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Résumé

L’édifice de la relativité générale (RG) repose sur un principe fondamental : l’invariance
par difféomorphisme [1]. Ce principe stipule que les lois de la physique doivent rester
invariantes sous des transformations de coordonnées lisses. Il témoigne de l’universalité de
l’interaction gravitationnelle et constitue un principe fondamental de la théorie. Mais que
signifie l’invariance par difféomorphisme et pourquoi occupe-t-elle une place si importante
en RG ?

Fondamentalement, l’invariance par difféomorphisme reflète la nature de jauge de la
relativité générale. Elle résume l’idée selon laquelle le système de coordonnées précis que
nous utilisons pour décrire l’espace-temps n’a pas de signification physique fondamentale.
En d’autres termes, tous les choix de coordonnées sont équivalents dans leur capacité
à décrire les phénomènes physiques. Cette perspective met en évidence une rupture
magnifique et radicale avec la mécanique classique : en RG, l’espace-temps n’est pas une
simple toile de fond passive, mais un acteur actif. Il peut se déformer, se tordre et se
courber en réponse à la présence de matière ou d’énergie.

En RG, ce que perçoit un observateur peut être radicalement différent du point
de vue d’un autre, en fonction de leur mouvement relatif et de leur position dans le
champ gravitationnel. Étant donné que les différents observateurs sont représentés
mathématiquement comme des choix de coordonnées différents, et que la covariance
générale est fondamentale, cela soulève la question fondamentale de savoir ce qui constitue
véritablement une "observable" en RG. Les réponses ne sont ni directes ni intuitives, et
exigent une combinaison subtile de mathématiques et de connaissances physiques.

L’une des manifestations les plus captivantes de la RG est la propagation des ondes
gravitationnelles, c’est-à-dire des ondulations dans le tissu de l’espace-temps causées par
des événements astrophysiques tels que la fusion de trous noirs ou d’étoiles à neutrons.
Ces phénomènes, prédits par Einstein il y a plus d’un siècle [2], ont échappé à l’observation
directe jusqu’à récemment [3]. Einstein lui-même s’est battu avec cette idée, doutant
parfois de l’existence physique de ces ondes. La question était de savoir si les ondes
gravitationnelles étaient simplement un produit de la théorie linéaire qui pouvait être
éliminé par un changement de coordonnées, ou si elles pouvaient potentiellement transférer
de l’énergie sur de grandes distances dans le cadre de la théorie non linéaire. Ce débat,
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alimenté par les difficultés inhérentes à la formulation de la question dans un contexte
significatif, s’est étendu sur quatre décennies [4].

La difficulté consistait à isoler les aspects propagatifs des dix composantes du champ
métrique, en particulier en l’absence d’une prescription canonique que la relativité générale
ne pouvait pas fournir. L’idée clé est apparue dans les années 1960 lorsque Bondi, Metzner,
van der Burg [5], et Sachs [6, 7] ont établi un cadre robuste. Ils ont conçu un système de
coordonnées qui tire parti du fait que le rayonnement gravitationnel se déplace le long
des cônes de lumière. Un résultat notable est la formule de perte de masse de Bondi,
qui fournit une preuve théorique de l’existence des ondes gravitationnelles, même dans le
cadre d’une théorie non linéaire. Ces résultats ont été d’une grande importance, car ils
ont non seulement clarifié la nature des ondes gravitationnelles, mais aussi modifié notre
compréhension des symétries dans les régions asymptotiques de l’espace-temps. Dans les
régions éloignées des sources gravitationnelles, où l’espace-temps retrouve sa forme plate,
on pouvait s’attendre à ce que seules les isométries exactes de l’espace de Minkowski (le
groupe de Poincaré) soient présentes. Mais ils ont révélé un groupe de symétrie élargi.
En effet, ils ont découvert que le groupe de symétrie asymptotique, désormais connu sous
le nom de groupe BMS, allait au-delà du groupe de Poincaré : les quatre translations de
Poincaré ont été étendues à un sous-groupe normal infini de supertranslations, qui sont
des translations avec une dépendance angulaire, révélant des symétries de l’espace-temps
bien plus complexe que ce qui avait été anticipé.

Les observations expérimentales d’ondes gravitationnelles, cependant, n’ont été faites
que récemment [3], témoignant du pouvoir prédictif de la RG et des avancées technologiques
d’observatoires tels que LIGO et Virgo. Leur détection a été saluée comme un triomphe,
non seulement de la prouesse expérimentale, mais aussi comme un témoignage du pouvoir
prédictif de la RG. Une prédiction qui, autrefois, restait à l’horizon de la testabilité, a
maintenant été mise en lumière grâce aux détections révolutionnaires d’observatoires tels
que LIGO et Virgo. Pourtant, ces ondes portent en elles des empreintes subtiles, des
indices des mécanismes qui les ont produites et qui peuvent être étudiés en utilisant les
symétries sous-jacentes et leurs charges.

Lorsque les bras de LIGO vibrent en réponse à une onde gravitationnelle, il ne s’agit
pas seulement d’un événement isolé sur Terre. Géométriquement, ces bras sont positionnés
à l’infini futur de type lumière d’un espace-temps idéalisé et asymptotiquement plat. Le
cataclysme à l’origine de ces ondulations - peut-être la fusion de deux trous noirs - se déroule
dans les profondeurs de cet espace-temps. Pourtant, ce sont ces événements lointains
qui envoient des échos gravitationnels, culminant dans les minuscules oscillations que les
instruments de LIGO, d’une sensibilité exceptionnelle, peuvent détecter. La modélisation
d’un tel système n’est pas triviale. L’imposition de frontières et de conditions aux limites
associées est cruciale pour cette description. Celles-ci décrivent le comportement des
champs gravitationnels (et de tout autre champ) lorsqu’ils s’approchent de ces limites et
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interagissent avec elles. Mais lorsqu’on introduit des frontières dans la partie, il faut tenir
compte d’importantes subtilités liées aux symétries de jauge [8, 9, 10].

En l’absence de frontières, les symétries de jauge servent principalement à signifier
les redondances dans notre description des systèmes physiques. Elles encodent la notion
que de nombreuses configurations différentes des champs fondamentaux - que ce soit
le tenseur métrique de la relativité générale ou les champs de jauge de la physique des
particules - peuvent représenter le même état physique [11]. Cela revient à dire que
des coordonnées différentes peuvent décrire le même point dans l’espace. Dans un tel
contexte, les symétries de jauge ne sont pas directement observables. Elles sont un
sous-produit de nos descriptions mathématiques plutôt que des caractéristiques inhérentes
au monde physique. Cependant, l’introduction de frontières modifie considérablement
cette image. Lorsque notre espace-temps, ou tout autre système décrit par une théorie
de jauge, possède des frontières, certaines symétries de jauge acquièrent une signification
physique. Pourquoi ? Parce qu’en présence de ces frontières, elles ont une charge non-nulle.
Cela signifie que ces transformations, au lieu d’être de simples acteurs d’arrière-plan,
deviennent physiquement pertinentes. Elles peuvent faire la distinction entre des états
physiques distincts, en étiquetant de véritables degrés de liberté.

On pourrait alors se demander : pourquoi cela est-il important ? Pour le comprendre,
il faut se rappeler que dans la compréhension conventionnelle des théories de jauge, les
symétries de jauge sont de simples artefacts mathématiques. Elles ne correspondent
pas à des transformations physiques réelles. Elles apparaissent comme des redondances
dans notre description, ce qui implique que plusieurs configurations de champs math-
ématiquement distinctes peuvent représenter le même état physique. Habituellement,
ces redondances sont éliminées. En identifiant les transformations de jauge qui ont des
implications physiques, nous comprenons et différencions ce qui peut être mesuré, de
ce qui peut être observé et de ce qui reste un simple choix de coordonnées et peut être
éliminé en toute sécurité.

Cette transition de la jauge à la physique peut être décrite comme l’émergence de
"modes de bord" ou de degrés de liberté associés aux frontières, qui peuvent porter des
informations physiques et même médier les interactions entre l’intérieur et la frontière
du système [12, 13, 14, 15, 16]. Ces symétries physiques induites par les limites jouent
un rôle crucial dans plusieurs domaines de la physique théorique. Par exemple, dans
le contexte de la physique de la matière condensée, elles peuvent conduire à des états
exotiques de la matière tels que les isolants topologiques, où les états de la frontière ou
du bord transportent du courant alors que l’intérieur reste isolant. De même, dans le
contexte gravitationnel, ces symétries permettent de mieux comprendre la structure de
l’espace-temps, ce qui peut avoir des implications importantes en théorie quantique.

Nous constatons que la définition du comportement d’un système sur ses bords est
aussi cruciale que la compréhension de son comportement à l’intérieur. Le comportement
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du système sur ses bords est régi par des conditions aux limites. Bien que souvent subtiles
dans leurs implications, elles jouent un rôle indispensable dans la formulation des théories
physiques, en donnant une image plus claire de la dynamique globale. Elles garantissent
que les problèmes sont bien posés, en guidant les systèmes dans leurs interactions avec
les contraintes environnantes et en apportant des solutions significatives et cohérentes.
Classiquement, les conditions aux limites ont été classées en différents types : Dirichlet,
où les valeurs des variables de champ sont fixées aux bords ; Neumann, où les flux des
champs sont spécifiés ; et Robin, un hybride des deux premiers [17]. Chaque type offre
des perspectives uniques sur la façon dont un système se comporte et interagit avec son
environnement, chacune étant adaptée à des scénarios spécifiques et à des motivations
physiques. Ces conditions servent de lignes directrices pour la résolution des équations
différentielles, garantissant que les solutions sont à la fois uniques et physiquement
significatives. D’où l’intérêt d’étudier comment les conditions aux limites affectent la
compréhension de la dynamique gravitationnelle.

Historiquement, dans le contexte de la physique gravitationnelle, les conditions
aux limites de Dirichlet ont été le choix conventionnel. Cependant, ce choix n’est pas
incriticable. Pour apprécier les nuances, il est utile d’opposer la relativité générale aux
théories présentant une structure fixe de l’espace-temps. Dans ce dernier scénario, où le
champ métrique est immuable et sert de simple toile de fond, les conditions de Dirichlet et
de Neumann sont toutes deux appropriées du point de vue du problème de la valeur limite
initiale (IBVP) [18, 19, 20]. Elles garantissent la bonne pose du problème de la valeur
initiale et sont relativement simples dans leurs implications. Cependant, l’absence de
champs d’arrière-plan fixes complique cette situation. Anderson et An [21, 22] soutiennent
que, contrairement aux théories ayant une structure spatio-temporelle fixe, en relativité
générale, l’utilisation directe de données aux limites de Dirichlet ou de Neumann donne lieu
à des problèmes mal posés pour la gravité dans le vide. Il faut chercher des conditions aux
limites qui respectent la dynamique et les contraintes inhérentes à la relativité générale,
et une proposition notable dans ce contexte provient de York dans les années 1980 [23].
Il a défini un ensemble de conditions aux limites qui combinent des éléments des types
Dirichlet et Neumann. Au lieu de restreindre complètement la métrique induite à la
frontière, les conditions de York fixent la métrique conforme et son moment conjugué,
qui est proportionnel à la courbure extrinsèque. Cette approche offre non seulement une
solution géométriquement élégante, mais garantit également une dynamique cohérente
avec les principes de la relativité générale.

En laissant de côté l’IBVP, l’étude des conditions aux limites nous conduit naturelle-
ment à la question des Lagrangiens de bord. Ces termes spécifiques aux limites de l’action
apparaissent de manière évidente lorsque l’on modifie les conditions aux limites. Dans
le cas de la relativité générale, pour tous les types de conditions aux limites étudiés, ils
sont proportionnels à la divergence de la normale de bord. Dans les cas non nuls, cela se
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traduit par la trace de la courbure extrinsèque, et pour les conditions de Dirichlet, cela se
manifeste par le terme bien connu de Gibbons-Hawking-York [24, 25].

L’étude des systèmes classiques se divise traditionnellement en deux cadres principaux :
l’approche lagrangienne et l’approche hamiltonienne. Alors que l’approche lagrangienne se
concentre sur le principe d’action et les équations du mouvement, la méthode hamiltonienne
met l’accent sur l’espace des phases, les variables canoniques et leur évolution. Le concept
de l’espace de phase covariant (covariant phase space, CPS) [26, 27, 28, 29, 30, 31, 32,
33, 34], un cadre élégant qui combine les points forts des deux méthodes, jette un pont
entre ces deux méthodologies. Le cadre CPS s’écarte des vues traditionnelles dans sa
conceptualisation de l’espace des phases. Au lieu de le comprendre comme un espace
de conditions initiales (typique de la mécanique hamiltonienne), il est conçu comme
l’espace des solutions aux équations du mouvement [28]. Cette réinterprétation, subtile
mais profonde, présente une série d’avantages. Notamment, elle élimine la nécessité
d’identifier une direction temporelle ou une foliation spécifique. Au contraire, elle préserve
naturellement la nature covariante du système, en adhérant aux principes de la relativité
et en garantissant que les descriptions restent inchangées sous l’effet des transformations
de coordonnées.

Un tel changement conceptuel affecte également la façon dont nous abordons les
conditions aux limites. Dans l’espace des phases covariant, les conditions aux limites ne
sont pas simplement des contraintes imposées au système, mais peuvent être considérées
comme un choix de polarisation dans le collecteur symplectique représentant l’espace des
phases. Cette perspective permet une compréhension plus intrinsèque des conditions aux
limites, en les associant aux propriétés géométriques de l’espace des champs.

Le théorème de Noether est un pilier essentiel de la physique théorique qui trouve
une nouvelle voix dans le contexte de l’espace des phases covariant. Posés à l’origine
par Emmy Noether au début du 20e siècle, ses théorèmes établissent un lien profond
entre les symétries d’un système et ses quantités conservées. Lorsqu’ils sont reformulés
dans le langage de l’espace de phase covariant, les théorèmes de Noether acquièrent une
certaine élégance. Ils élucident la relation complexe entre les symétries des solutions
dans l’espace des phases et les quantités conservées qui leur sont associées. La nature
de jauge des difféomorphismes est encodée dans le fait qu’ils sont des modes zéro de la
forme pré-symplectique – les charges qui les génèrent sont des termes de bord purs qui, en
l’absence de frontières, s’évanouissent lorsque les équations du mouvement sont satisfaites.
Lorsque l’on considère des régions avec des bords, les transformations de jauge peuvent
être divisées en deux catégories : celles qui correspondent toujours à des dégénérescences
de la forme symplectique et celles qui acquièrent des charges non nulles supportées à la
frontière. Les premières sont parfois appelées "transformations de jauge larges", rappelant
le fait qu’elles sont de jauge à l’intérieur et que la présence d’une structure de fond sous la
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forme d’une frontière est ce qui rompt la covariance et les rend physiques et, en principe,
observables.

En substance, l’exploration du CPS sert de testament à l’adaptabilité et à la résilience
de la mécanique classique, prouvant sa pertinence même dans des contextes modernes. En
entremêlant les principes fondamentaux et les interprétations contemporaines, elle offre un
terrain fertile pour de nouvelles perspectives, enrichissant davantage notre compréhension
des systèmes physiques. Cependant, malgré la clarté qu’apporte la formulation covariante,
elle n’est pas exempte de nuances. Plusieurs ambiguïtés apparaissent lorsque l’on tente de
définir les quantités conservées dans ce cadre. La résolution de ces ambiguïtés nécessite
certaines prescriptions afin de garantir que les quantités dérivées ont une interprétation
physique claire. Une procédure de définition des charges dans ce cadre a été présentée
dans le travail fondateur de Wald et Zoupas [33]. Ces charges satisfont une modification
de l’équation de Hamilton dans laquelle la forme symplectique évaluée sur une variation de
difféomorphisme donne la variation de la charge, plus un terme supplémentaire représentant
le flux. Elles correspondent aux charges ADM et BMS, associées aux bords asymptotiques
de type temps et lumière respectivement, et ce procédé peut être étendu aux bords
à distance finie. Cette séparation entre la charge et le flux n’est pas unique et une
prescription est nécessaire pour la fixer. Dans le cadre WZ, cela se fait en utilisant certains
choix physiquement justifiés qui nécessitent des hypothèses de covariance qui ne sont pas
toujours satisfaites [35].

Un cadre plus général a été développé récemment par de nombreux auteurs [34, 36,
37, 38, 39, 40, 14] exploitant diverses ambiguïtés [41] survenant dans la définition du
potentiel symplectique du lagrangien pour donner une définition des charges de surface
basée sur le choix de la polarisation de l’espace des phases. La charge est définie sur
un ensemble de conditions aux limites conservatrices (par exemple, [40, 42]) ou sur
un sous-espace de configurations de champs stationnaires (par exemple, [36]), et cette
définition est ensuite étendue au reste de l’espace des phases, définissant de manière
unique la division charge-flux pour une polarisation donnée. Comme la prescription utilise
la structure de bord pour sélectionner les ambiguïtés dans la définition de la charge de
Noether, nous l’appelons charge de Noether améliorée.

Une autre solution au problème de l’intégrabilité de la charge peut être obtenue en
étendant l’espace des phases par l’introduction d’un ensemble de champs dynamiques
supplémentaires qui proviennent de l’encastrement des coins dans l’espace-temps et sont
connus sous le nom de modes de bord [14, 43, 44]. Dans cette approche, même si le
système gravitationnel est ouvert et peut avoir des degrés de liberté qui quittent et entrent
dans le système, les charges de symétrie sont toujours hamiltoniennes. Ceci est possible
parce que les degrés de liberté dissipatifs dans l’évolution du coin sont encodés dans les
variations non triviales des encastrements. Indépendamment de la perspective choisie, les
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deux approches doivent être deux manières différentes de comprendre la même physique
sous-jacente.

La prescription WZ reproduit non seulement les célèbres charges d’Arnowitt-Deser-
Misner (ADM) pour l’infini spatial, mais étend également son application aux charges de
Geroch et de Dray-Streubel associées à l’infini futur nul. Des travaux récents ont encore
élargi cette approche, en considérant des hypersurfaces nulles à des distances finies et des
horizons localement stationnaires [36, 45]. D’autre part, en utilisant la prescription de
charge de Noether améliorée, [40, 38] ont montré comment inclure des difféomorphismes
arbitraires dépendant du champ et des anomalies – des quantités dépendantes du fond dont
la transformation de l’espace de champ sous les difféomorphismes diffère de la dérivée de
Lie. L’inclusion de difféomorphismes dépendant des champs et d’anomalies dans l’espace
des phases covariant est cruciale. Ils apparaissent dans divers contextes, tels que les
extensions des vecteurs de symétrie de bord. Ils jouent également un rôle important dans
l’approche canonique. Les anomalies, qui apparaissent souvent lorsque des structures
d’arrière-plan sont impliquées, sont cruciales pour les observables de le bord. Le fait
de les reconnaître et de les traiter systématiquement peut considérablement accroître
l’utilité du CPS. La prescription WZ peut-elle être appliquée dans ce contexte plus général
? Il est utile de répondre à cette question pour de futures recherches, mais aussi pour
mieux comprendre la relation précise entre la littérature récente et [33]. En particulier,
les difféomorphismes dépendent du champ et les anomalies apparaissent dans l’étude du
groupe BMS. Cela soulève une question – comment se fait-il que Wald et Zoupas aient pu
dériver les charges BMS sans inclure l’une ou l’autre de ces deux caractéristiques dans leur
description ? Nous avons découvert que, bien que WZ n’ait pas spécifiquement pris en
compte ces éléments, leur approche reposait intrinsèquement sur certaines hypothèses de
covariance. En traduisant ces hypothèses, nous révélons que la méthode WZ peut traiter
certains difféomorphismes dépendant des champs et anomalies, mais seulement pour des
conditions spécifiques. Nous appelons les anomalies acceptables "anomalies douces".

En poursuivant notre étude, nous juxtaposons la prescription WZ aux charges de
Noether améliorées et montrons que les charges WZ peuvent en effet être reformulées
comme des charges de Noether améliorées, à condition que des conditions spécifiques
soient remplies. Cette réconciliation accentue l’adaptabilité et la robustesse inhérentes au
cadre WZ dans les interprétations modernes. En termes pratiques, nous avons testé nos
conclusions à l’aide de quatre scénarios. Le test le plus complexe a été réalisé à l’infini
futur de type lumière, où nous avons pu montrer de BMS standard et mieux comprendre
comment WZ obtenait des résultats sans traiter directement les anomalies. Bien que la
dérivation des charges BMS en tant que charges de Noether améliorées ait été discutée
précédemment dans [46] et [38], ces articles s’appuyaient sur des connaissances préalables
des charges BMS. Notre approche est plus fondamentale et s’appuie directement sur les
conditions WZ.
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En raison de sa dépendance explicite à l’égard des lagrangiens de bord, la prescription
améliorée de la charge de Noether rend l’étude de l’effet du changement des conditions de
frontière simple. Un fait important en RG est que l’énergie n’est pas strictement conservée
en raison de la dissipation causée par le rayonnement gravitationnel. Cependant, si l’on se
concentre uniquement sur les espaces de temps non radiatifs, l’idée d’une énergie conservée
dans l’espace des phases devient réalisable. Une notion d’énergie conservée est donnée
par la charge ADM à l’infini spatial, que les ondes gravitationnelles n’atteignent jamais,
ainsi que sa contrepartie quasi-locale, la charge de Brown-York (BY). Toutefois, cette
conception de l’énergie n’est pas universelle. Elle dépend fortement des conditions aux
limites spécifiques utilisées pour éliminer la dissipation. En effet, les calculs des charges
ADM et BY nécessitent l’imposition de conditions aux limites de Dirichlet, que ce soit aux
limites asymptotiques ou finies. Au chapitre 8, nous étudions ce qu’il advient des valeurs
d’énergie lorsque nous passons des conditions de Dirichlet aux conditions de Neumann, en
passant par les conditions mixtes de York. Ce processus, qui implique différents degrés de
fixation de la métrique induite et de sa quantité de mouvement (la courbure extrinsèque),
tend à réduire les énergies. Par exemple, dans le cas de l’espace-temps de Kerr, les valeurs
de l’énergie sont respectivement de M , 2M/3 et M/2.

Pour parvenir à ces conclusions, deux méthodes principales ont été utilisées. La
première méthode est l’espace des phases covariant, particulièrement puissant car il peut
décrire à la fois des scénarios radiatifs et non radiatifs. Ici, l’objectif est de compren-
dre comment la restriction du flux symplectique à la frontière sélectionne un potentiel
symplectique particulier, conduisant à des charges intégrables. C’est l’idée de base de la
prescription de charge de Noether améliorée, qui fournit une approche universelle pour les
charges, valable pour diverses conditions aux limites.

Notre deuxième outil est une analyse canonique directe fondée sur la décomposition
ADM. Cette méthode est particulièrement adaptée au contexte non radiatif. Notamment,
lorsque nous étendons l’analyse pour inclure différentes conditions aux limites, nous
observons que cette méthode canonique produit des charges qui s’alignent parfaitement
avec celles déduites de la prescription de charge de Noether améliorée. Cet alignement
renforce la validité de la formule de charge de Noether améliorée.

Pour aller plus loin, nous introduisons une intersection non orthogonale entre la
frontière temporelle et les hypersurfaces spatiales. Lorsque ces coins non orthogonaux sont
introduits, le principe variationnel nécessite un terme 2D supplémentaire qui, dans le cas
de conditions limites de Dirichlet, est donné par le lagrangien de Hayward. Étant donné
que notre objectif principal dans la construction de charges de surface covariantes tourne
autour d’un principe variationnel bien défini, il est essentiel de vérifier si ce lagrangien
de coin influence également la formule de charge. Pour répondre à cette question, les
calculs utilisant la prescription de charge de Noether améliorée ont été répétés, cette
fois en tenant compte des coins non orthogonaux, et les résultats ont été juxtaposés
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aux résultats canoniques. Le calcul canonique a mis en évidence le fait qu’un coin non
orthogonal introduit des changements à la fois physiques et mathématiques. D’un point
de vue physique, on peut considérer deux catégories distinctes d’observateurs : ceux
qui sont au repos par rapport à la foliation de l’espace-temps et ceux qui sont au repos
le long de la frontière temporelle. A’ l’intersection entre la frontière de type temps
et la foliation (les coins), ces deux observateurs sont liées par une transformation de
Lorentz boosté locale, ce qui rend les différentes notions d’énergie directement comparables.
Mathématiquement, cela se manifeste par des "termes d’inclinaison" supplémentaires dans
les charges, qui dépendent explicitement de l’angle hyperbolique local entre les normales.
Il est important de noter que nos résultats ont confirmé la cohésion entre les résultats
covariants et canoniques, même dans le contexte de coins non orthogonaux, attestant
ainsi de la robustesse de la prescription de charge de Noether améliorée.

En nous concentrant sur les frontières de genre lumière, nous ne sommes plus
limités aux conditions limites conservatives et nous pouvons également explorer l’aspect
dynamique. Les développements récents de Chandrasekaran, Flanagan et Prabhu (CFP)
ont caractérisé le groupe de symétrie de la relativité générale sur les hypersurfaces
génériques de genre lumière comme une extension du groupe BMS pour tenir compte des
difféomorphismes arbitraires et des transformations de Weyl sur n’importe quelle section
transversale de type espace 2d [36].1 En utilisant la procédure Wald-Zoupas (WZ), ils ont
dérivé des charges qui maintiennent la conservation sur des hypersurfaces sans cisaillement
et sans expansion, les horizons non expansifs (NEH) étant un excellent exemple. Une
exploration détaillée ultérieure des NEH a été présentée dans [45], mettant en lumière
la façon dont la composante globale des transformations de Weyl équivaut à la charge
de surface. Les mêmes transformations de Weyl jouent également un rôle prépondérant
dans l’étude des éventuels cheveux doux des trous noirs par Hawking, Perry et Strominger
[47].

Un défaut des charges CFP est que certaines ne sont pas conservées dans un espace-
temps plat, ce qui signifie qu’une partie de leur flux ne provient pas du rayonnement ou
d’autres processus physiques. Cela limite leur applicabilité - par exemple, un effondrement
sphérique verrait un cône de lumière plat se plier dans un horizon des événements, et ce
processus sera mal décrit par une charge qui évolue déjà avant tout influx de matière.
Cela soulève la question de savoir s’il existe une prescription différente pour les charges
qui soit exempte de cette limitation. En effet, les charges de Noether ainsi que les charges
de Wald-Zoupas ne sont pas garanties comme étant universelles, et peuvent dépendre
d’un choix de polarisation fait lors de l’écriture du potentiel symplectique [32, 34, 14,
42]. La construction CFP est basée sur un choix spécifique de conditions aux limites de
Dirichlet, et sur un ensemble spécifique de restrictions des variations, correspondant à

1Le même groupe qui peut être obtenu à l’infini de genre lumière en relaxant les conditions de chute
d’une manière compatible avec la renormalisation du potentiel symplectique [46].
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une certaine structure universelle construite selon les lignes directrices de ce qui a été fait
avec succès à l’infini futur nul (voir par exemple [48] pour une revue). Nous montrons
dans le chapitre 9 qu’il existe un choix différent de polarisation conduisant à des charges
conservées dans un espace-temps plat ainsi que des hypersurfaces sans cisaillement et
sans expansion. Cette polarisation, que nous appelons polarisation conforme, a déjà été
examinée dans [49], et est similaire à la polarisation de York discutée dans le cas non nul.
Les charges résultantes ne sont pas anormales, préservées sur les cônes lumineux plats, et
peuvent être utilisées pour étudier les processus dynamiques de formation des trous noirs,
comme anticipé dans [50]. Nous montrons que cette polarisation conduit à des conditions
aux limites conformes sur une hypersurface nulle qui fournissent une résolution alternative
aux ambiguïtés de l’action gravitationnelle avec des limites de genre lumière [51] basées
sur des conditions aux limites de Dirichlet.

Une des restrictions sur les variations considérées dans l’article CFP concerne
l’inaffinité de la normale à l’hypersurface nulle. Cette restriction joue un rôle important,
et la relâcher réintroduit les ambiguïtés de [51] et empêche une implémentation complète
de la procédure WZ. Néanmoins, les auteurs ont remarqué que cette restriction supprime
des directions de l’espace des phases le long desquelles la double forme symplectique n’est
pas dégénérée. Par conséquent, elle peut correspondre à une variation physiquement
pertinente, et la question a été laissée ouverte de savoir si l’on pouvait construire des
charges WZ dans cet espace de phase plus large. Nous soutenons que cette question
a une réponse positive : Il existe une généralisation précise de la procédure WZ qui
permet de construire des charges dans l’espace des phases élargi qui inclut des variations
de l’inaffinité. La généralisation par rapport à la procédure originale de Wald-Zoupas
concerne la notion de stationnarité, tandis que l’exigence de covariance reste inchangée. À
notre avis, le fait de permettre différentes notions de stationnarité constitue une flexibilité
avantageuse du formalisme, et c’est la covariance par rapport à toute structure universelle
d’arrière-plan qui est le principe clé de la prescription de Wald-Zoupas. Cette procédure
sélectionne à nouveau la polarisation conforme, et les nouvelles charges satisfont aux lois
d’équilibre des flux sans anomalie. Cette réponse positive découle des meilleures propriétés
de covariance de la polarisation conforme, que nous rendons explicites par une analyse
détaillée des anomalies des différentes polarisations sous différentes restrictions sur les
variations.
La thèse est structurée comme suit :

Chapitre 2 : Géométrie Dans ce chapitre, nous donnons un aperçu des hypersur-
faces intégrées dans l’espace-temps. Ceci a un double objectif : premièrement, établir
fermement la notation utilisée tout au long de la thèse ; et deuxièmement, rassembler les
diverses propriétés des hypersurfaces qui sont dispersées dans différents ouvrages, offrant
ainsi un point de référence complet. Compte tenu de leurs attributs géométriques uniques,
les hypersurfaces de genre lumière font l’objet d’une attention particulière.
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Chapitre 3 : Symétries Ce chapitre offre une vue d’ensemble concise des théorèmes
de Noether sous leur forme conventionnelle. Pour mettre en évidence les implications des
théorèmes, nous passons en revue une série d’exemples simples.

Chapitre 4 : Espace de phase covariant Nous donnons ici un aperçu du
formalisme du CPS dans le langage moderne. Nous revisitons la charge de Noether dans
ce nouveau cadre, et discutons des problèmes liés à la définition des charges hamiltoniennes.
Le chapitre introduit également le concept d’anomalies.

Chapitre 5 : Conditions aux limites et termes limites Ce chapitre présente un
examen complet des conditions aux limites. Nous commençons par les aborder du point
de vue des équations aux dérivées partielles. Cette approche est ensuite combinée avec
des idées tirées du principe d’action. Nous concluons ce chapitre par une discussion sur
les conditions aux limites admissibles pour la gravité d’Einstein-Hilbert.

Chaptire 6 : Groupes de symétrie Dans ce chapitre, nous étudions les anomalies
du potentiel symplectique dans différentes polarisations. Nous considérons diverses
restrictions de variations et dérivons les groupes de symétrie correspondants.

Chapitre 7 : Prescriptions de charge Dans ce chapitre, nous dressons la liste des
diverses ambiguïtés associées à la définition de la charge. Nous présentons les prescriptions
de charge de WZ et de Noether améliorées, et entreprenons une comparaison entre les
deux approches.

Chapitre 8 : Charges de polarisations différentes avec des frontières non
nulles S’orientant vers un territoire plus spécialisé, ce chapitre explore la généralisation
des charges ADM et BY dans le contexte de différentes conditions aux limites. En outre,
nous étudions les coins non orthogonaux et les analysons dans les cadres covariant et
canonique.

Chapitre 9 : Charges avec des polarisations différentes avec des frontières
de genre lumière. En nous appuyant sur le chapitre précédent, nous nous concentrons sur
les différentes charges des charges dans le cas de frontières de genre lumière. Nous dérivons
des charges avec des propriétés intéressantes en utilisant la polarisation conforme.

Chapitre 10 : Conclusions. Ce chapitre de conclusion fournit un résumé cohérent
des chapitres précédents et propose des pistes de recherche pour l’avenir.
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Abstract
In this thesis we study the relationship between symmetries, boundary conditions,

and conservation or flux-balance laws in General Relativity with the covariant phase space
formalism. Non-trivial symmetries occur in arbitrary spacetimes if they admit a boundary,
and the nature of the symmetries and of the charges one can construct depends on the
chosen boundary conditions. These charges offer a refined solution to the issue of quasi-
local observables in general relativity, although one must resolve potential ambiguities
in their definitions. To address this, we conduct a critical comparison between the
Improved Noether Charge and Wald-Zoupas prescriptions, specifically clarifying the role
of anomalies introduced by the boundary. This is particularly relevant for understanding
BMS symmetries. Our work introduces an independent definition of Wald-Zoupas charges
at future null infinity, allowing for a more straightforward computation of BMS charges.
We also considered charges at finite distances, supported on both time-like and null
boundaries. For time-like ones, we examined the dependency of the expression for the
energy on boundary conditions, and proposed new Brown-York-type charges for Neumann
and York’s boundary conditions. A comparison with canonical treatments confirmed a
perfect agreement. For null boundaries, it is possible to consider leaky boundary conditions
in a non-ambiguous way. We study the most general phase space permitting arbitrary
metric variations, identify a one-parameter family of covariant symplectic potentials, and
explain how restricting some of the variations is necessary for the symplectic potential to
satisfy physical requirements of stationarity. This allows us to not only recover previous
charge expressions, but introduce a new set of charges that extends the stationarity
property to flat light-cones, with promising implications for dynamical entropies. Overall,
we are very happy with the work we did, which was very non-trivial, required a lot of
effort both in studying the literature and doing computations, and produced intriguing
new results which I hope will be of interest to researchers in the field.
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Résumé
Dans cette thèse, j’ai étudié la relation entre les symétries, les conditions aux bords

et les lois de conservation ou de bilan de flux en relativité générale avec le formalisme de
l’espace des phases covariant. Des symétries non triviales se produisent dans des espaces-
temps arbitraires s’ils admettent une bord, et la nature des symétries et des charges que
l’on peut construire dépend des conditions aux bords choisies. Les charges offrent une
solution élégante au problème des observables quasi-locales en relativité générale, mais
pour cela, il faut traiter les ambiguïtés potentielles dans leur définition. Pour clarifier
cela, nous avons fait une comparaison critique entre les prescriptions de la Improved
Noether Charge et des charges de Wald-Zoupas, en clarifiant en particulier le rôle et
les anomalies que la bord peut introduire. Ceci est particulièrement pertinent pour
comprendre les symétries BMS, et notre travail fournit une définition indépendante des
charges de Wald-Zoupas à l’infini nul futur qui permet de calculer les charges BMS de
manière plus directe. Nous avons également considéré des charges à des distances finies,
dans les deux contextes différents des bords temporelles et nulles. Pour les premières,
nous avons examiné comment l’expression de l’énergie dépend des conditions aux bords
et nous avons proposé de nouvelles charges de type Brown-York pour les conditions de
Neumann et de York. Nous avons comparé nos résultats à un traitement canonique et
trouvé un accord parfait. Pour les bords nulles, il est possible de considérer des conditions
aux bords "fuyantes" de manière non ambiguë. Nous avons étudié l’espace des phases le
plus général qui permet des variations métriques arbitraires, identifié une famille à un
paramètre de potentiels symplectiques covariants, et expliqué comment la restriction de
certaines des variations est nécessaire pour que le potentiel symplectique satisfasse aux
exigences physiques de stationnarité. Nous retrouvons les expressions précédentes pour
les charges, mais introduisons également un nouvel ensemble qui étend la propriété de
stationnarité aux cônes de lumière plats et présente des applications prometteuses pour
les entropies dynamiques. Dans l’ensemble, nous sommes très satisfaits du travail que
nous avons accompli, qui loin d’être banal, a nécessité beaucoup d’effort à la fois pour
étudier la littérature et pour effectuer des calculs, et a produit des résultats nouveaux et
intrigants que j’espère seront d’intérêt pour les chercheurs dans le domaine.
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1Introduction

The edifice of general relativity (GR) stands atop a cornerstone principle – diffeomorphism
invariance [1]. This principle dictates that the laws of physics should remain invariant under
smooth coordinate transformations. It stands as a testament to the universality of the
gravitational interaction and serves as a foundational tenet of the theory. But what does
diffeomorphism invariance signify, and why does it hold such a paramount place in GR?

At its heart, diffeomorphism invariance reflects the gauge nature of general relativ-
ity [52]. It encapsulates the idea that the precise coordinate system we use to describe
spacetime is of no fundamental physical meaning. In other words, all coordinate choices
are equivalent in their ability to describe physical phenomena. This perspective highlights
a beautiful and radical departure from classical mechanics: in GR, spacetime is not just a
passive backdrop but an active player. It can warp, twist, and curve in response to the
presence of matter or energy. This coordinate freedom generates a conceptual challenge
when one tries to define what can be truly observed in the theory. In simpler terms, if
different coordinate systems give rise to divergent representations of the same physical
process, what quantities or variables can be said to have invariant meaning across all
frames of reference?

In GR, what one observer perceives can be starkly different from another’s perspective,
depending on their relative motion and position in the gravitational field. Since different
observers are mathematically represented as different coordinate choices, and we are
holding general covariance sacred, this brings forth the fundamental question of what truly
constitutes an observable in GR. The answers are neither straightforward nor intuitive,
demanding a symphony of mathematics and physical insight.

One of the most captivating manifestations of GR is the propagation of gravitational
waves – ripples in the fabric of spacetime caused by astrophysical events like merging
black holes or neutron stars. These phenomena, predicted by Einstein over a century
ago [2], eluded direct observation until recently [3]. Einstein himself wrestled with the
idea, at times doubting the physical existence of such waves. The question was whether
gravitational waves were merely a product of the linear theory that could be eliminated
by a change of coordinates, or was there potential for them to transfer energy over vast
distances in the nonlinear theory? This debate, fueled by the inherent challenges of
framing the question in a meaningful context, spanned four decades [4].

The complication was in isolating the propagative aspects from the ten components
of the metric field, especially in the absence of a canonical prescription that General
Relativity couldn’t provide. The breakthrough came in the 1960s when Bondi, Metzner,
van der Burg [5], and Sachs [6, 7] established a robust framework. They devised a
coordinate system that leveraged the fact that gravitational radiation moves along light
cones. A notable result was the Bondi mass loss formula, providing a theoretical proof of
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the existence of gravitational waves even within a non-linear theory. Their findings were of
great importance, not only clarifying the nature of gravitational waves but also reshaping
our understanding of the symmetry structure at the asymptotic regions of spacetime.
One could initially expect, in the regions far from gravitational sources where spacetime
reverts back to its flat form, only the exact isometries of Minkowski space – the Poincaré
group. But they revealed an enriched symmetry structure. Namely, they found that the
asymptotic symmetry group, now known as the BMS group, went beyond the Poincaré
group – the four translations of Poincaré were expanded into an infinite-dimensional
normal subgroup of supertranslations, which are angular-dependent translations, revealing
a far more complex structure of spacetime symmetries than previously anticipated.

Experimental observations of gravitational waves, however, only came to be re-
cently [3], standing as a testament to the predictive power of GR and the technological
advancements of observatories like LIGO and Virgo. Their detection was hailed as a
triumph, not just of experimental prowess, but as a testament to the predictive power of
GR. A prediction that once lingered at the horizons of testability, has now been brought
to light with the groundbreaking detections by observatories like LIGO and Virgo. Yet,
these waves bring with them subtle imprints, clues to the mechanisms that produced
them that can be studied using the underlying symmetries and their charges

When the arms of LIGO vibrate in response to an incoming gravitational wave, it’s
more than just an isolated event on Earth. Geometrically, these arms are positioned at the
future null infinity of an idealized, asymptotically flat spacetime. The drama that causes
these ripples - perhaps the cataclysmic merging of two black holes - unfolds deep in the
bulk of this spacetime. Yet, it’s these distant events that send out gravitational echoes,
culminating in the minute oscillations that LIGO’s exquisitely sensitive instruments can
detect. The modeling of such a system isn’t trivial. Crucial to this description is the
imposition of boundaries and associated boundary conditions. These describe how the
gravitational (and any other) fields behave as they approach and interact with these
boundaries. But when boundaries are introduced into the play, one needs to account for
important subtleties related to gauge symmetries [8, 9, 10].

In the absence of boundaries, gauge symmetries serve primarily to signify redundancies
in our description of physical systems. They encode the notion that many different
configurations of the fundamental fields – be it the metric tensor of general relativity or
the gauge fields of particle physics – can represent the same physical state [11]. This is
akin to how different coordinates can describe the same point in space. In such a context,
gauge symmetries are not directly observable. They are a byproduct of our mathematical
descriptions rather than inherent features of the physical world. However, the introduction
of boundaries significantly changes this picture. When our spacetime, or any other system
described by a gauge theory, has boundaries, certain gauge symmetries acquire a physical
significance. Why? In a system without boundaries, Wilson loops are commonly used
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as gauge-invariant observables. A Wilson loop is a trace of the holonomy of the gauge
field around a closed loop. When a boundary is introduced into the system, things get
more complicated. Now, the Wilson loops can be ‘cut’ by the boundary, destroying the
gauge invariance. A cut Wilson loop becomes a Wilson line whose end points transform
in some representation of the gauge grop. This introduces the necessity of keeping track
of the ends of the Wilson loops at the boundary, giving rise to what are called edge modes
– fictitious fields that exist at the boundary and are necessary for maintaining gauge
invariance. They can carry physical information and even mediate interactions between
the bulk and the boundary of the system [12, 13, 14, 15, 16]. Mathematically speaking, in
the presence of boundaries, these gauge transformations aquire a non-vanishing charge.
This means that, rather than being mere background players, they become physically
relevant. They can distinguish between distinct physical states, labelling genuine degrees
of freedom. These boundary-induced physical symmetries play a crucial role in several
domains of theoretical physics. For instance, in the context of condensed matter physics,
they can lead to exotic states of matter like topological insulators, where the boundary or
edge states carry current while the bulk remains insulating. Similarly, in the gravitational
context, these symmetries offer a deeper understanding of the structure of spacetime
potentially having important implications for the quantum theory.

Now one might ask: Why does this matter? To comprehend this, one needs to
remember that in the conventional understanding of gauge theories, gauge symmetries are
purely mathematical artefacts. They don’t correspond to real physical transformations.
They emerge as redundancies in our description, implying that many mathematically
distinct field configurations might represent the same physical state. The act of ‘gauging
away’ these redundancies has long been an accepted routine. By identifying which gauge
transformations have physical implications, we anchor our understanding of what can be
measured, what can be observed, and what remains a mere coordinate choice and can
safely be gauged away.

Building on this foundational insight into the role of gauge transformations, let
us turn our attention to the literal ‘edges’ of the problem—the boundary conditions.
To be able to sift through mathematical redundancies to find the physically relevant
information, understanding boundary conditions turns out to be crucial. While often
subtle in their implications, they play an indispensable role in formulating physical theories,
painting a clearer picture of the overall dynamics. They ensure the well-posedness of
problems, guiding systems in their interactions with surrounding constraints and rendering
meaningful, consistent solutions. Classically, boundary conditions have been classified
into distinct types: Dirichlet, where the values of the field variables are fixed at the
boundary; Neumann, where the fluxes of the fields are specified; and Robin, a hybrid
of the former two [17]. Each type offers unique insights into how a system behaves and
interacts with its surroundings, each tailored to specific scenarios and physical motivations.
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These conditions serve as guidelines for solving differential equations, ensuring solutions
are both unique and physically meaningful. This motivates the interest in studying how
boundary conditions affect the understanding of gravitational dynamics.

Historically, in the context of gravitational physics, Dirichlet boundary conditions
have been the conventional choice. However, it’s not without its critiques. To appreciate
the nuances here, it’s beneficial to contrast general relativity with theories featuring a fixed
spacetime structure. In the latter scenario, where the metric field is immutable and serves
as a backdrop, both Dirichlet and Neumann conditions are suitable from the point of view
of the initial-boundary value problem (IBVP) [18, 19, 20]. They ensure well-posedness for
the IBVP and are relatively straightforward in their implications. However, the absence
of fixed background fields complicates this situation. Anderson and An [21, 22] argue
that, contrary to theories with a fixed space-time structure, in general relativity, the
direct use of either Dirichlet or Neumann boundary data results in ill-posed problems
for vacuum gravity. One should look for boundary conditions that respect the dynamics
and constraints inherent in general relativity, and one notable proposition in this context
originates from York in the 1980s [23]. He defined a set of boundary conditions that
combine elements of both Dirichlet and Neumann types. Instead of completely restricing
the induced metric at the boundary, York’s conditions fix the conformal metric and its
momentum conjugate, which is proportional to the extrinsic curvature. This approach
not only offers a geometrically elegant solution but also ensures well-behaved dynamics
consistent with the principles of general relativity. Keeping the IBVP aside, the study of
boundary conditions naturally leads us to the question of boundary Lagrangians. These
specific boundary terms in the action emerge conspicuously when one alters the boundary
conditions. In the case of general relativity, for all types of boundary conditions studied,
they are proportional to the divergence of the normal to the boundary. In non-null cases,
this translates to the trace of the extrinsic curvature, and for Dirichlet conditions, it
manifests as the well-recognized Gibbons-Hawking-York term [24, 25].

The study of classical systems traditionally bifurcates into two primary frameworks:
the Lagrangian and Hamiltonian approaches. While the Lagrangian approach focuses on
the action principle and the equations of motion, the Hamiltonian method emphasizes the
phase space, canonical variables, and their evolution. Bridging these two methodologies
is the concept of the covariant phase space (CPS) [26, 27, 28, 29, 30, 31, 32, 33, 34], an
elegant framework that combines the strengths of both. The CPS framework deviates from
traditional views in its conceptualization of phase space. Instead of understanding it as a
space of initial conditions (typical in Hamiltonian mechanics), it’s conceived as the space
of solutions to the equations of motion [28]. This reinterpretation, subtle yet profound,
leads to a series of advantages. Notably, it eradicates the need to single out a specific
time direction or foliation. Instead, it naturally preserves the covariant nature of the
system, adhering to the principles of relativity and ensuring that the descriptions remain
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unaltered under coordinate transformations. Such a conceptual shift also affects the way
we approach boundary conditions. Within the covariant phase space, boundary conditions
are not merely constraints imposed on the system but can be thought of as a choice of
polarization in the symplectic manifold representing the phase space. This perspective
allows for a more intrinsic understanding of the boundary conditions, intertwining them
with the geometric properties of the space of fields.

As the presence of boundaries breaks covariance, in this setting diffeomorphisms
might generate non-vanishing charges. This inspires us to revisit Noether’s theorem,
giving it a renewed voice in the context of the covariant phase space. Originally posited
by Emmy Noether in the early 20th century, her theorems establish a profound connection
between symmetries of a system and its conserved quantities. When reformulated in
the language of covariant phase space, Noether’s theorems acquire a certain elegance.
They highlight the intricate relationship between the symmetries of the solutions in the
phase space and the conserved quantities associated with them. The gauge nature of
diffeomorphisms is encoded in the fact that they are zero-modes of the pre-symplectic
form – the charges generating them are pure boundary terms which, in the absence of
boundaries, vanish on-shell. This is a well known feature of gauge symmetries.

In essence, the exploration of the CPS serves as a testament to the adaptability
and resilience of classical mechanics, proving its relevance even in modern contexts. By
intertwining foundational principles with contemporary interpretations, it provides a
fertile ground for novel insights, further enriching our understanding of physical systems.
However, despite the clarity the covariant formulation provides, it’s not without its
nuances. Various ambiguities arise when attempting to define conserved quantities in
this framework. Addressing these ambiguities requires certain prescriptions to ensure
that the derived quantities have a clear physical interpretation. A procedure for defining
charges in this framework was put out in the seminal work by Wald and Zoupas [33].
These charges satisfy a modification of Hamilton’s equation in which the symplectic
form evaluated on a diffeomorphism variation yields the variation of the charge, plus an
additional term representing the flux. This split between the charge and flux is not unique
and a prescription is needed to fix it. This is usually referred to as the problem of charge
integrability. In the WZ framework this is done using certain physically justified choices
which require assumptions of covariance which are not always satisfied [35].

A more general framework has been developed recently by many authors [34, 36, 37,
38, 39, 40, 14] exploiting various ambiguities [41] arising in the definition of the symplectic
potential from the Lagrangian to give a definition of surface charges based on the choice
of phase space polarization.1 The charge is defined on a subspace where the flux vanishes

1Here we use the term polarization in a loose sense to refer to the choice of the symplectic potential
in the ‘diagonal’ pdq form. We explain our viewpoint on the relationship between polarization and
boundary conditions in Section 5.
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– either on shell of conservative boundary conditions (e.g. [40, 42]) or on a subspace of
stationary field configurations (e.g. [36]), and this definition is then extended to the rest
of the phase space, uniquely defining the charge-flux split for a given polarization. As the
prescription is using the boundary structure to select the ambiguities in the definition of
the Noether charge, we refer to it as the (boundary-)improved Noether charge.

An alternative resolution of the issue of charge integrability can be achieved by
extending the phase space by introducing a set of additional dynamical fields which come
from the embedding of corners in spacetime and are known as edge modes [14, 43, 44].
In this approach, even though the gravitational system is open and can have degrees of
freedom leaving and entering the system, the symmetry charges are always hamiltonian.
This is possible because the dissipative degrees of freedom in the evolution of the corner are
encoded in the non-trivial variations of the embeddings. Independently of the perspective
on the topic, the two approaches must be two different ways of understanding the same
underlying physics.

The WZ prescription not only reproduces the famous Arnowitt-Deser-Misner (ADM)
charges for spatial infinity but also extends its application to the Geroch and Dray-Streubel
charges associated with future null infinity. Recent works have further expanded on this,
considering null hypersurfaces at finite distances and non-expanding horizons [36, 45]. On
the other hand, using the improved Noether charge prescription, [40, 38] have shown how to
include arbitrary field-dependent diffeomorphisms and anomalies – background-depedent
quantities whose field-space transformation under diffeomorphisms differs from the Lie
derivative. Including field-dependent diffeomorphisms and anomalies in the covariant
phase space is crucial. They appear in various contexts, such as boundary symmetry
vectors extensions and in certain symmetry enhancements. They also play a significant role
in the canonical approach. Anomalies, which often show up when background structures
are involved, are important for boundary observables. Recognizing and addressing them
systematically can significantly expand the utility of the CPS. Can the WZ prescription be
applied in this more general context? Answering this question is useful for future research,
but also to better understand the precise relation between the recent literature and [33]. In
particular, both field-dependent diffeomorphisms and anomalies appear in the study of the
BMS group. This prompts a question – how come Wald and Zoupas were able to derive
the BMS charges without including either of these two features in their description? We
found that while WZ didn’t specifically consider these elements, their approach inherently
made certain covariance assumptions. By translating these assumptions, we reveal that
the WZ method can handle some field-dependent diffeomorphisms and anomalies, but
only under specific conditions. We term the acceptable anomalies as soft anomalies.

