
HAL Id: tel-04475283
https://theses.hal.science/tel-04475283

Submitted on 23 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions à la gestion des pipelines de traitement de
flux dans les environnements de fog computing

Davaadorj Battulga

To cite this version:
Davaadorj Battulga. Contributions à la gestion des pipelines de traitement de flux dans les en-
vironnements de fog computing. Other [cs.OH]. Université de Rennes, 2023. English. �NNT :
2023URENS074�. �tel-04475283�

https://theses.hal.science/tel-04475283
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique,
Systèmes, Electronique
Spécialité : Informatique

Par

Davaadorj Battulga
Contributions to the Management of Stream Processing Pipelines
in Fog Computing Environments

Thèse présentée et soutenue à Rennes, le 23 mars 2023
Unité de recherche : IRISA (UMR CNRS 6074)

Rapporteurs avant soutenance :
PEREZ Christian Directeur de recherche, Inria
SENS Pierre Professeur, Sorbonne université

Composition du Jury :
Président : PIERRE Guillaume Professeur, Université de Rennes 1
Examinateurs : PEREZ Christian Directeur de recherche, Inria

SENS Pierre Professeur, Sorbonne université
COULLON Hélène Maitre de conférences, IMT Atlantique
LO PRESTI Francesco Professeur, Universita di Roma Tor Vergata

Dir. de thèse : TEDESCHI Cédric Maitre de Conférences (HDR), Université de Rennes 1
Co-dir. de thèse : MIORANDI Daniele CEO, U-Hopper

This work is part of a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk≥odowska-Curie
grant agreement No 765452. The information and views set out in this publication are
those of the author(s) and do not necessarily reflect the o�cial opinion of the European
Union. Neither the European Union institutions and bodies nor any person acting on
their behalf may be held responsible for the use which may be made of the information
contained therein.

3

ABSTRACT

Stream processing answers the need for quickly developing and deploying applications
for real-time processing of continually created data. While its ability to handle a high
volume of data in real-time makes it the perfect technology for IoT use cases, it is still
not adapted to geographically dispersed platforms including low-power compute nodes,
such as Fog environments, which are yet the natural playground for IoT.

In this work, we contribute to the building of Fog platforms managing Stream Process-
ing Pipelines, addressing the key properties of scalability, autonomy, and programmability.
Firstly, to address scalability and move one step towards the deployment of stream pro-
cessing applications over Fog platforms, we propose a new architectural model based on
the coordination of multiple computing sites to deploy the stream processing pipelines
over a geo-distributed environment. Secondly, to address autonomy and manage the life
of an application after its initial deployment, we devise an adaptation mechanism where
sites collaborate together to enable the e�cient reconfiguration of the deployment of the
SP pipeline. Finally, on a more practical side, we discuss the implementation of a Fog node
from the ground up so as to build a compute node that could be a generic compute node
to be located at the edge specialized in the local processing of data streams, in particular
in the context of Smart Cities.

5

RÉSUMÉ

Le domaine du traitement de flux de données (ou stream processing (SP)) a émergé
comme une réponse au besoin de développer et de déployer des applications pour le
traitement en temps-réel de données générés en continu. Alors qu’aujourd’hui les outils
du stream processing ont atteint un degré de maturité et d’utilisabilité significatifs leur
permettant de gérer un grand volume de donnés en temps réel, ils ne sont pas adaptés aux
plates-formes géographiquement distribuées, comme celles supportant le Fog computing.

Les travaux décrits dans cette thèse contribuent à constuire des plates-formes pour le
Fog computing spécialisées pour le traitement de flux de données, à renforcer leurs pro-
priétés de passage à l’échelle, d’autonomie et de programmabilité. Premièrement, en terme
de passage à l’échelle, et afin d’avancer vers la possibilité de déploiement d’applications
de traitement de flux de données sur des plates-formes de type Fog, nous proposons un
nouveam modèle architectural fondé sur la coordination de plusieurs sites de calcul, au-
dessus desquels une application pourra être déployée de façon unifiée. Deuxièmement,
sur l’aspect autonomie, et afin de gérer le temps d’exécution de l’application après son
déploiement initial, nous proposons un mécanisme d’adaptation dans lequel les sites de
calcul collaborent pour assurer la reconfiguration e�cace du déploiement de l’application.
Enfin, ces travaux explorent le versant pratique de la problématique. Nous discutons la
conception générique et l’implémentation dans un contexte réel de ville intelligente d’un
nœud de calcul pour le Fog.

6

RÉSUMÉ LONG

Du traitement par lot au traitement en flux

Les données sont devenues ubiquitaires, prenant leur source soit des humains soit
des machines. Leurs sources multiples incluent les interactions humaines et les données
provenant de capteurs, de services de géolocalisation ou de cameras. De plus, cette quantité
augmente rapidement. En 2020, la quantité de données créées ou répliquées ont atteint un
nouveau record de 64.2 zettaoctets, et il a été estimé que nous atteindrons 175 zettaoctets
en 2025 [215].

L’une des principales raisons de cette croissance est l’augmentation du nombre d’objets
connectés, qui vont du simple équipement domestique à des machineries industielles com-
plexes. Globalement, le nombre d’objets connectés devraient atteindre 29 milliards en
2030 [118].

Cette croissance des données ont fait appraitre des problématiques quant à leur stock-
age et leur traitement, ce qui a engendré l’ère du Big Data. La première période de cette
ère a été principalement fondée sur le traitement par lot. Le traitement par lot désigne le
traitement de larges volumes de données de façon non interactive. Des logiciels spécial-
isés ont émergés pendant cette période [46], axés sur le traitement e�cace et l’analyse
potentiellement complexe de grands volumes de données [162].

La tendance actuelle est de rendre les données disponibles pour un traitement en
quasi-temps-réel. D’ici 2025, il est estimé que 25% des données créées seront temps-réel
par nature 1. Cela signifie que pour en extraire leur valeur, elles doivent être traitées rapi-
dement après leur apparition. Le traitement par lot est dans ce cas obsolète car incapable
de prendre en compte des données en continu.

Le traitement par flux a été introduit comme un modèle dédié au traitement quasi-
temps-réel de données générées en continu. Le traitement par flux peut être vu comme un
modèle cherchant à réduire le temps écoulé entre l’apparition d’une donnée et l’extraction
de l’information qu’elle contient. Les champs applicatifs du traitement par flux vont du
traitement des transactions financières aux réseaux sociaux en passant par la surveillance

1. https://www.zdnet.com/article/by-2025-nearly-30-percent-of-data-generated-will-be-real-time-idc-
says/

7

de l’environnement.
En plus de la réduction des délais, le traitement par flux a pour objectif de fournir la

capacité de traiter un grand volume, une grande vélocité ainsi qu’une grande variété de
données. Pour ces raisons, un aspect important du modèle est sa capacité à être déployé
au-dessus de plates-formes de calcul à grande échelle. En particulier, le traitement par flux
a été pensé pour être déployé au-dessus de ressources de calcul obtenues via un Cloud. Le
terrain de jeu favori du traitement par flux reste des infrastructures à gestion centralisée
et dont les ressources sont géographiquement rapprochées, interconnectées par un réseau
performant.

Du Cloud au Fog

Depuis le début des années 2000, le Cloud a été le modèle qui a fait du concept de
calcul utilitaire une réalité. Il a permis aux utilisateurs d’accéder à des ressources de
calcul distantes, qu’elles soient des serveurs de calcul, de stockage ou des applications à
part entière. Une propriété saillante du Cloud est son élasticité, c’est-à-dire, sa capacité
à dimensionner dynamiquement la plate-forme en fonction des besoins. Cela, combiné au
modèle de paiement à l’usage, a fait du Cloud un modèle attractif pour l’industrie.

Pourtant, avec l’arrivée de l’ère de l’IoT, le Cloud montre ses limites, en particulier
en lien avec des problèmes d’impact réseau et de latence. Alors que les données sont
produites au bord de l’Internet, fournir du traitement en temps réel, à faible latence tout
en assurant la sécurité des données et la vie privée est devenu compliqué: les données
doivent être traitées au plus près de leur source.

Le calcul à l’Edge correspond à l’idée d’amener la puissance de calcul au plus proche
de la source de données. Dans la pratique, le calcul à l’Edge peut prendre la forme de
petita centres de calcul placés proches des utilisateurs finaux [189]. Les ressources de
calcul déployées à l’Edge fournissent en général une puissance de calcul limitée. Elles
n’ont pas pour objectif de se substituer au Cloud, mais de se combiner avec lui. Ce type
de combinaisons permet d’avoir le meilleur des deux mondes: la réduction du trafic réseau
et la puissance de calcul du Cloud [70]. Ce type de combinaison est souvent appelé Fog.

Le Fog constitue une évolution du Cloud qui s’attaque à certaines de ses limitations
en amenant des ressources de calcul plus proches du bord du réseau. En d’autres termes,
suivant le modèle du Fog, les données sont partiellement traitées et stockées au bord
du réseau, proche de la source de données, mais également dans des centres de calcul
centralisés. Répartir la charge entre la partie Edge et Cloud du Fog consiste à trouver un

8

compromis entre puissance de calcul fourni par le Cloud et le coût de transmission des
données vers le Cloud [34]. De plus, traiter les donnés au plus proche de leur source peut
aussi réduire les problèmes de sécurité et de respect de la vie privée.

Contributions

Dans un premier temps, afin d’aborder le problème de passage à l’échelle du dé-
ploiement d’applications de traitement de flux de données dans des environnements de
type Fog, nous proposons un nouveau modèle architectural fondé sur la coordination
de multiples sites de calcul potentiellement géo-distribués. Dans un second tenps, afin
d’aborder l’adaptation autonome d’un tel déploiement, nous présentons la conception
d’un mécanisme d’adaptation au sein duquel les sites de calcul collaborent pour mettre
en œuvre des reconfigurations e�caces et continues du déploiement. Enfin, sur un versant
plus pratique, nous discutons de la conception d’un nœud de traitement de flux de don-
nées pour l’Edge, tant au niveau matériel que logiciel, en particulier dans le contexte de
la ville intelligente.

Décrivons chacune de ces contributions plus en détails. Nous considérons dans ces
travaux le modèle classique d’applications de traitement de flux de données constituées
d’un ensemble d’opérateurs appliqués sur chaque enregistrement composant le flux depuis
leur origine jusqu’à leur traitement final et leur stockage. Ces opérateurs incluent la
modification, combinaison et filtre des enregistrements composant le flux. Dans le contexte
d’un environnement de type Fog, nous faisons l’hypothèse que chaque opérateur peut être
placé sur un nœud de calcul distinct, chaque nœud étant équipé d’un moteur de traitement
de flux.

Notre première contribution se nomme SpecK. SpecK s’appuie sur un modèle archi-
tectural fondé sur la collaboration de moteurs de traitement de flux déployés au-dessus
des multiples sites de calcul d’une infrastructure géographiquement répartie. A partir
d’une simple description de l’application à déployer, SpecK démarre chaque job devant
composer l’application sur les ressources d’un site. SpecK est aussi capable de modifier
l’application déployée sur soumission d’une nouvelle description. Un prototype logiciel de
SpecK a été construit et expérimenté sur une plate-forme réelle composée de nœuds de
calcul appartenant à di�érents sites de la plate-forme nationale Grid’5000.

Notre seconde contribution, DynaP, se focalise sur l’adaptation du déploiement
d’applications de traitement de flux de données. Dynap s’appuie sur le même modèle
architectural que SpecK, dans lequel un ensemble de moteurs de traitement de flux de

9

données se partagent la responsabilité de l’exécution de l’application. Afin de rester exten-
sible, et respecter la nature de la plate-forme, Dynap adopte une conception décentralisée
dans laquelle chaque site est équipé d’un agent capable de se coordonner avec les autres
dans le processus d’adaptation. L’opération de base utilisée dans DynaP est la migration
de Job, chaque agent étant responsable du déclenchement de la migration des jobs qu’il
héberge localement, en collaboration avec les autres agents. Nous mettons en évidence le
besoin de coordination dans le cas où de multiples migrations peuvent avoir lieu de façon
concurrente, et proposons un algorithme décentralisé de migration empruntant au con-
cept classique d’exclusion mutuelle. DynaP a donné lieu au développement d’un prototype
logicielle dont les résultats expérimentaux dans une plate-forme émulée sont présentés.

La troisième contribution de ce manuscrit a trait à l’implémentation d’un nœude calcul
pour l’Edge spécialisé dans le traitement de flux de données. Dans ce cadre, nous avons
eu l’objectif de faciliter le développement et le déploiement d’applications de traitement
de flux de données dans le Fog. Notre proposition est le résultat de plusieurs itérations
depuis un premier prototype monté en laboratoire, jusqu’à une plate-forme complète de
type IoT déployée dans le contexte du projet européen FogGuru.

10

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to my greatest supervisors:
Professor Cédric Tedeschi and Daniele Miorandi for your constant guidance, support, and
encouragement throughout my journey. Your expertise, feedback, patience, and mentoring
have been invaluable in shaping my research, my thesis, my lifestyle, and my mindset.
Sincerely, I could not have hoped for better mentors.

Secondly, I would like to thank members of the jury: Francesco Lo Presti, Hélène
Coullon, Pierre Sens, Christian Perez, and Guillaume Pierre for accepting to review my
thesis. In particular, Pierre and Christian, I’m really grateful for your time and e�ort
in reviewing my manuscript. Special thanks to Christian for being part of my CSID
committee along with Marin Bertier. Your feedback has been an important influence in
guiding my research.

Thank you Guillaume for giving me the opportunity to join the FogGuru project, I
am deeply indebted to you. I would like to thank my friends from the FogGuru project:
Mulu, Mozhdeh, Paulo, Dimi, Hamid, Lily, Felipe, Julie, Nena, and Gema. I appreciate
the time we spent together. Special thanks to Matthieu from Inria for showing me the
way of the EnOSLib kung-fu.

I would also like to thank my colleagues from U-Hopper: Carlo, Rossana, Fede, Saaa-
mueel, Ele, Christian, Nic, Elisa, Luca, Guilia, and Diego. Special thanks to Stefano for
being an Angel. I felt welcomed in Trento because of all of you.

And my friends: Lee, Hee, Boldoo, and Tumku, I could’ve gone crazy if it wasn’t for
you. Thanks for having my back. Cheers to the lifelong friendship.

Special thanks to my Magi, I cherish our moments together.
My deepest gratitude to my parents Battulga and Bayarmaa, I will never thank you

enough for your unwavering support, unconditional love, and encouragement throughout
my journey.

Lastly, my younger brothers Lkhagvadorj and Khishigdorj, I am proud of you, and I
am proud of being your brother. I can’t wait to see what more we can achieve together.

11

TABLE OF CONTENTS

1 Introduction 19
1.1 Context . 19
1.2 General objectives . 21
1.3 Contributions . 23
1.4 Outline . 24

2 State of the art 25
2.1 Evolution of computing infrastructures . 25

2.1.1 Cloud computing . 25
2.1.2 Distributed Cloud . 28
2.1.3 Fog computing . 29
2.1.4 Applications benefiting from Fog computing 32
2.1.5 Fog challenges . 33

2.2 Stream Processing . 34
2.2.1 Before Stream Processing: Batch Processing 34
2.2.2 Data Stream Processing platforms . 38
2.2.3 Stream Processing engines . 43
2.2.4 Stream Processing programming and execution models 44

2.3 Programmability, autonomy and scalability of Stream Processing in Fog . . 49
2.3.1 Scheduling Stream Processing applications in geo-distributed settings 50
2.3.2 Scaling Stream Processing applications 52
2.3.3 Programmmability of stream processing applications over geo-

distributed platforms . 54
2.3.4 Decentralized management . 55

3 SpecK: Coordinating Stream Processing Engines for the deployment of
Data Pipelines over Fog Environments 59
3.1 Introduction . 59
3.2 SpecK: An SPE coordinator . 61

13

TABLE OF CONTENTS

3.2.1 SpecK usage . 63
3.2.2 SpecK architecture and internals . 66

3.3 Experimental evaluation . 68
3.3.1 Scalability and overhead . 68
3.3.2 Hybrid Edge/Cloud deployment . 71

3.4 Conclusion . 75

4 DynaP: Decentralized Adaptation of Stream Processing Pipelines 77
4.1 Introduction . 77
4.2 Mutual exclusion . 79
4.3 Dynap . 80

4.3.1 Application model . 80
4.3.2 Platform model . 81
4.3.3 The migration protocol . 82

4.4 Software prototype . 89
4.5 Experimental results . 91
4.6 Conclusion . 94

5 Prototyping Fog Computing platforms based on Stream Processing 95
5.1 Introduction . 95
5.2 Design . 96
5.3 FogGuru . 98

5.3.1 Platform architecture . 98
5.3.2 Operation and early experiments . 100

5.4 LivingFog . 102
5.4.1 Non-functional requirements . 103
5.4.2 Implementation . 104
5.4.3 Experimental validation . 108

5.5 Related work . 111
5.6 Conclusion . 112

6 Conclusion and Future Work 115

Bibliography 119

14

LIST OF FIGURES

2.1 Cloud computing architecture. 26
2.2 Cloud service models. 27
2.3 Fog Computing Architecture . 30
2.4 A simple Web graph example. 36
2.5 A standard data Stream Processing platform. 38
2.6 Road tra�c monitoring application. 42
2.7 Road Tra�c Monitoring Application Pipeline 45
2.8 Apache Flink high-level system architecture 47

3.1 SpecK targeted platform. 62
3.2 SpecK overview. 63
3.3 Initial pipeline . 65
3.4 Adapted pipeline . 65
3.5 SpecK software architecture. 67
3.6 Pipeline overview. 69
3.7 Multiple deployment measurements . 70
3.8 Deployment of the application over multiple sites. 71
3.9 Data processing rate sample. 73
3.10 Deployment of the application on a single site. 73
3.11 Di�erential output rate. 74

4.1 Applications considered: stream processing pipelines. 81
4.2 Targeted platform. 82
4.3 A mapped application. 82
4.4 An operator’s internals. 83
4.5 Sample job migration and its data flow. 84
4.6 A Dynap node. 90
4.7 Job deployments over multiple nodes. 92
4.8 Overall latency in various data rates . 93

15

LIST OF FIGURES

5.1 The FogGuru hardware platform (cluster of 5 Raspberry Pi 3b+) 99
5.2 The FogGuru platform software architecture. 99
5.3 FogGuru: deployment view. 100
5.4 Validation setup. 102
5.5 Validation: the cloud dashboard for tra�c monitoring at the regional level. 103
5.6 Software stack layers deployed on the Fog platform 105
5.7 Data storage using the GlusterFS scalable network filesystem. 106
5.8 Software stack and its data stream . 107
5.9 Cumulative number of messages for a day. 109
5.10 Latency (ms) of publishing to MQTT topics. 109

16

LIST OF TABLES

2.1 Comparison of Stream Processing engines. 49

3.1 Size of the states of the pipeline. 71

17

Chapter 1

INTRODUCTION

1.1 Context

From the batch era to the streaming era

Data is everywhere, taking its source either from humans or machines. Its many sources
include human interactions such as text messages, calls, social media, and Internet searches
as well as machine-generated data coming for instance from sensors, geo-localization ser-
vices, and cameras. Moreover, the amount of data created globally is increasing rapidly.
In 2020, the amount of data created and replicated globally reached a new high of 64.2
zettabytes, and it is expected to reach 175 zettabytes by 2025 [215]. That represents nearly
7 trillion Blu-ray disks.

One of the main reasons for this increase is the growth of internet-connected devices,
including smartphones and Internet of Things (IoT) devices. IoT generally refers to phys-
ical items that are embedded with sensors, software, and other technologies that allow
them to communicate and share data with other devices and systems over the Internet.
These devices range from simple domestic items to complex industrial machinery. IoT
devices worldwide are forecast to almost triple from 9.7 billion in 2020 to more than 29
billion IoT devices in 2030 [118].

This increase in data is driving a need for new technologies and tools to store, process,
and analyze them, which led to the recent growth of Big Data technologies. The first
period since the emergence of the Big Data era was mostly based on batch processing.
Batch processing refers to processing large volumes of data in a non-interactive manner.
Batch processing acts typically on a high volume of data all at once. Specialized software
and technology emerged from this first Big Data period [46], allowing for the e�cient
processing of large amounts of data, including complex analytics and transformation such
as data cleaning, aggregation, and indexing [162]. Famous batch processing applications

19

Introduction

include Google’s PageRank [20] and scanning and indexing at the New York Times 1.
Recently, data are delivered and are available for processing in near real-time. It is

estimated that by 2025, 25% of all data created will be real-time in nature 2. It means
that to extract knowledge and value from these data, they have to be processed quickly
after their apparition. Batch processing in this case becomes obsolete as unable to quickly
take into account newly generated data. Batch Processing must either wait for the end of
the current batch to be completed or stop and restart the processing from the beginning,
leading to inadequate delays in the availability of the results.

Stream Processing, on the other hand, was introduced as a paradigm dedicated to the
near real-time processing of continually created data. In contrast with batch processing,
stream processing allows for the real-time analysis of data as it is generated, rather than
waiting for a batch of data to be collected. Stream processing can be seen as a paradigm
where the goal is to reduce the time elapsed between the generation of the data and the
extraction of the information it carries. Applications benefiting from an e�cient stream
processing range from the processing of financial transactions to social media feeds and
the real-time monitoring of the environment. At the organization level, stream processing
helps quickly detect patterns, anomalies, and trends in data, and respond to them in real-
time, helping low-latency decision-making, which is essential for critical and time-sensitive
applications such as fraud detection, network security, and anomaly detection.

Additionally to the delay, stream processing aims at providing the ability to handle
a high volume, velocity, and variety of data. For that reason, an important aspect of
the paradigm is its ability to get deployed over large-scale computing platforms. In par-
ticular, stream processing is very much designed to run on computing clusters or cloud
infrastructures. The typical infrastructure targeted by stream processing systems were
geographically-restricted infrastructures connecting compute nodes through a high-speed
network.

From Cloud computing to Fog computing

Since the early 2000s, Cloud computing has been the model which brought utility
computing to a new scale. It basically allowed users to access and use shared remote
computing resources, would they be servers, storage, or whole applications over the Inter-

1. https://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
2. https://www.zdnet.com/article/by-2025-nearly-30-percent-of-data-generated-will-be-real-time-idc-

says/

20

Introduction

net. A salient feature of Cloud computing is elasticity, i.e, its ability to scale computing
resources up or down as needed. Elasticity, combined with the fact that users pay only
for what they have actually consumed, made Cloud an appealing model for the industry,
providing cost savings, ease of use, and scalability.

Yet with the advent of the IoT era, Cloud started to show some limitations, in partic-
ular, related to network issues and latency. As data are being produced at the Edge of the
Internet, supporting real-time and low-latency applications while ensuring data security
and privacy has become di�cult: Data needs to be processed close to the data source.

Edge computing generally refers to bringing computing power close to the source of
data. In practice, Edge computing can take the shape of small data centers that are placed
close to the end-users [189]. Computing resources deployed in edges generally provide low
processing capacity. They are not meant to fully replace Clouds. Combining Edge with
Cloud resources allows us to combine the best of both worlds: the reduced network tra�c
of the Edge, and the computing power of the Cloud [70].

Fog computing can be seen as the combination of Cloud and Edge computing resources.
It constitutes an evolution of Cloud computing that addresses some of these limitations
by bringing computing resources closer to the edge of the network. In other words, in Fog
computing, data is partially processed and stored at the edge of the network, near the
data source, and also in centralized data centers. Balancing the load between edge and
cloud resources is a trade-o� to find between a higher computing power provided by the
Cloud, at the cost of extra latency and network load [34]. Additionally, processing data
closer to the source can also help to reduce privacy concerns and ensure data security.

Stream processing applications have been identified as major use cases that could
benefit from Fog computing [77, 142]. It would allow SP applications to be partially
processed at the edge of the network and bring the benefits of the Fog to both the
users and maintainers of these applications: smaller data sizes are delivered to the Cloud,
reducing network bandwidth utilization and network latency, as the Edge processing of
data typically leads to a reduction of their size for instance through cleaning, filtering,
and formatting. Also, the experienced latency can be improved.

1.2 General objectives

While appealing, moving data stream pipelines to geo-distributed platforms is far
from being a reality yet. According to the OpenFog Consoritum [116], building a Fog

21

Introduction

platforms call for ensuring di�erent properties that can be roughly summarized around
three axes, namely scalability, autonomy, and programmability. The present work
aims at contributing to achieving these properties when bringing stream processing to the
Fog. Let us review these three properties and their meaning in our context.

Scalability generally refers to the ability of a system to remain e�cient when facing
a growth in either the number of elements composing it, the number of concurrent
users it can support without loss of e�ciency or the velocity of the data it can han-
dle. In this work, we aim at supporting the deployment and adaptation of stream
processing applications that can scale both in terms of the size of the application
(i.e. the number of jobs composing it) and the size of the underlying platform
(i.e. the dispersion of the compute nodes supporting it). Scalability is addressed
through two approaches in the following: composition and decentralization.

Autonomy generally refers to a platform’s ability to self-manage without the need
for extended downtime or human intervention [124]. Self-management is one of the
core challenges in distributed computing platforms. Self-management includes a
variety of aspects such as self-configuration, self-healing, and self-optimization. In
this work, we aim at proposing adaptation mechanisms for stream processing ap-
plications running over a Fog environment, so as to ensure the application remains
as e�cient as possible when the conditions on the platforms in terms of latency
or available CPU evolve. Given the scale and geographic dispersion of such an en-
vironment, building adaptation mechanisms require scalability, thus relating this
challenge to the previous one.

Programmability is the ability to specify and execute the functionality of a plat-
form. In the context of Fog computing, it refers to the simplicity with which pro-
grammers may describe and deploy their programs over the platform. Because Fog
applications are still in their infancy, there is a lack of a generic and reusable
software engineering model to develop them. In this work, we aim at providing
high-level abstractions and description language of a stream processing applica-
tion to be deployed on the Fog. This objective is related to the previous ones: We
aim at providing scalability and adaptation through programmable mechanisms so
they become features of the platforms o�ered to the practitioners.

22

Introduction

1.3 Contributions

In this work, we contribute to addressing the challenges above in multiple steps. Firstly,
to address scalability and move one step towards the deployment of stream processing
applications over Fog platforms, we propose a new architectural model based on the
coordination of multiple computing sites to deploy the stream processing pipelines over
a geo-distributed environment. Secondly, to address autonomy and manage the life of an
application after its initial deployment, we devise an adaptation mechanism where sites
collaborate together to enable the e�cient reconfiguration of the deployment of the SP
pipeline. Finally, on a more practical side, we discuss the implementation of a Fog node
from the ground up so as to build a compute node that could be a generic compute node
to be located at the edge specialized in the local processing of data streams, in particular
in the context of Smart Cities.

Let us review the contributions in more detail. We consider in the present work the
classical model of stream processing applications that are composed of a set of operators
applied on each record composing the stream from their source to their final processing
destination and persistent storage. These operators include modification, combination,
and filtering of records. In the context of a Fog environment, we assume each operator
can be placed on a di�erent compute node or site, equipped with an autonomous stream
processing engine.

Our first contribution is called SpecK. SpecK relies on an architectural model based
on the collaboration of stream processing engines deployed over multiple computing sites
in a geographically-distributed computing infrastructure. Based on a simple description
of a pipeline to be deployed, the framework starts each job composing the application
over the resources of one computing site, each computing site is equipped with a running
instance of a stream processing engine (e.g., a Flink Job Manager) able to deploy jobs
over the local computing resources, and a message broker managing the needed message
queues to transfer data and control messages between sites.

Our second contribution is Dynap. Dynap contributes to the autonomous adaptation
of stream processing pipelines. Dynap is built in the same architectural model as SpecK,
where multiple geo-distributed stream processing engines share the responsibility of run-
ning the pipeline. To remain scalable and respect the nature of the platform, Dynap
follows a decentralized design where each compute site is equipped with an agent able
to coordinate with others in the adaptation. The basic operation is Job migration, and

23

Introduction

each agent is responsible to trigger the migration of the jobs locally managed on one
site, in collaboration with other sites. Here, coordination is needed, as decentralizing the
adaptation, if not conducted properly may lead to potentially harmful concurrent migra-
tions, possibly disrupting the pipeline linkage. Dynap borrows from distributed systems
techniques to ensure this.

