
HAL Id: tel-04475078
https://theses.hal.science/tel-04475078

Submitted on 23 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Crowdsourced Mapping for Landmarks-based
Vehicle Localization

Alexis Stoven-Dubois

To cite this version:
Alexis Stoven-Dubois. Robust Crowdsourced Mapping for Landmarks-based Vehicle Localization.
Electronics. Université Clermont Auvergne, 2022. English. �NNT : 2022UCFAC116�. �tel-04475078�

https://theses.hal.science/tel-04475078
https://hal.archives-ouvertes.fr

UNIVERSITÉ CLERMONT AUVERGNE

ÉCOLE DOCTORALE

SCIENCES POUR L’INGÉNIEUR DE CLERMONT-FERRAND

THÈSE

Présentée par

ALEXIS STOVEN-DUBOIS
Master Robotique

pour obtenir le grade de

Docteur d’Université

Spécialité : Électronique & Systèmes

Robust Crowdsourced Mapping for
Landmarks-based Vehicle Localization

Soutenue publiquement le 02/03/2022 devant le jury composé de :

VINCENT FRÉMONT
VÉRONIQUE CHERFAOUI
FAWZI NASHASHIBI
AZIZ DZIRI
BERTRAND LEROY
ROLAND CHAPUIS

Rapporteur
Rapporteur
Examinateur
Encadrant de thèse
Encadrant de thèse
Directeur de thèse

Professeur à l’École Centrale de Nantes
Professeure à l’Université Technologique de Compiègne
Directeur de Recherche à l’INRIA
Chercheur à VEDECOM
Chercheur à VEDECOM
Professeur à l’Université Clermont Auvergne

ACKNOWLEDGMENTS

During the duration of my thesis, I received a great deal of assistance and support. First,

I would like to thank my thesis supervisor, Roland Chapuis, Professor at the Clermont

Auvergne University. His scientific knowledge and practical experience, as well as his

willingness to partake in frequent discussions, have encouraged me throughout this journey.

Next, I would like to express sincere gratitude to my two thesis mentors, Aziz Dziri,

Researcher at Vedecom, and Bertrand Leroy, Researcher at Vedecom. Their dedication to

provide constant support, along with their research experience and technical insight, have

allowed me to continuously progress within my work. I would also like to thank Kuntima

Kiala Miguel, Engineer at Vedecom, who helped me gather and organize the data that I used

for my experiments. Finally, I would like to thank my parents, Monique Stoven and Gérard

Dubois, as their uninterrupted support was revealed to be essential towards the completion

of this thesis.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

List of Acronyms . xii

Chapter 1: Introduction . 1

1.1 Vehicles Localization and High-Precision Maps 1

1.2 Crowdsourced Mapping . 2

1.3 Contributions . 4

1.4 Document Organization . 6

Chapter 2: Background on Intelligent Vehicles 7

2.1 From ADAS to Autonomy . 7

2.1.1 Perception . 9

2.1.2 Localization . 9

2.1.3 Planning . 10

2.1.4 Control . 11

2.2 Proprioceptive Sensors . 11

iv

2.2.1 Motor Encoders . 11

2.2.2 Inertial Measurement Unit . 12

2.3 Exteroceptive Sensors . 13

2.3.1 GNSS Receivers . 13

2.3.2 Ultrasonic Sensor . 16

2.3.3 Radar Sensor . 17

2.3.4 Lidar Sensor . 17

2.3.5 Monocular Camera . 18

2.4 Connected Vehicles . 20

2.4.1 Communication Formats . 21

2.4.2 V2V Connectivity . 22

2.4.3 V2I Connectivity . 22

2.5 Maps . 23

2.5.1 Topological Map . 24

2.5.2 Grid-based Map . 24

2.5.3 Landmarks Map . 25

2.6 Conclusion . 25

Chapter 3: Related Work . 27

3.1 Localization . 27

3.1.1 Multi-Sensor Localization . 28

3.1.2 Simultaneous Localization and Mapping 31

3.1.3 Localization using Pre-Built Maps 38

v

3.2 Map Construction . 41

3.2.1 Collaborative Mapping . 41

3.2.2 Crowdsourced Mapping . 43

3.3 Conclusion . 44

Chapter 4: Crowdsourced Mapping using Graph Optimization 46

4.1 Crowdsourced Mapping . 47

4.1.1 Overview . 47

4.1.2 Mapping Strategies . 49

4.2 Triangulation Optimization for Crowdsourced Mapping 49

4.3 Graph-based Approaches . 52

4.3.1 SLAM Formulation . 52

4.3.2 Graph Model . 56

4.4 Graph Optimization for Crowdsourced Mapping 63

4.4.1 Crowdsourced Model . 63

4.4.2 Setup and Sensors . 68

4.4.3 Map Update Strategies . 72

4.5 Conclusion . 79

Chapter 5: Evaluation of Crowdsourced Mapping Performances 81

5.1 Triangulation-based Approach: Evaluation through Field-Tests 82

5.1.1 Field Setup . 82

5.1.2 Evolution of Map Accuracy . 84

5.2 Graph-based Approach: Evaluation through Simulation Experiments 85

vi

5.2.1 Simulation Setup . 87

5.2.2 Scalability Assessment . 89

5.2.3 Robustness Assessment . 98

5.3 Graph-based Approach: Evaluation through Field-Tests 106

5.3.1 Field Setup . 106

5.3.2 Evaluation of Mapping Performances 107

5.4 Evaluation of Contributions for Vehicles Positioning 111

5.4.1 Simulation Setup . 111

5.4.2 Evaluation of Localization Performances 117

5.5 Conclusion . 123

Chapter 6: Conclusion . 125

6.1 Summary and Contributions . 125

6.2 Future Works . 128

Appendices . 130

Appendix A: GNSS Auto-Correlated Noises 131

References . 138

vii

LIST OF TABLES

3.1 Crowdsourced mapping methods developed for vehicular applications. . . . 44

5.1 Standard deviations of noises applied to sensors measurements during simu-
lation experiments. 91

5.2 Average distance errors after the last vehicle passage and average compu-
tation time by vehicle passage, obtained using white and Gaussian noises
during simulation experiments. 93

5.3 GNSS auto-regressive model parameters and noises standard deviations
used to generate GNSS auto-correlated noises during simulation experiments.101

5.4 Parameters used to generate the maps of landmarks during simulation evalu-
ation of crowdsourced mapping contributions for localization. 117

5.5 Average distance errors of vehicle positioning obtained during simulation
evaluation of crowdsourced mapping contributions for localization. 119

viii

LIST OF FIGURES

2.1 Vehicles autonomy levels defined by the Society of Automotive Engineers,
taken from [11]. 8

2.2 Broad pipeline of autonomy operations processed by an intelligent vehicle. . 9

2.3 Different effects of GNSS multipath, taken from [20]. 14

2.4 Functioning principle of an ultrasonic sensor, taken from [24]. The sensor
emits ultrasound signals, which are reflected on the object. 16

2.5 Detection of a traffic sign within an image issued by the monocular camera
installed on our test-vehicle. 19

2.6 Communications between connected vehicles (V2V) and with the road
infrastructure (V2I). 20

4.1 Overview of crowdsourced mapping, with modules split between onboard
processing and cloud processing. 48

4.2 Triangulation-based Approach for Crowdsourced Mapping. 50

4.3 The SLAM problem modeled as a graph. 58

4.4 Crowdsourced Mapping Pipeline - As a vehicle Vp uploads its observations,
graph optimization is performed, a new estimation is obtained, and the map
is updated. 68

4.5 2D representation of frames. 69

4.6 Graph with correlated map constraint. 74

4.7 Graph with decorrelated map constraints. 77

4.8 Graph subdivision. 78

ix

5.1 2D representation of frames, along with a projection line associated with
the detection of a traffic sign. 85

5.2 Evolution of distance errors for the positioning of traffic signs estimated by
the triangulation-based approach during early field-tests. 86

5.3 Ground truth vehicle trajectory and landmarks geo-positions used in simula-
tion experiments. 88

5.4 Evolution of average distance errors obtained using white and Gaussian
noises during simulation experiments. 94

5.5 Evolution of average errors on the East and North axes, along with their
respective 3σ deviation ranges, obtained using white and Gaussian noises
during simulation experiments. 95

5.6 Auto-correlation function of GNSS measurements obtained using our test-
vehicle in a dense environment. 100

5.7 Evolution of average distance errors obtained using different types of noises
during simulation experiments. 103

5.8 Evolution of average errors on the East and North axes, along with their
respective 3σ deviation ranges, obtained using different types of noises
during simulation experiments. 104

5.9 Vehicle GNSS positions at first passage and traffic signs ground truth posi-
tions during field-tests. 108

5.10 Evolution of errors for the positioning of traffic signs L1, L2, L3, L4 and L5,
and for the average over all traffic signs, obtained during field-tests. 110

5.11 Ground truth vehicle trajectory and landmarks geo-positions used in simula-
tion evaluation of crowdsourced mapping contributions for localization. . . 113

5.12 Evolution of distance errors associated with vehicle positioning, obtained
during simulation evaluation of crowdsourced mapping contributions for
localization. 120

5.13 Estimated vehicle trajectories, obtained during simulation evaluation of
crowdsourced mapping contributions for localization, in the case where
GNSS auto-correlated noises, camera calibration bias and map inconsistency
are considered. 121

x

6.1 Overview of crowdsourced mapping, with modules split between onboard
processing and cloud processing. 126

A.1 Example of an auto-correlation function (blue), with its slope at n = 0+ (red).137

xi

LIST OF ACRONYMS

ADAS Advanced Driver Assistance Systems

AR Auto-Regressive

CAM Cooperative Awareness Messages

CC Correlated Constraint

CC+GSD Correlated Constraint and Graph Subdivisions

CIF Covariance Intersection Filter

CPM Cooperative Perception Messages

DC Decorrelated Constraints

DENM Decentralized Events Notification Messages

DGPS Differential GPS

DOF Degrees Of Freedom

DOP Dilution Of Precision

EGNOS European Geostationary Navigation Overlay Service

EIF Extended Information Filter

EKF Extended Kalman Filter

ETSI European Telecommunications Standards Institute

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

IMMF Interacting Multiple Models Filter

IMU Inertial Measurement Unit

IVIM Infrastructure to Vehicle Information Messages

KF Kalman Filter

xii

LBAS Location-Based Augmentation Systems

Lidar Light detection and ranging

MAPEM MAP Extended Messages

MCDM Multimedia Content Dissemination Messages

MCM Maneuver Coordination Messages

ODD Operational Design Domain

PDF Probability Density Function

PF Particle Filter

Radar Radio detection and ranging

RLS Recursive Least-Squares

RTK-GNSS Real Time Kinematic-GNSS

SBAS Satellites-Based Augmentation Systems

SCIF Split Covariance Intersection Filter

SLAM Simultaneous Localization and Mapping

SPATEM Signal Phase And Timing Messages

UKF Unscented Kalman Filter

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VANET Vehicle Ad-hoc Network

WAAS Wide Area Augmentation System

xiii

SUMMARY

The deployment of intelligent and connected vehicles, equipped with increasingly

sophisticated equipment, and capable of sharing accurate positions and trajectories, is

expected to lead to a substantial improvement of road safety and traffic efficiency. For

this safety gain to become effective, vehicles will have to be accurately geo-positioned

in a common reference, with an error up to a few decimeters [1]. To achieve this, they

will be able to count on a variety of embedded sensors, such as GNSS (Global Navigation

Satellite Systems) receivers, as well as additional proprioceptive and perception sensors.

Nevertheless, in order to guarantee accurate positioning in all conditions, including in dense

zones where GNSS signals can get degraded by multi-path effects, it is expected that vehicles

will need to use precise maps of the environment to support their localization algorithms.

To build maps of the main highways, major automotive actors have made use of dedicated

fleets of vehicles equipped with high-end sensors. Because of the associated high operational

costs, they have been operating a limited number of vehicles, and remain unable to provide

live updates of the maps and to register entire road networks. Crowdsourced mapping

represents a cost-effective solution to this problem, and has been creating interest among

automotive players. It consists in making use of measurements retrieved by multiple

production vehicles equipped with standard sensors in order to build a map of landmarks.

Nevertheless, while this approach appears promising, its real potential to build an accurate

map of landmarks and maintain it up-to-date remains to be assessed in realistic, long-term

scenarios.

In this thesis, in a first time, we propose a crowdsourced mapping solution based on

triangulation optimization, and evaluate it using field-tests. The result analysis shows the

potential of crowdsourced mapping to take advantage from measurements issued by multiple

vehicles. On the other hand, it also indicates some critical limitations associated with

triangulation optimization.

xiv

Therefore, in a second time, we propose another crowdsourced mapping solution based

on graph optimization, and we introduce different approaches to include and update the map

within the optimization, which correspond to different trade-offs between the map quality

and computational scalability. Simulation experiments are conducted in order to compare

the different approaches. The results enable to identify the most efficient one, and to assert

that it provides a scalable solution for crowdsourced mapping.

The robustness of this solution to various types of noises, such as auto-correlated and

biased noises, is then evaluated using extended simulation tests. The results analysis show

its ability to build an accurate map of landmarks in various noises conditions, making use

of measurements retrieved by multiple vehicles. Subsequently, field-tests are performed to

confirm the results obtained in simulation, and draw conclusions both from a theoretical

and practical viewpoint. Finally, the capacity of our crowdsourced mapping solution to

increase the localization capabilities of vehicles is evaluated in simulation. The results show

the effectiveness of the proposed approach to improve positioning performances in various

conditions, while also pointing out the importance of providing a map with a sufficient

density of landmarks.

xv

RÉSUMÉ

Le déploiement de véhicules intelligents et connectés, dotés de capteurs de plus en plus

sophistiqués, et capables de partager des positions et des trajectoires précises, permettra

d’améliorer considérablement la sécurité routière et l’efficacité du trafic. Pour que ce gain

de sécurité devienne effectif, les véhicules devront être géo-positionnés dans un référentiel

commun avec précision, avec une erreur d’au plus quelques décimètres [1]. Pour y parvenir,

ils pourront compter sur une variété de capteurs embarqués, tels que des récepteurs GNSS

(Global Navigation Satellite Systems), ainsi que des capteurs proprioceptifs et des capteurs

de perception. Toutefois, afin de garantir un positionnement précis dans toutes les conditions,

y compris dans les zones denses où les signaux GNSS peuvent être dégradés par des effets

de trajets multiples, les véhicules devront utiliser des cartes précises de l’environnement

pour soutenir leurs algorithmes de localisation.

Afin d’établir de telles cartes pour les principales autoroutes, les principaux acteurs

automobiles ont eu recours à des flottes de véhicules spécialisés équipés de capteurs haut

de gamme. Cependant, en raison des coûts opérationnels élevés qui y sont associés, ils

n’ont exploité qu’un nombre limité de véhicules et ne sont pas en mesure de fournir

des mises à jour en direct des cartes, ni de cartographier des réseaux routiers entiers.

La cartographie crowdsourcée représente une solution rentable à ce problème et suscite

aujourd’hui l’intérêt des acteurs du secteur automobile. Cette technique consiste à exploiter

les mesures récupérées par de multiples véhicules de production équipés de capteurs standard,

afin de construire une carte contenant des points de repère. Néanmoins, même si cette

approche semble prometteuse, sa capacité réelle à construire une carte précise et à la

maintenir à jour a besoin d’être évaluée dans des scénarios réalistes et long-terme.

Dans cette thèse, nous proposons d’abord une solution de cartographie crowdsourcée

basée sur une optimisation par triangulation, et l’évaluons à l’aide de tests de terrain.

L’analyse des résultats montre le potentiel de cette approche à tirer profit des mesures

xvi

émises par plusieurs véhicules. Elle permet aussi d’identifier certaines limitations critiques

associées à l’optimisation par triangulation.

Pour remédier à cela, nous proposons ensuite une autre solution de cartographie crowd-

sourcée basée sur l’optimisation de graphe, et nous introduisons différentes approches

pour inclure et mettre à jour la carte dans l’optimisation, qui correspondent à différents

compromis entre la qualité de la carte et la scalabilité. Des expériences de simulation sont

menées afin de comparer ces approches. Les résultats permettent d’identifier la plus efficace,

ainsi que de vérifier qu’elle représente une solution scalable de cartographie crowdsourcée.

La robustesse de cette approche à divers types de bruits, tels que les bruits auto-corrélés

et biaisés, est ensuite évaluée à l’aide de tests de simulation étendus. L’analyse des résultats

montre sa capacité à construire une carte précise dans diverses conditions de bruits, en

utilisant des mesures récupérées par plusieurs véhicules. Ensuite, des tests de terrain sont

effectués afin de confirmer les résultats obtenus en simulation, et de tirer des conclusions

tant d’un point de vue théorique que pratique. Enfin, la capacité de notre solution de

cartographie crowdsourcée à améliorer les capacités de localisation des véhicules est évaluée

en simulation. Les résultats montrent l’efficacité de l’approche proposée dans diverses

conditions, tout en soulignant l’importance de fournir une carte avec une densité suffisante

de points de repère.

xvii

CHAPTER 1

INTRODUCTION

During the last 25 years, road safety has motivated car makers and tier-one suppliers to

design and market increasingly sophisticated equipment, in order to enhance both the

safety of car drivers and passengers, as well as surrounding vehicles and pedestrians. The

development of automotive vehicles has boosted this effort and led to important innovations

in the domain of ADAS (Advanced Driver Assistance Systems) such as lane departure

warning, adaptive cruise control, advanced emergency braking. At the same time, public

authorities are currently pushing for the deployment of connected vehicles, one of the main

benefits of which is to prevent crashes by continuously broadcasting vehicles positions and

trajectories. In this context, a key issue consists in accurately geolocalizing the vehicles,

i.e. localizing them in a common reference. To achieve this goal, great efforts are currently

being made by numerous automotive players to provide vehicles with a high-precision map

allowing for precise positioning.

1.1 Vehicles Localization and High-Precision Maps

GNSS, such as GPS (Global Positioning System), GLONASS (Russian equivalent), Baidu

(Chinese equivalent) or Galileo (European equivalent), have represented the conventional

solution used to geo-position vehicles. However, they are not able to provide an accuracy

with errors up to a few decimeters, which is estimated necessary to enhance vehicles safety

through the sharing of accurate positions and trajectories [1]. In fact, most production

vehicles are expected to be equipped with standard GNSS receivers, which have a typical

accuracy of a few meters in open conditions [2], and up to a few dozens of meters in dense

environments [3]. Even the more costly RTK-GNSS (Real Time Kinematic-GNSS) can have

their signals disturbed in dense zones, leading to unavailability and inaccuracy issues [4].

1

To reach the targeted accuracy, another solution consists in making use of a high-

precision map, providing knowledge about the road environment. The high-precision map

would contain accurate positions of various road landmarks, such as traffic signs and road

markings, and would allow to:

• Enhance the vehicles perception beyond their sensing capabilities, by providing them

information about their environment.

• Serve as a common reference frame, enabling the vehicles to express their positions

and trajectories relatively to the map, and thereby improve their positioning accuracy.

• Improve efficiency of the data-sharing, by making vehicles able to only update or

download map information from a given geographical region.

When positioning a given vehicle, a data fusion process would merge various sensors

observations, including GNSS measurements, and camera images matched with the high-

precision map. Such data fusion process would typically require that the high-precision

map contains not only accurate geo-positions of detected landmarks, but also their estimated

accuracy [5]. Several companies are building high-precision maps, making use of dedicated

fleets of vehicles equipped with high-end sensors. As of 2021, they are able to provide

high-precision maps with a decimeter-level accuracy, but only for restricted areas such as

major highways. Indeed, there is no viable business model allowing for the deployment of

vehicles equipped with high-end sensors on the whole road network, especially if the map

must be continuously updated for safety reasons.

1.2 Crowdsourced Mapping

In order to bypass the issues associated with building a high-precision map over large

areas and keeping it up-to-date, the work of this thesis focuses on a crowdsourced mapping

strategy that relies on production vehicles. This method consists in collecting measurements

from multiple vehicles equipped with standard sensors, such as a standard GNSS receiver

2

and a monocular camera, in order to build and update a map collaboratively, by taking

advantage from the frequent and redundant measurements issued by the vehicles.

Although crowdsourced mapping represents a cost-effective solution for building a high-

precision map, it aggregates information from multiple vehicles on a long-time span, and thus

poses a number of specific challenges. For instance, vehicles must possess image processing

modules that are robust to various environmental conditions, in order to consistently detect

and match landmarks with the map. While the use of high-level landmarks, such as

traffic lights and road markings, facilitate this process [6], robust landmarks detection and

recognition generally remains a challenge that is not completely solved.

Further, the crowdsourced mapping process must be robust to various types of noises

affecting the measurements, in order to merge observations appropriately, and compute

accurate map updates. In convenient configurations, such as when noises affecting the mea-

surements are sampled from zero-mean distributions, simply collecting the measurements

will eventually lead to accuracy improvements of the map. However, in real conditions,

sensors measurements are often affected by auto-correlated or biased noises, which con-

tradicts this assumption, and may affect the accuracy of the resulting map. To deal with

this issue, the typical strategy consists in making use of a data fusion process that merges

measurements from multiple sensors, taking into account their respective accuracy. Simulta-

neous Localization and Mapping (SLAM) methods, which aim to estimate at the same time

the trajectory of a given agent and the positions of detected landmarks, have been widely

used to process such data fusion. While SLAM methods have been based on both filtering

techniques and graph optimization, the latter has demonstrated a better capacity to build

accurate maps of landmarks, with more robustness to various types of noises configurations

[7, 8]. For this reason, graph optimization represents a powerful tool for long-term map

construction, and could be used by crowdsourced mapping to continuously build and update

the high-precision map.

3

1.3 Contributions

In this thesis, we aim to develop and evaluate a crowdsourced mapping system based on

graph optimization. Given an image processing module that provides robust detection and

recognition of road-oriented landmarks such as traffic signs, we propose a crowdsourced

mapping pipeline that takes advantage from measurements issued by multiple vehicles to

build a map of geo-positioned landmarks. We evaluate this system by assessing both the

map accuracy and potential scalability obtained throughout extensive simulation and field

experiments. The contributions of this thesis are as follow:

• We propose and develop a crowdsourced mapping pipeline, in which measurements

retrieved from multiple vehicles are merged to build and update a map of landmarks.

Each time a vehicle uploads new measurements, centralized servers apply an opti-

mization procedure to merge these measurements, and compute a new version of the

map. To assess the potential of the collaborative approach, we first aim to verify that

the map accuracy effectively improves as more vehicles upload their measurements.

We build a solution based on a simple triangulation optimization, and evaluate it using

field experiments. The results of this evaluation were presented in [9].

• We improve our crowdsourced mapping pipeline, by making use of graph optimization

instead. Towards this goal, we propose and compare three different approaches to

adapt graph optimization to the collaborative context. In the first approach, we include

all map content within graph optimization. This approach increases the map accuracy

at the potential cost of intensive computations. To alleviate calculations, we propose a

second approach, in which we neglect cross-correlations between landmarks in the

map. Finally, in another attempt to lower computations, we propose a third approach

in which each graph optimization problem is subdivided into multiple subproblems

that are solved sequentially. To identify the most efficient method, we compare these

different approaches during simulation experiments. The results of this comparison

4

were presented in [10].

• We evaluate the performances that can be achieved with crowdsourced mapping in

real conditions. Towards this goal, we drive our test-vehicle in a dense city center, for

multiple passages along a loop of a few kilometers, in order to build a map of geo-

positioned traffic signs. We evaluate the resulting map accuracy and computational

scalability, and conclude on the potential of crowdsourced mapping. The results of

this evaluation were presented in [3].

For a complete evaluation of our crowdsourced mapping solution, we extended simu-

lation experiments with several types of noises, such as auto-correlated and biased noises,

in order to evaluate their effective impact on the map accuracy. We compared the obtained

results with the results from field-tests, and drew conclusions both from a theoretical and

practical viewpoint. Furthermore, we evaluated in simulation the potential of our approach

to improve the localization performances of the vehicles through the establishment of an

accurate map of geo-positioned landmarks. These results and discussion are presented in

the remainder of this document.

[9]: A. Stoven-Dubois et al., “A Collaborative Framework for High-Definition Map-

ping,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Oct.2019, pp.

1845–1850.

[10]: A. Stoven-Dubois et al., “Graph Optimization Methods for Large-Scale Crowd-

sourced Mapping,” in 2020 IEEE 23rd International Conference on Information Fusion

(FUSION), Jul. 2020, pp. 1–8.

[3]: A. Stoven-Dubois et al., “Graph-based approach for crowdsourced mapping:

Evaluation through field experiments,” in 2020 16th International Conference on Control,

Automation, Robotics and Vision (ICARCV), 2020, pp. 260–265.

5

1.4 Document Organization

This document is organized as follows: in chapter 2, we present the applicative context

of intelligent and connected vehicles, while in chapter 3, we discuss existing localization

and mapping methods. In chapter 4, we recall the basic formulation of graph optimization,

and we introduce our crowdsourced mapping solution. Finally, chapter 5 contains the

description and results from simulation and field experiments, during which we evaluate the

performances of crowdsourced mapping.

6

CHAPTER 2

BACKGROUND ON INTELLIGENT VEHICLES

Currently, as of 2021, production vehicles are being equipped with multiple sensors, as

will be the case for future autonomous vehicles. These sensors include proprioceptive

sensors, such as motor encoders or IMU (Inertial Measurement Unit), and exteroceptive

sensors, such as Radar sensors or monocular cameras. They enable equipped vehicles to

position themselves in space, while detecting surrounding obstacles, and have led to the

development of various active ADAS functions on current production vehicles. In parallel,

production vehicles are being equipped with communication devices that will allow them to

communicate positions with each other, as well as with the road infrastructure. All of these

developments are expected to bring significant improvements for road safety, at the condition

that vehicles can be localized accurately, and share meaningful position information. This

motivates our work on crowdsourced mapping, in order to build a map that can be used to

support the localization of vehicles.

In the present chapter, we provide some background about intelligent vehicles, in order

to define the application scope of crowdsourced mapping. First, we discuss the different

autonomy levels that can characterize driving vehicles. Next, we present the main sensors,

both proprioceptive and exteroceptive, that can be used. Then, we talk about the different

communication means expected for connected vehicles. Finally, we give a brief overview of

existing map formats.

2.1 From ADAS to Autonomy

Road safety has been a major concern of car makers and customers for a long time, and

this has led to the continuous development of sensors embedded in the vehicles. More

recent sensors have provided measurements of better quality (both in terms of quantity and

7

Figure 2.1: Vehicles autonomy levels defined by the Society of Automotive Engineers, taken
from [11].

accuracy), and are generally more robust to various environmental conditions. However,

they are also typically associated with more complex algorithms, which has motivated the

embedding of additional computational resources within the vehicles.

These developments have increased, and will continue to increase, the autonomy capaci-

ties of driving vehicles, by allowing them to perceive their environment, detect potentially

dangerous situations, and take subsequent driving actions. Following, several levels of au-

tonomy have been envisioned, in order to characterize the autonomy capacities of different

vehicles [11]. A summary of these autonomy levels is shown in Figure 2.1. Currently,

most production vehicles are equipped with standard ADAS, which correspond to level 1 of

autonomy. These ADAS include passive functions (e.g. lane departure warning, forward

collision alert), and active functions (e.g. adaptive cruise control, anti-lock breaking system).