Furthering our investigation, we juxtapose the WZ prescription against the improved
Noether charges and show that the WZ charges can indeed be reformulated as improved
Noether charges, provided specific conditions are met. This reconciliation accentuates the
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inherent adaptability and robustness of the WZ framework within modern interpretations.
In practical terms, we tested our findings using four scenarios. The most complex test was
at future null infinity, where we could derive standard BMS charges and better understand
how WZ got results without directly handling anomalies. While the derivation of BMS
charges as improved Noether charges was previously discussed in [46] and [38], those
papers relied on prior knowledge of BMS charges. Our approach is more foundational,
relying directly on the WZ conditions.

Due to its explicit dependence on boundary Lagrangians, the improved Noether
charge prescription makes studying the effect of changing boundary conditions straight-
forward. An important fact in GR is that energy is not strictly conserved due to the
dissipation caused by gravitational radiation. However, when focusing solely on non-
radiative spacetimes, an idea of conserved energy in the phase space becomes feasible.
One notion of conserved energy is given by the ADM charge at spatial infinity, where
gravitational waves never reach, as well as its quasi-local counterpart, the Brown-York
(BY) charge. Still, this understanding of energy is not universal. It heavily relies on
the specific boundary conditions used to eliminate dissipation. Namely, both the ADM
and BY charge computations require imposition of Dirichlet boundary conditions, be
it at asymptotic or finite boundaries. In Chapter 8 we study what happens to energy
values as we transition from Dirichlet, through York’s mixed conditions, to Neumann’s.
This process, which involves varying degrees of fixation of the induced metric and its
momentum (the extrinsic curvature), tends to result in reduced energies. Illustratively, in
the case of the Kerr spacetime, the energy values are found to be M , 2M/3, and M/2,
respectively.

To arrive at these conclusions, two primary methodologies were used. The first
method is the covariant phase space, especially powerful as it can describe both radiative
and non-radiative scenarios. Here, the focus is on understanding how restricting symplectic
flux at the boundary selects a distinct symplectic potential, leading to integrable charges.
This is the basic idea of the improved Noether charge prescription which provides a
universal approach for charges that holds true across various boundary conditions. Our
second tool is a direct canonical analysis founded on the ADM decomposition. This
method is particularly apt for the non-radiative context. Notably, when we extend the
analysis to include different boundary conditions, we observe that this canonical method
produces charges that align seamlessly with those deduced from the improved Noether
charge prescription. This alignment fortifies the validity of the improved Noether charge
formula.

Going a step further, we introduce a non-orthogonal intersection between the time-
like boundary and the space-like hypersurfaces. When these non-orthogonal corners
are introduced, the variational principle requires an additional 2D term, which, in the
case of Dirichlet boundary conditions, is given by the Hayward Lagrangian. Given
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that our primary aim in constructing covariant surface charges revolves around a well-
defined variational principle, it is vital to ascertain whether this corner Lagrangian also
influences the charge formula. To answer this, calculations using the improved Noether
charge prescription were repeated, this time factoring in non-orthogonal corners, and the
outcomes were juxtaposed with canonical results. The canonical calculation highlighted
that a non-orthogonal corner introduces both physical and mathematical shifts. From
a physical perspective, one could consider two distinct observer categories – those at
rest with respect to the space-like foliation of spacetime, and those at rest along the
time-like boundary. At the corner, these are related by a boost transformation, making
the different notions of energy directly comparable. Mathematically this manifests itself
as the additional ‘tilting terms’ in the charges depending explicitly on the boost angle
between the normals. Importantly, our findings confirmed the cohesion between the
covariant and canonical results, even in the context of non-orthogonal corners, thereby
attesting to the robustness of the improved Noether charge prescription.

Moving our focus to null boundaries, we are no longer limited to conservative
boundary conditions and can probe into leaky boundaries as well. Recent developments
by Chandrasekaran, Flanagan, and Prabhu (CFP) characterized the symmetry group
of general relativity on generic null hypersurfaces as an extension of the BMS group
to accommodate arbitrary diffeomorphisms and Weyl transformations on any 2d space-
like cross-section [36].2 Using the Wald-Zoupas (WZ) procedure, they derived charges
which maintain conservation across shear-free and expansion-free hypersurfaces, with
non-expanding horizons (NEHs) being a prime example. A subsequent detailed exploration
into NEHs was presented in [45], shedding light on how the global sector of the Weyl
transformations equates to the area charge. The same Weyl transformations play also a
prominent role in the investigation of possible black hole soft hairs by Hawking, Perry
and Strominger [47].

A shortcoming of the CFP charges is that some of them are not conserved in flat
spacetime, meaning a portion of their flux doesn’t stem from radiation or other physical
processes. This limits their applicability – e.g. a spherical collapse would see a flat
light-cone bend into an event horizon, and this process will be poorly described by a
charge that is already evolving prior to any matter infalling. This raises the question
whether a different prescription for the charges exists that is free of this limitation. Indeed,
the Noether charges as well as the Wald-Zoupas charges are not guaranteed to be universal,
and may depend on a choice of polarization made in writing down the symplectic potential
[32, 34, 14, 42]. The CFP construction is based on a specific choice of Dirichlet boundary
conditions, and on a specific set of restrictions of the variations, corresponding to a certain
universal structure constructed along the guidelines of what has successfully been done

2The same group that can be obtained at null infinity relaxing the fall-off conditions in a way compatible
with renormalization of the symplectic potential [46].
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at future null infinity (see e.g. [48] for a review). We show in Chapter 9 that there is a
different choice of polarization leading to charges that are conserved in flat spacetime
together with shear-free and expansion-free hypersurfaces. This polarization, we refer
to as the conformal polarization, was previously considered in [49], and is similar to the
York polarization discussed in the non-null case. The resulting charges are not anomalous,
preserved on flat light-cones, and can be used to study dynamical processes of black
hole formation, as anticipated in [50]. We show that this polarization leads to conformal
boundary conditions on a null hypersurface that provide an alternative resolution to
the ambiguities of the gravitational action with null boundaries [51] based on Dirichlet
boundary conditions.

One of the restrictions on the variations considered in the CFP paper concerns the
inaffinity of the normal to the null hypersurface. This plays an important role, and
relaxing it reintroduces the ambiguities of [51] and prevents a complete implementation
of the WZ procedure. Nonetheless, the authors remarked that this restriction removes
directions of the phase space along which the symplectic two-form is not degenerate.
Therefore it may correspond to a physically relevant variation, and the question was left
open whether one could construct WZ charges in this larger phase space. We argue that
this question has a positive answer: There is a precise generalization of the WZ procedure
that allows the construction of charges in the larger phase space that includes variations of
the inaffinity. The generalization with respects to the original WZ procedure concerns the
notion of stationarity, whereas the requirement of covariance is untouched. In our opinion
allowing different notions of stationarity is an advantageous flexibility of the formalism,
and it is covariance with respect to any background universal structure that is the key
tenet of the WZ prescription. This procedure selects again the conformal polarization,
and the new charges satisfy anomaly-free flux-balance laws. This positive answer follows
from the better covariance properties of the conformal polarization,which we make explicit
through a detailed analysis of the anomalies of the different polarizations under different
restrictions on the variations.
The thesis is structured as follows:

Chapter 2: Geometry In this chapter, we give an overview of hypersurfaces
embedded into spacetime. This serves dual purposes: firstly, to firmly establish the notation
used throughout the thesis; and secondly, to collect various properties of hypersurfaces
that are dispersed across different literature, offering a comprehensive reference point.
Given their unique geometrical attributes, null hypersurfaces are given special focus.

Chapter 3: Symmetries This chapter offers a concise overview of Noether’s
theorems in their conventional form. To highlight the theorems’ implications, we walk
through a range of simple examples.

Chapter 4: Covariant Phase Space Here, we give an overview of the CPS
formalism in the modern language. We revisit Noether’s charge within this refreshed
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framework, and discuss problems with the definition of Hamiltonian charges. The chapter
also introduces the concept of anomalies.

Chapter 5: Boundary Conditions and Boundary Terms A comprehensive
examination of boundary conditions is done in this chapter. We start by approaching
them from the point of view of partial differential equations. This is then combined with
insights drawn from the action principle. We conclude this chapter with a discussion on
permissible boundary conditions for Einstein-Hilbert gravity.

Chapter 6: Leaky Boundary Conditions and Boundary Symmetry Groups
In this chapter, we perform a detailed study of the covariance properties of the gravitational
symplectic potential on a null boundary, and of the different polarizations that can be
used. We emphasise the importance of keeping track of anomalies in the covariant
phase space, with the exact nature of the anomalies contingent on the selected leaky
boundary conditions. We study the symmetry groups that arise with different phase space
prescriptions, and determine the fields that have anomalous transformations.

Chapter 7: Charge Prescriptions In this chapter, we list various ambiguities
associated with charge definition. We present both the WZ and improved Noether charge
prescriptions, and undertake a comparison between the two approaches.

Chapter 8: Charges with Different Polarizations with Timelike Boundaries
Heading into more specialized territory, this chapter explores the generalization of ADM
and BY charges in the context of different boundary conditions. Additionally, we study non-
orthogonal corners and analyze them within both covariant and canonical frameworks.

Chapter 9: Charges with Different Polarizations with Null Boundaries.
Building on the previous chapter, we focus on the nuances of charges in the case of null
boundaries. We derive charges with nice properties using the conformal polarization.

Chapter 10: Conclusions. This concluding chapter provides a coherent summary
of preceding chapters and lays out potential directions for future research.
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Notation
The spacetime manifold is denoted M , the Lorenzian metric gµν obeys the mostly

positive convention (−,+,+,+). When being general, its dimension is denoted by n but
in practice we take it to be n = 4. A generic non-null hypersurface with unit normal n
is denoted Σ with signature s = n2 = ±1. When the signature is specified, symbol Σ is
kept for a spacelike hypersurface s = n2 = −1, and T is a timelike hypersurface with
normal n̄, s = n̄2 = 1. A null hypersurface is denoted N , its normal l, and the rigging
vector n. The corner is denoted S, it can be treated as a hypersurface in Σ, T , or N , in
which cases we use pairs of normals (n, u), (n̄, ū), and (l, n), respectively.

Greek letters are spacetime indices µ, ν, ... ∈ {0, 1, 2, 3}. If a 3 + 1 foliation is present,
0 is the coordinate along the direction of the foliation, and lowercase Latin letters are
coordinates on the leaves a, b, ... ∈ {1, 2, 3}. Uppercase Latin letters are used to denote
compact angular coordinates along the corner A,B, ... ∈ {2, 3} = {θ, φ}. In all cases, (, )

denotes symmetrization, 〈, 〉 trace-free symmetrization, and [, ] antisymmetrization.
The volume form on spacetime is given by ε := 1

4!
εµνρσ dx

µ ∧ dxν ∧ dxρ ∧ dxσ, with
ε0123 :=

√−g. An arrow under a p-form denotes the pullback to the boundary B, and B
=

is an equality holding at the boundary only. Equality holding on-shell of the equations of
motion is denoted =̂ , and the equality holding on-shell of boundary conditions is denoted
by b.c.

= . We use units c = 1 = G and define the gravitational Lagrangian without the 16π

prefactor.
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2Geometry

In this chapter we briefly review the ge-
ometry of hypersurfaces and corners. This is
useful to fix the notation, but it will also al-
lows us to offer a review of various properties
that are often overlooked. We will in partic-
ular review the distinction between intrinsic
and extrinsic geometries, using spacetime co-
variant notation and offering the translation
to hypersurface indices on the one hand and
to Newman-Penrose (NP) notation for the
case of null hypersurfaces. We will recall the
notion of class-III and class-I invariance to
talk about quantities which are independent
respectively of the choice of normal and of
rigging vector, and finally some useful ex-
pressions that arise when working with the
special coordinate system provided by affine
coordinates.

This chapter doesn’t contain any new
research; all the information included is de-

rived from existing publications. The section
on non-null hypersurfaces primarily relies on
Chapter 3 of [53]. We are using notation
and conventions established in the appendix
of [42], which are also reiterated in this text.
As for the section concerning null hypersur-
faces, various sources have studied its con-
tent and will be acknowledged throughout
the text. Although the way this information
is organized and presented is unique and was
previously published in [54], the actual mate-
rial is well-established but often fragmented
across different publications, each with its
own set of conventions and notations.

2.1 SPACELIKE AND TIMELIKE HYPER-
SURFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 INTRINSIC GEOMETRY . . . . . . . 14
2.1.2 EXTRINSIC GEOMETRY . . . . . . 15
2.1.3 CORNER GEOMETRY . . . . . . . . . 16

2.2 NULL HYPERSURFACES . . . . . . . . . . . . . . . . . 18
2.2.1 FOLIATIONS . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 AFFINE COORDINATES . . . . . . . 27

A hypersurface Σ is a submanifold of codimension-1 embedded in some ambient
manifold M . In all cases of interest here the ambient manifold will be a four-dimensional
Lorenztian spacetime, and hypersurfaces will be three-dimensional. Some examples we
will consider are boundaries of some region of interest, Cauchy slices, lightcones, etc.
These hypersurfaces can be spacelike (Σ), timelike (T ), or null (N ). Due to their starkly
different geometry we will dedicate a separate section to null hypersurfaces.

A corner S is a codimension-2 spacelike submanifold embedded in an ambient
spacetime M . It can be thought of as a ‘boundary of the boundary’,1 and it can be
defined as the intersection of initial/final Cauchy slice and the lateral boundary. We will
always assume the corner to be closed, we will treat it as a topological 2-sphere embedded
in the four-dimensional spacetime.

1In this definition the corner is a hypersurface (codimension-1) embedded in the boundary (of dimension
d-1).
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2.1 Spacelike and timelike hypersurfaces
A hypersurface Σ can be defined by a Cartesian equation

Φ(xµ) = 0, (2.1.1)

as a level-set of a scalar field Φ, or by a set of parametric equations

xµ = xµ(ya), (2.1.2)

where xµ are spacetime coordinates (µ = 0, 1, ..., d− 1), and ya are coordinates intrinsic
to the hypersurface (a = 1, ..., d − 1). From (2.1.1) one naturally defines the normal
one-form ∂µΦ, while from (2.1.2) one naturally defines d− 1 tangent vectors eµa := ∂xµ

∂ya
.

We introduce the unit normal to the hypersurface

nµ = s
∂µΦ√

|gµν∂µΦ∂νΦ|
, s = nµn

µ =

{
+1 timelike
−1 spacelike

(2.1.3)

Notice that eµanµ = 0. This simply means that Φ is constant along the hypersurface, which
we know by definition.

2.1.1 Intrinsic geometry
Taking the spacetime line element and confining the displacement to the hypersurface,

we define the induced metric q of Σ as

ds2 = gµνdx
µdxν = gµν

∂xµ

∂ya
dya

∂xν

∂yb
dyb (2.1.4)

= gµνe
µ
ae
ν
bdy

adyb =: qabdy
adyb, (2.1.5)

qµν := qabe
a
µe
b
ν = gµν − snµnν . (2.1.6)

We will refer to qµν as the induced metric as well, slightly abusing language but significantly
simplifying notation by never using qab or latin indices whatsoever.2 This way indices are
always raised and lowered by the spacetime metric gµν . By raising one index in (2.1.6),
we define the projector

qµν = δµν − snµnν , qµρ q
ρ
ν = qµν , qµνn

ν = 0, (2.1.7)

2On the other hand, one should keep in mind that the actual induced metric is the pull-back of the
projector qµν , so later when we study variations we will keep in mind that variations which keep the
induced metric fixed satisfy δqµν = 0, but not necessarily δqµν = 0.
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mapping spacetime vectors to vectors intrinsic to the hypersurface

q(v) = v||, for TM 3 v = v|| + v⊥n, v|| ∈ TΣ, v⊥ ∈ R.3 (2.1.8)

Using the projector, we define the induced covariant derivative

Dµ (qνρv
ρ) = qσµ∇σ (qνρv

ρ) , (2.1.9)

for any spacetime vector v. Generalization to higher rank tensors is straightforward. We
use this to define the induced curvature tensor

[Dµ, Dν ] v
ρ = (3)Rρ

σµνv
σ. (2.1.10)

We denote the spacetime volume 4-form by

ε :=
1

4!
εµνρσ dx

µ ∧ dxν ∧ dxρ ∧ dxσ, ε0123 :=
√−g. (2.1.11)

The induced volume 3-form on Σ is

εΣ ≡ dΣ := inε = snµdΣµ, ε = sn ∧ εΣ, inεΣ (2.1.12)

where dΣµ := snµdΣ =
√−sq d3y is the oriented volume element in the conventions of

[51]. Accordingly, the pull-back of a 3-form on Σ reads

θ =
s

3!
θµνρε

µνρσnσdΣ = − s
3!
θµνρε

µνρ
Σ dΣ =

1

3!
θµνρε

µνρσdΣσ =: θµdΣµ. (2.1.13)

To give some explicit intuition about these conventions, for Σ and T defined in Minkowski
space respectively by t = const. and r = const., we would have

εΣ = dr ∧ dθ ∧ dφ, εT = −dt ∧ dθ ∧ dφ,

with pull-backs on their boundaries

i∂rεΣ = dθ ∧ dφ = εS, i±∂tεT = ∓dθ ∧ dφ = ∓εS.

2.1.2 Extrinsic geometry
The extrinsic curvature of Σ is defined as

Kµν := qρµq
σ
ν∇ρnσ (2.1.14)

3slight abuse of notation here: since we are using the covariant notation, the tangent space TΣ is seen
as embedded in TM .
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This quantity captures how the hypersurface is embedded in the ambient manifold, and
depends explicit on the 4d metric via the normal components nµΓ µ

ρσ. From torsion-freeness
of the metric it follows that the extrinsic curvature is symmetric Kµν = Kνµ, and it can
be expressed as the Lie derivative of the induced metric along the normal

Kµν =
1

2
qρµq

σ
νLngρσ =

1

2
qρµq

σ
νLnqρσ =

1

2
Lnqµν (2.1.15)

where we used nµLnqµν = −qµνLnnν = 0. The trace can be take with either g or q as it is
a hypersurface-intrinsic tensor, and it is the divergence of the normal

K = gµνKµν = qµν∇µnν = ∇µn
µ (2.1.16)

or in terms of the Lie derivative

K =
1

2
qµνLngµν =

1

2
gµνLnqµν = Ln ln

√
|q|. (2.1.17)

We define the acceleration of the normal as

aµ := nν∇νn
µ. (2.1.18)

Just like the extrinsic curvature, it captures geometry extrinsic to the hypersurface but it
is a hypersurface-intrinsic vector field, n · a = 0.

2.1.3 Corner geometry
We define the corner S as the level set of both Φ and another scalar field Φ̄ defined

(at least) along Σ,
Φ(xµ) = 0 = Φ̄(xµ). (2.1.19)

We can think of this as an intersection of two hypersurfaces, Σ defined as a level set of Φ,
and Σ̄ defined as a level set of Φ̄. We can treat the corner as a hypersurface in Σ and
define the pair normals (n, u) where the unit normal u ∈ TΣ4 is given by

uµ = −s qνµ∂νΦ̄√
|qµν∂µΦ̄∂νΦ̄|

, u · n = 0, u2 = −s. (2.1.20)

4Here it is important to notice that a codimension-2 surface comes with two normals that are not unique.
However, fixing one of them (e.g. by saying that S as a hypersurface in Σ, we are taking n as one of
the normals to S), and demanding they are orthonormal, the other one is fixed up to orientation.
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We can also treat it as a hypersurface in Σ̄, and define the pair (n̄, ū), where n̄ is defined
by a barred version of (2.1.3), and ū ∈ TΣ̄ is given by

ūµ = −s̄ q̄νµ∂νΦ√
|q̄µν∂µΦ∂νΦ|

, u · n̄ = 0, u2 = −s̄. (2.1.21)

We will distinguish two possibilities: (i) orthogonal corners occur when the two hypersur-
faces intersect orthogonally, i.e. n · n̄ S

= 0, and (ii) non-orthogonal corners whose angle
of intersection is β := arcsin(n · n̄). In that case, boost relations between normals are
summarized below.

n · n̄ = sinh β, u · n̄ = cosh β, ū · n = − cosh β, λ := (cosh β)−1 (2.1.22)(
n

u

)
=

(
cosh β sinh β

sinh β cosh β

)(
ū

n̄

)
,

(
ū

n̄

)
=

(
cosh β − sinh β

− sinh β cosh β

)(
n

u

)
(2.1.23)

uµ = λqµν n̄
ν = λ(n̄µ + sinh βnµ), ūµ = λq̄µνn

ν = λ(nµ − sinh βn̄µ) (2.1.24)

Intrinsic geometry of the corner
We can also define the 2-dimensional induced metric as

γµν = qµν − uµuν = gµν + nµnν − uµuν = gµν − n̄µn̄ν + ūµūν . (2.1.25)

The induced volume 2-form is

εS ≡ dS := −siudΣ = −nρuσdSρσ, εΣ = u ∧ εS, ε = sn ∧ u ∧ εS, (2.1.26)

where dSρσ = 2n[ρuσ]dS is the oriented surface element with both outgoing normals.
Accordingly, the pull-back of a 2-form α on ∂Σ is

α = −s
2
αµνε

µνρσnρuσdS = −s
2

(?α)µνdSµν . (2.1.27)

Foliations: For Section 8.4, we take the boundaries Σ and T to be part of foliations
defined by the level sets of two scalar fields ϕ0(x) and ϕ1(x) respectively. Without loss
of generality we can adapt our coordinates such that ϕ0 = t and ϕ1 = r in spherical
coordinates, so that the corners defined by the intersections of the two foliations are spheres
parametrized by θ and φ. In these adapted coordinates, the presence of a non-orthogonal
corner is directly parametrized by one of the metric components,

n = − 1√−gttdt, n̄ =
1√
grr

dr, sinh β = − gtr√−gtt√grr . (2.1.28)
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This identification can be used to provide a bulk extension of the function β.
We further have √−g = N

√
q,

√−q̄ = Nλ
√
γ, (2.1.29)

in terms of the ADM variables N = −1/
√−gtt, and

qab = gab =

(
qrr qrA

γAB

)
, q̄āb̄ =

(
−N2 + qabN

aN b qAbN
b

γAB

)
. (2.1.30)

In this set-up, the orthogonal corner case corresponds to a partial gauge-fixing in which
one component of the shift vector vanishes, N r = 0. It is also possible to consider a more
general set-up, in which the timelike boundary is not a level set of one of the coordinates.
In this case one can describe both orthogonal and non-orthogonal cases without gauge
fixing.

Extrinsic geometry of the corner
We can repeat the definition of the extrinsic curvature for the corner by treating it as

a hypersurface in Σ and Σ̄. Below we summarize relations between the different extrinsic
curvatures:

kµν := γρµDρuν = γρµq
σ
νDρuσ, k̄µν := γρµD̄ρūν (2.1.31)

k = gµνkµν = γµν∇µuν = ∇µu
µ + nµnν∇µuν = λ(K̄ + sinh βK +∇ūβ − n̄ · a) (2.1.32)

k̄ = gµν k̄µν = γµν∇µūν = ∇µū
µ − n̄µn̄ν∇µūν = λ(K − sinh βK̄ +∇uβ + n · ā) (2.1.33)

Defined this way, k and k̄ are quantities that are extrinsic to S but intrinsic to Σ and Σ̄,
respectively. The corner can equally be treated as a spacelike cut of a null hypersuface N .
This case will be analysed in the next section.

2.2 Null hypersurfaces
We consider a null hypersurface N defined by a cartesian equation Φ = 0, and denote

its normal
lµ :

N
= −f∂µΦ, l2

N
= 0, (2.2.1)

with f > 0 as to have the vector future-pointing. The corresponding vector lµ is null and
hypersurface orthogonal, hence it is also tangent to N and geodetic,

lµ∇µl
ν N= klν . (2.2.2)

The hypersurface is thus naturally fibrated by null geodesics, and k = 0 if they are affinely
parametrized. The chosen tangent vector is referred to as generator of N . Taking the
language from fibre bundles, the direction along the fibre is referred to as vertical, and
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the others as horizontal. We will assume that N has topology I × S, where S = S2

and I is some interval in R. If I = R in affine coordinates the hypersurface is called
complete, and in this case all null geodesics extend indefinitely in both directions. It is
called semi-complete if it extends indefinitely in one direction only, and has a boundary
in the other direction caused for instance by the formation of caustics or crossings. We
will often use adapted coordinates (Φ, xa), where xa, a = 1, 2, 3 are coordinates on the
leaves of the Φ foliation. The condition that N is null then induces a partial gauge-fixing
of the metric given by

gΦΦ
N
= 0. (2.2.3)

For spacelike and timelike hypersurfaces, there is a canonical choice of normal with
unit norm. This makes the normal independent of the embedding of the hypersurface, i.e.
invariant under a change of parametrization that preserve the location of the boundary:
Φ 7→ Φ′ = ΦF (x), with F smooth at N . No such preferred choice exists in the null case.
The function f is thus arbitrary, and one has to check on a case by case basis whether a
given quantity is independent of the embedding or not. On the other hand, the geometry
of the hypersurface is sensitive only to the equivalence class [lµ = Alµ] of normals identified
up to an arbitrary rescaling. This rescaling can be obtained in two independent ways.
First, by changing the choice of f , and second, by changing the embedding, effectively
multiplying f by F .

A good example of a non-geometric quantity is the inaffinity k appearing in (2.2.2)
since it depends on the parametrization via f and Φ. In fact, an explicit calculation using
(2.2.1) gives

k = £l ln f −
f

2
∂Φg

ΦΦ, (2.2.4)

written in adapted coordinates. If follows that k depends on the perpendicular derivative
of the metric, therefore it contains information about the extrinsic geometry. We can
rewrite (2.2.4) in a more covariant form if we parametrize an arbitrary extension of the
normal as l = −fdΦ+ Φv, then

k = £l ln f −
1

2
£nl

2 +
1

f
l · v, (2.2.5)

where n is any null vector such that n · l = −1. This expression is slightly misleading
because it may give the impression that k depends on v, but this dependence cancels out
between the second and third term to give back (2.2.4).5 From this general expression
one can also read off the special values when the extension is null everywhere (l2 = 0,
v 6= 0), when it is hypersurface-orthogonal everywhere (v = 0), or both. A typical example
of the first special case is Kerr’s principal null direction, hypersurface orthogonal only at

5Independence of k from the extension of l can be also checked showing that l′ = l + Φv gives the same
k as l, and it means that different k imply different f at fixed spacetime metric.
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the horizon. For the second special case, l is normal to a foliation that has a single null
leaf, and for the third, l is normal to a null foliation.

The null vector n introduced in (2.2.5) is known as the rigging vector, and it is
a convenient tool to work on null hypersurfaces. It allows one the use of covariant
expressions at all times and allow us to avoid hypersurface indices, thus making the
relation to spacetime objects transparent. It also allows one to use the Newman-Penrose
(NP) formalism and the numerous results that have been derived in that language. To
that end, we complete the pair (l, n) to a doubly-null NP tetrad (l, n,m, m̄) on N .

The downside of the rigging vector approach is its reliance on an arbitrary choice of
auxiliary vector. But it is quite easy to check which quantities are independent of this
choice. The arbitrariness is a 2-parameter family given by

n→ n+ ām+ am̄+ |a|2l, m→ m+ al, a ∈ C. (2.2.6)

Quantities which are invariant under (2.2.6) are independent of the choice of auxiliary
rigging vector. For instance, it is easy to check that (2.2.5) is invariant. The map
(2.2.6) is an internal Lorentz transformations of the NP tetrad that corresponds to
the two translations of the ISO(2) little group stabilizing l. We will refer to it as a
class-I transformation (of the NP tetrad), following [55]. In this classification, class-II
transformations are the two null translations of the ISO(2) little group stabilizing n. They
change l and disalign it from the normal to the hypersurface, and will not be considered
in the rest of the paper. The remaining two internal transformations are the class-III
spin-boost transformations

(l, n,m, m̄)→ (Al,A−1n, eiϕm, e−iϕm̄). (2.2.7)

The boost transformation acts as a rescaling of the normal by an arbitrary real function
A. Therefore, quantities invariant under this boost are independent of the choices of f
and of the embedding used when writing (2.2.1). This is not the case for the inaffinity,
which transforms as k → A(k + £lA).

An important result of [36] is that the equivalence class

[lµ, k] = [Alµ, A(k + £lA)] (2.2.8)

can be taken to be the universal background structure in the covariant phase space of
metrics with a null hypersurface.6 That is, any two metrics with a null hypersurface

6This is referred to as universal boundary structure. We prefer the adjective background to emphasize
that these are quantities that will not be varied in the phase space. The paper [36] also introduces a
notion of ‘universal intrinsic structure’, based on purely intrinsic quantities, and which we do not
consider here.
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admit a coordinate system in which they have the same (2.2.8). Elements in the universal
structure (2.2.8) must thus be class-III invariant.

These internal Lorentz transformations are practical tools to discern the quantities
that depend solely on the geometry of N from those that depend on additional structures
or choices. To reiterate, class-I invariance means independence from the choice of rigging
vector,7 and class-III invariance guarantees independence from rescaling the normal,
namely from the choice of f and from reparametrizations Φ 7→ Φ′ = ΦF (x). One theme
of this paper will be that lack of class I and class III invariance translates to anomalies in
the covariant phase space.

If need be to select a specific rigging vector, there are two natural ways to do so that
are common in the literature. The first is to require it to be parallel-transported along l
on N , see e.g. [57]. This choice is unique, and fixes the class-I transformation so that
the NP spin-coefficient π vanishes.8 The second way is to require it to be adapted to a
given 2 + 1 foliation of N . This choice is again unique once the foliation is given. In this
case the class-I transformation is fixed setting to zero two of the three components of the
pull-back of n, thus making it hypersurface orthogonal within N . It follows that the 2d
planes spanned by (m, m̄) integrate to the leaves of the foliation.

A volume form on N can be defined from the spacetime volume form ε via

ε = −l ∧ εN . (2.2.9)

The conventional minus sign here follows from assuming an outgoing normal l , and would
be plus if it was instead chosen as incoming. The volume form εN is class-I invariant but
not class-III invariant because it depends on f . This formula defines an equivalence class
of volume forms, related by adding any 3-form containing l. A convenient representative
of this equivalence class can be chosen using the rigging vector as

εN := inε =

√−g
f

d3x, (2.2.10)

where the second equality uses adapted coordinates (Φ, xa), and the arrow under the form
means pull-back on N . We will make this choice from now on. Written in this way, class-I
invariance may not appear as obvious, but it follows from the pull-back and the fact that
mµ is tangent to N .

7The extended structure of a null hypersurface plus a specific choice of normal is called Carollian
structure in some literature, and the further extension including a specific choice of rigging vector a
‘ruled’ or rigged Carollian structure, see e.g. [56].

8Requiring (m, m̄) to be also parallel-transported will further fix the spin part of the class-III so that
the NP coefficient ε is real. This is the same letter used below for the volume form, but being the first
a scalar and the second a form no confusion should hopefully arise.
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On N , we also define the spacelike area form of the corner S as

εS := ilεN = im ∧ m̄, ilεS = 0, εN = −n ∧ εS. (2.2.11)

It is class-I invariant and defined independently of any choice of foliation of N . It satisfies

dεS = θεN , (2.2.12)

where θ is the expansion of l, as defined below. Notice that εS so defined contains also
vertical components, even if n is adapted to a foliation and (m, m̄) are integrable. Only
choosing affine coordinates will make the area 2-form purely horizontal. From this equation
one derives the following useful identity,

(£l + θ)X εN = d(XεS). (2.2.13)

Using the rigging vector, a local projector on 2d spacelike planes can be introduced

γµν := gµν + 2l(µnν) = 2m(µm̄ν). (2.2.14)

Its pull-back to the null surface γ←µν , or γab in hypersurface indices, coincides with the pull-
back of the spacetime metric.9 This is the (degenerate) induced metric, whose null direction
is given by lµ itself. The class-III invariant pair (γ←µν , l

µεN ) contains six independent
quantities, which are the analogue of the induced geometry in the non-degenerate case.

For the extrinsic geometry, we look at the pull-back of the gradient of the normal
vector. This quantity gives the extrinsic curvature in the case of a spacelike or timelike
hypersurface. In the null case, Wµ

ν := ∇µ
←
lν defines a purely hypersurface-intrinsic objet,

satisfying nµWµ
ν = 0 = Wµ

νlν , and lµWµ
ν = klν . It is related to the Weingarten map,

which is the reason for the notation W . The actual map is given using hypersurface
indices as in [36, 39], but that definition is equivalent to ours in terms of covariant 4d
indices. To see the geometric content of this map, it is convenient to use the rigging vector
and decompose it as follows,

Wµ
ν := ∇µ

←
lν
N
= ωµl

ν + γνρBµ
ρ (2.2.15)

=
(
(ᾱ + β)m̄µ − εnµ

)
lν − (σm̄µ + ρmµ)m̄ν + cc.10

9The pull-back to S will give the induced metric of the corner like in the non-null case.
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The second line makes reference to the NP formalism (with mostly-plus signature, we use
the conventions of [58]), and the various tensors there appearing are:

Bµν := γρµγ
σ
ν∇ρlσ =

1

2
γρµγ

σ
ν£lγρσ

N
=σµν +

1

2
γµνθ, (2.2.16a)

σµν := γρ〈µγ
σ
ν〉∇ρlσ = −m̄µm̄νσ + cc, θ := 2m(µm̄ν)∇µlν = −2ρ, (2.2.16b)

ωµ := −ηµ − knµ, ηµ := γρµn
σ∇ρlσ = −(α + β̄)mµ + cc, lµωµ = k = 2Re(ε).

(2.2.16c)

Here B is the deformation tensor, whose antisymmetric part vanishes because l is hyper-
surface orthogonal at N , σ is the shear and θ the expansion; ω is the rotational 1-form
of isolated and non-expanding horizons [58, 59], satisfies ω · l = k; η is the connection
1-form on the normal timelike planes spanned by (l, n), it provides the connection term of
the covariant derivative ð used in NP calculus [60, 61], and it is sometimes called Hajicek
1-form [62], or twist, since it is related to the non-integrability of the normal planes via

γµν [n, l]
ν = ηµ − γνµ(lρ∇ρnν − ∂ν ln f). (2.2.17)

The Weingarten map depends on a specific choice of normal and not on the equivalence
class. It is nonetheless useful to describe the geometry of the null hypersurface. From
(2.2.16a), we see that the shear and expansion are entirely determined by the induced
metric and a choice of l, so they are part of the intrinsic geometry. The dependence on
the scaling of l can be eliminated if we look at the densitized expressions σεN and θεN
which are class-III invariant.

Perpendicular derivatives of the metric enter the inaffinity k and the twist ηµ. These
quantities could be taken as the analogue of the extrinsic geometry, but they are ambiguous
since they depend on the choice of l representative and not on the equivalence class. This
dependence can be partially removed if we consider the following shifts,

k̄ := k − lµ∂µ ln f = −f
2
∂Φg

ΦΦ, (2.2.18)

η̄µ := ηµ + γνµ∂ν ln f = γµν([n, l]
ν + lρ∇ρn

ν) = mµ(m̄ν [n, l]
ν + π) + cc, (2.2.19)

where π here is one of the NP coefficients. η̄µ and k̄εN are invariant under changes of f ,
but not under changes of embedding Φ→ ΦF (x). Therefore they are still not class-III
invariant, but at least satisfy the weaker requirement of being independent of the choice
of normal representative at fixed embedding.11 If we keep the embedding fixed, k̄εN is
fully unambiguous. However η̄µ is not, because it inherits a dependence on the rigging
vector from ηµ, hence it is still not a genuine measure of the extrinsic geometry of N . In

11This is consistent with the statement in [63] that a quantity like k̄εN here is class-III boost invariant,
because that paper works with a fixed 2+2 foliation.
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quantity Rigging-vector Rescaling Boost Spin
independence independence weight weight

σµν 7 7 1 0
σ 3 7 1 2
θ 3 7 1 0
εN 3 7 −1 0
k 3 7 1+inhom 0
ηµ 7 7 0+inhom 0

α + β̄ 7 7 0+inhom -1
γµν [l, n]ν 7 3 0 0

Table 2.1.: Behaviour under class-I and class-III transformations. Quantities that are not
invariant under (2.2.7) can be characterized in terms of their boost and spin weights,
respectively a and b, defined by X → AaeibϕX (up to possible inhomogeneous terms)
under (2.2.7). The boost weight can also be interpreted as a conformal weight, for
instance in the case of future null infinity where the normal is the gradient of the
conformal rescaling of the metric.

fact, even though the Weingarten map is independent of the choice of rigging vector, the
decomposition we used on the right-hand side of (2.2.15) introduces a dependence on it:
only θ, k and (the scalar contraction) σ are class-I invariant, whereas σµν , ηµ and ωµ are
not. For convenience, the transformation properties of all quantities are summarized in
Table 2.1, with the details reported in Appendix B.1.

The only case in which (the pull-back of) η̄µ is class-I invariant is on a non-expanding
horizon with k = 0. And in fact it characterizes the shape of a non-expanding horizon via
the Noether charge construction [45]. To use it as a measure of the extrinsic geometry
of a general N , one has to fix the class-I gauge freedom. If we do so taking n parallel
transported by l the NP spin coefficient π vanishes and can identify the twist η̄µ (or
equivalently ηµ with a gradient normal representative) with the non-integrability of the
timelike planes, thanks to (2.2.19). Sometimes it is more convenient to fix n to be adapted
to a foliation of N instead. We will show in Chapter 9 that η̄µ determines the evolving
Noether charges associated with the leaves of that foliation.

We conclude with two more remarks about the Weingarten map. First, its trace is
given by

W := Wµ
µ = ∇µl

µ +
1

2
∂nl

2 = θ + k, (2.2.20)

and provides the boundary term for the variational principle with Dirichlet boundary
conditions on a null hypersurface [64, 51, 65, 66], the equivalent of the Gibbons-Hawking-
York term. The discrepancy between the trace of the Weingarten map and the divergence
of the normal may look unfamiliar, but it would occur also in the timelike case if the normal
τ is not of unit-norm off the hypersurface: K = ∇µτ

µ + 1
2
∂ττ

2, where Kµν := qρµ∇ρτν .
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Second, an alternative covariant construction of the Weingarten map can be given
in terms of the ‘half-projector’ Πµ

ν := γνµ − nµlν , defining W̃µ
ν := Πµ

ρ∇ρl
ν . This tensor

is rigging-vector dependent, but not its pull-back on the hypersurface. This pull-back is
the definition used in [39], and coincides with (2.2.15). The trace also coincides with
(2.2.20), namely W̃µ

µ = W.

2.2.1 Foliations
The volume form εN is not class-III invariant, and depends on the full spacetime

metric determinant
√−g. On non-degenerate hypersurfaces choosing a unit-norm normal

makes the volume form depend only on the determinant of the induced metric. The
unit-norm option does not exist in the null case, but one can achieve a similar result
introducing a 2 + 1 foliation of N . The foliation can be arbitrary, provided that its leaves
are spacelike. We take it to be defined by the level sets of some scalar function λ, and
denote xa = (λ, xA) the coordinates adapted to it.

Note that if we take this choice together with the foliation defined by Φ, we obtain
spacetime a coordinate system (Φ, λ, xA) adapted to a 2+2 foliation of spacetime (see
e.g. [67]). Our choice of letters for these coordinates is meant to preserve generality of
the formalism with respect to common applications. For example, to make the link the
Schwarzschild metric in retarded Bondi coordinates we would take (λ, Φ) = (u, r − 2M)

and N is the white hole horizon, or using advanced time instead (λ, Φ) = (v, 2M − r)
and N is the black hole horizon. We can also keep assuming lµ future pointing namely
gΦλ < 0 without loss of generality. In the first case this leads to gur < 0, in the second
case to gvr > 0. Or if N is a null cone in Minkowski in a doubly-null foliation, we can
identify Φ = u := t− r and λ = v := t+ r. Since λ is a (null) time, we will refer to ∂λ as
a time derivative, and use a dot to indicate it.

In these coordinates,
√−g = − 1

gΦλ
√
γ, (2.2.21)

where γ is the determinant of the spacelike metric γAB on the 2d leaves. Hence,

εN =

√
γ

lλ
dλd2x. (2.2.22)

We see that it is a completely intrinsic quantity, but it is still not class-III invariant and
contains more information than the 2d area form γ: it depends also on the extent of l via
lλ. If we now choose f = −1/gΦλ, we obtain lλ = 1 and

εN =
√
γdλd2x. (2.2.23)

2.2 Null hypersurfaces 25



Notice that λ does not need to be a parameter along the null geodesics. In general after
making these choices,

la = (1,−bA), gab =

(
γABb

AbB γABb
B

γAB

)
, (2.2.24)

and the vector bA acts as a shift vector for the 2+1 foliation defined by λ. If we partially
fix the coordinate gauge requiring that xA are conserved along the generators, then we are
setting the shift vector to zero, and la = (1, 0, 0). In terms of the spacetime metric, this
partial gauge-fixing reads gΦA N

= 0. We refer to it as partial Bondi gauge, as in [68, 69].
The foliation-dependent choice f = −1/gΦλ was referred to as ‘canonical’ normalization
in [66], for its analogy with the ADM spacelike case, since 1/gΦλ plays the role of lapse in
the 3 + 1 decomposition with null slices [70].

The simplification (2.2.23) gives to the volume form a similar structure to the one
of non-degenerate hypersurfaces (albeit in terms of a codimension-2 determinant), and it
is often used in the literature, e.g. [53]. It is valid only in the foliation chosen, but in the
partial Bondi gauge it remains valid for any new foliation obtained by a super-translation
λ′ = λ+ T (xA).

A common choice of 2 + 1 foliation is the one induced by the intersections of N with
a spacelike foliation. In this case the cross-sections of N provide the boundary ∂Σ of each
3d spacelike leaf Σ. Let us denote by τ the unit-norm normal to the spacelike foliation,
and parametrize the scalar product as follows,

l · τ N= − 1√
2
e−β̂. (2.2.25)

The overall minus sign is due to the fact that both vectors are future pointing. The
quantity β̂ has no geometric meaning per se, since it is not class-III invariant. It can be
used to measure the change of geometric tilt between N and Σ only if l is kept fixed. The
unit-norm normal to the cross-section within TΣ is

r̂µ
N
= ±

√
2eβ̂qµν l

ν , qµν := gµν + τµτν , (2.2.26)

where the sign is plus if N is the outgoing null hypersurface from the boundary of Σ, and
minus if it is the incoming one. It can be used to define a rigging vector adapted to ∂Σ,
which is given by

n =
1√
2

(eβ̂τ ∓ e−β̂ r̂). (2.2.27)

Now (l, n) and (τ, r̂) provide two possible bases for the timelike plane normal to ∂Σ.
This change of basis is used to determine the corner terms required in the action by the
variational principle.
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2.2.2 Affine coordinates
The fact that a null hypersurface is ruled by null geodesics endows it with a preferred

class of foliations, in which λ is a parameter along the geodesics, lµ∂µλ = 1. To use this
parameter as one of the coordinates, we fix an initial cross-section of N , say at λ = 0,
define angular coordinates xA there and then Lie-drag them along N . This defines a
coordinate system with vanishing shift vector,

la = (1, 0, 0), gab =

(
0 0

γAB

)
. (2.2.28)

These coordinates satisfy the partial Bondi gauge. We have lµ = (gλΦ, 0, 0, 0) and gΦλ =

1/gΦλ, therefore this choice of tangent vector corresponds to the ‘canonical normalization’
for f . This is an example of a situation in which f is metric-dependent. We can complete
this partial gauge fixing on N with a fourth condition, for instance redefining Φ so that
gλΦ

N
= −1. The metric now satisfies

gλλ = O(Φ), gΦλ = −1 +O(Φ), gλA = O(Φ), (2.2.29)

and it is fully gauge-fixed on N .
The coordinate system can be further specialized if we require the parameter to be

affine, namely

lo :=
d

dλ
, lµo∇µl

ν
o
N
= 0. (2.2.30)

This condition fixes the first-order extension of the metric component gλλ so that ∂Φgλλ
N
=

2∂λgΦλ.12 Since one can always choose the adapted coordinate Φ such that gΦλ = −1+O(Φ),
in that gauge we have gλλ = gΦΦ = O(Φ2).13 At this point,

gλλ = O(Φ2), gΦλ = −1 +O(Φ), gλA = O(Φ), (2.2.31)

and the rest of the metric is arbitrary. The condition of affinity can always be imposed
via gauge-fixing, but we see that it is not a characteristic of the hypersurface coordinates
alone, since it involves the first-order extension of the metric.

In the affine coordinate system, any normal vector in the equivalence class satisfies

lµ
N
= flµo (2.2.32)

12This follows from Γµλλ
N
= 0, which by invertibility of the metric is equivalent to 2∂λgµλ − ∂µgλλ N

= 0.
This is identically satisfied by (2.2.28) for µ = (λ,A), and thus reduces to the single equation given
in the text.

13Notice that this would be a ‘generalized’ diffeomorphism, not invertible at the hypersurface, similar to
how going from static Schwarzschild coordinates to Eddington-Finkelstein is singular at the horizon.
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and
k = lµ∂µ ln f. (2.2.33)

Hence it is affine iff f is chosen constant in λ, namely £lf = 0. Furthermore since
∂Φg

ΦΦ N
= 0, any extension of l with v · l N

= 0 satisfies ∂nl2
N
= 0, namely it is null at

first-order off the hypersurface. We also notice that in affine coordinates k̄ = 0.
This coordinate system can be extended to a neighbourhood of N as follows (see e.g.

[45]). We shoot geodesics off N , and Lie drag xa along them. Namely, we have

nµo =
∂

∂Φ
, nµo∇µn

ν
o = knon

ν
o , £nox

a = 0. (2.2.34)

We can then completely fix the bulk coordinate gauge freedom if we require that (i) no

is null everywhere, (ii) Φ is affine (hence kno = 0), and (iii) it is the gradient of the
foliation of constant λ on N , namely no

N
= −dλ. The last condition in particular means

that no gives a choice of rigging vector for lo adapted to the λ foliation. In terms of
metric components, (i) fixes gΦΦ = 0, then (ii) requires Γ µ

ΦΦ = 0, which in turns implies
∂ΦgΦµ = 0. Finally, (iii) fixes gΦµ

N
= (−1, 0, 0, 0). The resulting coordinates (λ, Φ, xA) are

defined in a caustic-free open neighbourhood of N , in which the metric reads

gµν =

 Φ2F −1 ΦPA

0 0

γAB

 , gµν =

 0 −1 0

−Φ2(F − P 2) ΦPA

γAB

 , (2.2.35)

where F, PA and γAB are arbitrary metric coefficients. We stress that what makes λ an
affine parameter on N is not so much gλΦ = −1 but gλλ = O(Φ2). This coordinate system
can always be reached, and if one restricts the residual diffeomorphisms to preserve it, the
whole extension of ξ is fixed. On the other hand, if one relaxes it and requires only the
minimal conditions (2.2.31), only the first order extension ξ̂Φ is fixed, whereas ξ̂λ and ξ̂A

remain arbitrary. In any case, charges and fluxes dont depend on these two extensions
that can be kept arbitrary.

We can now choose an extension of l such that

lµ = flµo (2.2.36)

everywhere in the chart, and not only at N . This is achieved taking v = ΦFdλ+ PAdx
A.

It satisfies l · v N
= 0 hence it is null at first order around N . This extension is not

hypersurface-orthogonal nor null nor geodesic, except at N .
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Summarizing, affine coordinates on N depend on extrinsic properties of the metric,
and give us (2.2.31) and (2.2.33). The normal in these coordinates is given by (2.2.32),
and it is in general not null at first order, but this can be easily achieved choosing for
instance the extension (2.2.36). Another convenient extension is dl N= 0, which implies
instead v = −df + Φv′, namely l = −d(fΦ) + Φ2v′ is a gradient on N , and v · l N= −∂lf .
Then choosing Φ′ = fΦ or more generally f time independent is also enough to have
v · l N= 0 hence ∂nl2

N
= 0. We see that taking dl N= 0 = £lf is an alternative way to have

∂nl
2 N

= 0 without imposing (2.2.36).
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3Symmetries

In this chapter, the conventional form
of Noether’s theorems is explored, highlight-
ing their implications in various examples.
The chapter begins by introducing Noether’s
theorems and their significance in the study
of symmetries. Through a range of simple
examples, the theorems’ implications are
demonstrated, showcasing their relevance in
understanding the conservation laws associ-
ated with symmetries.

While the chapter draws extensively
from pre-existing literature, some of the cal-
culations are original. However, these calcu-
lations are straightforward enough that we
assume they must already exist somewhere –

it was simply more efficient to perform them
anew rather than search for them. For a
more exhaustive review complete with fur-
ther examples, the reader is directed to [71].

3.1 ACTIVE VS PASSIVE TRANSFOR-
MATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 NOETHER’S THEOREM . . . . . . . . . . . . . . . . . . . 32
3.3 THE CONFORMAL PARTICLE . . . . . . . . . . . 34
3.4 NOETHER’S THEOREM FROM A

HAMILTONIAN PERSPECTIVE . . . . . . . . . . 37
3.5 NOETHER’S THEOREM IN FIELD

THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 NOETHER’S THEOREMS IN GAUGE

THEORIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Active vs passive transformations
Symmetries provide insights into the fundamental properties and behaviors of physical

systems. When discussing symmetries, it is important to distinguish between two funda-
mental ways transformations can affect a system: active and passive transformations. The
distinction between the two is important for our understanding of how symmetries relate
to the dynamics of a system and the viewpoint of an observer. An active transformation
involves physically changing the system itself, while keeping the observer or coordinate
system fixed. In other words, the transformation is directly applied to the system’s
elements. Active transformations represent the real evolution of a physical system under
a symmetry operation. Let us consider an example to illustrate this concept.

Consider a scalar field φ(x). An active transformation is mathematically represented
as:

φ′(x′) = φ(x). (3.1.1)

The transformed field value φ′ at the transformed point x′ is that same as the non-
transformed field value φ at the non-transformed point x – we have kept the coordinates
fixed and transformed the field configuration.
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On the other hand, passive transformations are concerned with changing the observer’s
perspective or coordinate system while keeping the physical system unchanged. In this
case, the transformation affects the way we describe the system rather than the system
itself. This is a transformation of the coordinates only, it neither moves points nor affects
the value of the field. An enlightening example showing the relationship between active
and passive transformations is given in Section 2.2.4 of [72]. For a discussion on importance
of invariance under active diffeomorphisms for GR, see also Sections 2.2.5–2.3.2.

When dealing with diffeomorphisms, active and passive transformation perspectives
are mutually interchangeable. However, the passive approach may not be universally
applicable, as not every transformation can be represented by a coordinate change. This
limitation will be demonstrated through the example of the conformal particle Lagrangian
in Section 3.3. Another significant difference between active and passive transformations
should be noted: while passive transformations affect coordinate changes and thereby
influence all quantities defined on spacetime, active transformations may only apply
to dynamical fields. In physical theories where background structures are present, it
is crucial to ensure these structures remain constant while only the dynamical fields
transform. This necessity becomes particularly relevant in the context of gravitational
phase space, which we will study in depth in Chapters 4 and onward. Understanding
the suptleties between active and passive transformations enhances our understanding of
symmetry-related conservation laws. With this idea, in subsequent sections, employing
the active transformation perspective we will explain the mathematical framework of
symmetries, and show how Noether’s theorem enriches our grasp of the dynamics.

