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Abstract
Description logics are a family of knowledge representation that have been widely

investigated and used in knowledge-based systems. The strength of description logics is
beyond their modeling assets, it’s their reasoning abilities. Reasoning takes the shape
of mechanisms that make the implicit knowledge explicit. One of the most common
mechanism is based on the subsumption relationship. This relationship is a hierarchical
relationship between concepts which aims to state if a concept is more general than another.
The associated reasoning tasks aims to determine the subsumption relationship between
two concepts. Variables have been introduced to description logic to answer the needs
of representing incomplete information. In this context, deciding subsumption evolved
into two non-standard reasoning tasks known as matching and unification. Matching aims
to decide the subsumption relationship between a concept and a pattern (i.e. a concept
expressed with variables). Unification extends matching to the case where both entries
are patterns. The semantics associated to variables can be qualified as non-refreshing
semantics where assignment are fixed.

In this thesis, we investigate reasoning with variables augmented with refreshing
semantics. Refreshing semantics enables variables to be released and then given a new
assignment. We define recursive pattern queries as terminologies that may contain variables
leading to investigation of problems to answer recursive pattern queries over description
logic ontologies. More specifically, we focus on the description logic EL. Recursive pattern
queries are expressed in the logic ELRV , an extension of the description logic EL with
variables equipped with refreshing semantics. We study the complexity of query answering
and query containment in ELRV , two reasoning mechanisms that can be viewed as a variant
of matching and unification in presence of refreshing variables. Our main technical results
are derived by establishing a correspondence between this logic and a variant of variable
automata. While the upper bound is given by specific algorithms which are proven to
be optimal, the lower bound is achieved by a reduction to halting problem of alternating
turing machine. Thus leading to these problems being exptime-complete.

Keywords: Description logic; Refreshing semantics; Reasoning; Matching; Pattern
containment.
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Introduction

Description Logics (DLs) are a family of knowledge representation and reasoning formalisms
that have been proven useful in many application domains[8]. DLs provide means for
well-structured and formal representation of the conceptual knowledge of an application
domain and various inference procedures to reason about the represented knowledge.

A DL Knowledge Base (KB) is composed of two components, called TBox and ABox,
containing respectively general assertions describing relevant concepts and specific asser-
tions about individuals and relationships among them.

For example, Table 1 depicts a KB made of two concept definitions, Professor and
PhDStudent, where the concept Professor is described as a person who works in a
university and has as a doctoral student : a PhD student. This knowledge base includes
in addition assertions about individuals, stating that the individual Alan is an instance
of Professor and Alice is an instance of PhDStudent, as well as assertion about a
relationships between them (Alice is a doctoral student of Alan).

Query answering over DL KBs has recently emerged as an advanced mechanism for
accessing data sources through an ontology [18, 29, 26, 36]. Indeed, in many application
contexts, an ontology is used to formalize the conceptual information about the contents of
multiple data sources. This knowledge is then exploited during query evaluation to deduce
additional information to enrich query answers beyond the data that is explicitly stored in
a source. General forms of queries investigated in the literature are first-order formula
with possibly free variables [36]. As an example, consider the following conjunctive query
which asks for a person that has a doctoral student : qex(x)← Pers(x), doctStudent(x, y)

The answers to such a query are a set of valid substitutions for the variables such that
the KB entails the query. For example, an answer to the query qex over KB1 is Alan
because the query σ(qex) obtained from qex by substituting the variable x by σ(x) = Alan
and y by σ(y) = Alice is entailed by the KB of Table 1.

Beyond such conventional queries in the pure database style, the description logic
community has been interested very early by query languages that include explicit structural
queries, i.e., queries asking about properties of individual and concepts [24]. In particular,
the notion of concept patterns, i.e., concept descriptions containing variables, has been
introduced in the mid-nineties as a declarative approach to specify queries over knowledge
bases where the answers to such queries can be concepts : “Instead of just returning sets
of individuals, our queries match concepts and filtered fragments of descriptions”[24]. As
an example, consider the following pattern Q defined as an unknown part X with a certain
relationship y with a university.

Q ≡ X ⊓ ∃y.Univ

9



Professor ≡ Pers ⊓ ∃worksIn.Univ ⊓ ∃doctStud.PhDStudent
PhDStudent ≡ Pers ⊓ ∃studyIn.Univ ⊓ ∃advisor.Professor

Professor(Alan), doctStud(Alan,Alice),
PhDStudent(Alice)

Table 1: A DL knowledge base KB1.

Here, the variable X (called a concept variable) takes its values from a set of possible
descriptions while the variable y (called a role variable) takes its values from a set of
possible atomic role names. Such a query Q can be evaluated against an individual i or
against a concept C. The query semantics is given by the notion of matching. For example,
the individual Alan of the knowledge base KB1 of Table 1 matches the pattern Q because
if we consider the substitution σ such that σ(X) = Pers⊓∃doctStudent.PhDStudent and
σ(y) = worksIn then KB1 entails the assertion σ(Q)(Alan) (i.e., Alan is an instance of
σ(Q)). Similarly, the concept Professor matches the pattern Q because by considering the
same substitution σ the knowledge base KB1 entails Professor ⊑ σ(Q) (i.e., Professor
is subsumed by the concept σ(Q)). A natural way to give a formal meaning to matching is
through the notion of subsumption: given a description C and a pattern Q, the matching
problem modulo subsumption asks whether there is a variable substitution such that C is
subsumed by σ(Q) [24].

This thesis focuses on the extension of the notion of patterns to capture recursive
queries, a class of queries which is intensively used in many modern application domains
such as graph databases and semantic web. However, such an extension is far from being
trivial and it requires to revisit the semantics of variables as illustrated below.

Example 1. Consider the following recursive query specified as a cyclic pattern and
evaluated over the knowledge base KB1 of Table 1:
Academic ≡ Pers ⊓ ∃x.Univ ⊓ ∃y.Academic

Using standard semantics of variable substitution, whatever the considered substitution
of the role variables x and y, neither of the concept Professor nor PhDStudent of KB1

match the pattern Academic. However, the situation becomes different if we exploit a
different semantics that enables to refresh the values of the variable x and y when unfolding
the pattern Academic. We show below a partial unfolding of Academic where the variable
x and y are refreshed (i.e., replaced by new variables) at each iteration over the concept
Academic.

Academic ≡ Pers ⊓ ∃x1.Univ ⊓ ∃y1. (Pers ⊓ ∃x2.Univ ⊓ ∃y2.(. . .))︸ ︷︷ ︸
Academic

With such a semantics at hand, it becomes possible to compute a matcher that makes
the concept Professor matching the pattern Academic (e.g., take a substitution that maps
the first occurrences of x and y to worksIn and doctStud while their second occurrences
are respectively mapped to studyIn and advisor). The obtained instantiation of the pattern
Academic is the following:

σ(Academic) ≡ Pers ⊓ ∃worksIn.Univ⊓
∃doctStud.(Pers ⊓ ∃studyIn.Univ
⊓∃advisor.σ(Academic))

This thesis studies the extension of description logics with variables equipped with
refreshing semantics in order to capture the expression of recursive structural queries as

10



cyclic concept patterns. More specifically, we focus on a new description logic, called
ELRV , that extends the description logic EL with refreshing role variables. Our definition
of ELRV -patterns deviates from the one used in the literature with respect to the following
features: (i) our definition of patterns is restricted to role variables while the literature
mainly focuses on concept variables, and (ii) we support cyclic pattern definition and allow
two different types of semantics for variables (i.e., refreshing and not refreshing semantics).

Viewing patterns as queries, we study three fundamental reasoning problems in the
context of the logic ELRV , namely, matching , weak-subsumption and pattern containment.
Matching is used as core mechanisms to evaluate patterns over knowledge bases (i.e.,
computing answers to a query pattern) while pattern containment enables to determine
when the answers of a pattern are contained in the answers of another pattern whatever
the considered knowledge base. On an other side, weak-subsumption and matching can be
viewed as extensions of respectively matching and unification to variables with refreshing
semantics. More precisely, we make the following technical contributions:

• We introduce the description logic ELRV which extends the logic EL with refreshing
variables. This extension impacts the semantics of pattern which can now produce
infinite instances. We differentiate two kinds of instances : regular and irregular
instances. A regular instances can be represented with a finite number of descriptions
which corresponds to a finite EL-TBox. An instance is irregular if it can not be
represented by such a TBox. Subsumption between regular instances in ELRV is
equivalent to subsumption with regard to the greatest fix-point semantics in EL.

• We define three different reasoning tasks over ELRV ontologies. Matching and
weak-subsumption are extension of respectively matching and unification, two non-
standard reasoning tasks of description logic with non-refreshing variables. Moreover,
we introduce a brand new reasoning task: pattern containment. Pattern contain-
ment emphasizes on comparing patterns independently of the knowledge base. We
demonstrate that if a solution exists then there exists a regular solution.

• We establish a correspondence between ELRV and a specific form of variable automata.
This form, called description automata, entails all the instances of a pattern (i.e.
regular and irregular) in a finite form. Reasoning in ELRV is then proven to be
equivalent to study variants of simulation between description automata.

• We devise an algorithm to solve the different reasoning tasks resulting in proving
that they are exptime-complete. We demonstrate their correctness leading to an
exptime upper bound. The lower bound is obtained by reducing matching ( which
is a special case of both pattern containment and weak-subsumption) to halting
problem of alternating turing machine working on polynomially bounded input which
is known to be exptime-complete [27].

This document presents research conducted in the context of this thesis separated in
five chapters. Chapter 1 deals with preliminary notions of trees and description logics.
It offers insights of both syntax and semantics of description logics. This chapter ends
by presenting terminologies and how to reason over in order to make implicit knowledge
explicit with the inference task known as subsumption.

Chapter 2 presents how variables and description logics can be combined. It first
discusses the inferences tasks matching and unification that deals with non-refreshing

11



variables. Introducing ELRV , a logic extending EL with refreshing variables, allows to
defined pattern queries. Patterns queries are a set of ELRV -patterns allowing to query the
knowledge base through different reasoning mechanisms : matching, weak-subsumption
and pattern-containment. Finally, this chapter discusses the existence of regular solutions
which can be expressed with finite EL-TBox.

Chapter 3 presents description automata, a class of automata that handles refreshing
semantics. We strengthen the link between reasoning in description logics and automata
theory by reducing reasoning in ELRV to reasoning with description automata. This
reduction are based on variants of simulation which allow to solve matching, weak-
subsumption and pattern containment.

Chapter 4 solves matching problem in ELRV . We design an algorithm, Check Match,
that proves matching decidability in ELRV . This algorithm is inspired of product automata
and consists in running simultaneously the two automata to construct a solution to the
issued problem.

Chapter 5 emphasizes on discussing decidability for pattern containment and weak-
subsumption. In these problems, variables may appear on both sides. Moreover, in case of
pattern containment, the domain of variable valuation is infinite. The correct algorithm
Check Simu ,inspired of Check Match, demonstrates that pattern containment and weak-
subsumption are decidable. We prove that reasoning in ELRV is exptime-complete

12



Chapter 1

Preliminaries

In this chapter, we introduce the technical background required for this thesis. We define
trees and basics of description logics. The different notations introduced in this chapter
are summarized in the Table 1.1.

Symbol Description

Labeled tree with τ the set of nodes,
(τ, λ, δ) λ the node labeling function and

δ the edge labeling function.

⊤ Universal concept
⊓ Concept conjunction
∃R.C Existential restriction

NA Set of primitive concepts
NR Set of primitive roles
Ndef Set of defined concepts
T Terminology (or TBox) over a signature NA, NR

(∆I , .I) Interpretation of a knowledge base
⊑ Subsumption, i.e. hierarchical relationship between concepts
≡ Equivalence relationships between concepts

Table 1.1: Notations introduced in Chapter 1

1.1 Trees

We use the following definition of a tree [30]: A tree is a set τ ⊆ N∗ such that if xn ∈ τ ,
for x ∈ N∗ and n ∈ N, then x ∈ τ and xm ∈ τ for all 0 ≤ m < n. The elements of τ
represent nodes: the empty word ε is the root of τ , and for each node x, the nodes of the
form xn, for n ∈ N, are children of x. Given a pair of sets S and M , an ⟨S,M⟩-labeled
tree is a triple (τ, λ, δ), where τ is a tree, λ : τ → S is a node labeling function that maps
each node of τ to an element in S, and δ : τ × τ →M is an edge labeling function that
maps each edge (x, xn) of τ to an element in M .

13



1.2 Description Logic Chapter 1 Preliminaries

We recall now the notion of tree homomorphism. Let t1 = (τ1, λ1, δ1) and t2 = (τ2, λ2, δ2)
be two trees. A homomorphism from t1 into t2 is a mapping Z : τ1 → τ2 such that:

(i) Z(ε) = ε, and

(ii) δ2(Z(c1), Z(c
′
1)) = r, for all δ1(c1, c

′
1) = r.

A partial tree (tau′, λ′, δ′) of a tree (τ, λ, δ) is such that there exists an homomorphism
Z from (τ ′, λ′, δ′) to (τ, λ, δ) and in addition, λ′(i) = λ(Z(i)).

1.2 Description Logic

1.2.1 Introduction

”Description Logics” (DL) denotes a family of knowledge representation formalism that
aims to transcript information about a specific domain. The representation offers a formal
logic-based semantics used to describe an application domain. The domain is formalized
by defining its relevant concepts (its terminology). They are of latter use to characterize
the instances of this domain. Representing a domain requires to not only defines entities
and their features but also to capture their relationships. The following vocabulary will
be used :

• A concept is an unary predicate that represents a set of individual having specific
features in commons.

• A role is a binary relationship between individuals.
• An individual is an instance of a concept.

Description logics do not limit themselves to description. Indeed, they offer a wide variety
of reasoning mechanisms allowing to infer implicit knowledge from the explicit knowledge
represented.

A Description logic L is a tuple made of (NA,NR, C). NA and NR represents respectively
primitive concepts and primitive roles corresponding to elementary knowledge. Elementary
knowledge are by essence knowledge that can not be described and carry meaning by
themselves. The constructors C allow to combine elementary knowledge in order to
create complex descriptions denoted as L-descriptions. Since constructors formalize how
knowledge can be associated, they dictate a logic L expressiveness.

In the remaining, we use the letters A,B to range over NA; R, S to range over NR;
and C,D to range over L-concept descriptions (or simply, L-concepts).

The syntax and semantics of the description logic EL will now be explained.

1.2.2 The Description Logic EL
Syntax.

The Description logic EL which stands for Existential Language has been provided with
three constructors :

• top concept (⊤),
• conjunction (⊓) and
• existential restriction (∃R.C).

14



Chapter 1 Preliminaries 1.2 Description Logic

Given a set of atomic concepts NA and a set of roles NR, EL-descriptions are built
according to the following syntax rules :

C := ⊤|A|C ⊓D|∃R.C

where A ∈ NA, R ∈ NR and C,D are EL-concept descriptions.

Even though EL offers few constructors it has been of interest for some application
domains while displaying reasonable complexity for reasoning tasks. For instance, it
can be used to define biomedical ontologies like Snomed CT [28] or the Gene Ontology.
These ontologies can be seen as EL-TBoxes. Moreover, an extension of EL became also a
standard for a subset of OWL 2. OWL stands for the Web Ontology Language which can
be used to exploit reasoning procedures [31].

Example 2. To give examples of what can be expressed in EL, we suppose that
University and Person are atomic concepts (i.e. {University, Person} ⊆ NA)
and study and teach are atomic roles (i.e. {study, teach} ⊆ NR). Intuitively,
Person⊓∃study.University and Person⊓∃teach.University are concepts describing
respectively students and professors of a university. Existential restriction can be
weakened by using the concept ⊤ to describe Person ⊓ ∃teach.⊤ which defines a
teacher as a person who is teaching at any educational level.

Now that the syntax for each constructors has been provided, their semantics will be
discussed.

Semantics.

The semantics of EL is formalized in terms of interpretation. An interpretation I is a pair
(∆I , .I) where ∆I is a non-empty set called the domain and .I is an interpretation function
that assigns binary relations on ∆I to role names and subsets of ∆I to EL-concepts as
shown in the semantics column of the following Table in 1.2.

Name Syntax Semantics

Top concept ⊤ ∆I

Concept name A AI ⊆ ∆I

Role name R RI ⊆ ∆I ×∆I

Conjunction C ⊓D CI ∩DI

Existential restriction ∃R.C { a ∈ ∆I |∃b ∈ CI .(a, b) ∈ RI}

Table 1.2: Syntax and semantics of EL constructors

We say that two concepts C, D are equivalent, and write C ≡ D, if CI = DI for all
interpretations I. A concept C is less general than a concept D, noted, C ⊑ D if CI ⊆ DI .
This relation is called the subsumption relationship. As expected, if C ⊑ D and D ⊑ C
then we have C ≡ D.

In EL, it is possible to construct EL-description trees based on EL-description. The
root of the tree corresponds to the EL-description. Each node of the tree corresponds to

15
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a concept, label of a node is made of primitive concepts appearing without existential
restriction. For each existential restriction there is an edge labeled by the corresponding
role to a new node representing the reached concept. A subsumption relationship, C ⊑ D
is characterized by a homomorphism from the tree of D into the tree of C [13].

A DL Knowledge Base (KB) is composed of two components, called TBox T and ABox
A, containing respectively general assertions describing relevant concepts and specific
assertions about individuals and relationships among them.

Terminologies.

Concept descriptions enable to describe class of objects. In order to specify how concepts
relate to each other, description logics make use of terminological axioms. A terminological
axiom can take the form of :

• An equality C ≡ D or

• An inclusion C ⊑ D.

Semantics of axioms is also determined through an interpretation I. As expected, a
terminological axiom C ⊑ D (resp. C ≡ D ) is satisfied by an interpretation I, if CI ⊆ DI

(resp. CI = DI). Let T be a set of terminological axioms, I satisfies T if and only if I
satisfies each axiom of T . Two axioms ( or two sets of axioms ) are equivalent if they have
the same models.

Different kinds of TBoxes are considered regarding properties of their axioms’ set.
From the less expressive to the most expressive, we have :

• Empty TBoxes : This class refers to TBoxes with no axiom.

• Simple TBoxes : TBoxes of this class are made of a set of equality axioms denoted
as concept definitions. A concept definition is an equality axiom where the left-hand
side is a concept name.

Example 3. The following definitions form a simple TBox T .

France ≡ Country ⊓ ∃hasCapital.Paris

FrenchUniversity ≡ ∃locate.France ⊓ University

Student ≡ ∃study.University ⊓ Person

Teacher ≡ ∃teach.University ⊓ Person

• General concept inclusion (GCI) TBoxes : TBoxes of this class are made of a
set of axioms without any restriction.

Example 4. Let us consider the CGI made of the following definition :

FrenchUniversity ≡ ∃locate.France ⊓ University

Teacher ⊑ ∃teach.University ⊓ Person

Female ⊓ ∃study.University ⊑ ∃study.University ⊓ Person
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Note that any equality axiom can be transformed into two inclusion axioms.
For example FrenchUniversity ≡ ∃locate.France ⊓ University would be-
come {FrenchUniversity ⊑ ∃locate.France ⊓ University, ∃locate.France ⊓
University ⊑ FrenchUniversity}. In order to deal with a unique kind of
axiom, this transformation is handful.

The remaining will emphasize over simple TBox T which will be of later interest. This
class corresponds to a set of concept definitions of the form P ≡ C, with P ∈ Ndef and C
an EL-concept such that no P appears more than once on the left-hand side of a definition
in T . Concept names appearing on the left-hand side of a definition are called defined
concepts, and denoted by the set Ndef . All the other concepts occurring in T are called
atomic concepts and are denoted by the set NA.

Example 5. Back to Example 3, we have :

• NA = {Person, University, Country, Paris}

• NR = {teach, locate, study, hasCapital}

• Ndef = {FrenchUniversity, Student, Teacher, France}

An interpretation I is a model of T if and only if for all definitions A ≡ C ∈ T we
have P I = CI . We say that C is subsumed by D w.r.t. T , written C ⊑T D, iff CI ⊆ DI

holds for every model I of T .
The semantics introduced previously is denoted as the descriptive semantics. However,

terminologies may require to represent cyclic dependencies between defined concepts, i.e.,
a definition of an EL-concept P directly or indirectly refers to P itself.

