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Abstract

Abstract: The neural code, i.e. how interconnected neurons can perform complex oper-
ations, allowing the quick adaptation of animals to their environment, remains an open
question and an intensive field of research both in experimental and computational neuro-
sciences. Advances in molecular biology and microscopy have recently made it possible to
monitor the activity of individual neurons in living animals and, in the case of small animals
containing only a few thousands of neurons, to measure the activity of the entire nervous
system. However, the mathematical framework that would bridge the gap between single
neuron activity and the emergent computational properties of neuronal ensembles is missing.
In the following thesis manuscript, we introduce a sequential statistical processing pipeline
that efficiently and robustly extracts neuronal ensembles from calcium imagery of neuronal
activity. In particular, we develop a Bayesian inference framework based on a biologically
interpretable model to extract neuronal ensembles characterized by noise, asynchrony and
overlapping. The provided tool demonstrates that a Gibbs sampling routine can efficiently
estimate statistical parameters and hidden variables to uncover neuronal ensembles based
on synchronization patterns both on synthetic data and on various experimental datasets
from mice and zebrafish visual cortex to Hydra vulgaris. The thesis equally develops a point
process statistical framework to quantify how neuronal ensembles encode evoked stimuli or
spontaneous behaviors in living animals. This versatile tool is also used for the inference of
the functional connectivity of neuronal activity or the automatically calibration procedure
of the spike inference algorithms applied to calcium recordings. For the providing algorithms
to be largely spread in the neurobiologist community, results are supported by interpretable
biological estimates, statistical evidence, rigorous mathematical proofs, and free-available
software. Our contributive implementation, that goes from pixel intensity to estimated neu-
ronal ensembles, equally identify from the synchronous firing patterns of neuronal ensembles,
neurons with specific roles that can be used to predict, improve, or alter the behaviors of
living animals. The provided framework unravels the emergence of collective properties from
the recording of extremely varying individual signals that make the neural code still elusive.

Keywords: Neuroscience, in vivo neural networks, neural ensembles, spikes, inverse
problem, coupling spatial statistics, Bayesian inference, stimulation and behaviors
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Résumé : Le code neuronal, c’est-à-dire la manière dont les neurones interconnectés
peuvent effectuer des opérations complexes, permettant l’adaptation rapide des animaux à
leur environnement, reste une question ouverte et un champ de recherche intensif tant en neu-
rosciences expérimentales qu’en neurosciences computationnelles. Les progrès de la biologie
moléculaire et de la microscopie ont récemment permis de surveiller l’activité de neurones in-
dividuels chez un animal vivant et, dans le cas de petits animaux ne contenant que quelques
milliers de neurones, de mesurer l’activité de l’ensemble du système nerveux. Cependant, le
cadre mathématique qui permettrait de combler le fossé entre l’activité d’un seul neurone et
les propriétés computationnelles émergentes des ensembles neuronaux fait défaut. Dans le
manuscrit de thèse suivant, nous présentons un pipeline de traitement statistique séquentiel
qui permet d’extraire efficacement et de manière robuste des ensembles neuronaux à par-
tir de l’imagerie calcique de l’activité neuronale. En particulier, nous développons un cadre
d’inférence bayésienne basé sur un modèle biologiquement interprétable pour extraire des en-
sembles neuronaux caractérisés par du bruit, de l’asynchronisme et du recouvrement. L’outil
fourni démontre qu’une procédure d’échantillonnage de Gibbs peut estimer efficacement les
paramètres statistiques et les variables latentes pour extraire les ensembles neuronaux basés
sur un modèle de synchronisation à la fois sur des données synthétiques et sur des données
expérimentales allant de stimulations du cortex visuel de la souris et du poisson zèbre à
l’activité spontanée de Hydra vulgaris. La thèse développe également un cadre statistique
de processus ponctuel pour quantifier la façon dont les ensembles neuronaux encodent les
stimuli évoqués ou les comportements spontanés chez les animaux vivants. Cet outil poly-
valent est également utilisé pour l’inférence de la connectivité fonctionnelle de l’activité
neuronale ou la procédure de calibration automatique des algorithmes d’inférence de pics
appliqués aux enregistrements calciques. Pour que les algorithmes fournis soient large-
ment diffusés dans la communauté des neurobiologistes, les résultats doivent être étayés
par des estimations biologiques interprétables, des preuves statistiques, des démonstrations
mathématiques rigoureuses et des logiciels libres d’accès. Notre implémentation contribu-
tive, qui va de l’intensité des pixels aux ensembles neuronaux estimés, identifie également, à
partir des schémas d’activation synchrone des ensembles neuronaux, les neurones ayant des
rôles spécifiques qui peuvent être utilisés pour prédire, améliorer ou modifier les comporte-
ments d’animaux vivants. Le cadre fourni permet de démontrer l’émergence de propriétés
collectives à partir de l’enregistrement de signaux individuels extrêmement variables, qui
rendent le code neuronal encore insaisissable.

Mots-clés : Neurosciences, Réseaux de neurones in vivo, ensembles neuronaux, po-
tentiels d’action, problème inverse, statistiques spatiales de couplage, inférence bayésienne,
stimulation et comportements
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que la science avance aussi et surtout par nos échanges avec d’autres individualités animées
par cette même passion et baignées dans cette même rigueur. Je suis content du travail
que nous avons su mener, ensemble. Je suis fier d’avoir été ton premier doctorant. Un
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d’évaluer ma thèse et de me faire des retours en leurs qualités d’experts sur tout ou partie
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précieuse dans les moments de doutes que j’ai traversé par le biais de nos repas et de nos
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Chapter I

Overview

1 Context

i Summary

Neurons are the basic computing units of the brain. However, the neural code, i.e. how
interconnected neurons can perform complex operations, allowing the quick adaptation of
animals to their environment, remains an open question and an intensive field of research in
experimental and computational neurosciences. A promising approach to ”break” the neural
code, i.e. to relate the sequential activity of neurons or ensemble of neurons to animal’s be-
havior, consists in labeling individual neurons with fluorescent indicator (genetically-encoded
calcium indicator typically), and following neuron’s activity in small model organisms such
as the zebrafish [1] or Hydra [2]. Such organisms, with their relatively simple nervous orga-
nization and reduced repertoire of behaviors, can be systematically analyzed and perhaps
completely understood. While state-of-the art genetic editing and time-lapse microscopy
allow the long-term imaging of individual cells in freely-behaving animals, the mathematical
paradigm, that would bridge the gap between single cell activity and the emergent compu-
tational properties of neuronal ensembles, is missing. The main objective of this thesis is
the development of an innovative statistical framework to extract, from individual neuronal
fluorescent activity, emergent computational ensembles whose activity is correlated with ex-
ternal stimulations or spontaneous behaviors. This will provide important insights into the
computational strategy of interacting neurons, unraveling the mathematical principles that
underly the robustness and efficiency of brain computation.

ii Goals

The goal of this thesis is to develop statistical tools to characterize neuronal ensembles
from individual calcium fluorescence traces of neurons in free-behaving animals. Decoding
neuronal ensembles from the recording of neuron calcium individual traces corresponds to
a multi-step processing pipeline (see Figure I.1). The interdependent steps are divided
as follows : 1) The extraction of neuron individual fluorescence traces from the calcium
image recordings, 2) The inference of the exact time of action potential emissions, 3) The
estimation of the network topology, 4) The detection of the neuronal ensembles, 5) The
inference of computation and interaction rules between ensembles, 6) The prediction of the
animal behavioral states from ensemble activity. Each step requires the development of

11
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robust tools to account for the risk of propagating errors. For example, erroneous tracking
or spike deconvolution will decrease the accuracy of the estimation of neuronal ensembles.

Figure I.1: Original Prospective Processing Pipeline. 1- Extraction of single neuron
fluorescence traces from imagery using tracking algorithm. 2- Spike inference to estimate
the dates of action potential emissions. 3- Extraction of a network topology from neuron
spiking interactions. 4- Detection of overlapping neuronal ensembles. 5- Estimation of
sequential patterns of neuronal ensemble encode behaviors. 6- Prediction of behavior at
Hydra vulgaris based on the inferred computational rules.

2 Contributions of the thesis

i Contributions

Our work has been structured around the different steps proposed by the original processing
pipeline (see Figure I.1). In this work, we demonstrate the capabilities of our tools on several
model animals : the mice visual cortex in response to stimulations (data provided by Yuste’s
lab), the larval optical tectum of zebrafish (data in free-access from [3]) and the Hydra
vulgaris neural activity in response to free behaviors (data from [2]). The contributions are
structured as follows around the different steps of pipeline:

1) Step 2 - Inferring spikes from fluorescence traces: The first contribution is the
benchmarking of the most promising state-of-the-art spike inference techniques on a calcium
fluorescent simulator to estimate the most efficient method on data whose properties match
Hydra vulgaris’ firing statistics and non-linearities. The proposed versatile simulator embeds
non-linear dynamics, non-homogeneous Poisson firing statistics with several firing regimes.
The simulator aims to assess the robustness and efficiency of the methods applied to the
Hydra vulgaris case, and to point out potential limitations.

2) Step 2 & 3 - Inferring spikes from fluorescence traces & The estimation of
a network topology: The second contribution is the development of a statistical tool to
infer neuron-to-neuron statistical coupling in order to extract the network topology while
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being robust to false positives. Its use as a functional connectivity method facilitates spike
inference by filtering out neuron activation artifacts.

3) Step 2 - Inferring spikes from fluorescence traces: The third contribution of
this work is the application of spatial statistics framework to filter out spike artifacts in the
presence of a decorrelated noise.

4) Directly from step 2 to step 4 - Neuronal ensemble detection: The fourth contri-
bution aims to extend existing tools for estimating functional neuronal ensembles by using
a Bayesian Inference framework. It would allow analyzing the emergent synchronization
properties at network scale from the activation of individual cells. This framework uses syn-
chronicity as a biological interpretable neuronal ensemble definition, handling overlapping,
and embeds the point process statistical coupling as an evaluation of assemblies relevance
in response to stimulations. The spatial statistics framework is adapted to measure the
correlation between stimulations and neuronal ensemble activity.

ii Publications

The publications associated to this work are:

• The benchmarking of the existing Spike Inference Techniques for calcium fluorescent
traces so as to find the most relevant ones to apply in the Hydra vulgaris case where
statistical firing properties, noise level, non-linear baseline dynamics largely pollute
the data.

S. Kubler, S. Mukherjee, J.-C. Olivo-Marin, et T. Lagache, ” A Robust and Versatile
Framework to Compare Spike Detection Methods in Calcium Imaging of Neuronal
Activity ”, in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI),
avr. 2021, p. 375 379. doi: 10.1109/ISBI48211.2021.9433951.

• The adaptation of Spatial Statistics of point processes to improve the spike deconvolu-
tion techniques contaminated by spurious information to measure a pairwise functional
connectivity matrix robust to false detection and time delays.

S. Kubler, J.-C. Olivo-Marin, et T. Lagache, ” Statistical Coupling Between time
Point-Processes ”, in 2022 IEEE 19th International Symposium on Biomedical Imag-
ing (ISBI), mars 2022, p. 1 4. doi: 10.1109/ISBI52829.2022.9761557.

• The application of spatial statistics to automatically calibrate spike inference tech-
niques.

S. Kubler, J.-C. Olivo-Marin, et T. Lagache, ” Statistical calibration of deconvolution
methods for extracting neuronal spikes from calcium imaging ”, unpublished.

• The implementation of an overlapping neural ensemble detection algorithm by Bayesian
Inference with an explicit definition of neural ensembles defined as a synchronization
process. The statistical coupling framework can be adapted to infer the coupling
between neuron ensemble activities and stimulations or behaviors.

S. Kubler, J.-C. Olivo-Marin, et T. Lagache, ” Bayesian Inference of overlapping
neuronal ensembles ”, Nature Computational Science, submitted, under-review.
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3 Experimental dataset of in vivo neural network analysis

In our work, we used different in vivo experimental setups detailed hereafter.

i Mice visual cortex dataset from Yuste’s laboratory

The mice brain visual cortex V1 of a transgenic animal is imaged using a two-photon micro-
scope. Static grating stimuli with different directions are applied in front of the mice to scan
its receptive field. Group of neurons of the visual cortex are expected to fire synchronously
in response to the stimuli. [4] [5] A grey screen is assumed to be the resting state to record
the spontaneous neural activity. The neuron spiking activity matrix is extracted during
the whole experiment. Its aim is to cluster the neurons based on their synchronous neural
activity and to correlate the group existence with stimuli.

Figure I.2: Mice experimental setup of visual stimulation and recording of evoked
neural response in primary visual cortex V1. [4]. a) Experimental setup. Static
gratings and gray screen are displayed in front of an immobilized mice. The neural response
in V1 is recorded. b) The different stimulation angles displayed and the response of the
brain area is recorded. The detected responding neural cells are displayed in red.

ii Zebrafish optic tectum dataset from Mölter et al [3]

The experiment is similar for the larval zebrafish tectum, Danio rerio, stimulated using visual
stimuli of spots displayed at specific locations. These locations are 15° spaced leading to
several fluorescence responses. The animal is genetically-engineered to express elavl3:H2B-
GCaMP6s and neuronal ensemble responses have been demonstrated.

iii Hydra vulgaris’ spontaneous behavior dataset from [2]

Hydra vulgaris is a freshwater polyp animal that belongs to the Cnidarian class. This tubular
species has the simplest functional nervous system of the entire animal kingdom that sup-
ports though behavioral advanced functions. Its nervous system is decentralized within the
whole animal, with neurobiological features very similar to mammalian species [6] because
of the existence of neuron, sensory and ganglion cells, neurites, chemical [7] and electrical
synapses (gap junctions) [8], or neurotransmitters and neuromodulators (neuropeptides) [9].
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a) b)

c)

Figure I.3: Zebrafish experimental setup of visual stimulation and recording of
evoked neural response in larval zebrafish optic tectum [3]. a) The stimulation is the
display of a spot at different spatial location the animal being fixed in an agarose substrate.
b) The neural response in the optic tectum is recorded using a 2-photon microscope. A
wave activation reponse is observed for each stimuli but the strength of the response and
the overlapping largely vary according to the stimulation. c) A very clear spike response
can be recorded for some specific stimulation.

All these elements allow Hydra to react to light variation and vibrations [10], tempera-
ture [11], chemical signaling [6] and interact with its environment to perform coordinated
movements, catch its preys, or regulate its osmolarity [12].

The animal is small, transparent, can be easily genetically engineered by creating a
transgenic Hydra line that expresses the fluorescent calcium indicator GCaMP6s making
the microscopy of its fluorescent neurons straightforward.

The nervous system of Hydra is composed by few hundreds to few thousands neurons
distributed inside two independent nerve nets, in the ectoderm and endoderm with a radial
symmetry. Its neural circuitry is divided into 4 different functional networks that coordi-
nate a limited mechanosensory behavior repertoire [13] [14]. Rhythmic Potential 1 (RP1),
Rhythmic Potential 2 (RP2), Contraction Burst (CB) and Subtentacle Network (STN) en-
code respectively elongations, radial contractions, longitudinal contraction, and nodding [2].
It is expected that sequential activation patterns of such networks could encode behavioral
tasks like feeding, response to light, temperature or starvation, somersaulting and egestion.

Hydra vulgaris is genetically engineered to express Green-Fluorescent Protein (GFP) by
a micro-injection of plasmids in fertilized eggs. The adult transgenic free-behaving animal
is placed in a restricted environment between two coverslips separated by 100 µm to image
its neural activity during spontaneous activity at 10-33 Hz.

Even if RP1, RP2 and CB can have coactive neurons firing in the same 100ms window,
Hydra’s nervous system is divided into networks that are non-overlapping structurally and
functionally [2]. It means that individual neurons only participate in a unique network at
a time. Networks encode specific behaviors : RP1 and RP2 are respectively located in the
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a) b)

Figure I.4: Non-overlapping neural networks at Hydra vulgaris from [2]. a) Neural
networks at Hydra vulgaris are expected to be non-overlapping. There is no specific spatial
organization of the networks in the animal except that some networks can be exclusively
located in ectoderm, endoderm or in the neighborhood of the tentacles. b) Functionally
the neural network are non-overlapping. It means that a very low-level of co-activation is
expected between the microcircuits and a specific neuron belongs to a single network at the
same time.

a) b)

c)

Figure I.5: Hydra experimental setup of a free-behaving organism. a) Hydra vul-
garis behaves, displaces or deformes freely in its environment. Imagery is obtained though
a Spinning-Disk-Confocal Microscope at 10 Hertz sampling rate. b) The animal anatomical
structure is defined through two fundamental nerve nets : the endoderm and the ectoderm.
Each part of the animal plays a fundamental role to interact with its environment [15]. c) To
make the microscopy more straightforward the animal is constrained between two coverslips
to place it entirely in the field of view of the microscope [2].

ectoderm and endoderm associated with elongation and radial contraction of the animal.
Changes in their activation frequency were associated with the behavior triggering. Slow
potential propagation that occurs simultaneously to asymmetric longitudinal contraction of
the body column were reported during the activation of STN. STN can either be initiated
from the body column to the tentacles or from the hypostome region traveling downward.
Multiple conduction speeds have equally been observed in Hydra in vivo recordings in CB
network [2]. Fast propagation seems related to longitudinal contraction while slow prop-
agation could just increase the excitability of ganglion and sensory neurons. The neural
network findings of Hydra highlight many similarities with other animals of this phylum.
The existence of nerve nets, the spontaneous longitudinal contractions and characteristic
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sequence in feeding behavior are part of them.

The thesis manuscript is divided as follows. In a first part, an introduction describes
the convergence of neuroscience research toward neuronal communication at the population
cell level in the in vivo neural networks of entire free-behaving animals. In the second
part, a literature review is carried out to go from individual cell calcium recordings to the
detection of neuronal ensembles that encode behaviors. In a third part, the general issues of
the processing pipeline to free-behaving animal case are highlighted and the contributions
of the manuscript reminded. In the fourth part, the contributions of the manuscript are
concatenated and discussed in part five. Finally, we conclude on the research topic and
provide future prospects to go beyond in the interpretation of the neural code.





Chapter II

Introduction

1 Neuronal network

i From Brain to neuronal network

The brain is an inter-individual varying complex structure that embeds a huge diversity
of cognitive functions : memory, thinking, feeling, dreaming, learning, moving, decision-
making are all performed by the brain, supported by the same local chemical and electrical
transmission machinery. According to its development and environment, its structures can
evolve, adapt, restructure dynamically in a structural and functional way. In neuroscience,
the establishment of theoretical principles that can be easily transposed to different cortical
areas, different individuals or animal models, or different time and space scales, is compli-
cated and often requires the statistical analysis of simplified models, studied at lower scale, in
experiments where the number of study parameters is deliberately limited. Indeed, brain is
a complex organ that far exceeds our technological capacity to finely analyze the interactions
of around 86 billion cells (∼ 1011) connected by more than 100 trillion (∼ 1.1020) connec-
tions [16] [17]. In neurosciences, the question of how information is encoded by interacting
individual neurons remains unknown.

Understanding the brain, usually, means defining functional properties of the cognition
processes in relation to behaviors, unveiling the intrinsic algorithms of brain computation
and being able to explain how neurons and their connections support such algorithm ex-
ecution [18]. Brain computation is supported by the interaction of up to billions of neu-
rons [16] [17] in mammals making its understanding complex and elusive. Changing scale
by going from entire brain to single neurons analysis (see Figure II.1) makes sense since it
is assumed that common general scale-free working principles exist. It means that neural
properties could be more easily extracted at a lower scale and transposable to a higher one.
This changing scale analysis is called a bottom-up approach. Such approaches have unveiled
similar structural and organizing principles between in vivo neuronal networks, correspond-
ing to few (hundreds to thousands) interacting neurons, and brain. The communication and
information exchanges are performed through hierarchical functional and anatomical mod-
ules related to specific tasks involving a huge diversity of molecular, cellular, and neuronal
phenomena [19]. Hierarchy and modularity are the two cornerstones that support robust,
compartmentalized, complex invariant-scale architecture able to communicate effectively. It
shapes the network dynamics and demonstrates the close relationship between topology and
dynamics, structure, and neural function.

19
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Figure II.1: The analysis of the neural code can be performed at different scales
from whole brain (Macroscopic) to neuron population (Mesoscopic) and single
cells (Microscopic)(adapted from [20]).

Deciphering the neural code would be a great progress biologically and technologically
speaking. The first application would be the direct use of such knowledge in medicine to some
neuropathological diseases. Indeed, corroborating studies highlight that topological network
properties at brain level are correlated with cognitive abilities [21] like verbal fluency [22],
IQ [23] or working memory [24] accuracy for instance and that such structure alterations
could lead to diverse clinical states as schizophrenia [25] [26] [27] [28] or Alzheimer’s disease
[29] [30] [31] [32] [33]. Interestingly, at the neuronal network level, the synchronization of
firing patterns in neural networks could equally be linked to epilepsy [31] [34]. Understanding
the way in vivo neural networks finely work could open a way of new therapeutics.

ii Imaging neuronal network in vivo

Gold-standard techniques of imaging neuronal networks in vivo target brain regions like
visual cortex in mice (see Figure II.2). Recent progress of fluorescent microscopy and ge-
netically engineering enabled the imagery of a whole population of neurons at individual
cell level in simpler animal models with limited repertoire of behaviors. Such imaging of
neuron population is easier since it decreases the level of complexity and simplifies the way
to record neural activity. Imaging the simultaneous activity of entire nervous systems in
simple model organisms such that the worm [35] [36] [37] [38], fruit fly [39] [40] and ze-
brafish [41] [42] [43] [44] [45] [46] has benefited from breakthrough in microscopy, probe
development and genetic engineering. In particular, the recent advances in fluorescent cal-
cium microscopy techniques make it possible to image the activity of a whole model animal
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at the scale of individual neuron cells. In this thesis, we will focus on Hydra vulgaris, a small
fresh water cnidarian, that has been recently genetically engineered to express calcium flu-
orescent indicators at single neuron level [2].

Two-Photon
Microscope

Mice Visual Cortex (V1)

Hydra Vulgaris
Confocal Spinnning

Disk Microscope
Two-Photon
Microscope

Larval Zebrafish (OT)

Figure II.2: Different animal models are used to image neuronal activity at single
cell level. The visual cortex of mice (data from Yuste’s lab) or whole animals like Hydra
vulgaris (data from [2]) or larval zebrafish (data from [3], image from [47]) using GCamP
calcium imaging.

It is worth noting that Hydra vulgaris is very promising for the analysis of in vivo neural
networks in free-behaving animal. Indeed, this organism, with a decentralized nervous
system possesses a limitless regenerative capacity and its transparency allows the complete
imaging of entire nervous system [48]. In addition, the neuronal substrates of its limited
behavioral repertoire might be completely understood in a near future. If we highlight its
ability to regenerate from an aggregate of single cells [49], it also appears promising for
understanding neuronal development from a functional and structural point of view.

Neuronal imaging in unrestrained animals has expanded the range of behaviors ana-
lyzable at micro-circuitry level in several model organisms [50]. Traditionally, animals are
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constrained to analyze the neural response in accordance with restricted behaviors to de-
liberately limit the study parameters and give to experimenters exquisite control over the
sensory environment of their studies e.g, visual cortex of mice which responds to pre-defined
stimuli (patterns). However, such procedures restrict animal ability to exhibit more complex
behaviors such as social interaction, motion, biophysical regulation. The recent interest of
neural code analysis in free-behaving animal has equally been supported by new microscopy
modalities like light-sheet microscopy. The combined neural activity recording with behav-
ioral monitoring may uncover correlated effects able to predict and anticipate how neural
circuitry encode a decision and a motion [51] [52] [53].

2 From single neurons to population coding

i Neurons

The pioneer of modern neuroscience is S. Ramón y Cajal who was the first around 1900, to
discover and sketch new cell type with specific body shape and long-wire extension called
neurons [54] [55]. This cell type extremely dense in the nervous central system of vertebrates
(104 cells for kilometers of wiring per cubic millimeter at human cortex) was claimed to be
the functional unit of brain computation. Functionally, the entity is divided into distinct
parts called dendrites, soma, and axon that respectively play a role of input signal collector,
central processing unit and output transmission channel.

a) b)

Figure II.3: Sketch of neurons by S. Ramón y Cajal adapted from [20]. a) Neuron
of the mammalian cortex observed under microscope. b) Sketch of S. Ramón y Cajal of
single neuron structure and signal transmission from a presynaptic neuron to a postsynaptic
neuron.

All these cells communicate with each other at different times and space scales via com-
plex mechanisms and agents constituting networks of interconnected cells. Deciphering how
interacting neuronal networks encode and convey information, is a main topic in neuro-
sciences, called Neural Coding. The first scientist to carry out experimental protocols and
formulate theories about neural code was E. Adrian, in 1926, who analyses for the first-time
neural responses to stimuli and discovered the intrinsic electrical nature of neuronal com-
munication. Claiming that Adrian is the father of neural coding would not be exaggerated
since he made three fundamental discoveries [56] :
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• Individual neurons produce stereotyped electrical signals that propagate in networks
cells to communicate (see Figures II.3, II.5).

• The neuronal response to a stimulus is correlated with its intensity (see Figure II.4-a).

• When a stimulus is constant, neuron response decreases corresponding to an adapta-
tion phenomenon (see Figure II.4-b).

a) b)

Figure II.4: Rate coding at arm motor neuron during stimulation adapted from
[56] [57]. a) Positive non-linear correlation between the neuron response frequency and
the weight to lift. b) Adaptation phenomenon: Decrease of response frequency for same
constant weight.

ii Conveying information between neurons

The neuron activity is encoded through short electrical pulses called action potentials or
spikes that typically last between 1-2 ms with an amplitude about 100 mV. They correspond
to electrical depolarizations of membrane potential that spread along somas, dendrites or
axons and allow distant neurons to communicate with each other. The underlying mecha-
nisms to transmit these pulses vary according to the nature of the neuron involved, and the
biological local topology and structure. A recovery delay called refractory period follows a
spike event to allow the biological transmitter reservoirs to recharge and prevent two spikes
from being emitted too closely. Neuroscientists generally agree that action potential shape
does not vary much and does not, thus, encode any information. Major theories have have
been developed to describe the way the information could be embedded in such spiking
sequences called spike trains (see Figure II.5) corresponding to the sequential activation
pattern of a single neuron.

Information is transmitted from one neuron to another through a junction called synapse
(see Figure II.6). The afferent neuron is called pre-synaptic cell and the receiving neuron is
called post-synaptic cell. The gap between the axon of a presynaptic neuron and the dendrite
or soma of a post-synaptic cell constitutes the synapse. The most common type of synapse
in vertebrate brain is the chemical synapse meaning that information will be conveyed by the
release of chemical neurotransmitters through the synaptic cleft. The presynaptic membrane
depolarization linked to an action potential arrival triggers a complex chain of biochemical
signaling in pre-synaptic vesicles. Neurotransmitters are released from the presynaptic vesi-
cles in the synaptic cleft and bind to post-synaptic receptors, triggering the opening of ions
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Figure II.5: Stereotypical representation of action potentials from a voltage
recording adapted from [57]. (top) Difference of voltage between a fine tungsten wire
placed near a cell in the fly’s brain with a reference electrode placed in the body. (middle)
Filtering using pass-band of the signal to highlight the stereotypical shape of the action
potentials. On the right the superimposition of the action potentials is drawn. (bottom)
Timing pulses generated electronically by a threshold discriminator circuit.

channels. The ion fluxes, then, generate an excitatory postsynaptic potential (EPSP) that
make the post-synaptic neuron more likely to, in turn, emit an action potential. Electrical
synapses called gap junctions (see Figure II.6-b) also exist to transmit information directly
between two close cellular bodies through ion channels. Both chemical and electrical gap
junctions have been observed in Hydra vulgaris [7] [8]. It is worth mentioning that other
molecules called neuromodulators regulate the neuronal communication such as large family
of neuropeptides. These molecules excite or inhibit the neuronal activity by diffusing in
entire areas without targeting a specific site. In particular, these peptides seem to be the
main players in ancient animals like Hydra vulgaris [9] where they could allow a differenti-
ation of neural microcircuitry and be the intrinsic mechanism of neuronal communication.
Finally, action potential has a stereotyped shape and transmit at a constant speed involving
a self-maintained communication process that requires the support of external agents. One
of them are the glial cells that support and regulate neuronal transmission.

For a long while, the neuroscience community exhaustively studied neuronal transmis-
sion by estimating the time variation of the membrane potential and creating generative
mathematical models able to account for different levels of complexity and generate dif-
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a) b)

Figure II.6: Scheme of chemical synapse vs gap junction adapted from [58]. a)
Chemical synapse with neurotransmitter from presynaptic vesicles to postsynaptic receptors.
b) Electrical synapse with direct gap junction connections.

ferent firing patterns. These models were defined at single neuron level by embedding ion
channel opening dynamics. Among them, were the Fitzhugh-Nagumo model or the Izhike-
vich model. However, the worthiest model to mention is Hodgkin and Huxley’s, derived
from their Nobel Prize-winning work on octopuses [59] [60].

In parallel, easier mathematical frameworks were applied at mesoscopic scale to describe
neuronal information transmission. The mathematical model of Leaky-Integrate-and-Fire
(LIF) neuron provides, thus, a representation of neuronal transmission as an integration of
inputs via a summation and a thresholding process that support the representation of the
neural networks of artificial intelligence. By doing such analysis, it is possible to informat-
ically simulate data of entire neuronal populations with excitatory and inhibitory effects.
The direct applicability of this kind of analysis to the in vivo case is, however, limited by:
1) the sampling frequency that does not allow the recording at an action potential resolu-
tion. (sampling frequency are around 10 Hz for calcium fluorescent microscopy leading to
a 100-millisecond recording period against a 10 millisecond action potential dynamics) 2)
the lack of an exact anatomical description of an entire neural network due to poor spatial
resolution.

Since Adrian’s early observations, several theories have been developed to model how
neurons can encode information. Rate coding or frequency coding claims that information is
encoded by action potential frequency [56]. This theory accounts for the heterogeneity and
diversity of action potential responses of a neuron given a stimulus. When intensity of the
stimulus increases, action potential rate generally increases non-linearly as well. Thus, an
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estimation of firing rate or instantaneous firing rate function through the spike density are
usually performed using peristimulus time histogram or kernel density estimation techniques
[61] [62]. They extract correlation activity patterns through rate coding. This encoding
model was limited since unable to explain experiments showing that changes in correlation
was independent of spike rate [63], experiments where neurons timing and duration of non-
firing neuron was also carrying information [64] or experiments where low frequency events
were conveying information like for Purkinje neurons [65] [66] [67]. More generally rate
coding fails to explain fast organism response especially when the response is faster than
100 milliseconds or with only few spikes involved [68] [69] [70].

The limitation of the rate coding to account for neuroscience experiments with fast
dynamics led to another coding theory called time coding or spike coding. In this theory,
the temporal pattern of precise action potential emission is thought to convey information,
especially in sensitive neurons where the response is fast. While rate coding, basically, counts
and averages the number of spikes that fall into a time bin window, time coding asserts
that the exact date of emission action potentials and high-order statistics, like inter-spike
intervals, offer a higher dimensionality to encode information. Timescale of both theories
and the statistical tools to model the processes are different. A spike train, thus, owns a
better encoding ability with time coding and the diversity of responses to a same stimulus
could represent fundamental information.