3.2 Noether’s theorem
Noether’s theorem [73] has far-reaching implications in physics, providing deep

insights into the fundamental conservation laws that govern various physical phenomena.
It plays a crucial role in understanding the underlying structure of physical theories
and has been successfully applied in various areas of physics, from classical mechanics
to quantum field theory and beyond. By revealing the intimate connection between
symmetries and conservation laws, Noether’s theorem has become a fundamental tool
for deriving and understanding the conservation principles inherent in physical theories,
offering a systematic way to link symmetries to measurable quantities that remain constant
throughout a system’s evolution.
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To formulate the theorem, it is important to distinguish two types of variations. The
first is a concept of an action symmetry. To illustrate this concept, let us consider a
simple example of a free particle described by the action:

S[q(t)] =

∫
dt
q̇2

2
(3.2.1)

This action is clearly invariant under translations, as S[q(t) + q0] = S[q(t)] for any
constant q0. This is one example of an action symmetry. In a more general setting, a
symmetry variation is defined by a function δεq, in which a transformation of the trajectory
from q(t) to q(t) + δεq(t) is encoded, keeping the action invariant up to a boundary term

δS[q, δεq] = S[q + δεq]− S[q] =

∫
dY. (3.2.2)

This equation is to be understood as an equation for δεq(t). These functions can be used
to simplify the EL equations, and if, for a system with n degrees of freedom, we can find
2n functions δεq(t) satisfying this equation for a given action, then we have effectively
solved the equations of motion for the system.1 An important aspect of action symmetries
is that they hold without using the EL equation, i.e. (3.2.2) is true for any q(t). This
statement might seem trivial now but it will be important later.

On the other hand, on-shell variations represent a different restriction of a general
action variation. Here, the fields q(t) are constrained to satisfy the Euler-Lagrange
equations, while the variations δq are arbitrary. The variation of the action can be
expressed as:

δS[q, δq] =

∫
dt

(
∂L

∂q
δq +

δL

δq̇
δq̇

)
(3.2.3)

=

∫
dt

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δq +

∫
dt
d

dt

(
∂L

∂q̇
δq

)
(3.2.4)

=̂

∫
d

(
∂L

∂q̇
δq

)
=: δS[q̄, δq], (3.2.5)

This equation holds for any variation δq, but in the last line the fields q(t) are restricted so
that the bulk term vanishes. We emphasise this by introducing notation q̄ to denote the
solutions of the Euler-Lagrange equations. This (redundant) notation will be used only in
this chapter, in the remainder we will use the usual =̂ for equalities holding on-shell of
the equations of motion.

1The transformed equations after applying these symmetries will often have fewer variables and
derivatives, making the system more manageable to solve. In some cases, these transformed equations
can be fully solved algebraically, leading to explicit solutions in terms of constants of motion. In this
case the system is said to be completely integrable.
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Both symmetry variations (3.2.2) and on-shell variations (3.2.5) are special cases of
the variation of the action which, in its general form, is given by (3.2.3). The combination
of these two types of variations leads to Noether’s theorem. We have seen that both give
rise to boundary terms when acting on the action, but for different reasons. Noether’s
symmetry δS[q, δεq] arises due to the equations satisfied by δq, while on-shell variation
δS[q̄, δq] takes its form thanks to the equations satisfied by q. When both q and δq

are restricted, Noether’s theorem comes into play, revealing a quantity Q that remains
constant along the trajectory. Namely, setting q = q̄ in (3.2.2) and δq = δεq in (3.2.3)
the two equations are the same and subtracting them we obtain the conservation law

d

dt
Q =̂ 0, Q :=

∂L

∂q̇
δεq − Y (3.2.6)

This is Noether’s first theorem: given a symmetry, the charge Q defined above is conserved
on-shell.

3.3 The conformal particle
Consider a particle in an inverse quadratic potential

S[q] =

∫
dt

(
q̇2

2
− 1

q2

)
(3.3.1)

The equation of motion is q̈ = 2
q3 . An interesting property of this action is that is has

enough symmetry so that we can solve its equation of motion without ever integrating
it. One of the symmetries of the action is the time-translation symmetry, which gives
rise to the conservation of energy as a Noether charge. To demonstrate this, we consider
an infinitesimal time translation t → t′ = t + ε, where ε is a small parameter. Since
q′(t′) = q(t),

δεq(t) = q(t+ ε)− q(t) = −εq̇, (3.3.2)

and the action changes by a boundary term as follows:

δεq̇(t) = q̇(t+ ε)− q̇(t) = −εq̈ (3.3.3)

δS[q, δεq] = −
∫
dt

(
q̇δεq̇ +

2

q3
δεq

)
= −

∫
dt
(
εq̇q̈ + 2εq−3q̇

)
= −ε

∫
dt
d

dt

(
1

2
q̇2 − 1

q2

)
(3.3.4)

δS[q̄, δq] =

∫
d (q̇δq) (3.3.5)

Q = − 1

q2
− q̇2 +

1

2
q̇2 =: −E. (3.3.6)
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Notice that the symmetry is represented by the function δεq(t) = εq̇(t), which depends
on time t at just one instance. This is where our active vs passive discussion becomes
important. Essentially, in the active approach, we are converting time translation into
a change in the function q(t). We will adopt this perspective where symmetries are
seen as alterations in the fields rather than changes in the coordinates. The change
δεq(t) = q′(t)− q(t) is simply the difference between two functions evaluated at the same
time t. This implies that δε

(
d
dt
q(t)

)
= d

dt
δεq(t) and ensures that the variations of time

derivatives are treated consistently.
The conservation equation Ė =̂ 0 provides an algebraic relationship between q and

q̇. Furthermore, the action of the conformal particle is invariant under dilatations of the
form:

t→ t′ = λt, q → q′(t′) =
√
λq(t). (3.3.7)

The infinitesimal version reads

q′ ((1 + ε)t) =
(

1 +
ε

2

)
q(t)⇒ δεq(t) =

ε

2
q − εtq̇, (3.3.8)

with λ = 1 + ε, ε� 1. The velocity transforms as δεq̇(t) = d
dt
δεq(t) = −εq̇ − εtq̈ + ε

2
q̇, and

the variation of the action is

δS[q, δεq] =

∫
dt

(
q̇δεq̇ +

2

q3
δεq

)
(3.3.9)

= ε

∫
dt

(
−tq̈q̇ − 1

2
q̇2 +−2t

q̇

q3
+

1

q2

)
(3.3.10)

= ε

∫
dt

[
d

dt

(
t

q2
− tq̇2

2

)]
, (3.3.11)

and the conserved charge is

Q =
t

q2
− tq̇2

2
− q̇(−tq̇ +

1

2
q) = t

(
q̇2

2
+

1

q2

)
− qq̇

2
=: D. (3.3.12)

Now we have another algebraic equation for q and q̇. From the two equations we can
obtain q as a function of time in terms of integration constants E and D without ever
integrating the equation of motion.2 Indeed, the conservation laws obtained through
Noether’s theorem not only provide profound insights into the principles governing a
system but also offer practical advantages in terms of simplifying the analysis of that
system. Notice that, since the system is one-dimensional, at least one of the conserved
charges must be an explicit function of time – otherwise the system would be static,

2To spell this out, D = tE − qq̇
2 and E = q̇2

2 + 1
q2 lead to q(t) = ±

√
1+2(tE−D)2

E . One can explicitly

confirm that d2

dt2

√
1+2(tE−D)2

E = 2
q3 , i.e. q(t) satisfies the EL equation.
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essentially lacking dynamics. The presence of at least one time-dependent conserved
charge ensures that the system has some evolving, non-trivial behavior.

Since it is not at all obvious, it’s worthwhile to check that this charge is indeed
conserved

d

dt
D =

(
q̇2

2
+

1

q2

)
+ t

(
q̇q̈ − 2

q3
q̇

)
− qq̈

2
− q̇2

2
(3.3.13)

=̂

(
q̇2

2
+

1

q2

)
+ t (q̇q̈ − q̈q̇)− 2

q2
− q̇2

2
= 0. (3.3.14)

As a matter of fact, the absence of dimensional constants in the conformal particle
action, given by (3.3.1), implies the existence of an even larger symmetry known as
projective or Möbius invariance. Under this transformation, both time and the trajectory
undergo a Möbius transformation, defined by

t→ t′ =
at+ b

ct+ d
, q(t)→ q′(t′) = (ct+ d)−1q(t), 3 (3.3.15)

where ad− bc = 1, and a, b, c, d are constants. To demonstrate the invariance of the action
under this transformation, we can perform an expansion around a = 1 + εa, b = εb, c = εc,
and d = 1− εa as follows

t′ = t+ (εb + t(2εa − εct)) (3.3.16)

q′(t) = q′(t′)− q̇(t)
(
εb + 2εat− εct2

)
(3.3.17)

= (1 + εa − εct)q(t)− q̇(t)
(
εb + 2εat− εct2

)
(3.3.18)

δabcq(t) = (εa − εct)q(t)− (εb + (2εa − εct)t) q̇(t) (3.3.19)

δabcq̇(t) = −εcq(t)− (εa − εct)q̇(t)− (εb + (2εa − εct)t) q̈(t) (3.3.20)

(3.3.21)

The action transforms as

δS[q, δabcq] =

∫
dt

(
q̇δabcq̇ +

2

q3
δabcq

)
(3.3.22)

=

∫
dt
[
− εcqq̇ − (εa − εct)q̇2 − (εb + (2εa − εct)t) q̇q̈ (3.3.23)

+ 2(εa − εct)
1

q2
− 2 (εb + (2εa − εct)t)

q̇

q3

]
(3.3.24)∫

d

[
−1

2
εcq

2 + (εb + (2εa − εct)t)
(
− q̇

2

2
+

1

q2

)]
. (3.3.25)

3Notice that this transformation is not a diffeomorphism and cannot be implemented from the passive
point of view. If we tried
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Now we can calculate the conserved charge

Qabc =− 1

2
εcq

2 + (εb + (2εa − εct)t)
(
− q̇

2

2
+

1

q2

)
− Iabcθ (3.3.26)

=− 1

2
εcq

2 + (εb + (2εa − εct)t)
(
− q̇

2

2
+

1

q2

)
(3.3.27)

− (εa − εct)qq̇ + (εb + (2εa − εct)t)q̇2 (3.3.28)

=− 1

2
εcq

2 + (εb + (2εa − εct)t)E − (εa − εct)qq̇. (3.3.29)

It is conserved for any choice of εa, εb, εc

Q̇abc =− εcqq̇ + 2(εa − εct)E + εcqq̇ − (εa − εct)(q̇2 + qq̈) (3.3.30)

=̂ (εa − εct)
(

2E − q̇2 − 2

q2

)
= 0. (3.3.31)

Three interesting choices4 are obtained by fixing the following parameters

• εa = 0 = εc, εb = ε → Qε/ε = E

• εb = 0 = εc, εa = 2ε → Qε/ε = D

• εa = 0 = εb, εb = ε → Qε/ε = −1
2
q2 − t2E + tqq̇ =: K

We will discuss their geometric interpretation in Section 3.4 when we introduce their
algebra.

3.4 Noether’s theorem from a Hamiltonian
perspective

The distinction between the Lagrangian and Hamiltonian approaches to mechanics
often brings to mind the dichotomy between geometric and algebraic perspectives. The
Lagrangian formalism, with its emphasis on action integrals, is inherently geometric.
It provides a holistic view of the system’s dynamics and is often more intuitive when
considering physical ‘stories’ like the path a particle takes under the influence of a force.
On the other hand, the Hamiltonian formulation is more algebraic, dealing with phase
space, Poisson brackets, and symplectic structures. This approach offers a high degree
of mathematical elegance and tractability, especially when it comes to transformations
and symmetries. However, this elegance sometimes comes at the cost of obscuring the
physical intuition that may be more transparent in the Lagrangian picture.
4Of course, given that this theory has only 2 integration constants, the three charges are not independent,

they are related by
2KE + 2D2 = −1. (3.3.32)
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With that said, let us delve into how Noether’s theorem extends to the Hamiltonian
framework. One could argue that this is the natural setting for the theorem, as the algebraic
richness of the Hamiltonian formalism provides a robust platform for understanding
symmetries and conservation laws. To demonstrate this, consider a general Hamiltonian
action given by:

S[p, q] =

∫
dt(pq̇ −H(p, q)) (3.4.1)

where p and q are the generalized coordinates and momenta, respectively, and H(p, q) is
the Hamiltonian function.

The equations of motion for this Hamiltonian action are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (3.4.2)

which can be written using the Poisson bracket notation as

q̇ = {q,H}, ṗ = {p,H}. (3.4.3)

The time derivative of any phase space function can be expressed in terms of the bracket
as

df(p, q, t)

dt
= {f,H}+

∂f

∂t
. (3.4.4)

Now, suppose we have a conserved charge Q(p, q, t), meaning that

dQ(p, q, t)

dt
= 0⇒ {Q,H} = −∂Q

∂t
. (3.4.5)

We want to show that this conserved charge generates a symmetry of the action. Let us
define the infinitesimal transformation δεq and δεp as follows

δεq = {q, εQ} = ε
∂Q

∂p
, δεp = {p, εQ} = −ε∂Q

∂q
(3.4.6)

where ε is an infinitesimal parameter.
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We can now calculate the variation of the action (3.4.1) under this transformation

δεS =

∫
dt

[
pδεq̇ + q̇δεp−

∂H

∂q
δεq −

∂H

∂p
δεp

]
(3.4.7)

=

∫
εdt

[
p
d

dt
δεq −

∂Q

∂q
q̇ − ∂H

∂q

∂Q

∂p
+
∂H

∂p

∂Q

∂q

]
(3.4.8)

=

∫
εdt

[
d

dt
(pδεq)−

∂Q

∂p
ṗ− ∂Q

∂q
q̇ + {Q,H}

]
(3.4.9)

=

∫
εdt

[
d

dt
(pδεq −Q) +

∂Q

∂t
+ {Q,H}

]
(3.4.10)

=

∫
εd (pδεq −Q) . (3.4.11)

Thanks to (3.4.5), the variation is a total derivative and hence a symmetry. Furthermore,
using (3.2.6) we can identify the Noether charge as pδεq − pδεq +Q = Q.

Going back to the algebraic properties, suppose now that we have two conserved
charges Q1 and Q2. Then it follows from Jacobi identity that the commutator {Q1, Q2}
is also conserved:

d

dt
{Q1, Q2} =

{
{Q1, Q2}, H

}
+
∂

∂t
{Q1, Q2} (3.4.12)

= −
{
{H,Q1]}, Q2

}
−
{
{Q2, H}, Q1

}
+
∂

∂t
{Q1, Q2} (3.4.13)

= −
{ ∂
∂t
Q1, Q2

}
+
{ ∂
∂t
Q2, Q1

}
+
∂

∂t
{Q1, Q2} = 0. (3.4.14)

Thus {Q1, Q2} is also a conserved charge, and as a consequence generates another symmetry.
Now, {Q1, Q2}may be zero, may be a new charge Q3, or it may be proportional to Q1 or Q2.
In any case, the conclusion is that a complete set of conserved charges Qa = Q1, Q2, Q3, ...

satisfies a Lie algebra
{Qa, Qb} = f c

ab Qc. (3.4.15)

for some structure constants f c
ab . This algebra is especially interesting for the quantum

theory. We now go back to the conformal particle, as an explicit example.

The conformal particle in Hamiltonian form
Applying these concepts to the conformal particle, we reexamine the system from a

Hamiltonian perspective. The conformal particle action in Hamiltonian form is given by:

S =

∫ (
pq̇ −

(
p2

2
+

1

q2

))
dt. (3.4.16)
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We identified the conserved charges as

E =
p2

2
+

1

q2
= H, (3.4.17)

D = tE − 1

2
pq, and (3.4.18)

K = t2E − 2tD − 1

2
q2. (3.4.19)

Under the Poisson bracket, these charges satisfy the sl(2,R) Lie algebra:

{D,H} = H, (3.4.20)

{D,K} = −K, (3.4.21)

{H,K} = 2D. (3.4.22)

This Lie algebraic structure is crucial for understanding the AdS2/CFT1 correspon-
dence [74], where these conserved charges are related to symmetries of the dual gravi-
tational system. To give these charges a geometric interpretation, let us consider the
projective action P of sl(2,R) on the Minkowski plane. An arbitrary A ∈ sl(2,R) acts on
a Minkowski vector X = (t, x) as

P (A)X = P

([
a b

c d

])[
t

x

]
=

1

ct+ d

[
at+ b

x

]
. (3.4.23)

We have seen in Section 3.3 that our charges correspond to the following parameter
choices

• H: a = 1 = d, c = 0, b ∈ R

• W: b = 0 = c, d = 1
a
, a ∈ R

• D: a = 1 = d, b = 0, c ∈ R

We have already interpreted H = E as the energy, and indeed the transformation

P

([
1 b

0 1

])[
t

x

]
=

[
t+ b

x

]
. (3.4.24)

is a time translation by b. The action of the dilatation charge D is

P

([
a 0

0 1
a

])[
t

x

]
=

[
a2t

ax

]
. (3.4.25)
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the dilatation of the Minkowski plane, no surprises there. The third charge generates a
more complicated transformation. Its action is given by

P

([
1 0

c 1

])[
t

x

]
=

1

ct+ 1

[
t

x

]
. (3.4.26)

and is usually referred to as a special conformal transformation. This is a composition of
an inversion xµ → xµ/x2 =: yµ, a translation yµ → yµ − cµ =: zµ, and another inversion
zµ → zµ/z2 =: x′µ. A special conformal transformation of a coordinate grid in a plane is
shown in Figure 3.1.

Fig. 3.1.: Left panel: A coordinate grid prior to a special conformal transformation.
Right panel: The same grid after a special conformal transformation.
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3.5 Noether’s theorem in field theory
In field theory, Noether’s theorem extends naturally from its particle mechanics

counterpart. Let us consider a free scalar field with the action given by

S[φ(x)] =
1

2

∫
d4x ∂µφ∂

µφ. (3.5.1)

Just like the free particle, this action in invariant under constant translations φ(x) →
φ(x) + φ0, indeed, S[φ(x) + φ0] = S[φ(x)]. The symmetry now acts on the field φ(x).

As in particle mechanics, the set of symmetries is defined by all infinitesimal functions
δξφ(x) such that, for arbitrary field configurations φ(x), the variation of the action is
expressed as

S[φ(x), δξφ(x)] =

∫ √
|g|dnx∂µY µ

ξ (3.5.2)

where
√
|g|dn is the volume form5 and Y µ

ξ is a vector field on spacetime. The derivation
of Noether’s theorem in field theory follows the same path as in particle mechanics.
Field theories are described by actions of the form S[φ(x)] =

∫ √
|g|dnxL(φ, ∂µφ) =:

∫
L,

and the corresponding Euler-Lagrange equations are given by

E(φ(x)) ≡ ∂µ

(
∂L

∂φ,µ

)
− ∂L

∂φ
= 0 . (3.5.3)

Here we have absorbed the volume form in the defition of the Lagrangian which we will be
treating as a top-form from now on: L = L

√
|g|dnx. The on-shell variation is computed

as

δS[φ, δφ] =

∫ (
∂L

∂φ
δφ+

∂L

∂φ,µ
δφ,µ

)
=

∫
Eδφ+

∫
∂µ

(
∂L

∂φ,µ
δφ

)
=̂

∫
dθ = δS[φ̄, δφ], (3.5.4)

where in the last line we have used that the field φ̄ satisfies its Euler-Lagrange equations.
Again the same logic as in the finite-dimensional case: (3.5.2) is valid for any φ, in

particular for φ̄, and (3.5.4) is valid for any δφ, in particular for δξφ. Thus, inserting φ̄
into (3.5.2) and δξφ into (3.5.4) the left hand sides are equal. Subtracting both equations
we obtain the conserved current equation

∂µj
µ
ξ =̂ 0, jµξ := Iξθ

µ − Y µ
ξ , θµ =

∂L
∂φ,µ

δφ. (3.5.5)

5In Chapter 2 we denoted the volume form by ε. We use the alternative notation
√
|g|dnx in present

chapter only, not to risk confusion with the infinitesimal parameter ε.
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This is Noether’s first theorem in field theory.

3.6 Noether’s theorems in gauge theories
To understand the application of Noether’s theorem to gauge theories, let us start by

considering the Maxwell action with a source term

S = −
∫
d4x

(
1

4
F µνFµν + JµAµ

)
, Fµν := 2∂[µAν]. (3.6.1)

Its variation reads

δS[Aµ, δAµ] = −
∫ [

d4xF µν∂µδAν + JµδAµ
]

(3.6.2)

=

∫
d4x [EµδAν − ∂µ(F µνδAν)] (3.6.3)

The field equations are given by Eµ := ∂νF
µν − Jµ =̂ 0. The action is invariant under

gauge transformations of form
δϕAµ = ∂µϕ. (3.6.4)

Choosing a ϕ with compact support, combining (3.6.4) with (3.6.3) yields the off-shell
identity

0 =

∫
d4xEµ∂µϕ = −

∫
d4x∂µE

µϕ. (3.6.5)

This is valid for any ϕ thus we have found an off-shell realtion between the field equations:

∂µE
µ = 0. (3.6.6)

This is a general result that is contained in Noether’s second theorem – existence
of gauge symmetries implies mutual dependence of the EL equations. The general
proof follows the procedure above: An arbitrary variation of a general Lagrangian L is
δL = Eδφ + dθ. Take a gauge transformation by a local function ϕ = ϕ(x). Specialize
to symmetry variation, δϕL = Eδϕφ+ Iϕdθ. Take compactly supported ϕ, δϕL = Eδϕφ.
Since this is a symmetry,

Eδϕφ = 0. (3.6.7)

The next question one may ask is what happens if ϕ is supported at the boundary?
A common understanding is that Noether charges associated with gauge symmetries are
trivial, given that gauge transformations don’t affect the physics of the theory. However,
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Noether’s first theorem is valid for any symmetry, not just global ones. The conserved
current6 associated to (3.6.4) is given by

jµϕ = −F µν∂νϕ. (3.6.8)

Haven’t we just found the Noether current of a gauge symmetry that has no reason
to vanish in general? Yes, we have. It seems a bit strange as we have actually found
infinitely many conserved currents for infinitely many arbitrary functions ϕ, but these
are all real conserved currents. As a matter of fact, the vanishing of Noether charges for
local symmetries holds only in the absence of boundaries. When boundaries are present,
non-trivial ‘gauge’ transformations at the boundaries can lead to non-trivial Noether
charges associated with ‘gauge’ symmetries.

When local transformations are non-trivial on the boundary, the Noether charges
become surface integrals over the boundary of space, rather than bulk integrals. This
is a consequence of both first and second Noether theorem [73]. In the literature this is
often regarded to as the second theorem since it is included in her general expression for
the invariance of the action under a continuous group, but it is in fact a combination of
the two. These surface charges are important in understanding boundary and infrared
effects in gauge theories and have significant implications in the study of observables
and symmetries in general relativity. Recognizing the significance of surface charges
and non-trivial gauge transformations at the boundary is essential for a comprehensive
understanding of gauge theories and gravity in the presence of boundaries.

Let us go back to the Maxwell example. Using the EL equations, the current

jµϕ = −∂ν(F µνϕ) + ∂νF
µνϕ =̂ − ∂ν(F µνϕ), (3.6.9)

is indeed a boundary term. While the current itself is not trivial when ϕ 6= 0 at the
boundary, its conservation law is – it is a consequence of symmetry ∂µ∂ν(F µνϕ) = 0.

Assuming trivial spacetime cohomology, for any conserved current ∂µjµ =̂ 0, one can
find an antisymmetric 2-form qµν such that jµ =̂ ∂νq

µν . The non-trivial result of Noether
for gauge theories is that this 2-form q is locally constructed out of the fields φ and the
gauge field ϕ.7 To prove this, let us first make a few observations:

(i) jµϕ itself is locally constructed out of fields φ and ϕ,

(ii) jµϕ = 0 whenever ϕ = 0 and ∂µϕ = 0,

(iii) jµϕ + jµϕ′ = jµϕ+ϕ′ .

6See [75] for a more in-depth review focusing on electromagnetic Noether charges (and more).
7For non-triviality of the statement it is important for q to be locally constructed out of the fields. In

general when ∂µjµ = 0 and ∂µqµν = jν , one can always find q as the integral qµν =
∫ x1

x0
dx[µjν] along

an arbitrary path connecting x0 and x1. Deforming the path will change q by an exact form.
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All of them follow from the construction of jµ by performing an infinitesimal gauge
transformation on the fields (it must be linear in ϕ) and integrating by parts.

Now consider a volume V whose boundary consists in two parts ∂V = Σ1 ∪Σ2 such
that ∂Σ1 = S = ∂Σ2.

0 =̂

∫
V

εV∇µj
µ =

∫
Σ1

εΣ∇µj
µ +

∫
Σ2

εΣ∇µj
µ (3.6.10)

Choosing a ϕ such that ϕ(Σ1) = 0 and ∂µϕ(Σ2) = 0,

∫
Σ1

εΣ∇µj
µ =̂ −

∫
Σ2

εΣ∇µj
µ =̂

∫
S

qϕ =̂ 0, if ϕ = 0 = ∂µϕ on S (3.6.11)

Since (iii) implies qµνϕ + qµνϕ′ = qµνϕ+ϕ′ we have shown that∫
S

qϕ =̂

∫
S

qϕ′ , if ϕ S
= ϕ′ and ∂µϕ

S
= ∂µϕ

′. (3.6.12)

Looking at the middle equality of (3.6.11), because q depends locally on ϕ, we can
replace ϕ on the RHS by ϕ′ such that ϕ′ S= ϕ and ∂µϕ′

S
= ∂µϕ, and ϕ′ = 0 outside a small

neighbourhood of S. Now the RHS only depends on field variables arbitrarily close to
S because it vanishes whenever ϕ′ and its derivative vanish, and therefore the LHS only
depends on field variables arbitrarily close to S, i.e. q is locally constructed out of the
fields.

Let us illustrate the results of this section on the example of the Einstein-Hilbert
Lagrangian

LEH[gµν ] = Rε, ε =
√−gd4x, (3.6.13)

which is invariant under general diffeomorphisms δξgµν = Lξgµν = 2∇(µξν), δξLEH =

diξL =: ε∇µY
µ
ξ .

δLEH =

[(
Rµν +

1

2
Rgµν

)
δgµν + gµνδR

µν

]
ε (3.6.14)

= (Gµνδgµν +∇µθ
µ) ε, θµ := gµνδR

µν = 2gµ[ρgν]σ∇νδgρσ, (3.6.15)

where we used the Palatini identity

δRµν = 2∇[ρδΓ
ρ
ν]µ. (3.6.16)
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The Noether current is

jµξ = Iξθ
µ − Y µ

ξ = −Rξµ + 4gµ[ρgν]σ∇ν∇(ρξσ) (3.6.17)

= −Rξµ +�ξµ +Rµ
νξ

ν −∇µ∇νξ
ν (3.6.18)

= 2Gµνξν − 2∇ν∇[µξν] (3.6.19)

=̂ 2∇ν∇[νξµ] =: ∇νq
νµ, (3.6.20)

a total divergence of the Komar 2-form q := 1
2
qµνεµνρσdx

ρ ∧ dxσ. If ξ is a Killing vector of
a particular solution Lξgµν = 0, it will satisfy

∇ · ξ = 0, (3.6.21)

�ξµ = −Rνµξ
ν , (3.6.22)

∇µ∇νξρ = Rσ
µνρξσ. (3.6.23)

In that case,
jµξ = Rξµ −�ξµ −Rµ

νξ
ν +∇µ∇νξ

ν =̂ 0, (3.6.24)

This observation implies that the surface over which the charge is integrated can be
reshaped or deformed without altering the overall value of the integral. Coupled with
the fact that q depends locally on ξ and gµν , this is a very powerful property. Take for
example the Kerr metric. It is asymptotically flat and one can use the isometries of the
Minkowski metric at infinity to define conserved charges which will give the Komar mass
and angular momentum for ξ = ∂t or ∂φ. (In)famously, some of these Komar charges
will be off by relative factors of 2. Such discrepancies can be resolved by employing
more intricate constructions of surface charges using the covariant phase space formalism.
Wald’s seminal paper [31] accomplishes this and provides a Noetherian proof of the first
law of black hole thermodynamics. However, there are various ambiguities in defining
these surface charges and which remain a subject of debate, with different authors using
distinct approaches in various contexts. Further details on this matter will be discussed
in the next chapter.
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4Covariant Phase Space

This chapter serves as an in-depth re-
view and pedagogical account of the covari-
ant phase space formalism, which has been
extensively covered in the literature, recently
nicely reviewed in [76]. We start our dis-
course by revisiting calculus on spacetime,
focusing particularly on the de Rham com-
plex. Following that, we extend these ideas
to calculus on field space, thereby provid-
ing a fresh mathematical context for un-
derstanding variations and other constructs
introduced earlier in Chapter 3. We con-
tinue to discuss diffeomorphism invariance
and introduce the anomaly operator. Armed
with this mathematical framework, we pro-
ceed to redefine Noether charges within the
realm of covariant phase space, making con-
nections to familiar concepts and explaining
their utility in a more generalized setting.
The chapter further goes into Hamiltonian

charges, underscoring the intricacies and po-
tential pitfalls that may show up in their
formulation.

While the chapter does not introduce
any original results, it aims to serve as a
comprehensive guide, offering a unified per-
spective on well-established theories. The
presentation tries to bridge the gap between
abstract mathematical structures and their
practical application in theoretical physics,
providing a more nuanced understanding
of symmetries, conservation laws, and their
interplay in the covariant phase space for-
malism.
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The phase space is commonly understood as the space of initial conditions for a
dynamical system, characterized by coordinates q and momenta p. This space, endowed
with Poisson brackets, is typically constructed as a cotangent bundle over some configu-
ration space—the space of q’s (see e.g. [77]). While powerful, this standard formulation
is inherently non-covariant, necessitating the explicit breaking of covariance to establish
such a space. This approach presents challenges when dealing with covariant theories.

To overcome these limitations, the concept of covariant phase space was introduced [27,
28, 32, 33, 34] as the space of all solutions to the field equations of the theory under
consideration. This new formulation obviates the need to single out a specific time
direction, offering a fully covariant description. In this setting, the phase space becomes a
space of entire trajectories rather than just initial conditions. To rigorously develop this
idea, we will explore the essential principles of symplectic geometry. This chapter aims
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to equip the reader with the mathematical tools needed to understand this modern and
covariant concept of phase space.

4.1 Spacetime calculus
For completeness, we start by giving an overview of the usual calculus on spacetime.

We define a one-form as a linear map from the tangent bundle TM to the space of smooth
funcitons C∞(M). The space of all one-forms is dual to the space of vectors and we
denote it T ∗M . A p-form is a linear, antisymmetric map from p copies of the tangent
bundle T pM to the space of smooth functions C∞(M). The space of all p-forms is denoted
Ωp(M,R) =

∧p
T ∗M , where ∧ denotes the antisymmetric (exterior or wedge) product.

Due to antisymmetry, the maximal degree of a form on an n-dimensional manifold is n,
and such forms are called top-forms. We define 0-forms to be functions

∧0
T ∗M = C∞(M).

The space of all forms is called the de Rham complex and is defined as

Ω(M,R) :=
n⊕
p=0

∧p
T ∗M. (4.1.1)

On this space we define three derivatives:

(i) the interior product is defined as contraction of a differential form with a vector
field. For ξ ∈ TM , it is defined as

iξ : Ωp(M,R)→ Ωp−1(M,R) (4.1.2)

iξω(ζ1, ..., ζp−1) = ω(ξ, ζ1, ..., ζp−1) ∀ ζ1, ..., ζp−1 ∈ TM. (4.1.3)

We see from the definition that it decreases the degree of a form by 1. It is a unique
anti-derivation of degree -1 such that for one-forms α,

iξα = ξ · α = ξµαµ, (4.1.4)

where in the last equality we introduced local coordinates (x1, ..., xn), in which
ξ = ξµ∂µ and α = αµdx

µ. For a p-form ω = ωµ1...µpdx
µ1 ∧ ... ∧ dxµn the components

of (4.1.3) are

(iξω)µ1...µp−1 =

p∑
q=1

(−1)q−1ξµων1...νpδ
ν1
µ1
· · · δνqµ · · · δνpµp−1

. (4.1.5)

The interior product satisfies the graded Leibniz rule – for a p-form α and a q-form
β,

iξ(α ∧ β) = iξα ∧ β + (−1)pα ∧ iξβ. (4.1.6)
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It is antisymmetric, iξiζ = −iζiξ, which implies iξiξ = 0.

(ii) the exterior derivative is an anti-derivation of degree 1

d : Ωp(M,R)→ Ωp+1(M,R). (4.1.7)

For 0-forms, f ∈ C∞(M), df is the differential of f . It is nilpotent d2 = 0 and
satisfies the graded Leibniz rule

d(α ∧ β) = iξα ∧ β + (−1)pα ∧ dβ. (4.1.8)

In local coordinates, the exterior derivative of a p-form ω = ωµ1...µpdx
µ1 ∧ ... ∧ dxµn

is given by
dω = ∂µωµ1...µpdx

µ ∧ dxµ1 ∧ ... ∧ dxµn (4.1.9)

(iii) the Lie derivative is a derivation of degree 0 – it does not change the degree of
forms. It is defined by Cartan’s magic formula as the anti-commutator of exterior
derivative and interior product

Lξ = iξd+ diξ. (4.1.10)

We can use this formula to derive the full algebra satisfied by the three derivatives

[Lξ, iξ] = 0 = [Lξ, d], [Lξ, iζ ] = i[ξ,ζ] = [iξ,Lζ ] (4.1.11)

Even though no reference to the metric was made in the definition, the Lie derivative
of any tensor along a vector field can be expressed through the covariant derivatives
of that tensor and vector field.

LξT µ1...µr
ν1...νs

= ξρ
(
∇ρT

µ1...µr
ν1...νs

)
−

(∇ρξ
µ1)T ρ...µrν1...νs

− · · · − (∇ρξ
µr)T µ1...µr−1ρ

ν1...νs
+

(∇ν1ξ
ρ)T µ1...µr

ρ1...νs
+ · · ·+ (∇νsξ

ρ)T µ1...µr
ν1...νs−1ρ

(4.1.12)

The expression for the Lie derivative remains unaffected if we replace the co-
variant derivative ∇µ with any torsion-free connection ∇̃µ, or locally, with the
coordinate-dependent derivative ∂µ. This property illustrates that the Lie derivative
is independent of the metric. However, using the covariant derivative is often more
convenient since it possesses the useful property of commuting with raising and
lowering indices.

In the context of general relativity, the Lie derivative finds crucial applications,
especially in the study of spacetime symmetries where tensors or other geometric
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objects are preserved. A particularly common type of symmetry encountered in the
analysis of spacetimes is the Killing symmetry, or isometry, which implies that the
metric tensor remains unchanged under Lie dragging. The Lie derivative formula
gives the condition that a vector field must satisfy to generate an isometry

Lξgµν = 2∇[µξν] = 0 (4.1.13)

We call the volume form the unique (up to multiplication by a function) top form of the
space time. In local coordinates, it can be expressed in terms of the determinant of the
metric as

ε =
√−gdx1 ∧ · · · ∧ dxn =

√−gdnx = ?1, (4.1.14)

where ? is the Hodge dual mapping p-forms into (n− p)-forms defined as

?ω :=

√−g
(n− p)!ωµ1,...,µpε

µ1,...,µp
ν1,...,νn−p dxν1 ∧ . . . ∧ dxνn−p (4.1.15)

The volume form is naturally integrated over spacetime to give its volume. In general,
a differential p-form can be integrated over a p-dimensional (oriented) manifold. For
example, a one-form is integrated over a curve, a two-form over a surface and so on.

We say a differential form α is closed if its exterior derivative vanishes dα = 0, and it
is exact if it is the exterior derivative of another differential form α = dβ. In other words,
a form is exact if it is in the image of d, and it is closed if it is in the kernel of d. Because
d2 = 0, everty exact form is necessarily closed.

Stokes’ theorem states that the integral of a differential form ω over the boundary
∂M of some orientable manifold M is equal to the integral of its exterior derivative dω
over the whole of M . Mathematically, this can be expressed as:∫

∂M

ω =

∫
M

dω . (4.1.16)

4.2 Field space calculus
The field space Γ is the space of all field configurations and it is assumed to be a

differentiable manifold. On this space we can define a structure analogous to the de Rham
complex from the previous section.

A one-form is a linear map from the tangent bundle TΓ to the space of smooth
functionals F = C∞(Γ ). The space of all one-forms is dual to the space of vectors and
we denote it T ∗Γ . A p-form is a linear, antisymmetric map from p copies of the tangent
bundle T pΓ to the space of smooth functions C∞(Γ ). The space of all p-forms is denoted
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Ωp(Γ, F ) = fp
T ∗M , where f denotes the wedge product.1 0-forms to be functionals

f0
T ∗Γ = F . The space of all forms is called the the variational complex and is defined

as

Ω(Γ, F ) :=
dimΓ⊕
p=0

fp
T ∗Γ (4.2.1)

The three derivatives in this space are defined as follows:

(i) the interior product = field contraction

IX : Ωp(Γ, F )→ Ωp−1(Γ, F ) (4.2.2)

is antisymmetric IXIY = −IY IX ⇒ IXIX = 0.

(ii) the exterior derivative = field variation

δ : Ωp(Γ, F )→ Ωp+1(Γ, F ). (4.2.3)

is nilpotent δ2 = 0

(iii) the field-space Lie derivative

δX = IXδ + δIX . (4.2.4)

Again, the full algebra satisfied by the three derivatives

[δX , IX ] = 0 = [δX , δ], [δX , IY ] = I[X,Y ] = [IX , δY ]. (4.2.5)

The variational complex can be put together with the de Rham complex to form the
variational bicomplex (M,Γ ) consisting of (p, q)-forms which are p-forms in spacetime
and q-forms in field space. The exterior derivative on the bicomplex is δ + d. Now there
are two distinct choices made in the literature:

• the exterior derivative is nilpotent (δ + d)2 = 0, which is equivalent to anti-
commutativity of the two exterior derivatives δd+ dδ = 0

• the two derivatives commute δd = dδ.

Since we will never use the combined exterior derivative and since there is no physical
reason for anti-commutativity of spacetime derivatives and variations, we will take the
second approach. The two will yield the same results, so we can see this as making the
choice with less chances of making sign mistakes.
1To keep the notation clean, when there is no risk of confusion and no need to emphasise it, we will

drop the symbod for field space wedge product and leave it implicit.
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We want to apply this formalism to a physical theory described by the action

S =

∫
L, (4.2.6)

where L is the Lagrangian (d, 0)-form. We have already calculated variations of the action,
for example in (3.2.3), and we have seen that we can always decompose it into a bulk
term that is proportional to the equations of motion and a boundary term

δL[φ] = Eiδφ
i + dθ ≈ dθ. (4.2.7)

Now we have the mathematical foundation to analyse the boundary term. It is a
(d-1,1)-form called the (pre-)symplectic potential current which we integrate to get the
(pre-)symplectic potential. We further define a (d-1,2)-form ω called the (pre-)symplectic
2-form current and its integral over a codimension-1 hypersurface Ω, a (0, 2)-form called
the (pre-)symplectic 2-form

Ω :=

∫
Σ

ω :=

∫
Σ

δθ, (4.2.8)

which is the main ingredient of the formalism as it encodes the dynamics of the physical
system via the Poisson bracket. When being pedantic, we use lowercase letters for the
currents, namely the integrands, and capital letters for the integrated quantities. However,
we will loosely speak of both as the symplectic potential and 2-form, for ease of language.

The symplectic form has three important properties. First, it is closed in field space
δω = 0. This follows directly from the definition (4.2.8) as a variation of θ. Second, it
is non-degenerate. This is why we used the prefix pre- before – to remind us that this
form is possibly degenerate, and the actual phase space is defined by quotienting this
pre-symplectic space by the action of the group of zero modes of the pre-symplectic form.2

Finally, the symplectic form is closed in spacetime on-shell of the EL equations

dω = dδθ = δdθ =̂ δδL = 0. (4.2.9)

This will be important when we study the conservation of charges.

2Since two equivalence class representatives differ by a zero mode, it follows that Ω is a function of class
and, since we eliminated the degeneracy, it is indeed symplectic on the quotient space.
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4.3 Symmetries and charges
In Section 4.1 we used the spacetime Lie derivative to define isometries as the

directions preserving the metric. There is no metric on field space but one can define its
isometries as directions X ∈ TΓ that preserve the symplectic form

δXω = 0. (4.3.1)

Such vector fields X are called symplectomorphisms and they are the symmetries of the
symplectic form in the same sense in which Killing vectors are symmetries of the metric.3

Using the definition of ω and the nilpotency of the variation, this implies (assuming trivial
cohomology on T ∗Γ )

0 = δXω = δIXω = 0 ⇒ IXω := −δhX , (4.3.2)

for some (2,1)-form hX . Integrating on a codimension-1 surface,

IXΩ := −δHX , HX =

∫
Σ

hX . (4.3.3)

A vector fieldX ∈ TΓ satisfying this equation is called the Hamiltonian vector field (HVF),
and the HX is the canonical charge. For trivial cohomology, all symplectomorphisms are
Hamiltonian and vice versa. The symplectic form carries a representation of the charge
algebra via the Poisson bracket

{HX , HY } = δXHY . (4.3.4)

up to a possible central extension in which case the representation is projective, we show
this in Appendix A.1.

In radiative problems or in the presence of dissipation, the situation is made more
complicated by the fact that we are interested in transformations that correspond to
field space vector fields that are not Hamiltonian, or equivalently the "infinitesimal
Hamiltonian" generating these transformations is "not integrable". The interest in such
non-Hamiltonian vector fields arises in situations when the symplectic 2-form is not
conserved from one Cauchy slice to another. This is a situation characteristic for field
theory and cannot happen in finite-dimensional cases, where instead of (4.2.9) one has

3There is a slight abuse of language here: Symplectomorphisms are usually defined as isometries of Ω
rather than ω. If we do not consider dynamical embedding fields, the variation and integration will
commute and one can do manipulations like δΩ = δ

∫
ω =

∫
δω = 0. This is a non-trivial assumption

whose violations lead to the appearance of edge modes [78, 79] and are an interesting direction of
research that has received a lot of attention recently but we will not consider them here. We will
always assume that the symmetries of ω are also symmetries of Ω by treating embeddings as a part of
the background.
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ω̇ = 0. The symplectic form being closed only guarantees that the difference between
the initial and final slice will be equal to the flux through the lateral boundary. In the
case of conservative boundary conditions, this flux vanishes, and (4.2.9) indeed boils
down to

∫
Σ0
ω =

∫
Σ1
ω, and the generator is Hamiltonian. If the system is open, and

there are physical degrees of freedom leaking through the boundary, and in order to talk
about charges and their non-conservation, a prescription needs to be chosen to restore
integrability and identify the would-be-hamiltonian generator. We will come back to this
in Sec. 4.3.3.

Another problem that can occur is the fact that finiteness of charges is only guaranteed
when the boundary is at a finite distance. Asymptotic boundaries typically lead to
divergent charges because the action itself could diverge. This problem is generally solved
by the method of symplectic renormalization [80, 46, 81] which boils down to adding
boundary counterterms to the action to render θ and ω finite. This is not always possible,
and sometimes the only option is to renormalize θ directly. We will perform symplectic
renormalization explicitly in Chapter 8 when we study charges at spacelike infinity.

4.3.1 Anomalies
We will be using the CPS formalism to study covariant theories whose symmetries

are spacetime diffeomorphisms. We first recall that the variation of a dynamical field
under an infinitesimal diffeomorphism is given by the Lie derivative

δξφ = Lξφ. (4.3.5)

To make contact with our newly defined formalism, we notice that the spacetime dif-
feomorphism encoded in a Lie derivative Lξ is a field space vector field, and the above
expression is equivalent to

δLξφ = ILξδφ. (4.3.6)

Just like in spacetime, on field space we can choose local coordinates
{
φi
}

so that
{
δφi
}

is a basis of T ∗Γ and
{

δ
δφi

}
is a basis of TΓ . In this basis, the field space vector field

generating spacetime diffeos is given by

Lξ =

∫
dnxLξφi(x)

δ

δφi(x)
. (4.3.7)

However, since confusion might arise between this Lie derivative acting on dynamical
fields only and the passive transformation that also transforms the background fields, this
notation is not used and instead two common ways to denote this vector field that show
up in the literature are ξ̂ and Xξ. Not to clutter the notation we choose to remove the hat
or the X entirely and denote Iξ := Iξ̂ and δξ := δξ̂. We risk no confusion as the spacetime
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vector ξ ∈ TM and the field space vector ξ ∈ TΓ can be distinguished by the different
notation for derivations on M and on Γ . We will restore the hat when necessary.

We mentioned that δξ acts only on dynamical fields φ, what about the background
fields χ? Well, they are constant it field space so δχ = 0 which implies δξχ = 0.
Nevertheless, they don’t have to be constant in spacetime and Lξχ 6= 0 in general. This
tells us that (4.3.5) will be true only for quantities not depending on the background
fields. We usually call these quantities covariant and using the covariant phase space
formalism, we can measure non-covariance by calculating the difference δξ − Lξ. In the
presence of dynamical diffeomorphisms δξ 6= 0, and for field space forms, a more useful
measure of covariance is the anomaly operator, defined as

∆ξ := δξ − Lξ − Iδξ. (4.3.8)

The third term in (4.3.8) is relevant when acting on functionals of the fields that are
forms in field space, as for example on the symplectic potential.4 We will use the term
anomalous to refer to non-covariant quantities.

4.3.2 Noether charges
We can now be more precise about mathematical objects introduced in Chapter 3.

First notice that the Noether symmetry variation is nothing other than a field space
Lie derivative δξ. On-shell variation is always equal to the (exterior derivative of the)
symplectic potential θ and the Noether charge was given by jξ = Iξθ− Yξ. For a covariant
Lagrangian, δξL = LξL = diξL, and

jξ = Iξθ − iξL. (4.3.10)

We are interested in the general situations that include field-dependent diffeomor-
phisms, δξ 6= 0, and anomalies. This lack of covariance can occur in the presence of
background structures which are described by spacetime fields but constant under varia-
tions in field space, and it will be necessary to understand the charges on null hypersurfaces.
The only restriction we make is that the anomaly of the Lagrangian should at most be
a boundary term, this is to say that there exist choices of Lagrangians such that the
background structure that may break covariance only enters through exact forms.5 Ac-

4For a 1-form F (φ, χ)δφ we have

δξ(Fδφ) = ∂φFδξφδφ+ Fδδξφ = ∂φF£ξφδφ+ Fδ£ξφ = £ξ(Fδφ)− ∂χF£ξχδφ+ F£δξφ, (4.3.9)

where we used [δ, δξ] = 0 in the first equality, and [δ,£ξ] = £δξ in the last, and the definition
Iδξδφ = £δξφ.

5This includes the treatment of anomalous bulk Lagrangians like ADM, since it differs from the covariant
Einstein-Hilbert Lagrangian by a boundary term.
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cordingly, L = Lcov + d` with ∆ξL
cov = 0 and ∆ξL = daξ, and we define the Lagrangian

and symplectic anomalies aξ and Aξ via

∆ξ` = aξ, ∆ξθ = δaξ − aδξ + dAξ. (4.3.11)

If such anomalies are present, they show up in the formula for the Noether charges as
δξL = LξL+ daξ, and so

jξ := Iξθ − iξL− aξ =̂ dqξ, (4.3.12)

To understand the meaning of aξ in this formula, consider the pull-back on a given
hypersurface. If the hypersurface is a boundary used to define the covariant phase space,
then the relevant symmetry vectors ξ are those tangent to it, since they are the only ones
preserving the boundary and thus the phase space. Then the pull-back of iξL = 0 vanishes,
and the variation of the Noether charge along the boundary has two contributions: one is
the symplectic flux of the symmetry, and this is the contribution due to physical degrees
of freedom crossing the hypersurface. The other is the anomaly. This term induces a
charge variation caused by the background structure, thus introducing a non-dynamical
contribution to the flux. For instance, this term is non-zero if one uses a normal that
depends on the foliation to which the boundary belongs.6.

4.3.3 Integrability of the ‘Hamiltonian’ charge
The presence of radiation guarantees that every diffeomorphism moving the corner

necessarily defines a non-HVF, it does not preserve the symplectic form, and as a
consequence the charges it generates are not conserved. The definitions of both the charge
and the flux are ambiguous and a prescription needs to be chosen to disentengle them.
To emphasise that the right-hand side of (4.3.2) is not guaranteed to be integrable, we
introduce the thermodynamical notation [82]

/δdhξ := −Iξω. (4.3.13)

6A different situation occurs if the background structure breaks diffeomorphism invariance entirely,
for instance if we have matter fields but the (curved) metric is treated as a fixed background, the
anomaly term aξ is nothing but the energy-momentum tensor of matter, and one recovers the non-
general-covariant notion of bulk Noether charge. This observation allows one to reverse the standard
viewpoint that sees Noether charges as global, becoming surface charges in the special case of local
gauge symmetries; and consider instead that all Noether charges are surface charges, becoming global
only in the presence of anomalies introduced by background structures [50]
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We expand this to pinpoint the obstructions to integrability:

/δdhξ = −Iξδθ = −δξθ + δIξθ (4.3.14)

= −Lξθ − (δaξ − aδξ + dAξ)− Iδξθ + δ(jξ + iξL+ aξ) (4.3.15)

= −diξθ − iξdθ − (−aδξ + dAξ)− Iδξθ + δjξ + iξδL+ iδξL (4.3.16)

=̂ − diξθ − (−aδξ + dAξ) + δdqξ − dqδξ − aδξ (4.3.17)

= d (δqξ − iξθ − qδξ − Aξ) (4.3.18)

where in the second line we used (4.3.11) and (4.3.12).
In (4.3.18), the term iξθ + qδξ + Aξ is not necessarily a total variation and presents

a potential obstruction to integrability of the Hamiltonian charge. As discussed above,
the non-integrability happens because the property (4.2.9) is not enough to guarantee
that the symplectic form is conserved between two Cauchy slices. When there is flux
leaking through the lateral boundary, (4.3.13) will not define a Hamiltonian generator,
and one needs a prescription for the charges. One way to understand this is that these
diffeomorphisms move the corner, and by doing so, one is sensitive to degrees of freedom
that could be entering or escaping the causal domain of the initial Cauchy slice. One is
thus dealing with an open system, and the construction of canonical generators is more
subtle. The obvious choice of taking the Noether charge via (4.3.12) for the Einstein-
Hilbert action leads to the Komar formulae. These have various useful properties, but
also shortcomings that have been known for a long time (such as wrong factors of 2 in
the energy at both spatial and future null infinity, generically non-invariant flux-balance
laws, and so forth, see e.g. [83, 84]), hence the motivation for a different prescription.