Some high-end vehicles, such as those produced by Tesla, have reached level 2 of autonomy,

by being capable of self-driving in restricted ODD (Operational Design Domain) under the

supervision of a human driver [12].

Overall, whether we consider a standard vehicle of autonomy level 1, a future self-driving

vehicle of autonomy level 5, or any vehicle in-between, the main autonomy operations

processed by a given intelligent vehicle can be summarized in four main tasks: Perception,

8

Figure 2.2: Broad pipeline of autonomy operations processed by an intelligent vehicle.

Localization, Planning and Control. These four tasks are illustrated in Figure 2.2, and are

briefly discussed in the following.

2.1.1 Perception

The perception task aims at making the vehicle able to perceive and understand its surround-

ings. This is done through the detection of various items, such as road objects (e.g. traffic

lights, traffic signs), static objects (e.g. stationed vehicles, buildings), moving objects (e.g.

other driving vehicles, pedestrians). By detecting those, the vehicle can acknowledge its

driving environment, and detect potentially dangerous situations, whether originating from

its own behavior or from the behavior of other agents.

As inputs for the perception task, the vehicle can count on measurements provided by a

range of different perception sensors. Production vehicles typically embed a few affordable

sensors, such as ultrasound sensors, as well as monocular cameras [13]. Meanwhile, high-

quality vehicles tend to be equipped with the same affordable sensors, along with more

costly ones such as Radar and Lidar sensors [14].

2.1.2 Localization

The localization task aims at positioning the vehicle, either with respect to its environment

(local positioning), or in a global reference (global positioning). As local positioning

provides the vehicle with spatial knowledge about its immediate surroundings, it is a clear

requirement for various driving tasks, such as collision avoidance and self-driving operations.

In fact, it is estimated that an accuracy with errors up to a few decimeters is necessary to

9

ensure safe behavior whenever an intelligent vehicle takes driving decisions [1]. To achieve

accurate local positioning, the vehicle can count on a variety of proprioceptive sensors (e.g.

motor encoders, IMU), which measure its relative movements, as well as outputs from the

perception task, that inform about the trajectory of nearby objects relatively to the vehicle.

Alternatively, global positioning (also called geolocalizing or geo-positioning) consists

in positioning the vehicle in a global reference. This reference is common to all vehicles and

road infrastructure, and enables to express all known positions and trajectories in a universal

system. Especially, in the case where vehicles can communicate with each other, accurate

global positioning (with errors up to a few decimeters) can bring substantial benefits to

road safety and traffic efficiency, by allowing the different vehicles to communicate their

positions and trajectories [15]. To achieve global positioning, the vehicle can traditionally

use a GNSS receiver, which provides global position measurements.

2.1.3 Planning

The planning task aims at identifying optimal driving decisions that lead the vehicle to drive

efficiently, while maintaining itself in the right lane and avoiding potential collisions. To

achieve this, outputs from the perception and localization tasks are used, in order to inform

the vehicle about its own situation, as well as the situation of surrounding objects.

On production vehicles equipped with standard ADAS, planning functions are generally

restricted to simple procedures, such as Advanced Cruise Control, or Active Lane Keeping

Assist. On more advanced vehicles, planning functions can include more complex operations,

such as Autonomous Overtaking or Active Collision Avoidance, which require the vehicle

to predict both its own trajectory, as well as the future behavior of nearby agents. In such

cases, the accuracy of local positioning, which provides information about the trajectory of

surrounding objects relatively to the vehicle, is of critical importance [1].

10

2.1.4 Control

Finally, the control task aims at transforming driving decisions provided by the planning

task into effective driving actions. This is achieved by computing and actuating appropriate

driving commands (e.g. acceleration, braking, driving wheel rotation) on the vehicle.

Obviously, due to the vehicle model being typically imprecise, and due to the presence of

various physical effects, including friction between the wheels and the ground, as well as

noises affecting the actuating system, the actual vehicle movements are typically different

from the intended ones. Therefore, the vehicle behavior must be constantly overseen and

corrected with new actuation commands through a closed-loop approach.

2.2 Proprioceptive Sensors

In the following, we give a brief overview of the main types of sensors embedded in vehicles

that provide perception and localization information. We start with proprioceptive sensors,

which inform about the relative motion of vehicles, and play a crucial role towards their

localization.

2.2.1 Motor Encoders

Motor encoders are sensors of mechanical motion that have been widely used in production

vehicles, in order to measure movements (speed or angle) from a variety of moving items.

In fact, motor encoders that measure the wheels velocities and the driving wheel angle are of

particular importance when localizing a given vehicle. Indeed, they provide measurements

related to the actual actuation of the vehicle, which can be then used inside a motion model

to estimate and predict the vehicle displacements between successive instants. Multiple

motion models have been applied in vehicular applications [16], and can be classified into

two main categories:

• Linear models: CV (Constant Velocity), CA (Constant Acceleration)

11

• Curvilinear models: CTRV (Constant Turn Rate and Velocity), CTRA (Constant

Turn Rate and Acceleration), CSAV (Constant Steering Angle and Velocity), CCA

(Constant Curvature and Acceleration).

Obviously, the estimation of the vehicle displacements is always noisy up to a given level.

This is mainly due to the presence of various physical effects undergone by the vehicle that

can not be considered in the motion model [17], as well as to the presence of noises that affect

the encoders measurements. To position a vehicle using only measurements from motor

encoders, the conventional method, dead-reckoning, consists in fixing the initial position

of the vehicle, and then integrating estimations of the vehicle displacements. Naturally,

as multiple noisy estimations get integrated, their errors tend to add up, which leads the

vehicle localization to diverge in the long-run, i.e. have an error that grows unbounded with

time [18].

2.2.2 Inertial Measurement Unit

In order to measure the relative motion of a vehicle, another solution consists in making use

of inertial sensors, which can be classified into three categories:

• Accelerometers, which measure accelerations.

• Gyroscopes, which measure angular velocities.

• Magnetometers, which measure the strength and direction of the surrounding magnetic

field.

By associating 3 accelerometers and 3 gyroscopes, such that accelerations and angular

velocities can be measured in all 3 dimensions, we obtain a 6-DOF (Degrees Of Freedom)

IMU. And by also including a magnetometer to perceive the magnetic field, we get a 9-DOF

IMU. Currently, production vehicles are mostly equipped with low-cost accelerometers

and gyroscopes, which are used to detect strong vehicle movements and enable electronic

12

stability control [19]. Meanwhile, production vehicles generally do not embed IMU, as

those remain costly sensors that are mainly used within high-quality vehicles.

To merge measurements provided by an IMU, and estimate the relative motion of a

given equipped vehicle, an IMU model must be used. Similarly as for motor encoders, the

IMU model can not account for all physical effects undergone by the vehicle, and noises

affect IMU measurements, which makes the estimation of the vehicle displacements always

noisy up to a given level. As the typical method used to localize a vehicle using only IMU

measurements is dead-reckoning (as is the case with encoders measurements), the resulting

localization tends to have an error that grows unbounded with time. Furthermore, due to

a variety of physical effects (e.g. temperature, mechanical stress), the internal calibration

of an IMU generally tends to diverge with time, even when the vehicle is stopped, which

can lead to inaccurate measurements. Nevertheless, it is generally admitted that IMU-based

localization is more accurate than encoders-based localization, although few research works

have been realized to compare these two methods.

2.3 Exteroceptive Sensors

In addition to proprioceptive sensors, intelligent vehicles also embed exteroceptive sensors

that enable them to perceive their environment and detect nearby objects, and which can

be used for both localization and perception tasks, as explained in subsection 2.1.1 and

subsection 2.1.2.

2.3.1 GNSS Receivers

A GNSS receiver computes precise time information and global position measurements using

signals received from a given satellites network (e.g. GPS, GLONASS, Beidou, Galileo).

To achieve this, it applies a trilateration-based technique that requires communication with

at least 4 satellites to solve for 4 unknowns (3 unknowns for the 3-dimensional position, and

1 unknown for the time). Nevertheless, while travelling from satellites to a given receiver,

13

Figure 2.3: Different effects of GNSS multipath, taken from [20].

GNSS signals can get degraded by various environmental effects. In open environments, the

main source of degradation consists in the delaying of GNSS signals when travelling the

ionosphere and troposphere. In dense environments, another source of degradation comes

into play, and consists in the blocking, diffraction and reflection of GNSS signals on various

buildings and structures [20]. This phenomenon is known as multi-path, and is illustrated

in Figure 2.3. In the case where GNSS signals emitted by a satellite get blocked, they are

not used by the GNSS receiver. Therefore, such effect does not impact the accuracy of

position measurements, as long as there remains enough other satellites to communicate

with. Oppositely, when GNSS signals get diffracted or reflected, they are still considered by

the GNSS receiver to compute the position measurements, which can lead to large position

errors.

In fact, errors associated with position measurements provided by a standard GNSS

receiver are usually comprised between 4 m and 5 m in open environments [2], and can

reach dozens of meters in dense environments [3]. To improve the positioning accuracy,

several enhanced systems have been designed:

• Multi-frequency systems, which attempt to correct GNSS errors due to atmospheric

layers by making each satellite emit two or more signals at different frequencies [21].

14

• SBAS (Satellites-Based Augmentation Systems), such as EGNOS (European Geosta-

tionary Navigation Overlay Service) and WAAS (Wide Area Augmentation System)

[22]. These systems make use of ground stations to avoid the degradation of signals

due to atmospheric layers, and compute and emit corrections directly from satellites.

• LBAS (Location-Based Augmentation Systems), such as DGPS (Differential GPS)

and RTK-GPS [22]. These systems also make use of ground stations for the same

purpose, but oppositely to SBAS, they emit corrections from the ground stations, and

make GNSS receivers communicate constantly with them.

• Multi-constellation systems, which communicate with more satellites by considering

several satellites networks simultaneously, in order to make GNSS measurements

more robust to situations in which signals from only a few satellites get degraded [21].

Generally, these systems achieve better positioning accuracy than standard GNSS re-

ceivers in all types of environments. Nevertheless, they still get affected by multi-path issues,

which worsen their performances in dense environments. For instance, RTK-GPS receivers,

which are usually considered as the most accurate systems, reach up to a centimeter-level

accuracy in open environments [23], but can also suffer from severe inaccuracy and unavail-

ability issues in dense environments [4].

So far (in 2021), production vehicles are generally equipped with standard GNSS

receivers, due to their affordability. Meanwhile, they are usually not equipped with RTK-

GPS receivers, as those require communication with a base station that often requires

costly subscriptions to some services (e.g. Sogelink, Geotopo in France). Other enhanced

systems, such as multi-constellation and multi-frequency solutions, constitute affordable

options that can be envisioned to be widely embedded in production vehicles in the near

future. Nevertheless, while such systems will certainly help to support the localization of

future intelligent vehicles, they do not address some issues that prevent vehicles from being

positioned with the targeted accuracy (with errors up to a few decimeters), especially in

15

Figure 2.4: Functioning principle of an ultrasonic sensor, taken from [24]. The sensor emits
ultrasound signals, which are reflected on the object.

dense environments where GNSS signals get degraded through multi-path effects.

2.3.2 Ultrasonic Sensor

An ultrasonic sensor is an active perception sensor that provides range measurements about

surrounding obstacles. It functions by emitting ultrasound signals, and waiting for their

echo after they get reflected on a nearby object, as illustrated in Figure 2.4. By using

the time between emission and reception of the signals, it is able to compute distance

measurements to the given object [24]. Furthermore, by making use of the Doppler effect,

some ultrasonic sensors are also capable of estimating the velocity of the detected object.

Generally, ultrasound signals can get severely degraded by travelled distance, due to various

environmental conditions such as temperature, wind or humidity. Furthermore, they can

also get affected by the presence of soft materials, which have peculiar reflection properties.

Nevertheless, they remain robust to rough illumination and weather conditions when the

travelled distance is short (up to a few meters).

Overall, standard ultrasonic sensors have been affordable for many years, and are now

16

part of the standard equipment of production vehicles. They have enabled some ADAS

functions that require short-range detection measurements and that are now widely employed

in production vehicles, such as blind spot detection and park assist [25].

2.3.3 Radar Sensor

A Radar (Radio detection and ranging) sensor is an active perception sensor that functions

similarly as an ultrasonic sensor, but using radio waves instead of ultrasound signals, in

order to provide range and velocity measurements. Radio waves are generally more robust

than ultrasound signals to various environmental conditions, and the typical maximum range

of Radar sensors can reach a few dozens of meters for standard models, and several hundreds

of meters for high-quality models. Nevertheless, in dense environments, such as in a city

center or within a traffic jam, radio waves often get affected by rebound effects, which can

lead Radar sensors to provide measurements with a low accuracy and resolution at long

distances.

Although Radar sensors are generally too expensive for standard vehicles, they have been

widely employed in high-quality ones. By providing long-range measurements, they have

enabled equipped vehicles to detect obstacles in advance, and have led to the development of

various ADAS functions, such as adaptive cruise control and forward collision warning [25].

2.3.4 Lidar Sensor

A Lidar (Light detection and ranging) sensor is another type of active perception sensor that

operates similarly as ultrasonic and Radar sensors, but making use of light waves instead,

in order to provide range and velocity measurements. Generally, Lidar sensors are more

sensible to environmental conditions than Radar sensors, and can be unable to function under

strong weather occurrences such as fog or snow. They also include moving mechanical

parts that typically make them fragile and subject to vibrations undergone by the equipped

vehicles. Nevertheless, they typically provide more accurate measurements than Radar

17

sensors, and with a longer maximum range that can reach a few hundreds of meters.

Currently, Lidar sensors remain expensive systems that are mainly used in research

vehicles, and not in production ones. They provide long-range and accurate measurements,

and have enabled the development of advanced ADAS, such as collision avoidance systems

[26]. The upcoming arrival of solid-state Lidar sensors, which do not have any moving

mechanical part and are expected to be sold at a much lower price, might address the cost

issue and allow for the wide deployment of Lidar sensors. Nevertheless, this remains an

open question, as some car makers (e.g. Volvo, Google) consider that Lidar sensors will

soon become part of the standard equipment, while other companies (e.g. Tesla) expect the

opposite.

2.3.5 Monocular Camera

A monocular camera is a passive perception sensor that provides visual images of the

surrounding environment. Most cameras are able to detect lights rays in the visible spectrum,

and produce images of best quality during the day or within lit environments. Meanwhile,

other types of cameras can detect other ranges of wavelengths, such as infrared cameras that

provide rich images during the night or within dark environments. To transform light rays

into images, cameras make use of a converging lens whose shape dictates both the angle of

view and the capacity of the camera to magnify distant objects. Thus, while telephoto lenses

typically have a restricted angle of view, wide-angle lenses produce shrink in the images.

Between these two extremes, medium lenses that equip most monocular cameras typically

have a fair opening angle of view (about 120 °), and produce small distortion effects on the

border of images.

Monocular cameras do not provide any range or velocity information, and therefore

must be used in conjunction with image processing algorithms, in order to extract useful

information from the images. For illustration purposes, we show in Figure 2.5 an image

captured by the monocular camera installed on our test-vehicle, along with the detection of

18

Figure 2.5: Detection of a traffic sign within an image issued by the monocular camera
installed on our test-vehicle.

a traffic sign depicted as a cyan square. While image processing algorithms require available

computational resources on the vehicles, and can be sensitive to various illumination and

weather conditions, cameras remain very affordable sensors that can provide rich visual

information about the surrounding environment. They are now part of the standard equipment

of production vehicles, and have enabled many ADAS functions such as lane keeping assist

and collision warning systems [25].

Furthermore, while monocular cameras do not provide range measurements, they can

be associated in groups of two (stereo-camera), or more than two (multi-camera systems),

in order to reconstruct the 3D environment through image processing algorithms, and

produce range information [27]. Such systems remain rarely used in standard vehicles, but

some companies, such as Tesla, have been employing them in high-quality vehicles. To

retrieve range information, another solution consists in making use of a depth camera, which

associates a monocular camera with a depth sensor functioning similarly as a Lidar sensor,

by emitting and receiving infrared signals. Nevertheless, depth cameras typically have a

limited maximum range, and have been rarely used within vehicular applications.

19

Figure 2.6: Communications between connected vehicles (V2V) and with the road infras-
tructure (V2I).

2.4 Connected Vehicles

In parallel to the development of vehicles equipped with more sensors and capable of more

autonomy, efforts have also been directed towards the enhancement of road connectivity.

This has been initiated by the embedding of various communication devices (e.g. Wifi

modules, cellular antennas) within the vehicles, as well as within the road infrastructure.

Thanks to these devices, it is expected that vehicles will soon be able to communicate in

real time with other vehicles in V2V (Vehicle-to-Vehicle), and with the infrastructure in

V2I (Vehicle-to-Infrastructure), as depicted in Figure 2.6. The subsequent benefits can be

classified under three main aspects:

• Improvement of road safety through inter-vehicles communications (e.g. collision

avoidance, lane change warning).

• Enhancement of traffic efficiency (e.g. traffic lights control, collective planning).

• Extension of in-vehicle services (e.g. anti-theft tracking, internet access).

Hereafter, we give a brief description of existing messages formats, and we follow with

20

the description of the different types of communications (V2V and V2I).

2.4.1 Communication Formats

To allow the emergence of connected vehicles, two different communication technologies

are being considered:

• Cellular communications, making use of the incoming 5G network.

• Wifi communications, using the ITS-G5 protocol defined in Europe [28] and the

802.11p protocol defined in the USA [29].

Independently from the technology that will be used, different messages formats have

already been defined by ETSI (European Telecommunications Standards Institute) [30], in

order to standardize future connectivity solutions:

• CAM (Cooperative Awareness Messages) contain localization information (e.g. posi-

tion, trajectory).

• CPM (Cooperative Perception Messages) contain perception information (e.g. pedes-

trian detection).

• MCM (Maneuver Coordination Messages) contain driving information (e.g. lane

change warning, overtake warning).

• MAPEM (MAP Extended Messages) contain geographic information (e.g. road

curve).

• SPATEM (Signal Phase And Timing Messages) contain information related to inter-

sections (e.g. traffic light state).

• IVIM (Infrastructure to Vehicle Information Messages) contain infrastructure infor-

mation (e.g. road signs).

21

• MCDM (Multimedia Content Dissemination Messages) contain multimedia content.

• DENM (Decentralized Events Notification Messages) are dedicated to emergency

cases (e.g. informing about a road accident).

2.4.2 V2V Connectivity

Inter-vehicle communications, also called V2V communications, represent the exchange

of information between different vehicles. This can be achieved through direct connection

between nearby vehicles, through indirect links between distant vehicles using a VANET

(Vehicle Ad-hoc Network), or through internet connection using Wifi or cellular network.

By communicating with each other, vehicles could share precious information, and allow for

substantial improvements of road safety [15]. For instance, they could exchange perception

and localization information, such that each individual vehicle could improve its own

understanding of the environment far beyond the scope of its own embedded sensors. They

could also share driving information, such as lane departure warning or collision detection

warning, in order to allow for collaborative planning between nearby vehicles. Therefore,

while several challenges remain for V2V communications, such as dealing with severe

ambient noise, high vehicle mobility, and multiple vehicles attempting to connect at the

same time [15], intensive efforts have been initiated to tackle these challenges in the short

future.

2.4.3 V2I Connectivity

Vehicle-to-infrastructure communications, also called V2I communications, represent the

sharing of information between vehicles and the road infrastructure, which is expected

to progressively integrate road objects equipped with communication devices, such as

traffic lights embedding a cellular antenna. Thus, vehicles could communicate with the

infrastructure either through direct connection with nearby road objects, or through internet

connection. They could share useful information with the infrastructure but also with other

22

distant vehicles, using the infrastructure as a relay. The vehicles could share information

such as driving decisions and traffic situation (e.g. blocked road, traffic accident), allowing

the infrastructure to react and apply collective fleet management in order to improve the

overall traffic efficiency. The infrastructure could also integrate perception sensors, and

provide vehicles with information that could reach beyond their own sensing capabilities,

in order to improve road safety. For instance, a camera could be installed at the top of

a traffic light, and benefit from a privileged angle of view to detect dangerous situations.

Similarly as for V2V communications, challenges for V2I connectivity include dealing with

the road environment conditions, and with multiple concurrent communications [15]. Again,

thorough efforts have been initiated to allow V2I connectivity in the short future.

2.5 Maps

In order to provide vehicles with more information that can be perceived by their sensors, and

to support their perception and localization algorithms, many applications have considered

the use of maps of the environment. With the emergence of enhanced connectivity, such

maps also become an efficient tool to share various information between vehicles and the

infrastructure, by providing a common positioning reference, as well as a standardized

format for storing data. Nowadays, multiple automotive players consider the availability

of a highly accurate map as an essential step towards the deployment of autonomous and

connected vehicles [31]. Such a map would be organized into different map levels, which

would contain different types of information, including both static data (e.g. road shape,

traffic signs) and dynamic data (e.g. vehicles positions, lane change warnings). This map

organization would allow efficient information sharing, as each vehicle would be able to

access the map only for a given type of information, and in a given geographical region.

In the following, we describe the main types of map formats that have been used

in vehicular applications, in order to model the road environment and enhance vehicles

capacities.

23

2.5.1 Topological Map

A topological map is a map containing a set of nodes that encode available information at

specific positions in the environment, and a set of vertices that model relations between

the nodes [32]. Topological maps typically lack scale and direction, and instead model the

environment through a given topology, by associating vertices with given cost measures.

In vehicular applications, topological maps are mainly dedicated to path-planning, which

aims to compute the targeted trajectory for a vehicle to reach its destination. Therefore, they

generally model the road network by encoding distance measures within the vertices, while

the information contained in the nodes depends on the targeted application. For instance,

popular topological maps include road maps such as Google Maps and OpenStreetMap,

which encode road information within the nodes, and street-view maps such as Google

Street View, which encode rich visual information within the nodes.

2.5.2 Grid-based Map

A grid-based map is a continuous representation of the environment that divides the space

into squares (for 2D maps) or cubes (for 3D maps) of pre-defined dimensions. Each square or

cube is a cell that can encode any type of information. In vehicular applications, grid-based

maps have been widely used to support the navigation of vehicles and perform collision

avoidance, by informing about which part of the environment is likely occupied by obstacles,

and which part is free. To achieve this, they encode within each cell the likeliness to find an

obstacle there, either using a binary format or discrete probabilities, and must be constantly

updated using new sensors measurements and obstacles detections. In such maps, which are

also called occupancy grids [33], an important challenge resides in defining appropriately

the size of cells, as those must not be too large, to avoid over-occupying space whenever an

obstacle is detected, and not too small, to limit computations and allow for real-time map

updates.

24

2.5.3 Landmarks Map

A landmarks map is a discrete representation of the environment that consists of a set of

positioned points called landmarks, which can represent any given type of object detected in

the environment, such as high-level items (e.g. traffic signs, buildings) [34], and low-level

items (e.g. interest points) [35]. Generally, such map also contains the estimated accuracy of

landmarks positions, which is typically in the form of a covariance matrix. Landmarks maps

have been widely used to enhance vehicles capacities, by providing a variety of information

related to the surrounding environment and nearby objects. They have enabled vehicles to

compare and match their sensors measurements with the map content, and thus enhance

their perception and localization capabilities. To properly merge the information brought

by sensors measurements with the map, data fusion techniques typically make use of the

estimated accuracy of the map [5]. Therefore, in order to be useful, landmarks maps need to

be accurate, i.e. contain precise landmarks positions, but also consistent, i.e. provide a valid

estimated accuracy.

2.6 Conclusion

Road safety has for long been a major concern in the automotive industry, and has motivated

car makers to develop various ADAS functions for production vehicles. This has been

supported by the embedding of proprioceptive and exteroceptive sensors that have enabled

both passive and active ADAS functions, such as lane departure warning and adaptive cruise

control, to be part of the standard equipment. Even now, thorough efforts are still being

done to develop more ADAS functions, and to make production vehicles evolve towards

more autonomy.

In parallel to such developments, production vehicles are being equipped with commu-

nication devices that will soon enable them to communicate with each other and the road

infrastructure. This is expected to have a substantial impact on road safety, by allowing the

25

vehicles to share in real-time useful driving information (e.g. positions, obstacles detections,

driving decisions). Nevertheless, in order to exchange useful position data, production

vehicles will need to be accurately geolocalized (i.e. with errors up to a few decimeters).

To geolocalize production vehicles, GNSS receivers have been of particular interest, as

they allow to directly retrieve geo-position measurements. However, neither standard GNSS

receivers nor their improved versions have been able to guarantee the targeted accuracy in

dense environments, where GNSS signals can get severely impacted by multi-path effects.

Therefore, accurate geolocalization of connected and intelligent vehicles in all environments

remains an open challenge.

26

CHAPTER 3

RELATED WORK

To localize themselves with precision and accuracy, intelligent vehicles can count on

measurements issued by a variety of embedded proprioceptive and exteroceptive sensors.

To complete such measurements, it is also expected that they will make use of pre-built

maps that contain prior knowledge about the road environment. This strategy requires the

prior establishment of a highly-accurate map, which is maintained up-to-date, and spans

over entire road networks. To build such a map, a crowdsourcing approach making use of

observations issued by multiple vehicles appears as a cost-effective strategy.

In this chapter, we review localization and mapping techniques in the context of intelli-

gent and connected vehicles, with the purpose of positioning our contributions relatively to

existing methods. This chapter is organized as follows. In section 3.1, we discuss localiza-

tion methods for intelligent vehicles. And in section 3.2, we present map-building strategies

that enable to build maps of the road environment.

3.1 Localization

Localization consists in estimating the position and trajectory of a vehicle relatively to a

given reference, which can be either a global or a local one. It plays an essential role for

intelligent vehicles, by allowing them to assess their situation, navigate and avoid accidents.

Initial works focused on estimating the lateral position of driving vehicles on the road.

These methods have relied on the detection of road markings [36], and have enabled multi-

ple ADAS functions, such as lane departure warning systems [37]. Nevertheless, by only

providing lateral positions, they could not position the vehicles in space nor estimate their tra-

jectories. Subsequent works aimed to achieve global positioning, also called geolocalization

or geo-positioning, of the vehicles. This consists in estimating the position of each vehicle

27

in a global reference, such as an Earth-fixed frame. If a map of the environment is avail-

able, the vehicles can position themselves within the map, and gain additional knowledge

about their surroundings [31]. Furthermore, by positioning themselves within a common

reference, they can potentially communicate their positions and trajectories with each other

and the road infrastructure, which can bring substantial benefits towards road safety and

traffic efficiency [15]. Nonetheless, in order to provide meaningful information, and thereby

effectively improve driving conditions, it has been evaluated that intelligent vehicles must

be geolocalized with errors up to a few decimeters [1].

In this section, we discuss localization methods that have been used to geo-position

driving vehicles. In subsection 3.1.1, we present methods based on the use of measurements

issued by the sensors embedded in vehicles. In subsection 3.1.2, we discuss the use of

SLAM techniques. And in subsection 3.1.3, we present localization methods that benefit

from a previously-established map.

3.1.1 Multi-Sensor Localization

In the following, we discuss localization methods that enable to geo-position a vehicle,

making use of measurements obtained from embedded proprioceptive and exteroceptive

sensors.

