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Résumé

Dans cette thèse, nous donnons des exemples de feuilletages sur le plan projectif complexe CP2 admettant
des courants harmoniques feuilletés positifs dont les supports cöıncident avec des levi-plats singuliers qui,
à leur tour, peuvent être choisis comme réels-analytiques (mais non-algébriques) ou simplement continus
avec nature transversale fractale. De plus, des exemples non triviaux (comme ci-dessus) peuvent déjà
être trouvés parmi les feuilletages de degré 2 et 3. De plus, l’espace des courants harmoniques feuilletés
positifs pour ces feuilletages est entièrement caractérisé et il contient un unique courant harmonique (non-
fermé) dont le support est sur le Levi-plat en question. Enfin, nous donnons également des exemples de
feuilletages porteurs de courants fermés feuilletés positifs diffus liés à un théorème dû à Brunella ainsi
qu’un critère général pour l’existence de Levi-plats analytiques-réels singuliers pour les feuilletages de
Riccati.

Mots clés
Courants feuilletés, Courants harmoniques, Courants fermés, Equations de Riccati, Groupes Fuchsiens,
Levi-plats.
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Abstract

In this thesis, we provide examples of foliations on the complex projective plane CP2 carrying positive
foliated harmonic currents whose supports coincide with singular Levi-flats which, in turn, can be chosen
real-analytic (but non-algebraic) or merely continuous with fractal transverse nature. Furthermore, non-
trivial examples (as above) can already be found among foliations of degree 2 and 3. In addition, the
space of positive foliated harmonic currents for these foliations is fully characterised and it contains a
unique harmonic (non-closed) current supported on the Levi-flat in question. Finally, we also provide
examples of foliations carrying diffuse positive foliated closed currents related to a theorem due to
Brunella as well as a general criterion for the existence of singular real-analytic Levi-flats for Riccati
foliations.

Keywords
Closed currents, Foliated currents, Fuchsian groups, Harmonic currents, Levi-flats, Riccati equations.
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Chapter 1

Prérequis (en français)

1.1 Introduction
Dans ce chapitre, nous allons revoir les notions de base et les théorèmes principaux concernant la théorie
des feuilletages, des courants et des Groupes Fuchsiens et Kleiniens (c.f. [45] et [2]).

1.2 Feuilletages
Definition 1.2.1. Soit M une variété complexe de dimension n ≥ 2 et k ∈ {1, . . . , n−1}. Un feuilletage
holomorphe F = (M,L(F)) de dimension k sur M est la donnée d’un atlas holomorphe L(F) de M
définit par des cartes (Ui, ϕi)i∈I dont les changements de carte

ϕij = ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) ⊂ Cn −→ ϕi(Ui ∩ Uj) ⊂ Cn,

sont de la forme
(z, t) ∈ Ck × Cn−k 7−→ (Ψ(z, t),Λ(t)),

où Ψ et Λ sont des fonctions holomorphes. Les cartes (Ui, ϕi) sont appelées des bôıtes à flots.

Definition 1.2.2. Un feuilletage holomorphe singulier F sur M est la donnée d’un recouvrement ouvert
(Ui)i∈I et de champs de vecteurs holomorphes Xi non-identiquement nuls sur Ui, tels que ∀i, j ∈ I avec
Ui ∩ Uj ̸= ∅, il existe une fonction holomorphe

gij : Ui ∩ Uj −→ C∗ telle que Xi = gijXj.

On appelle l’ensemble
E =

⋃
i∈I

{Xi = 0}

l’espace des singularités de F . C’est un sous-ensemble analytique propre de M . Il est évident que F
peut être vu comme un feuilletage holomorphe sur M \ E.

Proposition 1.2.3 (Suspension d’un groupe d’automorphismes). Soit S une surface de Riemann et M
une variété complexe. On se donne une représentation de groupe fondamental de S,

ρ : π1(S) −→ Aut(M)

13



14 CHAPTER 1. PRÉREQUIS (EN FRANÇAIS)

et
π : S̃ −→ S

une uniformisation de S, c’est-à-dire un revêtement universel holomorphe (l’exemple typique est celui
d’une surface de Riemann compacte de genre g ≥ 2, S̃ = D et M = CP1 avec Aut(M) = PSL (2,C)).
Alors, π1(S) agit d’une part sur S̃ par monodromie et sur M par la représentation ρ, ainsi il agit comme
suit sur le produit

g · (z, t) = (g · z, ρ(g)(t)), ∀(z, t) ∈ S̃ ×M.

De plus, son action sur S̃ est libre et proprement discontinue. On définit alors

Sρ = (S̃ ×M)/π1(S),

appelée variété de suspension de ρ. Le groupe fondamental π1(S) agissant sur les fibres du revêtement
π, Sρ est munie d’une projection

p : Sρ −→ S

définie par

p([z,m]) = π(z), pour (z,m) ∈ S̃ ×M .

Le fait que l’action de π1(S) soit libre et proprement discontinue implique que Sρ est feuilletée par les

{[z,m] ∈ Sρ | z ∈ S̃}, pour m ∈ M fixé.

Les feuilles sont donc isomorphes à des revêtements holomorphes de S en tant que surfaces de Riemann
abstraites.

Example 1 (Feuilletages sur CPn). On considère l’espace projectif complexe CPn de dimension n doté
de l’atlas holomorphe standard L(F) donné par les cartes (Uj , ϕj)0≤j≤n, où

Uj = {[(z0, . . . , zn)]; zj ̸= 0},

et

ϕj([z0, . . . , zn]) = ( z0
zj
, . . . ,

ẑj

zj
, . . . , zn

zj
),

pour tout j ∈ {0, . . . , n}. On considère le champ de vecteurs à coefficients polynomiaux homogènes

X(z0, . . . , zn) =
n∑

j=0
Pj(z0, . . . , zn) ∂

∂zj

sur Cn+1 \ {0} de degré d. Rappelons que CPn est le quotient de Cn+1 \ {0} par l’action diagonale de
C∗, l’action donnée par les homothéties

σλ : Cn+1 \ {0} → Cn+1 \ {0}
z 7→ σλ(z) := λz,

pour λ ∈ C∗. De simples calculs donnent

Dσλ ·X = λd−1X,
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cela veut dire que les directions associées à X sont invariantes par homothéties. Ainsi X définit bien un
feuilletage singulier de CPn. Une autre manière équivalente de définir un feuilletage holomorphe singulier
sur CPn est de considérer un champ de vecteurs polynomial sur Cn et de voir qu’il peut être prolongé
à un feuilletage holomorphe sur tout CPn. En effet, on peut montrer que tout feuilletage holomorphe
dans CPn est induit par un champ de vecteurs polynomial sur Cn. On donne dans ce qui suit les détails
dans la dimension 2, mais cela se généralise de manière évidente en dimensions supérieures.

On munit CP2 de sa structure complexe standard donnée par les cartes

{(Ua, ϕa), (Ub, ϕb), (Uc, ϕc)}

où
Ua = {[(a, b, c)] ∈ CP2; a ̸= 0},

Ub = {[(a, b, c)] ∈ CP2; b ̸= 0},

Uc = {[(a, b, c)] ∈ CP2; c ̸= 0},

et
ϕa ([a, b, c]) =

(
b

a
,
c

a

)
,

ϕb ([a, b, c]) =
(a
b
,
c

b

)
,

ϕc ([a, b, c]) =
(
a

c
,
b

c

)
.

Soit
X(x, y) = P (x, y) ∂

∂x
+Q(x, y) ∂

∂y

un champ de vecteurs polynomial en coordonnées affines (x, y) = ϕa([a, b, c]). Cela induit naturellement
un champ de vecteurs rationnel Y (resp. Z) défini sur les coordonnées affines (u, v) = ϕb([a, b, c]) (resp.
(z, w) = ϕc([a, b, c])). Par exemple, Y est donné par:

Y (u, v) = (ϕa ◦ ϕb)∗(X(x, y))
= D(ϕa ◦ ϕb)−1.X(ϕa ◦ ϕb(u, v))

=
(

−u2 0
−uv u

)
.

(
P (1/u, v/u)
Q(1/u, v/u)

)
Comme on l’avait déjà mentionné, ce champ de vecteurs n’est pas holomorphe dans le domaines des
coordonnées (u, v) car il admet des pôles au long de {u = 0}. Cependant, en multipliant Y par ud,
le nouveau champ de vecteurs udY est clairement holomorphe (avec des singularités isolées) dans le
domaine de (u, v). En rechangeant le système de coordonnées de (u, v) vers (x, y) on obtient

D(ϕa ◦ ϕb).(udY ) = udD(ϕa ◦ ϕb).Y (u, v)
= udD(ϕa ◦ ϕb).D(ϕa ◦ ϕb)−1.X(x, y)
= ud.X(x, y)

En répétant ce procédé pour les autres cartes, on obtient un feuilletage holomorphe de CP2.
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Notons que nous avons ainsi construit deux feuilletages holomorphes singuliers (équivalents) sur CP2

suivant deux méthodes différentes:

(1) En se basant sur un champ de vecteurs polynomial homogène sur C3.

(2) En se basant sur un champ de vecteurs polynomial sur C2.

Plus généralement, dans le cas de dimensions supérieures, on peut construire des feuilletages singuliers
holomorphes de CPn à travers des feuilletages singuliers holomorphes de Cn. Ceci dit, il est difficile
de montrer que les feuilletages de Cn donnent naissance à tout les feuilletages de CPn, on a donc le
théorème suivant.

Theorem 1.2.4. Soit X0 un champ de vecteurs à coefficients polynomiaux sur Cn. Alors, il existe un
unique feuilletage holomorphe singulier F = (CPn,L(F), E) sur CPn tel que codimE ≥ 2 et F prolonge
le feuilletage sur Cn ≃ U0 défini par X0. Réciproquement, tout feuilletage F = (CPn,L(F), E) sur CPn

vérifiant codimE ≥ 2 est défini sur la carte affine U0 par un champ de vecteurs polynomial.

1.3 Courants
Definition 1.3.1. Soit M une variété complexe de dimension n et p ∈ {0, . . . , 2n} (resp. p, q ∈
{0, . . . , n}). On note Dp(M) (resp. Dp,q(M)) l’ensemble des p-formes (resp. (p, q)-formes) à coeffi-
cients C∞ dans toute coordonnée holomorphe sur M et à support compact, muni de sa topologie usuelle
(de semi-normes). Un p-courant (resp. un (p, q)-courant) est une application linéaire continue

T : D2n−p(M) −→ C

(resp. T : Dn−p,n−q(M) −→ C). Dans ce cas là, T est dit courant de degré p (resp. bidegré (p, q)) ou de
dimension 2n− p (resp. bidimension (n− p, n− q)). On peut définir un (p, q)-courant T d’une manière
équivalente comme étant un (p, q)-courant qui satisfait

⟨T, α⟩ := T (α) = 0

si α est de bidegré pur (p′, q′) ̸= (n− p, n− q).

En analogie avec la théorie des distributions, l’un peut regarder un p-courant (resp. (p, q)-courant)
comme étant une p-forme (resp. (p, q)-forme) avec des coefficients dans l’espace des distributions D′(M).

Definition 1.3.2. Le support d’un p-courant (resp. (p, q)-courant) T est le plus petit fermé Supp(T )
inclus dans M tel que T|D2n−p(M\Supp(T )) = 0 (resp. T|Dn−p,n−q(M\Supp(T )) = 0).

Definition 1.3.3. On dit qu’un courant T est fermé, si dT (α) := T (dα) = 0.

Definition 1.3.4. On dit qu’un courant T est feuilleté, si T (α) = 0 lorsque α s’annule sur le fibré
tangent du feuilletage F .

Definition 1.3.5. Une (p, p)-forme α sur M est dite positive si α s’écrit localement comme une com-
binaison linéaire à coefficients positifs de formes du type

iα1 ∧ ᾱ1 ∧ · · · ∧ iαp ∧ ᾱp,

où les (αj)1≤j≤p sont des (1, 0)-formes.
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Definition 1.3.6. Un (p, p)-courant est dit faiblement positif, si pour toute (n− p, n− p)-forme positive
α,

⟨T, α⟩ ≥ 0.

Definition 1.3.7. On se donne une métrique β hermitienne sur M . Si T est un (p, p)-courant positif,
T ∧ βn−p est une mesure positive. On définit ainsi pour un sous-ensemble mesurable A de M , la masse
de T sur A par:

∥T∥A :=
∫

A

T ∧ βn−p.

Remark 1.3.8. Si M est compacte, alors la masse totale de T est finie, i.e.,

∥T∥M < +∞

Les courants positifs fermés jouent un rôle très important dans l’interaction entre la dynamique des
applications holomorphes ou méromorphes et la géométrie algébrique. Voici donc quelques exemples:

(1) Courant associé à une p-forme. Soit α une p-forme sur M . On définit donc le p-courant Tα

par

Tα : D2n−p(M) → C

β 7→ ⟨Tα, β⟩ :=
∫

M

α ∧ β, ,

Supp(T ) = Supp(α).

(2) Courant d’intégration. Soit Z une sous-variété réelle fermée et orientée de M de dimension k.
On définit le courant d’intégration sur Z comme étant le courant de dimension k noté [Z] et donné
par

[Z] : Dk(M) → C

α 7→ ⟨[Z], α⟩ :=
∫

Z

α,

Supp(T ) = Z. Si Z est contenu dans une feuille, alors [Z] est dirigé.

Rappelons maintenant quelques résultats importants de la théorie des courants positifs fermés:

Proposition 1.3.9. Soit M une variété complexe équipée d’une métrique hermitienne ω. Alors l’ensemble
des p-courants positifs tels que ∫

M

T ∧ ωn−p ≤ 1

est faiblement compacte.

Citons maintenant trois fameux théorèmes sur les courants positifs fermés dûs à Skoda (Theo-
rem 1.3.10) et à Siu (Theorem 1.3.12 et Theorem 1.3.13) respectivement.

Theorem 1.3.10 (Théorème de prolongement de Skoda). Soient E un sous-ensemble analytique d’une
variété complexe M et T un (p, p)-courant sur X \ E avec une masse localement finie au voisinage de
E. Alors l’extension triviale T̃ de T dans M est un (p, p)-courant positif fermé.
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Notons que grâce à ce théorème, on peut généraliser la définition du courant d’intégration vers le cas
des ensembles analytiques.

Avant de citer le théorème suivant, rappelons la notion de nombre de Lelong qui mesure la singularité
d’un courant en un point donné.

Definition 1.3.11. Soit Ω ⊂ Cn un domaine et T un (p, p)-courant. Pour a ∈ Ω, et r < d(a, ∂Ω), on
pose

σT (a, r) :=
∫

∥z−a∥≤r

T ∧ βn−p,

où β := i∂∂̄∥z∥2. Le nombre de Lelong de T en a est définit comme étant:

ν(T, a) := 1
πn−p

lim
r→0

1
r2(n−p)σT (a, r).

On peut vérifier que cette notion de nombre de Lelong est bien définie dans le cadre des variétés
complexes, car on peut montrer que ces nombres sont invariants par biholomorphismes.

Pour c ∈ R, notons par
Ec(T ) = {a ∈ M ; ν(T, a) ≥ c},

l’ensemble de niveau supérieur de Lelong. En même année, Siu a prouvé le résultat suivant:

Theorem 1.3.12. Les ensembles de niveau de Lelong Ec(T ) d’un (p, p)-courant T sont des ensembles
analytiques de codimension codimE ≥ p.

Soient A un sous-ensemble analytique irréductible de M de codimension p et T un (p, p)-courant sur
M . On définit le nombre de Lelong générique de T sur A par

ν(T,A) := inf{ν(T, a); a ∈ A}.

Maintenant on est en mesure de citer le théorème de décomposition de Siu.

Theorem 1.3.13 (Théorème de décomposition de Siu). Tout (p, p)-courant positif T admet une unique
décomposition de la forme

T =
∑

λj [Aj ] +R

où λj sont les nombres de Lelong génériques de T sur les sous-ensembles analytiques irréductibles Aj de
codimension p et R un (p, p)-courant positif tel que codimEc(R) > p, ∀c > 0.

On s’intéresse maintenant aux résultats importants sur les courants dirigés harmoniques dans le
cadre d’une structure feuilletée singulière F = (M,L(F), E) sur M .

Rappelons qu’un courant dirigé T est dit être harmonique si ddcT = 0.

Theorem 1.3.14 (Berndtsson-Sibony). Supposons que E est localement pluripolaire. Alors, il existe un
courant harmonique dirigé positif non-nul sur F .

On donne maintenant un résultat intéressant concernant le prolongement des courants harmoniques.

Proposition 1.3.15 (Dinh-Nguyên-Sibony). Supposont que F n’admet que des singularités isolées et
soit T un courant harmonique dirigé positif sur F . Alors T a une masse finie au voisinage de toute
singularité a ∈ E. Si M est compacte, T peut être prolongé en un (n−1, n−1)-courant positif ddc-fermé
sur M .
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1.4 Groupes Fuchsiens et Kleiniens
Rappelons la définition du groupe projectif spécial linéaire qui nous sera utile pour la suite, qu’on note par
PSL (2,C). Celui-ci est défini comme le quotient du groupe spécial linéaire par son centre, c’est-à-dire:

PSL (2,C) =
{
γ : z 7−→ γ(z) = az + b

cz + d
; a, b, c, d ∈ C, ad− bc = 1

}
/{±Id} (1.1)

Classification des éléments de PSL (2,C). Un élément γ ∈ PSL (2,C) \ {±Id} est dit:

• Parabolique, si |a+ d| = 2.

• Hyperbolique, si |a+ d| > 2.

• Elliptique, si |a+ d| < 2.

Definition 1.4.1 (Groupes Kleiniens). Un groupe Kleinien est un sous-groupe discret de type fini du
groupe d’isométries de l’espace hyperbolique H3 qui préservent l’orientation, ce dernier étant identifiable
avec PSL (2,C).

On se donne un groupe Kleinien Γ. Alors il existe une décomposition naturelle de la frontière

∂H3 = S2
∞,

(qui peut être identifiée avec la sphère usuelle dans le modèle de la boule conforme de H3) en deux sous-
ensembles associée canoniquement à Γ, il s’agit de l’ensemble limite Λ(Γ) et l’ensemble de discontinuité
Ω(Γ). Fixons un point x ∈ H3, on considère son orbite Γx sous l’action de Γ, notons son adhérence dans
la boule unité fermée par Γx.

Definition 1.4.2. L’ensemble limite est définit par

Λ(Γ) = Γx \ Γx = Γx ∩ S2
∞.

Definition 1.4.3. Le complémentaire de l’ensemble limite Ω(Γ) = S2
∞ \ Λ(Γ) est donc l’ensemble de

discontinuité.

Definition 1.4.4. Un groupe Kleinien Γ est dit être élémentaire is son ensemble limite Λ(Γ) contient
au plus deux points.

Soit Γ un groupe Kleinien, notons par C(Γ) son enveloppe convexe fermé dans H3 ∪S2
∞, son intérieur

est donc noté par
◦
C(Γ) = C(Γ) ∩ H3. Soit M = H3/Γ, notons par MC(Γ) le quotient

◦
C(Γ)/Γ. Γ est dit

géométriquement fini si l’ϵ-voisinage de l’enveloppe convexe Nϵ(MC(Γ)) ⊂ M est de volume fini.
Rappelons donc ce théorème utile dans la théorie géométrique de mesure dû à Ahlfors.