However, these classical coding theories are limited to single neurons while information
is known to be processed by population of neurons.

iii From single neurons to neural networks

Synaptic plasticity
Neurons are densely connected with synapses, forming functional ensembles. Each

synapse has an individual efficacy that describes the relative amplitude of the neuronal
post-synaptic response (EPSP) related to the presynaptic afferent action potential. Elec-
trophysiological experiments demonstrated the ability to alter the synaptic strength either
positively through a process known as Long-Term Potentiation (LTP) or negatively via
the Long Term Depression (LTD). This dynamic change of synaptic strength with respect
to activity is called synaptic plasticity. This process would be the fundamental support of
learning and memory at neuronal level. The changes can be imprinted at long- or short-time
scales and demonstrate neuron’s ability to modify the synaptic efficacy based on their func-
tional activity. The main biophysical mechanisms that account for synaptic plasticity are the
modulation of the number of post-synaptic neurotransmitter receptors and the restructuring
of the shape of the receiving neuron’s dendrite. LTP corresponds to the increased synaptic
strength over hours when injecting high-frequency pulses in-presynaptic fibers to evoke a
post-synaptic firing response. Another experimental protocol inducing a prolonged increase
of synaptic strength is the Spike-Timing-Dependant-Plasticity (STDP). It corresponds to an
increase of the synaptic efficacy in a neural network by activating groups of neurons with a
correct time delay. It induces an artificial causality that increases synaptic coupling efficacy
on long time-periods. Synaptic plasticity underlies the emergence of neuronal networks, i.e.
groups of highly connected neurons that are thought to encode and convey information.
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a)
1) 2) 3)

4)

1) 2) 3)

4) 5) 6)

b)

Figure II.7: Long-term potentiation vs Spike-Timing-Dependent-Plasticity
adapted from [20]. a) Schematic drawing of a paradigm of LTP induction. Different
strengths of presynaptic pulses evoke different postsynaptic response imprinting a long-term
synaptic coupling. b) Spike-Timing-Dependant-Plastiticity. Pairing of neurons is carried
out by stimulating a presynaptic neuron and a postsynaptic neuron with a selective delay
to induce a short-term synaptic plasticity.

Neuronal network and Hebbian rule
Over time, synaptic coupling parameters evolve, are adjusted and optimized in a process

called learning (see Figure II.7). Several theories to describe mathematically this learning
rule have been formulated. The most famous one is called Hebbian learning rule [71]. The
learning rule formulated by D. Hebb in 1949 as “When an axon of cell A is near enough to
excite a cell B and repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased”. This theory provided one of the most famous neural axiom of
neuroscience history : neurons that “fire together wire together” [72]. Various explanation
models emerged to account for this learning and adaptation phenomenon such as the co-
variance rule [73], the Oja’s rule [74] or the Bienenstock-Cooper-Munro rule [75] to explain
how synaptic coupling or synaptic transmission efficacy is driven by correlations in the firing
activity of pre- and post-synaptic neurons. All these frameworks were a breakthrough in
neuroscience since they theorized the fundamental mechanisms underlying the emergence
and reinforcement of neuronal networks or ensembles. Such a plasticity, at the mesoscopic
scale, might be the origin of a stabilizing of neuronal activity patterns in the brain [71]. If
these stabilizing patterns correspond to cognitive representation of behavior, it means that
the non-supervised adaptation of synaptic weights could be the process to learn the behav-
iors and create a mental representation from sensory inputs for example. Hebb’s postulate
embeds two fundamental notions: locality and joint activity. It means that the change of
synaptic efficacy can only depend on local synaptic variables. Joint activity means that pre-
and post-synaptic neurons need to be simultaneously active for a synaptic weight change
to occur. The recurrent simultaneous coactivity of several neurons of a neuronal popu-
lation leads to the framework of population coding within a new neural doctrine: neural
information is encoded through neuronal ensembles.

Hebbian rule explains how stable groups of interconnected neurons, known as neuronal
ensembles, emerge during activity and neural network development.
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The connectivity of neural networks
Neural networks are non-homogeneous but hierarchical, subdivided into specialized com-

putation modules [76] [77] [78] [79] [80] [81]. The heterogeneity of micro structural prop-
erties implies that responses to stimuli vary largely depending on processing, behavior, or
cognitive operations. Neural networks are complex [82], able to perform either functional
segregation that enables the rapid extraction of information and the generation of coherent
neural states, and functional integration that integrates information through interplay, inter-
action, and exchange between multiple networks that can encode several tasks or cognitive
function simultaneously. Thus, no clear bijection is assumed between a (sub-)module and
a cognitive, sensory, or motor process. Many physical and experimental models have been
developed to explain how topology of neural networks emerge from single neuron connec-
tivity (see Appendix A). Understanding cognitive functions, thus, implies to understand
the exact role of the in vivo networks and the way they shape a mental representation.
The network connectivity also known as connectome supports this neural code and must be
deciphered [83] [84].

The connectome is based on three different kinds of connectivity: anatomical (struc-
tural), functional and effective [85] [86]. The anatomical connectivity corresponds to hard
wired connections between neural networks. It is based on physical links interconnecting
neurons that convey information at a biological level through axons, dendrites, chemical or
electrical synapses... The functional connectivity corresponds to all interactions between
networks that embed coactivity dynamics not directly related to physical connections. If
anatomical connections correspond to the hardware part of the computer, functional con-
nectivity is the software that will process the information making neuron populations inter-
dependent and implement cognitive functions. The effective connectivity summarizes a more
complex influence of one node to another. Its main difference with functional connectivity
is the integration of the direction flow in the form of excitatory/inhibitory effects, causality
(who triggers who) and evolving time dynamic. The latter does not necessarily imply a
direct anatomical link between agents and may involve indirect connections, feed-forward
backward loops, or cascade events.

The key point of analyzing neuronal functional connectivity is to find specific role for neu-
rons, estimate groups of neurons whose activities related to tasks might unveil the emergent
properties of neuron firing synchronization patterns embedded in a modular and hierarchical
architecture. Understanding how computation modules appear, interact, or evolve in rela-
tion to the various types of connectivity could provide new insights of the way information
is embedded in the neural code and generalize at a higher scale the discovered principles:
the brain [87] [88]. (see Appendix A, B)

Population coding
In population coding, groups of neurons appear through physiological co-active events,

corresponding to neurons firing within a same meaningful time window. The coactivation of
neurons strengthens their functional coupling regarding the Hebbian rule, making their joint
activity more likely to occur. Population coding theory claims that the incident activation of
such interconnected networks of neurons might encode a mental representation of a cognitive
task. Co-active populations would appear as fundamental units of computation and the
substrate of sensory, behavioral, or cognitive functions [89]. The communication between
neuronal populations through coincident biophysical events is supported by an optimized
distributed system whose topological structure matches the neuron groups (see Appendix
A). The topological structure confers to these neuron groups the intrinsic ability to trigger a
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inter-group self-maintained response. This response induces basal sequential patterns whose
existence is proven but exact role is not yet fully understood but could be related to learning
through neuron group stabilization.

Neuron groups can be artificially recalled [90] by optogenetics. These groups of neurons
can be activated by triggering specific neurons with particular roles, called Completion
Pattern Neurons, that seems to be the cores of the synchronicity inside the interconnected
groups. The synchronization patterns and consequently neural network topology can be
altered by neurological diseases that lead to neural network functioning abnormalities. For
example, some evidence seems to describe schizophrenia in mice as a dysregulation of neural
synchrony [91]. Indeed, it seems that a disorganization of activation dynamics appears
during the presentation of a visual stimulation. Locally, the persistent destabilization of
synapses and dendritic spines seems to induce a deprogramming of the groups that are the
supports of a stable cognition. Conversely, the ablation of completion pattern neurons could
equally alter the ensemble activation and deprogrammed behaviors. In Hydra, for instance,
the somersaulting behavior activated by the neural microcircuit called Rhythmic Potential
1 can be reduced by an ablation of some core neurons of this group [9].

The existence of neuron groups and synchronization patterns in neural networks lead to
a new neural doctrine based on neuronal ensembles [89].

3 From neural networks to neuronal ensembles

i A new neural doctrine based on neuronal ensembles

The definition of a neuronal ensemble or neural assembly is intrinsically elusive [92] [93] [47]
in the literature. It mainly depends on experimental data, mathematical models, but above
all the prism of our understanding of the neural computation. A commonly adopted manner
to define such neuron ensemble is as a population of nervous system cells involved in a
particular cognitive computation [94].

This definition is even more complicated to formulate since neural network activity
largely depends on the maturation of the nervous system, the targeted cortical area, or
the model animal under the scope. For example, in early development the response of non-
differentiated cells and immature modules do not demonstrate any group activity (A.4),
animals can sometimes react to a stimulus without a neuron group activation, or neural
circuitry often process information by a large distribution of the computation over multiple
entities leading to an overlap of ensemble activity mediating similar cognition. In such
systems, a formal definition of a neuronal ensemble becomes even more complicated.

Originally the first neural doctrine from S. Ramón y Cajal (1899) [55] [54] and C. Sher-
rington (1906) [95] was claiming that individual neurons were the structural and functional
units of the nervous system. Later studies have nevertheless demonstrated that percep-
tual representations of the external world and cognitive computation like working memory,
decision-making, consciousness, are encoded by neuronal populations [96] [97] [98] [99] [100]
[101] [89]. Such cell assemblies would be based on neuron firing synchrony corresponding to
concomitant neuron’s activity and repetitive sequential activity patterns at different time
scales [102] [103] [90] [104] [105] [99] [101]. Across the literature, neuronal ensemble has
taken different form, definition, and taxonomy: ensembles, assemblies, attractors, synfires,
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clicks, flashes, motifs, songs, bumps. . . A unified consensual definition is still missing.

Here, to provide a mathematical framework able to extract the neuron ensembles, we
decided to adopt the neutral definition of neuron ensemble or assembly [106] [92] [107] [89]
as a group of neurons repeatedly firing together. It means that the consistency of a group
is based on the statistical co-activation of neuron population vectors [108] that repeat over
time.

ii Neuronal ensembles embed randomness

Observed co-activation of neurons is inherently stochastic. Indeed, each time a neuronal
ensemble is active, the co-active neurons taking part in the activity of this group are not
the exact same. It leads to a huge variability in the group response. Furthermore, neurons
are characterized by a firing basal activity, i.e. neurons can fire outside the activity of
their respective groups. Some information is carried out by neuronal ensembles’ activation
but equally by their silences. A non-response of a group or a subgroup might represent
inhibitive effects, modular and hierarchical responses, or functional overlapping. Finally,
the mathematical definition of a neuronal ensemble could be : ”a neuronal ensemble is a
particular set of neurons whose co-activation is statistically significant compared to chance
(for a given basal activity of individual neurons)”.

Another major issue is to relate the neuron ensemble definition with specific cognitive
tasks or experimental stimulations. In other words, it questions whether the neuron en-
semble exists independently of the task and the stimuli or should its existence be defined
in correlation with the input process. All these concepts are primordial, to highlight the
properties and limitations of the existing algorithms to identify neuronal ensembles.

iii Neuronal ensembles are functionally overlapping

Due to the modular organization of the nervous system, (sub-)modules communicate to
distribute the processing of cognitive tasks or mental representations [109] [110] [111] [112]
[113]. In parallel, the reusing of a single module to encode different behaviors or mental
tasks would represent a non-negligible gain in neural computation efficacy and complexity.

Therefore, the exact relationship between a neuron ensemble and a cognitive function
needs to be clearly defined. If a neuron ensemble is defined as a subset of neurons that
encode one task, behavior or state, it provides a functional definition of an ensemble. It
means that an ensemble would be in bijection with a function. Functional overlapping,
thus, corresponds to the ability of a neuron to be recruited or recalled by several functional
ensembles. These intersecting neurons take part in several cognitive tasks such as neurons
of the visual cortex activated in response to both specific stimulus shape and motion. These
neurons could have major roles in the neural computation.

An overlapping response of neurons is expected, for a lot of in vivo neural networks,
especially in mice and zebrafish visual cortex [114] [3]. For mice, Allen Institute provides
an open-source dataset of the visual cortex, called Brain Atlas, whose neuron responses to
different visual stimuli (Static, Drifting Gratings, Natural Scenes and movies, Locally Sparse
Noise) directly show strong overlapping responses. In zebrafish, J. Mölter, L. Avitan and G.
Goodhill [3] highlighted overlapping responses equally. In the Hydra vulgaris case, neuron
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ensembles are expected to be non-overlapping [2] structurally and functionally. Physiologi-
cally, neurons of different ensembles are non-directly connected to each other, functionally
they just belong selectively to at most one single neural network. Moreover, neuron en-
sembles are correlated with behaviors of the animal: longitudinal contractions, elongation,
radial contraction, and nodding.

Neuronal ensembles are, thus inherently characterized by activation randomness and
overlapping, which combined with the high levels of noise in free-moving animals, hinder
the robust and accurate detection of neuronal ensembles from the in vivo imaging of neuronal
populations. Standard techniques for the identification of neuronal ensembles are based on
theories and experimental observations about dynamics and topology emerging during de-
velopment through the functional interactions between neurons arranged in interconnected
networks. These physics theories of networks topology and structure led to detection al-
gorithms searching for particular patterns like assortative modules. Providing tools able
to extract neuronal ensembles from microscopy imagery and correlate these ensembles with
stimulations or spontaneous activity would pave the way to a better understanding of mod-
ular neural coding.





Chapter III

Chasing neuronal ensembles that
encode behaviors

1 Imaging and tracking single neurons in behaving animals

i Neural activity monitoring : From patch clamp to calcium and voltage
indicators

Monitoring neuron activity is required to understand how neural networks embed informa-
tion to integrate input stimuli or trigger behaviors. The early techniques using patch clamp
used to be the gold-standard techniques to record electric neural activity of action poten-
tials. However, these techniques were invasive and limited to a restricted number of neurons
with poor spatial-temporal resolution.

The advancements of fluorescent calcium microscopy in the 1990s and the progresses of
genetically engineering in 2000s allowed to perform ”multi-cell imaging”. It addresses the
activity monitoring of individual neurons at a higher scale by recording proxy indicators
instead of direct action potentials. The gold-standard method was the protein-based Genet-
ically Encoded Calcium Indicator (GECI), GCamP [115]. Each time an action potential is
emitted, a calcium influx occurs at axon terminals by the opening of voltage-gated Ca2+ (see
Figure III.2), and calcium binds to calmodulin (CaM) (see Figure III.1) whose molecular
conformation changes emitting a green photon by fluorescence at a peak wavelength around
510 nm. The method monitors calcium fluctuations associated with action potentials in
individual cells.

The method requires an accurate quantification of the light emitted by fluorescent indi-
cators received on the camera’s detector. Several fluorescent calcium microscopy techniques
have been invented and applied on a huge diversity of model animals such as the spinning disk
confocal microscopy, the structured illumination microscopy, or the 2-photon microscopy.

Over the last few years, more direct approaches to record membrane potential changes
called Genetically Encoded Voltage Indicator (GEVI) have been introduced. It uses pro-
tein directly sensitive to membrane potentials, whose molecular conformation and optical
properties can change relatively to voltage.

GECI offers several advantages for multi-cell imaging compared to GEVI [117] [118].

33
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Figure III.1: Schematic representa-
tion of GFP-based Ca2+ probes from
[115]

Figure III.2: Neuron Calcium signal-
ing from [116]

Its SNR is 8 to 20 times higher than GEVI’s, providing a better spatial resolution, since
fluorophore molecules are precisely located in neuron cell bodies while potential voltage
can contaminate an entire neuropil corresponding to dendrites, axons, synapses, or glial
cells located in the cell neighborhood. Furthermore, they are characterized by a better
sensitivity and are more stable to photobleaching effect. Finally, they are more versatile and
straightforward in terms of use and applications. However, a large temporal discrepancy
between calcium and voltage dynamics has been observed [119]. GECI misses sub-threshold
depolarization, is polluted by external cellular processes that produce noticeable changes
in calcium ion concentration and suffers from poor temporal resolution that exaggerates
temporal summation and mixes bunch of close spikes. GEVI is more robust than GECI to
fluorescent baseline and capture region to region propagation latencies.

GECI and GEVI are both fluorescent imagery techniques that suffer from limitations
in freely behaving animals. Firstly, their accuracy suffers from noise due to motion arti-
facts [120] [121]. Indeed, motion of the animal itself, heart rate, breathing, non-specific
vibrations can blur the image recordings. In addition, calcium microscopy techniques excite
fluorescent molecules and must account for back-scattering effects of light in the tissues,
and photobleaching effect corresponding to photo-toxicity that leads to the transition to
permanent dark state of fluorescent cells over time and results in a non-linear decrease of
the fluorescent intensity. For animals without spatial movement constraints, the displace-
ments, the z-axis motions, or deformations can also lead to time-varying fluorescent baseline.
Finally, the superimposition of out-of-the-focus plane signal imaging and the activation of
surrounding agents in the neuropil can lead to distorted fluorescence intensities.

Hardware and software corrections have been implemented and are described hereafter.

ii Imaging neurons

Hardware solutions correspond to the implementation of experimental protocols and mi-
croscopy techniques to limit the previous effects [122] when monitoring the neural activity.
To limit motion artifacts, one solution is to physically constrain the motion of the animal.
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Mechanical devices to immobilize the animal are used, for example, head fixation under
the microscope field-of-view [123] [124] [125] [4] [126], paralysis via anesthesia [5], surgical
surgery or constraining substrates [127] [128] [3].

Then, the basic operating principle of the microscopy methods is to reduce the tissue
scattering effects and photobleaching improving spatial and temporal resolution. Two main
microscopy techniques are used: the spinning disk confocal microscopy (SDCM) and the two
photon-microscopy (2P-M). SDCM (see Figures III.3, III.4), invented by Petráň et al, in
1968 [129], scan a sample by rotating arrays of aperture pinholes corresponding to micro-
lenses that act like excitation focal volumes. As output, it provides a high-rate real-time
confocal image of the in-focus sample. Noticeable improvements of emission photon collec-
tion, detection sensitivity, frame rate to equivalent SNR, photobleaching toxicity reduction
were proved using this method compared to previous classical microscopy techniques [130].

Figure III.3: Spinning Disk Confo-
cal Microscope schematic schematic
[130]

Figure III.4: Spinning Disk Confocal
Microscope schematic real

The 2P-M (see Figures III.5, III.6) is another largely used microscopy technique to
image cortical areas in response to stimuli. It was invented by Denk et al [131], in 1990.
This method allows to image deeper in the tissues by making several photons interfere with
each other. While in confocal microscopy, the light selectivity is performed through optical
sectioning with pinhole arrays, this method uses longer laser wavelength and the optical
theory of up-conversion to do so. The molecule excitation is a non-linear process that
involves the absorption of two infrared photons whose combined energy is greater than the
energy gap between molecule’s ground and excited states allowing a molecular transition.
This optical phenomenon allows a better molecule targeting, the ability to image at different
depth in the tissue corresponding to different area of the visual cortex for instance and to
reduce tissue photo-toxicity.

It is worth noting that other imagery techniques such as light-sheet microscopy allow
volumetric imaging with good time resolution (∼ 1 Hz) of small brain volumes or whole
animal models [133].

iii Tracking calcium activity

Software solutions, inspired from signal processing, aim at extracting single neuron calcium
activity from microscopy imaging. These techniques try to account for 2 main issues : a)
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Figure III.5: 2-Photon Microscope
schematic from [132]

Figure III.6: 2-Photon Microscope

the motion of the animal can largely pollute the recordings by adding spurious information,
b) the high cell density in a cluttered environment can lead to overlapping and cross activity
contamination.

Either the animal is fixed by hardware solutions and the motion is just residual, or
the animal is freely behaving, and more advanced tracking techniques are required. In
the first case, residual motion are usually vibrations, obtained for example using 2P-M in
mice brain visual cortex [134]. The frame averaging and the correction of deviations from
equilibrium positions can be sufficient to account for such motion artifacts. In the second
case, when the animal is displacing and deforming freely, like for Hydra Vulgaris [135],
the robust estimation of the elastic deformations of a free-migrating organism has been
previously studied in Caenorhabditis Elegans [36] [136] [127] or in Hydra [137] [135] imaged
using Spinning Disk Confocal Microscope.

Therefore, the image analysis pipeline is divided into several sequential signal processing
steps as follows : 1) Motion estimation and correction , 2) Neuron identification and tracking
3) Source denoising and Spike deconvolution, 4) Neuronal ensembles identification [138]
[134] [139].

a Motion estimation and correction

The robust estimation of motion in the focal plane of a freely-behaving animal is funda-
mental to target a neuron on an entire video, correct its displacement and efficiently extract
its activity in terms of fluorescent intensity. For fixed animals with only residual motion
artifacts, classical elastic registration methods are used. For example, the NoRMCorre tech-
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nique [140] based on template matching is a well established semi-rigid corrective method.
The idea is to find piece-wise rigid displacements by comparing every frame of the recording
to a template averaged image. Each frame is divided into up-sampled overlapping patches
that match subareas of the template to estimate the local cross-correlation maxima and
thus the local displacement vectors. Then, the template is updated by averaging the frames
corrected by interpolated displacement vectors. Another widely used registration algorithm
is part of the CaImAn project [134], but it worth noting that a huge diversity of other tech-
niques exists : intensity based methods [141] [142] [139], inter-frame matching key points
based methods [143] or deep-learning techniques [144] [145] are part of them.

For freely behaving and deforming animals likeHydra Vulgaris this issue is even more
complicated and still appears as a partially open-problem. Indeed, the animal’s motion
combined with the elastic deformations of the body [135] make the displacement impossible
to perfectly correct. However, some promising efforts have been performed to efficiently
track the moving neurons and use the tracks as indicators of the animal deformation.

Following motion correction, an segmentation is performed to extract the fluorescent
intensity a neuron or soma, which corresponds to a contiguous set of pixels constituting a
Region Of Interest (ROI) within the field of view that are correlated in time [134] [139] and
can be active or silent regarding the neural state. At first glance, the mouse visual cortex
appears as a quite simple case since, when the motion correction has been properly carried
out, the summation or averaging of all frames already provides a good estimate of each
neuron location (see Figure III.7). In this case, ROIs are fixed between frames, matched
with a neuron and can be simply segmented (see Figure III.8). However, when the density
of ROIs is high the process detection needs to be refined. Indeed, the simple averaging of
frames, is no longer precise enough since it misses sparse active cells with low baseline. Gold-
standard techniques for neuron ROIs demixing are: a) matrix decomposition with positivity
constraints embedded in a convex optimization framework [146] or, b) matrix factorization
with greedily segmentation of high-correlated neighboring pixels [139]. Their aim is to refine
ROI detection and demix calcium sources.

• Constrained nonnegative matrix factorization (CNMF) [146]
CNMF limits overlapping in ROI detection to avoid ”crosstalk” that could impair the
monitoring of individual neuron activities. This technique embeds a spatio-temporal
model of component location and demixing. The spatial component is handled by
the introduction of a non-negative and sparse ”spatial footprint” that encodes the
spatial calcium concentration profile at each timestep. Concomitantly, a temporal
calcium dynamic as an autoregressive model summarizes the evolution of calcium in
each pixel/voxel. The method alternatively solves several convex optimization prob-
lems with sparse and positive constraints to estimate these spatio-temporal features.
Specific initialization procedures, ranking, removing, and merging components are per-
formed. However, the algorithm finally highlights fixed location of ROI corresponding
to somas compensating overlapping and handling time-varying baseline.

• Suite2p
Suite2p embeds a spatially localized signal model that handles the activity of the ROI,
the neuropil contamination, and the noise. Three alternating steps solve iteratively
the optimization problem. 1) Data reduction through support vector decomposition
applied on each pixel time series. 2) New source detection through pixel-to-pixel trace
correlation in neighborhood. Extraction of the maxima as new candidates. 3) Source
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Figure III.7: Mice brain visual cortex
recorded using TPM from Allen In-
stitute open-source dataset. Frame
are summed over the recording unveiling
soma’s locations.

Figure III.8: Segmentation of Mice
brain visual cortex. The segmentation
is performed on the sum of all frames of
a video.

and neuropil activity updating by square error minimization. 4) Updating of spatial
source locations. Repeat steps 2), 3), 4). Here, an equivalence between ROI and
neuronal cells spatially fixed in the image is assumed.

In Hydra Vulgaris’ processing pipeline, ROIs appear as bright spots detected over each
frame. Detection can be performed with standard algorithms such as wavelet decompo-
sition [147] and thresholding or deep learning methods (e.g. Stardist [148] [149]) Since
animal motion and deformation induces moving ROIs between images, the association in a
succession of ROI detections to estimate the activity of a specific neuron is thus required,
especially, for neurons with long time-lapse silent states (no firing).

b Neuron identification and tracking

ROIs detected on consecutive frames can be associated in partial tracks called tracklets
using standard tracking algorithms such as the probabilistic eMHT [137]. However, the
prolonged undetectability of non-firing neurons (without calcium signal) requires a tracklet
to tracklet stitching to merge the tracklets corresponding to the same neuron. Thus, a
first promising technique is EMC2 [135] (see Figure III.9). It associates the most relevant
tracklets to reconstruct the entire tracks. To do so, the algorithm estimates the elastic
deformation of the animal by interpolating via a thin-plate-spline function the position of
non-detected neuron ROIs due to long silent neural states from the detected ones. Finally, a
global tracklet-to-tracklet distance is optimized in the elastic corrected space to reconstruct
the tracks. The elastic motion of the animal is extracted on the fly. Some recent efforts
from [150] have been carried out to refine the tracklet stitching cost function by integrating
some state-of-the-art deep learning techniques Discriminative Features using self-supervised
trained convolution neural network (CNN) (see Figure III.10).
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Figure III.9: Tracklets from detections using Wavelet transform in EMC2 from
[135]

Figure III.10: Tracklets from detection using Deep Learning techniques from [150]

c Spike deconvolution

At this step, each single neuron is associated with a single calcium fluorescent trace. Each
fluorescent traces embeds a calcium dynamics and an advanced deconvolution or spike in-
ference technique is required to extract the exact timing of action potentials.

Usually, the first prior step is to detrend the fluorescent signal [152] [134] [153] [154]
meaning removing non-linear low-frequency dynamics corresponding to remaining artifact
often observed in in vivo experimental conditions. This step is, especially, important since
most of spike inference technique (SIT) do not handle an estimation of a time-varying base-
line and are only adapted to flat signals (see Figure III.14).
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Figure III.11: Hydra Vulgaris before
Contraction Burst

Figure III.12: Hydra Vulgaris during
Contraction Burst. The CB pollution
contaminate the entire animal providing
a general increase of the intensity easily
visible on the image.

Figure III.13: Hydra Vulgaris deformation estimation from [135]

The diversity of spike inference techniques is important and can be divided into several
working principles [155] going from neuron individual fluorescence traces to individual neu-
ron spiking activity : Template matching [156] [157] [158] [159] , Linear deconvolution [160]
[161] [162] [163], Finite rate of innovation [164] [165] , Independent component analysis [166],
Non model-based Signal Processing [167] , Supervised Learning [168] [151] [169] [170] [171],
Constrained non-negative matrix factorization [172] [146], Active set methods [173] [174]
, Convex and non-convex optimization methods [175] [176] [177] [178] [179], interior point
methods [180], and Model-based bayesian inference techniques [154] [181] [182] [183] [184]
[185] [186] [187] [188] [189] [190] [155].

From the vast number of spike inference techniques three main categories of spike infer-
ence techniques emerge: 1) Deterministic techniques using optimization, 2) statistical
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Figure III.14: Deconvolution of a calcium fluorescence trace from mice V1 cortex
with OGB-1 as calcium indicator [151]

techniques using inference based on a model and 3) machine learning techniques. Gen-
erally, the methods formulate analytically a model that describes the dependency between
fluorescence intensity, calcium concentration, and spiking activity. The model characterizes
the relationship between the three time-series by embedding the fluorescent noise. To fulfill
that task, a transient kernel that summarizes the calcium dynamics is required and embedded
in an auto-regressive process whose parameters are assumed to be fixed. A deterministic or
stochastic optimization algorithm is, then, run on the individual neuron fluorescence traces
to infer jointly the most relevant spiking sequences, and calcium time-series. The level of
noise, the kernel dynamics and more rarely the baseline are estimated directly.

Such techniques, usually assume the flatness of the fluorescence traces and spikes dis-
tributed according to a homogeneous Poisson distribution [146] [173] [180], to provide fast,
accurate and robust estimates of the action potential emission dates that forms the neu-
ron spiking matrix. Some efforts [151] [153] [191] have been carried out to benchmark few
methods on synthetic data but remain insufficient to identify a gold-standard technique and
assert the efficiency of the techniques on real neuronal experimental recordings.

The neuronal spiking matrix uncovers the convergence of individual neural activity
through the occurrence of co-active biophysical events corresponding to action potential
emissions. These are supposed to highlight the activity of neuronal ensembles that are
the substrate of cognitive states or mental representations [89]. The robust extraction of
neuronal ensembles from the neuron spiking matrix is supposed to provide insights about
information integration.

iv Detection of neuronal ensembles

Community detection techniques are generally theorized in more general contexts (social
networks, economy, politics...) than in vivo neural networks. They are based on topological
observations, on the detection of recurrent activation patterns or a more exhaustive modeling
of the studied phenomenon [192] [193] [194].

The existing methods to detect communities are extremely numerous and generally di-
vided into three main categories (see Figure III.15):

• Graph theory techniques. The fundamental idea of node partitioning in com-
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munities is to identify sub-graphs of densely interconnected nodes called modules,
clusters,communities, groups or assemblies. Regardless of their structure, community
nodes are assumed to be “assortative”, meaning strongly connected to other nodes in
their own community and weakly connected to neurons from other ones. This supports
a modular organization of a small-world network (see Appendix A), relevant with
the observations made in in vivo neural networks allowing autonomous, specialized,
or distributed functions optimizing the node wiring, communication, evolution by be-
ing robust to failures. It requires a pairwise node adjacency matrix obtained from a
Functional Connectivity (FC) metric between pairwise neuron spiking activities. The
connectivity matrix is, then, thresholded and a clustering algorithm on the resulting
graph is applied. The algorithm choice is fundamental since it operates according to
an own definition of a modular community [195] [196] [197] [198] requiring sometimes a
projection of the graph rectifying or discarding information. It equally embeds a set of
assumptions on the way the graph has been generated by the functional connectivity
metric which have a large impact on the community detection.

• Spectral techniques. They correspond to the application of algebraic methods that
extract coherent subgroups from activity matrix [199] [200] [201] [108] [126] [202] .
Each time step is interpreted as a population vector activation on which machine
learning techniques are applied to reduce data dimensionality, projected data in some
chosen subspaces to find heterogeneous repeated components and to extract common
underlying patterns. The task of extracting relevant repeating populations is usually
performed using spectral techniques like principal component analysis, independent
component analysis or some improved versions.

