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Titre: Plateforme IoT sémantique compatible avec l’IA embarquée pour l’agroécologie.
Mots clés: Internet des Objets (IoT), Agriculture durable, Intelligence Artificielle (IA) embarquée,Réseaux de capteurs sans fils, Low Power Wide Area Networks (LPWAN), Ingénierie des connais-sances.
Résumé: L’agriculture moderne nécessite uneprofonde transformation pour répondre auxdéfis du développement durable tout en nour-rissant qualitativement et quantitativement lapopulation mondiale croissante. Dans cetteoptique, les agriculteurs adoptent le "SmartFarming" ou agriculture intelligente. C’est uneméthode agricole qui utilise la technologiepour améliorer l’efficacité, la productivité et ladurabilité de la production agricole. Elle en-globe l’usage de capteurs, l’internet des objets(IoT), l’Intelligence Artificielle (IA), l’analyse dedonnées, la robotique et divers autres outilsnumériques optimisant des aspects tels quela gestion des sols, l’irrigation, la lutte an-tiparasitaire ou encore la gestion de l’élevage.L’objectif est d’augmenter la production touten réduisant la consommation de ressources,minimisant les déchets et améliorant la qualitédes produits. Toutefois, malgré ses avantageset son déploiement réussi dans divers projets,l’agriculture intelligente rencontre des limites

notamment dans le cadre de l’IoT. Première-ment, les plateformes doivent être capables depercevoir des données dans l’environnement,de les interpréter et de prendre des décisionspour aider à la gestion des fermes. Le vol-ume, la variété et la vélocité de ces données,conjuguées à la grande diversité d’objets ainsiqu’à l’avènement de l’IA embarquée dans lescapteurs, rendent difficile les communicationssur les réseaux agricoles sans fils. Deuxième-ment, les recherches tendent à se focalisersur des projets répondant aux problématiquesde l’agriculture conventionnelle non durable etles projets concernant les petites exploitationsaxées sur l’agroécologie sont rares. Dans cecontexte, cette thèse explore la création d’uneplateforme IoT composée d’un réseau de cap-teurs intelligents sémantiques, visant à guiderles agriculteurs dans la transition et la gestionde leur ferme en agriculture durable tout enminimisant l’intervention humaine.



Title: Embedded-AI-enabled semantic IoT platform for Agroecology
Keywords: Internet of Things (IoT), Sustainable Agriculture, Embedded Artificial Intelligence (AI),Wireless Sensors Networks, Low Power Wide Area Networks (LPWAN), Knowledge Engineering.
Abstract: Modern agriculture requires a pro-found transformation to address the chal-lenges of sustainable development while qual-itatively and quantitatively feeding the grow-ing global population. In this light, farmers areadopting "Smart Farming" also called precisionagriculture. It is an agricultural method thatleverages technology to enhance the efficiency,productivity, and sustainability of agriculturalproduction. This approach encompasses theuse of sensors, the Internet of Things (IoT), Ar-tificial Intelligence (AI), data analysis, robotics,and various other digital tools optimizing as-pects such as soil management, irrigation, pestcontrol, and livestock management. The goalis to increase production while reducing re-source consumption, minimizing waste, andimproving product quality. However, despiteits benefits and successful deployment in vari-

ous projects, smart agriculture encounters lim-itations, especially within the context of IoT.Firstly, platforms must be capable of perceiv-ing data in the environment, interpreting it,and making decisions to assist in farm man-agement. The volume, variety, and velocityof those data, combined with a wide diver-sity of objects and the advent of AI embed-ded in sensors, make communication challeng-ing onwireless agricultural networks. Secondly,research tends to focus on projects address-ing the issues of non-sustainable conventionalagriculture, and projects related to small-scalefarms focused on agroecology are rare. In thiscontext, this thesis explores the creation of anIoT platform comprised of a network of seman-tic smart sensors, aiming to guide farmers intransitioning and managing their farm sustain-ably while minimizing human intervention.
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1 - General Introduction

The introductory chapter of this report provides a comprehensive overview
in four distinct sections, namely context and motivation, problem statement,
methodology and contribution, and report outline. The context and motiva-
tion section highlights the reasons behind the chosen topic, while the prob-
lem statement section elaborates on the specific problem identified within
the broader context. Themethodology and contribution section discusses the
process of research involved and explains the relevance of the study. Lastly,
the report outline presents all the chapters in detail.

1.1 . Context and motivation

Agriculture is the foundation of human civilization as its invention mark
the end of the hunter and gathering period and the creation of cities as our
ancestors went from a nomadic life style to a sedentary one. Throughout
our history, agriculture was a labour-intensive system with low productivity
and a high sensitivity to climatic event. It was able to feed the population
but required a vast number of small farms and at least a third of the pop-
ulation to be active in the primary agricultural production process. During
the industrialisation period at the end of XIXth and the beginning of the XXth
century, agriculture was reinvented. This newmodern agriculture, also called
agriculture 2.0 or the green Revolution, is characterized by the massive us-
age of heavy machinery, chemicals fertilizers and chemical protection (insec-
ticide and pesticide). Nowadays, it is the main agricultural paradigm in the
world as it allows farmer to grow important quantity of food for minimal hu-
man effort and strong adaptability to climate-induced constraints. Therefore,
modern agriculture has been a major contributor to the world’s food supply
and has played a crucial role in supporting the growing global population [1].
However, the practice of modern agriculture has also given rise to a host of
challenges that pose serious risks to the environment, health, and economic
sustainability of the industry threatening humankind food security[2]. Food
security is the state where all individuals in a population have physical, social,
and economic access to sufficient, safe, and nutritious food to meet their di-
etary needs and food preferences for an active and healthy life. It involves not
only the availability of food but also the accessibility, affordability, and quality
of food [3].

One of the primary issues of modern agriculture is its impact on the en-
vironment . Large-scale farming practices have led to soil degradation, wa-
ter pollution, and deforestation [4]. Modern agriculture is heavily dependent
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on synthetic fertilizers, pesticides, and herbicides, which have a negative im-
pact on the environment. The widespread use of these chemicals has led to
soil and water contamination, and has also resulted in the development of
pesticide-resistant insects and weeds [5]. Moreover, chemicals usage in the
food chain might be the causes on numerous human diseases and hormonal
disorders [6] . In themeantime , the extended cultivated area surfaces require
the usage of heavy machinery that not only uses polluting fossil fuel powered
motors but also tends to increase soil compaction due to their weight [7].
Another environmental issue of modern agriculture is the mono-cropping or
monoculture. This method, where farmer use only one variety of crops per
field to facilitate the harvest and the cultivation process, induce a decline in
soil fertility as the same plants will need the same nutrients season after sea-
son, thus requiring more fertilizer usage and depleting the soil fertility. More-
over monoculture also increase the risk of diseases and pest development
therefore inducing more pesticide usage [8]. A comprehensive list of environ-
mental consequences caused by traditional modern Agricultural practices is
proposed in Table 1.1.

Cause
Type Cause Degradation

process
Impact

Physical
Deforestation[9] Breakdownof naturalsoil structure,aggregationand porosity

Reduction in infiltration ca-pacity. Changes in soilwater-retention character-istics. Diminish earth ca-pacity to absorb carbonbased gases and producedioxygen.Excessivehuman,livestockand ma-chine traffic[7]

Soil com-paction,breakdownof natural soilstructure

Decreases infiltration ca-pacity. Changes in soilwater-retention character-istics Block aeration forsoil biota. Limit rootsspreading capacities.Excessivetillage [10] Compactionof surface andsubsoil, reduc-tion in pro-portion andstrength/stabilityof aggregates

Accelerated erosion bywa-ter and wind. Increase inbulk density leading to re-duction in porosity Waterlogging and anaerobiosis
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Excessivewater us-age [11]
Soil Erosionand diminu-tion of groundwater level

Loss of soil structure. Di-lution of organic matterand diminution of soil fer-tility. Depletion of natu-ral ground water stock im-pacts the natural water cy-cle inducing drought andflood and reducing wa-ter availability for futurecrops.Intensiveurbanisa-tion [12]
Destruction ofnatural soil Loss of soil fertility. Usageof other natural zone forwaste disposal. Loss of soilinfiltration capacities dueto concrete coating.

Chemical
Little to nouse of fertil-izers [13]

Nutrient de-pletion Decreased levels ofmacronutrients on ex-change sites, soil organicmatter, and in soil solutionExcessiveusage offertilizers[13]

Acidification,eutrophi-cation andpopulationexposure

Leaching and runoff of nu-trients to water sourcespolluting them in the longterm.
Usage ofpesticide[5]

Soil and plantscontamination Exposure to chemical po-tentially harmful to hu-man , either directly (dur-ing spraying of the field)or indirectly (inclusion ofchemicals in the food pro-duces). Creating stnewerdiseases and pest strainswith stronger resistance tothe pesticides
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Usage of in-secticide [5] Depletionof insectspopulation,exposure topopulation

Disturbance of the naturalfood chain inducing disap-pearance of some species(e.g birds for who insectsare the main food source)and over representationof other (e.g diminu-tion of spider induce aan increase number ofmosquitoes); Exposureto chemical potentiallyharmful to human , eitherdirectly (during sprayingof the field) or indirectly(inclusion of chemicals inthe food produces)Usage ofpoor qual-ity waterand in-adequatedrainage[11]

Salinization,alkalinizaton Loss in soil fertility.

Industrialand urbanwastes [14]
Toxification,contaminationwith heavymetals, pollu-tion

Excessive build up ofsome elements (e.g., Al,Mn, Fe) and heavy metals(e.g., lead and mercury);increase in soilbornepathogens
Biological Removalof residues(leftoverfrom cropsafter har-vest) [15]

Nutrient de-pletion andsoil structuredegradation

Reduction of soil fertility,soil aggregation, and re-lated properties

Little to nouse of or-ganic input[13]

Decline indiversity andabundance ofsoil biota

Decrease of soil fertilitylevel
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Introductionof notadaptedspecies inthe biota[16]

Unfair naturalcompetitionleading tosome speciesbeeing surep-resented andother under-representedcompare tothe naturalbiota of theecosystem

Crops beeing more sensi-tive to some pest and dis-ease. Crops become moreused as food source bysome species.

Table 1.1: Types of environmental degradation,causes and impacts onagricultural processes
Besides its harmful method to the environment, modern agriculture is

also not suited to face climate change. There is a subsequent number of
research on the effect of Climate change that shows that the earth is get-
ting warmer since the middle of the XIX century due to human activity and
its greenhouse gasses production [17]. This rise in temperature, even if con-
tained to a few degrees °C, will disrupt the rainfall pattern as well as increase
the frequency and hardship of extreme weather condition across the world
such has flooding , heatwave and fire or monsoon . This will induce an impor-
tant and unequal shift in climate pattern across the world. As we can see in
Figure 1.1 some region will be subject to a drastic reduction in their food pro-
duction capability reducing the food security of their population especially
in developing countries where smallholder farmers are more affected by the
weather conditions [18].

Figure 1.1: Projected change in future global crop yields between 2010 and2050 [19]
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Another issue related to modern agriculture is the impact of population
growth and its impact on food consumption. The world’s population is pro-
jected to reach 9.7 billion by 2050 [20], and this will put an enormous strain on
the global food supply[21]. As the population continues to grow, the demand
for food will increase, and farmers will need to produce more food to meet
the needs of the population. Moreover, the standard of living of humankind
is, for the better, rising, inducing more food consumption and an increased
demand for higher grade food product (e.g. animal products) from develop-
ing countries population as shown in figure 1.2 [22].

Figure 1.2: Dietary changes in developing countries, 1964-66 to 2030 [23]
The Food and Agriculture Organization (FAO) of the united state nation

therefore estimate that by 2050, food production must increase by around
60% if we want to insure global food security to provide for everyone needs
in term of quantity and quality and availability [24]. With the current agri-
cultural methods this would mean increasing the agricultural land of more
than 593 million-hectare that to say twice the size of India [21]. Regrettably,
as illustrated in Figure 1.3, Earth can no longer accommodate an expansion
in farming areas. Over 50% of habitable land is currently allocated to agricul-
ture, and any further expansionwould jeopardize our planet’s ecosystems. It’s
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also imperative for readers to recognize from this figure that while technology
and Smart Farming (SF) offer significant benefits (as it will be later showcased
in the thesis), achieving sustainable agriculture also requires a reduction in
livestock-derived products consumption. Indeed, livestock farming occupies
a staggering 80% of all farmland while only accounting for approximately less
than 1/3 of our global calorie and protein supply that could be easily replaced
by plant-based produces [25].

Figure 1.3: Global land use for food production [26]
In addition of the environmental and population issues, agriculture is fac-

ing also social problems in the form of a shortage of skilled labor. The aver-
age age of farmers in many countries is over 60, and there are fewer young
people entering the industry as wages are low and work conditions are harsh
[27]. This shortage of skilled labor is making it difficult for farmers to make
a change and adopt new sustainable agricultural practices. Moreover aging
farmers aremore reluctant to adopt the usage of new technologies, which are
essential for increasing efficiency and productivity [28]. In a more global way,
older farmers usually own their farmland and sell them when going into re-
tirement. Currently it is mainly big company with financial interest that tends
to buy those land to create huge farm exploitation with no or low care to the
environment [29].

Finally the last issue is food distribution and availability and waste. The
problem with food process, distribution and storage is that it is often difficult
to ensure that food reaches those who need it in a timely and efficient man-
ner. This problems causes amajor food waste issue as it is considered that 30
% of food produces are wasted every year [30]. This can be caused by techni-
cal issues : Food may spoil or be wasted due to inadequate storage facilities,
transportation difficulties, or other logistical challenges [31]. But this also can
be due to social issues : There can be disparities in access to food, with some
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countries, communities or individuals facing food deserts or limited access to
fresh, nutritious food. These issues can lead to food insecurity and malnutri-
tion, particularly for vulnerable populations such as low-income households,
children, and seniors and the overall population in developing country. This
inequality in food distribution leads to today absurd situation where 800 mil-
lion people are undernourished while 800 million are considered in a state of
pathological obesity [32].

All of those issues will require the adoption ofmore efficient farming prac-
tices that canproducemore foodwith fewer resources. Thanks fully the digital
revolution brought numerous tool to helpmake agriculturemore sustainable.
The domain of science and engineering that aim to bring new technologies to
farmers is called Smart Farming or Precision agriculture. It is define as the
usage of advanced technology to optimize agricultural production, increase
yields and reduce waste and overall resources usage (mechanical and chem-
ical) and finally make the overall process of food production more reliable.
[33]. Smart Farming has already started to be implemented widely and it is
consider that its usage will be even more important in the future. This lead to
a new type of agriculture called 3.0 for the agriculture that already uses digital
tools for automation and monitoring, and now even 4.0 with the introduction
of advanced Information and Communication Technology (ICT) tools such as
Artificial Intelligence (AI) or Internet of Things (IoT). Figure 1.4 resume the par-
allel between the level of agriculture and the level of traditional industry.

Figure 1.4: Development road-map of industrial revolutions and agriculturalrevolutions [34].
Concretely, smart farming involves integrating various technologies such

as sensing technologies, data analytic, artificial intelligence and robotics. A
general view of the smart farming processes is proposed in Figure 1.5.
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Figure 1.5: Smart Farming domains

All of these technology are generally grouped into Internet of Things (IoT)
platforms to assist the farming process. The concept of the Internet of Things
(IoT) refers to physical objects or collections of objects that are equipped with
sensors, actuators, processing capabilities, software, and other technologies
that communicate with other devices and systems over the internet. Usually
IoT devices are grouped in IoT Platforms for specific usage. An IoT platform is
softwaremanaging the connection and control of connected objects to collect,
store, correlate, analyze and exploit their data and take the best decision to
implement answers for various problem [35]. It is divided in three parts:

• Perception: Collection of data from various sources. Local sensors de-
vice, database, survey and human interaction systems.

• Decision: Analyse of such Data thanks to statics, analytics tools and AI
• Action: Sending command to actuators or proposing solution to hu-
man agent.

In the smart Farming context, a simple example of an IoT platform would
be an irrigation system piloted by soil humidity sensors and is depicted in
figure 1.6. The soil humidity sensors communicates wirelessly in what we call
a Wireless Sensor Network (WSN). The IoT platform will collect the level of
humidity in the soil, make analysis in comparison of futureweather prediction
(obtained through existing database on the internet), take a decision on the
level of water to give to the crops and then finally send a precise activation
command to a connected irrigation valve to apply only theminimum required
amount of water, hence being precise and saving precious water resources.

Despite promising result and opportunity, the SF domain unfortunately
encounters some limitations:

21



Figure 1.6: Iot platform example

• Technological : The technologies used in SF are complex and need to
be improved as explained by the authors of the survey in [36]. On the
particular case of IoT platforms, which is the main topic of research
of this thesis, the recent advancement in Embedded AI sensors offer
promising application especially in SF. [37]. Figure 1.7 shows the rising
number of publication concerning Edge computing technologies.

Figure 1.7: Edge computing interest (Google trends 2013-2020) [38]
Embedded AI is a new field of AI where Machine Learning algorithms
are optimize in order to run on constrained hardware with low com-
putational power and memory such as Microcontroller Unit (MCU) or
embedded Central Processing Unit (CPU). The idea is to analyze the
data directly where they are collected in order to reduce latency and
increase privacy but also to reduce energy consumption as offloading
data, especially heavy ones such a image and audio files, is a power-
hungry procedure. Embedded AI is also refer to as Edge Computing in
opposition of Cloud Computing. A simple comparison between cloud
computing and edge computing is proposed in Figure 1.8 with an exam-
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ple application where a camera sensor observe a field of strawberry. In
the first case, cloud computing, the camera sensors take a picture of a
plot of strawberry, sends the pictures through the network in a remote
cloud server. The cloud server then apply a ML algorithm to this picture
to infer the state of the plant. After this step, the cloud server can send
the output to whoever needs to know (farmer, actuators (e.g. robot or
irrigation). In the second case, the ML algorithm is running directly on
the sensors and it sends only the output in a form of a small and light
text message through the network to whoever needs to know. Those

Figure 1.8: Cloud computing (top) vs Edge computing (bottom)
sensors offers a plethora of application for SF such as static camera
sensors observing crops to monitor their growth and detect issues (e.g.
disease, pest infestation, under development, water stress) or sound
sensor to listen to livestock behavior and detect unhealthy individual
for treatment (e.g. breath sensors for cows that detect stress). Unfor-
tunately, they also brought new needs for agricultural Wireless Sensors
Networks in term of Quality of Service (QoS) and mainly energy con-
sumption[39][40] especially as their firmware need to be remotely up-
dated and because they have to offload punctually some heavy data
file (e.g. image or sound). As it will be later showcased, agricultural
WSN mostly use Low Power Wide Area Network (LPWAN) technology
to communicate [41]. Amongst those LPWAN, LoRa protocol is the main
used and promising communication technology used in agricultural IoT
platform for its long range performances and its capacity to create ad-
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hoc network with unlicensed industrial frequencies [42]. Therefore the
issue brought by Embedded AI sensors will be studied in the context
of LoRa network. The intricate nature of IoT platforms is further com-
plicated by these sensors due to their sophisticated management pro-
cesses. It become more difficult for the system to represent the wide
array of phenomena and variables the various sensors (smart or not)
track, and ultimately, the diversity of devices (such as sensors, actua-
tors, and routers) and agents (including plants and farmers) found on
a farm. Numerous elements, ranging from sun exposure and water
availability to natural competition and soil conditions, influence plant
growth. In parallel, sensors have a plethora of parameters to consider,
like their energy status, ambient temperature, and for those embedded
with AI, their mean accuracy. For optimal decision-making, it’s impera-
tive to efficiently process the data collected and vigilantly monitor the
health and status of each sensor. This necessitates the incorporation
of AI methodologies such as knowledge engineering and expert sys-
tems to accurately represent our knowledge of both the sensors and
the plants they oversee, allowing for well-informed decisions based on
this comprehensive data.[43, 44].Numerous methods already exist to
do this such as ontology [45], but they have rarely been applied to agri-
culture and, to our knowledge, never to an agricultural IoT platformwith
embedded AI sensors [46, 47, 48]. Hence the strong focus of this thesis
on this topic. Other technological issues will be briefly describe in the
state of the art chapter of this report but the work conducted in this
thesis was mainly oriented toward the issue related to the rise of Em-
bedded AI in IoT platform using LoRa networking technology and the
knowledge .

• Social [49]: SF research literature is mainly focused on technical imple-
mentations. However SF needs to also answer various social issues in
order to encourage farmers to take the steps in changing their prac-
tices. Especially regarding data management and privacy as discussed
by the authors in [50], or knowledge sharing with farmers as they will
not use technology they don’t understand and, therefore, won’t be able
to maintain as discussed in [51]. For example, one of the most signifi-
cant reluctance of farmers is having to rely on technicians to maintain
their trucks and equipment where they used to be able to do it on their
own. Nowadays, the closed-source ecosystem of manufacturers forces
farmers to hack their own tools and tractor to be able to repair them
without paying fees to the manufacturer [52]. Therefore, the indepen-
dence factor of farmers needs to be particularly addressed when devel-
oping smart farming solutions.
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• Economical [53]: The gross margin in the farming industry are small.
This is a key factor that SF tools need to take in account and it is closely
linked to the social factor. Researcher must consider the economical
cost of implementing thembut alsomainlymaintaining themas it needs
a specialised workforce to use them. For example an issue with the
smart tractor proposed by one of themarket leadermanufacturer, John
Deer’s, has recently strike controversy as farmers can’t repair their own
truck due to proprietary software. When a malfunction occurs, tractor
owners are often obligated to pay substantial repair costs to the respec-
tive company, a burden not easily offset by the farm’s revenue [54].
Similarly, while agricultural robotics like automatic weeders and fruit
pickers have shown potential (particularly in terms of sustainable de-
velopment criteria), they face challenges in satisfying market demands
due to their elevated costs and diminished return on investment com-
pared to conventional human labor. Currently, only high-value agricul-
tural products methods, such as viticulture, see a tangible benefit from
these technological solutions [55]. In summary, smart agriculture must
also be accompanied by favorable economic laws allowing its adoption,
such as the prohibition of using cheaper but polluting methods or by
imposing minimum wages for all agro-industry workers [49].

• Scale [56]: SF technologies are mostly applied to large scale farm that
can have access to investment money to make the transition. In the
opposite, Small Scale Farmer (SSF) are left out on the SF revolution as
little to no research is conducted to offer them the tools to bemore sus-
tainable [57]. Small-scale agriculture consists of cultivating crops on a
small surface of arable land, usually less than 2 ha according to most of
the literature on the topic, and, often, yielding lower economic returns.
This size number is subject to debate as a SSF in Latin America is not the
same as one in Australia for example but also that surface itself is not
enough of an indicator, as we should also consider the productivity, the
income or the quantity of livestock of a farm [58]. The study proposed
by the authors in [57], shows that research is not on the right track as
95 % of the 100 000 articles published on the ways to end hunger were
of no help for small-scale farmer. However, small scale farming repre-
sents the vast majority of the farm in the world, over 80 %, as shown in
Figure 1.9 :
Due to its poor yield, its sensitivity to the climate and the intense work
labour, most of the farmer around the world operating in SSF are from
the poorer countries of the planet [60]. Nowadays, SSF are the sub-
ject of huge interest as their development could help the population
of country under development to be more self sufficient and resilient
to hunger, and to offer economical revenue to population [61]. But an-
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Figure 1.9: Share of farms worldwide, by land size class. [59]

other huge interest for those SSF is about their capability to be more
sustainable and resilient than large-scale one [62, 58]. For those reason,
research are funded even in Europe to find new ways to allow people
to go back to small scale farming [63]. The problem of small scale farm
is mostly the cost of the workforce. To reduce it two solutions can be
used. First making the economical revenue more profitable by apply-
ing dedicated policies. Second reducing the needed workforce by using
technology. This is on this second point that I pursued my research,
even if the social and economical dimension of the problem should still
be remembered during technical research in order to offer a useful so-
lution to tackle with the issues of farmer.

• Application domain: The last limitation is the type of agriculture SF is
applied to [64]. As for now most of the project are used on conven-
tional agriculture methods such as mono-cropping with fertilizer us-
age for example. Despite offering gain in productivity, those methods
are not sustainable in the long term as explain before in this report.
Hoppefuly, true sustainable methods exist such as agroecology [65].
Agroecology is a scientific discipline that focuses on the study of eco-
logical processes that operate in agricultural systems, with the aim of
developing sustainable and resilient food systems. It emphasizes the
interdependence of the social, economic, and ecological dimensions of
agriculture, and seeks to promote the use of ecological principles and
practices in agriculture. Agroecology emphasizes the importance of the
local ecosystem, biodiversity, soil health, and the use of renewable re-
sources, and aims to reduce the dependence on external inputs such as
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chemical fertilizers and pesticides. It also seeks to promote social jus-
tice and equity in the distribution of resources and benefits within the
food system [66]. The philosophy of agroecology is simple : Work with
nature and not against. This mean adapting the crops to grow to local
climate by artificial selection, using other biological agent to counter un-
desired effect (e.g. introducing predatory species to a know unwanted
insect) or simply performingmulti-cropping in a same field to have ben-
eficial interaction amongst plants. The best example of agroecology is
a method called three sisters that was, and is still use by the indigenous
people of south andnorth america [67]. It uses a combination of squash
plant, maize (corn), and climbing beans in a technique known as com-
panion planting [68]. Themaize andbeans are often planted together in
mounds formed by hilling soil around the base of the plants each year;
squash is typically planted between the mounds. The cornstalk serves
as a trellis for climbing beans, the beans fix nitrogen in their root nod-
ules and stabilize the maize in high winds, and the wide leaves of the
squash plant shade the ground, keeping the soil moist and helping pre-
vent the establishment of weeds. A representation of this process can
be found inf Figure 1.10. Association like this between plants exist in a
wide variety and have various objectives. The multiplicity of such asso-
ciation make knowledge engineering an interesting tools to represent
them in regard of their independent biological characteristics.

Figure 1.10: Three sisters method representation

In light of the agricultural context and the opportunities and limitations of
smart farming, this thesis research has been directed towards implementing
an IoT platform for small-scale agroecology. There is a significant emphasis
on networking challenges associated with wireless embedded-AI sensor net-
works and the knowledge engineering required by the decision-making pro-
cesses related to sensor management and agroecological principles
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1.2 . Problem statement

Small-scale agroecology can be a viable model for sustainable food pro-
duction in the future. Unfortunately smart-farming tools that address the spe-
cific issues encounteredby those typeof farmare scarce andunder-developed
compared to other type of agriculture (conventional agriculture or indoor farm-
ing). Hence the main problematic of this thesis :

"How can we improve farmer’s ability to use
smart-farming tools to implement sustainable

agroecological practices?."
As stated above, IoT platform are powerful tools to gather data and in-

terpret them in order to take the best decision regarding certain rules. This
capacity to perceive information in a farm through sensors is even more ef-
ficient with the rise of new smart sensors performing AI directly at the Edge
on the sensors hardware. This thesis will therefore focus on the implementa-
tion of an IoT platform with an heterogeneous WSN (A network composed of
Smart sensors and classic sensors), to help the farmers follow agroecological
principle that rely fundamentally on the observation and interpretation of the
biotope and biocenose behavior of the farm. To do so we ask the question :
How can IoT platform be an answer to manage agroecological farms ?

To do so, we ask the question of the maintenance of the wireless sen-
sors network as it should be minimal to avoid farmer’s intervention. The
main maintenance task that farmers have to perform with sensors is Battery
management. Agricultural WSNs mainly use Low Power Wide Area Network
(LPWAN) technologies, especially LoRa telecommunication protocol to com-
municates in order to save energy and doing so, extending sensor’s battery
lifetime drastically. Unfortunately those network have a really low data-rate.
Therefore the rise of the usage of new smart sensor needs to be addressed
in regard of LoRa limitations and advantages. The two main need for smart
sensor, beside the communication of the results, is the ability to be remote
updated and the ability to offload punctually an heavy file (e.g. image or file)
for re-training the model in the cloud.

How can smart sensors be used in LoRa agroecological WSN ?

Finally, weneed to represent the knowledgeof agroecology and the knowl-
edge on sensors network behavior (with a strong focus on Embedded AI sen-
sors) in a novel Knowledge base to propose the best decision to the farmer
regarding sensor placement, sensors maintenance (energy saving procedure
& Firmware update management), crops layout, action determination (irriga-
tion, harvest, treatment). For that we will be using Knowledge-engineering
tools such as Ontology. In this context, we finally ask the question :
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"How can we merge the information gathered by the sensors and take
the best decision based on their data to implement agroecology and

manage the sensors network maintenance?

To conclude, the proposed IoT platform should be able to merge data
from the variety of implemented sensors in order to take the best decision
regarding farm management but also WSN management with the help of a
knowledge base. The augmented IoT platform compare to the one in figure
1.6 is shown in figure 1.11. It should be able to help sensors management to
allow farmer with limited knowledge of IoT platform to implement easily such
tools. Despite a strong focus of this thesis on the locally deployed WSN, it is
important to note that the platform also need other source of information
to output more precise decision. Those external sources are remote sensing
techniques (satellite imagery) and farmer’s observation on the field. There-
fore those data source should also be taken into account in the process of
decision making.

Figure 1.11: Overall view of the IoT platform
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1.3 . Methodology and Contribution

The goal of this work is to design an efficient IoT platform for small-scale
agroecology. To do so, as stated above, we need to consider the specificities
of the introduction of smart sensor in wireless sensor network using LoRa
technology and in the meantime treat the perceived data through a knowl-
edge base regarding plant biology and sensors characteristics. The different
parts of this work can be represented as a methodology in Figure 1.12. This
methodology outlines the different phases of this work, their corresponding
chapters, and the peer-reviewed contribution published during the thesis.

Figure 1.12: Methodology and contribution overall view

1. The first step and contribution is a standard approach of scientific litera-
ture exploration in the concerned specific domains : Smart Farming, IoT
platform for agriculturewith strong focus onWireless Sensor Networks,
embedded AI devices applications and knowledge-based decision sys-
tems.
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2. The second, third and fourth step are about the specific needs of Em-
bedded AI and smart sensors in LoRa and are grouped in one chapter.
The second step contribution is a proof of energy-efficiency for system
using Embedded AI and LoRa compared to cloud computing.

3. The third step is about developing a Firmware Update Over the Air pro-
tocol in LoRa for Embedded AI devices performing TinyML.

4. The fourth step is about developing an heavy data-offload protocol for
LoRa for remote model training.

5. The fifth, sixth and seventh step are about the setup of the knowledge-
base that will act as a way to store the perceived element and process
them through a set of logical rules for a decision-making purpose The
fifth step is about representing the knowledge about plants and agroe-
cology principles.

6. The sixth step is about representing the knowledge about sensors (es-
pecially smart sensors and theirmaintenanceprocedure) andWSNprin-
ciples with a strong focus of storing the measured data.

7. The seventh step is about experimenting the created Knowledge-Base
on use cases to get results. This is done in a simulated environment
and by exploring different scenarios.

8. The eigth and last step is about a synthesis in which results are dis-
cussed and future works are presented.

Overall, this thesis propose approaches for the implementation of an IoT
platform for agroecology in the form of a cloud platform where the farmers
can enter his information about his farm location and types of plants he wish
to grow and obtain a crops and sensors layout from the machine. Once he
implemented this crops and sensors layout in the farm, the platformmanage
the sensors maintenance (meaning the battery usage, the FUOTA and data
offload procedure for the Smart sensors) and the crops development with a
knowledge base ontology. This IoT platform is presented in figure 1.13.
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Figure 1.13: IoT platform specific view

1.4 . Report Outline

In this report, Chapter 2 examines the state of the art in relation to IoT
platforms in agriculture. In this context, the study focuses on two specific as-
pects of the IoT platform. Firstly, it addresses the utilization of embedded-AI
sensors and their communication requirements within wireless sensor net-
works, emphasizing LPWAN and LoRa technology. Secondly, it delves into the
storage, federation, and interpretation of sensor data for Agroecology. This
chapter thus provides a review of WSN, Smart Sensors, and knowledge-based
systems. Their current limitations and potentials are highlighted in the con-
text of Smart Farming (SF). The chapter concludes with a summary of the state
of the art and an overview of the proposed system. It’s worth mentioning for
the reader that this chapter is quite extensive. The objective was to offer a
thorough overview and highlight the research efforts necessary to create a
comprehensive knowledge base. Some of the concepts explained are aimed
at individuals without prior experience or knowledge in the various domain
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and may thus be bypassed by well-versed readers.
Chapter 3 covers the topic of LoRa-based agriculturalWSNwith Embedded-

AI sensors. It introduces a particular use-case scenario that highlights the po-
tential application of such sensors. In the process, it thoroughly examines the
limitations inherent to these sensorswithin the realmof LowPowerWideArea
Network (LPWAN) communication, with a specific focus on the LoRa protocol.
These limitations include energy consumption, Firmware Update Over the Air
FUOTA), and the challenge of handling substantial data offloading. Afterward,
we outline the software and hardware architecture of the embedded-AI algo-
rithms we developed using Tiny Machine Learning techniques (TinyML) for
our experimentation. We then present two novel protocols for Smart Sen-
sors: one for FUOTA and another for efficient heavy data offload. Finally, we
simulate our sensor system’s behavior in various scenarios to explore its ca-
pabilities.

Chapter 4 focuses on the Knowledge-Engineering approachwithin the the-
sis. Firstly, it will define the concept of knowledge engineering and its real-
ization through ontology development. Subsequently, it will showcase the
knowledge-base constructed for our IoT platform. The latter will introduce
the ontology’s constituent classes, objects, and properties regarding plants
and IoT devices. Moreover, it will outline a set of rules employed by the rea-
soner tools for the inference process. Beyond mere data storage, the system
must also effectively handle diverse actions related to perceived data and im-
plemented knowledge. Ultimately, we obtained an ontology tailored to the
management of a small-scale agroecological IoT platform and delve into its
architectural aspects. Chapter 4 also introduces various use-case scenarios
to validate the behavior of the IoT platform’s knowledge-base. The model un-
derwent testing within a simulated environment to verify the suitability of the
approach for both sensor and plant management.

Finally Chapter 5 will gather the various conclusion of the conducted re-
search and propose future paths to explore in order to improve our system.
This chapter will also showcase the various achievements attained during my
PhD journey and highlight prospects for future career opportunities.
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2 - State of the art

2.1 . Introduction

Smart farming is a scientific domain aiming to incorporate digital tools
into the agriculture industry to enhance productivity, reduce labor, and im-
prove food quality.SF is also called Precision Agriculture (PA) and can also be
defined as the use of technology to improve the ratio between agricultural
output (usually food) and agricultural input (land, energy, water, fertilisers,
pesticides, etc.). As outlined in the introduction of this thesis, Smart Farming,
could significantly contribute to shifting agriculture towardsmore sustainable
practices while ensuring global food security [33]. SF technology spans vari-
ous computer science fields, including Artificial Intelligence, Data Science, and
Robotics. Through cloud-base AI analysis, farmers can better comprehend cli-
mate patterns and changes, facilitating informed decisions about crop selec-
tion and resource allocation (e.g., water, chemicals). In the meantime, actu-
ators such as Robots can effectively replace humans in challenging tasks like
fruit harvesting and weed removal or simply in automation task like valves
for irrigation management. The different components of Smart Farming are
illustrated in Figure 2.1.