We are going to split (4.3.18) between the integrable part, which we will identify as
the charge, and the non-integrable part, which is the flux7:

/δhξ = δhξ + fξ. (4.3.19)

This split is not unique and there are multiple proposals as to how to fix it. A choice
that lies at the heart of the improved Noether charge prescription [34, 85, 40, 38] is
taking hξ to be a Noether charge for a specific choice of the boundary Lagrangian, which
can be justified by the action principle. A similar result can be achieved via the Wald-
Zoupas (WZ) procedure [33], choosing the split so that the conservation of the charge is
guaranteed under certain physically motivated assumptions. We will review both of these
approaches in Chapter 7, where we will also show under which conditions the resulting WZ
charges can be identified as the Noether charges for an appropriate choice of the boundary

7In [40] the first term in (4.3.18) is identified as the symplectic flux Fθξ :=
∫
S
iξθ associated with ξ and

full obstruction to integrabitlity is called the Noetherian flux Fξ :=
∫
S
iξθ + qδξ +Aξ. They can be

related as Fξ = Fθξ −Fθδξ
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Lagrangian. We see that the Lagrangian and symplectic anomalies enter respectively
the Noether charge qξ and the (infinitesimal) Hamiltonian generator dhξ. Notice that
the Hamiltonian generator depends only on θ, whereas the Noether charge depends on
θ but also explicitly on the boundary Lagrangian via its anomaly. This hints to a deep
connection of the improved Noether charge with the boundary conditions which will be
discussed in detail in the subsequent chapters.

Various other interesting proposals on how to achieve integrability can be found in
the literature. For example one can keep track of how the boundary is embedded into the
bulk by extending the phase space introducing additional dynamical fields supported at
the boundary whose dynamics is defined so that the outgoing flux is absorbed into the
definition of the charge [78, 79]. Another approach uses a new Leibnizian bracket with
respect to which the charges are integrable [86]. At least in non-dynamical cases, there is
also the possibility of obtaining integrability by finding an appropriate field-dependence
of ξ so that the qδξ term cancels the obstruction, a procedure known as ‘slicing’, see e.g.
[87]. We will not consider these alternative constructions here.
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5Boundary conditions and
boundary terms

The behavior of dynamic systems is
mathematically described by partial differen-
tial equations (PDEs) which elegantly encap-
sulate the dynamic evolution of various phys-
ical quantities across space and time. An
important question in the theory of PDEs
is the imposition of boundary conditions,
which govern the system’s behavior at its
edges, and are essential for obtaining well-
posed problems and meaningful solutions.
Categorized into various types like Dirichlet,

Neumann, and Robin, they offer a glimpse
into how a system interacts with its sur-
roundings.

5.1 VARIATIONAL PRINCIPLE . . . . . . . . . . . . . . . . 60
5.2 BOUNDARY CONDITIONS AND PO-

LARIZATION OF PHASE SPACE . . . . . . . . 62
5.3 CONSERVATIVE BOUNDARY CON-

DITIONS FOR GR . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 TIMELIKE BOUNDARIES . . . . . . 64
5.3.2 NULL BOUNDARIES . . . . . . . . . . . 69

In the study of differential equations, a boundary-value problem (BVP) is a differential
equation that comes with specific conditions known as boundary conditions. Solving
a BVP means finding a solution that satisfies both the differential equation and the
given boundary conditions. BVPs have practical significance in various branches of
physics because most physical situations require them for describing the interaction with
the environment. For instance, problems involving the wave equation, which deal with
phenomena like normal modes, are often formulated as boundary-value problems.

Depending on the physical situation on hand, different types of boundary conditions
can be imposed: a boundary condition that stipulates the function’s actual value is
referred to as a Dirichlet boundary condition, often termed a first-type boundary condition.
For instance, if one end of an iron rod is maintained at absolute zero temperature, this
boundary condition imparts knowledge of the function’s value at that particular point
in space. Conversely, a boundary condition that sets the value of the function’s normal
derivative is known as a Neumann boundary condition, designated as a second-type
boundary condition. To illustrate, imagine a situation where an iron rod is connected
to a heater at one end, resulting in continuous energy addition. Although the precise
temperature may not be known, the rate of energy input is defined by this boundary
condition. One can also define a mixed boundary value problem, where the solution is
required to satisfy a Dirichlet or a Neumann boundary condition in a mutually exclusive
way on disjoint parts of the boundary. This is similar to a Robin boundary condition which
requires a linear combination, possibly with pointwise variable coefficients of the Dirichlet
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and the Neumann boundary value conditions to be satisfied on the whole boundary of a
given domain.

For these problems to be useful in real-world applications, they need to be well-posed.
This means that, given certain input values, a unique solution should exist, and this
solution should change continuously with the input. A considerable amount of theoretical
effort in the field of partial differential equations goes into proving that boundary-value
problems, arising in various scientific contexts, satisfy this well-posedness criterion.

However, for the purpose of this discussion, we will adopt a simpler, more intuitive
definition of well-posedness. Specifically, when we discuss allowed boundary conditions,
we are referring to those that are compatible with the constraints set forth by the action
principle. This concept will be elaborated upon in the subsequent section, highlighting the
fundamental role of the action principle in determining suitable boundary conditions. We
will not go into further constraints that are to be imposed in order to have a well-defined
boundary-value problem.

5.1 Variational principle
The action principle is a foundational concept for describing motion in both classical

mechanics and field theory. In this section we will look beyond its well-known role in
generating equations of motion, into its capacity to derive viable boundary conditions.
This exploration unfolds against the backdrop of boundary-value problems but keeps
their well-posedness aside. Essentially, we are examining the minimum requirements for
boundary conditions to uphold a coherent action principle, and our considerations can be
seen as zeroth level constraints on what can be fixed on a boundary of a physical theory.

Through the principle of least action, systems evolve along paths that extremize
the action. This minimization or maximization process, yields the equations of motion
that govern the system’s behavior in the bulk. When we manipulate the action variation
to get rid of variations of the field derivatives and derive the Euler-Lagrange equations,
we integrate by parts and boundary terms emerge. For the action to be extremal, these
terms must vanish, leading to constraints in form of boundary conditions. The vanishing
of boundary terms becomes a key requirement for extremal action. This demand for
boundary terms to disappear directly translates to constraints on the boundary conditions.
A particular set of boundary conditions ensures that these boundary terms vanish, and in
turn, the action is extremal. By performing Legendre transformations, i.e. integrating by
parts in field space, we transition between various boundary conditions, modifying the
boundary Lagrangian in accordance with the chosen boundary conditions but preserving
the bulk Lagrangian and along with it the equations of motion.
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To be more concrete, take as a starting point a Lagrangian LD that leads to a
stationary action under Dirichlet boundary conditions δφa B

= 0, we can express the
variation as follows

δLD = Eaδφ
a + dθ (5.1.1)

= Eaδφ
a + d(π̃aδφ

add−1x) (5.1.2)
b.c.
= 0, (5.1.3)

where Ea are the Euler-Lagrange equations, θ is the symplectic potential, and π̃a is the
momentum conjugate to φa. In this context, the tilde notation indicates a boundary
density, where ã =

√
|q|a if the boundary volume form is given by εB =

√
|q|dd−1y. To

transition to Neumann boundary conditions while ensuring a well-posed action principle,
we introduce a new Lagrangian

LN = LD + d`, (5.1.4)

such that
δLN = δLD + dδ`

b.c.
= 0, (5.1.5)

with Neumann boundary conditions defined as δπ̃a
B
= 0.1 The simplest choice of ` is given

by
δLN ≈ d(π̃aδφ

add−1x) + dδ` ∼ #aδπ̃a ⇒ `
B
= −πaφaεB. (5.1.6)

Even more concretely, let us consider the scalar field Lagrangian, L = 1
2
d4x∂µφ∂

µφ.
Its variation reads

δL = d4x∂µφ∂µδφ = d4x [∂µ(∂µφδφ)−�φδφ] . (5.1.7)

The second term encodes the field equation �φ = 0, and the first term tells us to impose
Dirichlet boundary condition δφ|B = 0 so we can denote LD := L. To use Neumann
boundary conditions, we follow (5.1.6) to get LN = 1

2
d4x∂µφ∂

µφ− d(d3xφ∂nφ).

Just as the boundary conditions in a scalar field theory led us to different forms of
the Lagrangian, they serve as a precursor to the different types of polarizations in the
associated phase space. This is important for both the classical dynamics and the eventual
quantum description of the system. Therefore, understanding polarizations in phase space
is as integral to the study of dynamical systems as understanding the boundary conditions.
In the next section we discuss the connection between the two for a generic theory.

1Notice that we are defining Neumann boundary conditions as fixing the momentum, and not the
velocity (or the normal derivative of the field). This is the input we are getting from the action.
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5.2 Boundary Conditions and Polarization of
Phase Space

In classical mechanics, the Hamiltonian framework describes the dynamics of a
system using a symplectic manifold, typically represented by the cotangent bundle of
a configuration space, T ∗M . However, the notion of phase space extends to more
general symplectic manifolds. This abstraction transcends the traditional split between
configuration variables and their conjugate momenta. In this sense, the conventional
classification of boundary conditions into Dirichlet, Neumann, and Robin may be seen
as overly restrictive, as it relies on a fixed separation between configuration space and
momentum space, which we might not want to have and one might want to look for
different ways to categorize them. In the context of a covariant phase space, one might
argue that this categorization breaks covariance as the definition of the momentum requires
a choice of time or a Hamiltonian.

A more consistent understanding of boundary conditions in phase space is gained
through the concept of polarization. A phase space polarization is a foliation by La-
grangian submanifolds, where each leaf is, by definition, isotropic, i.e. spanned by
Poisson-commuting coordinates. We will refer to the coordinates along each leaf as the
configuration variables qa.2 Once these are chosen, one can define the conjugate momenta
pa locally thanks to the Darboux theorem, so that together {qa, pb} form Darboux coordi-
nates and θ = paδq

a. This way the choice of a polarization of the phase space is, via a
choice of adapted coordinates that diagonalize it, encoded in the choice of the symplectic
potential. Connecting to the discussion in the previous section, we note that by fixing the
coordinates of a Lagrangian submanifold, one can define boundary conditions without
reference to a predetermined separation between positions and momenta. In other words,
various types of boundary conditions can be understood as fixing the ‘configuration’
variable for different definitions of this variable, namely instead of thinking about different
types of boundary conditions one can think about different flavours of Dirichlet. This
offers an alternative approach to classifying boundary conditions, with equivalent results
but from a different point of view.

In the ensuing discussion, we will use the term polarization in reference to a selection of
symplectic potential. This should however be understood as an abuse of language, because
even though a choice of polarization induces a natural choice of symplectic potential, we
don’t expect any bijection. To understand why, let us start from the canonical symplectic

2To justify the name, let us go back to the special case of the cotangent bundle T ∗M , where exists a
natural polarization called the vertical polarization [88]. In local coordinates it is spanned by the
vectors ∂p tangent to the fibers of T ∗M and the leaves can be identified with M . Since the definition
of a Lagrangian submanifold is coordinate independent, namely we can define it as the maximal
submanifold on which the pullback of the symplectic form vanishes, we are going to use the term
configuration variable to refer to any choice of coordinates on the leaves.
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potential θ = paδq
a. This is in diagonal form, the momenta pa Poisson commute. If we

now integrate by parts in field space one or more pairs, we obtain an alternative valid
polarization. This may be associated to new meaningful boundary conditions, even though
only after analysis of the field equations one knows whether the new boundary conditions
are generic or restrict the space of solutions. Now consider instead a generic symplectic
potential for the same polarization, of the form θ = Pa(q, p)δq

a. The Pa are not necessarily
conjugate variables, nor they necessarily commute among each other. Even though such a
symplectic potential appears to be a bad choice, in practice this is something that can
easily happen. For instance, it happens in the case of Lagrange’s spinning top if we use
the generators of rotations as momenta, see e.g. [77], as it is done in geometric actions [89,
90]. More closely related to our thesis, it is what happens when one gives the pull-back of
the symplectic potential of general relativity a geometric interpretation in terms of the
first and second fundamental forms of the hypersurface. If the symplectic potential is in
this more general form, integrating by part in field space needs more care.

Once a choice of the symplectic potential corresponding to meaningful boundary
conditions is made, its structure can be used to determine the boundary terms needed
for the associated variational principle. However open questions remain. First, the
definition of the symplectic potential from the variation of the Lagrangian exhibits a
degree of ambiguity which allows a certain level of freedom in choosing its precise form.
Integration by parts in field space uses one of these ambiguities – it corresponds to adding
a boundary term to the Lagrangian which does not affect the field equations or the
symplectic form, and we have seen in the previous section that it corresponds to the
change of boundary conditions. However, we can also add an arbitrary spacetime-exact
3-form to a θ satisfying (4.2.7) without spoiling its relationship with the Lagrangian. This
means that the equivalence of the boundary Lagrangians and choices of polarization is
defined only up to corner terms. Second, it is unclear if the relationship between boundary
conditions and boundary Lagrangians is bijective. We defined (5.1.6) as the simplest
choice of boundary Lagrangian for a given set of boundary conditions, and we don’t know
if it is unique. We will see in Chapter 8 an example of a boundary Lagrangian appearing
to lead two distinct choices of boundary conditions where additional input had to be used
to disregard one of them. The question remains whether there exist a general principle,
or the relationship between boundary conditions and polarizations requires a case-by-case
analysis. The experience gained with this thesis suggests the second option.
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5.3 Conservative boundary conditions for GR
In this section we review the different boundary conditions for metric gravity that will

be consider in subsequent chapters. We start from the Einstein-Hilbert (EH) Lagrangian,

LEH = Rε, (5.3.1)

where ε :=
√−gd4x is the volume 4-form. The variation gives

δLEH = Gµνδg
µνε+ dθEH, (5.3.2)

where

θEH =
1

3!
θµεµνρσ dx

ν ∧ dxρ ∧ dxσ, θµ = 2gρ[σδΓ µ]
ρσ = 2gµ[ρgν]σ∇νδgρσ. (5.3.3)

To study possible polarizations, the symplectic potential needs to be pulled-back to the
boundary and put in a diagonal ‘pδq’ form. Due to their starkly different geometric
properties and interpretations, we will study boundary conditions on timelike and null
lateral boundaries separately.

5.3.1 Timelike boundaries
Stating with the simpler of the two, consider a hypersurface Σ, with unit normal nµ,

and boundary ∂Σ = S, with unit normal uµ within T ∗Σ that u ·n = 0. The corresponding
volume forms are εΣ and εS, related among each other and to ε as in Chapter 2. In this
section we consider both cases of space-like or time-like Σ at once, and accordingly we
define s := n2 = ∓1 = −u2. We will later introduce different notation for the different
boundaries for the sake of clarity. We denote qµν := gµν − snµnν the projector, whose
pull-back on Σ gives the induced metric, with determinant q; and Kµν := qρµ∇ρnν the
extrinsic curvature, with K := gµνKµν = ∇µn

µ. Taking the pull-back of the boundary
variation on Σ one has (see e.g. [91, 51, 66])

θEH = s (Kµνδq
µν − 2δK) εΣ + dϑEH = s qµνδΠ̃

µνd3x+ dϑEH, (5.3.4)

ϑEH := −uµδnµεS = uµnνδgµνεS. (5.3.5)

In the second equality of (5.3.4) we introduced the gravitational momentum

Π̃µν :=
√
q(Kµν − qµνK), Π̃ := gµνΠ̃

µν = −2
√
qK, (5.3.6)

familiar from the ADM analysis, here written as a spacetime tensor.
The geometric decomposition (5.3.4) of the boundary variation allows us to study

the variational principle in a finite region of spacetime like the one in Fig. 5.1. The
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variational principle is well-defined only if the total boundary contribution vanishes, so
that the action is correctly extremized on-shell.3 Let us see when this happens. Gluing
(5.3.4) along the boundary, one obtains the corner variation [92]4

ϑEH|∂Σ + ϑEH|∂T ± = ∓2δβεS, (5.3.7)

where sinh β is the scalar product between the time-like and space-like outgoing normals,
see Fig. 5.1 and Chapter 2 for further relations. Let us first consider the case of orthogonal
corners, β = 0. The corner variation vanishes, and we are left with the 3d bulk terms,
which vanish if δΠ̃µν ∂M

= 0, as can be seen from the second equality of (5.3.4). The
Einstein-Hilbert action thus has a well-defined variational principle if we fix the momentum
on the boundary, i.e. if we use Neumann boundary conditions. Note that this is only
true in four dimensions, which is the only case in which the second equality of (5.3.4)
holds. The general Neumann boundary Lagrangian can be found in [93] and will be
dimension-dependent.

Switching focus to Dirichlet boundary conditions, namely fixing the induced metric
so that δqµν = 0, there is a left-over term in the first equality of (5.3.4). To cancel it, we
need to add the Gibbons-Hawking-York boundary Lagrangian [24, 25]

`GHY = 2sKεΣ. (5.3.8)

The Lagrangian with a well-defined Dirichlet variational principle is thus

LGHY = LEH + d`GHY. (5.3.9)

These are the two most commonly considered options.5 However as pointed out in [95,
96], a better choice of boundary conditions is York’s set of mixed boundary conditions [97,
23], which fix the conformal metric q̂µν := q−1/3qµν and K, because, unlike Dirichlet and
Neumann, they lead to a well posed initial boundary value problem (See also [98, 99, 100,
22]). With this choice, one needs to add a boundary Lagrangian given by [23]

`Y =
2

3
sKεΣ. (5.3.10)

3The time-like and space-like parts of the boundary variation have different conceptual status. To
define the phase space, it is enough to ensure that the time-like variation vanishes. Vanishing of the
space-like variation will then correspond to picking a specific solution in the phase space.

4See also [51] for a more recent derivation, and [65, 66] to see how the derivation is simplified if one uses
tetrad instead of metric variables.

5Alternatively, one may wish to work with a field space in which variations are left arbitrary, and deduce
the appropriate variational principle for each pair of bulk-boundary Lagrangian interpreting the
boundary variation as an equation of motion. For example, LGHY induces the homogeneous Neumann
boundary condition Π̃µν = 0, whereas the EH Lagrangian would lead to the inadmissible degenerate
condition qµν = 0. This approach, emphasized and studied in [94], will not be pursued here.
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This can be easily shown observing that

s (Kµνδq
µν − 2δK)

√
q = −sP̃ µνδq̂µν − sP̃KδK − s

2

3
δ(K
√
q), (5.3.11)

where
P̃ µν := q1/3(Π̃µν − 1

3
qµνΠ̃), P̃K =

4

3

√
q (5.3.12)

are the five plus one momenta conjugated respectively to the conformal metric and trace
of the extrinsic curvature.6

York’s ‘mostly-Dirichlet’ mixed boundary conditions include the conformally flat
initial data often used in numerical relativity [102]. A peculiarity of this choice is that
the momenta don’t commute, since next to the canonical pair (P̃K , K), the remaining five
pairs satisfy (omitting δ(3)(x, x′) to shorten the expressions)

{q̂µν , q̂ρσ} = 0, {q̂µν , P̃ ρσ} = δρσ(µν)−
1

3
qµνq

ρσ, {P̃ µν , P̃ ρσ} =
1

3

(
q̂ρσP̃ µν − q̂µνP̃ ρσ

)
.

(5.3.13)
The non-commutativity also implies that the flipped option of taking ‘mostly-Neumann’
mixed boundary conditions with fixed traceless momentum and the induced metric
determinant is not admissible since the momenta do not form a Lagrangian submanifold
and as such do not define a polarization of the phase space.7

The three options considered above can be simultaneously treated parametrizing the
boundary Lagrangian

`b := bsKεΣ, (5.3.14)

with parameter b = 2, 2/3, 0 respectively for Dirichlet, mixed and Neumann boundary
conditions.

6The general n-dimensional version of this formula is

(Kµνδq
µν − 2δK)

√
q = −q 1

n−1

(
Π̃µν − 1

n− 1
qµνΠ̃

)
δq̂µν − 2

n− 2

n− 1

√
qδK − 2

n− 1
δ(K
√
q).

For n = 3, the required boundary term is thus K√q, namely one-half the GHY term. This is the
numerical coefficient deduced in [101] using asymptotic fall-off conditions for AdS and flat spacetimes.
The nature of such asymptotic conditions was left as an open question there. The equation above
suggests that they were of York’s type. However, since the Neumann boundary term in n dimensions
[93] is given by (4− n)K, for n = 3 it also gives one half of the GHY term. We think that in this case
York’s boundary conditions can be disregarded as ill-defined since, according to the uniformization
theorem, the 2d conformal metric does not contain enough information about the boundary. Hence,
the one-half GHY term should be considered of Neumann type.

7Which is good, because

Π̃µνδqµν = −q̂µνδP̃µν +
2

3
Π̃ δ ln

√
q

shows that the EH Lagrangian would lead to a well-defined variational principle in this case as
well, breaking the expected injective relation between choice of boundary Lagrangian and choice of
boundary conditions.
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Fig. 5.1.: Left panel: A finite region of spacetime and the notation used for the boundaries.
Right panel: The four normals generically present at the corner, here the one in
the future of T . Unbarred quantities refer to the space-like hypersurface, and barred
quantities to the time-like one. extrinsic boundary

metric s normal curvature normal
M g
Σ q -1 n K u
T q̄ 1 n̄ K̄ ū
S γ (n, u) (n̄, ū) k

Table 5.1.: Notations for the different manifolds: spacetime M , spacelike hypersurface Σ,
timelike hypersurface T , and corner S.

In the following, it will be convenient to use different notations for the space-like and
time-like boundaries. In doing so, we keep the notation (n, u) for the space-like quantities,
and introduce bars to distinguish the time-like boundaries, (n̄, ū). These notations are
the ones summarized in Fig. 5.1 and Table 5.1. Accordingly, the action principle with
orthogonal corners reads

S =

∫
M

LEH + d`b =

∫
M

Rε− b
∫ Σ1

Σ0

KεΣ + b

∫
T
K̄εT . (5.3.15)

Non-orthogonal corners
If one allows for non-orthogonal corners, additional 2d boundary terms are potentially

needed in the action principle, to compensate for variations like (5.3.7). The precise form
of these variations depends on the type of corner considered, see [51] for a comprehensive
analysis. We restrict attention here to the corner between a space-like and a time-like
boundary, as in Fig. 5.1.
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To cancel the corner variation (5.3.7) we have two options: either we fix β so that
δβ = 0, or we fix the induced metric so that δεS = 0. In the first case, no boundary term
is needed. In the second case, we need to add the Hayward boundary term

`H = 2βεS. (5.3.16)

The second option is consistent with Dirichlet boundary conditions, since fixing
the induced metric q also fixes εS. This is indeed how Dirichlet boundary conditions
with non-orthogonal corners are usually treated, see e.g. [92]. Fixing β instead has the
flavour of a Neumann-type condition, since it is easy to see that β captures a metric
component that is not part of the induced metric. But in fact, it is also not part of the
momentum, but a combination of lapse and shift instead, see (2.1.28). Hence, it is an
additional condition to be provided. This additional condition is a priori not needed for
the well-posedness of the initial value boundary problem. In fact, the corner contribution
can always be thought of as part of the space-like hypersurface, and then its variation
corresponds simply to a change in the state, and not of the boundary conditions [34].
Furthermore, it is a change of state associated to a different choice of lapse and shift, and
which can thus be considered irrelevant to characterize different physical solutions.

On the other hand, if the finite boundary is considered as a part of the characterization
of the observer, then a solution with different β would be on the same status as, say, a
Kerr solution with different values of the asymptotic lapse and shift, namely corresponding
to boosted or rotated black holes. Hence, within the context of thinking of the gauge
degrees of freedom broken by the boundary as physical, it is of interest to consider β as
part of the phase space. Indeed, this choice will be justified by the canonical analysis of
the boundary terms done in Section 8.4.

A similar logic can be applied to the case of York’s mixed boundary conditions. Since
they leave the determinant of the induced metric free, it seems reasonable to us to take
δβ = 0 also in this case, even though it is not required by the well-posedness of the initial
value problem [95, 22]. Again, this will be justified by the canonical analysis reported in
Section 8.4. These choices are summarized in Table ??.

As before, we can treat all cases with a generic corner Lagrangian

`c = cβεS, (5.3.17)

with c needing to be 2, 0 and 0 respectively for Dirichlet, mixed and Neumann boundary
conditions. The action principle with non-orthogonal corners thus reads

S =

∫
Rε− b

∫ Σ1

Σ0

KεΣ + b

∫
T
K̄εT + c

∫ S1

S0

β εS. (5.3.18)
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quantity fixed quantity fixed
boundary conditions on boundary value of b at corner value of c
Dirichlet qµν 2 γ 2
York (q̂µν , K) 2/3 β 0
Neumann Π̃µν 0 β 0

Table 5.2.: Different boundary conditions and their boundary and corner Lagrangians.
For Dirichlet boundary conditions, (5.3.15) and (5.3.18) are referred to as trace-K actions
in the literature. Accordingly, we will refer to them as b-generalized trace-K actions.

5.3.2 Null boundaries
The most general expression for the pull-back of (5.3.3) on a null hypersurface

reads [66]8

θEH =
[
(σµν +

θ

2
γµν)δγµν − 2ωµδl

µ + 2δ (θ + k)
]
εN + dϑEH. (5.3.19)

This expression holds for arbitrary variations on the null-hypersurface: the only
restriction made is to preserve the null nature of the hypersurface, namely

lµδl
µ N

= 0. (5.3.20)

In particular, it is valid for a field-dependent f , so that

δlµ
N
= δ ln f lµ (5.3.21)

doesn’t need to vanish. If f is field-independent, δlµ
N
= 0 or equivalently nµδlµ

N
= 0.

The expression (5.3.19) does not depend on rescalings of l nor on the choice of
auxiliary vector n. Independence from rescalings follows from its invariance under the
class-III spin-boost transformations (2.2.7), and implies independence from changes of
embeddings Φ→ Φ′(Φ). Independence from n follows from the invariance under class-I
Lorentz transformations (2.2.6). See App. B.1 for proofs. The invariance is only a
property of the full expression. The individual quantities are not, as summarized in
Table 2.1. This is relevant for various considerations that we do below.

8With ω here defined with opposite sign, as to match [58, 59]. We took the time to accurately translate
notations to prove that it is indeed equivalent to the one computed in [64], including the corner term,
thus answering the question left open in [66]. This expression generalizes the one of [51] which assumes
δlµ = 0, and the one of [63] which assumes δlµ = −nρlσδgρσlµ, the latter implying that nµδlµ = 0.
It also generalizes the one of [85] – contrarily to what there stated –, which assumes δlµ = 0. We
will come back to these restrictions and their motivations below. We hope that no confusion arises
because the same letter θ appears as both the symplectic potential integrand and the expansion of l.
The risk should be reduced by the fact that the letter used for the symplectic potential always comes
with labels such as EH or ′.
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The variation of the inaffinity can be written in terms of δlµ and δlµ:

δk = knµδlµ − 2nµ∇(µlν)δl
ν − 2nµlν∇(µδlν) +

1

2
nµ∇µδl

2

= (knµ +
1

2
nν∇νl

µ − 1

2
lµnν∇ν − nµlν∇ν)δlµ − (nν∇µlν +

1

2
nν∇νlµ −

1

2
lµn

ν∇ν)δl
µ.

(5.3.22)

Notice that presence of normal derivatives on the variations, which imply that δk varies
even if we fix both lµ and lµ on the hypersurface:

δlµ = δlµ
N
= 0 ⇒ δk = −1

2
nµ∇µ(lνlρδg

νρ). (5.3.23)

This vanishes if we restrict the variations to preserve affine coordinates. Therefore δk is
an independent variation because it captures the possibility of varying the metric between
the form (2.2.29) and (2.2.31), which are both consistent with fixing lµ and lµ on the
hypersurface.

Finally, the corner term is [63, 66]

ϑEH := nµδlµεS − iδlεN = (nµδlµ + nµδl
µ) εS − n ∧ iδlεS. (5.3.24)

The last term vanishes if we pull-back on a space-like cross section with n adapted to it.

Phase space polarizations
We would like to manipulate the RHS of (5.3.19) so to put it in the form

θ = θ′ − δ`+ dϑ, (5.3.25)

where θ′ = pδq for a given choice of polarization of the (kinematical) phase space on the
boundary.9 This form will be useful to discuss two different but related contexts: the
variational principle, and the definition of charges using covariant phase space methods.

If we attempt to interpret (5.3.19) as a symplectic potential in pδq form, we see that
the q’s appearing are not independent, since γµν also determines θ through (2.2.16a). To
put it in diagonal form, we need two steps. The first is to observe that the variation of
the volume form has two components,

δεN =

(
1

2
γµνδγµν + nµδl

µ

)
εN , (5.3.26)

9This notion of polarization should be used only at the level of the kinematical phase space. In fact, on
a null-hypersurface the momenta do not depend on velocities, hence there are second class constraints
and the actual symplectic structure is given by a Dirac bracket and not the initial, kinematical Poisson
bracket, see e.g. [103, 70].
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as can be established starting from the identity

1

2
gµνδgµν =

1

2
γµνδγµν + nµδl

µ − nµδlµ. (5.3.27)

Using (5.3.26), the pull-back (5.3.19) can be rewritten in the form

θEH =
[
σµνδγµν + πµδl

µ + 2δ(θ + k)
]
εN + θδεN + dϑEH, (5.3.28)

where
πµ := −2

(
ωµ +

θ

2
nµ

)
= 2

(
ηµ +

(
k − θ

2

)
nµ

)
. (5.3.29)

The second step is to integrate by parts in field space the third term. This leads to

θEH = θD − δ`D + dϑEH, (5.3.30)

where
θD := σµνδγµνεN + πµδl

µεN − (θ + 2k)δεN , (5.3.31)

and
`D := −2WεN = −2(θ + k)εN = −2kεN − 2dεS. (5.3.32)

The last equality follows from (2.2.12), and can be used to simplify the boundary term
reabsorbing its dependence on the expansion in the corner term, and work with

`D′ = −2kεN , ϑEH′ = ϑEH + 2δεS. (5.3.33)

We can now identify θ′ = θD, which is diagonal form pδq with q = (γ←µν , l
µ). The q

terms only involve the intrinsic geometry, therefore the symplectic potential is in the form
of a Dirichlet polarization, whence the D label. The diagonalization obtained involves the
sum of three pairs of configuration variables and momenta that can be characterized as
spin 2, 1 and 0, as discussed for instance in [63]. Denoting ε :=

√−g/f , we can write the
conjugate momenta as densities,

π̃µν := εσµν , π̃µ := 2ε

(
ηµ +

(
k − θ

2

)
nµ

)
, π̃ := −ε (θ + 2k) . (5.3.34)

The first term in (5.3.31) can be equally written as

σµνδγµν εN = −σµνδ(γµν εN ) = −γµνδσµνεN , (5.3.35)

where γµν εN is manifestly conformal invariant. This is the spin-2 pair.
The spin-1 pair has three components, two ‘transverse’ ones whose momentum is

the twist, and a ‘longitudinal’ one proportional to nµδlµ. The longitudinal variation is
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there to compensate the dependence of γµνδγµν on the choice of rigging vector. This
dependence makes it a non-exact 1-form in field space, see (5.3.26), and can be removed
if we restrict the variations to satisfy

nµδl
µ N

= 0 ⇒ 1

2
γµνδγµνεN

N
= δεN . (5.3.36)

This restriction can be achieved in two ways. The first is to choose the metric-dependence
of f such that δlµ

N
= −nρlσδgρσlµ [63], from which (5.3.36) follows. The second is to

choose first a foliation, and then the ‘canonical’ normalization for f [66].
The split into spin pairs is appealing, but it is not canonical: the spin-2 pair is

class-III invariant but not class-I invariant, and the spin-1 and spin-0 pairs mix up under
class I and class III transformations, as can be easily seen using the formulas given in
App. B.1. In other words, the spin pairs are not singled out by the geometry of the
hypersurface, but require additional non-geometric choices of normal representative and
of rigging.10

There is however a more serious problem with θD: it is not class-III invariant even as
a whole. This can be checked explicitly, but it can be more easily read off the fact that
the standard symplectic potential is class-III invariant, whereas the boundary Lagrangian
and corner potential are not:

δ`D → δ`D − 2δ(£l lnAεN ), ϑEH → ϑEH − 2δ lnAεS. (5.3.37)

Adding up and using (2.2.13), we find

θD → θD − 2(£δl lnA− θδ lnA)εN − 2£l lnAδεN . (5.3.38)

We will see below how this issue affects both the variational principle and the covariant
phase space.

Notice that insofar as the rescaling is field-independent, δA = 0 and the non-invariance
of θD stems from the boundary Lagrangian alone. Let us first restrict attention to this case.
One way to obtain class-III invariance is to restrict the variations so that δlµ and δεN
vanish. The first is possible without loss of generality by a restriction on the coordinates,
whereas the second is a strong restriction on the dynamics, and we are interested in
avoiding it.

One way to do so is to impose δk = 0, as was done in the CFP paper [36]. If we do
so, then

θEH|δk=0 =
[
σµνδγµν + πµδl

µ + 2δθ
]
εN + θδεN + dϑEH = θCFP − δ`CFP + dϑEH, (5.3.39)

10They are thus singled out by a rigged Carollian structure.
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where
θCFP :=

(
σµνδγµν + πµδl

µ
)
εN − θδεN , `CFP := −2θεN . (5.3.40)

This choice makes the boundary Lagrangian and the symplectic potential class-III invari-
ant.

If we impose instead δlµ = 0, we can replace k with k̄ in (5.3.28) and obtain

θEH|δlµ=0 = θD̄ − δ`D̄ + dϑEH, (5.3.41)

where

θD̄ := σµνδγµνεN + (πµ + 2∂µ ln f)δlµεN − (θ + 2k̄)δεN , `D̄ := −2(θ + k̄)εN . (5.3.42)

This boundary Lagrangian is independent of f , but not of reparametrizations of Φ. This
is only a partial resolution of the ambiguities, and class-III invariance is not achieved.

Remarkably, there is a solution that does not require any restriction on the variations,
but instead performing an integration by parts in field space of the spin-0 term:

−(θ + 2k)δεN = −δ[(θ + 2k)εN ] + δ(θ + 2k)εN . (5.3.43)

This leads to

θEH = θConf − δ`Conf + dϑEH, (5.3.44)

where now
θConf := [σµνδγµν + πµδl

µ + δ(θ + 2k)]εN , (5.3.45)

and
`Conf := −θεN = −dεS. (5.3.46)

The new boundary Lagrangian and symplectic potential are class-III invariant. This
shows the type of valuable insights that can be obtained using the freedom of changing
potential via (7.1.1).

The decomposition (5.3.45) was considered also in [49], while looking for thermo-
dynamical interpretations of the symplectic potential. It corresponds to a change of
polarization in the phase space that identifies as configuration variables the conformal
class of the 2d metric – equivalently the shear, recall (5.3.35) and discuss around there –,
the tangent vector, and the spin-0 momentum θ+ 2k instead of the volume form. We will
show that it leads to a Noether flux-balance law with no anomaly term. This is related to
that fact that this choice makes the boundary Lagrangian unambiguous even without any
restriction on the variations. Conformal boundary conditions appear thus to be better
behaved, something argued for also in the time-like case [95].
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There are other integrations by parts in field space that could be considered. One could
change the spin-0 sector with different numerical factors. For instance the investigations
of black hole entropy by Chandrasekaran and Speranza (CS) in [85] motivates the choice

`CS = −(k + 2θ)εN = `D + kεN . (5.3.47)

The motivation from black hole entropy will be briefly explained below, but notice that
this choice is not class-III invariant. On the other hand, a change of polarization in the
spin-1 pair seems of little use, since we cannot treat ηµ as an independent configuration
variable from the spin-2 pair. This is due to the fact that the constraint equations on N
relates ηµ to the radiative data which are contained in the spin-2 pair. For completeness,
we report in App. B.2 an exploration of alternative polarizations and their boundary
conditions.

Our goal is to will study how changing the boundary Lagrangian as in the examples
above affects the variational principle and the construction of gravitational charges. With
the exception of (5.3.42), the boundary Lagrangians that we consider have the same
functional dependence, and differ only by numerical factors. This is similar to what we
had in the case of a time-like boundary [42], and allows us to treat all cases at once
writing the boundary Lagrangian in parametric form as

`(b,c) = −(bk + cθ)εN . (5.3.48)

A boundary Lagrangian of this family is class-III invariant for b = 0 and any value of c.
The specific examples described above correspond to:

D CFP Conf CS

b 2 0 0 1

c 2 2 1 2

(5.3.49)

The option (5.3.42) could be included adding a third parameter, but we have seen that it
is only a partial solution and will thus be considered less in the following. The symplectic
potential corresponding to this family is

θ(b,c) =
[
σµνδγµν + πµδl

µ + (2− b)δk + (2− c)δθ
]
εN − (bk + (c− 1)θ)δεN , (5.3.50)
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and we repeat for convenience of comparison the four particular cases discussed earlier:

θD := (σµνδγµν + πµδl
µ)εN − (θ + 2k)δεN , (5.3.51a)

θCFPk :=
(
σµνδγµν + πµδl

µ + 2δk
)
εN − θδεN , (5.3.51b)

θConf := [σµνδγµν + πµδl
µ + δ(θ + 2k)]εN , (5.3.51c)

θCS :=
(
σµνδγµν + πµδl

µ + δk
)
εN − (k + θ)δεN . (5.3.51d)

Here CFPk stands for the extension of the CFP case to δk 6= 0. Although both θCFPk and
θConf are III-invariant, only the latter is in diagonal form for the general case with δk 6= 0,
since in the former the volume form appears both as q and as p. More in general, any
potential with b = 0 is III-invariant, but only the one with c = 1 is in diagonal form. For
δk = 0, both θCFP and θConf are diagonal and class III-invariant for δA = 0.

So far we have assumed that δA = 0. This condition is satisfied if we restrict the
class of allowed normals to satisfy δlµ N

= 0 or δlµ
N
= 0. If one relaxes both conditions and

allows for δA 6= 0, then a class-III invariant boundary Lagrangian is no longer sufficient
to have a class-III invariant symplectic potential, because of the contribution from ϑEH. A
possibility would then be to absorb dϑEH in the definition of θ′. This is possible of course,
however it would spoil the idea that θ′ should be in diagonal pδq form. Furthermore, we
will see that there are other reasons to impose δlµ N

= 0 or δlµ
N
= 0, as well as to keep ϑEH

out of θ′. For this reason we keep ϑEH in the corner term.

Conservative boundary conditions and the variational
principle

In the study of the variational principle, one wants to find suitable boundary conditions
that make the variation of the action vanish everywhere on-shell, including at the boundary.
In this context, (7.1.1) is useful to identify the required boundary and corner terms to
be added to the action for the allowed boundary conditions. Suppose that we find
a decomposition like (7.1.1) with a certain θ′ = pδq, and such that adding ϑ to the
contribution coming from the part of the boundary complementary to N we get a total
variation, call it δc. We can then conclude that the boundary conditions identified by
δq = 0 provide a well-defined variational principle, once the action is supplemented with
the boundary term ` as well as the corner term c.

In this section we show how the different polarizations of the null symplectic potential
give a variational principle with different boundary conditions. We first review two known
but non-trivial facts about Dirichlet boundary conditions, namely that one has to fix one
more condition than the intrinsic geometry [64], and that the resulting boundary terms
are ambiguous [51]. We then show that the alternative conformal boundary conditions
improve this problem.
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Dirichlet boundary conditions and their ambiguity
Dirichlet boundary conditions hold fixed the intrinsic geometry. In the case of a null

hypersurface, we could take this to mean

γµργνσδγρσ
N
= 0, δlµ

N
= 0. (5.3.52)

The first condition is class-III invariant, but the second only if δA = 0. Nonetheless
they imply δεN

N
= 0 thanks to (5.3.26), therefore they fix entirely the intrinsic geometry.

On-shell of these conditions (5.3.19) gives

θEH = −δ`D + ∂nl
2 nµδlµεN + dϑEH, (5.3.53)

with ϑEH = nµδlµεS. The first term on the RHS is a total variation, and can be eliminated
if the boundary Lagrangian (5.3.32) is added to the initial action. This is the equivalent
of the Gibbons-Hawking-York term, and can even be written in exactly the same form as
the divergence of the normal using (2.2.20). Notice also that (5.3.52) also imply δθ N

= 0,
hence the only relevant term in (5.3.32) is the inaffinity k. It is then equivalent to work
with this boundary Lagrangian or the alternative choice (5.3.33).

The second term requires
∂nl

2 nµδlµ
N
= 0. (5.3.54)

This is an extra condition on top of (5.3.52). But it can be satisfied playing with the
freedom of choosing the extension of l, without adding any further boundary conditions.
Let us do so for now.

The third term on the RHS is not a total variation, but it can be shown that once it
is added to the contribution coming from the rest of the boundary, one obtains a total
variation [104, 92, 51, 65, 66]. For instance if the null boundary is joined to a space-like
boundary Σ,

ϑEH + ϑEH

Σ = −2δβ̂εS, (5.3.55)

where β̂ is defined by (2.2.25). This is a total variation under Dirichlet boundary
conditions, since the first of (5.3.52) implies δεS

N
= 0. It can thus be compensated by the

corner Lagrangian
lH := 2β̂εS. (5.3.56)

Here H stands for Hayward. See [92, 51] for other examples of joints and their corner
terms.

We see that the Dirichlet variational principle is not well-defined for the Einstein-
Hilbert action with a null boundary, and one needs to supplement the action with the
boundary terms `D and `H, in analogy with what happens with other types of boundaries.
This is the result that one typically finds in the literature [64, 51, 65]. The problem
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that was raised in [51] is that these boundary and corner terms are ambiguous and
non-geometric: they involve quantities like k and β̂ which depend on the choice of normal
representative and on changes of embedding. In our language, they are not class-III
invariant. A solution proposed in [51] was to add the non-local boundary term (θ ln θ)εN .
An alternative solution that doesn’t involve the non-local counterterm would be to work
with class-III invariant quantities only.

As we have seen at the end of the previous section, this can be achieved in various
ways. One is to add the condition δk N

= 0. The boundary Lagrangian for this variational
principle is the class-III invariant choice `CFP and it is unambiguous. In fact, it is spacetime
exact, hence it can be reabsorbed in the corner term, leading to a variational principle
without any boundary term along the null hypersurface. The problem raised in [51]
is however not completely solved, because there is still the need for corner terms like
(5.3.56), which maintain their ambiguity.

Next, let us consider (5.3.54) again. If the extension of the normal is kept arbitrary,
in particular not null at first order, the boundary conditions (5.3.52) are not sufficient for
a well-posed variational principle, and must be supplemented by the additional restriction
δlµ

N
= 0. This additional restriction seems quite natural, because as we recalled above, the

induced metric and tangent vector characterize the intrinsic geometry only at fixed f . The
conditions δlµ = δlµ

N
= 0 are in fact equivalent to lµδgµν

N
= 0 and as such, manifestly class

III-invariant. A boundary Lagrangian for the Dirichlet variational principle supplemented
by δlµ

N
= 0 is given in (5.3.42), but as remarked there, this removes only the ambiguity

under change of f at fixed embedding, and not under changes of embedding. This would
then only be a partial resolution to the problem of ambiguities. The reason why we have
class-III invariant boundary conditions but fail to have a fully class-III invariant boundary
Lagrangian is that `D̄ transforms under class-III with a inhomogeneous term proportional
to £l lnA, and its variation is zero under the above conditions.

As for the corner terms, the additional condition means that (5.3.24) vanishes. This
does not remove the Hayward corner term (5.3.56) from the variational principle, since
it is still needed to cancel a contribution to the variation coming from the space-like
boundary. But it removes it in the case of a corner between two null boundaries with the
same boundary conditions. In the latter case there is no corner ambiguity.

It follows that if we take both additional restrictions,

γµργνσδγρσ = δlµ = δlµ = δk
N
= 0, (5.3.57)

this strengthened Dirichlet variational principle is well-defined with no contribution from
the null boundary, and all potential ambiguities reduced to a choice of normal at the
corner between a null and a non-null boundary.
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The importance of choosing the right boundary term goes beyond the variational
principle. In [51], it was discussed its relevance to in the context of the ‘action=complexity’
proposal in AdS/CFT holography. Below, we will see how it affects the charges constructed
with covariant phase space methods. In this application, only the ambiguity of the
boundary Lagrangian matters, and not the one of the corner terms used in the variational
principle.

Conformal boundary conditions
Consider now the alternative polarization (5.3.45). This vanishes for the conformal

boundary conditions

δσµν
N
= 0, δlµ

N
= 0, δ(θ + 2k)

N
= 0. (5.3.58)

The first two are equivalent to Dirichlet except for δεN
N
= 0, which is replaced by the

third restriction above. Since θ is intrinsic and k depends on perpendicular derivatives of
the metric, the last condition is of Robin type. Including (5.3.54) through a first-order
null extension, θConf vanishes on-shell of (5.3.58), and (5.3.44) gives

θEH = −δ`Conf + dϑEH. (5.3.59)

With respect to the general family (5.3.50), θConf corresponds to b = 0 and c = 1, and
it is easy to see that it is the only possibility that would allow conservative boundary
conditions with δεN 6= 0.

The interesting remark is that this boundary Lagrangian is class-III invariant, hence
geometric and not ambiguous. Changing polarization resolves the problem of ambiguity
of the boundary Lagrangian without adding counter-terms, or any of the additional
restrictions δlµ = 0 or δk = 0 considered above. If we do include the δk = 0 restriction,
then the conformal and Dirichlet polarization boil down to the same boundary conditions,
and their boundary Lagrangians (5.3.46) and (5.3.40) are indeed the same up to corner
terms.

Next, we look at the corner terms. ϑEH is the same as before, therefore we still have
(5.3.55) when looking at the joint between a null and a space-like boundary. This is no
longer a total variation, because (5.3.58) does not imply δεS

N
= 0. Therefore, to have a

well-defined variational principle we need to add the corner boundary condition

δεS
S
= 0. (5.3.60)

The need for an additional condition on top of (5.3.58) seems reasonable because the
expansion is the derivative of the 2d metric, hence one is missing an initial datum when
providing boundary data in terms of the expansion. Upon doing so, the required action
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corner terms in the variational principle are the same as in the Dirichlet case, e.g. (5.3.56).
Therefore even though these boundary conditions eliminate the ambiguity of the null
boundary Lagrangian, they do not eliminate the ambiguity of the corner terms, at least
in so far as they are completed with (5.3.60). If we further add δlµ = 0 then as before we
remove the need of corner terms between null boundaries.

The boundary Lagrangian `Conf is spacetime exact, hence it could also be absorbed
into a modified ϑ. In this case the conformal boundary conditions require no boundary
Lagrangian at all. This however does not change the ambiguity of the corner terms, since
one is adding a non-ambiguous term to the existing ambiguous one.

Having found a polarization with a class-III invariant boundary Lagrangian will be
very useful for the construction of charges in the covariant phase space, which is what
we turn to next. In that context, having corner terms in the action principle which are
ambiguous is not important, because these don’t enter neither the expression for the
Noether current nor that for the Hamiltonian generator. However from the point of view
of the variational principle one may be interested in going further, and see whether it
exists a completely unambiguous variational principle including the corner terms. A
possibility would be to replace (5.3.60) with its conjugated corner variable, namely set
δβ̂

S
= 0. No corner term in the action would then be needed. To that end, one should first

study whether δ(θ+ 2k)
S
= 0 has any bearing on β̂. We leave further investigations of this

idea for future work.

5.3 Conservative boundary conditions for GR 79





6Leaky boundary conditions and
boundary symmetry groups

In this chapter, we perform a detailed
study of the covariance properties of the
gravitational symplectic potential on a null
boundary, and of the different polarizations
that can be used. Using Sachs’ framework
for constraint-free data on a null hypersur-
face, we draw a distinction between physical
and gauge degrees of freedom. This sepa-
ration aids in determining which conserva-
tive boundary conditions can be relaxed to
permit the flux of physical degrees of free-
dom through the boundary. These leaky
boundary conditions are instrumental in the
construction of a covariant phase space that
captures the dynamics of gravitational sys-
tems when there is radiation through the
lateral boundary. The symplectic potential’s
nature is influenced by both the intrinsic
and extrinsic geometry of the hypersurface
and non-geometric parameters like the the
extension of the normal. We discuss how
different splits can introduce dependencies

on the scaling of the normal and the choice
of the rigging vector. These dependencies
manifest in the form of field anomalies in the
covariant phase space, with the exact nature
of the anomalies contingent on the selected
leaky boundary conditions. We study the
symmetry groups that arise with different
phase space prescriptions, and determine the
fields that have anomalous transformations.
The results presented in this chapter have
been published in [54]. A largely overlaping
analysis has simultaneously been published
in [105].

6.1 ANOMALIES AND CLASS-III IN-
VARIANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 ANOMALIES OF THE BOUNDARY

LAGRANGIANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 ANOMALIES OF THE SYMPLECTIC

POTENTIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 BOUNDARY SYMMETRY GROUPS . . . . . 89

Sachs’ identification of constraint-free data on a null hypersurface [106] can be used to
cut a distinction between physical and gauge degrees of freedom, and in turn understand
which part of the conservative boundary conditions can be relaxed in order to allow flux
of physical degrees of freedom through the boundary. Such leaky boundary conditions
are useful in order to construct a covariant phase space that describes the evolution of
dynamical gravitational systems using the flux defined by the symplectic potential. As we
have seen, the symplectic potential depends on the intrinsic and extrinsic geometry of the
hypersurface, as well as on non-geometric quantities such as the choice of extension of the
normal. Furthermore any split like (7.1.1) can introduce a dependence of the individual
terms on the scaling of the normal and on the choice of rigging vector. This dependence
shows up in the covariant phase space in the form of anomalous transformations of the
fields, or anomalies for short. The exact nature of the anomalies depends on the leaky
boundary conditions chosen. Different types have been explored in the literature, leading
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to different residual gauge transformations and thus different boundary symmetry groups.
In this section we characterize the different symmetry groups and compute their anomalies.
In the following section we will see how the anomalies enter the gravitational flux and
the Noether charges, and study how the flux-balance laws are reorganized when changing
polarization of the symplectic potential.

Let us first talk about the variations that enter the symplectic potential. The shear
and expansion are determined by the induced metric, and the twist is also expected to
be determined by the induced metric on-shell of the Einstein’s equations. Therefore, the
symplectic potential contains substantially only four independent variations: δγµν , δlµ,
δlµ and δk. The radiative data are contained in the first variation, so that one should
definitely be left free in leaky boundary conditions allowing for gravitational flux. The
question is then what to do with the remaining three.

