⋆ + γkb2 − γkWk+1

= (I−γkA22)(wk − w⋆) − γkA22w
⋆ − γkA21θk + γkb2 − γkWk+1

= (I−γkA22)(wk − w⋆) − γkA21(θk − θ⋆) − γkWk+1

Substitute w̃k into (2.4) and using (2.23) yield:

w̃k+1 = (I−γkA22)(wk − w⋆) − γkA21θ̃k + Ckθ̃k+1 − γkWk+1

= (I−γkA22)w̃k −
(
(I−γkA22)Ck−1 + γkA21

)
θ̃k + Ck

(
(I−βkBk

11)θ̃k − βkA12w̃k

)

− βkCkVk+1 − γkWk+1

= (I−γkBk
22)w̃k −

(
Ck−1 − γk(A22Ck−1 − A21) − Ck(I−βkBk

11)
)
θ̃k − βkCkVk+1 − γkWk+1

We observe that

Ck−1 − γk(A22Ck−1 − A21) − Ck(I−βkBk
11)

= Lk + A−1
22 A21 − (Lk+1 + A−1

22 A21)(I−βkBk
11) − γk(A22Ck−1 − A21)

= Lk − (Lk − γkA22Lk + βkA
−1
22 A21B

k
11) − βkA

−1
22 A21B

k
11 − γk(A22Ck−1 − A21)

= γkA22Lk − γk(A22(Lk + A−1
22 A21) − A21) = 0.

The above yields
w̃k+1 = (I−γkBk

22)w̃k − βkCkVk+1 − γkWk+1. (B.2)
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B.2 Detailed Proofs for Section 2.3

Before we proceed to proving the main results of Section 2.3, we first study a few properties
of the two timescale linear SA scheme.

To facilitate our discussions next, we define the constant:

C∞ :=
√
λmin(Q∆)−1λmax(Q22) L∞ +∥A−1

22 A21∥, (B.3)

where ∥Ck∥ ≤ C∞ for any k ≥ 0. Then, as we have θkθ
⊤
k ⪯ 2θ̃kθ̃

⊤
k + 2θ⋆(θ⋆)⊤, it holds

∥E
[
θkθ

⊤
k

]
∥ ≤ 2

{
Mθ̃

k +∥θ⋆(θ⋆)⊤∥
}
, ∥E

[
wkw

⊤
k

]
∥ ≤ 3

{
Mw̃

k + Mθ̃
k C2

∞ +∥w⋆(w⋆)⊤∥
}

The noise terms Vk,Wk can then be estimated in terms of the transformed variables θ̃k, w̃k

and their variances Mθ̃
k,M

w̃
k . In particular, combining with A12 yields

∥E
[
Vk+1V

⊤
k+1

]
∥ ≤ m̃V (1 + Mθ̃

k + Mw̃
k ), ∥E

[
Wk+1W

⊤
k+1

]
∥ ≤ m̃W (1 + Mθ̃

k + Mw̃
k ) (B.4)

∥E
[
Vk+1W

⊤
k+1

]
∥ ≤ m̃VW (1 + Mθ̃

k + Mw̃
k ) (B.5)

where

m̃V

mV

=
m̃W

mW

= (1 + 2∥θ⋆(θ⋆)⊤∥ + 3∥w⋆(w⋆)⊤∥) ∨ (2 + 3 C2
∞) ∨ 3

m̃VW =

√
dθdw
2

(m̃W + m̃V )

(B.6)

We also define a few constants related to the matrices Q∆, Q22 associated with the Hur-
witz matrices ∆, A22 in (2.8). Set p∆ := λ−1

min(Q∆)λmax(Q∆), p22 := λ−1
min(Q22)λmax(Q22),

p22,∆ :=
√
p22p∆. Moreover, for any a > 0, we set

ϱa :=
2

a
ς max{1, a22/(4a∆)} ∨ 4

a
(ς)3. (B.7)

Next, we study the contraction properties of I−βkBk
11 and I−γkBk

22 that appear in the
transformed two timescale SA (2.23),(2.24). Using (2.9), we observe that

∥I−βkBk
11∥Q∆

= ∥I−βk∆ + βkA12Lk∥Q∆
≤ ∥I−βk∆∥Q∆

+ βk∥A12∥Q22,Q∆
∥Lk∥Q∆,Q22

≤ (1 − βka∆) + βk∥A12∥Q22,Q∆
∥Lk∥Q∆,Q22 .

Recalling that ∥Lk∥Q∆,Q22 ≤ L∞, the above inequality yields

∥I−βkBk
11∥Q∆

≤ 1 − (1/2)βka∆ . (B.8)

Since ∥I−γkBk
22∥Q22 ≤ ∥I−γkA22∥Q22 + βk∥CkA12∥Q22 , we obtain the contraction:

∥I−γkBk
22∥Q22 ≤ 1 − γka22 + βk(L∞ +∥A−1

22 A21∥Q∆,Q22)∥A12∥Q22,Q∆

≤ 1 − (1/2)γka22.
(B.9)

The last inequality is due to κ ≤ (a22/2){(L∞ +∥A−1
22 A21∥Q∆,Q22)∥A12∥Q22,Q∆

}−1. Lastly,
the following quantities will be used throughout the analysis:

Γ(1)
m:n :=

n∏

i=m

(I−βiBi
11), Γ(2)

m:n :=
n∏

i=m

(I−γiBi
22),

G(1)
m:n :=

n∏

i=m

(
1 − (1/2)βia∆

)
, G(2)

m:n :=
n∏

i=m

(
1 − (1/2)γia22

)
.
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As a convention, we define Γ
(1)
m:n = Γ

(2)
m:n = I if m > n. In particular, for any n,m ≥ 0, we

observe the following bound on the operator norm of Γ
(1)
m:n,

∥Γ(1)
m:n∥ =

√
p∆∥Γ(1)

m:n∥Q∆
≤ √

p∆

n∏

i=m

∥ I−βiBi
11∥Q∆

≤ √
p∆G

(1)
m:n (B.10)

Similarly, we have ∥Γ
(1)
m:n∥ ≤ √

p22G
(2)
m:n. Lastly, we define

Σk := E
[
w̃kw̃

⊤
k

]
, Ωk := E

[
θ̃kw̃

⊤
k

]
, Θk := E

[
θ̃kθ̃

⊤
k

]
,

whose operator norms correspond to Mw̃
k ,M

θ̃,w̃
k ,Mθ̃

k, respectively.

B.2.1 Detailed Proof of Theorem 12

This subsection provides proofs to the propositions stated in Section 2.3.1, as well as
providing detailed steps in establishing Theorem 12.

Bounding Mw̃
k (Proof of Proposition 15) Using (2.24), as the noise terms are mar-

tingale, we get

E
Fk
[
w̃k+1w̃

⊤
k+1

]
= (I−γkBk

22)w̃kw̃
⊤
k (I−γkBk

22)
⊤ + γ2kE

Fk
[
Wk+1W

⊤
k+1

]

+ β2
kCkE

Fk
[
Vk+1V

⊤
k+1

]
C⊤

k + βkγk
(
E
Fk
[
Wk+1V

⊤
k+1

]
C⊤

k + CkE
Fk
[
Vk+1W

⊤
k+1

])
. (B.11)

Repeatedly applying (B.11) and taking the total expectation on both sides show

Σk+1 = Γ
(2)
0:kΣ0(Γ

(2)
0:k)⊤ +

k∑

j=0

Γ
(2)
j+1:kDj+1(Γ

(2)
j+1:k)⊤, (B.12)

where

Dk+1 = γ2kE
[
Wk+1W

⊤
k+1

]
+ β2

kCkE
[
Vk+1V

⊤
k+1

]
C⊤

k +βkγk
(
E
[
Wk+1V

⊤
k+1

]
C⊤

k + CkE
[
Vk+1W

⊤
k+1

] )
.

Using Lemma 39, we observe that

γkβk∥E
[
Wk+1V

⊤
k+1

]
C⊤

k ∥ ≤
√
dθdw
2

C∞

(
γ2k∥E

[
Wk+1W

⊤
k+1

]
∥+β2

k∥E
[
Vk+1V

⊤
k+1

]
∥
)
, (B.13)

Let KC := max{C2
∞, 1} +

√
dθdwC∞, we have

∥Dk+1∥ ≤ γ2k

(
1 + C∞

√
dθdw

)
∥E
[
Wk+1W

⊤
k+1

]
∥ + β2

kC∞

(
C∞ +

√
dθdw

)
∥E
[
Vk+1V

⊤
k+1

]
∥

≤ KC

(
γ2k
{
m̃V + m̃V Mθ̃

k +m̃V Mw̃
k

}
+ β2

k

{
m̃W + m̃W Mθ̃

k +m̃W Mw̃
k

})

(B.14)

where the last inequality is due to (B.4). Taking the operator norm on both sides of
(B.12) yields

Mw̃
k+1 ≤ p22

{(
G

(2)
0:k

)2
Mw̃

0 +KC

k∑

j=0

(
G

(2)
j+1:k

)2
(γ2j m̃V + β2

j m̃W )
{

1 + Mθ̃
j + Mw̃

j

}}
. (B.15)
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Using that βk ≤ κγk one writes

Mw̃
k+1 ≤ Cw̃

0

′(
G

(2)
0:k

)2
+ c0C

w̃
1

′
k∑

j=0

γ2j
(
G

(2)
j+1:k

)2
(1 + Mθ̃

j) + Cw̃
2

′
k∑

j=0

γ2j
(
G

(2)
j+1:k

)2
Mw̃

j (B.16)

where c0 = m̃V + κ2m̃W , Cw̃
0

′
= p22 Mw̃

0 , Cw̃
1

′
= p22KC , and Cw̃

2

′
= p22c0. Define:

Ũk = Cw̃
0

′(
G

(2)
0:k−1

)2
+ c0C

w̃
1

′
k−1∑

j=0

γ2j
(
G

(2)
j+1:k−1

)2
(1 + Mθ̃

j) + Cw̃
2

′
k−1∑

j=0

γ2j
(
G

(2)
j+1:k−1

)2
Ũj,

It is easily seen that the sequence (Ũk)k≥0 is given by the following recursion

Ũk+1 = (1 − a22γk/2)2Ũk + c0C
w̃
1

′
γ2k(1 + Mθ̃

k) + Cw̃
2

′
γ2kŨk, Ũ0 = Cw̃

0

′
.

Since the step size was chosen such that γk(Cw̃
2

′
+ (a222/4)) ≤ a22

2
[cf. (2.26)], we have

Ũk+1 ≤ (1 − a22γk/2)Ũk + Cw̃
1

′
γ2k(c0 + c1 Mθ̃

k)

which implies

Ũk+1 ≤ C0G
(2)
0:k + c0C

w̃
1

′
k∑

j=0

γ2j (1 + Mθ̃
j)G

(2)
j+1:k. (B.17)

Observe that Mw̃
k ≤ Ũk. Applying Corollary 30 shows that

∑k
j=0 γ

2
jG

(2)
j+1:k ≤ ϱa22/2γk+1,

we get

Mw̃
k+1 ≤ Cw̃

0 G
(2)
0:k + Cw̃

1 γk+1 + Cw̃
2

k∑

j=0

γ2jG
(2)
j+1:k Mθ̃

j , (B.18)

where we recall KC := max{C2
∞, 1} +

√
dθdwC∞, and

Cw̃
0 := p22 Mw̃

0 , Cw̃
1 := p22(m̃V + κ2m̃W )KCϱ

a22/2, Cw̃
2 := p22KC(m̃V + κ2m̃W ). (B.19)

This concludes the proof for Proposition 15.

Bounding Mθ̃,w̃
k (Proof of Proposition 16) We proceed by observing the following

recursion of Ωk:

Ωk+1 = (I−βkBk
11)Ωk(I−γkBk

22)
⊤ − βkA12Σk(I−γkBk

22)
⊤

+ βkγkE
[
Vk+1W

⊤
k+1

]
+ β2

kE
[
Vk+1V

⊤
k+1

]
C⊤

k .
(B.20)

Repeatedly applying the recursion gives

Ωk+1 = Γ
(1)
0:kΩ0

(
Γ
(2)
0:k

)⊤
−

k∑

j=0

βjΓ
(1)
j+1:kA12Σj

(
Γ
(2)
j:k

)⊤
(B.21)

+
k∑

j=0

βjγjΓ
(1)
j+1:kE

[
Vj+1W

⊤
j+1

] (
Γ
(2)
j+1:k

)⊤
+

k∑

j=0

β2
j Γ

(1)
j+1:kE

[
Vj+1V

⊤
j+1

]
C⊤

j

(
Γ
(2)
j+1:k

)⊤
.

(B.22)
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The contraction properties (B.9), (B.8) result in

Mθ̃,w̃
k+1 ≤ p22,∆

{
G

(1)
0:kG

(2)
0:k Mθ̃,w̃

0 +∥A12∥
k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k Mw̃

j

}
(B.23)

+ p22,∆

{ k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k∥E

[
Vj+1W

⊤
j+1

]
∥ + C∞

k∑

j=0

β2
jG

(1)
j+1:kG

(2)
j+1:k∥E

[
Vj+1V

⊤
j+1

]
∥
}

(B.24)

Applying (B.18), we bound the third last term of (B.23) as

k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k Mw̃

j ≤
k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k

(
Cw̃

0 G
(2)
0:j−1 + Cw̃

1 γj + Cw̃
2

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i

)

≤ 2 Cw̃
0 G

(2)
0:k

a∆
+ Cw̃

1

k∑

j=0

βjG
(2)
j:kγj + Cw̃

2

k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i

(B.25)

where we have used Lemma 29 andG
(1)
j+1:k ≤ 1 in the last inequality. Applying Corollary 30

and Lemma 31, A10 to the second and the last term on the right hand side, respectively,
we obtain the following upper bound:

k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k Mw̃

j ≤ 2 Cw̃
0 G

(2)
0:k

a∆
+ Cw̃

1 ϱ
a22/2βk+1 +

2 Cw̃
2

a∆

k∑

i=0

γ2iG
(2)
i+1:k Mθ̃

i . (B.26)

Applying (B.5), we bound the second last term of (B.23) as

k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k∥E

[
Vj+1W

⊤
j+1

]
∥ ≤ m̃VW

k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k

(
1 + Mθ̃

j + Mw̃
j

)

≤ m̃VW

{ k∑

j=0

βjγjG
(2)
j+1:k +

k∑

j=0

βjγjG
(2)
j+1:k Mθ̃

j +
k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k Mw̃

j

}

≤ m̃VW

{
ϱa22/2βk+1 + κ

k∑

j=0

γ2jG
(2)
j+1:k Mθ̃

j +
k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k Mw̃

j

}

(B.27)

where the last inequality applied Corollary 30 again. We observe

k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k Mw̃

j ≤ γ0
1 − γ0a22/2

k∑

j=0

βjG
(1)
j+1:k−1G

(2)
j:k−1 Mw̃

j (B.28)

Thirdly, we repeat the calculations above and exploit βk ≤ κγk to bound

k∑

j=0

β2
jG

(1)
j+1:kG

(2)
j+1:k∥E

[
Vj+1V

⊤
j+1

]
∥ ≤ m̃V

k∑

j=0

β2
jG

(1)
j+1:kG

(2)
j+1:k

(
1 + Mθ̃

j + Mw̃
j

)

≤ m̃V

{ k∑

j=0

β2
jG

(1)
j+1:k +

k∑

j=0

β2
jG

(2)
j+1:k Mθ̃

j +
k∑

j=0

β2
jG

(1)
j+1:kG

(2)
j+1:k Mw̃

j

}

≤ m̃V

{
κϱa22/2βk+1 + κ2

k∑

j=0

γ2jG
(2)
j+1:k Mθ̃

j +κ
k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k Mw̃

j

}
.

(B.29)
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Combining (B.26), (B.27), (B.28), (B.29), we conclude that

Mθ̃,w̃
k+1 ≤ Cθ̃,w̃

0 G
(2)
0:k + Cθ̃,w̃

1 βk+1 + Cθ̃,w̃
2

k∑

j=0

γ2jG
(2)
j+1:k Mθ̃

j (B.30)

where

Cθ̃,w̃
0 := p22,∆

(
Mθ̃,w̃

0 +∥A12∥
2 Cw̃

0

a∆
+ (m̃VW + κC∞m̃V )

2γ0 Cw̃
0

a∆(1 − γ0a22/2)

)
,

Cθ̃,w̃
1 := p22,∆ϱ

a22/2
(

Cw̃
1

(
∥A12∥ +

γ0
1 − γ0a22/2

(m̃VW + C∞κm̃V )
)

+ m̃VW + C∞κm̃V

)
,

Cθ̃,w̃
2 := p22,∆

(2 Cw̃
2

a∆

(
∥A12∥ +

γ0
1 − γ0a22/2

(m̃VW + C∞κm̃V )
)

+ κ
(
m̃VW + C∞κm̃V

))
.

(B.31)

This concludes the proof of Proposition 16.

Bounding Mθ̃
k (Proof of Proposition 17) We observe the following recursion:

E
Fk

[
θ̃k+1θ̃

⊤
k+1

]
= (I−βkBk

11)E
Fk

[
θ̃kθ̃

⊤
k

]
(I−βkBk

11)
⊤ + β2

kA12E
Fk
[
w̃kw̃

⊤
k

]
A⊤

12

+ β2
kE

Fk
[
Vk+1V

⊤
k+1

]
− βk

(
(I−βkBk

11)E
Fk

[
θ̃kw̃

⊤
k

]
A⊤

12 + A12E
Fk

[
w̃kθ̃

⊤
k

]
(I−βkBk

11)
⊤
)

Taking total expectations and evaluating the recursion gives

Θk+1 = Γ
(1)
0:kΘ0(Γ

(1)
0:k)⊤ +

k∑

j=0

β2
j Γ

(1)
j+1:k(A12ΣjA

⊤
12 + E

[
Vj+1V

⊤
j+1

]
)
(
Γ
(1)
j+1:k

)⊤

−
k∑

j=0

βjΓ
(1)
j+1:k((I−βjBj

11)ΩjA
⊤
12 + A12Ω

⊤
j (I−βjBj

11)
⊤)
(
Γ
(1)
j+1:k

)⊤

The above implies

Mθ̃
k+1 ≤ p∆

{
(G

(1)
0:k)2 Mθ̃

0 +2∥A12∥
k∑

j=0

βj(G
(1)
j+1:k)2(1 − βja∆/2) Mθ̃,w̃

j

}

+ p∆

k∑

j=0

β2
j (G

(1)
j+1:k)2

(
∥A12∥2 Mw̃

j +∥E
[
Vj+1V

⊤
j+1

]
∥
)

(B.32)

Applying (B.4) and Corollary 30 yield

Mθ̃
k+1 ≤ p∆

{
(G

(1)
0:k)2 Mθ̃

0 +m̃V ϱ
a∆/2βk+1 + m̃V

k∑

j=0

β2
j (G

(1)
j+1:k)2 Mθ̃

j

}

+ 2p∆∥A12∥
k∑

j=0

βjG
(1)
j:kG

(1)
j+1:k Mθ̃,w̃

j +p∆
(
∥A12∥2 + m̃V

) k∑

j=0

β2
j (G

(1)
j+1:k)2 Mw̃

j ,

(B.33)
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Applying (B.30), we can bound the second last term in (B.33) as

k∑

j=0

βjG
(1)
j:kG

(1)
j+1:k Mθ̃,w̃

j ≤
k∑

j=0

βjG
(1)
j:kG

(1)
j+1:k

(
Cθ̃,w̃

0 G
(2)
0:j−1 + Cθ̃,w̃

1 βj + Cθ̃,w̃
2

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i

)

≤ 2 Cθ̃,w̃
0

a∆
G

(1)
0:k + Cθ̃,w̃

1 ϱa22/2βk+1 + Cθ̃,w̃
2

k∑

j=0

βjG
(1)
j:kG

(1)
j+1:k

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i

where the second inequality is derived using Corollary 30. To bound the last term in the
above we start from the following observation. Indeed, taking into account definition of
β∞ in (2.26), we get (1 − βℓa∆/2)−1 ≤ 1 + βℓa∆. This inequality and assumption A10-2
yield that

γℓ−1

γℓ

1 − γℓa22/2

1 − βℓa∆/2
≤ (1 + ϵγγℓ)(1 − γℓa22/2)(1 + βℓa∆)

≤ 1 − γℓ

{
a22/2 − a∆κ− ϵ

}
+ ϵγγ

2
ℓ

{
κa∆ − a22/2

}
≤ 1 − (1/8)a22γℓ,

(B.34)

since κ∞ ≤ (1/4)a22/a∆, see (2.21). We observe the following chain

k∑

j=0

βjG
(1)
j:kG

(1)
j+1:k

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i =
k−1∑

i=0

γ2i Mθ̃
i

k∑

j=i+1

βjG
(1)
j:kG

(1)
j+1:kG

(2)
i+1:j−1

=
k−1∑

i=0

γ2iG
(1)
i+1:k Mθ̃

i

k∑

j=i+1

βjG
(1)
j+1:k

G
(2)
i+1:j−1

G
(1)
i+1:j−1

(a)

≤
k−1∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i

k∑

j=i+1

γj−1

j−1∏

ℓ=i+1

γℓ−1

γℓ

G
(2)
i+1:j−1

G
(1)
i+1:j−1

(b)

≤
k−1∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i

k∑

j=i+1

γj−1

j−1∏

ℓ=i+1

(1 − (1/8)γℓa22)
(c)

≤ 8ς

a22

k−1∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i .

(B.35)

where (a) is due to βj ≤ βi and G
(1)
j+1:k ≤ 1, (b) is due to (B.34), (c) is due to A10-1 and∑k

j=i+1 γj
∏j−1

ℓ=i+1(1 − γℓã) ≤ (8/a22) for any i, k.
Moreover, applying (B.18), we can bound the last term of (B.33) as:

k∑

j=0

β2
j (G

(1)
j+1:k)2 Mw̃

j ≤
k∑

j=0

β2
j (G

(1)
j+1:k)2

(
Cw̃

0 G
(2)
0:j−1 + Cw̃

1 γj + Cw̃
2

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i

)

≤ Cw̃
0 G

(1)
0:k

1 − β0a∆/2

k∑

j=0

β2
jG

(1)
j+1:k + γ0 Cw̃

1

k∑

j=0

β2
jG

(1)
j+1:k + Cw̃

2

k∑

j=0

β2
j (G

(1)
j+1:k)2

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i

≤
( Cw̃

0 G
(1)
0:k

1 − β0a∆/2
+ γ0 Cw̃

1

)
ϱa22/2βk+1 + Cw̃

2

k∑

j=0

β2
j (G

(1)
j+1:k)2

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i ,

where the last inequality is due to Corollary 30. In addition, similar to (B.35), we can
derive the bound

k∑

j=0

β2
j (G

(1)
j+1:k)2

j−1∑

i=0

γ2iG
(2)
i+1:j−1 Mθ̃

i ≤
(8ς)/a22

1 − β0a∆/2

k∑

i=0

β2
i γiG

(1)
i+1:k Mθ̃

i
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Substituting the above inequalities into (B.33) leads to

Mθ̃
k+1 ≤ Cθ̃

0G
(1)
0:k + Cθ̃

1 βk+1 + Cθ̃
2

k∑

j=0

γjβjG
(1)
j+1:k Mθ̃

j (B.36)

where

Cθ̃
0 := p∆

(
Mθ̃

0 +
4∥A12∥Cθ̃,w̃

0

a∆

)
,

Cθ̃
1 := p∆

{
m̃V ϱ

a∆/2 + 2∥A12∥Cθ̃,w̃
1 ϱa22/2 + (∥A12∥2 + m̃V )

(
γ0 Cw̃

1 +
Cw̃

0

1 − β0a∆/2

)
ϱa22/2

}
,

Cθ̃
2 := p∆

{
16ς∥A12∥Cθ̃,w̃

2

a22
+ m̃V + (∥A12∥2 + m̃V )

8 Cw̃
2 ς/a22

1 − β0a∆/2

}
.