Theorem 1.4.5 (Ahlfors). Si Γ est un groupe Kleinien géométriquement fini, alors Λ(Γ) est soit de
mesure nulle ou de mesure totale. Si Λ(Γ) est de mesure totale, alors l’action de Γ sur S2

∞ est ergodique.

Definition 1.4.6 (Groupes Quasi-Fuchsiens). Un Sous-groupe discret de PSL (2,C) est appelé quasi-
fuchsiens si son ensemble limite est une Courbe de Jordan non-différentiable.
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Definition 1.4.7 (Groupes Fuchsiens). Soit Γ ⊂ PSL2(C) qui agit de manière invariante sur un disque
ouvert ∆ ⊂ Ĉ = C ∪ {∞}, c’est-à-dire que Γ(∆) = ∆. Alors Γ est dit groupe Fuchsien si et seulement
si l’une des propriétés équivalentes suivantes est vérifiée:

(1) Γ est un sous-groupe discret (pour la topologie usuelle de PSL (2,C)).

(2) Γ agit de façon proprement discontinue en tout point z ∈ ∆.

(3) Le disque est un sous-ensemble du domaine de discontinuité Ω(Γ) de Γ.

On distingue deux types de groupes Fuchsiens:

(1) Un groupe Fuchsien est dit du premier type si l’ensemble limite Λ(Γ) = R = R ∪ {∞}. Ceci est le
cas si H/Γ est de volume fini.

(2) Un groupe Fuchsien Γ est de second type s’il n’est pas du premier type. Autrement dit, c’est un
groupe dont l’ensemble limite Λ(Γ) est parfait et nulle part dense dans R (c’est un ensemble de
Cantor).

Voici quelques exemples très répandus de groupes Fuchsiens du premier type:

(1) Tout sous-groupe cyclique de PSL (2,R) qui est hyperbolique ou parabolique est un groupe Fuch-
sien.

(2) Tout sous-groupe cyclique elliptique de PSL (2,R) est Fuchsien si et seulement s’il est de type fini.

(3) Tout groupe Fuchsien abélien est cyclique.

(4) Aucun groupe Fuchsien n’est isomorphe to Z × Z.

(5) Soit Γ un groupe Fuchsien non-abélien. Alors le normalisateur de Γ dans PSL (2,R) est un groupe
Fuchsien.

(6) Tout groupe Fuchsien est Kleinien.

1.5 Présentation des résultats
Le résultat suivant correspond au “Theorem A” (c.f. section 2.1)

Theorem 1.5.1. Soit F un feuilletage de Riccati sur le plan projectif complexe CP2 n’ayant que des
droites simples invariantes C1, . . . , Ck. Supposons que l’application d’holonomie locale du feuilletage
F autour de chaque droite invariante Ci soit un élément elliptique de PSL (2,C) et que le groupe
d’holonomie global Γ ⊂ PSL (2,C) du feuilletage F est un groupe fuchsien (resp. quasifuchsien) de
premier type. Alors:

(a) Il existe un ensemble fermé L(F) ⊂ CP2 de dimension topologique égale à 3 qui est minimal pour le
feuilletage F . Autrement dit, L(F) est invariant par le feuilletage F et chaque feuille du feuilletage
F en L(F) est dense dans L(F).
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(b) Si Γ est fuchsien, alors L(F) est un ensemble non-algébrique analytique-réel avec k points sin-
guliers, tous de type orbifold. Si Γ est quasifuchsien, alors L(F) est une “variété topologique
singulière” de dimension de Hausdorff strictement supérieure à 3 et dont l’ensemble singulier est
à nouveau constitué de k points singuliers de type orbifold.

(c) Il existe un unique courant harmonique feuilleté positif porté par l’ensemble L(F). Ce courant
harmonique, en effet, n’est pas fermé.

(d) L’espace de tous les courants harmoniques feuilletés positifs sur la surface CP2 est engendré par T
et par les courants fermés induits par intégration sur chacune des droites invariantes C1, . . . , Ck.

(e) Le courant T est d’auto-intersection (géométrique) nulle au sens de [21].

Le résultat suivant correspond au “Theorem B” (c.f. section 2.1)

Theorem 1.5.2. Pour tout n ∈ N, il existe un feuilletage Fn de degré n sur le plan projectif complexe
CP2 satisfaisant les conditions suivantes:

• Les points singuliers de Fn sont simples sauf l’un parmi eux.

• Le feuilletage Fn admet une quantité non-dénombrable de courants d’Ahlfors diffus (indépendants).
De même, il existe une quantité non-dénombrable d’applications holomorphes (non-constantes) de
C à valeurs dans CP2 qui sont tangentes au feuilletage Fn et dont les images sont Zariski denses.

Ces deux théorèmes sont démontrés dans les deux premiers chapitres (c.f. 2.3.2, 3.1 et 3.2) et corre-
spondent au contenu de l’article [1]. Cependant, le dernier chapitre (qui fait partie d’un travail en cours)
est consacré à décrire la géométrie du Levi-plat correspondant dans le cas d’une holonomie Fuchsienne
admettant des générateurs paraboliques.
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Chapter 2

Building Riccati Foliations and
Ahlfors Currents

In the present chapter (and the next one), we provide (without modification) the content of the article [1].

2.1 Introduction
The purpose of this chapter is to provide examples of (singular holomorphic) foliations on the complex
projective plane CP2 carrying, dynamically interesting, positive foliated harmonic currents that can
be detailed to a significant extent. Currents whose supports are either singular real-analytic Levi-
flats or continuous Levi-flats with fractal nature and Hausdorff dimension greater than 3 are included.
Throughout this chapter, a current T is said to be harmonic if it verifies i∂∂T = 0. In particular,
closed currents are automatically harmonic. However, in a suitable sense, there are few foliations on
the surface CP2 admitting non-trivial positive foliated closed currents whereas the existence of positive
foliated harmonic currents is a rather general phenomenon. For instance, according to Fornæss and
Sibony [22], every foliation on the surface CP2 having only hyperbolic singularities and leaving no
algebraic curve invariant admits unique positive foliated harmonic currents (and no closed ones). In
particular, the minimal foliations constructed in [34] admit a unique positive foliated harmonic current
and whose supports coincide with all the surface CP2.

In a kind of opposite direction, the simplest examples of foliations on the surface CP2 carrying positive
foliated closed currents are provided by foliations leaving invariant some algebraic curve C ⊂ CP2: the
integration current over the (possibly singular) curve C is positive foliated and closed. In general, the
study of (positive foliated) harmonic/closed currents is a very active area relying on a variety of points
of view as confirmed by the large literature including [24], [10], [4], [21], [22], [13], [25], [15], [41], [16],
[14] among several others.

However, despite a few remarkable theorems on their existence and uniqueness such as Fornæsss-
Sibony theorem in [22], very little is known about the actual structure of these harmonic currents.
For example, dealing with non-closed harmonic currents, basically the only type of information so far
available is the mentioned fact that the harmonic currents associated with the foliations of [34] have full
support. In particular, this raises the outstanding problem of deciding whether or not these currents are
absolutely continuous with respect to Lebesgue measure.

23
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Moreover, the complex projective plane CP2 is arguably the most interesting surface to investigate
the structure of harmonic currents due to their relations with a few outstanding conjectures that are
specific for the surface CP2, (c.f. for example [17]). Not surprisingly, constructing suitable foliations on
the surface CP2 involves special difficulties which, in turn, explains the relative paucity of examples and
our focus on this case.

Concerning the study of (non-closed) harmonic currents, the main results of this chapter are sum-
marised by Theorem A which seems to answer a question formulated in [19] and pertains directly some
problems mentioned in [17] (with respect to [17] see also our Theorem B). This theorem can also be
viewed as a general statement about Riccati foliations on the surface CP2.
Theorem A. Let F be a Riccati foliation on the complex projective plane CP2 having only simple
invariant lines C1, . . . , Ck. Assume that the local holonomy map of the foliation F around each invariant
line Ci is an elliptic element of PSL (2,C) and that the global holonomy group Γ ⊂ PSL (2,C) of the
foliation F is a Fuchsian (resp. quasifuchsian) group of first kind. Then, the following holds:

(a) There exists a closed set L(F) ⊂ CP2 of topological dimension equal to 3 which is a minimal set for
the foliation F . In other words, L(F) is invariant by the foliation F and every leaf of the foliation
F in L(F) is dense in L(F).

(b) If Γ is Fuchsian, then L(F) is a real-analytic non-algebraic set with k singular points, all of them of
orbifold-type. If Γ is quasifuchsian, then L(F) is a “singular topological manifold” with Hausdorff
dimension strictly greater than 3 and whose singular set consists again of k singular points of
orbifold-type.

(c) The set L(F) carries a unique positive foliated non-closed harmonic current T whose support
coincides with the whole L(F).

(d) The space of all positive foliated harmonic currents on the surface CP2 is generated by T and by
the closed currents induced by integration over each of the invariant lines C1, . . . , Ck.

(e) The current T has zero (geometric) self-intersection in the sense of [21].

In particular, the current T in question appears to be the first example of a (non-closed, foliated)
positive harmonic current on the surface CP2 supported on a set with empty interior or, alternatively,
on a set of null Lebesgue measure. In particular, it is interesting to see that this support may be
very regular (real-analytic) or merely continuous with transverse fractal nature and Hausdorff dimension
strictly greater than 3. We should also mention that foliations as in Theorem A associated with analytic
Levi-flats already exist in degree 2 whereas transversely fractal Levi-flats can be found among degree 3
foliations. The reader is referred to Section 2.3 for explicit examples.

When the global holonomy group Γ of the foliation F is Fuchsian, the resulting Levi-flat L(F) is
necessarily non-algebraic thanks to Lebl’s theorem in [32]: if it were algebraic, the leaves of the foliation
F in L(F) would be complex algebraic curves which is clearly not the case since they are dense in L(F)
(item (a)). It is also interesting to notice that the non-algebraic nature of the leaves of the foliation F
in L(F) is the only obstacle preventing L(F) of being algebraic as it follows from [18]. Finally, note
that item (b) in Theorem A provides a criterion to ensure the existence of real-analytic Levi-flats. The
case where Γ is Fuchsian provides singular real-analytic Levi-flats L(F) with very simple singularities
(orbifold-type): in some sense L(F) is “as little singular as possible” which is worth singling out since
it might shed some light on the well-known problem about the existence of smooth Levi-flats on the
surface CP2.
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At this point a comment of closed foliated currents is in order. Although they rarely exist, the
problem of describing those situations where they are present has attracted significant interest due,
among other reasons, to its connection with Kobayashi hyperbolic spaces, (c.f. [12], [38]). With respect
to the former, our ideas also enable us to provide examples answering a question by N. Sibony which
was motivated by Brunella’s result in [8].

First, recall that a (positive foliated) current is said to be algebraic if it coincides with the integration
current over an algebraic curve invariant by the foliation F . Otherwise, T is said to be diffuse. Recall
also that a singular point p of a foliation F is called simple if the foliation F can locally be represented by
a holomorphic vector field whose linear part at the singular point p has at least one eigenvalue different
from zero (c.f. Section 2.2). With this terminology, and building on the work of Mcquillan [38], Brunella
showed that any foliation F on the surface CP2 having only simple singular points and admitting a
diffuse (positive foliated) closed current TA of Ahlfors type must have degree at most 4, (c.f. [8]). This
has prompted N. Sibony to wonder if some bound on the degree of the foliation F may be obtained
by dropping (or significantly weakening) the assumption on the corresponding singular points. In this
direction, in Section 2.3, the following theorem will be proved:

Theorem B. For every n ∈ N, there exists a degree n foliation Fn on the surface CP2 satisfying all of
the following conditions:

• All but one of the singular points of the foliation Fn are simple.

• The foliation Fn carries uncountably many (independent) diffuse Ahlfors currents. Similarly, there
are uncountably many holomorphic maps from C to the surface CP2 that are tangent to the
foliation Fn and have Zariski-dense images.

Note, however, that not all (positive) diffuse foliated closed currents are of Ahlfors type and some
examples will also be indicated in Section 2.3.

Let us close this Introduction with an outline of the chapter. Given a discrete group action, the
standard suspension construction basically yields a foliation defined on a certain fibre bundle. In this
sense, suspensions never produce foliations on the surface CP2. Yet, our strategy will consist of building
some very special suspensions and then systematically modify the foliation/ambient surface to eventually
make the whole structure fit in the surface CP2. Naturally, this will require us to overcome a few
difficulties such as the fact that our basic objects (foliated currents, real-analytic sets) are not birationally
invariant in general.

In Section 2.2, we show how to construct Riccati foliations on CP1-bundles with prescribed holonomy
(Proposition 2.2.1), a result going all the way back to Birkhoff [5] and re-discovered in [33]. Besides back-
ground and complementary material, Section 2.2 includes a reasonably short proof of Proposition 2.2.1
which is similar to Lins-Neto’s argument. However, besides making the chapter self-contained, our proof
shows that certain additional choices are always possible and this freedom is sometimes useful in the
course of this work.

In Section 2.3, we use Proposition 2.2.1 to provide examples of degree 2 foliations on the surface CP2

satisfying the conditions of Theorem A for Fuchsian groups and thus giving rise to real-analytic Levi-
flats. Here, it is worth mentioning that the degree 2 examples turn out to be the Halphen vector fields
studied in [27]. Similarly, we show how to obtain transversely fractal Levi-flats starting from degree 3.
In the second part of this section, we prove Theorem B. Section 2.3 ends with some examples of diffuse
positive foliated closed currents that are not of Ahlfors type.

Section 3.1 contains the proof of statements (a) and (b) in Theorem A except by a specific lemma
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(Lemma 3.1.7) whose proof is deferred to the last section since similar techniques are employed to
establish the remaining items in Theorem A as well.
Terminology. In the statements of our theorems and throughout the text, PSL (2,C) is identified
with the automorphism group of CP1. Elements in PSL (2,C) are classified as hyperbolic, parabolic,
elliptic and the identity. In other words, the identity matrix is set aside so that whenever an element
of PSL (2,C) is said to be elliptic or parabolic it is understood that this element is different from the
identity.

2.2 Riccati Foliations
Let R be a compact Riemann surface and S a CP1-bundle over R whose projection is denoted by
P : S → R. A Riccati foliation is usually defined as a singular foliation F on the surface S that is
transverse to the fibres of S. This statement can be made accurate as follows. There is a finite set
{p1, . . . , pk} ⊂ R such that the following holds:

• The fibres Ci = P−1(pi), over the points pi, are invariant by the foliation F , i = 1, . . . , k.

• The leaves of the foliation F , away from the invariant fibres Ci, are transverse to the fibres of P.
In particular, the singular points of the foliation F are all contained in the union of the invariant
fibres Ci.

There follows that the restriction of the foliation F to the open surface S \ {C1, . . . , Ck}, is regular and,
in fact, transverse to the fibres of P sitting over points in the (open) Riemann surface R \ {p1, . . . , pk}.
Thus, the standard holonomy representation gives arise to a homomorphism ρ : π1(R \ {p1, . . . , pk}) →
Aut (CP1) ≃ PSL (2,C). The global holonomy group Γ = ρ(π1(R \ {p1, . . . , pk})) ⊂ PSL (2,C) encodes
all of the transverse dynamics of the foliation F .

In this chapter, however, we will focus on classical Riccati foliations in which case the base space R
is again the complex projective line CP1 so that the surface S is a CP1-bundle over CP1 and, hence, a
Hirzebruch surface Fn, n ≥ 0. Recall that F0 = CP1 ×CP1 and that, for n ≥ 1, Fn is fully characterised
as a CP1-bundle over CP1 admitting a rational curve of self-intersection −n as a section, c.f. [3].

Recall that the surface Fn possesses a standard atlas consisting of four affine coordinates. More
precisely, consider two copies of C × CP1. The first copy is endowed with a pair of affine coordinates,
namely (x, y) and (x, y), satisfying with x = x and y = 1/y. The second copy if endowed with coordinates
(u, v) and (u, v) satisfying the analogous relation. The surface Fn can then be obtained by identifying
the point (x, y) of the first copy with the point (u, v) = (1/x, xny) of the second one. The section
of self-intersection −n, with this identification, is nothing but the rational curve defined by {y = 0}
({v = 0}) and it will often be referred to as the null section.

Consider now a Riccati foliation F defined on the first Hirzebruch surface F1. The condition of
transversality ensures that, in the above mentioned affine coordinates (x, y), the foliation F is induced
by a holomorphic vector field X having the form

X(x, y) = F (x) ∂
∂x

+ [c0(x) + c1(x)y + c2(x)y2] ∂
∂y
, (2.1)

where F , c0, c1, and c2 are polynomials. In particular, if c0 is a non-zero constant then the foliation F
is transverse to the null section of the surface F1 except maybe at the “point at infinity”. In this regard,
it is always possible to choose coordinates where the resulting fibre at infinity is not invariant by the
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foliation F so that the invariant fibres of the foliation F are in natural correspondence with the zeros of
the polynomial F . Moreover, an invariant fibre is said to be simple if it corresponds to a simple zero of
F , otherwise it is called a multiple fibre.

An alternative definition of simple fibres that is slightly more intrinsic since it does not depend on the
particular system of coordinates, depends on the notion of eigenvalues of a singular point. Recall that on
a complex surface every holomorphic foliation F is locally given by the integral curves of a holomorphic
vector field X having only isolated zeros. A vector field satisfying this condition is said to be a local
representative of the foliation F . Now, if p is a singular point of the foliation F , the eigenvalues of the
foliation F at the singular point p are defined as the eigenvalues of the linear part of a representative
vector field X at the point p. It follows, since two representative vector fields differ by multiplication
by an invertible function, that the eigenvalues of a foliation F at the singular point p are well defined
only up to a multiplicative constant, c.f. [30] and [45]. It is immediate to check, with this terminology,
that an invariant fibre of a Riccati foliation is simple if and only if every singular point lying in this fibre
has a non-zero eigenvalue in the direction transverse to the invariant fibre itself. Also, this notion does
not depend on the choice of the singular point in the sense that if one singular point has a non-zero
eigenvalue in a direction transverse to the invariant fibre then any other singular point lying in the same
fibre does too. In this respect, Equation (2.1) shows that an invariant fibre of a Riccati equation contains
at least one singular point and at most 2 singular points.

Next, let Γ be a subgroup of PSL (2,C) along with a chosen generating set {M1, . . . ,Mk−1}. Choose
also (pairwise distinct) points {p1, . . . , pk} in CP1 and set B = CP1 \ {p1, . . . , pk}. The following
proposition plays a basic role in our chapters. This proposition goes back to Birkhoff [5] and [6] though
an independent treatment was provided by A. Lins-Neto in [33]. For the convenience of the reader,
we formulate an accurate statement (Proposition 2.2.1) below and provide a self-contained proof that
parallels the one given in [33]. Besides making the chapter more self-contained, the proof given here also
singles out a certain amount of flexibility in the construction that will be helpful in the course of the
chapter.