Our final contribution relates to the implementation of a Fog compute node specialized
in stream processing, having in mind the objective of facilitating the development and
deployment of stream processing applications in Fog environments. The Fog node proposed
is the result of several iterations from the prototype to a functional node specialized in
the Smart City use case and makes use of open-source software stacks, which are provided
as an image ready to be deployed on resource-constrained devices.

1.4 Outline
The document is structured as follows. Chapter 2 constitutes the state of the art. In

particular, it reviews the recent trends in the evolution of computing platforms and data
processing models, before focusing on stream processing, its background, its programming
and execution models, and main features, and some tools implementing it. Then, it re-
ports on the recent series of works dealing with the management of stream processing
applications at a large scale, in particular regarding the topics of deployment, dynamic
adaptation, and decentralization. Chapter 3 describes the SpecK framework. It first in-
troduces a new architectural model, and then enters the details of its usage, internals,
and performance evaluation. Then, Chapter 4 describes the autonomous decentralized
adaptation of the framework of stream processing pipelines with the DynaP proposal.
It focuses mostly on the core mechanism of DynaP: a decentralized job migration pro-
tocol, before explaining internal software architecture, and the validation of its software
prototype over an emulated geo-distributed platform. Chapter 5 presents our concrete
realization of a Fog computing platform based specialized for stream processing appli-
cations. Its principles, technological choices made, and the resolution of specific real-life
constraints are discussed. Finally, in Chapter 6, we draw some conclusions and provide
insights into further improvements of this work and related research directions.

24

Chapter 2

STATE OF THE ART

Firstly, this chapter covers the needed background in Stream Processing and Fog Com-
puting platforms to understand the general problem tackled by the present work. More
precisely, in Section 2.1, the recent evolutions which led to the emergence of Fog computing
platforms are presented. Also, Section 2.2 reviews the stream processing paradigm and the
di�erent features o�ered by Stream Processing Engines. Secondly, this chapter presents
in Section 2.3, the state of the art in building programmable, scalable and autonomous
SP applications’ deployment.

2.1 Evolution of computing infrastructures

2.1.1 Cloud computing

Cloud computing emerged as a way for companies to outsource computing infras-
tructures and software, and delegate their management to third-party experts. Cloud
computing enables the on-demand availability of computer system resources, especially
data storage and computing power, without the need for a direct active management by
the user. It has become the most widely used computing platform over the years in the IT
industry worldwide. According to HashiCorp, 90% of the large enterprises have adopted
a multi-cloud infrastructure as of 2022 [105], while Flexera’s 2022 report indicates that
small to mid-sized businesses are investing 15% more on Cloud services than the previous
year [82].

Internet-of-Things (IoT) is a network of physical objects—"things"—embedded with
sensors, software, and other technologies for connecting and sharing data with other de-
vices and systems over the Internet. These devices vary from common household items
to complex industrial machines. Experts predict that the number of Internet-connected
devices will reach 22 billion by 2025 [163]. Figure 2.1 displays a general view of a Cloud
computing architecture from the perspective of the IoT. The bottom layer is made up of a

25

Part , Chapter 2 – State of the art

IoT
devices

Cloud

Figure 2.1 – Cloud computing architecture.

wide range of IoT devices that generate various sorts of data. These data are sent via long-
distance communication methods to the Cloud for processing in a range of applications
and services. The Cloud layer intends to concentrate computing and storage in data cen-
ters, with high-performance computers in a single data center linked by high-bandwidth
connections, to limit the inter-node latency.

Cloud computing services can be of three types: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS). These layers are depicted
in Figure 2.2. Each type o�ers a di�erent control level to the users, from mere computing
resources to full software services. IaaS enables the fundamental building block of the
infrastructure and provides computing resources and networking capabilities through vir-
tual machines and networks. It usually inherits the pay-as-you-go pricing model (PAYG).
The PAYG model requires users to pay based on how much they consume. A cloud storage
service provider, for example, can charge based on the amount of storage used, whereas
many phone carriers bill based on the number of minutes used. Some of the common IaaS
providers include: Google Cloud Engine [139], Microsoft Azure [66], IBM Cloud [114] and
Amazon Web Services (AWS) [9].

PaaS provides a framework for the developers which they can build upon to create
custom applications. All servers, storage, and networking can be managed by the provider
while the developers can maintain the management of their applications. Usually, the

26

2.1. Evolution of computing infrastructures

enterprise which provides IaaS o�er PaaS as well. Some popular PaaS include: AWS
Elastic [10], OpenShift by Red Hat [106] and Heroku [117].

SaaS provides access to web applications through the Internet. Users can directly
access the application which is managed by the Cloud Service Providers (CSP) without
considering the infrastructure and its maintenance. Examples of SaaS applications include
Google Workspace [140], Dropbox [78] and Adobe Creative Cloud [3].

IaaS

Virtualization Servers Storage Networking

PaaS

Operating System Middleware Runtime

SaaS
Applications Data

Containers

C
ontrol Levels

Figure 2.2 – Cloud service models.

Cloud deployment models can be categorized into Private, Public, Community and
Hybrid models based on the infrastructure ownership and user accessibility. Private Clouds
are owned and managed by a single organization which prefers a higher degree of control
and customization. Industries prefer this model when higher security is required and
data must be only accessible within the organization or by its partners. Community
Clouds are managed and their resources are shared by a group of organizations that
includes a common interest. For example, banks, heads of trading firms, or collaborating
research institutes or universities may benefit from this model. Public Clouds are often
owned by a single corporation such as Google or Amazon which provides Cloud services
and its resources are available to the general public. The Hybrid Cloud model adopts
any of the possible combinations of the models discussed above. Usually, Private cloud
owners may extend their services by acquiring more resources provided by Public Clouds.
Most of the time, when we discuss about Clouds, we refer to Public Clouds. Over the
years, the infrastructure has evolved from a few data centers in centralized geo-locations
into hundreds of DCs worldwide. For example, Amazon AWS currently operates 84 DCs

27

Part , Chapter 2 – State of the art

grouped in 26 regions in 6 di�erent continents [11].

2.1.2 Distributed Cloud

Cloud computing brings considerable advantages to both service providers and clients.
Using the cloud for a wide range of computer operations has shown to be an e�ective
way to process large amounts of data. The Cloud, in particular, can provide virtually
limitless data processing power for primarily low-power IoT devices. However, Clouds are
traditionally centralized. Consequently, incorporating Cloud-based technologies into IoT
applications (particularly those that ingest streams of data continually) may result in
challenges related to excessive network latency, poor network capacity, and long-distance
communication overhead [188]. As an example, AI applications that move large amounts
of data from edge locations to the Cloud require Cloud services to be as close to the edge
locations or users as possible, and moving cloud resources to the edge location itself can
greatly improve performance for these applications [122].

To address these challenges, the concept of small data centers at the backbone’s
edge [95] has been proposed as a promising solution to the aforementioned issues. On the
other hand, operating multiple small data centers violates the concept of mutualization in
terms of physical resources and administrative unity, making this approach questionable.
One way to improve mutualization is to leverage existing network infrastructures, from
the backbone’s core nodes to the various network access points in charge of connecting
public and/or private institutions.

A distributed Cloud is an architecture in which multiple computational sites are
used to meet compliance and performance requirements. Yet, they can still rely on cen-
tralized orchestration and management mechanisms. The distribution of services allows
users to meet very specific response time and performance requirements, regulatory or
governance compliance mandates, or other demands requiring Cloud infrastructure to be
located anywhere other than the cloud provider’s typical availability zones. The growth of
the IoT has been a significant factor in distributed Cloud deployments. Gartner estimates
that, by 2024, most Cloud service platforms will provide at least some distributed Cloud
services that execute at the point of need [89].

The discovery project, for instance, aimed to implement and promote a unified system
in charge of abstracting e�cient, and user-friendly computing resources from a complex,
extremely large-scale, and widely distributed infrastructure [32].

Related to the distribution of Clouds, Edge computing is a general concept that

28

2.1. Evolution of computing infrastructures

tries to provide computing resources and storage as near to consumers as feasible. Deter-
mining what defines an edge resource and how distant it can be from the user remains an
unresolved topic that can be interpreted in numerous ways. This can range from resources
inside the same network to small data centers one or two hops away from the client [81].
Hop refers to the trip a data packet takes from one router or intermediate point to an-
other one in the network. Edge computing, in any event, does not include user devices,
and edge nodes are not always connected to the central Cloud, but can be networked in
a peer-to-peer fashion [87].

Yousefpour et al. [219] provides a survey on distributed computing-related paradigms
such as Cloud computing, Cloudlets [187], Fog computing, Edge computing, Mobile Edge
Computing [147], Multi-access Edge Computing [93] and Mist Computing [180, 172], elab-
orating on their similarities and di�erences. Through a comprehensive survey, they pro-
vide the taxonomy of research topics and summarized and categorized e�orts on Fog/Edge
computing-related computing paradigms.

While all these approaches share clear similarities, the present thesis focuses on the
Fog computing paradigm, but in the specific context of stream processing platforms. The
remainder of this section is dedicated to better capturing the term Fog computing and
Fog applications use cases.

2.1.3 Fog computing

Fog computing is an architectural approach for building computing infrastructures
meant to best support IoT applications and services. It is also considered a key enabler for
IoT applications [155]. The main idea behind Fog computing is to enhance the performance
of traditional Cloud computing applications by deploying computing resources closer to
end-users and data sources. Generally, the Fog computing approach aims to bridge the
gap between Cloud and the connected IoT devices and targets the guarantee of a low
user-to-resource latency by placing the applications in close-to-user resources [34].

Numerous definitions for Fog Computing have been proposed. According to [210], Fog
Computing term is defined as “a scenario where a huge number of heterogeneous (wire-
less and sometimes autonomous) ubiquitous and decentralized devices communicate and
potentially cooperate among them and with the network to perform storage and processing
tasks without the intervention of third parties. These tasks can be for supporting basic
network functions or new services and applications that run in a sandboxed environment.
Users leasing part of their devices to host these services get incentives for doing so.” The

29

Part , Chapter 2 – State of the art

IoT
devices

Fog

Cloud

Figure 2.3 – Fog Computing Architecture

OpenFog Consortium [116] defined Fog Computing as “a system-level horizontal architec-
ture that distributes resources and services of computing, storage, control and networking
anywhere along the continuum from Cloud to Things.”

Figure 2.3 depicts a general three-layered view of Fog computing architecture [156].
The bottom layer is made up of devices and sensors that are distributed in the environ-
ment and produce data for various purposes. The middle layer depicts a geo-distributed
Fog Computing layer that consists of multiple relatively low-power Fog nodes and pre-
processes data close to where it was generated. Lastly, the top layer, typically referred to
as the Cloud computing layer, performs further data analysis as well as long-term data
storage [153].

Potential benefits of Fog computing [6] include:
— Reduced latency: For latency-critical applications such as Stream Processing (SP)

and Virtual Reality (VR) that need low end-to-end latency, geo-distributed Fog
nodes situated near data sources can reduce end-to-end latency.

— Bandwidth optimization: Fog systems may significantly minimize the volume of
data transferred to the Cloud for edge devices that generate huge volumes of raw
data.

30

2.1. Evolution of computing infrastructures

— Privacy and security: Fog computing can enhance security in the Cloud envi-
ronment [157] by minimizing the impacts of cyber-attacks, providing contextual
integrity and isolation, and controlling the aggregation of privacy-sensitive data
before sending it to the Cloud.

— Reduced dependency on Cloud providers: Fog infrastructure may supply extra
computing power to edge devices with limited processing capability that need to
perform compute-intensive applications.

— Lower energy consumption and cost saving: By o�oading the computing power
to multiple relatively less power-hungry Fog nodes, Fog Computing can decrease
energy consumption [120]. Investing in private Fog resources may also be better
for the overall cost of the PAYG model for some applications, such as smart-city.

We refer to Fog Computing platforms as the software suite or stack allowing to
deploy applications on Fog/Edge infrastructures. The industry is massively investing in
Fog computing infrastructures [182], and the first platforms are already on the market
for IoT applications. However, these e�orts focus mostly on enabling specific small-scale
application scenarios and they largely ignore the specific software development and re-
source management issues created by the broad distribution of Fog platforms. Researchers
and developers interested in testing resource placement and management solutions for
Fog/Edge computing, confront several key challenges: (1) Commercial service providers
often do not grant third parties access to or control over necessary infrastructure [36]. (2)
Creating a testbed with a high degree of accuracy is hard, expensive, resource-intensive,
and time-consuming. (3) From a research standpoint, the utilization of commercial third-
party services and proprietary test beds limits the extent to which experiments and results
can be confirmed and replicated [202].

Incidentally, multiple tools have been proposed to simulate Fog/Edge environ-
ments [99, 146, 176, 195]. Simulation tools are seen as the best trade-o� between the
scale they can simulate, their limited cost, but also their necessary limited accuracy.
They are yet important validation tools when it comes to evaluating and validating a
wide range of innovative solutions, including Fog/Edge infrastructures. They can be seen
as complementary to real experiments and platforms.

There are varieties of physical/realistic Fog computing platforms active in the field.
One of which is the OpenStack++, a cloudlet-based approach which proposes to deploy
a specific infrastructure at the edge of mobile networks to support dynamic application
deployment in the proximity of the end users. This extends the OpenStack platform,

31

Part , Chapter 2 – State of the art

includes mechanisms for application deployment in a fog computing context [102]. It
has been demonstrated that a cloudlet-based approach always outperforms the classical
cloud-based approach when clients are separated from their service with no more than
two wireless network hops [81].

FogFlow [52] is a programmable Fog computing platform subdivided into IoT devices,
Fog/Edge, and Cloud layers. To enable the accessibility and interoperability of IoT appli-
cations, FogFlow models Stream Processing applications using the data flow model, with
operators defined as dockerized applications based on the standard NGSI model [29], which
is an open standard that allows users to define both a data model and a communication
interface for exchanging contextual information between applications.

Similar to FogFlow, Enorm [212], is a platform that provides a three-tier architecture
comprised of Cloud, Edge, and IoT devices. The administration is centralized on the
Cloud. When user mobility or QoS need it, IoT devices o�oad tasks to Edge nodes.
Enorm dynamically allocates resources with an auto-scaling system that scales up and
down resources based on network latency and job execution time.

KubeEdge [216] is an open-source system for extending native containerized applica-
tion orchestration at the edge of the IoT network. It is based on Kubernetes [126] and
provides basic infrastructure support for network, application deployment, and metadata
synchronization between the Cloud and the Edge. Kubernetes is an open-source frame-
work that allows for the automated deployment and management of large-scale cloud
applications utilizing containers such as Docker. The MQTT protocol is used for module
communication in KubeEdge. In this regard, a mobile node can connect and disconnect
without a�ecting the overall KubeEdge.

To our knowledge, there are no large-scale public Fog platform deployments to this day.
But, large CSPs such as Amazon AWS Edge [19] and Google Anthos [141] have initialized
to deploy their managed hardware and software platforms at the edge of the network.
A related prominent industry initiative is Mobile Edge Computing (MEC) group, which
aims to standardize the architecture and interfaces of Fog computing platforms [80].

2.1.4 Applications benefiting from Fog computing

Conventional Cloud computing architectures cannot guarantee the very low latency
(of the order of milliseconds) that some IoT-enabled applications require between end
devices (sensors, smartphones, and wearables) and backend servers. The data generated
in a specific location is only relevant for the delivery of services to users nearby in many

32

2.1. Evolution of computing infrastructures

IoT applications, as they are inherently context-aware and geo-distributed [33]. Due to
scalability issues, traditional cloud paradigms do not work well for this type of application
because the sheer volume of tra�c produced by IoT devices would require unnecessary
transportation to a distant data center. IoT analytics is a formal example: computing
metrics and indicators for a distributed IoT network can be done closer to the data
sources, saving bandwidth without sacrificing the precision of the results or the overall
computational e�ciency.

Fog applications are mostly driven by novel design, which necessitates additional plat-
form characteristics that can only be provided if the application instances are deployed
close to the source of tra�c [6]. Di�erent fields may benefit from Fog Computing and the
idea of bringing some computational power closer to where the data originate and latency
is a potential issue. Let us cite some of them:

— Transportation: Smart tra�c light systems capable of automatically adapting to
changing tra�c conditions and patterns [24], road network tra�c congestion man-
agement [64], and autonomous driving [57].

— Energy sectors: Control of large-scale wind farms [164], oil and gas exploration [59].
— Entertainment and Security: Live video broadcasting [58], video surveillance [65],

and smart buildings [61].
— Healthcare: Telemedicine, remote treatment, and patient monitoring [60].
— Retail and Manufacturing: Personalized shopping applications, delivery sys-

tems [63], and smart factories [62].

2.1.5 Fog challenges

According to the OpenFog reference architecture [116], three key scientific and tech-
nical challenges in the maturation of Fog Computing are scalability, autonomy, and pro-
grammability. Let us review these terms and their meaning in our context.

— Scalability generally refers to the ability of a platform to remain e�cient when
facing growth in either its deployment scale, the number of users it can support,
or the amount of data it has to process. In our context, we will focus on making it
possible to make it possible for Stream Processing applications to be deployed over
Fog computing infrastructures that typically gather geo-distributed heterogeneous
resources from low-end processors typically located at the edge of the Internet to
high-end computing clusters of servers constituting the Cloud layer.

— Autonomy generally refers to the capacity of a platform to self-manage, without

33

Part , Chapter 2 – State of the art

the need for a prolonged downtime or a human intervention [124]. Self-management
encompasses di�erent features including self-configuration, self-healing and self-
optimization. Autonomic systems can be either based on either a centralized or
a decentralized architecture for their enactment. While a centralized architecture
is generally easier to implement, decentralized autonomy brings its own benefit,
especially when the platform to monitor is largely distributed and composed of
many independent sites.

— Programmability generally refers to the ability to specify the behaviour of a plat-
form and enact it. In the case of Fog computing, it refers to the ease with which
programmers can specify their applications and deploy them over the platform.
In our context, programmability includes giving tools to the deployer to enhance
deployments with adaptiveness. At the moment, the lack of a generic software engi-
neering model reusable software engineering approaches (in terms of architecture,
APIs and code structure) forces developers to implement Fog applications from
scratch, which results in a high entry barrier and encourages the rapid increase of
ine�ective silo-like approaches whereby applications and platforms are vertically
integrated and unable to interoperate.

Stream processing applications are one of the major use cases that could benefit from
Fog computing [77, 142]. As detailed in the following section, Stream Processing (SP) is
the in-memory, record-by-record analysis of machine data in real-time. Stream processing
solutions are designed to handle a high volume of data in real-time, with a scalable,
highly-available, and fault-tolerant architecture. Applications mentioned before such as
video broadcasting [58], video surveillance [65], patient monitoring [60] and road network
tra�c monitoring applications [64, 57] that can benefit from the Fog rely heavily on the
ability to process large, continuous streams of data.

2.2 Stream Processing

2.2.1 Before Stream Processing: Batch Processing

Many applications contain tasks that can be executed without user interaction. These
tasks are executed typically periodically, and they often process large amounts of informa-
tion such as log files, database records, or images [46]. Batch processing applications can

34

2.2. Stream Processing

include billing, report generation, data format conversion, and image processing. These
tasks are called batch jobs [162].

Batch processing usually consists of running repetitive jobs on a large amount of data.
A batch job consists in processing a consistent set of data (a batch) that has previously
been produced and stored in a database or data warehouse, without the involvement of
a human operator. When the processing of one batch of data is finished, the computing
platform can move on to the next one until no more data is available. Batch applications
are specified as a set of processing steps in a predefined order. Di�erent batch frameworks
may identify additional elements, like decision elements or groups of steps that run in
parallel.

A major programming model that emerged from Batch processing is MapReduce [72].
MapReduce divides a large data processing job into smaller tasks, when the problem
at stake can easily get massively parallelized. MapReduce is then capable of processing
massive data files by splitting the processing into many independent parallel tasks.

As a programming model, the MapReduce model relies on combinations of map and
reduce phases to solve problems. The map and reduce primitives, whose origins can be
traced back to functional languages such as Haskell or parallel languages such as Message
Passing Interface (MPI) [96] served as the inspiration for this programming model. The
body of the two functions, map and reduce, is expressed by the user. A key/value pair
is typically used as the input for the map function, which outputs a set of intermediate
key/value pairs. To be passed to the reduce function, these intermediate values are col-
lected and associated with a single intermediate key. The latter accepts the intermediate
key and a group of values related to it as inputs. Normally, it combines these values to
create a smaller set of values, which ultimately will constitute the result.

As an execution model, MapReduce allows for the parallel and distributed processing
of the map and reduction operations. As long as each mapping operation is independent
of the others, maps can run in parallel; however, in practice, this is constrained by the
number of independent data sources and/or the number of CPUs. Similarly, a group of
reducers can carry out the reduction phase as long as the reduction function is associative
or all outputs from the map operation with the same key are presented to the same reducer
simultaneously. MapReduce, as commercialized by Google and others, helps in resolving
many classic problems such as Distributed Grep, which can be applied for instance to
locate specific log messages concealed within terabytes of log data. Also, through MapRe-
duce calculations, Inverted Indexes, Distributed Sorts, and the well-known PageRank [20],

35

Part , Chapter 2 – State of the art

and numerous other programs can be solved.

A B

C

D

R(A)/4

R(A)/4 R(A)/4 R(B)/3

R(B)/3

R(B)/3

R(C)/3 R(C)/3

R(A)/4

R(C)/3

Figure 2.4 – A simple Web graph example.

Let us illustrate how MapReduce works when applied to the PageRank algorithm.
PageRank is a recursive algorithm developed by Google to assign a real number to each
page on the Web in order for them to be ranked. It works by counting the number of
links to a page to determine a rough estimate of how popular and interesting the website
is. The higher the rank of a page, the more value it holds. Let us look at the example in
Figure 2.4. Assume we have a toy version of the Web with only four pages and want to
rank them based on their importance using the PageRank method. The Web is a directed
graph, with nodes representing pages and arrows representing links between them. R
denotes the rank of the page and we can calculate the rank of the page C as R(C) =
R(A)/4 + R(B)/3. Considering that page C ’s rank is the sum of the votes on its links
directed to it (in-links), and If page A with importance R(A) has n number of links voted
out (out-links), each link gets R(A)/n votes.

PageRank algorithm can be described as follows:
— Initialize each page j’s rank R with 1/N, where N is number of pages.
— Update each page’s rank (Rj) according to the formula 2.1:

Rj =
X

�2Oj

R�

L�
(2.1)

Where Oj is the set of pages that link to page j, L� is the number of out-links from
� and R� the current score of �.

— Iterate the second step until the page ranks stabilize.

36

2.2. Stream Processing

The amount of pages on the Internet is enormous, and utilizing a simple way to
recursively update the Ranking of millions of pages would be prohibitively expensive and
time-consuming. Here again, the ability of MapReduce to take advantage of large-scale
executions on a cluster makes it possible to scale up to very big linked graphs (with a
large number of pages). Using MapReduce, PageRank can be described as follows:

— Create key/value pairs, where the key is the name of the page and the value is
out-links from the page L� and initialize PageRank values (R�) as 1/Number of
pages.

— Map: For each node �, calculate vote R�/L� for each out-link of � and propagate to
adjacent nodes.

— Reduce: For each node �, summarize the upcoming votes and update Rank value
(R�).

— Iterate the MapReduce step until the page ranks stabilize.
While initially, Batch Processing was not necessarily designed for Big Data, various

frameworks following the momentum created by Google, including Hadoop [214] and
Spark [220], were developed to further industrialize MapReduce and pushed it to the Big
Data scene.

One of Hadoop’s primary features is HDFS, The Hadoop Distributed File System [35].
HDFS is a distributed file system that can store enormous amounts of data across numer-
ous machines. By distributing the data and subsequently the operations, HDFS enables
e�cient parallel MapReduce operations. Spark, like Hadoop, is an open-source framework
for large data processing. The Resilient Distributed Dataset (RDD) [222] is the main ab-
straction in Spark. It is a set of elements partitioned across the machines in a cluster
so that operations can be executed in parallel on it. In contrast with Hadoop, which
reads from and writes to disk during execution, RDDs are stored in volatile memory.
This method of using Spark can significantly increase the application’s throughput [97].
Hadoop may be a more cost-e�ective solution for processing massive amounts of data
if processing speed is not critical, and especially if intermediate data is larger than the
available RAM. Spark, on the other hand, may outperform Hadoop in cases where fast
data processing is required.

Batch Processing does not support the processing of continuous arrival of data: it
needs to wait for the end of the current batch to be completed, or stops the processing
and restarts it from the beginning in case of any failure. More generally, the abstractions

37

Part , Chapter 2 – State of the art

conveyed by batch processing are not adequate for data streams: there is a need to take
into account each new record/information with a very limited latency.

2.2.2 Data Stream Processing platforms

Online real-time data processing architectures are typically layered systems that rely
on a number of loosely coupled components to complete tasks. Such a structure is shown
in Figure 2.5. While simplified, It is yet consistent with both standard architectures in
Fog/Edge computing [18] and data processing pipelines [119].

Data Source Data transfer and Processing Analytics

Analytics Tools

Visualization
Tools

Stream
Processing

Engines

Publish/Subscribe
message queue

Systems

Data generated
by IoT devices

Data storage

Caches and Key-
Value Storage

Orchestration, Deployment, and Monitoring

Orchestration
Tools

Deployment
Tools

System Monitoring
Tools

Databases

Figure 2.5 – A standard data Stream Processing platform.

In Figure 2.5, orange-colored parts represent the di�erent elements underlying the
flow/stream of data being processed, where the data from the IoT tier gets ingested
through a suitable queuing system, from where it is fetched to be processed. Intermedi-
ate results may be fed back to the message queueing system and/or stored persistently,
depending on the expected usage. Processed data is pushed for further aggregation/analy-
sis, down to their actual visualization by the final user. The green-colored parts represent
the necessary management functionalities for maintaining the integrity of the platform
such as deployment automation, data storage, and platform monitoring. The operations

38

2.2. Stream Processing

of the stream processing engine are monitored, and relevant log data (or basic analytics)
are saved in batches. Altogether, the architecture can typically get broken down into five
parts: data source, data transfer and processing, orchestration and deployment of the sys-
tem, data storage and monitoring, and finally, delivery and analytics. We will concentrate
on the SP platform elements in the following paragraphs.

Data Source. A data source can be the initial location where data is created or where
physical information is first digitized, but even the most refined data can serve as a source
if another process accesses and uses it. Typically IoT and sensor data, data generated by
mobile phones or social media feeds, websites, or online advertising, is part of the Source
subsystem. These data need to be gathered, organized and formatted in order to be
processed e�ectively.

Data Transfer and Processing. Di�erent components related to processing, storage,
or delivery are deployed in such an architecture, possibly in a distributed fashion. Con-
necting these various components requires a specific messaging middleware. Because there
are numerous data sources in various geographic locations that di�er in their type, we
must first collect all of these data and then format them to a standard format.

Message-oriented middleware (MoM). [68] is a software infrastructure supporting send-
ing and receiving messages between distributed systems. This middleware layer enables
software components built separately and running on various networked platforms to
communicate with one another. Publish–subscribe is one of the main MoM-supported
patterns. In this pattern, senders of messages called publishers, do not program the mes-
sages to be sent directly to specific receivers, called subscribers. But instead, in a loosely-
coupled fashion, they categorize published messages into classes without knowledge of the
existence of any subscribers. Similarly, subscribers express interest in one or more classes
and only receive messages that are of interest, without the knowledge of the existing
publishers.