(B.37)

This completes the proof for Proposition 17.

Completing the Proof of Theorem 12 We complete the proof by analyzing the

convergence rate of Mθ̃
k using (B.36). Consider the following recursion which upper bounds

Mθ̃
k:

Uk+1 = Cθ̃
0G

(1)
0:k + Cθ̃

1 βk+1 + Cθ̃
2

k∑

j=0

γjβjG
(1)
j+1:k Uj,

where we have set U0 = Cθ̃
0. Observe that

Uk+1 −(1 − βka∆/2) Uk = Cθ̃
1(βk+1 − (1 − βka∆/2)βk) + Cθ̃

2 γkβk Uk

⇐⇒Uk+1 = (1 − βk(a∆/2 − Cθ̃
2 γk)) Uk + Cθ̃

1(βk+1 − βk + β2
ka∆/2)

Since γk ≤ γ0 ≤ a∆

4Cθ̃
2

, we have

Uk+1 ≤ (1 − βka∆/4) Uk + Cθ̃
1 β

2
ka∆/2

Evaluating the recursion gives

Uk+1 ≤
k∏

ℓ=0

(1 − βℓa∆/4) U0 + Cθ̃
1(a∆/2)

k∑

j=0

β2
j

k∏

ℓ=j+1

(1 − βℓa∆/4)

Applying Corollary 30 shows
∑k

j=0 β
2
j

∏k
ℓ=j+1(1−βℓa∆/4) ≤ ϱa∆/4βk+1. Lastly, observing

that Mθ̃
k ≤ Uk gives

Mθ̃
k+1 ≤ Cθ̃

0

k∏

ℓ=0

(
1 − βℓ

a∆
4

)
+ Cθ̃

1 ϱ
a∆/4a∆

2
βk+1. (B.38)

To finish the proof of (2.14), we observe (i) the constant Cθ̃
0 ≤ Cθ̃,mtg

0 V0 for some con-

stant Cθ̃,mtg
0 , (ii) the inequality that E [∥θk − θ⋆∥2] ≤ dθ Mθ̃

k, and (iii) setting the constant

Cθ̃,mtg
1 := Cθ̃

1 ϱ
a∆/4(a∆/2).
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Our last endeavor is to prove (2.15). Observe that the tracking error ŵk := wk −
A−1

22 (b2 − A21θk) may be represented as

ŵk = wk − w⋆ + w⋆ − A−1
22 (b2 − A21θk)

= w̃k − Ck−1θ̃k + A−1
22

(
(b2 − A21θ

⋆) − (b2 − A21θk)
)

= w̃k − Lkθ̃k

using the definitions in (2.22). This leads to the following estimate of Mŵ
k := ∥E

[
ŵkŵ

⊤
k

]
∥:

Mŵ
k+1 ≤ 2 Mw̃

k+1 +2∥Lk+1∥2 Mθ̃
k+1 ≤ 2 Mw̃

k+1 +2 L2
∞

λmax(Q22)

λmin(Q∆)
Mθ̃

k+1 (B.39)

In particular, substituting (B.38) into (B.18), we obtain:

Mw̃
k+1 ≤ Cw̃

0 G
(2)
0:k + Cw̃

1 γk+1 + Cw̃
2

k∑

j=0

γ2jG
(2)
j+1:k

{
Cθ̃

0

j−1∏

ℓ=0

(
1 − βℓ

a∆
4

)
+ Cθ̃

1 ϱ
a∆/4a∆

2
βj

}

≤ Cw̃
0 G

(2)
0:k + γk+1

{
Cw̃

1 + Cθ̃
1 ϱ

a∆/4a∆
2

Cw̃
2 ϱ

a22/2 +
Cw̃

2 Cθ̃
0 ϱ

a22/2

1 − β0a∆/4

k∏

ℓ=0

(
1 − βℓ

a∆
4

)}

where the last inequality is due to the observation G
(2)
j+1:k ≤

∏k
i=j+1(1− γia22/4)2 and the

application of Corollary 30. Furthermore using G
(2)
0:k ≤ ∏k

ℓ=0(1 − βℓa∆/4) and applying
(B.39) gives

Mŵ
k+1 ≤ Cw

0

k∏

ℓ=0

(1 − βℓa∆/4) + Cŵ,mtg
1 γk+1, (B.40)

where

Cw
0 := 2

{
L2
∞

λmax(Q22)

λmin(Q∆)
Cθ̃

0 +
ϱa22/2 Cw̃

2 Cθ̃
0

1 − β0a∆/4
+ Cw̃

0

}

Cŵ,mtg
1 := 2

{
κL2

∞

λmax(Q22)

λmin(Q∆)
ϱa∆/4a∆

2
Cθ̃

1 + Cw̃
1 +ϱa∆/4a∆

2
Cw̃

2 ϱ
a22/2 Cθ̃

1

} (B.41)

We conclude the proof for Theorem 12 by observing that Cw
0 ≤ Cŵ,mtg

0 V0 for some constant
Cŵ,mtg

0 .

B.2.2 Detailed Proofs of Theorem 13

To facilitate our discussions next, define a few additional constants as:

G̃(1)
m:n :=

n∏

i=m

(1 − βia∆/4), G̃(2)
m:n :=

n∏

i=m

(1 − γia22/4)

B11,∞ := ∥∆∥ +
√
λmin(Q∆)−1λmax(Q22) L∞ ∥A12∥, B22,∞ := κC∞ ∥A12∥ + ∥A22∥.

(B.42)

Before we begin the proof, notice by observing the form of (2.32) that that A12 is satisfied
by the Markovian noise through setting

mV = b ∨ (3A), mW = b ∨ (3A),
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and furthermore (B.4) is satisfied with m̃V , m̃W , m̃VW defined in (B.6) and the above
mV ,mW . Moreover, for i = 0, 1, the second order moments of the decomposed noise
satisfy:

∥E
[
V

(i)
k+1(V

(i)
k+1)

⊤
]
∥ ≤ m̃

(i)
V (1 + Mθ̃

k + Mw̃
k ), ∥E

[
W

(i)
k+1(W

(i)
k+1)

⊤
]
∥ ≤ m̃

(i)
W (1 + Mθ̃

k + Mw̃
k ),

(B.43)

∥E
[
V

(i)
k+1(W

(i)
k+1)

⊤
]
∥ ≤ m̃

(i)
VW (1 + Mθ̃

k + Mw̃
k ), (B.44)

for some constants m̃
(i)
V , m̃

(i)
W , m̃

(i)
VW , i = 1, 2. We proceed with the proof for Theorem 13

as follows.

Bounding Mw̃
k (Proof of Lemma 18 and Proposition 19) Repeating the analysis

that leaded to (B.16) and using the martingale property of V
(0)
k+1,W

(0)
k+1 shows that

∥E
[
w̃

(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ (G

(2)
0:k)2p22 Mw̃

0 +C̃0

k∑

j=0

γ2j (G
(2)
j+1:k)2(1 + Mw̃

j + Mθ̃
j), (B.45)

where

C̃0 = p22

[
{C2

∞ ∨1 +
√
dwdθ C∞}{m̃V +κ2m̃

(0)
W ∨ m̃θ

V +κ2m̃
(0)
W }
]
∨
[
m̃

(0)
V +κ2m̃

(0)
W

]
. (B.46)

Our next endeavor is to bound E

[
∥w̃(1)

k+1∥2
]
. Evaluating the recursion in (2.33) gives

w̃
(1)
k+1 = Γ

(2)
0:kw̃

(1)
0 +

k∑

j=0

γjΓ
(2)
j+1:k(W

(1)
j+1 + CjV

(1)
j+1) (B.47)

Set ψ̃bi
j := ψbi

j + ΨAi1
j θ⋆ + ΨAi2

j w⋆ for i = 1, 2. Using the definitions, the combined noise
has the following expression

W
(1)
j+1 + CjV

(1)
j+1 =

(
ψ̃b2
j − ψ̃b2

j+1

)
+ Cj

(
ψ̃b1
j − ψ̃b1

j+1

)
+
{

ΨA22
j − ΨA22

j+1 + Cj

(
ΨA12

j − ΨA12
j+1

)}
w̃j

+
{

ΨA21
j − ΨA21

j+1 − (ΨA22
j − ΨA22

j+1)Cj−1 + Cj(Ψ
A11
j − ΨA11

j+1) − Cj(Ψ
A12
j − ΨA12

j+1)Cj−1

}
θ̃j

(B.48)

Upon some algebra manipulations that are detailed in Appendix B.2.2, we deduce that
the combined noise may be decomposed as:

W
(1)
j+1 + CjV

(1)
j+1 ≡ ψWV

j − ψWV
j+1 + Ψ̃WV,θ̃

j θ̃j + Ψ̃WV,w̃
j w̃j

+
(
ΥWV,θ̃

j θ̃j − ΥWV,θ̃
j+1 θ̃j+1

)
+
(
ΥWV,w̃

j w̃j − ΥWV,w̃
j+1 w̃j+1

)

+ ΦWV,θ̃
(
θ̃j+1 − θ̃j

)
+ ΦWV,w̃

(
w̃j+1 − w̃j

)
,

(B.49)

where it holds that

∥ψWV
j ∥∨∥ΥWV,θ̃

j ∥∨∥ΥWV,w̃
j ∥∨∥ΦWV,w̃∥∨∥ΦWV,θ̃∥ ≤ EWV

0 , ∥Ψ̃WV,θ̃
j ∥∨∥Ψ̃WV,w̃

j ∥ ≤ EWV
0 γj,
(B.50)
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with

EWV
0 := max{b(1 + C∞),A(1 + 2 C∞ + C2

∞),ACU
2 ϱ

a22/2(1 + C∞)(1 + ς)}. (B.51)

Let us bound the second term in (B.47) one by one as follows. Using Lemma 28, we
obtain

k∑

j=0

γjΓ
(2)
j+1:k

(
ψWV
j − ψWV

j+1 +
(
ΥWV,θ̃

j θ̃j − ΥWV,θ̃
j+1 θ̃j+1

)
+
(
ΥWV,w̃

j w̃j − ΥWV,w̃
j+1 w̃j+1

))

= γ0Γ
(2)
1:k

(
ψWV
0 + ΥWV,θ̃

0 θ̃0 + ΥWV,w̃
0 w̃0

)
− γk

(
ψWV
k+1 + ΥWV,θ̃

k+1 θ̃k+1 + ΥWV,w̃
k+1 w̃k+1

)

+
k∑

j=1

(
γ2jB

j
22Γ

(2)
j+1:k + (γj − γj−1)Γ

(2)
j:k

)(
ψWV
j + ΥWV,θ̃

j θ̃j + ΥWV,w̃
j w̃j

)
,

Secondly,

k∑

j=0

γjΓ
(2)
j+1:kΦWV,θ̃

(
θ̃j+1 − θ̃j

)
= −

k∑

j=0

γjβjΓ
(2)
j+1:kΦWV,θ̃

(
A12w̃j+1 + Vj+1

)

k∑

j=0

γjΓ
(2)
j+1:kΦWV,w̃

(
w̃j+1 − w̃j

)
= −

k∑

j=0

γ2j Γ
(2)
j+1:kΦWV,w̃

(
Wj+1 + CjVj+1

)

As a consequence of (B.43)–(B.44), we have

E
[
∥A12w̃j+1 + Vj+1∥2

]
≤ m̃∆θ̃

(
1+Mw̃

j + Mθ̃
j

)
, E

[
∥Wj+1 + CjVj+1∥2

]
≤ m̃∆w̃

(
1+Mw̃

j + Mθ̃
j

)

(B.52)
where

m̃∆θ̃ := 2
{
∥A12∥2 + m̃V

}
, m̃∆w̃ := 2(m̃W + C∞ m̃V ).

Noting that w̃
(1)
0 = 0, taking Euclidean norm on both sides of (B.47) yields

∥w̃(1)
k+1∥ ≤ √

p22

{
EWV
0

[
G

(2)
1:kγ0(1 + ∥θ̃0∥ + ∥w̃0∥) + γk(1 + ∥θ̃k+1∥ + ∥w̃k+1∥)

]}

+
√
p22 EWV

0

{ k∑

j=1

G
(2)
j+1:k(γ2j + ∥γ2jBj

22 + (γj − γj−1)(I−Bj
22)∥)(1 + ∥w̃j∥ + ∥θ̃j∥)

}

+
√
p22 EWV

0

k∑

j=0

γ2jG
(2)
j+1:k(κ∥A12w̃j+1 + Vj+1∥ + ∥Wj+1 + CjVj+1∥)

(B.53)

Note that for any sequence (bj)j≥0, the following inequality holds:

( k∑

j=0

γ2jG
(2)
j+1:kbj

)2
≤
( k∑

i=0

γ2iG
(2)
i+1:k

) k∑

j=0

γ2jG
(2)
j+1:kb

2
j ≤ γk+1ϱ

a22/2

k∑

j=0

γ2jG
(2)
j+1:kb

2
j , (B.54)

where the first inequality is due to Jensen’s inequality and the second inequality is due
to Corollary 30. Using ∥Bj

22∥ ≤ B22,∞, |γj − γj−1| ≤ a22
8
γ2j [cf. it is a direct consequence
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of A10-2 and the fact γj ≤ γj−1] and applying the above inequality to (B.53) yields

∥w̃(1)
k+1∥2 ≤ 9p22(E

WV
0 )2

{
(G

(2)
1:k)2γ20(1 + ∥w̃0∥ + ∥θ̃0∥)2 + γ2k(1 + ∥θ̃k+1∥2 + ∥w̃k+1∥2)

}

+ 9p22(E
WV
0 )2(B22,∞ +

a22
8

+ 1)2ϱa22/2γk+1

{ k∑

j=0

γ2jG
(2)
j+1:k(1 + ∥w̃j∥2 + ∥θ̃j∥2)

}

+ 9p22(E
WV
0 )2ϱa22/2γk+1

k∑

j=0

γ2jG
(2)
j+1:k

(
κ∥A12w̃j+1 + Vj+1∥2 + ∥Wj+1 + CjVj+1∥2

)

(B.55)

Using the fact E
[
∥w̃k∥2] ≤ dw∥E [[] w̃kw̃

⊤
k

]
∥, E

[
∥θ̃k∥2

]
≤ dθ∥E

[
θ̃kθ̃

⊤
k

]
∥ (cf. Corollary 38),

taking the expectation on both sides yields

E

[
∥w̃(1)

k+1∥2
]
≤ 9p22(E

WV
0 )2

{
(G

(2)
1:k)2γ20(1 + ∥w̃0∥ + ∥θ̃0∥)2 + γ2k(1 + dθ Mθ̃

k+1 +dw Mw̃
k+1)

}

+ 9p22(E
WV
0 )2(B22,∞ +

a22
8

+ 1)2ϱa22/2γk+1

{ k∑

j=0

γ2jG
(2)
j+1:k(1 + dθ Mθ̃

j +dw Mw̃
j )
}

+ 9p22(E
WV
0 )2(κm̃∆θ̃ + m̃∆w̃)ϱa22/2γk+1

k∑

j=0

γ2jG
(2)
j+1:k

(
1 + Mθ̃

j + Mw̃
j

)

The above simplifies to

E

[
∥w̃(1)

k+1∥2
]
≤ C̃1(G

(2)
0:k)2 + C̃2γ

2
k(Mθ̃

k+1 + Mw̃
k+1) + C̃3γk+1

k∑

j=0

γ2jG
(2)
j+1:k(Mθ̃

j + Mw̃
j ) + C̃4γ

2
k

(B.56)

where we have used γk+1 ≤ γk and defined

C̃1 = 9p22(E
WV
0 )2(1 + ∥w̃0∥ + ∥θ̃0∥)2(γ0/(1 − γ0a22/2))2,

C̃2 = 9p22(E
WV
0 )2(dθ ∨ dw),

C̃3 = 9p22(E
WV
0 )2ϱa22/2

[
(dθ ∨ dw)(B22,∞ +

a22
8

+ 1)2 +
(
κm̃∆θ̃ + m̃∆w̃

)
],

C̃4 = C̃2 + ϱa22/2C̃3.

(B.57)

Notice that the intermediate results (B.45), (B.56) lead to Lemma 18.
Compared to (B.45), an important feature of the bound (B.56) is that the latter

contains an extra γk factor. This indicates that the iterate w̃
(1)
k+1 driven by Markovian

noise decays at a faster rate. As we will demonstrate below, the effect of the additional
Markov noise is thus negligible compared to the martingale noise driven terms.

As the operator norm ∥ · ∥ is convex, applying Jensen’s inequality yields

Mw̃
k+1 ≤ 2∥E

[
w̃

(1)
k+1(w̃

(1)
k+1)

⊤
]
∥+2E

[
w̃

(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ 2E

[
∥w̃(1)

k+1∥2
]
+2∥E

[
w̃

(0)
k+1(w̃

(0)
k+1)

⊤
]
∥
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Substituting (B.45) and (B.56) gives

Mw̃
k+1 ≤ 2

{
C̃1(G

(2)
0:k)2 + C̃2γ

2
k(Mw̃

k+1 + Mθ̃
k+1) + C̃3γk+1

k∑

j=0

γ2jG
(2)
j+1:k(Mw̃

j + Mθ̃
j) + C̃4γ

2
k

}

+ 2
{
p22(G

(2)
0:k)2 Mw̃

0 +C̃0ϱ
a22/2γk+1 + C̃0

k∑

j=0

γ2jG
(2)
j+1:k(Mw̃

j + Mθ̃
j)
}

(B.58)

The assumption on step size in (2.34) guarantees 2C̃2γ
2
k ≤ (1/2), which further implies

Mw̃
k+1 ≤ 4

{
C̃1(G

(2)
0:k)2 + C̃2γ

2
k Mθ̃

k+1 +C̃3γk+1

k∑

j=0

γ2jG
(2)
j+1:k(Mw̃

j + Mθ̃
j) + C̃4γ

2
k

}

+ 4
{
p22(G

(2)
0:k)2 Mw̃

0 +C̃0ϱ
a22/2γk+1 + C̃0

k∑

j=0

γ2jG
(2)
j+1:k(Mw̃

j + Mθ̃
j)
} (B.59)

Like in the proof of Theorem 12, we set

Uk+1 = G
(2)
0:k(C̃1 + p22 Mw̃

0 ) + C̃0ϱ
a22/2γk+1 +

k∑

j=0

γ2jG
(2)
j+1:k

(
C̃3γj + C̃0

)
(Uj + Mθ̃

j) (B.60)

with U0 = C̃1 +p22 Mw̃
0 . Through evaluating the recursion, we observe that for any k ≥ 0,

it holds

Mw̃
k+1 ≤ 4

{
Uk+1 +

k+1∑

j=1

γ2j−1G
(2)
j:k

(
C̃2 Mθ̃

j +C̃4)
}

≤ 4
{

Uk+1 +γ2k(C̃2 Mθ̃
k+1 +C̃4) +

k∑

j=1

γ2jG
(2)
j+1:k

(
C̃2 Mθ̃

j +C̃4)
} (B.61)

where the last inequality is due to A10-2 which guarantees that γ2j−1G
(2)
j:k ≤ γ2jGj+1:k.

Moreover, the sequence Uk+1 can be expressed as follows:

Uk+1 −(1 − γka22/2) Uk = C̃0ϱ
a22/2(γk+1 − γk(1 − γka22/2)) + γ2k

(
C̃3γk + C̃0

)
(Uk + Mθ̃

k)

≤ C̃0ϱ
a22/2(a22/2)γ2k + γ2k

(
C̃3γk + C̃0

)
(Uk + Mθ̃

k)

(B.62)

As the step size satisfies γk
(
C̃3γ0 + C̃0

)
≤ a22

4
, we get

Uk+1 ≤ (1 − γka22/4) Uk +γ2k
(
C̃3γ0 + C̃0

)
Mθ̃

k +C̃0ϱ
a22/2(a22/2)γ2k

=⇒ Uk+1 ≤ G̃
(2)
0:k U0 +

k∑

j=0

γ2j G̃
(2)
j+1:k

{(
C̃3γ0 + C̃0

)
Mθ̃

j +(C̃0ϱ
a22/2(a22/2))

}
.

(B.63)

Substituting the above into (B.61) yields

Mw̃
k+1 ≤ 4

{
G̃

(2)
0:k U0 +

k∑

j=0

γ2j G̃
(2)
j+1:k

{(
C̃3γ0 + C̃0

)
Mθ̃

j +(C̃0ϱ
a22/2(a22/2))

}}

+ 4
{
γ2k(C̃2 Mθ̃

k+1 +C̃4) +
k∑

j=1

γ2jG
(2)
j+1:k

(
C̃2 Mθ̃

j +C̃4)
} (B.64)
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Finally, using the fact that γ2k ≤ ςγk+1 yields

Mw̃
k+1 ≤ G̃

(2)
0:kC̃

w̃

0 + C̃
w̃

1 γk+1 + C̃
w̃

2

k∑

j=0

γ2j G̃
(2)
j+1:k Mθ̃

j +C̃
w̃

3 γ
2
k Mθ̃

k+1 . (B.65)

where

C̃
w̃

0 := 4(C̃1 + p22 Mw̃
0 ), C̃

w̃

1 := 4(C̃4(ς + ϱa22/2) + C̃0(ϱ
a22/2)2(a22/2)) (B.66)

C̃
w̃

2 := 4(C̃3γ0 + C̃2 + C̃0), C̃
w̃

3 := 4C̃2.

This concludes the proof for Proposition 19.

Before we proceed, we need to bound ∥E
[
w̃

(0)
k+1(w̃

(0)
k+1)

⊤
]

and E

[
∥w̃(1)

k+1∥2
]

as well.