Example 6. Example 3 displays a TBox that can be qualified as acyclic. However,
if we add the following definitions :

Doctor ≡ Person ⊓ ∃getPhDIn.University ⊓ ∃formerly.PhDStudent

PhDStudent ≡ Student ⊓ ∃supervisedBy.Doctor

Doctor appears in the definition of PhDStudent and PhDStudent appears in the
definition of Doctor. Therefore, these definitions creates an indirect cycle. Thus
illustrating cyclic TBoxes.

When cycles are involved, this semantics may be limiting [34] and other semantics
could be used, in particular greatest fix-point and least fix-point semantics [5]. The general
idea is to extend a primitive interpretation J (i.e. an interpretation of primitive concepts
and primitive roles) to the defined concepts of the TBox. An interpretation I is based on
J if it has the same domain as J (i.e. ∆I = ∆J and its interpretation function coincides
with the one of J on NA and NR (i.e. AI = AJ and RI = RJ ∀A ∈ NA and ∀R ∈ NR).
Given two interpretations I1 and I2 based on the same interpretation J , we have I1 ⪯J I2
if and only if CI1 ⊆ CI2 , ∀C ∈ Ndef . It has been demonstrated in [5] that there exists a
unique model of I of T such that :

1. I is based on the primitive interpretation J , and
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2. I ′ ⪯J I,∀I ′ of T based on J

Such a model is defined as a gfp-model of T . Lfp-model can be defined similarly by
exchanging I ′ and I roles in (2). In order to illustrate and to develop benefits of
considering different semantics, we will use the following Example 7 from [5].

Example 7. Let T = {INode ≡ Node ⊓ ∃edge.INode} . This TBox contains a
primitive concept, Node and a primitive role, edge. The only definition INode is
cyclic and represents node involved in an infinite path. Let consider the primitive
interpretation J defined as follows :

• ∆J = {m0,m1,m2, . . .} ∪ {n0}

• NodeJ = ∆J

• edgeJ = {(mi,mi+1)|i ≥ 0} ∪ {(n0, n0)}

Nodes can be involved in an infinite path if it belongs to a cycle (n0) or if it is involved
in an infinite path (mi). As a consequence, there are four ways to extend J .

1. {m0,m1,m2, . . .} ∪ {n0}

2. {m0,m1,m2, . . .}

3. {n0}

4. ∅

All of this models are models for the descriptive semantics. The last possibility, which
represents the least-fix point model, is not relevant w.r.t the aimed definition. The
first possibility, which is the greatest fix-point model, captures exactly the semantics
of INode we are aiming for. Indeed the remaining models ignores either cycles (2)
or infinite paths (3).
Greatest-fix point semantics is not always the best choice regarding concepts involved.
Let consider the following concepts : Tiger = Animal ⊓ ∃Parent.T iger and Lion =
Animal ⊓ ∃Parent.Lion From a gfp point of view, Tiger and Lion will always be
interpreted the same way. The descriptive semantics on the other hand may interpret
them differently which seems more appropriate.

Those definitions can easily be transferred to CGI by using semantics of equality and
inclusion axioms. Moreover in case of an acyclic TBoxes, descriptive, greatest fix-point
and least fix-point semantics are equivalent.

Normal Form

Alongside TBoxes, normal form of concept descriptions have been introduced. Normal
form of an EL-description is a conjunction of EL-atoms. An EL-atom is either a primitive
concept (i.e. an element of NA) or an existential restriction of the form ∃R.C with
C ∈ Ndef . Concretely, we say that a description C ≡ D is normalized if D is of the form :

A0 ⊓ ... ⊓ An ⊓ ∃r0.B0 ⊓ ... ⊓ ∃rm.Bm
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where A0, ..., An ∈ NA, r0, ...rm ∈ NR and B0, ..., Bm ∈ Ndef .

Any EL-description can be transformed into a normalized form. In order to achieve
the normalization process, definitions may be added to the terminology. This process has
proven to be polynomial in [5]. As stated in this report, the resulting TBox may change
w.r.t to the considered semantics. Normal forms are often used to solve reasoning tasks.
Indeed, they define a standard form for description which simplifies the algorithm without
damaging the complexity since this transformation is polynomial for EL.

Example 8. Back to Example 3, France and FrenchUniversity are concepts in
normal form. However, concepts France, Student and Teacher are not normalized
since a primitive concept appears after an existential restriction. As a consequence,
two new defined concept C1 and C2 are created. Their definition will respectively
correspond to the primitive concept Paris and University. However, C1 and C2 do
fulfill the requirements of normal form. The normalized form of this TBox is :

France ≡ Country ⊓ ∃hasCapital.C1

FrenchUniversity ≡ ∃locate.France ⊓ University

Student ≡ ∃study.C2 ⊓ Person

Teacher ≡ ∃teach.C2 ⊓ Person

C1 ≡ Paris

C2 ≡ University

Reasoning in EL w.r.t a Terminology

Reasoning mechanisms unleash the potential of a terminology. Indeed, reasoning mech-
anisms allow to infer knowledge that is not explicitly expressed. There exists many
reasoning procedure which can be qualified as standard like satisfiability or even non-
standard procedures like computing the least common subsumers, concept difference
[3, 4, 10, 13, 37]. However, we focus in this thesis on the subsumption inference problems
and its non-standard extensions which will be discussed later. This problem is named after
the relationship subsumption. It aims to statute whether a concept C is more general
than a concept D or not.

Definition 1 (Inference Problems). Subsumption : Let T be a terminology and C,D
two defined concepts of T

• C is subsumed by D w.r.t. the descriptive semantic (C ⊑T D ) if and only if
CI ⊆ DI for every model I of T

• C is subsumed by D w.r.t. the greatest fix-point semantic (C ⊑T ,gfp D ) if and only
if CI ⊆ DI for every greatest fix-point model I of T

• C is subsumed by D w.r.t. the least fix-point semantic (C ⊑T ,lfp D ) if and only if
CI ⊆ DI for every least fix-point model I of T
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Subsumption in EL is proven to be polynomial and that, with or without TBox. In
many cases, extensions of EL with more constructors leads to exptime-complete [7, 25].
However, compared to other logics with few constructors like FL0, it is an interesting
feature. Indeed, FL0 and its derived logics suffered from a blow-up of complexity while
considering TBoxes. Subsumption in FL0 is co-np-complete [35], pspace-complete
[32] and exptime-complete [10] for respectively acyclic, cyclic and general TBoxes.

It is worth to note that EL-concept descriptions of simple TBoxes can be viewed as di-
rected labeled graphs. This representation unravel another characterization of subsumption
in EL. Subsumption between EL-concept descriptions can be reduced to the existence of
simulation between the graphs of the concept descriptions. In case of cyclic terminologies,
there exists additional properties in order to support the different descriptive and fix-point
semantics [5].

1.3 Conclusion of Chapter 1

This chapter covers the notion of trees which are seen as a tuple (τ, λ, δ) as well as the
definition of homomorphism between trees. This relationship plays a key-role since it is
linked with subsumption in description logics.

This chapter also emphasizes on the formal preliminaries of description logics using
EL, which will be of later interest, as supporting example. It has introduced the syntax of
a description logic as well as the semantics associated with. Considering a terminology
impacts the semantics since cycle may requires different care. There are three main
semantics known as descriptive semantics, greatest fix-point semantics and least fix-point
semantics. It ends with the definition of the subsumption inference tasks named after the
relationship between two concepts. Next chapters shows how logics can be enhanced with
variables and the consequence over the subsumption inference mechanism.
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Chapter 2

Refreshing Semantics in EL

This chapter presents how variables and description logics can be combined. Under the
non-refreshing semantics, this combination notably led to the inference tasks : matching
[1, 9, 12, 15] and unification [6, 14, 16]. After briefly exposing the benefits of considering
variables with a refreshing semantics, ELRV is defined. ELRV extends EL by allowing
refreshing variables as well as pattern queries. Patterns queries are a set of ELRV -patterns
allowing to query the knowledge base through different reasoning mechanisms : matching,
weak-subsumption and pattern-containment. Finally, this chapter discusses the existence
of regular solution which can be expressed with finite EL-TBox. Notation introduced in
this chapter are summarized in Table 2.1

Symbol Description

V Set of variables
NR

X Set of role variables
NT Set of role variables and primitive roles
NC

X Set of concept variables
NVR Set of refreshing variables
NVN Set of non-refreshing variables

P Pattern
u(P ) Unfolded pattern
σ(P ) Unfolded pattern instance

P ⊑?
T D Matching problem w.r.t T

P ⊏∼
?
T Q Weak-subsumption problem w.r.t T

P ⊑? Q Pattern containment problem

Table 2.1: Notations introduced in Chapter 2
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2.1 TBoxes with Variables

2.1.1 Introduction

Recently, expressiveness of description logics have been pushed forward with the intro-
duction of variables. The set NX complements the sets of concept names, NA and Ndef ,
as well as roles NR. This set is made of both concept and role variables leading to two
subsets NR

X which denotes the set of variable replacing roles names and, NC
X corresponding

to variables standing for concept descriptions. Like any role or concept, variables can
be used by constructors to build description that may contain variables. In this context,
those descriptions are denoted as patterns. A ground description opposes this definition in
the sense that it is a description without any variable.

Example 9.

Doctor ≡ Person ⊓ ∃getPhDIn.Univ ⊓ ∃formerly.PhDStudent

PhDStudent ≡ Person ⊓ ∃studyIn.Univ ⊓ ∃supervisedBy.Doctor

Pattern ≡ X ⊓ ∃y.Univ

In this example, Doctor and PhDStudent are ground description since they do not
contain any variables. However, Academic possesses two variables X a concept
variable and y a role variable.

An EL-Pattern is in normal form if:

P ≡ V1 ⊓ ... ⊓ Vn ⊓ ∃r1.B1 ⊓ ... ⊓ rm.Bm

where V0, ..., Vn ∈ NA ∪NC
X , r0, ..., rm ∈ NR ∪NR

X and B0, ..., Bm ∈ Ndef ∪NC
X .

Even if the syntax for variables is clear, their semantics remains to be defined. A
natural way to define semantics is through variable substitutions. Formally, a substitution
function σ is a mapping from NX into the set of EL-concept description and primitive
roles. It allows to map role (resp. concept) variables into roles (resp. concept descriptions).
Obviously σ is extended to element of NA and NR by considering identity. Substitution
functions are applied directly on EL-patterns using the following rules :

• σ(A) = A if A ∈ NA ∪ {⊤}

• σ(C ⊓D) = σ(C) ⊓ σ(D) with C,D two EL-patterns.

• σ(∃R.C) = ∃σ(R).σ(C) with σ(R) = R if R ∈ NR

Example 10. Let consider σ1, σ2 such that :

• σ1(X) = Person ⊓ ∃doctStudent.PhDStudent and σ1(y) = worksIn.

• σ2(X) = Person and σ2(y) = studyIn .

Applying σ1 and σ2 to the previously introduced concepts results in :

σ1(Doctor) ≡ σ2(Doctor) ≡ Doctor
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σ1(PhDStudent) ≡ σ2(PhDStudent) ≡ PhdStudent

σ1(Pattern) ≡ Person ⊓ ∃doctStudent.PhDStudent︸ ︷︷ ︸
σ1(X)

⊓∃worksIn︸ ︷︷ ︸
σ1(y)

.Univ

σ2(Pattern) ≡ Person︸ ︷︷ ︸
σ2(X)

⊓∃ studyIn︸ ︷︷ ︸
σ2(y)

.Univ

Subsumption changed in order to handle patterns and their variables. It evolved in
two, interesting and non-standard, reasoning tasks known as matching and unification.

The matching problem aims to compare a pattern P and a ground description C w.r.t
to the subsumption relationship. It consists in looking for a substitution σ such that the
resulting concept σ(P ) fulfills a subsumption relationship with C. If such a substitution
exists, it is considered as a solution and called a matcher. State of the art defines variations
of the matching problem which are known as matching problem modulo equivalence and
matching problem modulo subsumption.

Definition 2 (Matching Problem). Let T be a TBox, P an EL-pattern and C an EL-
ground-description.

• A matching problem modulo equivalence w.r.t. a TBox T is an equation of the form
C ≡?

T P . It has a solution if there exists a substitution σ such that C ≡T σ(P )

• A matching problem modulo subsumption w.r.t. a TBox T is an equation of the form
C ⊑?

T P . It has a solution if there exists a substitution σ such that C ⊑T σ(P )

Since matching aims to compare a ground-description and a pattern, matching problems
modulo subsumption differs depending on the side of the pattern [1]. When the pattern
is on the left, we talk about right-ground matching problem. On the other hand, if the
pattern is on the right, it is a left-ground matching problem. Note that since {C ⊑? P} ≡
{C ⊓ P ≡? C}, any left-ground matching problem modulo subsumption can be resumed
to a matching problem modulo equivalence.

However, in the case of a right-ground matching problem then we have {P ⊑? C} ≡
{P ⊓C ≡? P}. The resulting equation modulo equivalence involve a pattern in both sides
which is exactly the definition of unification.

Definition 3 (Unification Problem). Let T be a TBox and P,Q two EL-patterns.

• A unification problem modulo equivalence w.r.t. a TBox T is an equation of the form
P ≡?

T Q. It has a solution if there exists a substitution σ such that σ(P ) ≡T σ(Q)

• A unification problem modulo subsumption w.r.t. a TBox T is an equation of the form
P ⊑?

T Q. It has a solution if there exists a substitution σ such that σ(P ) ⊑T σ(Q)

For a unification problem [6, 14, 16], the solutions are called unifiers. Since we
have {P ⊑? Q} ≡ {P ⊓ Q ≡? P}, any unification problem modulo equivalence has a
corresponding unification problem modulo subsumption. Although being recent, these
problems have been attracting attention of many research for different settings. The next
section focuses on known results for this reasoning tasks with regard to the state of the
art.
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2.1.2 Reasoning with Variables

Matching and unification problems aroused in description logics in late 90s. Those problem
have shown proficiency to filter out the unimportant aspects of large concept descriptions
appearing in knowledge base [23]. They can also be used as a tool in databases to detect
redundancies [16] or support integration [22]. All of those applications exploit the capacity
of a pattern to express a not completely specified form.

The literature around matching and unification problems mainly focuses on concept
variables. Indeed, role variables are little considered because in logics without role
constructors, solving the problem can be done by enumerating possibilities [16].

So far, two families of logics have been widely investigated known as FL0 based logics
and EL based logics. Note that both of this family offer conjunction and either existential
restriction (∃R.C) or value restriction (∀R.C). As a direct consequence, concept variables
can be substitute by an infinity of possibilities. Thus preventing from enumerating potential
solutions. FL0 is a logic that allows for concept conjunction ⊓, value restriction ∀R.C
and universal concept ⊤. Among the extensions of FL0 that have been of interest, there
are FL⊥, FL¬ and ALN . FL0 is extended by successively enriching its constructors to
form these logics. Starting with FL⊥ that unlocks the unsatisfiable concept (⊥). Then
FL¬ allows ⊥ and atomic negation (¬) and finally ALN extends FL0 with ⊥, atomic
negation (¬), unqualified number restriction ( ≤ n.R —≥ n.R). On the other hand ALE
offers limited existential restriction (∃R.C) instead of unqualified number restriction.

Matching

Research on matching problems in FL0 led to prove that this problem is polynomial without
TBox [1] as well as in its extensions except ALE which will be discussed below. Those
results have been achieved by exploiting the reduction, presented in [2], of subsumption to
language inclusion. Combining role variables and concept variables for FL0 without TBox
increases the complexity and is np-complete [16].

Considering a general TBox blows up the complexity to exptime-complete [9].
This results have been proved by extending the previous method based on automata
theory and language inclusion. In their work, the authors introduced restricted TBoxes
which offers a reduced complexity for this reasoning task. Those TBoxes are called
forward Tboxes, i.e. TBoxes where the role depth on the left-hand side of a GCI is
not larger than the role depth on the right-hand side. Forward TBoxes bears the
advantage to lower the complexity to pspace-complete in this case. Similarly,
considering backward Tboxes, i.e. TBoxes where the role depth on the right-hand
side of a GCI is not larger than the role depth on the left-hand side, bears the same property.

EL-matching problem has a higher complexity by achieving np-complete even
without TBoxes. Baader et al. [12] demonstrated it by reducing matching into finding a
homomorphism between description trees. The same method has been applied to ALE
leading to the same complexity. EL does not suffer any blow up of complexity when
considering a general TBox. The approach proposed in [15] exploits structural subsumption
through a goal-oriented algorithm. Complexity results regarding matching problem are
summarized in Table 2.2.
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Description Logic TBox Complexity

FL0 ∅ ptime [1]

General Forward Tbox pspace-complete [9]

General Backward Tbox pspace-complete [9]

General Tbox exptime-complete [9]

FL⊥,FL¬,ALN ∅ ptime [1]

General Tbox open

EL ∅ np-complete [12]

Acyclic Tbox np-complete [12]

General Tbox np-complete [15]

ALE ∅ np-complete [12]

Table 2.2: Complexity results for matching

Unification

Unification considers equations of the form P ⊑? Q where both, P and Q are patterns.
The major result for FL0 is that unification of FL0-concept terms (i.e. w.r.t to empty
Tbox) is exptime-complete [16]. The authors used a similar approach to the one
used to solve matching (i.e. reducing the problem to language inclusion problems). The
extension of unification in FL0 to general TBoxes is still an open-problem. FL⊥ has also
been investigated leading to unification w.r.t to an empty TBox to be in exptime [33].
The method employed consists in eliminating ⊥ from a given problem leading to a FL0

problem that can be solved by known methods.

Likewise EL-matching, EL-unification is np-complete for empty TBox [14]. Authors
demonstrated that a local unifier could be defined and necessarily exists if a unifier exists.
Then a goal-oriented algorithm has been designed to decide if such a local unifier can
be computed. Research towards unification with general TBoxes are more advanced
than those for FL0. Indeed, even if EL-unification w.r.t general TBoxes is still an open
problem, in [6] the authors achieved np-complete for cyclic restricted TBoxes. The
restriction prohibits cycle of the form A ⊑ ∃R1.∃R2. . . .∃Rn.A. Such a cycle contradicts
the definition of local unifier thus making their algorithm incomplete.

In an attempt to lower unification complexity variants of unification have been
investigated. These variants are known as restricted unification [11, 17]. It can be either
syntactically restricted (i.e. limiting the role depth of concepts) or semantically restricted
(i.e. limiting the length of interpretation). Such restrictions are derived from observations
when it comes to choose a unifier among the proposed solutions. They allow to obtain a
resulting concept close to the shape of those in the knowledge base. Regarding complexity
of these reasoning tasks in FL0, let k be the limit depth allowed. Then, it is shown
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in [11] that it remains in exptime if k is encoded in binary but drops to pspace if
k is encoded in unitary. Unfortunately, none of the result followed for EL, it remains
np-complete [17] . The different results for concept variables are summarized in Table 2.3.

Description Logic TBox Complexity

FL0 ∅ exptime-complete [16]

General Tbox open

FL⊥ ∅ in exptime[33]

FL¬,ALN ∅ open

EL ∅ np-complete [14]

Acyclic Tbox np-complete [14]

Cyclic Restricted np-complete [6]

General Tbox open

ALE ∅ open

Table 2.3: Complexity results for unification

In the context of description logic with variables, we will introduce variables with
refreshing semantics in EL leading to the definition of the logic ELRV . Matching and
unification problems will be extended in this scope and a new reasoning task known as
pattern containment will be defined.

2.2 Definition of ELRV
2.2.1 Differences Between Variable Semantics

This section aims to illustrate the potential of introducing refreshing semantics in descrip-
tion logics using EL as example. Consequently, we will save technical aspects for later
sections and emphasize here on presenting how valuable it can be. The example is based
on the terminology containing these two definitions :

Doctor ≡ Person ⊓ ∃getPhDIn.Univ ⊓ ∃formerly.PhDStudent

PhDStudent ≡ Person ⊓ ∃studyIn.Univ ⊓ ∃supervisedBy.Doctor

To this simple TBox, the pattern Academic is added and defined as :

Academic ≡ Person ⊓ ∃x.University ⊓ ∃y.Academic

with x, y two role variables.
The matching problem Doctor ⊑?

gfp,T Academic does not have any solution from a
state of the art point of view. Refreshing semantics increases substitution possibilities
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with, in particular, θ such that the resulting concept θ(Academic) is a matcher :
Doctor ≡ Person ⊓ ∃getPhDIn.Univ ⊓ ∃formerly.(

Person ⊓ ∃studyIn.Univ ⊓ ∃supervisedBy.(. . .))
⊑gfp,T
θ(Academic) ≡ Person ⊓ ∃ getPhdIn︸ ︷︷ ︸

θ(x)

.Univ ⊓ ∃ formerly︸ ︷︷ ︸
θ(y)

(

Person ⊓ ∃ studyIn︸ ︷︷ ︸
θ(x)

.Univ ⊓ ∃ supervisedBy︸ ︷︷ ︸
θ(y)

((. . .))