• Biologically model based techniques. The idea is to explicitly and analytically
model what biologically a neuronal ensemble is and try to uncover neuronal assemblies
based on an explicit interpretable definition [47]. The main interest of the techniques
is to provide meaningful results that handle the specificity of the underlying problem
providing statistical evidence.

The existing community detection techniques have been benchmarked [203] [204] [205]
[206] [207] [208] [209] [210] on open-source datasets using the commonly used evaluation
metrics : 1) (O)-NMI [211] [212] and, 2) Omega Index [213]. A gold-standard technique
does not exist and generally good estimates on experimental data are obtained by combining
several community detection techniques and “aggregating” the clustering results [194]. Some
efforts have also been carried out to face promising methods on in vivo neural network for the
specific problem of neuronal ensemble detection [3]. The techniques have been benchmarked,
firstly, on synthetic data and then, on zebrafish experimental data.

Finally, the previous benchmarkings of community detection techniques reveal their effi-
ciency to recover communities on simulated data. However, generalizing results on real-world
networks especially for the neural networks in vivo case is hard in the absence of ground-
truth. Indeed, the exact ability of the community detection algorithms to account for the
specific issues of neuronal ensembles such as stochastic activation or ensemble overlapping
has been poorly studied yet. The development of methods able to estimate additional eval-
uation features could also be relevant. For example, estimating neuronal ensemble activity
in relation with behaviors or stimulations in free-living animals is a promising goal.
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Figure III.15: Processing pipeline for neural ensemble detection. a) Community de-
tection techniques based on pairwise functional connectivity and threshold. (Graph theory)
b) Community detection techniques based on data reduction and projection and clustering
via Machine Learning techniques. (Spectral Methods) c) Community detection techniques
based on an ensemble interaction model using spiking patterns.

2 Neuronal ensembles encode behaviors

Understanding how neuronal ensembles encode behaviors requires to quantify precisely the
link between motion of a free-behaving animal and its brain computations. The improve-
ments in techniques to track animal motion and to statistically couple stimuli or spontaneous
behaviors to neural circuitry activity take advantage of deep learning techniques. Under-
standing the extent in which neuron ensembles better explain behaviors than individual
neuron cells would reinforce the neural doctrine that ensemble is the cornerstone of neural
code. Questioning how to precisely define a behavior, quantify it, correlate it with a neural
activity or measure the ability to predict such actions are recent open questions essential to
pursue the neural code deciphering.

i Behavior tracking

Detecting the occurrence of behaviors in a free-moving animal requires either to perform a
manual labeling or to algorithmically detect the behaviors. Motion of the animal needs, thus,
to be quantified in order to identify an exhaustive list of all possible behaviors called the
behavioral repertoire of the animal. The quantification of motion often implies to fit control
points on the animal to extract position and kinetics properties in relation with behaviors.
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The robust tracking of the centroid of the animal is generally the most straightforward way
to quantify its spatial navigation and locomotion, complexifying the tracking shape can allow
to uncover richer information about behavior [53] [214]. To identify complex behaviors, pose
estimation is usually required (see Figure III.16). Convolutional Neural Network (CNN) are
a powerful tool to complete that task. Deep Learning techniques through CNN are the
gold-standard approaches to perform Pose Estimation on new model animals. Used jointly
with transfer learning of pretrained network via database like ImageNet [215], it reduces
the need of learning for new model animals. DeepLabCut [216] is a tool implemented to
complete that task of fitting Points Of Interest on a model animal to record its behaviors
during an experiment. LEAP software [53], improved in DeepPoseKit [217], is another CNN
architecture used to perform pose estimation.

b)a)

c)

d)

Figure III.16: Pose Estimation on animal models. a) On mice [53] [214] b) On Hydra
from E. Martin et al not published.

Going from pose estimation to behaviors requires to establish a set of rules that estimate
the exact occurrence of the behaviors given the control point properties (inter-distance, lo-
cations, orientations, kinetics...). The classification of such point properties as time-series
(see Figure III.17) can be automatically performed by machine learning techniques like Ran-
dom Forest able to handle both quantitative and qualitative descriptive features. Some of
the techniques to estimate behavior dynamics are classification techniques that need user-
defined labeling sometimes biased via human prior subjection while others are completely
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unsupervised corresponding to clustering techniques. (e.g. PCA, Spectral estimation, man-
ifold embedding)

ii Behavior prediction

Linking neural activity with behaviors is at stake to decipher the neural code [214]. The cor-
relation between neural activity and stimulations or spontaneous behaviors would represent
and intrinsic ability to encode, and then to predict (see Figure III.17). Long-Short Term
Memory (LSTM) is a deep-learning technique based on recursive neural network (RNN) that
can be use to decode information about an animal behavior [218]. Animal spatial location,
locomotion or deformation can be estimated by inputting neural activity in such artificial
neural networks. Its accuracy level makes this tool more accurate than classical Bayesian
inference to infer behavior and promising to assess the ability of the input to predict the
output. Such tool could be used to test if neural ensembles are more relevant to predict
behaviors than individual cells. It has been successfully used to decode animal’s position
from neuron population activity when applied to hippocampal neural data of free moving
rats [219].

Deciphering the neural code requires to unveil the intrinsic mechanisms of how inter-
connected neurons convey information and encode animal state and behavior. This under-
standing usually requires to go from the in vivo imaging of neuronal populations in behaving
animals to the extraction of the most relevant neuronal substrates. This is a multistep com-
plex process that requires the continuous development or improvement of image analysis
and signal processing techniques. The main contributions of this thesis, described hereafter,
are dedicated to the development of a robust statistical pipeline to decipher the neural code
of model animals based on the in vivo imaging of their neuronal activity.
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a)

b)

c)

Figure III.17: Behavior prediction scheme adapted from [214] and E. Martin et al
(not published). a) The behavior is recorded through the interdistance variation between
control points and classify to fit a behavioral model. b) The behavioral model is defined by
3 states : elongation, contraction, and rest. Any kind of classifier could be used to make the
distinguish between the states. For Hydra, a naive hard-threshold is applied on the distance
between control points. c) A predictive algorithm is implemented to predict the behavior.
For Hydra, a LSTM is used. The provided input is the average pixel intensity of parts of the
image. Variations of the input parts are performed to estimate the level of predictability of
the pixel intensity of the different parts of the animal. The idea is to unveil if a specific part
is involved in a specific behavior prediction.



Chapter IV

Publications

1 Extracting neuronal ensembles in calcium imaging

i Pipeline reminder

We remind the reader that the contributions are structured as follows around the different
steps of sequential processing pipeline (see Figure I.1):

1) Step 2 - Inferring spikes from fluorescence traces: The first contribution is the
benchmarking of the most promising state-of-the-art spike inference techniques on a calcium
fluorescent simulator to estimate the most efficient method on data whose properties match
Hydra vulgaris’ firing statistics and non-linearities. The proposed versatile simulator embeds
non-linear dynamics, non-homogeneous Poisson firing statistics with several firing regimes.
The simulator aims to assess the robustness and efficiency of the methods applied to the
Hydra vulgaris case, and to point out potential limitations.

2) Step 2 & 3 - Inferring spikes from fluorescence traces & The estimation of
a network topology: The second contribution is the development of a statistical tool to
infer neuron-to-neuron statistical coupling in order to extract the network topology while
being robust to false positives. Its use as a functional connectivity method facilitates spike
inference by filtering out neuron activation artifacts.

3) Step 2 - Inferring spikes from fluorescence traces: The third contribution of
this work is the application of spatial statistics framework to filter out spike artifacts in the
presence of a decorrelated noise.

4) Directly from step 2 to step 4 - Neuronal ensemble detection: The fourth contri-
bution aims to extend existing tools for estimating functional neuronal ensembles by using
a Bayesian Inference framework to analyze emergent synchronization properties at network
scale from the activation of individual cells. This framework uses synchronicity as a biolog-
ical interpretable neuronal ensemble definition handling overlapping and embeds the point
process statistical coupling as an evaluation of assemblies relevance in response to stim-
ulations. The spatial statistics framework is adapted to measure the correlation between
stimulations and neuronal ensemble activity.

47
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ii Difficulties of going from single cell activity to neuronal ensemble
estimation

In this thesis, we focus on the four first steps of the decoding process. We detail hereafter the
main technical issues encountered in these steps and the statistical tools that we developed
to improve the overall accuracy and robustness of the process.

a Tracking individual neurons and extracting calcium fluorescence

Tracking errors
Tracking individual neurons in free-behaving animals are usually two-steps processes

with, first, a detection of the neurons on successive frames, followed by the association of
detections in coherent tracks using for example, a Kalman filter. This filter corresponds to a
model of displacements of the regions of interest based on the estimation of their respective
speed given previous frames and anticipating their following positions. When, an animal’s
motion occurs too fastly regarding the time resolution, the constant speed hypothesis of the
model is violated and two different somas can be associated wrongly with the same single
track providing a concatenation of two non-relevant dynamics.

This problem is particularly important in Hydra vulgaris that can deform very rapidly
and importantly during contraction phases (see Figures III.11, III.12), providing the con-
catenation of inconsistent dynamics (see Figure V.2).

Out-of-focus motion and cross-talk contamination
Animal’s fast motions and deformations can blur the image recording leading to spurious

intensity variations. The animal’s z-axis motions can equally generate artifact intensity
variation that needs to be estimated and corrected.

The high density of somas on images can lead to overlapping and a mixing-up of their
activity in a phenomenon called ”cross-talks”. This phenomenon is observed at mice visual
cortex and equally in Hydra vulgaris that gathers during contraction phases lots of somas in a
cluttered environment [135] providing once again a mixing-up between inconsistent dynamics
(see Figure V.3). This contamination is even more important that contraction of the animal
increases the global fluorescence intensity in its whole body by diffusive effect generating
common artifact dynamics in all somas [2] (see Figure V.4). Activity contamination can also
be caused by neighboring agents. Indeed, supporting cells allow the ion channels opening
in living animals or the neural information to spread in the neural networks. Thus, the
recorded calcium response can be partly contaminated by other biological local agents than
somas. Especially, glial cells or nematocytes can be spots where intensity calcium response
is high or time-varying and if recorded can contaminate the soma’s fluorescence trace and
mislead in the extracted dynamics.

b Inferring spikes from fluorescence traces

Non-linear baseline fluorescence
Neuropil contamination, uncorrected motion and deformation of the animal, or superim-

position of neurons spatially close on the frames pollute the neuron spiking activity with false
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action potentials. Even if some preprocessing steps can be implemented such as detrend-
ing or smoothing, false positive artifacts remain and advanced motion correction, source
demixing or global contamination correction are required.

Concretely, spike inference techniques are generally based on the deconvolution of flat
stationary signals with spikes distributed according to an Homogeneous Poisson distribution
whose calcium dynamics is assumed to be constant. Non-corrected artifacts generate time-
varying baseline at different frequencies. The underlying baseline induces non-flat signals
whose non-corrected dynamics are assumed to represent meaningful information by the
spike inference algorithms. Each time a dynamic occurs, a bunch of spikes is located at that
specific moment. The main risk is to match underlying dynamics, corresponding to noise or
motion, instead of correlating pairwise neuronal activities.

Non-homogeneous firing patterns
Being robust to time delays is equally at stake in spike trains. Since spike inference

techniques generally perform the spike estimation using a fixed estimated deconvolution
kernel, often represented by auto-regressive coefficients [146] [174], the deconvolved sequence
can demonstrate artificial lags. The problem is exacerbated in Hydra because the kernel
dynamics are expected to be neuron firing regime dependent. A kernel that would not fit
properly the time varying calcium dynamics could introduce time delays leading to bias. It
is worth noticing that the limitation of non-adaptive deconvolution kernel was highlighted in
2020 by our article [220]. The use of Markov-Switching Autoregressive Model (MS-AR) [221]
to account for the dynamic changes in different firing regimes was a track to consider.
No long afterwards, some efforts of Bayesian Inference techniques have been carried out
to handle time-varying baseline and dynamic changes of kernel in the deconvolution [155]
providing insights that our conclusions were relevant.

c Estimating the functional connectivity between individual neurons

Choosing a functional connectivity metric
It is important to bear in mind that most functional connectivity analyses in Neuro-

sciences focus on large scale ensemble-level neuronal signals often assumed to be stationary
Gaussian [222]. It is still unclear how well each metric can be adapted to address single-cell
level descriptions, such as population calcium imaging data. However, other communities
exist and handle specific problem about spiking pattern through a mathematical field called
Point process theory with some promising but non-straightforward tools like Granger Causal-
ity (see Appendix C), Generalized Linear Model (GLM) or Renewable and Non-Rewable
Hawkes process... This field addresses the statistical coupling of point process through the
works of Wilson Truccolo, Emery Brown, Liam Paninski or Jonathan Pillow to only cite
few of the main contributors [223] [224] [225] [226] [227] [20] [62] [228] [229]. The direct
application of their work seems, to our knowledge, limited by the experimentalists since
the mathematical theories are generally quite advanced, hard to implement and non-related
directly to biological plausible problems. For this reason, their work is just mentioned here
but is not under the scope of this manuscript.

It is, however, worth to noting that, existing toolboxes implement the main functional
connectivity metrics: SIFT toolbox [230], MVGC toolbox [231], Hermes toolbox [232],
TRENTTOOL toolbox [233], Chronux toolbox [234].
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How to choose efficiently a functional connectivity metric is still elusive in a context where
data are not stationary Gaussian time-series signals, with Non-Homogeneous Poisson spike
distribution and non-flat fluorescence baseline. All these points would need to be considered
to correctly identify the information flow but are usually neglected and user-defined without
further explanations.

Graph Theory and Spectral methods require thresholding
Once the functional connectivity metric has been chosen, it is applied on each pair

of nodes to generate the connectivity matrix for community detection via graph theory.
According to the metric chosen different natures of information are expected. If the metric
handles causality, positive and negative coefficients in the matrix are possible. If a simple
correlation is applied, coefficients are expected to be positive. It can provide different kind
of matrices. We previously mentioned that topology structures are expected to be small-
world with topological features (see Appendix A), characterized by specific node degree,
clustering coefficient, average path length or the existence of hubs, bridges, rich-clubs or
cliques. A distance is equally required for spectral techniques based on the definition of
an euclidean space and sub-space whose scalar product definition allows the comparison
between neuronal populations.

Generally, the connectivity matrix is binarized to highlight the topological structure and
neuronal population thresholded using a statistical z-score test so as to run downstream
a Neuron Clustering Algorithm. The thresholding step deletes edges too close to noise
corresponding to spurious connections. Different techniques can be applied to obtain this
Thresholded Connectivity Matrix.

• A hard threshold : a statistical threshold is applied using a certain number of standard
deviations relatively to the mean. Only adapted if the number of connections follow a
gaussian distribution. [235] [236] [237] [238]

• Shuffling techniques to generate surrogate data : it shuffles the data to generate time
independent spike patterns to create a H0 null hypothesis and remove all links too
close to a random situation. [239] [240] [241]

The average link path is shorter between high functional connected nodes. The user-
defined threshold modulates the structure of the functional connectivity matrix. The lower
the binarization threshold, the higher the number of connections and the more homogeneous
the link distribution. The higher the threshold, the shorter the link path and more visible
the patterned networks. That suggests according to [242] ”the importance (and the depen-
dence) of the threshold selection in this kind of measures” since it directly alterates the
representation of the topology known to be fundamental for community extraction. Thus,
the exact influence of the choice of the user-defined threshold combined with a specific
functional connectivity metric and their application regarding a specific neuron clustering
algorithm has been little studied and provides a huge diversity of results in the estimation
neuronal ensembles.
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d Extracting neuronal ensembles

A huge diversity of methods
An exhaustive listing of all community detection methods that could be applied on neural

network is impossible and going into the exact details of each method is out of the scope
of this thesis. The most used or promising techniques applied on in vivo neural networks
are provided in Appendix B. A figure is provided to summarize a method classification
based on our understanding of the literature and to highlight methods, from the community
detection, that could be applied on in vivo neural networks. First and foremost, it is worth
noticing that the classification taxonomy largely varies according to the reviews and rarely
forms a disjoint partition of methods.

The lack of ground-truth
Benchmarking the community detection techniques is extremely hard since each method

operates using its own vision and interpretation of how a neuronal ensemble emerges. Bench-
marking methods on synthetic data are often biased since better results are reached for
estimation techniques that fit the way data have been generated. However, real world ex-
perimental data often provide a higher level of complexity than simulated ones making the
technique efficiency hard to estimate without ground-truth, and results obtained on syn-
thetic data hardly generalizable.

Mölter and Goodhill [3] provided the most promising benchmarking study of community
detection techniques in the context of in vivo neural network activity firstly on surrogate
datasets of calcium imaging data and then on real experimental data of zebrafish optic
tectum responses to simple visual stimuli. They benchmarked spectral techniques ICA [199]
[200], PCA (Promax [201], similarity analysis (CORE [106]), graph theory (SGC [128]) and
frequent item set mining (FIM-X) for different simulated parameters and by comparing
the results with Reference Assembly Configuration (RAC) on real data using BestMatch
Index [243].

Finally, SGC was, according to the authors, the best method to extract the neural en-
sembles since it provides a number of communities more relevant with the expected number
and a better BestMatch score compared to RAC. RAC are assemblies whose fluorescence
response after each stimulation is statistically positively significative. The use of such en-
sembles to account for neuronal ensemble estimation efficiency is a user-defined choice that
reflects the lack of ground-truth for method accuracy evaluation.

The main limitation of the benchmarking is the inability to correlate the activity of the
inferred neuronal ensembles with stimulations. Providing assemblies in response to evoked
visual stimulations without measuring a coupling to describe how well these ensembles match
and explain the stimulations is a lack. The chosen evaluation metric is equally not a standard
metric like NMI or Omega Index usually used in the community detection field. Finally, the
main limitation of spectral methods is the overlapping case, which is not, to our knowledge,
benchmarked on the simulator or further discussed on real dataset, even if overlapping in
visual cortex of model animals has been demonstrated.

Some theories have also been developed claiming that it is the combination of results
of several clustering methods that allows an efficient and robust detection of neural ensem-
bles. Techniques to merge and average the clustering results have been developed known as
consensus clustering [194].
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Figure IV.1: Benchmarking of ensemble detection methods applied on in vivo
neural network of zebrafish larvae from [3]

What about biological interpretability ?
Many methods do not account for the specificity of the underlying biological problems.

It means that the results are equally hardly explainable since they do not provide inter-
pretable estimates supported by statistical evidence. Implementing a biological-model based
technique is at stake to fulfill this task allowing the technique to be largely adopted by a
community of neuro-experimentalists.

In the next following sections, we present our four main contributions that partially
tackle previous issues. These contributions pave the way to a robust and accurate pipeline
to go from calcium imaging to the characterization of neuronal ensembles in vivo and their
functional implication.
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2 A versatile simulator for spike inference technique that
embeds Hydra vulgaris neural activity properties

Calcium fluorescence imaging enables real-time activity monitoring of single neurons in liv-
ing animals. A critical inverse problem resides in the precise inference of spike locations
from noisy fluorescence traces, especially in the presence of burst spiking and non-linear
fluorescence intensity. Several spike extraction algorithms have been proposed in the recent
years, but a robust and objective evaluation of their performance still remains elusive due
to the unsupervised nature of the problem. Here we propose a biologically-inspired math-
ematical framework to reproduce synthetic fluorescence traces from a time-series data of
spike-trains. The idea is to create a versatile platform to objectively test the state-of-the art
spike inference methodologies over a large range of experimental parameters. Our solution
appears as a complementary but more exhaustive approach to determine the robustness
of existing solutions to different nature of signals, imaging artefacts, sensitivity to hyper-
parameters and pre-processing steps. We benchmark state-of-the-art algorithms with the
proposed simulation platform, and validate the results on an experimental dataset of the
Hydra Vulgaris. We hypothesize that, in contrast to the common practice of qualitative
evaluation, quantitative measure of algorithm robustness is essential in understanding the
suitability of a spike inference algorithm to be used in an automated computational pipeline
to decipher the neural code.
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1 Introduction

To understand the emergent computational properties of connected single neurons, it is necessary to monitor
the coordinated activity of many single cells with high temporal resolution [1]. Fluorescence calcium imaging
[2] remains the gold-standard for such studies. Thanks to the recent advances in calcium probe engineering
and optical microscopy, thousands of interconnected neurons can now be imaged in living animals with
high temporal resolution [3]. The success of reverse engineering the brain now hinges upon effective signal
processing techniques to extract critical information from imaging datasets.
In addition to the automatic tracking of single neuron fluorescence [4], another critical issue in the processing
of calcium imaging data is that of analysing neuronal spike trains from the videos of firing neurons (see Fig. 1).
The inverse problem of reconstructing the neuronal spikes from the calcium imaging data is inherently
unsupervised. Given a temporal sequence of calcium uptake of the firing neurons, it is difficult, even for a
neuroscientist, to reconstruct a precise representation of the spiking pattern. State-of-the-art deconvolution
methodologies exhibit significant variability in extracting the spike patterns from same videos [5] [6] [7]. Due
to the absence of ground-truth annotation in most experimental data, qualitative evaluation appears to be
a complementary norm to measure the efficacy of deconvolution algorithms [6]. However, supplemented by
quantitative experimental evaluations, such qualitative assessments are unreliable due to inherent subjective
bias. In the absence of gold standards, the proper mechanism to study the behaviour of deconvolution
algorithms is via rigorous testing on realistic synthetic data.

In this paper we present a robust generative model to realize time-series distributions of fluorescent cal-
cium traces from a given neuronal spike-train. Existing fluorescent trace simulators [5, 9] do not always
account for the intricate features which exist in real calcium imaging datasets. In contrast, our proposed
methodology enables a realistic simulation by integrating four critical design factors: (a) a model for pho-
tobleaching of calcium indicators, (b) imaging noise model, (c) a tunable non-linear baseline dynamics, and
finally, (d) inhomogeneous firing patterns, with neurons that alternate between low basal and burst firing,
which integrate refractory time periods due to the depletion of the calcium indicator reservoirs.
Existing deconvolution techniques may be categorized in three major groups : 1) deterministic methods that
compute the instantaneous spiking rates together with the estimated calcium dynamic of the fluorescent
indicator [10]; 2) probabilistic approaches that compute the convolved time series of spikes that maximises
the likelihood of observed data [5]; and 3) machine learning approaches [6]. We study the robustness of four
representative methodologies and evaluate to which extent they can be adapted on heterogeneous simulated
signals with strong underlying dynamic. Finally, we show that the results provided by the simulator, and
those obtained within experimental dataset from Hydra Vulgaris are correlated.

∗samuel.kubler@pasteur.fr
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Figure 1: Single Fluorescence trace of a neuron from Hydra Vulgaris. a) Calcium uptake of Hydra neurons

displayed using Icy software [8]. b) Temporal response of one Rythmic Potential (RP) neuron with the spike pattern

extracted manually.
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Figure 2: Main processing steps of calcium trace simulator

2 Method

Our simulator can be decomposed into four main parts, shown in Fig. 2 : 1) the modeling of the spike impulse
train using the Firing Instantaneous Rate (FIR) function; 2) the modeling of the calcium trace from dirac
impulse signal using a kernel learned from experimental dataset; 3) the modeling of the fluorescence trace
from the calcium by handling the photobleaching effect through a Poisson-Gaussian noise; 4) an additive
non-linear baseline integration. Each step is detailed hereafter.
To model the firing pattern s(t) of a single neuron, we implement a Poisson process with a FIR describing
the probability at each time step that the neuron fires. The FIR is modeled as a piece-wise step function
whose high constant steps correspond to burst events, and low steps to the background spontaneous firing
activity.

FIR(x) =
n∑

i=1

γiχ[ti,ti+di](x). (1)

Here χ is an indicator function, equals to 1 when x ∈ [ti, ti + di] and 0 otherwise. The firing-rate γi
follows two regimes (bursting event or not), and is modeled with a truncated Gaussian law to keep frequencies
positive. The number of steps n is linked to the burst-rate parameter. The burst duration di follows a Poisson
law, and the spike burst locations ti are drawn uniformly on the available time interval. The spike impulse
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signal s(t) is then derived from the FIR using an adaptation of inhomogeneous Poisson process simulation
by thinning [11]. An exponential course of return to the equilibrium is used after each firing (the observed
collapses of the FIR shown in Fig. 2) to model calcium reservoir depletion.

c(t) = s(t) ∗ k(t) with k(t) =
Ae

−( t
τD

)β

1− e
− t−µ

τR

(2)

Here τD is the time constant of the calcium concentration return to steady-state, β > 0 is a power law, µ
is the median time of calcium increase after the electrical spike. τR is the corresponding rising time constant.
In our simulations, we calibrate the convolution kernel with data extracted from Hydra calcium traces.
In the third step, we model the photo-bleaching of calcium indicators with a mono-exponential decrease [12]

λ(t) = c(t)e
−t
τ , with τ being the photo-bleaching time constant. To account for the Poisson shot noise of

microscopes, we further model the recorded signal as a Poisson process such that P (t) ∼ Poisson(αλ(t)),
where α is the gain of the microscope [13].
To obtain a realistic calcium trace, we add a Gaussian noise G ∼ N (m,σ2) with constant mean m and
standard deviation σ to the recorded Poisson signal (mixed Poisson-Gaussian representation) and we also
add a periodic deterministic baseline B(t) = Asin(2πft) where A and f are tunable amplitude and frequency
respectively. Finally, the fluorescence calcium trace y(t) is derived from:

y(t) = P (t) +G+B(t) (3)

The photobleaching time constant and additive Gaussian noise parameters are fitted to experimental
datasets using least square method. In our simulations, the SNR of generated calcium traces is modulated
using the gain α of the microscope detector [13], an increased gain leading to higher SNR.

3 Results

3.1 Benchmarking Deconvolution Algorithms

Using synthetic fluorescence traces, we benchmark four despiking methods (two of them are issued from
the CaImAn library [9]): 1) Deterministic OASIS [14]; 2) Deterministic CDfoopsi (Constrained Foopsi)
[10]; 3) Probabilistic MLspike [5] and 4) a Naive method that consists of smoothing the signal with a
wavelet thresholding, before computing the first derivative of the signal and estimates the spikes locations
with derivatives greater that one standard deviation of the derivative over the entire calcium trace. After
having benchmarked the methods using different pre-processings proposed in the literature such as low-
frequency filtering and normalization [15] or polynomial detrending [16], we conclude that the efficiency of
a pre-processing method depends on each deconvolution algorithm, and we choose to perform a polynomial
detrending and data normalization for OASIS, and no preprocessing for CDfoopsi and Mlspike.

3.2 Comparing the accuracy and robustness of methods
Deterministic methods (OASIS and CDfoopsi) do not handle non-linear baseline. Therefore, high baseline
amplitude A will lead to false spike burst detections. To tackle this technical issue, we filtered the in-
ferred spikes with respect to their estimated amplitude using a user-defined Decisional Amplitude Threshold
(DAT). The DAT is the only parameter we optimize in tested deterministic methods since the others have
been exhaustively analysed in previous study [7]. For Naive thresholding method, the only parameter is the
threshold (typically a multiplicative factor of the derivative standard deviation). The probabilistic method
MLspike that concomitantly estimate the spike locations and the underlying fluorescence baseline presents
four main hyper-parameters: the relative amplitude a of the spikes, the decay time constant τ of the cal-
cium fluorescence trace after a spike, the a priori level of Gaussian noise σ and the drift d of the estimated
stochastic baseline. To compare the performances of the different deconvolution methods over a large range
of simulation parameters, we compute for each method the rate of missing and false positive spike detections
and summarize detector performances using the Error Rate (ER) indicator proposed in [5].
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We first evaluate the accuracy of each method by varying the different parameters of our synthetic simulator
(see Fig. 3) : the gain α that modulates the SNR, the rate of burst events, the spiking rate inside bursts
and the baseline amplitude A and frequency f (n = 10 simulations per set of simulation parameters). The
method hyperparameters are calibrated using a grid-search which minimizes the error rate with the available
ground-truth. Each method calibration is performed once for a reference set of simulator parameters: Gain
of the detector α = 1, Firerate In Burst fIB = 0.75 Hz, Firerate Out of Burst fOB = 0.15 Hz (firerates
correspond to γi in/out burst regime respectively see Eq. 1), Burstrate B = 0.02 Hz, Baseline Amplitude
ALF = 50, Baseline frequency fLF = 2e−3 Hz (see Eq. 3). These values have been chosen to make the
simulator relevant with the experimental Hydra Vulgaris dataset.
We find that, after hyperparameter calibration, the probabilistic MLspike is overall the most accurate method
for each set of parameters. However, we observe that MLSpike performance rapidly degrades as simulation
parameters change, especially for the gain α (SNR) and baseline amplitude. The other methods are overall
much more robust to parameter variations while being less accurate for the specific set of calibration param-
eters. We highlight that the naive derivative thresholding produces good results for isolated spikes but can
not properly handle bursts. CDfoopsi method [10] seems to provide the best compromise between accuracy
and robustness to parameter variations.

3.3 Correlating simulation results with Hydra experimental dataset

The trade-off between accuracy and robustness of a despiking method is important for experimental in
vivo applications as different neurons can present different firing patterns (isolated or burst) and SNR for
example. We therefore compare despiking methods using experimental dataset composed by ∼ 250 single
neurons imaged over 2000 frames at 10 Hz inside freely-behaving animal Hydra [17]. This dataset was
obtained thanks to the robust monitoring of single neuron activity with tracking algorithm EMC2 [4].
Method parameters (DAT for deterministic methods and hyper-parameters for MLspike) were calibrated by
manually labelling spike locations on real fluorescence traces, and by minimizing the distance between the
inferred spikes and the manual annotation. Hydra calcium traces are heterogeneous in terms of baseline, noise
and spiking dynamics, with neurons spiking quite sparsely and other in bursts (Fig. 4, [17]). As observed with
previous simulations, the second deterministic method [10] is the most robust to calcium trace heterogeneity
and presents the best average Error Rate compared to manual labelling (OASIS: ERavg = 0.40, CDfoopsi :
ERavg = 0.18, Naive : ERavg = 0.28, MLspike : ERavg = 0.42) The average poor performance of MLspike
is likely due to its poor robustness to changes in experimental conditions (see MLspike in Fig. 5).

The lack of ground truth for validating the deconvolution methods on experimental dataset imposes to
analyse the consistency of the inferred spike locations. This evaluation hinges on biological assumption of
existing neuronal ensembles (e.g. RP and CB neural networks in Hydra [17]) that are supposed to provide
correlated spiking patterns. Also, a sufficient and balanced average number of spikes per trace should reflect
the robustness of each method to heterogeneous baseline variation and noise level.
In this regard, the spike distributions over the dataset are summarized in the raster-plots (see Fig. 5-a). We
also calculate the average number of spikes per neurons (OASIS : 12.61 ± 4.43, CDfoopsi : 22.62 ± 14.70,
Naive : 19.22±4.47, MLspike : 17.51±26.10) and the neuron pair-wise correlation matrices using a Jaccard

distance relaxed by a time tolerance (see Fig. 5-b). dJ(ni∗, nj∗) = s(ni∗)∩(nj∗)
s(ni∗)∪(nj∗) =

TP
TP+FP+FN where s(n∗i) is

the binarized impulse spike signal inferred for neuron n∗i.
The heterogeneity in spike distribution varies between the methods. MLSpike computes many false spike

detections (horizontal lines in raster-plot combined with a high standard deviation of the average number of
spikes per sequence), while the naive thresholding method misses more spikes, but provides more balanced
impulse spike signals in terms of average number of spikes per fluorescence trace. We observe that the highest
global average Jaccard distance is obtained for the naive thresholding and CDfoopsi methods (see Fig. 5-b).
Finally, we conclude that CDfoopsi appears as the best trade-off solution since it provides the best recon-
struction results compared to our manual labelling, a sufficient and balanced number of spikes per trace and
one of the highest global Jaccard correlation. The results obtained on experimental Hydra Vulgaris dataset
are congruent with the ones derived from the proposed simulator which enforces the conclusion drawn by [7]
about the versatility of CDfoopsi, especially within dataset with heterogenous baselines.
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Figure 3: Accuracy of deconvolution methods over simulation parameters. (a) Variation of the detector

gain α (i.e. level of noise). (b) Variation of the firing rate in burst. (c) Variation of the baseline amplitude.

