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Introduction

0.1 Background common to all chapters

Coordination for achieving efficient outcomes is the unifying theme of this re-

search. The coordination of economic activities can be seen as a harmonious

arrangement of various individual plans to avoid inefficient interference, which

would result in Pareto dominated outcomes. Coordination is a source of mutual

benefits when there exists a common ground between the agents. All economic

problems approached in this thesis are instances where agents have mixed inter-

ests: typically, these instances allow for several Pareto optimal outcomes, and

agents disagree on their preferred one.

A coordination failure occurs when agents do not regret their individual choice

(the action profile is an equilibrium), however they regret the collective outcome

produced by these choices (they miscoordinate on an equilibrium that is Pareto

dominated by another equilibrium). Potential sources of coordination failures

are the impossibility to communicate prior to taking a decision, or the existence

of different ways of achieving the common interest. In static non-cooperative

games, coordination failures may arise in a Nash equilibrium because of the

strategic uncertainty caused by the simultaneity in decisions. Incorporating dy-

namics in the players’ decision process (such games are called dynamic games)

may change the incentive structure. This can be done by making the same set of

1



players play a game repeatedly (repeated games), or by making different players

move at different times (sequential games). As decisions are made over time,

players may get the incentive to coordinate on a cooperative strategy profile

that produces a Pareto optimal outcome. Assuming that they are farsighted

and have perfect recall of all previous moves, cooperation can be sustained in an

equilibrium only if the players can credibly commit to punish those who adopt a

non-cooperative behavior, and reward those who behave cooperatively. Indeed,

credibility is required in an equilibrium, as a player is deterred by a threat of

sanction only if he believes that it is in the others’ best interest to punish him,

should he not follow a cooperative strategy. (The same goes with rewards.) A

player moving at some time t then takes into account the reactions of those who

will move later in time to his own action. The former reasons backwards, con-

sidering all scenarios for the rest of the game starting from the decision node he

is currently at (this reasoning is called backward induction). When agents have

perfect recall, a strategy profile forms an equilibrium if it is a Nash equilibrium

of the game that satisfies the property of subgame perfectness: in every subgame,

players’ decisions must be part of a Nash equilibrium of the subgame.1

In some finite dynamic games, players are not expected to take a stand for the

collective interest. For the players who move last, defecting does not have any

consequence, as there is no subsequent subgame in which a punishment can be

carried on. The players moving in the second to last subgame anticipate this,

and may be reluctant to adopt a cooperative behavior knowing that the favor

will not be reciprocated in the next subgame. This reasoning can be stretched

up to the very first subgame, and coordination on a cooperative strategy profile

may not be achieved in a subgame perfect Nash equilibrium.2 A remedy is then

1A perfect equilibrium is defined by Selten (1975, [64]) as a combination of mixed strategies,
and each strategy is affected a strictly positive probability, such that if i’s strategy s′

i is not
a best-response to s−i, then the weight on s′

i in i’s mixed strategy is infinitesimally small.
(Players’ strategies are affected a non-infinitesimaly probability weight only if they are best-
responses.)

2In the centipede game for example, the unique subgame perfect Nash equilibrium is such
that the first player to move keeps all the money for himself. The outcome of the centipede
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to make the chain of decisions infinite: as there is no last subgame where defec-

tion can go unpunished, players may sustain cooperation in a subgame perfect

Nash equilibrium.

In a game, coordination failures can be avoided if players have access to a

commitment device. In cooperative games, agreements on a cooperative strategy

profile can be made fully binding (through the making of a contract, for exam-

ple). The focus is on the stability of these coalitions of players who cooperate in

achieving a certain outcome, and not on the details of the procedure via which

the outcome is achieved (as it is the case for non-cooperative games).

0.2 Specific background and Overview on Chapter 2

Chapter 2 studies a static non-cooperative game of network formation. I offer

an overview on game-theoretic models related to networks. I then introduce

Bala and Goyal’s (2000, [6]) seminal work on the topic, which is of particular

importance for understanding my objectives as well as my contribution to the

field.

0.2.1 State of the art on strategic games in network economics

Networks have interested economists because of their impact on socio-economic

outcomes. Many economic activities are influenced by social ties: the crafting

and passing of legislations (Canen, Jackson and Trebbi, 2019 [16]), persisting

"silver-spoon" effect across generations (Joshi, Mahmud and Sarangi, 2020 [51]),

the structure of criminal organizations (Ballester, Calvó-Armengol and Zenou,

2006 [7]), job search (Lalanne and Seabright, 2016 [54]), research output (Ductor,

game is Pareto dominated by that which would be produced if players were (cooperating on)
waiting until the end of the game. A similar problem arises in finitely repeated prisoner’s
dilemma game.
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Fafchamps, Goyal and van der Leij, 2014 [26]), and R&D collaborations (Goyal

and Moraga, 2001 [39]) among others. Game-theoretic models about networks

can be divided into two groups: games of network formation, to which Chapter

2 belongs, and games played on networks.

Games of network formation study the specific instances where the nodes in a

network (the players) form connections strategically. Examples of such instances

can be alumni and professional networks, labor markets, political networks,

etcetera. The objectives of these models are usually twofold: to characterize

the equilibrium networks that stem from the nodes’ decisions in link formation,

and to compare them with the efficient networks of the game.3

Depending on the environment studied, a link between two agents can be two-

sided, i.e. the link is formed only if the two agents consent (as it is the case

with friendship and professional collaborations), or one-sided if consent is not

required (a researcher can cite a peer without his consent).

One of the first formalizations of a strategic network formation game is due

to Jackson and Wolinsky (1996, [48]).4 Their connections model is based on

the idea that the personal connections of an individual are a source of benefits,

however forming and maintaining a relationship is costly. Their model is a static

game where players can form two-sided links: a link is paid by the two players

who agreed on forming it, and allows access to any player who is reachable from

that link. An indirect connection to another agent, through a sequence of links,

is supposed to be a source of benefits that deplete with the distance (a friend

of friend may be less helpful than a direct friend.) Jackson and Wolinsky define

an equilibrium network as one which is robust to one-link deviations: no two

players must want to form a link nor a player must want to sever one (severance

3For the sake of clarity, I review the most influential static models of network formation.
Jackson (2005, [47]) has a survey of strategic games of network formation that encompasses
dynamic games.

4In the economic literature, Aumann and Myerson (1988, [5]) were the very first to model
network formation as a game. Theirs is an extensive form game, where the network serves as
a communication device for forming coalitions in a cooperative game.
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can be unilateral). This solution concept is called pairwise stability. Bala and

Goyal (2000, [6]) take on the model of Jackson and Wolinsky, and study it in a

context where links are one-sided: a player can form a link with another agent

without his consent and pays for all links he initiates. This change allows to

formulate the network formation game as purely non-cooperative. As Bala and

Goyal consider, like Jackson and Wolinsky, that the players’ decisions in links

are simultaneous, an equilibrium network of their model is a structure in which

the players’ decisions in links form a Nash equilibrium.

When games are played on a fixed network, the focus shifts on the relation

between the players’ best responses and the network structure. Two instances

are worth distinguishing: pure complementary in the players’ actions (which pre-

supposes the existence of peer-effects: investment games, technology adoption),

and pure substitutability in the players’ actions (like private contributions to a

public good).

In static games played on networks, two features of the network are of partic-

ular interest: the eigenvalues of its adjacency matrix, and the players’ respective

Bonanich centralities.56 Bonacich’s (1987, [12]) approach to centrality is related

to the influence of a node (i.e. player) in the network. It is measured as a function

of the number of paths that pass through a node, and the relative contribution of

each path depends on its length (longer paths accounting for less). The strength

of externalities in equilibrium actions and payoffs between two players depends

on their relative location in the network: direct neighbors having the largest

influence; and as themselves are impacted by the decisions of their own direct

neighbors, a player’s equilibrium action depends as well on that of its second

degree neighbors, and so on. In other words, an exogenous perturbation on a

player’s equilibrium action propagates along the paths in the network that starts

5See Bloch, Jackson and Tebaldi (2019, [11]) for a detailled review of centrality measures in
networks.

6The adjacency matrix of a network is a (0,1)-squared matrix with zeros as diagonal ele-
ments, and whose (i, j)th entry is equal to one if there exists a link between i and j.
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at this player’s position, and impacts potentially all players’ choices of action.

The absolute values of the largest and lowest eigenvalues of an adjacency matrix

capture the strength of complementarity and substitutability in the network, re-

spectively. Existence and uniqueness of a stable Nash equilibrium is guaranteed

only for low magnitudes of these eigenvalues, thus for relative small network ef-

fects.7 When this is satisfied, a player’s Nash equilibrium action depends on his

Bonacich centrality (Ballester, Calvó-Armengol and Zenou 2006, [7], Bramoullé,

Kranton and D’amours 2014, [14] and Allouch 2015, [1]).

0.2.2 Aims and objectives

The aim of Chapter 2 is to apply network formation à la Bala and Goyal to an

environment where the network is a source of common benefits. In some prac-

tical contexts, the value of informational exchanges is gauged by the collective

outcomes they produce. Examples could be a group of researchers co-writing an

article, a committee of experts working on a report, or even team workers collab-

orating on a joint project. In these environments, what is a source of benefits to

each individual is the return from their joint endeavour. My modeling approach

builds on the idea that individuals with a good ability to diffuse information in

their community can achieve better collective outcomes.

My model is a static non-cooperative game of network formation. The set

of players is thought of as a group of individuals who are involved in a collec-

tive action. I assume that the success of their joint endeavour depends on the

group’s ability to share information. Prior to taking their collective action, the

agents get the possibility to form one-way directed links. As in Bala and Goyal,

every player pays for the links he initiates, and the players choose their links

7In the context of games played on networks, the criterion of stability refines the set of Nash
equilibria and select those that are robust to small changes in agents’ actions. In games with
continuous actions, a Nash equilibrium a is stable if, starting from a and changing the players’
actions by a little bit, the best responses lead back to the original vector a.
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simultaneously. Once formed, the network serves as communication platform:

a player can talk to any other player he can reach in the network, i.e. there

exists a path (a sequence of links) that connects the former to the latter. Once

communication is over, the agents take their collective action. Its return is the

same for all, and it depends positively on the number of interactions that each of

them had during the communication stage. The distinctive aspect of my model

is that the network is a public good: every agent receives the same return from

the collective action, regardless of his private contribution in links to building

the network.

In this game, both coordination and cooperation problems may arise in an

equilibrium. Because links are a source of positive externalities (one’s own links

may help connect an agent to another one, like j’s link to k allows i to access k

in the network on the left of Figure 1), the problem that the players who invest

in links face is to arrange them in a way that maximizes the common benefit

from the network. This is a pure coordination problem. Figure 1 provides an

example.

i k ji j k

Figure 1: Two consecutive links versus two links pointing towards the same agent

For simplicity, assume that the return from the collective action is given by

the number of ordered pairs of players such that the first player in the pair can

reach (the latter has a path to) the second one. The network on the left hand

side allows i to reach j and k, and j to reach k; hence, its return equals 3. The

network on the right hand side allows i and j to reach k, and its return equals

2. In the network on the right, agent i can increase the collective return by one

unit if he redirects his link towards j (which would give the network on the left

side). Because the network produces non-excludable benefits, agents may have

the incentive to free ride on the others’ contributions in links. In Figure 1, player

7



k enjoys a return of 3 and 2 in the networks on the left and right, respectively,

without having contributed to building the network.

The objectives of this first chapter are threefold. First, I seek to characterize

the network architectures that are supported in a strict Nash equilibrium, and to

identify the differences between the equilibrium networks in my game and Bala

and Goyal’s. Throughout, I refer to a strict Nash network as a network that is

shaped by a strategy profile in link formation which is a strict Nash equilibrium.

In my model, each player trades off the social benefits of his links and the costs

he incurs for forming them: taking the network on the left side of Figure 1 as

an example, j maintains his link towards k if the worth from him reaching k,

and i reaching k, makes up for the cost of the link and if there is no better link

to form.8 Second, I investigate if coordination problems and free riding arise in

a strict Nash equilibrium. The problem of free riding is particular to my game,

as I suppose that the network produces non-excludable benefits. Coordination

failures happen in a strict Nash network if, given the cost of forming links, the

players could have formed another strict Nash network that gives each of them

a larger payoff. In my game, coordination failures in equilibrium may be caused

by the players’ incentive to free ride. Third, I seek to characterize the network

architectures that are efficient.

0.2.3 Contribution

Chapter 2 is a direct contribution to the literature on endogenous network for-

mation. A body of works studies specifically the provision of public goods on

an endogenously formed network. This literature was initiated by Galeotti and

Goyal (2010, [32]), who combine a local public good game played on a net-

8In Bala and Goyal’s set-up, benefits from links are private: the network benefit to player
i is the number of players he can reach. Therefore, if we go back to the example provided in
Figure 1, j would disregard the positive externality his link has on agent i in the computation
of his benefit from maintaining the link towards k.
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work built from the players’ strategic decisions in link formation. Galeotti and

Goyal’s paper extends the literature on local public good games played on fixed

network structures (Bramoullé and Kranton 2007, [13] and Bramoullé, Kranton

and D’Amours 2014, [14]) by endogenizing the network on which the game is

played. In Galeotti and Goyal’s set-up, homogeneous agents choose to acquire

costly information and to form links with others to access the information they

acquire. In equilibrium networks, the authors find what they call the law of the

few: a small set of agents, the influencers, acquire information for the entire

network, and the rest free-ride on their efforts in information acquisition (they

simply connect to one of these well-informed influencers). This result seems

robust even when players are heterogeneous in terms of their efficiency in pro-

ducing the public good or their valuation of the public good (Kinateder and

Merlino 2017, [52]). In my model, the network can be understood as a public

good which is produced from every agent’s private contribution in links. In the

models in line with Galeotti and Goyal’s, an agent’s contribution to the public

good generates positive externalities on his direct neighbors, exclusively. In my

set-up, an agent’s contribution in links generates positive payoff externalities on

all players in the network, not just on his direct neighbors. For example, the

benefits of a publication in a prestigious journal are common to all authors, while

maybe just some have actively contributed to writing the article; on platforms

like Discord, the knowledge created by discussions between the members of a

group is publicly accessible to all of them, etc.

My model is the closest to Bala and Goyal’s. Both of our games of network

formation are static and non-cooperative. A distinctive feature of my game

compared to theirs is that the network generates non-excludable benefits. This

causes one major difference in the architectures of our equilibrium networks: in

my model, some strict Nash networks are disconnected, with some players who

free ride by not forming any links at all. Such a configuration never happens in

a Nash equilibrium of Bala and Goyal’s game. Apart from this difference, the
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patterns of links in our equilibrium networks are the same. When the network

benefit does not depend on the distance between the agents, the links in an

equilibrium network form wheels; and when it does, equilibrium networks have

the architecture of flowers.

From a technical point of view, Chapter 2 is related to the literature on net-

work formation and potential games (Tardos and Wexler 2007, [66]). In my

game, a maximum of the potential has the property of being a Nash equilibrium

with an efficient architecture. When the network benefit does not depend on

the distance between the agents, I find that the set of maxima of the potential

coincides with the set of strict Nash equilibria in which no player free rides.

0.3 Specific background and Overview on Chapters

3 and 4

This section aims at introducing the theoretical analyses of Chapters 3 and 4.

Both chapters are co-written with my co-supervisor, Sidartha Gordon.

0.3.1 State of the art

Chapter 3 and 4 study two theoretical models on the negotiations of drug prices.

The focus of this research is on drugs listed for reimbursement. The aim of these

chapters is to understand the outcomes of negotiations. Despite their lack of

transparency, the three well-known facts listed below provide some information

on the negotiation procedure and the particularities of drug pricing.

Secret rebates

Drug manufacturers and payers, whether they are private insurers like

in the US or public health officials, negotiate two prices. There is first
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the official price at which the drug is listed for reimbursement, called the

list price. This price is made public as soon as the drug is ready for

launch on the domestic market, and what patients pay out of their pocket

(in case the drug is not fully reimbursed by their insurance plan) is a

percentage of the list price. The second price negotiated is a secret rebate:

money that the manufacturer gives back to the payer, and whose amount

is known to no one but the payer and the manufacturer. Rebates vary

in terms of schemes and magnitudes. Rebate schemes seem to be mostly

volume-based, and the rebate may be applied on a bundle of products

(Valverde and Pisani 2016, [68]). About the magnitude of rebates, Morgan

et al. (2017, [60]) estimate that they range from 40% to 70% for specialty

pharmaceuticals, and from 10% to 50% for primary care drugs across North

America, Europe, and Australasia. These figures suggest that a list price

may be completely uninformative about the real price a country pays for

a given drug.

Price interdependencies

There are price interdependencies between certain countries. These are

driven by two phenomena. The first one is the use by some institutional

payers of international price referencing in their negotiation with a drug

manufacturer. International price referencing (IPR) is a price cap for

a medicine that is calculated as a function of the list prices of similar

treatments in other countries. According to Vogler, Paris and Panteli

(2018, [69]), the majority of European countries, China, Japan, Canada

and Brazil, among others, apply IPR for some drugs. The second phe-

nomenon is the possibility of parallel imports between countries in a same

economic community. In the EU, the parallel import of a medicine involves

importing the product into one member state from another, and distribut-

ing it outside the distribution network set up by the manufacturer. The
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rationale behind parallel imports is to arbitrage away international price

discrimination on medicines. Danzon (1997, [20] and 2018, [21]) notes that

for the EU members, contracts with differential list prices and no rebate

were replaced by confidential contracts including a rebate off a common

list price because of parallel imports.

Strategic timing of negotiations

In the EU, drug manufacturers need first to obtain a market authorisation

from the European Medicines Agency. Once granted, each country negoti-

ates a price with the manufacturer. These negotiations between countries

and manufacturers are sequential. The empirical studies by Danzon et al.

(2005, [23]) and Kyle (2007, [53]) suggest that, among European countries

that use IPR, manufacturers launch their products first in higher-priced

markets.

These three facts have been subject to different research questions. A first body

of research studies the implications of price interdependencies between markets.

Jelovac and Bordoy (2005, [50]) look specifically at the effect of parallel imports

on countries’ welfare, and find that the effect is positive only if the trading

partners have needs for different types of drugs. Marinoso, Jelovac and Olivella

(2011, [33]) study instead the relation between IPR and list prices in reference

countries (i.e. these countries that come first in the order of the negotiations).

The authors find that a country benefits from using IPR when the co-payment it

offers is relatively larger than that of a reference country, and that the benefit is

lower the larger the country’s market size.9 Houy and Jelovac (2015, [46]) study

the effect of IPR on the launch dates across countries. The authors find that

the firm chooses a timing of launches that follows the ordering of the countries’

willingness to pay and market sizes, where countries which represent higher
9A co-payment is a fixed amount that a healthcare beneficiary pays for medical expenditures

covered by his or her health insurance plan. The remaining balance is paid by the insurance
company.
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sources of revenues get access to the medicine earlier.

Another part of the literature studies the relation between list prices and social

insurance policies. Jelovac (2002, [49]) focuses on the effect of co-payment levels

on list prices. The author predicts that list prices are negatively correlated with

the degree of coverage, and highlights a series of implications that rationalizes

this result: first, lower co-payments imply a relatively more inelastic demand for

the drug, thereby increasing the firm’s opportunity cost of failing its negotiation;

this reinforces (endogenously) the country’s bargaining power to influence the

outcome of the negotiation towards its preferred one; namely, an agreement on

a low list price.

0.3.2 Aims and objectives

The joint aim of Chapters 3 and 4 is to provide rational justifications for the use

of secret rebates and IPR, and to highlight possible functions of secret rebates.

From a supplier’s perspective, the benefits of secret rebates are straightforward:

given that countries negotiate in turn and use IPR, secret rebates allow to isolate

each negotiation from the others. For countries, the impact of secret rebates on

welfare is not clear at all. Our approach consists in proposing hypotheses that

rationalize an offer of secret rebate by a country.

In Chapter 3, we take as given that countries which do not come first in the

order of the negotiations will use IPR. For simplicity, we suppose that these

countries never agree on paying a price larger than the list price they observe in

other countries. We seek to understand how this affects the Pareto optimal out-

comes of the negotiation, in terms of list price and rebate, between a reference

country (i.e. one that negotiates first) and the manufacturer. In particular, we

want to identify necessary and sufficient conditions for which a Pareto optimal

and individually rational (PO-IR) contract has a strictly positive rebate, and a

reference country prefers a PO-IR contract with a large rebate.
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To this end, we propose a model with two countries and a monopolist phar-

maceutical firm. The first of our assumption is that the firm accepts to include

a rebate in a deal only for concealing the real price a country is paying to coun-

tries that negotiate later. Second, we assume that the country which negotiates

first sets up a social insurance plan for reimbursing the drug. Specifically, the

country chooses the level of social contributions it will levy on its population for

funding the expenditures tied to the reimbursement scheme, given the deal with

the manufacturer. We take the reimbursement scheme as a fixed parameter of

the model, and it consists of the percentage of the list price that is covered by

the social security.

We refer to a contract between the reference country and the firm as a list

price - rebate pair, where the list price is the component of the contract that the

second country can observe, while the net (rebated) price (i.e., the price paid by

the country to the firm) is unknown to the second country. As mentioned earlier

on, we assume that the second country to negotiate applies IPR: it never agrees

to pay a price larger than the list price it observes in the first country.

Our objective is to characterize the set of PO-IR contracts between the firm

and the first country. From the analysis of this set, three results stand out. First,

the relative profitability of the two markets has an incidence on the occurrence

of secret rebates in the PO-IR contracts, as well as on the possibility of mutually

advantageous trades between the reference country and the firm. In particular,

we find that strictly positive rebates are part of PO-IR contracts where the net

(rebated) price is relatively low. As the firm would never agree on leaving such

a low net price propagate in the second negotiation, the net price that the first

country pays is hidden by a secret rebate off the list price. Second, in the set of

PO-IR contracts with rebates, larger list prices are associated with larger rebates

and lower rebated prices. Meaning, the first country and the firm trade large

secret rebates against high list prices. Third, the country’s payoff is the largest

for the contract that has the largest rebate, the largest list price and the lowest

14



rebated price. Therefore, large rebates should be expected when the negotiating

power of the reference country is important.

In Chapter 4, we propose to rationalize the use of IPR and of secret rebates by

an asymmetry of information between the countries and the manufacturer. The

hypothesis we put forward is that a monopolist pharmaceutical firm may have

knowledge about the time-lapse before the market release of a superior substi-

tute: meaning, the latter has some private information that affects its willingness

to accept low offers from the countries against earlier deals. To the end of ra-

tionalizing the use of secret rebates, we compare the optimal list prices in two

regimes: an opaque regime, where the transaction price negotiated by each coun-

try with the firm is confidential; and a transparent regime, where countries can

observe the prices that others pay. By comparing the equilibrium transaction

prices in both regimes, we can assess if a reference country benefits from nego-

tiating a secret rebate.

The model takes the form of a sequential game with asymmetric information

between two countries and a monopolist firm. The private information held by

the firm, which is the launch date of a superior substitute, is interpreted as the

firm’s type. We assume that the two countries have the same willingness to pay

for the drug, and share a prior belief about the firm’s type. The two countries

negotiate in turn; and within a same negotiation, there are two rounds of offers:

a country is the first to make an offer, that the firm either accepts or rejects;

and in case of rejection, the firm makes a counter-offer to the country, that the

latter either accepts or rejects. A deal is sealed as soon as one party accepts the

offer of the other. In this game, the firm’s decision to accept or reject an offer

releases information about its type. Low types, which believe in the imminent

entry of a substitute, have the incentive to seal a deal as soon as possible; while

high types, confident in the duration of their monopoly, prefer to wait until the

second round of the negotiation to extract a greater surplus from a country.

When negotiations are transparent, the second country to negotiate observes
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the price paid by the first country. This price is informative about the firm’s

willingness to accept a low price against an earlier deal. Altough partial, this

information provides some indication about the firm’s type. Because of this,

the subgame that starts at the first decision node of the firm, where the latter

decides whether to accept or reject the first country’s offer, is a signaling game

between the firm and the second country. The firm sends a signal about its type

to the second country, through its decision regarding the first country’s offer, and

the second country formulates an offer that is optimal given the signal. When

negotiations are opaque, the price paid by each country to the manufacturer is

kept secret; therefore, the second country in the order of the negotiations does

not learn any additional information about the firm’s type than the information

its prior belief provides it already.

We characterize the set of weak perfect Bayesian equilibria (PBE), for both

opaque and transparent regimes. When negotiations are transparent, we find

that the second country uses a form of IPR in equilibrium: it formulates an

offer that depends positively on the transaction price in the first country. If it is

farsighted, the firm is therefore more inclined to reject a same offer made by the

first country than in an opaque regime, where the second country would not ob-

serve the price the first country pays. In our model, the combination of the firm’s

farsightedness and the use of IPR by the second country penalizes the country

which negotiates first. Confidentiality about the transaction price through secret

rebates are a means for the first country to cancel out this penalty, and to get

the same payoff as in the opaque regime.

0.3.3 Contribution

In the theoretical literature on drug pricing, no model has yet proposed a ra-

tionalization of the use of secret rebates and of IPR. Importantly, we propose

hypotheses under which a country initiates an offer of secret rebate. The empir-
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ical literature suggests that the appeal of secret rebates to countries is mostly

budgetary, in the sense that rebates help contain public expenditures on phar-

maceuticals (Vogler et al. (2012, [72])). Regarding this point, we find in Chapter

3 that a country prefers contracts with large rebates, because they are associ-

ated with low net prices (i.e. the net price is the price the country pays the

manufacturer) and a large quantity traded. Still in this chapter, we conclude

that the firm uses a secret rebate to hide the price a country pays from those

which negotiate later. When the market in the country which negotiates last is

sufficiently profitable, we further find that the variation between the list prices

that are PO-IR for the firm and the reference country is low, however the varia-

tion between the net prices is high. This suggests that the negotiation between

a reference country and a pharmaceutical firm is mostly about the secret rebate.

Chapter 4 contributes to the ongoing discussion on price transparency on phar-

maceuticals and its potential effect on countries’ welfare. Scholars seem to be

divided on the matter. Transparency entails the use of differential pricing, which

is opposite to the current system based on a uniform pricing (comparable list

prices) and price discrimination among countries through confidential rebates.

Danzon and Towse (2003, [22]) argue that differential pricing is unsustainable,

and may be detrimental to poor countries for the following reason. As coun-

tries use IPR and might engage in parallel trade, manufacturers may have the

incentive to charge a single price between the rebated prices that the countries

would have gotten, had markets been separated and secret rebates allowed.10

This would ultimately benefit high-income countries and hurt low-income ones.

Based on the results in Chapter 4, where we assume that countries are identical

in terms of market size and willingness to pay, we find that transparency has mit-

igated social effects: it is detrimental to the countries which negotiate first and

beneficial to the countries which negotiate last. Vogler and Paterson (2017, [70])

10In the EU, the parallel import of a medicine involves importing the product into one
member state from another, and distributing it outside the distribution network set up by the
manufacturer.
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disagree with the conclusion of Danzon and Towse, and believe that transparency

can enhance both the accessibility and the affordability of medicines. They ar-

gue that the abolition of secret rebates in favor of differential pricing might lead

countries to collaborate in leading joint negotiations with pharmaceutical com-

panies.11

Chapters 3 and 4 contribute to the theoretical literature on quantity discount

pricing and rebates. Rebate schemes are used in other industries than the phar-

maceutical one, notably in the automobile, wholesale and electronics industries.

For these industries, the literature identifies coupons and rebates as ways through

which the manufacturer can price discriminate among end consumers and control

retailers’ incentive to hoard inventories. See Lee and Rosenbalt (1986, [55]), Ger-

stner and Hess (1991 [35], 1995 [36]), Ault et al. (2000, [2]) and Chiu, Cho and

Tang (2011, [18]) among others. For the case of pharmaceuticals, the function

of secret rebates that is mostly put forward by the literature is their preventing

price interdependencies across countries, and therefore benefit manufacturers.

We are able to rationalize this function of secret rebates in Chapter 3, as we

find that the firm agrees on making the first country pay a low price only if it is

concealed from the second country by a large secret rebate off a high list price.

11Examples of such collaboration is BeneluxA (Belgium, the Netherlands, Luxembourg and
Austria and formed in 2015), as well as the Nordic Pharmaceuticals Forum (Sweden, Norway
Iceland and Denmark). For more details, see the policy brief by Espin et al. (2016, [30])
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Chapter 1

Collective action on an

endogenous network

1.1 Introduction

In collective actions, coordination is key for achieving better social outcomes.

The ability of a group of activists to speak with one voice is crucial for their

credibility and political influence. A team working on a joint project is more

efficient if tasks are clearly allocated, and the workers are given feedback and

updates on a regular basis. The types of collective actions that will interest us in

this chapter are those that are communicative in nature, in the sense that their

outcomes are shaped by the interpersonal interactions of the group members.

Collaborative networks that promote information sharing have aspects of a

public good. Forming links, through which information is transmitted to others,

costs the individual agent time, resources and efforts, while their benefits (the

outcome from the collective knowledge generated by interactions) are publicly

accessible. As with any public good, the ability of people to free ride on the ef-

forts of others poses a threat to its provision. Theoretical development is needed
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to understand (i) Which network architectures stem from non-cooperative deci-

sions in link formation? (ii) What network features make groups better or worse

at generating common knowledge?

I propose a non-cooperative model of network formation where the network al-

lows a group of agents to exchange information prior to taking a collective action.

It is assumed that the success of the collective action depends positively on how

well informed the group is. To this end, the players get the possibility to form

a communication network.1 The network formation stage is a one-shot game:

every player decides for himself the links he wants to establish in the network

without observing the others’ decisions, and pays for all links he initiates. The

network that is built from these decisions then serves as communication plat-

form. An agent can talk to all those he can reach in the network; specifically,

agent i can talk to agent j only if there exists a path (a sequence of links) from

the former to the latter. The return from the collective action is the same for all

agents (i.e., the network produces both non-rival and non-excludable benefits),

and it is a function of some network statistics.

I consider two assumptions regarding the relation between the network and the

collective return it produces. Under the benchmark assumption, the collective

benefits from communication depend solely on the number of interactions that

each agent has in the network. The alternative assumption is that the collective

return depends positively on the number of interactions, and direct interactions

generate higher benefits than indirect (i.e. distant) ones. This second assump-

tion accounts for possible informational distortions during retelling, transmis-

sion delays, etc. For this reason, the benchmark assumption is synonymous with

frictionless communication, while the alternative assumption presupposes the

existence of frictions during information transmission.

When communication is frictionless, the network structures that are supported

1In this paper, communication is not strategic. Papers that study strategic information
sharing and persuasion in networks are those by Hagenbach and Koessler (2010, [42]), Bloch,
Demange and Kranton (2018, [9]), Egorov and Sonin (2019, [28]) among others.
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in a strict Nash equilibrium are all wheels, that may or may not include all agents

(See Figure 1.1). The interactions in any of these structures are exclusively recip-

rocal: agent i talks to agent j if and only if j talks to i. Some agents free ride on

the efforts in link formation of some others when the wheel does not encompass

all agents, and the occurrence of free riding in a strict Nash equilibrium depends

positively on the group size. I show that these network structures where free

riding happens, namely all wheels that do not include the entire group of agents,

are sub-efficient from a utilitarian perspective. Yet, these network structures

that allow certain players to free ride are not necessarily Pareto dominated by

other strict Nash networks.

1 2

34

1 2

34

Figure 1.1: A wheel on all agents and a non-exhaustive wheel

The existence of frictions during communication gives the players an addi-

tional incentive to form links. Links are established primarily for connecting

individuals to others, but also for cutting distances that would otherwise be too

long. When the number of agents is relatively small, I find that some equilibrium

candidates have a flower structure, that may or may not encompass all agents.