On the hypersurface, we can always choose coordinates such that the tangent vector
lµ has the simple form (2.2.28). Therefore δlµ N

= 0 can be interpreted as a restriction
of the phase space to variations preserving this choice of coordinates. Furthermore, lµ is
now metric dependent, unless we fix the Φ coordinate to have gΦλ = −1, or equivalently
we take the ‘canonical’ normalization. With the first option, δlµ

N
= 0 is also a restriction

of the phase space preserving a certain choice of coordinates. Both coordinate choices are
always achievable and don’t restrict the physics of the system: they can be taken as part
of the universal structure. Therefore it seems reasonable to impose both restrictions, and
this is indeed the conclusion reached through the careful analysis done in [36].

The situation with δk is a bit more subtle, because one may expect that having
eliminated the variations coming from f , this is a genuine variation of the extrinsic
geometry that contains physics. But as we see from (5.3.23), this variation captures the
perpendicular derivative of lµlνδgµν , whose vanishing means that the coordinates are affine.
Hence restricting δk to vanish or not means that the symmetry group of the covariant
phase space preserves or not affine coordinates, namely metrics in the form (2.2.31) as
opposed to (2.2.29). And this seems merely a gauge statement.

This question was also left partially open in [36]. In the main body of the paper
δk is fixed to vanish, on the account that any two metrics with a null hypersurface N
can be made to have the same pair (lµ, k) via a diffeomorphism on N , suggesting that k
should be taken as part of the universal background structure. Vanishing δk was also used
in order to complete the Wald-Zoupas procedure and identify a non-ambiguous notion
of charges. On the other hand, it was pointed out that the symplectic 2-form is not
degenerate along any of the boundary diffeomorphisms. If one takes zero-modes of the
symplectic 2-form with boundary terms included to be a definition of gauge, then every
diffeomorphism of the boundary should be considered as a physical transformation. This
motivates the investigation of an enlarged phase space in which k is allowed to vary, and
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possibly even lµ. As we will see, enlarging the phase space affects the symmetry groups
and the associated transformations in field space, in particular their anomalies.

6.1 Anomalies and class-III invariance
The variations studied in Section 5.3.2 keep the boundary fixed and null: δΦ = 0

and lµδlµ
N
= 0, or δgΦΦ N

= 0 in adapted coordinates. This means that Φ and gΦΦ|N are
fixed background structures, whereas the rest of the metric can be varied freely. The split
between dynamical and background structures introduces a delicate aspect of anomalies in
the construction of the phase space, as we reviewed in Sec. 4.3.1. The anomaly operator
defined there coincides with the non-covariance for field-independent diffeomorphisms and
for field-space scalar functionals. From this formula we see that anomaly-freeness means

∂χF£ξχ = 0. (6.1.1)

Namely, F should either not depend on the background fields χ, or if it does, the symmetry
group should be made only of isometries of χ. The symmetry group is typically required to
preserve some universal background structure. If this is described by the background fields
χ, then the symmetry group coincides with those diffeomorphisms that are isometries of
χ, and there are no anomalies. But if the background structure is described equivalence
classes of background fields, the situation is different, because isometries of the background
structure don’t need to be isometries of individual representative fields, which are the
quantities entering (6.1.1). We also see that the notion of covariance given by matching
Lie derivatives can be stated equivalently as

∂χF£ξχ = F£δξφ. (6.1.2)

It means that representatives of the equivalence class for which the symmetry group is
not an isometry can still be allowed, provided it carries a specific field-dependence. Even
though it seems natural to talk about covariance when the two Lie derivatives match,
it is the notion of anomaly-freeness that carries the most direct interpretation in terms
of independence from background structures. We will come back to this difference in
Section 9.6 at the end.

When we apply this technology to a null boundary, the background fields are Φ and
gΦΦ|N . Their anomalies are

∆ξΦ = −£ξΦ = −ξΦ, ∆ξg
ΦΦ = −£ξg

ΦΦ N
= ξΦ∂Φg

ΦΦ + 2gΦa∂aξ
Φ, (6.1.3)
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and vanish if we restrict attention to diffeomorphisms that satisfy ξΦ N
= 0. These are the

tangent diffeomorphisms, and don’t move the boundary. They can be parametrized as

ξ = ξaN∂a + Φξ̄µ∂µ ∈ Diff(N ), ξ · l N= 0, (6.1.4)

with ξ̄ smooth on N . We will refer to ξ̄µ as the extension of the symmetry vector outside
of the boundary and into the bulk, and to the specific component ξ̄Φ N

= −(fΦ)−1ξ · l as
the perpendicular extension. Since £ξg

ΦΦ N
= 0 for ξ ∈ TN , we can write covariantly

ξ̂ :=

∫
£ξgµν

δ

δgµν
, (6.1.5)

without the need to treat separately gΦΦ and the dynamical components of the metric.
However, anomalies are present even for tangent diffeomorphisms if we have to deal

with normal derivatives of the background fields. This is precisely the case at hand, since
the pull-back of the symplectic potential depends on the normal 1-form. For a tangent
diffeomorphism, we have

∆ξlµ
N
= −wξlµ, ∆ξl

µ N
= −wξlµ, wξ := (£ξ − δξ) ln f + ξ̄Φ. (6.1.6)

We see that the anomaly wξ depends on both the choice of normal representative, through
the non-covariance of f , and on the diffeomorphism considered, through the perpendicular
extension of the symmetry vector field, namely its Φ component. As far as both quantities
are arbitrary, one can choose them so that anomalies are vanishing, for instance taking
f = 1 and ξ̄Φ = 0. However, while the choice f = 1 is always acceptable (but may not
be the best choice to study a specific problem), ξ̄Φ = 0 is not, because in most cases of
interest this extension is fixed to a non-vanishing value determined by the parameters ξaN .
These include the case of isometries, asymptotic symmetries at future null infinity, and it
would exclude from the symmetries the possibility of a Killing vector, whose perpendicular
extension is fixed and non-vanishing. More in general, asymptotic symmetries at future
null infinity as well as on a physical null hypersurface and a non-expanding horizon all
require to fix the perpendicular extension of the symmetry vectors non a non-vanishing
value determined by the parameters ξa. We will review below why.

To give further intuition about the meaning of wξ, consider the case of a non-null
boundary. We still have (6.1.3), hence anomalies only appear for quantities like the
normal, once we restrict attention to diffeomorphisms that are tangent to the boundary.
For an arbitrary normal, (6.1.6) is also still valid. But if we choose a unit-norm normal,
then wξ vanishes identically. If we recall that a unit-norm normal has the property of
being independent of the embedding of the boundary, we see that anomalies arise not
so much from the presence of a boundary, but rather from a foliation-dependence in its
description. In other words, the equivalent of class-III invariance in the time-like case is
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achieved through invariance under Φ reparametrization only, because f is fixed. Coming
back to the case of a null boundary, there is no foliation-independent description, and no
canonical normalization for the normal, hence anomalies become relevant.

Let us point out that (6.1.6) is the main anomaly that we have to worry about, but
not the only one. A second source of anomalies is the rigging vector, which is also a
non-dynamical background quantity. Its anomalies are less important in the end, but will
appear in some intermediate calculations and it is useful to track them as well. For an
arbitrary choice of rigging,

∆ξnµ = wξnµ + Zµ, Z · l = Z · n = 0, (6.1.7)

where the proportionality to wξ of the first term follows from l · n = −1, and the vector
Z parametrizes the rigging anomaly. Its explicit form depends on the specific choice of
n, and we can leave it unspecified in the following. For instance, the projector γµν is
manifestly class-III invariant but not class-I invariant. It has an anomaly determined by
(6.1.7) as

∆ξγµν = 2l(µZν). (6.1.8)

The anomalies (6.1.6) and (6.1.7) correspond to the non-invariance under infinitesi-
mal class-I and class-III transformations with parameters A = e−wξ ' 1−wξ and a = m·Z.
Further anomalies appear for quantities with a non-vanishing spin weight, since these
depend on the background structure m associated with the choice of n. However these
will not be relevant for us, we will always compute anomalies of quantities that can be
expressed in terms of l and n alone. For these, it is easy to prove that class-I and class-III
invariance implies anomaly-free, see Appendix B.1.3.

A subtle point to highlight is that anomaly-freeness requires class-III invariance in
the general sense of a field-dependent rescaling. For instance, nµδlµ is manifestly class-III
invariant if the rescaling is field-independent, but not otherwise: nµδlµ → nµδlµ − δ lnA.
It is in fact anomalous,

∆ξ(n
µδlµ) = −∆ξδ ln f = δwξ − wδξ. (6.1.9)

We remark for later use that this specific anomaly vanishes if the variations are restricted
by δlµ

N
= 0, since ξ is tangent to N . But it vanishes also if δlµ 6= 0 provided that δlµ N

= 0.
This may not look obvious, but it follows from (6.1.6), and can be deduced also looking
at (5.3.27).

Similarly, a quantity that is only partially class-III invariant like k̄εN (we recall that it
is independent of f but not of invariant under reparametrizations of Φ) is also anomalous,

∆ξ(k̄εN ) = −£lξ̄
Φ εN . (6.1.10)
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6.2 Anomalies of the boundary Lagrangians
As a first application of this formalism, we compute the anomaly of the boundary

Langrangians (5.3.48). Using (6.1.6) we find

∆ξεN = wξεN , ∆ξθ = −wξθ, ∆ξεS = 0, ∆ξk = −(£l + k)wξ. (6.2.1)

From the last one, we also deduce that

£lwξ = (£ξ − wξ)k − δξk. (6.2.2)

Adding up these contributions we have

a(b,c)

ξ := ∆ξ`
(b,c) = b£lwξ εN = b dwξ ∧ εS, (6.2.3)

where in the last equality we used (2.2.11) and the fact that wξ is only defined on N . As
expected, any member with b 6= 0 is not class-III invariant and it is anomalous. The family
of covariant boundary Lagrangians is (5.3.48) with b = 0 and c arbitrary. This includes in
particular the Conf and CFP choices. In the latter case, notice that the statement about
covariance is valid also if δk 6= 0. The anomalous Lagrangians include the Dirichlet choice
with b = 2. Such anomalies would only vanish in the special case £lwξ = 0. Looking at
(6.2.2), we see that this would occur for instance if the phase space is restricted to satisfy
k = δk = 0. Finally for the excluded member (5.3.42), we have

aD̄

ξ := ∆ξ`
D̄ = 2£lξ̄

Φ εN , (6.2.4)

which captures explicitly its dependence on reparametrizations of Φ.
This result shows that Dirichlet boundary conditions require an anomalous boundary

Lagrangian, whereas conformal boundary conditions admit a covariant one. The situation
is the same if we move the expansion term to the corner and work with the primed
boundary Lagrangians. In this case the conformal boundary Lagrangian vanishes and its
covariance is obvious. Recalling the earlier discussion on ambiguities, we see that the
anomaly here keeps track of the dependence of the Dirichlet boundary Lagrangian on
non-geometric structures, hence of its ambiguity. This comes from its dependence on the
inaffinity and failure of being class-III invariant, and the problem is resolved switching to
the conformal polarization instead.

Lagrangian anomalies appear in the study of central extensions of charge algebras.
As shown in [85, 40], the Lagrangian anomaly can be used to compute the cocyle that
appears on the right-hand side of the Barnich-Troessaert bracket [107]. This approach
was applied in [85] to investigate whether one can obtain a central charge that would be
relevant to understand black hole entropy from super-rotations as proposed in [108]. It
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was found that one can indeed reproduce the functional dependence of the entropy on
the horizon’s area, but with a wrong numerical factor. The right numerical factor would
require as boundary Lagrangian kεN instead of 2kεN .1

6.3 Anomalies of the symplectic potentials
Next, we look at the anomalies of the symplectic potential. The standard symplectic

potential θEH is manifestly anomaly-free, since it depends only on the metric and its
derivatives. So does its pull-back, since the anomaly operator commutes with taking
the pull-back for tangent diffeomorphisms. Decomposing it as in (5.3.19) introduces the
background structure given by the reference NP tetrad used, which captures the choice
of normal representative and of rigging vector. This step does not introduce anomalies,
since as we proved (5.3.19) is both class I and III invariant.

Anomalies can instead appear in the preferred choice of θ′. From (7.1.1) we have

0 = ∆ξθ
′ −∆ξδ`+ d∆ξϑ. (6.3.1)

Using this formula we can easily compute the anomaly for the family (5.3.48). The corner
term is (5.3.24) in all cases, and its anomaly is given by

∆ξϑ
EH = 2∆ξ(n

µδlµ)εS. (6.3.2)

Using this and (6.2.3),

∆ξθ
(b,c) = b dwξ ∧ δεS + (b− 2)d∆ξ(n

µδlµ) ∧ εS − 2θ∆ξ(n
µδlµ)εN . (6.3.3)

The relation of this formula to the lack of class-III invariance is straightforwardly obtained
with the replacement lnA = −wξ.

For conservative boundary conditions with δεS = 0, the anomaly vanishes for b = 2

(the case of Dirichlet boundary conditions) if θ = 0, and for any b and any θ if ∆ξ(n
µδlµ)

vanishes, which we recall follows from either δlµ
N
= 0 or δlµ N

= 0.
What if we want to impose leaky boundary conditions instead, with δεS 6= 0? We

need either b or dwξ to vanish. The family with b = 0 is covariant under a minimal set of
restrictions:

δlµ
N
= 0 or δlµ

N
= 0 ⇒ ∆ξθ

(0,c) = 0. (6.3.4)

1This alternative boundary Lagrangian corresponds to the boundary condition δk = (θ+k)δ ln ε. They do
not impose δlµ = 0 however, instead the super-rotations considered in [108, 85] stem from asymptotic
symmetries of an auxiliary AdS3 space that appears under a special coordinate transformation of the
near-horizon geometry.
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These are the most generic conditions that guarantee that the symplectic potential is
anomaly-free for all ξ’s, namely independent of the choice of normal representative. If
b 6= 0, we can use

dwξ ∧ δεS = £δlwξεN + £lwξδεN . (6.3.5)

This vanishes if
δlµ = δk = k

N
= 0 ⇒ ∆ξθ

(b,c) = 0, (6.3.6)

however with these conditions the terms in b drop out completely. We conclude that the
only relevant case is b = 0.

We see that the conformal polarization is the only choice of diagonal symplectic
potential that is anomaly-free upon imposing only the minimal condition that δf = 0. All
other choices considered are either not in diagonal form, or require additional restrictions
on the phase space. This makes the conformal polarization best suitable to study more
general leaky boundary conditions without introducing anomalies, which is important for
the integrability of Hamiltonian charges.

The anomaly of the symplectic potential can also be derived summing up the anomalies
of each spin pair, which we report here for completeness. The shear tensor σµν is neither
class-I nor class-III invariant, and it carries both anomalies:

∆ξσ
µν = −wξσµν + 2l(µσν)ρZρ (6.3.7)

(whereas the NP scalar being rigging-independent only carries the first anomaly, ∆ξσ =

−wξσ). Using this and (6.1.8) in the spin-2 pair of the symplectic potential, we find

∆ξ(σ
µνδγµνεN ) = ∆ξ(σ

µνεN )δγµν + σµνεN∆ξδγµν = 2lµσνρZρδγµνεN

= δlµ(θZµ − 2Zρ∇νlρ)εN , (6.3.8)

where we used ∆δξgµν = 0 and the orthogonality properties of Z. Next, we have

∆ξπµ = 2(∂µ + lµ∂n)wξ + 2Zρ∇µlρ − θZµ + 2lµ(Zρnν + nρZν)∇νlρ, (6.3.9)

so the spin-1 pair has anomaly

∆ξ(πµδl
µεN ) = ∆ξπµδl

µεN − π · l (δwξ − wδξ)εN
= (2∂µwξ + 2Zσ∇µlσ − θZµ)δlµεN + (2k − θ)∆ξ(n

µδlµ)εN . (6.3.10)
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where we used π · l = θ − 2k. The last term in the RHS depends on δlµ but vanishes for
δlµ

N
= 0 as discussed below (6.1.9). Finally for the spin-0 part let us consider the cases

of Dirichlet and conformal polarizations as examples.

−∆ξ[(θ + 2k)δεN ] = −(θ + 2k)∆ξ(n
µδlµ)εN + 2£lwξδεN . (6.3.11)

Adding up the three contributions we recover (6.3.3) for b = 2,

∆ξθ
D = 2dwξ ∧ δεS − 2θ∆ξ(n

µδlµ)εN . (6.3.12)

Switching to conformal polarization,

∆ξ[δ(θ + 2k)εN ] = −(θ + 2k)∆ξ(n
µδlµ)εN − 2(£δlwξ + £l∆ξ(n

µδlµ))εN . (6.3.13)

In the last term we can use

£l∆ξ(n
µδlµ))εN = d∆ξ(n

µδlµ)) ∧ εS. (6.3.14)

Adding up we recover (6.3.3) for b = 0,

∆ξθ
Conf = −2d[∆ξ(n

µδlµ) ∧ εS]. (6.3.15)

This derivation allows one to appreciate that the potential anomaly coming from the
term δk present in θConf cancels out with a contribution coming from the spin-1 term.
The subtle point is that even though the anomaly of k does not vanish for δlµ = 0, the
anomaly of δk εN does.

6.4 Boundary symmetry groups
In this section we review the different boundary symmetry groups that have been

considered in the literature, with emphasis on the different background structures kept
fixed. We show how they can be derived in a simple way using δξ and wξ. We highlight
how each additional restriction on the variations affects the symmetry group, the extension
of the symmetry vector fields, and the anomalies.

The minimal requirement that we consider is that the boundary should be a null
surface, which restricts the variations to satisfy lµδlµ

N
= 0. The residual diffeomorphisms

that preserve the boundary and the condition that it is null must satisfy £ξΦ
N
= 0 and

lµδξl
µ = lµ(£ξl

µ +∆ξl
µ)

N
= lµlν£ξg

µν = f 2£ξg
ΦΦ N

= 0. (6.4.1)

These equations are solved by ξΦ N
= 0. This equation is valid for an arbitrary diffeo-

morphism tangent to the boundary, therefore the symmetry group with this minimal

6.4 Boundary symmetry groups 89



background structure is the full Diff(N ). For later convenience, we parametrize an
arbitrary tangent vector as

ξ = τ(λ, xA)∂λ + Y A(λ, xB)∂A + . . . (6.4.2)

in affine coordinates.2 The ellipsis here denotes the extension of the vector field off the
hypersurface, which is for the moment arbitrary. The anomalies for this symmetry group
are determined via (6.1.6) by the choice of f and extension component ξ̄Φ. As explained
earlier, one can use the freedom in choosing these two quantities to eliminate partially or
completely the anomalies.

Next, we add the restriction that the tangent vector be fixed, δlµ N
= 0, as done for

instance in [51]. The residual diffeomorphisms must satisfy

δξl
µ N

= 0. (6.4.3)

The analysis of these three conditions can be split in two cases, corresponding to the
vertical and the horizontal components:

nµδξl
µ = nµlν£ξg

µν − δξ ln f
N
= 0 ⇒ restricts the extension (6.4.4)

mµδξl
µ = mµ£ξl

µ N
= 0 ⇒ restricts the allowed diffeos (6.4.5)

To understand the first condition as a restriction on the extension, observe that in adapted
coordinates it contains the term ∂Φξ

Φ. Hence this can be seen as an equation for the
component ξ̄Φ of the extension, and leaves the symmetry group Diff(N ) unchanged. To
understand the second restriction, it is easiest to take a coordinate system (λ, Φ, xA) with
λ affine parameter, so that (2.2.31) holds. Then

δξl
µ = (δξ ln f − ξ̄Φ)lµ − f∂λξµ N

= 0 ⇒


µ = Φ ξ ∈ TN
µ = λ ξ̄Φ = δξ ln f − ∂λτ
µ = A ∂λY

A = 0

(6.4.6)

The λ component shows that in these coordinates the extension is restricted via a function
of the time derivative of τ := ξλ and of δξf .3 Comparing with (6.1.6), we see that the
anomalies for these residual diffeos read

wξ = £ξ ln f − τ̇ . (6.4.7)

2Here τ is a free function and not the NP coefficient. NP notation will not be used in the rest of the
thesis.

3It should be clear that the equation can not be solved taking f as a function of an arbitrary extension,
because that would make the scaling of the normal dependent on the diffeomorphism considered.
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They are thus determined by the parameters of the symmetry vector field plus the choice
of f . The cross-section components A show that the tangential diffeomorphisms must be
time-independent, Ẏ A = 0. Namely they become Diff(S2) super-rotations as in [109, 81].
On shell of (6.4.6), the symmetry vector fields (6.4.2) reduce to

ξ = τ(λ, xA)∂λ + Y A(xB)∂A − Φ(τ̇ − δξ ln f)∂Φ + . . . , (6.4.8)

where the dots include the part of the extension left arbitrary.
These vector fields however do not close under the spacetime Lie bracket, see Ap-

pendix B.3 for a proof. It happens only if we require δξf = 0, or if ∆ξf = 0. The first
option is a priori more general since it can be achieved without any further restriction on
ξ simply requiring δlµ

N
= 0. Having done so, the vector fields are given by

ξ = τ∂λ + Y A∂A − Φτ̇∂Φ + . . . , τ(λ, xA), Y A = Y A(xB). (6.4.9)

The extension ξ̄Φ no longer depends on f , and is entirely determined by the parameters
of the symmetry vector fields at N . These vector fields close under the Lie bracket, and
span the subgroup

GaST := Diff(S) nRN ⊂ Diff(N ). (6.4.10)

Here aST stands for ‘arbitrary time-dependent super-translations’. The semi-direct
product structure follows from (B.3.2), and it means in particular that the identification
of the parameters with Y A and τ is not canonical, but relies on the choice of affine
coordinates we made. This is a situation familiar from the BMS and CFP groups.

There is also another way to understand the importance of adding the condition
δlµ

N
= 0. Without it, the four conditions (6.4.1) and (6.4.6) imply only three restrictions

of the metric variations, because varying f does not affect the metric. Therefore the
residual diffeomorphisms (6.4.8) do not correspond to a complete gauge fixing like (2.2.29).
Imposing δlµ

N
= 0 turns the four conditions into four conditions on the metric variations,

given by:
δlµ = δlµ

N
= 0 ⇒ lµδgµν

N
= 0. (6.4.11)

Notice that the last equation is class-III invariant, hence the symmetry group satisfying
lµδξgµν

N
= 0 depends only on the equivalence class of normals and not on a choice of

representative. Diffeomorphisms preserving this condition satisfy lµ£ξgµν = 0. In affine
coordinates, and restricting ξ to be tangential, we get

ξΦ
N
= 0, ∂Φξ

Φ + ∂λξ
λ N

= 0, ∂λξ
A N

= 0, (6.4.12)
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that coincide with the restriction of (6.4.6) to δξf = 0.4

Let us now see the effect of adding δk = 0 on top of the previous conditions. From
(5.3.23) we have

δξk = −1

2
nµ∇µ(lνlρ£ξg

νρ)
N
= 0. (6.4.13)

This equation involves the first derivatives off the hypersurface of the metric. What it does
is to further restrict the diffeomorphisms to preserve the condition of affine coordinates,
namely the metric in the form (2.2.31), as opposed to the more general form (2.2.29). It
is easy to see that in affine coordinates the equation simplifies to

τ̈ = 0. (6.4.14)

This means that we can write τ = T (xA) + λW (xA) in terms of a supertranslation with
parameter T and a Weyl transformation with parameter W . We have thus recovered the
symmetry group of [36],5

GCFP := (Diff(S) nRS
W ) nRS

T , (6.4.15)

with vector fields
ξ = T∂λ + Y A∂A +W (λ∂λ − Φ∂Φ) + . . . . (6.4.16)

As for the anomaly, this is still given by (6.4.7), now

wξ = T∂λ ln f +W (λ∂λ ln f − 1) + Y A∂A ln f. (6.4.17)

To be precise, this is the symmetry group if N is complete. If it is semi-complete instead,
super-translations must be dropped because they do to preserve the boundary of N [36].
This happens for instance if N is the boundary of a causal diamond [110] or a light-cone.

If the covariant phase space is restricted to describe only NEHs, then the background
structure can be strengthen even more to allow for a constant rescaling only of the normal,
and then the group is restricted to constant W ’s [45],

GNEH := (SL(2,C) nRS
T )×RW . (6.4.18)

Let us comment on the method we used to derive the symmetry groups GaST and
GCFP. This was based on identifying the diffeomorphisms that preserve the variations
required to vanish, as opposed to the more common approach in the literature that

4Notice that it is necessary to restrict upfront to tangential diffeomorphisms, otherwise one obtains the
larger set of solutions with ξΦ N

= f(xA). We also point out that the weaker set lµδgµν = 0 misses
∂λξ

µ + ∂Φξ
Φ = 0, namely (6.4.4).

5The same group appears also at future null infinity under generalized fall-off conditions compatible
with finiteness of the symplectic potential [46], and was in that context called BMSW group.
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consists on identifying the isometries of the background structure. But it is easy to prove
the equivalence of our method in this context. From (6.1.6), we see that δξlµ

N
= 0 is

equivalent to £ξl
µ N

= wξl
µ, namely the diffeomorphisms that preserve the equivalence

class [lµ = Alµ]. Same story for δξlµ
N
= 0. For δξk

N
= 0, we see from (6.2.1) that is

equivalent to £ξk
N
= wξ(k + £l lnwξ), namely the diffeomorphisms that preserve the

equivalence class (2.2.8). The three equations for the Lie derivatives of lµ, lµ and k are
indeed the conditions used in [36].

We also remark the importance of using affine coordinates in order to solve for the
vector fields that satisfy the phase space restrictions. The conditions (6.4.3) and (6.4.22)
are in fact complicated in arbitrary coordinates, and boil down to simple statements about
time-independence in affine coordinates. More importantly, the ξ’s solving these equations
in arbitrary coordinates depend explicitly on the metric, and can be characterized in a
metric-independent way only in affine coordinates. What makes affine coordinates special
is that they corresponding to a gauge fixing whose preservation coincides with preserving
the background structure. Otherwise one cannot describe the symmetry vector fields in a
universal way, and must work with field-dependent diffeomorphisms.6

How about the Robin-type condition (5.3.58)? In this case, (6.4.13) is replaced by

δξk = −1

2
£l(∇ · ξ), (6.4.19)

which in affine coordinates becomes

τ̈ =
1

2
∂λ(τθ +DAY

A). (6.4.20)

The novelty with respect to the previous cases is the metric-dependence of the equation
in affine coordinates. For instance the RHS vanishes for a NEH, but not in general. We
will study an explicit non-zero solution below. We don’t know the general solution to this
equation, but it is clear that it will be a metric-dependent function τ = τ(λ, T,W, Y ; g),
where T (xA) and W (xA) are integration constants. The space of parameters is the same
as (6.4.15), however without the explicit solution we cannot even check whether they
close under the Lie bracket and form a subgroup of diffeomorphisms. Working with these

6This observation should be contrasted with the analysis in the CFP paper, where the vector fields where
characterized in a metric-independent way independently of the choice of coordinates. We believe
that the reason for this is that their characterization is done directly in terms of intrinsic quantities
on the hypersurface only, and therefore in a metric-independent way (as shown by (6.4.11), it is only
by looking at spacetime restrictions that the symmetry group can be seen as preserving a metric
gauge-fixing). We also remark that when they construct a spacetime diffeomorphism representative
of the symmetry, they define it to match the intrinsic diffeomorphism when restricted to N , see
their (5.6). We can do the same here: once the metric-dependent vector fields are found in arbitrary
coordinates, we can do an intrinsic diffeomorphism on N that maps them to the metric-independent
one in affine coordinates.
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Robin boundary conditions one seems therefore to be forced to deal with field-dependent
diffeomorphisms, which complicates things significantly.

We have shown what happens when one implements one by one the vanishing of
nµδl

µ, δlµ, δlµ and δk, and how it determines the symmetry groups Diff(N ), GaST and
GCFP and their anomalies. We proceeded in this specific order, because it is the one that
appears the most useful to us, but with the same method one can consider any mixture of
partial implementations. Let us briefly comment on a few of these partial alternatives.

The condition (6.4.14) can be derived also without imposing the condition δlµ
N
= 0.

To see that, we start from the general formula (5.3.22). Restricting to δlµ N
= 0, we have

δk =
1

2
lµlνnρ∇ρδgµν − nµlνlρ∇ρδgµν . (6.4.21)

The residual diffeomorphisms preserving this condition must satisfy

δξk = lµlνnρ(Rσ
µνρξσ −∇µ∇νξρ)

N
= 0. (6.4.22)

The term in bracket can be recognized as a property of a Killing vector, but the allowed ξ’s
are here more general since only a specific scalar contraction of that term is being imposed
to vanish, and on the hypersurface only. The ξ’s solving this equation are complicated
functions of the metric in general, but in affine coordinates it gives back (6.4.14). As
explained earlier though, in the extended phase space with δlµ 6= 0 the vector fields don’t
close under the spacetime Lie bracket, and do not correspond to the residual gauge fixings
preserving (2.2.31).

Suppose now that we require δlµ
N
= 0 and/or δk = 0 without fixing lµ. Imposing

δξlµ
N
= 0 can only be solved if δf = 0, which imposese no restriction on the symmetry

vector fields. Without nµδξlµ = 0 the extension ξ̄Φ is left arbitrary, and so is the anomaly
which is given by the general formula (6.1.6). Therefore the charges depend not only on
the parameters of the symmetry on N , but also on ξ̄Φ. The relevant symmetry vector
fields are thus ξa∂a + Φξ̄Φ∂Φ. They close under the Lie bracket and span the subgroup
Diff(N ) ⊗ R parametrized by four free functions on N . The physical relevance of a
symmetry group not intrinsic to the boundary is unclear to us. It means in particular
that the charges can have arbitrary values even though the restriction of the vector field
to the boundary vanishes. Therefore this enlarged phase space appears not to provide a
good handle for the study of dynamical geometric properties of a null hypersurface.7

Preserving k on top of δξlµ
N
= 0 leads to

δξk
N
= 2lρ∇(µξρ)nν∇µlν − lµlνnρ∇ρ∇µξν . (6.4.23)

7A different viewpoint is taken in [105], where it is argued that this additional free parameter should be
taken seriously as a characterization of the near-null hypersurface geometry.
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This equation is not class-III invariant, therefore the diffeos solving this equations depend
on the choice of normal, and cannot be characterized in purely geometric terms. For
instance for a vertical diffeo ξ = τ∂λ, we get k(£l + k)τ/f = 0, which is solved by any
τ for k = 0, and by τ̇ = (ḟ − k)τ/f for k 6= 0. The situation is similar if we preserve k
without preserving lµ, just the above equation become more complicated, and remains
not class-III invariant. We conclude that imposing δk N

= 0 without δlµ N
= 0 leads to

symmetry groups which depend on structures unrelated to the geometry of N . Related
boundary conditions and symmetry groups appear also in [111, 112, 113, 87, 114].
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7Charge prescriptions

In this chapter, we explore two widely-
recognized prescriptions for defining charges:
the Improved Noether Charge Prescrip-
tion [34, 40, 36, 115, 94] and the Wald-
Zoupas Prescription [33]. Both of these
methods provide frameworks for solving the
integrability problem by choosing a charge-
flux split, an issue we discussed in Sec-
tion 4.3.3. After outlining the basics of each
prescription, we put forth a new comparison
between them. Specifically, we demonstrate
that the Wald-Zoupas approach is applicable
to gravitational charges even when anoma-
lies and field-dependent diffeomorphisms are
present, but only if there is a particular re-
lationship between these elements. We use
BMS symmetries as a case study to high-
light the kinds of anomalies that are permis-
sible within this framework. These allow-
able anomalies are revealed to correspond
to ‘soft terms’ in the charges. We also in-
vestigate whether the WZ can be aligned

with the improved Noether Charge. We
find that this alignment is possible under
certain conditions defined by a specific dif-
ferential equation. Our findings clarify why
the WZ prescription remains effective even
in the face of the anomalous behavior as-
sociated with BMS transformations. This
should serve as a useful reference for those
seeking to navigate the complex literature
concerning surface charges. The results of
this chapter have been published in [35].

7.1 IMPROVED NOETHER CHARGE

FROM PHASE SPACE POLARIZA-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 WALD-ZOUPAS PRESCRIPTION . . . . . . .104

7.3 EXTENDING THE WZ PRESCRIP-
TION TO NON-FIELD-EXACT COR-
NERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

7.4 BMS CHARGES AT FUTURE NULL

INFINITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

In order to understand the prescriptions, it is important to recall that the covariant
phase space constructed in Chapter 4 is not unique, because of the existing freedom
in choosing the symplectic potential. This freedom is two-fold [41]: first, we can add
an arbitraty spacetime-exact 3-form dα to a θ satisfying (4.2.7) without spoiling its
relationship with the Lagrangian; and second, we can add a boundary term to the
Lagrangian, without affecting the field equations or the symplectic structure. These two
cohomological ambiguities (one in spacetime and one in field space) are summarized by

L→ L+ dY, θ → θ + dα + δY, ω → ω + δdα. (7.0.1)

In particular, the Noether charge defined via (4.3.12) depends on the choice of represen-
tative, and transforms as

qξ → qξ + iξY + Iξα. (7.0.2)

For a given L, we refer to the choice of θ obtained simply removing d as the ‘bare’
choice. This choice follows if the symplectic potential is defined using Anderson’s homotopy
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operator [83, 116, 117, 10, 14], which is the approach taken in [40]. Another mathematical
way to eliminate the freedom is to require the Noether current (4.3.12) to be weakly
vanishing [10]. These choices are convenient for bookkeeping and can always be made,
but they are not needed to obtain the results used and derived here. In the rest of the
chapter, we will consider arbitrary θ’s, without any a priori mathematical prescription.

7.1 Improved Noether charge from phase space
polarization

The main idea that Wald and Zoupas had is that the ambiguities in the definition
of the charges should be resolved by deciding under which physical requirements the
charges are to be conserved. Mathematically, this can be controlled trading the initial
symplectic potential θ (be it the bare one or any other chosen one) for a symplectic
potential such that its pull-back on the lateral boundary B vanishes in the subset of
the phase space corresponding to a desirable physical requirement, such as a choice of
conservative boundary conditions, or a choice of stationarity conditions. In practice, one
takes the pull-back to the lateral boundary and decomposes it as follows,

θ = θ′ − δ`+ dϑ, (7.1.1)

where θ′ is required to be in the form pδq for some choice of polarization of the phase
space. The new θ′ corresponds to L′ := L + d`, namely a theory with the same field
equations, and is equivalent to θ under the freedom (7.0.1). The idea of changing from
the initial θ to a physically motivated θ′ dates back to [32] and [33], was generalized
in [118] and [34] to include the corner potential ϑ, and takes a central role in various
follow-up works [14, 85, 94, 40, 38].

The terms ` and ϑ appearing above are produced by the manipulations needed to
put (the pull-back of) θ in the chosen θ′ form. The explicit form of ϑ depends also on
the representatives chosen for θ and θ′. Since we require θ′ = pδq, ` is manifestly the
boundary term to be added to the Lagrangian to have a well-defined variational principle
with those boundary conditions. However (7.1.1) does not identify a unique `, since the
condition is still satisfied under the replacement

(`, ϑ)→ (`+ dc, ϑ+ δc). (7.1.2)

Therefore, for a given representative θ, one can compute a unique ϑ only once a choice
for θ′ and ` is made.1 For instance, a non-vanishing ϑ occurs for Dirichlet boundary

1Unique ϑ up to addition of exact 2-forms, but these will be irrelevant in the following since we will only
look at compact corners. Accordingly, we will ignore all 2d-exact forms in the rest of the paper. Notice
also that fixing both θ′ and ` can be equivalently seen as fixing θ′ and ϑ. This is the viewpoint taken
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conditions if L is the Einstein-Hilbert Lagrangian and ` is the Gibbons-Hakwing-York
term, as established as early as [119]. As observed there, the resulting ϑ shifts the
symplectic 2-form,

ω′ = δθ′ = ω − dδϑ. (7.1.3)

We want to characterize the physical situations in which the new symplectic potential
vanishes on the lateral boundary B, namely

θ′
B
= 0. (7.1.4)

Since it is in the form θ′ = pδq, we can distinguish two cases, depending on whether it is
δq or p to vanish, and which we name following [33].

Case I: We impose conservative boundary conditions δq B= 0. The new symplectic 2-form ω′

also vanishes on the lateral boundary,

ω
B
= 0, (7.1.5)

and therefore is preserved between the initial and final space-like hypersurfaces.
This makes the system conservative, hence the name. In other words, the system is
in case I within each cotangent space at fixed q, but not for trajectories that vary
both p and q.

Clearly, different choices of conservative boundary conditions are possible, corre-
sponding to different choices of polarizations, and this turns out to affect the charges.
This will be the topic of the next two chapters.

Case II: There exist solutions for which p B
= 0. They provide a notion of stationary back-

grounds, whose precise nature depends on the form of p, namely on the polarization
chosen. We can distinguish two situations, one in which all p’s vanish, and one in
which only some vanish, and (7.1.4) is achieved by the vanishing of the complemen-
tary δq’s. Either way, the symplectic 2-form ω′ is not conserved,

ω
B

6= 0, (7.1.6)

because there are no restrictions on the variations δp and at least some of the δq’s.

Notice that one typically imposes some boundary conditions also in case II, weaker
than the conservative ones, and needed to preserve a certain boundary structure of physical
relevance, for instance in order to characterize graviational radiation. The boundary

in [38], where the chosen quantities are referred to respectively as boundary and corner (symplectic)
fluxes. The freely choosable ϑ’s have to be related by (7.1.2), just like the freely choosable θ’s have
to be related by (7.1.1).
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structure shared by a certain class of metrics is referred to as their universal structure.
The conservative boundary conditions of case I are of the same type that are used in the
variational principle, while we refer to the generic, weaker set of boundary conditions of
case II as radiative or leaky.

It should be stressed that we are making these characterizations with the goal of
resolving the ambiguities in the charges, and not of restricting the phase space. Once the
corresponding θ′ is chosen, we compute the associated charges, and then we use them
in the full phase space. This means that charges defined using conservative boundary
conditions will not be conserved in the full phase space, and charges defining using a
specific stationarity condition will not be conserved when evaluated around any other
solution not respecting it. Clearly, charges constructed using the different perspectives
of Case I and II but corresponding to the same polarization are equal and have equal
properties.

The formulas for charges associated with the new symplectic potential θ′ take exactly
the same form as before, namely [40]

j′ξ := Iξθ
′ − iξL′ − a′ξ =̂ dq′ξ, (7.1.7)

/δdhξ := −Iξω′ =̂ d
(
δq′ξ − iξθ′ − q′δξ − A′ξ

)
, (7.1.8)

where L′ = L + d` and ω′ = δθ′. In other words, the formalism allows one to treat all
choices on equal footing. Again, the infinitesimal Hamiltonian generator depends only
on θ′, whereas the Noether charge depends on θ′ but also explicitly on the boundary
Lagrangian ` via its anomaly: (θ′, `) 7→ q′ξ. In particular, q′ξ depends on any corner term
that may be present in the choice of `, which is not visible from L′ and θ′. The relation
between the Noether charges associated to (θ′, `) and the initial ones is2

q′ξ = qξ + iξ`− Iξϑ. (7.1.9)

Keeping the primed notation is useful if we want to compare boundary-improved charges
to specific bare charges. For instance, take L to be the Einstein-Hilbert Lagrangian,
and θ its bare symplectic potential. Then qξ is the original Noether charge [83], given
by the Komar formulas and their limitations. If we add the boundary Lagrangian `

given by the Gibbons-Hawking-York term and choose the Dirichlet polarization for θ′,
the improved Noether charges give the Brown-York formulas [32, 34], as we will show in

2The reader may notice a notational hiccup at this point. Logically, it would make more sense to denote
the boundary Lagrangian `′, so that one can use ` to refer to whatever choice of corner was present in
the initial qξ. Accordingly, one should add primes on both ` and ϑ on the right-hand side of (7.1.1),
and following formulas. We choose not to do so and instead follow the notation of [40]. This allows us
to keep the notation lighter, and also refer to that paper for all proofs. Notice also that the practical
use we will make of the unprimed notation will be to specialize to the bulk covariant Lagrangian with
no boundary term, so no confusion will arise as to what ` refers to.
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Chapter 8. In [42] we referred to this prescription as Freidel-Geiller-Pranzetti formula,
since we used the notation of [14], but given the number of authors contributing to
these developments, it seems fair to simply talk about improved Noether charges. The
improvement with respect to the original, ‘bare’ Noether charges, is two-fold. First,
the Brown-York formulas give the correct ADM charges at spatial infinity [120], unlike
the Komar formulas. Second, (7.1.9) can be made invariant under the cohomological
ambiguities (7.0.1) [94, 38]. Indeed, if we require that the choice of polarization θ′ is kept
fixed under (7.0.1), we have (`, ϑ) → (` − Y, ϑ + α), therefore even if qξ changes as in
(7.0.2), q′ξ is invariant. In other words, it is the prescription of working with a unique θ′

that eliminates these ambiguities.
On the other hand, fixing θ′ alone is not sufficient to obtain a unique charge, because

as anticipated above, q′ξ depends also on the boundary Lagrangian chosen. This can be
seen explicitly observing that (7.1.9) is affected by the corner ambiguity (7.1.2), which
leads to [38]

q′ξ → q′ξ −∆ξc. (7.1.10)

Therefore even if the cohomology ambiguities (Y, α) are fixed by the choice of θ′, there is
still an ambiguity in the charge if anomalies are present. This ambiguity is removed if one
does not prescribe only θ′ but also a specific choice of `, thus fixing c.3 At least in the
case of the WZ prescription, what we will find is that the corner shift is not related to
corner terms in the action principle, but rather in removing anomalies from the boundary
Lagrangian.

Let us now discuss how the restriction (7.1.4) affects integrability, and the ensuing
relation between the improved Noether charge and the Hamiltonian generator. Consider
first the familiar case of no anomalies and δξ = 0. When (7.1.4) holds, the improved
Noether charge q′ξ is conserved (this follows because the ξ’s allowed in the covariant phase
space are tangent to the boundary, and thus the second term in (7.1.7) vanishes taking the
pull-back). The Hamiltonian generator (7.1.8) is integrable, and the Hamiltonian coincides
with q′ξ, up to constant terms in field space. Such terms can be fixed for instance looking
at a reference solution [33], requiring the Hamiltonian charges to vanish there. Having
established this, one can take the prescription of using the improved Noether charges in
the full phase space. This prescription gives charges that by definition have the useful
property of being conserved and Hamiltonian generators in the conservative or stationary
subspace. Notice that this prescription is equivalent to defining the charges starting
3This may be taken as a suggestion that what matters to get unique charges is prescribing a specific

action principle including boundary and corner terms, as pointed out in [94, 38]. However more work
is needed in our opinion before this suggestion is borne out, because counter-examples exist, both ways.
Going one way, one can think of the example of adding an anomalous corner term (hence changing
the charge) but which is globally defined (hence not entering as corner terms in the action principle).
Going the other way, the example of time-like boundaries with non-orthogonal corners reviewed below
in Section 8.3 shows that there is no corner shift needed to get the BY charges corresponding to the
WZ prescription even though there are corner terms in the action principle.
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from the Hamiltonian generator and subtracting the flux, since −Iξω′ + diξθ
′ = dδq′ξ.

The important point to stress is that q′ξ is not associated to an arbitrary choice of
symplectic potential, but to the physically preferred θ′. This removes any ambiguity in
the procedure.

In the general case with δξ 6= 0 and anomalies, we can compare the Hamiltonian gen-
erator and the improved Noether charge as follows. When (7.1.4) holds, the Hamiltonian
generators are integrable iff there exists a functional X such that

dY = δX, (7.1.11)

where
Y = −q′δξ − A′ξ. (7.1.12)

This requirement means that

X = dsξ + Cξ, δsξ = Y, (7.1.13)

and Cξ is a constant in field-space. If this condition is satisfied, we can again prescribe
the charges on the full phase space subtracting the symplectic flux, via

δdhξ:=− Iξω′ + diξθ
′ =̂ d

(
δq′ξ − q′δξ − A′ξ

)
= δd(q′ξ + sξ). (7.1.14)

The first equality follows from (7.1.8), and the second from (7.1.13). This formula
provides a definition for the Hamiltonian charge associated to the physically selected θ′,
and works only if the anomalies satisfy the descent-type equation (7.1.11). This is not
yet the WZ prescription but a generalization thereof, since as we will review in the next
section, the WZ prescription makes additional requirements than just a specific pδq form
of θ′.

From the definition (7.1.14) it follows that

hξ = q′ξ + sξ, (7.1.15)

up to field-space constants as before (the constant Cξ above drops out on the other hand).
Because of the extra term sξ, the prescription (7.1.14) associated with the chosen θ′ does
not coincide in general with the improved Noether charge q′ξ associated with a given (θ′, `).
However, there are two interesting remarks to make at this point. First, the formula
(7.1.8) is invariant under the corner Lagrangian shift (7.1.2), unlike the improved Noether
charge which changes according to (7.1.10). Therefore, we can change the boundary
Lagrangian by a corner term without affecting the Hamiltonian generator, and use this
freedom to find a corner-improved Noether charge that matches the Hamiltonian charge.
In other words, one can ask whether there is a choice of ` compatible with (7.1.1) such
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that its Noether charges match the Hamiltonian prescription. Comparing (7.1.10) with
(7.1.15), we see that the matching is possible if there exists a corner term c whose anomaly
reproduces the integrable anomalies appearing in (7.1.13), namely

∆ξc = −sξ. (7.1.16)

If such c exists, the corner-improved Noether charge associated with θc = θ′ and `c = `+dc

matches the Hamiltonian charge,4

qc

ξ = q′ξ + sξ ≡ hξ. (7.1.17)

To be precise, the last equivalence is only up to the field-space constants mentioned above,
since these can be freely added to hξ in order to satisfy special vanishing requirements,
but not to qc

ξ which is defined uniquely. The condition (7.1.16) is a partial differential
equation that relates the corner improvement to the allowed anomalies of the symmetry
vectors ξ. We will see below in the case of future null infinity an example of this equation
and of its solution. In general, we don’t know whether it is always possible to solve it.
Whenever it is, the generalized WZ charge (7.1.14) can always be derived as an improved
Noether charge. We will show in the next section that the WZ additional requirements
allows us to get a more explicit form for sξ, and we will make more comments about
solving it then.

The second remark is that the flux of this corner-improved Noether charge is still
anomalous, since it is given by

dqc

ξ = Iξθ
c − ac

ξ = Iξθ
′ − a′ξ + dsξ. (7.1.18)

This provides also the flux of the Hamiltonian charge (up to the usual field-space con-
stants), since the δ-variation of the above expression must match (7.1.14). Therefore,
the charges are not automatically conserved when (7.1.4) holds. Clearly, additional
physical requirements could be useful to achieve conservation when θ′ vanishes on the
lateral boundary. We will see next that the WZ prescription provides precisely such
missing requirements, by forcing ac

ξ = 0. As a result, Iξθ′ gives the flux responsible for
the variation of the charges, and one obtains charges that are conserved under the desired
circumstances for which θ′ vanishes.5

4The notation c stands for corner-improved, and should not be confused with the notation for covariant
used in [38]. We don’t use any specific notation for covariant quantities, although typically we will
associate them with the initial, unprimed quantities.

5Even if the variation of the charges is given in the end by Iξθ′, it is still preferable to characterize the
physical requirements such as stationarity in terms of θ′, as requirements on Iξθ′ may be ambiguous.
We will see in Chapter 9 an example of such an ambiguity.
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7.2 Wald-Zoupas prescription
We now review the WZ prescription from [33] and highlight the additional inputs

that are brought in with respect to the previous general discussion. The prescription is
based on removing the radiative part from the symplectic flux, identified making use of
a background structure that can be attributed to the lateral boundary. To do so, one
selects a symplectic potential θ̄ based on three criteria:

0. It must be a potential for the pull-back of the symplectic 2-form on the boundary,
namely

ω
←

= δθ̄. (7.2.1)

1. It must be a local and covariant functional of the dynamical fields and background
structure. This is sometimes assumed to imply vanishing anomalies and field-
independent diffeomorphisms, but we will see shortly that it is more general than
that – and this is crucial for understanding the future null infinity results.

2. It should vanish for conservative boundary conditions, case I presented earlier, or for
arbitrary perturbations around stationary solutions, case II. The latter means that
it must be of the form F (g)δg where F (gstationary) = 0. In reference to the earlier
discussion, if we think of θ̄ as a certain pδq polarization, then WZ stationarity is of
the type p = 0.

Ideally, these criteria should be enough to single out a unique choice for θ̄, and this
is indeed the case in the examples that we will review below. In case II, the preferred
θ̄ satisfying all criteria is identified as the radiative symplectic flux, namely, a quantity
whose vanishing means that all metrics sharing the background structure agree that the
solution is stationary. As a consequence of the requirements made, one typically obtains

θ̄ = θ + δb, (7.2.2)

for some non-vanishing b defined on N . We can interpret this formula as a special case of
(7.1.1), where θ′ = θ̄ has to satisfy the WZ requirements above, b is the pull-back of a
boundary Lagrangian up to the corner ambiguity (7.1.2), and ϑ vanishes or is at most
a total variation so that it can be reabsorbed in b. An arbitrary dϑ cannot be present
because it would violate (7.2.1) hence condition 0.

The WZ prescription for the integrable charges is then to subtract the radiative flux
on N ,

/δdqWZ

ξ :=− Iξω + diξθ̄ =̂ d
(
δq̄ξ − q̄δξ − Āξ

)
. (7.2.3)

This is the same formula that we discussed in the previous section. The novelty is the
additional restriction given by conditions 0 and 1. To study the most general situation
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under which the WZ prescription works (namely if we can replace /δ with δ), let us look
closely at the covariance requirement. This property, as spelled out in footnote 9 of [33],
translates in our notation to6

∆ξθ̄ + Iδξθ̄ = 0 ⇔ (δξ −£ξ)θ̄ = 0. (7.2.4)

In other words, the anomaly of θ̄ and the allowed field-dependent diffeomorphisms are
constrained, so that θ̄ is covariant: its field-space derivative coincides with the spacetime
Lie derivative.7 This condition is indeed sufficient to guarantee integrability, since we can
rewrite (7.2.3) using

−Iξω + diξθ̄ = δIξθ̄ −∆ξθ̄ − Iδξθ̄ ⇒ /δdqWZ

ξ = δdqWZ

ξ = δIξθ̄, (7.2.5)

namely
dqWZ

ξ =Iξθ̄ (7.2.6)

up to (spacetime exact) field-space constants, that can be used as described earlier if one
needs to set the charges to zero for a specific reference solution.