4 Conclusion

In this paper, we provided a mathematical framework for a fluorescence trace simulator to objectively com-
pare and validate spike deconvolution techniques. State-of-the-art deconvolution methods were benchmarked
on synthetic and experimental datasets. Such comparative analysis is necessary to account for complex un-
derlying biological processes and the lack of ground-truth in neurosciences. We even argue that a quantitative
benchmarking of methods on synthetic data without a qualitative and statistical analysis on experimental
dataset make them unsuitable. Future efforts will focus on improving our simulator by modeling neuron
ensemble effects, and go further in an automatic pipeline to break the neural code.
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3 SODA - A spatial statistic framework for neuron coupling
estimation and behavior prediction

The observation of physical phenomena often goes through the recording of discrete time
series of events, that can be represented with marked point processes. The robust estimation
of the correlation between two point processes can, therefore, unveil physical mechanisms
underlying the observed phenomena. However, the robust estimation of correlation between
two, or more, point-processes is hindered by the signal noise (leading to false and missing
point detections), the important density of points, and possible time-shift between coupled
points. We propose a statistical framework that uses hypothesis testing to estimate coupling
between time point-processes. Using simulations, we show that our framework accurately
estimates the coupling between two time point-processes even for noisy signal (with false
point detections), for high density of points and in the presence of a time shift between
coupled points. By applying our statistical framework to the recordings of neuron population
activity in mouse visual cortex, we measure the functional coupling between individual
neurons, and cluster neurons into functional ensembles.
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1 Introduction

In many fields, the observation of physical events can only be done through discrete time series of events.
This is the case, for example, of volcanic eruptions [1] and earthquakes [2] in geology, molecules arrival and
departures form specific processes sites in cellular biology (e.g. endocytosis and pathogen entry [3], and
neuronal activity through the firing of action potentials from individual neurons [4] which the study case
of the experimental part of our article. The statistical characterization of relations (coupling) between two
(or more) time series of events can unveil important mechanisms that underly the observed processes. For
example, the observation of the sequential arrival of molecules at endocytic sites with fluorescence microscopy
helped to unravel the mechanisms of cell entry [3]. Another example is given by the observation of the firing of
individual neurons within a population that provides information on neuronal communication and coding [5].
Observed time series of events can often be modeled as marked point processes [6], with the point being
the time location of an event and the mark its attributes (e.g. intensity, color, duration...). Therefore, the
characterization of the correlation between different time series of events reduces to the estimation of the
coupling between time point-processes. In the case of neuronal activity studies, the two main methods used
to estimate the coupling between point-processes are either based on the estimation of underlying firing rates
(i.e. the intensity of associated point-processes) [7] and the analysis of the correlation between estimated
intensities, or coupling estimation is directly performed with colocalization analysis between discrete time
point-processes [4]. While the methods using the estimation of firing rates are more robust to the missing
and false detections of single point events, they depend on the robust estimation of firing rates and are not
well-suited for detecting the synchronization of single point events. On the other hand, the colocalization
methods are sensitive to false and missed point detections. Moreover, high point density can lead to fortuitous
point colocalization and overestimation of processes’ coupling, whereas time shifts between coupled points
can lead to coupling underestimation.
To tackle these technical issues in colocalization analysis, we developed a statistical method to robustly
evaluate the coupling between time point-processes, even in the presence of a time-shift between individual
coupled points. Our method uses the multi-distance Ripley’s K function [8] to measure the time-shifted
accumulation of points from one time point-process relatively to the other. It corresponds to an adaptation
of state-of-the-art statistics of point-processes to 1-dimensional temporal case of spiking events. This method
has been developed to account for false inferred spike detections and potential time-shifts that results from
spike deconvolution methods in calcium imaging [9]. As our method is based on statistical characterization
of the Ripley’s K function and hypothesis testing, it is robust to noise (false point detections) and remains
accurate even for high point density. We assess the robustness of our method with synthetic simulations,
and show that it outperforms state-of-the-art colocalization metrics. Finally, we use our method to compute
the functional relations within a population of neurons in the visual cortex of mice, from their individual
spiking activity.
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2 Method

2.1 Measuring the coupling between time point-processes with the Ripley’s K
function

Ripley’s K function introduced by Brian Ripley in the 70’s [8] remains the gold-standard to measure the
coupling between spatial point processes.
The idea of our temporal adaptation is to measure the coupling between two time point-processes s1 =
[t1, . . . , tn1 ] and s2 = [t′1, ..., t

′
n2
] by creating a regular mesh grid whose topology is dependent on s1 point

locations in time and by comparing the effective distribution of s2 points falling in each mesh to the distribu-
tion expected under a random distribution assumption through a statistical hypothesis rejection test. Thus,
the Ripley’s vector GN = [G0, . . . , Gi, . . . GN−1] embeds a 1-dimensional mathematical mesh grid implemen-
tation composed by an ensemble of N fixed size rings of radius [ri, ri+1] centered around s1 points. Thus,
Ripley’s function just corresponds to a statistical effective counter of s2 points that fall into rings around s1
objects with a boundary corrective term w which corrects for the potential underestimation of neighbors to
points that are close to the starting- and ending-points of the time study period. This correction is inspired
by the 2-dimensional corrective term used by Ripley in [8].

Gi =
|Ω|
n1n2

∑

tk∈s1

∑

t′l∈s2

1{ri≤|tk−t′l|≤ri+1}w(tk, t
′
l) (1)

with w(tk, t
′
l) = 1 + 1{|tk−t′l|>|tk−δΩ(tk)|} (2)

where |Ω| is the length of the time period over which the two time point-processes are observed, 1 is an
indicator function such that 1{A} = 1 if A is True, 0 otherwise. δΩ is the coordinate of the closest boundary
of the study domain ie δΩ(tk) = 0 if tk ≤ |Ω|/2,Ω otherwise.
To detect a significant coupling between time series (point-processes) s1 and s2, we design an hypothesis
testing approach. We compare how far is the effective counter in rings represented by the K-Ripley function
from the expected number of points expected under a null hypothesis H0 of Complete Spatial Randomness
where points are located according to an homogeneous Poisson distribution for s2 point-process. Analytical
mean and standard deviation parameters are derived by calculating intersection of 1-dimensional volumes
corresponding to the overlapping of rings. Under H0, Ripley’s K function tends to a normal distribution [10]
in accordance with the central limit theorem. Thus, the distribution ofG = [Gi]i=0..N−1 is fully characterized
by its mean MN = [E{Gi} = µi]i=0..N−1 and its standard deviation ΣN = [E{G2

i }−µ2
i = σ2

i ]i=0..N−1. Using
the CSR hypothesis for s2 time points and the boundary correction (Eq. 2), we compute that

µi =
1

n1

∑

tk∈s1

∫

y∈Ω

1{ri≤|tk−y|≤ri+1}

(
1 + 1{|tk−y|>|tk−δΩ|}

)
dy (3)

and σ2
i =

|Ω|
n2
1n2

∑

tk∈s1

(
I21(tk, ri, ri+1)

+
∑

tj∈s1,tj ̸=tk

I22(tk, tj , ri, ri+1)

)
(4)

with I21(tk, ri, ri+1) =
−µ2

i

|Ω| +

∫

y∈Ω

1{ri≤|tk−y|≤ri+1}
(
1 + 3× 1{|tk−y|>|tk−δΩ|}

)
dy

I22(tk, tl, ri, ri+1) ≈ − µi

|Ω| + 1{|tk−δΩ|>ri+1}1{|tl−δΩ|>ri+1}

×
∫

y∈Ω

1{ri≤|tk−y|≤ri+1}1{ri≤|tl−y|≤ri+1}dy

The size and number of the rings provide a maximum duration beyond which colocalization can no longer
be detected and a temporal resolution to distinguish two close interactions.
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Figure 1: Statistical analysis of time point-processes A- Stochastic time-point processes (e.g. rasterplot
of individual neurons’ spiking). B- Multi-time-shift analysis of the coupling between two time point-processes.
Depending on the accumulation of points from one point-process around the other for different time-shifts, a coupling
probability is assigned to each pair of time points.

2.2 Statistical test of time point-processes’ coupling

To build a statistical test of time point-processes’ coupling, we introduce the reduced statistics

G̃ = A−1G−MN

ΣN
(5)

with A a correction matrix for ring’s overlapping [11]. Under the null hypothesis of s2 randomness, G̃
is a standard normal vector (i.e. each of its component G̃i ∼ N (0, 1). Therefore, a significantly high
value of a vector component G̃i would indicate an accumulation of coupled points around reference points
corresponding to a positive coupling (while a low value would indicate a depletion of s2 points corresponding
to a negative coupling).
Similarly to the statistical test introduced for spatial point-processes [11], we use the maximum component
of reduced Ripley vector G̃max = sup0≤i≤N−1G̃i to test if there is at least one ring [ri; ri+1] where s2 time
points accumulate significantly. To compute the p−value associated with the observed maximum component
G̃max, we compute that, ∀x > 0,

Pr{G̃max ≥ x} = 1− Pr{∀i ∈ [1..N − 1], G̃i < x}
= 1− (Pr{N (0, 1) < x})N = 1− cdfN (x),

where cdf(x) is the cumulative density function of the standard normal law. Finally we obtain the p− value

p-value = 1− cdfN (G̃max) (6)

2.3 Quantitative characterization of time point-processes’ coupling

To further characterize the putative coupling between two time point-processes, we determine the components
of Ripley’s reduced vector G̃ that are significantly high by using the universal threshold T (N) =

√
2 log(N)

[12], which is widely used in image processing to determine the significant component of a signal corrupted
with standard white noise. Thus, G̃i > T (N) indicates that there is a significant accumulation of s2 points
at a time shift comprised between ri and ri+1 from s1 points. This allows the detection of coupling between
two time point-processes at different distances and not only the detection of points co-occurence at the same
time. Hence, our framework can handle coupling estimation with time shifts and varying delays. Finally, we
convert the reduced Ripley vector components into a coupling probability between all the points (tk, tl) of
time point-processes s1 and s2

P (tk, tl) =

N−1∑

i=0

1{ri≤|tk−tl|<ri+1}
σiG̃i1{G̃i>T (N)}

Gi
(7)
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and extract a global coupling metric on the entire time series

GC(s1, s2) =
1

n1

∑

tk∈s1

1

nl

∑

tl∈s2
P (tk,tl )̸=0

P (tk, tl) (8)

where nl is the number of tl coupled points in s2, i.e. such that their coupling probability with tk in s1 is
strictly positive.

3 Results

3.1 Synthetic simulations

To validate our proposed statistical framework we use simulations where the coupling characteristics between
time point-processes are known, and we compare the results of our method to standard measures of signals’
correlation.

3.1.1 Robustness to variations of coupling level and time shift

Using simulations of time point-processes with varying coupling level and time shifts, we compare the accu-
racy of our statistical method with standard correlation metrics (see Appendix for details): 1) the Pearson
correlation coefficient, 2) F1 score and 3) the Cluster Core Index (C3I) [13]. To simulate coupled time
point-processes with effective coupling level pc, we first generate a reference homogeneous Poisson point-
process s1, with n ∼ 30 points over Ω, with length |Ω| = 3700. Then, a proportion pcn of point process
s2 are coupled to random s1 points with a time shift tshift ∼ N (µs, σs), the other n(1 − pc) points of s2
being randomly distributed (homogeneous Poisson process over Ω). Finally, to simulate a video acquisition
in biological imaging, we discretize the time period Ω = {Ωt}1≤t≤T , where each Ωt is a time step with length
∆t = 1.
For increasing simulated levels of coupling and several time shifts ((µs, σs) = (0, 0), (1, 0), (0, 0.3), and (1, 0.3),
we compare our statistical method with other standard methods (Figure 2). For µs = 0, i.e. when most
coupled time points are co-occurring in same time steps Ωt, all methods provide a correct estimation of
the effective coupling between time point-processes. We highlight that the non-linear, convex shape of C3I
curve is due to the used index of correlation [13]. However, when the mean time shift increases to µs = 1,
our statistical framework and C3I outperform classical correlation coefficients that are not well-equipped for
time-shifted coupled point-processes. We conclude that our framework can handle coupling with or without
time-shifts between coupled points and correctly estimates the simulated level of coupling.

3.1.2 Robustness to false and missed detections

A common issue when dealing with point-processes is the presence of false and missed detections in time
point series. These artefacts are due to the presence of noise in the acquired biological signal. For example,
when analyzing the spiking activity of individual neurons with calcium imaging, noise in calcium intensity
traces and imperfections in deconvolution algorithms used for extracting neuron discrete spikes (time points)
lead to false and missed detections (see section 3.2). In Figure 3, we measure the robustness of our method
to increased levels of false and missed detections. We plot the F1 score of the proportion of couples estimated
with our method. For any simulated level of false detections (0%, 10%, 30% and 50 %), our method estimates
an accurate number of points’ couples (> 80% of couples are recovered). Conversely, our method is much
more sensitive to missed detections. Indeed, an increased number of missed detections reduces the number
of observable couples. Typically, for a percentage 0 ≤ p ≤ 1 of missed points in processes s1 and s2, the
expected proportion of missed couples will be equal to 1 − p2. Finally, we also test the sensitivity of our
method to the intensity λ0 of underlying point-processes. Indeed, an increased intensity (i.e. overall number
of points over the observed period ∼ λ0|Ω|), can lead to an increased number of points’ couples due to chance.
We observe that, actually, our statistical method is very robust to an increased intensity of underlying point
processes from λ0 = 0.1 Hz to 1 Hz.
From previous simulations, we conclude that our method outperforms other standard correlation methods
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Figure 2: Robustness of correlation metrics to different coupling time shifts. Our statistical method
(red) is compared with standard correlation metrics (Pearson correlation coefficient (purple), F1 score (blue) and
C3I (green)) for increasing simulated coupling level and different time shifts (A- tshift ∼ N (µs = 0, σs = 0), B-
tshift ∼ N (0, 0.3), C- tshift ∼ N (1, 0), and D- tshift ∼ N (1, 0.3).)
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Figure 4: Analyzing functional coupling between individual neurons in mouse visual cortex. A-
Coupling index (eq. 8) between individual neurons computed from their extracted spiking activity (rasterplot). B-
Network representation and Louvain clustering of neuronal ensembles.

when there is a time-shift between the coupled points of the two time point-processes, i.e. when coupled
points are not necessarily co-occurring in the same time steps. Moreover, we assessed the robustness of our
method when false detections (i.e. random points) are added to the original coupled time point-processes,
as well as when the intensity of processes is overall increased. The only sensitive parameter is the level of
missing points that leads to an expected decreased of detected points’ couples.

3.2 Functional coupling between individual neurons

We apply our method to measure the functional coupling between individual neurons from their monitored
spiking activity. We use the online dataset from [14], corresponding to two-photon imaging of neuron ac-
tivity in mouse visual cortex (File M1d1AS in the dataset). From calcium fluorescence traces, the exact
spiking times can be obtained using spike inference techniques with variable accuracy and robustness [9].
A representative rasterplot of neuron spiking activity obtained with the constrained FOOPSI deconvolution
algorithm [15] is shown in Figure 1-A (|Ω| = 5 minutes, image acquisition rate = 12.3 Hz). We measure the
coupling between individual neurons using the coupling index (eq. 8) (Figure 4-A). Size of used Ripley’s
vector (eq. 2) is equal to N = 4, with identical time-shifts ri+1 − ri = 1 frame (∼ 80 ms) for i = 0..3.
Proportions of coupled spikes for the different time shifts are respectively equal to [65%, 13%, 12%, 10%],
meaning that 2/3 of the coupled spike times are co-occuring in the same time step Ωt, while 1/3 are time-
shifted by more than one frame. These latter, time-shifted coupled spikes are completely missed by standard
correlation techniques. Using the coupling information between individual neurons, we represent neurons’
couples with an undirected network graph, with edges corresponding to strictly positive coupling indexes
(Figure 4-B). We identify neuronal ensembles with a Louvain clustering algorithm [16] which maximizes
graph modularity, and obtain 3 neuronal ensembles (with n ≥ 10 neurons), in agreement with [14].
We conclude that our statistical framework allows the robust estimation of functional coupling between
individual neurons from the calcium imaging of their spiking activity. Contrary to standard correlation met-
rics, it allows the estimation of points’ coupling even in the presence of time-shifts, and does not require any
thresholding of correlation coefficients for the network representation and clustering of neuronal connectivity.
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4 Conclusion

We have proposed a statistical method for estimating the coupling between time point-processes that use
the multi-distance Ripley’s K function and hypothesis-testing framework. Our method is able to accurately
estimate the coupling between time-shifted correlated point processes, and is robust to high intensity of
point processes and false detections. The unique ability of our framework to compute the coupling between
time-shifted point-processes is used to quantify the functional coupling between individual neurons imaged
with fluorescent calcium indicators in mouse visual cortex [14].

5 Appendix

Pearson correlation coefficient For a discretized time period Ω = {Ωt}1≤t≤T , we introduce the indicator
functions δt(sk) = 1 {∃tl ∈ sk|tl ∈ Ωt} for each time-process {sk}k=1,2 that determines whether at least one
point of each time point-process falls into the time step Ωt. The Pearson correlation coefficient is then given
by

r(s1, s2) =

∑
1≤t≤T δt(s1)δt(s2)− T s̄1s̄2√∑

1≤t≤T δt(s1)− T s̄12
√∑

1≤t≤T δt(s2)− T s̄22
,

with s̄k = T−1
∑

1≤t≤T δt(sk).

F1 score
To compute the F1 score between time point-processes s1 and s2, we set a tolerance for point-matching
(tol = 2 frames) and define true positive (TP) as TP =

∑
1≤t≤T δt(s1)δt±tol(s2) with

δt±tol(s2) = 1
{
∃tl ∈ s2|tl ∈

⋃
t−tol≤j≤t+tol{Ωj}

}
. False positive (FP) and false negative (FN) are re-

spectively given by FP =
∑

1≤t≤T δt(s2)(1 − δt±tol(s1)) and FN =
∑

1≤t≤T δt(s1)(1 − δt±tol(s2)). Finally
F1 score is equal to

F1 =
2× TP

2× TP + (FP + FN)
.
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4 DAT - Automatic thresholding for spike estimation

Monitoring the activity of multiple neurons with high spatio-temporal precision in living an-
imals remains a gold standard in neuroscience. The recent advances of fluorescence imaging
of neurons’ spikes using genetically-encoded calcium indicators and calcium probe design
require significative improvements in the post-processing of calcium fluorescence traces to
accurately extract spikes. Analyzing neuronal spike trains from time-lapse calcium fluo-
rescence sequences appears as an inherently unsupervised inverse problem, compounded
by low signal-to-noise ratios, slow indicator conformation changes, and unpredictable base-
line fluctuations. State-of-the-art deconvolution methods exhibit variability and parameter
sensitivity, necessitating the manual calibration of spike inference techniques to make the
distinction between meaningful spikes conveying information and spikes resulting from arti-
fact or noise deconvolution. To address this issue, a statistical framework inspired from point
process theory is derived to calibrate the parameters of spike deconvolution techniques ro-
bustly and automatically. The proposed functional connectivity metric is validated through
simulations of convoluted spiking patterns and apply to in vivo two-photon calcium imaging
of single neurons’ activity in the mouse visual cortex. Such approach highlights a significant
coupling between individual neurons and allows for the identification of correlated neuronal
ensembles paving the way for more accurate and objective analyses of neuronal network
dynamics in living animals.
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=
2 (𝐶𝑖

𝑗(𝑇) + 𝑅𝑖(𝑇))

𝐶𝑖
𝑗(𝑇) + 𝑅𝑖(𝑇) + 𝑀𝑖(𝑇) + 𝐶𝑖

𝑗
+ 𝑅𝑖

𝐶𝑖
𝑗(𝑇) = 𝐶𝑖

𝑗
× 𝑓𝑖

𝑐(𝑇), 𝑅𝑖(𝑇) = 𝑅𝑖 × 𝑓𝑖
𝑟(𝑇)   and   𝑀𝑖(𝑇) = 𝑀𝑖 × 𝑔𝑖(𝑇)

𝑓𝑖
𝑐(𝑇), 𝑓𝑖

𝑟(𝑇) 𝑔𝑖(𝑇) 𝑇 𝑓𝑖
𝑐(0), = 𝑓𝑖

𝑟(0) = 𝑔𝑖(0) = 1

lim
𝑇→∞

𝑓𝑖
𝑐(𝑇), 𝑓𝑖

𝑟(𝑇), 𝑔𝑖(𝑇) = 0 .

𝑓𝑖
𝑐(𝑇) ≈ 𝑓𝑖

𝑟(𝑇) = 𝑓𝑖(𝑇),

∀𝑇 > 0, 𝑔𝑖(𝑇) < 𝑓𝑖(𝑇)

𝐹𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖
∗(𝑇)) ≈

2(𝐶𝑖
𝑗

+ 𝑅𝑖)𝑓𝑖(𝑇)

(𝐶𝑖
𝑗

+ 𝑅𝑖)(1 + 𝑓𝑖(𝑇)) + 𝑀𝑖𝑔𝑖(𝑇)

0 < 𝑇∗ < ∞ 𝑇∗ = argmax
𝑇

𝐹𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖
∗(𝑇)).

4. DAT - AUTOMATIC THRESHOLDING FOR SPIKE ESTIMATION 75



𝐹 − 𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖
∗(0)) ≈

2(𝐶𝑖
𝑗

+𝑅𝑖)

2(𝐶
𝑖
𝑗

+𝑅𝑖)+𝑀𝑖

≈ 0 𝑀𝑖 ≫ 𝐶𝑖
𝑗
, 𝑅𝑖 lim

𝑇→∞
𝐹 − 𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖

∗(𝑇)) = 0

𝑓𝑖(𝑇) 𝑔𝑖(𝑇)

𝑑𝐹𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖
∗(𝑇))

𝑑𝑇
=

2(𝐶𝑖
𝑗

+ 𝑅𝑖)[𝑀𝑖[𝑓𝑖
′𝑔𝑖 − 𝑓𝑖𝑔𝑖

′](𝑇) + (𝐶𝑖
𝑗

+ 𝑅𝑖)𝑓𝑖
′(𝑇)]

((𝐶𝑖
𝑗

+ 𝑅𝑖)(1 + 𝑓𝑖(𝑇)) + 𝑀𝑖𝑔𝑖(𝑇))
2

𝑇~0

0 𝑓𝑖
′(0) ≈ 0 > 𝑔𝑖

′(0))

𝑑𝐹𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖
∗(𝑇))

𝑑𝑇
(𝑇 = 0) ≈

2(𝐶𝑖
𝑗

+ 𝑅𝑖)

𝑀𝑖

[𝑓𝑖
′ − 𝑔𝑖

′](0) > 0

𝑇 > 0 𝑇∗ > 0

0 𝑇 → ∞

𝑇∗ = argmax
𝑇

𝐹𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖
∗(𝑇)) 

𝑑𝐹𝑠𝑐𝑜𝑟𝑒(𝑠𝑖,𝑠𝑖
∗(𝑇∗))

𝑑𝑇
= 0

𝑀𝑖[𝑓𝑖
′𝑔𝑖 − 𝑓𝑖𝑔𝑖

′](𝑇∗) + (𝐶𝑖
𝑗

+ 𝑅𝑖)𝑓𝑖
′(𝑇∗) = 0

𝑀𝑖 ≫ 𝐶𝑖
𝑗

+ 𝑅𝑖 𝑇∗ �̃�∗ �̃�∗

[𝑓𝑖
′𝑔𝑖 − 𝑓𝑖𝑔𝑖

′](�̃�∗) = 0

𝜌𝜖[𝑠𝑗
∗(𝑇𝑗), 𝑠𝑖

∗(𝑇𝑖)]

𝜌𝜖[𝑠𝑗
∗(𝑇𝑗), 𝑠𝑖

∗(𝑇𝑖)] =
𝜎𝑠𝑗

∗

𝛽
𝟏𝐾𝑠𝑗

∗(𝑠𝑖
∗)>0𝐾𝑠𝑗

∗,𝜖(𝑠𝑖
∗)[𝑇𝑖 , 𝑇𝑗] =

1

𝛽
𝟏𝐾𝑠𝑗

∗(𝑠𝑖
∗)[𝑇𝑖,𝑇𝑗]>0  (

𝜏𝑁𝑠𝑗
∗(𝑠𝑖

∗)[𝑇𝑖 , 𝑇𝑗]

𝑁𝑖(𝑇𝑖) + 𝜖
− 𝑚𝑠𝑗

∗),

𝑁𝑠𝑗
∗(𝑠𝑖

∗) 𝐶𝑖
𝑗
(𝑇𝑖) 𝑁𝑠𝑗

∗(𝑠𝑖
∗) = ℎ(𝑇𝑗)𝐶𝑖

𝑗
(𝑇𝑖) 𝑁𝑖(𝑇𝑖) =

[𝐶𝑖
𝑗

+ 𝑅𝑖 + 𝑀𝑖](𝑇𝑖)

𝜌𝜖[𝑠𝑗
∗(𝑇𝑗), 𝑠𝑖

∗(𝑇𝑖)] =
1

𝛽
𝟏𝐾𝑠𝑗

∗(𝑠𝑖
∗)[𝑇𝑖,𝑇𝑗]>0  (

𝜏ℎ(𝑇𝑗)𝐶𝑖𝑓𝑖(𝑇𝑖)

(𝐶𝑖
𝑗

+ 𝑅𝑖)𝑓𝑖(𝑇𝑖) + 𝑀𝑖𝑔𝑖(𝑇𝑖) + 𝜖
− 𝑚𝑠𝑗

∗).

𝑠𝑗
∗(𝑇𝑗) and 𝑠𝑖

∗(𝑇𝑖) 𝟏𝐾𝑠𝑗
∗(𝑠𝑖

∗)[𝑇𝑖,𝑇𝑗]>0 = 1

𝑑𝜌𝜖[𝑠𝑗
∗(𝑇𝑗), 𝑠𝑖

∗(𝑇)]

𝑑𝑇
[𝑇] =

𝜏ℎ(𝑇𝑗)𝐶𝑖

𝛽((𝐶𝑖
𝑗

+ 𝑅𝑖)𝑓𝑖(𝑇) + 𝑀𝑖𝑔𝑖(𝑇) + 𝜖)
2  [𝑀𝑖(𝑓𝑖

′𝑔𝑖 − 𝑓𝑖𝑔𝑖
′) + 𝜖𝑓𝑖

′](𝑇)

𝜖 ≪ 𝑀𝑖 𝑇∗

𝜌𝜖[𝑠𝑗
∗(𝑇𝑗), 𝑠𝑖

∗(𝑇∗)] 𝑇𝑗 𝜖

(𝑓𝑖
′𝑔𝑖 − 𝑓𝑖𝑔𝑖

′)[𝑇∗] = 0
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𝑇𝑖
∗ 𝑇𝑗

∗

𝑠𝑖
∗ 𝑠𝑗

∗

[𝑇𝑖
∗, 𝑇𝑗

∗] = argmax
𝑇𝑖,𝑇𝑗

𝜌𝜖[𝑠𝑖
∗(𝑇𝑖), 𝑠𝑗

∗(𝑇𝑗)]

[𝑇𝑖
∗] = argmax

𝑇𝑖

𝐹𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑠𝑖
∗(𝑇𝑖))  and [𝑇𝑖

∗] = argmax
𝑇𝑗

𝐹𝑠𝑐𝑜𝑟𝑒 (𝑠𝑗 , 𝑠𝑗
∗(𝑇𝑗)).

 

𝜸𝟎

𝒊, 𝒋 𝒔𝒊, 𝒔𝒋 𝒔𝒋 𝒔𝒊 𝟎 ≤ 𝜶 ≤ 𝟏

𝒔𝒊 𝝀𝟎 𝒔𝒋

(𝟏 − 𝜶)𝝀𝟎 𝜶𝑵𝒋 =

𝜶𝝀𝟎𝑻 𝒔𝒊

𝒔(𝒕) 𝒄(𝒕)

𝒌(𝒕)

𝒄(𝒕) = 𝒔(𝒕) ∗ 𝒌(𝒕)

𝒌(𝒕) =  
𝑨 𝒆

−(
𝒕

𝝉𝑫
)

𝜷

𝟏 − 𝒆
−

𝒕−𝝁
𝝉𝑹

𝝉𝑫 𝜷 > 𝟎 𝝁

𝝉𝑹

𝝀(𝒕) = 𝒄(𝒕) 𝐞𝐱𝐩 (−
𝒕

𝝉
) 𝝉

𝑷(𝒕) 𝜶𝝀(𝒕) 𝜶
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𝑮(𝒕) 𝒎

𝝈

𝑩(𝒕) = 𝑨𝒔𝒊𝒏(𝟐𝝅𝒇𝒕) 𝑨 𝒇

𝒚(𝒕)

𝒚(𝒕) = [𝑷 + 𝑮 + 𝑩](𝒕)

𝜶

 

α
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𝑐(𝑡) = [𝑠 ∗ 𝑘](𝑡)
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5 BINOE - Bayesian Inference framework for Neuronal
Overlapping Ensembles

”Groups of neurons repeatedly firing together” intrinsically constitute the functional unit of
neuronal computation. Input stimuli and spontaneous behaviors are encoded by sequential
activation patterns of these co-active neural ensembles whose extraction is the cornerstone
in understanding and breaking the neural doctrine. Bayesian inference appears as a promis-
ing statistical framework to accurately and robustly estimate such overlapping ensembles
inherently characterized by randomness. Our non-supervised clustering technique based on
synchronous activation patterns handles for the first time overlapping and gets rid of the ar-
bitrary thresholds commonly used by classical graph theory approaches. It provides further
statistical evaluators to quantify neuron ensemble relevancy and mutual interactions. The
results of our analysis demonstrates its efficacy in improving identification of neural clusters
and correlation with with stimuli and suggest its potential in advancing our understanding
of neural ensembles.