Figure 2.1: The cyber-physical management cycle of Smart Farmingenhanced by cloud-based event and data management [69]
However, as mentioned in the introductory chapter of this thesis, SF faces
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limitations in social, economic, application domain, scale, and technological
aspects. This thesis concentrates on the challenges associated with utiliz-
ing Internet of Things (IoT) platforms within the SF context. Previous stud-
ies have explored IoT platform deployment in farming environments, offer-
ing substantial potential to enhance agricultural sustainability. IoT platforms
must ensure communication among diverse networked devices, often wire-
lessly. This can be complex, given the diverse requirements of these devices,
particularly due to the growing integration of embedded AI. Also Upon gath-
ering data, IoT platforms must also make optimal decisions using acquired
knowledge [35].

Due to its multidisciplinary nature, this problem entails the convergence
of multiple subjects, necessitating a comprehensive scientific review of seem-
ingly disparate areas. This chapter compiles information on the current state
of the art and direction of Smart Farming technology, particularly in relation
to Internet of Things applications. The focus is on wireless communication,
embedded Artificial Intelligence, and knowledge-based decision-making pro-
cesses. This section seeks to provide readers with a comprehensive overview
of these technologies, their common applications in agricultural scenarios,
their limitations, and potential areas for improvement. Other detailed tech-
nical reviews will be provided in Chapters 3 and 4, focusing on the specific
applications implemented in our IoT platform.

2.2 . IoT platform

2.2.1 . Definition
An Internet of Things (IoT) platform refers to an integrated technologi-

cal infrastructure designed to facilitate the seamless connectivity, data ex-
change, management, and control of a diverse array of physical objects or
"things" through the Internet. These "things" encompass a wide spectrum of
devices, sensors, actuators, and equipment that can collect, transmit, and re-
ceive data. IoT platforms serve as foundational frameworks that enable the
interoperability and communication among these interconnected devices, al-
lowing for the aggregation, analysis, and utilization of data for various applica-
tions. In other terms, it is a computer system capable of making autonomous
action in the world based on its perception of it [35].

The concetp of "Internet of Things" was initially coined by Kevin Ashton
in 1999 [70]. In a presentation he made, Ashton highlighted the potential ad-
vantages of employing RFID technology for managing products. By outfitting
items with specific devices, these products could "communicate" pertinent
details (such as their condition, traceability, etc.). This would enable products
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Figure 2.2: IoT platform model

and individuals equipped with such "things" to share insights about their con-
dition and environment in a vastly improved manner.

It is composed of three main components: Perception, Decision, and Ac-
tion [71]. The perceptionmodule is responsible for retrieving data, either from
a cloud database or through human interaction, and directly from the physical
world using sensors. The decision module is software tasked with interpret-
ing the collected data through data analytics or AI. Finally, the action mod-
ule concerns the implementation of the decisions made. This can take the
form of other physical devices known as actuators or robots, or in the form
of reports communicated to humans to help themmake a decision or to give
them guidelines. Each component of an IoT platform communicates via spe-
cific transmission protocols regarding the specifics of the device [72]. Com-
munication can be wired or wireless. The general model of an IoT platform is
depicted in Figure 2.2.

For a deeper level of understanding, we present an illustrative example of
an IoT platform in the context of Agriculture in Figure 2.3. The primary goal of
this platform is to monitor stress levels in livestock, enabling the adjustment
of the type and quantity of food they receive. This adjustment is crucial as
food significantly influences stress levels [73]. Prior to IoT implementation,
farmers had to manually observe signs of stress in individual animals. This
task was challenging, especially for a large cattle herd, relying solely on visual
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cues of animals behavior. When an individual exhibited signs of stress, the
farmer had to make approximate adjustments to their food regimen. How-
ever, with IoT technology, a sensor can be directly attached to each animal,
allowing for the precise monitoring of stress levels using physiological sen-
sors such as heart rate and breath sensors. Additionally, strategically placed
cameras in the fields can analyze cow behavior through AI algorithms. Cam-
eras and sensors need to communicate over the network to share their data
with the cloud-based platform. Communication can either be wired, as seen
with the cameras, or wireless, as is the case with the sensors attached to
cows. Based on the collected data, the system can then precisely fine-tune
the quantity and type of food provided to each individual. Furthermore, this
data-driven system generates analytical insights for farmers. It can even au-
tomate the process of ordering animal food based on the actual needs of the
cattle herd. Thanks to this system, one farmer can now monitor the stress
level in a cattle herd of thousands of beasts easily and implement basic solu-
tion to diminish it.

Figure 2.3: IoT platform for livetock stress management
The previous example is straightforward, but an IoT platform can become

significantly more intricate due to the diverse array of data sources available
for the process of decision-making and the technology chosen for it. These
platformsmight even identify novel stress patterns in livestock that elude hu-
man observation. In the broader scope, IoT platforms can also facilitate pre-
dictive maintenance in industrial settings [74]. In our example, this involves
averting stress in livestock by detecting early signs of abnormal behavior. This
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can be achieved notably through the utilization of a concept known as the
"digital twin." The concept of a digital twin in IoT involves creating a virtual rep-
resentation of a physical object or system. This virtual counterpartmirrors the
real-world object, collecting and utilizing data from sensors and other sources
to simulate its behavior, performance, and condition. This enables real-time
monitoring, analysis, and optimization, helping to enhance decision-making,
predictive maintenance, and overall efficiency [75].

When considering the technical architecture of an IoT system, arriving at a
universally applicable design is a complex endeavor. The primary complexity
arises from the inherent divergence among potential applications, each con-
tingent upon a diverse array of variables and distinct design specifications
[76]. In order to be efficient, an IoT platform should be:

• Scalable: Ensuring that as the number of devices and services grows,
their performance remains unaffected.

• Interoperable: Enabling devices from various manufacturers to work
together towards shared objectives;

• Distributive: Facilitating the establishment of a distributed framework
where data, collected from multiple sources, is processed in a decen-
tralized manner by different entities

• Secure: Preventing any unauthorized access
• Ressource constrained: Most objects typically possess limited com-
puting capabilities

Themost commonarchitecture found in the literature, as explained by the
authors in [77], is the Three Layer Architecture. This architecture is presented
in Figure2.4 and others common architecture are described by the authors in
[78]. It is composed of the following layers:

1. Perception/Action: It symbolizes the physical layer of objects that en-
gage with the surrounding environment by gathering data and/or per-
forming tasks. This layer encompasses objects equipped with comput-
ing and communication features, enabling them to interact with the ex-
ternal world. Those "Things" are usually equipped wit the following es-
sentials properties:

• Communication: Objects can communicates with others and with
different resources over the network

• Identification: Objects are uniquely identified
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Figure 2.4: 3 layers architecture

• Sensing: Objects can perceive physical phenomenum in their envi-
ronment.

• Actuating: Objects can interact with their environment.
• Computing: Objects can process information.
• Localization: Objects can be maped.
• User Interface: Objects can be interact with by human being.

Various technologies can be used to implement those properties[79]. In
table 2.1, we present example technologies for the different properties
except the communication that will be explore more in depth on the
network part.

2. Network: Thenetwork layer’s responsibility involves conveying thedata
collected at the perception level to the application layer or transmitting
data from the application layer to the actuators or target services. This
encompasses all the technologies and protocols essential for establish-
ing this connection. It’s important not to mistake this network layer
with the one in the ISO/OSI model, which solely directs data through
the network along the optimal route [80]. A wide variety of protocols
are available for utilization in IoT. Table 2.2 illustrates several of the fre-
quently employed protocols, categorized based on the ISO/OSI model.
Each protocol boasts its own advantages and disadvantages, necessi-
tating careful consideration of their applicability according to specific
use cases. We will explore in more depth the various protocols in the
next section about Wireless Sensors Networks 2.3.

3. Application: The application layer encompasses all the software re-
quired to deliver a particular service. At this level, data from the pre-

39



Properties Used Technologies

Identification
Electronic Product Code (EPC), UbiquitousCode (uCode), Quick Response (QR),Original Equipment Manufacturer (OEM)Serial number, etc.

Sensing
Optical Sensors, Electromagnetic sensors,Remote sensors (Satellite, Aerial imagery),Local sensors (temperature sensor,humidity sensor), cameras, microphonesetc.

Actuating Mechatronics and Robotics, Lights, watercontrol, climate control systems (Air, Heat),domotics etc.

Computing
Microcontrollers (Arduino,STM32 etc.),System on Chip (SoC) and single boardcomputer (Raspberry Pi, Nvdia Jetson),Field Programmable Gate Array (FPGA) andother Programmable Logic Controller (PLC)

Localization Global Position System (GPS), Galileo,Network triangulation, etc.User Interface Displays, keyboards, buttons etc.
Table 2.1: Usual technologies used in the IoT domain

ceding layers are collected, consolidated, screened, and processed us-
ing databases, analytical tools, AI, and other software. It is important
to note that the computing process of the application layer can happen
at different location depending on the IoT platform. If the computation
process happens directly on the devices, we talk about edge computing,
if it happens in remote distant server accessible through the Internetwe
talk about Cloud Computing and for the computations happenning in
between (at the gateway, on servers present on the local network phys-
ically) we talk about fog computing. We will come back on this notions
later on this thesis in section 2.4.

To conclude, the Internet of Things (IoT) represents a new technological
paradigmwith significant and forthcoming applications in threemain domain:
Consumer IoT (e.g. smartphones, smart car, smart watch, etc.), Commercial
IoT (IoT Healthcare, Smart City, etc.) and Industrial IoT or IIOT (manufactur-
ing, aeronautics, agriculture, etc.). Consequently, it is regarded as one of the
most rapidly expanding markets of this decade. Projections suggest that the
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ISO/OSI Model layer Network communication protocol

Application CoAP, MQTT, AMQP, XMPP, DSS;Service Discovery: mDMS, DNS-SD, SSDP;Security: TLS, DTLSTransport TCP/UDP
Network Adressing: IPv4/IPv6 Routing: RPL, CORPL,CARP, etcAdaption 6LoWPAN, 6TiSCH, 6Lo, etc.
Data Link

IEEE 802.15.4 (Zigbee, etc.), IEEE 802.15.1(Bluetooth), LPWAN (LoRaWAN, etc.),RDFID, NFC, IEEE 802.11 (Wifi), IEEE 802.3(Ethernet), IEEE 1901 (PLC), I2C, SPI etc.
Table 2.2: Main network protocols acording to OSI/ISO Model used inthe IoT field
number of IoT devices will surge from 7.6 billion in 2019 to 24.1 billion by 2030,
showcasing a compound annual growth rate (CAGR) of 11%, as indicated by
recent research [81, 82].

In terms of revenue, the collective IoT market was valued at USD 465 bil-
lion in 2019, a value that is expected to escalate to USD 1.5 trillion by 2030.
The majority of expenditure, around 66%, will be allocated to services such
as connectivity, while the remaining portion will be attributed to hardware,
encompassing dedicated IoT devices, modules, and gateways.

The Agricultural IIoT sector is projected to encompass 4% of this market,
equating to over USD 60 billion by 2030. Those statistics about the IoT market
can be found in Figure 2.5.

2.2.2 . Agricultural Application
The realm of IoT applications spans across a multitude of industries, en-

compassing manufacturing, healthcare, transportation, energy, retail, smart
cities, logistics, and home automation. In this context, our attention will be di-
rected towards its specific application in agriculture. The research on farming
industry is well-funded and in the middle of its most important transition to-
ward sustainability. As a result, a multitude of IoT initiatives have emerged
within this sphere, driven by research groups, companies, and individuals
alike. Our aim is not to conduct an exhaustive examination of all IoT applica-
tions within the agricultural domain, as comprehensive surveys on this sub-
ject have already been conducted by the author in [83, 84, 85, 86]. Rather, our
objective is to provide the reader with a concise overview of existing projects,
facilitating a better understanding of the extensive array of potential applica-
tions within the realm of smart farming while outlining common limitations.
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Figure 2.5: The internet of Things Market 2019-2030 (number of devices inbillions and USD value in millions
We listed and compared some project in different application domains:

1. Irrigation management: The most prevalent application in agriculture
is the control of irrigation. Reducing water supply to crops results in
slower growth and diminished calcium absorption. Frequent irrigation
leads to root decay and water wastage. As outlined by the UN Conven-
tion to Combat Desertification (UNCCD), around 168 countries are pro-
jected to confront desertification by 2030, with nearly 50% of the global
population residing in regions experiencing significant water scarcity
[87]. Consequently, it becomes crucial to reduce agriculture’s depen-
dency on water resources through enhanced precision in its utilization.
To do so, farmers install drip irrigation systems to easily deliver water
to each crop [88]. Those drip irigation system are now often managed
through IoT, thefrore multiple research project have been conducted
and the authors in [89, 90, 91, 92, 93, 94] proposed good surveys of
those projects. Based on sensors (local, like electronical soil moisture
sensor, and remote like satellite imagery ), those platform can deter-
mine and send exact amount of water to each type of crops. One of the
most basic example of such project have been implemented by the au-
thor in [95], where they use arduino microcontroller, a capacitive soil
moisture sensor and a cloud-based decision platform to manipulate
an irrigation valve. More advanced application, like the one proposed
by the author in , use AI and fuzzy logic algorithm to determine the
water-need [96]. From our literature review we determined the follow-
ing parameters to take in account for plant irrigation: Soil Moisture,
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Soil temperature, Soil type and structure, Air Temperature, Air humid-
ity, Wind, Rain, Solar exposition, Satellite imagery, Weather forecast,
type of plants, calendar, localization.

2. Soil management: Crops’ growth heavily depends on soil fertility. Soil
fertility is determined by the quantity and availability of specific nutri-
ents in the soil [97], as well as its structure [98]. Nutrients are minerals
present in the soil that are essential for crop growth. A multitude of
nutrients exist in various types (e.g., macro and micro), with Nitrogen
(N), Phosphorus (P), and Potassium (K) being themost critical ones [99].
Quantifying nutrient quantities in soil involves complex chemical anal-
yses often requiring advanced lab equipment, such as spectrometers
[100].
Soil structure involves arranging soil particles (e.g., sand, silt, clay, or-
ganic matter) into porous compounds, known as aggregates. These
aggregates’ arrangement, separation by pores and cracks, and compo-
sition influence soil structure. Soil structure also dictates its pH [94].
Just as determining these characteristics often demands advanced lab-
oratory tools, their monitoring is vital for informed decisions regarding
fertilizer application, crop selection, and irrigation methods. Hence, re-
search has explored IoT platforms for real-time soil condition monitor-
ing.
Regarding nutrients, [101] and [102] proposed a Wireless-Sensor Net-
work utilizing an electrochemical sensor to monitor N, P, and K lev-
els. This system, after nutrient level determination, referes itself to
databases of soil nutrient requirements for different crops at different
growth stages, in order to suggest fertilizers application to attain ideal
nutrient values. Authors in [103] employed a more precise colorime-
try sensor for similar outcomes. Other researchers have introduced an
X-Ray fluorescence approach based on a camera, enhancing nutrient
assessment accuracy. This project uses AI to identify significant char-
acteristics in camera images. AI also determines fertilizer levels and
suggests efficient crop rotations, aiding soil fertility recovery between
different cultures [104, 105].
For pHmeasurement, real-timemonitoring is also important. Researchers
have developed IoT-basedmonitoring schemes, as seen in the works of
[106] and [107]. In contrast, soil structure monitoring in real time is less
essential, as it generally remains constant over time [98]. However, soil
compaction, a significant issue linked to agriculture, affects soil struc-
ture. Highly compacted soil reduces fertility, hindering root develop-
ment and nutrient/water uptake [10]. To detect and prevent soil com-
paction, various sensors, including mechanical ones, and IoT systems
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have been proposed [108].
In conclusion, IoT proves to be an effective tool in preventing soil degra-
dation, encompassing erosion, alkalization, acidification, salinization,
and pollution [109].

3. Crop Diseases and Pest Control:
Usually, crop disease and pest detection are carried out by human op-
erators since the primary information collected is visual. Farmers roam
their fields, observe pests or diseases, and then implement correspond-
ing countermeasures. These countermeasures can be categorized as
organic, chemical, or mechanical. Organic approaches involve the use
of sustainable substances to protect plants from threats. Conversely,
chemical methods use products that may be more effective but are not
sustainable. Mechanical countermeasures typically involve removing
affected plants and surrounding vegetation to stop the spread of dis-
ease and pests [110].
Regrettably, the agricultural workforce has significantly diminishedover
the past century. As a result, manual monitoring of all crops by farmers
is no longer feasible [111]. Hence, current methods often involve pre-
emptively applying chemical countermeasures before pests or diseases
have a chance to develop, with the aim of preventing their emergence
altogether. However, this strategy is unsustainable due to its reliance
on fossil fuels, heavy machinery, and a large volume of environmen-
tally harmful chemicals that are also limited in quantity on Earth. These
tools also come with a significant economic cost. Moreover, there are
growing concerns about the health and well-being of farmers and rural
communities, as exposure to these chemicals can lead to diseases like
cancer and developmental issues in children [6].
IoT can be a valuable tool for detecting and preventing the develop-
ment of pests and diseases, andmany projects have been developed in
this domain. Comprehensive review papers on the topic have been au-
thored by [112, 113, 114]. There are different methods to detect diseases
or pests, which can be direct or indirect. Indirect methods predict the
risk of disease or pest development based on environmental param-
eters. For instance, models to detect conditions conducive to disease
development in grapes based on temperature, humidity, and leaf wet-
ness levels have been proposed by [115] and [116]. Similar approaches
have been developed for strawberries [117], general models for leaves
[118], cereal crops [119], and orchard monitoring [120]. These methods
often employ AI, machine learning, and knowledge engineering to iden-
tify patterns in environmental changes that lead to pest or weed devel-
opment [121, 122]. Once a risk is identified, farmers are alerted but may
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still need to visit the field to confirm the presence of pests or diseases.
To mitigate this, drones, especially Unmanned Aerial Vehicles (UAVs),
can be utilized [123]. Drones can independently survey fields, capturing
images of crops to process with AI computer vision algorithms. Drones
can either routinely monitor all crops [124] or focus on areas deemed
at risk by indirect methods [125]. UAVs can also be programmed to ap-
ply localized countermeasures, such as spraying chemicals on affected
crops and their immediate surroundings [126]. Precision application
methods have proven highly effective, allowing some farms to reduce
chemical usage by up to 90% [127]. Finally, direct measurements can
also be taken using static sensors, such as cameras placed around fields
to capture images of crops and detect diseases, like in tomato fields
[128], or microphone sensors designed to count insects [129].

4. Crops Monitoring, Yield Forecasting and Harvesting time estimation: Local
sensors and remote observation enable farmers to monitor the growth
process of their crops. By doing so, they can estimate future yield and
determine the optimal harvesting time. Comprehensive studies on such
applications have been conducted by the authors in [130, 131, 132].
In cropmonitoring, the objective is to use available data to estimate the
growth stage and health status of the plants. This not only allows farm-
ers to predict yield anddecide on the best harvesting timebut also helps
in managing resources like fertilizers and water. For instance, the au-
thors in [133] introduced an IoT platform utilizing a camera system and
the machine learning computer vision algorithm YOLO [134] to oversee
apple growth. If apples are deemed undersized for their growth period,
the platform recommends fertilizer application. Once the apples are
ready for harvest, an estimate of the available quantity is relayed to the
farmer. The primary technology for sensing growth stages is camera-
based. Cameras can be static sensor nodes or mounted on drones,
typically UAVs [124]. However, for observing extensive areas like wheat
fields, remote sensing is often preferred. This is typically conducted by
planes or satellites. With advanced imaging techniques, they can gauge
the quantity and characteristics of plants in a field, such as type, growth
stage, health, and harvesting time. Commonly, they utilize the NDVI
index [135]. The Normalized Difference Vegetation Index is a straight-
forward indicator used to determine if the observed area contains live
green vegetation. Several other indices can be applied to crops, and an
in-depth review on remote sensing technologies was presented by the
authors in [136].
Regarding crop yield prediction, IoT platforms merge local and remote
data to estimate the approximate quantity of produce available at har-
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vest. For example, the authors in [137] developed a system based on
NDVI and meteorological data to predict wheat production in Europe,
showing promising outcomes. Yield forecasts enable farmers to make
informed decisions about the types of crops they should cultivate in
specific environments. They can also assess the economic worth of a
land parcel. Moreover, such forecasts assist agro-industry stakehold-
ers in predicting required logistics and potential results [138]. A detailed
overview of methods for yield forecasting was provided by the authors
in [139], they mainly uses Machine learning algorithms to determine in-
sightful paterns. Crops monitoring is the one of the application that is
the most implemented industry-wise. Microsoft even propose its own
platform FarmBeats for monitoring [140] just as Amazon and its AWS
platform.

5. Indoor farming and controlled environment agriculture
Indoor farming and controlled environment agriculture (CEA) refer to
the cultivation of plants and crops in locations where environmental
conditions—such as temperature, humidity, light, and CO2 concentra-
tion—are closely monitored and regulated, often independent of ex-
ternal weather conditions [141]. This stands in stark contrast to tradi-
tional agriculture, which is heavily dependent on external climate con-
ditions and seasonal changes [142]. Indoor farming is often carried out
in greenhouses, where sunlight is the primary light source. One of the
principal advantages of indoor farming is its capacity for year-round
production. Traditional outdoor farming is frequently at the mercy of
unpredictable weather patterns and seasonal changes. By transition-
ing agriculture indoors, farmers can bypass these challenges, ensuring
a consistent crop yield regardless of the time of year. Additionally, be-
cause indoor farming systems can be established virtually anywhere,
including in urban settings[143], they can significantly reduce the need
for transporting food over long distances, leading to fresher produce
and decreased carbon emissions. For example, the city of Singapore
is investing a considerable amount of money into this method [144].
Moreover, controlled environment agriculture could pave the way for
opportunities in space travel and colonization [145].
Indoor farming uses substantially less water than its outdoor counter-
part, especially when integrated with systems like hydroponics. Pes-
ticides and herbicides, which are often concerns in traditional agricul-
ture due to their environmental impact, can beminimized or even elim-
inated in a controlled environment because of the reduced risk of pests
anddiseases. Controlled environment agriculture is optimallymanaged
by IoT devices, making it one of the most fitting use cases for this tech-
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nology. Temperature sensors, paired with air conditioning units, can
ensure the correct temperature is maintained [146]. Ultra-Violet sen-
sors can gauge the level of available light and control LED panels to
provide the right amount of luminosity for the plants [147]. Compre-
hensive surveys on IoT projects concerning indoor farming have been
proposed by various authors in [148, 149, 150].
However, the main limitations of indoor farming include its demand
for vast amounts of energy and the need for complex infrastructure,
which canmake large-scale implementation challenging [151]. Addition-
ally, not all crops are suited for indoor growth. This is especially true for
grain agriculture [141].

6. Livestock management:
Livestock management is also improving through smart farming. Al-
though animal product consumption should be reduced, as mentioned
in the introduction chapter of this thesis, IoT offers various tools to as-
sist farmers in managing cattle. Comprehensive surveys on IoT appli-
cations for livestock have been proposed by authors in [152, 153, 154].
The primary application is health monitoring of animals [155]. Using
smart wearable tag sensors placed on cows, IoT platforms can moni-
tor vital signs, such as body temperature or heartbeat, and alert the
farmer if any anomalies, like fever, are detected [156]. One of the earli-
est use-cases of IoT systems for smart farming applications was the use
of GPS tracking collars for livestock. This allowed farmers to track the
movement of their cattle herd and create virtual fences [157]. The collar
detects the GPS position of the animal and if it is in a prohibited area,
sends a mild electric shock to guide the animal back to allowed zones.
This approach not only allows farmers to manage their cattle without
constructing extensive fence infrastructure but also enables them to
dynamically modify the areas where they want their cattle to graze, po-
tentially restricting certain zones to allow for grass regeneration. GPS
collars can also be used to detect behaviors indicative of diseases, such
as mastitis [158] or even detect cattle theft in certain cases [159]. An-
other interesting application is the detection of estrus in female animals
using machine learning [160]. A valuable application is animal identifi-
cation through facial recognition as proposed in [161].
Overall, IoT can assist farmers in enhancing the well-being of their live-
stock, thereby producing higher-quality animal products. Regrettably,
this facet of smart farming also encompasses darker applications such
as Animal Factory management. An industrial livestock factory, often
termeda factory farmorConcentratedAnimal FeedingOperation (CAFO),
is a massive industrial agriculture facility where numerous livestock are
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primarily raised for food production. These operations prioritize pro-
duction output and efficiency, frequently at the expense of conven-
tional farming practices or rigorous animal welfare considerations. Sim-
ilarly to Controlled Environment Agriculture, IoT can be beneficial in
such domains. For instance, to mitigate animal stress resulting from
lifelong confinement in cramped indoor spaces, often devoid of natu-
ral light, authors in [162] have suggested virtual reality applications for
cows and pigs to alleviate stress.
A noteworthy application of IoT related to animals is themonitoring and
defense against wildlife. Outdoor fields frequently face threats from
wild animals such aswild boars, deer, and foxes. IoT projects using com-
puter vision have been developed to deter wild pigs when detected in
the vicinity, employing alarms, as discussed by authors in [163]. More-
over, IoT can be utilized tomonitor endangered species like birds, which
can also serve as significant environmental indicators for agriculture, as
elaborated upon in [164].

7. Transport, storage and distribution: The logistics of agricultural products
after harvest fall outside the scope of this thesis, which exclusively ad-
dresses the farming processes within the agriculture industry. How-
ever, given that over a third of food produced is wasted [165], enhancing
the logistics of food distribution remains of paramount importance. IoT
can also be employed to monitor storage, such as wheat silos [166], en-
sure the traceability of products through RFID [167], or even automate
the purchasing process by restocking fridges when they are empty or
lack certain types of food [168]. Comprehensive surveys on supply chain
management of food products facilitated by IoT are provided by the au-
thors in [169, 170].

8. Agroecology:
Agroecology integrates the science of ecology with agriculture to cre-
ate resilient, sustainable farming systems. It emphasizes the relation-
ship between plants, animals, humans, and the environment within
agricultural landscapes, aiming to enhance biodiversity, improve soil
health, and promote a balance between food production and ecosys-
tem preservation. In other words, the principle of agroecology empha-
sizes the interactions among various stakeholders of a farm to ensure
its long-term sustainability. This entails avoiding dependence on un-
sustainablemethods such as the use of chemical inputs, heavilymecha-
nized oil-poweredmachinery, and standardized crop strains commonly
associated with monocropping techniques as mentioned in 1.1. How-
ever, adopting agroecological practices presents certain challenges. These
include heightened sensitivity to environmental factors (for instance,
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crops may become more susceptible to drought if irrigation systems
are avoided to prevent groundwater depletion and the resultant ecolog-
ical concerns) and also a significant requirement for mechanical labor
labor that is usually performed by human as oil-powered machine are
not only unsustainable but also not effective for fields usingmonocrop-
ping for example) [66]. Despite the two aforementioned drawbacks,
agroecology, in certain scenarios, can be not only sustainable but also
more productive per unit of land [171]. Fundamentally, agroecology
mirrors pre-industrial revolution agricultural practices, wherein farm-
ers primarily relied on their local environment for food production [172].
This paradigmhas spurred significant research into smart farming, with
the goal of producing efficient tools that facilitate the implementation
of agroecology [33]. The underlying rationale is straightforward: rather
than employing smart farming tools to render unsustainable practices
marginally more sustainable, it is preferable to use these tools to en-
hance the productivity of inherently sustainable agriculture. Several
comprehensive surveys on smart farming tools tailored for agroecol-
ogy have been conducted [173, 64, 174]. Addressing the environmental
sensitivity of agroecology, IoT platforms are ideally positioned, given
their capacity to effectively interpret and forecast climatic scenarios us-
ing data harvested both locally and remotely. For instance, the authors
in [175] introduced AI algorithms designed to decipher intricate data
streams from diverse agricultural sensors, leading to improved local
farm climate predictions. These predictions can subsequently guide
farming strategies and crop scheduling. Taking amorepragmatic stance,
the authors in [176] developed and trialed an IoT platformnamedSysAgria
on a farm. This system offers exhaustive, real-time environmental up-
dates and development conditions across various phenological phases
of crops, fruit trees, vines, and vegetables. These insights can shape
sustainable proactive treatments, fertilization planning, and the schedul-
ing of sowing and harvesting activities. Agroecology can also be real-
ized within greenhouses to prolong the production season. Here again,
IoT proves instrumental. As demonstrated by the work in [177], IoT can
meticulously regulate greenhouse irrigation (sourced exclusively from
rainwater collection on the greenhouse itself) while also managing air-
flow, temperature, and sunlight to preempt conditions conducive to dis-
ease propagation. Regarding themechanical labor issue, better climate
prediction can helpmanage human ressources to reduce it but the field
of robotics is also a very well developped research domain within smart
farming. Robotics is outside of the scope of this thesis but a good sur-
vey of robotic applications of smart farming have been conducted by
the authors in [178].
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9. Small-Scale: As highlighted in 1.1, small-scale farms (SSFs), typically en-
compassing an area of less than 2 ha and characterized by limited in-
comes, constitute 80% of global farms, as illustrated in Figure 1.9. De-
spite this, much of the research in Smart Farming does not take these
factors into account, with a majority of projects targeting larger agri-
cultural operations [57]. Notably, small-scale farms are often consid-
ered more sustainable than their larger counterparts [58]. Analogous
to agroecology, SSFs depend heavily on manual labor and are acutely
vulnerable to climate change. In response, several IoT projects tailored
to the needs of SSFs have been initiated. Comprehensive surveys on
this subject have been conducted by the authors in [179, 180, 181]. Pre-
dominantly, we observed that projects designed for SSFs mirror those
proposed for larger farmsbutwith an emphasized commitment to tech-
nological accessibility. This entails cost-effective development, open-
source publication, and user-friendly solutions catering to farmers less
adept with technology. For instance, researchers at Dedan Kimathi Uni-
versity of Technology introduced a budget-friendly IoT platform to au-
tomate greenhouse operations for vegetable cultivation in Kenya [182].
On a broader scale, certain projects aim to shield farmers from climatic
adversities such as floods. In Tanzania, the rainy season can trigger
rapid river level rises and devastating floods. The devised IoT solu-
tion comprises solar-battery powered SONAR level sensors stationed at
various river locations, linked via LoRa to several grid-connected gate-
ways with cellular connectivity. If the sensors detect swift river level in-
crements, an SMS-alert mechanism activates, prompting downstream
farmers to extract riverwater to accommodate the impending upstream
surge. A pivotal factor underpinning the success of this system is the
fervent commitment of volunteers who coordinate activities, sustain
the IoT framework, and facilitate workshops to engage local commu-
nities. This not only minimizes costs but also augments awareness re-
garding Smart Farming applications for SSFs [183].
2.2.3 . Limitations

Despite its huge potential, IoT technology faces certain limitations regard-
ing its technical implementation and its application to agriculture. Authors in
[35] described the main issues in depth in their survey for more details. The
main limitations of IoT are the following:

• Network and communication: IoT devices require a reliable commu-
nicationmedium to transmit and receive data. While wired connections
offer the highest reliability in data transmission, the necessary infras-
tructure is often incompatible with many applications. Consequently,
most IoT devices utilize wireless networks. However, wireless commu-
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nication presents challenges. Firstly, devices must be within an area
with network coverage, necessitating a specific gateway infrastructure.
Secondly, IoT devices are typically deployed in large numbers within
confined areas. This high density can lead to Quality of Service (QoS)
issues, which undermine the reliability of a platform, especially when
latency is a critical criterion. Various protocols at various layers of the
communication stack are tailored to different applications, and a con-
cise survey of these has been presented by the authors in [184]..

• Processing power: The logical component responsible for processing
on the devices is typically a microcontroller with limited computational
power. While this reduces both cost and energy consumption, such pro-
cessing units are not capable of implementing complex algorithms. As
a result, there is a heightened reliance on the cloud computing capabil-
ities of IoT platforms, which in turn increases communication require-
ments, as highlighted by the authors in [185].

• Energy consumption: Devices are typically battery-powered since a
wired connection can lead to excessive infrastructure costs. This ne-
cessitates the devices to be optimized to run for multiple years without
the need for battery replacement. As a result, energy consumption be-
comes a pivotal criterion for IoT devices. Factors that influence energy
consumption include computation time, type of communication, and its
duration. Wireless transmission is often the primary energy-consuming
activity, depending on the protocol used [186]. It’s also worth noting
the emergence of organically powered batteries like BeFC, which utilize
glucose to generate electricity [187]. These batteries are fully biodegrad-
able and sustainable, but they offer only limited energy, making them
suitable only for energy-efficient systems. Conversely, efforts havebeen
made to equip IoT devices with energy harvesting components that tap
into the energy available in their environment, such as vibrations [188].

• Data Storage: IoT platforms produce vast amounts of data. This ne-
cessitates dedicated storage infrastructure and efficient management
[189].

• Data interpretation: Depending on the application domain, interpret-
ing vast amounts of diverse data canbe challenging. Thedecision-making
component of an IoT platform must be efficient enough to deliver im-
pactful results for its intended domain. While decision algorithms can
be as basic as conditional statements like "if/else," it is more benefi-
cial for the platform to incorporate domain-specific knowledge tomake
more insightful decisions [190].
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• Security and Privacy: Many IoT devices lack adequate security pro-
tocols, often due to limited computational power, rendering them vul-
nerable to breaches, particularly to "man-in-the-middle" attacks during
firmware updates. As the number of devices multiplies, the potential
attack surface expands exponentially. Beyond security issues, privacy
remains a significant concern. Continuous data collection by devices
raises alarms about surveillance, personal privacy, and the broader so-
cietal implications of such an interconnectedworld. Consequently, safe-
guarding this data’s privacy is crucial. If the data isn’t encrypted or se-
curely stored, it becomes an enticing target for hackers [191].

• Interoperability:Many IoT devices aremanufacturedbydifferent com-
panies using various standards. This can lead to devices being incom-
patible with one another. Same issue with communication protocols as
their multiplicity can be difficult tomanage. Without a unified standard,
integrating different devices to work seamlessly in an ecosystem can be
challenging [192].

• Cost: The cost for setting up the necessary infrastructure for IoT, such
as sensors, networks, storage, and processing units, can be expensive.
It is important that IoT systems offers a economically viable implemen-
tation for companies. In addition to the setup expenses, there aremain-
tenance costs to consider. Over time, devices might require updates,
repairs, or replacements, all of which contribute to the cumulative ex-
penses [193]. Furthermore, the environmental cost should not be over-
looked. As the number of devices grows, so does electronic waste.
Proper disposal becomes a concern [194].

• Regulation: Different countries have different regulations concerning
data privacy, device standards, wireless communication bandwidth etc.
Ensuring compliance across regions can be complex. In addition there
is liability issues. If an IoT device fails and causes harm or damage, de-
termining liability can be complex [195].