(See Figure 1.2.) A flower is characterized by a cyclic pattern of links: links are

organized in wheels, and the wheels communicate among each other through the

central agent in the flower. This result suggests that optimal communication

structures are highly centralized, which seems particularly efficient for shorten-

ing distances. Another result that stems from this analysis is that an efficient

network architecture balances the benefits from shortening distances against the

benefits from including more agents, for a fixed total number of links. In Figure

1.2, the network on the left allows every agent to interact with the rest of the

group; in the network on the right, fewer agents can communicate, however the
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benefit from an interaction is higher (the distances between the agents who can

reach each other are shorter).
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3

4

5

12

3

4

5

Figure 1.2: For 5 agents and 6 links, two possible efficient architectures

The paper contributes to the literature on network formation games. In the

earliest models on the topic, it is assumed that the sole concern of the players

is the number of agents they can reach via their own connections (Jackson and

Wolinsky 1996, [48] and Bala and Goyal 2000, [6]). Participation in link forma-

tion has also been studied in a continuous model, where agents choose how they

allocate fixed resources on several links (Bloch and Dutta 2009, [10]) instead of

choosing a discrete set of links. My set-up is close to Bala and Goyal’s because we

model network formation as a static non-cooperative game. In their model, as in

mine, the Nash equilibrium is too permissive an equilibrium criterion, and moti-

vates a stronger equilibrium concept: the strict Nash equilibrium. This stronger

concept is very effective for narrowing down the set of network structures that

arise in an equilibrium. A marked difference between our two models is the way

in which the agents value their links. In Bala and Goyal, a player trades off the

private benefits of his links (the number of agents a player can reach from his

links) with the costs he incurs for forming them. In my set-up, a player trades

off instead the social benefits of his links (the number of agents one’s own links

help connect across the network) and their costs. This difference affects our

results about the connectedness of equilibrium networks: in Bala and Goyal, a

strict Nash network that is not connected (i.e. it is connected if a player can

reach any other player in the network) is necessarily empty, which is not the case

for my game. As I consider that the network produces non-excludable benefits,

disconnected networks happen in equilibrium because of the players’ incentive to
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free ride. Apart from this difference, we find similar patterns of links in equilib-

rium networks: wheels when the network benefits do not depend on the distance

between the agents, and flowers when the network benefit depends negatively on

the distance.

A body of works studies network formation embedded within a coordina-

tion game (Goyal and Vega-Redondo 2005, [40], Herman 2014, [43]), an anti-

coordination game (Bramoullé et al. 2004, [15]), a local public good game (Ga-

leotti and Goyal 2010, [32], Kinateder and Merlino 2017, [52]), or a cooperative

game (Dutta et al. 1998, [27], Slikker and van den Nouweland 2000, [65]). A

player’s links in the network influences his behavior and may determine his part-

ners in the game subsequent to the network formation, as well as potential exter-

nalities in actions and payoffs. When the game that follows network formation

is cooperative, the players’ strategic decisions in link formation determine which

coalitions they can or cannot join; and when it is non-cooperative, the network

structure determines the scale of interdependencies between the players’ equilib-

rium actions.

Related to collective action and networks, Chwe (2000, [19]) studies a model

where agents’ decisions to participate or not in a collective action depend on what

their direct neighbors in a fixed network choose to do. My approach is markedly

different from his because I consider that the network structure is endogenous.

However, Chwe offers a richer analysis of the collective action problem. In my

model, the outcome of the collective action is directly derived from the commu-

nication network the agents form.

This paper also contributes to the literature on potential games in the context

of network formation (Tardos and Wexler 2007, [66]). Usually, when a game is

a finite potential game, the strategy profiles that are potential maximizers can

be used as an equilibrium refinement (Monderer and Shapley 1996, [58], Sand-

holm 2010, [62]). In my game, the argmax set of the potential function consists

of networks that have a socially efficient architecture: they optimize the social
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cost of building the network, by maximizing the network benefit (in the con-

text I study, the network benefit is the return from the collective action) per

link. When communication is frictionless, these networks are the wheels that

encompass all agents; if instead the benefits from communication decline with

the distance, these networks are flowers (this is proved only for a small number

of agents).

The rest of the paper is organized as follows. Section 1.2 features the bench-

mark model where communication is frictionless. Section 1.3 characterizes the

set of strict Nash equilibria of the game. Section 1.4 characterizes the set of

efficient networks and contains a discussion on equilibrium refinements. Section

1.5 features an alternate version of the model where the network benefit depends

on the distances in the network. Section 1.6 concludes.

1.2 The model under frictionless communication

I first introduce the model, then I review some key properties of the network

formation game.

1.2.1 Set-up

There is a group of individuals, N = {1, . . . , n} with n ≥ 3. At some point in

the game, the n individuals will take a collective action. Its return is determined

by the communication network the agents form first. A communication network

is a strategy profile g = (g1, . . . , gn), where gi denotes player i’s strategy in link

formation. A strategy gi for player i gives the set of agents towards whom i

forms links, and it is a subset of N \ {i}. In this model, a link is directed, i.e.

it is an ordered pair ij of two players, represented as i → j, and it allows the

first player in the pair, i, to talk to the second one, j. A link has a fixed cost
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c ≥ 0, and a player pays for all links he initiates.2 I restrict attention to pure

strategies. The set of all pure strategies for agent i is denoted by Gi, and the

space of pure strategy profiles is G.

The n players choose their strategies simultaneously. Once the network for-

mation stage completed, agents communicate. In a network g, an agent talks

to all those he can reach in the network. Meaning, i talks to j if and only if

there exists a path from i to j in the network g. A path from agent i to agent

j is a sequence of links i → i1 . . . → ik → j along which all agents are distinct.

A path is interpreted as a communication channel. An interaction of i with j

can be direct, if there exists a link from i to j, or indirect, if i has a path to

j that includes at least two links. I assume that communication is frictionless:

the worth of i’s communications depends solely on their number, κi(g), which

is referred to as i’s reach, and it is an integer between 0 and n − 1. Note that

κi(g) = 0 if and only if gi = ∅, and κi(g) = n − 1 if i can reach all other players.

In Section 2.5, I consider an alternative version of this model where the benefits

from communication decline with the length of a path.

Once the network formed and communication is over, the players take their

collective action. The network influences their collective decision, and groups

that communicate well achieve better social outcomes.3 The return from the

collective action, v(g) in some network g, is a reduced form of a possibly compli-

cated decision process. The return is written alternatively as a function of the

vector κ(g) = (κ1(g), . . . , κn(g)) of reaches in the network g:

v(g) = Φ(κ(g))

2In my model, a link is one-way, i.e. i does not need j’s consent for establishing the
connection i → j.

3One could think that the agents who can communicate elaborate a social norm, and those
who did not participate in its elaboration are unaware of it, and thus they may cause misco-
ordination in the collective action. Or more simply, agents use the communication network
for exchanging social-relevant information that affects positively the outcome of their collective
action.
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where Φ is symmetric and strictly increasing in all players’ reaches:

Φ(κ(g)) > Φ(κ(g′))

if κi(g) ≥ κi(g′) for all i ∈ N , and there is at least one player j ∈ N for which the

inequality is strict, for any j ∈ N . The payoff of player i in some communication

network g ∈ G is the return from the collective action minus i’s expenditure in

links:

ui(gi, g−i) = v(g) − c|gi| (1.1)

where |gi| is the cardinality of gi, and it corresponds to the number of links that

i forms in the network g. Note that the network is a public good: all agents get

the same collective return from the network.

I shed light on two properties of v, which are direct implications of the as-

sumptions on Φ.

Remark 1.2.1. The function v is increasing in strategies:

gi ⊆ g′
i ⇒ v(gi, g−i) ≤ v(g′

i, g−i),

∀gi, g′
i ∈ Gi, g−i ∈ G−i, ∀i ∈ N , and it is anonymous (it is invariant under

permutations of the players’ labels):

v(g) = v(gπ)

∀g ∈ G and for any permutation π of N , where g and gπ are two isomorphic

networks, and are said to have the same architecture.4

Anonymity implies that the collective return is determined by the patterns

of links and not by the labels of the players who are in given positions in the
4Two networks g and gπ are isomorphic if there is a permutation π of the set of players N

such that any link i → j exists in g if and only if the link π(i) → π(j) exists in gπ.
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network.

1.2.2 Equilibrium and efficiency concepts

In the remainder, I solve for the strategy profiles g that are strict Nash equilibria

of the network formation game. I refer to such networks as strict Nash networks.

In Section 1.3.3, I justify my choice of equilibrium concept.

Definition 1.2.1 A strategy profile (g∗
1, . . . , g∗

n) is a strict Nash equilibrium if,

for every player i ∈ N :

ui(g∗
i , g∗

−i) > ui(g′
i, g∗

−i)

∀g′
i ∈ Gi \ {g∗

i } with g∗
−i ∈ G−i. The network g∗ is strict Nash if (g∗

1, . . . , g∗
n) is

a strict Nash equilibrium.

The players’ non-cooperative decisions in links can be studied in an exact

potential game. A game is an exact potential game if there exists a function

P : G → R such that:

P (g′
i, g−i) − P (g) = ui(g′

i, g−i) − ui(gi, g−i)

∀i ∈ N, ∀gi, g′
i ∈ Gi. The game presented in Section 1.2.1 is an exact potential

game, whose potential function is:

P (g) = v(g) − c
∑

i∈N

|gi| (1.2)

and it can be re-written as:

P (gi, g−i) = ui(gi, g−i) − c
∑

j 6=i

|gj |
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As the potential function is only different from a player’s payoff by a constant,

its argmax set refines the set of Nash equilibria of the network formation game.

In the potential game, all players optimize the potential function in (1.2). A

game that is an exact potential game admits the existence of a Nash equilibrium

in pure strategies, as the potential maximizer is a Nash equilibrium (Monderer

and Shapley, (1996, [58])). Furthermore, a potential maximizer has the property

of being the Nash equilibrium that is the most robust to possible perturbations

of the game. In this game, we shall see that the argmax set of the potential

refines the set of strict Nash equilibria, and selects the architectures in which no

player free rides on the others’ contributions in links.

Let an efficient network be a network that maximizes a utilitarian social welfare

function of the agents’ payoffs. The welfare function is given by:

W (g) = nv(g) − c
∑

i∈N

|gi| (1.3)

which can be re-arranged as:

W (g) = n

(

v(g) −
c

n

∑

i∈N

|gi|

)

Therefore, g is a maximum of the potential for some value c of the cost of a link

if and only if g is efficient for a value of the cost that is n times larger than c.

1.3 Strict Nash networks

In this section, I characterize the set of strict Nash networks, and I justify my

choice of equilibrium concept.
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1.3.1 Strict Nash candidates

Consider the strategy gi of any player i ∈ N in some network g. I distinguish

between two kinds of deviations:

Type I deviations: all strategies g′
i ∈ Gi for player i such that g′

i 6= gi and

|g′
i| = |gi|. If i deviates to such strategies, then his expenses in links remain

constant, however the collective return may change.

Type II deviations: all strategies g′
i ∈ Gi for player i such that g′

i 6= gi and

|g′
i| 6= |gi|.

In this section I propose a test on the strategy profiles in G. The test consists of

checking, for a given strategy profile g, if there is a player who could deviate by

forming fewer links, and the deviation weakly improves the reach of every agent

in N . If the test is positive, then the strategy profile is never strict Nash; if

the test is negative, then the strategy profile may be a strict Nash equilibrium.

This test allows me to restrict attention to four possible architectures for a strict

Nash network. Lemma 1.3.1 opens the ways, with a result about the properties

of the paths in a strict Nash network. First, I need to introduce a definition.

Definition 1.3.1 A path ρi0→ih
: i0 → . . . → ih from i0 to ih is included in the

path ρj0→jm : j0 → . . . → jm if there are integers k such that 0 ≤ k ≤ m−(h+1),

and for all q with 0 ≤ q ≤ h, iq = jk+1+q. Meaning,

j0 → . . . jk → i0 → . . . → ih → jk+h+2 → . . . → jm

The relation between the two paths is denoted as ρi0→ih
⊆ ρj0→jm .

Lemma 1.3.1. If g ∈ G is a strict Nash network, then any two paths ρi→k

and ρj→k directed towards agent k satisfy either ρi→k ⊆ ρj→k or vice-versa, with

i, j 6= k.
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Proof. The proof is by contradiction. Suppose that the strategy profile g =

(g1, . . . , gn) is a strict Nash equilibrium, and there are two paths directed towards

some player k that are not included in one another. Let me set ρi→k : i0 →

. . . il → k, where i = i0 and k = il+1. And ρj→k : j0 → . . . jm → k, where

j = j0 and k = jm+1. If the conclusion of the lemma is false, then there

exist two players, ih along ρi→k and jf along ρj→k, such that: ih 6= jf yet

ih+1 = jf+1 ∈ gih
, gjf

. Take any of these two; I will procede through the

proof by considering ih. (1) If ih does not have a link towards j0, then consider

the deviation g′
ih

= gih
\ {ih+1} ∪ {j0}. (2) Otherwise, consider the deviation

g′
ih

= gih
\ {ih+1}. In case (1) g′

ih
costs the same as gih

while in case (2) g′
ih

is

strictly cheaper than gih
. Let me set g′ = (g′

ih
, g−ih

). It is immediate that any

player a who has a path to any player b in g still has a path to b in g′. (If the

path was including the link ih → ih+1 in g, then the path from a to b in g′ now

inlcudes the sequence ih → j0 . . . → k.) If ih does not have a path to j0 in g,

then there are ordered pairs ab of players such that a can reach b in the network

g′, and a cannot reach b in the network g. Therefore the deviation is at least

weakly profitable. A contradiction to the fact that g is strict Nash.

Lemma 1.3.1 has strong implications on the architectures of the strict Nash

candidates. These implications are stated in the three corollaries below.

Corollary 1.3.1. If g ∈ G is a strict Nash network, then there is at most one

path from i to j in g, for any i, j ∈ N .

Proof. Recall that all players along a path are distinct. The result is immediate

by setting i = j in Lemma 1.3.1.

The next corollary characterizes the architecture of a component of a strict

Nash network. A set C ⊆ N is called a component if for every ordered pair ij of

agents in C, i has a path to j and there is no strict superset C ′ of C for which
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this is true. A singleton is a component that has one element. A network that

has one component is said to be connected; and a network that has strictly more

than one component is referred to as disconnected. Consider a component C and

denote the agents in C as {j0, ..., jm}, where n ≥ m > 1. A wheel component

has an architecture that is defined by the sequence of links j0 → j1 . . . jm → j0,

i.e. C ∩ gji
= ji+1 for all i ∈ {0, . . . , m} and m + 1 = 0. See Figure 1.3 below for

a wheel component on three players.

1

2 3

Figure 1.3: A wheel on three agents

Corollary 1.3.2. A component of a strict Nash network is either a singleton or

a wheel.

Proof. To avoid trivialities, consider a component C formed by at least 3 distinct

agents, i, j and k. By the definition of a component and Corollary 1.3.1, any of

the three agents has one path to any of the two others. Thence, either (a) the

path from i to j passes through k or (b) the path from i to k passes through j.

If (a) is true, then by Lemma 1.3.1 the path from j to k passes through i. If (b)

is true, then by Lemma 1.3.1 the path from k to j passes through i. Iterating

the process for all agents in C, the result follows.

An immediate implication of Corollary 1.3.2 is that all connected strict Nash

networks are wheels that encompass the whole set of players. The next corollary

gives a property on a relation between the components in a disconnected strict

Nash network. I use the relation R for comparing the components of a network,

where C R D is read as: "any player who belongs to the component C has a

path to any player in the component D". In short, C has access to D. The next
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corollary provides a key property of the partial order on the components in a

strict Nash network.

Corollary 1.3.3. If g ∈ G is a strict Nash network and (1) g has two com-

ponents C and D such that C R D, then D is a singleton; (2) g has three

components C, D and E such that C R E and D R E, then either C R D or

D R C.

Proof. For statement 1, assume by contradiction that D is not a singleton. Hence

D is a wheel by Corollary 1.3.2. Take any i ∈ C, k ∈ D; and let j ∈ D such that

j ∈ gk. By Lemma 1.3.1, there is one path from i to k in g; and one path from

j to k in g. But note that neither ρj→k 6⊆ ρi→k nor ρi→k 6⊆ ρj→k. Therefore g is

not strict Nash by Lemma 1.3.1. For statement 2, set i ∈ C, j ∈ D and k ∈ E.

Again, if the conclusion is false, then neither ρj→k 6⊆ ρi→k nor ρi→k 6⊆ ρj→k.

Which contradicts that g is strict Nash by Lemma 1.3.1.

In the next lemma, I further narrow down the set of disconnected architectures

that qualify for strict Nash. The result complements the statement in Corollary

1.3.2.

Lemma 1.3.2. If g ∈ G is a strict Nash network, then there is at most one

wheel component in g.

For further details, see Appendix A.1. From Lemmas 1.3.1 and 1.3.2, we can

identify another class of strict Nash candidates, that I will refer to as disconnected

flat architectures. Networks that belong to this class have several components,

none of them are comparable via R, and they have at most one wheel component

and the rest are isolated singletons. A component C = i is an isolated singleton if

i has no link adjacent to him, i.e. gi = ∅ and i /∈ gj for all j ∈ N . (See agent 4 in

Figure 1.4.) Note that the wheel component in a disconnected flat architecture
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must count at least three agents if it is strict Nash.5 The empty network of no

links is a special case of these architectures. The rest of the networks in this

class are nonempty, and I call them non-exhaustive wheels. Any non-exhaustive

wheel has one wheel component on nw agents, with 3 ≤ nw < n, and n − nw

isolated singletons. See Figure 1.4 below.

1

2 3

4

Figure 1.4: A non-exhaustive wheel, with nw = 3 and one isolated singleton

The last lemma of this section complements Corollary 1.3.3, and highlights a

key property of the partial order on the components in a strict Nash network.

In a network g, the greatest element of the partial order is a component C such

that C R D for all components D in g.

Lemma 1.3.3. If g ∈ G is a strict Nash network and g has two components C

and D such that C R D, then the partial order on the components of g has a

greatest element. Furthermore, the greatest element is a wheel if g has strictly

less than n components.

Proof. The second statement follows directly from Corollary 1.3.3 statement 1

and Corollary 1.3.2. The proof is by contradiction. Suppose g is strict Nash.

Let C and D be maximal and minimal elements of the partial order on the

components of g, respectively, and C R D. Assume further that the partial

order does not have a greatest element. Then there exists a component E such

5If g has 1 wheel component on 2 players i and j, and the rest of the components are isolated
singletons, then i (or j) can profitably deviate by severing his link to j (i) and adding a link
towards any k 6= j (or any k 6= i). i’s expenditure stay constant, however the latter improve his
reach by one, and the other players’ reach remain unchanged. A contradiction that g is strict
Nash.
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that C and E are not comparable via R. By Corollary 1.3.3 statement 2, E and

D are not comparable via R either. Let iC be any agent in C, and let iE be

any agent in E. As C is a maximal element, no agent who has a path to iC in

g has a path to iE , and the converse is true. Assume that κiC
(g) ≥ κiE

(g). If

further κiE
(g) > 0, then iE has a profitable deviation such that iE severs any

one of his links and adds simultaneously a link to iC . A similar argument holds

for the case where κiC
(g) < κiE

(g) (as C R D, note that κiC
(g) > 0 always

holds). If κiE
(g) = 0, consider any player j who has a link towards D. Note

that as C R D, D is a singleton by Corollary 1.3.3 statement 1. Thus player

j has a payoff equivalent strategy such that j severs his link to D and adds

simultaneously a link towards iE . A contradiction that g is strict Nash.

Lemma 1.3.3 reveals another class of disconnected strict Nash candidates: the

out-trees of components, or out-tree networks for short. An out-tree network

is a directed rooted-tree whose vertices are the components of the network and

whose edges, which each connects one component to another one, are oriented

away from the root. The root of an out-tree network is the greatest element

of the partial order on the components. The root of a strict Nash network is

a singleton if the network has only singleton components, or else it is a wheel.

The rest of the vertices of the out-tree are all singletons. Note that an out-tree

network implies a hierarchical ranking of the components. At the top of the

hierarchy are the players in the root, who can reach everybody in the network;

belong to the second layer of the out-tree the players who can reach anyone

but those located in the root, and this reasoning can be stretched down to the

bottom layer of the out-tree, which consists of players who cannot reach anyone.

See Figure 1.5.

Below are gathered the results of the section.

Proposition 1.3.1. A network g ∈ G is strict Nash only if it has the architecture

of one of the below:
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1. a wheel network gw (connected)

2. the empty network ge (disconnected, flat)

3. a non-exhaustive wheel gn.e.w (disconnected, flat)

There is one wheel component on nw agents, with 3 ≤ nw < n; the rest of the

components are all isolated singletons.

4. an out-tree network (disconnected, hierarchical)

The root component is a wheel or a singleton, and the rest of the components are

all singletons. Each agent has a link adjacent to him, i.e. either gi 6= ∅ or gi = ∅

and there exists j ∈ N such that i ∈ gj.

1

2 3

4 5

1

2 3

4 5

Figure 1.5: Two out-tree networks

In an out-tree network, any of the root members can reach anyone in the net-

work. Starting from the root and progressing down the tree, the larger an agent’s

reach, the fewer agents can reach him. Interactions between the components in

an out-tree network are exclusively unilateral: if agent i in some component C

can reach agent j in some other component D, then j cannot reach i. While in

all other architectures, interactions are exclusively reciprocal: agent i can reach

agent j if and only if j can reach i.

1.3.2 Existence of strict Nash networks

This section is devoted to proving the existence of strict Nash networks. Let me

consider the following assumption on the collective return.
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Assumption A: Φ is additive-separable:

v(g) =
∑

i∈N

φ(κi(g)) (1.4)

with φ strictly increasing concave in all agents’ reaches.

Note that the function v associated with any function Φ that satisfies As-

sumption A is both anonymous and increasing in the players’ strategies. In

what follows, I show that Assumption A rules out the out-tree networks from

the set of strict Nash candidates.

Lemma 1.3.4. (1) If Φ is additive separable, then an out-tree of singletons (i.e.

the root is a singleton) is never strict Nash. (2) If further φ is concave, then no

out-tree network is strict Nash.

Proof. The proof is by contradiction. For statement 1: Assume g is an out-tree

network, g is strict Nash, and the root component is a singleton, i. Thus i is the

greatest element of the partial order on the components of g. If g is strict Nash,

then any of i’s links is worth maintaining: c < v(g)−v(g′
i, g−i) ≤ φ(n−1)−φ(0),

for g′
i = gi \ {j} for any j ∈ gi, and the last inequality holds only if g′

i = ∅. Let

k be any minimal element of the partial order on the components of g; hence

gk = ∅. Consider g′
k = i the deviation of player k such that k forms a single link

towards the root, i. Note that: uk(g′
k, g−k) − uk(g) = v(g′

k, g−k) − v(g) − c ≥

φ(n−1)−φ(0)−c > 0. Hence k has a strictly profitable deviation, a contradiction

that g is strict Nash. For statement 2: assume that the root of g is a wheel on

nw agents. Let me first define the height of component C has the length of the

longest path from C to a leaf, where a leaf is a minimal element of the partial

order on the components (i.e. any agent who does not have any link). Consider

any leaf k; and let j a player who has a link towards k. The link from j to

36



k allows anyone along the path from the most distant player in the wheel to

k to reach the latter. If g is strict Nash, the link is worth maintaining: for

g′
j = gj \ {k},

c < v(g) − v(g′
j , g−j) ≤ nw[φ(n − 1) − φ(n − 2)] +

n−nw−2
∑

h=0

(φ(h + 1) − φ(h))

The last inequality holds for the following reason. Because φ is concave, the

largest variation φ(κl) − φ(κl − 1) obtains for the lowest value of κl which is

hl, the height of agent l in the out-tree. The maximum number of agents who

access k in g is n − 1. (This is equivalent to assuming that all singletons are

along the path from the root to k.) The above inequality can be re-written in a

more compact way as:

c < nw[φ(n − 1) − φ(n − 2)] + φ(n − nw − 1) − φ(0) (∗)

Consider leaf k; by the definition of a leaf, gk = ∅. Let k deviate to g′
k = i,

where i is any agent in the root. Then uk(g′
k, g−k) − uk(g) ≥ φ(n − 1) − φ(0) − c.

Note that:

uk(g′
k, g−k) − uk(g) ≥[φ(n − 1) − φ(n − nw − 1)] + [φ(n − nw − 1) − φ(0)] − c

> [φ(n − 1) − φ(n − nw − 1)] − nw[φ(n − 1) − φ(n − 2)]

≥ 0

where the first strict inequality holds by (∗), and the last weak inequality because

φ is concave. Therefore g′
k is strictly profitable; a contradiction that g is strict

Nash.

Next, I show that in the rest of the networks featured in Proposition 1.3.1,

there are deviations for the players that could never be best-responses to the
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strategies of the others. The next lemma yields information about the properties

of these inferior deviations.

Lemma 1.3.5. Let g be a network whose architecture is that of a non-exhaustive

wheel. Under Assumption A, if g′
i ∈ Gi is a deviation for player i such that:

|g′
i| ≥ |gi| and g′

i 6⊆ gi

then g′
i is never a best-response, for any i ∈ N .

See Appendix A.2 for the proof. Note that Lemma 1.3.5 is trivially satisfied in

the empty network and the wheel network.6 There are two important results in

1

2 3

4
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φ(4)

φ(3) φ(2)

φ(0)

φ(0)
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φ(3)

φ(3) φ(3)

φ(0)

φ(0)

Figure 1.6: Type II deviations in a non-exhaustive wheel

this lemma. The first one is that no deviation of type I is weakly profitable for

any player in a wheel or a non-exhaustive wheel. If a player in a wheel component

deviates to a strategy of type I such that the latter redirects his link towards

another agent in the wheel, then the reach of only one agent stays constant, and

all others’ strictly decreases. As for the rest of the deviations of types I and II

in the non-exhaustive wheels, the intuition goes as follows. Suppose that any

player in the wheel component of a non-exhaustive wheel considers switching

strategy to one that has weakly more links (say x links, with 1 ≤ x ≤ n − 1).

A best-response can only be one of the following: to direct all x links towards
6Note that no player in a wheel network gains from adding links, as the reach of the players

cannot be further increased (the reach of any player is n − 1 in any connected architecture);
and no deviation of type I can be profitable, as such deviations disrupt the components (hence
the collective return from the network strictly declines).
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isolated singletons, like in the network on the left of Figure 1.6; or to direct only

x−1 of them towards singletons, and maintain the link in the wheel component,

like in the network on the right side. The proof in Appendix A.2 shows that,

when φ is concave, the second deviation always yields a larger payoff than the

first one. The next lemma completes the analysis of type II deviations.

Lemma 1.3.6. Let g be either the empty network or a non-exhaustive wheel,

and let gi be the strategy of any player i in g. Consider the set of deviations for

player i:

G+
i = {g′

i ∈ Gi : gi ⊂ g′
i}

for which i adds links to his set of links in g. Under Assumption A:

ĝi ∈ arg maxg′
i
∈G+

i

v(g′
i, g−i) − v(g)
|g′

i| − |gi|
⇒ |ĝi| = |gi| + 1

See Appendix A.3 for the proof. Gathering the results in Lemmas 1.3.5 and

1.3.6, it follows that the wheel, the non-exhaustive wheels and the empty network

are strict Nash if (i) the link that, if added in the network, maximizes the

increase in the collective return is not worth forming; and (ii) the link that, if

removed from the network, minimizes the decrease in the collective return is

worth maintaining. This allows me to find a parameter range for c such that for

any cost within this range, no agent can profitably deviate towards a strategy of

type II. These bounds are presented in the next proposition.

Proposition 1.3.2. Let the payoffs be given by expression (1.1), with v given

by expression (1.4). A strict Nash network is either a wheel network, the empty

network or a non-exhaustive wheel. In particular,

1. the wheel network gw is strict Nash if and only if:

c < nφ(n − 1) −
n−1
∑

h=0

φ(h) = cw
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2. the empty network ge is strict Nash if and only if:

c > φ(1) − φ(0) = ce

3. a non-exhaustive wheel network gn.e.w on nw agents is strict Nash if

and only if:

c ∈

(

φ(nw) − φ(0) , nwφ(nw − 1) −
nw−1
∑

h=0

φ(h)

)

= (cnw , cnw)

and this interval is never empty, for any 3 ≤ nw < n.

The bounds can be directly verified. The parameter range for c in statement 3

is non-empty when φ is concave. All intervals of values in statement 3 are strictly

included in the interval of values for which the wheel and the empty network

are both strict Nash. Meaning, if any non-exhaustive wheel is strict Nash for

some value c of the cost, then so are the wheel network and the empty network.

Note that each of the bounds in statement 3 is an increasing function of nw, and

that the length of the interval is increasing in nw when φ is concave. Finally,

the intervals of values for which the non-exhaustive wheels on nw and nw + 1

agents are strict Nash overlap if nw > 3. The results in Proposition 1.3.2 can

be summarized as below. (The superscripts and subscripts of the bounds cnw

and cnw give the number of agents in the wheel component of a non-exhaustive

wheels: e.g., c3 is the lower bound on the range of costs for which the non-

exhaustive wheel on nw = 3 agents is strict Nash.)

Corollary 1.3.4. Consider the parameter ranges of the cost c of a link in Propo-

sition 1.3.2. Assume for simplicity that c3 ≥ c4, i.e. φ(2) − φ(1) ≥ φ(4) − φ(2).

(1) If c ≤ ce, then the wheel network is the unique strict Nash equilibrium. (2)

If c ∈ (ce, c3] ∪ [cn−1, cw), then only the wheel network and the empty network

are strict Nash equilibria. (3) If c ∈ (c3, cn−1), then the wheel network, any
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non-exhaustive and the empty network are strict Nash equilibria. (4) If c ≥ cw,

then the empty network is the unique strict Nash.

1.3.3 Discussion on the equilibrium concept

If I am less restrictive and use the concept of the Nash equilibrium, the test that

I should have run instead is the following: given a strategy profile (g1, . . . , gn),

is there a player i who could play an alternate strategy that costs the same as

gi and that weakly improves the reach of each agent, and improves strictly the

reach of at least one them? Or, is there a player who could switch to a strategy

that entails strictly fewer links and that weakly improves the reach of each agent?

If the test is positive, then it is immediate that the strategy profile is never a

Nash equilibrium; and if the test is negative, the strategy profile may be a Nash

equilibrium.

1

2

3

4

5

Figure 1.7: A Nash equilibrium candidate that is not strict Nash

An example of a network that may be Nash but that is never strict Nash is

provided in Figure 1.7. Note that this network satisfies Corollary 1.3.1. In par-

ticular, no player can deviate by forming strictly fewer links without disrupting

the component (which would therefore decrease the collective return from the

network). However, this architecture violates Corollary 1.3.2. Corollary 1.3.2

restricts the architecture of a component in a strict Nash network to that of a

wheel. In the network in Figure 1.7, player 3 is indifferent between maintaining

his link with agent 1 and replacing it by a link directed towards either 4 or 5.

These strategies are payoff-equivalent for agent 3: they imply the same costs of

link formation, as well as the same collective return (regardless of whether 3 has
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a link towards 1, 4 or 5, the resulting network is connected i.e. all agents have

a reach equal to 4).

The refinement of strictness is very effective in my setting, for two reasons.

First, almost all network architectures are eliminated by considering just a few

deviations. The strict Nash concept also eases the highlight on the out-trees

and the non-exhaustive wheels, which raise richer questions regarding the re-

lation between the components in an equilibrium network. Second, the strict

Nash concept eliminates the architectures in which players have multiple best-

responses to the others’. Such architectures are less stable, as some agents may

be tempted to switch to a payoff-equivalent strategy.

Generally, any Nash equilibrium that forms a connected network exists for

some positive values of the cost of a link, i.e. c ≥ 0. Indeed, adding links in

any connected architecture is worthless, as the players’ reach cannot be further

increased. Consider the network in Figure 1.7 and a wheel network on 5 agents.

Suppose that the cost of a link is almost null, yet strictly positive. Note that if

there exists a function v for which both architectures can be supported in a Nash

equilibrium for this cost, then the wheel Pareto-dominates the architecture in

Figure 1.7: players 2, 3, 4 and 5 get the same payoff in both networks, however

agent 1’s payoff is strictly larger in a wheel network.