Bayesian Inference of overlapping neuronal ensembles

Samuel Kubler, Jean-Christophe Olivo-Marin, Thibault Lagache
Institut Pasteur, Université de Paris, CNRS UMR 3691, BioImage Analysis Unit

F-75015 Paris, France
Corresponding Author: samuel.kubler@pasteur.fr

1 Introduction

Monitoring the activity of neurons in free-behaving animals is a fundamental prerequisite to decipher the
neural code. Recent advances in microscopy and genetic engineering have made calcium fluorescent mi-
croscopy techniques the gold-standard methods for monitoring neuron population activity at the individual
cell level in small organisms [1]. These techniques allow for the identification of ”neuronal ensembles,” cor-
responding to specific groups of neurons that repeatedly fire together [2] in relevant time windows. These
neuronal ensembles of coactive neuronal cells are assumed to be the fundamental units of the neural doctrine
and the intrinsic substrates of brain computation and neural states. Their robust identification from neural
spiking activity and the correlation of the activity of the ensembles with mental states of the animal, external
stimulations or spontaneous behaviors could make the understanding of the neural code a step further.

However, going from fluorescent microscopy images to a robust identification of neuronal ensembles
requires several important steps. In the in vivo neuroscience context, neuronal ensemble detection methods
are generally extracted from the resulting neuronal spiking activity matrix. The robust extraction of the
exact spike time emission dates from raw fluorescence traces is a critical step which is still not trivial despite
the huge diversity of methods implemented to fulfill that task [3] [4] [5] [6] [7] [8]. Besides, several attempts
of benchmarking have been carried out [9] [10] [11] but they do not identify a gold-standard method and
demonstrate that method’s generalizability on real experimental data is elusive due to the lack of ground
truth.

Then, from the estimated spiking activity, various methods have been proposed to detect ensembles in-
spired from social networks, economy or politics. Many reviews [12] [13] [14] [15] [16] try to exhaustively
summarize this abundant literature. These methods are, mainly, divided into three categories: graph the-
ory techniques [17], spectral techniques [18] [19] [20] [21] and model-based statistical techniques [22]. Graph
theory techniques involve building a neuron pairwise connectivity matrix based on a functional connectivity
metric and then applying on it a projection and a thresholding to unveil a resulting topological network.
On this graph, an optimization algorithm based on a specific cost function (Modularity optimization, edge
affinity. . . ) is applied. Spectral techniques involves applying algebraic frameworks on spiking activity matrix
to extract similar repeating patterns using euclidean distances or similarity metrics. Data are usually pro-
jected in mathematical subspaces to reduce data dimensionality and orthogonal components are extracted
using various machine learning methods like principal component analysis, independent component analysis
or extensions... Model-based statistical techniques formulates an explicit analytic model of the interactions
between neuronal ensembles to robustly identify them through inverse problem theories.

Estimating neuronal ensembles is hard since a lot of user-defined choices are performed about functional
connectivity metrics, thresholds or neuronal ensemble definitions making the comparison of the methods
hard. The intrinsic problem of ensemble detection is not even straightforward since a neuronal ensemble is
characterized by (a-)synchronicity, activation randomness, and overlapping. Indeed, each time an ensemble

1
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is activated only a subset of its neurons are co-recruited leading to a varying group response. In addition
to this, the neuron basal firing induces a spontaneous non-significant activity of each neuron outside the
activation of its specific group inducing a-synchronization events. Finally, neuronal ensembles are assumed
to be functionally overlapping i.e that a neuron can encode several tasks or mental representation by firing
with several groups simultaneously or at deferred moments.

We developed a Bayesian inference framework to robustly extract neuronal ensembles from their esti-
mated spiking activity. This model provides an explicit biologically-inspired definition of neuronal ensembles
based on synchronization. In addition, such probabilistic model handles the possible overlapping and the
partial asynchrony of neurons with their associated ensembles. The extraction of additional statistical fea-
tures to correlate ensemble activity with external stimulations, of core neurons with specific roles for the
synchronization [18]. The exhaustive benchmarking of the statistical framework is performed, firstly, on
synthetic data to highlight its accuracy and robustness over a large range of simulated parameters. Then,
we apply our framework to a real dataset of zebrafish larval optic tectum got from [16]. Using statistical
spatial analysis [23] [24] [25], we correlated neuronal ensemble activity patterns with stimulations allowing
a better interpretation and even a refining of the inferred ensembles.

2 Overlapping community based on synchronous events

2.1 The Statistical Model

Bayesian inference aims at clustering neurons in functional ensembles based on their co-activity over time.
Gold-standard imaging method to monitor the activity of hundred of neurons in living animals with single cell
and high temporal resolution is based on calcium fluorescence microscopy techniques [1]. From the recorded
movies we extract calcium fluorescent traces using motion correction, detection or even tracking image pro-
cessing techniques. The raw intensity corresponds to a count of photons got on the camera detector that gives
a graded evolution of fluorescence over time. The robust extraction of patterns corresponding to action po-
tential emissions still remains an open question especially for non-flat fluorescence signal, Non-Homogeneous
Poisson action potential emissions, time-varying patterns, noisy data... Spike inference techniques overcome
or ignore this issues and extract neural activity in a binary matrix S = {0, 1}N×T .

Then clustering neurons into overlapping functional ensembles using a robust statistically framework is
fundamental. Bayesian inference turns out to be well-suited to handle this kind of structured problem that
encounter emergent properties from individual behaviors. Following pioneer work of Diana et al [22], we
present a framework to cluster N individual neurons into A overlapping ensembles that activate over time
in a W binary matrix. Handling ensemble overlapping combined with a random neuron activation makes
synchrony based clustering not trivial at all.

Let A be the number of communities, N the number of individual cells, T the number of recording
timesteps or events, fixed and known parameters of the model. Let (S)N×T be the input binary rasterplot
matrix of the N neurons over time. Thus, ∀i ∈ [1, . . . , N ],∀t ∈ [0, . . . T ],

Si,t =

{
1 if neuron i has been activated in timestep t,

0 otherwise.

Each ensembles will recruit neurons with a fixed probability αk,∀k ∈ [1, . . . , A] such that a neuron can
belong to several communities. A latent matrix (Z)N×A describes the membership of each neuron to each
assembly through Bernoulli distributions.
∀i ∈ [1, . . . , N ],∀k ∈ [1, . . . , A], zi,k ∼ Bern(αk).

Zi,k =

{
1 if neuron i belongs to ensemble k,

0 otherwise.

2
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The probability that an ensemble fires at each timebin is constant over time and fixed for each assembly.
It follows a Bernoulli distribution with probability pk. ∀k ∈ [1, . . . , A], wt,k ∼ Bernoulli(pk). It defines a
latent variable matrix (W )A×T corresponding to the activities of ensembles at each time.

Wt,k =

{
1 if ensemble k fires at timebin t,

0 otherwise.

The firing activity of a neuron at time t is a function of the combination of sets of ensembles to which it
belongs and which are activated at that specific moment. We define, thus, neuron activation through a
conditional probability given membership and activation which follows a Bernoulli distribution. Gi = {k ∈
[1, . . . , A]/zi,k = 1} is the set of ensembles, neuron i belongs to of dimension Ki = card(Gi). Obviously,
the number of combinations of sets of ensembles that fully define the activation of a neuron depends on
the number of ensembles Ki neuron i belongs to. An ensemble activation pattern z(t) corresponds to a
sub-combination of ensembles, activated at time t, of the whole set of ensembles neuron i belongs to. Then,
the probability for the neuron i to be activated at t is : ∀z(t) ∈ RKi ,

λGi
(z(t)) = P (si,t = 1|wt,g1 = z

(t)
1 , . . . , wt,gKi

= z
(t)
Ki

) (1)

Finally, the statistical model is defined by observed and latent variables X = (Z,W, S) and statistical
model parameter vectors θ = (α, p, λ) where α = (α1, . . . , αA), p = (p1, . . . , pA), λ = (λg1 , . . . , λgN ). The
function that summarizes the interaction between the variables and describes the probability of consistency
of the statistical model with the binary observations is the true likelihood function :

P (S|Z,W, θ = (α, p, λ)] =
N∏

i=1

A∏

k=1

α
zi,k
k (1− αk)

1−zi,k (a)

×
A∏

k=1

T∏

t=1

p
wt,k

k (1− pk)
1−wt,k (b)

×
N∏

i=1

T∏

t=1

λGi(wt,Gi)
si,t(1− λGi(wt,Gi))

1−si,t (c)

(a) : Membership term. αk : recruitment probabilities, Z membership binary matrix. (b) : Ensemble
activity term. pk : ensemble activation probabilities, W ensemble activation binary matrix (c) : λGi

Conditional spiking neuron probabilities given a membership and an ensemble activation.

2.2 Inference of model parameters

2.2.1 Bayes law

P (θ|X) =
P (X|θ)P (θ)

P (X)

∝ P (X|θ)P (θ)

Given the binary matrix of neural activation, we solve a statistical optimization problem. We seek to
maximize the log-likelihood function which corresponds to the probability of observations given the model.
The Maximum Likelihood Estimator (MLE) derives partially the log-likelihood according to all the param-
eters to zero it. This procedure cannot, however, be carried out here when the model is defined in very high
dimensions for vectors of parameters and matrices of non-measurable latent random variables. A Bayesian
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statistical method called Gibbs Sampling algorithm estimate an approximation of the model posterior distri-
bution to estimate the parameters. This algorithm requires the exact calculation of the posterior probability
distributions of the statistical parameters of the model and the latent variables in order to sample iteratively
by this MCMC method.

2.2.2 Priors

To calculate the posterior distribution, it is necessary to define a prior on the statistical parameters sought.
There are many possible choices (Jeffrey’s prior, Uniform prior, Haldane’s prior...) Since the Gibbs sampling
routine relies on our ability to sample posterior distributions, it is therefore necessary to have known and
samplable distributions as output. To do this we use conjugate priors. As all the parameters have similar
Bernoulli distributions, Beta priors are used in this article because the posterior distribution is then a beta
distribution itself, perfectly known and easily samplable.

∀k ∈ [1, . . . , A], αk ∼ Beta(α∗
k(α), β

∗
k(α))

∀k ∈ [1, . . . , A], pk ∼ Beta(α∗
k(p), β

∗
k(p))

∀k ∈ [1, . . . , A], λGi
∼ Beta(α∗

Gi
(λ), β∗

Gi
(λ))

The α∗, β∗’s are the hyper-parameters of the model i.e. the parameters of the prior distributions. Their
values must be initialized so that the distributions favor probabilities consistent with the variables of our
problem.

Figure 1: Bayesian generative model for neuron clustering

2.2.3 Posterior distribution calculations

The calculation of the posterior distribution is based on Bayes’ formula P (A|B) = P (B|A)P (A)
P (B) . The statistical

model provides :

P (θ|Z,W, S) =
P (Z,W, S|θ)P (θ)

P (Z,W, S)

∝ P (Z,W, S|θ)P (α)P (p)P (λ)
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with

P (α) =

A∏

k=1

α
α∗

k(α)−1
k (1− αk)

β∗
k(α)−1

B(α∗
k(α), β

∗
k(α))

P (p) =
A∏

k=1

p
α∗

k(p)−1
k (1− pk)

β∗
k(p)−1

B(α∗
k(p), β

∗
k(p))

P (λ) =
N∏

i=1

T∏

t=1

λGi
(wt,Gi

)α
∗
k(λ)−1(1− λGi

(wt,Gi
))β

∗
k(λ)−1

B(α∗
k(λ), β

∗
k(λ))

To derive the classical Gibbs sampler, we need to calculate the posterior distribution of each parameter condi-
tioned on every other ones and observations P (θi|X, θ∀j ̸=i) and be able to recognize samplable distributions.
To do so, we just can get rid of all terms considered as fixed by the conditional formulation.

αl|Z,W, S, p, λ, α∀k ̸=l ∼ Beta(Gl, Ḡl) (2)

with Gl = α∗
l (α) +

∑N
i=1 zi,l and Ḡl = β∗

l (α) +
∑N

i=1(1− zi,l)

pl|Z,W, S, α, λ, p∀k ̸=l ∼ Beta(Hl, H̄l) (3)

with Hl = α∗
l (p) +

∑T
t=1 wt,l and H̄l = β∗

l (p) +
∑T

t=1(1− wt,l)

λz
c |Z,W, S, α, p, λz′ ̸=z

c′ ̸=c ∼ Beta(T z
c , T̄

z
c ) (4)

with T z
c = α(∗)(λc(z))+

∑T
t=1(

∑N
i=1 sitδZi=c)δZiWt=z and T̄ z

c = β(∗)(λc(z))+
∑T

t=1(
∑N

i=1(1−sit)δZi=c)δZiWt=z

c ∈ C(A) represents the combination c of groups among all possible combinations of groups. c ∈ C(Z)
represents all possible combinations of activation of groups given the membership.

Then we need to compute the conditional distributions of the latent variables W,Z which are not, strictly
speaking, statistical parameters of the model but which will nevertheless have to be sampled iteratively in
the same way in the Gibbs algorithm.

P (wtk = 1|Z,W−tk, S, θ) =
1

1 + ρtk
(5)

such that

ρt,k = (
1

pk
− 1)×

N∏

i=1
i∈k

(λGi
(wt,Gi

)|wk,t=0)
sit(1− λGi

(wt,Gi
)|wk,t=0)

1−sit

(λGi
(wt,Gi

)|wk,t=1)sit(1− λGi
(wt,Gi

)|wk,t=1))1−sit

∀ξ ∈ {0, 1}, λGi(wt,Gi)|wk,t=ξ = P (sit = 1|wt,g1 = z1, . . . , wt,k = ξ, . . . wt,gKi
= zKi) is the conditional

probability associated with the activation of the groups Ki to which neuron i belongs by setting the activity
of the k-th group to 0 or 1.

P (Zik = 1|Z−ik,W, S, θ) =
1

1 + ηik
(6)
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ηik = (
1

αk
− 1)×

T∏

t=1

λGi\k(wt,Gi\k)
sit(1− λGi\k(wt,Gi\k))

1−sit

λGi(wt,Gi)
sit(1− λGi(wt,Gi))

1−sit

2.2.4 Gibbs sampling Algorithm

Algorithm 1 Gibbs sampler for overlapping community detection

Require: niter, A
Initialize Z randomly
while ite < niter do

for Each assembly k ∈ [1, . . . A] do
for Each timestep t ∈ [1, . . . , T ] do

Sample wk,t from P (wkt|Z,w−kt, S, θ)
end for

end for
for cell i ∈ [1, . . . , N ] do

for t ∈ [1, . . . , T ] do
Sample Zi,k from P (Zi,k|Z−i,k,W, S, θ)

end for
end for
Sample θ from P (θ|Z,W, S)

end while

2.3 Improving convergence

The implementation of a Gibbs sampler aims at exploring by a random walk the space of the parameters
in order to estimate the posterior distribution of the model. In a very high dimensional space, we cannot
guarantee the convergence to the global maximum. Strategies of multiple random initializations, simulated
annealing, burning period of sample rejection try to avoid local maxima. However, higher is the dimension-
ality of the model, more likely it is to fall into a local maximum. This situation happens when the number
of communities A increases. Note that the number of model parameters k is :

k = A× (N + T + 2) + 3A

Based on Carrillo-Reid’s idea [26], the S neuron activity matrix can be interpreted as a matrix of activa-
tion of different neuronal populations. There is an analogy between clustering documents into topics based
on word occurrence and clustering neuronal populations into functions based on neuron co-activation, idea
mentionned by [27] has been implemented by Carillo-Reid [28] [19] through SVD. Using a natural langage
processing community technique, we aim at intelligently initializing the ensemble activity matrix W using
Spherical KMeans based on cosine similarity [29]. The goal is to find statistically significant neuronal pop-
ulations that repeat identically over time but are sufficiently different from each other to suggest that they
encode different functions and need to be placed in different groups. Once these populations are detected
through a Z-score statistical test, they are normalized using an NLP function called TF-IDF and then clus-
tered using Spherical KMeans based on cosine similarity to generate W0, the ensemble activation matrix at
iteration 0. To do this, the open-source implementation proposed by [30] is used. This allows us to bring the
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Gibbs Sampling random search closer in the neighborhood of the global maxima. The clustering technique
is firstly evaluated on a synchrony based neural activity simulator and then applied on a real data of V1
mice brain visual cortex in response do static grating stimuli.

Algorithm 2 Gibbs sampler with NLP initialization

Require: niter, A
Extract W ∗ using Z-score statistical test
Initialize W0 from Cosine similarity - Spherical KMeans
while ite < niter do

for cell i ∈ {1, . . . , A} do
for for k ∈ {1, . . . , A} do

Sample Zi,k from P (Zi,k|Z−i,k,W, S, θ)
end for

end for
for Each assembly k ∈ [1, . . . A] do

for Each timestep t ∈ [1, . . . , T ] do
Sample Wk,t from P (Wk,t|Z,W−k,t, S, θ)

end for
end for
Sample θ from P (θ|Z,W, S)

end while

3 Results

3.1 Results on synthetic dataset

3.1.1 Synthetic simulator based on the statistical model

The simulator part to generate neural activity is divided into 3 different parts Fig. 3. 1- Drawing of
an overlapping clustering in A communities using Bernoulli trials using the set recruitment probabilities.
2- Drawing the binary activity matrix of the clusters using Bernoulli trials using the set of activation
probabilities. 3- Generating the neural activity using the conditional dictionary of neural activity given
the membership and activation of the clusters at the time. For each combination of memberships, for each
combination of activations, the probability of neural synchronous response and spontaneous activities are
defined and used to produced S. In the synthetic example presented hereafter, A = 3, T = 1000, p = [0.1,
0.1, 0.1], alpha = [0.5, 0.5, 0.5].
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N neurons A groups - recruitment probabili�es Z membership binary matrix

A groups - : ac�va�on probabili�es W binary matrix of ensemble ac�vi�es

W binary matrix of
ensemble ac�vi�es

dic�onary of condi�onal

neuron spiking probabili�es
S binary matrix of
neuron ac�vi�es

a)

b)

c)

Figure 3: Different steps of synthetic data generation. a) A random clustering is drawn for each
neuron in each ensemble using a Bernoulli distribution of parameters αk. b) A random ensemble activation
matrix is drawn using Bernouilli distribution at each time step with a fixed activation probability parameter
pk. c) Given a conditional probability of neuron activation given all possible combination of memberships,
the synthetic neuron spiking matrix is drawn. A Bernoulli distribution is equally used.

Neurons = [300, … , 350]

𝜆: 0 → 0.05

Outliers
Neurons = [0, … , 50]

𝜆 ∶ 0 → 0.05 1 → 0.6

Neurons = [50, … , 100]
𝜆 ∶ 0 → 0.05 1 → 0.7

Neurons = [100, … , 150]
𝜆 ∶ 0 → 0.05 1 → 0.8

Neurons = [150, … , 200]
𝜆: 0, 0 → 0.05 1, 0 → 0.7
0, 1 → 0.6 1, 1 → 0.95

Neurons = 200,… , 250
𝜆: 0, 0 → 0.05 1, 0 → 0.8
0, 1 → 0.7 1, 1 → 0.95

Neurons = [250, … , 300]
𝜆: 0, 0 → 0.05 1, 0 → 0.6
0, 1 → 0.8 1, 1 → 0.95

Neurons = [350, … , 400]
𝜆 ∶ {0, 0, 0} → 0.05, 1, 0, 0 → 0.6, 1, 1, 0 → 0.95
0, 0, 1 → 0.8, 0, 1, 1 → 0.95, 1, 1 0 → 0.95
0, 1, 0 → 0.7, 1, 0, 1 → 0.95, 1, 1, 1 → 1

Figure 4: The neuronal conditional spiking probability is defined for all possible combination
of membership. For neurons belonging to several groups, a more important number of conditional spiking
probabilities is expected. Every neurons is defined with the same basal activity at 5 %.

3.1.2 Parameter and hidden variable estimation

The iterative Gibbs sampler estimation algorithm estimates each of the statistical parameters and latent
variables as it loops through, so that these quantities or the error on these quantities can be estimated over
the course of the iterations.

We notice that in less than 10 iterations the error rate on the estimated activities of each ensemble is close
to 0% calculated with the F1-score. The clustering accuracy is obtained using the Overlapping Normalized
Mutual Information (ONMI) extracted from Macdaid that reaches 100% in only 3 iterations. The statistical
parameters also converge towards the simulated target values. An averaging of the values obtained during
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Overlapping normalized mutual index (ONMI)

Iterations 0 1 2 5 9

0
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Synthetic Neural activity

Estimated ensemble activity

a)

b)

c)

d)

e)

f)

g)

h)

i)

Figure 5: Estimation of the convergence of statistical estimates on a single synthetic experi-
ment. a) Synthetic neural spiking activity of 400 cells during 1000 timesteps. b) Ensemble activity matrix
estimate Ŵ . c) Convergence of the log-likelihood. d) Convergence of the conditional spiking activity of
neurons given their combinatory membership. e) Convergence of the reconstructed neuron ensembles spik-
ing matrix using F1-score error rate. f) Convergence of the neuron membership using ONMI metrix. g)
Convergence of the probabilities of recruitment αk of the neuronal ensembles. h) Convergence of the prob-
abilities of neuron ensemble activation pk. i) Neuron membership assignation over iterations.
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the last iterations should allow to accurately estimate their value.

3.1.3 Robustness algorithm analysis on synthetic dataset

We estimate the robustness of the algorithm by testing different range of simulation parameters. We want
to prove the robustness for different ensemble sizes, ensemble activity rate, level of synchronization and
a-synchronization given membership. The simulation provided under the scope of this article are performed
with A = 4, N = 400, T = 1000, α = [0.15, 0.15, 0.15, 0.15], p = [0.1, 0.1, 0.1, 0.1], λ = [λ0, λ1, λ≥2] =
[0.05, 0.8, 1]. For all the simulation parameters variration, the ensemble coactivation rate is fixed at 10%.
Here, we can observe the clustering error based on the ONMI metric, ensemble activity error based on the

F1-score metric, and relative errors e =
|xtarget−x̂|

xtarget
to see the ability of the algorithms to robustly recovers

targeted simulation parameters. To highlight the result variability, Montecarlo simulation are performed to
estimate the trial to trial error variability.

• Variation of the community activation through p. The algorithm seems robust to a variation of
ensemble activities from 5% corresponding to the basal activation rate to 25%. Above this value the
accuracy collapses since the ensemble coactivity increases. The preprocessing step is not robust to a
high degree of ensemble activity overlapping (> 40%) because it preclusters timesteps as single ensemble
activation. The levels of ensemble activation the algorithm is robust to, matches perfectly with sparse
real data statistics of neural activities. However, an adaptation would be easily implementable by adding
overlapping in the preprocessing for timebins at the border of several clusters corresponding to semi-
transparent points on fig.2-e).

• Variation of the size of the community through α. The algorithm is completely robust to a
variation in the ensemble sizes.

• Variation in the ensemble a-synchronicity through λ0. The algorithm is robust to a basal ac-
tivation rate below 30%. When this value becomes higher and reach 50%, accuracy deteriorates since
neurons become very active outside the respective activation of their groups and the gap between asyn-
chronization and synchronization firing statistic decreases. It becomes very complicated for the algorithm
to make the distinguish between totally desynchronized neurons highly active and synchronized neurons
clusters in small different groups explaining the confusion of the algorithm. For real neural activity, basal
spontaneous neuron activation rate is around 5% far from this frontier.

• Variation in the ensemble synchronicity through λ1. The algorithm is robust to level of syn-
chronization above 40 to 50%. Around and below theses values, ensemble activation are not sufficiently
coherent to distinguish ensemble coherent activation with random activation. More generally to identify
ensembles efficiently their level of synchrony and asynchrony should be enough distant to allow the al-
gorithm to make the distinguish. Otherwise, the ensemble state seems similar to the firing independant
case.

• Variation of the number A of communities. Modulating the number of communities A can make the
algorithm very long. Since this version is mathematically exact, it learns all the possible combinations of
ensemble activation given a specific membership for neuron corresponding to 3∗A different synchronization
probabilities to learn. But as long as the number of communities remains low enough to limit the ensemble
coactivity rate, the algorithm continues to efficiently and robustly estimate the most appropriate statistical
parameters given the model.

• Variation of N. This algorithm seems perfectly robust to a variation of the number N of neurons.
It almost seems that as the number of neurons increases, the uncertainty on the parameter estimates
decreases a little at a fixed recruitment rate as if the increase of neurons outside the groups therefore
characterized by random statistics allows to better identify the neurons synchronized with groups.

• Variation of T When the number of time steps increases the recording becomes longer and more
information about synchronization patterns is extracted from data. It explains why the level of errors is
decreasing accordingly.

Additional experiments to assess the durability of the algorithm in response to various spike patterns,
given their activity rate have been performed. Although the algorithm’s model assumes independent activities
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of the ensembles, structured activation in the form of sequential peaks does not disrupt its accuracy and
robustness as long as the rate of ensemble co-activations is controlled. These findings suggest that the
algorithm can reliably extract information even when faced with non-random patterns of ensemble activity

3.1.4 Automatic estimation of the number of ensembles

To automatically estimate the number of ensembles we have set up a dynamic scanning of the number of
communities. The idea is to use a statistical criterion of reference such as the log-likelihood or the Akaike
Information Criterion (AIC) to automatically increment in an ascending way the number of communities as
soon as a convergence regime is reached corresponding to a plateau. As the tested value A of the number
of communities gets closer to the target value A*, the plateaus of the log-likelihood criterion increase and
the plateaus of the AIC criterion decrease. As soon as A > A∗, we notice experimentally that the tendency
is reversed, i.e. that the plateaus of log-likelihood and AIC decrease and increase again respectively. This
information allows us to define a stopping criterion based on the value of the AIC or the log-likelihood in
the convergence regime. On the following example, the statistical properties of the bencharmarking are kept
using A∗ = 3 communities.

3.2 Results on experimental dataset - Larval zebrafish optic tectum

3.2.1 Experiment description

We apply our algorithm on a stimulus-evoked calcium imaging opensource dataset from the larval zebrafish
optic tectum provided by [16]. The aim is to display light points at different angular positions in the animal’s
visual field. The recording of the zebrafish’s neuronal response should enable us to identify the groups of
neurons integrating the response to these stimuli, measure their statistical coupling to the stimuli, measure
their intrinsic coherence rate and extract statistical properties about the underlying neuronal ensembles.
For this purpose, we have reduced ourselves to the 5 dominant stimuli of the experiment 8, 4, 5, 9 and 7,
corresponding respectively to angular positions at 120°, 60°, 75°, 135° and 75°. In order to limit the pollution
of the photobleaching effect, we restrict ourselves to the study of 1184 frames located at the beginning of
the recording between frames 390 and 1571 and corresponding to the sequential repetitions of 6 stimuli.

3.2.2 Data Pre-processing

Our algorithm works by finding repeated synchronizations in neuron activity to cluster them into ensembles.
Overlap in clustering occurs when a sufficient number of asynchronizations in a statistically similar group of
neurons is detected. In this case, repeated and consistent asynchronizations of a subset of neurons imposes
the existence of another underlying group necessary to explain this activity. Another group must therefore be
introduced, and neurons that are too often asynchronized must be placed at the intersection of two different
groups. For non-overlapping clustering algorithms, the simple co-activation of neurons, often obtained using
a pairwise similarity metric, is sufficient to model neuronal interactions. Introducing overlap into clustering
requires the introduction of asynchrony, or the integration of statistically ’silent’ ensembles to justify neurons
belonging to several groups.

When neuronal activity data are polluted by activation noise, the number of synchronizations decreases,
leading to a loss of coherence in synchronous neuronal ensembles and even to false asynchronizations, resulting
in artefact overlaps.

To limit these issues, several pre-processing steps are applied to filter out noise in the data: 1) a convolu-
tion with a Gaussian kernel is applied to each neuron activity (row) and summed over all neurons (column).
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A*=

Figure 6: Automatic ascending scanning of the number of communities based on log-likelihood
and AIC criteria. (top) Each time a convergence regime is reached of the loglikelihood function the
number of communities A is dynamically increased. (middle) The log-likelihood and AIC reach respectively
a maximum and minimum value for the correct number of communities that has been used in the generative
process of synthetic data. Here A∗ = 3 communities. (bottom) The error rates of ensemble activity and
neuronal membership reconstructions both provide a perfect estimate for the correct number of communities.
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Then, a threshold is applied to keep neural activities corresponding to common activation patterns of neu-
rons, called events or wave activations in response to the stimuli, and to remove too singular neuronal
activation. 2) the algorithm works on the presence or absence of each neuron at each time step, but a tem-
poral dimension of activation in terms of duration and delay has not been yet integrated into the algorithm’s
statistical model. To compensate for this, the asynchronizations measured must correspond to inter- and
not intra-event asynchronizations. In other words, if a neuron is turned on during an activation wave, it is
necessary to normalize its appearance in relation to the appearance of all other neurons during this event,
so that all neurons are active together at every single instants of the wave. This limits the potential effects
of advance or delay in their activation. Concretely, this means to filtering out insufficiently long activities
of a neuron during an activation wave, detecting the beginning and the end of the activation wave and then
setting the activity of all neurons to 1 during the total duration of a wave. If desired, wave widths can also
be normalized, to avoid making one activation wave more important than another.

a)

Statistical Threshold

b)

Figure 7: Preprocessing step of non-significant spike filtering. a) Raw neural activity for stimuli 8,
4, 5, 9 and 7 between in frames [390, 1571] corresponding to the sequential repetition of 6 trials. b) Filtered
and normalized neural activity.
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3.2.3 Ensemble activity estimation and statistical coupling to stimuli

Stim

b)

c)

1

15°

2
3

4

5

6

7

8

9
10

11

Stimuli

a)

d)
Statistical coupling

Figure 8: Experimental setup of zebrafish larval optic tectum stimulation. Neuronal ensemble
activation and statistical coupling with simuli is inferred. a) From [16], we extract the neural activity
of the 5 best expressed stimuli (8-4-9-5-7) in the larval zerbrafish optic tectum corresponding to different angle
spot locations. b) Superimposition of the pre-processed neural activity with stimuli showing single wave
neural responses. c) Estimation of the ensemble activity given stimuli through our framework. d) Statistical
coupling between ensemble activity and stimuli derived from 1D spatial statistic frameworks [23] [25] [24].
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3.2.4 Overlapping clustering estimation and synchronization ensemble relevancy

Level of 
synchronization100%50%30%

GroupsNeuron

Ensemble overlapping
(Color information)

Number of overlapping
ensembles

2
1

3
4
5

Ensemble overlapping
(Positional information)

Figure 9: Overlapping clustering visualization with the synchronization levels. The representa-
tion provides information of neuron overlapping memberships. Neuron spatial locations inform about the
combination of neuronal ensembles the neuron belongs to. The size of the neuron describes the level of
synchronization with its groups.

3.2.5 Supplementary statistical feature extraction

Figure 10: Ensemble overlapping and co-activity extraction. (left) Number of time windows where
neuronal ensembles are simultaneously coactive. (right) Number of neurons belonging to several communities.

In neural coding, comparing neuron clustering algorithms on experimental dataset is tough since the neural
ground truth is missing systematically. Generally, the analysis make the assumption that the accuracy
results got by each method on synthetic data are perfectly generalizable to experimental dataset. This
working hypothesis is false because, firstly, the way synthetic data are generated largely bias the results and
then the model of real world dataset is always far more complicated than simulation’s and the generalization
property is no longer guaranteed. A clustering comparison method on experimental data would need to
account for two fundamental criteria so as to answer to the question: which algorithm for neuron clustering
is the most accurate ?