Message Queue Telemetry Transport (MQTT) [154] is a lightweight publish-subscribe
network protocol widely used in IoT applications, and better suited for Fog applications
than more powerful (but resource-hungry) Cloud frameworks. The open-source Eclipse
Mosquitto [85] is a message broker that implements the MQTT communication protocol.
It is small and light, making it suitable for use on a wide range of devices, from low-power
single-board computers to full-fledged servers. ActiveMQ [194] and RabbitMQ [177] are

39

Part , Chapter 2 – State of the art

other frameworks that implement the MoM paradigm and can ensure communication
between source and processing components or between processing and storage. Apache
Kafka [88] is another publish-subscribe-based messaging system designed for streams and
high-ingress data replay. Rather than using a message queue, Kafka appends messages to
the log and leaves them until the consumer reads them or the retention limit is reached.
Kafka provides a "pull-based" method, allowing users to request message batches from
precise o�sets. Message batching can be used by users to improve throughput and message
delivery.

Stream Processing is the most crucial element in such an architecture because it is
related to the data processing itself. It is generally referred to as the Engine, and it
is capable of handling and processing unbounded data streams. In a nutshell, Stream
Processing Engines (SPE) such as Apache Flink [15] or Apache Storm [199] allocate.
SPEs generally provide a programming model (typically programmers specify a Directed
Acyclic Graph (DAG) through which each data item is processed), and an execution model
allowing to allocate of this DAG over computing clusters. Constrained resources are also
here an aspect to cater to; the literature includes surveys on how various SPEs perform
in Fog environments [132, 223]. SPEs are further explained in Section 2.2.4.

Analytics. Data generated by stream processing applications are to be delivered to
external components such as Data Analytics tools, the last mile toward the end user. Data
Analytics tools are software to build and implement analytical procedures to discover
useful information [55]. Common Analytic tools include Google Data Studio [94] and
Splunk [198], and most of the time, the delivery takes the form of web-based RESTful
APIs upon which a dashboard can be built. Grafana [128] is another example of an open-
source analytics software that allows for the interactive visualization of web applications
that run on multiple platforms. When connected to supported data sources, it generates
charts, graphs, and alerts. It can be expanded via a plug-in system. Using interactive
query builders, end users may develop complex monitoring dashboards.

Data Storage. It is critical to have the capacity to store data in stream processing
applications. Beyond the sheer persistence of output data, it serves to preserve certain data
for further processing, transfer data to other applications, and back up in case of failure.
There are numerous choices for data storage in a stream processing architecture. While
traditional relational databases can be used in a real-time architecture, NoSQL databases

40

2.2. Stream Processing

such as MongoDB [23] are preferred over relational databases for several reasons: NoSQL
databases can handle larger amounts of data [101]. Furthermore, NoSQL supports a range
of data models, including document, graph, wide-column, and key-value storage.

Orchestration, Deployment, and Monitoring. Modern applications are made up
of several self-contained components (commonly referred to as microservices) that must
be started, scaled, and upgraded quickly. As a result of this paradigm change, container
technologies such as Docker [74] have emerged as an application packaging and delivery
method as well as a unit of deployment. Containers enable the packaging of components
as self-contained and separated entities that connect with other components via APIs.
As a result, components are more portable between data centers, servers, and operating
systems. Furthermore, containers enable individual components to start, restart, upgrade,
and grow independently of one another.

Using container orchestration appears crucial for deploying Fog applications at scale. It
packages software components and their dependencies and deploys them in a standardized
way. There are studies about performance evaluation of container orchestrators in Fog
environment [113].

Kubernetes [126] was originally developed by Google as an open-source version of their
in-house container orchestration platform. It has grown in popularity quickly and has now
become the most popular container orchestration platform for managing resources in pri-
vate data centers as well as in the Cloud. By hiding the heterogeneity in the underlying
hardware, operating systems, and networking, Kubernetes gives the appearance of a uni-
fied computing platform. Moreover, Kubernetes achieves true portability by exposing the
same interfaces irrespective of where the clusters are deployed. Orchestration and deploy-
ment tools like Docker and Kubernetes allow us to easily deploy and manage SP platform
and its components.

Policies for scheduling, placement, and scaling rely on the correct understanding of
the underlying infrastructures. As a result, it is critical to monitor the condition of hard-
ware and software resources such as clusters, containers, and applications on a continual
basis. Metrics such as CPU utilization, memory consumption, network tra�c, number of
requests, and rate of request arrival are included in the status information. This also in-
cludes metrics provided by SPE Application Programming Interfaces (APIs). Open-source
technologies such as Serf [103] for measuring inter-cluster latency and Prometheus [104]
for monitoring resource utilization are available for distributed computing settings.

41

Part , Chapter 2 – State of the art

Prometheus is an open-source cloud monitoring solution. It is commonly used in con-
tainer orchestrators [71] like Kubernetes [126] to monitor the state of the whole cluster,
including nodes, pods, and applications. Prometheus installs agents on each worker node
that collect information about the worker node and the services running on it on a reg-
ular basis. The metrics from all worker nodes are collected by the Prometheus server
and stored in a time-series database. Monitoring data may be queried using Prometheus’
native querying language or visualized using tools such as Grafana [128].

Local node

Local nodeLocal node

Message broker
SPE instance

Central node

Analytics

Message broker

Monitoring

Message broker
SPE instance

Message broker
SPE instance

SPE instance

Figure 2.6 – Road tra�c monitoring application.

Let us briefly explore the example of a road tra�c monitoring application illustrated
in Figure 2.6, to better capture where the elements described before should be placed in
a Fog context. The road tra�c is sensed locally and a first cleaning of the data and the
computation of real-time statistics about the tra�c can be done locally (for instance to
be o�ered to people in this area). For that, local SPE engines are required. Yet, to be
exploited further (e.g., for statistical purposes and to support the design and monitoring of
transportation policies), data need to be aggregated at the regional/national level, which

42

2.2. Stream Processing

is typically done at a centralized Cloud-based location. This application is composed
of tasks that will strongly benefit from running over di�erent sites: cleaning and local
statistics at edges, and global statistics in a centralized Cloud. This can be supported by
adding message brokers both at the edges and in the Cloud to manage the data streams
between sites.

2.2.3 Stream Processing engines

Stream Processing (SP) appears as a major research theme within the general area of
big data infrastructures and applications. Practitioners, who need to deploy SP pipelines,
are presented with di�erent options, rather mature, in terms of available (typically open
source) software stacks. The cornerstones of these stacks are stream processing engines
(SPEs). Let us first briefly recap the history of SPEs.

The concept of streaming may be traced back to the appearance of streaming queries
in the context of the Tapestry [205] system for content-based filtering over an append-only
database of emails and bulletin board postings in 1992. The first generation of stream
processing engines appears with the transition of databases to perform streaming queries
when data appears. This first generation of stream processing engines initially provides
common capabilities through operators such as joins, aggregations, mapping, and filter-
ing. In the early 2000s, streaming queries were followed by several types of research on
stream processing, and certain software prototypes such as Aurora [1], TelegraphCQ [48],
Gigascope [67] and NiagaraCQ [50] were designed and deployed to fulfill specific applica-
tion demands. The majority of first-generation SPEs were mostly for academic prototypes
and could only run on a single system and did not provide distributed execution.

Then, in the second generation of SPEs, distributed processing was introduced by
detaching the entities that process data and allowing them to benefit from distributed
compute nodes. They concentrated on data parallelism and distributed processing en-
gines. This generation of SPEs benefited from work on batch processing industrialization
and brought many advantages of distributed systems [25]. But it also brought many new
challenges, particularly in fault tolerance, load balancing, and resource management. Bo-
realis [5], IBM System S [90], and CAPE [184] are examples from this generation of SPEs.

The third generation of SPEs are influenced by the trends toward large-scale parallel
and distributed systems like Cloud computing. In addition to the SQL-like queries [14],
they are able to support a broad range of complex jobs like graph processing [13] and Ma-
chine Learning. The main advancements in this generation were in scalability, e�ciency,

43

Part , Chapter 2 – State of the art

and fault tolerance. Many industrial SPEs were launched, and they became more generic
and simpler to use for application developers. These include many well-known SPEs, such
as Apache Storm [207], Spark Streaming [220], and Apache Flink [41].

Recent research has seen the appearance of works that will define the fourth genera-
tion of stream processing engines [18] with the advent of Fog computing [12, 145]. Stream
processing is becoming more dispersed and is being implemented on hybrid Edge-Cloud
systems, with a strong incentive to relocate processing to the edge wherever possible [170].
This leads to the development of light processing systems specially designed for the edge
and its limited computing power [2, 51, 86, 136, 170, 224]. Apache Edgent [2] for example,
is a stream processing programming model and lightweight run-time framework that can
be utilized to assist IoT data analytics at edge nodes or gateways. NebulaStream [224]
is designed to overcome the limitations of Edge/Fog computing by incorporating vari-
ous computing resources and applying them to process wherever possible. These systems
can be seen as lightweight SP middlewares specially designed for the Edge and its limited
resources.

Also, recently, new architectural models and stream processing applications have been
launched, such as SpanEdge [186], a novel strategy that combines stream processing across
a geo-distributed infrastructure, as well as central and near-edge data centers. In the
literature [111, 217], comparable architectural models were introduced.

2.2.4 Stream Processing programming and execution models

Stream Processing Engines have gained momentum as toolboxes to process continuous
streams of data. Stream Processing is often used to construct data processing pipelines.
Each data item goes through a series of operators that must be applied in a specific order.
In general, a stream processing application may be described as a DAG, where nodes
indicate operations to be executed on each data item and edges represent data streams
between operators. These operators carry out preset operations such as map, filter, and
reduce, as well as user-created functions.

Let us revise the example of road tra�c monitoring mentioned at the end of sec-
tion 2.2.2 from a di�erent perspective. A possible pipeline implementing such an applica-
tion is illustrated in Figure 2.6. The application can be composed of four separate stream
processing tasks, each of which seeks to produce both immediate information about local
road tra�c and long-term statistics on a global scale. The first category of statistics are
created locally (Tasks 1, 2, and 3), at each data entry point. The second kind is often

44

2.2. Stream Processing

Task 1 Task 2

Task 3

Task 4

Task 1 Task 2

Task 3

IoT data source Local nodes Cloud

Figure 2.7 – Road Tra�c Monitoring Application Pipeline

calculated in the Cloud (Task 4) for storage and subsequent usage. Here di�erent colors
represent the di�erent computing sites.

Task 1 preprocesses the data received locally by filtering and cleaning them before
they are injected into the rest of the pipeline. It removes erroneous data items or badly for-
matted ones. This cleaning is a stateless operation, not very time-consuming or compute-
intensive, and can typically be performed locally, close to where the data are sensed. Task

2 is a forwarder: it collects data produced by Task 1 instances and sends them to Task 4
which merges all data coming from the di�erent sites. Task 3 performs windowed statis-
tics of data received locally on one site. It produces timely statistics about the recent near
real-time local tra�c. Task 4 is a merging operator which establishes global statistics over
the data sent by the di�erent sites, so later global post-processing or data analytics can
be conducted.

While DAGs are the basic programming paradigm for developing SP applications,
how it is implemented and deployed from the programmers’ perspective varies between
SPEs. They practically o�er two features: (i) a high-level programming model, allowing the
programmer to easily specify its DAG (pipeline) and the actual processing to be run by the
jobs composing them, and (ii) a scalable execution model, implemented into a JobManager
able to deploy the pipeline described and monitor it throughout its execution. Deployment

45

Part , Chapter 2 – State of the art

within SPEs such as Apache Storm [207], Apache Flink [41] or Spark Streaming [220] is
generally implemented through simple yet e�cient placement algorithms.

Apache Storm. In Storm, the DAG is referred to as a Topology. In this topology, each
node is either a spout or a bolt. A spout is a data source that can connect to an API and
spew data to its successor nodes, known as bolts. A bolt is a node that accepts data, does
some processing (which the developer defines), and emits new data. Thus, the topology
specifies how data should be transmitted between bolts and spouts. Storm processes data
on the fly by the tuple: The bolt’s processing logic is executed each time a new tuple is
received.

Streams in Storm are unbounded sequences of tuples processed one by one. Storm
employs a master-worker execution architecture, with the Master node running a daemon
named Nimbus, which is in charge of distributing code across the cluster’s worker nodes
and assigning tasks to computers. The Nimbus watches for failures in the workers, with
each worker running a daemon called the Supervisor, ready to receive tasks from the
Nimbus and activate one or more executors. A thread that executes the code of a bolt
or a spout is known as an executor. Nimbus and the Supervisors communicate with one
another relying on Zookeeper [225]. Zookeeper often keeps worker states on the local disk
so that the Nimbus may detect a node failure and reassign unsuccessful jobs to another
worker. There are a number of enhanced SPEs built on top of Storm or inspired by it:
Trident [208] is a high-level API built on Storm’s fundamental primitives (spouts and
bolts). Trident supports fault-tolerant state management as well as join operations, aggre-
gations, grouping, functions, and filters. Trident makes it easier to implement exactly-once
processing semantics than the Storm core API. It is built on micro-batches and allows
for stateful stream processing. Trident is capable of providing exactly-once processing
semantics. Heron [127] is a real-time, distributed, fault-tolerant SPE from Twitter. It
is the direct successor of Apache Storm, built to be backward compatible with Storm’s
topology API but with a wide array of architectural improvements such as related to the
scheduling. The performance of Heron has been experimented to be by far better than
Storm: with 10 to 14 times higher throughput and 5 to 15 times lower end-to-end latency
than Storm’s [209].

Spark Streaming. Spark Streaming is an extension of the core Spark API and employs
a distinct stream processing model known as micro-batching. It converts data processing

46

2.2. Stream Processing

into micro-batches rather than processing streaming data tuple by tuple: Spark streaming
works in time windows and prompts the processing of data received in the previous period
on a regular basis. Each micro-result batch is added to the preceding results.

From the perspective of a programmer, Spark Streaming provides a high-level abstrac-
tion called DStream, which represents a continuous stream of data. DStream is internally
represented as a series of Resilient Distributed Datasets (RDDs) [222]. The RDD is the
fundamental abstraction in Spark that enables fault-tolerant calculations in memory. It
is an immutable and partitioned collection of records that can be performed in parallel.
Spark Streaming makes it simple to express most pipelines by chaining actions in cas-
cade. The distinction is that Spark Streaming conducts micro-batches on a regular basis,
whereas Spark is only activated once for the entire set of data.

Apache Flink. Flink is based on Stratosphere [7], an open-source research project
for big data analytics. Flink o�ers batch processing as well as data stream processing
and can guarantee exactly-once processing. It is mostly written in Java and Scala and
includes client APIs for these two programming languages, and recently started supporting
Python [16]. Similar to Storm, Flink runtime employs master-worker execution.

Flink Program

JobMaster

TaskManager
JobManager

Program code

Graph builder

Task
Slot

Task
Slot

Task
Slot

Dispatcher

Resource
Manager

Client
REST
API

TaskManager

Task
Slot

Task
Slot

Task
Slot

Data
Streams

Figure 2.8 – Apache Flink high-level system architecture

Flink’s high-level system architecture is illustrated in Figure 2.8. It is made up of two
distinct element types: a JobManager, the master, and one or more TaskManagers, the
workers.

Flink’s clients are not involved in program execution or runtime, but it is used to

47

Part , Chapter 2 – State of the art

prepare and submit a dataflow to the JobManager. Then, the client can either discon-
nect (detached mode) or remain connected to get progress reports (attached mode). The
client can operate as part of the Java/Scala program that initiates the execution or as a
command line process.

The JobManager serves as the interface between client applications and Flink’s mas-
ter node. The JobManager is responsible for orchestrating the distributed execution of
Flink Applications, including determining when to schedule the next job (or collection
of tasks), reacting to completed tasks or execution errors, coordinating checkpoints, and
coordinating failure recovery. In contrast to Storm, the last duty is carried out via a
heartbeat method. Flink’s JobManager process is made up of three distinct parts. The
ResourceManager is in charge of resource allocation and provisioning in a Flink cluster
– it controls task slots, which are the Flink cluster’s resource scheduling unit. The Dis-
patcher provides a REST interface for submitting Flink applications for execution and
launches a new JobMaster for each job that is submitted. It also hosts the Flink WebUI,
which displays information on job executions. A JobMaster is in charge of overseeing the
execution of a single JobGraph. In a Flink cluster, multiple jobs can run concurrently,
each with its own JobMaster.

The TaskManager instances carry out prescribed tasks or subtasks and, if necessary,
share information among workers [7]. Each TaskManager supplies the cluster with a set
number of processing slots, which are utilized to parallelize processes. The smallest unit
of resource scheduling in a TaskManager is a task slot. The number of task slots in a
TaskManager indicates the number of concurrent processing tasks. The number of slots
can be modified, but it is advised that each TaskManager node use as many slots as there
are CPU cores. A job’s degree of parallelism can be defined in a variety of ways [56] e.g.
setting from the Flink’s runtime configuration or defining inside the program code.

There are multiple works done in comparing and benchmarking SPEs being used in
the industry [110, 53, 200]. Comparisons of various SPEs are presented in Table 2.1. In
general, master-worker patterns are used by all systems in their default cluster architec-
tural arrangement, and their programming model is based on DAG. Similarly, they are
all written with Java/Scala programming languages and run within the Java Virtual Ma-
chine (JVM), which has its advantages and disadvantages [169, 211]. Flink supports both
Stream Processing and Batch Processing models, while others support only one of them.

48

2.3. Programmability, autonomy and scalability of Stream Processing in Fog

SPE Latency Throughput Processing
Guarantee

Execution
Model

Programming
model

Apache
Flink

Low High Exactly-
once

Streams
and Batches

Dataflow

Spark
Streaming

High High Exactly-
once

Micro
Batches

Dataflow

Apache
Storm

Low Low At-least-
once

Streams Dataflow

Apache
Heron

Low High Exactly-
once [109]

Streams Dataflow

Table 2.1 – Comparison of Stream Processing engines.

In terms of latency: the execution model is record-based in Flink, Storm, and Heron.
Compared to Spark, which uses micro-batching, the consequence is that some latency is
induced by waiting for the batch to start processing. Using micro-batches provides the
aforesaid benefits in terms of recovery, but it also increases the latency [221] for message
processing. Throughput measures how many units of information a system can process
in a given amount of time. Both Flink and Spark streaming show similar results in [200],
while Storm shows a noticeably lesser result.

One of the main features of SPEs is their ability to provide data processing guarantees.
Processing guarantees can be of three types: (i) At-most-once, in which each data record
is processed once or not at all, typically the data is lost in case of a failure. (ii) At-least-
once, in which the data is processed at least once, but there is a (small) chance that it
can be processed multiple times. (iii) Exactly-once, in which the data is processed exactly
once; the message processing can neither be omitted nor duplicated. Most SPEs support
exactly-once semantics, which allows the state in stateful operators to be correctly restored
after a failure.

2.3 Programmability, autonomy and scalability
of Stream Processing in Fog

Cloud Computing allows applications to scale up or down computing resources. SP
applications are naturally placed in the Cloud to make use of almost infinite computational
and network capabilities in order to ensure high availability and performance [137]. SPEs
are designed to ease the deployment of SP applications over clusters of computing nodes,

49

Part , Chapter 2 – State of the art

where maintaining a global view of the resources and their status and current performance
levels is possible. Datacenters, or more generally geographically restricted infrastructures
connecting compute nodes through a high-speed network are the natural target to deploy
such pipelines of SP jobs.

IoT data streams, on the other hand, must be transported to the distant Cloud in
order to be processed. As mentioned, Edge/Fog computing is gaining popularity because
it allows SP applications to be scheduled at the edge of the network. As a result, smaller
data sizes are delivered to the Cloud, reducing network bandwidth utilization and network
latency, as the Edge processing of data typically leads to a reduction of their size for
instance through cleaning, filtering, and formatting. While appealing, moving data stream
pipelines to geo-distributed platforms is far from being a reality yet.

In the following, we review the recent e�orts conducted to address what is missing to
move stream processing into clouds and more distributed platforms such as Edge and Fog.
The section is structured as follows. Section 2.3.1 deals with the scheduling of operators of
stream processing pipelines over geo-distributed computing platforms. Then, Section 2.3.2
focuses on the scaling problem. Section 2.3.3 review recent frameworks easing the task of
deploying SP applications over geo-distributed platforms. Finally, Section 2.3.4 reviews
the recent e�orts to inject some autonomy and decentralization in stream processing.

2.3.1 Placement of Stream Processing operators
in geo-distributed settings

A fundamental problem when it comes to deploying applications over a set of com-
puting resources is scheduling. In our context, it mostly consists in solving how to place
operators constituting a stream processing pipeline onto the di�erent compute nodes.
With the advent of geo-distributed platforms, it also consists in finding what operators
have to go to what layer of resources, for instance, what operator will run in the Cloud
and what operator will run in the Fog. Metrics to be optimized in this problem are mostly
from two families of metrics, namely, resource usage, and the application’s QoS. Note that
QoS can refer to di�erent metrics, such as response time, internode tra�c, cost, and avail-
ability [44]. Another aspect is the dynamic adaptation of the scheduling: some policies
define statically this mapping, and some others try to continuously adapt to the changing
conditions of the platform and velocity of the data stream. The following works focus
on modeling the placement problem and propose strategies to optimize certain metrics,

50

2.3. Programmability, autonomy and scalability of Stream Processing in Fog

statically or dynamically. Let us describe some of them in more detail.

Cardellini et al. [43] introduced a QoS-aware distributed scheduling algorithm taking
into account the heterogeneous network capacity of the targeted platform. Frontier [161]
explores strategies to optimize the performance and resilience of edge processing platforms
for IoT, by dynamically routing streams according to network conditions. Planner [173]
automates the deployment over hybrid platforms, taking decisions on what portion of an
application graph should be taken care of at the edge, and what portion should stay in
the Cloud, trying to minimize the network tra�c cost. The work in [193] exhibits similar
objectives while focusing on specific yet very common families of graphs found in data
stream analytics, namely series-parallel graphs.

Amarasinghe et al. [8] assumes an integrated Edge-Cloud environment and proposes
a framework for modeling the initial operator scheduling problem between the Cloud and
the Edge as a constraint satisfaction problem (CSP). They aimed to minimize the end-
to-end latency of an SP application through the appropriate placement of SP operators
either on Cloud nodes or Edge devices. The problem considers resource utilization limits
such as CPU usage, network bandwidth usage, and energy usage. The operator replicabil-
ity constraint takes into account the fact that some operators may be installed on Edge
nodes, whilst others needing complicated processing capacity are required to run solely
in the Cloud. Their approach is validated through simulation. The authors in [185] ad-
dress the same kind of platforms but propose dynamic workload placement algorithms. It
aimed to increase the percentage of successfully deployed SP applications. In this regard,
an SP application is considered to be successfully deployed if it satisfies the Fog resource
limitation, and the SP application response time constraint, and uses as few Fog/Cloud
resources as possible. In the same vein, Li et al. [134] aimed to study the workload alloca-
tion problem for an IoT-Fog-Cloud system in order to reduce task service latency. They
model a three-tier platform model (The IoT Layer, the intermediate Fog Layer, and the
Cloud layer.) They devise algorithms based on the idea that when an IoT device generates
a task, it sends it to its upstream local Fog node. The job can then be handled on the
local Fog node, o�oaded to a neighboring Fog node, or sent to the Cloud. They try to
satisfy as most as possible the requirements of delay-sensitive applications while taking
into account the various network delays.

Considering the application latency, [165] focused on the delay on multiple levels of
Fog-Cloudlets-Cloud architecture, with the Fog-Cloud infrastructure layout comprising
several layers of Cloudlets between the Edge and the Cloud. The authors introduced a

51

Part , Chapter 2 – State of the art

heuristic algorithm that takes into account the trade-o� between using the Fog nodes and
the application latency requirements. When an application request arrives, the algorithm
constructs a group of application components that share the same source. The algorithm
analyses the communication e�ect of each group in the set before deciding where to deploy
each group of components on the Fog layer in order to reduce the communication impact.

Souza et al. [197, 196] concentrated on the operator placement problem between the
Cloud and the Edge with the goal of minimizing SP application latency while meet-
ing specified restrictions. In [196], authors used the Mixed Integer Linear Programming
(MILP) model to minimize SP application latency while meeting the constraints of CPU,
memory, the operator throughput constraint, and the placement constraint of the SP ap-
plication. In [197], the authors proposed a heuristic approach to address the scalability
issues of the algorithm proposed in [196]. The algorithm proposed decreases the search
space of the Edge nodes or Cloud nodes by deleting resource nodes that do not fulfill
the operator’s resource need. In both studies, OMNET++ [73] is used to simulate SP
applications, and CPLEX tool [115] is used to solve the MILP model.

These works present a great range of models and solutions, but most of them re-
main at the analysis and simulation stage, with simulation tools such as iFogSim [99] or
CloudSim [40] being used to validate their approach. The following section introduces
the more practical aspects of deploying SP applications on the Fog and presents more
holistic approaches to the problem of deploying SP applications, in particular regarding
the scaling problem.

2.3.2 Scaling Stream Processing applications

With the advent of Cloud computing, stream processing applications started to get
scaled dynamically to adjust the resource allocation to the experienced velocity of the
input stream, which evolves in time [47, 91, 98, 121, 166]. Let us first review works
addressing the scaling of SP applications through di�erent sets of algorithms. The scaling
mechanism is typically conducted at the level of one operator, with each operator in the
pipeline getting scaled up or down dynamically.

StreamCloud (SC) [98] is a scalable and elastic stream processing engine based on the
Borealis [5] system. A collection of strategies are proposed, for identifying parallelizable
zones of operators (known as subqueries) into which the entire operator graph is divided.
A subquery begins with a stateful operator and finishes with another, referred to as
the sink, with all stateless operators in between. On top of this splitting technique, a

52

2.3. Programmability, autonomy and scalability of Stream Processing in Fog

dynamic scheduling mechanism is added to balance the load of a stream created by the
sink of a subquery to the downstream subqueries. StreamCloud then provides strategies
for ensuring processing order among parallelized stateful operators. To provide successful
tuple distribution from one subcluster to the downstream, it employs buckets that accept
output tuples from a subcluster. Each subcluster employs a bucket-instance mapping to
guarantee that buckets are distributed among downstream instances. These latter are
supported by load balancers, which are operators positioned on the outgoing edge of each
subcluster instance and transport tuples from a subquery to downstream subqueries.
Input Merger, on the other hand, is positioned on the incoming edge. These latter accept
tuples from upstream load balancers and send them to the local subquery. StreamCloud
employs a resource manager coupled with a centralized elastic manager to monitor CPU
use and scale in and out when it exceeds upper or lower criteria. The resource manager,
in conjunction with dynamic load balancing, ensures system adaptability by dynamically
rebalancing the load, provisioning resources, or releasing resources.

[47] focuses on stateful operators, which need specific state management strategies
while scaling or resuming after failure. They exposed the internal operator’s state via
API by the stream processing systems, and dynamic scale-out and recovery methods are
integrated. The SP system checkpoints externalized operator state on a regular basis and
backs it up to upstream VMs. Individual operator bottlenecks are identified by the SP
system and automatically scaled out by assigning new VMs and splitting the checkpointed
state. Failed operators are recovered at any time by restoring checkpointed state on a new
VM and replaying unprocessed tuples.

Gedik et al. [91] proposed an elastic auto-parallelization solution that can dynamically
adjust the number of channels used to achieve high throughput without unnecessarily
wasting resources. They suggest a dynamic method for adjusting the number of occur-
rences of each operator in the graph at run time to account for the changing velocity of
the input stream. A key-value store and consistent hashing [123] are used to handle state
migration to scale partitioned stateful operators.

Peng et al. [166] presented R-Storm (Resource-Aware Storm), a system that imple-
ments resource-aware scheduling within Storm. R-Storm is designed to increase overall
throughput by maximizing resource utilization while minimizing network latency. They
reflected the task placement into the Multiple Knapsack Problem (MKP), in which they
assigned tasks to multiple di�erent constrained nodes. They showcased for the micro-
benchmarks that R-Storm delivers 30-47% greater throughput and 69-350% better CPU

53

Part , Chapter 2 – State of the art

usage than default Storm.
Jonathan et al. [121] proposed WASP, a dynamic scheduling solution for SP applica-

tion over Cloud nodes by combining mathematical and heuristic optimization techniques.
WASP takes into consideration that the bandwidth to reach the Cloud is dynamic, as is
the workload of the SP application. In this regard, the goal is to reduce the SP applica-
tion response time regardless of changes in bandwidth and SP application demand. WASP
then utilizes three optimization rules, beginning with the operator placement strategy to
reduce the SP application response time. They represent the operator placement problem
as an Integer Linear Programming (ILP) model, which is then solved using the Gurobi
optimization tool [100]. If the operator placement policy does not satisfy the constraint
on network bandwidth usage or on computational resource usage, WASP applies the op-
erator reordering policy to change an SP application’s current plan into an equivalent
one that solves the network bandwidth bottleneck or the operator replication policy by
scaling up/down the number of operator replicas to address the computational resource
bottleneck.