1.4 Equilibrium selection and efficient networks

Recall that this game is an exact potential game, and that a network that is a

maximum of the potential for some value c of the cost is efficient for a cost n

times larger than c. Below, I characterize the argmax set the potential function,

for all values of c.

Proposition 1.4.1. Consider the expression of the potential function in (1.2),

with v given by expression (1.4). A maximum of the potential function is either a
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wheel network or the empty network. (1) If c < φ(n−1)−φ(0), then the maximum

of the potential is achieved in a wheel network. (2) If c ≥ φ(n − 1) − φ(0), then

the maximum of the potential is achieved in the empty network.

See Appendix A.4 for the proof. An important result in Proposition 1.4.1

is that the non-exhaustive wheels never maximize the potential function. Note

that if the cost of link formation is below the threshold in Proposition 1.4.1 (and

this threshold is lower than the upper bound cw on the range of costs for which

a wheel network is strict Nash), then the wheel network is both strict Nash and

maximum of the potential. Hence, any architecture that can be supported in

a strict Nash equilibrium for values of c less than the threshold in Proposition

1.4.1 and that is not a wheel network is sub-optimal, in the sense that it is

under-connected (the wheel network offers a higher collective return per link

than any other nonempty strict Nash network). On the contrary, if the cost

of link formation is strictly above the threshold in Proposition 1.4.1, then the

empty network is strict Nash and it is the unique maximum of the potential

function. Any nonempty strict Nash network that exists for such values of the

cost is sub-optimal, in the sense that it is over-connected.

Corollary 1.4.1. Let the welfare function be given by expression (1.3), with v

given by expression (1.4). An efficient network is either a wheel network or the

empty network. (1) If c < n (φ(n − 1) − φ(0)), then the wheel network is the

unique efficient network. (2) If c > n (φ(n − 1) − φ(0)), then the empty network

is the unique efficient network.

Proof. Recall that the argmax set of W (g) for c′ = nc is the same as the argmax

set of P (g) for c.

The argmax set of the potential function refines the set of strict Nash equi-

libria, and it sets aside all strict Nash networks in which some players free ride
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(these players are the isolated singletons in the non-exhaustive wheels). Yet,

these architectures may be Pareto optima of the network formation game. A

non-exhaustive wheel never Pareto dominates a wheel network, because any

agent in a wheel component is always strictly better-off in a wheel network than

in a non-exhaustive wheel regardless of the value of the cost. However, a wheel

network may Pareto dominate a non-exhaustive wheel, if an isolated singleton

would rather pay for a link in a wheel network. Below, I propose to refine the

set of strict Nash equilibria to those that are Pareto optimal. Abusing language,

I refer to a payoff dominant network as a network that is associated with a strict

Nash equilibrium that Pareto dominates all other strict Nash equilibria.

Proposition 1.4.2. Consider the parameter ranges of the cost c of a link in

Proposition 1.3.2. (1) For any value of the cost c such that the wheel network

and a non-exhaustive wheel on nw agents, with nw ≤ ⌊n
2 ⌋, are both strict Nash,

the wheel network Pareto dominates the non-exhaustive wheel. (2) For any c ∈

(ce, cw), the empty network is strict Nash and it is Pareto dominated. (3) There

exists a parameter range for c and values of nw between 3 and n − 1 such that a

non-exhaustive wheel is both strict Nash and Pareto optimal only if:

n−3
∑

k=1

(φ(n − 2) − φ(k)) ≥ n (φ(n − 1) − φ(n − 2))

Meaning, the largest payoff an isolated singleton can earn in a non-exhaustive wheel is

larger than the lowest payoff any agent can earn in a wheel network, provided that both

networks are strict Nash.

(4) If the above condition does not hold, then the wheel network is payoff domi-

nant whenever it is strict Nash, i.e. for any c < cw.

The proof is provided in Appendix A.5. The players’ incentive to free ride

on the others’ efforts in link formation may lead to coordination failures in

equilibrium: the wheel network is Pareto superior to the empty network and

44



to any non-exhaustive wheel that fails to encompass at least half of the agents,

provided that these networks are strict Nash. Also, note that the maximum

of the potential and the criterion of Pareto dominance refine the set of strict

Nash networks differently: for costs in the range [φ(n−1)−φ(0), c̄w), the empty

network is a strict Nash equilibrium that is both a potential maximizer and

Pareto dominated.

1.5 When the distance matters

In many practical contexts, the distance between agents in a network plays a role.

Communicating with another person through many intermediaries may cause

delay or informational distortions. In this type of context, it seems natural that

a direct link from an agent to another one yields more benefits than a lengthy

path. Then how would the predictions change if the benefits from communication

decline with the distance? The remainder of the paper offers a partial answer to

this question.

1.5.1 Payoffs

In this section, I assume that there are frictions occurring during the communi-

cation stage. Let me interpret a path as a communication channel through which

the first agent along the path talks to the last agent along the path. Suppose

that each time an agent relays a message, its informational content decays. I use

the geodesic distance from an agent to another one for measuring the worth of

their interaction. The geodesic distance from i to j in a network g is the number

of links along the shortest path from the former to the latter, and I denote this

distance as d(i, j; g). If i has a path to j in some network g and j 6= i, then

1 ≤ d(i, j; g) ≤ n − 1. If i does not have a path to j, then I use the notation
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d(i, j; g) = ∞; and I set d(i, i; g) = 0. In this version of the game, I suppose that

the collective return associated with a network is a function of its distance ma-

trix. The distance matrix is a n × n matrix, whose (i, j)th entry gives d(i, j; g),

and it is denoted as D(g) for some network g. Note that the reach of agent i is

given by the number of non-infinite entries on the ith row of D. The collective

return associated with some network g ∈ G is:

v(g) = Φ(D(g)),

and Φ is decreasing in each entry of the distance matrix. For some given strategy

profile g ∈ G, the payoff of any player i is written as:

ui(gi, g−i) = Φ(D(g)) − c|gi|

The expression of the potential function is now:

P (g) = Φ(D(g)) − c
∑

i∈N

|gi| (1.5)

In this version of the model, the closeness of the agents determines the collective

return.

1.5.2 Assumption

The aim of this section is to provide a criterion that allows to compare the

collective return in different networks. I first introduce a definition.

Definition 1.5.1 The cumulative distance distribution Γ(g) of a network g is

a (1 × (n + 1)) vector, whose jth entry γj gives the number of distances less

than or equal to j − 1 in g divided by n2, for any 0 ≤ j ≤ n. The last entry

γn+1 is always equal to 1. The nth entry γn provides information on the number
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of finite distances in g; and γn+1 − γn provides information on the number of

infinite distances in g.

Definition 1.5.2 For any two networks g, g′ ∈ G, g′ dominates g if the cumu-

lative distribution Γ(g) of distances in g first order stochastically dominates the

cumulative distribution Γ(g′) of distances in g′.

Note that if some network g′ dominates some other network g then, on average,

an individual is closer to the rest of the group in g′ than in g. The next as-

sumption is based on Definition 2.5.2, and it offers a criterion for comparing the

collective return in several networks.

Assumption B: If g′ dominates g, then v(g′) ≥ v(g).

Network architectures that bring the agents closer to each other yield larger

collective benefits. Assumption B implies that v is anonymous.

Example. Consider the two networks below.

12

3

4

5

12

3

4

5

Figure 1.8: The network g on the left dominates the network g′ on the right
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Γ(g′) 5
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11
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23
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According to Assumption B, we have that v(g) ≥ v(g′).
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1.5.3 Analytical results

In this version of the game where frictions occur in the communication stage,

characterizing the strict Nash equilibria of the game is more difficult. The objec-

tive of the rest of the chapter is to give insight on how the equilibrium predictions

change when distances matter.

To this end, I change the equilibrium concept to the maximum of the poten-

tial, for the expression of the potential function in (1.5). I refer to an equilibrium

network as a network that maximizes the potential function, given a value c of

the cost of a link. Recall that this game admits the existence of a Nash equi-

librium in pure strategies (because this game is a potential game), and that a

strategy profile that maximizes the potential function is a Nash equilibrium. The

analytical analysis of the argmax set of the potential function is limited. I am

only able to characterize a relation between the components in a disconnected

equilibrium network. This makes the object of the next proposition.

Proposition 1.5.1. Let the potential function be given by expression (1.5), and

assume that v satisfies Assumption B. If g ∈ G is an equilibrium network, then

there is at most one component C in g such that |C| > 1 (i.e., C is not a

singleton).

A formal proof can be found in Appendix A.6; the intuition goes as follows.

Assume that a network g has two components that are not singletons. Let the

1

2 3 4 5

6

7

g

1

2 3 4 5

6

7

g′

Figure 1.9: Inefficient architecture with several components
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components be merged as follows: some player i in one of the two components

takes on the links of any player j in the other component, and maintains those he

already has in g. Player j severs all of his links. Next, all players who have links

towards j in g redirect them towards i. The rest of the links in g stay intact.

The operation has merged the two components, except for j who is left with

no links. Note that the resulting network has weakly fewer links than g.7 See

Figure 1.9: agent 3 takes on the links of agent 5 in addition to the ones he has

in g, and the agents who have links towards 5 switch by connecting to 3 instead.

Take players 3 and 5: aggregating the distances from these two agents, we obtain

the same thing in both networks.8 The distances between agents 4, 6 and 7 do

not change; and the distances from them to 5 in g are equal to the distances

from them to 3 in g′. In g′, our three agents have access to agents 1 and 2. And

agents 1 and 2 gain access to agents 4, 6 and 7. Aggregating the distances in

both networks, the network g′ dominates the network g. Therefore, g is never a

maximum of the potential. In this example, note that the two components of g

are not comparable via R. A similar argument holds when they are.

The second analytical result is related to the diameter of the equilibrium

candidates that have many links. The diameter of a network g is the longest

geodesic distance in g.

Proposition 1.5.2. Let the potential function be given by expression (1.5), and

suppose that v satisfies Assumption B. If a strategy profile g = (g1, . . . , gn) max-

imizes the potential function, and if further
∑

i∈N |gi| ≥ 2(n − 1), then the di-

ameter of the network g is at most equal to 2.

Proof. The proof is by contradiction. Assume g maximizes the potential func-

tion, g has a number of links x such that 2(n − 1) ≤ x ≤ n(n − 1) however the
7The total number of links stays constant only if |gi| + |gj | = |gi ∪ gj | i.e. gi ∩ gj = ∅, and

strictly decreases otherwise.
8Between the two of them, and in both networks g and g′ there are: 2 distances equal to

0, 3 distances equal to 1, 2 distances equal 2; no distance equal to 3, 4, 5 or 6; and 7 distances
equal to ∞.
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diameter of g is strictly larger than 2. Consider some network g′ that has the

same number x of links, and g′ has a subgraph that is a star on all agents. See

Figure 1.10: in a star, there is one central agent who forms links towards all

other agents; and any other agent than the center has one link towards the cen-

ter. Since such subgraph necessitates 2(n − 1) links and x ≥ 2(n − 1), g′ exists.

In g′, there are n distances equal to 0, x distances equal to 1 and n(n − 1) − x

distances equal to 2. But then g′ dominates g. As g and g′ have the same number

of links, it follows that g is not a maximum of the potential. A contradiction.

When the cost c of a connection is fairly low, an equilibrium network may

have many links. If the number of links is larger than 2(n − 1), then it is always

possible to form an architecture whose diameter is less than 2. For example,

any network that has a subgraph which is a star on all n agents satisfies this

restriction on the diameter. In a star, there is one central agent who forms links

towards all others, and any agent who is not the center has a link towards the

central agent. A star network is represented in Figure 1.10 below.

12

3 4

5

Figure 1.10: A star network

For low values of the cost, the set of equilibrium networks is restricted to

the architectures that have a certain diameter (by Proposition 1.5.2). Consider

relatively larger values of the cost c. Which architecture should we expect a

component of an equilibrium network to have? First, the architecture of a wheel

network may no longer be optimal for some values of the cost, and adding links

may be worthwhile for the sake of cutting distances. Let me consider the group

of n = 6 agents in Figure 1.11. Assume that we are in an environment where

communication is frictionless, and that our agents have formed a wheel network.
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Suddenly, the benefits from interactions slightly decay with the distance, and

agent 1 forms an additional link towards agent 4. This gives the network g1.

The architecture of g1 does not enable the group to make the most out of the

extra link from agent 1 to agent 4. To see why, let agent 3 redirect his link

towards agent 1; this gives the network g2. Agents 1, 4, 5 and 6 are not affected

by the change operated by agent 3, however the latter is now strictly closer to his

peers. Although the distances from agent 2 change, the average distance from

this agent stays constant. Aggregating the distances, g2 dominates g1. The same

argument holds for any number of links that is added to a wheel component.
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g2
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1 2
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45
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g4

Figure 1.11: Starting from a wheel network, and adding links

By naively adding links into a wheel component, I just showed that the re-

sulting architectures are not stable because some players, like agent 3 in the

network g1 in Figure 1.11, have a strictly profitable deviation. However, this is

not possible in an equilibrium network, as a maximum of the potential is a Nash

equilibrium of the game. The deviation that I just highlighted leads to centralize

communication around one central agent, like agent 1 in the networks in Figure
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1.11.

In the remainder, I characterize the architectures that belong to the argmax

set of the potential function, for fixed values of the cost c of a link and for a small

number n of agents. The results seem to validate the intuition just presented:

for a fixed value of the cost c, equilibrium networks all have a central agent, and

they exhibit the same patterns of links as in the networks g2 and g4 in Figure

1.11.

1.5.4 Results on the architectures of the equilibrium candidates

By Assumption B, a network g∗ that has x links in total is an equilibrium

candidate only if no other network with the same number of links produces a

larger collective return. My objective is to provide a characterization of the

architectures of equilibrium candidates for this version of the game.

First, let me consider the following set:

Gn,x =

{

(g1, . . . , gn) = g ∈ G :
∑

i∈N

|gi| = x

}

Given a number n of agents, this is the set of all networks in G that have x links,

with 0 ≤ x ≤ n(n − 1). Next, let me define the following subset of Gn,x :

G∗
n,x =

{

(g1, . . . , gn) = g ∈ Gn,x : ∄g′ ∈ Gn,x s.t. g′ dominates g
}

Given a number n of agents, I refer to G∗
n,x as the set of equilibrium candidates

with x links. Note that:

(g∗
1, . . . , g∗

n) = g∗ ∈ argmaxg∈G P (g) and
∑

i∈N

|g∗
i | = x ⇒ g∗ ∈ G∗

n,x

Therefore, the set:

G∗ = ∪
n(n−1)
x=0 G∗

n,x
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is a superset that contains all of the equilibrium networks of the game.

This section is devoted to characterizing the architectures of the equilibrium

candidates, and to identifying their key properties. Equilibrium networks that

have many links (i.e. more than 2(n − 1), so that there are enough links to form

a star on all agents) do not have any architectural particularities except for their

diameter. For this reason, I do not seek to characterize them. Instead, I focus on

the equilibrium networks that have weakly less than 2(n−1) links. In particular,

I make explicit the elements of the set G∗ for small numbers n of agents.

The results featured below are obtained through a computer assisted proof.

For n = 5, 6, I solve for the architectures in the sets G∗
n,x, and I vary the number

x of links from 0 to 2(n − 1).9 Before introducing my results, let me first give an

informal definition of a flower network. (For a formal definition, see Appendix

A.7.) A flower network has one central agent, and the rest forms wheels (that I

will call petals) of roughly the same size around the central agent. To be precise,

either all petals have the same number of agents or else the maximum difference

is one. In Figure 1.11, the networks g2 and g4 are flowers with 2 and 3 petals,

respectively. The wheel network and the star network are special cases of flower

architectures (with one petal and n − 1 petals, respectively).

Proposition 1.5.3. (1) If the network g ∈ G is an equilibrium network, then

there are at least 3 links in g. (2) For n ∈ {5, 6}, if the network g ∈ G is an

equilibrium network and g has x links in total, with 3 ≤ x ≤ 2(n − 1), then

g has one component that has the architecture of a flower, and the rest of the

components (if any) are all singletons.

For statement 1, the proof is the same as that given in Appendix A.4 (see

Claim 1). The proof of statement 2 is computer assisted (the software I use is

R), and the code is provided in Appendix A.8. In words, my approach is first

9For n = 3, 4, all equilibrium candidates with x links, for n ≤ x ≤ 2(n − 1) are connected
flowers. The analysis for n = 5, 6 players is richer in terms of results.
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to fix a pair (n, x) for the number of agents and links in a network. For this

pair, I generate the set Gn,x of all networks on n agents with x links. Then,

I look for the networks in Gn,x that are not dominated by any other network

in Gn,x. These networks constitute the elements of the set G∗
n,x of equilibrium

candidates that have x links. I repeat the same procedure for all pairs (n, x)

that I consider. See the figures below for the architectures in the set G∗, for

n ∈ {5, 6} and a number of links larger than n. In blue, the flower component

of each architecture.

The results suggest the following. First, that the optimal architecture for a

component is that of a flower. Flowers trade-off the higher costs of more links (as

compared to the wheel network) against the benefits of shorter distances. Second,

an equilibrium network may be disconnected, although it has more than n links.

Fixing the total number of links in a network, there seems to be a trade-off

between maximizing the agents’ reach and minimizing distances: in a connected

flower, the reach of the agents is maximized; in a disconnected flower, the agents

who can reach each other are relatively closer than in a connected flower that

has the same number of links. This shows at the level of the tails of the distance

distributions of the equilibrium candidates that have the same number of links.

Typically, in any set G∗
n,x, disconnected equilibrium candidates have distance

distributions that put more weight on short distances and have shorter tails

than the distance distribution of the connected equilibrium candidate. Third,

the occurrence of disconnected architectures in a set G∗
n,x increases as n gets

larger. When the number of agents rises, it becomes less likely that incorporating

all the agents in one component is efficient. In some disconnected equilibrium

candidates, the singletons are linked to the flower component via the central

agent. A link to (or from) the central agent gives short access to the rest of the

network.
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Figure 1.14: Architecture in G∗
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1.6 Conclusion

I presented a static non-cooperative game of network formation where the net-

work is assumed to generate non-excludable benefits. The network helps connect

a set of agents who use the network as a communication platform prior to taking

a collective action. The outcome of the collective action is assumed to depend

positively on the number of communications allowed by the network structure. A

network structure results from each individual’s contribution in link formation,
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and an agent’s decision is shaped by the trade-off between the social benefits of

his links and the private cost he incurs for forming them. This network forma-

tion game has the property of being a potential game.

I studied two versions of the model. First, I assume that the return from the

collective action is increasing in all players’ reach in the network; meaning, on

the total number of agents with whom each player talks. This implies that the

benefit from an interaction of an agent with another one does not depend on

the properties of the path they use for communicating, i.e. communication is

frictionless. When communication is frictionless, the social benefit from a link

is measured by the number of agents across the network that the link helps

connect. In an alternative version, I assume that the shortest distance, i.e. the

length of the communication channel an agent uses to talk to another one, af-

fects the worth of an interaction. In particular, indirect (distant) connections

are supposed to contribute less to the success of the collective action than direct

ones. The social benefit of a link in this case is measured by the number of

shortest paths that pass by the link, and longer paths account for less.

The objectives were to characterize the set of equilibrium networks and to

compare them with the efficient architectures of the game. For the first ver-

sion of the model, where communication is frictionless, I characterize the set of

strict Nash equilibria of the game. The corresponding equilibrium networks have

simple architectures: they are wheels that may or may not include all agents.

Among these equilibrium networks, only the wheel on all agents and the empty

network have an efficient architecture. In these structures, no player free rides on

the others’ contributions in links: either all contribute or none. For the second

version of the game, where I assume that frictions occur along a path, I study

the maximum of the potential. A maximum of the potential has the property

of being a Nash equilibrium of the network formation game, and I show that

the potential function is always maximized in a network that has an efficient

architecture. I find that the networks that have a flower subgraph all qualify

57



as equilibrium candidates (this is proved for a limited number of players). In

a flower, the higher costs of link formation are balanced against the benefits of

shorter distances, which is made possible by centralizing connections around one

single agent who mediates most of the communications in the network.

In this game where the network is a public good, I assumed that all agents are

homogeneous with respect to their valuation of the public good and their private

costs for forming links. A possible extension of this game could be to introduce

heterogeneity between the agents, along the lines just mentioned.
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Chapter 2

Secret Rebates and List Prices

in Negotiations between

Countries and Pharmaceutical

Firms

2.1 Introduction

In the negotiations on drug prices between a pharmaceutical firm and institu-

tional payers (countries), secret rebates conceal the price each country effectively

pays the manufacturer. For the case of a medicine listed for reimbursement in a

country, the price the country pays corresponds to the list price of the drug (i.e.

the official price at which it is listed for reimbursement, and this price is publicly

observable), minus the secret rebate, which is money that the manufacturer gives

back to the payer, and whose amount is kept confidential. During a negotiation

are therefore determined two prices, the list price and a secret rebate. The use of

59



a secret rebate makes the price each country pays confidential, in the sense that

it is known to no one but the parties who negotiate it. The list price of a drug

seems to be a poor indicator of the real price paid: estimations of the values

of rebates range from 40% to 70% for specialty pharmaceuticals, and from 10%

to 50% for primary care drugs across North America, Europe, and Australasia

according to the figures of Morgan et al. (2017, [60]).

From the supplier’s perspective, the use of secret rebates can be easily ratio-

nalized. Given that countries negotiate deals in turn, and that many of them

apply international price referencing (IPR) (i.e. payers base their price offers to

the manufacturer on the list prices of equivalent medicines in other countries),

secret rebates makes it possible to isolate each negotiation from the others, and

to avoid a low rebated price to propagate in subsequent negotiations.1 Another

source of price interdependencies between countries which also rationalizes the

benefits of secret rebates to suppliers is the parallel import of medicines between

countries in a same economic community, like in the EU. This involves importing

a product into one member state from another, transacted at the list price in the

exporting country.2 In the related empirical literature, Danzon (1997, [20]) finds

evidence of a strategic use of secret rebates, with confidential contracts including

a rebate off a common list price replacing contracts with differential list prices

and no rebate in most European countries.

From a country’s perspective, the benefits of secret rebates seem mitigated.

The main appeals are budgetary: rebates help in achieving financial goals and

managing health budgets (see Scherer 1997, [63], Morgan et al. 2017, [60]). Ac-

cording to a recent work of Espin et al. (2018, [31]), rebates accorded to the

countries in the EU5 have enabled to cap the growth of pharmaceutical expen-

ditures to 2% over the past years. Yet, rebates are generally resource intensive

to implement, especially for complicated rebate contracts; and they cause inef-

1See Vogler et al. (2018, [69]) and Towse et al. (2015, [67]).
2The possibility of parallel imports benefits countries, because it allows to arbitrage away

differences in list prices.
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ficiencies in terms of accessibility, as what individuals pay out of their pocket is

a function of the list (unrebated) price (see Morgan et al. 2013, [59]).

This chapter focuses primarily on rationalizing the use of secret rebates from

a country’s perspective, and on characterizing conditions under which a country

benefits from negotiating a secret rebate. To this end, we seek to understand the

relation between the value of a list price and that of its associated rebate; and

how these levels affect the demand and the health insurance policies in a coun-

try. As far as we know, no theoretical model has yet studied these relations. We

offer a model where a monopolist firm has the opportunity to sell its drug to two

countries. A key feature of our model is that we assume that a country and the

firm agree on a contract that is both Pareto optimal and individually rational

for them. A trade is settled through a contract that features two prices. The

first one is the list price, which is public information; the second price is a secret

rebate, known only to the parties who negotiate it. The countries are assumed

to be welfare maximizers, and they balance the benefits from the availability of

the drug on their respective market and the costs tied to acquiring it. Once the

first negotiation is over, the list price in the first country is made public, and

the second country starts its negotiation with the firm. The only assumption we

make about this second country is that it applies a simple form of IPR: it never

accepts to pay more than the list price it observes in the first country. As we

consider that the firm is farsighted, the latter anticipates that the list price in

the first country will affect the transaction price with the second one.

To understand how the outcome of price negotiations affects social insurance

policies, we suppose that the first country to negotiate sets up a reimbursement

scheme for the drug. The social insurance is funded by contributions levied on

all citizens, and it reimburses a fixed share of the list price to the patients who

can afford the drug. The reimbursement rate is fixed, however the social security

charges are determined endogenously based on the deal with the manufacturer.

This choice of ours is inspired by the French procedure through which the social
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coverage of medicines is determined. In France, the reimbursement rate is chosen

by the Union des Caisses de l’Assurance Maladie (UCAM), which is composed

of health professionals. Their choice is based on the therapeutic value added of

the drug compared to already existing treatments within the same therapeutic

class, the severity of the concerned disease and the degree of undesirable effects.

The price of the product however does not appear to be a key determinant of

the reimbursement rate. Economic and financial considerations (like the price,

the finance scheme) are taken care of by another institution, in France called the

Comité Économique des Produits de Santé (CEPS), after that the therapeutic

benefit of the drug has been assessed by the UCAM.

We seek to determine the optimal level of social contributions put in place by

the first country, and to characterize the set of Pareto optimal and individually

rational (PO-IR) contracts between this country and the firm. We find that

the first country always redistributes the money of the rebate towards lowering

social charges, as this allows a maximum of patients to get access to the drug.

Also, when social contributions are set to their optimal level, the first country

has preference towards low list prices and low rebates for a fixed rebated price.

These preferences are rationalized by the deadweight loss associated with a con-

tract that has a secret rebate: the social security fund returns the money of

the rebate to all citizens, even to those who do not need the drug, which is less

efficient than an analogous decrease in the list price, which targets specifically

the sick population. We identify the relative market sizes in the two countries

as a key determinant of the outcome of the negotiation between the firm and

the first country. If the market size in the second country is sufficiently small,

the firm and the first country may find common ground on not using a secret

rebate. In this instance, the firm prefers to sell more in the first country, even

if this entails a low list price to propagate in the second negotiation. If, on the

other hand, the second country represents a large and profitable market, then

no deal is ever worth sealing with the first country from the firm’s perspective.
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We conclude that the use of rebates in the first negotiation is conditional on the

two countries being more or less balanced in terms of market sizes. If this condi-

tion is satisfied, the PO-IR contracts between the firm and the first country all

include a strictly positive rebate; specifically, larger rebates are associated with

larger list (unrebated) prices and lower rebated prices. This result suggests that

rebates are used as currency between the first country and the firm. We reach

the conclusion that the deal that maximizes the country’s payoff is that with the

largest rebate, because this deal is associated with the largest quantity traded

and the lowest rebated price.

The work that is the most related to ours is that by Jelovac (2002, [49]). Jelo-

vac studies the relation between the patients’ co-payment for buying drugs and

the list price of a patented pharmaceutical.3 The author finds that countries

which offer good social coverage have more bargaining power in their negoti-

ation, and are able to obtain a lower list price from the manufacturer. Our

paper contributes to this literature by giving a global insight onto the dynamics

between health budget related decisions and the levels of both list prices and

secret rebates: higher list prices and rebates are associated with lower social

contributions. This relation is rationalized by the fact that contracts that fea-

ture higher list prices and rebates also correspond to lower rebated prices; hence,

the social security needs levy less social charges. An interesting result is that

overall, contracts with larger list prices are associated with a greater quantity

demanded (i.e., the mass of individuals who can afford the treatment increases),

which suggests that the country succeeds in turning off the negative effect on

the demand from a larger list price with a lowering of social contributions.

The rest of the paper is organized as follows. Section 2.2 presents the model.

Sections 2.3 and 2.4 feature our results about the PO-IR contracts between the

first country and the firm. Section 2.5 concludes.

3A co-payment is a fixed amount that a healthcare beneficiary pays for medical expenditures
covered by his or her health insurance plan. The remaining balance is paid by the insurance
company.
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2.2 Model

In this section, we present the model as well as the payoff functions of the

countries and the firm. We set clear the assumptions we use, and we describe

the social security system in the first country.

2.2.1 Set-up

Two countries, indexed by i ∈ {1, 2}, seek to purchase a drug sold by a mo-

nopolist pharmaceutical firm, F . The two countries negotiate in turn. We shall

draw the attention of the reader on the fact that we do not assume anything

about how the countries negotiate with the firm, except that they will choose a

contract that is Pareto optimal and individually rational for both of them, i.e.

for country i and the firm. A successful negotiation between country i ∈ {1, 2}

and the firm results in a contract (pi, ri). The contract specifies the list price pi

of the drug in country i, which is publicly observable. The contract may also

include a unitary rebate ri, which is money the firm pays back to the country

on each unit purchased. The amount of the rebate is only known to the parties

which negotiate it, country i and F . We call the net price the rebated price paid

by country i to the manufacturer. It is equal to pi − ri, and we denote it by yi.

We further assume that the firm is farsighted: it anticipates that the outcome

of the first negotiation impacts the price at which it can sell its product in the

second country. We suppose that the firm initiates an offer a secret rebate only

for avoiding that a low net price propagates across markets. Thence, r2 = 0.

From now on, we denote by r the secret rebate that country 1 obtains.

Given that the two countries negotiate sequentially with the firm, country 2,

prior to sit at the negotiation table, knows the list price p1 of the drug in coun-

try 1. However, the former does not know the secret rebate the latter got. In
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the following assumption, we restrict country 2’s behavior during its negotiation

with the firm. We do not seek to rationalize this behavior.

Assumption A

While negotiating with the firm, country 2 uses international price referencing

(IPR): it never accepts to pay a price greater than the list price in country 1,

i.e. p2 ≤ p1.

Assumption A can be understood as country 2’s participation constraint in its

negotiation with the firm.

2.2.2 Payoffs

Country 1

Country 1 has a population size normalized to 1, and a proportion α of

agents who would benefit from getting access to the drug. Every sick agent

is associated with a marginal disutility of one. This unit can be recovered

if the individual gets treated. We assume that individual wealth ω is dis-

tributed according to some cumulative distribution F on the support [0, 1].

Furthermore, we suppose that the country sets up a social insurance plan

for reimbursing the drug. The social security levies a contribution τ(p1, r)

on all citizens. Its amount is chosen endogenously by the country after

that it knows its contract with the firm. The social insurance reimburses

some fixed share 1 − γ ∈ (0, 1] of the list price to a sick individual who can

afford the drug. We assume that all citizens can afford the contribution τ ,

however not all can afford the payment of γp1 after reimbursement.4 If the

4Meaning, the country rises τ of social contributions in total. All agents whose wealth is
greater than τ can afford the private contribution, which amounts to τ(1 − τ). As for the
remaining τ2 that cannot be levied on those whose wealth is less than τ , we suppose that the
country levies it on healthy individuals who do not need to purchase the drug. In other words,
we assume the existence of a redistributive tax scheme that we do not model here. Note that
this redistributive scheme does not have any incidence on the quantity demanded.
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country has a deal with rebate, the total rebate (the unitary rebate times

the quantity traded) goes directly into the funds of the social security. The

demand function of the country is:

q1(p1, r) = α [1 − F (τ(p1, r) + γp1)] ,

which is the share of the sick population who can afford the treatment. The

quantity demanded is decreasing in the share of the list price the patient

must pay, and it is increasing in the size of the sick population. Holding

the private contribution constant, the demand is decreasing in the list price

( dq1

dp1
≤ 0); and for a fixed list price, the quantity demanded is decreasing

in the private contribution. Aggregating the utilities of all citizens, the

welfare in country 1 for a given contract (p1, r) is:

W (p1, r) = q1(p1, r) (1 − γp1) − τ(p1, r) − α.

This is the sum of all agents’ utilities: every sick and treated individual

has a utility of −γp1 − τ(p1, r); that of a sick and untreated individual is

−1 − τ(p1, r); and the rest has utility −τ(p1, r). Note that the quantity

demanded is strictly positive if and only if p1 < 1
γ
. At last, we assume the

following.

Assumption B

The social security fund cannot run a deficit:

B(p1, r) = τ(p1, r) − q1(p1, r) [(1 − γ)p1 − r] ≥ 0 (2.1)

for any contract (p1, r).