Proposition 2.2.1. (c.f. [5] and [33]) With the above notation, there exists a Riccati foliation F on the
first Hirzebruch surface F1 satisfying the following conditions:

• The foliation F leaves invariant exactly k fibres sitting, respectively, over the points {p1, . . . , pk}.
These fibres are all simple.

• For each i ∈ {1, . . . , k − 1}, the local holonomy map arising from a small simple loop around the
point pi coincides with the automorphism of CP1 identified with the matrix Mi.

• The local holonomy map arising from a small simple loop around the point pk coincides with the
automorphism of CP1 arising from the matrix Mk = (Mk−1 . . .M1)−1.

In particular, the global holonomy group of the foliation F coincides with Γ.

Proof. For each i ∈ {1, . . . , k}, let γi ⊂ CP1 be a small simple loop around the point pi ∈ CP1.
The fundamental group π1(B) of B = CP1 \ {p1, . . . , pk} is generated by γ1, . . . , γk along with the
relation γ1 ∗ · · · ∗ γk = id. We then define a representation ρ from π1(B) in PSL (2,C) by letting
ρ(γi) = Mi for i = 1, . . . , k. The homomorphism ρ is well defined since Mk = (Mk−1 . . .M1)−1 so that
MkMk−1 . . .M1 = id. We also have, by construction, that ρ(π1(B)) = Γ.

Next, we use the standard suspension construction to obtain a CP1-bundle N over B equipped with a
foliation D which is transverse to its fibres and whose global holonomy group is Γ. In fact, the holonomy
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map associated to D and arising from a small loop σi ⊂ B encircling the missing point pi is precisely
the automorphism induced by Mi.

The manifold N is clearly open since the basis B is so. To obtain a compact manifold and an
(extended) singular foliation, we will “fill in” each of the missing fibres in N . Clearly, denoting by
P : N → B the bundle projection, it suffices to show how to “fill in” the fibre P−1(p1) over the point
p1. For this, we consider a small disc D around p1 whose boundary ∂D is identified with the loop σ1.
By means of a local coordinate u, D can be thought of as a disc around the origin 0 ∈ C. First, we will
construct a Riccati foliation F1 on the product D × CP1 having a single invariant fibre, which sits over
0 ∈ D ⊂ C, and whose holonomy is given by the matrix M1. To construct the foliation F1, we then
consider coordinates (u, v) on D × CP1 where u is as above and v is an affine coordinate on CP1. Then
the foliation F1 is given by the integral curves of the following vector fields:{

u ∂
∂u − ( 1

2πi ) ∂
∂v , if M1 is parabolic,

u ∂
∂u + av ∂

∂v , otherwise.

It is clear that the foliation above admits a holomorphic extension as a Riccati foliation to D × CP1.
Moreover, if M1 is not parabolic, then the corresponding holonomy map fixes the point v = 0 and a
direct inspection shows that the multiplier of this fixed point is e2πia (a ∈ C∗ and ℜ (a) ∈ [−1, 1], where
ℜ (a) stands for the real part of a). In turn, when M1 is parabolic, the holonomy map is given by
v 7→ v − 1 so that it has a single fixed point corresponding to v = ∞ whose multiplier equals 1. In
particular, note that the choice a = ±1 leads to trivial holonomy.

To complete the “filling” of the “missing” fibres, it suffices to show that it is possible to glue to-
gether the foliations D and F1 over the punctured disc D∗. Gluing these foliations together amounts
to constructing a holomorphic diffeomorphism h from D∗ × CP1 to P−1(D∗) taking the foliation F1
to the foliation D. Though not indispensable, at this point it is convenient to remind the reader that
every holomorphic CP1-bundle is holomorphically locally trivial owing to a theorem due to Fisher and
Grauert [20]. To begin, we use the common coordinate u and fix a base point q ∈ D∗. The fibre (q,CP1)
in D∗ × CP1 is endowed with the coordinate v. To identify (q,CP1) with the fibre P−1(q) we need to
choose a affine coordinate w on P−1(q). The choice of w is made as follows:

• If a = ±1, i.e., the holonomy map coincides with the identity. Then w is an arbitrary affine
coordinate in P−1(q) and the identification is v = w.

• If the holonomy map is neither the identity nor parabolic. Then we choose a and w so that the
origin of w coincides with a fixed point of the holonomy map having multiplier equal to e2πia and
set v = w.

• If the holonomy map is parabolic. Then the origin of w is the fixed point of the holonomy map
and the identification is w = 1/v.

The diffeomorphism h is then defined on (q,CP1) by declaring that h takes points of (q,CP1) to points in
P−1(q) in accordance with the identification of the corresponding fibres. It then remains to extend h to
D∗ ×CP1. This is done by following the standard lifting path method for the leaves of the foliations F1
and D (the latter restricted to P−1(D∗)). The path liftings are clearly possible since the restriction of
the bundle projection to any (regular) leaf of either F1 or D is a covering map of the base (the foliations
are Riccati). Furthermore, the diffeomorphism h is globally well defined since its extension over a loop
around 0 ∈ C coincides with the initial definition on (q,CP1). In fact, h on (q,CP1) is determined by
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the identification provided by the coordinates v and w so that it conjugates the corresponding holonomy
maps.

Summarising what precedes, the gluing construction described above allows us to define a Riccati
foliation, still denoted by D, on a compact surface N ′ that happens to be a CP1-bundle over CP1.
Moreover, the Riccati foliation D possesses exactly k invariant fibres and satisfies the required holonomy
conditions. Finally, being a CP1-bundle over CP1, the surface N ′ is a Hirzebruch surface Fn, n ≥ 0. It
only remains, to complete the proof of the present proposition, to check that we can assume without
loss of generality that N ′ is actually first Hirzebruch surface F1.

Assuming the resulting surface Fn is different from F1, we will show how the surface can be modified
to become the surface F1 while keeping all the conditions on the transformed foliation (still denoted by
D). This will be done by constructing a convenient birational map between the surfaces F1 and Fn.
This birational map is obtained by composing successive (birational) maps from Fn to Fn−1 which are
defined as follows. Pick a base point q ∈ Fn which is away from the null section (i.e., the section of
self-intersection −n) and lies in a fibre P−1(q0) transversely intersecting the foliation D. The surface Fn

is then blown up at q so that the new surface F̃n possesses now two rational curves of self-intersection −1.
Namely, the exceptional divisor E and the transform ˜P−1(q0) of the fibre P−1(q0). The blown up surface
also possesses a rational curve of self-intersection −n given by the transform of the null section. Next
collapse the (−1)-curve ˜P−1(q0) to obtain a new surface. We claim the following:
Claim. The surface obtained by collapsing the transform of P−1(q0) is Fn−1 and the transform of E is
a fibre of the corresponding fibration. The foliation D induces a new foliation D1 on Fn−1 having an
additional invariant fibre, namely the transform of E. This invariant fibre, however, has trivial holonomy.

Proof of the Claim. It is clear that by collapsing of ˜P−1(q0), the transform of E fits inside the previous
fibration of Fn so that the resulting surface is again a CP1-bundle over CP1 and, hence, a Hirzebruch
surface. However, since the transform of the null section on F̃n intersects ˜P−1(q0) at a single point and
transversely, its image on the resulting Hirzebruch yields a section of self-intersection −n+ 1. Thus, the
surface obtained at the end of the procedure is, indeed, Fn−1, (c.f. [3]).

As to the foliation induced by D on Fn−1, note that E ⊂ F̃n is invariant by the blown up foliation
D̃ since it comes from blowing up a regular point of D. For the same reason, E contains exactly one
singular point of D so that the regular part of E (leaf of D̃) is simply connected and, hence, has trivial
holonomy. The remainder of the claim follows immediately from these two remarks.

By successively applying the previous construction, we obtain a Riccati foliation D′ on the surface F1
which satisfies the required conditions in terms of holonomy but which possesses finitely many additional
invariant fibres, each of them carrying trivial holonomy. We just need, to finish the proof, to show how
these invariant fibres with trivial holonomy can be “eliminated”. This means that the foliation D′ can
be modified, without changing its local holonomy maps, to yield a new foliation for which the previous
invariant fibre becomes a regular transverse fibre. The proof of this assertion, however, is rather simple.
It is again a gluing procedure. Fix then one such fibre P−1(q). By means of a local coordinate u on
the base, we identify P−1(q) to the product D × CP1. In turn, on D × CP1, we consider the horizontal
foliation H. The proof consists, again, of gluing together the foliations D′ and H over P−1(D∗) and
D∗ ×CP1. The construction of the gluing diffeomorphism h : D∗ ×CP1 → P−1(D∗) is, however, identical
to the previous construction. In fact, the local holonomy maps arising from D′ and from H around the
fibres in question are both trivial so that the construction carried out above still applies. This ends the
proof of Proposition (2.2.1).
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Remark 2.2.2. Note that the invariant fibres for the Riccati foliation F constructed in Proposition 2.2.1
are all simple since the singular points of the foliation F always have a non-zero eigenvalue associated
with the direction transverse to the invariant fibre.

The chapter being mainly devoted to constructing foliations on the complex projective plane CP2,
we need to make accurate what is understood by a Riccati foliation on the surface CP2. Since the blow
up of the surface CP2 at an arbitrary point leads to a surface isomorphic to the surface F1, the definition
becomes very straightforward.
Definition 2.2.3. A foliation on the complex projective plane CP2 is said to be a Riccati foliation if it
is obtained from a Riccati foliation F on the first Hirzebruch surface F1 by collapsing the (−1)-rational
curve in the surface F1. In other words, a foliation FP on the surface CP2 is a Riccati foliation if it
possesses a singular point whose blow up leads to a Riccati foliation on the surface F1.

In what follows, we will mostly be interested in Riccati foliations on the complex projective plane
CP2 or on the first Hirzebruch surface F1, whose global holonomy groups are certain specific subgroups
of PSL (2,C) along with a particular choice of generating set. Compared to the statement of Propo-
sition 2.2.1, the choice of points p1, . . . , pk corresponding to the invariant fibres is, however, of little
importance. Thus, fixed a group Γ ⊂ PSL (2,C) along with a generating set {M1, . . . ,Mk−1}, the
phrase the Riccati foliation arising from Γ and {M1, . . . ,Mk−1} will be used to refer to the Riccati
foliation F on the surface F1 obtained from Proposition 2.2.1 for an arbitrary choice of points p1, . . . , pk.
Alternatively, the reader may fix a particular choice throughout the text, for example, setting p1 = 0,
p2 = 1, p3 = ∞, and then pi = i for i = 4, . . . , k. Similarly, we will refer to the Riccati foliation on the
surface CP2 (arising from Γ and {M1, . . . ,Mk−1}) meaning the foliation on the surface CP2 obtained by
blowing down the previous Riccati foliation on the surface F1. In terms of notation, Riccati foliations on
the surface F1 will typically be denoted by F whereas FP will stand for Riccati foliations on the surface
CP2.

Let us close this section with a comment about the degree of foliations on the surface CP2. First,
note that every homogeneous polynomial vector field X on C3 induces a foliation on the surface CP2

unless X is multiple of the radial vector field

R = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
.

In fact, X being homogeneous, the direction associated with the vector X(p), p ∈ C3 \ {(0, 0, 0)} does
not change over the radial line of C3 passing through p. If, moreover, X is not a multiple of the radial
vector field, then for a generic point p the vector X(p) induces a well defined direction on Tq=P (p)CP2

where
P : C3 \ {(0, 0, 0)} → CP2

stands for the canonical projection. In particular, the vector field X defines a singular foliation on
CP2. Conversely, every singular holomorphic foliation on the surface CP2 can be obtained out of a
homogeneous polynomial vector field on C3 by means of the preceding construction, (c.f. for example
[30]). If, in addition, we require the zero set of the homogeneous vector field X to have codimension
at least 2, then every pair of homogeneous vector fields X and X ′ inducing the same foliation on the
surface CP2 must have the same degree. Thus, the following definition makes sense:
Definition 2.2.4. The degree of a foliation F on the surface CP2 is the degree of a homogeneous
polynomial vector field X on C3 having singular set of codimension at least 2 and inducing the foliation
F on the surface CP2 by means of the canonical projection C3 \ {(0, 0, 0)} → CP2.
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In closing this section, let us mention that the degree of a foliation F on the surface CP2 can
alternatively be defined as the number of tangencies of F with a generic projective line in the surface
CP2, c.f. [30] and [45]. Finally, in the special case of Riccati foliations the following lemma is well known
and its straightforward proof can safely be left to the reader.

Lemma 2.2.5. Let F be a Riccati foliation on the surface F1 and denote by FP the corresponding Riccati
foliation on the surface CP2. Assume that F has exactly k invariant fibres, all of them being simple.
Then the degree of FP as a foliation on the surface CP2 equals k − 1.

2.3 Examples of Riccati Foliations and Theorem B
The purpose of this section is to detail two applications of Proposition 2.2.1. First, we will show how
examples of foliations of degree 2 on the surface CP2 satisfying the conditions of Theorem A with
real-analytic Levi-flats can be obtained. Similarly, we will also construct foliations of degree 3 as in
Theorem A having transversely fractal Levi-flats. Then we will turn to Theorem B and apply again
Proposition 2.2.1 to construct the corresponding foliations.

2.3.1 Two Examples of Riccati Foliations Having Degrees 2 or 3

Let us start with triangular groups or more precisely, with triangular groups without cusps. This is as
follows. Let mi ∈ Z∗

+, i = 1, 2, 3, be three positive integers satisfying the condition

1
m1

+ 1
m2

+ 1
m3

< 1 , (2.2)

and set m = (m1,m2,m3). It is well know that, up to conjugation, there is exactly one triplet (ξ1, ξ2, ξ3)
of elements in PSL (2,C) verifying the relations

ξ1ξ2ξ3 = ξm1
1 = ξm2

2 = ξm3
3 = id . (2.3)

The subgroup Γ of PSL (2,C) generated by ξ1, ξ2, and ξ3 is, therefore, unique up to inner automorphisms
of PSL (2,C). The group Γ is called the triangular group associated with the unordered triplet m =
(m1,m2,m3). These triangular groups happen to be discrete and conjugate to a subgroup of PSL (2,R).
In other words, triangular groups Γ as above are Fuchsian groups. Clearly, the quotient of the hyperbolic
disc D by Γ is naturally a spherical orbifold with three singular points, (c.f. for example [31]).

Example 2. Choose m = (m1,m2,m3) with mi ∈ Z∗
+, i = 1, 2, 3, satisfying condition (2.2) and denote

by F (m) the Riccati foliation on the surface F1 obtained by applying Proposition 2.2.1 to the group Γ
with generating set {ξ1, ξ2, ξ3}.

The first family of Riccati foliations on the surface CP2 to be considered here is, therefore, F (m)
P . In

other words, for each fixed m, F (m)
P is the foliation obtained from F (m) by collapsing the (−1)-curve in

the surface F1.
Note that the entire family of foliations F (m)

P is constituted by foliations of degree 2 as it follows
from the combination of Remark 2.2.2 and Lemma 2.2.5. Alternatively, we can consider the 3-parameter
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family

X(α1,α2,α3) = [α1z
2
1 + (1 − α1)(z1z2 + z1z3 − z2z3)] ∂

∂z1

+ [α2z
2
2 + (1 − α2)(z1z2 − z1z3 + z2z3)] ∂

∂z2

+ [α3z
2
3 + (1 − α3)(−z1z2 + z1z3 + z2z3)] ∂

∂z3
,

of quadratic vector fields on C3 which corresponds to the family of Halphen vector fields thoroughly
studied by A. Guillot in [27]. In particular, the existence of a Levi-flat for the foliation F (m)

P is already
pointed out in [27]. As a family of homogeneous vector fields of degree 2 on C3, the foliations they induce
on the surface CP2 are all of degree 2. To obtain the foliation F (m)

P it suffices to choose the parameters
α1, α2, and α3 so that

mi = α1 + α2 + α3 − 2
αi

.

Remark 2.3.1. A case of Halphen vector fields also discussed in [27] and escaping the setting of
Theorem A occurs for α1 = −6, α2 = −4, and α3 = 0. In this case, the resulting triangular group
acquires a cusp and, in fact, is isomorphic to PSL (2,Z). In other words, ξ1 and ξ2 are elliptic of orders 2
and 3 but ξ3 is parabolic. This example still possesses a singular Levi-flat whose structure is, however,
different from what is described in Theorem A. Also the description of the corresponding positive foliated
harmonic currents requires significantly different arguments and will be discussed in a future work.

We can now proceed with an example of Riccati foliation of degree 3 on the surface CP2 giving rise
to a transversely fractal Levi-flat.

Example 3. In this example, we begin by considering a spherical orbifold with 4 singular points (of
orbifold type). We then consider the Fuchsian group Γ′ arising from this orbifold by means of Riemann
uniformisation theorem. In slightly more concrete terms, we can use Poincaré theorem to ensure the
existence of these orbifolds. In fact, if m1, m2, m3 and m4 are the orders of the orbifold-type singular
points, then the condition for the existence of the desired Fuchsian group Γ′ becomes (c.f. for example
[31])

1
m1

+ 1
m2

+ 1
m3

+ 1
m4

< 2. (2.4)

The construction of one such Fuchsian group is simple enough to be recalled. Consider four radii issued
from 0 ∈ D ⊂ C with adjacent radii defining an angle of π/2 (for example R+, iR+, R− and iR−). Now
for τ ∈ (0, 1), choose a point in each radii such that its Euclidean distance to 0 ∈ D ⊂ C is τ . Next
define a quadrilateral Q by joining points lying in adjacent sides by segments of hyperbolic geodesic.
The sides of Q are denoted by l1, l2, l3 and l4. Then on top of each side li we construct an isosceles
triangle whose angle opposed to the side li, i.e., the angle defined by the two sides of the triangle having
the same length, equals 2π/mi. The result of this construction is, therefore, a star-shaped hyperbolic
octagon whose sides are labeled ξ1, ξ

′
1, . . . , ξ4, ξ

′
4 (for the orientation, c.f. figure 17 on page 93 of [31]).

Furthermore, by considering the asymptotic values of the area of this octagon when τ → 0 and τ → 1,
it becomes clear that τ can be chosen so that the area in question equals

2π
[

2 −
4∑

i=1

1
mi

]
. (2.5)
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By construction, the sides ξi and ξ′
i have the same length (i = 1, 2, 3, 4). In particular, there are

orientation-preserving automorphisms Hi of D such that Hi(ξ′
i) = ξi. Let then Γ′ ⊂ Aut (D) ≃

PSL (2,R) ⊂ PSL (2,C) generated by H1, H2, H3 and H4. The conditions of Poincaré’s polygon theorem
(c.f. [31], page 92) are, hence, matched so that Γ′ is discrete, and, hence, Fuchsian, moreover the quo-
tient of D by Γ′ identifies with the surface (orbifold) obtaining by following the above indicated gluing
of the sides of the octagon. It is straightforward checking that this quotient is topologically a sphere
with four marked (singular) points corresponding to the vertices of the octagon arising from the isosceles
triangles (the vertices with angles 2π/mi). This completes the construction of a Fuchsian group Γ′ with
the desired properties.