On the other hand, the WZ covariance requirement does not imply that all anomalies
vanish. However, it implies some restrictions. Indeed, we know that :

∆ξθ̄ = ∆ξθ + δ∆ξb−∆δξb = δāξ − āδξ + dĀξ (7.2.7a)

Iδξθ̄ = dq̄δξ + aδξ. (7.2.7b)

6Referring to the background fields as χ and the dynamical fields as φ, the requirement spelled out in that
footnote is θ̄(χ, ϕ∗φ, ϕ∗δφ) = ϕ∗θ̄(χ, φ, δφ), and assumes the transformation law δφ 7→ ϕ∗δφ. This
transformation law is fine if the diffeomorphism is field-independent, but if it is field-dependent, one has
to use δφ 7→ δ(ϕ∗φ) in order for the total system background+perturbation to be physically equivalent
after the diffeomorphism. Accordingly, the WZ requirement should be modified to θ̄(χ, ϕ∗φ, δ(ϕ∗φ)) =
ϕ∗θ̄(χ, φ, δφ). At the linearized level, this gives

θ̄(χ,£ξφ, δφ) + θ̄(χ, φ, δ£ξφ) = £ξ θ̄(χ, φ, δφ) = θ̄(£ξχ, φ, δφ) + θ̄(χ,£ξφ, δφ) + θ̄(χ, φ,£ξδφ),

from which (7.2.4) follows. In a previous version of the paper on arXiv, we considered a stronger
condition in which ∆ξ θ̄ and Iδξ θ̄ vanish individually. This is not necessary, and the correct version
leads us to simpler equations when applied to the BMS analysis.

7However, it can be convenient to define the non-convariance by the vanishing of the anomaly rather
than the equality between the spacetime lie derivative and the phase space derivative. Indeed, even
the Eintein-Hilbert lagrangian is not covariant with the latter definition while it is anomaly free.
Howeevr, if we interpret the covariant condition of Wald and Zoupas by setting ∆ξ θ̄ = 0 only, then
−Iξω + diξ θ̄ = δIξ θ̄ − Iδξ θ̄ is still a boundary term but not necessarily an exact form in field space
anymore and so we cannot write −Iξω + diξ θ̄ = δdqWZ

ξ anymore. In other words, we are not even
guaranteed to be able to write −Iξω = δdhξ in the non radiative case, this is why we considered the
equality between the phase space and spacetime Lie derivatives as a better notion of covariance for
the WZ procedure including field dependent diffeomorphisms.
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In the first we used ∆ξθ
←−

= ∆ξθ which is valid for tangent ξ. Hence, (7.2.4) gives :

∆ξθ̄ + Iδξθ̄ = δāξ + d(Āξ + q̄δξ) = 0 (7.2.8)

or :
δāξ = −d(q̄δξ + Āξ). (7.2.9)

In the above formula one can freely replace Āξ with Aξ, since anyways there is no corner
difference between θ̄ and θ. This relation is a special case of (7.1.11), in which X is
determined by the Lagrangian anomaly āξ. As a consequence,

āξ = dsξ + Cξ, δsξ = −q̄δξ − Aξ. (7.2.10)

We see that the WZ covariance requirements (7.2.4) are compatible with the presence
of field-dependent diffeomorphisms and anomalies, provided δξ, aξ and ∆ξb are related by
(7.2.9). We refer to such WZ-compatible anomalies as mild or soft anomalies. We will
see below an example that justifies this name. This is the most general situation allowed
by the WZ requirements, and as seen above it is enough to guarantee integrability of
their prescription for the charges. If we compare with the generalized WZ prescription
(7.1.14), we see that (7.2.9) is a special case of the integrability condition (7.1.11). The
restriction comes from having added conditions 0 and 1.

We stress that we have done nothing new concerning the charges: we have merely
re-derived the same formula of WZ, namely (7.2.6), under the same conditions as they did.
Our only contribution is to point out that such conditions, and therefore the derivation,
do admit anomalies, provided they are soft in the above sense.

Now that we have clarified that the WZ prescriptions also works in the presence
of the soft anomalies, we can ask if it is possible to interpret the resulting charges as
improved Noether charges for some specific choice of boundary Lagrangian. The reason
why this is not obvious is that since āξ 6= 0, we have

Iξθ̄ = dq̄ξ + āξ, (7.2.11)

where
q̄ξ := qξ + iξb, āξ := aξ +∆ξb. (7.2.12)

This can be proved from (7.2.2), or read off directly from (7.1.7) using the fact that
we can interpret b as a boundary Lagrangian.8 The compatibility of this equation with
(7.2.6) follows from (7.2.9), and if āξ 6= 0 there is a mismatch.

Accordingly, we can distinguish three situations, depending on what anomalies are
present:

8That fact that b is only defined on the boundary, namely that db ≡ 0, does not affect the derivation.
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(a) The preferred symplectic flux θ̄ is associated to a total Lagrangian L+ db without
anomalies. Then āξ = 0, and we have

qWZ

ξ = q̄ξ = qξ + iξb. (7.2.13)

In this case, the WZ charge coincides with an improved Noether charge with
boundary Lagrangian ` = b and vanishing ϑ. The flux formula (7.2.6) is consistent
with (7.2.11) since the anomaly vanishes.

Remark: covariance of both θ and θ̄ is not enough to guarantee āξ = 0, see (4.3.11).

(b) There are soft anomalies, and Cξ = 0. Then

āξ = dsξ, δsξ = −q̄δξ − Aξ. (7.2.14)

Then
qWZ

ξ = qξ + iξb+ sξ. (7.2.15)

It differs from the improved Noether charge q̄ξ that would be immediately associated
with (7.2.2), namely with boundary Lagrangian ` = b and ϑ = 0. Notice that the
additional term sξ is precisely the shift in the charge required so that the anomaly
is removed from its flux, and this is how (7.2.11) is mapped to (7.2.6). When
anomalies are present, the WZ prescription eliminates them from the flux, and puts
them in the definition of the charge.

Next, we can ask if there exists a choice of boundary Lagrangian whose improved
Noether charges reproduce the same shift. This is possible if q̄ξ and qWZ

ξ are related by
(7.1.9), namely if we can find a corner term that satisfies (7.1.16), the same general
equation of the previous section applies here. If a solution to this equation exists,
then the WZ charge is the improved Noether charge qc with boundary Lagrangian
`c = b+ dc. This fixes the corner ambiguity in the charges. Notice that ∆ξ`

c = −aξ
and that `c is not unique, since any further shift by an anomaly-free corner term
will also work, and produce the same charges.

Remark: If we start from a covariant Lagrangian, aξ = 0 and the required shift can
be identified computing the anomaly of b,

āξ = ∆ξb = dsξ. (7.2.16)

As a consequence, the corner-improved boundary Lagrangian is covariant,

∆ξ`
c = ∆ξb+ d∆ξc = 0. (7.2.17)
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If furthermore the starting θ is also covariant, then Aξ = 0 and

δsξ = −q̄δξ. (7.2.18)

This means that q̄δξ is integrable, and exposes an interesting interplay that occurs
between soft anomalies and field-dependent diffeomorphisms. This interplay will be
crucial below to understand why one can do calculations for the BMS group passing
over anomalies.

From this analysis we deduce that when it is possible to reproduce the WZ charges
as improved Noether charges, the latter can be identified a priori as those associated
with a covariant choice of bulk and boundary Lagrangians. All allowed anomalies
can be restricted to corner terms. Again `c is not unique, since adding anomaly-
free corner terms will give the same charges. Therefore, it is enough to pick any
representative in the class of anomaly-free Lagrangians.

(c) A general soft anomaly is present, including Cξ. The flux of the improved Noether
charge contains an extra term with respect to the WZ flux. The two equations are
still compatible because (7.2.6) is valid up to field-space constant terms. If Cξ is
spacetime-exact it can be reabsorbed in the Hamiltonian charge, and the matching
with an improved Noether charge can be obtained following the same analysis as
case (b). If Cξ is not spacetime-exact, the matching is not possible. We could not
find any examples in which this situation occurs, but we have no arguments to rule
it out either. Lacking both, we refrain from drawing any conclusions about this
case.

Notice that (7.2.18) can also be proven directly from Noether’s theorem, as follows.
For an arbitrary δξ and assuming no anomalies in the initial Lagrangian and symplectic
potential, we have

dqδξ = Iδξθ − iδξL = Iδξθ − iδξL = (δξ − Lξ −∆ξ)θ − iδξL
= (δξ − Lξ)(θ̄ − δb)− iδξL = −(δξ −£ξ −∆ξ)δb− iδξL = −δ∆ξb−£δξb− iδξL.

(7.2.19)

If δξ is now restricted to a symmetry vector, it is tangent and thus the last term vanishes.
Using this and £δξb = diδξb, we recover (7.2.18). This alternative derivation highlights
that a non-vanishing qδξ means that one is working with a symplectic potential that is not
covariant, in spite of not being anomalous, because Iδξθ 6= 0. In this case, the covariance
requirement of the WZ flux means trading

∆ξθ = 0, Iδξθ 6= 0 ⇒ ∆ξθ̄ = −Iδξθ̄ 6= 0. (7.2.20)
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Summarizing, the WZ covariance requirement is enough to guarantee that the anomaly
and field-dependent diffeomorphism contributions to (4.3.13) are integrable. The WZ
prescription (7.2.3) can be interpreted as an improved Noether charge constructed so to
have the anomalous term āξ shifted from the flux to the definition of the charge. This
shift can be identified a priori if it possible to find a covariant boundary Lagrangian. In
other words, it is premature to conclude from (7.2.2) that b is the boundary Lagrangian.
If ∆ξb 6= 0, one should rather look for a covariant `c = b+ dc.

This leads to the following independent definition of the WZ charges. First, evaluate
(7.2.2), choosing a covariant θ̄, namely such that

(δξ − Lξ)θ̄ = 0, (7.2.21a)

plus the conservative or stationarity requirement chosen as described in Cases I and II.
Second, identify a corner term c such that

`c := b+ dc, ∆ξ`
c = 0. (7.2.21b)

Finally, compute the improved Noether charge associated with (θ̄, `c), or in other words
with the split

θ = θ̄ − δ`c + dδc. (7.2.22)

7.3 Extending the WZ prescription to
non-field-exact corners

This prescription can be immediately generalizing condition 0 to (7.1.1), as pointed
out in [34]. All that will change is that the identification of `c will start from (7.1.1)
instead of from b. We repeat the procedure in this case, for the sake of clarity and ease of
reference.

First, evaluate (7.1.1), choosing θ′ such that

(δξ − Lξ)θ′ = 0, (7.3.1a)

plus the conservative or stationarity requirement chosen as described in Cases I and II.
Second, identify a corner term c such that

`c := `+ dc, ∆ξ`
c = 0. (7.3.1b)

Finally, compute the improved Noether charge associated with (θ′, `c), or in other words
with the split

θ = θ′ − δ`c + d(ϑ+ δc). (7.3.2)
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This means computing

qc

ξ = q′ξ −∆ξc = qξ + iξ`
c − Iξϑc, ϑc := ϑ+ δc, (7.3.3)

where qξ is the Noether charge associated with the covariant bulk Lagrangian, and q′ξ is
the Noether charge associated with the pair (θ′, `). The resulting flux is anomaly-free,
dqc

ξ = Iξθ
′ − iξL′, as opposed to the anomalous flux of q′ξ, given by (7.1.7). Of course, if

we choose directly an anomaly-free `, then q′ξ ≡ qc
ξ.

7.4 BMS charges at future null infinity
At future null infinity, using Bondi coordinates,9 one has

θ = −
(

2δM − 1

2
δ(DADBC

AB) +
1

2
NABδC

AB − 1

8
δ(NABC

AB)
)
εI . (7.4.1)

See Appendix C.1 for definitions and some details. At a first sight, one may identify the
physical flux with the non-integrable third term, namely the Bondi news NAB := ∂uCAB

contracted with the variation of the shear CAB. The stationarity requirement is then
satisfied by all spacetimes with vanishing news, for arbitrary variations. The issue
though is that this term does not satisfy the covariance requirement, because NAB is not
covariant. The resolution of this issue was found by Geroch [123] with the introduction
of a background tensor ρAB carrying his name, and whose transformation property is
∆ξρ〈AB〉 = ∆ξNAB, so that

N̂AB := NAB − ρ〈AB〉 (7.4.2)

is covariant. The Wald-Zoupas criteria thus single out as preferred potential [33]10

θ̄ = −1

2
N̂ABδC

AB εI . (7.4.3)

The remainder is a total variation and identifies

b =
(

2M − 1

2
D̄AD̄BC

AB − 1

8
NABC

AB +
1

2
ρABC

AB
)
εI . (7.4.4)

Therefore all three conditions for the WZ prescription are met.

9For descriptions with geometric quantities only and avoiding reference to Bondi coordinates, see e.g.
[121, 48, 122].

10In [33], the covariant news N̂ are denoted N , referred to as Bondi news, and one keeps in mind that the
expression ∂uCAB is only valid in the special set of Bondi frames. This is indeed a better nomenclature
in our opinion. We maintain however the N and N̂ notation here to match more easily with the
contemporary literature, where Geroch’s analysis seems to have been forgotten at some point. Notice
also that N̂ can be defined in geometric terms as the Lie derivative of the shear [122], which makes
its covariance manifest. Geroch’s construction on the other hand used the Schouten tensor of the
(pull-back of the) unphysical Riemann tensor, hence a non-covariant quantity, and which coincides
with ∂uCAB in Bondi coordinates.
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A key property of ρ〈AB〉 is to vanish identically when the background metric is the
round 2-sphere. This makes the choice NδC numerically correct in such Bondi frames,
however one should keep in mind that the correct potential secretly depends on the Geroch
tensor in order to secure covariance. This is relevant for us, because calculation of the
anomaly involves derivatives in field space, and the anomaly of b would be different if we
forgot the term necessary to the covariance of θ̄.

From (7.4.4) and the anomaly-freeness of the Einstein-Hilbert Lagrangian we compute

āξ = ∆ξb = dsξ, where sξ :=
1

4
CABD̄AD̄Bτ, (7.4.5)

and τ := ξu = T + u
2
DAY

A. Details of this calculation are in Appendix C. We see that we
are in case (b): there is a shift, caused by the fact that the ‘naive’ boundary Lagrangian
b has an anomaly. The shift term sξ is independent of the (global) conformal Killing
vector Y A if we restrict to a round sphere, but it should not be neglected even in these
frames because it still contributes to the flux of supertranslation charges. For stationary
spacetimes, this term is irrelevant on a round sphere, but not in arbitrary frames.

The shift can furthermore be obtained from the corner ambiguity. In fact, using the
anomalous transformations reported in Appendix C.1, it is easy to find a local functional
c solving (7.1.16):

c :=
1

16
CABC

ABεS, ∆ξc = −sξ. (7.4.6)

Therefore the BMS charges obtained from the WZ prescription can also be obtained as
improved Noether charges, choosing an anomaly-free boundary Lagrangian such as

`c = b+ dc =
(

2M − 1

2
D̄AD̄BC

AB +
1

2
ρABC

AB
)
εI , ∆ξ`

c = 0. (7.4.7)

This choice of boundary Lagrangian is of course not unique: any further shift by an
anomaly-free corner term would give the same charges. In this case, it means that we can
add an arbitrary contribution proportional to

(NABC
AB − 2D̄AD̄BC

AB)εI , (7.4.8)

which is both a corner term and anomaly-free. In other words, one can equivalently use
any element in the family

`c

x =
(

2M − 1 + x

2
D̄AD̄BC

AB +
x

4
NABC

AB +
1

2
ρABC

AB
)
εI , x ∈ R. (7.4.9)

Summarizing, the WZ charges for the BMS group can be obtained as improved
Noether charges following the prescription (7.2.21), namely starting from the covariant
Einstein-Hilbert Lagrangian and bare symplectic potential, and choosing (θ̄, `c) given by
(7.4.3) and (7.4.9) respectively. The resulting corner term in (7.2.22) is (7.4.6).
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The fact that the the BMS charges can be obtained as improved Noether charges
is consistent with what observed in [46, 38], where relevant boundary Lagrangians
were identified a posteriori. The novelty of our derivation is the identification of the
boundary Lagrangians and charges from first principles, thanks to the attention paid to
anomalies.11

As a final remark, the WZ-compatible anomaly (7.4.5) has the structure of the soft
term in the flux-balance laws for the BMS charges. This example provides a physical
example of the meaning of the anomaly contribution to the variation of the improved
Noether charge (7.1.7): an improved Noether charge with boundary Lagrangian (7.4.4) as
opposed to (7.4.7), or with an arbitrary corner improvement not selected by the covariance
requirement (7.2.17), would differ from the standard BMS charges by soft terms. One
consequence would be that they would measure different memory effects, another that
the boost part of the charges would fail to be conserved on stationary spacetimes in
arbitrary frames. The relation between the soft terms and anomalies is further explained
by the detailed calculations reported in the Appendix C.1, which highlight how the bridge
between the two lies in the first-order extension of the symmetry vector fields. We also
report there the calculation of the charges (App. C.1), as well as the explanation of how
(7.2.18) allows one to do the calculation à la Wald-Zoupas without the need to take
explicitly into account the anomalies (App. C.2).

11When comparing our quantitative results with the literature, some attention is however needed. The
corner term (7.4.5) differs from the one used in [46] by a factor of 2 (mind the different units used,
16πG = 1 here, 8πG = 1 there). This follows from the fact that [46] uses the tetrad Lagrangian,
whose bare symplectic potential differs from the Einstein-Hilbert one by a corner term [124, 66]. We
explain this comparison in App. C.3, and our results here perfectly agree with those of [46]. We find
on the contrary a disagreement with the conclusions of [38], which find (1) no anomalous shift, namely
they claim qWZ

ξ = q̄ξ + iξb, and (2) no restriction of the boundary Lagrangian to be anomaly-free,
namely they consider four different options of which only their (6.17) is in our family, with x = 0.
The remaining (6.9), (6.18) and (6.18) are anomalous. Disagreement (1) is in our opinion due to a
computational mistake, we believe that their equation (6.15) lacks a factor 1/2 in the third term, the
one that reads UDf . Their numerical factor would indeed make the anomalous shift unnecessary in
order to obtain the BMS charges, but it is in contradiction with our calculation reported in App. C.1,
as well as with the calculations of [107, 81] which use the qδξ term, and which we report in App. C.2.
Since the presence of a non-zero anomaly is crucial to our paper, we made multiple checks of our
calculations and the presence of this contribution. But of course we welcome further feedback on this
point, should the mistake be on our end. Disagreement (2) is on the other hand not an issue, provided
(1) is fixed. Every time their boundary Lagrangian is anomalous, they redefine the charge by hand to
remove what the anomalous contribution to the flux, via the quantity they denote h̃ξ. What we have
shown here is that h̃ξ is in general not an improved Noether charge in the sense of (7.1.9), and that
there is no need to do this redefinition by hand, because it is possible to identify the charge uniquely
working with a covariant pair of bulk and boundary Lagrangians.
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8Charges on timelike boundaries

In this chapter we compute the surface
charges of gravity for a family of conservative
boundary conditions, that include Dirich-
let, Neumann, and York’s mixed boundary
conditions defined by holding fixed the con-
formal induced metric and the trace of the
extrinsic curvature. We show that for all
boundary conditions considered, canonical
methods give the same answer as covariant
phase space methods improved by a bound-
ary Lagrangian, a prescription introduced
in Chapter 7 and thus supported by our re-
sults. The procedure also suggests a new
integrable charge for the Einstein-Hilbert La-
grangian, different from the Komar charge
for non-Killing and non-tangential diffeo-
morphisms. We study how the energy de-
pends on the choice of boundary conditions,
showing that both the quasi-local and the
asymptotic expressions are affected. Finally,
we generalize the analysis to non-orthogonal
corners, confirm the matching between co-
variant and canonical results without any

change in the prescription, and discuss the
subtleties associated with this case. This
work was published in [42].

8.1 CHARGES FROM COVARIANT

PHASE SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
8.1.1 CORNER SYMPLECTIC

POTENTIAL . . . . . . . . . . . . . . . . . . . . . . .116
8.1.2 CHARGES FOR DIRICH-

LET, YORK AND NEU-
MANN POLARIZATIONS . . . . . . .117

8.1.3 SUBTRACTION TERMS

AND SYMPLECTIC

RENORMALIZATION . . . . . . . . . . . .120
8.1.4 RESIDUAL DIFFEOMOR-

PHISMS . . . . . . . . . . . . . . . . . . . . . . . . . . .121
8.2 KERR EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
8.3 COVARIANT SURFACE CHARGES

WITH NON-ORTHOGONAL COR-
NERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
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CANONICAL METHODS . . . . . . . . . . . . . . . . . . .128

It is a fundamental property of general relativity that energy is not conserved, but
dissipated by gravitational radiation. A notion of conserved energy in phase space can be
introduced if one restricts attention to non-radiative spacetimes. An example of conserved
energy is the ADM charge [8] at spatial infinity, or its quasi-local version the Brown-York
(BY) charge [120] (see [84] for a review on quasi-local charges). This notion of energy is
however not universal, and depends on the way the system is made conservative, namely
on the specific choice of boundary conditions used to eliminate dissipation. The ADM and
BY formulas for instance, are based on Dirichlet boundary conditions. In this Chapter we
study how the value of the energy changes as we move from Dirichlet to York’s mixed
boundary conditions, to Neumann’s. This corresponds to fixing less components of the
induced metric, and more components of its momentum, namely the extrinsic curvature,
as reviewed in Chapter 5. We will see that the neat effect of this process is to produce
smaller values of the energy. For instance applying the formula to the Kerr spacetime, we
find respectively M , 2M/3 and M/2.
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To obtain these results, we use two different methods. The first is the covariant phase
space. In the non-radiative/conservative case, the improved Noether charge prescription
can be used to obtain Hamiltonians studying how imposing vanishing symplectic flux at
the boundary selects a specific symplectic potential leading to integrable charges. We
have seen that the charge is defined in an unambiguous way, and depends on both the
bulk Lagrangian and the boundary term required by the variational principle associated
with the chosen boundary conditions, as anticipated in [118]. The improved Nother charge
prescription, given by equation (7.1.9), is thus a perfect tool to investigate the question
raised above.

The second method is the straightforward canonical analysis based on the ADM
decomposition, which has no problem in dealing with the non-radiative context. The
calculation we present is a simple extension of the analysis done in [125, 91] for Dirichlet
boundary conditions. A nice feature of this extension is to see explicitly how the boundary
term changes the kinetic part of the ADM Lagrangian to recast it in the form consistent
with the symplectic potential associated with the chosen boundary conditions. We
find that the canonical method reproduces exactly the same charges obtained with the
improved Noether charge prescription in the covariant method, for all cases considered. A
consequence of our results is thus to offer support to the prescription of [14].

These results are based on the simplest set-up with an orthogonal corner between
the time-like boundary and the space-like hypersurfaces, a situation where 3d boundary
Lagrangians are sufficient to make the variational principle well-defined. We also investigate
a more general context with non-orthogonal corners. In the presence of non-orthogonal
corners, the variational principle requires an additional 2d term [104, 92] (see also [51, 65,
66] for recent work). Since the rationale for constructing the covariant surface charges is
to use an action with a well-posed variational principle, one may wonder if the corner
Lagrangian contributes to the formula for the charges as well.

To address this question, we repeat the calculations using the improved Noether charge
prescription with different boundary conditions, this time allowing for non-orthogonal
corners, and compare the results with the ones obtained with canonical methods. Using
canonical methods [125, 91], it is known that the presence of a non-orthogonal corner has
both a physical and a mathematical consequence. The physical consequence is that one
can consider two different classes of observers, those at rest with respect to the space-like
foliation of spacetime, and those at rest along the time-like boundary. At the corner, these
are related by a boost transformation, making the different notions of energy directly
comparable. The mathematical consequence is that the charges pick up ‘tilting terms’,
namely they depend explicitly on the boost between the normals. This dependence allows
us a further, non-trivial test passed by the improved Noether charge: The covariant
and canonical results match also for non-orthogonal corners, without any amendment to
the formula. This matching is however subtle, because in order to obtain it, one needs
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to take into account that the boundary term contains a kinetic term that has to be
independently put in Hamiltonian form via a Legendre transform [91, 34]. The role of
the corner Lagrangian is only to adjust the boundary kinetic term to match the chosen
boundary conditions.

The notation for the different boundaries and their geometric objects are summarized
in Fig. 5.1 and Table 5.1.

8.1 Charges from covariant phase space
The first method we are going to use to compute the charges associated with the

different boundary conditions is the covariant phase space, in particular the improved
Noether charge prescription (7.1.9). Recall that the idea is that Hamiltonians can be
constructed if we restrict the variations to preserve some given boundary conditions along
T . Consider the boundary Lagrangian ` required by a well-defined variational principle
with given boundary conditions at T . By construction, restricting the variations to
those preserving the boundary conditions, the boundary variation of L must be equal
and opposite to the variation of `, up at most to a corner term: θL T= −δ` + dϑ. As a
consequence, it is possible to redefine the symplectic potential and 2-form as

θ := θL + δ`− dϑ, ω = δθ = δθL − dδϑ. (8.1.1)

In this way, one automatically has vanishing symplectic flux across the boundary, when
the boundary conditions are imposed:

θ
b.c.
= 0 ⇔ θL b.c.

= −δ`+ dϑ ⇒ ω
b.c.
= 0. (8.1.2)

This condition guarantees that the system is closed, and the defining equation (7.1.9)
integrable to yield a Hamiltonian generator.1 The new quantities in (8.1.1) depend on
the pair (L, `) of bulk-boundary Lagrangians, dependence which we don’t make explicit
in order to keep the notation light. The resulting Hamiltonian charge is2 (7.1.9) up to a
constant of integration in field space that we will come back to below in Section 8.1.3.
1The last equation in (8.1.2) is Wald’s sufficient condition for integrability. It can also be derived
requiring the condition that an Hamiltonian vector field (in field space) preserves the symplectic
form, δξω = δ(Iξω) = 0, which implies Iξω = δhξ, and if there are no anomalies, we also have
δξω = Lξω ≈ d(iξω).

2This can be seen evaluating

−Iξω = −Iξδθ = −IξδθL + dIξδϑ ≈ d(δqξ − iξθL − qδξ + iξdϑ− δIξϑ+ Iδξϑ),

where we used

Iξδϑ = δξϑ− δIξϑ = Lξϑ+ Iδξϑ− δIξϑ = d(iξϑ) + iξdϑ− δIξϑ+ Iδξϑ.

For field-independent diffeomorphisms and on-shell of (8.1.2) we obtain (7.1.9). Further details can
be found in e.g. [34, 126]. Here we assumed that no anomalies are present, but the resulting formula
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Let us briefly comment on the equivalence with the WZ prescription in this case:
a good candidate for the preferred symplectic potential θ̄ is the non-integrable term in
(7.2.2). It satisfies condition 0 with b = `, and condition 2 with conservative boundary
conditions qµρqνσδqρσ

T
= 0, or with a notion of stationarity given by Π = 0. To discuss its

covariance, we evaluate

(δξ −£ξ) (Πµνδq
µν) = ∆ξΠµνδq

µν +Πµνδ∆ξq
µν +Πµν£δξq

µν . (8.1.3)

The residual diffeomorphisms that preserve the phase space must preserve the boundary,
hence be tangent to it. As a consequence δξqµν = £ξqµν , and ∆ξnµ = 0 provided we work
with a unit-norm normal (see Appendix D). Therefore

∆ξqµν = ∆ξεT = ∆ξKµν = 0. (8.1.4)

We conclude that this θ̄ is covariant for field-independent diffeomorphisms. The boundary
symmetry group is Diff(T ), and the charges will be conserved for arbitrary variations
around solutions with Π = 0, and around arbitrary solutions but only for variations
restricted to preserve the boundary conditions. In the latter case the only allowed
symmetries of the conservative subset of the phase space are the Killing vectors of the
boundary metric.

Following the prescription used in [32] and adopted in the WZ paper, we take
conservative boundary conditions, as in Case I. Now that we have chosen θ̄ and identified
b with the Gibbons-Hawking-York (GHY) term, the next step is to look at the anomalies.
We have aξ = 0 from the initial choice of the Einstein-Hilbert Lagrangian, and ∆ξb

WZ = 03

from (8.1.4). Therefore all anomalies vanish and we are in case (a). According to (7.2.13),
the WZ charge is given by the improved Noether charge qξ + iξb

WZ. One can easily check
that this is indeed the WZ charge computed in [32, 33], and which gives the Brown-York
formulas at finite distance.

8.1.1 Corner symplectic potential
The only aspect of the prescription (7.1.9) that requires some care is the determination

of the corner symplectic potential. It can be in principle computed using Anderson’s
homotopy operator as argued in [14], but in practise it is simpler to derive it taking the
variation of the boundary Lagrangian, and arranging it in such a way that the boundary
field equations are consistent with the boundary conditions one is imposing. Let us see

(7.1.9) is valid also in the anomalous case. This was shown in [126], and one has to use the fact that
boundary conditions are consistent, namely ∆ξθ|b.c.

T
= 0.

3In this Chapter we will use bWZ when referring to the WZ prescription to avoid notational clash with
the parameter b in the action.
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explicitly this strategy at play with `b. To compute its variation, we use the standard
result

δK = −1

2
Kµνδgµν + gρ[σnµ]∇µδgρσ +

1

2
qρµ∇ρ (qµν δn

ν) . (8.1.5)

The second term is proportional the symplectic potential θEH, see (5.3.3), and the third
term can be written in terms of the induced covariant derivative on the hypersurface Dµ.4

Applying this formula to (5.3.14), we find

δ`b =
b

2
s
(
(Kqµν −Kµν) δgµν + 2gα[βnλ]∇λδgαβ +Dµ (qµν δn

ν)
)
εΣ

=
b

2
(−θEH + s(Kµν − qµνK)δqµνεΣ + dϑEH) . (8.1.6)

To determine the corner symplectic potential of `b, the bulk term must be consistent
with the boundary conditions we want to impose, as to reproduce (the first of) (8.1.2).
Rearranging the terms in (8.1.6), we find

θEH + δ`b = (1− b

2
)θ +

b

2
s(Kµν − qµνK)δqµνεΣ +

b

2
dϑEH

= s

(
(Kµν −

b

2
qµνK)δqµν + (b− 2)δK

)
εΣ + dϑEH. (8.1.7)

We can explicitly check that the term in bracket in the second equality vanishes accordingly
to the boundary conditions chosen: δqµν

T
= 0 for b = 2, δΠ̃µν T= 0 for b = 0 (see (5.3.4)),

and δq̂µν
T
= 0

T
= δK for b = 2/3 (see (5.3.11)). Therefore, we conclude that the corner

symplectic potential of `b is precisely ϑEH, irrespectively of these values of b.
The fact that this construction yields a consistent non-vanishing ϑ for b = 0 is

quite remarkable. It leads to the suggestion of taking a non-vanishing corner symplectic
potential also for Neumann boundary conditions, even if the boundary Lagrangian is
zero in this case. One may discard this possibility, but as we will see below, keeping it
allows one to introduce an integrable charge for the Einstein-Hilbert action valid also
for non-tangential diffeos, and which reduces to the Komar expression in the case of
isometries.

8.1.2 Charges for Dirichlet, York and Neumann
polarizations

We now apply the prescription (7.1.9) to the Lagrangian Lb := LEH + d`b. This
requires evaluating the three terms in (7.1.9) and their pull-backs on the corner S

4Here we used∫
Σ

Dµ(qµν δn
ν)dΣ =

∫
∂Σ

qµν δn
νdSµ = −s

∫
∂Σ

uµδn
µdS dSµ = −suµdS.
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intersection of Σ and T . We consider the corner in the future of T , so that the outgoing
time-like normal is future-pointing. Our conventions for the volume forms, orientations
and pull-backs are reported in Chapter 2. The symplectic potential of LEH is given in
(5.3.4), and its Noether charge is the Komar 2-form [83]

qEH

ξ = −1

2
εµνρσ∇ρξσdxρ ∧ dxσ S

= 2nµuν∇[µξν]εS. (8.1.8)

Next, the pull-back of `b on the time-like boundary T gives

iξ`
b T= bK̄iξεT =

b

2
K̄uµξνεµνρσdx

ρ ∧ dxσ S
= bK̄ξ · n εS. (8.1.9)

The last ingredient is the corner symplectic potential just evaluated. Its pull-back on the
future boundary of T gives

ϑ = ϑEH ∂T +

= −uµδnµ(−εS) = nµuνδg
µνεS, Iξϑ = −2nµuν∇(µξν)εS. (8.1.10)

Adding up the three terms, the Hamiltonian charge is found to be

Hb
ξ =

∫
S

qEH

ξ + iξ`
b − Iξϑb =

∫
S

2nµuν(∇[µξν] +
b

2
K̄ξµuν +∇(µξν))εS

= 2

∫
S

nµuν(∇µξν +
b

2
K̄ξµuν)εS

= −2

∫
S

nµξν(K̄µν −
b

2
q̄µνK̄)εS, (8.1.11)

where in the last step we used that for orthogonal corners we can take u ≡ n̄, therefore
ξ · u = 0, nµ = q̄µνnν and nµ∇µuν = nµK̄µν .

From this general formula we can read the three special cases we have been discussing
so far. For Dirichlet boundary conditions, b = 2, we have

HBY

ξ = −2

∫
S

nµξν(K̄µν − q̄µνK̄)εS = −2

∫
S

nµξνΠ̄µνεS. (8.1.12)

This is the result of [34] (see also [33, 14]): the Hamiltonian generating the boundary
symmetries in the covariant phase space is the Brown-York surface charge. For York’s
mixed boundary conditions, we find

HY

ξ = −2

∫
S

nµξν(K̄µν −
1

3
q̄µνK̄)εS = −2

∫
S

nµξνΠ̄〈µν〉εS, (8.1.13)

118 Chapter 8 Charges on timelike boundaries



namely the surface charge is the traceless part of the ADM momentum on the time-like
boundary. This result appeared recently in [22]. Finally for Neumann boundary conditions,
the trace part of the extrinsic curvature drops out and we are left with

HN

ξ = −2

∫
S

nµξνK̄µν εS = −2

∫
S

nµξν(Π̄µν −
1

2
q̄µνΠ̄)εS. (8.1.14)

The last expression can be taken as definition of integrable charge for the Einstein-
Hilbert action valid also for diffeomorphisms non-tangential to the corner S, for which the
usual prescription fails, as remarked below (4.3.12). It is quite a non-trivial step, since with
the usual prescription one obtains integrable charges only for tangential diffeomorphisms,
and follows from taking seriously the improved Noether charge prescription and the
construction (8.1.7) of the corner symplectic potential. The new Einstein-Hilbert charge
reduces to the Komar expression for (arbitrary) tangential diffeomorphisms. This can be
seen starting from the second line of (8.1.11) with b = 0, and using n·u = n·ξ = u·ξ = 0 to
prove that the symmetrization in n and u vanishes. We also notice that for non-tangential
diffeomorphisms, (8.1.14) reduces to the Komar expression in the case of isometries. This
can be immediately seen again from the second line of (8.1.11) with b = 0 and using the
Killing equation. Hence, (8.1.14) does provide an extension of the Komar formula to
non-isometric diffeomorphisms endowed with an interpretation of Hamiltonian generator
for Neumann boundary conditions.

The charges (8.1.11) can be split into energy and angular momentum, introducing a
decomposition of the diffeomorphism as

ξµ = Nnµ +Nµ, N · n = 0. (8.1.15)

Notice that since we are already restricting the diffeos to satisfy (8.1.24), Nµ only has
components tangent to the corner. Then,

nµNνK̄νµ = nµN ν q̄ρν∇ρuµ = −uµNν q̄ρν∇ρnµ = −uµNνγρν∇ρnµ = −uµN νKνµ. (8.1.16)

As for the piece proportional to lapse, it can be expressed in terms of the 2d extrinsic
curvature k = K̄ + nµnν∇νuν (see (2.1.32) in the Appendix, here adapted to orthogonal
corners). Adding up, and using ξ · n = −N , (8.1.11) gives

Hb
ξ = −2

∫
S

(
N
(
k +

b− 2

2
K̄
)
−NµuνKµν

)
εS. (8.1.17)

In Section 8.4, we will reproduce this expression using canonical methods.
The term proportional to N is the energy, whereas the term proportional to Nµ is the

corner diffeomorphism charge and contains the angular momentum. We see that changing
the boundary conditions leaves the angular momentum invariant but changes the notion
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of energy of the system. The fact that integrable charges obtained through the imposition
of boundary conditions depend on the latter was expected [32], and we are seeing here
the results of a quantitative analysis. This dependence is after all understandable: in the
open case there is no general notion of energy, so it makes sense that when we close it, the
notion of energy depends on how we close the system. See also [127] for earlier discussions
on the relation between energy and boundary conditions in general relativity.

The quasi-local charges (8.1.11) are defined on the surface corner S of a finite region
of spacetime. To study what happens for asymptotic charges, we need to first consider the
required subtraction terms. We will do so in the next subsection, and in the next section
we will use the Kerr spacetime to explore the explicit quasi-local and asymptotic values
of the charges and see how they are affected by the choice of boundary conditions.

8.1.3 Subtraction terms and symplectic renormalization
The quasi-local expressions (8.1.11) or equivalently (8.1.17) are fine as quasi-local

charges at finite distance, but they diverge when the corner is pushed to spatial infinity.
This is a familiar result from the Brown-York analysis, and the standard procedure is
to remove the divergence with a subtraction term depending on a background solution,
typically Minkowski. From the covariant phase space perspective, this is a natural
procedure that amounts to the simple fact that when integrating (7.1.9) one can take
into account a non-vanishing constant of integration in field space [33]. This reference
or background solution can be taken to be Minkowski, and produces the subtraction
term of the Brown-York analysis leading to finite expressions as pointed out in [128].5

We now show that this procedure can be generalized to b 6= 2, and that it can also be
understood in the framework of symplectic renormalization, which plays an important
role for subtracting analoguous divergences at null infinity [81, 80, 46]. Namely instead
of removing the divergence via a background solution, we can renormalize the charge
using the prescription (7.1.9) and subtracting the contribution that would come from a
boundary Lagrangian `div that captures the divergences of L, namely

HR

ξ = Hξ −
∫
S

iξ`div − Iξϑdiv. (8.1.18)

In the present context, we restrict attention to asymptotically flat metrics at spatial
infinity, and the leading divergence of Hb

ξ comes from the Minkowskian behaviour of the
charge. Therefore,

`bdiv = bK̄η εΣ, iξ`
b
div

S
= bK̄η ξ · n εS, ϑbdiv = 0. (8.1.19)

5There the finiteness was attributed to the use of tetrads in the first order formalism, but we believe the
result applies to any formulation, and follows from the fact that by plugging in the fall-off condition
on the variables in the variational formula (4.3.12), the leading order Minkowski contribution is
eliminated directly being a fixed background.
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Then the renormalized charge is

HRb
ξ = Hb

ξ −
∫
S

iξ`
b
div (8.1.20)

= −2

∫
S

nµξν
(
K̄µν −

b

2
q̄µν(K̄ − K̄η)

)
εS

= −2

∫
S

(
N
(
k − b

2
kη +

b− 2

2
K̄
)

+NµnνK̄µν

)
εS,

where in the last step we used (8.1.15) and the fact that in Minkowski,

K̄η = kη =
2

r
. (8.1.21)

Restoring the 16πG factors, we define the b−generalized energy and angular momen-
tum as follows,

E = HRb
n = − 1

8πG

∫
(k − b

2
k0 +

b− 2

2
K̄)εS (8.1.22)

J = Hb
∂φ

= − 1

8πG

∫
nµK̄µφεS, (8.1.23)

which correspond respectively to the generator of unit-lapse hypersurface-orthogonal
diffeomorphisms, and rotations around a fiducial vertical axis fixed say by asymptotic
flatness. We see that the boundary conditions do not affect the angular momentum, as
expected since this charge does not see the symplectic flux, and furthermore is independent
of renormalization since it coincides with its quasi-local value. The energy on the other
hand depends explicitly on both the boundary conditions and the renormalization.

8.1.4 Residual diffeomorphisms
Let us give a few more details about the allowed diffeomorphisms. They must preserve

the boundary as well as the boundary conditions whose imposition makes the charges
integrable. This means that (i) they cannot move the boundary T , namely

ξ ∈ TT ⇔ ξ · n̄ = 0, (8.1.24)

which equals ξ · u = 0 in the case of orthogonal corners, and (ii), δξF (gµν) = 0, where F
are the boundary conditions chosen.

The set of diffeomorphisms that respect Dirichlet boundary conditions satisfy

q̄ρµq̄
σ
ν δξgρσ|T = 0 ⇔ D̄(µ ξν) = 0. (8.1.25)

These are boundary Killing vectors. These are not required to be isometries of the whole
spacetime, so this condition does not restrict the bulk metric.
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In the case of York’s mixed boundary conditions, fixing the conformal metric is
preserved by conformal Killing vectors (CKV) of the boundary,

(q̄ρµq̄
σ
ν −

1

3
q̄µν q̄

ρσ)δξgρσ
T
= 0 ⇔ D̄(µ ξν) −

1

3
q̄µνD̄ · ξ T= 0. (8.1.26)

While the condition on the trace of the extrinsic curvature is given by LξK = 0.
Here we should point out how much using unit-norm normal to describe the boundary

simplifies the calculation of residual diffeomorphisms. Had we used a different normal,
anomalies would inevitably come into play. As a matter of fact, we did perform these
calculations in [42], before understanding the nice results of Appendix D. To do this, we
started from the variation (8.1.5). Specializing to a diffeomorphism, it can be written in
the following form,

δξK = −2(Kµν − s

2
Knµnν)∇µξν − nµ(gµν�+Rµν)ξ

ν + snµnνnρ∇µ∇νξρ, (8.1.27)

which makes it conveniently manifest that it would vanish exactly for a Killing vector.
Using the orthogonality and conformal boundary Killing properties of ξ, it reduces to

δξK = −1

3
KD · ξ −Rµνξ

νnµ +Dµ(Kµ
σ ξ

σ). (8.1.28)

Imposing this to be zero, recalling the anomaly-freeness for the case of unit-norm normal,
using the CKV condition (and restoring the bars and s = 1 appropriate to the time-like
boundary we are interested in), we obtain a slightly nicer expression

ξσDµK
<µσ> = Rµνξ

νnµ. (8.1.29)

This scalar equation between components of ξ completes the restriction given by (8.1.26).
In [42] we left the question of residual diffeomorphisms in the case of Neumann

boundary conditions open as the calculations were getting too messy. Taking the anomaly-
freeness of the unit-norm normal into account, we can now spell them out as

LξΠ̃µν = 0 ⇒ LξΠµν = D · ξΠµν . (8.1.30)

8.2 Kerr example
In this section we restore the 16πG factors. To get some further intuition about the

meaning of these different charges, we consider their explicit values in the case of the Kerr
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solution. Integrating the Komar form (8.1.8) on a 2-sphere at constant (t, r) for the two
Killing vectors ∂t and ∂φ one gets

QEH

∂t =
M

2G
, QEH

∂φ
= −Ma

G
. (8.2.1)

This result is independent of r since the Noether current jEH
ξ vanishes in vacuum for a

Killing vector. This is the standard Noether charge for the Einstein-Hilbert Lagrangian.
We now compute the Hamiltonian charge (7.1.9) associated with different boundary
conditions. First of all, we observe that Iξϑ is proportional to the Killing equation and
thus vanishes for both ∂t and ∂φ. Since ∂φ is tangential to the corner, i∂φ`b = 0, and
the Hamiltonian charge coincides with the Komar expression, H∂φ = −Ma/G. However,
this is not the case for the charge generated by ∂t. Using nt := n · ∂t = −(−gtt)−1/2, we
evaluate ∫

S2

i∂t`
b =

b

16πG

∫
S2

K̄ntεS = − b

4G

(
r −M +

∆

a
arctanh

a

r

)
, (8.2.2)

where ∆ := r2 − 2Mr + a2. Adding this up to the Komar expression according to (7.1.9),
we find

H∂t =
b+ 2

4G
M − b

4G

(
r +

∆

a
arctanh

a

r

)
(8.2.3)

= − b

2G
r +

3b+ 2

4G
M − b

6G

a2

r
+O(r−2).

This expression diverges linearly, as discussed above. We also notice that for b = 0 the
expression coincides with the value of the Komar charge alone (8.2.1), as to be expected
from the equivalence in the case of isometries of the Neumann charge discussed below
(8.1.14). Adding the subtraction term, we arrive at the renormalized charge

HR

∂t = H∂t −
b

2G
rnt =

b+ 2

4G
M − b

4Gr

(
M2 +

2a2

3

)
+O(r−2), (8.2.4)

where we used
nt = −1 +

M

r
+
M2

2r2
+O(r−3). (8.2.5)

We see that the asymptotic value of the renormalized energy still depends on the
choice of boundary conditions. For b = 2 we recover the usual energy of the Kerr spacetime,
namely M . For mixed boundary conditions the asymptotic energy reduces to 2/3M , and
for Neumann boundary conditions to M/2.

We also remark that for all values of b, the quasi-local charge for the time-diffeomorphisms
is r-dependent, a result familiar from the Brown-York papers. In this derivation based on
(7.1.9), the r-dependence is introduced by the contribution of the boundary Lagrangian,
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and captures the fact that the full quasi-local charge does not descend from an on-shell
vanishing current as the Komar term alone.

In this Kerr example we found it natural to evaluate the energy using the (not
hypersurface-orthogonal) Killing vector ∂t, but a more general choice for the energy is to
take the hypersurface orthogonal time-like vector Nn, which can always be introduced.
For Kerr, these two choices asymptotically align and require the same subtraction term.
The resulting value of the energy is also very similar: the difference turns out to appear
only at order O(r−3). To eliminate all reference to the choice of diffeomorphism, we
can also use the definition (8.1.22) of generalized BY energy, which correspond to the
generator of unit-lapse hypersurface-orthogonal diffeomorphisms. The resulting expression
is slightly more involved than (8.2.4),6 and with the help of Mathematica we find

E = − r

4G

√
∆

a2 + r2

(
b− 2− 2b

√
a2 + r2

∆
+
br(r −M)

∆

√
a2 + r2

a
arctanh

a√
a2 + r2

(8.2.6)

+

√
2 (r∆−M(r2 − a2))

a∆
√
M (r∆+ 2M(2r2 + a2))

arctanh

√
2Ma2

a2(2M + r) + r3

)
b=2
= − r

4G

√
∆

a2 + r2

(
2r(r −M)

∆

√
a2 + r2

a
arctanh

a√
a2 + r2

+

√
2 (r∆−M(r2 − a2))

a∆
√
M (r∆+ 2M(2r2 + a2))

arctanh

√
2Ma2

a2(2M + r) + r3
− 4

√
a2 + r2

∆

)
a=0
=

r

G

(
1−

√
1− 2M

r

)
=
M

G
− M2

2Gr
+O(r−2).

The expression with b = 2 and a = 0 can be recognized as the familiar BY result for
Schwarzschild. Expanding the general expression (8.2.6) at spatial infinity, we find

E =
b+ 2

4G
M − 1

6Gr

(
3M2 + ba2

)
+O(r−2) (8.2.7)

The different choice of diffeomorphism is reflected by the different subleading terms, but
the asymptotic value is the same as (8.2.4), in particular the dependence on the boundary
conditions is the one already discussed.

6This can be understood because the choice of a Killing vector sets to zero the Iξϑ contribution to the
charge, whereas (8.1.22) sees this contribution as well.
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8.3 Covariant surface charges with
non-orthogonal corners

In this section we look at covariant phase space charge in the case of non-orthogonal
corners, β 6= 0. We can distinguish two classes of observers, those at rest with respect
to the space-like foliation Σ, and those at rest along the time-like boundary. We may
refer to them as respectively unbarred and barred observers, as in [91]. At the corner,
these are related by the boost transformation with rapidity β, see Fig. 5.1 and (2.1.23).
Canonical methods, which fail to take into account the presence of leakage at the time-like
boundary, can be used to compute charges for either class of observes [91]. However this
may not be the case for covariant phase space methods. As reviewed earlier, the condition
for the integrability of the covariant phase space charges requires a vanishing symplectic
flux through the time-like boundary. Imposing boundary conditions at a non-orthogonal
time-like boundary means that symplectic flux can a priori leak though the time-like
evolution of an unbarred observer at the corner (for instance through late time null
trajectories or time-like trajectories), see Fig. 8.1. Therefore, we will only construct
covariant phase space charges for the barred observers.

Fig. 8.1.: If the time-like hypersurface at which the boundary conditions are imposed is tilted
with respect to the time-like evolution of the corner of Σ, symplectic flux can a priori
leak through it, as in the top (and darker) arrow. In that case, the procedure to get
integrable charges applies only to the ‘barred observers’, namely those at rest with
respect to a foliation of T .

Apart from this conceptual difference, there is also a technical mathematical question
raised by non-orthogonal corners. The formula (7.1.9) can be applied straightforwardly,
however which boundary Lagrangian and corner symplectic potential should we use? As
shown by (5.3.18), the presence of non-orthogonal corners requires additional boundary
terms in the action principle. How should these be taken into account in the prescription
for the charges?

To address this question, we compute the charges using (7.1.9) with the same 3d
boundary Lagrangian and corner symplectic potential as in the orthogonal case, simply
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ignoring any possible additional terms. We will then compare the result with the one
obtained with canonical methods. The discrepancy will provide the answer to our question.
Notice that even using the same 3d boundary Lagrangian, a non-vanishing β shows up
in the normals that appear in the formula. In particular, we can pull-back at the corner
using the barred basis (ū, n̄) instead of the unbarred basis (n, u). The three ingredients
for the charge are then

qEH

ξ
S
= 2nµuν∇[µξν]εS = −2n̄µūν∇[µξν]εS, (8.3.1)

iξ`
b = bK̄iξεT =

b

2
K̄n̄µξνεµνρσdx

ρ ∧ dxσ S
= bK̄ξ · ū εS, (8.3.2)

Iξϑ
b S

= −2nµuν∇(µξν)εS = −2n̄µūν∇(µξν)εS. (8.3.3)

Adding up using the barred expressions, we find

Hb
ξ =

∫
S

qEH

ξ + iξ`
b − Iξϑb =

∫
S

−2n̄µūν(∇[µξν] − b

2
K̄n̄µξν −∇(µξν))εS

= −2

∫
S

ξµūν(K̄µν −
b

2
q̄µνK̄)εS. (8.3.4)

It is very similar to the orthogonal result, with the same dependence on the extrinsic
curvature, but this time taken along ū = cosh βn − sinh βu: The normal to Σ in the
orthogonal case is replaced by its projection along the non-orthogonal boundary T .