The first term in the expression of the budget constraint gives the total

revenue from social contributions, and the last term is the net reimburse-
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ment cost on the social security. Country 1’s payoff is denoted by v1, and

equals the sum of the welfare and the balance of the social security fund:

v1(p1, r) = W (p1, r) + B(p1, r)

If the negotiation with the firm is successful, the payoff corresponds to the

following expression:

v1(p1, r) = q1(p1, r)[1 − (p1 − r)] − α (2.2)

The product of the two first terms is the net social gain from the treated

agents, and the last term is the social disutility from the sick individuals.

If the negotiation fails, the payoff of the country is simply:

v1 = −α

No sick agent gets the treatment, and no insurance mechanism is set up. A

first observation is that the country never accepts a contract that has a net

price greater than the social marginal gain of treating an individual, i.e.

y1 ≤ 1 must hold if the contract is individually rational for the country.

Country 2

We do not specify anything particular for this country. Recall that country

2 never obtains a rebate, and that it uses IPR. We do not model the

negotiation between country 2 and the firm. We simplify the outcome of

this negotiation along the lines described in the assumption stated below.

Assumption C

The outcome of the second negotiation is a list price p2 such that:

p2 ≤ min
{

p1, pM
2

}
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where pM
2 denotes the monopoly price in country 2.

The firm

We assume that the cost of producing the drug is null and that R&D costs

are sunk. The firm can earn a profit on each market. For simplicity, let us

write the firm’s payoff on the second market as:

θπ2(p̄2)

where p̄2 = min{p1, pM
2 } is the maximum price the firm can charge country

2, and θ ∈ [0, 1] is a parameter that gauges the firm’s negotiating power in

its second negotiation.5 Furthermore, we assume that the profit function

π2 is concave in the price. If trade happens with the first country, then the

firm’s total profit is written as:

π(p1, r, p2) = q1(p1, r)(p1 − r) + θπ2(p̄2)

Note that the last term is the firm’s profit on the second market, and it is

always weakly less than the monopoly profit in country 2, that we denote

by πM
2 throughout. If no trade happens with the first country, the firm’s

total profit is simply:

π = θπM
2

The firm makes no profit in country 1, and it earns a share of its monopoly profit

in the second country.

5The parameter θ can be understood as a measure of the market size in country 2.
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2.2.3 Timing

We present the timing. First, country 1 and the firm negotiate their contract. If

the negotiation succeeds, country 1 determines the level of the private contribu-

tion τ(p1, r). If the negotiation fails, country 1 does not get the drug and does

not set up an insurance plan. At last, country 2 negotiates with the firm. If

the first negotiation with country 1 succeeded, then country 2 only accepts list

prices lower than p1. If country 1 and the firm could not reach an agreement,

the list price in country 2 is less than or equal to the monopoly price, pM
2 .

2.3 Pareto optimal and Individually rational contracts

We solve using backward induction. We first present country 1’s optimal choice

of private contribution for a given contract. Then, we characterize the contracts

that are both Pareto-optimal and individually rational for the first country and

the firm. Abusing language, we refer to these contracts as PO-IR.

2.3.1 The optimal contribution

Consider some contract (p1, r) country 1 and the firm agreed on. Notice that

maximizing the country’s payoff in (2.2) is equivalent to minimizing the private

contribution τ . Yet, the social security fund is budget-constrained. Therefore,

the optimal contribution saturates the budget constraint in (2.1). Its expression

is:

τ∗(p1, r) = α [(1 − γ)p1 − r] [1 − F (τ∗(p1, r) + γp1)]

Note that the optimal contribution is negative (i.e., the country subsidizes the

drug) when the marginal reimbursement cost on the social security, (1 − γ)p1,

is less than the rebate, r. For a fixed list price, an increase in the rebate always

69



leads to a decrease in the private contribution. This further causes an increase

in the quantity demanded. For a fixed rebate, an increase in the list price has

an ambiguous effect on the private contribution. Two forces are at play. First,

the net cost of treating a sick person on the social security increases. Second,

the rise in the list price impacts negatively the quantity demanded by the sick

population. Therefore, the marginal reimbursement cost rises, however fewer

individuals need a reimbursement. Depending on which effect dominates the

other, the optimal contribution may either increase or decrease.

What is certain is that the welfare of the country is larger with social security

than without.6 For a given list price, more agents get treated with than without

social security.

Remark 2.3.1. When private contributions are set at their optimal level, coun-

try 1 is better-off with than without social security, for any net price less than

1.

Proof. Recall that the country never accepts a contract that has a net price

greater than 1, irrespective of whether the country offers social insurance or not.

If the country does not offer social insurance, its payoff is given by:

v1(y) = α[1 − F (y)](1 − y) − α.

With social security, the country’s payoff is:

v1(p1, r) = α [1 − F (τ∗(p1, r) + γp1)] (1 − y) − α

Therefore the statement in the remark is true only if τ∗(p1, r) ≤ y−γp1 i.e., more

6In our model, as it is the case for countries like France, subscription to social insurance
is compulsory. We find that if the individuals were given the choice to enroll or not, they
would all choose to subscribe to the social insurance scheme, i.e. pay τ and receive an expected
reimbursement of αγp1.
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sick individuals can afford the treatment with than without social security. Let us

set y = p1−r. The last inequality is re-arranged as τ∗(p1, r) ≤ (1−γ)p1−r. This

always holds given that the quantity demanded is less than 1 in the expression

of the optimal contribution.

In the remainder, we set F to be the uniform distribution. The quantity

demanded is:

q1(τ∗(p1, r), p1, r) =



















α(1 − γp1)
1 + α(p1 − r) − αγp1

if p1 ≤ 1
γ

0 if p1 > 1
γ

(2.3)

which is always less than α. The numerator and the denominator of this expres-

sion are positive. The demand is increasing in α and decreasing in the share

γ of the list price patients pay. Holding the list price constant, the quantity

demanded is increasing in the rebate and decreasing in the net price; holding

the rebate constant, the quantity is decreasing in the list price. The optimal

contribution can be written as:

τ∗(p1, r) =
α [(1 − γ)p1 − r] (1 − γp1)

1 + α(p1 − r) − αγp1
, (2.4)

When social contributions are at their optimal level, the country’s payoff is

given by the following expression:

v∗(p1, r) =
α(1 − γp1)

1 + α(p1 − r) − αγp1
[1 − (p1 − r)] − α. (2.5)

Holding the rebate constant, the payoff is decreasing in the list price; and holding

the list price constant, the payoff is increasing in the rebate, hence decreasing in

the net price.

For a fixed net price, the country has preference towards a low list price and a

low rebate. In fact, there exists a deadweight loss associated with a contract that
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has a strictly positive rebate: the country returns the money of the rebate to all

individuals (even to those who do not need the drug), which is less effective than

an equivalent reduction in the list price. In other words, for any two contracts

that feature a same net price, the quantity traded is always larger for the contract

that has the lowest list price, thus the smallest rebate.

We now study the firm’s profit. If the first negotiation is successful, the firm’s

profit is given by:

π∗(p1, r) =



















α(1 − γp1)
1 + α(p1 − r) − αγp1

(p1 − r) + θπ2(p1) if p1 ≤ min
{

1
γ
, pM

2

}

α(1 − γp1)
1 + α(p1 − r) − αγp1

(p1 − r) + θπM
2 if p1 ∈

[

pM
2 , 1

γ

]

(2.6)

For a fixed rebate, the firm’s profit is concave in the list price; and for a fixed

list price, the firm’s profit is increasing in the net price and decreasing in the

rebate.7 Also, the profit is increasing in α and decreasing in γ.

2.3.2 List price and rebate

The firm and country 1 must both gain from trading. In order to gauge these

gains, we shall first clearly describe the parties’ disagreement payoffs. For the

country, failure to reach an agreement implies that the drug is not accessible. The

country’s payoff is then −α. If the firm does not trade with the first country, it

does not make any profit on the first market and earns some share of its monopoly

profit in the second one. The disagreement payoffs are then (−α, θπM
2 ). Below,

we provide a formal definition of a PO-IR contract for both country 1 and the

firm.

7To recover the result about the concavity of π∗ in p1, note that the sign of the second
derivative of the profit with respect to p1 is that of −γ (1 + α(1 − γ)p1 − αr) (1 − αγr) −
2α(1 − γ)(1 − γp1)(1 − αγr), which is negative whenever p1 ≤ 1

γ
.
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Definition 2.3.1 A contract between the firm and country 1 is PO-IR if each

party earns at least its disagreement payoff (individual rationality), and there is

no other contract that gives both parties a higher payoff (Pareto optimality).

A party agrees on a contract only if it satisfies its participation constraint. We

make them explicit below.

Participation constraints

1. Country 1 has two participation constraints:

γp1 ≤ 1 and y1 ≤ 1 (2.7)

i.e., the marginal cost on an individual, γp1, and the maginal cost on

society, which is the net price y1, must be both lower than the marginal

benefit from treating an individual, 1.

2. The firm’s participation constraint is:

r ≤ min

{

p1 , p1 −
θ[πM

2 − π2(p1)](1 − αγp1)
α[1 − γp1 − θ(πM

2 − π2(p1))]

}

(2.8)

i.e., the profit on the first market is positive, and this profit compensates

the loss of profit on the second market when p1 < pM
2 .

Proof. For the country: the quantity purchased must be positive, which is en-

sured by p1 ≤ 1
γ
; and given this, v∗

1 is larger than −α if and only if y1 ≤ 1.

For the firm, we show that the net price must be positive. By contradiction,

suppose that country 1 and the firm signed a contract with y1 < 0. But then the

firm’s profit is always less than its disagreement payoff. The second expression

is obtained by rearranging π∗(p1, r) ≥ θπM
2 for the case where p1 < pM

2 .

The indifference curve of country 1, expressed as the rebate in function of the
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list price, is of equation:

r =
(v̄ + α)[1 + α(1 − γ)p1] − α(1 − γp1)(1 − p1)

α[1 − γp1 + (v̄ + α)]
, (2.9)

where v̄ ∈ [−α, 0] is a level of payoff for country 1. Note that when the country’s

participation constraint on the list price is satisfied, the denominator is posi-

tive. In the best scenario from the country’s perspective, and given the firm’s

participation constraint, all patients get access to the drug and the net price is

null. The above expression for the indifference curve is increasing convex in the

list price p1. See Appendix B.1 for the proof. Note that the country’s payoff

increases for north-west shifts of its indifference curve.8 The marginal rate of

substitution between the rebate and the list price is always negative: the coun-

try trades larger list prices against larger rebates. Since the indifference curve

is convex in the list price, the increase in the rebate must be larger than the

increase in the list price in order to maintain the country’s payoff.

For any list price in country 1 that is less than the monopoly price in country

2, the equation of the firm’s isoprofit curve is:

r = p1 −
(π̄ − θπ2(p1))(1 − αγp1)

α[1 − γp1 − (π̄ − θπ2(p1))]
(2.10)

where π̄ is some profit level in [θπM
2 , α + θπM

2 ]. The lower bound guarantees

that the firm does not loose from trading with country 1. To obtain the upper

bound, note that the maximum quantity traded is α and that the largest net

price the country may agree on is equal to 1. Also, note that both the numerator

and the denominator of the ratio are positive when both parties’ participation

constraints are satisfied.9 The firm’s profit increases when its isoprofit curve

8For a same value of the rebate, an indifference curve that passes by a lower list price
corresponds to a higher payoff. And for a same list price, an indifference curve that passes by
a larger rebate corresponds to a higher payoff.

9If all participation constraints are satisfied, then we have p1 ≤ 1
γ

, r < p1, and π̄ ≥ θπ2(p1)

for any π̄ ∈ [πM
2 , α + πM

2 ], and p1 ∈ [0, pM
2 ].
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shifts downwards. If instead the price in country 1 is above the monopoly price

in country 2, the equation of the firm’s isoprofit curve is:

r = p1 −

(

π̄ − θπM
2

)

(1 − αγp1)

α
[

1 − γp1 −
(

π̄ − θπM
2

)] (2.11)

with π̄ ∈ [θπM
2 , α+θπM

2 ] for the same reason as aforementioned. The numerator

and the denominator of the ratio are both positive.10

The profit that the firm makes on the first market is larger, given a fixed net

price, for lower list prices and rebates. However, a low list price propagates on

the second market and reduces the firm’s profit there. When its monopoly profit

in country 2 is sufficiently large, the firm may gain from trading exclusively

with this country. In the next proposition, we give a sufficient condition on the

demands of the two countries that precludes trade between country 1 and the

firm.

Proposition 2.3.1. Country 1 and the firm never trade if:

(1 − |ε2 (p2)|) q2 (p2)
∣

∣

∣

p2= 1
γ

>
αγ

θ

where q2 is the demand in country 2 and ε2 its price elasticity.

See Appendix B.2 for the proof. If the condition in the above proposition

holds, then the firm’s participation constraint is violated for all list price-rebate

pairs that satisfy country 1’s participation constraints. In other words, no trade

is worthwhile sealing with country 1 if the monopoly price in country 2 exceeds

the maximal list price country 1 may agree on.

The possibility of mutually advantageous trades depends negatively on how

profitable the second market is. In what follows, we focus on the parameters

of our model such that the firm serves both markets. Before providing a char-

10If all participation constraints are satisfied, then p1 ≥ r, p1 ≤ 1
γ

and π̄ ≥ θπM
2 .
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acterization of the PO-IR contracts, we first study the relation between a list

price, its associated rebate and net price, and the quantity traded. For this, we

provide a series of lemmas that study each of these relations separately.

Lemma 2.3.1. If p∗
1 is a PO-IR list price, then p∗

1 ≤ pM
2 and the following

condition holds:

θ
∂π2(p∗

1)
∂p1

(1 − γp∗
1)(1 − αγp∗

1) ≥ γ (π̄ − θπ2(p∗
1)) [1 − α + α (π̄ − θπ2(p∗

1))]

i.e., the firm’s isoprofit curve in expression (2.10) is increasing at p∗
1.

Proof. If p1 such that p1 > pM
2 is PO-IR, then country 1’s indifference curve in

expression (2.9) is tangent to the firm’s isoprofit curve. Let drC

dp1
be the country’s

marginal rate of substitution between list price and rebate. This is:

drC

dp1
= 1 +

γ (v̄ + α) [1 − α (v̄ + α)]

α [1 − γp1 + (v̄ + α)]2

with v̄ ∈ [−α, 0] in a PO-IR contract. It follows that the numerator of the

ratio is positive. Therefore drC

dp1
> 1. Let drF

dp1
be the firm’s marginal rate of

substitution between list price and rebate. Since p1 > pM
2 , the equation of the

isoprofit corresponds to (2.11), which gives:

drF

dp1
= 1 −

(

π̄ − θπM
2

) [

γ(1 − α) + αγ
(

π̄ − θπM
2

)]

α
[

1 − γp1 −
(

π̄ − θπM
2

)]2

with π̄ ∈
[

θπM
2 , α + θπM

2

]

in a PO-IR contract. Thus the numerator of the ratio

is positive. But then drF

dp1
≤ 1, and it is never equal to drC

dp1
. Therefore, a contract

(p1, r) is PO-IR only if p1 ≤ pM
2 .

If (p1, r) with p1 ≤ pM
2 is PO-IR, then country 1’s indifference curve in ex-
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pression (2.9) is tangent to the firm’s isoprofit curve:

γ(v̄ + α) [1 − α(v̄ + α)]

[1 − γp1 + (v̄ + α)]2
=

θ ∂π2(p1)
∂p1

(1 − γp1)(1 − αγp1) − γ (π̄ − θπ2(p1)) [1 − α + α (π̄ − θπ2(p1))]

[1 − γp1 − (π̄ − θπ2(p1))]2

The term on the left side of the equality sign is strictly positive, as v̄ ∈ [−α, 0]

if p1 is individually rational. Therefore, the right side of the equality sign must

be positive. As the denominator is obviously positive, the numerator must also

be positive valued.

Note that a PO-IR contract between the firm and the first country enables

the second one to pay less than the monopoly price on its market, thanks to

IPR. Next, we highlight the relation between the list price and the net price in

a PO-IR contract.

Lemma 2.3.2. Consider some contract (p∗
1, r∗), and let π̄ the firm’s profit for

this contract. Let p̂1(π̄) be the list price that minimizes the net price along the

firm’s isoprofit curve π̄. If (p∗
1, r∗) is PO-IR, then:

p∗
1 ≤ p̂1(π̄)

Furthermore, p̂1(π̄) is decreasing in π̄.

Proof. Consider a PO-IR contract (p∗
1, r∗) and let π∗(p∗

1, r∗) = π̄. The net prices

that give the firm the same level π̄ of profit are along the curve of equation:

y(p1, π̄) =
(π̄ − θπ2(p1)) (1 − αγp1)

α [1 − γp1 − (π̄ − θπ2(p1))]
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and (p∗
1, r∗) belongs to this curve. The first derivative of y(p1, π̄) wrt p1 is:

∂y(p1, π̄)
∂p1

=
(

− θ
∂π2(p1)

∂p1
(1 − γp1)(1 − αγp1) + γ(π̄ − θπ2(p1))[1 − α + α(π̄ − θπ2(p1))]

)

α2[1 − γp1 − (π̄ − θπ2(p1))]2

The sign is that of the numerator. The numerator is an increasing function of

p1, since its first derivative with respect to p1 can be expressed as:

−θ
∂2π2(p1)

∂p2
1

(1 − γp1)(1 − αγp1) + 2αγθ
∂π2(p1)

∂p1
[1 − γp1 − (π̄ − θπ2(p1)) ≥ 0

The inequality holds because p1 ≤ pM
2 by Lemma 2.3.1, r ≥ 0 in expression (2.10)

if and only if 1 − γp1 − (π̄ − θπ2(p1)) ≥ 0, and we assumed that π2 is concave

in the price. Let us go back to the numerator of dy
dp1

. We just established that

it is increasing in p1, for all p1 ∈ [0, pM
2 ]. Note that dy

dp1
≥ 0 at p1 = pM

2 . Also,

dy
dp1

≤ 0 at p1 = p∗
1, by Lemma 2.3.1. Therefore, a global minimum of y(p1, π̄)

exists. Let p̂1(π̄) = argmin y(p1, π̂). This price solves:

−θ
∂π2(p1)

∂p1
(1−γp1)(1−αγp1)+γ(π̄−θπ2(p1))[1−α+α(π̄−θπ2(p1))]

∣

∣

∣

p1=p̂1(π̄)
= 0

The function on the left side of the equality sign is increasing in π̄; and recall

that it is increasing in p1. It follows that p̂1 is decreasing in π̄.

The rest of the proof is by contradiction. Assume that p∗
1 > p̂1(π̄). Consider

r̂(π̄) such that: π(p̂1(π̄), r̂(π̄)) = π̄. The firm is indifferent between (p∗
1, r∗) and

(p̂1(π̄), r̂(π̄)). By the definition of p̂1(π̄), p̂1(π̄) − r̂(π̄) < p∗
1 − r∗. Note that the

country’s payoff can be written as:

v∗(p1, y) =
α(1 − γp1)

1 + αy − αγp1
(1 − y) − α

and this expression is such that dv∗

dp1
< 0 and dv∗

dy
< 0. But then country 1
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strictly prefers (p̂1(π̄), r̂(π̄)) over (p∗
1, r∗). A contradiction that (p∗

1, r∗) is Pareto

optimal.

The lemma shows that, for a given level of profit for the firm, the contract

that maximizes the country’s payoff is not necessarily the one with the lowest

net price. Such a contract involves a list price high enough for that the country

prefers instead a contract with a larger net price and a lower list price. Next,

we study the relation between the list price and the quantity traded.

Lemma 2.3.3. Consider a PO-IR contract (p∗
1, r∗), and let π̄ be the firm’s profit

for this contract. Let p̃1(π̄) be the list price that maximizes the quantity traded

along the firm’s isoprofit curve π̄. If (p∗
1, r∗) is PO-IR, then:

p∗
1 ≥ p̃1(π̄)

Furthermore, p̃1(π̄) is decreasing in π̄, and p̂1(π̄) ≥ p̃1(π̄).

Proof. Consider a PO-IR contract (p∗
1, r∗), and let π∗(p∗

1, r∗) = π̄. The quantities

q1 demanded by country 1 that give the firm the same level of profit π̄ are along

the curve of equation:

q1(p1, π̄) =
α[1 − γp1 − (π̄ − θπ2(p1))]

1 − αγp1

and (p∗
1, r∗) belongs to this curve. Note that:

∂q1(p1, π̄)
∂p1

=

α

(

−γ(1 − α) − αγ(π̄ − θπM
2 ) +

[

θ
∂π2(p1)

∂p1
(1 − αγp1) − αγθ(πM

2 − π2(p1))
])

[1 − αγp1]2

The sign of dq1

dp1
is that of its numerator. The function between squared brackets

is decreasing in p1, and it equals zero at p1 = pM
2 . Therefore, either q1(p1, π̄)
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is single-peaked in p1, or it is strictly decreasing in p1. In any case, a global

maximum of q1(p1, π̄) exists on [0, pM
2 ]. We set p̃1(π̄) = argmax q1(p1, π̄). If

p̃1(π̄) > 0, then it is given by:

θ
∂π2(p1)

∂p1
(1 − αγp1) + αγθπ2(p1)

∣

∣

∣

p̃1(π̄)
= αγπ̄ + γ(1 − α)

The left side of the equality is a decreasing function of p1.11 It follows that p̃1 is

decreasing in π̄. We now show that p̂1(π̄) ≥ p̃1(π̄). Note that:

θ
∂π2(p1)

∂p1
(1 − αγp1) − γ[1 − α + α(π̄ − θπ2(p1))]

∣

∣

∣

p̃1(π̄)
= 0

where the function on the left of the equality sign is decreasing in p1 (see the

proof of Lemma 2.3.2), and:

θ
∂π2(p1)

∂p1
(1 − γp1)(1 − αγp1) − γ(π̄ − θπ2(p1))[1 − α + α(π̄ − θπ2(p1))]

∣

∣

∣

p̂1(π̄)
= 0

where the function on the left of the equality sign is decreasing in p1. Recall that

1 − γ ≥ π̄ − θπ2(p1), as the denominator of expression (2.10) is positive. And

π̄ ≥ θπM
2 ≥ θπ2(p1), where the first inequality holds as the firm’s participation

is satisfied if the contract is PO-IR; and p1 ≤ pM
2 by Lemma 2.3.1. It follows

that p̂1(π̄) ≥ p̃1(π̄).

The rest of the proof is by contradiction. Assume that p∗
1 < p̃1(π̄). Consider

the contract (p̃1(π̄), r̃(π̄)) with r̃(π̄) such that π(p̃1(π̄), r̃(π̄)) = π̄. The firm is

indifferent between (p∗
1, r∗) and (p̃1(π̄), r̃(π̄)). If p∗

1 is part of a PO-IR contract,

then p∗
1 ≤ p̂1(π̄) by Lemma 2.3.2. Thus, we have p∗

1 < p̃1(π̄) ≤ p̂1(π̄); hence,

we can infer that p̃1(π̄) − r̃(π̄) < p∗
1 − r∗. Therefore, the net price is lower and

the quantity traded is larger with contract (p̃1(π̄), r̃(π̄)) than with (p∗
1, r∗). The

11The derivative of this function wrt p1 is θ
∂2π2(p1)

∂p2

1

≤ 0, since we assume π2(.) is concave in

the list price and p1 ≤ pM
2 .
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country’s payoff can be written as:

v∗(y, q1) = (1 − y)q1 − α

and note that dv∗

dy
< 0 and dv∗

dq1
> 0. But then country 1 strictly prefers

(p̃1(π̄), r̃(π̄)) over (p∗
1, r∗). Which contradicts that (p∗

1, r∗) is Pareto optimal.

For a fixed level of profit for the firm, the country’s payoff is not necessarily

the largest for the contract that maximizes the quantity traded. The net price

associated with such a contract is large enough for that the country prefers a

contract with a lower net price, a larger rebate and a larger list price. The two

lemmas together imply the following relation between the rebate and the list

price in a PO-IR contract.

Proposition 2.3.2. Consider two contracts (p1, r) and (p′
1, r′). If p1 > p′

1 and

both contracts are PO-IR, then it must hold that r ≥ r′.

The proof can be found in Appendix B.3. In the set of PO-IR contracts, larger

list prices are associated with larger rebates. If two contracts fail to satisfy this

relation, then the one that has the largest list price (hence the lowest rebate) is

Pareto dominated. A Pareto improvement can be achieved with a contract that

has a larger net price, a lower list price and a lower rebate, and that involves

a greater quantity traded. Below, we characterize the set of PO-IR contracts

between the first country and the firm.

Proposition 2.3.3. A contract (p1, r) between country 1 and the firm is PO-IR

if it is on the Pareto frontier of equation:

r∗(p1) = (1 − γ)p1 +
1
α

−
αγ(1 − γp1)

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

(2.12)
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and if it further satisfies:

p1 ≤ min
{

pM
2 ,

1
γ

}

and:

p1 −
θ[πM

2 − π2(p1)](1 − αγp1)
α[1 − γp1 − θ(πM

2 − π2(p1))]
≥ r ≥ p1 − 1

The quantity traded for such a contract is given by the expression:

q∗
1(p1) = 1 − θ

∂π2(p1)
∂p1

[

1
αγ

+
(

1
γ

− p1

)]

(2.13)

and it is strictly increasing in p1. The optimal contribution for some PO-IR

contract can be expressed as:

τ∗(p1, r) =
θ ∂π2(p1)

∂p1
(1 + α − αγp1) − αγ (1 − α + αγp1)

α2γ

and it is strictly decreasing in p1.

Proof. Expression (2.12) gives the equation of the Pareto frontier. It is obtained

by solving:
∂v∗

1(p1, r)/∂p1

∂v∗
1(p1, r)/∂r

=
∂π∗(p1, r)/∂p1

∂π∗(p1, r)/∂r

Note that the firm’s participation constraint is the firm’s isoprofit π̄ = θπM
2 . This

isoprofit curve intersects the Pareto frontier for some value of p1 less than pM
2 .

Also, note that as p1 approaches pM
2 , the rebate in expression (2.12) approaches

p1 + 1−α
α

. Given that p1 − r ≥ 0 by the firm’s participation constraint, it follows

that r = p1 if and only if p1 = pM
2 and α = 1.

Further details are provided in Appendix B.4. The area of mutually advanta-

geous trades, which is delimited by the parties’ participation constraints, shrinks

as the firm’s disagreement payoff increases. Also, a larger disagreement payoff
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for the firm shifts the Pareto frontier to the right: for a fixed secret rebate, its

associated PO-IR list price is higher.

Corollary 2.3.1. There exists a PO-IR contract (p∗
1, r∗) such that r∗ = p∗

1 if

and only if p∗
1 = pM

2 , pM
2 ≤ 1

γ
and α = 1.

The result follows directly from Proposition 2.3.3. Unless the whole population

in country 1 is sick, the country pays the firm a strictly positive price. The next

theorem clarifies the relation between the list price, the rebate and the net price

in the set of PO-IR contracts.

Theorem 2.3.2. Let X1 be the set of all PO-IR contracts. In this set, larger

list prices are associated with larger rebates and lower net prices.

The theorem above completes the analysis initiated in Proposition 2.3.2, and

makes explicit the relation between secret rebate, list price and net price in the

set of PO-IR contracts. More details are provided in Appendix B.5. In what

follows, we give precision on each party’s preferred PO-IR contract.

Corollary 2.3.3. In the set X1 of PO-IR contracts, country 1’s payoff is max-

imized for the contract that has the largest list price, the largest rebate and the

lowest net price; and the firm’s profit is maximized for the contract that has the

lowest list price, the lowest rebate and the highest net price.

Proof. In the set of PO-IR contracts, the contract that gives the firm the lowest

profit, θπM
2 , can be found at the intersection of the Pareto frontier in (2.12) and

the firm’s participation constraint in (2.8). Let us call this contract (p′
1, r′). Take

any other PO-IR contract (p1, r) such that p1 < p′
1. By Theorem 2.3.2, we have

r < r′ and y′ < y. As (p1, r) satisfies the firm’s participation constraint, and

as the Pareto frontier is strictly increasing in p1, it follows that π(p1, r) > πM
2 .

Since (p1, r) is Pareto optimal, it must be that the country prefers (p′
1, r′) over

(p′
1, r′). The result follows.
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Note that some PO-IR contracts may include a negative rebate when the

country’s lowest indifferent curve, v̄ = −α (and whose equation is r = p1 − 1),

intersects the Pareto frontier at a list price less than 1. A negative secret rebate

means that the country subsidizes a low list price. In the proposition below, we

identify a necessary and sufficient condition for the existence of PO-IR contracts

with negative rebates.

Proposition 2.3.4. There exist PO-IR contracts (p1, r) with r ≤ 0 if and only

if:

(1 − |ε2(p2)|) q2(p2)

∣

∣

∣

∣

∣

p2=1

≤
αγ

θ (1 + α(1 − γ))2 ,

where q2 is country 2’s demand and ε2 its price elasticity.12

2.4 Results

We gather our results in the next propositions. First, let us define p# as the list

price along the Pareto frontier such that r(p#) = 0. We define p as the lowest

PO-IR list price.13 As the Pareto frontier is strictly increasing in p1, note that

p < p# if and only if p# < 1. Note that p# ≤ 1 is equivalent to the condition

in Proposition 2.3.4, and that this condition always holds when the monopoly

price in country 2 is less than 1.14 Also, p > 1
γ

is equivalent to the no-trade

condition in Proposition 2.3.1, and it implies that the monopoly price in country

2 is larger than 1
γ
, the list price for which country 1’s demand is null.

Proposition 2.4.1. (1) If p# ≤ 1, then there exist PO-IR contracts that have

a non-positive rebate. (2) If p# > 1 and p ≤ 1
γ
, then all PO-IR contracts have a

strictly positive rebate.

12If this condition holds, then the monopoly price in the second country is less than 1.
13This is the list price at the intersection between the iso-net price curve of equation r = p1−1

and the curve whose equation is given by expression (2.12).
14To see why: if pM

2 ≤ 1, then condition in Proposition 3.3.4 is always satisfied, as ∂π2(p1)
∂p1

(which is equivalent to expression on the left side of the quality sign) is negative.
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When the monopoly price in country 2 is sufficiently low (see statement 1),

PO-IR contracts that have the largest net prices include negative rebates. We

conclude that the firm uses a positive rebate to hide the net price paid by coun-

try 1 from country 2, and the country uses a negative rebate as a subsidy in

exchange for a low list price. Note that country 1 pays more for the drug than

country 2 whenever the list price in the first country is less than p# (i.e., when

the rebate is negative); and the converse holds when the list price in country 1 is

larger than p#. Therefore, the rebate enables the firm to price discriminate the

two countries. When both positive and negative rebates are possible, the first

market is sufficiently profitable relative to the second one, and the firm prefers to

charge country 1 a higher price than country 2 (as the firm’s preferred contract

has the lowest rebate, which is negative in this case).

For larger values of the monopoly price in country 2 (see statement 2), coun-

try 1 never agrees on a negative rebate, as this would violate its participation

constraint (y1 ≥ 1). Rebates are then used exclusively for hiding the price paid

by country 1 from country 2, and the first country always pays less for the drug

than the second country. In Figure 2.1, we provide a graphical representation

of this case. The purple point represents the contract that the country prefers

(that with the largest rebate, the largest list price and the lowest net price), and

the blue point corresponds to the contract the firm prefers (that with the lowest

rebate, the lowest list price and the largest net price).

Proposition 2.4.2. If p > 1
γ
, then country 1 and the firm do not trade.

For even larger values of the monopoly price in country 2, the firm never gains

from trading with the first country.