The Kleinian group Γ desired for this example is not the Fuchsian group Γ′ but rather some quasi-
conformal deformation of Γ′. Recall that a discrete subgroup of PSL (2,C) is said to be quasifuchsian
if it leaves invariant a Jordan curve J ⊂ CP1 which is not a real projective circle (in which case the
group would be Fuchsian). In particular, the curve J will be nowhere differentiable and of Hausdorff
dimension strictly greater than 1 owing to [7].

Now, whereas the theory of quasiconformal deformations and Bers Simultaneous Uniformisation
theorem are better known in the case of Riemann surfaces, similar statements still hold in the case of
Riemann surface orbifolds. The reader is referred to [40], Section 4.4, for the deformation theory of
Fuchsian groups containing elliptic elements. In particular, there follows that the Teichmüller space of
these spherical orbifolds with four singular points, or equivalently the Teichmüller space of a Fuchsian
group as Γ′ above, is of complex dimension 1.

Let then R denote the spherical orbifold arising from the Fuchsian group Γ′. Bers Simultaneous
Uniformisation theorem assigns to each point p in the Teichmüller space of R a quasifuchsian group Γ,
unique up to conjugation, satisfying the following conditions:

• The group Γ leaves invariant a Jordan curve J . The connected components of CP1 \ J are then
denoted by D1 and D2.

• The quotient D1/Γ is isomorphic to the orbifold R whereas the quotient D2/Γ is isomorphic to
the spherical orbifold parametrised by the point p.

Summarising what precedes, fix four positive integers m1, m2, m3 and m4 satisfying estimate (2.4),
there exists a complex 1 parameter family of quasifuchsian groups Γ, pairwise non-conjugate, and
parametrising spherical orbifolds with four singular points whose orders are precisely m1, m2, m3 and
m4.

Finally, for our example of Riccati foliations with transversely fractal Levi-flats, we consider the
family of Riccati foliations FQ on the surface F1 arising from the above family of Fuchsian groups by
means of Proposition 2.2.1. Then the desired examples arise as the corresponding Riccati foliations FQ

P
on the surface CP2 obtained by collapsing the (−1)-rational curve in the surface F1. In particular, the
global holonomy of the foliations FQ

P is given by the mentioned quasifuchsien groups. The reader will
also notice that all the foliations FQ

P are of degree 3 as follows from Lemma 2.2.5 since they have exactly
four invariant lines, all of them being simple.

2.3.2 High Degree Foliations with Diffuse Positive foliated Closed Currents
In this section we will prove Theorem B by building on some of the previous ideas related to Riccati
foliations and to Proposition 2.2.1. In the course of the section, we will also accurately formulate several
notions involving currents and foliations appearing both in Theorems A and B.
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Let us begin with some basic notions about currents on a compact complex surface M . Let Dk

denote the space of (smooth) differential forms of degree k on the surface M . The space D′
k of currents

of dimension k (where 0 ≤ k ≤ 4) is the C∞-topological dual of Dk. The degree of a current T is also
defined as the difference between the real dimension of M and the dimension of T . In local coordinates,
a current T of dimension k acts as a (4 − k)-form on the coefficients of a k-differential form ω. In fact, a
current T of dimension k can be represented as a (4−k)-differential form with distributional coefficients.

The exterior differential operator d, as well as the standard operators ∂ and ∂, are defined on currents
by letting ⟨dT, ω⟩ = (−1)k′+1⟨T, dω⟩, where T is a current of degree k′ and ω a (3 −k′)-differential form.
The action of ∂ and ∂ on currents is analogously defined. In particular, the space of currents can be
stratified with bidegrees p, q. A current T will also be called closed if dT = 0 and it will be called
harmonic if i∂∂T = 0.

The complex dimension of M being 2, we will particularly be interested in (1, 1)-currents. Recall
that a (1, 1)-form is said to be weakly positive if locally it takes on the form

2∑
i,j=1

αi,jdzi ∧ dzj ,

with the matrix {αi,j} being positive semi-definite at every point. In turn, a (1, 1)-current T is said to
be positive if the coupling T ∧ ω is a positive measure for every weakly positive form ω.

Assume now that M is endowed with a (singular) holomorphic foliation F . Then, among all currents
on M , we may look for those providing special insight in the structure of the foliation F . This gives rise
to the notion of foliated or directed current.
Definition 2.3.2. Let M be a complex compact surface equipped with a singular holomorphic foliation
F . A current T on the surface M is said to be foliated, or directed by F , if we have T (β) = 0 whenever
β is a 2-form vanishing on the tangent space of the foliation F .

In foliated coordinates (z1, z2) where the foliation F is given by {dz2 = 0}, every 2-form β vanishing
on the tangent space of the foliation F must have the form α1dz2 + α2dz2 for suitable 1-forms α1, α2.
From this, we see that a (1, 1)-foliated current T must take on the local form

T = T (z1, z2) dz2 ∧ dz2 ,

where T is identified with a distribution. In particular, T is of type (1, 1). Moreover, in the context of
foliated currents, the notion of being a positive current becomes particularly clear, it simply means that
T (z1, z2) is identified with a positive measure.

Consider now the positive foliated form T = T (z1, z2)dz2 ∧ dz2. If, in addition, T is closed, then the
distributional derivative of T (z1, z2) with respect to z1 and z1 must vanish. This means that T (z1, z2)
is essentially constant over the plaques of the foliation F or, equivalently, that T (z1, z2) depends only
on z2 and, hence, it naturally induces a positive measure on the transverse space (a particular case of
Rokhlin disintegration).

Similarly, if the current T is harmonic, then T (z1, z2) yields a harmonic function over the plaques of
the foliation F which is bounded above and below by strictly positive constants. By Rokhlin disintegra-
tion, the current T still defines a measure on the transverse space which is referred to as the harmonic
measure.

According to Sullivan [46], in the case of a regular foliation defined on a compact manifold, positive
foliated closed currents are in one-to-one correspondence with transversely invariant measures as defined
by Plante [43] and recalled below.
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Definition 2.3.3. Given a regular foliation F on a compact complex manifold M , a transversely in-
variant measure for the foliation F consists of the following data:

(1) A (finite) foliated atlas {(Ui, φi,Σi)}, where Σi stands for the transverse space.

(2) For every i, a finite measure µi defined on the transverse space Σi.

(3) Whenever Ui ∩ Uj ̸= ∅, the “gluing map” hij defined by φj ◦ φ−1
i (z1, z2) = (f(z1, z2), hij(z2))

satisfies h∗
ijµj = µi whenever both sides are defined.

In the case of a singular foliation, we simply repeat the above definition on the open manifold
M \ Sing (F) while dropping the condition on finiteness of the foliated atlas {(Ui, φi,Σi)}. It is then
clear that a (positive foliated) closed current still yields a transversely invariant measure for the foliation
F in the sense of Definition 2.3.3. Only the converse, i.e., the building of such a current out of a given
transversely invariant measure, needs further attention.

We are now ready to begin the proof of Theorem B. Fix n ∈ N and consider CP1 with (n+1) marked
points b1, . . . , bn+1. Fix also an elliptic element ξ ∈ PSL (2,C) representing an irrational rotation and
let Γ be the subgroup generated by ξ. Let F̃n be the Riccati foliation on the surface F1 arising from
Proposition 2.2.1 with (n+ 1) simple invariant fibres C1, . . . , Cn+1. More precisely, the local holonomy
map of the foliation F̃n around each of the invariant fibres C1, . . . , Cn coincides with ξ whereas the local
holonomy map obtained by winding around Cn+1 coincides with ξ−n. Moreover, each invariant fibre
Ci of the foliation F̃n contains exactly two singular points of this foliation, namely: one point denoted
by pi where the quotient of the eigenvalues of the foliation F̃n is positive real (a“sink”) and a point
denoted by qi where this quotient is negative real (a“saddle”). Thus, the foliation F̃n possesses 2n + 2
singular points and all of them are simple. It follows from the local models for the foliation F̃n around
the invariant fibres Ci described in the proof of Proposition 2.2.1 that each point pi (resp. qi) admits
exactly two separatrices. Furthermore, one of these separatrices coincides with the invariant fibre Ci

while the other separatrix, which is also smooth, happens to be transverse to the invariant fibre Ci. In
the sequel, we let Spi

(resp. Sqi
) denote the separatrix of F̃n at the singular point pi (resp. qi) that is

transverse to the invariant fibre Ci.

Lemma 2.3.4. We can assume, without loss of generality, that all the separatrices Spi (resp. Sqi) glue
together into a global rational curve of self-intersection 1 (resp. −1) invariant by the foliation F̃n.

Proof. Recall that the global holonomy group Γ of the foliation F̃n is generated by ξ (i.e., Γ = ⟨ξ⟩) and
that, up to conjugation, the action of Γ on CP1 can be represented in any fibre of the surface F1 different
from the invariant fibres C1, . . . , Cn+1.

Let Ci be a invariant fibre and consider a generic (non-invariant) fibre Σ near to Ci in the following
sense: The local separatrices Spi

, Sqi
associated with the singular points pi, qi intersect Σ transversely at

well defined points xpi
and xqi

. Clearly, the points xpi
, xqi

are fixed by the automorphism of Σ obtained
as the local holonomy around Ci. This construction, holds for every i = 1, . . . , n+1. Now, using parallel
transport, we represent all of these points in the same fibre Σ, so they must coincide (up to order) into
two well defined set points which, incidentally, are the fixed points of (a conjugate of) ξ. Indeed, all the
local holonomy maps around invariant fibres coincide (strictly speaking except for the fibre Cn+1 which
coincides with the nth-power of the previous ones). In other words, given any two invariant fibres Ci and
Cj , either we have xpi

= xpj
and xqi

= xqj
or we have xpi

= xqj
and xqi

= xpj
. However, we can assume

without loss of generality that the first possibility holds. Indeed, this happens thanks to the local models
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for the foliation F̃n around the invariant fibres Ci described in the proof of Proposition 2.2.1: the position
of the singular points can be permuted without affecting the holonomy. Thus, we can ensure that all the
separatrices Spi

, i = 1, . . . , n+ 1, glue together so as to define a invariant compact curve Rp. Similarly,
the separatrices Sqi

, i = 1, . . . , n+ 1, yield another invariant compact curve denoted by Rq. Due to the
transverse nature of the Riccati foliation with respect to the fibres of the surface F1, it is immediate
to conclude that both Rp and Rq are sections of the surface F1. However, since the eigenvalues of the
foliation F̃d at the singular points pi (resp. qi) are positive (resp. negative) real numbers, there follows
from Camacho-Sad index theorem [9] that Rp (resp. Rq) has positive (resp. negative) self-intersection.
Finally, it is well known that the surface F1 possesses only two sections which, incidentally, are rational
curves of self-intersection 1 and −1, (c.f. [3]). The lemma follows.

Again let Σ be a generic fibre of the surface F1. The generator ξ of the global holonomy group Γ of
the foliation F̃n being an elliptic element of infinite order, there exists a continuum of circles contained
in Σ that are invariant under ξ. Fix one of these invariant circles and denote it by S1. Note that the
normalised Lebesgue measure on S1 is invariant under ξ. Furthermore, the points xp and xq where the
section Rp and Rq intersect Σ are the fixed points of ξ and, therefore, lie away from S1.

Let F (S1) be the closure of the saturated set F(S1) of the invariant circle S1 by the foliation
F̃n. We have first to show that Ci ∩ F (S1) = {pi}. To do so, let us begin with the following claim:
Ci ∩ F (S1) ⊂ {pi, qi}. To prove the claim we argue by contradiction. Assume it is false. Then F(S1)
accumulates on a regular point of the invariant fibre Ci. Since the foliation F̃n has a (linearisable) saddle
singular point at qi, the fact that F(S1) accumulates on a regular point of the invariant fibre Ci implies
that F(S1) must accumulate at regular points of the separatrix Sqi as well. However, the separatrix
Sqi

intersects the generic fibre Σ at a fixed point of ξ that, in turn, is accumulated by points in F(S1).
However, this is impossible since the intersection of F(S1) and Σ is the initial invariant circle S1 which
lies away from the fixed points of ξ. The resulting contradiction then establishes the claim.

Next, note that the above argument actually shows that the separatrix Sqi cannot be contained in
F (S1). Thus, F (S1) cannot accumulate on any of the two separatrices of the foliation F̃n at the singular
point qi. Since the singular point qi lies in the Siegel domain, this implies that F (S1) cannot accumulate
on the singular point qi itself. Hence, the intersection Ci ∩ F (S1) is reduced to {pi} since it cannot be
empty. We have then proved that Ci ∩ F (S1) = {pi} as required.

For each i ∈ {1, . . . , n+ 1}, let Bi ⊂ F1 be a small neighbourhood around the singular point pi along
with coordinates (zi

1, z
i
2) where the restriction of the foliation F̃n to Bi is linear, i.e., the foliation F̃n is

locally given by a vector field having the form

zi
1
∂

∂zi
1

+ λzi
2
∂

∂zi
2
,

where λ ∈ R+ \ Q. Similarly, for each Bi, i = 1, . . . , d+ 1, let Vi ⊂ Bi be a (smaller) neighbourhood of
pi properly contained in Bi. The subset F (S1) being contained in the regular part of the foliation F̃n

on the complement of
⋃
Vi, consider a covering of F1 \

⋃
Vi by foliated coordinates {(Uj , φj ,Σj)}N

j=1.
In fact, in what follows, it would be enough to consider the restriction of F̃n to F (S1) as a (singular)
lamination by Riemann surfaces, (c.f. for example [23]).

Before continuing, recall that a positive foliated closed current is said to be algebraic if it coincides
with a constant multiple of the current given by integration over a (possibly singular) algebraic invariant
curve. Otherwise, the current is said to diffuse. Similarly, given a (non-constant) holomorphic map
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f : C → CP2, an Ahlfors current is a positive closed current of dimension (1, 1) which is the limit of a
sequence

f∗[Drj
]

Area (f(Drj ))
where rj → ∞. Here [Drj ] stands for the integration current over the disc Drj ⊂ C of radius rj and the
area Area (f(Drj )) is nothing but the area of f(Drj ) computed with respect to any auxiliary Riemannian
metric. Alternatively, Area (f(Drj

)) can be defined as the integral over Drj
of the pull-back by f of the

standard Fubini-Study form on the surface CP2.
In what follows, a (1, 1)-positive foliated closed current T̃ on the surface F1 that, in addition, is

diffuse and of Ahlfors type will be constructed. Basically the construction will be carried out in two
steps due to the presence of singular points. To begin, consider a (1, 1)-differential form ω on the surface
F1 and let it be decomposed as ω = ω1 + ω2 where ω1 and ω2 are (1, 1)-differential forms supported on
F1 \

⋃
Vi and

⋃
Bi, respectively.

First, we are going to define T̃ for forms like ω1, i.e., forms whose supports are contained in F1 \
⋃
Vi.

This is very much the general construction in [46] since singular points play no role. Indeed, to define
T̃ in this case we proceed as follows. Since the singular points of the foliation F̃n lie away from the
support of ω1 fix a partition of the unity (aj)N

j=1 strictly subordinate to the cover (Uj)N
j=1 of F1 \

⋃
Vi.

The product ajω1 is identified with a continuous function on Σj . In fact, we can consider a function
fj : Σj → C defined by

z2 7→ fj(z2) =
∫

Pz2

ajω1(z2),

in terms of foliated local coordinates (z1, z2) in Uj , the plaques of the restriction of F̃n to Uj are of the
form Pz2 ⊂ C × {z2} while the transverse section Σj becomes Σj ⊂ {z1 = 0}. Then we integrate and
sum these functions obtaining the value

T̃ (ω1) =
N∑

j=1

(∫
Σj

fj(z2)dµj(z2)
)

=
N∑

j=1

∫
Σj

(∫
Pz2

ajω1(z2)
)
dµj(z2) ,

where {µj} is the transverse invariant measure induced by the normalised Lebesgue measure on S1.
Now we have to define T̃ for forms like ω2, i.e., those whose supports are contained in

⋃
Bi. Without

loss of generality, we can assume that the support of ω2 is contained in B1. Consider the restriction
F̃n|B1 of F̃n to B1 and let D1 be a transverse section to this foliation. The invariant circle S1 ⊂ Σ
induces a circle S1

1 ⊂ D1 which is invariant under the holonomy of F̃n|B1 . Next, define Φ : S ×S1
1 → B1

by
Φ(t, y) = (et, yeλt),

where S = {t ∈ C : Re(t) ≤ 0, 0 ≤ Im(t) ≤ 2π}. The leaves of the foliation F̃n|B1 are then parametrised
by Φ. More precisely, for y ∈ S1

1 fixed, let Φy : S → B1 be defined by Φy(t) = Φ(t, y). Then set
Ly = {Φy(t) : t ∈ S}. Clearly, each Ly is contained in a leaf of F̃n|B1 and the union of these pieces of
leaves over an orbit of the holonomy group yields all the leaf in question. Hence, to have T̃ well defined,
it suffices to show that the (improper) double integral∫

S1
1

(∫
Ly

ω2

)
dµ1(y) (2.6)
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converges. In turn, owing to Dominated convergence and to Tonelli theorem, this double integral con-
verges provided that the improper integral∫

Ly

ω2 =
∫

S
Φ∗

yω2

is uniformly bounded (independent of y ∈ S1
1). Let us then show that the latter integral is, indeed,

uniformly bounded on y.
To do so, recall first that B1 is equipped with coordinates (z1

1 , z
1
2) where the foliation F̃n is given by

the vector field z1
1∂/∂z

1
1 + λz1

2∂/∂z
1
2 with λ ∈ R+ \ Q irrational. In particular, Ly is parametrised by

Φy(t) = (et, yeλt) = (z1
1 , z

1
2), t ∈ S. (where y ∈ S1

1). Hence, dz1
1 = etdt, dz1

2 = λyeλtdt, dz1
1 = etdt, and

dz1
2 = λyeλtdt. Letting

ω2 =
2∑

s,k=1
askdz

1
s ∧ dz1

k,

we conclude that

Φ∗
yω2 =

(
eteta11 + λyeteλta12 + λyeteλta21 + λ2|y|2eλteλta22

)
dt ∧ dt = J(t, y)dt ∧ dt .

Where, in slightly more explicit terms, J(t, y) is given by

e2Re(t)a11+λye(λ+1)Re(t)+i(−λ+1)Im(t)a12+λye(λ+1)Re(t)+i(λ−1)Im(t)a21+λ2|y|2e2λRe(t)a22.

Since λ is positive real, there follows that the integrals over S of each of the functions

e2Re(t), e(λ+1)Re(t)+i(−λ+1)Im(t), e(λ+1)Re(t)+i(λ−1)Im(t) and e2λRe(t)

are all absolutely convergent. Furthermore, |y| is also uniformly bounded since y ∈ S1
1 and all the

coefficients ask are also bounded since they are identified with C∞ functions supported in B1. Thus,
the integral in (2.6) is convergent. Hence the coupling of T̃ and ω2 given by

T̃ (ω2) =
d+1∑
j=1

∫
S1

j

(∫
Ly

ω2

)
dµj(y)

is well defined on forms ω2 whose support is contained in the union of the sets Bi, i = 1, . . . , d+ 1. Now,
the formula

T̃ (ω) = T̃ (ω1 + ω2) =
N∑

s=1

∫
Σs

(∫
Pz2

asω1(z2)
)
dµs(z2) +

d+1∑
k=1

∫
S1

k

(∫
Ly

ω2

)
dµk(y)

yields a well defined current on F1 since it clearly does not depend on the decomposition ω = ω1 + ω2.
Clearly, T̃ is positive, foliated, and closed.