2.3.3 Programmmability of stream processing applications over
geo-distributed platforms

On the more practical aspects, di�erent frameworks have been proposed to help the
programmer specify stream processing pipelines intended to run over hybrid Edge/Cloud
platforms. In this sense, such tools address the programmability of Fog platforms.

R-pulsar provides a user-level API for operator placement [92]. R-pulsar o�ers a pro-
gramming model similar to Storm, but where the user can choose what operator has to be
placed at the edge, and what operator has to be placed in the Cloud. Then, the framework
decides on what precise node to place the operator. The framework prioritizes the edge
since the Cloud is intended to store messages for batch processing while the edge nodes
may host actuators. In this regard, if the edge nodes are unable to fulfill the operator’s
computational resource use requirement, the operator is relocated to the Cloud, which
provides almost limitless computing resources.

Works by Silva et al. [191, 192] aimed to standardize the ways to benchmark Fog-
deployed data stream processing applications and propose a general methodology to es-
timate the gain of moving processing to the Edge. In the same series of works, Rosendo
et al. [183] presented E2CLab, a framework for making easier deployment of SP appli-

54

2.3. Programmability, autonomy and scalability of Stream Processing in Fog

cations across platforms that connect the whole spectrum of computing resources, from
IoT devices to High-Performance Computing (HPC) clusters. E2CLab relies on a high-
level description of the whole deployment process, from stack installation through job
execution, allowing for large-scale tests on such systems.

SpanEdge [186] is a geo-distributed stream processing system that leverages central
and near-the-edge data centers to decrease or eliminate delay caused by WAN lines by
distributing stream processing applications across central and near-the-edge data centers.
SpanEdge design is built on master-worker architecture with hub and spoke workers, with
the hub worker hosted at a central data center and the spoke worker near-the-edge data
centers. SpanEdge allows users to divide stream processing application operators into two
groups based on whether they need to be close to the data sources or not. SpanEdge
o�ers a scheduler to best dispatch the operators based on their group. Similarly to that,
Mehdipour et al. [149] also addresses a more practical point of view by devising a software
architecture able to use Edge devices’ computing power to preprocess generated data and
limit the amount of data sent to the Cloud.

Hochreiner et al. [112] presented the Vienna ecosystem for elastic Stream Processing
(VISP), a framework for deploying innovative stream processing topologies across geo-
graphically dispersed computing platforms. Containers are used by VISP to deliver ap-
plications on hybrid environments such as clouds and edge resources. The provisioning in
this framework is achieved through a traditional mechanism: monitoring three indicators
related to operator instance performance, system load on the messaging infrastructure,
and self-reflection of individual messages in message queues in order to add operator
instances for a specific operator.

2.3.4 Decentralized management

With the extension of computing platforms, connecting compute nodes belonging to
di�erent administrative organizations, the ability to keep a global view of the platform
becomes too costly. Consequently, deploying stream processing applications and managing
them over Fog-like platforms can become di�cult. Decentralizing the management in such
a context becomes appealing. To sum it up, although a centralized strategy can produce
more accurate and e�cient results because it has a global perspective of the system, the
decentralized approach is better applicable in Fog environments.

In decentralized systems, multiple agents are each responsible for the monitoring and
adaptation of a sub-portion of the application. Yet, they can collaborate so as to enact

55

Part , Chapter 2 – State of the art

global deployment and adaptation mechanisms. At the end of the spectrum, each operator
can have its own monitoring and adapting agent, but still potential coordination with
others.

Decentralizing the management of stream processing platforms and applications has
been the subject of a few more or less recent works. Pietzuch et al. [168] initially pro-
posed SBON : a Stream-Based Overlay Network, that allows the distribution of stream
processing operators over a distributed platform. In SBON, the placement of operators of
a newly submitted application is done using decentralized techniques, specifically based
on a Vivaldi-like protocol [69]. Besides decentralization, another key aspect of SBON is
reuse: newly deployed applications are deployed so as to avoid deploying their operators
if they are already running on the platform as part of another application. Synergy fol-
lows a similar idea [179]. In Synergy, a decentralized algorithm discovers streams and
services at run-time and verifies if any of them is able to handle the load and satisfy
the new application’s request. Components that are not fulfilled are dynamically selected
and combined to meet the application resource and QoS requirements by deploying new
components at strategic places. Synergy’s method is focused on forecasting the impact
of additional e�ort. On top of what SBON does, Synergy evaluates if reuse of available
streams and processing services when instantiating new stream applications will a�ect the
already running applications or not.

DEPAS (Decentralized Probabilistic Algorithm for Auto-Scaling) [39], does not di-
rectly address Stream Processing. But it is a fully decentralized and self-organizing prob-
abilistic auto-scaling mechanism designed for peer-to-peer networks. More specifically, it
decentralizes scheduling choices in a multi-cloud environment rather than relying on lo-
cal schedulers. The DEPAS auto-scaling method for each node consists in periodically
receiving the load of its neighboring nodes and comparing it to a minimal load thresh-
old to maybe remove a node or a maximum load threshold to perhaps add a new node.
Because nodes only communicate with their neighbors, DEPAS employs a probabilistic
auto-scaling approach to determine the optimal number of nodes. The target number of
nodes at the time is calculated by combining the following factors: the number of nodes in
the system (assumed to be known at each node), the average load at the time, the desired
target load, and an average capacity that remains constant regardless of the number of
nodes.

Cardellini et al. [43, 42] partially decentralize auto-scaling in Stream Processing
through a hierarchical approach based on a MAPE loop combining a threshold-based

56

2.3. Programmability, autonomy and scalability of Stream Processing in Fog

local scaling decision with a central coordination mechanism to decide what decisions will
actually get enforced. The central coordination mechanism is a MAPE-based Application
Manager coordinates the run-time adaptation of subordinated MAPE-based Operators
Managers, where the latter control the local scaling decision of the operators of the graph.
First, the local scaling manager detects possible problems such as a bottleneck, then infers
a desirable action either to scale up or scale down. The various desirable actions calculated
locally are sent to the master scaling manager which is the centralized entity that coor-
dinates the adaptation of the overall system by selecting which actions will actually be
enforced. In [42], the authors employ machine learning techniques, specifically Reinforce-
ment Learning (RL) [201]. Agents can learn to make e�ective decisions through a series of
encounters with a system or environment using a collection of trial-and-error procedures.
There are two RL-based algorithms proposed. The first is a model-free learning algorithm
based on a Q-learning algorithm for managing elasticity, and the second is a model-based
technique that uses what is known or can be estimated about system dynamics to make
the learner’s task easier.

In the same vein, a Game-Theoretic approach to decentralize the elasticity mechanisms
of stream processing applications was proposed in [150]. By modeling the problem as
a non-cooperative game in which agents pursue their self-interest: obtaining the right
amount of resources. The control logic driving elasticity is distributed among local control
agents capable of choosing the right amount of resources to use by each module. The
author then expands the non-cooperative formulation with a decentralized incentive-based
method to encourage collaboration by bringing the agreement point closer to the system
optimum.

Fully decentralized coordination between nodes sharing the work of running a stream
processing application has been addressed in [31], in the context of auto-scaling. The
authors take a decentralized management concept for SPEs and apply it to autoscaling.
They consider a model in which each operator — and each of its replicas — is responsible
for its own scaling. The operator has just a local view of the system and makes scaling
decisions based on its own load experience.

Besides stream processing applications, Tato et al. [204] demonstrated how
microservice-based applications can be dynamically deployed on decentralized (core and
edge) resources. While not within the scope of stream processing, this work exploits the
ability to split microservices for which divisions of the data may be used to independently
respond to subsets of service requests. Underlying this approach, The Koala overlay net-

57

Part , Chapter 2 – State of the art

work [203] allows requests to be transparently redirected to the appropriate service based
on object information available via Representational State Transfer (REST) calls.

The three following chapters focus on the contributions of the thesis. Chapter 3 first
detail a new architectural model, named SpecK, based on the coordination of multiple
stream processing sites to support the deployment of stream processing pipelines over Fog
environments. Then, Chapter 4 focuses on Dynap, which extends SpecK with decentralized
self-adaptation mechanisms enabling the e�cient reconfiguration of the deployment of a
pipeline. Finally, Chapter 5 goes into the more concrete aspects of deploying stream
processing in the context of Smart Cities.

58

Chapter 3

SPECK: COORDINATING STREAM

PROCESSING ENGINES FOR THE

DEPLOYMENT OF DATA PIPELINES OVER

FOG ENVIRONMENTS

This chapter presents the first contribution of the thesis. In the following, we describe
the foundations of an architectural model based on the composition of multiple stream
processing engine instances, possibly distributed, as naturally conveyed by the Fog com-
puting paradigm. Both a programming model and execution model are proposed. A proof
of concept and its experimentation are provided.

3.1 Introduction
Programmers define SP applications by combining operations to be applied on an

incoming stream in a certain order. This combination can be linear (commonly referred to
as a pipeline), but, more generally can be represented by a directed acyclic graph (DAG),
whereby each vertex represents a single operation. Once implemented, such a program is
deployed on the underlying computing infrastructure by the SP engine, thereby becoming
a running job. The engine deploys the job over the compute nodes of the underlying
infrastructure, trying to optimize applications throughput and resource usage. The main
component supporting this deployment is commonly referred to as the Job Manager.

Datacenters, or more generally geographically-restricted infrastructures connecting
compute nodes through a high-speed network have been the natural target to deploy
such jobs. Yet, with the advent of Fog computing, we moved to a platform model made of
a possibly large number of geographically distributed computing resources. This makes it
di�cult for a single Job Manager to remain e�cient, due to the di�culties in maintaining

59

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

an updated view of all possible available resources. The net result is that SPEs have some
limitations when applied to Fog computing scenarios, whereby data need to be processed
in a coordinated fashion over a geographically distributed infrastructure. In a typical Fog
application, part of the processing is carried out directly close to the data origin (at the
edge), aggregation steps are carried out at intermediate nodes (where data from di�erent
edges are joined), to be finally post-processed and stored in a more stable platform such
as a Cloud [144]. This limitation calls for new execution models for SP applications over
fog infrastructures. At detailed in Chapter 2, most works tackling this issue based their
solution on revising scheduling policies by injecting some latency awareness and some form
of hierarchy into it. While such approaches are interesting, they present some limitations;
furthermore, most of them stay at the prototype level.

This chapter explores a radically di�erent approach. Instead of revising existing SPEs,
we advocate for a federated stream processing platform, able to combine multiple standard
Job Managers (typically those provided by Flink, Storm, or Spark Streaming), each one
being responsible for the management of a geographically-restricted (local) portion of the
infrastructure. Adopting this idea requires revisiting the traditional programming and
execution models of SPEs. Considering geographically-distributed infrastructures will not
only extend the range of computing platforms on which to deploy SP applications but
will also pave the way to the construction of SP applications through the composition of
a set of ready-made SP Jobs. Similarly to the more traditional service composition, the
notion of SP job composition carries the idea that developing complex SP applications
out of the blue is not a reasonable option anymore. Such complexity should be handled
by a higher-level programming model: the composition of existing SP jobs into a new
composite SP application.

In the following, we propose a novel programming model for SP, based on the composi-
tion of existing SP Jobs, and their execution over a geographically-distributed computing
infrastructure. We devise the SpecK framework, which brings this proposal into reality:
based on the description of the composite application to be deployed, SpecK starts each
job composing the application over the resources of one computing site. Our assumption is
that each computing site is equipped with an instance of a stream processing engine (e.g.
a Flink Job Manager) able to deploy jobs over the local computing resources, and a mes-
sage broker managing the needed message queues to transfer data and control messages
between sites. SpecK provides two core APIs: the Job Management API focuses on the
management of a single job. It allows starting, modifying, and deleting jobs in a unified

60

3.2. SpecK: An SPE coordinator

fashion, regardless of the targeted SPE instance. The Composition Management API,
given the description of a complex application composed of several jobs for which the code
is available, deploys each job on the SPE instance specified for this job. This API supports
dynamic on-the-fly reconfiguration/adaptation of the composition: The user simply needs
to submit a new version of the description and SpecK will trigger all changes needed
by contacting the SPE instances running jobs a�ected by the modification. SpecK was
prototyped and deployed over the Grid’5000 large-scale testbed [21], where we evaluated
its performance using real tra�c traces.

Section 3.2 presents the programming and execution models of SpecK and details its
usage and internal components. Section 3.3 reviews the experimental results obtained over
Grid’5000, focusing on scalability and on the ability of SpecK to bring the benefits of the
Fog into reality when deploying SP applications at a large scale. Section 3.4 concludes the
chapter, outlining a roadmap for the further development and integration of SpecK.

3.2 SpecK: An SPE coordinator

SpecK deploys and adapts stream processing applications built as a composition of
independent stream processing jobs running over di�erent stream processing stacks. The
architectural framework it relies on provides two user interfaces, one to abstract out
the details of the deployment of a single job, whatever its target SPE stack, one to
coordinate the initial deployment and subsequent user-driven adaptations of compositions
over multiple independently running stacks, to be described in more details in Section 3.2.

SpecK targets infrastructures gathering geographically-dispersed computing resources,
resources being grouped into what we refer to as a computing site. A computing site is
typically a set of tightly coupled compute nodes, such as a cluster of small single-board
computers located at the edge of the network. A larger data center, at the other end of
the spectrum, can be seen as one site. All those sites are more and more aggregated into
what is now referred to as the Edge-to-Cloud continuum [22, 30, 151], the final objective
is to be able to operate such a continuum in a unified manner. SpecK participates in this
objective, focusing on stream processing applications.

Each site includes a running instance of a stream processing stack such as Storm,
Flink, or Spark streaming. This means that an orchestrator, commonly referred to as
the Job Manager, is responsible to distribute the workloads submitted over the compute
nodes of the site it is responsible for. The SPE instance constitutes the first software

61

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

element we assume to be present on the sites. The second elements answer the need to
link sites together so as to build the continuum: as SPE engines will be responsible only for
portions of the applications deployed, di�erent portions will run on resources of di�erent
sites. These jobs having dependencies, nodes from one site will have to communicate with
nodes on another site. Inter-site communication is typically handled by Message Brokers
(MB) (such as Mosquitto [135], ActiveMQ [194], and Kafka [206].)

Edge node/site

Edge node/siteEdge node/site

Message broker
SPE instance

Central node

Message broker

Message broker
SPE instance

Message broker
SPE instance

SPE instance

Figure 3.1 – SpecK targeted platform.

Such an infrastructure is depicted in Figure 3.1: each site, of a di�erent size reflecting
its computing power, is equipped with its own instance of stream processing engine and
message broker. As mentioned, some of these sites can be referred to as Edges (small
sites in the picture) and will typically use edge-optimized stream processing engines such
as Edgent [2]. One of these sites can be a Cloud (the bigger site in Figure 3.1) and will
be typically equipped with Cluster-ready stream processing engines such as Storm, Flink
or Spark Streaming. We assume that direct communication between the sites is always
possible. Security constraints that may appear to fall outside the scope of our contribution.
Also, the choice of the specific message broker used locally at each site depends on local
requirements and user preferences and is not discussed here.

As it is detailed in the following, SpecK acts as a coordinator between those sites to
deploy composite SP applications over the whole infrastructure. Section 3.2.1 reviews its
usage and APIs and Section 3.2.2 details its architecture and internal mechanisms.

62

3.2. SpecK: An SPE coordinator

SpecK
framework

running SPE
instances

Job/Pipeline
description

HTTP

Figure 3.2 – SpecK overview.

3.2.1 SpecK usage

SpecK acts as a coordinator between SPE instances, based on the user’s input, as
depicted in Figure 3.2. It can be seen as a wrapper on top of a pool of available running
SPE instances, to be exploited as specified by the user in its application’s description.
The interaction between SpecK and the users is one-way: the user pushes the description
to SpecK. The interactions between SpecK and the SPE instances go in both directions,
typically through HTTP.

SpecK o�ers two interfaces to users. Firstly, it provides a Job Management API,
a restful interface abstracting out the details of the flavor of the underlying specific Job
Manager API: based on a simple description of a stream processing job to be deployed,
this API deploys the job on whatever SPE is targeted for this job. It also supports adap-
tation: when the description of a job change, this interface can stop, start and move jobs
individually, again hiding the specifics of the underlying SPE. Secondly, on top of the
Job Management API, SpecK provides the Composition Management API, able to
manage a composition of jobs, typically expressed as a DAG of individual jobs. While
the traditional granularity of DAGs in stream processing is an operator, SpecK handles
DAGs of jobs, that themselves are internally possibly composed of several operators. The
operators composing each job are not considered individually: each job is a black box with
an input source and an output destination.

The two following sections describe how a user benefits from these two entry points.

Job Management API

Within SpecK, a job is described by three elements: i) the code it runs, ii) the SPE
instance it runs on, and iii) its data source and sink. More precisely, a job description
will contain the following elements. Firstly, the elements related to the job itself, namely:

63

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

i) a (unique) job name, ii) an entry class which indicates the main class of a job’s
code, and iii) the job path which specifies the local path where to find the code of the
job (typically a bytecode archive). Secondly, the SPE instance where to deploy the job
needs to be specified, through the SPE address, represented by the IP address and the
port of its Job Manager. Finally, information regarding the input and output data of
the Job needs to be given: the two message brokers represented by their respective IP
addresses and ports, managing its data source and sink respectively, and the two data
topics identified by their respective names, where to read the incoming stream and where
to write the outgoing stream. Given this description of the job, typically encapsulated into
a JSON description, the user can issue the following commands:

— POST /jobs - deploys and registers the job described
— GET /jobs - lists all running jobs
— GET /jobs/<job_name> - gets the details of job job_name

— DELETE /jobs/<job_name> - deletes the job job_name

The Job Management API is an SPE-agnostic block to start, get the status of and stop
jobs, on top of which, job migration and monitoring can be implemented. In particular,
it paves the way for higher-level management programs such as the pipeline coordinator
described in the next section.

Composition Management API

Let us now focus on the second interface provided to the users and which allows them
to manage job compositions over geographically-distributed platforms. Let us consider the
deployment of a simple composition, to be modified in a second step. Figure 3.3 illustrates
the initial graph: the composition is a pipeline composed of four jobs, each to be deployed
over a di�erent site.

More precisely, jobs A and B read their respective input streams from two di�erent
data topics managed by two distinct message brokers. They both have their output sent
to a third topic managed by the broker of the third site. The third topic is read by
Job C, which, in its turn, processes the data and sends the results via a message queue
managed by one last message broker on Site 3 where the fourth Flink instance hosts Job
D. Listing 3.1 gives the description of this pipeline to be sent to the Composition API. We
observe, for each job composing the pipeline, the elements mentioned earlier. As further
described in Section 3.2.2, SpecK coordination module parses this file and, relying on the
Job Management API, deploys the jobs as specified by the user. Note that, even if a job

64

3.2. SpecK: An SPE coordinator

A

B

C D

SPE Instance 0
SPE Instance 1
SPE Instance 2
SPE Instance 3

Figure 3.3 – Initial pipeline

A C2 D

SPE Instance 0
SPE Instance 2
SPE Instance 3

C

Figure 3.4 – Adapted pipeline

can read from a single input topic and write to a single output topic, by having multiple
jobs writing their output into a common topic, any DAG can be specified.

Let us assume that the user, at some point, wishes to modify the pipeline for the one
in Figure 3.4. It means that i) Job B gets removed, and ii) Job C2 appears, as an extra
processing step between C and D. Note that, consequently, SPE instance 1, which was
hosting Job B is no longer part of the instances supporting the pipeline. A, C and D do not
move. Let us assume that the user wants C2 to be grouped with C on SPE instance 2. Job
C needs to be modified so as to redirect its output stream to Job C2. These changes are
highlighted in Listing 3.2. Job B disappears, while job C2 (in green) is introduced. The
information for the outgoing stream of C is modified (in red in Listing 3.1 and in cyan in
Listing 3.2).

65

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

≠≠≠
jobs:

≠ job_name: A
spe_address: http://172.16.39.7:8081/
source_broker: tcp://172.16.39.7:1883
sink_broker: tcp://172.16.192.18:1883
source_topic: T≠1
sink_topic: T≠C≠filter
entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test≠1.jar

≠ job_name: B
spe_address: http://172.16.48.8:8081/
source_broker: tcp://172.16.48.8:1883
sink_broker: tcp://172.16.192.18:1883
source_topic: T≠2
sink_topic: T≠C≠filter
entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test≠2.jar

≠ job_name: C
spe_address: http://172.16.192.18:8081/
source_broker: tcp://172.16.192.18:1883
sink_broker: tcp://172.16.177.7:1883

source_topic: T≠C≠filter
sink_topic: T-D-merger

entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test≠3.jar

≠ job_name: D
spe_address: http://172.16.177.7:8081/
source_broker: tcp://172.16.177.7:1883
sink_broker: tcp://172.16.177.7:1883
source_topic: T≠D≠merger
sink_topic: T≠D≠total
entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test≠4.jar

Listing 3.1 – Initial pipeline.

≠≠≠
jobs:

≠ job_name: A
spe_address: http://172.16.39.7:8081/
source_broker: tcp://172.16.39.7:1883
sink_broker: tcp://172.16.192.18:1883
source_topic: T≠1
sink_topic: T≠C≠filter
entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test≠1.jar

≠ job_name: C
spe_address: http://172.16.192.18:8081/
source_broker: tcp://172.16.192.18:1883
sink_broker: tcp://172.16.192.18:1883

source_topic: T≠C≠filter
sink_topic: T-C2-filter

entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test≠3.jar

- job_name: C2
spe_address: http://172.16.192.18:8081/
source_broker: tcp://172.16.192.18:1883
sink_broker: tcp://172.16.193.22:1883
source_topic: T-C2-filter
sink_topic: T-D-merger
entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test-4.jar

≠ job_name: D
spe_address: http://172.16.177.20:8081/
source_broker: tcp://172.16.193.22:1883
sink_broker: tcp://172.16.193.22:1883
source_topic: T≠D≠merger
sink_topic: T≠D≠total
entry_class: package.ExampleJob
job_path: /usr/src/app/jars/test≠4.jar

Listing 3.2 – Adapted pipeline.

3.2.2 SpecK architecture and internals

Figure 3.5 depicts the components of the SpecK architecture. It is composed of four
interrelated components.

The client typically submits a complete pipeline of jobs by invoking the composition
management API and passes it to the pipeline description file. The composition API relies

66

3.2. SpecK: An SPE coordinator

on the pipeline coordinator, a Python-based component that generates, for each job of the
pipeline, the HTTP queries to be transmitted to the Job Management API described as
if they were coming directly from the user. The Job Management API is a REST API
and was implemented using the Flask Python web framework [175].

Client
/model
 /job_collection1
 /job_resource1-1
 /job_resource2-2
 /job_collection2
 /job_resource2-1
 /job_resource2-2

Specific SPE
Binder

Pipeline
Coordinator

Database

SpecK Server

Pipeline
description

Job
management

API

GET
POST

DELETE

Job description
Message Broker

Computing sites

SPE instance
Job manager

Task manager

Figure 3.5 – SpecK software architecture.

The Job Management module is connected to the last two components: a database
storing the state of the pipeline currently deployed, and a set of binders to di�erent SPEs
and Message Brokers to make SpecK generic. When the Job Management API deploys a
job, it records its description in the database, so when the user submits a modified version
of the description of a pipeline, SpecK compares the running jobs described in the database
with the newly submitted one and triggers the needed removals and introductions of jobs.

The actual deployment of jobs relies on SPE binders, each of them being able to
communicate with a particular SPE flavor (Flink, Storm, etc.). As each SPE has its own
API, basic commands such as starting, getting the status of, or stopping a job can di�er
depending on the specific SPE in use. SPE binders abstract out this variability by taking
care of formatting queries correctly for each SPE technology. In other words, SpecK also
acts as a client sending queries to the Job Managers of available SPE instances on the
sites of the infrastructure. Upon receiving the modified version of an existing pipeline, the
same interactions take place. The coordinator compares the incoming jobs’ arguments
with the existing jobs description stored in the internal database and requests the status
of jobs running on SPE instances via the Job Management API. It then decides whether
jobs should be migrated to other SPE instances or not. Note that, in doing so, only the
necessary actions are performed. For instance, jobs that do not need to be migrated to
another instance allow SpecK to save the cost of re-uploading the job. Again, all these
movements are enforced by the Job Management API by communicating with the SPE

67

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

instances using their specific APIs.
Remind that the sites composing the Fog are typically equipped with their own SPE

and message broker instances. Using message brokers along with SPE in each instance not
only allows the distribution of a load of transmitting data between the computing sites
but also avoids unnecessary tra�c between instances: the tra�c between two jobs placed
at the same site is kept local.

3.3 Experimental evaluation

The experimental campaign conducted had several objectives. Firstly, the scalability of
the solution itself, and the time it takes to deploy and modify large pipelines are evaluated
in Section 3.3.1. Secondly, in Section 3.3.2, we place ourselves on top of a hybrid Edge-
Cloud platform to show that SpecK can bring the benefits of such platforms into reality.
The prototype of SpecK includes specific binders to Apache Flink SPE and to Mosquitto
MB. Thus, we assume in the following that the computing sites are equipped with Flink
and Mosquitto. This uniformity is desirable as it allows us to focus on the validation of the
functionalities and evaluating the performance of SpecK without having to estimate the
influence of the specificity of SPE/MB technologies. The experiments were conducted over
Grid’5000, a large-scale geographically-distributed computing platform bringing together
thousands of computing cores grouped in clusters located in 8 di�erent computing sites
in France and Luxembourg [21].

3.3.1 Scalability and overhead

We first evaluated the ability of SpecK to quickly deploy and modify large pipelines.
These experiments were conducted on 6 instances distributed over 3 geographically-distant
computing clusters (respectively located in Nantes, Lyon, and Luxembourg). Each cluster
includes two instances. The measured average network latency between clusters was of
18.6ms. Each instance runs its own Mosquitto MQTT broker and an Apache Flink Job
Manager. Each Flink instance managed 24 to 32 Task slots to place the jobs on the workers
of the cluster, depending on the number of cores available on the compute nodes, which
made, depending on the experiment, a total of between 166 and 192 available task slots
on the whole platform including the three distant clusters.

The number of job slots on each instance is not that important, as we did not aim

68

3.3. Experimental evaluation

to overflow the number of SPE task slots (since Apache Flink has its own job scheduler
taking care of it). The only requirement is that the total number of Flink task slots allows
receiving all the jobs submitted via SpecK.

We generated simple chains comprising between one and one hundred jobs. Each job
consisted of a trivial SP program receiving input from the previous job in the chain and
passing it to the next one. The jobs composing these pipelines were deployed uniformly
at random across the instances.

The deployment of the pipeline of size 100 is illustrated in Figure 3.6: The links are
showing the direction of the data flow of the jobs (forming a chain). The colors are
indicating the SPE instance on which the job is running on. While on the figure, jobs
were grouped by instance, jobs were randomly placed over di�erent instances.

Figure 3.6 – Pipeline overview.

We measured the time elapsed for the initial deployment, modification, and removal
of jobs, given in Figure 3.7. For each configuration considered, 10 runs were executed, and

69

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

the performance displayed was averaged over said 10 runs. We also report min and max
over the set of runs whenever relevant. The green curve shows the time spent to initially
deploy pipelines of sizes ranging from 1 to 100. The blue curve shows, once 100 jobs have
been deployed, the time it takes to modify a number of jobs ranges from 1 to 100. Finally,
the red curve shows the time taken to delete a variable number of jobs.