Firstly, the statistical coupling between inferred ensemble activities and stimuli would be crucial. Indeed,
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once the clustering step has been performed the statistical correlation between ensemble activity and stimuli
would reflects how and if ensembles encode stimuli. As an example, ensemble spike distribution close from a
random uniform spike distribution regarding stimuli location would carry no information. In most studies,
such analysis does not simply exists.

The second criterion hinge on neuron ensemble coherence. Putting any kind of neurons in the same
group can provide ensemble activities correlated to stimuli. However, it does not necessarily means that
these neurons are similar and that gathering them in a group makes really sense. It is, thus, necessary, that
a neuron ensemble is relevant regarding a similarity metric such that co-activity for non-overlapping method
or synchronization levels for overlapping ones.

It is worth noticing that the Mölter and Goodhill’s article provides a performance evaluation of clustering
techniques on synthetic data based on the ”Best Match” match clustering criterion and the number of
predicted ensembles. This metric expresses how far are the estimated clusters from the ground-truth ones.

A formula that describes the group relevancy based jointly on the global level of synchronization and the
statistical coupling between neuronal ensemble activity and stimulation could be at stake to assess neuronal
ensemble algorithm efficiency.

Conclusion

We proposed a Bayesian statistical framework to cluster neuron in overlapping ensembles based on their
synchronicity. The robust extraction of statistic parameter such as ensemble activity rate, ensemble activity
recruitment rate and levels of synchronicity between neurons and ensembles given ensembles states provides
an efficient and robust tool to go further in the accurate analysis of the correlation between neuron and stimuli
in neuroscience. Our belief is that the mathematical effort to use Bayesian statistics to ensemble activation
evaluation is the cornerstone to understand emergent neural network properties that embedded stimuli’s
information. To do so, we benchmarked as exhaustively as possible this algorithm, providing clear derivation
of formulas in appendix and a free open-source software implementation to make this kind of statistical
tool as easy to use and accessible as possible. This tool could allow neuroscientists to identify neurons
having particular roles in the ignition of the ensembles. Furthermore, it could quantify the interaction of the
neuronal ensembles with each other, measure the overlapping rate of neuronal ensembles and even measure
the co-activation rate. These questions are of primary importance to many neurobiologists who generally
seek to quantify the emergence of synchronized interactions between neurons. Possible improvements lie
in the simplification of the model to allow analyses with a much higher number of communities or even to
integrate more advanced methods of statistical temporal sampling in order to quantify the temporal evolution
of synchronization changes between neurons and ensembles allowing a dynamic temporal clustering, thing
totally missing for the time being. Finally, the use of estimated ensemble activity could finally reveal some
sequential activation pattern that could be decisive in the understanding and prediction of behavior at living
animals.
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A Posterior Parameter Derivation
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If i ∈ k, λGi(wt,Gi) = P (sit = 1|wt,g1 = z1, . . . , wt,gk = zk, . . . , wt,gKi
= zKi)

If i /∈ k, λGi
(wt,Gi

) = P (sit = 1|wt,g1 = z1, . . . ,(((((wt,gk = zk , . . . , wt,gKi
= zKi)

The activity of the kth group is removed at each moment. In the activity dictionary this is equivalent to
taking the kth component systematically equals to zero.

And so finally :
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1
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B Supplementary figures

Figure 11: Benchmarking of the overlapping clustering method for different statistical simula-
tion parameters. Default parameters: A = 4, N = 400, T = 1000, p = [.1, .1, .1, .1], α = [.15, .15, .15, .15],
λ = [λ0, λ1, λ≥2] = [0.05, 0.8, 1].
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Chapter V

Discussion

1 The difficult extraction of neurons’ spikes from
fluorescence imaging

Despite the development of advanced spike inference techniques (SIT) and the benchmarking
of a few of them, the robust estimation of spikes from in vivo imaging remains difficult,
especially in Hydra vulgaris. Indeed, fluorescent traces are noisy due to animal motions and
deformations, artifact dynamics, ”cross-talk” events or neuron tracking imperfections that
largely contaminate the recordings. In this extent, asserting precisely which SIT is the most
suited for Hydra vulgaris, demonstrating if a simple preprocessing step could account for
properties not handled by the deconvolution techniques or the need to adapt or rethink the
existing tools appears as an open question. Our first article [220] created a versatile calcium
fluorescent simulator with heterogeneous and more complex properties to benchmark the
most promising SIT methods. The modeling of non-linear calcium dynamics, alternating
between high- and low-frequency firing regimes, the variations of calcium dynamics or the
different noise levels are assumed to provide further insights about SIT’s generalizability to
deformable free-moving animal case with burst activity events. The difficulties, conclusions
and perspectives are detailed hereafter.

Firstly, baseline is often neglected and therefore requires advanced pre-processing tech-
niques. Indeed, most of SIT are applied to flat, stationary signals with no time-dependent
baseline. This property is often encountered at mice visual cortex using a two-photon mi-
croscope. It is under these specific assumptions that the inverse problem of estimating spike
locations is often performed. The damages on the estimates caused by the violation of
these assumptions has been studied, making the choice of a method to deconvolve Hydra
vulgaris’ data elusive. Photobleaching is another phenomenon that requires to detrend the
signal [244] making it inherently non-stationary. Indeed, fluorophores switch to dark states
leading to a global decrease of fluorescent intensity. Two methods have been tested: 1)
Applying a detrending step before the SIT ; 2) Performing no detrending step before the
SIT. The tested detrended techniques were model-free. On the data, interpolation (Fixed
Degree Polynomial and Cubic Spline interpolation), convolution (Sliding window, wavelet
transformation) and filtering (Frequency filtering in the Fourier domain) have been applied.
Overall, the spike estimation is better with such detrending steps (frequency filtering and
spline interpolation yielding the best results) leading to satisfying results in many cases (see
Figure V.1). By doing so, larger dynamics are filtered out before the deconvolution step.
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Figure V.1: Deconvolution of a low noise signal : Neuron 400. The signal is detrended
using a sliding window of size 20 and denoise using a gaussian filtering. Spike Amplitude
variation is highlighted.

If the spike frequency is too close from the underlying baseline or noise frequency, mean-
ingful information can be filtered out during the detrending step and not recovered after-
wards. The level of noise seems to largely vary from one fluorescent trace to another making
some data completely impossible to interpret in the absence of ground-truth annotations.
This is also true for underlying non-linearities extremely heterogeneous between fluorescence
traces.

If the user-defined parameters are not properly tuned for detrending, artifacts appear
and cause spurious dynamics. For example, too high a degree for a polynomial interpolation,
a wrong choice for the cut-off frequency for frequency filtering or too long a size window
for the convolution methods can generate wrong low-frequency dynamics. Furthermore, it
seems that a single user-defined parameter set does not exist for all data, especially when
fluorescent traces are extremely heterogeneous as it is the case for Hydra vulgaris. This
phenomenon can be directly observed on Hydra’s deconvolved matrix [220] where horizontal
lines suggest that some neuron deconvolution completely failed while others with regular
pattern seem to correspond correctly to Rhythmic Potential or Contraction burst activities
already highlighted in the animal [2] [135]. An adaptive way to estimate the user-defined
parameters that allow a correct detrending for each individual fluorescent signal combined
with a more efficient upstream correction of pollution sources would be at nice extension of
this work.

Inhomogeneities of the dataset induce a strong variation of individual neuron signal
characteristics that raises a trade-off between accuracy and robustness. Indeed, on syn-
thetic data, the most accurate technique was one handling a time-varying baseline. Indeed,
MLspike from [154] was proved to be the most accurate method on synthetic data according
to the proposed simulator. This method is extremely powerful on a single fluorescent trace
when user-defined parameters have been carefully tuned for [220]. However, once we change
the fluorescent trace properties, parameters are not well-suited anymore, and accuracy col-
lapses quickly making this method the worse on a Hydra vulgaris dataset. It highlights
the trade-off between accuracy and robustness to choose a SIT. The more homogeneous
the dataset is, the more similar the method parameters will be. Conversely, if data are ex-
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HardCB/RP No spikeRPCB

Figure V.2: Variety of neural activity with different dynamics. Fluorescence traces
show simultaneously a neural response to CB events and RP events, observation inconsistent
with the non-overlapping nature of the neural networks highlighted by [2] and corresponding
to cross-activity contamination. Some traces do not show spiking dynamic at all while others
highlight spiking dynamics completely hidden in the noise.

Figure V.3: Deconvolved neuronal spiking matrix using CD foopsi from [134]

tremely heterogeneous like for Hydra, parameters will not be adapted to the entire dataset
and a more complex method would fail. This paradox is demonstrated qualitatively by the
regularity of the inferred spiking matrix got from a simple naive SIT based on smoothed
gradient calculations on experimental data ( [220] Fig. 5.a) and quantitatively using the
Global Jaccard Index on the deconvolved spiking matrix ( [220] – Fig. 5.b)) finding a higher
degree of inter-spike sequence correlation.

An adaptive estimation of user-defined parameters for each fluorescence trace could be
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insufficient to deconvolve data. Indeed, surprisingly, some obtained fluorescent traces posi-
tively respond to both RP and CB events which is not relevant with previous biological obser-
vations made at Hydra vulgaris in [2] claiming that its neural networks are non-overlapping
(See Figure I.4). A neuron should only response positively to a single specific network at a
time. Two main factors could account for this problem: Burst Pollution and Tracking Er-
rors. Burst pollution is linked to the fact that during a burst event Hydra contracts rapidly.
Lots of cells are, then, gathered in a cluttered environment and the global intensity activity
seems to increase in every cell, even RP neurons. Spurious information, thus, emerges. It
means that, experimentally, about 50 percent or more of the detections could be lost at
each fast and strong contraction of the animal and be wrongly reassigned to another cell in
the tracklets. In that situation, the beginning of a fluorescence recording, and its end could
belong to two completely different somas with different time dynamics.

The Poisson homogeneous assumption of spike inference techniques combined with a
fixed calcium transient cannot handle firing switching regimes. Indeed, if we seek to apply a
SIT on a fluorescence trace where calcium transients can change according to firing switching
regimes, the method is not adapted since the kernel is often estimated as fixed through, for
instance, auto-regressive coefficients and artificial time-lags can be induced in the inferred
spike locations. An adaptive dynamic deconvolution kernel that could switch from one
firing regime to another would be a key solution to handle such time-varying dynamics. It is
worth noting that in Hydra vulgaris, the coexistence of several dynamics are experimentally
observed in the data (see Figure V.2) even if it seems inconsistent with the literature.

Some experiments have also been carried out without detrending preprocessing step
before running SIT. In this situation where the baseline is not handled anymore, each positive
variation of the signal is assumed to be a meaningful information by the algorithm, and it
locates spikes basically everywhere. However, the output spike amplitudes vary according
to a level of confidence. The higher the spike amplitude is, the more confident the spike
existence at that location will be. The extraction of the highest amplitude spikes could be an
attempt to find the meaningful information. The fundamental question is about thresholding
the spike amplitudes given that no specific distribution seems to emerge and that a hard
threshold that works for all traces of the dataset seems not to exist. Finding similar neuron
traces and jointly extracting their DAT by a time-point to time-point statistical coupling
robust to false detection was an attempt to fulfill that task. It assumed though that noise
would be uncorrelated, which is not necessarily true in practice since noise is partly brought
by a motion that could be shared between several neighboring cells.

As a conclusion, the first part of this thesis was aiming to find and justify the use of an
existing spike estimation technique to apply on Hydra vulgaris dataset. Even if SIT are often
very advanced algorithms applied on low noise data, a gold-standard method has not been
proved yet. The fundamental heterogeneous nature of the data unveils that Hydra vulgaris
dataset are far more complex compared to other animal models (mice/zebrafish) due to a lot
of additive sources of pollution and a perfect SIT adapted for Hydra seems not to exist yet.
The track that has been followed, then, was to firstly apply one the most promising technique
in the benchmarking CDfoopsi [146] with a frequency filtering detrending as preprocessing
step ; and then, knowing that neural spiking sequences were corrupted by errors (False
Detections/ Miss Detections / Time-Lags), to implement a functional connectivity metric
based on point-process theory to correct for the errors and estimate the network topology.
Two fundamental prospects need to be highlighted. Firstly, the noise cannot be properly
removed by just applying a model-free denoising technique. It seems that estimating non-
linearities via a model is at stake. The estimation of the field of view motion of the animal,
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the z-axis motion of the animal, the correction of neuropile contamination and the filtering
of global contaminating bursting activity should be considered. Some solutions emerge.
To correct motion, deformation of the animal and improved the soma tracking: A model of
movement should be embedded. Kalman filter is one possibility but multi-spectral recording
via a second nuclear calcium indicator called TdTomato, that does not vary with neural
activity, is currently under the scope. This other solution records the fluorescent intensity
of nuclei to efficiently estimate the motion and deformation of the animal in the field of view
or perpendicularly to the z-axis. Secondly, the use of an independent component analysis on
cell fluorescent intensity could reveal common components. Applied to neighboring cells, it
could estimate the z-motion of parts of the animal since neuron cells in tentacles, for example,
might have the same intensity decrease if an animal’s tentacle leaves the focal plane at a given
moment. Applied globally, it could estimate the global intensity increase observed during
burst events and be used to correct the pollution above all neuron activities. Neuropile
contamination could be reduced by averaging intensity outside soma in its neighboring area.
An active contour applied to segment Hydra, combined with Gaussian kernel fitting on
soma’s neighboring could seem relevant to fulfill that task.
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Figure V.4: Denoising steps to considered in Hydra. a) Correction of Contraction
Burst pollution by averaging the intensity over the entire segmented animal or through tracks
to remove the common component of CB activity ; b) Neuropil contamination corrected by
removing the neighborhood activities outside somas ; c) Correction of z-axis motion and
”cross-talk” by extracting via ICA common underlying patterns in neighboring patches.

Another perspective does not concern the denoising but the spike inference technique
itself. Implementing a SIT that could embed a time-varying baseline with an adaptive kernel
that switches statistically between several firing regimes would be promising to get rid of the
Poisson Homogeneous spiking distribution hypothesis. At the time these observations were
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made in 2020, the use of Auto-Regressive Markov Switching Model [221] was considered. It
is worth noting that, in the meantime, a promising article was published highlighting these
shortcomings and attempting to provide solutions [155]. Finally, the SIT usually works on
a single fluorescent trace at a time, but we expect these fluorescence traces to be mutually
correlated. A simultaneous multi-fluorescence trace deconvolution would seem relevant. It
means that information would need to be exchanged during the deconvolution to increase
the confidence in the spike locations regarding several traces in the same time. In other
words, if a spike was infered at the same time in several fluorescent traces it would make it
more likely to exist.

2 Statistical coupling through Spatial Point Process Theory

Functional connectivity tries to infer the co-activity coupling between individual neuronal
cells. It allows to create a connectivity map that demonstrates the existence of functional
neural networks with specific topological structures. The coupling metric is data-dependent.
If neural signals are time spiking sequences corresponding to binary sequences of action po-
tential emissions, point process theory is more adapted than regular correlation metrics for
time-series. We highlighted that spiking sequences were polluted by spike false detections,
miss-detections and time-delays due to additive sources of noise not properly handled. Im-
plementing a functional connectivity metric based on a spatial statistics framework able to
estimate robustly such coupling was at stake in the second publication of this thesis [245].

i Using spatial point processes for characterizing the temporal coupling
of biological processes

Given a point process density, the number of expected points, randomly located in any sub-
space area, is known to be directly proportional to its volume. Such statistical consideration
is known as Complete Spatial Randomness hypothesis. It allows to analytically derive a H0
null hypothesis of the expected number of points in any subspace got by chance. Comparing
the observed number of points in subspaces against the expected one under CSR, via a K-
Ripley difference vector [246], demonstrates aggregation or dispersion effects corresponding
respectively to positive or negative statistical coupling in spatial point location distribu-
tion. When the value is around 0, independence can be assumed. Such analysis have been
developed for biological applications to quantify immune response for instance [247] [248].

a Connectivity between individual neurons

Our second article proposed for the first time an adaptation of this framework in a 1-
dimensional case between time point-processes to infer the functional connectivity between
neuron activities being robust to false detections, miss-detections and time-delays. The
basic idea is to measure the statistical coupling between a first time point sequence relative
to a reference second one. If enough points aggregate systematically at the same distance
from the reference points, a distant statistical coupling can be highlighted. This distance
corresponds to time delay in that context. By averaging the statistical coupling got for
different time-delays, we can recover the global statistical coupling between the two date
sequences (see Figure V.5).
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On synthetic data, the method demonstrates its ability to cope with false detection
events. Indeed, if noise adds randomly false positives in neural data binary sequences,
the algorithm will estimate that these points correspond to a random activity. Only an
aggregation of false detection points systematically located with the same time lag could
bias results by being estimated as positive coupling. The method appears to be less robust to
miss-detections since pair of coupled spikes cannot be recovered anymore when information
is missing in the recording. Concretely, we can see that results are largely damaged by
miss-detections given that for a 50% miss-detection rate, more than 80% percent couples
are not matched.

The strength of our statistical coupling framework in comparison with more general
frameworks like Pearson correlation or Jaccard index for example is its intrinsic ability to
detect the time delay of the statistical coupling. Especially, if neuronal spiking activity has
been deconvolved using fixed kernels, time-shifts in the spike locations can occur and bias
the classical functional correlations.

b Coupling between stimuli and ensemble activation

Importantly, the provided statistical tool from [245] can be adapted to achieve other critical
neuroscience tasks such at the neuronal statistical coupling to stimuli.

Estimating neural ensembles means that neurons are defined by common synchronous
activity patterns. In the neural doctrine, these patterns are the intrinsic representations
of a cognitive task, the integration of a stimulation or the activation of micro-circuitry in
response to a behavior and would represent the elementary bricks of the neural code.

It means that, first, estimating neural ensembles using a community detection technique
necessarily needs to extract ensemble activities. Then, these activation patterns need to be
correlated with stimuli submission. Obtaining a neuron clustering where neuronal ensem-
ble activity are not related to the stimulations would be extremely complicated to analyze
in terms of consistency and to compare with other clustering techniques. The best neural
ensemble detection technique would be a method such that: 1) it makes sense to locate con-
sistent neurons in the same ensemble regarding a specific criterion or metric in relationship
to a group definition ; 2) The inferred neural ensembles have an activity that does “explain”
the submitted stimuli or the observed spontaneous behaviors.

In the same way that GSODA [248] was the adaptation of SODA [247] by transform-
ing the statistical point-to-point coupling into a point-to-object coupling problem, it is
possible to modify the developed statistical framework to infer the correlation between a
neural activity and a set of stimulations. The research spaces, called Cluster Cores, initially
corresponding to concentric rings potentially overlapping and centered around points in a
reference sequence, can be matched with the time-space domain corresponding to the sub-
mission of stimuli or the execution of a spontaneous behavior. The coupling between a set
of points and a time-domain subspace, can thus, be performed to highlight the correlation
between neural ensemble activities and the triggering event (see Figure V.5).
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ii Using point processes to calibrate SIT

When no detrending step is applied on calcium fluorescence data, the output spikes have
different amplitudes. The spike amplitude seems correlated with its probability to occur.
At a given point, when spike amplitude decreases, the resulting spikes just correspond to
noise. Let’s suppose that we can estimate two coupled neuron fluorescence traces with such
noisy spike sequences. Finding pairs of coupled neurons could use the statistical coupling
framework to find the optimal thresholds DAT (1) and DAT (2) able to separate meaning-
ful spikes from spikes associated with noise. The search-grid research, using the statistical
coupling metric between spiking sequences demonstrates a 2-dimensional curve-bell shape
whose maximum value, seems to provide an appropriate estimated threshold to differenti-
ate meaningful information from noise components. This analysis is under a writing and
submission process in the article ”Statistical calibration of deconvolution methods for ex-
tracting neuronal spikes from calcium imaging”, Kubler et al, not published, and is equally
supported by the same mathematical framework.

The method questions equally the correlation of the noise. If the noise is uncorrelated,
the framework seems well-suited since we expect to have false spike detections equitably
spread over the sequence length that can be filtered out by the statistical test. However,
the non-linear dynamics observed in fluorescence traces could disturb the signals at same
time locations. This could be relevant if different neurons undergo the same motion at the
same time for instance in a free-behaving animal. In this situation, false spike detection
could appear at the same time locations in different fluorescent traces creating a spurious
aggregation of points and a residual artificial coupling. Such situations could illustrate the
limits of the proposed generic algorithm and going backward to the correction of additive
noise sources would be at stake.
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Figure V.5: Spatial statistic framework adapted to infer statistical coupling be-
tween stimulation and ensemble activity. a) (left) the CSR condition allow to for-
mulate a null hypothesis of the expected number of points in a region through a random
spatial distribution. (middle) When the meshgrid is fitted on a first kind of reference points
we can estimate the statistical coupling between two sets of points. In the 2D space, a
search shape can be used to measure the expected number of points under CSR and the
effective number. It provides a point-process statistical coupling called SODA. [247] (right)
A simplification of the research can be performed using level-set function instead of concen-
tric rings. It provides another version called GSoda [248] [249] ; b) (left) An adaptation
of this point process problem could be formulate in a 1-dimensional case estimating the
coupling between two sequences of time dates. (middle) the research shape correspond to
1-dimensional rings i.e pairs of segments (right) a similar simplification can be performed by
creating non-overlapping non-overflowing shapes ; c) By fitting the 1-dimensional shapes as
time segments it is possible measure the statistical coupling between a time point sequence
and a time interval. The time point sequence is the ensemble activity. The time interval
corresponding to the time interval of a specific kind of stimulations. The statistical cou-
pling framework based on spatial statistics can be modified to account such point process
phenomenon. Adapted from [245]
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3 Statistical inference for overlapping neural ensemble
detection

Like previously highlighted in Section I.3.i, a formal consensual definition of neural ensemble
does not exist. The definition, explicitly expressed by [89] as “a group of neuron repeatedly
firing together”, is adopted for the fourth article of this thesis under writing and submission
process of ”Kubler et al, Bayesian inference of overlapping neuronal ensembles, Nature
Computational Sciences, under-review”.

The idea is to provide a statistical framework able to cluster neurons in overlapping
ensembles based on their synchronicity. Estimating biological-inspired statistical evaluators
that could identify specific neuron roles, extract ensemble neural activity, measure the clus-
ters relevancy and correlation with stimuli would be a novelty that could robustly improved
in vivo neural network analysis. This work is an extension of the work initiated by [47] but
handles overlapping and provides further visualizations and considerations.

Synchronicity is the cornerstone of such statistical analysis. Its basic principle is that, at
each time step, a neural population activates, corresponding to all neurons that emitted at
least one spike during this time recording window. When a neuron population is repeatedly
reactivated over time and during a cognitive task, it is likely that this population constitutes
a neuronal ensemble that encodes a mental function. These activations are intrinsically char-
acterized by randomness since the exact same group is never perfectly recalled in practice.
When a group activates, only a subset of its neurons can contribute to its activity, but other
neurons, which are not a part of it, can equally spontaneously fire meanwhile. This inherent
stochastic nature of the problem makes the use of statistical inference a promising solution
to consider estimating emergent firing properties.

Overlapping is a clustering feature that makes this open-problem even more complex.
It corresponds to neuron capability to be recalled by several different neural ensembles
simultaneously or at deferred moments.

The provided algorithm has been applied, firstly, on much simpler model animals than
Hydra vulgaris like zebrafish data from [3] and mice visual cortex data from Yuste’s lab-
oratory. The aim was to prove that the algorithm works on gold-standard model animals
before applying it to much noisier data.

i Synchronicity unveils modular and hierarchical organization of
neuronal ensembles

Modularity corresponds to the existence of neuronal populations repeatedly reactivated over
time. If a neuronal population is sufficiently distant from other repeating neuronal popula-
tions, it will form a module of interconnected neurons. Each neuron will be defined by its
rate of synchronization to the group. For a synchronized module to emerge, it is essential
that its activation rate is much higher than the spontaneous basal activation of neurons, and
that the synchronization rate of its neurons is much higher than their de-synchronization
rate. It is also necessary that the number of neurons making up the module be sufficiently
large for a group activity to emerge and not be drowned out by activation noise.

Detecting overlapping neuronal ensembles based on synchronicity has to integrate the
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following principle: statistical significant silences also convey information. Let a neuronal
ensemble encodes a cognitive function. If a subset of neurons in this group is silent a sig-
nificant number of times (= desynchronization effect), this might mean that two regimes
of synchronization can emerge in this set. Within the same group, the distribution of neu-
ronal synchronizations could be multimodal, corresponding to several layers of hierarchy.
The most synchronized neurons during ensemble activation can play a specific role for this
ensemble. They could, for example, represent the ”Completion Pattern Neuron” (CPN)
previously highlighted in the literature. The most desynchronized neurons are the closest
neurons from neurons outside the group whose activity could be completely random for
instance. Overall, if sometimes a silent subgroup of neurons also exhibits external coordi-
nated activations, i.e. out synchronizations from its main ensemble, this might correspond
to neurons involved in another behavior or cognitive function. In this case, these neurons
may be located at the intersection of several groups, forming a functional overlapping. An
a-synchronization, corresponding to a synchronized activation of a neuron outside its group,
could therefore be the major pillar explaining the overlapping phenomenon based on syn-
chronicity preventing sometimes two distinct groups to merge.

It is worth mentioning that on experimental data, fluorescence trace intensity of neurons
that respond to a stimulation increases. Sometimes, spikes are even detected but the spiking
neuronal response can be delayed or can last different durations. In this situation, the time
dynamics of the response is not handled by the statistical model and artificial desynchro-
nization events can even occur and generate artificial overlappings. Without accounting for
the time dynamic spiking response of the neurons, in the statistical model, it is fundamen-
tal to preprocess data to avoid this effect. It is the neuronal desynchronizations between
neuronal wave responses that should provide the overlapping effects in our analysis and not
the intra-wave desynchronizations (see Contribution 4 - Fig. 7).

ii Evaluating the ensemble detection algorithm

The main advantage of this framework is its ability to estimate many parameters supported
by statistical inference that are biologically meaningful related to synchronicity. The size
of the group, their activation rate, their average level of synchronization, the basal neuron
activation, the levels of synchronization, the (de-)synchronization rates or the conditional
firing statistics given membership provide promising indicators to check that the output
clustering makes sense and can be directly related to biological features.

The adaptation of the statistical coupling tool introduced in [245], provides another way
to quantify the relevance of the clustering results. Obtaining neuron groups whose activities
do not explain stimuli or behaviors would be quite hard to analyze or interpret. Obtain-
ing a correct neuronal ensemble detection algorithm means having consistent synchronized
neurons gathered within ensembles whose activity efficiently explains the cognitive tasks.
Deriving a quantitative metric to do so, is then, straightforward.

Using this framework, we can represent schemes never highlighted before, to our knowl-
edge. Firstly, the synchronization diagram allows to represent at the same time every combi-
nation of overlapping membership, their relative proportion, and the relative importance of
each neuron within its ensemble. This information is provided by the level of synchronization
corresponding to an activation synchronization rate weighted by the relative contribution
for the neuron itself in its own activation. This diagram directly targets completion pattern
neurons providing a tool to identify ideal neurons to be manipulated using optogenetics.
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Another helpful representation to illustrate the ensemble detection is to directly map neu-
ronal ensembles in the in vivo neural networks of model animals (see Figure V.7). By doing
so, it is possible to track over frames, the neuronal activations and visually explain why a
neuron has been activated at a specific time frame and whether this activation has been
triggered by an ensemble or just corresponds to spontaneous neural activity.
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Figure V.6: Neuronal ensembles detected in mice brain visual cortex. a) Static
visual gratings are displayed in front of an immobilized mice. b) Neuronal ensemble activity
matrix is estimated and superimposed on stimulation. c) The statistical coupling between
neuronal ensemble activity and stimulation is calculated via point process theory.

iii Convergence of Bayesian inference

The exploration of the random parameter space is performed using a Bayesian Inference
algorithm called Gibbs Sampling that iteratively samples each variable assuming all others
to be fixed from the posterior conditional distribution. In a high-dimensional space with
a lot of variables, a problem occurs : the convergence toward local maxima. To solve this
issue, we implemented diverse statistical techniques to systematically converge toward the
correct global maximum during the statistical optimization process.

The successive random initialization strategy was the first appealing technique imple-
mented (see Figure V.8). Largely used in machine learning with clustering algorithms like
K-means for its simpleness, it aims at initializing the optimization routine at different ran-
dom locations to get closer to the global maximum and converge at least once toward the
correct solution. The results were promising on the simulator since, for simulation parame-
ters relevant for Hydra’s statistics, in a dozen of random initializations the global maximum
was systematically reached. More importantly, it demonstrated that the correct clustering
result was always reached for a maximum value of likelihood that, thus, could be used as a
cost function (see Figure V.8). Unfortunately, these results failed on experimental data like
mice brain visual cortex probably due to a higher data complexity.

Another implemented technique was to randomly initialize variables and run the Metropolis-
Hasting algorithm embedding simulated annealing (see Figure V.9). The general idea of
simulated annealing is to embed noise in the sampling to voluntary move the samples. By
allowing samples to be shaken at each iteration you obtain a non-null probability to get
out from a local maximum. The MH algorithm looks at whether the sampling deviation
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Neuron clustering in V1 mice cortexa)

b) c)

Figure V.7: Mapping of neuronal ensembles and extraction of statistical estimates.
a) Mapping of the neuronal ensemble in the brain visual cortex. Frame to frame tracking
of neuronal activation regarding their ensemble can be performed. b) Number of times
neuronal ensembles are coactive. c) Number of times neurons belong to several ensembles.

improves or worsens the result in terms of likelihood ratio and accepts or rejects it accord-
ingly. The temperature corresponding to the probability to shift the sample decreases over
the iterations to avoid final oscillations and allow for convergence. This idea was imple-
mented by adding random or targeted neuron subsets mixing each time a log-likelihood
convergence regime was reached, the mixing proportion decreasing over the iterations, like
the temperature of the simulating annealing process.

This solution applied alone did not produce convincing results. A possible interpretation
is that when initialization is random, the groups at the first iteration are random and
group activity is not necessarily consistent. If we reach a local maxima regime at that
moment, ensemble activity could have any sense. Trying to group certain subsets of neurons
into nonsense groups may fail, as the coherence of a group may not have been sufficiently
achieved. In other words, putting non-consistent neurons in the same group provides a
meaningless group whose activity that averages the activity of its dissimilar neurons provides
a dissimilar clustering. This tool may, though, be used with the following technique.

Another strategy to avoid local maxima is a smart initialization inspired from spectral
techniques. The smart initialization avoids performing a random initialization of the clusters
at iteration 0. The idea is to find directly a smart initial guess either of the neuron clustering
or of the neuronal ensemble activity. To do so, a technique inspired by the work from
[108] [126] has been carried out. If we see each time bin as a population vector, a first
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initial guess is to estimate heterogeneous repeated population vectors. By performing a
spherical K-means algorithm to cluster the statistical significant time steps, we can unveil
such populations and initialize the ensemble activity matrix. The initial clustering step
used to estimate ensemble activity at iteration 0 was performed using K-Means with cosine
similarity on statistical significant population vectors extracted by a z-score test using the
framework implemented in [250] [251].