Proof of Theorem B. In the preceding, we have constructed a (1, 1)-diffuse positive foliated closed current
T̃ on the surface F1. It only remains to check that the current T̃ actually is of Ahlfors type. For this,
notice first any leaf L of the foliation F̃n contained in F (S1) is dense in F (S1) since γ is an irrational
rotation. Consider then a leaf L0 of the foliation F̃n contained in F (S1). Note that L0 goes through
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the singular points pi, i = 1, . . . , n + 1 with infinitely many branches. Still, away from these singular
points p1, . . . , pn+1, the growth type of L0 is determined by the growth of the global holonomy group
Γ of the foliation F̃d. The group Γ being cyclic, its growth is linear. However, the combination of the
previously considered parametrisation of the leaves of F̃n in the sets Bi with the linear growth of the
holonomy group Γ guarantees the existence of exhaustion (Drj

)j∈N of the leaf L0 such that

lim
j→+∞

Length(∂Drj
)

Area(Drj ) = 0,

where ∂Drj
stands for the boundary of Drj

and where length and area are computed with respect to
an auxiliary Hermitian metric fixed on F1. In particular, as Riemann surface, the leaf L0 is a quotient
of C. Similarly, an Ahlfors current TA supported on F (S1) can be obtained as an accumulation point
for the sequence of normalised integration currents associated with the exhaustion (Drj

)j∈N. Since all
currents in the mentioned sequence are clearly foliated, so it will be its accumulation points. Now, as a
foliated closed current, TA can be disintegrated on Σ to yield a measure on S1 that is invariant under
ξ. However, the action of ξ on S1 being conjugate to an irrational rotation, it admits a unique invariant
probability measure thanks to the well-known Weyl’s theorem. Hence, up to a constant multiple, TA

and T̃ induce the same measure on S1 ⊂ Σ. Therefore, they themselves coincide up to multiplication by
a positive constant.

To complete the proof of Theorem B we have to adapt the preceding construction conducted on the
surface F1 to the complex projective plane CP2. Consider the collapsing of the (−1)-rational curve in
the surface F1 leading to the blow-down projection π : F1 → CP2 and let Fn be the resulting foliation
on the surface CP2. By definition, Fn is a Riccati foliation on the surface CP2 and it has exactly (n+ 1)
invariant lines, all of them being simple. Therefore, Fn is a degree n foliation on the surface CP2, c.f.
Lemma 2.2.5. Naturally the push-forward of the current T̃ by π induces again a diffuse Ahlfors current T
for the foliation Fn on the surface CP2. Finally, in terms of the singular points of the foliation Fn, recall
from Lemma 2.3.4 that the (−1)-rational curve in the surface F1 passes through all “saddle” singular
points qi and avoid all “sink” singular points pi, i = 1, . . . , n+ 1. Thus the following holds:

• The (n+ 1) simple (sink) singular points pi of the foliation F̃n yield (n+ 1) simple singular points
for the foliation Fn.

• The (n + 1) simple (saddle) singular points qi of the foliation F̃n sitting in the collapsed curve
merge together in a (degenerate of order n) singular point for the foliation Fn.

Away from these n+2 singular points, the foliation Fn is regular as a diffeomorphic image of the regular
foliation induced by F̃n on the corresponding Zariski-open set. Theorem B is proved.

Let us close this section with some examples showing that the problem of describing diffuse positive
foliated closed currents on the surface CP2 goes beyond the description of currents that are of Ahlfors
type.

Example 4. Prototypical examples of holomorphic foliations admitting diffuse positive foliated closed
currents that are not of Ahlfors type are provided by Hilbert modular foliations. In the sequel, we restrict
ourselves to the case of complex surfaces. Let N be a square-free positive integer and denote by K the
totally real quadratic field Q(

√
N). The ring of integers in K will be denoted by OK while ∆K will stand

for the discriminant of K. The two natural embedding of K in R induce an embedding of PSL (2,K) in
PSL (2,R) × PSL (2,R). Through this embedding, the Hilbert modular group PSL (2, OK) acts on two
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copies H×H of the upper half plane H. The quotient of this action can be compactified by adding finitely
many cusps to give rise to a normal singular compact complex space of dimension 2. The singularities of
this space, however, are of orbifold-type and arise from elliptic elements in PSL (2, OK). Once they are
resolved in a canonical minimal way, we obtain an algebraic surface Y (∆K) called the Hilbert modular
surface of K, c.f. [28]

Next note that the two evident foliations of H × H by vertical and by horizontal upper planes are
both preserved by the action of PSL (2, OK). Thus, the Hilbert surface Y (∆K) is endowed with a pair of
singular foliations, mutually transverse at a Zariski-open set, which are called Hilbert modular foliations
and are studied, in particular, in [39]. These foliations will be denoted by H. Zariski-dense leaves of H,
i.e., non algebraic leaves, are of hyperbolic type since they are quotients of the upper half plane H. In
particular, H carries no foliated current of Ahlfors type. Yet, we have:
Claim. Every Hilbert modular foliation H admits a diffuse positive foliated closed current T .

Proof. Note that the transverse space to H on (H × H)/PSL (2, OK) can naturally be identified with
the quotient of H by the action of PSL (2, OK) ⊂ PSL (2,R). From this perspective, the subgroup
PSL (2, OK) is actually discrete and the corresponding action admits a fundamental domain having
finite hyperbolic volume, c.f. [28]. In turn, the hyperbolic measure is invariant under the holonomy since
it locally coincides with Möebius transformation (c.f. the assertion that H has a transverse projective
structure in Theorem 1 of [39]). In other words, the foliation H on the open surface (H×H)/PSL (2, OK)
possesses a natural transversely invariant measure in the sense of Definition 2.3.3. We can then use this
transversely invariant measure to produce a foliated closed current for H on the corresponding algebraic
(compact) Hilbert surface Y (∆K) following Sullivan general theory. The fact that Sullivan’s construction
actually yields a well defined current on Y (∆K) can be checked by means of a straightforward adaptation
of the preceding dicussion, keeping in mind the structure of the compactification in [28]. Details are left
to the reader.

The above constructed current is clearly diffuse since the hyperbolic measure on H has no atomic
part. Finally, to produce examples defined on CP2, we note that rational Hilbert surfaces Y (∆K) were
classified in [29]. They correspond to the cases where ∆K takes on one of the values 5, 8, 12, 13,
17, 21, 24, 28, 33, 60. Therefore, these surfaces are birationally equivalent to the surface CP2. Once
again it is straightforward to follow the birational maps in question to make sure that the initial diffuse
positive foliated closed current is pushed-forward to a proper diffuse positive foliated closed current for
the corresponding foliation on the surface CP2.



Chapter 3

Analytic and Continuous Levi-flats
and Harmonic Currents

3.1 Riccati Equations and Singular Levi-Flats
In this section we begin a direct approach to the proof of Theorem A. In what follows we will provide
a general sufficient criterion for a Riccati foliation on the surface CP2 to exhibit (singular) Levi-flats,
whether they are real-analytic or only continuous with a fractal nature. The content of the section is
summarised by Theorem 3.1.1 which establishes some parts of Theorem A.

Consider a Riccati foliation F on the first Hirzebruch surface F1 along with a simple invariant
fibre C. Recall that the foliation F has either one or two singular points in the invariant fibre C, c.f.
Equation (2.1). Furthermore, the following can easily be checked:

• If the foliation F has two singular points in the invariant fibre C, then at each singular point,
the eigenvalue of the foliation F associated with the direction tangent to the invariant fibre C
is necessarily different from zero. The invariant fibre C being, in addition, simple, each of these
singular points will have two eigenvalues different from zero. A singular point possessing two
eigenvalues λ1 and λ2 different from zero is said to belong to the Poincaré domain if the quotient
λ1/λ2 lies in C \R−. If the quotient λ1/λ2 lies in R−, then the singularity is said to belong to the
Siegel domain. Finally, singularities with two non-zero eigenvalues λ1, λ2 such that λ1/λ2 ∈ C \R
are called hyperbolic. In particular, hyperbolic singularities belong to the Poincaré domain.

• If the foliation F has a unique singular point in the invariant fibre C, then the eigenvalue of
the foliation F corresponding to the direction of the invariant fibre C is equal to zero. However,
the invariant fibre C being simple, the foliation F has a non-zero eingenvalue in the direction
transverse to the invariant fibre C. This type of singularity is called a saddle-node. In other words,
saddle-node singularities are those that have one eigenvalue equal to zero and another different
from zero.

Theorem 3.1.1. Let F be a Riccati foliation on the surface CP2 as in Theorem A. In particular, the
local holonomy maps of the foliation F around the invariant lines are all elliptic elements. Assume that
the global holonomy group Γ of the foliation F is a Fuchsian (resp. quasifuchsian) group of first kind.
Then the following holds:

41
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(a) There exists a closed set L(F) ⊂ CP2 of topological dimension equal to 3 which is invariant by the
foliation F .

(b) If Γ is Fuchsian, then L(F) is a real-analytic set with k singular points, all of them of orbifold-
type. If Γ is quasifuchsian, then L(F) is a “singular topological manifold” with Hausdorff dimension
strictly greater than 3.

Lemma 3.1.2. Let F be a Riccati foliation on the surface F1 along with a simple invariant fibre C such
that the local holonomy map of F around the invariant fibre C is not parabolic. Then the foliation F
has two singular points in the invariant fibre C and each of these singular points is associated with two
eigenvalues different from zero.
Proof. Given the review at the beginning of the section about the structure of a Riccati foliation near a
simple invariant fibre, the proof amounts to checking that the foliation F cannot have a unique singular
point p in the fibre C. Assume aiming at a contradiction that this was the case. Thus, p is a saddle-
node singular point for the foliation F with a non-zero eigenvalue associated to a direction transverse
to C. Owing to Dulac’s normal form for saddle-nodes, the foliation F admits a separatrix S at p that
is smooth, transverse to C, and tangent to the non-zero eigenvalue of F at p (c.f. for example [30] and
[45]). The separatrix S induces a fixed point for the holonomy map of F arising from a loop around C.
Moreover, an elementary computation with Dulac’s normal form ([30], [45]) ensures the following holds:

• The multiplier of the holonomy map at this fixed point equals 1.

• This holonomy map cannot coincide with the identity.
It follows from the preceding that the holonomy map of the foliation F arising from winding around C
is a parabolic map. The resulting contradiction proves the lemma.

At this point it is convenient to remind the reader of some basic normal form theory for singularities
of foliations in dimension 2. The material mentioned below is available from most standard texts such
as [30], [45].

First consider a foliation F defined on a neighbourhood of (0, 0) ∈ C2 and having at the origin two
non-zero eigenvalues λ1 and λ2 satisfying λ1/λ2 ∈ R−. Then there are local coordinates (u, v) where the
foliation F is locally given by a vector field having the form

λ1u[1 + (h.o.t)] ∂
∂u

+ λ2v[1 + (h.o.t)] ∂
∂v
. (3.1)

where h.o.t stands for “higher order terms”. In particular, it is immediate to check that the foliation F
possesses exactly two separatrices which, incidentally, are smooth and mutually transverse being given
in the above coordinates by the axes {u = 0} and {v = 0}.

Next, let F1 and F2 be two holomorphic foliations as above and sharing the same (non-zero) eigenval-
ues λ1 and λ2 (λ1/λ2 ∈ R−). Let (ui, vi), i = 1, 2, be local coordinates where the foliations Fi takes on
the form indicated in Equation (3.1). Denote by hi the local holonomy map of the foliation Fi relative
to the axis {vi = 0}, i = 1, 2. A theorem due to Mattei-Moussu [37] then states that the foliations F1
and F2 are analytically equivalent if and only if the holonomy maps h1 and h2 are analytically conjugate
in Diff (C, 0).

Let us now move to the case where the two eigenvalues λ1, λ2 of the foliation F at the origin verify
λ1/λ2 ∈ R+ (always with λ1λ2 ̸= 0). First of all, if λ1 and λ2 are non-resonant, i.e., if neither λ1/λ2 nor
λ2/λ1 is a positive integer, then the foliation F is linearisable and diagonalisable. On the other hand,
for the resonant case n = λ1/λ2 ∈ N there are two possible outcomes:
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• For n ≥ 2. The foliation F is either linearisable (and diagonalisable), i.e., there are local coordinates
(x, y) where the foliation F is represented by the vector field

x
∂

∂x
+ ny

∂

∂y
,

or it is conjugate to the so-called Poincaré-Dulac normal form. In the latter case, in suitable local
coordinates the foliation F is represented by the vector field

x
∂

∂x
+ (ny + xn) ∂

∂y
.

In particular, the foliation F possesses a unique separatrix which is given in Poincaré-Dulac coor-
dinates by {x = 0} (in particular, this separatrix is necessarily smooth).

• Assume now that n = 1. In this case, the foliation F is always linearisable but there are still
two possibilites. Namely, the foliation F can be diagonalisable, i.e., conjugate to the foliation
represented by the vector field

x
∂

∂x
+ y

∂

∂y
,

or non-diagonalisable. In the latter case, there are Poincaré-Dulac coordinates where the foliation
F is represented by the vector field

x
∂

∂x
+ (y + x) ∂

∂y
.

Once again, when admitting the Poincaré-Dulac normal form, the foliation F possesses a unique
separatrix {x = 0} which happens to be smooth.

Remark 3.1.3. To complement the information on foliations admitting the Poincaré-Dulac normal
form, we note that the local holonomy map h arising from the (unique) separatrix is such that its
nth-iterate hn is tangent to the identity while never equal to the identity as it can directly be checked.

Armed with the above material on normal forms, we can go back to our approach to Theorem 3.1.1.
Recall that remarks at the beginning of the section and Lemma (3.1.2) imply that a Riccati foliation
exhibiting a hyperbolic or elliptic holonomy map around a simple fibre C must have exactly two singu-
larities in C. Moreover, each of these singularities admit two eigenvalues different from zero.

Lemma 3.1.4. Consider a Riccati foliation F on the first Hirzebruch surface F1. Let C be a simple
invariant fibre and assume that the local holonomy map of the foliation F around the invariant fibre C
is elliptic. Denote by p, q ∈ C the two singular points of the foliation F in the invariant fibre C and
let λp

1, λ
p
2 and λq

1, λ
q
2 be the corresponding (non-zero) eigenvalues (where λp

1, λ
q
1 are associated with the

direction of the invariant fibre C). Then these eigenvalues satisfy the relation

λp
2
λp

1
+ λq

2
λq

1
= 0 (3.2)

and both quotients λp
2/λ

p
1, λq

2/λ
q
1 lie in R. Furthermore, the foliation F is linearisable around both p

and q. Finally, at both singular points, the foliation F possesses a smooth separatrix transverse to the
invariant fibre C.
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Proof. Equation (3.2) is a direct application of the Camacho-Sad index formula in [9]. Let us then begin
by showing that the singular points p and q are not hyperbolic, i.e., that the quotient of the eigenvalues
is a real number. For this, assume for a contradiction that the singular point p is hyperbolic. Owing to
the index formula (3.2), there follows that so is q. It follows from Poincaré theorem that the foliation F
is linearisable at both p and q. In particular, the foliation F admits a smooth separatrix Sp transverse to
the invariant fibre C at p. Again Sp corresponds to a fixed point of the holonomy map of the foliation F
around the invariant fibre C. However, p being hyperbolic, there follows from an elementary calculation
that this fixed point is hyperbolic, i.e., the absolute value of its multiplier is different from 1. This is
impossible since this holonomy map is elliptic. The resulting contradiction then shows that the quotients
λp

2/λ
p
1 and λq

2/λ
q
1 lie in R and are different from zero.

From Formula (3.2), we can assume without loss of generality that λp
2/λ

p
1 > 0 and that λq

2/λ
q
1 < 0.

Thus, the singular point p belongs to the Poincaré domain while q lies in the Siegel domain. In particular,
either F is linearisable around p or it is conjugate to a Poincaré-Dulac normal form.
Claim. The foliation F cannot admit a Poincaré-Dulac normal form around p.
Proof of the Claim. Assume that the claim is false. Thus, the foliation F possesses a unique separatrix
at p which must coincide with the fibre C. In particular, λp

2/λ
p
1 = n ∈ N∗. Meanwhile, Formula (3.2)

ensures that at the singular point q ∈ C of the foliation F the eigenvalues λq
1, λq

2 can be chosen as λq
1 = 1

and λq
2 = −n. In particular, there exists a separatrix Sq of F at q which is transverse to the invariant

fibre C. Again Sq can naturally be identified with a fixed point of the holonomy map of the foliation F
around the fibre C. Since this holonomy map is elliptic, it must be of finite order equal to n. Indeed, the
linear part of this map at the fixed point represented by Sq is determined by the eigenvalues λq

1 = 1 and
λq

2 = −n and hence it is a rotation of order n. Thus the nth-iterate of the holonomy map in question
has a fixed point with multiplier equal to 1. Since the original holonomy map is an elliptic element, we
conclude that its nth-iterate must coincide with the identity.

Consider the local structure of the foliation F around the Siegel singular point q, the previously
mentioned theorem of Mattei-Moussu ensures that the foliation F is linearisable at q since so is the
local holonomy map arising from Sq (a finite order map). Given that the eigenvalues are 1 and −n,
we see that the local holonomy map of the foliation F at q determined by the fibre C (the other local
separatrix of the foliation F at q) must coincide with the identity. To derive a contradiction proving the
claim, just notice that C \ {p, q} is a cylinder so that loops winding once around the singular point p
are homotopic to loops winding once around the singular point q (up to choosing suitable orientations).
Thus, the local holonomy map around p arising from the separatrix of the foliation F at p induced by C
is the identity. In view of Remark 3.1.3, this contradicts the fact that the foliation F is locally conjugate
to a Poincaré-Dulac vector field. The claim is proved.

To complete the proof of the lemma, note first that the claim implies that the foliation F is linearisable
around p. In particular, the separatrix Sp of the foliation F at p which is transverse to the invariant
fibre C does exist. Moreover, in terms of the separatrix induced by C, its associated (local) holonomy
map is linearisable as well as a germ in Diff (C, 0). Again using the fact that C \ {p, q} is a cylinder,
there follows that the (local) holonomy map arising from the separatrix induced by C at the singular
point q is linearisable as well and, hence, Mattei-Moussu’s result ensures that F is linearisable at q. The
lemma follows at once.

Recall that among discrete subgroups of PSL (2,C), i.e., among Kleinian groups, there are some
groups that happen to leave invariant a (real analytic) circle S1 in CP1. These groups are therefore
conjugate to discrete subgroups of PSL (2,R) ⊂ PSL (2,C) so that they can be viewed as discrete groups
acting on the hyperbolic disc and hence are called Fuchsian groups. The limit sets of Fuchsian groups are
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naturally contained in the invariant circle S1. In fact, up to identifying the initial group to a subgroup
of PSL (2,R), the invariant circle becomes identified with the boundary of the unit disc. Finally, recall
that a Fuchsian group is said to be of first kind if its limit set coincides with all the unit circle.