In the context of agriculture, IoT faces unique challenges as exposed by
the authors in [196, 197].

On the hardware side, the often remote and open nature of farming en-
vironments can result in connectivity issues, particularly in vast rural fields
where network access may be inconsistent. Devices might be situated in lo-
cations that are difficult to access, especially during the growing season (con-
sider a sensor placed in the midst of a cornfield). Consequently, it’s vital to
ensure their reliable operation over extended periods, which predominantly
hinges on efficient energy management. Furthermore, basic environmental
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sensors (like those for temperature, wind speed, and rainfall) may not pro-
vide sufficiently insightful data. Computer vision algorithms, while effective
for various applications, demand increased computational power, which aug-
ments the reliance on cloud computing and communication — this, in turn,
can drain batteries more rapidly. Lastly, agricultural IoT devices are subject to
the rigors of the elements, necessitating durable, weather-resistant designs.

On the software side, decision-making algorithms must process and in-
terpret a broad spectrum of environmental data. Making sense of this data
with rudimentary algorithms can be challenging. For instance, the irrigation
system described in part 1.1 and illustrated in figure 1.6 operates the water
valve based solely on readings from a soil moisture sensor. This approach is
suboptimal since irrigation procedures should also account for current and
forecasted weather, soil type, crop variety, calendar, sun exposure, sensor
type, manufacturer, firmware version, and more. This diverse range of fac-
tors complicates the decision-making process.

Additionally, the upfront costs and specialized expertise needed to deploy
IoT systems can be prohibitive for farmers with limited resources. Tackling
these agriculture-specific challenges is crucial to fully harness the potential of
IoT in smart farming.

Moreover, the initial investment and technical know-how required for im-
plementing IoT systems can be a barrier for resource-constrained farmers.
Addressing these agricultural-specific limitations is essential to fully unlock
the benefits of IoT in Smart farming.

2.2.4 . Amelioration axes
All the mentioned limitations have a range of proposed solutions that are

described in the associated cited papers. In this thesis, the focus is directed to-
wards optimizing the energy efficiency of sensors and deploying a knowledge-
based decision system. This system is designed to make the sensors last as
long as possible and to take the best judgments, considering both the data
from sensors and the principles of agroecology farm management. Initially,
energy efficiency is tackled in a conventional manner by adopting dedicated
wireless communication protocols. The objective then shifts to bypassing the
cloud for executing complex algorithms, such as computer vision, in order to
reduce the substantial energy costs associated with data transfer. To achieve
this, a new AI domain termed "Embedded AI" [198] seeks to bring computa-
tional processes directly to the end devices, thus eliminating data transfer
and enhancing privacy concurrently. Finally the aim is to employ knowledge
engineering to assist the system in making the most informed decisions, es-
pecially regarding Agroecology which is a complex field with a vast amount
of parameters to take in account. Consequently, these three areas—energy-
efficient wireless sensor communication, Embedded AI, and knowledge engi-
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neering—are the focal points of the subsequent sections in this state-of-the-
art review.

2.3 . Energy efficient Wireless Sensor Network

2.3.1 . Definition
A Wireless Sensor Network (WSN) is a collection of spatially distributed

sensors that cooperate tomonitor physical or environmental conditions, such
as temperature, sound, images, pressure, humidity, etc. These sensors can
autonomously communicate the information through wireless protocols to a
main location (typically a gateway or base station) which then processes the
data towards an application server, either locally or in the cloud, for the data
to be exploited. Even though we focus on the sensors in WSNs, from the IoT
point of view, actuators are also to take in account as wireless nodes on the
networks as their communications will also weight on the network behavior.
Good reviews and architectural descriptions have been proposed by the au-
thors in: [199, 200, 201]. A typical layout of multiple wireless sensor network is
depicted in figure 2.6 where we can see the different components:

Figure 2.6: Typical Wireless sensor networks architecture

• Nodes: These are the main components of the network. Each node is
typically equipped with a radio transceiver, a microcontroller, an inter-
facing circuit, and an energy source, usually a battery. In addition there
is a sensory part that captures the data from the environment (such as
camera, temperature probe, etc.) and/or an actuators such as a light or
a motor.
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• Base Station/Gateway: This is the component that gathers data from
the sensor nodes, processes it, and might forward the data to other
networks (like the internet). The base station is typically more powerful
in terms of computational capabilities and energy than the individual
sensor nodes. It can also be called sink.

• Application server: The Application server (or servers) is the end point
of the data where they are processed and analysed to produce inter-
esting output. It can be located on the local network of the WSN or in
the cloud.

A WSN has also various core characteristics :
• Wireless Communication type: Nodes communicate with each other
or with a base station through wireless protocols. There is a variety of
protocols available with different pros and cons regarding the network
characteristics. One one or more wireless protocols can be used de-
pending on the nodes, thus creating heterogeenous WSN. We will be
describing those protocols more in details in part ??.

• Quality of Service (QoS) [202]: It refers to the set of techniques and
mechanisms used to manage network resources, ensure the perfor-
mance, reliability, and priority of specific data flows, and meet the re-
quirements of different types of network traffic. It also measures key
network performance metrics. The main components of QoS are:

– Bandwidth: Refers to the maximum rate of data transfer across
a network path. QoS can allocate specific bandwidth amounts to
different types of traffic to ensure smooth flow.

– Latency: The time it takes for a packet to travel from source to
destination.

– Packet Loss percentage: Refers to the number of packets that are
sent but never arrive at their destination. This can happen due to
network congestion, faulty hardware, or other issues.

– Signal to Noise Ratio (SNR): In communication, SNR is a measure
used to describe the level of a desired signal to the level of back-
ground noise. It represents how much the intended signal stands
out from unwanted background noise. A higher SNR indicates a
clearer and better-quality signal, while a lower SNR suggests that
the signal is harder to distinguish from the noise.

– Jitter: Variation in the delay of received packets. Real-time voice
and video communication can be seriously affected by high jitter
values, as it results in choppy or disrupted streams but this is less
important for nodes in a WSN.
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– Congestion and trafficmanagement: Thesemechanisms control the
rate of traffic flow. Policing drops or marks packets that exceed a
specified rate, while shaping buffers and delays excess packets
to fit within a defined rate. During peak times, a network might
experience congestion. QoS mechanisms help in managing this
congestion, ensuring that priority traffic gets through while lower-
priority traffic might be queued or even dropped.

• Topology [203]: Depending on the application and network design,
WSNs can take on different topologies. The most common ones for
WSNs are star, tree, or mesh topologies and are depicted in figure 2.7.

Figure 2.7: WSNs topologies [204]

– Star topology: In star topology, the coordinator or hub is a single
central node. In the network every node is connected to the hub.
Star topology is very easy to implement, design and expand. As
all the data flows through the hub, it plays an important role in
the network and a failure in the hub can result in failure of entire
network. Single-hope network are star topology where the hub
act as the gateway.

– Tree topology: A tree topology is a hierarchical structure that or-
ganizes nodes in a parent-child relationship, resembling the struc-
ture of a tree. At the top, there’s typically a single node, often
referred to as the coordinator, root or base station. Each node,
except the root, has one (and only one) parent node and zero or
more child nodes and thenodes that have child nodes are referred
to as interior nodes, while nodes without any children are called
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leaf nodes or leaves. The processing power and energy consump-
tion is highest at the root node and keeps on decreasing as we go
down the hierarchical order. Tree topologies are especially suit-
able for applications where data is collected in a hierarchical man-
ner but are susceptible to failure as if an interior node fails, all of
its child nodes can lose connectivity to the root.

– Mesh topology: In a mesh topology, every node not only trans-
mits its own data but also functions as a relay for data from other
connected nodes. There are two types of mesh topologies: Fully
Connected Mesh and Partially Connected Mesh. In the fully con-
nected mesh topology, every node is connected to every other
node. Conversely, in the partially connected mesh topology, a
node is connected only to one or more neighboring nodes. Mesh
networks offer several advantages. First, they allow for network
coverage expansion without the need for costly gateways, relying
instead on nodes that can also function as relays. Secondly, if a re-
lay node or gateway fails, the network can reconfigure its routes
to continue transmitting messages. The issue is the increased en-
ergy consumption of certain nodes that will have to perform net-
working task even when not in use for their primary role (sensing
or actuating).

• Scalability [205]: WSNs can range from a few to thousands of nodes.
It’s crucial for the network’s design to handle this variability in size to
insure the quality of service. Not every wireless protocols is fitted for
every types of nodes density.

• Security [206]: WSNs are vulnerable to various security threats due
to their inherent characteristics such as wireless communication, lim-
ited resources, and distributed deployment. Such threats must be ad-
dressed to insure the good behavior of the network.

• Addressing [207]: Addressing in WSN is a critical issue due to the lim-
ited resources of the nodes and the dynamic nature of the network.
Each node in the network requires a unique identifier, called an ad-
dress, to enable communication with other nodes in the network. One
of the main challenges in addressing WSN is the limited address space.
Due to the large number of nodes and the limited memory and pro-
cessing power of the nodes, addressing schemes in WSN need to be
designed to use as few bits as possible while still providing a unique
address to each node. Another challenge is the dynamic nature of the
network. Nodes in the networkmaymove or fail, causing changes in the
network topology. This can lead to problems with address assignment
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and resolution, which can result in communication failures or increased
latency.

• Firmware update [208]: Firmware updates WSNs can be challenging
due to the limited resources of the sensor nodes and the distributed
nature of the network. Firmware updates are necessary to improve
the functionality and security of the network and to address bugs and
vulnerabilities. However, updating firmware in WSNs requires careful
consideration of several issues. One of the main challenges is the lim-
ited storage and processing power of the sensor nodes. Firmware up-
dates typically require significant amounts of memory and processing
power, which can be a problem for resource-constrained nodes. Up-
dating firmware on all nodes in the network can also consume a sig-
nificant amount of network bandwidth and energy, leading to network
congestion and reduced network lifetime. Another challenge is the dis-
tributed nature ofWSNs. Sensor nodes are typically deployed in remote
andhard-to-reach locations,making it difficult to update firmware on all
nodes simultaneously. This can result in inconsistency in the firmware
versions across the network, which can lead to compatibility issues and
communication problems. To address these challenges, various ap-
proaches have been proposed for firmware updates in WSNs. These
include incremental updates, where only the parts of the firmware that
have changed are updated, and delta encoding, where only the differ-
ences between the current and new firmware versions are transmitted.
These approaches can reduce the amount of memory and bandwidth
required for firmware updates. Another approach is to use over-the-air
programming (OTA), which allows firmware updates to be transmitted
wirelessly to the sensor nodes. OTA updates can bemore efficient than
physically updating each node and can be done remotely, reducing the
need for on-site maintenance.

• Cost [49]: Cost is a significant issue in WSNs due to the large number
of nodes that are typically deployed and the limited resources of the
nodes. One of the main cost factors in WSNs is the cost of the sensor
nodes themselves. Sensor nodes can vary in cost depending on the type
of sensor used, the processing power, and the communication capabili-
ties. Deploying a large number of nodes can quickly become expensive,
making it challenging to deployWSNs on a large scale. Another cost fac-
tor is the cost of maintaining the network. WSNs typically require on-
going maintenance, including battery replacements, firmware updates,
and physical repairs. Maintaining a large number of nodes can be chal-
lenging and costly, especially in remote or hard-to-reach locations. Ad-
ditionally, the cost of data storage and processing can be significant in
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WSNs. Sensor nodes generate a large amount of data, and process-
ing this data in real-time can be computationally intensive. Storing and
processing this data requires specialized hardware and software, which
can be expensive.

Finally, we emphasize the energy consumption of such networks. WSNs
must be energy-efficient as devices run onbatteries andneed to last extended
periods of time. An energy-efficientWSN prioritizes the battery lifespan of the
device, often at the expense of data rate, range, quality of service, etc. A good
survey on energy management methods in WSNs have been proposed by the
authors in [209].

2.3.2 . WSN communication protocols
Wireless communication refers to the transfer of information or data be-

tween devices or systems without the use of physical connections, such as
wires or cables. Instead, wireless communication utilizes electromagneticwaves,
which include radio frequencies, infrared signals, microwaves, andother forms
of electromagnetic radiation. In WSNs, when we talk about communication
protocolswe refer to the overall communication stacks as described in theOSI
and TCP/IPmodel and not only thewireless physical transmission of data. The
OSI (Open Systems Interconnection) model is a conceptual framework used
to understand howdifferent networking protocols interact across diverse net-
working infrastructures [210]. Developed by the International Organization for
Standardization (ISO) in the late 1970s, the model defines a set of seven lay-
ers, where each layer represents a specific set of functions necessary for com-
munication systems. These layers range from the physical hardware compo-
nents used to transmit bits over a medium to high-level data formatting and
presentation. The key idea behind the OSI model is that different networking
tasks are compartmentalized into specific layers, allowing for modularity and
making it easier to understand and troubleshoot network operations. The
TCP/IP model, sometimes called the Internet protocol suite, is the foundation
for modern internet communication [211]. Developed also in the 1970s by the
U.S. Department of Defense, it has become the dominant framework for net-
worked communication. Instead of the seven layers in the OSI model, the
TCP/IP model consists of only four layers. These layers are more broadly de-
fined than the OSI layers, making the model less granular but more aligned
with actual protocol design and implementation. While it’s not entirely ac-
curate to say the TCP/IP model was "derived" from the OSI model, there’s a
general understanding that the design of the OSI model influenced the articu-
lation and documentation of the TCP/IP model. The latter was developed be-
fore the OSI was standardized but was formally documented afterward. The
TCP/IP model can be mapped to the OSI model’s layers, even though they
don’t align perfectly. This mapping is often used in teaching and discussing
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network protocols to show the equivalences and differences between the two
model. Those aligments are described in figure 2.8. The Application Layer in
TCP/IP encompasses the functions of the Application, Presentation, and Ses-
sion layers of the OSI model. The Transport Layer in TCP/IP corresponds di-
rectly to the Transport Layer in the OSI model. The Internet Layer in TCP/IP
aligns with the Network Layer in the OSI model. Finally, the Network Access
Layer in TCP/IP combines the functions of the Data Link and Physical layers of
the OSI model.

Figure 2.8: OSI and TCP/IP
In the following section, we will describe the main protocols used in the

domain of IoT for the different layers of the TCP/IP model. As mentioned pre-
viously, there is no standard for all IoT applications; thus, there is a vast array
of protocols available that address various issues. Our goal here is not to
provide a comprehensive survey for each layer, but we will mention reliable
sources for in-depth surveys for each layer and describe the primary proto-
cols.

• Application layer [212]: It is the the topmost layer, and it provides the
interface between the user’s application and the network. It deals with
end-user services and facilitates communication between software and
lower layers of the TCP/IP model. The four main protocols in the IoT
domain at this layer are:

– MQTT (MessageQueuing Telemetry Transport) [213]: It was, introduced
in 1999, stands as one of the pioneeringM2M communication pro-
tocols. Andy Stanford-Clark from IBM and Arlen Nipper from Ar-
com Control Systems Ltd (now Eurotech) were the brains behind
its development. This protocol operates on a publish/subscribe
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mechanism, tailored for efficientM2Mcommunication in bandwidth-
limited environments. Within this system, an MQTT client sends
messages to an MQTT broker. Other clients can then subscribe
to these messages or even store them for future access. Mes-
sages are directed to specific addresses called topics, and a client
can subscribe tomultiple topics, receiving all messages associated
with each one. MQTT operates as a binary protocol, typically fea-
turing a 2-byte fixed header, and can handlemessage payloads up
to a maximum of 256 MB. It employs TCP for transport and forti-
fies security using TLS/SSL. Hence, the communication between
the client and the broker remains connection-based. A standout
feature of MQTT is its three-tiered Quality of Service (QoS) ensur-
ing message delivery reliability. It’s ideal for extensive networks
with numerous small devices requiring back-end internet server
monitoring or control. However, MQTT isn’t designed for direct
device-to-device transfers or broadcasting data to a multitude of
receivers. Its design is fundamental, presenting only a limited set
of control features.

– CoAP (Constrained Application Protocol) [214]: It originates from the
IETF CoRE (ConstrainedRESTful Environments)WorkingGroupand
serves as a streamlined M2M protocol. It is designed to facili-
tate both request/response and resource/observe models, which
is akin to a publish/subscribe system. CoAP’s primary aim is to
function alongsideHTTP and theRESTfulWeb, enabledby straight-
forwardproxies. In contrast toMQTT’s topic-based approach, CoAP
employs Universal Resource Identifiers (URIs). In this system, pub-
lishers dispatch data to URIs, while subscribers align themselves
with specific resources defined by these URIs. When publishers
push new data to a URI, every subscribed party receives a notifi-
cation regarding the updated URI value. CoAP operates as a bi-
nary protocol, typically having a 4-byte fixed header. Its message
payload sizes are contingent on the web server or the underly-
ing programming framework. CoAP’s foundation is built upon the
UDP transport protocol and it adopts DTLS for its security mea-
sures. As a result, communication between clients and servers
occurs through connectionless datagrams, which might compro-
mise reliability. However, to address this, CoAP introduces two
distinct QoS levels via "confirmable" and "non-confirmable" mes-
sages. Receivers must acknowledge "confirmable" messages with
an ACK packet, whereas "non-confirmable" messages don’t de-
mand any acknowledgment. CoAP provides a richer feature set
compared to MQTT. For instance, it incorporates content negoti-
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ation, enabling clients to specify how they’d prefer a resource to
be represented. This flexibility ensures that both client and server
can evolve separately, allowing for the introduction of new repre-
sentations without causing mutual disruptions.

– AMQP (AdvancedMessageQueuing Protocol) [215]: AMQP is a lightweight
M2M protocol formulated by John O’Hara at JPMorgan Chase in
London, UK, back in 2003. Designed with a corporate mindset,
its architecture prioritizes elements like reliability, security, provi-
sioning, and interoperability. AMQP can cater to both request/response
and publish/subscribe models, offering a plethora of messaging-
associated features like reliable queuing, topic-based messaging,
flexible routing, and transactions. Central to AMQP’s communica-
tion mechanism is the concept of an "exchange." Either the pub-
lisher or the consumer has to establish this "exchange" by nam-
ing it and then circulating this name for discovery purposes. Fol-
lowing this, the consumer crafts a "queue" and immediately links
it to the created exchange. For a message at the exchange to
reach its intended destination, it undergoes a "binding" process
to match with the right queue. There’s versatility in how AMQP
can distribute messages – directly, via fanout, based on topics, or
leaning on headers. AMQP’s structure is rooted in a binary pro-
tocol, typically showcasing an 8-byte fixed header. The message
payload sizes, though, vary depending on the broker/server or
the development framework in place. By default, AMQP relies on
TCP for transportation, supplementing its security using TLS/SSL
and SASL. Communication in this system is connection-driven, be-
tween the client and the broker. One of AMQP’s cornerstone fea-
tures is its reliability. To this end, it provides two foundational QoS
levels formessage delivery: the Unsettle Format, which isn’t inher-
ently reliable, and the Settle Format, which ensures reliability.

– HTTP (HyperText Transfer Protocol) [216]: HTTP, primarily known as a
web messaging protocol, was an original creation of Tim Berners-
Lee. It later underwent joint development by the IETF and W3C,
culminating in its official standardization in 1997. The core of HTTP
lies in supporting the request/response architecture of the REST-
ful Web. Drawing a parallel with CoAP, HTTP too utilizes Universal
Resource Identifiers (URIs) rather than topics. Within this struc-
ture, servers dispatch data viaURIswhile clients retrieve data through
specific URIs. HTTP’s foundation is a text-based protocol. No-
tably, it doesn’t set definitive specifications for the size of head-
ers or message payloads; these parameters are influenced by the
associated web server or development technology. As for trans-
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port, HTTP predominantly leans on TCP, enhancing its security us-
ing the TLS/SSL protocol. This ensures that interactions between
the client and server are consistently connection-driven. Although
HTTP doesn’t intrinsically lay out QoS parameters, incorporating
them demands supplementary solutions. Recognized worldwide
as a pivotal web messaging standard, HTTP introduces a range of
features, encompassing persistent connections, request pipelin-
ing, and chunked transfer encoding.

The choice between one protocol and another is typically determined
by various factors such as message size, resource requirements, power
consumption, latency, bandwidth availability, and reliability. Authors in
[217] have proposed a method to decide based on these criteria.

• Transport Layer [218]: The transport layer in the TCP/IP model serves
as the mediator for end-to-end communication between devices on a
network. It manages the transmission of data, ensuring that the infor-
mation sent from a source device is accurately received by the destina-
tion device. By doing so, the transport layer facilitates seamless com-
munication and data integrity across the network, irrespective of the
underlying physical infrastructure or the geography between the com-
municating devices. Two of the most well-known transport layer proto-
cols are Transmission Control Protocol (TCP) and User Datagram Pro-
tocol (UDP).

– TCP (Transmission Control Protocol): TCP is a connection-oriented
protocol, which means that it establishes a dedicated communi-
cation path between two devices before data transfer begins. This
protocol ensures the reliable delivery of data packets by sequenc-
ing them and requiring acknowledgments for received packets. If
an acknowledgment isn’t received within a certain timeframe, TCP
assumes the packet was lost and resends it. The primary advan-
tage of TCP is its reliability: TCP ensures that data packets are de-
livered to the receiver in the correct order andwithout errors. Lost
packets are retransmitted. However, from an IoT perspective, a
drawback is that establishing a TCP connection is more complex,
leading to more data transmission and subsequently increased
energy consumption.

– UDP (User Datagram Protocol): Unlike TCP, UDP is a connectionless
protocol. It sends data without establishing a dedicated end-to-
end connection. There’s no guarantee that the packets sent will
reach their destination or that they will do so in the correct order.
However, this means that UDP has lower overhead and can de-
liver data faster. UDP is suitable for situations where speed is a
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priority over reliability, like streaming audio or video where occa-
sional packet loss might be acceptable. Despite UDP being faster
and simpler, its unreliability makes its implementation complex
in WSN scenario where nodes needs to be sure that their data is
transmitted.

In conclusion, TCPmight be preferred for applications where data relia-
bility and integrity are crucial, such as firmware updates, critical sensor
data transmission, or device management. UDP might be more suit-
able for scenarios demanding real-timedata deliverywithminimal over-
head, such as periodic telemetry from sensors, real-timemonitoring, or
multimedia streaming in IoT contexts.

• Network layer [219]: It is responsible for determining the best path to
route data across a network of interconnected devices and networks. It
handles the process of transmitting data packets from the source to the
destination, potentially acrossmultiple and diverse networks. Themain
objective of the network layer is to provide a means for data packets to
traverse networks, taking into consideration factors like network con-
gestion, topology, and outages. The core functionality of the network
layer revolves around logical addressing with the help of IP (Internet
Protocol). IP allows for the logical addressing of hosts and directs pack-
ets based on these addresses. IPv4 is the fourth version of IP, and for a
long time, it was the dominant protocol. It uses 32-bit addresses, which
limits the number of devices that can be addressed. As the successor to
IPv4, IPv6 was introduced to tackle the address exhaustion issue asso-
ciated with IPv4. It uses 128-bit addresses, providing a vastly larger ad-
dress space. The introduction of IPv6 is an important progess towards
the unique identification of each nodes which is fundamental for the
deployment of efficient IoT architecture, but poses problems for data
transmission on the physical layer due to its length. For example the
802.15.4 wireless communication protocol have a maximum size of the
PSDU (Physical layer Service Data Unit) of 127 bytes. When considering
the 25 bytes from the MAC sub-layer (without security), this results in
102 bytes at the link level. Adding data link layer security, only 81 bytes
remain available at the IP level. It’s also important to account for the
overhead from IPv6 headers (40 bytes), any potential extension head-
ers, UDP (8 bytes), or TCP (20 bytes). In the end, the actual data payload
is quite limited (33 bytes for UDP and 21 bytes for TCP), which does not
meet the IPv6 specifications that require a minimum transmission unit
of 1,280 bytes. This is why some WSN protocols require an adaptation
layer located between the network layer and the link layer of the OSI
model. For 802.15.4, this protocol is called 6LoWPAN [220]. It receives
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IPv6 packets of 1,280 bytes from the network layer and transmits them
to its counterpart on the remote device in 802.15.4 frames. Since these
frames only have 81 bytes available, the adaptation layermust fragment
the IPv6 packets before sending them and reassemble them upon re-
ceipt.

• Network Interface/Wireless communication: The network interface
layer in the TCP/IP model, also known as the link or physical layer in
other models, is responsible for the direct transmission of data be-
tween two devices on the same network. It deals with the physical
connection, ensuring that data packets are placed onto the network
mediumandare received from it, converting thedata between thepacket
format and the format suitable for the transmissionmedium, be it wired
or wireless. This layer also manages error detection and correction for
data being transmitted and received. The network interface layer han-
dles the specific requirements of different communication technologies
used in IoT, such as low power consumption for battery-operated de-
vices or the ability to function in challenging environments. Thewireless
communication process in WSNs is the most energy costly as explained
in [221]. In terms of wireless communicationwemake the distinction be-
tween Personal Area Network (PAN), Local Area Netwok (LAN) or Wide
Area Network (WAN).
A PAN is a network for personal devices, typically covering a short range,
usually less than 100m, like within the proximity of an individual. Fa-
mous PAN used in Wireless IoT communications are:

– Bluetooth Low Energy (BLE) [222]: BLE, or Bluetooth Low Energy, is
a wireless communication protocol designed for short-range com-
municationbetweendeviceswhile consuming significantly less power
than classic Bluetooth. It also using the 2.4 GhZ frequency band.
Originally introduced as part of the Bluetooth 4.0 standard, BLE
is optimized for situations where battery life is crucial, making it
an ideal choice for many IoT devices. Due to its low power con-
sumption, devices using BLE can operate for long periods, some-
times even years, on tiny coin-cell batteries. BLE maintains a simi-
lar communication range to classic Bluetooth, typically around 100
meters or less depending on environmental factors andhardware.
While it’s designed for sending smaller packets of data compared
to classic Bluetooth, BLE’s data transfer rates can reach up to 2
Mbps. This combination of features—low power usage, reason-
able range, and efficient data transfer—has led to its widespread
adoption in health and fitness wearables, smart home devices,
beacons for location awareness, andmany other IoT applications.
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– 802.15.4 [223]: The IEEE 802.15.4 protocol is a wireless standard de-
signed specifically for low-rate wireless personal area networks
(LR-WPANs). It operates in the unlicensed industrial, scientific, and
medical (ISM) frequency bands, including commonly used bands
like 2.4 GHz (worldwide), 915 MHz (Americas), and 868 MHz (Eu-
rope). Depending on the frequency band, data rates can be 250
kbps (for 2.4 GHz), 40 kbps (for 915 MHz), or 20 kbps (for 868MHz).
Theprotocol can support various network topologies such as point-
to-point, point-to-multipoint, and mesh, enhancing flexibility and
range. Addressing in 802.15.4 is versatile, with both short (16-bit)
and extended (64-bit)modes. Its frame structure is adaptive, cater-
ing to different types like data, acknowledgment, command, and
beacon frames. Typically, the protocol can offer a range between
10 to 100 meters, though this can be influenced by the environ-
ment and specific setup. One of its standout features is its power
management, optimized for battery-operateddevices, allowing them
to go into sleep mode to conserve energy. Security isn’t over-
looked either; the protocol integrates security at the MAC layer
using AES-128 encryption. This blend of features positions 802.15.4
as an excellent choice for IoT scenarios requiring reliable, secure,
and low-powerwireless communication over short tomediumdis-
tances. On this protocol are based two really famous IoT net-
working stacks Zigbee and Thread. Zigbee is a high-level wireless
communication protocol designed for low-power, short-range ap-
plications. It stands out for its ability to support mesh network-
ing, which enables devices to relay messages through other de-
vices, enhancing network range and resilience. This makes Zig-
bee especially suitable for creating robust, self-healing networks
with a large number of nodes. Zigbee’s focus on low power con-
sumption makes it ideal for battery-operated devices in Internet
of Things (IoT). Thread is similar to Zigbee, but focuses on creat-
ing secure, scalable, and interoperable networks. A significant fea-
ture of Thread is its ability to form mesh networks, which enables
devices to communicate with each other directly or through in-
termediate devices to enhance connectivity and resilience. Devel-
oped by the Thread Group, which includes notable industry play-
ers like Google, Apple, and Qualcomm, this protocol is designed
with an emphasis on secure and reliable communication, espe-
cially in homeautomation environments. Additionally, Thread sup-
ports IPv6 natively, facilitating seamless internet connectivity and
integration with cloud services.ecosystems.

– RFID (Radio Frequency Identification) [224]: RFID, or Radio-Frequency
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Identification, is a technology that uses electromagnetic fields to
identify and track tags attached to objects. These tags contain
electronically stored information. Unlike barcodes, which require
direct line-of-sight for scanning, RFID tags can be read through
various materials from a distance. There are two primary types
of RFID tags: passive tags, which have no internal power source
and draw power from the RFID reader’s electromagnetic waves,
and active tags, which have their own power source, usually a bat-
tery, enabling them to transmit data over longer distances and
even initiate communication. The data capacity, read range, and
frequency band (commonly low, high, or ultra-high frequency) of
RFID tags can vary. This technology is widely used in numerous
applications like supply chain management, asset tracking, and
access control due to its ability to operate without direct contact,
thereby offering efficient and streamlined tracking and identifica-
tion.

– NFC [225]: NFC, orNear Field Communication, is a short-rangewire-
less communication technology that allows twodevices to exchange
data when they’re brought close together, typically within a few
centimeters. Built upon the foundations of RFID, NFC is designed
for simple, secure data exchanges. It’s often integrated into mo-
bile devices, enabling functionalities like contactless payments, tick-
eting, and data sharing.

A LAN, is a network that connects computers and other devices in a lim-
ited geographical area, such as a home, office, or a group of buildings,
typically up to a few hundreds of meters. Famous LAN used in Wireless
IoT communications are:

– 802.11 [226]: The 802.11 protocol, commonly known as Wi-Fi, is a set
ofwireless networking standards developedby the IEEE. It enables
devices to communicate wirelessly, typically over short tomedium
distances. Its main characteristics include supportingmultiple fre-
quency bands (like 2.4 GHz and 5 GHz), providing various data
rates up to 10 Gbps, ensuring security through encryption meth-
ods such as WPA and WPA2, and allowing seamless connectivity
in home, office, and public spaces. In IoT, 802.11 is widely used for
proof of concept or simple applications because such networks
are usually easily available. However, Wi-Fi is not an efficient scal-
able network for a large number of devices. Moreover, its energy
consumption is quite high, significantly affecting the battery life of
nodes. Finally, its rangemakes it unsuitable for IoT platforms with
nodes covering a vast area.
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– Z-Wave [227]: Z-Wave is awireless communication protocol primar-
ily designed for home automation. It allows smart devices, such
as lights, thermostats, and door locks, to communicate with each
other and be controlled remotely on 900 MhZ frequency bands.
Z-Wave operates on low-energy radio waves with a specific range,
making it efficient for short to medium-distance communications
typical in home environments. Its typical data rate goes from 10
kbps up to 100 kbps. For IoT devices, Z-Wave is beneficial be-
cause it provides a reliable, low-latency communication network,
can support a large number of devices in a mesh network, and
consumes minimal power, essential for battery-operated devices.
Furthermore, its ability to mesh means devices can relay mes-
sages for each other, extending the effective range and ensuring
robust connectivity throughout a household or building. However
its limited range can be an issue.

A WAN is a network that covers a broad area, such as a city, country,
or even global connections. It’s designed to connect multiple smaller
networks, like Local Area Networks (LANs) or Metropolitan Area Net-
works (MANs), allowing data exchange and communication over long
distances. Famous WAN used in Wireless IoT communications are:

– Cellular Networks [228]: Traditional cellular networks (like 3G, 4G,
and the emerging 5G) are being used for IoT devices that require
higher data rates and broad geographic coverage. The introduc-
tion of 5G, in particular, promises to enhance IoTwith faster speeds
and lower latencies. A significant limitation of cellular networks is
their dependence on Internet Service Provider (ISP) companies,
which are responsible for establishing network coverage through
dedicated infrastructure. Additionally, they can have considerable
energy demands and necessitate the use of licensed frequency
bands, which implies extra costs for network access. The cost con-
sideration becomes critic when managing an IoT fleet comprising
thousands of devices. Paying for individual network plans for each
device could become financially untenable.

– Satellite Communication [229]: Satellite communication in the realm
of IoT involves using satellites to enable and ensure connectiv-
ity for IoT devices, especially in locations where traditional net-
works might not reach such as deep-sea vessels, forested areas,
or desert regions. Despite its vast coverage, satellite communi-
cation comes with its own set of challenges. First and foremost,
the cost can be substantially higher than conventional connectiv-
itymethods. Setting up thenecessary infrastructure, such as satel-
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lite and related equipment, can be expensive, therefore, the cost
of access to such service might be high and in a similar way as cel-
lular networks, can be prohibitive in case of large IoT Fleet. Addi-
tionally, the latency in satellite communication can be higher than
terrestrial networks, meaning there can be a noticeable delay in
transmitting and receiving data. This can be an issue for applica-
tions that demand real-time responses. The data rates might also
be lower compared to more traditional communication methods,
limiting the amount of data or the speed at which it can be trans-
ferred.

– WiMAX (Worldwide Interoperability for Microwave Access) [230]: It is s
a wireless broadband technology designed to provide high-speed
internet access over long distances. Essentially, it’s an alternative
to cable and DSL internet services but operates over a wireless
link. One of WiMAX’s core technical characteristics is its ability to
provide broadband connectivity over a wide area, potentially cov-
ering several kilometers, making it particularly suitable for remote
or underserved regions. Operating in the microwave part of the
radio spectrum, typically between 2 and 66 GHz, WiMAX can of-
fer speeds comparable to traditional broadband services. It uti-
lizes a technology called Orthogonal Frequency-Division Multiple
Access (OFDMA) to efficiently use bandwidth and cater to multi-
ple users. This ensures a steady and reliable connection, even
whenmany users are accessing the network. It’s also worth noting
that WiMAX supports both point-to-point and point-to-multipoint
access modes, which offers flexibility in how the network can be
deployed and used. However, the use of WiMAX for IoT comes
with certain drawbacks. Firstly, even thoughWiMAX can cover sev-
eral kilometers, it doesn’t match the widespread coverage of cel-
lular networks, which are more prevalent. Additionally, setting up
WiMAX infrastructure can be expensive, especially when consider-
ing the costs of base stations and other associated equipment. Be-
ing a line-of-sight technology, WiMAX can experience issues with
interference from physical obstacles, especially in urban environ-
ments with tall buildings. This can affect signal quality and reliabil-
ity. FinallyWiMAX, inmany parts of the world, hasn’t seen the level
of adoption that technologies like LTE or even 5G have. As a re-
sult, the ecosystem, in terms of devices, integration, and support,
might not be as robust as those for more prevalent technologies.

– LPWAN (Low Power Wide Area Network) [231]: These networks are
designed for long-range communications and consume minimal
power, at the expense of data rate. They are particularly well-
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suited for IoT applications, and therefore will be the focus of the
next section.