Figure 3.7 – Multiple deployment measurements

The main takeaways from this first experiment are the following: i) The modification
of a large number of jobs is faster than its deployment: most of the time, it is better to
modify the pipeline than to stop and restart it. ii) The time it takes to deploy, modify,
and delete jobs is linear in the number of jobs, showing that, at least up to a significant
number of jobs, the system does not exhibit any scalability issue.

SpecK depends on a restful API. One common issue with restful services is that a large
number of client requests may slow down (or even lead to the failure of) the underpinning
server; yet SpecK does not create requests unless the user submits a new pipeline. In
other words, SpecK does not generate any tra�c unless the user emits requests, and the
tra�c generated is no more any less the tra�c needed to deploy jobs. In other words,
SpecK does not bring any measurable overhead in terms of tra�c. The only measurable
overhead is the disk space needed by SpecK to store the state of the deployed pipeline: As
mentioned in Section 3.2.2, a persistent key-value store stores the state of the currently
deployed jobs. The store is written on disk. Throughout all experiments, the space used

70

3.3. Experimental evaluation

Number of Jobs Size of the pipeline on disk
1 16KB
10 16KB
100 94KB
1000 754KB

Table 3.1 – Size of the states of the pipeline.

on the disk remains very low. As an example, we measured that a 1000-job pipeline only
requires 754KB.

Table 3.1 summarizes the needed storage space depending on the size of the pipeline
deployed.

3.3.2 Hybrid Edge/Cloud deployment

In order to validate the usage of the spec API in more realistic settings, we developed
a Fog-targeted road-tra�c monitoring application, consisting of 4 jobs, some of the jobs
being duplicated over geographically distributed sites, making a total of 17 single-operator
Flink Jobs. The dataset used included real-world data from 245,369 connected vehicles
moving across Italy and artificially expanded so as to increase the scale of the deployment
and the velocity of the streams. This expansion does not mean that artificial data were
added, but that data was played at a higher rate than in the original dataset. The data
are basically a list of cars passing by at specific points at specific times. Each time a car
is detected at a sensor point, it is added to the stream.

job1

job4

job1
job1

job1

job1
job1

job1

job1
job1

job1

job2

job2

job2

job3

job3

job3 site A
site B

site C
site D (Cloud)

Figure 3.8 – Deployment of the application over multiple sites.

The deployed pipeline is illustrated in Figure 3.8. It is composed of four jobs, which
aim at producing both timely statistics about local road tra�c and long-term statistics

71

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

at the global scale. The first type of statistics is supposed to be generated locally, on each
edge where data is ingested. The second type is for storage and later reuse and is thus
typically computed in the Cloud. Each site includes its own Flink SPE and Mosquitto
MQTT broker. Figure 3.8 illustrates its deployment over 3 edge sites and 1 cloud site. Let
us review the four jobs:

— Job 1 preprocesses the data received locally by filtering and cleaning them before
they are injected into the rest of the pipeline. It removes erroneous data items
or badly formatted ones. This cleaning is a stateless operation, not very time-
consuming or compute-intensive, and can typically be performed locally, close to
where the data are sensed. As filtering can be done in parallel on each data source,
we assume that one instance of Job 1 is deployed for each stream of data.

— Job 2 is a forwarder: it collects data produced by Job 1 instances and sends them
to the entry topic of Job 4 which will merge all data coming from the di�erent
sites.

— Job 3 performs windowed statistics of data received locally on one site. It produces
timely statistics about the recent - near real-time - local tra�c. These statistics
generation cannot be parallelized due to their stateful nature. In other words, there
is a single instance of this job per site.

— Job 4 is a merging operator which establishes global statistics over the data sent
by the di�erent sites, so later global post-processing can be conducted.

— Data were generated from 10 di�erent topics representing multiple regions of vehicle
tra�c.

The benefits of such a deployment allowed by SpecK are twofold. By placing Job 1 at
the edge, fewer data are sent across the network to Job 4, and faster data processing and
monitoring rate is obtained when Job 3 runs closer to the source. To prove this, we focused
on the performance of Job 3. We deployed two scenarios, both deployed using SpecK. In
the remote scenario, Job 3 does not run on the same site where the data are generated.
In the local scenario, Job 3 is placed on the same site where the data are generated. Then
we gradually increased the data generation rate of the data we gathered from the real
world and compared the outcomes. Figure 3.9 shows the results. Having an ingestion rate
of one message produced every 2ms already allows this benefit: as shown by Figure 3.9
(b), the local count of the car increases slower when done in the Cloud. The di�erence
increases when the ingestion rate is 1 msg/ms (see Figure 3.9 (c)).

We then experimented with two global deployments, referred to as the Fog and the

72

3.3. Experimental evaluation

Figure 3.9 – Data processing rate sample.

job1

job4

job1
job1

job1

job1
job1

job1

job1
job1

job1

job2

job2

job2

job3

job3

job3
site A
site B

site C
site D (Cloud)

Figure 3.10 – Deployment of the application on a single site.

Cloud scenarios, respectively. In the Fog scenario, all 4 jobs were placed across A, B, C,
and D sites as shown in Figure 3.8. The colors on the figure denote the site where each
job and message queue is located. In the Cloud scenario (Figure 3.10), all 4 jobs are
placed on site D, meaning the regionally generated data transit through the network to
be directly processed on site D.

Figure 3.11 illustrates the output rate of each Job of the pipeline obtained in both
deployment scenarios shown in Figure 3.8 and Figure 3.10. The X-axis gives the data input
rate at each site. The Y-axis gives the benefit ratio of using the Fog scenario compared to
the Cloud in terms of processing speed for Jobs 3 and 4, which provide local and global
statistics, respectively. Here, processing speed is to be understood as the time taken to
process a fixed amount of messages. Each deployment scenario was conducted for 15

73

Part , Chapter 3 – SpecK: Coordinating Stream Processing Engines for the deployment of Data
Pipelines over Fog Environments

Figure 3.11 – Di�erential output rate.
minutes to measure the di�erence between the data processing rate of Fog and Cloud.
The performance was averaged over 5 runs. The di�erential output rate can be expressed
as:

D = (100/F)� (F � C) (3.1)

where:

D = Di�erential output rate
F = Data processed in Fog scenario
C = Data processed in Cloud scenario

When a curve is above 0, data processing in Fog is quicker for this job. When a curve
is below 0, it means the Cloud is quicker. Initially, when the data ingestion rate is low, the
Fog deployment does not provide a faster data processing rate compared to the Cloud for
the final job (Job 4). This can be explained as in the Fog scenario, data need to traverse
multiple MQTT brokers, each adding latency to the global data transmission from Edge
to Cloud. Yet on the other hand, when we increased the ingestion rate up to 1 message
sent per millisecond, data processing becomes closer on both scenarios due to the MQTT
broker message bu�ering. Also, we observed that the fog scenario compared to the cloud
gave better results for Job 3 which provides the local statistics, showing that multiple-site
Job deployments benefit from SpecK.

74

3.4. Conclusion

3.4 Conclusion
This chapter presented the first contribution of this thesis towards e�ectively managing

stream processing applications over a geographically distributed computing infrastructure.
The proposal, SpecK, is based on the idea of composing SPE instances, each one run-

ning their SPE of choice and managing local computing resources. By adding this further
layer of coordination, we are able to e�ectively leverage locally-available resources, while
providing application developers with an easy set of primitives to deal with, so as to fa-
cilitate the cumbersome process of deploying an SP pipeline over a large-scale platform.
SpecK was prototyped and its performance was experimentally validated, through a com-
prehensive set of experiments deployed on a large-scale experimental research platform
Grid’5000. Experiments with the SpecK prototype showed that it is able to e�ectively
handle complex stream computations, coordinating the usage of locally-available resources
over a geographically-distributed infrastructure with limited overhead.

This first contribution paves the way for an orchestrated set of SPE instances sup-
porting together the execution of SP pipelines. A dynamic and autonomous adaptation is
desired for such a platform over a Fog infrastructure. Chapter 4 goes further by proposing
such mechanisms adapted for this context.

75

Chapter 4

DYNAP: DECENTRALIZED ADAPTATION

OF STREAM PROCESSING PIPELINES

4.1 Introduction

As previously mentioned in Chapter 2, scalability, autonomy, and programmability
are the key challenges in Fog computing tackled throughout this thesis. In a nutshell,
scalability refers to the ability to deploy applications at large scale, in particular over geo-
distributed platforms comprising multiple heterogeneous computing devices. This was the
main driver behind the SpecK architectural proposal presented in Chapter 3: to extend
the scale of platforms over which a stream processing pipeline can be deployed. To this
end, SpecK aggregates several stream processing engines through an additional coordina-
tion layer. Programmability refers to the ease with which programmers can specify their
applications and deploy them over the platform [116]. SpecK takes as input a simple de-
scription of the pipeline to be deployed. It does not require any real programming skills.
Altogether, SpecK helps in the di�cult process of implementing a Stream Processing (SP)
pipeline over a large-scale platform. Experiments conducted show that SpecK can support
the coordination of large pipelines by orchestrating the use of locally available resources
across a globally dispersed infrastructure.

An aspect not fully addressed in Chapter 3 is autonomy. Autonomy refers to the
capacity of a platform to reconfigure smoothly and in an automated fashion when the
performance, security, or reliability of the platform is threatened. In SpecK, only initial
deployments and manual adaptations are supported and conducted, and the framework
operates in a centralized fashion. Roughly speaking, SpecK acts as a deployer of stream
processing applications over the type of platforms described above. It takes as input a
description of the pipeline (in particular containing the information of what job runs on
what site) and enforces the deployment described. While allowing for such deployments,
Speck only supports static deployments and is not able to conduct continuous adaptations

77

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

on the pipeline when conditions on the platform require it. As conveyed by the classical
MAPE-K model [124], the basic phases for such an adaptation are the following:

1. Monitor the platform’s state;

2. Analyse recent information obtained by monitoring;

3. Plan a possible adaptation so as to improve the application of the platform’s chosen
metric;

4. Execute the plan.

The contribution presented in this chapter focuses on Step 4, the execution, which
actually enforces the plan devised in Step 3. In a large-scale environment, implementing
such a MAPE-K loop may strongly benefit from decentralization in all its phases. The
decentralization of the MAPE-K model has been a research topic, mostly a theoretical
one, for quite a few years [213]. Our focus is more on how to actually enforce decentralized
adaptation, for our particular context. In other words, what are the system building blocks
needed to allow for decentralized adaptation.

Concretely speaking, we target the adaptation of the deployment of the operators over
the computing sites. We assume that the main adaptation mechanism at our disposal is
job migration. Job migration can reduce the latency between jobs and globally improve
pipeline performance. But decentralizing this adaptation can also lead to multiple operator
migrations occurring at the same time. This can lead to inconsistencies in the pipeline and
potential data loss, as moving operator means introducing some rewiring in the concrete
stream of data traversing the graph representing the pipeline. So we need to be sure that
adaptation, even conducted concurrently on di�erent, possibly contiguous, portions of the
pipeline, does not harm the global pipeline integrity.

In this chapter, we contribute to the autonomous adaptation of stream processing
pipelines, through the proposal of Dynap, a framework for the decentralized coordina-
tion of multiple job managers working on the continuous adaptation of a data pipeline
deployed over a Fog environment. The main novelty it brings is its decentralized nature.
Dynap conducts operator migrations in a decentralized fashion, i.e., by having each job
manager responsible for part of a pipeline, equipped with an agent not only triggering
the migrations for the operator it hosts but more importantly, coordinating with other
agents to deal with potential concurrent migrations and prevent potential harmful con-
current migrations. Dynap’s core mechanism is an operator migration protocol, which
borrows from distributed mutual exclusion protocols to ensure a safe migration, i.e. that

78

4.2. Mutual exclusion

do not lead to breaking the pipeline integrity in case of multiple concurrent migrations.
The chapter presents in detail the design of the Dynap architecture, the decentralized
adaptation protocol, and their validation through the actual deployment of the Dynap
software prototype over an emulated geo-distributed platform.

The rest of the chapter is organized in the following way. Section 4.2 comes back to
the notion of mutual exclusion and the traditional approaches to solving the problem in
distributed settings. Section 4.3 presents the design of the Dynap solution in detail: its
architecture, and the details of the migration protocol. Section 4.4 presents the software
prototype developed. Section 4.5 presents the experiments conducted and their results,
and section 4.6 concludes the chapter.

4.2 Mutual exclusion

Mutual exclusion is the general process of ensuring that several processes wishing to
enter a sensitive portion of code do it sequentially. Mutual exclusion can be solved in
either shared-memory environments or distributed-memory environments.

In distributed settings, the communication model used is most of the time message
passing. Using such a model, two approaches have been proposed to solve the mutual ex-
clusion problem: permission-based algorithms and token-based algorithms. In permission-
based algorithms, such as the Ricart-Agrawala algorithm [181], processes requesting the
critical section send a request to other potentially competing processes. They finally enter
it only when they have received a reply from all competitors.

Liveness (the fact that a requesting process is guaranteed to enter its critical section
eventually), is ensured through a sequence number maintained according to Lamport’s
causality rule [129], which leads to a global ordering of processes in case of conflicting
requests. Mutual exclusion can be expressed as a resource allocation problem: mutual
exclusion can be modeled as a graph where processes are vertices and edges represent
conflicts over resources. A particular case of this vision is the well-known dining philoso-
phers problem where the graph is a ring. A solution to this was proposed by Chandy
and Misra; their solution relies on maintaining this graph acyclic to ensure one process
can be distinguished in case of multiple concurrent requests, thus removing the need for
timestamps [49].

The set of processes required to ask permission to enter the critical section can be
reduced by the notion of quorums. Using quorums, receiving the permission of only a

79

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

subset of all processes is enough to enter the critical section, provided these quorums and
their intersections are well defined [143, 4].

The other family of traditional approaches for performing mutual exclusion in dis-
tributed settings relies on token-based protocols. In this approach, mutual exclusion is
ensured by having a token traveling amongst the processes: the right to enter the critical
section is materialized by the possession of the token [131]. The token can either circulate
and get captured upon reaching a requesting process or getting asked by it [148, 108].

4.3 Dynap

In this section, we present the system model of Dynap, a framework for the continuous
and decentralized adaptation of the placement of jobs of a data pipeline over a geo-
distributed platform made of multiple SPEs. The section is structured as follows. First,
the application and platform models are presented. Then, the cornerstone of the approach,
i.e., the migration protocol, is specified in detail.

4.3.1 Application model

Before coming back to the model of the platform targeted, let us review the model of
applications considered. The application model considered is that of a simple data pipeline.
In other words, we consider applications that can be represented as chains of operators,
with each operator composing the pipeline being potentially hosted by a di�erent compute
node. Such a pipeline is illustrated in Figure 4.1. Each node represents an operator to
be applied to the incoming stream of data, and each directed link represents the data
stream between the two operators it connects. In other words, every operator has a single
incoming and outgoing stream of data except the first and last in the chain. The first
operator has no incoming stream, and the last one has no outgoing stream. Such pipelines
can be extended to any directed acyclic graph, where nodes represent the operators and
the links the dependencies between the jobs. It is worth to be noted that the migration
protocol presented supports any processing DAG (and thus pipelines).

A stream is assumed to be discrete, composed of data stream units, also called records.
This discretization makes it possible to interrupt the stream and restart it. Let us consider
two contiguous nodes src and dest in this pipeline. This interruption can be implemented
by having some mechanism on src which will keep the records potentially created during

80

4.3. Dynap

«

Figure 4.1 – Applications considered: stream processing pipelines.

the downtime. Upon reconnection, the records kept at src will be transferred over to dest.

4.3.2 Platform model

The platform model is informally depicted in Figure 4.2. Dynap’s targeted infrastruc-
ture is the same as the one described in Chapter 3 and is a geographically distributed
platform that gathers resources that can be managed by di�erent authorities. Each in-
dependent set of resources can be referred to as a computing site. A computing site is
typically a set of tightly coupled compute nodes, such as a cluster of small single-board
computers located at the edge of the network. A larger data center, at the other end of
the spectrum, can be also seen as one site. But, the actual computing power delivered
by one site is not an important aspect and does not impact the design of our framework.
We assume that direct communication between sites is possible. We assume that each site
includes several software elements:

1. a running instance of a Stream Processing Engine (SPE) such as Storm, Flink,
or Spark streaming. In other words, each site is managed by a local Job Manager
which takes care of orchestrating (deploying and monitoring) stream processing
jobs, typically implementing part of the operators of the pipeline globally submitted
to the platform.

2. a Message Broker (MB), which is responsible to transfer data from one site to
another, typically the stream produced by the last operator hosted locally to the
first one hosted remotely, as per the pipeline order. We assume each site is equipped
with a running broker (such as Mosquitto [135] or Kafka [206]), that will manage
the message queues needed to implement the pipeline. More detail will be given
about this later.

3. a Dynap agent (represented as an orange box in Figure 4.2), which will be the entry
point to a site and its hardware and software capacities. It also constitutes, with
other Dynap agents, a peer-to-peer network of agents able to coordinate together

81

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

A

D

C
B

Dynap

Dynap
Dynap

Dynap

Figure 4.2 – Targeted platform.

VLWH�& VLWH�. VLWH�)

«

« VLWH�%

Figure 4.3 – A mapped application.

so as to implement the decentralized adaptation presented below. Its internal ar-
chitecture will be discussed later.

Figure 4.3 illustrates a possible mapping of a generic pipeline onto the resources of
the di�erent sites.

4.3.3 The migration protocol

In this section, we present the migration protocol powering Dynap, supporting a safe,
decentralized and possibly concurrently triggered adaptation. Before presenting the details
of the algorithm, we need to refine how an operator internally works and how operators
are precisely modelled.

82

4.3. Dynap

WRSLF�
IRUZDUGHU

63�
MRE

IURP�SUHYLRXV�RSHUDWRU
WR�QH[W�RSHUDWRU

LQBWRSLF RXWBWRSLF

RSHUDWRU���QRGH�L

Figure 4.4 – An operator’s internals.

Preliminaries

The internal composition of a running operator is represented in Figure 4.4. In the
following, we will be using the terms node or operator interchangeably, as an operator
can be mapped onto any physical compute node. Without any loss of generality we will
assume that each operator of the processing graph is running on a di�erent compute host.

Each operator is equipped with two topics hosted locally and managed by the local
message broker (MB). The in_topic receives the records from the previous operator
(sent through the network) and feeds the job implementing the operator’s logic. The job
produces records to be sent to the next operator in the pipeline in the out_topic, also
managed locally.

When it comes to migration, the job and the two topics need to be moved from the
current node to the newly selected node for this operator. When a job is migrated, its local
topics need to be migrated too, thus introducing a possible failure in data delivery and
breaking the integrity of the pipeline. Also, it introduces a coupling between operators.
When one operator is migrated, indeed, if its incoming topic is hardcoded in the code of its
predecessor, its predecessor has to stop and restart so as to start sending the stream to the
topic of the new host of the migrated node. To avoid such downtime in the processing,
we introduce a topic forwarder component, whose role is to smoothly take care of
the redirection. The topic forwarder takes care of forwarding the content of the local
out_topic to the in_topic of the successor operator. By decoupling the processing from
the stream management, upon the migration of its successor, the SP job does not have to
stop and restart but only its local topic forwarder, which prevents losing some processing
or introducing inconsistencies.

83

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

MQTT broker

Node 1 Node 2 Node 3

Job C

Topic
1

Topic
2

Topic forwarder 1

MQTT broker

Job A

Topic
2

Topic
3

Topic forwarder 2

MQTT broker

Job B

Topic
3

Topic
4

Topic forwarder 3

Node 4

MQTT broker

Job A'

Topic
2

Topic
3

Topic forwarder 4

Figure 4.5 – Sample job migration and its data flow.

Job migration

The basic operation involved in the adaptation is job migration. In other words, mi-
gration is the possible adaptation action to be used, in a coordinated fashion, in order
to improve the placement of operators over the compute nodes of the platform. Let us
illustrate the steps of the basic migration process with an example of a pipeline composed
of three operators. Figure 4.5 illustrates such a simple source/sink data flow involving
Jobs A, B, and C. Let us assume the second one, Job A migrates.

Before Job A can stop, the topic forwarder of its predecessor (Job C) needs to stop,
so that it can reconfigure to send its outgoing flow to the future host of Job A (pictured
as Job A’ on Node 4). Yet, we need to ensure that all records sent by Node 1’s topic
forwarder are actually consumed by Job A before it can stop. This can be for instance
implemented through a special message sent by Node 1 to Node 2 once the last data
message forwarded has been consumed by Job A (and thus acknowledged). This issue is
discussed later.

Note that no action needs to be done on Node 3 during Job A’s migration. Once
Job A migrated to Node 4 and successfully starts, topic forwarder 1 can start with the
new publishing host address (Node 4). During the downtime of Job A, Job C continued
producing data and published them to Topic 2. This ensures that no data is lost during
the migration.

84

4.3. Dynap

The need for mutual exclusion

A problem that may arise when multiple jobs decide to migrate at the same is that the
pipeline may get wrongly reconnected. More precisely, when a migrated job restarts, it is
assumed that its successor has been stable during its migration. If its successor moved at
the same time, it will get reconnected to a job that is no longer running.

Avoiding this problem can be achieved either by introducing ad-hoc, possibly complex
coordination mechanisms between nodes or by preventing the concurrent migration of
neighboring jobs.

Mutual exclusion is a general mechanism that prevents two or more processes to enter
a concurrency-sensitive section of code simultaneously, as it may lead to problems. The
problem is tackled by introducing a coordination protocol between nodes so that the
access to the critical section of code is serialized. In other words, applying this protocol,
they can decide in which order they are going to enter the critical section of code.

Mutual exclusion has been solved for di�erent contexts and models. A more detailed
discussion of mutual exclusion protocols can be found in Section 4.2. Our complete mi-
gration protocol combines a mutual exclusion protocol with distributed coordination of
job migration, as in our case, the critical section is actually the job migration itself.

Assumptions

The model in which our migration protocol is written follows the one adopted by
the algorithm which inspired us for the mutual exclusion part, the Ricart-Agrawala algo-
rithm [181]. In particular, we assume the following:

— The agents have a unique ID;
— The agents are reliable: they do not crash and behave according to the algorithm;
— The communication channels are reliable messages is delivered in order. In other

words, no message is lost and two messages sent through the same channel are
received in the order in which they were sent.

The model is completed with the possibility to call functions that can be implemented
on top of this model. In particular, the migration procedure (Lines 1-16) is composed of a
set of functions called synchronously, that sometimes act remotely. Their implementation
can rely on RPC calls, or REST APIs, but can also rely on a set of message exchanges
between the nodes involved. They are detailed later.

85

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

Protocol

The protocol combines a direct adaptation of the Ricart-Agrawala algorithm with the
details of the migration itself. Its details are given by Algorithms 1 and 2. As mentioned
previously, for the sake of simplicity and without loss of generality, we assume that each
operator is hosted by a distinct host. The algorithm is applied by any agent either entering
the migration process and thus requesting the critical section or in possible concurrency
with a neighboring agent.

The algorithm relies on two communication primitives, namely send() and recv().
More precisely, the send(msg, dest) primitive sends the content msg to the node dest.
The recv(msg, src) is a blocking primitive waiting for a message coming from src to
arrive. Following the Ricart-Agrawala (RA) algorithm, a node which wants to trigger its
migration sends a query to its concurrent nodes, i.e., its neighbors in the pipeline (see
lines 7-14 in Algorithm 1). Lamport timestamps are used to inject some fairness into the
mechanism. In case of queries with the same timestamps crossing each other, the unique
ID of the node is used to decide which node is granted access to the critical section, in our
case the right to trigger its own migration. Upon receipt of such a query, a node decides
either to grant the permission to the requester (by sending an REPLY message) or defer
its answer, depending on a simple leader election algorithm (Lines 15-22). Upon receipt
of an REPLY message (see Lines 23-28), if all responses from other neighbors have been
received, access the critical section is granted and the migration is triggered.

Algorithm 2 details the migration procedure at the end of the critical section. Let
us detail these steps. The first step is to ensure that no data is preventing to stop the
topic forwarders of all the predecessors of current node H. The flush_TF(p) functions
wait that all the data items in the topic forwarder of p have been acknowledged by the
job running on H before actually stopping it. Once this is done, we can safely stop the
local job as all pending data items have been processed. Once this is done, the remote
job is initialized on NH. However, it cannot request the critical section yet. Then, the
rewire() function then ensures that the references to the local host on the neighbors of
H are updated to point to NH. Finally, all topic forwarders on predecessors get restarted
and configured to send data to NH. The migrated job gets actually restarted using the
start_remote_job() function. At that point, the agent started on NH and can actually
start requesting migration again.

86

4.3. Dynap

Algorithm 1 Requesting the migration
1: cst H, the current node
2: cst NH, the target node for the job
3: var preds, the set of predecessors of H
4: var succs, the set of successors of H
5: var reqCS = true
6: var highSN = 0

7: procedure RequestMigration()

8: reqCS = true
9: mySN = highSN + 1

10: repCount = | succs | + | preds |
11: for each j in (succs [preds) do
12: send (<REQ, mySN>, j)
13: end for
14: end procedure

15: procedure UponReceiptOf(<REQ, rcvdSN>, j)
16: highSN = max (highSN, rcvdSN)
17: if reqCS and ((rcvdSN > mySN) or (rcvdSN == mySN and j > me)) then
18: deferred = deferred [{j}
19: else
20: send (<REPLY>, j)
21: end if
22: end procedure

23: procedure UponReceiptOf(<REPLY>, j)
24: repCount–
25: if repCount == 0 then
26: migrate()
27: end if
28: end procedure

87

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

Algorithm 2 The migration procedure.
1: procedure Migrate

2: for each p 2 preds do
3: flush_TF (p)
4: end for
5: stop_local_job ()
6: init_remote_job (preds, succs, highSN, deferred)
7: rewire ()
8: for each p 2 preds do
9: restart_TF (p)

10: end for
11: reqCS = false
12: for each d 2 deferred do
13: send (<REPLY>, d)
14: end for
15: start_remote_job ()
16: end procedure

Correctness

To prove correctness we need to verify two assertions:

1. that the properties of the Ricart-Agrawala algorithms are maintained.

2. that the migration procedure leads to a correct situation and no data were lost in
the process

Compared to the classical settings assumed in the Ricart-Agrawala algorithm, in our
case, new nodes can appear. In other words, the competitors of a node to enter the critical
section (which are its neighbors in the sense of both its dependencies in the processing
DAG) evolve over time, each time an entry to the critical section is granted, and thus
migration is triggered. So we need to ensure that migrating a node does not lead to
any problems. But more precisely, the only dynamism involved is when a node replaces
another one. Still, this makes one thing possible that a static setting does not allow: a
REQ request can be processed on H after the migration is done if the message was sent by
some neighbor of H after the migrate() procedure started on H. This potential problem
can be solved by ensuring the message is automatically forwarded by H to NH in this
case, and that upon migration, the full state of H is transferred to NH, so the answer sent
to the requesting neighbor is the same as if H did not migrate.

Also, we need to show that the migration procedure does not lead to any data loss
and that after the migration procedure, the links are correctly set. This is achieved by

88

4.4. Software prototype

first assuming that a mechanism exists to ensure that all data items sent by the topic
forwarder are actually processed before the termination of the job. This is embodied in
the migrate() procedure with the flush_TF() function. Then, the local job can stop,
and the remote job is initiated, through the stop_local_job() function. The whole state
of H is transferred to NH at this point. Finally, the rewiring takes place: the rewire()

function, through a distinct set of messages not detailed here, ensures that all neighbors
update their link to H with NH. At this point, the migration is done, and this constitutes
the end of the critical section.

4.4 Software prototype

In this section, we present the software prototype of a Dynap agent, and more generally,
the global software architecture needed to implement a decentralized pipeline adaptation.
As before, for the sake of simplicity (but without any loss of generality), we assume
throughout this section that each job in the pipeline is running on a di�erent node.

Figure 4.6 depicts the main components of a Dynap node. We can distinguish four
components. The controller, the stream processing engine, the monitoring stack, and the
message broker. Let us review them in more detail.