To achieve this solution, the variable x (resp. y) is bound to getPhdIn (resp. formerly).
Once Academic is unfold, the variables x and y are released from their respective bound.
Variables x and y are now ready to be bound to a new value. In θ(Academic), the released
x (resp. y) is bound to studyIn (resp. supervisedBy). Reaching Academic once again
implies to unfold Academic which releases variables x and y and so on. The substitution θ
is then defined as the substitution that alternates between {x = getPhDIn, y = formerly}
and {x = studyIn, y = supervisedBy}.

A refreshing variable is a variable that has the ability to be released under some
conditions in order to receive a new assignment. Refreshing semantics is the semantics that
allows to use refreshing variables. Comparatively to non-refreshing semantics, refreshing
semantics offers many more substitutions. Indeed, in the running problem, the set of
primitive roles contains 4 roles (NR = {getPhDIn, formerly, studyIn, supervisedBy}).
It means that there are 4 possibilities for x and 4 possibilities for y leading to a total of 16
possible substitutions under the non-refreshing semantics. On the other hand, refreshing
semantics will release variables with each release associated to its own bound. In other
words, we deal with an infinite number of variables which makes the set of possible
substitutions infinite. This new possibilities may be solutions to reasoning problems as
shown in the example.

Research conducted in this thesis differ from previous works in particular regarding
variable semantics. Indeed, semantics for variables in description logics can be qualified
as non-refreshing semantics. In our framework - role variables with refreshing and non-
refreshing semantics -, we have not only considered known problems such as matching
and unification but also a new reasoning task denoted as pattern containment. Pattern
containment aims to compare patterns w.r.t to their substitutions whatever the considered
TBox.

The next section formally introduces refreshing semantics and its associated reasoning
tasks in the scope of ELRV .

2.2.2 The ELRV Description Logic

We consider pattern queries expressed using the description logic EL extended with
refreshing role variables. The obtained logic, called ELRV , is introduced below. An ELRV -
signature is a pair Σ = (NC , NT ), where NC is the set of concept names (i.e. NA ∪Ndef

and NT = NR ∪ V the set of role terms. A role term t ∈ NT is either a role name (when
t ∈ NR) or a variable (when t ∈ V). We consider the set of variables V = NVR ∪NVN as
made of two disjoint sets of variables: NVR the set of refreshing variables and NVN the set
of non refreshing variables. The sets NC , NR, NVR and NVN are pairwise disjoint.
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The description logic ELRV extends the logic EL with role variables. Given a signature
Σ = (NC , NT ), ELRV-concept descriptions are built similarly to EL concepts while using
roles terms instead of only role names. The concept Academic given in Example 1 is an
example of an ELRV-definition with x and y refreshing variables. The particular case of
ELRV-concepts without variables (called ground concepts) are EL-concepts.

An ELRV-TBox is a set of ELRV-concept definitions. We present now the notion of
normalized ELRV -TBoxes. Let Σ = (NC , NT ), with NT = NR ∪V and V = NVR ∪NVN , be
an ELRV-signature and let T be an ELRV-TBox over the signature Σ. We say that T is
normalized iff C ≡ D ∈ T implies that D is of the form:

A0 ⊓ ... ⊓ An ⊓ ∃r0.B0 ⊓ ... ⊓ ∃rm.Bm

where A0, ..., An ∈ NA, r0, ...rm ∈ NT and B0, ..., Bm ∈ Ndef .

In the sequel, we assume that the ELRV-TBoxes are normalized. An ELRV pattern P
is given by an ELRV-TBox, noted T P , which contains a definition of P .

Example 11. Assume a signature Σ = (NC , NT ) and let x ∈ NVR and y ∈ NVN be
respectively a refreshing and a non-refreshing variable. Consider a query Q1 expressed
as an ELRV-pattern defined by the following TBox T Q1 over the signature Σ.

T Q1 =

{
Q1 ≡ A1 ⊓ ∃x.C1

C1 ≡ A2 ⊓ ∃y.Q1

}
We explain now the difference between the set NVR of refreshing variables and the

set NVN of non-refreshing variables. Given an ELRV-TBox T , a substitution σ maps a
variable in NVN to a fixed value while the value assigned to a variable in NVR can be
refreshed at each iteration over a cyclic definition. This semantics is captured through
the notion of unfolding which turns (cyclic) ELRV-definitions with refreshing variables to
equivalent (infinite) ELRV-definitions with non-refreshing variables. This is achieved by
an unfolding process which replaces refreshing variables appearing in cyclic definitions of a
given terminology by an infinite set of non-refreshing variables.

The notion of unfolding is formally defined below and then illustrated on an example.

Definition 4. (Pattern Unfolding.)
Let T be an ELRV-TBox over an ELRV-signature Σ = (NC , NT ), with NT = NR ∪ V

and V = NVR ∪NVN . The unfolding of the Tbox T is a new Tbox, noted u(T ), over the
ELRV-signature (NC , NR∪NVN ) such that each ELRV-pattern P = A0⊓ ...⊓An⊓∃r0.B0⊓
... ⊓ ∃rm.Bm of T is mapped into an ELRV-pattern u(P ) in u(T ). The unfolding u is
defined as follows:

• u(P ) = u(A0) ⊓ ... ⊓ u(An) ⊓ ∃u(r0).u(B0) ⊓ ... ⊓ ∃u(rm).u(Bm).

• u(t) = t, ∀t ∈ NA ∪NR ∪NVN , i.e., u is the identity function over atomic concept
names, role names and non-refreshing variables.

• if ri ∈ NVR then each new call to u(ri) in the scope of u(P ) returns a new ”fresh”
variable from NVN . Note that, for ri = rj in the description P , the calls to u(ri) and
to u(rj) return the same fresh variable while recursive calls to u(ri) return different
fresh variables.
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Hence, an unfolding of an ELRV -pattern P enables to replace recursively each refreshing
variable x by a new non-refreshing variable. Note that, in the case of refreshing variables
that appear inside a cyclic definition of an ELRV-pattern P , the unfolding of P leads to
an infinite ELRV-pattern u(P ) which uses an infinite set of variables.

We give below partial unfolding of the ELRV-pattern Q1 of Example 11.

u(Q1) ≡ A1 ⊓ ∃x0.(A2 ⊓ ∃y.(A1 ⊓ ∃x1.(A2 ⊓ ∃x2.(. . .)))

Note that during the unfolding process, each iteration through the concept Q1 generates a
new variable xi (a refreshing variable) while a unique variable y (non-refreshing variable)
is used.

It is worth noting that an unfolding of an ELRV -pattern P ≡ A0 ⊓ ... ⊓ An ⊓ ∃r0.B0 ⊓
...⊓∃rm.Bm can be viewed as a ⟨Ndef ∪ {qf}, NR ∪NA ∪NVN ⟩-labeled tree (τP , λ, δ) which
is recursively defined as follows:

• λ(ε) = P

• ∀i ∈ [0, n], we have: i ∈ τP , δ(ϵ, i) = Ai and λ(i) = qf . The label qf is a specific
keyword used to label the leaves of the tree.

• ∀i ∈ [n+ 1, n+m+ 1], we have: i ∈ τP , δ(ε, i) = u(ri−n−1) and i is the root of the
tree τBi−n−1

Example 12. Figure 2.1 depicts the tree representation of the unfolded pattern Q1 of
Example 11. Each node is labeled by the corresponding concept in the TBox. Leaves
are labeled by qf and have an incoming edge labeled by an atomic concept name.
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Figure 2.1: Infinite Tree of the Unfolded Pattern Q1 of Example 11.

Instantiations of ELRV-concept definitions (respectively, ELRV-TBoxes) are given by
variable substitutions. Given a TBox T with a signature Σ = (NC , NT ), whereNT = NR∪V ,
a substitution σ is a mapping from V into the set of role names NR. A substitution σ is
extended to ELRV-concepts in the obvious way, i.e.:

• σ(T ) = T if T ∈ NC ∪ {⊤} ∪NR;

• σ(C ⊓D) = σ(C) ⊓ σ(D) with C,D two ELRV-concepts;

• σ(∃R.C) = ∃σ(R).σ(C).
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Definition 5. (Pattern Instances.)
Let T be an ELRV-TBox over an ELRV-signature Σ = (NC , NT ), with NT = NR ∪ V and
V = NVR ∪NVN and let P ≡ A0 ⊓ ... ⊓ An ⊓ ∃r0.B0 ⊓ ... ⊓ ∃rm.Bm be an ELRV-pattern in
T . Let σ : NVN → NR be a variable substitution. Then σ(u(P )) is an instance of P w.r.t.
the variable substitution σ.

In the sequel, we abuse of notation and we write σ(P ) instead of σ(u(P )) for a pattern
instance of P w.r.t. σ. Figure 2.2 shows an instance σ(Q1) of the pattern Q1 of Example
11 given by a substitution σ that maps the variable y to σ(y) = S and each variable xi to
σ(xi) = R1 if i is even and σ(xi) = R2 if i is odd.
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Figure 2.2: An Instantiation of the Pattern Q1 of Example 11.

In addition, a substitution σ maps each ELRV-TBox T into an EL-TBox σ(T ) which
is obtained by converting each ELRV-concept definition P ≡ C in T into an EL-concept
definition σ(P ) ≡ σ(C). In the example, we have σ(T Q1) = {σ(Q1)}.

Pattern instances can be split into two categories : regular and irregular instances. A
regular instances will make substitute its variables using a regular choice. As a consequence,
regular instances can be represented by a finite T . For example, Figure 2.2 depicts
a regular solution where the substitution of x alternates between R1 and R2. This
alternation is regular and can be represented in a finite way. The associated finite
TBox would be σ(T Q1) = {σ(Q1) ≡ A1 ⊓ ∃R1.σ(C1);σ(C1) ≡ A2 ⊓ ∃S.σ(Q′

1);σ(Q
′
1) ≡

A1 ⊓ ∃R2.σ(C
′
1);σ(C

′
1) ≡ A2 ⊓ ∃S.σ(Q1)}.

Irregular instances are by opposition instances that can not be represented in a finite
way. To illustrate this notion, we will use the TBox {P ≡ ∃x.P ′;P ′ ≡ ∃y.P} where both
x and y are refreshing. The idea is to construct a substitution such that the resulting
automata is the language Rn

1 .R
n
2 which is known to be irregular. Figure 2.3 depicts the

corresponding tree.
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Figure 2.3: Irregular Instance of the Pattern P .

Lemma 1. Let σ(P ) and θ(Q) be two instances of respectively two patterns P and Q.
Then σ(P ) is subsumed by θ(Q) (i.e., σ(P ) ⊑ θ(Q)) iff there exists a homomorphism from
θ(Q) to σ(P ).
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Proof. It is a direct extension of the characterization of subsumption in EL using the
so-called EL-description trees [13]. In fact, unfolding transforms potential cyclic definition
with TBox into non-cyclic infinite description without TBox. As a consequence, the
different subsumption semantics are all equivalent and subsumption is equivalent to tree
homomorphism.

Subsumption between regular instances of two patterns is linked to subsumption w.r.t
to the greatest fix-point semantics in EL as stated by the next lemma.

Lemma 2. Let σ(P ) and θ(Q) be two regular instances of respectively two patterns P and
Q. Let σreg(P ) and θreg(Q) the corresponding EL finite descriptions. If σ(P ) ⊑ θ(Q) then
σreg(P ) ⊑gfp,T θreg(Q) in EL.

Proof. By definition σ(P ) ⊑ θ(Q) implies that there exists a homomorphism from θ(Q) to
σ(P ) in ELRV (Lemma 1). Since σ(P ) and θ(Q) being regular means that they can be
represented with a finite EL-TBox. These TBox will corresponds to σreg(P ) and θreg(Q).
Subsumption w.r.t to the greatest fix-point semantics in EL is characterized by simulation
between the respective description graph [5]. Homomorphism between unfolded description
graph preserves simulation. As a consequence we have σreg(P ) ⊑gfp,T θ(Q)reg(Q) in EL.

2.2.3 Reasoning with Refreshing Variables

In this thesis, patterns are viewed as queries defined in an ELRV -TBox and evaluated over
an EL knowledge base. We focus in the sequel on three reasoning mechanisms:

(i) matching, which is used as a mechanism to evaluate patterns over EL knowledge
bases,

(ii) weak-subsumption that extends unification and

(iii) pattern containment, i.e., determining whether the result of a pattern is included in
the result of another pattern whatever the considered knowledge base.

Definition 6 (Matching). Let T P be an ELRV TBox, let Tg be an EL TBox and let
T = T P ∪ Tg. An ELRV matching problem is of the form C ⊑?

T P where C is a concept in
Tg and P is a pattern of T P . A solution (or matcher) of this problem is a substitution σ
such that C ⊑σ(T ) σ(P ).

Matching is used as a base mechanism to evaluate a pattern against concepts and
individuals of a knowledge base. Let T P be an ELRV -TBox including a defined pattern P
and let KB = (T ,A) be an EL knowledge base. A defined concept C of T is an answer
of P over KB iff the matching problem C ⊑?

T P∪T P has a solution.
To match a pattern P against an individual i of an ABox A of KB we make use of

the notion of most specific concept (msc). The msc of an individual i, noted msc(i), is a
non-standard reasoning in description logics that enable to generalizes an individual to a
concept by computing the least concept description in the available description language
that has this individual as an instance [4]. Hence, it is natural to consider that an
individual i of KB is in the answer of a pattern P over KB iff the matching problem
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msc(i) ⊑?
T P∪T P is solvable. In [4] it is shown that for the description logic EL, if one

considers cyclic terminologies under greatest fix-point semantics, the msc always exists
and can be computed in polynomial time.

Consequently, as explained above, evaluating a pattern P over a knowledge base
K = (T ,A) turns to matching P against concepts and individuals (more precisely, their
msc) of K. The computed matchers provides an explanation to why a concept C matches
a pattern P .

Example 13. For example, with the matcher σ of Example 1, the pattern instance
σ(Academic) provides an explanation to why we can say that the concept Professor
matches the pattern Academic w.r.t. the knowledge base of Table 1.

As for non-refreshing semantics, this problem can be extended with variables on both
sides. It leads to the following definition for weak-subsumption that extends unification
problem.

Definition 7 (Weak-subsumption). A pattern P of a TBox T P is weakly-subsumed by
a pattern Q of a TBox T Q, noted P ⊏∼T Q, iff ∃σ,∃θ s.t. σ(P ) ⊑θ(σ(T )) θ(Q), with
T = T P ∪ T Q.
A weak-subsumption problem, noted P ⊏∼

?
T Q is the problem of testing whether P ⊏∼T Q.

Pattern containment is a new reasoning task that aims to compare two patterns with
a different semantics than unification.

Definition 8 (Pattern containment). A pattern P of a TBox T P is contained in a pattern
Q of a TBox T Q, noted P ⊑ Q, iff ∀σ,∃θ s.t. σ(P ) ⊑θ(σ(T )) θ(Q), with T = T P ∪ T Q.
A pattern containment problem, noted P ⊑? Q is the problem of testing whether P ⊑ Q.

Pattern containment enables to compare patterns w.r.t. their respective answers as
stated by the following lemma which is a direct consequence of Definition 8.

Lemma 3. Let P and Q be two patterns respectively defined in the ELRV TBoxes T P and
T Q. Let T be an arbitrary EL TBox and let C be a concept of T . If P ⊑ Q then we have:

C ⊑?
T P∪T P is solvable ⇒ C ⊑?

T Q∪T Q is solvable

Note that matching is also a particular case of weak-subsumption where the pattern on
the left is ground. The next section gives an insight in the shape of matchers considered
later on.

2.2.4 Regular Matchers

This section discusses two main issues regarding the matching problem in the context of
the logic ELRV :

(i) a matching problem may have infinitely many matchers that lead to instances of P
that are incomparable w.r.t. subsumption and,

(ii) some matchers can be represented by a finite ELRV-terminology (hereafter called
regular matchers), there exists matchers that are not regular (i.e., a matcher σ
such that the derived instance σ(T Q2) cannot be represented by a finite ELRV-
terminology).
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T2 =
{
C ≡ ∃R.A1 ⊓ ∃S.C ⊓ ∃R.D,
D ≡ ∃S.A1 ⊓ ∃R.D ⊓ ∃S.C,

}
T Q2 = {Q2 ≡ ∃x.A1 ⊓ ∃y.Q2} with x, y ∈ NVR

Table 2.4: The terminologies T Q2 and T2.
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Figure 2.4: Unfolding of Q2

Consider the matching problem C ⊑?
T Q2∪T2 Q2, where the terminologies T Q2 and T2

are shown at Table 2.4. The variables x and y are refreshing variables of Q2. Unfolding of
Q2 is depicted in Figure 2.4. Table 2.5 exhibits several possible matchers that solve this
problem.

{
σ1(xi) = R and σ1(yi) = S,∀i ∈ N (2.1){
σ2(xi) = R and σ2(yi) = R if i is even

σ2(xi) = S and σ2(yi) = S if i is odd
(2.2)

ϕk(xi) = R and ϕk(yi) = S ∀i ∈ [1, k[

ϕk(xk) = R and ϕk(yk) = R

ϕk(xi) = S and ϕk(yi) = R ∀i > k

(2.3)

Table 2.5: Regular matchers.

We make the following observations.

• σ1 and σ2 are regular matchers in the sense that σ1(T Q2) (respectively, σ1(T Q2)) can
be described by a finite ELRV-Tbox. Table 2.6 shows the corresponding TBoxes.

• ϕk, for k ∈ N defines an (infinite) family of matchers that solve our matching
problem. Note that, for a fixed integer k, ϕk is a regular matcher (Table 2.6 shows a
corresponding TBox ϕk(T Q2)).

• The matchers σ1, σ2 and ϕk, for k ∈ N, are pairwise incomparable w.r.t.
subsumption in the sense that for any i, j ∈ N, with i ̸= j, the concepts
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σ1(T Q2) = {σ1(Q2) ≡ ∃R.A1 ⊓ ∃S.σ1(Q2)}

σ2(T Q2) =

{
σ2(Q2) ≡ ∃R.A1 ⊓ ∃R.σ2(Q′

2),
σ2(Q

′
2) ≡ ∃S.A1 ⊓ ∃S.σ2(Q2)

}

ϕk(T Q2) =


ϕk(Q2) ≡ ∃R.A1 ⊓ ∃S.ϕk(Q′

2),
ϕk(Q

′
2) ≡ ∃R.A1 ⊓ ∃S.ϕk(Q′

3),
. . .
ϕk(Q

′
k) ≡ ∃R.A1 ⊓ ∃R.ϕk(Q′

k+1),
ϕk(Q

′
k+1) ≡ ∃S.A1 ⊓ ∃R.ϕk(Q′

k+1)


Table 2.6: Representation of regular matchers as finite TBoxes.

ϕi(Q2), ϕj(Q2), σ1(Q2), σ2(Q2) are pairwise incomparable w.r.t. the subsumption
relation.

We exhibit now a non regular matchers for our matching problem. Let u be an infinite
geometric sequence u0, u1, . . . with u0 > 1 and ∀i ∈ N, we have ui+1− ui > 3. Let v and w
be respectively two infinite sequences v0, v1, . . . and w0, w1, . . . such that vi = ui + 1 and
wi = ui + 2, ∀i ∈ N. We define the substitution ρu as follows:

• ρu(xl) = R and ρu(yl) = S if l is not a member of the sequences v or w

• ρu(xvi) = R and ρu(yvi) = R for each member vi of the sequence v

• ρu(xwi
) = S and ρu(ywi

) = S for each member wi of the sequence w

The substitution ρu is a matcher of the considered matching problem. However, ρu

is not regular (i.e., it cannot be described by a finite TBox) as stated by the following
lemma.

Lemma 4. Consider the matching problem C ⊑?
T Q2∪T2 Q2, where the terminologies T Q2

and T2 are given at Table 2.4. Let ρu(Q2) be the matcher defined as previously. For any
substitution σ such that σ(T Q2) is a finite TBox, we have σ(Q2) ̸≡ ρu(Q2).