GNSS Positioning To geolocalize a vehicle, GNSS receivers appear as the most obvious

solution, as they provide direct geo-position information. As discussed more in details

previously (see subsection 2.3.1), there exist multiple types of GNSS receivers, which

correspond to different levels of performances and prices. The optimal configuration of

GNSS receivers consists of open environments, where GNSS signals can travel without

encountering obstacles. In such conditions, standard GNSS receivers can reach an accuracy

of a few meters [2], while more advanced GNSS receivers, such as RTK-GNSS receivers or

PPP-GNSS receivers, can reach a centimeter-level accuracy [38]. Nevertheless, in dense

28

environments, such as urban city centers, the quality of GNSS signals can get severely

affected by multi-path effects for long periods of time, resulting in unavailability and

inaccuracy issues. In such conditions, even advanced models of GNSS receivers can reach

errors of a few meters [39], while standard GNSS receivers can reach errors of dozens

of meters [3]. To deal with this, different strategies have attempted to address multi-path

effects. In [40], a map of the environment was used to identify and reject unreliable GNSS

signals. In [41], the auto-correlated noises affecting GNSS signals were modeled using an

Auto-Regressive (AR) process. Both of these methods could retrieve GNSS positions with

errors up to a few meters, making use of standard GNSS receivers within dense environments.

Although this represents an improvement of positioning accuracy, this is still below the

targeted accuracy for intelligent vehicles. Furthermore, making use only of a GNSS receiver

would generally be insufficient, as GNSS signals can become unavailable.

Adding Proprioceptive Sensors To deal with the degradation of GNSS signals, some

works have attempted to fuse them, generally using a filtering technique, with displacement

measurements obtained from proprioceptive sensors. In [42], a vehicle is geo-positioned by

fusing measurements from a GNSS receiver, an IMU and motor encoders through a single

KF (Kalman Filter). In [43], the same type of measurements are merged through either an

EKF (Extended Kalman Filter) or an EIF (Extended Information Filter), while in [44], they

are merged applying either an EKF or an IMMF (Interacting Multiple Models Filter), which

fuses outputs from several KF run in parallel. In fact, making use of the IMMF, [44] could

geo-position a vehicle with errors up to a few decimeters in case of smooth motion (constant

speed), and with a meter-level accuracy in case of rough motion (strong acceleration or

turning).

Overall, merging GNSS signals with displacement measurements enables to improve

the positioning accuracy, and allows to deal with situations in which GNSS signals become

unavailable, by performing dead-reckoning with the displacement measurements [42].

29

Nevertheless, dead-reckoning tends to have errors that grow unbounded with time, due to the

fact that errors associated with displacement measurements get integrated [45]. Therefore,

while this strategy can be efficient against temporary outages of GNSS signals, it is not

capable to answer the challenges met by GNSS signals within dense environments, where

inaccuracy and unavailability issues can last for long periods of time.

Adding Perception Sensors In a second approach, other works aimed to deal with the

degradation of GNSS signals by making use of measurements issued by perception sensors.

They did so by computing displacement measurements from perception observations (e.g.

camera images), and then fusing these measurements similarly as if they were obtained

from proprioceptive sensors. In both [46] and [47], a vehicle equipped with a stereo-camera

and a GNSS receiver is geolocalized with errors up to a few meters. To achieve this, low-

level visual features are detected within camera images, and used to compute displacement

measurements of the vehicle. Then, these displacement measurements are merged with

GNSS signals through an EKF.

Overall, this strategy enables to improve the positioning accuracy, as well as to perform

dead-reckoning whenever GNSS signals become unavailable. Nevertheless, its performances

heavily rely on the algorithms that are used to process perception measurements, such as

the detection and matching algorithms used by [46] and [47] to process camera images.

This can make the positioning accuracy sensitive to environmental effects, such as illumi-

nation conditions when using camera images. In fact, the obtained performances do not

seem to challenge the performances obtained when directly using proprioceptive sensors

instead. Furthermore, dead-reckoning based on perception sensors suffers from the same

shortcoming as dead-reckoning based on proprioceptive sensors, which is to have errors that

grow unbounded with time. Thus, this strategy is also unable to deal with the long-term

degradation of GNSS signals present in dense environments.

In order to effectively address this issue, other methods have attempted to make use of

30

maps of the road environment. They aimed to geo-position vehicles by matching observa-

tions issued by their perception sensors with the information contained in the maps. These

methods are generally based on the use of SLAM, and are introduced in the following.

3.1.2 Simultaneous Localization and Mapping

The unavailability of GNSS signals has for long been a challenge for the robotics commu-

nity, due to the fact that many robotics applications take place either indoor, or in dense

environments outdoor. In the 1980s, the robotics community has shifted its focus towards

relative positioning [45], which consists in localizing a robot within its environment. The

objective was to take advantage from the fact that a given environment contains many static

objects, such as traffic signs or buildings in the case of a driving environment, which can be

detected by the robot and used as localization anchors called landmarks. As a result, SLAM

methods have been developed to build a map of the environment while simultaneously

localizing a robot within this map. Starting from the 2000s, SLAM techniques have been

adapted and used for vehicular applications [48]. Due to the fact that vehicles evolve in

outdoor environments, and are generally equipped with GNSS receivers, maps have started

to include geo-positioned data. Subsequently, relative positioning associated with SLAM

methods has shifted towards global positioning, and has aimed to position a given vehicle

relatively to a map that contains geolocalized data.

To solve the SLAM problem, multiple methods have been developed within the robotics

field. In the following, we define the typical SLAM framework, introduce existing SLAM

methods, and discuss their practical use for intelligent vehicles. When presenting a SLAM

method in the general case, we refer to any given robot or vehicle as "agent".

SLAM Framework

The SLAM problem consists in estimating simultaneously the trajectory of a given agent

(localization) and the positions of mapped objects (mapping). By processing localization

31

and mapping concurrently, the aim is that the localization can profit from the mapping output

and inversely. To achieve this, measurements provided by embedded proprioceptive and

exteroceptive sensors are used. To fuse the different measurements, which are typically of

different nature, and affected by different noises levels, the SLAM problem is formalized

as a probabilistic or optimization problem [49, 50]. To solve this problem, different steps

are needed, in order to process the measurements, merge the information, and operate

localization and mapping. SLAM methods can generally be split between three main

operations: landmarks detection, data association and estimation.

Landmarks detection aims to reliably detect the mapped landmarks within perception

measurements (e.g. Lidar scans, camera images). The landmarks can potentially take

any form, depending on the desired map content. Low-level landmarks are generally

associated with specific types of measurements (e.g. pointclouds obtained from LiDAR

scans [51], image features extracted from camera images [52]). Meanwhile, high-level

landmarks, which correspond to real objects such as traffic signs and buildings, can be found

in applications with various types of sensors [53, 54].

Data association consists in identifying which landmarks detections relate to the same

landmarks, and to match these detections with landmarks in the map. This step includes

tracking, which associates detections between subsequent measurements, and loop recogni-

tion, which links detections obtained at separate moments (meaning the agent has returned to

a place it has visited previously). Generally, tracking is operated by matching detections be-

tween successive measurements, potentially making use of a motion model for the agent [52].

Meanwhile, loop recognition algorithms typically depend on the type of landmarks that are

used (e.g. Iterative Closest Point to match pointclouds [51], place recognition algorithms to

match image features [55]).

Estimation aims to solve the SLAM problem, i.e. estimate the agent trajectory and land-

marks positions. To achieve this, it makes use of landmarks detections and corresponding

associations, as well as measurements obtained from proprioceptive sensors. Two different

32

strategies exist for the formulation of this problem: full SLAM and online SLAM [4]. In

full SLAM, the objective is to estimate the whole agent trajectory at once, along with

the positions of all detected landmarks [50]. Thus, full SLAM makes use of all retrieved

measurements at once, and leads to an optimal accuracy, but also to a potentially high com-

putational complexity. To achieve real-time performances, online SLAM was proposed, in

which the estimation step is divided in two operations: local estimation and loop closure [55].

The local estimation is activated at a high-frequency and estimates only the last positions of

the agent, as well as the positions of the lastly detected landmarks. Meanwhile, whenever

a loop is recognized through data association, a loop closure step is run as a background

process, in which a substantial part of the agent trajectory and landmarks positions are

estimated and updated, in order to account for the loop recognition. To solve the SLAM

problem, multiple techniques have been proposed for both full SLAM and online SLAM, and

can be classified into two main categories: filtering-based methods and optimization-based

methods. These two categories are discussed in the following.

Filter-based SLAM

SLAM methods based on the use of filters are probabilistic approaches that estimate a state,

which comprises the agent trajectory and the landmarks positions, as well as the associated

accuracy in the form of covariances. These methods follow a two-step iterative process that

is activated periodically whenever new measurements are received. At each step, they only

make use of the last measurements to update the estimation, and are thus mostly used to

solve online SLAM.

The two-step process, independently of the used filter, runs as follows. During the

prediction step, the filter state is predicted, making use of the preceding estimation, as well

as a motion model associated with displacement measurements obtained from proprioceptive

sensors (e.g. motor encoders, IMU). During the update step, this prediction is corrected

to obtain the final estimation, making use of measurements and sensors models associated

33

with exteroceptive sensors (e.g. GNSS receiver, Lidar sensor, camera). Generally, SLAM

methods based on filters originate from two main strategies: the KF (Kalman Filter) [56]

and the PF (Particle Filter) [57], which are discussed below.

The Kalman Filter (KF) The KF was designed to handle linear systems affected by

zero-mean, Gaussian noises, and KF-based SLAM has shown strong convergence properties

in such conditions [56]. However, in practice, robots and vehicles are generally associated

with non-linear motion models, and their embedded sensors also possess non-linear sensors

models. Therefore, instead of applying the original KF, many SLAM methods have used

improved versions of it: EKF (Extended Kalman Filter) [58, 59], UKF (Unscented Kalman

Filter) [60, 48] and SCIF (Split Covariance Intersection Filter) [61].

The EKF contains a linearization step, in which non-linear motion and sensors models

get linearized around the current estimation, in order to deal with non-linear models. It

has been used in many outdoor SLAM applications, and has enabled vehicles equipped

indifferently with a Lidar sensor [58] or a monocular camera [59] to geolocalize themselves

while building a map of the environment. Nevertheless, while it has been demonstrated that

the EKF is optimal as long as the linearization step is operated around the true value, this

true value remains unknown in practice. Due to unknown correlations between the different

measurements, the EKF tends to become over-confident in the long-run, especially with

highly non-linear systems [60], and can lead to inconsistent estimations, i.e. estimations

that do not contain the ground truth within the estimated uncertainty.

To deal with highly non-linear systems, the UKF was proposed as an improvement of the

EKF [60]. It functions by using a number of different particles sampled around the current

estimation, which enables to avoid the direct computation of Jacobian matrices during the

linearization step. Although a high number of particles is generally needed to provide

consistent estimations, [48] proposed to combine the use of UKF and EKF, in order to

maintain real-time performances. Nevertheless, while the UKF helps to mitigate consistency

34

issues associated with highly non-linear systems, it does not completely address them, and

it also tends to become over-confident with time.

The CIF (Covariance Intersection Filter) was introduced to avoid such over-confidence,

by merging information conservatively, assuming dependency between all sensors measure-

ments. Although this method enables to provide consistent estimations, such estimations

are generally highly suboptimal, as many measurements can generally be assumed indepen-

dent [62]. Therefore, the SCIF, which consists in combining the use of an EKF and a CIF to

respectively process independent and dependent measurements, was introduced. In [61],

a vehicle equipped with a Lidar sensor was accurately geo-positioned, making use of an

SCIF. Nevertheless, although the SCIF appears as a good solution to avoid over-confidence

without being highly suboptimal, it has been rarely used within vehicular applications. An

explanation for this could be that identifying the parameters of the SCIF, which define

the part of the measurements that are to be assumed independent or dependent, remains a

complex and time-consuming task.

The Particle Filter (PF) The PF, oppositely to the KF and its derivatives, does not assume

anything regarding the linearity of the system and the different types of noises. This enables

to handle multimodal distributions, in which sensors measurements follow various non-linear

models [57]. To achieve this, a number of different particles are randomly generated, and

represent different hypotheses for the filter state. At each step, the PF associates a likelihood

score to each particle. Subsequently, the most likely particles are maintained, while the least

likely ones are eliminated. As time grows, it has been observed that one particle tends to

dominate all other particles with its likelihood score. This makes the PF unable to consider

multiple hypothesis, and thus endangers its capacity to model multimodal and non-linear

systems. To address this issue, a resampling step is generally processed periodically, in

order to generate new particles.

To provide accurate estimations of the agent trajectory and landmarks positions, the PF

35

would typically require a large number of particles, and induce a high computational cost.

To deal with this, [63, 64] proposed to factor the SLAM problem into two subproblems,

by estimating the agent trajectory and the landmarks positions using respectively a PF and

multiple independent EKF. In [65], this strategy was evaluated during an outdoor experiment

and achieved a better positioning accuracy than when using an EKF. Nonetheless, the

factorization of the SLAM problem inevitably induces some approximations, which tend to

make the process over-confident, and lead to inconsistent estimations in the long-run.

Optimization-based SLAM

While filter-based SLAM use only the last measurements provided by embedded sensors,

methods based on optimization take advantage from all the measurements retrieved during a

given time-window. To do so, they estimate the agent trajectory and the landmarks positions

through the minimization of a cost function derived from sensors measurements. Overall,

optimization-based methods have been used to solve both full SLAM, when the time-window

contains all retrieved measurements, and online SLAM, when the time-window contains

only a subset of the measurements. These methods generally follow two main strategies:

bundle adjustment and graph optimization, which are discussed below.

Bundle Adjustment Bundle adjustment is a vision technique that makes use of camera

detections to build a map of landmarks. It functions by using many such detections to

establish constraints between the camera trajectory and the positions of detected landmarks.

Assuming that camera detections are affected by zero-mean noise, the associated constraints

are used to form a non-linear least-squares problem that is solved through global opti-

mization. Throughout this process, accuracy information can be computed in the form

of covariances, at the condition that noises follow a Gaussian behavior [66]. Obviously,

the global optimization can be computationally extensive, and bundle adjustment has been

mostly dedicated to solve full SLAM.

36

Nevertheless, some attempts have been made to perform online SLAM by limiting the

number of variables used in the optimization. In [67], an iterative process is proposed, in

which the optimization only updates variables associated with new measurements. In [68]

and [69], a local optimization scheme is introduced, where the optimization considers only

a sliding-window of the last camera keyframes. All of these methods enabled to reduce the

computational cost of bundle adjustment, with [69] even achieving real-time performances,

and paved the way for the development of subsequent optimization methods.

However, while bundle adjustment enables to take advantage from a large number of

camera detections, it does not easily integrate other types of measurements. This remains

problematic towards its use for vehicular applications, since intelligent vehicles are expected

to be equipped with a variety of proprioceptive and exteroceptive sensors. To deal with this,

some works proposed to modify the optimization process, in order to include additional

information, such as GNSS and inertial measurements [70]. Notably, their formulation

ends up looking very similar to the formulation of graph optimization, which is introduced

hereafter.

Graph Optimization Graph optimization was proposed as a generalization of the prob-

abilistic formulation of SLAM [50]. It is an optimization method that can integrate any

type of measurements during a given time-window. It does so by representing the SLAM

problem as a graph, in which the agent trajectory and landmarks positions are nodes, and

measurements are links that constrain the nodes. By assuming all measurements to be

affected by zero-mean, Gaussian noises, and making use of an optimization process, it is

able to estimate the nodes states, i.e. the agent trajectory and landmarks positions.

Over the years, multiple SLAM methods based on graph optimization have been pro-

posed. They generally aim to decrease the computational complexity, in order to achieve

real-time requirements. In [71], the graph model is represented as a tree structure, and

optimized using a gradient descent. In [72], the structure of the graph is taken into account

37

to speed up the optimization. In [5], an incremental version of graph optimization, which

is able to maintain scalable computations, is proposed. In [73], graph optimization is dedi-

cated to the localization of the vehicle, and is only applied on a sliding-window of the last

measurements.

Overall, graph optimization is a probabilistic method that can take advantage from dif-

ferent types of measurements, making it more flexible than bundle adjustment. Furthermore,

it is also an optimization method that can profit from all measurements retrieved during

a given time-window, leading to a better accuracy than filter-based methods. In fact, [7]

compared the use of graph optimization and the EKF, and showed that graph optimization

generally provides better estimations. In [8], a comparison of the use of graph optimization

and the PF also shows that graph optimization tends to provide more accurate results.

However, during graph optimization, in order to keep computations at a reasonable level,

the noises affecting measurements are assumed to follow zero-mean, Gaussian distributions.

In practice, noises may diverge from this hypothesis, leading graph optimization to become

over-confident and provide inconsistent estimations in the long-run. Thus, although graph

optimization appears as the best SLAM method, it remains insufficient, as other SLAM

techniques, to guarantee long-term, accurate localization of a given vehicle.

3.1.3 Localization using Pre-Built Maps

To maintain accurate positioning in the long-run, some methods proposed to make use of

maps of the environment. These maps are built in advance and used as prior knowledge

within a SLAM process to geo-position vehicles. To do so, their content is matched with

detections obtained from perception measurements issued by the vehicles. These maps can

also be shared, in order to communicate various road information among vehicles and the

road infrastructure. To build them, some methods aimed to take advantage from data that

has already been gathered, including cadastral plans [74] and street views [75], while other

techniques instead made use of dedicated fleets of vehicles to retrieve new data [76, 41].

38

All of these approaches can be classified into three categories, which are introduced below,

depending on the type of maps that they are based on: road maps, street view maps and

landmarks maps.

Road Maps The first range of methods aimed to take advantage from existing road maps,

such as Google Maps or OpenStreetMap, to geolocalize vehicles. In these methods, the local

trajectory of the vehicle is estimated, making use of measurements retrieved from embedded

sensors. Then, this local trajectory is matched with the road map, assuming that the vehicle

remains on the road at all times, in order to compute the global trajectory of the vehicle.

In [77], visual odometry based on camera images provides the local trajectory, while a PF

computes the global one. In [78], semantic classification based on Lidar scans identifies

the shape of the road on which the vehicle is driving, enabling an optimization process to

estimate the global trajectory. Overall, although these methods take advantage of widely

available road maps, they remain sensitive to the quality of these maps. Furthermore, they

can be sensitive to repetitive road patterns, and lose accuracy over long, straight roads. In

fact, [78] achieves meter-level accuracy of localization, which remains below the targeted

accuracy for intelligent vehicles, while [77] tends to provide less accurate results.

Street View Maps Other methods aimed to take advantage from street view databases,

such as Google Street View. To geo-position a vehicle, they compare images retrieved

by embedded cameras with images present in the given database. In [75], camera images

are matched and localized using local bundle adjustment. In [79], continuous localization

of camera images is achieved using a Bayesian tracking algorithm. In [80], a mobile

robot is positioned by combining the use of camera images and inertial measurements

through an optimization process. While the idea of using available street view images

appears interesting, the associated methods remain complex and computationally demanding.

Furthermore, these methods require rich visual environments, and are typically sensitive to

environments that contain repetitive visual structures, such as suburbs or rural areas. In fact,

39

they typically provide positioning with errors that can reach several meters.

Landmarks Maps Another strategy consists in making use of a map of landmarks, which

contains the geo-positions and accuracy of detected landmarks. Potentially, the landmarks

can take any form, including low-level landmarks (e.g. dense pointclouds [81]), and high-

level landmarks (e.g road markings [41]). The map is generally built through a SLAM

process, making use of vehicles equipped with high-end sensors (e.g. high-quality Lidar

sensors, Radar sensors, cameras). Nonetheless, some works aimed to use already available

data, such as [74], which built a map of buildings from cadastral plans. Anyway, after the

map is established, it can be used as prior knowledge for geolocalizing vehicles. To do

so, landmarks are detected within perception measurements issued by a given vehicle, and

matched with the landmarks present in the map. Subsequently, a process similar to SLAM,

using both the sensors measurements and the map information, is able to estimate the vehicle

trajectory.

The accuracy of such localization is subject to two different challenges. First, the

landmarks must be reliably detected and matched, which has motivated the use in many

applications of high-level landmarks, that are generally easily identifiable, and that can also

be used for navigation purposes. Second, the map must have a high-precision, i.e. contain

accurate landmarks geo-positions, as the map accuracy is correlated with the resulting

localization accuracy. For these reasons, [76] and [34] used vehicles equipped with high-end

sensors to build accurate maps containing respectively pole-shaped landmarks, and traffic

signs and road markings. Making use of these maps, and applying respectively filter-based

and optimization-based methods, [76] and [34] could geo-position vehicles equipped with

standard sensors with a decimeter-level accuracy.

These works illustrated the potential of this approach to geo-position production vehicles

with a high accuracy. In fact, major car manufacturers are now considering the use of maps

of landmarks as an essential solution to achieve accurate geolocalization of the vehicles.

40

Nevertheless, while this approach appears promising, it requires the prior establishment

of a map of landmarks that is both accurate, to provide precise position information, and

up-to-date, to allow reliable detection and matching of the landmarks.

3.2 Map Construction

Making use of a map of landmarks appears as a promising solution to geo-position produc-

tion vehicles with accuracy. Such a map should contain both the landmarks geo-positions

and the associated accuracy, so as to allow for the proper merging of the information con-

tained within the map, with the information provided by measurements issued by the sensors

embedded in vehicles [5]. Furthermore, the map should be constantly updated, through the

addition or the removal of new or outdated landmarks, in order to always remain up-to-date.

To build such a map, multiple methods have been proposed within the robotics field, and

applied for vehicular applications. They generally make use of a SLAM process, in order to

make localization and mapping profit from one another. While many robotics applications

are restricted to short-term scenarios, vehicular applications require to build maps that can

span over large areas, while remaining up-to-date. In order to address resulting scalability

issues, collaborative strategies that make use of multiple vehicles have been proposed. In

this section, we discuss these mapping methods, and introduce the different approaches. In

subsection 3.2.1, we introduce collaborative strategies, and in subsection 3.2.2, we follow

more specifically with crowdsourcing approaches.

3.2.1 Collaborative Mapping

To build maps that can span over large areas, various robotics applications have proposed to

take advantage of multiple agents through collaborative SLAM methods. In [82], mobile

robots equipped with monocular cameras are either grouped, to improve SLAM perfor-

mances through overlapping views, or split, to explore different areas. In [83], a data-driven

descriptor is introduced to extract meaningful features and perform collaborative SLAM

41

with Lidar-equipped vehicles.

To aggregate measurements from multiple agents and perform collaborative SLAM,

existing methods can be classified into two main categories: centralized strategies and

decentralized approaches. Within a centralized strategy [84, 85], agents first upload their

measurements towards centralized servers. The servers then merge the observations received

from multiple agents, making use of a SLAM process, in order to build and update the map.

Such strategy appears straightforward, as all measurements are used at once during a single

SLAM process to build a single map. Nevertheless, it does require to have available compu-

tational resources on centralized servers, as well as reliable communications between the

agents and the servers [86]. To deal with communication issues, decentralized approaches,

in which agents share measurements with each other, and perform SLAM using their own

embedded processing units, have been proposed [87]. Such decentralized approaches remain

generally complex to implement, due to the need to share measurements among participating

agents without double-counting information when building the map. To deal with this,

the typical strategy consists in avoiding to merge already fused information between the

agents [87]. Furthermore, decentralized approaches can impose strong requirements on the

limited computational resources available on agents. To address such issues, [88] proposed

to limit inter-agent communications to one agent at a time. Nonetheless, while such strate-

gies allow to decrease the computational burden and avoid double-counting information,

they generally lead to suboptimal estimations.

To build high-precision maps of the road environment, major automotive manufacturers

have applied collaborative SLAM methods using dedicated fleets of vehicles equipped with

high-end sensors [31]. Due to the limited computational resources available on vehicles, as

well as the targeted accuracy of the built maps, they generally apply a centralized strategy

where massive cloud servers merge observations retrieved by continuously-driving vehicles.

However, due to the high operational cost, they can only operate a limited number of

vehicles, and have been unable to register more than the main highways, nor to provide

42

frequent updates to the maps [89].

3.2.2 Crowdsourced Mapping

Crowdsourced mapping defines a sub-category of collaborative mapping which emerged

to take advantage from the increasing availability of smartphones (for indoor applications)

and production vehicles (for outdoor applications) equipped with standard sensors. The

crowdsourcing approach consists in making use of a vast amount of redundant measurements,

in order to compensate for the use of standard sensors, and to build a map that is highly-

accurate and always up-to-date. This strategy requires to aggregate measurements from

many different agents, and is generally implemented through centralized approaches.

Initial works applied crowdsourced mapping for indoor applications, making use of

inertial sensors embedded in smartphones. [90] applied a clustering algorithm on measured

trajectories, while [91] solved the SLAM problem through graph optimization. These works

showed the potential of crowdsourced mapping to build maps of indoor environments,

making use of redundant measurements retrieved from standard sensors.

Subsequent works aimed at building maps of the road environment, making use of

production vehicles equipped with standard sensors. These works are summarized in

Table 3.1. In [92], a map is built using only camera observations. This approach makes use

of a global optimization process to correct the map in the case of a loop closure, and thus

appears unscalable to a large amount of vehicles. Furthermore, the built map consists of low-

level features associated with keyframes, which could complicate the data association step,

and potentially lead to additional computations and unstability during the estimation process.

In [93], [94] and [95], maps of high-level landmarks are built using camera observations to

retrieve perception measurements. In all of these works, the mapping process is split in two

steps. First, each individual vehicle builds a first estimation of the map, by making use of a

local process. Then, centralized servers merge the different estimations through a global

process. In fact, [93] and [94] use a global optimization for this task, which can potentially

43

Perception sensor Map accuracy Map content Number of passages Mapping method

[93] Monocular camera Decimeter-level Traffic signs, road lanes 25 Bundle adjustment

[92] Monocular camera Several meters Keyframes, 2 Bundle adjustment,

Point features Graph optimization

[96] Lidar sensor, Several decimeters Street lights, 11 Graph optimization

Monocular camera Road lanes RLS filter

[94] Monocular camera Few decimeters Road boundaries, road markings 10 Graph optimization

[95] Monocular camera Unknown Road markings Unknown Graph optimization

Table 3.1: Crowdsourced mapping methods developed for vehicular applications.

induce heavy computations, and be unscalable for a large number of vehicles. Notably, [93]

and [94] respectively used 25 and 10 vehicle passages during their experiments, while [95]

did not specify the number of used vehicle passages.

Meanwhile, an iterative method was proposed in [96], making use of vehicles equipped

with both a Lidar sensor and a monocular camera. The built map consists of high-level

landmarks, and is gradually updated as vehicles upload new measurements. This work

showed the potential of crowdsourced mapping, by being able to build a map of landmarks

while remaining computationally scalable. Nevertheless, the process remains suboptimal, as

landmarks geo-positions and their accuracy are estimated using both graph optimization and

an RLS (Recursive Least-Squares) filter. Furthermore, during their experiments, [96] used

a limited amount of vehicles passages, 11 in fact. Thus, the real accuracy and scalability

potential that can be achieved with crowdsourced mapping remains to be assessed in a

realistic, long-term scenario.