Substituting (B.65) into (B.45) yields

∥E
[
w̃

(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ (G

(2)
0:k)2p22 Mw̃

0 +C̃0

k∑

j=0

γ2j (G
(2)
j+1:k)2(1 + Mθ̃

j)

+ C̃0

k∑

j=0

γ2j (G
(2)
j+1:k)2

(
C̃

w̃

0 G̃
(2)
0:j−1 + C̃

w̃

1 γj + C̃
w̃

2

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i +C̃
w̃

3 γ
2
j−1 Mθ̃

j

) (B.67)

We observe

k∑

j=0

γ2j (G
(2)
j+1:k)2

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i =
k−1∑

i=0

γ2i Mθ̃
i

k∑

j=i+1

γ2j (G
(2)
j+1:k)2G̃

(2)
i+1:j−1

(a)

≤ 1

1 − γ0a22/4

k−1∑

i=0

γ2i Mθ̃
i G̃

(2)
i+1:k

k∑

j=i+1

γ2jG
(2)
j+1:k

(b)

≤ ϱa22/2γk+1

1 − γ0a22/4

k−1∑

i=0

γ2i Mθ̃
i G̃

(2)
i+1:k

where (a) is due to G
(2)
j+1:k ≤ G̃

(2)
j+1:k and (b) is due to Corollary 30. As such, combining

terms in (B.67) yields:

∥E
[
w̃

(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ C̃

w̃′

0 G̃
(2)
0:k + C̃

w̃′

1 γk+1 + C̃
w̃′

2

k∑

j=0

γ2j G̃
(2)
j+1:k Mθ̃

j , (B.68)

where

C̃
w̃′

0 := p22 Mθ̃
0, C̃

w̃′

1 := C̃0ϱ
a22/2

(
1 + C̃

w̃

0 + C̃
w̃

1

)
(B.69)

C̃
w̃′

2 := C̃0

(
1 + C̃

w̃

3 + C̃
w̃

2 ϱ
a22/2

γ0
1 − γ0a22/4

)

Similarly, we can compute the bound for E

[
∥w̃(1)

k+1∥2
]

as follows. Using (B.56):

E

[
∥w̃(1)

k+1∥2
]
≤ C̃1(G

(2)
0:k)2 + C̃2γ

2
k Mθ̃

k+1 +C̃3γk+1

k∑

j=0

γ2jG
(2)
j+1:k Mθ̃

j

+ C̃2γ
2
k Mw̃

k+1 +C̃3γk+1

k∑

j=0

γ2jG
(2)
j+1:k Mw̃

j

(B.70)
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Notice that

k∑

j=0

γ2jG
(2)
j+1:k Mw̃

j ≤
k∑

j=0

γ2jG
(2)
j+1:k

(
C̃

w̃

0 G̃
(2)
0:j−1 + C̃

w̃

1 γj + C̃
w̃

2

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i +C̃
w̃

3 γ
2
j−1 Mθ̃

j

)

≤ ϱa22/2(C̃
w̃

0 + C̃
w̃

1 γ0)γk+1 + C̃
w̃

3

k∑

j=0

γ2jG
(2)
j+1:k Mθ̃

j +C̃
w̃

2

k−1∑

i=0

γ2i Mθ̃
i

k∑

j=i+1

γ2jG
(2)
j+1:kG̃

(2)
i+1:j−1

(B.71)

Since (1 − γa22/2) ≤ (1 − γa22/4)2 for any γ > 0, we have G
(2)
j+1:k ≤ (G̃

(2)
j+1:k)2, therefore

together with Corollary 30 it yields

k−1∑

i=0

γ2i Mθ̃
i

k∑

j=i+1

γ2jG
(2)
j+1:kG̃

(2)
i+1:j−1 ≤

ϱa22/4γk+1

1 − γ0a22/4

k−1∑

i=0

γ2i Mθ̃
i G̃

(2)
i+1:k. (B.72)

Collecting terms and substituting them in (B.70) yield

E

[
∥w̃(1)

k+1∥2
]
≤ C̃

w̃′′

0 G̃
(2)
0:k + C̃

w̃′′

1 γ2k+1 + C̃
w̃′′

2 γk+1

k∑

j=0

γ2j G̃
(2)
j+1:k Mθ̃

j +C̃
w̃′′

3 γ2k Mθ̃
k+1, (B.73)

where we use again the fact that γ2k ≤ ςγk+1 and

C̃
w̃′′

0 := C̃1 + γ20C̃2C̃
w̃

0 , C̃
w̃′′

1 := C̃3ϱ
a22/2(C̃

w̃

0 + C̃
w̃

1 γ0) + ςC̃2C̃
w̃

1

C̃
w̃′′

2 := C̃3

(
1 + C̃

w̃

3 + C̃
w̃

2

ϱa22/4γ0
1 − γ0a22/4

)
+ ςC̃2C̃

w̃

2 , C̃
w̃′′

3 := C̃2(1 + γ20C̃
w̃

3 ).

Bounding the Cross Term (Proof of Lemma 20) Our next endeavor is to bound the

cross variance between the martingale noise driven terms w̃
(0)
k+1 and θ̃

(0)
k+1. Here, the steps

involved are similar to those in bounding Mθ̃,w̃
k in the proof of Theorem 12. Particularly,

in a similar vein as the derivation of (B.23), we obtain

∥E
[
θ̃
(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ p22,∆

{
G

(2)
0:k Mθ̃,w̃

0 +∥A12∥
k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k∥E

[
w̃

(0)
j (w̃

(0)
j )⊤

]
∥
}

(B.74)

+ p22,∆

{ k∑

j=0

βjγjG
(1)
j+1:kG

(2)
j+1:k∥E

[
V

(0)
j+1(W

(0)
j+1)

⊤
]
∥ + C∞

k∑

j=0

β2
jG

(1)
j+1:kG

(2)
j+1:k∥E

[
V

(0)
j+1(V

(0)
j+1)

⊤
]
∥
}

(B.75)

By observing that G
(2)
j:k ≤ G̃

(2)
j:k, we have

∥E
[
θ̃
(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ p22,∆G̃

(2)
0:k Mθ̃,w̃

0 +p22,∆∥A12∥
k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k∥E

[
w̃

(0)
j (w̃

(0)
j )⊤

]
∥

+ p22,∆

k∑

j=0

βjG
(1)
j+1:kG

(2)
j+1:k

(
m̃

(0)
VWγj + m̃

(0)
V C∞ βj

)(
1 + Mθ̃

j + Mw̃
j

)

(B.76)
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When combined with (B.65), (B.68), it can be verified using similar steps as in deriving
(B.26) that:

k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k∥E

[
w̃

(0)
j (w̃

(0)
j )⊤

]
∥ ≤ 2C̃

w̃′

0 G̃
(2)
0:k

a∆
+ C̃

w̃′

1 ϱ
a22/4βk+1 +

2C̃
w̃′

2

a∆

k∑

i=0

γ2i G̃
(2)
i+1:k Mθ̃

i ,

k∑

j=0

βjG
(1)
j+1:kG

(2)
j:k Mw̃

j ≤ 2C̃
w̃

0 G̃
(2)
0:k

a∆
+ C̃

w̃

1 ϱ
a22/4βk+1 +

(2C̃
w̃

2

a∆
+ C̃

w̃

3

) k∑

i=0

γ2i G̃
(2)
i+1:k Mθ̃

i ,

Substituting the above into (B.76) gives:

∥E
[
θ̃
(0)
k+1(w̃

(0)
k+1)

⊤
]
∥ ≤ C̃

θ̃,w̃

0 G̃
(2)
0:k + C̃

θ̃,w̃

1 βk+1 + C̃
θ̃,w̃

2

k∑

j=0

γ2j G̃
(2)
j+1:k Mθ̃

j , (B.77)

where

C̃
θ̃,w̃

0 := p22,∆

(
Mθ̃,w̃

0 +
C̃

w̃′

0 ∥A12∥ + C̃
w̃

0

(
m̃

(0)
VWγ0 + m̃

(0)
V C∞ β0

)

a∆/2

)

C̃
θ̃,w̃

1 := p22,∆ϱ
a22/4

(
C̃

w̃′

1 ∥A12∥ + C̃
w̃

1

(
m̃

(0)
VWγ0 + m̃

(0)
V C∞ β0

))

C̃
θ̃,w̃

2 := p22,∆

{2C̃
w̃′

2

a∆
∥A12∥ +

(2C̃
w̃

2

a∆
+ C̃

w̃

3

)(
m̃

(0)
VWγ0 + m̃

(0)
V C∞ β0

)}

(B.78)

Notice that this concludes the proof of Lemma 20.

Bounding Mθ̃
k (Proof of Proposition 21) Like in the proof of Theorem 12, we begin

by bounding ∥E
[
w̃

(0)
k (w̃

(0)
k )⊤

]
∥ as follows. Evaluating the recursion in (2.33) and following

the derivations that lead to (B.32), we obtain

∥E
[
θ̃
(0)
k+1(θ̃

(0)
k+1)

⊤
]
∥ ≤ p∆

{
(G

(1)
0:k)2 Mθ̃

0 +2∥A12∥
k∑

j=0

βjG
(1)
j+1:kG

(1)
j:k∥E

[
θ̃
(0)
j (w̃

(0)
j )⊤

]
∥
}

+ p∆

{ k∑

j=0

β2
j (G

(1)
j+1:k)2

(
∥A12∥2∥E

[
w̃

(0)
j (w̃

(0)
j )⊤

]
∥ + ∥E

[
V

(0)
j+1(V

(0)
j+1)

⊤
]
∥
)}

(B.79)

We apply (B.77) and note that

k∑

j=0

βjG
(1)
j+1:kG

(1)
j:k∥E

[
θ̃
(0)
j (w̃

(0)
j )⊤

]
∥

≤
k∑

j=0

βjG
(1)
j+1:kG

(1)
j:k

(
C̃

θ̃,w̃

0 G̃
(2)
0:j−1 + C̃

θ̃,w̃

1 βj + C̃
θ̃,w̃

2

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i

)

(a)

≤ C̃
θ̃,w̃

0

G
(1)
0:k

a∆/2
+ C̃

θ̃,w̃

1 ϱa∆/2βk+1 + C̃
θ̃,w̃

2

k∑

j=0

βjG
(1)
j+1:kG

(1)
j:k

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i
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where (a) is due to the observation that 1 − γja22/4 ≤ 1 − βja∆/2 and the application of
Lemma 29. Moreover, by a slight modification of (B.35), we have

k∑

j=0

βjG
(1)
j+1:kG

(1)
j:k

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i ≤
16ς

a22

k−1∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i (B.80)

Therefore,

k∑

j=0

βjG
(1)
j+1:kG

(1)
j:k∥E

[
θ̃
(0)
j (w̃

(0)
j )⊤

]
∥

≤ C̃
θ̃,w̃

0

G
(1)
0:k

a∆/2
+ C̃

θ̃,w̃

1 ϱa∆/2βk+1 + C̃
θ̃,w̃

2

16ς

a22

k−1∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i

(B.81)

Similarly, we apply (B.68), (B.80) and note that

k∑

j=0

β2
j (G

(1)
j+1:k)2∥E

[
w̃

(0)
j (w̃

(0)
j )⊤

]
∥

≤
k∑

j=0

β2
j (G

(1)
j+1:k)2

{
C̃

w̃′

0 G̃
(2)
0:j−1 + C̃

w̃′

1 γj + C̃
w̃′

2

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i

}

≤ (C̃
w̃′

0 + C̃
w̃′

1 γ0)ϱ
a∆/2βk+1 + C̃

w̃′

2

β0(16ς/a22)

1 − β0a∆/2

k−1∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i

(B.82)

Finally, we obtain that

k∑

j=0

β2
j (G

(1)
j+1:k)2∥E

[
V

(0)
j+1(V

(0)
j+1)

⊤
]
∥ ≤ m̃

(0)
V

k∑

j=0

β2
j (G

(1)
j+1:k)2

(
1 + Mθ̃

j + Mw̃
j

)

≤ m̃
(0)
V

{
ϱa∆/2βk+1 +

k∑

j=0

β2
jG

(1)
j+1:k Mθ̃

j +
k∑

j=0

β2
j (G

(1)
j+1:k)2 Mw̃

j

} (B.83)

Using the bound in (B.65) and the derivations in (B.82), we have

k∑

j=0

β2
j (G

(1)
j+1:k)2 Mw̃

j ≤ (C̃
w̃

0 + C̃
w̃

1 γ0)ϱ
a∆/2βk+1 + C̃

w̃

2

β0(16ς/a22)

1 − β0a∆/2

k−1∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i

+ C̃
w̃

3 γ0β0

k∑

i=0

βiγiG
(1)
i+1:k Mθ̃

i

Combining the above results, we obtain that

∥E
[
θ̃
(0)
k+1(θ̃

(0)
k+1)

⊤
]
∥ ≤ C̃

(0)

0 G
(1)
0:k + C̃

(0)

1 βk+1 + C̃
(0)

2

k∑

j=0

βjγjG
(1)
j+1:k Mθ̃

j , (B.84)

where

C̃
(0)

0 = p∆

(
Mθ̃

0 +C̃
θ̃,w̃

0

4

a∆/4
∥A12∥

)
, (B.85)
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C̃
(0)

1 = p∆ϱ
a∆/2

(
2∥A12∥C̃

θ̃,w̃

1 + ∥A12∥2(C̃
w̃′

0 + C̃
w̃′

1 γ0) + m̃
(0)
V (C̃

w̃

0 + C̃
w̃

1 γ0)
)
,

C̃
(0)

2 = p∆

{
2∥A12∥

C̃
θ̃,w̃

2

a22
+ ∥A12∥2

β0(16ς/a22)

1 − β0a∆/2
+ m̃

(0)
V

(
C̃

w̃

2

β0(16ς/a22)

1 − β0a∆/2
+ C̃

w̃

3 γ0β0

)}

To bound the term E

[
∥θ̃(1)k+1∥2

]
, we proceed by considering the following decomposition:

θ̃
(1)
k+1 = Γ

(1)
0:kθ̃

(1)
0 +

k∑

j=0

βjΓ
(1)
j+1:kA12w̃

(1)
j

︸ ︷︷ ︸
=θ̃

(1,0)
k+1

+
k∑

j=0

βjΓ
(1)
j+1:kV

(1)
j+1

︸ ︷︷ ︸
=θ̃

(1,1)
k+1

(B.86)

As θ̃
(1)
0 = 0, we observe that

∥θ̃(1,0)k+1 ∥ ≤ √
p∆∥A12∥

k∑

j=0

βjG
(1)
j+1:k∥w̃

(1)
j ∥ (B.87)

Taking square on both sides and applying the Jensen’s inequality (B.54) yields

E

[
∥θ̃(1,0)k+1 ∥2

]
≤ p∆∥A12∥2

a∆/2

k∑

j=0

βjG
(1)
j+1:kE

[
∥w̃(1)

j ∥2
]

(B.88)

Applying (B.73) gives

E

[
∥θ̃(1,0)k+1 ∥2

]
≤ p∆∥A12∥2

a∆/2

k∑

j=0

βjG
(1)
j+1:k

(
C̃

w̃′′

0 G̃
(2)
0:j−1 + C̃

w̃′′

3 γ2j−1 Mθ̃
j +C̃

w̃′′

1 γ2j

)

+
p∆∥A12∥2
a∆/2

C̃
w̃′′

2

k∑

j=0

βjγjG
(1)
j+1:k

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i

(B.89)

Let us bound the right hand side one by one, we observe

k∑

j=0

βjG
(1)
j+1:kG̃

(2)
0:j−1 ≤

k∑

j=0

βj(G̃
(1)
j+1:k)2G̃

(2)
0:j−1 ≤

G
(1)
0:k

1 − β0a∆/2

k∑

j=0

βjG̃
(1)
j+1:k ≤

(4/a∆)G
(1)
0:k

1 − β0a∆/2

k∑

j=0

βjG
(1)
j+1:kγ

2
j−1 Mθ̃

j ≤ ρ0

k∑

j=0

β2
jG

(1)
j+1:k Mθ̃

j ,

k∑

j=0

βjG
(1)
j+1:kγ

2
j ≤ ρ0ϱ

a∆/2βk+1

where the last two inequalities are due to γ2j−1 ≤ ρ0βj, see B8. In addition, using the fact

G
(1)
m:n ≤ (G̃

(1)
m:n)2, we have

k∑

j=0

βjγjG
(1)
j+1:k

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i =
k−1∑

i=0

γ2i Mθ̃
i

k∑

j=i+1

βjγjG
(1)
j+1:kG̃

(2)
i+1:j−1

≤ ρ0

k−1∑

i=0

βi Mθ̃
i

k∑

j=i+1

βjγj(G̃
(1)
j+1:k)2G̃

(2)
i+1:j−1 ≤

ρ0
1 − β0a∆/4

k−1∑

i=0

βi Mθ̃
i G̃

(1)
i+1:k

k∑

j=i+1

βjγjG̃
(1)
j+1:k

≤ ϱa∆/4ρ0
1 − β0a∆/4

k−1∑

i=0

β2
i Mθ̃

i G̃
(1)
i+1:k
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Substituting these back into (B.89) yields

E

[
∥θ̃(1,0)k+1 ∥2

]
≤ C̃

(1,0)

0 G̃
(1)
0:k + C̃

(1,0)

1 βk+1 + C̃
(1,0)

2

k∑

i=0

β2
i Mθ̃

i G̃
(1)
i+1:k, (B.90)

where

C̃
(1,0)

0 = C̃
w̃′′

0

8p∆∥A12∥2
a2∆(1 − β0a∆/2)

, C̃
(1,0)

1 = C̃
w̃′′

1

p∆∥A12∥2
a∆/2

ρ0ϱ
a∆/2,

C̃
(1,0)

2 =
p∆∥A12∥2
a∆/2

ρ0

(
C̃

w̃′′

3 + C̃
w̃′′

2

ϱa∆/4

1 − β0a∆/4

)
.

Next, we bound E

[
∥θ̃(1,1)k ∥2

]
. Set ψ̃b1

j := ψb1
j + ΨA11

j θ⋆ + ΨA12
j w⋆, upon some algebraic

manipulations (details in Appendix B.2.2) we observe the following decomposition

V
(1)
j+1 ≡ ψ̃b1

j − ψ̃b1
j+1 +

(
ΨA11

j θ̃j − ΨA11
j+1θ̃j+1

)
+
(
ΨA12

j w̃j − ΨA12
j+1w̃j+1

)

+ ΨA11
j

(
θ̃j+1 − θ̃j

)
+ ΨA12

j

(
w̃j+1 − w̃j

)
,

(B.91)

and from B7 we have

∥ψ̃b1
j ∥ ∨ ∥ΨA11

j ∥ ∨ ∥ΨA12
j ∥ ≤ EV

0 := A ∨ (b + A(∥θ⋆∥ + ∥w⋆∥)). (B.92)

Applying Lemma 28, we can show

k∑

j=0

βjΓ
(1)
j+1:k

(
ψ̃b1
j − ψ̃b1

j+1 +
(
ΨA11

j θ̃j − ΨA11
j+1θ̃j+1

)
+
(
ΨA12

j w̃j − ΨA12
j+1w̃j+1

))

= β0Γ
(1)
1:k

(
ψ̃b1
0 + ΨA11

0 θ̃0 + ΨA12
0 w̃0

)
− βk

(
ψ̃b1
k+1 + ΨA11

k+1θ̃k+1 + ΨA12
k+1w̃k+1

)

+
k∑

j=1

(
β2
jB

k
11Γ

(1)
j+1:k + (βj − βj−1)Γ

(1)
j:k

)(
ψ̃b1
j + ΨA11

j θ̃j + ΨA12
j w̃j

)
.

(B.93)

Moreover,

k∑

j=0

βjΓ
(1)
j+1:kΨA11

j

(
θ̃j+1 − θ̃j

)
= −

k∑

j=0

β2
j Γ

(1)
j+1:kΨA11

j (A12w̃j +Wj+1) (B.94)

k∑

j=0

βjΓ
(1)
j+1:kΨA12

j

(
w̃j+1 − w̃j

)
= −

k∑

j=0

βjγjΓ
(1)
j+1:kΨA12

j (Wj+1 + CjVj+1) (B.95)

The above inequalities allow us to upper bound ∥θ̃(1,1)k+1 ∥. Note that as |βj − βj−1| ≤ a∆
16
β2
j

[cf. A10], we have

∥θ̃(1,1)k+1 ∥ ≤ √
p∆ EV

0

{ G
(1)
0:k

1 − β0a∆/2
(1 + ∥w̃0∥ + θ̃0∥) + βk(1 + ∥θ̃k+1∥ + ∥w̃k+1∥)

}

+
√
p∆ EV

0 (B11,∞ + a∆/16)
k∑

j=0

β2
jG

(1)
j+1:k

(
1 + ∥θ̃j∥ + ∥w̃j∥

)

+
√
p∆

k∑

j=0

G
(1)
j+1:k

(
β2
j ∥A12w̃j +Wj+1∥ + βjγj∥Wj+1 + CjVj+1∥

)
,

(B.96)
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Applying the Jensen’s inequality (B.54) and taking square on both sides give

∥θ̃(1,1)k+1 ∥2 ≤ 7p∆(EV
0 )2
{

(G
(1)
0:k)2

(1 + ∥w̃0∥ + ∥θ̃0∥
1 − β0a∆/2

)2
+ β2

k(1 + ∥θ̃k+1∥2 + ∥w̃k+1∥2)
}

+ 7p∆(EV
0 )2(B11,∞ + a∆/16)2ϱa∆/2βk+1

k∑

j=0

β2
jG

(1)
j+1:k(1 + ∥θ̃j∥2 + ∥w̃j∥2)

}

+ 7p∆ϱ
a∆/2

{
βk+1

k∑

j=0

G
(1)
j+1:kβ

2
j ∥A12w̃j +Wj+1∥2 + γk+1

k∑

j=0

G
(1)
j+1:kβjγj∥Wj+1 + CjVj+1∥2

}
,

(B.97)

Note the subtle difference that the last term takes γk+1. Taking expectation on both sides
leads to

E

[
∥θ̃(1,1)k+1 ∥2

]
≤ 7p∆

{
(G

(1)
0:k)2

(1 + ∥w̃0∥ + ∥θ̃0∥
1 − β0a∆/2

)2
+ β2

k(1 + dθ Mθ̃
k+1 +dw Mw̃

k+1)
}

+ 7p∆(EV
0 )2(B11,∞ + a∆/16)2ϱa∆/2βk+1

k∑

j=0

β2
jG

(1)
j+1:k(1 + dθ Mθ̃

j +dw Mw̃
j )
}

+ 7p∆ϱ
a∆/2

k∑

j=0

G
(1)
j+1:k(β0β

2
j m̃∆θ̃ + βjγ

2
j m̃∆w̃)(1 + Mθ̃

j + Mw̃
j ),

(B.98)

where we have used βk+1 ≤ β0 and γk+1 ≤ γj. Again, using the bound γ2j ≤ ρ0βj from
B8, we can simplify the above inequality into

E

[
∥θ̃(1,1)k+1 ∥2

]
≤ 7p∆

{
(G

(1)
0:k)2

(1 + ∥w̃0∥ + ∥θ̃0∥
1 − β0a∆/2

)2
+ β2

k(1 + dθ Mθ̃
k+1 +dw Mw̃

k+1)
}

+ 7p∆(EV
0 )2(B11,∞ + a∆/16)2ϱa∆/2βk+1

k∑

j=0

β2
jG

(1)
j+1:k(1 + dθ Mθ̃

j +dw Mw̃
j )
}

+ 7p∆ϱ
a∆/2(β0m̃∆θ̃ + ρ0m̃∆w̃)

k∑

j=0

β2
jG

(1)
j+1:k(1 + Mθ̃

j + Mw̃
j )

≤ Ĉ
(1,1)

0 (G
(1)
0:k)2 + Ĉ

(1,1)

1 β2
k(1 + Mθ̃

k+1 + Mw̃
k+1) + Ĉ

(1,1)

2

k∑

j=0

β2
jG

(1)
j+1:k(Mθ̃

j + Mw̃
j ) + Ĉ

(1,1)

3 βk+1,

(B.99)

where

Ĉ
(1,1)

0 = 7p∆

(1 + ∥w̃0∥ + ∥θ̃0∥
1 − β0a∆/2

)2
, Ĉ

(1,1)

1 = 7p∆(dθ ∨ dw)

Ĉ
(1,1)

2 = 7p∆ϱ
a∆/2

{
(dθ ∨ dw)(EV

0 )2(B11,∞ + a∆/16)2β0 + (β0m̃∆θ̃ + ρ0m̃∆w̃)
}

Ĉ
(1,1)

3 = 7p∆(ϱa∆/2)2
(
(EV

0 )2(B11,∞ + a∆/16)2 + β0m̃∆θ̃ + ρ0m̃∆w̃)
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Observe that

k∑

j=0

β2
jG

(1)
j+1:k Mw̃

j ≤
k∑

j=0

β2
jG

(1)
j+1:k

{
C̃

w̃

0 G̃
(2)
0:j−1 + C̃

w̃

1 γj + C̃
w̃

2

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i +C̃
w̃

3 γ
2
j−1 Mθ̃

j

}

≤
(
C̃

w̃

0 + C̃
w̃

1 γ0
)
ϱa∆/2βk+1 + C̃

w̃

3 γ
2
0

k∑

j=0

β2
jG

(1)
j+1:k Mθ̃

j +C̃
w̃

2

k∑

j=0

β2
jG

(1)
j+1:k

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i .