Figure 2.9 expose the relation between distance and data rate for each
protocol.

Figure 2.9: Range vs speed and energy consumption in different types ofNetwork
To conclude this section, based on our state-of-the-art study and as
showned by the authors in [232], we assert that LPWANs are the most
effectivewireless communicationmethod for agricultural scenarios. There-
fore, their technical specifics, applications, limitation and opportunities
will be explained in greater depth in the following sections. However,
we can already explain that the choice of LPWAN was made for the fol-
lowing reasons:

1. Vast coverage Area: Agricultural farms and fields are typically
spread across vast areas, often in remote regions. Traditionalwire-
less networksmight not provide coverage in these areas. LPWANs,
on the other hand, are designed to provide wide coverage, often
spanning several kilometers. Thismeans a single LPWANbase sta-
tion can potentially cover an entire farm or even multiple farms.

2. Low Power Consumption: Sensors in agricultural settings might
be deployed in areas where it’s challenging to frequently replace
batteries or provide a consistent power source. LPWANs are de-
signed for devices with limited power sources. Devices on these
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networks can operate for years on a small battery. This is ideal
for agricultural sensors which can be placed in the field and left to
operate for extended periods without the need for frequentmain-
tenance.

3. Cost-Effective: Deploying andmaintaining awireless network over
a large farm can be costly. LPWAN solutions are generally more
cost-effective in termsof both infrastructure andoperational costs
compared to other wireless solutions, making them an attractive
choice for farmers and agricultural businesses.

4. Optimal for Low Data Rate: Agricultural sensors, such as soil
moisture sensors, temperature sensors, or weather stations, typ-
ically do not generate massive amounts of data. They send con-
cise, periodic updates. LPWANs are optimized for such low data
rate transmissions, making them ideal for this use case.

5. Easy Scalability: As a farm grows or if a farmer decides to de-
ploy more sensors, LPWANs can easily scale to accommodate the
increased number of devices without the need for significant in-
frastructure changes.

2.3.3 . Low Power Wide Area Network
Low-Power Wide-Area Network (LPWAN) is a category of wireless commu-

nication technologies specifically designed to transmit small amounts of data
over long distances while consuming minimal power. This makes them espe-
cially well-suited for Internet of Things (IoT) applications where devices, often
battery-powered, need to send occasional or small data packets across wide
areas, potentially spanning several kilometers, without the need for frequent
battery replacements. To help readers understand, consider a comparison
between types of networks and real-life package delivery services: WAN can
be likened to UPS, FedEx, or DHL. These services can send large packages
across the world quickly, but to do so, they rely on a heavy infrastructure and
need a significant amount of energy (like oil) to power their trucks and planes.
LAN is analogous to your local postal service: fast and efficientwithin your city,
but it similarly relies on infrastructure and energy. PAN can be compared to a
bicycle courier within your city. They can quickly deliver medium-sized pack-
ages in a neighborhood with minimal energy costs, but their range is limited.
Finally, LPWAN can be imagined as traveling pigeons. They can traverse kilo-
meters between cities without the need for infrastructure, relying merely on
seeds for sustenance. However, they can only carry really small text mes-
sages.

The ability of LPWAN technologies to transmit messages over long dis-
tances with minimal energy cost is primarily attributed to a combination of
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radio frequency (RF) modulation techniques, network architecture, and pro-
tocol optimizations.

• Radio frequencymodulation: Many LPWAN technologies use spread-
spectrum techniques, which spread a narrowband signal across awider
frequency band. This helps in achieving long-range communication as
the signal becomes more resistant to interference and noise. In addi-
tion, LPWAN receivers are often designed to have very high sensitivity.
Thismeans they can pick up veryweak signals, allowing for longer trans-
mission ranges. Moreover, most LPWAN technologies operate in sub-
GHz bands (like 868 MHz in Europe and 915 MHz in the US), which have
better propagation characteristics and can penetrate obstacles more
effectively than higher frequencies. Those frequency band are usually
available to use for free according to regulation as they fell under the
Industrial, Scientific and Medical bands frequency bands. This allows
for longer range and better indoor penetration but also cost reduction.
Finally, lowering the data rate in radio transmission typically translate to
longer range in RF communication because the signal canbemore read-
ily detected and decoded over noise, even at veryweak signal strengths.

• Network architecture: Many LPWAN technologies use a star network
topology, where end devices communicate directly with a central gate-
way. This simplifies the communication process and reduces the need
for energy-intensive tasks like routing. Moreover, LPWAN nodesmostly
operate in "sleep" stae, only waking up to transmit or receive data. By
being active only a tiny fraction of the time, they dramatically reduce
their energy consumption.

• Protocol optimization: LPWAN technologies are optimized for trans-
mitting small amounts of data, which means the transmission duration
is short. Shorter transmissions consume less energy. In addition, Some
LPWAN solutions adjust the data rate based on the quality of the radio
link. When the device is closer to the gateway, it might transmit faster,
and when it’s further away, it might use a lower data rate to ensure
reliable communication. Moreover, LPWAN technologies often employ
forward error correction techniques. This allows the receiver to correct
errors in received messages without the need for retransmission, thus
saving energy. Finally LPWAN protocols are often simplified, with mini-
mal overhead. This means that most of the transmitted bits are useful
data, reducing the energy required for sending protocol-related over-
head.

As IoT applications rises, more and more types of LPWAN are developed.
Good surveys on existing LPWAN have been proposed by the authors in [233,
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41, 234, 231]. There is four main LPWAN technologies namely LoRa (and its
associated protocol stack LoRaWAN), Sigfox, NB-IoT, LTE-M.

• Sigfox [235]: Sigfox operates as an LPWAN service provider, deliver-
ing comprehensive IoT connectivity through its unique patented meth-
ods. It sets up its own custom base stations with advanced cognitive
software-defined radios and links them to backend servers using an IP
network. Devices communicate with these stations using GFSK modu-
lation in an extremely narrow band (100 Hz) within the sub-GHZ ISM fre-
quency range. Sigfox utilizes open ISM frequencies. Thanks to its ultra-
narrow band approach, Sigfox benefits from efficient bandwidth use
and notably low interference. This results in minimized power usage,
elevated receiver precision, and economical antenna configurations, at
a peak data rate of just 600 bps. Sigfox only allows a limited nuber
of messages to send per day per node to avoid network congestion.
Heavy data transfer such as images is not possible. Downlink message
(from the server to the node) is also limited making Sigfox unsuitable
for firmware update over the air.

• LoRa [236]: LoRa operates on a physical layer, modulating signals in
the sub-GHZ ISM band using a distinct spread spectrum method. Simi-
lar to Sigfox, LoRa employs open ISM frequencies. Its communication is
bidirectional, made possible by the chirp spread spectrum (CSS) modu-
lation, which broadens a narrow-band signal across a wider bandwidth.
The signal produced exhibits low interference, granting it a high re-
silience against disruptions and making it challenging to detect or ob-
struct. LoRa employs a range of six spreading factors (from SF7 to SF12)
to balance data rate and distance. A higher spreading factor yields a
more extended range but at the cost of a reduced data rate, and the
opposite holds true. Depending on the spreading factor and channel
bandwidth, the data rate of LoRa varies from 300 bps to 50 kbps. In-
terestingly, LoRa base stations can simultaneously receive messages
transmitted at diverse spreading factors. Each message has a maxi-
mum size limit of 243 bytes. The LoRa-Alliance standardized a com-
munication protocol based on LoRa, named LoRaWAN, with its inaugu-
ral version released in 2015. In the LoRaWAN system, every message
sent by a device is captured by all nearby base stations. This multiple
reception mechanism enhances the probability of successful message
retrieval in LoRaWAN. More detail on LoRa and LoRaWan will be pro-
vided in Chapter 3 of the thesis as LoRa was the selected LPWAN for
our IoT platform. Finally LoRa is capable of Firmware Over The Air Up-
date (FUOTA) and punctuall heavy file transfer.

• NB-IoT [237] and LTE-M [238]: Those two protocols are based on the
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usage of a small portion of the available spectrum in the licensed LTE
frequency bands. LTE, standing for Long-Term Evolution, is a 4G wire-
less communications standarddeveloped to provide faster internet speeds
compared to 3G technologies. Those two protocols are standardized by
the 3GPP (3rd Generation Partnership Project) organism. The 3GPP en-
sures the maintenance and development of technical specifications for
mobile telephony network standards. The core similarity between NB-
IoT and LTE-M lies in their integration into the cellular framework. Both
technologies are designed to operate within the LTE spectrum and can
be deployed with minimal changes to the existing LTE infrastructure.
This means that for network operators, rolling out either of these tech-
nologies often involves just a software upgrade to their existing base
stations. However, the two technologies diverge significantly in their
specific design and use-case optimizations. NB-IoT focuses on static or
low-mobility devices and prioritizes extended coverage and deep pene-
tration. It achieves this using a very narrow bandwidth (hence the "Nar-
rowband" in its name), which allows it to provide connectivity in chal-
lenging environments, like deep indoors or underground. Its protocol
is simplified and is particularly suited for devices that transmit small
amounts of data sporadically. Due to its design, NB-IoT often achieves
longer battery life and offers a cost advantage for the devices, but it
sacrifices data rates and mobility support. On the other hand, LTE-M,
also known as Cat-M1, offers broader application potential. While it also
aims for power efficiency and extended coverage, it supports higher
data rates compared to NB-IoT and can handle voice and mobility. This
means devices using LTE-M can move between cell areas (like a vehi-
cle tracking system) or even support voice functionalities. LTE-M uses a
wider bandwidth than NB-IoT, leading to the higher data rates, but this
also means its devices are typically more complex and might be slightly
more expensive.

The technical characteristics of those network are summarized in table
2.3.

2.3.4 . Agricultural Application
LPWANs are the best choice to be used in agricultural applications, as pre-

viously mentioned. Comprehensive surveys on the applications of LPWANs
for agriculture have been presented by the authors in [232, 239, 240]. In this
section we will showcase some typical agricultural application of WSNs with
various LPWAN technology to highlight the advantages and disadvantages of
the different protocols.

• Sigfox: Sigfox has been used as a monitoring environment platform,
as presented by the authors in [241]. The industry widely implements
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Feature LoRa Sigfox NB-IoT LTE-MBandwith (Europe) 868 MHz 868 MHz 180 KHz 3GPP Licensed 14 MHz 3GPP LicensedBattery life time 8-10 years 7-8 years 7-8 years 5 yearsModulation SS Chirp GFSK/DBPSK UNB/GFSK/BPSK QPSK/16Data rate 250bps-50 kbps 100-600 bps 66 kbps - 159 kbps 1 Mbps - 7 MbpsRange 2-50 km 3-10 km 1-5 km 10 kmPrivate network support Yes No No No
Table 2.3: Main LPWANs technical specificities

Sigfox, as seen with companies like Sencrop [242], which builds agri-
cultural sensors, including weather stations, connected through Sigfox.
Another interesting application was implemented for individual cattle
position tracking in mountain pastures [243]. Despite its effective im-
plementation, limitations of the Sigfox network for agricultural appli-
cations mentioned in the literature are numerous. Firstly, the cover-
age of the Sigfox network solely depends on a national operator. If
the Sigfox network is unavailable in a region, no Sigfox-based IoT plat-
form can be deployed. Secondly, the usage of the ISM band limits the
number of messages a device can send per day to 140. While this may
be sufficient for some environmental applications, the authors in [243]
pointed out that it was insufficient for tracking applications or more
complex data transfer such as images. Finally, while a Sigfox node can
perform uplink (sending a message from a device to the gateway) effi-
ciently, downlink is limited (sending a message from the gateway to the
device). This means that it can be challenging to confirm if a message
was successfully transmitted. This not only limits actuator commands,
such as opening an irrigation valve, but also poses security issues, as
firmware updates over the air are not possible. Due to its proprietary
nature, the Sigfox protocol has seen limited adoption in the research
field. Additionally, it’s worth noting that the Sigfox company has faced
significant financial challenges and was acquired in early 2023, casting
uncertainty on the protocol’s future [244].

• NB-IoT: NB-IoT has been widely used in agriculture, primarily due to its
compatibility with existing LTE networks that are readily available, even
in rural areas. This means that farms with coverage can begin deploy-
ing sensors immediately. NB-IoT has been successfully implemented
for irrigation and fertilization management projects as in [245], green-
house environment monitoring and automation [246, 247], irrigation
management [248], and aquaculture monitoring and automation [249].
Additionally, NB-IoT provides the capability to transmit larger data files,
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such as images. However, this usage should remain occasional to avoid
excessively draining the battery [250]. Streaming, in any case, is not
possible. The limitations of NB-IoT stem from its use of licensed bands.
This incurs additional costs for farmers, as theymust invest in dedicated
data plans, and it also ties them to the Internet Service Provider (ISP) re-
sponsible for network coverage in the area. Furthermore, many farms
worldwide, especially in developing countries, are too rural and remote
to receive LTE coverage.

• LTE-M: LTE-M is viewed as the most suitable LPWAN technology for
IoT applications requiring high data rates, low latency, and full mobil-
ity (i.e., where sensors are mobile). It also provides the highest density
among LPWANs, supporting up to 1 million devices per km². In agricul-
ture, there aren’t many research implementations. The authors in [251]
proposed an image acquisition system for field monitoring. The spe-
cific features of LTE-M often make it seem overkill for agricultural appli-
cations. The trade-off between cost, data rates and energy consump-
tion is less appealing from an application perspective, as discussed by
the authors in [232]. However, for specific high data rate applications,
such as image transfer, it can be valuable. As a result, researchers have
suggested a heterogeneous LPWAN network that uses LoRa for sensor
monitoring and LTE-M for base station communication like in [252]. LTE-
M also has the same issue as Sigfox and NB-IoT which is the network
coverage dependancy of a national operator.

• LoRa: LoRa has been widely adopted for agricultural projects and has
been the focus of dedicated studies [253, 254]. Network experiments
conducted by the authors in [255] further underscore the protocol’s
suitability for agricultural applications. LoRaWAN WSNs are incorpo-
rated in every agricultural application cited in section 8, including green-
house monitoring and automation [256], crop yield monitoring [257],
and irrigationmanagement [258]. In certain conditions, LoRaWAN even
supports image transmission, as successfully demonstrated by [259] in
agricultural contexts. Lastly, LoRa proves effective for livestock mon-
itoring [260], given that LoRa nodes facilitate mobility [261] and even
offer basic localization through gateway triangulation [262].

From the literature, LoRaWAN emerges as the most suitable protocol for
our application context, as indicated by the authors in [255]. The rationale
is threefold. Firstly, LoRaWAN fulfills the coverage and energy consumption
requirements for farm deployments. Secondly, since LoRaWAN operates in
an unlicensed spectrum with an open-source protocol stack, farmers can de-
ploy a LoRa network on their farms both easily and cost-effectively. In con-
trast, Sigfox, NB-IoT, LTE-M, and other LPWANs necessitate infrastructure de-
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ployment by their respective operators. This is particularly crucial for small-
scale farms in developing countries, which are predominantly situated in rural
and remote locationswith restricted access to existing network infrastructure.
Lastly, the open-source nature of the LoRaWAN protocol stack empowers de-
velopers and researchers to suggest improvements for various use cases and
ensures maintenance support from the community.

2.3.5 . Limitations
LPWANs are designed for wireless communication with a focus on long-

range and power efficiency, but this comes at the cost of low data rates. LP-
WAN have multiple limitation as explained by the author in [234]. This low
data rate not only makes them unsuitable for real-time or high-bandwidth
applications, such as video streaming, but also hinders the transfer of large
data files, such as images or sound, typically used by machine learning algo-
rithms in the cloud. The latency in LPWANs can be high, in part because the
data payloads for individual messages are limited but also due to the duty cy-
cle imposed in certain region due to government regulation, making LPWAN
unsuitable for applications that require real-time responses. This regulation
often impose that a device is allowed to communicate a fraction of the time
(usually 1% to 10%). The duty-cycle regulation are particularly constraining for
LPWAN using unlicensed frequency band like ISM band. Moreover, LPWAN
doesn’t provide high-Quality of Service features, so there’s no guarantee of
consistent data delivery ormessage ordering. In environments withmany de-
vices, especially on unlicensed spectrums like LoRa, interference can become
a concern. From a security standpoint, while LPWAN technologies incorpo-
rate safety features, the limited capabilities of LPWAN devices can constrain
the robustness of security measures. Geographical and physical obstacles
can sometimes challenge the advertised extensive coverage. Also, devices
using LPWAN often lack powerful processing capabilities due to the focus on
power efficiency and low cost. The LPWAN market has multiple competing
technologies, which can lead to fragmentation and challenges in interoper-
ability. Some LPWAN types, especially those based on cellular systems, also
require existing network infrastructure to operate effectively. However, de-
spite these limitations, LPWAN remains invaluable formany IoT scenarios that
prioritize range and battery life over data speed.

2.3.6 . Amelioration axes
LPWANs are particularly suited for telemetry sensors in agriculture, such

as temperature, humidity, wind speed, etc. However, more complex sensors,
such as cameras or microphones, struggle to send their data over such lim-
ited networks. This becomes a significant issue as an increasing number of
agricultural IoT applications rely on this kind of data, as shown in 8, espe-
cially with the assistance of machine learning algorithms performed in the
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cloud, as discussed in section 2.2.2. Thankfully, a new technological paradigm,
called Embedded Artificial Intelligence, aims to shift the computation process
directly to the end devices. This can also be called Edge Computing. This shift
is becoming increasingly feasible due to the advancement of Embedded AI
methods and the cost reduction of high-performance microcontrollers, like
32-bit microcontrollers. Using these methods, a sensor can analyze complex
data directly on the device, sending only the inferred result to the application
server in a concisemessage via LPWAN, thereby conserving energy. However,
Embedded Artificial Intelligence requires the capability to occasionally offload
its complex data and to be updated remotely. These needs, along with other
characteristics of Embedded AI, will be explained in greater depth in the next
section 2.4. For LPWANs and in particular LoRa as it is the best suited LPWAN
for agricultural application, these requirements indicate the need to develop
new protocols to ensure the proper operation of Embedded AI sensors. Ad-
dressing this need while being energy efficient will be the primary focus of
this thesis regarding the network contribution.

2.4 . Embedded intelligence

2.4.1 . Definition
To grasp the concept of Embedded Intelligencemore effectively, it’s essen-

tial first to outline the computational architecture of an IoT network [78]. The
computational processes to exploit and interpret the perceived data within
an IoT platform can occur at multiple locations across the network. Typically,
these processes are executed at the Edge, within the Fog, or in the Cloud. We
talk about edge computing to describe the processing of data at the source
of data generation, often at the edge of the network [263]. This can be on
devices like IoT sensors, gateways, or other equipment constituting a point of
collection. The primary advantage of edge computing is that it reduces the
need to send vast amounts of data across a network, leading to reduced la-
tency, bandwidth usage, and potential points of failure. Fog computing is an
architectural approach that extends the concept of edge computing. It de-
centralizes computing resources and operations, distributing them closer to
the data sources but often at a layer above individual edge devices [264]. Fog
computing is similar as an intermediary layer between the edge and the cloud.
It aims to improve efficiency, reduce data transfer loads, and provide quicker
data processing and analysis closer to the source. It often involves aggregat-
ing data from multiple edge devices and then processing it in a local gateway
or other local computing resource like a server on the local network. Fog com-
puting can also refer to distributed computation approach where the compu-
tation process of data perceived by one edge device is distributed amongst
other devices on the same network. Fog computing may vary in definition de-
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pending on research approach but we define it at processing data within the
local network without accessing the internet. Finally, cloud computing refers
to the delivery of various services over the internet, including storage, pro-
cessing, and software solutions [265]. These services are delivered from data
centers that can be located anywhere globally, providing immense computing
power and storage capacity.

Figure 2.10: Cloud, Fog, Edge data processing architecture
The relationship between edge, fog, and cloud computing can be visual-

ized as a hierarchy or continuum of data processing layers depicted in figure
2.10 and is discussed more in depth by the authors in [266]. The Edge Layer
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is at the bottom of this hierarchy. Individual devices (like sensors or smart
cameras) process data on-site before deciding what data to send upwards.
As we move up, fog nodes or gateways might collect data from several edge
devices, performing preliminary processing, filtering, or analysis. At the top,
the cloud receives data that might have been aggregated and pre-processed
by the lower layers, conducting more extensive analysis, storage, or leverag-
ing its vast computational resources for tasks that aren’t time-sensitive or that
require significant computational power like Artificial Intelligence. The overall
idea of this layered architecture is to avoid any unnecessary data transmis-
sion which are energy costly, weight on the network bandwidth, prone to er-
ror and security failure and increase latency. Together, these layers provide a
multi-tiered approach to data processing, allowing for efficient, scalable, and
responsive IoT systems, ensuring data is processed in the most suitable loca-
tion based on latency, bandwidth, energy, and computational requirements.

Usually, processing data at the edge is preferable and can lead to faster
decision-making due to reduced latency, as data doesn’t need to be transmit-
ted and then received from a centralized system. Moreover, this approach
can increase privacy and security since data remains on the device, reduc-
ing transmission-related security risks. Devices can also continue to function
even when offline, ensuring operational continuity [263]. Finally, in the con-
text of WSNs, the energy required for wireless transmission often represents
the most significant energy expense for a device [221]. Therefore it is prefer-
able to limit wireless communication to expend battery lifetime.

Unfortunately, complex algorithms, such as AI models, require consider-
able computational power to execute and most of IoT device posses limited
computational capacities. However, AI-driven data analysis is becoming in-
creasingly prevalent, especially for intricate data processing tasks involving
images or audio. In the agricultural realm, camera sensors are of utmost
importance. For instance, they can leverage computer vision AI algorithms
to detect if a plant is manifesting a disease or to monitor livestock, as high-
lighted in section 8. Regrettably, we also deduced in section 2.3 that devices in
agricultural WSNs use LPWAN technology to facilitate long-distance commu-
nication with minimal energy consumption, but this comes at the expense of
data-rate. The entire procedure of transferring images for AI analysis from a
large number of nodes to the cloud within agricultural WSNs is consequently
time-consuming and can cause network congestion, significantly impacting
battery life of node devices.

To address this issue, researchers have sought to shift the AI computa-
tional process directly to the end device developing techniques in a new field
known as Embedded AI. Embedded AI integrates artificial intelligence capa-
bilities directly into edge devices, allowing them to process and analyze data
locally rather than relying on cloud-based systems for these computations.
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To do so despite the limited computational power of typical IoT devices as ex-
plained in 2.2.2, and without increasing costs too drastically, two approaches
are explored, the hardware one and the software one as discussed in [198]:

• The hardware approach involves designing and developing specialized
computer chips or logical component, that are optimized for running AI
algorithms. such dedicated purpose integrated circuits are to opposed
to generic purpose ones such as Microcontroller and Microprocessors
. Dedicated hardware can provide substantial performance gains over
traditional chips architecture, allowing for real-time processing, lower
power consumption, and support for more complex models. Different
type of hardware approach exists:

– Graphical ProcessingUnits (GPU):GPUs are specialized electronic
circuits designed to accelerate the processing of images and videos
to be displayed on a computer’s screen. Unlike microprocessors,
which handle general-purpose tasks in a computer, GPUs are op-
timized for parallel processing, making them highly efficient for
tasks that involve large-scale data computations, such as graphics
rendering and deep learning applications. Over time, the high par-
allel processing capabilities of GPUs have led to their use not just
in graphics-related tasks but also in various computational work-
loads, especially in the fields of artificial intelligence and scientific
simulations, as explained by the authors in [267]. In the realm
of IoT devices, GPUs can either be used in combination with a
microprocessor or a microcontroller. When combined with a mi-
croprocessor, we refer to the device as a System on Chip (SoC). A
SoC is an integrated circuit that consolidatesmultiple components
of a computer or other electronic system into a single chip, en-
compassing a CPU, memory, input/output ports, and often other
specialized hardware. Well-known examples of SoCs include the
Raspberry Pi and Nvidia Jetson Nano. The Jetson Nano is a partic-
ularly well-optimized SoC for embedded AI applications, as shown
by the authors in [268]. SoCs can sometimes be too costly for cer-
tain applications, and in such cases, GPUs can be combined with
microcontrollers. Authors in [269] have successfully implemented
a road traffic sign detection system using a combination of a mi-
crocontroller and GPU. However, GPUs typically require extended
RAM capacity and higher energy consumption, making them less
suitable for basic microcontrollers or battery-powered devices, as
discussed in [270].

– Application-Specific IntegratedCircuit (ASIC)AnASIC is a custom-
designed chip optimized for a specific application or function, rather
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than for general-purpose use. In this context, GPUs can be consid-
ered ASICs for graphical processing. Although GPUs have been
widely repurposed for AI applications, dedicated integrated cir-
cuits for AI have been engineered, as shown by the authors in
[271]. For example, Google has developed an ASIC for running
the famous TensorFlow algorithm, called Tensor Processing Units
or TPUs [272]. Other intriguing approaches include Neural Pro-
cessing Units (NPUs) dedicated to running neural networks and
Visual Processing Units (VPUs) as mentioned in [273]. While most
of these ASICs are geared towards server applications, there have
been research to embed such components into IoT devices as ex-
plained in [274].

– Field Programmable Gate Arrays (FPGA) ASICs, including GPUs,
are not purely general-purpose hardware; they’re designed to run
specific types of algorithms within their domain of application.
However, hardware can be tailored to meet the unique needs of
particular algorithms through the use of programmable logical
units, amongwhich FPGAs are themost prevalent. FPGAs are inte-
grated circuits that can be reconfigured post-manufacture to im-
plement various digital circuits. Unlike ASICs, which are perma-
nently designed to perform a specific function, FPGAs allow de-
signers to program and adjust the hardware configuration to suit
various tasks and applications, particularly AI acceleration, as de-
scribed by the authors in [275]. They are especially well-suited for
embedded AI applications, as explained by the authors in [276],
because they can be easily reprogrammed. However, their cost
can be a significant drawback for large-scale device deployment.

• The software approach, on the other hand, primarily involves optimiz-
ing and adjusting existing AI algorithms and models so they can run
efficiently on hardware-constrained devices such as microcontrollers.
There’s a balance to strike: excessive simplification could result in a loss
of model accuracy or performance. Moreover, even optimized models
might not perform adequately on extremely resource-constrained de-
vices. To optimize AI algorithms effectively, we must deepen our un-
derstanding of the domain. AI is a multidisciplinary field of computer
science focused on creating systems capable of performing tasks that
would ordinarily require human intelligence. These tasks encompass
problem-solving, understanding natural language, recognizing patterns,
making decisions, and interpreting complex data, among others. Due
to the multidisciplinary nature of AI, there exists a vast variety of meth-
ods, approaches, and algorithms for different applications. The authors
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in [277] have provided an excellent survey on this topic. It appears that
within the realm of AI, the most prevalent domain is Machine Learning,
and among Machine Learning techniques, the most commonly used is
Neural Networks (NN). Neural networks mimic the functioning of the
human brain by utilizing an extensive web of interconnected process-
ing units called neurons. Those neurons forms layers, andwhen there is
more than one layer, NNs are often refers to as Deep learningmethods.
NNs excel at identifying patterns and play a crucial role in tasks such
as audio pattern treatment, image analysis, and speech and language
processing [278]. For these reasons, neural networks appear to be at
the heart of Embedded Machine Learning methods, as illustrated by
the authors in [38]. In the agricultural sector, we’ve demonstrated that
sensor applications requiring AI processing at the edge typically involve
image or audio file analysis 2.2.2. Therefore, NNs are also of utmost im-
portance for embedded agricultural applications, as highlighted by the
authors in [279]. The prevalence ofMachine Learning andNN in the Em-
bedded AI domain is so important that Embedded AI is often refered to
as Tiny Machine Learning [280].
To grasp how to optimizeNNs and embed them into IoT devices, we first
need a brief understanding of how neural networks function: Neural
networks operate by processing input data through layers of intercon-
nected nodes or "neurons". Each connection has an associated weight,
which is adjusted during training. When data is fed into the network, it
undergoes a series of transformations within these neurons. Neurons
compute a weighted sum of their inputs and apply an activation func-
tion to produce an output. As data flows from the input layer to the out-
put layer, they go through a number of intermediate neurons forming
hidden layers and the network makes predictions based on the current
weights of those neurons. This process is pictured in figure 2.11.
Now that we know how NNs operates, we need to understand how to
train them. The training of a neural network involves repeated forward
and backward computations through each layer of the network until
the desired accuracy of the model is reached. This training process can
be divided in three parts and is depicted in Figure 2.12

1. Forward Propagation Forward propagation in neural networks in-
volves passing the input data through the network to produce
an output. Starting at the input layer, each neuron computes a
weighted sum of its inputs and applies an activation function to
generate an output. This output is then used as input for the
next layer of neurons. This process continues through each layer
of the network until the final output layer is reached, producing
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Figure 2.11: Neural Network architecture

the network’s prediction. The layers are linked by the network’s
parameters, depicted by arrows in Figure 2.12, which consist of
weights and biases. Weights dictate the significance of each input,
whereas biases influence the propensity of a neuron to activate or
fire. During the first training cycle of a NN, those parameters are
initialized with non-zero random values.

2. Loss function: The forwardpropagation produces a predicted value,
which is compared to the real (ground-truth) value using a loss
function. The loss function calculates a score, or error, based on
the difference between these values. This score guides parame-
ter updates during the backward propagation process. Ideally, the
loss function approaches zero, indicating that predictions closely
match the real values. There is a vast amount of available loss
functions with different advantages and drawbacks and those are
listed by the Keras API, a famous tool for NN building [282].

3. Backward propagation: After forward propagation determines the
prediction error using a loss function, backward propagation ad-
justs the network’s weights and biases to reduce this error. It
calculates the gradient of the loss function with respect to each
weight by applying the chain rule, determining how much each
weight contributed to the error. The gradients indicate the direc-
tion andmagnitude of changes required. Once gradients are com-
puted, weights and biases are updated using optimization tech-
niques, often gradient descent (but many other optimizer algo-
rithms are available [278]), tomake thenetwork’s predictionsmore
accurate in subsequent forward passes.

It is important to note that running a NN differs from training one, with
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Figure 2.12: Neural Network training process [281]

the latter beingmore resource-intensive. Hence, EmbeddedAI software
strategies focus on adapting pre-trainedNNs for constrained hardware,
delegating the training to more powerful servers, usually in the cloud
[280]. For example the famous YOLO (You Only Look Once) algorithms,
widely use in object detection, has been the subject of many research
to simplify it and port it into constrained devices [283].
For deploying pre-trained neural networks on resource-limited devices,
several strategies exist, as detailed in [284]. Presently, the predominant
and most effective approach is model compression techniques. Model
compression offers a suite of tools designed to lighten the computa-
tional process of the neural network. A detailed exploration of each
method’sworkingswould necessitate an extensive discussion onneural
network operations, which is beyond the scope of this thesis. However,
the primary tools utilized include:

– Network structure redesign: It involves enhancing existing neural
networks by crafting novel architectural configurations. For ex-
ample MobilNet [285] is an NN architecture designed specifically
for mobile and embedded vision applications. It is optimized for
performance on devices with limited computational and memory
resources.

– Quantization: This refers to the compression of floating-point data
bits in parameters to reduce the complexity and size of the model
by simply reducing the number of bits. This methods comes at
the cost of model accuracy but several methods offers interesting
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trade-off as shown in [286].
– Pruning: It refers to the technique of reducing the size and compu-
tational complexity of a neural network by removing certain neu-
rons or connections that contribute minimally to the network’s
performance. The primary motivation behind pruning is to pro-
duce a leaner and faster model that can operate efficiently on de-
vices with limited computational resources, such as IoT devices
or mobile phones, without significantly compromising accuracy.
By eliminating these redundant or less important neurons and
connections, the neural network becomes more lightweight, con-
sumes less memory, and requires fewer computations, making it
more suitable for deployment on embedded systems. Multiple
pruning methods exists and are described in this survey [287]. A
simple visualize way to represent pruning is given in figure 2.13

Figure 2.13: Neurons pruning process

While on-device training might not be as common as deploying pre-
trained models, it presents a compelling opportunity, as discussed by
the authors in [288]. The primary benefit for devices include the capa-
bility to learn without an Internet connection. Additionally, there’s no
requirement to send data to the cloud or retrieve an updated model,
which conserves bandwidth,minimizes latency, and saves energy. Look-
ing at it from a data viewpoint, on-device training inherently safeguards
privacy. Finally, with on device learning devices can becomemore intel-
ligent, handling model drift issues and updating deployed pre-trained
models to better suit the environment and even individual users. For
instance, a medical instrument could gradually adapt to deliver tailored
predictions or services, catering to a particular patient’s unique circum-
stances. Despite these advantages, the hardware implementation of
on-device learning still demands significant processing power, making
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it unsuitable for simplermicrocontrollers, although there are promising
results on SoCs [289].

In essence, the software approach seeks to adapt the AI to the device,
while the hardware approach adapts the device to the AI. In many modern
embedded systems, a combination of both approaches is used to achieve the
best performance, ensuring that AI algorithms are both optimized for effi-
ciency and have the dedicated hardware support to execute them effectively.
In both case the need for model update and adaption to the specific condi-
tion where the devices is being deployed is of upmost importance, whereas it
comes from on device training or remote-server induced model update.

2.4.2 . Application
Due to its multidisciplinary nature, Embedded AI has been applied to a

wide range of domains, and comprehensive surveys on common applications
have been conducted by authors in [290, 291, 280, 292]. Originally, it was con-
sidered that the realm of embedded AI saw its first significant contribution in
applications related to voice assistants and wake words [293]. Wake words
are specific words or phrases used to activate voice-activated AI systems. Ex-
amples include "Hey Siri" for Apple, "OK Google" for Google Assistant, and
"Alexa" for Amazon. These words allow hands-free interaction, with the de-
vice only sending audio to servers for further analysis after the wake word is
detected. This addresses some privacy concerns and limits the energy con-
sumption of battery-powered devices such as smartphones. The intent was
for a low-power microcontroller to always be listening, while the main pro-
cessor is in sleep mode, avoiding excessive energy consumption by analyzing
everything it hears when it’s not relevant. The sole goal was detecting those
words to wake the processor.

Another critically important application is in healthcare, for instance, within
the cardiac domain. Wearable devices canmonitor a patient’s cardiac rhythm
and analyze it directly at the edge without relying on the cloud. This means
cardiac anomalies can be detected in real time, with appropriate measures
taken, as explained in [294]. Another intriguing application in healthcare in-
volves a system designed to detect and manage unwanted episodes in pa-
tients with Parkinson’s syndrome [295].