Proof. W.l.o.g. assume u0 > 1. The sequence y0, y1, . . . forms an infinite word τ =
Su0RSu1−u0R . . . RSun−un−1 . . .
Note that the sequence u1− u0, . . . un− un−1 forms a geometric progression. Consequently,
the occurrences of the sequences of S follows a geometric progression pattern and hence
cannot be represented by a finite state automaton.

Fortunately, it is sufficient to look for regular matchers because if a matching problem
is solvable then it necessarily has a regular matcher (Section 4.3 Corollary 2). The proof
derives from the completeness of our matching algorithm.

2.3 Conclusion of Chapter 2

Even though being recent add-ons to description logics, variables have been a source of
interesting research. At a terminological level, it mainly focuses over two non-standard
reasoning tasks known as matching and unification.
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These reasoning tasks have been investigated for two families of logics based on EL
and FL0. It has been demonstrated that complexity in EL is NP-Complete for both
cases except for unification w.r.t general TBox which remains an open problem. It is an
advantage comparatively to FL0 which suffers a blow-up of complexity while considering
the different kind of TBoxes.

The main contribution of this chapter is the definition of ELRV . ELRV extends EL
by allowing refreshing semantics for role variables as well as considering cyclic pattern
which can be seen as pattern queries. Pattern instance, which represents a pattern whose
variables have been substitutes can be either regular or irregular. Regular solutions can
be express with finite EL-TBox and preserve the subsumption relationship with regard to
the greatest fix-point semantics.

Moreover, this new semantics for variables questioned known reasoning task such as
matching and unification. We showed that unsolvable matching problems (Doctor ⊑?

T
Academic) in non-refreshing semantics would be solvable in refreshing semantics. Three
reasoning tasks have then be introduced. Matching and unification have respectively been
extended to matching and weak-subsumption to support refreshing variables. On the other
hand, we define a brand new reasoning task : pattern containment. It allows to compare
pattern queries results whatever the considered knwoledge base.

The next chapter introduces a framework based on the notion of description automata
which will be of later used to solve reasoning mechanisms in ELRV .
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Chapter 3

From ELRV Description Logic to
Automata

Adding refreshing semantics to description logic unlocked new ways to reason through ELRV -
TBox and pattern queries. Due to the differences stated in the previous chapter, known
algorithms can not handle refreshing semantics. This chapter will focus on introducing
description automata. By extending, fresh variable automata, this class of automata will
handle refreshing variables. Moreover, reasoning in ELRV will be reduced to simulation
problems in the scope of description automata. Table 3.1 summarizes notations introduced
in this chapter.

Symbol Description

AP Description automata corresponding to the pattern P
Q Set of states of AP
L Set of edges labels of AP
Var Set of variables of AP
q0 Initial state of AP
qf Final state of AP
δ Transition function of AP
κ Refreshing function of AP

(qp,
→
I ) Configuration of a description automata

T (AP , σ) Configuration tree of AP w.r.t σ

≪∀ Universal simulation
≪∃ Existential simulation

Table 3.1: Notations introduced in Chapter 3

3.1 ELRV-Description Automata

Our reasoning procedures over ELRV-terminologies are built on the notions of ELRV-
description automata. Such automata recognize configuration trees which are nothing
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other than a syntactic variant of pattern instances. We associate with each ELRV -pattern
P an ELRV-description automata AP such that there is a one-to-one correspondence
between the configuration trees recognized by AP and the instances of P . Consequently, an
ELRV-description automaton AP characterizes all the possible instances of its associated
ELRV-pattern P .

Definition 9. (ELRV-description automaton.)
Let P ≡ A0 ⊓ ... ⊓ An ⊓ ∃r0.B0 ⊓ ... ⊓ ∃rm.Bm be an ELRV-pattern defined in a T P

over the signature Σ = (NC , NT ), with NC = Ndef ∪ NA, NT = NR ∪ V and V =
NVR ∪NVN . The ELRV-description automaton associated with P , denoted AP , is a tuple
AP = (Q,L,Var, p0, qf , δ, κ) built as follows:

(i) L ⊆ NA ∪NR is a finite alphabet,

(ii) Var ⊆ V is a finite set of variables,

(iii) Q = Ndef ∪ {qf} is a finite set of states,

(iv) q0 = P is the initial state and qf is the final state,

(v) δ ⊆ Q × (L ∪ Var) × Q is a transition relation defined as follows: For each Q ≡
A0 ⊓ ...⊓An ⊓∃r0.B0 ⊓ ...⊓∃rm.Bm ∈ T {(Q,Ai, qf ) : for i ∈ [0, n]} ∪ {(Q, rj, Bj) :
for j ∈ [0,m]} ∈ δ

(vi) κ : Var → 2Q is the refreshing function defined as follows: For each Q ≡ A0 ⊓ ... ⊓
An ⊓ ∃r0.B0 ⊓ ... ⊓ ∃rm.Bm ∈ T , ∀rj ∈ Var we have: κ(rj) = {Q} if rj ∈ NVR, or
κ(rj) = ∅ if rj ∈ NVN .

Definition 9 associates with each defined concept P ≡ A0⊓...⊓An⊓∃r0.B0⊓...⊓∃rm.Bm

in a TBox T P an ELRV-description automaton AP whose states are made of the set of
defined concept names of T in addition to a special final state qf . Transitions of AP are
labelled either with letters, taken from an alphabet made of the atomic concept names
and role names, or variables taken from the set of role variables. More precisely, each
atomic concept name Ai that appears in the definition of P leads to a transition from
the node P to qf labeled with the letter Ai. Each description ∃ri.Bi that appears in the
definition of P leads to a transition from the node P to the node Bi (the initial state of
the automaton ABi

) labeled with the term ri. When the term ri is a refreshing variable,
its refreshing state is given by the function κ (i.e., in this case κ(ri) = {P}). Note that
Definition 9 extends naturally to ground concepts (i.e., when P do not contain variables).
The obtained automaton AP is then a ground automaton without variables.

Figure 3.1 depicts the description automaton of the TBoxes T Q2 and T2 given at
Example 2.6. The variables x and y are refreshed at state Q2, hence we have κ(x) =
κ(y) = {Q2}.
ELRV-description automata can be viewed as a variant of variable automata with

refreshing variables introduced in [19, 20], where the notion of a run is however substantially
modified in order to capture instantiation trees of ELRV patterns. Indeed, a description
automaton of a given pattern P is in fact a compacted representation of all the possible
instantiations of P . To make this statement more precise, we introduce the notions of
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Q2

NA1
qf

y

x

A1

C

NA1

D

qf

S R

R S

A1

R

S

Figure 3.1: Description Automata of T Q2 and T2.

configurations and configuration trees and we show that these latter ones are equivalent to
the instances of the pattern P .

A run of a description automaton AP is defined over configurations. Informally, a
configuration gives the values assigned to variables at a given state of the execution of
the automaton AP . Since, on one side a given state may be visited (infinitely) many
times and on another side refreshing variables may see their assigned value changing at
their refreshing states, a configuration includes a vector of integer used to distinguish
between multiple value assignations to a given refreshing variable. More precisely, we

define a configuration as a pair (q,
→
I ) where q is a state of AP and

→
I is a vector of integers,

where the ith component of
→
I records the current index of the ith variable, assuming

that the variables are sorted according to their lexicographic order. By this way, we are
able to generate several copies of a refreshing variable by incrementing its corresponding

component in the vector
→
I . In the sequel, we use the following notations. Let

→
G ∈ N|Var|

be a tuple of integer.
→
G is called a counter and is used to associate an integer value with

each variable in Var. More precisely, we assume that each variable x ∈ Var is associated

with a fixed position in
→
G, noted Gx, which gives the value of the counter of x in

→
G.
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1100

(Q2, (0, 0))

(NA1 , (0, 0))

(qf , (0, 0))

(Q2, (1, 1))
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(qf , (1, 1))

(Q2, (2, 2))
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(qf , (2, 2))

σ(x, 0)

A1

σ(y, 0)

σ(x, 1)
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σ(y, 1)

σ(x, 2)

A1

. . .

Figure 3.2: A Configuration Tree of the Automaton AQ2 .
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Example 14. Figure 3.2 shows a configuration tree of AQ2. Since the automaton
AQ2 contains two variables, x and y, the counter associated to its configurations
is 2 dimensional. As an example, (Q2, (0, 0)) is a configuration in this tree which
indicates that the current state of the execution of AQ2 is Q2 and the current copies
of the variables are (x, 0) and (y, 0). This is because this configuration uses a counter
→
I = (0, 0) with leads to Ix = 0 and Iy = 0 (the copies of the variables x and y).
The configuration (qf , (2, 2)) records a run which is at state qf while using the copies
(x, 2) and (y, 2) of the variables x and y.

The formal definition of a run is given below.

Definition 10. (Run of an ELRV-description automaton.)
Let AP = (Q,L,Var, q0, δ, qf , κ) be a description automaton and let σ: Var×N 7→ NR be

a variable substitution. Let
→
G ∈ N|Var| be a counter and let S ⊆ Q× N|Var|. A run of AP

using a substitution σ, denoted T (AP , δ) and called a configuration tree, is a ⟨S,L⟩-labeled
tree (τP , λP , δP ) constructed as follows:

• λ(ϵ) = (q0,
→
0), a root of the tree, and let

→
G =

→
0 , a global counter initialized to a

vector of zero.

• Let n ∈ τP be a node such that λP (n) = (q,
→
I ). For every transition (q, t, q′) ∈ δ a

new child ni of n is generated according to the following sequence:

(1) δP (n, ni) =

{
σ(t, It) if t ∈ Var
t if t ∈ L

(2) ∀y ∈ Var, if q′ ∈ κ(y) then Gy := Gy + 1, and

(3) Let
→
I ′ =

{
I ′y = Gy, ∀y ∈ Var, s.t. q′ ∈ κ(y)
I ′y = Iy otherwise

(4) λP (ni) = (q′,
→
I ′)

Intuitively, when a run of a description automaton AP is at configuration (q,
→
I ) and

there is a transition (q, t, q′) in AP then the automaton AP moves to a configuration (q′,
→
I ′)

upon the input t, if t is a letter in the alphabet L, or upon σ(t, It), if t is a variable. Note
that, in this case σ(t, It) corresponds to the value assigned to the copy tIt of the variable
t by the substitution σ. For each variable y that is refreshed at the state q′ a new copy

of y is created at the configuration (q′,
→
I ′) which is materialized by a new value I ′y in the

vector
→
I ′. To ensure that I ′y is a new value (not already used before) a global counter

→
G is

associated with each run of the automaton AP . For each variable x, Gx stores the index
of the newest copy of the variable x considered.

Definition 10 defines a run of a description automaton AP as a tree rooted at the

configuration (q0,
→
0). Note that, a ground automaton AC (i.e., an automaton without

variable) has a unique configuration tree, which is noted hereafter T (AC , id). All the
configurations of T (AC , id) have a zero dimension vector as a counter and hence the
counter is omitted from the notation (i.e., we write (q) for such configurations).
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Chapter 3 From ELRV to Automata 3.2 Reducing Reasoning in ELRV to Simulation

Note that a partial configuration tree PT (AP , σ) is a partial tree of the configuration
tree T (AP , σ);

Now that the definitions of the automata and their configuration tree has been given,
the remaining will be devoted to unravel their link to pattern instances in order to reduce
reasoning in ELRV into simulation with ELRV-description automata.

3.2 Reducing Reasoning in ELRV to Simulation

This section emphasizes on the link between substitutions and configuration trees. More
particularly, we introduce a notion of equivalence between substitutions which is used in
the subsequent lemma (Lemma 5) to establish a tight relationship between valuation in
description logics (i.e., pattern instances) and configuration trees.

Definition 11 (Equivalence between substitutions). Let V ,V ′ be two sets of variables
and let V al be a set of constants. Let σ : V ∪ V al→ V al and ϕ : V ′ ∪ V al→ V al be two
substitutions. Then we say that σ is equivalent to ϕ, and we write σ ≡ ϕ, iff there exists
an isomorphism f between σ and ϕ which is the identity for element of V al.

Lemma 5 given below establishes a strong connection between patterns instances and
configuration trees.

Lemma 5. Let P be an ELRV-pattern of a terminology T P and let AP be its corresponding
description automaton. Then, we have:

(i) ∀ϕ: ϕ(P ) is an instance of P , then there exists σ such that σ ≡ ϕ and T (AP , σ) is a
configuration tree of AP

(ii) ∀σ: T (AP , σ) is a configuration tree of AP , then there exists ϕ such that ϕ ≡ σ and
ϕ(P ) is instance of P

Proof. (i): we show that, given an instance ϕ(P ) = (τ, λ, δ), we construct a configuration

tree T (AP , σ) = (τ ′, λ′, δ′) and an isomorphism f between ϕ and σ. Let
→
G be a global

counter associated with the execution of AP . T (AP , σ) and f are inductively defined as
follows:

• Initialization: ε ∈ τ ′ and λ′(ε) = (λ(ε),
→
0).

• Let n ∈ τ ′ with λ′(n) = (λ(n),
→
I ). For every ni ∈ τ :

– ni ∈ τ ′.
– For every δ(n, ni) = ϕ(u(t)):

∗ Let tx = (t, It) if t is a variable and tx = t if t is a constant.

∗ δ′(n, ni) = σ(tx) with σ(tx) = ϕ(u(t)). This is because δ(n, ni) = ϕ(u(t))
implies that the description λ(n) includes an atom ∃x.λ(ni). Hence, by
construction (Definition 9,(v), the automaton AP includes a transition
(λ(n), t, λ(ni)).

∗ f(u(t)) = tx.
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3.2 Reducing Reasoning in ELRV to Simulation Chapter 3 From ELRV to Automata

∗ λ′(ni) = (λ(ni),
→
I ′) with I ′x = Gx if λ(ni) ∈ κ(x) and I ′x = Ix otherwise.

By construction, we have T (AP , σ) is a configuration tree of AP and f is the identity
on constants and forms a one-to-one mapping between each variable u(x) of u(P )
and a pair (x, i), with i ∈ N, of T (AP , σ) such that σ(t) = v iff δ(f(t)) = f(v) (i.e.,
f is an isomorphism between σ and ϕ).

(ii): : Similar reasoning can be applied by exchanging T (AP , σ) and ϕ(P ) roles.

P

u(P ) AP

σ(P )σ(P )σ(P ) T (AP , ϕ)T (AP , ϕ)T (AP , ϕ)

Description Logic Description AutomataP

isomorphismisomorphism

Figure 3.3: Schematical relationships between representations

Figure 3.3 represents schematically the relationships between description logics and
description automata. Unfolding leads to instance trees while automata recognizes
configuration tree. Automata allows to represent with a finite machine the potential
infinite trees due to unfolding which will successively produce new instances for variables.

Our translation of ELRV patterns to description automata is used to design decision
procedures for the reasoning problems of our interest (i.e., matching, weak-subsumption
and pattern containment). We introduce below the notion of universal simulation which is
used to compare description automata w.r.t. to their configuration trees.

Definition 12 (Universal simulation). Let AP and AQ two description automata. AQ
is universally simulated by AP , noted AQ ≪∀ AP , if ∀σ,∃θ such that there exists a
homomorphism Z from T (AQ, θ) to T (AP , σ) with Z(ε) = ε. The universal simulation
problem is the problem of testing whether AQ ≪∀ AP .

Let Z be an homomorphism from T (AQ, θ) = (τ, λ, δ) to T (AP , σ) = (τ, λ′, δ). We
extend universal simulation to configurations as follows if Z(i) = j then we write λ(i)≪∀
λ′(j) to denote the homomorphism from Z(i) to j

Note that AQ ≪∀ AP is equivalent to (q0,
→
0) ≪∀ (p0,

→
0). We give now our main

technical result consisting in the characterization of pattern containment between ELRV-
patterns in terms of universal simulation between ELRV-description automata.
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Theorem 1. Let P and Q be two ELRV-patterns and let AP and AQ be respectively the
description automata of P and Q. A pattern containment problem P ⊑? Q has a solution
if and only if AQ ≪∀ AP .

This theorem is a direct consequence of Definition 12, Lemma 1 and Lemma 5. In the
case P is a ground EL-concept, Theorem 1 also provides a characterization of matching
using description automata as stated below.

Corollary 1. Let Q be an ELRV-pattern and C a ground ELRV-description. Let AQ and
AC be respectively the description automata of Q and C. A matching problem C ⊑? Q has
a solution if and only if AQ ≪∀ AC.

In order to characterize weak-subsumption with simulation, we will use a slight variation
of simulation called existential simulation noted ≪∃.

Definition 13 (Existential Simulation). Let AP and AQ two description automata. AQ
is existentially simulated by AP , noted AQ ≪∃ AP , if ∃σ,∃θ such that there exists a
homomorphism Z from T (AQ, θ) to T (AP , σ) with Z(ε) = ε. The existential simulation
problem is the problem of testing whether AQ ≪∃ AP .

Let Z be an homomorphism from T (AQ, θ) = (τ, λ, δ) to T (AP , σ) = (τ, λ′, δ). We
extend existential simulation to configurations as follows if Z(i) = j then we write λ(i)≪∃
λ(j) to denote the homomorphism from Z(i) to j

Theorem 2. Let P and Q be two ELRV-patterns and T Q and let AP and AQ be respectively

the description automata of P and Q. A weak-subsumption problem P ⊏∼
?
T Q has a solution

if and only if AQ ≪∃ AP .

As Theorem 1 is a direct consequence of Definition 12, Lemma 1 and Lemma 5.
It also provides a characterization for matching since matching is a special case of
weak-subsumption.

Theorem 1 and Theorem 2 reduce matching, weak-subsumption and containment in
the context of the logic ELRV into a simulation tests between description automata. Next
chapters exploit this link to design algorithms that solve those reasoning tasks.

3.3 Comparison with Variables Automata

Description automata are inspired of fresh variable automata [19, 20]. This class of
automata introduced by Belkhir et al. extends variable automata to handle refreshing
variables with infinite valuation domain. Research around this class of automata mainly
deal with closure properties (i.e. closed under union, concatenation, Kleene operator
and intersection). Simulation has been studied as a decision procedure and proved to be
exptime-complete. It has notably been applied to service composition which can be
reduced to simulation.

Compared to description automata, the formal definition is similar to fresh variable
automata. However, our definition of runs differs. Thus preventing from directly using
those results. The difference lies in the semantics of variables themselves. Indeed, there
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3.3 Comparison with Variables Automata Chapter 3 From ELRV to Automata

are two states for a variable in fresh variable automata, it is either free or bound. If it is
not bound then any bound can be associated and this bound will be kept for the remaining
until refreshment. Consequently, a variable refreshed by the same state may be bound
to different value while running different branches. Description automata can not be so
lenient regarding variables bound. Indeed, a strong property ensures that an instance may
be synchronized within run.

Figure 3.4 presents an automaton that will be used to illustrate the main difference. This
automaton can be either seen as a fresh variable automaton or a description automaton.

PA1 A2x x

Figure 3.4: Variable Automata AP

A language of a fresh variable automaton is given by its configuration automaton.
Configurations of a fresh variable are pairs of the form (q,S) where q is a state and S the
current value assignment. For example, the configuration (A1, {x = R1}) means that the
current state is A1 and x is assigned to R1. When a variable is bound, its assignment is
added. When a variable is refreshed, its assignment is removed. As expected, the initial
configuration is made of the initial state with an empty variable assignment. Figure 3.5(a)
corresponds to the complete configuration automaton of the running example. We assume
here that the alphabet is made of the (infinite) set {R1, R2, ..., RN}. In comparison, Figure
3.5(b) depicts the run associated to σ(x, 0) = R1.

(P, ∅)(A1,
{x = R3}

(A2,
{x = R3}

(A1,
{x = R1})

(A1,
{x = R2})

(A1,
{x = RN})

(A2,
{x = R1})

(A2,
{x = R2})

(A2,
{x = RN})

x

x

x

x

x

x

x

x
...

...

(a) Configuration Automata of AP

ϵ1 2

(P, (0))(A1, (0)) (A2, (0))

σ(x, 0) = R1 σ(x, 0) = R1

(b) Configuration Tree T (AP , σ)

Figure 3.5: Runs of Fresh Variable Automata

As illustrated in the figures, the main difference it that a free variable transition of a
fresh variable automata represents many transitions at the same time. On the other hand,
in our definition of configuration tree a variable transition represent one transition among
the many possible. The difference is not limited to choosing one possibility. Indeed, we
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ensure that any outgoing transition labeled by a same instance of a variable is assigned to
the same value until refreshment. Thus making the definitions of runs intrinsically different.
As demonstrated previously, this properties are important to capture the semantics of
description logics.