(B.100)

Furthermore, using G
(1)
j+1:k ≤ (G̃

(1)
j+1:k)2 and G̃

(2)
i+1:j−1 ≤ G̃

(1)
i+1:j−1, we have

k∑

j=0

β2
jG

(1)
j+1:k

j−1∑

i=0

γ2i G̃
(2)
i+1:j−1 Mθ̃

i =
k−1∑

i=0

γ2i Mθ̃
i

k∑

j=i+1

β2
jG

(1)
j+1:kG̃

(2)
i+1:j−1

≤
k−1∑

i=0

γ2i Mθ̃
i

k∑

j=i+1

β2
j (G̃

(1)
j+1:k)2G̃

(1)
i+1:j−1 ≤

ϱa∆/4βk+1

1 − β0a∆/4

k−1∑

i=0

γ2i Mθ̃
i G̃

(1)
i+1:k

(B.101)

Moreover, through applying G̃
(2)
i+1:j−1 ≤ G̃

(1)
i+1:j−1 and βk ≤ βj for any j ≤ k, we have

β2
k Mw̃

k+1 ≤ β2
0C̃

w̃

0 G̃
(1)
0:k + ςγ0C̃

w̃

1 βk+1 + C̃
w̃

2 γ
2
0

k∑

j=0

β2
j G̃

(1)
j+1:k Mθ̃

j +C̃
w̃

3 γ
2
0 Mθ̃

k+1,

where we have used β2
k ≤ ςβk+1. The above results simplify (B.99) into

E

[
∥θ̃(1,1)k+1 ∥2

]
≤ C̃

(1,1)

0 G̃
(1)
0:k + C̃

(1,1)

1 βk+1 + C̃
(1,1)

2

k∑

j=0

β2
j G̃

(1)
j+1:k Mθ̃

j +C̃
(1,1)

3 β2
k Mθ̃

k+1, (B.102)

where

C̃
(1,1)

0 = Ĉ
(1,1)

0 + β2
0Ĉ

(1,1)

1 C̃
w̃

0 ,

C̃
(1,1)

1 = Ĉ
(1,1)

1 (1 + ςγ0C̃
w̃

1 ) + Ĉ
(1,1)

3 + Ĉ
(1,1)

2

(
C̃

w̃

0 + C̃
w̃

1 γ0
)
ϱa∆/2

C̃
(1,1)

2 = Ĉ
(1,1)

2

(
1 + C̃

w̃

3 γ
2
0 +

C̃
w̃

2 ϱ
a∆/4β0

1 − β0a∆/4

)
+ Ĉ

(1,1)

1 C̃
w̃

2 γ
2
0 ,

C̃
(1,1)

3 = Ĉ
(1,1)

1 (1 + C̃
w̃

3 γ
2
0).

(B.103)

Finally, combining (B.84), (B.90), (B.102) gives

Mθ̃
k+1 ≤ 3

(
∥E
[
θ̃
(0)
k+1(θ̃

(0)
k+1)

⊤
]
∥ + E

[
∥θ̃(1,0)k+1 ∥2

]
+ E

[
∥θ̃(1,1)k+1 ∥2

] )

≤ 3
{(

C̃
(0)

0 + C̃
(1,0)

0 + C̃
(1,1)

0

)
G̃

(1)
0:k +

(
C̃

(0)

1 + C̃
(1,0)

1 + C̃
(1,1)

1

)
βk+1

}

+ 3
{(

C̃
(0)

2 + C̃
(1,0)

2 + C̃
(1,1)

2

) k∑

i=0

β2
i G̃

(1)
i+1:k Mθ̃

i +C̃
(1,1)

3 β2
k Mθ̃

k+1

}
(B.104)

As we have 3C̃
(1,1)

3 β2
k ≤ 1/2, we have

Mθ̃
k+1 ≤ C̃

θ̃

0G̃
(1)
0:k + C̃

θ̃

1βk+1 + C̃
θ̃

2

k∑

i=0

β2
i G̃

(1)
i+1:k Mθ̃

i , (B.105)
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where

C̃
θ̃

0 := 6
(
C̃

(0)

0 + C̃
(1,0)

0 + C̃
(1,1)

0 ), C̃
θ̃

1 := 6
(
C̃

(0)

1 + C̃
(1,0)

1 + C̃
(1,1)

1

)
,

C̃
θ̃

2 := 6
(
C̃

(0)

2 + C̃
(1,0)

2 + C̃
(1,1)

2

)
.

(B.106)

This concludes the proof of Proposition 21.

Completing the Proof of Theorem 13 From (2.38) we can derive a bound for Mθ̃
k

as follows. Let Ũ0 = C̃
θ̃

0, observe the following equivalent forms of the recursion

Ũk+1 = C̃
w̃

0 G̃
(1)
0:k + C̃

θ̃

1βk+1 + C̃
θ̃

2

k∑

i=0

β2
i G̃

(1)
i+1:kŨi

⇐⇒ Ũk+1 = (1 − βka∆/4)Ũk + C̃
θ̃

1(βk+1 − βk + β2
ka∆/4) + C̃

θ̃

2β
2
kŨk

≤ (1 − βka∆/8)Ũk + C̃
θ̃

1β
2
ka∆/4

where the last inequality is due to the fact βkC̃
θ̃

2 ≤ a∆/8. Subsequently, we have

Ũk+1 ≤
k∏

i=0

(1 − βia∆/8)Ũ0 +
C̃

θ̃

1a∆
4

k∑

j=0

γ2j

k∏

i=j+1

(1 − βia∆/8)

≤
k∏

i=0

(1 − βia∆/8)Ũ0 +
C̃

θ̃

1a∆
4

ϱa∆/8βk+1,

Observing that Mθ̃
k+1 ≤ Ũk+1, we obtain

Mθ̃
k+1 ≤ C̃

θ̃

0

k∏

i=0

(1 − βia∆/8) + C̃
θ̃

1

a∆
4
ϱa∆/8βk+1, (B.107)

We obtain (2.18) by setting Cθ̃,mark
1 = a∆

4
C̃

θ̃

1ϱ
a∆/8 and observing C̃

θ̃

0 ≤ Cθ̃,mark
0 (1 + V0) for

some constant Cθ̃,mark
0 .

Finally, we bound the tracking error ŵk := wk −A−1
22 (b2 −A21θk) as follows. Similarly

to the martingale noise case, we set Mŵ
k := ∥E

[
ŵkŵ

⊤
k

]
∥ and observe:

Mŵ
k+1 ≤ 2 Mw̃

k+1 +2∥Lk+1∥2 Mθ̃
k+1 ≤ 2 Mw̃

k+1 +2 L2
∞

λmax(Q22)

λmin(Q∆)
Mθ̃

k+1

Substituting (B.107) into (B.65) gives

Mw̃
k+1 ≤ G̃

(2)
0:kC̃

w̃

0 + C̃
w̃

1 γk+1 + C̃
w̃

3 γ
2
k Mθ̃

k+1 +C̃
w̃

2

k∑

j=0

γ2j G̃
(2)
j+1:k

{
C̃

θ̃

0

j−1∏

i=0

(
1 − βi

a∆
8

)
+ C̃

θ̃

1

a∆
4
ϱa∆/8βj

}

(a)

≤ G̃
(2)
0:kC̃

w̃

0 + C̃
w̃

1 γk+1 + C̃
w̃

3 γ
2
k Mθ̃

k+1 +C̃
w̃

2 γk+1

{ Cθ̃
0 ϱ

a22/8

1 − β0a∆/8

k∏

i=0

(
1 − βi

a∆
8

)
+ C̃

θ̃

1

a∆
4
ϱa∆/8ϱa22/4

}

≤
{

C̃
w̃

1 + C̃
w̃

2 C̃
θ̃

1

a∆
4
ϱa∆/8ϱa22/4

}
γk+1 +

{
C̃

w̃

0 +
C̃

w̃

2 Cθ̃
0 ϱ

a22/8

1 − β0a∆/8

} k∏

i=0

(
1 − βi

a∆
8

)
+ C̃

w̃

3 γ
2
k Mθ̃

k+1
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where we have used G̃
(2)
j+1:k ≤

(∏k
i=j+1(1 − γia22/8)

)2
in (a). As such, together with

(B.107) this gives

Mŵ
k+1 ≤ C̃

ŵ

0

k∏

ℓ=0

(
1 − βℓ

a∆
8

)
+ Cŵ,mark

1 γk+1, (B.108)

where

C̃
ŵ

0 := 2

{
C̃

w̃

0 +
C̃

w̃

2 Cθ̃
0 ϱ

a22/8

1 − β0a∆/8
+ (1 + C̃

w̃

3 ) L2
∞

λmax(Q22)

λmin(Q∆)
C̃

θ̃

0

}

Cŵ,mark
1 := 2

{
C̃

w̃

1 + C̃
w̃

2 C̃
θ̃

1

a∆
4
ϱa∆/8ϱa22/4 + κ(1 + C̃

w̃

3 ) L2
∞

λmax(Q22)

λmin(Q∆)
C̃

θ̃

1

a∆
4
ϱa∆/8

} (B.109)

Similarly, as C̃
ŵ

0 ≤ Cŵ,mark
0 (1 + V0) for some constant Cŵ,mark

0 , the above yields (2.19). We
conclude the proof of Theorem 13.

Auxiliary Results for the Markovian Noise Case

Lemma 28. Let (aj)j≥0 be a sequence of dθ-dimensional vectors. The following equality
holds:

∑k
j=0 βjΓ

(1)
j+1:k(aj − aj+1)

= β0Γ
(1)
1:ka0 − βkak+1 +

∑k
j=1

(
β2
jB

j
11Γ

(1)
j+1:k + (βj − βj−1)Γ

(1)
j:k

)
aj

(B.110)

Similarly, for (bj)j≥0 being a sequence of dw-dimensional vectors, it holds:

∑k
j=0 γjΓ

(2)
j+1:k(bj − bj+1)

= γ0Γ
(2)
1:kb0 − γkbk+1 +

∑k
j=1

(
γ2jB

j
22Γ

(2)
j+1:k + (γj − γj−1)Γ

(1)
j:k

)
bj.

(B.111)

Proof. We only prove (B.110). Observe the following chain

k∑

j=0

βjΓ
(1)
j+1:k(aj − aj+1) =

k∑

j=0

βjΓ
(1)
j+1:kaj −

k∑

j=0

βjΓ
(1)
j+1:kaj+1

= β0Γ
(1)
1:ka0 − βkak+1 +

k∑

j=1

(
βjΓ

(1)
j+1:k − βj−1Γ

(1)
j:k

)
aj

(B.112)

Using βjΓ
(1)
j+1:k − βj−1Γ

(1)
j:k = β2

jB
j
11Γ

(1)
j+1:k + (βj − βj−1)Γ

(1)
j:k concludes the proof.
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Derivation of Eq. (B.49) The decomposition is obtained through repeatedly adding/subtracting
terms. Particularly, we observe that the individual terms can be expressed as:

Cj

(
ψ̃b1
j − ψ̃b1

j+1

)
= Cjψ̃

b1
j − Cj−1ψ̃

b1
j + Cj−1ψ̃

b1
j − Cjψ̃

b1
j+1(

ΨA22
j − ΨA22

j+1

)
w̃j = ΨA22

j w̃j − ΨA22
j+1w̃j+1 + ΨA22

j+1(w̃j+1 − w̃j)

Cj

(
ΨA12

j − ΨA12
j+1

)
w̃j = (Cj − Cj−1)Ψ

A12
j w̃j + Cj−1Ψ

A12
j (w̃j − w̃j−1)

+Cj−1Ψ
A12
j w̃j−1 − CjΨ

A12
j+1w̃j(

ΨA21
j − ΨA21

j+1

)
θ̃j = ΨA21

j θ̃j − ΨA21
j+1θ̃j+1 + ΨA21

j+1(θ̃j+1 − θ̃j)

Cj

(
ΨA11

j − ΨA11
j+1

)
θ̃j = (Cj − Cj−1)Ψ

A11
j θ̃j + Cj−1Ψ

A11
j (θ̃j − θ̃j−1)

+Cj−1Ψ
A11
j θ̃j−1 − CjΨ

A11
j+1θ̃j(

ΨA22
j − ΨA22

j+1

)
Cj−1θ̃j = ΨA22

j (Cj−1 − Cj−2)θ̃j + ΨA22
j Cj−2(θ̃j − θ̃j−1)

+ΨA22
j Cj−2θ̃j−1 − ΨA22

j+1Cj−1θ̃j

Cj(Ψ
A12
j − ΨA12

j+1)Cj−1θ̃j = (Cj − Cj−1)Ψ
A12
j Cj−1θ̃j + Cj−1Ψ

A12
j (Cj−1 − Cj−2)θ̃j

+Cj−1Ψ
A12
j Cj−2(θ̃j − θ̃j−1)

+Cj−1Ψ
A12
j Cj−2θ̃j−1 − CjΨ

A12
j+1Cj−1θ̃j.

Collecting terms on the right hand side of the above equations yields (B.49). Moreover,
we the vectors/matrices that appear in (B.49) can be bounded as

∥ψWV
j ∥ ≤ b(1 + C∞), ∥ΥWV,θ̃

j ∥ ≤ A(1 + 2 C∞ + C2
∞), ∥ΥWV,w̃

j ∥ ≤ A(1 + C∞)

∥ΦWV,θ̃∥ ≤ A(1 + 2 C∞ + C2
∞), ∥ΦWV,w̃∥ ≤ A(1 + C∞)

∥Ψ̃WV,θ̃
j ∥ ≤ ACU

2 ϱ
a22/2(1 + C∞)(1 + ς)γj, ∥Ψ̃WV,w̃

j ∥ ≤ ACU
2 ϱ

a22/2γj.

where the last inequality is due to Lemma 36 and we have used γj−1 ≤ ςγj [cf. A10-1].
Consequently, we can establish the bounds on the matrix/vector norms by setting

EWV
0 := max{b(1 + C∞),A(1 + 2 C∞ + C2

∞),ACU
2 ϱ

a22/2(1 + C∞)(1 + ς)}. (B.113)

Derivation of Eq. (B.91) Setting ψ̃b1
j := ψb1

j + ΨA11
j θ⋆ + ΨA12

j w⋆, we observe

V
(1)
j+1 = (ψb1

j − ψb1
j+1) + (ΨA11

j − ΨA11
j+1)θj + (ΨA12

j − ΨA12
j+1)wj

= ψ̃b1
j − ψ̃b1

j+1 + (ΨA11
j − ΨA11

j+1)θ̃j + (ΨA12
j − ΨA12

j+1)w̃j

Similar to the previous paragraph, the decomposition is obtained through repeatedly
adding/subtracting terms. We observe

(ΨA11
j − ΨA11

j+1)θ̃j = ΨA11
j θ̃j − ΨA11

j+1θ̃j+1 + ΨA11
j+1(θ̃j+1 − θ̃j)

(ΨA12
j − ΨA12

j+1)w̃j = ΨA12
j w̃j − ΨA12

j+1w̃j+1 + ΨA12
j+1(w̃j+1 − w̃j)

B.3 Detailed Proof of Theorem 22

Throughout this section we will use additional notations. We denote

κℓ :=
βℓ
γℓ
.
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Let
κexp∞ := κ∞ ∧ (1/2)(∥A12∥ C∞ ϱa22)−1 (B.114)

and
βexp
∞ := βmtg

∞ ∧ 1/(4∥∆∥) (B.115)

We assume βk ≤ βexp
∞ , γk ≤ γmtg

∞ , κk ≤ κ ≤ κexp∞ . Furthermore, let us define

Γ̃(1)
m,n :=

n∏

j=m

(I−βj∆), Γ̃(2)
m,n :=

n∏

j=m

(I−γjA22).

Using standard arguments we may bound operator norm of these matrices

∥Γ̃(1)
m:n∥ ≤ √

p∆

n∏

j=m

(1 − a∆βj), ∥Γ̃(2)
m:n∥ ≤ √

p22

n∏

j=m

(1 − a22γj) (B.116)

We set quantities mW ,mV from the assumption 12 to be equal to

mW := mV := max(mexp
VW , ∥Σ11∥, ∥Σ12∥, ∥Σ22∥)

All conditions of Theorem 12 are satisfied. We will use this theorem in the following form

Mθ̃
k ≤ Cexp

0,θ

k−1∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp

1,θ βk, (B.117)

Mw̃
k ≤ Cexp

0,w

k−1∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp
1,wγk, (B.118)

where Cexp

0,θ ,C
exp

1,θ ,C
exp
0,w and Cexp

1,w denote corresponding constants from Theorem 12. Simi-
larly to (B.4) and (B.5) we can define m̃exp

VW . Hence, the following inequality holds

∥E
[
VjV

T
j

]
∥ ∨ ∥E

[
WjW

T
j

]
∥ ∨ ∥E

[
VjW

T
j

]
∥ ≤ m̃exp

VW (1 + Mθ̃
k + Mw̃

k )

Applying (2.23) and (2.24) (compare with [46][Formula 4.4]) we may write down the
following expansion for θ̃k+1:

θ̃k+1 = S
(0)
k+1 + . . .+ S

(6)
k+1, (B.119)
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where

S
(0)
k+1 := Γ̃

(1)
0:kθ̃0;

S
(1)
k+1 :=

k∑

j=0

βjΓ̃
(1)
j+1:kA12Γ̃

(2)
0:j w̃0;

S
(2)
k+1 :=

k∑

j=0

βjΓ̃
(1)
j+1:kδ

(1)
j ;

S
(3)
k+1 :=

k∑

j=0

βjΓ̃
(1)
j+1:k(Vj+1 + A12A

−1
22Wj+1);

S
(4)
k+1 :=

k∑

j=0

βjΓ̃
(1)
j+1:kA12

( j−1∑

ℓ=0

βℓΓ̃
(2)
ℓ+1:j−1δ

(2)
ℓ

)
;

S
(5)
k+1 :=

k∑

j=0

βjΓ̃
(1)
j+1:kA12

( j−1∑

ℓ=0

βℓΓ̃
(2)
ℓ+1:jCℓVℓ+1

)
;

S
(6)
k+1 :=

k∑

j=0

βjΓ̃
(1)
j+1:kA12

j−1∑

ℓ=0

γℓΓ̃
(2)
ℓ+1:j−1Wℓ+1 −

k∑

ℓ=0

βℓΓ̃
(1)
j+1:kA12A

−1
22Wℓ+1,

where
δ
(1)
ℓ := A12Lℓθ̃ℓ, δ

(2)
ℓ := −CkA12w̃ℓ.

We will group all terms in the expansion into 5 blocks, S
(0)
k+1+S

(1)
k+1, S

(2)
k+1+S

(5)
k+1, S

(3)
k+1, S

(4)
k+1

and S
(6)
k+1. It is easy to see that S

(0)
k+1 +S

(1)
k+1 is uncorrelated with S

(3)
k+1, S

(6)
k+1 (moreover it is

uncorrelated with S
(5)
k+1, but we ignore this fact). Since E

[∥∥∥θ̃k+1

∥∥∥
2
]

= E

[
Tr(θ̃k+1θ̃

⊤
k+1)

]

and by the linearity of trace using expansion we show

E

[∥∥∥θ̃k+1

∥∥∥
2
]

= E

[
Tr(S

(3)
k+1(S

(3)
k+1)

⊤)
]

+ J ′
k+1, (B.120)

where for J ′
k+1 we will use the following crude estimate

|J ′
k+1| ≤ 3E

[
Tr({S(0)

k+1 + S
(1)
k+1}{S

(0)
k+1 + S

(1)
k+1}⊤)

]

+ 5E
[
Tr({S(2)

k+1 + S
(5)
k+1}{S

(2)
k+1 + S

(5)
k+1}⊤) + 5E

[
Tr(S

(6)
k+1(S

(6)
k+1)

⊤)
]]

+ 2E
[
Tr(S

(3)
k+1(S

(6)
k+1)

⊤)
]

+ 2E
[
Tr(S

(3)
k+1{S

(2)
k+1 + S

(5)
k+1}⊤)

]

+ 5E
[
Tr(S

(4)
k+1(S

(4)
k+1)

⊤)
]

+ 2E
[
Tr(S

(3)
k+1(S

(4)
k+1)

⊤)
]

Using martingale property and definition of Σ we rewrite the term E

[
Tr(S

(3)
k+1(S

(3)
k+1)

⊤)
]

as follows

Tr(E
[
S
(3)
k+1(S

(3)
k+1)

⊤
]
) =

k∑

j=0

β2
j Tr(Γ̃

(1)
j+1:kΣ[Γ̃

(1)
j+1:k]⊤)

+
k∑

j=0

β2
j Tr(Γ̃

(1)
j+1:k(Σj − Σ)[Γ̃

(1)
j+1:k]⊤)

(B.121)
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where

Σj := E
[
VjV

⊤
j

]
+ A12A

−1
22 E

[
WjW

⊤
j

]
A−⊤

22 A
⊤
12 + E

[
VjW

⊤
j

]
A−⊤

22 A
⊤
12 + A12A

−1
22 E

[
WjV

⊤
j

]

Leading term in (B.121) For lower bound of the first term in (B.121) we will use the
following fact. Since for any s ∈ [j + 1, k]

(I−βs∆)⊤(I−βs∆) = I−βs(∆ + ∆⊤) + β2
s∆⊤∆ ⪰ (1 − 2βs∥∆∥) I,

we obtain using Lemma 29 (and remark after this lemma)

k∑

j=0

β2
j Tr(Γ̃

(1)
j+1:kΣ[Γ̃

(1)
j+1:k]⊤) ≥ βk+1 Tr Σ

k∑

j=0

βj

k∏

ℓ=j+1

(1 − 2βℓ∥∆∥) ≥ Cexp
3 βk+1 Tr Σ

(B.122)
where

Cexp
3 := 1/(8∥∆∥) (B.123)

and we used βexp
∞ ≤ 1/(4∥∆∥) and k ≥ kexp0 . To obtain upper bound we apply von

Neumann trace inequality (i.e. Tr(AB) ≤ ∑n
j=1 ajbj, where {aj} and {bj} are non-

increasing sequences of eigenvalues of Hermitian matrices A and B resp.) and Lemma 30

k∑

j=0

β2
j Tr(Γ̃

(1)
j+1:kΣ[Γ̃

(1)
j+1:k]⊤) ≤ p∆ Tr(Σ)

k∑

j=0

β2
j

k∏

ℓ=j+1

(1−a∆βℓ)2 ≤ Cexp
4 Tr(Σ)βk+1 (B.124)

where
Cexp

4 := p∆ϱ
a∆ (B.125)

Inequalities (B.122) and (B.124) together imply (2.40).