A domain where embedded AI shows promising applications is predictive
maintenance. Predictive maintenance involves detecting the conditions of
machine failure and thereby averting it with easier maintenance operations
compared to complex repair procedures. Authors in [296] proposed a system
based on ESP 32 and a thermal camera to detect heat anomalies in machines
in real time. Similarly, to detect failures in washing machines, a vibration sen-
sor and Arduino Nano 33 BLE were employed by authors in [297], combined
with the TensorFlow Lite ecosystem.
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In the agricultural sector, TinyML also presents various opportunities. It’s
especially beneficial for small-scale farmers, providing a significant improve-
ment in cropmonitoring atminimal costs. An example is the PlanVillage project,
aiming to assist African farmers in integrating IoT and Embedded AI into their
farming [298]. A prominent application of Embedded AI is crop monitoring.
Authors in [116] proposed an edge computing system to oversee the progress
ofmildewdiseases in vineyards basedonenvironmental data. Other researchers
have employed simple cameras to monitor water stress in crops [299]. Sim-
ilarly, cameras have been used for grape leaf disease detection [300], coffee
plant leaf disease detection [301], and fruits and vegetables identification as
in [302]. Additional interesting research has focused on irrigation manage-
ment, like in [303], where a system for agro-environmental management us-
ing moisture sensors and real-time video analysis of soil photographs was
proposed. Embedded AI can also upgrade older systems, as illustrated by a
TinyML device that uses a camera to collect data fromnumerical watermeters
to monitor central pivot irrigation. Furthermore, Embedded AI has been em-
ployed in supervising atmospheric conditions in greenhouses. For instance,
authors in [304] developed a cost-effective gas monitoring system potentially
used to detect disease development conditions and act on them. Livestock
management can also benefit from advancements in embedded AI, like the
study by authors in [305] who focused on a real-time animal behavior recogni-
tion system using inertial measurement sensors in collars. Embedded AI can
also assist in wildlife observation and monitoring through audio analysis, as
discussed in [306].

These applications highlight the profound advancements embedded AI
can offer to IoT platforms, especially in the realm of agricultural applications.
However, during our research — and as noted by other authors in their sur-
veys [292] — it was observed that TinyML implementations in specific scenar-
ios, especially in agriculture, often overlook their network specifics. To our un-
derstanding, applications that combine the practical use of LPWAN, the most
prevalent type of network in agriculture, with embedded AI, remain an un-
charted territory.

2.4.3 . Limitations
Embedded AI, though groundbreaking and influential, is not without its

challenges. First and foremost, the resource constraints of the device can limit
the accuracy of AI algorithm outputs. Consequently, embedded AI should not
be employed for critical operations where utmost accuracy is essential. La-
tency can also be an issue: If a model requires an excessive amount of time
to execute on a device, depending on the time constraint, it might bemore ef-
ficient to run the algorithms on a powerful server. Energy consumption is an-
other nuanced consideration. By refraining from transmitting data, a device
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can significantly conserve energy, which is paramount for battery-powered
devices. However, if an algorithm’s runtime is extended due to intricate data
processing or an unoptimized embedded AI algorithm, the energy consump-
tion could surpass that of just transmitting the data. For instance, if a device
consumes 50 mW of power for transmission and 20 mW during operation,
and the data to analyze is 1 kb in size with a communication speed of 1 kbps,
any algorithm taking longer than 2.5 seconds to execute would make it more
efficient to transmit the data directly to the server. Therefore, both network
configuration and embedded AI algorithms must be meticulously assessed
for each application to ensure energy efficiency.

Finally, the principal limitation of embedded AI ismodel drift. This concept
refers to the change in the patterns of the data over time, which can affect the
performance of a trained model. In other words, the statistical properties of
the target variable, which the model is trying to predict, change over time in
unforeseen ways. For those reasons, it’s essential to continuously monitor
model performance in deployed environments to detect signs of drift. Upon
detecting drift, it’s advisable to retrain the model using recent data. Various
real-world elements can cause data patterns to shift: evolving consumer be-
haviors, differential equipment wear, fluctuating economic conditions, and
other such elements. Drift can manifest in various forms:

• Sudden Drift: An abrupt alteration in data distribution.
• Incremental Drift: Gradual changes over a span of time.
• Gradual Drift: Alternation between previous and new data concepts.
• Cyclic Drift: Recurring shifts to former states or patterns.
In an agricultural context, a model might be trained to enumerate straw-

berries in a specific fields. However, fields vary significantly in terms of straw-
berry type, soil color, pre-existing vegetation, and sunlight exposure for ex-
ample. Therefore, once a generic fruit detection model is deployed, it needs
to "calibrate" itself against gradual drift and train with local observation to
enhance accuracy. Overtime the strawberry size will change in size an color
introducing incremental drift. Change in season patterns will also affect the
image inducing cyclic drift. Finally a sudden drift can happen if a wild pig de-
cides to stomps into our strawberry plot.

Such drift-related challenges necessitate periodic model re-training and
updates. However, as highlighted in section 2.4.1, on-device training has its
limits. Presently, the most common strategy, upon drift detection in an em-
bedded device, involves offloading data to a central server responsible for
leveraging the data to train a more accurate model, which is then redeployed
to the affected devices. This procedure raises network concerns as it aug-
ments overall traffic and can be energy-intensive if executed using wireless
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communication protocols. Furthermore, as indicated in 2.3.6, Wireless Sen-
sor Networks (WSN), especially in agricultural contexts, predominantly utilize
LPWAN technologies. The inherent data rate constraints of LPWANs add com-
plexity to the data offload and update process, particularly given the potential
multitude of nodes.

2.4.4 . Amelioration axes
Embedded AI is still a new domain, and a wide range of solutions are

currently being developed to facilitate its more widespread implementation.
Solutions are available to enhance the performance of embedded AI algo-
rithms through both software and hardware approaches. Methods have also
been proposed to address the need for model training and adaptability in
response to drift. One such method involves using a server to retrain model
based on offloaded sensor data before uploading a newmodel to the devices.
This method is energy-intensive and can be challenging for LPWAN networks,
which are the most commonly used in agricultural scenarios. Regrettably, we
couldn’t find any practical implementations of embedded AI in LPWAN net-
works that take in account this critical need for update, even though surveys
have alluded to the potential of such applications. Thus, we presume that this
remains largely unexplored territory in research. Consequently, we chose to
investigate the energy efficiency of embedded AI in LPWAN networks, partic-
ularly within an agricultural context, and prioritize the development of algo-
rithmic tools for energy-efficient data offloading and model updates.

2.5 . Knowledge engineering

As explained in the introductory chapter of this thesis, an IoT platform
must also proficiently interpret the data collected from various sensors. Agri-
culture presents a vast array of diverse data involved in the plant growing
process, especially when adhering to the principles of agroecology. There-
fore, to assist farmers inmanaging the data they have collected, efficient soft-
ware tools must be provided. Such software can be very simple in certain use
cases, for example, controlling an irrigation valve based solely on the soil hu-
midity value from a sensor, with only a conditional if-else statement. However,
such a simplistic decision-process architecture can quickly become inefficient
when dealing with a vast number of cases, data, and scenarios. For instance,
the number of if-else statements in the previous example could substantially
increase if the irrigation process also took into account factors such as the
type of soil, type of plants, the farm’s region, future weather forecasts, time
of day, etc. Therefore, it is advantageous to implement knowledge directly
into a computer system, enabling it to autonomously make optimal decisions
based on its understanding of a situation. To achieve this, we focused our
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research on a domain of Artificial Intelligence known as Knowledge Engineer-
ing.

2.5.1 . Definition
The definition of knowledge engineering in information systems is as fol-

lows: "Knowledge engineering is the process of developing knowledge-based
systems in any field, whether it be in the public or private sector, in commerce
or in industry" [307]. Knowledge is also defined as "The explicit functional as-
sociations between items of information and/or data" [308]. Data refer to
individual reading values from sensors, while information pertains to a pre-
liminary degree of data analysis. For instance, considering the location and
time of temperature readings (e.g., specific points within the city) allows one
to discern a trend, illustrating the ongoing temperature shifts and determin-
ing a state, such as cold or warm. Finally, knowledge entails being aware of in-
formation provided by data, aswell as other factors, in order tomake effective
decisions. The relationship between data, information, and knowledge is pre-
sented in Figure 2.14. The example illustrates that when data indicates stormy
weather (an information), a person, based on their knowledge of storm condi-
tions, content of their wardrobe, and destination, can choose an appropriate
coat to avoid getting sick when leaving its place.

Figure 2.14: Knowledge Pyramid
Implementation of knowledge in computer system is a complex process

as Knowledge can have different forms [309]:
• Explicit: It is a form of knowledge that can be articulated and easily
passed on to others. Examples include rules from a game,maintenance
procedures, or, in our context, agricultural methods. It is often doc-
umented in various media forms such as books, tutorials, videos, or
other kinds of media.

• Implicit: Implicit knowledge refers to a type of knowledge that is chal-
lenging to articulate or share. This encompasses personal experiences,
intuition, motor skills, and so forth. It is particularly relevant in the con-
text of pattern recognition. For example, while it is straightforward to
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recognize someone by their face, it becomes considerably more com-
plex to enable another person to recognize them simply by describing
their appearance.

Knowledge, being a fundamental trait of human intelligence, therefore,
engineering it can be considered a field of Artificial Intelligence. Knowledge
engineering refers to the conception of Knowledge-Based Systems (KBSs).
There aremultiple ways of implementing KBSs, as explained by the authors in
[310]. For example, Neural Networks in Machine Learning are effective tools
to implement implicit knowledge as they train (or in other words "gain expe-
rience")over a certain amount of data to be able to recognize patterns, such
as image interpretation.

In our specific case, we aim to construct a KBS capable of making deci-
sions regarding agroecological farm procedures based on sensor data. Con-
sequently, the most apt software architecture for our research is known as
Expert Systems, which are often referred to simply as KBSs. Expert systems,
theorized since the mid-80s by the authors in [311], are software designed to
generate decisions based on input and knowledge. They emulate the behav-
ior of a human expert, meaning they can comprehend a situation (or a frame)
by applying logic to it based on rules that apply to a domain of knowledge. For
example, a medical system might take user input for a disease and patient
characteristics, then propose an adapted posology for the treatment based
on those data. Another example in smart farming would be a system capable
of determining the correct amount of water for an area based on soil mois-
ture, sun exposure, time of day or year, plant type, etc., much like a farmer
would do through the knowledge acquired through education. For an expert
system to function correctly, it must implement efficient tools to retrieve and
model the expert’s knowledge within the KB. The process of outputting a de-
cision is termed an inference. The global architecture of an expert system is
presented in Figure 2.15.

Figure 2.15: Expert System Basic Architecture
It is clear that the knowledge base (KB) is at the core of such expert sys-

tems. KBs are software models designed to represent knowledge in a form
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that is accessible and interpretable by a computer. In order to be efficient,
they need to have several core characteristics:

• Formal representation: It aims to provide a way to represent explicit
knowledge. The definition given by the authors in [312] is: "A formal
representation is a computer-interpretable standardized form that can
serve as the basis for unambiguous descriptions of hypotheses and
models in a domain of discourse." In other words, it is the structure
within which the actual computer code expresses knowledge. There is a
variety of tools to encode knowledge, with two of themost famous ones
being RDF (Resource Description Framework) and Ontologies. They are
used to describe resources and the relationships between them. On-
tologies are more complex as they can allow for the representation of
more intricate properties and relationships between resources. Over-
all, they are schematic structures representing graphs. In Chapter 4,
we will explore in more depth how ontologies are implemented, as we
identify them as the most suitable structure for our application. It is
important to note that ontologies are so prevalent in the construction
of knowledge bases that knowledge bases are often simply referred to
as ontologies.

• Scalability: Scalability in the context of a knowledge base refers to its
ability to efficiently handle a growing amount of information, users, and
queries without experiencing significant degradation in performance.
A scalable knowledge base should be able to expand its capacity and
capabilities to accommodate increasing data and user demands while
maintaining responsiveness and usability. This typically involves opti-
mizing data storage, retrievalmechanisms, and computational resources
to ensure smooth operation as the knowledge base grows.

• Interoperability: This refers to the system’s ability to seamlessly in-
tegrate and exchange information with other systems, databases, or
knowledge bases. A knowledge base with good interoperability can
communicate and share data effectively with various software appli-
cations and platforms, making it possible for different systems to work
together and access the knowledge within the knowledge base. This is
essential for achieving a holistic and interconnected information envi-
ronment, enabling data sharing and facilitating efficient collaboration
across diverse tools and technologies. The idea is also to reuse already
existing resources when needing access to a certain type of knowledge.
For example, if I build a knowledge base for a woodworking applica-
tion, it could be useful to retrieve information about trees. We could
implement knowledge about trees directly in the knowledge base, but
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this could take time and require expertise beyondwoodworking. There-
fore, if a knowledge base has already been constructed about trees by
more specialized experts in this domain, it would be better to reuse that
one.

It is worth mentioning that knowledge bases are also a core instrument
in today’s internet infrastructure. The W3C (World Wide Web Consortium),
the organization in charge of promoting the technological compatibility of the
web, has pushed toward the implementation of what they call the Semantic
Web, which they define as "The Semantic Web provides a model that allows
data to be shared and reused among multiple applications, companies, and
user groups" [313].The Semantic Web is an extension of the World Wide Web
that aims to enable machines to understand the meaning of information on
web pages and in digital content. It is based on the idea of adding semantic
metadata to web resources, allowing computers to process and interpret the
data in a more intelligent way. This metadata helps create a web of linked
data with explicit relationships between concepts and entities.

In conclusion, knowledge bases are often dedicated to a specific domain
and should maximize the reuse of semantic knowledge already available. In
the following sections, we will highlight some specific applications of knowl-
edge bases for IoT in agriculture and how they can help identify the missing
resources for our agroecological scenario.

2.5.2 . Internet of things application
IoT has been an area where Knowledge Engineering can offer substantial

benefits, particularly in ensuring interoperability. As mentioned in Section
2.2.2, one of the major limitations of IoT is the diversity of devices, protocols,
and associated services. A knowledge base in this area could address this
issue, and as a result, multiple efforts have been made towards the creation
of such resources. In their well-crafted surveys, authors in [314, 315] have
explored Semantic applications for the IoT domain comprehensively. They
identify various types of knowledge bases to cater to different needs within
IoT: those focusing on data management, those concentrating on hardware
representation, those dedicated to services, and those emphasizing security.
Hybrid approaches also exist.

The W3C has shown a keen interest in the semantic representation of IoT.
Similar to the semantic web, the semantic representation of Things in the In-
ternet of Things (IoT) could offer significant advantages to web infrastructure,
especially considering the exponential deployment of IoT devices. Therefore,
since 2012, they have developed the Semantic Sensor Network (SSN) with the
same intention [316]. SSN takes the form of an ontology and serves the pur-
pose of describing sensors, their observations, related procedures, studied
features of interest, the samples used, observed properties, and even actu-
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ators. SSN employs a modularized architecture, both horizontally and verti-
cally, and incorporates a self-contained core ontology named SOSA (Sensor,
Observation, Sample, and Actuator) to represent its fundamental classes and
properties. Due to their distinct scopes and levels of axiomatization, SSN and
SOSA collectively enable support for a wide range of applications and use
cases. The domain of the semantic Web applied to things is often refers to
as Web of Things (WoT) [317].Nowadays, the SSN serves as the foundation for
various IoT knowledge-based applications, such as wireless sensor networks
[318] and cloud operations [319], among others.

2.5.3 . Agricultural Application
The creation of knowledge bases for agricultural purposes has been a fo-

cus of research in the Smart Farming Domain. Comprehensive surveys on
available semantic resources and knowledge bases for agriculture have been
conducted by authors in [320, 321]. Since the mid-1980s, the Food and Agri-
cultural Organization of the United Nations has developed and maintained
AGROVOC [322], which is the largest and most comprehensive semantic re-
source for agricultural knowledge. AGROVOC comprises over 40,000 concepts
available in more than 40 languages, encompassing knowledge about plants,
farming methods, forestry, nutrition, and various other areas related to agri-
culture. However, AGROVOC functionsmore as a thesaurus than an ontology,
which means that the relationships between entities are more hierarchical
than ontological, resulting in less extractable knowledge [323].

Managing and exploiting one large repository for all agricultural knowl-
edge can be challenging. Hence, it is often preferable to create smaller knowl-
edge bases on various topics and link them together. There is a wide variety of
ontologies covering every aspect of agricultural procedures, types of plants,
and more, which are grouped into repositories. Some notable repositories
for ontologies include AgroPortal [324], The Crop Ontology [325], Planteome
[326], CIARD Ring Portal [327], and GODAN (Global Open Data for Agriculture
and Nutrition) [328].

What sets these repositories apart from their larger counterparts, such as
AGROVOC, is their decentralized development approach. In these reposito-
ries, motivated individuals can contribute specific or specialized information
that may be of interest to smaller user groups but might get overlooked by
larger ontology developers. A prime example of this is CropPestO [329], an
ontology model for identifying and managing plant pests and diseases. This
ontology not only covers different types of threats to various crops but also
provides detailed information about their treatment, conditions for develop-
ment, and numerous other meta-properties. It’s likely that such fine-grained
information might be absent from larger ontologies.

In the specific domain of knowledge bases dedicated to organic agricul-
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ture or agroecology, our research has led us to the conclusion that this is a
relatively underexplored area. We have not come across any ontologies with
the keywords "Agroecology" or "Organic Agriculture" in the previously men-
tioned repositories. Our literature review has revealed only a limited num-
ber of research works in this field: In 2009, the European Union launched
Organic.Edunet [330]. The goal was to provide a tool based on ontology and
semantic resources, including AGROVOC, to create a platform for educating
younger generations about Agroecology and Organic Farming. In 2018, au-
thors in [331] proposed anontology dedicated to promotingOrganic andGood
Agricultural Practices in Thailand. However, the exact implementation details
remain somewhat vague, and no link to the actual ontology has been pro-
vided. Since 2019, the French government has been funding a knowledge
base for sharing agroecological transition knowledge. However, it’s impor-
tant to note that this knowledge base is primarily oriented towards providing
general information to farmers rather than managing an IoT platform [332].
In 2021, researchers from INRAE (The French National Institute for Agriculture
and Ecology Research) proposed a position paper from a biological perspec-
tive, emphasizing the need for ontological development in organic agriculture
[333]. During the same year, researchers in the field of social sciences also
highlighted the necessity of an ontological approach for Agroecology [334].
Finally, three recent research works have focused on the practical implemen-
tation of a general ontology for what they refer to as Climate Smart Agricul-
ture [335, 336, 337]. While they offer interesting approaches to model agroe-
cological principles, they may be insufficient for our application, particularly
concerning IoT, as discussed in Chapter 4. Lastly, recent work conducted this
year has utilized a knowledge base approach to implement a Deep Neural
Network System Using Ontology to Recommend Organic Fertilizers for Sus-
tainable Agriculture [338]. However, this work is dedicated to a specific use
case only.

2.5.4 . IoT and agricultural Application
KBSs that focus on both agricultural applications and agriculture itself are

still a relatively new area of research. The first comprehensive survey we
found encompassing both domains was published in June 2023 by the au-
thors in [339], even though the authors in [321] briefly refer to IoT applications.
From these works, we identified three major IoT and agricultural Knowledge
Base architectures. The first one, called AgOnt, was proposed by authors in
2010 [340]. The authors created the "AgOnt" ontology to capture relationships
in the lifecycle of agricultural products, considering data such as humidity or
temperature. These relationships involve product properties (e.g., location,
timestamp, environmental parameters, device, processing status) and con-
nections to source products (e.g., a plant’s relationship to its seedlings from
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which it originates). However, it is merely an theoretical architecture for map-
ping food produce according to data. The second architecture was proposed
in 2016 by the authors in [341], and it focuses on linking device data and farm
operations through knowledge base reasoning. They based their ontology on
the Semantic Sensor Network previously mentioned in [316]. They proposed
two use cases to demonstrate the efficiency of their system: one regarding
cow fertility detection and management through heat sensors, and the other
regarding soil fertility, considering soil composition andmoisture levels. They
conclude the need for a broader knowledge base for agricultural and IoT ap-
plications, as their work serves as a showcase of the potential of such applica-
tions. Finally, the authors in [342] proposed an ontology based on the SSN and
other agricultural repositories to create a system capable ofmanaging various
farming actions. They successfully tested their systemwith irrigationmanage-
ment based on plant characteristics. However, once again, it is a broadmodel
that requires knowledge acquisition. Other knowledge-based systems have
been implemented with IoT for specific agricultural application. For example,
the authors in [122] proposed a KBS to monitor early plant diseases based on
weather data from sensors.

Overall, our research concludes that implementations of knowledge bases
in the domain of IoT and agriculture are still scarce. Therefore, various types
of architectures should be proposed to outline the advantages and drawbacks
of each, with the aimof providing a future standard akin to the SSN.Moreover,
we found no applications regarding IoT devicemanagement and agroecology.
Finally, many of the KBSs studied regarding IoT and agriculture did not imple-
ment different types of sensors regarding their capacity to provide embedded
intelligence.

2.5.5 . Limitations
The limitations within this domain are manifold. Firstly, the process of

gathering expertise-driven knowledge can be arduous and demanding. Craft-
ing a comprehensive ontology or knowledge base for the agricultural sector
is an intricate endeavor. Agricultural knowledge is extensive and in a state of
constant evolution, rendering the task of encapsulating every facet of agricul-
ture within a single ontology or knowledge base quite challenging. Based on
this observation, we wish to highlight the absence of knowledge-based sys-
tems specifically tailored to Agroecology and Organic Farming. This research
gap becomes even more pronounced in the context of agroecology and IoT,
where, to the best of our knowledge, no KBS has been proposed to address
inquiries within this specialized field. Lastly, we must also acknowledge the
limitations of integration within the emerging Embedded AI paradigm, partic-
ularly in our specific case involving TinyML and LoRa. Nevertheless, it’s impor-
tant to note that despite these challenges, knowledge bases hold the poten-
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tial to significantly enhance the organization, retrieval, and decision-making
processes in the field of agriculture.

2.5.6 . Amelioration axes
Within the field of knowledge base development, the creation of a special-

ized ontology designed for the management of Agroecological and IoT-based
farming practices holds the promise of enhancing sustainability and aiding
farmers in effectively managing their farms. Furthermore, exploring the in-
corporation of smart sensor characteristics and requirements within this do-
main could yield valuable insights that extend beyond our own, warranting
careful examination.

2.6 . Conclusion and proposed contribution

This chapter aimed to provide an overview of Smart Farming research
within the realmof IoT. Our exploration revealed several key limitations in var-
ious aspects of IoT platforms for agriculture. Firstly, on the networking front,
the emergence of the Embedded Intelligence paradigm, particularly TinyML,
offers essential capabilities to sensing devices, allowing them to operate in-
dependently of the cloud and be more energy-efficient. However, challenges
related to model drift necessitate that TinyML devices can receive firmware
updates and offload certain data for model retraining in the cloud. This re-
quirement becomes particularly complex in Low-Power Wide-Area Network
(LPWAN) settings, where devices communicate at low data rates and with low
duty cycles, limiting the amount of transferable data per day and the size of
data and firmware update transfers. Secondly, from a decision-making per-
spective, both IoT platforms in the agricultural domain and the IoT domain, in
general, are inherently complex, involving a multitude of data sources. Effi-
cient knowledge management techniques are required to navigate this com-
plexity effectively. This need is particularly evident in the field of Agroecology,
where environmental conditions and ecosystem behavior heavily influence
the proposal of efficient farming methods based on collected data.

These limitations have directed our thesis towards two primary contribu-
tions. The first contribution aims to demonstrate the energy-saving efficiency
of TinyML and LPWAN architecture compared to cloud-basedmodels. We will
utilize the LoRaWAN LPWAN network, identified as the most suitable for agri-
cultural applications. Additionally, we will propose an efficient architecture
that enables model retraining in the cloud through punctual image offloading
via LoRa and Firmware Update Over the Air through LoRa. The second con-
tribution focuses on the decision-making aspect. We propose the creation of
an ontology to assist farmers in managing sensor networks in Agroecology
farms. Our ontology will primarily address sensors management, especially
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smart sensors equipped with TinyML, and agroecological responses concern-
ing plant and environmental characteristics.
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3 - Anenergy-efficientwireless sensornetwork
for Embedded AI devices

3.1 . Introduction

Based on the review presented in Chapter 2 of this thesis, we identified
that IoT platforms, especially within the agricultural sector, possess several
technological limitations that need addressing. This chapter delves into the
design and testing of an efficient Wireless Sensor architecture for Embedded
AI devices for LPWAN agricultural network. As detailed in section 8, the ap-
plication of Artificial Intelligence is central to Smart Farming. AI can predict
weather and climate patterns, monitor crop growth, forecast yields, automate
processes with robotic machinery, and offer actionable insights derived from
vast data sets collected by various sensor devices. This leads to more sustain-
able and efficient farming practices. A particularly promising application of
AI in agriculture is the processing of complex data such as images or sounds
using computer vision or audio analysis algorithms.

Those AI algorithms usually tend to require higher computational process-
ing power than typical IoT devices, such asmicrocontrollers or simple Systems
On Chips, can provide. Therefore, as shown in section 2.4, power-constrained
IoT devices often offload the computational processes of AI to other devices
in the fog or a cloud server. This introduces multiple issues. Firstly, there are
concerns about privacy and security since data being transferred are subject
to security breaches or can be unethically used by the cloud service provider.
Secondly, there’s the matter of latency. The overall process of transmitting
the data to another device can introduce significant delay, which might be
detrimental, especially for time-critical applications. A third challenge arises
when there is a loss of connectivity, rendering the devices useless. Lastly, and
perhaps most significantly for battery-powered devices, is the issue of energy
consumption. Wireless communication is the most energy-intensive opera-
tion for constrained devices and often accounts for the majority of battery
usage. In the context of agricultural wireless sensor networks, this energy
constraint becomes even more pronounced. Devices often need to commu-
nicate over long distances and are scattered over vast geographical areas,
making battery management and recharging complex. To conserve energy
during communication, a specific type of wireless network called LPWAN (Low
Power Wide Area Network) is employed. These networks allow devices to
communicate over long distances with minimal energy costs but come with
the trade-off of reduced data rates. This lower data rate can hinder or even
prevent cloud-based computer vision applications from being implemented
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effectively in farming environments.
Hopefully, as shown in section 2.4, recent technological advancements

have brought AI algorithms to the edgewithmethods like TinyMachine Learn-
ing. This allows simple microcontrollers to run complex neural networks di-
rectly on their computation-constrained hardware. This approach does come
at the expense of some accuracy, but the trade-off is usually acceptable for
non-critical applications, such asmost farming operations. Despite promising
results, this new AI trend has a high sensitivity to model drift. This means that
even if a model is trained for a generic application, it will often require ad-
justments and improvements once deployed in the specific ecosystem where
it operates. As a result, there’s a need for model retraining using local data
where it’s deployed. Although theprospects for runningAImodels are promis-
ing, on-device learning for constrained hardware is still in an early stage for
traditional microcontrollers. Model retraining is therefore often conducted
in the cloud, necessitating the offloading of data that might have insufficient
confidence score levels for the predictions made. Once the refined model is
ready, it’s then redeployed to the devices. This entire process amplifies wire-
less communication, leading to increased network congestion and power con-
sumption, which can be challenging for LPWAN networks to support.

In conclusion, this context highlights different limitations regarding the
uses of TinyML in agricultural LPWAN networks. The questions are multiple.
Can the usage of TinyML with combination of LPWAN can be more energy ef-
ficient that cloud based system? And can LPWAN meet the requirements of
TinyML regarding punctual heavy data offloading and Firmware update over
the air while still being energy efficient? To answer those question this chapter
will propose the development of dedicated algorithms and a series of experi-
mentation to evaluate them in specified scenarios before drawing conclusion
on the feasibility and the advantages over cloud based approach of the pro-
posed TinyML/LPWANWSNarchitecture. The focus for LPWANwill be directed
towards LoRaWAN networks, as it was identified as the most suitable LPWAN
technology for agricultural applications in section 2.3.6.

3.2 . Architecture proposal

3.2.1 . Scenario
To assess the feasibility and efficiency of our proposed TinyML and LPWAN

architecture, we examined an agricultural use case focusing on strawberry
monitoring with two functional modes: normal behavior and degraded con-
dition mode. In the normal behavior mode, an intelligent, battery-powered
camera sensor, equipped with a TinyML algorithm, is stationed in a field. Its
primary task is to detect and count strawberry fruits. After determining the
count, the sensor sends this data to an application server in the cloud, which
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hosts a decision platform, using a LoRaWAN network . Decisions are made
based on the fruit count and other factors. These might include initiating
fertilizer application if the fruit count is lower than expected, taking counter-
measures against potential diseases or pests, detecting thefts by humans or
wildlife, or sending a harvest notification if the fruits are ripe. This action di-
rective is then passed on to the executor, which might be the farmer or an
autonomous robot in order to optimize their intervention. For example, a hu-
man or robot operator will only move or relocate itself for harvest when fruit
are ready. A visual representation of this use case can be found in Figure 3.1.

Figure 3.1: System in normal behavior mode
In the normal behavior mode, the TinyML algorithm predicts the number

of available fruits with a certain confidence score. If this score drops below a
specific threshold, the system shifts to the "degraded condition mode." The
threshold is determined by the application’s criticality. In our case, we have
arbitrarily set it at 90%. In this mode, the sensor device begins offloading pic-
ture data to the LoRaWAN network without disturbing its normal functioning.
This means it adapts its transfer to avoid network congestion. After collecting
a sufficient amount of new data, the model is retrained in the cloud on the
application server. Once this is complete, the update is transmitted from the
application server to the LoRaWAN server, which thenmanages the Firmware
Update Over the Air (FUOTA) process for the designated devices. This mode
is depicted in figure 3.2.

Our system architecture is therefore made of five main components:
1. Smart sensor: It uses a microcontroller running a TinyML algorithm to
infer the number of fruits within its field of view. If the confidence score
of its inferences falls too low, it requests a firmware update over the air
and offloads its data to the cloud.
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Figure 3.2: System in degraded condition mode : Data offload and FUOTAprocess
2. Gateway: Responsible for facilitating communicationbetween the LoRa

wireless physical network and the LoRaWAN server over the internet.
3. LoRaWANServer: Responsible for receiving and dispatchingmessages

between the device and the Application Server. It also oversees the
FUOTA process in LoRa. The LoRaWAN server can often be located at
the same location as the application server or directly on the gateway.

4. Application Server: It hosts the Cloud decision platform responsible
for interpreting the results from the smart sensor. It is also in charge of
data storage and model retraining when the system enters degraded
condition mode and sufficient new data has been acquired.

5. Performer: Thedetermined action is then relayed to the executor, whether
it be a farmer or a robot.

From the state-of-the-art review we conducted throughout our research
and through discussions with other researchers, it appears that the specific
architecture of using a microcontroller to run a TinyML algorithm and com-
municate results through LoRa, while also being capable of updates via image
transfer and FirmwareUpdateOver TheAir (FUOTA), is novel. Closeworks that
aligns with ours are presented by the researchers in [343], who also devel-
oped a platform with a TinyML model for the communication of results over
a LoRa network, specifically for mosquito wingbeat classification to count dif-
ferent species. Another team of research proposed a retro fit system where
they use a microcontroller ESP32-cam to read the mechanical display of a wa-
ter meter and communicate the data over LoRa [344]. Authors in [345] also
developed a bin management system using LoRa and edge AI. However, they
ran the TinyML model on a System on Chip (SoC) Raspberry Pi instead of a
microcontroller and did not tackle the issue of energy consumption. All the
works previously mentioned, despite demonstrating the applications of such
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architectures even beyond the realm of agriculture, did not propose an up-
date procedure to address model drift post-deployment.

3.2.2 . Environment development
To execute our proposal, we meticulously selected a range of software,

hardware components, and the LPWAN communication protocol, LoRaWAN.
This section will delve into each of these components in detail to elucidate
their functionalities and role into our architecture.
LoRa & LoRaWAN

We will discuss the detailed workings of LoRa and LoRaWAN in this section,
alongside research projects that alignwith our architectural objectives, specif-
ically FUOTA and image transmission.

Among the myriad LPWAN technologies available, LoRa stands out as the
mostwidely used and recommended for agricultural applications. This prefer-
ence is attributed to its communication range, power efficiency, open-source
nature, and the utilization of open frequency bands that don’t necessitate ex-
pensive licenses. In practical terms, this means farmers can easily establish
their own networks on their farms with the only major expense being the
gateways and other hardware equipment such as server if he does not rely on
the cloud for the application process. Historically speaking , LoRa is a recent
technology and began in 2009 when two French engineers, Nicolas Sornin
and Olivier Seller [346], wanted to develop a long-range, low-power modu-
lation technology. They created their own startup in 2010 called Cycleo that
revolved around this goal. Convinced by the potential of this long-range and
low-power technology, Semtech a major semiconductor company, acquired
Cycleo in May 2012. Semtech pushed the creation of a MAC prototocol to help
the standardisation of the technology by defining message format and the
implementation of security features, this protocol will later be refered to as
LoRaWAN and is distributed in open source. In february 2015 the LoRa al-
liance [347] was created to support and promote the global adoption of the
LoRaWAN standard by ensuring the interoperability of all LoRaWAN products
and technologies.

To achieve long distance and low power consumption, LoRa uses a Chirp
Spread Spectrum (CSS) spread spectrummodulation technique, a technology
commonly used for sonars in the maritime industry and radars in aviation
[348]. This phenomenon is also found in nature among dolphins and bats to
detect fish or insects. Indeed, Cycleo did not invent the CSS technology, but
rather pioneered the use of this technology for data transmission. From a
electronic wave modulation point of view CSS consists of changing the value
of the frequency over time, increasing or decreasing the frequency over a de-
fined time slot to encode data. The process of CSS is depicted in figure 3.3
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with a LoRaWAN frame. Each frame starts with a preamble and a synchroni-
sation process before adding the data. We can see that Chirp impulse can be
either up or down and that multiple chirp can be performed per time slot.

Figure 3.3: Chirp Spread Spectrum modulation of a LoRaWAN frame
LoRa technically is a proprietary technology as the transmission chips pro-

duced by Semtech is pattented. However the associatedMedia Access Control
(MAC) protocol built on top of LoRa modulation, LoRaWAN, is open source.
LoRa is a bidirectional communication protocol meaning it can send uplink
(from device to server) and downlink (from server to device messages) mes-
sages. A typical LoRaWAN network architecture is depicted in Figure 3.4.

LoRaWAN network are therefore composed of the following part:
• End Devices: Sensors or actuators transmit messages wirelessly using
LoRa modulation to the gateways and similarly receive messages wire-
lessly from the gateways.

• Gateways: Receive messages from end devices and forward them to
the Network Server using a a different network type called backhaul,
like cellular, wifi, ethernet etc.

• Network Server: It primarily routes messages from the devices to the
application server, verifies addresses, and ensures network availabil-
ity by sending adaptive data rate commands to the devices. It is also
responsible for implementing security protocols and confirming the au-
thenticity andorigin ofmessages. Furthermore, it oversees the acknowl-
edgment process by relaying receive statuses to devices. If amessage is
receivedmultiple times, the software sorts and retains only the relevant
one. In terms of message transmission verification, LoRaWAN can be
likened to a simple ALOHA protocol. It also manage downlink by choos-
ing the best gateway for a device and also by handling the firmware
update over the air processes.
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Figure 3.4: A typical LoRaWAN network architecture

• Application servers: Where the data are exploited.
• Join server: This server, that is often associated to the network server,
is in charge of managing the activation of new devices in a network in a
secure way.