We see two necessary conditions for that the negotiation leads to an agreement

on a large rebate. The first condition is that the market in country 2 is sufficiently

profitable, which precludes trades with country 1 that involve relatively low list

prices (thus low rebates by Proposition 2.3.2). The second necessary condition
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is that country 1 has an important negotiating power, that allows it to influence

the outcome of the negotiation towards the one it prefers: namely, a contract

with a large rebate, a high list price and a low net price.

p1

r

0

X1

y = 0

y = 1

1

v̄

π̄

p

r

θπM
2

r̄

1
γ

pM
2

Figure 2.1: The set of PO-IR contracts is X1, in red on the graph

2.5 Conclusion

We presented a model where two countries negotiate in turn with a monopolist

pharmaceutical firm, and we suppose that a country and the firm settle on a

contract that is both Pareto optimal and individually rational for them. The

second country to negotiate is assumed to apply a simple form of international

price referencing, i.e. the latter never accepts to pay more than the list price it

observes in the other country. The interdependence between the prices paid by

the two countries can be turned off if the first country and the firm negotiate a

secret rebate, which enables to hide the real price the latter pays for the drug.

We solve for the contracts that are both Pareto optimal and individually ra-
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tional for the firm and the first country. We find that larger list prices are

associated with larger rebates, lower rebated prices, lower social charges and

greater quantities traded. Also, the relative profitability of each market taken

in isolation influences the possibility of mutually advantageous trades between

the first country and the firm, as well as the amount of secret rebate they can

negotiate. In particular, we show that large rebates are to be expected when

the second market is relatively profitable and when the first country has an im-

portant negotiating power. The firm benefits from using a secret rebate because

it prevents low rebated prices to propagate in the second negotiation; as for

the first country, the benefits of larger list prices and rebates are tied to their

association with greater quantities traded and lower rebated prices.
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Chapter 3

Asymmetric Information in

Markets for Pharmaceuticals :

International Price

Referencing and Secret

Rebates

3.1 Introduction

In this chapter, we rationalize the use of international price referencing and se-

cret rebates in the negotiations on drug prices between public payers (countries)

and a monopolist pharmaceutical firm. We put forward the hypothesis that the

firm’s propensity to accept offers from countries depends on its private informa-

tion about the launch date of a superior substitute. To understand better why

countries may gain from negotiating a secret rebate, we analyze a transparency
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regime where the details of the deals are made public. We show that countries

base their offers on the transaction prices they observe in other countries. We

find that the countries which negotiate first are always strictly better-off when

they can avoid this information leakage. Finally, we argue that a natural ar-

rangement between the firm and these countries is to use a secret rebate that

conceals the real price they pay.

The pharmaceutical industry distinguishes itself from other industries on many

grounds. When a medicine is listed for reimbursement, health authorities nego-

tiate a price with the manufacturer, and the price at which the drug is listed for

reimbursement, called the list price, is made public at the time of the market

release. An institutional payer uses international price referencing (IPR) when

it bases its price offer to the firm on the list price of similar medicines in other

countries. According to Vogler, Paris and Panteli (2018, [69]), the vast major-

ity of European countries uses IPR for at least some drugs, as well as China,

Japan, Canada and Brazil among others. IPR creates price interdependencies

across countries, which makes the order of launches a strategic variable for the

manufacturer (Vogler and al. 2019, [71], Grepperud and Pedersen 2020, [41],

Marinoso and Olivella 2005, [34]).

A particularity of the pricing of medicines is its lack of transparency. The

(official) list price at which a drug is available in a country may give little to no

information about the real price paid to the manufacturer, because of the use of

secret rebates. Generally, a rebate is a subsidy offered to the buyer, which can

be seen as money that the manufacturer pays back to the retailer under certain

conditions like sales volume. A rebate is secret when it is only known to the

parties involved in its negotiation. Rebates are used in other industries than the

pharmaceutical one, notably in the automobile and electronics industries. Yet,

rebates on pharmaceuticals and rebates on other types of goods do not seem to

fill the same functions. In other industries, manufacturers offer rebates to retail-
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ers primarily for avoiding inventory hoardings.1 In the pharmaceutical industry,

it is argued that rebates are offered by manufacturers in reaction to IPR, as a

way to conceal the real price a country pays to those which will negotiate later

on.2

Secret rebates create informational asymmetries between payers about the

price each of them pays for a same product. Informational asymmetries between

a drug manufacturer and a payer seem to exist as well. In the theoretical liter-

ature, Marinoso and Olivella (2005, [34]) investigate the effect of an asymmetry

of information about the production cost of a drug on official prices and the tim-

ing of launches in different countries. We take on a different approach, for the

reason that it is now common knowledge that the production cost of most drugs

is close to null (see Hill, Barber and Gotham 2018, [44]). A potential source

of informational asymmetry, that we think relevant for the case of innovative

drugs, involves the duration of the manufacturer’s monopoly. A manufacturer

may know whether its product can be easily improved upon, thus how long it

may take before the launching of a superior therapeutic substitute (often referred

to as me-too or follow-on drugs).3 In many cases, me-too drugs are the result of

parallel development, and have more or less identical clinical outcomes to pioneer

drugs.4 Despite their lack of therapeutic added value, me-too drugs are granted

market authorization for the sake of broadening the range of alternatives to pa-

tients and stimulating price competition. Lichtenberg and Philipson (2002, [56])

find that competition by me-too products decrease incumbents’ profits as much

as competition from generics after patent expiry; however, the authors attribute

1See Goodman and Moody (1970, [38]), Chevalier and Curhan (1976, [17]), Blattberg and
Levin (1987, [8]), Gerstner and Hess (1991 [35], 1991b [37], 1995 [36]) and Ault et al. (2000, [2])
for more details about the reasons for and use of rebates in other industries.

2This argument can be found notably in Vogler, Paris and Panteli (2018, [69]).
3What has been studied is the effect of me-too drugs on price competition. See DiMasi and

Paquette (2004, [25]), Lu and Comanor (1998, [57]), Ekelund and Persson (2003, [29]), Licht-
enberg and Philipson (2002, [56]), DiMasi, Hansen, and Grabowski, (2003, [24]) and Régnier
(2013, [61]) among others.

4Me-too drugs do not infringe on the patent of pioneer drugs. According to Régnier (2013,
[61]), me-too drugs need only be marginally differentiated from a pioneer drug to be granted a
market authorization.
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the loss in innovators’ profits to a reduction in their market share, and not to

price competition. Lu and Commanor (1998, [57]) corroborate this finding, and

show for the US that the average effect of adding an extra competitor is a price

reduction on the order of 2%.5

We believe that the knowledge of the manufacturer of a pioneer drug about the

duration of its monopoly influences its willingness to accept lower offers against

earlier deals during the negotiations with countries. Assuming that our premise

is true, we have three research questions. First, we want to understand how

transparency on the prices that countries pay for a same product would affect

the outcomes of the negotiations. Second, we intend to rationalize the use of IPR

by countries. Third, we wish to rationalize the use of secret rebates, particularly

from a country’s perspective.

We present a theoretical model where two countries negotiate sequentially

with a monopolist pharmaceutical firm. A negotiation unfolds with first the

country making an offer, then the firm. A deal is sealed as soon as one of the

parties accepts the offer from the other one. We suppose that the firm holds

private information about the launch date of a superior substitute, which affects

its willingness to accept a lower price in exchange for an earlier deal. We first

examine the case of price transparency, i.e. the country which negotiates last

knows, before starting its own negotiation with the firm, the transaction price

in the other country. In this case, we find that IPR is produced endogenously in

an equilibrium of our model; in particular, we show that the optimal offer made

by the last country depends positively on the price paid by the first one. As

a consequence, if it is farsighted, the firm gets an additional incentive to reject

the offer made by the country which negotiates first. Next, we investigate the

outcome of the negotiations when the first country can offer a secret rebate. We

find that the latter is strictly better-off in this instance: the first country to

5The average number of substitutes in their data is around 3 to 4. This suggests that the
transition from monopoly to four to five firms with products that are not too differentiated
triggers a price reduction of the order of 6%.
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negotiate uses a secret rebate that prevents any informational spillover about

the firm’s type, which cancels the firm’s incentive to reject on the ground that

the second country offers a higher offer the larger the transaction price with the

first country. The second country is strictly worse-off, as the price in the first

country is uninformative about the firm’s type. We succeed in highlighting a

clear series of implications that rationalizes both the use of IPR and secret re-

bates: informative prices lead the last country to base its offer to the firm on the

price it observes in the reference country. By anticipation, the firm is tougher

in its first negotiation. For the first country that negotiates, secret prices are a

means to cancel out the negative effect caused by the combination of IPR and

the firm’s farsightedness, and is therefore strictly better-off if it can use a secret

rebate.

Our result about the mitigated social effects of price transparency contributes

to the related literature. Danzon and Towse (2003, [22]) argue that transparency

and differential pricing cannot be compatible, and may be detrimental to poor

countries. The authors argue that, as countries use IPR and may engage in

parallel trade, manufacturers would have the incentive to set a single price be-

tween the rebated prices that the countries would have gotten, had secret rebates

been allowed. This would ultimately benefit high-income countries and hurt low-

income ones. We find that transparency is detrimental to the countries which

negotiate first and beneficial to those which negotiate last.

The work presented in this chapter complements that in Chapter 3. There,

we take as given that the country which negotiates in second position uses IPR.

Here, we offer to rationalize this behavior. In the set-up we propose, the firm

holds information that is relevant for a country to know when formulating its

offer (which is the firm’s type). As this information is not directly observable,

the second country uses the transaction price in the first country as an indicator

of some partial information about the firm’s type. We show that the optimal

offer of the second country depends positively on the price that the first country
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pays: IPR is produced endogenously in an equilibrium of our model.

The rest of the paper is organized as follows. Section 3.2 features the model

for just one country and a monopolist pharmaceutical firm. Section 3.3 extends

the model to the case of two countries and a myopic firm. In Section 3.4, we

solve the game for two countries and a farsighted firm. Section 3.5 studies a

version of the game where secret rebates are allowed. Section 3.6 concludes.

3.2 Negotiation between a country and a firm under

asymmetric information

In this section, we model the negotiation between just one country and an in-

cumbent pharmaceutical firm. We consider for now that the negotiation is only

about the list price, i.e. there is no rebate on the table, as there is just one

country therefore nobody to hide the details of the deal from.

The negotiation between the firm and the country lasts for up to two periods,

that we shall denote by τ1 and τ2. The market for the drug sold by the firm

ends at some date t posterior to the end of the negotiation, and we define t

as the launch date of a superior therapeutic substitute, also called me-too or

follow-on drug. This date arrives before the expiry date L of the incumbent’s

patent. Generally, a me-too drug may not infringe on the incumbent’s patent,

and might be granted a market authorization before the patent on the pioneer

medicine expires, which is what we assume here.6 We suppose that t is privately

known by the incumbent. Throughout, we refer to t as the firm’s type, and t

is an element of the set T = [0, 1] of all possible types. The country has a prior

belief that the firm’s type follows the cumulative distribution G on the support

T . We restrict attention to cumulative distributions that are concave.

6The therapeutic substitute we are referring to cannot be a generic, as it is common knowl-
edge that generics enter once the incumbent’s patent on the pioneer drug expires.

94



Assumption 1

The country’s prior belief about the distribution of the firm’s type, G(t), is con-

tinuous, twice-differentiable and G′′ < 0 everywhere on [0, 1].

The timeline is:

τ1 < τ2 < 0 ≤ t ≤ 1 < L.

We suppose that the country’s willingness to pay for a fixed exogenous quantity

of the drug for one period is commonly known to equal 1. The quantity demanded

is exogenous and set to 1. For the sake of simplicity, we assume that neither the

firm nor the country discount time.

The negotiation between the incumbent and the country occurs as follows. The

country moves first by offering a price pC in period τ1. Then, the firm accepts

or rejects this offer. If accepted, the deal is sealed and the negotiation ends.

If the firm rejects, the negotiation continues in period τ2. This time, the firm

makes a counter-offer pF to the country. The country either accepts or rejects.

If the firm and the country found common ground on a price p ∈ {pC , pF } at

date τ ∈ {τ1, τ2}, then the former receives p and the latter receives 1−p at each

period between τ and t. Otherwise, both parties get a zero payoff until t.7

At date t, a competitor is ready to launch a me-too drug. We do not model

explicitly the negotiation process through which prices are determined past t.

Instead, we make the following simplifying assumptions about the continuation

payoffs of the incumbent and the country.

First, we assume that the competitor overtakes the incumbent. One could

7In reality, when negotiations fail, the drug may be sold in the country however it is not
listed for reimbursement. In most European markets, failure to list a drug for reimbursement
dampens the companies’ profits (see Marinoso et al. (2011, [33]): "being excluded from the

public funding may be almost as bad as not being authorized to sell the drug at all."). For a
country, failure to list a drug for reimbursement limits drastically its accessibility.
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think that the me-too drug offers superior therapeutic benefits, thereby making

the pioneer drug completely obsolete.8 The firm’s payoff is given by the net

present value of its market profits. If the negotiation was successful, the firm

receives p at each period between the date at which the agreement was reached,

τ , up until t, which gives:

πF = p(t − τ) (3.1)

If no deal was sealed with the country, then the firm’s payoff is null.

Second, we suppose that the pricing of the me-too drug is linked to that of the

pioneer drug. This assumption of ours is motivated by the empirical findings of

Lu and Comanor (1998, [57]), diMasi and Paquette (2004, [25]), Lichtenberg and

Philipson (2002, [56]) and Régnier (2013, [61]), who show that the price paid to

the manufacturer of a pioneer drug determines the long-run trajectory of prices

of comparable medicines. In particular, Lu and Comanor (1998, [57]) find that

the market release of a me-too drug, over the period where the pioneer drug is

still patented, leads to a price reduction on the order of 2%.9 For simplicity, we

consider that the country buys the me-too drug at the same price as the pioneer

drug. If the country did not trade with the incumbent firm prior to t, then

we suppose that the competitor makes a take-it-or-leave-it offer which results

in the price of 1. After date L, the country can buy the generic version of the

pioneer drug for free. The country’s objective is then to maximize its surplus

over the period that starts from the date at which an agreement is reached with

the incumbent, τ , until the date at which its generic version is accessible, L. The

8In reality, the profit made by the incumbent after the launch of a me-too drug by a com-
petitor is not necessarily null, however it decreases significantly. According to Lichtenberg and
Philipson (2002, [56]) competition between therapeutic substitutes reduces the incumbent’s
profit as least as much as competition from generics. Also, additional costs must be spent in
marketing and promotion, which further reduces the incumbent’s profit after the launch of a
therapeutic substitute (see Hollis (2004, [45])).

9Similar results are found by diMasi and Paquette (2004, [25]), Lichtenberg and Philip-
son (2002, [56]) among others. Régnier (2013, [61]) shows that me-too drugs may limit the
penetration of generics after the pioneer drug is no longer patent protected.
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country’s payoff is given by the following expression:

VC = (L − τ)(1 − p), (3.2)

for some agreement on a price p ∈ {pC , pF } at date τ ∈ {τ1, τ2}. If the country

does not trade with the incumbent, then its payoff is null.

3.2.1 Strategies and beliefs

This version of the model features a sequential Bayesian game with continuous

type t for the firm and both continuous and discrete sets of actions for the two

parties. We first make explicit the strategies of the firm and the country, as

well as the beliefs of the latter about the former’s type. Then, we define what a

Perfect Bayesian equilibrium is in our game.

Let P = [0, 1] be the set of all possible values for the price p. A price is an

element of P that implies a partition of the country’s per period willingness to

pay, where p is the firm’s per period profit and 1 − p is the country’s per period

surplus. Let SC be the set of all strategies for the country. Formally, SC is the

set of all pairs of functions:

sC =
(

sτ1

C , sτ2

C

)

∀t∈T

when for τ = τ1, sτ
C : P → P and for τ = τ2, sτ

C is the response of the country to

the firm’s counter-offer. Without loss of generality, we assume throughout that

the country always accepts if it is indifferent between accepting and rejecting.

Similarly, SF (t) is the set of all pairs of functions:

sF (t) =
(

sτ1

F (t), sτ2
F (t)

)
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for the firm of type t, when for τ = τ1, sτ
F (t) : P → {A, R} is a response to

the offer made by the country; and for τ = τ2, sτ
C(t) is the firm’s counter-offer

pF (t). A strategy profile s determines expected payoffs for each player, where

the expectation is taken over the set of all possible types for the firm with respect

to the country’s beliefs.

There are two information sets encountered each time the country moves. At

τ = τ1, the country’s belief that the firm’s type is less than or equal to t is its

prior belief G. If the country reaches its second information set, the country

updates its belief by Bayes’ rule.

Definition 3.2.1 In a weak Perfect Bayesian Equilibrium (PBE) s∗ = (s∗
C , s∗

F (t))

of this game, strategies and beliefs must satisfy the two following conditions:

1. sequential rationality: s∗ specifies the best-response at every information

set, and it is optimal in expectation given the country’s beliefs;

2. consistency: if the second information set is reached, i.e. the firm plays R

at τ = τ1, the country’s belief at τ = τ2 about the firm’s type is updated

using Bayes’ rule.

3.2.2 Perfect Bayesian equilibria for the one country case

Consider the second information set where the country chooses to accept or

reject the firm’s counter-offer. It is immediate that the country always plays A.

Given this, the firm’s optimal strategy at τ2 is to counter-offer the price of 1,

regardless of its type. Next, we show that the optimal offer of the country at τ1

is a price p in the interval:

P ∗ =

(

τ2

τ1
,
1 − τ2

1 − τ1

]
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Any price offer from the country that is outside the interval is strictly dominated.

Any price offer that is strictly less than the lower bound is always rejected thus

it gives the country a null payoff. Such a price offer is strictly dominated by any

offer larger than the upper bound of P ∗ and strictly less than 1: the firm accepts

it with probability one and the country’s per period surplus is strictly positive.

Any price strictly above the upper bound is accepted for sure; therefore such a

price is strictly dominated by any price offer which is strictly lesser, yet greater

than the upper bound of the interval.

A price offer p in the relevant interval is accepted by the firm of type t at τ1

if and only if:

t ≤
τ2 − τ1p

1 − p
= T (p), (3.3)

where T (p) is monotone increasing in p, and it is increasing in the time-lapse

between the two rounds of the negotiation, τ2 − τ1. We call T (p) the threshold

type below which the firm accepts p and above which it rejects it. An offer p in

the appropriate interval is accepted with probability G(T (p)), which is increasing

in the value of the offer. The country’s problem is:

max
p∈P ∗

E(VC) = G

(

τ2 − τ1p

1 − p

)

(L − τ1)(1 − p) (3.4)

where E(VC) denotes the country’s expected payoff. The expected payoff is con-

cave in the country’s price offer, p, by Assumption 1.10 Our next assumption

guarantees the existence of an interior solution to the country’s problem.

Assumption 2

10The country’s expected payoff expressed as a function of the type t, i.e. G(t)
(

τ2τ1

t−τ1

)

is

single-peaked. Concavity in t would require a stronger assumption than that in Assumption 1:
G(t)G′′(t)(t − τ1) + G′(t)G(t) − (G′(t))2(t − τ1) < 0. We do not find necessary to impose this
more stringent assumption.
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The prior belief G and the date τ1 satisfy:

1 > G′(1)(1 − τ1)

The country’s problem is similar to that of a monopsonist seeking to maximize

a payoff of the form (1 − p)S(p), facing a supply whose equation is:

S(p) = G

(

τ2 − τ1p

1 − p

)

(L − τ1)

with elasticity:

eS(p) =
S′(p)
S(p)

(1 − p)

(S′(.) is the first derivative of the supply function S with respect to p.) The

formula of the elasticity can be expressed as a function of the firm’s type:

eS(t) =
G′(t)
G(t)

(t − τ1)

where the price is parameterized by the firm’s type via the relation in (3.3). The

elasticity is decreasing in τ1, and it is monotone decreasing in t if and only if:

G′′(t)G(t)[t − τ1] − (G′(t))2[t − τ1] + G(t)G′(t) ≤ 0 ∀t ∈ [0, 1]

The condition above is more stringent than Assumption 1. Assumption 1 guar-

antees that the elasticity is decreasing in t for values of t that are not too large.

11 Note that Assumption 2 is equivalent to assuming that eS(t = 1) < 1. We

present our results in the proposition below.

Proposition 3.2.1. The country’s problem in (3.4) has a unique interior solu-

11The elasticity eS(p(t)) is decreasing in t if and only if G′′(t)G(t)[t − τ1] − (G′(t))2[t − τ1] +
G(t)G′(t) ≤ 0, i.e. the country’s payoff as a function of the firm’s type t is concave in t.
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tion, p∗, which solves:

eS(p∗) = 1

Let t∗ be the type of firm which is indifferent between accepting and rejecting p∗.

The firm accepts p∗ if its type belongs to [0, t∗], and it rejects p∗ if its type belongs

to (t∗, 1].

See Appendix C.1 for the proof. For this version of our game, there exists a

unique PBE. We start with the best-responses at each round of the negotiation.

At τ1, the country’s optimal offer is p∗; the firm’s best-response is to accept

any offer pC ≥ t−τ2

t−τ1 and to reject any offer pC < t−τ2

t−τ1 . At τ2, the firm’s optimal

counter-offer is 1, for all possible histories. The country accepts any counter-

offer, for all possible histories.

The belief system is the following. At the first information set, the country’s

belief is its prior G. If the second information set is reached, the country updates

its belief via Bayes’ rule, which gives:

GR(t) =
G(t) − G(t∗)

1 − G(t∗)

If the second information set is not reached, then any belief is consistent.

3.3 Negotiations between two countries and a myopic

firm

Assume there are now two countries, C and D. Let us denote by ε the relative

market size of country D. In this section, we make the simplifying assumption

that the firm is myopic in that it does not take into account the future profits

made in country D when carrying out the negotiation with country C. In the

next section, we relax this assumption. We still suppose that only list prices

101



are negotiated, and not secret rebates. For country D, this is without loss of

generality: for the last country negotiating with the firm, secret rebates have no

use, as there is nobody to hide the details of the deal from. For country C, it

is also without loss of generality, to the extent that the latter achieves the same

outcome with or without rebate since the firm is myopic.

Country C first negotiates with the firm, then country D. Each has potentially

two periods of negotiation with the firm. Country i ∈ {C, D} negotiates with

the firm at dates τ1
i and τ2

i . Both countries have the common prior belief that

the firm’s type t is distributed according to cdf G on the support T . The time

line is now:

τ1
C < τ2

C < τ1
D < τ2

D < 0 ≤ t ≤ 1 < L.

The market for the drug sold by the incumbent firm ends at some date t

posterior to the end of both negotiations. Each of the two negotiations unfolds

in the same way as the negotiation between C and F in the previous section,

and payoffs are defined in the analogous way.

There are two information sets where information is useful: I1 is the first

of them, at which country C at date τ1
C makes an offer to the firm; and I2

is analogous to I1 but for country D. The countries always accept the firm’s

counter-offer if their own offer has been rejected. Note that at the information

set I1, C’s belief is its prior G; while at I2, D’s belief is obtained by updating

its prior using the information released by the outcome of the first negotiation.

Due to the sequential rationality criterion, in equilibrium country D at date τ1
D

either observes the price p∗ or the price of 1 in country C (see Proposition 3.2.1).

As there are now two countries, we relabel the threshold type function in (3.3)

as TC(p), whose equation is:

TC(p) =
τ2

C − pτ1
C

1 − p

102



We start with the case where the firm accepted country C’s offer, p∗. Country D

updates its belief about the distribution of the firm’s type by Bayes’ rule, which

gives:

GA(t) =
G(t)
G(t∗)

(3.5)

on the support [0, t∗] for the firm’s type t, where t∗ is the type of firm indifferent

between accepting and rejecting country C’s offer p∗. If instead the firm rejected

country C’s price offer p∗, country D’s updated belief is given by:

GR(t) =
G(t) − G(t∗)

1 − G(t∗)
(3.6)

on the support (t∗, 1].

Consider some offer p extended by country D. This offer is accepted by the

firm of type t if and only:

t ≤
τ2

D − pτ1
D

1 − p
= TD(p) (3.7)

The function TD(p) is interpreted in the same way as in the previous section:

for a given price offer p, it gives the type which is indifferent between accepting

and rejecting p. For the same reason as in the previous section, an optimal offer

for country D must lie in the interval:

PA =

(

τ2
D

τ1
D

,
t∗ − τ2

D

t∗ − τ1
D

]

or PR =

(

t∗ − τ2
D

t∗ − τ1
D

,
1 − τ2

D

1 − τ1
D

]

depending on whether the country believes that the firm’s type is above or below

t∗. The supply faced by country D is:

Sj(p) = Gj(TD(p))ε(L − τ1
D)
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with j ∈ {A, R}. The elasticity of these supplies are:

eSA
(t) =

G′(t)
G(t)

[t − τ1
D] and eSR

(t) =
G′(t)

G(t) − G(t∗)
[t − τ1

D],

where the price p is parameterized by t via the relation in (3.7). Note that the

supply faced by country D following a rejection of C’s offer, SR, is relatively more

elastic than SA, the supply country D faces when the firm accepted country C’s

offer. Note as well that the supply country C faces is more elastic than SA, as

−τ1

C > −τ1

D.

If the price of the drug in country C is p∗, then country D’s problem is:

max
p∈PA

E(VD) =









G

(

τ2
D

−pτ1
D

1−p

)

G(t∗)









ε(L − τ1
D)(1 − p)

If instead the price of the drug in country C is 1, country D’s problem is written

as:

max
p∈PR

E(VD) =









G

(

τ2
D

−pτ1
D

1−p

)

− G(t∗)

1 − G(t∗)









ε(L − τ1
D)(1 − p)

In both cases, D’s expected payoff is concave in its offer, due to Assumption 1.

The results about D’s optimal offer in each case are presented in the proposition

below.

Proposition 3.3.1. Following an acceptance of country C’s offer, country D’s

problem has an interior solution, pa, that solves:

eSA
(pa) = 1

The type of firm which is indifferent between accepting and rejecting pa is ta.

Any type t ∈ [0, ta] accepts pa, and any type t ∈ (ta, t∗] rejects it.

Following a rejection of country C’s offer, country D’s optimal offer pr is interior
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to PR if and only if:

eSR
(pr) = 1 and pr <

1 − τ2
D

1 − τ1
D

Otherwise, pr = 1−τ2
D

1−τ1
D

. The type of firm which is indifferent between accepting

and rejecting pr is tr. Both pr and tr are increasing in the value of t∗. Any type

t ∈ [t∗, tr] accepts pr, and any type t ∈ (tr, 1] rejects it.

See Appendix C.2 for the proof. When the firm accepts country C’s offer, the

second country does not base its offer on the information released by the first

negotiation. Only when country C got its offer rejected does country D take the

information about the firm’s type into account. Should country D not observe

the outcome of the first negotiation, the offer it would have formulated (which

is equal to pa) would have been rejected with probability one. The outcome of

the first negotiation signals country D that it must adjust its offer upwards if

it wants to avoid rejection. Country D is always strictly better-off when it can

observe the outcome of the first negotiation, and country C is neither positively

nor negatively impacted by the second negotiation.

This version of our model where the firm is myopic can be thought of as a

game with two pharmaceutical companies whose types are perfectly correlated,

and one operates in country C and the other in D. Such a game has a unique

PBE, that we characterize below. We begin with each party’s best-response at

every date. At τ1
C , country C offers p∗ (Proposition 3.2.1). The firm accepts

any price pC ≥
t−τ2

C

t−τ1
C

, and rejects any price pC <
t−τ2

C

t−τ1
C

. At τ2
C , the firm counter-

offers pF = 1, for all possible histories. Country C always accepts pF = 1, for

all possible histories. At τ1
D, country D offers pa if the history of the game is

h1 = (p∗, A, 1, A), and pr if the history of the game is h2 = (p∗, R, 1, A). And

for any history different from h1 and h2, country D offers pD = τ2
D

τ1
D

. The firm

accepts any price pD ≥
t−τ2

D

t−τ1
D

, and rejects any price pD <
t−τ2

C

t−τ1
C

. At τ2
D, the firm

105



counter-offers pF = 1, for all possible histories. Country D accepts pF = 1, for

all possible histories.

The belief system is the following. At I1, country C’s belief is its prior belief G.

If the second information set of country C is reached, i.e. the history of the game

at τ2
C is (p∗, R), the country’s belief is GR in (3.6). If the second information set

is not reached, then any belief of the country is consistent. At I2, country D’s

belief is GA in (3.5) if the history of the game at τ1
D is h1 = (p∗, A, 1, A); GR

in (3.6) if the history of the game at τ1
D is h2 = (p∗, R, 1, A); and the country

believes that the firm is of type 0 with probability one for any other history. If

the second information set of country D is reached, i.e. the firm has rejected

both countries’ offers, its belief is:

GR,R(t) =
G(t) − G(tr)

1 − G(tr)
,

If the second information set of country D is not reached, then any belief is

consistent.

In conclusion, country D applies a form of IPR in equilibrium. The latter

bases its offer on the transaction price it observes in country C when C’s offer

was rejected. Therefore, country D uses IPR for increasing the probability of

acceptance of its offer to the firm, which enables it to pay a lower price on

expectation.

3.4 Two countries and a farsighted firm

Let us now assume that the firm is farsighted: it takes into account that the

outcome of its negotiation with the first country influences the offer made by the

second one. While negotiating with country C, the firm now seeks to maximize
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its total payoff:

ΠF = p(C)[t − τ(C)] + εp(D)[t − τ(D)],

where p(C) is the price paid by the first country and τ(C) the date at which

they reach an agreement if they indeed do; p(D) and τ(D) are similarly defined

for the second country.

The subgame that folllows country C’s offer is a signaling game played by the

firm and country D. Through its decision to accept or reject the first country

’s offer, the firm releases partial information about its type, and the second

country’s offer must be optimal given this signal in an equilibrium. We refer to

the subgames that start at the firm’s first decision node as "subgames p". In the

next section, we provide sufficient conditions for the existence of equilibria in

these subgames.

3.4.1 Sufficient conditions for existence

Throughout, we shall refer to p as country C’s offer, and to tf as the type of

firm which is indifferent between accepting and rejecting p. For the case where

tf = 0, we call pD country D’s optimal offer given the signal tf = 0, and we

denote by tD the threshold type associated with this offer. Abusing language,

we may refer to tD as D’s best response to tf = 0. Let tf the lowest value of tf

to which country D’s best response is tD = 1.12 Then country D’s best response,

in terms of threshold type, maps tf ∈ [0, tf ] to [tD, 1]. Recall that D’s best

response following a rejection of p is strictly larger than tf , and that for tf = 1,

we have tD = 1.

In what follows, we look for conditions on the parameters of our model such

that for all offers p from country C, there exists tD ∈ [0, 1] and a strategy for

12The type tD solves: G′(tD)(tD − τ1
D) − G(tD) = 0, and tD is equal to ta in Proposition

3.3.1. Recall that ta < 1. And t̄f solves: G′(1)(1 − τ1
D) − 1 = G(t̄f ).
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the firm in the first negotiation such that the firm and country D best respond

to each other.

Sufficient conditions for pooling equilibria in subgames

In a subgame that follows a price offer p from country C, there are two possible

pooling equilibria: all types accept or all types reject. We provide sufficient

conditions for the existence of each of these two types of pooling equilibria in

subgames.

First, note that country D’s belief in a PBE equals its prior belief G in the

unique subgame p (either accept or reject the offer). In a pooling equilibrium,

the outcome of the first negotiation is uninformative to country D; hence, its best

response, in terms of threshold type, is tD. In a PBE, country D’s belief is not

restricted in an off the equilibrium path subgame. From the firm’s perspective,

the worst possible case is that country D believes with probability 1 its type is

0, and thus offers the price:

pD =
τ2

D

τ1
D

which the firm is (at least weakly) better-off rejecting, regardless of its type.

Pooling equilibrium where all types reject C’s offer

Following the rejection of some price p < 1, country D’s best response is tD. We

now elucidate the conditions under which the firm is always better-off rejecting

country C’s offer, regardless of its type.