Remainder term in (B.121) The second term in (B.121), which we denote by Rk+1

may be estimated as follows

|Rk+1| ≤ p∆dθm̃
exp
VW (1 + ∥A12A

−1
22 ∥)2

k∑

j=0

β2
j

k∏

ℓ=j+1

(1 − a∆βℓ)
2(Mθ̃

j + Mw̃
j )

Applying (B.117) and (B.118) and Lemma 30

|Rk+1| ≤ Cexp
3,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0βk+1 + Cexp
3,1βk+1γk+1, (B.126)

where

Cexp
3,0 := p∆dθm̃

exp
VW (1 + ∥A12A

−1
22 ∥)2ϱa∆(Cexp

0,θ + Cexp
0,w)/(1 − a∆β

exp
∞ ),

Cexp
3,1 := p∆dθm̃

exp
VW (1 + ∥A12A

−1
22 ∥)2ϱa∆(κexp∞ Cexp

1,θ + Cexp
1,w)
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Estimation of J ′
k+1 To finish the proof of the theorem it remains to estimate J ′

k+1.
Applying (B.116) it is easy to check that

Tr(E [[]S
(0)
k+1(S

(0)
k+1)

⊤]) = Tr(Γ̃
(1)
0:kE

[
θ̃0θ̃

⊤
0

]
[Γ̃

(1)
0:k]⊤) ≤ p∆

k∏

ℓ=0

(1 − a∆βℓ)
2
E

[∥∥∥θ̃0
∥∥∥
2
]

Similarly, recalling that κexp∞ ≤ (1/4)a22/a∆ and using
∏j

s=0(1 − a22γs)(1 − a∆βs)
−1 ≤∏j

s=0(1 − (a22/2)γs) we obtain

Tr(E
[
S
(1)
k+1(S

(1)
k+1)

⊤
]
) =

k∑

j=0

k∑

ℓ=0

βjβℓ Tr
(
Γ̃
(1)
j+1:kA12Γ̃

(2)
0:jE

[
w̃0w̃

⊤
0 ][Γ̃

(2)
0:ℓ

]⊤
A⊤

12[Γ̃
(1)
ℓ+1:k]⊤

)

≤ Cexp
1

k∏

ℓ=0

(1 − a∆βℓ)
2
E
[
∥w̃0∥2

]
,

where
Cexp

1 := (4/a222)p22p∆∥A12∥2(κexp∞ )2

Hence, we may conclude from the previous two inequalities that

E

[
Tr({S(0)

k+1 + S
(1)
k+1}{S

(0)
k+1 + S

(1)
k+1}⊤)

]
≤ Cexp

0+1

k∏

ℓ=0

(1 − a∆βℓ)
2V0 , (B.127)

where
Cexp

0+1 := 2p∆ + 4Cexp
1 (1 + C2

∞)

For the next term in the expansion we have

Tr(E
[
S
(2)
k+1(S

(2)
k+1)

⊤
]
) ≤

k∑

j=0

k∑

ℓ=0

βjβℓE
[∣∣Tr

(
Γ̃
(1)
j+1:kA12Lj θ̃j θ̃

⊤
l L

⊤
l A

T
12[Γ

(1)
ℓ+1:k]⊤

)∣∣
]

We apply Cauchy-Schwartz inequality twice, first |Tr(AB⊤)| ≤ Tr1/2(AA⊤) Tr1/2(BB⊤)
and then for expectation. We obtain

Tr(E [[]S
(2)
k+1(S

(2)
k+1)

⊤]) ≤
( k∑

j=0

βj
(

Tr
(
Γ̃
(1)
j+1:kA12LjE

[
θ̃j θ̃

⊤
j

]
L⊤
j A

⊤
12[Γ̃

(1)
j+1:k]⊤

))1/2
)2

From Lemma 35 we conclude that ∥Lj∥Q∆,Q22 ≤ Cexp
L βjγ

−1
j , where Cexp

L := CD(L∞)ϱa22 .
This inequality and Jensen’s inequality imply

Tr(E
[
S
(2)
k+1(S

(2)
k+1)

⊤
]
) ≤ (Cexp

L )2p∆∥A12∥2Q22,Q∆

( k∑

j=0

βjκj

k∏

ℓ=j+1

(1 − a∆βℓ){E
[∥∥∥θ̃j

∥∥∥
2
]
}1/2

)2

≤ dθ(C
exp
L )2p∆a

−1
∆ ∥A12∥2Q22,Q∆

k∑

j=0

βjκ
2
j

k∏

ℓ=j+1

(1 − a∆βℓ) Mθ̃
j

Applying (B.117) and Lemma 30 we get

Tr(E [[]S
(2)
k+1(S

(2)
k+1)

⊤]) ≤ Cexp
2,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0κ
2
k+1 + Cexp

2,1βk+1κ
2
k+1}
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where

Cexp
2,0 := dθa

−1
∆ (Cexp

L )2p∆∥A12∥2Q22,Q∆
Cexp

0,θ ϱ
a∆/2/(1 − a∆β

exp
∞ ),

Cexp
2,1 := dθa

−1
∆ (Cexp

L )2p∆∥A12∥2Q22,Q∆
Cexp

1,θ ϱ
a∆

To estimate the next term we rewrite it as follows

S
(4)
k+1 =

k∑

ℓ=0

βℓNℓ+1,kδ
(2)
ℓ ,

where

Nℓ+1,k :=
k∑

j=ℓ+1

βjΓ̃
(1)
j+1:kA12Γ̃

(2)
ℓ+1:j−1.

It is straightforward to check

∥Nℓ+1,k∥ ≤ √
p22p∆∥A12∥κℓ

k∏

s=ℓ+1

(1 − a∆βs)
k∑

j=ℓ+1

γj

j−1∏

s=ℓ+1

(1 − (a22/2)γs)

≤ Cexp
N κℓ(1 − a∆β

exp
∞ )−1

k−1∏

s=ℓ+1

(1 − a∆βs),

(B.128)

where Cexp
N := (2/a22)

√
p22p∆∥A12∥(1−a∆βexp

∞ )−1 and we used (compare with Lemma 29)

k∑

j=ℓ+1

γj

j−1∏

s=ℓ+1

(1 − (a22/2)γs) =
1

a22

{
1 −

k∏

s=ℓ+1

(1 − (a22/2)γs)

}
≤ 2/a22. (B.129)

Applying (B.131), Jensen’s inequality and observation

E

[∥∥∥δ(1)ℓ

∥∥∥
2
]
≤ Cexp

∆ E

[∥∥∥θ̃ℓ
∥∥∥
2
]
, (B.130)

E

[∥∥∥δ(2)ℓ

∥∥∥
2
]
≤ Cexp

22 E
[
∥w̃ℓ∥2

]
, (B.131)

where
Cexp

22 := C2
∞ ∥A12∥2, we obtain

Tr(E
[
S
(4)
k+1(S

(4)
k+1)

⊤
]
) ≤ dwa

−1
∆ Cexp

22 (Cexp
N )2

k∑

ℓ=0

βℓκ
2
ℓ

k∏

s=ℓ+1

(1 − a∆βs) Mw̃
ℓ .

Applying (B.118) and Lemma 30 we get

Tr(E
[
S
(4)
k+1(S

(4)
k+1)

⊤
]
) ≤ Cexp

4,0

k∏

s=0

(1 − (a∆/4)βs)V0 + Cexp
4,0βk+1κk+1, (B.132)

where

Cexp
4,0 := dwCexp

0,wCexp
22 (Cexp

N )2(a∆)−1ϱa∆/2(1 − a∆β
exp
∞ )−1κ2∞,

Cexp
4,1 := dwCexp

1,wCexp
22 (Cexp

N )2a−1
∆ ϱa∆ .
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To estimate the next term we proceed similarly. Using martingale property we obtain

Tr(E
[
S
(5)
k+1(S

(5)
k+1)

⊤
]
) ≤ dθm̃

exp
VW C2

∞ ∥A12∥2(Cexp
N )2

k∑

ℓ=0

β2
ℓκ

2
ℓ

k∏

s=ℓ+1

(1 − a∆βs)
2(βℓγ

−1
ℓ )2(1 + Mθ̃

ℓ + Mw̃
ℓ )

Hence, due to Corollary

Tr(E
[
S
(5)
k+1(S

(5)
k+1)

⊤
]
) ≤ Cexp

5,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0βk+1κ
2
k+1 + Cexp

5,1βk+1κ
2
k+1

where

Cexp
5,0 := dθm̃

exp
VW C2

∞ ∥A12∥2(Cexp
N )2ϱa∆(Cexp

0,w + Cexp

0,θ )/(1 − a∆β
exp
∞ ),

Cexp
5,1 := dθm̃

exp
VW C2

∞ ∥A12∥2(Cexp
N )2(1 + Cexp

1,wγ
mtg
∞ + Cexp

1,θ β
exp
∞ )

It follows from the previous inequalities that

E

[
Tr({S(2)

k+1 + S
(5)
k+1}{S

(2)
k+1 + S

(5)
k+1}⊤)

]
≤ Cexp

2+5,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0κ
2
k+1 + Cexp

2+5,1βk+1κ
2
k+1

(B.133)

where

Cexp
2+5,0 := 2Cexp

5,0β
exp
∞ + 2Cexp

2,0 ,

Cexp
2+5,1 := 2Cexp

5,1 + 2Cexp
2,1

For the term E

[
Tr(S

(3)
k+1{S

(2)
k+1 + S

(5)
k+1}⊤)

]
we write

E

[
Tr(S

(3)
k+1{S

(2)
k+1 + S

(5)
k+1}⊤)

]
≤ E

[
Tr(S

(3)
k+1(S

(3)
k+1)

⊤
]1/2

E

[
Tr({S(2)

k+1 + S
(5)
k+1}{S

(2)
k+1 + S

(5)
k+1}⊤

]1/2

≤
{

Cexp
3,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0βk+1 + Cexp
3,1βk+1γk+1 + p∆ϱ

a∆ Tr(Σ)βk+1

}1/2

×
{

Cexp
2+5,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0κ
2
k+1 + Cexp

2+5,1βk+1κ
2
k+1

}1/2

We obtain

E

[
Tr(S

(3)
k+1{S

(2)
k+1 + S

(5)
k+1}⊤)

]
≤ Cexp

3/2+5,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp

3/2+5,1βk+1κk+1,

(B.134)

where

Cexp

3/2+5,0 := (Cexp
2+5,0 + Cexp

3,0 + Cexp
3,0Cexp

2+5,0)/2,

Cexp

3/2+5,1 := κexp∞ /2 + Cexp
2+5,1β

exp
∞ κexp∞ /2 + (Cexp

3,1γ
mtg
∞ + p∆ϱ

a∆ Tr(Σ))κexp∞ /2

+ (Cexp
2+5,1(C

exp
3,1γ

mtg
∞ + p∆ϱ

a∆ Tr(Σ)))1/2
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Let us consider the term

E

[
Tr(S

(3)
k+1S

(4)
k+1)

⊤
]

=
k∑

j=0

βj

k∑

ℓ=j+1

βℓ Tr(Γ̃
(1)
j+1:kZj+1w̃

⊤
ℓ A

⊤
12C

⊤
ℓ N

⊤
ℓ+1,k), (B.135)

where Zj+1 := Vj+1 + A12A
−1
22Wj+1. For w̃ℓ we can use the following expansion

w̃ℓ = Γ̃
(2)
0:ℓ−1w̃0 +

ℓ−1∑

i=0

γiΓ̃
(2)
i+1:ℓ−1Z̃i+1 +

ℓ−1∑

i=0

βiΓ̃
(2)
i+1:ℓ−1CiA12w̃i,

where Z̃i+1 := Wi+1 + κiCiVi+1 Substituting this expansion into r.h.s of (B.135) and

repeating this procedure until E
[
Zj+1w̃

⊤
l

]
= γjE

[
Zj+1Z̃

⊤
j+1(Γ̃

(2)
j+1:ℓ1−1)

⊤
]

we come to the

following expansion of (B.135)

k∑

ℓ=j+1

βℓ Tr(Γ̃
(1)
j+1:kZj+1w̃

⊤
ℓ A

⊤
12C

⊤
ℓ N

⊤
ℓ+1,k)

=
k∑

ℓ1=j+1

βℓ1

ℓ1−1∑

ℓ2=j+1

βℓ2 Tr(Γ̃
(1)
j+1:kZj+1w̃

⊤
ℓ2
A⊤

12C
⊤
ℓ2

(Γ̃
(2)
ℓ2+1:ℓ1−1)

⊤A⊤
12C

⊤
ℓ1
N⊤

ℓ1+1,k)

+ γj

k∑

ℓ1=j+1

βℓ1 Tr(Γ̃
(1)
j+1:kZj+1Z̃

⊤
j+1(Γ̃

(2)
j+1:ℓ1−1)

⊤A⊤
12C

⊤
ℓ1
N⊤

ℓ1+1,k)

= γj

k−j∑

s=1

k∑

ℓ1=j+1

βℓ1

ℓ1−1∑

ℓ2=1

βℓ2 . . .

ls−1−1∑

ℓs=j+1

βℓs

× Tr(Γ̃
(1)
j+1:kZj+1Z̃

⊤
j+1(Γ̃

(2)
j+1:ℓs−1)

⊤A⊤
12C

⊤
ℓs(Γ̃

(2)
ℓs+1:ℓs−1−1)

⊤A⊤
12C

⊤
ℓs . . . (Γ̃

(2)
ℓ2+1:ℓ1−1)

⊤A⊤
12C

⊤
ℓ1
N⊤

ℓ1+1,k)

where ℓ0 := k+ 1. Using iteratively Corollary and estimate (B.128) for Nℓ1+1,k we obtain
the following bound

∥∥∥∥
k∑

ℓ=j+1

βℓ Tr(Γ
(1)
j:k−1Zj+1w̃

⊤
ℓ A

⊤
12C

⊤
ℓ N

⊤
ℓ+1,k)

∥∥∥∥

≤ C∞ ϱa22Cexp
N βjκj

k∏

ℓ=j+1

(1 − a∆βℓ)E
[
∥Zj+1∥2

]1/2
E

[∥∥∥Z̃j+1

∥∥∥
2
]1/2 k−j∑

s=1

(κj∥A12∥ C∞ ϱa22)s−1

Since κexp∞ ≤ (1/2)(∥A12∥ C∞ ϱa22)−1 and

E
[
∥Zj+1∥2

]1/2
E

[∥∥∥Z̃j+1

∥∥∥
2
]1/2

≤ 2m̃exp
VW (1 + ∥A12A

−1
22 ∥)(1 +

√
κexp∞ C∞)(1 + Mθ̃

j + Mw̃
j )

we obtain that

∥∥∥∥
k∑

ℓ=j+1

βℓ Tr(Γ̃
(1)
j+1:kZj+1w̃

⊤
ℓ A

⊤
12C

⊤
ℓ N

⊤
ℓ+1,k−1)

∥∥∥∥

≤ C∞ Cexp
N 2m̃exp

VW (1 + ∥A12A
−1
22 ∥)(1 +

√
κexp∞ C∞)βjκj

k∏

s=j+1

(1 − a∆βs)(1 + Mθ̃
j + Mw̃

j )
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This inequality and (B.135) together imply

∣∣E
[
Tr(S

(3)
k+1S

(4)
k+1)

⊤
] ∣∣

≤ C∞ Cexp
N 2m̃exp

VW (1 + ∥A12A
−1
22 ∥)(1 +

√
κexp∞ C∞)

k∑

j=0

β2
jκj

k∏

s=j+1

(1 − a∆βs)(1 + Mθ̃
j + Mw̃

j )

Finally, the standard arguments will lead to

∣∣E
[
Tr(S

(3)
k+1S

(4)
k+1)

⊤
] ∣∣ ≤ Cexp

3/4,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp

3/4,0βk+1κk+1, (B.136)

where

Cexp

3/4,0 := C∞ Cexp
N 2m̃exp

VW (1 + ∥A12A
−1
22 ∥)(1 +

√
κexp∞ C∞)ϱa∆/2(Cexp

0,w + Cexp

0,θ )/(1 − a∆β
exp
∞ )βexp

∞ κexp∞ ,

Cexp

3/4,1 := C∞ Cexp
N 2m̃exp

VW (1 + ∥A12A
−1
22 ∥)(1 +

√
κexp∞ C∞)ϱa∆(1 + Cexp

1,wγ
mtg
∞ + Cexp

1,θ β
exp
∞ )

Finally, we estimate all terms involving S
(6)
k+1. We rewrite S

(6)
k+1 as follows

S
(6)
k+1 =

k∑

ℓ=0

βlMℓ,kWℓ+1

where we defined

Mℓ,k := γℓβ
−1
ℓ

k∑

j=ℓ+1

βjΓ̃
(1)
j+1:kA12Γ̃

(2)
ℓ+1:j−1 − Γ̃

(1)
ℓ+1:kA12A

−1
22 .

Using martingale property we obtain

Tr(E
[
S
(6)
k+1(S

(6)
k+1)

⊤
]
) ≤

k∑

ℓ=0

β2
ℓ ∥Mℓ,k∥2E

[
∥Wℓ+1∥2

]

We rewrite Mℓ,k as follows

Mℓ,k =
k∑

j=ℓ+1

γj

[
βjγl
βlγj

I−Γ̃
(1)
ℓ+1:j

]
Γ̃
(1)
j+1:kA12Γ̃

(2)
ℓ+1:j−1 + Γ̃

(1)
ℓ+1:kA12

( k∑

j=l+1

γjΓ̃
(2)
ℓ+1:j−1 − A−1

22

)

Since,
k∑

j=l+1

γjΓ
(2)
ℓ+1:j−1 = A−1

22

(
I−Γ̃

(2)
ℓ+1:k

)

this equation leads to

Mℓ,k =
k∑

j=ℓ+1

γj

[
βjγl
βlγj

I−Γ̃
(1)
ℓ+1:j

]
Γ̃
(1)
j+1:kA12Γ̃

(2)
ℓ+1:j−1 − Γ̃

(1)
ℓ+1:kA12A

−1
22 Γ̃

(2)
ℓ+1:k
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We rewrite the term in the square brackets as follows

βjγl
βlγj

I−Γ̃
(1)
ℓ+1:j =

j∏

s=ℓ+1

κs
κs−1

I−
j∏

s=ℓ+1

(I−βs∆) =

j∑

t=ℓ+1

κt−1

κl
I
{
βt∆ + (κt/κt−1 − 1) I

}
Γ̃
(1)
t+1:j

Using assumption 10 we may show that

|κt/κt−1 − 1| ≤ (a∆/16)βt

Taking norm of the both sides of the previous equation we obtain

∥∥∥∥
βjγl
βlγj

I−Γ̃
(1)
ℓ+1:j

∥∥∥∥ ≤ √
p∆(∥∆∥ + (a∆/16))κ−1

l

j∑

t=ℓ+1

βtκt−1

j∏

s=t+1

(1 − a∆βs)

Finally we arrive at the following bound for Mℓ,k

∥Mℓ,k∥ ≤ √
p22p∆∥A12A

−1
22 ∥

k∏

s=ℓ+1

(1 − a∆βs)
k∏

s=ℓ+1

(1 − a22γs)

+
√
p∆p22

(
∥∆∥ +

a∆
16

)
κ−1
l

k∑

j=ℓ+1

γj

j∑

t=ℓ+1

βtκt−1

k∏

s=t+1

(1 − a∆βs)

j−1∏

s=ℓ+1

(1 − a22γs)

(B.137)

This bound will yield

Tr(E
[
S
(6)
k+1(S

(6)
k+1)

⊤
]
) ≤ 2p22p∆∥A12A

−1
22 ∥2

k∑

ℓ=0

β2
ℓ

k∏

s=ℓ+1

(1 − a∆βs)
k∏

s=ℓ+1

(1 − a22γs)E
[
∥Wℓ+1∥2

]

+ 2p∆p22(∥∆∥ + (a∆/16))2
k∑

ℓ=0

γ2ℓE
[
∥Wℓ+1∥2

] k∏

s=ℓ+1

(1 − a∆βs)

×
{ k∑

j=ℓ+1

γj

j−1∏

s=ℓ+1

(1 − (a22/2)γs)

j∑

t=ℓ+1

βtκt−1

j∏

s=t+1

(1 − a∆βs)

}2

=: A1 + A2 (B.138)

The estimate of A1 follows from Lemma 30

A1 ≤ Cexp
6,0,2

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp
6,1,1βk+1κk+1. (B.139)

where

Cexp
6,0,1 := 2dwm̃

exp
VWp22p∆∥A12A

−1
22 ∥2ϱa22(Cexp

0,w + Cexp

0,θ )βexp
∞ κexp∞ /(1 − a∆β

exp
∞ ),

Cexp
6,1,1 := 2dwm̃

exp
VWp22p∆∥A12A

−1
22 ∥2(1 + Cexp

1,wγ
mtg
∞ + Cexp

1,θ β
exp
∞ )ϱa22

Inequality (B.129) and Jensen’s inequality together imply

A2 ≤ 2(2/a22)
2p∆p22(∥∆∥ + (a∆/16))2

k∑

ℓ=0

γ2ℓE
[
∥Wℓ+1∥2

] k∏

s=ℓ+1

(1 − a∆βs)

×
k∑

j=ℓ+1

γj

{ j∑

t=ℓ+1

βtκt−1

j∏

s=t+1

(1 − a∆βs)

}2 j−1∏

s=ℓ+1

(1 − (a22/2)γs)
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Similarly, applying Jensen’s inequality for the second time we come to the following in-
equality

A2 ≤ 2(2/a22)
2(1/a∆)2p∆p22(∥∆∥ + (a∆/16))2

k∑

ℓ=0

γ2ℓE
[
∥Wℓ+1∥2

] k∏

s=ℓ+1

(1 − a∆βs)

×
k∑

j=ℓ+1

γj

j∑

t=ℓ+1

βtκ
2
t−1

j∏

s=t+1

(1 − a∆βs)

j−1∏

s=ℓ+1

(1 − (a22/2)γs)

Changing the order of summation we obtain

A2 ≤ 2(2/a22)
2(1/a∆)2p∆p22(∥∆∥ + (a∆/16))2

k∑

j=0

γj

k∏

s=j+1

(1 − a∆βs)

j∑

t=0

βtκ
2
t−1

j∏

s=t+1

(1 − (a22/2)γs)

×
t−1∑

ℓ=0

γ2ℓ

t−1∏

s=ℓ+1

(1 − (a22/2)γs)E
[
∥Wℓ+1∥2

]

Finally, estimating E
[
∥Wℓ+1∥2

]
by (B.117) and (B.118) and applying Lemma 30 we obtain

A2 ≤ Cexp
6,0,2

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp
6,1,2βk+1κk+1, (B.140)

where

Cexp
6,0,2 := dwm̃

exp
VW (ϱa22/4)2ϱa∆/22(2/a22)

2(1/a∆)2p∆p22(∥∆∥ + (a∆/16))2

× (Cexp
0,w + Cexp

0,θ )(κexp∞ )2γmtg
∞ /(1 − a∆β

exp
∞ )2,

Cexp
6,1,2 := dwm̃

exp
VW (ϱa22/2)2ϱa∆2(2/a22)