End devices communicate with nearby gateways and each gateway is con-
nected to the network server. LoRaWAN networks use an ALOHA based pro-
tocol, so end devices don’t need to peer with specific gateways. Messages
sent from end devices travel through all gateways within range. These mes-
sages are received by the Network Server. If the Network Server has received
multiple copies of the same message, it keeps a single copy of the message
and discards others. This is known as message deduplication.

Asmention previously, LoRa frequencies falls into the category of ISM reg-
ulation. The regulation about those band variate between countries as no
worldwide standard has been adopted. In Europa for example, those bands
are centered around the 868 MHz frequency while in the US it is around the
915 MHz one. This ISM frenquency is divided into various channels. In Europe
there is a total of 16 channel with a 125 kHz bandwith between 863 Mhz and
870 MHz. As those licenses are free to use there is still a strong regulation
limitation called the duty cycle. In Europe, the duty cycle is 1%, meaning that
a device can only send data during 864 second per day.

The data rate (DR) in LoRa is a crucial factor. It represents the number of
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Data Rate Configuration (SF + BW) Bit rate (bit/s)0 LoRa: SF12 / 125 kHz 2501 LoRa: SF11 / 125 kHz 4402 LoRa: SF10 / 125 kHz 9803 LoRa: SF9 / 125 kHz 17604 LoRa: SF8 / 125 kHz 31255 LoRa: SF7 / 125 kHz 54706 LoRa: SF7 / 250 kHz 11000
Table 3.1: Bit rate for each data rate (DR0 - DR6) configured with thespreading factor and the bandwidth.
bits transmitted per unit of time. In LoRa modulation, the data rate is influ-
enced by several factors, including the spreading factor (SF), bandwidth (BW),
and coding rate (CR). It is expressed by the following formula:

DR =
BW × SF × CR

2SF

Table 3.1 displays the recommended data rate configurations and their
associated bit rates, correlated with various Spreading Factor and Bandwidth
values. The coding rate isn’t considered as it is an external parameter depen-
dent on the specific application. More often, it is set to its common value of
4/5.

The maximum payload of each data packet is also defined by the regula-
tion. In Europe it is dependent on the data rate and the different value are
gathered in table 3.2.

Data Rate N0,1,2 513 1154,5,6,7 222
Table 3.2: Packet sizes (N) in bytes for each Data Rate of Europeanregulation
Data rate core characteristics are :
• Spreading Factor: The spreading factor controls the chirp rate, and
thus controls the speed of data transmission. Lower spreading fac-
tors mean faster chirps and therefore a higher data transmission rate.
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Lower spreading factors reduce the range of LoRa transmissions, be-
cause they reduce the processing gain and increase the bit rate. Chang-
ing spreading factor allows the network to increase or decrease data
rate for each end device at the cost of range. The network also uses
spreading factors to control congestion. Spreading factors are orthog-
onal, so signals modulated with different spreading factors and trans-
mitted on the same frequency channel at the same time do not inter-
fere with each other. LoRamodulation has a total of 6 spreading factors
from SF7 to SF12. The battery life of an end device is highly dependent
on the spreading factor used. Higher spreading factors result in longer
active times for the radio transceivers and, therefore, shorter battery
life. The different type of SF are shown from a chirp point of view in
figure 3.5

Figure 3.5: Comparison of LoRa Spreading Factors: SF7 to SF12
• Bandwidth: In this context, the bandwidth refers to the channel fre-
quency utilized by the device for communication. Doubling the band-
width leads to a corresponding doubling of the bit rate, given a constant
spreading factor and coding rate. The minimum bandwidth is 125kHz,
but 250 kHz or even 500 kHz can also be used, as illustrated in table 3.3.

• Coding rate (CR): LoRa modulation also adds a forward error correc-
tion (FEC) in every data transmission. This implementation is done by
encoding 4-bit data with redundancies into 5-bit, 6-bit, 7-bit, or even 8-
bit. Using this redundancy will allow the LoRa signal to endure short
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Spreading factor Bandwidth Bit rate (kbits/s7 125 5.57 250 10.97 500 21.9
Table 3.3: Difference in bit rate according to bandwidth

interferences. The Coding Rate (CR) value need to be adjusted accord-
ing to conditions of the channel used for data transmission. If there
are too many interference in the channel, then it’s recommended to in-
crease the value of CR. However, the rise in CR value will also increase
the duration for the transmission

In conclusion regarding the Data Rate, it is adaptive. This means that de-
pending on the quality of the linkwithin a network, which is determined based
on the Signal to Noise Ratio, both the gateway and node will adjust their data
rate to ensure reliable transmission. Generally, lower data rates are less sus-
ceptible to noise.
LoRa implements the simple ALOHA access protocol for channel access. Every
time a device wants to use a channel, it sends its message without checking
if the channel is busy. If it does not receive an acknowledgment from the
reciever, it will retransmit its message after a random period of time [349].

The LoRaWAN specification defines three device types: Class A, Class B,
and Class C. All LoRaWAN devices must implement Class A, whereas Class B
and Class C are extensions to the specification of Class A devices. All device
classes support bi-directional communication (uplink and downlink);

• Class A: Class A communication is always initiated by the end-device. A
device can send an uplink message at any time. Once the uplink trans-
mission is completed the device opens two short receive (downlink)win-
dows. There is a delay between the end of the uplink transmission and
the start of the receive windows (RX1 and RX2 respectively. If the net-
work server does not respond during these two receive windows, the
next downlink will be after the next uplink transmission. This shown in
figure 3.6

• Class B: Class B devices open scheduled receive windows for receiving
downlink messages from the network server. Using time-synchronized
beacons transmitted by the gateway, the devices periodically open re-
ceive windows. The time between two beacons is known as the beacon
period. The device opens downlink ‘ping slots’ at scheduled times for
receiving downlink messages from the network server. Class B devices
also open receive windows after sending an uplink, as you can see in
Figure 3.7:
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Figure 3.6: Class A receive windows

Figure 3.7: Class B receive windows

• Class C: Class C devices extend Class A by keeping the receive windows
open unless they are transmitting, as shown in the figure below. This
allows for low-latency communication but is many times more energy
consuming than Class A devices. The mechanism is showed in figure
3.8.

Figure 3.8: Class C receive windows

Amongst the variety of application LoRaWAN can be employed in, two of
them are of special interest for us and our architecture namely the heavy me-
dia file transfer and the firmware update over the air (FUOTA).
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• Heavy data offload: The architecture we propose that support model
update for local application is, to our knowledge, novel. Consequently,
we found no literature addressing this specific use case of heavy data
offloading for model re-training. However, studies exploring the trans-
fer of substantial data, such as images or audio files, using the LoRa net-
work are available. In this section, we’ll examine them to better define
our strategy for implementing this functionality in our system. Firstly,
we’ll conduct a theoretical calculation to understand the number of pic-
tures that can be sent daily based on the picture size. Various data rate
values exist, determined by network availability, which in turn deter-
mine the speed (S) of transmission in bits per second (Bps). A lower
data rate increases the probability of message transmission at the ex-
pense of bit rate. Typical data rate values for LoRa are presented in
table 3.1. We are also aware of the duty cycle (DC) — the time a device
can transmit data daily as per regulations. Using this information, along
with the size of a media (MS), we can determine the maximum number
(N) of times a media can be transmitted in a day using the formula:

N =
S ×DC

MS

After performing the calculations, the theoretical number ofmedia items
that each data rate can send, based on media size, is shown in Figure
3.9.
Typical AI applications in agriculture demand varied data processing
frequencies based on the specific application. For instance, monitor-
ing the progression of diseases on crop leaves may necessitate data
collection only once an hour. In contrast, tasks such as identifying and
counting individual cows in a herd passing through a gate could require
thousands of executions daily [350]. Given the diverse range of applica-
tions, it’s reasonable to assume that many will need at least a hundred
executions a day.
The results underscores LoRa’s inefficiency in handling large file trans-
fers, rendering it ill-suited for AI cloud data processing. Transferring
files of 10 kb remains manageable, with every spreading factor able to
transmit more than ten images daily. In the most optimal data rate sce-
narios, over a thousand can be sent. However, the system encounters
difficulties with files larger than 100kb. None of the data rates can sat-
isfy the previouslymentioned requirement for agricultural applications.
This also underscores the need for efficient file compression to adhere
to regulatory standards, particularly when sporadically offloading large
data sets.
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Figure 3.9: Theoretical maximum number of large media files transferableper day based on data rate and media size

Despite these limitations, LoRa has been studied as a tool for image
transmission in various scenarios. From our research, we identified
noteworthy projects and compiled their characteristics and limitations

– Authors in [351] proposed amethod for long-distance image trans-
mission using LoRa for mangrove monitoring. They achieved dis-
tances of up to 6 km, which was suitable for their application. For
transmission, the images were compressed using the JPEG format
before being converted into a hexadecimal format. Subsequently,
the files were split into small packets for transmission. Although
they mentioned duty cycle limitations, they did not specify the
number of images transmitted per day that adhered to these con-
straints. The exact size of the transmitted image wasn’t explicitly
stated; however, an approximation of 25 kB can be inferred from
their experimental results. They tested their system using various
data rates, and the transmission speeds ranged from 67 to 840
seconds. This implies that between 12 and 1 imagewas transferred
per day.

– Authors in [352, 353] tested image transmission for three simul-
taneous nodes using a broadcast timing algorithm. In this setup,
the gateway synchronizes the transmissions of each node, allot-
ting specific time slots for their individual image transfers. In their

112



experiments, they transmitted images approximately 30kb in size.
They assessed the transmission of these images under various
conditions and at different data rates. Under optimal network
conditions (highest data rate with a clear line of sight), the trans-
mission time was 51 seconds, while in degraded network condi-
tions with obstructions such as buildings, it took 150 seconds. This
means they could transmit between 17 and 5 images a day, de-
pending on the conditions. The same author, Ching-Chuan Wei,
also conducted an analysis of LoRa image transmission based on
different encoding methods. He showed that WebP was more ef-
ficient than JPEG [354].

– Authors in [355] proposed an experimentation for LoRa image
transmission over varying distances. They successfully transmit-
ted 64 kb images over distances of 2 km in 110 seconds, 5 km in
146 seconds, and 16 km in 210 seconds. While they did not address
the duty cycle issue directly, based on their results, we can infer
that the maximum number of images they could transmit per day
is 7 at 2 km, 5 at 5 km, and 4 at 16 km. They utilized the JPEG2000
compression technique and emphasized how image encoding can
significantly influence transmission time.

– Authors in [356] attempted to implement a quasi-real-time video
surveillance system that transfers LoRa framesupondetectingmove-
ment. They demonstrated that WebP is a viable compression for-
mat for images, as they were able to reduce pictures from 3.1 MB
to 3.8 kB. However, during their testing, with unspecified parame-
ters, it took up to 10 minutes to send just one picture, suggesting
potential issues with their test setup.

– [357] proposed a compression and image recovery algorithmbased
on JPEG, where they managed to compress images that were sev-
eral MB in size to between 2.7 and 27 kB. Although they didn’t pro-
vide detailed transmission parameters, they successfully achieved
transmission times under 30 seconds to comply with the Thing
Network LoRa provider’s rules.

– [358] is the first real implementation of LoRa image transmission
that we encountered in the literature. The author implemented
a simple model using JPEG image compression to send images of
8kB, but did not specify the actual transmission time. In subse-
quent work, [359], the same authors highlighted the limitations
of the simple ALOHA protocol that LoRa uses for communication.
They also proposed employing CSMA (Carrier Sense Multiple Ac-
cess) [360] methods to allow multiple nodes to communicate im-
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ages while avoiding network congestion..
– [361] proposed an image transmission system for agricultural sce-
narios using LoRa. They compressed images using the JPEGmethod
and introduced a Multiple Packet LoRa (MPLR) protocol, which is
between 22 and 45% faster than the traditional ALOHA method.
For images ranging from 9 kb to 28 kb, transmission times varied:
from 5 to 15 seconds with the best data rate, and between 49 to
164 seconds with the lowest data rate.

– Finally, authors in [259] demonstrated the use of image transmis-
sion with LoRa for agricultural applications. They proposed a sys-
tem that transmits images using the JPEG 2000 compressionmethod.
While they did not specify the transmission time, they conducted
tests to prove the efficiency of the transmission in terms of image
integrity. Their results showed that images transferred with LoRa
retained 85% of their original information during transmission.

We compiled the different papers and their characteristics in table 3.4.

Paper Application Compression
method

Size of im-
ages

Time of
transmis-
sion

Estimated
maxi-
mum
number
of files
per day

[351] Mangrove mon-itoring JPEG 25 kB 67s to840s 1 to 12
[352, 353,354] Experimentationpurposes JPEG,Webp 30kB 50s to 150s 5 to 17
[355] Experimentationpurposes JPEG2000 64 kB 110s 7
[356] Security Cam-era Webp 3.8 kB 10 minutes -
[357] Experimentationpurposes CIRA 2.7 to 27kb 30 s 1 (TTNcompli-ance)
[358] Experimentationpurposes JPEG 8kb ? ?
[361] Weed and dis-ease detection JPEG 9kb to28kb 49 to 165seconds 5 to 17
[259] Agricultural JPEG ? ? ?

Table 3.4: Image transfer via LoRa literature survey
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The research projects we’ve encountered lead us to several conclusions
regarding heavy file transfers in LoRanetworks. Firstly, while such trans-
fers are possible, they are limited in terms of the number of transmis-
sions per day. This means they may not be suitable for applications re-
quiring frequent heavy data offloads. Based on our analysis, we believe
that an application requiringmore than 50 transfers a day would be im-
practical, and it would be advisable to minimize such transfers, thereby
tailoring the application precisely to its needs. Secondly, heavy files
must be compressed to reduce the transmission size. Ideally, the size
of compressed files should be kept under 100 kb. Among the identified
compressionmethods for images, three stood out: JPEG, JPEG2000, and
WebP, with WebP appearing to be the most efficient. This emphasis on
compression underscores the potential value of tinyML, as cloud-based
ML algorithms would primarily have access to compressed data, imply-
ing a loss of information.Lastly, we want to highlight the inefficiency of
the ALOHA protocol for large data file transmissions, as it could lead
to network congestion when many packets are transmitted simultane-
ously. To mitigate this issue, various methods have been proposed, in-
cluding CSMA protocol implementation, time slot allocation per node,
and grouped packet acknowledgments

• Firmware Update over the Air
FUOTA is a critical requirement for IoT devices. The need for updates is
inherent to any computer science project. This is due to multiple rea-
sons: The upgrading of an application, the evolution of an application
towards a different direction, calibrating a device in a specific environ-
ment, or implementing security updates to protect a device from newly
discovered vulnerabilities. Specifically, in the case of IoT, these updates
need to be performed over the air, i.e., wirelessly, as devices are often
numerous and spread across vast geographical areas. This makes it
challenging for operators to manually update each device by connect-
ing to them through a wired connection. This is typically the case for
LoRa agricultural networks. The authors in [362, 363] have provided
comprehensive surveys on FUOTA for IoT. Additionally, the researchers
in [364] have presented a survey detailing various security threats as-
sociated with firmware updates. There is usually two type of mode for
FUOTA, push mode and pull mode. In "push mode," a centralized up-
date server, whether on the cloud or locally, actively sends the latest
firmware version to each device. This method’s primary benefit is its
immediacy, ensuring devices promptly receive updates when they’re
ready for them. However, a significant drawback is its high bandwidth
consumption. As updates are sent individually to every device, this
method is best suited for updating smaller groups of devices. On the
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other hand, "pull mode" involves devices independently checking for
available updates at regular intervals. If an update is found, the device
will download it. This method is more bandwidth-efficient compared to
push mode. Yet, it has its downsides. If the device checks infrequently,
crucial updates could be delayed. Furthermore, if a device isn’t in the
right state to initiate an update, it might experience prolonged delays.
Another consideration is that devices in pullmode don’t necessarily reg-
ister for these updates. While this might seem beneficial in terms of
development simplicity, it’s not ideal from device management and se-
curity standpoints. Both of these update methods can be implemented
simultaneously within a single application, creating a hybrid approach.
In the specific case of LoRa and LoRaWAN, the FUOTA procedure has
recently been standardized by the LoRa Alliance, a working group at
Semtech, the company that owns thepatented radio technology of LoRa.
The detailed standard is available at [365, 366] and is illustrated in fig-
ure 3.10. It is recommended as a push-based method but could be
adapted into a hybrid or pull method. The FUOTA process is managed
by the Firmware Update Server, which collaborates closely with the Ap-
plication Server that implements a firmware management layer. The
File Distribution Server oversees the key parameters of LoRa FUOTA,
which include multicast addressing, fragmentation, and clock synchro-
nization. On the device side, the firmware must incorporate a boot-
loader to oversee transitions between firmware versions. The various
steps of the FUOTA process are as follows:

1. Multicast addressing: Typically, multiple devices need updates
simultaneously. For efficiency, these devices can be grouped un-
der a single address. Each device in a LoRaWAN network has a
unique identity, comprised of a 32-bit device address and a set of
AES128 keys for unique identification and authentication. A device
can also be part of up to four multicast groups. During multicast
addressing, the application server identifies the devices to be up-
dated, assigns them a specific address, and provides them with
an application key for payload encryption and a session key for
computing the message integrity check (MIC).

2. Fragmentation: Firmware images are typically large, often span-
ning several hundred kBytes, and cannot fit into a single downlink
packet; thus, multiple packets are necessary. Given that LoRaWAN
links can sometimes be unreliable, packet losses are common.
Thismakes it difficult to identify which packets have been lost dur-
ing multicast transmissions. To mitigate this, the fragmentation
specification provides commands to ensure the reliable transfer
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of large data blocks to individual or multiple devices. The applica-
tion server sends information to the device about each transmis-
sion session, including the total number of packets it should re-
ceive, as well as the error recovery and fragmentation algorithms
being used.

3. Clock synchronisation: Many LoRa devices operate in Class A
mode to conserve energy. To simultaneously update multiple de-
vices, the network server assigns a time slot to each device to be
awake to start the transmission of the update file. Since device
clocks can drift over time, the clock synchronization process en-
sures all devicesmaintain consistent timing by updating in tandem
with the server. Upon reaching their designated time slot, devices
switch to Class C mode to receive the update file.

4. Transmission: During transmission, the gateway sends a large
number of packets to the device, which doesn’t acknowledge re-
ceipt to prevent network congestion.

5. UpdateUpon receiving the firmwareupdate, the bootloader checks
its integrity before beginning the update process. If the received
file has irreparable flaws, the update is discarded. After the up-
date, the device reboots and usually returns to its default mode,
typically Class A.

Figure 3.10: FUOTA architecture
Authors in [367] have studied the specificities of the standard in differ-
ent network scenario and has conclude for the efficiency of themethod
for firmware update smaller than 100kb but onlywhen transmittingwith
the best data rate available. Authors in [368] have shown that uploading
a 128 kb firmware size took between 16mi and 8.36 hours depending on
the data rate, this is acceptable timing in the best data rate scenario but
it is way to long to respect duty cycle regulation. Authors in [369] have
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proposed an efficient implementation of a FUOTA LoRa server with the
open source LoRa server from the Chirp Stack. To the best of our un-
derstanding, no research has been done on updating TinyML models
via LoRa. Nonetheless, we presume that the firmware update process
for such applications mirrors that of more conventional ones.

Hardware

Hardware evaluations were carried out acrossmultiple platforms. For devices
running the TinyML algorithm, we selected several microcontrollers based on
specific criteria:

• Arduino’s PortentaH7 [370] pairedwith the Portenta Vision Shield -
LoRa [371]: Arduino environment needs little introduction for those fa-
miliar with microcontrollers. Recently, Arduino shifted from its iconic 8-
bit architecture to the more potent 32-bit system, facilitating advanced
computations. The Portenta H7 represent this evolution with its Arm
cortex microcontroller. It’s complemented by a shield featuring the Hi-
max HM-01B0 monochrome 320x320-pixel camera module and LoRa
capabilities, powered by Semtech’s SX1276 chip. The rationale behind
using an Arduino is to make replicating our research easier, as the Ar-
duino development environment is widely recognized and user-friendly
for embedded system engineers.

Figure 3.11: Arduino Portenta H7 and its LoRa Vision Shield
• STM32 Nucleo pack LoRa [372]: STM32 offers a pair of development
boards designed for LoRa experimentation: a sensor node and a gate-
way. The sensor node utilizes the STM32 NUCLEO-L073RZ equiped with
an SX1276 LoRa transceiver. Meanwhile, the gateway is built around
the NUCLEO-F746ZG and incorporates the SX1301 gateway chip. In the
realmof embeddeddevices, STM32 is regarded as a professional choice,
and the STMCube ecosystem holds a prominent position in the indus-
try. Furthermore, its 32-bit architecture enables the execution of com-
plex algorithms. This made it compelling for us to evaluate its perfor-
mance within our architecture. However, the kit did not include a cam-
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era, so we integrated an OV2640 [373], a 2-megapixel RGB low-power
camera

Figure 3.12: STM32 Nucleo pack LoRa
• ESP32 CAM [374] and Hope RF Module [375]: The ESP ecosystem is
widely recognized as a cost-effective alternative to Arduino boards, pri-
marily because it inherently supports Wi-Fi communication, facilitating
rapid and affordable IoT device development. Recently, ESP has also
begun transitioning to a more robust 32-bit architecture. They provide
a development board that already includes an OV2640 camera [373]
called ESP cam. To incorporate LoRa connectivity, we paired it with a
low cost Hope RFM95W module, which features an SX1276 transceiver
chip. The goal of this configuration is to showcase the potential to con-
struct a basic TinyML camera node with equipment costing under $10,
thereby demonstrating the economic viability of such applications in
agriculture.

Figure 3.13: ESP32 Cam and theattached Hope RFM95W module for LoRaconnectivity
For the gateway, we used alternatively the one provided in the STM32 kit

and a Laird Sentrius RG168. All communication device were carefully selected
to match Europeans regulations and use the 868 MHZ frequency.
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Figure 3.14: Laird Sentrius RG168 Gateway
Finally for the software development and for running the simulation tools

I used a HP elitebook Laptop computer with an i7 8th generation processor
and 16 gigabits of RAM.
Software

Multiple software and tools were used during our research to develop our
system and test it. Some of them in particular worth mentioning are:

• STM32 Cube environment[376]: This software was use for the pro-
gramming of microcontroller. The STM32Cube development environ-
ment is a software platformoffered by the company STMicroelectronics
for their STM32microcontroller series. It makes it easier for developers
to create applications for STM32 microcontrollers.

• VS code & PlatformIO[377]: VS code is a famous IDE which has a rich
ecosystem of extensions such as platformIO, a cross-platform, cross-
architecture, multiple framework, tool for embedded systems develop-
ment. It was used the programming and interfacing of the LoRa net-
work server and for the programming of ESP32 and Arduino Portenta
H7 microcontroller.

• The thing network[378]: The thing network is an open source initiative
developing a LoRaWAN server and sharing it freely worldwide. It was
use during testing of the nodes behavior.

• The ChirpStack[379]: It is an other open source LoRaWAN server soft-
ware. It was use to handle the FUOTA process and the image offloading
process.

• FreeRTOS [380]: FreeRTOS is an open-source real-time operating sys-
tem (RTOS) for embedded devices. It offersmultitasking support, allow-
ing for the simultaneous execution of multiple tasks, and is optimized
for low memory usage and strong performance. It was employed on
the ESP32 nodes to facilitate firmware updates.
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• ArmMBDED OS [381]: It is an open-source operating system for IoT
devices. Designed for Arm Cortex-M microcontrollers, it simplifies the
creation and deployment of code for nodes. It was used on the STM32
and Arduino Portenta.

• Edge Impulse [382]: Creating TinyML algorithms is a complex task in-
volving multiple software such as TensorFlow Lite. To help with the
rapid implementation of Embedded AI devices, Google offers a free-
to-use platform for research called Edge Impulse. This cloud platform
for Machine Learning operations (MLOps) [empty citation] performs
training operations and data collection seamlessly through a graphical
user interface. We used it to develop our TinyML model for counting
strawberries.

• Omnet++ and FloRa [383, 384]: Many network simulators exist for
LoRa, as indicated by the author in [385], but their conclusion is that
their are equivalent and depend on the studied application. We chose
OMNeT++ because it is an open-source, well-established C++ simula-
tion framework primarily designed for creating network simulators. Var-
ious model frameworks, developed as individual projects, offer spe-
cialized functionalities, such as tools for sensor networks, wireless ad-
hoc configurations, Internet protocols, performance evaluations, and
more. In our case, one such independent framework is FLoRa [384],
a LoRa simulator. FLoRa enables the establishment of LoRa networks
with modules for LoRa nodes, gateways, and a network server. Appli-
cation logic can be introduced as separate modules that connect with
the network server. Both the network server and nodes support the dy-
namic adjustment of configuration parameters through Adaptive Data
Rate (ADR). Moreover, energy consumption statistics are recorded for
each node.

A recapitulatif table of Software and hardware solution is presented in
table 3.5

Network
Communication Embedded AI

Hardware Laird RG168 gateway,Hope RFM95, STM32 Arduino Portenta H7,STM32,ESP32 CAM
Software

The thing network, TheChirpStack, Omnet++and FloRa Edge Impulse

Table 3.5: Hardware and Software Components for System Evaluation
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3.2.3 . Phases
In this section, we describe the end-to-end phases implemented in our

proposed architecture. Initially, we discuss the use-case scenario in normal
mode to demonstrate its feasibility and energy efficiency. Subsequently, the
same methodology is applied for the process of model re-training under de-
graded conditions that render the confidence score of the device node inef-
ficient. The overall process is illustrated in Figure 3.15, with the steps for the
normal behaviormode highlighted in blue and the degraded conditionsmode
highlighted in red.

Figure 3.15: Overall process flowchart
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Normal behavior mode

In normal behavior, the phases are as followed:
1. Data collection: In order to train the initial iteration of our model, we
first need to collect data. Data can be obtained from a dataset; for
example, in our application scenario, we started by utilizing the excel-
lent fruit dataset from Kaggle [386]. However, the recommended ap-
proach in embedded machine learning is to collect data directly from
the devices, since embedded cameramodules often exhibit lower qual-
ity. Thus, in our scenario, the first dataset was collected through the
camera device. We utilized the Edge Impulse tool to directly gather pic-
tures from the Arduino Portenta and the ESP32 cam (which has the
same camera module as the STM32). Once the data have been col-
lected, they need to be labeled. In Figure 3.16, you can see image data
labeled and collected by both the Arduino Portenta and the ESP32 cam,
featuring various numbers of fruits.

Figure 3.16: Image data acquired through the Arduino Portenta are on theright, and through the ESP32 cam are on the left
2. TinyML model training: We trained our model to count the number

of fruits in a picture using the FOMO (Faster Object, More Object) al-
gorithm developed by Edge Impulse [387]. FOMO is a novel machine-
learning algorithm that enables object detection on highly constrained
devices. It allows devices to count objects, identify the location of ob-
jects in an image, and track multiple objects in real time, utilizing up to
30 times less processing power and memory than other similar dedi-
cated algorithms, such as MobileNet SSD or YOLOv5 [388], which are
two algorithms also available for constrained devices. The principle of
FOMO is based on heatmap determination, wherein a picture is split
into multiple smaller ones, and on each is performed a binary classifi-
cation to determine the presence or absence of the object we seek to
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count. The splitting factor of the original picture influences the process-
ing time and power needed but allows better resolution for detecting
objects that may be small or situated close to each other. Once the
model is trained, it is tested over multiple data sets to determine its
accuracy. In machine learning, accuracy refers to the fraction of pre-
dictions that a model gets right. It is calculated by dividing the number
of correct predictions by the total number of predictions on a specified
dataset. In our application, which is not critical, we set the minimum
accuracy to 90%.

3. Model uploading: After the initial model is trained, it is uploaded to the
device via a wired connection. The overall process of data collection,
model training and deploying according to Edge Impulse is depicted in
figure 3.17.

Figure 3.17: TinyML model creation process with edge impulse
4. On-device inferring: As soon as it is deployed, the device will begin

making predictions. For our application, which involves counting straw-
berry fruits, we set the number of inferences performed to one per day,
although the frequency can be adjusted according to the application’s
needs.

5. Result transmission: Once the result is obtained, it is transferred to
the application server via the LoRaWAN network. Themessage consists
of a single packet, with only the number of fruits included in the payload
as an integer. After transmission, the device waits for an acknowledg-
ment of reception from the gateway. If it does not receive it, it retries
sending the message.
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6. Result interpretation: The application server can interpret the data.
Even if it only received a number, extra information such as the local-
ization, the number of recent passages or the historical data values of
the sensors can be retrieved from the knowledge implementedwith the
system described in chapter 4.

7. Sleep procedure: Once the device finished transmission it goes back
in sleep mode. Sleep mode in microcontrollers refers to a low-power
state that conserves energy when the device is inactive or when full
power is not necessary. In sleep mode, certain functions or sections
of the microcontroller are turned off or operated in a reduced-power
state to minimize energy consumption, thereby extending the battery
life of battery-operated devices. The exit from sleep mode can occur
due to a scheduled procedure that is induced at the end of a timer, or
due to an external signal. In our case, it is triggered by a timer.

Degraded condition mode

In degraded condition mode the phases are as follow:
1. On-device inferring: Every time the device runs the tinyML algorithms,
it assigns a confidence score to the prediction. Inmachine learning, and
specifically in the context of convolutional neural networks (CNNs) used
for classification tasks, a confidence score is a value that represents the
model’s certainty regarding its prediction. After processing input data,
the model generates a prediction; in our case, the estimated number
of fruits. The confidence score (Cs), usually a value between 0 and 1,
indicates how certain the model is that its prediction is correct, with a
score closer to 1 indicating higher confidence. For example, in our spe-
cific case, the prediction might output a number of 3 strawberries with
a confidence score of 0.95, meaning that the device is highly certain.
However, if it counts 4 strawberries with a confidence score of 0.45, this
indicates that this result should not be taken into account. In the case
of successive inference processes that have low confidence scores, this
might indicate that the model is not adapted to the local environment
where the device is deployed and needs a new, better-adapted model.
In situations where multiple predictions in a row (number to be deter-
mined by the application, in our case we set it to 4) have low confidence
scores, the system enters degraded condition mode.

2. Image data transmission: To address the issue of local drift, the sys-
tem needs to train another model; therefore, the application server re-
quires new data. As explained in Section 3.2.2, transmitting images over
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LoRa is a complex process. In our case, we propose the following algo-
rithm:

Algorithm 1 Image transmission algorithm
if Cs ≤ 0.9 thenCompress image to Webp formatConvert image in Webp format to hexadecimal stringDetermine data rate for transmissionSplit the file into a number of packet N according to data rateGroup packet together by a number of 10Add an application specific CRC code for each group.Establish connection with gateway

while PacketSent ≤ N doSend packet by groupServer check the integrity of the received data
if CRC does not match thenServer asks for group Re-transmissionDevice re-transmit the group
elseServers sends acknowledgment of reception
end if

end whileFinal error verification checkServer acknowledge the reception
end if

The procedure begins by compressing the image to the WebP format,
which is identified as more efficient than JPEG or JPEG2000 in existing
literature [354]. The file is then prepared for transfer by converting it
to a hexadecimal string. Once the data rate is selected, we determine
the maximum payload size per packet and subsequently split our file
accordingly. We group the packets in sets of ten to minimize network
congestion, as each packet typically receives an acknowledgement in
LoRa. To prevent any loss of information during this grouping, we add
an extra Cyclic Redundancy Code to each group, allowing the applica-
tion server to verify the successful receipt of eachone. The transmission
process then commences, and each group of packets is acknowledged
by the server. If a group is not received, it is resent. Once all the groups
have been retrieved, the server conducts a final verification of the over-
all received file and acknowledges the device.

3. Server model re-training: Once a certain amount of new image data
has been collected, the server can re-train a new model. In our appli-
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cation, we obtained a model with sufficient accuracy using 100 images.
Depending on the specific task a smart sensor must perform, this num-
ber may be lower or higher. Images can be collected from one device
or multiple devices monitoring the same phenomenon under the same
conditions. Linking devices with similar characteristics can be challeng-
ing due to variations in hardware, applications, and the environments
in which they are deployed, among other factors. Chapter 4 of this the-
sis will focus on semantic methods to link sensors together. The model
retraining is quite straightforward and occurs in the same manner as
in the normal behavior mode. It’s important to note that in our experi-
mentation, image data are labeledmanually, requiring significant work,
which could be a limitation of this solution. However, we could presume
that more generic and precise AI models running on more powerful
servers could automatically label the data collected by smaller devices
with lower computational power. This machine-learning-oriented sub-
ject should be a topic for further research, posing the question: "How
can we automatically label data collected at the edge for TinyML model
re-training?"

4. Firmware Update Over the Air: After obtaining the newmodel, the fi-
nal step in the process is to update the concerned devices. Once more,
the server performsdevice grouping through semantic capabilities. When
the server is prepared to update, it initiates the FUOTA procedure, as
elucidated in 3.2.2. This procedure involves multicast addressing, file
fragmentation, and clock synchronization preceding the transmission,
followed by a reboot and update after an integrity check has occurred.
This process is illustrated in figure 3.18, where the mode change from
class A to class C during transmission, and back to class A at the conclu-
sion. It is important to note that to avoid network congestion, there is
no acknowledgment for individual packets during transmission. If the
total packets received — and their integrity — do not pass the imple-
mented error mechanism procedure, the device discards the FUOTA
process and informs the server that a new update will be needed.

3.3 . Experimentation and results

3.3.1 . Embedded AI model
Model training

For our experiment, we trained our model in accordance with the previously
described phases to identify strawberries, utilizing a collection of 100 pictures,
each containing 0 to 10 instances of the fruit. We trained two distinct models:
oneusing images from theArduinoPortenta Shield and itsHM-01B0monochrome
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Figure 3.18: FUOTA Session

camera, and another using images from the ESP32 and its integrated OV2640
camera. Since the STM32 also utilizes the OV2640 camera, we will employ the
same TinyML model for it. The Arduino’s camera, being black and white, pro-
duces images of lower resolution but of smaller size, which can be advanta-
geous for image offloading. The type of images does not appear to influence
themodel size, as both library files retrieved from Edge Impulse after training
are approximately the same size (242 kB for Arduino and 253 kB for ESP).

Regardingmodel performance, themodel for theArduino achieved amean
accuracy of 90.2%, while themodel for the ESP32/STM32 achieved amean ac-
curacy of 92.3%.

Both libraries can be accessed fromourGitHub [389], and implementation
on platforms can be effortlessly tested using the example library provided by
Edge Impulse [387].
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Hardware deployment results

After training both TinyMLmodels, they are ported to the various devices and
tested multiple times to verify the system’s robust behavior and obtain key
metrics. We constructed a small wooden structure to hold the sensors and
tested our architecture with varying numbers of strawberries. This test bench
is shown in Figure 3.19.