More advanced sampling statistical algorithms could be considered to avoid local max-
ima jointly with a smart initialization. Indeed, some attempts have been implemented but
were not providing convincing results using more advanced sampling routines like Collapsed
Gibbs sampler. The idea is to sample variables using marginalized posterior conditional
distributions to improve the speed of convergence [252] [253] [254]. The marginalized distri-
butions are derivable in our case and provide a framework more similar to [47]. However, to
our opinion the issue of convergence was not related to speed but location. In only few iter-
ations, a convergence regime was systematically reached (good or bad) but waiting a huge
number of iterations did not change the convergence location meaning that the problem
was not related to speed but to local maxima according to the experimental simulations.
Results were not convincing. It could, however, appear as an improvement to check whether
it increases the accuracy or not.

In brief, smart initialization demonstrated its ability to avoid local maxima on simulated
data. On experimental data, in the absence of ground-truth, it is not possible to assert the
same. Results are promising though and the combination of smart initialization, simulated
annealing and more efficient sampling routine could provide even better experimental esti-
mates.

iv Estimating the number of communities

An implementation of the algorithm has been carried out to automatically estimate the
number of communities. This task has been performed by dynamically increasing the number
of communities A to scan the model with a varying number of neuronal ensembles. Stopping
criteria were assumed to be able to detect the correct number of communities.

Indeed, on simulated data the framework demonstrates its ability to uncover the exact
number of neuronal ensembles using the loglikelihood and the statistical evaluator Akaike
Criterion (AIC) as stopping criteria. Loglikehood measures the fitting quality between the
statistical model and the observation data. AIC does the same but penalizing the dimen-
sionality of the model. Experimental results on synthetic data demonstrated the ability of
both criteria to respectively provide maximum and minimum values for a correct number
of ensembles. This number of ensembles is changed dynamically each time a convergence
regime is reached. Such analysis can be quite long and the algorithm is, as implemented,
under effective for too high a number of ensembles (>8). Indeed, the formulated statistical
model is mathematically exact and tries to infer all statistical synchronization probabilities
for each possible combinations of ensemble activation given each possible combinations of
membership. This computation allows to exhaustively characterize the statistical interac-
tions between ensembles via statistical synchronization excitatory and inhibitory effects, but
appears as computationally very heavy.

The model could, thus, be simplified, since we can legitimately estimate that the prob-
ability of having more than 2 co-active communities is low in practice for simple real-world
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experiments. Simplifying the model of interaction between neurons and ensembles could,
therefore, be a promising perspective.

The automatic detection of the number of neuronal ensembles failed on real experimental
data. Indeed, it seemed that the higher was the number of communities, the better were
the evaluation criteria. This experimental observation made on the in vivo real data seems
to correspond to an overfitting phenomenon related to a higher level of complexity of real-
world data compared to synthetic data. In this situation, the higher is the number of
communities in the model, the more relevant seem to be the synchronization patterns since
outliers gathered in non-relevant groups making the remaining ones more consistent.

A promising track to infer the correct number of communities on experimental data is
to create quality statistical evaluators that summarize two quantities : the global neuron to
ensemble synchronization level and the statistical coupling between neuronal ensembles and
stimulations. The first corresponds to an evaluation metric that describes the consistency of
the providing clustering in terms of synchronization. The idea is to measure the synchroniza-
tion rate of all neurons to their respective ensembles by weighting their synchronization with
their own synchronization rate. The second is a metric that accounts for how explicable the
neuronal ensembles are about stimuli so as to avoid adding non-interpretable ensembles in
the model regarding their activities. In Hydra vulgaris, stimulation does not necessarily exist
and the statistical coupling should be carried out automatically with detected spontaneous
behaviors.

v Perspectives

To summarize, statistical inference based on biology inspired models are promising tech-
niques to analyze emergent synchronization patterns from neuronal individual cells. It
largely demonstrates the ability of such frameworks to estimate further meaningful and
interpretable statistical features of neural micro-circuitry that pave the way to a better
understanding of the neural code. Various animal models demonstrated the integration of
neural information through ensembles whose co-activity explain how in vivo neural networks
embed a stimulation, a cognitive task, or a spontaneous behavior via a synchronized neural
representation. However, this promising framework could be extended further.

Time dynamics is currently missing in the statistical model and could be added as a
progressive temporal neuron activation. This corresponds to more complex but more bio-
logically relevant activation patterns. Instead of seeing ensemble activation as an instan-
taneous event where a significant statistical subset of neurons is co-recruited, we can see
the phenomenon as a progressive neuron activation and extinction in an avalanche context
(see Appendix A). Each ensemble could be characterized by activations spread according
to a Poisson distribution to model the occurrence of events that will trigger each time a
progressive activation and extinction of neurons during a firing event whose duration could
be modeled through a Gaussian distribution. By doing so, the existing normalization pre-
processing steps applied on experimental data could be removed, and more accurate results
be obtained.

Such a model of temporal activation has already been implemented as a generative sim-
ulator in this thesis, but raises fundamental questions about statistical estimation. Com-
plexifying the statistical model means increasing the model dimensionality. Supplementary
statistical parameters and hidden variables should be estimated while the number of ob-
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servations would remain the same. Local maxima issue will necessarily emerge and will
require advanced techniques too bypass it. Questions would be raised about how to embed
external estimation and initializations to avoid such issues, how to implement more powerful
sampling techniques, add some regularization in the iterative process and be finally certain
at the end of the day that the algorithm converges correctly and systematically toward the
good estimate in a reasonable amount of time without ground-truth.

In Zebrafish a very surprising observation has been made. If the time window on which
the algorithm is run on is too long, consistency of the results decreases (> 1000-time bins).
This seems a paradox since on synthetic data, longer was the simulation duration, higher
was the result accuracy. This observation raises another fundamental question: Are the
neuronal co-activation patterns the same over time or is there a time evolution (a shift) of
the synchronization patterns and consequently of the clustering itself? This phenomenon
could be explained by photobleaching and, thus, the change in the neuronal ensemble re-
sponse. It hence seems that targeting a time window to run the proposed algorithm where
consistent synchronous firing patterns are present is necessary. Otherwise, we could attempt
to average inconsistent statistics and results could provide spurious information. It raises
the fundamental question of the time scale definition of a neuronal ensemble.

The neuronal ensemble could, thus, be estimated as a time-varying phenomenon. The
clustering matrix and all other statistical parameters of the proposed framework are assumed
to be fixed in the algorithm. However, they might also be represented as functions of time
changing the sampling routine. It is fundamental to mention that these questions also appear
here as a promising perspective to go further in such Bayesian analysis. Discussions with
neurobiologists confirm this need since in in vitro and in vivo neural networks. Evolution is
fundamental to understand neural network properties through time dynamics (Appendix
A). Having a statistical inference tool that demonstrates explicitly how the synchronization
patterns, the expected number of ensembles, the modular and hierarchical structure of neural
networks evolve over time, would be, a breakthrough in neurosciences. In Bayesian inference,
some advanced statistics have been implemented to analyze time-varying statistics. The
general idea is to sample variables using time-dependent conditional posteriors on previous
samples. One of the most relevant tool that could be used is called Particle Sampler (PS). It
already demonstrates its ability to infer spike locations as a SIT [155] and its use for neuron
ensemble detection would be a promising perspective that, to our knowledge, has never been
explored yet.





Chapter VI

Conclusion

Thesis summary
This thesis work has addressed the different steps from calcium imagery to neuronal en-

sembles. It, firstly, benchmarked spike inference algorithms to estimate neural activity. Our
work highlights that a gold-standard technique does not exist, and the choice of the most
adapted one is data dependent. Furthermore, the noisy fluorescence traces extracted, point
out the limitations of the existing techniques directly applied to a free-behaving animal. Un-
corrected motions and deformations, neuropil contamination, photobleaching effects, track-
ing errors, non-homogeneous spiking activity and inter-pollution of micro-circuitry make the
algorithms insufficient to robustly extract neural activity. In the absence of gold-standard
methods, a functional analysis of in vivo neural networks needs to be supported by sta-
tistical inference and to account for residual errors in the neural activities. Secondly, this
work demonstrates that point process statistical coupling can be used to infer topology and
correct this spurious information. Uncorrelated errors can be, thus, compensated to provide
a neural network connectivity matrix but its ability in neuroscience goes beyond this simple
application. Its use is, equally, promising to measure the statistical coupling between neural
ensemble activity and stimuli and could be directly embedded in the definition of what a
neuronal ensemble is. This part equally demonstrates that a functional connectivity metric
projects observations in a space where data are hardly interpretable biologically speaking
and user-defined choices make the clear understanding of neural networks and method com-
parison even more complicated. The final part of this work invites the reader to question the
definition of neuronal ensembles. The more recent neural doctrine accounts for the neural
representation as synchronization patterns emerging during in vivo neural networks develop-
ment. It seems that neuronal ensembles of co-active neuron cells embed a representation of
the world, the cognitive computation, or the behaviors through co-activation patterns which
involve neurons with specific roles and whose optogenetic manipulation can alter micro-
circuitry functioning and, consequently, mental faculties, behavior, and decision-making.
Based on this neural doctrine, our work finally provides a statistical inference framework to
estimate at the same time the neuronal ensemble code, the neuron clustering into functional
ensemble and neurons with specific roles. This method, supported by statistical evidence,
adopts a biologically inspired definition of a neuronal ensemble making the understanding
of the inferred quantities easily interpretable. It is, to our knowledge, the first time, that an
overlapping neuron clustering algorithm based on Bayesian Inference provides such analysis
and discusses the output clustering relevancy by embedding a statistical coupling framework
with the applied stimulations.
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Discussion of limitations and prospects
The recent progress of calcium fluorescence imagery techniques, genetical engineering

and tracking algorithms of intermittently visible objects makes now possible the functional
analysis of neurons in in vivo networks, at the scale of a whole animal like Hydra vulgaris.
The use of such simple model animal from an aggregation of cells to an entire free-behaving
organism allows for the first time to image neural networks birth, evolution, stabilization, and
plasticity. During the course of this thesis, the implementation of a robust fully statistical
pipeline predicting Hydra vulgaris behaviors could not be carried out. However, each step
of the pipeline has been studied, providing efficient tools, promising results, and further
prospects. It is worth noting that each step requires the implementation of tools since lots
of existing techniques are too basic to be directly applied on a free-moving animal case such
as Hydra which is highly polluted by noise. Three major axes are, according to this work,
promising tracks to provide evidence of the neural doctrine in Hydra.

Improving the denoising step by handling the different sources of noise using an explicit
model would be fundamental. Indeed, we have finally highlighted that a robust denoising
step for free-moving animal does not exist yet. Generally, this step is directly performed on
the movies, using convex optimization requiring a very advanced mathematical background.
Such adaptation to the free-moving animal case could sufficiently improve the data by its
own. It would allow our statistical Bayesian framework to work directly on Hydra like it
already does on mice and zebrafish visual cortex.

The neural doctrine claims that neuronal ensembles encode more robustly information
than individual cells. Hence, comparing the level of accuracy in the prediction of a LSTM,
by inputting the ensemble activities instead of neuron cell activities or pixel intensities could
provide further quantitative insights that this neural doctrine is correct.

Finally, Bayesian Inference largely applied in statistical physics has proved its ability to
unveil emergent dynamics from individual cells. Complexifying our framework to estimate
the avalanche dynamics jointly with the neuron clustering would be a great improvement.
A breakthrough would be to provide a framework where neuronal ensemble is related to
synchronous activation patterns that evolve as a function of time. Such an evolving defini-
tion of a neural ensemble would be promising for neurobiologists to quantify organization
emergence in in vivo neural networks through the extraction of time-varying statistics. The
combined use of such statistical frameworks with optogenetics to stimulate, disturb or kill
neurons in cultures could provide further insights about how neural network embeds infor-
mation and how we can interact with it. The alteration of neurons with specific roles could
even have an impact on behaviors.

Putting it into perspective
The recent interdisciplinary works reviewed in the manuscript highlight that research on

functional analysis of neuronal connectivity speeds up. An exponential increase of the pub-
lications dealing with functional connectivity has been observed in relation to the emergence
of social networks. Bottom-up approaches that try to uncover neural doctrine at the scale
of in vitro and in vivo neural networks exploded over the past few years by applying ever
more advanced statistical methods. Communities of experimentalists, optical physicists,
geneticists, and data scientists work together to decipher the neural code. The main diffi-
culty encountered today in neuroscience is to handle a huge diversity of techniques that are
rarely compared exhaustively, drawing parallels between works carried out at different scales,
on different model animals, with different imaging methods, different stimuli and different
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taxonomies depending on the communities using them. A transdisciplinary unification of
methods and theories is currently lacking and would greatly facilitate future research. An-
other paradox we encounter today is the existence of extremely advanced analysis methods
which are rarely or never used in practice by non-mathematicians due to a lack of clear,
illustrated explanations, exhaustive benchmarking, and open-source availability code.

The implementation of statistical methods based on clear model biologically inspired
provides interpretable statistical features and appears as the cornerstone of the understand-
ing of neural computation inherently driven by randomness. “As far as he can achieve it,
readability is as important for the scientific writer as it is for the novelist”. Donald O. Hebb





Appendix A

Dynamics and topology shape
neural networks through neuronal
ensembles

It is well-known that stimulation of single neurons can affect population activity in in vitro
and in vivo experimental conditions. A single neuron can directly influence network dynam-
ics which motivates recent works about optogenetics, heterogeneous receptor expression and
retrogradely transported viral vectors. The targeting of neuro-anatomical structure of the
microcircuits activated during behavioral tasks is at stake. Such structures evolve during
development and highlight common dynamical and topological patterns. For a long time
recording 2 neurons with two patch clamps, injecting pre-synaptic current to measure the
post-synaptic response was the gold-standard technique to measure the evolution of the cou-
pling efficacy between individual cells. The monitoring of the simultaneous activity of almost
all single cells in a living animal or inside an engineered in vitro neuron network provides
new perspectives and experiments to highlight how neural network topological configuration
can be shaped relatively to the emergence of dynamics.

The study of a neural network is based on two cornerstones inherently linked: Dynamics
and Structure.

Dynamics theory
Dynamics is, usually, studied via avalanche size, duration, shape, branching ratio and

complexity [235]. An neural avalanche is a set of recording time bins that shows sequential
neural activity surrounded by time bins without neuron spikes. Its size is defined by the
number of spikes emitted during an event and the number of different channels (= neurons)
involved. The statistical analysis of avalanche size and duration distribution are supposed
to provide information about the dynamics of the networks. The quantities follow power law
distributions whose parameters define the dynamics of the system and the converge toward
sub- and super-critical dynamic states [255]. The NCC toolbox can be used to extract all
these information and classify the dynamic regimes of neuron network recording [256]. From
an avalanche, the shape can be extracted as a time series corresponding to its size over each
time frame. Under specific conditions, the shapes can be rescaled to reveal similar profile.
The branching ratio is a mean ratio of the number of ”descendant nodes” recalled during
avalanche events. It provides a metric showing the relevance in the activation of the neuron
and the recall of similar patterns in neural networks. The complexity [82] of a system is
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based on a measure of entropy that shows the degree of coordination between neurons.

Self-organized criticality is a cornerstone of the analysis on neural networks dynamics
[255] [257]. The sandpile model of self-organized criticality [258] illustrates the emergence
of the neural code in neural networks. Criticality, largely used in Physics, provides a model
that links the statistical properties of the avalanches (size, duration, interval) with scale-free
power-law distributions [103]. It allows a classification of the activation of a neural network
in different regimes close or far from chaos: [sub-]critical. It modulates the phase-transition
between different stimulus representations.

Topology theory
During its development, the network structure evolves jointly with dynamics. The net-

work needs to adapt depending on the way the information flows, is integrated or dis-
tributed. Neural connectivity shares common topological patterns with other large-scale
complex networks from politics, economics, or social networks. The fine analysis of the
emergent structures unveils statistical distribution, patterns, connectivity that share com-
mon key organizational principles. Modularity, hierarchy, centrality, and hub existence result
from the evolution of networks and are the first observables required to uncover its intrinsic
mechanisms of neural code and computation.

The existing network topologies are generally classified in several categories that result
in several generative model of graph structure:

• Random Network (Erdòs-Renyi) [260] : Every pair of nodes have the same probability
of being connected. Node degree distribution of large networks follow a Gaussian
distribution.

• Scale-free Network (Barabàsi and Albert) [192] The node degree distribution follows a
power law distribution ∀I ∈ [1, . . . , N ], P (di = k) ∼ k−lambda/λ ∈ [2, 3].A very gradual
“heavy-tail” power law decay of the degree distribution implies that the network lacks a
characteristic scale. Preferential attachment phenomenon is observed. These networks
are unlikely to emerge for network with physical link constraints.

• Regular lattice Network: Extremely regular network defined by a high-level of clus-
tering and a long path length.

• Small-World Network (Watts-Strogatz) [261]: Structure largely observed in neural
networks. It combines high levels of local clustering among nodes (cliques/families)
with a low average short path. On average, only few direct connections remain but
information can spread easily due to the interconnected modules.

Graph theory measures from [76]

These topological structures can be supported by some topological features.

• Modularity: The modules correspond to densely interconnected sub-graphs relatively
to the connection density between nodes of different modules. Thus, modularity can
be estimated by comparing the number of connections insides modules compared to
the number of connections expected in a random graph.
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a)

b)

c) d)

e)

f)

Figure A.1: Dynamics of a the neuronal system analyze though avalanche statis-
tics. a) (left) The sandpile model analogy summarizes the emergence of the dynamics in
a system. Each time a new grain is added there is a probability to move neighborhood
grains. When the number of grain is enough high, avalanche cascade effects can happen
and displace a huge number of grain in the same time. The grain corresponds to neuron
electric firing. (right) A cascade event is group of firing of neurons surrounded by silence. A
number of channels is recruited corresponding to a number of diverse elements involved in
the process. b). (left) The dynamic system can converge toward different activation regime.
It can switch to a balance regime of activation, a high level of activity regime or activity can
simply vanish and stay marginal in the dynamical system. (right) This regime convergence
can be quantified using the avalanche ratio criterion that summarizes the importance of the
avalanches in the dynamics. c). The dynamic theory predicts a power-law evolution of the
dynamics of the neural systems. d) These expected power law distribution about avalanche
statistical features are demonstrated via synthetic data. e) These theories are confirmed
on in vitro neural networks where such power law distribution are experimentally observed.
f). The same observations are highlighted in vivo neural network like at Hydra Vulgaris.
(Adapted from [255] [81] [259] [235] [49])
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a) b)

Figure A.2: Different levels of randomness encode different topologies with differ-
ent topological statistical features. a) Several topological organizations. b) Clustering
coefficient varies according to the structure randomness. (adapted from [261])

• Hierarchy: Hierarchy is the successive nesting of modules with different node densities,
reflecting the organizational structure of a multi-layer or multi-level network.

• Centrality, and robustness: The centrality of a node measures the number of shortest
paths which go through nodes. Robustness refers to the structural integrity of the
network after the deletion of nodes.

All that topological features can be quantified in a network represented as a graph using
topological feature evaluators:

• Node degree, degree distribution and assortativity: The node degree is the number
of connections that link the node with the rest of the graph. The histogram of all
node degrees in a graph forms the degree distribution. For a long time, scientists ex-
pected to have a Gaussian distribution symmetrically centered to model node degree
in complex graph. However, for a lot of real-world networks, like in vivo and in vitro
neural networks, this distribution needs to be discarded. For example, the number
of sexual interactions between human beings represented in a graph follows a power
law distribution like neural networks does. It means that the number of people with
an important number of sexual partners is too high to be matched with a gaussian
distribution. This is a phenomenon called “rich-gets-richer” or “preferential attach-
ment” [192]. It means that people are more attracted by people that already have lots
of established links. Similar interactions can be found at neuron scale. This statistic
mediates the propagation of a sexual disease in the population like the information
flow in a neural network. Preferential attachment is related to development of the
power-law scaling in the scale-free and small-world topologies. Assortativity is the
correlation between the degrees of connected nodes. Positive assortativity indicates
that high-degree nodes are interconnected.

• Average Path length: The path length is the number of edges to go from one node
to another. Random and complex networks have short path length unveiling a high
global efficiency of information transfer and robustness compared to regular lattice
networks. Efficiency is inversely related to path length but easier to estimate.

• Clustering Coefficient [261] and motifs: a cluster of a nodes corresponds to all nearest
neighbor nodes connected to each other. The clustering coefficient is the number of
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connections between the nearest neighbor nodes and the maximum number of possi-
ble connections. Random networks have low clustering coefficients whereas complex
networks have high. It encodes a high local efficiency of information transformation
transfer and robustness. The detection and classification of small motifs of inter-
connected nodes can, equally, be estimated to identify the possible local interaction
supported by the network e.g., the cliques or the k-clubs.

• Connection density or cost: The connection density is the number of effective links as
a proportion of the total number of possible connections related to the energy of the
network.

• Betweenness, Closeness: The betweenness-centrality is the number of shortest paths
going through that node divide by the total number of shortest paths between pair
of nodes. This metric is used to detect nodes making the bridge in the network.
Closeness-centrality measure the speed to reach all other nodes of the network from
one node. It corresponds to the average of the shortest paths between the node and
every other one.

At the neural network scale, a small-world topology is observed. It is costly for the net-
work to create long and robust connection between distant sites. Thus, the spatial layout
of the neural networks tries to minimize the axonal volume by creating densely connected
subgraphs corresponding to modules interconnected with each other. It reveals a high local
efficiency, robust to failures and associated with a short average path length, allowing each
module to communicate efficiently. Lots of neuronal microcircuits have also been identified,
leading to the formulation of probabilistic connection rules. The high modularity of neural
networks is associated with a hierarchical organization of a functional network that generates
diverse and persistent dynamic patterns. Modularity is supported by subgraph of intercon-
nected nodes existence in networks [262] [263] . For in vitro neural networks, modules have
small number of neurons. Their size is positively correlated with neuron spatial dispersion.
Nodes belonging to the same module are more synchronized. Hub nodes with higher degree
connections exist in the structure, having a huge influence on the network. They are at the
core of the modules being extremely synchronized with their surrounded environment.

Structural organization of in vivo neural network is closely related to functional connec-
tivity that share common topological features such as modules and hubs. Structural topol-
ogy abnormalities have been related to neural diseases at the brain level e.g., schizophrenia
linked to a reduction of hierarchy and longer average path compatible with inefficient axonal
wiring. At neural network scale, the deletion of high-degree nodes (hubs) could be promis-
ing to study how dynamic of the system evolves during a failure and how does the topology
restructure.

Biological Evidence of dynamics and topology emergence in in vitro and in vivo
experiments

Lots of attempts to study emerging neuron network properties during development are
now under the scope. Especially, over the last decades, a lot of work has been done to design
in vitro interconnected neuronal assemblies [264] [265] [266] [267] [268] [269] and visualize
in vitro the dynamical and topological property emergence. Levels of activity, neuronal
avalanches, network organization, connectivity topology [270] [271] [258] are determinant
features inherent to different neural states that will shape different dynamics of the system
with an inter-contextual and inter-individual variability.
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At early stages, dissociated neuronal assemblies are expected, characterized by a lot
of small bursts leading to a persisting activity during the entire network life time [272].
At that step, information processing is optimized to work using a restrict number of not-
fully connected computation units [273]. The Self-Organized Criticality (SOC) [257] [103]
[235] [274] connects the microscopic and macroscopic levels of interpretation of neuronal
system [255] [242]. The immature network topology is almost completely random with only
few interactions that might be due to the absence of a sufficient number of connections to
form a more complex structure and the non-synchronous events could pollute the Spike-
Timing Dependent Plasticity (STDP) preventing synapses from reinforcing.

During maturating phases, periods of activity increase corresponding to more stable
neuronal avalanches and disclose dissociated neuronal network existence. Networks are
structured with an edge density naturally increasing as dynamics emerge. A convergence
in topology and dynamic appears and communication scale changes going from individual
neurons to neuron groups spread in the networks at longer distance. An increase of the
degree of small-worldness is observed unveiling deeper and deeper levels of hierarchical
arrangement [275] [276]. Downes et al, 2012 argued that the small-world topology emerges
from a random network via “synchronized bursts” whereas Antonello et al [274] claims that
it does from the promotion of neurite outgrowth. The successive establishment of new
preferential links during the development could be the factor that explains the modification
of the observed topology. These links are, first, established locally and the synchronization
patterns between nearest neighbor neurons mediate their activity and growth. It means that
spontaneous activity, self-maintained by the exchanges between modules would also appear
as a stabilizer agent. During maturation phase, connections then develop to communicate at
a higher distance, but the average length path does not change significantly. For Antonello,
it is the clustering coefficient that seem to contribute to the SW topology emergence that
reflects the ability of the network to maximize communication efficiency by minimizing the
wiring cost. Watts and Strogatz proposed another theory to account for its emergence. It
is based on a random rewiring scenario that could create shortcuts and lead to the observed
increase of local clustering.

At longer time scale, neural networks demonstrate multi-level synchronization patterns
that seem mediated by balanced excitatory-inhibitory subsystems. Strong structural connec-
tion makes functional connection more likely to occur. Finally, functional topology converges
from random to small-world with the emergence of associated topological features such as
neuron hubs and rich-club.

Neuroscientists shaped different neuron population sizes, type of population, number,
and size of (sub-)modules. Hardware material have been made to drive this kind of vary-
ing structures and compare the emergent functional connectivity structures. Furthermore,
some electrical stimulations can be applied on neural cells during development to modulate
emerging neuronal dynamics. For instance, variations on the number of stimulated sites,
frequency stimulation, or amplitude of the pulses to change synaptic efficacy were proved
to be able to modulate neural network dynamical states. As external electrical stimula-
tion increases, a stabilizing of the integration is observed rather than segregation processes
compared to spontaneous activity. External electrical stimulation, regardless of the stim-
ulation sites, affects the number of functional links, as well as the average magnitude of
changes. A trial-to-trial variability is observed for a same external input stimulation. The
exact influence of stimulation on topology evolution is not fully solved yet, but it seems
that initially random networks converge toward a modular structure in the same way, but
synaptic strength can be reinforced or altered [277] [33].



137

a) b)

Figure A.3: Small-Worldness emergence for in vitro neural networks adapted
from [275]. a) Often observed in in vitro experiments the degree of smallworldness of the
networks increase due to an increase of the clustering coefficient given an average link path
remaining constant over development. b) Node degree scales as a power law distribution in
accordance with [81].

Some evidence have also highlighted similar dynamics and topology emergence in in vivo
neural networks.

Hydra Vulgaris is known for its ability to reaggregate from individual cells by recreating
an entire animal. This ability of complete reaggregation after dissociation makes this animal
a golden-standard study case to analyze the emergent computational properties of neural
networks in vivo. From initial random topology structure with a random dynamic, a mod-
ular and hierarchical topology emerges, characterized by synchronization patterns. In the
reassembly of Hydra Vulgaris’ nervous system, transitions between regimes of self-organized
criticality would be at stake supported by hierarchical modularity (see A.4).

After 72h, the nervous system of dissociated cells is fully reestablished across the entire
animal. Synchronization patterns are appearing with an increase of the functional connec-
tivity strength. Network activity becomes distributed during reaggregation. From 8h to
24h, a hierarchy is emerging directly demonstrated by the relationship between clustering
coefficients and node degree corresponding to a scale-free structure. A transition of struc-
ture is observed from this hierarchical structure to a distributed one that facilitates this
extreme regeneration allowing immature modules to form and resume their function less
discriminatory than more highly patterned systems via hub neurons.

The global distance of module node decreases over time. At 24h, modularity becomes
more stable with smaller, densely connected ensembles. A synchronization needs to emerge,
and it happens through independent sub-modules. It seems to be a strategy to optimize
this process by recreating the activity locally first.

Neuronal avalanches whose statistics are in accordance with a phase transition in critical
regime is observed. From 24 to 48h, synchronization emerges between modules at the scale
of the entire animal. Coactivity of modules lead to module fusion and a loss of modular-
ity at 72h. Some submodules remain isolated corresponding to asynchronous activation.
Submodules seem to act as subsystems that can trigger avalanche effects in other modules.
Surprisingly, a noticeable decrease of hierarchy is observed in the experience that could ac-
count for the existence of hub nodes mediating interconnections between proto-modules and
immature ensembles formed on their way to the intermediate state of maximum modularity.
These nodes could contribute to Completion Pattern. [278] Unpublished work about the
stimulation of the completion pattern neurons to recall neuronal ensembles via optogenetics
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at Hydra Vulgaris are, now, under the scope.

To summarize, the connection strength is firstly local, and its distance projection in-
creases during neural network development. This connectivity strength increases during
the animal’s aggregation leading to a much smaller distance between modules. Second, hi-
erarchical modularity increases revealed by the increase of clustering coefficients. Thirdly,
power-law statistics showing that the in vivo network converges toward a small-world critical
regime of activity allowing phase transition.

Figure A.4: Small-Worldness emergence in vivo neural networks at Hydra Vul-
garis adapted from [49]

Carrillo-Reid [278] went further in the stimulation of neuronal ensembles in mice visual
cortex. The use of 2-photon holographic Optogenetics in mice primary visual cortex can be
used to excite Completion Pattern Neurons (CPN) and trigger behaviorally relevant neuronal
ensembles. CPN correspond to high interest nodes that are the cores of the synchronization
patterns and have the intrinsic ability to trigger the activity of an entire module or neural
circuit in correlation with a specific behavior. CPN are basically hub neurons proof of the
existence of a modular structure. The article demonstrates the ability to alter behavioral
performance. The activation of neurons unrelated to perceptual behavior can degrade be-
havior while CPN stimulation can trigger the behavior without a real external stimulus. The
interpretation is that a neural ensemble encodes an internal representation of a stimulus.
The perception of a stimulus could be internally driven using cortical states. Thus, ensem-
bles could be dynamical attractors that implement internal, perceptual or memory states.
It seems that the world representation can be altered by interacting with these states by
activating specific neurons. Some future works will necessarily emerge to inactivate, via
Optogenetics, CPN to, firstly, estimate if a specific behavior could, robustly, be inactivated
(s.t Contraction Burst at Hydra Vulgaris )and then if pathological neural diseases could be
reduced by killing the potential involved CPN in its neuro-circuitry.

As a conclusion, regular and irregular synchronization patterns seem to shape the net-
work topology regarding neuron ensemble dynamics. Spontaneous activity pattern drives
the topology transformation via the self-maintained modular activity. The emergence of
Small-world topology via Hebbian learning rule and activity driven plasticity seem to be



139

 Completion
Pattern
Neurons

Figure A.5: Completion Pattern Neurons extracted from mice’s networks and
stimulated by optogenetics adapted from [278]

the intrinsic mechanisms of the neural code to allow distant sites to communicate with each
other by optimizing the wiring cost. For the last 10 years lots of studies have worked on try-
ing to understand the development of neural networks but only few of them tried to directly
interact with it, providing clear insights. Understanding how topological network properties
evolve by stimulating or killing neuron cells via Optogenetics would be a promising perspec-
tive to unravel the underlying mechanisms of the neural circuitry. Moreover, understanding
that topology and dynamics shape jointly during a neural network aggregation provides
insights on the tools to detect the neural ensembles or search for some peculiar structures.