2(1/a∆)2p∆p22(∥∆∥ + (a∆/16))2(1 + Cexp
1,wγ

mtg
∞ + Cexp

1,θ β
exp
∞ )

We conclude from (B.139) and (B.140) that

Tr(E
[
S
(6)
k+1(S

(6)
k+1)

⊤
]
) ≤ Cexp

6,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp
6,1βk+1κk+1, (B.141)

where

Cexp
6,0 := Cexp

6,0,1 + Cexp
6,0,2,

Cexp
6,1 := Cexp

6,1,1 + Cexp
6,1,2 (B.142)

It remains to consider E
[
Tr(S

(3)
k+1(S

(6)
k+1)

⊤)
]
. We proceed similarly and use (B.137) to get

∣∣E
[
Tr(S

(3)
k+1(S

(6)
k+1)

⊤)
] ∣∣ ≤

k∑

ℓ=0

β2
ℓ ∥Mℓ,k∥

k∏

s=ℓ+1

(1 − a∆βs)E
[
∥Zℓ+1∥2

]1/2
E
[
∥Wℓ+1∥2

]1/2

= A′
1 + A′

2

The following estimate holds for A′
1

|A′
1| ≤

√
p22p∆∥A12A

−1
22 ∥ max(dθ, dw)(2 + 2∥A12A

−1
22 ∥)1/2

k∑

ℓ=0

β2
ℓ

k∏

s=ℓ+1

(1 − a∆βs)

×
k∏

s=ℓ+1

(1 − a22γs)(1 + Mθ̃
ℓ + Mw̃

ℓ )
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Applying standard arguments we get

A′
1 ≤ Cexp

3/6,0,1

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp

3/6,1,1βk+1κk+1, (B.143)

where

Cexp

3/6,0,1 := m̃exp
VW

√
p22p∆∥A12A

−1
22 ∥ max(dθ, dw)(2 + 2∥A12A

−1
22 ∥)1/2

× (Cexp
0,w + Cexp

0,θ )ϱa22βexp
∞ κexp∞ /(1 − a∆β

exp
∞ ),

Cexp

3/6,1,1 := 2m̃exp
VW

√
p22p∆∥A12A

−1
22 ∥ max(dθ, dw)(2 + 2∥A12A

−1
22 ∥)1/2(1 + Cexp

1,wγ
mtg
∞ + Cexp

1,θ β
exp
∞ )ϱa22

For A′
2 we write the following bound

A′
2 ≤

√
p∆p22(∥∆∥ + (a∆/16)) max(dθ, dw)(2 + 2∥A12A

−1
22 ∥)1/2

k∑

ℓ=0

γ2ℓ (1 + Mθ̃
ℓ + Mw̃

ℓ )
k∏

s=ℓ+1

(1 − a∆βs)

×
{ k∑

j=ℓ+1

γj

j−1∏

s=ℓ+1

(1 − a22γs)

j∑

t=ℓ+1

βtκt−1

j∏

s=t+1

(1 − a∆βs)

}

Changing the order of summation and applying arguments from the estimation of A2 we
come to the following bound

A′
2 ≤ Cexp

3/6,0,2

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp

3/6,1,2βk+1κk+1, (B.144)

where

Cexp

3/6,0,2 :=
√
p∆p22(∥∆∥ + (a∆/16)) max(dθ, dw)(2 + 2∥A12A

−1
22 ∥)1/2

× (Cexp
0,w + Cexp

0,θ )(ϱa22/4)2ϱa∆/2γmtg
∞ (κexp∞ )2/(1 − a∆β

exp
∞ )2,

Cexp

3/6,1,2 :=
√
p∆p22(∥∆∥ + (a∆/16)) max(dθ, dw)(2 + 2∥A12A

−1
22 ∥)1/2(1 + Cexp

1,wγ
mtg
∞ +

(B.145)

+ Cexp

1,θ β
exp
∞ )(ϱa22/2)2ϱa∆

We conclude from (B.143) and (B.144)

∣∣Tr(E
[
S
(3)
k+1(S

(6)
k+1)

⊤)
∣∣
]
≤ Cexp

3/6,0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp

3/6,1βk+1κk+1, (B.146)

where

Cexp

3/6,0 := Cexp

3/6,0,1 + Cexp

3/6,0,2,

Cexp

3/6,1 := Cexp

3/6,1,1 + Cexp

3/6,1,2

Final estimate of the remainder term Jk+1 Collecting (B.126), (B.127),(B.132),
(B.133), (B.134), (B.136), (B.141), (??) we obtain the estimate of Jk+1 := Rk+1 + J ′

k+1

|Jk+1| ≤ Cexp
0

k∏

ℓ=0

(1 − (a∆/4)βℓ)V0 + Cexp
0 βk+1(γk+1 + κk+1),
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where

Cexp
0 := Cexp

3,0β
exp
∞ + 3Cexp

0/1 + 5Cexp
4,0 + 5Cexp

2+5,0(κ
exp
∞ )2 + 2Cexp

3/2+5,0 + 2Cexp

3/4,0 (B.147)

+ 5Cexp
6,0 + 2Cexp

3/6,0, (B.148)

Cexp
1 := Cexp

3,1 + 5Cexp
4,1 + 5Cexp

2+5,1 + 2Cexp

3/2+5,1 + 2Cexp

3/4,1 + 5Cexp
6,1 + 2Cexp

3/6,1 (B.149)

Hence, we obtained (2.41).

B.4 Auxiliary Lemmas

Lemma 29. Let a > 0 and (γk)k≥0 be a nonincreasing sequence such that γ0 < 1/a.
Then, for any integer k ≥ 1,

k−1∑

j=0

γj

k−1∏

l=j+1

(1 − γla) =
1

a

{
1 −

k−1∏

l=0

(1 − γla)

}

Remark 1. If k0 is such that
∑k0−1

l=0 γl ≥ log(2)/a then the r.h.s. of the previous equation
is lower bounded by 1/(2a) for any k ≥ k0.

Proof. Let us denote uj:k−1 =
∏k−1

l=j (1 − γla). Then, for j ∈ {0, . . . , k − 1}, uj+1:k−1 −
uj:k−1 = aγjuj+1. Hence,

k−1∑

j=0

γj

k−1∏

l=j+1

(1 − γla) =
1

a

k−1∑

j=0

(uj+1:k−1 − uj:k−1) = a−1(1 − u0:k−1) .

Lemma 30. Assume A10 and set

ϱa =
2

a
ς max{1, a22/(4a∆)} ∨ 4

a
ς3. (B.150)

The following holds

1. For any a ∈ [a22/4, γ
−1
0 ] and k ∈ N, if in addition, we have κ ≤ a22/(4a∆), then

k−1∑

j=0

γ2j

k−1∏

l=j+1

(1−γla) ≤ ϱaγk,

k−1∑

j=0

βjγj

k−1∏

l=j+1

(1−γla) ≤ ϱaβk,

k−1∑

j=0

β2
j

k−1∏

l=j+1

(1−γla) ≤ ϱaβk

2. For any a ∈ [a∆/8, β
−1
0 ] and k ∈ N,

k−1∑

j=0

βjγj

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ϱaγk,

k−1∑

j=0

β2
j

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ϱaβk

3. For any a ∈ [a∆/4, β
−1
0 ] and k ∈ N,

k−1∑

j=0

β3
j /γj

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ϱaβ2
k/γk,

k−1∑

j=0

β4
j /γ

2
j

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ϱaβ3
k/γ

2
k ,

k−1∑

j=0

β2
j γj

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ϱaβkγk
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4. For any a ∈ [a22/4, γ
−1
0 ] and k ∈ N,

k−1∑

j=0

βj

k−1∏

l=j+1

(1 − γla) ≤ ϱaβk/γk,

k−1∑

j=0

β2
j

k−1∏

l=j+1

(1 − γla) ≤ ϱaβ2
k/γk,

k−1∑

j=0

β3
j /γj

k−1∏

l=j+1

(1 − γla) ≤ ϱaβ3
k/γ

2
k

Proof. Part i) of the corollary, consider the first inequality and observe that

k−1∑

j=0

γ2j

k−1∏

l=j+1

(1 − γla) = γk

k−1∑

j=0

γk−1

γk

γj
γk−1

γj

k−1∏

l=j+1

(1 − γla) ≤ ςγk

k−1∑

j=0

γj

k−1∏

l=j+1

γl−1

γl
(1 − γla)

Note that as a ≥ a22/4, we have

γl−1

γl
(1 − γla) ≤ (1 +

a22
8
γl)(1 − γla) ≤ 1 − aγl/2

Substituting into the above inequality yields

k−1∑

j=0

γ2j

k−1∏

l=j+1

(1 − γla) ≤ ςγk

k−1∑

j=0

γj

k−1∏

l=j+1

(1 − γla/2) ≤ ς
2

a
γk

where we have applied Lemma 29 in the last inequality. Next and applying similar steps
as before, we observe that

k−1∑

j=0

βjγj

k−1∏

l=j+1

(1 − γla) ≤ ςβk

k−1∑

j=0

γj

k−1∏

l=j+1

βl−1

βl
(1 − γla)

As we have

βl−1

βl
(1 − γla) ≤ 1 − γl(a− κa∆/16) ≤ 1 − γl(a− a22/64) ≤ 1 − γla/2

we obtain
k−1∑

j=0

βjγj

k−1∏

l=j+1

(1 − γla) ≤ ς
2

a
βk

Similarly, using βj ≤ κγj ≤ a22/(4a∆)γj, we obtain

k−1∑

j=0

β2
j

k−1∏

l=j+1

(1 − γla) ≤ ς
a22

2a a∆
βk

For part ii) of the corollary, we observe that the first inequality can be proven by:

k−1∑

j=0

βjγj

k−1∏

ℓ=j+1

(1 − aβℓ) = γk

k−1∑

j=0

βj
γk−1

γk

γj
γk−1

k−1∏

ℓ=j+1

(1 − aβℓ)

≤ ςγk

k−1∑

j=0

βj
γj
γk−1

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ςγk

k−1∑

j=0

βj

k−1∏

ℓ=j+1

γℓ−1

γℓ
(1 − aβℓ)
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Note that as a ≥ a∆/8, we have

γℓ−1

γℓ
(1 − aβℓ) ≤ (1 + ϵββℓ)(1 − aβℓ) ≤ 1 − aβℓ/2

Using Lemma 29, this yields

k−1∑

j=0

βjγj

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ςγk

k−1∑

j=0

βj

k−1∏

ℓ=j+1

(1 − aβℓ/2) ≤ 2

a
ς γk

Similarly, the second inequality is:

k−1∑

j=0

β2
j

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ςβk

k−1∑

j=0

βj
βj
βk−1

k−1∏

ℓ=j+1

(1 − aβℓ)

≤ ςβk

k−1∑

j=0

βj

k−1∏

ℓ=j+1

βℓ−1

βℓ
(1 − aβℓ)

(a)

≤ ςβk

k−1∑

j=0

βj

k−1∏

ℓ=j+1

(1 − aβℓ/2)
(b)

≤ 2

a
ςβk

where (a) is due to the fact that we have βℓ−1

βℓ
(1 − aβℓ) ≤ 1 − aβℓ/2, and (b) is obtained

by applying Lemma 29.
For the proof of part iii) we proceed similarly. We prove the second inequality only.

The proof of the remaining follows the same lines. Denote κℓ := βℓ/γℓ. Clearly, κℓ−1/κℓ ≤
βℓ−1/βℓ ≤ ς. Then

k−1∑

j=0

β2
jκ

2
j

k−1∏

ℓ=j+1

(1 − aβℓ) ≤ ς3βkκ
2
k

k−1∑

j=0

βj
βj
βk−1

(
κj
κk−1

)2 k−1∏

ℓ=j+1

(1 − aβℓ)

≤ ς3βkκ
2
k

k−1∑

j=0

βj

k−1∏

ℓ=j+1

(
βℓ−1

βℓ

)3

(1 − aβℓ)
(a)

≤ ς3βkκ
2
k

k−1∑

j=0

βj

k−1∏

ℓ=j+1

(1 − aβℓ/2)
(b)

≤ 4

a
ς3βkκ

2
k

where (a) is due to the fact that we have (βℓ−1

βℓ
)3(1−aβℓ) ≤ 1−aβℓ/4, and (b) is obtained

by applying Lemma 29. Part iv) may be proved in the similar way.

Lemma 31. Let a > 0, p ≥ 0, (γj)j≥0, (κj)j≥0 and (uj)j≥0 be nonnegative sequences.
Then, for all integers k,

k−1∑

j=0

κj

k−1∏

ℓ=j

(1 − aγℓ)

j−1∑

i=0

γpi

j−1∏

n=i+1

(1 − aγn)ui =
k−1∑

i=0

γpi ui

(
k−1∑

j=i+1

κj

)
k−1∏

ℓ=i+1

(1 − aγℓ)

Lemma 32 (Lyapunov Lemma). A matrix A is Hurwitz if and only if for any positive
symmetric matrix P = P⊤ ≻ 0 there is Q = Q⊤ ≻ 0 that satisfies the Lyapunov equation

A⊤Q+QA = −P .

In addition, Q is unique.

Proof. See [61, Lemma 9.1, p. 140].
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Lemma 33. Assume that −A is a Hurwitz matrix. Let Q be the unique solution of the
Lyapunov equation

A⊤Q+QA = I .

Then, for any ζ ∈ [0, ζA], where

ζA := (1/2)∥A∥−2
Q ∥Q∥−1, (B.151)

we get
∥I−ζA∥2Q ≤ (1 − aζ) with a = (1/2)∥Q∥−1 .

If in addition ζ ≤ ∥Q∥ then
1 − aζ ≥ 1/2.

Proof. For any x ∈ R
d, we get

x⊤(I−γA)⊤Q(I−γA)x

x⊤Qx
= 1 − γ

∥x∥2
x⊤Qx

+ γ2
x⊤A⊤QAx

x⊤Qx

Hence, we get that for all γ ∈ [0, (1/2)∥A∥−2
Q ∥Q∥−1],

1 − γ
∥x∥2
x⊤Qx

+ γ2
x⊤A⊤QAx

x⊤Qx
≤ 1 − γ∥Q∥−1 + γ2∥A∥2Q
≤ 1 − (1/2)∥Q∥−1γ .

The proof follows.

Lemma 34. Assume that ∥L∥Q∆,Q22 ≤ ε for some ε > 0 and

0 ≤ β ≤ (1/2){∥∆∥Q∆
+ ε∥A12∥Q22,Q∆

}−1 (B.152)

0 ≤ γ ≤ (1/2)∥Q22∥−1∥A∥−2
Q22

. (B.153)

Set B11(L) = ∆ − A12L. Then, the equation

L′{I−βB11(L)} = (I−γA22)L+ βA−1
22 A21B11(L) (B.154)

has a unique solution satisfying

∥L′∥Q∆,Q22 ≤ (1 − γa22)∥L∥Q∆,Q22 + β CD(ε)

where
CD(ε) = 2{∥A−1

22 A21∥Q∆,Q22 + ε}{∥∆∥Q∆
+ ε∥A12∥Q22,Q∆

} . (B.155)

If β/γ ≤ εa22/CD(ε), then ∥L′∥Q∆,Q22 ≤ ε.

Proof. Since ∥L∥Q∆,Q22 ≤ ε, we get that ∥B11(L)∥Q∆
≤ ∥∆∥Q∆

+ ε∥A12∥Q22,Q∆
. Hence,

using (B.152) and the triangular inequality, we get that β∥B11(L)∥Q∆
≤ 1/2 and thus

∥I−βB11(L)∥Q∆
≥ 1/2 . (B.156)

Hence, I−βB11(L) is invertible and (B.154) has a unique solution given by

L′ =
{

(I−γA22)L+ βA−1
22 A21B11(L)

}
{I−βB11(L)}−1

= (I−γA22)L+ βD(L)
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where
D(L) = {A−1

22 A21 + (I−γA22)L}B11(L){I−βB11(L)}−1 .

Using (B.156) and ∥L∥Q∆,Q22 ≤ ε, we get that ∥D(L)∥Q∆,Q22 ≤ CD(ε). Hence, for γ
satisfying (B.153), we get that

∥L′∥Q∆,Q22 ≤ (1 − γa22)∥L∥Q∆,Q22 + β CD(ε) ≤ ε+ γ
(β
γ

CD(ε) − a22ε
)
≤ ε ,

where the last inequality is due to β
γ
≤ εa22/CD(ε).

Lemma 35. Let L0 = 0. Assume that ∥Lk∥Q∆,Q22 ≤ L∞ and

0 ≤ β0 ≤ (1/2){∥∆∥Q∆
+ L∞∥A12∥Q22,Q∆

}−1

0 ≤ γ0 ≤ (1/2)∥Q22∥−1∥A∥−2
Q22

Then for any k ∈ N

∥Lk∥Q∆,Q22 ≤ CD(L∞)ϱa22βk/γk,

where
CD(L∞) := 2{∥A−1

22 A21∥Q∆,Q22 + L∞}{∥∆∥Q∆
+ L∞∥A12∥Q22,Q∆

}

Proof. Similarly to Lemma 34 we may show that

Lk+1 = (I−γA22)Lk + βkD(Lk)

where ∥D(Lk)∥Q∆,Q22 ≤ CD(L∞). Hence,

∥Lk∥Q∆,Q22 ≤ CD(L∞)
k∑

j=0

βj

k∏

s=j+1

(1 − a22γs)

Application of Lemma 30 to the right hand side of the above completes the proof.

Lemma 36. Let L1 := L0 := 0. Assume that ∥Lk∥Q∆,Q22 ≤ L∞ and

0 ≤ β0 ≤ (1/2){∥∆∥Q∆
+ L∞∥A12∥Q22,Q∆

}−1

0 ≤ γ0 ≤ (1/2)∥Q22∥−1∥A∥−2
Q22

βk−1 − βk ≤ ρββ
2
k , γk−1 − γk ≤ ργγ

2
k

βk/γk ≤ (1/(2CU
1 ))a22

with
CU

1 := 2(∥∆∥Q∆
+ ∥A−1

22 A21∥Q∆,Q22∥A12∥Q22,Q∆
+ 2L∞∥A12∥Q22,Q∆

).

Then
∥Lk+1 − Lk∥Q∆,Q22 ≤ CU

2 ϱ
a22/2γk+1,

where

CU
2 := 2ργL∞∥A22∥Q22 + 2ρβ(L∞ + ∥A−1

22 A21∥Q∆,Q22)(∥∆∥Q∆
+ L∞∥A12∥Q22,Q∆

)
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Proof. Recall that B11(L) = ∆ − A12L. It follows from Lemma 34 that I−βkB11(Lk) is
invertible matrix with bounded norm. Equation

Lk(I−βk−1B11(Lk−1)) =

{
(I−γk−1A22)Lk−1 + βk−1A

−1
22 A21B11(Lk−1)

}

may be rewritten as follows

Lk(I−βkB11(Lk)) = (I−γkA22)Lk−1 + βkB11(Lk) + Ek, (B.157)

where Ek := (γk − γk−1)A22Lk−1 + (Lk + A−1
22 A21)Dk, Dk := −βkA12(Lk − Lk−1) + (βk −

βk−1)B11(Lk−1). Let Uk = Lk − Lk−1. Then

Uk+1(I−βkB11(Lk)) = (I−γkA22)Uk − Ek.

Then

Uk+1 = (I−γkA22)Uk + βk(I−γkA22)UkB11(Lk)(I−βkB11(Lk))−1 − Ek(I−βkB11(Lk))−1

It is easy to check that

∥(I−γkA22)UkB11(Lk)(I−βkB11(Lk))−1∥Q∆,Q22 ≤ 2∥Uk∥Q∆,Q22{∥∆∥Q∆
+ L∞∥A12∥Q22,Q∆

}

Moreover,

∥Ek(I−βkB11(Lk))−1∥Q∆,Q22 ≤ 2ργγ
2
kL∞∥A22∥Q22

+ 2(L∞ + ∥A−1
22 A21∥Q∆,Q22){ρββ2

k(∥∆∥Q∆
+ L∞∥A12∥Q22,Q∆

) + βk∥A12∥Q22,Q∆
∥Uk∥Q∆,Q22}

Applying previous inequalities we obtain

∥Uk+1∥Q∆,Q22 ≤ (1 − γka22 + CU
1 βk)∥Uk∥Q∆,Q22 + CU

2 γ
2
k

Since βk/γk ≤ (1/(2CU
1 ))a22 we obtain

∥Uk+1∥Q∆,Q22 ≤ CU
2 ϱ

a22/2γk+1

Lemma 37. Let Q be a symmetric definite positive n×n matrix and Σ be a n×n matrix.
Then

Tr(QΣ) ≤ ∥Σ∥Q Tr(Q) .

Proof. Denote by (ei)
n
i=1 an orthonomal basis of eigenvectors of Q, Qei = λi(Q)ei, i =

1, . . . , n, ⟨ei, ej⟩ = δi,j, where δi,j is the Kronecker symbol. We get that

Tr(QΣ) =
n∑

i=1

⟨ei, QΣei⟩ =
n∑

i=1

⟨ei,Σei⟩Q

≤ ∥Σ∥Q
n∑

i=1

∥ei∥[Q]2 = ∥Σ∥Q TrQ

where we have used ∥ei∥[Q] = λi and TrQ =
∑n

i=1 λi(Q) .
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Corollary 38. If X is a n× 1 random vector such that E[∥X∥[ 2]] <∞. Then,

E [[] ∥X∥[Q]2] ≤ Tr(Q)∥E [[]XX⊤]∥Q .

Proof. Note that E [[] ∥X∥[Q]2] = Tr(QE [[]XX⊤]) ≤ ∥E [[]XX⊤]∥Q TrQ

Lemma 39. Let m and n be two integers, P and Q be m × m and n × n symmetric
positive definite matrices. Let X and Y be m × 1 and n × 1 random vectors such that
E[∥X∥2] <∞ and E[∥Y ∥2] <∞. Then,

∥E[XY ⊤]∥Q,P ≤ λmin(Q)−1{Tr(Q)}1/2{Tr(P )}1/2∥E[XX⊤]∥1/2P ∥E[Y Y ⊤]∥1/2Q

Proof. Note that ∥E[XY ⊤]∥Q,P ≤ E[∥XY ⊤∥Q,P ] and

∥XY ⊤∥Q,P = sup
∥y∥Q=1

∥X⟨Y, y⟩Q∥ = ∥X∥[ P ] sup
∥y∥Q=1

⟨Q−1Y, y⟩Q

= ∥X∥P
∥∥Q−1Y

∥∥
Q

= ∥X∥P ∥Y ∥Q−1 ≤ λ−1
min(Q) ∥X∥P ∥Y ∥Q .

By applying the Cauchy-Schwarz inequality, we obtain

∥E[XY ⊤]∥Q,P ≤ λ−1
min(Q)

{
E[∥X∥2P ]

}1/2 {
E[∥Y ∥2Q]

}1/2

.

The proof follows from Corollary 38.

B.5 Details on Numerical Experiments

This section provides details about the numerical experiments and verification that the
convergence conditions are satisfied.