Figure 3.19: Test Bench Featuring the ESP32-Cam on the left, the ArduinoPortenta in the middle, and the STM32 on the right
The technical characteristics of each device, with respect to RAM and flash

memory capacity, are presented in Table 3.6.
ESP32 Arduino Portenta STM32RAM 512 kb 1 Mb 100 kbOperating frequency 8 MHz 48 MHz 32 MHzFlash memory 448 Kb 2 Mb 1 Mb

Table 3.6: Hardware Characteristics
During a testing period consisting of 20 cycles for each device, we obtained

a variety of results:
• Arduino Portenta: The results indicate that the estimated peak RAM
usage is 243.9 kb and the firmware size is 77.5 kb, constituting 24.39%
and 3.88% of Arduino’s capacity, respectively, and leaving room for po-
tential improvements. Over 20 inferences, the system’s average infer-
ence time is 148 ms, and it predicted correctly for 19 measurements,
signifying that the model’s accuracy level is upheld.

• ESP32-Cam: The results show that the estimated peak RAM usage is
455 kB and the firmware size is 82.5 kB, which are 88.87% and 18.42% of
the ESP’s capacity, respectively. RAM usage is the limiting factor here,
as a more complex model could exceed the RAM capacity for such a
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device. Over 20 inferences, the system’s average inference time is 312
ms, and it predicted correctly for 17measurements (85%), signifying that
the training accuracy level of the model is maintained.

• STM32: For the STM32, the hardware characteristics aremore constrained
to achieve a trade-off with energy consumption. The firmware size,
once compiled, is 93.2 kB, while the peak RAM usage is at 100 kB, repre-
senting respectively 9.32% and 100% of the STM32’s capacity. This con-
strained RAM usage seems to influence the inference time, as over our
test of 20 predictions, the average time for an inference was 676 ms.
With 18 out of 20 predictions being correct, the accuracy is again up-
held, as field testing yields a 90% accuracy level.

We can observe from this hardware deployment testing that the models
are performing as expected, confirming the efficiency of TinyML in agricultural
scenarios. However, we also showcase the importance of hardware selection
when developing an embedded AI application. In this specific scenario, some
hardware, like the Portenta, appears somewhat oversized as most of its re-
sources are unused, while, conversely, the STM32 is underperforming due to
RAM capacity. On the other hand, the ESP32 seems to be the appropriate size.
We have gathered the results in Table 3.7.

ESP32 Arduino Portenta STM32Firmware memory usage 18.42% 3.88% 9.32%RAM usage 88.87% 24.39% 100%Inference time 312 ms 148 ms 676 msAccuracy respected? Yes Yes Yes
Table 3.7: Hardware deployment results

Transmission

As soon as the TinyMLmodel finished running, the number of fruits inferred is
transmitted to the server through LoRaWAN with an integer encoded on one
byte, meaning the payload size of the packet is also 1 byte. This also signifies
that the message will be transferred in the form of a single packet. In our
experimental setup, the Gateway and the node are located in the same room,
approximately 10m apart, with a clear line of sight. The coding rate value is
set at 1. We collected the average time of the transmission process over 10
transmissions for the typical data rates (DR0 toDR6) and devices. Additionally,
we calculated the maximum number of transmissions per day according to
the duty cycle. The results are presented in Table 3.8.
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DR0 DR1 DR2 DR3 DR4 DR5 DR6ESP32Max inference per day 912.4 458.1 241.6 117.2 61.2 28.8 15.2947 1886 3576 7372 14118 30000 56842Arduino PortentaMax inference per day 854.7 421.3 222.3 115.7 54.5 29.2 13.11011 2051 3887 7468 15853 29589 65954STM32Max Inference per day 887.5 451.9 252.2 122.8 57.6 29.6 14.7974 1912 3426 7036 15000 29189 58776
Table 3.8: Transmission Time in Milliseconds of Inference Result forVarious Data Rates and maximal number of inference a day accordingto Duty Cycle
We have observed that the transmission time appears to be more de-

pendent on the data rate than on the device. This can be explained by the
use of the same transmission chip hardware, the SX1276, in each microcon-
troller. Finally, we also conclude that, overall, the transmission duration is
quite short, minimizing power consumption and adhering to duty cycle reg-
ulations (a maximum of 864s a day for transmission). This allows devices to
communicate their results between 947 and 65954 times a day.
Energy Consumption: Experimental Results and Simulations

The average energy consumption of each device in various operational states
is provided in themanufacturers’ datasheets and is presented in Table 3.9. We
chose to use the theoretical values for energy consumption, as experimental
readings yielded similar average results.

Mode ESP32 Arduino Portenta STM32Sleep 10 µA 2.95 µA 0.29 µARun 190mA 121mA 105mATransmission LoRa 211.5mA 142.5mA 126.5mA
Table 3.9: Power Consumption for Each Device Across Various States

We can calculate the daily average energy consumption for each device
by multiplying the time spent in each mode (specifically, ’run’ during the in-
ference process, ’transmission’ during the transmission process, and ’sleep’
during the sleep process) by the respective energy consumption of that mode
and adding them together. The formula is as follows:

Edaily = Erun × Trun + Etransmission × Ttransmission + Esleep × Tsleep
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Using this daily energy consumption data, we can calculate the average
battery life of a device utilizing a 2000 mA battery, a standard battery size for
IoT devices. These results are presented in Figure 3.20.

Figure 3.20: Battery Lifetime (in Days) for Various Data Rates, Based onExperimental Results and Theoretical Values
With our experimental system, we illustrate that a 2000 mA battery can

sustain operation for between 18 and 40 days for the ESP32, 32 to 80 days for
the STM32, and 36 to 133 days for the Arduino Portenta.

Our experimental results are somewhat limited since our test bench does
not fully mirror the real-world usage of sensors deployed on a farm. To pro-
vide a more comprehensive overview of battery life, we input the previously
collected values into the FloRa [384] simulator, which is based on Omnet++
[383]. This simulator models data collection over a one-hectare surface with
100 devices, all maintaining a clear line of sight. The input parameters pro-
vided to the simulator are compiled in Table 3.10. We evaluated the energy
consumption of each device across various data rates over a year.

The results collected from the simulator provide deeper insight into the
energy consumption of each device in a Wireless Sensor Network (WSN) de-
ployed on a farm. The results are displayed in Figure 3.21. The simulation
yields data regarding the overall energy consumption of each device for each
data rate over a year of operation. The total amount of energy per device per
data rate is presented in Table 3.11.

From the simulation results, we observed that for the Arduino and STM32,
with data rates between DR2 and DR6, a battery of 10,000 mA would enable a
device to easily last a year on a battery. The ESP32 would require more opti-
mization to be able to run on a small IoT battery, but these results emphasize
once again the need for precise hardware selection for every application.
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Figure 3.21: Simulation Outcomes for a One-Year Operational Period
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Parameters ValueSimulation Time 31556952s (1 year)X,Y dimensions 100m x 100m (1 ha)Number of Gateways 1Number of Devices 100 (1 for 10m2)Network topology Star (1 year)Carrier Frequency 868 MHz
Packet size 51,115 or 222 bytes Dependent onthe spreading factor (see 3.2.2)

Spreading Factor SF7 to SF12 Dependent on thecoding rate (see 3.2.2)
Bandwidth 125 or 250 Dependent on thecoding rate (see 3.2.2)Coding rate DR0 to DR6

Energy consumption run mode Depending on tested device (seeprevious values)Energy consumptiontransmission mode Depending on tested device (seeprevious values)Energy consumption sleepmode Depending on tested device (seeprevious values)
Run time Depending on tested device (seeprevious values)Payload size 1 byte

Table 3.10: Simulation Parameters
From theoretical and simulation results, we conclude that our architecture

is suitable for our scenario. We understand that by enhancing the battery size
and performing energy optimization, each device could easily operate for an
entire year or even longer. This proves the suitability of using TinyML and
LoRa architecture for machine learning applications in agriculture, as farmers
not only have access to AI at the edge but also only need to change the bat-
tery of their sensors infrequently. Furthermore, our experimentation could
be further optimized in the future for different specific applications, making
it even more energy-efficient. We also observe that energy consumption is
largely dependent on the device, emphasizing once again the necessity for
correct hardware selection when deploying an embedded AI model.

We also conducted additional analyses to showcase the advantages of our
TinyML and LoRa architecture compared to the use of WiFi and cloud-based
AI, utilizing only the Arduino Portenta for this purpose. Three scenarios were
considered in our experiments, maintaining the same parameters as the pre-
vious experimentation—meaning one inference per day and a 2000 mA bat-
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DR0 DR1 DR2 DR3 DR4 DR5 DR6ESP32 41203 29512 23941 20740 19299 18465 18115Arduino 20098 12584 9134 7286 6225 5786 5507STM32 22605 15901 12828 10836 9833 9402 9172
Table 3.11: Total Energy Requirement in mA for One Year of DeviceOperation

tery. In the first scenario, the TinyML algorithm operates directly on the mi-
crocontroller, and the inference result is communicated via LoRaWAN. The
second scenario also involves the TinyML algorithm running directly on the
microcontroller, but in this case, the result is communicated via WiFi. In the fi-
nal scenario, only the captured picture is sent via WiFi to offload 10 kB of data,
representing the transfer of an image and validating the impact of TinyML
on energy consumption. After retrieving the average transmission time of a
packet through WiFi and a 10 kB image through WiFi, we can calculate the en-
ergy consumption of scenarios 1, 2 and 3 by using the previously enounced
formula. The results are presented in Figure 3.22.

Figure 3.22: Evolution of Battery level over time
It appears that Scenario 1, where TinyML and LoRa are used, is the most

energy-efficient one as it can last up to 105 days—three times longer than
Scenario 3. Scenario 2 also shows that TinyML can save battery life in the
case of full WiFi usage, as the battery lasts 1.5 times longer than in Scenario 3.
The battery lifetime expectation results are compiled in Figure 3.23. These re-
sults validate our hypothesis that a system using LPWAN and TinyML is more
energy-efficient than a system based on a more power-hungry communica-
tion method like WiFi or a cloud-based AI system.
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Figure 3.23: Battery Lifetime of the system in days

These results were presented at the ICUFN: International Conference on
Ubiquitous and Future Networks in June 2022 [389], where they received en-
couraging feedback.

3.3.2 . Data offloading
Algorithm efficiency

After validating the suitability of our architecture in normal behavior mode,
we addressed the degraded condition mode. In this section, we will focus on
the image transmission process. We implemented the algorithm described in
Section 3.2.3 into only the Arduino Portenta and ESP32 microcontrollers. We
are concentrating on these two microcontrollers this time because the main
complexity of our algorithm arises from the transmission side and the size of
the image taken; whereas the ESP32 and STM32 utilize the same transmission
chip and camera in their hardware configuration. The images taken from the
Portenta and ESP32 can vary in size with each measurement. The average
size of images taken by the Arduino Portenta and compressed with WebP
over 10 images is 4.7 kb. For the ESP32, the average size of images, which are
in color this time, is higher and reaches an average of 9.8 kb. The average
transmission time for each image at different data rates is presented in Table
3.12. We maintained the same setup as previously, with only one node at a
time, separated by 10m from the gateway, and with a clear line of sight.

From these results, we showcase the efficiency of our algorithm for send-
ing images of different sizes, as it outperformed the other available methods
presented in 3.2.2. We also obtained a result similar to the theoretical one
regarding the duty cycle limitation.

Knowing that we only needed 100 pictures to train our TinyML model, we
observe that the Arduino Portenta can retrain a new model in one day when
communicating at data rates between DR3 and DR6. For the ESP32, retraining
is possible at data rates between DR5 and DR6. However, devices, especially
in agricultural scenarios such as ours, are usually not deployed in isolation,
and multiple others are observing the same phenomenon. Therefore, data
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Device DR0 DR1 DR2 DR3 DR4 DR5 DR6ESP32 117.60 66.82 30.00 16.70 9.41 5.37 2.67Max imagetransfer perday 7 13 29 52 92 161 323
ArduinoPortenta 56.40 32.05 14.39 8.01 4.51 2.58 1.28

Max imagetransfer perday 15 27 60 108 191 335 674

Table 3.12: Average Image Transmission Time (s) and Maximum DailyTransfers at Various Data Rates, According to Duty Cycle.
could be collected from multiple nodes, making it possible to transfer a suffi-
cient amount of images formodel retraining, even at the lowest data rate. For
example, 10 devices equipped with the Arduino Portenta could each transfer
10 images at the lowest data rate, allowing a model to be retrained even in
degraded network situations. Separating the data offload could also be ben-
eficial for battery lifetime. Instead of having one device transfer 100 images,
it would be more optimized to share this task among ten devices in order to
maintain a balance in the battery level, avoiding one device running out of
power more quickly than the others.
Energy consumption: Experimental result and simulation

We initially calculated the energy consumption of our system, basing our eval-
uations on our experimental results and the methodology previously pro-
posed, during normal behavior mode. We determined the amount of energy
needed to transfer 10, 50, or 100 images per device. These results are pre-
sented in Figure 3.24 for the ESP32 and in Figure 3.25 for the Arduino Portenta.
Subsequently, we calculated the number of times the process of sending such
quantities of images could be executed on a 2000 mA battery, and presented
the results in Table 3.13.

The results conclusively affirm the energetic feasibility of our system. How-
ever, it is once again vital to note that, depending on the specific application,
model drift may require more or less data offloading. Therefore, the system’s
sizing must account for this need.

On the other hand, simulation results were inconclusive. When inputting
the same parameters as previously enunciated into the FloRa simulator, we
noticed that the packet delivery ratio was only an average of 12.2%. This is
attributable to the fact that our architecture did not implement any scheduling
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Figure 3.24: Energy consumption of the system for transferring variousnumbers of images using the ESP32.

Figure 3.25: Energy consumption of the system for transferring variousnumbers of images using the Arduino Portenta.

methodology amongst the different nodes, meaning that every node tries to
transmit their data simultaneously, leading to network congestion. Future
work should, therefore, be conducted on scheduling.

Despite the fact that efficient scheduling could help ensure network re-
liability during image data offloading, we discussed the role 6G could play in
such scenarios in a paper published andpresented at the 6GNet conference in
October 2023 [390]. Indeed, a device equipped with a multi-radio access sys-
tem, such as LoRa for result communication and cellular for data offloading
(and later firmware updates), could resolve the architecture issues identified.
However, for this to transpire, 6G networks need to address the challenges
of cellular technology for IoT devices, namely data plan pricing, low-power
communication, and network coverage.
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Device
Image
Quan-
tity

DR0 DR1 DR2 DR3 DR4 DR5 DR6

ESP32 10 29 51 113 204 362 633 127450 6 10 23 41 72 127 255100 3 5 11 20 36 63 127
Arduino 10 90 158 351 631 1120 1960 394250 18 32 70 126 224 392 788100 9 16 35 63 112 196 394

Table 3.13: Number of Image Offload Operations Possible with a 2000mA Battery, According to Data Rate and Quantity of Images Sent in aSingle Operation.
3.3.3 . Firmware update over the air

FUOTA efficiency

In our final experimentation, we focused on the Firmware Update Over the Air
Procedure (FUOTA). We implemented the protocol described in Section 3.2.3
using the open-source LoRaWAN server, ChirpStack [379]. We adapted the
FUOTA server proposed by the authors in [391] to run on our Laird Gateway.
The Arduino Portenta H7 operates ArmMbedOS in charge of the reception of
the update. First, we trained a new example model with new data and com-
piled it. The size of the updated model is 83.6 kb. The FUOTA process is long
as the firmware size is substantial. We compiled the average time measured
for 10 FUOTA process for a node device (reception and update) with the same
firmware according to different Data Rates (DR) in Table 3.14.

DR0 DR1 DR2 DR3 DR4 DR5 DR6Arduino Portenta 552 475 412 302 245 176 153Duty Cycle limitation 1 1 2 2 3 4 5
Table 3.14: FUOTA process duration in seconds (s)

From these initial results, we conclude that updating the TinyML model
is feasible with LoRaWAN. As the FUOTA process is punctual, we can also as-
sert that the duty cycle is respected, especially since it is the gateway that
utilizes its duty cycle for transmission, the node device only sending acknowl-
edgment messages. Therefore it is also of utmost importance for the gate-
way to correctly group the devices that need to receive the same update, as
done in the multicast addressing procedure of the FUOTA recommendation.
If multiple devices need different updates, the system should carefully sched-
ule those FUOTA processes to avoid overflowing its duty cycle, especially with
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lower Data Rates.
Energy consumption evaluation

To demonstrate energy consumption, we considered two scenarios, both em-
ploying a DR6 data rate. In each scenario, the device spends the majority of
the time in standby mode and only wakes up once a day to perform a single
TinyML inference and transmit a small telemetrymessage to the server. Addi-
tionally, the device wakes up once a week to be updated with new firmware of
100kb size. In the first scenario, all communications are performed with LoRa,
while in scenario 2, WiFi is used as a point of comparison. For our experiment,
we utilized the simple energy evaluation model from the INET framework of
Omnet++ [383]. The simulator evaluates the lifetime expectancy of the bat-
tery and runs until both scenarios exhaust a 2000 mA battery. Results are
presented in Figures 3.26 and 3.27. It appears that using LoRa in such an ap-
plication could represent significant energy savings compared to WiFi usage.

Figure 3.26: Evolution of Battery level over time
Furthermore, we propose an evaluation of the battery lifetime for various

sizes of firmware updates for the same parameters as before (Arduino Por-
tenta only and DR6). Results are presented in Figure 3.28 and Figure 9. As
expected, the size of the update negatively impacts energy consumption.

The overall conclusion regarding the FUOTA process is that it is suitable
for a TinyML model and energy-efficient. Once again, the frequency of the
FUOTA process might differ depending on the application. Therefore, careful
sizing of the battery should be undertaken to ensure good device behavior.

This work on FUOTA has been presented at the International Telecom-
munication and Network Application Conference (ITNAC) in 2022 and has re-
ceived encouraging feedback [392].
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Figure 3.27: Battery lifetime of the system in days

Figure 3.28: Evolution of Battery level over time for various size of firmware

3.4 . Conclusion

Promising results have emerged from this chapter, which focuses on energy-
efficient embedded AI deployment in an agricultural context. Initially, TinyML
is identified as a compatible technology for agricultural applications. Espe-
cially when paired with a Low Power Wide Area Network (LPWAN)—in this
instance, LoRa—it can furnish significant energy savings. Such devices, by
processing data at the edge, circumvent dependence on the cloud, thereby
enhancing privacy and reducing latency. Furthermore, they avoid transmit-
ting heavy data files like images or sounds, a process that is not only energy-
intensive but also demands more robust networks, such as cellular or WiFi.
These networks, however, bring their own challenges in coverage, range, en-
ergy consumption, and cost.

Utilizing LoRa and LoRaWAN enables devices to operate longer on bat-
tery power—a critical aspect for agricultural sensor networks—by transmit-
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Figure 3.29: Battery lifetime of the system in days for various size of firmware

ting small messages over vast distances with minimal energy expenditure.
LoRa, with its open-source nature, low cost, and the capability for private de-
ployment on unlicensed bands, is particularly appealing for farmers. This is
especially true in rural areas, where farms may lack adequate coverage from
networks provided by professional carriers.

Nevertheless, TinyML implementation comes with its limitation, notably
its sensitivity to drift. Once deployed in a specific environment, the embedded
generic model will necessitate updates with local data. However, on-device
learning for IoT devices is not feasible due to the computational limitations of
the hardware. To address this issue, we introduce an architecture in this the-
sis that encompasses sporadic data offloading, servermodel retraining, and a
Firmware Update Over The Air (FUOTA) process for TinyML devices. We have
demonstrated that retrieving heavy files punctually, such as images via the
LoRa network, is not only feasible but also energy-efficient, as is the FUOTA
procedure.

Future work should explore various aspects of our proposal. Firstly, a
scheduling process should be implemented for image offloading to prevent
network congestion when too many devices attempt to offload simultane-
ously. This issue also pertains to the FUOTA process, where the gateway
must efficiently schedule offloading and group devices. On a wider scale, we
ponder the efficacy of a multi-radio access technology for such applications.
While transmitting inference results via LoRa is recommended for energy-
saving purposes, utilizing alternative wireless networks for data offloading
and FUOTA could safeguard optimal network performance, particularly when
nodes are densely populated in an area. Unfortunately, we’ve demonstrated
that other current wireless networks are also inadequate for our application
type. Thus, we suggest that future work on 6th generation telecommunica-
tions should consider these specific IoT needs. Finally, it is noteworthy tomen-
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tion ongoing efforts by various companies, like Starlink, and states to deploy
satellite constellations that provide internet access even in remote areas, pre-
senting a potentially valuable opportunity for IoT in agriculture.
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4 - A knowledge-based approach for IoT plat-
form management in agroecological farm

4.1 . Introduction

In the previous chapter, we presented an energy-efficient architecture for
implementing smart sensors in an agricultural wireless sensor network, fo-
cusing on the perception aspect of our IoT platform. Now, we shift our fo-
cus towards the decision-making part of the platform, enabling our system to
make informed decisions based on the sensor network. These decisions may
pertain to farm management actions or sensor network maintenance oper-
ations. As we demonstrated in Chapter two, an effective tool for managing
a wide range of data and agents, as is the case in agricultural IoT, is the cre-
ation of an expert system capable of making decisions with the assistance of
a knowledge base.

A knowledge base allows for a formal representation of a context by pro-
viding a systematic classification of elements, their properties, and the rela-
tionships that exist between them. By employing an additional tool known
as a reasoner, it becomes possible to imbue the objects in the knowledge
base with a layer of intelligence through logical rules. This set of rules can
address various situations, such as identifying the current state of a sensor or
determining the appropriate course of action in the event of sensor malfunc-
tion. This approach enables the system to possess the capacity to perceive
and interpret the environment, which are critical requirements for applying
Agroecology knowledge. As we discussed in the introductory chapter of this
thesis, Agroecology is a form of agriculture heavily reliant on the local envi-
ronment, the distinct biological characteristics of the individuals within it, the
crops being cultivated, and other factors.

In this chapter, we will introduce our work related to the development of a
knowledge base for Agroecological farm procedures and the management of
Wireless Sensor Networks in the context of smart sensors. We will introduce
the concept of ontologies and explain how to construct them. Subsequently,
wewill describe the various resources that constitute our own ontology, along
with the rules implemented to manage them. Finally, we will demonstrate
how the ontology is employed by a reasoning algorithm to facilitate informed
decision-making within our system.
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4.2 . Definition

4.2.1 . Ontology
An ontology is a formal, explicit representation of knowledge that defines

the concepts, relationships, and properties within a specific domain [393].
It serves as a structured model or framework for organizing and capturing
knowledge about a particular subject area. An ontology delineates both the
concepts existing within a particular domain and the connections that exist
among these concepts. Various ontology languages offer distinct capabilities.
The latest advancement in standardized ontology languages is exemplified
by OWL (Ontology Web Langage), developed by the World Wide Web Con-
sortium (W3C) [394]. OWL ontologies are an implementation of Description
Logic (DL) [395] which is a decidable subset of First Order Logic. OWL exists
in various forms with increasing levels of expressiveness, namely OWL Lite,
OWL DL, and finally OWL Full. The ascending levels of expressiveness enable
the representation of more extensive knowledge, but they also entail higher
computational requirements. In this thesis, we opted for OWL Full since com-
putational efficiency was not a primary concern. An OWL ontology consists of
Classes, Properties, and Individuals:

• Classes: A class denotes a fundamental concept employed for the cat-
egorization and representation of entities or objects possessing shared
characteristics, properties, or attributes within a particular domain or
knowledge domain. For instance, the "plant" class encompasses all in-
dividuals that fall under the category of plants. Classes are organized
hierarchically, with superclasses representing more general categories
and specialized sub-classes representingmore specific ones. In the con-
text ofOWL, class hierarchies are not limited to tree-like structures; they
allow for the use ofmultiple inheritance. As an example, the "tomatoes"
class can inherit from both the "plant" and "fruit" classes, signifying that
all tomatoes are considered both plants and fruits, and consequently,
they possess the corresponding attributes. Classes can be defined us-
ing various logical expressions, including enumeration of possible in-
stances for the class, forming unions with other classes, creating inter-
sections between two classes, expressing negation (indicating a class’s
opposition to another), defining disjunction (stating that a class cannot
belong to two classes simultaneously), and other methods outlined in
[393].

• Properties: Properties serve as binary relations that establish connec-
tions between individuals of specific classes, facilitating relationships
between them or linking an individual to a literal value. For example,
the "hasLocation" property can be employed to connect an individual
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crop with an individual field, denoting the spatial association between
them. In the same context, a field of the same type could possess a
property called "hasGPScoordinate," pointing to a literal value. Prop-
erties can be defined in various ways, including symmetric properties,
which imply that if a relation exists between class A and class B, it also
holds between class B and class A. Similarly, inverses for concurrent re-
lations indicate that if one individual is the child of class A, then class A
is the parent of that child. Various types of properties are available in
the OWL documentation to cater to different modeling needs.

• Individuals: also known as instances or objects, refer to specific, con-
crete entities or members of a class within a domain. Unlike classes,
which represent general categories or types of entities, individuals rep-
resent actual, distinct objects or data points that exist within the real
world or a modeled domain. Individuals can be thought of as the tangi-
ble instances or examples that belong to a class in the ontology. As an
illustration, the "cow" classmay encompass various specific individuals,
such as Marguerite, Anatole, and Luciole. Additionally, these individu-
als can also be considered instances of other classes; for instance, Mar-
guerite could be an instance of both "Dairy" and cow; "Anatole" could
also belong to the "Bull" class, each representing distinct categoriza-
tions.

Ontologies can also be represented as a Knowledge Graph (KG). An exam-
ple of an KG for an ontology related to Points of Interest (POI) is depicted
in Figure 4.1. In this illustration, various classes, instances, and properties
are employed to model knowledge pertaining to a POI. Notably, the illustra-
tion demonstrates that individuals representing the same entity in different
classes can be connected as equivalents, as demonstrated with the "Wine re-
gion."

Figure 4.1: Ontology and instanced data comparison
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4.2.2 . Ontology development with OWL and Protégé
Designing an ontology entails several important considerations. Firstly, it’s

crucial to recognize that there are often multiple valid approaches to model-
ing a domain, with the most suitable choice depending on the specific appli-
cation and potential future extensions. Additionally, ontology development
is an iterative process, requiring refinement and adaptation as one’s under-
standing of the domain deepens or new requirements arise. Finally, when
crafting an ontology, it’s essential to ensure that the concepts within it closely
reflect the objects and relationships found in the domain of interest, typically
corresponding to nouns (representing objects) or verbs (representing rela-
tionships) as they appear in domain-related sentences. This alignment en-
hances the ontology’s ability to effectively capture and represent real-world
knowledge. In details, the steps to build an ontology are as followed [396]:

1. Define the Scope and Purpose: One should start by clearly outlining the
ontology’s scope and objectives. This involves specifying the domain it
covers and the goals it aims to achieve. This initial step aids in identify-
ing the concepts and relationships to be included.

2. Identifying Concepts and Classes: Next, identify and compile the essen-
tial concepts, entities, or classes pertinent to the domain. These serve
as the foundational elements of the ontology. For example, in a medi-
cal ontology, concepts might encompass "disease," "symptom," "treat-
ment," and "patient."

3. Defining Properties and Relationships: Determine the properties and rela-
tionships that connect these concepts within the ontology. Properties
describe attributes or characteristics, while relationships specify how
concepts relate to each other. For example, in a social network ontol-
ogy, you might establish a "friend_of" relationship between individuals.

4. Creating a Taxonomy or Hierarchy: Organize the concepts into a hierar-
chical structure, often referred to as a taxonomy or class hierarchy. This
hierarchy illustrates the subsumption relationships between classes.
For instance, in a biological ontology, "Mammal" may be a subclass of
"Animal."

5. Specifying Constraints and Rules: Define constraints, rules, and axioms
to express the logical relationships and limitations within the ontology.
This ensures semantic consistency and coherence. For instance, you
might stipulate that an individual can belong to only one "species" class.

6. Populating the Ontology: Populate the ontology with instances or indi-
viduals that represent real-world objects or data within the domain. For
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instance, in a geographical ontology, you may create instances for spe-
cific countries, cities, and landmarks.

To build our ontology we will be using the Protégé software proposed by
Stanford University [397]. Protégé is a widely used and highly regarded open-
source software tool for ontology development and knowledge modeling. It
has been a staple in the field of ontology engineering for many years. Protégé
provides a user-friendly environment for creating, editing, and managing on-
tologies, allowing users, including ontology engineers and domain experts,
to define concepts, relationships, and constraints within a domain. It sup-
ports various formal ontology languages, including OWL (Web Ontology Lan-
guage), making it versatile for different ontology projects. Protégé also offers
a range of plugins and extensions, enabling customization and integration
with other tools and services, making it a valuable resource in the develop-
ment of knowledge-based systems and the Semantic Web.

4.2.3 . Reasoning
In ontology engineering, a reasoner is a software tool or component that

plays a crucial role in semantic reasoning and inference. It is designed to ana-
lyze and draw logical conclusions from the information and relationships en-
coded within an ontology. Reasoners use the axioms, rules, and constraints
specified in the ontology to perform tasks such as:

• Consistency Checking: Reasoners can determine if an ontology is logi-
cally consistent, which means there are no contradictory statements or
errors within the ontology.

• Classification: They can classify individuals (instances) into appropriate
classes based on the ontology’s hierarchy and defined relationships.

• Inference: Reasoners can infer new information or relationships that are
implied by the existing ontology. For example, they can deduce that if
an individual belongs to a certain class and certain conditions are met,
then it also belongs to another class or has specific attributes.

• Query Answering: Reasoners can answer complex queries about the on-
tology, helping users retrieve relevant information andmake logical de-
ductions.

• Validation: Reasoners can validatewhether anontology adheres to spec-
ified modeling patterns, constraints, and best practices.

One of the most well-known and widely used reasoners in the field of on-
tology engineering is the "Pellet" reasoner [398]. Pellet is an open-source rea-
soner that supports the OWL (Web Ontology Language) standard and is inte-
grated with the Protégé ontology development environment. It provides ro-
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bust reasoning capabilities for tasks such as consistency checking, classifica-
tion, inference, and query answering. Pellet is recognized for its performance
and scalability, making it a popular choice for ontological reasoning tasks in
various applications. Therefore it will be the reasoner used in our work.

Inmore complex scenarios, a reasoner can be equipped with logical rules.
A rule, in essence, is a philosophical concept wherein, assuming the truth
or falsehood of a set of propositions, we can deduce the truth of another
independent proposition. Rules consist of two distinct components: an an-
tecedent set of conditions and a consequent set of actions. In computer sys-
tems, they are frequently depicted as statements in the format: "If <condi-
tions> Then <actions>." There is multiple way to implement rules in knowl-
edge base. In this work we will be using SWRL.

SWRL, which stands for Semantic Web Rule Language, is an ontology lan-
guage extension designed to enable the representation of rules within on-
tologies in the SemanticWeb context. SWRL allows ontology developers to ex-
press rules that define conditions and actions based on the ontology’s classes
and properties. A simple example use of SWRL rules would be to assert that
the combination of the hasParent and hasBrother properties implies the ha-
sUncle property. It could be written in SWRL this way:

hasParent(?x1, ?x2) ∧ hasBrother(?x2, ?x3) ⇒ hasUncle(?x1, ?x3)

Utilizing this expression, the reasoner can make the deduction that when X1
is identified as the offspring of X2, it logically follows that X3, who serves as
the sibling of X2, concurrently assumes the role of X1’s uncle.

4.3 . Proposed model

For the knowledge base of our IoT platform related to agroecology, we
have chosen to propose three main classes: WSN (Wireless Sensor Network),
Crops, and Farm. The overall model is presented in Figure 4.2. Our approach
involves implementing elements from the Semantic Sensor Network [316] for
describing the WSN and drawing inspiration from the Plant Ontology avail-
able on Planteome [326] for describing plants. Additionally, we have taken
cues from thework of authors in [329] tomodel pest and disease interactions.
Furthermore, we will incorporate a rule layer to describe the interactions be-
tween these classes and generate valuable insights on how to manage farms
and sensor networks.

As mentioned previously, we utilized the Protegé software to construct
our ontology. We tested our ontology with O’FAIRe [399], an Ontology FAIR-
ness evaluator, and obtained a fair score based on various criteria. The re-
sults are presented in Figure 4.3. The assessment of fairness for the ontology
is based on various rules outlined by the authors [400]. The overall architec-
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Figure 4.2: General Knowledge-Base model

ture of the constructed ontology is visible in Figure 4.4. In the next sections,
we will describe in details each part of our ontology.

Figure 4.3: Ontology Fairnness Evaluator Results

4.3.1 . Crops: Plant and Agroecology knowledge base
The crops class of our ontology is divided into two subclasses, namely

’plant’ and ’threats.’ The ’plant’ class in our ontology is intended to repre-
sent the characteristics of each plant, while the ’threats’ class groups together
pests, diseases, and their corresponding countermeasures. Thedetailed graph
of classes and properties is presented in Figure 4.6.

The details for each class are as follows:
• Plant: The ’Plant’ class includes all the different types of crops that can
be cultivated on a farm, such as wheat, tomatoes, salad, and more.
Whilemore complex information and knowledge are accessible for each
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Figure 4.4: Ontology Structure in Protégé
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plant through the linkage with the Plant Ontology (PO), we have defined
some useful properties related to our application requirements:

– isEquivalentTo is an object property that links individual plants to
equivalent classes in the Plant Ontology.

– hasClimate an object property that indicates the preferred types
of climate for the plant.

– hasLocation is an object property that specifies the field or the
greenhouse of the farm where the plant is situated.

– hasMinSeedingTemperature is a data property that indicates the
minimum temperature required for the plant to commence de-
velopment.

– hasWaterRequirement is a data property indicating the level ofmois-
ture required in the soil.

– hasFavoriteTypeofSoil is a object property indicating the preferred
types of soils for the plant.

– isSensitiveTo is linking tdifferent threats to each plant. It is a sym-
metric object propertywith the property ’isMenaceTo’ of the ’Threat’
class, pointing to a disease or a pest.