3.4 Conclusion of Chapter 3

Reasoning in Description Logics with refreshing variables bring up new challenges to
handle for matching, weak-subsumption and pattern containment.

This chapter entails the definition of ELRV -description automata which allow to reduce
reasoning tasks to simulation tests. ELRV-description automata are a class of automata
inspired from fresh variable automata with however different notions of runs. This class
naturally handles the refreshing variables while allowing to distinguish variable instances.
This feature imply a one-to-one comparison between instances of a pattern and runs of its
corresponding description automata.

We consider two kinds of simulation, universal and existential simulations. The main
difference lies in the quantifier associated. Pattern-containment is then reduced to universal
simulation and weak-subsumption to existential simulation. Matching is a special case of
both pattern containment and weak-subsumption. As a consequence it can be reduced to
the two simulations.

In the remaining, we exploit this reduction to design algorithms in order to solve the
different reasoning tasks.
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Chapter 4

Solving Matching in ELRV

Even though matching is a sub-problem of pattern containment and weak-subsumption,
we will present an algorithm to solve it. The main motivation is pedagogical since it bears
the advantage to only consider variable on one side. In order to ensure correctness of the
algorithm, the required formal definitions of pconf and pcover are introduced. As a result,
the algorithm Check Match is proven to be correct making matching in ELRV decidable.
We postpone discussion about complexity of the problem to the next chapter since maching,
weak-subsumption and pattern containment are in the same class of complexity. Table 4.1
summarizes notations introduced in this chapter.

Symbol Description

((q,
→
I ), c,Mq) Product configuration (pconf)
Mq Variable assignment
◁ Product cover (pcover)

Mq 7→c Mappings of outgoing transitions from q into c
ExecAP ,AC

Product execution tree
PT (AP , σ) Partial configuration tree

Table 4.1: Notations introduced in Chapter 4

4.1 Presentation of Check Match

This section emphasizes on solving matching in ELRV using its reduction to universal
simulation. Given an ELRV-description C and an ELRV-pattern Q, to solve C ⊑?

T Q,
the algorithm Check Match will test universal simulation between AQ and AC . This
algorithm is inspired from product automata. The main idea of Check Match is to run
synchronously AQ and AC , trying at each step to guess appropriate value assignments
to variables of AQ in order to construct σ, called hereafter a witness substitution, such
that there is a homomorphism from T (AQ, σ) into T (AC , id). Recall that T (AC , id) is the
unique configuration tree of AC (since AC is ground). A given state in such a synchronized
product is called a pconf (for product configuration).
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In the rest of this section, we define formally the notions of pconf and pcover before
presenting the algorithm Check Match.

Definition 14 (pconf). Let AQ be an ELRV-description automata and AC be a ground

ELRV-description automata. A pconf is a triple ((q,
→
I ), c,SQ) where (q,

→
I ) is a configura-

tion of AQ, c is a state of AC and SQ is a mapping from VarQ × N into NR.

The domain of SQ denoted dom(SQ) ⊆ VarQ×N corresponds to the variable instances
that appear in SQ. An assignment SQ is inconsistent if there exists (x, i) ∈ dom(SQ) such
that SQ(x, i) = a, SQ(x, i) = b and a ̸= b with a and b two constants.

Presence of counters implies an infinity of configurations from AQ. Consequently,
an infinity of pconfs can be produced accordingly. Thus leading any naive exploration
algorithm to an infinite run. In order to prevent from such situations, we present the
notion of pcover to cut exploration of infinite branches.

Definition 15 (pcover). Let AQ be an ELRV-description automata and AC be a ground

ELRV-description automata. Let pc = ((q,
→
I ), c,SQ) and pc′ = ((q′,

→
I ′), c′,S ′

Q) be two
pconfs. We say that pc′ is covered by pc, and we note pc′ ◁ pc, if and only if the following
conditions hold:

(i) c = c′,

(ii) q = q′ and,

(iii) For all (x, Ix) ∈ dom(SQ), there exists (x, I ′x) ∈ dom(S ′
Q) such that SQ(x, Ix) =

S ′
Q(x, I

′
x)

Example 15. Let consider the three following pconfs :

pc1 = (Q2, (3, 3), C, {(x, 3.) = R})
pc2 = (Q2, (5, 5), C, {(x, 5) = S, (y, 5) = R})
pc3 = (Q2, (6, 6), C, ∅)

The two first criteria of pcover are clearly respected for all the combination of these
pconf . There are no pcover relationship between pc1 and pc2. Indeed, if we focus
on (x, 3) = R of pc1 there does not exists (x, 5) = R in pc2 which contradicts the
third condition and reversely for (x, 5) = S. On the other hand, pc3 having only free
variables naturally leads to pc1 ◁ pc3 and pc2 ◁ pc3.

Check Match (Algorithm 1) is based on a synchronized product of executions of
description automata. Given two ELRV-description automata AC and AQ, the algorithm
tests whether AQ ≪∀ AC . To achieve this task, Check Match explores a search space
made of pconfs describing a specific state of a synchronous execution of AQ and

AC . The algorithm Check Match starts at an initial pconf0 = ((Q,
→
0), C,S0 = ∅),

corresponding to the two initial configurations of T (AQ, σ) and T (AC , id) with
initially an empty set of variable assignments. Then the idea is to explore the
synchronous product of T (AQ, σ) and T (AC , id) to incrementally construct a witness

σ by guessing at each pconf = ((q,
→
I ), c,SQ) the appropriate values for the variables
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that are free at state q in order to preserve the homomorphism from T (AQ, σ) to T (AC , id).

More precisely, this amounts to constructing mappings from the outgoing transitions

of the configuration (q,
→
I ) into the outgoing transitions of c (Algorithm 1 Line 4). Let

Mq 7→c be the set of such mappings. Each mapping M ∈Mq 7→c is made of a set of pairs

(((q,
→
I ), x, (q′,

→
J )), (c, a, c′)) indicating that the transition ((q,

→
I ), x, (q′,

→
J )) of T (AQ, σ) is

mapped to the transition (c, a, c′) of T (AC , id).
The algorithm makes a non-deterministic guess among the possible mappings. For the
chosen mapping, SQ is extended into S ′

Q containing the new assignments. Indeed, for each

element mi = (((q,
→
I ), x, (q′,

→
J )), (c, a, c′)) of M , the assignment (x, Ix) = a is generated.

In other words, S ′
Q = SQ ∪

⋃
mi
((x, Ix) = a). Any free remaining variable will receive

a non-deterministic assignment to a value of the domain of valuation LC and stored
in SQ. If the chosen mapping of Mq 7→c generates an inconsistent extension of variable
assignments S ′

Q then the Check Match algorithm returns false (Algorithm 1 Line 7).

If the extended assignment S ′
Q is consistent then it creates a new product configuration

pc′i = ((q′,
→
J ), c′,S ′

Q) for each element mi = (((q,
→
I ), x, (q′,

→
J )), (c, a, c′)) of M (Algorithm

1 Line 12). The algorithm then recursively calls Check Match for each generated pc′i.
Thus the processing of the mapping M succeeds if all such calls succeed (Algorithm 1
Line 14).

Algorithm 1 Check Match

Input : AQ, AC ; pconf : pc = ((q,
→
I ), c,SQ); Pconf’s historic : Hist

Output : True if AQ ≪∀ AC , False otherwise

1: if q is leaf or there exists a cover of pc in Hist then
2: return True
3: else
4: Compute the mappingsMq 7→c w.r.t. SQ
5: Guess M ∈Mq 7→c ; let |M | = n
6: S ′

Q ← SQ extended according to pairs of M
7: if S ′

Q is inconsistent then
8: return False
9: else
10: Hist← Hist ∪ {pc}
11: for mi = ((q,

→
I ), x, (q′,

→
J )), (c, y, c′)) ∈M do

12: Compute pc′i = ((q′,
→
J ), c′,S ′

Q)
13: end for
14: return

∧
i∈[1,n]

Check Match(AQ, AC , pc
′
i, Hist)

15: end if
16: end if
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The algorithm stops the exploration of a branch and return true when it reaches a

product configuration pc′ = ((q′,
→
J ), c′,S ′

Q) where q
′ is a leaf of T (AQ, σ) or when pc covers

another product configuration already explored in the historic Hist of the actual branch
(Algorithm 1 Line 1).

In order to show correctness of the algorithm we need to define the execution tree of
Check Match. The next section will explain step by step how it is obtained before giving
its formal definition.

4.2 Product Execution Tree of Check Match

The algorithm Check Match starts with the initial pconf0 = ((Q,
→
0), C,S0 = ∅). In order

to construct a witness σ, the algorithm can non-deterministically choose a mapping of the
setMq 7→c to explore ( Algorithm 1 Line 5).

Example 16. In Figure 4.1, the algorithm starts at the initial product configuration
pconf0 = ((Q2, (0, 0)), C, ∅) and tries to construct a witness σ. There are two
outgoing transitions from the configuration (Q2, (0, 0)):

t1 = ((Q2, (0, 0)), (x, 0), (NA1 , (0, 0)))
t2 = ((Q2, (0, 0)), (y, 0), (Q2, (1, 1)))

There are three outgoing transitions from (C):

t′1 = (C,R,NA1)
t′2 = (C,R,D)
t′3 = (C, S, C)

Consequently, the set of mappingsMQ2 7→C includes all the possible mappings from
{t1, t2} into {t′1, t′2, t′3}. Among them, two mappings, M ε

1 = {(t1, t′3), (t2, t′3)} and
M ϵ

2 = {(t1, t′1), (t2, t′2)} are depicted in Figure 4.1.
In the figure, non-deterministic choices made by the algorithm are symbolized by the
∨ nodes.

Each choice leads to consider a different product execution tree. Nonetheless, the
algorithm then constructs children pc′i issued of the chosen mapping ( Algorithm 1 Line
12). Check Match then makes a recursive call using the resulting children ( Algorithm
1 Line 14). This recursive call tries to complete the witness σ for the reached children.
There are three possibilities for a child :

• A child fulfills cover criteria.

• A child fails to produce a consistent mapping.

• A child makes a non-deterministic choice.

Example 17. In Figure 4.1, the two mappings are represented for pconf0, each of
them leading to specific execution trees.
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Let focus on the first mapping M ε
1 which is represented in the box M ε

1 of the fig-
ure. The reached children 0 and 1 are respectively labeled by ((Q2, (1, 1)), C, ∅) and
((NA1 , (0, 0)), C, {(x, 0) = S, (y, 0) = S}). The node 0 is dashed because it fulfills a
pcover relationship. Indeed, 0 is such that the label of the previous node ε is covered
by λ(0) therefore the algorithm stops. Regarding the node 1, the algorithm has to
check the homomorphism from (NA1 , (0, 0)) into C. There is no outgoing transition
from C labeled by A1, consequently ((NA1 , (0, 0)), A1, (qf , (0, 0))) can not be mapped
into any outgoing transition from C. The set of mappings is then empty therefore
the algorithm returns false (symbolized by the cross in the figure). All execution trees
corresponding to M ε

1 are then completed and correspond to a failing run since there
are no valid mapping.
We will now look toward M ε

2 which is represented in the box labeled M ε
2 . This

mapping produces children 0 and 1 such that λ(0) = ((Q2, (1, 1)), D, ∅) and λ(1) =
((NA1 , (0, 0)), NA1 , ∅). None of them are covered and their corresponding sets of
mappings M0 and M1 are not empty.

A branch of a product execution tree is completed once it reached a covering node, a
leaf or fails to find a simulation. If it continues, the algorithm guesses for each child a new
mapping. Each non-deterministic choice of mapping and thus their combination leads to a
different product execution tree. Chosen mappings may have children that will recursively
call the algorithm. To differentiate these choices, we say that a product execution tree is
associated to a combination of mappings M .

Example 18. Figure 4.1 explores two possibilities accessible from the mapping M ε
2

based on the mappings produced by the nodes 0 and 1.
The only mapping possible for the node 1, M1

1 maps ((NA1 , (0, 0)), A1, (qf , (0, 0)))
into (NA1 , A1, qf ). Note that the reached pconf contains the leaf qf so the algorithm
naturally stops. There are two outgoing transitions from the configuration (Q2, (1, 1)):

t1 = ((Q2, (1, 1)), (x, 1), (NA1 , (2, 2)))
t2 = ((Q2, (1, 1)), (y, 1), (Q2, (2, 2)))

There are three outgoing transitions from (D):

t′1 = (D,S,NA1)
t′2 = (D,S,C)
t′3 = (D,R,D)

The figure illustrates two mappings M0
1 = {(t1, t′3), (t2, t′3)} and M2

2 =
{(t1, t′1), (t2, t′2)}. The mapping M0

1 fails for the same reasons as M ε
1 . Regard-

ing M0
2 , the reached children are 00 with λ(ε) ◁ λ(00) = ((Q2, (2, 2)), C, ∅) and 01

which is similar to 1 so the execution will naturally reach a leaf by choosing the only
mapping possible M01

1 .
A successful product execution tree corresponds to the mapping M with M =M ε

2 ∪
M0

2 ∪M1
1 ∪M01

1 .
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Figure 4.1: Fragment Execution Trees of Check Match

The notion of product execution tree of Check Match will then be formally defined
with regard to a mapping M . This mapping is a union of mappings corresponding to the
recursive choices the algorithm made.

Definition 16 (Product execution tree of Check Match w.r.t to M). Let AQ =
(QQ,LQ,VarQ, q0, δQ, qf , κQ) and AC = (QC ,LC ,VarC , c0, δC , cf , κC) be two description

automata. Let
→
G ∈ N|VarQ| be a counter and let S be the set of all possible pconf . A run of

Check Match, denoted ExecAQ,AC
and called a product execution tree, is a ⟨S,LC⟩-labeled

tree (τ, λ, δ) constructed as follows:

• λ(ε) = ((q0,
→
0), c0, ∅), a root of the tree, and let

→
G =

→
0 , a global counter initialized

to a vector of zero.

• Let n ∈ τ be a node such that λ(n) = ((q,
→
I ), c,Sq) For each mi in

((q,
→
I ), t, (q′,

→
J )), (c, a, c′)) ∈ M ,a new child ni of n is generated according to the

following sequence:
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(i) δ(n, ni) =

{
Sq(t, It) = a, t ∈ VarQ

a t ∈ LC
(ii) ∀y ∈ Var, if q′ ∈ κ(y) then Gy := Gy + 1, and

(iii) Let
→
J =

{
Jy = Gy, ∀y ∈ Var, s.t. q′ ∈ κ(y)
Jy = Iy otherwise

(iv) λ(ni) = ((q′,
→
J ), c′,S ′

q)

with S ′
q = Sq ∪ {(x, Ix)→ a|(((q,

→
I ), x, (q′,

→
J )), (c, a, c′)) ∈M}.

Everything required to prove correctness of the algorithm is now defined. The next
section will then detail termination, soundness and completeness of Check Match.

4.3 Correctness of Check Match

4.3.1 Termination of Check Match

A run of the algorithm with the initial pconf leads to an exploration of its associated
execution tree. An execution tree may be infinite, however we aim here to prove that only
a finite part is explored leading to the algorithm’s halt. The algorithm stops exploring a
branch if one of the following occurs:

(i) A leaf has been reached.

(ii) The chosen mappingMq 7→c of a visited pconf failed.

(iii) A pconf fulfills cover criteria.

The two first cases will not be discussed since by definition they terminate. It remains
to discuss potential infinite branches. In our context, it means that there exists an infinite
sequence of pconfs without pcover. The following property ensures that using pcover
prevents from an infinite branch.

Property 1. Let AQ = (QQ,LQ,VarQ, q0, qf , δQ, κQ) be a description automaton and
AC = (QC ,LC ,VarC , c0, cf , δC , κC). For any infinite sequence of pconf pc1.pc2.pc3...pcn,
there exists i < j such that pci ◁ pcj.

Proof. Let assume the infinite sequence of pconf pc1.pc2.pc3...pcn. QP and QC are finite
sets. As a direct consequence, there exists qq ∈ QQ such that there are an infinite number
of pck of the form (qk = (qq, Ik), c,Sqk) withing the infinite sequence.

Let focus on this infinite set of pck. For any pconf there are up |D||VarQ| different
possible variable assignments with the finite domain D = LC. Therefore, in the considered
infinite set, there are at least two pconf with the same assignment.

Consequently, if we take pck = (qk = (qq, Ik), ck = c,Sqk) as defined above then there
exists k < k′ such that pck′ = (qk′ = (qq, I

′
k′), ck′ = c,Sqk′ ) and the following can be

observed :

1. ck = ck′ ,

2. qq = qq and
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3. For all (x, Ix) ∈ dom(Sqk), there exists (x, I ′x) ∈ dom(Sqk) such that Sq′k(x, Ix) =
Sqk′ (x, I

′
x)

Consequently, pck and pc′k are such that pck ◁ pc′k and k < k′ which concludes the
proof.

As a direct consequence Check Match has the following property.

Property 2. The algorithm Check Match terminates.

4.3.2 Soundness of Check Match

A run of the algorithm with the initial pconf leads to an exploration of its associated
execution tree. We will consider here, ExecAQ,AC

= (τ, λ, δ) corresponding to a successful
run of Check Match.

From ExecAQ,AC
, we are able to extract a partial configuration tree PT (AQ, σ) of

AQ and a partial configuration tree PT (AC , id). The algorithm ensures the following
properties :

(i) There is a homomorphism from PT (AQ, σ) into the partial-tree of PT (AC , id).

(ii) PT (AQ, σ) and PT (AC , id) can be extended to configuration trees T (AQ, σ) and
T (AC , id) such that there is a homomorphism between T (AQ, σ) into T (AC , id)
(Lemma 6).

Based on ExecAQ,AC
= (τ, λ, δ), we define the partial trees PT (AQ, σ) = (τQ, λQ, δQ)

and PT (AC , id) = (τC , λC , δC) as follows :

• ∀n ∈ τ , λ(n) = ((q,
→
I ), c,Sq) then λQ(n) = (q,

→
I ) and λC(n) = (c).

• δQ(n, ni) = δC(n, ni) = δ(n, ni).

Configuration trees are associated to a function σ, the corresponding σ of this tree is
the union of all variable assignments of the run, i.e. σ =

⋃
Sq. By construction, it is clear

that there is a homomorphism between those trees (i.e. Z(i) = i).
These trees are partial configuration trees for two reasons :

(i) A branch has been cut by pcover preventing from the infinite branch of T (AQ, σ) or
T (AC , id).

(ii) Only outgoing transitions of AC required to mimic AQ are explored. Some outgoing
transitions of AC may not be explored by the algorithm.

Example 19. Figure 4.2 depicts how to extract trees from ExecAQ2
,AC

on the
running example. Based on the successful product execution tree presented before, we
extract a configuration tree of AQ2 by keeping only configurations of AQ2 in the labels.
For example, the node ε (labeled by ((Q2, (0, 0)), c, ∅) in ExecAQ,AC

) is labeled by
(Q2, (0, 0)) in the extracted tree (which is exactly the label of the root of a configuration
tree of AQ2 ). The corresponding witness σ is made of all the mapping choices :
σ = {(y, 0) = S, (x, 0) = R, (y, 1) =, (x, 1) = S}
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We apply the same process to extract a partial tree of T (AC , id). For instance, it
leads to C for the label of the node ε. Since C is ground, the substitution function
which is the identity does not appear explicitly. This figure also illustrates why the
resulting tree is only a partial-tree. The transition (C, S, C) of AC should have led to
the edge (ε, S, 2) with λC(2) = C. However, it was not used during the simulation
process which makes the obtained tree incomplete.

ε

0

0100

010

1

10

σ(y, 0) = R σ(x, 0) = R

A1

σ(y, 1) = S σ(x, 1) = S

A1
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0
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(//////////////(Q2, (0, 0)),C, /∅)

(NA1)(D)

(C) (NA1)

(qf )

(qf )

Z(ε)

Z(0)

Z(1)

Figure 4.2: Partial Configuration Trees Extracted from ExecAQ,AC

It remains to show that pcover does not damage the existence of a homomorphism.
The intuition is to exploit the characteristics of the pcover. The space explored by a
covering pconf is wider than the space explored by a covered one (Definition 15 Item
(iii)). Therefore if the covered one succeeded, the covering one, which encloses even more
possibilities, will succeed.