3.3 Conclusion

Intelligent vehicles will need to be geolocalized with errors up to a few decimeters [1], in

order to perform driving functions autonomously, and share meaningful positions and trajec-

tories with each other. To achieve such accuracy, GNSS receivers are not sufficient, as they

44

suffer from various atmospheric and multi-path effects, which lead to severe unavailability

and inaccuracy issues within dense environments. The addition of other types of sensors,

including proprioceptive and perception sensors, helps to increase the localization accuracy,

but does not allow to address inherent GNSS limitations in the long-run.

Instead, another strategy consists in positioning the vehicles relatively to a given map of

the environment. A variety of SLAM methods have been proposed in this direction, and have

allowed a given vehicle to build a map of its environment while localizing itself within this

map. Among these methods, graph optimization has appeared as the technique achieving

best localization and mapping performances [7, 8]. Nevertheless, such methods tend to

become over-confident in the long-run, leading to inconsistent maps and thus inaccurate

localization of the vehicles. Therefore, instead of making each vehicle build its own map,

other works proposed to use maps of the environment that are established in advance and

common to all vehicles. In fact, making use of a SLAM process along with a pre-built map

of accurately positioned landmarks has enabled to geolocalize standard vehicles with the

targeted accuracy [76, 34].

Nevertheless, this strategy requires the prior establishment of an accurate map of geo-

positioned landmarks, which must span over large areas while always remaining up-to-date.

In order to build such a map, major actors in the field have been applying collaborative

SLAM methods with dedicated fleets of vehicles equipped with high-end sensors. However,

they are now facing strong logistical limitations that prevent them from building maps that

cover the entire road network, nor to maintain the existing maps up-to-date [89]. Following

the generalization of production vehicles equipped with standard sensors, crowdsourcing

methods have appeared as a cost-effective approach to build and update a high-precision

map. Nonetheless, while initial works could show promising results, the real potential of

crowdsourced mapping remains to be asserted in realistic, long-term scenarios.

45

CHAPTER 4

CROWDSOURCED MAPPING USING GRAPH OPTIMIZATION

Crowdsourced mapping represents a cost-effective solution to build a large-scale and up-

to-date map of geo-positioned landmarks. It consists in retrieving measurements from

production vehicles equipped with standard sensors, and building the map in a collaborative

manner. A complete crowdsourcing system involves several different steps, in order to

collect the raw measurements on the vehicles, pre-process and filter them, and build and

update the map of landmarks.

In this thesis, we focus on the mapping part of such a system, which aims to build and

update the map from given pre-processed measurements. In fact, wherever we mention

the term: "crowdsourced mapping" in the following, we refer to the mapping part of the

complete crowdsourcing system. First, in order to verify the effectiveness of the collaborative

approach, we introduce a crowdsourced mapping pipeline based on a simple triangulation

optimization. Then, we propose an improved solution based on graph methods such as those

used in SLAM, which have shown better results than other filtering-based methods [7, 8].

To be of interest in real situations, crowdsourced mapping must be able to build an

accurate map of geolocalized landmarks, while maintaining scalability, i.e. reasonable

computational costs, such that the map can be frequently updated and span over large

areas. Generally, the scalability of map-building methods and the accuracy of the resulting

map are contradictory objectives. Therefore, in our solution based on graph optimization,

we propose three different methods for updating the map, which correspond to different

trade-offs between scalability and map accuracy. We compare and evaluate their respective

performances, and conclude on the most efficient approach to be applied in real conditions.

The structure of this chapter is as follows. In section 4.1, we begin with a general

overview of the crowdsourcing system and clarify the scope of our work. In section 4.2,

46

we introduce our solution based on triangulation optimization. In section 4.3, we recall

the formulation of graph optimization, as a preamble before introducing our proposition.

In section 4.4, we detail our solution based on graph optimization, and introduce the three

different methods used to update the map.

4.1 Crowdsourced Mapping

In the following, we describe the main steps contained in a complete crowdsourcing sys-

tem. We clarify our focus on the mapping part, and detail its content from an applicative

standpoint.

4.1.1 Overview

The typical crowdsourced mapping system contains several different modules, as illustrated

in Figure 4.1. On each vehicle, an acquisition module registers raw measurements from

embedded sensors. A pre-processing module transforms these raw measurements into usable

sensors observations, making use of several operations, such as time interpolation of the

different measurements, detection of the landmarks within perception measurements, and

data association to match the detected landmarks with landmarks in the map. Making use of

these sensors observations, as well as the map, a localization module is able to geo-position

the vehicle within the infrastructure. Obviously, these three operations have to be achieved

directly on the vehicle and in real-time.

In the meanwhile, on centralized servers, the mapping module receives measurements

from multiple vehicles, and uses them to build and update the map. Although this process

does not need to be run in real-time, it does need to be scalable, as it must deal with a large

quantity of crowdsourced data, in order to build an accurate and up-to-date map that covers

large portions of the road network.

47

Figure 4.1: Overview of crowdsourced mapping, with modules split between onboard
processing and cloud processing.

48

4.1.2 Mapping Strategies

To implement the mapping module, two different architectures can be used. In a first

approach, each vehicle estimates the landmarks geo-positions by itself, making use of its

own sensors observations. Then, the role of the servers consists in merging the different

geo-positions estimations received from multiple vehicles. This solution requires few

communication bandwidth between the vehicles and the servers, but it can impose high

computations on the processing units embedded in the vehicles.

In a second approach, each vehicle registers sensors observations, and directly uploads

them to centralized servers. The servers then use the observations retrieved from multiple

vehicles to estimate the landmarks geo-positions. This solution enables to deport most cal-

culations on the servers, but it can lead to higher requirements of communication bandwidth.

Note that, as the mapping module does not need to be run in real-time, this bandwidth issue

is not critical. At the moment, we consider this second approach to be more in line with

existing limits on intelligent vehicles. For this reason, we chose this architecture to illustrate

the overview of crowdsourced mapping in Figure 4.1. Nevertheless, in this thesis, we do

not make any assumption on which strategy is applied, and we propose a solution that is

independent from the location on which calculations are processed.

In this work, we focus on the development of the mapping module, which builds and

updates a map of geolocalized landmarks, making use of pre-processed sensors observations

retrieved from multiple vehicles.

4.2 Triangulation Optimization for Crowdsourced Mapping

In order to assess the potential of crowdsourced mapping, we start by building a simple and

intuitive solution. We propose a crowdsourced mapping approach based on a triangulation

optimization, as illustrated in Figure 4.2, with the different operations depicted as colored

rectangles and the data shown as white ovals.

49

Figure 4.2: Triangulation-based Approach for Crowdsourced Mapping.

This triangulation-based approach functions as follows. Consider any vehicle that

follows a given trajectory, detects surrounding landmarks, and registers a given set of

measurements. In order to build the map of landmarks using these measurements, it is

required that the vehicle can provide at least two types of observations: position observations

(such as GNSS measurements), and detection observations (such as landmarks detections

within camera images). Therefore, in this approach, we consider any vehicle that is able to

provide these two types of observations. Whenever a position observation and a detection

observation are obtained, a projection line is established as passing through:

• The center of the perception sensor associated with the detection observation.

• The geo-position of the detected landmark.

Among the perception sensors that can be embedded in driving vehicles, we either find

sensors that provide only bearing information (such as monocular cameras) or sensors that

give both range and bearing information (such as Lidar or Radar sensors). While bearing

information does not provide direct information about the landmarks geo-positions, it

provides sufficient information to build the associated projection lines. Therefore, projection

lines can be established considering any type of perception sensors embedded in the vehicles.

The formulation of projection lines typically depends on the type of perception sensors that

are used, and is not detailed here in order to keep a general discussion of the approach.

50

While driving, each vehicle registers multiple projection lines related to various detected

landmarks. When it reaches the end of its trajectory, it uploads all established projection

lines towards centralized servers. Thus, the servers receive multiple projection lines from

many different vehicles, and use them to estimate the geo-positions of detected landmarks.

The position of each landmark Li is estimated independently from the positions of other

landmarks, by minimizing the following cost function:

L̂i = argmin
Li

K∑
k=0

dist(Li, Zk(Li)) (4.1)

where L̂i is the estimated geo-position of Li, and Z0(Li), ..., ZK(Li) are all the projection

lines established for Li. Meanwhile, dist(L,Z) correspond to the orthogonal distance

between the geo-position L and the line Z. To solve this equation, we use a simple least-

squares optimization as formulated in [97].

Overall, this triangulation-based approach represents an intuitive solution to the crowd-

sourced mapping problem, and was used to assess the potential of crowdsourced mapping

during early field-tests (see section 5.1). Nevertheless, some limitations associated with this

approach could be identified as follows:

• This method does not use all of the available information, such as displacement

observations (provided for instance by motor encoders), which could have an impact

on the map accuracy.

• The estimated accuracy of landmarks geo-positions in the map is not provided, al-

though this information can be necessary to allow efficient use of the map [5].

• At every step, all projection lines established since the beginning are used, making

this method not computationally scalable to a high number of vehicles.

51

4.3 Graph-based Approaches

In order to build an accurate map of landmarks, and address issues associated with the

triangulation optimization, we aimed to develop a more elaborate solution for crowdsourced

mapping, making use of methods such as those used in recent SLAM techniques. Indeed,

SLAM methods have been widely used within the robotics community to merge measure-

ments from a variety of sensors, taking into account their respective accuracy. Furthermore,

SLAM methods typically provide a Bayesian formulation of the mapping problem, and

enable to compute an estimation for the accuracy of landmarks geo-positions within the

map. Among SLAM methods, graph optimization has shown better performances than other

filtering-based techniques [7, 8]. In this work, we propose a crowdsourced mapping solution

based on graph optimization, along with three different methods for updating the map. This

enables to compare different crowdsourcing approaches, and identify the technique that

achieves the best performances in terms of map quality and computational scalability.

In the following, we formulate the SLAM problem, and derive its graph-based solution,

in order to lay theoretical ground for the subsequent presentation of our crowdsourced

mapping pipeline.

4.3.1 SLAM Formulation

Before formulating the SLAM problem, we define some basic variables, without losing

generality of the discussion. Consider any vehicle that moves from discrete time instants

k = 0 to k = K along a given trajectory X0:K = {X0,, XK}, where Xk contains both

the position and orientation of the vehicle at instant k. While driving, the vehicle detects

a given number N of landmarks whose geo-positions define a map M = {L1, ..., LN}. In

the remainder of this document, the notation Li will indifferently be used to design the

landmark of index i, and its geo-position. While driving, the vehicle also acquires a given

set of observations Z0:K = {Z0,, ZK} from its embedded sensors, where Zk contains all

52

the measurements issued at instant k. Considering the existing sensors that can be embedded

in vehicles and used for localization and mapping purposes, any variable Zk may contain

three different types of measurements:

• Displacement observations, that inform about the vehicle motion between two succes-

sive instants. These measurements, noted Uk, are provided by proprioceptive sensors

through a motion model f :

X1:K = f(X0:K−1, U1:K) + εu,1:K (4.2)

where εu,1:K is the prediction noise.

• Position observations, that inform about the position of the vehicle at a particular

instant. These measurements, noted Yk, are provided by exteroceptive sensors through

a sensor model g:

Y0:K = g(X0:K) + εy,0:K (4.3)

where εy,0:K is the sensor noise. Position observations are not defined in many SLAM

works, as they mostly originate from GNSS receivers, which are not used within

indoor robotics applications. However, such sensors are commonly used in outdoor

and vehicular applications, which motivates their inclusion in our formulation of the

SLAM problem.

• Detection observations, that inform about the detection of one or more landmarks by

the vehicle. These measurements, noted Dk, are provided by exteroceptive sensors

through a sensor model h:

D0:K = h(X0:K ,M) + εd,0:K (4.4)

where εd,0:K is the sensor noise.

53

The SLAM problem aims to jointly estimate the vehicle trajectory and landmarks geo-

positions, considering all observations provided by the sensors. To deal with the noise

present in the measurements, this problem is formulated in a probabilistic manner, in which

estimations of the vehicle trajectory X̂0:K and landmarks geo-positions M̂ correspond to the

maximum of the posterior PDF (Probability Density Function) P given all observations [4]:

X̂0:K , M̂ = arg max
X0:K ,M

P = arg max
X0:K ,M

P (X0:K ,M |Z0:K) (4.5)

where P (X|Y) corresponds to the PDF of X given Y .

The posterior PDF P contains all inter-relations between X0:K , M and Z0:K , and is

generally too complex to estimate. In order to simplify P and solve Equation 4.5, we make

a number of justified assumptions that are discussed in the following. Naturally, these

assumptions concern the known variables, i.e. observations Z0:K , and not the unknown

variables, i.e. states X0:K and M .

The posterior PDF P expresses the probability of unknown states X0:K and M depend-

ing on the known measurements Z0:K . This complicates the simplification of P through

assumptions on Z0:K , and motivates the use of the Bayes theorem as follows, in order to

inverse the role of known measurements Z0:K and unknown states X0:K and M within P:

P = P (X0:K ,M |Z0:K) = P (Z0:K |X0:K ,M)
P (X0:K ,M)

P (Z0:K)
(4.6)

P (X0:K ,M) and P (Z0:K) can be considered constant for a given application, i.e. given

vehicle trajectory and landmarks configuration, which gives:

P ∝ P (Z0:K |X0:K ,M) (4.7)

We re-write Equation 4.7 by splitting Z0:K into the associated displacement, position

54

and detection observations U1:K , Y0:K and D0:K :

P ∝ P (U1:K , Y0:K , D0:K |X0:K ,M) (4.8)

Displacement and position observations U1:K and Y0:K , due to their inherent nature, are

clearly independent from landmarks geo-positions M . Furthermore, displacement, position

and detection observations U1:K , Y0:K and D0:K are respectively processed by different

sensors, which generally do not interfere with each other. Thus, we can reasonably consider

that these different types of measurements are conditionally independent, i.e. that:

• Observations U1:K do not directly depend on observations Y0:K or D0:K , but only on

vehicle states X0:K .

• Observations Y0:K do not directly depend on observations U1:K or D0:K , but only on

vehicle states X0:K .

• Observations D0:K do not directly depend on observations U1:K or Y0:K , but only on

vehicle states X0:K and landmarks geo-positions M .

Following, we can write:

P ∝ P (U1:K |X0:K) P (Y0:K |X0:K) P (D0:K |X0:K ,M) (4.9)

By taking a look at the formulation of sensors models g and h (see respectively Equa-

tion 4.3 and Equation 4.4), it can be seen that they enable to directly derive the probabilities

P (Y0:K |X0:K) and P (D0:K |X0:K ,M). Oppositely, the motion model f (see Equation 4.2)

does not allow to directly derive P (U1:K |X0:K), but instead P (X0:K |U1:K). This motivates

a second use of the Bayes theorem as follows:

P (U1:K |X0:K) = P (X0:K |U1:K)
P (U1:K)

P (X0:K)
(4.10)

55

P (U1:K) and P (X0:K) can be considered constant for a given application, which gives:

P (U1:K |X0:K) ∝ P (X0:K |U1:K) (4.11)

And:

P ∝ P (X0:K |U1:K) P (Y0:K |X0:K) P (D0:K |X0:K ,M) (4.12)

Until now, we made use of basic assumptions that can be considered valid in the

general case. Unfortunately, this is not sufficient to make the SLAM problem solvable, as

the probabilities P (X0:K |U1:K), P (Y0:K |X0:K) and P (D0:K |X0:K ,M) remain typically too

complex to estimate.

4.3.2 Graph Model

To further simplify the posterior PDF P and solve the SLAM problem, we make use of two

subsequent assumptions that are at the basis of the graph formulation of SLAM [50]. These

assumptions are discussed in the following, and represent both the interest and challenges of

the graph-based approach. Indeed, while they enable to simplify the SLAM problem into a

solvable form, they induce hypotheses on the measurements noises that can be challenged in

real conditions. In fact, a substantial part of our experiments is dedicated to the evaluation

of the impact that such hypotheses can have on the performances of crowdsourced mapping.

The first assumption consists in assuming that all observations are conditionally inde-

pendent, i.e. that:

• Any observation Uk does not depend on another observation Uk′ 6=k.

• Any observation Yk does not depend on another observation Yk′ 6=k.

• Any observation Dk does not depend on another observation Dk′ 6=k.

56

This translates into considering that the measurements are not affected by auto-correlated

noises, although this is generally the case in real conditions, especially for position obser-

vations Yk. Indeed, such observations are generally obtained from GNSS receivers, whose

measurements are known to be affected by auto-correlated noises, mainly due to common

delaying errors of GNSS signals when travelling the ionosphere and troposphere, as well

as to multi-path effects. In the case of strong auto-correlated noises, which could severely

affect the resulting map quality, this could potentially be dealt with by applying covariance

inflation [98], in order to avoid over-confidence of the map.

Overall, this assumption leads to the basic principle of the Markov model, in which all

past information is considered to be contained within Xk−1. This transforms the motion and

sensors models f , g and h as follows:

Xk = f(Xk−1, Uk) + εu,k (4.13)

Yk = g(Xk) + εy,k (4.14)

Dk = h(Xk,M) + εd,k (4.15)

And it transforms Equation 4.12 into:

P ∝ P (X0)
K∏
k=1

P (Xk|Xk−1, Uk)
K∏
k=0

P (Yk|Xk)
K∏
k=0

P (Dk|Xk,M) (4.16)

P (X0) can be considered constant for a given application:

P ∝
K∏
k=1

P (Xk|Xk−1, Uk)
K∏
k=0

P (Yk|Xk)
K∏
k=0

P (Dk|Xk,M) (4.17)

This formulation can be viewed as a factor graph [99], in which the vehicle states X0:K

and landmarks geo-positions M are nodes, and the observations U1:K , Y0:K and D0:K are

57

Figure 4.3: The SLAM problem modeled as a graph.

edges which constrain the nodes. The SLAM problem, modeled as a graph, comes down to

estimating the unknown nodes states which best satisfy the known constraints. Figure 4.3

depicts a sample graph in the case of a vehicle that detects landmarks L1 and L2 at time

k = 1, and L2 and L3 at time k = 3. The nodes are represented as circles, and the edges as

squares.

The second assumption consists in assuming that all observations are affected by zero-

mean, Gaussian noises:

• εu,k is modeled as being sampled from a zero-mean Gaussian with covariance Ω−1
u,k

and information Ωu,k.

• εy,k is modeled as being sampled from a zero-mean Gaussian with covariance Ω−1
y,k

and information Ωy,k.

• εd,k is modeled as being sampled from a zero-mean Gaussian with covariance Ω−1
d,k

and information Ωd,k.

Gaussian distributions are widely used in many fields to model random processes, and

it is fairly reasonable to consider that noises in SLAM can be modeled as such. However,

58

making use of zero-mean distributions implies that the measurements are not affected by

bias, although this is generally the case in real conditions. In typical vehicular applications,

the main source of bias comes from the presence of calibration errors, which are constant

errors that affect all sensors measurements. Especially, errors associated with the sensors

orientations are known to have a more important effect on the perceived measurements than

errors associated with the sensors positions. In the presence of severe bias, this could be

dealt with by applying covariance inflation [98], or modifying the graph structure [100], in

order to account for such bias.

Overall, making use of this assumption leads to:

P ∝
K∏
k=1

exp(−1

2
e>u,k Ωu,k eu,k)

K∏
k=0

exp(−1

2
e>y,k Ωy,k ey,k)

K∏
k=0

exp(−1

2
e>d,k Ωd,k ed,k)

(4.18)

where eu,k, ey,k and ed,k are the error functions respectively associated with displacement,

position and detection observations Uk, Yk and Dk:

eu,k = Xk − f(Xk−1, Uk) (4.19)

ey,k = Yk − g(Xk) (4.20)

ed,k = Dk − h(Xk,M) (4.21)

Factorizing Equation 4.18, we can write:

P ∝ exp(−1

2
(
K∑
k=1

e>u,k Ωu,k eu,k +
K∑
k=0

e>y,k Ωy,k ey,k +
K∑
k=0

e>d,k Ωd,k ed,k)) (4.22)

59

We define the cost function F as:

F =
K∑
k=1

e>u,k Ωu,k eu,k +
K∑
k=0

e>y,k Ωy,k ey,k +
K∑
k=0

e>d,k Ωd,k ed,k (4.23)

Which gives:

X̂0:K , M̂ = arg max
X0:K ,M

exp(−1

2
F) = arg min

X0:K ,M
F (4.24)

This equation must be solved, in order to estimate the vehicle states X̂0:K and landmarks

geo-positions M̂ . This step, called graph optimization in reference to the graph structure

illustrated in Figure 4.3, can be processed using an iterative optimization method. While

many such methods have been developed, they all follow the same principles. Beforehand,

all graph nodes (vehicle states and landmarks geo-positions) are provided with initial values,

which are then iteratively improved until convergence, making use of graph edges (sensors

observations) as known constraints. In all these methods, there exists a strong requirement

that the initial values of vehicle states and landmarks geo-positions are sufficiently close to

their true values [4]. Otherwise, the estimation provided by the optimization may largely

differ from the reality. It is a well-known issue of graph optimization, and has been addressed

by several works [101, 102].

Among available optimization methods, we can find conventional non-linear least-

squares solvers, such as the Gauss-Newton or Levenberg-Marquadt algorithms, as well as

more recent techniques developped by the robotics community, such as g2o [72] and the

Ceres Solver [103]. These more recent methods claim to provide better performances, both

in terms of map quality and computational cost. On the other hand, conventional solvers

present the advantage of being simple to implement and easy to manipulate, which helps

to study performances and identify limitations of a given mapping approach. This makes

conventional solvers appear more in line with the needs of our work.

The most basic solver is the Gauss-Newton algorithm, which makes use of a second-

60

order update to provide fast convergence, but remains sensible to the quality of the initial

estimate and the quadratic fit of the objective function [104]. Meanwhile, the Levenberg-

Marquadt algorithm makes use of heuristic parameters to improve its robustness to such

conditions [104]. Nevertheless, heuristic parameters can lead to additional errors if badly

selected, and the Gauss-Newton algorithm remains widely used in many SLAM applications.

The authors of [99] describe the Gauss-Newton algorithm for a typical robotics applica-

tion, considering that GNSS signals are unavailable, and that only the vehicle states must be

estimated. Thus, within their formulation:

• All constraints link exactly two nodes, as only displacement and detection observations

are considered.

• The graph is under-constrained, and at least one node needs to be fixed.

In our case, the landmarks geo-positions definitely need to be estimated. Furthermore,

an outdoor vehicle equipped with a GNSS receiver would provide position observations

Y0:K , which would constrain each one vehicle node, and result in the graph being fully-

constrained. Thus, we provide a more general formulation of the Gauss-Newton algorithm in

Algorithm 1. Note that, in Algorithm 1, the vehicle states X0:K and landmarks geo-positions

M are stacked into a single vector X . Similarly, displacement, position and detection

observations U1:K , Y0:K and D0:K are stacked into C.

After graph optimization, we obtain through X̂ an estimation of the vehicle states X̂0:K

and landmarks geo-positions M̂ . Due to the preceding assumptions, such estimation is

assumed to be affected by noises sampled from a zero-mean, Gaussian distribution, whose

global covariance matrix Σ correspond to the inverse of the global information matrix Ω:

Σ = Ω−1 (4.25)

61

Algorithm 1 Gauss-Newton Algorithm for Graph Optimization
Require:

X̆ = [X̆0:K , M̆]: Initial guess of nodes states
C = [c1, c2, ...]: Observations of constraints
ΩC = [Ωc1 ,Ωc2 , ...]: Information matrices of constraints

Ensure:
X̂ = [X̂0:K , M̂]: Estimation of nodes states
Ω: Global information matrix

1: while not converged do:
2: B ← 0
3: H ← 0

. Compute the Jacobians of all constraints
4: for all c ∈ C do:
5: . Let xI:J = {xI , ..., xJ} be the set of nodes constrained by c
6: xI:J = Constrained(c)
7: for all xi ∈ xI:J do:
8: Jc,i = ∂ec

∂xi

∣∣∣
xi=x̆i

9: end for
10: end for

. Compute contribution of all constraints to linear system
11: for all c ∈ C do:
12: xI:J = Constrained(c)
13: for all xi ∈ xI:J do:
14: B[i] += JTc,i Ωc ec
15: for all xj ∈ xI:J do:
16: H[i,j] += JTc,i Ωc Jc,j
17: end for
18: end for
19: end for

. Solve linear system
20: ∆X ← Solve(H ×∆X = −B)

. Update current guess
21: X̆ += ∆X
22: end while
23: X̂ ← X̆
24: Ω← H
25: return [X̂,Ω]

62

Σ contains the variances and covariances of all nodes in the graph:

Σ =

 ΣX ΣX,M

ΣX,M ΣM

 (4.26)

where:

• ΣX is the covariance of vehicle states.

• ΣM is the covariance of landmarks geo-positions.

• ΣX,M is the cross-covariance between vehicle states and landmarks geo-positions.

The estimated vehicles states and their covariance consist in the tuple X̂0:K ,ΣX . Simi-

larly, the estimated landmarks geo-positions and their covariance, which represent the map,

consist in the tuple M̂,ΣM .

4.4 Graph Optimization for Crowdsourced Mapping

Crowdsourced mapping consists in retrieving measurements from multiple vehicles, in order

to build and update an accurate map of geolocalized landmarks. To merge the different

measurements and build the map, we propose a crowdsourced mapping pipeline based on

graph optimization. Furthermore, we introduce three different methods for updating the

map, and identify the technique that achieves the best performances in terms of map quality

and computational scalability. In the following, we formulate the problem of crowdsourced

mapping, we detail our setup and models, and we present the three different map update

methods.

4.4.1 Crowdsourced Model

Previously to the formulation of the crowdsourced mapping problem, we define some

basic variables, without any loss of generality. We consider a given environment that

63

contains N landmarks whose geo-positions define a map M = {L1, ...LN}. Within this

environment, a given number P of vehicles V1:P = {V1, ..., VP} drive along respective

trajectories X1:P = {X1, ..., XP}. These vehicles may drive at the same time, or during

separate time windows. For clarity purposes, we omit time indexes and only specify vehicle

indexes in the following. While driving, each vehicle Vp detects a given set of landmarks

Mp, which is a subset of M , and is potentially different for every vehicle:

Mp ⊂M ∀ Vp ∈ V1:P (4.27)

Each vehicle Vp registers a number of observations Zp, which can be split between:

• Displacement observations Up associated with a motion model f , as in Equation 4.2.

• Position observations Yp associated with a sensor model g, as in Equation 4.3.

• Detection observations Dp associated with a sensor model h, as in Equation 4.4.

The crowdsourced mapping problem consists in jointly estimating the trajectories of all

vehicles, as well as the landmarks geo-positions, considering all registered observations.

This problem can be formulated in a probabilistic manner, where estimations of the vehi-

cles trajectories X̂1:P and landmarks geo-positions M̂ correspond to the maximum of the

posterior PDF P given all observations:

X̂1:P , M̂ = arg max
X1:P ,M

P = arg max
X1:P ,M

P (X1:P ,M |Z1:P) (4.28)

The posterior PDF P is generally too complex to solve. Therefore, in order to simplify

it, we want to apply an independency hypothesis between the measurements coming from

different vehicles, as explained further. Before doing so, we need to inverse the role of X1:P ,

M and Z1:P within P , making use of the Bayes Theorem:

P = P (X1:P ,M |Z1:P) = P (Z1:P |X1:P ,M)
P (X1:P ,M)

P (Z1:P)
(4.29)

64

P (X1:P ,M) and P (Z1:P) can be considered constant for a given application, which

gives:

P ∝ P (Z1:P |X1:P ,M) (4.30)

Now, we introduce our hypothesis: we assume that all observations retrieved by a given

vehicle are conditionally independent from observations retrieved by other vehicles, i.e. that

observations Zp do not depend on observations Zp′ 6=p.