Let ∆(t) be the payoff gain from rejecting country C’s offer p; this is the firm’s

payoff when it rejects p minus its payoff when it accepts p. By our assumption on

D’s belief off the equilibrium path, the latter extends the offer τ2
D

τ1
D

if it observes
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that the firm accepted p, and extends the offer p
D

otherwise. We get:

∆(t) = t − τ2
C + ε(t − τ1

D)p
D

− p(t − τ1
C) − ε(t − τ2

D)

= t
(

1 − p − ε(1 − p
D

)
)

−
(

τ2
C − pτ1

C

)

+ ε
(

τ2
D − p

D
τ1

D

)

for any type t ≤tD, and:

∆ (t) = (t − τ2
C) − p(t − τ1

C)

= (1 − p) (t − TC(p))

for any t > tD. The payoff gain from rejecting, ∆, is unambiguously increasing

everywhere on [tD, 1]. The function ∆ is monotonic in t on [0, tD], and whether

it is increasing or decreasing depends on the sign of:

1 − p − ε(1 − p
D

)

We need make sure that no type prefers to accept p. If the payoff gain function

from rejecting, ∆, is monotone increasing in t, then the condition is the most

stringent on the lowest type, t = 0. This type prefers to reject C’s offer if and

only if:

p ≤
τ2

C

τ1
C

+ ε
tD(τ2

D − τ1
D)

−τ1
C(tD − τ1

D)

Suppose now that the payoff gain function from rejecting, ∆, is decreasing in

the firm’s type on the interval [0, tD]. Then the type which gains the most from

accepting C’s offer is type tD, and it prefers to reject if and only if:

p ≤
tD − τ2

C

tD − τ1
C

We gather our results in the proposition below.

Proposition 3.4.1. A pooling equilibrium in the subgame following offer p by
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country C where the firm always rejects regardless of its type exists if and only

if either:

p ≤ min

{

τ2
C

τ1
C

+ ε
tD(τ2

D − τ1
D)

−τ1
C(tD − τ1

D)
, 1 − ε

(τ2
D − τ1

D)
tD − τ1

D

}

i.e., the payoff gain from rejecting, ∆, is monotone increasing in the firm’s type,

and all types prefer to reject p; or:

p ∈

[

1 − ε
(τ2

D − τ1
D)

tD − τ1
D

,
tD − τ2

C

tD − τ1
C

]

i.e., the payoff gain from rejecting, ∆, is single-peaked in the firm’s type and

achieves a minimum at t = tD, and all types prefer to reject p.

Note that the larger country D’s offer p
D

, the larger the range of prices p that

allow the existence of a pooling equilibrium where all types reject.

Pooling equilibrium where all types accept C’s offer

Following the acceptance of some price p, country D’ best-response, in terms

of threshold type, is tD. We investigate the conditions under which always

accepting p is optimal for the firm, regardless of its type.

Consider the firm’s payoff gain from rejecting C’s offer p. Recall that country

D’s offer off the equilibrium path is τ2
D

τ1
D

. The payoff gain from rejecting p must

be negative, for all types. For any t ≤tD, the payoff gain from rejecting is:

∆ (t) = (t − τ2
C) + ε(t − τ2

D) − p(t − τ1
C) − εp

D
(t − τ1

D)

= t
(

1 − p + ε(1 − p
D

)
)

− (τ2
C − pτ1

C) − ε(τ2
D − p

D
τ1

D)

For any t >tD, this is:

∆ (t) = (t − τ2
C) − p(t − τ1

C)

= (1 − p) (t − TC(p))
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Note that the function ∆ is monotone and strictly increasing in the firm’s type.

Therefore, the type that has the greatest incentive to reject C’s offer is type 1.

And:

∆(1) ≤ 0 ⇔ p ≥
1 − τ2

C

1 − τ1
C

.

We gather the results in the proposition below.

Proposition 3.4.2. A pooling equilibrium where all types accept p exists if:

p ≥
1 − τ2

C

1 − τ1
C

.

Our choice of beliefs for country D off the equilibrium path may be disputable

in the context of an all-accept pooling equilibrium. We try to remedy to this by

considering the following beliefs: following a rejection of p, country D believes

that the firm is of type 1. This off the equilibrium path belief leads to the

smallest set of prices p for which an all-accept pooling equilibrium exists. In

such a profile, the net gain from rejecting p equals, for any t ≤ tD:

∆(t) = (t − τ2
C) + ε(t − τ1

D)

(

1 − τ2
D

1 − τ1
D

)

− p(t − τ1
C) − εp

D
(t − τ1

D)

= t

(

1 − p + ε

(

1 − τ2
D

1 − τ1
D

− p
D

))

− (τ2
C − pτ1

C) − ετ1
D

(

1 − τ2
D

1 − τ1
D

− p
D

)

which is increasing in t. For types larger than tD, the payoff gain function from

rejecting is:

∆(t) = (t − τ2
C) + ε(t − τ1

D)

(

1 − τ2
D

1 − τ1
D

)

− p(t − τ1
C) − ε(t − τ2

D)

= t

(

1 − p − ε
(τ2

D − τ1
D)

1 − τ1
D

)

− (τ2
C − pτ1

C) + ε
(τ2

D − τ1
D)

1 − τ1
D

If the above function is increasing in t, then the type which has the greatest

incentive to reject C’s offer is type 1. If instead the function is decreasing in t,
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then type tD is the type that has the greatest incentive to reject; and this type

prefers to accept if and only if:

p ≥
tD − τ2

C

tD − τ1
C

+ ε
(τ2

D − τ1
D)(1 − tD)

(1 − τ1
D)(tD − τ1

C)

We state our result below.

Proposition 3.4.3. A pooling equilibrium where all types accept p, and country

D believes that t = 1 with probability 1 following a rejection of p, exists if and

only if either:

p ∈

[

1 − τ2
C

1 − τ1
C

, 1 − ε
(τ2

D − τ1
D)

1 − τ1
D

]

i.e., the payoff gain from rejecting, ∆, is increasing monotone in the firm’s type,

and all types prefer to accept p; or:

p ≥ max

{

1 − ε
(τ2

D − τ1
D)

1 − τ1
D

,
tD − τ2

C

tD − τ1
C

+ ε
(τ2

D − τ1
D)(1 − tD)

(1 − τ1
D)(tD − τ1

C)

}

i.e., the payoff gain from rejecting, ∆, is single-peaked in the firm’s type and

achieves a maximum at tD, and all types prefer to accept p.

In Appendix C.3, we show that there exists an all-accept pooling equilibrium

that satisfies the intuitive criterion.

A characterization of interior equilibria in subgames p

We first clarify our definition of an interior equilibrium.

Definition 3.4.1 An equilibrium in subgame p is interior if the set of types

that accept p and the set of types that reject p are both non-empty.13

Let pA and pR be the prices offered by country D, upon observing that offer

p has been respectively accepted or rejected. Let tA and tR be the threshold
13This definition carries a slight abuse of terminology, since while non-empty, either set may

be of measure zero.
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types that are indifferent between accepting pA and pR, respectively. In any

equilibrium of a subgame p, we may, without loss of generality, restrict attention

to prices pA and pR in the interval:

[

τ2
D

τ1
D

,
1 − τ2

D

1 − τ1
D

]

Recall that any offer from D that is strictly less than the lower bound is strictly

dominated by any offer larger than the upper bound, yet strictly less than one;

and any offer strictly larger than the upper bound is dominated by any lesser

offer that is yet greater than the upper bound.

Below, we provide a series of lemma that enables us to assess sufficient condi-

tions for the existence of interior equilibria in sugbgames.

Lemma 3.4.1. In any interior equilibrium of a subgame p, it must be that:

∆(tA) ≤ 0 ≤ ∆(tR)

i.e, type tA accepts p and type tR rejects p.

Proof. The proof is by contradiction. If ∆(tA) > 0, then a firm of type tA rejects

C’s offer p. By the continuity of ∆, so did the types in a neighoborhood of tA.

Therefore, one of the two following deviations is profitable to country D. If

pA is accepted with some positive probability, then a slighlty lower offer p′
A is

accepted with the exact same probability as pA. Thence D’s payoff is strictly

larger, which makes p′
A a strictly profitable deviation. If pA is accepted with

probability zero, then any price offer:

p′
A ∈

(

τ2
D

τ1
D

, 1

)

is accepted with some strictly positive probability, and therefore constitutes a

strictly profitable deviation. Thus, it must be that ∆(tA) ≤ 0. A similar argu-
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ment holds for proving that ∆(tR) ≥ 0.

Lemma 3.4.2. In any interior equilibrium of a subgame p, the inequality tA <

tR holds.

Proof. We first prove that tA ≤ tR. Suppose by contradiction that tR < tA. The

equation of the payoff gain from rejecting, ∆, for types in the interval [tR, tA] is

then:

∆(t) = (1 − p + ε(1 − pA)) t − (τ2
C − pτ1

C) − ε(τ2
D − pAτ1

D)

Since pA ≤
1−τ2

D

1−τ1
D

< 1, ∆ is strictly increasing in t on [tR, tA]. In an interior

equilibrium, ∆ (tR) ≥ 0 and ∆ (tA) ≤ 0 must hold by our previous lemma. Yet

tR < tA; a contradiction. Next, suppose by contradiction that tA = tR, so that

pA = pR. Since ∆ (tA) ≤ 0 and ∆ (tR) ≥ 0 must hold in an equilibrium, it must

be that tA = tR = TC (p) . Therefore country C’s offer is the same as when the

firm is myopic. In particular, p < 1, so that:

∆ (t) = (1 − p) t −
(

τ2
C − pτ1

C

)

is strictly increasing in t, for any t ∈ [0, 1]; and it is negative for any t < tA

and strictly positive for any t > tA. Hence the set of types that accept includes

[0, tA) and is included in [0, tA]; also, the set of types that reject includes (tR, 1]

and is included in [tR, 1] . This in turn implies that pA < pR, a contradiction.

The next result follows immediately from Lemmas 3.4.1 and 3.4.2.

Lemma 3.4.3. In any interior equilibrium of a subgame p, the inequality tR ≥

TC (p) holds.

Proof. Note that max{tA, tR} = tR, and ∆(tR) ≥ 0 if and only if tR ≥ TC(p).
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We can establish the following result.

Lemma 3.4.4. If condition A:

ε ≤
τ2

C − τ1
C

τ2
D − τ1

D

and condition B:

tD >
τ1

D(τ2
C − τ1

C) − ετ1
C(τ2

D − τ1
D)

τ2
C − τ1

C − ε(τ2
D − τ1

D)
,

hold, then the payoff gain from rejecting, ∆, is monotone and strictly increasing

in the firm’s type, i.e. the following relation holds:

tR > t◦
D(p) = τ1

D + ε
(τ2

D − τ1
D)

1 − p

Meaning, no subgame p has an interior equilibrium where the firm plays a mixed

strategy at its first decision node, where it decides whether to accept or reject p.

Proof. In an interior equilibrium, we know from Lemma 3.4.2 that the payoff

gain from rejecting, ∆, is of equation:

∆(t) =



































t (1 − p + ε(pR − pA)) − (τ2
C − pτ1

C) − ετ1
D(pR − pA) if t ≤ tA

t (1 − p − ε(1 − pR)) − (τ2
C − pτ1

C) + ε(τ2
D − pRτ1

D) if t ∈ [tA, tR]

t(1 − p) − (τ2
C − pτ1

C) if t ≥ tR

Still by Lemma 3.4.2, ∆ is strictly increasing in t for any t ≤ tA, and it is

unambiguously strictly increasing in t for any t ≥ tR. Hence, ∆ is strictly

monotone only if ∆ is strictly increasing in t over the interval [tA, tR]. Note

that by Lemmas 3.4.1 and 3.4.2, ∆ cannot be strictly decreasing in t over the

aforementioned interval. Hence it must be that 1 − p − ε(1 − pR) ≥ 0. We now

show that when the two conditions stated in the lemma hold, then ∆ cannot be
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a constant of t, for any t ∈ [tA, tR]. Suppose by contradiction that it is. Then:

∆(t) = −(τ2
C − pτ1

C) + ε(τ2
D − pRτ1

D)

= −(τ2
C − pτ1

C) + τ1
D(1 − p) + ε(τ2

D − τ1
D) − τ1

D (1 − p − ε(1 − pR))

= −(τ2
C − pτ1

C) + τ1
D(1 − p) + ε(τ2

D − τ1
D)

= (1 − p)

(

−TC(p) + τ1
D + ε

(τ2
D − τ1

D)
1 − p

)

for any t ∈ [tA, tR]. Furthermore, it must be that ∆(t) = 0 for all t ∈ [tA, tR]

according to Lemma 3.4.1, which is equivalent to:

p =
τ1

D − τ2
C + ε(τ2

D − τ1
D)

τ1
D − τ1

C

and p ∈ [0, 1] by our first condition on the parameter value of ε. By Lemma

3.4.3, it must be that tR = TC(p). By transitivity, it follows that:

tR = τ1
D + ε

(τ2
D − τ1

D)
1 − p

Since we are in an interior equilibrium, note that tR ≥ tD must hold. Otherwise,

country D would not play a best-response following a rejection of p. Replacing

p by its value when 1 − p − ε(1 − pR) = 0 in the expression of tR above, we get

the following alternate expression of tR:

tR =
τ1

D(τ2
C − τ1

C) − ετ1
C(τ2

D − τ1
D)

τ2
C − τ1

C − ε(τ2
D − τ1

D)
< tD

where the inequality holds by condition B. A contradiction to the fact that

tR ≥ tD.

In Appendix C.4, we show that condition B is necessary for the existence of

PBE in pure strategies in some subgames p. So far, our results imply that when

conditions A and B in Lemma 3.4.4 hold, the payoff gain from rejecting is in-
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creasing in the firm’s type: meaning, an offer from country C is accepted by low

types and rejected by higher types. In particular, in an interior equilibrium of

a subgame p, it must be that the firm of type 1 prefers strictly to reject C’s of-

fer (otherwise, all types would prefer to accept p). We obtain the following result.

Lemma 3.4.5. If

p >
1 − τ2

C

1 − τ1
C

≡ p̄ (3.8)

then no interior equilibrium exists in subgame p.

In any interior equilibrium of subgame p, there exists a type tf ∈ [0, 1] such

that all types in [0, tf ) accept and all types in (tf , 1] reject. Since:

∆ (0) = −
(

τ2
C − pτ1

C

)

− ετ1
D (pR − pA) ,

a necessary condition for which some types accept is that ∆ (0) ≤ 0, i.e.

p ≥
τ2

C

τ1
C

+ ε
τ1

D

τ1
C

(pR − pA)

When p ≤ p̄, ∆(0) ≤ 0 and tR ≥ max {t◦
D(p), TC (p)} hold, we define a type tf

as follows:

tf = BRF (pA, pR) ⇔ ∆(tf ) = 0

and it is such that the firm’s best reponse is to accept p if t ≤ tf , and to reject

p if instead t ≥ tf . From our previous analysis, there exists a unique type t in

[0, tR] such that t = tf . For all p such that ∆(tf = 0) < 0, we extend BRF

to BRF (pA, pR) = 0. Overall, BRF is well-defined, as long as p ≤ p for all

(pA, pR) ∈ [0, 1]2 , with:

pR ≥ max

{

pA ,
max {TC(p) , t◦

D(p)} − τ2
D

max {TC(p) , t◦
D(p)} − τ1

D

}
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This condition on the price pR result from the conditions in Lemmas 3.4.3 and

3.4.4. Let PA (tf ) and PR (tf ) be the best response functions of country D, when

it believes that the firm’s type is distributed according to cdf:

GA(t) =
G (t)
G (tf )

on [0, tf ] (3.9)

and

GR(t) =
G(t) − G(tf )

1 − G (tf )
on [tf , 1] (3.10)

respectively. Consider the composite best response function:

Φ (tf ) ≡ BRF (PA (tf ) , PR (tf ))

from [0, 1] to [0, 1] . For any p ∈ [0, 1] , and given our result in Lemma 3.4.3, the

function Φ is well defined on the interval [tf , 1], where tf is given by:

tf = 0 if
τ2

D − PR(0)τ1
D

1 − PR(0)
≥ TC(p)

or

tf = P −1
R

(

TC(p) − τ2
D

TC(p) − τ1
D

)

otherwise.

We can now assess the existence of interior equilibria in subgames given some

conditions on the values of C’s offer, p.

Proposition 3.4.4. The threshold type tf is part of an interior equilibrium of

subgame p if and only if it is a fixed point of the mapping Φ and:

p ≥ p ≡
τ2

C

τ1
C

+ ε
τ1

D

τ1
C

(

PR(0) −
τ2

D

τ1
D

)

(3.11)

Moreover, it must be that tf ≥ tf . Under conditions A and B in Lemma 3.4.4,

for all p ≤ p, the mapping Φ is well defined on
[

tf , 1
]

and admits a unique

fixed-point in this interval.
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Proof. If pR and pA are best responses to tf and tf is a best response to (pA, pR),

then tf must be a fixed-point of Φ. By Lemma 3.4.3, tR ≥ TC (p) must hold in an

interior equilibrium; hence, tf ≥ tf must be satisfied in an interior equilibrium.

Last, if the fixed-point represents an interior equilibrium, type zero must accept

p:

p ≥
τ2

C

τ1
C

+ ε
τ1

D

τ1
C

[PR(0) − PA(0)] = p,

where PA(0) = τ2
D

τ1
D

is the offer made by D when it observes that p was accepted

(in such a case, D infers that the firm’s type is 0 with probability 1). If p < p,

then tf = 0 is a fixed point, however it is not part of an interior equilibrium

because for such prices, even type 0 prefers to reject p. Under conditions A and

B and p ≤ p̄, the inequality tf ≥ tf guarantees that:

tR ≥ max{t◦
D(p) , TC(p)}

so that Φ is well defined on [tf , 1]. Since:

Φ(tf ) ≥ tf and Φ(1) ≤ 1,

then by the intermediate values theorem, Φ has at least one fixed-point in this

interval. Since PA and PR are weakly increasing in tf , and BRF is weakly

decreasing in pR, it follows that Φ is weakly non-increasing on its domain. Thus

the fixed-point is unique.

3.4.2 Country D’s optimal offers

Let us first assume that the firm accepted country C’s offer p, i.e. country D

observes the price of p in country C. Then country D believes that the firm’s

type is distributed according to cdf GA in expression (3.9), on the support [0, tf ].
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Recall the alternative interpretation of our model. Country D is a monopsonist

facing the supply curve of equation:

SA(p) =
G(TD(p))

G(tf )
(L − τ1

D),

for TD the threshold function in (3.7), and is trying to maximize a payoff of the

form (1 − p)SA(p) which is defined on the interval of prices:

(

τ2
D

τ1
D

,
tf − τ2

D

tf − τ1
D

]

The elasticity of SA is:

eSA
(t) =

G′(t)
G(t)

[t − τ1
D]

where t ∈ [0, tf ]. Let us now consider the case where the firm rejects country

C’s offer. Country D believes that the firm’s type is distributed according to cdf

GR in expression (3.10) on the support (tf , 1]. The supply that country D faces

is:

SR(p) =
G(TD(p)) − G(tf )

1 − G(tf )
(L − τ1

D),

defined on the interval of prices:

(

tf − τ2
D

tf − τ1
D

,
1 − τ2

D

1 − τ1
D

]

and the elasticity is written as:

eSR
(t) =

G′(t)
G(t) − G(tf )

[t − τ1
D]

The results about the optimal offers of country D are gathered below.

Proposition 3.4.5. Following an acceptance of country C’s offer, country D’s

problem has an interior solution if and only if tf > tD, with tf the type of firm

which is indifferent between accepting and rejecting country C’s offer. Country
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D’s optimal offer pA then solves:

eSA
(pA) = 1

Otherwise, country D’s optimal offer is pA = tf −τ2
D

tf −τ1
D

. Let tA be the threshold type

associated with country D’s offer pA. The firm of type t accepts pA if t ≤ tA,

and rejects pA otherwise.

Following a rejection of country C’s offer, country D’s problem has an interior

solution if and only if tf < tf . In this case, country D’s offer pR solves:

eSR
(pR) = 1

Otherwise, country D’s optimal offer is pR = 1−τ2
D

1−τ1
D

. Let tR be the threshold type

associated with country D’s offer pR. The firm of type t accepts pR if t ≤ tR,

and rejects pR otherwise.

The proof follows the same lines as that of Proposition 3.3.1, therefore it is

omitted. Next, we clarify the effect of tf on country D’s expected payoff.

Remark 3.4.1. (1) If tf ≤ tD, then country D’s expected equilibrium payoff is

strictly decreasing in tf if and only if:

G′(tf )(pR − pA) < G(tf )
(1 − pA)
(tf − τ1

D)

i.e., the marginal cost on country D from decreasing the number of types which

accept C’s offer is less than the marginal benefit to country D of paying a lower

price in the case where C’s offer is accepted.

(2) If tf > tD, then country D’s expected equilibrium payoff is strictly decreasing

in tf .

The proof is provided in Appendix C.5. In this version of the game where the
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firm is farsighted, country D uses a form of IPR in equilibrium: it bases its offer

to the firm on the price it observes country C pays. Country D may use IPR for

different ends, depending on whether the firm rejects or accepts C’s offer. In the

first case, IPR allows country D to increase the probability of acceptance of its

offer to the firm. Should the price paid by country C be confidential, country D

would have offered pa (see Proposition 3.3.1), and the firm would have rejected

it for sure. The second case happens in equilibrium only if the threshold type in

country C, tf , is sufficiently low (lower than tD). By observing the price paid

by country C, country D can revise its offer downwards without decreasing the

probability of acceptance.

3.4.3 Country C’s optimal offer

In this section, we determine country C’s optimal offer. From our previous anal-

ysis, we know that when conditions A and B in Lemma 3.4.4 hold, an equilibrium

in a subgame p is monotone: the firm’s payoff gain from rejecting, ∆, is strictly

increasing in t for all t ∈ [0, 1]).

Country C’s optimal offer lies in the interval:

P ∗
f =

(

τ2
C

τ1
C

+ ε
τ1

D

τ1
C

(

PR(0) −
τ2

D

τ1
D

)

,
1 − τ2

C

1 − τ1
C

]

Any offer p strictly larger than the upper bound is dominated by an offer strictly

lower than p, yet greater than the upper bound. And any offer strictly less than

the lower bound is strictly dominated by an offer larger than the upper bound,

yet strictly lower than 1. The type of firm which is indifferent between accepting

and rejecting p ∈ P ∗
f is:

Tf (p) =
(τ2

C − pτ1
C) − ε

(

τ2
D − PR(tf )τ1

D

)

1 − p − ε (1 − PR(tf ))
(3.12)
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with PR(tf ) country D’s best response following a rejection of p. Recall that

for some fixed offer p and associated threshold type tf , D’s best-response is an

increasing function of C’s offer p, as:

dpR

dp
=

(tf − τ1
C)(1 − pR)

(tR − τ1
D)(1 − p − ε(1 − pR))

(

dtR

dtf

)

> 0

The denominator in expression (3.12) is strictly positive by Lemma 3.4.4. The

numerator is positive for any price offer in P ∗
f . An alternate expression of the

threshold type tf associated with some offer p is:

tf = TC(p) − ε
(tf − τ2

D) − PR(tf )(tf − τ1
D)

1 − p

and note that tf ≤ TC(p) for any p in the relevant interval.14 Country C’s

problem is to choose a price offer that maximizes its payoff:

(1 − p)Sf (p)

where Sf (p) is the supply faced by country C, and whose equation is:

Sf (p) = G (Tf (p)) (L − τ1
C)

for Tf (p) the threshold type function in (3.12). Note that country C faces

a shorter supply when the firm is farsighted than when it is myopic. In the

farsighted case, the elasticity of the supply faced by C is:

eSf
(t) = eS(t)

(

1 +
ε(t − τ1

C)(τ2
D − τ1

D)
Z(tR)

)(

1 −
ε(t − τ1

C)(τ2
D − τ1

D)
Z(tR)

[

dtR

dt

(t − τ1
D)

(tR − τ1
D)

])

14We always have PR(tf ) >
tf −τ2

D

tf −τ1

D

by country D’s best response. Therefore, Tf (p) ≤ TC(p)

for any price offer p.
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where eS(t) is the elasticity of the supply S that C faces in the myopic case, and:

Z(tR) = (τ2
C − τ1

C)(tR − τ1
D) − ε(τ2

D − τ1
D)(tR − τ1

C)

The value of the elasticity is positive, for any type t ∈ [0, 1], and any tR ∈ (t, 1].

Z is always positive in an equilibrium, and it is strictly increasing in t (by

condition A in Lemma 3.4.4 and the fact that tR is an increasing function of t.)

More details are provided in Appendix C.6. The relative elasticity of the supply

Sf compared to S, the supply faced by C in the myopic case, depends on the

relation between tR and tf . Note that for all values of t ∈ [t̄f , 1], country D’s

optimal offer pR is constant at:
1 − τ2

D

1 − τ1
D

For such values of t, the supply Sf is relatively more elastic than S. The next

remark presents some comparative statics on the threshold type tf .

Remark 3.4.2. The threshold function in expression (3.12) is increasing in p

and decreasing in ε. Moreover, the supply function Sf (p) converges uniformly

to the supply function S(p) in the myopic case. Also, its first derivative with

respect to p, S′
f (p), converges uniformly to S′(p), the derivative of the myopic

supply function.

Proof. Given that ∂∆
∂p

< 0 and ∂∆
∂ε

> 0 and ∂∆
∂tf

> 0, it follows that ∂Φ
∂p

> 0 and

∂Φ
∂ε

< 0. Since ∂Φ
∂tf

< 0, it follows that t∗
f is increasing in p and decreasing in

ε.

Our results about country C’s optimal offer are gathered in the proposition

below.

Proposition 3.4.6. Under conditions A and B, country C’s problem has a
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unique solution p∗
f ∈ P ∗

f , and it is interior if and only if:

eSf
(p∗

f ) = 1 and p∗
f <

1 − τ2
C

1 − τ1
C

Otherwise, p∗
f = 1−τ2

C

1−τ1
C

. Let t∗
f be the type of firm which is indifferent between

accepting and rejecting country C’s equilibrium offer p∗
f . For t∗ the analogous

threshold type for the myopic case, and tr the threshold type associated with

country D’s best response PR(t∗):

t∗
f ≥ t∗ ⇔

dtR

dt

∣

∣

∣

∣

∣

t=t∗

≤
tr − τ1

D

t∗ − τ1
D

For p∗ country C’s optimal offer in the myopic case:

p∗
f ≥ p∗ ⇔

dtR

dt

∣

∣

∣

∣

∣

t=t∗

≤
tr − τ1

D

t∗ − τ1
D

(

1 +
ε(t∗ − τ1

C)(τ2
D − τ1

D)
(τ2

C − τ1
C)(tr − τ1

D) − ε(τ2
D − τ1

D)(tr − τ1
C)

)

and (τ2
C − τ1

C)(tr − τ1
D) − ε(τ2

D − τ1
D)(tr − τ1

C) > 0.

See Appendix C.7 for the proof. We compare country C’s payoff between the

farsighted case and the myopic case.

Remark 3.4.3. Country C’s expected payoff is lower in the farsighted case than

in the myopic case.

Proof. Consider some fixed price offer p. At the beginning of this section, we

established that: Tf (p) ≤ TC(p) for any p in the relevant interval. Meaning, a

same price offer is always more likely to be accepted in the myopic case than in

the farsighted one. For some given offer p, country C’s expected payoff in the

myopic case is: G(TC(p))(1 − p), and in the farsighted case this is: G(Tf (p))(1 −

p). By our later argument, we have G(TC(p))(1 − p) ≥ G(Tf (p))(1 − p) for

all p in the relevant interval. Then G(TC(p∗))(1 − p∗) ≥ G(TC(p∗
f ))(1 − p∗

f ) ≥

G(Tf (p∗
f ))(1 − p∗

f ), where p∗ is country C’s optimal offer in the myopic case.
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3.4.4 A characterization of the weak Perfect Bayesian Equilibria

We summarize our results from the two previous sections below.

Proposition 3.4.7. Under conditions A and B, for every p ∈ [0, 1] , an es-

sentially unique equilibrium exists in subgame p. Consider p and p given by

expressions (3.11) and (3.8), respectively.

1. If p < p, it is a pooling equilibrium where all types reject p. If the firm rejects

p, country D believes that t is distributed according to its prior belief G and

offers p
D

= PR (0) . If the firm accepts p, country D may believe the firm’s

type is 0 with probability one, and offers PA(0) = τ2
D

τ1
D

.

2. If p ∈
[

p, p
]

, it is an interior equilibrium, characterized by a threshold type

t∗
f ∈

[

tf , 1
]

, with:

tf = 0 if
τ2

D − PR(0)τ1
D

1 − PR(0)
≥ TC(p)

and

tf = P −1
R

(

TC(p) − τ2
D

TC(p) − τ1
D

)

otherwise,

such that Φ
(

t∗
f

)

= t∗
f . In an interior equilibrium, all types in

[

0, t∗
f

)

accept

p and all types in
(

t∗
f , 1
]

reject p. Country D offers pA = PA

(

t∗
f

)

and holds

belief GA in (3.9) when p is accepted, and offers pR = PR

(

t∗
f

)

and holds

belief GR in (3.10) when p is rejected.

3. If p > p, it is a pooling equilibrium where all types accept p. Upon observing

that p is accepted, country D’s belief is its prior belief G and offers p
D

=

PA (1). If the firm rejects p, country D may believe that the firm’s type is 0

with probability one, and offers PR(0) = τ2
D

τ1
D

. Other beliefs are also possible,

and it is possible to support this equilibrium with beliefs that satisfy the

intuitive criterion.
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3.5 Two countries when the firm is farsighted, with

a secret rebate

In the previous sections, we showed that the price in country C releases infor-

mation about the firm’s type, and influences country D’s offer. In particular,

country D’s offer depends positively on the price that country C pays. If the

firm is farsighted and the details of the deal with country C cannot be hidden

from D, the firm gets an additional incentive to reject the first country’s offer.

Indeed, we showed that any given price offer that country C may extend is more

likely to be rejected when the firm is farsighted, which leads to a reduction in

C’s payoff.

In order to avoid this penalty in the presence of a farsighted firm, the first

country could make the price that country D observes completely uninformative

about the firm’s type. To this end, country C may offer a pair of prices (p, r)

such that: p is the component of the contract that is observable to country D

if the firm accepts the proposal, and we refer to p as the list price; and r is the

secret rebate that D never knows. An offer from C that consists of a list price

equal to 1 and a secret rebate permits to isolate the two negotiations completely:

whether the firm accepts or rejects this contract, country D always observes the

price of 1 in the first country, therefore the latter does not learn anything about

the firm’s type.

Under the restriction that the list price must equal 1, country C’s optimal of-

fer is r = 1 − p∗, where p∗ is the optimal offer in the myopic case (characterized

in Proposition 3.2.1). If the firm rejects, then it counter-offers a list price of 1

without a rebate. Note that the firm, even if it is farsighted, accepts this offer

with rebate under the same condition as when it is myopic (Section 3.2). Indeed,

country D’s offer is the same regardless of the firm’s decision to accept or reject

the contract (p = 1, r∗) that country C proposes. It follows that allowing the
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use of secret rebates makes country C as well-off as when the firm is myopic

and prices are transparent (Section 3.3), and strictly better-off than in the case

where the firm is farsighted and prices are transparent (Section 3.4). Overall,

what penalizes country C is the combination of the firm’s farsightedness and

country D using a form of IPR in its negotiation.

Irrespective of whether the deal with rebate is accepted or rejected by the firm,

country D learns nothing about the firm’s type, and is therefore worse-off com-

pared to the two previous sections (myopic or farsighted firm with price trans-

parency). This finding suggests that price transparency is beneficial to country

D. Since there is no informational spillover when the first country conceals its

true offer with a secret rebate, the second country’s belief in the subgame that

follows country C’s proposal is its prior belief. Note that D’s optimal offer in this

case is equal to the price pa in Proposition 3.3.1, and the associated threshold

type is equal to ta.

It is worthwhile noting that the firm is weakly worse-off than in Section 3.3

(myopic case).15 First, the firm accepts country C’s offer with rebate if and

only if its type is less than t∗ in Section 3.3. Next, all firms whose type belongs

either to [0, t∗] or [tr, 1] are indifferent between an offer made of a list price of

1 and a rebate equal to 1 − p∗, and a direct offer p∗ without rebate (Section

3.3). (Recall that tr is the threshold type defined in Proposition 3.3.1 in the

myopic case). The types less than ta accept the two countries’ offers, and those

between ta and t∗ accept C’s and reject D’s. The types in the interval [tr, 1]reject

both countries’ offers, thus they get the same profit as in Section 3.3 as well.