B.5.1 Toy Example

In this toy example, we consider randomly generated instances of linear two timescale
SA in the form (2.1), (2.2) with i.i.d. samples (and thus the martingale noise setting).
In particular, we let the iterates θk, wk ∈ R

d be d-dimensional and construct a problem
instance as follows:

1. Sample a random matrix T whose entries are drawn i.i.d. from the uniform distri-
bution U [−1, 1]; Compute the QR-decomposition as T = QR.

2. Set A12 = Q and A22 = Q⊤Λ0Q, where Λ0 is a diagonal matrix with i.i.d. entries
from U [−1, 1].

3. Sample a random matrix R whose entries are drawn i.i.d. from the uniform distri-
bution U [−1, 1].

4. Set A11 = RR⊤ + I and A21 = Q⊤Λ1, where Λ1 is a diagonal matrix with i.i.d.
entries from U [−1, 1].

5. Sample a stationary solution pair θ∗, w∗ with i.i.d. entries from U [−1, 1].

137



6. Compute b1, b2 using the generated matrices and stationary points, i.e.,

b1 = A11θ
⋆ + A12w

⋆, b2 = A21θ
⋆ + A22w

⋆.

During the linear two timescale SA iteration, the noise terms are generated as

Vk+1 = F k
V + Ak

V,θθk + Ak
V,wwk, Wk+1 = F k

W + Ak
W,θθk + Ak

W,wwk

where F k
V , A

k
V,θ, A

k
V,w are vectors/matrices with entries drawn i.i.d. from the standard

normal distribution N (0, 0.1), and F k
W , A

k
W,θ, A

k
W,w are vectors/matrices with entries drawn

i.i.d. from the standard normal distribution N (0, 0.5). With the above constructions, it
can be verified that the required assumptions A9, A11, A12 of the martingale noise setting
hold. It remains to verify that the step sizes chosen satisfy A10.

Below, we show the plots of deviations in θk and wk without normalization by the step
sizes (see Fig. B.1).

0 2 4 6
log10k

60

40

20

0

10
lo

g 1
0(

k
*

2 )

TOYExample,Errors of k

= 0.50
= 0.67
= 0.75

Ik

0 2 4 6
log10k

50

40

30

20

10

0
10

lo
g 1

0(
w
k

w
*

2 )
TOYExample, Errors of wk

= 0.50
= 0.67
= 0.75

(a) (b)

Figure B.1: Unnormalized deviations from stationary point (θ⋆, w⋆) and term Ik : the toy
example.

B.5.2 Garnet Problems

GTD Algorithm and Policy Evaluation Problem The specific form of linear two
timescale SA used in this example follows from that of the classical GTD algorithm [72, 73],
which is described below for completeness. Let S,A be some discrete state and action
spaces (for clarity we bound ourselves by discrete setting, but one could formulate it in
more general way), ρ ∈ (0, 1) and π : S → P(A) be a stochastic policy, i.e. mapping from
states to probability measures over actions. When in state s the agent performs action
a (distributed according to its policy π), it transitions randomly to state s′ with proba-
bility p(s′|s, a) and obtains reward r(s, a). This induces a Markov chain with transition
probabilities pπ(s′|s) :=

∑
a∈A π(a|s)p(s′|s, a).

The goal of policy evaluation is to estimate the average discounted cumulative re-
ward obtained with the policy π. In detail, we evaluate the value function Vπ(s) :=
E
[
r(s, a) +

∑
k=1 ρ

kr(sk, ak)
]

with ρ being the discounting factor. As the state space
|S| is often large, we use the linear approximation Vπ(s) ≈ Vθ(s) := ⟨θ, ϕ(s)⟩, where
ϕ : S → R

d is a pre-defined feature map. Define also temporal difference at iteration
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k ∈ Z+ for transition sk → sk+1 as δk := r(sk, ak) + ρVθk(sk+1) − Vθk(sk). For brevity,
denote the observation at iteration k ∈ Z+, namely, ϕ(sk), ϕ(sk+1), r(sk, ak) as ϕk, ϕk+1,
rk respectively. The GTD algorithm iterations are described as:

θk+1 = θk + βk [ϕk − ρϕk+1] ⟨ϕk, wk⟩, wk+1 = wk + γk [ϕkδk − wk] . (B.158)

The above is a special case of our linear two timescale SA in (2.3), (2.4) with the notations:

b1 = 0, A11 = 0, A12 = −E
[
(ϕk − ρϕk+1)ϕ

⊤
k

]
, (B.159)

b2 = E [ϕkrk] , A21 = −E
[
ϕk(ρϕk+1 − ϕk)⊤

]
, A22 = Id, (B.160)

Vk+1 =
(
(ϕk − ρϕk+1)ϕ

⊤
k − E

[
(ϕk − ρϕk+1)ϕ

⊤
k

])
wk, (B.161)

Wk+1 = ϕkrk − E [ϕkrk] +
(
(ϕk − ρϕk+1)ϕ

⊤
k − E

[
(ϕk − ρϕk+1)ϕ

⊤
k

])
θk, (B.162)

where the expectations above are taken with respect to the stationary distribution of the
MDP under policy π. Particularly, the noise terms Vk+1,Wk+1 follow the Markovian noise
setting.

Garnet Problem The Garnet problem refers to a set of policy evaluation problems
with randomly generated problem instances, originally proposed in [3]. Here, we consider
a simpler version of Garnet problems described in [34]. Particularly, we consider a finite-
state MDP with the parameters nS as the number of states, nA as the number of possible
actions in each state, b as the branching factor, i.e., the number of transitions from
each state-action pair to a new state, p as the number of features in the linear function
approximation applied. For any pair (s, a) ∈ S × A we choose b states S ′ ⊂ S out of
|S| at random and then draw the probabilities of going from (s, a) to s′ ∈ S ′. For the
features, for each state s ∈ S the corresponding feature vector ϕ(s) is generated from
(U [0, 1])p. In our numerical example, we consider a particular problem from the family
nS = 30, nA = 8, b = 2, p = 8.

By the above constructions, we observe that the assumptions A9, B5–B7 are all sat-
isfied. It remains to verify that the step sizes chosen satisfy A10, B8.

B.5.3 Step Size Parameters

We consider the family of step size schedules:

βk = cβ/(kβ0 + k), γk = cγ/(kγ0 + k)σ, (B.163)

with σ ∈ [0.5, 1] and the parameters cβ, cγ, kβ0 , k
γ
0 . Note that

βk
γk

=
cβ(kγ0 + k)σ

cγ(kβ0 + k)
≤ cβ

cγ

(
kγ0

kβ0

)σ

=: κ

since we have σ ≤ 1. This ensures A10-1. Furthermore, we observe that

γk−1

γk
=

(
1 +

1

kγ0 + k − 1

)σ

≤ 1+
σ

kγ0 + k − 1
≤ 1+

σkγ0
cγ(kγ0 − 1)

cγ

(kγ0 + k)σ
= 1+

σkγ0
cγ(kγ0 − 1)

γk,

On the other hand, we also have

γk−1

γk
≤ 1 +

σkβ0
cβ(kγ0 − 1)

cβ

kβ0 + k
= 1 +

σkβ0
cβ(kγ0 − 1)

βk
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Similar upper bound can be derived for βk−1/βk. Setting cγ, cβ large enough ensures
A10-2. Lastly, B8 can be guaranteed by observing that σ ≥ 0.5.

The above discussions illustrate that the satisfaction of A10 hinge on setting a large
cγ, cβ. However, this requirement can be hard to satisfy since we also have requirements
such as γk ≤ γmark

∞ , βk ≤ βmark
∞ . To this end, we have to set a large kβ0 , k

γ
0 . As a result,

there are four inter-related hyper parameters to be tuned in order to ensure the desired
convergence of linear two timescale SA. We remark that tuning the step size parameters
for SA scheme is generally difficult.
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Appendix C

The code of EV-based variance reduction which was used is available on GitHub [37].

C.1 Proofs

C.1.1 Verification of the Assumptions

Proof of Proposition 25

Proposition 40. (Proposition 25) If there exist constants CL > 0 and CR > 0 such that

∀θ ∈ Θ, a ∈ A, s ∈ S, bϕ ∈ BΦ ∥∇θ log π(a|s)∥ ≤ CL,

|R(s, a)| ≤ CR,

|bϕ(s, a)| ≤ CR,

then Assumption 1 is satisfied.

▷ Note that the class of estimators H in the gradient scheme consists of the maps

∇̃bϕ
θ J : X 7→

T−1∑

t=0

γt(Gt − bϕ(St, At))∇θ log π(At|St).

Therefore,

∥∇̃bϕ
θ J(X)∥ ≤

T−1∑

t=0

γt|Gt(X) − bϕ(St, At)|∥∇θ log π(At|St)∥ ≤ 2CRCL

1 − γ

and in the case γ = 1

∥∇̃bϕ
θ J(X)∥ ≤ 2CRCLT.

□

Proof of Proposition 26

Proposition 41. (Proposition 26) Suppose that Assumption 3 holds for Bϕ, i.e.

N (ϵ,BΦ, ∥ · ∥L2(PK)) ≤
(c
ϵ

)α

for some c, α > 0. If there exist constant CL > 0 such that

∀θ ∈ Θ, a ∈ A, s ∈ S ∥∇θ log π(a|s)∥ ≤ CL,

then Assumption 3 holds also for H with the same constant α′ = α and constant c′ =
cCL

√
2/(1 − γ2).
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▷ Let us fix ϵ′ > 0 and consider two estimators from H: ∇̃bϕJ and ∇̃bϕ′J which is a
member of the ϵ′-net of BΦ, in other words, such that

∥bϕ − bϕ′∥L2(PK) :=
√
PK(bϕ − bϕ′)2 ≤ ϵ′.

Recall that ∥∥∥∇̃bϕJ − ∇̃bϕ′J
∥∥∥
L2(PK)

=

√
PK

∥∥∥∇̃bϕJ − ∇̃bϕ′J
∥∥∥
2

2

and let us bound
∥∥∥∇̃bϕJ(Xi) − ∇̃bϕ′J(Xi)

∥∥∥
2

for some arbitrary i = 1, .., K. We could

derive ∥∥∥∇̃bϕJ(Xi) − ∇̃bϕ′J(Xi)
∥∥∥
2
≤ CL

T−1∑

t=0

γt
∣∣∣bϕ(S

(i)
t , A

(i)
t ) − bϕ′(S

(i)
t , A

(i)
t )
∣∣∣

and, thus, it leads to

PK

∥∥∥∇̃bϕJ − ∇̃bϕ′J
∥∥∥
2

2
≤ 2C2

L

1

K

K∑

i=1

T−1∑

t=0

γ2t
∣∣∣bϕ(S

(i)
t , A

(i)
t ) − bϕ′(S

(i)
t , A

(i)
t )
∣∣∣
2

≤

≤ 2C2
L

T−1∑

t=0

γ2t
1

K

K∑

i=1

∣∣∣bϕ(S
(i)
t , A

(i)
t ) − bϕ′(S

(i)
t , A

(i)
t )
∣∣∣
2

≤ 2C2
Lϵ

′2

1 − γ2
.

This allows us to use the ϵ′-net for BΦ to construct ϵ-net for H. Hence, Assumption 16 is
satisfied with α′ = α and c′ = cCL

√
2/(1 − γ2). □

Let us briefly remark that the Proposition allows transferring any covering assumption
for baselines to the vector setting and so one could use the assumptions for baselines which
are much easier to check in practice.

C.1.2 Proof of Proposition 27: A2C as an Upper Bound for EV

Proposition 42. (Proposition 27) If there exist constant CL > 0 such that

∀θ ∈ Θ, a ∈ A, s ∈ S ∥∇θ log π(a|s)∥ ≤ CL,

then for all K ≥ 2 A2C goal function V A2C
K (ϕ) is an upper bound (up to a constant) for

EV goal functions:

V EVm
K (ϕ) ≤ 2C2

LV
A2C
K (ϕ), V EV v

K (ϕ) ≤ 2C2
LV

A2C
K (ϕ).

▷ First, note that for all ϕ, by Jensen’s inequality, V EV v
K (ϕ) ≤ V EVm

K (ϕ), so we could
work with the bound for EVm. Secondly, K = 1 simply does not allow using EVv-criterion,
but the bound for EVm remains valid. Via Young’s inequality we get

V EVm
K (ϕ) ≤ 2

K

K∑

k=1

T−1∑

t=0

γ2t
(
Gt(X

(k)) − bϕ(S
(k)
t , A

(k)
t )
)2 ∥∥∥∇θ log π

(
A

(k)
t |S(k)

t

)∥∥∥
2

2
≤ 2C2

LV
A2C
K (ϕ).

□
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C.1.3 Proof of the Main Theorem

Suppose we are given sample X,X1, ..., XK of random vectors taking values in X ⊂ R
d

and H :=
{
h : X → R

D s.t. E[h(X)] = E
}
. Also denote ∥ · ∥ := ∥ · ∥2 for shorter no-

tation, when applied to function h : X → R
D, ∥h∥ := supx∈X ∥h(x)∥ by default. The

brackets (·, ·) denote the standard inner product.

Our goal is to find
h∗ ∈ argminh∈HV (h)

with variance functional defined as

V (h) := E
[
∥h(X) − E∥22

]
.

In order to tackle this problem we consider the simpler one called Empirical Vari-
ance(EV) and calculate

hK ∈ argminh∈HVK(h)

with

VK(h) :=
1

K − 1

K∑

k=1

∥h(Xk) − PKh∥2,

where PK is the empirical measure based on X1, .., XK , so PKh = 1
K

∑K
k=1 h(Xk). In what

follows we will operate with several key assumptions about the problem at hand.

A 17. (Assumption 14) Class H consists of bounded functions:

∀h ∈ H sup
x∈X

∥h(x)∥ ≤ b.

A 18. (Assumption 15) The solution h∗ is unique and H is star-shaped around h∗:

∀h ∈ H, α ∈ [0, 1] αh+ (1 − α)h∗ ∈ H.

Star-shape assumption replaces the assumption of the convexity of H which is stronger
and yet this replacement does not change much in the analysis.

A 19. (Assumption 16) Class H has covering of polynomial size: there are α ≥ 2 and
c > 0 such that for all u ∈ (0, b]

N (H, ∥ · ∥L2(PK), u) ≤
( c
u

)α
a.s.

where the norm is defined as

∥h∥L2(PK) = ∥h∥(K) :=
√
PK∥h∥22

The basis of the analysis lies in usage of

Lemma 43. (Lemma 4.1 in [8]) Let {ϕ(δ) : δ ≥ 0} be non-negative r.v. indexed by δ ≥ 0
such that a.s. ϕ(δ) ≤ ϕ(δ′) if δ ≤ δ′. Define {β(δ, t) : δ ≥ 0, t ≥ 0}, deterministic real
numbers such that

P(ϕ(δ) ≥ β(δ, t)) ≤ e−t.
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Set for all non-negative t

β(t) := inf

{
τ > 0 : sup

δ≥τ

β(δ, tδ/τ)

δ
≤ 1

2

}
.

If δ̂ is a non-negative random variable which is a priori bounded and such that almost
surely δ̂ ≤ ϕ(δ̂), then for all t ≥ 0

P

(
δ̂ ≥ β(t)

)
≤ 2e−t.

We would like to stress out that the main idea of the proof remains the same but on
the way there must be done some changes to fit it into the setting of vector estimation
we consider.

Bound for Functions with δ-Optimal Variance

The idea is to construct an upper bound with high probability for excess risk V (hK) −
V (h∗) under assumptions V (h) − V (h∗) ≤ δ and use that as ϕ in Lemma 43. This will
give us the desired w.h.p. bound for excess risk in general. Let us start with the basic
bound from which we obtain all further results. Essentially, the sequence ϕ(δ) from the
Lemma appears in the left part.

Theorem 44. Assume A14, A15. If h ∈ H(δ) := {h ∈ H | V (h) − V (h∗) < δ}, then
with probability at least 1 − e−t

V (hK) − V (h∗) ≤ 2Eϕ
(1)
K (δ) + 4

(
E sup

h∈H(δ)

∥(P − PK)h∥
)2

+
40b2t+ 24b2

3K
+ 12b

√
δt

K

with

ϕ
(1)
K (δ) := sup

h∈H(δ)

(P − PK)l(h).

▷ To begin with, add and subtract VK(hK), VK(h∗) to get

V (hK) − V (h∗) ± VK(hK) ± VK(h∗) ≤ V (hK) − V (h∗) − (VK(hK) − VK(h∗)).

the last terms can be represented as

VK(h) = PK∥h− E∥22 −
1

K(K − 1)

K∑

i ̸=j=1

(h(Xi) − E , h(Xj) − E)

giving us

V (hK) − V (h∗) − (VK(hK) − VK(h∗)) =

= (P − PK)
(
∥hK − E∥22 − ∥h∗ − E∥22

)
+

+
1

K(K − 1)

K∑

i ̸=j=1

(h(Xi) − E , h(Xj) − E) − (h∗(Xi) − E , h∗(Xj) − E) =

= TK(hK) +WK(hK)
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which introduces

TK(hK) := (P − PK)
(
∥hK − E∥22 − ∥h∗ − E∥22

)
,

WK(hK) := w(hK) − w(h∗), w(h) =
1

K(K − 1)

K∑

i ̸=j=1

(h(Xi) − E , h(Xj) − E) .

Since h ∈ H(δ) it is true that

V (hK)−V (h∗) ≤ sup
h∈H(δ)

TK(h) +WK(h) ≤ sup
h∈H(δ)

TK(h) + sup
h∈H(δ)

WK(h) = ϕ
(1)
K (δ) +ϕ

(2)
K (δ).

Bound for ϕ
(1)
K . Firstly, let us introduce

l(h) = ∥h− E∥22 − ∥h∗ − E∥22.

We can exploit the same Talagrand’s inequality as in [8, p.12]. Recall that functions
h ∈ H are bounded, therefore |l(h)| ≤ 4b2 and, hence, with probability at least 1 − e−t

ϕ
(1)
K (δ) ≤ Eϕ

(1)
K (δ) +

√
2t

K

(
σ2(δ) + 8b2Eϕ

(1)
K (δ)

)
+

4b2t

3K
,

where
σ2(δ) := sup

h∈H(δ)

Pl(h)2.

Let us bound this quantity. In order to proceed, notice that for all h1, h2 ∈ H

l(h1) − l(h2) = (h1, h1) − (h2, h2) + 2(h2 − h1, E) = (h2 − h1, h2 − h1) + 2(h1 − h2, h2 − E)

and so for all x ∈ X

|l(h1)(x) − l(h2)(x)| ≤ 6b∥h2(x) − h1(x)∥ (C.1)

is obtained with Cauchy-Schwarz inequality. This results particularly in

Pl(h)2 ≤ 36b2P∥h− h∗∥22.

Since l(h) has very specific form involving square norms, we could state that

P∥h− h∗∥22 = 2Pl(h) − 4Pl

(
h+ h∗

2

)
≤ 2Pl(h)

implying
Pl(h)2 ≤ 72b2Pl(h) ≤ 72b2δ

by definition of H(δ).

With this and
√
u+ v ≤ √

u+
√
v, 2

√
uv ≤ u+ v the bound can be simplified to

ϕ
(1)
K (δ) ≤ 2Eϕ

(1)
K (δ) + 12b

√
δt

K
+

16b2t

3K
.
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Bound for ϕ
(2)
K . This is much simpler, observe that

wK(h) =
1

K(K − 1)

{
K∑

i,j=1

(h(Xi) − E , h(Xj) − E) −
K∑

i=1

∥h(Xi) − E∥2
}

=

or,

=
K

K − 1
(PK(h− E), PK(h− E)) − 1

K − 1
PK∥h− E∥22.

So,

WK(hK) = wK(hK) − wK(h∗) ≤
K

K − 1
(PK(h− E), PK(h− E)) +

1

K − 1
PK∥h∗ − E∥22 ≤

where the first inequality is due to negative terms, applying bound for h now results in

≤ K

K − 1
(PK(h− E), PK(h− E)) +

4b2

K − 1
.

Finally,

ϕ
(2)
K ≤ 2

(
sup

h∈H(δ)

∥(P − PK)h∥
)2

+
4b2

K − 1

and after adding and subtracting the expectation of the supremum and exploiting 2ab ≤
a2 + b2 together with 1/(K − 1) ≤ 2/K for K ≥ 2 we arrive to

≤ 4

(
sup

h∈H(δ)

∥(P − PK)h∥ − E sup
h∈H(δ)

∥(P − PK)h∥
)2

+4

(
E sup

h∈H(δ)

∥(P − PK)h∥
)2

+
8b2

K
.

Apply now probabilistic inequality for bounded differences [16, Th. 6.2] to estimate the
first term, with probability ≥ 1 − e−t

(
sup

h∈H(δ)

∥(P − PK)h∥ − E sup
h∈H(δ)

∥(P − PK)h∥
)2

≤ 2b2t

K
.

Therefore, with such probability

ϕ
(2)
K ≤ 8b2t

K
+ 4

(
E sup

h∈H(δ)

∥(P − PK)h∥
)2

+
8b2

K
.

The resulting bound is now

V (hK) − V (h∗) ≤ 2Eϕ
(1)
K (δ) + 4

(
E sup

h∈H(δ)

∥(P − PK)h∥
)2

+
40b2t+ 24b2

3K
+ 12b

√
δt

K
.

with probability ≥ 1 − e−t. □
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Bounding the Suprema

To proceed further we need now to bound the two suprema in Theorem 44. Lemma 5.3
in [8] gives us a tool, it is stated as follows.

Lemma 45. Assume X1, ..., XK to be i.i.d. sample and PK be empirical measure. Let

H := {h : X → [−b, b]}
and suppose that for all u ∈ (0, b]

N (H, ∥ · ∥L2(PK), u) ≤
( c
u

)α
a.s.,

then ∀σ ∈ [σH, b]

E sup
h∈H

(P − PK)h ≤ A

(√
ασ2

K
log

c

σ
+
αb

K
log

c

σ

)

where constants are explicitly given.

Lemma 46. Let A14, A16 hold. Then

Eϕ
(1)
K ≤ 2592

(√
72b2δα

K
log

c

6b
√

2δ
+
αb

K
log

c

6b
√

2δ

)
.

▷ Define
L(δ) := {l(h) | h ∈ H(δ)}

and note that in our case it also holds that

N (L(δ), ∥ · ∥L2(PK), u) ≤ N (H(δ), ∥ · ∥L2(PK), u),

therefore, we could apply Lemma 45 to L(δ) and get the result. □

The second supremum, fortunately, can be handled simpler.

Lemma 47. If A14 is satisfied, it holds that

E sup
h∈H(δ)

∥(P − PK)h∥ ≤ 2b√
K
.

▷ First note that by symmetrization

E sup
h∈H(δ)

∥(P − PK)h∥ ≤ 2

K
E sup

h∈H(δ)

Eξ∥
K∑

k=1

ξkh(Xk)∥

where ξk are i.i.d. Rademacher’s random variables. Expand the norm, apply Jensen’s
inequality to the square root and get

Eξ∥
K∑

k=1

ξkh(Xk)∥ = Eξ

√√√√
K∑

k=1

∥h(Xk)∥2 + 2
D∑

d=1

∑

1≤i<j≤K

ξih(Xi)ξjh(Xj) ≤ (C.2)

≤

√√√√
K∑

k=1

∥h(Xk)∥2 + 2Eξ

D∑

d=1

∑

1≤i<j≤K

ξih(Xi)ξjh(Xj) =

√√√√
K∑

k=1

∥h(Xk)∥2 ≤ b
√
K. (C.3)
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□

With Theorem 44, Lemma 46 and Lemma 47 we make a conclusion.