Two conditions can potentially contradict this hypothesis. First, environmental condi-

tions could affect similarly all the measurements issued by different vehicles that are driving

at the same time. In reality, such phenomena would mainly affect position observations, as

those are generally provided by GNSS receivers, which are subject to various environmental

effects such as multi-path or atmospheric delaying. Secondly, the measurements issued by

different vehicles could be affected by the same systematic errors, due to the use of the same

sensors, or the same calibration procedures. Both of these effects could lead to the presence

of similar auto-correlated and biased noises affecting the measurements of different vehicles,

which would contradict our hypothesis. If those effects were revealed to severely affect the

map quality, this could be dealt with by applying covariance inflation [98], or adapting the

graph structure [100].

Overall, making use of this assumption transforms Equation 4.30 into:

P ∝ P (Z1|X1:P ,M)× ...× P (ZP |X1:P ,M) (4.31)

The observations Zp retrieved by a given vehicle Vp only depend from the trajectory Xp

of this vehicle and the map M , hence:

P ∝ P (Z1|X1,M)× ...× P (ZP |XP ,M) (4.32)

65

We make use of the Bayes theorem again, in order to reverse back the variables:

P ∝ P (X1,M |Z1)× ...× P (XP ,M |ZP) (4.33)

In Equation 4.33, each probability P (Xp,M |Zp) corresponds to the posterior PDF of the

original SLAM problem formulated for a single vehicle (see Equation 4.5). Theoretically,

this could be solved by using all the measurements retrieved by the different vehicles inside

a single graph optimization. In practice, this would be infeasible, as the large number of

vehicles would lead to unscalable computations. This motivates the design of an iterative

process as described below, which is able to update an existing map using the measurements

retrieved by a single vehicle, in order to iteratively compute the map estimation.

At the beginning of crowdsourced mapping, the map estimation M̂ is empty, as no

landmark geo-position has been estimated yet. As the first vehicle V1 detects a set of

landmarks M1, and uploads its observations Z1, the map estimation M̂ can be computed by

solving the following SLAM problem through graph optimization:

X̂1, M̂ = arg max
X1,M

P (X1,M |Z1) (4.34)

Now, consider any vehicle Vp that is not the first vehicle. In this case, an estimation of

the map M̂Old has already been obtained, making use of the measurements provided by the

vehicles V1 to Vp−1:

X̂1:p−1, M̂Old = arg max
X1:p−1,MOld

P (X1:p−1,MOld|Z1:p−1) (4.35)

As the vehicle Vp detects a given set of landmarks Mp, and uploads its observations Zp,

the new estimation of the map M̂ corresponds to:

X̂1:p, M̂ = arg max
X1:p,M

P (X1:p,M |Z1:p) (4.36)

66

Due to the hypothesis of measurements independency between vehicles:

X̂1:p, M̂ = arg max
X1:p,M

P (X1:p−1,M |Z1:p−1)P (Xp,M |Zp) (4.37)

To solve this equation, we have to consider two different cases. On one hand, if MOld

and Mp are completely disjoint, i.e. if they do not contain any landmarks in common, the

problem can be split into two independent subproblems:

X̂1:p, M̂ = arg max
X1:p−1,MOld

P (X1:p−1,MOld|Z1:p−1)× arg max
Xp,Mp

P (Xp,Mp|Zp) (4.38)

In this case, the problem on the left has already been solved (see Equation 4.35), while

the problem on the right can be solved through graph optimization. On the other hand, if

MOld and Mp are not disjoint, i.e. if they include landmarks in common, Mp is conditionally

dependent on MOld, which transforms the problem into:

X̂1:p, M̂ = arg max
X1:p−1,MOld

P (X1:p−1,MOld|Z1:p−1)× arg max
Xp,Mp

P (Xp,Mp|Zp,MOld) (4.39)

Again, the problem on the left has already been solved (see Equation 4.35). Meanwhile, the

problem on the right can be solved through graph optimization, by including the previous

estimation of the map M̂Old as a constraint within the graph.

This process, which is illustrated in Figure 4.4, makes use of sensors observations

provided by the current vehicle, as well as the previous map estimation, to update the map

with new landmarks geo-positions and covariance. This way, all the information related

to the landmarks configuration brought either by the previous vehicles, or by the current

one, can be used. As more and more vehicles upload their observations to update the

map, this should lead to a more accurate map estimation, with a thinner covariance ΣM .

Nevertheless, this induces a strong requirement on the consistency of the map, i.e. on the

validity of ΣM . Indeed, as the map is successively used and updated within a closed loop,

67

Figure 4.4: Crowdsourced Mapping Pipeline - As a vehicle Vp uploads its observations,
graph optimization is performed, a new estimation is obtained, and the map is updated.

any over-confidence in the estimations could produce biased results in the long-run.

4.4.2 Setup and Sensors

So far, we have presented our crowdsourced mapping solution in the general case, without

specifying the type of sensors embedded in the vehicles. In practice, during our experiments,

we consider any type of vehicle equipped with at least the following set of three different

sensors: motor encoders, a GNSS receiver and a monocular camera. This minimum setup

was chosen for its generality, as these sensors are either already embedded on current vehicles

(motor encoders), or expected to be soon part of the standard equipment (GNSS receiver,

monocular camera). Furthermore, these sensors provide the different types of measurements

that enable to obtain geo-position information about the surrounding landmarks. In the

following, we detail the vehicle and landmarks states, and introduce the different sensors

models.

Vehicle and Landmarks States The following experiments are realized on a local, hor-

izontal plane. To avoid unnecessary complexity, we generally express all positions and

orientations in the same local, horizontal plane. Beforehand, we define a number of reference

frames illustrated in Figure 4.5. The local frame is depicted in black, while the vehicle

frame, GNSS receiver frame and camera frame are respectively shown in blue, grey and

green. In the remaining of this document, we express all variables in the local frame by

68

Figure 4.5: 2D representation of frames.

default. If a variable X is expressed in another frame F , it will be written FX .

The vehicle state Xk at instant k is defined as:

Xk =


xk

yk

θk

 (4.40)

where xk, yk are the position coordinates of the vehicle, and θk corresponds to its orientation.

The geo-position of landmark Li is defined as:

Li =

xi
yi

 (4.41)

where xi, yi are the position coordinates of the landmark.

Motor Encoders For each instant k corresponding to the frequency fu, motor encoders

provide a measurement Uk:

Uk =

νk
ξk

+

εν,k
εξ,k

 (4.42)

69

where νk and ξk correspond respectively to the ego-speed and driving wheel angle of the

vehicle, while εν,k and εξ,k are the associated noises. To provide information about the

vehicle displacement between successive instants, the measurement Uk is associated with a

motion model f (see Equation 4.13). The motion model f is defined as the bicycle model,

which is a popular model for four-wheel robots that adapts well to the geometry of vehicles

in standard driving conditions [105]:

Xk = f(Xk−1, Uk) + εu,k =


xk−1 + νk

fu
cos(θk−1 + νk sin(ξk)

2 fu R
)

yk−1 + νk
fu
sin(θk−1 + νk sin(ξk)

2 fu R
)

θk−1 + νk sin(ξk)
fu R

+ εu,k (4.43)

where εu,k is the prediction noise, and R is the length of the vehicle’s axle.

GNSS Receiver For each instant k corresponding to the frequency fy, the GNSS receiver

provides a measurement Yk:

Yk =

x̄k
ȳk

+ εy,k (4.44)

where x̄k, ȳk correspond to the position coordinates of the center of the GNSS receiver,

and εy,k is the sensor noise. The measurement Yk is associated with a sensor model g (see

Equation 4.14) defined as follows:

Yk = g(Xk) + εy,k =

xk
yk

+

cos(θk) −sin(θk)

sin(θk) cos(θk)

 TGNSSV + εy,k (4.45)

where TGNSSV is the translation vector from the vehicle frame to the GNSS receiver frame,

obtained through an extrinsic calibration procedure.

Monocular Camera For each instant k corresponding to the frequency fd, the monocular

camera provides an image Ik. During the different experiments presented in chapter 5,

70

we use various methods to detect landmarks within images, such as using a CNN-derived

architecture, or operating the detections manually. In the following, we define the general

camera model without specifying the landmarks detection method.

As stated previously, we express all positions in a local, horizontal plane. Furthermore,

within the extrinsic calibration of the camera, we consider this latter to remain aligned with

the horizontal plane. Therefore, we choose to only consider the horizontal pixel coordinate

within landmarks detections. For each landmark Li detected in the image Ik, a measurement

Dk(Li) is obtained:

Dk(Li) = λ+ εd,k (4.46)

where λ is the horizontal pixel coordinate of the landmark Li within the image Ik, and

εd,k is the sensor noise. The measurement Dk(Li) is associated with a sensor model h (see

Equation 4.15) defined below.

VLi =


cos(θk) (xi − xk) + sin(θk) (yi − yk)

−sin(θk) (xi − xk) + cos(θk) (yi − yk)

0

 (4.47)

CLi = (RC
V)−1 × VLi − (RC

V)−1 × TCV (4.48)

with (RC
V) and (TCV) being respectively the rotation matrix and translation vector from the

vehicle frame to the camera frame, both obtained through an extrinsic calibration procedure.

Dk(Li) = −K(0, 0)
CLi(1)
CLi(0)

+K(0, 2) + εd,k (4.49)

where K is the intrinsic calibration matrix of the camera, K(x, y) is the value of K at the

xth row and yth column, and CLi(x) is the xth value of CLi. This equation is based on the

pinhole projection model, which is a popular model designed for monocular cameras.

71

4.4.3 Map Update Strategies

As a given vehicle Vp drives along a trajectory X0:K , it registers observations Z0:K , which

can be split between displacement, position and detection observations U1:K , Y0:K , D0:K .

These measurements are periodically uploaded towards centralized servers, in order to

compute graph optimization, and build and update the map {M̂,ΣM} (see Figure 4.4). In

the case where a prior version of the map {M̂Old,ΣMOld
} has already been established, its

content should be included within graph optimization. To achieve this, we propose three

different methods:

• Correlated Constraint (CC).

• Decorrelated Constraints (DC).

• Correlated Constraint and Graph Subdivisions (CC+GSD).

These different approaches correspond to different trade-offs between the map quality and

the computational cost, as explained in the following. We compare their performances later

in this document, in order to assess the best strategy. To do so, we make use of simulation

experiments, in which different configurations with different numbers of landmarks are

considered. In each configuration, multiple vehicles are driven along a given trajectory, in

order to provide successive map updates.

Correlated Constraint In a first approach (CC), we consider that all the information

available in the map, including cross-correlations between landmarks geo-positions, should

be included. Therefore, we propose to use a correlated map constraint CC. Let LI:J =

{LI , ..., LJ} be the subset of landmarks detected by the vehicle that are also in the map. We

build a correlated constraint CC of covariance Ω−1
CC and information ΩCC as:

CC = M̂Old(LI:J) (4.50)

72

ΩCC = ΩMOld
(LI:J) (4.51)

where:

• M̂Old(LI:J) is the subvector of M̂Old containing the geo-positions of all landmarks in

LI:J .

• ΩMOld
= Σ−1

MOld
, and ΩMOld

(LI:J) is the submatrix of ΩMOld
containing the informa-

tion of all landmarks in LI:J . Note that ΩMOld
(LI:J) contains both the information

and cross-information of landmarks in LI:J .

Previously, we assumed measurements independency between vehicles. Therefore,

the correlated constraint CC, which contains knowledge brought in the map by previous

vehicles, can be assumed conditionally independent from observations {U1:K , Y0:K , D0:K}

of the current vehicle. The posterior PDF (right probability in Equation 4.39) corresponds

to:

P = P (X0:K ,M |U1:K , Y0:K , D0:K , CC) (4.52)

with:

P ∝ P (CC|M)
K∏
k=1

P (Xk|Xk−1, Uk)
K∏
k=0

P (Yk|Xk)
K∏
k=0

P (Dk|Xk,M) (4.53)

The correlated constraint CC provides an observation of the geo-positions of all land-

marks in LI:J , as illustrated in Figure 4.6, and is assumed to be affected by a zero-mean,

Gaussian noise of covariance Ω−1
CC and information ΩCC . Thus, we can rewrite the cost

function of graph optimization (see Equation 4.23) as:

73

Figure 4.6: Graph with correlated map constraint.

F = e>CC × ΩCC × eCC +
K∑
k=1

e>u,k × Ωu,k × eu,k

+
K∑
k=0

e>y,k × Ωy,k × ey,k +
K∑
k=0

e>d,k × Ωd,k × ed,k

(4.54)

where eCC is the error function associated with the correlated constraint CC:

eCC = CC − LI:J (4.55)

and:

X̂0:K , M̂ = arg min
X0:K ,M

F (4.56)

At the end of graph optimization, we obtain a new estimation of the map, with new

landmarks geo-positions M̂ , along with the covariance ΣM which can be extracted from the

global covariance Σ (see Equation 4.26). This operation is equivalent to marginalizing the

vehicle nodes, and leads to a fully dense map with a dense covariance ΣM . As a result, the

correlated constraint CC will have a dense information ΩCC , which can potentially make

the graph dense as well, and lead to intensive computations during graph optimization. Thus,

the correlated constraint CC corresponds to a strategy in which we favor map accuracy and

consistency, potentially at the expense of scalability.

74

Decorrelated Constraints In order to lower the computational cost associated with graph

optimization, some works proposed to maintain graph sparsity after marginalization, by

approximating the dense graph structure into a new sparse structure [106]. These methods

determine a new sparse topology for the graph, and compute new constraints parameters

that best approximate the original graph. Such approximations can lead to an information

loss and a degradation of the map accuracy, especially if they are repeated multiple times, as

would be the case in a long-term crowdsourced mapping process.

To verify whether this drawback can be critical, we propose to use a simple sparsifica-

tion approximation as a second approach (DC). Let LI:J = {LI , ..., LJ} be the subset of

landmarks detected by the vehicle that are also in the map. We assume that all landmarks

estimations are conditionally independent from each other, which translates into neglecting

cross-correlations between landmarks in the map, and building multiple decorrelated map

constraints DC = {DCI , ..., DCJ} as follows. For each landmark Li in LI:J , we build a

decorrelated constraint DCi of covariance Ω−1
DCi

and information ΩDCi
as:

DCi = M̂Old(Li) (4.57)

ΩDCi
= ΣMOld

(Li)
−1 (4.58)

where:

• M̂Old(Li) is the subvector of M̂Old containing the geo-position of landmark Li.

• ΣMOld
(Li) is the diagonal block of ΣMOld

containing the covariance of landmark Li.

The decorrelated constraintsDC are built using knowledge brought by previous vehicles,

and can be assumed conditionally independent from observations {U1:K , Y0:K , D0:K} of the

current vehicle, due to our hypothesis of measurements independency between vehicles. Fur-

thermore, we assumed all decorrelated constraints DC to be conditionally independent from

75

each other. Therefore, the posterior PDF (right probability in Equation 4.39) corresponds to:

P = P (X0:K ,M |U1:K , Y0:K , D0:K , DC) (4.59)

with:

P ∝
J∏
i=I

P (DCi|M)
K∏
k=1

P (Xk|Xk−1, Uk)
K∏
k=0

P (Yk|Xk)
K∏
k=0

P (Dk|Xk,M) (4.60)

Any decorrelated constraintDCi provides an observation of the geo-position of landmark

Li, as illustrated in Figure 4.7, and is assumed to be affected by a zero-mean, Gaussian noise

of covariance Ω−1
DCi

and information ΩDCi
. Thus, we can rewrite the cost function of graph

optimization (see Equation 4.23) as:

F =
J∑
i=I

e>DCi
× ΩDCi

× eDCi
+

K∑
k=1

e>u,k × Ωu,k × eu,k

+
K∑
k=0

e>y,k × Ωy,k × ey,k +
K∑
k=0

e>d,k × Ωd,k × ed,k

(4.61)

where eDCi
is the error function associated with the decorrelated constraint DCi:

eDCi
= DCi − Li (4.62)

and:

X̂0:K , M̂ = arg min
X0:K ,M

F (4.63)

Overall, in this approach, we neglect all cross-correlations between landmarks in the

map. Doing so, we neglect some of the map information used within graph optimization,

which may lead to over-confident map updates, and biased results in the long-run. On the

other hand, this should keep the graph sparse, and thereby improve the computational cost

of graph optimization. Hence, this strategy, which consists in making use of decorrelated

76

Figure 4.7: Graph with decorrelated map constraints.

constraints DC, favors scalability over map accuracy and consistency.

Graph Subdivisions To limit computations, another strategy consists in limiting the graph

size, i.e. the number of nodes within the graph. Generally, SLAM methods build a map in a

single-run, which makes it difficult to limit the graph size without losing information, or

impeding the accuracy [5]. In the case of crowdsourced mapping, observations are retrieved

from multiple vehicles to build and update a map. To achieve this, observations originating

from different vehicles are considered independently through an iterative process. Thus, a

specific advantage of the crowdsourcing approach is the ability to divide each graph into a

number of independent subgraphs, which can then be processed as if they originated from

different vehicles. This would enable to control the size of each subgraph, and thus to limit

the computational cost.

As a third approach (CC + GSD), we propose to use the following graph subdivisions

strategy. When a vehicle detects a set of landmarks and uploads its observations, a graph

G is built. Instead of optimizing the whole graph, we divide it into multiple independent

subgraphs {G1,G2, ...}, as shown in Figure 4.8, such that any subgraph Gi respects the

following dimension condition:

D(Gi) ≤ D (4.64)

77

Figure 4.8: Graph subdivision.

where:

• D(Gi) corresponds to the dimension of the global state vector of Gi, which is the

vector containing the states of all vehicle nodes and landmarks nodes within Gi .

• D is the maximum dimension accepted per subgraph.

Each subgraph Gi is processed as any other graph, by applying graph optimization

and updating the map. The map updates take place after each graph optimization, and

subgraph Gi can profit from the map update obtained after the optimization of subgraph

Gi−1. A depiction of this process is shown in Figure 4.8. The graph (a) is divided into 2

subgraphs (b). A first optimization leads to the update of L1 and L2 in the map, while a

second optimization leads to the update of L2 and L3 in the map. During optimization of

the subgraphs, we consider the correlated constraint CC, which models all the information

available in the map. Although this potentially makes the subgraphs dense, the fact that we

control their dimension enables to limit the computational burden.

As we divide the graph G into independent subgraphs {G1,G2, ...}, we inevitably lose

78

some information. Especially, as illustrated in Figure 4.8, we lose the constraints associated

with displacement observations that link the vehicle nodes at the break points where the

graph is split. This may slightly worsen the resulting accuracy of each map update, but not

its consistency, as we simply remove a few constraints and do not make any approximation.

Thus, as more and more vehicles upload their observations, the accuracy of the map should

still increase. In this regard, this strategy, which consists in associating the correlated

constraint CC with graph subdivisions, favors scalability and map consistency. This is

potentially at the expense of the rate at which the map accuracy is improved, but not at the

expense of map accuracy.

4.5 Conclusion

Crowdsourced mapping represents a cost-effective solution for building an accurate, and

always up-to-date, map of landmarks. It consists in collecting measurements from many

different vehicles equipped with standard sensors, in order to build and update the map. The

typical crowdsourcing process contains several different modules, such as the acquisition,

pre-processing and mapping modules. In this work, we focus on the mapping process, which

consists in using pre-processed sensors measurements to provide map updates.

To evaluate the potential of crowdsourced mapping, we proposed and formulated a

crowdsourcing solution based on triangulation optimization. This solution was evaluated

using field-tests, which showed the interest of the collaborative approach, but also confirmed

limitations associated with triangulation optimization. To improve our mapping system,

we therefore proposed and formulated another crowdsourcing solution based on the use of

graph optimization, and we introduced three different strategies for including and updating

the map within the optimization process. The first method, CC (Correlated Constraint),

corresponds to a strategy that favors map accuracy at the potential expense of scalability.

The two other methods, DC (Decorrelated Constraints) and CC+GSD (Correlated Constraint

and Graph Subdivisions), represent two modifications of the CC approach that aim to reduce

79

the computational cost. Indeed, the objective for crowdsourced mapping is to establish an

accurate map of geo-positioned landmarks, while remaining computationally scalable, in

order to deal with a large quantity of measurements and build a map that can span over

large areas. In the next chapter, we perform extensive simulation experiments and field-tests,

in order to establish the best-performing method, as well as to evaluate the potential of

crowdsourced mapping to build an accurate map of landmarks.

80

CHAPTER 5

EVALUATION OF CROWDSOURCED MAPPING PERFORMANCES

Crowdsourced mapping aims at taking advantage from measurements retrieved by multiple

vehicles in order to build an accurate map of geolocalized landmarks. To assess its capa-

bility to successively improve the map accuracy as more and more vehicles upload their

observations, we start by evaluating the performances of our triangulation-based approach

(see section 4.2) during field-tests.

Nevertheless, in order to provide a highly-accurate map, crowdsourced mapping must

be able to scale to a large number of vehicles, as well as to merge measurements that can

be of different types and affected by different noises levels. For this reason, we proposed

another crowdsourced mapping pipeline based on graph optimization (see subsection 4.4.1),

along with three related strategies to include and update the map within the optimization

(see subsection 4.4.3). To assess the performances of our solution, and confirm the benefit

of the crowdsourcing approach, we make use of extensive simulation and field experiments,

in which we investigate whether the accuracy of the built map increases with the number of

participating vehicles. We expect that the map will reach a high accuracy at the condition

that it remains consistent, i.e. that its estimated accuracy remains valid. Further, we compare

the different map update strategies, and assess the scalability potential of crowdsourced

mapping. To fully understand its strengths and limitations, we also confront our solution

to various types of noises during simulation experiments, including GNSS auto-correlated

noises and camera calibration bias, and to real data retrieved by our test-vehicle. Finally, we

assess in simulation the potential of our solution to enhance the localization of vehicles, by

evaluating whether a typical map built by our crowdsourced mapping solution enables to

reach the targeted positioning accuracy.

The structure of this chapter is as follows. In section 5.1, we study the map accuracy

81

provided by the triangulation-based approach during early field-tests. In section 5.2, we

assess the accuracy and scalability potential of the graph-based approach, using various

numbers of landmarks and noises configurations during simulation experiments. In sec-

tion 5.3, we evaluate the performances of our graph-based solution during field experiments,

and we compare those with results obtained during simulation experiments, in order to draw

conclusions both from a theoretical and practical viewpoint. In section 5.4, we evaluate the

benefits of the proposed approach for localization purposes, by making use of simulation

experiments with various numbers of landmarks and noises configurations.

5.1 Triangulation-based Approach: Evaluation through Field-Tests

To evaluate the potential of crowdsourced mapping, we perform field-tests with our test-

vehicle, and build a map of landmarks using the triangulation-based approach. In particular,

we aim to verify that the resulting map accuracy effectively improves as more measurements

are issued by the vehicle. These experiments were realized at the beginning of our work,

and constitute a basis to assess the interest of the crowdsourcing approach. Moreover, they

allow the reader to figure out the configuration and environment associated with field-tests.

5.1.1 Field Setup

Throughout the experiment, the test-vehicle was driven in a rather flat area. Thus, in order to

avoid unnecessary complexity, we perform the experiment in 2D, by projecting all positions

in a local, horizontal plane. The test-vehicle was driven along a 4 km loop in the city center

of Versailles, France, for a total of 10 passages. The 10 passages were registered through

numerous driving sessions, which spanned over multiple days. Thus, they properly represent

10 different vehicles following the given trajectory, as they were impacted by different

environmental conditions, such as different satellites configurations. To get insight about

the vehicle trajectory, GNSS positions received during one of the passages are shown in

Figure 5.9. Along the loop, traffic signs were identified, and used as landmarks constituting

82

the map. We measured their geo-positions using a static RTK-GPS receiver, in order to

provide a ground truth to compare our results with. Due to this demanding process, we used

a limited number of landmarks: M = L1, ..., L10.

The test-vehicle that was used is a Citroën Picasso car equipped with:

• Motor encoders attached to the four wheels of the vehicle, as well as to its driving

wheel. The encoders attached to the wheels enable to compute the ego-speed of the

vehicle through a temporal filter, while the encoder attached to the driving wheel

provides its angle. Thus, at each instant k corresponding to the frequency fu =

25.0Hz, a displacement observation Uk can be obtained.

• A natural GNSS receiver equipped with an NL-8004U antenna. Although this antenna

is able to receive GNSS signals from multiple satellite networks (GPS, Galileo,

etc...), we only use GPS signals within our experiment. We transform the (Latitude,

Longitude) coordinates provided by the GNSS receiver into (East, North) coordinates

in the local, horizontal plane. Thus, at each instant k corresponding to the frequency

fy = 1.0Hz, the GNSS receiver provides a position observation Yk.

• A monocular camera AXIS P3905-R, providing images in 1080p (1920x1080 pixels)

with a view-angle of 60°. The camera was installed behind the vehicle windscreen,

and looking in front of the vehicle. For each instant k corresponding to the frequency

fd = 30Hz, the camera provides an image, in which traffic signs are detected using a

CNN-derived architecture [107]. While this method enables to detect visible traffic

signs, it does not perform data association, i.e. it does not inform about which sign

is being detected. Therefore, we perform this step manually, by selecting for each

detection the corresponding traffic sign, in order to evaluate the performances of our

crowdsourced mapping solution independently from data association issues.

83

5.1.2 Evolution of Map Accuracy

To build the map of landmarks, we apply the triangulation-based approach defined in

section 4.2, which was implemented in Python. This approach makes use of position and

detection measurements, but not displacement measurements. During each vehicle passage,

spanning for instance from k = 0 to k = K, position observations Y0:K and detection

observations D0:K are used to build projection lines for all detected landmarks as follows.

For each position observation Yk, we consider the closest detection observation Dk(Li)

of a given landmark Li. The projection line Zk(Li) is built as passing through two points A

and B defined as:

A = RW
V TCGNSS + Yk (5.1)

B = A+RW
V R

V
C

 1

−K−1(0, 0)Dk(Li)−K−1(0, 2)

 (5.2)

where RW
V is the rotation matrix from the vehicle frame to the local frame:

RW
V =

cos(θ̂k) −sin(θ̂k)

sin(θ̂k) cos(θ̂k)

 (5.3)

and θ̂k is the estimation of the vehicle orientation, obtained using successive position

observations. TCGNSS is the translation vector from the GNSS receiver frame to the camera

frame, expressed in the vehicle frame. RV
C is the rotation matrix from the camera frame

to the vehicle frame, and K corresponds to the intrinsic calibration matrix of the camera.

In Figure 5.1, we depict in red a projection line associated with the detection of a traffic

sign, along with the local frame, vehicle frame, GNSS receiver frame and camera frame

respectively shown in black, blue, grey and green.

After each vehicle passage, all projection lines established by the current vehicle, as well

84

Figure 5.1: 2D representation of frames, along with a projection line associated with the
detection of a traffic sign.

as the previous ones, are used within a triangulation optimization in order to update the map.

In Figure 5.2, the evolution of the distance error is shown for each traffic sign, along with

the evolution of the average map error over all traffic signs, which is shown at the bottom.