However, the types in the interval (t∗, tr] are strictly worse-off than in Section

3.3. These types strictly prefer to accept the offer pr that D would have made,

had rebates not been allowed, than to wait until period τ2
D and earn the price of 1.

15Almost nothing can be said about the difference in the firm’s expected payoff in the far-
sighted case and the secret case. Note that for very small ε, our result that the firm is better-off
with price transparency than under secrecy holds.
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In conclusion, there exists a PBE of our game with rebates that precludes any

informational spillover on the second country. The best-responses of each party

in this PBE are the following. At τ1
C , country C offers a pair of two prices,

(p = 1, r = 1 − p∗), where the rebated price p∗ corresponds to the country’s

optimal offer in Section 3.2. The firm of type t accepts any offer such that:

pC − r ≥
t − τ2

C

t − τ1
C

and rejects any offer such that:

pC − r <
t − τ2

C

t − τ1
C

At τ2
C , the firm counter-offers the list price of 1 and no rebate, for all possible

histories. Country C accepts the counter-offer, for all possible histories. At τ1
D,

country D offers pD, which solves:

G′(tD)(tD − τ1
D) = G(tD)

and this price is equal to pa, if the history of the game is either h1 = ((p = 1, r =

1 − p∗), A, 1, A) or h2 = ((p = 1, r = 1 − p∗), R, 1, A). For any other history,

country D offers pD = τ2
D

τ1
D

. The firm of type t accepts any price offer pD ≥
t−τ2

D

t−τ1
D

,

and rejects any price offer pD <
t−τ2

D

t−τ1
D

. At τ2
D, the firm counter-offers the price

of 1, for all possible histories, and country D accepts the counter-offer, for all

possible histories.

The belief system is as follows. At I1, country C’s belief is its prior belief G.

If the second information set of country C is reached, its belief is GR(t) in (3.6).

If the second information set is not reached, then any belief of the country is

consistent. At I2, country D’s belief is its prior belief G if the history of the game

is either h1 = ((p = 1, r = 1 − p∗), A, 1, A) or h2 = ((p = 1, r = 1 − p∗), R, 1, A).

Country D believes that the firm is of type 0 with probability one for any other
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history. If the second information set of country D is reached, its belief is:

G(t) − G(ta)
1 − G(ta)

on the support (ta, 1], where ta is the threshold type associated with country D’s

optimal offer. If the second information set of country D is not reached, then

any belief is consistent.

3.6 Conclusion

We studied the outcomes of the sequential negotiations of two countries with

a monopolist pharmaceutical firm. We assumed that the firm holds private in-

formation about the duration of its monopoly, which affects its willingness to

accept lower offers against earlier deals. The model highlights four main ideas.

First, that a form of international price referencing (IPR) emerges naturally

when prices agreed with countries that reached earlier agreements carry infor-

mation that is valuable to subsequent countries. In particular, we find that a

country which can observe the transaction price in another country formulates

an offer that depends positively on this transaction price.

Second, that IPR is beneficial to the countries which negotiate last and is

detrimental to those which negotiate first. In an equilibrium of our model, the

countries that come last in the order of the negotiations benefit from IPR, and

apply it to increase the probability of acceptance of their own offers. As the

corresponding optimal offers depend positively on the prices obtained by those

which negotiated first, the firm has an additional incentive to reject these coun-

tries’ offers.

Third, that in order to avoid this penalty, secret rebates emerge as a natural

arrangement between the countries that negotiate first and the firm. Fourth, that
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when the firm is farsighted, secret rebates benefit the countries which negotiate

first and are detrimental to those which negotiate last.
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Appendix A

Appendix Chapter 2

A.1 Proof of Lemma 1.3.2

The proof is by contradiction. The network g is strict Nash, and there are two

components C and D in g that are wheels. By Corollary 1.3.3 statement 1, C

and D are not comparable via R; and a player j has a path to anyone in X if

and only if j ∈ X, for any component X ∈ {C, D}. Note that all players in X

have the same reach, for any component X ∈ {C, D}. Let i be any agent in C;

and let j be any agent in D. If κi(g) ≥ κj(g), then it follows immediately that

g′
j = i is a strictly profitable deviation, as: κl(g′

j , g−j) = κi(g) + 1 > κj(g), and

|g′
j | ≤ |gj |. Following a similar argument for the case where κi(g) < κj(g), the

deviation g′
i = j for player i is strictly profitable. A contradiction that g is strict

Nash.
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A.2 Proof of Lemma 1.3.5

This is a direct proof. I denote the agents in the wheel component as Nw =

{i1, . . . , inw} where 3 ≤ nw ≤ n, and the wheel is characterized as i1 → i2 . . . →

inw → i1. In a non-exhaustive wheel, the statement holds trivially for any

singleton. Because players in a wheel component are symmetric, let me consider

agent i1. Assume that i1 has a deviation g′
i1

such that |g′
i1

| ≥ |gi1 | and g′
i1

6⊆ gi1 .

Let g′ = (g′
i1

, g−i1) be the network that results from i1’s deviation to g′
i1

. It

follows from the definition of g′
i1

that i2 /∈ g′
i1

. (Recall that gi1 = i2 in g.) Note

that the players whose reach is affected by i1’s deviation all belong to Nw. I

distinguish between two cases:

1. g′
i1

⊂ Nw. It follows immediately that gi1 yields a larger payoff than g′
i1

, as

κj(g′) ≤ κj(g) for all j ∈ N , and the inequality holds strictly for all agents

in Nw \ {i2}.

2. g′
i1

6⊂ Nw, i.e. ∃k ∈ g′
i1

such that gk = ∅. Let k any such element of

g′
i1

, and consider g̃i1 = (i1 ∪ g′
i1

) \ {k} an alternate deviation for player i1.

Let me denote (g̃i1 , g−i1) as g̃. Note first that |g̃i1 | = |g′
i1

|. Second, note

that: κi2(g̃) = κi2(g′) − 1, κi3(g̃) = κi3(g′), and κim(g̃) > κim(g′) for all

im ∈ Nw \ {i2, i3}. The variation in the collective return is:

v(g̃) − v(g′) = −
[

φ
(

nw + |g′
i1

|
)

− φ (nw − 1 + |g̃i1 |)
]

+
nw+1
∑

h=2

(

φ (nw − 1 + |g̃i1 |) − φ
(

nw − (h − 1) + |g′
i1

|
))

and this is always positive when φ is concave and nw ≥ 3. These two con-

ditions are met by Proposition 1.3.1 and if Assumption A holds. Therefore

g′
i1

is never a best-response of i1.

144



A.3 Proof of Lemma 1.3.6

The proof is by contradiction. Let me denote as G+1
i the set of deviations for

player i such that i adds one link to the set of links i has in g:

G+1
i (g) = {g′

i ∈ Gi : |g′
i| = |gi| + 1}

Assume that the conclusion of the lemma is false. Therefore, there exists ĝi ∈

G+
i \ G+1

i that maximizes the ratio in Lemma 1.3.6; and let me re-write ĝi has

gi ∪L, with |L| = l > 1. Let me first analyze the case where g is a non-exhaustive

wheel. I call Nw the set of agents who belong to the wheel component of g. Given

the architecture of g and if i ∈ Nw, the value of the ratio is at most:

A =
nw

l
[φ(nw + l − 1) − φ(nw − 1)]

(The value of the ratio is strictly less than A if ∃ k ∈ L such that k ∈ Nw.)

Next, consider any deviation g̃i ∈ G+1
i of the form g̃i = gi ∪ {j} with j 6= Nw.

The value of the ratio in Lemma 1.3.6 is:

B = nw[φ(nw) − φ(nw − 1)]

As φ is concave, A is always less than B, and the result follows.

Assume instead that i /∈ Nw. For any strategy ĝi = gi ∪ L with |L| = l > 1,

the ratio in Lemma 1.3.6 is at most equal to:

C =
φ(nw − 1 + l) − φ(0)

l

and it is equal to C if ∃k ∈ L such that k ∈ Nw. Take any deviation g̃i = j ∈ Nw.

The ratio is equal to:

D = φ(nw) − φ(0) > C
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by the concavity of φ. The result follows. The proof for the empty network

follows the same line, and is therefore omitted.

A.4 Proof of Proposition 1.4.1

Claim 1. Consider a fixed value c of the cost of a link. A maximum of the

potential function for c either corresponds to a wheel network, a non-exhaustive

wheel or the empty network.

Proof. First, consider all strategy profiles g = (g1, . . . , gn) such that
∑

i∈N gi ≥ n.

In any such network g, v(g) = nφ(n − 1). The architecture that minimizes the

total cost of network formation is a wheel network.

Next, consider all strategy profiles g such that
∑

i∈N gi = m, where m is an

integer such that n > m ≥ 3. I segregate the set of all networks g that have the

aforementioned property into two sets: the set G1, that contains all networks

with strictly less than n components; and the complement of this set is G2, and

it contains all nonempty networks with n components. In any network in the

set G1, the maximum reach of an agent is m − 1. An architecture that gives this

maximal reach to a maximum number of players (which is constrained by the

number of links m) is the non-exhaustive wheel with nw = m, and note that for

this network, v(gn.e.w) = mφ(m − 1) + (n − m)φ(0). Note that this architecture

is that which minimizes the cost of network formation. Hence if a maximum

of the potential belongs to G1, then it is a non-exhaustive wheel. Among all

networks in the set G2, it is immediate that the architecture that maximizes v

is a chain network on m + 1 agents: i1 → i1 . . . → im+1. In this network, note

that v(g) = (n − m)φ(0) +
∑m

h=1 φ(h). Fixing m, it is immediate that the non-

exhaustive wheel on m agents yields a larger collective return than the chain on
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m + 1 agents when φ is concave and m ≥ 3.

Now, consider all networks that have either 1 or 2 links in total. For 2 links, it

is immediate that the architecture that maximizes the collective return is a chain

on 3 agents. I show that no network that has either 1 or 2 links can maximize

the potential function. For this, recall first that a maximum of the potential is

a Nash equilibrium of the game. Take any chain network on 2 or 3 agents. If

it is Nash, then c ≤ φ(h) − φ(0) with h ∈ {1, 2}, for h the reach of the root

component. Let me first consider the case of the chain on 3 agents. Take any

player i who has no link in this network. If i forms a link to the root of the

chain, then the collective return increases at least by φ(h + 1) − φ(0), and the

deviation is strictly profitable. If the chain is just on 2 agents, there is just one

link in the network, that I refer to as i → j. If this is a Nash equilibrium then

c ≤ φ(1) − φ(0). Recall that n ≥ 3. Consider the strategy gj = k, for any k 6= i,

for agent j. The collective return increases by φ(2) − φ(0). Hence the deviation

is strictly profitable given the value of c, and the network is not Nash - hence it

is not a maximum of the potential for the value c of the cost of a link.

Claim 2. For any value of the cost c, a maximum of the potential is either a

wheel network or the empty network.

Proof. I take on the notations introduced in Proposition 1.3.1 for referring to the

wheel network (gw), non-exhaustive wheels (gn.e.w) and the empty network (ge).

First, P (gw) = nφ(n − 1) − nc, P (gn.e.w) = nwφ(nw − 1) + (n − nw)φ(0) − nwc

with 3 ≤ nw < n and P (ge) = nφ(0). Note that:

P (gw) ≤ P (ge) ⇔ c ≥ φ(n − 1) − φ(0)
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Assume that c ≥ φ(n − 1) − φ(0). Note that:

P (ge)−P (gn.e.w) = nw (c − [φ(nw − 1) − φ(0)]) ≥ nw (φ(n − 1) − φ(nw − 1)) > 0

Hence the maximum of the potential is achieved in the empty network when

c ≥ φ(n − 1) − φ(0).

Next, consider the values of c such that c < φ(n − 1) − φ(0). Note that:

P (gw) − P (gn.e.w) = n (φ(n − 1) − φ(0)) − nw (φ(nw − 1) − φ(0)) − (n − nw)c

and

c < φ(n − 1) − φ(0) ⇒ P (gw) − P (gn.e.w) > nw (φ(n − 1) − φ(nw − 1)) > 0

Hence the maximum of the potential is achieved in a wheel network when c <

φ(n − 1) − φ(0).

A.5 Proof of Proposition 1.4.2

Statement 1. Consider any non-exhaustive wheel on nw agents. Take the

payoff of any isolated singleton i in this network; this is:

ui(gn.e.w) = nwφ(nw − 1) + (n − nw)φ(0)

Recall that if this non-exhaustive is strict Nash, then the wheel network is strict

Nash as well. If i had been part of a wheel network instead, then his payoff

would be:

ui(gw) = nφ(n − 1) − c
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If gn.e.w is strict Nash, then:

c < nwφ(nw − 1) −
nw−1
∑

h=0

φ(h)

by Proposition 1.3.2. For such values of the cost:

ui(gw)−ui(gn.e.w) > nw[φ(n−1)−φ(nw−1)]+(n−nw)[φ(n−1)−φ(0)]−
nw−1
∑

h=0

[φ(nw−1)−φ(h)]

If nw ≤ ⌊n
2 ⌋, then:

ui(gw)−ui(gn.e.w) > nw[φ(n−1)−φ(nw−1)]+nw[φ(n−1)−φ(0)]−
nw−1
∑

h=0

[φ(nw−1)−φ(h)]

and the right side of the inequality is strictly positive, as φ(n − 1) − φ(0) >

φ(nw − 1) − φ(h), for any h such that 0 ≤ h ≤ nw − 1 and any nw such that

3 ≤ nw ≤ n − 1.

Statements 2 and 4. Consider any non-exhaustive wheel on nw agents. If it

is strict Nash, then 3 ≤ nw ≤ n − 1. In a non-exhaustive wheel, those in the

wheel component get a strictly lower payoff than any of the isolated singletons.

The lowest payoff of an agent in the network equals:

nwφ(nw − 1) + (n − nw)φ(0) − cnw = (n − nw)φ(0) +
nw−1
∑

k=0

φ(k)

For the value of cnw , see Proposition 1.3.2. The expression above is increasing

in nw. Hence, the lowest payoff an agent can earn in a non-exhaustive wheel is

when nw = 3 and c = c3, which is:

(n − 2)φ(0) + φ(1) + φ(2)

Recall that if a non-exhaustive wheel is strict Nash, so is the empty network.

(ce < c3, and recall that cnw is increasing in nw.) Any agent in the empty
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network earns the payoff of nφ(0). The result follows. A similar argument holds

for proving that the wheel network Pareto dominates the empty network for any

c ∈ (ce, cw).

Statement 3. Consider any strict Nash network that has the architecture of

a non-exhaustive wheel on nw agents. Consider any isolated singleton i in this

network. His current payoff is when nw = n − 1, and the payoff differential in

this case is:

nwφ(nw − 1) + (n − nw)φ(0)

Recall that if any non-exhaustive wheel is strict Nash, then the wheel network is

also strict Nash. The minimum payoff that i could get in a wheel network, given

the values of the cost for which the non-exhaustive wheel is strict Nash, is:

nφ(n − 1) − cnw = nφ(n − 1) − nwφ(nw − 1) +
nw−1
∑

h=0

φ(h)

The payoff differential for agent i is equal to:

nwφ(nw − 1) + (n − nw)φ(0) − (nφ(n − 1) − cnw)

= nw[φ(nw − 1) − φ(0)] +
nw−1
∑

h=0

[φ(nw − 1) − φ(h)] − n[φ(n − 1) − φ(0)]

Note that this is an increasing function of nw. Hence, the largest payoff gain

that i can have in being in a non-exhaustive wheel instead of being in a wheel

network is:

−n[φ(n − 1) − φ(n − 2)] +
n−2
∑

h=1

[φ(n − 2) − φ(h)]

For some non-exhaustive wheels not to be Pareto dominated by the wheel net-

work, the above expression needs to be positive.
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A.6 Proof of Proposition 1.5.1

The proof is by contradiction. The strategy profile g = (g1, . . . , gn) is a maximum

of the potential, however there exist two components in g, C and D, such that |C|

and |D| are both strictly larger than 1. Note that either C R D or C and D are

not comparable. In any case, there is at least one of these two components, that

I designated as being D, that does not have access to the other: d(i, j; g) = ∞

for any i ∈ D and j ∈ C. Consider any player i ∈ D and any player j ∈ C. Let

the network g′ be given by the following strategy profile:

1. g′
i = ∅ : in g′, agent i has no link at all,

2. g′
j = gi ∪ gj : in g′, agent j forms the same links as in g, and forms the

links that i has in g,

3. for all k such that i ∈ gk, g′
k = gk \ {i} ∪ {j} : all of the agents who form

a link towards i in g redirect their link towards j in g′,

4. g′
k = gk for the rest of the agents.

In g′, there are strictly less infinite distances than in g. Let me just focus on the

distances between the agents in C and D. In g, if C and D are not comparable via

R, there are at least 2|C|× |D| infinite distances, as none of the two components

can access the other. In g′, there are 2[|C| + |D| − 1] infinite distances: no agent

in C have access to i, i does not have access to anyone in C ∪ D \ {i}, and none

of the agents in D \ {i} have acess to i. Note that 2|C| × |D| − 2[|C| + |D| − 1] is

always positive when |C|, |D| > 1. The rest of the distances between the agents

in C and D are weakly shorter in g′. Hence v(g′) ≥ v(g). If C R D in g, then

there are |D| × |C| infinite distances, due to the agents in D who cannot access

those in C. In g′, there are |C| + |D| − 1 infinite distances, as i is isolated from

the agents in C and D, Therefore the number of infinite distances is lower in g′
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than in g; and the rest of the distances are weakly shorter in g′ than in g. Again,

we have v(g′) ≥ v(g). Note that the network g′ are weakly less links than the

network g, as g′
j ≤ gj (the inequality holds strictly if gj ∩ gi 6= ∅). Thus the

potential is strictly higher in g′ than in g. A contradiction.

A.7 Definition of flower networks

My definition of a flower network is inspired from that of Bala and Goyal (2000,

[6]). The main difference with theirs is about the size of the petals.

Definition A.7.1 A flower network gf (n, x) on n agents and x links partitions

the set N into a central individual, say agent n, and a collection P = {P1, . . . , Pq}

where Pk ∈ P is nonempty. A set Pk ∈ P of agents is referred to as a petal.

Let m be the number of petals, l = |Pk| the cardinality of petal Pk and denote

the agents in Pk as {k1, . . . , kl}. A flower network is then defined by setting

n → k1 → k2 . . . → kl → n for each petal Pk ∈ P, and no other agent than kj

has a link towards kj+1, where (kj , kj+1) belong to the same petal Pk, for any

0 ≤ j ≤ l given that k0 = n = kl+1. The number of petals is m = x − (n − 1)

and the maximum difference in the petals cardinalities is 1. The cardinality of

the smallest petal is s = ⌊ n
m

⌋. There are m(s + 1) − x petals whose cardinality

is l = s and the rest of the x − ms petals have cardinality l = s + 1.

A.8 Proof of Proposition 1.5.3 (Code)

The software is R. The list of packages to download is:

l i b r a r y ( combinat )

l i b r a r y ( compi le r )

l i b r a r y ( igraph )
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l i b r a r y ( abind )

l i b r a r y ( i t e r p c )

l i b r a r y ( Matrix )

l i b r a r y ( graph )

l i b r a r y ( PairViz )

l i b r a r y ( adagio )

l i b r a r y ( i t e r p c )

l i b r a r y ( data . t ab l e )

l i b r a r y ( l a t t i c e )

l i b r a r y ( genera lCorr )

l i b r a r y ( ml too l s )

l i b r a r y ( dplyr )

It suffices to copy paste this code and to make it run on R.

# 1 . n denotes the number o f agents , and K the number o f l i n k s

n = 5 #6

K = 5 #from 3 to 2(n−1)

# Other v a r i a b l e s :

m=n−1

L= 0.5∗ n∗m

H= L+1

P=n∗m

# 2 . Get a l l adjacency matr i ce s that have K e n t r i e s equal to 1 .

func <− f unc t i on (n , m) t (combn(P, K, func t i on ( a ){ z=i n t e g e r (n ) ; z [ a ]=1; z } ) )

Z <− func (P,K)

get_A <− f unc t i on (n , i ){ M <− matrix (NA, n , n)

diag (M) <− 0

M[ lower . t r i (M, diag=F) & i s . na (M) ] <− as . vec to r (Z [ i , 1 : L ] )

M[ upper . t r i (M, diag=F) & i s . na (M) ] <− as . vec to r (Z [ i , H:P ] )

re turn (M)}
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# Compile .

g <− cmpfun (get_A)

g

A <− l i s t ( )

f o r ( i in 1 : nrow (Z) ){

A [ [ i ] ] <− graph . adjacency ( g (n , i ) )}

#4. For each adjacency matrix , get the d i s t anc e matrix .

# Then , get the number o f d i s t a n c e s having l ength L ,

# f o r L between 0 and n−1. Add an entry f o r i n f i n i t e d i s t a n c e s .

d i s t <− f unc t i on (n , i ) {G <− s h o r t e s t . paths (A [ [ i ] ] , mode="out " )

f r e q <− as . vec to r ( as . data . t ab l e ( t ab l e (G) ) )

re turn ( f r e q )}

# Compile :

dt <− cmpfun ( d i s t )

dt

M <− l i s t ( )

R <− l i s t ( )

f o r ( i in 1 : nrow (Z) ){ R [ [ i ]]<− t ( dt (n , i ) )

i f (R [ [ i ] ] [ 1 , l ength (R [ [ i ] ] [ 1 , ] ) ] = = " I n f " )

{ M[ [ i ] ] = matrix ( data= c (R [ [ i ] ] [ 2 , 1 : l ength (R [ [ i ] ] [ 2 , ] ) − 1 ] ,

rep (0 , n+1−l ength (R [ [ i ] ] [ 2 , ] ) ) ,R [ [ i ] ] [ 2 , l ength (R [ [ i ] ] [ 2 , ] ) ] ) ,

nrow=1, nco l=n+1)}

e l s e

{ M[ [ i ] ] = matrix ( data=c (R [ [ i ] ] [ 2 , ] , rep (0 , n+1−l ength (R [ [ i ] ] [ 2 , ] ) ) ) ,

nrow=1 , nco l=n+1)}

colnames (M[ [ i ] ] ) <− c ( 1 : n−1, " I n f " )

rownames (M[ [ i ] ] ) <− c ( " Number o f d i s t a n c e s o f l ength y " )

M[ [ i ] ] <− mapply (M[ [ i ] ] [ 1 , ] , FUN=as . numeric ) }

#6. In order to cut the computing time , the remaining code i s run
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# on the networks that have d i f f e r e n t d i s t anc e d i s t r i b u t i o n .

# Get the d i s t ance d i s t r i b u t i o n s .

Dif f_dt <− unique (M)

CDF <− l i s t ( )

Cumulative_Distrib <− f unc t i on ( i ){ C =Diff_dt [ [ i ] ] [ 1 ]

f o r ( k in 1 : n+1) C[ k ] = sum(C[ k−1]+Dif f_dt [ [ i ] ] [ k ] )

r e turn (C)}

# Compile

CD <− cmpfun ( Cumulative_Distrib )

CD

f o r ( i in 1 : l ength ( Dif f_dt ) ){CDF[ [ i ] ] <− CD ( i ) }

Matrix_CDF <− t ( matrix ( data=u n l i s t (CDF) , nrow=n+1, nco l=length (CDF) ) )

colnames (Matrix_CDF) <− c ( 1 : n−1, " I n f " )

rownames (Matrix_CDF) <− c ( 1 : l ength (CDF) )

MCDF <− Matrix_CDF

#7. I f i r s t compute the d i s t anc e d i s t r i b u t i o n o f the f l owe r .

#As n=K=5, t h i s i s ( 5 , 10 , 15 , 20 , 25 , 25 ) .

#Then I get the d i f f e r e n c e between each row o f MCDF,

#and the d i s t ance d i s t r i b u t i o n o f the f l owe r .

#Al l r e s u l t s are gathered in the matrix " Compare " .

X=rep ( c (5 , 10 , 15 , 20 , 25 ,25) , nrow (MCDF) )

Benchmark <− matrix ( data=c (X) , byrow=T, nrow=nrow (Matrix_CDF ) )

colnames ( Benchmark ) <− c ( 1 : n−1, " I n f " )

rownames ( Benchmark ) <− c ( 1 : l ength (CDF) )

Compare <− MCDF − Benchmark

#8. Now we can see which networks are cand idate s f o r equ i l i b r ium .

# Keep the networks that are not dominated by the wheel .

s e l e c t <− Compare [ ! apply (Compare , 1 , f unc t i on ( x ) a l l (0 >= x ) &

sum( x ) <0 ) , ]
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s e l e c t

#For n=K=5, " s e l e c t " has l ength 1 .

# 9 . Find back the adjacency matr i ce s o f the equ i l i b r ium candidates .

r1 <− which ( apply (Compare , 1 , f unc t i on ( x ) a l l . equal (x , s e l e c t ) ) == "TRUE" )

r2 <− which ( sapply (M,

func t i on ( x ) i d e n t i c a l (x , D i f f _ d i s t r i b [ [ r e turn1 [ [ 1 ] ] ] ] ) ) )

I plot the networks that are not isomorphic to each others.
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Appendix B

Appendix Chapter 3

B.1 Indifference curve of country 1

Claim: The indifference curve of country 1 in expression (2.9) is increasing con-

vex in p1.

Proof. Let us take the first derivative of country 1’s indifference curve wrt p1.

This is:

dr

dp1
=

α[1 − γp1 + (v̄ + α)][(v̄ + α)(1 − γ) + (1 − γp1)] + γ(v̄ + α)[1 + α(1 − γp1)]
α[1 − γp1 + (v̄ + α)]2

The sign of the derivative is given by the sign of the numerator. As long as

p1 ≤ 1
γ
, i.e. the quantity demanded is strictly positive, all terms in the expression

above are positive. We get the second derivative wrt p1. We find:

d2r

dp2
1

=
2γ2(v̄ + α)[1 − α(v̄ + α)]

α[1 − γp1 + (v̄ + α)]3

The sign is that of the numerator. It is positive if country 1’s payoff v̄ does not

exceed 1
α

− α. We show that this is always true for any contract that satisfies
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p1 − r ≥ 0. The expression of country 1’s payoff is:

v∗(p1, r) =
α(1 − γp1)

1 + α(p1 − r) − αγp1
[1 − (p1 − r)] − α.

The contract where p1 = r = 0 maximizes country 1’s welfare: v∗(0, 0) = 0. For

any payoff level v̄ that country 1 can achieve by contracting with the firm, we

have that: v̄ ≤ v∗(0, 0) ≤ 1
α

− α. The result follows.

B.2 Proof of Proposition 2.3.1

First, we specify the largest profit the firm could earn by trading with country

1. By Lemma 2.3.1, p1 ≤ pM
2 in any PO-IR contract. Given this condition on

the list price, the firm’s profit is given by expression (2.6). Note that dπ∗

dy
≥ 0

for all values of y ∈ [0, 1]. Therefore, the highest profit the firm could get is

when y = 1; hence p1 ≥ 1 as we do not allow for negative rebates. Consider the

firm’s total profit if the latter trades with both countries, fixing p1 − r = 1. The

expression of the firm’s profit for y = 1 is:

π∗(p1; y = 1) =
α(1 − γp1)

1 + α − αγp1
+ θπ2(p1).

The first derivative wrt p1 is:

∂π∗(p1)
∂p1

= −
αγ

(1 + α − αγp1)2
+ θ

∂π2(p1)
∂p1

.

The first term is negative, while the right term is weakly positive because p1 ≤

pM
2 . Re-arranging this right term by setting π2(p1) = p1q2(p1) for q2(p1) the

demand function on the second market, one gets:

∂π∗(p1; y = 1)
∂p1

= −
αγ

(1 + α − αγp1)2
+ θ [(1 − |ǫ2(p1)|)q2(p1)] .
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Let us call p̄ the price that equalizes the first derivative to zero. If the sign of the

above derivative is strictly positive for p1 = 1
γ

(thus p̄ > 1
γ
), then it means that

the firm would do actually better by not selling anything on the first market.

B.3 Proof of Proposition 2.3.2

Claim: If A = (pA
1 , rA) and B = (pB

1 , rB) where pA
1 < pB

1 ≤ pM
2 are two PO-IR

contracts, then it must be that rA ≤ rB.

Proof. The proof is by contradiction. Assume that A and B are two Pareto

optimal contracts. WLOG, we set pB
1 > pA

1 . By contradiction, we consider that

rA > rB. First, note that yA = pA
1 − rA, the net price associated with contract

A, is strictly lower than yB = pB
1 − rB, the net price associated with contract

B. It is immediate that country 1 prefers A over B. Hence it must be that the

firm’s profit is strictly larger under the terms of contract B, otherwise A would

Pareto dominate B. Other things being equal, the firm’s profit in expression

(2.6) is increasing in the list price and decreasing in the rebate. Therefore,

π̄B = π(pB
1 , rB) > π̄A = π(pA

1 , rA). Also, the quantity traded is larger under

contract A than under contract B (i.e. q1(pA
1 , rA) > q1(pB

1 , rB)), as:

q1(p1, r) =
α(1 − γp1)

1 + αy − αγp1

is both decreasing in the list price and the net price, holding the rest of the

variables constant. Let C = (pB
1 , rC) be the contract such that the list price is

the same as in contract B, and the rebate rC is such that the firm is indifferent

between contracts C and A (i.e. π(pB
1 , rC) = π̄A). In other words,

rC = pB
1 −

(π̄A − θπ2(pB
1 ))(1 − αγpB

1 )
α[1 − γpB

1 − (π̄A − θπ2(pB
1 ))]
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where the function corresponds to the expression of the firm’s isoprofit in (2.10)

for the level of profit π̄A. Let yC be the net price associated with contract C,

i.e. yC = pB
1 − rC . If contract A is Pareto optimal, then it must be that the

country strictly prefers A over C, as the firm is indifferent between both. This

is equivalent to saying that:

(1 − yA)q1(pA
1 , rA) > (1 − yC)q1(pB

1 , rC) (B.1)

By Lemma 2.3.3, A is Pareto optimal if pA
1 ≥ p̃(π̄A). Since pB

1 > pA
1 , this means

that the quantity traded is lower with contract C than with contract A (i.e.

q1(pB
1 , rC) ≤ q1(pA

1 , rA)). Also, as π̄A < π̄B, we have by Lemma 2.3.2 that

p̂1(π̄A) ≥ p̂1(π̄B). Now if B is Pareto optimal, then it must be that pB
1 ≤ p̂1(π̄B)

by Lemma 2.3.2. Hence we get that: pA
1 < pB

1 ≤ p̂1(π̄B) ≤ p̂1(π̄A). Thus that

yC < yA.

Next, consider contract D = (pA
1 , rD) such that the list price is the same as in

contract A, and the firm is indifferent between contracts B and D. (π(pA
1 , rD) =

π(pB
1 , rB) = π̄B.) It follows that rD is given by:

rD = pA
1 −

(π̄B − θπ2(pA
1 ))(1 − αγpA

1 )
α[1 − γpA

1 − (π̄B − θπ2(pA
1 ))]

If B is Pareto optimal, then the country must strictly prefer B over D as the

firm is indifferent between both:

(1 − yB)q1(pB
1 , rB) > (1 − yD)q1(pA

1 , rD) (B.2)

where yB = pB
1 − rB and yD = pA

1 − rD. Note that the quantity traded is

greater under the terms of contract D than under those of contract B (i.e.

q1(pA
1 , rD) ≥ q1(pB

1 , rB)). To see why, recall from Lemma 2.3.3 that if B is

Pareto optimal, then pB
1 ≥ p̃1(π̄B); and that if A is also Pareto optimal, then

pA
1 ≥ p̃1(π̄A). Also by Lemma 2.3.3, we know that p̃1(π̄A) ≥ p̃1(π̄B), as p̃1(.)
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is a decreasing function of the firm’s profit level and π̄A < π̄B. By transitivity,

we have: p̃1(π̄B) ≤ p̃1(π̄A) ≤ pA
1 < pB

1 . Note that the net price associated with

contract D is greater than that associated with contract B. Since pA
1 < pB

1 and

pB
1 ≤ p̂1(π̄B) if B is PO-IR, it follows that yD > yB.