Lemma 3.1.5. Let F be a Riccati foliation on the surface F1 all of whose invariant fibres C1, . . . , Ck

are simple. Assume that the following conditions hold:

• The local holonomy map of the foliation F around each invariant fibre Ci is an elliptic element of
PSL (2,C).

• The global holonomy group Γ ⊂ PSL (2,C) of the foliation F is a fuchsian/quasifuchsian group.

Then the intersection Ci ∩ F (Λ) is reduced to the singular point pi ∈ Ci (that belongs to the Poincaré
domain) of the foliation F . Moreover, the eigenvalues of the foliation F at pi belong, in fact, to Q+ and
the foliation is linearisable around the singular point pi (where Λ is the limit set of the global holonomy
group Γ of the foliation F).

Proof. Let Ci be a (simple) invariant fibre. According to Lemma 3.1.4 both singular points pi and qi have
real (non-zero) eigenvalues and the foliation F is linearisable around each of them. With the preceding
notation, these eigenvalues verify λpi

2 /λ
pi

1 = −λqi

2 /λ
qi

1 ∈ R∗. Also, the separatrix of F at pi (resp. qi)
transverse to the invariant fibre Ci will be denoted by Spi

(resp. Sqi
). Consider a generic fibre Σ ⊂ F1

near Ci in the sense that on a fibred neighbourhood of the invariant fibre Ci the separatrices Spi
, Sqi

intersect Σ at unequivocally determined points. Then let these points be denoted by xpi
, xqi

, respectively.
As already mentioned, the points xpi , xqi are fixed by the local holonomy map of the foliation F around
the invariant fibre Ci. A direct calculation using linearising coordinates for the foliation F around pi,
qi shows that the multipliers of the (elliptic) holonomy map in question at the fixed point xpi

(resp.
xqi

) are given by e2πiλ
pi
2 /λ

pi
1 (resp. e−2πiλ

qi
2 /λ

qi
1 ). This elliptic holonomy map must, however, be of finite

order since it belongs to a discrete subgroup of PSL (2,C). It follows that λpi

2 /λ
pi

1 ∈ Q∗
+.

It only remains to prove that Ci ∩ F (Λ) = {pi}. The argument is similar to the one employed in
Section 2.3.2. In the sequel, we take advantage of the fact that the foliation F is linearisable at both pi

and qi. First, we claim that Ci ∩ F (Λ) ⊂ {pi, qi}. If the claim is false then F(Λ) accumulates on regular
points of the invariant fibre Ci. Since the foliation F has a (linearisable) saddle singular point at qi, the
preceding implies that F(Λ) accumulates on a regular points of the separatrix Sqi

as well. Hence, the
fixed point xqi

∈ Σ belongs to F (Λ). However, Σ ∩ F (Λ) is nothing but the limit set of Γ represented
in the transverse fibre Σ. This is impossible since, in a Fuchsian group, no fixed point of an elliptic
element can lie in the corresponding limit set. Thus, we must have Ci ∩ F (Λ) ⊂ {pi, qi}. However, since
the foliation F is linearisable around qi, if F(Λ) accumulates at qi then it must accumulate at regular
points of Sqi

as well so that the argument above rules this possibility out as well. In conclusion, we have
proved that Ci ∩ F (Λ) = {pi} and the lemma follows.

We can now state Proposition (3.1.6) which yields a criterion for a Riccati foliation to possess a
singular real-analytic Levi-flat where all leaves of the induced (Levi) foliation, when the global holonomy
group of the Riccati foliation F is a Fuchsian group of PSL (2,C) of first kind, are dense (in the Levi-flat
itself).

Proposition 3.1.6. Let F be a Riccati foliation on the surface F1 all of whose invariant fibres C1, . . . , Ck

are simple. Assume that the following conditions hold:
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• The local holonomy map of the foliation F around each invariant fibre Ci is an elliptic element of
PSL (2,C).

• The global holonomy group Γ ⊂ PSL (2,C) of the foliation F is a Fuchsian group.

Then there exists a singular real-analytic variety L(F) of (real) dimension 3 invariant by the foliation
F . Furthermore, the singular points of L(F) are all isolated and correspond to the singular points of the
foliation F lying in the Poincaré domain.

Proof. Denote by F(Λ) the saturated set of the limit set Λ by the foliation F and F (Λ) the closure
of F(Λ). Clearly, F(Λ) is locally a real-analytic 3-dimensional manifold invariant by the foliation F
and, hence, satisfies the Levi condition for flatness. To prove the proposition we need to describe the
accumulation of the set F(Λ) on each invariant fibre Ci, i = 1, · · · , k. In this direction, Lemma (3.1.5)
ensures that the intersection Ci ∩F (Λ) is reduced to the singular point pi whose eigenvalues λpi

1 and λpi

2
satisfy λpi

2 /λ
pi

1 ∈ Q+. The proof of the proposition now follows from Lemma 3.1.7 below stating that
F (Λ) still is an analytic variety around pi.

Lemma 3.1.7. With the notation of Proposition 3.1.6, the set F (Λ) is locally real-analytic around pi.

The proof of Lemma 3.1.7 will be deferred to Section 3.2 since it employs some blowing up procedure
that, incidentally, will also be instrumental in constructing the harmonic current T mentioned in items (c)
and (d) of Theorem A.

As a by-product of the previous discussion, we also obtain Proposition (3.1.8) below which is valid
for Riccati foliations whose global holonomy groups are quasifuchsian groups and which dispenses with
Lemma 3.1.7.

Proposition 3.1.8. Let F be a Riccati foliation on the surface F1 all of whose invariant fibres C1, . . . , Ck

are simple. Assume that the following conditions hold:

• The local holonomy map Mi of the foliation F around each invariant fibre Ci is an elliptic element
of PSL (2,C).

• The global holonomy group Γ ⊂ PSL (2,C) of the foliation F is a quasifuchsian group.

Then there exists a closed set L(F) invariant by the foliation F which is a singular topological manifold
of (topological) dimension 3 and Hausdorff dimension strictly greater than 3. Furthermore, the singular
points of L(F) are all isolated and correspond to the singular points of the foliation F lying in the
Poincaré domain.

Proof. The construction of L(F) is exactly as in the previously considered Fuchsian case (c.f. Proposi-
tion 3.1.6). The additional difficulty of proving that L(F) is real-analytic plays no role in the present
case. Meanwhile, the only issue that requires explanation is the claim that the Hausdorff dimension
of L(F) is strictly greater than 3. This, however, follows from Bowen’s theorem [7] asserting that the
Hausdorff dimension of a quasicircle is strictly greater than 1. Thus, L(F) can be pictured as a lami-
nation by Riemann surfaces which transversely has Hausdorff dimension strictly greater than 1 so that
the Hausdorff dimension of the laminated space L(F) is strictly greater than 3.

Recalling that the direct image of a real analytic set by an analytic map may fail to be real analytic,
the last ingredient needed in the proof of Theorem 3.1.1 is Lemma 3.1.9 below.
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Lemma 3.1.9. Let F and F (Λ) be as in Proposition 3.1.8. Denote by C the (−1)-rational curve
contained in the first Hirzebruch surface F1. Then we have

F (Λ) ∩ C = ϕ .

Proof. For each i ∈ {1, . . . , k}, let bi be the (unique) intersection point between the invariant fibre Ci

and the rational curve C and set C0 = C \ {b1, . . . , bk}. Let Σ be a non-invariant fibre of the surface F1
(hence transverse to F) and denote by q the intersection point between Σ and C0. Consider then the
holonomy representation ρ : π1(C0) → PSL (2,C) and let Γ = ρ(π1(C0)) be the global holonomy group
of the foliation F acting on Σ. Let C0 be the covering space of C0 such that π1(C0) = ker (ρ) and denote
by P : C0 → C0 the corresponding covering projection.

Fix a base point p in C0 and let p = P(p) ∈ C0. Let γ : [0, 1] → C0 be a path joining p to q (i.e.,
γ(0) = p and γ(1) = q), then γ can be lifted to the leaf Lp of the foliation F through the point p thanks
to the fact that the foliation F is a Riccati foliation. The lift γ : [0, 1] → Lp joins p to a point, denoted
by x = D(p), in the intersection Lp ∩ Σ.

The correspondence between the point p ∈ C0 and the point x = D(p) ∈ Σ can naturally be extended
over paths in C0. To do so, consider a path σ : [0, 1] → C0 such that σ(0) = p. To define D(σ(1)), denote
by σ : [0, 1] → C0 the projection of σ̄ onto C0, D(σ(1)) can then be defined to be the terminal point of
the lift of the path σ−1 ∗ γ in Lσ(1). Let σ1 : [0, 1] → C0 be a deformation of σ with fixed endpoints,
then it is easy to check that D(σ(1)) = D(σ1(1)). Thus, D, in fact, only depends on the homotopic class
of σ.

We need then to show that D is well defined. Let c be a closed loop in C0 with a base point at
p. Then c = P(c) is a closed loop in C0 with a base point at p. The path c−1 can be lifted to Lp.
Thus, the lift c0 : [0, 1] → Lp joins p to a point, denoted by p0, in the intersection Lp ∩ Σ. Meanwhile,
p0 = ρ(c−1) · p = id · p = p since c−1 ∈ π1(C0) = ker (ρ). It follows that the terminal point of the lift of
the path c−1 ∗ γ in the leaf Lp is, again, the point x itself and, hence, the function D is well defined.

Let G be the group of deck transformations acting on C0. As an abstract group G is given as the
quotient

π1(C0)/π1(C0) = π1(C0)/ker (ρ).
On the other hand, the holonomy representation yields

π1(C0)/ker (ρ) ≃ ρ(π1(C0)) = Γ,

where Γ is the global holonomy group of the foliation F . Thus, these two groups G and Γ are isomorphic.
In other words, G and Γ, viewed as transformation groups of C0 and Σ respectively, can be interpreted
as two different actions of a same group, namely π1(C0)/ker (ρ). Let g be an element in G and α the
corresponding element in Γ. It follows from the construction above that

ρ(α) · D(r) = D(g · r),

for every r ∈ C0. In other words, the function D is equivariant with respect to the actions of the groups
G and Γ.

Let U = D(C0) ⊂ Σ. Then the set U is open (since the function D is open by construction) and
invariant under the action of the group Γ. There follows that U/Γ ≃ C0/G and, since C0/G is nothing
but C \ {b1, . . . , bk}, U/Γ is a Hausdorff manifold. Hence, the group Γ acts properly discontinuously on
U which, in turn, implies that U is entirely contained in the domain of discontinuity of the quasifuchsian
group Γ. Thus, U ∩ Λ = ϕ where Λ is the limit set of the group Γ. The lemma then follows since
F(C0) ∩ Σ = U and F (Λ) ∩ Σ = Λ.
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Proof of Theorem 3.1.1. The statement follows at once from the combination of Propositions 3.1.6
and 3.1.8 with Lemma 3.1.9. In fact, in the case of Fuchsian groups, the Levi-flat L(F) ⊂ CP2 is
nothing but the image of the (Levi-flat) L(F) ⊂ F1 whose existence is ensured by Proposition 3.1.6
through the blow down mapping from the surface F1 to the surface CP2. To show that the resulting set
L(F) satisfies the conditions of Theorem 3.1.1 just observe that L(F) is contained in a compact part
of F1 \ C thanks to Lemma 3.1.9, where C stands for the (−1)-rational curve in F1. It follows that the
mentioned blow down mapping is actually a holomorphic diffeomorphism on a neighbourhood of L(F)
so that the theorem follows. The same argument applies to the case of quasifuchsien groups as discussed
in Proposition 3.1.8. Theorem 3.1.1 is proved.

3.2 Foliated Harmonic Currents
Having essentially proved (in section 3.1) the first two statements of Theorem A, the present section is
devoted to establishing statements (c), (d), and (e) in the theorem in question. In other words, all foliated
harmonic currents for Riccati foliations on the surface CP2 satisfying the conditions of Theorem A will
be described.

To avoid useless repetitions, in the course of this section we shall consider that a Fuchsian group
is a special case of a quasifuchsian one. In other words, when referring to quasifuchsian groups in
the sequel, the possibility that the group is question is actually Fuchsian is not ruled out. Along
similar lines, we will denote by L(F) ⊂ F1 the Levi-flat arising from the Riccati foliation considered
in Propositions 3.1.6 and 3.1.8 regardless of whether L(F) is real-analytic or transversely fractal. Of
course, every quasifuchsien/fuchsian group considered in the sequel is assumed to be non-elementary.
The notation used in the proofs of Propositions 3.1.6 and 3.1.8 will be resumed in the sequel.

Consider an invariant fibre Ci of the foliation F along with the singular points pi, qi ∈ Ci, where pi

lies in the Poincaré domain and qi in the Siegel domain. Denote by mi ≥ 2 the order of the (elliptic)
holonomy map of the foliation F arising from winding around the invariant fibre Ci. As previously seen,
the foliation F is linearisable around the point pi. Thus, there are local holomorphic coordinates (ui, vi)
around the singular point pi ≃ (0, 0) where the foliation F is locally conjugate to the foliation associated
with the vector field

miui
∂

∂ui
+ nivi

∂

∂vi
,

with {ui = 0} ⊂ Ci. Moreover, mi and ni are strictly positive integers which can be assumed to satisfy
1 ≤ ni < mi without loss of generality. In particular, the separatrix given by {vi = 0} is distinguished
as the unique (local, smooth) separatrix that is transverse to the invariant fibre Ci. Apart from the
separatrix induced by Ci, {vi = 0} is the unique separatrix carrying non-trivial holonomy which is
conjugate to the rotation of angle 2πni/mi. This separatrix is denoted by Sp.

In the (ui, vi)-coordinates, the foliation F admits the function (ui, vi) 7→ uni
i v

−mi
i as a meromorphic

first integral so that the leaves are locally algebraic of the form uni
i = cvmi

i for a suitable constant c ∈ C.
Yet a blow up procedure allows to eliminate the indeterminacy point of the mentioned first integral so
as to describe the behaviour of these leaves in a way better adapted to our needs. In fact, it is useful
carry out this procedure relying on the following elementary observation: the blow up of the foliation
in question yields a foliation leaving invariant the resulting exceptional divisor and possessing exactly 2
singular points. Furthermore, both singular points have integer eigenvalues and one of them lies in the
Poincaré domain while the other lies in the Siegel domain. The procedure then amounts to carrying on
blowing up the singularity lying in the Poincaré domain until we reach a singular point whose eigenvalues
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are 1 and 1. Then one last blow up at this singular point will lead to a foliation that is transverse to
the corresponding component of the exceptional divisor. In other words, after finitely many blow ups,
all centered at singular points lying in the Poincaré domain, we obtain the picture:

(1) An exceptional divisor E consisting of a string of rational curves D1, . . . , Dl with transverse inter-
sections.

(2) A foliation F̃ that possesses only singularities lying in the Siegel domain.

(3) A component DJ of E which is transverse to F̃ (in particular in a neighbourhood of DJ).

(4) The remaining components D1, . . . , DJ−1, DJ+1, . . . , Dl are all invariant by F̃ .

(5) D1 intersects (the transform of) Ci while (the transform of) Sp determines a singular point of F̃
lying in Dl.

We are now ready to prove Lemma 3.1.7 and then proceed to the construction of the current T
supported on L(F).

Proof of Lemma 3.1.7. We consider a fibred neighbourhood U = D×Ci of Ci where D ⊂ C. Fix a fibre
Σ ⊂ U and let σ : Σ → Σ denote the (elliptic) holonomy map arising from winding around the invariant
fibre Ci. We choose projective coordinates on Σ such that L(F) ∩ Σ = R∪ {∞}. To prove the lemma, it
suffices to construct a meromorphic first integral F for the foliation F on U such that L(F)∩U coincides
with F−1(R ∪ {∞}). Indeed, if F is such an integral, then F = F yields an analytic equation defining
L(F) ∩ U .

Denote by ξ : CP1 → CP1 an elliptic automorphism of order mi leaving R∪ {∞} invariant. Consider
then a non-constant holomorphic map f : CP1 → CP1 which is invariant under ξ. For example, if we
change coordinates such that ξ becomes a rotation around the origin and where R ∪ {∞} becomes the
unit circle, then we can choose f(z) = zn. Moving back to the initial coordinates then yields the desired
invariant function.

Denote by Pi and Qi the two fixed points of ξ. Recall that Sp (resp. Sq) is the separatrix issued
from the singular point pi (resp. qi) which is transverse to the invariant fibre Ci. As seen in Section 3.1,
Sp meets Σ at the fixed point Pi. Similarly Sq meets Σ at Qi.

Next apply to the singular point pi the blow up procedure described above. We then denote by Ũ
the transform of U . We denote also by E1 the divisor consisting of the string of rational curves going
from the invariant fibre Ci to DJ−1. Similarly, E2 is the string of rational curves DJ+1, . . . , Dl.

To complete the proof of the lemma, we will construct a holomorphic mapping F̃ : Ũ → CP1 which is
constant over the leaves of F̃ (the transform of F). Clearly, such a map induces the desired meromorphic
first integral F on U (Levi extension). In turn, to construct the mapping F̃ : Ũ → CP1 constant over
the leaves of F̃ , we first set F̃ (z) = f(Qi) if z ∈ E1 and F̃ (z) = f(Pi) if z ∈ E2. Now, if z ∈ Ũ \ (E1 ∪ E2),
then we consider the leaf Lz of F̃ ≃ F through z and set F̃ (z) = f(Lz ∩ Σ). It is immediate that F̃ is
well defined since all the value of f at every intersection point Lz ∩ Σ is the same (f is invariant under
ξ). Furthermore, since F̃ is regular away from E1 ∪ E2, it is clear that F̃ is holomorphic on Ũ \ (E1 ∪ E2).
Finally, to show that F̃ is holomorphic on all of Ũ , it suffices to show that this mapping is continuous
at E1 and at E2.

The continuity of F̃ at points in E1 ∪E2, however, follows from the structure of (linear) Siegel singular
points detailed in Section 3.1. In fact, let {zi} ⊂ Ũ \(E1∪E2) be a sequence of points converging towards a
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point in, say, E1. Since all singular points of F̃ lie in the Siegel domain, it follows that the corresponding
leaves Lzi accumulate on the separatrix Sq. Thus, the intersection points Lzi ∩ Σ cluster around Qi so
that F̃ (zi) converges to f(Qi) hence establishing the continuity of F̃ at points in E1. The analogous
argument shows that F̃ is also continuous at points in E2 so that Riemann extension implies that F̃ is
holomorphic on all of Ũ . The proof of the lemma is completed.

The remainder of the section is devoted to constructing the harmonic current T supported on L(F)
in order to complete the proof of Theorem A. Let us then go back to the Riccati foliation F on the
surface F1 as in Proposition 3.1.8. The global holonomy group Γ of the foliation F is a quasifuchsian
group of PSL (2,C) (the Fuchsian case viewed as a particular one). Furthermore, since Γ is assumed to
be of first kind so that its limit set is all the invariant Jordan curve. The Levi-flat L(F) ⊂ F1 obtained
as the closure of the saturated of this Jordan curve by the foliation F is a singular topological manifold
of dimension 3 whose singular points coincide with the singular points of the foliation F belonging to
the Poincaré domain. Clearly, every leaf of the foliation F contained in L(F) is dense in L(F) since Γ
is of first kind.