We observe that the average map error goes from 12.2m after the first vehicle passage, to

5.0m after the last vehicle passage, which illustrates the capacity of crowdsourced mapping

to take advantage from measurements issued by multiple vehicles equipped with standard

sensors. Nevertheless, the errors associated with the positioning of traffic signs 3 to 8 do

not appear to decrease much over the vehicle passages (see Figure 5.2), and the average

map error tends to converge towards a bias of 5.0 m. This important error is likely due

to the presence of unmodeled noises within GNSS measurements and camera detections.

Furthermore, while the triangulation optimization remains a simple and intuitive approach,

it does not make use of all the available information, and especially of the displacement

observations obtained from motor encoders.

5.2 Graph-based Approach: Evaluation through Simulation Experiments

To address issues associated with triangulation optimization, we proposed another crowd-

sourcing pipeline based on graph optimization (see subsection 4.4.1), and introduced three

85

Figure 5.2: Evolution of distance errors for the positioning of traffic signs estimated by the
triangulation-based approach during early field-tests.

86

different strategies for updating and including the map within the optimization (see sub-

section 4.4.3). To evaluate the performances of this crowdsourced mapping solution, we

first perform simulation experiments using different configurations. In subsection 5.2.1,

we introduce the simulation setup. In subsection 5.2.2, we make the number of landmarks

vary and assess the scalability potential of crowdsourced mapping. In subsection 5.2.3, we

introduce different types of noises, including auto-correlated noises and calibration bias,

and evaluate the robustness of our solution.

5.2.1 Simulation Setup

The simulation was implemented in C++, and built using the same vehicle path, embedded

sensors, and noises amplitudes as during field-tests, in order to produce a realistic simulation.

Similarly as during field-tests, we perform simulation experiments in 2D, by projecting all

positions in a local, horizontal plane. The trajectory followed by the vehicles is generated

assuming that all vehicles follow the same trajectory, which is depicted in Figure 5.3. This

trajectory corresponds to a portion of the real path driven by our test-vehicle in real situation

(see Figure 5.9), and therefore possesses a realistic shape and curvature. We decided to

only use a portion of about 2 km of the real path in the following experiments, mainly for

simplification purposes, since we focus here on studying the potential of our solution to

scale to different densities of landmarks, and to account for different types of noises.

The static landmarks M = {L1, ..., LN} are generated following 5 different configu-

rations, which respectively contain N = 4, N = 25, N = 50, N = 75, and N = 100

landmarks. The first configuration contains N = 4 landmarks, which correspond to 4

traffic signs identified on the real path. This constitutes a sparse configuration with realistic

landmarks geo-positions. The other configurations contain the same 4 landmarks, as well as

a given number of additional landmarks, which were randomly generated along the vehicle

trajectory. For example, the dense configuration with N = 100 landmarks contains the

same 4 landmarks and 96 randomly-generated landmarks. The additional landmarks were

87

Figure 5.3: Ground truth vehicle trajectory and landmarks geo-positions used in simulation
experiments.

88

generated making use of a uniform distribution. Although this might not accurately represent

the true distribution of some types of landmarks such as traffic signs, this is not relevant

here, since we focus on studying the scalability and robustness potential of our solution. For

readability purposes, we only show the configurations with N = 4 and N = 100 landmarks

in Figure 5.3.

We consider each vehicle to be equipped with motor encoders, a GNSS receiver, and a

monocular camera. This enables to reproduce similar types of measurements as during field-

tests, as the same sensors are embedded on our test-vehicle. We also consider the sensors to

be installed with the same extrinsic calibration, and operated at similar frequencies, as on

our test-vehicle:

• The motor encoders provide displacement measurements Uk, as defined in Equa-

tion 4.42, at a frequency of fu = 25.0Hz.

• The GNSS receiver provides position measurements Yk, as defined in Equation 4.44,

at a frequency of fy = 1.0Hz.

• The monocular camera provides detection measurements Dk, as defined in Equa-

tion 4.46, at a frequency of fd = 2.0Hz. This frequency does not correspond to the

frequency at which images are produced, but to the frequency at which the landmarks

detection algorithm is operated. The considered intrinsic calibration matrix K (see

Equation 4.49) is the same as the one measured on the real monocular camera.

5.2.2 Scalability Assessment

In order to assess the scalability potential of our solution, we evaluate its capacity to build

an accurate and consistent map, which can contain various densities of landmarks, while

remaining computationally scalable. We consider different configurations that contain differ-

ent numbers of landmarks, and compare the performances obtained in these configurations

using each of the three map update strategies proposed in subsection 4.4.3. These strategies

89

correspond to different trade-offs between the map quality and the computational cost,

and their comparison will allow to conclude on the scalability potential of crowdsourced

mapping.

White Gaussian Noises To keep the focus on the assessment of scalability, we consider

noises to be sampled from white and Gaussian distributions as follows. This corresponds

to the basic assumption used to formulate the graph optimization problem (see subsec-

tion 4.3.2).

• εu,k, the noise associated with a given displacement measurement Uk, is sampled from

a zero-mean, Gaussian distribution with covariance Σu and information Σ−1
u :

Σu =

 δ2
ν 0.0

0.0 δ2
ξ

 (5.4)

• εy,k, the noise associated with a given position measurement Yk, is sampled from a

zero-mean, Gaussian distribution with covariance Σy and information Σ−1
y :

Σy =

 δ2
x̄ 0.0

0.0 δ2
ȳ

 (5.5)

In order to ease the evaluation of the scalability potential, it is desirable to avoid

unnecessary variability of the noises covariances. Therefore, we assume a constant

DOP (Dilution Of Precision) for all GNSS measurements. This translates into the

constant matrix Σy defined in Equation 5.5.

• εd,k, the noise associated with a given detection measurement Dk, is sampled from a

zero-mean, Gaussian distribution with covariance Σd and information Σ−1
d :

Σd =

(
δ2
λ

)
(5.6)

90

Motor Encoders GNSS Receiver Camera
δν (m/s) δξ (rd) δx̄ (m) δȳ (m) δλ (Pixels)

0.56 0.044 10.0 10.0 5.0
(∼ 2.0 km/h) (∼ 2.5 °)

Table 5.1: Standard deviations of noises applied to sensors measurements during simulation
experiments.

To generate sensors measurements with realistic noises amplitudes, we studied the

typical errors obtained in real conditions for each sensor on our test-vehicle, and looked

for the worst-case scenarios. For example, odometry measurements were most impacted

by noise when the vehicle was driving at around 50 km/h, and GNSS measurements were

most affected by noise in dense environments. In the simulation, we set all the noises

standard deviations to the typical errors obtained in the respective worst-case scenarios. We

summarize these standard deviations in Table 5.1. Note that δλ is the standard deviation

of the noise affecting camera detections, and is thus expressed in pixels. Considering the

properties of the monocular camera, this corresponds to a bearing deviation of around 0.006

rd (∼ 0.3 °).

In total, we simulate 1000 vehicles driving along the trajectory, and generate their respec-

tive displacement, position and detection measurements. During each vehicle passage, every

landmark can be detected multiple times, which leads to multiple detection measurements

for each landmark. In practice, we observed that making use only of the last detections, i.e.

the detections whose pixel-coordinates are the most distant from each other, leads to a better

stability of the optimization process. Thus, at each vehicle passage, when a landmark is

detected by the vehicle, we only consider the last 5 detection measurements obtained for

this landmark.

Results For each configuration, containing from N = 4 to N = 100 landmarks, we

process the 1000 vehicle passages as follows. At the end of a given passage, as the vehicle

reaches the end of the trajectory, it shares its observations with a centralized server, which

91

then performs graph optimization, and updates the map with new landmarks geo-positions

and covariance. This mapping process was implemented in Python, and run on a local

computer with an Intel Xeon Silver 4114 CPU. For a given passage, the graph contains

around 165 position constraints, as well as 5 detection constraints for each landmark,

while displacement constraints are built to link all vehicle nodes together. Whenever prior

knowledge regarding the landmarks geo-positions is available, which happens as soon as

with the second vehicle passage, we add a map constraint to the graph (see subsection 4.4.1).

To model this map constraint, the three different map update strategies introduced in

subsection 4.4.3 are considered:

• CC, the correlated constraint (see paragraph 4.4.3).

• DC, the decorrelated constraints (see paragraph 4.4.3).

• CC + GSD, the correlated constraint along with graph subdivisions (see para-

graph 4.4.3) using the following dimension condition:

D(Gi) ≤ 500 (5.7)

This means that each graph is divided into a number of subgraphs, such that any

subgraph has a global state vector whose dimension does not exceed 500. This

condition was chosen arbitrarily, in order to study the results obtained with a given

CC +GSD strategy. In practice, this divides each graph between 2 and 3 subgraphs

during the following experiments.

To assess the accuracy of the maps built in the different configurations, using each of

the three map update strategies, we compute their average distance errors after each vehicle

passage. In Table 5.2, we show the average distance error obtained after the last vehicle

passage in each case. For a given number of landmarks, the lowest distance error, indicating

the best-performing map update strategy, is highlighted in blue. In Figure 5.4, we also depict

92

Distance Errors (m) Computation Time by Passage (s)
CC DC CC +GSD CC DC CC +GSD

4 Landmarks 0.29 0.31 0.30 4.90 4.77 4.31
25 Landmarks 0.72 1.10 0.71 5.44 5.51 4.78
50 Landmarks 0.51 1.63 0.51 5.90 5.92 5.22
75 Landmarks 0.41 1.86 0.41 6.51 6.63 5.82

100 Landmarks 0.31 2.13 0.33 7.02 7.32 5.87

Table 5.2: Average distance errors after the last vehicle passage and average computation
time by vehicle passage, obtained using white and Gaussian noises during simulation
experiments.

the evolution of the average distance errors obtained for the configurations with N = 4

landmarks and N = 100 landmarks. In fact, results obtained for the configurations with

N = 25, N = 50 and N = 75 landmarks are similar to those obtained for the configuration

with N = 100 landmarks, and are therefore not displayed.

Generally, a map is considered consistent when the estimated covariance is not smaller

than the true covariance [108]. Unfortunately, this cannot be checked as the true covariance

of estimations is not available. Instead, to evaluate the consistency of a built map, we

compute after each vehicle passage the errors and 3σ deviation ranges obtained on the East

and North axes for each landmark. Considering such errors follow a chi-square distribution

with 1 degree of freedom, their respective 3σ deviation ranges correspond to a 99.7 %

confidence interval [109]. Thus, we can consider that a given map is likely consistent (resp.

inconsistent) if the average errors on the East and North axes contain (resp. do not contain)

the ground truth (null error) within their 3σ deviation ranges. In Figure 5.5, we depict

the evolution of the average errors on the East and North axes, along with their respective

standard deviations as [−3σ, 3σ] hashed ranges. Similarly as before, we only show results

for the configurations with N = 4 and N = 100 landmarks.

For the sake of clarification, in Figure 5.4, we show the average of distance errors, with

the purpose of evaluating the map accuracy. Distance errors can only be positive and can not

compensate each other when computing the average. Meanwhile, in Figure 5.5, we depict

93

Figure 5.4: Evolution of average distance errors obtained using white and Gaussian noises
during simulation experiments.

94

Figure 5.5: Evolution of average errors on the East and North axes, along with their
respective 3σ deviation ranges, obtained using white and Gaussian noises during simulation
experiments.

95

the average of East and North errors, with the aim of studying the map consistency. East

and North errors can either be positive or negative, and can compensate each other when

computing the average. Therefore, it is perfectly normal that the amplitude of the average

distance error (see Figure 5.4) is higher than the amplitude of average East and North errors

(see Figure 5.5).

To assess the scalability potential of each strategy, we retrieve the total computation time

required to process the 1000 vehicle passages for each configuration. Then, we divide this

time by 1000, in order to retrieve the average computation time by vehicle passage, which is

shown in Table 5.2 for each case. Similarly as for distance errors, we highlight in blue the

lowest computation time for a given number of landmarks. While computation times may

appear extensive, they are much lower than the average driving time of a vehicle passage,

which is approximately 165 s.

Discussion In all the studied strategies, the average distance errors decrease with the

number of vehicle passages (see Figure 5.4). Nevertheless, they tend to converge towards

an offset value, which is likely due to the linearization of non-linear motion and sensors

models operated during graph optimization (see Algorithm 1).

In the configuration with N = 4 landmarks, all methods lead to similar distance errors

(see Table 5.2). However, in all other configurations, the distance errors obtained with the

DC approach remain high. As expected, this corresponds to the fact that the maps built

with the DC approach in such configurations tend to be highly inconsistent, with average

errors on the East and North axes clearly not containing the ground truth within their 3σ

deviation ranges (see Figure 5.5). This shows that neglecting cross-correlations between

landmarks estimations may be valid when landmarks are far from each other, such as in the

configuration with N = 4 landmarks, but it is clearly not valid in general. Furthermore, the

DC approach does not even provide much computational efficiency, as compared with the

CC approach (see Table 5.2). This is likely due to the fact that using an inconsistent map as

96

prior knowledge slows down graph optimization.

Oppositely, the CC strategy is able to provide accurate maps in all configurations, with

distance errors reaching between 0.29 m and 0.72 m after the last vehicle passage (see

Table 5.2). The relationship between map accuracy and consistency is also confirmed, as

the maps built by the CC approach appear to remain consistent, with average errors on the

East and North axes always containing the ground truth within their 3σ deviation ranges

(see Figure 5.5). Furthermore, the CC approach presents computation times that reach

between 4.90 s and 7.02 s on average by vehicle passage (see Table 5.2), which is still very

reasonable when compared to the average driving time of 165 s.

Finally, the CC +GSD strategy is able to build maps that have a similar accuracy as the

CC approach, while requiring much less computations (see Table 5.2). The CC + GSD

strategy appears as computationally scalable, as the gap between the computational costs

of the CC + GSD and CC strategies tends to grow with the number of landmarks. The

distance errors obtained with the CC+GSD strategy are slightly higher than those obtained

with the CC approach, which corresponds to the loss of information created by the graph

subdivisions, as explained in paragraph 4.4.3. Nevertheless, as the CC + GSD strategy

does not make any approximation, the built maps remain consistent (see Figure 5.5), and

their accuracy continues to improve with the number of vehicle passages. This confirms

that the use of graph subdivisions is an effective method that enables to limit the amount of

computations while maintaining an accurate and consistent map.

Overview of Scalability Assessment In order to assess the scalability of our crowd-

sourced mapping solution, we performed simulation experiments using configurations that

contained between N = 4 and N = 100 landmarks. We compared the performances

reached by each of the proposed map update strategies: CC, DC and CC + GSD. We

aimed to evaluate their capacity to build accurate and consistent maps, independently from

the number of considered landmarks, while remaining computationally scalable.

97

The DC approach, which neglects cross-correlations between landmarks estimations,

provides over-confident map updates that lead to inconsistent maps, whose errors remain

high even after multiple vehicle passages. Oppositely, the CC approach, which does not

neglect any cross-correlation, is able to build consistent and accurate maps of landmarks.

Furthermore, its computation time remains reasonable in comparison with the driving time

of the vehicles. Finally, the CC +GSD strategy is able to reach similar performances than

the CC approach, while requiring much less computations. This shows that making use of

graph subdivisions is an effective way to lower computations while maintaining accuracy

and consistency of the maps, and makes the CC+GSD strategy appear as the most efficient

method to provide a scalable solution for crowdsourced mapping.

5.2.3 Robustness Assessment

To assess the robustness of our solution, we aim to evaluate its ability to build an accurate and

consistent map, even in the presence of various types of noises such as GNSS auto-correlated

noises and camera calibration bias, which do not correspond to the basic assumption used by

graph optimization (see subsection 4.3.2) but can be present in real conditions. We consider

a single landmarks configuration: the one with N = 50 landmarks, as this corresponds to the

approximate number of traffic signs along the real path, and therefore represents a realistic

situation, in which we define 4 noises configurations that correspond to 4 different types of

noises affecting the sensors measurements. In fact, in the following, the term "configuration"

will not refer to the number of landmarks anymore, but rather to the given types of noises.

The first configuration corresponds to the case defined in paragraph 5.2.2, in which noises

are sampled from white and Gaussian distributions, and serves as a reference to discuss

the obtained results. The other configurations correspond to more realistic cases, and are

presented in the following.

98

GNSS Auto-Correlated Noises GNSS measurements are usually affected by auto-

correlated noises that originate from the signals delaying when travelling atmospheric layers,

and the signals reflectance created by multi-path effects. Auto-correlated noises are prone to

create biased estimations, and can be complex to model, especially in the case of multi-path

effects. Therefore, it is essential to assess the impact that such noises can have on the

performances of our crowdsourced mapping solution.

We define a second configuration, in which the displacement measurements Uk and

detection measurements Dk are generated similarly as in the first configuration (see para-

graph 5.2.2), with noises sampled from white and Gaussian distributions. Meanwhile, new

position measurements Yk are generated, and affected by typical GNSS auto-correlated

noises. The authors of [110] showed that such noises can be modeled efficiently using an

AR (Auto-Regressive) model of first order. Thus, for each instant k corresponding to the

GNSS receiver frequency fy, a measurement Yk affected by a noise εy,k is generated with:

εy,k = α εy,k−1 + β εb (5.8)

εy,k−1 is the GNSS noise at the previous instant, and εb is sampled from a zero-mean,

Gaussian distribution with covariance Σb. The coefficients α and β are two scalars that

model the amplitude of GNSS auto-correlated noises, and that need to be estimated. In the

following, we briefly summarize the method used to estimate α and β, and refer the reader

to Appendix A for more details.

To generate realistic auto-correlated noises, we performed a field experiment using

another test-vehicle than the one used within our field-tests, which was equipped with both

a standard GNSS receiver and an RTK-GPS receiver. Making use of the measurements

provided by the RTK-GPS receiver as ground truth positions, we could infer the auto-

correlation function associated with measurements from the standard GNSS receiver. This

function is depicted in blue in Figure 5.6 and represents a typical auto-correlation function

associated with measurements from a standard GNSS receiver in a dense environment.

99

Figure 5.6: Auto-correlation function of GNSS measurements obtained using our test-vehicle
in a dense environment.

Making use of this function, we could compute the value of α as indicated in Appendix A.

In order to properly study the impact of auto-correlated noises, we need to apply noises

that have a similar covariance as in other configurations. Thus, we impose the noise εy,k to

have the same covariance matrix as εb:

Σb = Σy =

 δ2
x̄ 0.0

0.0 δ2
ȳ

 (5.9)

100

α β δx̄ (m) δȳ (m)
0.988 0.15 10.0 10.0

Table 5.3: GNSS auto-regressive model parameters and noises standard deviations used to
generate GNSS auto-correlated noises during simulation experiments.

To satisfy this condition, as detailed in Appendix A, β is computed as:

β =
√

1− α2 (5.10)

The parameters used to generate GNSS auto-correlated noises are summarized in Ta-

ble 5.3.

Camera Calibration Bias Another typical source of systematic bias in vehicular appli-

cations are calibration errors. Especially, errors associated with the sensors orientations

are known to have a more important effect on the perceived measurements than errors

associated with the sensors positions. In our setup, the only sensor potentially affected by

such orientation errors is the monocular camera, whose orientation on the vehicle can be

expressed as a set of 3 angles: roll, pitch and yaw. Calibration errors associated with roll and

pitch angles can be neglected, as we consider a 2D simulation on the North-East plane, and

an extrinsic calibration that aligns the camera with this plane. Oppositely, the calibration

error associated with the yaw angle has to be considered, as it can have a substantial effect

on the detection measurements.

We define a third configuration, in which the displacement measurements Uk and position

measurements Yk are generated similarly as in the first configuration (see paragraph 5.2.2),

with noises sampled from white and Gaussian distributions. Meanwhile, new detection

measurements Dk are generated, considering that the extrinsic calibration of the monocular

camera is erroneous. In order to apply a calibration error of realistic amplitude, we refer to

101

advanced calibration methods [111], which can typically reach orientation errors around:

eyaw = 0.009 rd (∼ 0.5°) (5.11)

Thus, when generating the detection measurements Dk, we apply a calibration error

eyaw on the yaw angle of the camera.

GNSS Auto-Correlated Noises and Camera Calibration Bias In the fourth configura-

tion, we want to combine the effect of GNSS auto-correlated noises and camera calibration

bias. Thus, we generate displacement measurements Uk as in the first configuration (see

paragraph 5.2.2), with noises sampled from white and Gaussian distributions. We generate

position measurements Yk as in the second configuration (see paragraph 5.2.3), with GNSS

auto-correlated noises. And we generate detection measurements Dk as in the third configu-

ration (see paragraph 5.2.3), considering an extrinsic calibration error on the yaw angle of

the camera.

Results For each configuration, we process the 1000 vehicle passages as follows. As a

given vehicle reaches the end of the trajectory, it shares its observations with a centralized

server. The server then performs graph optimization using the CC + GSD strategy with

the dimension condition defined in Equation 5.7, as this method was found to be the best

map update strategy during previous simulation experiments (see subsection 5.2.2). We

apply the exact same algorithm as before, assuming that all measurements are affected by

noises sampled from white and Gaussian distributions, even when it is not the case, such as

in the presence of GNSS auto-correlated noises and camera calibration bias. For a given

passage, the complete graph contains around 165 position constraints, as well as 5 detection

constraints for each landmark, while displacement constraints link vehicle nodes together.

As a result, the typical graph ends up being subdivided into 2 subgraphs. This time, we run

the mapping process on a laptop with an Intel i5-6200U CPU.

102

Figure 5.7: Evolution of average distance errors obtained using different types of noises
during simulation experiments.

In Figure 5.7, we depict the evolution of the average distance errors obtained for each

configuration, while in Figure 5.8, we show the evolution of the average errors on the East

and North axes, along with their respective standard deviations depicted as [−3σ, 3σ] hashed

ranges.

Discussion In all configurations, the average distance error decreases with the number of

vehicle passages (see Figure 5.7). As during previous simulation experiments, it also tends

to converge towards an offset value. While this can be explained in part by the linearization

of motion and sensors models during graph optimization (see Algorithm 1), this also appears

to be affected by the presence of GNSS auto-correlated noises and camera calibration bias.

Indeed, the distance error after the last vehicle passage reaches 0.51 m when noises are

sampled from white and Gaussian distributions. In the meanwhile, it reaches higher values,

i.e. 0.67m, 0.69m and 0.80m when noises are respectively affected by camera calibration

bias, GNSS auto-correlated noises or both of these effects.

Considering the shape of the evolution of distance errors, we can distinguish two

different behaviors, that depend on whether GNSS measurements are affected or not by

auto-correlated noises. In the first and third configurations, in which GNSS measurements

103

Figure 5.8: Evolution of average errors on the East and North axes, along with their
respective 3σ deviation ranges, obtained using different types of noises during simulation
experiments.

104

are not affected by auto-correlated noises, the distance errors follow a regular and stable

evolution similar to an inverse square function. This corresponds to the expected evolution

of the distance error for these configurations, as their errors on the East and North axes

always contain the ground truth within their 3σ deviation ranges (see Figure 5.8), indicating

that the built maps always remain consistent.

Oppositely, in the second and fourth configurations, in which GNSS measurements

are affected by auto-correlated noises, distance errors follow a more volatile behavior (see

Figure 5.7). Furthermore, it can be observed that the errors on the East and North axes

for these configurations do not always contain the ground truth within their 3σ deviation

ranges (see Figure 5.8), which indicates that the built maps do not always remain consistent.

Nevertheless, as the number of vehicle passages increases, the 3σ deviation ranges tend

to contain the ground truth again. This can be explained by the fact that, in these two

configurations, the noises affecting GNSS measurements are auto-correlated within each

vehicle passage, but not between the different vehicle passages. Thus, by making use of

multiple vehicle passages, crowdsourced mapping is able to alleviate the effect of GNSS

auto-correlated noises and build an accurate map of landmarks.

Overall, in all configurations, the distance errors decrease substantially within the first

vehicle passages, and then decrease more slowly. In the first and third configurations, without

GNSS auto-correlated noises, only the first few dozens of vehicle passages are able to bring

important accuracy improvements. Meanwhile, in the second and fourth configurations, with

GNSS auto-correlated noises, this is the case for the first few hundreds of vehicle passages.

This indicates that, in the presence of GNSS auto-correlated noises, which is usually the case

in real conditions, a higher number of vehicle passages within a crowdsourcing approach is

beneficial towards the establishment of an accurate map of landmarks.

Overview of Robustness Assessment In order to evaluate the robustness of our crowd-

sourced mapping solution, we performed simulation experiments with various types of

105

noises, such as GNSS auto-correlated noises and camera calibration bias. We performed

graph optimization using the CC +GSD strategy, and aimed to evaluate the accuracy and

consistency of the built maps.

For all configurations, the accuracy of the map increases with the number of vehicle

passages. When GNSS measurements are not affected by auto-correlated noises, the map

always remains consistent, and the evolution of its error follows a stable decrease towards

an offset value. Oppositely, in the presence of GNSS auto-correlated noises, the map is not

always consistent, resulting in an evolution of its error that is more volatile. Nevertheless,

by making use of more vehicle passages, crowdsourced mapping is able to address this issue

and build an accurate map of landmarks.

5.3 Graph-based Approach: Evaluation through Field-Tests

To corroborate simulation results, we evaluate the performances of our crowdsourced

mapping solution in real conditions. We drive our test-vehicle for multiple passages along

the same loop as during early field-tests (see section 5.1), which is situated within the city

center of Versailles, France. We aim to assess the capacity of crowdsourced mapping to build

an accurate map of landmarks, while remaining computationally scalable. Furthermore,

we compare the obtained results with those of previous simulation experiments, in order to

validate the simulation setup, and support the conclusions drawn from simulation results.

5.3.1 Field Setup

Similarly as before, we perform the field-tests in 2D, and project all positions to a local

North-East plane. We drive our test-vehicle along the loop of around 4 km for a total of

40 passages. Again, the 40 passages were registered through numerous driving sessions,

and properly represent 40 different vehicles. To provide insight on the trajectory, geo-

positions retrieved during the first passage by the embedded GNSS receiver are shown in

Figure 5.9. As can be seen in the zoomed section of the trajectory (see Figure 5.9 (b)),

106

GNSS measurements can have large errors that reach ∼ 20m in some cases. Furthermore,

these errors appear to be directed in the same direction, when observing a short part of the

trajectory. This validates the considered standard deviations δx̄ and δȳ (see Table 5.1), as

well as the fact that GNSS measurements are affected by auto-correlated noises in reality.

Along the loop, traffic signs were identified, and used as landmarks constituting the map.

We manually measured their geo-positions using an RTK-GPS receiver to provide a ground

truth to compare our results with. In order to evaluate the performances of our solution

independently from the influence of image processing techniques, we manually operated,

at a frequency fd = 2.0 Hz, the detection and recognition of traffic signs within images

provided by the embedded camera. Due to this manual process, we used a limited number

of landmarks: M = L1, ..., L5, whose ground truth geo-positions are shown in Figure 5.9,

along with images of the corresponding traffic signs taken from the camera.