To manipulate further this expression, we use the decomposition (8.1.15) of the
diffeomorphism, in terms of unbarred lapse and shift to facilitate the comparison with the
canonical result below. The restriction (8.1.24) to tangential diffeomorphisms implies a
relation between the unbarred shift and lapse:

ξ · n̄ = 0 ⇒ Nµn̄µ = −N sinh β. (8.3.5)

The other scalar products give

ξ · ū = −Nλ, ξ · n = −N, ξ · u = −Nλ sinh β. (8.3.6)

It is also convenient to decompose the shift vector as

Nµ = N · uuµ +Nµ
S , N · u = ξ · u = −Nλ sinh β, (8.3.7)

and Nµ
S are the components tangent to the corner. From the first of (8.3.6) it follows

that the second integrand in (8.3.4) gives

− b
2
ξ · ūK̄ =

b

2
NλK̄. (8.3.8)
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For the first integrand, we use

ūν∇µn̄ν = nν∇µuν + ∂µβ, (8.3.9)

which follows from the boost transformations (2.1.23), to rewrite in terms of (8.1.15)

ξµūνK̄µν = ξµq̄ρµū
ν∇ρn̄ν = ξµ(nν∇µuν + ∂µβ)

= N(k −∇µu
µ)−NµuνKµν + β̇, (8.3.10)

where we used ξ · n̄ = 0 in the second equality, and (2.1.32) as well as ξ = ∂t in the
second line. From uµ = λ(qn̄)µ, see (2.1.24), we have that

∇µu
µ = λK̄ + λ∇ūβ + λ sinh βK. (8.3.11)

Replacing this expression in (8.3.10), and using

Nλ∇ū = ∇t −Nµ
S∇µ (8.3.12)

which follows from (8.3.7), we arrive at

ξµūνK̄µν = N
(
k − λK̄ − λ sinh β(K − uµuνKµν)

)
−Nµ

S (uνKµν − ∂µβ) (8.3.13)

= N
(
k − λK̄ − λ sinh β `

)
+Nµ

S (Sµ + ∂µβ),

where

` := −uµuνΠµν = K − uµuνKµν = γµνKµν , (8.3.14)

µS := −γµρuνΠρν = −γµρuνKρν , (8.3.15)

are respectively the radial (or normal) and tangential momentum [91]. Adding up with
(8.3.8), we find

Hb
ξ = −2

∫
S

(
N
(
k +

b− 2

2
λK̄ − λ sinh β `

)
+Nµ

S (Sµ + ∂µβ)

)
εS. (8.3.16)

This formula provides the energy-momentum decomposition of the b−generalized
Brown-York quasi-local charge with boundaries at non-orthogonal corners, in terms of
(8.1.15) and using (8.3.5). We remark that it depends on the boundary Lagrangian
via b, but not on c and thus not on the corner Lagrangian. For b = 2, it reproduces
correctly (4.6) of [91].7 Notice that the contribution of the radial momentum becomes
7To see the equivalence, we first observe that the notational translation from our paper to theirs
is (β, λ, tanhβ, uµ,Kµν , k) 7→ (−θ, 1/γ,−v, nµ,−Kµν ,−k), and then recall their definitions N̄ =
N/γ, ε̄ = γk − γv`, ̄µS = µS − γµν∂νθ.
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mixed with the energy because the radial shift component N · u is proportional to lapse,
as a consequence of (8.3.5). To keep track of the momentum components separately from
the energy, we can also rewrite (8.3.16)as

Hb
ξ = −2

∫
S

(
N
(
k +

b− 2

2
λK̄
)

+N · u ` +Nµ
S (Sµ + ∂µβ)

)
εS. (8.3.17)

A few brief comment about the WZ charges are in order. Even with non-orthogonal
corners they are still improved Noether charges with boundary Lagrangian bWZ, namely
case (a). In fact, the presence of a second normal in ϑ will make some of the boundary
diffeomorphisms anomalous, but (8.1.4) still holds, and the GHY Lagrangian remains
covariant even with non-orthogonal corners. Therefore no corner shift is needed to obtain
the WZ charges. The BY formulas follow indeed from (7.2.13) with b given by the trace-K
Lagrangian also with non-orthogonal corners [34, 42].8 Let us also comment about the
importance of the contribution of [34]. If we relax the corner-orthogonality condition,
we have ϑ 6= 0 hence condition 0 is violated. This brings us outside of the hypothesis
used in [32, 33]. However conditions 1 and 2 are still valid. The crucial insight of [34]
was to show that the modification (7.1.3) of the symplectic two-form caused by ϑ is
not only acceptable, but indeed leads to the correct Brown-York formulas in the case of
non-orthogonal corners. This calculation is an example of the generalized WZ prescription
(7.3.3), and the insight on the relevance of the redefined symplectic form ω′ played an
important role in the general developments reviewed in Section 7.1.

8.4 Surface charges from canonical methods
In this section we review the canonical construction of [120, 125, 91], and show that it

extends to the mixed and Neumann boundary conditions. We consider directly the general
case of non-orthogonal corners. In particular, we will show that (i) the boundary terms
recast the kinetic terms in the form appropriate to the chosen boundary conditions, and
(ii) one reproduces the same expressions obtained with covariant phase space methods for
orthogonal corners.

We start from the b-generalized trace-K action (5.3.15), and replace

Rε = LADM + 2∇µ(nµK − aµ)ε. (8.4.1)

8This should be compared with the 3 + 1 canonical calculation done in the next section, where the
2d Hayward corner term is needed in order to obtain the BY formulas with non-orthogonal corners.
Its role is to secure the right Legendre transform on the boundary. There appears to be no relation
between the Hayward term in the action and the corner shift (7.1.10) in the covariant improved
Noether charge, which we use only to remove non-covariance from the boundary Lagrangian and
satisfy the WZ conditions, and is not needed here.
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From Stokes theorem,∫
M

∇µ(nµK − aµ)ε =

∫ Σ1

Σ0

KεΣ +

∫
T

(sinh β K − n̄ · a)εT . (8.4.2)

Therefore, (5.3.15) can be rewritten as follows,

S =

∫
LADM + (2− b)

∫ Σ1

Σ0

KεΣ +

∫
T

(bK̄ + 2 sinh β K − 2n̄ · a)εT + c

∫ S1

S0

βεS. (8.4.3)

The first two integrals above give the bulk terms on the space-like slices. The ADM
Lagrangian density is

L̃ADM := N
√
q(R+K2

µν −K2) = Π̃µν q̇µν −NH̃ −NaH̃µ − 2∂µ(Π̃µνNν), (8.4.4)

where
H̃ :=

1√
q

(Π̃2
µν −

1

2
Π̃2)−√qR, H̃µ := −2q̃µνDρΠ

νρ (8.4.5)

are the Hamiltonian and spatial diffeo constraints, and the boundary term is the one
giving rise to the ADM momentum

P ( ~N) := 2

∫
S

ΠµνuµNν εS. (8.4.6)

The second integral can be rewritten as the spacetime integral of (2 − b)∂t(K
√
q) =

1
2
(b− 2)∂tΠ̃. This combines with the kinetic term of the ADM Lagrangian, giving

Π̃µν q̇µν +
b− 2

2
˙̃Π =


Π̃µν q̇µν b = 2

−qµν ˙̃Πµν b = 0

P̃ µν q̇µν + 4
3

√
qK̇ b = 2/3

(8.4.7)

The resulting polarization is in agreement with the discussion in Section 5.3.1. In other
words, different choices of b correspond to different boundary conditions, and the role
of the second integral in (8.4.3) is to adjust the kinetic term to the chosen coordinate-
momentum pair. As we will see shortly, the Hayward term plays the same role for the
boundary kinetic term.

The last two integrals in (8.4.3) will reveal the value of the sourface term correspond-
ing to the energy. To make this explicit, we use first Stokes theorem to rewrite∫ S′

S

β εS =

∫
T
D̄µ(βūµ) εT =

∫
dt

∫
S

d2x ∂t(β
√
γ), (8.4.8)
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where in the last step we decomposed T into its t foliation with space-like leaves S. Then,
using the relation (2.1.32) between extrinsic curvatures, the last two integrals in (8.4.3)
give ∫

T
`T :=

∫
T

(
2 cosh β k + (b− 2)K̄ + (c− 2)∇ūβ + cβD̄µū

µ
)
εT . (8.4.9)

However, this surface term is not yet the contribution to the energy, because it is not
in Hamiltonian form: both ∇ū and the Hayward term contain time derivatives, and
a Legendre transform is needed to read the correct Hamiltonian. This procedure was
explained in [91] for c = 2, and in [34] for c = 0.9 To make time derivatives explicit, we
use (8.3.12) and the second equality in (8.4.8). Then (8.4.9) gives∫

T
`T =

∫
dt

∫
S

d2x
[
(c− 2)

√
γβ̇ + cβ ˙√γ +

√
γ
(
N(2k + (b− 2)λK̄) + 2Nµ

S ∂µβ
)]
,

(8.4.10)

where we used the relation (2.1.29) between determinants to replace εT with Nλ√γ. The
first two terms give a polarization of the phase space according to the chosen boundary
conditions:

(c− 2)
√
γβ̇ + cβ ˙√γ =

−2
√
γβ̇ c = 0

2β ˙√γ c = 2
(8.4.11)

For c = 2, `T contains the boundary kinetic term 2β∂t
√
γ, which is in Dirichlet form

pdq. The boundary momentum is then pγ = 2β, and the Legendre transform gives

`T = pγ ˙√γ −HT , (8.4.12)

HT = −2
√
γ
[
N
(
k +

b− 2

2
λK̄
)

+Nµ
S ∂µβ

]
. (8.4.13)

For c = 0, the boundary kinetic term is instead −2
√
γ∂tβ, which is of Neumann/York

form −qdp, according to Table ??. The momentum is now pβ = −2
√
γ, and the Legendre

transform gives

`T = pββ̇ −HT , (8.4.14)

with precisely the same Hamiltonian (8.4.13) again. This is the correct surface contribution
to the Hamiltonian, and it is independent of c, as in the covariant phase space result. The

9This point was overlooked in the first preprint version of [42], and led us to the erroneous conclusion
that there was a discrepancy between the covariant and canonical charges for non-orthogonal corners.
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only effect of the Hayward term is to adjust the boundary kinetic term from Dirichlet to
Neumann/mixed form. The total action is thus

S =

∫
dt

[∫
Σ

d3x

(
Π̃µν q̇µν +

b− 2

2
˙̃Π −NH̃ −NaH̃µ

)
(8.4.15)

+

∫
S

d2x
(

(c− 2)
√
γβ̇ + cβ ˙√γ −√γ

(
E(N, β) + P ( ~N, β)

)]
,

where

E(N, β) = −2

∫
S

N

(
k +

b− 2

2
λK̄

)
εS, (8.4.16)

P ( ~N, β) = 2

∫
S

(ΠµνuµNν −Nµ
S ∂µβ) εS = −2

∫
S

(
N · u ` +Nµ

S (Sµ + ∂µβ)
)
εS.

(8.4.17)

The charges coincide perfectly with (8.3.17), for all values of b and β. The canonical and
covariant results thus match for all boundary conditions considered.

As a final remark, let us say that a discrepancy for non-orthogonal corners could
have been expected, since a corner Lagrangian is needed for the variational principle and
it was not included in the application of (7.1.9). The reason why it does not happen is
that the corner term can always be considered as part of the space-like boundary instead
of the time-like boundary, as thus it enters the specification of the state, and not of the
phase space [34]. We confirm this, and what we have seen is that by keeping track of the
space-like boundary terms, one can read the form of the boundary kinetic terms associated
with the chosen boundary conditions.
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9Charges on null boundaries

Having discussed the different symme-
try groups associated with a larger or smaller
background structure, in this Chapter we
review how the covariant phase space al-
lows one to associate Noether charges and
Hamiltonian generators to these symme-
tries. In particular, we will discuss how the
choice of polarization affects the definition
of charges and their fluxes, and highlight the
role played by anomalies.
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9.5 SECOND-ORDER PERTURBA-

TIONS AROUND FLAT LIGHT-
CONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

9.6 WALD-ZOUPAS PRESCRIPTION

WITH FIELD-DEPENDENT DIFFEO-
MORPHISMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

In this chapter we address the problem of non-integrability of the charge using the
Wald-Zoupas procedure as described in Chapter 7, which aims at prescribing a (possibly
unique) set of charges requiring them to coincide with the canonical generators when a
physically identified flux vanishes. The preferred flux is selected from the equivalence
class (7.1.1) based on covariance and physical criteria, for instance such that the charges
are constant under conservative boundary conditions, or for perturbations around special
solutions corresponding to stationary spacetimes. We then showed how this procedure can
be extended to include corner contribution, anomalies and field-dependent diffeomorphisms.
We also showed under which conditions the resulting WZ charges can be identified as
Noether charges for a specific choice of boundary Lagrangian (see also [34, 85, 40, 38]).

In Chapter 7, we defined covariance as the equality of field space and spacetime Lie
derivatives. As the writing of this thesis was coming to an end, we have realised that
anomaly-freeness is, in fact, a better notion of covariance and we use it in this chapter. For
the moment, we consider only field-independent diffeomorphisms, because this is sufficient
to understand the symmetry groups described in Chapter 6. In this case anomaly-freeness
coincides with the equality of the two Lie derivatives, and we can follow the procedure
outlined in Chap. 7. The case with field-dependent diffeomorphism is discussed at the
end in Sec 9.6, where we explain why we changed our mind regarding the appropriate
definition of covariance.

Starting from θ = θEH and a given hypersurface, we select a preferred symplectic
potential θ′ in the equivalence class (7.1.1) satisfying the three criteria listed in Sec 7.2. If
the preferred θ′ and its Lagrangian L′ = L+ d` are covariant, then the formulas (4.3.12)
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and (4.3.18) are still valid with primes everywhere. The importance of the condition 2 is
then clear: when θ′ vanishes, the Noether charges coincide with the canonical generator
for field-independent diffeomorphisms. Furthermore, they are automatically conserved in
the subset of the phase space satisfying the conditions of case I or II. The new Noether
charges are related to those of θ by (7.1.9)

However, there is a caveat. In spite of the covariance requirement of condition 1, the
selection process may introduce anomalies. This happens if the preferred θ′ is associated
to a new Lagrangian L′ = L+ d` whose boundary term is anomalous: a′ξ := ∆ξ` 6= 0. In
this case the new charges do not satisfy Noether’s theorem in its original form (4.3.10),
because that relies on the covariance of L, specifically on the fact that δξL = £ξL = diξL.
If the boundary Lagrangian is anomalous we have instead δξL′ = d(iξL

′ + aξ) and the
formula becomes

j′ξ := Iξθ
′ − iξL′ − a′ξ =̂ dq′ξ, dj′ξ =̂ 0. (9.0.1)

Condition 2 is no longer sufficient to guarantee the conservation of the Noether charges
q′ξ. This potential problem is avoided thanks to condition 1. In fact, the pull-back of the
Hamiltonian generators on the lateral boundary gives

−Iξω = δIξθ
′ − (δξ −£ξ)θ

′ − diξθ′ =̂ δ(dq′ξ + a′ξ)− (δξ −£ξ)θ
′ − diξθ′. (9.0.2)

Here we used condition 0 and dθ′ ≡ 0 (that follows since θ′ is only defined after pull-back)
in the first equality, and (9.0.1) in the second. If condition 1 holds the generator is
integrable once the preferred flux is subtracted:

−Iξω + diξθ
′ = δIξθ

′ =̂ δ(dq′ξ + a′ξ). (9.0.3)

Furthermore, condition 1 also implies that the Lagrangian anomaly must be spacetime-
exact, specifically that a′ξ = dsξ where δsξ = −A′ξ and A′ξ is the symplectic anomaly of
the preferred θ′ [40]. This makes it possible to define the WZ charges

qWZ

ξ := q′ξ + sξ. (9.0.4)

They satisfy the flux-balance laws

dqWZ

ξ =̂ Iξθ
′, dδqWZ

ξ =̂ − Iξω + diξθ
′. (9.0.5)

It follows that they are conserved and provide Hamiltonian generators when θ′ vanishes,
be it for conservative boundary conditions, or leaky boundary conditions around stationary
configurations.

This is the Wald-Zoupas prescription. We stress that its keystone is condition 1.
Without condition 1, we would in fact be stuck with (9.0.1), without the possibility to use
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(9.0.2) to justify and be guaranteed that the anomaly can be reabsorbed in the definition
of the charge. With a′ξ (or even just part of it) still on the LHS of (9.0.1), stationarity of
θ′ would fail to give conserved charges, hence condition 2 would entirely lose its physical
relevance.

We also stress that even if the selected θ′ is covariant and the Lagrangian anomaly
a′ξ drops out of the flux-balance laws in the end, anomalous transformations can still be
present, since

Iξθ
′ = p£ξq + p∆ξq. (9.0.6)

This anomaly contribution is physically correct, because it is the right quantity to have so
that background structures don’t contribute to the flux: remember in fact that δξlµ

N
= 0

but £ξl
µ 6= 0, for instance.

The question we posed in Chapter 7 is whether the WZ charges (9.0.4) can always
be interpreted as Noether charges (7.1.9) for some boundary Lagrangian. The answer was
yes iff sξ = −∆ξc for some local 2-form c constructed out of the fields and the background
structure, and in this case the correct boundary Lagrangian is the anomaly-free choice
`+ dc . So we have two approaches to constructing charges: the Noether charge, based on
selecting specific θ′ and `. And the WZ prescription, based on selecting only a preferred
θ′. The convergence of the two approaches is obtained when the WZ charges can be
derived as improved Noether charges with the choice of ` determined by a condition of
covariance.

An important point to appreciate here is that the charges are anomalous even if the
symplectic potential is not. This is simply because the charges depend on the symmetry
vector fields ξ which are generally anomalous. What one should require then is that the
charge anomaly is sourced only by the ξ’s, namely that

∆χqξ =
∂g

∂ξ
∆χξ = −∂g

∂ξ
£χξ = −q[χ,ξ]. (9.0.7)

This is precisely what is guaranteed for the WZ charges thanks to the covariance require-
ments of symplectic potential and boundary Lagrangian.

Note that is also possible to drop condition 0, and consider a generalized WZ
prescription based on 1 and 2 alone [34, 35]. This generalization will not be needed here,
but it is necessary in order to obtain Brown-York charges at finite time-like boundaries
with non-orthogonal corners as shown explicitly in Chapter 8, and for the generalized
angular momentum of super-rotations at future null infinity [81]. The WZ charges are
still given by (9.0.4), but where (7.1.9) has a non-trivial ϑ term, and ω′ replaces ω in
(9.0.5).

Summarizing, our viewpoint as put forward in Chapter 7 and also in [35] is that the
crux of the WZ procedure is really condition 1 (or its alternative version as anomaly-
freeness). Condition 0 can be dropped, and condition 2 should be interpreted as a
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framework rather than a unique set-up, meaning that different notions of conservative
boundary conditions or stationarity conditions can be considered, in order to describe
different physical problems.

9.1 Wald-Zoupas conditions on null
hypersurfaces

We now study which of the family of symplectic potentials θ(b,c) in (5.3.50) satisfies
the WZ conditions. We will recover the results of [36], show how they change for different
polarizations, and how they can be extended to the relaxed phase space with δk 6= 0.

θ(b,c) =
[
σµνδγµν + πµδl

µ + (2− b)δk + (2− c)δθ
]
εN − (bk + (c− 1)θ)δεN , (9.1.1)

Condition 0. Looking at (5.3.24), we see that it requires

δlµ = δlµ
N
= 0. (9.1.2)

These can be satisfied without any restriction on the dynamics, and correspond to the
gauge fixing (6.4.11).

Condition 1. From Section 6.3 we have have identified the family b = 0 and c

arbitrary as covariant for either one of the two conditions in (9.1.2).
Condition 2, case I. We can distinguish two options for conservative boundary

conditions. If we impose δεN = 0, then (5.3.50) vanishes for δlµ = δσµν = 0, which in
turns imply δθ = 0, and (2− b)δk = 0. This gives us Dirichlet boundary conditions for
b = 2, and strengthened Dirichlet conditions including δk = 0 for b 6= 2. If we don’t
impose δεN = 0, then necessarily b = 0 and c = 1, and we find the conformal boundary
conditions (5.3.58) of the York polarization.

Condition 2, case II. If we want stationarity to correspond to a shear and expansion-
free surface (equivalent to a NEH in vacuum), as in [36], then we need

[πµδl
µ + (2− b)δk + (2− c)δθ

]
εN − bkδεN = 0. (9.1.3)

The most general solution of this equation is

b = 0, δlµ
N
= 0, δk

N
=

c− 2

2
δθ. (9.1.4)

For c = 2, we recover the result of [36]: the symplectic potential

θCFP = σµνδγµνεN − θδεN (9.1.5)
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meets all the WZ criteria (and was argued in [36] to be unique under these conditions).
For arbitrary c, we find a 1-parameter family of covariant WZ potentials that satisfy the
same stationarity condition,

θc = σµνδγµνεN − (c− 1)θδεN . (9.1.6)

This includes the conformal polarization for c = 1. These potentials are associated with
a phase space in which inaffinity is allowed to vary, but in a way fully constrained by
the expansion via (9.1.4). These properties holds also if we further relax δlµ

N
= 0. This

defines a new phase space that could be interesting to further explore. The difficulty
with this generalization of the CFP result is that the symmetry vector fields appear to be
field-dependent and not universal, as we saw in Section 6.4.

9.2 Stationarity on flat light-cones
The notion of stationarity as shear and expansion-free used above is solidly based

on physical grounds: shear and expansion-free hypersurfaces capture the idea that no
radiation is going through the surface, and include standard stationary examples such
as non-expanding horizons and Killing horizons. However, this notion is not exhaustive
of stationarity understood as lack of radiation, as there are plenty of null hypersurfaces
which possess shear and expansion even in the absence of gravitational waves. Consider
for instance a light-cone in flat Minkowski space: its expansion grows, hence the CFP
flux (9.1.5) is non-zero, even though there is no actual dynamics taking place. This is an
objectable feature, which disconnects charge conservation from absence of radiation. It
motivates the question whether one can find a different potential leading to a vanishing
flux on both non-expanding horizons and flat light-cones. This is not possible within the
framework above, because the CFP symplectic potential is unique under the requests of
covariance and stationarity on NEH.What we propose is to relax the notion of stationarity,
from θ′ = 0 to:

Case III: Iξθ′ = 0 for every symmetry vector field on the stationary solutions.

This condition is weaker than θ′ = 0, therefore the immediate consequence is a lost of
uniqueness. Why this appears bad at first sight, our point is that it can be compensated
by the larger set of solutions that can be included. For the family of anomaly-free
potentials,

Iξθ
c =

[
σµν£ξγµν + πµδξl

µ + 2δξk + (2− c)δξθ
]
εN − (c− 1)θδξεN . (9.2.1)

For this to vanish on a NEH, we need (9.1.4) with δ replaced by δξ. But if we further
require that the symmetry group preserves the NEH, then we must have δξθ = 0. We
thus recover the conditions δξlµ = δξk = 0 and the CFP group. Having done so, the flux
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vanishes on a NEH for any c, hence the weaker stationarity condition leaves an ambiguity.
But this ambiguity is eliminated because we can now extend the set of stationary solutions.
Consider a flat light-cone. The CFP group is reduced to Weyl transformations and
super-rotations only, because the surface is only semi-complete. The shear vanishes, and

Iξθ
c = (2− c)δξθεN − (c− 1)θδξεN = (2− c)£ξθεN − (c− 1)θ£ξεN − θwξεN . (9.2.2)

To evaluate this flux, we can exploit the fact that the potential is class-III invariant to
make a convenient choice of normal. We take affine coordinate λ and

l = λ∂λ, ⇒ θ = 2, εN =

√−g
f

d3x = λdλ ∧ εS. (9.2.3)

Then the first term in (9.2.2) vanishes, and so does the anomaly, see (6.4.17). Only
super-translations have non-vanishing anomaly, but these are not part of the symmetry
vector field. Finally for the second term we have £ξεN = ξλd3x = WεN . This term
doesn’t vanish, but can be eliminated if we set c = 1.

We conclude that the flux (9.2.1) vanishes for NEH and also for a flat light cone if
c = 1. Stationarity in the weaker sense of case III allows one to solve the problem of a
non-vanishing flux on a flat light-cone. This process selects again a unique potential, and
this is the conformal one instead of the CFP one.1

9.3 CFP phase space with varying inaffinity
We have seen that the covariance condition is satisfied also in the larger phase space

with δk left arbitrary. For this space the symmetry vector fields span the group GaST given
in (6.4.10), with δlµ = 0 required to have closure under the Lie bracket, while nµδξlµ = 0

is required to make the anomaly ‘canonical’, namely depend on the symmetry parameters
and f but not on the extension, see (6.4.7).

On the other hand the stationarity condition is violated for both the original WZ
definition and the weaker definition of case III. In other words, the vector fields in GaST

which are not in GCFP have a non-vanishing flux on a non-expanding horizon, given by
Iξθ = 2(£ξk −£lwξ − kwξ)εN . In affine coordinates this reduces to f τ̈ and vanishes only
for the CFP vectors.

1One may wonder whether this idea can be taken one step further to identify a symplectic potential
with vanishing flux on shear-full hypersurfaces in flat spacetime. We don’t know if this could be done,
but it seems difficulty since even a non-radiative shear can introduce a dynamical evolution of the
null hypersurface. The case of a light-cone is special in this sense because even if the area changes,
the expansion has a constant representative.
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9.4 Charges
In this section we use the formula (7.1.9) to write the charges for arbitrary variations,

arbitrary ξ and any choice of (b, c) in the boundary Lagrangian. We will give some general
observations and then comment on the special features that occur when the additional
restrictions are added, and specific values of b and c chosen, in parallel with the discussion
on the fluxes of the previous section. In particular we will explain how to reduce them to
the Wald-Zoupas prescription.

In the following we take n adapted to the cross sections S of the null boundary on
which we are evaluating the charges. This fixes the class-I ambiguity, and it is a choice
useful to simplify various expressions. Namely,

n =
1

fgλΦ
dλ (9.4.1)

where λ is an arbitrary parameter labelling the cross sections of a space-like foliation of λ.
We can then write the pull-backs as follows. For the Komar charge,

qξ = −1

2
εµνρσ∇µξνdxρ ∧ dxσ S

= 2nµlν∇[µξν]εS. (9.4.2)

For the boundary Lagrangian,

iξ`
(b,c) = −(bk + cθ)iξεN

S
= (bk + cθ)ξ · n εS. (9.4.3)

For the corner symplectic potential,

Iξϑ
EH S

= (nµδξl
µ + nµδξlµ)εS = (nµ£ξl

µ + nµ£ξlµ + 2wξ)εS, (9.4.4)

where we used (6.1.6). The Lie derivatives satisfy the following identity,

nµ£ξlµ + nµ£ξl
µ = 2nµlν∇[µξν] + 2nµξ

ν∇νl
µ. (9.4.5)

The first term on the RHS coincides with the pull-back of the Komar 2-form. The second
is a contraction of the Weingarten map, thanks to the restriction of ξ to be tangent.

Adding up according to (7.1.9), we get

qc

ξ = −2[nµξν(Wνµ −
1

2
(bk + cθ)gµν) + wξ]εS (9.4.6)

= −[2nµξν(Wνµ −Wgµν) + ξ · n((2− b)k + (2− c)θ) + 2wξ]εS

= −[2ξµ(ηµ − θnµ) + ξ · n((2− b)k + (2− c)θ) + 2wξ]εS.
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These are the Noether charges for the full group Diff(N ), and any polarization in the
family (5.3.48). No restrictions except for lµδlµ = 0. The anomaly is also responsible for
the shift between these charges and a Brown-York-like expression based on the Weingarten
map alone, as was found in [39] for the Dirichlet polarization. One of our initial motivation
was to study whether this shift could be removed changing polarization. As we can see
from the general expression (9.4.6), this is not the case for the polarizations considered.
They only affect the numerical coefficients that would give rise to the trace term W , and
not the anomaly contribution. But the anomaly term is on the other hand very important:
it leads to the area being the charge associated with a constant Weyl rescaling, arguably
the most famous gravitational charge for horizons.

The c-term in the boundary Lagrangian is a total derivative and could have been
moved to ϑ. This move leaves the charges invariant, because corner shifts in the boundary
Lagrangian only matter if the shift is anomalous [38, 35], and θεN is not. Using `D versus
`D′ in the case of Dirichlet polarization, or `Conf versus nothing in the case of conformal
polarization, is irrelevant.

We can now make the earlier discussion on the need of a physical prescription for the
charges concrete. First of all, they are not class-III invariant, and depend explicitly on
the choice of normal representative taken. Secondly, they depend on the extension ξ̄Φ of
the symmetry vector fields through the anomaly wξ. Therefore if this extension is a free
parameter, the charges can be given an arbitrary value even if the intrinsic parameters on
the hypersurface are kept fixed. Further problems appear if we look at their flux, which is
given by

dq(b,c)

ξ =̂ Iξθ
(b,c) − a(b,c)

ξ (9.4.7)

= [σµν£ξγµν + πµ£ξl
µ + (2− b)£ξk − 2£lwξ

+ (2− c)£ξθ − 2θwξ]εN − [bk + (c− 1)θ]£ξεN . (9.4.8)

The problem with this flux is the same one that plagues the Komar charges: it can be
non-zero flux even on a NEH or in Minkowski space for generic diffeomorphisms tangent
to a generic null hypersurface! This is thus a good example of the earlier discussion, that
a generic version of Noether theorem may be unpractical, and one needs some additional
input to reorganize it in a more useful way. We know that the dynamical content of
the flux-balance laws is the constraint equations, namely for a null hypersurface the
Raychaudhuri and Damour equations, as discussed for instance in [49]. These can be
derived from (9.4.7) for for ξ = l and for ξ = Y respectively. The point is that for
arbitrary b and c the terms in θ̇ and ˙̄ηµ will appear scattered on both LHS and RHS, and
that without phase space restrictions there will be gauge-dependent terms in both charge
and flux that cancel out in the final equation.
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We now impose nµδlµ = 0, which allows us to rewrite the anomaly as in (6.4.7). The
term £l ln f obtained in this way can be expanded out and reabsorbed into the shifts of k
and ηµ to k̄ and η̄µ, giving

q(b,c)

ξ = −2[ξ · η̄ − ξ · n(
c

2
θ +

b

2
k − k̄)− τ̇ ]εS. (9.4.9)

It is interesting to discuss the behaviour of this quantity under class-III transformations.
The terms in k̄ and η̄µ are partially invariant, namely they change only if the rescaling is
induced by a reparametrization of Φ. But the same reparametrization changes also the
anomaly, see (6.1.6)! The two changes perfectly compensate, and these terms are fully
class-III invariant. The only non-class-III invariant part is the term in k, and this was to
be expected since for b 6= 0 we already know that the flux cannot be covariant for k 6= 0.
If we restrict to b = 0 we thus have an expression for the charges

qc

ξ = −2[ξ · η̄ − ξ · n(
c

2
θ − k̄)− τ̇ ]εS (9.4.10)

which is perfectly class-III invariant. This discussion shows the importance of the role
played by the anomaly piece in the charge expression.

Furthermore for b = 0 the boundary Lagrangian is anomaly-free, hence these charges
are Wald-Zoupas, provided we satisfy the covariance and stationarity condition. The
covariance can be satisfied taking δlµ = 0, which does not restrict the symmetry group.
Hence so far the group is still the full Diff(N ). However as explained earlier, the stationarity
condition requires restrictions on the variations. In particular we need δlµ = δk = 0,
whether we use the original or the weaker condition of stationarity. This step alone is
responsible for reducing the symmetry group to GCFP. We also remark that the restriction
(6.4.14) implies that £lξ̄

Φ = 0, therefore the partially class-III invariant quantities k̄ and
η̄µ become fully class-III invariant, and accordingly, their anomaly vanishes. If we use
affine coordinates, k̄ = 0 and with the parametrization (6.4.16) of the symmetry vector
fields we can write

qc

ξ = −2[Y · η̄ + c Tθλ + (
c

2
λθλ − 1)W ]εS, (9.4.11)

where θλ denotes the expansion of the affine generator. In particular: the super-rotation
charge aspect is the shifted twist η̄, the super-translation charge aspect is the expansion,
and the Weyl charge aspect is the area minus the expansion, and reduces to the area on a
NEH.

For c = 2, we recover the CFP charges of [36]. On a NEH they reduce to

qc

ξ
NEH
= −2[Y · η̄ −W ]εS, (9.4.12)
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matching the result of [45], and are conserved and independent of the polarization
parameter c. They never vanish for any finite area, and one has to invoke a limiting
procedure to argue that they vanish in Minkowski. On a flat light-cone we have η̄µ = 0,
and they reduce to

qcW,Y
l.c.
= −2[(c− 1)W ]εS. (9.4.13)

They are not conserved unless c = 1, in which case they vanish. The conformal polarization
does not only has better stationarity property, but it also makes it more natural to assess
that the charges vanish in flat spacetime.

For the larger groups GaST and Diff(N ) the charges are well defined but do not satisfy
the stationarity condition neither in the original sense of case II, nor in the weaker sense
of case III.

9.5 Second-order perturbations around flat
light-cones

In the previous section, we identified covariant charges and fluxes which are conserved
on a flat light-cone, and vanish exactly on each cross sections. This occurs for the special
choice of polarization b = 0 and c = 2, and for symmetry vector fields belonging to
the CFP group. We now study their evolution when the light-cone is perturbed by
gravitational radiation. Since the charges and fluxes are covariant, we can use any normal
representative, and we pick the choice (9.2.3) with a constant expansion in flat light-cones
and vanishing anomaly. The flux-balance law is

dqξ = (σµν£ξγµν + £ξθ)εN , (9.5.1)

where we remember that only super-rotations Y and Weyl super-translations W are
allowed as symmetries. For a pure Weyl transformation,

dqW = W (2σ2
µν + £lθ)εN . (9.5.2)

We now solve for £lθ using the Raychaudhuri equation, in a perturbative expansion
around a NEH. We assume that the shear is infinitesimal, and write θ = 2 + θ1 +O(σ4).
Linearizing the Raychaudhuri equation we find

£lθ1 = −θ1 − σ2
µν , (9.5.3)

whose solution is

θ1(λ, xA) = −1

λ

∫ λ

λ0

σ2
µν(λ

′, xA)dλ′. (9.5.4)
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Here λ0 can be taken as the value of affine parameter after which the perturbation
enters the light-cone, with the tip located at λ0 = 0. Plugging this result in (9.5.2) and
integrating over a region ∆N of the null hypersurface, we get

∆qW =

∫
∆N

W

(
λ3σ2

λ +

∫ λ

λ0

λ′2σ2
λ′dλ

′
)
dλ ∧ εS +O(σ4), (9.5.5)

where σλ := σ/λ is the shear of the affinely parametrized normal. The flux is made
of two pieces. The first one, proportional to the shear squared, represents the energy
of weak gravitational waves entering the light cone locally. It is a tidal heating term.
The second piece is related to the gravitational waves which have entered the light-cone
since λ0. Unlike the first term, this terms is not local, and depend on the history of the
gravitational waves which entered the outgoing light from λ = 0. Hence, even in the
absence of local shear, we expect a variation of the charge if some weak gravitational
waves have previously entered the outgoing light cone. This is because if it is the case,
spacetime is not flat anymore in the local surrounding, as there is some energy localized
inside the outgoing light cone, the energy of the gravitational waves which have previously
entered. Hence, this second term is a memory effect. Furthermore, the flux of the future
pointing diffeomorphisms is positive, and so the charge increases, underlying the fact the
gravitational waves carry positive energy.

Next, we take a pure super-rotation, so ξ ∈ TS. In affine coordinates, ξµ∂µ = Y A∂A

and the charge density associated to this tangent vector is just given by qY = −2η̄µξ
µεS =

Y APAεS, with variation

dqY = d(Y APAεS) = −2£l(ξ
µη̄µ). (9.5.6)

We can now compute the flux of the charge using our flux balance law. We make use of
the linearized Raychaudhuri equation (9.5.3) to express the linearized expansion θ1 in
terms of the shear (9.5.4). For a tangent diffeomorphism ξµ∂µ = Y A∂A, we have for small
perturbations around the flat light cone

Iξθ
Y = σµν£ξγµνεN + £ξθεN

= 2Dµ(σµνvν)εN − 2ξµDνσ
ν
µεN −

(
1

λ

∫ λ

0

σµνξαDασµνdλ
′
)
εN +O(θ2

1)

= −2Y ADBσ
B
AεN +O(σ2

µν) (9.5.7)

where we disregarded the first term in the equation (9.5.7) because it was a total
divergence which does not give any contribution upon integration on the compact cross
sections. Therefore, at leading order, we find that the charge variation is given by the
angular derivative of the shear along the cross sections. We notice that the charge
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variation is proportional to the shear at leading order, not the square of the shear. The
coefficient PA appearing in the charge is the coefficient of the first order expansion of guA
in affine coordinate, and so it has the interpretation of an angular momentum for small
perturbations around the flat background. Therefore the charge associated to the tangent
diffeomorphsims is modified by the the angular momentum of the weak gravitational
waves crossing the outgoing light cone. The equation relating the charge variation (9.5.6)
to the flux is a linearization of the more general Damour equation [129].

9.6 Wald-Zoupas prescription with
field-dependent diffeomorphisms

We have seen that if the symmetry vector fields include field-dependent diffeomor-
phisms, the notions of covariance defined by matching Lie derivatives and by anomaly-
freeness can give different answers. The question is then which of the two should be used as
condition 1 of the WZ prescription. In Chapter 7 we used the matching of Lie derivatives.
Following discussions with Chandrasekaran and Flanagan on the topics presented in [54,
105] we were motivated to reconsider this choice. In this section we compare the two
options, explain the logic that motivated our choice in [35], and give a new argument
that tilts the balance in favour of the anomaly-free option which is the one favoured by
Chandrasekaran and Flanagan. We also briefly explain why this difference was in the end
not important to understand the application of the formalism to the BMS group at future
null infinity studied in Chapter 7.

To answer this question, we look at (9.0.2), which is still valid if δξ 6= 0. This formula
suggests to take the matching-Lie-derivative options. In fact if we require (δξ −£ξ)θ

′ = 0

(9.0.3) is still valid, so we can proceed as before subtracting the preferred flux to obtain an
integrable generator. Furthermore, condition 1 also implies that the Lagrangian anomaly
must be spacetime-exact, specifically that a′ξ = dsξ where now δsξ = −q′δξ − A′ξ [35].
The WZ charges are then defined as in (9.0.4) with this new sξ, and still satisfy the
flux-balance laws (9.0.5). This notion of covariance appears thus naturally when talking
about integrability of the charges.

Let us consider now requiring instead ∆ξθ
′ = 0, which as we discussed in Section 9.6

is a simpler notion of background-independence. Furthermore, it is this property that
is satisfied by the standard symplectic potential, ∆ξθ

EH = 0, while IδξθEH 6= 0 in general.
Imposing the anomaly-free condition, the term Iδξθ

′ appears in the RHS of (9.0.2), and
the previous procedure no longer works if this is not zero. We can then attempt a charge
definition subtracting this new term as well, so that (9.0.3) is replaced by

−Iξω + Iδξθ
′ + diξθ

′ = δIξθ
′ =̂ δ(dq′ξ + a′ξ). (9.6.1)
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However we are no longer guaranteed that a′ξ is spacetime exact. Therefore this condition
alone is not sufficient to define the charges, and must be supplemented by the additional
condition that

Iδξθ
′ = dX (9.6.2)

be spacetime exact. This additional property suffices to obtain WZ charges when the
symmetry vectors are field dependent. The charges are still given by (9.0.4), this time
with δsξ = −q′δξ − A′ξ − X, and are as before conserved and Hamiltonian generators
when θ′ vanishes. Notice that (9.6.2) is guaranteed if the final boundary Lagrangian is
covariant. So one can rephrase the two independent prescriptions ∆ξθ

′ = 0 and (9.6.2)
also as a′ξ = A′ξ = 0. We conclude that even if the notion of anomaly-freeness may appear
more natural, it is less economical, in that it is not sufficient per se to guarantee the
existence of the WZ charges, and one has to require also (9.6.2).

We now show that the stronger covariance requirement just stated is actually necessary
if one goes beyond the flux-balance properties (9.0.5), and requires also that the charges
gives a faithful representation of the symmetry group under Poisson brackets. This can
be already seen requiring as before that the only anomaly of the charges comes from the
vector field ξ. If they are field-dependent, (9.0.7) is replaced by

∆χqξ =
∂g

∂ξ
∆χξ =

∂g

∂ξ
(δχ −£χ)ξ = qδξχ − qJχ,ξK = q∆χξ. (9.6.3)

Now applying the anomaly operator to the flux formula (9.0.1) we get [40]

∆χqξ =̂ − qJχ,ξK + qδξχ + IξAχ + iξaχ. (9.6.4)

If the charge is of the WZ type, then Aξ = aξ = 0, and we recover (9.0.7). Conversely if
we choose a covariant potential, ∆ξθ = dAξ = (δξ −£ξ − Iδξ)θ = (δξ −£ξ)θ − dqδξ. From
this we have IξAχ = −qδχξ and ∆χqξ =̂ − qJχ,ξK, failing to reproduce (9.0.7). Therefore
even if the covariance criterium seems more economical, and in some cases easier to define,
it is only the anomaly-free criterium that guarantees the correct behaviour of the charge
algebra in the case of field-dependent diffeomorphisms.
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10Conclusions

Overview of the reviewed content
While the primary focus of the thesis was on original contributions, the earlier

chapters served to lay down the foundation by reviewing and gathering scattered knowledge
into a coherent narrative. Chapter 2 offers a self-contained review of the geometry of
hypersurfaces embedded in spacetime. While the results reviewed here are well-known,
having them systematically compiled serves a twofold purpose. First, it provides a unified
reference point for readers, allowing for seamless continuity in understanding the material
that follows. And second, it simplifies the often arduous task of navigating through
various treatments of these concepts in existing literature—especially when it comes to
null hypersurfaces. Different authors often introduce their own notational and definitional
conventions, which can make comparative reading difficult. Our review aims to serve as a
cohesive primer, thus simplifying this task.

The third chapter is dedicated to a review of Noether’s theorem in its standard
formulation. We go beyond a cursory treatment by emphasising some of the subtler
aspects, particularly concerning active versus passive transformations. Examples are
provided to offer a deeper understanding of the subject. The chapter also explores
Noether’s theorem in the Hamiltonian framework, and reviews Noether’s theorem for
gauge theories that will be of particular relevance for generally covariant theories which
will later become the center of our attention.

In the fourth chapter, we explore the covariant phase space formalism—a framework
that unifies the Lagrangian and Hamiltonian descriptions in a manner that emphasizes
their complementary features. This forms the basis upon which our subsequent original
research is constructed. Additionally, we introduce the notion of anomalies, which serve
as a measure of non-covariance. The concept of anomalies is not only fascinating in its
own right but also plays a critical role in the topics that will follow.

In summary, the initial chapters of this dissertation serve as a comprehensive founda-
tion, both consolidating existing knowledge and introducing important frameworks and
concepts. This groundwork equips the reader with the essential tools and knowledge to
appreciate the original contributions made in the following chapters. By assembling an
integrated review and background, we grease the wheels for a more focused and effective
discussion on gravitational charges, which are the main topic of the rest of the text.
In the chapters that follow, we build on this strong foundation to present our original
contributions, which will be detailed in the rest of this conclusion.
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Boundary conditions
The fifth chapter serves as a pivot, transitioning from the review of foundational

principles to our original contributions. In this chapter, we study allowed boundary
conditions from the point of view of the action principle, specifically in the context
of General Relativity. While the section on non-null boundaries discusses well-known
results, the section on null boundaries goes beyond mere restatement. It decomposes
the null symplectic potential in the most general form, emphasizing the importance of
geometrically motivated quantities for defining polarization by highlighting the importance
of Class-III-invariance. This approach allows for a careful analysis of constraints put forth
by different authors, clearing the path for meaningful comparisons.

The central focus of this chapter is the issue of allowed polarizations. We identify
multiple options, each previously discussed in different contexts. In the timelike case, the
York option, which we favor, has recently gained interest from both mathematical [21] and
physical perspectives [130]. We scrutinize the commonly used null Dirichlet polarization for
null boundaries for its shortcomings, as outlined in [51]. Our examination of the non-Class-
III-invariant nature of the total action in this polarization leads us to propose a covariant
alternative: the conformal polarization. This eliminates the need for the counterterm
suggested in [51], resolving the problematic dependence on parametrization of the null
generator of the boundary. This finding has implications for the ‘action=complexity’
proposal, where the non-uniqueness of the null counterterm has sparked debate [131, 132].
Our work offers a way to bypass this controversy, eliminating the need for a counterterm
and its associated issues. However, we note that open questions remain—specifically
concerning the corner contribution to the action. The Hayward Lagrangian exhibits
parametrization dependence in this context. In the timelike York polarization, which
bears geometric similarity to the null conformal one, we argue mathematically and
physically that adding the Hayward Lagrangian may be unnecessary. We suggest fixing
δβ = 0 at the corner as part of the York boundary conditions. This position is supported
by our assertion that β is not solely part of either the induced metric or the extrinsic
geometry, but rather a combination of lapse and shift. Thus, different β configurations can
be viewed as equivalent to differently rotated or boosted observers. For null boundaries,
we refrain from making these claims as the nature of β is less clear, and it remains to
be seen whether the restriction δ(2k + θ) = 0 affects variations of β in some way. The
interplay between intrinsic and extrinsic geometry on null hypersurfaces, and the corner
term difference between fixing the 2d induced metric versus fixing the shear, motivates us
to tread cautiously and leave this issue for future research.

Using Sachs’ constraint-free data on a null hypersurface, we are able to disentangle
physical degrees of freedom from gauge which helps in determining which conservative
boundary conditions can be relaxed to allow for gravitational flux through the boundary.
In this case one can still impose boundary conditions and here their role is not eliminating
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the flux as in the conservative case, but rather preserving certain boundary structures. In
Chapter 6 we have highlighted the role of various different symmetry groups that arise as
variations are restricted and the universal structure is strengthened: Diff(N )⊗R, Diff(N ),
GaST, GCFP and GNEH, plus the case of field-dependent diffeomorphisms (6.4.19).

We have used a spacetime description for all quantities, and have found it convenient
to describe everything using a NP tetrad. This introduces non-dynamical background
quantities that transform non-covariantly in the phase space, but we have shown that
independence from the background structure can be easily kept under control. Quantities
independent of the choice of NP tetrad are covariant, and can be identified from their
invariance under a joint class-I and class-III transformation of the tetrad. Furthermore
the extra structures are relevant to the Carroll literature, hence our formalism can be
immediately used in that context.

Understanding covariance as independence from the choice of NP representative has
immediate application as clarification of the ambiguities of null boundary terms that arise
if Dirichlet boundary conditions are imposed in a weak way. We have further discussed why
reducing the ambiguity requires working with strengthened Dirichlet boundary conditions,
whose meaning is to preserve a choice of affine coordinates on the boundary. Alternatively,
the ambiguity can be reduced allowing the inaffinity to change but in a way fixed by the
rate of change of the boundary area, namely by the expansion. This choice provides a
definition of conformal boundary conditions on null hypersurfaces.

Charges and fluxes
Continuing on Chapter 4’s discussion on integrability of hamiltonian charges, in

Chapter 7 we present two ways to obtain integrable charges by choosing the charge-flux
split – the Wald-Zoupas and the improved Nother charge prescriptions. We analyse the
physical requirements of the WZ prescription, namely the need for covariance in relation
to background structures and the conceptual utility of ‘stationarity’ in radiative scenarios,
as spelled by conditions 1 and 2 in Section 7.2. We point out that, the WZ approach
also imposes limitations, specifically concerning what we termed as ‘condition 0,’ which
restricts variations in corner symplectic potential ϑ. This limitation has been critiqued
and extended in the literature [34, 14] by introducing the improved Noether charge, useful
notably when aiming to recover the Brown-York charges with non-orthogonal corners, as
detailed in Chapter 8, or when exploring the generalizations of the BMS group [133].

We show two significant results. First, we highlight that the WZ charges do not map
directly onto the improved Noether charges in a general sense, unless specific criteria are
met, namely if (7.1.16) admits solutions. We leave the question of existence of general
solutions to this equation as an open question, answering which would provide a valuable
insight into the universality or limitations of the WZ framework. Second important
result that we found is that the WZ prescription is capable of accommodating anomalies
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and field-dependent diffeomorphisms under particular covariance conditions1, enriching
its applicability and explaining why it works in situations one would not expect it to
work prior to this analysis. We referred to anomalies allowed in the WZ approach as
soft because of their physical meaning at future null infinity. We have shown that these
anomalies can be related to the allowed field-dependent diffeomorphisms, via (7.2.9)
which has an important consequence – there are situations in which the anomalies can
be completely ignored. Explicitly, this explains the validity of the WZ’s computation
of the BMS charges, the lack of understanding of which was in part the motivation for
this whole analysis. Nonetheless, we believe it does not impact the relevance of taking
anomalies into account. We hope that our new derivation of the BMS charges in the
main text and in Appendix C shows that using the formalism with anomalies enriches
our understanding of the mathematics as well as the physics.

One example of what can be learned is how anomalies capture the difference between
future null infinity and a null hypersurface at a finite distance, such as an event horizon.
It is well known that the BMS symmetries are different from the symmetries of a null
hypersurface in spacetime. For example, in BMS, dilations are not independent while on
a finite null hypersurface they are independent and their associated charge is given by the
area. Matching the two symmetries is possible relaxing the fall-off conditions so that the
BMS group is enhanced to the group GCFP or BMSW, as it was called in [46]. The key
elements of this generalization have been worked out in earlier in [107], but with different
restrictions that do not allow the full Diff(S) symmetry. They were studied further in [134,
80]. See also [112, 135, 87, 136] for related work on charges at horizons.

However, it was argued [44] that the two copies of the BMSW group, one at finite
boundary, and the other at I, are actually representations of different sectors of the
universal corner algebra, defined from purely geometric considerations. We know that
in both cases the anomaly comes from the boundary normal. While at a finite distance
the background structure only provides the location of the boundary, at future null
infinity it also provides the compactification factor. As a consequence, the metric on the
cross-section is anomaly-free at finite distance, but not on I. This introduces a second
source of anomalous transformations, given by the inhomogeneous terms of the metric
functionals on I. It would be interesting to study the limit of a finite null boundary to I,
and compare how the two versions of GCFP fit into the big picture painted in [44].

In Chapter 8, we looked into the role of conservative boundary conditions in Hamil-
tonians generated via covariant phase space methods. Our study extends the existing
Dirichlet-based analyses [32, 34, 14] to both York and Neumann conditions. We demon-
strated that these charges strongly depend on selected boundary conditions. More

1Remember that in this context, covariance was defined as δξ = Lξ, which boils down to ∆ξ = −Iδξ. It
would be interesting to compare WZ charges obtained using this condition with those coming from the
employing the slicing method [87] as they seem similar in spirit with anomalies being compensated
for by a carefully chosen field dependence of the generators.
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boundary conditions quantity held fixed value of b quasi-local energy Kerr (renormalized)
Dirichlet qµν 2 k M
York (q̂µν , K) 2/3 k − 2K̄/3 2M/3

Neumann Π̃µν 0 k − K̄ M/2

Table 10.1.: Different values of the energy computed as the generator of time-diffeomorphisms
at conservative boundaries.

explicitly, in the example of Kerr spacetime, we found that choosing boundary conditions
with fewer components of the induced metric fixed, while fixing more components of
the momentum, results in a lower energy value for time-like boundaries with positive
extrinsic curvature. One may try to interpret this by saying that holding the extrinsic
geometry fixed at the boundary instead of the intrinsic, results in energy is being stored
on the boundary itself and removed from the system. These findings are summarized in
Table 10.1.