Lemma 6. Let AQ = (QQ,LQ,VarQ, q0, qf , δQ, κQ) be a description automaton and AC =
(QC ,LC ,VarC , c0, cf , δC , κC) be a ground description automaton. For any pconf pci =

((qi,
→
I ), ci,Si) and pcj = ((qj,

→
J ), cj,Sj) with i < j and such that pci ◁ pcj. Then

(qj,
→
J )≪∀ (qi,

→
I ) and ci ≪∀ cj

Proof. Since ci = cj by definition of pcover this part is trivial.

Let focus on (qj,
→
J )≪∀ (qi,

→
I ) by definition of pcover we have :

• qi = qj and

• For all (x, Jx) ∈ dom(Sj), there exists (x, Ix) ∈ dom(Si) such that Si(x, Ix) =
Sj(x, Jx)

Then for any outgoing edge of (q,
→
J ) which is of the form ((q,

→
J ), x, (q′,

→
J ′)) there is an

outgoing edge ((q,
→
I ), x, (q′,

→
I ′)).
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The different cases are :

• x is a constant which is trivial.

• (x, Ix) is free (i.e. (x, Ix) /∈ dom(Si)) then (x, Jx) is free. For all σ such that
σ(x, Ix) = a, we can construct σ′ such that σ′(x, Jx) = a = σ(x, Ix).

• (x, Ix) is not free (i.e. Si(x, Ix) = a) and (x, Jx) is free then we can take Sj(x, Jx) = a.

• (x, Ix) is not free and (x, Jx) is not free either. We have Si(x, Ix) = Sj(x, Jx) = a by
definition of pcover.

The reached configuration (q′,
→
I ′) and (q′,

→
J ′) are such that (q′,

→
J ′) ◁ (q′,

→
I ′). The same

reasoning can then be recursively applied. Thus leading to (qj,
→
J )≪∀ (qi,

→
I ).

While looking for a witness, the algorithm checks the pconf pci = ((qi,
→
I ), ci,Si) in

order to have (qi,
→
I ) ≪∀ ci. It stops when a leaf is reached which is a trivial or when

it finds a cover pcj = ((qj,
→
J ), cj,Sj) for this configuration (i.e. pci ◁ pcj ). In this

case, (qi,
→
I )≪∀ ci has been verified during the run. Therefore, thanks to Lemma 6 and

transitivity of universal simulation, we have (qj,
→
J )≪∀ cj.

Property 3. The algorithm Check Match is sound.

The finite automaton corresponding to the witness can be constructed by fusing covered
nodes. Thus leading to consider σ repeating itself with a regular pattern. The witness will
then takes the shape of a finite set of definitions giving a regular matcher. Nodes labeled
with ground-description are also merged independently of their counters.

Example 20. The Figure 4.3 depicts the construction of the ground automaton
corresponding to the generated witness. To be more precise the nodes ε and 00 are
fused and the resulting nodes is named σ(Q2). The node 0 is renamed σ(Q′

2) because
it represents a different valuation of variables. Regarding the couples (01, 1) and
(010, 10), each member of a same couple are fused since they represent the same
ground concept. The resulting nodes are respectively named after the ground concept:
NA1 and qf . This automaton is then translated into a fnite TBox σ(T Q2).

σ(T Q2) =

{
σ(Q2) ≡ ∃R.A1 ⊓ ∃R.σ(Q′

2),
σ(Q′

2) ≡ ∃S.A1 ⊓ ∃S.σ(Q2)

}
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σ(Q2)

NA1

σ(Q′
2)

qf

σ(x, 0) = R

A1

σ(y, 0) = R

σ(x, 1) = S

σ(y, 1) = S

Figure 4.3: Witness of C ⊑? Q2

4.3.3 Completeness of Check Match

Lemma 7. The algorithm Check Match is complete.

Proof. Assume that there exists a witness σ0 such that there is a homomorphism Z from
T (AQ, σ0) into T (AC , id). Since the set of mappingsMq 7→c are exhaustive, we can use Z
to lead the algorithm to choose the mappings corresponding to σ0.
Thanks to the fact that the algorithm terminates (Property 2), the algorithm necessarily
stops. If the algorithm answers false, it means that the variable assignment is not consistent
which contradicts the fact that σ0 is a witness. If the algorithm answers true, the algorithm
may have stopped while constructing a witness σ. Due to pcover, we may have σ ≠ σ0.
However, soundness (Property 3) ensures that σ is also a solution. Consequently, if a
solution exists the algorithm answers yes.

The proof of the Lemma 7 shows that given a solution to lead the algorithm, there
necessarily exists a regular solution σ resulting in the following corollary.

Corollary 2. An ELRV matching problem C ⊑?
T Q has a solution iff it has a regular

solution.

Check Match has been proven to terminate as well as being sound and complete making
matching in ELRV decidable.

4.4 Conclusion of Chapter 4

This chapter presents the algorithm Check Match which demonstrates that matching in
ELRV is decidable. Its main idea is to run synchronously the two automata AQ and
AC leading to consider product configurations that combine a configuration of AQ, a
configuration of AC to keep track of the synchronous run and a mapping SQ to preserve
variable assignments.

This result is used as a baseline for the next chapter which will extends the proposed
algorithm to both pattern containment and weak-subsumption.
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Chapter 5

Solving Pattern Containment in
ELRV

This chapter represents the main contribution of this thesis. It consists in solving pattern
containment by designing an algorithm named Check Simu. The algorithm follows the idea
of the synchronous product of Check Match while introducing the notion of constraints to
handle variables on both sides. It leads to the definition of extended product configuration
and extended cover with regard to a set of constraints. The algorithm is proven to be
correct making pattern containment decidable. Moreover, we study the complexity of
pattern containment and more generally of the reasoning tasks in ELRV . We prove that it
is exptime-complete. The lower-bound is achieved by a reduction of matching problem
to halting problem of alternating turing machine which is polynomially bounded by the
size of the input. Table 5.1 summarizes notations introduced in this chapter.

Symbol Description

pc = ((qq,
→
I ), (qp,

→
J )) Extended product configuration (epconf)

C Set of constraints

RV(q) Relevant constraints w.r.t q = (qq,
→
I )

C|q Relevant set of constraints w.r.t q
QF (C) Quantified constraint associated to C
◁C Extended cover w.r.t a set of constraints C

Table 5.1: Notations introduced in Chapter 5

5.1 From Matching to Pattern Containment

We previously demonstrated how to solve matching, a special case of pattern containment.
The approach presented is the root of our method to solve pattern containment. However,
some differences must be enlighten in order to extend the algorithm. The main difference
lies in variable’s domain of valuation. Matching focuses on mapping variables into a finite
domain made of constants appearing in the ground definition C. Considering variables on
both sides requires mapping function to consider mapping :
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(i) A variable into a constant,

(ii) A constant into a constant and,

(iii) A variable into a variable.

It enlarges the size of the valuation domain to an infinite size. It is explained by the fact
that there are an infinite number of variables induced by refreshment and cycles. Moreover,
the domain of valuation of variables can not be limited to constant of P and Q as we did
for matching. Indeed, the pattern containment problem asks for such a relationship w.r.t
to any TBox. The following example will illustrate the impact of such a constraint. Let
consider the following patterns :

• T Q = {Q ≡ ∃z.Q ⊓ ∃y.A2 ⊓ ∃x.A1}

• T P1 =


P1 ≡ ∃R.P2 ⊓ ∃R.P3

P2 ≡ ∃S.P1 ⊓ ∃R.P3 ⊓ w.P3

P3 ≡ A1 ⊓ A2


• T P ′

1 =


P ′
1 ≡ ∃R.P ′

2 ⊓ ∃R.P ′
3

P ′
2 ≡ ∃S.P ′

1 ⊓ ⊓w.P ′
3

P ′
3 ≡ A1 ⊓ A2


The variable x is a non-refreshing variable while all the others variables are refreshing
variables. Let us first focus on the the pattern containment problem P ′

1 ⊑ Q. It is worth
to note the answer changes if one considers a specific TBox instead of ”for all TBoxes”
of pattern containment’s definition. Indeed, P ′

1 ⊑ Q is not solvable for all the ground
TBox but only for the ones dealing with NR = {R}. For instance, considers a TBox that
involves NR = {R, S}, then for the substitution σ such that σ(w, i) = S there exists no
substitution θ such that the subsumption relationships holds. On the other hand, the
pattern containment problem P1 ⊑ Q is solvable and will be used as a running example
in the remaining discussion about pattern containment. Figure 5.1 depicts the automata
related to those definitions.

Q

NA1NA2

qf

z

xy

A1A2

P1

P3

P2

qf

R
R

A1A2

R

S

w

P ′
1

P ′
3

P ′
2

qf

R

A1A2

R

S

w

Figure 5.1: Description Automata of Respectively Q, P1 and P ′
1.
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5.2 Presentation of Check Simu

This section presents the algorithm Check Simu, which is used to test universal simulation
between ELRV-description automata. Let AQ = (QQ,LQ,VarQ, q0, δQ, qf , κQ) and AP =
(QP ,LP ,VarP , p0, δP , pf , κP ) be two description automata. To test whether AQ ≪∀ AP ,
the main idea behind Check Simu is to run synchronously AQ and AP , trying to construct
iteratively two generic instantiations θG and σG of, respectively, AQ and AP , which ensure
that ∀σ,∃θ such that there exists a homomorphism from T (AQ, θ) to T (AP , σ). The two
substitutions are called generic because θG maps variables of AQ to constants or variables
that appear in an execution of AP (i.e.: θG : VarQ×N 7→ LP ∪ (VarP ×N)) while σG is the
identity function. More precisely, the algorithm Check Simu runs AQ and AP trying to
generate two generic configurations trees T (AQ, θG) = (τ, λ1, δ1) and T (AP , σG) = (τ, λ2, δ2)
over the same tree structure τ . The trees T (AQ, θG) and T (AP , σG) are synchronized in

the sense that when processing a node i ∈ τ , with λ1(i) = (q,
→
I ) and λ2(i) = (p,

→
J ), the

algorithm maps each transition (q, t, q′) of AQ to a transition (p, t′, p′) in AP such that

t = t′. To achieve this task, the algorithm creates a new child ij with λ1(ij) = (q′,
→
I ′) and

λ2(ij) = (p′,
→
J ′) and generates a new equality constraint δ1(i, ij) = δ2(i, ij) to ensure that

the two transitions are synchronized. Note that δ1(i, ij) = θG(t, It) if t is a variable of
AQ and δ1(i, ij) = t is t is a constant in AQ. Similarly, δ2(i, ij) is either a constant t′ or
σG(t

′, It′) if t
′ is a variable of AP . Consequently, a generated constraint has the form of an

equality between either a constant or θG(t, It) from one side and a constant or σG(t, It) from
the other side (c.f., definition 17). The generated set of constraints is quantified to obtain
a quantified constraint formula where variables in T (AQ, θG) are existentially quantified
while variables of T (AP , σG) are universally quantified (c.f., definition 19). By construction,
the algorithm ensures that the identity mapping Zid : τ → τ such that Zid(i) = i is a
homomorphism from T (AQ, θG) to T (AP , σG). In addition, a second important property
ensured by the algorithm is that if the generated formula is satisfiable then one can prove
that for any substitution σ, there exists θ = σ ◦ θG such that there is a homomorphism
from T (AQ, θ) into T (AP , σ) i.e. AQ ≪∀ AP .

In the remaining, we define the notion of constraints, epconf (extended product
configuration) and epcover (extended product cover) to formally present the algorithm
Check Simu. Variables of AP are referred as universal variables since AP is associated to
the universal quantifier in pattern containment definition. Similarly, variables of AQ are
referred to as existential variables.

Definition 17 (Constraint). Let AQ ≪∀ AP be a universal simulation problem. An
associated constraint is a statement of one of the following forms:

• (x, i) = (y, j),

• (x, i) = a, or

• a = b

where x, y are variables from VarQ ∪ VarP , i, j ∈ N and a,b are constants from LQ ∪ LP .

In the following C denotes a set of constraints and CT the transitive closure of C w.r.t.
to the equality relationship. The following definition formalizes the notion of epconf .
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Definition 18 (epconf). Let AQ, AP be two description automata. An epconf is a tuple
(q, p) where q is a configuration of AQ, p is a configuration of AP .

Example 21. For example, we can consider the following epconfs :

• ((Q, (0, 0, 0)), (P1, (0))) and;

• ((Q, (0, 1, 1)), (P3, (3))).

When testing AQ ≪∀ AP , we want to check out for all valuations of variables in AP
there exists a valuation of variables in AQ. Therefore, universal simulation requires to
quantify variables involved in constraints in order to preserve this information.

To preserve this semantics, we will exploit the notion of quantified constraints formula.
It allows to consider universal quantifier in addition to the classic existential quantifier.

Definition 19 (Quantified constraint formula). Let AQ ≪∀ AP be a universal simula-
tion problem and let C = {ψ1, . . . , ψn} be a set of associated constraints using variables
x1, . . . , xm from VarP and variables y1, . . . , yl from VarQ. The quantified constraint formula
associated to C, denoted QF (C), is of the form ∀x1, . . .∀xm,∃y1, . . . ,∃yl(ψ1 ∧ ... ∧ ψj).

All constraints ψi can only be equality constraint as stated in Definition 17. In this
context, quantified constraint formula corresponds to quantified constraint for positive
equality constraint languages. Our objective is to ensure that considered quantified
constraint formula are satisfiable for infinite domain since we aims to solve it for any TBox.
Satisfiability for quantified constraint formula w.r.t positive equality constraint languages
and infinite domain is proven to be np-complete [21].

We say that a set of constraints is satisfiable if the corresponding quantified constraint
formula is satisfiable. It is clear that any instance of a variable of VarP can be mapped to
only one instance of VarQ (or a constant). Otherwise, the quantified formula generated
would inevitably be unsatisfiable.

Example 22. Let x, y, z be variables and a be a constant.

• ∀(w, 0),∀(w, 1), ∃(z, 0), (((w, 0) = (z, 0)) ∧ ((w, 1) = (z, 0))) is not satisfiable.
Indeed, we can infer ∀(w, 0), ∀(w, 1), (w, 1) = (w, 0) which is unsatisfiable since
w is a universal variable.

• ∀(w, 0),∃(y, 0), (((w, 0) = (y, 0)) ∧ ((y, 0) = R)) is not satisfiable. Indeed, we
can infer ∀(w, 0), (w, 0) = R which is not satisfiable when dealing with infinite
valuation domains.

• ∀(w, 0),∃(y, 0),∃(z, 0), (((w, 0) = (y, 0)) ∧ ((z, 0) = R)) is satisfiable.

Definition 20 (Constraint set equivalence). Let C1 and C2 be two sets of constraints.
The set C1 is equivalent to C2, noted C1 ≡ C2 if :

1. (x, i) = (y, j) ∈ C1 iff (x, i′) = (y, j′) ∈ C2

2. (x, i) = a ∈ C1 iff (x, i′) = a ∈ C2
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Example 23. Let the following sets of constraints :

• C1 = {((w, 1) = (z, 0))}

• C2 = {((w, 0) = R), ((w, 1) = (z, 0))}

• C3 = {((w, 3) = R), ((w, 4) = (z, 1))}

Following the definition of set equivalence (Definition 20), we have : C3 ≡ C2.
More precisely, for (w, 0) = R we have (w, 3) = R and for (w, 1) = (z, 0) we have
(w, 4) = (z, 1). C1 does not have any constraint of the form (w, j) = R which makes
it not equivalent to the other two.

Relevance of a constraint depends on the epconf it is associated with. For example,
let us consider C = {(x, 2) = (w, 2), (x, 1) = S, (w, 4) = (x, 3)} and the epconf pc =
((NA1 , (3, 3, 3)), (P, (4))). The configuration (P, (4)) has only one counter, whose current
value is 4 and we assume that this counter is associated with the variable w. Therefore, we
know that the only constraint that constrains (P, (4)) is (w, 4) = (x, 3). Indeed, starting
from (P, (4)), only the instance (w, 4) must be considered therefore (x, 2) = (w, 2) does not
carry any information for this configuration. We introduce the notion of relevant variables
which limits constraint sets to relevant set of constraints w.r.t to a epconf .

Definition 21 (Relevant constraints w.r.t. a configuration c). Let C be a set of constraint
and let c = (qc, Ic) be a configuration.

• We define the set of relevant variables of c as RV(c) = {(x, Icx)|x ∈ V \ κ−1(qc)}.

• The relevant constraints of C w.r.t. a configuration c is defined as: C|c = {(t1 =
t2) ∈ CT |(t1 ∈ RV(c) ∨ t2 ∈ RV(qc)}.

Example 24. Let consider the configuration (Q, (0, 1, 1)) of AQ, the relevant variables
are then (x, 0), (y, 1) and (z, 1). Let the following sets of constraints :

• C1 = {((w, 1) = (z, 0))}

• C2 = {((w, 0) = R), ((w, 1) = (z, 0))}

• C3 = {((w, 3) = R), ((w, 4) = (z, 1))}

The relevant constraints are respectively :

• ∅

• ∅

• {((w, 4) = (z, 1))}

We dispose now of all the tools required to define pcover in the scope of pattern
containment problems.

Definition 22 (epcover w.r.t a set of constraints). Let AQ and AP be two ELRV-description
automata and let pc = (q, p) and pc′ = (q′, p′) be two epconfs. Let C be a set of constraints.
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We say that pc′ is covered by pc w.r.t. C, and we note pc′ ◁C pc, if and only if the following
conditions hold:

1. qp = qp′ and C|p ≡ C|p′

2. qq = qq′ and C|q ≡ C|q′

We are now ready to present our algorithm Check Simu (Algorithm 2). Given two
ELRV-description automata AQ and AP , the algorithm tests whether AQ ≪∀ AP . To
achieve this task, Check Simu explores a search space made of epconfs where each
epconf describes a specific state of a synchronous execution of AQ and AP . When
exploring an epconf (q, p), the algorithm makes non deterministic choices to map outgoing
transitions of q to outgoing transitions of p while generating new constraints which are
recorded in a global set of constraints. The algorithm starts with the initial epconf

pc0 = ((q0,
→
0), (p0,

→
0)) made of the initial configuration (q0,

→
0) of AQ and the initial

configuration (p0,
→
0) of AP . The initial global set of constraints C is empty. The idea

is to explore the synchronous product and to try constructing two generic substitutions

θG and σG by guessing at each epconf pc = ((qq,
→
I ), (qp,

→
J )) the appropriate mappings

in order to preserve a homomorphism from T (AQ, θG) into T (AP , σG). More precisely,

it aims to construct all mappings from the outgoing transitions of (qq,
→
I ) into outgoing

transitions of (qp,
→
J ) (Algorithm 2 Line 3). Let Mqq 7→qp be such a set of mappings.

Each mappings is a set of pairs of the form (((qq,
→
I ), tq, (q

′
q,

→
I ′)), ((qp,

→
J ), tp, (q

′
p,

→
J ′))). The

algorithm then guesses a mapping M ∈ Mqq 7→qp (Algorithm 2 Line 7) and constructs a
set of constraints CM made of constraints derived from the mapping M : for each pair

(((qq,
→
I ), tq, (q

′
q,

→
I ′)), ((qp,

→
J ), tp, (q

′
p,

→
J ′))) in M , a new constraint (tq = tp) is added to CM .

The global set of constraints C is then augmented with the new set CM (Algorithm 2
Line 8). If the global set of constraints is not satisfiable (i.e., the associated quantified
constraint formula QF(C) is not satisfiable), the algorithm returns false (Algorithm 2
Line 9).

If the global set of constraints C is satisfiable the algorithm creates a new epconf

pc′i = ((q′q,
→
I ′), (q′p,

→
J ′)) for each element mi = (((qq,

→
I ), tq, (q

′
q,

→
I ′)), ((qp,

→
J ), tp, (q

′
p,

→
J ′))) of

M (Algorithm 2 Line 14). The algorithm then recursively calls Check Simu for each
generated pc′i. Thus the processing of the mapping M succeeds if all such calls succeed
(Algorithm 2 Line 16).

The algorithm stops and returns true if a leaf of AQ is reached or if a cover condition
is fulfilled (Algorithm 2 Line 1).