Now for each i ∈ {1, . . . , k}, we apply the blowing up procedure used in the proof of Lemma 3.1.7 to
each of the singular points pi ∈ Ci lying in the Poincaré domain. Denote byN the resulting surface and by
F̃ the transform of the foliation F . Note that the corresponding projection Π : N → F1 is a holomorphic
diffeomorphism from the complement of the total exceptional divisor in N to F1 \ {p1, . . . , pk}. Then set
Ri = Ci ∪ Π−1(pi) where the invariant fibre Ci is identified with its transform. Clearly, Ri is a string of
rational curves containing a unique curve DJi

which is transverse to F̃ while all the other components
are invariant by F̃ . In the sequel, let L̃(F) be the transform of the Levi-flat L(F).

Lemma 3.2.1. L̃(F) is a regular topological manifold. It intersects the divisor Ri on a Jordan curve
contained in the curve DJi

.

Proof. With the notation of Lemma 3.1.7, Ri = Ci ∪E and each of the connected components of Ri \DJi

are contained in saturated sets of arbitrarily small neighbourhoods of the local monodromy. Therefore,
they remain away from the Jordan curve arising as limit set of Γ. Hence, L̃(F) ∩ Ri is contained in a
compact part of DJi

minus the intersection points with DJi−1 and DJi+1. In turn, the foliation F̃ is
regular at these intersection points and the lemma follows.

We can easily compare the leaves of F̃ in L̃(F) with the leaves of the foliation F in L(F). In fact,
it might be more accurate to talk about the filled leaves of the foliation F which are defined as follows.
First, a leaf of the foliation F in L(F) is nothing but a leaf of the non-singular foliation obtained by
restricting the foliation F to F1 \ {p1, . . . , pk}. If L is one such leaf, then the corresponding filled leaf L
is defined by adding the singular point pi to every local branch of the leaf L passing through pi, where
each branch has the local form uni

i = cvmi
i for suitable c ∈ C and positive integers mi, ni. Now the

comparison between leaves of F̃ in L̃(F) and leaves of the foliation F in L(F) is made accurate by the
following lemma.

Lemma 3.2.2. If L̃ is a leaf of the foliation F̃ contained in L̃(F), then the restriction of Π to L̃ is a
diffeomorphism between L̃ and some filled leaf L of the foliation F .

Proof. In view of the preceding, the intersection of a leaf L̃ with the exceptional divisor of Π is contained
in the union of the curves DJi

. These are compact (rational) curves transverse to F̃ . Therefore, the
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intersection of L̃ and the exceptional divisor of Π is uniformly transverse (i.e., transverse with angle
bounded from below by a strictly positive constant). The lemma follows immediately.

Next, we have:

Lemma 3.2.3. The filled leaves L of the foliation F in L(F) are hyperbolic Riemann surfaces.

Proof. To show that L is a hyperbolic Riemann surface it suffices to check that its volume grows ex-
ponentially. For regular foliations everywhere transverse to a fibration, the growth type of leaves is
determined by the growth of the global holonomy group of the foliation which is exponential since it is
a quasifuchsian group. A minor difficulty here arises from the fact that L fails to be transverse to the
invariant fibre Ci at the point pi.

The indicated issue is, however, settled by Lemma 3.2.2. Around each point pi, we can place a small
ball Bi such that the away from Bi the leaf is transverse to the fibres and hence has its volume growth
comparable with the exponential growth of the holonomy group Γ. Furthermore, owing to Lemma 3.2.2,
the intersection of each local branch of L with Bi is a disc of small area and small (comparable) diameter.
Combining these pieces of information, it becomes clear that the volume of L grows exponentially so
that the statement follows.

Before stating the next proposition, it is convenient to recall the notion of self-intersection for har-
monic currents introduced in [21]. Consider a positive harmonic current T on a compact Kähler surface.
By using Hodge theory, Fornæss and Sibony managed to define the self-intersection of T by showing
that the integral ∫

T ∧ T

is well defined for positive harmonic currents. Moreover, this integral coincides with the usual formulation
in the case where T is smooth. In particular, in the case of the surface CP2, they mentioned the problem
of computing the quantity

inf
{∫

T ∧ T ; T ≥ 0 and i∂∂T = 0
}
.

Proving that the infimum in question is strictly positive would have major implications in several well-
known conjectures about Riemann surface laminations in the surface CP2. A by-product of their second
paper [22], however, is that this infimum equals zero. Yet, it seem that no example of positive harmonic
current with zero self-intersection and having, say, support with empty interior was previously identified
so that applications to the quoted problems could still be envisaged. In this regard, the contribution of
Theorem A is summarised by its item (e).

The following proposition is more naturally stated in the language of laminations, (c.f. for example
[23]).

Proposition 3.2.4. The Riemann surface lamination defined by the restriction of F̃ to L̃(F) possesses
a unique positive foliated harmonic current T̃ . The current T̃ is not closed and has zero self-intersection.
Finally, the support of the current T̃ coincides with the whole L̃(F).

Proof. As shown by the preceding lemmas, the restriction of F̃ to L̃(F) is a regular lamination by
Riemann surfaces all of whose leaves are hyperbolic. We claim that this lamination admits no positive
foliated closed current. To check the claim, just note that one such closed current would yield a trans-
verse invariant measure for the lamination in question. This measure would project through Π into a
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finite measure invariant by the holonomy group Γ on its limit set, which immediately gives rise to a
contradiction since Γ is non-elementary. This contradiction proves the claim.

The existence of a unique positive foliated harmonic current T̃ on L̃(F) now follows from the main
result in [14]. This same theorem also shows that the self-intersection of T̃ equals zero. Finally, since the
action of Γ on its limit set has all orbits dense, it follows that all the leaves of the lamination induced
on L̃(F) by F̃ are dense in L̃(F). Hence, the support of T̃ must coincide with the whole L̃(F).

Recall that the projection Π : N → F1 is holomorphic and globally defined on N . The current T̃ can
then be pushed forward by Π to yield a positive foliated harmonic current T = Π∗T̃ , for F supported
on all L(F) which, in addition, has null self-intersection. The last ingredient needed in the proof of
Theorem A is the following proposition:

Proposition 3.2.5. Every (1, 1)-foliated harmonic current T supported in L(F) can be pulled-back by
Π to yield a foliated harmonic current for F̃ supported on L̃(F).

Proof. Let T be as in the statement and consider a (1, 1)-differential form ω on N . To define the pull-
back T̃ = Π∗T it suffices to define a push-forward Π∗ω for ω so that the coupling ⟨T,Π∗ω⟩ makes sense.
In more accurate terms, Π is a diffeomorphism between a Zariski-open subset of N and F1 \{p1, . . . , pk}.
Thus, Π∗ω is naturally a (1, 1)-differential form defined on F1 \ {p1, . . . , pk}. In principle, however, the
form Π∗ω may behave wildly near the points p1, . . . , pk. The proposition will follow from checking that
the coupling ⟨T,Π∗ω⟩ is, nonetheless, well defined and yields a continuous functional on the space of
(1, 1)-forms on N .

It is enough to work on a neighbourhood of a point pi. As previously seen, there are local coordinates
(ui, vi) around pi ≃ (0, 0) where the foliation F is locally given by the vector field

miui
∂

∂ui
+ nivi

∂

∂vi

where mi and ni are strictly positive integers and such that {ui = 0} ⊂ Ci. We then apply the sequence
of blow ups described at the beginning of the section to the point pi so as to remove the indetermination
of the first integral uni

i v
−mi
i . Resuming the notation used in the proof of Lemma 3.1.7, we recall that the

transform of L(F) intersects transversely the corresponding exceptional divisor at a unique component
DJi

. In fact, DJi
is a rational curve of self-intersection −1 since it arises from the last (one-point)

blow up performed in our blow up procedure. There are, therefore, affine (blow up) coordinates (ti, si),
{ti = 0} ⊂ DJi on a neighbourhood of DJi satisfying the following conditions:

(1) The foliation F̃ is locally given by the vector field ∂/∂ti.

(2) The blow down map Π : N → F1 is locally given by Π(ti, si) = (tmi
i si, t

ni
i ) = (ui, vi).

In particular, the local inverse of Π is determined in ramified coordinates by ti = ni
√
vi and si =

ui/
ni

√
vmi

i .
Now let ω be a (1, 1)-differential form on the surface N whose support intersects DJi

. Set

ω = a11dti ∧ dti + a12dti ∧ dsi + a21dti ∧ dsi + a22dsi ∧ dsi

in the local coordinates (ti, si). Recall that Π∗ω is defined away from the exceptional divisor of Π. Over
the open set F1 \ {p1, . . . , pk}, we have

⟨T,Π∗(a12dti ∧ dsi)⟩ = ⟨T,Π∗(a21dti ∧ dsi)⟩ = ⟨T,Π∗(a22dsi ∧ dsi)⟩ = 0 ,
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since T is foliated and the corresponding push-forwards vanish identically over the tangent space of the
foliation F . Thus, it only remains to show that the coupling

⟨T,Π∗(a11dti ∧ dti)⟩

is well defined on F1 \ {p1, . . . , pk}. To do so, recall first that T is harmonic so that it is represented in
flow-boxes by

S =
∫

Σα

hα[∆α]dµ(α),

where µ(α) is a positive Borel measure on the transverse sections Σα and where hα stand for strictly
positive harmonic functions, uniformly bounded above and below by strictly positive constants. Clearly,
the functions hα are Borel measurable with respect to α. Thus, away from pi, we have

⟨T,Π∗(a11dti ∧ dti)⟩ =
∫

Σα

(∫
Lα

hαΠ∗(a11dti ∧ dti)
)
dµ(α) ,

where Lα is the corresponding leaf of F . Thus, it suffices to show that the integral∫
Lα

Π∗(a11dti ∧ dti)

is bounded (uniformly on α). To check that this is the case, note first that

Π∗(a11dti ∧ dti) = a11(v1/ni

i , uiv
−mi/ni

i )dti ∧ dti .

In particular, the coefficient a11(v1/ni

i , uiv
−mi/ni

i ) is identified with a continuous function on a neigh-
bourhood of pi since uiv

−mi/ni

i is actually constant over the leaves of the foliation F . Meanwhile, the
leaves of the foliation F are parameterized by a local coordinate zi ∈ C satisfying zni

i = vi and zmi
i = ui.

Thus, we actually have zi = ti. In other words, the latter integral becomes∫
∆
a11(v1/ni

i , uiv
−mi/ni

i )dzi ∧ dzi ,

where ∆ is a disc of (uniform) positive radius around 0 ∈ C. The proposition then follows since
a11(v1/ni

i , uiv
−mi/ni

i ) is identified with a bounded continuous function.

Proof of Theorem A. Statements (a) and (b) of Theorem A were proved in Theorem 3.1.1. In turn
assertion (c) follows from the combination of Proposition 3.2.4 and 3.2.5. In fact, Proposition 3.2.5
implies that positive foliated harmonic currents for F̃ on L̃(F) are in 1-1 correspondence with posi-
tive foliated harmonic currents for F on L(F) so that the existence and uniqueness of T follows from
Proposition 3.2.4. This proposition also implies that the self-intersection of T must be zero.

It remains to prove assertion (d). Besides T , integration over any of the invariant lines C1, . . . , Ck

also yields foliated currents that are positive and harmonic (indeed closed). Let TC1 , . . . , TCk
denote

these integration currents. Since T and TC1 , . . . , TCk
are clearly independent. It suffices to check that

any positive foliated harmonic current T ′ is a linear combination of the previous currents. If T ′ is as
above, up to subtracting a suitable linear combination of T and of TC1 , . . . , TCk

we can assume that T ′

gives mass neither to the invariant lines C1, . . . , Ck nor to the Levi-flat L(F). To complete the proof of
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Theorem A, we will show that T ′ as above is identically zero. For this assume aiming at a contradiction
that T ′ is not identically zero. Then its support intersects non-trivially F1 \ (L(F) ∪ C1 ∪ · · · ∪ Ck).
Since T ′ is harmonic (equivalently associated with an harmonic measure), there must exist leaves L of
the foliation F contained in the invariant open set F1 \ (L(F) ∪ C1 ∪ · · · ∪ Ck) that are recurrent, i.e.,
that accumulate on themselves (c.f. [24], [26], [10]). However, this is impossible since, by construction,
the transverse dynamics of the foliation F on the open set in question is equivalent to the dynamics of
the quasifuchsian (or Fuchian) group Γ on its discontinuity set and therefore wandering. This ends the
proof of Theorem A.



Chapter 4

Geometry of Levi-flats in the
Presence of Parabolic Generators

4.1 Introduction
As mentioned, the material in this last chapter is part of a work in progress. To make the discussion
relatively self-contained we have included some revision of specific background material, such as Propo-
sition 2.2.1, mostly stemming from [1] but also already reviewed in the previous chapters. Besides basic
material on singular holomorphic foliations already used in the previous sections and well covered, for
example, in the references [30] and [45], the only additional prerequisite for the reading is some famil-
iarity with saddle-node singularities in dimension 2, including some relatively simple facts about the
corresponding Martinet-Ramis moduli space. Whereas the quoted references also cover this topic, the
fundamental reference for the Martinet-Ramis moduli space is their paper [35].

4.2 Local Dynamics of Saddle-Node Singularity
Let us begin by recalling some basic material on Riccati foliations on the first Hirzebruch surface F1,
(c.f. [3]).

Let F be a Riccati foliation defined on the surface F1. This means that in standard affine coordinates
(x, y) for the surface F1, the foliation F is induced by a holomorphic vector field X having the form

X(x, y) = F (x) ∂
∂x

+ [c0(x) + c1(x)y + c2(x)y2] ∂
∂y
, (4.1)

where F , c0, c1 and c2 are polynomials.
Note that the foliation F leaves invariant those fibres of the surface F1 where F vanish (in the above

coordinates). An invariant fibre of the foliation F contains at least one and at most two singular points
of the foliation F . In fact, singular points on an invariant fibre {x = x0} are determined as roots of a
degree 2 polynomial in y. When the foliation F has, indeed, two singular points on a given (necessarily
invariant) fibre, there follows that each of these singular points has one eigenvalue different from zero in
the direction tangent to the fibre. Conversely, if there is a unique singular point, then the eigenvalue of

55
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the foliation F associated with the direction tangent to the fibre is equal to zero (the above mentioned
polynomial has a double root).

An invariant fibre of the foliation F is said to be simple if every singular point of the foliation F
lying in this fibre has a non-zero eigenvalue in the direction transverse to the fibre in question. In local
coordinates (x, y) as above, the invariant fibres are given by the roots of F and the fibre is simple if and
only if it corresponds to a simple root of F . In particular, if a Riccati foliation F has a unique singular
point p lying in a simple invariant fibre C, then this singular point has exactly one eigenvalue different
from zero. This type of singularity is called a saddle-node. In this case, the foliation has a (smooth)
separatrix associated with the non-zero eigenvalue which is called the strong invariant manifold of the
foliation F at p. Meanwhile, the eigenvalue associated with the separatrix induced by the invariant fibre
C is equal to zero and the separatrix in question is referred to as the weak invariant manifold of (the
foliation F at p). Our first task is to provide an accurate normal form for the foliation F around one
such saddle-node singular point.

Lemma 4.2.1. Let F be a Riccati foliation on the surface F1 and consider a simple invariant fibre C
of the foliation F . Assume that p ∈ C is a saddle-node singular point of the foliation F . Then there are
local holomorphic coordinates (u, v) around p ≃ (0, 0) where the foliation F is given by a holomorphic
vector field X having the form

X(u, v) = u
∂

∂u
+ v2 ∂

∂v
,

with {u = 0} ⊂ C.

Proof. It is well known that every saddle-node singularity admits a normal form known as Dulac’s
normal form, c.f., for example [30] and [45]. In other words, there are local holomorphic coordinates
(u, v) around the singular point p ∈ C where the foliation F is given by a holomorphic vector field X
having the form

X(u, v) = [u(1 + λvr) + vR(u, v)] ∂
∂u

+ vr+1 ∂

∂v
.

Here λ ∈ C, r ≥ 1 is an integer and R is a holomorphic function whose order at the singular point can
be made arbitrarily high. Since the saddle-node in question does have a separatrix associated with the
zero eigenvalue, namely the separatrix induced by the invariant fibre C, the coordinates can be chosen
so that {u = 0} coincides with this weak separatrix (i.e., it is contained in the invariant fibre C). Hence,
the function R is divisible by u. Moreover, Equation (2.1) implies that r = 1 (the above mentioned
degree 2 polynomial has a double root). Dulac’s normal form can hence be refined to

X(u, v) = [u(1 + λv) + vR(u, v)] ∂
∂u

+ v2 ∂

∂v
. (4.2)

Note that {v = 0} is the strong invariant manifold, i.e., the separatrix associated with the non-zero
eigenvalue of the foliation F at p. It is a straightforwrd verification that the local holonomy map
associated with the strong invariant manifold of the saddle-node in (4.2) has the form h(v) = v+v2+h.o.t,
where “h.o.t” stands for higher order terms. In other words, it is a germ of holomorphic diffeomorphism
fixing 0 ∈ C, tangent to the identity but which is necessarily different from the identity. The conjugation
class in Diff (C, 0) of the holonomy map associated with the strong invariant manifold locally determines
the the saddle-node singularity thanks to a theorem due to Martinet-Ramis [35]. However, the foliation
F being Riccati, h admits a global extension as an automorphism of CP1. Thus, h has to be conjugate
to the time-one map of the vector field v2∂/∂v. The time-one map of the vector field v2∂/∂v also
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arises as the holonomy of the axis {v = 0} for the saddle-node singularity having the canonical form
u∂/∂u + v2∂/∂v, as it is immediate to check. In view of the preceding, there follows that the two
saddle-node singularities must be conjugate and this establishes the lemma.

Next, we will need a simple lemma (Lemma 4.2.2) about the local dynamics of parabolic maps arising
from PSL (2,C). Let h : (C, 0) → (C, 0) be the germ of a parabolic element in PSL (2,C) at its fixed
point. Equivalently, h is the time t map arising from the 1-dimensional vector field z2∂/∂z around 0 ∈ C,
t ∈ R∗. In particular, h preserves the real axis R ⊂ C. Consider then the family of circles C consisting
of those circles in C with centre at the imaginary axis and passing through 0 ∈ C.

Lemma 4.2.2. Every germ of smooth real-analytic curve passing through 0 ∈ C and invariant by h
coincides either with the real axis R ⊂ C or with one of the circles in the family C.

Proof. It suffices to consider the case where h is the time-one map induced by the vector field z2∂/∂z
on C. By direct integration, we obtain

h(y) = y

1 − y

which is valid in some neighbourhood U of the origin 0 ∈ C. Given z0 ∈ U , we define the forward orbit
of z0 under h by

O+
h (z0) := {hn(z0) : n ∈ N and hi(z0) ∈ U for i = 1, . . . , n− 1} .