— The controller. The controller is responsible for the coordination of all other
components and for communication with them. It represents also the entry point for
jobs to be deployed on the SPE instance during the initial deployment of a pipeline.
The controller exposes a REST API, that was implemented using the Flask Python-
based web framework and that, based on the description of a job to be deployed,
deploys it on the SPE instance. It is also the element that executes the migration
protocol, in coordination with the controllers of nodes hosting neighbors in the
processing DAG. It is also responsible for starting and stopping topic forwarders
to ensure no data gets lost in the migration.

— The monitoring stack. So as to monitor the performance of the jobs running on
the node, each Dynap node equipped with a monitoring stack which exposes metrics
related to both the resource utilization and the supported SPEs. Monitoring is
crucial for a platform to decide when to migrate jobs and where to. This aspect was
not covered until now: We simply assumed that some mechanism was responsible to
decide when to migrate. For instance, resource metrics can be used to detect over or
under-utilization of resources. In the implemented prototype, the monitoring stack

89

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

User

Description to
API callsPipeline

description script

Dynap

Flink JobManager

MQTT

Prometheus

cAdvisor

Export Metrics

node-exporter

Run/Update/Delete Job

DatabaseD
at

as
tre

am

Controller

Update/Get
Job info

Get Metrics

Request Metrics (REST)

Get Job (RET)

Send Job (REST)
Update/Get neighbor nodes info

Mutual exclusion coordination (REST)

REST

Datastream processed by SPE

Flink TaskManager

Update/Set data forwarders

Figure 4.6 – A Dynap node.

is based on Prometheus libraries such as Node-exporters for resource utilization of
the nodes and cAdvisor for resource utilization of containers on which services run.
SPE-specific metrics (Flink metrics in the prototype described) such as available
SP task slots and data in/out rate are also collected. All the data collected by the
above tools are aggregated in Prometheus [104], where the metrics can be queried
and processed.

— The message broker. The topics needed for the job, as described previously,
are managed through a message broker. Specifically, the Mosquitto message broker
was used for this. Mosquitto includes mechanisms for ensuring the persistence of
data in case of disconnections, which can be used to purposefully guarantee that
no data will be lost during the migration, as the data is maintained by the broker
until the job is actually migrated.

— The stream processing engine. Finally, the SPE chosen for the software proto-
type was Apache Flink. Flink includes a JobManager and a Taskmanager, which

90

4.5. Experimental results

were described in more detail in Chatper 2.

4.5 Experimental results

In this section, we describe the experimental setup, performance metrics, and exper-
imental results obtained with the prototype developed. The goal is twofold. First, to
validate the soundness of the Dynap approach. Second, to assess empirically in a realistic
setting the performance attainable by our decentralized solution. The experiments were
conducted over Grid’5000, a large-scale geographically-distributed computing platform in
clusters spanning 8 di�erent computing sites [21].

Initially, a preliminary set of experiments were conducted in order to assess the ability
of Dynap to ensure continuity and integrity of the pipeline operations in the presence of
migrations, i.e., to verify experimentally that no data is lost during migrations. As detailed
previously, upstream jobs of the migrating job need to be reconfigured dynamically, by
redirecting their output data streams to a new node once the job migrated successfully.
Topic forwarders, previously described, were introduced for that matter. As mentioned,
the main benefit brought forward by this approach is to reduce significantly the pipeline
downtime. Indeed, it no longer requires a stop and restart on the jobs themselves, that can
continue executing and processing data during the migration. Generally, restarting an SPE
job can take up to a few seconds, depending on the underlying platform, and requires a job
state to be saved and loaded. Secondly, as detailed previously, data forwarders guarantee
that no data gets lost during migrations. We leverage the message broker data persistence
functionality to bu�er data in the message broker during the job migration. Basically, data
forwarders are clients subscribed to a certain topic during job submission. And after the
job migration, data forwarders are automatically created with an updated remote broker
address to publish, that is the address of the node where the migrated job is running. The
preliminary experiments confirmed that the design could preserve the integrity of data
flows in spite of the presence of job migrations.

The second set of experiments were focused on assessing the performance benefits
of having automated migrations. The experiments were conducted on Grid’5000 [21],
more precisely on the Rennes cluster. We used EnOSlib [79] to emulate a geo-distributed
platform and artificially set custom delays on each node. Each node had its latency set
from 10ms to 150ms on both input and output connections.

We initially deployed the pipeline represented in Figure 4.7(a), basically a linear chain

91

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

Node 1

Source

Node N

Sink

Node 2

Job A

Node 3

Job B

Node 4

Job C

Node 1

Source

Node N

Sink

Node 2

Job A

Node 3

Job B

Node 4

Job C

(a)

(b)

Figure 4.7 – Job deployments over multiple nodes.

of 12 nodes each one running a job and connected sequentially. After the initial placement,
the experiments were run for over 20 minutes. A migration script was triggered during
the experiment to trigger migrations of a random job in the pipeline from a random node
to another one with a lower latency with the nodes running its neighbors than the current
node. Once the migration process is launched, the decentralized mechanism detailed is
triggered. Each node (agent) is set to run up to 4 SP jobs during the test. After the
experiment, the job placement may for instance look as in Figure 4.7(b), where Job B
where migrated from Node 3 to Node 2.

While tuning the experiments, we noticed that there are two cases regarding the
evolution of the pipeline’s latency. Either it stays constant with time (see Figure 4.8(b)),
in which case, Dynap will try to improve this latency. Or the pipeline configuration cannot
handle the input’s rate, creating bottlenecks (see Figure 4.8(a)), leading to an increased
latency over time. In this case, Dynap’s role is first to adapt the deployment so as to
reach a configuration where the latency remains constant, and then improve it again. In
our experiments, we observed that the threshold below which the latency kept increasing
when no migration was permitted was around 1/490 for the input rate. Figure 4.8(a))
shows the results with a rate of 1/480, and Figure 4.8(b) for 1/500.

In the figures, the orange curves show the latency obtained throughout the experiment
when the migration mechanism is not enhanced, while the blue curves show the results
with it. Dynap was able to reduce the latency of the pipeline significantly, and even to

92

4.5. Experimental results

(a)

(b)

Figure 4.8 – Overall latency in various data rates

93

Part , Chapter 4 – DynaP: Decentralized Adaptation of Stream Processing Pipelines

make the latency stop increasing due to relevant migration choices.

4.6 Conclusion
In this chapter, we proposed Dynap, a complete framework for the decentralized co-

ordination of data processing pipelines composed of a plurality of stream processing jobs.
In particular, Dynap optimizes the overall pipeline performance by supporting the dy-
namic, coordinated, and safe migration of jobs. The main feature of Dynap is that these
migrations are orchestrated in a decentralized fashion, i.e., by having agents coordinating
together to achieve the migrations. The software prototype developed was experimentally
tested and validated over an emulated geo-distributed platform. These experiments sup-
port the feasibility of the proposed approach and its ability to actually bring the benefit
of continuous adaptation in such a context.

The software prototype developed still needs to get extended with concrete decision
mechanisms on when to trigger migrations, while Dynap yet includes the how. Also,
more experiments need to be conducted to assess the scalability and performance of the
framework.

94

Chapter 5

PROTOTYPING FOG COMPUTING

PLATFORMS BASED ON STREAM

PROCESSING

Section 5.4 is a joint work with:

? Mulugeta Tamiru
? Mozhdeh Farhadi
? Li Wu
? Guillaume Pierre

5.1 Introduction
The two previous chapters dealt with the proposition of an innovative architecture to

deploy and dynamically adapt stream processing pipelines at scale, with a specific focus
on dynamic and decentralized settings. Software prototypes were developed in order to
test the concepts proposed and validate their e�ectiveness on large-scale testbeds.

This chapter deals with a complementary aspect, i.e., how a Fog platform for stream
processing could be designed and developed, covering both software and hardware aspects.
Such a platform gathers both computing resources at the edge and in more traditional
Clouds. The problem of operating such infrastructures has been addressed recently [190]
but is still an open research topic. In particular, while a lot of conceptual work has
been conducted on the topic of Fog platforms (please refer to Chapter 2 for a more
detailed review), the more practical issues and specific constraints of real-world testbeds
and scenarios have been left largely untouched by the research community.

The present chapter reports on the design, assembly, configuration, and experimen-
tation of two Fog platform prototypes, focusing in particular on how to instrument Fog

95

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

nodes located at the edge of the network. The chapter reports on two works we conducted,
sharing the objective of building a fully functional Fog node.

The first one, called FogGuru [27], is a first usable prototype of a Fog node that was
assembled, configured, and equipped with software so as to be ready to serve as a stream
processing Fog node. The second one, called LivingFog is the result of collaborative work
aiming at facilitating the development and deployment of Fog applications supporting
real IoT devices and applications. Specifically, this work was conducted in the context of
the Marina of Valencia, in Spain. Throughout the chapter, we discuss the design choices
of both platforms, the constraints brought about by the real world and how they were
dealt with, what were the resulting implementation choices and what were their visible
impact.

Here, I would like to acknowledge specifically that LivingFog was the collaborative
work with Mulugeta Tamiru, Mozhdeh Farhadi, and Li Wu, with guidance under Guil-
laume Pierre, and presented in more details in [28]. The presentation made here is focused
on the hardware assembly and the software stack, in which I was the primary contributor.

The rest of the chapter is organized as follows. Section 5.2 recalls the general design
and functional requirements of a Fog platform. Section 5.3 details the FogGuru platform.
Section 5.4 introduces the LivingFog platform, its improvements over the FogGuru plat-
form, and its early evaluation and impact. Finally, Section 5.5 describes a number of
relevant initiatives, and Section 5.6 concludes the chapter.

5.2 Design

As previously presented in chapter 2.2.2, architectures for online real-time data pro-
cessing are composed of a number of loosely coupled software components (Figure 2.5).
Let us quickly recall these components here. They can be seen as the functional require-
ments of the Fog node, and they guided the design and implementation choices for our
Fog node.

— Data Source refers to the initial data generation, their physical origin and format.
Said data could well come from IoT devices (e.g., sensors), mobile phones (e.g.,
GPS location data streams) or social media feeds. Their injection to the processing
core of the system is ensured by the data transfer component.

— Data Transfer covers the processing, storage and delivery of the data, possibly
in a distributed fashion. It is performed mainly by moving data between the dif-

96

5.2. Design

ferent Fog system components and could include a number of data connectors and
possible schema transformation pipelines. Typically, the initial data format can be
encrypted, and not human-readable. The cornerstone of such a component is mes-
saging middleware. In the IoT field, the publish-subscribe paradigm has become
the de facto standard for transferring data across the system in a scalable and
robust way.

— Data Processing, and in particular Data Stream Processing, is of course the
fundamental block in such an architecture. SPEs process unbounded data streams.
SPEs are typically fed by the data transfer service with streams of data and deliver
their results either to the Cloud or to an analytics system for further exploitation.
As conveyed by the previous chapters, this component can be either centralized or
distributed.

— Analytics tools are software to build and implement analytical procedures to
discover useful information [55], often exposed to end users through dashboards.
Data generated by the SP applications are to be delivered to external components
such as Data Analytics tools, the last stage toward the end user.

— Data Storage is the component responsible to persist data, a crucial ability in
stream processing systems. It serves the purpose to preserve some data for future
processing, transferring data to other services, and backup in case of failure, in
addition to just retaining output data.

— Deployment and orchestration. A now common and standardized approach
to facilitate the management of software platforms is containerization. It enables
the packaging of components as self-contained and separated entities that connect
with other components via Application Programming Interfaces (APIs).

— Monitoring. It is critical to monitor the status of hardware and software resources,
from the processors to the containers and applications, on a continuous basis.
Metrics such as CPU utilization, memory consumption, network tra�c, number
of requests, and rate of request arrival can be included in the status information.
These metrics can be obtained through multiple software dedicated to either the
hardware or a specific software component. Some of them are directly provided by
the SPE APIs.

This generic architectural structure was followed by both FogGuru and LivingFog
platforms. Yet they had their own objectives and constraints. They are detailed further
in Sections 5.3 and 5.4, respectively.

97

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

5.3 FogGuru

The FogGuru platform development was driven by the desire to build a complete
SPE-centric Fog node. As suggested previously, software architects, system integrators,
and IoT or smart-city application developers are facing one common problem: Deploying a
Fog application requires an engineer with a broad area of knowledge from cluster creation
to software development, and a lot of manual intervention and setup is needed depending
on specific use cases. FogGuru can be seen as a concrete assembly of the model presented
in Section 5.2. It was thought of as a prototype of a generic Fog node specialized in stream
processing, able to operate Stream Processing in a Fog environment, and to support not
only running simple data stream operations such as filtering, aggregating, and alerting at
the edge, but also to facilitate the management of the applications running in edge nodes.

The concrete software architecture of the platform is presented in Section 5.3.1 and
its operation and practical utilization are detailed in Section 5.3.2.

5.3.1 Platform architecture

In principle, any device with computing, storage, and network connectivity could act
as a fog node [54]. Additionally, fog nodes should be able to be distributed geographically,
to cope with di�erent network types, to be cheap and easy to replicate. We chose to
work with Raspberry Pi 3b+ (Quad-core 64-bit ARM processor, 1GB of RAM, 32GB of
storage) single-board computers as standard devices. However, as such devices are rather
limited in terms of processing capabilities (mostly related to the little amount of RAM
available), we decided to build a small cluster of five Raspberry Pi 3b+, and use such
cluster as fog node hardware platform. In Figure 5.1 we present two images of the cluster,
which we refer to as ’fridge’ in the rest of this section.

The FogGuru platform’s high-level architecture is represented in Figure 5.2 which im-
plements the generic design recalled in Section 5.2. Data from the IoT tier gets ingested
through a suitable queuing system, from where it is fetched to be processed. Intermedi-
ate results may be fed back to the message queueing system and/or stored persistently,
depending on the expected usage. Processed data (represented as a stream) is pushed to
the cloud tier for further aggregation/analysis. The operations of the stream processing
engine are monitored, and relevant log data (or basic analytics) can also be pushed to the
cloud tier in batches.

The choice of appropriate technologies/frameworks for implementing such an archi-

98

5.3. FogGuru

Figure 5.1 – The FogGuru hardware platform (cluster of 5 Raspberry Pi 3b+)

Text

IoT data Messaging System
(Queue based)

Processing
Engine Cloud

Storage
(optional)

Monitoring

Fog Node

Data batch

Data stream

Figure 5.2 – The FogGuru platform software architecture.

tecture plays a critical role. Here is a brief description of our design choices.
— On the messaging middleware aspect, Message Queue Telemetry Transport

(MQTT) is a lightweight publish-subscribe network protocol widely used in IoT ap-
plications, and better suited for fog applications than more powerful (but resource-
hungry) cloud-oriented frameworks (such as, e.g., Apache Kafka). We decided to
use the lightweight and open-source Mosquitto [135] implementation of MQTT as
the broker for data transfer.

— Flink [41] was chosen as the Stream Processing Engine (SPE). Apache Flink is a
distributed, open-source, stream processor with a set of expressive APIs able to
implement stateful stream processing applications. A more detailed review of Flink
and its internals can be found in Chapter 2.

99

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

— Prometheus [104] and Grafana [128] were used for computing real-time performance
indicators based on Apache Flink metrics APIs.

— To deploy applications and globally orchestrate the software on the Fog node, we
used Docker Swarm [74].

5.3.2 Operation and early experiments

A typical deployment over the FogGuru platform is depicted in Figure 5.3. It shows
which components gets deployed on which node, their roles and interfaces. To make it
run, three main technical steps have to be conducted.

Pi Cluster

Worker Node 1 Worker Node 2 Manager Node Worker Node 3 Worker Node 4

Docker Swarm

OS OS OS OS OS

Docker engine Docker engine Docker engine Docker engine Docker engine

Flink
Jobmanager

MQTT BrokerFlink
Taskmanager

Flink
Taskmanager

Visualizer
Stack

Flink
Taskmanager

Figure 5.3 – FogGuru: deployment view.

Creating the swarm nodes. Docker Swarm [76] is a container orchestration mode for
natively managing a cluster of Docker Engines. A swarm is a group of either physical or
virtual machines that are running the Docker application and that have been configured
to join together in a cluster. A swarm manager controls the activities of the cluster, and
machines that have joined the cluster are referred to as nodes. It can also run on multiple
resource-constrained devices such as Raspberry Pis. In our case, one node functions as
a swarm manager node, while the other ones act as workers. The configuration deployed
consists of 5 Raspberry Pis, interlinked locally within a docker swarm network.

100

5.3. FogGuru

Apache Flink on Raspberry Pi. The Apache Flink runtime includes two types of
processes. There must be at least one Job Manager, which coordinates the distributed
execution, and a plurality of Task Managers (workers), which execute tasks, as mandated
by the Job Manager, and exchange data streams. The design is to run Job and Task
managers on di�erent swarm cluster nodes. To run Flink on a Raspberry Pi, we configured
the Job Manager heap-memory size to 512MB, and the Task Manager heap memory size
to 256MB. Also, we enabled Flink’s built-in monitoring and metrics system to allow
developers to monitor their Flink jobs. Flink Metrics were queried via REST API, and
the results were fed to Prometheus and Grafana for monitoring and visualization purposes.

We used dockers buildx feature to create a custom Apache Flink docker image for
ARMv7 processor and hosted the image on the DockerHub public repository 1.

Building the software. We used Docker Swarm to compose the services running on
the cluster. Also, we designed the service placement: Which services should run on which
nodes, how many replications, which services should connect using which network etc., and
wrapped it in a YAML script for one-click deployment 2. The advantage of this method is
that application developers can easily modify their internal services, and they only have
to push a jar file to deploy a fog application.

Validation

The FogGuru node was validated using the demonstration setup depicted in Figure 5.4.
The early experiments were based on a use case in public transportation, whereby data
on connected vehicles are collected and aggregated at some fog nodes (which estimate the
tra�c intensity in a given region).

We used real-world data on connected vehicles, covering 245,369 vehicles moving
across Italy. Data consists of vehicle location, the timestamp of the event created, engine
status and type of the vehicle. Events are created converting their recorded timestamp
into real-time. On average, 0.8 events are generated per millisecond.

The application implements the following functionality: It filters the incoming tra�c
by their recorded region and sends aggregated results every 10 seconds to the cloud (We
used a desktop PC as a cloud in the demonstration setting). On the cloud tier, we deploy
the Telegraf, InfuxDB and Grafana (TIG) stack to receive and visualize aggregated results.

1. https://hub.docker.com/repository/docker/digitaljazz/flink-1.8.0-armv7
2. https://flink-fog-cluster.readthedocs.io/en/latest

101

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

RPi Cluster

Flink Stack Monitoring
Stack

Aggregated
data

MQTT Broker

Submit
Flink Job

App developers

IoT data
stream

Figure 5.4 – Validation setup.

A screenshot of the resulting dashboard is reported in Figure 5.5.
The platform was able to tolerate the tra�c without showing any backpressure while

maintaining available processing space for other tasks.

5.4 LivingFog

One of the key benefits of fog computing is its ability to reduce the latency and
cost of delivering data to a remote cloud by bringing computation close to the data
sources [138]. As such, fog computing complements traditional IoT deployments by co-
locating computation with a group of sensors and allowing pre-processing of data in real-
time, thus reducing latency and the amount of data sent to remote clouds. The FogGuru
platform, presented in the previous section, can be seen as a first concrete step towards a
usable generic node able to act as a fog layer between the data and the final Cloud layer.

In the context of the FogGuru European project [84], and in collaboration with Las
Naves [130], the innovation agency of the city of Valencia in Spain, we built and deployed
a real-life fog computing platform called LivingFog. The design and implementation of
LivingFog built upon the experience gained with the FogGuru platform, and also on a
companion platform described in [17].

The LivingFog platform is the result of exploring and resolving multiple challenges

102

5.4. LivingFog

Figure 5.5 – Validation: the cloud dashboard for tra�c monitoring at the regional level.

related to resource management, multi-tenancy, security, and data processing in the fog
to finally help Las Naves set up an IoT and Fog computing platform. The platform
was validated through the organization of a hackathon [83], during which the developers
exploited real data generated by sensors to develop value-added services and applications.

5.4.1 Non-functional requirements

Apart from the general needs mentioned in Section 5.2 to build a data stream process-
ing platform, multiple software challenges were addressed in the development of LivingFog.
The following challenges can be seen as the non-functional requirements of the Fog system
and are both specific to our use case and potentially common to many similar smart city
environments.

Various vendors and sensor devices: A first specification of the project was to
build a platform using relatively powerful, lightweight, low-cost computers. The Living-
Fog platform was built using 60 Raspberry Pi single-board computers, divided into 7
physical clusters. Plus, multiple LoRaWAN gateways and sensors had to be configured
and integrated into the platform. Orchestrating a data exchange between multiple Fog

103

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

computing clusters challenged us to use scalable cluster orchestration systems such as
Kubernetes [126].

Continuous data flow from multi-vendor sensors: Continuous and consistent
data flow from every sensor needed to be provided. We needed to use a common data
protocol and had to design a custom data processing middleware.

Multi-tenancy and security: A typical constraint in real platform is the fact that
it should be used by multiple tenants. Meaning, multiple application developers must be
able to deploy their own fog applications on top of it, using the data the Fog platform
provides, potentially with di�erent access levels. Also, the platform must support a secure
connection and login from multiple application developers.

Resource management and scalability: The platform had to be created with
scalability in mind. The Fog platform had to be calibrated based on the data load and the
number of tenants who are using the platform. To ensure that performance is maintained,
the resource management and the state of the platform itself must be monitored.

5.4.2 Implementation

The LivingFog computing platform is based on the Picocluster [167] 5 and Picocluster
10, which are 5-node and 10-node clusters composed of the Raspberry Pi 4B (Quad-
core 64-bit ARMv8 processor, 4GB of RAM, 32 to 64GB of storage). These single-board
computers o�er a good trade-o� between cost, computing power and size. They o�er
su�cient computing power and storage compared to the previous version to store and
process sensor data.

The platform aimed to integrate various types of sensors, such as sea wave and current
sensors, wind and temperature sensors, people and vehicle counters, in order to get as
much helpful data about the environment. The platform integrated a total number of 23
sensors. The majority of the sensors use LoRaWAN technology [107], which is a low-power,
wide-area networking protocol built on top of the LoRa radio modulation technique, to
wirelessly connect to the Internet.

Containerization and orchestration

Kubernetes was used to run multiple services on the clusters. Kubernetes is a portable,
scalable and extensible resource manager that allows to deploy applications declaratively.

The usage of Kubernetes represents the first major di�erence with respect to the

104

5.4. LivingFog

Kubernetes cluster

Single
Raspberry pi

Raspberry Pi
Cluster

Kubernetes
Cluster

 Software
stack

Kubernetes cluster

Software stack

Figure 5.6 – Software stack layers deployed on the Fog platform

FogGuru platform. One of the many advantages of Kubernetes over the Docker ecosystem
is autoscaling. Kubernetes allows autoscaling at two levels. At the application (container)
level, the Horizontal Pod Autoscaler (HPA) adjusts the number of pod instances (a pod is
the basic deployable software unit) based on CPU and memory utilization or other metrics
such as response time, whereas the Vertical Pod Autoscaler (VPA) adjusts pod CPU and
memory requests based on past and present resource utilization. At the infrastructure
level, Kubernetes provides the Cluster Autoscaler (CA) for adding and deleting worker
nodes from the cluster. Autoscaling is possible in Docker Swarm, but it can result in
complexity, as it requires integrating custom command scripts using exposed metrics.

Another advantage of Kubernetes is its role-based access control (RBAC) mechanism,
which defines the roles and their corresponding system access levels for multiple users.
After defining roles, tokens are generated to grant access to the platform concerning
multiple roles. Also, Docker has RBAC. Just like Kubernetes, it is organized around
subjects, roles, and resource collections. In many aspects, both provide a very similar
set of features. Yet, to fully exploit Docker RBAC, an Enterprise version (available only
through paid subscriptions) is required [75], while Kubernetes is fully open-source.

The Fog nodes have a limited amount of CPU and memory resources. As our fog
platform hosts multiple applications from di�erent teams simultaneously, we anticipated
a condition where some hackathon teams exhaust the platform resources and disturb other
teams. To avoid such conditions, we exploited the Kubernetes resource quota feature. This
mechanism in Kubernetes allows us to define a quota for the said resources at the container
level.

Software stack

Figure 5.6 shows the overview of the configuration steps needed for an application-
ready Fog node: After creating the Kubernetes cluster, the last step is to deploy the

105

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

FS Volume FS Volume FS Volume FS Volume FS Volume

GlusterFS Volume

Figure 5.7 – Data storage using the GlusterFS scalable network filesystem.

various software and services needed on the cluster to create an actual Fog platform.
The first step was to combine the storage capacities of the volumes of the Pis into a

single, centrally managed file system, as illustrated by Figure 5.7. GlusterFS (Gluster File
System) is an open-source distributed File System ready for Cloud and media streaming,
that is announced to scale out to store multiple petabytes of data. The clustered file system
can be accessed via TCP/IP or InfiniBand Remote Direct Memory Access (RDMA).
The software works with low-cost commodity computers and is based on Linux. Using
GlusterFS, we combined 5-10 separate storage memories from multiple Raspberry Pis,
ranging from 32GB to 64GB, into one single 160GB to 640GB filesystem storage. This
solution was needed as the data collected from multiple sensors grew over time.

Once the storage capacity of nodes was combined and centrally addressed, the software
stack dedicated to stream processing was devised. Figure 5.8 gives a complete vision of the
relation between the software stack and services installed and configured on each cluster.
Let us review the di�erent components.

— ChirpStack. Chirpstack is a free, open-source LoRaWAN Network Server that
enables users to set up their own LoRaWAN networks. It o�ers a web-based in-
terface for managing gateways, devices, and tenants, as well as for integrating
with popular cloud providers, databases, and services for handling device data.
ChirpStack provides a gRPC-based API that can be used to integrate or extend
ChirpStack. ChirpStack was used to manage the data flow coming from the var-
ious sensors deployed and communicating with the LoRa technology. In terms of
storage, ChirpStack relied on two databases. PostgreSQL [152] acted as a main
database for storing information about the devices connected to the Chirpstack

106

5.4. LivingFog

LoRa TCP/IP

LoRa-enabled
end devices

LoRa
Gateways

Fog Nodes
Kubernetes cluster

Chirpstack
network
server

Cluster monitoring
Backup database

Central monitoring
Prometheus federation

Grafana dashboard

InfluxDB

Backend Server

TCP/IP

Data
decoder NodeRED

MQTT broker

Live data

Historical
data

Figure 5.8 – Software stack and its data stream

Application server. ChirpStack Network Server also uses Redis [45] for storing
device-session data and non-persistent data like distributed locks, deduplication
sets and meta-data.

— Mosquitto. Mosquitto was again chosen to act as the main messaging system of
the platform, in control of handling all the major data flow between Chirpstack
Servers, and data parser python code.

— Data decoder. A specific data decoding program were developed to work on incom-
ing data from Chirpstack via MQTT, to interpret them according to the dataframe
of each sensor, and forward them again via MQTT broker towards InfluxDB and
NodeRed, the main processing software.

— InfluxDB. We used InfluxDB [158] to store historical measurement data coming
from the sensors.

— NodeRED. NodeRED [133] is a flow-based programming tool for the Internet of
Things (IoT) that allows for the creation of applications through a visual, drag-
and-drop interface. Node-RED is not specifically a Stream Processing Engine. For
instance, compared to more dedicated software toolboxes such as Apache Flink, it
was more built having IoT in mind and lacks more complex stream processing con-
structs such as parallel and pipelined computations. Yet, it supports the processing
of data streams in real-time.
For example, this includes input nodes for listening to data streams over message

107

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

brokers either based on MQTT or Kafka, reading data streams from files, and
listening to data streams over other protocols. NodeRED also provides processing
nodes that can be used to perform operations on data streams as they pass through
the flow, such as filtering, mapping, and aggregating data, as well as nodes for
performing tasks such as data parsing, data manipulation, and machine learning.
NodeRED also provides output nodes for sending data streams back to the message
brokers, writing data streams to files, and sending data streams over di�erent other
protocols. These nodes can be wired together to create complex flows that can
process data streams in real-time, making it easy to build real-time data processing
pipelines.