5.3.2 Evaluation of Mapping Performances

To assess the performances of our crowdsourced mapping solution in real conditions, we aim

to evaluate its capacity to build an accurate and consistent map, making use of measurements

retrieved by our test-vehicle, while remaining computationally scalable. As the test-vehicle

reaches the end of a passage, it shares its observations with a centralized server. The

latter then performs graph optimization using the CC +GSD strategy with the dimension

condition defined in Equation 5.7, in order to build and update the map. During graph

optimization, all measurements are assumed to be affected by noises sampled from white

and Gaussian distributions with the same covariances as in the simulation (see Table 5.1).

For a given passage, the complete graph contains around 583 position constraints, which

is higher than during simulation experiments, as we now consider the full loop of around

4 km. The graph also contains 5 detection constraints for each landmark, and displacement

constraints that link vehicle nodes together. Consequently, it is typically subdivided into 4

or 5 subgraphs, depending on the vehicle passage. As previously, this mapping process was

107

Figure 5.9: Vehicle GNSS positions at first passage and traffic signs ground truth positions
during field-tests.

108

implemented in Python, and run on a laptop with an Intel i5-6200U CPU.

Results In Figure 5.10, we depict the evolution of errors obtained for each traffic sign,

as well as for the average over all traffic signs. On the left, errors on the East and North

axes are shown as thick lines, along with their respective standard deviations shown as

[−3σ, 3σ] hashed ranges. Meanwhile, on the right, distance errors are depicted. The average

computation time needed to process a given vehicle passage was around 17 s. This does

not include the detection process, which was done manually in our case, and could be run

on-board the vehicles in real-time. In comparison, the average driving time of a vehicle

passage was around 708s, which confirms that the use of the CC+GSD strategy represents

a scalable solution for crowdsourced mapping.

Discussion During our field-tests, we made use of 40 vehicle passages, which makes

our experiment more complete and realistic than related previous works (see Table 3.1).

For most traffic signs, the distance error tends to decrease with the number of vehicle

passages (see Figure 5.10), and the average distance error for all traffic signs goes from

4.02m after the first passage to 1.90m after the last passage. For comparison purposes, in

dense environments, standard GNSS receivers typically suffer from larger positioning errors,

which can reach up to a few dozens of meters. In fact, such positioning errors could clearly

be observed during our field-tests (see Figure 5.9 (b)).

For the traffic sign L3, the errors on the East and North axes always contain the ground

truth within their 3σ deviation ranges (see Figure 5.10). This indicates that estimations of

this traffic sign remain consistent. However, this is not verified for estimations of other traffic

signs. As confirmed by previous simulation experiments, this is likely due to the presence of

auto-correlated noises affecting GNSS measurements, which can lead to over-confident map

updates. Nevertheless, simulation experiments also showed that crowdsourced mapping can

generally deal with this issue by using measurements retrieved during a greater number of

vehicle passages. Furthermore, at the end of the 40th passage, estimations for traffic signs

109

Figure 5.10: Evolution of errors for the positioning of traffic signs L1, L2, L3, L4 and L5,
and for the average over all traffic signs, obtained during field-tests.

110

L1, L2, L4 and L5 reach respective distance errors of 2.02 m, 2.08 m, 2.13 m and 2.20 m,

which is already accurate considering the use of standard sensors.

The average distance error obtained after the 40th vehicle passage during these field-

tests is 1.90 m. This is comparable with the average distance error of 1.99 m obtained

after the 40th vehicle passage during simulation experiments, considering the most realistic

configuration which combines both GNSS auto-correlated noises and camera calibration

bias (see Figure 5.7). This confirms that simulation experiments correspond to realistic

conditions, and therefore that simulation results provide useful conclusions regarding the

performances of crowdsourced mapping.

5.4 Evaluation of Contributions for Vehicles Positioning

One of the main motivations for building a map is to support the localization of vehicles.

Therefore, we would like to conclude this chapter by evaluating the contribution of the

proposed crowdsourced mapping solution for vehicles positioning. Since the data used

during field experiments contains only a small portion of the traffic signs, we rely on

simulation to assess such contribution. To this end, a simulation setup based on realistic data

and landmarks distribution is considered. A map with a similar accuracy and consistency as

the one built during field-tests is generated, and used for localization purposes. Based on

this setup, different configurations with various numbers of landmarks and different types of

noises are considered, and enable to draw conclusions on the capacity of our crowdsourced

mapping solution to improve the localization performances of the vehicles, by providing a

map which can be used to support their positioning.

5.4.1 Simulation Setup

As in previous simulation experiments, the simulation was implemented in C++, and the

experiments were performed in 2D by projecting all positions in a local, horizontal plane.

However, oppositely to previous simulation experiments, we now generate the vehicle

111

trajectory by considering the complete loop of around 4 km followed by our test-vehicle in

real situation. The ground truth vehicle trajectory is depicted in Figure 5.11.

The static landmarks are generated following 2 distributions. The first one includes

N = 44 landmarks which correspond to 44 traffic signs identified on the real path, and

whose geo-positions are shown in Figure 5.11. Nevertheless, this remains a small portion

of all the traffic signs that are present in real conditions and that could be detected. Thus,

this distribution does not allow to assess the real impact of the map on vehicles positioning.

Furthermore, while we previously restricted the built maps to contain traffic signs for

simplification purposes, other types of landmarks such as traffic lights and road markings

would generally be considered for building the map. For the second distribution, we want

to include a realistic density of landmarks in the map. To do so, we refer to the work of

[112], which built a map of pole-shaped landmarks (e.g. traffic signs, street lights), and

found that there were approximately 1 such landmark every 8m in a city center. Therefore,

we build a dense landmarks distribution with N = 500 landmarks, which corresponds on

average to 1 landmark every 8m along the 4 km loop. Among these 500 landmarks, whose

geo-positions are shown in Figure 5.11, 44 landmarks correspond to the real traffic signs

introduced previously, and 456 landmarks are randomly generated through a uniform law.

Such uniform law is well-adapted to the current distribution, as we now consider that any

pole-shaped landmark can be used, including street lights which can be detected all along

the vehicle trajectory.

The vehicle is assumed to be equipped with motor encoders, a GNSS receiver and a

monocular camera, which are installed with the same extrinsic calibration, and operated

at similar frequencies, as on our test-vehicle. To generate measurements, we consider 5

different noises configurations that are defined in the following.

White Gaussian Noises In the first configuration, we consider the case defined in para-

graph 5.2.2, in which noises are sampled from white and Gaussian distributions, with

112

Figure 5.11: Ground truth vehicle trajectory and landmarks geo-positions used in simulation
evaluation of crowdsourced mapping contributions for localization.

113

standard deviations given in Table 5.1. This configuration represents an optimistic setup,

and will serve as a reference to discuss the obtained results.

In order to evaluate the contributions of our approach for vehicles positioning, we aim to

generate a map and use it to support the localization of the vehicle. This map must possess

an accuracy that is typical of the one provided by our crowdsourced mapping solution, using

as reference the accuracy obtained during previous field experiments (see section 5.3). Thus,

we generate a map {M̂,ΣM}, where M̂ represents the estimated landmarks geo-positions,

and ΣM corresponds to their covariance, as follows:

• M̂ is formed by the list of geo-position estimations of all landmarks in the considered

distribution M = {L1, ..., LN}. For any landmark Li, we generate its geo-position

estimation L̂i as:

L̂i = Li + εl,i (5.12)

where Li corresponds to the ground truth geo-position, and εl,i is the estimation noise.

εl,i is sampled from a Gaussian distribution with mean µl and covariance Σl:

µl =

µl,e
µl,n

 (5.13)

Σl =

δ2
l,e 0.0

0.0 δ2
l,n

 (5.14)

The values of µl,e and µl,n correspond respectively to the average errors on the East and

North axes of the map obtained after the last vehicle passage during field experiments.

Meanwhile, δl,e and δl,n correspond respectively to the standard deviations of these

errors on the East and North axes. These values are summarized in Table 5.4.

114

• ΣM is a block-diagonal matrix, in which each block corresponds to the covariance Σl

used to generate estimation noises:

ΣM =


Σl 0 ...

0 Σl ...

...

 (5.15)

GNSS Auto-Correlated Noises During previous simulation experiments (see subsec-

tion 5.2.3), we studied the effect of different types of noises, including GNSS auto-correlated

noises and camera calibration bias, on the mapping performances of our solution. In the

following, we aim to evaluate the contribution of our approach for vehicles positioning in

the presence of such types of noises.

To begin with, we consider the presence of GNSS auto-correlated noises. We define

a second configuration in which position measurements are affected by auto-correlated

noises as defined in paragraph 5.2.3, and we make use of the map previously generated (see

paragraph 5.4.1) to support the localization of the vehicle.

Camera Calibration Bias Next, we follow by considering the presence of camera cali-

bration bias. We define a third configuration in which detection measurements are affected

by camera calibration bias as defined in paragraph 5.2.3, and we make use of the map

previously generated (see paragraph 5.4.1) to support the localization of the vehicle.

GNSS Auto-Correlated Noises and Camera Calibration Bias Then, we consider the

presence of both GNSS auto-correlated noises and camera calibration bias, which is generally

the case in real situation. We define a fourth configuration in which position measurements

are affected by auto-correlated noises, while detection measurements are affected by camera

calibration bias, as defined in paragraph 5.2.3. Again, we make use of the map previously

generated (see paragraph 5.4.1) to support the localization of the vehicle.

115

GNSS Auto-Correlated Noises, Camera Calibration Bias and Map Inconsistency In

all configurations defined until now, we considered a consistent map, i.e. a map with a valid

covariance ΣM , to support the localization of the vehicle. Nevertheless, during previous

field experiments (see section 5.3), we observed that the map built by our crowdsourced

mapping solution tends to become over-confident, leading to an invalid covariance ΣM , and

concluded that it was mostly due to the presence of auto-correlated noises affecting GNSS

measurements.

To study the effect that an inconsistent map can have on localization performances,

we aim to generate and make use of another map {M̂,ΣM}, whose both accuracy and

consistency are similar to those obtained during field-tests. Thus, we aim to build a map

which contains not only noisy landmarks geo-positions M̂ , but also a noisy covariance ΣM

which does not properly reflect the distribution of estimation noises affecting landmarks

geo-positions. This corresponds to the fact that auto-correlated and biased noises are not

modeled through graph optimization, and would lead to over-confident map updates in

reality.

We define a fifth configuration in which position measurements and detection measure-

ments are respectively affected by auto-correlated noises and camera calibration bias, as

defined in paragraph 5.2.3. Meanwhile, to support the localization of the vehicle, we make

use of a new map {M̂,ΣM} that is generated as follows:

• M̂ is formed by the list of geo-position estimations of all landmarks, and is built

similarly as for the previous map (see paragraph 5.4.1).

• ΣM is a block-diagonal matrix:

ΣM =


Σm 0 ...

0 Σm ...

...

 (5.16)

116

µl,e (m) µl,n (m) δl,e (m) δl,n (m) δm,e (m) δm,n (m)
0.15 -0.08 0.78 1.77 0.40 0.42

Table 5.4: Parameters used to generate the maps of landmarks during simulation evaluation
of crowdsourced mapping contributions for localization.

in which Σm is not the covariance used to generate noises on geo-position estimations,

but instead represents the estimated covariance obtained during field experiments:

Σm =

δ2
m,e 0.0

0.0 δ2
m,n

 (5.17)

δm,e and δm,n correspond respectively to the average of the estimated deviations on

the East and North axes, which were retrieved from the estimated covariance of the

map obtained after the last vehicle passage during field experiments. These values are

shown in Table 5.4.

5.4.2 Evaluation of Localization Performances

For each landmarks distribution, and for each noises configuration, we process a single

vehicle passage, and generate corresponding sensors measurements and map of landmarks.

As the vehicle reaches the end of the trajectory, it shares its observations with a centralized

server, which then performs graph optimization using the CC + GSD strategy with the

dimension condition defined in Equation 5.7. To model the map constraint, we consider two

cases:

• No map constraint. In this case, graph optimization uses only the generated sensors

measurements.

• Map constraint. In this case, graph optimization also uses the generated map as prior

knowledge regarding the landmarks distribution.

117

Although we focused until now on building and updating a map of landmarks, graph

optimization also estimates the vehicle trajectory in the process. Therefore, in order to assess

the performances of localization, we simply use the corresponding estimation provided by

graph optimization. During our simulation experiments, the complete graph contains 512

position constraints, 5 detection constraints for each landmark, and displacement constraints

that link vehicle nodes together. As a result, the graph is typically subdivided into 4

subgraphs (for the traffic signs distribution with 44 landmarks) or 9 subgraphs (for the dense

landmarks distribution with 500 landmarks). As before, this process was implemented in

Python and run on a laptop with an Intel i5-6200U CPU.

Results In Figure 5.12, we show the evolution of the distance errors of vehicle positioning

obtained in the different cases. For each noises configuration, we depict the distance errors

obtained in both landmarks distributions, using either only sensors measurements (without

map), or sensors measurements along with the map constraint (with map). It is important to

note that distance errors obtained in the first and third configurations, which do not consider

GNSS auto-correlated noises, are typically much lower than distance errors obtained in other

configurations, which consider GNSS auto-correlated noises. Thus, for visibility purposes,

the vertical scale used to display results in Figure 5.12 is different for the first and third

configurations, than for other configurations. To summarize the obtained results, we also

show the average distance errors obtained in the different cases in Table 5.5. For a given

landmarks distribution and noises configuration, the lowest error is highlighted in blue.

In order to gain further insight on the impact of the generated maps on localization

performances, we depict in Figure 5.13 the estimated vehicle trajectories obtained in the

different landmarks distributions. We also show the ground truth vehicle trajectory and

landmarks geo-positions, and provide a zoom on a section of the trajectory. For visibility

purposes, we only show results obtained in the last noises configuration, which considers the

presence of GNSS auto-correlated noises, camera calibration bias, and map inconsistency.

118

Traffic Signs Distribution Dense Landmarks Distribution
(44 Landmarks) (500 Landmarks)

Distance Errors Distance Errors Distance Errors Distance Errors
Without Map (m) With Map (m) Without Map (m) With Map (m)

White Gaussian Noises 2.38 1.89 2.76 0.72

GNSS Auto-Correlated Noises 12.74 7.39 12.39 0.87

Camera Calibration Bias 2.29 1.87 2.15 0.79

GNSS Auto-Correlated Noises,
Camera Calibration Bias 17.28 9.53 17.29 0.94

GNSS Auto-Correlated Noises,
Camera Calibration Bias,

Map Inconsistency
17.28 8.14 17.29 0.92

Table 5.5: Average distance errors of vehicle positioning obtained during simulation evalua-
tion of crowdsourced mapping contributions for localization.

In Figure 5.13, it can be seen that the estimated trajectories are not continuous and get

cut at some points along the vehicle path. This corresponds to the fact that the graph gets

subdivided into several subgraphs that are optimized independently. This is not a problem

here, as we remain focused on evaluating the impact of the generated maps on localization

performances. Nevertheless, in a real application, in which continuous localization could be

required by some driving functions, such cuts could be avoided by estimating the vehicle

trajectory with a different process, for instance by applying graph optimization on a sliding

window of the last measurements as in [73].

Discussion As expected, if we compare the influence of the different types of noises, we

can see that the lowest distance errors are obtained when making use of noises sampled

from white and Gaussian distributions, while the highest distance errors are obtained

in the presence of both GNSS auto-correlated noises and camera calibration bias (see

Table 5.5). Nevertheless, the generated maps enable to decrease the positioning errors in all

configurations, which shows the potential of our crowdsourced mapping approach to improve

119

Figure 5.12: Evolution of distance errors associated with vehicle positioning, obtained
during simulation evaluation of crowdsourced mapping contributions for localization.

120

Figure 5.13: Estimated vehicle trajectories, obtained during simulation evaluation of crowd-
sourced mapping contributions for localization, in the case where GNSS auto-correlated
noises, camera calibration bias and map inconsistency are considered.

121

the localization performances in various situations. The last two configurations, which

contain both GNSS auto-correlated noises and camera calibration bias, differ by whether

they consider a consistent map (4th configuration) or an inconsistent map (5th configuration).

By comparing the localization performances obtained in these two configurations, we

observe that the influence of the map inconsistency remains negligible. The average distance

error even appears slightly lower in the presence of map inconsistency (see Table 5.5),

although this is likely arbitrary, and due to the randomly-generated noises used within the

simulation.

On another note, by comparing the distance errors obtained in the dense landmarks

distribution with those obtained in the traffic signs distribution, we observe that the po-

sitioning accuracy can be improved more significantly by including a higher number of

landmarks in the map (see Figure 5.12). This corresponds to the fact that the map enables

to improve the localization performances mainly in areas where nearby landmarks can be

detected by the vehicle, but not much in other regions (see Figure 5.13). In the traffic signs

distribution, the number of landmarks remains rather low, and there exists large portions of

the vehicle trajectory in which not any landmark can be detected. As a result, although the

map enables to improve the positioning accuracy, distance errors of several meters typically

remain. Meanwhile, in the dense landmarks distribution, a higher number of landmarks,

which are spread out along the vehicle path, is considered. Consequently, the vehicle is able

to continuously detect them, which results in an enhancement of the positioning accuracy

over the entire trajectory. In fact, when considering a realistic noises configuration with both

GNSS auto-correlated noises and camera calibration bias, making use only of the sensors

measurements to localize the vehicle leads to an average distance error of 17.29 m (see

Table 5.5). By making use also of a map of similar accuracy and consistency as the map

built during field-tests, this error can be reduced to 0.92m. This illustrates the effectiveness

of our crowdsourced mapping solution to improve the localization performances of the

vehicles, and its potential to enable reaching the targeted positioning accuracy, which is

122

associated with errors up to a few decimeters, by providing a map with a sufficient number

of landmarks.

5.5 Conclusion

During early field-tests, making use of the triangulation-based approach, we verified the

potential of crowdsourced mapping. Nevertheless, we also identified limitations associated

with the triangulation optimization, which motivated our use of another solution based on

graph optimization. In order to assess the scalability potential of the graph-based approach,

we performed simulation experiments, considering various configurations with different

numbers of landmarks, and we compared the performances obtained with the different map

update strategies. The results showed the necessity to maintain cross-correlations between

landmarks in the map, in order to produce an accurate and consistent map. Furthermore,

they illustrated the efficiency of graph subdivisions in order to remain computationally

scalable. For these two reasons, the CC +GSD strategy appeared as an efficient solution

for crowdsourced mapping.

Aiming to evaluate the robustness of the graph-based approach with the CC + GSD

strategy, we performed simulation experiments, considering a fixed number of landmarks and

affecting the measurements with various types of noises, including GNSS auto-correlated

noises and camera calibration bias, which are present in real situation. In all configurations,

the proposed approach was able to build a map whose accuracy increases with the number

of vehicle passages. Furthermore, we observed that, while GNSS auto-correlated noises lead

to over-confident map updates, making use of multiple vehicle passages enables to alleviate

this issue and build an accurate map of landmarks. Nevertheless, in all configurations, as the

number of vehicle passages becomes high, the average distance error of the map tends to

stop decreasing and converge towards an offset value. To continue improving the accuracy

of the map, other issues need to be addressed, such as modelling and accounting for GNSS

auto-correlated noises and camera calibration bias within the optimization.

123

To confront our crowdsourced mapping solution to a real situation, and assess that

simulation experiments correspond to realistic conditions, we performed field-tests within a

city center. Throughout multiple driving sessions, we drove our test-vehicle equipped with

standard sensors for multiple passages along a loop. We built a map containing geo-positions

and covariance of identified traffic signs, by making use of the graph-based approach with

the CC +GSD strategy. The obtained results illustrate the benefits of the crowdsourcing

approach even in real conditions, as the accuracy of the built map increased with the number

of vehicle passages. Especially, they show the advantage of using graph optimization rather

than the triangulation optimization, as the average distance error of the map built by the

triangulation-based approach during early field-tests was 5.0m after 10 vehicle passages,

while the average distance error of the map obtained with the graph-based approach in these

field-tests was 1.9m after the same number of vehicle passages. Furthermore, the amplitude

of the obtained errors corresponds to those of the simulation experiments, and thus indicates

that the simulation setup corresponds to realistic conditions.

In order to evaluate the potential of our crowdsourced mapping solution to improve

the accuracy of vehicles positioning, we performed simulation experiments with various

landmarks distributions and different types of measurements noises. For each landmarks

distribution, we generated a map of landmarks of similar accuracy and consistency as the

map built during field-tests, and studied its impact on the localization performances of

a given vehicle. The obtained results illustrate the capacity of our solution to improve

the accuracy of positioning in various situations. Furthermore, they show the importance

to maintain a map with a sufficient landmarks density, and illustrate the potential of our

approach to enable reaching the targeted positioning accuracy.

124

CHAPTER 6

CONCLUSION

The typical crowdsourced mapping system contains several modules, whose purpose is to

register measurements, process them into usable observations, localize the vehicle and build

the map of landmarks. For illustration purposes, we depict again such a system in Figure 6.1.

In this thesis, we focused on the mapping part, and proposed a crowdsourced mapping

solution based on graph optimization. We evaluated its performances in terms of accuracy,

scalability and robustness to various types of noises by using extensive simulation and field

experiments. The obtained results showed that this approach is able to take advantage from

measurements issued by multiple vehicles, in order to build and update a map of landmarks

while remaining computationally scalable.

6.1 Summary and Contributions

Initially, we proposed a crowdsourced mapping solution based on a triangulation optimiza-

tion, and evaluated its performances during field-tests. The results analysis showed the

potential of the crowdsourcing approach, as the map accuracy tends to improve through the

successive vehicle passages. Nevertheless, the resulting map errors remain rather impor-

tant, with an average distance error converging around 5.0m. Furthermore, some critical

limitations associated with the triangulation optimization could be identified, such as the

inability to provide accuracy of the estimations, and the incapacity to scale to a large number

of vehicles.

To address such issues, we proposed another crowdsourcing approach based on the use

of graph optimization. We formulated the collaborative SLAM problem, and proposed three

different strategies to update and use the map within graph optimization, which correspond

to different trade-offs between the map quality and the computational scalability. The

125

Figure 6.1: Overview of crowdsourced mapping, with modules split between onboard
processing and cloud processing.

126

different methods were compared during simulation experiments, and one of the strategies

could be identified as the most promising solution for crowdsourced mapping.

Making use of this strategy, we studied the performances and robustness of crowdsourced

mapping during extensive simulation experiments with realistic errors models and sensors

parameters. Especially, we studied the impact of auto-correlated and biased noises on

the resulting map accuracy. We observed that, while the presence of typical GNSS auto-

correlated noises can lead to inconsistent results, this can be alleviated by using a higher

number of vehicle passages. In fact, in all configurations, average distance errors of the built

maps reached below the meter-level after a few hundreds of vehicle passages at most.

We then performed field-tests using our test-vehicle, in order to confirm the results

obtained in simulation, and draw conclusions both from a theoretical and a practical stand-

point. The results showed the capability of our crowdsourced mapping approach to improve

the map accuracy over the vehicle passages, and an average distance error of 1.90m was

obtained after 40 vehicle passages. Furthermore, the amplitude of the obtained errors cor-

responds to those of the simulation experiments for the same number of vehicle passages,

which indicates that the simulation setup represents realistic conditions.

Finally, we evaluated in simulation the contributions that can be expected from crowd-

sourced mapping to improve the localization of the vehicles. The results illustrated the

effectiveness of the proposed approach in various conditions, while pointing out the impor-

tance of providing a sufficient density of landmarks in the map. To support the localization

of a given vehicle, we generated a map with a dense distribution of landmarks and with an

accuracy and consistency typical to those provided by our crowdsourced mapping solution.

The average distance error of positioning could be improved from 17.29m to 0.92m in the

presence of both GNSS auto-correlated noises and camera calibration bias, which illustrates

the potential of our crowdsourcing approach to enable reaching the targeted positioning

accuracy.

127

6.2 Future Works

Towards the extension of our solution to a complete mapping system, some improvements

can be envisioned. First, the detection of landmarks could be enhanced by being automated,

using for instance a CNN-derived architecture [107], and by considering other types of

landmarks, such as road markings and traffic lights. Second, the data association could also

be automated by processing automatically the tracking and matching of detected landmarks

with the map content. This could be done by making use of visual and semantic information

provided by the detection process, as well as landmarks geo-positions and their accuracy

given by the map [34]. Third, the mapping process could be enhanced by including a

method for automatically adding or removing landmarks from the map, when those have

been consistently detected or missed by the detection process of nearby vehicles. Through

these various improvements, we could maintain the map up-to-date, while increasing its

quality, as well as the resulting localization accuracy.

In order to improve the mapping performances of our solution, further improvements

can be envisioned that relate to the formulation of graph optimization. Indeed, during our

experiments, we observed that after a given number of vehicle passages, new measurements

are not able to improve the accuracy of the map, which tends to converge towards a bias. To

deal with this issue, two strategies can be considered. In a first approach, we could account

for unmodeled effects, such as biased and auto-correlated noises, by making use of covari-

ance inflation as described in [98], which would enable to prevent the map from becoming

over-confident. In a second approach, we could modify the graph structure similarly as in

[100], and estimate the biased and auto-correlated noises within the optimization. Although

this would require to model such noises, it could lead to substantial improvements of the

map accuracy. In fact, a complete mapping solution would likely integrate both of these

approaches, by modeling and estimating part of the biased and auto-correlated noises, and

applying covariance inflation to account for other noises that are too complex to estimate.

128

Furthermore, crowdsourced mapping could lead to additional applications, such as

remote diagnosis and maintenance. Indeed, as vehicles are expected to embed more and

more sensors needed for a variety of ADAS functions, it is crucial to ensure that such sensors

remain well calibrated and functioning. Within a crowdsourcing approach, vehicles with

degraded equipment could be identified by comparing landmarks geo-positions estimated

using their measurements, with landmarks geo-positions present in the map. Whenever both

estimations would differ too severely for continuous periods of time, this could indicate the

likely presence of defective sensors or calibration. Subsequently, such vehicles could be

notified and addressed to a garage for repair purposes. In the case of a defective calibration,

one could also imagine to avoid going through garage maintenance, by using the map as

prior knowledge to quantify and compensate for such calibration error on the fly.

129

Appendices

APPENDIX A

GNSS AUTO-CORRELATED NOISES

A.1 Introduction

In the following, we describe how we generate realistic GNSS measurements by affect-

ing them with auto-correlated noises, in order to assess the potential of our graph-based

approach.

In the simulation, any position measurement Yk provided by the GNSS receiver is

assumed to be affected by a stationary, non-white noise εy,k that is sampled from a zero-

mean, Gaussian distribution with covariance matrix Σy. This covariance matrix is assumed to

be diagonal, which implies that noises generated on the East and North axes are independent.

For clarity purposes, in the following, we write all variables as scalars associated with a

given axis, thus notations such as Yk and εy,k correspond to measurements and noises that

are either on the East axis, or on the North axis.

A.2 AR Modeling

The objective consists in generating a noise εy,k, known to be non-white, by using auto-

correlated errors associated with real GNSS measurements. To achieve this, we model such

auto-correlated noise by making use of an AR model of first order [110]:

εy,k = α εy,k−1 + β εb,k (A.1)

where εy,k−1 corresponds to the noise at the previous instant, and εb,k is a stationary, white

noise sampled from a zero-mean, Gaussian distribution with covariance matrix Σb. The

coefficients α and β are scalars that model the amplitude of auto-correlations, and that need

131

to be estimated.