On top of those basic elements, the novelty of our Knowledge base re-
sides in the representation of what a plant needs from its ecosystem
that could be provided by other plants and, conversely, the things it re-
quires. The ’Agroecology_Bonus_Malus’ class element is a subclass of
the plant and models the things a plant can offer and could need from
the ecosystem with the properties canProvide and canRequire. A quick
example of the process is depicted in Figure 4.5, with the use case ex-
plained in the introductory chapter of this thesis being the Three Sisters
companion planting (peas, corn, and squash), as depicted in Figure 1.10.
We represent semantically the provided and required elements by each
plant in its environment. By adding a rule in SWRL, the system is able
to determine another property between two plants called isGoodAsso-
ciation, which is a symmetric property. This rule between two plants, p1
and p2, on an agroecological element, a1, is in the form of:

canProvide(?p1, ?x3)∧canRequire(?p2, ?x3) ⇒ isGoodAssociation(?p1, ?p2)

• Threats The threat class is composed of three subclasses, namely the
pest, disease, and countermeasure. The pest class encompasses the
various types of biological attacks that can threaten crops. Similarly,
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Figure 4.5: Relationship between different indivuduals of the Plant class andthe inferrred association based on the provided and required properties
the disease class includes various types of diseases. Each disease and
pest is linked to an agroecological countermeasure by the property has-
Countermeasure. This is a symmetric property with the property pro-
tectAgainst, which links every countermeasure to the pest or disease it
aims to cure. Each threat andmeasure also has an isMenaceTo property,
symmetric to each plant that it is a menace to.
4.3.2 . WSN: Sensors and actuators knowledge base

The goal of the WSN class is to represent the basic element of our sensor
network, namely the normal Sensor, the Smart sensors and the Actuators. To
represent the sensor characteristics, we inspired ourselves from the Semantic
Sensor Network recommendation by the W3C [316]. The different elements
are presented in figure 4.7 and are described as follows:

• Sensor: The sensor class represents classic telemetry sensors and groups
various types of sensors. For the purpose of experimentation, we rep-
resented only a fraction of available agricultural sensors. These sensors
are for measuring Air Humidity, Temperature, Soil Moisture, Sun expo-
sition, wind speed, and rain level. Each sensor has different properties:

– hasValue is a data property that represents the numerical value of
the measurement.
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Figure 4.6: Ontological representation of the Crops class

– hasLocation is an object property that specifies the field or the
greenhouse of the farm where the sensor is situated.

– hasBatteryLevel is a data property representing the battery level of
each sensor.

• Smart Sensor: The smart sensor class is a bit more complex. First of all,
they are linked to a firmware version through the property hasFirmware.
The firmware class itself has a boolean data property of isUpToDate rep-
resenting the state of the sensor. Another pertinent property, denoted
as performFUOTA, serves to establish a connection between a smart
sensor and the up-to-date Firmware version with whom to perform a
FUOTA procedure. The smart sensors also have different types of appli-
cations. For the purpose of experimentation, we represented only three
types of smart sensor applications, namely detecting pests, detecting
diseases, and counting fruit. For the pest and disease subclasses, they
are linked to the pests and diseases represented in the plant class by
the object property isDetecting. Finally, all subclasses have the following
properties as well:
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– hasValue is a data property that represents the numerical value of
themeasurement. In case the smart sensor is counting fruit, it will
have the value of the number counted; in case it is a sensor detect-
ing a phenomenon, it will take the value 1 when the phenomenon
is detected.

– hasLocation is an object property that specifies the field or the
greenhouse of the farm where the sensor is situated.

– hasBatteryLevel is a data property representing the battery level of
each sensor.

• Actuator: The actuator class represents the differentmachine-actionable
systems in the farms. Again, a vast variety of them exists. In our system,
we only represent the irrigation valve and the greenhouse fan system.
We use the following properties to manage them:

– isActive is a data property that represents the state of the actuator.
Is it active or not.

– hasLocation is an object property that specifies the field or the
greenhouse of the farm where the actuator is situated.

Figure 4.7: Ontological representation of the WSN class

4.3.3 . Farm
The farm class represents the various entities composing a farm and is

presented in Figure: 4.8. Once again, there is a vast variety of entities that
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could be implemented on the farm, but we focus on the farmer, the green-
house, and the field. Additionally, we created a specific class for farmers re-
garding the procedures they have to implement. The farm itself has two prop-
erties, which are:

• hasGpsCoordinate is a data value representing the position of the farm
in the world. This will allow our system to extract weather and climate
data according to the farm’s position.

• hasCurrentWeather is an object property pointing to a weather object
that represents conditions such as Storm, Rain, Sun, Cloudy. Here, we
could implement a Weather Ontology proposed by other research.

The different elements of the farm are the following:
• Farmer: This class represents the humans in charge of fields and green-
houses. This relation is represented with the property isInChargeOf,
which links a farmer to one or multiple instances of the field and green-
house class. This property is symmetric, with a managedBy property
linking a field or a greenhouse to a farmer. The linkage between the
farmer and each procedure is established through a property denoted
as isPerformingX, where ’X’ represents the particular type of procedure.

• Field: The field (similar to the greenhouse class) represents the spatial
area where crops, sensors, and actuators are deployed. It is linked to
the class Soil by the property hasSoilType.

• Greenhouse: The greenhouse class is similar to the field class but for
greenhouses.

• Procedure: The procedure class represents the actions implementable
by farmers. Here, too, the potential procedures are not exhaustive,
and we focus on seeding procedures, harvesting, and applying coun-
termeasures and sensor battery management. Once Again the linkage
between the farmer and each procedure is established through a prop-
erty denoted as isPerformingX, where ’X’ represents the particular type
of procedure (For example isPerformingBattChange for the procedure
regarding changing the battery).
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Figure 4.8: Ontological representation of the Farm class

4.3.4 . Rule Based System
As previously discussed, we have incorporated rules into our ontology to

enhance its level of expressiveness. These rules have been specifically tai-
lored for diverse applications, and their details are presented in the following
Table 4.1. Each entry in the table comprises a description of the contextual sit-
uation in which the respective rule is intended to be applied, the correspond-
ing literal expression formulated in Semantic Web Rule Language (SWRL), and
an accompanying explanation of the rule’s rationale and functionality.
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Situation SWRL Description

Cropsassociation
canProvide(?p1, ?x3) ∧
canRequire(?p2, ?x3) ⇒

isGoodAssociation(?p1, ?p2)

If one plant, denotedas p1, providessomething thatanother plant, referredto as p2, requires, thenthis associationbetween them can bedeemed beneficial orfavorable and they arelinked through agoodAssociationproperty.

SensorBatterymanage-ment

hasLocation(?x1, ?x2)
∧ inChargeOf(?x3, ?x2)

∧ hasBatterylevel(?x1, ?x4)
∧ x4 ≤′ 20′ ⇒

isPerformingBattChange(?x3, ?x1)

If a sensor, labeled asx1, is situated within afield, designated as x2,and a farmer, identifiedas x3, is responsible forthe management offield x2, and the batterylevel of the sensor fallsbelow or equals 20%,then a relationshipdenoted as ’isPerform-ingBatteryChange’ isestablished betweenthe farmer and thesensor.

FUOTAprocedure
hasF irmware(?x1, ?x2)
∧ isUpToDate(?x2, False)
∧ isUpToDate(?x3, T rue)
⇒ performFUOT1(?x1, ?x3)

If a smart sensor,designated as x1,possesses a firmwarelabeled as x2 that is notup-to-date, and thereexists a firmware x3that is up-to-date, thena linkage is establishedbetween the sensorand firmware x3 for thepurpose of FirmwareUpdate Over-The-Air(FUOTA) procedure.
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Irrigationmanage-ment

hasWaterRequirement(?x1, y1) ∧
hasLocation(?x1, ?x2) ∧
hasLocation(?x3, ?x2) ∧
hasV alue(?x3, y2)2 ≤

y1 ∧ isActive(?x4, False) ∧
hasCurrentWeather(?x2, ?x5)∧?x5 ̸=′

Storm′ ∥′ Rain′ ⇒
isActive(?x4, T rue)

If a plant, denoted as x1and located in a fieldx2, has a waterrequirementrepresented by y1, anda sensor x3 situated infield x2 measures awater level denoted asy2 such that y2 is lessthan or equal to y1, andthe weather conditionsin field x2 are notcharacterized by rainor storms, and theirrigation valve x4 isalready in an activestate, then the directiveis to activate theirrigation valve x4.

Fan control
hasLocation(?x1, ?x2) ∧

hasV alue(?x1, y) ∧
hasLocation(?x3, ?x2) ∧

isActive(?x3, False) ∧ y ≥′ 30′ ⇒
isActive(?x3, T rue)

If a sensor x1 within agreenhouse x2 detectsa temperatureexceeding 30 degrees,and if the fan x3positioned ingreenhouse x2 is notcurrently operational, itshall be activated.

Pest andDiseasedetectionand man-agement

hasLocation(?x1, ?x2) ∧
isDetecting(?x1, ?x3) ∧
hasV alue(?x1, T rue) ∧
hasLocation(?x4, ?x2) ∧

hasCountermeasure(?x3, ?x5) ⇒
isPerformingCtrMeasure(?x4, ?x3)

If a Smart Sensor x1located in a field x2detects a threat x3 forwhich there exists acorrespondingcountermeasure x5,then the farmer x4situated in field x2 istasked withimplementing thecountermeasure x5.
Table 4.1: SWRL rules
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4.4 . Experimentation

In this section, wewill populate our knowledge basewith diverse instances
representing different classes. Subsequently, wewill conduct queries to demon-
strate the system’s capacity for interpreting a range of scenarios.

4.4.1 . Crops layout
The first scenario is to validate the identification of good associations be-

tween plants. We populated our ontology with the following plants along with
their advantages and drawbacks according to Agroecology (Provide and Re-
quire):

• Tomatoes: Require protection against small insects, provide soil struc-
ture

• Corn: Provide vine support, provide shade to the ground
• Squash: Require nitrogen, require shade to the ground
• Peas: Require vine support, provide nitrogen
• Basil: Require soil structure, provide protection against small insects
We queried our ontology to select the best associations for tomatoes and

Corn, and we obtained the following results:
• Tomatoes: Basil
• Corn: Squash, Peas

This showcases the effective architecture around the Provide and Require
classes. This example is simple but illustrates the potential of such a method
to model Agroecological knowledge.

4.4.2 . Sensors management
In our ontology, we have populated it with five sensors: s1, s2, s3, s4, and

s5. Sensors s1, s2, and s3 are situated in Field1, managed by Farmer1, while
sensors s4 and s5 are located in Field2, managed by Farmer2. Specifically,
sensors s1 and s4 exhibit a battery level of 10%, while the remaining sensors
maintain a battery level of 50%. We have the capability to query the system to
retrieve information about sensors and farmers connected through the ’isIm-
plementingBattChange’ relationship. The query output yields s1 with Farmer1
and s4 with Farmer2, thereby demonstrating the successful establishment of
associations between sensors and farmers within the knowledge base.
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4.4.3 . Irrigation routine
For the irrigation management aspect, we have populated our knowledge

basewith various instances. Initially, we have introduced three types of crops:
Potatoes with a water requirement of 20, tomatoes with a water requirement
of 30, and watermelons with a requirement of 40. Subsequently, we have cre-
ated two farm entities, namely, farm1 and farm2, each containing two fields
(designated as f1, f2, f3, and f4). Within each field, we have positioned a hu-
midity sensor (h1, h2, h3, h4) and an irrigation valve (v1, v2, v3, v4). We have
configured the current weather conditions such that farm1 experiences sunny
weather, while farm2 faces stormy weather. Furthermore, we have allocated
the fields as follows: potatoes in fields f1 and f3, watermelons in f2, and toma-
toes in f4. To complete the setup, we have set the soil moisture sensor values
to 25. When querying for irrigation valves with an ’isActive’ status set to True,
the system outputs only valve v2, which corresponds to the watermelon field,
in line with expectations. However, when the sensor values are adjusted to
15, the system outputs valves v1 and v2. Lastly, if we configure all the current
weather conditions as ’Sunny,’ the system identifies the need for irrigation for
all crops, resulting in the activation of all irrigation valves

4.4.4 . Pest and disease detection and management
In this scenario, we enrich our ontology with the inclusion of smart sen-

sors deployed in Field1 and Field2, each tasked with detecting slug pest in-
vasions. Field1 is under the stewardship of Farmer1, while Field2 is managed
by Farmer2. We introduce instances of tomato and salad plants. A relation-
ship denoted as ’isSensitiveTo’ is established between the salad plants and
slug pests. Tomatoes are cultivated in Field1, while salad plants are grown in
Field2. Upon setting the values of the smart sensors in both fields to ’true,’
indicating the detection of slug pests, querying the system for fields with slug
infestations yields Field1 and Field2 as results. Subsequently, querying for
plants sensitive to slug pests in either Field1 or Field2 yields salad plants as
the result. Finally, we inquire about the associated countermeasure for slug
invasion, which is the application of lavender.

4.4.5 . Optimal seeding and harvest detection
We can also leverage the knowledge base to extract literal values and per-

form operations solely on them. For instance, we can inquire about the mini-
mum temperature requirement for seeding a tomato plant and the geograph-
ical location of the farm. Utilizing these two pieces of information, we can
develop a simple algorithm to compute the average daily temperature based
on weather data at the farm’s location. Subsequently, we can compare these
temperature valueswith theminimum seeding temperature requirement (set
at 15 degrees) to determine the optimal date for tomato planting. For this
exercise, we accessed weather data from the Meteo France website for two
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regions: Haut-de-France (Northern Region) and Occitanie (Southern Region).
The computed average temperatures for both regions suggest that tomatoes
can be planted as early as the beginning of April in Occitanie, whereas in Haut-
de-France, one would need to wait until the end of May to meet the temper-
ature requirements for tomato planting.

4.5 . Conclusion

This work on ontology development has been peer-reviewed and will be
presented at the International conference KEOD (Knowledge Engineering and
Ontology Development) that is taking place in Rome, Italy between the 15th
and 18th of November 2023.

Our knowledge base proposes interesting results regarding our applica-
tion. First of all, we have showcased that knowledge-based systems could
offer compelling outputs regarding sensor management. By utilizing knowl-
edge, a system can determine which smart sensors requires update. Addi-
tionally, the system is capable of detecting low battery levels in sensors and
requesting that a farmer replace the battery by identifying which farmer is
responsible for the sensors based on their location in the field. The system
can also interpret data and propose effective actions regarding farm proce-
dures such as seeding or implementing countermeasures to address threats.
Finally, we have proposed an architecture for plant interaction based on pro-
viding and requiring classes. Each type of crop can provide certain advantages
to the environment and require specific resources from it. By modeling these
characteristics for each type of crop, the system can find suitable associations
between crops following Agroecology principles.

Despite these promising results, we acknowledge that for our basic archi-
tecture to be truly effective, it should be enriched with more concepts pro-
vided by expert agroecological farmers, which would require more applied
research. Moreover, we have demonstrated that existing knowledge can be
reused for our application; therefore, efforts should be made to integrate
more knowledge into it. Finally, the critical limitation identified is the need
for the correct tools for experts to provide their knowledge to the system for
later reuse, as well as the development of suitable interfacing tools for users
to access this knowledge. Current manual methods, as we have used, are in-
efficient for retrieving vast amounts of knowledge, such as that in agriculture.
Hopefully, new technologies such as Large Language Models offer new capa-
bilities for human-machine interaction. These toolsmimic human speech pat-
terns; however, their responses are not solely based on knowledge but also
on speech patterns. By combining knowledge-base systems with LLM query
engines, we could develop systems that efficiently manage both explicit and
implicit knowledge.
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5 - General Conclusion

5.1 . General conclusion

Smart farming will play a significant part in the sustainable transforma-
tion of agriculture. With the advent of precision agriculture, thanks to IoT
platforms, ensuring reliable communication among the myriad sensors and
devices on farms becomes crucial. The development of intelligent sensors
that embed AI algorithms for advanced calculations at the edge further am-
plifies this issue. Additionally, once data are collected, farmers often find it
challenging to utilize them, especially in line with agroecology principles. In
this context, this thesis introduces an energy-efficient protocol tailored for
embedded AI sensors over the LoRa network and a knowledge-based system
to aid farmers in decision-making based on sensor data and agroecology prin-
ciples.

In Chapter One, we delve into the motivation and challenges of this work,
addressing the issues of data communication and interpretation. Further-
more, this chapter explains the research methodology employed. Chapter 2
reviewed the current state-of-the-art IoT platforms for agricultural purposes,
Embedded AI, and knowledge engineering for Agriculture. In Chapter 3, we
proposed a model to meet Embedded AI sensors requirement in LoRa net-
work by building our own smart devices and simulating their behavior regard-
ing energy consumption. Chapter 4 elaborates into the notion of knowledge-
based systems in the context of Agroecology and Smart Sensormanagement.
It provides a comprehensive exploration of the ontology crafted for this study,
its integral components, the logical rules that form the foundation of the in-
telligence layer, and the sequential steps involved in the inference process.
Additionally, Chapter 4 presents a range of experiments designed to validate
the efficacy of our systems.

Throughout the research process, multiple novel contributions have been
made. Firstly, we proved the energy efficiency of Embedded AI systems for
exploiting heavy data such as images or sound. Then we proposed a proto-
col to allow intelligent sensors to be remotely updated on LoRa low power
wide area network, despite the heavy size of such firmware over the air up-
date. Moreover, we proposed a novel energy-efficient approach to offload
heavy sensor data, such as pictures or sounds, when the confidence score of
a sensor drops below an acceptable threshold. This allows AI algorithms to be
re-trained in the cloud with local data before being remotely updated. With
the gathered data, we proposed a knowledge base created through ontology
to model the different IoT devices and their interactions with plants. We also
model agroecology principles in our knowledge base, making it an ontology
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for the agroecological management of IoT platforms.
Overall our results showcase the future applications of Embedded AI in

the agricultural domain and offer solutions to answer its networking issues
with LoRa LPWANnetwork. Concurrently, it proved the efficiency of knowledge-
base systems for complex application domains such as agroecology and sen-
sors management.

5.2 . Future works

Despite the encouraging outcomes, we have identified certain limitations
that should be the object of further research.

Firstly, on the networking side, even though we’ve addressed the chal-
lenges of transmitting large data files (such as firmware updates or images),
LoRa technology—and broadly, all LPWAN protocols—are unsuitable for this
type of application. We demonstrated that such transfers can occur sporad-
ically in networks that aren’t too dense, with a limited number of devices
transmitting simultaneously. However, as the number of intelligent devices
is anticipated to grow significantly, these wireless sensor networks are ex-
pected to become denser. This will challenge the ability of smart devices to
communicate over LPWAN. To address these issues, several solutions can be
explored. A straightforward remedy is to develop multi-Radio Access Tech-
nologies (multi-RAT), where each device is equipped with multiple network
interfaces for different purposes. For instance, a sensor could have both a
LoRa radio and a WiFi radio. The device would transmit its measurements
and AI-inferred results via LoRa to conserve energy, while usingWiFi for larger
data transfers. This approach, however, complicates both the devices and the
network infrastructure, as more specialized gateways are required. Another
comprehensive solution involves harnessing the potential of future 6G net-
works. While the complete specifications and goals of 6G (the sixth genera-
tion of mobile networks) have not yet been fully defined or standardized, one
primary objective will be to cater to the requirements of AI integration and
denser IoT WSN networks. Consequently, we recommend that 6G provide
devices the flexibility to interchangeably use either a specific low-power data
channel for transmitting minimal data at a reduced energy cost or a higher
data-rate channel for larger energy-costly data transfers. REWRITE:It is im-
portant to note also that future network systems based on satellite commu-
nication are becomming more proeminent and might take a mor.

Secondly, regarding the knowledge representation and reasoning compo-
nent, a major limitation exists in the acquisition of knowledge. Currently, our
system represents the knowledge necessary for managing an IoT platform
for Agroecology using a simple use-case ontology. We constructed different
parts of this ontology incrementally, drawing solely on theoretical knowledge
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and referencing existing ontologies, without striving for comprehensiveness.
This method isn’t well-suited to represent expansive domains such as agri-
culture, plant biology, and the broader food industry. One main challenge is
the necessity of involving a vast panel of experts to integrate their knowledge
into our ontology. Addressing this limitation requires research into improving
the process of transferring knowledge from experts to machines. Emerging
technologies like Large Language Models (LLMs) could provide valuable as-
sistance. An LLM is an artificial intelligence model trained to understand and
generate human-like text by processing vast amounts of diverse textual data.
Such extensive training enables LLMs to identify a wide variety of linguistic
patterns, equipping them for tasks like text generation, question answering,
translation, and summarization. While models like OpenAI’s GPT series show-
case the potential of Large Language Models (LLMs), it’s essential to acknowl-
edge that their outputs are pattern-driven, rooted in training data, and de-
void of genuine understanding or consciousness. Nevertheless, we assume
that LLMs could play a pivotal role in the development of tools designed to
assist experts in transferring their knowledge to a knowledge base through
messaging apps and chatbot-based assistants.
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5.3 . Peer-reviewed publication

The Doctoral school actively promotes its students to produce and share
their contributions through scientific publications. In order to attain a PhD,
students are required to generate a minimum of one peer-reviewed publica-
tion, although it is highly recommended to go beyond this requirement.

To date, I’ve had the honor of presenting two publications at international
conferences. Presently, I have two additional papers that have been accepted
and are scheduled for presentation in conferences – one in October and the
other in November. Once the thesis writing process concludes, a Journal pa-
per will encapsulate the comprehensive results achieved. Therefore As of
now, there are a total of four produced peer-reviewed publications, with one
more anticipated. Those are the following:

1. TinyML Smart Sensor for Energy Saving in Internet of Things Pre-
cision Agriculture platform. This paper was presented on the 13th
International Conference on Ubiquitous and Future Networks, ICUFN.
The conference took place in Barcelona, Spain, in July 2022. You can see
a picture of me presenting in Figure 5.1.
DOI: 10.1109/ICUFN55119.2022.9829675

Figure 5.1: ICFUN presentation

2. Energy efficient Firmware Over The Air Update for TinyML models
in LoRaWAN agricultural networks. This paper was presented on the
32nd International TelecommunicationNetworks andApplications Con-
ference, ITNAC. The conference took place in Wellington, New-Zealand,
in December 2022. You can see a picture of me presenting in Figure
DOI: 10.1109/ITNAC55475.2022.9998338
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Figure 5.2: ITNAC presentation

3. Embedded AI and Computation Offloading for 6G Green Communi-
cation. This paper was presented at the International Conference on
6G Networking, 6GNet. The conference took place in Paris, France, in
October 2023.

Figure 5.3: 6gnet presentation

4. IoT-EnabledAgroecology: Advancing Sustainable Smart Farming through
Knowledge-based Reasoning. This paper was accepted for the 15th
International Conference on Knowledge Engineering and Ontology De-
velopment, KEOD 2023. The conference is going to take place in Roma,
Italy in November 2023.
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5.4 . Additional training

The doctoral school of Paris-Saclay asks its PhD student to complete a
certain number of mandatory additional training. This training are presented
in table 5.1.

Activity type Point to
obtain

Note Status

Ethic and sci-entific integritycourse
2 MOOC pro-posed by thedoctoral school

Done

Open sciencecourse 1 Class proposedby the doctoralschool
Done

Sustainabledevelopmentcourse
1 Class proposedby the doctoralschool

Done

Scientificcourses 10 1 point = 5h ofscience class Done
Welcome day 1 In September DoneDeparture day 1 In May Done

Table 5.1: Mandatory additional training of the Doctoral School ofParis-Saclay
• Ethic and scientific integrity course: TheMOOCEthic and stic is proposed
by the doctoral school. You can find it at this adress: https://www.
fun-mooc.fr/fr/cours/ethics-stics/. It lasts approximatly 15hours.

• Open science course: I attended the class of Open science: challenges
and practice of opening up its publications and data on June 16, 2021.
The Duration was 3 hours;

• Sustainable development course: I attended the GEORGES BRAM Day
2023. 22nd day in History of Science and Epistemology and climate
emergency on the January 13, 2023. It lasted 7 hours..

• Scientific courses :
– Summer school in July 2022 located in Pisa : Enabling Technologies
for Industrial Internet of Things. The summer school is organized to
provide 6 ECTS (about 54 hours of front lessons (cf. the program
in Appendice C)) in the fields of Electronics, RFID, Sensors, Net-
working, Web of Things, SW for IoT, Computer Engineering, target-
ing an audience of Bachelor (last year), Master and PhD students,
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early stage researchers and practitioners fromAcademia or Indus-
try. The summer school provides theoretical and practical lessons
about recent advances in enabling technologies for electronics,
electromagnetics, future wireless transceivers and wireless sen-
sor networks, systems, edge and cloud computing, networks in
scenarios such as IoT, Industry 4.0, Cyber-Physical Systemparoles
de gala freed from desires (CPS), autonomous vehicles, robots.
The teaching material has been published in the IEEE book "En-
abling Technologies for the Internet of Things: Wireless Circuits,
Systems and Networks", 2018, Editor: Sergio Saponara, University
of Pisa, Italy, ISBN: 9788793609747. You can find more informa-
tion on the website of the school here : https://www.unipi.it/
index.php/engineering/item/6869-summer-school-internet-of-things

– MOOC Semantic Web technologies: Online course about knowledge
engineering, semantic web paradigm and ontology building. It
lasted approximately 21 hours. More information can be found
on the page of the MOOC: https://www.fun-mooc.fr/fr/cours/
web-semantique-et-web-de-donnees/

– MOOC Introduction to EmbeddedMachine Learning: This course give
a broad overview of how machine learning works, how to train
neural networks, and how to deploy those networks to microcon-
trollers, which is knownas embeddedmachine learning or TinyML.
This course represents approximately 17 hours of work. More in-
formation can be found on the page of the MOOC : https://www.
coursera.org/learn/introduction-to-embedded-machine-learning

The doctoral school also propose optional activity and training. Those are
shown in Table 5.2.
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Activity or
training

Equivalence Restrictions Note Point ob-
tainedLangage course 1 point = 5hours Maximum 5point for all thePhD
0

Professionalizingclass 1 point =5hours ofclasses
CV writing,learning spe-cific IT tools,managing emo-tions, motiva-tion, memory,mental rep-resentations,pedagogicalalignment, etc.

3

Association par-ticipation 1 point peryear of par-ticipation
Max 3 points forall the PhD. You need to bepart of the asso-ciation board.

3

Commitment toboards, com-mittees, juries(outside teach-ing)

1 point = 5h Maximum 3point for all thePhD
1

Teaching 1 point = 19hof classes Maximum 5point for all thePh.
5

Internationalmobility 3 points for 4weeks of mo-bility.
Maximum 3point for all thePhD.

0

Supervision orco-supervisionof interns
Maximum 1point 1

Scientificcourses 1 point = 5h ofclasses In addition ofthe mandatoryones.
4

Table 5.2: Optional activities and trainings
For now I completed the following optional training and activity :
• Professionalizing class:

– Writing and publishing research paper course: An introduction course
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to give advices and good practices to the doctoral students in or-
der to write research papers. This was 4.5 hours long.

– Korsa programm: This program aimed to help students manage
stress and anxiety throughout their PhD. It was 15 hours long.

In total those training accounted for 20 hours and 4 points.
• Association Participation: For 5 years now (since 2018), I have been part
of the association for robotics and electronics Eceborg. This association
aim to help student in their project and manage bigger one such as the
french cup of robotics. You can find more information on the website:
https://eceborg.fr/. I am personally in charge of the vegetable gar-
den on top of the school. I participate in the development of system to
automate the garden such as weather station, agricultural robot, solar
energy experiences, irrigation management, greenhouse climate con-
trol and others. I’m also responsible for the maker area meaning mak-
ing sure the 3D printer fleet is up and running and performing mainte-
nance on them. In Figure 5.4 you can see me and the member of the
association when I was its president in 2019 and you can see the veg-
etable garden in its current state in Figure 5.5. The overall participation
account for 3 points as I was part of the board for more than 3 years.

Figure 5.4: Eceborg group photo when I was president

• Commitment to boards, committees, juries (outside teaching): I took part
in some of the committees for student admission of my school. I also
was asked to participate to juries for student project. Finally I also cor-
rect internship report of master student. In total, those activity account
for 5 hoursmeaning 1 point gained.
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Figure 5.5: Vegetable garden of the school

• Teaching: As stated inmy contract, it wasmandatory forme to teach 100
hours per year. During my three years at ECE. I did those 300 hours in
the form of practical work classes and group project supervision. I gave
practical works about FPGA design (Field Programmable Gate Array), ba-
sic electronic systems and programming (C++ classes). I also supervised
one project of student inmy last year where they had to build a seeding
greenhouse with climate control. In Figure 5.6, you can see me giving a
class in front of students. According to the doctoral school, those teach-
ing hours allow me an extra 5 points.

Figure 5.6: Class teaching

• Supervision or co-supervision of interns: I helped co-supervised an in-
tern who was working on the green-panel project of the school. This
project aims to prove the lowering influence on temperature of differ-
ent layers of plants growing under solar panel to increase their effi-
ciency. I helped the intern deploy a fleet of sensors of the different
panel to monitor their temperature throughout the experience. This
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account for 1 point.
• Scientific courses: As stated above in the mandatory training part, I at-
tended a total of 92 hours of classes. 50 hours are mandatory only
meaning I did an extra 42 hours. This account for 4 points.

In conclusion, the Doctoral School require a total of 180 points to obtain
the PhD and I obtained 189. The thesis and research work account for 158
points. The total of additional training and activities (mandatory and optional)
is 31 points (14 mandatory and 17 optional).

5.5 . Future opportunities

As I approach the end of my student journey, a decade after obtaining my
high school diploma, I look back with nostalgia. I truly cherished those years
dedicated to acquiring knowledge. However, I’m equally enthusiastic about
the future, and I’m already exploring opportunities for the next phase of my
career. I aspire to remain in the research field, either in academia or on amore
industry-oriented trajectory. Throughout my studies, I had the opportunity
to connect with many professionals in the smart farming domain, and I’m
currently in discussions for a position in a research and development project
at the Agrotechnopôle of INRAE (Institut National de Recherche Agronomique
et Environnementale), the French research center for agriculture.

In conclusion, I want to thank again all the people who made this thesis
possible. I also want to thank the reader for taking the time to explore my
research.
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6 - Annexe : Résumé de thèse en Français

L’agriculturemodernenécessite uneprofonde transformationpour répon-
dre aux défis du développement durable tout en nourrissant qualitativement
et quantitativement la population mondiale croissante. En effet, celle-ci re-
pose sur l’utilisation d’éléments chimiques polluant les sols et présents en
quantités limitées sur terre. L’usage de machinerie lourde nécessitant des
combustibles fossiles et tassant le sol limite sa fertilité à long terme. Enfin,
ces deux méthodes sont le pilier de la monoculture standardisée qui consiste
à cultiver un seul type de plantes sur de vastes territoires aux écosystèmes
et conditions climatiques différents, facilitant le développement de maladies
et la déplétion en nutriments des sols. Pour répondre à ces problématiques,
les agriculteurs adoptent le "Smart Farming" ou agriculture intelligente. C’est
une méthode agricole qui utilise les nouvelles technologies de l’information
et de la communication pour améliorer l’efficacité, la productivité et la dura-
bilité de la production agricole. Elle englobe l’usage de capteurs, l’internet des
objets (IoT : Internet of Things), l’intelligence artificielle (IA), l’analyse de don-
nées, la robotique et divers autres outils numériques optimisant des aspects
tels que la gestion des sols, l’irrigation, la lutte antiparasitaire ou encore la ges-
tion de l’élevage. L’objectif est d’augmenter la production tout en réduisant la
consommation de ressources, minimisant les déchets et améliorant la qualité
des produits. Toutefois, malgré ses avantages et son déploiement réussi dans
divers projets, l’agriculture intelligente rencontre des limites : Tout d’abord,
les solutions de SFs doivent être adaptées économiquement au domaine agri-
cole où les marges sont faibles. Ensuite, les fermiers doivent être accompag-
nés pour l’implémentation et l’utilisation de ces nouvelles méthodes. Enfin, le
SF est trop souvent employé pour rendre des méthodes d’agriculture pollu-
ante plus durables au lieu de proposer des solutions pour rendre l’agriculture
durable plus productive. Une des méthodes durables les plus connues est
l’agroécologie qui se base sur l’observation et l’interprétation de l’écosystème
local pour adapter les pratiques agricoles à celui-ci. Dans ce contexte, cette
thèse s’est intéressée à la création d’une plateforme IoT pour les fermiers
afin de faciliter leur transition écologique. Une plateforme IoT est un système
informatique capable de percevoir des données dans l’environnement (no-
tamment à l’aide de capteurs), de les interpréter et de proposer des actions
à réaliser en fonction des données récoltées. Un exemple serait un capteur
d’humidité du sol qui détermine la quantité d’eau disponible pour les plantes
proches et déciderait d’ouvrir ou non une vanne d’irrigation pour fournir la
quantité précise en eau tout en évitant de gaspiller la ressource. Dans la réal-
ité, l’irrigation dépenddebien plus dephénomènes comme le typede sol et de
plantes, la température, les prévisions météos, la date, etc. Cette thèse s’est
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intéressée à deux problématiques de telles plateformes IoT : la perception
de phénomènes complexes grâce à l’IA embarquée ainsi que la prise de dé-
cision à l’aide de méthodes d’ingénierie des connaissances. L’IA embarquée,
également appelée "Embedded AI" en anglais, désigne l’intégration de tech-
nologies et d’algorithmes d’intelligence artificielle dans des dispositifs ou des
systèmes informatiques avec des puissances de calcul restreintes tels que des
capteurs. L’avantage de ces capteurs est leur indépendance vis-à-vis du cloud
pour interpréter des données complexes comme les images. Cette indépen-
dance permet d’obtenir des gains en termes de données, de confidentialité
et surtout en termes d’énergie, car le transfert de données est généralement
le processus le plus coûteux énergétiquement, ce qui pose problème pour
des capteurs opérant sur batterie. Grâce à l’IA embarquée, une flotte de cap-
teurs peut détecter des phénomènes complexes en agroécologie comme le
développement de maladies sur les feuilles, le nombre de fruits prêts à la ré-
colte, etc. Le problème de cette méthode est que le modèle d’IA embarqué
doit être mis à jour fréquemment, ce qui nécessite de collecter des données
dans l’environnement où le capteur est déployé afin de ré-entraîner desmod-
èles dans le Cloud pour les redéployer à distance par la suite. Or les capteurs
agricoles utilisent des réseaux de communication de type LPWAN (Low Power
WideAreaNetwork - Réseau étendu à faible consommation d’énergie) qui per-
mettent aux capteurs de communiquer sur de longues distances avec une
très faible consommation d’énergie, mais au détriment du débit de données.
Cette thèse a donc proposé des protocoles algorithmiques de mise à jour à
distance et de collecte ponctuelle de données pour desmodèles d’intelligence
artificielle fonctionnant sur des réseaux LoRa. L’efficacité énergétique de ces
systèmes a été prouvée ainsi que leur faisabilité, cependant il a été déter-
miné que la mise à l’échelle de telles solutions est complexe, ainsi les fu-
turs réseaux de type 6G devront adresser cette problématique. Cette par-
tie a fait l’objet de 3 publications dans des conférences internationales. La
deuxième contribution de cette thèse concerne la prise de décisions à par-
tir de ces données perçues. Pour ce faire, nous avons modélisé les connais-
sances agroécologiques ainsi que les caractéristiques des différents capteurs
afin de proposer un système capable de proposer des plans pour des fer-
mes en multicultures ainsi que la gestion de l’irrigation et des menaces (mal-
adies et parasites). Nous avons utilisé des méthodes sémantiques basées sur
les ontologies pour réaliser cela. Cette partie a fait l’objet d’une publication
dans une conférence internationale. Dans l’ensemble, nos résultats mettent
en avant les futures applications de l’IA Embarquée dans le domaine agricole
et proposent des solutions pour répondre à ses problèmes demise en réseau
avec le réseau LoRa LPWAN. Parallèlement, a été démontré l’efficacité des sys-
tèmes de base de connaissances pour des domaines d’application complexes
tels que l’agroécologie et la gestion des capteurs.
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