Appendix B

Detection of neuronal ensembles
techniques

Graph Theory Techniques applied to in vivo neural networks
The adaptation of graph theory approaches to in vivo neural networks relies on the

fidelity of a graph representation and the equivalence of neuronal ensembles to network
communities in the graph despite all user-defined choices: functional connectivity metric,
threshold of connectivity matrix, definition of a community in relation to a graph criterion to
optimize for instance. The main issues of the direct application of more general frameworks
not directly related to biological features is to lead to erroneous conclusions due to data
complexity or the absence of conclusions supported by statistical significance that could
handle to the peculiarities of the underlying problem. In the following section, the main
significant method applied in the in vivo network assembly analysis is reviewed.

Modularity Optimization using Louvain clustering algorithm

The most widely used technique to detect communities is by maximizing the graph
modularity creating clusters of nodes densely connected compared to a random null model.
The modularity Q quantifies the quality of any graph partition. The most famous definition
of modularity is given by the Newman-Girvan modularity [195] definition :

Q = 1
2m

∑
u,v

[Au,v − kukv

2m
]δ(cu, cv) (B.1)

A well-known implementation to optimize the modularity is the stochastic two steps
greedy implementation Louvain clustering [197]. Generally, such techniques modularity-
based, requires to formulate a graph network null model of random graph. Different null
models exist and the comparison between the properties of observed network graph and the
expected one under H0 provides insights to remove non-statistically significant edges and
detect communities. It is worth noting that a huge effort has been made by the mathematical
community to explore the space of null connectivity models. Null models demonstrate
statistical distributions at random graph about spectral quantities such as the Tracy-Widom
distribution or Marchenko-Pastur distribution but these are advanced mathematical theories
barely used in practice and whose implications and bias are not fully mastered for real-world
networks.

The algorithm has been applied by J. Lovas 2021 on Hydra Vulgaris to extract neural
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Figure B.1: Step of the Louvain algorithm from [197]

ensembles during reaggregation and development to demonstrate the birth of the emergent
computational properties of the neural networks at Hydra Vulgaris.

Stochastic Block Model [128]

Stochastic Block Model is a very promising mathematical tool that combined Statistical
Inference and Graph theory to extract statistical features about the connectivity of neural
networks. Lots of versions and adaptations exist [279].

Avitan [128] analyzed the evolution of the spontaneous activity response of zebrafish
larvae’s visual cortex during development using a version of SBM called Degree-Corrected
Stochastic Block Model (DG-DBM) [280].

A statistical model is set on the connectivity graph. Each node will have a probability
to generate an edge with every other neuron regarding a specific distribution. The aim will
be to inverse the statistical problem by estimating the statistical features that is the best to
describe the observed network. Let A be the adjacency matrix. aij = 1 if node i and j are
connected by an edge, 0 otherwise. The membership vector is g where ∀i ∈ [1, . . . , N ], gi is
the index of the community neuron i belongs to. Let k be the number of ensembles supposed
to be fixed and known. Let γr be the probability of assignment to community r. (∀r ∈
[1, . . . , k]) It means that each ensemble is characterized by a probability of recruitment fixed
and identical for all neurons. We have the normalization condition assuming the disjoint
partition of membership: ∑

r=1 kγr = 1 which means that all nodes are assigned to a single
group following a categorical distribution. Given a neuron i and a neuron j membership
that belong respectively to community r and s, every pair of nodes will have a probability to
form an edge. This linking follow a Poisson distribution with mean wrs∀(r, s) ∈ [1, . . . , k]2.
The model is summarized by its likelihood function to generate a particular network A, with
group assignment g, given the parameters γ, w, and k.

P (A, g|γ, w, k) ∝ P (g|γ, k)P (A|g, w) (B.2)

∝
∏
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rr exp −n2
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∏
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rs exp−nrnswrs (B.3)

Where nr = ∑
i σgi,r is the number of nodes in group r. σgi,r = 1ifgi = r, 0otherwise.

mrs number of edges between community r and s. mrs = ∑
ij aijδgi,rδgj ,s/r ̸= s.
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The likelihood is divided in three terms. First term summarizes the categorical distribu-
tion of the membership corresponding to the membership of the n nodes in the k clusters.
Second term represents the creation of the links of the same community. The third term
corresponds to the creation of links between neurons belonging to distinct communities.
Priors are set on the statistical parameters some of them directly estimated from the ob-
served adjacency matrix known as “Empirical Bayes” techniques while others from uniform
distribution. Then, a MCMC sampling routine is performed to estimate the most relevant
statistical parameters.

This method is an ordinary stochastic block model that can give a poor fit for most
real-world network data since it fails to match the broad degree distributions commonly
observed in data. Here, it is indeed, assumed, that the number of links is similar for nodes
belonging to same ensembles. In real data, huge heterogeneity of node degrees is observed
corresponding to scale free topologies highlighted in in vivo neural networks. It means that
the statistical model is too simple compared to real-world data complexity. To account for
that phenomenon, the degree correction part has been implemented as an extension of the
model.

θ is a vector of parameters that describes for each node its ability to create link allowing
freer degree distribution. The expected number of edges between a pair of node i and j
becomes θiθjwrs. (node i and j belong respectively to r and s) A normalization is added to
avoid the statistical non-identifiability of model parameters: ∀r ∈ [1, . . . , k], 1

nr

∑
i θiσgi,r =

1. Leading to an average number of edges between two ensembles r and s equals to∑
ij θiθjwrsσgi,rσgj ,s = nrnswrs. wrs is still the average probability of an edge between

nodes in groups r and s but nodes with released degree can exist. The new likelihood
function can be calculated:

P (A|g, θ, w) ∝
∏
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Where di = ∑
j aij is the observed degree of node i. Prior distributions are set. A MCMC

algorithm is used to iteratively sample the parameters. In some cases, the algorithm can
get stuck in “metastable states” where equilibrium is reached extremely fast. Repeated runs
with random initialization are then performed keeping the result that provides the highest
average likelihood value.

The limitations of the techniques are to be applied using a statistical model of the graph
connectivity and not directly a model of the interaction of neurons (obtaining the observed
adjacent matrix A still raises the question of the first steps about functional connectivity)
and the method does not handle overlapping in the membership part. The mathematical
framework remains still very promising highlighting how statistical inference can be used to
estimate relationships between nodes given an observable.

Spectral Technique Taxonomy
PCA / ICA [200] [281] [202]

The aim of the component analysis methods is to generate an abstract representation
of the data in a new mathematical space where data complexity is diminished allowing
easier pattern and relationship identification. Independent component analysis (ICA) and
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Principal Component Analysis (PCA) are respectively two machine learning techniques able
to perform independent source analyses and data dimensionality reduction.

PCA search for the orthogonal directions in the data that maximize its variance as the
eigenvectors of the covariance matrix of the spike connectivity matrix. Spike matrix has
been normalized using a z-score providing its covariance matrix as the correlation matrix of
the spiking activity. This matrix is given by:

C = ZZT

Ncolumns
(B.5)

Where Z is the binned spike count matrix got after the statistical z-score. According to
the spectral theorem, C is real and symmetric, so diagonalizable.

C =
∑

λixix
T
i (B.6)

Where xi is the i − th eigenvectors of C (the i − th PC of Z) and λi the corresponding
eigenvalue. xix

T
i is the projection matrix onto the direction xi and λi its variance. Under

the null hypothesis of a random matrix, some advanced mathematical works has been done
to highlight the properties of the spectral distributions [260] [282] [283] [284] that allow to
discard non-correlated interactions. Especially, the eigenvalues of the correlation matrix of
a normal random matrix M with statically independent rows follow a probability function
described by the Marcenko-Pastur distribution:

P (λ) = q

2πσ2

√
(λmax − λ)(λ–λmin)

λ
(B.7)

With q = Ncolumns
Nrows

≥ 1, σ2 the variance of the elements of M (equals to 1 for z-score
normalization), Ncolumns the number of columns of M, Nrows the number of rows of M.
λmax/min the maximum and minimum bounds of eigenvalues such that λmax/min = σ2(1 +
−

√
1
q )2. D = [λmin, λmax] (P (λ /∈ D) = 0). λmax can be used as a threshold to estimate

the number of ensembles. MP distributions have been proved for random matrices whose
entries are derived from gaussian distribution and provides a good bound for eigenvalues of
matrices composed by independent rows corresponding to uncorrelated neurons. A finite
sample bias correction can be applied by using Tracy-Widom distribution instead used for
instance by Bickel and Sarkar [285] do derive a statistical hierarchical ensemble detection
algorithm.

Assembly patterns and activity estimation. In linear model, the neuron ensemble
activity is a linear summation of the activation of the cells. The co-activation pattern is
a vector corresponding to the weights of each neuron in the specific contribution of that
pattern. For all time bin b, the activity of cell assembly is then:

Rb =
∑
i=1

Nwizib = wT Zb (B.8)

Where N is the number of neurons, Zib is the Z-score activity of neuron i at time bin b,
wi is the weight of neuron i in the assembly, w is the column vector of all neuron weights
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and Zb is the b-th column of matrix Z. By projecting the neural activity at each time bins
regarding the weighted contribution of the neurons in orthogonal decorrelated assemblies, it
allows to analyze if different activity patterns emerge. Thus, each cell assembly activity is
estimated by this projection of columns of the spiking matrix onto the axis spanned by the
corresponding assembly pattern extracted as the PC of the PCA. The projector is P = wwT

where w is the unitary vector of assembly patterns that spans the axis. The projection acts
like a similarity measure between the activity of the whole population and the assembly
patterns.

Rb = ZT
b PZb withP = wwT (B.9)

This method has same limitations since in some cases when assemblies overlap for in-
stance estimated ensemble activities can be mixed up [199]. In the specific case a neuron
can show a large weight contribution for different orthogonal PCs. Thus, if two assemblies
share a similar amount of variance in their corresponding axes, it becomes possible that first
PC represent the average of two assemblies and not an individual assembly anymore. Then,
PCA fails, and further solutions need to be implemented.

Assembly vector estimation is a solution. PC weights carry information about the
membership since larger weights encode larger neuron contribution to the axis. The question
is to define a membership threshold. AV is a technique to extract both neuron ensemble
membership and ensemble activity patterns limiting mixing the ensemble activations. In the
AV framework, the number of neurons composing at least one assembly is estimated counting
the number of eigenvalues that lie outside Marcenko-Pastur distribution boundaries. The
columns of the correlation matrix are projected onto the subspace spanned by the PCs
associated with significantly large eigenvalues.

Ni = PASCi , such that PAS =
∑

i

PCiP
T
Ci

= PCP T
C (B.10)

Where PCi is the i-th significant PC and Pc is a matrix containing all significant PCs
(columns). The subspace of projection is the Assembly Space (AS) and the columns of the
correlation matrix Ni projected in AS are called neuron vectors. The number of eigenvalues
that lie outside the theoretical distribution defined the number of significant neurons to
handle. The AS gathers neurons with neuron vector corresponding to neuron population
[92] [126] with similar correlation patterns. Neuron with orthogonal correlation patterns will
be separated in that space. The neuron pattern similarity matrix called Interaction Matrix
is calculated by calculating the inner products of all neuron vectors and those of significant
neurons provide the co-activation patterns similarity.

Mi,j = NT
i Nj (B.11)

The distribution of similarity co-activation patterns is expected to be ideally bimodal al-
lowing a binarization separating to noise to significant information. A homemade clustering
algorithm is run on the binary matrix to find the cluster of neurons.

Finally, the assembly vectors (AV) are defined as the barycenters of the neuron popula-
tion Ni whose neurons are exclusive to an assembly.
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AVa = 1
na

∑
i

Ni (B.12)

The method is better than a simple PCA but limited by the separation of small and large
inner products in the AS. The bi-modal representation cannot always be simply divided by
a hard threshold. The method requires the existence of exclusive neurons that could not
exist.

The combine use of PCA with ICA is another implementation made to improve the
detection of neural assemblies in the absence of exclusive neurons.

This work is inspired by [281]. ICA is a method used to extract non-gaussian components
from multivariate signals. Rigorous mathematical formalism of ICA can be easily found but
the basic idea uses the central limit theorem. Summing lots of independent random variables
provides a gaussian distribution. The more numerous is the number of random variables, the
higher the “Gaussianity” of the signal is. ICA projects the data in a space where the data
Gaussianity decrease to find independent components that intervene as a linear summation
in the resulting signal. A rotation invariance needs to be avoided corresponding to the
extraction of gaussian signals that are impossible to recover using this technique. The first
part of the algorithm remains the same corresponding to the extraction of the PC and then
they are rotated to match ideal assembly patterns that shows significant improvement in the
methods. ICA cannot handle gaussian distribution or non-linear spike correlation. Neuronal
assemblies are bin size dependent.

SVD

Carrillo-Reid did a huge work to estimate neural ensembles, identify neuron with specific
roles (= CPN) and recall the ensembles during behavioral tasks. In his vision, at each time
step a neuron population is activated. The aim is to find similar neuron population that
are repeatedly activated over time. The method is, thus, based on a spatial and temporal
criterion of similarity. His method can be divided into successive steps: 1) Estimation of
the high-level synchronous neuron population activities. 2) Normalization using TF-IDF
transform to remove non-significative neuron population activation. 3) Mapping of neuron
population using Cosine Similarity calculation. 4) Population similarity Binarization. 5)
Temporal Profile similarity calculation using Hamming distance calculation. 6) SVD for
neuron clustering and ensemble activation estimation.

Singular Value Decomposition (SVD) factorization is a generalization of the PCA when
we project the data matrix in the highest variance directions instead of its covariance matrix.
SVD is more general and does not reduce information dimensionality during the factoriza-
tion step. For SVD, the number of neuronal ensembles is given by the magnitude of the
singular values, so an estimation of the number is not required using a formal mathematical
distribution under a null model. A direct mathematical link can be highlighted between
SVD and PCA.

Compared to previous work, Carrillo-Reid highlights temporal properties of network
activities using a representation of the overall activity as an array of multidimensional pop-
ulation vectors based on time points analysis. The identification of recurrent groups of cells
firing together is at the core of the method. Some user-defined thresholds are used in the
similarity metrics such as binarizing the matrix to apply the hamming distance on it. The
method has not been properly benchmarked against previous spectral techniques and its
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Figure B.2: Community detection via SVD from [108] [126]. a) Vectorization of the
time bin in the spike matrix. Each time step is seens as a population vector of activated
neurons. b) The matrix is normalized using a TF-IDF transform from the NLP (Natural
Language Processing) community. It limits the influence of too activate cells that are not
statistically significant. c) A similarity matrix is calculated using a pairwise cosine similarity.
d) The matrix is binarized and decomposed using a SVD. It unveils orthogonal components
to highlight dissimilar population that repeat over times. e) The decomposition is perfomed
in an orthogonal basis. f) An estimation of an ensemble activity matrix is performed and
matched with the mice visual stimulations. g) It highlights frame by frame the activated
population in response to stimulations.

accuracy is unknown in specific experimental conditions such as a high level of ensemble
overlapping.

Model based techniques
A model-based technique is a technique that explicitly defined what a biological neuronal

ensemble is. It handles the specificity of the problem providing interpretable estimates.
These techniques are the most likely to be reused by experimentalist since being meaningful.
The main goal of such techniques is to explicitly formulate the model and to try to solve an
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inverse problem by estimating the most likely model variables given observables.

To our opinion, the most promising technique is the technique from [47], that formulates
a statistical model with neuronal ensemble definition based on synchrony whose estimates
are infer using Bayesian inference to solve the inverse problem. Applied on zebrafish larvae,
this technique offers according to our opinion, new perspectives to estimate the emergent
properties of synchronization emerging from neural networks and unveiling neuronal ensem-
bles.

This technique is developed around 3 major working visions:

• Neurons are divided into several assemblies. Neuron membership is unique and only
defined by a probability nk of recruitment of each neuronal ensemble. Statistically the
membership is modeled by a categorical distribution.

• Neuronal ensemble can be active or inactive independently at each time step. It
means that a neuronal ensemble firing is defined by the coactivation of a subset of
its neurons. This probability activation of each ensemble is model by a Bernoulli law
with probability pk assumed to be fixed over a recording.

• Given the state of an ensemble at time bin k, active or inactive, every neurons will have
a probability to respond (a-)synchronously. It means that given an ensemble firing, its
neurons could fire with it or not. Outside neural ensemble activity every neurons have
the same basal probability to be activated corresponding to a spontaneous activity.

All 3 fundamental model principles lead to a statistical model whose likelihood function
can be calculated.

P (t, w, s|θ = (n, p, λ)) = (
N∏

i=1
nti)(

A∏
µ=1

M∏
k=1

p
wkµ
µ (1−pµ)1−wkµ)(

N∏
i=1

M∏
k=1

(λti(wkti
)sik(1−λti(wkti

))1−sik)

(B.13)

Where nµ is the probability of recruitment of the community µ, pµ is the probabil-
ity of activation of community µ, and λµ(wk,µ) is the probability of activating the neu-
rons belonging to community µ given the activation state of community µ at time k.
(λti(z) = P (si,k = 1|wk,ti

= z)) t and W are the hidden variables of the model corresponding
respectively to the neuron membership vector and the ensemble matrix probability.

Once the model is explicitly formulated, its inversion and the estimation of the most likely
statistical parameters and hidden variables needs to be carried out. It requires an inversion
routine. This inversion is based on bayes formula P (Z, θ|data) ∝ P (data, Z|θ) × P (θ) and
2 versions of the algorithm based on two model, and two optimization procedures: the
Collapsed Gibbs sampler routine and the Metropolis-Hasting algorithm. Both algorithms
are based on the establishment of prior distributions, chosen to be conjugate priors providing
sampleable posterior distributions allowing the optimizing procedures.

Some posterior distributions are marginalized out to collapse the algorithm and proving
a more efficient convergence. The posterior distributions calculated are:
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P (t, w, s) = B(G + α)
B(α)

A∏
µ=1

B(Hµ, H̄µ)
B(α(p)

µ , β
(p)
µ )

A∏
µ=1

∏
z∈{0,1}

B(T z1
µ , T z0

µ )
B(α(λ)

z , β
(λ)
z )

(B.14)

P (ti = µ|t−i, w, s) ∝
µ=ti

(αµ + Gµ\i)
∏

z∈{0,1}

∏
z∈{0,1}

B(T z1
µ , T z0

µ )
B(T z1

µ\i, T z0
µ\i)

(B.15)

P (wkµ = 1) = 1
1 + ρkµ

(B.16)

With ρkµ = ( 1
pµ

− 1)
∏
i∈µ

λti(0)sik(1 − λti(0))1−sik

λti(1)sik(1 − λti(1))1−sik
(B.17)

In the more advanced model, the number of communities itself can be seen as statistical
parameter to estimate and dynamically change in the sampling routine as metropolis-hasting
switching regimes. Then, the main algorithm is benchmarked against some state-of-the-art
techniques firstly on synthetic data and then, on experimental data.

Figure B.3: Gibbs sampler routine to inverse the statistical non-overlapping model
of synchony [47].



150 APPENDIX B. DETECTION OF NEURONAL ENSEMBLES TECHNIQUES

Fi
gu

re
B.

4:
N

on
-e

xh
au

st
iv

e
lit

er
at

ur
e

T
re

e
of

C
om

m
un

it
y

D
et

ec
ti

on
te

ch
ni

qu
es



Appendix C

Graph theories techniques rely on
functional connectivity metrics

Functional connectivity highlights the statistical coupling between two distant areas or
nodes in their activity. Two sites demonstrate a strong FC if their respective activities
are co-dependent, meaning that a behavior or a cognitive function is encoded by a remote
interaction between these distant sites. Generally, this measure is performed into 2 steps:
the first is to define a coupling metric that will be applied on time-series signals. The second
is to apply this metric between all pairs of nodes to generate an adjacency matrix, also called
connectivity matrix, that will summarize all existing edges (functional connections) between
each pair of nodes (neuron cells). This matrix is the cornerstone of the FC since its struc-
ture will reveal the network topology expected (see : previous part) of the neuron network.
Another core of community detection is the creation of a null hypothesis of node activity,
outside behavior or cognitive task, to detect a statistically significant increase of node cell
interactions during an experiment. This step is also a core of the community detection re-
search. For cells, some existing functional connectivity metrics can be directly adapted and
applied on fluorescence traces, but it seems that direct application on spike trains are often
considered too. It is worth noting that some techniques evaluate the correlation between two
signals inside the time domain trying to find linear relationships for instance in the evolution
of the time series signals. Other techniques work in the frequency domain, especially for
theories where coupling is extracted from oscillatory phase locking. The choice of the FC
metric to use depends on the underlying hypothesis that is being tested. The reviews are
from [286] [242] [287].

Here is a non-exhaustive list of well-known functional connectivity metrics.

1) Cross-correlation: Applied on time series or point process events corresponding to
spike trains. It measures the direct influence of a neuron on another reference one [63] [235].
The metric does not handle temporal structure of data nor directionality.

Rxy(τ) = 1
NxNy

Nx∑
s=1

x(ts)y(ts − τ) (C.1)

Nx : number of spikes in the binned spikes trains x. ts : time bin containing spike s in
the spike train of x. τ : time lag.

2) Cross-covariance: It is the probability to obtain a spike for a first signal at time s,
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METRICS

Figure C.1: Taxonomy of functional connectivity metrics from [287]

compared to obtaining a spike for a second signal at a time t. It is an indication of the
strength of the functional connection between neurons. Rx,y connectivity matrix coefficient
obtained averaging cross-correlation for specific maximal value of time lag τ . The cross-
covariance is defined by :

Cov(X, Y ) = E[(X − µX)(Y − µY )] (C.2)

3) Coherence coefficient: In the spectral representation of the signals, the coherence coef-
ficient quantifies the synchronization between a pair of measured signals. It is an adaptation
of the cross-correlation in the frequency domain that requires that an oscillating signal. This
metric strongly highlight module ratio and phase different between signals.

cohx,y(w) =

∣∣∣ 1
n

∑n
k=1 Ax(w, k)Ay(w, k)ei(ϕx(w,k)−ϕy(w,k))

∣∣∣√(
1
n

∑n
k=1 A2

x(w, k)
) (

1
n

∑n
k=1 A2

y(w, k)
) (C.3)

represents the cross-spectral densities between signals x, y at frequency w. Using the
average cross-spectral density matrix S, it is then possible to extract coherence coefficients
as normalized from the averaged cross-spectral density.

S(w) =
[
Sxx(w) Sxy(w)
Syx(w) Syy(w)

]
(C.4) Cx,y(w) = |Sxy(w)|√

Sxx(w)Syy(w) (C.5)

The coherence can be concisely defined by the normalized term Cx,y(w).

5) Granger causality [288] [289] [240] : It estimates the causal influence as a linear
dependance of neuron signal to another assuming that two-time series are well described by
Gaussian autoregressive processes. It has the intrinsic ability to predict future values of time
series of a given neuron using prior values of the time series of other neurons. It appears
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as a very formal solution with lots of applications for different signals at single-cell levels
(continuous and spiking signals) in Zebrafish or mice for instance [290] [222] [291] [292] [293].
Lots of versions exist. (Bivariation, Multivariate, VAR model, GLM model...) The proposed
method by Kim 2011 [294], is adapted to neuron spiking activity:

We record Q neurons in time range [0, T ]. Each neuron i is defined by its spike time
arrivals: ∀i ∈ [0, . . . , Q], 0 < ui

1 < ui
2 < · · · < ui

Ji
. Ni(t) is the number of spikes that

fall in the time segment [0, . . . , t], ∀t < T . The Conditional Intensity Function (CIF)
describes how the spiking past history of neuron i influences its spiking activity at time t.
It corresponds to its instantaneous probability to fire at time t given its covariates Hi(t).

λi(t|Hi(t)) = lim
δ→0

P [Ni(t + δ) − Ni(t) = 1|Hi(t)]
δ

(C.6)

It corresponds to an instantaneous conditional firing rate. Hi(t) denotes the spiking
history of all the neurons in the ensemble up to time t for neuron i. Hi(t) defined in the
interval [t–MiW, t] such that Mi(t) non-overlapping time bin windows of width W . For all
neuron q = 1, . . . , Q and all timebins m = 1, . . . , Mi Rq,m(t) denotes the spike count of
neuron q in time window of length W convering the time interval [t − mW, t − (m − 1)W ].
In the continuous or discrete case, Granger Causality embeds dynamics model through
respectively an Auto-Regressive Model (VAR model) and a Global Linear Model (GLM). In
discrete time series events, we have :

λi(t|γi, Hi(t)) = exp

γi,0 +
Q∑

q=1

Mi∑
m=1

γi,q,mRq,m(t)

 (C.7)

It means that the probability of neuron i to spike is a linear integration of basal spon-
taneous activity of the neuron γI,0 and a weighted contribution of ensemble spiking Rq,m(t).
This weighted contribution is defined by a parameter vector γi

γi = [γi,0, γi,1,1, . . . , γi,q,m, . . . , γi,Q,Mi ] (C.8)

Which represents the dependency of neuron i the spiking history of all neurons in the
ensemble. This parametric CIF is fit on the data using its point process likelihood function.
The likelihood of the neuron spike train i is obtain modeling the process as a Bernoulli
distribution of spike in each time bin :

Li(γi) =
K∏

k=1
[λi(tk|γi, Hi[k])∆]∆Ni[k] [1 − λi(tk|γi, Hi[k])∆]1−∆Ni[k] + o(∆Ji) (C.9)

o(∆Ji) denotes the probability that neuron i includes more that one spike in the sub
interval [tk−1, tk]. Measuring the effect of a neuron j to a neuron i means evaluating if its
spiking history has a significant statistical impact on the prediction of the probability of
neuron i to fire at time t. It means that this notion of “more likely to” is encoded by a ratio
calculation between two likelihood functions. One which accounts for neuron j influence,
one that does not. The likelihood ratio Γi,j is thus given by :
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Γij = log Li(γj
i )

Li(γi)
(C.10)

This ratio is a coefficient that answer to the question : Is it more likely that neuron
j influence the instantaneous conditional probability of neuron i to fire at time t or not.
Li(γj

i ) is the likelihood function of the spike train of neuron i where the contribution of
neuron j is removed :

log λj
i (tk|γj

i , Hj
i [k]) = γj

i,0 +
Q∑

q=1
q ̸=j

Mi∑
m=1

γj
i,q,mRq,m[k] (C.11)

Finally the Granger causality coefficients between neuron j and i are given by the follow-
ing formula providing a Q × Q matrix summarizing all causal influences between neurons.

ϕij = − sign

 Mi∑
m=1

γi,j,m

 Γij (C.12)

This coefficient summarizes the interaction between neuron i and neuron j. A positive
result, a negative result and a close to zero result reveal respectively an excitory, an inhibitory
and a no influence effects. Applying this metric on every pair of node provides a connectivity
matrix of size Q×Q. Several versions of this algorithm exist but some recent studies highlight
advantages and drawbacks.

7) Tranfert entropy : We focus on the original definition made by [295] [296] [297] [298]
and applied by [299] in a context of spiking point process. TE is a directed, asymmetric,
measure of interaction that can be applied on two time series. TE provides positive coeffi-
cients to account for how including information of neuron j’s spiking activity improves the
prediction on neuron i’s activity compared to its own history only. It is an information flow
measure.

TEJ→I =
∑

P (It+1, i
(k)
t , j

(k)
t ) log2

P [it+1|i(k)
t , j

(l)
t ]

P [it+1|i(k)
t ]

(C.13)

it denotes the binary status of neuron i at time t. k and l are the order of TE. In this
framework, the probability are estimated counting the effective number of situation events
occurring.
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[114] S. L. Smith and M. Häusser, “Parallel processing of visual space by neighboring
neurons in mouse visual cortex,” Nature Neuroscience, vol. 13, no. 9, pp. 1144–1149,
Sept. 2010.

[115] J. Nakai, M. Ohkura, and K. Imoto, “A high signal-to-noise Ca2+ probe composed of
a single green fluorescent protein,” Nature Biotechnology, vol. 19, no. 2, pp. 137–141,
Feb. 2001.

[116] C. Grienberger and A. Konnerth, “Imaging Calcium in Neurons,” Neuron, vol. 73,
no. 5, pp. 862–885, Mar. 2012.

[117] T. H. Kim and M. J. Schnitzer, “Fluorescence imaging of large-scale neural ensemble
dynamics,” Cell, vol. 185, no. 1, pp. 9–41, Jan. 2022.

[118] M.-j. Zhu, C.-y. Dong, X.-y. Chen, et al., “Identifying the pulsed neuron networks’
structures by a nonlinear Granger causality method,” BMC Neuroscience, vol. 21, no.
1, pp. 7, Feb. 2020.

[119] M. H. Zhu, J. Jang, M. M. Milosevic, and S. D. Antic, “Population imaging discrep-
ancies between a genetically-encoded calcium indicator (GECI) versus a genetically-
encoded voltage indicator (GEVI),” Scientific Reports, vol. 11, no. 1, pp. 5295, Mar.
2021.

[120] E. Hamel, B. Grewe, J. Parker, and M. Schnitzer, “Cellular Level Brain Imaging in
Behaving Mammals: An Engineering Approach,” Neuron, vol. 86, no. 1, pp. 140–159,
Apr. 2015.

[121] J. N. D. Kerr, C. P. J. De Kock, D. S. Greenberg, et al., “Spatial Organization of
Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex,” The Journal of
Neuroscience, vol. 27, no. 48, pp. 13316–13328, Nov. 2007.



BIBLIOGRAPHY 163

[122] J. Sawinski, D. J. Wallace, D. S. Greenberg, et al., “Visually evoked activity in
cortical cells imaged in freely moving animals,” Proceedings of the National Academy
of Sciences, vol. 106, no. 46, pp. 19557–19562, Nov. 2009, Publisher: Proceedings of
the National Academy of Sciences.

[123] D. Karagyozov, M. Mihovilovic Skanata, A. Lesar, and M. Gershow, “Recording Neu-
ral Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon
Microscopy,” Cell Reports, vol. 25, no. 5, pp. 1371–1383.e10, Oct. 2018.

[124] D. A. Dombeck, A. N. Khabbaz, F. Collman, et al., “Imaging Large-Scale Neural
Activity with Cellular Resolution in Awake, Mobile Mice,” Neuron, vol. 56, no. 1, pp.
43–57, Oct. 2007.

[125] J. D. Seelig, M. E. Chiappe, G. K. Lott, et al., “Two-photon calcium imaging from
head-fixed Drosophila during optomotor walking behavior,” Nature Methods, vol. 7,
no. 7, pp. 535–540, July 2010.

[126] L. Carrillo-Reid, S. Han, E. Taralova, et al., “Identification and Targeting of Cortical
Ensembles,” preprint, Neuroscience, Nov. 2017.

[127] M. B. Ahrens and F. Engert, “Large-scale imaging in small brains,” Current Opinion
in Neurobiology, vol. 32, pp. 78–86, June 2015.

[128] L. Avitan, Z. Pujic, J. Mölter, et al., “Spontaneous Activity in the Zebrafish Tectum
Reorganizes over Development and Is Influenced by Visual Experience,” Current
Biology, vol. 27, no. 16, pp. 2407–2419.e4, Aug. 2017.
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