Monitoring

As mentioned previously, monitoring is critical for a fog platform to guarantee the
availability and reliability of the applications and resources. For instance, resource metrics
can be used to detect over or under-utilization of resources [26, 171], so as to be able to
adequately adapt the system in case of a problem detected.

To this end, the LivingFog platform is equipped with a monitoring stack that tracks
and collects information about computing resources, the status of computing devices, and
the performance of deployed services (e.g., network server in Chirpstack). This monitoring
stack is composed of a set of tools, including Node-exporters [159] for resource utilization of
fog nodes, kube-state-metrics [125] for the status of the Kubernetes orchestration platform,
cAdvisor [38] for resource utilization of containers on which services run. All the data
collected by the above tools are centralized in Prometheus [104], where the metrics can
be queried, and from which alerts for unexpected events can be sent if so configured.
Moreover, Grafana [128] is used for visualizing the data stored in Prometheus.

5.4.3 Experimental validation

The validation of the LivingFog platform was carried out in two steps. First, the per-
formance of the LivingFog platform was compared to a traditional cloud-only deployment
to assess its ability to bring the benefits of the Fog to the users. Here, the cloud was emu-
lated through a high-end on-premise computer. For that, we use the number of messages
sent over the network and network latency as metrics to compare the two deployments.
Second, once the platform was operational, a hackathon was organized to start developing

108

5.4. LivingFog

real applications on top of it.

Time (Hrs.)

N
o.

 o
f m

es
sa

ge
s

(c
um

ul
at

iv
e)

0

20,000

40,000

60,000

0 6 12 18 24

Cloud-only Fog-cloud

Figure 5.9 – Cumulative number of messages for a day.

Figure 5.10 – Latency (ms) of publishing to MQTT topics.

Figure 5.9 shows the number of cumulative messages sent by the sensors deployed at
La Marina de València during one day. In a traditional cloud-only deployment, all mes-
sages from all sensors should be sent directly to the cloud platform over long distances.
As a result, we see a large number of messages sent, amounting to a cumulative of 54,720

109

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

messages per day. In contrast, in the case of the fog-cloud deployment scenario, sensor
messages are sent directly to the fog platform for pre-processing and only messages con-
taining aggregate values are sent to the cloud every hour for visualization and persistent
storage. In the latter case, a total of 552 messages are sent to the cloud during a period
of 24 hours.

Figure 5.10 shows the network latency for publishing sensor messages to MQTT bro-
kers in the fog and cloud platforms. We see that publishing messages to the MQTT broker
on the fog platform takes on average only 4 ms, whereas sending messages from the sen-
sors to an MQTT broker in the cloud (hosted by some hivemq.com server in this case)
takes on average 40 ms. Clearly, this shows the advantage of fog deployments in reducing
network latency significantly and validates the LivingFog platform as able to bring the
benefits of the Fog to reality.

The platform was then used for the “Hack the Fog!” hackathon. The hackathon, in
which 63 participants used the LivingFog platform and the data collected from the sen-
sors to validate their ideas, took place from 26 to 28 March, 2021 both in Valencia and
online.https://ec.europa.eu/info/events/hack-fog-2021-mar-26_en.

The participants were divided into teams and accessed and deployed their developed
Fog applications on the platform. Let us describe the top three use cases introduced by
teams and chosen for their benefits (usefulness), as well as for the level of technology that
the team used for prototyping their applications.

— Water siltation monitoring use case. The developers targeted the water siltation
problem. Siltation is the water pollution caused by particulate terrestrial clastic
material, with a particle size dominated by silt or clay. Water siltation prevents
the passage of vessels and decreases water quality and biodiversity. The team’s
approach was to use the sensor data to model the siltation in water and notify La
Marina of the exact location where the level of siltation is above the normal level.
They utilized the data received by sea wave, current profiler, and water quality
sensors to feed the siltation model. They deployed their application using Node-
RED for processing the streams of sensor data in real-time.

— Customer monitoring use case for restaurants. The team developed an application
for both the restaurant owners in La Marina area and their customers. The restau-
rants located in the La Marina area may face decreasing in the number of their
customers due to the pandemic or bad weather conditions. On the other hand,
customers prefer to go to restaurants knowing that the place is not crowded in

110

https://ec.europa.eu/info/events/hack-fog-2021-mar-26_en

5.5. Related work

pandemic situations 3. The so-called Marina Connect application uses real-time
sensor data of people counter, car counter, weather station sensors (air tempera-
ture and precipitation data), and wind sensors along with the historical data of
these sensors stored in the cloud to predict the number of people in the La Marina
area. Based on this information, the application sends incentives to potentially
interested customers to enjoy attending the restaurants.

— Crowd monitoring use case. The application targets a similar problem to the pre-
vious application, hence with a wider range of audiences. This application uses
sensor data to notify people if they can attend di�erent spots of La Marina with-
out risking their health in pandemic situations. The application takes into account
the data of people counter sensors, wind sensors, weather station sensors, and wa-
ter temperature sensors to decide whether it is safe for an individual to enter a
spot in La Marina.

5.5 Related work

One of the defining characteristics of IoT is the large amount of data generated by a
vast number of sensors and mobile devices. These data need to be stored and processed
to get insights and visualizations, and to be able to make decisions based on them. As
IoT devices are mostly battery-operated and have limited data storage and processing
capacity, they need to be complemented by more powerful resources. Moreover, these
devices cannot host application services directly due to the said resource constraints [174].
As a result, traditionally, the data generated by IoT devices is usually transported over
long distances to centralized cloud data centers for processing and long-term storage.

Despite fog computing being discussed vastly in academia, there are only a few real-
world implementations that are reported. Byers presents several requirements that a fog
computing platform needs to fulfill and matches these requirements to several use cases
from di�erent industries. The author also presents a high-level software architecture for
fog platforms without discussing implementation details and technologies used to achieve
the platform [37].

Noghabi et al. explore several enterprises that use fog/edge computing presently in dif-
ferent industries such as business, smart cities, transportation and industrial plants [160].
The authors explain the motivation behind the use of edge/fog computing in these enter-

3. Crowding is one of the main factors in increasing the risk of respiratory viral infections [178].

111

Part , Chapter 5 – Prototyping Fog Computing platforms based on Stream Processing

prises and present a typical edge/fog deployment architecture without going into details
about implementation and technologies used to achieve the specific deployments.

Yannuzzi et al. present a converged cloud/fog paradigm to address physical, data, ser-
vice management and administrative siloes that smart city solutions su�er from, which
they implemented in the city of Barcelona, Spain [218]. The authors present the archi-
tecture of the solution based on the ETSI MANO orchestration stack and five use cases
where it was used.

Arkian et al. present a fog computing architecture based on open-source software inte-
grated with LoRaWAN networking for potable water management in the city of València,
Spain [17]. While serving as a basis for the LivingFog platform, the authors did not go
into the details of the implementation of the platform apart from identifying the chal-
lenges that the platform addresses. Our work was to extend it to support multiple sensors,
multiple fog computing clusters, multi-tenancy and data management in the context of
smart-marina management at La Marina de València.

5.6 Conclusion

This chapter presented two concrete Fog platforms, designed, assembled, configured,
equipped with a specific software stack, operated and experimentally validated. This line
of activity had the objective of implementing the generic software architecture of a data
stream processing platform by using state-of-the-art solutions and components while tak-
ing the specific constraints of Fog computing duly into account.

First, we introduced the FogGuru platform, which acts as an early development version
and a stepping stone towards the development of a developer-friendly, ready-to-use Fog
system. FogGuru was designed to enable application developers to program fog nodes
easily; it is based on a set of open-source components implementing open standards.
We provided instructions for developers to quickly build and deploy FogGuru on single
Raspberry Pis or a cluster thereof (using in the latter case Docker Swarm for orchestrating
the deployment). The validation was conducted through a tra�c data analytics scenario
based on real-world data from 245,369 Internet-connected vehicles.

Second, we presented the application-ready LivingFog fog computing platform inte-
grated with LoRaWAN technology, which has been used for a smart city project at La
Marina de València, Spain. Several sensors were deployed inside La Marina to measure
various parameters of the sea, weather, and the movement of people and vehicles. The

112

5.6. Conclusion

data collected from the sensors is processed on the LivingFog computing platform. We
reported the performance of the platform in terms of latency reduction and bandwidth
saved. Moreover, the platform has been used to deploy various applications by participants
of a hackathon. The platform is available under a liberal open-source licence 4.

4. LivingFog - http://www.fogguru.eu/livingfog/

113

http://www.fogguru.eu/livingfog/

Chapter 6

CONCLUSION AND FUTURE WORK

Stream processing answers to the need for quickly developing and deploying applica-
tions for real-time processing of continually created data. While its ability to handle a
high volume of data in real-time makes it the perfect technology for IoT use cases, it is
still not adapted to more geographically dispersed platforms including low-power compute
nodes, such as Fog environments, which are yet the natural playground for IoT. Stream
processing systems need to get revised so as to match the nature of these platforms.

The presented work focused on porting stream processing to Fog environments, ad-
dressing two phases in the life-cycle of the application: its deployment, and its continuous
adaptation. To achieve that, we operated a shift in the way SP applications are deployed
over the platforms: We considered that the jobs composing the pipeline can be managed
by multiple engines scattered over the platform, forcing us to rethink SP frameworks so
as to support a decentralized deployment of applications. This decentralization extends
to management, since maintaining a consistent view of the global platform in the lack of
a centralized solid infrastructure may make taking decisions and enforcing them di�cult,
in particular in the case of continuous adaptation. Throughout the work, programmabil-
ity has been considered so as to make our contributions usable in practice. Finally, all
works have been conducted from their design to their experimental validation, bringing
the concepts to life.

Findings

In this thesis, we firstly established that decentralizing the management of SP sys-
tems and thus envisioning the deployment of SP applications over Fog environments is
possible. In particular, we showed that brokering and then coordinating multiple stream
processing engines located is a promising solution in the quest for scalability in our con-
text. The incorporated self-adaptive mechanism reinforces this idea by showing that such
a deployment can be continuously adapted, based on decentralized mechanisms. Secondly,

115

we ventured into the practical issues of assembling from the ground up a Fog node that
could constitute the Edge part of such a platform. Let us review the contributions and
their impact.

In the first contribution, SpecK, we designed and experimentally validated an approach
for aggregating the processing power of multiple geographically distributed computing
sites, each managed by its own instance of a stream processing engine. To achieve that,
we added an additional layer of coordination, while also o�ering application developers
a straightforward set of primitives to deal with, easing the complicated process of im-
plementing an SP pipeline over a large-scale platform. In order to establish the viability
of such a model, we built a programmable software prototype of this additional layer.
It has experimented with an actual geo-distributed platform gathering multiple clusters
in France. When given large pipelines to deal with, SpecK is still able to manage them
without showing performance issues, coordinating the use of locally available resources
across a globally distributed infrastructure with minimal overhead.

In the second contribution, Dynap, we devised a framework for the decentralized co-
ordination of multiple job managers in the continuous adaptation of a pipeline deployed
over a Fog environment. Designed for the same architectural model as SpecK, Dynap
targets the continuous optimization of the overall SP pipeline performance based on the
migration of SP jobs. The strength of Dynap lies in its decentralized nature. It enables
the coordination of multiple agents each responsible for the migration of one or several
jobs. In spite of its decentralized nature, Dynap ensures that many concurrent migrations
do not disrupt the pipeline network. The framework architecture, decentralized adaption
protocol, and their validation are covered through the actual deployment of the framework
prototype across an emulated geo-distributed platform.

In the third contribution, we provided, based on two real-life Fog systems, hints for
the implementation of a Fog compute node meant to be placed at the Edge. The clusters
were assembled, configured, outfitted with a specific software stack, and validated exper-
imentally. This line of activity aimed to create the general software architecture of one
Fog node specialized in data stream processing.

Future directions

The software prototypes developed in this work, for validation purposes, were built
by making choices regarding in particular the underlying stream processing engines and

116

message brokers. These choices led us to use Apache Flink and Mosquitto, respectively.
Yet, both SpecK and Dynap are meant to support multiple SPEs and MBs. We can
imagine di�erent SPEs communicating, and exchanging jobs from one computing site to
another. Well-defined generic APIs can allow us to migrate jobs between various engines.
In order to make it a reality, the SpecK server and the Dynap agents can be integrated
with the various SPEs using their corresponding APIs such as Apache Spark streaming
and Apache Storm. In particular, in SpecK, This means developing the di�erent binders
between the Job management API and the di�erent SPEs.

On the message broker side, extending this work to the generic support of any message
broker would require defining a generic API for message brokers. While these APIs are
kind of standardized, there is no existing tool that allows one to easily switch from one
broker to another one without requiring a bit of re-coding. This would constitute a research
question in itself.

Going further, a related topic would be to transparently move from one broker to
another one upon job migration. In Dynap, the topic forwarder is designed to support
only MQTT-based brokers. Supporting job migration without having to worry about the
actual flavour of the message brokers running on the chosen site would augment the level
of abstraction for the user and extend the portability of such platforms.

While Dynap o�ers the complete machinery to enable dynamic adaptability to deal
with performance changes a�ecting the infrastructure, n intelligent monitoring stack is
lacking. Such a stack would focus on how to actually use the monitoring to make good
migration decisions and take concrete decisions on when to trigger migration. This is both
algorithmic and development work that still needs to be done.

Another improvement would be to support pipelines containing stateful operators.
This brings the need for extra mechanisms such as setting up a state migration protocol
and setting up some form of underlying distributed file systems.

In our quest for what should be, practically speaking, a Fog node, we designed, devel-
oped and validated usage-ready clusters specialized in Stream Processing frameworks for
the IoT environment. An ultimate completion to this line of work is to combine this work
with SpecK and Dynap, so as to validate the concepts and release them into the natural
habitat of the wilderness of computing platforms.

117

BIBLIOGRAPHY

[1] Daniel J Abadi et al., « Aurora: a new model and architecture for data stream
management », in: the VLDB Journal 12.2 (2003), pp. 120–139.

[2] A Community for Accelerating Analytics at the Edge, Apache Edgent, http://

edgent.incubator.apache.org/, 2016.

[3] Adobe, Adobe Creative Cloud, https://www.adobe.com/creativecloud.html.

[4] Divyakant Agrawal and Amr El Abbadi, « E�cient solution to the distributed
mutual exclusion problem », in: Proceedings of the eighth annual ACM Symposium
on Principles of distributed computing, 1989, pp. 193–200.

[5] Yanif Ahmad et al., « Distributed operation in the borealis stream processing
engine », in: Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, 2005, pp. 882–884.

[6] Arif Ahmed et al., « Fog computing applications: Taxonomy and requirements »,
in: arXiv preprint arXiv:1907.11621 (2019).

[7] Alexander Alexandrov et al., « The stratosphere platform for big data analytics »,
in: The VLDB Journal 23.6 (2014), pp. 939–964.

[8] Gayashan Amarasinghe et al., « A data stream processing optimisation framework
for edge computing applications », in: IEEE 21st International Symposium on
Real-Time Distributed Computing (ISORC), IEEE, 2018, pp. 91–98.

[9] Amazon, Amazon AWS, https://aws.amazon.com/.

[10] Amazon, AWS Elastic Beanstalk, https : / / aws . amazon . com /

elasticbeanstalk/.

[11] Amazon, AWS, Global Infrastructure, https://aws.amazon.com/about-aws/

global-infrastructure/.

[12] Mattia Antonini, Massimo Vecchio, and Fabio Antonelli, « Fog computing archi-
tectures: A reference for practitioners », in: IEEE Internet of Things Magazine 2.3
(2019), pp. 19–25.

119

http://edgent.incubator.apache.org/
http://edgent.incubator.apache.org/
https://www.adobe.com/creativecloud.html
https://aws.amazon.com/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

[13] Apache Flink graph processing, https://flink.apache.org/news/2015/08/24/

introducing-flink-gelly.html.

[14] Apache Flink programming comcepts, https://nightlies.apache.org/flink/

flink-docs-master/docs/concepts/overview/.

[15] Apache Flink: Stateful Computations over Data Streams, https://flink.apache.

org/.

[16] Apache Flink Python API, https://nightlies.apache.org/flink/flink-

docs-master/docs/dev/python/overview/.

[17] Hamidreza Arkian et al., « Potable water management with integrated fog com-
puting and LoRaWAN technologies », in: IEEE IoT Newsletter (2020).

[18] Marcos Dias de Assuncao, Alexandre da Silva Veith, and Rajkumar Buyya, « Dis-
tributed data stream processing and edge computing: A survey on resource elas-
ticity and future directions », in: Journal of Network and Computer Applications
103 (2018), pp. 1–17.

[19] Amazon AWS, AWS for the Edge, https://aws.amazon.com/edge/.

[20] Bahman Bahmani, Kaushik Chakrabarti, and Dong Xin, « Fast personalized pager-
ank on mapreduce », in: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, 2011, pp. 973–984.

[21] Daniel Balouek et al., « Adding Virtualization Capabilities to the Grid’5000
Testbed », in: Cloud Computing and Services Science, ed. by Ivan I. Ivanov et
al., vol. 367, Communications in Computer and Information Science, Springer In-
ternational Publishing, 2013, pp. 3–20, isbn: 978-3-319-04518-4.

[22] Daniel Balouek-Thomert et al., « Towards a computing continuum: Enabling edge-
to-cloud integration for data-driven workflows », in: Int. J. High Perform. Comput.
Appl. 33.6 (2019), doi: 10.1177/1094342019877383.

[23] Kyle Banker et al., MongoDB in action: covers MongoDB version 3.0, Simon and
Schuster, 2016.

[24] Carolina Tripp Barba et al., « Smart city for VANETs using warning messages,
tra�c statistics and intelligent tra�c lights », in: 2012 IEEE intelligent vehicles
symposium, IEEE, 2012, pp. 902–907.

120

https://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html
https://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/overview/
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/overview/
https://flink.apache.org/
https://flink.apache.org/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/python/overview/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/python/overview/
https://aws.amazon.com/edge/
https://doi.org/10.1177/1094342019877383

[25] Roger S Barga and Hillary Caituiro-Monge, « Event correlation and pattern detec-
tion in CEDR », in: International Conference on Extending Database Technology,
Springer, 2006, pp. 919–930.

[26] Sudheer Kumar Battula et al., « An e�cient resource monitoring service for fog
computing environments », in: IEEE Transactions on Services Computing 13.4
(2019).

[27] Davaadorj Battulga, Daniele Miorandi, and Cédric Tedeschi, « FogGuru: a fog
computing platform based on Apache Flink », in: 23rd Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), IEEE, 2020, pp. 156–
158.

[28] Davaadorj Battulga et al., « LivingFog: Leveraging fog computing and LoRaWAN
technologies for smart marina management (experience paper) », in: 2022 25th
Conference on Innovation in Clouds, Internet and Networks (ICIN), IEEE, 2022,
pp. 9–16.

[29] Martin Bauer et al., « The context API in the OMA next generation service inter-
face », in: 2010 14th International Conference on Intelligence in Next Generation
Networks, IEEE, 2010, pp. 1–5.

[30] Pete Beckman et al., « Harnessing the Computing Continuum for Programming
Our World », in: Fog Computing, John Wiley Sons, Ltd, 2020, chap. 7, pp. 215–
230, isbn: 9781119551713.

[31] Mehdi Mokhtar Belkhiria and Cédric Tedeschi, « Design and Evaluation of De-
centralized Scaling Mechanisms for Stream Processing », in: 2019 IEEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom), 2019,
pp. 247–254, doi: 10.1109/CloudCom.2019.00044.

[32] Marin Bertier et al., « Beyond the clouds: How should next generation utility
computing infrastructures be designed? », in: Cloud Computing, Springer, 2014,
pp. 325–345.

[33] Flavio Bonomi et al., « Fog computing and its role in the internet of things », in:
Proceedings of the first edition of the MCC workshop on Mobile cloud computing,
2012, pp. 13–16.

121

https://doi.org/10.1109/CloudCom.2019.00044

[34] Flavio Bonomi et al., « Fog computing: A platform for internet of things and
analytics », in: Big data and internet of things: A roadmap for smart environments,
Springer, 2014, pp. 169–186.

[35] Dhruba Borthakur et al., « HDFS architecture guide », in: Hadoop apache project
53.1-13 (2008), p. 2.

[36] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros, « Modeling and simu-
lation of scalable Cloud computing environments and the CloudSim toolkit: Chal-
lenges and opportunities », in: 2009 International Conference on High Performance
Computing & Simulation, IEEE, 2009, pp. 1–11.

[37] Charles C Byers, « Architectural imperatives for fog computing: Use cases, re-
quirements, and architectural techniques for fog-enabled iot networks », in: IEEE
Communications Magazine 55.8 (2017).

[38] cAdvisor, https://github.com/google/cadvisor.

[39] Nicolo M Calcavecchia et al., « DEPAS: a decentralized probabilistic algorithm for
auto-scaling », in: Computing 94.8 (2012), pp. 701–730.

[40] Rodrigo N Calheiros et al., « CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning algo-
rithms », in: Software: Practice and experience 41.1 (2011), pp. 23–50.

[41] Paris Carbone et al., « Apache flink: Stream and batch processing in a single
engine », in: Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36.4 (2015).

[42] Valeria Cardellini et al., « Decentralized self-adaptation for elastic Data Stream
Processing », in: Future Generation Computer Systems 87 (2018), pp. 171–185.

[43] Valeria Cardellini et al., « Distributed QoS-Aware Scheduling in Storm », in: Pro-
ceedings of the 9th ACM International Conference on Distributed Event-Based Sys-
tems, Oslo, Norway: ACM, 2015, pp. 344–347, doi: 10.1145/2675743.2776766,
url: https://doi.org/10.1145/2675743.2776766.

[44] Valeria Cardellini et al., « Optimal operator replication and placement for dis-
tributed stream processing systems », in: ACM SIGMETRICS Performance Eval-
uation Review 44.4 (2017), pp. 11–22.

[45] Josiah Carlson, Redis in action, Simon and Schuster, 2013.

122

https://github.com/google/cadvisor
https://doi.org/10.1145/2675743.2776766
https://doi.org/10.1145/2675743.2776766

[46] Rubén Casado and Muhammad Younas, « Emerging trends and technologies in
big data processing », in: Concurrency and Computation: Practice and Experience
27.8 (2015), pp. 2078–2091.

[47] Raul Castro Fernandez et al., « Integrating Scale out and Fault Tolerance in Stream
Processing Using Operator State Management », in: ACM SIGMOD’13, 2013,
pp. 725–736.

[48] Sirish Chandrasekaran et al., « TelegraphCQ: continuous dataflow processing », in:
Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, 2003, pp. 668–668.

[49] K. Mani Chandy and Jayadev Misra, « The drinking philosophers problem »,
in: ACM Transactions on Programming Languages and Systems (TOPLAS) 6.4
(1984), pp. 632–646.

[50] Jianjun Chen et al., « NiagaraCQ: A scalable continuous query system for internet
databases », in: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, 2000, pp. 379–390.

[51] Bin Cheng, Apostolos Papageorgiou, and Martin Bauer, « Geelytics: Enabling on-
demand edge analytics over scoped data sources », in: 2016 IEEE International
Congress on Big Data (BigData Congress), IEEE, 2016, pp. 101–108.

[52] Bin Cheng et al., « FogFlow: Easy programming of IoT services over cloud and
edges for smart cities », in: IEEE Internet of Things journal 5.2 (2017), pp. 696–
707.

[53] Sanket Chintapalli et al., « Benchmarking streaming computation engines: Storm,
flink and spark streaming », in: 2016 IEEE international parallel and distributed
processing symposium workshops (IPDPSW), IEEE, 2016, pp. 1789–1792.

[54] Cisco, Fog Computing and the Internet of Things: Extend the Cloud to Where the
Things Are - Whitepaper, https://www.cisco.com/c/dam/en_us/solutions/

trends/iot/docs/computing-overview.pdf, 2015.

[55] CompTIA, Why Is Data Analytics Important?, https : / / www . comptia . org /

content/guides/why-is-data-analytics-important.

[56] Apache Flink configuration, https://nightlies.apache.org/flink/flink-

docs-release-1.15/docs/deployment/config/.

123

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.comptia.org/content/guides/why-is-data-analytics-important
https://www.comptia.org/content/guides/why-is-data-analytics-important
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/deployment/config/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/deployment/config/

[57] OpenFog Consortium, Out of the Fog: Use cases (Autonomous Driving), http:

//www.fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[58] OpenFog Consortium, Out of the Fog: Use cases (Live Video Broadcasting), http:

//www.fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[59] OpenFog Consortium, Out of the Fog: Use cases (Oil and Gas Exploration), http:

//www.fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[60] OpenFog Consortium, Out of the Fog: Use cases (Patient Monitoring), http://

www.fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[61] OpenFog Consortium, Out of the Fog: Use cases (Smart Buildings), http://www.

fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[62] OpenFog Consortium, Out of the Fog: Use cases (Smart Factories), http://www.

fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[63] OpenFog Consortium, Out of the Fog: Use cases (Supply Chain Delivery), http:

//www.fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[64] OpenFog Consortium, Out of the Fog: Use cases (Tra�c Congestion Management),
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[65] OpenFog Consortium, Out of the Fog: Use cases (Video Surveillance), http://

www.fogguru.eu/tmp/OpenFog-Use-Cases.zip.

[66] Microsoft Corporation, Microsoft Azure, https://azure.microsoft.com/.

[67] Chuck Cranor et al., « Gigascope: A stream database for network applications », in:
Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, 2003, pp. 647–651.

[68] Edward Curry, « Message-oriented middleware », in: Middleware for communica-
tions (2004), pp. 1–28.

[69] Frank Dabek et al., « Vivaldi: A Decentralized Network Coordinate System »,
in: Proceedings of the 2004 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), Portland, Ore-
gon, USA: ACM, 2004, pp. 15–26.

124

http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
http://www.fogguru.eu/tmp/OpenFog-Use-Cases.zip
https://azure.microsoft.com/

[70] A.V. Dastjerdi et al., « Chapter 4 - Fog Computing: principles, architectures,
and applications », in: Internet of Things, ed. by Rajkumar Buyya and Amir
Vahid Dastjerdi, Morgan Kaufmann, 2016, pp. 61–75, isbn: 978-0-12-805395-9,
doi: https://doi.org/10.1016/B978-0-12-805395-9.00004-6.

[71] Datadog, 11 facts about real-world container use, https://www.datadoghq.com/

container-report/.

[72] Je�rey Dean and Sanjay Ghemawat, « MapReduce: simplified data processing on
large clusters », in: Communications of the ACM 51.1 (2008), pp. 107–113.

[73] Discrete Event Simulator, https://omnetpp.org/.

[74] Docker, The most-loved Tool in Stack Overflow’s 2022 Developer Survey, https:

//www.docker.com/.

[75] Docker pricing, https://www.docker.com/pricing/.

[76] Docker Swarm, https://docs.docker.com/engine/swarm/.

[77] Utsav Drolia et al., « Cachier: Edge-caching for recognition applications », in: 2017
IEEE 37th international conference on distributed computing systems (ICDCS),
IEEE, 2017, pp. 276–286.

[78] Dropbox, Cloud File Sharing and Storage for your Business, https : / / www .

dropbox.com/official-site.

[79] EnOSlib, Surviving the homoterogeneous world, https : / / discovery .

gitlabpages.inria.fr/enoslib/.

[80] ETSI, Mobile Edge Computing, https://stlpartners.com/articles/edge-

computing/mobile-edge-computing/.

[81] Debessay Fesehaye et al., « Impact of cloudlets on interactive mobile cloud appli-
cations », in: 2012 IEEE 16th international enterprise distributed object computing
conference, IEEE, 2012, pp. 123–132.

[82] Flexera, 2022 State of the Cloud Infographic, https : / / www . flexera . com /

resources/infographic/clearing-up-cloud-chaos.

[83] FogGuru hackathon, http://www.fogguru.eu/living-lab/hackthefog/.