The backward orbit O−
h (z0) of z0 under h is analogously defined.

Next, it is a straightforward computation to check that every circle in the family C is left invariant
by h. Since all these circles are tangent to the real axis R at the origin 0 ∈ C, every point z0 ∈ U \ R
sufficiently close to the origin 0 ∈ C is such that at least one between O+

h (z0) and O−
h (z0) is defined for

every n. Without loss of generality, we can assume that it is O+
h (y0). Then, for every n ∈ N∗, we set

zn = hn(z0) = an + ibn. Since the orbit of z0 is contained in a circle of the family C, it follows that

lim
n→+∞

bn

an
= 0.

Thus, every smooth real-analytic curve W passing through the origin 0 ∈ C and invariant by h must
be tangent to the real axis R at the origin 0 ∈ C. In particular, any such curve W can locally be
parameterised by x 7→ (x, f(x)) where x ∈] − ε,+ε[ for some ε > 0 and where f :] − ε,+ε[→ R is a
real-analytic function. In view of the preceding, we have f(0) = f ′(0) = 0.

To complete the proof of the lemma, it suffices to check that the graph of f coincides with a circle in
C provided that f is not identically zero. For this, note that the asymptotic behaviour of the sequence

(hn(y0) = yn = an + ibn)n≥1 ,

can be used to compute the higher order derivatives of f at the origin 0 ∈ C. Indeed, it suffices a sequence
of points converging to 0 ∈ R for us to determine all the higher derivatives of a function provided that
we know a priori that this function is smooth. The argument applies therefore to h as well as to the
function g :] − ε,+ε[→ R that locally parameterises the circle of C containing the orbit O+

h (z0). There
follows that f and g have the same Taylor series at 0 ∈ R and, since they are real analytic, they must
coincide on their domain of definition. The lemma is proved.
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Recalling that a classical result due to [5] establishes that every finitely generated subgroup Γ of
PSL (2,C) can be realised as the (global) holonomy group of a Riccati foliation. This result was later
rediscovered by Lins-Neto [33] and a slightly different proof is provided in [1]. In this sense, Propo-
sition 2.2.1 is borrowed from [1] and provide a sort of “canonical construction”, having in particular
simple fibres, once a finite generating set of the group Γ ⊂ PSL (2,C) is fixed. However, when Γ as in
Proposition 2.2.1 happens to be a Fuchsian group, then Lemma 4.2.1 can be made slightly more accurate
as follows.

Lemma 4.2.3. Let F be a Riccati foliation as in Proposition 2.2.1. Assume that C is an invariant fibre
for the foliation F exhibiting a saddle-node singular point. Assume also that the global holonomy group
Γ of the foliation F is a Fuchsian group. Then there are local coordinates (u, v) around the saddle-node
singular such that the following holds:

(1) The foliation F is locally given by a holomorphic vector field X having the form

X(u, v) = u
∂

∂u
+ v2 ∂

∂v
.

(2) In a transverse fibre through a point (u0, v0) where u0 ̸= 0, the limit set Λ(Γ) of Γ coincides with
the real axis {v ∈ R}.

Proof. We begin with coordinates (u1, v1) given by Lemma 4.2.1 where the foliation F is given by a
holomorphic vector field X1 having the form

X1(u1, v1) = u1
∂

∂u1
+ v2

1
∂

∂v1
.

The global holonomy group Γ of the foliation F being Fuchsian combined to the fact that the local
holonomy map M of the foliation F around the invariant fibre C is a parabolic element in Γ, implies
that the fixed point p of M belongs to the limit set Λ(Γ). The limit set Λ(Γ) being a smooth real-analytic
curve invariant by M and passing through p, it must coincide either with the real axis {v1 ∈ R} or with
one of the circles in the family C (Lemma 4.2.2). Assume then that the limit set coincides with a circle
in the family C and let a ∈ C be chosen such that the Möbius transformation

m : v 7→ v

1 − av
,

sends the real axis {v ∈ R} in the coordinates (u, v) to the circle locally containing the limit set Λ(Γ) in
the coordinates (u1, v1). Then, the change of coordinates ψ given by

ψ (u, v) = (u,m(v)) = (u1, v1)

is such that
X(u, v) = (ψ∗X1)(u, v) = u

∂

∂u
+ v2 ∂

∂v
.

Moreover, in (u, v) coordinates, it is clear that Λ(Γ) locally coincides with the real axis {v ∈ R}. The
lemma is proved
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4.3 Levi-flat in the Presence of Parabolic Generators
Proposition (4.3.1) below, which is considered to be the main content of the present section, provides
some general criteria to ensure the existence of (singular) real-analytic Levi-flats for Riccati foliations
on the surface F1.

Proposition 4.3.1. Let F be a Riccati foliation on the surface F1 and assume that F has only simple
invariant fibres, denoted by C1, . . . , Ck. Assume that the following conditions hold:

(a) The local holonomy map Mi of the foliation F around each invariant fibre Ci is either an elliptic
or a parabolic element of PSL (2,C) (identified with the corresponding automorphism of CP1).

(b) The global holonomy group Γ ⊂ PSL (2,C) of the foliation F is a Fuchsian group of first kind.

Then, there exists a set L(F) satisfying all the following conditions:

(1) L(F) is invariant by the foliation F and away from the invariant fibres is smooth and locally an
analytic set of dimension 3.

(2) If C is an invariant fibre associated with an elliptic (local) holonomy map, then the intersection
C ∩ L(F) is reduced to a unique singular point p ∈ C of the foliation F . Furthermore, L(F) is
(locally) real-analytic having an orbifold singular point at p.

(3) If C is an invariant fibre associated with a parabolic (local) holonomy map, then the entire fibre
C is contained in L(F). Furthermore, away from the (unique) singular point of F lying in the
invariant fibre C, L(F) has the structure of a smooth manifold with boundary (the components of
the boundary coinciding with all the invariant fibres associated with parabolic holonomy maps).

(4) Finally, concerning the Levi-foliation on L(F), all its leaves are dense apart from those compact
leaves arising from the invariant fibres contained in this Levi-flat closed set.

Remark 4.3.2. There follows then, as an immediate consequence of Theorem 1 (c.f. [11]), that the
Levi-flat L(F) (in Proposition 4.3.1) cannot be real-analytic at the saddle-node singular point O as the
latter does not admit a meromorphic first integral. The corresponding invariant fibre C being entirely
contained in the Levi-flat L(F), Theorem 1 (in question) cannot be used to clarify the structure of the
Levi-flat L(F) on a neighbourhood of regular point lying in the invarint fibre C.

The remainder of this section is devoted to the proof of Proposition 4.3.1. Let then F be as in this
statement. It follows from the local models for the foliation F described in the proof of Proposition 2.2.1
that whenever the local holonomy map Mi of the foliation F around the invariant fibre Ci is an elliptic
element of finite order of PSL (2,C), the corresponding invariant fibre Ci possesses two non-hyperbolic
singular points denoted by pi and qi and the eigenvalues of the foliation F at these singular points pi

and qi are all different from zero. In fact, the quotients of these eigenvalues are also real since the local
holonomy around the invariant fibre Ci is elliptic. Thus, we can assume without loss of generality that
the two eigenvalues λpi

1 and λpi

2 of the foliation F at pi are such that λpi

1 /λ
pi

2 > 0 (i.e., the singular
point pi belongs to the Poincaré domain) while the eigenvalues λqi

1 and λqi

2 of F at qi verify λqi

1 /λ
qi

2 < 0
(i.e., the singular point qi belongs to the Siegel domain). On the other hand, when the local holonomy
map Mj of the foliation F around the invariant fibre Cj is a parabolic element of PSL (2,C), then the
corresponding invariant fibre Cj possesses a unique singular point Pj which, incidentally, is a saddle-node
singularity whose weak invariant manifold coincides with the invariant fibre Cj itself.
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Consider the saturated F(Λ(Γ)) set by F of the limit set Λ(Γ) associated with the global holonomy
group Γ. Since the global holonomy group Γ of the foliation F is a Fuchsian group, there follows that
Λ(Γ) is identified with the (smooth, analytic) circle in CP1. Moreover, the action of Γ on Λ(Γ) has all
orbits dense by assumption (Γ is of first kind). Let then L(F) = F(Λ(Γ)), i.e., L(F) is the closure of
F(Λ(Γ)). It is clear that L(F) is invariant by the foliation F .

The first step towards the proof of Proposition 4.3.1 consists of describing the intersection of L(F)
and a given invariant fibre Ci. The case where the invariant fibre Ci is associated with a local elliptic
holonomy map is simpler in the sense that it goes back to the previous chapter. More precisely, as
previously seen, in this case Ci contains exactly two singular points pi and qi of the foliation F with pi

belonging to the Poincaré domain and qi to the Siegel domain. Since fixed points of elliptic elements in
a Fuchsian group cannot lie in the corresponding limit set, the argument used in Proposition 3.1.6 still
applies to show Ci ∩ L(F) is reduced to the singular point pi. Furthermore, around pi, the set L(F) is
an analytic set exhibiting a single singular point which happens to be of orbifold type.

Thus, we only need to work out the structure of the intersection Ci ∩ L(F) in the case where the
invariant fibre Ci contains a single singular point Pj of saddle-node type, i.e., the case where the local
holonomy associated with the invariant fibre Ci is a parabolic map. Owing to Lemma 4.2.1, there are
local holomorphic coordinates (x, y) on a neighbourhood U of Pj ≃ (0, 0) where the foliation F is given
by a holomorphic vector field X having the form

X(x, y) = x
∂

∂x
+ y2 ∂

∂y
.

Set K = Ci \ U and consider a C∞-tubular neighbourhood T of K. The corresponding projection will
be denoted by π : T → K. Similarly, let F|T denote the regular foliation on T obtained by restriction
of F . Up to choosing T is small enough, the fibres of π are transverse to the leaves of the foliation F|T .
In particular, the restriction of π to a leaf of the foliation F|T is a local diffeomorphism from the leaf in
question to K. Furthermore, since K is contractable (diffeomorphic to a disc), T is C∞-diffeomorphic
to K × B(ϵ), where B(ϵ) stands for a small disc in C. In other words, the projection π realises T as
a trivial bundle over K. On the other hand, K is naturally a leaf of F|T which carries no holonomy
since it is simply connected. Hence, Reeb Stability Theorem implies that the restriction of π to a leaf
L of the foliation F|T is actually a (global) diffeomorphism from the leaf in question to K. Taking into
consideration that T can be identified with K ×B(ϵ), this yields the following:

Lemma 4.3.3. With the above notation, every leaf L of the foliation F|T can be identified with the
graph of a function φ : K → B(ϵ), i.e., L = {(x, φ(x));φ : K → B(ϵ)}.

Let us now consider the structure of the foliation F on the above introduced neighbourhood U where
the coordinates (x, y) are defined. Up to scaling coordinates, we can assume that U contains the bidisc
of C2 of radius 1. Next, denote by Σx (resp. Σy) a local transverse section passing through the point
(1, 0) ∈ C × C (resp. (0, 1) ∈ C × C). In other words, set

Σx = {(1, y), y ∈ C} and Σy = {(x, 1), x ∈ C} .

According to Lemma 4.2.3 we can assume, without loss of generality, that the intersection of the limit
set Λ(Γ) associated with the Fuchsian group obtained from the global holonomy of the foliation F with
the local section Σx coincides with the real axis. In other words, we have

Λ(Γ) ∩ Σx = {(1, y), y ∈ R} .
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Now let p0 be a point in Λ(Γ) ∩ Σx and denote by Lp0 the leaf of the foliation F passing through
p0 = (1, y0) (y0 ∈ R). Clearly, if y0 = 0 then the leaf Lp0 in question is nothing but the strong invariant
manifold (locally given by {y = 0}). This leaf defines a smooth separatrix for the singular point and it
represents the (unique) fixed point of the parabolic holonomy map arising from the invariant fibre Ci.

Let us now consider the more interesting cases where y0 ̸= 0. To begin with, let πx(x, y) = x and
πy(x, y) = y be the canonical projections in the the coordinates (x, y). Then notice that the fibres of
these projections are transverse to the leaves of the foliation F that are different from the (invariant)
coordinate axes. In the sequel, whenever lifting paths in leaves of the foliation F are considered, the
corresponding lift will be taken with respect to one of these projections (the context will make clear
which one should be used).

To discuss the local geometry of the leaf Lp0 on the neighbourhood U , the parabolic holonomy map
M whose fixed point is naturally represented by axis {y = 0} has to be taken into account. To make
the discussion clearer, it is convenient to proceed as follows. First let D ⊂ {y = 0} ≃ C be the unit
disc around 0 ∈ C and set R = D \

√
−1R+ so that R is simply connected. Now given p0 = (1, y0), we

consider the maximal lift Rp0 of R in Lp0 which is initiated at the point p0 = (1, y0). Here it should be
noted that whereas Rp0 may not be globally defined (the path-lifting method may lead to paths leaving
the neighbourhood U), there is a well-defined maximal lift on which the projection πx : Rp0 → R is
one-to-one.

We can now investigate the behaviour of Rp0 ⊂ Lp0 . To do so, note that the leaves of the foliation
F on the neighbourhood U are determined by the equation

x = const exp
(

−1
y

)
,

where const is a complex constant. In other words, the leaves are the graphs (over the y-axis) of the
function y 7→ const exp(−1/y). Letting y = Re(y) + iIm(y), we obtain

|x| = c1 exp
(

−Re(y)
|y|2

)
, (4.3)

for a suitable constant c1. Next, consider also the path

c : [0, 1] → R ⊂ C

given by
c(t) = (1 − t, 0).

Denote by c̃p0 the lift of the path c in Rp0 ⊂ Lp0 . Recall that we have p0 = (1, y0) with y0 ∈ R and
y0 ̸= 0 (since y0 = 0 coincides with the invariant axis {y = 0}). Then two cases can occur, namely:

(a) If Re(y0) > 0. The lift c̃p0 is clearly well defined for every t ∈ [0, 1] and converges towards the
origin 0 ∈ C. In fact, the entire domain Rp0 is globally well-defined and diffeomorphic to R.
As a matter of fact, the reader will note that the behaviour of the foliation F on the region
{(x, y) ∈ U, Re(y) > 0} is somehow similar to a “sink” (or “node”) in the sense that all leaves
converge to the origin.

(b) If Re(y0) < 0 then Formula (4.3) shows that the absolute value of y increases as the absolute value of
x decreases. Indeed, the subset of U consisting of those points of the form {(x, y) ∈ U, Re(y) < 0}
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is known as the “saddle” part of the saddle-node singularity. Thus, the lift c̃ will not be entirely
defined since c̃ will leave the neighbourhood U and enter the region described in Lemma 4.3.3
where the leaves of the foliation F are graphs over K = C \ U . Finally, note also that the points
at which Lp0 leaves the neighbourhood U (thus preventing to further extend Rp0) accumulate on
regular points of the invariant fibre Ci as y0 → 0−. In particular, there follows that the entire
invariant fibre Ci is contained in L(F) = F(Λ(Γ)).

The main conclusions of the above discussion, that will be needed for the subsequent sections, can
be summarised as follows:

Claim (1) If Re(y0) > 0, then Rp0 converges to the saddle-node singular point Pi ≃ (0, 0). Morevover, it is
straightforward to check that Rp0 is uniformly transverse to the fibres of πx. Similarly, the area
of Rp0 is comparable to the area of R (here the areas can simply be defined as subsets of C2).

Claim (2) If Re(y0) < 0, then the lift Rp0 of R is not globally defined since the corresponding leaf Lp0

leaves the neighbourhood U and enters the tubular neighbourhood T of K = Ci \ U described
in Lemma 4.3.3. After “wrapping around” K, the corresponding branch of the leaf Lp0 will also
intersect the region of U in which F behaves like a “sink” and, then, converge to the origin as
described in Claim (1). Note that, in this case, the maximal lifts Rp0 are no longer uniformly
transverse to the fibres of πx. Yet, the area of the corresponding branch of Lp0 (after wrapping
around the invariant fibre Ci) becomes comparable to the area of the invariant fibre Ci plus the
area of R.

We are now able to establish Proposition 4.3.1.

Proof of Proposition 4.3.1. As pointed out in item (a), every invariant fibre associated with a parabolic
(local) holonomy map is entirely contained in L(F) = F(Λ(Γ)). In view of the quoted results of the
previous two chapters in the case of invariant fibres associated with elliptic (local) holonomy maps, the
only point that still need clarification is the structure of L(F) on a neighbourhood of a point Q, which is
regular for the foliation F , and lies in an invariant fibre Ci associated with a parabolic holonomy map.
For this, we are going to determine the intersection of L(F) with the local transverse section Σy ⊂ U .
In fact, we will prove below that

Σy ∩ L(F) = {(x, 1), x ≥ 0}
which, in turn, establishes our claim about the (local) structure of a smooth manifold with boundary
for L(F) around regular points in the invariant fibre Ci.

Note that Σy is naturally equipped with the coordinate x so that the point (0, 1) ∈ Ci ∩ Σy can be
identified with 0 ∈ Σy. Let then x0 ≃ (x0, 1) be a point in Σy ∩ L(F) and consider the leaf Lx0 of the
restriction of the foliation F to U passing through x0. Since x0 ≃ (x0, 1) belongs to L(F), there follows
that Lx0 intersects the section Σx at points lying in the limit set of the global holonomy group. In other
words, at points of the form (1, y1) with y1 ∈ R.

Next, recall that Lx0 is given by the equation

x = ex0 exp
(

−1
y

)
(where the value of the multiplicative constant is determined by the fact that (x0, 1) belongs to Lx0).
The intersection points (1, y1) of Lx0 and Σx must hence verify

y1 = 1
ln(ex0) .
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where the multivaluedness of the logarithm accounts for the effect of the (local) holonomy map arond
the invariant fibre Ci. Setting

ln(ex0) = 1 + ln(|x0|) + i arg(x0),

we conclude that y1 is real if and only if is positive real. Therefore,

Σy ∩ L(F) = {(x, 1), x ≥ 0},

as claimed. The proof of Proposition 4.3.1 is complete.
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[27] A. Guillot, Sur les équations d’Halphen et les actions de SL (2,C), Publications
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281.

[29] F. Hirzebruch & D. Zagier, Classification of Hilbert modular surfaces, Complex Analysis
and Geometry, A collection of Papers Dedicated to K. Kodaira, Cambridge University Press,
(1977), 43-77.



BIBLIOGRAPHY 67

[30] Y. Il’yashenko & S. Yakovenko, Lectures on analytic differential equations, American
Mathematical Society, Rhode Island, 2008.

[31] S. Katok, Fuchsian groups, University of Chicago Press, Chicago and London, 1992.

[32] J. Lebl, Algebraic Levi-Flat Hypervarieties in Complex Projective Space, Journal of Geo-
metric Analysis, 22, (2012), 410-432.

[33] A. Lins-Neto, Construction of singular holomorphic vector fields and foliations in dimension
two, Journal of Differential Geometry, 26, (1987), 1-31.

[34] F. Loray & J. C. Rebelo, Minimal, rigid foliations by curves on CP(n), Journal of the
European Mathematical Society, 5, 2, (2003), 147-201.
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