Theorem 48. Let A14, A15, A16 hold. If h ∈ H(δ) then

V (hK) − V (h∗) ≤ 5184

(√
72b2δα

K
log

c

6b
√

2δ
+
αb

K
log

c

6b
√

2δ

)
+

+
40b2t+ 72b2

3K
+ 12b

√
δt

K

with probability ≥ 1 − e−t.

Proof of the Main Theorem

Finally, we apply Lemma 43. What remains is to carefully compute β(t) and obtain

Theorem 49. (Theorem 2 in the main text) It holds that

V (h) − V (h∗) ≤ max
j
β(j)(t)

with probability at least 1 − 4e−t, β(j)(t) are defined in the proof.

▷ We have bounded with probability ≥ 1 − e−t the excess risk of H(δ), so that

βK(δ, t) = C0

(√
b2δα

K
log

c

6b
√

2δ
+
αb

K
log

c

6b
√

2δ

)
+

40b2t+ 72b2

3K
+ 12b

√
δt

K
.

Now compute for τ > 0

sup
δ≥τ

βK(δ, tδ/τ)

δ
= C0

(√
b2α

τK
log

c

6b
√

2τ
+

αb

τK
log

c

6b
√

2τ

)
+

+
40b2t+ 72b2

3Kτ
+ 12b

√
δt

Kτ
.

Finally, observe that

βK(t) := inf

{
τ > 0 : sup

δ≥τ

βK(δ, tδ/τ)

δ
≤ 1

2

}
≤ max

j
βj(t)

where

β1(t) = inf

{
τ > 0 : 72

√
32b2α

Kτ
log

c

4b
√

2τ
≤ 1

8

}
≤ C1

logK

K
,

β2(t) = inf

{
τ > 0 : 2592

αb

Kτ
log

c

4b
√

2τ
≤ 1

8

}
≤ C2

logK

K
,

β3(t) = inf

{
τ > 0 :

40b2t+ 72b2

3Kτ
≤ 1

8

}
=

8(40b2t+ 72b2)

3K
,

β4(t) = inf

{
τ > 0 : 12b

√
t

Kτ
≤ 1

8

}
=

9216b2t

K
.

It holds with probability 1 − 4e−t □
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C.1.4 Proposition: Unbiasedness of S-Baseline

S-baseline is known to result in unbiased estimate, here for the sake of completeness we
give a proof.

Proposition 50. For all bϕ : S → R the expected value

E

[
∞∑

t=0

γtbϕ(St)∇θ log πθ(At|St)

]
= 0.

▷ Let us consider one term of the sum and note that we can use tower property of
conditional expectation:

E
[
γtbϕ(St)∇θ log πθ(At|St)

]
= γtE {E [bϕ(St)∇θ log πθ(At|St) | St]} .

Now note that bϕ(St) is measurable in the inner expectation, so,

= γtE {bϕ(St)E [∇θ log πθ(At|St) | St]} .

Finally, with the help of the log derivative we show that

E [∇θ log πθ(At|St) | St] = 0

and the result follows. □

C.1.5 Why Variance Reduction Matters (for Local Convergence)

We base our proof on some techniques of [86] where SVRPG algorithm is considered but
the proof we need has the same structure with b = m = 1 and some adjustments.

Let ∇̃J : (S ×A×R)T → R
D be an unbiased gradient estimate (with baseline or just

REINFORCE). Our gradient algorithm reads as

θn+1 = θn + αn
1

K

K∑

k=1

∇̃J(X(k)
n ),

where θn ∈ Θ ⊂ R
D are policy parameters at iteration n and X

(k)
n ∈ (S × A × R) is

the trajectory data at iteration n of which there are K independent samples. Let us for
shorter notation set ∇̃JK

n := 1
K

∑K
k=1 ∇̃J(X

(k)
n ). The Lemma below is the in the core of

non-convex smooth optimization.

Lemma 51. If ∀θ ∈ Θ ∥∇2J(θ)∥2 ≤ L, then for all n ∈ Z>0

J(θn+1) ≥ J(θn) − 3αn

4

∥∥∥∇J(θn) − ∇̃JK
n

∥∥∥
2

2
+

(
1

4αn

− L

2

)
∥θn+1 − θn∥22 +

αn

8
∥∇J(θn)∥22 ,

(C.4)
where vn = αn
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▷ It can be obtained by applying lower quadratic bound:

J(θn+1) ≥ J(θn) + ⟨∇J(θn), θn+1 − θn⟩ −
L

2
∥θn+1 − θn∥22 . (C.5)

Next, notice that αn∇̃JK
n = θn+1 − θn and add and subtract ∇̃JK

n in the left entry of the
second term:

J(θn+1) ≥ J(θn) + ⟨∇J(θn) − ∇̃JK
n , αn∇̃JK

n ⟩ + αn

∥∥∥∇̃JK
n

∥∥∥
2

2
− L

2
∥θn+1 − θn∥22 . (C.6)

Now apply Young’s polarization inequality (ab ≥ −(a2 + b2)/2) to the same term and
arrive to

J(θn+1) ≥ J(θn) − αn

2

∥∥∥∇J(θn) − ∇̃JK
n

∥∥∥
2

2
+
αn

2

∥∥∥∇̃JK
n

∥∥∥
2

2
− L

2
∥θn+1 − θn∥22 . (C.7)

Observe that the second and the third term can be bounded further using

∥∇J(θn+1)∥22 ≤ 2
∥∥∥∇̃JK

n

∥∥∥
2

2
+ 2

∥∥∥∇J(θn+1) − ∇̃JK
n

∥∥∥
2

2
, (C.8)

which results in

J(θn+1) ≥ J(θn) − 3αn

4

∥∥∥∇J(θn) − ∇̃JK
n

∥∥∥
2

2
+

(
1

4αn

− L

2

)
∥θn+1 − θn∥22 +

αn

8
∥∇J(θn)∥22 .

(C.9)
□

With this Lemma we can prove a variety of different convergence results, we would
rather refer here to [86, 90]. And yet, to illustrate the need for the variance reduction,
consider the following theorem.

Theorem 52. There is a constant CR > 0 such that for all k > 0 and N ≤ k the following
bound holds assuming non-increasing step sizes αn ≤ 2/L:

1

k

k∑

n=k−N

E ∥∇J(θn)∥22 ≤
16CR

kαk

+
1

k

k∑

n=k−N

E

∥∥∥∇J(θn) − ∇̃JK
n

∥∥∥
2

2
. (C.10)

In particular, when N = k − 1, one gets

1

k

k∑

n=1

E ∥∇J(θn)∥22 ≤
16CR

kαk

+
1

k

k∑

n=1

E

∥∥∥∇J(θn) − ∇̃JK
n

∥∥∥
2

2
. (C.11)

▷ Introduce quantity U(θ) := J(θ∗) − J(θ). Let us use Lemma 51, divide both parts
by αn and sum them from n = k − N to k with k,N satisfying N ≤ k, then take the
expectation:

k∑

n=k−N

E
[
∥∇J(θn)∥22

]
≤ 8

k∑

n=k−N

1

αn

E [U(θn) − U(θn+1)]+6
k∑

n=k−N

E

[∥∥∥∇J(θn) − ∇̃JK
n

∥∥∥
2

2

]
.

(C.12)
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Notice that we used αn < 2/L to drop the term with ∥θn+1 − θn∥22. One could rewrite the
first sum on the right to get

k∑

n=k−N

E
[
∥∇J(θn)∥22

]
≤ 8

k∑

n=k−N

(
1

αn

− 1

αn−1
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8
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+ 6
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E

[∥∥∥∇J(θn) − ∇̃JK
n

∥∥∥
2

2

]
. (C.14)

Since the rewards are bounded, there is CR such that for all θ the difference U(θ) ≤ CR;
secondly, the step sizes are non-increasing; finally, we can discard the second term which
is non-positive. Thus,
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[
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We could again use the fact that αn are non-increasing to simplify the first two terms,
then divide both parts by k:

1

k
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E
[
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]
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k
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n=k−N

E

[∥∥∥∇J(θn) − ∇̃JK
n
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2

2

]
. (C.17)

□

This result shows, that the convergence of the gradient to zero is influenced by the
variance of the gradient estimator. In practice, however, the variance reduction ratio is
very low and therefore it slightly but not dramatically improves the algorithm. Theory
of SVRPG [86], however, suggests that in terms of rates with the accurate design of the
step sizes the rate can be slightly improved. Despite all this, variance reduction provably
improves local convergence but as to global convergence (which is more tricky to specify),
the variance also may play a good role in avoiding local optima as shown by [90]. This, we
believe partially explains, why in practice the quality of the algorithms is not so strongly
influenced by the variance reduction, as one might have thought.
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C.2 Additional Experiments and Implementation De-

tails

Here we present additional experimental results. The detailed config-files can be found
on GitHub page [37].

C.2.1 Minigrid

Minimalistic Gridworld Environment (MiniGrid) provides gridworld Gym environments
that were designed to be simple and lightweight, therefore, ideally fitting for making ex-
periments. In particular, we considered GoToDoor and Unlock.

In both environments we have used 20 independent runs of the algorithms. All mea-
surements of mean rewards and variance of the gradient estimator (measured each 250
epochs on a newly generated pool of 100 trajectories) are averaged over these runs. Stan-
dard deviations of the rewards are obtained as the sample standard deviation of the ob-
served rewards reflecting the width of the confidence intervals of the mean reward curves.
The exact config-files used for experiments can be found on attached GitHub.

Go-To-Door-5x5

This environment is a room with four doors, one on each wall. The agent receives a textual
(mission) string as input, telling it which door to go to, (e.g: "go to the red door"). It
receives a positive reward for performing the done action next to the correct door, as
indicated in the mission string.

In GoToDoor environment we can clearly see that the EV-agent is at least as good
as A2C at lower number of samples (K = 5), and the more samples are available during
training, the better performance we can observe from EV-agents. We can see mean
rewards in absolute values in Fig. C.1 and in relative scale (normalized by the results
of REINFORCE) in Fig. C.2 to see improvements over the results of REINFORCE
algorithm.

We also address the effect of gradient variance reduction and its effect on the perfor-
mance of the algorithm. We can see that variance reduction depends on the number of
samples. It’s negligible, most of the time even an increase is presented, when number of
samples is small (K = 5 and K = 10). We see reduction happening with larger K = 15
and K = 20. It seems that variance reduction might speed-up the training process, but
it is clearly not a key contributor. Variance reduction also seems to be useless at the
start since EV-agents’ and A2C’s seem to have even higher variance than REINFORCE
and better performance. However, later reduction might allow to increase final rewards.
With K = 15, 20 the algorithms are able to reduce REINFORCE gradient variance only
by 30%. We give charts demonstrating gradient variance in absolute values in Fig. C.3
and in relative scale (normalized by the gradient variance of REINFORCE) in Fig. C.4.
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Figure C.1: The charts representing mean rewards in GoToDoor environment, standing
for absolute values for cases K = 5(a), K = 10(b), K = 15(c), K = 20(d). The results
are averaged over 20 runs. The resulting curves are smoothed with sliding window of size
25.
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Figure C.2: The charts representing mean rewards in GoToDoor environment, the
curves normalized by the mean reward of the REINFORCE. for cases K=5(a), K=10(b),
K=15(c), K=20(d). The results are averaged over 20 runs. The resulting curves are
smoothed with sliding window of size 25
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Figure C.3: The charts representing the variance of the gradient estimator in absolute
values for cases K = 5(a), K = 10(b), K = 15(c), K = 20(d). The results are averaged
over 20 runs. The resulting curves are smoothed with sliding window of size 5.
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Figure C.4: The charts representing the variance of the gradient estimator normalized by
the variance of REINFORCE for cases K = 5(a), K = 10(b), K = 15(c), K = 20(d).
The numbers < 1 indicate the relative reduction. The results are averaged over 20 runs.
The resulting curves are smoothed with sliding window of size 5.

One can also evaluate the algorithms by looking at the standard deviation of the
rewards. Between the methods no significant difference is observed when the sample size
is small (K = 5 or K = 10). It becomes considerable though in cases of K = 15 and
K = 20. EV-agents turn out to have the biggest reward standard deviation among the
algorithms. The standard deviation of the rewards is demonstrated in absolute values in
Fig. C.5 and in relative scale (normalized by the standard deviation of REINFORCE)
in Fig. C.6. We note that this standard deviation does not at all reflect the variance
reduction of the gradient estimator as follows from the comparison of the charts. In
fact, REINFORCE with no variance reduced is slightly better in this regard than other
methods.
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Figure C.5: The charts representing the standard deviation of the rewards for cases K =
5(a), K = 10(b), K = 15(c), K = 20(d). The results are averaged over 20 runs. The
resulting curves are smoothed with sliding window of size 25.
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Figure C.6: The charts representing the standard deviation of the rewards normalized by
the standard deviation of the REINFORCE for cases K = 5(a), K = 10(b), K = 15(c),
K = 20(d). The results are averaged over 20 runs. The resulting curves are smoothed
with sliding window of size 5.
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Unlock

The agent has to open a locked door. First, it has to find a key and then go to the door.

In this environment we considered two different sample sizes: K = 5 and K = 20.
Here EV agents and A2C seem to converge to the same policy (see Fig. C.7 and Fig. C.8).
The charts on Fig. C.9 indicate that the variance is reduced 10-100 times similarly for
A2C- and EV-algorithms. Considering mean rewards we clearly see that such reduction
results in considerable gain of about 10-20% and, what is important, it considerably adds
to the stability which is displayed on Fig. C.11 and C.12.
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Figure C.7: The charts representing mean rewards in Unlock environment, standing for
absolute values. The results are averaged over 20 runs. The resulting curves are smoothed
with sliding window of size 25.
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Figure C.8: The charts representing mean rewards in Unlock environment, normalized
by the mean reward of the REINFORCE. The results are averaged over 20 runs. The
resulting curves are smoothed with sliding window of size 25.

Important thing to notice is that in the beginning (before approximately 2000 Epochs
passed) we observe small gain of EV over A2C (especially in case of smaller sample
with K = 5) and it goes together with more stability which is indicated by the plots of
standard deviation. Hence, a clever use of EV method instead of A2C sometimes can
give an additional confident gain despite the fact that the gradient variance reduction is
almost the same.
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Figure C.9: The charts representing the variance of the gradient estimator in absolute
values. The results are averaged over 20 runs. The resulting curves are smoothed with
sliding window of size 5.
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Figure C.10: The charts representing the variance of the gradient estimator normalized by
the gradient variance of the REINFORCE (log-scale is set up along y-axis). The results
are averaged over 20 runs. The resulting curves are smoothed with sliding window of size
5.
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Figure C.11: The charts representing the standard deviation of the rewards. The results
are averaged over 20 runs. The resulting curves are smoothed with sliding window of size
25.
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Figure C.12: The charts representing the standard deviation of the rewards normalized
by the standard deviation of the REINFORCE. The results are averaged over 20 runs.
The resulting curves are smoothed with sliding window of size 25.
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C.2.2 OpenAI Gym: Cartpole-v1

CartPole is a Gym environment where a pole is attached by a joint to a cart, which moves
along x-axis. Agent can apply a force +1 or -1 to the cart making it move right or left.
The pole starts upright and the agent has to keep it as long as possible preventing from
falling. The agent receives +1 reward every timestamp that the pole remains upright.
The episode ends when the pole is more than 15 degrees from vertical, or the cart moves
more than 2.4 units from the center.

In this environment we demonstrate 5 configurations with different policy and baseline
architectures to look how algorithms behave with changing policy and baseline configu-
rations. The exact config-files can be found on GitHub [37]. The measurements of mean
rewards are averaged over 40 independent runs of the algorithms and reward variance is
measured as the sample variance of the observed rewards in each epoch. We provide the
charts relative to REINFORCE which are obtained by dividing the curves by the corre-
sponding values of REINFORCE. These allow to see the improvements over REINFORCE
more clearly.

Cartpole config1 (see Fig.C.13) has two hidden layers in policy network with 128 neu-
rons each and 1 hidden layer in baseline network with 128 neurons. We assume, that is
a medium complexity setting for this environment. Both networks have ReLU activations.

We can observe here that even with simple configuration EV agents have similar
or slightly higher rewards, achieving about 500 points and decrease rewards variance
significantly showing that EV methods are more stable than A2C and do not have many
deep falls during the training as A2C or REINFORCE. It is clearly an effect of the gradient
variance which is reduced drastically: almost 100-1000 times.
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Figure C.13: The charts representing the results of the experiments in CartPole environ-
ment (config1): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

In config5 (see Fig.C.14) we keep the architecture from config1, but change the ac-
tivation function with MISH. The results are almost the same: EV-agents show a little
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predominance over A2C, preserving the least reward variance and gradient variance re-
duction among all the algorithms.
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Figure C.14: The charts representing the results of the experiments in CartPole environ-
ment (config5): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

In config7 (see Fig.C.15) we move towards more complex architecture of baseline func-
tion: now it has 3 hidden layers of 128, 256, 128 neurons respectively. EV agents demon-
strate better performance but this increment is rather small. Nevertheless, reward vari-
ance and gradient variance again remain the best in EV-methods.
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Figure C.15: The charts representing the results of the experiments in CartPole environ-
ment (config7): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

In config8 (see Fig.C.16) we address more complex setting of policy, adding two layers.
The policy network has finally 3 hidden layers with MISH activation with 64, 128, 256
neurons respectively. This change greatly increases efficiency of EV algorithms enabling
to achieve more than 400 points of reward and demonstrating a big dominance over A2C
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which is unable to train such a complex policy to have similar performance. At the same
time, reward variance of EVs remains at the level of REINFORCE while A2C level exceeds
it by almost 30-50%.
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Figure C.16: The charts representing the results of the experiments in CartPole environ-
ment (config8): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.

If config9 we again preserve architecture settings changing only activation from MISH
to ReLU. We observe a small difference in mean rewards but another activation function
clearly helped in A2C training. Regardless, EV-methods are still predominant: more
stable, with less gradient variance and with higher rewards achieved.

In conclusion, our experiments show that EV methods are sometimes considerably
better in terms of mean rewards than A2C, or work at least as A2C. Study of the reward
variance shows that EV-methods in CartPole are considerably more stable and do not
have deep falls as in A2C or Reinforce. This study allows us to judge about the stability
of the training process in case of EV algorithms and claim that they are able to perform
better than A2C if more complex policies are used.
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Figure C.17: The charts representing the results of the experiments in CartPole environ-
ment (config9): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d,e) the first two quantities are shown relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.
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C.2.3 OpenAI Gym: LunarLander-v2

LunarLander is a console-like game where the agent can observe the physical state of the
system and decide which engine to fire (the primary one at the bottom or one of the sec-
ondaries, the left or right). There are 8 state variables: two coordinates of the lander, its
linear velocities, its angle and angular velocity, and two boolean values that show whether
each leg is in contact with the ground.

LunarLander (see Fig. C.18) is the example of the case where all algorithms work
in the same way and there is no significant difference between A2C and EV. It happens
regardless to the policy type we choose; the final performances are different among the
configs but inside one config A2C and EV gave the same result. We see that all algorithms
behave similarly in variance reduction as well, showing that EV-methods are still good
but sometimes A2C works with the same result.
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Figure C.18: The charts representing the results of the experiments in LunarLander en-
vironment (config1): (a) displays mean rewards, (b) shows standard deviation of the
rewards, (c) depicts gradient variance, in (d) the difference between the algorithm and
REINFORCE is shown, (e) shows the standard deviation of the rewards relative to RE-
INFORCE and (f) shows gradient variance reduction ratio.
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C.2.4 OpenAI Gym: Acrobot-v1

The system consists of two links forming a chain, with one end of the chain fixed. The
joint between the two links is actuated. The goal is to apply torques on the actuated
joint to swing the free end of the linear chain above a given height while starting from
the initial state of hanging downwards. The actions can be to apply ±1 or 0 torque to
the joint and the goal is to have the free end reach a designated target height in as few
steps as possible, and as such all steps that do not reach the goal incur a reward of -1.

The config we show here and in the main text (see Fig. C.19) is an example where
EV can boost training sometimes and that a clever combination of EV and A2C may
result in even better algorithms than these three. We can clearly see that until the agent
reaches reward ceiling there is a clear predominance of EVm over EVv and A2C but in the
end they result in the same policy. It can be seen that standard deviation of the rewards
indicate positive effect in the same time. Still, it must be noted that variance reduction is
the best in EVm and EVv until the ceiling is reached. Hence, the environment itself does
not require so excessive variance reduction and there is still an open space for discussions
about whether the variance reduction needed in such environment.
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Figure C.19: The charts representing the results of the experiments in Acrobot environ-
ment (config1): (a) displays mean rewards, (b) shows standard deviation of the rewards,
(c) depicts gradient variance, in (d) the difference between the algorithm and REIN-
FORCE is shown, (e) shows the standard deviation of the rewards relative to REIN-
FORCE and (f) shows gradient variance reduction ratio.
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C.2.5 Time Complexity Discussion

In Figures C.20 - C.27 we demonstrate how training time depends on processed transitions
for all environments. One can clearly see that EV algorithms are more time-consuming
and sensitive to the growth of the sample size K but its excessive training time mostly
can be explained by the implementation. PyTorch-compatibility requires that we have to
make K extra backpropagations in order to compute empirical variance. We believe that
this part of computations can be optimized and, therefore, accelerated in practice.

Scatter plots demonstrate how consumed time depends on the number of processed
data. This allows better understanding of the processing cost of one transition from the
simulated trajectory. We also provide the measured execution times per transition in box
plots to see the difference between all considered algorithms regardless of the trajectory
length. We used high-performance computing units with the same computation powers
for each run inside one environment, so that these measurements were accurate and com-
parable.

Summing up, considering all the advantages of EV algorithms, they have higher time
costs (see also Figures C.24 - C.27) and demand more specific implementation allowing
faster computation of many gradients which currently cannot be easily developed in the
framework of PyTorch. PyTorch allows great flexibility and very general models for the
approximations of policy and baseline; if these are more specific, our algorithm can be
implemented to be more effective.
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Figure C.20: The charts representing dependency of training time from number of the
processed transitions(scale of millions) for GoToDoor
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Figure C.21: The charts representing dependency of training time from number of the
processed transitions(scale of millions) for Unlock
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Figure C.22: The charts representing dependency of training time from number of the
processed transitions(scale of millions) for Acrobot (a) and for LunarLander (b)
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Figure C.23: The charts representing dependency of training time from number of the
processed transitions(scale of millions) for CartPole environment: (a) config1, (b) config5,
(c) config7, (d) config8, (e) config9
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Figure C.24: The charts representing distribution of time per transition (scale of mil-
liseconds) w.r.t. number of trajectories used for training in GoToDoor environment,
K = 5, 10, 15, 20
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Figure C.25: The charts representing distribution of time per transition (scale of millisec-
onds) w.r.t. number of trajectories used for training in Unlock environment, K = 5, 20
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Figure C.26: The charts representing distribution of time per transition (scale of millisec-
onds) w.r.t. an algorithm for (a) Acrobot and for (b) LunarLander
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Figure C.27: The charts representing distribution of time per transition (scale of millisec-
onds) w.r.t. config number, CartPole environment.
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Résumé : Dans la thèse, nous abordons les
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