[84] FogGuru project, http://www.fogguru.eu/.

[85] Eclipse Foundation, An open source MQTT broker, https://mosquitto.org/.

125

https://doi.org/https://doi.org/10.1016/B978-0-12-805395-9.00004-6
https://www.datadoghq.com/container-report/
https://www.datadoghq.com/container-report/
https://omnetpp.org/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/pricing/
https://docs.docker.com/engine/swarm/
https://www.dropbox.com/official-site
https://www.dropbox.com/official-site
https://discovery.gitlabpages.inria.fr/enoslib/
https://discovery.gitlabpages.inria.fr/enoslib/
https://stlpartners.com/articles/edge-computing/mobile-edge-computing/
https://stlpartners.com/articles/edge-computing/mobile-edge-computing/
https://www.flexera.com/resources/infographic/clearing-up-cloud-chaos
https://www.flexera.com/resources/infographic/clearing-up-cloud-chaos
http://www.fogguru.eu/living-lab/hackthefog/
http://www.fogguru.eu/
https://mosquitto.org/

[86] Xinwei Fu et al., « {EdgeWise}: A Better Stream Processing Engine for the
Edge », in: 2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019,
pp. 929–946.

[87] Pedro Garcia Lopez et al., Edge-centric computing: Vision and challenges, 2015.

[88] Nishant Garg, Apache kafka, Packt Publishing Birmingham, UK, 2013.

[89] Gartner, The CIO’s Guide to Distributed Cloud, https://www.gartner.com/

smarterwithgartner/the-cios-guide-to-distributed-cloud.

[90] Bugra Gedik et al., « SPADE: The System S declarative stream processing en-
gine », in: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, 2008, pp. 1123–1134.

[91] Bu�ra Gedik et al., « Elastic scaling for data stream processing », in: IEEE Trans-
actions on Parallel and Distributed Systems 25.6 (2013), pp. 1447–1463.

[92] E. Gibert Renart et al., « Distributed Operator Placement for IoT Data Analyt-
ics Across Edge and Cloud Resources », in: 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019, pp. 459–468.

[93] Fabio Giust et al., « MEC deployments in 4G and evolution towards 5G », in:
ETSI White paper 24.2018 (2018), pp. 1–24.

[94] Google, Dashboarding and Data Visualization Tools, https : / / datastudio .

google.com/overview.

[95] Albert Greenberg et al., The cost of a cloud: research problems in data center
networks, 2008.

[96] William Gropp et al., Using MPI: portable parallel programming with the message-
passing interface, vol. 1, MIT press, 1999.

[97] Lei Gu and Huan Li, « Memory or time: Performance evaluation for iterative op-
eration on hadoop and spark », in: 2013 IEEE 10th International Conference on
High Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, IEEE, 2013, pp. 721–727.

[98] V. Gulisano et al., « StreamCloud: An Elastic and Scalable Data Streaming Sys-
tem », in: IEEE Transactions on Parallel and Distributed Systems 23.12 (Dec.
2012), pp. 2351–2365.

126

https://www.gartner.com/smarterwithgartner/the-cios-guide-to-distributed-cloud
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-distributed-cloud
https://datastudio.google.com/overview
https://datastudio.google.com/overview

[99] Harshit Gupta et al., « iFogSim: A toolkit for modeling and simulation of resource
management techniques in the Internet of Things, Edge and Fog computing envi-
ronments », in: Software: Practice and Experience 47.9 (2017), pp. 1275–1296.

[100] Gurobi optimization, https://www.gurobi.com/.

[101] Cornelia Gy�rödi et al., « A comparative study: MongoDB vs. MySQL », in:
2015 13th International Conference on Engineering of Modern Electric Systems
(EMES), IEEE, 2015, pp. 1–6.

[102] Kiryong Ha and Mahadev Satyanarayanan, « Openstack++ for cloudlet deploy-
ment », in: School of Computer Science Carnegie Mellon University Pittsburgh
2014 (2015).

[103] HashiCorp, Decentralized Cluster Membership, Failure Detection, and Orchestra-
tion, https://www.serf.io/.

[104] HashiCorp, Monitoring system and time series database, https://prometheus.

io/.

[105] HashiCorp, State of Cloud Strategy Survey 2022, https://www.hashicorp.com/

state-of-the-cloud.

[106] Red Hat, Open Shift, https://www.redhat.com/en/technologies/cloud-

computing/openshift.

[107] Jetmir Haxhibeqiri et al., « A survey of LoRaWAN for IoT: From technology to
application », in: Sensors 18.11 (2018), p. 3995.

[108] Jean-Michel Helary, Noel Plouzeau, and Michel Raynal, « A distributed algorithm
for mutual exclusion in an arbitrary network », in: The Computer Journal 31.4
(1988), pp. 289–295.

[109] Apache Heron, Heron Delivery Semantics, https://heron.apache.org/docs/

heron-delivery-semantics.

[110] Guenter Hesse and Martin Lorenz, « Conceptual survey on data stream processing
systems », in: 2015 IEEE 21st International Conference on Parallel and Distributed
Systems (ICPADS), IEEE, 2015, pp. 797–802.

[111] Martin Hirzel, Scott Schneider, and Bu�ra Gedik, « SPL: An extensible language
for distributed stream processing », in: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 39.1 (2017), pp. 1–39.

127

https://www.gurobi.com/
https://www.serf.io/
https://prometheus.io/
https://prometheus.io/
https://www.hashicorp.com/state-of-the-cloud
https://www.hashicorp.com/state-of-the-cloud
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://heron.apache.org/docs/heron-delivery-semantics
https://heron.apache.org/docs/heron-delivery-semantics

[112] Christoph Hochreiner et al., « VISP: An ecosystem for elastic data stream pro-
cessing for the internet of things », in: 2016 IEEE 20th International Enterprise
Distributed Object Computing Conference (EDOC), IEEE, 2016, pp. 1–11.

[113] Saiful Hoque et al., « Towards container orchestration in fog computing infrastruc-
tures », in: 2017 IEEE 41st Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 2, IEEE, 2017, pp. 294–299.

[114] IBM, IMB Cloud, https://www.ibm.com/cloud/bare-metal-servers.

[115] IBM ILOG CPLEX Optimizer, https : / / www . ibm . com / analytics / cplex -

optimizer.

[116] IEEE Standards Association, IEEE Standard for Adoption of OpenFog Reference
Architecture for Fog Computing, https://standards.ieee.org/standard/1934-

2018.html, 2018.

[117] Heroku Inc., Heroku Platform, https://www.heroku.com/.

[118] IoT analytics, https://iot-analytics.com/number-connected-iot-devices/.

[119] Ahmed Ismail, Hong-Linh Truong, and Wolfgang Kastner, « Manufacturing process
data analysis pipelines: a requirements analysis and survey », in: Journal of Big
Data 6.1 (2019), p. 1.

[120] Fatemeh Jalali et al., « Fog computing may help to save energy in cloud com-
puting », in: IEEE Journal on Selected Areas in Communications 34.5 (2016),
pp. 1728–1739.

[121] Albert Jonathan, Abhishek Chandra, and Jon Weissman, « WASP: wide-area adap-
tive stream processing », in: Proceedings of the 21st International Middleware Con-
ference, 2020, pp. 221–235.

[122] Goutham Kamath et al., « Pushing analytics to the edge », in: 2016 IEEE Global
Communications Conference (GLOBECOM), IEEE, 2016, pp. 1–6.

[123] David Karger et al., « Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web », in: Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, 1997, pp. 654–
663.

[124] Je�rey O Kephart and David M Chess, « The Vision of Autonomic Computing »,
in: Computer 36.1 (2003), pp. 41–50.

128

https://www.ibm.com/cloud/bare-metal-servers
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://standards.ieee.org/standard/1934-2018.html
https://standards.ieee.org/standard/1934-2018.html
https://www.heroku.com/
https://iot-analytics.com/number-connected-iot-devices/

[125] Kube State Metrics, https://github.com/kubernetes/kube-state-metrics.

[126] Kubernetes, Production-Grade Container Orchestration, https://kubernetes.

io/.

[127] Sanjeev Kulkarni et al., « Twitter heron: Stream processing at scale », in: Proceed-
ings of the 2015 ACM SIGMOD international conference on Management of data,
2015, pp. 239–250.

[128] Grafana Labs, The open observability platform, https://grafana.com/.

[129] Leslie Lamport, « Time, clocks, and the ordering of events in a distributed sys-
tem », in: Concurrency: the Works of Leslie Lamport, 2019, pp. 179–196.

[130] Las Naves, https://www.lasnaves.com/.

[131] Gérard Le Lann, « Distributed Systems-Towards a Formal Approach. », in: IFIP
congress, vol. 7, 1977, pp. 155–160.

[132] Hwejoo Lee et al., « A data streaming performance evaluation using resource con-
strained edge device », in: Proceedings of the International Conference on Infor-
mation and Communication Technology Convergence (ICTC), 2017.

[133] Milica LekiÊ and Gordana GardaöeviÊ, « IoT sensor integration to Node-RED plat-
form », in: 2018 17th International Symposium Infoteh-Jahorina (Infoteh), IEEE,
2018, pp. 1–5.

[134] Lei Li et al., « Online workload allocation via fog-fog-cloud cooperation to reduce
IoT task service delay », in: Sensors 19.18 (2019), p. 3830.

[135] Roger A Light, « Mosquitto: server and client implementation of the MQTT pro-
tocol », in: Journal of Open Source Software 2.13 (2017), p. 265.

[136] Fang Liu et al., « A survey on edge computing systems and tools », in: Proceedings
of the IEEE 107.8 (2019), pp. 1537–1562.

[137] Xunyun Liu and Rajkumar Buyya, « Resource management and scheduling in dis-
tributed stream processing systems: A taxonomy, review, and future directions »,
in: ACM Computing Surveys (CSUR) 53.3 (2020), pp. 1–41.

[138] Yang Liu, Jonathan E Fieldsend, and Geyong Min, « A framework of fog comput-
ing: Architecture, challenges, and optimization », in: IEEE Access 5 (2017).

[139] Google LLC, Google Cloud Engine, https://cloud.google.com/compute.

129

https://github.com/kubernetes/kube-state-metrics
https://kubernetes.io/
https://kubernetes.io/
https://grafana.com/
https://www.lasnaves.com/
https://cloud.google.com/compute

[140] Google LLC, Google Workspace, https://workspace.google.com/.

[141] Google LLC, Hybrid Cloud management with Anthos, https://cloud.google.

com/anthos.

[142] Ge Ma et al., « Understanding performance of edge content caching for mobile
video streaming », in: IEEE Journal on Selected Areas in Communications 35.5
(2017), pp. 1076–1089.

[143] Mamoru Maekawa, « A N algorithm for mutual exclusion in decentralized sys-
tems », in: ACM Transactions on Computer Systems (TOCS) 3.2 (1985), pp. 145–
159.

[144] Redowan Mahmud and Rajkumar Buyya, « Fog Computing: A Taxonomy, Survey
and Future Directions », in: vol. abs/1611.05539, 2016, arXiv: 1611.05539, url:
http://arxiv.org/abs/1611.05539.

[145] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya, « Fog com-
puting: A taxonomy, survey and future directions », in: Internet of everything,
Springer, 2018, pp. 103–130.

[146] Redowan Mahmud et al., « Ifogsim2: An extended ifogsim simulator for mobil-
ity, clustering, and microservice management in edge and fog computing environ-
ments », in: Journal of Systems and Software 190 (2022), p. 111351.

[147] Yuyi Mao et al., « A survey on mobile edge computing: The communication per-
spective », in: IEEE communications surveys & tutorials 19.4 (2017), pp. 2322–
2358.

[148] Alain J Martin, « Distributed mutual exclusion on a ring of processes », in: Science
of Computer Programming 5 (1985), pp. 265–276.

[149] Farahd Mehdipour, Bahman Javadi, and Aniket Mahanti, « FOG-Engine: Towards
big data analytics in the fog », in: 2016 IEEE 14th Intl Conf on Dependable, Auto-
nomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Com-
puting, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), IEEE, 2016,
pp. 640–646.

[150] G. Mencagli, « A Game-Theoretic Approach for Elastic Distributed Data Stream
Processing », in: ACM Trans. Auton. Adapt. Syst. 11 (2016), 13:1–13:34.

130

https://workspace.google.com/
https://cloud.google.com/anthos
https://cloud.google.com/anthos
https://arxiv.org/abs/1611.05539
http://arxiv.org/abs/1611.05539

[151] D. Milojicic, « The Edge-to-Cloud Continuum », in: Computer 53.11 (2020),
pp. 16–25, doi: 10.1109/MC.2020.3007297.

[152] Bruce Momjian, PostgreSQL: introduction and concepts, vol. 192, Addison-Wesley
New York, 2001.

[153] Carla Mouradian et al., « A comprehensive survey on fog computing: State-of-the-
art and research challenges », in: IEEE communications surveys & tutorials 20.1
(2017), pp. 416–464.

[154] MQTT, The Standard for IoT Messaging, https://mqtt.org/.

[155] Janakiram MSV, Is Fog Computing The Next Big Thing In Internet of Things?,
http://bit.do/cYsvv.

[156] Mithun Mukherjee, Lei Shu, and Di Wang, « Survey of fog computing: Fundamen-
tal, network applications, and research challenges », in: IEEE Communications
Surveys & Tutorials 20.3 (2018), pp. 1826–1857.

[157] Mithun Mukherjee et al., « Security and privacy in fog computing: Challenges »,
in: IEEE Access 5 (2017), pp. 19293–19304.

[158] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi, « Time se-
ries databases and influxdb », in: Studienarbeit, Université Libre de Bruxelles 12
(2017).

[159] Node Exporter, https://github.com/prometheus/node_exporter.

[160] Shadi A Noghabi et al., « The emerging landscape of edge computing », in: Get-
Mobile: Mobile Computing and Communications 23.4 (2020).

[161] Dan O’Kee�e, Theodoros Salonidis, and Peter Pietzuch, « Frontier: resilient edge
processing for the Internet of Things », in: Proc. VLDB (2018).

[162] Oracle, Introduction to Batch Processing, https://javaee.github.io/tutorial/

batch-processing001.html, 2017.

[163] Oracle, What is IoT?, https://www.oracle.com/in/internet-of-things/

what-is-iot/.

[164] Lucy Y Pao and Kathryn E Johnson, « A tutorial on the dynamics and control
of wind turbines and wind farms », in: 2009 American Control Conference, IEEE,
2009, pp. 2076–2089.

131

https://doi.org/10.1109/MC.2020.3007297
https://mqtt.org/
http://bit.do/cYsvv
https://github.com/prometheus/node_exporter
https://javaee.github.io/tutorial/batch-processing001.html
https://javaee.github.io/tutorial/batch-processing001.html
https://www.oracle.com/in/internet-of-things/what-is-iot/
https://www.oracle.com/in/internet-of-things/what-is-iot/

[165] Maycon Leone Maciel Peixoto, Thiago AL Genez, and Luiz F Bittencourt, « Hi-
erarchical scheduling mechanisms in multi-level fog computing », in: IEEE Trans-
actions on services computing 15.5 (2021), pp. 2824–2837.

[166] Boyang Peng et al., « R-Storm: Resource-Aware Scheduling in Storm », in: Pro-
ceedings of the 16th Annual Middleware Conference, Middleware ’15, Vancouver,
BC, Canada, 2015, pp. 149–161, isbn: 978-1-4503-3618-5.

[167] Picocluster, https://www.picocluster.com/.

[168] P. Pietzuch et al., « Network-Aware Operator Placement for Stream-Processing
Systems », in: Proceedings of the 22nd International Conference on Data Engi-
neering (ICDE), 2006.

[169] Ruben Pinilla and Marisa Gil, « Jvm: platform independent vs. performance de-
pendent », in: ACM SIGOPS Operating Systems Review 37.2 (2003), pp. 44–56.

[170] Flávia Pisani et al., « Beyond the fog: Bringing cross-platform code execution
to constrained iot devices », in: 2017 29th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), IEEE, 2017, pp. 17–
24.

[171] Vivek Kumar Prasad, Madhuri D Bhavsar, and Sudeep Tanwar, « Influence of
montoring: Fog and edge computing », in: Scalable Computing: Practice and Ex-
perience 20.2 (2019).

[172] Jürgo S Preden et al., « The benefits of self-awareness and attention in fog and
mist computing », in: Computer 48.7 (2015), pp. 37–45.

[173] L. Prosperi et al., « Planner: Cost-E�cient Execution Plans Placement for Uniform
Stream Analytics on Edge and Cloud », in: 2018 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS), 2018, pp. 42–51.

[174] Carlo Puliafito et al., « Fog computing for the internet of things: A survey », in:
ACM Transactions on Internet Technology (TOIT) 19.2 (2019).

[175] Python Flask Framework, https://flask.palletsprojects.com/en/latest/.

[176] Tariq Qayyum et al., « FogNetSim++: A toolkit for modeling and simulation of
distributed fog environment », in: IEEE Access 6 (2018), pp. 63570–63583.

[177] RabbitMQ, Mesaging that just works, https://www.rabbitmq.com/.

132

https://www.picocluster.com/
https://flask.palletsprojects.com/en/latest/
https://www.rabbitmq.com/

[178] Benjamin Rader et al., « Crowding and the shape of COVID-19 epidemics », in:
Nature medicine 26.12 (2020).

[179] T. Repantis, X. Gu, and V. Kalogeraki, « QoS-Aware Shared Component Com-
position for Distributed Stream Processing Systems », in: IEEE Transactions on
Parallel and Distributed Systems 20.7 (2009), pp. 968–982.

[180] ReTHINK, Cisco pushes IoT analytics to the extreme edge with mist computing,
https://rethinkresearch.biz/articles/cisco- pushes- iot- analytics-

extreme-edge-mist-computing/.

[181] Glenn Ricart and Ashok K Agrawala, « An optimal algorithm for mutual exclusion
in computer networks », in: Communications of the ACM 24.1 (1981), pp. 9–17.

[182] Robert Bosch Venture Capital backs innovative leader in IoT “Edge Intelligence”
solutions, https : / / www . rbvc . com / news / news - articles / 000000 - edge -

intelligence.html.

[183] Daniel Rosendo et al., « E2clab: Exploring the computing continuum through
repeatable, replicable and reproducible edge-to-cloud experiments », in: 2020
IEEE International Conference on Cluster Computing (CLUSTER), IEEE, 2020,
pp. 176–186.

[184] Elke A Rundensteiner et al., « Cape: Continuous query engine with heterogeneous-
grained adaptivity », in: Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30, 2004, pp. 1353–1356.

[185] Micha≥ Rzepka et al., « SDN-based fog and cloud interplay for stream processing »,
in: Future Generation Computer Systems 131 (2022), pp. 1–17.

[186] Hooman Peiro Sajjad et al., « Spanedge: Towards unifying stream processing over
central and near-the-edge data centers », in: 2016 IEEE/ACM Symposium on Edge
Computing (SEC), IEEE, 2016, pp. 168–178.

[187] Mahadev Satyanarayanan et al., « The case for VM-based cloudlets in mobile
computing », in: IEEE Pervasive Computing (2009).

[188] Weisong Shi and Schahram Dustdar, « The promise of edge computing », in: Com-
puter 49.5 (2016), pp. 78–81.

[189] Weisong Shi et al., « Edge computing: Vision and challenges », in: IEEE internet
of things journal 3.5 (2016), pp. 637–646.

133

https://rethinkresearch.biz/articles/cisco-pushes-iot-analytics-extreme-edge-mist-computing/
https://rethinkresearch.biz/articles/cisco-pushes-iot-analytics-extreme-edge-mist-computing/
https://www.rbvc.com/news/news-articles/000000-edge-intelligence.html
https://www.rbvc.com/news/news-articles/000000-edge-intelligence.html

[190] P. Silva, A. Costan, and G. Antoniu, « Towards a Methodology for Benchmarking
Edge Processing Frameworks », in: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), May 2019, pp. 904–907,
doi: 10.1109/IPDPSW.2019.00149.

[191] Pedro Silva, Alexandru Costan, and Gabriel Antoniu, « Investigating edge vs. cloud
computing trade-o�s for stream processing », in: 2019 IEEE International Con-
ference on Big Data (Big Data), IEEE, 2019, pp. 469–474.

[192] Pedro Silva, Alexandru Costan, and Gabriel Antoniu, « Towards a methodology
for benchmarking edge processing frameworks », in: 2019 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2019,
pp. 904–907.

[193] Alexandre da Silva Veith, Marcos Dias de Assunção, and Laurent Lefèvre,
« Latency-Aware Placement of Data Stream Analytics on Edge Computing », in:
Service-Oriented Computing, ed. by Claus Pahl et al., Cham: Springer Interna-
tional Publishing, 2018, pp. 215–229, isbn: 978-3-030-03596-9.

[194] Bruce Snyder, Dejan Bosanac, and Rob Davies, « Introduction to apache ac-
tivemq », in: Active MQ in action (2017), pp. 6–16.

[195] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy, « Edgecloudsim: An environ-
ment for performance evaluation of edge computing systems », in: Transactions
on Emerging Telecommunications Technologies 29.11 (2018), e3493.

[196] Felipe Rodrigo de Souza et al., « An optimal model for optimizing the placement
and parallelism of data stream processing applications on cloud-edge computing »,
in: 2020 IEEE 32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), IEEE, 2020, pp. 59–66.

[197] Felipe Rodrigo de Souza et al., « Scalable joint optimization of placement and par-
allelism of data stream processing applications on cloud-edge infrastructure », in:
International Conference on Service-Oriented Computing, Springer, 2020, pp. 149–
164.

[198] Splunk, The data platform for the hybrid world, https://www.splunk.com/.

[199] Apache Storm, An open source distributed realtime computation system, https:

//storm.apache.org/.

134

https://doi.org/10.1109/IPDPSW.2019.00149
https://www.splunk.com/
https://storm.apache.org/
https://storm.apache.org/

[200] Stream Processing with Apache Flink, https://www.ververica.com/blog/high-

throughput- low- latency- and- exactly- once- stream- processing- with-

apache-flink.

[201] Richard S Sutton and Andrew G Barto, Reinforcement learning: An introduction,
MIT press, 2018.

[202] Sergej Svorobej et al., « Simulating fog and edge computing scenarios: An overview
and research challenges », in: Future Internet 11.3 (2019), p. 55.

[203] Genc Tato, Marin Bertier, and Cédric Tedeschi, « Designing overlay networks for
decentralized clouds », in: 2017 IEEE International Conference on Cloud Comput-
ing Technology and Science (CloudCom), IEEE, 2017, pp. 391–396.

[204] Genc Tato et al., « Split and migrate: Resource-driven placement and discovery of
microservices at the edge », in: OPODIS 2019: 23rd International Conference On
Principles Of Distributed Systems, 2019, pp. 1–16.

[205] Douglas Terry et al., « Continuous queries over append-only databases », in: Acm
Sigmod Record 21.2 (1992), pp. 321–330.

[206] Khin Me Me Thein, « Apache kafka: Next generation distributed messaging sys-
tem », in: International Journal of Scientific Engineering and Technology Research
3.47 (2014), pp. 9478–9483.

[207] Ankit Toshniwal et al., « Storm@twitter », in: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’14, Snow-
bird, Utah, USA: Association for Computing Machinery, 2014, pp. 147–156, isbn:
9781450323765, doi: 10.1145/2588555.2595641, url: https://doi.org/10.

1145/2588555.2595641.

[208] Apache Trident, https://storm.apache.org/releases/current/Trident-

tutorial.html.

[209] Twitter, Flying faster with Twitter Heron, https : / / blog . twitter . com /

engineering/en_us/a/2015/flying-faster-with-twitter-heron.

[210] Luis M Vaquero and Luis Rodero-Merino, « Finding your way in the fog: Towards
a comprehensive definition of fog computing », in: ACM SIGCOMM computer
communication Review 44.5 (2014), pp. 27–32.

135

https://www.ververica.com/blog/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink
https://www.ververica.com/blog/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink
https://www.ververica.com/blog/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
https://storm.apache.org/releases/current/Trident-tutorial.html
https://storm.apache.org/releases/current/Trident-tutorial.html
https://blog.twitter.com/engineering/en_us/a/2015/flying-faster-with-twitter-heron
https://blog.twitter.com/engineering/en_us/a/2015/flying-faster-with-twitter-heron

[211] Rodrigo A Vivanco and Nicolino J Pizzi, « Scientific computing with Java and
C++: a case study using functional magnetic resonance neuroimages », in: Soft-
ware: Practice and Experience 35.3 (2005), pp. 237–254.

[212] Nan Wang et al., « ENORM: A framework for edge node resource management »,
in: IEEE transactions on services computing 13.6 (2017), pp. 1086–1099.

[213] Danny Weyns et al., « On patterns for decentralized control in self-adaptive sys-
tems », in: Lecture Notes in Computer Science 7475 (2013).

[214] Tom White, Hadoop: The definitive guide, " O’Reilly Media, Inc.", 2012.

[215] Worldwide data statistics, https://www.seagate.com/files/www-content/our-

story/trends/files/idc-seagate-dataage-whitepaper.pdf.

[216] Ying Xiong et al., « Extend cloud to edge with kubeedge », in: 2018 IEEE/ACM
Symposium on Edge Computing (SEC), IEEE, 2018, pp. 373–377.

[217] Shusen Yang, « IoT stream processing and analytics in the fog », in: IEEE Com-
munications Magazine 55.8 (2017), pp. 21–27.

[218] Marcelo Yannuzzi et al., « A new era for cities with fog computing », in: IEEE
Internet Computing 21.2 (2017).

[219] Ashkan Yousefpour et al., « All one needs to know about fog computing and re-
lated edge computing paradigms: A complete survey », in: Journal of Systems
Architecture 98 (2019), pp. 289–330.

[220] Matei Zaharia et al., « Apache spark: a unified engine for big data processing »,
in: Communications of the ACM 59.11 (2016), pp. 56–65.

[221] Matei Zaharia et al., « Discretized streams: Fault-tolerant streaming computation
at scale », in: Proceedings of the twenty-fourth ACM symposium on operating sys-
tems principles, 2013, pp. 423–438.

[222] Matei Zaharia et al., « Resilient distributed datasets: A Fault-Tolerant abstraction
for In-Memory cluster computing », in: 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), 2012, pp. 15–28.

[223] Ste�en Zeuch et al., « Analyzing e�cient stream processing on modern hardware »,
in: Proc. VLDB (2019).

[224] Ste�en Zeuch et al., « The nebulastream platform: Data and application manage-
ment for the internet of things », in: arXiv preprint arXiv:1910.07867 (2019).

136

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[225] Apache Zookeeper, https://zookeeper.apache.org/.

137

https://zookeeper.apache.org/

	Introduction
	Context
	General objectives
	Contributions
	Outline

	State of the art
	Evolution of computing infrastructures
	Cloud computing
	Distributed Cloud
	Fog computing
	Applications benefiting from Fog computing
	Fog challenges

	Stream Processing
	Before Stream Processing: Batch Processing
	Data Stream Processing platforms
	Stream Processing engines
	Stream Processing programming and execution models

	Programmability, autonomy and scalability of Stream Processing in Fog
	Scheduling Stream Processing applications in geo-distributed settings
	Scaling Stream Processing applications
	Programmmability of stream processing applications over geo-distributed platforms
	Decentralized management

	SpecK: Coordinating Stream Processing Engines for the deployment of Data Pipelines over Fog Environments
	Introduction
	SpecK: An SPE coordinator
	SpecK usage
	SpecK architecture and internals

	Experimental evaluation
	Scalability and overhead
	Hybrid Edge/Cloud deployment

	Conclusion

	DynaP: Decentralized Adaptation of Stream Processing Pipelines
	Introduction
	Mutual exclusion
	Dynap
	Application model
	Platform model
	The migration protocol

	Software prototype
	Experimental results
	Conclusion

	Prototyping Fog Computing platforms based on Stream Processing
	Introduction
	Design
	FogGuru
	Platform architecture
	Operation and early experiments

	LivingFog
	Non-functional requirements
	Implementation
	Experimental validation

	Related work
	Conclusion

	Conclusion and Future Work
	Bibliography