In order to show correctness of the algorithm we need to define the execution tree of
Check Simu. The next section will explain step by step how it is obtained before giving
its formal definition.
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Algorithm 2 Check Simu

Input : AQ, AP ; Epconf : pc ; Epconf’s historic : Hist
Output : True if AQ ≪∀ AP , False otherwise

1: if q is not a leaf and Check Cover(AQ, AP , pc,Hist) == false then
2: Hist ← Hist ∪ {pc}
3: Compute the mappingsMq 7→p

4: if Mq 7→p = ∅ then
5: return False
6: else
7: Guess a mapping M fromMq 7→p

8: C← C ∪ CM

9: if C is not satisfiable then
10: return False
11: else
12: n← |M |
13: for mi = (((q,

→
I ), tq, (q

′,
→
I ′)), ((p,

→
J ), tp, (p

′,
→
J ′))) ∈M do

14: Compute pc′i = ((q′,
→
I ′), (p′,

→
J ′))

15: end for
16: return

∧
i∈[1,n]

Check Simu(AQ, AP , pc
′
i, Hist)

17: end if
18: end if
19: end if
20: return True

Algorithm 3 Check Cover

Input : AQ, AP ; Epconf : pc ; Epconf’s historic : Hist
Output : Boolean

1: if ∃ pc’ ∈ Hist such that pc’ ◁C pc then
2: return True
3: else
4: return False
5: end if
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5.3 Product Execution Tree of Check Simu

The algorithm Check Simu starts with the initial epconf0 = ((Q,
→
0), (P1,

→
0)). Possible

mappings are generated and stored in the setMQ7→P1 ( Algorithm 2 Line 3). One mapping
is selected non-determinstically and the satisfiability of the corresponding constraints is
verified (Algorithm 2 Line 9).

Example 25. In Figure 5.2, the algorithm starts at the initial product configuration
epconf0 = ((Q, (0, 0, 0)), (P1, (0))) with an empty set of constraints. There are three
outgoing transitions from the configuration (Q, (0, 0, 0)):

t1 = ((Q, (0, 0, 0)), (x, 0), (NA1 , (0, 0, 0)))
t2 = ((Q, (0, 0, 0)), (y, 0), (NA2 , (0, 0, 0)))
t3 = ((Q, (0, 0, 0)), (z, 0), (Q, (0, , 1, 1)))

There are two outgoing transitions from (P1, (0)):

t′1 = ((P1, (0)), R, (P2, (1)))
t′2 = ((P1, (0)), R, (P3, (0)))

Consequently, the set of mappingsMQ 7→P1 includes all the possible mappings from
{t1, t2, t3} into {t′1, t′2}. Among them, the figure illustrates two mappings, M ε

1 =
{(t1, t′1), (t2, t′1)(t3, t′2)} and M ϵ

2 = {(t1, t′2), (t2, t′2), (t3, t′1)}. In the figure, choices
made by the algorithm are symbolized by the ∨ nodes. The left side corresponds to M ε

1

and the right side to M ϵ
2. In both cases, the set of constraints generated is the same,

i.e. {(x, 0) = R, (y, 0) = R, (z, 0) = R}. The corresponding quantified constraint
formula, ∃(x, 0), (y, 0), (z, 0), (((x, 0) = R) ∧ ((y, 0) = R) ∧ (z, 0 = R)) is satisfiable.

Each choice leads to consider a different product execution tree. Nonetheless, the
algorithm then constructs children pc′i issued of the chosen mapping. ( Algorithm 2 Line
14). Check Simu then makes a recursive call using the resulting children ( Algorithm 2
Line 16). There are three possibilities for a child :

• It concerns a leaf or satisfies cover criteria.

• It fails to produce a satisfiable mapping.

• It chooses non-deterministically a mapping.

Example 26. In Figure 5.2, each mapping leads to its specific execution trees.
For the mapping M ε

1 , the reached children 0, 1 and 2 are respectively labeled by
((Q, (0, 1, 1)), (P3, (0))), ((NA2 , (0, 0, 0)), (P2, (1))) and ((NA1 , (0, 0, 0)), (P2, (1))). For
those three nodes there are no mappings possible since variables can not be substituted
by element of the set NA. The set of mappings is then empty therefore the algorithm
returns false (symbolized by the cross in the figure).
We will now look toward M ε

2 which produces a tree such that

λ(0) = ((Q, (0, 1, 1)), (P2, (1)))

λ(1) = ((NA2 , (0, 0, 0)), (P3, (0)))
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λ(2) = ((NA1 , (0, 0, 0)), (P3, (0)))

The involved states are not leaves and cover criteria is not satisfied. The the set of
mappings which is not empty is computed. Thus the algorithm continues its execution.
Note that for the nodes 1 and 2, there is only one successful mapping so we will not
discuss this part. Regarding, the node 0, Figure 5.2 depicts two possible mappings.
There are three outgoing transitions from the configuration (Q, (0, 1, 1)):

t1 = ((Q, (0, 1, 1)), (x, 0), (NA1 , (0, 1, 1)))
t2 = ((Q, (0, 1, 1)), (y, 1), (NA2 , (0, 1, 1)))
t3 = ((Q, (0, 1, 1)), (z, 1), (Q, (0, 2, 2)))

There are three outgoing transitions from (P2, (1)):

t′1 = ((P2, (1)), S, (P1, (1)))
t′2 = ((P2, (1)), R, (P3, (1)))
t′3 = ((P2, (1)), (w, 1), (P3, (1)))

Consequently, the set of mappings MQ7→P2 includes all the possible mappings
from {t1, t2, t3} into {t′1, t′2, t′3}. On the left side, we depict the mapping
M0

1 = {(t1, t′3), (t2, t′3), (t3, t′1)}. However, the quantified constraint formula,
∀(w, 1),∃(x, 0), (y, 0), (y, 1), (z, 0), (z, 1)(((x, 0) = R) ∧ ((y, 0) = R) ∧ (z, 0 =
R) ∧ ((y, 1) = (w, 1) ∧ ((x, 0) = (w, 1))) is not satisfiable. Indeed, it contains
(((x, 0) = R) ∧ ((x, 0) = (w, 1))) which infers ∀(w, 1), ((w, 1) = R).
On the other hand, the mapping M0

2 = {(t1, t′2), (t2, t′3), (t3, t′1)} is successful and leads
to new children which will makes a recursive call until the cover criteria is verified, a
leaf is reached or it fails. In the figure, this criteria is verified for 0 and 000 since we
have λ(0) ◁C λ(000) which is reached after one more step.

The notion of product execution tree of Check Simu will then be formally defined
with regard to a mapping that generates a set of constraints : CM . This mapping is a
union of mappings corresponding to the recursive choices the algorithm makes.

Definition 23 (Product execution tree of Check Simu w.r.t to M). Let AQ =
(QQ,LQ,VarQ, q0, δQ, qf , κQ) and AP = (QP ,LP ,VarP , p0, δP , pf , κP ) be two description

automata. Let
→
GQ ∈ N|VarQ| and

→
GP ∈ N|VarP | be counters. Let S be the set of all possible

epconf and let L be LP ∪VarP ×N. A run of Check Simu, denoted ExecAQ,AP
and called

a product execution tree, is a ⟨S,L⟩-labeled tree (τ, λ, δ) constructed as follows:

• λ(ϵ) = ((q0,
→
0), (p0,

→
0), a root of the tree, and let

→
GQ =

→
GP =

→
0 , a global counter

initialized to a vector of zero.

• Let n ∈ τ be a node such that λ(n) = ((qq,
→
I ), (qp,

→
J )). For each mi in

(((qq,
→
I ), tq, (q

′
q,

→
I ′)), ((qp,

→
J ), tp, (q

′
p,

→
J ′))) ∈ M ,a new child ni of n is generated ac-

cording to the following sequence:

(i) δ(n, ni) = tp

(ii) ∀y ∈ VarQ, if q′q ∈ κ(y) then GQ
y := GQ

y + 1, and
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(iii) Let
→
I ′ =

{
I ′y = GQ

y , ∀y ∈ VarQ, s.t. q′q ∈ κ(y)
I ′y = Iy otherwise

(iv) ∀y ∈ VarP , if q′p ∈ κ(y) then GP
y := GP

y + 1, and

(v) Let
→
J ′ =

{
J ′
y = GP

y , ∀y ∈ VarP , s.t. q′p ∈ κ(y)
J ′
y = Jy otherwise

(vi) λ(ni) = ((q′q,
→
I ′), (q′p,

→
J ′))

The tree of the Figure 5.2 shows execution trees of AQ ≪∀ AP . Note that transitions
labeled with (x, i) = tp, instead of tp as stated in the definition, are here to illustrate
bounding of variable during the execution. Everything required to prove correctness of the
algorithm is now defined. The next section will then detail correctness of Check Simu.
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Figure 5.2: Fragment Execution trees of Check Simu
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5.4 Correctness of Check Simu

5.4.1 Termination of Check Simu

A run of the algorithm with the initial epconf leads to an exploration of its associated
execution tree. An execution tree may be infinite, however we aim here to prove that only
a finite part is explored leading to the algorithm’s halt. The algorithm stops exploring a
branch if one of the following occurs:

(i) A leaf has been reached.

(ii) The chosen mappingMq 7→p of a visited epconf failed.

(iii) An epconf is covered by a previous one.

The two first cases will not be discussed since by definition they terminate. It remains
to discuss potential infinite branches. In our context, it means that there exists an infinite
sequence of epconfs. The following property ensures that using epcover prevents from an
infinite branch.

Property 4. Let ExecAQ,AP
be a product execution tree of two description automata AQ

and AP and let C be its associated set of global constraints. For any infinite sequence
pc1.pc2.pc3...pcn of epconfs of ExecAQ,AP

, there exists i < j such that pci ◁C pcj.

Proof. Let AQ = (QQ,LQ,VarQ, q0, qf , δQ, κQ) and AP = (QP ,LP ,VarP , p0, pf , δP , κP ).
Let consider an infinite sequence pc1.pc2.pc3...pcn of epconfs of ExecAQ,AP

. QP and QQ
are finite sets. A a direct consequence, there exists qq ∈ QQ and qp ∈ QP such that there
are an infinite number of pck of the form (qk = (qq, Ik), pk = (qp, Jk)) within this sequence.

If we take pck as defined above then there exists k < k′ such that pck′ = (qk′ =
(qq, I

′
k′), qp′ = (qp, J

′
k′)) and the following can be observed :

1. C|qk ≡ C|qk′

2. C|pk ≡ C|pk′

Indeed, an instance of a variable of AQ has a total of (LP +VarP +1) possible assignments
which is a finite number. It is explained by the fact that if an existential variable is mapped
to two different universal variables, the corresponding quantified formula is not satisfiable
which limits VarP × N to VarP . Since epcover compares each relevant variable bounds,
there are only a finite number of different possible mappings.

Consequently, pck and pc′k are such that pck ◁C pc
′
k and k < k′ which concludes the

proof.

As a direct consequence Check Simu has the following property.

Property 5. The algorithm Check Simu terminates.

69



5.4 Correctness of Check Simu Chapter 5 Solving Pattern Containment

5.4.2 Soundness of Check Simu

A run of the algorithm with the initial epconf leads to an exploration of its associated
execution tree. We will consider here, ExecAQ,AP

= (τ, λ, δ) corresponding to a successful
run of Check Simu.

From ExecAQ,AP
, we are able to extract a partial configuration tree PT (AQ, θG) of

AQ and a partial configuration tree PT (AP , σG). The algorithm ensures the following
properties :

(i) There is a homomorphism from PT (AQ, θG) into the partial-tree of PT (AP , σG) of
AP .

(ii) PT (AQ, θG) and PT (AP , σG) can be extended to configuration trees T (AQ, θG) and
T (AP , σG) such that there is a homomorphism between T (AQ, θG) into T (AP , σG)
(Lemma 8).

Based on ExecAQ,AP
= (τ, λ, δ), we define the partial trees PT (AQ, σG) = (τQ, λQ, δQ)

and PT (AP , θG) = (τP , λP , δP ) as follows :

• ∀n ∈ τ , λ(n) = ((qq,
→
I ), (qp,

→
J )) then λQ(n) = (qq,

→
I ) and λP (n) = (qp,

→
J )

• δQ(n, ni) = δP (n, ni) = θG(tq) = σG(tp) = tp

Configuration trees are associated to a function, here θG is done according to the set of
constraints of the execution tree CM while σG is identity. By construction, it is clear that
there is a homomorphism Zid between those trees such that Zid(i) = i. The tree labeled
with configuration of AQ is a partial tree of a configuration tree and the one labeled with
configuration of AP is a partial tree T (AP , σG).

Then ∀σ, θ = σ ◦ θG is a possible substitution for AQ such that the homomorphism is
preserved.

These trees are partial configuration trees for two reasons :

(i) A branch has been cut by epcover preventing from the infinite branch of T (AQ, σG)
or T (AP , θG).

(ii) Only outgoing transitions of AP required to mimic AQ are explored. Some outgoing
transitions of AP may not be explored by the algorithm.

Figure 5.3 illustrates the resulting partial configuration trees of the running example.
The following lemma states that epcover perserve the homomorphism for complete trees.

Lemma 8. Let AQ = (QQ,LQ,VarQ, q0, qf , δQ, κQ) and AP =
(QP ,LP ,VarP , p0, pf , δP , κP ) be two description automata. Let C be a set of con-

straints. For any epconf pc1 = ((q1,
→
I ), (p1,

→
J )) and pc2 = ((q2,

→
I ′), (p2,

→
J ′)) such that

pc1 ◁C pc2 w.r.t C. Then (q2,
→
I ′)≪∀ (q1,

→
I ) and (p1,

→
J )≪∀ (p2,

→
J ′)

Proof. By definition of epcover we have :
• p1 = p2 and C|p1 ≡ C|p2

• q1 = q2 and C|q1 ≡ C|q2
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Then for any outgoing edge of (q2,
→
I ′) which is of the form ((q2,

→
I ′), x, (q′,

→
K ′)) there is

an outgoing edge ((q1,
→
I ), x, (q′,

→
K)).

The different cases are :
• x is a constant which is trivial.

• For all unconstrained (x, I ′x) then (x, Ix) is unconstrained then for any σ′(x, I ′x) = t,
we can construct σ such that σ(x, Ix) = t = σ(x, Ix).

• ∀((x, I ′x) = t) ∈ C|q2 , then (x, Ix) = t ∈ C|q1

The reached configuration (q′,
→
K) and (q′,

→
K ′) are such that (q′,

→
K) ◁C (q′,

→
K ′). The same

reasoning can then be recursively applied. Similarly, (p1,
→
J ) ≪∀ (p2,

→
J ′) is obtained by

exchanging roles of p1 and p2 compared to q1 and q2.

While looking for the generic substitutions θG and σG, the algorithm checks the pconf

pc1 = ((q1,
→
I ), (p1,

→
J )) in order to have (q1,

→
I )≪∀ (p1,

→
J ). It stops when a leaf is reached

which is a trivial or when it finds a cover pc2 = ((q2,
→
I ′), (p2,

→
J ′)) for this configuration (i.e.

pc1 ◁C pc2 ). In this case, (q1,
→
I )≪∀ (p1,

→
J ) has been verified during the run. Therefore,

thanks to Lemma 8 and transitivity of universal simulation, we have (q2,
→
I ′)≪∀ (p2,

→
J ′).

Property 6. The algorithm Check Simu is sound.
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Figure 5.3: Partial Configuration trees extracted from ExecAQ,AP1
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5.4.3 Completeness of Check Simu

The algorithm makes an exhaustive exploration thanks to computation of all the mappings
(Algorithm 2 Line 3). Proof of completeness is then similar to the proof of Check Match
using a given solution one can guide the algorithm. If the algorithm returns false, it
demonstrated that the solution was not correct since the computation of mappings is
exhaustive. Otherwise soundness ensures the algorithm’s answer is good.

Property 7. The algorithm Check Simu is complete.

5.5 Extension to Weak-Subsumption

Pattern containment and weak-subsumption are two problems involving variable on both
sides. Fortunately, decidability of weak-subsumption can be achieved similarly with a
minor change to handle the specific features of the problem. Indeed, the simulation
problem we aim to solve is AQ ≪∃ AP which only requires the existence of a substitution
for both automata.

The main difference lies in the definition of the quantified constraint formula required
for satisfiability. Intuitively, the quantified constraint formula applied the quantifier ”∀”
for any variable from AP and the quantifier ”∃” for variables from AQ accordingly to
the simulation definition. However, existential simulation does not carry any difference
between variables since both sides are associated to the quantifier ”∃”. Consequently, the
formula generated is a classic constraint formula defined as follows :∧

ψ∈C

ψ with C a set of constraints.

Example 27. Consider the following ELRV-terminology where all the variables that
occur in ELRV-descriptions are refreshing variables.

A1 ≡ A

B1 ≡ B

C ≡ ∃R.B1

P ≡ ∃x.P ⊓ ∃z.C ⊓ ∃z.B1 ⊓ ∃S.A1

Q ≡ ∃R.Q2 ⊓ ∃R.C ⊓ ∃y.B1

Q2 ≡ ∃R.Q ⊓ ∃S.B1 ⊓ ∃S.A1

Figures 5.4 depict respectively the ELRV-description automata of the ELRV-patterns
P and Q. The refreshing state of both x and z is the state P (i.e., κ(x) = κ(z) = {P})
while the refreshing state of y is the state Q (i.e., κ(y) = {Q}).

An execution of the algorithm is presented in Figure 5.5. The algorithm will return
true.

The proof of termination does not change since the number of configurations remains
the same. However, in case of weak-subsumption, the substitution domain can be reduced
to constants of AP and AQ since we only look for the existence of a solution.
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Figure 5.4: Automata of Example 27
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Figure 5.5: Potential Execution Tree to solve AQ ≪∃ AP

5.6 Complexity of Reasoning Tasks in ELRV

The algorithm Check Simu is proven to be correct as is Check Match. We will now
demonstrate that these algorithms are optimal. The lower bound is achieved by a reduction
from an alternating turing machine’s problem to matching problem. The upper bound
will be obtained by estimating the size of the space of search in the worst case. The next
section give the details to compute those bounds resulting in a tight upper and lower
bounds.
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5.6.1 Lower Bound : ATM Halting and Matching

The exptime-hardness of checking universal simulation between ELRV-description au-
tomata is obtained by a reduction from the existence of infinite execution of an Alternating
Turing Machine M working on a space polynomially bounded by the size of the input.
This later problem is known to be exptime-complete [27].

Definition 24. Alternating Turing machine[27]
An alternating Turing machine M is a tuple (Q, q0,Γ, δ,mode) where :

• Q is the set of states

• q0 is the initial state

• Γ is the set of tape symbols

• mode : Q 7→ {∀, ∃, accept, reject}. is the labelling function of control state

• δ : Q× Γ 7→ P(Q× Γ× {L,R})

Figure 5.6 represents an example of an alternating turing machine composed of three
states. Among them, there are one universal state (q0) and two existential states (q1 and
q2). This machine will be later used to illustrate the reduction of universal simulation.

A configuration C of M is of the form y1, ..., qyj, ..., yn where q ∈ Q a state of M ,
and the head points actually on the jth letter of the tape (i.e., yi are the letters of the
word w on the tape). A transition qa 7→ bRq′ is applicable from a configuration C if the
letter pointed by the head is equal to a (yj = a), then the successor C’ of C is equal to
y′1, ...y

′
j, q

′y′j+1, ..., y
′
n s.t yk = y′k for k ∈ [1, n] and k ̸= j and y′j = b. It can be rewritten

over configuration as C
qa/bRq′−→ C ′ or even (y1, ..., qyj, ..., yn)

qa/bRq′−→ (y′1, ...y
′
j, q

′y′j+1, ..., y
′
n).

The machine M then starts on C0 = q0y1, ..., yn, where yi = wi, the i
th letter of the input

word w. The definition of acceptance of an alternating Turing machine is recursive :

• If the configuration C is in an accepting control state q, then C is accepting.

• If the configuration C is in a rejecting control state q, then C is rejecting.

• If the configuration C is in a universal control state q, then C is accepting if all
the configurations reachable from C in one step are accepting and rejecting if some
configurations reachable from C in one step are rejecting.

• If the configuration C is in an existential control state q, then C is accepting
if some configurations reachable in one step are accepting and rejecting when
all configurations reachable in one step are rejecting (the case of classical non-
deterministic Turing machine correspond to an alternating machine where all states
are existential).

M is said to accept an input word w if the initial configuration of M is accepting, and
to reject w if the initial configuration is rejecting. A configuration reachable in one step
from configuration C is called a successor of C and the set of successors of C is denoted
successors(C).
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q0

start

q1 q2
a/aR a/aR

b/bL

b/aL b/bL

b/aL
∀∃ ∃

Figure 5.6: Example of Alternating Turing Machine

We consider the problem of the existence of an infinite execution of an Alternating
Turing machine M on an input word w = w1, ..., wn. That is given a word w as input
then whatever the transitions of universal states of M the machine must continue the
execution. For existential states of M , the,machine must have at least a transition such
that the machine continues its execution. Thus, rejecting states are states without outgoing
transitions.