We go back to the inequalities in (B.1) and (B.2). We use the expression of

the firm’s isoprofit curve in (2.10) to express all net prices yA, yB, yC and yD, as

well as all quantities q1(pA
1 , rA), q1(pB

1 , rB), q1(pB
1 , rC) and q1(pA

1 , rD). First,

y(p1, π̄) =
(π̄ − θπ2(p1))(1 − αγp1)

α[1 − γp1 − (π̄ − θπ2(p1))]
.

Hence:

yA =
(π̄A − θπ2(pA

1 ))(1 − αγpA
1 )

α[1 − γpA
1 − (π̄A − θπ2(pA

1 ))]

yB =
(π̄B − θπ2(pB

1 ))(1 − αγpB
1 )

α[1 − γpB
1 − (π̄B − θπ2(pB

1 ))]

yC =
(π̄A − θπ2(pB

1 ))(1 − αγpB
1 )

α[1 − γpB
1 − (π̄A − θπ2(pB

1 ))]

yD =
(π̄B − θπ2(pA

1 ))(1 − αγpA
1 )

α[1 − γpA
1 − (π̄B − θπ2(pA

1 ))]

Now, in the expression of the traded quantity in (2.3), we replace the rebate r

by the expression in (2.10). For some level of profit π̄, this gives:

q1(p1, π̄) =
α[1 − γp1 − (π̄ − θπ2(p1))]

1 − αγp1
(B.3)

Compare this expression with that of the net price above. Note that:

q1(p1, π̄) =
1

y(p1, π̄)
[π̄ − θπ2(p1)].
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Henceforth:

q1(pA
1 , rA) =

1
yA

[π̄A − θπ2(pA
1 )]

q1(pB
1 , rB) =

1
yB

[π̄B − θπ2(pB
1 )]

q1(pB
1 , rC) =

1
yC

[π̄A − θπ2(pB
1 )]

q1(pA
1 , rD) =

1
yD

[π̄B − θπ2(pA
1 )]

If country 1 strictly prefers A over C, then the inequality in (B.1) can be re-

written as follows:

q1(pA
1 , rA) − q1(pB

1 , rC) > θ[π2(pB
1 ) − π2(pA

1 )] ≥ 0 (B.4)

where the last inequality holds as the profit on the second market is strictly

increasing in the list price in country 1, this because both pA
1 and pB

1 are less

than pM
2 if A and B are PO-IR (by Lemma 2.3.1). We re-write the expression

in (B.2) along the same lines: if country 1 strictly prefers B over D, then:

0 ≤ q1(pA
1 , rD) − q1(pB

1 , rB) < θ[π2(pB
1 ) − π2(pA

1 )] (B.5)

where the first inequality is here to remind the reader that the quantity that

would be traded under the terms of contract D is larger than the quantity that

is traded with contract B. Gathering the inequalities in (B.4) and (B.5), we get

that if country 1 prefers A over C and prefers B over D then:

q1(pA
1 , rA) − q1(pA

1 , rD) > q1(pB
1 , rC) − q1(pB

1 , rB) ≥ 0 (B.6)

(The last inequality to zero is always verified as for the same list price pB
1 , the

rebate is larger in contract C than in contract B, and we know that holding all

other variables constant, the quantity traded as expressed in (2.3) is increasing
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in the value of the rebate.)

Now, let us re-formulate each side of the inequality in (B.6), by expressing the

quantity traded as in (B.3). For the expression on the left side of the inequality

in (B.6), this is:

q1(pA
1 , rA) − q1(pA

1 , rD) = α
(π̄B − π̄A)
1 − αγpA

1

.

and the denominator is strictly positive, as π̄B > π̄A and q1(pA
1 , rA) > q1(pA

1 , rD)

by (B.5). As for the right side, this is:

q1(pB
1 , rC) − q1(pB

1 , rB) = α
(π̄B − π̄A)
1 − αγpB

1

.

and the denominator is strictly positive, as π̄B > π̄A and q1(pB
1 , rC) > q1(pB

1 , rB)

by (B.5). Since we set that pB
1 > pA

1 and that 1 − αγpA
1 > 1 − αγpB

1 > 0, we

get: 1
1−αγpB

1
> 1

1−αγpA
1

, thus q1(pB
1 , rC) − q1(pB

1 , rB) > q1(pA
1 , rA) − q1(pA

1 , rD).

Which contradicts the (B.6). Therefore, if country 1 prefers A over C, then it

must prefer D over B. Note that contract D, in comparison with contract B, has

a larger net price however the quantity traded is greater.

B.4 Proof of Proposition 2.3.3

For country 1, we find:

∂v∗/p1

∂v∗/r
= −1 −

γ(1 − p1 + r)[1 − α + α(p1 − r)]
(1 − γp1)[1 + α(1 − γp1)]

The ratio is negative valued: the country trades larger list prices against higher

rebates. For the firm, we obtain:

∂π∗/p1

∂π∗/r
= −1−

θ

α

∂π2(p1)
∂p1

[1 + α(p1 − r) − αγp1]2 − γ(p1 − r)[1 − α + α(p1 − r)]

(1 − γp1)(1 − αγp1)
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A contract (p1, r) is PO-IR iff:

∂v∗/p1

∂v∗/r
=

∂π∗/p1

∂π∗/r

equivalent to:

γ(1 − p1 + r)[1 − α + α(p1 − r)]
(1 + α − αγp1)

=

θ

α

∂π2(p1)
∂p1

[1 + α(p1 − r) − αγp1]2 − γ(p1 − r)[1 − α + α(p1 − r)]

(1 − αγp1)

The first ratio is positive valued, as p1 ≤ 1
γ

and 1 ≥ p1 −r ≥ 0. The denominator

of the second ratio is positive. It follows that its numerator must be positive:

θ
∂π2(p1)

∂p1
≥

αγ[1 − α + α(p1 − r)]
[1 + α(p1 − r) − αγp1]2

Expressing r as a function of p1 and the rest of the variables:

r =
αγ[1 − α + αp1] − θ

∂π2(p1)
∂p1

(1 + α − αγp1)[1 + α(1 − γ)p1]

α
(

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

)

Next, we express the quantity traded as a function of the rebate given in expres-

sion (2.12). First, we re-arrange the expression of the quantity in (2.3) as:

q1(p1, r) =
1 − γp1

1
α

− r + (1 − γ)p1

Then, in the above expression, we replace r by (2.12). This gives :

q1(p1) = 1 − θ
∂π2(p1)

∂p1

[

1
αγ

(

1
γ

− p1

)]

Given that p1 ≤ min{ 1
γ
, pM

2 } in a PO-IR contract, it follows that q1(p1) ≤ 1 if

p1 is PO-IR. Last, we show that q1(p1) is increasing in p1. For this, let us take
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the first derivative of q1(p1) wrt p1. This is:

∂q1(p1)
∂p1

= −θ
∂2π2(p1)

∂p2
1

[

1
αγ

+
(

1
γ

− p1

)]

+ θ
∂π2(p1)

∂p1
≥ 0

The first term is positive by our assumption that π2 is concave in the price and

p1 ≤ 1
γ

by country 1’s participation constraint. The second term is also positive

since p1 ≤ pM
2 if p1 is PO-IR, by Lemma 2.3.1. To sum up, q1(p1) is increasing

in p1, and it is positive for any p1 that is PO-IR. We now make explicit the

equation of the optimal private contribution for a PO-IR contract. In (2.4), we

replace the rebate by its expression in (2.12). We obtain:

τ∗(p1) =
θ ∂π2(p1)

∂p1
(1 + α − αγp1) − αγ (1 − α + αγp1)

α2γ

To prove our claim that τ∗(p1) is decreasing in p1, we take its first derivative

wrt p1. This is:

∂τ∗(p1)
∂p1

=
1

α2γ

(

θ
∂2π2(p1)

∂p2
1

(1 + α − αγp1) − αγθ
∂π2(p1)

∂p1
− α2γ2

)

< 0

with all three terms within brackets that are negative (recall the firm’s profit on

the second market is assumed to be concave in the price, and that p1 ≤ 1
γ

by

country 1’s participation constraint on the list price).

B.5 Proof of Theorem 2.3.2

The Pareto frontier is of equation:

r = p1(1 − γ) +
1
α

−
αγ(1 − γp1)

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)
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From the expression of country 1’s demand in (2.3):

(1 − γ)p1 − r +
1
α

=
1 − γp1

q1
≥ 0

since p1 ≤ 1
γ

and since the quantity traded is positive. It follows that:

−
αγ(1 − γp1)

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

≥ 0

Since p1 ≤ pM
2 if p1 is PO-IR, and since 1 + α − αγp1 ≥ 0, it follows that the

denominator is increasing in p1 and positive. The numerator is decreasing in p1

and positive. Thus, the ratio is decreasing in p1 and positive. As a consequence,

a PO-IR rebate is increasing in p1.

We still need to prove that the net price is a decreasing function of the list

price p1. If a contract (p1, r) is PO-IR, then the net price is expressed as:

p1 − r = γp1 −
1
α

+
αγ(1 − γp1)

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

The remainder shows that the derivative of

α(1 − γp1)

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

is smaller than −1. The following statements are equivalent:

α
[

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

]2

(

− γ

[

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

]

−

[

−θ
∂2π2(p1)

∂p2
1

(1 + α − αγp1) + αγθ
∂π2(p1)

∂p1

]

(1 − γp1)

)

< −1
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Assuming that the relation is true, one can re-arrange it as:

αγ

[

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

]

−

[

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

]2

> −α(1 − γp1)

[

−θ
∂2π2(p1)

∂p2
1

(1 + α − αγp1) + αγθ
∂π2(p1)

∂p1

]

or equivalently as:

θ
∂π2(p1)

∂p1

[

αγ − θ
∂π2(p1)

∂p1
(1 + α − αγp1)

]

> −α(1 − γp1)

[

−θ
∂2π2(p1)

∂p2
1

(1 + α − αγp1) + αγθ
∂π2(p1)

∂p1

]

On the right side of the inequality, the term within squared brackets is strictly

positive, by our assumption that the firm’s profit on the second market is concave

in the price (and this price is p1 as p1 ≤ pM
2 in any PO-IR trade between country

1 and the firm, by Lemma 2.3.1). Therefore the right side is negative. The left

side is positive since the term between squared brackets is positive. Thus the

inequality is always verified.
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Appendix C

Appendix Chapter 4

C.1 Proof of Proposition 3.2.1

The country’s problem is:

max
p∈P ∗

E(VC) = G

(

τ2 − pτ1

1 − p

)

(1 − p)(L − τ1)

The FOC is given by:

∂E(VC)
∂p

= (L − τ1)

{(

τ2 − τ1

1 − p

)

G′

(

τ2 − pτ1

1 − p

)

− G

(

τ2 − pτ1

1 − p

)}

The SOC is:

∂2E(VC)
∂p2

= (L − τ1)
(τ2 − τ1)2

(1 − p)3
G′′

(

τ2 − pτ1

1 − p

)

< 0

by Assumption 1 and p ∈ P ∗. Thus the country’s expected payoff is concave in

p, and has a unique global maximum on P ∗. The global maximum is interior iff:

G′(1)(1 − τ1) − 1 < 0

169



which is guaranteed by Assumption 2. Let us call p∗ the solution of the country’s

problem; p∗ solves:

[T (p∗) − τ1]G′(T (p∗)) = G(T (p∗)) ⇔ eS(p∗) = 1

where T (p∗) = t∗. Note that eS(p) crosses 1 only once at p∗. Also, notice that

at t = t∗, the price-elasticity expressed as a function of t is decreasing:

G′′(t)G(t)[t−τ1]−(G(t))2[t−τ1]+G(t)G′(t)
∣

∣

∣

t=t∗
= G′′(t∗)G(t∗)[t∗−τ1] < 0 ∀τ1

by Assumption 1.

C.2 Proof of Proposition 3.3.1

We start with the case where country C pays p∗ for the drug. Country D’s

problem is written as:

max
p∈PA

E(VD) =
G

(

τ2
D

−pτ1
D

1−p

)

G(t∗)
(1 − p)ε(L − τ1

D)

The FOC is:

∂E(VD)
∂p

=
ε(L − τ1

D)
G(t∗)

[(

τ2
D − τ1

D

1 − p

)

G′

(

τ2
D − pτ1

D

1 − p

)

− G

(

τ2
D − pτ1

D

1 − p

)]

and the SOC is:

∂2E(VD)
∂p2

=
ε(L − τ1

D)
G(t∗)

[

(τ2
D − τ1

D)2

(1 − p)3
G′′

(

τ2
D − pτ1

D

1 − p

)]

< 0
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by Assumption 1 and p ∈ PA. Thus the country’s expected payoff is concave in

p, and has a unique global maximum on PA. The global maximum is interior iff:

G′(1)(1 − τ1
D) − 1 < G′(1)(1 − τ1

C) − 1 < 0

which is always true by the fact that τ1
D > τ1

C and Assumption 2. Let us call pa

the solution of the country’s problem; pa solves:

[TD(pa) − τ1
D]G′(TD(pa)) = G(TD(pa)) ⇔ eSa(pa) = 1

where TD(pa) = ta. Note that eSa(p) crosses 1 only once at pa, and that ta < t∗.

Assume instead that country C pays the price of 1 for the drug. Country D’s

problem is written as:

max
p∈PR

E(VD) =









G

(

τ2
D

−pτ1
D

1−p

)

− G(t∗)

1 − G(t∗)









(1 − p)ε(L − τ1
D)

The FOC is given by the expression:

∂E(VD)
∂p

=
ε(L − τ1

D)
1 − G(t∗)

[

G′(TD(p))(TD(p) − τ1
D) − [G(TD(p)) − G(t∗)]

]

The SOC is:

∂2E(VD)
∂p2

=
ε(L − τ1

D)
1 − G(t∗)

[

(τ2
D − τ1

D)2

(1 − p)3
G′′

(

τ2
D − pτ1

D

1 − p

)]

< 0

for the same reasons as those evoked previously. Country D’s optimal offer is

interior to PR iff:

G′(1)(1 − τ1
D) < 1 − G(t∗)
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By Assumption 1, a sufficient condition for which country D’s optimal offer is

interior is:

G′(1)(1 − τ1
D) − [1 − G(t∗)] < G′(1)(1 − τ1

C)

In this case, note that both pr and tr = TD(pr) are increasing function of t∗:

dtr

dt∗
=

G′(t∗)
−G′′(tr)(tr − τ1

D)
> 0

by Assumption 1. Note also that pa < pr. To see why:

∂E(VD)
∂p

∣

∣

∣

p=pa

=
G(t∗)

1 − G(t∗)
> 0

and ∂E(VD)
∂p

is a decreasing function of p everywhere on PR. This result is intu-

itive: the offer pa is accepted by types strictly lower than t∗. If the firm rejected

p∗, then its type is strictly larger than t∗. In this instance, the offer pa is strictly

dominated by any offer p ∈

[

1−τ2
D

1−τ1
D

, 1
)

. The offer pa is accepted with probabil-

ity zero, which gives a null payoff to country D. The offer p is accepted with

probability one, and the country’s payoff is strictly larger than zero.

C.3 Beliefs that satisfy the intuitive criterion

One may wonder the conditions under which an all-accept pooling equilibrium

that satisfies the intuitive criterion exists. We propose to tackle this question

here. The set of reasonable types which would gain from rejecting p all verify

that:

∆(t) =

[

(1 − p) + ε

(

1 − τ2
D

1 − τ1
D

−
tD − τ2

D

tD − τ1
D

)]

t−(τ2
C−pτ1

C)−ετ1
D

(

1 − τ2
D

1 − τ1
D

−
tD − τ2

D

tD − τ1
D

)

≥ 0

Since the expression is increasing in t, the set of reasonable types is of the form

[t̂, 1], with t̂ ∈ [0, 1]. We distinguish between two cases, depending on whether

172



type tD is in the set of reasonable types or not.

If tD is reasonable, then an all-accept pooling equilibrium can simply be sus-

tained by the belief that the firm’s type is tD with probability 1. In this case,

country D offers the same price regardless whether p was accepted or rejected.

And accepting p is indeed optimal for all types.

For the case where tD is unreasonable, we show that the belief for which D

assigns probability 1 on the firm’s type being 1 following a rejection of p sus-

tains an all-accept pooling equilibrium. (Note that type 1 is always reasonable).

Consider such a profile. To show that no type gains from deviating, it suffices

to prove that ∆ is non-positive at t = tD and t = 1. This is immediately verified

for t = tD, as we consider here that type tD is unreasonable. For the firm of

type 1, note that:

∆(1) = (1 − p) − (τ2
C − pτ1

C) ≤ 0

for all p ≥
1−τ2

C

1−τ1
C

. As a result, no type has any incentive to deviate. Hence we

can claim the following:

Proposition C.3.1. For all

p ≥
1 − τ2

C

1 − τ1
C

,

there exists an all-accept pooling equilibrium that satisfies the intuitive criterion.

C.4 Non existence of PBE in pure strategies when

condition B does not hold

Proposition C.4.1. Suppose that condition B in Lemma 3.4.4 does not hold.

Then, there are subgames p such that tD ≤ TC(p) ≤ t◦
D(p) and p <

1−τ2
C

1−τ1
C

. Such

subgames do not admit an equilibrium in pure strategies; therefore, the game as

a whole does not admit any PBE in pure strategies.
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Proof. Let pR and pA be the (deterministic) prices offered by D following rejec-

tion of p or acceptance of p, respectively. Let tR and tA be the types indifferent

between accepting or rejecting pR and pA, respectively. First, note that a pool-

ing profile where all types reject p is not an equilibrium in this case. This profile

would be an equilibrium only if tR =tD. However the payoff gain from rejecting

in this instance is:

∆(t) = (1 − p) t −
[

τ2
C − pτ1

C

]

,

and it is negative for all t < TC (p), as p <
1−τ2

C

1−τ1
C

. Similarly, there is no pooling

equilibrium where all types accept, because the payoff gain from rejecting is

strictly positive at t = 1.

We now look for interior equilibria, in pure strategies. Suppose first that pR =

pA. Then the continuation value of accepting or rejecting p to the firm is the

same. Thus the myopic behavior regarding acceptance or rejection of price p is

optimal. Therefore the firm accepts p if t ≤ TC (p) and rejects otherwise. But

this induces optimal prices pA and pR such that pA < pR, contradicting our initial

assumption. Therefore, this case is never produced in an interior equilibrium.

Next, suppose that pA < pR. For all t ∈ [tA, tR], the payoff gain from rejecting

is given by:

∆(t) = (t − τ2
C) + εpR(t − τ1

D) − p(t − τ1
C) − ε(t − τ2

D)

=
1 − p

tR − τ1
D

(

[tR − t◦
D(p)]t − TC(p)(tR − τ1

D) + tR[t◦
D(p) − τ1

D]
)

Suppose first that tR > t◦
D(p). For any t > tR, we have:

∆(t) = (1 − p) t −
[

τ2
C − pτ1

C

]

.

But then all types t ≥ tA prefer to reject p, as:

[tR − t◦
D(p)]t > 0 ≥ tR[TC(p) − t◦

D(p)] + τ1
D[tR − TC(p)]
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where the last inequality holds as TC(p) < t◦
D(p) and tR > TC(p) under our

current assumption. Yet, type tA must have accepted p, otherwise it would be

best for D to offer a strictly lower price. A contradiction follows; hence pA < pR

and tR > t◦
D(p) is never part of an interior equilibrium. We continue to assume

that pA < pR, however suppose now that tR ∈ [TC (p) , t◦
D(p)]. Note that:

∆(t) < 0 ⇔ [tR − t◦
D(p)]t − tR[TC(p) − t◦

D(p)] + τ1
D[TC(p) − tR] < 0

thus ∆(t) < 0, as each of three terms are negative. Still for the case where

pA < pR, suppose last that tR < TC (p) . Then:

∆(tR) = (1 − p) tR −
[

τ2
C − pτ1

C

]

= (1 − p)[tR − TC(p)] < 0

which is a contradiction. Next, suppose that pA > pR. Then all types t > tA

reject both pA and pR. The payoff gain from rejecting p to any firm of type

t > tA is:

∆(t) = (1 − p) [t − TC(p)],

which is strictly positive for t > TC (p) . Since it must be that ∆(tA) ≤ 0,

therefore tA ≤ TC (p) must hold. For all t ∈ [tA, TC (p)) , we still have:

∆(t) = (1 − p) [t − TC(p)],

which is strictly increasing in t. And for all t ∈ [tR, tA] , the payoff gain from

rejecting is written as:

∆(t) = (t − τ2
C) + ε(t − τ2

D) − p(t − τ1
C) − εpA(t − τ1

D)

=
[(

(1 − p)(tA − τ1
D) + ε(τ2

D − τ1
D)
)

t − (τ2
C − pτ1

C)(tA − τ1
D) − εtA(τ2

D − τ1
D)
]

tR − τ1
D
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which is also strictly increasing in t. Note that:

∆(tA) =
(1 − p)(tA − τ1

D)
(tR − τ1

D)
[tA − TC(p)] ≤ 0

if the condition tA ≤ TC(p) for which all types larger than tA prefer to accept

p holds. But then ∆(t) < 0, which is impossible. So there cannot be such an

equilibrium. In conclusion, there is no equilibrium in pure strategies in such

subgames. This also implies that if condition B does not hold, the game as a

whole does not admit any PBE in pure strategies.

C.5 Proof of Remark 3.4.1

If tf > tD, then pA <
tf −τ2

D

tf −τ1
D

, and D’s offer does not depend on tf . Also, tA < tf .

The expected equilibrium payoff of country D is:

E(VD(tf )) = ε(L − τ1
D)

{

G(tf )

[

G(tA)
G(tf )

(1 − pA)

]

+ f(tf )

}

,

where:

f(tf ) = [G(tR(tf )) − G(tf )](1 − PR(tf ))

with pR = PR(tf ) D’s best response. Taking the first derivative of E(VD) wrt

tf :

∂E(VD)
∂tf

= ε(L − τ1
D)

{

∂f

∂tf
+

∂f

∂pR

∂PR(tf )
∂tf

}

If pR <
1−τ2

C

1−τ1
C

, then by the Envelop theorem ∂f
∂pR

= 0. If pR = 1−τ2
C

1−τ1
C

, then pR is a

corner solution of D’s problem hence ∂PR(tf )
∂tf

= 0. Therefore:

∂E(VD)
∂tf

= −ε(L − τ1
D)G′(tf )(1 − pR) < 0

176



We conclude that D’s expected equilibrium payoff is decreasing in tf for all

tf ∈ [tD, 1]. Let us consider now tf ∈ [0, tD]. Country D offers pA = tf −τ2
D

tf −τ1
D

(this

is a corner solution) following the acceptance of C’s offer, hence it always holds

that:

G′(tf )(tf − τ1
D) − G(tf ) > 0 ∀tf ∈ [0, tD]

For these values of tf , country D’s expected equilibrium payoff is written as:

E(VD(tf )) = ε(L − τ1
D)

{

G(tf )

(

1 −
tf − τ2

D

tf − τ1
D

)

+ f(tf )

}

= ε(L − τ1
D)

{

G(tf )

(

τ2
D − τ1

D

tf − τ1
D

)

+ f(tf )

}

Taking the first derivative wrt tf , we get:

∂E(VD)
∂tf

= ε(L − τ1
D)

{

G′(tf )(1 − pA) − G(tf )
(τ2

D − τ1
D)

(tf − τ1
D)2

− G′(tf )(1 − pR)

}

= ε(L − τ1
D)

{

G′(tf )(1 − pA) − G(tf )

(

1 − pA

tf − τ1
D

)

− G′(tf )(1 − pR)

}

On the second line, G′(tf )(1−pA)−G(tf ) 1−pA

tf −τ1
D

> 0 for any tf in the appropriate

interval.

C.6 Elasticity of the farsighted supply

The expression of the price-elasticity is:

eSf
=

Sf (p)′

Sf (p)
(1 − p)

with Sf (p) = G(Tf (p)) where T f (p) corresponds to the expression in (3.12).

Therefore:

eSf
=

G′(Tf (p))
G(Tf (p))

(1 − p)
∂Tf (p)

∂p
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Recall that Tf (p) is increasing in p. Note that:

∂Tf (p)
∂p

=
Tf (p) − εdpR

dp
(Tf (p) − τ1

D)

1 − p − ε(1 − pR)

with pR = PR(tf ), and both the numerator and denominator are positive valued

by Lemma 3.4.4. The expression of dpR

dp
is:

dpR

dp
=

(t − τ1
C)(1 − pR)

(tR − τ1
D)(1 − p − ε(1 − pR))

dtR

dt

We want to express the elasticity as a function of the firm’s type; for this, we

parametrize the prices p, pR by types, using the relation in (3.12) for expressing

p as a function of t, and the relation in (3.7) for expressing pR as a function of

tR. We get the following:

1 − p =
τ2

C − τ1
C

t − τ1
C

− ε
(tR − t)(τ2

D − τ1
D)

(tR − τ1
D)(t − τ1

C)

1 − pR =
τ2

D − τ1
D

tR − τ1
D

and

1 − p − ε(1 − pR) =
τ2

C − τ1
C

t − τ1
C

− ε
(τ2

D − τ1
D)(tR − τ1

C)
(t − τ1

C)(tR − τ1
D)

Replacing, we find that ∂T f (p)
∂p

(1 − p) can be written as a function of t and tR:

(t − τ1
C)

(

(τ2
C − τ1

C)(tR − τ1
D) − ε(tR − t)(τ2

D − τ1
D)

(τ2
C − τ1

C)(tR − τ1
D) − ε(tR − τ1

C)(τ2
D − τ1

D)

)

×

[

1 −
ε(t − τ1

D)(t − τ1
C)(τ2

D − τ1
D)G′(t)

−G′′(tR)(tR − τ1
D)2

[

(τ2
C − τ1

C)(tR − τ1
D) − ε(tR − τ1

C)(τ2
D − τ1

D)
]

]

This expression is positive for any value of t and tR, as ∂T f (p)
∂p

(1 − p) is positive

for any value of p. Recall that we set:

Z(tR) = (τ2
C − τ1

C)(tR − τ1
D) − ε(tR − τ1

C)(τ2
D − τ1

D)
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and Z(tR) is the denominator of each term in the large parenthesis. Also, recall

that:

dtR

dt
=

G′(t)
−G′′(tR)(tR − τ1

D)
> 0

by Assumption 1. We now study Z(tR) in more details. Note that Z(tR)
(t−τ1

C
)(tR−τ1

D
)

is an alternative expression of the denominator of ∂T f (p)
∂p

, where p parametrized

by t via the relation in (3.12), and pR via that in (3.7). Therefore, Z(tR) is

strictly positive, for any value of tR. Note that:

dZ(tR)
dp

= [(τ2
C − τ1

C) − ε(τ2
D − τ1

D)]
dtR

dt

the sign is this expression is that of the term between squared brackets, and it

is positive when condition A holds.

C.7 Proof of Proposition 3.4.6

We express country C’s problem as a function of the type t, by relating a price

to its corresponding threshold type via the expression in (3.12). This gives:

max
t∈[tA,tR]

E(VC) = G(t)

(

1 −

(

t − τ2
C

t − τ1
C

)

− ε
(tR − t)(τ2

D − τ1
D)

(tR − τ1
D)(t − τ1

C)

)

(L − τ1
C)

= G(t)

(

τ2
C − τ1

C

t − τ1
C

− ε
(tR − t)(τ2

D − τ1
D)

(tR − τ1
D)(t − τ1

C)

)

(L − τ1
C)

= (L − τ1
C)

{

G(t)

(

τ2
C − τ1

C

t − τ1
C

)

− εG(t)
(tR − t)(τ2

D − τ1
D)

(tR − τ1
D)(t − τ1

C)

}
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The first derivative of the country’s expected payoff wrt t is:

∂E(VC)
∂t

=
(L − τ1

C)(τ2
C − τ1

C)
(t − τ1

C)2

[

G′(t)(t − τ1
C) − G(t)

]

− ε
(L − τ1

C)(τ2
D − τ1

D)
(t − τ1

C)2

{

G′(t)(t − τ1
C)

(tR − t)
(tD − τ1

D)

− G(t)

[

(tR − τ1
D)(tR − τ1

C) − dtR

dt
(t − τ1

C)(t − τ1
D)

(tR − τ1
D)2

]}

We express the FOC as:

[

G′(t)(t − τ1
C) − G(t)

]

− ε

(

τ2
D − τ1

D

τ2
C − τ1

C

){

G′(t)(t − τ1
C)

(tR − t)
(tR − τ1

D)

− G(t)

[

(tR − τ1
D)(tR − τ1

C) − dtR

dt
(t − τ1

C)(t − τ1
D)

(tR − τ1
D)2

]}

= 0

The SOC condition is:

G′′(t)(t − τ1
C)

[

1 − ε

(

τ2
D − τ1

D

τ2
C − τ1

C

)(

tR − t

tR − τ1
D

)]

− ε

(

τ2
D − τ1

D

(τ2
C − τ1

C)(tR − τ1
D)2

){

2G′(t)(t − τ1
C)
[

dtR

dt
(t − τ1

D) − (tR − τ1
D)
]

+ G(t)

[

d2tR

dt2
(t − τ1

C)(t − τ1
D) − 2

dtR

dt
(tR − t) + 2

(

dtR

dt

)2 (t − τ1
C)(t − τ1

D)
(tR − τ1

D)

]}

The function on the first line is negative valued for all t ∈ [0, 1], as G′′(.) < 0 by

Assumption 1 and the term between squared brackets is positive (see Appendix

C.6: Z(tR) is positive in equilibrium). We conclude that for a sufficiently small

ε, the FOC is a decreasing function of t, i.e. the country’s expected payoff is

single-peaked in t. Let us re-arrange the FOC as:

[

G′(t)(t − τ1
C) − G(t)

]

=
ε(τ2

D − τ1
D)(t − τ1

C)G(t)
[

dtR

dt

(

t−τ1
D

tR−τ1
D

)

− 1
]

(τ2
C − τ1

C)(tR − τ1
D) − ε(τ2

D − τ1
D)(tR − t)
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The denominator of the ratio is positive (see Appendix C.6 Z(tR) is positive).

Thus the sign of the ratio is that of the expression between the squared brackets

on the numerator. Note that for any t ≥ t̄f , we have tR(t) = 1 thus dtR

dt
= 0.

Recall that t∗ is the type of firm which is indifferent between accepting and

rejecting country C’s optimal offer p∗ in the myopic case. t∗ solves:

G′(t∗)(t∗ − τ1
C) − G(t∗) = 0

Recall that G′(t)(t−τ1
C)−G(t) is a decreasing function of t. Let us refer to t∗

f as

the threshold type that maximizes C’s payoff in the farsighted case. Note that:

t∗
f > t∗ iff

dtR

dtf
|t=t∗ <

(

tr − τ1
D

t∗ − τ1
D

)

where tr is the threshold type associated with D’s best-response PR(t∗). We

compare p∗ and p∗
f , C’s optimal offers in the myopic and farsighted cases, re-

spectively. Recall that for small parameter values of ε, the elasticity eSf
(t) equals

one for one value of t, let us call it t1, and that eSf
(t) is decreasing in t for all

t ≤ t1. Note that p∗
f ≥ p∗ iff:

eSf
(t)
∣

∣

∣

t=t∗
≥ 1

equivalent to:

(

1 +
ε(t∗ − τ1

C)(τ2
D − τ1

D)
Z(tr)

)



1 −
ε(t∗ − τ1

C)(τ2
D − τ1

D)
Z(tr)





dtR

dt

∣

∣

∣

∣

∣

t=t∗

t∗ − τ1
D

tr − τ1
D







 ≥ 1
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