It’s important to emphasize that this dependence on boundary conditions is a unique
feature of field theory, and is especially interesting for general relativity in particular. In
finite-dimensional systems, energy does not depend on the choice of boundary conditions.2

However, already in the case of the scalar field, whose variational principle we considered
in (5.1.7), there is a discrepancy between Dirichlet and Neumann energies which manifests
itself as a boundary term.3 This observation led us to investigate analogous boundary
condition dependencies in gauge theories. In these theories, as discussed in Chapter 3, the
bulk charge serves purely as a constraint, rendering boundary terms as the only interesting
component. Since the boundary terms are so sensitive to the choice of polarization, we
checked how the charges respond to the use of alternative polarizations for Einstein-Hilbert
gravity.

We performed calculations using both covariant and canonical methods, extending
our analysis to include non-orthogonal corners. In this context, we identified two distinct
classes of observers: those at rest with respect to the space-like foliation of spacetime,

2We can see this on the example of the Dirichlet and Neumann Lagrangians for a point particle,
LD = ẋ2/2 and LN = −xẍ/2 = LD + d`, with ` = −xẋ/2. To compute the energy in the latter case,
one can use the method of Ostrogradsky (see e.g. [137] for a modern description) and define two
momenta

p1 :=
∂LN

∂ẋ
− d

dt

∂LN

∂ẍ
=

1

2
ẋ, p1 :=

∂LN

∂ẍ
= −1

2
x.

The energy is then given by

EN := p1ẋ+ p2ẍ− LN =
1

2
ẋ2 ≡ ED,

matching the standard expression obtained with LD.
3This discrepancy is given by

ED =
1

2
φ̇2 +

1

2
(∇φ)2, EN =

1

2
φ̇2 +

1

2
(∇φ)2 − ∂a (φ∂aφ) = ED − ∂a (φ∂aφ) . (10.0.1)
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and those at rest along the time-like boundary. At the corner, these two types are related
by a boost transformation, which allows for a direct comparison of different notions of
energy. The charges pick up ‘tilting terms’, indicating an explicit dependence on the boost
between the normals. This phenomenon serves as another test passed by the improved
Noether charge prescription. The covariant and canonical results align perfectly for
both orthogonal and non-orthogonal corners, without requiring any formula adjustments.
However, to achieve this match, in the canonical approach it was crucial to recognize that
the boundary term contains an independent kinetic term, which must be transformed into
Hamiltonian form via a Legendre transform. This example highlights the elegance of the
covariant phase space formalism where the formulas automatically worked and gave the
correct results. While the canonical calculations were technically involved, they served
not only to convince us in the power of the CPS, but also to provide additional rationale
for incorporating Neumann-type corner contributions in York’s boundary conditions, as
discussed in Chapter 2.

In thermodynamics, various forms of energy – such as internal energy, enthalpy,
and free energy – are tied to distinct boundary conditions. For instance, setting the
pressure is associated with defining enthalpy, while constraining the temperature is linked
to free energy. These varying boundary conditions not only correlate with specific physical
scenarios but also correspond to unique mathematical phase spaces. In this sense, the
interpretation of energy might extend beyond the field’s energy to include a component
related to the boundary-condition-controlling device. So far all we have are analogies
and we think that further discussions are necessary to clarify interpretation of these
gravitational surface charges and their sensitivity to boundary conditions.

In any case, our results in Chapter 8 highlight a strong dependence of charges on
boundary representation in general relativity, something already observed when changing
variables and formulations (see e.g. discussions in [138, 124, 14, 139, 140, 141, 142]), and
here found when changing boundary conditions. We anticipate that the impact of such a
dependence at the classical level would be even more pronounced in quantum theory.

In Chapter 9 we have presented a general analysis of the charges and fluxes on an
arbitrary null hypersurface, with arbitrary variations of the metric allowed. We have
studied polarizations of the symplectic potential, their transformation and conservation
properties, and explained their relation to the Wald-Zoupas prescription. The key idea
we hold on to is that of covariance. Specifically, we prioritize quantities that do not rely
on any background structures other than those that are intrinsic to the definition of the
phase space itself. With this in mind, we identify a one-parameter family of covariant
symplectic potentials.

Imposing stationarity as in the original Wald-Zoupas prescription, one recovers the
unique symplectic potential of Chandrasekaran, Flanagan and Prabhu. The associated
charges are all conserved on non-expanding horizons, but not on flat spacetime. We point
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out the use of a weaker notion of stationarity that allows for selecting a unique set of
charges that are conserved, and vanish on a flat light-cone, as opposed to charges obtained
following the strong stationarity condition.

Furthermore, the flux of future-pointing diffeomorphisms at leading-order around an
outgoing flat light-cone is positive and reproduces the tidal heating term plus a memory-
like term. This general analysis allows applicability to a wide range of physical scenarios.
It provides a clean slate from which one can accurately analyze gravitational phenomena,
including charges, fluxes, dynamical notions of entropy, and are useful to clarify the
interplay between different boundary conditions, charge prescriptions, and symmetry
groups that can be associated with a null boundary.
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AAppendix: Charge algebra

A.1 Poisson algebra
The derivation in this Section follows [76]. The Poisson bracket between two Hamil-

tonians HX and HY is given by:

{HX , HY } = δYHX , (A.1.1)

where X, Y are symplectomorphisms in TΓ . It can be shown that this Poisson bracket is
skew-symmetric due to the properties of symplectomorphisms. The explicit calculations
are:

{HX , HY } = IY δHX

= −IY IXΩ
= IXIYΩ

= −IXδHY

= −{HY , HX} .

(A.1.2)

Moreover, the Poisson bracket is entirely determined by the symplectic 2-form Ω, as:

{HX , HY } = IXIYΩ . (A.1.3)

Now, we also examine spacetime vector fields ξ, ζ in TM . Their associated Poisson
bracket is:

{Hξ, Hζ} = δζHξ . (A.1.4)

And the Lie bracket between these spacetime vector fields is:

[ξ, ζ] = Lξζ . (A.1.5)

We explore how the Lie bracket of spacetime vector fields relates to the Poisson
bracket of charges. For this, we use the field-space version of the second equation of
(4.1.11)

I[ξ,ζ] = [δξ, Iζ ] . (A.1.6)

Upon applying this to Ω, it simplifies to:

I[ξ,ζ]Ω = δIξIζΩ , (A.1.7)
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which introduces a new Poisson bracket:

I[ξ,ζ]Ω = δ{Hξ, Hζ} . (A.1.8)

Note that the identity
IξΩ = −δHξ (A.1.9)

links the Noether charge Hξ with the field space vector field ξ, via the symplectic 2-form
Ω. If we consider two Noether charges like Hξ and Hξ + κ, they both relate to the same
vector field ξ as long as δκ = 0. This relationship is cohomological, meaning it is invariant
under such additions. We can also conclude that the Poisson bracket {Hξ, Hζ} and
{Hξ, Hζ}+ κξ,ζ correspond to the same Lie bracket vector field [ξ, ζ] as long as δκξ,ζ = 0.
Now, by combining this with the identity (A.1.8) we find that

{Hξ, Hζ} = −H[ξ,ζ] + κξ,ζ (A.1.10)

where δκξ,ζ = 0.
This tells us that the Poisson bracket of charges can be thought of as a projective

representation of the Lie bracket of symmetries. In other words, the charge algebra mimics
the symmetry algebra but may include extra terms, known as central extensions. These
central extensions are constants in the field space and commute with the rest of the
algebra’s generators.
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BAppendix: Phase space of null
boundaries

B.1 Internal Lorentz transformations
The behaviour of all geometric quantities under a class-I transformation (2.2.6) can

be easily computed, or read from [55] using the NP formalism. To that end, recall that

σµν = −σm̄µm̄ν + cc, ηµ = −(α + β̄)mµ + cc. θ = −2Re(ρ), k = 2Re(ε).

(B.1.1)
The fact that l is hypersurface-orthogonal hence geodesic fixes the two NP coefficients
κ = 0 and ρ = −θ/2. Apart from this, the formulas are general.

B.1.1 Class-I
Under (2.2.6), we have:

γµν → γµν + 2
(
al(µm̄ν) + āl(µmν) + |a|2lµlν

)
, εN → εN , (B.1.2)

σµν → σµν − 2(σām̄(µlν) + cc)− 2Re(σā2)lµlν σ → σ, θ → θ, k → k,

(B.1.3)

ηµ → ηµ − [aσ̄ + ā (k + ρ)]mµ + [āη ·m− a(aσ̄ + ā (k + ρ))]lµ + cc. (B.1.4)

We see that ηµ is invariant on a non-expanding horizon iff k = 0.
We now check invariance of the pulled-back standard symplectic potential (5.3.19).

We first notice that the corner term ϑEH is invariant thanks to mµδlµ = 0 and the pull-back.
Of the bulk term, the third and fourth are invariant. Plugging the above transformations
in the first and second term, and using lµδlµ = 0, we obtain

(σµν +
θ

2
γµν)δγµν → idem + 2[(aσ̄ + āρ)mµδl

µ + cc], (B.1.5)

2(ηµ + knµ)δlµ → idem− 2[(aσ̄ + āρ)mµδl
µ + cc], (B.1.6)

from which the invariance of θEH follows immediately. The result holds also if δa 6= 0.

B.1.2 Class-III
Under (2.2.7), we have

γµν → γµν , εN → A−1εN , σµν → Aσµν , θ → Aθ, k → A(k + £l lnA),

(B.1.7)

ηµ → ηµ − γνµ∇ν lnA, ωµ → ωµ + ∂µ lnA+ lµ£n lnA. (B.1.8)
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We now check invariance of the pulled-back standard symplectic potential (5.3.19).
Using these transformations, we first derive

ϑEH → idem− 2δ lnAεS. (B.1.9)

It is class-III invariant for a field-independent rescaling, but not for a field-dependent one.
The first of the bulk terms is invariant. The others give

− 2ωµδl
µεN → idem− 2(kδ lnA+ £δl lnA)εN , (B.1.10)

2δ(θ + k)εN → idem + 2
(

(θ + k)δ lnA+
1

A
δ(£lA)

)
εN . (B.1.11)

Adding up, we obtain

θEH → idem + 2(£l + θ)δ lnAεN − 2d(δ lnAεS). (B.1.12)

This is manifestly invariant for a field-independent rescaling. For field-dependent ones
invariance follows from the cancellation between the bulk and corner terms thanks to the
identity (2.2.13).

B.1.3 Anomalies and NP representatives
The background structure we use to describe a null hypersurface is a choice of NP

tetrad. In this Appendix we prove that quantities that are independent of the choice of
NP representative, namely invariant under both class I and III transformations, are also
anomaly-free. Consider a generic functional F of the dynamical fields φ = gµν and the
background fields (Φ, lµ, nµ). Anomaly-freeness with respect to Φ is achieved restricting
the diffeomorphisms to be tangent, so we assume to have done that in the following. The
variation of F under a change of tetrad is

δ(a,α)F =
∂F

∂l
δ(a,α)l +

∂F

∂n
δ(a,α)n, (B.1.13)

where

δ(a,α)l = αl, δ(a,α)n = −αn+ ām+ am̄, a� 1, α� 1, (B.1.14)

is the infinitesimal version of (2.2.6) and (2.2.7). This coincides with the anomalies
(6.1.6) and (6.1.7) for α = −wξ and a = m · Z. Taking this special values,

δ(a,α)F =
∂F

∂l
∆ξl +

∂F

∂n
∆ξn = ∆ξF. (B.1.15)

Therefore the vanishing of the LHS implies that F is anomaly-free.
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B.2 Alternative polarizations
Different choices of θ′ can be obtained integrating by parts in field space writing

pδq = δ(pq) − qδp for one or more canonical pairs, or by integrating by parts on the
hypersurface and thus moving terms in and out of ϑ. Not all such manipulations are useful
when looking for admissible boundary conditions, because they may lead to a symplectic
potential which is not in diagonal form, or whose δq are not independent. In the main
text we restricted attention to changes of polarization in the spin-0 sector only. In this
Appendix we present two more changes that affect the boundary Lagrangian. We will
assume that (5.3.54) holds, and don’t consider integrations by part in spacetime, namely
the corner term ϑEH is always the same. We can then start from (5.3.31).

Changing polarization in the spin-1 sector can be done using

πµδl
µ εN = δ((θ − 2k)εN )− lµδ(πµεN ). (B.2.1)

This manipulation changes the boundary Lagrangian. It remains in the family (5.3.48),
but with different numerical coefficients. As mentioned in the main text, the momentum
πµ is determined in terms of the shear of the null hypersurface by the Einstein’s equations.
Therefore it cannot be specified independently from the shear, hence boundary conditions
based on this polarization would be consistent only if the boundary equations of motions
are satisfied.

For the second change, we observe that the spin-2 and spin-0 sectors can be written
in terms of a single tensor, so that

θD = [Πµνδγµν + 2(ηµ − θnµ)δlµ
]
εN , (B.2.2)

where
Πµν = Bµν − (θ + k)γµν = σµν − 1

2
(θ + 2k) γµν . (B.2.3)

Notice the change in the spin-1 momentum, due to (5.3.26). Written in this form, one
can consider a change in polarization of the first term, which is given by

ΠµνδγµνεN = −γµνδΠ̃µνd3x− δ
(

(θ + 2k) εN
)
. (B.2.4)

One can also combine this with a change in the spin-1 sector via

(ηµ − θnµ)δlµεN = δ(θεN )− lµδ
(
(ηµ − θnµ)εN

)
, (B.2.5)

and get another element of the same family. If we now restrict the variations to δlµ = 0

we have
θEH = −γµνδΠ̃µνd3x− δ(θεN ) + dϑEH. (B.2.6)

B.2 Alternative polarizations 159



This is reminiscent of the Neumann form of the symplectic potential in the non-null case,
however Π misses the η part of the extrinsic geometry. One could try to resolve this
rewriting in terms of Wµν , which gives

θEH = [γµνδWµν + δW + (2ηµ + knµ)δlµ + (∂nl
2 + k)nµδlµ]εN + dϑEH. (B.2.7)

So even if Wµν contains the eta term missing in Π, it drops out because ηµlνδγµν = 0.

B.3 Closure of Lie brackets
In this Appendix we study the conditions under which symmetry vector fields are

closed under the spacetime Lie bracket. We consider first the vector fields (6.4.8). First
of all we check that they close as intrinsic vectors on N . Namely we define

ξ̂µ := τ(λ, xB)∂λ + Y A(xB)∂A. (B.3.1)

Then we have

[ξ̂1, ξ̂2] = ξ̂12, τ12 := τ1τ̇2 + Y1[τ2]− (1↔ 2), Y12 = [Y1, Y2]S. (B.3.2)

The algebra closes and has a semi-direct product structure with Diff(S) acting on the
space RN of functions of N as scalar densities of weight −τ̇ .

Next, recall that the condition nµδξlµ
N
= 0 partially constraints the extension ξ of

the intrinsic vectors ξ̄ off of N , specifically the component ξΦ = Φξ̄Φ = Φ(δξ ln f − τ̇).
This contraint makes closure of the ξ’s under the spacetime Lie bracket not automatic.
The non-trivial component to check is

[ξ1, ξ2]Φ = Φ((£ξ1δξ2 −£ξ2δξ1) ln f − τ̇[ξ1,ξ2]) +O(Φ2)

= Φ(£[ξ1,ξ2] ln f + (£ξ1∆ξ2 −£ξ2∆ξ1) ln f − τ̇[ξ1,ξ2]) +O(Φ2) (B.3.3)

Closure of the algebra requires (£ξ∆χ −£χ∆ξ) ln f = ∆[ξ,χ] ln f . It works if ln f has no
anomaly. Likewise we have

(£ξδχ −£χδξ) ln f = £ξ(
∂ ln f

∂gµν
£χgµν)−£χ(

∂ ln f

∂gµν
£ξgµν)

=
∂ ln f

∂gµν
(£ξ£χ −£χ£ξ)gµν + £ξ

∂ ln f

∂gµν
£χgµν −£χ

∂ ln f

∂gµν
£ξgµν

= δ[ξ,χ] ln f + £ξ
∂ ln f

∂gµν
£χgµν −£χ

∂ ln f

∂gµν
£ξgµν (B.3.4)

and the last term does not have any reason to vanish as well. therefore the algebra do not
close.
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Adding the condition δlµ
N
= 0 eliminates the extra term, and the algebra closes.

Notice that it closes for τ an arbitrary function on N , namely for the group GaST associated
with the relaxed CFP phase space with δk arbitrary. This result may appear in tension
with the result of [43], where it was proved that the largest corner subalgebra that closes
at first order under the Lie bracket includes at most a linear dependence in time, as
opposed to the arbitrary time dependence of τ(λ, xA) here. The difference is that the
corner subalgebra includes two independent sets of super-translations, corresponding
to the two null times that tick off the corner. Restricting the diffeomorphisms to be
tangent to N eliminates from the algebra those elements that prevent an arbitrary time
dependence.

Finally, we consider the case with an explicit field dependence as in (6.4.20). Taking
the divergence of the vector Y A

3 ,

DAY
A

3 = Y B
1 DADBY

A
2 − Y B

2 DADBY
A

1

= (Y B
1 ∂B τ̇2 − Y B

2 ∂B τ̇1)− (Y B
1 ∂Bτ2 − Y B

2 ∂Bτ1)θl − (τ2Y
B

1 ∂Bθl − τ1Y
B

2 ∂Bθl)− w′(xA)

(B.3.5)

where w′(xA) = −Y B
1 ∂Bw2− Y B

2 ∂Bw1. Now, we have to compare (B.3.5) to τ̇3− τ3θl and
so we write

τ̇3 − τ3θl −DAY
A

3 = τ1τ̈2 − τ2τ̈1 − (τ1τ̇2 − τ2τ̇1)θl + (τ2Y
B

1 DBθl − τ1Y
B

2 DBθl) + Y B
1 ∂Bw2 + Y B

2 ∂Bw1

= τ1w2(xA)− τ2w1(xA) + (τ2Y
B

1 ∂Bθl − τ1Y
B

2 ∂Bθl)− Y B
1 ∂Bw2 − Y B

2 ∂Bw1

(B.3.6)

We observe that in general this is not a constant in the null parameter λ (except if both
τ1 and τ2 vanish) so it means that the Lie algebra does not close.
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CAppendix: Wald - Zoupas and
anomalies

C.1 BMS anomalies
We review here some basic formulas of the BMS transformations, and show how to

compute the associated anomalies and the shift between the WZ and improved Noether
charges. We follow [46] for the notation. While the general logic remains the same
described in the main text, performing the calculations explicitly requires paying attention
to two special features. The limit to I and the difference between a symmetry vector
field on I and its bulk extension, and the fact that we choose to work with a specific
coordinate system. Working in Bondi coordinates (u, r, θ, φ) and with conformal factor
Ω := 1/r, the asymptotic Killing vectors are

ξ := τ∂u + Y A∂A +Ω(τ̇ ∂Ω − ∂Aτ∂A) +O(Ω2). (C.1.1)

For the BMS group, τ = T + u
2
DAY

A, where T (θ, φ) is the supertranslation parameter,
and Y A(θ φ) a conformal Killing vector on the two-sphere. For the BMSW enlargement
[46], which encompasses both extended [143] and generalized [109, 81] BMS groups,
τ = T (θ, φ) + uW (θ, φ), and Y A is an arbitrary vector, which we take to be globally
defined. From

∆ξg̃µν = −gµν£ξΩ
2 = − 2

Ω
ξΩ g̃µν = −2τ̇ g̃µν , (C.1.2)

we see that
wξ = −τ̇ . (C.1.3)

The covariant phase space at future null infinity is parametrized by the functionals
q̄AB, CAB, respectively the leading and first sub-leading orders of the 2d metric, and the
mass and angular momentum aspects M, P̄A. The parametrization is chosen so that P̄A
coincide with the definition of Dray and Streubel in these coordinates. All quantities
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depend on (u, θ, φ), except for the background metric q̄AB which is constant in u.1 The
phase space transformations generated by the asymptotic BMSW symmetries are [46]

δξ q̄AB = (£Y − 2τ̇)q̄AB, (C.1.4a)

δξ CAB = (τ∂u + £Y − τ̇)CAB − 2D̄〈A∂B〉τ, (C.1.4b)

δξNAB = (τ∂u + £Y )NAB − 2D̄〈A∂B〉τ̇ , (C.1.4c)

δξM = (τ∂u + £Y + 3τ̇)M +

(
1

2
D̄AN

AB + ∂BF̄

)
∂Bτ +

1

4
∂u(C

ABD̄A∂Bτ), (C.1.4d)

δξ P̄A = (τ∂u + £Y + 2τ̇)P̄A + 3M∂Aτ −
1

8
NBCC

BC∂Aτ +
1

2

(
CC
ANBC

)
∂Bτ (C.1.4e)

+
3

4

(
D̄AD̄CCB

C − D̄BD̄CCAC
)
∂Bτ +

1

4
∂A
(
CBCD̄BD̄Cτ

)
+

1

2
D̄〈AD̄B〉τD̄CC

BC + CAB

(
F̄ ∂Bτ +

1

4
∂B∆τ

)
.

Here £Y is a slight abuse of notation and should be understood as the Lie derivative for
tensors on the two-sphere. The functionals transform in general not as scalars but rather
as densities in the u variable, because of the τ̇ shifts, and as tensors on the sphere in the
A indices, plus inhomogeneous terms. Because of this algebraic structure, I is endowed
with the structure of a fiber bundle S2 × R in which the fibers are the conformal weights.
The density shifts and the inhomogeneous terms are responsible for the anomalies.

To see that explicitly, we need first to explain how the covariant Lie derivative is
mapped to a gauge-fixed description associated with the Bondi coordinates used above.
Consider a 3-form on I. This is a spacetime covariant quantity, which in Bondi coordinates
will read like a scalar on the 2-sphere times the volume form, e.g. vAwAεI . For an example,
see the symplectic potential at I given by (7.4.1). Using the asymptotic symmetry vectors
(C.1.1), we have

£ξ(vAw
AεI) = £ξ(vAw

A)εI + vAw
A£ξεI . (C.1.5)

Now we can write

£ξ(vAw
A) = ξµ∂µ(vAw

A) = τ∂u(vAw
A)+Y B∂B(vAw

A) = τ∂u(vAw
A)+£Y (vAw

A) = Lξ(vAw
A),

where we introduced the Bondi-frame Lie derivative

Lξ := τ∂u + £Y , (C.1.6)

or Bondi Lie derivative for short. Its action is that of a Lie derivative on the conformal
bundle of u-dependent 2-sphere tensors.

1With Penrose’s definition of asymptotic flatness (see e.g. [33, 48]), one can always choose a conformal
factor satisfying the Bondi condition ∇̃µnµ = 0, and then £nq̄AB = 0. This is the case with the choice
of Ω taken here, from which the asymptotic Einstein’s equations impose ∂uq̄AB = 0.
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The anomalies of the phase space functionals are thus given by ∆ξ = δξ−Lξ (the last
term from the definition (4.3.8) drops out because we are acting on field-space scalars),
namely

∆ξ q̄AB = −2τ̇ q̄AB, (C.1.7a)

∆ξ CAB = −τ̇CAB − 2D̄〈A∂B〉τ, (C.1.7b)

∆ξNAB = −2D̄〈A∂B〉τ̇ , (C.1.7c)

∆ξM = 3τ̇M +

(
1

2
D̄AN

AB + ∂BF̄

)
∂Bτ +

1

4
∂u(C

ABD̄A∂Bτ), (C.1.7d)

and similarly for P̄A, which won’t be needed in the following. These formulas are identical
for BMSW and BMS, with the only simplification for BMS being that τ̇ = D̄AY

A/2. Here
F̄ = R̄/4. If we choose a Bondi frame, namely a round sphere, then F̄ = 1/2 and one
term in ∆ξM drops out. From now on, we restrict attention to the BMS case, but we will
allow for general frames.

The anomaly of the background metric is familiar from the BMS literature: the 2d
metric is a background structure, hence δq̄AB = 0, while an asymptotic symmetry changes
it by a conformal transformation given by 2τ̇ = D̄AY

A. Hence the RHS of (C.1.7a). In
the generalized BMS and in BMSW the phase space is enlarged to include the Bondi
frame as a variable, hence δq̄AB 6= 0, but the resulting anomaly is again just a conformal
transformation, albeit with an arbitrary factor instead of just the Lorentz boost D̄AY

A.
From this expression we can also derive ∆ξ

√
q̄ =
√
q̄q̄AB∆ξ q̄AB/2 = −2τ̇

√
q̄.

The anomaly of the news (C.1.7c) is also familiar from the seminal work of Geroch
[123], which introduced the tensor carrying his name, and whose traceless part is

ρ〈AB〉 := −2D̄〈AϕD̄B〉ϕ− 2D̄〈AD̄B〉ϕ, (C.1.8)

where 2ϕ is the conformal factor relating the metric q̄AB to a round 2-sphere metric.
From this expression and the condition ∂uq̄AB = 0 we deduce that £ξρ〈AB〉 = −2D̄〈AD̄B〉τ̇ .
Geroch also proves that this tensor is universal. Hence δρ〈AB〉=0, and

∆ξ ρAB = −2D̄〈A∂B〉τ̇ ≡ ∆ξNAB. (C.1.9)

It follows that N̂AB := NAB − ρAB is covariant, i.e. its anomaly vanishes. These formulas
trivialize if we take a round 2-sphere, because then ρ<AB> vanishes, and so does the
anomaly of NAB thanks to special properties of the (global) conformal Killing vectors.
On the other hand, we will see that the anomaly of b does not vanish even in a round
sphere. Notice that we have defined the Geroch tensor with an overall opposite sign as the
literature, just for convenience of writing the covariant news as a difference. Concerning
its behaviour under Lie derivative, this uses crucially the fact that ρAB has a trace part
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that does not vanish on a round 2-sphere, otherwise this Lie derivative would vanish as
well. Finally, we also note without proof that D̄AρAB = −∂BR̄.

The anomaly of the volume form εI is given by (D.0.11) with (C.1.3), namely2

∆ξεI = −3τ̇ εI . (C.1.10)

Putting together these results, we find

(δξ −£ξ)
(
N̂ABδC

ABεI

)
= (δξ − Lξ)N̂ABδC

ABεI + N̂AB(δξ − Lξ)δCABεI + N̂ABδC
AB(δξ − Lξ)εI

= ∆ξN̂ABδC
ABεI + N̂ABδ∆ξC

ABεI + N̂ABLδξC
AB + N̂ABδC

AB∆ξεI

= N̂ABδ∆ξC
ABεI − 3τ̇ N̂ABδC

ABεI = 0. (C.1.11)

In the third equality we used LδξCAB = 0, since δξ = O(Ω2) as follows from (C.1.1). In the
last we used ∆ξ C

AB = 3τ̇CAB − 2D̄〈A∂B〉τ which follows from (C.1.7). As a consequence,
the non-integrable term that can be read naively from (7.4.1) is not covariant, whereas θ̄
defined in (7.4.3) is.

Next, we compute the anomaly of (7.4.4), here copied for convenience:

b =
(

2M +DAŪ
A − 1

8
NABC

AB +
1

2
ρABC

AB
)
εI , (C.1.12)

with ŪA = −1
2
D̄BC

AB. For this term, we have3

∆ξ(D̄AŪ
AεI) = D̄A(∆ξŪ

A)εI + D̄AŪ
A∆ξεI + [∆ξ, D̄A]ŪAεI

= D̄A(∆ξŪ
A)εI − 3τ̇ D̄AŪ

AεI + ( ˙̄UA∂Aτ − 2ŪA∂Aτ̇)εI

= D̄A

(
(∆ξ − 3τ̇)ŪA

)
εI +

1

2
∂u(C

ABD̄AD̄Bτ). (C.1.13)

2It is also possible to derive this writing εI = du ∧ εS . The 1-form du is an anomalous quantity on the
scale bundle, with anomaly given by ∆ξdu = −£ξdu = −τ̇ du, and ∆ξεS = −2τ̇ εS . Care is needed
when writing εS =

√
q̄d2θ and using the anomaly for

√
q̄ previously derived. This is because

√
q̄ is

a density, therefore we should remember that d2θ is an invariant. This is a familiar result for Lie
derivatives of volume forms: if we write ε =

√−gd4x, where d4x := 1
n!ε˜µνρσdxµ ∧ dν ∧ dxρ ∧ dxσ is a

density, we have £ξ
√−g =

√−g∇µξµ and £ξd
4x = 0.

3The second equality below follows from the fact that for BMS

[∆ξ, D̄A] = −[£ξ, D̄A],

which can be computed from

[τ∂u, D̄A]fB = −∂ufBD̄Aτ, [LY , D̄A]fA = fAD̄AD̄CY
C ,

and we also observe that [∂u,LY ] = 0.
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The total derivatives on the sphere can be dropped. As a consequence, we don’t need to
know the explicit form of the anomaly of ŪA. For the interested reader, it can be found
in [46]. For the other terms in b, we have

∆ξ

(
(2M − 1

8
NABC

AB +
1

2
ρABC

AB)εI

)
=

(
−1

4
∂u(C

ABD̄AD̄Bτ) +
1

2
∂AR̄∂Aτ

)
εI +

1

2
ρAB∆ξ(C

ABεI).

Using the property relating the divergence of Geroch’s tensor to the gradient of the 2d
curvature, the last two terms here cancel out after integration by parts. Collecting the
results, we conclude that

∆ξb = dsξ, sξ =
1

4
CABD̄AD̄Bτ εS. (C.1.14)

This proves (7.4.5) used in the main text.4 As for (7.4.6), this follows immediately
computing the anomaly of β̄ := − 1

32
CABC

AB, which gives

c := −2β̄εS, ∆ξc = −1

4
CABD̄AD̄Bτ εS. (C.1.15)

Let’s check that the shift (7.4.5) indeed reproduces the known expressions of the
WZ charges at I. The expansion of the Komar two-form gives (to lighten the notation,
we drop in the following the sphere indices A)

qξ = [τ(2M −DŪ +
1

8
CN − 1

4
DDC) + 2Y (−rŪ + P̄ +∂β̄) + 2W (−r2 + 2β̄)]εS. (C.1.16)

The divergent terms vanish for BMS, and can be renormalized away for BMSW [144], so
we will drop them in the following.5 Then we have

iξεI = −ξ · l εS, −ξ · l = τ, iξb = τ
(

2M + D̄Ū − 1

8
NC +

1

2
ρC
)
εS, (C.1.17)

hence
qξ + iξb =

(
τ(4M − 1

4
D̄D̄C +

1

2
ρC) + 2Y P̄

)
εS. (C.1.18)

This shows that without the right corner shift, the improved Noether charge with b as
boundary Lagrangian doesn’t give the standard BMS charges. The difference is the soft
term D̄D̄C. If we used these charges, we would not not measure the standard memory

4Notice that the contribution of the density weights to the anomaly drops out, and it is only the
inhomogeneous terms of (C.1.7) that matter in the end. Hence the calculations are consistent with
those of [46], where the densities were not included in the definition of the anomaly. This alternative
option is perfectly fine, and amounts to treating the functional in the covariant phase space as densities
as opposed to as tensors on the sphere.

5Taking the on-shell value of Ū , the second and fourth terms add up to − 1
2D̄Ū . Our Ū coincides with

the U used in [38], and our 1/2 instead of their 1 in the third term of their (6.15) is the mismatch we
referred to in the main text.
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effects, and their flux is determined not only by the physical symplectic potential θ̄, but
by the anomalous contribution as well. This leads to two types of problems. First, if
one uses an arbitrary frame in which the ρC term does not vanish, the boost charges
would not be conserved in stationary spacetimes. The problem would not occur for
supertranslations because Ṫ = 0. Second, if one uses a round sphere, the extra term
D̄D̄C is time-independent so it does not affect the flux, however one would still have the
problem of non-zero Minkowski charges for supertranslations.

Finally, adding up (C.1.14), which after a trivial integration by parts on the 2-sphere
can be rewritten as

sξ = −τ
2
D̄ŪεS, (C.1.19)

we obtain the desired result6

qWZ

ξ = qξ + iξb+ sξ =
(

4τM̂ + 2Y P̄
)
εS, M̂ = M +

1

8
ρABC

AB. (C.1.20)

These charges vanish exactly on the Minkowski solution for a round sphere with arbitrary
supertranslations, therefore there is no need of any shift by field-space integration constants.
But the most important property is that their flux vanish in an arbitrary frame when the
covariant news vanish, unlike for (C.1.18).

The calculation proves that the WZ charges can be obtained without ever talking about
Hamiltonian generators, but just as an improved Noether charge with the prescriptions
(7.2.21). The anomaly-free boundary Lagrangian can be read from (C.1.15) to be (7.4.7),
which we report here for convenience,

`c =

(
2M + D̄Ū +

1

2
ρC

)
εI . (C.1.21)

We also notice that(
D̄Ū +

1

4
CN

)
εI = d

(
1

8
C2εS + iŪεI

)
, Ūµ := (0, 0, ŪA). (C.1.22)

This corner term is also anomaly-free once we integrate on the 2-sphere to get rid of the
total derivatives that appear when using (C.1.13). We conclude that the WZ charges can
be obtained starting from the family of boundary Lagrangians (7.4.9), that all differ from
(C.1.21) by a term proportional to (C.1.22).

C.2 Charges’ archeology
In this Appendix we comment on the importance of the interplay relation (7.2.18).

This allows one to understand how Wald and Zoupas were able to get away without ever
6Recall we are using the notation from [46] and units 16πG = 1. The relation to the angular momentum

aspect used in [107, 81] is NA = P̄A + ∂Aβ̄.
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talking about anomalies, and will also be the opportunity for us to add some comments
about [107, 145, 122] that we think may be useful to the reader. If we start from the
Einstein-Hilbert Lagrangian there are no anomalies, and

−Iξω =̂ d(δqξ − qδξ − iξθ). (C.2.1)

Then, the WZ prescription (7.2.3) gives

−Iξω + diξθ̄ =̂ d(δqξ − qδξ − iξθ + iξθ̄) = d(δqξ − qδξ + iξδb) (C.2.2)

= d(δ(qξ + iξb)− qδξ − iδξb).

If we take the bare Eistein-Hilbert θ, this is covariant and qξ is Komar; the covariance
requirement for θ̄ guarantees not only (7.2.9) but also (7.2.18). Therefore, δsξ = −q̄δξ =

−qδξ − iδξb. Using this equality in (C.2.2) we recover the calculation of the charges done
at the end of the previous Section, namely adding sξ as computed from the anomaly of b.
But we can also forget about the anomalous origin of sξ, and compute directly qδξ and
iδξb in (C.2.2). On first thought, one may imagine that these vanish, since there is no
field dependence in ξ at zeroth or first order, see (C.1.1). However, it had been observed
as early as [146] that the limit of the Komar 2-form to future null infinity depends on
the second-order extension as well, and in fact it even depends on the third order insofar
as the radial component is concerned. This can be trivially checked using for instance
Bondi coordinates and Ω = 1/r. The Komar formula then contains ∂rξr, which when
integrated against the r2 area 2-form fishes a contribution O(r−1) in ξr, which is O(Ω3).
But then, the second and higher-order terms are generically field-dependent. Using the
Tamburino-Winicour extension, equivalent to preserving the bulk Bondi coordinates used
in the previous Section, we have

δξ =

(
Ω2

2
δ(CAB∂Bτ) +O(Ω3)

)
∂A +

(
Ω3

2
δ(D̄AC

AB∂Bτ +
1

2
CABD̄A∂Bτ) +O(Ω4)

)
∂r.

(C.2.3)
This vector gives a vanishing contribution when hooked with b, but not when plugged in
the Komar form. There, it replaces a divergent term that was a total divergence on the
sphere (hence integrating to zero) if ξ was used, with a finite term that is no longer a
total 2d-divergence, but rather gives on the cross-sections

−qδξ =
1

4
δ(τD̄D̄C)εS. (C.2.4)

This is precisely the same contribution of sξ, as expected from the general equivalence
(7.2.18). As a consequence, one can do the calculation using the first line of (C.2.2), and
obtain the correct result without ever talking about anomalies, and instead properly taking
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into account the qδξ term (C.2.4). This is the way the calculation is done for instance in
[81], even though the contribution of the term (C.2.4) is not explicitly reported.7 Notice
also that the neat result of this term is to make Iξω independent of the field-dependent
extension, because (C.2.4) cancels the O(Ω3) term that appears when computing δqξ, As
for the second-order terms in qξ, they drop out when taking the pull-back on a fixed u
cross-section of I. The final result depends only on the zeroth and first orders of ξ, which
are field-independent.

This term is also taken into account in the formula used in [107], following [10, 147],
and this is for us the only reference in the literature where all aspects of the calculation
of the BMS charges are properly and explicitly discussed.8

Coming back to the WZ paper, there are actually two difficulties with the way the
BMS calculations are presented. The first is that since they assume δξ = 0, they write
−Iξω = δqξ − iξθ. This is not too bad, because it can be easily corrected: the effective
consequence of the qδξ term in (C.2.2) is that one should take the variation of qξ treating
ξ as a c-number even if it is field-dependent. With this caveat in mind, the calculations
are correct. Otherwise, (94) of [33] is missing an additional finite term coming from
the O(Ω2) terms of ξ. Notice that WZ discuss the independence of (C.2.1) from the
arbitrary part of the extension of the asymptotic symmetry vector, below their equation
(22). This independence is taken there as a definition of equivalent representatives, but it
can be proved explicitly as done in [122], Lemma 5.2. The proof is given there only for
field-independent higher-order extensions, but can be trivially generalized to our case if
δqξ is replaced by δqξ − qδξ. Or alternatively, with the caveat that ξ is always a c-number
for δ. This way of understanding the action of δ and the RHS of Iξω for field-dependent
diffeomorphisms was made more explicit shortly after in [148]. We suppose that this is
the approach taken also in [122], even though it is nowhere explicitly stated, otherwise
some of their calculations are missing intermediate terms that cancel out in the end result.
We remark that having extended the proof of independence from higher-order extensions
to the field-dependent case, one can also compute the RHS of (C.2.1) ignoring such terms,
instead of computing them and see that they cancel out. This means in particular ignoring
the qδξ term altogether. This provides another way of interpreting the results of of [33,
122] as correct. With these caveats in mind, [122] is a very clear and explicit paper, and
has the further advantage of presenting the calculations in two different gauges as well as
in covariant language.

The second difficulty of the WZ paper concerns the boost charges. Inspection of
(C.1.1) shows that these get a contribution from the vertical part, and therefore are not
generated purely by a vector tangential to the cross-section. In other words, restricting

7We thank Adrien Fiorucci for sharing his calculations.
8Mind however that [107] does not start from −Iξω but adds to it a term proportional to the Killing

equation, see e.g. (9.10) in [66]. This additional term has vanishing limit to I.
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ξ to be tangential is a stronger condition than setting the super-translation parameter
to zero. Nonetheless, Wald and Zoupas tried to recover all Lorentz charges, rotations
as well as boosts, from a purely tangential vector. The interest in doing so is possibly
that for a field-independent and purely tangential vector, the Hamiltonian generator is
integrable since the pull-back of iξθ vanishes, and one does not need any prescription.
The result is the Komar formula, which they knew gives the Dray-Streubel charges for
angular momentum but not for boosts, unless the extension is chosen to satisfy the
Geroch-Winicour condition. So what Wald and Zoupas set up to do is to prove that
the variation of the Komar formula is unchanged if the Geroch-Winicour condition is
imposed, because then they can claim that the Dray-Streubel charges are recovered when
they further impose the condition that all charges vanish in Minkowski spacetime. This
is arguably a more tortuous path than straightforwardly including the vertical part of
the vector in the boost contribution, which is the reason the calculation works no matter
what extension is taken.

The same result of [107] then appeared again in [145]. Both papers use the Tamburino-
Winicour extension described above. However [145] claims that the result matches
Dray-Streubel because the Geroch-Winicour condition ∇µξ

µ = 0 can be relaxed to
∇µξ

µ = O(Ω2), which is satisfied by the Tamburino-Winicour extension that they use.
This argument is wrong in our opinion, because the Tamburino-Winicour extension
precisely requires the linkage term in order to reproduce the right boost charges [149].
The reason why [145] gets the right charges is for us not that the linkage is not needed
because of the chosen extension, but because of the correct inclusion of the vertical term,
just as in [107].

As a final comment, notice that (C.2.4) shows that Iδξθ 6= 0 for the Einstein-Hilbert
bare potential, by consistency with the Noether theorem (7.1.7) with ξ replaced by δξ.
To verify this explicitly some care is needed, because δξ is not a symmetry vector.9 In
particular, δδξ does not exist on the asymptotic phase space. Instead, we can use the
general formula (7.2.19) and take the limit to infinity. Since δξ = O(Ω2), the last two
terms vanish and we find

lim
r→∞

Iδξθ = −δ∆ξb = −dδsξ. (C.2.5)

This result together with qδξ = −δsξ proves the consistency of (C.2.4) with Noether’s
theorem.

The reason why field-dependent extensions of the diffeomorphisms matter only at
I and not in computing the charges at finite distance, is because the Komar formula

9It vanishes on I, and the Tambourino-Winicour extension of the trivial vector on I vanishes everywhere,
unlike δξ. The latter is more akin to the difference between two different bulk representatives of the
same asymptotic Killing vector.
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depends on first derivatives of ξ, which are field-independent at finite distance, but involve
higher orders at I, which see the field-dependence.

C.3 Tetrad variables
There are three useful remarks to make if one uses tetrad variables. First, the bare

symplectic potential differs from the Einstein-Hilbert one by an exact 3-form [124, 66].
Second, if one fixes the same physical θ and boundary Lagrangian, the improved Noether
charge is the same [37]. Furthermore, the DPS exact 3-form is anomaly-free, therefore
one can use the same covariant boundary Lagrangian as in the metric case to evaluate
the Wald-Zoupas prescription for the BMS charges.

The bare symplectic potential given by the Einstein-Hilbert Lagrangian differs from
the tetrad one by an exact 3-form [124, 66],

θ = θe + dαDPS, αDPS = ?(eI ∧ δeI). (C.3.1)

As a consequence, the bare Noether charges computed without adding any boundary
Lagrangian are also different, and we have

qξ = qeξ + Iξα
DPS, (C.3.2)

where qξ is Komar, and qeξ = 1
2
εIJKLe

I ∧ eJ iξωKL. The improved Noether charges can be
made to coincide if one chooses the boundary Lagrangian ` and θ′ to match the metric
choices, as pointed out in [37]:

qe′ξ = qeξ + iξ`− Iξϑe = qξ + iξ`− Iξϑ = q′ξ. (C.3.3)

This is a perfect example of the value of working with the improved Noether charge,
ambiguities such as picking a representative of the equivalence class become irrelevant
once attention is switched to the physically preferred symplectic potential.10

Both θe and αDPS are anomaly-free. Furthermore, αDPS becomes field-space-exact at
I,

dαDPS = δ(DU +
1

8
CN). (C.3.4)

Therefore condition 0 of the WZ prescription is satisfied, with

θe = −
(
δ(2M + 2DŪ) +

1

2
NABδC

AB
)
εI . (C.3.5)

10When the authors of [14] write the table of different corner symmetry algebras associated with the
ADM, EH, EC and ECH Lagrangians, they are looking at the bare Noether charges qξ associated with
the bare symplectic potential and no boundary Lagrangian, as selected by the homotopy prescription.
Should they switch to the improved Noether charges q′ξ selected in each case by the same θ′ and the
same `, they would of course obtain the same algebra in each case.
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Taking the same θ̄ as before, we have

be =
(

2M + 2DŪ +
1

2
ρC
)
εI . (C.3.6)

The anomaly of this boundary Lagrangian can be computed as shown before and gives
twice the metric one, ∆ξb

e = dseξ = 2dsξ with sξ given by (C.1.19). On the one hand,
this is the right result to get the correct WZ charge, since using the results of [46],

qe

ξ + iξb
e =

(
τ(4M +DŪ) + 2Y P̄

)
εS, qe

ξ + iξb
e + 2sξ =

(
4τM + 2Y P̄

)
εS. (C.3.7)

On the other hand, this means that the corner shift needed to get this result from an
improved Noether charge is also twice the metric one,

ce = 2c = −4β̄εS =
1

8
C2εS, (C.3.8)

`e = be + dce =
(

2M + 2DŪ +
1

4
CN +

1

2
ρC
)
εI , ∆ξ`

e = 0. (C.3.9)

Notice that this anomaly-free boundary Lagrangian differs from the metric one (7.4.7) by
the anomaly-free corner term (C.1.22). It thus belong to the same anomaly-free class,
and can indeed be recognized as (7.4.9) with x = 1. That it belongs to the same family
of anomaly-free boundary Lagrangians was to be expected, since ∆ξα

DPS = 0.
In the same anomaly-free class of tetrad boundary Lagrangians we find, taking

x = −1,

`BMSW =
(

2M − 1

4
CN +

1

2
ρC
)
εI , (C.3.10)

which is the one used in [46]. Those results are thus perfectly compatible with the ones
here presented, and the novelty is that we now know how to identify this boundary
Lagrangian a priori, without having to deduce it from already knowing the WZ charges.

As a final remark, notice that there is no incompatibility between the fact that
(C.1.22) and (C.3.4) are both anomaly-free in spite of having different relative factors,
because [∆ξ, δ] = −∆δξ 6= 0. This calculation cannot however be done explicitly without
providing a definition for δδξ, which in turns requires an extension of be.
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DAppendix: Background fields and
anomalies

In this Appendix we review how to compute the anomaly associated with a back-
ground structure, and prove the absence of anomalies in the case of time-like boundaries
parametrized by a unit-normal, the result used in Chapter 8.

Anomalies arise when the covariant phase space contains background structures. Let
us denote by φ the dynamical fields, and by χ the background fields. For the dynamical
fields we define δξφ := £ξφ, whereas the background fields satisfy δξχ = 0, whence the
anomaly ∆ξχ = −£ξχ. To understand the third term in (4.3.8), consider a functional of
the fields that is a one-form in field space, namely F (φ, χ)δφ. In this case we have

δξ(Fδφ) = ∂φFδξφδφ+ Fδδξφ = ∂φF£ξφδφ+ Fδ£ξφ = £ξ(Fδφ)− ∂χF£ξχδφ+ F£δξφ,

(D.0.1)
where we used [δ, δξ] = 0 in the first equality, and [δ,£ξ] = £δξ in the last. Hence,

∆ξ(Fδφ) = −∂χF£ξχδφ = (δξ −£ξ − Iδξ)Fδφ. (D.0.2)

The first example of background structure we consider in the following is a spacetime
boundary B. We define it by its Cartesian equation as χ(xµ) = 0, and associated with
it a normal 1-form nµ := −f∂µχ. The field χ is a fixed background structure, with
δχ = 0. Since £ξχ = ξµ∂µχ, every diffeomorphism that does not preserve the boundary is
anomalous. When constructing the covariant phase space associated to this boundary,
the only relevant diffeomorphisms are those that preserve the boundary, namely

ξµnµ
B
= 0 ⇒ ξµ = ξ̄µ + χξ̂µ, (D.0.3)

where ξ̄µnµ = 0. The boundary is shared by all metrics in the phase space. The
diffeomorphisms that preserve the boundary are also called residual diffeomorphisms, or
symmetry vector fields, hinting at the physical relevance that boundary diffeomorphisms
can acquire. In different situations, one may add additional background structure on top
of the presence of the boundary, still shared by all metrics in the phase space and usually
referred to as universal structure. Any additional requirement in the universal structure
can restrict the symmetry group.

From (D.0.3) it follows that £ξχ
B
= 0, and therefore ∆ξχ = 0: the boundary is

covariant with respect to the diffeomorphisms that preserve it. However, anomalies can
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still appear when we look at derivatives of χ, for instance through the normal 1-form. In
fact, a simple calculation shows that

∆ξnµ = wξnµ, wξ := ∆ξ ln f − ξ̂µ∂µχ. (D.0.4)

If we take a gradient as normal, say f = 1, then the anomaly comes entirely from ξ̂µ∂µχ,
namely from how much the extension of ξ off B does not preserve the neighbouring leaves
of the χ foliation. However, as long as the foliation is not null, the anomaly associated with
a non-trivial extension ξ̂ can be eliminated choosing f so that the normal is unit-norm:
in this case in fact,

nµ = s
∂µχ√

sgρσ∂ρχ∂σχ
, n2 = s := ±1, (D.0.5)

and

∆ξnµ = −s 1√
sgρσ∂ρχ∂σχ

(
£ξ∂µχ− sgνλ

∂νχ£ξ∂λχ

sgρσ∂ρχ∂σχ
∂µχ

)
= −s 1√

sgρσ∂ρχ∂σχ

(
δνµ − snνnµ

)
£ξ∂νχ = −qνµ£ξnν = 0 (D.0.6)

because of the condition that ξ preserves the boundary. Recalling that unit-norm means
foliation independence of the normal, we see that what this anomaly is capturing is not so
much the presence of the boundary, but rather any foliation-dependence in its description,
namely non-invariance under χ 7→ χ′(χ, xµ).

In the case of a null hypersurface, there is no choice of f that would make the normal
foliation-independent, hence anomalies (D.0.4) are generically present. Furthermore, in
order to distinguish physical solutions on the covariant phase space, one typically reduces
the allowed variations to preserve a certain universal structure [33, 36]. This reduces
the symmetry group and can lead to a fixed, non-vanishing first-order extension, hence
anomalies. An interesting difference arises between a null hypersurface at a finite distance
and future null infinity. In both cases, we have a background field describing the presence
of the boundary. But at future null infinity, the same structure is used as conformal
factor Ω in the compactification. As a consequence, reparametrizing χ at finite distance
changes the normal 1-form nµ, but reparametrizing Ω changes both the normal and the
unphysical metric which induces the metric on the cross-sections, leading to two sources
of anomalies. To see this difference in formulas, consider the volume elements. At finite
distance we have

εN = ilε = −l ∧ εS, (D.0.7)
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where l · n = −1 is the auxiliary vector, hence (D.0.4) implies [85]

∆ξεN = −wξεN , ∆ξεS = 0. (D.0.8)

But the volume element of future null infinity is determined from the unphysical metric
g̃µν := Ω2gµν , which is anomalous:

∆ξΩ = 0, ∆ξnµ = wξnµ, ∆ξg̃µν = 2wξg̃µν , ∆ξ ε̃ = 4wξ ε̃. (D.0.9)

Therefore taking
εI = ilε̃ = −l ∧ εS, (D.0.10)

we have
∆ξεI = 3wξεN , ∆ξεS = 2wξεS. (D.0.11)

The first difference is that the anomalous dimension of the induce volume element changes
from −1 to +3, and the second difference is that tensors on the cross-sections are now
anomalous as well, unlike in the finite dimensional case. This comes as explained above
from the fact that the background structure has the double role of determining the
boundary and providing the unphysical metric.
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