The machine works on a space bounded by the size n of the input word w. Hence,
if the head points on x1 the machine is not allowed to move to the left (i.e. execute a
transition labelled with L), and if the head points on xn the machine is not allowed to
move to the right (i.e. execute a transition labelled with R).

Given an Alternating Turing Machine M working on a space polynomially bounded
by the size of the input word w. We construct two description automata denoted as
Acontrol and Atest such that M has an infinite execution on the input w if and only if
Atest ≪∀ Acontrol. Note that in the reduction Acontrol will be a ground automata hence
considering a matching problem which is a special case of pattern containment. Therefore,
we will only aim to prove the existence of a substitution for Atest.

We consider a function nt: Q 7→ N such that it gives for each state q of M the number
of outgoing transitions. For practical purpose, each state q of M will consider a specific
order over transitions tj with j ∈ [1,nt(q)]. This order will be used later on to build
Acontrol and Atest.

Construction of Acontrol decomposes transitions of the original machine M . To do
so, we will encode each state q of M as a state lq in Acontrol. Moreover, we denote a
set of states {qtj ,i} such that the jth transition tj of q can be decomposed. A transition
of M first reads the letter in x pointed by the head then the transition replaces value
stored in the cell x and moves the head accordingly. Each steps will then corresponds to a
specific transition in Acontrol. Acontrol focuses on capturing the structure and the behaviour
defined in M . In other words it emphasizes on the input word w and transitions of M .
Each transition in M is encoded into a sequence of transitions in Acontrol. Note that the
structure induced differs regarding the mode of the state (i.e. universal or existential).

Definition of Acontrol:

Let Acontrol = (Lcontrol,Varcontrol,Qcontrol, q0,control, qf,control, δcontrol, κcontrol) defined as
follows :

• The set of letters Lcontrol is composed of :

75



5.6 Complexity Analysis Chapter 5 Solving Pattern Containment

– {tj} with j ∈ [1,m], the symbols representing the transitions of M and m =
max({nt(q)|q ∈ Q}) the maximal number of transitions among states of M

– {wi} the letters of the input w with i ∈ [1, |w| = n]

– Γ ∪ {L,R}, the symbols used in M

– reject a specific symbol only used by the state univ

• Varcontrol = ∅

• The set of states Qcontrol is composed of :

– {lq|q ∈ Q} with Q the set of states of M

– {qtj ,i} a set of additional states such that i ∈ [0, 3] and j ∈ [1,m] with m as
defined above

– {qinit,i} a set of additional states used to mimic the input w with i ∈ [0, n[

– univ, a state that can loop on itself with any letter of Lcontrol

• q0,control = qinit,0

• qf,control = ∅

• The set of transitions δcontrol is composed of :

– For each letter of w = w1...wn : {qinit,i, wi, qinit,i+1} for i ∈ [0, n[ and
(qinit,n−1, wn, lq0)

– For each transition tj of q such that q
a/bd−→ q′ where q is an existential state of

M , j ∈ [1,nt(q)] :

∗ (lq, tj, qtj ,0),

∗ (qtj ,0, tj, qtj ,1)

∗ (qtj ,1, a, qtj ,2)

∗ (qtj ,2, b, qtj ,3)

∗ (qtj ,3, d, lq′)

∗ {(qtj ,0, tk, univ)} for j ̸= k and k ∈ [0,nt(q)]

– For each transition tj of q such that q
a/bd−→ q′ where q is a universal state of M ,

j ∈ [1,nt(q)]

∗ (lq, tj, qtj ,1)

∗ (qtj ,1, a, qtj ,2)

∗ (qtj ,2, b, qtj ,3)

∗ (qtj ,3, d, lq′)

– (univ, l, univ) for l ∈ Lcontrol

• κcontrol = ∅
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Acontrol alone only encodes the behaviour of the alternating turing machine. On the
opposite, Atest emphasizes on the tape and the head position. It considers a set of variables
where each element xi corresponds to the ith cell of the tape. For each state of q in M , we
then denote qxi the state encoding q in M with the head on the ith cell.

In Atest, the set {qx,tj ,i} is used to decompose transitions of M with q the state
considered, x representing the variable pointed by the head and tj the transition. By
making a wise use of L and R, we can link the transition toward the state simulating the
head position in a deterministic way. As we did for Acontrol, we will use a set of additional
transitions to capture the behaviour of universal states and existential states.

Definition of Atest :
Let Atest = (Ltest,Vartest,Qtest, q0,test, qf,test, δtest, κtest) defined as follows :

• The set of letters Ltest is composed of :

– {tj} with j ∈ [1,m], the symbols representing the transitions of M and m =
max({nt(q)|q ∈ Q}) the maximal number of transitions for one state in M .

– {wi} the symbols. corresponding to the letters of the input w with i ∈ [1, |w| =
n].

– Γ ∪ {L,R}, the symbols used in M

– reject a letter to model failing states of M .

• The set of variable Vartest is composed of :

– {xi} with i ∈ [1, |w| = n], refreshing variables corresponding to the n letters of
the input word w.

– choice a refreshing variable required for existential state of M

• The set of states Qtest is composed of :

– {qxi |q ∈ Q} with Q the set of states of M and xi representing the position of
the head on the ith cell in M

– {qx,tj ,i} a set of additional states such that x target the outgoing variable used
by the state, i ∈ [0, 3] and j ∈ [1,m] with m as defined above.

– {qinit,i} a set of additional states to initialize w with i ∈ [0, n[

• q0,test = qinit,0

• qf,test = ∅

• The set of transitions δtest is composed of :

– For each letter of w = w1...wn : {qinit,i, xi, qinit,i+1} for i ∈ [0, n[ and
(qinit,n, xn, qx1)

– For each transition tj of q such that q
a/bd−→ q′ where q is an existential state of

M , j ∈ [1,nt(q)] and for i ∈ [1, n]:

∗ (qxi , tj, qxi,tj ,0) ,
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∗ (qxi,tj ,0, choice, qxi,tj ,1) ,

∗ (qxi,tj ,1, xi, qxi,tj ,2) ,

∗ (qxi,tj ,2, xi, qxi,tj ,3) ,

∗ if d = R and i ̸= n: (qxi,tj ,3, R, q
′
xi+1

)}
∗ if d = L and i = 1: (qxi,tj ,3, reject, qxi,tj ,3)}
∗ if d = R and i ̸= n: (qxi,tj ,3, R, q

′
xi+1

)}
∗ if d = R and i = n: (qxi,tj ,3, reject, qxi,tj ,3)}

– For each transition tj of q such that q
a/bd−→ q′ where q is a universal state of M ,

j ∈ [1,nt(q)] and for i ∈ [1, n] :

∗ (qxi , tj, qxi,tj ,1) ,

∗ (qxi,tj ,1, xi, qxi,tj ,2) ,

∗ (qxi,tj ,2, xi, qxi,tj ,3) ,

∗ if d = L and i ̸= 1 : (qxi,tj ,3, L, q
′
xi−1

)}
∗ if d = L and i = 1: (qxi,tj ,3, reject, qxi,tj ,3)}
∗ if d = R and i ̸= n: (qxi,tj ,3, R, q

′
xi+1

)}
∗ if d = R and i = n: (qxi,tj ,3, reject, qxi,tj ,3)}

– For each state q such that nt(q) = 0 : (qxi , reject, qxi) for i ∈ [1, n]

• κtest(xi) = {(qxi,tj ,2)} for i ∈ [1, n] and κ(choice) = {qxi} for i ∈ [1, n] and mode(q) =
∃.

If the simulation fails because Acontrol can not simulate Atest, it means that the move
of M can not be done according to the current values of the tape. We will now present
how behaviours of initialization, universal states and existential states are captured by
universal simulation.

• Initialization : A sequence of states/transitions is added such that concatenating
labels of the transitions forms w. This sequence ends reaching the state representing
in Acontrol the initial state of M . The same is done in Atest with the corresponding
variables instead of letters of w. Note that this sequence leads to the state representing
the initial state of M with the head on the first letter. The only possibility for an
homomorphism is to associate to each variable xi the letter wi. Figure 5.7 illustrates
of both Acontrol and Atest initialization on the running example for the word w = ab.

qinit,0 qinit,1 q0x1
x1 x2 . . .

(a) Atest

qinit,0 qinit,1 lq0
a b . . .

(b) Acontrol

Figure 5.7: Example of Initialization for the Input Word ab

• Universal states : The constructions in both automata are identical up to variables.
For example, let consider the same transition (q0, b/aL, q1) knowing it is the second
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transition and that the head is on the first letter. This transition is respectively
encoded in Atest and Acontrol as :

{(q0x1 , t2, q
0
x1,t2,1

), (q0x1,t2,1, x1, q
0
x1,t2,2

), (q0x1,t2,2, x1, q
0
x1,t2,3

), (q0x1,t2,1, L, q
1
x2
)}

{(lq0 , t2, q0t2,1), (q
0
t2,1
, b, q0t2,2), (q

0
t2,2
, a, q0t2,3), (q

0
t2,3
, L, lq1)}

It is quite intuitive to see that the homomorphism will map (q0x3,t2,1, x3, q
0
x3,t2,2

) into
(q0t2,1, b, q

0
t2,2

). This is possible only if the value of the instance of x3 is equal to b.
Then, by definition, x3 is freed in qx3,t2,2. This lead to a brand new instance of
x3 which is immediately associated to a (otherwise simulation fails). Figure 5.8
illustrates universal structure on the running example for the state q0.

q0x1

q0x1,t1,1

q0x1,t1,2

q0x1,t1,3

q0x1,t2,1

q0x1,t2,2

q0x1,t2,3

q1x2 q2x2

t1

x1

x1

R

t2

x1

x1

R

...
...

(a) Atest

lq0

q0t1,1

q0t1,2

q0t1,3

q0t2,1

q0t2,2

q0t2,3

lq1 lq2

t1

a

a

R

t2

a

a

R

...
...

(b) Acontrol

Figure 5.8: Example of Universal Construction Corresponding to q0

• Existential states The construction focuses on choosing which transitions must be
checked out. Since the decomposition of the transition is similar than for universal
states once the choice is done, we will focus on the two first transitions. For example,
let consider the transitions of q1 with the head on the second letter. We have t1
for (q1, b/aL, q0) and t2 for (q1, b/bL, q0) then they will be respectively in Atest and
Acontrol encoded as :

{(l1q , t2, q1t2,0), (q
1
t2,0
, t2, q

1
t2,1

), (q1t2,0, t1, univ)...}

{(q1x2 , t2, q
1
x2,t2,0

), (q1x2,t2,0, choice, q
1
x2,t2,1

)...}
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and
{(l1q , t2, q1t1,0), (q

1
t1,0
, t1, q

1
t1,1

), (q1t1,0, t2, univ)...}

{(q1x2 , t2, q
1
x2,t1,0

), (q1x2,t1,0, choice, q
1
x2,t1,1

)...}
Since choice is refreshed by (q1x2), any configuration involving this state will always
deal with a brand new (free) instance. Any outgoing transitions will then synchronize
choice value. It means that a choice can be made but it will be synchronized in both
paths. Let assume choice = t1, then if there is an homomorphism, it will map q1x2,t1,1
into q1t1,1 and map q1x2,t2,1 into univ. Figure 5.9 illustrates universal structure on the
running example for the state q1

q1x2

q1x2,t1,0

q1x2,t1,1

q1x2,t1,2

q1x2,t1,3

q1x2,t2,0

q1x2,t2,1

q1x2,t2,2

q1x2,t2,3

q0x1

t1

choice

x2

x2

L

t2

choice

x2

x2

L

...

(a) Atest

lq1

q1t1,0

q1t1,1

q1t1,2

q1t1,3

q1t2,0

q1t2,1

q1t2,2

q1t2,3

lq0

univ

t1

t1
t2

b

b

L

t2

t2
t1

b

a

L

Lcontrol

...

(b) Acontrol

Figure 5.9: Example of Existential Construction Corresponding to q1

Given an alternating turing machine M an input word w, we construct Acontrol and
Atest as explained previously denoted as the description automata associated to M and w.
The next lemma shows the connection between the existence of infinite execution of the
machine M over the word w and the test of simulation between Atest and Acontrol.

Theorem 3. Let M be an alternating Turing machine working in space bounded by the
size of an input word w, and let Acontrol and Atest the description automata associated to
M and w. Then, M has an infinite computation on w if and only if Atest ≪∀ Acontrol.

Proof. The initializing phase will enforce each letter wi on the corresponding variable xi

leading to the matching pconf ((q0x1 ,
→
0), lq0 , {(x, i) = wi∀i ∈ [1, n]}).
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If lq0 is a universal state then there is only one possibility that maps the edge labeled
tj of Atest into the edge labeled tj of Acontrol. If it returns false it means that there is no
homomorphism for at least one edge which corresponds to M halting.

If lq0 is an existential state then choice is free. Resulting in choice mapped into tj
with j ∈ [1, nt(lq0)]. Then any transitions that does not correspond to choice will fulfils
simulation requirements thanks to the universal state. The remaining transition will then
be checked by processing the same transition in Acontrol. If none of choice possibilities
works, then all transitions failed which corresponds to M halting.

Finally, states without outgoing edges in M automatically produces a fail since it has
an outgoing edge in Atest but not in Acontrol which also corresponds to M halting.

Consequently, if Atest ≪∀ Acontrol it means that M as an infinite run on the input word
w.

Constructing Acontrol requires only polynomial transformation M . The number of
states induced is :

|Q|+ 3 ∗
∑

{q∈Q|mode(q)=∀}

nt(q) + 4 ∗
∑

{q∈Q|mode(q)=∃}

nt(q) + 1 + n

The same can be done for transitions which gives :

(4 ∗
∑

{q∈Q|mode(q)=∀}

nt(q) +
∑

{q∈Q|mode(q)=∃}

nt(q)(4 + nt(q))) + n+ |L|

It is immediate to see that the construction of Acontrol is polynomial in the size of M
and w.

The same can be done for Atest which bears the same difference for universal and
existential since the structure are similar. The number of states induced is :

n ∗ (|Q|+ 3 ∗
∑

{q∈Q|mode(q)=∀}

nt(q) + 4 ∗
∑

{q∈Q|mode(q)=∃}

nt(q)) + n

Regarding the number of transition, we have :

n ∗ (
∑

{q∈Q|nt(q)=0}

1 + 4 ∗
∑

{q∈Q|mode(q)=∀}

nt(q) + 5 ∗
∑

{q∈Q|mode(q)=∃}

nt(q)) + n

It is clear to see that the construction of Atest is also polynomial in the size of M and
w.

Corollary 3. Deciding if a matching problem in ELRV has a solution is exptime-hard.

5.6.2 Upper Bound : Size of the Search Space

The exptime upper bound lies in the number of different pconf explored. In other words,
by the size of the space of search considered by the Algorithm Check Simu. In order to
demonstrate its exponentially, we define three factors :

• n : the number of states (i.e. the maximum in both automata)
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• v : the number of variables

• D : the domain of valuation of variables.

The algorithm explores a space made of pconfs which concerns two states forming
a basis of n ∗ n pconfs. Two pconfs sharing the same states are seen different by the
algorithm up to the current value assignments. Luckily, we only need to consider a finite
number of possibilities thanks to relevant variables. It amounts to Dv possibilities for
variables of AQ. there is no additional requirements for variables of AP since valuation for
these variables are a consequence of edge mappings from AQ to AP . We then have a total
of n2 ∗DV different pconfs. It can be rewritten in e2 ln(n)+v ln(D) giving exponentially.

Lemma 9. Deciding if a pattern containment problem in ELRV has a solution is in
exptime.

This result coupled with Corollary 3 immediately implies the following theorem :

Theorem 4. Deciding if a pattern containment problem in ELRV has a solution is
exptime-complete.

As matching is a special case of pattern containment, it also gives a tight upper bound
for this problem.

Corollary 4. Deciding if a matching problem in ELRV has a solution is
exptime-complete.

5.7 Conclusion of Chapter 5

This chapter presents the algorithm Check Simu which demonstrates that pattern con-
tainment in ELRV is decidable. Its main idea is to extend Check Match by running
synchronously the two automata AQ and AP . It leads to consider extended product
configuration where both sides may contain variables transitions. As a consequence, we
introduce the notion of constraints and set of constraints. The run of the algorithm is
done regarding a global set of constraints to ensure synchronism.

For an epconf only specific variables and thus constraints are relevant regarding the
counters. The extended cover, epcover, exploits this information to define a relationship
which is independent of the counter. This extended notion led to demonstrate that the
algorithm is correct. Changes required to adapt the algorithm to handle weak-subsumption
are presented.

This chapter also emphasizes on the complexity analysis of the different reasoning
tasks of ELRV . The upper bound is given by the space of search which is exponential
w.r.t the entries. Moreover, halting problem working on a space polynomially bounded by
the size of the input of alternating turing machine can be reduced to matching problem.
Alternating turing machines have three key points, initialization, exponential states and
universal states where each of them corresponds to a specific structure with description
automata. Since this problem is known to be exptime-complete, we can infer, with
the upper bound, that matching is exptime-complete. Moreover, matching is a sub-
problem of both, weak-subsumption and pattern containment leading to both of them
being exptime-complete.
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Conclusion

Our work explores reasoning with variables in description logics by introducing refreshing
semantics. This semantics is characterized by the possibility to give a new assignment
after releasing a variable’s bound where the classic semantics does not offer any way
to release a bound. The first contribution consists in introducing this semantics
for EL which resulted in the definition of ELRV , a logic coping with refreshing role
variables using EL-constructors. Pattern instances augment reasoning possibilities of
ELRV . These instances have been demonstrated to be either regular or irregular. In
the case, two regular instances have a subsumption relationship in ELRV , it implies
a subsumption relation w.r.t to the greatest fix-points semantics in EL. Thanks to
this newly possible substitutions, reasoning in ELRV can go further than reasoning in
EL. Indeed, problems without solution may find a meaningful solution thanks to the
refreshing semantics. We respectively extend matching and unification into matching and
weak-subsumption in ELRV . In addition, we introduce a third reasoning task, namely pat-
tern containment, which allow to compare two queries whatever the considered terminology.

In order to address these problems in ELRV and to handle the potentially infinite
instances, description automata have been defined. This class of automata can handle
refreshing semantics for variables and allow to represent a pattern. Reasoning in ELRV can
be reduced to variants of simulation between description automata. Pattern containment
used the notion of universal simulation while weak-subsumption exploits existential
simulation. Matching can be characterized by both of them since it is a sub-problem of
both, weak-subsumption and pattern containment. Matching then acts as a lower bound
for the three problems allowing to prove that they are optimal. The main results following:
matching, weak-subsumption and pattern containment are exptime-complete.

Works conducted in this thesis offer multiple research perspectives. Firstly, we con-
sidered only role variables however it would be interesting to consider concept variables.
The main challenge comes from the fact that even for matching, the domain of valuation
is infinite. Indeed, a concept variable may stand for any concept description. Current
solutions do not handle such possibilities. In order to cope with concept variables, one
interesting research direction would be to investigate a model that use refreshing role
variables to simulate concept variables.

A result of this thesis puts in evidence the link between subsumption in ELRV and
subsumption in EL with regard to the greatest fix-point semantics. It would be interesting
to investigate if a link with descriptive semantics could be unraveled.

We presented the wide variety of potential matcher induced by the multiple pattern
instances. A very interesting research axis would be to question the quality of a matcher.
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How to answer the question ”What is the best matcher ?”. Usually, one chooses the closest
concept to the targeted concept. However, in Section 2.2.4, we presented many matchers
that are incomparable w.r.t to the subsumption relationship. Closeness of the concept
might be the first property but might not suffice in such cases. Additional properties
are required to qualify the best solution. For instance, a solution that requires the less
number of definitions to be defined would be an interesting track. Note that such a criteria
immediately makes regular solution of better quality than irregular ones. To go further,
extending these results to more expressive logics based on EL such as ALE would be
interesting.

Finally, a more consequent research axis would be to study another logic that offers
both low complexity and interesting possibilities : FL0. This logic has been widely studied
in presence of non-refreshing variables. Like EL, FL0 subsumption can be characterized
with automata theory. However, it is reduced to language inclusion instead of simulation.
Description automata can be extended to FL0 but it remains to question language inclusion
in order to exploit this link. Once again, it would be valuable to question regular and
irregular matchers as well as decidability of reasoning in this framework.
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