First, we express β relatively to α, as this will help further developments. The noise εb,k

is white, and therefore independent from the previous noise εy,k−1. Thus, we can write:

Σy = α2 Σy + β2 Σb (A.2)

In order to properly study the effect of auto-correlated noises, we need to generate noises

whose covariance matrix remain similar as in other configurations (see subsection 5.2.3).

Thus, we impose the noise εy,k to have the same covariance matrix as εb,k:

Σy = Σb (A.3)

We can re-write Equation A.2 as:

Σy = α2 Σy + β2 Σy = (α2 + β2)Σy (A.4)

Generally, we can assume the covariance matrix Σy to be invertible:

ΣyΣ
−1
y = (α2 + β2)ΣyΣ

−1
y (A.5)

Finally, we obtain:

β =
√

1− α2 (A.6)

A.3 Calculation of α

In order to obtain the value of α, we express the auto-correlation function φn associated

with auto-correlated noises:

φn = E(εy,k εy,k−n) (A.7)

where E(x) corresponds to the expectation of a variable x.

132

By using Equation A.1, we write:

φn = E((αεy,k−1 + βεb,k)(αεy,k−1−n + βεb,k−n)) (A.8)

φn = α2E(εy,k−1 εy,k−1−n) + αβ(E(εy,k−1 εb,k−n) + E(εy,k−1−n εb,k)) + β2E(εb,k εb,k−n) (A.9)

Due to the fact that we consider a stationary noise εy,k in the simulation:

E(εy,k−1 εy,k−1−n) = E(εy,k εy,k−n) = φn (A.10)

And:

φn = α2φn + αβE(εy,k−1 εb,k−n) + αβE(εy,k−1−n εb,k) + β2E(εb,k εb,k−n) (A.11)

(1− α2)φn = αβE(εy,k−1 εb,k−n) + αβE(εy,k−1−n εb,k) + β2E(εb,k εb,k−n) (A.12)

β2φn = αβE(εy,k−1 εb,k−n) + αβE(εy,k−1−n εb,k) + β2E(εb,k εb,k−n) (A.13)

In the following, we consider different values of n, and develop the expression of φn.

Generally, n can be either negative or positive, with developments of equations being very

similar in both cases. Therefore, for simplification purposes, we only develop cases where n

is positive.

A.3.1 Case: n = 0

The auto-correlation function φ0 is given by:

β2φ0 = αβE(εy,k−1 εb,k) + αβE(εy,k−1 εb,k) + β2E(εb,k εb,k) (A.14)

The noise εb,k is white and independent from the previous noise εy,k−1:

β2φ0 = β2E(εb,k εb,k) = β2Σb (A.15)

133

And finally:

φ0 = Σb (A.16)

A.3.2 Case: n=1

The auto-correlation function φ1 is given by:

β2φ1 = αβE(εy,k−1 εb,k−1) + αβE(εy,k−2 εb,k) + β2E(εb,k εb,k−1) (A.17)

The noise εb,k is white and independent from the noise εy,k−2:

β2φ1 = αβE(εy,k−1 εb,k−1) (A.18)

βφ1 = αE(εy,k−1 εb,k−1) (A.19)

The noises εy,k and εb,k follow a stationary behavior:

βφ1 = αE(εy,k εb,k) (A.20)

The use of Equation A.1 gives:

βφ1 = αE((αεy,k−1 + βεb,k)εb,k) (A.21)

βφ1 = α2E(εy,k−1 εb,k) + αβE(εb,k εb,k) = αβE(εb,k εb,k) (A.22)

And finally:

φ1 = αE(εb,k εb,k) = αΣb (A.23)

134

A.3.3 Case: n=2

The auto-correlation function φ2 is given by:

β2φ2 = αβE(εy,k−1 εb,k−2) + αβE(εy,k−3 εb,k) + β2E(εb,k εb,k−2) (A.24)

The noise εb,k is white and independent from the noise εy,k−3:

β2φ2 = αβE(εy,k−1 εb,k−2) (A.25)

βφ2 = αE(εy,k−1 εb,k−2) (A.26)

The noises εy,k and εb,k follow a stationary behavior:

βφ2 = αE(εy,k εb,k−1) (A.27)

The use of Equation A.1 gives:

βφ2 = αE((αεy,k−1 + βεb,k)εb,k−1) (A.28)

βφ2 = α2E(εy,k−1 εb,k−1) + αβE(εb,k εb,k−1) = α2E(εy,k−1 εb,k−1) (A.29)

The use of Equation A.19 gives:

βφ2 = αβφ1 (A.30)

And finally:

φ2 = αφ1 = α2Σb (A.31)

135

A.3.4 General case

Through recurrence, we find the general form of the auto-correlation function φn, where n

can be either negative or positive:

φn = α|n|Σb (A.32)

To compute the value of α, we express the derivative of φn with respect to n:

∂φn
∂n

= sgn(n) α|n| log(α) Σb (A.33)

where sgn(x) corresponds to the sign of x.

We evaluate the slope K of the auto-correlation function φn at n = 0+:

K =
∂φn
∂n

∣∣∣∣
n=0+

= log(α) Σb (A.34)

Let n0 be defined such that the slope K passes through Σb at n = 0, and through the

horizontal axis at n = n0, as illustrated in Figure A.1. This gives:

K n0 + Σb = 0 (A.35)

And:

n0 =
−Σb

K
=

−Σb

log(α) Σb

=
−1

log(α)
(A.36)

It is known that α is close to 1 for typical GNSS measurements:

n0 ≈
−1

α− 1
(A.37)

And finally:

α ≈ 1− 1

n0

(A.38)

136

Figure A.1: Example of an auto-correlation function (blue), with its slope at n = 0+ (red).

A.4 Conclusion

In order to compute α and β, we use the following procedure:

• Estimate the auto-correlation function φn.

• Compute the value of α using Equation A.38.

• Compute the value of β using Equation A.6.

137

REFERENCES

[1] T. G. R. Reid et al., “Localization requirements for autonomous vehicles,” SAE
International Journal of Connected and Automated Vehicles, vol. 2, no. 3, Sep. 2019.

[2] L. Narula, M. J. Murrian, and T. E. Humphreys, “Accuracy limits for globally-
referenced digital mapping using standard gnss,” in 2018 21st International Confer-
ence on Intelligent Transportation Systems (ITSC), 2018, pp. 3075–3082.

[3] A. Stoven-Dubois et al., “Graph-based approach for crowdsourced mapping: Evalu-
ation through field experiments,” in 2020 16th International Conference on Control,
Automation, Robotics and Vision (ICARCV), 2020, pp. 260–265.

[4] G. Bresson et al., “Simultaneous Localization and Mapping: A Survey of Current
Trends in Autonomous Driving,” IEEE Transactions on Intelligent Vehicles, vol. 2,
no. 3, pp. 194–220, Sep. 2017.

[5] V. Ila et al., “SLAM++-A highly efficient and temporally scalable incremental
SLAM framework,” The International Journal of Robotics Research, vol. 36, no. 2,
pp. 210–230, 2017.

[6] K. Doherty, D. Fourie, and J. Leonard, “Multimodal semantic slam with probabilistic
data association,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 2419–2425.

[7] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Real-time monocular SLAM:
Why filter?” In 2010 IEEE International Conference on Robotics and Automation,
May 2010, pp. 2657–2664.

[8] D. Wilbers, C. Merfels, and C. Stachniss, “A comparison of particle filter and
graph-based optimization for localization with landmarks in automated vehicles,”
in 2019 Third IEEE International Conference on Robotic Computing (IRC), 2019,
pp. 220–225.

[9] A. Stoven-Dubois et al., “A Collaborative Framework for High-Definition Mapping,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Oct. 2019,
pp. 1845–1850.

[10] ——, “Graph optimization methods for large-scale crowdsourced mapping,” in
2020 IEEE 23rd International Conference on Information Fusion (FUSION), 2020,
pp. 1–8.

138

[11] National Highway Traffic Safety Administration, "Automated Vehicles for Safety",
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety, Accessed:
2021-09-14.

[12] V. Banks et al., “Is partially automated driving a bad idea? observations from an
on-road study.,” Applied ergonomics, vol. 68, pp. 138–145, 2018.

[13] J. Kocić, N. Jovičić, and V. Drndarević, “Sensors and sensor fusion in autonomous
vehicles,” in 2018 26th Telecommunications Forum (TELFOR), 2018, pp. 420–425.

[14] C. Yan, “Can you trust autonomous vehicles : Contactless attacks against sensors of
self-driving vehicle,” 2016.

[15] N. Lu et al., “Connected vehicles: Solutions and challenges,” IEEE Internet of
Things Journal, vol. 1, no. 4, pp. 289–299, 2014.

[16] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation of advanced
motion models for vehicle tracking,” in 2008 11th International Conference on
Information Fusion, 2008, pp. 1–6.

[17] J. Borenstein and L. Feng, “Measurement and correction of systematic odometry
errors in mobile robots,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 6, pp. 869–880, 1996.

[18] Z. Fan et al., “Experimental evaluation of an encoder trailer for dead-reckoning
in tracked mobile robots,” in Proceedings of Tenth International Symposium on
Intelligent Control, 1995, pp. 571–576.

[19] M. Chirca, “Perception pour la navigation et le contrôle des robots mobiles. Ap-
plication à un système de voiturier autonome,” Theses, Université Blaise Pascal -
Clermont-Ferrand II, Dec. 2016.

[20] N. Kubo, K. Kobayashi, and R. Furukawa, “Gnss multipath detection using continu-
ous time-series c/n0,” Sensors, vol. 20, no. 14, 2020.

[21] "Multi-Constellation and Multi-Frequency", https://novatel.com/an-introduction-to-
gnss/chapter-5-resolving-errors/multi-constellation-and-multi-frequency, Accessed:
2021-12-05.

[22] "Les systèmes d’augmentation de la précision LBAS et SBAS", https://www.reseau-
teria . com/2019 /12 /30 / les - systemes - daugmentation - sbas - et - lbas, Accessed:
2021-12-05.

[23] T. R. Lemmon and D. G. P. Gerdan, “The influence of the number of satellites on the
accuracy of rtk gps positions,” Australian Surveyor, vol. 44, no. 1, pp. 64–70, 1999.

139

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://novatel.com/an-introduction-to-gnss/chapter-5-resolving-errors/multi-constellation-and-multi-frequency
https://novatel.com/an-introduction-to-gnss/chapter-5-resolving-errors/multi-constellation-and-multi-frequency
https://www.reseau-teria.com/2019/12/30/les-systemes-daugmentation-sbas-et-lbas
https://www.reseau-teria.com/2019/12/30/les-systemes-daugmentation-sbas-et-lbas

[24] M. Papoutsidakis et al., “Motion sensors and transducers to navigate an intelligent
mechatronic platform for outdoor applications,” Sensors and Transducers, vol. 198,
pp. 16–24, Apr. 2016.

[25] J. Pérez, D. Gonzalez, and V. Milanés, “Vehicle control in adas applications,” in
Intelligent Transport Systems. John Wiley & Sons, Ltd, 2015, ch. 11, pp. 206–219.

[26] P. Wei et al., “Lidar and camera detection fusion in a real-time industrial multi-sensor
collision avoidance system,” Electronics, vol. 7, p. 84, May 2018.

[27] L. Heng et al., “Project autovision: Localization and 3d scene perception for an
autonomous vehicle with a multi-camera system,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 4695–4702.

[28] “Intelligent transport systems (its); access layer specification for intelligent transport
systems operating in the 5 ghz frequency band,” European Telecommunications
Standard Institute (ETSI), Standard, May 2013.

[29] “Ieee standard for information technology– telecommunications and informa-
tion exchange between systems– local and metropolitan area networks– specific
requirements– part 11: Wireless lan medium access control (mac) and physical
layer (phy) specifications amendment 6: Wireless access in vehicular environments,”
Institute of Electrical and Electronics Engineers (IEEE), Standard, Jul. 2010.

[30] M. Rondinone and A. Correa, “Definition of v2x message sets,” Transition Areas
for Infrastructure-Assisted Driving, Standard, May 2016.

[31] H. G. Seif and X. Hu, “Autonomous driving in the icity—hd maps as a key challenge
of the automotive industry,” Engineering, vol. 2, no. 2, pp. 159–162, 2016.

[32] B. Chenchana, “Localisation collaborative visuelle-inertielle de robots hétérogènes
communicants,” Theses, Université de Limoges, Mar. 2019.

[33] A. Birk et al., “A quantitative assessment of structural errors in grid maps,” Au-
tonomous Robots, vol. 28, pp. 187–196, Feb. 2010.

[34] X. Qu, B. Soheilian, and N. Paparoditis, “Landmark based localization in urban
environment,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 140,
pp. 90–103, 2018, Geospatial Computer Vision.

[35] K. Pirker, M. Rüther, and H. Bischof, “Cd slam - continuous localization and
mapping in a dynamic world,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011, pp. 3990–3997.

140

[36] J. McCall and M. Trivedi, “Video-based lane estimation and tracking for driver
assistance: Survey, system, and evaluation,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 7, no. 1, pp. 20–37, 2006.

[37] H. Zhu et al., “Overview of environment perception for intelligent vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584–2601,
2017.

[38] J. Aponte et al., “Quality assessment of a network-based RTK GPS service in the
UK,” Journal of Applied Geodesy, vol. 3, no. 1, pp. 25–34, Mar. 2009.

[39] I.-S. Lee and L. Ge, “The performance of rtk-gps for surveying under challenging
environmental conditions,” Earth, Planets and Space, vol. 58, pp. 515–522, 2006.

[40] S. Bauer, M. Obst, and G. Wanielik, “3d environment modeling for gps multipath
detection in urban areas,” in International Multi-Conference on Systems, Signals
Devices, 2012, pp. 1–5.

[41] Z. Tao et al., “Mapping and localization using gps, lane markings and proprioceptive
sensors,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2013, pp. 406–412.

[42] M. Aftatah et al., “Gps/ins/odometer data fusion for land vehicle localization in
gps denied environment,” Mathematical Models and Methods in Applied Sciences,
vol. 11, p. 62, 2016.

[43] K. Saadeddin, M. F. Abdel-Hafez, and M. A. Jarrah, “Estimating vehicle state
by gps/imu fusion with vehicle dynamics,” in 2013 International Conference on
Unmanned Aircraft Systems (ICUAS), 2013, pp. 905–914.

[44] A. Ndjeng Ndjeng et al., “Low cost IMU-Odometer-GPS ego localization for unusual
maneuvers,” Information Fusion, vol. 12, pp 264–274, Jan. 2011.

[45] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and localization for
an autonomous mobile robot,” in Proceedings IROS ’91:IEEE/RSJ International
Workshop on Intelligent Robots and Systems ’91, 1991, 1442–1447 vol.3.

[46] L. Wei et al., “Intelligent vehicle localization in urban environments using ekf-
based visual odometry and gps fusion,” IFAC Proceedings Volumes, vol. 44, no. 1,
pp. 13 776–13 781, 2011, 18th IFAC World Congress.

[47] M. Schreiber et al., “Vehicle localization with tightly coupled gnss and visual
odometry,” in 2016 IEEE Intelligent Vehicles Symposium (IV), 2016, pp. 858–863.

141

[48] J. Andrade-Cetto, T. Vidal-Calleja, and A. Sanfeliu, “Unscented transformation of
vehicle states in slam,” in Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, 2005, pp. 323–328.

[49] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part i,”
IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006.

[50] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications to
large-scale mapping of urban structures,” The International Journal of Robotics
Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[51] E. Mendes, P. Koch, and S. Lacroix, “Icp-based pose-graph slam,” in 2016 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2016,
pp. 195–200.

[52] A. J. Davison et al., “Monoslam: Real-time single camera slam,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[53] J. Civera et al., “Towards semantic slam using a monocular camera,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011,
pp. 1277–1284.

[54] X. Chen et al., “Suma++: Efficient lidar-based semantic slam,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 4530–
4537.

[55] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A versatile and
accurate monocular slam system,” IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1147–1163, 2015.

[56] G. Dissanayake et al., “An experimental and theoretical investigation into simultane-
ous localisation and map building,” in Experimental Robotics VI, Springer London,
2000, pp. 265–274.

[57] F. Dellaert et al., “Monte carlo localization for mobile robots,” in Proceedings 1999
IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C),
vol. 2, 1999, 1322–1328 vol.2.

[58] D. Wang et al., “Lidar scan matching ekf-slam using the differential model of vehicle
motion,” in 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 908–912.

[59] G. Bresson et al., “Real-Time Monocular SLAM With Low Memory Requirements,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 4, pp. 1827–
1839, 2015.

142

[60] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear
systems,” in Signal Processing, Sensor Fusion, and Target Recognition VI, I. Kadar,
Ed., International Society for Optics and Photonics, vol. 3068, SPIE, 1997, pp. 182–
193.

[61] L. Delobel et al., “A Real-Time Map Refinement Method Using a Multi-Sensor
Localization Framework,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 5, pp. 1644–1658, May 2019.

[62] S. Julier and J. Uhlmann, “General decentralized data fusion with covariance in-
tersection (ci),” Handbook of Multisensor Data Fusion: Theory and Practice, Jun.
2001.

[63] M. Montemerlo et al., “Fastslam: A factored solution to the simultaneous localization
and mapping problem,” in Eighteenth National Conference on Artificial Intelligence,
American Association for Artificial Intelligence, 2002, pp. 593–598.

[64] ——, “Fastslam 2.0: An improved particle filtering algorithm for simultaneous
localization and mapping that provably converges,” in Proceedings of the 18th
International Joint Conference on Artificial Intelligence, ser. IJCAI’03, Morgan
Kaufmann Publishers Inc., 2003, pp. 1151–1156.

[65] J. Z. Sasiadek, A. Monjazeb, and D. Necsulescu, “Navigation of an autonomous
mobile robot using ekf-slam and fastslam,” in 2008 16th Mediterranean Conference
on Control and Automation, 2008, pp. 517–522.

[66] A. Eudes and M. Lhuillier, “Error Propagations for Local Bundle Adjustment,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), IEEE,
Jun. 2009.

[67] D. Steedly and I. Essa, “Propagation of innovative information in non-linear least-
squares structure from motion,” in Proceedings Eighth IEEE International Confer-
ence on Computer Vision. ICCV 2001, vol. 2, 2001, pp. 223–229.

[68] Z. Zhang and Y. Shan, “Incremental motion estimation through modified bundle
adjustment,” in Proceedings 2003 International Conference on Image Processing
(Cat. No.03CH37429), vol. 2, 2003, pp. II–343.

[69] E. Mouragnon et al., “Real time localization and 3d reconstruction,” in 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 1, 2006, pp. 363–370.

[70] D. A. Cucci, M. Rehak, and J. Skaloud, “Bundle adjustment with raw inertial
observations in uav applications,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 130, pp. 1–12, 2017.

143

[71] G. Grisetti et al., “Efficient estimation of accurate maximum likelihood maps in
3d,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007, pp. 3472–3478.

[72] R. Kümmerle et al., “G2o: A general framework for graph optimization,” in 2011
IEEE International Conference on Robotics and Automation, 2011, pp. 3607–3613.

[73] D. Wilbers, C. Merfels, and C. Stachniss, “Localization with Sliding Window
Factor Graphs on Third-Party Maps for Automated Driving,” in 2019 International
Conference on Robotics and Automation (ICRA), May 2019, pp. 5951–5957.

[74] A. Alharake et al., “Urban localization inside cadastral maps using a likelihood
field representation,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), 2019, pp. 1329–1335.

[75] L. Yu et al., “Monocular Urban Localization using Street View,” in 14th International
Conference on Control, Automation, Robotics and Vision (ICARCV’2016), Nov.
2016.

[76] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-based localization for au-
tonomous vehicles in urban scenarios,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 2161–2166.

[77] G. Floros, B. van der Zander, and B. Leibe, “Openstreetslam: Global vehicle local-
ization using openstreetmaps,” in 2013 IEEE International Conference on Robotics
and Automation, 2013, pp. 1054–1059.

[78] B. Suger and W. Burgard, “Global outer-urban navigation with openstreetmap,” in
2017 IEEE International Conference on Robotics and Automation (ICRA), 2017,
pp. 1417–1422.

[79] G. Vaca-Castano et al., “City scale geo-spatial trajectory estimation of a moving
camera,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition,
2012, pp. 1186–1193.

[80] P. Agarwal, W. Burgard, and L. Spinello, "Metric Localization using Google Street
View", arXiv, 2015. eprint: 1503.04287 (cs.RO).

[81] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle localiza-
tion in urban environments,” in Robotics: Science and Systems, 2007.

[82] D. Zou and P. Tan, “Coslam: Collaborative visual slam in dynamic environments,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2,
pp. 354–366, 2013.

144

1503.04287

[83] R. Dubé et al., “Segmap: 3d segment mapping using data-driven descriptors,”
Robotics: Science and Systems XIV, Jun. 2018.

[84] R. Arumugam et al., “Davinci: A cloud computing framework for service robots,” in
2010 IEEE International Conference on Robotics and Automation, 2010, pp. 3084–
3089.

[85] A. Gil et al., “Multi-robot visual slam using a rao-blackwellized particle filter,”
Robotics and Autonomous Systems, vol. 58, no. 1, pp. 68–80, 2010.

[86] D. Zou, P. Tan, and W. Yu, “Collaborative visual slam for multiple agents:a brief
survey,” Virtual Reality & Intelligent Hardware, vol. 1, no. 5, pp. 461–482, 2019,
3D Vision.

[87] G. Bresson, R. Aufrère, and R. Chapuis, “A General Consistent Decentralized
Simultaneous Localization And Mapping Solution,” Robotics and Autonomous
Systems, vol. 74, Part A, pp. 128–147, 2015.

[88] T. Cieslewski, S. Choudhary, and D. Scaramuzza, "Data-Efficient Decentralized
Visual SLAM", 2017. arXiv: 1710.05772 [cs.RO].

[89] A. Zolotovitski et al., “Analysis of potential to improve maps using car probe
data,” in Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational
Transportation Science, ser. IWCTS’17, 2017, pp. 24–29.

[90] H. Luo et al., “Constructing an indoor floor plan using crowdsourcing based on
magnetic fingerprinting,” Sensors, vol. 17, no. 11, 2017.

[91] B. Zhou et al., “A graph optimization-based indoor map construction method via
crowdsourcing,” IEEE Access, vol. 6, pp. 33 692–33 701, 2018.

[92] J. Huai et al., “Collaborative monocular slam with crowdsourced data,” NAVIGA-
TION, vol. 65, no. 4, pp. 501–515, 2018.

[93] O. Dabeer et al., "An End-to-End System for Crowdsourced 3d Maps for
Autonomous Vehicles: The Mapping Component", 2017. arXiv: 1703 . 10193
[cs.RO].

[94] M. Herb et al., “Crowd-sourced semantic edge mapping for autonomous vehicles,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 7047–7053.

[95] T. Qin et al., "RoadMap: A Light-Weight Semantic Map for Visual Localization
towards Autonomous Driving", 2021. arXiv: 2106.02527 [cs.CV].

145

https://arxiv.org/abs/1710.05772
https://arxiv.org/abs/1703.10193
https://arxiv.org/abs/1703.10193
https://arxiv.org/abs/2106.02527

[96] C. Kim et al., “Crowd-sourced mapping of new feature layer for high-definition
map,” Sensors, vol. 18, no. 12, p. 4172, Nov. 2018.

[97] J. Shaw, "Least-Squares Intersection of Lines", https://silo.tips/download/least-
squares-intersection-of-lines, Accessed: 2021-12-22.

[98] B. Noack, S. J. Julier, and U. D. Hanebeck, “Treatment of biased and dependent sen-
sor data in graph-based slam,” in 2015 18th International Conference on Information
Fusion (Fusion), 2015, pp. 1862–1867.

[99] G. Grisetti et al., “A tutorial on graph-based slam,” IEEE Intelligent Transportation
Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.

[100] V. Indelman et al., “Information fusion in navigation systems via factor graph based
incremental smoothing,” Robotics and Autonomous Systems, vol. 61, no. 8, pp. 721–
738, 2013.

[101] L. Carlone et al., “Initialization techniques for 3d slam: A survey on rotation estima-
tion and its use in pose graph optimization,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 4597–4604.

[102] C. Campos et al., “Fast and robust initialization for visual-inertial slam,” in 2019
International Conference on Robotics and Automation (ICRA), 2019, pp. 1288–
1294.

[103] S. Agarwal et al., "Ceres Solver", http://ceres-solver.org, Accessed: 2021-12-05.

[104] F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Foundations and
Trends in Robotics, vol. 6, pp. 1–139, Jan. 2017.

[105] P. Polack et al., “The kinematic bicycle model: A consistent model for planning
feasible trajectories for autonomous vehicles?” In 2017 IEEE Intelligent Vehicles
Symposium (IV), 2017, pp. 812–818.

[106] J. Vallvé, J. Solà, and J. Andrade-Cetto, “Graph SLAM Sparsification With Popu-
lated Topologies Using Factor Descent Optimization,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 2, pp. 1322–1329, Jun. 2018.

[107] Z. Zhu et al., “Traffic-Sign Detection and Classification in the Wild,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016,
pp. 2110–2118.

[108] H. Li and F. Nashashibi, “Cooperative Multi-Vehicle Localization Using Split
Covariance Intersection Filter,” IEEE Intelligent Transportation Systems Magazine,
vol. 5, no. 2, pp. 33–44, 2013.

146

https://silo.tips/download/least-squares-intersection-of-lines
https://silo.tips/download/least-squares-intersection-of-lines
http://ceres-solver.org

[109] B. Wang, W. Shi, and Z. Miao, “Confidence Analysis of Standard Deviational Ellipse
and Its Extension into Higher Dimensional Euclidean Space,” PLoS ONE, vol. 10,
2015.

[110] J. Laneurit, R. Chapuis, and F. Chausse, “Accurate vehicle positioning on a nu-
merical map,” International Journal of Control Automation and Systems, vol. 3,
pp. 15–31, 2005.

[111] X. Gong and Y. Lin and J. Liu, “3D LIDAR-Camera Extrinsic Calibration Using an
Arbitrary Trihedron,” Sensors, vol. 13, no. 2, pp. 1902–1918, 2013.

[112] C. Brenner, “Vehicle localization using landmarks obtained by a lidar mobile
mapping system,” International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences - ISPRS Archives, vol. 38, Jan. 2010.

147

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 | Introduction
	Vehicles Localization and High-Precision Maps
	Crowdsourced Mapping
	Contributions
	Document Organization

	2 | Background on Intelligent Vehicles
	From ADAS to Autonomy
	Proprioceptive Sensors
	Exteroceptive Sensors
	Connected Vehicles
	Maps
	Conclusion

	3 | Related Work
	Localization
	Map Construction
	Conclusion

	4 | Crowdsourced Mapping using Graph Optimization
	Crowdsourced Mapping
	Triangulation Optimization for Crowdsourced Mapping
	Graph-based Approaches
	Graph Optimization for Crowdsourced Mapping
	Conclusion

	5 | Evaluation of Crowdsourced Mapping Performances
	Triangulation-based Approach: Evaluation through Field-Tests
	Graph-based Approach: Evaluation through Simulation Experiments
	Graph-based Approach: Evaluation through Field-Tests
	Evaluation of Contributions for Vehicles Positioning
	Conclusion

	6 | Conclusion
	Summary and Contributions
	Future Works

	Appendices
	A | GNSS Auto-Correlated Noises

	References

